1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/notifier.h> 37 #include <linux/topology.h> 38 #include <linux/sysctl.h> 39 #include <linux/cpu.h> 40 #include <linux/cpuset.h> 41 #include <linux/memory_hotplug.h> 42 #include <linux/nodemask.h> 43 #include <linux/vmalloc.h> 44 #include <linux/vmstat.h> 45 #include <linux/mempolicy.h> 46 #include <linux/memremap.h> 47 #include <linux/stop_machine.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/page_ext.h> 54 #include <linux/debugobjects.h> 55 #include <linux/kmemleak.h> 56 #include <linux/compaction.h> 57 #include <trace/events/kmem.h> 58 #include <trace/events/oom.h> 59 #include <linux/prefetch.h> 60 #include <linux/mm_inline.h> 61 #include <linux/migrate.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/sched/mm.h> 65 #include <linux/page_owner.h> 66 #include <linux/kthread.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 70 #include <asm/sections.h> 71 #include <asm/tlbflush.h> 72 #include <asm/div64.h> 73 #include "internal.h" 74 75 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 76 static DEFINE_MUTEX(pcp_batch_high_lock); 77 #define MIN_PERCPU_PAGELIST_FRACTION (8) 78 79 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 80 DEFINE_PER_CPU(int, numa_node); 81 EXPORT_PER_CPU_SYMBOL(numa_node); 82 #endif 83 84 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 85 /* 86 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 87 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 88 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 89 * defined in <linux/topology.h>. 90 */ 91 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 92 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 93 int _node_numa_mem_[MAX_NUMNODES]; 94 #endif 95 96 /* work_structs for global per-cpu drains */ 97 DEFINE_MUTEX(pcpu_drain_mutex); 98 DEFINE_PER_CPU(struct work_struct, pcpu_drain); 99 100 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 101 volatile unsigned long latent_entropy __latent_entropy; 102 EXPORT_SYMBOL(latent_entropy); 103 #endif 104 105 /* 106 * Array of node states. 107 */ 108 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 109 [N_POSSIBLE] = NODE_MASK_ALL, 110 [N_ONLINE] = { { [0] = 1UL } }, 111 #ifndef CONFIG_NUMA 112 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 113 #ifdef CONFIG_HIGHMEM 114 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 115 #endif 116 [N_MEMORY] = { { [0] = 1UL } }, 117 [N_CPU] = { { [0] = 1UL } }, 118 #endif /* NUMA */ 119 }; 120 EXPORT_SYMBOL(node_states); 121 122 /* Protect totalram_pages and zone->managed_pages */ 123 static DEFINE_SPINLOCK(managed_page_count_lock); 124 125 unsigned long totalram_pages __read_mostly; 126 unsigned long totalreserve_pages __read_mostly; 127 unsigned long totalcma_pages __read_mostly; 128 129 int percpu_pagelist_fraction; 130 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 131 132 /* 133 * A cached value of the page's pageblock's migratetype, used when the page is 134 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 135 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 136 * Also the migratetype set in the page does not necessarily match the pcplist 137 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 138 * other index - this ensures that it will be put on the correct CMA freelist. 139 */ 140 static inline int get_pcppage_migratetype(struct page *page) 141 { 142 return page->index; 143 } 144 145 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 146 { 147 page->index = migratetype; 148 } 149 150 #ifdef CONFIG_PM_SLEEP 151 /* 152 * The following functions are used by the suspend/hibernate code to temporarily 153 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 154 * while devices are suspended. To avoid races with the suspend/hibernate code, 155 * they should always be called with pm_mutex held (gfp_allowed_mask also should 156 * only be modified with pm_mutex held, unless the suspend/hibernate code is 157 * guaranteed not to run in parallel with that modification). 158 */ 159 160 static gfp_t saved_gfp_mask; 161 162 void pm_restore_gfp_mask(void) 163 { 164 WARN_ON(!mutex_is_locked(&pm_mutex)); 165 if (saved_gfp_mask) { 166 gfp_allowed_mask = saved_gfp_mask; 167 saved_gfp_mask = 0; 168 } 169 } 170 171 void pm_restrict_gfp_mask(void) 172 { 173 WARN_ON(!mutex_is_locked(&pm_mutex)); 174 WARN_ON(saved_gfp_mask); 175 saved_gfp_mask = gfp_allowed_mask; 176 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 177 } 178 179 bool pm_suspended_storage(void) 180 { 181 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 182 return false; 183 return true; 184 } 185 #endif /* CONFIG_PM_SLEEP */ 186 187 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 188 unsigned int pageblock_order __read_mostly; 189 #endif 190 191 static void __free_pages_ok(struct page *page, unsigned int order); 192 193 /* 194 * results with 256, 32 in the lowmem_reserve sysctl: 195 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 196 * 1G machine -> (16M dma, 784M normal, 224M high) 197 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 198 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 199 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 200 * 201 * TBD: should special case ZONE_DMA32 machines here - in those we normally 202 * don't need any ZONE_NORMAL reservation 203 */ 204 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 205 #ifdef CONFIG_ZONE_DMA 206 256, 207 #endif 208 #ifdef CONFIG_ZONE_DMA32 209 256, 210 #endif 211 #ifdef CONFIG_HIGHMEM 212 32, 213 #endif 214 32, 215 }; 216 217 EXPORT_SYMBOL(totalram_pages); 218 219 static char * const zone_names[MAX_NR_ZONES] = { 220 #ifdef CONFIG_ZONE_DMA 221 "DMA", 222 #endif 223 #ifdef CONFIG_ZONE_DMA32 224 "DMA32", 225 #endif 226 "Normal", 227 #ifdef CONFIG_HIGHMEM 228 "HighMem", 229 #endif 230 "Movable", 231 #ifdef CONFIG_ZONE_DEVICE 232 "Device", 233 #endif 234 }; 235 236 char * const migratetype_names[MIGRATE_TYPES] = { 237 "Unmovable", 238 "Movable", 239 "Reclaimable", 240 "HighAtomic", 241 #ifdef CONFIG_CMA 242 "CMA", 243 #endif 244 #ifdef CONFIG_MEMORY_ISOLATION 245 "Isolate", 246 #endif 247 }; 248 249 compound_page_dtor * const compound_page_dtors[] = { 250 NULL, 251 free_compound_page, 252 #ifdef CONFIG_HUGETLB_PAGE 253 free_huge_page, 254 #endif 255 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 256 free_transhuge_page, 257 #endif 258 }; 259 260 int min_free_kbytes = 1024; 261 int user_min_free_kbytes = -1; 262 int watermark_scale_factor = 10; 263 264 static unsigned long __meminitdata nr_kernel_pages; 265 static unsigned long __meminitdata nr_all_pages; 266 static unsigned long __meminitdata dma_reserve; 267 268 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 269 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 270 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 271 static unsigned long __initdata required_kernelcore; 272 static unsigned long __initdata required_movablecore; 273 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 274 static bool mirrored_kernelcore; 275 276 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 277 int movable_zone; 278 EXPORT_SYMBOL(movable_zone); 279 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 280 281 #if MAX_NUMNODES > 1 282 int nr_node_ids __read_mostly = MAX_NUMNODES; 283 int nr_online_nodes __read_mostly = 1; 284 EXPORT_SYMBOL(nr_node_ids); 285 EXPORT_SYMBOL(nr_online_nodes); 286 #endif 287 288 int page_group_by_mobility_disabled __read_mostly; 289 290 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 291 static inline void reset_deferred_meminit(pg_data_t *pgdat) 292 { 293 unsigned long max_initialise; 294 unsigned long reserved_lowmem; 295 296 /* 297 * Initialise at least 2G of a node but also take into account that 298 * two large system hashes that can take up 1GB for 0.25TB/node. 299 */ 300 max_initialise = max(2UL << (30 - PAGE_SHIFT), 301 (pgdat->node_spanned_pages >> 8)); 302 303 /* 304 * Compensate the all the memblock reservations (e.g. crash kernel) 305 * from the initial estimation to make sure we will initialize enough 306 * memory to boot. 307 */ 308 reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn, 309 pgdat->node_start_pfn + max_initialise); 310 max_initialise += reserved_lowmem; 311 312 pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages); 313 pgdat->first_deferred_pfn = ULONG_MAX; 314 } 315 316 /* Returns true if the struct page for the pfn is uninitialised */ 317 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 318 { 319 int nid = early_pfn_to_nid(pfn); 320 321 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 322 return true; 323 324 return false; 325 } 326 327 /* 328 * Returns false when the remaining initialisation should be deferred until 329 * later in the boot cycle when it can be parallelised. 330 */ 331 static inline bool update_defer_init(pg_data_t *pgdat, 332 unsigned long pfn, unsigned long zone_end, 333 unsigned long *nr_initialised) 334 { 335 /* Always populate low zones for address-contrained allocations */ 336 if (zone_end < pgdat_end_pfn(pgdat)) 337 return true; 338 (*nr_initialised)++; 339 if ((*nr_initialised > pgdat->static_init_size) && 340 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 341 pgdat->first_deferred_pfn = pfn; 342 return false; 343 } 344 345 return true; 346 } 347 #else 348 static inline void reset_deferred_meminit(pg_data_t *pgdat) 349 { 350 } 351 352 static inline bool early_page_uninitialised(unsigned long pfn) 353 { 354 return false; 355 } 356 357 static inline bool update_defer_init(pg_data_t *pgdat, 358 unsigned long pfn, unsigned long zone_end, 359 unsigned long *nr_initialised) 360 { 361 return true; 362 } 363 #endif 364 365 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 366 static inline unsigned long *get_pageblock_bitmap(struct page *page, 367 unsigned long pfn) 368 { 369 #ifdef CONFIG_SPARSEMEM 370 return __pfn_to_section(pfn)->pageblock_flags; 371 #else 372 return page_zone(page)->pageblock_flags; 373 #endif /* CONFIG_SPARSEMEM */ 374 } 375 376 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 377 { 378 #ifdef CONFIG_SPARSEMEM 379 pfn &= (PAGES_PER_SECTION-1); 380 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 381 #else 382 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 383 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 384 #endif /* CONFIG_SPARSEMEM */ 385 } 386 387 /** 388 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 389 * @page: The page within the block of interest 390 * @pfn: The target page frame number 391 * @end_bitidx: The last bit of interest to retrieve 392 * @mask: mask of bits that the caller is interested in 393 * 394 * Return: pageblock_bits flags 395 */ 396 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 397 unsigned long pfn, 398 unsigned long end_bitidx, 399 unsigned long mask) 400 { 401 unsigned long *bitmap; 402 unsigned long bitidx, word_bitidx; 403 unsigned long word; 404 405 bitmap = get_pageblock_bitmap(page, pfn); 406 bitidx = pfn_to_bitidx(page, pfn); 407 word_bitidx = bitidx / BITS_PER_LONG; 408 bitidx &= (BITS_PER_LONG-1); 409 410 word = bitmap[word_bitidx]; 411 bitidx += end_bitidx; 412 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 413 } 414 415 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 416 unsigned long end_bitidx, 417 unsigned long mask) 418 { 419 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 420 } 421 422 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 423 { 424 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 425 } 426 427 /** 428 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 429 * @page: The page within the block of interest 430 * @flags: The flags to set 431 * @pfn: The target page frame number 432 * @end_bitidx: The last bit of interest 433 * @mask: mask of bits that the caller is interested in 434 */ 435 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 436 unsigned long pfn, 437 unsigned long end_bitidx, 438 unsigned long mask) 439 { 440 unsigned long *bitmap; 441 unsigned long bitidx, word_bitidx; 442 unsigned long old_word, word; 443 444 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 445 446 bitmap = get_pageblock_bitmap(page, pfn); 447 bitidx = pfn_to_bitidx(page, pfn); 448 word_bitidx = bitidx / BITS_PER_LONG; 449 bitidx &= (BITS_PER_LONG-1); 450 451 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 452 453 bitidx += end_bitidx; 454 mask <<= (BITS_PER_LONG - bitidx - 1); 455 flags <<= (BITS_PER_LONG - bitidx - 1); 456 457 word = READ_ONCE(bitmap[word_bitidx]); 458 for (;;) { 459 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 460 if (word == old_word) 461 break; 462 word = old_word; 463 } 464 } 465 466 void set_pageblock_migratetype(struct page *page, int migratetype) 467 { 468 if (unlikely(page_group_by_mobility_disabled && 469 migratetype < MIGRATE_PCPTYPES)) 470 migratetype = MIGRATE_UNMOVABLE; 471 472 set_pageblock_flags_group(page, (unsigned long)migratetype, 473 PB_migrate, PB_migrate_end); 474 } 475 476 #ifdef CONFIG_DEBUG_VM 477 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 478 { 479 int ret = 0; 480 unsigned seq; 481 unsigned long pfn = page_to_pfn(page); 482 unsigned long sp, start_pfn; 483 484 do { 485 seq = zone_span_seqbegin(zone); 486 start_pfn = zone->zone_start_pfn; 487 sp = zone->spanned_pages; 488 if (!zone_spans_pfn(zone, pfn)) 489 ret = 1; 490 } while (zone_span_seqretry(zone, seq)); 491 492 if (ret) 493 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 494 pfn, zone_to_nid(zone), zone->name, 495 start_pfn, start_pfn + sp); 496 497 return ret; 498 } 499 500 static int page_is_consistent(struct zone *zone, struct page *page) 501 { 502 if (!pfn_valid_within(page_to_pfn(page))) 503 return 0; 504 if (zone != page_zone(page)) 505 return 0; 506 507 return 1; 508 } 509 /* 510 * Temporary debugging check for pages not lying within a given zone. 511 */ 512 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 513 { 514 if (page_outside_zone_boundaries(zone, page)) 515 return 1; 516 if (!page_is_consistent(zone, page)) 517 return 1; 518 519 return 0; 520 } 521 #else 522 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 523 { 524 return 0; 525 } 526 #endif 527 528 static void bad_page(struct page *page, const char *reason, 529 unsigned long bad_flags) 530 { 531 static unsigned long resume; 532 static unsigned long nr_shown; 533 static unsigned long nr_unshown; 534 535 /* 536 * Allow a burst of 60 reports, then keep quiet for that minute; 537 * or allow a steady drip of one report per second. 538 */ 539 if (nr_shown == 60) { 540 if (time_before(jiffies, resume)) { 541 nr_unshown++; 542 goto out; 543 } 544 if (nr_unshown) { 545 pr_alert( 546 "BUG: Bad page state: %lu messages suppressed\n", 547 nr_unshown); 548 nr_unshown = 0; 549 } 550 nr_shown = 0; 551 } 552 if (nr_shown++ == 0) 553 resume = jiffies + 60 * HZ; 554 555 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 556 current->comm, page_to_pfn(page)); 557 __dump_page(page, reason); 558 bad_flags &= page->flags; 559 if (bad_flags) 560 pr_alert("bad because of flags: %#lx(%pGp)\n", 561 bad_flags, &bad_flags); 562 dump_page_owner(page); 563 564 print_modules(); 565 dump_stack(); 566 out: 567 /* Leave bad fields for debug, except PageBuddy could make trouble */ 568 page_mapcount_reset(page); /* remove PageBuddy */ 569 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 570 } 571 572 /* 573 * Higher-order pages are called "compound pages". They are structured thusly: 574 * 575 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 576 * 577 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 578 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 579 * 580 * The first tail page's ->compound_dtor holds the offset in array of compound 581 * page destructors. See compound_page_dtors. 582 * 583 * The first tail page's ->compound_order holds the order of allocation. 584 * This usage means that zero-order pages may not be compound. 585 */ 586 587 void free_compound_page(struct page *page) 588 { 589 __free_pages_ok(page, compound_order(page)); 590 } 591 592 void prep_compound_page(struct page *page, unsigned int order) 593 { 594 int i; 595 int nr_pages = 1 << order; 596 597 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 598 set_compound_order(page, order); 599 __SetPageHead(page); 600 for (i = 1; i < nr_pages; i++) { 601 struct page *p = page + i; 602 set_page_count(p, 0); 603 p->mapping = TAIL_MAPPING; 604 set_compound_head(p, page); 605 } 606 atomic_set(compound_mapcount_ptr(page), -1); 607 } 608 609 #ifdef CONFIG_DEBUG_PAGEALLOC 610 unsigned int _debug_guardpage_minorder; 611 bool _debug_pagealloc_enabled __read_mostly 612 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 613 EXPORT_SYMBOL(_debug_pagealloc_enabled); 614 bool _debug_guardpage_enabled __read_mostly; 615 616 static int __init early_debug_pagealloc(char *buf) 617 { 618 if (!buf) 619 return -EINVAL; 620 return kstrtobool(buf, &_debug_pagealloc_enabled); 621 } 622 early_param("debug_pagealloc", early_debug_pagealloc); 623 624 static bool need_debug_guardpage(void) 625 { 626 /* If we don't use debug_pagealloc, we don't need guard page */ 627 if (!debug_pagealloc_enabled()) 628 return false; 629 630 if (!debug_guardpage_minorder()) 631 return false; 632 633 return true; 634 } 635 636 static void init_debug_guardpage(void) 637 { 638 if (!debug_pagealloc_enabled()) 639 return; 640 641 if (!debug_guardpage_minorder()) 642 return; 643 644 _debug_guardpage_enabled = true; 645 } 646 647 struct page_ext_operations debug_guardpage_ops = { 648 .need = need_debug_guardpage, 649 .init = init_debug_guardpage, 650 }; 651 652 static int __init debug_guardpage_minorder_setup(char *buf) 653 { 654 unsigned long res; 655 656 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 657 pr_err("Bad debug_guardpage_minorder value\n"); 658 return 0; 659 } 660 _debug_guardpage_minorder = res; 661 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 662 return 0; 663 } 664 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 665 666 static inline bool set_page_guard(struct zone *zone, struct page *page, 667 unsigned int order, int migratetype) 668 { 669 struct page_ext *page_ext; 670 671 if (!debug_guardpage_enabled()) 672 return false; 673 674 if (order >= debug_guardpage_minorder()) 675 return false; 676 677 page_ext = lookup_page_ext(page); 678 if (unlikely(!page_ext)) 679 return false; 680 681 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 682 683 INIT_LIST_HEAD(&page->lru); 684 set_page_private(page, order); 685 /* Guard pages are not available for any usage */ 686 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 687 688 return true; 689 } 690 691 static inline void clear_page_guard(struct zone *zone, struct page *page, 692 unsigned int order, int migratetype) 693 { 694 struct page_ext *page_ext; 695 696 if (!debug_guardpage_enabled()) 697 return; 698 699 page_ext = lookup_page_ext(page); 700 if (unlikely(!page_ext)) 701 return; 702 703 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 704 705 set_page_private(page, 0); 706 if (!is_migrate_isolate(migratetype)) 707 __mod_zone_freepage_state(zone, (1 << order), migratetype); 708 } 709 #else 710 struct page_ext_operations debug_guardpage_ops; 711 static inline bool set_page_guard(struct zone *zone, struct page *page, 712 unsigned int order, int migratetype) { return false; } 713 static inline void clear_page_guard(struct zone *zone, struct page *page, 714 unsigned int order, int migratetype) {} 715 #endif 716 717 static inline void set_page_order(struct page *page, unsigned int order) 718 { 719 set_page_private(page, order); 720 __SetPageBuddy(page); 721 } 722 723 static inline void rmv_page_order(struct page *page) 724 { 725 __ClearPageBuddy(page); 726 set_page_private(page, 0); 727 } 728 729 /* 730 * This function checks whether a page is free && is the buddy 731 * we can do coalesce a page and its buddy if 732 * (a) the buddy is not in a hole (check before calling!) && 733 * (b) the buddy is in the buddy system && 734 * (c) a page and its buddy have the same order && 735 * (d) a page and its buddy are in the same zone. 736 * 737 * For recording whether a page is in the buddy system, we set ->_mapcount 738 * PAGE_BUDDY_MAPCOUNT_VALUE. 739 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 740 * serialized by zone->lock. 741 * 742 * For recording page's order, we use page_private(page). 743 */ 744 static inline int page_is_buddy(struct page *page, struct page *buddy, 745 unsigned int order) 746 { 747 if (page_is_guard(buddy) && page_order(buddy) == order) { 748 if (page_zone_id(page) != page_zone_id(buddy)) 749 return 0; 750 751 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 752 753 return 1; 754 } 755 756 if (PageBuddy(buddy) && page_order(buddy) == order) { 757 /* 758 * zone check is done late to avoid uselessly 759 * calculating zone/node ids for pages that could 760 * never merge. 761 */ 762 if (page_zone_id(page) != page_zone_id(buddy)) 763 return 0; 764 765 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 766 767 return 1; 768 } 769 return 0; 770 } 771 772 /* 773 * Freeing function for a buddy system allocator. 774 * 775 * The concept of a buddy system is to maintain direct-mapped table 776 * (containing bit values) for memory blocks of various "orders". 777 * The bottom level table contains the map for the smallest allocatable 778 * units of memory (here, pages), and each level above it describes 779 * pairs of units from the levels below, hence, "buddies". 780 * At a high level, all that happens here is marking the table entry 781 * at the bottom level available, and propagating the changes upward 782 * as necessary, plus some accounting needed to play nicely with other 783 * parts of the VM system. 784 * At each level, we keep a list of pages, which are heads of continuous 785 * free pages of length of (1 << order) and marked with _mapcount 786 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 787 * field. 788 * So when we are allocating or freeing one, we can derive the state of the 789 * other. That is, if we allocate a small block, and both were 790 * free, the remainder of the region must be split into blocks. 791 * If a block is freed, and its buddy is also free, then this 792 * triggers coalescing into a block of larger size. 793 * 794 * -- nyc 795 */ 796 797 static inline void __free_one_page(struct page *page, 798 unsigned long pfn, 799 struct zone *zone, unsigned int order, 800 int migratetype) 801 { 802 unsigned long combined_pfn; 803 unsigned long uninitialized_var(buddy_pfn); 804 struct page *buddy; 805 unsigned int max_order; 806 807 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 808 809 VM_BUG_ON(!zone_is_initialized(zone)); 810 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 811 812 VM_BUG_ON(migratetype == -1); 813 if (likely(!is_migrate_isolate(migratetype))) 814 __mod_zone_freepage_state(zone, 1 << order, migratetype); 815 816 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 817 VM_BUG_ON_PAGE(bad_range(zone, page), page); 818 819 continue_merging: 820 while (order < max_order - 1) { 821 buddy_pfn = __find_buddy_pfn(pfn, order); 822 buddy = page + (buddy_pfn - pfn); 823 824 if (!pfn_valid_within(buddy_pfn)) 825 goto done_merging; 826 if (!page_is_buddy(page, buddy, order)) 827 goto done_merging; 828 /* 829 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 830 * merge with it and move up one order. 831 */ 832 if (page_is_guard(buddy)) { 833 clear_page_guard(zone, buddy, order, migratetype); 834 } else { 835 list_del(&buddy->lru); 836 zone->free_area[order].nr_free--; 837 rmv_page_order(buddy); 838 } 839 combined_pfn = buddy_pfn & pfn; 840 page = page + (combined_pfn - pfn); 841 pfn = combined_pfn; 842 order++; 843 } 844 if (max_order < MAX_ORDER) { 845 /* If we are here, it means order is >= pageblock_order. 846 * We want to prevent merge between freepages on isolate 847 * pageblock and normal pageblock. Without this, pageblock 848 * isolation could cause incorrect freepage or CMA accounting. 849 * 850 * We don't want to hit this code for the more frequent 851 * low-order merging. 852 */ 853 if (unlikely(has_isolate_pageblock(zone))) { 854 int buddy_mt; 855 856 buddy_pfn = __find_buddy_pfn(pfn, order); 857 buddy = page + (buddy_pfn - pfn); 858 buddy_mt = get_pageblock_migratetype(buddy); 859 860 if (migratetype != buddy_mt 861 && (is_migrate_isolate(migratetype) || 862 is_migrate_isolate(buddy_mt))) 863 goto done_merging; 864 } 865 max_order++; 866 goto continue_merging; 867 } 868 869 done_merging: 870 set_page_order(page, order); 871 872 /* 873 * If this is not the largest possible page, check if the buddy 874 * of the next-highest order is free. If it is, it's possible 875 * that pages are being freed that will coalesce soon. In case, 876 * that is happening, add the free page to the tail of the list 877 * so it's less likely to be used soon and more likely to be merged 878 * as a higher order page 879 */ 880 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) { 881 struct page *higher_page, *higher_buddy; 882 combined_pfn = buddy_pfn & pfn; 883 higher_page = page + (combined_pfn - pfn); 884 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 885 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 886 if (pfn_valid_within(buddy_pfn) && 887 page_is_buddy(higher_page, higher_buddy, order + 1)) { 888 list_add_tail(&page->lru, 889 &zone->free_area[order].free_list[migratetype]); 890 goto out; 891 } 892 } 893 894 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 895 out: 896 zone->free_area[order].nr_free++; 897 } 898 899 /* 900 * A bad page could be due to a number of fields. Instead of multiple branches, 901 * try and check multiple fields with one check. The caller must do a detailed 902 * check if necessary. 903 */ 904 static inline bool page_expected_state(struct page *page, 905 unsigned long check_flags) 906 { 907 if (unlikely(atomic_read(&page->_mapcount) != -1)) 908 return false; 909 910 if (unlikely((unsigned long)page->mapping | 911 page_ref_count(page) | 912 #ifdef CONFIG_MEMCG 913 (unsigned long)page->mem_cgroup | 914 #endif 915 (page->flags & check_flags))) 916 return false; 917 918 return true; 919 } 920 921 static void free_pages_check_bad(struct page *page) 922 { 923 const char *bad_reason; 924 unsigned long bad_flags; 925 926 bad_reason = NULL; 927 bad_flags = 0; 928 929 if (unlikely(atomic_read(&page->_mapcount) != -1)) 930 bad_reason = "nonzero mapcount"; 931 if (unlikely(page->mapping != NULL)) 932 bad_reason = "non-NULL mapping"; 933 if (unlikely(page_ref_count(page) != 0)) 934 bad_reason = "nonzero _refcount"; 935 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 936 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 937 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 938 } 939 #ifdef CONFIG_MEMCG 940 if (unlikely(page->mem_cgroup)) 941 bad_reason = "page still charged to cgroup"; 942 #endif 943 bad_page(page, bad_reason, bad_flags); 944 } 945 946 static inline int free_pages_check(struct page *page) 947 { 948 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 949 return 0; 950 951 /* Something has gone sideways, find it */ 952 free_pages_check_bad(page); 953 return 1; 954 } 955 956 static int free_tail_pages_check(struct page *head_page, struct page *page) 957 { 958 int ret = 1; 959 960 /* 961 * We rely page->lru.next never has bit 0 set, unless the page 962 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 963 */ 964 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 965 966 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 967 ret = 0; 968 goto out; 969 } 970 switch (page - head_page) { 971 case 1: 972 /* the first tail page: ->mapping is compound_mapcount() */ 973 if (unlikely(compound_mapcount(page))) { 974 bad_page(page, "nonzero compound_mapcount", 0); 975 goto out; 976 } 977 break; 978 case 2: 979 /* 980 * the second tail page: ->mapping is 981 * page_deferred_list().next -- ignore value. 982 */ 983 break; 984 default: 985 if (page->mapping != TAIL_MAPPING) { 986 bad_page(page, "corrupted mapping in tail page", 0); 987 goto out; 988 } 989 break; 990 } 991 if (unlikely(!PageTail(page))) { 992 bad_page(page, "PageTail not set", 0); 993 goto out; 994 } 995 if (unlikely(compound_head(page) != head_page)) { 996 bad_page(page, "compound_head not consistent", 0); 997 goto out; 998 } 999 ret = 0; 1000 out: 1001 page->mapping = NULL; 1002 clear_compound_head(page); 1003 return ret; 1004 } 1005 1006 static __always_inline bool free_pages_prepare(struct page *page, 1007 unsigned int order, bool check_free) 1008 { 1009 int bad = 0; 1010 1011 VM_BUG_ON_PAGE(PageTail(page), page); 1012 1013 trace_mm_page_free(page, order); 1014 kmemcheck_free_shadow(page, order); 1015 1016 /* 1017 * Check tail pages before head page information is cleared to 1018 * avoid checking PageCompound for order-0 pages. 1019 */ 1020 if (unlikely(order)) { 1021 bool compound = PageCompound(page); 1022 int i; 1023 1024 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1025 1026 if (compound) 1027 ClearPageDoubleMap(page); 1028 for (i = 1; i < (1 << order); i++) { 1029 if (compound) 1030 bad += free_tail_pages_check(page, page + i); 1031 if (unlikely(free_pages_check(page + i))) { 1032 bad++; 1033 continue; 1034 } 1035 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1036 } 1037 } 1038 if (PageMappingFlags(page)) 1039 page->mapping = NULL; 1040 if (memcg_kmem_enabled() && PageKmemcg(page)) 1041 memcg_kmem_uncharge(page, order); 1042 if (check_free) 1043 bad += free_pages_check(page); 1044 if (bad) 1045 return false; 1046 1047 page_cpupid_reset_last(page); 1048 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1049 reset_page_owner(page, order); 1050 1051 if (!PageHighMem(page)) { 1052 debug_check_no_locks_freed(page_address(page), 1053 PAGE_SIZE << order); 1054 debug_check_no_obj_freed(page_address(page), 1055 PAGE_SIZE << order); 1056 } 1057 arch_free_page(page, order); 1058 kernel_poison_pages(page, 1 << order, 0); 1059 kernel_map_pages(page, 1 << order, 0); 1060 kasan_free_pages(page, order); 1061 1062 return true; 1063 } 1064 1065 #ifdef CONFIG_DEBUG_VM 1066 static inline bool free_pcp_prepare(struct page *page) 1067 { 1068 return free_pages_prepare(page, 0, true); 1069 } 1070 1071 static inline bool bulkfree_pcp_prepare(struct page *page) 1072 { 1073 return false; 1074 } 1075 #else 1076 static bool free_pcp_prepare(struct page *page) 1077 { 1078 return free_pages_prepare(page, 0, false); 1079 } 1080 1081 static bool bulkfree_pcp_prepare(struct page *page) 1082 { 1083 return free_pages_check(page); 1084 } 1085 #endif /* CONFIG_DEBUG_VM */ 1086 1087 /* 1088 * Frees a number of pages from the PCP lists 1089 * Assumes all pages on list are in same zone, and of same order. 1090 * count is the number of pages to free. 1091 * 1092 * If the zone was previously in an "all pages pinned" state then look to 1093 * see if this freeing clears that state. 1094 * 1095 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1096 * pinned" detection logic. 1097 */ 1098 static void free_pcppages_bulk(struct zone *zone, int count, 1099 struct per_cpu_pages *pcp) 1100 { 1101 int migratetype = 0; 1102 int batch_free = 0; 1103 bool isolated_pageblocks; 1104 1105 spin_lock(&zone->lock); 1106 isolated_pageblocks = has_isolate_pageblock(zone); 1107 1108 while (count) { 1109 struct page *page; 1110 struct list_head *list; 1111 1112 /* 1113 * Remove pages from lists in a round-robin fashion. A 1114 * batch_free count is maintained that is incremented when an 1115 * empty list is encountered. This is so more pages are freed 1116 * off fuller lists instead of spinning excessively around empty 1117 * lists 1118 */ 1119 do { 1120 batch_free++; 1121 if (++migratetype == MIGRATE_PCPTYPES) 1122 migratetype = 0; 1123 list = &pcp->lists[migratetype]; 1124 } while (list_empty(list)); 1125 1126 /* This is the only non-empty list. Free them all. */ 1127 if (batch_free == MIGRATE_PCPTYPES) 1128 batch_free = count; 1129 1130 do { 1131 int mt; /* migratetype of the to-be-freed page */ 1132 1133 page = list_last_entry(list, struct page, lru); 1134 /* must delete as __free_one_page list manipulates */ 1135 list_del(&page->lru); 1136 1137 mt = get_pcppage_migratetype(page); 1138 /* MIGRATE_ISOLATE page should not go to pcplists */ 1139 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1140 /* Pageblock could have been isolated meanwhile */ 1141 if (unlikely(isolated_pageblocks)) 1142 mt = get_pageblock_migratetype(page); 1143 1144 if (bulkfree_pcp_prepare(page)) 1145 continue; 1146 1147 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1148 trace_mm_page_pcpu_drain(page, 0, mt); 1149 } while (--count && --batch_free && !list_empty(list)); 1150 } 1151 spin_unlock(&zone->lock); 1152 } 1153 1154 static void free_one_page(struct zone *zone, 1155 struct page *page, unsigned long pfn, 1156 unsigned int order, 1157 int migratetype) 1158 { 1159 spin_lock(&zone->lock); 1160 if (unlikely(has_isolate_pageblock(zone) || 1161 is_migrate_isolate(migratetype))) { 1162 migratetype = get_pfnblock_migratetype(page, pfn); 1163 } 1164 __free_one_page(page, pfn, zone, order, migratetype); 1165 spin_unlock(&zone->lock); 1166 } 1167 1168 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1169 unsigned long zone, int nid) 1170 { 1171 set_page_links(page, zone, nid, pfn); 1172 init_page_count(page); 1173 page_mapcount_reset(page); 1174 page_cpupid_reset_last(page); 1175 1176 INIT_LIST_HEAD(&page->lru); 1177 #ifdef WANT_PAGE_VIRTUAL 1178 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1179 if (!is_highmem_idx(zone)) 1180 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1181 #endif 1182 } 1183 1184 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone, 1185 int nid) 1186 { 1187 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid); 1188 } 1189 1190 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1191 static void init_reserved_page(unsigned long pfn) 1192 { 1193 pg_data_t *pgdat; 1194 int nid, zid; 1195 1196 if (!early_page_uninitialised(pfn)) 1197 return; 1198 1199 nid = early_pfn_to_nid(pfn); 1200 pgdat = NODE_DATA(nid); 1201 1202 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1203 struct zone *zone = &pgdat->node_zones[zid]; 1204 1205 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1206 break; 1207 } 1208 __init_single_pfn(pfn, zid, nid); 1209 } 1210 #else 1211 static inline void init_reserved_page(unsigned long pfn) 1212 { 1213 } 1214 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1215 1216 /* 1217 * Initialised pages do not have PageReserved set. This function is 1218 * called for each range allocated by the bootmem allocator and 1219 * marks the pages PageReserved. The remaining valid pages are later 1220 * sent to the buddy page allocator. 1221 */ 1222 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1223 { 1224 unsigned long start_pfn = PFN_DOWN(start); 1225 unsigned long end_pfn = PFN_UP(end); 1226 1227 for (; start_pfn < end_pfn; start_pfn++) { 1228 if (pfn_valid(start_pfn)) { 1229 struct page *page = pfn_to_page(start_pfn); 1230 1231 init_reserved_page(start_pfn); 1232 1233 /* Avoid false-positive PageTail() */ 1234 INIT_LIST_HEAD(&page->lru); 1235 1236 SetPageReserved(page); 1237 } 1238 } 1239 } 1240 1241 static void __free_pages_ok(struct page *page, unsigned int order) 1242 { 1243 unsigned long flags; 1244 int migratetype; 1245 unsigned long pfn = page_to_pfn(page); 1246 1247 if (!free_pages_prepare(page, order, true)) 1248 return; 1249 1250 migratetype = get_pfnblock_migratetype(page, pfn); 1251 local_irq_save(flags); 1252 __count_vm_events(PGFREE, 1 << order); 1253 free_one_page(page_zone(page), page, pfn, order, migratetype); 1254 local_irq_restore(flags); 1255 } 1256 1257 static void __init __free_pages_boot_core(struct page *page, unsigned int order) 1258 { 1259 unsigned int nr_pages = 1 << order; 1260 struct page *p = page; 1261 unsigned int loop; 1262 1263 prefetchw(p); 1264 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1265 prefetchw(p + 1); 1266 __ClearPageReserved(p); 1267 set_page_count(p, 0); 1268 } 1269 __ClearPageReserved(p); 1270 set_page_count(p, 0); 1271 1272 page_zone(page)->managed_pages += nr_pages; 1273 set_page_refcounted(page); 1274 __free_pages(page, order); 1275 } 1276 1277 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1278 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1279 1280 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1281 1282 int __meminit early_pfn_to_nid(unsigned long pfn) 1283 { 1284 static DEFINE_SPINLOCK(early_pfn_lock); 1285 int nid; 1286 1287 spin_lock(&early_pfn_lock); 1288 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1289 if (nid < 0) 1290 nid = first_online_node; 1291 spin_unlock(&early_pfn_lock); 1292 1293 return nid; 1294 } 1295 #endif 1296 1297 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1298 static inline bool __meminit __maybe_unused 1299 meminit_pfn_in_nid(unsigned long pfn, int node, 1300 struct mminit_pfnnid_cache *state) 1301 { 1302 int nid; 1303 1304 nid = __early_pfn_to_nid(pfn, state); 1305 if (nid >= 0 && nid != node) 1306 return false; 1307 return true; 1308 } 1309 1310 /* Only safe to use early in boot when initialisation is single-threaded */ 1311 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1312 { 1313 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1314 } 1315 1316 #else 1317 1318 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1319 { 1320 return true; 1321 } 1322 static inline bool __meminit __maybe_unused 1323 meminit_pfn_in_nid(unsigned long pfn, int node, 1324 struct mminit_pfnnid_cache *state) 1325 { 1326 return true; 1327 } 1328 #endif 1329 1330 1331 void __init __free_pages_bootmem(struct page *page, unsigned long pfn, 1332 unsigned int order) 1333 { 1334 if (early_page_uninitialised(pfn)) 1335 return; 1336 return __free_pages_boot_core(page, order); 1337 } 1338 1339 /* 1340 * Check that the whole (or subset of) a pageblock given by the interval of 1341 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1342 * with the migration of free compaction scanner. The scanners then need to 1343 * use only pfn_valid_within() check for arches that allow holes within 1344 * pageblocks. 1345 * 1346 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1347 * 1348 * It's possible on some configurations to have a setup like node0 node1 node0 1349 * i.e. it's possible that all pages within a zones range of pages do not 1350 * belong to a single zone. We assume that a border between node0 and node1 1351 * can occur within a single pageblock, but not a node0 node1 node0 1352 * interleaving within a single pageblock. It is therefore sufficient to check 1353 * the first and last page of a pageblock and avoid checking each individual 1354 * page in a pageblock. 1355 */ 1356 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1357 unsigned long end_pfn, struct zone *zone) 1358 { 1359 struct page *start_page; 1360 struct page *end_page; 1361 1362 /* end_pfn is one past the range we are checking */ 1363 end_pfn--; 1364 1365 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1366 return NULL; 1367 1368 start_page = pfn_to_online_page(start_pfn); 1369 if (!start_page) 1370 return NULL; 1371 1372 if (page_zone(start_page) != zone) 1373 return NULL; 1374 1375 end_page = pfn_to_page(end_pfn); 1376 1377 /* This gives a shorter code than deriving page_zone(end_page) */ 1378 if (page_zone_id(start_page) != page_zone_id(end_page)) 1379 return NULL; 1380 1381 return start_page; 1382 } 1383 1384 void set_zone_contiguous(struct zone *zone) 1385 { 1386 unsigned long block_start_pfn = zone->zone_start_pfn; 1387 unsigned long block_end_pfn; 1388 1389 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1390 for (; block_start_pfn < zone_end_pfn(zone); 1391 block_start_pfn = block_end_pfn, 1392 block_end_pfn += pageblock_nr_pages) { 1393 1394 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1395 1396 if (!__pageblock_pfn_to_page(block_start_pfn, 1397 block_end_pfn, zone)) 1398 return; 1399 } 1400 1401 /* We confirm that there is no hole */ 1402 zone->contiguous = true; 1403 } 1404 1405 void clear_zone_contiguous(struct zone *zone) 1406 { 1407 zone->contiguous = false; 1408 } 1409 1410 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1411 static void __init deferred_free_range(struct page *page, 1412 unsigned long pfn, int nr_pages) 1413 { 1414 int i; 1415 1416 if (!page) 1417 return; 1418 1419 /* Free a large naturally-aligned chunk if possible */ 1420 if (nr_pages == pageblock_nr_pages && 1421 (pfn & (pageblock_nr_pages - 1)) == 0) { 1422 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1423 __free_pages_boot_core(page, pageblock_order); 1424 return; 1425 } 1426 1427 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1428 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1429 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1430 __free_pages_boot_core(page, 0); 1431 } 1432 } 1433 1434 /* Completion tracking for deferred_init_memmap() threads */ 1435 static atomic_t pgdat_init_n_undone __initdata; 1436 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1437 1438 static inline void __init pgdat_init_report_one_done(void) 1439 { 1440 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1441 complete(&pgdat_init_all_done_comp); 1442 } 1443 1444 /* Initialise remaining memory on a node */ 1445 static int __init deferred_init_memmap(void *data) 1446 { 1447 pg_data_t *pgdat = data; 1448 int nid = pgdat->node_id; 1449 struct mminit_pfnnid_cache nid_init_state = { }; 1450 unsigned long start = jiffies; 1451 unsigned long nr_pages = 0; 1452 unsigned long walk_start, walk_end; 1453 int i, zid; 1454 struct zone *zone; 1455 unsigned long first_init_pfn = pgdat->first_deferred_pfn; 1456 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1457 1458 if (first_init_pfn == ULONG_MAX) { 1459 pgdat_init_report_one_done(); 1460 return 0; 1461 } 1462 1463 /* Bind memory initialisation thread to a local node if possible */ 1464 if (!cpumask_empty(cpumask)) 1465 set_cpus_allowed_ptr(current, cpumask); 1466 1467 /* Sanity check boundaries */ 1468 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1469 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1470 pgdat->first_deferred_pfn = ULONG_MAX; 1471 1472 /* Only the highest zone is deferred so find it */ 1473 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1474 zone = pgdat->node_zones + zid; 1475 if (first_init_pfn < zone_end_pfn(zone)) 1476 break; 1477 } 1478 1479 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) { 1480 unsigned long pfn, end_pfn; 1481 struct page *page = NULL; 1482 struct page *free_base_page = NULL; 1483 unsigned long free_base_pfn = 0; 1484 int nr_to_free = 0; 1485 1486 end_pfn = min(walk_end, zone_end_pfn(zone)); 1487 pfn = first_init_pfn; 1488 if (pfn < walk_start) 1489 pfn = walk_start; 1490 if (pfn < zone->zone_start_pfn) 1491 pfn = zone->zone_start_pfn; 1492 1493 for (; pfn < end_pfn; pfn++) { 1494 if (!pfn_valid_within(pfn)) 1495 goto free_range; 1496 1497 /* 1498 * Ensure pfn_valid is checked every 1499 * pageblock_nr_pages for memory holes 1500 */ 1501 if ((pfn & (pageblock_nr_pages - 1)) == 0) { 1502 if (!pfn_valid(pfn)) { 1503 page = NULL; 1504 goto free_range; 1505 } 1506 } 1507 1508 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) { 1509 page = NULL; 1510 goto free_range; 1511 } 1512 1513 /* Minimise pfn page lookups and scheduler checks */ 1514 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) { 1515 page++; 1516 } else { 1517 nr_pages += nr_to_free; 1518 deferred_free_range(free_base_page, 1519 free_base_pfn, nr_to_free); 1520 free_base_page = NULL; 1521 free_base_pfn = nr_to_free = 0; 1522 1523 page = pfn_to_page(pfn); 1524 cond_resched(); 1525 } 1526 1527 if (page->flags) { 1528 VM_BUG_ON(page_zone(page) != zone); 1529 goto free_range; 1530 } 1531 1532 __init_single_page(page, pfn, zid, nid); 1533 if (!free_base_page) { 1534 free_base_page = page; 1535 free_base_pfn = pfn; 1536 nr_to_free = 0; 1537 } 1538 nr_to_free++; 1539 1540 /* Where possible, batch up pages for a single free */ 1541 continue; 1542 free_range: 1543 /* Free the current block of pages to allocator */ 1544 nr_pages += nr_to_free; 1545 deferred_free_range(free_base_page, free_base_pfn, 1546 nr_to_free); 1547 free_base_page = NULL; 1548 free_base_pfn = nr_to_free = 0; 1549 } 1550 /* Free the last block of pages to allocator */ 1551 nr_pages += nr_to_free; 1552 deferred_free_range(free_base_page, free_base_pfn, nr_to_free); 1553 1554 first_init_pfn = max(end_pfn, first_init_pfn); 1555 } 1556 1557 /* Sanity check that the next zone really is unpopulated */ 1558 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1559 1560 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1561 jiffies_to_msecs(jiffies - start)); 1562 1563 pgdat_init_report_one_done(); 1564 return 0; 1565 } 1566 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1567 1568 void __init page_alloc_init_late(void) 1569 { 1570 struct zone *zone; 1571 1572 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1573 int nid; 1574 1575 /* There will be num_node_state(N_MEMORY) threads */ 1576 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1577 for_each_node_state(nid, N_MEMORY) { 1578 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1579 } 1580 1581 /* Block until all are initialised */ 1582 wait_for_completion(&pgdat_init_all_done_comp); 1583 1584 /* Reinit limits that are based on free pages after the kernel is up */ 1585 files_maxfiles_init(); 1586 #endif 1587 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 1588 /* Discard memblock private memory */ 1589 memblock_discard(); 1590 #endif 1591 1592 for_each_populated_zone(zone) 1593 set_zone_contiguous(zone); 1594 } 1595 1596 #ifdef CONFIG_CMA 1597 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1598 void __init init_cma_reserved_pageblock(struct page *page) 1599 { 1600 unsigned i = pageblock_nr_pages; 1601 struct page *p = page; 1602 1603 do { 1604 __ClearPageReserved(p); 1605 set_page_count(p, 0); 1606 } while (++p, --i); 1607 1608 set_pageblock_migratetype(page, MIGRATE_CMA); 1609 1610 if (pageblock_order >= MAX_ORDER) { 1611 i = pageblock_nr_pages; 1612 p = page; 1613 do { 1614 set_page_refcounted(p); 1615 __free_pages(p, MAX_ORDER - 1); 1616 p += MAX_ORDER_NR_PAGES; 1617 } while (i -= MAX_ORDER_NR_PAGES); 1618 } else { 1619 set_page_refcounted(page); 1620 __free_pages(page, pageblock_order); 1621 } 1622 1623 adjust_managed_page_count(page, pageblock_nr_pages); 1624 } 1625 #endif 1626 1627 /* 1628 * The order of subdivision here is critical for the IO subsystem. 1629 * Please do not alter this order without good reasons and regression 1630 * testing. Specifically, as large blocks of memory are subdivided, 1631 * the order in which smaller blocks are delivered depends on the order 1632 * they're subdivided in this function. This is the primary factor 1633 * influencing the order in which pages are delivered to the IO 1634 * subsystem according to empirical testing, and this is also justified 1635 * by considering the behavior of a buddy system containing a single 1636 * large block of memory acted on by a series of small allocations. 1637 * This behavior is a critical factor in sglist merging's success. 1638 * 1639 * -- nyc 1640 */ 1641 static inline void expand(struct zone *zone, struct page *page, 1642 int low, int high, struct free_area *area, 1643 int migratetype) 1644 { 1645 unsigned long size = 1 << high; 1646 1647 while (high > low) { 1648 area--; 1649 high--; 1650 size >>= 1; 1651 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1652 1653 /* 1654 * Mark as guard pages (or page), that will allow to 1655 * merge back to allocator when buddy will be freed. 1656 * Corresponding page table entries will not be touched, 1657 * pages will stay not present in virtual address space 1658 */ 1659 if (set_page_guard(zone, &page[size], high, migratetype)) 1660 continue; 1661 1662 list_add(&page[size].lru, &area->free_list[migratetype]); 1663 area->nr_free++; 1664 set_page_order(&page[size], high); 1665 } 1666 } 1667 1668 static void check_new_page_bad(struct page *page) 1669 { 1670 const char *bad_reason = NULL; 1671 unsigned long bad_flags = 0; 1672 1673 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1674 bad_reason = "nonzero mapcount"; 1675 if (unlikely(page->mapping != NULL)) 1676 bad_reason = "non-NULL mapping"; 1677 if (unlikely(page_ref_count(page) != 0)) 1678 bad_reason = "nonzero _count"; 1679 if (unlikely(page->flags & __PG_HWPOISON)) { 1680 bad_reason = "HWPoisoned (hardware-corrupted)"; 1681 bad_flags = __PG_HWPOISON; 1682 /* Don't complain about hwpoisoned pages */ 1683 page_mapcount_reset(page); /* remove PageBuddy */ 1684 return; 1685 } 1686 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1687 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1688 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1689 } 1690 #ifdef CONFIG_MEMCG 1691 if (unlikely(page->mem_cgroup)) 1692 bad_reason = "page still charged to cgroup"; 1693 #endif 1694 bad_page(page, bad_reason, bad_flags); 1695 } 1696 1697 /* 1698 * This page is about to be returned from the page allocator 1699 */ 1700 static inline int check_new_page(struct page *page) 1701 { 1702 if (likely(page_expected_state(page, 1703 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1704 return 0; 1705 1706 check_new_page_bad(page); 1707 return 1; 1708 } 1709 1710 static inline bool free_pages_prezeroed(void) 1711 { 1712 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1713 page_poisoning_enabled(); 1714 } 1715 1716 #ifdef CONFIG_DEBUG_VM 1717 static bool check_pcp_refill(struct page *page) 1718 { 1719 return false; 1720 } 1721 1722 static bool check_new_pcp(struct page *page) 1723 { 1724 return check_new_page(page); 1725 } 1726 #else 1727 static bool check_pcp_refill(struct page *page) 1728 { 1729 return check_new_page(page); 1730 } 1731 static bool check_new_pcp(struct page *page) 1732 { 1733 return false; 1734 } 1735 #endif /* CONFIG_DEBUG_VM */ 1736 1737 static bool check_new_pages(struct page *page, unsigned int order) 1738 { 1739 int i; 1740 for (i = 0; i < (1 << order); i++) { 1741 struct page *p = page + i; 1742 1743 if (unlikely(check_new_page(p))) 1744 return true; 1745 } 1746 1747 return false; 1748 } 1749 1750 inline void post_alloc_hook(struct page *page, unsigned int order, 1751 gfp_t gfp_flags) 1752 { 1753 set_page_private(page, 0); 1754 set_page_refcounted(page); 1755 1756 arch_alloc_page(page, order); 1757 kernel_map_pages(page, 1 << order, 1); 1758 kernel_poison_pages(page, 1 << order, 1); 1759 kasan_alloc_pages(page, order); 1760 set_page_owner(page, order, gfp_flags); 1761 } 1762 1763 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1764 unsigned int alloc_flags) 1765 { 1766 int i; 1767 1768 post_alloc_hook(page, order, gfp_flags); 1769 1770 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO)) 1771 for (i = 0; i < (1 << order); i++) 1772 clear_highpage(page + i); 1773 1774 if (order && (gfp_flags & __GFP_COMP)) 1775 prep_compound_page(page, order); 1776 1777 /* 1778 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1779 * allocate the page. The expectation is that the caller is taking 1780 * steps that will free more memory. The caller should avoid the page 1781 * being used for !PFMEMALLOC purposes. 1782 */ 1783 if (alloc_flags & ALLOC_NO_WATERMARKS) 1784 set_page_pfmemalloc(page); 1785 else 1786 clear_page_pfmemalloc(page); 1787 } 1788 1789 /* 1790 * Go through the free lists for the given migratetype and remove 1791 * the smallest available page from the freelists 1792 */ 1793 static inline 1794 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1795 int migratetype) 1796 { 1797 unsigned int current_order; 1798 struct free_area *area; 1799 struct page *page; 1800 1801 /* Find a page of the appropriate size in the preferred list */ 1802 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1803 area = &(zone->free_area[current_order]); 1804 page = list_first_entry_or_null(&area->free_list[migratetype], 1805 struct page, lru); 1806 if (!page) 1807 continue; 1808 list_del(&page->lru); 1809 rmv_page_order(page); 1810 area->nr_free--; 1811 expand(zone, page, order, current_order, area, migratetype); 1812 set_pcppage_migratetype(page, migratetype); 1813 return page; 1814 } 1815 1816 return NULL; 1817 } 1818 1819 1820 /* 1821 * This array describes the order lists are fallen back to when 1822 * the free lists for the desirable migrate type are depleted 1823 */ 1824 static int fallbacks[MIGRATE_TYPES][4] = { 1825 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1826 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1827 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 1828 #ifdef CONFIG_CMA 1829 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 1830 #endif 1831 #ifdef CONFIG_MEMORY_ISOLATION 1832 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 1833 #endif 1834 }; 1835 1836 #ifdef CONFIG_CMA 1837 static struct page *__rmqueue_cma_fallback(struct zone *zone, 1838 unsigned int order) 1839 { 1840 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1841 } 1842 #else 1843 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1844 unsigned int order) { return NULL; } 1845 #endif 1846 1847 /* 1848 * Move the free pages in a range to the free lists of the requested type. 1849 * Note that start_page and end_pages are not aligned on a pageblock 1850 * boundary. If alignment is required, use move_freepages_block() 1851 */ 1852 static int move_freepages(struct zone *zone, 1853 struct page *start_page, struct page *end_page, 1854 int migratetype, int *num_movable) 1855 { 1856 struct page *page; 1857 unsigned int order; 1858 int pages_moved = 0; 1859 1860 #ifndef CONFIG_HOLES_IN_ZONE 1861 /* 1862 * page_zone is not safe to call in this context when 1863 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1864 * anyway as we check zone boundaries in move_freepages_block(). 1865 * Remove at a later date when no bug reports exist related to 1866 * grouping pages by mobility 1867 */ 1868 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1869 #endif 1870 1871 if (num_movable) 1872 *num_movable = 0; 1873 1874 for (page = start_page; page <= end_page;) { 1875 if (!pfn_valid_within(page_to_pfn(page))) { 1876 page++; 1877 continue; 1878 } 1879 1880 /* Make sure we are not inadvertently changing nodes */ 1881 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1882 1883 if (!PageBuddy(page)) { 1884 /* 1885 * We assume that pages that could be isolated for 1886 * migration are movable. But we don't actually try 1887 * isolating, as that would be expensive. 1888 */ 1889 if (num_movable && 1890 (PageLRU(page) || __PageMovable(page))) 1891 (*num_movable)++; 1892 1893 page++; 1894 continue; 1895 } 1896 1897 order = page_order(page); 1898 list_move(&page->lru, 1899 &zone->free_area[order].free_list[migratetype]); 1900 page += 1 << order; 1901 pages_moved += 1 << order; 1902 } 1903 1904 return pages_moved; 1905 } 1906 1907 int move_freepages_block(struct zone *zone, struct page *page, 1908 int migratetype, int *num_movable) 1909 { 1910 unsigned long start_pfn, end_pfn; 1911 struct page *start_page, *end_page; 1912 1913 start_pfn = page_to_pfn(page); 1914 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1915 start_page = pfn_to_page(start_pfn); 1916 end_page = start_page + pageblock_nr_pages - 1; 1917 end_pfn = start_pfn + pageblock_nr_pages - 1; 1918 1919 /* Do not cross zone boundaries */ 1920 if (!zone_spans_pfn(zone, start_pfn)) 1921 start_page = page; 1922 if (!zone_spans_pfn(zone, end_pfn)) 1923 return 0; 1924 1925 return move_freepages(zone, start_page, end_page, migratetype, 1926 num_movable); 1927 } 1928 1929 static void change_pageblock_range(struct page *pageblock_page, 1930 int start_order, int migratetype) 1931 { 1932 int nr_pageblocks = 1 << (start_order - pageblock_order); 1933 1934 while (nr_pageblocks--) { 1935 set_pageblock_migratetype(pageblock_page, migratetype); 1936 pageblock_page += pageblock_nr_pages; 1937 } 1938 } 1939 1940 /* 1941 * When we are falling back to another migratetype during allocation, try to 1942 * steal extra free pages from the same pageblocks to satisfy further 1943 * allocations, instead of polluting multiple pageblocks. 1944 * 1945 * If we are stealing a relatively large buddy page, it is likely there will 1946 * be more free pages in the pageblock, so try to steal them all. For 1947 * reclaimable and unmovable allocations, we steal regardless of page size, 1948 * as fragmentation caused by those allocations polluting movable pageblocks 1949 * is worse than movable allocations stealing from unmovable and reclaimable 1950 * pageblocks. 1951 */ 1952 static bool can_steal_fallback(unsigned int order, int start_mt) 1953 { 1954 /* 1955 * Leaving this order check is intended, although there is 1956 * relaxed order check in next check. The reason is that 1957 * we can actually steal whole pageblock if this condition met, 1958 * but, below check doesn't guarantee it and that is just heuristic 1959 * so could be changed anytime. 1960 */ 1961 if (order >= pageblock_order) 1962 return true; 1963 1964 if (order >= pageblock_order / 2 || 1965 start_mt == MIGRATE_RECLAIMABLE || 1966 start_mt == MIGRATE_UNMOVABLE || 1967 page_group_by_mobility_disabled) 1968 return true; 1969 1970 return false; 1971 } 1972 1973 /* 1974 * This function implements actual steal behaviour. If order is large enough, 1975 * we can steal whole pageblock. If not, we first move freepages in this 1976 * pageblock to our migratetype and determine how many already-allocated pages 1977 * are there in the pageblock with a compatible migratetype. If at least half 1978 * of pages are free or compatible, we can change migratetype of the pageblock 1979 * itself, so pages freed in the future will be put on the correct free list. 1980 */ 1981 static void steal_suitable_fallback(struct zone *zone, struct page *page, 1982 int start_type, bool whole_block) 1983 { 1984 unsigned int current_order = page_order(page); 1985 struct free_area *area; 1986 int free_pages, movable_pages, alike_pages; 1987 int old_block_type; 1988 1989 old_block_type = get_pageblock_migratetype(page); 1990 1991 /* 1992 * This can happen due to races and we want to prevent broken 1993 * highatomic accounting. 1994 */ 1995 if (is_migrate_highatomic(old_block_type)) 1996 goto single_page; 1997 1998 /* Take ownership for orders >= pageblock_order */ 1999 if (current_order >= pageblock_order) { 2000 change_pageblock_range(page, current_order, start_type); 2001 goto single_page; 2002 } 2003 2004 /* We are not allowed to try stealing from the whole block */ 2005 if (!whole_block) 2006 goto single_page; 2007 2008 free_pages = move_freepages_block(zone, page, start_type, 2009 &movable_pages); 2010 /* 2011 * Determine how many pages are compatible with our allocation. 2012 * For movable allocation, it's the number of movable pages which 2013 * we just obtained. For other types it's a bit more tricky. 2014 */ 2015 if (start_type == MIGRATE_MOVABLE) { 2016 alike_pages = movable_pages; 2017 } else { 2018 /* 2019 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2020 * to MOVABLE pageblock, consider all non-movable pages as 2021 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2022 * vice versa, be conservative since we can't distinguish the 2023 * exact migratetype of non-movable pages. 2024 */ 2025 if (old_block_type == MIGRATE_MOVABLE) 2026 alike_pages = pageblock_nr_pages 2027 - (free_pages + movable_pages); 2028 else 2029 alike_pages = 0; 2030 } 2031 2032 /* moving whole block can fail due to zone boundary conditions */ 2033 if (!free_pages) 2034 goto single_page; 2035 2036 /* 2037 * If a sufficient number of pages in the block are either free or of 2038 * comparable migratability as our allocation, claim the whole block. 2039 */ 2040 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2041 page_group_by_mobility_disabled) 2042 set_pageblock_migratetype(page, start_type); 2043 2044 return; 2045 2046 single_page: 2047 area = &zone->free_area[current_order]; 2048 list_move(&page->lru, &area->free_list[start_type]); 2049 } 2050 2051 /* 2052 * Check whether there is a suitable fallback freepage with requested order. 2053 * If only_stealable is true, this function returns fallback_mt only if 2054 * we can steal other freepages all together. This would help to reduce 2055 * fragmentation due to mixed migratetype pages in one pageblock. 2056 */ 2057 int find_suitable_fallback(struct free_area *area, unsigned int order, 2058 int migratetype, bool only_stealable, bool *can_steal) 2059 { 2060 int i; 2061 int fallback_mt; 2062 2063 if (area->nr_free == 0) 2064 return -1; 2065 2066 *can_steal = false; 2067 for (i = 0;; i++) { 2068 fallback_mt = fallbacks[migratetype][i]; 2069 if (fallback_mt == MIGRATE_TYPES) 2070 break; 2071 2072 if (list_empty(&area->free_list[fallback_mt])) 2073 continue; 2074 2075 if (can_steal_fallback(order, migratetype)) 2076 *can_steal = true; 2077 2078 if (!only_stealable) 2079 return fallback_mt; 2080 2081 if (*can_steal) 2082 return fallback_mt; 2083 } 2084 2085 return -1; 2086 } 2087 2088 /* 2089 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2090 * there are no empty page blocks that contain a page with a suitable order 2091 */ 2092 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2093 unsigned int alloc_order) 2094 { 2095 int mt; 2096 unsigned long max_managed, flags; 2097 2098 /* 2099 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2100 * Check is race-prone but harmless. 2101 */ 2102 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; 2103 if (zone->nr_reserved_highatomic >= max_managed) 2104 return; 2105 2106 spin_lock_irqsave(&zone->lock, flags); 2107 2108 /* Recheck the nr_reserved_highatomic limit under the lock */ 2109 if (zone->nr_reserved_highatomic >= max_managed) 2110 goto out_unlock; 2111 2112 /* Yoink! */ 2113 mt = get_pageblock_migratetype(page); 2114 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2115 && !is_migrate_cma(mt)) { 2116 zone->nr_reserved_highatomic += pageblock_nr_pages; 2117 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2118 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2119 } 2120 2121 out_unlock: 2122 spin_unlock_irqrestore(&zone->lock, flags); 2123 } 2124 2125 /* 2126 * Used when an allocation is about to fail under memory pressure. This 2127 * potentially hurts the reliability of high-order allocations when under 2128 * intense memory pressure but failed atomic allocations should be easier 2129 * to recover from than an OOM. 2130 * 2131 * If @force is true, try to unreserve a pageblock even though highatomic 2132 * pageblock is exhausted. 2133 */ 2134 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2135 bool force) 2136 { 2137 struct zonelist *zonelist = ac->zonelist; 2138 unsigned long flags; 2139 struct zoneref *z; 2140 struct zone *zone; 2141 struct page *page; 2142 int order; 2143 bool ret; 2144 2145 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2146 ac->nodemask) { 2147 /* 2148 * Preserve at least one pageblock unless memory pressure 2149 * is really high. 2150 */ 2151 if (!force && zone->nr_reserved_highatomic <= 2152 pageblock_nr_pages) 2153 continue; 2154 2155 spin_lock_irqsave(&zone->lock, flags); 2156 for (order = 0; order < MAX_ORDER; order++) { 2157 struct free_area *area = &(zone->free_area[order]); 2158 2159 page = list_first_entry_or_null( 2160 &area->free_list[MIGRATE_HIGHATOMIC], 2161 struct page, lru); 2162 if (!page) 2163 continue; 2164 2165 /* 2166 * In page freeing path, migratetype change is racy so 2167 * we can counter several free pages in a pageblock 2168 * in this loop althoug we changed the pageblock type 2169 * from highatomic to ac->migratetype. So we should 2170 * adjust the count once. 2171 */ 2172 if (is_migrate_highatomic_page(page)) { 2173 /* 2174 * It should never happen but changes to 2175 * locking could inadvertently allow a per-cpu 2176 * drain to add pages to MIGRATE_HIGHATOMIC 2177 * while unreserving so be safe and watch for 2178 * underflows. 2179 */ 2180 zone->nr_reserved_highatomic -= min( 2181 pageblock_nr_pages, 2182 zone->nr_reserved_highatomic); 2183 } 2184 2185 /* 2186 * Convert to ac->migratetype and avoid the normal 2187 * pageblock stealing heuristics. Minimally, the caller 2188 * is doing the work and needs the pages. More 2189 * importantly, if the block was always converted to 2190 * MIGRATE_UNMOVABLE or another type then the number 2191 * of pageblocks that cannot be completely freed 2192 * may increase. 2193 */ 2194 set_pageblock_migratetype(page, ac->migratetype); 2195 ret = move_freepages_block(zone, page, ac->migratetype, 2196 NULL); 2197 if (ret) { 2198 spin_unlock_irqrestore(&zone->lock, flags); 2199 return ret; 2200 } 2201 } 2202 spin_unlock_irqrestore(&zone->lock, flags); 2203 } 2204 2205 return false; 2206 } 2207 2208 /* 2209 * Try finding a free buddy page on the fallback list and put it on the free 2210 * list of requested migratetype, possibly along with other pages from the same 2211 * block, depending on fragmentation avoidance heuristics. Returns true if 2212 * fallback was found so that __rmqueue_smallest() can grab it. 2213 * 2214 * The use of signed ints for order and current_order is a deliberate 2215 * deviation from the rest of this file, to make the for loop 2216 * condition simpler. 2217 */ 2218 static inline bool 2219 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 2220 { 2221 struct free_area *area; 2222 int current_order; 2223 struct page *page; 2224 int fallback_mt; 2225 bool can_steal; 2226 2227 /* 2228 * Find the largest available free page in the other list. This roughly 2229 * approximates finding the pageblock with the most free pages, which 2230 * would be too costly to do exactly. 2231 */ 2232 for (current_order = MAX_ORDER - 1; current_order >= order; 2233 --current_order) { 2234 area = &(zone->free_area[current_order]); 2235 fallback_mt = find_suitable_fallback(area, current_order, 2236 start_migratetype, false, &can_steal); 2237 if (fallback_mt == -1) 2238 continue; 2239 2240 /* 2241 * We cannot steal all free pages from the pageblock and the 2242 * requested migratetype is movable. In that case it's better to 2243 * steal and split the smallest available page instead of the 2244 * largest available page, because even if the next movable 2245 * allocation falls back into a different pageblock than this 2246 * one, it won't cause permanent fragmentation. 2247 */ 2248 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2249 && current_order > order) 2250 goto find_smallest; 2251 2252 goto do_steal; 2253 } 2254 2255 return false; 2256 2257 find_smallest: 2258 for (current_order = order; current_order < MAX_ORDER; 2259 current_order++) { 2260 area = &(zone->free_area[current_order]); 2261 fallback_mt = find_suitable_fallback(area, current_order, 2262 start_migratetype, false, &can_steal); 2263 if (fallback_mt != -1) 2264 break; 2265 } 2266 2267 /* 2268 * This should not happen - we already found a suitable fallback 2269 * when looking for the largest page. 2270 */ 2271 VM_BUG_ON(current_order == MAX_ORDER); 2272 2273 do_steal: 2274 page = list_first_entry(&area->free_list[fallback_mt], 2275 struct page, lru); 2276 2277 steal_suitable_fallback(zone, page, start_migratetype, can_steal); 2278 2279 trace_mm_page_alloc_extfrag(page, order, current_order, 2280 start_migratetype, fallback_mt); 2281 2282 return true; 2283 2284 } 2285 2286 /* 2287 * Do the hard work of removing an element from the buddy allocator. 2288 * Call me with the zone->lock already held. 2289 */ 2290 static struct page *__rmqueue(struct zone *zone, unsigned int order, 2291 int migratetype) 2292 { 2293 struct page *page; 2294 2295 retry: 2296 page = __rmqueue_smallest(zone, order, migratetype); 2297 if (unlikely(!page)) { 2298 if (migratetype == MIGRATE_MOVABLE) 2299 page = __rmqueue_cma_fallback(zone, order); 2300 2301 if (!page && __rmqueue_fallback(zone, order, migratetype)) 2302 goto retry; 2303 } 2304 2305 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2306 return page; 2307 } 2308 2309 /* 2310 * Obtain a specified number of elements from the buddy allocator, all under 2311 * a single hold of the lock, for efficiency. Add them to the supplied list. 2312 * Returns the number of new pages which were placed at *list. 2313 */ 2314 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2315 unsigned long count, struct list_head *list, 2316 int migratetype, bool cold) 2317 { 2318 int i, alloced = 0; 2319 2320 spin_lock(&zone->lock); 2321 for (i = 0; i < count; ++i) { 2322 struct page *page = __rmqueue(zone, order, migratetype); 2323 if (unlikely(page == NULL)) 2324 break; 2325 2326 if (unlikely(check_pcp_refill(page))) 2327 continue; 2328 2329 /* 2330 * Split buddy pages returned by expand() are received here 2331 * in physical page order. The page is added to the callers and 2332 * list and the list head then moves forward. From the callers 2333 * perspective, the linked list is ordered by page number in 2334 * some conditions. This is useful for IO devices that can 2335 * merge IO requests if the physical pages are ordered 2336 * properly. 2337 */ 2338 if (likely(!cold)) 2339 list_add(&page->lru, list); 2340 else 2341 list_add_tail(&page->lru, list); 2342 list = &page->lru; 2343 alloced++; 2344 if (is_migrate_cma(get_pcppage_migratetype(page))) 2345 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2346 -(1 << order)); 2347 } 2348 2349 /* 2350 * i pages were removed from the buddy list even if some leak due 2351 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2352 * on i. Do not confuse with 'alloced' which is the number of 2353 * pages added to the pcp list. 2354 */ 2355 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2356 spin_unlock(&zone->lock); 2357 return alloced; 2358 } 2359 2360 #ifdef CONFIG_NUMA 2361 /* 2362 * Called from the vmstat counter updater to drain pagesets of this 2363 * currently executing processor on remote nodes after they have 2364 * expired. 2365 * 2366 * Note that this function must be called with the thread pinned to 2367 * a single processor. 2368 */ 2369 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2370 { 2371 unsigned long flags; 2372 int to_drain, batch; 2373 2374 local_irq_save(flags); 2375 batch = READ_ONCE(pcp->batch); 2376 to_drain = min(pcp->count, batch); 2377 if (to_drain > 0) { 2378 free_pcppages_bulk(zone, to_drain, pcp); 2379 pcp->count -= to_drain; 2380 } 2381 local_irq_restore(flags); 2382 } 2383 #endif 2384 2385 /* 2386 * Drain pcplists of the indicated processor and zone. 2387 * 2388 * The processor must either be the current processor and the 2389 * thread pinned to the current processor or a processor that 2390 * is not online. 2391 */ 2392 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2393 { 2394 unsigned long flags; 2395 struct per_cpu_pageset *pset; 2396 struct per_cpu_pages *pcp; 2397 2398 local_irq_save(flags); 2399 pset = per_cpu_ptr(zone->pageset, cpu); 2400 2401 pcp = &pset->pcp; 2402 if (pcp->count) { 2403 free_pcppages_bulk(zone, pcp->count, pcp); 2404 pcp->count = 0; 2405 } 2406 local_irq_restore(flags); 2407 } 2408 2409 /* 2410 * Drain pcplists of all zones on the indicated processor. 2411 * 2412 * The processor must either be the current processor and the 2413 * thread pinned to the current processor or a processor that 2414 * is not online. 2415 */ 2416 static void drain_pages(unsigned int cpu) 2417 { 2418 struct zone *zone; 2419 2420 for_each_populated_zone(zone) { 2421 drain_pages_zone(cpu, zone); 2422 } 2423 } 2424 2425 /* 2426 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2427 * 2428 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2429 * the single zone's pages. 2430 */ 2431 void drain_local_pages(struct zone *zone) 2432 { 2433 int cpu = smp_processor_id(); 2434 2435 if (zone) 2436 drain_pages_zone(cpu, zone); 2437 else 2438 drain_pages(cpu); 2439 } 2440 2441 static void drain_local_pages_wq(struct work_struct *work) 2442 { 2443 /* 2444 * drain_all_pages doesn't use proper cpu hotplug protection so 2445 * we can race with cpu offline when the WQ can move this from 2446 * a cpu pinned worker to an unbound one. We can operate on a different 2447 * cpu which is allright but we also have to make sure to not move to 2448 * a different one. 2449 */ 2450 preempt_disable(); 2451 drain_local_pages(NULL); 2452 preempt_enable(); 2453 } 2454 2455 /* 2456 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2457 * 2458 * When zone parameter is non-NULL, spill just the single zone's pages. 2459 * 2460 * Note that this can be extremely slow as the draining happens in a workqueue. 2461 */ 2462 void drain_all_pages(struct zone *zone) 2463 { 2464 int cpu; 2465 2466 /* 2467 * Allocate in the BSS so we wont require allocation in 2468 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2469 */ 2470 static cpumask_t cpus_with_pcps; 2471 2472 /* 2473 * Make sure nobody triggers this path before mm_percpu_wq is fully 2474 * initialized. 2475 */ 2476 if (WARN_ON_ONCE(!mm_percpu_wq)) 2477 return; 2478 2479 /* Workqueues cannot recurse */ 2480 if (current->flags & PF_WQ_WORKER) 2481 return; 2482 2483 /* 2484 * Do not drain if one is already in progress unless it's specific to 2485 * a zone. Such callers are primarily CMA and memory hotplug and need 2486 * the drain to be complete when the call returns. 2487 */ 2488 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2489 if (!zone) 2490 return; 2491 mutex_lock(&pcpu_drain_mutex); 2492 } 2493 2494 /* 2495 * We don't care about racing with CPU hotplug event 2496 * as offline notification will cause the notified 2497 * cpu to drain that CPU pcps and on_each_cpu_mask 2498 * disables preemption as part of its processing 2499 */ 2500 for_each_online_cpu(cpu) { 2501 struct per_cpu_pageset *pcp; 2502 struct zone *z; 2503 bool has_pcps = false; 2504 2505 if (zone) { 2506 pcp = per_cpu_ptr(zone->pageset, cpu); 2507 if (pcp->pcp.count) 2508 has_pcps = true; 2509 } else { 2510 for_each_populated_zone(z) { 2511 pcp = per_cpu_ptr(z->pageset, cpu); 2512 if (pcp->pcp.count) { 2513 has_pcps = true; 2514 break; 2515 } 2516 } 2517 } 2518 2519 if (has_pcps) 2520 cpumask_set_cpu(cpu, &cpus_with_pcps); 2521 else 2522 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2523 } 2524 2525 for_each_cpu(cpu, &cpus_with_pcps) { 2526 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu); 2527 INIT_WORK(work, drain_local_pages_wq); 2528 queue_work_on(cpu, mm_percpu_wq, work); 2529 } 2530 for_each_cpu(cpu, &cpus_with_pcps) 2531 flush_work(per_cpu_ptr(&pcpu_drain, cpu)); 2532 2533 mutex_unlock(&pcpu_drain_mutex); 2534 } 2535 2536 #ifdef CONFIG_HIBERNATION 2537 2538 void mark_free_pages(struct zone *zone) 2539 { 2540 unsigned long pfn, max_zone_pfn; 2541 unsigned long flags; 2542 unsigned int order, t; 2543 struct page *page; 2544 2545 if (zone_is_empty(zone)) 2546 return; 2547 2548 spin_lock_irqsave(&zone->lock, flags); 2549 2550 max_zone_pfn = zone_end_pfn(zone); 2551 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2552 if (pfn_valid(pfn)) { 2553 page = pfn_to_page(pfn); 2554 2555 if (page_zone(page) != zone) 2556 continue; 2557 2558 if (!swsusp_page_is_forbidden(page)) 2559 swsusp_unset_page_free(page); 2560 } 2561 2562 for_each_migratetype_order(order, t) { 2563 list_for_each_entry(page, 2564 &zone->free_area[order].free_list[t], lru) { 2565 unsigned long i; 2566 2567 pfn = page_to_pfn(page); 2568 for (i = 0; i < (1UL << order); i++) 2569 swsusp_set_page_free(pfn_to_page(pfn + i)); 2570 } 2571 } 2572 spin_unlock_irqrestore(&zone->lock, flags); 2573 } 2574 #endif /* CONFIG_PM */ 2575 2576 /* 2577 * Free a 0-order page 2578 * cold == true ? free a cold page : free a hot page 2579 */ 2580 void free_hot_cold_page(struct page *page, bool cold) 2581 { 2582 struct zone *zone = page_zone(page); 2583 struct per_cpu_pages *pcp; 2584 unsigned long flags; 2585 unsigned long pfn = page_to_pfn(page); 2586 int migratetype; 2587 2588 if (!free_pcp_prepare(page)) 2589 return; 2590 2591 migratetype = get_pfnblock_migratetype(page, pfn); 2592 set_pcppage_migratetype(page, migratetype); 2593 local_irq_save(flags); 2594 __count_vm_event(PGFREE); 2595 2596 /* 2597 * We only track unmovable, reclaimable and movable on pcp lists. 2598 * Free ISOLATE pages back to the allocator because they are being 2599 * offlined but treat HIGHATOMIC as movable pages so we can get those 2600 * areas back if necessary. Otherwise, we may have to free 2601 * excessively into the page allocator 2602 */ 2603 if (migratetype >= MIGRATE_PCPTYPES) { 2604 if (unlikely(is_migrate_isolate(migratetype))) { 2605 free_one_page(zone, page, pfn, 0, migratetype); 2606 goto out; 2607 } 2608 migratetype = MIGRATE_MOVABLE; 2609 } 2610 2611 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2612 if (!cold) 2613 list_add(&page->lru, &pcp->lists[migratetype]); 2614 else 2615 list_add_tail(&page->lru, &pcp->lists[migratetype]); 2616 pcp->count++; 2617 if (pcp->count >= pcp->high) { 2618 unsigned long batch = READ_ONCE(pcp->batch); 2619 free_pcppages_bulk(zone, batch, pcp); 2620 pcp->count -= batch; 2621 } 2622 2623 out: 2624 local_irq_restore(flags); 2625 } 2626 2627 /* 2628 * Free a list of 0-order pages 2629 */ 2630 void free_hot_cold_page_list(struct list_head *list, bool cold) 2631 { 2632 struct page *page, *next; 2633 2634 list_for_each_entry_safe(page, next, list, lru) { 2635 trace_mm_page_free_batched(page, cold); 2636 free_hot_cold_page(page, cold); 2637 } 2638 } 2639 2640 /* 2641 * split_page takes a non-compound higher-order page, and splits it into 2642 * n (1<<order) sub-pages: page[0..n] 2643 * Each sub-page must be freed individually. 2644 * 2645 * Note: this is probably too low level an operation for use in drivers. 2646 * Please consult with lkml before using this in your driver. 2647 */ 2648 void split_page(struct page *page, unsigned int order) 2649 { 2650 int i; 2651 2652 VM_BUG_ON_PAGE(PageCompound(page), page); 2653 VM_BUG_ON_PAGE(!page_count(page), page); 2654 2655 #ifdef CONFIG_KMEMCHECK 2656 /* 2657 * Split shadow pages too, because free(page[0]) would 2658 * otherwise free the whole shadow. 2659 */ 2660 if (kmemcheck_page_is_tracked(page)) 2661 split_page(virt_to_page(page[0].shadow), order); 2662 #endif 2663 2664 for (i = 1; i < (1 << order); i++) 2665 set_page_refcounted(page + i); 2666 split_page_owner(page, order); 2667 } 2668 EXPORT_SYMBOL_GPL(split_page); 2669 2670 int __isolate_free_page(struct page *page, unsigned int order) 2671 { 2672 unsigned long watermark; 2673 struct zone *zone; 2674 int mt; 2675 2676 BUG_ON(!PageBuddy(page)); 2677 2678 zone = page_zone(page); 2679 mt = get_pageblock_migratetype(page); 2680 2681 if (!is_migrate_isolate(mt)) { 2682 /* 2683 * Obey watermarks as if the page was being allocated. We can 2684 * emulate a high-order watermark check with a raised order-0 2685 * watermark, because we already know our high-order page 2686 * exists. 2687 */ 2688 watermark = min_wmark_pages(zone) + (1UL << order); 2689 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2690 return 0; 2691 2692 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2693 } 2694 2695 /* Remove page from free list */ 2696 list_del(&page->lru); 2697 zone->free_area[order].nr_free--; 2698 rmv_page_order(page); 2699 2700 /* 2701 * Set the pageblock if the isolated page is at least half of a 2702 * pageblock 2703 */ 2704 if (order >= pageblock_order - 1) { 2705 struct page *endpage = page + (1 << order) - 1; 2706 for (; page < endpage; page += pageblock_nr_pages) { 2707 int mt = get_pageblock_migratetype(page); 2708 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 2709 && !is_migrate_highatomic(mt)) 2710 set_pageblock_migratetype(page, 2711 MIGRATE_MOVABLE); 2712 } 2713 } 2714 2715 2716 return 1UL << order; 2717 } 2718 2719 /* 2720 * Update NUMA hit/miss statistics 2721 * 2722 * Must be called with interrupts disabled. 2723 */ 2724 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 2725 { 2726 #ifdef CONFIG_NUMA 2727 enum zone_stat_item local_stat = NUMA_LOCAL; 2728 2729 if (z->node != numa_node_id()) 2730 local_stat = NUMA_OTHER; 2731 2732 if (z->node == preferred_zone->node) 2733 __inc_zone_state(z, NUMA_HIT); 2734 else { 2735 __inc_zone_state(z, NUMA_MISS); 2736 __inc_zone_state(preferred_zone, NUMA_FOREIGN); 2737 } 2738 __inc_zone_state(z, local_stat); 2739 #endif 2740 } 2741 2742 /* Remove page from the per-cpu list, caller must protect the list */ 2743 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 2744 bool cold, struct per_cpu_pages *pcp, 2745 struct list_head *list) 2746 { 2747 struct page *page; 2748 2749 do { 2750 if (list_empty(list)) { 2751 pcp->count += rmqueue_bulk(zone, 0, 2752 pcp->batch, list, 2753 migratetype, cold); 2754 if (unlikely(list_empty(list))) 2755 return NULL; 2756 } 2757 2758 if (cold) 2759 page = list_last_entry(list, struct page, lru); 2760 else 2761 page = list_first_entry(list, struct page, lru); 2762 2763 list_del(&page->lru); 2764 pcp->count--; 2765 } while (check_new_pcp(page)); 2766 2767 return page; 2768 } 2769 2770 /* Lock and remove page from the per-cpu list */ 2771 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2772 struct zone *zone, unsigned int order, 2773 gfp_t gfp_flags, int migratetype) 2774 { 2775 struct per_cpu_pages *pcp; 2776 struct list_head *list; 2777 bool cold = ((gfp_flags & __GFP_COLD) != 0); 2778 struct page *page; 2779 unsigned long flags; 2780 2781 local_irq_save(flags); 2782 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2783 list = &pcp->lists[migratetype]; 2784 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list); 2785 if (page) { 2786 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2787 zone_statistics(preferred_zone, zone); 2788 } 2789 local_irq_restore(flags); 2790 return page; 2791 } 2792 2793 /* 2794 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2795 */ 2796 static inline 2797 struct page *rmqueue(struct zone *preferred_zone, 2798 struct zone *zone, unsigned int order, 2799 gfp_t gfp_flags, unsigned int alloc_flags, 2800 int migratetype) 2801 { 2802 unsigned long flags; 2803 struct page *page; 2804 2805 if (likely(order == 0)) { 2806 page = rmqueue_pcplist(preferred_zone, zone, order, 2807 gfp_flags, migratetype); 2808 goto out; 2809 } 2810 2811 /* 2812 * We most definitely don't want callers attempting to 2813 * allocate greater than order-1 page units with __GFP_NOFAIL. 2814 */ 2815 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2816 spin_lock_irqsave(&zone->lock, flags); 2817 2818 do { 2819 page = NULL; 2820 if (alloc_flags & ALLOC_HARDER) { 2821 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2822 if (page) 2823 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2824 } 2825 if (!page) 2826 page = __rmqueue(zone, order, migratetype); 2827 } while (page && check_new_pages(page, order)); 2828 spin_unlock(&zone->lock); 2829 if (!page) 2830 goto failed; 2831 __mod_zone_freepage_state(zone, -(1 << order), 2832 get_pcppage_migratetype(page)); 2833 2834 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2835 zone_statistics(preferred_zone, zone); 2836 local_irq_restore(flags); 2837 2838 out: 2839 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 2840 return page; 2841 2842 failed: 2843 local_irq_restore(flags); 2844 return NULL; 2845 } 2846 2847 #ifdef CONFIG_FAIL_PAGE_ALLOC 2848 2849 static struct { 2850 struct fault_attr attr; 2851 2852 bool ignore_gfp_highmem; 2853 bool ignore_gfp_reclaim; 2854 u32 min_order; 2855 } fail_page_alloc = { 2856 .attr = FAULT_ATTR_INITIALIZER, 2857 .ignore_gfp_reclaim = true, 2858 .ignore_gfp_highmem = true, 2859 .min_order = 1, 2860 }; 2861 2862 static int __init setup_fail_page_alloc(char *str) 2863 { 2864 return setup_fault_attr(&fail_page_alloc.attr, str); 2865 } 2866 __setup("fail_page_alloc=", setup_fail_page_alloc); 2867 2868 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2869 { 2870 if (order < fail_page_alloc.min_order) 2871 return false; 2872 if (gfp_mask & __GFP_NOFAIL) 2873 return false; 2874 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 2875 return false; 2876 if (fail_page_alloc.ignore_gfp_reclaim && 2877 (gfp_mask & __GFP_DIRECT_RECLAIM)) 2878 return false; 2879 2880 return should_fail(&fail_page_alloc.attr, 1 << order); 2881 } 2882 2883 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 2884 2885 static int __init fail_page_alloc_debugfs(void) 2886 { 2887 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 2888 struct dentry *dir; 2889 2890 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 2891 &fail_page_alloc.attr); 2892 if (IS_ERR(dir)) 2893 return PTR_ERR(dir); 2894 2895 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 2896 &fail_page_alloc.ignore_gfp_reclaim)) 2897 goto fail; 2898 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 2899 &fail_page_alloc.ignore_gfp_highmem)) 2900 goto fail; 2901 if (!debugfs_create_u32("min-order", mode, dir, 2902 &fail_page_alloc.min_order)) 2903 goto fail; 2904 2905 return 0; 2906 fail: 2907 debugfs_remove_recursive(dir); 2908 2909 return -ENOMEM; 2910 } 2911 2912 late_initcall(fail_page_alloc_debugfs); 2913 2914 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 2915 2916 #else /* CONFIG_FAIL_PAGE_ALLOC */ 2917 2918 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2919 { 2920 return false; 2921 } 2922 2923 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 2924 2925 /* 2926 * Return true if free base pages are above 'mark'. For high-order checks it 2927 * will return true of the order-0 watermark is reached and there is at least 2928 * one free page of a suitable size. Checking now avoids taking the zone lock 2929 * to check in the allocation paths if no pages are free. 2930 */ 2931 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2932 int classzone_idx, unsigned int alloc_flags, 2933 long free_pages) 2934 { 2935 long min = mark; 2936 int o; 2937 const bool alloc_harder = (alloc_flags & ALLOC_HARDER); 2938 2939 /* free_pages may go negative - that's OK */ 2940 free_pages -= (1 << order) - 1; 2941 2942 if (alloc_flags & ALLOC_HIGH) 2943 min -= min / 2; 2944 2945 /* 2946 * If the caller does not have rights to ALLOC_HARDER then subtract 2947 * the high-atomic reserves. This will over-estimate the size of the 2948 * atomic reserve but it avoids a search. 2949 */ 2950 if (likely(!alloc_harder)) 2951 free_pages -= z->nr_reserved_highatomic; 2952 else 2953 min -= min / 4; 2954 2955 #ifdef CONFIG_CMA 2956 /* If allocation can't use CMA areas don't use free CMA pages */ 2957 if (!(alloc_flags & ALLOC_CMA)) 2958 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 2959 #endif 2960 2961 /* 2962 * Check watermarks for an order-0 allocation request. If these 2963 * are not met, then a high-order request also cannot go ahead 2964 * even if a suitable page happened to be free. 2965 */ 2966 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 2967 return false; 2968 2969 /* If this is an order-0 request then the watermark is fine */ 2970 if (!order) 2971 return true; 2972 2973 /* For a high-order request, check at least one suitable page is free */ 2974 for (o = order; o < MAX_ORDER; o++) { 2975 struct free_area *area = &z->free_area[o]; 2976 int mt; 2977 2978 if (!area->nr_free) 2979 continue; 2980 2981 if (alloc_harder) 2982 return true; 2983 2984 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 2985 if (!list_empty(&area->free_list[mt])) 2986 return true; 2987 } 2988 2989 #ifdef CONFIG_CMA 2990 if ((alloc_flags & ALLOC_CMA) && 2991 !list_empty(&area->free_list[MIGRATE_CMA])) { 2992 return true; 2993 } 2994 #endif 2995 } 2996 return false; 2997 } 2998 2999 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3000 int classzone_idx, unsigned int alloc_flags) 3001 { 3002 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3003 zone_page_state(z, NR_FREE_PAGES)); 3004 } 3005 3006 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3007 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3008 { 3009 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3010 long cma_pages = 0; 3011 3012 #ifdef CONFIG_CMA 3013 /* If allocation can't use CMA areas don't use free CMA pages */ 3014 if (!(alloc_flags & ALLOC_CMA)) 3015 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3016 #endif 3017 3018 /* 3019 * Fast check for order-0 only. If this fails then the reserves 3020 * need to be calculated. There is a corner case where the check 3021 * passes but only the high-order atomic reserve are free. If 3022 * the caller is !atomic then it'll uselessly search the free 3023 * list. That corner case is then slower but it is harmless. 3024 */ 3025 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3026 return true; 3027 3028 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3029 free_pages); 3030 } 3031 3032 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3033 unsigned long mark, int classzone_idx) 3034 { 3035 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3036 3037 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3038 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3039 3040 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3041 free_pages); 3042 } 3043 3044 #ifdef CONFIG_NUMA 3045 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3046 { 3047 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3048 RECLAIM_DISTANCE; 3049 } 3050 #else /* CONFIG_NUMA */ 3051 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3052 { 3053 return true; 3054 } 3055 #endif /* CONFIG_NUMA */ 3056 3057 /* 3058 * get_page_from_freelist goes through the zonelist trying to allocate 3059 * a page. 3060 */ 3061 static struct page * 3062 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3063 const struct alloc_context *ac) 3064 { 3065 struct zoneref *z = ac->preferred_zoneref; 3066 struct zone *zone; 3067 struct pglist_data *last_pgdat_dirty_limit = NULL; 3068 3069 /* 3070 * Scan zonelist, looking for a zone with enough free. 3071 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3072 */ 3073 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3074 ac->nodemask) { 3075 struct page *page; 3076 unsigned long mark; 3077 3078 if (cpusets_enabled() && 3079 (alloc_flags & ALLOC_CPUSET) && 3080 !__cpuset_zone_allowed(zone, gfp_mask)) 3081 continue; 3082 /* 3083 * When allocating a page cache page for writing, we 3084 * want to get it from a node that is within its dirty 3085 * limit, such that no single node holds more than its 3086 * proportional share of globally allowed dirty pages. 3087 * The dirty limits take into account the node's 3088 * lowmem reserves and high watermark so that kswapd 3089 * should be able to balance it without having to 3090 * write pages from its LRU list. 3091 * 3092 * XXX: For now, allow allocations to potentially 3093 * exceed the per-node dirty limit in the slowpath 3094 * (spread_dirty_pages unset) before going into reclaim, 3095 * which is important when on a NUMA setup the allowed 3096 * nodes are together not big enough to reach the 3097 * global limit. The proper fix for these situations 3098 * will require awareness of nodes in the 3099 * dirty-throttling and the flusher threads. 3100 */ 3101 if (ac->spread_dirty_pages) { 3102 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3103 continue; 3104 3105 if (!node_dirty_ok(zone->zone_pgdat)) { 3106 last_pgdat_dirty_limit = zone->zone_pgdat; 3107 continue; 3108 } 3109 } 3110 3111 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 3112 if (!zone_watermark_fast(zone, order, mark, 3113 ac_classzone_idx(ac), alloc_flags)) { 3114 int ret; 3115 3116 /* Checked here to keep the fast path fast */ 3117 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3118 if (alloc_flags & ALLOC_NO_WATERMARKS) 3119 goto try_this_zone; 3120 3121 if (node_reclaim_mode == 0 || 3122 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3123 continue; 3124 3125 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3126 switch (ret) { 3127 case NODE_RECLAIM_NOSCAN: 3128 /* did not scan */ 3129 continue; 3130 case NODE_RECLAIM_FULL: 3131 /* scanned but unreclaimable */ 3132 continue; 3133 default: 3134 /* did we reclaim enough */ 3135 if (zone_watermark_ok(zone, order, mark, 3136 ac_classzone_idx(ac), alloc_flags)) 3137 goto try_this_zone; 3138 3139 continue; 3140 } 3141 } 3142 3143 try_this_zone: 3144 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3145 gfp_mask, alloc_flags, ac->migratetype); 3146 if (page) { 3147 prep_new_page(page, order, gfp_mask, alloc_flags); 3148 3149 /* 3150 * If this is a high-order atomic allocation then check 3151 * if the pageblock should be reserved for the future 3152 */ 3153 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3154 reserve_highatomic_pageblock(page, zone, order); 3155 3156 return page; 3157 } 3158 } 3159 3160 return NULL; 3161 } 3162 3163 /* 3164 * Large machines with many possible nodes should not always dump per-node 3165 * meminfo in irq context. 3166 */ 3167 static inline bool should_suppress_show_mem(void) 3168 { 3169 bool ret = false; 3170 3171 #if NODES_SHIFT > 8 3172 ret = in_interrupt(); 3173 #endif 3174 return ret; 3175 } 3176 3177 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3178 { 3179 unsigned int filter = SHOW_MEM_FILTER_NODES; 3180 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3181 3182 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs)) 3183 return; 3184 3185 /* 3186 * This documents exceptions given to allocations in certain 3187 * contexts that are allowed to allocate outside current's set 3188 * of allowed nodes. 3189 */ 3190 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3191 if (test_thread_flag(TIF_MEMDIE) || 3192 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3193 filter &= ~SHOW_MEM_FILTER_NODES; 3194 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3195 filter &= ~SHOW_MEM_FILTER_NODES; 3196 3197 show_mem(filter, nodemask); 3198 } 3199 3200 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3201 { 3202 struct va_format vaf; 3203 va_list args; 3204 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3205 DEFAULT_RATELIMIT_BURST); 3206 3207 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3208 return; 3209 3210 pr_warn("%s: ", current->comm); 3211 3212 va_start(args, fmt); 3213 vaf.fmt = fmt; 3214 vaf.va = &args; 3215 pr_cont("%pV", &vaf); 3216 va_end(args); 3217 3218 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask); 3219 if (nodemask) 3220 pr_cont("%*pbl\n", nodemask_pr_args(nodemask)); 3221 else 3222 pr_cont("(null)\n"); 3223 3224 cpuset_print_current_mems_allowed(); 3225 3226 dump_stack(); 3227 warn_alloc_show_mem(gfp_mask, nodemask); 3228 } 3229 3230 static inline struct page * 3231 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3232 unsigned int alloc_flags, 3233 const struct alloc_context *ac) 3234 { 3235 struct page *page; 3236 3237 page = get_page_from_freelist(gfp_mask, order, 3238 alloc_flags|ALLOC_CPUSET, ac); 3239 /* 3240 * fallback to ignore cpuset restriction if our nodes 3241 * are depleted 3242 */ 3243 if (!page) 3244 page = get_page_from_freelist(gfp_mask, order, 3245 alloc_flags, ac); 3246 3247 return page; 3248 } 3249 3250 static inline struct page * 3251 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3252 const struct alloc_context *ac, unsigned long *did_some_progress) 3253 { 3254 struct oom_control oc = { 3255 .zonelist = ac->zonelist, 3256 .nodemask = ac->nodemask, 3257 .memcg = NULL, 3258 .gfp_mask = gfp_mask, 3259 .order = order, 3260 }; 3261 struct page *page; 3262 3263 *did_some_progress = 0; 3264 3265 /* 3266 * Acquire the oom lock. If that fails, somebody else is 3267 * making progress for us. 3268 */ 3269 if (!mutex_trylock(&oom_lock)) { 3270 *did_some_progress = 1; 3271 schedule_timeout_uninterruptible(1); 3272 return NULL; 3273 } 3274 3275 /* 3276 * Go through the zonelist yet one more time, keep very high watermark 3277 * here, this is only to catch a parallel oom killing, we must fail if 3278 * we're still under heavy pressure. 3279 */ 3280 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order, 3281 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3282 if (page) 3283 goto out; 3284 3285 /* Coredumps can quickly deplete all memory reserves */ 3286 if (current->flags & PF_DUMPCORE) 3287 goto out; 3288 /* The OOM killer will not help higher order allocs */ 3289 if (order > PAGE_ALLOC_COSTLY_ORDER) 3290 goto out; 3291 /* 3292 * We have already exhausted all our reclaim opportunities without any 3293 * success so it is time to admit defeat. We will skip the OOM killer 3294 * because it is very likely that the caller has a more reasonable 3295 * fallback than shooting a random task. 3296 */ 3297 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3298 goto out; 3299 /* The OOM killer does not needlessly kill tasks for lowmem */ 3300 if (ac->high_zoneidx < ZONE_NORMAL) 3301 goto out; 3302 if (pm_suspended_storage()) 3303 goto out; 3304 /* 3305 * XXX: GFP_NOFS allocations should rather fail than rely on 3306 * other request to make a forward progress. 3307 * We are in an unfortunate situation where out_of_memory cannot 3308 * do much for this context but let's try it to at least get 3309 * access to memory reserved if the current task is killed (see 3310 * out_of_memory). Once filesystems are ready to handle allocation 3311 * failures more gracefully we should just bail out here. 3312 */ 3313 3314 /* The OOM killer may not free memory on a specific node */ 3315 if (gfp_mask & __GFP_THISNODE) 3316 goto out; 3317 3318 /* Exhausted what can be done so it's blamo time */ 3319 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3320 *did_some_progress = 1; 3321 3322 /* 3323 * Help non-failing allocations by giving them access to memory 3324 * reserves 3325 */ 3326 if (gfp_mask & __GFP_NOFAIL) 3327 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3328 ALLOC_NO_WATERMARKS, ac); 3329 } 3330 out: 3331 mutex_unlock(&oom_lock); 3332 return page; 3333 } 3334 3335 /* 3336 * Maximum number of compaction retries wit a progress before OOM 3337 * killer is consider as the only way to move forward. 3338 */ 3339 #define MAX_COMPACT_RETRIES 16 3340 3341 #ifdef CONFIG_COMPACTION 3342 /* Try memory compaction for high-order allocations before reclaim */ 3343 static struct page * 3344 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3345 unsigned int alloc_flags, const struct alloc_context *ac, 3346 enum compact_priority prio, enum compact_result *compact_result) 3347 { 3348 struct page *page; 3349 unsigned int noreclaim_flag; 3350 3351 if (!order) 3352 return NULL; 3353 3354 noreclaim_flag = memalloc_noreclaim_save(); 3355 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3356 prio); 3357 memalloc_noreclaim_restore(noreclaim_flag); 3358 3359 if (*compact_result <= COMPACT_INACTIVE) 3360 return NULL; 3361 3362 /* 3363 * At least in one zone compaction wasn't deferred or skipped, so let's 3364 * count a compaction stall 3365 */ 3366 count_vm_event(COMPACTSTALL); 3367 3368 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3369 3370 if (page) { 3371 struct zone *zone = page_zone(page); 3372 3373 zone->compact_blockskip_flush = false; 3374 compaction_defer_reset(zone, order, true); 3375 count_vm_event(COMPACTSUCCESS); 3376 return page; 3377 } 3378 3379 /* 3380 * It's bad if compaction run occurs and fails. The most likely reason 3381 * is that pages exist, but not enough to satisfy watermarks. 3382 */ 3383 count_vm_event(COMPACTFAIL); 3384 3385 cond_resched(); 3386 3387 return NULL; 3388 } 3389 3390 static inline bool 3391 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3392 enum compact_result compact_result, 3393 enum compact_priority *compact_priority, 3394 int *compaction_retries) 3395 { 3396 int max_retries = MAX_COMPACT_RETRIES; 3397 int min_priority; 3398 bool ret = false; 3399 int retries = *compaction_retries; 3400 enum compact_priority priority = *compact_priority; 3401 3402 if (!order) 3403 return false; 3404 3405 if (compaction_made_progress(compact_result)) 3406 (*compaction_retries)++; 3407 3408 /* 3409 * compaction considers all the zone as desperately out of memory 3410 * so it doesn't really make much sense to retry except when the 3411 * failure could be caused by insufficient priority 3412 */ 3413 if (compaction_failed(compact_result)) 3414 goto check_priority; 3415 3416 /* 3417 * make sure the compaction wasn't deferred or didn't bail out early 3418 * due to locks contention before we declare that we should give up. 3419 * But do not retry if the given zonelist is not suitable for 3420 * compaction. 3421 */ 3422 if (compaction_withdrawn(compact_result)) { 3423 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3424 goto out; 3425 } 3426 3427 /* 3428 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3429 * costly ones because they are de facto nofail and invoke OOM 3430 * killer to move on while costly can fail and users are ready 3431 * to cope with that. 1/4 retries is rather arbitrary but we 3432 * would need much more detailed feedback from compaction to 3433 * make a better decision. 3434 */ 3435 if (order > PAGE_ALLOC_COSTLY_ORDER) 3436 max_retries /= 4; 3437 if (*compaction_retries <= max_retries) { 3438 ret = true; 3439 goto out; 3440 } 3441 3442 /* 3443 * Make sure there are attempts at the highest priority if we exhausted 3444 * all retries or failed at the lower priorities. 3445 */ 3446 check_priority: 3447 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3448 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3449 3450 if (*compact_priority > min_priority) { 3451 (*compact_priority)--; 3452 *compaction_retries = 0; 3453 ret = true; 3454 } 3455 out: 3456 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3457 return ret; 3458 } 3459 #else 3460 static inline struct page * 3461 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3462 unsigned int alloc_flags, const struct alloc_context *ac, 3463 enum compact_priority prio, enum compact_result *compact_result) 3464 { 3465 *compact_result = COMPACT_SKIPPED; 3466 return NULL; 3467 } 3468 3469 static inline bool 3470 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3471 enum compact_result compact_result, 3472 enum compact_priority *compact_priority, 3473 int *compaction_retries) 3474 { 3475 struct zone *zone; 3476 struct zoneref *z; 3477 3478 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3479 return false; 3480 3481 /* 3482 * There are setups with compaction disabled which would prefer to loop 3483 * inside the allocator rather than hit the oom killer prematurely. 3484 * Let's give them a good hope and keep retrying while the order-0 3485 * watermarks are OK. 3486 */ 3487 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3488 ac->nodemask) { 3489 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3490 ac_classzone_idx(ac), alloc_flags)) 3491 return true; 3492 } 3493 return false; 3494 } 3495 #endif /* CONFIG_COMPACTION */ 3496 3497 /* Perform direct synchronous page reclaim */ 3498 static int 3499 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3500 const struct alloc_context *ac) 3501 { 3502 struct reclaim_state reclaim_state; 3503 int progress; 3504 unsigned int noreclaim_flag; 3505 3506 cond_resched(); 3507 3508 /* We now go into synchronous reclaim */ 3509 cpuset_memory_pressure_bump(); 3510 noreclaim_flag = memalloc_noreclaim_save(); 3511 lockdep_set_current_reclaim_state(gfp_mask); 3512 reclaim_state.reclaimed_slab = 0; 3513 current->reclaim_state = &reclaim_state; 3514 3515 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3516 ac->nodemask); 3517 3518 current->reclaim_state = NULL; 3519 lockdep_clear_current_reclaim_state(); 3520 memalloc_noreclaim_restore(noreclaim_flag); 3521 3522 cond_resched(); 3523 3524 return progress; 3525 } 3526 3527 /* The really slow allocator path where we enter direct reclaim */ 3528 static inline struct page * 3529 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3530 unsigned int alloc_flags, const struct alloc_context *ac, 3531 unsigned long *did_some_progress) 3532 { 3533 struct page *page = NULL; 3534 bool drained = false; 3535 3536 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3537 if (unlikely(!(*did_some_progress))) 3538 return NULL; 3539 3540 retry: 3541 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3542 3543 /* 3544 * If an allocation failed after direct reclaim, it could be because 3545 * pages are pinned on the per-cpu lists or in high alloc reserves. 3546 * Shrink them them and try again 3547 */ 3548 if (!page && !drained) { 3549 unreserve_highatomic_pageblock(ac, false); 3550 drain_all_pages(NULL); 3551 drained = true; 3552 goto retry; 3553 } 3554 3555 return page; 3556 } 3557 3558 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) 3559 { 3560 struct zoneref *z; 3561 struct zone *zone; 3562 pg_data_t *last_pgdat = NULL; 3563 3564 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3565 ac->high_zoneidx, ac->nodemask) { 3566 if (last_pgdat != zone->zone_pgdat) 3567 wakeup_kswapd(zone, order, ac->high_zoneidx); 3568 last_pgdat = zone->zone_pgdat; 3569 } 3570 } 3571 3572 static inline unsigned int 3573 gfp_to_alloc_flags(gfp_t gfp_mask) 3574 { 3575 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3576 3577 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 3578 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 3579 3580 /* 3581 * The caller may dip into page reserves a bit more if the caller 3582 * cannot run direct reclaim, or if the caller has realtime scheduling 3583 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3584 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 3585 */ 3586 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 3587 3588 if (gfp_mask & __GFP_ATOMIC) { 3589 /* 3590 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3591 * if it can't schedule. 3592 */ 3593 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3594 alloc_flags |= ALLOC_HARDER; 3595 /* 3596 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 3597 * comment for __cpuset_node_allowed(). 3598 */ 3599 alloc_flags &= ~ALLOC_CPUSET; 3600 } else if (unlikely(rt_task(current)) && !in_interrupt()) 3601 alloc_flags |= ALLOC_HARDER; 3602 3603 #ifdef CONFIG_CMA 3604 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3605 alloc_flags |= ALLOC_CMA; 3606 #endif 3607 return alloc_flags; 3608 } 3609 3610 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3611 { 3612 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3613 return false; 3614 3615 if (gfp_mask & __GFP_MEMALLOC) 3616 return true; 3617 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3618 return true; 3619 if (!in_interrupt() && 3620 ((current->flags & PF_MEMALLOC) || 3621 unlikely(test_thread_flag(TIF_MEMDIE)))) 3622 return true; 3623 3624 return false; 3625 } 3626 3627 /* 3628 * Checks whether it makes sense to retry the reclaim to make a forward progress 3629 * for the given allocation request. 3630 * 3631 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 3632 * without success, or when we couldn't even meet the watermark if we 3633 * reclaimed all remaining pages on the LRU lists. 3634 * 3635 * Returns true if a retry is viable or false to enter the oom path. 3636 */ 3637 static inline bool 3638 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3639 struct alloc_context *ac, int alloc_flags, 3640 bool did_some_progress, int *no_progress_loops) 3641 { 3642 struct zone *zone; 3643 struct zoneref *z; 3644 3645 /* 3646 * Costly allocations might have made a progress but this doesn't mean 3647 * their order will become available due to high fragmentation so 3648 * always increment the no progress counter for them 3649 */ 3650 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3651 *no_progress_loops = 0; 3652 else 3653 (*no_progress_loops)++; 3654 3655 /* 3656 * Make sure we converge to OOM if we cannot make any progress 3657 * several times in the row. 3658 */ 3659 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 3660 /* Before OOM, exhaust highatomic_reserve */ 3661 return unreserve_highatomic_pageblock(ac, true); 3662 } 3663 3664 /* 3665 * Keep reclaiming pages while there is a chance this will lead 3666 * somewhere. If none of the target zones can satisfy our allocation 3667 * request even if all reclaimable pages are considered then we are 3668 * screwed and have to go OOM. 3669 */ 3670 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3671 ac->nodemask) { 3672 unsigned long available; 3673 unsigned long reclaimable; 3674 unsigned long min_wmark = min_wmark_pages(zone); 3675 bool wmark; 3676 3677 available = reclaimable = zone_reclaimable_pages(zone); 3678 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3679 3680 /* 3681 * Would the allocation succeed if we reclaimed all 3682 * reclaimable pages? 3683 */ 3684 wmark = __zone_watermark_ok(zone, order, min_wmark, 3685 ac_classzone_idx(ac), alloc_flags, available); 3686 trace_reclaim_retry_zone(z, order, reclaimable, 3687 available, min_wmark, *no_progress_loops, wmark); 3688 if (wmark) { 3689 /* 3690 * If we didn't make any progress and have a lot of 3691 * dirty + writeback pages then we should wait for 3692 * an IO to complete to slow down the reclaim and 3693 * prevent from pre mature OOM 3694 */ 3695 if (!did_some_progress) { 3696 unsigned long write_pending; 3697 3698 write_pending = zone_page_state_snapshot(zone, 3699 NR_ZONE_WRITE_PENDING); 3700 3701 if (2 * write_pending > reclaimable) { 3702 congestion_wait(BLK_RW_ASYNC, HZ/10); 3703 return true; 3704 } 3705 } 3706 3707 /* 3708 * Memory allocation/reclaim might be called from a WQ 3709 * context and the current implementation of the WQ 3710 * concurrency control doesn't recognize that 3711 * a particular WQ is congested if the worker thread is 3712 * looping without ever sleeping. Therefore we have to 3713 * do a short sleep here rather than calling 3714 * cond_resched(). 3715 */ 3716 if (current->flags & PF_WQ_WORKER) 3717 schedule_timeout_uninterruptible(1); 3718 else 3719 cond_resched(); 3720 3721 return true; 3722 } 3723 } 3724 3725 return false; 3726 } 3727 3728 static inline bool 3729 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 3730 { 3731 /* 3732 * It's possible that cpuset's mems_allowed and the nodemask from 3733 * mempolicy don't intersect. This should be normally dealt with by 3734 * policy_nodemask(), but it's possible to race with cpuset update in 3735 * such a way the check therein was true, and then it became false 3736 * before we got our cpuset_mems_cookie here. 3737 * This assumes that for all allocations, ac->nodemask can come only 3738 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 3739 * when it does not intersect with the cpuset restrictions) or the 3740 * caller can deal with a violated nodemask. 3741 */ 3742 if (cpusets_enabled() && ac->nodemask && 3743 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 3744 ac->nodemask = NULL; 3745 return true; 3746 } 3747 3748 /* 3749 * When updating a task's mems_allowed or mempolicy nodemask, it is 3750 * possible to race with parallel threads in such a way that our 3751 * allocation can fail while the mask is being updated. If we are about 3752 * to fail, check if the cpuset changed during allocation and if so, 3753 * retry. 3754 */ 3755 if (read_mems_allowed_retry(cpuset_mems_cookie)) 3756 return true; 3757 3758 return false; 3759 } 3760 3761 static inline struct page * 3762 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 3763 struct alloc_context *ac) 3764 { 3765 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 3766 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 3767 struct page *page = NULL; 3768 unsigned int alloc_flags; 3769 unsigned long did_some_progress; 3770 enum compact_priority compact_priority; 3771 enum compact_result compact_result; 3772 int compaction_retries; 3773 int no_progress_loops; 3774 unsigned long alloc_start = jiffies; 3775 unsigned int stall_timeout = 10 * HZ; 3776 unsigned int cpuset_mems_cookie; 3777 3778 /* 3779 * In the slowpath, we sanity check order to avoid ever trying to 3780 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 3781 * be using allocators in order of preference for an area that is 3782 * too large. 3783 */ 3784 if (order >= MAX_ORDER) { 3785 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 3786 return NULL; 3787 } 3788 3789 /* 3790 * We also sanity check to catch abuse of atomic reserves being used by 3791 * callers that are not in atomic context. 3792 */ 3793 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 3794 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 3795 gfp_mask &= ~__GFP_ATOMIC; 3796 3797 retry_cpuset: 3798 compaction_retries = 0; 3799 no_progress_loops = 0; 3800 compact_priority = DEF_COMPACT_PRIORITY; 3801 cpuset_mems_cookie = read_mems_allowed_begin(); 3802 3803 /* 3804 * The fast path uses conservative alloc_flags to succeed only until 3805 * kswapd needs to be woken up, and to avoid the cost of setting up 3806 * alloc_flags precisely. So we do that now. 3807 */ 3808 alloc_flags = gfp_to_alloc_flags(gfp_mask); 3809 3810 /* 3811 * We need to recalculate the starting point for the zonelist iterator 3812 * because we might have used different nodemask in the fast path, or 3813 * there was a cpuset modification and we are retrying - otherwise we 3814 * could end up iterating over non-eligible zones endlessly. 3815 */ 3816 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3817 ac->high_zoneidx, ac->nodemask); 3818 if (!ac->preferred_zoneref->zone) 3819 goto nopage; 3820 3821 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3822 wake_all_kswapds(order, ac); 3823 3824 /* 3825 * The adjusted alloc_flags might result in immediate success, so try 3826 * that first 3827 */ 3828 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3829 if (page) 3830 goto got_pg; 3831 3832 /* 3833 * For costly allocations, try direct compaction first, as it's likely 3834 * that we have enough base pages and don't need to reclaim. For non- 3835 * movable high-order allocations, do that as well, as compaction will 3836 * try prevent permanent fragmentation by migrating from blocks of the 3837 * same migratetype. 3838 * Don't try this for allocations that are allowed to ignore 3839 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 3840 */ 3841 if (can_direct_reclaim && 3842 (costly_order || 3843 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 3844 && !gfp_pfmemalloc_allowed(gfp_mask)) { 3845 page = __alloc_pages_direct_compact(gfp_mask, order, 3846 alloc_flags, ac, 3847 INIT_COMPACT_PRIORITY, 3848 &compact_result); 3849 if (page) 3850 goto got_pg; 3851 3852 /* 3853 * Checks for costly allocations with __GFP_NORETRY, which 3854 * includes THP page fault allocations 3855 */ 3856 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 3857 /* 3858 * If compaction is deferred for high-order allocations, 3859 * it is because sync compaction recently failed. If 3860 * this is the case and the caller requested a THP 3861 * allocation, we do not want to heavily disrupt the 3862 * system, so we fail the allocation instead of entering 3863 * direct reclaim. 3864 */ 3865 if (compact_result == COMPACT_DEFERRED) 3866 goto nopage; 3867 3868 /* 3869 * Looks like reclaim/compaction is worth trying, but 3870 * sync compaction could be very expensive, so keep 3871 * using async compaction. 3872 */ 3873 compact_priority = INIT_COMPACT_PRIORITY; 3874 } 3875 } 3876 3877 retry: 3878 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 3879 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3880 wake_all_kswapds(order, ac); 3881 3882 if (gfp_pfmemalloc_allowed(gfp_mask)) 3883 alloc_flags = ALLOC_NO_WATERMARKS; 3884 3885 /* 3886 * Reset the zonelist iterators if memory policies can be ignored. 3887 * These allocations are high priority and system rather than user 3888 * orientated. 3889 */ 3890 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) { 3891 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 3892 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3893 ac->high_zoneidx, ac->nodemask); 3894 } 3895 3896 /* Attempt with potentially adjusted zonelist and alloc_flags */ 3897 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3898 if (page) 3899 goto got_pg; 3900 3901 /* Caller is not willing to reclaim, we can't balance anything */ 3902 if (!can_direct_reclaim) 3903 goto nopage; 3904 3905 /* Make sure we know about allocations which stall for too long */ 3906 if (time_after(jiffies, alloc_start + stall_timeout)) { 3907 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask, 3908 "page allocation stalls for %ums, order:%u", 3909 jiffies_to_msecs(jiffies-alloc_start), order); 3910 stall_timeout += 10 * HZ; 3911 } 3912 3913 /* Avoid recursion of direct reclaim */ 3914 if (current->flags & PF_MEMALLOC) 3915 goto nopage; 3916 3917 /* Try direct reclaim and then allocating */ 3918 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 3919 &did_some_progress); 3920 if (page) 3921 goto got_pg; 3922 3923 /* Try direct compaction and then allocating */ 3924 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 3925 compact_priority, &compact_result); 3926 if (page) 3927 goto got_pg; 3928 3929 /* Do not loop if specifically requested */ 3930 if (gfp_mask & __GFP_NORETRY) 3931 goto nopage; 3932 3933 /* 3934 * Do not retry costly high order allocations unless they are 3935 * __GFP_RETRY_MAYFAIL 3936 */ 3937 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 3938 goto nopage; 3939 3940 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 3941 did_some_progress > 0, &no_progress_loops)) 3942 goto retry; 3943 3944 /* 3945 * It doesn't make any sense to retry for the compaction if the order-0 3946 * reclaim is not able to make any progress because the current 3947 * implementation of the compaction depends on the sufficient amount 3948 * of free memory (see __compaction_suitable) 3949 */ 3950 if (did_some_progress > 0 && 3951 should_compact_retry(ac, order, alloc_flags, 3952 compact_result, &compact_priority, 3953 &compaction_retries)) 3954 goto retry; 3955 3956 3957 /* Deal with possible cpuset update races before we start OOM killing */ 3958 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 3959 goto retry_cpuset; 3960 3961 /* Reclaim has failed us, start killing things */ 3962 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 3963 if (page) 3964 goto got_pg; 3965 3966 /* Avoid allocations with no watermarks from looping endlessly */ 3967 if (test_thread_flag(TIF_MEMDIE) && 3968 (alloc_flags == ALLOC_NO_WATERMARKS || 3969 (gfp_mask & __GFP_NOMEMALLOC))) 3970 goto nopage; 3971 3972 /* Retry as long as the OOM killer is making progress */ 3973 if (did_some_progress) { 3974 no_progress_loops = 0; 3975 goto retry; 3976 } 3977 3978 nopage: 3979 /* Deal with possible cpuset update races before we fail */ 3980 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 3981 goto retry_cpuset; 3982 3983 /* 3984 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 3985 * we always retry 3986 */ 3987 if (gfp_mask & __GFP_NOFAIL) { 3988 /* 3989 * All existing users of the __GFP_NOFAIL are blockable, so warn 3990 * of any new users that actually require GFP_NOWAIT 3991 */ 3992 if (WARN_ON_ONCE(!can_direct_reclaim)) 3993 goto fail; 3994 3995 /* 3996 * PF_MEMALLOC request from this context is rather bizarre 3997 * because we cannot reclaim anything and only can loop waiting 3998 * for somebody to do a work for us 3999 */ 4000 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4001 4002 /* 4003 * non failing costly orders are a hard requirement which we 4004 * are not prepared for much so let's warn about these users 4005 * so that we can identify them and convert them to something 4006 * else. 4007 */ 4008 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4009 4010 /* 4011 * Help non-failing allocations by giving them access to memory 4012 * reserves but do not use ALLOC_NO_WATERMARKS because this 4013 * could deplete whole memory reserves which would just make 4014 * the situation worse 4015 */ 4016 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4017 if (page) 4018 goto got_pg; 4019 4020 cond_resched(); 4021 goto retry; 4022 } 4023 fail: 4024 warn_alloc(gfp_mask, ac->nodemask, 4025 "page allocation failure: order:%u", order); 4026 got_pg: 4027 return page; 4028 } 4029 4030 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4031 int preferred_nid, nodemask_t *nodemask, 4032 struct alloc_context *ac, gfp_t *alloc_mask, 4033 unsigned int *alloc_flags) 4034 { 4035 ac->high_zoneidx = gfp_zone(gfp_mask); 4036 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4037 ac->nodemask = nodemask; 4038 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4039 4040 if (cpusets_enabled()) { 4041 *alloc_mask |= __GFP_HARDWALL; 4042 if (!ac->nodemask) 4043 ac->nodemask = &cpuset_current_mems_allowed; 4044 else 4045 *alloc_flags |= ALLOC_CPUSET; 4046 } 4047 4048 lockdep_trace_alloc(gfp_mask); 4049 4050 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4051 4052 if (should_fail_alloc_page(gfp_mask, order)) 4053 return false; 4054 4055 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4056 *alloc_flags |= ALLOC_CMA; 4057 4058 return true; 4059 } 4060 4061 /* Determine whether to spread dirty pages and what the first usable zone */ 4062 static inline void finalise_ac(gfp_t gfp_mask, 4063 unsigned int order, struct alloc_context *ac) 4064 { 4065 /* Dirty zone balancing only done in the fast path */ 4066 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4067 4068 /* 4069 * The preferred zone is used for statistics but crucially it is 4070 * also used as the starting point for the zonelist iterator. It 4071 * may get reset for allocations that ignore memory policies. 4072 */ 4073 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4074 ac->high_zoneidx, ac->nodemask); 4075 } 4076 4077 /* 4078 * This is the 'heart' of the zoned buddy allocator. 4079 */ 4080 struct page * 4081 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4082 nodemask_t *nodemask) 4083 { 4084 struct page *page; 4085 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4086 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */ 4087 struct alloc_context ac = { }; 4088 4089 gfp_mask &= gfp_allowed_mask; 4090 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4091 return NULL; 4092 4093 finalise_ac(gfp_mask, order, &ac); 4094 4095 /* First allocation attempt */ 4096 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4097 if (likely(page)) 4098 goto out; 4099 4100 /* 4101 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4102 * resp. GFP_NOIO which has to be inherited for all allocation requests 4103 * from a particular context which has been marked by 4104 * memalloc_no{fs,io}_{save,restore}. 4105 */ 4106 alloc_mask = current_gfp_context(gfp_mask); 4107 ac.spread_dirty_pages = false; 4108 4109 /* 4110 * Restore the original nodemask if it was potentially replaced with 4111 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4112 */ 4113 if (unlikely(ac.nodemask != nodemask)) 4114 ac.nodemask = nodemask; 4115 4116 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4117 4118 out: 4119 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4120 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4121 __free_pages(page, order); 4122 page = NULL; 4123 } 4124 4125 if (kmemcheck_enabled && page) 4126 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 4127 4128 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4129 4130 return page; 4131 } 4132 EXPORT_SYMBOL(__alloc_pages_nodemask); 4133 4134 /* 4135 * Common helper functions. 4136 */ 4137 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4138 { 4139 struct page *page; 4140 4141 /* 4142 * __get_free_pages() returns a 32-bit address, which cannot represent 4143 * a highmem page 4144 */ 4145 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 4146 4147 page = alloc_pages(gfp_mask, order); 4148 if (!page) 4149 return 0; 4150 return (unsigned long) page_address(page); 4151 } 4152 EXPORT_SYMBOL(__get_free_pages); 4153 4154 unsigned long get_zeroed_page(gfp_t gfp_mask) 4155 { 4156 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4157 } 4158 EXPORT_SYMBOL(get_zeroed_page); 4159 4160 void __free_pages(struct page *page, unsigned int order) 4161 { 4162 if (put_page_testzero(page)) { 4163 if (order == 0) 4164 free_hot_cold_page(page, false); 4165 else 4166 __free_pages_ok(page, order); 4167 } 4168 } 4169 4170 EXPORT_SYMBOL(__free_pages); 4171 4172 void free_pages(unsigned long addr, unsigned int order) 4173 { 4174 if (addr != 0) { 4175 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4176 __free_pages(virt_to_page((void *)addr), order); 4177 } 4178 } 4179 4180 EXPORT_SYMBOL(free_pages); 4181 4182 /* 4183 * Page Fragment: 4184 * An arbitrary-length arbitrary-offset area of memory which resides 4185 * within a 0 or higher order page. Multiple fragments within that page 4186 * are individually refcounted, in the page's reference counter. 4187 * 4188 * The page_frag functions below provide a simple allocation framework for 4189 * page fragments. This is used by the network stack and network device 4190 * drivers to provide a backing region of memory for use as either an 4191 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4192 */ 4193 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4194 gfp_t gfp_mask) 4195 { 4196 struct page *page = NULL; 4197 gfp_t gfp = gfp_mask; 4198 4199 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4200 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4201 __GFP_NOMEMALLOC; 4202 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4203 PAGE_FRAG_CACHE_MAX_ORDER); 4204 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4205 #endif 4206 if (unlikely(!page)) 4207 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4208 4209 nc->va = page ? page_address(page) : NULL; 4210 4211 return page; 4212 } 4213 4214 void __page_frag_cache_drain(struct page *page, unsigned int count) 4215 { 4216 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4217 4218 if (page_ref_sub_and_test(page, count)) { 4219 unsigned int order = compound_order(page); 4220 4221 if (order == 0) 4222 free_hot_cold_page(page, false); 4223 else 4224 __free_pages_ok(page, order); 4225 } 4226 } 4227 EXPORT_SYMBOL(__page_frag_cache_drain); 4228 4229 void *page_frag_alloc(struct page_frag_cache *nc, 4230 unsigned int fragsz, gfp_t gfp_mask) 4231 { 4232 unsigned int size = PAGE_SIZE; 4233 struct page *page; 4234 int offset; 4235 4236 if (unlikely(!nc->va)) { 4237 refill: 4238 page = __page_frag_cache_refill(nc, gfp_mask); 4239 if (!page) 4240 return NULL; 4241 4242 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4243 /* if size can vary use size else just use PAGE_SIZE */ 4244 size = nc->size; 4245 #endif 4246 /* Even if we own the page, we do not use atomic_set(). 4247 * This would break get_page_unless_zero() users. 4248 */ 4249 page_ref_add(page, size - 1); 4250 4251 /* reset page count bias and offset to start of new frag */ 4252 nc->pfmemalloc = page_is_pfmemalloc(page); 4253 nc->pagecnt_bias = size; 4254 nc->offset = size; 4255 } 4256 4257 offset = nc->offset - fragsz; 4258 if (unlikely(offset < 0)) { 4259 page = virt_to_page(nc->va); 4260 4261 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4262 goto refill; 4263 4264 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4265 /* if size can vary use size else just use PAGE_SIZE */ 4266 size = nc->size; 4267 #endif 4268 /* OK, page count is 0, we can safely set it */ 4269 set_page_count(page, size); 4270 4271 /* reset page count bias and offset to start of new frag */ 4272 nc->pagecnt_bias = size; 4273 offset = size - fragsz; 4274 } 4275 4276 nc->pagecnt_bias--; 4277 nc->offset = offset; 4278 4279 return nc->va + offset; 4280 } 4281 EXPORT_SYMBOL(page_frag_alloc); 4282 4283 /* 4284 * Frees a page fragment allocated out of either a compound or order 0 page. 4285 */ 4286 void page_frag_free(void *addr) 4287 { 4288 struct page *page = virt_to_head_page(addr); 4289 4290 if (unlikely(put_page_testzero(page))) 4291 __free_pages_ok(page, compound_order(page)); 4292 } 4293 EXPORT_SYMBOL(page_frag_free); 4294 4295 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4296 size_t size) 4297 { 4298 if (addr) { 4299 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4300 unsigned long used = addr + PAGE_ALIGN(size); 4301 4302 split_page(virt_to_page((void *)addr), order); 4303 while (used < alloc_end) { 4304 free_page(used); 4305 used += PAGE_SIZE; 4306 } 4307 } 4308 return (void *)addr; 4309 } 4310 4311 /** 4312 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4313 * @size: the number of bytes to allocate 4314 * @gfp_mask: GFP flags for the allocation 4315 * 4316 * This function is similar to alloc_pages(), except that it allocates the 4317 * minimum number of pages to satisfy the request. alloc_pages() can only 4318 * allocate memory in power-of-two pages. 4319 * 4320 * This function is also limited by MAX_ORDER. 4321 * 4322 * Memory allocated by this function must be released by free_pages_exact(). 4323 */ 4324 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4325 { 4326 unsigned int order = get_order(size); 4327 unsigned long addr; 4328 4329 addr = __get_free_pages(gfp_mask, order); 4330 return make_alloc_exact(addr, order, size); 4331 } 4332 EXPORT_SYMBOL(alloc_pages_exact); 4333 4334 /** 4335 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4336 * pages on a node. 4337 * @nid: the preferred node ID where memory should be allocated 4338 * @size: the number of bytes to allocate 4339 * @gfp_mask: GFP flags for the allocation 4340 * 4341 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4342 * back. 4343 */ 4344 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4345 { 4346 unsigned int order = get_order(size); 4347 struct page *p = alloc_pages_node(nid, gfp_mask, order); 4348 if (!p) 4349 return NULL; 4350 return make_alloc_exact((unsigned long)page_address(p), order, size); 4351 } 4352 4353 /** 4354 * free_pages_exact - release memory allocated via alloc_pages_exact() 4355 * @virt: the value returned by alloc_pages_exact. 4356 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4357 * 4358 * Release the memory allocated by a previous call to alloc_pages_exact. 4359 */ 4360 void free_pages_exact(void *virt, size_t size) 4361 { 4362 unsigned long addr = (unsigned long)virt; 4363 unsigned long end = addr + PAGE_ALIGN(size); 4364 4365 while (addr < end) { 4366 free_page(addr); 4367 addr += PAGE_SIZE; 4368 } 4369 } 4370 EXPORT_SYMBOL(free_pages_exact); 4371 4372 /** 4373 * nr_free_zone_pages - count number of pages beyond high watermark 4374 * @offset: The zone index of the highest zone 4375 * 4376 * nr_free_zone_pages() counts the number of counts pages which are beyond the 4377 * high watermark within all zones at or below a given zone index. For each 4378 * zone, the number of pages is calculated as: 4379 * 4380 * nr_free_zone_pages = managed_pages - high_pages 4381 */ 4382 static unsigned long nr_free_zone_pages(int offset) 4383 { 4384 struct zoneref *z; 4385 struct zone *zone; 4386 4387 /* Just pick one node, since fallback list is circular */ 4388 unsigned long sum = 0; 4389 4390 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4391 4392 for_each_zone_zonelist(zone, z, zonelist, offset) { 4393 unsigned long size = zone->managed_pages; 4394 unsigned long high = high_wmark_pages(zone); 4395 if (size > high) 4396 sum += size - high; 4397 } 4398 4399 return sum; 4400 } 4401 4402 /** 4403 * nr_free_buffer_pages - count number of pages beyond high watermark 4404 * 4405 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4406 * watermark within ZONE_DMA and ZONE_NORMAL. 4407 */ 4408 unsigned long nr_free_buffer_pages(void) 4409 { 4410 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4411 } 4412 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4413 4414 /** 4415 * nr_free_pagecache_pages - count number of pages beyond high watermark 4416 * 4417 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4418 * high watermark within all zones. 4419 */ 4420 unsigned long nr_free_pagecache_pages(void) 4421 { 4422 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4423 } 4424 4425 static inline void show_node(struct zone *zone) 4426 { 4427 if (IS_ENABLED(CONFIG_NUMA)) 4428 printk("Node %d ", zone_to_nid(zone)); 4429 } 4430 4431 long si_mem_available(void) 4432 { 4433 long available; 4434 unsigned long pagecache; 4435 unsigned long wmark_low = 0; 4436 unsigned long pages[NR_LRU_LISTS]; 4437 struct zone *zone; 4438 int lru; 4439 4440 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 4441 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 4442 4443 for_each_zone(zone) 4444 wmark_low += zone->watermark[WMARK_LOW]; 4445 4446 /* 4447 * Estimate the amount of memory available for userspace allocations, 4448 * without causing swapping. 4449 */ 4450 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages; 4451 4452 /* 4453 * Not all the page cache can be freed, otherwise the system will 4454 * start swapping. Assume at least half of the page cache, or the 4455 * low watermark worth of cache, needs to stay. 4456 */ 4457 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 4458 pagecache -= min(pagecache / 2, wmark_low); 4459 available += pagecache; 4460 4461 /* 4462 * Part of the reclaimable slab consists of items that are in use, 4463 * and cannot be freed. Cap this estimate at the low watermark. 4464 */ 4465 available += global_node_page_state(NR_SLAB_RECLAIMABLE) - 4466 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2, 4467 wmark_low); 4468 4469 if (available < 0) 4470 available = 0; 4471 return available; 4472 } 4473 EXPORT_SYMBOL_GPL(si_mem_available); 4474 4475 void si_meminfo(struct sysinfo *val) 4476 { 4477 val->totalram = totalram_pages; 4478 val->sharedram = global_node_page_state(NR_SHMEM); 4479 val->freeram = global_page_state(NR_FREE_PAGES); 4480 val->bufferram = nr_blockdev_pages(); 4481 val->totalhigh = totalhigh_pages; 4482 val->freehigh = nr_free_highpages(); 4483 val->mem_unit = PAGE_SIZE; 4484 } 4485 4486 EXPORT_SYMBOL(si_meminfo); 4487 4488 #ifdef CONFIG_NUMA 4489 void si_meminfo_node(struct sysinfo *val, int nid) 4490 { 4491 int zone_type; /* needs to be signed */ 4492 unsigned long managed_pages = 0; 4493 unsigned long managed_highpages = 0; 4494 unsigned long free_highpages = 0; 4495 pg_data_t *pgdat = NODE_DATA(nid); 4496 4497 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 4498 managed_pages += pgdat->node_zones[zone_type].managed_pages; 4499 val->totalram = managed_pages; 4500 val->sharedram = node_page_state(pgdat, NR_SHMEM); 4501 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 4502 #ifdef CONFIG_HIGHMEM 4503 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 4504 struct zone *zone = &pgdat->node_zones[zone_type]; 4505 4506 if (is_highmem(zone)) { 4507 managed_highpages += zone->managed_pages; 4508 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 4509 } 4510 } 4511 val->totalhigh = managed_highpages; 4512 val->freehigh = free_highpages; 4513 #else 4514 val->totalhigh = managed_highpages; 4515 val->freehigh = free_highpages; 4516 #endif 4517 val->mem_unit = PAGE_SIZE; 4518 } 4519 #endif 4520 4521 /* 4522 * Determine whether the node should be displayed or not, depending on whether 4523 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 4524 */ 4525 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 4526 { 4527 if (!(flags & SHOW_MEM_FILTER_NODES)) 4528 return false; 4529 4530 /* 4531 * no node mask - aka implicit memory numa policy. Do not bother with 4532 * the synchronization - read_mems_allowed_begin - because we do not 4533 * have to be precise here. 4534 */ 4535 if (!nodemask) 4536 nodemask = &cpuset_current_mems_allowed; 4537 4538 return !node_isset(nid, *nodemask); 4539 } 4540 4541 #define K(x) ((x) << (PAGE_SHIFT-10)) 4542 4543 static void show_migration_types(unsigned char type) 4544 { 4545 static const char types[MIGRATE_TYPES] = { 4546 [MIGRATE_UNMOVABLE] = 'U', 4547 [MIGRATE_MOVABLE] = 'M', 4548 [MIGRATE_RECLAIMABLE] = 'E', 4549 [MIGRATE_HIGHATOMIC] = 'H', 4550 #ifdef CONFIG_CMA 4551 [MIGRATE_CMA] = 'C', 4552 #endif 4553 #ifdef CONFIG_MEMORY_ISOLATION 4554 [MIGRATE_ISOLATE] = 'I', 4555 #endif 4556 }; 4557 char tmp[MIGRATE_TYPES + 1]; 4558 char *p = tmp; 4559 int i; 4560 4561 for (i = 0; i < MIGRATE_TYPES; i++) { 4562 if (type & (1 << i)) 4563 *p++ = types[i]; 4564 } 4565 4566 *p = '\0'; 4567 printk(KERN_CONT "(%s) ", tmp); 4568 } 4569 4570 /* 4571 * Show free area list (used inside shift_scroll-lock stuff) 4572 * We also calculate the percentage fragmentation. We do this by counting the 4573 * memory on each free list with the exception of the first item on the list. 4574 * 4575 * Bits in @filter: 4576 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 4577 * cpuset. 4578 */ 4579 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 4580 { 4581 unsigned long free_pcp = 0; 4582 int cpu; 4583 struct zone *zone; 4584 pg_data_t *pgdat; 4585 4586 for_each_populated_zone(zone) { 4587 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4588 continue; 4589 4590 for_each_online_cpu(cpu) 4591 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4592 } 4593 4594 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 4595 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 4596 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 4597 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 4598 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 4599 " free:%lu free_pcp:%lu free_cma:%lu\n", 4600 global_node_page_state(NR_ACTIVE_ANON), 4601 global_node_page_state(NR_INACTIVE_ANON), 4602 global_node_page_state(NR_ISOLATED_ANON), 4603 global_node_page_state(NR_ACTIVE_FILE), 4604 global_node_page_state(NR_INACTIVE_FILE), 4605 global_node_page_state(NR_ISOLATED_FILE), 4606 global_node_page_state(NR_UNEVICTABLE), 4607 global_node_page_state(NR_FILE_DIRTY), 4608 global_node_page_state(NR_WRITEBACK), 4609 global_node_page_state(NR_UNSTABLE_NFS), 4610 global_node_page_state(NR_SLAB_RECLAIMABLE), 4611 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 4612 global_node_page_state(NR_FILE_MAPPED), 4613 global_node_page_state(NR_SHMEM), 4614 global_page_state(NR_PAGETABLE), 4615 global_page_state(NR_BOUNCE), 4616 global_page_state(NR_FREE_PAGES), 4617 free_pcp, 4618 global_page_state(NR_FREE_CMA_PAGES)); 4619 4620 for_each_online_pgdat(pgdat) { 4621 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 4622 continue; 4623 4624 printk("Node %d" 4625 " active_anon:%lukB" 4626 " inactive_anon:%lukB" 4627 " active_file:%lukB" 4628 " inactive_file:%lukB" 4629 " unevictable:%lukB" 4630 " isolated(anon):%lukB" 4631 " isolated(file):%lukB" 4632 " mapped:%lukB" 4633 " dirty:%lukB" 4634 " writeback:%lukB" 4635 " shmem:%lukB" 4636 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4637 " shmem_thp: %lukB" 4638 " shmem_pmdmapped: %lukB" 4639 " anon_thp: %lukB" 4640 #endif 4641 " writeback_tmp:%lukB" 4642 " unstable:%lukB" 4643 " all_unreclaimable? %s" 4644 "\n", 4645 pgdat->node_id, 4646 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 4647 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 4648 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 4649 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 4650 K(node_page_state(pgdat, NR_UNEVICTABLE)), 4651 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 4652 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 4653 K(node_page_state(pgdat, NR_FILE_MAPPED)), 4654 K(node_page_state(pgdat, NR_FILE_DIRTY)), 4655 K(node_page_state(pgdat, NR_WRITEBACK)), 4656 K(node_page_state(pgdat, NR_SHMEM)), 4657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4658 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 4659 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 4660 * HPAGE_PMD_NR), 4661 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 4662 #endif 4663 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 4664 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 4665 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 4666 "yes" : "no"); 4667 } 4668 4669 for_each_populated_zone(zone) { 4670 int i; 4671 4672 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4673 continue; 4674 4675 free_pcp = 0; 4676 for_each_online_cpu(cpu) 4677 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4678 4679 show_node(zone); 4680 printk(KERN_CONT 4681 "%s" 4682 " free:%lukB" 4683 " min:%lukB" 4684 " low:%lukB" 4685 " high:%lukB" 4686 " active_anon:%lukB" 4687 " inactive_anon:%lukB" 4688 " active_file:%lukB" 4689 " inactive_file:%lukB" 4690 " unevictable:%lukB" 4691 " writepending:%lukB" 4692 " present:%lukB" 4693 " managed:%lukB" 4694 " mlocked:%lukB" 4695 " kernel_stack:%lukB" 4696 " pagetables:%lukB" 4697 " bounce:%lukB" 4698 " free_pcp:%lukB" 4699 " local_pcp:%ukB" 4700 " free_cma:%lukB" 4701 "\n", 4702 zone->name, 4703 K(zone_page_state(zone, NR_FREE_PAGES)), 4704 K(min_wmark_pages(zone)), 4705 K(low_wmark_pages(zone)), 4706 K(high_wmark_pages(zone)), 4707 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 4708 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 4709 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 4710 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 4711 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 4712 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 4713 K(zone->present_pages), 4714 K(zone->managed_pages), 4715 K(zone_page_state(zone, NR_MLOCK)), 4716 zone_page_state(zone, NR_KERNEL_STACK_KB), 4717 K(zone_page_state(zone, NR_PAGETABLE)), 4718 K(zone_page_state(zone, NR_BOUNCE)), 4719 K(free_pcp), 4720 K(this_cpu_read(zone->pageset->pcp.count)), 4721 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 4722 printk("lowmem_reserve[]:"); 4723 for (i = 0; i < MAX_NR_ZONES; i++) 4724 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 4725 printk(KERN_CONT "\n"); 4726 } 4727 4728 for_each_populated_zone(zone) { 4729 unsigned int order; 4730 unsigned long nr[MAX_ORDER], flags, total = 0; 4731 unsigned char types[MAX_ORDER]; 4732 4733 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4734 continue; 4735 show_node(zone); 4736 printk(KERN_CONT "%s: ", zone->name); 4737 4738 spin_lock_irqsave(&zone->lock, flags); 4739 for (order = 0; order < MAX_ORDER; order++) { 4740 struct free_area *area = &zone->free_area[order]; 4741 int type; 4742 4743 nr[order] = area->nr_free; 4744 total += nr[order] << order; 4745 4746 types[order] = 0; 4747 for (type = 0; type < MIGRATE_TYPES; type++) { 4748 if (!list_empty(&area->free_list[type])) 4749 types[order] |= 1 << type; 4750 } 4751 } 4752 spin_unlock_irqrestore(&zone->lock, flags); 4753 for (order = 0; order < MAX_ORDER; order++) { 4754 printk(KERN_CONT "%lu*%lukB ", 4755 nr[order], K(1UL) << order); 4756 if (nr[order]) 4757 show_migration_types(types[order]); 4758 } 4759 printk(KERN_CONT "= %lukB\n", K(total)); 4760 } 4761 4762 hugetlb_show_meminfo(); 4763 4764 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 4765 4766 show_swap_cache_info(); 4767 } 4768 4769 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4770 { 4771 zoneref->zone = zone; 4772 zoneref->zone_idx = zone_idx(zone); 4773 } 4774 4775 /* 4776 * Builds allocation fallback zone lists. 4777 * 4778 * Add all populated zones of a node to the zonelist. 4779 */ 4780 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 4781 int nr_zones) 4782 { 4783 struct zone *zone; 4784 enum zone_type zone_type = MAX_NR_ZONES; 4785 4786 do { 4787 zone_type--; 4788 zone = pgdat->node_zones + zone_type; 4789 if (managed_zone(zone)) { 4790 zoneref_set_zone(zone, 4791 &zonelist->_zonerefs[nr_zones++]); 4792 check_highest_zone(zone_type); 4793 } 4794 } while (zone_type); 4795 4796 return nr_zones; 4797 } 4798 4799 4800 /* 4801 * zonelist_order: 4802 * 0 = automatic detection of better ordering. 4803 * 1 = order by ([node] distance, -zonetype) 4804 * 2 = order by (-zonetype, [node] distance) 4805 * 4806 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 4807 * the same zonelist. So only NUMA can configure this param. 4808 */ 4809 #define ZONELIST_ORDER_DEFAULT 0 4810 #define ZONELIST_ORDER_NODE 1 4811 #define ZONELIST_ORDER_ZONE 2 4812 4813 /* zonelist order in the kernel. 4814 * set_zonelist_order() will set this to NODE or ZONE. 4815 */ 4816 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 4817 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 4818 4819 4820 #ifdef CONFIG_NUMA 4821 /* The value user specified ....changed by config */ 4822 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 4823 /* string for sysctl */ 4824 #define NUMA_ZONELIST_ORDER_LEN 16 4825 char numa_zonelist_order[16] = "default"; 4826 4827 /* 4828 * interface for configure zonelist ordering. 4829 * command line option "numa_zonelist_order" 4830 * = "[dD]efault - default, automatic configuration. 4831 * = "[nN]ode - order by node locality, then by zone within node 4832 * = "[zZ]one - order by zone, then by locality within zone 4833 */ 4834 4835 static int __parse_numa_zonelist_order(char *s) 4836 { 4837 if (*s == 'd' || *s == 'D') { 4838 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 4839 } else if (*s == 'n' || *s == 'N') { 4840 user_zonelist_order = ZONELIST_ORDER_NODE; 4841 } else if (*s == 'z' || *s == 'Z') { 4842 user_zonelist_order = ZONELIST_ORDER_ZONE; 4843 } else { 4844 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s); 4845 return -EINVAL; 4846 } 4847 return 0; 4848 } 4849 4850 static __init int setup_numa_zonelist_order(char *s) 4851 { 4852 int ret; 4853 4854 if (!s) 4855 return 0; 4856 4857 ret = __parse_numa_zonelist_order(s); 4858 if (ret == 0) 4859 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 4860 4861 return ret; 4862 } 4863 early_param("numa_zonelist_order", setup_numa_zonelist_order); 4864 4865 /* 4866 * sysctl handler for numa_zonelist_order 4867 */ 4868 int numa_zonelist_order_handler(struct ctl_table *table, int write, 4869 void __user *buffer, size_t *length, 4870 loff_t *ppos) 4871 { 4872 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 4873 int ret; 4874 static DEFINE_MUTEX(zl_order_mutex); 4875 4876 mutex_lock(&zl_order_mutex); 4877 if (write) { 4878 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 4879 ret = -EINVAL; 4880 goto out; 4881 } 4882 strcpy(saved_string, (char *)table->data); 4883 } 4884 ret = proc_dostring(table, write, buffer, length, ppos); 4885 if (ret) 4886 goto out; 4887 if (write) { 4888 int oldval = user_zonelist_order; 4889 4890 ret = __parse_numa_zonelist_order((char *)table->data); 4891 if (ret) { 4892 /* 4893 * bogus value. restore saved string 4894 */ 4895 strncpy((char *)table->data, saved_string, 4896 NUMA_ZONELIST_ORDER_LEN); 4897 user_zonelist_order = oldval; 4898 } else if (oldval != user_zonelist_order) { 4899 mem_hotplug_begin(); 4900 mutex_lock(&zonelists_mutex); 4901 build_all_zonelists(NULL, NULL); 4902 mutex_unlock(&zonelists_mutex); 4903 mem_hotplug_done(); 4904 } 4905 } 4906 out: 4907 mutex_unlock(&zl_order_mutex); 4908 return ret; 4909 } 4910 4911 4912 #define MAX_NODE_LOAD (nr_online_nodes) 4913 static int node_load[MAX_NUMNODES]; 4914 4915 /** 4916 * find_next_best_node - find the next node that should appear in a given node's fallback list 4917 * @node: node whose fallback list we're appending 4918 * @used_node_mask: nodemask_t of already used nodes 4919 * 4920 * We use a number of factors to determine which is the next node that should 4921 * appear on a given node's fallback list. The node should not have appeared 4922 * already in @node's fallback list, and it should be the next closest node 4923 * according to the distance array (which contains arbitrary distance values 4924 * from each node to each node in the system), and should also prefer nodes 4925 * with no CPUs, since presumably they'll have very little allocation pressure 4926 * on them otherwise. 4927 * It returns -1 if no node is found. 4928 */ 4929 static int find_next_best_node(int node, nodemask_t *used_node_mask) 4930 { 4931 int n, val; 4932 int min_val = INT_MAX; 4933 int best_node = NUMA_NO_NODE; 4934 const struct cpumask *tmp = cpumask_of_node(0); 4935 4936 /* Use the local node if we haven't already */ 4937 if (!node_isset(node, *used_node_mask)) { 4938 node_set(node, *used_node_mask); 4939 return node; 4940 } 4941 4942 for_each_node_state(n, N_MEMORY) { 4943 4944 /* Don't want a node to appear more than once */ 4945 if (node_isset(n, *used_node_mask)) 4946 continue; 4947 4948 /* Use the distance array to find the distance */ 4949 val = node_distance(node, n); 4950 4951 /* Penalize nodes under us ("prefer the next node") */ 4952 val += (n < node); 4953 4954 /* Give preference to headless and unused nodes */ 4955 tmp = cpumask_of_node(n); 4956 if (!cpumask_empty(tmp)) 4957 val += PENALTY_FOR_NODE_WITH_CPUS; 4958 4959 /* Slight preference for less loaded node */ 4960 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 4961 val += node_load[n]; 4962 4963 if (val < min_val) { 4964 min_val = val; 4965 best_node = n; 4966 } 4967 } 4968 4969 if (best_node >= 0) 4970 node_set(best_node, *used_node_mask); 4971 4972 return best_node; 4973 } 4974 4975 4976 /* 4977 * Build zonelists ordered by node and zones within node. 4978 * This results in maximum locality--normal zone overflows into local 4979 * DMA zone, if any--but risks exhausting DMA zone. 4980 */ 4981 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 4982 { 4983 int j; 4984 struct zonelist *zonelist; 4985 4986 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK]; 4987 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 4988 ; 4989 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4990 zonelist->_zonerefs[j].zone = NULL; 4991 zonelist->_zonerefs[j].zone_idx = 0; 4992 } 4993 4994 /* 4995 * Build gfp_thisnode zonelists 4996 */ 4997 static void build_thisnode_zonelists(pg_data_t *pgdat) 4998 { 4999 int j; 5000 struct zonelist *zonelist; 5001 5002 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK]; 5003 j = build_zonelists_node(pgdat, zonelist, 0); 5004 zonelist->_zonerefs[j].zone = NULL; 5005 zonelist->_zonerefs[j].zone_idx = 0; 5006 } 5007 5008 /* 5009 * Build zonelists ordered by zone and nodes within zones. 5010 * This results in conserving DMA zone[s] until all Normal memory is 5011 * exhausted, but results in overflowing to remote node while memory 5012 * may still exist in local DMA zone. 5013 */ 5014 static int node_order[MAX_NUMNODES]; 5015 5016 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 5017 { 5018 int pos, j, node; 5019 int zone_type; /* needs to be signed */ 5020 struct zone *z; 5021 struct zonelist *zonelist; 5022 5023 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK]; 5024 pos = 0; 5025 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 5026 for (j = 0; j < nr_nodes; j++) { 5027 node = node_order[j]; 5028 z = &NODE_DATA(node)->node_zones[zone_type]; 5029 if (managed_zone(z)) { 5030 zoneref_set_zone(z, 5031 &zonelist->_zonerefs[pos++]); 5032 check_highest_zone(zone_type); 5033 } 5034 } 5035 } 5036 zonelist->_zonerefs[pos].zone = NULL; 5037 zonelist->_zonerefs[pos].zone_idx = 0; 5038 } 5039 5040 #if defined(CONFIG_64BIT) 5041 /* 5042 * Devices that require DMA32/DMA are relatively rare and do not justify a 5043 * penalty to every machine in case the specialised case applies. Default 5044 * to Node-ordering on 64-bit NUMA machines 5045 */ 5046 static int default_zonelist_order(void) 5047 { 5048 return ZONELIST_ORDER_NODE; 5049 } 5050 #else 5051 /* 5052 * On 32-bit, the Normal zone needs to be preserved for allocations accessible 5053 * by the kernel. If processes running on node 0 deplete the low memory zone 5054 * then reclaim will occur more frequency increasing stalls and potentially 5055 * be easier to OOM if a large percentage of the zone is under writeback or 5056 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. 5057 * Hence, default to zone ordering on 32-bit. 5058 */ 5059 static int default_zonelist_order(void) 5060 { 5061 return ZONELIST_ORDER_ZONE; 5062 } 5063 #endif /* CONFIG_64BIT */ 5064 5065 static void set_zonelist_order(void) 5066 { 5067 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 5068 current_zonelist_order = default_zonelist_order(); 5069 else 5070 current_zonelist_order = user_zonelist_order; 5071 } 5072 5073 static void build_zonelists(pg_data_t *pgdat) 5074 { 5075 int i, node, load; 5076 nodemask_t used_mask; 5077 int local_node, prev_node; 5078 struct zonelist *zonelist; 5079 unsigned int order = current_zonelist_order; 5080 5081 /* initialize zonelists */ 5082 for (i = 0; i < MAX_ZONELISTS; i++) { 5083 zonelist = pgdat->node_zonelists + i; 5084 zonelist->_zonerefs[0].zone = NULL; 5085 zonelist->_zonerefs[0].zone_idx = 0; 5086 } 5087 5088 /* NUMA-aware ordering of nodes */ 5089 local_node = pgdat->node_id; 5090 load = nr_online_nodes; 5091 prev_node = local_node; 5092 nodes_clear(used_mask); 5093 5094 memset(node_order, 0, sizeof(node_order)); 5095 i = 0; 5096 5097 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5098 /* 5099 * We don't want to pressure a particular node. 5100 * So adding penalty to the first node in same 5101 * distance group to make it round-robin. 5102 */ 5103 if (node_distance(local_node, node) != 5104 node_distance(local_node, prev_node)) 5105 node_load[node] = load; 5106 5107 prev_node = node; 5108 load--; 5109 if (order == ZONELIST_ORDER_NODE) 5110 build_zonelists_in_node_order(pgdat, node); 5111 else 5112 node_order[i++] = node; /* remember order */ 5113 } 5114 5115 if (order == ZONELIST_ORDER_ZONE) { 5116 /* calculate node order -- i.e., DMA last! */ 5117 build_zonelists_in_zone_order(pgdat, i); 5118 } 5119 5120 build_thisnode_zonelists(pgdat); 5121 } 5122 5123 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5124 /* 5125 * Return node id of node used for "local" allocations. 5126 * I.e., first node id of first zone in arg node's generic zonelist. 5127 * Used for initializing percpu 'numa_mem', which is used primarily 5128 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5129 */ 5130 int local_memory_node(int node) 5131 { 5132 struct zoneref *z; 5133 5134 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5135 gfp_zone(GFP_KERNEL), 5136 NULL); 5137 return z->zone->node; 5138 } 5139 #endif 5140 5141 static void setup_min_unmapped_ratio(void); 5142 static void setup_min_slab_ratio(void); 5143 #else /* CONFIG_NUMA */ 5144 5145 static void set_zonelist_order(void) 5146 { 5147 current_zonelist_order = ZONELIST_ORDER_ZONE; 5148 } 5149 5150 static void build_zonelists(pg_data_t *pgdat) 5151 { 5152 int node, local_node; 5153 enum zone_type j; 5154 struct zonelist *zonelist; 5155 5156 local_node = pgdat->node_id; 5157 5158 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK]; 5159 j = build_zonelists_node(pgdat, zonelist, 0); 5160 5161 /* 5162 * Now we build the zonelist so that it contains the zones 5163 * of all the other nodes. 5164 * We don't want to pressure a particular node, so when 5165 * building the zones for node N, we make sure that the 5166 * zones coming right after the local ones are those from 5167 * node N+1 (modulo N) 5168 */ 5169 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5170 if (!node_online(node)) 5171 continue; 5172 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 5173 } 5174 for (node = 0; node < local_node; node++) { 5175 if (!node_online(node)) 5176 continue; 5177 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 5178 } 5179 5180 zonelist->_zonerefs[j].zone = NULL; 5181 zonelist->_zonerefs[j].zone_idx = 0; 5182 } 5183 5184 #endif /* CONFIG_NUMA */ 5185 5186 /* 5187 * Boot pageset table. One per cpu which is going to be used for all 5188 * zones and all nodes. The parameters will be set in such a way 5189 * that an item put on a list will immediately be handed over to 5190 * the buddy list. This is safe since pageset manipulation is done 5191 * with interrupts disabled. 5192 * 5193 * The boot_pagesets must be kept even after bootup is complete for 5194 * unused processors and/or zones. They do play a role for bootstrapping 5195 * hotplugged processors. 5196 * 5197 * zoneinfo_show() and maybe other functions do 5198 * not check if the processor is online before following the pageset pointer. 5199 * Other parts of the kernel may not check if the zone is available. 5200 */ 5201 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5202 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5203 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5204 static void setup_zone_pageset(struct zone *zone); 5205 5206 /* 5207 * Global mutex to protect against size modification of zonelists 5208 * as well as to serialize pageset setup for the new populated zone. 5209 */ 5210 DEFINE_MUTEX(zonelists_mutex); 5211 5212 /* return values int ....just for stop_machine() */ 5213 static int __build_all_zonelists(void *data) 5214 { 5215 int nid; 5216 int cpu; 5217 pg_data_t *self = data; 5218 5219 #ifdef CONFIG_NUMA 5220 memset(node_load, 0, sizeof(node_load)); 5221 #endif 5222 5223 if (self && !node_online(self->node_id)) { 5224 build_zonelists(self); 5225 } 5226 5227 for_each_online_node(nid) { 5228 pg_data_t *pgdat = NODE_DATA(nid); 5229 5230 build_zonelists(pgdat); 5231 } 5232 5233 /* 5234 * Initialize the boot_pagesets that are going to be used 5235 * for bootstrapping processors. The real pagesets for 5236 * each zone will be allocated later when the per cpu 5237 * allocator is available. 5238 * 5239 * boot_pagesets are used also for bootstrapping offline 5240 * cpus if the system is already booted because the pagesets 5241 * are needed to initialize allocators on a specific cpu too. 5242 * F.e. the percpu allocator needs the page allocator which 5243 * needs the percpu allocator in order to allocate its pagesets 5244 * (a chicken-egg dilemma). 5245 */ 5246 for_each_possible_cpu(cpu) { 5247 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5248 5249 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5250 /* 5251 * We now know the "local memory node" for each node-- 5252 * i.e., the node of the first zone in the generic zonelist. 5253 * Set up numa_mem percpu variable for on-line cpus. During 5254 * boot, only the boot cpu should be on-line; we'll init the 5255 * secondary cpus' numa_mem as they come on-line. During 5256 * node/memory hotplug, we'll fixup all on-line cpus. 5257 */ 5258 if (cpu_online(cpu)) 5259 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5260 #endif 5261 } 5262 5263 return 0; 5264 } 5265 5266 static noinline void __init 5267 build_all_zonelists_init(void) 5268 { 5269 __build_all_zonelists(NULL); 5270 mminit_verify_zonelist(); 5271 cpuset_init_current_mems_allowed(); 5272 } 5273 5274 /* 5275 * Called with zonelists_mutex held always 5276 * unless system_state == SYSTEM_BOOTING. 5277 * 5278 * __ref due to (1) call of __meminit annotated setup_zone_pageset 5279 * [we're only called with non-NULL zone through __meminit paths] and 5280 * (2) call of __init annotated helper build_all_zonelists_init 5281 * [protected by SYSTEM_BOOTING]. 5282 */ 5283 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 5284 { 5285 set_zonelist_order(); 5286 5287 if (system_state == SYSTEM_BOOTING) { 5288 build_all_zonelists_init(); 5289 } else { 5290 #ifdef CONFIG_MEMORY_HOTPLUG 5291 if (zone) 5292 setup_zone_pageset(zone); 5293 #endif 5294 /* we have to stop all cpus to guarantee there is no user 5295 of zonelist */ 5296 stop_machine_cpuslocked(__build_all_zonelists, pgdat, NULL); 5297 /* cpuset refresh routine should be here */ 5298 } 5299 vm_total_pages = nr_free_pagecache_pages(); 5300 /* 5301 * Disable grouping by mobility if the number of pages in the 5302 * system is too low to allow the mechanism to work. It would be 5303 * more accurate, but expensive to check per-zone. This check is 5304 * made on memory-hotadd so a system can start with mobility 5305 * disabled and enable it later 5306 */ 5307 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5308 page_group_by_mobility_disabled = 1; 5309 else 5310 page_group_by_mobility_disabled = 0; 5311 5312 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n", 5313 nr_online_nodes, 5314 zonelist_order_name[current_zonelist_order], 5315 page_group_by_mobility_disabled ? "off" : "on", 5316 vm_total_pages); 5317 #ifdef CONFIG_NUMA 5318 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5319 #endif 5320 } 5321 5322 /* 5323 * Initially all pages are reserved - free ones are freed 5324 * up by free_all_bootmem() once the early boot process is 5325 * done. Non-atomic initialization, single-pass. 5326 */ 5327 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5328 unsigned long start_pfn, enum memmap_context context) 5329 { 5330 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn)); 5331 unsigned long end_pfn = start_pfn + size; 5332 pg_data_t *pgdat = NODE_DATA(nid); 5333 unsigned long pfn; 5334 unsigned long nr_initialised = 0; 5335 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5336 struct memblock_region *r = NULL, *tmp; 5337 #endif 5338 5339 if (highest_memmap_pfn < end_pfn - 1) 5340 highest_memmap_pfn = end_pfn - 1; 5341 5342 /* 5343 * Honor reservation requested by the driver for this ZONE_DEVICE 5344 * memory 5345 */ 5346 if (altmap && start_pfn == altmap->base_pfn) 5347 start_pfn += altmap->reserve; 5348 5349 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5350 /* 5351 * There can be holes in boot-time mem_map[]s handed to this 5352 * function. They do not exist on hotplugged memory. 5353 */ 5354 if (context != MEMMAP_EARLY) 5355 goto not_early; 5356 5357 if (!early_pfn_valid(pfn)) { 5358 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5359 /* 5360 * Skip to the pfn preceding the next valid one (or 5361 * end_pfn), such that we hit a valid pfn (or end_pfn) 5362 * on our next iteration of the loop. 5363 */ 5364 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1; 5365 #endif 5366 continue; 5367 } 5368 if (!early_pfn_in_nid(pfn, nid)) 5369 continue; 5370 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) 5371 break; 5372 5373 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5374 /* 5375 * Check given memblock attribute by firmware which can affect 5376 * kernel memory layout. If zone==ZONE_MOVABLE but memory is 5377 * mirrored, it's an overlapped memmap init. skip it. 5378 */ 5379 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5380 if (!r || pfn >= memblock_region_memory_end_pfn(r)) { 5381 for_each_memblock(memory, tmp) 5382 if (pfn < memblock_region_memory_end_pfn(tmp)) 5383 break; 5384 r = tmp; 5385 } 5386 if (pfn >= memblock_region_memory_base_pfn(r) && 5387 memblock_is_mirror(r)) { 5388 /* already initialized as NORMAL */ 5389 pfn = memblock_region_memory_end_pfn(r); 5390 continue; 5391 } 5392 } 5393 #endif 5394 5395 not_early: 5396 /* 5397 * Mark the block movable so that blocks are reserved for 5398 * movable at startup. This will force kernel allocations 5399 * to reserve their blocks rather than leaking throughout 5400 * the address space during boot when many long-lived 5401 * kernel allocations are made. 5402 * 5403 * bitmap is created for zone's valid pfn range. but memmap 5404 * can be created for invalid pages (for alignment) 5405 * check here not to call set_pageblock_migratetype() against 5406 * pfn out of zone. 5407 */ 5408 if (!(pfn & (pageblock_nr_pages - 1))) { 5409 struct page *page = pfn_to_page(pfn); 5410 5411 __init_single_page(page, pfn, zone, nid); 5412 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5413 } else { 5414 __init_single_pfn(pfn, zone, nid); 5415 } 5416 } 5417 } 5418 5419 static void __meminit zone_init_free_lists(struct zone *zone) 5420 { 5421 unsigned int order, t; 5422 for_each_migratetype_order(order, t) { 5423 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5424 zone->free_area[order].nr_free = 0; 5425 } 5426 } 5427 5428 #ifndef __HAVE_ARCH_MEMMAP_INIT 5429 #define memmap_init(size, nid, zone, start_pfn) \ 5430 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 5431 #endif 5432 5433 static int zone_batchsize(struct zone *zone) 5434 { 5435 #ifdef CONFIG_MMU 5436 int batch; 5437 5438 /* 5439 * The per-cpu-pages pools are set to around 1000th of the 5440 * size of the zone. But no more than 1/2 of a meg. 5441 * 5442 * OK, so we don't know how big the cache is. So guess. 5443 */ 5444 batch = zone->managed_pages / 1024; 5445 if (batch * PAGE_SIZE > 512 * 1024) 5446 batch = (512 * 1024) / PAGE_SIZE; 5447 batch /= 4; /* We effectively *= 4 below */ 5448 if (batch < 1) 5449 batch = 1; 5450 5451 /* 5452 * Clamp the batch to a 2^n - 1 value. Having a power 5453 * of 2 value was found to be more likely to have 5454 * suboptimal cache aliasing properties in some cases. 5455 * 5456 * For example if 2 tasks are alternately allocating 5457 * batches of pages, one task can end up with a lot 5458 * of pages of one half of the possible page colors 5459 * and the other with pages of the other colors. 5460 */ 5461 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5462 5463 return batch; 5464 5465 #else 5466 /* The deferral and batching of frees should be suppressed under NOMMU 5467 * conditions. 5468 * 5469 * The problem is that NOMMU needs to be able to allocate large chunks 5470 * of contiguous memory as there's no hardware page translation to 5471 * assemble apparent contiguous memory from discontiguous pages. 5472 * 5473 * Queueing large contiguous runs of pages for batching, however, 5474 * causes the pages to actually be freed in smaller chunks. As there 5475 * can be a significant delay between the individual batches being 5476 * recycled, this leads to the once large chunks of space being 5477 * fragmented and becoming unavailable for high-order allocations. 5478 */ 5479 return 0; 5480 #endif 5481 } 5482 5483 /* 5484 * pcp->high and pcp->batch values are related and dependent on one another: 5485 * ->batch must never be higher then ->high. 5486 * The following function updates them in a safe manner without read side 5487 * locking. 5488 * 5489 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5490 * those fields changing asynchronously (acording the the above rule). 5491 * 5492 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5493 * outside of boot time (or some other assurance that no concurrent updaters 5494 * exist). 5495 */ 5496 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5497 unsigned long batch) 5498 { 5499 /* start with a fail safe value for batch */ 5500 pcp->batch = 1; 5501 smp_wmb(); 5502 5503 /* Update high, then batch, in order */ 5504 pcp->high = high; 5505 smp_wmb(); 5506 5507 pcp->batch = batch; 5508 } 5509 5510 /* a companion to pageset_set_high() */ 5511 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 5512 { 5513 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 5514 } 5515 5516 static void pageset_init(struct per_cpu_pageset *p) 5517 { 5518 struct per_cpu_pages *pcp; 5519 int migratetype; 5520 5521 memset(p, 0, sizeof(*p)); 5522 5523 pcp = &p->pcp; 5524 pcp->count = 0; 5525 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 5526 INIT_LIST_HEAD(&pcp->lists[migratetype]); 5527 } 5528 5529 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 5530 { 5531 pageset_init(p); 5532 pageset_set_batch(p, batch); 5533 } 5534 5535 /* 5536 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 5537 * to the value high for the pageset p. 5538 */ 5539 static void pageset_set_high(struct per_cpu_pageset *p, 5540 unsigned long high) 5541 { 5542 unsigned long batch = max(1UL, high / 4); 5543 if ((high / 4) > (PAGE_SHIFT * 8)) 5544 batch = PAGE_SHIFT * 8; 5545 5546 pageset_update(&p->pcp, high, batch); 5547 } 5548 5549 static void pageset_set_high_and_batch(struct zone *zone, 5550 struct per_cpu_pageset *pcp) 5551 { 5552 if (percpu_pagelist_fraction) 5553 pageset_set_high(pcp, 5554 (zone->managed_pages / 5555 percpu_pagelist_fraction)); 5556 else 5557 pageset_set_batch(pcp, zone_batchsize(zone)); 5558 } 5559 5560 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 5561 { 5562 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 5563 5564 pageset_init(pcp); 5565 pageset_set_high_and_batch(zone, pcp); 5566 } 5567 5568 static void __meminit setup_zone_pageset(struct zone *zone) 5569 { 5570 int cpu; 5571 zone->pageset = alloc_percpu(struct per_cpu_pageset); 5572 for_each_possible_cpu(cpu) 5573 zone_pageset_init(zone, cpu); 5574 } 5575 5576 /* 5577 * Allocate per cpu pagesets and initialize them. 5578 * Before this call only boot pagesets were available. 5579 */ 5580 void __init setup_per_cpu_pageset(void) 5581 { 5582 struct pglist_data *pgdat; 5583 struct zone *zone; 5584 5585 for_each_populated_zone(zone) 5586 setup_zone_pageset(zone); 5587 5588 for_each_online_pgdat(pgdat) 5589 pgdat->per_cpu_nodestats = 5590 alloc_percpu(struct per_cpu_nodestat); 5591 } 5592 5593 static __meminit void zone_pcp_init(struct zone *zone) 5594 { 5595 /* 5596 * per cpu subsystem is not up at this point. The following code 5597 * relies on the ability of the linker to provide the 5598 * offset of a (static) per cpu variable into the per cpu area. 5599 */ 5600 zone->pageset = &boot_pageset; 5601 5602 if (populated_zone(zone)) 5603 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 5604 zone->name, zone->present_pages, 5605 zone_batchsize(zone)); 5606 } 5607 5608 void __meminit init_currently_empty_zone(struct zone *zone, 5609 unsigned long zone_start_pfn, 5610 unsigned long size) 5611 { 5612 struct pglist_data *pgdat = zone->zone_pgdat; 5613 5614 pgdat->nr_zones = zone_idx(zone) + 1; 5615 5616 zone->zone_start_pfn = zone_start_pfn; 5617 5618 mminit_dprintk(MMINIT_TRACE, "memmap_init", 5619 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 5620 pgdat->node_id, 5621 (unsigned long)zone_idx(zone), 5622 zone_start_pfn, (zone_start_pfn + size)); 5623 5624 zone_init_free_lists(zone); 5625 zone->initialized = 1; 5626 } 5627 5628 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5629 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 5630 5631 /* 5632 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 5633 */ 5634 int __meminit __early_pfn_to_nid(unsigned long pfn, 5635 struct mminit_pfnnid_cache *state) 5636 { 5637 unsigned long start_pfn, end_pfn; 5638 int nid; 5639 5640 if (state->last_start <= pfn && pfn < state->last_end) 5641 return state->last_nid; 5642 5643 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 5644 if (nid != -1) { 5645 state->last_start = start_pfn; 5646 state->last_end = end_pfn; 5647 state->last_nid = nid; 5648 } 5649 5650 return nid; 5651 } 5652 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 5653 5654 /** 5655 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 5656 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 5657 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 5658 * 5659 * If an architecture guarantees that all ranges registered contain no holes 5660 * and may be freed, this this function may be used instead of calling 5661 * memblock_free_early_nid() manually. 5662 */ 5663 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 5664 { 5665 unsigned long start_pfn, end_pfn; 5666 int i, this_nid; 5667 5668 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 5669 start_pfn = min(start_pfn, max_low_pfn); 5670 end_pfn = min(end_pfn, max_low_pfn); 5671 5672 if (start_pfn < end_pfn) 5673 memblock_free_early_nid(PFN_PHYS(start_pfn), 5674 (end_pfn - start_pfn) << PAGE_SHIFT, 5675 this_nid); 5676 } 5677 } 5678 5679 /** 5680 * sparse_memory_present_with_active_regions - Call memory_present for each active range 5681 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 5682 * 5683 * If an architecture guarantees that all ranges registered contain no holes and may 5684 * be freed, this function may be used instead of calling memory_present() manually. 5685 */ 5686 void __init sparse_memory_present_with_active_regions(int nid) 5687 { 5688 unsigned long start_pfn, end_pfn; 5689 int i, this_nid; 5690 5691 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 5692 memory_present(this_nid, start_pfn, end_pfn); 5693 } 5694 5695 /** 5696 * get_pfn_range_for_nid - Return the start and end page frames for a node 5697 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 5698 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 5699 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 5700 * 5701 * It returns the start and end page frame of a node based on information 5702 * provided by memblock_set_node(). If called for a node 5703 * with no available memory, a warning is printed and the start and end 5704 * PFNs will be 0. 5705 */ 5706 void __meminit get_pfn_range_for_nid(unsigned int nid, 5707 unsigned long *start_pfn, unsigned long *end_pfn) 5708 { 5709 unsigned long this_start_pfn, this_end_pfn; 5710 int i; 5711 5712 *start_pfn = -1UL; 5713 *end_pfn = 0; 5714 5715 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 5716 *start_pfn = min(*start_pfn, this_start_pfn); 5717 *end_pfn = max(*end_pfn, this_end_pfn); 5718 } 5719 5720 if (*start_pfn == -1UL) 5721 *start_pfn = 0; 5722 } 5723 5724 /* 5725 * This finds a zone that can be used for ZONE_MOVABLE pages. The 5726 * assumption is made that zones within a node are ordered in monotonic 5727 * increasing memory addresses so that the "highest" populated zone is used 5728 */ 5729 static void __init find_usable_zone_for_movable(void) 5730 { 5731 int zone_index; 5732 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 5733 if (zone_index == ZONE_MOVABLE) 5734 continue; 5735 5736 if (arch_zone_highest_possible_pfn[zone_index] > 5737 arch_zone_lowest_possible_pfn[zone_index]) 5738 break; 5739 } 5740 5741 VM_BUG_ON(zone_index == -1); 5742 movable_zone = zone_index; 5743 } 5744 5745 /* 5746 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 5747 * because it is sized independent of architecture. Unlike the other zones, 5748 * the starting point for ZONE_MOVABLE is not fixed. It may be different 5749 * in each node depending on the size of each node and how evenly kernelcore 5750 * is distributed. This helper function adjusts the zone ranges 5751 * provided by the architecture for a given node by using the end of the 5752 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 5753 * zones within a node are in order of monotonic increases memory addresses 5754 */ 5755 static void __meminit adjust_zone_range_for_zone_movable(int nid, 5756 unsigned long zone_type, 5757 unsigned long node_start_pfn, 5758 unsigned long node_end_pfn, 5759 unsigned long *zone_start_pfn, 5760 unsigned long *zone_end_pfn) 5761 { 5762 /* Only adjust if ZONE_MOVABLE is on this node */ 5763 if (zone_movable_pfn[nid]) { 5764 /* Size ZONE_MOVABLE */ 5765 if (zone_type == ZONE_MOVABLE) { 5766 *zone_start_pfn = zone_movable_pfn[nid]; 5767 *zone_end_pfn = min(node_end_pfn, 5768 arch_zone_highest_possible_pfn[movable_zone]); 5769 5770 /* Adjust for ZONE_MOVABLE starting within this range */ 5771 } else if (!mirrored_kernelcore && 5772 *zone_start_pfn < zone_movable_pfn[nid] && 5773 *zone_end_pfn > zone_movable_pfn[nid]) { 5774 *zone_end_pfn = zone_movable_pfn[nid]; 5775 5776 /* Check if this whole range is within ZONE_MOVABLE */ 5777 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 5778 *zone_start_pfn = *zone_end_pfn; 5779 } 5780 } 5781 5782 /* 5783 * Return the number of pages a zone spans in a node, including holes 5784 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 5785 */ 5786 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 5787 unsigned long zone_type, 5788 unsigned long node_start_pfn, 5789 unsigned long node_end_pfn, 5790 unsigned long *zone_start_pfn, 5791 unsigned long *zone_end_pfn, 5792 unsigned long *ignored) 5793 { 5794 /* When hotadd a new node from cpu_up(), the node should be empty */ 5795 if (!node_start_pfn && !node_end_pfn) 5796 return 0; 5797 5798 /* Get the start and end of the zone */ 5799 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 5800 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 5801 adjust_zone_range_for_zone_movable(nid, zone_type, 5802 node_start_pfn, node_end_pfn, 5803 zone_start_pfn, zone_end_pfn); 5804 5805 /* Check that this node has pages within the zone's required range */ 5806 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 5807 return 0; 5808 5809 /* Move the zone boundaries inside the node if necessary */ 5810 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 5811 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 5812 5813 /* Return the spanned pages */ 5814 return *zone_end_pfn - *zone_start_pfn; 5815 } 5816 5817 /* 5818 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 5819 * then all holes in the requested range will be accounted for. 5820 */ 5821 unsigned long __meminit __absent_pages_in_range(int nid, 5822 unsigned long range_start_pfn, 5823 unsigned long range_end_pfn) 5824 { 5825 unsigned long nr_absent = range_end_pfn - range_start_pfn; 5826 unsigned long start_pfn, end_pfn; 5827 int i; 5828 5829 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5830 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 5831 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 5832 nr_absent -= end_pfn - start_pfn; 5833 } 5834 return nr_absent; 5835 } 5836 5837 /** 5838 * absent_pages_in_range - Return number of page frames in holes within a range 5839 * @start_pfn: The start PFN to start searching for holes 5840 * @end_pfn: The end PFN to stop searching for holes 5841 * 5842 * It returns the number of pages frames in memory holes within a range. 5843 */ 5844 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 5845 unsigned long end_pfn) 5846 { 5847 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 5848 } 5849 5850 /* Return the number of page frames in holes in a zone on a node */ 5851 static unsigned long __meminit zone_absent_pages_in_node(int nid, 5852 unsigned long zone_type, 5853 unsigned long node_start_pfn, 5854 unsigned long node_end_pfn, 5855 unsigned long *ignored) 5856 { 5857 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 5858 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 5859 unsigned long zone_start_pfn, zone_end_pfn; 5860 unsigned long nr_absent; 5861 5862 /* When hotadd a new node from cpu_up(), the node should be empty */ 5863 if (!node_start_pfn && !node_end_pfn) 5864 return 0; 5865 5866 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 5867 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 5868 5869 adjust_zone_range_for_zone_movable(nid, zone_type, 5870 node_start_pfn, node_end_pfn, 5871 &zone_start_pfn, &zone_end_pfn); 5872 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 5873 5874 /* 5875 * ZONE_MOVABLE handling. 5876 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 5877 * and vice versa. 5878 */ 5879 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 5880 unsigned long start_pfn, end_pfn; 5881 struct memblock_region *r; 5882 5883 for_each_memblock(memory, r) { 5884 start_pfn = clamp(memblock_region_memory_base_pfn(r), 5885 zone_start_pfn, zone_end_pfn); 5886 end_pfn = clamp(memblock_region_memory_end_pfn(r), 5887 zone_start_pfn, zone_end_pfn); 5888 5889 if (zone_type == ZONE_MOVABLE && 5890 memblock_is_mirror(r)) 5891 nr_absent += end_pfn - start_pfn; 5892 5893 if (zone_type == ZONE_NORMAL && 5894 !memblock_is_mirror(r)) 5895 nr_absent += end_pfn - start_pfn; 5896 } 5897 } 5898 5899 return nr_absent; 5900 } 5901 5902 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5903 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 5904 unsigned long zone_type, 5905 unsigned long node_start_pfn, 5906 unsigned long node_end_pfn, 5907 unsigned long *zone_start_pfn, 5908 unsigned long *zone_end_pfn, 5909 unsigned long *zones_size) 5910 { 5911 unsigned int zone; 5912 5913 *zone_start_pfn = node_start_pfn; 5914 for (zone = 0; zone < zone_type; zone++) 5915 *zone_start_pfn += zones_size[zone]; 5916 5917 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 5918 5919 return zones_size[zone_type]; 5920 } 5921 5922 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 5923 unsigned long zone_type, 5924 unsigned long node_start_pfn, 5925 unsigned long node_end_pfn, 5926 unsigned long *zholes_size) 5927 { 5928 if (!zholes_size) 5929 return 0; 5930 5931 return zholes_size[zone_type]; 5932 } 5933 5934 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5935 5936 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 5937 unsigned long node_start_pfn, 5938 unsigned long node_end_pfn, 5939 unsigned long *zones_size, 5940 unsigned long *zholes_size) 5941 { 5942 unsigned long realtotalpages = 0, totalpages = 0; 5943 enum zone_type i; 5944 5945 for (i = 0; i < MAX_NR_ZONES; i++) { 5946 struct zone *zone = pgdat->node_zones + i; 5947 unsigned long zone_start_pfn, zone_end_pfn; 5948 unsigned long size, real_size; 5949 5950 size = zone_spanned_pages_in_node(pgdat->node_id, i, 5951 node_start_pfn, 5952 node_end_pfn, 5953 &zone_start_pfn, 5954 &zone_end_pfn, 5955 zones_size); 5956 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 5957 node_start_pfn, node_end_pfn, 5958 zholes_size); 5959 if (size) 5960 zone->zone_start_pfn = zone_start_pfn; 5961 else 5962 zone->zone_start_pfn = 0; 5963 zone->spanned_pages = size; 5964 zone->present_pages = real_size; 5965 5966 totalpages += size; 5967 realtotalpages += real_size; 5968 } 5969 5970 pgdat->node_spanned_pages = totalpages; 5971 pgdat->node_present_pages = realtotalpages; 5972 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 5973 realtotalpages); 5974 } 5975 5976 #ifndef CONFIG_SPARSEMEM 5977 /* 5978 * Calculate the size of the zone->blockflags rounded to an unsigned long 5979 * Start by making sure zonesize is a multiple of pageblock_order by rounding 5980 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 5981 * round what is now in bits to nearest long in bits, then return it in 5982 * bytes. 5983 */ 5984 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 5985 { 5986 unsigned long usemapsize; 5987 5988 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 5989 usemapsize = roundup(zonesize, pageblock_nr_pages); 5990 usemapsize = usemapsize >> pageblock_order; 5991 usemapsize *= NR_PAGEBLOCK_BITS; 5992 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 5993 5994 return usemapsize / 8; 5995 } 5996 5997 static void __init setup_usemap(struct pglist_data *pgdat, 5998 struct zone *zone, 5999 unsigned long zone_start_pfn, 6000 unsigned long zonesize) 6001 { 6002 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6003 zone->pageblock_flags = NULL; 6004 if (usemapsize) 6005 zone->pageblock_flags = 6006 memblock_virt_alloc_node_nopanic(usemapsize, 6007 pgdat->node_id); 6008 } 6009 #else 6010 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6011 unsigned long zone_start_pfn, unsigned long zonesize) {} 6012 #endif /* CONFIG_SPARSEMEM */ 6013 6014 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6015 6016 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6017 void __paginginit set_pageblock_order(void) 6018 { 6019 unsigned int order; 6020 6021 /* Check that pageblock_nr_pages has not already been setup */ 6022 if (pageblock_order) 6023 return; 6024 6025 if (HPAGE_SHIFT > PAGE_SHIFT) 6026 order = HUGETLB_PAGE_ORDER; 6027 else 6028 order = MAX_ORDER - 1; 6029 6030 /* 6031 * Assume the largest contiguous order of interest is a huge page. 6032 * This value may be variable depending on boot parameters on IA64 and 6033 * powerpc. 6034 */ 6035 pageblock_order = order; 6036 } 6037 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6038 6039 /* 6040 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6041 * is unused as pageblock_order is set at compile-time. See 6042 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6043 * the kernel config 6044 */ 6045 void __paginginit set_pageblock_order(void) 6046 { 6047 } 6048 6049 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6050 6051 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 6052 unsigned long present_pages) 6053 { 6054 unsigned long pages = spanned_pages; 6055 6056 /* 6057 * Provide a more accurate estimation if there are holes within 6058 * the zone and SPARSEMEM is in use. If there are holes within the 6059 * zone, each populated memory region may cost us one or two extra 6060 * memmap pages due to alignment because memmap pages for each 6061 * populated regions may not be naturally aligned on page boundary. 6062 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6063 */ 6064 if (spanned_pages > present_pages + (present_pages >> 4) && 6065 IS_ENABLED(CONFIG_SPARSEMEM)) 6066 pages = present_pages; 6067 6068 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6069 } 6070 6071 /* 6072 * Set up the zone data structures: 6073 * - mark all pages reserved 6074 * - mark all memory queues empty 6075 * - clear the memory bitmaps 6076 * 6077 * NOTE: pgdat should get zeroed by caller. 6078 */ 6079 static void __paginginit free_area_init_core(struct pglist_data *pgdat) 6080 { 6081 enum zone_type j; 6082 int nid = pgdat->node_id; 6083 6084 pgdat_resize_init(pgdat); 6085 #ifdef CONFIG_NUMA_BALANCING 6086 spin_lock_init(&pgdat->numabalancing_migrate_lock); 6087 pgdat->numabalancing_migrate_nr_pages = 0; 6088 pgdat->numabalancing_migrate_next_window = jiffies; 6089 #endif 6090 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6091 spin_lock_init(&pgdat->split_queue_lock); 6092 INIT_LIST_HEAD(&pgdat->split_queue); 6093 pgdat->split_queue_len = 0; 6094 #endif 6095 init_waitqueue_head(&pgdat->kswapd_wait); 6096 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6097 #ifdef CONFIG_COMPACTION 6098 init_waitqueue_head(&pgdat->kcompactd_wait); 6099 #endif 6100 pgdat_page_ext_init(pgdat); 6101 spin_lock_init(&pgdat->lru_lock); 6102 lruvec_init(node_lruvec(pgdat)); 6103 6104 pgdat->per_cpu_nodestats = &boot_nodestats; 6105 6106 for (j = 0; j < MAX_NR_ZONES; j++) { 6107 struct zone *zone = pgdat->node_zones + j; 6108 unsigned long size, realsize, freesize, memmap_pages; 6109 unsigned long zone_start_pfn = zone->zone_start_pfn; 6110 6111 size = zone->spanned_pages; 6112 realsize = freesize = zone->present_pages; 6113 6114 /* 6115 * Adjust freesize so that it accounts for how much memory 6116 * is used by this zone for memmap. This affects the watermark 6117 * and per-cpu initialisations 6118 */ 6119 memmap_pages = calc_memmap_size(size, realsize); 6120 if (!is_highmem_idx(j)) { 6121 if (freesize >= memmap_pages) { 6122 freesize -= memmap_pages; 6123 if (memmap_pages) 6124 printk(KERN_DEBUG 6125 " %s zone: %lu pages used for memmap\n", 6126 zone_names[j], memmap_pages); 6127 } else 6128 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6129 zone_names[j], memmap_pages, freesize); 6130 } 6131 6132 /* Account for reserved pages */ 6133 if (j == 0 && freesize > dma_reserve) { 6134 freesize -= dma_reserve; 6135 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6136 zone_names[0], dma_reserve); 6137 } 6138 6139 if (!is_highmem_idx(j)) 6140 nr_kernel_pages += freesize; 6141 /* Charge for highmem memmap if there are enough kernel pages */ 6142 else if (nr_kernel_pages > memmap_pages * 2) 6143 nr_kernel_pages -= memmap_pages; 6144 nr_all_pages += freesize; 6145 6146 /* 6147 * Set an approximate value for lowmem here, it will be adjusted 6148 * when the bootmem allocator frees pages into the buddy system. 6149 * And all highmem pages will be managed by the buddy system. 6150 */ 6151 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 6152 #ifdef CONFIG_NUMA 6153 zone->node = nid; 6154 #endif 6155 zone->name = zone_names[j]; 6156 zone->zone_pgdat = pgdat; 6157 spin_lock_init(&zone->lock); 6158 zone_seqlock_init(zone); 6159 zone_pcp_init(zone); 6160 6161 if (!size) 6162 continue; 6163 6164 set_pageblock_order(); 6165 setup_usemap(pgdat, zone, zone_start_pfn, size); 6166 init_currently_empty_zone(zone, zone_start_pfn, size); 6167 memmap_init(size, nid, j, zone_start_pfn); 6168 } 6169 } 6170 6171 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6172 { 6173 unsigned long __maybe_unused start = 0; 6174 unsigned long __maybe_unused offset = 0; 6175 6176 /* Skip empty nodes */ 6177 if (!pgdat->node_spanned_pages) 6178 return; 6179 6180 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6181 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6182 offset = pgdat->node_start_pfn - start; 6183 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6184 if (!pgdat->node_mem_map) { 6185 unsigned long size, end; 6186 struct page *map; 6187 6188 /* 6189 * The zone's endpoints aren't required to be MAX_ORDER 6190 * aligned but the node_mem_map endpoints must be in order 6191 * for the buddy allocator to function correctly. 6192 */ 6193 end = pgdat_end_pfn(pgdat); 6194 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6195 size = (end - start) * sizeof(struct page); 6196 map = alloc_remap(pgdat->node_id, size); 6197 if (!map) 6198 map = memblock_virt_alloc_node_nopanic(size, 6199 pgdat->node_id); 6200 pgdat->node_mem_map = map + offset; 6201 } 6202 #ifndef CONFIG_NEED_MULTIPLE_NODES 6203 /* 6204 * With no DISCONTIG, the global mem_map is just set as node 0's 6205 */ 6206 if (pgdat == NODE_DATA(0)) { 6207 mem_map = NODE_DATA(0)->node_mem_map; 6208 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6209 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6210 mem_map -= offset; 6211 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6212 } 6213 #endif 6214 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6215 } 6216 6217 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 6218 unsigned long node_start_pfn, unsigned long *zholes_size) 6219 { 6220 pg_data_t *pgdat = NODE_DATA(nid); 6221 unsigned long start_pfn = 0; 6222 unsigned long end_pfn = 0; 6223 6224 /* pg_data_t should be reset to zero when it's allocated */ 6225 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6226 6227 pgdat->node_id = nid; 6228 pgdat->node_start_pfn = node_start_pfn; 6229 pgdat->per_cpu_nodestats = NULL; 6230 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6231 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6232 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6233 (u64)start_pfn << PAGE_SHIFT, 6234 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6235 #else 6236 start_pfn = node_start_pfn; 6237 #endif 6238 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6239 zones_size, zholes_size); 6240 6241 alloc_node_mem_map(pgdat); 6242 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6243 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 6244 nid, (unsigned long)pgdat, 6245 (unsigned long)pgdat->node_mem_map); 6246 #endif 6247 6248 reset_deferred_meminit(pgdat); 6249 free_area_init_core(pgdat); 6250 } 6251 6252 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6253 6254 #if MAX_NUMNODES > 1 6255 /* 6256 * Figure out the number of possible node ids. 6257 */ 6258 void __init setup_nr_node_ids(void) 6259 { 6260 unsigned int highest; 6261 6262 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6263 nr_node_ids = highest + 1; 6264 } 6265 #endif 6266 6267 /** 6268 * node_map_pfn_alignment - determine the maximum internode alignment 6269 * 6270 * This function should be called after node map is populated and sorted. 6271 * It calculates the maximum power of two alignment which can distinguish 6272 * all the nodes. 6273 * 6274 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6275 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6276 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6277 * shifted, 1GiB is enough and this function will indicate so. 6278 * 6279 * This is used to test whether pfn -> nid mapping of the chosen memory 6280 * model has fine enough granularity to avoid incorrect mapping for the 6281 * populated node map. 6282 * 6283 * Returns the determined alignment in pfn's. 0 if there is no alignment 6284 * requirement (single node). 6285 */ 6286 unsigned long __init node_map_pfn_alignment(void) 6287 { 6288 unsigned long accl_mask = 0, last_end = 0; 6289 unsigned long start, end, mask; 6290 int last_nid = -1; 6291 int i, nid; 6292 6293 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6294 if (!start || last_nid < 0 || last_nid == nid) { 6295 last_nid = nid; 6296 last_end = end; 6297 continue; 6298 } 6299 6300 /* 6301 * Start with a mask granular enough to pin-point to the 6302 * start pfn and tick off bits one-by-one until it becomes 6303 * too coarse to separate the current node from the last. 6304 */ 6305 mask = ~((1 << __ffs(start)) - 1); 6306 while (mask && last_end <= (start & (mask << 1))) 6307 mask <<= 1; 6308 6309 /* accumulate all internode masks */ 6310 accl_mask |= mask; 6311 } 6312 6313 /* convert mask to number of pages */ 6314 return ~accl_mask + 1; 6315 } 6316 6317 /* Find the lowest pfn for a node */ 6318 static unsigned long __init find_min_pfn_for_node(int nid) 6319 { 6320 unsigned long min_pfn = ULONG_MAX; 6321 unsigned long start_pfn; 6322 int i; 6323 6324 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6325 min_pfn = min(min_pfn, start_pfn); 6326 6327 if (min_pfn == ULONG_MAX) { 6328 pr_warn("Could not find start_pfn for node %d\n", nid); 6329 return 0; 6330 } 6331 6332 return min_pfn; 6333 } 6334 6335 /** 6336 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6337 * 6338 * It returns the minimum PFN based on information provided via 6339 * memblock_set_node(). 6340 */ 6341 unsigned long __init find_min_pfn_with_active_regions(void) 6342 { 6343 return find_min_pfn_for_node(MAX_NUMNODES); 6344 } 6345 6346 /* 6347 * early_calculate_totalpages() 6348 * Sum pages in active regions for movable zone. 6349 * Populate N_MEMORY for calculating usable_nodes. 6350 */ 6351 static unsigned long __init early_calculate_totalpages(void) 6352 { 6353 unsigned long totalpages = 0; 6354 unsigned long start_pfn, end_pfn; 6355 int i, nid; 6356 6357 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6358 unsigned long pages = end_pfn - start_pfn; 6359 6360 totalpages += pages; 6361 if (pages) 6362 node_set_state(nid, N_MEMORY); 6363 } 6364 return totalpages; 6365 } 6366 6367 /* 6368 * Find the PFN the Movable zone begins in each node. Kernel memory 6369 * is spread evenly between nodes as long as the nodes have enough 6370 * memory. When they don't, some nodes will have more kernelcore than 6371 * others 6372 */ 6373 static void __init find_zone_movable_pfns_for_nodes(void) 6374 { 6375 int i, nid; 6376 unsigned long usable_startpfn; 6377 unsigned long kernelcore_node, kernelcore_remaining; 6378 /* save the state before borrow the nodemask */ 6379 nodemask_t saved_node_state = node_states[N_MEMORY]; 6380 unsigned long totalpages = early_calculate_totalpages(); 6381 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 6382 struct memblock_region *r; 6383 6384 /* Need to find movable_zone earlier when movable_node is specified. */ 6385 find_usable_zone_for_movable(); 6386 6387 /* 6388 * If movable_node is specified, ignore kernelcore and movablecore 6389 * options. 6390 */ 6391 if (movable_node_is_enabled()) { 6392 for_each_memblock(memory, r) { 6393 if (!memblock_is_hotpluggable(r)) 6394 continue; 6395 6396 nid = r->nid; 6397 6398 usable_startpfn = PFN_DOWN(r->base); 6399 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6400 min(usable_startpfn, zone_movable_pfn[nid]) : 6401 usable_startpfn; 6402 } 6403 6404 goto out2; 6405 } 6406 6407 /* 6408 * If kernelcore=mirror is specified, ignore movablecore option 6409 */ 6410 if (mirrored_kernelcore) { 6411 bool mem_below_4gb_not_mirrored = false; 6412 6413 for_each_memblock(memory, r) { 6414 if (memblock_is_mirror(r)) 6415 continue; 6416 6417 nid = r->nid; 6418 6419 usable_startpfn = memblock_region_memory_base_pfn(r); 6420 6421 if (usable_startpfn < 0x100000) { 6422 mem_below_4gb_not_mirrored = true; 6423 continue; 6424 } 6425 6426 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6427 min(usable_startpfn, zone_movable_pfn[nid]) : 6428 usable_startpfn; 6429 } 6430 6431 if (mem_below_4gb_not_mirrored) 6432 pr_warn("This configuration results in unmirrored kernel memory."); 6433 6434 goto out2; 6435 } 6436 6437 /* 6438 * If movablecore=nn[KMG] was specified, calculate what size of 6439 * kernelcore that corresponds so that memory usable for 6440 * any allocation type is evenly spread. If both kernelcore 6441 * and movablecore are specified, then the value of kernelcore 6442 * will be used for required_kernelcore if it's greater than 6443 * what movablecore would have allowed. 6444 */ 6445 if (required_movablecore) { 6446 unsigned long corepages; 6447 6448 /* 6449 * Round-up so that ZONE_MOVABLE is at least as large as what 6450 * was requested by the user 6451 */ 6452 required_movablecore = 6453 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 6454 required_movablecore = min(totalpages, required_movablecore); 6455 corepages = totalpages - required_movablecore; 6456 6457 required_kernelcore = max(required_kernelcore, corepages); 6458 } 6459 6460 /* 6461 * If kernelcore was not specified or kernelcore size is larger 6462 * than totalpages, there is no ZONE_MOVABLE. 6463 */ 6464 if (!required_kernelcore || required_kernelcore >= totalpages) 6465 goto out; 6466 6467 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 6468 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 6469 6470 restart: 6471 /* Spread kernelcore memory as evenly as possible throughout nodes */ 6472 kernelcore_node = required_kernelcore / usable_nodes; 6473 for_each_node_state(nid, N_MEMORY) { 6474 unsigned long start_pfn, end_pfn; 6475 6476 /* 6477 * Recalculate kernelcore_node if the division per node 6478 * now exceeds what is necessary to satisfy the requested 6479 * amount of memory for the kernel 6480 */ 6481 if (required_kernelcore < kernelcore_node) 6482 kernelcore_node = required_kernelcore / usable_nodes; 6483 6484 /* 6485 * As the map is walked, we track how much memory is usable 6486 * by the kernel using kernelcore_remaining. When it is 6487 * 0, the rest of the node is usable by ZONE_MOVABLE 6488 */ 6489 kernelcore_remaining = kernelcore_node; 6490 6491 /* Go through each range of PFNs within this node */ 6492 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6493 unsigned long size_pages; 6494 6495 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 6496 if (start_pfn >= end_pfn) 6497 continue; 6498 6499 /* Account for what is only usable for kernelcore */ 6500 if (start_pfn < usable_startpfn) { 6501 unsigned long kernel_pages; 6502 kernel_pages = min(end_pfn, usable_startpfn) 6503 - start_pfn; 6504 6505 kernelcore_remaining -= min(kernel_pages, 6506 kernelcore_remaining); 6507 required_kernelcore -= min(kernel_pages, 6508 required_kernelcore); 6509 6510 /* Continue if range is now fully accounted */ 6511 if (end_pfn <= usable_startpfn) { 6512 6513 /* 6514 * Push zone_movable_pfn to the end so 6515 * that if we have to rebalance 6516 * kernelcore across nodes, we will 6517 * not double account here 6518 */ 6519 zone_movable_pfn[nid] = end_pfn; 6520 continue; 6521 } 6522 start_pfn = usable_startpfn; 6523 } 6524 6525 /* 6526 * The usable PFN range for ZONE_MOVABLE is from 6527 * start_pfn->end_pfn. Calculate size_pages as the 6528 * number of pages used as kernelcore 6529 */ 6530 size_pages = end_pfn - start_pfn; 6531 if (size_pages > kernelcore_remaining) 6532 size_pages = kernelcore_remaining; 6533 zone_movable_pfn[nid] = start_pfn + size_pages; 6534 6535 /* 6536 * Some kernelcore has been met, update counts and 6537 * break if the kernelcore for this node has been 6538 * satisfied 6539 */ 6540 required_kernelcore -= min(required_kernelcore, 6541 size_pages); 6542 kernelcore_remaining -= size_pages; 6543 if (!kernelcore_remaining) 6544 break; 6545 } 6546 } 6547 6548 /* 6549 * If there is still required_kernelcore, we do another pass with one 6550 * less node in the count. This will push zone_movable_pfn[nid] further 6551 * along on the nodes that still have memory until kernelcore is 6552 * satisfied 6553 */ 6554 usable_nodes--; 6555 if (usable_nodes && required_kernelcore > usable_nodes) 6556 goto restart; 6557 6558 out2: 6559 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 6560 for (nid = 0; nid < MAX_NUMNODES; nid++) 6561 zone_movable_pfn[nid] = 6562 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 6563 6564 out: 6565 /* restore the node_state */ 6566 node_states[N_MEMORY] = saved_node_state; 6567 } 6568 6569 /* Any regular or high memory on that node ? */ 6570 static void check_for_memory(pg_data_t *pgdat, int nid) 6571 { 6572 enum zone_type zone_type; 6573 6574 if (N_MEMORY == N_NORMAL_MEMORY) 6575 return; 6576 6577 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 6578 struct zone *zone = &pgdat->node_zones[zone_type]; 6579 if (populated_zone(zone)) { 6580 node_set_state(nid, N_HIGH_MEMORY); 6581 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 6582 zone_type <= ZONE_NORMAL) 6583 node_set_state(nid, N_NORMAL_MEMORY); 6584 break; 6585 } 6586 } 6587 } 6588 6589 /** 6590 * free_area_init_nodes - Initialise all pg_data_t and zone data 6591 * @max_zone_pfn: an array of max PFNs for each zone 6592 * 6593 * This will call free_area_init_node() for each active node in the system. 6594 * Using the page ranges provided by memblock_set_node(), the size of each 6595 * zone in each node and their holes is calculated. If the maximum PFN 6596 * between two adjacent zones match, it is assumed that the zone is empty. 6597 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 6598 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 6599 * starts where the previous one ended. For example, ZONE_DMA32 starts 6600 * at arch_max_dma_pfn. 6601 */ 6602 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 6603 { 6604 unsigned long start_pfn, end_pfn; 6605 int i, nid; 6606 6607 /* Record where the zone boundaries are */ 6608 memset(arch_zone_lowest_possible_pfn, 0, 6609 sizeof(arch_zone_lowest_possible_pfn)); 6610 memset(arch_zone_highest_possible_pfn, 0, 6611 sizeof(arch_zone_highest_possible_pfn)); 6612 6613 start_pfn = find_min_pfn_with_active_regions(); 6614 6615 for (i = 0; i < MAX_NR_ZONES; i++) { 6616 if (i == ZONE_MOVABLE) 6617 continue; 6618 6619 end_pfn = max(max_zone_pfn[i], start_pfn); 6620 arch_zone_lowest_possible_pfn[i] = start_pfn; 6621 arch_zone_highest_possible_pfn[i] = end_pfn; 6622 6623 start_pfn = end_pfn; 6624 } 6625 6626 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 6627 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 6628 find_zone_movable_pfns_for_nodes(); 6629 6630 /* Print out the zone ranges */ 6631 pr_info("Zone ranges:\n"); 6632 for (i = 0; i < MAX_NR_ZONES; i++) { 6633 if (i == ZONE_MOVABLE) 6634 continue; 6635 pr_info(" %-8s ", zone_names[i]); 6636 if (arch_zone_lowest_possible_pfn[i] == 6637 arch_zone_highest_possible_pfn[i]) 6638 pr_cont("empty\n"); 6639 else 6640 pr_cont("[mem %#018Lx-%#018Lx]\n", 6641 (u64)arch_zone_lowest_possible_pfn[i] 6642 << PAGE_SHIFT, 6643 ((u64)arch_zone_highest_possible_pfn[i] 6644 << PAGE_SHIFT) - 1); 6645 } 6646 6647 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 6648 pr_info("Movable zone start for each node\n"); 6649 for (i = 0; i < MAX_NUMNODES; i++) { 6650 if (zone_movable_pfn[i]) 6651 pr_info(" Node %d: %#018Lx\n", i, 6652 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 6653 } 6654 6655 /* Print out the early node map */ 6656 pr_info("Early memory node ranges\n"); 6657 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 6658 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 6659 (u64)start_pfn << PAGE_SHIFT, 6660 ((u64)end_pfn << PAGE_SHIFT) - 1); 6661 6662 /* Initialise every node */ 6663 mminit_verify_pageflags_layout(); 6664 setup_nr_node_ids(); 6665 for_each_online_node(nid) { 6666 pg_data_t *pgdat = NODE_DATA(nid); 6667 free_area_init_node(nid, NULL, 6668 find_min_pfn_for_node(nid), NULL); 6669 6670 /* Any memory on that node */ 6671 if (pgdat->node_present_pages) 6672 node_set_state(nid, N_MEMORY); 6673 check_for_memory(pgdat, nid); 6674 } 6675 } 6676 6677 static int __init cmdline_parse_core(char *p, unsigned long *core) 6678 { 6679 unsigned long long coremem; 6680 if (!p) 6681 return -EINVAL; 6682 6683 coremem = memparse(p, &p); 6684 *core = coremem >> PAGE_SHIFT; 6685 6686 /* Paranoid check that UL is enough for the coremem value */ 6687 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 6688 6689 return 0; 6690 } 6691 6692 /* 6693 * kernelcore=size sets the amount of memory for use for allocations that 6694 * cannot be reclaimed or migrated. 6695 */ 6696 static int __init cmdline_parse_kernelcore(char *p) 6697 { 6698 /* parse kernelcore=mirror */ 6699 if (parse_option_str(p, "mirror")) { 6700 mirrored_kernelcore = true; 6701 return 0; 6702 } 6703 6704 return cmdline_parse_core(p, &required_kernelcore); 6705 } 6706 6707 /* 6708 * movablecore=size sets the amount of memory for use for allocations that 6709 * can be reclaimed or migrated. 6710 */ 6711 static int __init cmdline_parse_movablecore(char *p) 6712 { 6713 return cmdline_parse_core(p, &required_movablecore); 6714 } 6715 6716 early_param("kernelcore", cmdline_parse_kernelcore); 6717 early_param("movablecore", cmdline_parse_movablecore); 6718 6719 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6720 6721 void adjust_managed_page_count(struct page *page, long count) 6722 { 6723 spin_lock(&managed_page_count_lock); 6724 page_zone(page)->managed_pages += count; 6725 totalram_pages += count; 6726 #ifdef CONFIG_HIGHMEM 6727 if (PageHighMem(page)) 6728 totalhigh_pages += count; 6729 #endif 6730 spin_unlock(&managed_page_count_lock); 6731 } 6732 EXPORT_SYMBOL(adjust_managed_page_count); 6733 6734 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 6735 { 6736 void *pos; 6737 unsigned long pages = 0; 6738 6739 start = (void *)PAGE_ALIGN((unsigned long)start); 6740 end = (void *)((unsigned long)end & PAGE_MASK); 6741 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6742 if ((unsigned int)poison <= 0xFF) 6743 memset(pos, poison, PAGE_SIZE); 6744 free_reserved_page(virt_to_page(pos)); 6745 } 6746 6747 if (pages && s) 6748 pr_info("Freeing %s memory: %ldK\n", 6749 s, pages << (PAGE_SHIFT - 10)); 6750 6751 return pages; 6752 } 6753 EXPORT_SYMBOL(free_reserved_area); 6754 6755 #ifdef CONFIG_HIGHMEM 6756 void free_highmem_page(struct page *page) 6757 { 6758 __free_reserved_page(page); 6759 totalram_pages++; 6760 page_zone(page)->managed_pages++; 6761 totalhigh_pages++; 6762 } 6763 #endif 6764 6765 6766 void __init mem_init_print_info(const char *str) 6767 { 6768 unsigned long physpages, codesize, datasize, rosize, bss_size; 6769 unsigned long init_code_size, init_data_size; 6770 6771 physpages = get_num_physpages(); 6772 codesize = _etext - _stext; 6773 datasize = _edata - _sdata; 6774 rosize = __end_rodata - __start_rodata; 6775 bss_size = __bss_stop - __bss_start; 6776 init_data_size = __init_end - __init_begin; 6777 init_code_size = _einittext - _sinittext; 6778 6779 /* 6780 * Detect special cases and adjust section sizes accordingly: 6781 * 1) .init.* may be embedded into .data sections 6782 * 2) .init.text.* may be out of [__init_begin, __init_end], 6783 * please refer to arch/tile/kernel/vmlinux.lds.S. 6784 * 3) .rodata.* may be embedded into .text or .data sections. 6785 */ 6786 #define adj_init_size(start, end, size, pos, adj) \ 6787 do { \ 6788 if (start <= pos && pos < end && size > adj) \ 6789 size -= adj; \ 6790 } while (0) 6791 6792 adj_init_size(__init_begin, __init_end, init_data_size, 6793 _sinittext, init_code_size); 6794 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 6795 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 6796 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 6797 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 6798 6799 #undef adj_init_size 6800 6801 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 6802 #ifdef CONFIG_HIGHMEM 6803 ", %luK highmem" 6804 #endif 6805 "%s%s)\n", 6806 nr_free_pages() << (PAGE_SHIFT - 10), 6807 physpages << (PAGE_SHIFT - 10), 6808 codesize >> 10, datasize >> 10, rosize >> 10, 6809 (init_data_size + init_code_size) >> 10, bss_size >> 10, 6810 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10), 6811 totalcma_pages << (PAGE_SHIFT - 10), 6812 #ifdef CONFIG_HIGHMEM 6813 totalhigh_pages << (PAGE_SHIFT - 10), 6814 #endif 6815 str ? ", " : "", str ? str : ""); 6816 } 6817 6818 /** 6819 * set_dma_reserve - set the specified number of pages reserved in the first zone 6820 * @new_dma_reserve: The number of pages to mark reserved 6821 * 6822 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 6823 * In the DMA zone, a significant percentage may be consumed by kernel image 6824 * and other unfreeable allocations which can skew the watermarks badly. This 6825 * function may optionally be used to account for unfreeable pages in the 6826 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 6827 * smaller per-cpu batchsize. 6828 */ 6829 void __init set_dma_reserve(unsigned long new_dma_reserve) 6830 { 6831 dma_reserve = new_dma_reserve; 6832 } 6833 6834 void __init free_area_init(unsigned long *zones_size) 6835 { 6836 free_area_init_node(0, zones_size, 6837 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 6838 } 6839 6840 static int page_alloc_cpu_dead(unsigned int cpu) 6841 { 6842 6843 lru_add_drain_cpu(cpu); 6844 drain_pages(cpu); 6845 6846 /* 6847 * Spill the event counters of the dead processor 6848 * into the current processors event counters. 6849 * This artificially elevates the count of the current 6850 * processor. 6851 */ 6852 vm_events_fold_cpu(cpu); 6853 6854 /* 6855 * Zero the differential counters of the dead processor 6856 * so that the vm statistics are consistent. 6857 * 6858 * This is only okay since the processor is dead and cannot 6859 * race with what we are doing. 6860 */ 6861 cpu_vm_stats_fold(cpu); 6862 return 0; 6863 } 6864 6865 void __init page_alloc_init(void) 6866 { 6867 int ret; 6868 6869 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 6870 "mm/page_alloc:dead", NULL, 6871 page_alloc_cpu_dead); 6872 WARN_ON(ret < 0); 6873 } 6874 6875 /* 6876 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6877 * or min_free_kbytes changes. 6878 */ 6879 static void calculate_totalreserve_pages(void) 6880 { 6881 struct pglist_data *pgdat; 6882 unsigned long reserve_pages = 0; 6883 enum zone_type i, j; 6884 6885 for_each_online_pgdat(pgdat) { 6886 6887 pgdat->totalreserve_pages = 0; 6888 6889 for (i = 0; i < MAX_NR_ZONES; i++) { 6890 struct zone *zone = pgdat->node_zones + i; 6891 long max = 0; 6892 6893 /* Find valid and maximum lowmem_reserve in the zone */ 6894 for (j = i; j < MAX_NR_ZONES; j++) { 6895 if (zone->lowmem_reserve[j] > max) 6896 max = zone->lowmem_reserve[j]; 6897 } 6898 6899 /* we treat the high watermark as reserved pages. */ 6900 max += high_wmark_pages(zone); 6901 6902 if (max > zone->managed_pages) 6903 max = zone->managed_pages; 6904 6905 pgdat->totalreserve_pages += max; 6906 6907 reserve_pages += max; 6908 } 6909 } 6910 totalreserve_pages = reserve_pages; 6911 } 6912 6913 /* 6914 * setup_per_zone_lowmem_reserve - called whenever 6915 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6916 * has a correct pages reserved value, so an adequate number of 6917 * pages are left in the zone after a successful __alloc_pages(). 6918 */ 6919 static void setup_per_zone_lowmem_reserve(void) 6920 { 6921 struct pglist_data *pgdat; 6922 enum zone_type j, idx; 6923 6924 for_each_online_pgdat(pgdat) { 6925 for (j = 0; j < MAX_NR_ZONES; j++) { 6926 struct zone *zone = pgdat->node_zones + j; 6927 unsigned long managed_pages = zone->managed_pages; 6928 6929 zone->lowmem_reserve[j] = 0; 6930 6931 idx = j; 6932 while (idx) { 6933 struct zone *lower_zone; 6934 6935 idx--; 6936 6937 if (sysctl_lowmem_reserve_ratio[idx] < 1) 6938 sysctl_lowmem_reserve_ratio[idx] = 1; 6939 6940 lower_zone = pgdat->node_zones + idx; 6941 lower_zone->lowmem_reserve[j] = managed_pages / 6942 sysctl_lowmem_reserve_ratio[idx]; 6943 managed_pages += lower_zone->managed_pages; 6944 } 6945 } 6946 } 6947 6948 /* update totalreserve_pages */ 6949 calculate_totalreserve_pages(); 6950 } 6951 6952 static void __setup_per_zone_wmarks(void) 6953 { 6954 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6955 unsigned long lowmem_pages = 0; 6956 struct zone *zone; 6957 unsigned long flags; 6958 6959 /* Calculate total number of !ZONE_HIGHMEM pages */ 6960 for_each_zone(zone) { 6961 if (!is_highmem(zone)) 6962 lowmem_pages += zone->managed_pages; 6963 } 6964 6965 for_each_zone(zone) { 6966 u64 tmp; 6967 6968 spin_lock_irqsave(&zone->lock, flags); 6969 tmp = (u64)pages_min * zone->managed_pages; 6970 do_div(tmp, lowmem_pages); 6971 if (is_highmem(zone)) { 6972 /* 6973 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6974 * need highmem pages, so cap pages_min to a small 6975 * value here. 6976 * 6977 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6978 * deltas control asynch page reclaim, and so should 6979 * not be capped for highmem. 6980 */ 6981 unsigned long min_pages; 6982 6983 min_pages = zone->managed_pages / 1024; 6984 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6985 zone->watermark[WMARK_MIN] = min_pages; 6986 } else { 6987 /* 6988 * If it's a lowmem zone, reserve a number of pages 6989 * proportionate to the zone's size. 6990 */ 6991 zone->watermark[WMARK_MIN] = tmp; 6992 } 6993 6994 /* 6995 * Set the kswapd watermarks distance according to the 6996 * scale factor in proportion to available memory, but 6997 * ensure a minimum size on small systems. 6998 */ 6999 tmp = max_t(u64, tmp >> 2, 7000 mult_frac(zone->managed_pages, 7001 watermark_scale_factor, 10000)); 7002 7003 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7004 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7005 7006 spin_unlock_irqrestore(&zone->lock, flags); 7007 } 7008 7009 /* update totalreserve_pages */ 7010 calculate_totalreserve_pages(); 7011 } 7012 7013 /** 7014 * setup_per_zone_wmarks - called when min_free_kbytes changes 7015 * or when memory is hot-{added|removed} 7016 * 7017 * Ensures that the watermark[min,low,high] values for each zone are set 7018 * correctly with respect to min_free_kbytes. 7019 */ 7020 void setup_per_zone_wmarks(void) 7021 { 7022 mutex_lock(&zonelists_mutex); 7023 __setup_per_zone_wmarks(); 7024 mutex_unlock(&zonelists_mutex); 7025 } 7026 7027 /* 7028 * Initialise min_free_kbytes. 7029 * 7030 * For small machines we want it small (128k min). For large machines 7031 * we want it large (64MB max). But it is not linear, because network 7032 * bandwidth does not increase linearly with machine size. We use 7033 * 7034 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7035 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7036 * 7037 * which yields 7038 * 7039 * 16MB: 512k 7040 * 32MB: 724k 7041 * 64MB: 1024k 7042 * 128MB: 1448k 7043 * 256MB: 2048k 7044 * 512MB: 2896k 7045 * 1024MB: 4096k 7046 * 2048MB: 5792k 7047 * 4096MB: 8192k 7048 * 8192MB: 11584k 7049 * 16384MB: 16384k 7050 */ 7051 int __meminit init_per_zone_wmark_min(void) 7052 { 7053 unsigned long lowmem_kbytes; 7054 int new_min_free_kbytes; 7055 7056 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7057 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7058 7059 if (new_min_free_kbytes > user_min_free_kbytes) { 7060 min_free_kbytes = new_min_free_kbytes; 7061 if (min_free_kbytes < 128) 7062 min_free_kbytes = 128; 7063 if (min_free_kbytes > 65536) 7064 min_free_kbytes = 65536; 7065 } else { 7066 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7067 new_min_free_kbytes, user_min_free_kbytes); 7068 } 7069 setup_per_zone_wmarks(); 7070 refresh_zone_stat_thresholds(); 7071 setup_per_zone_lowmem_reserve(); 7072 7073 #ifdef CONFIG_NUMA 7074 setup_min_unmapped_ratio(); 7075 setup_min_slab_ratio(); 7076 #endif 7077 7078 return 0; 7079 } 7080 core_initcall(init_per_zone_wmark_min) 7081 7082 /* 7083 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7084 * that we can call two helper functions whenever min_free_kbytes 7085 * changes. 7086 */ 7087 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7088 void __user *buffer, size_t *length, loff_t *ppos) 7089 { 7090 int rc; 7091 7092 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7093 if (rc) 7094 return rc; 7095 7096 if (write) { 7097 user_min_free_kbytes = min_free_kbytes; 7098 setup_per_zone_wmarks(); 7099 } 7100 return 0; 7101 } 7102 7103 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7104 void __user *buffer, size_t *length, loff_t *ppos) 7105 { 7106 int rc; 7107 7108 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7109 if (rc) 7110 return rc; 7111 7112 if (write) 7113 setup_per_zone_wmarks(); 7114 7115 return 0; 7116 } 7117 7118 #ifdef CONFIG_NUMA 7119 static void setup_min_unmapped_ratio(void) 7120 { 7121 pg_data_t *pgdat; 7122 struct zone *zone; 7123 7124 for_each_online_pgdat(pgdat) 7125 pgdat->min_unmapped_pages = 0; 7126 7127 for_each_zone(zone) 7128 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages * 7129 sysctl_min_unmapped_ratio) / 100; 7130 } 7131 7132 7133 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7134 void __user *buffer, size_t *length, loff_t *ppos) 7135 { 7136 int rc; 7137 7138 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7139 if (rc) 7140 return rc; 7141 7142 setup_min_unmapped_ratio(); 7143 7144 return 0; 7145 } 7146 7147 static void setup_min_slab_ratio(void) 7148 { 7149 pg_data_t *pgdat; 7150 struct zone *zone; 7151 7152 for_each_online_pgdat(pgdat) 7153 pgdat->min_slab_pages = 0; 7154 7155 for_each_zone(zone) 7156 zone->zone_pgdat->min_slab_pages += (zone->managed_pages * 7157 sysctl_min_slab_ratio) / 100; 7158 } 7159 7160 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7161 void __user *buffer, size_t *length, loff_t *ppos) 7162 { 7163 int rc; 7164 7165 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7166 if (rc) 7167 return rc; 7168 7169 setup_min_slab_ratio(); 7170 7171 return 0; 7172 } 7173 #endif 7174 7175 /* 7176 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7177 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7178 * whenever sysctl_lowmem_reserve_ratio changes. 7179 * 7180 * The reserve ratio obviously has absolutely no relation with the 7181 * minimum watermarks. The lowmem reserve ratio can only make sense 7182 * if in function of the boot time zone sizes. 7183 */ 7184 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7185 void __user *buffer, size_t *length, loff_t *ppos) 7186 { 7187 proc_dointvec_minmax(table, write, buffer, length, ppos); 7188 setup_per_zone_lowmem_reserve(); 7189 return 0; 7190 } 7191 7192 /* 7193 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7194 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7195 * pagelist can have before it gets flushed back to buddy allocator. 7196 */ 7197 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7198 void __user *buffer, size_t *length, loff_t *ppos) 7199 { 7200 struct zone *zone; 7201 int old_percpu_pagelist_fraction; 7202 int ret; 7203 7204 mutex_lock(&pcp_batch_high_lock); 7205 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7206 7207 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7208 if (!write || ret < 0) 7209 goto out; 7210 7211 /* Sanity checking to avoid pcp imbalance */ 7212 if (percpu_pagelist_fraction && 7213 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7214 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7215 ret = -EINVAL; 7216 goto out; 7217 } 7218 7219 /* No change? */ 7220 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7221 goto out; 7222 7223 for_each_populated_zone(zone) { 7224 unsigned int cpu; 7225 7226 for_each_possible_cpu(cpu) 7227 pageset_set_high_and_batch(zone, 7228 per_cpu_ptr(zone->pageset, cpu)); 7229 } 7230 out: 7231 mutex_unlock(&pcp_batch_high_lock); 7232 return ret; 7233 } 7234 7235 #ifdef CONFIG_NUMA 7236 int hashdist = HASHDIST_DEFAULT; 7237 7238 static int __init set_hashdist(char *str) 7239 { 7240 if (!str) 7241 return 0; 7242 hashdist = simple_strtoul(str, &str, 0); 7243 return 1; 7244 } 7245 __setup("hashdist=", set_hashdist); 7246 #endif 7247 7248 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 7249 /* 7250 * Returns the number of pages that arch has reserved but 7251 * is not known to alloc_large_system_hash(). 7252 */ 7253 static unsigned long __init arch_reserved_kernel_pages(void) 7254 { 7255 return 0; 7256 } 7257 #endif 7258 7259 /* 7260 * Adaptive scale is meant to reduce sizes of hash tables on large memory 7261 * machines. As memory size is increased the scale is also increased but at 7262 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 7263 * quadruples the scale is increased by one, which means the size of hash table 7264 * only doubles, instead of quadrupling as well. 7265 * Because 32-bit systems cannot have large physical memory, where this scaling 7266 * makes sense, it is disabled on such platforms. 7267 */ 7268 #if __BITS_PER_LONG > 32 7269 #define ADAPT_SCALE_BASE (64ul << 30) 7270 #define ADAPT_SCALE_SHIFT 2 7271 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 7272 #endif 7273 7274 /* 7275 * allocate a large system hash table from bootmem 7276 * - it is assumed that the hash table must contain an exact power-of-2 7277 * quantity of entries 7278 * - limit is the number of hash buckets, not the total allocation size 7279 */ 7280 void *__init alloc_large_system_hash(const char *tablename, 7281 unsigned long bucketsize, 7282 unsigned long numentries, 7283 int scale, 7284 int flags, 7285 unsigned int *_hash_shift, 7286 unsigned int *_hash_mask, 7287 unsigned long low_limit, 7288 unsigned long high_limit) 7289 { 7290 unsigned long long max = high_limit; 7291 unsigned long log2qty, size; 7292 void *table = NULL; 7293 gfp_t gfp_flags; 7294 7295 /* allow the kernel cmdline to have a say */ 7296 if (!numentries) { 7297 /* round applicable memory size up to nearest megabyte */ 7298 numentries = nr_kernel_pages; 7299 numentries -= arch_reserved_kernel_pages(); 7300 7301 /* It isn't necessary when PAGE_SIZE >= 1MB */ 7302 if (PAGE_SHIFT < 20) 7303 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 7304 7305 #if __BITS_PER_LONG > 32 7306 if (!high_limit) { 7307 unsigned long adapt; 7308 7309 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 7310 adapt <<= ADAPT_SCALE_SHIFT) 7311 scale++; 7312 } 7313 #endif 7314 7315 /* limit to 1 bucket per 2^scale bytes of low memory */ 7316 if (scale > PAGE_SHIFT) 7317 numentries >>= (scale - PAGE_SHIFT); 7318 else 7319 numentries <<= (PAGE_SHIFT - scale); 7320 7321 /* Make sure we've got at least a 0-order allocation.. */ 7322 if (unlikely(flags & HASH_SMALL)) { 7323 /* Makes no sense without HASH_EARLY */ 7324 WARN_ON(!(flags & HASH_EARLY)); 7325 if (!(numentries >> *_hash_shift)) { 7326 numentries = 1UL << *_hash_shift; 7327 BUG_ON(!numentries); 7328 } 7329 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 7330 numentries = PAGE_SIZE / bucketsize; 7331 } 7332 numentries = roundup_pow_of_two(numentries); 7333 7334 /* limit allocation size to 1/16 total memory by default */ 7335 if (max == 0) { 7336 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 7337 do_div(max, bucketsize); 7338 } 7339 max = min(max, 0x80000000ULL); 7340 7341 if (numentries < low_limit) 7342 numentries = low_limit; 7343 if (numentries > max) 7344 numentries = max; 7345 7346 log2qty = ilog2(numentries); 7347 7348 /* 7349 * memblock allocator returns zeroed memory already, so HASH_ZERO is 7350 * currently not used when HASH_EARLY is specified. 7351 */ 7352 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 7353 do { 7354 size = bucketsize << log2qty; 7355 if (flags & HASH_EARLY) 7356 table = memblock_virt_alloc_nopanic(size, 0); 7357 else if (hashdist) 7358 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 7359 else { 7360 /* 7361 * If bucketsize is not a power-of-two, we may free 7362 * some pages at the end of hash table which 7363 * alloc_pages_exact() automatically does 7364 */ 7365 if (get_order(size) < MAX_ORDER) { 7366 table = alloc_pages_exact(size, gfp_flags); 7367 kmemleak_alloc(table, size, 1, gfp_flags); 7368 } 7369 } 7370 } while (!table && size > PAGE_SIZE && --log2qty); 7371 7372 if (!table) 7373 panic("Failed to allocate %s hash table\n", tablename); 7374 7375 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 7376 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 7377 7378 if (_hash_shift) 7379 *_hash_shift = log2qty; 7380 if (_hash_mask) 7381 *_hash_mask = (1 << log2qty) - 1; 7382 7383 return table; 7384 } 7385 7386 /* 7387 * This function checks whether pageblock includes unmovable pages or not. 7388 * If @count is not zero, it is okay to include less @count unmovable pages 7389 * 7390 * PageLRU check without isolation or lru_lock could race so that 7391 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 7392 * check without lock_page also may miss some movable non-lru pages at 7393 * race condition. So you can't expect this function should be exact. 7394 */ 7395 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 7396 bool skip_hwpoisoned_pages) 7397 { 7398 unsigned long pfn, iter, found; 7399 int mt; 7400 7401 /* 7402 * For avoiding noise data, lru_add_drain_all() should be called 7403 * If ZONE_MOVABLE, the zone never contains unmovable pages 7404 */ 7405 if (zone_idx(zone) == ZONE_MOVABLE) 7406 return false; 7407 mt = get_pageblock_migratetype(page); 7408 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 7409 return false; 7410 7411 pfn = page_to_pfn(page); 7412 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 7413 unsigned long check = pfn + iter; 7414 7415 if (!pfn_valid_within(check)) 7416 continue; 7417 7418 page = pfn_to_page(check); 7419 7420 /* 7421 * Hugepages are not in LRU lists, but they're movable. 7422 * We need not scan over tail pages bacause we don't 7423 * handle each tail page individually in migration. 7424 */ 7425 if (PageHuge(page)) { 7426 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 7427 continue; 7428 } 7429 7430 /* 7431 * We can't use page_count without pin a page 7432 * because another CPU can free compound page. 7433 * This check already skips compound tails of THP 7434 * because their page->_refcount is zero at all time. 7435 */ 7436 if (!page_ref_count(page)) { 7437 if (PageBuddy(page)) 7438 iter += (1 << page_order(page)) - 1; 7439 continue; 7440 } 7441 7442 /* 7443 * The HWPoisoned page may be not in buddy system, and 7444 * page_count() is not 0. 7445 */ 7446 if (skip_hwpoisoned_pages && PageHWPoison(page)) 7447 continue; 7448 7449 if (__PageMovable(page)) 7450 continue; 7451 7452 if (!PageLRU(page)) 7453 found++; 7454 /* 7455 * If there are RECLAIMABLE pages, we need to check 7456 * it. But now, memory offline itself doesn't call 7457 * shrink_node_slabs() and it still to be fixed. 7458 */ 7459 /* 7460 * If the page is not RAM, page_count()should be 0. 7461 * we don't need more check. This is an _used_ not-movable page. 7462 * 7463 * The problematic thing here is PG_reserved pages. PG_reserved 7464 * is set to both of a memory hole page and a _used_ kernel 7465 * page at boot. 7466 */ 7467 if (found > count) 7468 return true; 7469 } 7470 return false; 7471 } 7472 7473 bool is_pageblock_removable_nolock(struct page *page) 7474 { 7475 struct zone *zone; 7476 unsigned long pfn; 7477 7478 /* 7479 * We have to be careful here because we are iterating over memory 7480 * sections which are not zone aware so we might end up outside of 7481 * the zone but still within the section. 7482 * We have to take care about the node as well. If the node is offline 7483 * its NODE_DATA will be NULL - see page_zone. 7484 */ 7485 if (!node_online(page_to_nid(page))) 7486 return false; 7487 7488 zone = page_zone(page); 7489 pfn = page_to_pfn(page); 7490 if (!zone_spans_pfn(zone, pfn)) 7491 return false; 7492 7493 return !has_unmovable_pages(zone, page, 0, true); 7494 } 7495 7496 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 7497 7498 static unsigned long pfn_max_align_down(unsigned long pfn) 7499 { 7500 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 7501 pageblock_nr_pages) - 1); 7502 } 7503 7504 static unsigned long pfn_max_align_up(unsigned long pfn) 7505 { 7506 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 7507 pageblock_nr_pages)); 7508 } 7509 7510 /* [start, end) must belong to a single zone. */ 7511 static int __alloc_contig_migrate_range(struct compact_control *cc, 7512 unsigned long start, unsigned long end) 7513 { 7514 /* This function is based on compact_zone() from compaction.c. */ 7515 unsigned long nr_reclaimed; 7516 unsigned long pfn = start; 7517 unsigned int tries = 0; 7518 int ret = 0; 7519 7520 migrate_prep(); 7521 7522 while (pfn < end || !list_empty(&cc->migratepages)) { 7523 if (fatal_signal_pending(current)) { 7524 ret = -EINTR; 7525 break; 7526 } 7527 7528 if (list_empty(&cc->migratepages)) { 7529 cc->nr_migratepages = 0; 7530 pfn = isolate_migratepages_range(cc, pfn, end); 7531 if (!pfn) { 7532 ret = -EINTR; 7533 break; 7534 } 7535 tries = 0; 7536 } else if (++tries == 5) { 7537 ret = ret < 0 ? ret : -EBUSY; 7538 break; 7539 } 7540 7541 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 7542 &cc->migratepages); 7543 cc->nr_migratepages -= nr_reclaimed; 7544 7545 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 7546 NULL, 0, cc->mode, MR_CMA); 7547 } 7548 if (ret < 0) { 7549 putback_movable_pages(&cc->migratepages); 7550 return ret; 7551 } 7552 return 0; 7553 } 7554 7555 /** 7556 * alloc_contig_range() -- tries to allocate given range of pages 7557 * @start: start PFN to allocate 7558 * @end: one-past-the-last PFN to allocate 7559 * @migratetype: migratetype of the underlaying pageblocks (either 7560 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 7561 * in range must have the same migratetype and it must 7562 * be either of the two. 7563 * @gfp_mask: GFP mask to use during compaction 7564 * 7565 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 7566 * aligned, however it's the caller's responsibility to guarantee that 7567 * we are the only thread that changes migrate type of pageblocks the 7568 * pages fall in. 7569 * 7570 * The PFN range must belong to a single zone. 7571 * 7572 * Returns zero on success or negative error code. On success all 7573 * pages which PFN is in [start, end) are allocated for the caller and 7574 * need to be freed with free_contig_range(). 7575 */ 7576 int alloc_contig_range(unsigned long start, unsigned long end, 7577 unsigned migratetype, gfp_t gfp_mask) 7578 { 7579 unsigned long outer_start, outer_end; 7580 unsigned int order; 7581 int ret = 0; 7582 7583 struct compact_control cc = { 7584 .nr_migratepages = 0, 7585 .order = -1, 7586 .zone = page_zone(pfn_to_page(start)), 7587 .mode = MIGRATE_SYNC, 7588 .ignore_skip_hint = true, 7589 .gfp_mask = current_gfp_context(gfp_mask), 7590 }; 7591 INIT_LIST_HEAD(&cc.migratepages); 7592 7593 /* 7594 * What we do here is we mark all pageblocks in range as 7595 * MIGRATE_ISOLATE. Because pageblock and max order pages may 7596 * have different sizes, and due to the way page allocator 7597 * work, we align the range to biggest of the two pages so 7598 * that page allocator won't try to merge buddies from 7599 * different pageblocks and change MIGRATE_ISOLATE to some 7600 * other migration type. 7601 * 7602 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 7603 * migrate the pages from an unaligned range (ie. pages that 7604 * we are interested in). This will put all the pages in 7605 * range back to page allocator as MIGRATE_ISOLATE. 7606 * 7607 * When this is done, we take the pages in range from page 7608 * allocator removing them from the buddy system. This way 7609 * page allocator will never consider using them. 7610 * 7611 * This lets us mark the pageblocks back as 7612 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 7613 * aligned range but not in the unaligned, original range are 7614 * put back to page allocator so that buddy can use them. 7615 */ 7616 7617 ret = start_isolate_page_range(pfn_max_align_down(start), 7618 pfn_max_align_up(end), migratetype, 7619 false); 7620 if (ret) 7621 return ret; 7622 7623 /* 7624 * In case of -EBUSY, we'd like to know which page causes problem. 7625 * So, just fall through. We will check it in test_pages_isolated(). 7626 */ 7627 ret = __alloc_contig_migrate_range(&cc, start, end); 7628 if (ret && ret != -EBUSY) 7629 goto done; 7630 7631 /* 7632 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 7633 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 7634 * more, all pages in [start, end) are free in page allocator. 7635 * What we are going to do is to allocate all pages from 7636 * [start, end) (that is remove them from page allocator). 7637 * 7638 * The only problem is that pages at the beginning and at the 7639 * end of interesting range may be not aligned with pages that 7640 * page allocator holds, ie. they can be part of higher order 7641 * pages. Because of this, we reserve the bigger range and 7642 * once this is done free the pages we are not interested in. 7643 * 7644 * We don't have to hold zone->lock here because the pages are 7645 * isolated thus they won't get removed from buddy. 7646 */ 7647 7648 lru_add_drain_all(); 7649 drain_all_pages(cc.zone); 7650 7651 order = 0; 7652 outer_start = start; 7653 while (!PageBuddy(pfn_to_page(outer_start))) { 7654 if (++order >= MAX_ORDER) { 7655 outer_start = start; 7656 break; 7657 } 7658 outer_start &= ~0UL << order; 7659 } 7660 7661 if (outer_start != start) { 7662 order = page_order(pfn_to_page(outer_start)); 7663 7664 /* 7665 * outer_start page could be small order buddy page and 7666 * it doesn't include start page. Adjust outer_start 7667 * in this case to report failed page properly 7668 * on tracepoint in test_pages_isolated() 7669 */ 7670 if (outer_start + (1UL << order) <= start) 7671 outer_start = start; 7672 } 7673 7674 /* Make sure the range is really isolated. */ 7675 if (test_pages_isolated(outer_start, end, false)) { 7676 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 7677 __func__, outer_start, end); 7678 ret = -EBUSY; 7679 goto done; 7680 } 7681 7682 /* Grab isolated pages from freelists. */ 7683 outer_end = isolate_freepages_range(&cc, outer_start, end); 7684 if (!outer_end) { 7685 ret = -EBUSY; 7686 goto done; 7687 } 7688 7689 /* Free head and tail (if any) */ 7690 if (start != outer_start) 7691 free_contig_range(outer_start, start - outer_start); 7692 if (end != outer_end) 7693 free_contig_range(end, outer_end - end); 7694 7695 done: 7696 undo_isolate_page_range(pfn_max_align_down(start), 7697 pfn_max_align_up(end), migratetype); 7698 return ret; 7699 } 7700 7701 void free_contig_range(unsigned long pfn, unsigned nr_pages) 7702 { 7703 unsigned int count = 0; 7704 7705 for (; nr_pages--; pfn++) { 7706 struct page *page = pfn_to_page(pfn); 7707 7708 count += page_count(page) != 1; 7709 __free_page(page); 7710 } 7711 WARN(count != 0, "%d pages are still in use!\n", count); 7712 } 7713 #endif 7714 7715 #ifdef CONFIG_MEMORY_HOTPLUG 7716 /* 7717 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7718 * page high values need to be recalulated. 7719 */ 7720 void __meminit zone_pcp_update(struct zone *zone) 7721 { 7722 unsigned cpu; 7723 mutex_lock(&pcp_batch_high_lock); 7724 for_each_possible_cpu(cpu) 7725 pageset_set_high_and_batch(zone, 7726 per_cpu_ptr(zone->pageset, cpu)); 7727 mutex_unlock(&pcp_batch_high_lock); 7728 } 7729 #endif 7730 7731 void zone_pcp_reset(struct zone *zone) 7732 { 7733 unsigned long flags; 7734 int cpu; 7735 struct per_cpu_pageset *pset; 7736 7737 /* avoid races with drain_pages() */ 7738 local_irq_save(flags); 7739 if (zone->pageset != &boot_pageset) { 7740 for_each_online_cpu(cpu) { 7741 pset = per_cpu_ptr(zone->pageset, cpu); 7742 drain_zonestat(zone, pset); 7743 } 7744 free_percpu(zone->pageset); 7745 zone->pageset = &boot_pageset; 7746 } 7747 local_irq_restore(flags); 7748 } 7749 7750 #ifdef CONFIG_MEMORY_HOTREMOVE 7751 /* 7752 * All pages in the range must be in a single zone and isolated 7753 * before calling this. 7754 */ 7755 void 7756 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 7757 { 7758 struct page *page; 7759 struct zone *zone; 7760 unsigned int order, i; 7761 unsigned long pfn; 7762 unsigned long flags; 7763 /* find the first valid pfn */ 7764 for (pfn = start_pfn; pfn < end_pfn; pfn++) 7765 if (pfn_valid(pfn)) 7766 break; 7767 if (pfn == end_pfn) 7768 return; 7769 offline_mem_sections(pfn, end_pfn); 7770 zone = page_zone(pfn_to_page(pfn)); 7771 spin_lock_irqsave(&zone->lock, flags); 7772 pfn = start_pfn; 7773 while (pfn < end_pfn) { 7774 if (!pfn_valid(pfn)) { 7775 pfn++; 7776 continue; 7777 } 7778 page = pfn_to_page(pfn); 7779 /* 7780 * The HWPoisoned page may be not in buddy system, and 7781 * page_count() is not 0. 7782 */ 7783 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7784 pfn++; 7785 SetPageReserved(page); 7786 continue; 7787 } 7788 7789 BUG_ON(page_count(page)); 7790 BUG_ON(!PageBuddy(page)); 7791 order = page_order(page); 7792 #ifdef CONFIG_DEBUG_VM 7793 pr_info("remove from free list %lx %d %lx\n", 7794 pfn, 1 << order, end_pfn); 7795 #endif 7796 list_del(&page->lru); 7797 rmv_page_order(page); 7798 zone->free_area[order].nr_free--; 7799 for (i = 0; i < (1 << order); i++) 7800 SetPageReserved((page+i)); 7801 pfn += (1 << order); 7802 } 7803 spin_unlock_irqrestore(&zone->lock, flags); 7804 } 7805 #endif 7806 7807 bool is_free_buddy_page(struct page *page) 7808 { 7809 struct zone *zone = page_zone(page); 7810 unsigned long pfn = page_to_pfn(page); 7811 unsigned long flags; 7812 unsigned int order; 7813 7814 spin_lock_irqsave(&zone->lock, flags); 7815 for (order = 0; order < MAX_ORDER; order++) { 7816 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7817 7818 if (PageBuddy(page_head) && page_order(page_head) >= order) 7819 break; 7820 } 7821 spin_unlock_irqrestore(&zone->lock, flags); 7822 7823 return order < MAX_ORDER; 7824 } 7825