xref: /openbmc/linux/mm/page_alloc.c (revision c8dbaa22)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 
70 #include <asm/sections.h>
71 #include <asm/tlbflush.h>
72 #include <asm/div64.h>
73 #include "internal.h"
74 
75 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76 static DEFINE_MUTEX(pcp_batch_high_lock);
77 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
78 
79 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80 DEFINE_PER_CPU(int, numa_node);
81 EXPORT_PER_CPU_SYMBOL(numa_node);
82 #endif
83 
84 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
85 /*
86  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
87  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
88  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
89  * defined in <linux/topology.h>.
90  */
91 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
92 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
93 int _node_numa_mem_[MAX_NUMNODES];
94 #endif
95 
96 /* work_structs for global per-cpu drains */
97 DEFINE_MUTEX(pcpu_drain_mutex);
98 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
99 
100 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
101 volatile unsigned long latent_entropy __latent_entropy;
102 EXPORT_SYMBOL(latent_entropy);
103 #endif
104 
105 /*
106  * Array of node states.
107  */
108 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
109 	[N_POSSIBLE] = NODE_MASK_ALL,
110 	[N_ONLINE] = { { [0] = 1UL } },
111 #ifndef CONFIG_NUMA
112 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
113 #ifdef CONFIG_HIGHMEM
114 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
115 #endif
116 	[N_MEMORY] = { { [0] = 1UL } },
117 	[N_CPU] = { { [0] = 1UL } },
118 #endif	/* NUMA */
119 };
120 EXPORT_SYMBOL(node_states);
121 
122 /* Protect totalram_pages and zone->managed_pages */
123 static DEFINE_SPINLOCK(managed_page_count_lock);
124 
125 unsigned long totalram_pages __read_mostly;
126 unsigned long totalreserve_pages __read_mostly;
127 unsigned long totalcma_pages __read_mostly;
128 
129 int percpu_pagelist_fraction;
130 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
131 
132 /*
133  * A cached value of the page's pageblock's migratetype, used when the page is
134  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
135  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
136  * Also the migratetype set in the page does not necessarily match the pcplist
137  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
138  * other index - this ensures that it will be put on the correct CMA freelist.
139  */
140 static inline int get_pcppage_migratetype(struct page *page)
141 {
142 	return page->index;
143 }
144 
145 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
146 {
147 	page->index = migratetype;
148 }
149 
150 #ifdef CONFIG_PM_SLEEP
151 /*
152  * The following functions are used by the suspend/hibernate code to temporarily
153  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
154  * while devices are suspended.  To avoid races with the suspend/hibernate code,
155  * they should always be called with pm_mutex held (gfp_allowed_mask also should
156  * only be modified with pm_mutex held, unless the suspend/hibernate code is
157  * guaranteed not to run in parallel with that modification).
158  */
159 
160 static gfp_t saved_gfp_mask;
161 
162 void pm_restore_gfp_mask(void)
163 {
164 	WARN_ON(!mutex_is_locked(&pm_mutex));
165 	if (saved_gfp_mask) {
166 		gfp_allowed_mask = saved_gfp_mask;
167 		saved_gfp_mask = 0;
168 	}
169 }
170 
171 void pm_restrict_gfp_mask(void)
172 {
173 	WARN_ON(!mutex_is_locked(&pm_mutex));
174 	WARN_ON(saved_gfp_mask);
175 	saved_gfp_mask = gfp_allowed_mask;
176 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
177 }
178 
179 bool pm_suspended_storage(void)
180 {
181 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
182 		return false;
183 	return true;
184 }
185 #endif /* CONFIG_PM_SLEEP */
186 
187 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
188 unsigned int pageblock_order __read_mostly;
189 #endif
190 
191 static void __free_pages_ok(struct page *page, unsigned int order);
192 
193 /*
194  * results with 256, 32 in the lowmem_reserve sysctl:
195  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
196  *	1G machine -> (16M dma, 784M normal, 224M high)
197  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
198  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
199  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
200  *
201  * TBD: should special case ZONE_DMA32 machines here - in those we normally
202  * don't need any ZONE_NORMAL reservation
203  */
204 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
205 #ifdef CONFIG_ZONE_DMA
206 	 256,
207 #endif
208 #ifdef CONFIG_ZONE_DMA32
209 	 256,
210 #endif
211 #ifdef CONFIG_HIGHMEM
212 	 32,
213 #endif
214 	 32,
215 };
216 
217 EXPORT_SYMBOL(totalram_pages);
218 
219 static char * const zone_names[MAX_NR_ZONES] = {
220 #ifdef CONFIG_ZONE_DMA
221 	 "DMA",
222 #endif
223 #ifdef CONFIG_ZONE_DMA32
224 	 "DMA32",
225 #endif
226 	 "Normal",
227 #ifdef CONFIG_HIGHMEM
228 	 "HighMem",
229 #endif
230 	 "Movable",
231 #ifdef CONFIG_ZONE_DEVICE
232 	 "Device",
233 #endif
234 };
235 
236 char * const migratetype_names[MIGRATE_TYPES] = {
237 	"Unmovable",
238 	"Movable",
239 	"Reclaimable",
240 	"HighAtomic",
241 #ifdef CONFIG_CMA
242 	"CMA",
243 #endif
244 #ifdef CONFIG_MEMORY_ISOLATION
245 	"Isolate",
246 #endif
247 };
248 
249 compound_page_dtor * const compound_page_dtors[] = {
250 	NULL,
251 	free_compound_page,
252 #ifdef CONFIG_HUGETLB_PAGE
253 	free_huge_page,
254 #endif
255 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
256 	free_transhuge_page,
257 #endif
258 };
259 
260 int min_free_kbytes = 1024;
261 int user_min_free_kbytes = -1;
262 int watermark_scale_factor = 10;
263 
264 static unsigned long __meminitdata nr_kernel_pages;
265 static unsigned long __meminitdata nr_all_pages;
266 static unsigned long __meminitdata dma_reserve;
267 
268 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
269 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
270 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
271 static unsigned long __initdata required_kernelcore;
272 static unsigned long __initdata required_movablecore;
273 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
274 static bool mirrored_kernelcore;
275 
276 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
277 int movable_zone;
278 EXPORT_SYMBOL(movable_zone);
279 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
280 
281 #if MAX_NUMNODES > 1
282 int nr_node_ids __read_mostly = MAX_NUMNODES;
283 int nr_online_nodes __read_mostly = 1;
284 EXPORT_SYMBOL(nr_node_ids);
285 EXPORT_SYMBOL(nr_online_nodes);
286 #endif
287 
288 int page_group_by_mobility_disabled __read_mostly;
289 
290 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
291 static inline void reset_deferred_meminit(pg_data_t *pgdat)
292 {
293 	unsigned long max_initialise;
294 	unsigned long reserved_lowmem;
295 
296 	/*
297 	 * Initialise at least 2G of a node but also take into account that
298 	 * two large system hashes that can take up 1GB for 0.25TB/node.
299 	 */
300 	max_initialise = max(2UL << (30 - PAGE_SHIFT),
301 		(pgdat->node_spanned_pages >> 8));
302 
303 	/*
304 	 * Compensate the all the memblock reservations (e.g. crash kernel)
305 	 * from the initial estimation to make sure we will initialize enough
306 	 * memory to boot.
307 	 */
308 	reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
309 			pgdat->node_start_pfn + max_initialise);
310 	max_initialise += reserved_lowmem;
311 
312 	pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
313 	pgdat->first_deferred_pfn = ULONG_MAX;
314 }
315 
316 /* Returns true if the struct page for the pfn is uninitialised */
317 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
318 {
319 	int nid = early_pfn_to_nid(pfn);
320 
321 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
322 		return true;
323 
324 	return false;
325 }
326 
327 /*
328  * Returns false when the remaining initialisation should be deferred until
329  * later in the boot cycle when it can be parallelised.
330  */
331 static inline bool update_defer_init(pg_data_t *pgdat,
332 				unsigned long pfn, unsigned long zone_end,
333 				unsigned long *nr_initialised)
334 {
335 	/* Always populate low zones for address-contrained allocations */
336 	if (zone_end < pgdat_end_pfn(pgdat))
337 		return true;
338 	(*nr_initialised)++;
339 	if ((*nr_initialised > pgdat->static_init_size) &&
340 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
341 		pgdat->first_deferred_pfn = pfn;
342 		return false;
343 	}
344 
345 	return true;
346 }
347 #else
348 static inline void reset_deferred_meminit(pg_data_t *pgdat)
349 {
350 }
351 
352 static inline bool early_page_uninitialised(unsigned long pfn)
353 {
354 	return false;
355 }
356 
357 static inline bool update_defer_init(pg_data_t *pgdat,
358 				unsigned long pfn, unsigned long zone_end,
359 				unsigned long *nr_initialised)
360 {
361 	return true;
362 }
363 #endif
364 
365 /* Return a pointer to the bitmap storing bits affecting a block of pages */
366 static inline unsigned long *get_pageblock_bitmap(struct page *page,
367 							unsigned long pfn)
368 {
369 #ifdef CONFIG_SPARSEMEM
370 	return __pfn_to_section(pfn)->pageblock_flags;
371 #else
372 	return page_zone(page)->pageblock_flags;
373 #endif /* CONFIG_SPARSEMEM */
374 }
375 
376 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
377 {
378 #ifdef CONFIG_SPARSEMEM
379 	pfn &= (PAGES_PER_SECTION-1);
380 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
381 #else
382 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
383 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
384 #endif /* CONFIG_SPARSEMEM */
385 }
386 
387 /**
388  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
389  * @page: The page within the block of interest
390  * @pfn: The target page frame number
391  * @end_bitidx: The last bit of interest to retrieve
392  * @mask: mask of bits that the caller is interested in
393  *
394  * Return: pageblock_bits flags
395  */
396 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
397 					unsigned long pfn,
398 					unsigned long end_bitidx,
399 					unsigned long mask)
400 {
401 	unsigned long *bitmap;
402 	unsigned long bitidx, word_bitidx;
403 	unsigned long word;
404 
405 	bitmap = get_pageblock_bitmap(page, pfn);
406 	bitidx = pfn_to_bitidx(page, pfn);
407 	word_bitidx = bitidx / BITS_PER_LONG;
408 	bitidx &= (BITS_PER_LONG-1);
409 
410 	word = bitmap[word_bitidx];
411 	bitidx += end_bitidx;
412 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
413 }
414 
415 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
416 					unsigned long end_bitidx,
417 					unsigned long mask)
418 {
419 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
420 }
421 
422 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
423 {
424 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
425 }
426 
427 /**
428  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
429  * @page: The page within the block of interest
430  * @flags: The flags to set
431  * @pfn: The target page frame number
432  * @end_bitidx: The last bit of interest
433  * @mask: mask of bits that the caller is interested in
434  */
435 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
436 					unsigned long pfn,
437 					unsigned long end_bitidx,
438 					unsigned long mask)
439 {
440 	unsigned long *bitmap;
441 	unsigned long bitidx, word_bitidx;
442 	unsigned long old_word, word;
443 
444 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
445 
446 	bitmap = get_pageblock_bitmap(page, pfn);
447 	bitidx = pfn_to_bitidx(page, pfn);
448 	word_bitidx = bitidx / BITS_PER_LONG;
449 	bitidx &= (BITS_PER_LONG-1);
450 
451 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
452 
453 	bitidx += end_bitidx;
454 	mask <<= (BITS_PER_LONG - bitidx - 1);
455 	flags <<= (BITS_PER_LONG - bitidx - 1);
456 
457 	word = READ_ONCE(bitmap[word_bitidx]);
458 	for (;;) {
459 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
460 		if (word == old_word)
461 			break;
462 		word = old_word;
463 	}
464 }
465 
466 void set_pageblock_migratetype(struct page *page, int migratetype)
467 {
468 	if (unlikely(page_group_by_mobility_disabled &&
469 		     migratetype < MIGRATE_PCPTYPES))
470 		migratetype = MIGRATE_UNMOVABLE;
471 
472 	set_pageblock_flags_group(page, (unsigned long)migratetype,
473 					PB_migrate, PB_migrate_end);
474 }
475 
476 #ifdef CONFIG_DEBUG_VM
477 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
478 {
479 	int ret = 0;
480 	unsigned seq;
481 	unsigned long pfn = page_to_pfn(page);
482 	unsigned long sp, start_pfn;
483 
484 	do {
485 		seq = zone_span_seqbegin(zone);
486 		start_pfn = zone->zone_start_pfn;
487 		sp = zone->spanned_pages;
488 		if (!zone_spans_pfn(zone, pfn))
489 			ret = 1;
490 	} while (zone_span_seqretry(zone, seq));
491 
492 	if (ret)
493 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
494 			pfn, zone_to_nid(zone), zone->name,
495 			start_pfn, start_pfn + sp);
496 
497 	return ret;
498 }
499 
500 static int page_is_consistent(struct zone *zone, struct page *page)
501 {
502 	if (!pfn_valid_within(page_to_pfn(page)))
503 		return 0;
504 	if (zone != page_zone(page))
505 		return 0;
506 
507 	return 1;
508 }
509 /*
510  * Temporary debugging check for pages not lying within a given zone.
511  */
512 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
513 {
514 	if (page_outside_zone_boundaries(zone, page))
515 		return 1;
516 	if (!page_is_consistent(zone, page))
517 		return 1;
518 
519 	return 0;
520 }
521 #else
522 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
523 {
524 	return 0;
525 }
526 #endif
527 
528 static void bad_page(struct page *page, const char *reason,
529 		unsigned long bad_flags)
530 {
531 	static unsigned long resume;
532 	static unsigned long nr_shown;
533 	static unsigned long nr_unshown;
534 
535 	/*
536 	 * Allow a burst of 60 reports, then keep quiet for that minute;
537 	 * or allow a steady drip of one report per second.
538 	 */
539 	if (nr_shown == 60) {
540 		if (time_before(jiffies, resume)) {
541 			nr_unshown++;
542 			goto out;
543 		}
544 		if (nr_unshown) {
545 			pr_alert(
546 			      "BUG: Bad page state: %lu messages suppressed\n",
547 				nr_unshown);
548 			nr_unshown = 0;
549 		}
550 		nr_shown = 0;
551 	}
552 	if (nr_shown++ == 0)
553 		resume = jiffies + 60 * HZ;
554 
555 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
556 		current->comm, page_to_pfn(page));
557 	__dump_page(page, reason);
558 	bad_flags &= page->flags;
559 	if (bad_flags)
560 		pr_alert("bad because of flags: %#lx(%pGp)\n",
561 						bad_flags, &bad_flags);
562 	dump_page_owner(page);
563 
564 	print_modules();
565 	dump_stack();
566 out:
567 	/* Leave bad fields for debug, except PageBuddy could make trouble */
568 	page_mapcount_reset(page); /* remove PageBuddy */
569 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
570 }
571 
572 /*
573  * Higher-order pages are called "compound pages".  They are structured thusly:
574  *
575  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
576  *
577  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
578  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
579  *
580  * The first tail page's ->compound_dtor holds the offset in array of compound
581  * page destructors. See compound_page_dtors.
582  *
583  * The first tail page's ->compound_order holds the order of allocation.
584  * This usage means that zero-order pages may not be compound.
585  */
586 
587 void free_compound_page(struct page *page)
588 {
589 	__free_pages_ok(page, compound_order(page));
590 }
591 
592 void prep_compound_page(struct page *page, unsigned int order)
593 {
594 	int i;
595 	int nr_pages = 1 << order;
596 
597 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
598 	set_compound_order(page, order);
599 	__SetPageHead(page);
600 	for (i = 1; i < nr_pages; i++) {
601 		struct page *p = page + i;
602 		set_page_count(p, 0);
603 		p->mapping = TAIL_MAPPING;
604 		set_compound_head(p, page);
605 	}
606 	atomic_set(compound_mapcount_ptr(page), -1);
607 }
608 
609 #ifdef CONFIG_DEBUG_PAGEALLOC
610 unsigned int _debug_guardpage_minorder;
611 bool _debug_pagealloc_enabled __read_mostly
612 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
613 EXPORT_SYMBOL(_debug_pagealloc_enabled);
614 bool _debug_guardpage_enabled __read_mostly;
615 
616 static int __init early_debug_pagealloc(char *buf)
617 {
618 	if (!buf)
619 		return -EINVAL;
620 	return kstrtobool(buf, &_debug_pagealloc_enabled);
621 }
622 early_param("debug_pagealloc", early_debug_pagealloc);
623 
624 static bool need_debug_guardpage(void)
625 {
626 	/* If we don't use debug_pagealloc, we don't need guard page */
627 	if (!debug_pagealloc_enabled())
628 		return false;
629 
630 	if (!debug_guardpage_minorder())
631 		return false;
632 
633 	return true;
634 }
635 
636 static void init_debug_guardpage(void)
637 {
638 	if (!debug_pagealloc_enabled())
639 		return;
640 
641 	if (!debug_guardpage_minorder())
642 		return;
643 
644 	_debug_guardpage_enabled = true;
645 }
646 
647 struct page_ext_operations debug_guardpage_ops = {
648 	.need = need_debug_guardpage,
649 	.init = init_debug_guardpage,
650 };
651 
652 static int __init debug_guardpage_minorder_setup(char *buf)
653 {
654 	unsigned long res;
655 
656 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
657 		pr_err("Bad debug_guardpage_minorder value\n");
658 		return 0;
659 	}
660 	_debug_guardpage_minorder = res;
661 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
662 	return 0;
663 }
664 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
665 
666 static inline bool set_page_guard(struct zone *zone, struct page *page,
667 				unsigned int order, int migratetype)
668 {
669 	struct page_ext *page_ext;
670 
671 	if (!debug_guardpage_enabled())
672 		return false;
673 
674 	if (order >= debug_guardpage_minorder())
675 		return false;
676 
677 	page_ext = lookup_page_ext(page);
678 	if (unlikely(!page_ext))
679 		return false;
680 
681 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
682 
683 	INIT_LIST_HEAD(&page->lru);
684 	set_page_private(page, order);
685 	/* Guard pages are not available for any usage */
686 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
687 
688 	return true;
689 }
690 
691 static inline void clear_page_guard(struct zone *zone, struct page *page,
692 				unsigned int order, int migratetype)
693 {
694 	struct page_ext *page_ext;
695 
696 	if (!debug_guardpage_enabled())
697 		return;
698 
699 	page_ext = lookup_page_ext(page);
700 	if (unlikely(!page_ext))
701 		return;
702 
703 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
704 
705 	set_page_private(page, 0);
706 	if (!is_migrate_isolate(migratetype))
707 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
708 }
709 #else
710 struct page_ext_operations debug_guardpage_ops;
711 static inline bool set_page_guard(struct zone *zone, struct page *page,
712 			unsigned int order, int migratetype) { return false; }
713 static inline void clear_page_guard(struct zone *zone, struct page *page,
714 				unsigned int order, int migratetype) {}
715 #endif
716 
717 static inline void set_page_order(struct page *page, unsigned int order)
718 {
719 	set_page_private(page, order);
720 	__SetPageBuddy(page);
721 }
722 
723 static inline void rmv_page_order(struct page *page)
724 {
725 	__ClearPageBuddy(page);
726 	set_page_private(page, 0);
727 }
728 
729 /*
730  * This function checks whether a page is free && is the buddy
731  * we can do coalesce a page and its buddy if
732  * (a) the buddy is not in a hole (check before calling!) &&
733  * (b) the buddy is in the buddy system &&
734  * (c) a page and its buddy have the same order &&
735  * (d) a page and its buddy are in the same zone.
736  *
737  * For recording whether a page is in the buddy system, we set ->_mapcount
738  * PAGE_BUDDY_MAPCOUNT_VALUE.
739  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
740  * serialized by zone->lock.
741  *
742  * For recording page's order, we use page_private(page).
743  */
744 static inline int page_is_buddy(struct page *page, struct page *buddy,
745 							unsigned int order)
746 {
747 	if (page_is_guard(buddy) && page_order(buddy) == order) {
748 		if (page_zone_id(page) != page_zone_id(buddy))
749 			return 0;
750 
751 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
752 
753 		return 1;
754 	}
755 
756 	if (PageBuddy(buddy) && page_order(buddy) == order) {
757 		/*
758 		 * zone check is done late to avoid uselessly
759 		 * calculating zone/node ids for pages that could
760 		 * never merge.
761 		 */
762 		if (page_zone_id(page) != page_zone_id(buddy))
763 			return 0;
764 
765 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
766 
767 		return 1;
768 	}
769 	return 0;
770 }
771 
772 /*
773  * Freeing function for a buddy system allocator.
774  *
775  * The concept of a buddy system is to maintain direct-mapped table
776  * (containing bit values) for memory blocks of various "orders".
777  * The bottom level table contains the map for the smallest allocatable
778  * units of memory (here, pages), and each level above it describes
779  * pairs of units from the levels below, hence, "buddies".
780  * At a high level, all that happens here is marking the table entry
781  * at the bottom level available, and propagating the changes upward
782  * as necessary, plus some accounting needed to play nicely with other
783  * parts of the VM system.
784  * At each level, we keep a list of pages, which are heads of continuous
785  * free pages of length of (1 << order) and marked with _mapcount
786  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
787  * field.
788  * So when we are allocating or freeing one, we can derive the state of the
789  * other.  That is, if we allocate a small block, and both were
790  * free, the remainder of the region must be split into blocks.
791  * If a block is freed, and its buddy is also free, then this
792  * triggers coalescing into a block of larger size.
793  *
794  * -- nyc
795  */
796 
797 static inline void __free_one_page(struct page *page,
798 		unsigned long pfn,
799 		struct zone *zone, unsigned int order,
800 		int migratetype)
801 {
802 	unsigned long combined_pfn;
803 	unsigned long uninitialized_var(buddy_pfn);
804 	struct page *buddy;
805 	unsigned int max_order;
806 
807 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
808 
809 	VM_BUG_ON(!zone_is_initialized(zone));
810 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
811 
812 	VM_BUG_ON(migratetype == -1);
813 	if (likely(!is_migrate_isolate(migratetype)))
814 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
815 
816 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
817 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
818 
819 continue_merging:
820 	while (order < max_order - 1) {
821 		buddy_pfn = __find_buddy_pfn(pfn, order);
822 		buddy = page + (buddy_pfn - pfn);
823 
824 		if (!pfn_valid_within(buddy_pfn))
825 			goto done_merging;
826 		if (!page_is_buddy(page, buddy, order))
827 			goto done_merging;
828 		/*
829 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
830 		 * merge with it and move up one order.
831 		 */
832 		if (page_is_guard(buddy)) {
833 			clear_page_guard(zone, buddy, order, migratetype);
834 		} else {
835 			list_del(&buddy->lru);
836 			zone->free_area[order].nr_free--;
837 			rmv_page_order(buddy);
838 		}
839 		combined_pfn = buddy_pfn & pfn;
840 		page = page + (combined_pfn - pfn);
841 		pfn = combined_pfn;
842 		order++;
843 	}
844 	if (max_order < MAX_ORDER) {
845 		/* If we are here, it means order is >= pageblock_order.
846 		 * We want to prevent merge between freepages on isolate
847 		 * pageblock and normal pageblock. Without this, pageblock
848 		 * isolation could cause incorrect freepage or CMA accounting.
849 		 *
850 		 * We don't want to hit this code for the more frequent
851 		 * low-order merging.
852 		 */
853 		if (unlikely(has_isolate_pageblock(zone))) {
854 			int buddy_mt;
855 
856 			buddy_pfn = __find_buddy_pfn(pfn, order);
857 			buddy = page + (buddy_pfn - pfn);
858 			buddy_mt = get_pageblock_migratetype(buddy);
859 
860 			if (migratetype != buddy_mt
861 					&& (is_migrate_isolate(migratetype) ||
862 						is_migrate_isolate(buddy_mt)))
863 				goto done_merging;
864 		}
865 		max_order++;
866 		goto continue_merging;
867 	}
868 
869 done_merging:
870 	set_page_order(page, order);
871 
872 	/*
873 	 * If this is not the largest possible page, check if the buddy
874 	 * of the next-highest order is free. If it is, it's possible
875 	 * that pages are being freed that will coalesce soon. In case,
876 	 * that is happening, add the free page to the tail of the list
877 	 * so it's less likely to be used soon and more likely to be merged
878 	 * as a higher order page
879 	 */
880 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
881 		struct page *higher_page, *higher_buddy;
882 		combined_pfn = buddy_pfn & pfn;
883 		higher_page = page + (combined_pfn - pfn);
884 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
885 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
886 		if (pfn_valid_within(buddy_pfn) &&
887 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
888 			list_add_tail(&page->lru,
889 				&zone->free_area[order].free_list[migratetype]);
890 			goto out;
891 		}
892 	}
893 
894 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
895 out:
896 	zone->free_area[order].nr_free++;
897 }
898 
899 /*
900  * A bad page could be due to a number of fields. Instead of multiple branches,
901  * try and check multiple fields with one check. The caller must do a detailed
902  * check if necessary.
903  */
904 static inline bool page_expected_state(struct page *page,
905 					unsigned long check_flags)
906 {
907 	if (unlikely(atomic_read(&page->_mapcount) != -1))
908 		return false;
909 
910 	if (unlikely((unsigned long)page->mapping |
911 			page_ref_count(page) |
912 #ifdef CONFIG_MEMCG
913 			(unsigned long)page->mem_cgroup |
914 #endif
915 			(page->flags & check_flags)))
916 		return false;
917 
918 	return true;
919 }
920 
921 static void free_pages_check_bad(struct page *page)
922 {
923 	const char *bad_reason;
924 	unsigned long bad_flags;
925 
926 	bad_reason = NULL;
927 	bad_flags = 0;
928 
929 	if (unlikely(atomic_read(&page->_mapcount) != -1))
930 		bad_reason = "nonzero mapcount";
931 	if (unlikely(page->mapping != NULL))
932 		bad_reason = "non-NULL mapping";
933 	if (unlikely(page_ref_count(page) != 0))
934 		bad_reason = "nonzero _refcount";
935 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
936 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
937 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
938 	}
939 #ifdef CONFIG_MEMCG
940 	if (unlikely(page->mem_cgroup))
941 		bad_reason = "page still charged to cgroup";
942 #endif
943 	bad_page(page, bad_reason, bad_flags);
944 }
945 
946 static inline int free_pages_check(struct page *page)
947 {
948 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
949 		return 0;
950 
951 	/* Something has gone sideways, find it */
952 	free_pages_check_bad(page);
953 	return 1;
954 }
955 
956 static int free_tail_pages_check(struct page *head_page, struct page *page)
957 {
958 	int ret = 1;
959 
960 	/*
961 	 * We rely page->lru.next never has bit 0 set, unless the page
962 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
963 	 */
964 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
965 
966 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
967 		ret = 0;
968 		goto out;
969 	}
970 	switch (page - head_page) {
971 	case 1:
972 		/* the first tail page: ->mapping is compound_mapcount() */
973 		if (unlikely(compound_mapcount(page))) {
974 			bad_page(page, "nonzero compound_mapcount", 0);
975 			goto out;
976 		}
977 		break;
978 	case 2:
979 		/*
980 		 * the second tail page: ->mapping is
981 		 * page_deferred_list().next -- ignore value.
982 		 */
983 		break;
984 	default:
985 		if (page->mapping != TAIL_MAPPING) {
986 			bad_page(page, "corrupted mapping in tail page", 0);
987 			goto out;
988 		}
989 		break;
990 	}
991 	if (unlikely(!PageTail(page))) {
992 		bad_page(page, "PageTail not set", 0);
993 		goto out;
994 	}
995 	if (unlikely(compound_head(page) != head_page)) {
996 		bad_page(page, "compound_head not consistent", 0);
997 		goto out;
998 	}
999 	ret = 0;
1000 out:
1001 	page->mapping = NULL;
1002 	clear_compound_head(page);
1003 	return ret;
1004 }
1005 
1006 static __always_inline bool free_pages_prepare(struct page *page,
1007 					unsigned int order, bool check_free)
1008 {
1009 	int bad = 0;
1010 
1011 	VM_BUG_ON_PAGE(PageTail(page), page);
1012 
1013 	trace_mm_page_free(page, order);
1014 	kmemcheck_free_shadow(page, order);
1015 
1016 	/*
1017 	 * Check tail pages before head page information is cleared to
1018 	 * avoid checking PageCompound for order-0 pages.
1019 	 */
1020 	if (unlikely(order)) {
1021 		bool compound = PageCompound(page);
1022 		int i;
1023 
1024 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1025 
1026 		if (compound)
1027 			ClearPageDoubleMap(page);
1028 		for (i = 1; i < (1 << order); i++) {
1029 			if (compound)
1030 				bad += free_tail_pages_check(page, page + i);
1031 			if (unlikely(free_pages_check(page + i))) {
1032 				bad++;
1033 				continue;
1034 			}
1035 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1036 		}
1037 	}
1038 	if (PageMappingFlags(page))
1039 		page->mapping = NULL;
1040 	if (memcg_kmem_enabled() && PageKmemcg(page))
1041 		memcg_kmem_uncharge(page, order);
1042 	if (check_free)
1043 		bad += free_pages_check(page);
1044 	if (bad)
1045 		return false;
1046 
1047 	page_cpupid_reset_last(page);
1048 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1049 	reset_page_owner(page, order);
1050 
1051 	if (!PageHighMem(page)) {
1052 		debug_check_no_locks_freed(page_address(page),
1053 					   PAGE_SIZE << order);
1054 		debug_check_no_obj_freed(page_address(page),
1055 					   PAGE_SIZE << order);
1056 	}
1057 	arch_free_page(page, order);
1058 	kernel_poison_pages(page, 1 << order, 0);
1059 	kernel_map_pages(page, 1 << order, 0);
1060 	kasan_free_pages(page, order);
1061 
1062 	return true;
1063 }
1064 
1065 #ifdef CONFIG_DEBUG_VM
1066 static inline bool free_pcp_prepare(struct page *page)
1067 {
1068 	return free_pages_prepare(page, 0, true);
1069 }
1070 
1071 static inline bool bulkfree_pcp_prepare(struct page *page)
1072 {
1073 	return false;
1074 }
1075 #else
1076 static bool free_pcp_prepare(struct page *page)
1077 {
1078 	return free_pages_prepare(page, 0, false);
1079 }
1080 
1081 static bool bulkfree_pcp_prepare(struct page *page)
1082 {
1083 	return free_pages_check(page);
1084 }
1085 #endif /* CONFIG_DEBUG_VM */
1086 
1087 /*
1088  * Frees a number of pages from the PCP lists
1089  * Assumes all pages on list are in same zone, and of same order.
1090  * count is the number of pages to free.
1091  *
1092  * If the zone was previously in an "all pages pinned" state then look to
1093  * see if this freeing clears that state.
1094  *
1095  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1096  * pinned" detection logic.
1097  */
1098 static void free_pcppages_bulk(struct zone *zone, int count,
1099 					struct per_cpu_pages *pcp)
1100 {
1101 	int migratetype = 0;
1102 	int batch_free = 0;
1103 	bool isolated_pageblocks;
1104 
1105 	spin_lock(&zone->lock);
1106 	isolated_pageblocks = has_isolate_pageblock(zone);
1107 
1108 	while (count) {
1109 		struct page *page;
1110 		struct list_head *list;
1111 
1112 		/*
1113 		 * Remove pages from lists in a round-robin fashion. A
1114 		 * batch_free count is maintained that is incremented when an
1115 		 * empty list is encountered.  This is so more pages are freed
1116 		 * off fuller lists instead of spinning excessively around empty
1117 		 * lists
1118 		 */
1119 		do {
1120 			batch_free++;
1121 			if (++migratetype == MIGRATE_PCPTYPES)
1122 				migratetype = 0;
1123 			list = &pcp->lists[migratetype];
1124 		} while (list_empty(list));
1125 
1126 		/* This is the only non-empty list. Free them all. */
1127 		if (batch_free == MIGRATE_PCPTYPES)
1128 			batch_free = count;
1129 
1130 		do {
1131 			int mt;	/* migratetype of the to-be-freed page */
1132 
1133 			page = list_last_entry(list, struct page, lru);
1134 			/* must delete as __free_one_page list manipulates */
1135 			list_del(&page->lru);
1136 
1137 			mt = get_pcppage_migratetype(page);
1138 			/* MIGRATE_ISOLATE page should not go to pcplists */
1139 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1140 			/* Pageblock could have been isolated meanwhile */
1141 			if (unlikely(isolated_pageblocks))
1142 				mt = get_pageblock_migratetype(page);
1143 
1144 			if (bulkfree_pcp_prepare(page))
1145 				continue;
1146 
1147 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1148 			trace_mm_page_pcpu_drain(page, 0, mt);
1149 		} while (--count && --batch_free && !list_empty(list));
1150 	}
1151 	spin_unlock(&zone->lock);
1152 }
1153 
1154 static void free_one_page(struct zone *zone,
1155 				struct page *page, unsigned long pfn,
1156 				unsigned int order,
1157 				int migratetype)
1158 {
1159 	spin_lock(&zone->lock);
1160 	if (unlikely(has_isolate_pageblock(zone) ||
1161 		is_migrate_isolate(migratetype))) {
1162 		migratetype = get_pfnblock_migratetype(page, pfn);
1163 	}
1164 	__free_one_page(page, pfn, zone, order, migratetype);
1165 	spin_unlock(&zone->lock);
1166 }
1167 
1168 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1169 				unsigned long zone, int nid)
1170 {
1171 	set_page_links(page, zone, nid, pfn);
1172 	init_page_count(page);
1173 	page_mapcount_reset(page);
1174 	page_cpupid_reset_last(page);
1175 
1176 	INIT_LIST_HEAD(&page->lru);
1177 #ifdef WANT_PAGE_VIRTUAL
1178 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1179 	if (!is_highmem_idx(zone))
1180 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1181 #endif
1182 }
1183 
1184 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1185 					int nid)
1186 {
1187 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1188 }
1189 
1190 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1191 static void init_reserved_page(unsigned long pfn)
1192 {
1193 	pg_data_t *pgdat;
1194 	int nid, zid;
1195 
1196 	if (!early_page_uninitialised(pfn))
1197 		return;
1198 
1199 	nid = early_pfn_to_nid(pfn);
1200 	pgdat = NODE_DATA(nid);
1201 
1202 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1203 		struct zone *zone = &pgdat->node_zones[zid];
1204 
1205 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1206 			break;
1207 	}
1208 	__init_single_pfn(pfn, zid, nid);
1209 }
1210 #else
1211 static inline void init_reserved_page(unsigned long pfn)
1212 {
1213 }
1214 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1215 
1216 /*
1217  * Initialised pages do not have PageReserved set. This function is
1218  * called for each range allocated by the bootmem allocator and
1219  * marks the pages PageReserved. The remaining valid pages are later
1220  * sent to the buddy page allocator.
1221  */
1222 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1223 {
1224 	unsigned long start_pfn = PFN_DOWN(start);
1225 	unsigned long end_pfn = PFN_UP(end);
1226 
1227 	for (; start_pfn < end_pfn; start_pfn++) {
1228 		if (pfn_valid(start_pfn)) {
1229 			struct page *page = pfn_to_page(start_pfn);
1230 
1231 			init_reserved_page(start_pfn);
1232 
1233 			/* Avoid false-positive PageTail() */
1234 			INIT_LIST_HEAD(&page->lru);
1235 
1236 			SetPageReserved(page);
1237 		}
1238 	}
1239 }
1240 
1241 static void __free_pages_ok(struct page *page, unsigned int order)
1242 {
1243 	unsigned long flags;
1244 	int migratetype;
1245 	unsigned long pfn = page_to_pfn(page);
1246 
1247 	if (!free_pages_prepare(page, order, true))
1248 		return;
1249 
1250 	migratetype = get_pfnblock_migratetype(page, pfn);
1251 	local_irq_save(flags);
1252 	__count_vm_events(PGFREE, 1 << order);
1253 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1254 	local_irq_restore(flags);
1255 }
1256 
1257 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1258 {
1259 	unsigned int nr_pages = 1 << order;
1260 	struct page *p = page;
1261 	unsigned int loop;
1262 
1263 	prefetchw(p);
1264 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1265 		prefetchw(p + 1);
1266 		__ClearPageReserved(p);
1267 		set_page_count(p, 0);
1268 	}
1269 	__ClearPageReserved(p);
1270 	set_page_count(p, 0);
1271 
1272 	page_zone(page)->managed_pages += nr_pages;
1273 	set_page_refcounted(page);
1274 	__free_pages(page, order);
1275 }
1276 
1277 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1278 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1279 
1280 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1281 
1282 int __meminit early_pfn_to_nid(unsigned long pfn)
1283 {
1284 	static DEFINE_SPINLOCK(early_pfn_lock);
1285 	int nid;
1286 
1287 	spin_lock(&early_pfn_lock);
1288 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1289 	if (nid < 0)
1290 		nid = first_online_node;
1291 	spin_unlock(&early_pfn_lock);
1292 
1293 	return nid;
1294 }
1295 #endif
1296 
1297 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1298 static inline bool __meminit __maybe_unused
1299 meminit_pfn_in_nid(unsigned long pfn, int node,
1300 		   struct mminit_pfnnid_cache *state)
1301 {
1302 	int nid;
1303 
1304 	nid = __early_pfn_to_nid(pfn, state);
1305 	if (nid >= 0 && nid != node)
1306 		return false;
1307 	return true;
1308 }
1309 
1310 /* Only safe to use early in boot when initialisation is single-threaded */
1311 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1312 {
1313 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1314 }
1315 
1316 #else
1317 
1318 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1319 {
1320 	return true;
1321 }
1322 static inline bool __meminit  __maybe_unused
1323 meminit_pfn_in_nid(unsigned long pfn, int node,
1324 		   struct mminit_pfnnid_cache *state)
1325 {
1326 	return true;
1327 }
1328 #endif
1329 
1330 
1331 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1332 							unsigned int order)
1333 {
1334 	if (early_page_uninitialised(pfn))
1335 		return;
1336 	return __free_pages_boot_core(page, order);
1337 }
1338 
1339 /*
1340  * Check that the whole (or subset of) a pageblock given by the interval of
1341  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1342  * with the migration of free compaction scanner. The scanners then need to
1343  * use only pfn_valid_within() check for arches that allow holes within
1344  * pageblocks.
1345  *
1346  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1347  *
1348  * It's possible on some configurations to have a setup like node0 node1 node0
1349  * i.e. it's possible that all pages within a zones range of pages do not
1350  * belong to a single zone. We assume that a border between node0 and node1
1351  * can occur within a single pageblock, but not a node0 node1 node0
1352  * interleaving within a single pageblock. It is therefore sufficient to check
1353  * the first and last page of a pageblock and avoid checking each individual
1354  * page in a pageblock.
1355  */
1356 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1357 				     unsigned long end_pfn, struct zone *zone)
1358 {
1359 	struct page *start_page;
1360 	struct page *end_page;
1361 
1362 	/* end_pfn is one past the range we are checking */
1363 	end_pfn--;
1364 
1365 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1366 		return NULL;
1367 
1368 	start_page = pfn_to_online_page(start_pfn);
1369 	if (!start_page)
1370 		return NULL;
1371 
1372 	if (page_zone(start_page) != zone)
1373 		return NULL;
1374 
1375 	end_page = pfn_to_page(end_pfn);
1376 
1377 	/* This gives a shorter code than deriving page_zone(end_page) */
1378 	if (page_zone_id(start_page) != page_zone_id(end_page))
1379 		return NULL;
1380 
1381 	return start_page;
1382 }
1383 
1384 void set_zone_contiguous(struct zone *zone)
1385 {
1386 	unsigned long block_start_pfn = zone->zone_start_pfn;
1387 	unsigned long block_end_pfn;
1388 
1389 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1390 	for (; block_start_pfn < zone_end_pfn(zone);
1391 			block_start_pfn = block_end_pfn,
1392 			 block_end_pfn += pageblock_nr_pages) {
1393 
1394 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1395 
1396 		if (!__pageblock_pfn_to_page(block_start_pfn,
1397 					     block_end_pfn, zone))
1398 			return;
1399 	}
1400 
1401 	/* We confirm that there is no hole */
1402 	zone->contiguous = true;
1403 }
1404 
1405 void clear_zone_contiguous(struct zone *zone)
1406 {
1407 	zone->contiguous = false;
1408 }
1409 
1410 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1411 static void __init deferred_free_range(struct page *page,
1412 					unsigned long pfn, int nr_pages)
1413 {
1414 	int i;
1415 
1416 	if (!page)
1417 		return;
1418 
1419 	/* Free a large naturally-aligned chunk if possible */
1420 	if (nr_pages == pageblock_nr_pages &&
1421 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1422 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1423 		__free_pages_boot_core(page, pageblock_order);
1424 		return;
1425 	}
1426 
1427 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1428 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1429 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1430 		__free_pages_boot_core(page, 0);
1431 	}
1432 }
1433 
1434 /* Completion tracking for deferred_init_memmap() threads */
1435 static atomic_t pgdat_init_n_undone __initdata;
1436 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1437 
1438 static inline void __init pgdat_init_report_one_done(void)
1439 {
1440 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1441 		complete(&pgdat_init_all_done_comp);
1442 }
1443 
1444 /* Initialise remaining memory on a node */
1445 static int __init deferred_init_memmap(void *data)
1446 {
1447 	pg_data_t *pgdat = data;
1448 	int nid = pgdat->node_id;
1449 	struct mminit_pfnnid_cache nid_init_state = { };
1450 	unsigned long start = jiffies;
1451 	unsigned long nr_pages = 0;
1452 	unsigned long walk_start, walk_end;
1453 	int i, zid;
1454 	struct zone *zone;
1455 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1456 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1457 
1458 	if (first_init_pfn == ULONG_MAX) {
1459 		pgdat_init_report_one_done();
1460 		return 0;
1461 	}
1462 
1463 	/* Bind memory initialisation thread to a local node if possible */
1464 	if (!cpumask_empty(cpumask))
1465 		set_cpus_allowed_ptr(current, cpumask);
1466 
1467 	/* Sanity check boundaries */
1468 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1469 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1470 	pgdat->first_deferred_pfn = ULONG_MAX;
1471 
1472 	/* Only the highest zone is deferred so find it */
1473 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1474 		zone = pgdat->node_zones + zid;
1475 		if (first_init_pfn < zone_end_pfn(zone))
1476 			break;
1477 	}
1478 
1479 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1480 		unsigned long pfn, end_pfn;
1481 		struct page *page = NULL;
1482 		struct page *free_base_page = NULL;
1483 		unsigned long free_base_pfn = 0;
1484 		int nr_to_free = 0;
1485 
1486 		end_pfn = min(walk_end, zone_end_pfn(zone));
1487 		pfn = first_init_pfn;
1488 		if (pfn < walk_start)
1489 			pfn = walk_start;
1490 		if (pfn < zone->zone_start_pfn)
1491 			pfn = zone->zone_start_pfn;
1492 
1493 		for (; pfn < end_pfn; pfn++) {
1494 			if (!pfn_valid_within(pfn))
1495 				goto free_range;
1496 
1497 			/*
1498 			 * Ensure pfn_valid is checked every
1499 			 * pageblock_nr_pages for memory holes
1500 			 */
1501 			if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1502 				if (!pfn_valid(pfn)) {
1503 					page = NULL;
1504 					goto free_range;
1505 				}
1506 			}
1507 
1508 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1509 				page = NULL;
1510 				goto free_range;
1511 			}
1512 
1513 			/* Minimise pfn page lookups and scheduler checks */
1514 			if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1515 				page++;
1516 			} else {
1517 				nr_pages += nr_to_free;
1518 				deferred_free_range(free_base_page,
1519 						free_base_pfn, nr_to_free);
1520 				free_base_page = NULL;
1521 				free_base_pfn = nr_to_free = 0;
1522 
1523 				page = pfn_to_page(pfn);
1524 				cond_resched();
1525 			}
1526 
1527 			if (page->flags) {
1528 				VM_BUG_ON(page_zone(page) != zone);
1529 				goto free_range;
1530 			}
1531 
1532 			__init_single_page(page, pfn, zid, nid);
1533 			if (!free_base_page) {
1534 				free_base_page = page;
1535 				free_base_pfn = pfn;
1536 				nr_to_free = 0;
1537 			}
1538 			nr_to_free++;
1539 
1540 			/* Where possible, batch up pages for a single free */
1541 			continue;
1542 free_range:
1543 			/* Free the current block of pages to allocator */
1544 			nr_pages += nr_to_free;
1545 			deferred_free_range(free_base_page, free_base_pfn,
1546 								nr_to_free);
1547 			free_base_page = NULL;
1548 			free_base_pfn = nr_to_free = 0;
1549 		}
1550 		/* Free the last block of pages to allocator */
1551 		nr_pages += nr_to_free;
1552 		deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1553 
1554 		first_init_pfn = max(end_pfn, first_init_pfn);
1555 	}
1556 
1557 	/* Sanity check that the next zone really is unpopulated */
1558 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1559 
1560 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1561 					jiffies_to_msecs(jiffies - start));
1562 
1563 	pgdat_init_report_one_done();
1564 	return 0;
1565 }
1566 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1567 
1568 void __init page_alloc_init_late(void)
1569 {
1570 	struct zone *zone;
1571 
1572 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1573 	int nid;
1574 
1575 	/* There will be num_node_state(N_MEMORY) threads */
1576 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1577 	for_each_node_state(nid, N_MEMORY) {
1578 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1579 	}
1580 
1581 	/* Block until all are initialised */
1582 	wait_for_completion(&pgdat_init_all_done_comp);
1583 
1584 	/* Reinit limits that are based on free pages after the kernel is up */
1585 	files_maxfiles_init();
1586 #endif
1587 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1588 	/* Discard memblock private memory */
1589 	memblock_discard();
1590 #endif
1591 
1592 	for_each_populated_zone(zone)
1593 		set_zone_contiguous(zone);
1594 }
1595 
1596 #ifdef CONFIG_CMA
1597 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1598 void __init init_cma_reserved_pageblock(struct page *page)
1599 {
1600 	unsigned i = pageblock_nr_pages;
1601 	struct page *p = page;
1602 
1603 	do {
1604 		__ClearPageReserved(p);
1605 		set_page_count(p, 0);
1606 	} while (++p, --i);
1607 
1608 	set_pageblock_migratetype(page, MIGRATE_CMA);
1609 
1610 	if (pageblock_order >= MAX_ORDER) {
1611 		i = pageblock_nr_pages;
1612 		p = page;
1613 		do {
1614 			set_page_refcounted(p);
1615 			__free_pages(p, MAX_ORDER - 1);
1616 			p += MAX_ORDER_NR_PAGES;
1617 		} while (i -= MAX_ORDER_NR_PAGES);
1618 	} else {
1619 		set_page_refcounted(page);
1620 		__free_pages(page, pageblock_order);
1621 	}
1622 
1623 	adjust_managed_page_count(page, pageblock_nr_pages);
1624 }
1625 #endif
1626 
1627 /*
1628  * The order of subdivision here is critical for the IO subsystem.
1629  * Please do not alter this order without good reasons and regression
1630  * testing. Specifically, as large blocks of memory are subdivided,
1631  * the order in which smaller blocks are delivered depends on the order
1632  * they're subdivided in this function. This is the primary factor
1633  * influencing the order in which pages are delivered to the IO
1634  * subsystem according to empirical testing, and this is also justified
1635  * by considering the behavior of a buddy system containing a single
1636  * large block of memory acted on by a series of small allocations.
1637  * This behavior is a critical factor in sglist merging's success.
1638  *
1639  * -- nyc
1640  */
1641 static inline void expand(struct zone *zone, struct page *page,
1642 	int low, int high, struct free_area *area,
1643 	int migratetype)
1644 {
1645 	unsigned long size = 1 << high;
1646 
1647 	while (high > low) {
1648 		area--;
1649 		high--;
1650 		size >>= 1;
1651 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1652 
1653 		/*
1654 		 * Mark as guard pages (or page), that will allow to
1655 		 * merge back to allocator when buddy will be freed.
1656 		 * Corresponding page table entries will not be touched,
1657 		 * pages will stay not present in virtual address space
1658 		 */
1659 		if (set_page_guard(zone, &page[size], high, migratetype))
1660 			continue;
1661 
1662 		list_add(&page[size].lru, &area->free_list[migratetype]);
1663 		area->nr_free++;
1664 		set_page_order(&page[size], high);
1665 	}
1666 }
1667 
1668 static void check_new_page_bad(struct page *page)
1669 {
1670 	const char *bad_reason = NULL;
1671 	unsigned long bad_flags = 0;
1672 
1673 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1674 		bad_reason = "nonzero mapcount";
1675 	if (unlikely(page->mapping != NULL))
1676 		bad_reason = "non-NULL mapping";
1677 	if (unlikely(page_ref_count(page) != 0))
1678 		bad_reason = "nonzero _count";
1679 	if (unlikely(page->flags & __PG_HWPOISON)) {
1680 		bad_reason = "HWPoisoned (hardware-corrupted)";
1681 		bad_flags = __PG_HWPOISON;
1682 		/* Don't complain about hwpoisoned pages */
1683 		page_mapcount_reset(page); /* remove PageBuddy */
1684 		return;
1685 	}
1686 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1687 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1688 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1689 	}
1690 #ifdef CONFIG_MEMCG
1691 	if (unlikely(page->mem_cgroup))
1692 		bad_reason = "page still charged to cgroup";
1693 #endif
1694 	bad_page(page, bad_reason, bad_flags);
1695 }
1696 
1697 /*
1698  * This page is about to be returned from the page allocator
1699  */
1700 static inline int check_new_page(struct page *page)
1701 {
1702 	if (likely(page_expected_state(page,
1703 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1704 		return 0;
1705 
1706 	check_new_page_bad(page);
1707 	return 1;
1708 }
1709 
1710 static inline bool free_pages_prezeroed(void)
1711 {
1712 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1713 		page_poisoning_enabled();
1714 }
1715 
1716 #ifdef CONFIG_DEBUG_VM
1717 static bool check_pcp_refill(struct page *page)
1718 {
1719 	return false;
1720 }
1721 
1722 static bool check_new_pcp(struct page *page)
1723 {
1724 	return check_new_page(page);
1725 }
1726 #else
1727 static bool check_pcp_refill(struct page *page)
1728 {
1729 	return check_new_page(page);
1730 }
1731 static bool check_new_pcp(struct page *page)
1732 {
1733 	return false;
1734 }
1735 #endif /* CONFIG_DEBUG_VM */
1736 
1737 static bool check_new_pages(struct page *page, unsigned int order)
1738 {
1739 	int i;
1740 	for (i = 0; i < (1 << order); i++) {
1741 		struct page *p = page + i;
1742 
1743 		if (unlikely(check_new_page(p)))
1744 			return true;
1745 	}
1746 
1747 	return false;
1748 }
1749 
1750 inline void post_alloc_hook(struct page *page, unsigned int order,
1751 				gfp_t gfp_flags)
1752 {
1753 	set_page_private(page, 0);
1754 	set_page_refcounted(page);
1755 
1756 	arch_alloc_page(page, order);
1757 	kernel_map_pages(page, 1 << order, 1);
1758 	kernel_poison_pages(page, 1 << order, 1);
1759 	kasan_alloc_pages(page, order);
1760 	set_page_owner(page, order, gfp_flags);
1761 }
1762 
1763 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1764 							unsigned int alloc_flags)
1765 {
1766 	int i;
1767 
1768 	post_alloc_hook(page, order, gfp_flags);
1769 
1770 	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1771 		for (i = 0; i < (1 << order); i++)
1772 			clear_highpage(page + i);
1773 
1774 	if (order && (gfp_flags & __GFP_COMP))
1775 		prep_compound_page(page, order);
1776 
1777 	/*
1778 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1779 	 * allocate the page. The expectation is that the caller is taking
1780 	 * steps that will free more memory. The caller should avoid the page
1781 	 * being used for !PFMEMALLOC purposes.
1782 	 */
1783 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1784 		set_page_pfmemalloc(page);
1785 	else
1786 		clear_page_pfmemalloc(page);
1787 }
1788 
1789 /*
1790  * Go through the free lists for the given migratetype and remove
1791  * the smallest available page from the freelists
1792  */
1793 static inline
1794 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1795 						int migratetype)
1796 {
1797 	unsigned int current_order;
1798 	struct free_area *area;
1799 	struct page *page;
1800 
1801 	/* Find a page of the appropriate size in the preferred list */
1802 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1803 		area = &(zone->free_area[current_order]);
1804 		page = list_first_entry_or_null(&area->free_list[migratetype],
1805 							struct page, lru);
1806 		if (!page)
1807 			continue;
1808 		list_del(&page->lru);
1809 		rmv_page_order(page);
1810 		area->nr_free--;
1811 		expand(zone, page, order, current_order, area, migratetype);
1812 		set_pcppage_migratetype(page, migratetype);
1813 		return page;
1814 	}
1815 
1816 	return NULL;
1817 }
1818 
1819 
1820 /*
1821  * This array describes the order lists are fallen back to when
1822  * the free lists for the desirable migrate type are depleted
1823  */
1824 static int fallbacks[MIGRATE_TYPES][4] = {
1825 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1826 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1827 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1828 #ifdef CONFIG_CMA
1829 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1830 #endif
1831 #ifdef CONFIG_MEMORY_ISOLATION
1832 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1833 #endif
1834 };
1835 
1836 #ifdef CONFIG_CMA
1837 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1838 					unsigned int order)
1839 {
1840 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1841 }
1842 #else
1843 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1844 					unsigned int order) { return NULL; }
1845 #endif
1846 
1847 /*
1848  * Move the free pages in a range to the free lists of the requested type.
1849  * Note that start_page and end_pages are not aligned on a pageblock
1850  * boundary. If alignment is required, use move_freepages_block()
1851  */
1852 static int move_freepages(struct zone *zone,
1853 			  struct page *start_page, struct page *end_page,
1854 			  int migratetype, int *num_movable)
1855 {
1856 	struct page *page;
1857 	unsigned int order;
1858 	int pages_moved = 0;
1859 
1860 #ifndef CONFIG_HOLES_IN_ZONE
1861 	/*
1862 	 * page_zone is not safe to call in this context when
1863 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1864 	 * anyway as we check zone boundaries in move_freepages_block().
1865 	 * Remove at a later date when no bug reports exist related to
1866 	 * grouping pages by mobility
1867 	 */
1868 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1869 #endif
1870 
1871 	if (num_movable)
1872 		*num_movable = 0;
1873 
1874 	for (page = start_page; page <= end_page;) {
1875 		if (!pfn_valid_within(page_to_pfn(page))) {
1876 			page++;
1877 			continue;
1878 		}
1879 
1880 		/* Make sure we are not inadvertently changing nodes */
1881 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1882 
1883 		if (!PageBuddy(page)) {
1884 			/*
1885 			 * We assume that pages that could be isolated for
1886 			 * migration are movable. But we don't actually try
1887 			 * isolating, as that would be expensive.
1888 			 */
1889 			if (num_movable &&
1890 					(PageLRU(page) || __PageMovable(page)))
1891 				(*num_movable)++;
1892 
1893 			page++;
1894 			continue;
1895 		}
1896 
1897 		order = page_order(page);
1898 		list_move(&page->lru,
1899 			  &zone->free_area[order].free_list[migratetype]);
1900 		page += 1 << order;
1901 		pages_moved += 1 << order;
1902 	}
1903 
1904 	return pages_moved;
1905 }
1906 
1907 int move_freepages_block(struct zone *zone, struct page *page,
1908 				int migratetype, int *num_movable)
1909 {
1910 	unsigned long start_pfn, end_pfn;
1911 	struct page *start_page, *end_page;
1912 
1913 	start_pfn = page_to_pfn(page);
1914 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1915 	start_page = pfn_to_page(start_pfn);
1916 	end_page = start_page + pageblock_nr_pages - 1;
1917 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1918 
1919 	/* Do not cross zone boundaries */
1920 	if (!zone_spans_pfn(zone, start_pfn))
1921 		start_page = page;
1922 	if (!zone_spans_pfn(zone, end_pfn))
1923 		return 0;
1924 
1925 	return move_freepages(zone, start_page, end_page, migratetype,
1926 								num_movable);
1927 }
1928 
1929 static void change_pageblock_range(struct page *pageblock_page,
1930 					int start_order, int migratetype)
1931 {
1932 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1933 
1934 	while (nr_pageblocks--) {
1935 		set_pageblock_migratetype(pageblock_page, migratetype);
1936 		pageblock_page += pageblock_nr_pages;
1937 	}
1938 }
1939 
1940 /*
1941  * When we are falling back to another migratetype during allocation, try to
1942  * steal extra free pages from the same pageblocks to satisfy further
1943  * allocations, instead of polluting multiple pageblocks.
1944  *
1945  * If we are stealing a relatively large buddy page, it is likely there will
1946  * be more free pages in the pageblock, so try to steal them all. For
1947  * reclaimable and unmovable allocations, we steal regardless of page size,
1948  * as fragmentation caused by those allocations polluting movable pageblocks
1949  * is worse than movable allocations stealing from unmovable and reclaimable
1950  * pageblocks.
1951  */
1952 static bool can_steal_fallback(unsigned int order, int start_mt)
1953 {
1954 	/*
1955 	 * Leaving this order check is intended, although there is
1956 	 * relaxed order check in next check. The reason is that
1957 	 * we can actually steal whole pageblock if this condition met,
1958 	 * but, below check doesn't guarantee it and that is just heuristic
1959 	 * so could be changed anytime.
1960 	 */
1961 	if (order >= pageblock_order)
1962 		return true;
1963 
1964 	if (order >= pageblock_order / 2 ||
1965 		start_mt == MIGRATE_RECLAIMABLE ||
1966 		start_mt == MIGRATE_UNMOVABLE ||
1967 		page_group_by_mobility_disabled)
1968 		return true;
1969 
1970 	return false;
1971 }
1972 
1973 /*
1974  * This function implements actual steal behaviour. If order is large enough,
1975  * we can steal whole pageblock. If not, we first move freepages in this
1976  * pageblock to our migratetype and determine how many already-allocated pages
1977  * are there in the pageblock with a compatible migratetype. If at least half
1978  * of pages are free or compatible, we can change migratetype of the pageblock
1979  * itself, so pages freed in the future will be put on the correct free list.
1980  */
1981 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1982 					int start_type, bool whole_block)
1983 {
1984 	unsigned int current_order = page_order(page);
1985 	struct free_area *area;
1986 	int free_pages, movable_pages, alike_pages;
1987 	int old_block_type;
1988 
1989 	old_block_type = get_pageblock_migratetype(page);
1990 
1991 	/*
1992 	 * This can happen due to races and we want to prevent broken
1993 	 * highatomic accounting.
1994 	 */
1995 	if (is_migrate_highatomic(old_block_type))
1996 		goto single_page;
1997 
1998 	/* Take ownership for orders >= pageblock_order */
1999 	if (current_order >= pageblock_order) {
2000 		change_pageblock_range(page, current_order, start_type);
2001 		goto single_page;
2002 	}
2003 
2004 	/* We are not allowed to try stealing from the whole block */
2005 	if (!whole_block)
2006 		goto single_page;
2007 
2008 	free_pages = move_freepages_block(zone, page, start_type,
2009 						&movable_pages);
2010 	/*
2011 	 * Determine how many pages are compatible with our allocation.
2012 	 * For movable allocation, it's the number of movable pages which
2013 	 * we just obtained. For other types it's a bit more tricky.
2014 	 */
2015 	if (start_type == MIGRATE_MOVABLE) {
2016 		alike_pages = movable_pages;
2017 	} else {
2018 		/*
2019 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2020 		 * to MOVABLE pageblock, consider all non-movable pages as
2021 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2022 		 * vice versa, be conservative since we can't distinguish the
2023 		 * exact migratetype of non-movable pages.
2024 		 */
2025 		if (old_block_type == MIGRATE_MOVABLE)
2026 			alike_pages = pageblock_nr_pages
2027 						- (free_pages + movable_pages);
2028 		else
2029 			alike_pages = 0;
2030 	}
2031 
2032 	/* moving whole block can fail due to zone boundary conditions */
2033 	if (!free_pages)
2034 		goto single_page;
2035 
2036 	/*
2037 	 * If a sufficient number of pages in the block are either free or of
2038 	 * comparable migratability as our allocation, claim the whole block.
2039 	 */
2040 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2041 			page_group_by_mobility_disabled)
2042 		set_pageblock_migratetype(page, start_type);
2043 
2044 	return;
2045 
2046 single_page:
2047 	area = &zone->free_area[current_order];
2048 	list_move(&page->lru, &area->free_list[start_type]);
2049 }
2050 
2051 /*
2052  * Check whether there is a suitable fallback freepage with requested order.
2053  * If only_stealable is true, this function returns fallback_mt only if
2054  * we can steal other freepages all together. This would help to reduce
2055  * fragmentation due to mixed migratetype pages in one pageblock.
2056  */
2057 int find_suitable_fallback(struct free_area *area, unsigned int order,
2058 			int migratetype, bool only_stealable, bool *can_steal)
2059 {
2060 	int i;
2061 	int fallback_mt;
2062 
2063 	if (area->nr_free == 0)
2064 		return -1;
2065 
2066 	*can_steal = false;
2067 	for (i = 0;; i++) {
2068 		fallback_mt = fallbacks[migratetype][i];
2069 		if (fallback_mt == MIGRATE_TYPES)
2070 			break;
2071 
2072 		if (list_empty(&area->free_list[fallback_mt]))
2073 			continue;
2074 
2075 		if (can_steal_fallback(order, migratetype))
2076 			*can_steal = true;
2077 
2078 		if (!only_stealable)
2079 			return fallback_mt;
2080 
2081 		if (*can_steal)
2082 			return fallback_mt;
2083 	}
2084 
2085 	return -1;
2086 }
2087 
2088 /*
2089  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2090  * there are no empty page blocks that contain a page with a suitable order
2091  */
2092 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2093 				unsigned int alloc_order)
2094 {
2095 	int mt;
2096 	unsigned long max_managed, flags;
2097 
2098 	/*
2099 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2100 	 * Check is race-prone but harmless.
2101 	 */
2102 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2103 	if (zone->nr_reserved_highatomic >= max_managed)
2104 		return;
2105 
2106 	spin_lock_irqsave(&zone->lock, flags);
2107 
2108 	/* Recheck the nr_reserved_highatomic limit under the lock */
2109 	if (zone->nr_reserved_highatomic >= max_managed)
2110 		goto out_unlock;
2111 
2112 	/* Yoink! */
2113 	mt = get_pageblock_migratetype(page);
2114 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2115 	    && !is_migrate_cma(mt)) {
2116 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2117 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2118 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2119 	}
2120 
2121 out_unlock:
2122 	spin_unlock_irqrestore(&zone->lock, flags);
2123 }
2124 
2125 /*
2126  * Used when an allocation is about to fail under memory pressure. This
2127  * potentially hurts the reliability of high-order allocations when under
2128  * intense memory pressure but failed atomic allocations should be easier
2129  * to recover from than an OOM.
2130  *
2131  * If @force is true, try to unreserve a pageblock even though highatomic
2132  * pageblock is exhausted.
2133  */
2134 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2135 						bool force)
2136 {
2137 	struct zonelist *zonelist = ac->zonelist;
2138 	unsigned long flags;
2139 	struct zoneref *z;
2140 	struct zone *zone;
2141 	struct page *page;
2142 	int order;
2143 	bool ret;
2144 
2145 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2146 								ac->nodemask) {
2147 		/*
2148 		 * Preserve at least one pageblock unless memory pressure
2149 		 * is really high.
2150 		 */
2151 		if (!force && zone->nr_reserved_highatomic <=
2152 					pageblock_nr_pages)
2153 			continue;
2154 
2155 		spin_lock_irqsave(&zone->lock, flags);
2156 		for (order = 0; order < MAX_ORDER; order++) {
2157 			struct free_area *area = &(zone->free_area[order]);
2158 
2159 			page = list_first_entry_or_null(
2160 					&area->free_list[MIGRATE_HIGHATOMIC],
2161 					struct page, lru);
2162 			if (!page)
2163 				continue;
2164 
2165 			/*
2166 			 * In page freeing path, migratetype change is racy so
2167 			 * we can counter several free pages in a pageblock
2168 			 * in this loop althoug we changed the pageblock type
2169 			 * from highatomic to ac->migratetype. So we should
2170 			 * adjust the count once.
2171 			 */
2172 			if (is_migrate_highatomic_page(page)) {
2173 				/*
2174 				 * It should never happen but changes to
2175 				 * locking could inadvertently allow a per-cpu
2176 				 * drain to add pages to MIGRATE_HIGHATOMIC
2177 				 * while unreserving so be safe and watch for
2178 				 * underflows.
2179 				 */
2180 				zone->nr_reserved_highatomic -= min(
2181 						pageblock_nr_pages,
2182 						zone->nr_reserved_highatomic);
2183 			}
2184 
2185 			/*
2186 			 * Convert to ac->migratetype and avoid the normal
2187 			 * pageblock stealing heuristics. Minimally, the caller
2188 			 * is doing the work and needs the pages. More
2189 			 * importantly, if the block was always converted to
2190 			 * MIGRATE_UNMOVABLE or another type then the number
2191 			 * of pageblocks that cannot be completely freed
2192 			 * may increase.
2193 			 */
2194 			set_pageblock_migratetype(page, ac->migratetype);
2195 			ret = move_freepages_block(zone, page, ac->migratetype,
2196 									NULL);
2197 			if (ret) {
2198 				spin_unlock_irqrestore(&zone->lock, flags);
2199 				return ret;
2200 			}
2201 		}
2202 		spin_unlock_irqrestore(&zone->lock, flags);
2203 	}
2204 
2205 	return false;
2206 }
2207 
2208 /*
2209  * Try finding a free buddy page on the fallback list and put it on the free
2210  * list of requested migratetype, possibly along with other pages from the same
2211  * block, depending on fragmentation avoidance heuristics. Returns true if
2212  * fallback was found so that __rmqueue_smallest() can grab it.
2213  *
2214  * The use of signed ints for order and current_order is a deliberate
2215  * deviation from the rest of this file, to make the for loop
2216  * condition simpler.
2217  */
2218 static inline bool
2219 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2220 {
2221 	struct free_area *area;
2222 	int current_order;
2223 	struct page *page;
2224 	int fallback_mt;
2225 	bool can_steal;
2226 
2227 	/*
2228 	 * Find the largest available free page in the other list. This roughly
2229 	 * approximates finding the pageblock with the most free pages, which
2230 	 * would be too costly to do exactly.
2231 	 */
2232 	for (current_order = MAX_ORDER - 1; current_order >= order;
2233 				--current_order) {
2234 		area = &(zone->free_area[current_order]);
2235 		fallback_mt = find_suitable_fallback(area, current_order,
2236 				start_migratetype, false, &can_steal);
2237 		if (fallback_mt == -1)
2238 			continue;
2239 
2240 		/*
2241 		 * We cannot steal all free pages from the pageblock and the
2242 		 * requested migratetype is movable. In that case it's better to
2243 		 * steal and split the smallest available page instead of the
2244 		 * largest available page, because even if the next movable
2245 		 * allocation falls back into a different pageblock than this
2246 		 * one, it won't cause permanent fragmentation.
2247 		 */
2248 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2249 					&& current_order > order)
2250 			goto find_smallest;
2251 
2252 		goto do_steal;
2253 	}
2254 
2255 	return false;
2256 
2257 find_smallest:
2258 	for (current_order = order; current_order < MAX_ORDER;
2259 							current_order++) {
2260 		area = &(zone->free_area[current_order]);
2261 		fallback_mt = find_suitable_fallback(area, current_order,
2262 				start_migratetype, false, &can_steal);
2263 		if (fallback_mt != -1)
2264 			break;
2265 	}
2266 
2267 	/*
2268 	 * This should not happen - we already found a suitable fallback
2269 	 * when looking for the largest page.
2270 	 */
2271 	VM_BUG_ON(current_order == MAX_ORDER);
2272 
2273 do_steal:
2274 	page = list_first_entry(&area->free_list[fallback_mt],
2275 							struct page, lru);
2276 
2277 	steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2278 
2279 	trace_mm_page_alloc_extfrag(page, order, current_order,
2280 		start_migratetype, fallback_mt);
2281 
2282 	return true;
2283 
2284 }
2285 
2286 /*
2287  * Do the hard work of removing an element from the buddy allocator.
2288  * Call me with the zone->lock already held.
2289  */
2290 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2291 				int migratetype)
2292 {
2293 	struct page *page;
2294 
2295 retry:
2296 	page = __rmqueue_smallest(zone, order, migratetype);
2297 	if (unlikely(!page)) {
2298 		if (migratetype == MIGRATE_MOVABLE)
2299 			page = __rmqueue_cma_fallback(zone, order);
2300 
2301 		if (!page && __rmqueue_fallback(zone, order, migratetype))
2302 			goto retry;
2303 	}
2304 
2305 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2306 	return page;
2307 }
2308 
2309 /*
2310  * Obtain a specified number of elements from the buddy allocator, all under
2311  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2312  * Returns the number of new pages which were placed at *list.
2313  */
2314 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2315 			unsigned long count, struct list_head *list,
2316 			int migratetype, bool cold)
2317 {
2318 	int i, alloced = 0;
2319 
2320 	spin_lock(&zone->lock);
2321 	for (i = 0; i < count; ++i) {
2322 		struct page *page = __rmqueue(zone, order, migratetype);
2323 		if (unlikely(page == NULL))
2324 			break;
2325 
2326 		if (unlikely(check_pcp_refill(page)))
2327 			continue;
2328 
2329 		/*
2330 		 * Split buddy pages returned by expand() are received here
2331 		 * in physical page order. The page is added to the callers and
2332 		 * list and the list head then moves forward. From the callers
2333 		 * perspective, the linked list is ordered by page number in
2334 		 * some conditions. This is useful for IO devices that can
2335 		 * merge IO requests if the physical pages are ordered
2336 		 * properly.
2337 		 */
2338 		if (likely(!cold))
2339 			list_add(&page->lru, list);
2340 		else
2341 			list_add_tail(&page->lru, list);
2342 		list = &page->lru;
2343 		alloced++;
2344 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2345 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2346 					      -(1 << order));
2347 	}
2348 
2349 	/*
2350 	 * i pages were removed from the buddy list even if some leak due
2351 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2352 	 * on i. Do not confuse with 'alloced' which is the number of
2353 	 * pages added to the pcp list.
2354 	 */
2355 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2356 	spin_unlock(&zone->lock);
2357 	return alloced;
2358 }
2359 
2360 #ifdef CONFIG_NUMA
2361 /*
2362  * Called from the vmstat counter updater to drain pagesets of this
2363  * currently executing processor on remote nodes after they have
2364  * expired.
2365  *
2366  * Note that this function must be called with the thread pinned to
2367  * a single processor.
2368  */
2369 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2370 {
2371 	unsigned long flags;
2372 	int to_drain, batch;
2373 
2374 	local_irq_save(flags);
2375 	batch = READ_ONCE(pcp->batch);
2376 	to_drain = min(pcp->count, batch);
2377 	if (to_drain > 0) {
2378 		free_pcppages_bulk(zone, to_drain, pcp);
2379 		pcp->count -= to_drain;
2380 	}
2381 	local_irq_restore(flags);
2382 }
2383 #endif
2384 
2385 /*
2386  * Drain pcplists of the indicated processor and zone.
2387  *
2388  * The processor must either be the current processor and the
2389  * thread pinned to the current processor or a processor that
2390  * is not online.
2391  */
2392 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2393 {
2394 	unsigned long flags;
2395 	struct per_cpu_pageset *pset;
2396 	struct per_cpu_pages *pcp;
2397 
2398 	local_irq_save(flags);
2399 	pset = per_cpu_ptr(zone->pageset, cpu);
2400 
2401 	pcp = &pset->pcp;
2402 	if (pcp->count) {
2403 		free_pcppages_bulk(zone, pcp->count, pcp);
2404 		pcp->count = 0;
2405 	}
2406 	local_irq_restore(flags);
2407 }
2408 
2409 /*
2410  * Drain pcplists of all zones on the indicated processor.
2411  *
2412  * The processor must either be the current processor and the
2413  * thread pinned to the current processor or a processor that
2414  * is not online.
2415  */
2416 static void drain_pages(unsigned int cpu)
2417 {
2418 	struct zone *zone;
2419 
2420 	for_each_populated_zone(zone) {
2421 		drain_pages_zone(cpu, zone);
2422 	}
2423 }
2424 
2425 /*
2426  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2427  *
2428  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2429  * the single zone's pages.
2430  */
2431 void drain_local_pages(struct zone *zone)
2432 {
2433 	int cpu = smp_processor_id();
2434 
2435 	if (zone)
2436 		drain_pages_zone(cpu, zone);
2437 	else
2438 		drain_pages(cpu);
2439 }
2440 
2441 static void drain_local_pages_wq(struct work_struct *work)
2442 {
2443 	/*
2444 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2445 	 * we can race with cpu offline when the WQ can move this from
2446 	 * a cpu pinned worker to an unbound one. We can operate on a different
2447 	 * cpu which is allright but we also have to make sure to not move to
2448 	 * a different one.
2449 	 */
2450 	preempt_disable();
2451 	drain_local_pages(NULL);
2452 	preempt_enable();
2453 }
2454 
2455 /*
2456  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2457  *
2458  * When zone parameter is non-NULL, spill just the single zone's pages.
2459  *
2460  * Note that this can be extremely slow as the draining happens in a workqueue.
2461  */
2462 void drain_all_pages(struct zone *zone)
2463 {
2464 	int cpu;
2465 
2466 	/*
2467 	 * Allocate in the BSS so we wont require allocation in
2468 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2469 	 */
2470 	static cpumask_t cpus_with_pcps;
2471 
2472 	/*
2473 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2474 	 * initialized.
2475 	 */
2476 	if (WARN_ON_ONCE(!mm_percpu_wq))
2477 		return;
2478 
2479 	/* Workqueues cannot recurse */
2480 	if (current->flags & PF_WQ_WORKER)
2481 		return;
2482 
2483 	/*
2484 	 * Do not drain if one is already in progress unless it's specific to
2485 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2486 	 * the drain to be complete when the call returns.
2487 	 */
2488 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2489 		if (!zone)
2490 			return;
2491 		mutex_lock(&pcpu_drain_mutex);
2492 	}
2493 
2494 	/*
2495 	 * We don't care about racing with CPU hotplug event
2496 	 * as offline notification will cause the notified
2497 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2498 	 * disables preemption as part of its processing
2499 	 */
2500 	for_each_online_cpu(cpu) {
2501 		struct per_cpu_pageset *pcp;
2502 		struct zone *z;
2503 		bool has_pcps = false;
2504 
2505 		if (zone) {
2506 			pcp = per_cpu_ptr(zone->pageset, cpu);
2507 			if (pcp->pcp.count)
2508 				has_pcps = true;
2509 		} else {
2510 			for_each_populated_zone(z) {
2511 				pcp = per_cpu_ptr(z->pageset, cpu);
2512 				if (pcp->pcp.count) {
2513 					has_pcps = true;
2514 					break;
2515 				}
2516 			}
2517 		}
2518 
2519 		if (has_pcps)
2520 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2521 		else
2522 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2523 	}
2524 
2525 	for_each_cpu(cpu, &cpus_with_pcps) {
2526 		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2527 		INIT_WORK(work, drain_local_pages_wq);
2528 		queue_work_on(cpu, mm_percpu_wq, work);
2529 	}
2530 	for_each_cpu(cpu, &cpus_with_pcps)
2531 		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2532 
2533 	mutex_unlock(&pcpu_drain_mutex);
2534 }
2535 
2536 #ifdef CONFIG_HIBERNATION
2537 
2538 void mark_free_pages(struct zone *zone)
2539 {
2540 	unsigned long pfn, max_zone_pfn;
2541 	unsigned long flags;
2542 	unsigned int order, t;
2543 	struct page *page;
2544 
2545 	if (zone_is_empty(zone))
2546 		return;
2547 
2548 	spin_lock_irqsave(&zone->lock, flags);
2549 
2550 	max_zone_pfn = zone_end_pfn(zone);
2551 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2552 		if (pfn_valid(pfn)) {
2553 			page = pfn_to_page(pfn);
2554 
2555 			if (page_zone(page) != zone)
2556 				continue;
2557 
2558 			if (!swsusp_page_is_forbidden(page))
2559 				swsusp_unset_page_free(page);
2560 		}
2561 
2562 	for_each_migratetype_order(order, t) {
2563 		list_for_each_entry(page,
2564 				&zone->free_area[order].free_list[t], lru) {
2565 			unsigned long i;
2566 
2567 			pfn = page_to_pfn(page);
2568 			for (i = 0; i < (1UL << order); i++)
2569 				swsusp_set_page_free(pfn_to_page(pfn + i));
2570 		}
2571 	}
2572 	spin_unlock_irqrestore(&zone->lock, flags);
2573 }
2574 #endif /* CONFIG_PM */
2575 
2576 /*
2577  * Free a 0-order page
2578  * cold == true ? free a cold page : free a hot page
2579  */
2580 void free_hot_cold_page(struct page *page, bool cold)
2581 {
2582 	struct zone *zone = page_zone(page);
2583 	struct per_cpu_pages *pcp;
2584 	unsigned long flags;
2585 	unsigned long pfn = page_to_pfn(page);
2586 	int migratetype;
2587 
2588 	if (!free_pcp_prepare(page))
2589 		return;
2590 
2591 	migratetype = get_pfnblock_migratetype(page, pfn);
2592 	set_pcppage_migratetype(page, migratetype);
2593 	local_irq_save(flags);
2594 	__count_vm_event(PGFREE);
2595 
2596 	/*
2597 	 * We only track unmovable, reclaimable and movable on pcp lists.
2598 	 * Free ISOLATE pages back to the allocator because they are being
2599 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2600 	 * areas back if necessary. Otherwise, we may have to free
2601 	 * excessively into the page allocator
2602 	 */
2603 	if (migratetype >= MIGRATE_PCPTYPES) {
2604 		if (unlikely(is_migrate_isolate(migratetype))) {
2605 			free_one_page(zone, page, pfn, 0, migratetype);
2606 			goto out;
2607 		}
2608 		migratetype = MIGRATE_MOVABLE;
2609 	}
2610 
2611 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2612 	if (!cold)
2613 		list_add(&page->lru, &pcp->lists[migratetype]);
2614 	else
2615 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2616 	pcp->count++;
2617 	if (pcp->count >= pcp->high) {
2618 		unsigned long batch = READ_ONCE(pcp->batch);
2619 		free_pcppages_bulk(zone, batch, pcp);
2620 		pcp->count -= batch;
2621 	}
2622 
2623 out:
2624 	local_irq_restore(flags);
2625 }
2626 
2627 /*
2628  * Free a list of 0-order pages
2629  */
2630 void free_hot_cold_page_list(struct list_head *list, bool cold)
2631 {
2632 	struct page *page, *next;
2633 
2634 	list_for_each_entry_safe(page, next, list, lru) {
2635 		trace_mm_page_free_batched(page, cold);
2636 		free_hot_cold_page(page, cold);
2637 	}
2638 }
2639 
2640 /*
2641  * split_page takes a non-compound higher-order page, and splits it into
2642  * n (1<<order) sub-pages: page[0..n]
2643  * Each sub-page must be freed individually.
2644  *
2645  * Note: this is probably too low level an operation for use in drivers.
2646  * Please consult with lkml before using this in your driver.
2647  */
2648 void split_page(struct page *page, unsigned int order)
2649 {
2650 	int i;
2651 
2652 	VM_BUG_ON_PAGE(PageCompound(page), page);
2653 	VM_BUG_ON_PAGE(!page_count(page), page);
2654 
2655 #ifdef CONFIG_KMEMCHECK
2656 	/*
2657 	 * Split shadow pages too, because free(page[0]) would
2658 	 * otherwise free the whole shadow.
2659 	 */
2660 	if (kmemcheck_page_is_tracked(page))
2661 		split_page(virt_to_page(page[0].shadow), order);
2662 #endif
2663 
2664 	for (i = 1; i < (1 << order); i++)
2665 		set_page_refcounted(page + i);
2666 	split_page_owner(page, order);
2667 }
2668 EXPORT_SYMBOL_GPL(split_page);
2669 
2670 int __isolate_free_page(struct page *page, unsigned int order)
2671 {
2672 	unsigned long watermark;
2673 	struct zone *zone;
2674 	int mt;
2675 
2676 	BUG_ON(!PageBuddy(page));
2677 
2678 	zone = page_zone(page);
2679 	mt = get_pageblock_migratetype(page);
2680 
2681 	if (!is_migrate_isolate(mt)) {
2682 		/*
2683 		 * Obey watermarks as if the page was being allocated. We can
2684 		 * emulate a high-order watermark check with a raised order-0
2685 		 * watermark, because we already know our high-order page
2686 		 * exists.
2687 		 */
2688 		watermark = min_wmark_pages(zone) + (1UL << order);
2689 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2690 			return 0;
2691 
2692 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2693 	}
2694 
2695 	/* Remove page from free list */
2696 	list_del(&page->lru);
2697 	zone->free_area[order].nr_free--;
2698 	rmv_page_order(page);
2699 
2700 	/*
2701 	 * Set the pageblock if the isolated page is at least half of a
2702 	 * pageblock
2703 	 */
2704 	if (order >= pageblock_order - 1) {
2705 		struct page *endpage = page + (1 << order) - 1;
2706 		for (; page < endpage; page += pageblock_nr_pages) {
2707 			int mt = get_pageblock_migratetype(page);
2708 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2709 			    && !is_migrate_highatomic(mt))
2710 				set_pageblock_migratetype(page,
2711 							  MIGRATE_MOVABLE);
2712 		}
2713 	}
2714 
2715 
2716 	return 1UL << order;
2717 }
2718 
2719 /*
2720  * Update NUMA hit/miss statistics
2721  *
2722  * Must be called with interrupts disabled.
2723  */
2724 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2725 {
2726 #ifdef CONFIG_NUMA
2727 	enum zone_stat_item local_stat = NUMA_LOCAL;
2728 
2729 	if (z->node != numa_node_id())
2730 		local_stat = NUMA_OTHER;
2731 
2732 	if (z->node == preferred_zone->node)
2733 		__inc_zone_state(z, NUMA_HIT);
2734 	else {
2735 		__inc_zone_state(z, NUMA_MISS);
2736 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
2737 	}
2738 	__inc_zone_state(z, local_stat);
2739 #endif
2740 }
2741 
2742 /* Remove page from the per-cpu list, caller must protect the list */
2743 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2744 			bool cold, struct per_cpu_pages *pcp,
2745 			struct list_head *list)
2746 {
2747 	struct page *page;
2748 
2749 	do {
2750 		if (list_empty(list)) {
2751 			pcp->count += rmqueue_bulk(zone, 0,
2752 					pcp->batch, list,
2753 					migratetype, cold);
2754 			if (unlikely(list_empty(list)))
2755 				return NULL;
2756 		}
2757 
2758 		if (cold)
2759 			page = list_last_entry(list, struct page, lru);
2760 		else
2761 			page = list_first_entry(list, struct page, lru);
2762 
2763 		list_del(&page->lru);
2764 		pcp->count--;
2765 	} while (check_new_pcp(page));
2766 
2767 	return page;
2768 }
2769 
2770 /* Lock and remove page from the per-cpu list */
2771 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2772 			struct zone *zone, unsigned int order,
2773 			gfp_t gfp_flags, int migratetype)
2774 {
2775 	struct per_cpu_pages *pcp;
2776 	struct list_head *list;
2777 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2778 	struct page *page;
2779 	unsigned long flags;
2780 
2781 	local_irq_save(flags);
2782 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2783 	list = &pcp->lists[migratetype];
2784 	page = __rmqueue_pcplist(zone,  migratetype, cold, pcp, list);
2785 	if (page) {
2786 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2787 		zone_statistics(preferred_zone, zone);
2788 	}
2789 	local_irq_restore(flags);
2790 	return page;
2791 }
2792 
2793 /*
2794  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2795  */
2796 static inline
2797 struct page *rmqueue(struct zone *preferred_zone,
2798 			struct zone *zone, unsigned int order,
2799 			gfp_t gfp_flags, unsigned int alloc_flags,
2800 			int migratetype)
2801 {
2802 	unsigned long flags;
2803 	struct page *page;
2804 
2805 	if (likely(order == 0)) {
2806 		page = rmqueue_pcplist(preferred_zone, zone, order,
2807 				gfp_flags, migratetype);
2808 		goto out;
2809 	}
2810 
2811 	/*
2812 	 * We most definitely don't want callers attempting to
2813 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2814 	 */
2815 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2816 	spin_lock_irqsave(&zone->lock, flags);
2817 
2818 	do {
2819 		page = NULL;
2820 		if (alloc_flags & ALLOC_HARDER) {
2821 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2822 			if (page)
2823 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
2824 		}
2825 		if (!page)
2826 			page = __rmqueue(zone, order, migratetype);
2827 	} while (page && check_new_pages(page, order));
2828 	spin_unlock(&zone->lock);
2829 	if (!page)
2830 		goto failed;
2831 	__mod_zone_freepage_state(zone, -(1 << order),
2832 				  get_pcppage_migratetype(page));
2833 
2834 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2835 	zone_statistics(preferred_zone, zone);
2836 	local_irq_restore(flags);
2837 
2838 out:
2839 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2840 	return page;
2841 
2842 failed:
2843 	local_irq_restore(flags);
2844 	return NULL;
2845 }
2846 
2847 #ifdef CONFIG_FAIL_PAGE_ALLOC
2848 
2849 static struct {
2850 	struct fault_attr attr;
2851 
2852 	bool ignore_gfp_highmem;
2853 	bool ignore_gfp_reclaim;
2854 	u32 min_order;
2855 } fail_page_alloc = {
2856 	.attr = FAULT_ATTR_INITIALIZER,
2857 	.ignore_gfp_reclaim = true,
2858 	.ignore_gfp_highmem = true,
2859 	.min_order = 1,
2860 };
2861 
2862 static int __init setup_fail_page_alloc(char *str)
2863 {
2864 	return setup_fault_attr(&fail_page_alloc.attr, str);
2865 }
2866 __setup("fail_page_alloc=", setup_fail_page_alloc);
2867 
2868 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2869 {
2870 	if (order < fail_page_alloc.min_order)
2871 		return false;
2872 	if (gfp_mask & __GFP_NOFAIL)
2873 		return false;
2874 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2875 		return false;
2876 	if (fail_page_alloc.ignore_gfp_reclaim &&
2877 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2878 		return false;
2879 
2880 	return should_fail(&fail_page_alloc.attr, 1 << order);
2881 }
2882 
2883 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2884 
2885 static int __init fail_page_alloc_debugfs(void)
2886 {
2887 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2888 	struct dentry *dir;
2889 
2890 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2891 					&fail_page_alloc.attr);
2892 	if (IS_ERR(dir))
2893 		return PTR_ERR(dir);
2894 
2895 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2896 				&fail_page_alloc.ignore_gfp_reclaim))
2897 		goto fail;
2898 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2899 				&fail_page_alloc.ignore_gfp_highmem))
2900 		goto fail;
2901 	if (!debugfs_create_u32("min-order", mode, dir,
2902 				&fail_page_alloc.min_order))
2903 		goto fail;
2904 
2905 	return 0;
2906 fail:
2907 	debugfs_remove_recursive(dir);
2908 
2909 	return -ENOMEM;
2910 }
2911 
2912 late_initcall(fail_page_alloc_debugfs);
2913 
2914 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2915 
2916 #else /* CONFIG_FAIL_PAGE_ALLOC */
2917 
2918 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2919 {
2920 	return false;
2921 }
2922 
2923 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2924 
2925 /*
2926  * Return true if free base pages are above 'mark'. For high-order checks it
2927  * will return true of the order-0 watermark is reached and there is at least
2928  * one free page of a suitable size. Checking now avoids taking the zone lock
2929  * to check in the allocation paths if no pages are free.
2930  */
2931 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2932 			 int classzone_idx, unsigned int alloc_flags,
2933 			 long free_pages)
2934 {
2935 	long min = mark;
2936 	int o;
2937 	const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2938 
2939 	/* free_pages may go negative - that's OK */
2940 	free_pages -= (1 << order) - 1;
2941 
2942 	if (alloc_flags & ALLOC_HIGH)
2943 		min -= min / 2;
2944 
2945 	/*
2946 	 * If the caller does not have rights to ALLOC_HARDER then subtract
2947 	 * the high-atomic reserves. This will over-estimate the size of the
2948 	 * atomic reserve but it avoids a search.
2949 	 */
2950 	if (likely(!alloc_harder))
2951 		free_pages -= z->nr_reserved_highatomic;
2952 	else
2953 		min -= min / 4;
2954 
2955 #ifdef CONFIG_CMA
2956 	/* If allocation can't use CMA areas don't use free CMA pages */
2957 	if (!(alloc_flags & ALLOC_CMA))
2958 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2959 #endif
2960 
2961 	/*
2962 	 * Check watermarks for an order-0 allocation request. If these
2963 	 * are not met, then a high-order request also cannot go ahead
2964 	 * even if a suitable page happened to be free.
2965 	 */
2966 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2967 		return false;
2968 
2969 	/* If this is an order-0 request then the watermark is fine */
2970 	if (!order)
2971 		return true;
2972 
2973 	/* For a high-order request, check at least one suitable page is free */
2974 	for (o = order; o < MAX_ORDER; o++) {
2975 		struct free_area *area = &z->free_area[o];
2976 		int mt;
2977 
2978 		if (!area->nr_free)
2979 			continue;
2980 
2981 		if (alloc_harder)
2982 			return true;
2983 
2984 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2985 			if (!list_empty(&area->free_list[mt]))
2986 				return true;
2987 		}
2988 
2989 #ifdef CONFIG_CMA
2990 		if ((alloc_flags & ALLOC_CMA) &&
2991 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2992 			return true;
2993 		}
2994 #endif
2995 	}
2996 	return false;
2997 }
2998 
2999 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3000 		      int classzone_idx, unsigned int alloc_flags)
3001 {
3002 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3003 					zone_page_state(z, NR_FREE_PAGES));
3004 }
3005 
3006 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3007 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3008 {
3009 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3010 	long cma_pages = 0;
3011 
3012 #ifdef CONFIG_CMA
3013 	/* If allocation can't use CMA areas don't use free CMA pages */
3014 	if (!(alloc_flags & ALLOC_CMA))
3015 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3016 #endif
3017 
3018 	/*
3019 	 * Fast check for order-0 only. If this fails then the reserves
3020 	 * need to be calculated. There is a corner case where the check
3021 	 * passes but only the high-order atomic reserve are free. If
3022 	 * the caller is !atomic then it'll uselessly search the free
3023 	 * list. That corner case is then slower but it is harmless.
3024 	 */
3025 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3026 		return true;
3027 
3028 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3029 					free_pages);
3030 }
3031 
3032 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3033 			unsigned long mark, int classzone_idx)
3034 {
3035 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3036 
3037 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3038 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3039 
3040 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3041 								free_pages);
3042 }
3043 
3044 #ifdef CONFIG_NUMA
3045 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3046 {
3047 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3048 				RECLAIM_DISTANCE;
3049 }
3050 #else	/* CONFIG_NUMA */
3051 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3052 {
3053 	return true;
3054 }
3055 #endif	/* CONFIG_NUMA */
3056 
3057 /*
3058  * get_page_from_freelist goes through the zonelist trying to allocate
3059  * a page.
3060  */
3061 static struct page *
3062 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3063 						const struct alloc_context *ac)
3064 {
3065 	struct zoneref *z = ac->preferred_zoneref;
3066 	struct zone *zone;
3067 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3068 
3069 	/*
3070 	 * Scan zonelist, looking for a zone with enough free.
3071 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3072 	 */
3073 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3074 								ac->nodemask) {
3075 		struct page *page;
3076 		unsigned long mark;
3077 
3078 		if (cpusets_enabled() &&
3079 			(alloc_flags & ALLOC_CPUSET) &&
3080 			!__cpuset_zone_allowed(zone, gfp_mask))
3081 				continue;
3082 		/*
3083 		 * When allocating a page cache page for writing, we
3084 		 * want to get it from a node that is within its dirty
3085 		 * limit, such that no single node holds more than its
3086 		 * proportional share of globally allowed dirty pages.
3087 		 * The dirty limits take into account the node's
3088 		 * lowmem reserves and high watermark so that kswapd
3089 		 * should be able to balance it without having to
3090 		 * write pages from its LRU list.
3091 		 *
3092 		 * XXX: For now, allow allocations to potentially
3093 		 * exceed the per-node dirty limit in the slowpath
3094 		 * (spread_dirty_pages unset) before going into reclaim,
3095 		 * which is important when on a NUMA setup the allowed
3096 		 * nodes are together not big enough to reach the
3097 		 * global limit.  The proper fix for these situations
3098 		 * will require awareness of nodes in the
3099 		 * dirty-throttling and the flusher threads.
3100 		 */
3101 		if (ac->spread_dirty_pages) {
3102 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3103 				continue;
3104 
3105 			if (!node_dirty_ok(zone->zone_pgdat)) {
3106 				last_pgdat_dirty_limit = zone->zone_pgdat;
3107 				continue;
3108 			}
3109 		}
3110 
3111 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3112 		if (!zone_watermark_fast(zone, order, mark,
3113 				       ac_classzone_idx(ac), alloc_flags)) {
3114 			int ret;
3115 
3116 			/* Checked here to keep the fast path fast */
3117 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3118 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3119 				goto try_this_zone;
3120 
3121 			if (node_reclaim_mode == 0 ||
3122 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3123 				continue;
3124 
3125 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3126 			switch (ret) {
3127 			case NODE_RECLAIM_NOSCAN:
3128 				/* did not scan */
3129 				continue;
3130 			case NODE_RECLAIM_FULL:
3131 				/* scanned but unreclaimable */
3132 				continue;
3133 			default:
3134 				/* did we reclaim enough */
3135 				if (zone_watermark_ok(zone, order, mark,
3136 						ac_classzone_idx(ac), alloc_flags))
3137 					goto try_this_zone;
3138 
3139 				continue;
3140 			}
3141 		}
3142 
3143 try_this_zone:
3144 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3145 				gfp_mask, alloc_flags, ac->migratetype);
3146 		if (page) {
3147 			prep_new_page(page, order, gfp_mask, alloc_flags);
3148 
3149 			/*
3150 			 * If this is a high-order atomic allocation then check
3151 			 * if the pageblock should be reserved for the future
3152 			 */
3153 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3154 				reserve_highatomic_pageblock(page, zone, order);
3155 
3156 			return page;
3157 		}
3158 	}
3159 
3160 	return NULL;
3161 }
3162 
3163 /*
3164  * Large machines with many possible nodes should not always dump per-node
3165  * meminfo in irq context.
3166  */
3167 static inline bool should_suppress_show_mem(void)
3168 {
3169 	bool ret = false;
3170 
3171 #if NODES_SHIFT > 8
3172 	ret = in_interrupt();
3173 #endif
3174 	return ret;
3175 }
3176 
3177 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3178 {
3179 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3180 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3181 
3182 	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3183 		return;
3184 
3185 	/*
3186 	 * This documents exceptions given to allocations in certain
3187 	 * contexts that are allowed to allocate outside current's set
3188 	 * of allowed nodes.
3189 	 */
3190 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3191 		if (test_thread_flag(TIF_MEMDIE) ||
3192 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3193 			filter &= ~SHOW_MEM_FILTER_NODES;
3194 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3195 		filter &= ~SHOW_MEM_FILTER_NODES;
3196 
3197 	show_mem(filter, nodemask);
3198 }
3199 
3200 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3201 {
3202 	struct va_format vaf;
3203 	va_list args;
3204 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3205 				      DEFAULT_RATELIMIT_BURST);
3206 
3207 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3208 		return;
3209 
3210 	pr_warn("%s: ", current->comm);
3211 
3212 	va_start(args, fmt);
3213 	vaf.fmt = fmt;
3214 	vaf.va = &args;
3215 	pr_cont("%pV", &vaf);
3216 	va_end(args);
3217 
3218 	pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3219 	if (nodemask)
3220 		pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3221 	else
3222 		pr_cont("(null)\n");
3223 
3224 	cpuset_print_current_mems_allowed();
3225 
3226 	dump_stack();
3227 	warn_alloc_show_mem(gfp_mask, nodemask);
3228 }
3229 
3230 static inline struct page *
3231 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3232 			      unsigned int alloc_flags,
3233 			      const struct alloc_context *ac)
3234 {
3235 	struct page *page;
3236 
3237 	page = get_page_from_freelist(gfp_mask, order,
3238 			alloc_flags|ALLOC_CPUSET, ac);
3239 	/*
3240 	 * fallback to ignore cpuset restriction if our nodes
3241 	 * are depleted
3242 	 */
3243 	if (!page)
3244 		page = get_page_from_freelist(gfp_mask, order,
3245 				alloc_flags, ac);
3246 
3247 	return page;
3248 }
3249 
3250 static inline struct page *
3251 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3252 	const struct alloc_context *ac, unsigned long *did_some_progress)
3253 {
3254 	struct oom_control oc = {
3255 		.zonelist = ac->zonelist,
3256 		.nodemask = ac->nodemask,
3257 		.memcg = NULL,
3258 		.gfp_mask = gfp_mask,
3259 		.order = order,
3260 	};
3261 	struct page *page;
3262 
3263 	*did_some_progress = 0;
3264 
3265 	/*
3266 	 * Acquire the oom lock.  If that fails, somebody else is
3267 	 * making progress for us.
3268 	 */
3269 	if (!mutex_trylock(&oom_lock)) {
3270 		*did_some_progress = 1;
3271 		schedule_timeout_uninterruptible(1);
3272 		return NULL;
3273 	}
3274 
3275 	/*
3276 	 * Go through the zonelist yet one more time, keep very high watermark
3277 	 * here, this is only to catch a parallel oom killing, we must fail if
3278 	 * we're still under heavy pressure.
3279 	 */
3280 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3281 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3282 	if (page)
3283 		goto out;
3284 
3285 	/* Coredumps can quickly deplete all memory reserves */
3286 	if (current->flags & PF_DUMPCORE)
3287 		goto out;
3288 	/* The OOM killer will not help higher order allocs */
3289 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3290 		goto out;
3291 	/*
3292 	 * We have already exhausted all our reclaim opportunities without any
3293 	 * success so it is time to admit defeat. We will skip the OOM killer
3294 	 * because it is very likely that the caller has a more reasonable
3295 	 * fallback than shooting a random task.
3296 	 */
3297 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3298 		goto out;
3299 	/* The OOM killer does not needlessly kill tasks for lowmem */
3300 	if (ac->high_zoneidx < ZONE_NORMAL)
3301 		goto out;
3302 	if (pm_suspended_storage())
3303 		goto out;
3304 	/*
3305 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3306 	 * other request to make a forward progress.
3307 	 * We are in an unfortunate situation where out_of_memory cannot
3308 	 * do much for this context but let's try it to at least get
3309 	 * access to memory reserved if the current task is killed (see
3310 	 * out_of_memory). Once filesystems are ready to handle allocation
3311 	 * failures more gracefully we should just bail out here.
3312 	 */
3313 
3314 	/* The OOM killer may not free memory on a specific node */
3315 	if (gfp_mask & __GFP_THISNODE)
3316 		goto out;
3317 
3318 	/* Exhausted what can be done so it's blamo time */
3319 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3320 		*did_some_progress = 1;
3321 
3322 		/*
3323 		 * Help non-failing allocations by giving them access to memory
3324 		 * reserves
3325 		 */
3326 		if (gfp_mask & __GFP_NOFAIL)
3327 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3328 					ALLOC_NO_WATERMARKS, ac);
3329 	}
3330 out:
3331 	mutex_unlock(&oom_lock);
3332 	return page;
3333 }
3334 
3335 /*
3336  * Maximum number of compaction retries wit a progress before OOM
3337  * killer is consider as the only way to move forward.
3338  */
3339 #define MAX_COMPACT_RETRIES 16
3340 
3341 #ifdef CONFIG_COMPACTION
3342 /* Try memory compaction for high-order allocations before reclaim */
3343 static struct page *
3344 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3345 		unsigned int alloc_flags, const struct alloc_context *ac,
3346 		enum compact_priority prio, enum compact_result *compact_result)
3347 {
3348 	struct page *page;
3349 	unsigned int noreclaim_flag;
3350 
3351 	if (!order)
3352 		return NULL;
3353 
3354 	noreclaim_flag = memalloc_noreclaim_save();
3355 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3356 									prio);
3357 	memalloc_noreclaim_restore(noreclaim_flag);
3358 
3359 	if (*compact_result <= COMPACT_INACTIVE)
3360 		return NULL;
3361 
3362 	/*
3363 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3364 	 * count a compaction stall
3365 	 */
3366 	count_vm_event(COMPACTSTALL);
3367 
3368 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3369 
3370 	if (page) {
3371 		struct zone *zone = page_zone(page);
3372 
3373 		zone->compact_blockskip_flush = false;
3374 		compaction_defer_reset(zone, order, true);
3375 		count_vm_event(COMPACTSUCCESS);
3376 		return page;
3377 	}
3378 
3379 	/*
3380 	 * It's bad if compaction run occurs and fails. The most likely reason
3381 	 * is that pages exist, but not enough to satisfy watermarks.
3382 	 */
3383 	count_vm_event(COMPACTFAIL);
3384 
3385 	cond_resched();
3386 
3387 	return NULL;
3388 }
3389 
3390 static inline bool
3391 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3392 		     enum compact_result compact_result,
3393 		     enum compact_priority *compact_priority,
3394 		     int *compaction_retries)
3395 {
3396 	int max_retries = MAX_COMPACT_RETRIES;
3397 	int min_priority;
3398 	bool ret = false;
3399 	int retries = *compaction_retries;
3400 	enum compact_priority priority = *compact_priority;
3401 
3402 	if (!order)
3403 		return false;
3404 
3405 	if (compaction_made_progress(compact_result))
3406 		(*compaction_retries)++;
3407 
3408 	/*
3409 	 * compaction considers all the zone as desperately out of memory
3410 	 * so it doesn't really make much sense to retry except when the
3411 	 * failure could be caused by insufficient priority
3412 	 */
3413 	if (compaction_failed(compact_result))
3414 		goto check_priority;
3415 
3416 	/*
3417 	 * make sure the compaction wasn't deferred or didn't bail out early
3418 	 * due to locks contention before we declare that we should give up.
3419 	 * But do not retry if the given zonelist is not suitable for
3420 	 * compaction.
3421 	 */
3422 	if (compaction_withdrawn(compact_result)) {
3423 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3424 		goto out;
3425 	}
3426 
3427 	/*
3428 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3429 	 * costly ones because they are de facto nofail and invoke OOM
3430 	 * killer to move on while costly can fail and users are ready
3431 	 * to cope with that. 1/4 retries is rather arbitrary but we
3432 	 * would need much more detailed feedback from compaction to
3433 	 * make a better decision.
3434 	 */
3435 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3436 		max_retries /= 4;
3437 	if (*compaction_retries <= max_retries) {
3438 		ret = true;
3439 		goto out;
3440 	}
3441 
3442 	/*
3443 	 * Make sure there are attempts at the highest priority if we exhausted
3444 	 * all retries or failed at the lower priorities.
3445 	 */
3446 check_priority:
3447 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3448 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3449 
3450 	if (*compact_priority > min_priority) {
3451 		(*compact_priority)--;
3452 		*compaction_retries = 0;
3453 		ret = true;
3454 	}
3455 out:
3456 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3457 	return ret;
3458 }
3459 #else
3460 static inline struct page *
3461 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3462 		unsigned int alloc_flags, const struct alloc_context *ac,
3463 		enum compact_priority prio, enum compact_result *compact_result)
3464 {
3465 	*compact_result = COMPACT_SKIPPED;
3466 	return NULL;
3467 }
3468 
3469 static inline bool
3470 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3471 		     enum compact_result compact_result,
3472 		     enum compact_priority *compact_priority,
3473 		     int *compaction_retries)
3474 {
3475 	struct zone *zone;
3476 	struct zoneref *z;
3477 
3478 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3479 		return false;
3480 
3481 	/*
3482 	 * There are setups with compaction disabled which would prefer to loop
3483 	 * inside the allocator rather than hit the oom killer prematurely.
3484 	 * Let's give them a good hope and keep retrying while the order-0
3485 	 * watermarks are OK.
3486 	 */
3487 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3488 					ac->nodemask) {
3489 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3490 					ac_classzone_idx(ac), alloc_flags))
3491 			return true;
3492 	}
3493 	return false;
3494 }
3495 #endif /* CONFIG_COMPACTION */
3496 
3497 /* Perform direct synchronous page reclaim */
3498 static int
3499 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3500 					const struct alloc_context *ac)
3501 {
3502 	struct reclaim_state reclaim_state;
3503 	int progress;
3504 	unsigned int noreclaim_flag;
3505 
3506 	cond_resched();
3507 
3508 	/* We now go into synchronous reclaim */
3509 	cpuset_memory_pressure_bump();
3510 	noreclaim_flag = memalloc_noreclaim_save();
3511 	lockdep_set_current_reclaim_state(gfp_mask);
3512 	reclaim_state.reclaimed_slab = 0;
3513 	current->reclaim_state = &reclaim_state;
3514 
3515 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3516 								ac->nodemask);
3517 
3518 	current->reclaim_state = NULL;
3519 	lockdep_clear_current_reclaim_state();
3520 	memalloc_noreclaim_restore(noreclaim_flag);
3521 
3522 	cond_resched();
3523 
3524 	return progress;
3525 }
3526 
3527 /* The really slow allocator path where we enter direct reclaim */
3528 static inline struct page *
3529 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3530 		unsigned int alloc_flags, const struct alloc_context *ac,
3531 		unsigned long *did_some_progress)
3532 {
3533 	struct page *page = NULL;
3534 	bool drained = false;
3535 
3536 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3537 	if (unlikely(!(*did_some_progress)))
3538 		return NULL;
3539 
3540 retry:
3541 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3542 
3543 	/*
3544 	 * If an allocation failed after direct reclaim, it could be because
3545 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3546 	 * Shrink them them and try again
3547 	 */
3548 	if (!page && !drained) {
3549 		unreserve_highatomic_pageblock(ac, false);
3550 		drain_all_pages(NULL);
3551 		drained = true;
3552 		goto retry;
3553 	}
3554 
3555 	return page;
3556 }
3557 
3558 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3559 {
3560 	struct zoneref *z;
3561 	struct zone *zone;
3562 	pg_data_t *last_pgdat = NULL;
3563 
3564 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3565 					ac->high_zoneidx, ac->nodemask) {
3566 		if (last_pgdat != zone->zone_pgdat)
3567 			wakeup_kswapd(zone, order, ac->high_zoneidx);
3568 		last_pgdat = zone->zone_pgdat;
3569 	}
3570 }
3571 
3572 static inline unsigned int
3573 gfp_to_alloc_flags(gfp_t gfp_mask)
3574 {
3575 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3576 
3577 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3578 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3579 
3580 	/*
3581 	 * The caller may dip into page reserves a bit more if the caller
3582 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3583 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3584 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3585 	 */
3586 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3587 
3588 	if (gfp_mask & __GFP_ATOMIC) {
3589 		/*
3590 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3591 		 * if it can't schedule.
3592 		 */
3593 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3594 			alloc_flags |= ALLOC_HARDER;
3595 		/*
3596 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3597 		 * comment for __cpuset_node_allowed().
3598 		 */
3599 		alloc_flags &= ~ALLOC_CPUSET;
3600 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3601 		alloc_flags |= ALLOC_HARDER;
3602 
3603 #ifdef CONFIG_CMA
3604 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3605 		alloc_flags |= ALLOC_CMA;
3606 #endif
3607 	return alloc_flags;
3608 }
3609 
3610 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3611 {
3612 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3613 		return false;
3614 
3615 	if (gfp_mask & __GFP_MEMALLOC)
3616 		return true;
3617 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3618 		return true;
3619 	if (!in_interrupt() &&
3620 			((current->flags & PF_MEMALLOC) ||
3621 			 unlikely(test_thread_flag(TIF_MEMDIE))))
3622 		return true;
3623 
3624 	return false;
3625 }
3626 
3627 /*
3628  * Checks whether it makes sense to retry the reclaim to make a forward progress
3629  * for the given allocation request.
3630  *
3631  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3632  * without success, or when we couldn't even meet the watermark if we
3633  * reclaimed all remaining pages on the LRU lists.
3634  *
3635  * Returns true if a retry is viable or false to enter the oom path.
3636  */
3637 static inline bool
3638 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3639 		     struct alloc_context *ac, int alloc_flags,
3640 		     bool did_some_progress, int *no_progress_loops)
3641 {
3642 	struct zone *zone;
3643 	struct zoneref *z;
3644 
3645 	/*
3646 	 * Costly allocations might have made a progress but this doesn't mean
3647 	 * their order will become available due to high fragmentation so
3648 	 * always increment the no progress counter for them
3649 	 */
3650 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3651 		*no_progress_loops = 0;
3652 	else
3653 		(*no_progress_loops)++;
3654 
3655 	/*
3656 	 * Make sure we converge to OOM if we cannot make any progress
3657 	 * several times in the row.
3658 	 */
3659 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3660 		/* Before OOM, exhaust highatomic_reserve */
3661 		return unreserve_highatomic_pageblock(ac, true);
3662 	}
3663 
3664 	/*
3665 	 * Keep reclaiming pages while there is a chance this will lead
3666 	 * somewhere.  If none of the target zones can satisfy our allocation
3667 	 * request even if all reclaimable pages are considered then we are
3668 	 * screwed and have to go OOM.
3669 	 */
3670 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3671 					ac->nodemask) {
3672 		unsigned long available;
3673 		unsigned long reclaimable;
3674 		unsigned long min_wmark = min_wmark_pages(zone);
3675 		bool wmark;
3676 
3677 		available = reclaimable = zone_reclaimable_pages(zone);
3678 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3679 
3680 		/*
3681 		 * Would the allocation succeed if we reclaimed all
3682 		 * reclaimable pages?
3683 		 */
3684 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3685 				ac_classzone_idx(ac), alloc_flags, available);
3686 		trace_reclaim_retry_zone(z, order, reclaimable,
3687 				available, min_wmark, *no_progress_loops, wmark);
3688 		if (wmark) {
3689 			/*
3690 			 * If we didn't make any progress and have a lot of
3691 			 * dirty + writeback pages then we should wait for
3692 			 * an IO to complete to slow down the reclaim and
3693 			 * prevent from pre mature OOM
3694 			 */
3695 			if (!did_some_progress) {
3696 				unsigned long write_pending;
3697 
3698 				write_pending = zone_page_state_snapshot(zone,
3699 							NR_ZONE_WRITE_PENDING);
3700 
3701 				if (2 * write_pending > reclaimable) {
3702 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3703 					return true;
3704 				}
3705 			}
3706 
3707 			/*
3708 			 * Memory allocation/reclaim might be called from a WQ
3709 			 * context and the current implementation of the WQ
3710 			 * concurrency control doesn't recognize that
3711 			 * a particular WQ is congested if the worker thread is
3712 			 * looping without ever sleeping. Therefore we have to
3713 			 * do a short sleep here rather than calling
3714 			 * cond_resched().
3715 			 */
3716 			if (current->flags & PF_WQ_WORKER)
3717 				schedule_timeout_uninterruptible(1);
3718 			else
3719 				cond_resched();
3720 
3721 			return true;
3722 		}
3723 	}
3724 
3725 	return false;
3726 }
3727 
3728 static inline bool
3729 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3730 {
3731 	/*
3732 	 * It's possible that cpuset's mems_allowed and the nodemask from
3733 	 * mempolicy don't intersect. This should be normally dealt with by
3734 	 * policy_nodemask(), but it's possible to race with cpuset update in
3735 	 * such a way the check therein was true, and then it became false
3736 	 * before we got our cpuset_mems_cookie here.
3737 	 * This assumes that for all allocations, ac->nodemask can come only
3738 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3739 	 * when it does not intersect with the cpuset restrictions) or the
3740 	 * caller can deal with a violated nodemask.
3741 	 */
3742 	if (cpusets_enabled() && ac->nodemask &&
3743 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3744 		ac->nodemask = NULL;
3745 		return true;
3746 	}
3747 
3748 	/*
3749 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3750 	 * possible to race with parallel threads in such a way that our
3751 	 * allocation can fail while the mask is being updated. If we are about
3752 	 * to fail, check if the cpuset changed during allocation and if so,
3753 	 * retry.
3754 	 */
3755 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3756 		return true;
3757 
3758 	return false;
3759 }
3760 
3761 static inline struct page *
3762 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3763 						struct alloc_context *ac)
3764 {
3765 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3766 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3767 	struct page *page = NULL;
3768 	unsigned int alloc_flags;
3769 	unsigned long did_some_progress;
3770 	enum compact_priority compact_priority;
3771 	enum compact_result compact_result;
3772 	int compaction_retries;
3773 	int no_progress_loops;
3774 	unsigned long alloc_start = jiffies;
3775 	unsigned int stall_timeout = 10 * HZ;
3776 	unsigned int cpuset_mems_cookie;
3777 
3778 	/*
3779 	 * In the slowpath, we sanity check order to avoid ever trying to
3780 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3781 	 * be using allocators in order of preference for an area that is
3782 	 * too large.
3783 	 */
3784 	if (order >= MAX_ORDER) {
3785 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3786 		return NULL;
3787 	}
3788 
3789 	/*
3790 	 * We also sanity check to catch abuse of atomic reserves being used by
3791 	 * callers that are not in atomic context.
3792 	 */
3793 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3794 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3795 		gfp_mask &= ~__GFP_ATOMIC;
3796 
3797 retry_cpuset:
3798 	compaction_retries = 0;
3799 	no_progress_loops = 0;
3800 	compact_priority = DEF_COMPACT_PRIORITY;
3801 	cpuset_mems_cookie = read_mems_allowed_begin();
3802 
3803 	/*
3804 	 * The fast path uses conservative alloc_flags to succeed only until
3805 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3806 	 * alloc_flags precisely. So we do that now.
3807 	 */
3808 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3809 
3810 	/*
3811 	 * We need to recalculate the starting point for the zonelist iterator
3812 	 * because we might have used different nodemask in the fast path, or
3813 	 * there was a cpuset modification and we are retrying - otherwise we
3814 	 * could end up iterating over non-eligible zones endlessly.
3815 	 */
3816 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3817 					ac->high_zoneidx, ac->nodemask);
3818 	if (!ac->preferred_zoneref->zone)
3819 		goto nopage;
3820 
3821 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3822 		wake_all_kswapds(order, ac);
3823 
3824 	/*
3825 	 * The adjusted alloc_flags might result in immediate success, so try
3826 	 * that first
3827 	 */
3828 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3829 	if (page)
3830 		goto got_pg;
3831 
3832 	/*
3833 	 * For costly allocations, try direct compaction first, as it's likely
3834 	 * that we have enough base pages and don't need to reclaim. For non-
3835 	 * movable high-order allocations, do that as well, as compaction will
3836 	 * try prevent permanent fragmentation by migrating from blocks of the
3837 	 * same migratetype.
3838 	 * Don't try this for allocations that are allowed to ignore
3839 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3840 	 */
3841 	if (can_direct_reclaim &&
3842 			(costly_order ||
3843 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3844 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
3845 		page = __alloc_pages_direct_compact(gfp_mask, order,
3846 						alloc_flags, ac,
3847 						INIT_COMPACT_PRIORITY,
3848 						&compact_result);
3849 		if (page)
3850 			goto got_pg;
3851 
3852 		/*
3853 		 * Checks for costly allocations with __GFP_NORETRY, which
3854 		 * includes THP page fault allocations
3855 		 */
3856 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3857 			/*
3858 			 * If compaction is deferred for high-order allocations,
3859 			 * it is because sync compaction recently failed. If
3860 			 * this is the case and the caller requested a THP
3861 			 * allocation, we do not want to heavily disrupt the
3862 			 * system, so we fail the allocation instead of entering
3863 			 * direct reclaim.
3864 			 */
3865 			if (compact_result == COMPACT_DEFERRED)
3866 				goto nopage;
3867 
3868 			/*
3869 			 * Looks like reclaim/compaction is worth trying, but
3870 			 * sync compaction could be very expensive, so keep
3871 			 * using async compaction.
3872 			 */
3873 			compact_priority = INIT_COMPACT_PRIORITY;
3874 		}
3875 	}
3876 
3877 retry:
3878 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3879 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3880 		wake_all_kswapds(order, ac);
3881 
3882 	if (gfp_pfmemalloc_allowed(gfp_mask))
3883 		alloc_flags = ALLOC_NO_WATERMARKS;
3884 
3885 	/*
3886 	 * Reset the zonelist iterators if memory policies can be ignored.
3887 	 * These allocations are high priority and system rather than user
3888 	 * orientated.
3889 	 */
3890 	if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3891 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3892 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3893 					ac->high_zoneidx, ac->nodemask);
3894 	}
3895 
3896 	/* Attempt with potentially adjusted zonelist and alloc_flags */
3897 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3898 	if (page)
3899 		goto got_pg;
3900 
3901 	/* Caller is not willing to reclaim, we can't balance anything */
3902 	if (!can_direct_reclaim)
3903 		goto nopage;
3904 
3905 	/* Make sure we know about allocations which stall for too long */
3906 	if (time_after(jiffies, alloc_start + stall_timeout)) {
3907 		warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
3908 			"page allocation stalls for %ums, order:%u",
3909 			jiffies_to_msecs(jiffies-alloc_start), order);
3910 		stall_timeout += 10 * HZ;
3911 	}
3912 
3913 	/* Avoid recursion of direct reclaim */
3914 	if (current->flags & PF_MEMALLOC)
3915 		goto nopage;
3916 
3917 	/* Try direct reclaim and then allocating */
3918 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3919 							&did_some_progress);
3920 	if (page)
3921 		goto got_pg;
3922 
3923 	/* Try direct compaction and then allocating */
3924 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3925 					compact_priority, &compact_result);
3926 	if (page)
3927 		goto got_pg;
3928 
3929 	/* Do not loop if specifically requested */
3930 	if (gfp_mask & __GFP_NORETRY)
3931 		goto nopage;
3932 
3933 	/*
3934 	 * Do not retry costly high order allocations unless they are
3935 	 * __GFP_RETRY_MAYFAIL
3936 	 */
3937 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
3938 		goto nopage;
3939 
3940 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3941 				 did_some_progress > 0, &no_progress_loops))
3942 		goto retry;
3943 
3944 	/*
3945 	 * It doesn't make any sense to retry for the compaction if the order-0
3946 	 * reclaim is not able to make any progress because the current
3947 	 * implementation of the compaction depends on the sufficient amount
3948 	 * of free memory (see __compaction_suitable)
3949 	 */
3950 	if (did_some_progress > 0 &&
3951 			should_compact_retry(ac, order, alloc_flags,
3952 				compact_result, &compact_priority,
3953 				&compaction_retries))
3954 		goto retry;
3955 
3956 
3957 	/* Deal with possible cpuset update races before we start OOM killing */
3958 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
3959 		goto retry_cpuset;
3960 
3961 	/* Reclaim has failed us, start killing things */
3962 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3963 	if (page)
3964 		goto got_pg;
3965 
3966 	/* Avoid allocations with no watermarks from looping endlessly */
3967 	if (test_thread_flag(TIF_MEMDIE) &&
3968 	    (alloc_flags == ALLOC_NO_WATERMARKS ||
3969 	     (gfp_mask & __GFP_NOMEMALLOC)))
3970 		goto nopage;
3971 
3972 	/* Retry as long as the OOM killer is making progress */
3973 	if (did_some_progress) {
3974 		no_progress_loops = 0;
3975 		goto retry;
3976 	}
3977 
3978 nopage:
3979 	/* Deal with possible cpuset update races before we fail */
3980 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
3981 		goto retry_cpuset;
3982 
3983 	/*
3984 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3985 	 * we always retry
3986 	 */
3987 	if (gfp_mask & __GFP_NOFAIL) {
3988 		/*
3989 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
3990 		 * of any new users that actually require GFP_NOWAIT
3991 		 */
3992 		if (WARN_ON_ONCE(!can_direct_reclaim))
3993 			goto fail;
3994 
3995 		/*
3996 		 * PF_MEMALLOC request from this context is rather bizarre
3997 		 * because we cannot reclaim anything and only can loop waiting
3998 		 * for somebody to do a work for us
3999 		 */
4000 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4001 
4002 		/*
4003 		 * non failing costly orders are a hard requirement which we
4004 		 * are not prepared for much so let's warn about these users
4005 		 * so that we can identify them and convert them to something
4006 		 * else.
4007 		 */
4008 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4009 
4010 		/*
4011 		 * Help non-failing allocations by giving them access to memory
4012 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4013 		 * could deplete whole memory reserves which would just make
4014 		 * the situation worse
4015 		 */
4016 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4017 		if (page)
4018 			goto got_pg;
4019 
4020 		cond_resched();
4021 		goto retry;
4022 	}
4023 fail:
4024 	warn_alloc(gfp_mask, ac->nodemask,
4025 			"page allocation failure: order:%u", order);
4026 got_pg:
4027 	return page;
4028 }
4029 
4030 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4031 		int preferred_nid, nodemask_t *nodemask,
4032 		struct alloc_context *ac, gfp_t *alloc_mask,
4033 		unsigned int *alloc_flags)
4034 {
4035 	ac->high_zoneidx = gfp_zone(gfp_mask);
4036 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4037 	ac->nodemask = nodemask;
4038 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4039 
4040 	if (cpusets_enabled()) {
4041 		*alloc_mask |= __GFP_HARDWALL;
4042 		if (!ac->nodemask)
4043 			ac->nodemask = &cpuset_current_mems_allowed;
4044 		else
4045 			*alloc_flags |= ALLOC_CPUSET;
4046 	}
4047 
4048 	lockdep_trace_alloc(gfp_mask);
4049 
4050 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4051 
4052 	if (should_fail_alloc_page(gfp_mask, order))
4053 		return false;
4054 
4055 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4056 		*alloc_flags |= ALLOC_CMA;
4057 
4058 	return true;
4059 }
4060 
4061 /* Determine whether to spread dirty pages and what the first usable zone */
4062 static inline void finalise_ac(gfp_t gfp_mask,
4063 		unsigned int order, struct alloc_context *ac)
4064 {
4065 	/* Dirty zone balancing only done in the fast path */
4066 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4067 
4068 	/*
4069 	 * The preferred zone is used for statistics but crucially it is
4070 	 * also used as the starting point for the zonelist iterator. It
4071 	 * may get reset for allocations that ignore memory policies.
4072 	 */
4073 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4074 					ac->high_zoneidx, ac->nodemask);
4075 }
4076 
4077 /*
4078  * This is the 'heart' of the zoned buddy allocator.
4079  */
4080 struct page *
4081 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4082 							nodemask_t *nodemask)
4083 {
4084 	struct page *page;
4085 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4086 	gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
4087 	struct alloc_context ac = { };
4088 
4089 	gfp_mask &= gfp_allowed_mask;
4090 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4091 		return NULL;
4092 
4093 	finalise_ac(gfp_mask, order, &ac);
4094 
4095 	/* First allocation attempt */
4096 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4097 	if (likely(page))
4098 		goto out;
4099 
4100 	/*
4101 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4102 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4103 	 * from a particular context which has been marked by
4104 	 * memalloc_no{fs,io}_{save,restore}.
4105 	 */
4106 	alloc_mask = current_gfp_context(gfp_mask);
4107 	ac.spread_dirty_pages = false;
4108 
4109 	/*
4110 	 * Restore the original nodemask if it was potentially replaced with
4111 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4112 	 */
4113 	if (unlikely(ac.nodemask != nodemask))
4114 		ac.nodemask = nodemask;
4115 
4116 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4117 
4118 out:
4119 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4120 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4121 		__free_pages(page, order);
4122 		page = NULL;
4123 	}
4124 
4125 	if (kmemcheck_enabled && page)
4126 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
4127 
4128 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4129 
4130 	return page;
4131 }
4132 EXPORT_SYMBOL(__alloc_pages_nodemask);
4133 
4134 /*
4135  * Common helper functions.
4136  */
4137 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4138 {
4139 	struct page *page;
4140 
4141 	/*
4142 	 * __get_free_pages() returns a 32-bit address, which cannot represent
4143 	 * a highmem page
4144 	 */
4145 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4146 
4147 	page = alloc_pages(gfp_mask, order);
4148 	if (!page)
4149 		return 0;
4150 	return (unsigned long) page_address(page);
4151 }
4152 EXPORT_SYMBOL(__get_free_pages);
4153 
4154 unsigned long get_zeroed_page(gfp_t gfp_mask)
4155 {
4156 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4157 }
4158 EXPORT_SYMBOL(get_zeroed_page);
4159 
4160 void __free_pages(struct page *page, unsigned int order)
4161 {
4162 	if (put_page_testzero(page)) {
4163 		if (order == 0)
4164 			free_hot_cold_page(page, false);
4165 		else
4166 			__free_pages_ok(page, order);
4167 	}
4168 }
4169 
4170 EXPORT_SYMBOL(__free_pages);
4171 
4172 void free_pages(unsigned long addr, unsigned int order)
4173 {
4174 	if (addr != 0) {
4175 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4176 		__free_pages(virt_to_page((void *)addr), order);
4177 	}
4178 }
4179 
4180 EXPORT_SYMBOL(free_pages);
4181 
4182 /*
4183  * Page Fragment:
4184  *  An arbitrary-length arbitrary-offset area of memory which resides
4185  *  within a 0 or higher order page.  Multiple fragments within that page
4186  *  are individually refcounted, in the page's reference counter.
4187  *
4188  * The page_frag functions below provide a simple allocation framework for
4189  * page fragments.  This is used by the network stack and network device
4190  * drivers to provide a backing region of memory for use as either an
4191  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4192  */
4193 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4194 					     gfp_t gfp_mask)
4195 {
4196 	struct page *page = NULL;
4197 	gfp_t gfp = gfp_mask;
4198 
4199 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4200 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4201 		    __GFP_NOMEMALLOC;
4202 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4203 				PAGE_FRAG_CACHE_MAX_ORDER);
4204 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4205 #endif
4206 	if (unlikely(!page))
4207 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4208 
4209 	nc->va = page ? page_address(page) : NULL;
4210 
4211 	return page;
4212 }
4213 
4214 void __page_frag_cache_drain(struct page *page, unsigned int count)
4215 {
4216 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4217 
4218 	if (page_ref_sub_and_test(page, count)) {
4219 		unsigned int order = compound_order(page);
4220 
4221 		if (order == 0)
4222 			free_hot_cold_page(page, false);
4223 		else
4224 			__free_pages_ok(page, order);
4225 	}
4226 }
4227 EXPORT_SYMBOL(__page_frag_cache_drain);
4228 
4229 void *page_frag_alloc(struct page_frag_cache *nc,
4230 		      unsigned int fragsz, gfp_t gfp_mask)
4231 {
4232 	unsigned int size = PAGE_SIZE;
4233 	struct page *page;
4234 	int offset;
4235 
4236 	if (unlikely(!nc->va)) {
4237 refill:
4238 		page = __page_frag_cache_refill(nc, gfp_mask);
4239 		if (!page)
4240 			return NULL;
4241 
4242 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4243 		/* if size can vary use size else just use PAGE_SIZE */
4244 		size = nc->size;
4245 #endif
4246 		/* Even if we own the page, we do not use atomic_set().
4247 		 * This would break get_page_unless_zero() users.
4248 		 */
4249 		page_ref_add(page, size - 1);
4250 
4251 		/* reset page count bias and offset to start of new frag */
4252 		nc->pfmemalloc = page_is_pfmemalloc(page);
4253 		nc->pagecnt_bias = size;
4254 		nc->offset = size;
4255 	}
4256 
4257 	offset = nc->offset - fragsz;
4258 	if (unlikely(offset < 0)) {
4259 		page = virt_to_page(nc->va);
4260 
4261 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4262 			goto refill;
4263 
4264 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4265 		/* if size can vary use size else just use PAGE_SIZE */
4266 		size = nc->size;
4267 #endif
4268 		/* OK, page count is 0, we can safely set it */
4269 		set_page_count(page, size);
4270 
4271 		/* reset page count bias and offset to start of new frag */
4272 		nc->pagecnt_bias = size;
4273 		offset = size - fragsz;
4274 	}
4275 
4276 	nc->pagecnt_bias--;
4277 	nc->offset = offset;
4278 
4279 	return nc->va + offset;
4280 }
4281 EXPORT_SYMBOL(page_frag_alloc);
4282 
4283 /*
4284  * Frees a page fragment allocated out of either a compound or order 0 page.
4285  */
4286 void page_frag_free(void *addr)
4287 {
4288 	struct page *page = virt_to_head_page(addr);
4289 
4290 	if (unlikely(put_page_testzero(page)))
4291 		__free_pages_ok(page, compound_order(page));
4292 }
4293 EXPORT_SYMBOL(page_frag_free);
4294 
4295 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4296 		size_t size)
4297 {
4298 	if (addr) {
4299 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4300 		unsigned long used = addr + PAGE_ALIGN(size);
4301 
4302 		split_page(virt_to_page((void *)addr), order);
4303 		while (used < alloc_end) {
4304 			free_page(used);
4305 			used += PAGE_SIZE;
4306 		}
4307 	}
4308 	return (void *)addr;
4309 }
4310 
4311 /**
4312  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4313  * @size: the number of bytes to allocate
4314  * @gfp_mask: GFP flags for the allocation
4315  *
4316  * This function is similar to alloc_pages(), except that it allocates the
4317  * minimum number of pages to satisfy the request.  alloc_pages() can only
4318  * allocate memory in power-of-two pages.
4319  *
4320  * This function is also limited by MAX_ORDER.
4321  *
4322  * Memory allocated by this function must be released by free_pages_exact().
4323  */
4324 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4325 {
4326 	unsigned int order = get_order(size);
4327 	unsigned long addr;
4328 
4329 	addr = __get_free_pages(gfp_mask, order);
4330 	return make_alloc_exact(addr, order, size);
4331 }
4332 EXPORT_SYMBOL(alloc_pages_exact);
4333 
4334 /**
4335  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4336  *			   pages on a node.
4337  * @nid: the preferred node ID where memory should be allocated
4338  * @size: the number of bytes to allocate
4339  * @gfp_mask: GFP flags for the allocation
4340  *
4341  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4342  * back.
4343  */
4344 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4345 {
4346 	unsigned int order = get_order(size);
4347 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4348 	if (!p)
4349 		return NULL;
4350 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4351 }
4352 
4353 /**
4354  * free_pages_exact - release memory allocated via alloc_pages_exact()
4355  * @virt: the value returned by alloc_pages_exact.
4356  * @size: size of allocation, same value as passed to alloc_pages_exact().
4357  *
4358  * Release the memory allocated by a previous call to alloc_pages_exact.
4359  */
4360 void free_pages_exact(void *virt, size_t size)
4361 {
4362 	unsigned long addr = (unsigned long)virt;
4363 	unsigned long end = addr + PAGE_ALIGN(size);
4364 
4365 	while (addr < end) {
4366 		free_page(addr);
4367 		addr += PAGE_SIZE;
4368 	}
4369 }
4370 EXPORT_SYMBOL(free_pages_exact);
4371 
4372 /**
4373  * nr_free_zone_pages - count number of pages beyond high watermark
4374  * @offset: The zone index of the highest zone
4375  *
4376  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4377  * high watermark within all zones at or below a given zone index.  For each
4378  * zone, the number of pages is calculated as:
4379  *
4380  *     nr_free_zone_pages = managed_pages - high_pages
4381  */
4382 static unsigned long nr_free_zone_pages(int offset)
4383 {
4384 	struct zoneref *z;
4385 	struct zone *zone;
4386 
4387 	/* Just pick one node, since fallback list is circular */
4388 	unsigned long sum = 0;
4389 
4390 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4391 
4392 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4393 		unsigned long size = zone->managed_pages;
4394 		unsigned long high = high_wmark_pages(zone);
4395 		if (size > high)
4396 			sum += size - high;
4397 	}
4398 
4399 	return sum;
4400 }
4401 
4402 /**
4403  * nr_free_buffer_pages - count number of pages beyond high watermark
4404  *
4405  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4406  * watermark within ZONE_DMA and ZONE_NORMAL.
4407  */
4408 unsigned long nr_free_buffer_pages(void)
4409 {
4410 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4411 }
4412 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4413 
4414 /**
4415  * nr_free_pagecache_pages - count number of pages beyond high watermark
4416  *
4417  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4418  * high watermark within all zones.
4419  */
4420 unsigned long nr_free_pagecache_pages(void)
4421 {
4422 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4423 }
4424 
4425 static inline void show_node(struct zone *zone)
4426 {
4427 	if (IS_ENABLED(CONFIG_NUMA))
4428 		printk("Node %d ", zone_to_nid(zone));
4429 }
4430 
4431 long si_mem_available(void)
4432 {
4433 	long available;
4434 	unsigned long pagecache;
4435 	unsigned long wmark_low = 0;
4436 	unsigned long pages[NR_LRU_LISTS];
4437 	struct zone *zone;
4438 	int lru;
4439 
4440 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4441 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4442 
4443 	for_each_zone(zone)
4444 		wmark_low += zone->watermark[WMARK_LOW];
4445 
4446 	/*
4447 	 * Estimate the amount of memory available for userspace allocations,
4448 	 * without causing swapping.
4449 	 */
4450 	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4451 
4452 	/*
4453 	 * Not all the page cache can be freed, otherwise the system will
4454 	 * start swapping. Assume at least half of the page cache, or the
4455 	 * low watermark worth of cache, needs to stay.
4456 	 */
4457 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4458 	pagecache -= min(pagecache / 2, wmark_low);
4459 	available += pagecache;
4460 
4461 	/*
4462 	 * Part of the reclaimable slab consists of items that are in use,
4463 	 * and cannot be freed. Cap this estimate at the low watermark.
4464 	 */
4465 	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4466 		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4467 			 wmark_low);
4468 
4469 	if (available < 0)
4470 		available = 0;
4471 	return available;
4472 }
4473 EXPORT_SYMBOL_GPL(si_mem_available);
4474 
4475 void si_meminfo(struct sysinfo *val)
4476 {
4477 	val->totalram = totalram_pages;
4478 	val->sharedram = global_node_page_state(NR_SHMEM);
4479 	val->freeram = global_page_state(NR_FREE_PAGES);
4480 	val->bufferram = nr_blockdev_pages();
4481 	val->totalhigh = totalhigh_pages;
4482 	val->freehigh = nr_free_highpages();
4483 	val->mem_unit = PAGE_SIZE;
4484 }
4485 
4486 EXPORT_SYMBOL(si_meminfo);
4487 
4488 #ifdef CONFIG_NUMA
4489 void si_meminfo_node(struct sysinfo *val, int nid)
4490 {
4491 	int zone_type;		/* needs to be signed */
4492 	unsigned long managed_pages = 0;
4493 	unsigned long managed_highpages = 0;
4494 	unsigned long free_highpages = 0;
4495 	pg_data_t *pgdat = NODE_DATA(nid);
4496 
4497 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4498 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4499 	val->totalram = managed_pages;
4500 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4501 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4502 #ifdef CONFIG_HIGHMEM
4503 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4504 		struct zone *zone = &pgdat->node_zones[zone_type];
4505 
4506 		if (is_highmem(zone)) {
4507 			managed_highpages += zone->managed_pages;
4508 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4509 		}
4510 	}
4511 	val->totalhigh = managed_highpages;
4512 	val->freehigh = free_highpages;
4513 #else
4514 	val->totalhigh = managed_highpages;
4515 	val->freehigh = free_highpages;
4516 #endif
4517 	val->mem_unit = PAGE_SIZE;
4518 }
4519 #endif
4520 
4521 /*
4522  * Determine whether the node should be displayed or not, depending on whether
4523  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4524  */
4525 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4526 {
4527 	if (!(flags & SHOW_MEM_FILTER_NODES))
4528 		return false;
4529 
4530 	/*
4531 	 * no node mask - aka implicit memory numa policy. Do not bother with
4532 	 * the synchronization - read_mems_allowed_begin - because we do not
4533 	 * have to be precise here.
4534 	 */
4535 	if (!nodemask)
4536 		nodemask = &cpuset_current_mems_allowed;
4537 
4538 	return !node_isset(nid, *nodemask);
4539 }
4540 
4541 #define K(x) ((x) << (PAGE_SHIFT-10))
4542 
4543 static void show_migration_types(unsigned char type)
4544 {
4545 	static const char types[MIGRATE_TYPES] = {
4546 		[MIGRATE_UNMOVABLE]	= 'U',
4547 		[MIGRATE_MOVABLE]	= 'M',
4548 		[MIGRATE_RECLAIMABLE]	= 'E',
4549 		[MIGRATE_HIGHATOMIC]	= 'H',
4550 #ifdef CONFIG_CMA
4551 		[MIGRATE_CMA]		= 'C',
4552 #endif
4553 #ifdef CONFIG_MEMORY_ISOLATION
4554 		[MIGRATE_ISOLATE]	= 'I',
4555 #endif
4556 	};
4557 	char tmp[MIGRATE_TYPES + 1];
4558 	char *p = tmp;
4559 	int i;
4560 
4561 	for (i = 0; i < MIGRATE_TYPES; i++) {
4562 		if (type & (1 << i))
4563 			*p++ = types[i];
4564 	}
4565 
4566 	*p = '\0';
4567 	printk(KERN_CONT "(%s) ", tmp);
4568 }
4569 
4570 /*
4571  * Show free area list (used inside shift_scroll-lock stuff)
4572  * We also calculate the percentage fragmentation. We do this by counting the
4573  * memory on each free list with the exception of the first item on the list.
4574  *
4575  * Bits in @filter:
4576  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4577  *   cpuset.
4578  */
4579 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4580 {
4581 	unsigned long free_pcp = 0;
4582 	int cpu;
4583 	struct zone *zone;
4584 	pg_data_t *pgdat;
4585 
4586 	for_each_populated_zone(zone) {
4587 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4588 			continue;
4589 
4590 		for_each_online_cpu(cpu)
4591 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4592 	}
4593 
4594 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4595 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4596 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4597 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4598 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4599 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4600 		global_node_page_state(NR_ACTIVE_ANON),
4601 		global_node_page_state(NR_INACTIVE_ANON),
4602 		global_node_page_state(NR_ISOLATED_ANON),
4603 		global_node_page_state(NR_ACTIVE_FILE),
4604 		global_node_page_state(NR_INACTIVE_FILE),
4605 		global_node_page_state(NR_ISOLATED_FILE),
4606 		global_node_page_state(NR_UNEVICTABLE),
4607 		global_node_page_state(NR_FILE_DIRTY),
4608 		global_node_page_state(NR_WRITEBACK),
4609 		global_node_page_state(NR_UNSTABLE_NFS),
4610 		global_node_page_state(NR_SLAB_RECLAIMABLE),
4611 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4612 		global_node_page_state(NR_FILE_MAPPED),
4613 		global_node_page_state(NR_SHMEM),
4614 		global_page_state(NR_PAGETABLE),
4615 		global_page_state(NR_BOUNCE),
4616 		global_page_state(NR_FREE_PAGES),
4617 		free_pcp,
4618 		global_page_state(NR_FREE_CMA_PAGES));
4619 
4620 	for_each_online_pgdat(pgdat) {
4621 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4622 			continue;
4623 
4624 		printk("Node %d"
4625 			" active_anon:%lukB"
4626 			" inactive_anon:%lukB"
4627 			" active_file:%lukB"
4628 			" inactive_file:%lukB"
4629 			" unevictable:%lukB"
4630 			" isolated(anon):%lukB"
4631 			" isolated(file):%lukB"
4632 			" mapped:%lukB"
4633 			" dirty:%lukB"
4634 			" writeback:%lukB"
4635 			" shmem:%lukB"
4636 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4637 			" shmem_thp: %lukB"
4638 			" shmem_pmdmapped: %lukB"
4639 			" anon_thp: %lukB"
4640 #endif
4641 			" writeback_tmp:%lukB"
4642 			" unstable:%lukB"
4643 			" all_unreclaimable? %s"
4644 			"\n",
4645 			pgdat->node_id,
4646 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4647 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4648 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4649 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4650 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4651 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4652 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4653 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4654 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4655 			K(node_page_state(pgdat, NR_WRITEBACK)),
4656 			K(node_page_state(pgdat, NR_SHMEM)),
4657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4658 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4659 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4660 					* HPAGE_PMD_NR),
4661 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4662 #endif
4663 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4664 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4665 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4666 				"yes" : "no");
4667 	}
4668 
4669 	for_each_populated_zone(zone) {
4670 		int i;
4671 
4672 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4673 			continue;
4674 
4675 		free_pcp = 0;
4676 		for_each_online_cpu(cpu)
4677 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4678 
4679 		show_node(zone);
4680 		printk(KERN_CONT
4681 			"%s"
4682 			" free:%lukB"
4683 			" min:%lukB"
4684 			" low:%lukB"
4685 			" high:%lukB"
4686 			" active_anon:%lukB"
4687 			" inactive_anon:%lukB"
4688 			" active_file:%lukB"
4689 			" inactive_file:%lukB"
4690 			" unevictable:%lukB"
4691 			" writepending:%lukB"
4692 			" present:%lukB"
4693 			" managed:%lukB"
4694 			" mlocked:%lukB"
4695 			" kernel_stack:%lukB"
4696 			" pagetables:%lukB"
4697 			" bounce:%lukB"
4698 			" free_pcp:%lukB"
4699 			" local_pcp:%ukB"
4700 			" free_cma:%lukB"
4701 			"\n",
4702 			zone->name,
4703 			K(zone_page_state(zone, NR_FREE_PAGES)),
4704 			K(min_wmark_pages(zone)),
4705 			K(low_wmark_pages(zone)),
4706 			K(high_wmark_pages(zone)),
4707 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4708 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4709 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4710 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4711 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4712 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4713 			K(zone->present_pages),
4714 			K(zone->managed_pages),
4715 			K(zone_page_state(zone, NR_MLOCK)),
4716 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4717 			K(zone_page_state(zone, NR_PAGETABLE)),
4718 			K(zone_page_state(zone, NR_BOUNCE)),
4719 			K(free_pcp),
4720 			K(this_cpu_read(zone->pageset->pcp.count)),
4721 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4722 		printk("lowmem_reserve[]:");
4723 		for (i = 0; i < MAX_NR_ZONES; i++)
4724 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4725 		printk(KERN_CONT "\n");
4726 	}
4727 
4728 	for_each_populated_zone(zone) {
4729 		unsigned int order;
4730 		unsigned long nr[MAX_ORDER], flags, total = 0;
4731 		unsigned char types[MAX_ORDER];
4732 
4733 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4734 			continue;
4735 		show_node(zone);
4736 		printk(KERN_CONT "%s: ", zone->name);
4737 
4738 		spin_lock_irqsave(&zone->lock, flags);
4739 		for (order = 0; order < MAX_ORDER; order++) {
4740 			struct free_area *area = &zone->free_area[order];
4741 			int type;
4742 
4743 			nr[order] = area->nr_free;
4744 			total += nr[order] << order;
4745 
4746 			types[order] = 0;
4747 			for (type = 0; type < MIGRATE_TYPES; type++) {
4748 				if (!list_empty(&area->free_list[type]))
4749 					types[order] |= 1 << type;
4750 			}
4751 		}
4752 		spin_unlock_irqrestore(&zone->lock, flags);
4753 		for (order = 0; order < MAX_ORDER; order++) {
4754 			printk(KERN_CONT "%lu*%lukB ",
4755 			       nr[order], K(1UL) << order);
4756 			if (nr[order])
4757 				show_migration_types(types[order]);
4758 		}
4759 		printk(KERN_CONT "= %lukB\n", K(total));
4760 	}
4761 
4762 	hugetlb_show_meminfo();
4763 
4764 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4765 
4766 	show_swap_cache_info();
4767 }
4768 
4769 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4770 {
4771 	zoneref->zone = zone;
4772 	zoneref->zone_idx = zone_idx(zone);
4773 }
4774 
4775 /*
4776  * Builds allocation fallback zone lists.
4777  *
4778  * Add all populated zones of a node to the zonelist.
4779  */
4780 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4781 				int nr_zones)
4782 {
4783 	struct zone *zone;
4784 	enum zone_type zone_type = MAX_NR_ZONES;
4785 
4786 	do {
4787 		zone_type--;
4788 		zone = pgdat->node_zones + zone_type;
4789 		if (managed_zone(zone)) {
4790 			zoneref_set_zone(zone,
4791 				&zonelist->_zonerefs[nr_zones++]);
4792 			check_highest_zone(zone_type);
4793 		}
4794 	} while (zone_type);
4795 
4796 	return nr_zones;
4797 }
4798 
4799 
4800 /*
4801  *  zonelist_order:
4802  *  0 = automatic detection of better ordering.
4803  *  1 = order by ([node] distance, -zonetype)
4804  *  2 = order by (-zonetype, [node] distance)
4805  *
4806  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4807  *  the same zonelist. So only NUMA can configure this param.
4808  */
4809 #define ZONELIST_ORDER_DEFAULT  0
4810 #define ZONELIST_ORDER_NODE     1
4811 #define ZONELIST_ORDER_ZONE     2
4812 
4813 /* zonelist order in the kernel.
4814  * set_zonelist_order() will set this to NODE or ZONE.
4815  */
4816 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4817 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4818 
4819 
4820 #ifdef CONFIG_NUMA
4821 /* The value user specified ....changed by config */
4822 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4823 /* string for sysctl */
4824 #define NUMA_ZONELIST_ORDER_LEN	16
4825 char numa_zonelist_order[16] = "default";
4826 
4827 /*
4828  * interface for configure zonelist ordering.
4829  * command line option "numa_zonelist_order"
4830  *	= "[dD]efault	- default, automatic configuration.
4831  *	= "[nN]ode 	- order by node locality, then by zone within node
4832  *	= "[zZ]one      - order by zone, then by locality within zone
4833  */
4834 
4835 static int __parse_numa_zonelist_order(char *s)
4836 {
4837 	if (*s == 'd' || *s == 'D') {
4838 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4839 	} else if (*s == 'n' || *s == 'N') {
4840 		user_zonelist_order = ZONELIST_ORDER_NODE;
4841 	} else if (*s == 'z' || *s == 'Z') {
4842 		user_zonelist_order = ZONELIST_ORDER_ZONE;
4843 	} else {
4844 		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4845 		return -EINVAL;
4846 	}
4847 	return 0;
4848 }
4849 
4850 static __init int setup_numa_zonelist_order(char *s)
4851 {
4852 	int ret;
4853 
4854 	if (!s)
4855 		return 0;
4856 
4857 	ret = __parse_numa_zonelist_order(s);
4858 	if (ret == 0)
4859 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4860 
4861 	return ret;
4862 }
4863 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4864 
4865 /*
4866  * sysctl handler for numa_zonelist_order
4867  */
4868 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4869 		void __user *buffer, size_t *length,
4870 		loff_t *ppos)
4871 {
4872 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
4873 	int ret;
4874 	static DEFINE_MUTEX(zl_order_mutex);
4875 
4876 	mutex_lock(&zl_order_mutex);
4877 	if (write) {
4878 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4879 			ret = -EINVAL;
4880 			goto out;
4881 		}
4882 		strcpy(saved_string, (char *)table->data);
4883 	}
4884 	ret = proc_dostring(table, write, buffer, length, ppos);
4885 	if (ret)
4886 		goto out;
4887 	if (write) {
4888 		int oldval = user_zonelist_order;
4889 
4890 		ret = __parse_numa_zonelist_order((char *)table->data);
4891 		if (ret) {
4892 			/*
4893 			 * bogus value.  restore saved string
4894 			 */
4895 			strncpy((char *)table->data, saved_string,
4896 				NUMA_ZONELIST_ORDER_LEN);
4897 			user_zonelist_order = oldval;
4898 		} else if (oldval != user_zonelist_order) {
4899 			mem_hotplug_begin();
4900 			mutex_lock(&zonelists_mutex);
4901 			build_all_zonelists(NULL, NULL);
4902 			mutex_unlock(&zonelists_mutex);
4903 			mem_hotplug_done();
4904 		}
4905 	}
4906 out:
4907 	mutex_unlock(&zl_order_mutex);
4908 	return ret;
4909 }
4910 
4911 
4912 #define MAX_NODE_LOAD (nr_online_nodes)
4913 static int node_load[MAX_NUMNODES];
4914 
4915 /**
4916  * find_next_best_node - find the next node that should appear in a given node's fallback list
4917  * @node: node whose fallback list we're appending
4918  * @used_node_mask: nodemask_t of already used nodes
4919  *
4920  * We use a number of factors to determine which is the next node that should
4921  * appear on a given node's fallback list.  The node should not have appeared
4922  * already in @node's fallback list, and it should be the next closest node
4923  * according to the distance array (which contains arbitrary distance values
4924  * from each node to each node in the system), and should also prefer nodes
4925  * with no CPUs, since presumably they'll have very little allocation pressure
4926  * on them otherwise.
4927  * It returns -1 if no node is found.
4928  */
4929 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4930 {
4931 	int n, val;
4932 	int min_val = INT_MAX;
4933 	int best_node = NUMA_NO_NODE;
4934 	const struct cpumask *tmp = cpumask_of_node(0);
4935 
4936 	/* Use the local node if we haven't already */
4937 	if (!node_isset(node, *used_node_mask)) {
4938 		node_set(node, *used_node_mask);
4939 		return node;
4940 	}
4941 
4942 	for_each_node_state(n, N_MEMORY) {
4943 
4944 		/* Don't want a node to appear more than once */
4945 		if (node_isset(n, *used_node_mask))
4946 			continue;
4947 
4948 		/* Use the distance array to find the distance */
4949 		val = node_distance(node, n);
4950 
4951 		/* Penalize nodes under us ("prefer the next node") */
4952 		val += (n < node);
4953 
4954 		/* Give preference to headless and unused nodes */
4955 		tmp = cpumask_of_node(n);
4956 		if (!cpumask_empty(tmp))
4957 			val += PENALTY_FOR_NODE_WITH_CPUS;
4958 
4959 		/* Slight preference for less loaded node */
4960 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4961 		val += node_load[n];
4962 
4963 		if (val < min_val) {
4964 			min_val = val;
4965 			best_node = n;
4966 		}
4967 	}
4968 
4969 	if (best_node >= 0)
4970 		node_set(best_node, *used_node_mask);
4971 
4972 	return best_node;
4973 }
4974 
4975 
4976 /*
4977  * Build zonelists ordered by node and zones within node.
4978  * This results in maximum locality--normal zone overflows into local
4979  * DMA zone, if any--but risks exhausting DMA zone.
4980  */
4981 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4982 {
4983 	int j;
4984 	struct zonelist *zonelist;
4985 
4986 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4987 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4988 		;
4989 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4990 	zonelist->_zonerefs[j].zone = NULL;
4991 	zonelist->_zonerefs[j].zone_idx = 0;
4992 }
4993 
4994 /*
4995  * Build gfp_thisnode zonelists
4996  */
4997 static void build_thisnode_zonelists(pg_data_t *pgdat)
4998 {
4999 	int j;
5000 	struct zonelist *zonelist;
5001 
5002 	zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
5003 	j = build_zonelists_node(pgdat, zonelist, 0);
5004 	zonelist->_zonerefs[j].zone = NULL;
5005 	zonelist->_zonerefs[j].zone_idx = 0;
5006 }
5007 
5008 /*
5009  * Build zonelists ordered by zone and nodes within zones.
5010  * This results in conserving DMA zone[s] until all Normal memory is
5011  * exhausted, but results in overflowing to remote node while memory
5012  * may still exist in local DMA zone.
5013  */
5014 static int node_order[MAX_NUMNODES];
5015 
5016 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
5017 {
5018 	int pos, j, node;
5019 	int zone_type;		/* needs to be signed */
5020 	struct zone *z;
5021 	struct zonelist *zonelist;
5022 
5023 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5024 	pos = 0;
5025 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
5026 		for (j = 0; j < nr_nodes; j++) {
5027 			node = node_order[j];
5028 			z = &NODE_DATA(node)->node_zones[zone_type];
5029 			if (managed_zone(z)) {
5030 				zoneref_set_zone(z,
5031 					&zonelist->_zonerefs[pos++]);
5032 				check_highest_zone(zone_type);
5033 			}
5034 		}
5035 	}
5036 	zonelist->_zonerefs[pos].zone = NULL;
5037 	zonelist->_zonerefs[pos].zone_idx = 0;
5038 }
5039 
5040 #if defined(CONFIG_64BIT)
5041 /*
5042  * Devices that require DMA32/DMA are relatively rare and do not justify a
5043  * penalty to every machine in case the specialised case applies. Default
5044  * to Node-ordering on 64-bit NUMA machines
5045  */
5046 static int default_zonelist_order(void)
5047 {
5048 	return ZONELIST_ORDER_NODE;
5049 }
5050 #else
5051 /*
5052  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
5053  * by the kernel. If processes running on node 0 deplete the low memory zone
5054  * then reclaim will occur more frequency increasing stalls and potentially
5055  * be easier to OOM if a large percentage of the zone is under writeback or
5056  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
5057  * Hence, default to zone ordering on 32-bit.
5058  */
5059 static int default_zonelist_order(void)
5060 {
5061 	return ZONELIST_ORDER_ZONE;
5062 }
5063 #endif /* CONFIG_64BIT */
5064 
5065 static void set_zonelist_order(void)
5066 {
5067 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
5068 		current_zonelist_order = default_zonelist_order();
5069 	else
5070 		current_zonelist_order = user_zonelist_order;
5071 }
5072 
5073 static void build_zonelists(pg_data_t *pgdat)
5074 {
5075 	int i, node, load;
5076 	nodemask_t used_mask;
5077 	int local_node, prev_node;
5078 	struct zonelist *zonelist;
5079 	unsigned int order = current_zonelist_order;
5080 
5081 	/* initialize zonelists */
5082 	for (i = 0; i < MAX_ZONELISTS; i++) {
5083 		zonelist = pgdat->node_zonelists + i;
5084 		zonelist->_zonerefs[0].zone = NULL;
5085 		zonelist->_zonerefs[0].zone_idx = 0;
5086 	}
5087 
5088 	/* NUMA-aware ordering of nodes */
5089 	local_node = pgdat->node_id;
5090 	load = nr_online_nodes;
5091 	prev_node = local_node;
5092 	nodes_clear(used_mask);
5093 
5094 	memset(node_order, 0, sizeof(node_order));
5095 	i = 0;
5096 
5097 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5098 		/*
5099 		 * We don't want to pressure a particular node.
5100 		 * So adding penalty to the first node in same
5101 		 * distance group to make it round-robin.
5102 		 */
5103 		if (node_distance(local_node, node) !=
5104 		    node_distance(local_node, prev_node))
5105 			node_load[node] = load;
5106 
5107 		prev_node = node;
5108 		load--;
5109 		if (order == ZONELIST_ORDER_NODE)
5110 			build_zonelists_in_node_order(pgdat, node);
5111 		else
5112 			node_order[i++] = node;	/* remember order */
5113 	}
5114 
5115 	if (order == ZONELIST_ORDER_ZONE) {
5116 		/* calculate node order -- i.e., DMA last! */
5117 		build_zonelists_in_zone_order(pgdat, i);
5118 	}
5119 
5120 	build_thisnode_zonelists(pgdat);
5121 }
5122 
5123 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5124 /*
5125  * Return node id of node used for "local" allocations.
5126  * I.e., first node id of first zone in arg node's generic zonelist.
5127  * Used for initializing percpu 'numa_mem', which is used primarily
5128  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5129  */
5130 int local_memory_node(int node)
5131 {
5132 	struct zoneref *z;
5133 
5134 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5135 				   gfp_zone(GFP_KERNEL),
5136 				   NULL);
5137 	return z->zone->node;
5138 }
5139 #endif
5140 
5141 static void setup_min_unmapped_ratio(void);
5142 static void setup_min_slab_ratio(void);
5143 #else	/* CONFIG_NUMA */
5144 
5145 static void set_zonelist_order(void)
5146 {
5147 	current_zonelist_order = ZONELIST_ORDER_ZONE;
5148 }
5149 
5150 static void build_zonelists(pg_data_t *pgdat)
5151 {
5152 	int node, local_node;
5153 	enum zone_type j;
5154 	struct zonelist *zonelist;
5155 
5156 	local_node = pgdat->node_id;
5157 
5158 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5159 	j = build_zonelists_node(pgdat, zonelist, 0);
5160 
5161 	/*
5162 	 * Now we build the zonelist so that it contains the zones
5163 	 * of all the other nodes.
5164 	 * We don't want to pressure a particular node, so when
5165 	 * building the zones for node N, we make sure that the
5166 	 * zones coming right after the local ones are those from
5167 	 * node N+1 (modulo N)
5168 	 */
5169 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5170 		if (!node_online(node))
5171 			continue;
5172 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5173 	}
5174 	for (node = 0; node < local_node; node++) {
5175 		if (!node_online(node))
5176 			continue;
5177 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5178 	}
5179 
5180 	zonelist->_zonerefs[j].zone = NULL;
5181 	zonelist->_zonerefs[j].zone_idx = 0;
5182 }
5183 
5184 #endif	/* CONFIG_NUMA */
5185 
5186 /*
5187  * Boot pageset table. One per cpu which is going to be used for all
5188  * zones and all nodes. The parameters will be set in such a way
5189  * that an item put on a list will immediately be handed over to
5190  * the buddy list. This is safe since pageset manipulation is done
5191  * with interrupts disabled.
5192  *
5193  * The boot_pagesets must be kept even after bootup is complete for
5194  * unused processors and/or zones. They do play a role for bootstrapping
5195  * hotplugged processors.
5196  *
5197  * zoneinfo_show() and maybe other functions do
5198  * not check if the processor is online before following the pageset pointer.
5199  * Other parts of the kernel may not check if the zone is available.
5200  */
5201 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5202 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5203 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5204 static void setup_zone_pageset(struct zone *zone);
5205 
5206 /*
5207  * Global mutex to protect against size modification of zonelists
5208  * as well as to serialize pageset setup for the new populated zone.
5209  */
5210 DEFINE_MUTEX(zonelists_mutex);
5211 
5212 /* return values int ....just for stop_machine() */
5213 static int __build_all_zonelists(void *data)
5214 {
5215 	int nid;
5216 	int cpu;
5217 	pg_data_t *self = data;
5218 
5219 #ifdef CONFIG_NUMA
5220 	memset(node_load, 0, sizeof(node_load));
5221 #endif
5222 
5223 	if (self && !node_online(self->node_id)) {
5224 		build_zonelists(self);
5225 	}
5226 
5227 	for_each_online_node(nid) {
5228 		pg_data_t *pgdat = NODE_DATA(nid);
5229 
5230 		build_zonelists(pgdat);
5231 	}
5232 
5233 	/*
5234 	 * Initialize the boot_pagesets that are going to be used
5235 	 * for bootstrapping processors. The real pagesets for
5236 	 * each zone will be allocated later when the per cpu
5237 	 * allocator is available.
5238 	 *
5239 	 * boot_pagesets are used also for bootstrapping offline
5240 	 * cpus if the system is already booted because the pagesets
5241 	 * are needed to initialize allocators on a specific cpu too.
5242 	 * F.e. the percpu allocator needs the page allocator which
5243 	 * needs the percpu allocator in order to allocate its pagesets
5244 	 * (a chicken-egg dilemma).
5245 	 */
5246 	for_each_possible_cpu(cpu) {
5247 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5248 
5249 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5250 		/*
5251 		 * We now know the "local memory node" for each node--
5252 		 * i.e., the node of the first zone in the generic zonelist.
5253 		 * Set up numa_mem percpu variable for on-line cpus.  During
5254 		 * boot, only the boot cpu should be on-line;  we'll init the
5255 		 * secondary cpus' numa_mem as they come on-line.  During
5256 		 * node/memory hotplug, we'll fixup all on-line cpus.
5257 		 */
5258 		if (cpu_online(cpu))
5259 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5260 #endif
5261 	}
5262 
5263 	return 0;
5264 }
5265 
5266 static noinline void __init
5267 build_all_zonelists_init(void)
5268 {
5269 	__build_all_zonelists(NULL);
5270 	mminit_verify_zonelist();
5271 	cpuset_init_current_mems_allowed();
5272 }
5273 
5274 /*
5275  * Called with zonelists_mutex held always
5276  * unless system_state == SYSTEM_BOOTING.
5277  *
5278  * __ref due to (1) call of __meminit annotated setup_zone_pageset
5279  * [we're only called with non-NULL zone through __meminit paths] and
5280  * (2) call of __init annotated helper build_all_zonelists_init
5281  * [protected by SYSTEM_BOOTING].
5282  */
5283 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5284 {
5285 	set_zonelist_order();
5286 
5287 	if (system_state == SYSTEM_BOOTING) {
5288 		build_all_zonelists_init();
5289 	} else {
5290 #ifdef CONFIG_MEMORY_HOTPLUG
5291 		if (zone)
5292 			setup_zone_pageset(zone);
5293 #endif
5294 		/* we have to stop all cpus to guarantee there is no user
5295 		   of zonelist */
5296 		stop_machine_cpuslocked(__build_all_zonelists, pgdat, NULL);
5297 		/* cpuset refresh routine should be here */
5298 	}
5299 	vm_total_pages = nr_free_pagecache_pages();
5300 	/*
5301 	 * Disable grouping by mobility if the number of pages in the
5302 	 * system is too low to allow the mechanism to work. It would be
5303 	 * more accurate, but expensive to check per-zone. This check is
5304 	 * made on memory-hotadd so a system can start with mobility
5305 	 * disabled and enable it later
5306 	 */
5307 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5308 		page_group_by_mobility_disabled = 1;
5309 	else
5310 		page_group_by_mobility_disabled = 0;
5311 
5312 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
5313 		nr_online_nodes,
5314 		zonelist_order_name[current_zonelist_order],
5315 		page_group_by_mobility_disabled ? "off" : "on",
5316 		vm_total_pages);
5317 #ifdef CONFIG_NUMA
5318 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5319 #endif
5320 }
5321 
5322 /*
5323  * Initially all pages are reserved - free ones are freed
5324  * up by free_all_bootmem() once the early boot process is
5325  * done. Non-atomic initialization, single-pass.
5326  */
5327 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5328 		unsigned long start_pfn, enum memmap_context context)
5329 {
5330 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5331 	unsigned long end_pfn = start_pfn + size;
5332 	pg_data_t *pgdat = NODE_DATA(nid);
5333 	unsigned long pfn;
5334 	unsigned long nr_initialised = 0;
5335 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5336 	struct memblock_region *r = NULL, *tmp;
5337 #endif
5338 
5339 	if (highest_memmap_pfn < end_pfn - 1)
5340 		highest_memmap_pfn = end_pfn - 1;
5341 
5342 	/*
5343 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5344 	 * memory
5345 	 */
5346 	if (altmap && start_pfn == altmap->base_pfn)
5347 		start_pfn += altmap->reserve;
5348 
5349 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5350 		/*
5351 		 * There can be holes in boot-time mem_map[]s handed to this
5352 		 * function.  They do not exist on hotplugged memory.
5353 		 */
5354 		if (context != MEMMAP_EARLY)
5355 			goto not_early;
5356 
5357 		if (!early_pfn_valid(pfn)) {
5358 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5359 			/*
5360 			 * Skip to the pfn preceding the next valid one (or
5361 			 * end_pfn), such that we hit a valid pfn (or end_pfn)
5362 			 * on our next iteration of the loop.
5363 			 */
5364 			pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5365 #endif
5366 			continue;
5367 		}
5368 		if (!early_pfn_in_nid(pfn, nid))
5369 			continue;
5370 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5371 			break;
5372 
5373 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5374 		/*
5375 		 * Check given memblock attribute by firmware which can affect
5376 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5377 		 * mirrored, it's an overlapped memmap init. skip it.
5378 		 */
5379 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5380 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5381 				for_each_memblock(memory, tmp)
5382 					if (pfn < memblock_region_memory_end_pfn(tmp))
5383 						break;
5384 				r = tmp;
5385 			}
5386 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5387 			    memblock_is_mirror(r)) {
5388 				/* already initialized as NORMAL */
5389 				pfn = memblock_region_memory_end_pfn(r);
5390 				continue;
5391 			}
5392 		}
5393 #endif
5394 
5395 not_early:
5396 		/*
5397 		 * Mark the block movable so that blocks are reserved for
5398 		 * movable at startup. This will force kernel allocations
5399 		 * to reserve their blocks rather than leaking throughout
5400 		 * the address space during boot when many long-lived
5401 		 * kernel allocations are made.
5402 		 *
5403 		 * bitmap is created for zone's valid pfn range. but memmap
5404 		 * can be created for invalid pages (for alignment)
5405 		 * check here not to call set_pageblock_migratetype() against
5406 		 * pfn out of zone.
5407 		 */
5408 		if (!(pfn & (pageblock_nr_pages - 1))) {
5409 			struct page *page = pfn_to_page(pfn);
5410 
5411 			__init_single_page(page, pfn, zone, nid);
5412 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5413 		} else {
5414 			__init_single_pfn(pfn, zone, nid);
5415 		}
5416 	}
5417 }
5418 
5419 static void __meminit zone_init_free_lists(struct zone *zone)
5420 {
5421 	unsigned int order, t;
5422 	for_each_migratetype_order(order, t) {
5423 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5424 		zone->free_area[order].nr_free = 0;
5425 	}
5426 }
5427 
5428 #ifndef __HAVE_ARCH_MEMMAP_INIT
5429 #define memmap_init(size, nid, zone, start_pfn) \
5430 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5431 #endif
5432 
5433 static int zone_batchsize(struct zone *zone)
5434 {
5435 #ifdef CONFIG_MMU
5436 	int batch;
5437 
5438 	/*
5439 	 * The per-cpu-pages pools are set to around 1000th of the
5440 	 * size of the zone.  But no more than 1/2 of a meg.
5441 	 *
5442 	 * OK, so we don't know how big the cache is.  So guess.
5443 	 */
5444 	batch = zone->managed_pages / 1024;
5445 	if (batch * PAGE_SIZE > 512 * 1024)
5446 		batch = (512 * 1024) / PAGE_SIZE;
5447 	batch /= 4;		/* We effectively *= 4 below */
5448 	if (batch < 1)
5449 		batch = 1;
5450 
5451 	/*
5452 	 * Clamp the batch to a 2^n - 1 value. Having a power
5453 	 * of 2 value was found to be more likely to have
5454 	 * suboptimal cache aliasing properties in some cases.
5455 	 *
5456 	 * For example if 2 tasks are alternately allocating
5457 	 * batches of pages, one task can end up with a lot
5458 	 * of pages of one half of the possible page colors
5459 	 * and the other with pages of the other colors.
5460 	 */
5461 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5462 
5463 	return batch;
5464 
5465 #else
5466 	/* The deferral and batching of frees should be suppressed under NOMMU
5467 	 * conditions.
5468 	 *
5469 	 * The problem is that NOMMU needs to be able to allocate large chunks
5470 	 * of contiguous memory as there's no hardware page translation to
5471 	 * assemble apparent contiguous memory from discontiguous pages.
5472 	 *
5473 	 * Queueing large contiguous runs of pages for batching, however,
5474 	 * causes the pages to actually be freed in smaller chunks.  As there
5475 	 * can be a significant delay between the individual batches being
5476 	 * recycled, this leads to the once large chunks of space being
5477 	 * fragmented and becoming unavailable for high-order allocations.
5478 	 */
5479 	return 0;
5480 #endif
5481 }
5482 
5483 /*
5484  * pcp->high and pcp->batch values are related and dependent on one another:
5485  * ->batch must never be higher then ->high.
5486  * The following function updates them in a safe manner without read side
5487  * locking.
5488  *
5489  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5490  * those fields changing asynchronously (acording the the above rule).
5491  *
5492  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5493  * outside of boot time (or some other assurance that no concurrent updaters
5494  * exist).
5495  */
5496 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5497 		unsigned long batch)
5498 {
5499        /* start with a fail safe value for batch */
5500 	pcp->batch = 1;
5501 	smp_wmb();
5502 
5503        /* Update high, then batch, in order */
5504 	pcp->high = high;
5505 	smp_wmb();
5506 
5507 	pcp->batch = batch;
5508 }
5509 
5510 /* a companion to pageset_set_high() */
5511 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5512 {
5513 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5514 }
5515 
5516 static void pageset_init(struct per_cpu_pageset *p)
5517 {
5518 	struct per_cpu_pages *pcp;
5519 	int migratetype;
5520 
5521 	memset(p, 0, sizeof(*p));
5522 
5523 	pcp = &p->pcp;
5524 	pcp->count = 0;
5525 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5526 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5527 }
5528 
5529 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5530 {
5531 	pageset_init(p);
5532 	pageset_set_batch(p, batch);
5533 }
5534 
5535 /*
5536  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5537  * to the value high for the pageset p.
5538  */
5539 static void pageset_set_high(struct per_cpu_pageset *p,
5540 				unsigned long high)
5541 {
5542 	unsigned long batch = max(1UL, high / 4);
5543 	if ((high / 4) > (PAGE_SHIFT * 8))
5544 		batch = PAGE_SHIFT * 8;
5545 
5546 	pageset_update(&p->pcp, high, batch);
5547 }
5548 
5549 static void pageset_set_high_and_batch(struct zone *zone,
5550 				       struct per_cpu_pageset *pcp)
5551 {
5552 	if (percpu_pagelist_fraction)
5553 		pageset_set_high(pcp,
5554 			(zone->managed_pages /
5555 				percpu_pagelist_fraction));
5556 	else
5557 		pageset_set_batch(pcp, zone_batchsize(zone));
5558 }
5559 
5560 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5561 {
5562 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5563 
5564 	pageset_init(pcp);
5565 	pageset_set_high_and_batch(zone, pcp);
5566 }
5567 
5568 static void __meminit setup_zone_pageset(struct zone *zone)
5569 {
5570 	int cpu;
5571 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5572 	for_each_possible_cpu(cpu)
5573 		zone_pageset_init(zone, cpu);
5574 }
5575 
5576 /*
5577  * Allocate per cpu pagesets and initialize them.
5578  * Before this call only boot pagesets were available.
5579  */
5580 void __init setup_per_cpu_pageset(void)
5581 {
5582 	struct pglist_data *pgdat;
5583 	struct zone *zone;
5584 
5585 	for_each_populated_zone(zone)
5586 		setup_zone_pageset(zone);
5587 
5588 	for_each_online_pgdat(pgdat)
5589 		pgdat->per_cpu_nodestats =
5590 			alloc_percpu(struct per_cpu_nodestat);
5591 }
5592 
5593 static __meminit void zone_pcp_init(struct zone *zone)
5594 {
5595 	/*
5596 	 * per cpu subsystem is not up at this point. The following code
5597 	 * relies on the ability of the linker to provide the
5598 	 * offset of a (static) per cpu variable into the per cpu area.
5599 	 */
5600 	zone->pageset = &boot_pageset;
5601 
5602 	if (populated_zone(zone))
5603 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5604 			zone->name, zone->present_pages,
5605 					 zone_batchsize(zone));
5606 }
5607 
5608 void __meminit init_currently_empty_zone(struct zone *zone,
5609 					unsigned long zone_start_pfn,
5610 					unsigned long size)
5611 {
5612 	struct pglist_data *pgdat = zone->zone_pgdat;
5613 
5614 	pgdat->nr_zones = zone_idx(zone) + 1;
5615 
5616 	zone->zone_start_pfn = zone_start_pfn;
5617 
5618 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5619 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5620 			pgdat->node_id,
5621 			(unsigned long)zone_idx(zone),
5622 			zone_start_pfn, (zone_start_pfn + size));
5623 
5624 	zone_init_free_lists(zone);
5625 	zone->initialized = 1;
5626 }
5627 
5628 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5629 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5630 
5631 /*
5632  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5633  */
5634 int __meminit __early_pfn_to_nid(unsigned long pfn,
5635 					struct mminit_pfnnid_cache *state)
5636 {
5637 	unsigned long start_pfn, end_pfn;
5638 	int nid;
5639 
5640 	if (state->last_start <= pfn && pfn < state->last_end)
5641 		return state->last_nid;
5642 
5643 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5644 	if (nid != -1) {
5645 		state->last_start = start_pfn;
5646 		state->last_end = end_pfn;
5647 		state->last_nid = nid;
5648 	}
5649 
5650 	return nid;
5651 }
5652 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5653 
5654 /**
5655  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5656  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5657  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5658  *
5659  * If an architecture guarantees that all ranges registered contain no holes
5660  * and may be freed, this this function may be used instead of calling
5661  * memblock_free_early_nid() manually.
5662  */
5663 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5664 {
5665 	unsigned long start_pfn, end_pfn;
5666 	int i, this_nid;
5667 
5668 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5669 		start_pfn = min(start_pfn, max_low_pfn);
5670 		end_pfn = min(end_pfn, max_low_pfn);
5671 
5672 		if (start_pfn < end_pfn)
5673 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5674 					(end_pfn - start_pfn) << PAGE_SHIFT,
5675 					this_nid);
5676 	}
5677 }
5678 
5679 /**
5680  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5681  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5682  *
5683  * If an architecture guarantees that all ranges registered contain no holes and may
5684  * be freed, this function may be used instead of calling memory_present() manually.
5685  */
5686 void __init sparse_memory_present_with_active_regions(int nid)
5687 {
5688 	unsigned long start_pfn, end_pfn;
5689 	int i, this_nid;
5690 
5691 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5692 		memory_present(this_nid, start_pfn, end_pfn);
5693 }
5694 
5695 /**
5696  * get_pfn_range_for_nid - Return the start and end page frames for a node
5697  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5698  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5699  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5700  *
5701  * It returns the start and end page frame of a node based on information
5702  * provided by memblock_set_node(). If called for a node
5703  * with no available memory, a warning is printed and the start and end
5704  * PFNs will be 0.
5705  */
5706 void __meminit get_pfn_range_for_nid(unsigned int nid,
5707 			unsigned long *start_pfn, unsigned long *end_pfn)
5708 {
5709 	unsigned long this_start_pfn, this_end_pfn;
5710 	int i;
5711 
5712 	*start_pfn = -1UL;
5713 	*end_pfn = 0;
5714 
5715 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5716 		*start_pfn = min(*start_pfn, this_start_pfn);
5717 		*end_pfn = max(*end_pfn, this_end_pfn);
5718 	}
5719 
5720 	if (*start_pfn == -1UL)
5721 		*start_pfn = 0;
5722 }
5723 
5724 /*
5725  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5726  * assumption is made that zones within a node are ordered in monotonic
5727  * increasing memory addresses so that the "highest" populated zone is used
5728  */
5729 static void __init find_usable_zone_for_movable(void)
5730 {
5731 	int zone_index;
5732 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5733 		if (zone_index == ZONE_MOVABLE)
5734 			continue;
5735 
5736 		if (arch_zone_highest_possible_pfn[zone_index] >
5737 				arch_zone_lowest_possible_pfn[zone_index])
5738 			break;
5739 	}
5740 
5741 	VM_BUG_ON(zone_index == -1);
5742 	movable_zone = zone_index;
5743 }
5744 
5745 /*
5746  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5747  * because it is sized independent of architecture. Unlike the other zones,
5748  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5749  * in each node depending on the size of each node and how evenly kernelcore
5750  * is distributed. This helper function adjusts the zone ranges
5751  * provided by the architecture for a given node by using the end of the
5752  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5753  * zones within a node are in order of monotonic increases memory addresses
5754  */
5755 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5756 					unsigned long zone_type,
5757 					unsigned long node_start_pfn,
5758 					unsigned long node_end_pfn,
5759 					unsigned long *zone_start_pfn,
5760 					unsigned long *zone_end_pfn)
5761 {
5762 	/* Only adjust if ZONE_MOVABLE is on this node */
5763 	if (zone_movable_pfn[nid]) {
5764 		/* Size ZONE_MOVABLE */
5765 		if (zone_type == ZONE_MOVABLE) {
5766 			*zone_start_pfn = zone_movable_pfn[nid];
5767 			*zone_end_pfn = min(node_end_pfn,
5768 				arch_zone_highest_possible_pfn[movable_zone]);
5769 
5770 		/* Adjust for ZONE_MOVABLE starting within this range */
5771 		} else if (!mirrored_kernelcore &&
5772 			*zone_start_pfn < zone_movable_pfn[nid] &&
5773 			*zone_end_pfn > zone_movable_pfn[nid]) {
5774 			*zone_end_pfn = zone_movable_pfn[nid];
5775 
5776 		/* Check if this whole range is within ZONE_MOVABLE */
5777 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5778 			*zone_start_pfn = *zone_end_pfn;
5779 	}
5780 }
5781 
5782 /*
5783  * Return the number of pages a zone spans in a node, including holes
5784  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5785  */
5786 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5787 					unsigned long zone_type,
5788 					unsigned long node_start_pfn,
5789 					unsigned long node_end_pfn,
5790 					unsigned long *zone_start_pfn,
5791 					unsigned long *zone_end_pfn,
5792 					unsigned long *ignored)
5793 {
5794 	/* When hotadd a new node from cpu_up(), the node should be empty */
5795 	if (!node_start_pfn && !node_end_pfn)
5796 		return 0;
5797 
5798 	/* Get the start and end of the zone */
5799 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5800 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5801 	adjust_zone_range_for_zone_movable(nid, zone_type,
5802 				node_start_pfn, node_end_pfn,
5803 				zone_start_pfn, zone_end_pfn);
5804 
5805 	/* Check that this node has pages within the zone's required range */
5806 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5807 		return 0;
5808 
5809 	/* Move the zone boundaries inside the node if necessary */
5810 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5811 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5812 
5813 	/* Return the spanned pages */
5814 	return *zone_end_pfn - *zone_start_pfn;
5815 }
5816 
5817 /*
5818  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5819  * then all holes in the requested range will be accounted for.
5820  */
5821 unsigned long __meminit __absent_pages_in_range(int nid,
5822 				unsigned long range_start_pfn,
5823 				unsigned long range_end_pfn)
5824 {
5825 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5826 	unsigned long start_pfn, end_pfn;
5827 	int i;
5828 
5829 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5830 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5831 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5832 		nr_absent -= end_pfn - start_pfn;
5833 	}
5834 	return nr_absent;
5835 }
5836 
5837 /**
5838  * absent_pages_in_range - Return number of page frames in holes within a range
5839  * @start_pfn: The start PFN to start searching for holes
5840  * @end_pfn: The end PFN to stop searching for holes
5841  *
5842  * It returns the number of pages frames in memory holes within a range.
5843  */
5844 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5845 							unsigned long end_pfn)
5846 {
5847 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5848 }
5849 
5850 /* Return the number of page frames in holes in a zone on a node */
5851 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5852 					unsigned long zone_type,
5853 					unsigned long node_start_pfn,
5854 					unsigned long node_end_pfn,
5855 					unsigned long *ignored)
5856 {
5857 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5858 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5859 	unsigned long zone_start_pfn, zone_end_pfn;
5860 	unsigned long nr_absent;
5861 
5862 	/* When hotadd a new node from cpu_up(), the node should be empty */
5863 	if (!node_start_pfn && !node_end_pfn)
5864 		return 0;
5865 
5866 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5867 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5868 
5869 	adjust_zone_range_for_zone_movable(nid, zone_type,
5870 			node_start_pfn, node_end_pfn,
5871 			&zone_start_pfn, &zone_end_pfn);
5872 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5873 
5874 	/*
5875 	 * ZONE_MOVABLE handling.
5876 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5877 	 * and vice versa.
5878 	 */
5879 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5880 		unsigned long start_pfn, end_pfn;
5881 		struct memblock_region *r;
5882 
5883 		for_each_memblock(memory, r) {
5884 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
5885 					  zone_start_pfn, zone_end_pfn);
5886 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
5887 					zone_start_pfn, zone_end_pfn);
5888 
5889 			if (zone_type == ZONE_MOVABLE &&
5890 			    memblock_is_mirror(r))
5891 				nr_absent += end_pfn - start_pfn;
5892 
5893 			if (zone_type == ZONE_NORMAL &&
5894 			    !memblock_is_mirror(r))
5895 				nr_absent += end_pfn - start_pfn;
5896 		}
5897 	}
5898 
5899 	return nr_absent;
5900 }
5901 
5902 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5903 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5904 					unsigned long zone_type,
5905 					unsigned long node_start_pfn,
5906 					unsigned long node_end_pfn,
5907 					unsigned long *zone_start_pfn,
5908 					unsigned long *zone_end_pfn,
5909 					unsigned long *zones_size)
5910 {
5911 	unsigned int zone;
5912 
5913 	*zone_start_pfn = node_start_pfn;
5914 	for (zone = 0; zone < zone_type; zone++)
5915 		*zone_start_pfn += zones_size[zone];
5916 
5917 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5918 
5919 	return zones_size[zone_type];
5920 }
5921 
5922 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5923 						unsigned long zone_type,
5924 						unsigned long node_start_pfn,
5925 						unsigned long node_end_pfn,
5926 						unsigned long *zholes_size)
5927 {
5928 	if (!zholes_size)
5929 		return 0;
5930 
5931 	return zholes_size[zone_type];
5932 }
5933 
5934 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5935 
5936 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5937 						unsigned long node_start_pfn,
5938 						unsigned long node_end_pfn,
5939 						unsigned long *zones_size,
5940 						unsigned long *zholes_size)
5941 {
5942 	unsigned long realtotalpages = 0, totalpages = 0;
5943 	enum zone_type i;
5944 
5945 	for (i = 0; i < MAX_NR_ZONES; i++) {
5946 		struct zone *zone = pgdat->node_zones + i;
5947 		unsigned long zone_start_pfn, zone_end_pfn;
5948 		unsigned long size, real_size;
5949 
5950 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5951 						  node_start_pfn,
5952 						  node_end_pfn,
5953 						  &zone_start_pfn,
5954 						  &zone_end_pfn,
5955 						  zones_size);
5956 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5957 						  node_start_pfn, node_end_pfn,
5958 						  zholes_size);
5959 		if (size)
5960 			zone->zone_start_pfn = zone_start_pfn;
5961 		else
5962 			zone->zone_start_pfn = 0;
5963 		zone->spanned_pages = size;
5964 		zone->present_pages = real_size;
5965 
5966 		totalpages += size;
5967 		realtotalpages += real_size;
5968 	}
5969 
5970 	pgdat->node_spanned_pages = totalpages;
5971 	pgdat->node_present_pages = realtotalpages;
5972 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5973 							realtotalpages);
5974 }
5975 
5976 #ifndef CONFIG_SPARSEMEM
5977 /*
5978  * Calculate the size of the zone->blockflags rounded to an unsigned long
5979  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5980  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5981  * round what is now in bits to nearest long in bits, then return it in
5982  * bytes.
5983  */
5984 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5985 {
5986 	unsigned long usemapsize;
5987 
5988 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5989 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5990 	usemapsize = usemapsize >> pageblock_order;
5991 	usemapsize *= NR_PAGEBLOCK_BITS;
5992 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5993 
5994 	return usemapsize / 8;
5995 }
5996 
5997 static void __init setup_usemap(struct pglist_data *pgdat,
5998 				struct zone *zone,
5999 				unsigned long zone_start_pfn,
6000 				unsigned long zonesize)
6001 {
6002 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6003 	zone->pageblock_flags = NULL;
6004 	if (usemapsize)
6005 		zone->pageblock_flags =
6006 			memblock_virt_alloc_node_nopanic(usemapsize,
6007 							 pgdat->node_id);
6008 }
6009 #else
6010 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6011 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6012 #endif /* CONFIG_SPARSEMEM */
6013 
6014 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6015 
6016 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6017 void __paginginit set_pageblock_order(void)
6018 {
6019 	unsigned int order;
6020 
6021 	/* Check that pageblock_nr_pages has not already been setup */
6022 	if (pageblock_order)
6023 		return;
6024 
6025 	if (HPAGE_SHIFT > PAGE_SHIFT)
6026 		order = HUGETLB_PAGE_ORDER;
6027 	else
6028 		order = MAX_ORDER - 1;
6029 
6030 	/*
6031 	 * Assume the largest contiguous order of interest is a huge page.
6032 	 * This value may be variable depending on boot parameters on IA64 and
6033 	 * powerpc.
6034 	 */
6035 	pageblock_order = order;
6036 }
6037 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6038 
6039 /*
6040  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6041  * is unused as pageblock_order is set at compile-time. See
6042  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6043  * the kernel config
6044  */
6045 void __paginginit set_pageblock_order(void)
6046 {
6047 }
6048 
6049 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6050 
6051 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6052 						   unsigned long present_pages)
6053 {
6054 	unsigned long pages = spanned_pages;
6055 
6056 	/*
6057 	 * Provide a more accurate estimation if there are holes within
6058 	 * the zone and SPARSEMEM is in use. If there are holes within the
6059 	 * zone, each populated memory region may cost us one or two extra
6060 	 * memmap pages due to alignment because memmap pages for each
6061 	 * populated regions may not be naturally aligned on page boundary.
6062 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6063 	 */
6064 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6065 	    IS_ENABLED(CONFIG_SPARSEMEM))
6066 		pages = present_pages;
6067 
6068 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6069 }
6070 
6071 /*
6072  * Set up the zone data structures:
6073  *   - mark all pages reserved
6074  *   - mark all memory queues empty
6075  *   - clear the memory bitmaps
6076  *
6077  * NOTE: pgdat should get zeroed by caller.
6078  */
6079 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6080 {
6081 	enum zone_type j;
6082 	int nid = pgdat->node_id;
6083 
6084 	pgdat_resize_init(pgdat);
6085 #ifdef CONFIG_NUMA_BALANCING
6086 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
6087 	pgdat->numabalancing_migrate_nr_pages = 0;
6088 	pgdat->numabalancing_migrate_next_window = jiffies;
6089 #endif
6090 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6091 	spin_lock_init(&pgdat->split_queue_lock);
6092 	INIT_LIST_HEAD(&pgdat->split_queue);
6093 	pgdat->split_queue_len = 0;
6094 #endif
6095 	init_waitqueue_head(&pgdat->kswapd_wait);
6096 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6097 #ifdef CONFIG_COMPACTION
6098 	init_waitqueue_head(&pgdat->kcompactd_wait);
6099 #endif
6100 	pgdat_page_ext_init(pgdat);
6101 	spin_lock_init(&pgdat->lru_lock);
6102 	lruvec_init(node_lruvec(pgdat));
6103 
6104 	pgdat->per_cpu_nodestats = &boot_nodestats;
6105 
6106 	for (j = 0; j < MAX_NR_ZONES; j++) {
6107 		struct zone *zone = pgdat->node_zones + j;
6108 		unsigned long size, realsize, freesize, memmap_pages;
6109 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6110 
6111 		size = zone->spanned_pages;
6112 		realsize = freesize = zone->present_pages;
6113 
6114 		/*
6115 		 * Adjust freesize so that it accounts for how much memory
6116 		 * is used by this zone for memmap. This affects the watermark
6117 		 * and per-cpu initialisations
6118 		 */
6119 		memmap_pages = calc_memmap_size(size, realsize);
6120 		if (!is_highmem_idx(j)) {
6121 			if (freesize >= memmap_pages) {
6122 				freesize -= memmap_pages;
6123 				if (memmap_pages)
6124 					printk(KERN_DEBUG
6125 					       "  %s zone: %lu pages used for memmap\n",
6126 					       zone_names[j], memmap_pages);
6127 			} else
6128 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6129 					zone_names[j], memmap_pages, freesize);
6130 		}
6131 
6132 		/* Account for reserved pages */
6133 		if (j == 0 && freesize > dma_reserve) {
6134 			freesize -= dma_reserve;
6135 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6136 					zone_names[0], dma_reserve);
6137 		}
6138 
6139 		if (!is_highmem_idx(j))
6140 			nr_kernel_pages += freesize;
6141 		/* Charge for highmem memmap if there are enough kernel pages */
6142 		else if (nr_kernel_pages > memmap_pages * 2)
6143 			nr_kernel_pages -= memmap_pages;
6144 		nr_all_pages += freesize;
6145 
6146 		/*
6147 		 * Set an approximate value for lowmem here, it will be adjusted
6148 		 * when the bootmem allocator frees pages into the buddy system.
6149 		 * And all highmem pages will be managed by the buddy system.
6150 		 */
6151 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6152 #ifdef CONFIG_NUMA
6153 		zone->node = nid;
6154 #endif
6155 		zone->name = zone_names[j];
6156 		zone->zone_pgdat = pgdat;
6157 		spin_lock_init(&zone->lock);
6158 		zone_seqlock_init(zone);
6159 		zone_pcp_init(zone);
6160 
6161 		if (!size)
6162 			continue;
6163 
6164 		set_pageblock_order();
6165 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6166 		init_currently_empty_zone(zone, zone_start_pfn, size);
6167 		memmap_init(size, nid, j, zone_start_pfn);
6168 	}
6169 }
6170 
6171 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6172 {
6173 	unsigned long __maybe_unused start = 0;
6174 	unsigned long __maybe_unused offset = 0;
6175 
6176 	/* Skip empty nodes */
6177 	if (!pgdat->node_spanned_pages)
6178 		return;
6179 
6180 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6181 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6182 	offset = pgdat->node_start_pfn - start;
6183 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6184 	if (!pgdat->node_mem_map) {
6185 		unsigned long size, end;
6186 		struct page *map;
6187 
6188 		/*
6189 		 * The zone's endpoints aren't required to be MAX_ORDER
6190 		 * aligned but the node_mem_map endpoints must be in order
6191 		 * for the buddy allocator to function correctly.
6192 		 */
6193 		end = pgdat_end_pfn(pgdat);
6194 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6195 		size =  (end - start) * sizeof(struct page);
6196 		map = alloc_remap(pgdat->node_id, size);
6197 		if (!map)
6198 			map = memblock_virt_alloc_node_nopanic(size,
6199 							       pgdat->node_id);
6200 		pgdat->node_mem_map = map + offset;
6201 	}
6202 #ifndef CONFIG_NEED_MULTIPLE_NODES
6203 	/*
6204 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6205 	 */
6206 	if (pgdat == NODE_DATA(0)) {
6207 		mem_map = NODE_DATA(0)->node_mem_map;
6208 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6209 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6210 			mem_map -= offset;
6211 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6212 	}
6213 #endif
6214 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6215 }
6216 
6217 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6218 		unsigned long node_start_pfn, unsigned long *zholes_size)
6219 {
6220 	pg_data_t *pgdat = NODE_DATA(nid);
6221 	unsigned long start_pfn = 0;
6222 	unsigned long end_pfn = 0;
6223 
6224 	/* pg_data_t should be reset to zero when it's allocated */
6225 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6226 
6227 	pgdat->node_id = nid;
6228 	pgdat->node_start_pfn = node_start_pfn;
6229 	pgdat->per_cpu_nodestats = NULL;
6230 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6231 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6232 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6233 		(u64)start_pfn << PAGE_SHIFT,
6234 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6235 #else
6236 	start_pfn = node_start_pfn;
6237 #endif
6238 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6239 				  zones_size, zholes_size);
6240 
6241 	alloc_node_mem_map(pgdat);
6242 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6243 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6244 		nid, (unsigned long)pgdat,
6245 		(unsigned long)pgdat->node_mem_map);
6246 #endif
6247 
6248 	reset_deferred_meminit(pgdat);
6249 	free_area_init_core(pgdat);
6250 }
6251 
6252 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6253 
6254 #if MAX_NUMNODES > 1
6255 /*
6256  * Figure out the number of possible node ids.
6257  */
6258 void __init setup_nr_node_ids(void)
6259 {
6260 	unsigned int highest;
6261 
6262 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6263 	nr_node_ids = highest + 1;
6264 }
6265 #endif
6266 
6267 /**
6268  * node_map_pfn_alignment - determine the maximum internode alignment
6269  *
6270  * This function should be called after node map is populated and sorted.
6271  * It calculates the maximum power of two alignment which can distinguish
6272  * all the nodes.
6273  *
6274  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6275  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6276  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6277  * shifted, 1GiB is enough and this function will indicate so.
6278  *
6279  * This is used to test whether pfn -> nid mapping of the chosen memory
6280  * model has fine enough granularity to avoid incorrect mapping for the
6281  * populated node map.
6282  *
6283  * Returns the determined alignment in pfn's.  0 if there is no alignment
6284  * requirement (single node).
6285  */
6286 unsigned long __init node_map_pfn_alignment(void)
6287 {
6288 	unsigned long accl_mask = 0, last_end = 0;
6289 	unsigned long start, end, mask;
6290 	int last_nid = -1;
6291 	int i, nid;
6292 
6293 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6294 		if (!start || last_nid < 0 || last_nid == nid) {
6295 			last_nid = nid;
6296 			last_end = end;
6297 			continue;
6298 		}
6299 
6300 		/*
6301 		 * Start with a mask granular enough to pin-point to the
6302 		 * start pfn and tick off bits one-by-one until it becomes
6303 		 * too coarse to separate the current node from the last.
6304 		 */
6305 		mask = ~((1 << __ffs(start)) - 1);
6306 		while (mask && last_end <= (start & (mask << 1)))
6307 			mask <<= 1;
6308 
6309 		/* accumulate all internode masks */
6310 		accl_mask |= mask;
6311 	}
6312 
6313 	/* convert mask to number of pages */
6314 	return ~accl_mask + 1;
6315 }
6316 
6317 /* Find the lowest pfn for a node */
6318 static unsigned long __init find_min_pfn_for_node(int nid)
6319 {
6320 	unsigned long min_pfn = ULONG_MAX;
6321 	unsigned long start_pfn;
6322 	int i;
6323 
6324 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6325 		min_pfn = min(min_pfn, start_pfn);
6326 
6327 	if (min_pfn == ULONG_MAX) {
6328 		pr_warn("Could not find start_pfn for node %d\n", nid);
6329 		return 0;
6330 	}
6331 
6332 	return min_pfn;
6333 }
6334 
6335 /**
6336  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6337  *
6338  * It returns the minimum PFN based on information provided via
6339  * memblock_set_node().
6340  */
6341 unsigned long __init find_min_pfn_with_active_regions(void)
6342 {
6343 	return find_min_pfn_for_node(MAX_NUMNODES);
6344 }
6345 
6346 /*
6347  * early_calculate_totalpages()
6348  * Sum pages in active regions for movable zone.
6349  * Populate N_MEMORY for calculating usable_nodes.
6350  */
6351 static unsigned long __init early_calculate_totalpages(void)
6352 {
6353 	unsigned long totalpages = 0;
6354 	unsigned long start_pfn, end_pfn;
6355 	int i, nid;
6356 
6357 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6358 		unsigned long pages = end_pfn - start_pfn;
6359 
6360 		totalpages += pages;
6361 		if (pages)
6362 			node_set_state(nid, N_MEMORY);
6363 	}
6364 	return totalpages;
6365 }
6366 
6367 /*
6368  * Find the PFN the Movable zone begins in each node. Kernel memory
6369  * is spread evenly between nodes as long as the nodes have enough
6370  * memory. When they don't, some nodes will have more kernelcore than
6371  * others
6372  */
6373 static void __init find_zone_movable_pfns_for_nodes(void)
6374 {
6375 	int i, nid;
6376 	unsigned long usable_startpfn;
6377 	unsigned long kernelcore_node, kernelcore_remaining;
6378 	/* save the state before borrow the nodemask */
6379 	nodemask_t saved_node_state = node_states[N_MEMORY];
6380 	unsigned long totalpages = early_calculate_totalpages();
6381 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6382 	struct memblock_region *r;
6383 
6384 	/* Need to find movable_zone earlier when movable_node is specified. */
6385 	find_usable_zone_for_movable();
6386 
6387 	/*
6388 	 * If movable_node is specified, ignore kernelcore and movablecore
6389 	 * options.
6390 	 */
6391 	if (movable_node_is_enabled()) {
6392 		for_each_memblock(memory, r) {
6393 			if (!memblock_is_hotpluggable(r))
6394 				continue;
6395 
6396 			nid = r->nid;
6397 
6398 			usable_startpfn = PFN_DOWN(r->base);
6399 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6400 				min(usable_startpfn, zone_movable_pfn[nid]) :
6401 				usable_startpfn;
6402 		}
6403 
6404 		goto out2;
6405 	}
6406 
6407 	/*
6408 	 * If kernelcore=mirror is specified, ignore movablecore option
6409 	 */
6410 	if (mirrored_kernelcore) {
6411 		bool mem_below_4gb_not_mirrored = false;
6412 
6413 		for_each_memblock(memory, r) {
6414 			if (memblock_is_mirror(r))
6415 				continue;
6416 
6417 			nid = r->nid;
6418 
6419 			usable_startpfn = memblock_region_memory_base_pfn(r);
6420 
6421 			if (usable_startpfn < 0x100000) {
6422 				mem_below_4gb_not_mirrored = true;
6423 				continue;
6424 			}
6425 
6426 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6427 				min(usable_startpfn, zone_movable_pfn[nid]) :
6428 				usable_startpfn;
6429 		}
6430 
6431 		if (mem_below_4gb_not_mirrored)
6432 			pr_warn("This configuration results in unmirrored kernel memory.");
6433 
6434 		goto out2;
6435 	}
6436 
6437 	/*
6438 	 * If movablecore=nn[KMG] was specified, calculate what size of
6439 	 * kernelcore that corresponds so that memory usable for
6440 	 * any allocation type is evenly spread. If both kernelcore
6441 	 * and movablecore are specified, then the value of kernelcore
6442 	 * will be used for required_kernelcore if it's greater than
6443 	 * what movablecore would have allowed.
6444 	 */
6445 	if (required_movablecore) {
6446 		unsigned long corepages;
6447 
6448 		/*
6449 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6450 		 * was requested by the user
6451 		 */
6452 		required_movablecore =
6453 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6454 		required_movablecore = min(totalpages, required_movablecore);
6455 		corepages = totalpages - required_movablecore;
6456 
6457 		required_kernelcore = max(required_kernelcore, corepages);
6458 	}
6459 
6460 	/*
6461 	 * If kernelcore was not specified or kernelcore size is larger
6462 	 * than totalpages, there is no ZONE_MOVABLE.
6463 	 */
6464 	if (!required_kernelcore || required_kernelcore >= totalpages)
6465 		goto out;
6466 
6467 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6468 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6469 
6470 restart:
6471 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6472 	kernelcore_node = required_kernelcore / usable_nodes;
6473 	for_each_node_state(nid, N_MEMORY) {
6474 		unsigned long start_pfn, end_pfn;
6475 
6476 		/*
6477 		 * Recalculate kernelcore_node if the division per node
6478 		 * now exceeds what is necessary to satisfy the requested
6479 		 * amount of memory for the kernel
6480 		 */
6481 		if (required_kernelcore < kernelcore_node)
6482 			kernelcore_node = required_kernelcore / usable_nodes;
6483 
6484 		/*
6485 		 * As the map is walked, we track how much memory is usable
6486 		 * by the kernel using kernelcore_remaining. When it is
6487 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6488 		 */
6489 		kernelcore_remaining = kernelcore_node;
6490 
6491 		/* Go through each range of PFNs within this node */
6492 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6493 			unsigned long size_pages;
6494 
6495 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6496 			if (start_pfn >= end_pfn)
6497 				continue;
6498 
6499 			/* Account for what is only usable for kernelcore */
6500 			if (start_pfn < usable_startpfn) {
6501 				unsigned long kernel_pages;
6502 				kernel_pages = min(end_pfn, usable_startpfn)
6503 								- start_pfn;
6504 
6505 				kernelcore_remaining -= min(kernel_pages,
6506 							kernelcore_remaining);
6507 				required_kernelcore -= min(kernel_pages,
6508 							required_kernelcore);
6509 
6510 				/* Continue if range is now fully accounted */
6511 				if (end_pfn <= usable_startpfn) {
6512 
6513 					/*
6514 					 * Push zone_movable_pfn to the end so
6515 					 * that if we have to rebalance
6516 					 * kernelcore across nodes, we will
6517 					 * not double account here
6518 					 */
6519 					zone_movable_pfn[nid] = end_pfn;
6520 					continue;
6521 				}
6522 				start_pfn = usable_startpfn;
6523 			}
6524 
6525 			/*
6526 			 * The usable PFN range for ZONE_MOVABLE is from
6527 			 * start_pfn->end_pfn. Calculate size_pages as the
6528 			 * number of pages used as kernelcore
6529 			 */
6530 			size_pages = end_pfn - start_pfn;
6531 			if (size_pages > kernelcore_remaining)
6532 				size_pages = kernelcore_remaining;
6533 			zone_movable_pfn[nid] = start_pfn + size_pages;
6534 
6535 			/*
6536 			 * Some kernelcore has been met, update counts and
6537 			 * break if the kernelcore for this node has been
6538 			 * satisfied
6539 			 */
6540 			required_kernelcore -= min(required_kernelcore,
6541 								size_pages);
6542 			kernelcore_remaining -= size_pages;
6543 			if (!kernelcore_remaining)
6544 				break;
6545 		}
6546 	}
6547 
6548 	/*
6549 	 * If there is still required_kernelcore, we do another pass with one
6550 	 * less node in the count. This will push zone_movable_pfn[nid] further
6551 	 * along on the nodes that still have memory until kernelcore is
6552 	 * satisfied
6553 	 */
6554 	usable_nodes--;
6555 	if (usable_nodes && required_kernelcore > usable_nodes)
6556 		goto restart;
6557 
6558 out2:
6559 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6560 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6561 		zone_movable_pfn[nid] =
6562 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6563 
6564 out:
6565 	/* restore the node_state */
6566 	node_states[N_MEMORY] = saved_node_state;
6567 }
6568 
6569 /* Any regular or high memory on that node ? */
6570 static void check_for_memory(pg_data_t *pgdat, int nid)
6571 {
6572 	enum zone_type zone_type;
6573 
6574 	if (N_MEMORY == N_NORMAL_MEMORY)
6575 		return;
6576 
6577 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6578 		struct zone *zone = &pgdat->node_zones[zone_type];
6579 		if (populated_zone(zone)) {
6580 			node_set_state(nid, N_HIGH_MEMORY);
6581 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6582 			    zone_type <= ZONE_NORMAL)
6583 				node_set_state(nid, N_NORMAL_MEMORY);
6584 			break;
6585 		}
6586 	}
6587 }
6588 
6589 /**
6590  * free_area_init_nodes - Initialise all pg_data_t and zone data
6591  * @max_zone_pfn: an array of max PFNs for each zone
6592  *
6593  * This will call free_area_init_node() for each active node in the system.
6594  * Using the page ranges provided by memblock_set_node(), the size of each
6595  * zone in each node and their holes is calculated. If the maximum PFN
6596  * between two adjacent zones match, it is assumed that the zone is empty.
6597  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6598  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6599  * starts where the previous one ended. For example, ZONE_DMA32 starts
6600  * at arch_max_dma_pfn.
6601  */
6602 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6603 {
6604 	unsigned long start_pfn, end_pfn;
6605 	int i, nid;
6606 
6607 	/* Record where the zone boundaries are */
6608 	memset(arch_zone_lowest_possible_pfn, 0,
6609 				sizeof(arch_zone_lowest_possible_pfn));
6610 	memset(arch_zone_highest_possible_pfn, 0,
6611 				sizeof(arch_zone_highest_possible_pfn));
6612 
6613 	start_pfn = find_min_pfn_with_active_regions();
6614 
6615 	for (i = 0; i < MAX_NR_ZONES; i++) {
6616 		if (i == ZONE_MOVABLE)
6617 			continue;
6618 
6619 		end_pfn = max(max_zone_pfn[i], start_pfn);
6620 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6621 		arch_zone_highest_possible_pfn[i] = end_pfn;
6622 
6623 		start_pfn = end_pfn;
6624 	}
6625 
6626 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6627 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6628 	find_zone_movable_pfns_for_nodes();
6629 
6630 	/* Print out the zone ranges */
6631 	pr_info("Zone ranges:\n");
6632 	for (i = 0; i < MAX_NR_ZONES; i++) {
6633 		if (i == ZONE_MOVABLE)
6634 			continue;
6635 		pr_info("  %-8s ", zone_names[i]);
6636 		if (arch_zone_lowest_possible_pfn[i] ==
6637 				arch_zone_highest_possible_pfn[i])
6638 			pr_cont("empty\n");
6639 		else
6640 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6641 				(u64)arch_zone_lowest_possible_pfn[i]
6642 					<< PAGE_SHIFT,
6643 				((u64)arch_zone_highest_possible_pfn[i]
6644 					<< PAGE_SHIFT) - 1);
6645 	}
6646 
6647 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6648 	pr_info("Movable zone start for each node\n");
6649 	for (i = 0; i < MAX_NUMNODES; i++) {
6650 		if (zone_movable_pfn[i])
6651 			pr_info("  Node %d: %#018Lx\n", i,
6652 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6653 	}
6654 
6655 	/* Print out the early node map */
6656 	pr_info("Early memory node ranges\n");
6657 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6658 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6659 			(u64)start_pfn << PAGE_SHIFT,
6660 			((u64)end_pfn << PAGE_SHIFT) - 1);
6661 
6662 	/* Initialise every node */
6663 	mminit_verify_pageflags_layout();
6664 	setup_nr_node_ids();
6665 	for_each_online_node(nid) {
6666 		pg_data_t *pgdat = NODE_DATA(nid);
6667 		free_area_init_node(nid, NULL,
6668 				find_min_pfn_for_node(nid), NULL);
6669 
6670 		/* Any memory on that node */
6671 		if (pgdat->node_present_pages)
6672 			node_set_state(nid, N_MEMORY);
6673 		check_for_memory(pgdat, nid);
6674 	}
6675 }
6676 
6677 static int __init cmdline_parse_core(char *p, unsigned long *core)
6678 {
6679 	unsigned long long coremem;
6680 	if (!p)
6681 		return -EINVAL;
6682 
6683 	coremem = memparse(p, &p);
6684 	*core = coremem >> PAGE_SHIFT;
6685 
6686 	/* Paranoid check that UL is enough for the coremem value */
6687 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6688 
6689 	return 0;
6690 }
6691 
6692 /*
6693  * kernelcore=size sets the amount of memory for use for allocations that
6694  * cannot be reclaimed or migrated.
6695  */
6696 static int __init cmdline_parse_kernelcore(char *p)
6697 {
6698 	/* parse kernelcore=mirror */
6699 	if (parse_option_str(p, "mirror")) {
6700 		mirrored_kernelcore = true;
6701 		return 0;
6702 	}
6703 
6704 	return cmdline_parse_core(p, &required_kernelcore);
6705 }
6706 
6707 /*
6708  * movablecore=size sets the amount of memory for use for allocations that
6709  * can be reclaimed or migrated.
6710  */
6711 static int __init cmdline_parse_movablecore(char *p)
6712 {
6713 	return cmdline_parse_core(p, &required_movablecore);
6714 }
6715 
6716 early_param("kernelcore", cmdline_parse_kernelcore);
6717 early_param("movablecore", cmdline_parse_movablecore);
6718 
6719 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6720 
6721 void adjust_managed_page_count(struct page *page, long count)
6722 {
6723 	spin_lock(&managed_page_count_lock);
6724 	page_zone(page)->managed_pages += count;
6725 	totalram_pages += count;
6726 #ifdef CONFIG_HIGHMEM
6727 	if (PageHighMem(page))
6728 		totalhigh_pages += count;
6729 #endif
6730 	spin_unlock(&managed_page_count_lock);
6731 }
6732 EXPORT_SYMBOL(adjust_managed_page_count);
6733 
6734 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6735 {
6736 	void *pos;
6737 	unsigned long pages = 0;
6738 
6739 	start = (void *)PAGE_ALIGN((unsigned long)start);
6740 	end = (void *)((unsigned long)end & PAGE_MASK);
6741 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6742 		if ((unsigned int)poison <= 0xFF)
6743 			memset(pos, poison, PAGE_SIZE);
6744 		free_reserved_page(virt_to_page(pos));
6745 	}
6746 
6747 	if (pages && s)
6748 		pr_info("Freeing %s memory: %ldK\n",
6749 			s, pages << (PAGE_SHIFT - 10));
6750 
6751 	return pages;
6752 }
6753 EXPORT_SYMBOL(free_reserved_area);
6754 
6755 #ifdef	CONFIG_HIGHMEM
6756 void free_highmem_page(struct page *page)
6757 {
6758 	__free_reserved_page(page);
6759 	totalram_pages++;
6760 	page_zone(page)->managed_pages++;
6761 	totalhigh_pages++;
6762 }
6763 #endif
6764 
6765 
6766 void __init mem_init_print_info(const char *str)
6767 {
6768 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6769 	unsigned long init_code_size, init_data_size;
6770 
6771 	physpages = get_num_physpages();
6772 	codesize = _etext - _stext;
6773 	datasize = _edata - _sdata;
6774 	rosize = __end_rodata - __start_rodata;
6775 	bss_size = __bss_stop - __bss_start;
6776 	init_data_size = __init_end - __init_begin;
6777 	init_code_size = _einittext - _sinittext;
6778 
6779 	/*
6780 	 * Detect special cases and adjust section sizes accordingly:
6781 	 * 1) .init.* may be embedded into .data sections
6782 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6783 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6784 	 * 3) .rodata.* may be embedded into .text or .data sections.
6785 	 */
6786 #define adj_init_size(start, end, size, pos, adj) \
6787 	do { \
6788 		if (start <= pos && pos < end && size > adj) \
6789 			size -= adj; \
6790 	} while (0)
6791 
6792 	adj_init_size(__init_begin, __init_end, init_data_size,
6793 		     _sinittext, init_code_size);
6794 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6795 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6796 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6797 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6798 
6799 #undef	adj_init_size
6800 
6801 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6802 #ifdef	CONFIG_HIGHMEM
6803 		", %luK highmem"
6804 #endif
6805 		"%s%s)\n",
6806 		nr_free_pages() << (PAGE_SHIFT - 10),
6807 		physpages << (PAGE_SHIFT - 10),
6808 		codesize >> 10, datasize >> 10, rosize >> 10,
6809 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6810 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6811 		totalcma_pages << (PAGE_SHIFT - 10),
6812 #ifdef	CONFIG_HIGHMEM
6813 		totalhigh_pages << (PAGE_SHIFT - 10),
6814 #endif
6815 		str ? ", " : "", str ? str : "");
6816 }
6817 
6818 /**
6819  * set_dma_reserve - set the specified number of pages reserved in the first zone
6820  * @new_dma_reserve: The number of pages to mark reserved
6821  *
6822  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6823  * In the DMA zone, a significant percentage may be consumed by kernel image
6824  * and other unfreeable allocations which can skew the watermarks badly. This
6825  * function may optionally be used to account for unfreeable pages in the
6826  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6827  * smaller per-cpu batchsize.
6828  */
6829 void __init set_dma_reserve(unsigned long new_dma_reserve)
6830 {
6831 	dma_reserve = new_dma_reserve;
6832 }
6833 
6834 void __init free_area_init(unsigned long *zones_size)
6835 {
6836 	free_area_init_node(0, zones_size,
6837 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6838 }
6839 
6840 static int page_alloc_cpu_dead(unsigned int cpu)
6841 {
6842 
6843 	lru_add_drain_cpu(cpu);
6844 	drain_pages(cpu);
6845 
6846 	/*
6847 	 * Spill the event counters of the dead processor
6848 	 * into the current processors event counters.
6849 	 * This artificially elevates the count of the current
6850 	 * processor.
6851 	 */
6852 	vm_events_fold_cpu(cpu);
6853 
6854 	/*
6855 	 * Zero the differential counters of the dead processor
6856 	 * so that the vm statistics are consistent.
6857 	 *
6858 	 * This is only okay since the processor is dead and cannot
6859 	 * race with what we are doing.
6860 	 */
6861 	cpu_vm_stats_fold(cpu);
6862 	return 0;
6863 }
6864 
6865 void __init page_alloc_init(void)
6866 {
6867 	int ret;
6868 
6869 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6870 					"mm/page_alloc:dead", NULL,
6871 					page_alloc_cpu_dead);
6872 	WARN_ON(ret < 0);
6873 }
6874 
6875 /*
6876  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6877  *	or min_free_kbytes changes.
6878  */
6879 static void calculate_totalreserve_pages(void)
6880 {
6881 	struct pglist_data *pgdat;
6882 	unsigned long reserve_pages = 0;
6883 	enum zone_type i, j;
6884 
6885 	for_each_online_pgdat(pgdat) {
6886 
6887 		pgdat->totalreserve_pages = 0;
6888 
6889 		for (i = 0; i < MAX_NR_ZONES; i++) {
6890 			struct zone *zone = pgdat->node_zones + i;
6891 			long max = 0;
6892 
6893 			/* Find valid and maximum lowmem_reserve in the zone */
6894 			for (j = i; j < MAX_NR_ZONES; j++) {
6895 				if (zone->lowmem_reserve[j] > max)
6896 					max = zone->lowmem_reserve[j];
6897 			}
6898 
6899 			/* we treat the high watermark as reserved pages. */
6900 			max += high_wmark_pages(zone);
6901 
6902 			if (max > zone->managed_pages)
6903 				max = zone->managed_pages;
6904 
6905 			pgdat->totalreserve_pages += max;
6906 
6907 			reserve_pages += max;
6908 		}
6909 	}
6910 	totalreserve_pages = reserve_pages;
6911 }
6912 
6913 /*
6914  * setup_per_zone_lowmem_reserve - called whenever
6915  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6916  *	has a correct pages reserved value, so an adequate number of
6917  *	pages are left in the zone after a successful __alloc_pages().
6918  */
6919 static void setup_per_zone_lowmem_reserve(void)
6920 {
6921 	struct pglist_data *pgdat;
6922 	enum zone_type j, idx;
6923 
6924 	for_each_online_pgdat(pgdat) {
6925 		for (j = 0; j < MAX_NR_ZONES; j++) {
6926 			struct zone *zone = pgdat->node_zones + j;
6927 			unsigned long managed_pages = zone->managed_pages;
6928 
6929 			zone->lowmem_reserve[j] = 0;
6930 
6931 			idx = j;
6932 			while (idx) {
6933 				struct zone *lower_zone;
6934 
6935 				idx--;
6936 
6937 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6938 					sysctl_lowmem_reserve_ratio[idx] = 1;
6939 
6940 				lower_zone = pgdat->node_zones + idx;
6941 				lower_zone->lowmem_reserve[j] = managed_pages /
6942 					sysctl_lowmem_reserve_ratio[idx];
6943 				managed_pages += lower_zone->managed_pages;
6944 			}
6945 		}
6946 	}
6947 
6948 	/* update totalreserve_pages */
6949 	calculate_totalreserve_pages();
6950 }
6951 
6952 static void __setup_per_zone_wmarks(void)
6953 {
6954 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6955 	unsigned long lowmem_pages = 0;
6956 	struct zone *zone;
6957 	unsigned long flags;
6958 
6959 	/* Calculate total number of !ZONE_HIGHMEM pages */
6960 	for_each_zone(zone) {
6961 		if (!is_highmem(zone))
6962 			lowmem_pages += zone->managed_pages;
6963 	}
6964 
6965 	for_each_zone(zone) {
6966 		u64 tmp;
6967 
6968 		spin_lock_irqsave(&zone->lock, flags);
6969 		tmp = (u64)pages_min * zone->managed_pages;
6970 		do_div(tmp, lowmem_pages);
6971 		if (is_highmem(zone)) {
6972 			/*
6973 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6974 			 * need highmem pages, so cap pages_min to a small
6975 			 * value here.
6976 			 *
6977 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6978 			 * deltas control asynch page reclaim, and so should
6979 			 * not be capped for highmem.
6980 			 */
6981 			unsigned long min_pages;
6982 
6983 			min_pages = zone->managed_pages / 1024;
6984 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6985 			zone->watermark[WMARK_MIN] = min_pages;
6986 		} else {
6987 			/*
6988 			 * If it's a lowmem zone, reserve a number of pages
6989 			 * proportionate to the zone's size.
6990 			 */
6991 			zone->watermark[WMARK_MIN] = tmp;
6992 		}
6993 
6994 		/*
6995 		 * Set the kswapd watermarks distance according to the
6996 		 * scale factor in proportion to available memory, but
6997 		 * ensure a minimum size on small systems.
6998 		 */
6999 		tmp = max_t(u64, tmp >> 2,
7000 			    mult_frac(zone->managed_pages,
7001 				      watermark_scale_factor, 10000));
7002 
7003 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7004 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7005 
7006 		spin_unlock_irqrestore(&zone->lock, flags);
7007 	}
7008 
7009 	/* update totalreserve_pages */
7010 	calculate_totalreserve_pages();
7011 }
7012 
7013 /**
7014  * setup_per_zone_wmarks - called when min_free_kbytes changes
7015  * or when memory is hot-{added|removed}
7016  *
7017  * Ensures that the watermark[min,low,high] values for each zone are set
7018  * correctly with respect to min_free_kbytes.
7019  */
7020 void setup_per_zone_wmarks(void)
7021 {
7022 	mutex_lock(&zonelists_mutex);
7023 	__setup_per_zone_wmarks();
7024 	mutex_unlock(&zonelists_mutex);
7025 }
7026 
7027 /*
7028  * Initialise min_free_kbytes.
7029  *
7030  * For small machines we want it small (128k min).  For large machines
7031  * we want it large (64MB max).  But it is not linear, because network
7032  * bandwidth does not increase linearly with machine size.  We use
7033  *
7034  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7035  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7036  *
7037  * which yields
7038  *
7039  * 16MB:	512k
7040  * 32MB:	724k
7041  * 64MB:	1024k
7042  * 128MB:	1448k
7043  * 256MB:	2048k
7044  * 512MB:	2896k
7045  * 1024MB:	4096k
7046  * 2048MB:	5792k
7047  * 4096MB:	8192k
7048  * 8192MB:	11584k
7049  * 16384MB:	16384k
7050  */
7051 int __meminit init_per_zone_wmark_min(void)
7052 {
7053 	unsigned long lowmem_kbytes;
7054 	int new_min_free_kbytes;
7055 
7056 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7057 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7058 
7059 	if (new_min_free_kbytes > user_min_free_kbytes) {
7060 		min_free_kbytes = new_min_free_kbytes;
7061 		if (min_free_kbytes < 128)
7062 			min_free_kbytes = 128;
7063 		if (min_free_kbytes > 65536)
7064 			min_free_kbytes = 65536;
7065 	} else {
7066 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7067 				new_min_free_kbytes, user_min_free_kbytes);
7068 	}
7069 	setup_per_zone_wmarks();
7070 	refresh_zone_stat_thresholds();
7071 	setup_per_zone_lowmem_reserve();
7072 
7073 #ifdef CONFIG_NUMA
7074 	setup_min_unmapped_ratio();
7075 	setup_min_slab_ratio();
7076 #endif
7077 
7078 	return 0;
7079 }
7080 core_initcall(init_per_zone_wmark_min)
7081 
7082 /*
7083  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7084  *	that we can call two helper functions whenever min_free_kbytes
7085  *	changes.
7086  */
7087 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7088 	void __user *buffer, size_t *length, loff_t *ppos)
7089 {
7090 	int rc;
7091 
7092 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7093 	if (rc)
7094 		return rc;
7095 
7096 	if (write) {
7097 		user_min_free_kbytes = min_free_kbytes;
7098 		setup_per_zone_wmarks();
7099 	}
7100 	return 0;
7101 }
7102 
7103 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7104 	void __user *buffer, size_t *length, loff_t *ppos)
7105 {
7106 	int rc;
7107 
7108 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7109 	if (rc)
7110 		return rc;
7111 
7112 	if (write)
7113 		setup_per_zone_wmarks();
7114 
7115 	return 0;
7116 }
7117 
7118 #ifdef CONFIG_NUMA
7119 static void setup_min_unmapped_ratio(void)
7120 {
7121 	pg_data_t *pgdat;
7122 	struct zone *zone;
7123 
7124 	for_each_online_pgdat(pgdat)
7125 		pgdat->min_unmapped_pages = 0;
7126 
7127 	for_each_zone(zone)
7128 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7129 				sysctl_min_unmapped_ratio) / 100;
7130 }
7131 
7132 
7133 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7134 	void __user *buffer, size_t *length, loff_t *ppos)
7135 {
7136 	int rc;
7137 
7138 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7139 	if (rc)
7140 		return rc;
7141 
7142 	setup_min_unmapped_ratio();
7143 
7144 	return 0;
7145 }
7146 
7147 static void setup_min_slab_ratio(void)
7148 {
7149 	pg_data_t *pgdat;
7150 	struct zone *zone;
7151 
7152 	for_each_online_pgdat(pgdat)
7153 		pgdat->min_slab_pages = 0;
7154 
7155 	for_each_zone(zone)
7156 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7157 				sysctl_min_slab_ratio) / 100;
7158 }
7159 
7160 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7161 	void __user *buffer, size_t *length, loff_t *ppos)
7162 {
7163 	int rc;
7164 
7165 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7166 	if (rc)
7167 		return rc;
7168 
7169 	setup_min_slab_ratio();
7170 
7171 	return 0;
7172 }
7173 #endif
7174 
7175 /*
7176  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7177  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7178  *	whenever sysctl_lowmem_reserve_ratio changes.
7179  *
7180  * The reserve ratio obviously has absolutely no relation with the
7181  * minimum watermarks. The lowmem reserve ratio can only make sense
7182  * if in function of the boot time zone sizes.
7183  */
7184 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7185 	void __user *buffer, size_t *length, loff_t *ppos)
7186 {
7187 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7188 	setup_per_zone_lowmem_reserve();
7189 	return 0;
7190 }
7191 
7192 /*
7193  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7194  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7195  * pagelist can have before it gets flushed back to buddy allocator.
7196  */
7197 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7198 	void __user *buffer, size_t *length, loff_t *ppos)
7199 {
7200 	struct zone *zone;
7201 	int old_percpu_pagelist_fraction;
7202 	int ret;
7203 
7204 	mutex_lock(&pcp_batch_high_lock);
7205 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7206 
7207 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7208 	if (!write || ret < 0)
7209 		goto out;
7210 
7211 	/* Sanity checking to avoid pcp imbalance */
7212 	if (percpu_pagelist_fraction &&
7213 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7214 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7215 		ret = -EINVAL;
7216 		goto out;
7217 	}
7218 
7219 	/* No change? */
7220 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7221 		goto out;
7222 
7223 	for_each_populated_zone(zone) {
7224 		unsigned int cpu;
7225 
7226 		for_each_possible_cpu(cpu)
7227 			pageset_set_high_and_batch(zone,
7228 					per_cpu_ptr(zone->pageset, cpu));
7229 	}
7230 out:
7231 	mutex_unlock(&pcp_batch_high_lock);
7232 	return ret;
7233 }
7234 
7235 #ifdef CONFIG_NUMA
7236 int hashdist = HASHDIST_DEFAULT;
7237 
7238 static int __init set_hashdist(char *str)
7239 {
7240 	if (!str)
7241 		return 0;
7242 	hashdist = simple_strtoul(str, &str, 0);
7243 	return 1;
7244 }
7245 __setup("hashdist=", set_hashdist);
7246 #endif
7247 
7248 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7249 /*
7250  * Returns the number of pages that arch has reserved but
7251  * is not known to alloc_large_system_hash().
7252  */
7253 static unsigned long __init arch_reserved_kernel_pages(void)
7254 {
7255 	return 0;
7256 }
7257 #endif
7258 
7259 /*
7260  * Adaptive scale is meant to reduce sizes of hash tables on large memory
7261  * machines. As memory size is increased the scale is also increased but at
7262  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7263  * quadruples the scale is increased by one, which means the size of hash table
7264  * only doubles, instead of quadrupling as well.
7265  * Because 32-bit systems cannot have large physical memory, where this scaling
7266  * makes sense, it is disabled on such platforms.
7267  */
7268 #if __BITS_PER_LONG > 32
7269 #define ADAPT_SCALE_BASE	(64ul << 30)
7270 #define ADAPT_SCALE_SHIFT	2
7271 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7272 #endif
7273 
7274 /*
7275  * allocate a large system hash table from bootmem
7276  * - it is assumed that the hash table must contain an exact power-of-2
7277  *   quantity of entries
7278  * - limit is the number of hash buckets, not the total allocation size
7279  */
7280 void *__init alloc_large_system_hash(const char *tablename,
7281 				     unsigned long bucketsize,
7282 				     unsigned long numentries,
7283 				     int scale,
7284 				     int flags,
7285 				     unsigned int *_hash_shift,
7286 				     unsigned int *_hash_mask,
7287 				     unsigned long low_limit,
7288 				     unsigned long high_limit)
7289 {
7290 	unsigned long long max = high_limit;
7291 	unsigned long log2qty, size;
7292 	void *table = NULL;
7293 	gfp_t gfp_flags;
7294 
7295 	/* allow the kernel cmdline to have a say */
7296 	if (!numentries) {
7297 		/* round applicable memory size up to nearest megabyte */
7298 		numentries = nr_kernel_pages;
7299 		numentries -= arch_reserved_kernel_pages();
7300 
7301 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7302 		if (PAGE_SHIFT < 20)
7303 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7304 
7305 #if __BITS_PER_LONG > 32
7306 		if (!high_limit) {
7307 			unsigned long adapt;
7308 
7309 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7310 			     adapt <<= ADAPT_SCALE_SHIFT)
7311 				scale++;
7312 		}
7313 #endif
7314 
7315 		/* limit to 1 bucket per 2^scale bytes of low memory */
7316 		if (scale > PAGE_SHIFT)
7317 			numentries >>= (scale - PAGE_SHIFT);
7318 		else
7319 			numentries <<= (PAGE_SHIFT - scale);
7320 
7321 		/* Make sure we've got at least a 0-order allocation.. */
7322 		if (unlikely(flags & HASH_SMALL)) {
7323 			/* Makes no sense without HASH_EARLY */
7324 			WARN_ON(!(flags & HASH_EARLY));
7325 			if (!(numentries >> *_hash_shift)) {
7326 				numentries = 1UL << *_hash_shift;
7327 				BUG_ON(!numentries);
7328 			}
7329 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7330 			numentries = PAGE_SIZE / bucketsize;
7331 	}
7332 	numentries = roundup_pow_of_two(numentries);
7333 
7334 	/* limit allocation size to 1/16 total memory by default */
7335 	if (max == 0) {
7336 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7337 		do_div(max, bucketsize);
7338 	}
7339 	max = min(max, 0x80000000ULL);
7340 
7341 	if (numentries < low_limit)
7342 		numentries = low_limit;
7343 	if (numentries > max)
7344 		numentries = max;
7345 
7346 	log2qty = ilog2(numentries);
7347 
7348 	/*
7349 	 * memblock allocator returns zeroed memory already, so HASH_ZERO is
7350 	 * currently not used when HASH_EARLY is specified.
7351 	 */
7352 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7353 	do {
7354 		size = bucketsize << log2qty;
7355 		if (flags & HASH_EARLY)
7356 			table = memblock_virt_alloc_nopanic(size, 0);
7357 		else if (hashdist)
7358 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7359 		else {
7360 			/*
7361 			 * If bucketsize is not a power-of-two, we may free
7362 			 * some pages at the end of hash table which
7363 			 * alloc_pages_exact() automatically does
7364 			 */
7365 			if (get_order(size) < MAX_ORDER) {
7366 				table = alloc_pages_exact(size, gfp_flags);
7367 				kmemleak_alloc(table, size, 1, gfp_flags);
7368 			}
7369 		}
7370 	} while (!table && size > PAGE_SIZE && --log2qty);
7371 
7372 	if (!table)
7373 		panic("Failed to allocate %s hash table\n", tablename);
7374 
7375 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7376 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7377 
7378 	if (_hash_shift)
7379 		*_hash_shift = log2qty;
7380 	if (_hash_mask)
7381 		*_hash_mask = (1 << log2qty) - 1;
7382 
7383 	return table;
7384 }
7385 
7386 /*
7387  * This function checks whether pageblock includes unmovable pages or not.
7388  * If @count is not zero, it is okay to include less @count unmovable pages
7389  *
7390  * PageLRU check without isolation or lru_lock could race so that
7391  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7392  * check without lock_page also may miss some movable non-lru pages at
7393  * race condition. So you can't expect this function should be exact.
7394  */
7395 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7396 			 bool skip_hwpoisoned_pages)
7397 {
7398 	unsigned long pfn, iter, found;
7399 	int mt;
7400 
7401 	/*
7402 	 * For avoiding noise data, lru_add_drain_all() should be called
7403 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7404 	 */
7405 	if (zone_idx(zone) == ZONE_MOVABLE)
7406 		return false;
7407 	mt = get_pageblock_migratetype(page);
7408 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7409 		return false;
7410 
7411 	pfn = page_to_pfn(page);
7412 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7413 		unsigned long check = pfn + iter;
7414 
7415 		if (!pfn_valid_within(check))
7416 			continue;
7417 
7418 		page = pfn_to_page(check);
7419 
7420 		/*
7421 		 * Hugepages are not in LRU lists, but they're movable.
7422 		 * We need not scan over tail pages bacause we don't
7423 		 * handle each tail page individually in migration.
7424 		 */
7425 		if (PageHuge(page)) {
7426 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7427 			continue;
7428 		}
7429 
7430 		/*
7431 		 * We can't use page_count without pin a page
7432 		 * because another CPU can free compound page.
7433 		 * This check already skips compound tails of THP
7434 		 * because their page->_refcount is zero at all time.
7435 		 */
7436 		if (!page_ref_count(page)) {
7437 			if (PageBuddy(page))
7438 				iter += (1 << page_order(page)) - 1;
7439 			continue;
7440 		}
7441 
7442 		/*
7443 		 * The HWPoisoned page may be not in buddy system, and
7444 		 * page_count() is not 0.
7445 		 */
7446 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7447 			continue;
7448 
7449 		if (__PageMovable(page))
7450 			continue;
7451 
7452 		if (!PageLRU(page))
7453 			found++;
7454 		/*
7455 		 * If there are RECLAIMABLE pages, we need to check
7456 		 * it.  But now, memory offline itself doesn't call
7457 		 * shrink_node_slabs() and it still to be fixed.
7458 		 */
7459 		/*
7460 		 * If the page is not RAM, page_count()should be 0.
7461 		 * we don't need more check. This is an _used_ not-movable page.
7462 		 *
7463 		 * The problematic thing here is PG_reserved pages. PG_reserved
7464 		 * is set to both of a memory hole page and a _used_ kernel
7465 		 * page at boot.
7466 		 */
7467 		if (found > count)
7468 			return true;
7469 	}
7470 	return false;
7471 }
7472 
7473 bool is_pageblock_removable_nolock(struct page *page)
7474 {
7475 	struct zone *zone;
7476 	unsigned long pfn;
7477 
7478 	/*
7479 	 * We have to be careful here because we are iterating over memory
7480 	 * sections which are not zone aware so we might end up outside of
7481 	 * the zone but still within the section.
7482 	 * We have to take care about the node as well. If the node is offline
7483 	 * its NODE_DATA will be NULL - see page_zone.
7484 	 */
7485 	if (!node_online(page_to_nid(page)))
7486 		return false;
7487 
7488 	zone = page_zone(page);
7489 	pfn = page_to_pfn(page);
7490 	if (!zone_spans_pfn(zone, pfn))
7491 		return false;
7492 
7493 	return !has_unmovable_pages(zone, page, 0, true);
7494 }
7495 
7496 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7497 
7498 static unsigned long pfn_max_align_down(unsigned long pfn)
7499 {
7500 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7501 			     pageblock_nr_pages) - 1);
7502 }
7503 
7504 static unsigned long pfn_max_align_up(unsigned long pfn)
7505 {
7506 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7507 				pageblock_nr_pages));
7508 }
7509 
7510 /* [start, end) must belong to a single zone. */
7511 static int __alloc_contig_migrate_range(struct compact_control *cc,
7512 					unsigned long start, unsigned long end)
7513 {
7514 	/* This function is based on compact_zone() from compaction.c. */
7515 	unsigned long nr_reclaimed;
7516 	unsigned long pfn = start;
7517 	unsigned int tries = 0;
7518 	int ret = 0;
7519 
7520 	migrate_prep();
7521 
7522 	while (pfn < end || !list_empty(&cc->migratepages)) {
7523 		if (fatal_signal_pending(current)) {
7524 			ret = -EINTR;
7525 			break;
7526 		}
7527 
7528 		if (list_empty(&cc->migratepages)) {
7529 			cc->nr_migratepages = 0;
7530 			pfn = isolate_migratepages_range(cc, pfn, end);
7531 			if (!pfn) {
7532 				ret = -EINTR;
7533 				break;
7534 			}
7535 			tries = 0;
7536 		} else if (++tries == 5) {
7537 			ret = ret < 0 ? ret : -EBUSY;
7538 			break;
7539 		}
7540 
7541 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7542 							&cc->migratepages);
7543 		cc->nr_migratepages -= nr_reclaimed;
7544 
7545 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7546 				    NULL, 0, cc->mode, MR_CMA);
7547 	}
7548 	if (ret < 0) {
7549 		putback_movable_pages(&cc->migratepages);
7550 		return ret;
7551 	}
7552 	return 0;
7553 }
7554 
7555 /**
7556  * alloc_contig_range() -- tries to allocate given range of pages
7557  * @start:	start PFN to allocate
7558  * @end:	one-past-the-last PFN to allocate
7559  * @migratetype:	migratetype of the underlaying pageblocks (either
7560  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7561  *			in range must have the same migratetype and it must
7562  *			be either of the two.
7563  * @gfp_mask:	GFP mask to use during compaction
7564  *
7565  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7566  * aligned, however it's the caller's responsibility to guarantee that
7567  * we are the only thread that changes migrate type of pageblocks the
7568  * pages fall in.
7569  *
7570  * The PFN range must belong to a single zone.
7571  *
7572  * Returns zero on success or negative error code.  On success all
7573  * pages which PFN is in [start, end) are allocated for the caller and
7574  * need to be freed with free_contig_range().
7575  */
7576 int alloc_contig_range(unsigned long start, unsigned long end,
7577 		       unsigned migratetype, gfp_t gfp_mask)
7578 {
7579 	unsigned long outer_start, outer_end;
7580 	unsigned int order;
7581 	int ret = 0;
7582 
7583 	struct compact_control cc = {
7584 		.nr_migratepages = 0,
7585 		.order = -1,
7586 		.zone = page_zone(pfn_to_page(start)),
7587 		.mode = MIGRATE_SYNC,
7588 		.ignore_skip_hint = true,
7589 		.gfp_mask = current_gfp_context(gfp_mask),
7590 	};
7591 	INIT_LIST_HEAD(&cc.migratepages);
7592 
7593 	/*
7594 	 * What we do here is we mark all pageblocks in range as
7595 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7596 	 * have different sizes, and due to the way page allocator
7597 	 * work, we align the range to biggest of the two pages so
7598 	 * that page allocator won't try to merge buddies from
7599 	 * different pageblocks and change MIGRATE_ISOLATE to some
7600 	 * other migration type.
7601 	 *
7602 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7603 	 * migrate the pages from an unaligned range (ie. pages that
7604 	 * we are interested in).  This will put all the pages in
7605 	 * range back to page allocator as MIGRATE_ISOLATE.
7606 	 *
7607 	 * When this is done, we take the pages in range from page
7608 	 * allocator removing them from the buddy system.  This way
7609 	 * page allocator will never consider using them.
7610 	 *
7611 	 * This lets us mark the pageblocks back as
7612 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7613 	 * aligned range but not in the unaligned, original range are
7614 	 * put back to page allocator so that buddy can use them.
7615 	 */
7616 
7617 	ret = start_isolate_page_range(pfn_max_align_down(start),
7618 				       pfn_max_align_up(end), migratetype,
7619 				       false);
7620 	if (ret)
7621 		return ret;
7622 
7623 	/*
7624 	 * In case of -EBUSY, we'd like to know which page causes problem.
7625 	 * So, just fall through. We will check it in test_pages_isolated().
7626 	 */
7627 	ret = __alloc_contig_migrate_range(&cc, start, end);
7628 	if (ret && ret != -EBUSY)
7629 		goto done;
7630 
7631 	/*
7632 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7633 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7634 	 * more, all pages in [start, end) are free in page allocator.
7635 	 * What we are going to do is to allocate all pages from
7636 	 * [start, end) (that is remove them from page allocator).
7637 	 *
7638 	 * The only problem is that pages at the beginning and at the
7639 	 * end of interesting range may be not aligned with pages that
7640 	 * page allocator holds, ie. they can be part of higher order
7641 	 * pages.  Because of this, we reserve the bigger range and
7642 	 * once this is done free the pages we are not interested in.
7643 	 *
7644 	 * We don't have to hold zone->lock here because the pages are
7645 	 * isolated thus they won't get removed from buddy.
7646 	 */
7647 
7648 	lru_add_drain_all();
7649 	drain_all_pages(cc.zone);
7650 
7651 	order = 0;
7652 	outer_start = start;
7653 	while (!PageBuddy(pfn_to_page(outer_start))) {
7654 		if (++order >= MAX_ORDER) {
7655 			outer_start = start;
7656 			break;
7657 		}
7658 		outer_start &= ~0UL << order;
7659 	}
7660 
7661 	if (outer_start != start) {
7662 		order = page_order(pfn_to_page(outer_start));
7663 
7664 		/*
7665 		 * outer_start page could be small order buddy page and
7666 		 * it doesn't include start page. Adjust outer_start
7667 		 * in this case to report failed page properly
7668 		 * on tracepoint in test_pages_isolated()
7669 		 */
7670 		if (outer_start + (1UL << order) <= start)
7671 			outer_start = start;
7672 	}
7673 
7674 	/* Make sure the range is really isolated. */
7675 	if (test_pages_isolated(outer_start, end, false)) {
7676 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7677 			__func__, outer_start, end);
7678 		ret = -EBUSY;
7679 		goto done;
7680 	}
7681 
7682 	/* Grab isolated pages from freelists. */
7683 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7684 	if (!outer_end) {
7685 		ret = -EBUSY;
7686 		goto done;
7687 	}
7688 
7689 	/* Free head and tail (if any) */
7690 	if (start != outer_start)
7691 		free_contig_range(outer_start, start - outer_start);
7692 	if (end != outer_end)
7693 		free_contig_range(end, outer_end - end);
7694 
7695 done:
7696 	undo_isolate_page_range(pfn_max_align_down(start),
7697 				pfn_max_align_up(end), migratetype);
7698 	return ret;
7699 }
7700 
7701 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7702 {
7703 	unsigned int count = 0;
7704 
7705 	for (; nr_pages--; pfn++) {
7706 		struct page *page = pfn_to_page(pfn);
7707 
7708 		count += page_count(page) != 1;
7709 		__free_page(page);
7710 	}
7711 	WARN(count != 0, "%d pages are still in use!\n", count);
7712 }
7713 #endif
7714 
7715 #ifdef CONFIG_MEMORY_HOTPLUG
7716 /*
7717  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7718  * page high values need to be recalulated.
7719  */
7720 void __meminit zone_pcp_update(struct zone *zone)
7721 {
7722 	unsigned cpu;
7723 	mutex_lock(&pcp_batch_high_lock);
7724 	for_each_possible_cpu(cpu)
7725 		pageset_set_high_and_batch(zone,
7726 				per_cpu_ptr(zone->pageset, cpu));
7727 	mutex_unlock(&pcp_batch_high_lock);
7728 }
7729 #endif
7730 
7731 void zone_pcp_reset(struct zone *zone)
7732 {
7733 	unsigned long flags;
7734 	int cpu;
7735 	struct per_cpu_pageset *pset;
7736 
7737 	/* avoid races with drain_pages()  */
7738 	local_irq_save(flags);
7739 	if (zone->pageset != &boot_pageset) {
7740 		for_each_online_cpu(cpu) {
7741 			pset = per_cpu_ptr(zone->pageset, cpu);
7742 			drain_zonestat(zone, pset);
7743 		}
7744 		free_percpu(zone->pageset);
7745 		zone->pageset = &boot_pageset;
7746 	}
7747 	local_irq_restore(flags);
7748 }
7749 
7750 #ifdef CONFIG_MEMORY_HOTREMOVE
7751 /*
7752  * All pages in the range must be in a single zone and isolated
7753  * before calling this.
7754  */
7755 void
7756 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7757 {
7758 	struct page *page;
7759 	struct zone *zone;
7760 	unsigned int order, i;
7761 	unsigned long pfn;
7762 	unsigned long flags;
7763 	/* find the first valid pfn */
7764 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7765 		if (pfn_valid(pfn))
7766 			break;
7767 	if (pfn == end_pfn)
7768 		return;
7769 	offline_mem_sections(pfn, end_pfn);
7770 	zone = page_zone(pfn_to_page(pfn));
7771 	spin_lock_irqsave(&zone->lock, flags);
7772 	pfn = start_pfn;
7773 	while (pfn < end_pfn) {
7774 		if (!pfn_valid(pfn)) {
7775 			pfn++;
7776 			continue;
7777 		}
7778 		page = pfn_to_page(pfn);
7779 		/*
7780 		 * The HWPoisoned page may be not in buddy system, and
7781 		 * page_count() is not 0.
7782 		 */
7783 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7784 			pfn++;
7785 			SetPageReserved(page);
7786 			continue;
7787 		}
7788 
7789 		BUG_ON(page_count(page));
7790 		BUG_ON(!PageBuddy(page));
7791 		order = page_order(page);
7792 #ifdef CONFIG_DEBUG_VM
7793 		pr_info("remove from free list %lx %d %lx\n",
7794 			pfn, 1 << order, end_pfn);
7795 #endif
7796 		list_del(&page->lru);
7797 		rmv_page_order(page);
7798 		zone->free_area[order].nr_free--;
7799 		for (i = 0; i < (1 << order); i++)
7800 			SetPageReserved((page+i));
7801 		pfn += (1 << order);
7802 	}
7803 	spin_unlock_irqrestore(&zone->lock, flags);
7804 }
7805 #endif
7806 
7807 bool is_free_buddy_page(struct page *page)
7808 {
7809 	struct zone *zone = page_zone(page);
7810 	unsigned long pfn = page_to_pfn(page);
7811 	unsigned long flags;
7812 	unsigned int order;
7813 
7814 	spin_lock_irqsave(&zone->lock, flags);
7815 	for (order = 0; order < MAX_ORDER; order++) {
7816 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7817 
7818 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7819 			break;
7820 	}
7821 	spin_unlock_irqrestore(&zone->lock, flags);
7822 
7823 	return order < MAX_ORDER;
7824 }
7825