1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/mmu_notifier.h> 61 #include <linux/migrate.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/sched/mm.h> 65 #include <linux/page_owner.h> 66 #include <linux/kthread.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/lockdep.h> 70 #include <linux/nmi.h> 71 #include <linux/psi.h> 72 #include <linux/padata.h> 73 #include <linux/khugepaged.h> 74 #include <linux/buffer_head.h> 75 #include <asm/sections.h> 76 #include <asm/tlbflush.h> 77 #include <asm/div64.h> 78 #include "internal.h" 79 #include "shuffle.h" 80 #include "page_reporting.h" 81 82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 83 typedef int __bitwise fpi_t; 84 85 /* No special request */ 86 #define FPI_NONE ((__force fpi_t)0) 87 88 /* 89 * Skip free page reporting notification for the (possibly merged) page. 90 * This does not hinder free page reporting from grabbing the page, 91 * reporting it and marking it "reported" - it only skips notifying 92 * the free page reporting infrastructure about a newly freed page. For 93 * example, used when temporarily pulling a page from a freelist and 94 * putting it back unmodified. 95 */ 96 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 97 98 /* 99 * Place the (possibly merged) page to the tail of the freelist. Will ignore 100 * page shuffling (relevant code - e.g., memory onlining - is expected to 101 * shuffle the whole zone). 102 * 103 * Note: No code should rely on this flag for correctness - it's purely 104 * to allow for optimizations when handing back either fresh pages 105 * (memory onlining) or untouched pages (page isolation, free page 106 * reporting). 107 */ 108 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 109 110 /* 111 * Don't poison memory with KASAN (only for the tag-based modes). 112 * During boot, all non-reserved memblock memory is exposed to page_alloc. 113 * Poisoning all that memory lengthens boot time, especially on systems with 114 * large amount of RAM. This flag is used to skip that poisoning. 115 * This is only done for the tag-based KASAN modes, as those are able to 116 * detect memory corruptions with the memory tags assigned by default. 117 * All memory allocated normally after boot gets poisoned as usual. 118 */ 119 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 120 121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 122 static DEFINE_MUTEX(pcp_batch_high_lock); 123 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 124 125 struct pagesets { 126 local_lock_t lock; 127 }; 128 static DEFINE_PER_CPU(struct pagesets, pagesets) = { 129 .lock = INIT_LOCAL_LOCK(lock), 130 }; 131 132 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 133 DEFINE_PER_CPU(int, numa_node); 134 EXPORT_PER_CPU_SYMBOL(numa_node); 135 #endif 136 137 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 138 139 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 140 /* 141 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 142 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 143 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 144 * defined in <linux/topology.h>. 145 */ 146 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 147 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 148 #endif 149 150 /* work_structs for global per-cpu drains */ 151 struct pcpu_drain { 152 struct zone *zone; 153 struct work_struct work; 154 }; 155 static DEFINE_MUTEX(pcpu_drain_mutex); 156 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 157 158 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 159 volatile unsigned long latent_entropy __latent_entropy; 160 EXPORT_SYMBOL(latent_entropy); 161 #endif 162 163 /* 164 * Array of node states. 165 */ 166 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 167 [N_POSSIBLE] = NODE_MASK_ALL, 168 [N_ONLINE] = { { [0] = 1UL } }, 169 #ifndef CONFIG_NUMA 170 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 171 #ifdef CONFIG_HIGHMEM 172 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 173 #endif 174 [N_MEMORY] = { { [0] = 1UL } }, 175 [N_CPU] = { { [0] = 1UL } }, 176 #endif /* NUMA */ 177 }; 178 EXPORT_SYMBOL(node_states); 179 180 atomic_long_t _totalram_pages __read_mostly; 181 EXPORT_SYMBOL(_totalram_pages); 182 unsigned long totalreserve_pages __read_mostly; 183 unsigned long totalcma_pages __read_mostly; 184 185 int percpu_pagelist_high_fraction; 186 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 187 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 188 EXPORT_SYMBOL(init_on_alloc); 189 190 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 191 EXPORT_SYMBOL(init_on_free); 192 193 static bool _init_on_alloc_enabled_early __read_mostly 194 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 195 static int __init early_init_on_alloc(char *buf) 196 { 197 198 return kstrtobool(buf, &_init_on_alloc_enabled_early); 199 } 200 early_param("init_on_alloc", early_init_on_alloc); 201 202 static bool _init_on_free_enabled_early __read_mostly 203 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 204 static int __init early_init_on_free(char *buf) 205 { 206 return kstrtobool(buf, &_init_on_free_enabled_early); 207 } 208 early_param("init_on_free", early_init_on_free); 209 210 /* 211 * A cached value of the page's pageblock's migratetype, used when the page is 212 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 213 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 214 * Also the migratetype set in the page does not necessarily match the pcplist 215 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 216 * other index - this ensures that it will be put on the correct CMA freelist. 217 */ 218 static inline int get_pcppage_migratetype(struct page *page) 219 { 220 return page->index; 221 } 222 223 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 224 { 225 page->index = migratetype; 226 } 227 228 #ifdef CONFIG_PM_SLEEP 229 /* 230 * The following functions are used by the suspend/hibernate code to temporarily 231 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 232 * while devices are suspended. To avoid races with the suspend/hibernate code, 233 * they should always be called with system_transition_mutex held 234 * (gfp_allowed_mask also should only be modified with system_transition_mutex 235 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 236 * with that modification). 237 */ 238 239 static gfp_t saved_gfp_mask; 240 241 void pm_restore_gfp_mask(void) 242 { 243 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 244 if (saved_gfp_mask) { 245 gfp_allowed_mask = saved_gfp_mask; 246 saved_gfp_mask = 0; 247 } 248 } 249 250 void pm_restrict_gfp_mask(void) 251 { 252 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 253 WARN_ON(saved_gfp_mask); 254 saved_gfp_mask = gfp_allowed_mask; 255 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 256 } 257 258 bool pm_suspended_storage(void) 259 { 260 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 261 return false; 262 return true; 263 } 264 #endif /* CONFIG_PM_SLEEP */ 265 266 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 267 unsigned int pageblock_order __read_mostly; 268 #endif 269 270 static void __free_pages_ok(struct page *page, unsigned int order, 271 fpi_t fpi_flags); 272 273 /* 274 * results with 256, 32 in the lowmem_reserve sysctl: 275 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 276 * 1G machine -> (16M dma, 784M normal, 224M high) 277 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 278 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 279 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 280 * 281 * TBD: should special case ZONE_DMA32 machines here - in those we normally 282 * don't need any ZONE_NORMAL reservation 283 */ 284 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 285 #ifdef CONFIG_ZONE_DMA 286 [ZONE_DMA] = 256, 287 #endif 288 #ifdef CONFIG_ZONE_DMA32 289 [ZONE_DMA32] = 256, 290 #endif 291 [ZONE_NORMAL] = 32, 292 #ifdef CONFIG_HIGHMEM 293 [ZONE_HIGHMEM] = 0, 294 #endif 295 [ZONE_MOVABLE] = 0, 296 }; 297 298 static char * const zone_names[MAX_NR_ZONES] = { 299 #ifdef CONFIG_ZONE_DMA 300 "DMA", 301 #endif 302 #ifdef CONFIG_ZONE_DMA32 303 "DMA32", 304 #endif 305 "Normal", 306 #ifdef CONFIG_HIGHMEM 307 "HighMem", 308 #endif 309 "Movable", 310 #ifdef CONFIG_ZONE_DEVICE 311 "Device", 312 #endif 313 }; 314 315 const char * const migratetype_names[MIGRATE_TYPES] = { 316 "Unmovable", 317 "Movable", 318 "Reclaimable", 319 "HighAtomic", 320 #ifdef CONFIG_CMA 321 "CMA", 322 #endif 323 #ifdef CONFIG_MEMORY_ISOLATION 324 "Isolate", 325 #endif 326 }; 327 328 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 329 [NULL_COMPOUND_DTOR] = NULL, 330 [COMPOUND_PAGE_DTOR] = free_compound_page, 331 #ifdef CONFIG_HUGETLB_PAGE 332 [HUGETLB_PAGE_DTOR] = free_huge_page, 333 #endif 334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 335 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 336 #endif 337 }; 338 339 int min_free_kbytes = 1024; 340 int user_min_free_kbytes = -1; 341 int watermark_boost_factor __read_mostly = 15000; 342 int watermark_scale_factor = 10; 343 344 static unsigned long nr_kernel_pages __initdata; 345 static unsigned long nr_all_pages __initdata; 346 static unsigned long dma_reserve __initdata; 347 348 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 349 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 350 static unsigned long required_kernelcore __initdata; 351 static unsigned long required_kernelcore_percent __initdata; 352 static unsigned long required_movablecore __initdata; 353 static unsigned long required_movablecore_percent __initdata; 354 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 355 static bool mirrored_kernelcore __meminitdata; 356 357 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 358 int movable_zone; 359 EXPORT_SYMBOL(movable_zone); 360 361 #if MAX_NUMNODES > 1 362 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 363 unsigned int nr_online_nodes __read_mostly = 1; 364 EXPORT_SYMBOL(nr_node_ids); 365 EXPORT_SYMBOL(nr_online_nodes); 366 #endif 367 368 int page_group_by_mobility_disabled __read_mostly; 369 370 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 371 /* 372 * During boot we initialize deferred pages on-demand, as needed, but once 373 * page_alloc_init_late() has finished, the deferred pages are all initialized, 374 * and we can permanently disable that path. 375 */ 376 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 377 378 /* 379 * Calling kasan_poison_pages() only after deferred memory initialization 380 * has completed. Poisoning pages during deferred memory init will greatly 381 * lengthen the process and cause problem in large memory systems as the 382 * deferred pages initialization is done with interrupt disabled. 383 * 384 * Assuming that there will be no reference to those newly initialized 385 * pages before they are ever allocated, this should have no effect on 386 * KASAN memory tracking as the poison will be properly inserted at page 387 * allocation time. The only corner case is when pages are allocated by 388 * on-demand allocation and then freed again before the deferred pages 389 * initialization is done, but this is not likely to happen. 390 */ 391 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 392 { 393 return static_branch_unlikely(&deferred_pages) || 394 (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 395 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 396 PageSkipKASanPoison(page); 397 } 398 399 /* Returns true if the struct page for the pfn is uninitialised */ 400 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 401 { 402 int nid = early_pfn_to_nid(pfn); 403 404 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 405 return true; 406 407 return false; 408 } 409 410 /* 411 * Returns true when the remaining initialisation should be deferred until 412 * later in the boot cycle when it can be parallelised. 413 */ 414 static bool __meminit 415 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 416 { 417 static unsigned long prev_end_pfn, nr_initialised; 418 419 /* 420 * prev_end_pfn static that contains the end of previous zone 421 * No need to protect because called very early in boot before smp_init. 422 */ 423 if (prev_end_pfn != end_pfn) { 424 prev_end_pfn = end_pfn; 425 nr_initialised = 0; 426 } 427 428 /* Always populate low zones for address-constrained allocations */ 429 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 430 return false; 431 432 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 433 return true; 434 /* 435 * We start only with one section of pages, more pages are added as 436 * needed until the rest of deferred pages are initialized. 437 */ 438 nr_initialised++; 439 if ((nr_initialised > PAGES_PER_SECTION) && 440 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 441 NODE_DATA(nid)->first_deferred_pfn = pfn; 442 return true; 443 } 444 return false; 445 } 446 #else 447 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 448 { 449 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 450 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 451 PageSkipKASanPoison(page); 452 } 453 454 static inline bool early_page_uninitialised(unsigned long pfn) 455 { 456 return false; 457 } 458 459 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 460 { 461 return false; 462 } 463 #endif 464 465 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 466 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 467 unsigned long pfn) 468 { 469 #ifdef CONFIG_SPARSEMEM 470 return section_to_usemap(__pfn_to_section(pfn)); 471 #else 472 return page_zone(page)->pageblock_flags; 473 #endif /* CONFIG_SPARSEMEM */ 474 } 475 476 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 477 { 478 #ifdef CONFIG_SPARSEMEM 479 pfn &= (PAGES_PER_SECTION-1); 480 #else 481 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 482 #endif /* CONFIG_SPARSEMEM */ 483 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 484 } 485 486 static __always_inline 487 unsigned long __get_pfnblock_flags_mask(const struct page *page, 488 unsigned long pfn, 489 unsigned long mask) 490 { 491 unsigned long *bitmap; 492 unsigned long bitidx, word_bitidx; 493 unsigned long word; 494 495 bitmap = get_pageblock_bitmap(page, pfn); 496 bitidx = pfn_to_bitidx(page, pfn); 497 word_bitidx = bitidx / BITS_PER_LONG; 498 bitidx &= (BITS_PER_LONG-1); 499 500 word = bitmap[word_bitidx]; 501 return (word >> bitidx) & mask; 502 } 503 504 /** 505 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 506 * @page: The page within the block of interest 507 * @pfn: The target page frame number 508 * @mask: mask of bits that the caller is interested in 509 * 510 * Return: pageblock_bits flags 511 */ 512 unsigned long get_pfnblock_flags_mask(const struct page *page, 513 unsigned long pfn, unsigned long mask) 514 { 515 return __get_pfnblock_flags_mask(page, pfn, mask); 516 } 517 518 static __always_inline int get_pfnblock_migratetype(const struct page *page, 519 unsigned long pfn) 520 { 521 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 522 } 523 524 /** 525 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 526 * @page: The page within the block of interest 527 * @flags: The flags to set 528 * @pfn: The target page frame number 529 * @mask: mask of bits that the caller is interested in 530 */ 531 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 532 unsigned long pfn, 533 unsigned long mask) 534 { 535 unsigned long *bitmap; 536 unsigned long bitidx, word_bitidx; 537 unsigned long old_word, word; 538 539 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 540 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 541 542 bitmap = get_pageblock_bitmap(page, pfn); 543 bitidx = pfn_to_bitidx(page, pfn); 544 word_bitidx = bitidx / BITS_PER_LONG; 545 bitidx &= (BITS_PER_LONG-1); 546 547 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 548 549 mask <<= bitidx; 550 flags <<= bitidx; 551 552 word = READ_ONCE(bitmap[word_bitidx]); 553 for (;;) { 554 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 555 if (word == old_word) 556 break; 557 word = old_word; 558 } 559 } 560 561 void set_pageblock_migratetype(struct page *page, int migratetype) 562 { 563 if (unlikely(page_group_by_mobility_disabled && 564 migratetype < MIGRATE_PCPTYPES)) 565 migratetype = MIGRATE_UNMOVABLE; 566 567 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 568 page_to_pfn(page), MIGRATETYPE_MASK); 569 } 570 571 #ifdef CONFIG_DEBUG_VM 572 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 573 { 574 int ret = 0; 575 unsigned seq; 576 unsigned long pfn = page_to_pfn(page); 577 unsigned long sp, start_pfn; 578 579 do { 580 seq = zone_span_seqbegin(zone); 581 start_pfn = zone->zone_start_pfn; 582 sp = zone->spanned_pages; 583 if (!zone_spans_pfn(zone, pfn)) 584 ret = 1; 585 } while (zone_span_seqretry(zone, seq)); 586 587 if (ret) 588 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 589 pfn, zone_to_nid(zone), zone->name, 590 start_pfn, start_pfn + sp); 591 592 return ret; 593 } 594 595 static int page_is_consistent(struct zone *zone, struct page *page) 596 { 597 if (zone != page_zone(page)) 598 return 0; 599 600 return 1; 601 } 602 /* 603 * Temporary debugging check for pages not lying within a given zone. 604 */ 605 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 606 { 607 if (page_outside_zone_boundaries(zone, page)) 608 return 1; 609 if (!page_is_consistent(zone, page)) 610 return 1; 611 612 return 0; 613 } 614 #else 615 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 616 { 617 return 0; 618 } 619 #endif 620 621 static void bad_page(struct page *page, const char *reason) 622 { 623 static unsigned long resume; 624 static unsigned long nr_shown; 625 static unsigned long nr_unshown; 626 627 /* 628 * Allow a burst of 60 reports, then keep quiet for that minute; 629 * or allow a steady drip of one report per second. 630 */ 631 if (nr_shown == 60) { 632 if (time_before(jiffies, resume)) { 633 nr_unshown++; 634 goto out; 635 } 636 if (nr_unshown) { 637 pr_alert( 638 "BUG: Bad page state: %lu messages suppressed\n", 639 nr_unshown); 640 nr_unshown = 0; 641 } 642 nr_shown = 0; 643 } 644 if (nr_shown++ == 0) 645 resume = jiffies + 60 * HZ; 646 647 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 648 current->comm, page_to_pfn(page)); 649 dump_page(page, reason); 650 651 print_modules(); 652 dump_stack(); 653 out: 654 /* Leave bad fields for debug, except PageBuddy could make trouble */ 655 page_mapcount_reset(page); /* remove PageBuddy */ 656 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 657 } 658 659 static inline unsigned int order_to_pindex(int migratetype, int order) 660 { 661 int base = order; 662 663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 664 if (order > PAGE_ALLOC_COSTLY_ORDER) { 665 VM_BUG_ON(order != pageblock_order); 666 base = PAGE_ALLOC_COSTLY_ORDER + 1; 667 } 668 #else 669 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 670 #endif 671 672 return (MIGRATE_PCPTYPES * base) + migratetype; 673 } 674 675 static inline int pindex_to_order(unsigned int pindex) 676 { 677 int order = pindex / MIGRATE_PCPTYPES; 678 679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 680 if (order > PAGE_ALLOC_COSTLY_ORDER) 681 order = pageblock_order; 682 #else 683 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 684 #endif 685 686 return order; 687 } 688 689 static inline bool pcp_allowed_order(unsigned int order) 690 { 691 if (order <= PAGE_ALLOC_COSTLY_ORDER) 692 return true; 693 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 694 if (order == pageblock_order) 695 return true; 696 #endif 697 return false; 698 } 699 700 static inline void free_the_page(struct page *page, unsigned int order) 701 { 702 if (pcp_allowed_order(order)) /* Via pcp? */ 703 free_unref_page(page, order); 704 else 705 __free_pages_ok(page, order, FPI_NONE); 706 } 707 708 /* 709 * Higher-order pages are called "compound pages". They are structured thusly: 710 * 711 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 712 * 713 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 714 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 715 * 716 * The first tail page's ->compound_dtor holds the offset in array of compound 717 * page destructors. See compound_page_dtors. 718 * 719 * The first tail page's ->compound_order holds the order of allocation. 720 * This usage means that zero-order pages may not be compound. 721 */ 722 723 void free_compound_page(struct page *page) 724 { 725 mem_cgroup_uncharge(page_folio(page)); 726 free_the_page(page, compound_order(page)); 727 } 728 729 void prep_compound_page(struct page *page, unsigned int order) 730 { 731 int i; 732 int nr_pages = 1 << order; 733 734 __SetPageHead(page); 735 for (i = 1; i < nr_pages; i++) { 736 struct page *p = page + i; 737 p->mapping = TAIL_MAPPING; 738 set_compound_head(p, page); 739 } 740 741 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 742 set_compound_order(page, order); 743 atomic_set(compound_mapcount_ptr(page), -1); 744 if (hpage_pincount_available(page)) 745 atomic_set(compound_pincount_ptr(page), 0); 746 } 747 748 #ifdef CONFIG_DEBUG_PAGEALLOC 749 unsigned int _debug_guardpage_minorder; 750 751 bool _debug_pagealloc_enabled_early __read_mostly 752 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 753 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 754 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 755 EXPORT_SYMBOL(_debug_pagealloc_enabled); 756 757 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 758 759 static int __init early_debug_pagealloc(char *buf) 760 { 761 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 762 } 763 early_param("debug_pagealloc", early_debug_pagealloc); 764 765 static int __init debug_guardpage_minorder_setup(char *buf) 766 { 767 unsigned long res; 768 769 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 770 pr_err("Bad debug_guardpage_minorder value\n"); 771 return 0; 772 } 773 _debug_guardpage_minorder = res; 774 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 775 return 0; 776 } 777 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 778 779 static inline bool set_page_guard(struct zone *zone, struct page *page, 780 unsigned int order, int migratetype) 781 { 782 if (!debug_guardpage_enabled()) 783 return false; 784 785 if (order >= debug_guardpage_minorder()) 786 return false; 787 788 __SetPageGuard(page); 789 INIT_LIST_HEAD(&page->lru); 790 set_page_private(page, order); 791 /* Guard pages are not available for any usage */ 792 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 793 794 return true; 795 } 796 797 static inline void clear_page_guard(struct zone *zone, struct page *page, 798 unsigned int order, int migratetype) 799 { 800 if (!debug_guardpage_enabled()) 801 return; 802 803 __ClearPageGuard(page); 804 805 set_page_private(page, 0); 806 if (!is_migrate_isolate(migratetype)) 807 __mod_zone_freepage_state(zone, (1 << order), migratetype); 808 } 809 #else 810 static inline bool set_page_guard(struct zone *zone, struct page *page, 811 unsigned int order, int migratetype) { return false; } 812 static inline void clear_page_guard(struct zone *zone, struct page *page, 813 unsigned int order, int migratetype) {} 814 #endif 815 816 /* 817 * Enable static keys related to various memory debugging and hardening options. 818 * Some override others, and depend on early params that are evaluated in the 819 * order of appearance. So we need to first gather the full picture of what was 820 * enabled, and then make decisions. 821 */ 822 void init_mem_debugging_and_hardening(void) 823 { 824 bool page_poisoning_requested = false; 825 826 #ifdef CONFIG_PAGE_POISONING 827 /* 828 * Page poisoning is debug page alloc for some arches. If 829 * either of those options are enabled, enable poisoning. 830 */ 831 if (page_poisoning_enabled() || 832 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 833 debug_pagealloc_enabled())) { 834 static_branch_enable(&_page_poisoning_enabled); 835 page_poisoning_requested = true; 836 } 837 #endif 838 839 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 840 page_poisoning_requested) { 841 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 842 "will take precedence over init_on_alloc and init_on_free\n"); 843 _init_on_alloc_enabled_early = false; 844 _init_on_free_enabled_early = false; 845 } 846 847 if (_init_on_alloc_enabled_early) 848 static_branch_enable(&init_on_alloc); 849 else 850 static_branch_disable(&init_on_alloc); 851 852 if (_init_on_free_enabled_early) 853 static_branch_enable(&init_on_free); 854 else 855 static_branch_disable(&init_on_free); 856 857 #ifdef CONFIG_DEBUG_PAGEALLOC 858 if (!debug_pagealloc_enabled()) 859 return; 860 861 static_branch_enable(&_debug_pagealloc_enabled); 862 863 if (!debug_guardpage_minorder()) 864 return; 865 866 static_branch_enable(&_debug_guardpage_enabled); 867 #endif 868 } 869 870 static inline void set_buddy_order(struct page *page, unsigned int order) 871 { 872 set_page_private(page, order); 873 __SetPageBuddy(page); 874 } 875 876 /* 877 * This function checks whether a page is free && is the buddy 878 * we can coalesce a page and its buddy if 879 * (a) the buddy is not in a hole (check before calling!) && 880 * (b) the buddy is in the buddy system && 881 * (c) a page and its buddy have the same order && 882 * (d) a page and its buddy are in the same zone. 883 * 884 * For recording whether a page is in the buddy system, we set PageBuddy. 885 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 886 * 887 * For recording page's order, we use page_private(page). 888 */ 889 static inline bool page_is_buddy(struct page *page, struct page *buddy, 890 unsigned int order) 891 { 892 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 893 return false; 894 895 if (buddy_order(buddy) != order) 896 return false; 897 898 /* 899 * zone check is done late to avoid uselessly calculating 900 * zone/node ids for pages that could never merge. 901 */ 902 if (page_zone_id(page) != page_zone_id(buddy)) 903 return false; 904 905 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 906 907 return true; 908 } 909 910 #ifdef CONFIG_COMPACTION 911 static inline struct capture_control *task_capc(struct zone *zone) 912 { 913 struct capture_control *capc = current->capture_control; 914 915 return unlikely(capc) && 916 !(current->flags & PF_KTHREAD) && 917 !capc->page && 918 capc->cc->zone == zone ? capc : NULL; 919 } 920 921 static inline bool 922 compaction_capture(struct capture_control *capc, struct page *page, 923 int order, int migratetype) 924 { 925 if (!capc || order != capc->cc->order) 926 return false; 927 928 /* Do not accidentally pollute CMA or isolated regions*/ 929 if (is_migrate_cma(migratetype) || 930 is_migrate_isolate(migratetype)) 931 return false; 932 933 /* 934 * Do not let lower order allocations pollute a movable pageblock. 935 * This might let an unmovable request use a reclaimable pageblock 936 * and vice-versa but no more than normal fallback logic which can 937 * have trouble finding a high-order free page. 938 */ 939 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 940 return false; 941 942 capc->page = page; 943 return true; 944 } 945 946 #else 947 static inline struct capture_control *task_capc(struct zone *zone) 948 { 949 return NULL; 950 } 951 952 static inline bool 953 compaction_capture(struct capture_control *capc, struct page *page, 954 int order, int migratetype) 955 { 956 return false; 957 } 958 #endif /* CONFIG_COMPACTION */ 959 960 /* Used for pages not on another list */ 961 static inline void add_to_free_list(struct page *page, struct zone *zone, 962 unsigned int order, int migratetype) 963 { 964 struct free_area *area = &zone->free_area[order]; 965 966 list_add(&page->lru, &area->free_list[migratetype]); 967 area->nr_free++; 968 } 969 970 /* Used for pages not on another list */ 971 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 972 unsigned int order, int migratetype) 973 { 974 struct free_area *area = &zone->free_area[order]; 975 976 list_add_tail(&page->lru, &area->free_list[migratetype]); 977 area->nr_free++; 978 } 979 980 /* 981 * Used for pages which are on another list. Move the pages to the tail 982 * of the list - so the moved pages won't immediately be considered for 983 * allocation again (e.g., optimization for memory onlining). 984 */ 985 static inline void move_to_free_list(struct page *page, struct zone *zone, 986 unsigned int order, int migratetype) 987 { 988 struct free_area *area = &zone->free_area[order]; 989 990 list_move_tail(&page->lru, &area->free_list[migratetype]); 991 } 992 993 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 994 unsigned int order) 995 { 996 /* clear reported state and update reported page count */ 997 if (page_reported(page)) 998 __ClearPageReported(page); 999 1000 list_del(&page->lru); 1001 __ClearPageBuddy(page); 1002 set_page_private(page, 0); 1003 zone->free_area[order].nr_free--; 1004 } 1005 1006 /* 1007 * If this is not the largest possible page, check if the buddy 1008 * of the next-highest order is free. If it is, it's possible 1009 * that pages are being freed that will coalesce soon. In case, 1010 * that is happening, add the free page to the tail of the list 1011 * so it's less likely to be used soon and more likely to be merged 1012 * as a higher order page 1013 */ 1014 static inline bool 1015 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 1016 struct page *page, unsigned int order) 1017 { 1018 struct page *higher_page, *higher_buddy; 1019 unsigned long combined_pfn; 1020 1021 if (order >= MAX_ORDER - 2) 1022 return false; 1023 1024 combined_pfn = buddy_pfn & pfn; 1025 higher_page = page + (combined_pfn - pfn); 1026 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 1027 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 1028 1029 return page_is_buddy(higher_page, higher_buddy, order + 1); 1030 } 1031 1032 /* 1033 * Freeing function for a buddy system allocator. 1034 * 1035 * The concept of a buddy system is to maintain direct-mapped table 1036 * (containing bit values) for memory blocks of various "orders". 1037 * The bottom level table contains the map for the smallest allocatable 1038 * units of memory (here, pages), and each level above it describes 1039 * pairs of units from the levels below, hence, "buddies". 1040 * At a high level, all that happens here is marking the table entry 1041 * at the bottom level available, and propagating the changes upward 1042 * as necessary, plus some accounting needed to play nicely with other 1043 * parts of the VM system. 1044 * At each level, we keep a list of pages, which are heads of continuous 1045 * free pages of length of (1 << order) and marked with PageBuddy. 1046 * Page's order is recorded in page_private(page) field. 1047 * So when we are allocating or freeing one, we can derive the state of the 1048 * other. That is, if we allocate a small block, and both were 1049 * free, the remainder of the region must be split into blocks. 1050 * If a block is freed, and its buddy is also free, then this 1051 * triggers coalescing into a block of larger size. 1052 * 1053 * -- nyc 1054 */ 1055 1056 static inline void __free_one_page(struct page *page, 1057 unsigned long pfn, 1058 struct zone *zone, unsigned int order, 1059 int migratetype, fpi_t fpi_flags) 1060 { 1061 struct capture_control *capc = task_capc(zone); 1062 unsigned long buddy_pfn; 1063 unsigned long combined_pfn; 1064 unsigned int max_order; 1065 struct page *buddy; 1066 bool to_tail; 1067 1068 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order); 1069 1070 VM_BUG_ON(!zone_is_initialized(zone)); 1071 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1072 1073 VM_BUG_ON(migratetype == -1); 1074 if (likely(!is_migrate_isolate(migratetype))) 1075 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1076 1077 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1078 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1079 1080 continue_merging: 1081 while (order < max_order) { 1082 if (compaction_capture(capc, page, order, migratetype)) { 1083 __mod_zone_freepage_state(zone, -(1 << order), 1084 migratetype); 1085 return; 1086 } 1087 buddy_pfn = __find_buddy_pfn(pfn, order); 1088 buddy = page + (buddy_pfn - pfn); 1089 1090 if (!page_is_buddy(page, buddy, order)) 1091 goto done_merging; 1092 /* 1093 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1094 * merge with it and move up one order. 1095 */ 1096 if (page_is_guard(buddy)) 1097 clear_page_guard(zone, buddy, order, migratetype); 1098 else 1099 del_page_from_free_list(buddy, zone, order); 1100 combined_pfn = buddy_pfn & pfn; 1101 page = page + (combined_pfn - pfn); 1102 pfn = combined_pfn; 1103 order++; 1104 } 1105 if (order < MAX_ORDER - 1) { 1106 /* If we are here, it means order is >= pageblock_order. 1107 * We want to prevent merge between freepages on isolate 1108 * pageblock and normal pageblock. Without this, pageblock 1109 * isolation could cause incorrect freepage or CMA accounting. 1110 * 1111 * We don't want to hit this code for the more frequent 1112 * low-order merging. 1113 */ 1114 if (unlikely(has_isolate_pageblock(zone))) { 1115 int buddy_mt; 1116 1117 buddy_pfn = __find_buddy_pfn(pfn, order); 1118 buddy = page + (buddy_pfn - pfn); 1119 buddy_mt = get_pageblock_migratetype(buddy); 1120 1121 if (migratetype != buddy_mt 1122 && (is_migrate_isolate(migratetype) || 1123 is_migrate_isolate(buddy_mt))) 1124 goto done_merging; 1125 } 1126 max_order = order + 1; 1127 goto continue_merging; 1128 } 1129 1130 done_merging: 1131 set_buddy_order(page, order); 1132 1133 if (fpi_flags & FPI_TO_TAIL) 1134 to_tail = true; 1135 else if (is_shuffle_order(order)) 1136 to_tail = shuffle_pick_tail(); 1137 else 1138 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1139 1140 if (to_tail) 1141 add_to_free_list_tail(page, zone, order, migratetype); 1142 else 1143 add_to_free_list(page, zone, order, migratetype); 1144 1145 /* Notify page reporting subsystem of freed page */ 1146 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1147 page_reporting_notify_free(order); 1148 } 1149 1150 /* 1151 * A bad page could be due to a number of fields. Instead of multiple branches, 1152 * try and check multiple fields with one check. The caller must do a detailed 1153 * check if necessary. 1154 */ 1155 static inline bool page_expected_state(struct page *page, 1156 unsigned long check_flags) 1157 { 1158 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1159 return false; 1160 1161 if (unlikely((unsigned long)page->mapping | 1162 page_ref_count(page) | 1163 #ifdef CONFIG_MEMCG 1164 page->memcg_data | 1165 #endif 1166 (page->flags & check_flags))) 1167 return false; 1168 1169 return true; 1170 } 1171 1172 static const char *page_bad_reason(struct page *page, unsigned long flags) 1173 { 1174 const char *bad_reason = NULL; 1175 1176 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1177 bad_reason = "nonzero mapcount"; 1178 if (unlikely(page->mapping != NULL)) 1179 bad_reason = "non-NULL mapping"; 1180 if (unlikely(page_ref_count(page) != 0)) 1181 bad_reason = "nonzero _refcount"; 1182 if (unlikely(page->flags & flags)) { 1183 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1184 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1185 else 1186 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1187 } 1188 #ifdef CONFIG_MEMCG 1189 if (unlikely(page->memcg_data)) 1190 bad_reason = "page still charged to cgroup"; 1191 #endif 1192 return bad_reason; 1193 } 1194 1195 static void check_free_page_bad(struct page *page) 1196 { 1197 bad_page(page, 1198 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1199 } 1200 1201 static inline int check_free_page(struct page *page) 1202 { 1203 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1204 return 0; 1205 1206 /* Something has gone sideways, find it */ 1207 check_free_page_bad(page); 1208 return 1; 1209 } 1210 1211 static int free_tail_pages_check(struct page *head_page, struct page *page) 1212 { 1213 int ret = 1; 1214 1215 /* 1216 * We rely page->lru.next never has bit 0 set, unless the page 1217 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1218 */ 1219 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1220 1221 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1222 ret = 0; 1223 goto out; 1224 } 1225 switch (page - head_page) { 1226 case 1: 1227 /* the first tail page: ->mapping may be compound_mapcount() */ 1228 if (unlikely(compound_mapcount(page))) { 1229 bad_page(page, "nonzero compound_mapcount"); 1230 goto out; 1231 } 1232 break; 1233 case 2: 1234 /* 1235 * the second tail page: ->mapping is 1236 * deferred_list.next -- ignore value. 1237 */ 1238 break; 1239 default: 1240 if (page->mapping != TAIL_MAPPING) { 1241 bad_page(page, "corrupted mapping in tail page"); 1242 goto out; 1243 } 1244 break; 1245 } 1246 if (unlikely(!PageTail(page))) { 1247 bad_page(page, "PageTail not set"); 1248 goto out; 1249 } 1250 if (unlikely(compound_head(page) != head_page)) { 1251 bad_page(page, "compound_head not consistent"); 1252 goto out; 1253 } 1254 ret = 0; 1255 out: 1256 page->mapping = NULL; 1257 clear_compound_head(page); 1258 return ret; 1259 } 1260 1261 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags) 1262 { 1263 int i; 1264 1265 if (zero_tags) { 1266 for (i = 0; i < numpages; i++) 1267 tag_clear_highpage(page + i); 1268 return; 1269 } 1270 1271 /* s390's use of memset() could override KASAN redzones. */ 1272 kasan_disable_current(); 1273 for (i = 0; i < numpages; i++) { 1274 u8 tag = page_kasan_tag(page + i); 1275 page_kasan_tag_reset(page + i); 1276 clear_highpage(page + i); 1277 page_kasan_tag_set(page + i, tag); 1278 } 1279 kasan_enable_current(); 1280 } 1281 1282 static __always_inline bool free_pages_prepare(struct page *page, 1283 unsigned int order, bool check_free, fpi_t fpi_flags) 1284 { 1285 int bad = 0; 1286 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags); 1287 1288 VM_BUG_ON_PAGE(PageTail(page), page); 1289 1290 trace_mm_page_free(page, order); 1291 1292 if (unlikely(PageHWPoison(page)) && !order) { 1293 /* 1294 * Do not let hwpoison pages hit pcplists/buddy 1295 * Untie memcg state and reset page's owner 1296 */ 1297 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1298 __memcg_kmem_uncharge_page(page, order); 1299 reset_page_owner(page, order); 1300 return false; 1301 } 1302 1303 /* 1304 * Check tail pages before head page information is cleared to 1305 * avoid checking PageCompound for order-0 pages. 1306 */ 1307 if (unlikely(order)) { 1308 bool compound = PageCompound(page); 1309 int i; 1310 1311 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1312 1313 if (compound) { 1314 ClearPageDoubleMap(page); 1315 ClearPageHasHWPoisoned(page); 1316 } 1317 for (i = 1; i < (1 << order); i++) { 1318 if (compound) 1319 bad += free_tail_pages_check(page, page + i); 1320 if (unlikely(check_free_page(page + i))) { 1321 bad++; 1322 continue; 1323 } 1324 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1325 } 1326 } 1327 if (PageMappingFlags(page)) 1328 page->mapping = NULL; 1329 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1330 __memcg_kmem_uncharge_page(page, order); 1331 if (check_free) 1332 bad += check_free_page(page); 1333 if (bad) 1334 return false; 1335 1336 page_cpupid_reset_last(page); 1337 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1338 reset_page_owner(page, order); 1339 1340 if (!PageHighMem(page)) { 1341 debug_check_no_locks_freed(page_address(page), 1342 PAGE_SIZE << order); 1343 debug_check_no_obj_freed(page_address(page), 1344 PAGE_SIZE << order); 1345 } 1346 1347 kernel_poison_pages(page, 1 << order); 1348 1349 /* 1350 * As memory initialization might be integrated into KASAN, 1351 * kasan_free_pages and kernel_init_free_pages must be 1352 * kept together to avoid discrepancies in behavior. 1353 * 1354 * With hardware tag-based KASAN, memory tags must be set before the 1355 * page becomes unavailable via debug_pagealloc or arch_free_page. 1356 */ 1357 if (kasan_has_integrated_init()) { 1358 if (!skip_kasan_poison) 1359 kasan_free_pages(page, order); 1360 } else { 1361 bool init = want_init_on_free(); 1362 1363 if (init) 1364 kernel_init_free_pages(page, 1 << order, false); 1365 if (!skip_kasan_poison) 1366 kasan_poison_pages(page, order, init); 1367 } 1368 1369 /* 1370 * arch_free_page() can make the page's contents inaccessible. s390 1371 * does this. So nothing which can access the page's contents should 1372 * happen after this. 1373 */ 1374 arch_free_page(page, order); 1375 1376 debug_pagealloc_unmap_pages(page, 1 << order); 1377 1378 return true; 1379 } 1380 1381 #ifdef CONFIG_DEBUG_VM 1382 /* 1383 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1384 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1385 * moved from pcp lists to free lists. 1386 */ 1387 static bool free_pcp_prepare(struct page *page, unsigned int order) 1388 { 1389 return free_pages_prepare(page, order, true, FPI_NONE); 1390 } 1391 1392 static bool bulkfree_pcp_prepare(struct page *page) 1393 { 1394 if (debug_pagealloc_enabled_static()) 1395 return check_free_page(page); 1396 else 1397 return false; 1398 } 1399 #else 1400 /* 1401 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1402 * moving from pcp lists to free list in order to reduce overhead. With 1403 * debug_pagealloc enabled, they are checked also immediately when being freed 1404 * to the pcp lists. 1405 */ 1406 static bool free_pcp_prepare(struct page *page, unsigned int order) 1407 { 1408 if (debug_pagealloc_enabled_static()) 1409 return free_pages_prepare(page, order, true, FPI_NONE); 1410 else 1411 return free_pages_prepare(page, order, false, FPI_NONE); 1412 } 1413 1414 static bool bulkfree_pcp_prepare(struct page *page) 1415 { 1416 return check_free_page(page); 1417 } 1418 #endif /* CONFIG_DEBUG_VM */ 1419 1420 static inline void prefetch_buddy(struct page *page) 1421 { 1422 unsigned long pfn = page_to_pfn(page); 1423 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1424 struct page *buddy = page + (buddy_pfn - pfn); 1425 1426 prefetch(buddy); 1427 } 1428 1429 /* 1430 * Frees a number of pages from the PCP lists 1431 * Assumes all pages on list are in same zone. 1432 * count is the number of pages to free. 1433 */ 1434 static void free_pcppages_bulk(struct zone *zone, int count, 1435 struct per_cpu_pages *pcp) 1436 { 1437 int pindex = 0; 1438 int batch_free = 0; 1439 int nr_freed = 0; 1440 unsigned int order; 1441 int prefetch_nr = READ_ONCE(pcp->batch); 1442 bool isolated_pageblocks; 1443 struct page *page, *tmp; 1444 LIST_HEAD(head); 1445 1446 /* 1447 * Ensure proper count is passed which otherwise would stuck in the 1448 * below while (list_empty(list)) loop. 1449 */ 1450 count = min(pcp->count, count); 1451 while (count > 0) { 1452 struct list_head *list; 1453 1454 /* 1455 * Remove pages from lists in a round-robin fashion. A 1456 * batch_free count is maintained that is incremented when an 1457 * empty list is encountered. This is so more pages are freed 1458 * off fuller lists instead of spinning excessively around empty 1459 * lists 1460 */ 1461 do { 1462 batch_free++; 1463 if (++pindex == NR_PCP_LISTS) 1464 pindex = 0; 1465 list = &pcp->lists[pindex]; 1466 } while (list_empty(list)); 1467 1468 /* This is the only non-empty list. Free them all. */ 1469 if (batch_free == NR_PCP_LISTS) 1470 batch_free = count; 1471 1472 order = pindex_to_order(pindex); 1473 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH)); 1474 do { 1475 page = list_last_entry(list, struct page, lru); 1476 /* must delete to avoid corrupting pcp list */ 1477 list_del(&page->lru); 1478 nr_freed += 1 << order; 1479 count -= 1 << order; 1480 1481 if (bulkfree_pcp_prepare(page)) 1482 continue; 1483 1484 /* Encode order with the migratetype */ 1485 page->index <<= NR_PCP_ORDER_WIDTH; 1486 page->index |= order; 1487 1488 list_add_tail(&page->lru, &head); 1489 1490 /* 1491 * We are going to put the page back to the global 1492 * pool, prefetch its buddy to speed up later access 1493 * under zone->lock. It is believed the overhead of 1494 * an additional test and calculating buddy_pfn here 1495 * can be offset by reduced memory latency later. To 1496 * avoid excessive prefetching due to large count, only 1497 * prefetch buddy for the first pcp->batch nr of pages. 1498 */ 1499 if (prefetch_nr) { 1500 prefetch_buddy(page); 1501 prefetch_nr--; 1502 } 1503 } while (count > 0 && --batch_free && !list_empty(list)); 1504 } 1505 pcp->count -= nr_freed; 1506 1507 /* 1508 * local_lock_irq held so equivalent to spin_lock_irqsave for 1509 * both PREEMPT_RT and non-PREEMPT_RT configurations. 1510 */ 1511 spin_lock(&zone->lock); 1512 isolated_pageblocks = has_isolate_pageblock(zone); 1513 1514 /* 1515 * Use safe version since after __free_one_page(), 1516 * page->lru.next will not point to original list. 1517 */ 1518 list_for_each_entry_safe(page, tmp, &head, lru) { 1519 int mt = get_pcppage_migratetype(page); 1520 1521 /* mt has been encoded with the order (see above) */ 1522 order = mt & NR_PCP_ORDER_MASK; 1523 mt >>= NR_PCP_ORDER_WIDTH; 1524 1525 /* MIGRATE_ISOLATE page should not go to pcplists */ 1526 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1527 /* Pageblock could have been isolated meanwhile */ 1528 if (unlikely(isolated_pageblocks)) 1529 mt = get_pageblock_migratetype(page); 1530 1531 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1532 trace_mm_page_pcpu_drain(page, order, mt); 1533 } 1534 spin_unlock(&zone->lock); 1535 } 1536 1537 static void free_one_page(struct zone *zone, 1538 struct page *page, unsigned long pfn, 1539 unsigned int order, 1540 int migratetype, fpi_t fpi_flags) 1541 { 1542 unsigned long flags; 1543 1544 spin_lock_irqsave(&zone->lock, flags); 1545 if (unlikely(has_isolate_pageblock(zone) || 1546 is_migrate_isolate(migratetype))) { 1547 migratetype = get_pfnblock_migratetype(page, pfn); 1548 } 1549 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1550 spin_unlock_irqrestore(&zone->lock, flags); 1551 } 1552 1553 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1554 unsigned long zone, int nid) 1555 { 1556 mm_zero_struct_page(page); 1557 set_page_links(page, zone, nid, pfn); 1558 init_page_count(page); 1559 page_mapcount_reset(page); 1560 page_cpupid_reset_last(page); 1561 page_kasan_tag_reset(page); 1562 1563 INIT_LIST_HEAD(&page->lru); 1564 #ifdef WANT_PAGE_VIRTUAL 1565 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1566 if (!is_highmem_idx(zone)) 1567 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1568 #endif 1569 } 1570 1571 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1572 static void __meminit init_reserved_page(unsigned long pfn) 1573 { 1574 pg_data_t *pgdat; 1575 int nid, zid; 1576 1577 if (!early_page_uninitialised(pfn)) 1578 return; 1579 1580 nid = early_pfn_to_nid(pfn); 1581 pgdat = NODE_DATA(nid); 1582 1583 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1584 struct zone *zone = &pgdat->node_zones[zid]; 1585 1586 if (zone_spans_pfn(zone, pfn)) 1587 break; 1588 } 1589 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1590 } 1591 #else 1592 static inline void init_reserved_page(unsigned long pfn) 1593 { 1594 } 1595 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1596 1597 /* 1598 * Initialised pages do not have PageReserved set. This function is 1599 * called for each range allocated by the bootmem allocator and 1600 * marks the pages PageReserved. The remaining valid pages are later 1601 * sent to the buddy page allocator. 1602 */ 1603 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1604 { 1605 unsigned long start_pfn = PFN_DOWN(start); 1606 unsigned long end_pfn = PFN_UP(end); 1607 1608 for (; start_pfn < end_pfn; start_pfn++) { 1609 if (pfn_valid(start_pfn)) { 1610 struct page *page = pfn_to_page(start_pfn); 1611 1612 init_reserved_page(start_pfn); 1613 1614 /* Avoid false-positive PageTail() */ 1615 INIT_LIST_HEAD(&page->lru); 1616 1617 /* 1618 * no need for atomic set_bit because the struct 1619 * page is not visible yet so nobody should 1620 * access it yet. 1621 */ 1622 __SetPageReserved(page); 1623 } 1624 } 1625 } 1626 1627 static void __free_pages_ok(struct page *page, unsigned int order, 1628 fpi_t fpi_flags) 1629 { 1630 unsigned long flags; 1631 int migratetype; 1632 unsigned long pfn = page_to_pfn(page); 1633 struct zone *zone = page_zone(page); 1634 1635 if (!free_pages_prepare(page, order, true, fpi_flags)) 1636 return; 1637 1638 migratetype = get_pfnblock_migratetype(page, pfn); 1639 1640 spin_lock_irqsave(&zone->lock, flags); 1641 if (unlikely(has_isolate_pageblock(zone) || 1642 is_migrate_isolate(migratetype))) { 1643 migratetype = get_pfnblock_migratetype(page, pfn); 1644 } 1645 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1646 spin_unlock_irqrestore(&zone->lock, flags); 1647 1648 __count_vm_events(PGFREE, 1 << order); 1649 } 1650 1651 void __free_pages_core(struct page *page, unsigned int order) 1652 { 1653 unsigned int nr_pages = 1 << order; 1654 struct page *p = page; 1655 unsigned int loop; 1656 1657 /* 1658 * When initializing the memmap, __init_single_page() sets the refcount 1659 * of all pages to 1 ("allocated"/"not free"). We have to set the 1660 * refcount of all involved pages to 0. 1661 */ 1662 prefetchw(p); 1663 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1664 prefetchw(p + 1); 1665 __ClearPageReserved(p); 1666 set_page_count(p, 0); 1667 } 1668 __ClearPageReserved(p); 1669 set_page_count(p, 0); 1670 1671 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1672 1673 /* 1674 * Bypass PCP and place fresh pages right to the tail, primarily 1675 * relevant for memory onlining. 1676 */ 1677 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1678 } 1679 1680 #ifdef CONFIG_NUMA 1681 1682 /* 1683 * During memory init memblocks map pfns to nids. The search is expensive and 1684 * this caches recent lookups. The implementation of __early_pfn_to_nid 1685 * treats start/end as pfns. 1686 */ 1687 struct mminit_pfnnid_cache { 1688 unsigned long last_start; 1689 unsigned long last_end; 1690 int last_nid; 1691 }; 1692 1693 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1694 1695 /* 1696 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1697 */ 1698 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1699 struct mminit_pfnnid_cache *state) 1700 { 1701 unsigned long start_pfn, end_pfn; 1702 int nid; 1703 1704 if (state->last_start <= pfn && pfn < state->last_end) 1705 return state->last_nid; 1706 1707 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1708 if (nid != NUMA_NO_NODE) { 1709 state->last_start = start_pfn; 1710 state->last_end = end_pfn; 1711 state->last_nid = nid; 1712 } 1713 1714 return nid; 1715 } 1716 1717 int __meminit early_pfn_to_nid(unsigned long pfn) 1718 { 1719 static DEFINE_SPINLOCK(early_pfn_lock); 1720 int nid; 1721 1722 spin_lock(&early_pfn_lock); 1723 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1724 if (nid < 0) 1725 nid = first_online_node; 1726 spin_unlock(&early_pfn_lock); 1727 1728 return nid; 1729 } 1730 #endif /* CONFIG_NUMA */ 1731 1732 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1733 unsigned int order) 1734 { 1735 if (early_page_uninitialised(pfn)) 1736 return; 1737 __free_pages_core(page, order); 1738 } 1739 1740 /* 1741 * Check that the whole (or subset of) a pageblock given by the interval of 1742 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1743 * with the migration of free compaction scanner. 1744 * 1745 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1746 * 1747 * It's possible on some configurations to have a setup like node0 node1 node0 1748 * i.e. it's possible that all pages within a zones range of pages do not 1749 * belong to a single zone. We assume that a border between node0 and node1 1750 * can occur within a single pageblock, but not a node0 node1 node0 1751 * interleaving within a single pageblock. It is therefore sufficient to check 1752 * the first and last page of a pageblock and avoid checking each individual 1753 * page in a pageblock. 1754 */ 1755 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1756 unsigned long end_pfn, struct zone *zone) 1757 { 1758 struct page *start_page; 1759 struct page *end_page; 1760 1761 /* end_pfn is one past the range we are checking */ 1762 end_pfn--; 1763 1764 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1765 return NULL; 1766 1767 start_page = pfn_to_online_page(start_pfn); 1768 if (!start_page) 1769 return NULL; 1770 1771 if (page_zone(start_page) != zone) 1772 return NULL; 1773 1774 end_page = pfn_to_page(end_pfn); 1775 1776 /* This gives a shorter code than deriving page_zone(end_page) */ 1777 if (page_zone_id(start_page) != page_zone_id(end_page)) 1778 return NULL; 1779 1780 return start_page; 1781 } 1782 1783 void set_zone_contiguous(struct zone *zone) 1784 { 1785 unsigned long block_start_pfn = zone->zone_start_pfn; 1786 unsigned long block_end_pfn; 1787 1788 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1789 for (; block_start_pfn < zone_end_pfn(zone); 1790 block_start_pfn = block_end_pfn, 1791 block_end_pfn += pageblock_nr_pages) { 1792 1793 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1794 1795 if (!__pageblock_pfn_to_page(block_start_pfn, 1796 block_end_pfn, zone)) 1797 return; 1798 cond_resched(); 1799 } 1800 1801 /* We confirm that there is no hole */ 1802 zone->contiguous = true; 1803 } 1804 1805 void clear_zone_contiguous(struct zone *zone) 1806 { 1807 zone->contiguous = false; 1808 } 1809 1810 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1811 static void __init deferred_free_range(unsigned long pfn, 1812 unsigned long nr_pages) 1813 { 1814 struct page *page; 1815 unsigned long i; 1816 1817 if (!nr_pages) 1818 return; 1819 1820 page = pfn_to_page(pfn); 1821 1822 /* Free a large naturally-aligned chunk if possible */ 1823 if (nr_pages == pageblock_nr_pages && 1824 (pfn & (pageblock_nr_pages - 1)) == 0) { 1825 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1826 __free_pages_core(page, pageblock_order); 1827 return; 1828 } 1829 1830 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1831 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1832 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1833 __free_pages_core(page, 0); 1834 } 1835 } 1836 1837 /* Completion tracking for deferred_init_memmap() threads */ 1838 static atomic_t pgdat_init_n_undone __initdata; 1839 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1840 1841 static inline void __init pgdat_init_report_one_done(void) 1842 { 1843 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1844 complete(&pgdat_init_all_done_comp); 1845 } 1846 1847 /* 1848 * Returns true if page needs to be initialized or freed to buddy allocator. 1849 * 1850 * First we check if pfn is valid on architectures where it is possible to have 1851 * holes within pageblock_nr_pages. On systems where it is not possible, this 1852 * function is optimized out. 1853 * 1854 * Then, we check if a current large page is valid by only checking the validity 1855 * of the head pfn. 1856 */ 1857 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1858 { 1859 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1860 return false; 1861 return true; 1862 } 1863 1864 /* 1865 * Free pages to buddy allocator. Try to free aligned pages in 1866 * pageblock_nr_pages sizes. 1867 */ 1868 static void __init deferred_free_pages(unsigned long pfn, 1869 unsigned long end_pfn) 1870 { 1871 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1872 unsigned long nr_free = 0; 1873 1874 for (; pfn < end_pfn; pfn++) { 1875 if (!deferred_pfn_valid(pfn)) { 1876 deferred_free_range(pfn - nr_free, nr_free); 1877 nr_free = 0; 1878 } else if (!(pfn & nr_pgmask)) { 1879 deferred_free_range(pfn - nr_free, nr_free); 1880 nr_free = 1; 1881 } else { 1882 nr_free++; 1883 } 1884 } 1885 /* Free the last block of pages to allocator */ 1886 deferred_free_range(pfn - nr_free, nr_free); 1887 } 1888 1889 /* 1890 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1891 * by performing it only once every pageblock_nr_pages. 1892 * Return number of pages initialized. 1893 */ 1894 static unsigned long __init deferred_init_pages(struct zone *zone, 1895 unsigned long pfn, 1896 unsigned long end_pfn) 1897 { 1898 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1899 int nid = zone_to_nid(zone); 1900 unsigned long nr_pages = 0; 1901 int zid = zone_idx(zone); 1902 struct page *page = NULL; 1903 1904 for (; pfn < end_pfn; pfn++) { 1905 if (!deferred_pfn_valid(pfn)) { 1906 page = NULL; 1907 continue; 1908 } else if (!page || !(pfn & nr_pgmask)) { 1909 page = pfn_to_page(pfn); 1910 } else { 1911 page++; 1912 } 1913 __init_single_page(page, pfn, zid, nid); 1914 nr_pages++; 1915 } 1916 return (nr_pages); 1917 } 1918 1919 /* 1920 * This function is meant to pre-load the iterator for the zone init. 1921 * Specifically it walks through the ranges until we are caught up to the 1922 * first_init_pfn value and exits there. If we never encounter the value we 1923 * return false indicating there are no valid ranges left. 1924 */ 1925 static bool __init 1926 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1927 unsigned long *spfn, unsigned long *epfn, 1928 unsigned long first_init_pfn) 1929 { 1930 u64 j; 1931 1932 /* 1933 * Start out by walking through the ranges in this zone that have 1934 * already been initialized. We don't need to do anything with them 1935 * so we just need to flush them out of the system. 1936 */ 1937 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1938 if (*epfn <= first_init_pfn) 1939 continue; 1940 if (*spfn < first_init_pfn) 1941 *spfn = first_init_pfn; 1942 *i = j; 1943 return true; 1944 } 1945 1946 return false; 1947 } 1948 1949 /* 1950 * Initialize and free pages. We do it in two loops: first we initialize 1951 * struct page, then free to buddy allocator, because while we are 1952 * freeing pages we can access pages that are ahead (computing buddy 1953 * page in __free_one_page()). 1954 * 1955 * In order to try and keep some memory in the cache we have the loop 1956 * broken along max page order boundaries. This way we will not cause 1957 * any issues with the buddy page computation. 1958 */ 1959 static unsigned long __init 1960 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1961 unsigned long *end_pfn) 1962 { 1963 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1964 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1965 unsigned long nr_pages = 0; 1966 u64 j = *i; 1967 1968 /* First we loop through and initialize the page values */ 1969 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1970 unsigned long t; 1971 1972 if (mo_pfn <= *start_pfn) 1973 break; 1974 1975 t = min(mo_pfn, *end_pfn); 1976 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1977 1978 if (mo_pfn < *end_pfn) { 1979 *start_pfn = mo_pfn; 1980 break; 1981 } 1982 } 1983 1984 /* Reset values and now loop through freeing pages as needed */ 1985 swap(j, *i); 1986 1987 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1988 unsigned long t; 1989 1990 if (mo_pfn <= spfn) 1991 break; 1992 1993 t = min(mo_pfn, epfn); 1994 deferred_free_pages(spfn, t); 1995 1996 if (mo_pfn <= epfn) 1997 break; 1998 } 1999 2000 return nr_pages; 2001 } 2002 2003 static void __init 2004 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2005 void *arg) 2006 { 2007 unsigned long spfn, epfn; 2008 struct zone *zone = arg; 2009 u64 i; 2010 2011 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2012 2013 /* 2014 * Initialize and free pages in MAX_ORDER sized increments so that we 2015 * can avoid introducing any issues with the buddy allocator. 2016 */ 2017 while (spfn < end_pfn) { 2018 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2019 cond_resched(); 2020 } 2021 } 2022 2023 /* An arch may override for more concurrency. */ 2024 __weak int __init 2025 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2026 { 2027 return 1; 2028 } 2029 2030 /* Initialise remaining memory on a node */ 2031 static int __init deferred_init_memmap(void *data) 2032 { 2033 pg_data_t *pgdat = data; 2034 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2035 unsigned long spfn = 0, epfn = 0; 2036 unsigned long first_init_pfn, flags; 2037 unsigned long start = jiffies; 2038 struct zone *zone; 2039 int zid, max_threads; 2040 u64 i; 2041 2042 /* Bind memory initialisation thread to a local node if possible */ 2043 if (!cpumask_empty(cpumask)) 2044 set_cpus_allowed_ptr(current, cpumask); 2045 2046 pgdat_resize_lock(pgdat, &flags); 2047 first_init_pfn = pgdat->first_deferred_pfn; 2048 if (first_init_pfn == ULONG_MAX) { 2049 pgdat_resize_unlock(pgdat, &flags); 2050 pgdat_init_report_one_done(); 2051 return 0; 2052 } 2053 2054 /* Sanity check boundaries */ 2055 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2056 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2057 pgdat->first_deferred_pfn = ULONG_MAX; 2058 2059 /* 2060 * Once we unlock here, the zone cannot be grown anymore, thus if an 2061 * interrupt thread must allocate this early in boot, zone must be 2062 * pre-grown prior to start of deferred page initialization. 2063 */ 2064 pgdat_resize_unlock(pgdat, &flags); 2065 2066 /* Only the highest zone is deferred so find it */ 2067 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2068 zone = pgdat->node_zones + zid; 2069 if (first_init_pfn < zone_end_pfn(zone)) 2070 break; 2071 } 2072 2073 /* If the zone is empty somebody else may have cleared out the zone */ 2074 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2075 first_init_pfn)) 2076 goto zone_empty; 2077 2078 max_threads = deferred_page_init_max_threads(cpumask); 2079 2080 while (spfn < epfn) { 2081 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2082 struct padata_mt_job job = { 2083 .thread_fn = deferred_init_memmap_chunk, 2084 .fn_arg = zone, 2085 .start = spfn, 2086 .size = epfn_align - spfn, 2087 .align = PAGES_PER_SECTION, 2088 .min_chunk = PAGES_PER_SECTION, 2089 .max_threads = max_threads, 2090 }; 2091 2092 padata_do_multithreaded(&job); 2093 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2094 epfn_align); 2095 } 2096 zone_empty: 2097 /* Sanity check that the next zone really is unpopulated */ 2098 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2099 2100 pr_info("node %d deferred pages initialised in %ums\n", 2101 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2102 2103 pgdat_init_report_one_done(); 2104 return 0; 2105 } 2106 2107 /* 2108 * If this zone has deferred pages, try to grow it by initializing enough 2109 * deferred pages to satisfy the allocation specified by order, rounded up to 2110 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2111 * of SECTION_SIZE bytes by initializing struct pages in increments of 2112 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2113 * 2114 * Return true when zone was grown, otherwise return false. We return true even 2115 * when we grow less than requested, to let the caller decide if there are 2116 * enough pages to satisfy the allocation. 2117 * 2118 * Note: We use noinline because this function is needed only during boot, and 2119 * it is called from a __ref function _deferred_grow_zone. This way we are 2120 * making sure that it is not inlined into permanent text section. 2121 */ 2122 static noinline bool __init 2123 deferred_grow_zone(struct zone *zone, unsigned int order) 2124 { 2125 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2126 pg_data_t *pgdat = zone->zone_pgdat; 2127 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2128 unsigned long spfn, epfn, flags; 2129 unsigned long nr_pages = 0; 2130 u64 i; 2131 2132 /* Only the last zone may have deferred pages */ 2133 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2134 return false; 2135 2136 pgdat_resize_lock(pgdat, &flags); 2137 2138 /* 2139 * If someone grew this zone while we were waiting for spinlock, return 2140 * true, as there might be enough pages already. 2141 */ 2142 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2143 pgdat_resize_unlock(pgdat, &flags); 2144 return true; 2145 } 2146 2147 /* If the zone is empty somebody else may have cleared out the zone */ 2148 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2149 first_deferred_pfn)) { 2150 pgdat->first_deferred_pfn = ULONG_MAX; 2151 pgdat_resize_unlock(pgdat, &flags); 2152 /* Retry only once. */ 2153 return first_deferred_pfn != ULONG_MAX; 2154 } 2155 2156 /* 2157 * Initialize and free pages in MAX_ORDER sized increments so 2158 * that we can avoid introducing any issues with the buddy 2159 * allocator. 2160 */ 2161 while (spfn < epfn) { 2162 /* update our first deferred PFN for this section */ 2163 first_deferred_pfn = spfn; 2164 2165 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2166 touch_nmi_watchdog(); 2167 2168 /* We should only stop along section boundaries */ 2169 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2170 continue; 2171 2172 /* If our quota has been met we can stop here */ 2173 if (nr_pages >= nr_pages_needed) 2174 break; 2175 } 2176 2177 pgdat->first_deferred_pfn = spfn; 2178 pgdat_resize_unlock(pgdat, &flags); 2179 2180 return nr_pages > 0; 2181 } 2182 2183 /* 2184 * deferred_grow_zone() is __init, but it is called from 2185 * get_page_from_freelist() during early boot until deferred_pages permanently 2186 * disables this call. This is why we have refdata wrapper to avoid warning, 2187 * and to ensure that the function body gets unloaded. 2188 */ 2189 static bool __ref 2190 _deferred_grow_zone(struct zone *zone, unsigned int order) 2191 { 2192 return deferred_grow_zone(zone, order); 2193 } 2194 2195 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2196 2197 void __init page_alloc_init_late(void) 2198 { 2199 struct zone *zone; 2200 int nid; 2201 2202 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2203 2204 /* There will be num_node_state(N_MEMORY) threads */ 2205 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2206 for_each_node_state(nid, N_MEMORY) { 2207 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2208 } 2209 2210 /* Block until all are initialised */ 2211 wait_for_completion(&pgdat_init_all_done_comp); 2212 2213 /* 2214 * We initialized the rest of the deferred pages. Permanently disable 2215 * on-demand struct page initialization. 2216 */ 2217 static_branch_disable(&deferred_pages); 2218 2219 /* Reinit limits that are based on free pages after the kernel is up */ 2220 files_maxfiles_init(); 2221 #endif 2222 2223 buffer_init(); 2224 2225 /* Discard memblock private memory */ 2226 memblock_discard(); 2227 2228 for_each_node_state(nid, N_MEMORY) 2229 shuffle_free_memory(NODE_DATA(nid)); 2230 2231 for_each_populated_zone(zone) 2232 set_zone_contiguous(zone); 2233 } 2234 2235 #ifdef CONFIG_CMA 2236 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2237 void __init init_cma_reserved_pageblock(struct page *page) 2238 { 2239 unsigned i = pageblock_nr_pages; 2240 struct page *p = page; 2241 2242 do { 2243 __ClearPageReserved(p); 2244 set_page_count(p, 0); 2245 } while (++p, --i); 2246 2247 set_pageblock_migratetype(page, MIGRATE_CMA); 2248 2249 if (pageblock_order >= MAX_ORDER) { 2250 i = pageblock_nr_pages; 2251 p = page; 2252 do { 2253 set_page_refcounted(p); 2254 __free_pages(p, MAX_ORDER - 1); 2255 p += MAX_ORDER_NR_PAGES; 2256 } while (i -= MAX_ORDER_NR_PAGES); 2257 } else { 2258 set_page_refcounted(page); 2259 __free_pages(page, pageblock_order); 2260 } 2261 2262 adjust_managed_page_count(page, pageblock_nr_pages); 2263 page_zone(page)->cma_pages += pageblock_nr_pages; 2264 } 2265 #endif 2266 2267 /* 2268 * The order of subdivision here is critical for the IO subsystem. 2269 * Please do not alter this order without good reasons and regression 2270 * testing. Specifically, as large blocks of memory are subdivided, 2271 * the order in which smaller blocks are delivered depends on the order 2272 * they're subdivided in this function. This is the primary factor 2273 * influencing the order in which pages are delivered to the IO 2274 * subsystem according to empirical testing, and this is also justified 2275 * by considering the behavior of a buddy system containing a single 2276 * large block of memory acted on by a series of small allocations. 2277 * This behavior is a critical factor in sglist merging's success. 2278 * 2279 * -- nyc 2280 */ 2281 static inline void expand(struct zone *zone, struct page *page, 2282 int low, int high, int migratetype) 2283 { 2284 unsigned long size = 1 << high; 2285 2286 while (high > low) { 2287 high--; 2288 size >>= 1; 2289 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2290 2291 /* 2292 * Mark as guard pages (or page), that will allow to 2293 * merge back to allocator when buddy will be freed. 2294 * Corresponding page table entries will not be touched, 2295 * pages will stay not present in virtual address space 2296 */ 2297 if (set_page_guard(zone, &page[size], high, migratetype)) 2298 continue; 2299 2300 add_to_free_list(&page[size], zone, high, migratetype); 2301 set_buddy_order(&page[size], high); 2302 } 2303 } 2304 2305 static void check_new_page_bad(struct page *page) 2306 { 2307 if (unlikely(page->flags & __PG_HWPOISON)) { 2308 /* Don't complain about hwpoisoned pages */ 2309 page_mapcount_reset(page); /* remove PageBuddy */ 2310 return; 2311 } 2312 2313 bad_page(page, 2314 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2315 } 2316 2317 /* 2318 * This page is about to be returned from the page allocator 2319 */ 2320 static inline int check_new_page(struct page *page) 2321 { 2322 if (likely(page_expected_state(page, 2323 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2324 return 0; 2325 2326 check_new_page_bad(page); 2327 return 1; 2328 } 2329 2330 #ifdef CONFIG_DEBUG_VM 2331 /* 2332 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2333 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2334 * also checked when pcp lists are refilled from the free lists. 2335 */ 2336 static inline bool check_pcp_refill(struct page *page) 2337 { 2338 if (debug_pagealloc_enabled_static()) 2339 return check_new_page(page); 2340 else 2341 return false; 2342 } 2343 2344 static inline bool check_new_pcp(struct page *page) 2345 { 2346 return check_new_page(page); 2347 } 2348 #else 2349 /* 2350 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2351 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2352 * enabled, they are also checked when being allocated from the pcp lists. 2353 */ 2354 static inline bool check_pcp_refill(struct page *page) 2355 { 2356 return check_new_page(page); 2357 } 2358 static inline bool check_new_pcp(struct page *page) 2359 { 2360 if (debug_pagealloc_enabled_static()) 2361 return check_new_page(page); 2362 else 2363 return false; 2364 } 2365 #endif /* CONFIG_DEBUG_VM */ 2366 2367 static bool check_new_pages(struct page *page, unsigned int order) 2368 { 2369 int i; 2370 for (i = 0; i < (1 << order); i++) { 2371 struct page *p = page + i; 2372 2373 if (unlikely(check_new_page(p))) 2374 return true; 2375 } 2376 2377 return false; 2378 } 2379 2380 inline void post_alloc_hook(struct page *page, unsigned int order, 2381 gfp_t gfp_flags) 2382 { 2383 set_page_private(page, 0); 2384 set_page_refcounted(page); 2385 2386 arch_alloc_page(page, order); 2387 debug_pagealloc_map_pages(page, 1 << order); 2388 2389 /* 2390 * Page unpoisoning must happen before memory initialization. 2391 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2392 * allocations and the page unpoisoning code will complain. 2393 */ 2394 kernel_unpoison_pages(page, 1 << order); 2395 2396 /* 2397 * As memory initialization might be integrated into KASAN, 2398 * kasan_alloc_pages and kernel_init_free_pages must be 2399 * kept together to avoid discrepancies in behavior. 2400 */ 2401 if (kasan_has_integrated_init()) { 2402 kasan_alloc_pages(page, order, gfp_flags); 2403 } else { 2404 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags); 2405 2406 kasan_unpoison_pages(page, order, init); 2407 if (init) 2408 kernel_init_free_pages(page, 1 << order, 2409 gfp_flags & __GFP_ZEROTAGS); 2410 } 2411 2412 set_page_owner(page, order, gfp_flags); 2413 } 2414 2415 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2416 unsigned int alloc_flags) 2417 { 2418 post_alloc_hook(page, order, gfp_flags); 2419 2420 if (order && (gfp_flags & __GFP_COMP)) 2421 prep_compound_page(page, order); 2422 2423 /* 2424 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2425 * allocate the page. The expectation is that the caller is taking 2426 * steps that will free more memory. The caller should avoid the page 2427 * being used for !PFMEMALLOC purposes. 2428 */ 2429 if (alloc_flags & ALLOC_NO_WATERMARKS) 2430 set_page_pfmemalloc(page); 2431 else 2432 clear_page_pfmemalloc(page); 2433 } 2434 2435 /* 2436 * Go through the free lists for the given migratetype and remove 2437 * the smallest available page from the freelists 2438 */ 2439 static __always_inline 2440 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2441 int migratetype) 2442 { 2443 unsigned int current_order; 2444 struct free_area *area; 2445 struct page *page; 2446 2447 /* Find a page of the appropriate size in the preferred list */ 2448 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2449 area = &(zone->free_area[current_order]); 2450 page = get_page_from_free_area(area, migratetype); 2451 if (!page) 2452 continue; 2453 del_page_from_free_list(page, zone, current_order); 2454 expand(zone, page, order, current_order, migratetype); 2455 set_pcppage_migratetype(page, migratetype); 2456 return page; 2457 } 2458 2459 return NULL; 2460 } 2461 2462 2463 /* 2464 * This array describes the order lists are fallen back to when 2465 * the free lists for the desirable migrate type are depleted 2466 */ 2467 static int fallbacks[MIGRATE_TYPES][3] = { 2468 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2469 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2470 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2471 #ifdef CONFIG_CMA 2472 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2473 #endif 2474 #ifdef CONFIG_MEMORY_ISOLATION 2475 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2476 #endif 2477 }; 2478 2479 #ifdef CONFIG_CMA 2480 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2481 unsigned int order) 2482 { 2483 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2484 } 2485 #else 2486 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2487 unsigned int order) { return NULL; } 2488 #endif 2489 2490 /* 2491 * Move the free pages in a range to the freelist tail of the requested type. 2492 * Note that start_page and end_pages are not aligned on a pageblock 2493 * boundary. If alignment is required, use move_freepages_block() 2494 */ 2495 static int move_freepages(struct zone *zone, 2496 unsigned long start_pfn, unsigned long end_pfn, 2497 int migratetype, int *num_movable) 2498 { 2499 struct page *page; 2500 unsigned long pfn; 2501 unsigned int order; 2502 int pages_moved = 0; 2503 2504 for (pfn = start_pfn; pfn <= end_pfn;) { 2505 page = pfn_to_page(pfn); 2506 if (!PageBuddy(page)) { 2507 /* 2508 * We assume that pages that could be isolated for 2509 * migration are movable. But we don't actually try 2510 * isolating, as that would be expensive. 2511 */ 2512 if (num_movable && 2513 (PageLRU(page) || __PageMovable(page))) 2514 (*num_movable)++; 2515 pfn++; 2516 continue; 2517 } 2518 2519 /* Make sure we are not inadvertently changing nodes */ 2520 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2521 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2522 2523 order = buddy_order(page); 2524 move_to_free_list(page, zone, order, migratetype); 2525 pfn += 1 << order; 2526 pages_moved += 1 << order; 2527 } 2528 2529 return pages_moved; 2530 } 2531 2532 int move_freepages_block(struct zone *zone, struct page *page, 2533 int migratetype, int *num_movable) 2534 { 2535 unsigned long start_pfn, end_pfn, pfn; 2536 2537 if (num_movable) 2538 *num_movable = 0; 2539 2540 pfn = page_to_pfn(page); 2541 start_pfn = pfn & ~(pageblock_nr_pages - 1); 2542 end_pfn = start_pfn + pageblock_nr_pages - 1; 2543 2544 /* Do not cross zone boundaries */ 2545 if (!zone_spans_pfn(zone, start_pfn)) 2546 start_pfn = pfn; 2547 if (!zone_spans_pfn(zone, end_pfn)) 2548 return 0; 2549 2550 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2551 num_movable); 2552 } 2553 2554 static void change_pageblock_range(struct page *pageblock_page, 2555 int start_order, int migratetype) 2556 { 2557 int nr_pageblocks = 1 << (start_order - pageblock_order); 2558 2559 while (nr_pageblocks--) { 2560 set_pageblock_migratetype(pageblock_page, migratetype); 2561 pageblock_page += pageblock_nr_pages; 2562 } 2563 } 2564 2565 /* 2566 * When we are falling back to another migratetype during allocation, try to 2567 * steal extra free pages from the same pageblocks to satisfy further 2568 * allocations, instead of polluting multiple pageblocks. 2569 * 2570 * If we are stealing a relatively large buddy page, it is likely there will 2571 * be more free pages in the pageblock, so try to steal them all. For 2572 * reclaimable and unmovable allocations, we steal regardless of page size, 2573 * as fragmentation caused by those allocations polluting movable pageblocks 2574 * is worse than movable allocations stealing from unmovable and reclaimable 2575 * pageblocks. 2576 */ 2577 static bool can_steal_fallback(unsigned int order, int start_mt) 2578 { 2579 /* 2580 * Leaving this order check is intended, although there is 2581 * relaxed order check in next check. The reason is that 2582 * we can actually steal whole pageblock if this condition met, 2583 * but, below check doesn't guarantee it and that is just heuristic 2584 * so could be changed anytime. 2585 */ 2586 if (order >= pageblock_order) 2587 return true; 2588 2589 if (order >= pageblock_order / 2 || 2590 start_mt == MIGRATE_RECLAIMABLE || 2591 start_mt == MIGRATE_UNMOVABLE || 2592 page_group_by_mobility_disabled) 2593 return true; 2594 2595 return false; 2596 } 2597 2598 static inline bool boost_watermark(struct zone *zone) 2599 { 2600 unsigned long max_boost; 2601 2602 if (!watermark_boost_factor) 2603 return false; 2604 /* 2605 * Don't bother in zones that are unlikely to produce results. 2606 * On small machines, including kdump capture kernels running 2607 * in a small area, boosting the watermark can cause an out of 2608 * memory situation immediately. 2609 */ 2610 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2611 return false; 2612 2613 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2614 watermark_boost_factor, 10000); 2615 2616 /* 2617 * high watermark may be uninitialised if fragmentation occurs 2618 * very early in boot so do not boost. We do not fall 2619 * through and boost by pageblock_nr_pages as failing 2620 * allocations that early means that reclaim is not going 2621 * to help and it may even be impossible to reclaim the 2622 * boosted watermark resulting in a hang. 2623 */ 2624 if (!max_boost) 2625 return false; 2626 2627 max_boost = max(pageblock_nr_pages, max_boost); 2628 2629 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2630 max_boost); 2631 2632 return true; 2633 } 2634 2635 /* 2636 * This function implements actual steal behaviour. If order is large enough, 2637 * we can steal whole pageblock. If not, we first move freepages in this 2638 * pageblock to our migratetype and determine how many already-allocated pages 2639 * are there in the pageblock with a compatible migratetype. If at least half 2640 * of pages are free or compatible, we can change migratetype of the pageblock 2641 * itself, so pages freed in the future will be put on the correct free list. 2642 */ 2643 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2644 unsigned int alloc_flags, int start_type, bool whole_block) 2645 { 2646 unsigned int current_order = buddy_order(page); 2647 int free_pages, movable_pages, alike_pages; 2648 int old_block_type; 2649 2650 old_block_type = get_pageblock_migratetype(page); 2651 2652 /* 2653 * This can happen due to races and we want to prevent broken 2654 * highatomic accounting. 2655 */ 2656 if (is_migrate_highatomic(old_block_type)) 2657 goto single_page; 2658 2659 /* Take ownership for orders >= pageblock_order */ 2660 if (current_order >= pageblock_order) { 2661 change_pageblock_range(page, current_order, start_type); 2662 goto single_page; 2663 } 2664 2665 /* 2666 * Boost watermarks to increase reclaim pressure to reduce the 2667 * likelihood of future fallbacks. Wake kswapd now as the node 2668 * may be balanced overall and kswapd will not wake naturally. 2669 */ 2670 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2671 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2672 2673 /* We are not allowed to try stealing from the whole block */ 2674 if (!whole_block) 2675 goto single_page; 2676 2677 free_pages = move_freepages_block(zone, page, start_type, 2678 &movable_pages); 2679 /* 2680 * Determine how many pages are compatible with our allocation. 2681 * For movable allocation, it's the number of movable pages which 2682 * we just obtained. For other types it's a bit more tricky. 2683 */ 2684 if (start_type == MIGRATE_MOVABLE) { 2685 alike_pages = movable_pages; 2686 } else { 2687 /* 2688 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2689 * to MOVABLE pageblock, consider all non-movable pages as 2690 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2691 * vice versa, be conservative since we can't distinguish the 2692 * exact migratetype of non-movable pages. 2693 */ 2694 if (old_block_type == MIGRATE_MOVABLE) 2695 alike_pages = pageblock_nr_pages 2696 - (free_pages + movable_pages); 2697 else 2698 alike_pages = 0; 2699 } 2700 2701 /* moving whole block can fail due to zone boundary conditions */ 2702 if (!free_pages) 2703 goto single_page; 2704 2705 /* 2706 * If a sufficient number of pages in the block are either free or of 2707 * comparable migratability as our allocation, claim the whole block. 2708 */ 2709 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2710 page_group_by_mobility_disabled) 2711 set_pageblock_migratetype(page, start_type); 2712 2713 return; 2714 2715 single_page: 2716 move_to_free_list(page, zone, current_order, start_type); 2717 } 2718 2719 /* 2720 * Check whether there is a suitable fallback freepage with requested order. 2721 * If only_stealable is true, this function returns fallback_mt only if 2722 * we can steal other freepages all together. This would help to reduce 2723 * fragmentation due to mixed migratetype pages in one pageblock. 2724 */ 2725 int find_suitable_fallback(struct free_area *area, unsigned int order, 2726 int migratetype, bool only_stealable, bool *can_steal) 2727 { 2728 int i; 2729 int fallback_mt; 2730 2731 if (area->nr_free == 0) 2732 return -1; 2733 2734 *can_steal = false; 2735 for (i = 0;; i++) { 2736 fallback_mt = fallbacks[migratetype][i]; 2737 if (fallback_mt == MIGRATE_TYPES) 2738 break; 2739 2740 if (free_area_empty(area, fallback_mt)) 2741 continue; 2742 2743 if (can_steal_fallback(order, migratetype)) 2744 *can_steal = true; 2745 2746 if (!only_stealable) 2747 return fallback_mt; 2748 2749 if (*can_steal) 2750 return fallback_mt; 2751 } 2752 2753 return -1; 2754 } 2755 2756 /* 2757 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2758 * there are no empty page blocks that contain a page with a suitable order 2759 */ 2760 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2761 unsigned int alloc_order) 2762 { 2763 int mt; 2764 unsigned long max_managed, flags; 2765 2766 /* 2767 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2768 * Check is race-prone but harmless. 2769 */ 2770 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2771 if (zone->nr_reserved_highatomic >= max_managed) 2772 return; 2773 2774 spin_lock_irqsave(&zone->lock, flags); 2775 2776 /* Recheck the nr_reserved_highatomic limit under the lock */ 2777 if (zone->nr_reserved_highatomic >= max_managed) 2778 goto out_unlock; 2779 2780 /* Yoink! */ 2781 mt = get_pageblock_migratetype(page); 2782 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2783 && !is_migrate_cma(mt)) { 2784 zone->nr_reserved_highatomic += pageblock_nr_pages; 2785 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2786 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2787 } 2788 2789 out_unlock: 2790 spin_unlock_irqrestore(&zone->lock, flags); 2791 } 2792 2793 /* 2794 * Used when an allocation is about to fail under memory pressure. This 2795 * potentially hurts the reliability of high-order allocations when under 2796 * intense memory pressure but failed atomic allocations should be easier 2797 * to recover from than an OOM. 2798 * 2799 * If @force is true, try to unreserve a pageblock even though highatomic 2800 * pageblock is exhausted. 2801 */ 2802 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2803 bool force) 2804 { 2805 struct zonelist *zonelist = ac->zonelist; 2806 unsigned long flags; 2807 struct zoneref *z; 2808 struct zone *zone; 2809 struct page *page; 2810 int order; 2811 bool ret; 2812 2813 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2814 ac->nodemask) { 2815 /* 2816 * Preserve at least one pageblock unless memory pressure 2817 * is really high. 2818 */ 2819 if (!force && zone->nr_reserved_highatomic <= 2820 pageblock_nr_pages) 2821 continue; 2822 2823 spin_lock_irqsave(&zone->lock, flags); 2824 for (order = 0; order < MAX_ORDER; order++) { 2825 struct free_area *area = &(zone->free_area[order]); 2826 2827 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2828 if (!page) 2829 continue; 2830 2831 /* 2832 * In page freeing path, migratetype change is racy so 2833 * we can counter several free pages in a pageblock 2834 * in this loop although we changed the pageblock type 2835 * from highatomic to ac->migratetype. So we should 2836 * adjust the count once. 2837 */ 2838 if (is_migrate_highatomic_page(page)) { 2839 /* 2840 * It should never happen but changes to 2841 * locking could inadvertently allow a per-cpu 2842 * drain to add pages to MIGRATE_HIGHATOMIC 2843 * while unreserving so be safe and watch for 2844 * underflows. 2845 */ 2846 zone->nr_reserved_highatomic -= min( 2847 pageblock_nr_pages, 2848 zone->nr_reserved_highatomic); 2849 } 2850 2851 /* 2852 * Convert to ac->migratetype and avoid the normal 2853 * pageblock stealing heuristics. Minimally, the caller 2854 * is doing the work and needs the pages. More 2855 * importantly, if the block was always converted to 2856 * MIGRATE_UNMOVABLE or another type then the number 2857 * of pageblocks that cannot be completely freed 2858 * may increase. 2859 */ 2860 set_pageblock_migratetype(page, ac->migratetype); 2861 ret = move_freepages_block(zone, page, ac->migratetype, 2862 NULL); 2863 if (ret) { 2864 spin_unlock_irqrestore(&zone->lock, flags); 2865 return ret; 2866 } 2867 } 2868 spin_unlock_irqrestore(&zone->lock, flags); 2869 } 2870 2871 return false; 2872 } 2873 2874 /* 2875 * Try finding a free buddy page on the fallback list and put it on the free 2876 * list of requested migratetype, possibly along with other pages from the same 2877 * block, depending on fragmentation avoidance heuristics. Returns true if 2878 * fallback was found so that __rmqueue_smallest() can grab it. 2879 * 2880 * The use of signed ints for order and current_order is a deliberate 2881 * deviation from the rest of this file, to make the for loop 2882 * condition simpler. 2883 */ 2884 static __always_inline bool 2885 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2886 unsigned int alloc_flags) 2887 { 2888 struct free_area *area; 2889 int current_order; 2890 int min_order = order; 2891 struct page *page; 2892 int fallback_mt; 2893 bool can_steal; 2894 2895 /* 2896 * Do not steal pages from freelists belonging to other pageblocks 2897 * i.e. orders < pageblock_order. If there are no local zones free, 2898 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2899 */ 2900 if (alloc_flags & ALLOC_NOFRAGMENT) 2901 min_order = pageblock_order; 2902 2903 /* 2904 * Find the largest available free page in the other list. This roughly 2905 * approximates finding the pageblock with the most free pages, which 2906 * would be too costly to do exactly. 2907 */ 2908 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2909 --current_order) { 2910 area = &(zone->free_area[current_order]); 2911 fallback_mt = find_suitable_fallback(area, current_order, 2912 start_migratetype, false, &can_steal); 2913 if (fallback_mt == -1) 2914 continue; 2915 2916 /* 2917 * We cannot steal all free pages from the pageblock and the 2918 * requested migratetype is movable. In that case it's better to 2919 * steal and split the smallest available page instead of the 2920 * largest available page, because even if the next movable 2921 * allocation falls back into a different pageblock than this 2922 * one, it won't cause permanent fragmentation. 2923 */ 2924 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2925 && current_order > order) 2926 goto find_smallest; 2927 2928 goto do_steal; 2929 } 2930 2931 return false; 2932 2933 find_smallest: 2934 for (current_order = order; current_order < MAX_ORDER; 2935 current_order++) { 2936 area = &(zone->free_area[current_order]); 2937 fallback_mt = find_suitable_fallback(area, current_order, 2938 start_migratetype, false, &can_steal); 2939 if (fallback_mt != -1) 2940 break; 2941 } 2942 2943 /* 2944 * This should not happen - we already found a suitable fallback 2945 * when looking for the largest page. 2946 */ 2947 VM_BUG_ON(current_order == MAX_ORDER); 2948 2949 do_steal: 2950 page = get_page_from_free_area(area, fallback_mt); 2951 2952 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2953 can_steal); 2954 2955 trace_mm_page_alloc_extfrag(page, order, current_order, 2956 start_migratetype, fallback_mt); 2957 2958 return true; 2959 2960 } 2961 2962 /* 2963 * Do the hard work of removing an element from the buddy allocator. 2964 * Call me with the zone->lock already held. 2965 */ 2966 static __always_inline struct page * 2967 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2968 unsigned int alloc_flags) 2969 { 2970 struct page *page; 2971 2972 if (IS_ENABLED(CONFIG_CMA)) { 2973 /* 2974 * Balance movable allocations between regular and CMA areas by 2975 * allocating from CMA when over half of the zone's free memory 2976 * is in the CMA area. 2977 */ 2978 if (alloc_flags & ALLOC_CMA && 2979 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2980 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2981 page = __rmqueue_cma_fallback(zone, order); 2982 if (page) 2983 goto out; 2984 } 2985 } 2986 retry: 2987 page = __rmqueue_smallest(zone, order, migratetype); 2988 if (unlikely(!page)) { 2989 if (alloc_flags & ALLOC_CMA) 2990 page = __rmqueue_cma_fallback(zone, order); 2991 2992 if (!page && __rmqueue_fallback(zone, order, migratetype, 2993 alloc_flags)) 2994 goto retry; 2995 } 2996 out: 2997 if (page) 2998 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2999 return page; 3000 } 3001 3002 /* 3003 * Obtain a specified number of elements from the buddy allocator, all under 3004 * a single hold of the lock, for efficiency. Add them to the supplied list. 3005 * Returns the number of new pages which were placed at *list. 3006 */ 3007 static int rmqueue_bulk(struct zone *zone, unsigned int order, 3008 unsigned long count, struct list_head *list, 3009 int migratetype, unsigned int alloc_flags) 3010 { 3011 int i, allocated = 0; 3012 3013 /* 3014 * local_lock_irq held so equivalent to spin_lock_irqsave for 3015 * both PREEMPT_RT and non-PREEMPT_RT configurations. 3016 */ 3017 spin_lock(&zone->lock); 3018 for (i = 0; i < count; ++i) { 3019 struct page *page = __rmqueue(zone, order, migratetype, 3020 alloc_flags); 3021 if (unlikely(page == NULL)) 3022 break; 3023 3024 if (unlikely(check_pcp_refill(page))) 3025 continue; 3026 3027 /* 3028 * Split buddy pages returned by expand() are received here in 3029 * physical page order. The page is added to the tail of 3030 * caller's list. From the callers perspective, the linked list 3031 * is ordered by page number under some conditions. This is 3032 * useful for IO devices that can forward direction from the 3033 * head, thus also in the physical page order. This is useful 3034 * for IO devices that can merge IO requests if the physical 3035 * pages are ordered properly. 3036 */ 3037 list_add_tail(&page->lru, list); 3038 allocated++; 3039 if (is_migrate_cma(get_pcppage_migratetype(page))) 3040 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 3041 -(1 << order)); 3042 } 3043 3044 /* 3045 * i pages were removed from the buddy list even if some leak due 3046 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 3047 * on i. Do not confuse with 'allocated' which is the number of 3048 * pages added to the pcp list. 3049 */ 3050 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 3051 spin_unlock(&zone->lock); 3052 return allocated; 3053 } 3054 3055 #ifdef CONFIG_NUMA 3056 /* 3057 * Called from the vmstat counter updater to drain pagesets of this 3058 * currently executing processor on remote nodes after they have 3059 * expired. 3060 * 3061 * Note that this function must be called with the thread pinned to 3062 * a single processor. 3063 */ 3064 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3065 { 3066 unsigned long flags; 3067 int to_drain, batch; 3068 3069 local_lock_irqsave(&pagesets.lock, flags); 3070 batch = READ_ONCE(pcp->batch); 3071 to_drain = min(pcp->count, batch); 3072 if (to_drain > 0) 3073 free_pcppages_bulk(zone, to_drain, pcp); 3074 local_unlock_irqrestore(&pagesets.lock, flags); 3075 } 3076 #endif 3077 3078 /* 3079 * Drain pcplists of the indicated processor and zone. 3080 * 3081 * The processor must either be the current processor and the 3082 * thread pinned to the current processor or a processor that 3083 * is not online. 3084 */ 3085 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3086 { 3087 unsigned long flags; 3088 struct per_cpu_pages *pcp; 3089 3090 local_lock_irqsave(&pagesets.lock, flags); 3091 3092 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3093 if (pcp->count) 3094 free_pcppages_bulk(zone, pcp->count, pcp); 3095 3096 local_unlock_irqrestore(&pagesets.lock, flags); 3097 } 3098 3099 /* 3100 * Drain pcplists of all zones on the indicated processor. 3101 * 3102 * The processor must either be the current processor and the 3103 * thread pinned to the current processor or a processor that 3104 * is not online. 3105 */ 3106 static void drain_pages(unsigned int cpu) 3107 { 3108 struct zone *zone; 3109 3110 for_each_populated_zone(zone) { 3111 drain_pages_zone(cpu, zone); 3112 } 3113 } 3114 3115 /* 3116 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3117 * 3118 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 3119 * the single zone's pages. 3120 */ 3121 void drain_local_pages(struct zone *zone) 3122 { 3123 int cpu = smp_processor_id(); 3124 3125 if (zone) 3126 drain_pages_zone(cpu, zone); 3127 else 3128 drain_pages(cpu); 3129 } 3130 3131 static void drain_local_pages_wq(struct work_struct *work) 3132 { 3133 struct pcpu_drain *drain; 3134 3135 drain = container_of(work, struct pcpu_drain, work); 3136 3137 /* 3138 * drain_all_pages doesn't use proper cpu hotplug protection so 3139 * we can race with cpu offline when the WQ can move this from 3140 * a cpu pinned worker to an unbound one. We can operate on a different 3141 * cpu which is alright but we also have to make sure to not move to 3142 * a different one. 3143 */ 3144 migrate_disable(); 3145 drain_local_pages(drain->zone); 3146 migrate_enable(); 3147 } 3148 3149 /* 3150 * The implementation of drain_all_pages(), exposing an extra parameter to 3151 * drain on all cpus. 3152 * 3153 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3154 * not empty. The check for non-emptiness can however race with a free to 3155 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3156 * that need the guarantee that every CPU has drained can disable the 3157 * optimizing racy check. 3158 */ 3159 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3160 { 3161 int cpu; 3162 3163 /* 3164 * Allocate in the BSS so we won't require allocation in 3165 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3166 */ 3167 static cpumask_t cpus_with_pcps; 3168 3169 /* 3170 * Make sure nobody triggers this path before mm_percpu_wq is fully 3171 * initialized. 3172 */ 3173 if (WARN_ON_ONCE(!mm_percpu_wq)) 3174 return; 3175 3176 /* 3177 * Do not drain if one is already in progress unless it's specific to 3178 * a zone. Such callers are primarily CMA and memory hotplug and need 3179 * the drain to be complete when the call returns. 3180 */ 3181 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3182 if (!zone) 3183 return; 3184 mutex_lock(&pcpu_drain_mutex); 3185 } 3186 3187 /* 3188 * We don't care about racing with CPU hotplug event 3189 * as offline notification will cause the notified 3190 * cpu to drain that CPU pcps and on_each_cpu_mask 3191 * disables preemption as part of its processing 3192 */ 3193 for_each_online_cpu(cpu) { 3194 struct per_cpu_pages *pcp; 3195 struct zone *z; 3196 bool has_pcps = false; 3197 3198 if (force_all_cpus) { 3199 /* 3200 * The pcp.count check is racy, some callers need a 3201 * guarantee that no cpu is missed. 3202 */ 3203 has_pcps = true; 3204 } else if (zone) { 3205 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3206 if (pcp->count) 3207 has_pcps = true; 3208 } else { 3209 for_each_populated_zone(z) { 3210 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 3211 if (pcp->count) { 3212 has_pcps = true; 3213 break; 3214 } 3215 } 3216 } 3217 3218 if (has_pcps) 3219 cpumask_set_cpu(cpu, &cpus_with_pcps); 3220 else 3221 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3222 } 3223 3224 for_each_cpu(cpu, &cpus_with_pcps) { 3225 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3226 3227 drain->zone = zone; 3228 INIT_WORK(&drain->work, drain_local_pages_wq); 3229 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3230 } 3231 for_each_cpu(cpu, &cpus_with_pcps) 3232 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3233 3234 mutex_unlock(&pcpu_drain_mutex); 3235 } 3236 3237 /* 3238 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3239 * 3240 * When zone parameter is non-NULL, spill just the single zone's pages. 3241 * 3242 * Note that this can be extremely slow as the draining happens in a workqueue. 3243 */ 3244 void drain_all_pages(struct zone *zone) 3245 { 3246 __drain_all_pages(zone, false); 3247 } 3248 3249 #ifdef CONFIG_HIBERNATION 3250 3251 /* 3252 * Touch the watchdog for every WD_PAGE_COUNT pages. 3253 */ 3254 #define WD_PAGE_COUNT (128*1024) 3255 3256 void mark_free_pages(struct zone *zone) 3257 { 3258 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3259 unsigned long flags; 3260 unsigned int order, t; 3261 struct page *page; 3262 3263 if (zone_is_empty(zone)) 3264 return; 3265 3266 spin_lock_irqsave(&zone->lock, flags); 3267 3268 max_zone_pfn = zone_end_pfn(zone); 3269 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3270 if (pfn_valid(pfn)) { 3271 page = pfn_to_page(pfn); 3272 3273 if (!--page_count) { 3274 touch_nmi_watchdog(); 3275 page_count = WD_PAGE_COUNT; 3276 } 3277 3278 if (page_zone(page) != zone) 3279 continue; 3280 3281 if (!swsusp_page_is_forbidden(page)) 3282 swsusp_unset_page_free(page); 3283 } 3284 3285 for_each_migratetype_order(order, t) { 3286 list_for_each_entry(page, 3287 &zone->free_area[order].free_list[t], lru) { 3288 unsigned long i; 3289 3290 pfn = page_to_pfn(page); 3291 for (i = 0; i < (1UL << order); i++) { 3292 if (!--page_count) { 3293 touch_nmi_watchdog(); 3294 page_count = WD_PAGE_COUNT; 3295 } 3296 swsusp_set_page_free(pfn_to_page(pfn + i)); 3297 } 3298 } 3299 } 3300 spin_unlock_irqrestore(&zone->lock, flags); 3301 } 3302 #endif /* CONFIG_PM */ 3303 3304 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 3305 unsigned int order) 3306 { 3307 int migratetype; 3308 3309 if (!free_pcp_prepare(page, order)) 3310 return false; 3311 3312 migratetype = get_pfnblock_migratetype(page, pfn); 3313 set_pcppage_migratetype(page, migratetype); 3314 return true; 3315 } 3316 3317 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch) 3318 { 3319 int min_nr_free, max_nr_free; 3320 3321 /* Check for PCP disabled or boot pageset */ 3322 if (unlikely(high < batch)) 3323 return 1; 3324 3325 /* Leave at least pcp->batch pages on the list */ 3326 min_nr_free = batch; 3327 max_nr_free = high - batch; 3328 3329 /* 3330 * Double the number of pages freed each time there is subsequent 3331 * freeing of pages without any allocation. 3332 */ 3333 batch <<= pcp->free_factor; 3334 if (batch < max_nr_free) 3335 pcp->free_factor++; 3336 batch = clamp(batch, min_nr_free, max_nr_free); 3337 3338 return batch; 3339 } 3340 3341 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone) 3342 { 3343 int high = READ_ONCE(pcp->high); 3344 3345 if (unlikely(!high)) 3346 return 0; 3347 3348 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 3349 return high; 3350 3351 /* 3352 * If reclaim is active, limit the number of pages that can be 3353 * stored on pcp lists 3354 */ 3355 return min(READ_ONCE(pcp->batch) << 2, high); 3356 } 3357 3358 static void free_unref_page_commit(struct page *page, unsigned long pfn, 3359 int migratetype, unsigned int order) 3360 { 3361 struct zone *zone = page_zone(page); 3362 struct per_cpu_pages *pcp; 3363 int high; 3364 int pindex; 3365 3366 __count_vm_event(PGFREE); 3367 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3368 pindex = order_to_pindex(migratetype, order); 3369 list_add(&page->lru, &pcp->lists[pindex]); 3370 pcp->count += 1 << order; 3371 high = nr_pcp_high(pcp, zone); 3372 if (pcp->count >= high) { 3373 int batch = READ_ONCE(pcp->batch); 3374 3375 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp); 3376 } 3377 } 3378 3379 /* 3380 * Free a pcp page 3381 */ 3382 void free_unref_page(struct page *page, unsigned int order) 3383 { 3384 unsigned long flags; 3385 unsigned long pfn = page_to_pfn(page); 3386 int migratetype; 3387 3388 if (!free_unref_page_prepare(page, pfn, order)) 3389 return; 3390 3391 /* 3392 * We only track unmovable, reclaimable and movable on pcp lists. 3393 * Place ISOLATE pages on the isolated list because they are being 3394 * offlined but treat HIGHATOMIC as movable pages so we can get those 3395 * areas back if necessary. Otherwise, we may have to free 3396 * excessively into the page allocator 3397 */ 3398 migratetype = get_pcppage_migratetype(page); 3399 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3400 if (unlikely(is_migrate_isolate(migratetype))) { 3401 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 3402 return; 3403 } 3404 migratetype = MIGRATE_MOVABLE; 3405 } 3406 3407 local_lock_irqsave(&pagesets.lock, flags); 3408 free_unref_page_commit(page, pfn, migratetype, order); 3409 local_unlock_irqrestore(&pagesets.lock, flags); 3410 } 3411 3412 /* 3413 * Free a list of 0-order pages 3414 */ 3415 void free_unref_page_list(struct list_head *list) 3416 { 3417 struct page *page, *next; 3418 unsigned long flags, pfn; 3419 int batch_count = 0; 3420 int migratetype; 3421 3422 /* Prepare pages for freeing */ 3423 list_for_each_entry_safe(page, next, list, lru) { 3424 pfn = page_to_pfn(page); 3425 if (!free_unref_page_prepare(page, pfn, 0)) { 3426 list_del(&page->lru); 3427 continue; 3428 } 3429 3430 /* 3431 * Free isolated pages directly to the allocator, see 3432 * comment in free_unref_page. 3433 */ 3434 migratetype = get_pcppage_migratetype(page); 3435 if (unlikely(is_migrate_isolate(migratetype))) { 3436 list_del(&page->lru); 3437 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 3438 continue; 3439 } 3440 3441 set_page_private(page, pfn); 3442 } 3443 3444 local_lock_irqsave(&pagesets.lock, flags); 3445 list_for_each_entry_safe(page, next, list, lru) { 3446 pfn = page_private(page); 3447 set_page_private(page, 0); 3448 3449 /* 3450 * Non-isolated types over MIGRATE_PCPTYPES get added 3451 * to the MIGRATE_MOVABLE pcp list. 3452 */ 3453 migratetype = get_pcppage_migratetype(page); 3454 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3455 migratetype = MIGRATE_MOVABLE; 3456 3457 trace_mm_page_free_batched(page); 3458 free_unref_page_commit(page, pfn, migratetype, 0); 3459 3460 /* 3461 * Guard against excessive IRQ disabled times when we get 3462 * a large list of pages to free. 3463 */ 3464 if (++batch_count == SWAP_CLUSTER_MAX) { 3465 local_unlock_irqrestore(&pagesets.lock, flags); 3466 batch_count = 0; 3467 local_lock_irqsave(&pagesets.lock, flags); 3468 } 3469 } 3470 local_unlock_irqrestore(&pagesets.lock, flags); 3471 } 3472 3473 /* 3474 * split_page takes a non-compound higher-order page, and splits it into 3475 * n (1<<order) sub-pages: page[0..n] 3476 * Each sub-page must be freed individually. 3477 * 3478 * Note: this is probably too low level an operation for use in drivers. 3479 * Please consult with lkml before using this in your driver. 3480 */ 3481 void split_page(struct page *page, unsigned int order) 3482 { 3483 int i; 3484 3485 VM_BUG_ON_PAGE(PageCompound(page), page); 3486 VM_BUG_ON_PAGE(!page_count(page), page); 3487 3488 for (i = 1; i < (1 << order); i++) 3489 set_page_refcounted(page + i); 3490 split_page_owner(page, 1 << order); 3491 split_page_memcg(page, 1 << order); 3492 } 3493 EXPORT_SYMBOL_GPL(split_page); 3494 3495 int __isolate_free_page(struct page *page, unsigned int order) 3496 { 3497 unsigned long watermark; 3498 struct zone *zone; 3499 int mt; 3500 3501 BUG_ON(!PageBuddy(page)); 3502 3503 zone = page_zone(page); 3504 mt = get_pageblock_migratetype(page); 3505 3506 if (!is_migrate_isolate(mt)) { 3507 /* 3508 * Obey watermarks as if the page was being allocated. We can 3509 * emulate a high-order watermark check with a raised order-0 3510 * watermark, because we already know our high-order page 3511 * exists. 3512 */ 3513 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3514 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3515 return 0; 3516 3517 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3518 } 3519 3520 /* Remove page from free list */ 3521 3522 del_page_from_free_list(page, zone, order); 3523 3524 /* 3525 * Set the pageblock if the isolated page is at least half of a 3526 * pageblock 3527 */ 3528 if (order >= pageblock_order - 1) { 3529 struct page *endpage = page + (1 << order) - 1; 3530 for (; page < endpage; page += pageblock_nr_pages) { 3531 int mt = get_pageblock_migratetype(page); 3532 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3533 && !is_migrate_highatomic(mt)) 3534 set_pageblock_migratetype(page, 3535 MIGRATE_MOVABLE); 3536 } 3537 } 3538 3539 3540 return 1UL << order; 3541 } 3542 3543 /** 3544 * __putback_isolated_page - Return a now-isolated page back where we got it 3545 * @page: Page that was isolated 3546 * @order: Order of the isolated page 3547 * @mt: The page's pageblock's migratetype 3548 * 3549 * This function is meant to return a page pulled from the free lists via 3550 * __isolate_free_page back to the free lists they were pulled from. 3551 */ 3552 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3553 { 3554 struct zone *zone = page_zone(page); 3555 3556 /* zone lock should be held when this function is called */ 3557 lockdep_assert_held(&zone->lock); 3558 3559 /* Return isolated page to tail of freelist. */ 3560 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3561 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3562 } 3563 3564 /* 3565 * Update NUMA hit/miss statistics 3566 * 3567 * Must be called with interrupts disabled. 3568 */ 3569 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3570 long nr_account) 3571 { 3572 #ifdef CONFIG_NUMA 3573 enum numa_stat_item local_stat = NUMA_LOCAL; 3574 3575 /* skip numa counters update if numa stats is disabled */ 3576 if (!static_branch_likely(&vm_numa_stat_key)) 3577 return; 3578 3579 if (zone_to_nid(z) != numa_node_id()) 3580 local_stat = NUMA_OTHER; 3581 3582 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3583 __count_numa_events(z, NUMA_HIT, nr_account); 3584 else { 3585 __count_numa_events(z, NUMA_MISS, nr_account); 3586 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3587 } 3588 __count_numa_events(z, local_stat, nr_account); 3589 #endif 3590 } 3591 3592 /* Remove page from the per-cpu list, caller must protect the list */ 3593 static inline 3594 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3595 int migratetype, 3596 unsigned int alloc_flags, 3597 struct per_cpu_pages *pcp, 3598 struct list_head *list) 3599 { 3600 struct page *page; 3601 3602 do { 3603 if (list_empty(list)) { 3604 int batch = READ_ONCE(pcp->batch); 3605 int alloced; 3606 3607 /* 3608 * Scale batch relative to order if batch implies 3609 * free pages can be stored on the PCP. Batch can 3610 * be 1 for small zones or for boot pagesets which 3611 * should never store free pages as the pages may 3612 * belong to arbitrary zones. 3613 */ 3614 if (batch > 1) 3615 batch = max(batch >> order, 2); 3616 alloced = rmqueue_bulk(zone, order, 3617 batch, list, 3618 migratetype, alloc_flags); 3619 3620 pcp->count += alloced << order; 3621 if (unlikely(list_empty(list))) 3622 return NULL; 3623 } 3624 3625 page = list_first_entry(list, struct page, lru); 3626 list_del(&page->lru); 3627 pcp->count -= 1 << order; 3628 } while (check_new_pcp(page)); 3629 3630 return page; 3631 } 3632 3633 /* Lock and remove page from the per-cpu list */ 3634 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3635 struct zone *zone, unsigned int order, 3636 gfp_t gfp_flags, int migratetype, 3637 unsigned int alloc_flags) 3638 { 3639 struct per_cpu_pages *pcp; 3640 struct list_head *list; 3641 struct page *page; 3642 unsigned long flags; 3643 3644 local_lock_irqsave(&pagesets.lock, flags); 3645 3646 /* 3647 * On allocation, reduce the number of pages that are batch freed. 3648 * See nr_pcp_free() where free_factor is increased for subsequent 3649 * frees. 3650 */ 3651 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3652 pcp->free_factor >>= 1; 3653 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3654 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3655 local_unlock_irqrestore(&pagesets.lock, flags); 3656 if (page) { 3657 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3658 zone_statistics(preferred_zone, zone, 1); 3659 } 3660 return page; 3661 } 3662 3663 /* 3664 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3665 */ 3666 static inline 3667 struct page *rmqueue(struct zone *preferred_zone, 3668 struct zone *zone, unsigned int order, 3669 gfp_t gfp_flags, unsigned int alloc_flags, 3670 int migratetype) 3671 { 3672 unsigned long flags; 3673 struct page *page; 3674 3675 if (likely(pcp_allowed_order(order))) { 3676 /* 3677 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3678 * we need to skip it when CMA area isn't allowed. 3679 */ 3680 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3681 migratetype != MIGRATE_MOVABLE) { 3682 page = rmqueue_pcplist(preferred_zone, zone, order, 3683 gfp_flags, migratetype, alloc_flags); 3684 goto out; 3685 } 3686 } 3687 3688 /* 3689 * We most definitely don't want callers attempting to 3690 * allocate greater than order-1 page units with __GFP_NOFAIL. 3691 */ 3692 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3693 spin_lock_irqsave(&zone->lock, flags); 3694 3695 do { 3696 page = NULL; 3697 /* 3698 * order-0 request can reach here when the pcplist is skipped 3699 * due to non-CMA allocation context. HIGHATOMIC area is 3700 * reserved for high-order atomic allocation, so order-0 3701 * request should skip it. 3702 */ 3703 if (order > 0 && alloc_flags & ALLOC_HARDER) { 3704 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3705 if (page) 3706 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3707 } 3708 if (!page) 3709 page = __rmqueue(zone, order, migratetype, alloc_flags); 3710 } while (page && check_new_pages(page, order)); 3711 if (!page) 3712 goto failed; 3713 3714 __mod_zone_freepage_state(zone, -(1 << order), 3715 get_pcppage_migratetype(page)); 3716 spin_unlock_irqrestore(&zone->lock, flags); 3717 3718 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3719 zone_statistics(preferred_zone, zone, 1); 3720 3721 out: 3722 /* Separate test+clear to avoid unnecessary atomics */ 3723 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3724 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3725 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3726 } 3727 3728 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3729 return page; 3730 3731 failed: 3732 spin_unlock_irqrestore(&zone->lock, flags); 3733 return NULL; 3734 } 3735 3736 #ifdef CONFIG_FAIL_PAGE_ALLOC 3737 3738 static struct { 3739 struct fault_attr attr; 3740 3741 bool ignore_gfp_highmem; 3742 bool ignore_gfp_reclaim; 3743 u32 min_order; 3744 } fail_page_alloc = { 3745 .attr = FAULT_ATTR_INITIALIZER, 3746 .ignore_gfp_reclaim = true, 3747 .ignore_gfp_highmem = true, 3748 .min_order = 1, 3749 }; 3750 3751 static int __init setup_fail_page_alloc(char *str) 3752 { 3753 return setup_fault_attr(&fail_page_alloc.attr, str); 3754 } 3755 __setup("fail_page_alloc=", setup_fail_page_alloc); 3756 3757 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3758 { 3759 if (order < fail_page_alloc.min_order) 3760 return false; 3761 if (gfp_mask & __GFP_NOFAIL) 3762 return false; 3763 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3764 return false; 3765 if (fail_page_alloc.ignore_gfp_reclaim && 3766 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3767 return false; 3768 3769 return should_fail(&fail_page_alloc.attr, 1 << order); 3770 } 3771 3772 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3773 3774 static int __init fail_page_alloc_debugfs(void) 3775 { 3776 umode_t mode = S_IFREG | 0600; 3777 struct dentry *dir; 3778 3779 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3780 &fail_page_alloc.attr); 3781 3782 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3783 &fail_page_alloc.ignore_gfp_reclaim); 3784 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3785 &fail_page_alloc.ignore_gfp_highmem); 3786 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3787 3788 return 0; 3789 } 3790 3791 late_initcall(fail_page_alloc_debugfs); 3792 3793 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3794 3795 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3796 3797 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3798 { 3799 return false; 3800 } 3801 3802 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3803 3804 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3805 { 3806 return __should_fail_alloc_page(gfp_mask, order); 3807 } 3808 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3809 3810 static inline long __zone_watermark_unusable_free(struct zone *z, 3811 unsigned int order, unsigned int alloc_flags) 3812 { 3813 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3814 long unusable_free = (1 << order) - 1; 3815 3816 /* 3817 * If the caller does not have rights to ALLOC_HARDER then subtract 3818 * the high-atomic reserves. This will over-estimate the size of the 3819 * atomic reserve but it avoids a search. 3820 */ 3821 if (likely(!alloc_harder)) 3822 unusable_free += z->nr_reserved_highatomic; 3823 3824 #ifdef CONFIG_CMA 3825 /* If allocation can't use CMA areas don't use free CMA pages */ 3826 if (!(alloc_flags & ALLOC_CMA)) 3827 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3828 #endif 3829 3830 return unusable_free; 3831 } 3832 3833 /* 3834 * Return true if free base pages are above 'mark'. For high-order checks it 3835 * will return true of the order-0 watermark is reached and there is at least 3836 * one free page of a suitable size. Checking now avoids taking the zone lock 3837 * to check in the allocation paths if no pages are free. 3838 */ 3839 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3840 int highest_zoneidx, unsigned int alloc_flags, 3841 long free_pages) 3842 { 3843 long min = mark; 3844 int o; 3845 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3846 3847 /* free_pages may go negative - that's OK */ 3848 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3849 3850 if (alloc_flags & ALLOC_HIGH) 3851 min -= min / 2; 3852 3853 if (unlikely(alloc_harder)) { 3854 /* 3855 * OOM victims can try even harder than normal ALLOC_HARDER 3856 * users on the grounds that it's definitely going to be in 3857 * the exit path shortly and free memory. Any allocation it 3858 * makes during the free path will be small and short-lived. 3859 */ 3860 if (alloc_flags & ALLOC_OOM) 3861 min -= min / 2; 3862 else 3863 min -= min / 4; 3864 } 3865 3866 /* 3867 * Check watermarks for an order-0 allocation request. If these 3868 * are not met, then a high-order request also cannot go ahead 3869 * even if a suitable page happened to be free. 3870 */ 3871 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3872 return false; 3873 3874 /* If this is an order-0 request then the watermark is fine */ 3875 if (!order) 3876 return true; 3877 3878 /* For a high-order request, check at least one suitable page is free */ 3879 for (o = order; o < MAX_ORDER; o++) { 3880 struct free_area *area = &z->free_area[o]; 3881 int mt; 3882 3883 if (!area->nr_free) 3884 continue; 3885 3886 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3887 if (!free_area_empty(area, mt)) 3888 return true; 3889 } 3890 3891 #ifdef CONFIG_CMA 3892 if ((alloc_flags & ALLOC_CMA) && 3893 !free_area_empty(area, MIGRATE_CMA)) { 3894 return true; 3895 } 3896 #endif 3897 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3898 return true; 3899 } 3900 return false; 3901 } 3902 3903 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3904 int highest_zoneidx, unsigned int alloc_flags) 3905 { 3906 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3907 zone_page_state(z, NR_FREE_PAGES)); 3908 } 3909 3910 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3911 unsigned long mark, int highest_zoneidx, 3912 unsigned int alloc_flags, gfp_t gfp_mask) 3913 { 3914 long free_pages; 3915 3916 free_pages = zone_page_state(z, NR_FREE_PAGES); 3917 3918 /* 3919 * Fast check for order-0 only. If this fails then the reserves 3920 * need to be calculated. 3921 */ 3922 if (!order) { 3923 long fast_free; 3924 3925 fast_free = free_pages; 3926 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); 3927 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) 3928 return true; 3929 } 3930 3931 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3932 free_pages)) 3933 return true; 3934 /* 3935 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3936 * when checking the min watermark. The min watermark is the 3937 * point where boosting is ignored so that kswapd is woken up 3938 * when below the low watermark. 3939 */ 3940 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3941 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3942 mark = z->_watermark[WMARK_MIN]; 3943 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3944 alloc_flags, free_pages); 3945 } 3946 3947 return false; 3948 } 3949 3950 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3951 unsigned long mark, int highest_zoneidx) 3952 { 3953 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3954 3955 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3956 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3957 3958 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3959 free_pages); 3960 } 3961 3962 #ifdef CONFIG_NUMA 3963 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3964 3965 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3966 { 3967 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3968 node_reclaim_distance; 3969 } 3970 #else /* CONFIG_NUMA */ 3971 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3972 { 3973 return true; 3974 } 3975 #endif /* CONFIG_NUMA */ 3976 3977 /* 3978 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3979 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3980 * premature use of a lower zone may cause lowmem pressure problems that 3981 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3982 * probably too small. It only makes sense to spread allocations to avoid 3983 * fragmentation between the Normal and DMA32 zones. 3984 */ 3985 static inline unsigned int 3986 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3987 { 3988 unsigned int alloc_flags; 3989 3990 /* 3991 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3992 * to save a branch. 3993 */ 3994 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3995 3996 #ifdef CONFIG_ZONE_DMA32 3997 if (!zone) 3998 return alloc_flags; 3999 4000 if (zone_idx(zone) != ZONE_NORMAL) 4001 return alloc_flags; 4002 4003 /* 4004 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 4005 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 4006 * on UMA that if Normal is populated then so is DMA32. 4007 */ 4008 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 4009 if (nr_online_nodes > 1 && !populated_zone(--zone)) 4010 return alloc_flags; 4011 4012 alloc_flags |= ALLOC_NOFRAGMENT; 4013 #endif /* CONFIG_ZONE_DMA32 */ 4014 return alloc_flags; 4015 } 4016 4017 /* Must be called after current_gfp_context() which can change gfp_mask */ 4018 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 4019 unsigned int alloc_flags) 4020 { 4021 #ifdef CONFIG_CMA 4022 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4023 alloc_flags |= ALLOC_CMA; 4024 #endif 4025 return alloc_flags; 4026 } 4027 4028 /* 4029 * get_page_from_freelist goes through the zonelist trying to allocate 4030 * a page. 4031 */ 4032 static struct page * 4033 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 4034 const struct alloc_context *ac) 4035 { 4036 struct zoneref *z; 4037 struct zone *zone; 4038 struct pglist_data *last_pgdat_dirty_limit = NULL; 4039 bool no_fallback; 4040 4041 retry: 4042 /* 4043 * Scan zonelist, looking for a zone with enough free. 4044 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 4045 */ 4046 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 4047 z = ac->preferred_zoneref; 4048 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 4049 ac->nodemask) { 4050 struct page *page; 4051 unsigned long mark; 4052 4053 if (cpusets_enabled() && 4054 (alloc_flags & ALLOC_CPUSET) && 4055 !__cpuset_zone_allowed(zone, gfp_mask)) 4056 continue; 4057 /* 4058 * When allocating a page cache page for writing, we 4059 * want to get it from a node that is within its dirty 4060 * limit, such that no single node holds more than its 4061 * proportional share of globally allowed dirty pages. 4062 * The dirty limits take into account the node's 4063 * lowmem reserves and high watermark so that kswapd 4064 * should be able to balance it without having to 4065 * write pages from its LRU list. 4066 * 4067 * XXX: For now, allow allocations to potentially 4068 * exceed the per-node dirty limit in the slowpath 4069 * (spread_dirty_pages unset) before going into reclaim, 4070 * which is important when on a NUMA setup the allowed 4071 * nodes are together not big enough to reach the 4072 * global limit. The proper fix for these situations 4073 * will require awareness of nodes in the 4074 * dirty-throttling and the flusher threads. 4075 */ 4076 if (ac->spread_dirty_pages) { 4077 if (last_pgdat_dirty_limit == zone->zone_pgdat) 4078 continue; 4079 4080 if (!node_dirty_ok(zone->zone_pgdat)) { 4081 last_pgdat_dirty_limit = zone->zone_pgdat; 4082 continue; 4083 } 4084 } 4085 4086 if (no_fallback && nr_online_nodes > 1 && 4087 zone != ac->preferred_zoneref->zone) { 4088 int local_nid; 4089 4090 /* 4091 * If moving to a remote node, retry but allow 4092 * fragmenting fallbacks. Locality is more important 4093 * than fragmentation avoidance. 4094 */ 4095 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 4096 if (zone_to_nid(zone) != local_nid) { 4097 alloc_flags &= ~ALLOC_NOFRAGMENT; 4098 goto retry; 4099 } 4100 } 4101 4102 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 4103 if (!zone_watermark_fast(zone, order, mark, 4104 ac->highest_zoneidx, alloc_flags, 4105 gfp_mask)) { 4106 int ret; 4107 4108 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4109 /* 4110 * Watermark failed for this zone, but see if we can 4111 * grow this zone if it contains deferred pages. 4112 */ 4113 if (static_branch_unlikely(&deferred_pages)) { 4114 if (_deferred_grow_zone(zone, order)) 4115 goto try_this_zone; 4116 } 4117 #endif 4118 /* Checked here to keep the fast path fast */ 4119 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 4120 if (alloc_flags & ALLOC_NO_WATERMARKS) 4121 goto try_this_zone; 4122 4123 if (!node_reclaim_enabled() || 4124 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 4125 continue; 4126 4127 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 4128 switch (ret) { 4129 case NODE_RECLAIM_NOSCAN: 4130 /* did not scan */ 4131 continue; 4132 case NODE_RECLAIM_FULL: 4133 /* scanned but unreclaimable */ 4134 continue; 4135 default: 4136 /* did we reclaim enough */ 4137 if (zone_watermark_ok(zone, order, mark, 4138 ac->highest_zoneidx, alloc_flags)) 4139 goto try_this_zone; 4140 4141 continue; 4142 } 4143 } 4144 4145 try_this_zone: 4146 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 4147 gfp_mask, alloc_flags, ac->migratetype); 4148 if (page) { 4149 prep_new_page(page, order, gfp_mask, alloc_flags); 4150 4151 /* 4152 * If this is a high-order atomic allocation then check 4153 * if the pageblock should be reserved for the future 4154 */ 4155 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 4156 reserve_highatomic_pageblock(page, zone, order); 4157 4158 return page; 4159 } else { 4160 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4161 /* Try again if zone has deferred pages */ 4162 if (static_branch_unlikely(&deferred_pages)) { 4163 if (_deferred_grow_zone(zone, order)) 4164 goto try_this_zone; 4165 } 4166 #endif 4167 } 4168 } 4169 4170 /* 4171 * It's possible on a UMA machine to get through all zones that are 4172 * fragmented. If avoiding fragmentation, reset and try again. 4173 */ 4174 if (no_fallback) { 4175 alloc_flags &= ~ALLOC_NOFRAGMENT; 4176 goto retry; 4177 } 4178 4179 return NULL; 4180 } 4181 4182 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4183 { 4184 unsigned int filter = SHOW_MEM_FILTER_NODES; 4185 4186 /* 4187 * This documents exceptions given to allocations in certain 4188 * contexts that are allowed to allocate outside current's set 4189 * of allowed nodes. 4190 */ 4191 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4192 if (tsk_is_oom_victim(current) || 4193 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4194 filter &= ~SHOW_MEM_FILTER_NODES; 4195 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4196 filter &= ~SHOW_MEM_FILTER_NODES; 4197 4198 show_mem(filter, nodemask); 4199 } 4200 4201 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4202 { 4203 struct va_format vaf; 4204 va_list args; 4205 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4206 4207 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 4208 return; 4209 4210 va_start(args, fmt); 4211 vaf.fmt = fmt; 4212 vaf.va = &args; 4213 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4214 current->comm, &vaf, gfp_mask, &gfp_mask, 4215 nodemask_pr_args(nodemask)); 4216 va_end(args); 4217 4218 cpuset_print_current_mems_allowed(); 4219 pr_cont("\n"); 4220 dump_stack(); 4221 warn_alloc_show_mem(gfp_mask, nodemask); 4222 } 4223 4224 static inline struct page * 4225 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4226 unsigned int alloc_flags, 4227 const struct alloc_context *ac) 4228 { 4229 struct page *page; 4230 4231 page = get_page_from_freelist(gfp_mask, order, 4232 alloc_flags|ALLOC_CPUSET, ac); 4233 /* 4234 * fallback to ignore cpuset restriction if our nodes 4235 * are depleted 4236 */ 4237 if (!page) 4238 page = get_page_from_freelist(gfp_mask, order, 4239 alloc_flags, ac); 4240 4241 return page; 4242 } 4243 4244 static inline struct page * 4245 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4246 const struct alloc_context *ac, unsigned long *did_some_progress) 4247 { 4248 struct oom_control oc = { 4249 .zonelist = ac->zonelist, 4250 .nodemask = ac->nodemask, 4251 .memcg = NULL, 4252 .gfp_mask = gfp_mask, 4253 .order = order, 4254 }; 4255 struct page *page; 4256 4257 *did_some_progress = 0; 4258 4259 /* 4260 * Acquire the oom lock. If that fails, somebody else is 4261 * making progress for us. 4262 */ 4263 if (!mutex_trylock(&oom_lock)) { 4264 *did_some_progress = 1; 4265 schedule_timeout_uninterruptible(1); 4266 return NULL; 4267 } 4268 4269 /* 4270 * Go through the zonelist yet one more time, keep very high watermark 4271 * here, this is only to catch a parallel oom killing, we must fail if 4272 * we're still under heavy pressure. But make sure that this reclaim 4273 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4274 * allocation which will never fail due to oom_lock already held. 4275 */ 4276 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4277 ~__GFP_DIRECT_RECLAIM, order, 4278 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4279 if (page) 4280 goto out; 4281 4282 /* Coredumps can quickly deplete all memory reserves */ 4283 if (current->flags & PF_DUMPCORE) 4284 goto out; 4285 /* The OOM killer will not help higher order allocs */ 4286 if (order > PAGE_ALLOC_COSTLY_ORDER) 4287 goto out; 4288 /* 4289 * We have already exhausted all our reclaim opportunities without any 4290 * success so it is time to admit defeat. We will skip the OOM killer 4291 * because it is very likely that the caller has a more reasonable 4292 * fallback than shooting a random task. 4293 * 4294 * The OOM killer may not free memory on a specific node. 4295 */ 4296 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4297 goto out; 4298 /* The OOM killer does not needlessly kill tasks for lowmem */ 4299 if (ac->highest_zoneidx < ZONE_NORMAL) 4300 goto out; 4301 if (pm_suspended_storage()) 4302 goto out; 4303 /* 4304 * XXX: GFP_NOFS allocations should rather fail than rely on 4305 * other request to make a forward progress. 4306 * We are in an unfortunate situation where out_of_memory cannot 4307 * do much for this context but let's try it to at least get 4308 * access to memory reserved if the current task is killed (see 4309 * out_of_memory). Once filesystems are ready to handle allocation 4310 * failures more gracefully we should just bail out here. 4311 */ 4312 4313 /* Exhausted what can be done so it's blame time */ 4314 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 4315 *did_some_progress = 1; 4316 4317 /* 4318 * Help non-failing allocations by giving them access to memory 4319 * reserves 4320 */ 4321 if (gfp_mask & __GFP_NOFAIL) 4322 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4323 ALLOC_NO_WATERMARKS, ac); 4324 } 4325 out: 4326 mutex_unlock(&oom_lock); 4327 return page; 4328 } 4329 4330 /* 4331 * Maximum number of compaction retries with a progress before OOM 4332 * killer is consider as the only way to move forward. 4333 */ 4334 #define MAX_COMPACT_RETRIES 16 4335 4336 #ifdef CONFIG_COMPACTION 4337 /* Try memory compaction for high-order allocations before reclaim */ 4338 static struct page * 4339 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4340 unsigned int alloc_flags, const struct alloc_context *ac, 4341 enum compact_priority prio, enum compact_result *compact_result) 4342 { 4343 struct page *page = NULL; 4344 unsigned long pflags; 4345 unsigned int noreclaim_flag; 4346 4347 if (!order) 4348 return NULL; 4349 4350 psi_memstall_enter(&pflags); 4351 noreclaim_flag = memalloc_noreclaim_save(); 4352 4353 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4354 prio, &page); 4355 4356 memalloc_noreclaim_restore(noreclaim_flag); 4357 psi_memstall_leave(&pflags); 4358 4359 if (*compact_result == COMPACT_SKIPPED) 4360 return NULL; 4361 /* 4362 * At least in one zone compaction wasn't deferred or skipped, so let's 4363 * count a compaction stall 4364 */ 4365 count_vm_event(COMPACTSTALL); 4366 4367 /* Prep a captured page if available */ 4368 if (page) 4369 prep_new_page(page, order, gfp_mask, alloc_flags); 4370 4371 /* Try get a page from the freelist if available */ 4372 if (!page) 4373 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4374 4375 if (page) { 4376 struct zone *zone = page_zone(page); 4377 4378 zone->compact_blockskip_flush = false; 4379 compaction_defer_reset(zone, order, true); 4380 count_vm_event(COMPACTSUCCESS); 4381 return page; 4382 } 4383 4384 /* 4385 * It's bad if compaction run occurs and fails. The most likely reason 4386 * is that pages exist, but not enough to satisfy watermarks. 4387 */ 4388 count_vm_event(COMPACTFAIL); 4389 4390 cond_resched(); 4391 4392 return NULL; 4393 } 4394 4395 static inline bool 4396 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4397 enum compact_result compact_result, 4398 enum compact_priority *compact_priority, 4399 int *compaction_retries) 4400 { 4401 int max_retries = MAX_COMPACT_RETRIES; 4402 int min_priority; 4403 bool ret = false; 4404 int retries = *compaction_retries; 4405 enum compact_priority priority = *compact_priority; 4406 4407 if (!order) 4408 return false; 4409 4410 if (fatal_signal_pending(current)) 4411 return false; 4412 4413 if (compaction_made_progress(compact_result)) 4414 (*compaction_retries)++; 4415 4416 /* 4417 * compaction considers all the zone as desperately out of memory 4418 * so it doesn't really make much sense to retry except when the 4419 * failure could be caused by insufficient priority 4420 */ 4421 if (compaction_failed(compact_result)) 4422 goto check_priority; 4423 4424 /* 4425 * compaction was skipped because there are not enough order-0 pages 4426 * to work with, so we retry only if it looks like reclaim can help. 4427 */ 4428 if (compaction_needs_reclaim(compact_result)) { 4429 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4430 goto out; 4431 } 4432 4433 /* 4434 * make sure the compaction wasn't deferred or didn't bail out early 4435 * due to locks contention before we declare that we should give up. 4436 * But the next retry should use a higher priority if allowed, so 4437 * we don't just keep bailing out endlessly. 4438 */ 4439 if (compaction_withdrawn(compact_result)) { 4440 goto check_priority; 4441 } 4442 4443 /* 4444 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4445 * costly ones because they are de facto nofail and invoke OOM 4446 * killer to move on while costly can fail and users are ready 4447 * to cope with that. 1/4 retries is rather arbitrary but we 4448 * would need much more detailed feedback from compaction to 4449 * make a better decision. 4450 */ 4451 if (order > PAGE_ALLOC_COSTLY_ORDER) 4452 max_retries /= 4; 4453 if (*compaction_retries <= max_retries) { 4454 ret = true; 4455 goto out; 4456 } 4457 4458 /* 4459 * Make sure there are attempts at the highest priority if we exhausted 4460 * all retries or failed at the lower priorities. 4461 */ 4462 check_priority: 4463 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4464 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4465 4466 if (*compact_priority > min_priority) { 4467 (*compact_priority)--; 4468 *compaction_retries = 0; 4469 ret = true; 4470 } 4471 out: 4472 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4473 return ret; 4474 } 4475 #else 4476 static inline struct page * 4477 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4478 unsigned int alloc_flags, const struct alloc_context *ac, 4479 enum compact_priority prio, enum compact_result *compact_result) 4480 { 4481 *compact_result = COMPACT_SKIPPED; 4482 return NULL; 4483 } 4484 4485 static inline bool 4486 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4487 enum compact_result compact_result, 4488 enum compact_priority *compact_priority, 4489 int *compaction_retries) 4490 { 4491 struct zone *zone; 4492 struct zoneref *z; 4493 4494 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4495 return false; 4496 4497 /* 4498 * There are setups with compaction disabled which would prefer to loop 4499 * inside the allocator rather than hit the oom killer prematurely. 4500 * Let's give them a good hope and keep retrying while the order-0 4501 * watermarks are OK. 4502 */ 4503 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4504 ac->highest_zoneidx, ac->nodemask) { 4505 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4506 ac->highest_zoneidx, alloc_flags)) 4507 return true; 4508 } 4509 return false; 4510 } 4511 #endif /* CONFIG_COMPACTION */ 4512 4513 #ifdef CONFIG_LOCKDEP 4514 static struct lockdep_map __fs_reclaim_map = 4515 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4516 4517 static bool __need_reclaim(gfp_t gfp_mask) 4518 { 4519 /* no reclaim without waiting on it */ 4520 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4521 return false; 4522 4523 /* this guy won't enter reclaim */ 4524 if (current->flags & PF_MEMALLOC) 4525 return false; 4526 4527 if (gfp_mask & __GFP_NOLOCKDEP) 4528 return false; 4529 4530 return true; 4531 } 4532 4533 void __fs_reclaim_acquire(unsigned long ip) 4534 { 4535 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4536 } 4537 4538 void __fs_reclaim_release(unsigned long ip) 4539 { 4540 lock_release(&__fs_reclaim_map, ip); 4541 } 4542 4543 void fs_reclaim_acquire(gfp_t gfp_mask) 4544 { 4545 gfp_mask = current_gfp_context(gfp_mask); 4546 4547 if (__need_reclaim(gfp_mask)) { 4548 if (gfp_mask & __GFP_FS) 4549 __fs_reclaim_acquire(_RET_IP_); 4550 4551 #ifdef CONFIG_MMU_NOTIFIER 4552 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4553 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4554 #endif 4555 4556 } 4557 } 4558 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4559 4560 void fs_reclaim_release(gfp_t gfp_mask) 4561 { 4562 gfp_mask = current_gfp_context(gfp_mask); 4563 4564 if (__need_reclaim(gfp_mask)) { 4565 if (gfp_mask & __GFP_FS) 4566 __fs_reclaim_release(_RET_IP_); 4567 } 4568 } 4569 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4570 #endif 4571 4572 /* Perform direct synchronous page reclaim */ 4573 static unsigned long 4574 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4575 const struct alloc_context *ac) 4576 { 4577 unsigned int noreclaim_flag; 4578 unsigned long pflags, progress; 4579 4580 cond_resched(); 4581 4582 /* We now go into synchronous reclaim */ 4583 cpuset_memory_pressure_bump(); 4584 psi_memstall_enter(&pflags); 4585 fs_reclaim_acquire(gfp_mask); 4586 noreclaim_flag = memalloc_noreclaim_save(); 4587 4588 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4589 ac->nodemask); 4590 4591 memalloc_noreclaim_restore(noreclaim_flag); 4592 fs_reclaim_release(gfp_mask); 4593 psi_memstall_leave(&pflags); 4594 4595 cond_resched(); 4596 4597 return progress; 4598 } 4599 4600 /* The really slow allocator path where we enter direct reclaim */ 4601 static inline struct page * 4602 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4603 unsigned int alloc_flags, const struct alloc_context *ac, 4604 unsigned long *did_some_progress) 4605 { 4606 struct page *page = NULL; 4607 bool drained = false; 4608 4609 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4610 if (unlikely(!(*did_some_progress))) 4611 return NULL; 4612 4613 retry: 4614 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4615 4616 /* 4617 * If an allocation failed after direct reclaim, it could be because 4618 * pages are pinned on the per-cpu lists or in high alloc reserves. 4619 * Shrink them and try again 4620 */ 4621 if (!page && !drained) { 4622 unreserve_highatomic_pageblock(ac, false); 4623 drain_all_pages(NULL); 4624 drained = true; 4625 goto retry; 4626 } 4627 4628 return page; 4629 } 4630 4631 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4632 const struct alloc_context *ac) 4633 { 4634 struct zoneref *z; 4635 struct zone *zone; 4636 pg_data_t *last_pgdat = NULL; 4637 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4638 4639 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4640 ac->nodemask) { 4641 if (last_pgdat != zone->zone_pgdat) 4642 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4643 last_pgdat = zone->zone_pgdat; 4644 } 4645 } 4646 4647 static inline unsigned int 4648 gfp_to_alloc_flags(gfp_t gfp_mask) 4649 { 4650 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4651 4652 /* 4653 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4654 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4655 * to save two branches. 4656 */ 4657 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4658 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4659 4660 /* 4661 * The caller may dip into page reserves a bit more if the caller 4662 * cannot run direct reclaim, or if the caller has realtime scheduling 4663 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4664 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4665 */ 4666 alloc_flags |= (__force int) 4667 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4668 4669 if (gfp_mask & __GFP_ATOMIC) { 4670 /* 4671 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4672 * if it can't schedule. 4673 */ 4674 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4675 alloc_flags |= ALLOC_HARDER; 4676 /* 4677 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4678 * comment for __cpuset_node_allowed(). 4679 */ 4680 alloc_flags &= ~ALLOC_CPUSET; 4681 } else if (unlikely(rt_task(current)) && in_task()) 4682 alloc_flags |= ALLOC_HARDER; 4683 4684 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4685 4686 return alloc_flags; 4687 } 4688 4689 static bool oom_reserves_allowed(struct task_struct *tsk) 4690 { 4691 if (!tsk_is_oom_victim(tsk)) 4692 return false; 4693 4694 /* 4695 * !MMU doesn't have oom reaper so give access to memory reserves 4696 * only to the thread with TIF_MEMDIE set 4697 */ 4698 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4699 return false; 4700 4701 return true; 4702 } 4703 4704 /* 4705 * Distinguish requests which really need access to full memory 4706 * reserves from oom victims which can live with a portion of it 4707 */ 4708 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4709 { 4710 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4711 return 0; 4712 if (gfp_mask & __GFP_MEMALLOC) 4713 return ALLOC_NO_WATERMARKS; 4714 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4715 return ALLOC_NO_WATERMARKS; 4716 if (!in_interrupt()) { 4717 if (current->flags & PF_MEMALLOC) 4718 return ALLOC_NO_WATERMARKS; 4719 else if (oom_reserves_allowed(current)) 4720 return ALLOC_OOM; 4721 } 4722 4723 return 0; 4724 } 4725 4726 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4727 { 4728 return !!__gfp_pfmemalloc_flags(gfp_mask); 4729 } 4730 4731 /* 4732 * Checks whether it makes sense to retry the reclaim to make a forward progress 4733 * for the given allocation request. 4734 * 4735 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4736 * without success, or when we couldn't even meet the watermark if we 4737 * reclaimed all remaining pages on the LRU lists. 4738 * 4739 * Returns true if a retry is viable or false to enter the oom path. 4740 */ 4741 static inline bool 4742 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4743 struct alloc_context *ac, int alloc_flags, 4744 bool did_some_progress, int *no_progress_loops) 4745 { 4746 struct zone *zone; 4747 struct zoneref *z; 4748 bool ret = false; 4749 4750 /* 4751 * Costly allocations might have made a progress but this doesn't mean 4752 * their order will become available due to high fragmentation so 4753 * always increment the no progress counter for them 4754 */ 4755 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4756 *no_progress_loops = 0; 4757 else 4758 (*no_progress_loops)++; 4759 4760 /* 4761 * Make sure we converge to OOM if we cannot make any progress 4762 * several times in the row. 4763 */ 4764 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4765 /* Before OOM, exhaust highatomic_reserve */ 4766 return unreserve_highatomic_pageblock(ac, true); 4767 } 4768 4769 /* 4770 * Keep reclaiming pages while there is a chance this will lead 4771 * somewhere. If none of the target zones can satisfy our allocation 4772 * request even if all reclaimable pages are considered then we are 4773 * screwed and have to go OOM. 4774 */ 4775 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4776 ac->highest_zoneidx, ac->nodemask) { 4777 unsigned long available; 4778 unsigned long reclaimable; 4779 unsigned long min_wmark = min_wmark_pages(zone); 4780 bool wmark; 4781 4782 available = reclaimable = zone_reclaimable_pages(zone); 4783 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4784 4785 /* 4786 * Would the allocation succeed if we reclaimed all 4787 * reclaimable pages? 4788 */ 4789 wmark = __zone_watermark_ok(zone, order, min_wmark, 4790 ac->highest_zoneidx, alloc_flags, available); 4791 trace_reclaim_retry_zone(z, order, reclaimable, 4792 available, min_wmark, *no_progress_loops, wmark); 4793 if (wmark) { 4794 ret = true; 4795 break; 4796 } 4797 } 4798 4799 /* 4800 * Memory allocation/reclaim might be called from a WQ context and the 4801 * current implementation of the WQ concurrency control doesn't 4802 * recognize that a particular WQ is congested if the worker thread is 4803 * looping without ever sleeping. Therefore we have to do a short sleep 4804 * here rather than calling cond_resched(). 4805 */ 4806 if (current->flags & PF_WQ_WORKER) 4807 schedule_timeout_uninterruptible(1); 4808 else 4809 cond_resched(); 4810 return ret; 4811 } 4812 4813 static inline bool 4814 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4815 { 4816 /* 4817 * It's possible that cpuset's mems_allowed and the nodemask from 4818 * mempolicy don't intersect. This should be normally dealt with by 4819 * policy_nodemask(), but it's possible to race with cpuset update in 4820 * such a way the check therein was true, and then it became false 4821 * before we got our cpuset_mems_cookie here. 4822 * This assumes that for all allocations, ac->nodemask can come only 4823 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4824 * when it does not intersect with the cpuset restrictions) or the 4825 * caller can deal with a violated nodemask. 4826 */ 4827 if (cpusets_enabled() && ac->nodemask && 4828 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4829 ac->nodemask = NULL; 4830 return true; 4831 } 4832 4833 /* 4834 * When updating a task's mems_allowed or mempolicy nodemask, it is 4835 * possible to race with parallel threads in such a way that our 4836 * allocation can fail while the mask is being updated. If we are about 4837 * to fail, check if the cpuset changed during allocation and if so, 4838 * retry. 4839 */ 4840 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4841 return true; 4842 4843 return false; 4844 } 4845 4846 static inline struct page * 4847 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4848 struct alloc_context *ac) 4849 { 4850 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4851 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4852 struct page *page = NULL; 4853 unsigned int alloc_flags; 4854 unsigned long did_some_progress; 4855 enum compact_priority compact_priority; 4856 enum compact_result compact_result; 4857 int compaction_retries; 4858 int no_progress_loops; 4859 unsigned int cpuset_mems_cookie; 4860 int reserve_flags; 4861 4862 /* 4863 * We also sanity check to catch abuse of atomic reserves being used by 4864 * callers that are not in atomic context. 4865 */ 4866 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4867 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4868 gfp_mask &= ~__GFP_ATOMIC; 4869 4870 retry_cpuset: 4871 compaction_retries = 0; 4872 no_progress_loops = 0; 4873 compact_priority = DEF_COMPACT_PRIORITY; 4874 cpuset_mems_cookie = read_mems_allowed_begin(); 4875 4876 /* 4877 * The fast path uses conservative alloc_flags to succeed only until 4878 * kswapd needs to be woken up, and to avoid the cost of setting up 4879 * alloc_flags precisely. So we do that now. 4880 */ 4881 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4882 4883 /* 4884 * We need to recalculate the starting point for the zonelist iterator 4885 * because we might have used different nodemask in the fast path, or 4886 * there was a cpuset modification and we are retrying - otherwise we 4887 * could end up iterating over non-eligible zones endlessly. 4888 */ 4889 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4890 ac->highest_zoneidx, ac->nodemask); 4891 if (!ac->preferred_zoneref->zone) 4892 goto nopage; 4893 4894 /* 4895 * Check for insane configurations where the cpuset doesn't contain 4896 * any suitable zone to satisfy the request - e.g. non-movable 4897 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4898 */ 4899 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4900 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4901 ac->highest_zoneidx, 4902 &cpuset_current_mems_allowed); 4903 if (!z->zone) 4904 goto nopage; 4905 } 4906 4907 if (alloc_flags & ALLOC_KSWAPD) 4908 wake_all_kswapds(order, gfp_mask, ac); 4909 4910 /* 4911 * The adjusted alloc_flags might result in immediate success, so try 4912 * that first 4913 */ 4914 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4915 if (page) 4916 goto got_pg; 4917 4918 /* 4919 * For costly allocations, try direct compaction first, as it's likely 4920 * that we have enough base pages and don't need to reclaim. For non- 4921 * movable high-order allocations, do that as well, as compaction will 4922 * try prevent permanent fragmentation by migrating from blocks of the 4923 * same migratetype. 4924 * Don't try this for allocations that are allowed to ignore 4925 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4926 */ 4927 if (can_direct_reclaim && 4928 (costly_order || 4929 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4930 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4931 page = __alloc_pages_direct_compact(gfp_mask, order, 4932 alloc_flags, ac, 4933 INIT_COMPACT_PRIORITY, 4934 &compact_result); 4935 if (page) 4936 goto got_pg; 4937 4938 /* 4939 * Checks for costly allocations with __GFP_NORETRY, which 4940 * includes some THP page fault allocations 4941 */ 4942 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4943 /* 4944 * If allocating entire pageblock(s) and compaction 4945 * failed because all zones are below low watermarks 4946 * or is prohibited because it recently failed at this 4947 * order, fail immediately unless the allocator has 4948 * requested compaction and reclaim retry. 4949 * 4950 * Reclaim is 4951 * - potentially very expensive because zones are far 4952 * below their low watermarks or this is part of very 4953 * bursty high order allocations, 4954 * - not guaranteed to help because isolate_freepages() 4955 * may not iterate over freed pages as part of its 4956 * linear scan, and 4957 * - unlikely to make entire pageblocks free on its 4958 * own. 4959 */ 4960 if (compact_result == COMPACT_SKIPPED || 4961 compact_result == COMPACT_DEFERRED) 4962 goto nopage; 4963 4964 /* 4965 * Looks like reclaim/compaction is worth trying, but 4966 * sync compaction could be very expensive, so keep 4967 * using async compaction. 4968 */ 4969 compact_priority = INIT_COMPACT_PRIORITY; 4970 } 4971 } 4972 4973 retry: 4974 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4975 if (alloc_flags & ALLOC_KSWAPD) 4976 wake_all_kswapds(order, gfp_mask, ac); 4977 4978 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4979 if (reserve_flags) 4980 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags); 4981 4982 /* 4983 * Reset the nodemask and zonelist iterators if memory policies can be 4984 * ignored. These allocations are high priority and system rather than 4985 * user oriented. 4986 */ 4987 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4988 ac->nodemask = NULL; 4989 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4990 ac->highest_zoneidx, ac->nodemask); 4991 } 4992 4993 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4994 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4995 if (page) 4996 goto got_pg; 4997 4998 /* Caller is not willing to reclaim, we can't balance anything */ 4999 if (!can_direct_reclaim) 5000 goto nopage; 5001 5002 /* Avoid recursion of direct reclaim */ 5003 if (current->flags & PF_MEMALLOC) 5004 goto nopage; 5005 5006 /* Try direct reclaim and then allocating */ 5007 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 5008 &did_some_progress); 5009 if (page) 5010 goto got_pg; 5011 5012 /* Try direct compaction and then allocating */ 5013 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 5014 compact_priority, &compact_result); 5015 if (page) 5016 goto got_pg; 5017 5018 /* Do not loop if specifically requested */ 5019 if (gfp_mask & __GFP_NORETRY) 5020 goto nopage; 5021 5022 /* 5023 * Do not retry costly high order allocations unless they are 5024 * __GFP_RETRY_MAYFAIL 5025 */ 5026 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 5027 goto nopage; 5028 5029 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 5030 did_some_progress > 0, &no_progress_loops)) 5031 goto retry; 5032 5033 /* 5034 * It doesn't make any sense to retry for the compaction if the order-0 5035 * reclaim is not able to make any progress because the current 5036 * implementation of the compaction depends on the sufficient amount 5037 * of free memory (see __compaction_suitable) 5038 */ 5039 if (did_some_progress > 0 && 5040 should_compact_retry(ac, order, alloc_flags, 5041 compact_result, &compact_priority, 5042 &compaction_retries)) 5043 goto retry; 5044 5045 5046 /* Deal with possible cpuset update races before we start OOM killing */ 5047 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5048 goto retry_cpuset; 5049 5050 /* Reclaim has failed us, start killing things */ 5051 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 5052 if (page) 5053 goto got_pg; 5054 5055 /* Avoid allocations with no watermarks from looping endlessly */ 5056 if (tsk_is_oom_victim(current) && 5057 (alloc_flags & ALLOC_OOM || 5058 (gfp_mask & __GFP_NOMEMALLOC))) 5059 goto nopage; 5060 5061 /* Retry as long as the OOM killer is making progress */ 5062 if (did_some_progress) { 5063 no_progress_loops = 0; 5064 goto retry; 5065 } 5066 5067 nopage: 5068 /* Deal with possible cpuset update races before we fail */ 5069 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5070 goto retry_cpuset; 5071 5072 /* 5073 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 5074 * we always retry 5075 */ 5076 if (gfp_mask & __GFP_NOFAIL) { 5077 /* 5078 * All existing users of the __GFP_NOFAIL are blockable, so warn 5079 * of any new users that actually require GFP_NOWAIT 5080 */ 5081 if (WARN_ON_ONCE(!can_direct_reclaim)) 5082 goto fail; 5083 5084 /* 5085 * PF_MEMALLOC request from this context is rather bizarre 5086 * because we cannot reclaim anything and only can loop waiting 5087 * for somebody to do a work for us 5088 */ 5089 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 5090 5091 /* 5092 * non failing costly orders are a hard requirement which we 5093 * are not prepared for much so let's warn about these users 5094 * so that we can identify them and convert them to something 5095 * else. 5096 */ 5097 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 5098 5099 /* 5100 * Help non-failing allocations by giving them access to memory 5101 * reserves but do not use ALLOC_NO_WATERMARKS because this 5102 * could deplete whole memory reserves which would just make 5103 * the situation worse 5104 */ 5105 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 5106 if (page) 5107 goto got_pg; 5108 5109 cond_resched(); 5110 goto retry; 5111 } 5112 fail: 5113 warn_alloc(gfp_mask, ac->nodemask, 5114 "page allocation failure: order:%u", order); 5115 got_pg: 5116 return page; 5117 } 5118 5119 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 5120 int preferred_nid, nodemask_t *nodemask, 5121 struct alloc_context *ac, gfp_t *alloc_gfp, 5122 unsigned int *alloc_flags) 5123 { 5124 ac->highest_zoneidx = gfp_zone(gfp_mask); 5125 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 5126 ac->nodemask = nodemask; 5127 ac->migratetype = gfp_migratetype(gfp_mask); 5128 5129 if (cpusets_enabled()) { 5130 *alloc_gfp |= __GFP_HARDWALL; 5131 /* 5132 * When we are in the interrupt context, it is irrelevant 5133 * to the current task context. It means that any node ok. 5134 */ 5135 if (in_task() && !ac->nodemask) 5136 ac->nodemask = &cpuset_current_mems_allowed; 5137 else 5138 *alloc_flags |= ALLOC_CPUSET; 5139 } 5140 5141 fs_reclaim_acquire(gfp_mask); 5142 fs_reclaim_release(gfp_mask); 5143 5144 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 5145 5146 if (should_fail_alloc_page(gfp_mask, order)) 5147 return false; 5148 5149 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5150 5151 /* Dirty zone balancing only done in the fast path */ 5152 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5153 5154 /* 5155 * The preferred zone is used for statistics but crucially it is 5156 * also used as the starting point for the zonelist iterator. It 5157 * may get reset for allocations that ignore memory policies. 5158 */ 5159 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5160 ac->highest_zoneidx, ac->nodemask); 5161 5162 return true; 5163 } 5164 5165 /* 5166 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5167 * @gfp: GFP flags for the allocation 5168 * @preferred_nid: The preferred NUMA node ID to allocate from 5169 * @nodemask: Set of nodes to allocate from, may be NULL 5170 * @nr_pages: The number of pages desired on the list or array 5171 * @page_list: Optional list to store the allocated pages 5172 * @page_array: Optional array to store the pages 5173 * 5174 * This is a batched version of the page allocator that attempts to 5175 * allocate nr_pages quickly. Pages are added to page_list if page_list 5176 * is not NULL, otherwise it is assumed that the page_array is valid. 5177 * 5178 * For lists, nr_pages is the number of pages that should be allocated. 5179 * 5180 * For arrays, only NULL elements are populated with pages and nr_pages 5181 * is the maximum number of pages that will be stored in the array. 5182 * 5183 * Returns the number of pages on the list or array. 5184 */ 5185 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5186 nodemask_t *nodemask, int nr_pages, 5187 struct list_head *page_list, 5188 struct page **page_array) 5189 { 5190 struct page *page; 5191 unsigned long flags; 5192 struct zone *zone; 5193 struct zoneref *z; 5194 struct per_cpu_pages *pcp; 5195 struct list_head *pcp_list; 5196 struct alloc_context ac; 5197 gfp_t alloc_gfp; 5198 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5199 int nr_populated = 0, nr_account = 0; 5200 5201 /* 5202 * Skip populated array elements to determine if any pages need 5203 * to be allocated before disabling IRQs. 5204 */ 5205 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5206 nr_populated++; 5207 5208 /* No pages requested? */ 5209 if (unlikely(nr_pages <= 0)) 5210 goto out; 5211 5212 /* Already populated array? */ 5213 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5214 goto out; 5215 5216 /* Bulk allocator does not support memcg accounting. */ 5217 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT)) 5218 goto failed; 5219 5220 /* Use the single page allocator for one page. */ 5221 if (nr_pages - nr_populated == 1) 5222 goto failed; 5223 5224 #ifdef CONFIG_PAGE_OWNER 5225 /* 5226 * PAGE_OWNER may recurse into the allocator to allocate space to 5227 * save the stack with pagesets.lock held. Releasing/reacquiring 5228 * removes much of the performance benefit of bulk allocation so 5229 * force the caller to allocate one page at a time as it'll have 5230 * similar performance to added complexity to the bulk allocator. 5231 */ 5232 if (static_branch_unlikely(&page_owner_inited)) 5233 goto failed; 5234 #endif 5235 5236 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5237 gfp &= gfp_allowed_mask; 5238 alloc_gfp = gfp; 5239 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5240 goto out; 5241 gfp = alloc_gfp; 5242 5243 /* Find an allowed local zone that meets the low watermark. */ 5244 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5245 unsigned long mark; 5246 5247 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5248 !__cpuset_zone_allowed(zone, gfp)) { 5249 continue; 5250 } 5251 5252 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5253 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5254 goto failed; 5255 } 5256 5257 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5258 if (zone_watermark_fast(zone, 0, mark, 5259 zonelist_zone_idx(ac.preferred_zoneref), 5260 alloc_flags, gfp)) { 5261 break; 5262 } 5263 } 5264 5265 /* 5266 * If there are no allowed local zones that meets the watermarks then 5267 * try to allocate a single page and reclaim if necessary. 5268 */ 5269 if (unlikely(!zone)) 5270 goto failed; 5271 5272 /* Attempt the batch allocation */ 5273 local_lock_irqsave(&pagesets.lock, flags); 5274 pcp = this_cpu_ptr(zone->per_cpu_pageset); 5275 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5276 5277 while (nr_populated < nr_pages) { 5278 5279 /* Skip existing pages */ 5280 if (page_array && page_array[nr_populated]) { 5281 nr_populated++; 5282 continue; 5283 } 5284 5285 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5286 pcp, pcp_list); 5287 if (unlikely(!page)) { 5288 /* Try and get at least one page */ 5289 if (!nr_populated) 5290 goto failed_irq; 5291 break; 5292 } 5293 nr_account++; 5294 5295 prep_new_page(page, 0, gfp, 0); 5296 if (page_list) 5297 list_add(&page->lru, page_list); 5298 else 5299 page_array[nr_populated] = page; 5300 nr_populated++; 5301 } 5302 5303 local_unlock_irqrestore(&pagesets.lock, flags); 5304 5305 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5306 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 5307 5308 out: 5309 return nr_populated; 5310 5311 failed_irq: 5312 local_unlock_irqrestore(&pagesets.lock, flags); 5313 5314 failed: 5315 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5316 if (page) { 5317 if (page_list) 5318 list_add(&page->lru, page_list); 5319 else 5320 page_array[nr_populated] = page; 5321 nr_populated++; 5322 } 5323 5324 goto out; 5325 } 5326 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5327 5328 /* 5329 * This is the 'heart' of the zoned buddy allocator. 5330 */ 5331 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5332 nodemask_t *nodemask) 5333 { 5334 struct page *page; 5335 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5336 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5337 struct alloc_context ac = { }; 5338 5339 /* 5340 * There are several places where we assume that the order value is sane 5341 * so bail out early if the request is out of bound. 5342 */ 5343 if (unlikely(order >= MAX_ORDER)) { 5344 WARN_ON_ONCE(!(gfp & __GFP_NOWARN)); 5345 return NULL; 5346 } 5347 5348 gfp &= gfp_allowed_mask; 5349 /* 5350 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5351 * resp. GFP_NOIO which has to be inherited for all allocation requests 5352 * from a particular context which has been marked by 5353 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5354 * movable zones are not used during allocation. 5355 */ 5356 gfp = current_gfp_context(gfp); 5357 alloc_gfp = gfp; 5358 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5359 &alloc_gfp, &alloc_flags)) 5360 return NULL; 5361 5362 /* 5363 * Forbid the first pass from falling back to types that fragment 5364 * memory until all local zones are considered. 5365 */ 5366 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5367 5368 /* First allocation attempt */ 5369 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5370 if (likely(page)) 5371 goto out; 5372 5373 alloc_gfp = gfp; 5374 ac.spread_dirty_pages = false; 5375 5376 /* 5377 * Restore the original nodemask if it was potentially replaced with 5378 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5379 */ 5380 ac.nodemask = nodemask; 5381 5382 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5383 5384 out: 5385 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && 5386 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5387 __free_pages(page, order); 5388 page = NULL; 5389 } 5390 5391 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5392 5393 return page; 5394 } 5395 EXPORT_SYMBOL(__alloc_pages); 5396 5397 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 5398 nodemask_t *nodemask) 5399 { 5400 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 5401 preferred_nid, nodemask); 5402 5403 if (page && order > 1) 5404 prep_transhuge_page(page); 5405 return (struct folio *)page; 5406 } 5407 EXPORT_SYMBOL(__folio_alloc); 5408 5409 /* 5410 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5411 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5412 * you need to access high mem. 5413 */ 5414 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5415 { 5416 struct page *page; 5417 5418 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5419 if (!page) 5420 return 0; 5421 return (unsigned long) page_address(page); 5422 } 5423 EXPORT_SYMBOL(__get_free_pages); 5424 5425 unsigned long get_zeroed_page(gfp_t gfp_mask) 5426 { 5427 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5428 } 5429 EXPORT_SYMBOL(get_zeroed_page); 5430 5431 /** 5432 * __free_pages - Free pages allocated with alloc_pages(). 5433 * @page: The page pointer returned from alloc_pages(). 5434 * @order: The order of the allocation. 5435 * 5436 * This function can free multi-page allocations that are not compound 5437 * pages. It does not check that the @order passed in matches that of 5438 * the allocation, so it is easy to leak memory. Freeing more memory 5439 * than was allocated will probably emit a warning. 5440 * 5441 * If the last reference to this page is speculative, it will be released 5442 * by put_page() which only frees the first page of a non-compound 5443 * allocation. To prevent the remaining pages from being leaked, we free 5444 * the subsequent pages here. If you want to use the page's reference 5445 * count to decide when to free the allocation, you should allocate a 5446 * compound page, and use put_page() instead of __free_pages(). 5447 * 5448 * Context: May be called in interrupt context or while holding a normal 5449 * spinlock, but not in NMI context or while holding a raw spinlock. 5450 */ 5451 void __free_pages(struct page *page, unsigned int order) 5452 { 5453 if (put_page_testzero(page)) 5454 free_the_page(page, order); 5455 else if (!PageHead(page)) 5456 while (order-- > 0) 5457 free_the_page(page + (1 << order), order); 5458 } 5459 EXPORT_SYMBOL(__free_pages); 5460 5461 void free_pages(unsigned long addr, unsigned int order) 5462 { 5463 if (addr != 0) { 5464 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5465 __free_pages(virt_to_page((void *)addr), order); 5466 } 5467 } 5468 5469 EXPORT_SYMBOL(free_pages); 5470 5471 /* 5472 * Page Fragment: 5473 * An arbitrary-length arbitrary-offset area of memory which resides 5474 * within a 0 or higher order page. Multiple fragments within that page 5475 * are individually refcounted, in the page's reference counter. 5476 * 5477 * The page_frag functions below provide a simple allocation framework for 5478 * page fragments. This is used by the network stack and network device 5479 * drivers to provide a backing region of memory for use as either an 5480 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5481 */ 5482 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5483 gfp_t gfp_mask) 5484 { 5485 struct page *page = NULL; 5486 gfp_t gfp = gfp_mask; 5487 5488 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5489 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5490 __GFP_NOMEMALLOC; 5491 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5492 PAGE_FRAG_CACHE_MAX_ORDER); 5493 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5494 #endif 5495 if (unlikely(!page)) 5496 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5497 5498 nc->va = page ? page_address(page) : NULL; 5499 5500 return page; 5501 } 5502 5503 void __page_frag_cache_drain(struct page *page, unsigned int count) 5504 { 5505 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5506 5507 if (page_ref_sub_and_test(page, count)) 5508 free_the_page(page, compound_order(page)); 5509 } 5510 EXPORT_SYMBOL(__page_frag_cache_drain); 5511 5512 void *page_frag_alloc_align(struct page_frag_cache *nc, 5513 unsigned int fragsz, gfp_t gfp_mask, 5514 unsigned int align_mask) 5515 { 5516 unsigned int size = PAGE_SIZE; 5517 struct page *page; 5518 int offset; 5519 5520 if (unlikely(!nc->va)) { 5521 refill: 5522 page = __page_frag_cache_refill(nc, gfp_mask); 5523 if (!page) 5524 return NULL; 5525 5526 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5527 /* if size can vary use size else just use PAGE_SIZE */ 5528 size = nc->size; 5529 #endif 5530 /* Even if we own the page, we do not use atomic_set(). 5531 * This would break get_page_unless_zero() users. 5532 */ 5533 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5534 5535 /* reset page count bias and offset to start of new frag */ 5536 nc->pfmemalloc = page_is_pfmemalloc(page); 5537 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5538 nc->offset = size; 5539 } 5540 5541 offset = nc->offset - fragsz; 5542 if (unlikely(offset < 0)) { 5543 page = virt_to_page(nc->va); 5544 5545 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5546 goto refill; 5547 5548 if (unlikely(nc->pfmemalloc)) { 5549 free_the_page(page, compound_order(page)); 5550 goto refill; 5551 } 5552 5553 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5554 /* if size can vary use size else just use PAGE_SIZE */ 5555 size = nc->size; 5556 #endif 5557 /* OK, page count is 0, we can safely set it */ 5558 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5559 5560 /* reset page count bias and offset to start of new frag */ 5561 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5562 offset = size - fragsz; 5563 } 5564 5565 nc->pagecnt_bias--; 5566 offset &= align_mask; 5567 nc->offset = offset; 5568 5569 return nc->va + offset; 5570 } 5571 EXPORT_SYMBOL(page_frag_alloc_align); 5572 5573 /* 5574 * Frees a page fragment allocated out of either a compound or order 0 page. 5575 */ 5576 void page_frag_free(void *addr) 5577 { 5578 struct page *page = virt_to_head_page(addr); 5579 5580 if (unlikely(put_page_testzero(page))) 5581 free_the_page(page, compound_order(page)); 5582 } 5583 EXPORT_SYMBOL(page_frag_free); 5584 5585 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5586 size_t size) 5587 { 5588 if (addr) { 5589 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5590 unsigned long used = addr + PAGE_ALIGN(size); 5591 5592 split_page(virt_to_page((void *)addr), order); 5593 while (used < alloc_end) { 5594 free_page(used); 5595 used += PAGE_SIZE; 5596 } 5597 } 5598 return (void *)addr; 5599 } 5600 5601 /** 5602 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5603 * @size: the number of bytes to allocate 5604 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5605 * 5606 * This function is similar to alloc_pages(), except that it allocates the 5607 * minimum number of pages to satisfy the request. alloc_pages() can only 5608 * allocate memory in power-of-two pages. 5609 * 5610 * This function is also limited by MAX_ORDER. 5611 * 5612 * Memory allocated by this function must be released by free_pages_exact(). 5613 * 5614 * Return: pointer to the allocated area or %NULL in case of error. 5615 */ 5616 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5617 { 5618 unsigned int order = get_order(size); 5619 unsigned long addr; 5620 5621 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5622 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5623 5624 addr = __get_free_pages(gfp_mask, order); 5625 return make_alloc_exact(addr, order, size); 5626 } 5627 EXPORT_SYMBOL(alloc_pages_exact); 5628 5629 /** 5630 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5631 * pages on a node. 5632 * @nid: the preferred node ID where memory should be allocated 5633 * @size: the number of bytes to allocate 5634 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5635 * 5636 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5637 * back. 5638 * 5639 * Return: pointer to the allocated area or %NULL in case of error. 5640 */ 5641 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5642 { 5643 unsigned int order = get_order(size); 5644 struct page *p; 5645 5646 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5647 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5648 5649 p = alloc_pages_node(nid, gfp_mask, order); 5650 if (!p) 5651 return NULL; 5652 return make_alloc_exact((unsigned long)page_address(p), order, size); 5653 } 5654 5655 /** 5656 * free_pages_exact - release memory allocated via alloc_pages_exact() 5657 * @virt: the value returned by alloc_pages_exact. 5658 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5659 * 5660 * Release the memory allocated by a previous call to alloc_pages_exact. 5661 */ 5662 void free_pages_exact(void *virt, size_t size) 5663 { 5664 unsigned long addr = (unsigned long)virt; 5665 unsigned long end = addr + PAGE_ALIGN(size); 5666 5667 while (addr < end) { 5668 free_page(addr); 5669 addr += PAGE_SIZE; 5670 } 5671 } 5672 EXPORT_SYMBOL(free_pages_exact); 5673 5674 /** 5675 * nr_free_zone_pages - count number of pages beyond high watermark 5676 * @offset: The zone index of the highest zone 5677 * 5678 * nr_free_zone_pages() counts the number of pages which are beyond the 5679 * high watermark within all zones at or below a given zone index. For each 5680 * zone, the number of pages is calculated as: 5681 * 5682 * nr_free_zone_pages = managed_pages - high_pages 5683 * 5684 * Return: number of pages beyond high watermark. 5685 */ 5686 static unsigned long nr_free_zone_pages(int offset) 5687 { 5688 struct zoneref *z; 5689 struct zone *zone; 5690 5691 /* Just pick one node, since fallback list is circular */ 5692 unsigned long sum = 0; 5693 5694 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5695 5696 for_each_zone_zonelist(zone, z, zonelist, offset) { 5697 unsigned long size = zone_managed_pages(zone); 5698 unsigned long high = high_wmark_pages(zone); 5699 if (size > high) 5700 sum += size - high; 5701 } 5702 5703 return sum; 5704 } 5705 5706 /** 5707 * nr_free_buffer_pages - count number of pages beyond high watermark 5708 * 5709 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5710 * watermark within ZONE_DMA and ZONE_NORMAL. 5711 * 5712 * Return: number of pages beyond high watermark within ZONE_DMA and 5713 * ZONE_NORMAL. 5714 */ 5715 unsigned long nr_free_buffer_pages(void) 5716 { 5717 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5718 } 5719 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5720 5721 static inline void show_node(struct zone *zone) 5722 { 5723 if (IS_ENABLED(CONFIG_NUMA)) 5724 printk("Node %d ", zone_to_nid(zone)); 5725 } 5726 5727 long si_mem_available(void) 5728 { 5729 long available; 5730 unsigned long pagecache; 5731 unsigned long wmark_low = 0; 5732 unsigned long pages[NR_LRU_LISTS]; 5733 unsigned long reclaimable; 5734 struct zone *zone; 5735 int lru; 5736 5737 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5738 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5739 5740 for_each_zone(zone) 5741 wmark_low += low_wmark_pages(zone); 5742 5743 /* 5744 * Estimate the amount of memory available for userspace allocations, 5745 * without causing swapping. 5746 */ 5747 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5748 5749 /* 5750 * Not all the page cache can be freed, otherwise the system will 5751 * start swapping. Assume at least half of the page cache, or the 5752 * low watermark worth of cache, needs to stay. 5753 */ 5754 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5755 pagecache -= min(pagecache / 2, wmark_low); 5756 available += pagecache; 5757 5758 /* 5759 * Part of the reclaimable slab and other kernel memory consists of 5760 * items that are in use, and cannot be freed. Cap this estimate at the 5761 * low watermark. 5762 */ 5763 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5764 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5765 available += reclaimable - min(reclaimable / 2, wmark_low); 5766 5767 if (available < 0) 5768 available = 0; 5769 return available; 5770 } 5771 EXPORT_SYMBOL_GPL(si_mem_available); 5772 5773 void si_meminfo(struct sysinfo *val) 5774 { 5775 val->totalram = totalram_pages(); 5776 val->sharedram = global_node_page_state(NR_SHMEM); 5777 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5778 val->bufferram = nr_blockdev_pages(); 5779 val->totalhigh = totalhigh_pages(); 5780 val->freehigh = nr_free_highpages(); 5781 val->mem_unit = PAGE_SIZE; 5782 } 5783 5784 EXPORT_SYMBOL(si_meminfo); 5785 5786 #ifdef CONFIG_NUMA 5787 void si_meminfo_node(struct sysinfo *val, int nid) 5788 { 5789 int zone_type; /* needs to be signed */ 5790 unsigned long managed_pages = 0; 5791 unsigned long managed_highpages = 0; 5792 unsigned long free_highpages = 0; 5793 pg_data_t *pgdat = NODE_DATA(nid); 5794 5795 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5796 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5797 val->totalram = managed_pages; 5798 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5799 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5800 #ifdef CONFIG_HIGHMEM 5801 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5802 struct zone *zone = &pgdat->node_zones[zone_type]; 5803 5804 if (is_highmem(zone)) { 5805 managed_highpages += zone_managed_pages(zone); 5806 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5807 } 5808 } 5809 val->totalhigh = managed_highpages; 5810 val->freehigh = free_highpages; 5811 #else 5812 val->totalhigh = managed_highpages; 5813 val->freehigh = free_highpages; 5814 #endif 5815 val->mem_unit = PAGE_SIZE; 5816 } 5817 #endif 5818 5819 /* 5820 * Determine whether the node should be displayed or not, depending on whether 5821 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5822 */ 5823 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5824 { 5825 if (!(flags & SHOW_MEM_FILTER_NODES)) 5826 return false; 5827 5828 /* 5829 * no node mask - aka implicit memory numa policy. Do not bother with 5830 * the synchronization - read_mems_allowed_begin - because we do not 5831 * have to be precise here. 5832 */ 5833 if (!nodemask) 5834 nodemask = &cpuset_current_mems_allowed; 5835 5836 return !node_isset(nid, *nodemask); 5837 } 5838 5839 #define K(x) ((x) << (PAGE_SHIFT-10)) 5840 5841 static void show_migration_types(unsigned char type) 5842 { 5843 static const char types[MIGRATE_TYPES] = { 5844 [MIGRATE_UNMOVABLE] = 'U', 5845 [MIGRATE_MOVABLE] = 'M', 5846 [MIGRATE_RECLAIMABLE] = 'E', 5847 [MIGRATE_HIGHATOMIC] = 'H', 5848 #ifdef CONFIG_CMA 5849 [MIGRATE_CMA] = 'C', 5850 #endif 5851 #ifdef CONFIG_MEMORY_ISOLATION 5852 [MIGRATE_ISOLATE] = 'I', 5853 #endif 5854 }; 5855 char tmp[MIGRATE_TYPES + 1]; 5856 char *p = tmp; 5857 int i; 5858 5859 for (i = 0; i < MIGRATE_TYPES; i++) { 5860 if (type & (1 << i)) 5861 *p++ = types[i]; 5862 } 5863 5864 *p = '\0'; 5865 printk(KERN_CONT "(%s) ", tmp); 5866 } 5867 5868 /* 5869 * Show free area list (used inside shift_scroll-lock stuff) 5870 * We also calculate the percentage fragmentation. We do this by counting the 5871 * memory on each free list with the exception of the first item on the list. 5872 * 5873 * Bits in @filter: 5874 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5875 * cpuset. 5876 */ 5877 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5878 { 5879 unsigned long free_pcp = 0; 5880 int cpu; 5881 struct zone *zone; 5882 pg_data_t *pgdat; 5883 5884 for_each_populated_zone(zone) { 5885 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5886 continue; 5887 5888 for_each_online_cpu(cpu) 5889 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5890 } 5891 5892 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5893 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5894 " unevictable:%lu dirty:%lu writeback:%lu\n" 5895 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5896 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5897 " kernel_misc_reclaimable:%lu\n" 5898 " free:%lu free_pcp:%lu free_cma:%lu\n", 5899 global_node_page_state(NR_ACTIVE_ANON), 5900 global_node_page_state(NR_INACTIVE_ANON), 5901 global_node_page_state(NR_ISOLATED_ANON), 5902 global_node_page_state(NR_ACTIVE_FILE), 5903 global_node_page_state(NR_INACTIVE_FILE), 5904 global_node_page_state(NR_ISOLATED_FILE), 5905 global_node_page_state(NR_UNEVICTABLE), 5906 global_node_page_state(NR_FILE_DIRTY), 5907 global_node_page_state(NR_WRITEBACK), 5908 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5909 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5910 global_node_page_state(NR_FILE_MAPPED), 5911 global_node_page_state(NR_SHMEM), 5912 global_node_page_state(NR_PAGETABLE), 5913 global_zone_page_state(NR_BOUNCE), 5914 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), 5915 global_zone_page_state(NR_FREE_PAGES), 5916 free_pcp, 5917 global_zone_page_state(NR_FREE_CMA_PAGES)); 5918 5919 for_each_online_pgdat(pgdat) { 5920 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5921 continue; 5922 5923 printk("Node %d" 5924 " active_anon:%lukB" 5925 " inactive_anon:%lukB" 5926 " active_file:%lukB" 5927 " inactive_file:%lukB" 5928 " unevictable:%lukB" 5929 " isolated(anon):%lukB" 5930 " isolated(file):%lukB" 5931 " mapped:%lukB" 5932 " dirty:%lukB" 5933 " writeback:%lukB" 5934 " shmem:%lukB" 5935 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5936 " shmem_thp: %lukB" 5937 " shmem_pmdmapped: %lukB" 5938 " anon_thp: %lukB" 5939 #endif 5940 " writeback_tmp:%lukB" 5941 " kernel_stack:%lukB" 5942 #ifdef CONFIG_SHADOW_CALL_STACK 5943 " shadow_call_stack:%lukB" 5944 #endif 5945 " pagetables:%lukB" 5946 " all_unreclaimable? %s" 5947 "\n", 5948 pgdat->node_id, 5949 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5950 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5951 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5952 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5953 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5954 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5955 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5956 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5957 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5958 K(node_page_state(pgdat, NR_WRITEBACK)), 5959 K(node_page_state(pgdat, NR_SHMEM)), 5960 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5961 K(node_page_state(pgdat, NR_SHMEM_THPS)), 5962 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 5963 K(node_page_state(pgdat, NR_ANON_THPS)), 5964 #endif 5965 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5966 node_page_state(pgdat, NR_KERNEL_STACK_KB), 5967 #ifdef CONFIG_SHADOW_CALL_STACK 5968 node_page_state(pgdat, NR_KERNEL_SCS_KB), 5969 #endif 5970 K(node_page_state(pgdat, NR_PAGETABLE)), 5971 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5972 "yes" : "no"); 5973 } 5974 5975 for_each_populated_zone(zone) { 5976 int i; 5977 5978 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5979 continue; 5980 5981 free_pcp = 0; 5982 for_each_online_cpu(cpu) 5983 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5984 5985 show_node(zone); 5986 printk(KERN_CONT 5987 "%s" 5988 " free:%lukB" 5989 " boost:%lukB" 5990 " min:%lukB" 5991 " low:%lukB" 5992 " high:%lukB" 5993 " reserved_highatomic:%luKB" 5994 " active_anon:%lukB" 5995 " inactive_anon:%lukB" 5996 " active_file:%lukB" 5997 " inactive_file:%lukB" 5998 " unevictable:%lukB" 5999 " writepending:%lukB" 6000 " present:%lukB" 6001 " managed:%lukB" 6002 " mlocked:%lukB" 6003 " bounce:%lukB" 6004 " free_pcp:%lukB" 6005 " local_pcp:%ukB" 6006 " free_cma:%lukB" 6007 "\n", 6008 zone->name, 6009 K(zone_page_state(zone, NR_FREE_PAGES)), 6010 K(zone->watermark_boost), 6011 K(min_wmark_pages(zone)), 6012 K(low_wmark_pages(zone)), 6013 K(high_wmark_pages(zone)), 6014 K(zone->nr_reserved_highatomic), 6015 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 6016 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 6017 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 6018 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 6019 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 6020 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 6021 K(zone->present_pages), 6022 K(zone_managed_pages(zone)), 6023 K(zone_page_state(zone, NR_MLOCK)), 6024 K(zone_page_state(zone, NR_BOUNCE)), 6025 K(free_pcp), 6026 K(this_cpu_read(zone->per_cpu_pageset->count)), 6027 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 6028 printk("lowmem_reserve[]:"); 6029 for (i = 0; i < MAX_NR_ZONES; i++) 6030 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 6031 printk(KERN_CONT "\n"); 6032 } 6033 6034 for_each_populated_zone(zone) { 6035 unsigned int order; 6036 unsigned long nr[MAX_ORDER], flags, total = 0; 6037 unsigned char types[MAX_ORDER]; 6038 6039 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6040 continue; 6041 show_node(zone); 6042 printk(KERN_CONT "%s: ", zone->name); 6043 6044 spin_lock_irqsave(&zone->lock, flags); 6045 for (order = 0; order < MAX_ORDER; order++) { 6046 struct free_area *area = &zone->free_area[order]; 6047 int type; 6048 6049 nr[order] = area->nr_free; 6050 total += nr[order] << order; 6051 6052 types[order] = 0; 6053 for (type = 0; type < MIGRATE_TYPES; type++) { 6054 if (!free_area_empty(area, type)) 6055 types[order] |= 1 << type; 6056 } 6057 } 6058 spin_unlock_irqrestore(&zone->lock, flags); 6059 for (order = 0; order < MAX_ORDER; order++) { 6060 printk(KERN_CONT "%lu*%lukB ", 6061 nr[order], K(1UL) << order); 6062 if (nr[order]) 6063 show_migration_types(types[order]); 6064 } 6065 printk(KERN_CONT "= %lukB\n", K(total)); 6066 } 6067 6068 hugetlb_show_meminfo(); 6069 6070 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 6071 6072 show_swap_cache_info(); 6073 } 6074 6075 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 6076 { 6077 zoneref->zone = zone; 6078 zoneref->zone_idx = zone_idx(zone); 6079 } 6080 6081 /* 6082 * Builds allocation fallback zone lists. 6083 * 6084 * Add all populated zones of a node to the zonelist. 6085 */ 6086 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 6087 { 6088 struct zone *zone; 6089 enum zone_type zone_type = MAX_NR_ZONES; 6090 int nr_zones = 0; 6091 6092 do { 6093 zone_type--; 6094 zone = pgdat->node_zones + zone_type; 6095 if (managed_zone(zone)) { 6096 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 6097 check_highest_zone(zone_type); 6098 } 6099 } while (zone_type); 6100 6101 return nr_zones; 6102 } 6103 6104 #ifdef CONFIG_NUMA 6105 6106 static int __parse_numa_zonelist_order(char *s) 6107 { 6108 /* 6109 * We used to support different zonelists modes but they turned 6110 * out to be just not useful. Let's keep the warning in place 6111 * if somebody still use the cmd line parameter so that we do 6112 * not fail it silently 6113 */ 6114 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 6115 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 6116 return -EINVAL; 6117 } 6118 return 0; 6119 } 6120 6121 char numa_zonelist_order[] = "Node"; 6122 6123 /* 6124 * sysctl handler for numa_zonelist_order 6125 */ 6126 int numa_zonelist_order_handler(struct ctl_table *table, int write, 6127 void *buffer, size_t *length, loff_t *ppos) 6128 { 6129 if (write) 6130 return __parse_numa_zonelist_order(buffer); 6131 return proc_dostring(table, write, buffer, length, ppos); 6132 } 6133 6134 6135 #define MAX_NODE_LOAD (nr_online_nodes) 6136 static int node_load[MAX_NUMNODES]; 6137 6138 /** 6139 * find_next_best_node - find the next node that should appear in a given node's fallback list 6140 * @node: node whose fallback list we're appending 6141 * @used_node_mask: nodemask_t of already used nodes 6142 * 6143 * We use a number of factors to determine which is the next node that should 6144 * appear on a given node's fallback list. The node should not have appeared 6145 * already in @node's fallback list, and it should be the next closest node 6146 * according to the distance array (which contains arbitrary distance values 6147 * from each node to each node in the system), and should also prefer nodes 6148 * with no CPUs, since presumably they'll have very little allocation pressure 6149 * on them otherwise. 6150 * 6151 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 6152 */ 6153 int find_next_best_node(int node, nodemask_t *used_node_mask) 6154 { 6155 int n, val; 6156 int min_val = INT_MAX; 6157 int best_node = NUMA_NO_NODE; 6158 6159 /* Use the local node if we haven't already */ 6160 if (!node_isset(node, *used_node_mask)) { 6161 node_set(node, *used_node_mask); 6162 return node; 6163 } 6164 6165 for_each_node_state(n, N_MEMORY) { 6166 6167 /* Don't want a node to appear more than once */ 6168 if (node_isset(n, *used_node_mask)) 6169 continue; 6170 6171 /* Use the distance array to find the distance */ 6172 val = node_distance(node, n); 6173 6174 /* Penalize nodes under us ("prefer the next node") */ 6175 val += (n < node); 6176 6177 /* Give preference to headless and unused nodes */ 6178 if (!cpumask_empty(cpumask_of_node(n))) 6179 val += PENALTY_FOR_NODE_WITH_CPUS; 6180 6181 /* Slight preference for less loaded node */ 6182 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 6183 val += node_load[n]; 6184 6185 if (val < min_val) { 6186 min_val = val; 6187 best_node = n; 6188 } 6189 } 6190 6191 if (best_node >= 0) 6192 node_set(best_node, *used_node_mask); 6193 6194 return best_node; 6195 } 6196 6197 6198 /* 6199 * Build zonelists ordered by node and zones within node. 6200 * This results in maximum locality--normal zone overflows into local 6201 * DMA zone, if any--but risks exhausting DMA zone. 6202 */ 6203 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6204 unsigned nr_nodes) 6205 { 6206 struct zoneref *zonerefs; 6207 int i; 6208 6209 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6210 6211 for (i = 0; i < nr_nodes; i++) { 6212 int nr_zones; 6213 6214 pg_data_t *node = NODE_DATA(node_order[i]); 6215 6216 nr_zones = build_zonerefs_node(node, zonerefs); 6217 zonerefs += nr_zones; 6218 } 6219 zonerefs->zone = NULL; 6220 zonerefs->zone_idx = 0; 6221 } 6222 6223 /* 6224 * Build gfp_thisnode zonelists 6225 */ 6226 static void build_thisnode_zonelists(pg_data_t *pgdat) 6227 { 6228 struct zoneref *zonerefs; 6229 int nr_zones; 6230 6231 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6232 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6233 zonerefs += nr_zones; 6234 zonerefs->zone = NULL; 6235 zonerefs->zone_idx = 0; 6236 } 6237 6238 /* 6239 * Build zonelists ordered by zone and nodes within zones. 6240 * This results in conserving DMA zone[s] until all Normal memory is 6241 * exhausted, but results in overflowing to remote node while memory 6242 * may still exist in local DMA zone. 6243 */ 6244 6245 static void build_zonelists(pg_data_t *pgdat) 6246 { 6247 static int node_order[MAX_NUMNODES]; 6248 int node, load, nr_nodes = 0; 6249 nodemask_t used_mask = NODE_MASK_NONE; 6250 int local_node, prev_node; 6251 6252 /* NUMA-aware ordering of nodes */ 6253 local_node = pgdat->node_id; 6254 load = nr_online_nodes; 6255 prev_node = local_node; 6256 6257 memset(node_order, 0, sizeof(node_order)); 6258 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6259 /* 6260 * We don't want to pressure a particular node. 6261 * So adding penalty to the first node in same 6262 * distance group to make it round-robin. 6263 */ 6264 if (node_distance(local_node, node) != 6265 node_distance(local_node, prev_node)) 6266 node_load[node] += load; 6267 6268 node_order[nr_nodes++] = node; 6269 prev_node = node; 6270 load--; 6271 } 6272 6273 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6274 build_thisnode_zonelists(pgdat); 6275 pr_info("Fallback order for Node %d: ", local_node); 6276 for (node = 0; node < nr_nodes; node++) 6277 pr_cont("%d ", node_order[node]); 6278 pr_cont("\n"); 6279 } 6280 6281 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6282 /* 6283 * Return node id of node used for "local" allocations. 6284 * I.e., first node id of first zone in arg node's generic zonelist. 6285 * Used for initializing percpu 'numa_mem', which is used primarily 6286 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6287 */ 6288 int local_memory_node(int node) 6289 { 6290 struct zoneref *z; 6291 6292 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6293 gfp_zone(GFP_KERNEL), 6294 NULL); 6295 return zone_to_nid(z->zone); 6296 } 6297 #endif 6298 6299 static void setup_min_unmapped_ratio(void); 6300 static void setup_min_slab_ratio(void); 6301 #else /* CONFIG_NUMA */ 6302 6303 static void build_zonelists(pg_data_t *pgdat) 6304 { 6305 int node, local_node; 6306 struct zoneref *zonerefs; 6307 int nr_zones; 6308 6309 local_node = pgdat->node_id; 6310 6311 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6312 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6313 zonerefs += nr_zones; 6314 6315 /* 6316 * Now we build the zonelist so that it contains the zones 6317 * of all the other nodes. 6318 * We don't want to pressure a particular node, so when 6319 * building the zones for node N, we make sure that the 6320 * zones coming right after the local ones are those from 6321 * node N+1 (modulo N) 6322 */ 6323 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6324 if (!node_online(node)) 6325 continue; 6326 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6327 zonerefs += nr_zones; 6328 } 6329 for (node = 0; node < local_node; node++) { 6330 if (!node_online(node)) 6331 continue; 6332 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6333 zonerefs += nr_zones; 6334 } 6335 6336 zonerefs->zone = NULL; 6337 zonerefs->zone_idx = 0; 6338 } 6339 6340 #endif /* CONFIG_NUMA */ 6341 6342 /* 6343 * Boot pageset table. One per cpu which is going to be used for all 6344 * zones and all nodes. The parameters will be set in such a way 6345 * that an item put on a list will immediately be handed over to 6346 * the buddy list. This is safe since pageset manipulation is done 6347 * with interrupts disabled. 6348 * 6349 * The boot_pagesets must be kept even after bootup is complete for 6350 * unused processors and/or zones. They do play a role for bootstrapping 6351 * hotplugged processors. 6352 * 6353 * zoneinfo_show() and maybe other functions do 6354 * not check if the processor is online before following the pageset pointer. 6355 * Other parts of the kernel may not check if the zone is available. 6356 */ 6357 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 6358 /* These effectively disable the pcplists in the boot pageset completely */ 6359 #define BOOT_PAGESET_HIGH 0 6360 #define BOOT_PAGESET_BATCH 1 6361 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 6362 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 6363 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6364 6365 static void __build_all_zonelists(void *data) 6366 { 6367 int nid; 6368 int __maybe_unused cpu; 6369 pg_data_t *self = data; 6370 static DEFINE_SPINLOCK(lock); 6371 6372 spin_lock(&lock); 6373 6374 #ifdef CONFIG_NUMA 6375 memset(node_load, 0, sizeof(node_load)); 6376 #endif 6377 6378 /* 6379 * This node is hotadded and no memory is yet present. So just 6380 * building zonelists is fine - no need to touch other nodes. 6381 */ 6382 if (self && !node_online(self->node_id)) { 6383 build_zonelists(self); 6384 } else { 6385 for_each_online_node(nid) { 6386 pg_data_t *pgdat = NODE_DATA(nid); 6387 6388 build_zonelists(pgdat); 6389 } 6390 6391 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6392 /* 6393 * We now know the "local memory node" for each node-- 6394 * i.e., the node of the first zone in the generic zonelist. 6395 * Set up numa_mem percpu variable for on-line cpus. During 6396 * boot, only the boot cpu should be on-line; we'll init the 6397 * secondary cpus' numa_mem as they come on-line. During 6398 * node/memory hotplug, we'll fixup all on-line cpus. 6399 */ 6400 for_each_online_cpu(cpu) 6401 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6402 #endif 6403 } 6404 6405 spin_unlock(&lock); 6406 } 6407 6408 static noinline void __init 6409 build_all_zonelists_init(void) 6410 { 6411 int cpu; 6412 6413 __build_all_zonelists(NULL); 6414 6415 /* 6416 * Initialize the boot_pagesets that are going to be used 6417 * for bootstrapping processors. The real pagesets for 6418 * each zone will be allocated later when the per cpu 6419 * allocator is available. 6420 * 6421 * boot_pagesets are used also for bootstrapping offline 6422 * cpus if the system is already booted because the pagesets 6423 * are needed to initialize allocators on a specific cpu too. 6424 * F.e. the percpu allocator needs the page allocator which 6425 * needs the percpu allocator in order to allocate its pagesets 6426 * (a chicken-egg dilemma). 6427 */ 6428 for_each_possible_cpu(cpu) 6429 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 6430 6431 mminit_verify_zonelist(); 6432 cpuset_init_current_mems_allowed(); 6433 } 6434 6435 /* 6436 * unless system_state == SYSTEM_BOOTING. 6437 * 6438 * __ref due to call of __init annotated helper build_all_zonelists_init 6439 * [protected by SYSTEM_BOOTING]. 6440 */ 6441 void __ref build_all_zonelists(pg_data_t *pgdat) 6442 { 6443 unsigned long vm_total_pages; 6444 6445 if (system_state == SYSTEM_BOOTING) { 6446 build_all_zonelists_init(); 6447 } else { 6448 __build_all_zonelists(pgdat); 6449 /* cpuset refresh routine should be here */ 6450 } 6451 /* Get the number of free pages beyond high watermark in all zones. */ 6452 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6453 /* 6454 * Disable grouping by mobility if the number of pages in the 6455 * system is too low to allow the mechanism to work. It would be 6456 * more accurate, but expensive to check per-zone. This check is 6457 * made on memory-hotadd so a system can start with mobility 6458 * disabled and enable it later 6459 */ 6460 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6461 page_group_by_mobility_disabled = 1; 6462 else 6463 page_group_by_mobility_disabled = 0; 6464 6465 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6466 nr_online_nodes, 6467 page_group_by_mobility_disabled ? "off" : "on", 6468 vm_total_pages); 6469 #ifdef CONFIG_NUMA 6470 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6471 #endif 6472 } 6473 6474 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6475 static bool __meminit 6476 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6477 { 6478 static struct memblock_region *r; 6479 6480 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6481 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6482 for_each_mem_region(r) { 6483 if (*pfn < memblock_region_memory_end_pfn(r)) 6484 break; 6485 } 6486 } 6487 if (*pfn >= memblock_region_memory_base_pfn(r) && 6488 memblock_is_mirror(r)) { 6489 *pfn = memblock_region_memory_end_pfn(r); 6490 return true; 6491 } 6492 } 6493 return false; 6494 } 6495 6496 /* 6497 * Initially all pages are reserved - free ones are freed 6498 * up by memblock_free_all() once the early boot process is 6499 * done. Non-atomic initialization, single-pass. 6500 * 6501 * All aligned pageblocks are initialized to the specified migratetype 6502 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6503 * zone stats (e.g., nr_isolate_pageblock) are touched. 6504 */ 6505 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6506 unsigned long start_pfn, unsigned long zone_end_pfn, 6507 enum meminit_context context, 6508 struct vmem_altmap *altmap, int migratetype) 6509 { 6510 unsigned long pfn, end_pfn = start_pfn + size; 6511 struct page *page; 6512 6513 if (highest_memmap_pfn < end_pfn - 1) 6514 highest_memmap_pfn = end_pfn - 1; 6515 6516 #ifdef CONFIG_ZONE_DEVICE 6517 /* 6518 * Honor reservation requested by the driver for this ZONE_DEVICE 6519 * memory. We limit the total number of pages to initialize to just 6520 * those that might contain the memory mapping. We will defer the 6521 * ZONE_DEVICE page initialization until after we have released 6522 * the hotplug lock. 6523 */ 6524 if (zone == ZONE_DEVICE) { 6525 if (!altmap) 6526 return; 6527 6528 if (start_pfn == altmap->base_pfn) 6529 start_pfn += altmap->reserve; 6530 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6531 } 6532 #endif 6533 6534 for (pfn = start_pfn; pfn < end_pfn; ) { 6535 /* 6536 * There can be holes in boot-time mem_map[]s handed to this 6537 * function. They do not exist on hotplugged memory. 6538 */ 6539 if (context == MEMINIT_EARLY) { 6540 if (overlap_memmap_init(zone, &pfn)) 6541 continue; 6542 if (defer_init(nid, pfn, zone_end_pfn)) 6543 break; 6544 } 6545 6546 page = pfn_to_page(pfn); 6547 __init_single_page(page, pfn, zone, nid); 6548 if (context == MEMINIT_HOTPLUG) 6549 __SetPageReserved(page); 6550 6551 /* 6552 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6553 * such that unmovable allocations won't be scattered all 6554 * over the place during system boot. 6555 */ 6556 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6557 set_pageblock_migratetype(page, migratetype); 6558 cond_resched(); 6559 } 6560 pfn++; 6561 } 6562 } 6563 6564 #ifdef CONFIG_ZONE_DEVICE 6565 void __ref memmap_init_zone_device(struct zone *zone, 6566 unsigned long start_pfn, 6567 unsigned long nr_pages, 6568 struct dev_pagemap *pgmap) 6569 { 6570 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6571 struct pglist_data *pgdat = zone->zone_pgdat; 6572 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6573 unsigned long zone_idx = zone_idx(zone); 6574 unsigned long start = jiffies; 6575 int nid = pgdat->node_id; 6576 6577 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6578 return; 6579 6580 /* 6581 * The call to memmap_init should have already taken care 6582 * of the pages reserved for the memmap, so we can just jump to 6583 * the end of that region and start processing the device pages. 6584 */ 6585 if (altmap) { 6586 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6587 nr_pages = end_pfn - start_pfn; 6588 } 6589 6590 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 6591 struct page *page = pfn_to_page(pfn); 6592 6593 __init_single_page(page, pfn, zone_idx, nid); 6594 6595 /* 6596 * Mark page reserved as it will need to wait for onlining 6597 * phase for it to be fully associated with a zone. 6598 * 6599 * We can use the non-atomic __set_bit operation for setting 6600 * the flag as we are still initializing the pages. 6601 */ 6602 __SetPageReserved(page); 6603 6604 /* 6605 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6606 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6607 * ever freed or placed on a driver-private list. 6608 */ 6609 page->pgmap = pgmap; 6610 page->zone_device_data = NULL; 6611 6612 /* 6613 * Mark the block movable so that blocks are reserved for 6614 * movable at startup. This will force kernel allocations 6615 * to reserve their blocks rather than leaking throughout 6616 * the address space during boot when many long-lived 6617 * kernel allocations are made. 6618 * 6619 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6620 * because this is done early in section_activate() 6621 */ 6622 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6623 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6624 cond_resched(); 6625 } 6626 } 6627 6628 pr_info("%s initialised %lu pages in %ums\n", __func__, 6629 nr_pages, jiffies_to_msecs(jiffies - start)); 6630 } 6631 6632 #endif 6633 static void __meminit zone_init_free_lists(struct zone *zone) 6634 { 6635 unsigned int order, t; 6636 for_each_migratetype_order(order, t) { 6637 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6638 zone->free_area[order].nr_free = 0; 6639 } 6640 } 6641 6642 /* 6643 * Only struct pages that correspond to ranges defined by memblock.memory 6644 * are zeroed and initialized by going through __init_single_page() during 6645 * memmap_init_zone_range(). 6646 * 6647 * But, there could be struct pages that correspond to holes in 6648 * memblock.memory. This can happen because of the following reasons: 6649 * - physical memory bank size is not necessarily the exact multiple of the 6650 * arbitrary section size 6651 * - early reserved memory may not be listed in memblock.memory 6652 * - memory layouts defined with memmap= kernel parameter may not align 6653 * nicely with memmap sections 6654 * 6655 * Explicitly initialize those struct pages so that: 6656 * - PG_Reserved is set 6657 * - zone and node links point to zone and node that span the page if the 6658 * hole is in the middle of a zone 6659 * - zone and node links point to adjacent zone/node if the hole falls on 6660 * the zone boundary; the pages in such holes will be prepended to the 6661 * zone/node above the hole except for the trailing pages in the last 6662 * section that will be appended to the zone/node below. 6663 */ 6664 static void __init init_unavailable_range(unsigned long spfn, 6665 unsigned long epfn, 6666 int zone, int node) 6667 { 6668 unsigned long pfn; 6669 u64 pgcnt = 0; 6670 6671 for (pfn = spfn; pfn < epfn; pfn++) { 6672 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6673 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6674 + pageblock_nr_pages - 1; 6675 continue; 6676 } 6677 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 6678 __SetPageReserved(pfn_to_page(pfn)); 6679 pgcnt++; 6680 } 6681 6682 if (pgcnt) 6683 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 6684 node, zone_names[zone], pgcnt); 6685 } 6686 6687 static void __init memmap_init_zone_range(struct zone *zone, 6688 unsigned long start_pfn, 6689 unsigned long end_pfn, 6690 unsigned long *hole_pfn) 6691 { 6692 unsigned long zone_start_pfn = zone->zone_start_pfn; 6693 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6694 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6695 6696 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 6697 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 6698 6699 if (start_pfn >= end_pfn) 6700 return; 6701 6702 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 6703 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6704 6705 if (*hole_pfn < start_pfn) 6706 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 6707 6708 *hole_pfn = end_pfn; 6709 } 6710 6711 static void __init memmap_init(void) 6712 { 6713 unsigned long start_pfn, end_pfn; 6714 unsigned long hole_pfn = 0; 6715 int i, j, zone_id = 0, nid; 6716 6717 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6718 struct pglist_data *node = NODE_DATA(nid); 6719 6720 for (j = 0; j < MAX_NR_ZONES; j++) { 6721 struct zone *zone = node->node_zones + j; 6722 6723 if (!populated_zone(zone)) 6724 continue; 6725 6726 memmap_init_zone_range(zone, start_pfn, end_pfn, 6727 &hole_pfn); 6728 zone_id = j; 6729 } 6730 } 6731 6732 #ifdef CONFIG_SPARSEMEM 6733 /* 6734 * Initialize the memory map for hole in the range [memory_end, 6735 * section_end]. 6736 * Append the pages in this hole to the highest zone in the last 6737 * node. 6738 * The call to init_unavailable_range() is outside the ifdef to 6739 * silence the compiler warining about zone_id set but not used; 6740 * for FLATMEM it is a nop anyway 6741 */ 6742 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 6743 if (hole_pfn < end_pfn) 6744 #endif 6745 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 6746 } 6747 6748 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 6749 phys_addr_t min_addr, int nid, bool exact_nid) 6750 { 6751 void *ptr; 6752 6753 if (exact_nid) 6754 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 6755 MEMBLOCK_ALLOC_ACCESSIBLE, 6756 nid); 6757 else 6758 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 6759 MEMBLOCK_ALLOC_ACCESSIBLE, 6760 nid); 6761 6762 if (ptr && size > 0) 6763 page_init_poison(ptr, size); 6764 6765 return ptr; 6766 } 6767 6768 static int zone_batchsize(struct zone *zone) 6769 { 6770 #ifdef CONFIG_MMU 6771 int batch; 6772 6773 /* 6774 * The number of pages to batch allocate is either ~0.1% 6775 * of the zone or 1MB, whichever is smaller. The batch 6776 * size is striking a balance between allocation latency 6777 * and zone lock contention. 6778 */ 6779 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE); 6780 batch /= 4; /* We effectively *= 4 below */ 6781 if (batch < 1) 6782 batch = 1; 6783 6784 /* 6785 * Clamp the batch to a 2^n - 1 value. Having a power 6786 * of 2 value was found to be more likely to have 6787 * suboptimal cache aliasing properties in some cases. 6788 * 6789 * For example if 2 tasks are alternately allocating 6790 * batches of pages, one task can end up with a lot 6791 * of pages of one half of the possible page colors 6792 * and the other with pages of the other colors. 6793 */ 6794 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6795 6796 return batch; 6797 6798 #else 6799 /* The deferral and batching of frees should be suppressed under NOMMU 6800 * conditions. 6801 * 6802 * The problem is that NOMMU needs to be able to allocate large chunks 6803 * of contiguous memory as there's no hardware page translation to 6804 * assemble apparent contiguous memory from discontiguous pages. 6805 * 6806 * Queueing large contiguous runs of pages for batching, however, 6807 * causes the pages to actually be freed in smaller chunks. As there 6808 * can be a significant delay between the individual batches being 6809 * recycled, this leads to the once large chunks of space being 6810 * fragmented and becoming unavailable for high-order allocations. 6811 */ 6812 return 0; 6813 #endif 6814 } 6815 6816 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 6817 { 6818 #ifdef CONFIG_MMU 6819 int high; 6820 int nr_split_cpus; 6821 unsigned long total_pages; 6822 6823 if (!percpu_pagelist_high_fraction) { 6824 /* 6825 * By default, the high value of the pcp is based on the zone 6826 * low watermark so that if they are full then background 6827 * reclaim will not be started prematurely. 6828 */ 6829 total_pages = low_wmark_pages(zone); 6830 } else { 6831 /* 6832 * If percpu_pagelist_high_fraction is configured, the high 6833 * value is based on a fraction of the managed pages in the 6834 * zone. 6835 */ 6836 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 6837 } 6838 6839 /* 6840 * Split the high value across all online CPUs local to the zone. Note 6841 * that early in boot that CPUs may not be online yet and that during 6842 * CPU hotplug that the cpumask is not yet updated when a CPU is being 6843 * onlined. For memory nodes that have no CPUs, split pcp->high across 6844 * all online CPUs to mitigate the risk that reclaim is triggered 6845 * prematurely due to pages stored on pcp lists. 6846 */ 6847 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 6848 if (!nr_split_cpus) 6849 nr_split_cpus = num_online_cpus(); 6850 high = total_pages / nr_split_cpus; 6851 6852 /* 6853 * Ensure high is at least batch*4. The multiple is based on the 6854 * historical relationship between high and batch. 6855 */ 6856 high = max(high, batch << 2); 6857 6858 return high; 6859 #else 6860 return 0; 6861 #endif 6862 } 6863 6864 /* 6865 * pcp->high and pcp->batch values are related and generally batch is lower 6866 * than high. They are also related to pcp->count such that count is lower 6867 * than high, and as soon as it reaches high, the pcplist is flushed. 6868 * 6869 * However, guaranteeing these relations at all times would require e.g. write 6870 * barriers here but also careful usage of read barriers at the read side, and 6871 * thus be prone to error and bad for performance. Thus the update only prevents 6872 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 6873 * can cope with those fields changing asynchronously, and fully trust only the 6874 * pcp->count field on the local CPU with interrupts disabled. 6875 * 6876 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6877 * outside of boot time (or some other assurance that no concurrent updaters 6878 * exist). 6879 */ 6880 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6881 unsigned long batch) 6882 { 6883 WRITE_ONCE(pcp->batch, batch); 6884 WRITE_ONCE(pcp->high, high); 6885 } 6886 6887 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 6888 { 6889 int pindex; 6890 6891 memset(pcp, 0, sizeof(*pcp)); 6892 memset(pzstats, 0, sizeof(*pzstats)); 6893 6894 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 6895 INIT_LIST_HEAD(&pcp->lists[pindex]); 6896 6897 /* 6898 * Set batch and high values safe for a boot pageset. A true percpu 6899 * pageset's initialization will update them subsequently. Here we don't 6900 * need to be as careful as pageset_update() as nobody can access the 6901 * pageset yet. 6902 */ 6903 pcp->high = BOOT_PAGESET_HIGH; 6904 pcp->batch = BOOT_PAGESET_BATCH; 6905 pcp->free_factor = 0; 6906 } 6907 6908 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 6909 unsigned long batch) 6910 { 6911 struct per_cpu_pages *pcp; 6912 int cpu; 6913 6914 for_each_possible_cpu(cpu) { 6915 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6916 pageset_update(pcp, high, batch); 6917 } 6918 } 6919 6920 /* 6921 * Calculate and set new high and batch values for all per-cpu pagesets of a 6922 * zone based on the zone's size. 6923 */ 6924 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 6925 { 6926 int new_high, new_batch; 6927 6928 new_batch = max(1, zone_batchsize(zone)); 6929 new_high = zone_highsize(zone, new_batch, cpu_online); 6930 6931 if (zone->pageset_high == new_high && 6932 zone->pageset_batch == new_batch) 6933 return; 6934 6935 zone->pageset_high = new_high; 6936 zone->pageset_batch = new_batch; 6937 6938 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 6939 } 6940 6941 void __meminit setup_zone_pageset(struct zone *zone) 6942 { 6943 int cpu; 6944 6945 /* Size may be 0 on !SMP && !NUMA */ 6946 if (sizeof(struct per_cpu_zonestat) > 0) 6947 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 6948 6949 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 6950 for_each_possible_cpu(cpu) { 6951 struct per_cpu_pages *pcp; 6952 struct per_cpu_zonestat *pzstats; 6953 6954 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6955 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6956 per_cpu_pages_init(pcp, pzstats); 6957 } 6958 6959 zone_set_pageset_high_and_batch(zone, 0); 6960 } 6961 6962 /* 6963 * Allocate per cpu pagesets and initialize them. 6964 * Before this call only boot pagesets were available. 6965 */ 6966 void __init setup_per_cpu_pageset(void) 6967 { 6968 struct pglist_data *pgdat; 6969 struct zone *zone; 6970 int __maybe_unused cpu; 6971 6972 for_each_populated_zone(zone) 6973 setup_zone_pageset(zone); 6974 6975 #ifdef CONFIG_NUMA 6976 /* 6977 * Unpopulated zones continue using the boot pagesets. 6978 * The numa stats for these pagesets need to be reset. 6979 * Otherwise, they will end up skewing the stats of 6980 * the nodes these zones are associated with. 6981 */ 6982 for_each_possible_cpu(cpu) { 6983 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 6984 memset(pzstats->vm_numa_event, 0, 6985 sizeof(pzstats->vm_numa_event)); 6986 } 6987 #endif 6988 6989 for_each_online_pgdat(pgdat) 6990 pgdat->per_cpu_nodestats = 6991 alloc_percpu(struct per_cpu_nodestat); 6992 } 6993 6994 static __meminit void zone_pcp_init(struct zone *zone) 6995 { 6996 /* 6997 * per cpu subsystem is not up at this point. The following code 6998 * relies on the ability of the linker to provide the 6999 * offset of a (static) per cpu variable into the per cpu area. 7000 */ 7001 zone->per_cpu_pageset = &boot_pageset; 7002 zone->per_cpu_zonestats = &boot_zonestats; 7003 zone->pageset_high = BOOT_PAGESET_HIGH; 7004 zone->pageset_batch = BOOT_PAGESET_BATCH; 7005 7006 if (populated_zone(zone)) 7007 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 7008 zone->present_pages, zone_batchsize(zone)); 7009 } 7010 7011 void __meminit init_currently_empty_zone(struct zone *zone, 7012 unsigned long zone_start_pfn, 7013 unsigned long size) 7014 { 7015 struct pglist_data *pgdat = zone->zone_pgdat; 7016 int zone_idx = zone_idx(zone) + 1; 7017 7018 if (zone_idx > pgdat->nr_zones) 7019 pgdat->nr_zones = zone_idx; 7020 7021 zone->zone_start_pfn = zone_start_pfn; 7022 7023 mminit_dprintk(MMINIT_TRACE, "memmap_init", 7024 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 7025 pgdat->node_id, 7026 (unsigned long)zone_idx(zone), 7027 zone_start_pfn, (zone_start_pfn + size)); 7028 7029 zone_init_free_lists(zone); 7030 zone->initialized = 1; 7031 } 7032 7033 /** 7034 * get_pfn_range_for_nid - Return the start and end page frames for a node 7035 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 7036 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 7037 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 7038 * 7039 * It returns the start and end page frame of a node based on information 7040 * provided by memblock_set_node(). If called for a node 7041 * with no available memory, a warning is printed and the start and end 7042 * PFNs will be 0. 7043 */ 7044 void __init get_pfn_range_for_nid(unsigned int nid, 7045 unsigned long *start_pfn, unsigned long *end_pfn) 7046 { 7047 unsigned long this_start_pfn, this_end_pfn; 7048 int i; 7049 7050 *start_pfn = -1UL; 7051 *end_pfn = 0; 7052 7053 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 7054 *start_pfn = min(*start_pfn, this_start_pfn); 7055 *end_pfn = max(*end_pfn, this_end_pfn); 7056 } 7057 7058 if (*start_pfn == -1UL) 7059 *start_pfn = 0; 7060 } 7061 7062 /* 7063 * This finds a zone that can be used for ZONE_MOVABLE pages. The 7064 * assumption is made that zones within a node are ordered in monotonic 7065 * increasing memory addresses so that the "highest" populated zone is used 7066 */ 7067 static void __init find_usable_zone_for_movable(void) 7068 { 7069 int zone_index; 7070 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 7071 if (zone_index == ZONE_MOVABLE) 7072 continue; 7073 7074 if (arch_zone_highest_possible_pfn[zone_index] > 7075 arch_zone_lowest_possible_pfn[zone_index]) 7076 break; 7077 } 7078 7079 VM_BUG_ON(zone_index == -1); 7080 movable_zone = zone_index; 7081 } 7082 7083 /* 7084 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 7085 * because it is sized independent of architecture. Unlike the other zones, 7086 * the starting point for ZONE_MOVABLE is not fixed. It may be different 7087 * in each node depending on the size of each node and how evenly kernelcore 7088 * is distributed. This helper function adjusts the zone ranges 7089 * provided by the architecture for a given node by using the end of the 7090 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 7091 * zones within a node are in order of monotonic increases memory addresses 7092 */ 7093 static void __init adjust_zone_range_for_zone_movable(int nid, 7094 unsigned long zone_type, 7095 unsigned long node_start_pfn, 7096 unsigned long node_end_pfn, 7097 unsigned long *zone_start_pfn, 7098 unsigned long *zone_end_pfn) 7099 { 7100 /* Only adjust if ZONE_MOVABLE is on this node */ 7101 if (zone_movable_pfn[nid]) { 7102 /* Size ZONE_MOVABLE */ 7103 if (zone_type == ZONE_MOVABLE) { 7104 *zone_start_pfn = zone_movable_pfn[nid]; 7105 *zone_end_pfn = min(node_end_pfn, 7106 arch_zone_highest_possible_pfn[movable_zone]); 7107 7108 /* Adjust for ZONE_MOVABLE starting within this range */ 7109 } else if (!mirrored_kernelcore && 7110 *zone_start_pfn < zone_movable_pfn[nid] && 7111 *zone_end_pfn > zone_movable_pfn[nid]) { 7112 *zone_end_pfn = zone_movable_pfn[nid]; 7113 7114 /* Check if this whole range is within ZONE_MOVABLE */ 7115 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 7116 *zone_start_pfn = *zone_end_pfn; 7117 } 7118 } 7119 7120 /* 7121 * Return the number of pages a zone spans in a node, including holes 7122 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 7123 */ 7124 static unsigned long __init zone_spanned_pages_in_node(int nid, 7125 unsigned long zone_type, 7126 unsigned long node_start_pfn, 7127 unsigned long node_end_pfn, 7128 unsigned long *zone_start_pfn, 7129 unsigned long *zone_end_pfn) 7130 { 7131 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7132 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7133 /* When hotadd a new node from cpu_up(), the node should be empty */ 7134 if (!node_start_pfn && !node_end_pfn) 7135 return 0; 7136 7137 /* Get the start and end of the zone */ 7138 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7139 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7140 adjust_zone_range_for_zone_movable(nid, zone_type, 7141 node_start_pfn, node_end_pfn, 7142 zone_start_pfn, zone_end_pfn); 7143 7144 /* Check that this node has pages within the zone's required range */ 7145 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 7146 return 0; 7147 7148 /* Move the zone boundaries inside the node if necessary */ 7149 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 7150 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 7151 7152 /* Return the spanned pages */ 7153 return *zone_end_pfn - *zone_start_pfn; 7154 } 7155 7156 /* 7157 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 7158 * then all holes in the requested range will be accounted for. 7159 */ 7160 unsigned long __init __absent_pages_in_range(int nid, 7161 unsigned long range_start_pfn, 7162 unsigned long range_end_pfn) 7163 { 7164 unsigned long nr_absent = range_end_pfn - range_start_pfn; 7165 unsigned long start_pfn, end_pfn; 7166 int i; 7167 7168 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7169 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 7170 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 7171 nr_absent -= end_pfn - start_pfn; 7172 } 7173 return nr_absent; 7174 } 7175 7176 /** 7177 * absent_pages_in_range - Return number of page frames in holes within a range 7178 * @start_pfn: The start PFN to start searching for holes 7179 * @end_pfn: The end PFN to stop searching for holes 7180 * 7181 * Return: the number of pages frames in memory holes within a range. 7182 */ 7183 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 7184 unsigned long end_pfn) 7185 { 7186 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 7187 } 7188 7189 /* Return the number of page frames in holes in a zone on a node */ 7190 static unsigned long __init zone_absent_pages_in_node(int nid, 7191 unsigned long zone_type, 7192 unsigned long node_start_pfn, 7193 unsigned long node_end_pfn) 7194 { 7195 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7196 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7197 unsigned long zone_start_pfn, zone_end_pfn; 7198 unsigned long nr_absent; 7199 7200 /* When hotadd a new node from cpu_up(), the node should be empty */ 7201 if (!node_start_pfn && !node_end_pfn) 7202 return 0; 7203 7204 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7205 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7206 7207 adjust_zone_range_for_zone_movable(nid, zone_type, 7208 node_start_pfn, node_end_pfn, 7209 &zone_start_pfn, &zone_end_pfn); 7210 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 7211 7212 /* 7213 * ZONE_MOVABLE handling. 7214 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 7215 * and vice versa. 7216 */ 7217 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 7218 unsigned long start_pfn, end_pfn; 7219 struct memblock_region *r; 7220 7221 for_each_mem_region(r) { 7222 start_pfn = clamp(memblock_region_memory_base_pfn(r), 7223 zone_start_pfn, zone_end_pfn); 7224 end_pfn = clamp(memblock_region_memory_end_pfn(r), 7225 zone_start_pfn, zone_end_pfn); 7226 7227 if (zone_type == ZONE_MOVABLE && 7228 memblock_is_mirror(r)) 7229 nr_absent += end_pfn - start_pfn; 7230 7231 if (zone_type == ZONE_NORMAL && 7232 !memblock_is_mirror(r)) 7233 nr_absent += end_pfn - start_pfn; 7234 } 7235 } 7236 7237 return nr_absent; 7238 } 7239 7240 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 7241 unsigned long node_start_pfn, 7242 unsigned long node_end_pfn) 7243 { 7244 unsigned long realtotalpages = 0, totalpages = 0; 7245 enum zone_type i; 7246 7247 for (i = 0; i < MAX_NR_ZONES; i++) { 7248 struct zone *zone = pgdat->node_zones + i; 7249 unsigned long zone_start_pfn, zone_end_pfn; 7250 unsigned long spanned, absent; 7251 unsigned long size, real_size; 7252 7253 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 7254 node_start_pfn, 7255 node_end_pfn, 7256 &zone_start_pfn, 7257 &zone_end_pfn); 7258 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7259 node_start_pfn, 7260 node_end_pfn); 7261 7262 size = spanned; 7263 real_size = size - absent; 7264 7265 if (size) 7266 zone->zone_start_pfn = zone_start_pfn; 7267 else 7268 zone->zone_start_pfn = 0; 7269 zone->spanned_pages = size; 7270 zone->present_pages = real_size; 7271 #if defined(CONFIG_MEMORY_HOTPLUG) 7272 zone->present_early_pages = real_size; 7273 #endif 7274 7275 totalpages += size; 7276 realtotalpages += real_size; 7277 } 7278 7279 pgdat->node_spanned_pages = totalpages; 7280 pgdat->node_present_pages = realtotalpages; 7281 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 7282 } 7283 7284 #ifndef CONFIG_SPARSEMEM 7285 /* 7286 * Calculate the size of the zone->blockflags rounded to an unsigned long 7287 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7288 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7289 * round what is now in bits to nearest long in bits, then return it in 7290 * bytes. 7291 */ 7292 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7293 { 7294 unsigned long usemapsize; 7295 7296 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7297 usemapsize = roundup(zonesize, pageblock_nr_pages); 7298 usemapsize = usemapsize >> pageblock_order; 7299 usemapsize *= NR_PAGEBLOCK_BITS; 7300 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7301 7302 return usemapsize / 8; 7303 } 7304 7305 static void __ref setup_usemap(struct zone *zone) 7306 { 7307 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7308 zone->spanned_pages); 7309 zone->pageblock_flags = NULL; 7310 if (usemapsize) { 7311 zone->pageblock_flags = 7312 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7313 zone_to_nid(zone)); 7314 if (!zone->pageblock_flags) 7315 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7316 usemapsize, zone->name, zone_to_nid(zone)); 7317 } 7318 } 7319 #else 7320 static inline void setup_usemap(struct zone *zone) {} 7321 #endif /* CONFIG_SPARSEMEM */ 7322 7323 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7324 7325 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7326 void __init set_pageblock_order(void) 7327 { 7328 unsigned int order; 7329 7330 /* Check that pageblock_nr_pages has not already been setup */ 7331 if (pageblock_order) 7332 return; 7333 7334 if (HPAGE_SHIFT > PAGE_SHIFT) 7335 order = HUGETLB_PAGE_ORDER; 7336 else 7337 order = MAX_ORDER - 1; 7338 7339 /* 7340 * Assume the largest contiguous order of interest is a huge page. 7341 * This value may be variable depending on boot parameters on IA64 and 7342 * powerpc. 7343 */ 7344 pageblock_order = order; 7345 } 7346 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7347 7348 /* 7349 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7350 * is unused as pageblock_order is set at compile-time. See 7351 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7352 * the kernel config 7353 */ 7354 void __init set_pageblock_order(void) 7355 { 7356 } 7357 7358 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7359 7360 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7361 unsigned long present_pages) 7362 { 7363 unsigned long pages = spanned_pages; 7364 7365 /* 7366 * Provide a more accurate estimation if there are holes within 7367 * the zone and SPARSEMEM is in use. If there are holes within the 7368 * zone, each populated memory region may cost us one or two extra 7369 * memmap pages due to alignment because memmap pages for each 7370 * populated regions may not be naturally aligned on page boundary. 7371 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7372 */ 7373 if (spanned_pages > present_pages + (present_pages >> 4) && 7374 IS_ENABLED(CONFIG_SPARSEMEM)) 7375 pages = present_pages; 7376 7377 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7378 } 7379 7380 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 7381 static void pgdat_init_split_queue(struct pglist_data *pgdat) 7382 { 7383 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7384 7385 spin_lock_init(&ds_queue->split_queue_lock); 7386 INIT_LIST_HEAD(&ds_queue->split_queue); 7387 ds_queue->split_queue_len = 0; 7388 } 7389 #else 7390 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7391 #endif 7392 7393 #ifdef CONFIG_COMPACTION 7394 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7395 { 7396 init_waitqueue_head(&pgdat->kcompactd_wait); 7397 } 7398 #else 7399 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7400 #endif 7401 7402 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7403 { 7404 int i; 7405 7406 pgdat_resize_init(pgdat); 7407 7408 pgdat_init_split_queue(pgdat); 7409 pgdat_init_kcompactd(pgdat); 7410 7411 init_waitqueue_head(&pgdat->kswapd_wait); 7412 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7413 7414 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 7415 init_waitqueue_head(&pgdat->reclaim_wait[i]); 7416 7417 pgdat_page_ext_init(pgdat); 7418 lruvec_init(&pgdat->__lruvec); 7419 } 7420 7421 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7422 unsigned long remaining_pages) 7423 { 7424 atomic_long_set(&zone->managed_pages, remaining_pages); 7425 zone_set_nid(zone, nid); 7426 zone->name = zone_names[idx]; 7427 zone->zone_pgdat = NODE_DATA(nid); 7428 spin_lock_init(&zone->lock); 7429 zone_seqlock_init(zone); 7430 zone_pcp_init(zone); 7431 } 7432 7433 /* 7434 * Set up the zone data structures 7435 * - init pgdat internals 7436 * - init all zones belonging to this node 7437 * 7438 * NOTE: this function is only called during memory hotplug 7439 */ 7440 #ifdef CONFIG_MEMORY_HOTPLUG 7441 void __ref free_area_init_core_hotplug(int nid) 7442 { 7443 enum zone_type z; 7444 pg_data_t *pgdat = NODE_DATA(nid); 7445 7446 pgdat_init_internals(pgdat); 7447 for (z = 0; z < MAX_NR_ZONES; z++) 7448 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7449 } 7450 #endif 7451 7452 /* 7453 * Set up the zone data structures: 7454 * - mark all pages reserved 7455 * - mark all memory queues empty 7456 * - clear the memory bitmaps 7457 * 7458 * NOTE: pgdat should get zeroed by caller. 7459 * NOTE: this function is only called during early init. 7460 */ 7461 static void __init free_area_init_core(struct pglist_data *pgdat) 7462 { 7463 enum zone_type j; 7464 int nid = pgdat->node_id; 7465 7466 pgdat_init_internals(pgdat); 7467 pgdat->per_cpu_nodestats = &boot_nodestats; 7468 7469 for (j = 0; j < MAX_NR_ZONES; j++) { 7470 struct zone *zone = pgdat->node_zones + j; 7471 unsigned long size, freesize, memmap_pages; 7472 7473 size = zone->spanned_pages; 7474 freesize = zone->present_pages; 7475 7476 /* 7477 * Adjust freesize so that it accounts for how much memory 7478 * is used by this zone for memmap. This affects the watermark 7479 * and per-cpu initialisations 7480 */ 7481 memmap_pages = calc_memmap_size(size, freesize); 7482 if (!is_highmem_idx(j)) { 7483 if (freesize >= memmap_pages) { 7484 freesize -= memmap_pages; 7485 if (memmap_pages) 7486 pr_debug(" %s zone: %lu pages used for memmap\n", 7487 zone_names[j], memmap_pages); 7488 } else 7489 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 7490 zone_names[j], memmap_pages, freesize); 7491 } 7492 7493 /* Account for reserved pages */ 7494 if (j == 0 && freesize > dma_reserve) { 7495 freesize -= dma_reserve; 7496 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 7497 } 7498 7499 if (!is_highmem_idx(j)) 7500 nr_kernel_pages += freesize; 7501 /* Charge for highmem memmap if there are enough kernel pages */ 7502 else if (nr_kernel_pages > memmap_pages * 2) 7503 nr_kernel_pages -= memmap_pages; 7504 nr_all_pages += freesize; 7505 7506 /* 7507 * Set an approximate value for lowmem here, it will be adjusted 7508 * when the bootmem allocator frees pages into the buddy system. 7509 * And all highmem pages will be managed by the buddy system. 7510 */ 7511 zone_init_internals(zone, j, nid, freesize); 7512 7513 if (!size) 7514 continue; 7515 7516 set_pageblock_order(); 7517 setup_usemap(zone); 7518 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7519 } 7520 } 7521 7522 #ifdef CONFIG_FLATMEM 7523 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 7524 { 7525 unsigned long __maybe_unused start = 0; 7526 unsigned long __maybe_unused offset = 0; 7527 7528 /* Skip empty nodes */ 7529 if (!pgdat->node_spanned_pages) 7530 return; 7531 7532 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7533 offset = pgdat->node_start_pfn - start; 7534 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7535 if (!pgdat->node_mem_map) { 7536 unsigned long size, end; 7537 struct page *map; 7538 7539 /* 7540 * The zone's endpoints aren't required to be MAX_ORDER 7541 * aligned but the node_mem_map endpoints must be in order 7542 * for the buddy allocator to function correctly. 7543 */ 7544 end = pgdat_end_pfn(pgdat); 7545 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7546 size = (end - start) * sizeof(struct page); 7547 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 7548 pgdat->node_id, false); 7549 if (!map) 7550 panic("Failed to allocate %ld bytes for node %d memory map\n", 7551 size, pgdat->node_id); 7552 pgdat->node_mem_map = map + offset; 7553 } 7554 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7555 __func__, pgdat->node_id, (unsigned long)pgdat, 7556 (unsigned long)pgdat->node_mem_map); 7557 #ifndef CONFIG_NUMA 7558 /* 7559 * With no DISCONTIG, the global mem_map is just set as node 0's 7560 */ 7561 if (pgdat == NODE_DATA(0)) { 7562 mem_map = NODE_DATA(0)->node_mem_map; 7563 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7564 mem_map -= offset; 7565 } 7566 #endif 7567 } 7568 #else 7569 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 7570 #endif /* CONFIG_FLATMEM */ 7571 7572 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7573 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7574 { 7575 pgdat->first_deferred_pfn = ULONG_MAX; 7576 } 7577 #else 7578 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7579 #endif 7580 7581 static void __init free_area_init_node(int nid) 7582 { 7583 pg_data_t *pgdat = NODE_DATA(nid); 7584 unsigned long start_pfn = 0; 7585 unsigned long end_pfn = 0; 7586 7587 /* pg_data_t should be reset to zero when it's allocated */ 7588 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7589 7590 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7591 7592 pgdat->node_id = nid; 7593 pgdat->node_start_pfn = start_pfn; 7594 pgdat->per_cpu_nodestats = NULL; 7595 7596 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7597 (u64)start_pfn << PAGE_SHIFT, 7598 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7599 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7600 7601 alloc_node_mem_map(pgdat); 7602 pgdat_set_deferred_range(pgdat); 7603 7604 free_area_init_core(pgdat); 7605 } 7606 7607 void __init free_area_init_memoryless_node(int nid) 7608 { 7609 free_area_init_node(nid); 7610 } 7611 7612 #if MAX_NUMNODES > 1 7613 /* 7614 * Figure out the number of possible node ids. 7615 */ 7616 void __init setup_nr_node_ids(void) 7617 { 7618 unsigned int highest; 7619 7620 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7621 nr_node_ids = highest + 1; 7622 } 7623 #endif 7624 7625 /** 7626 * node_map_pfn_alignment - determine the maximum internode alignment 7627 * 7628 * This function should be called after node map is populated and sorted. 7629 * It calculates the maximum power of two alignment which can distinguish 7630 * all the nodes. 7631 * 7632 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7633 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7634 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7635 * shifted, 1GiB is enough and this function will indicate so. 7636 * 7637 * This is used to test whether pfn -> nid mapping of the chosen memory 7638 * model has fine enough granularity to avoid incorrect mapping for the 7639 * populated node map. 7640 * 7641 * Return: the determined alignment in pfn's. 0 if there is no alignment 7642 * requirement (single node). 7643 */ 7644 unsigned long __init node_map_pfn_alignment(void) 7645 { 7646 unsigned long accl_mask = 0, last_end = 0; 7647 unsigned long start, end, mask; 7648 int last_nid = NUMA_NO_NODE; 7649 int i, nid; 7650 7651 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7652 if (!start || last_nid < 0 || last_nid == nid) { 7653 last_nid = nid; 7654 last_end = end; 7655 continue; 7656 } 7657 7658 /* 7659 * Start with a mask granular enough to pin-point to the 7660 * start pfn and tick off bits one-by-one until it becomes 7661 * too coarse to separate the current node from the last. 7662 */ 7663 mask = ~((1 << __ffs(start)) - 1); 7664 while (mask && last_end <= (start & (mask << 1))) 7665 mask <<= 1; 7666 7667 /* accumulate all internode masks */ 7668 accl_mask |= mask; 7669 } 7670 7671 /* convert mask to number of pages */ 7672 return ~accl_mask + 1; 7673 } 7674 7675 /** 7676 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7677 * 7678 * Return: the minimum PFN based on information provided via 7679 * memblock_set_node(). 7680 */ 7681 unsigned long __init find_min_pfn_with_active_regions(void) 7682 { 7683 return PHYS_PFN(memblock_start_of_DRAM()); 7684 } 7685 7686 /* 7687 * early_calculate_totalpages() 7688 * Sum pages in active regions for movable zone. 7689 * Populate N_MEMORY for calculating usable_nodes. 7690 */ 7691 static unsigned long __init early_calculate_totalpages(void) 7692 { 7693 unsigned long totalpages = 0; 7694 unsigned long start_pfn, end_pfn; 7695 int i, nid; 7696 7697 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7698 unsigned long pages = end_pfn - start_pfn; 7699 7700 totalpages += pages; 7701 if (pages) 7702 node_set_state(nid, N_MEMORY); 7703 } 7704 return totalpages; 7705 } 7706 7707 /* 7708 * Find the PFN the Movable zone begins in each node. Kernel memory 7709 * is spread evenly between nodes as long as the nodes have enough 7710 * memory. When they don't, some nodes will have more kernelcore than 7711 * others 7712 */ 7713 static void __init find_zone_movable_pfns_for_nodes(void) 7714 { 7715 int i, nid; 7716 unsigned long usable_startpfn; 7717 unsigned long kernelcore_node, kernelcore_remaining; 7718 /* save the state before borrow the nodemask */ 7719 nodemask_t saved_node_state = node_states[N_MEMORY]; 7720 unsigned long totalpages = early_calculate_totalpages(); 7721 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7722 struct memblock_region *r; 7723 7724 /* Need to find movable_zone earlier when movable_node is specified. */ 7725 find_usable_zone_for_movable(); 7726 7727 /* 7728 * If movable_node is specified, ignore kernelcore and movablecore 7729 * options. 7730 */ 7731 if (movable_node_is_enabled()) { 7732 for_each_mem_region(r) { 7733 if (!memblock_is_hotpluggable(r)) 7734 continue; 7735 7736 nid = memblock_get_region_node(r); 7737 7738 usable_startpfn = PFN_DOWN(r->base); 7739 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7740 min(usable_startpfn, zone_movable_pfn[nid]) : 7741 usable_startpfn; 7742 } 7743 7744 goto out2; 7745 } 7746 7747 /* 7748 * If kernelcore=mirror is specified, ignore movablecore option 7749 */ 7750 if (mirrored_kernelcore) { 7751 bool mem_below_4gb_not_mirrored = false; 7752 7753 for_each_mem_region(r) { 7754 if (memblock_is_mirror(r)) 7755 continue; 7756 7757 nid = memblock_get_region_node(r); 7758 7759 usable_startpfn = memblock_region_memory_base_pfn(r); 7760 7761 if (usable_startpfn < 0x100000) { 7762 mem_below_4gb_not_mirrored = true; 7763 continue; 7764 } 7765 7766 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7767 min(usable_startpfn, zone_movable_pfn[nid]) : 7768 usable_startpfn; 7769 } 7770 7771 if (mem_below_4gb_not_mirrored) 7772 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7773 7774 goto out2; 7775 } 7776 7777 /* 7778 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7779 * amount of necessary memory. 7780 */ 7781 if (required_kernelcore_percent) 7782 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7783 10000UL; 7784 if (required_movablecore_percent) 7785 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7786 10000UL; 7787 7788 /* 7789 * If movablecore= was specified, calculate what size of 7790 * kernelcore that corresponds so that memory usable for 7791 * any allocation type is evenly spread. If both kernelcore 7792 * and movablecore are specified, then the value of kernelcore 7793 * will be used for required_kernelcore if it's greater than 7794 * what movablecore would have allowed. 7795 */ 7796 if (required_movablecore) { 7797 unsigned long corepages; 7798 7799 /* 7800 * Round-up so that ZONE_MOVABLE is at least as large as what 7801 * was requested by the user 7802 */ 7803 required_movablecore = 7804 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7805 required_movablecore = min(totalpages, required_movablecore); 7806 corepages = totalpages - required_movablecore; 7807 7808 required_kernelcore = max(required_kernelcore, corepages); 7809 } 7810 7811 /* 7812 * If kernelcore was not specified or kernelcore size is larger 7813 * than totalpages, there is no ZONE_MOVABLE. 7814 */ 7815 if (!required_kernelcore || required_kernelcore >= totalpages) 7816 goto out; 7817 7818 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7819 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7820 7821 restart: 7822 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7823 kernelcore_node = required_kernelcore / usable_nodes; 7824 for_each_node_state(nid, N_MEMORY) { 7825 unsigned long start_pfn, end_pfn; 7826 7827 /* 7828 * Recalculate kernelcore_node if the division per node 7829 * now exceeds what is necessary to satisfy the requested 7830 * amount of memory for the kernel 7831 */ 7832 if (required_kernelcore < kernelcore_node) 7833 kernelcore_node = required_kernelcore / usable_nodes; 7834 7835 /* 7836 * As the map is walked, we track how much memory is usable 7837 * by the kernel using kernelcore_remaining. When it is 7838 * 0, the rest of the node is usable by ZONE_MOVABLE 7839 */ 7840 kernelcore_remaining = kernelcore_node; 7841 7842 /* Go through each range of PFNs within this node */ 7843 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7844 unsigned long size_pages; 7845 7846 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7847 if (start_pfn >= end_pfn) 7848 continue; 7849 7850 /* Account for what is only usable for kernelcore */ 7851 if (start_pfn < usable_startpfn) { 7852 unsigned long kernel_pages; 7853 kernel_pages = min(end_pfn, usable_startpfn) 7854 - start_pfn; 7855 7856 kernelcore_remaining -= min(kernel_pages, 7857 kernelcore_remaining); 7858 required_kernelcore -= min(kernel_pages, 7859 required_kernelcore); 7860 7861 /* Continue if range is now fully accounted */ 7862 if (end_pfn <= usable_startpfn) { 7863 7864 /* 7865 * Push zone_movable_pfn to the end so 7866 * that if we have to rebalance 7867 * kernelcore across nodes, we will 7868 * not double account here 7869 */ 7870 zone_movable_pfn[nid] = end_pfn; 7871 continue; 7872 } 7873 start_pfn = usable_startpfn; 7874 } 7875 7876 /* 7877 * The usable PFN range for ZONE_MOVABLE is from 7878 * start_pfn->end_pfn. Calculate size_pages as the 7879 * number of pages used as kernelcore 7880 */ 7881 size_pages = end_pfn - start_pfn; 7882 if (size_pages > kernelcore_remaining) 7883 size_pages = kernelcore_remaining; 7884 zone_movable_pfn[nid] = start_pfn + size_pages; 7885 7886 /* 7887 * Some kernelcore has been met, update counts and 7888 * break if the kernelcore for this node has been 7889 * satisfied 7890 */ 7891 required_kernelcore -= min(required_kernelcore, 7892 size_pages); 7893 kernelcore_remaining -= size_pages; 7894 if (!kernelcore_remaining) 7895 break; 7896 } 7897 } 7898 7899 /* 7900 * If there is still required_kernelcore, we do another pass with one 7901 * less node in the count. This will push zone_movable_pfn[nid] further 7902 * along on the nodes that still have memory until kernelcore is 7903 * satisfied 7904 */ 7905 usable_nodes--; 7906 if (usable_nodes && required_kernelcore > usable_nodes) 7907 goto restart; 7908 7909 out2: 7910 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7911 for (nid = 0; nid < MAX_NUMNODES; nid++) 7912 zone_movable_pfn[nid] = 7913 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7914 7915 out: 7916 /* restore the node_state */ 7917 node_states[N_MEMORY] = saved_node_state; 7918 } 7919 7920 /* Any regular or high memory on that node ? */ 7921 static void check_for_memory(pg_data_t *pgdat, int nid) 7922 { 7923 enum zone_type zone_type; 7924 7925 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7926 struct zone *zone = &pgdat->node_zones[zone_type]; 7927 if (populated_zone(zone)) { 7928 if (IS_ENABLED(CONFIG_HIGHMEM)) 7929 node_set_state(nid, N_HIGH_MEMORY); 7930 if (zone_type <= ZONE_NORMAL) 7931 node_set_state(nid, N_NORMAL_MEMORY); 7932 break; 7933 } 7934 } 7935 } 7936 7937 /* 7938 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 7939 * such cases we allow max_zone_pfn sorted in the descending order 7940 */ 7941 bool __weak arch_has_descending_max_zone_pfns(void) 7942 { 7943 return false; 7944 } 7945 7946 /** 7947 * free_area_init - Initialise all pg_data_t and zone data 7948 * @max_zone_pfn: an array of max PFNs for each zone 7949 * 7950 * This will call free_area_init_node() for each active node in the system. 7951 * Using the page ranges provided by memblock_set_node(), the size of each 7952 * zone in each node and their holes is calculated. If the maximum PFN 7953 * between two adjacent zones match, it is assumed that the zone is empty. 7954 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7955 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7956 * starts where the previous one ended. For example, ZONE_DMA32 starts 7957 * at arch_max_dma_pfn. 7958 */ 7959 void __init free_area_init(unsigned long *max_zone_pfn) 7960 { 7961 unsigned long start_pfn, end_pfn; 7962 int i, nid, zone; 7963 bool descending; 7964 7965 /* Record where the zone boundaries are */ 7966 memset(arch_zone_lowest_possible_pfn, 0, 7967 sizeof(arch_zone_lowest_possible_pfn)); 7968 memset(arch_zone_highest_possible_pfn, 0, 7969 sizeof(arch_zone_highest_possible_pfn)); 7970 7971 start_pfn = find_min_pfn_with_active_regions(); 7972 descending = arch_has_descending_max_zone_pfns(); 7973 7974 for (i = 0; i < MAX_NR_ZONES; i++) { 7975 if (descending) 7976 zone = MAX_NR_ZONES - i - 1; 7977 else 7978 zone = i; 7979 7980 if (zone == ZONE_MOVABLE) 7981 continue; 7982 7983 end_pfn = max(max_zone_pfn[zone], start_pfn); 7984 arch_zone_lowest_possible_pfn[zone] = start_pfn; 7985 arch_zone_highest_possible_pfn[zone] = end_pfn; 7986 7987 start_pfn = end_pfn; 7988 } 7989 7990 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7991 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7992 find_zone_movable_pfns_for_nodes(); 7993 7994 /* Print out the zone ranges */ 7995 pr_info("Zone ranges:\n"); 7996 for (i = 0; i < MAX_NR_ZONES; i++) { 7997 if (i == ZONE_MOVABLE) 7998 continue; 7999 pr_info(" %-8s ", zone_names[i]); 8000 if (arch_zone_lowest_possible_pfn[i] == 8001 arch_zone_highest_possible_pfn[i]) 8002 pr_cont("empty\n"); 8003 else 8004 pr_cont("[mem %#018Lx-%#018Lx]\n", 8005 (u64)arch_zone_lowest_possible_pfn[i] 8006 << PAGE_SHIFT, 8007 ((u64)arch_zone_highest_possible_pfn[i] 8008 << PAGE_SHIFT) - 1); 8009 } 8010 8011 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 8012 pr_info("Movable zone start for each node\n"); 8013 for (i = 0; i < MAX_NUMNODES; i++) { 8014 if (zone_movable_pfn[i]) 8015 pr_info(" Node %d: %#018Lx\n", i, 8016 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 8017 } 8018 8019 /* 8020 * Print out the early node map, and initialize the 8021 * subsection-map relative to active online memory ranges to 8022 * enable future "sub-section" extensions of the memory map. 8023 */ 8024 pr_info("Early memory node ranges\n"); 8025 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8026 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 8027 (u64)start_pfn << PAGE_SHIFT, 8028 ((u64)end_pfn << PAGE_SHIFT) - 1); 8029 subsection_map_init(start_pfn, end_pfn - start_pfn); 8030 } 8031 8032 /* Initialise every node */ 8033 mminit_verify_pageflags_layout(); 8034 setup_nr_node_ids(); 8035 for_each_online_node(nid) { 8036 pg_data_t *pgdat = NODE_DATA(nid); 8037 free_area_init_node(nid); 8038 8039 /* Any memory on that node */ 8040 if (pgdat->node_present_pages) 8041 node_set_state(nid, N_MEMORY); 8042 check_for_memory(pgdat, nid); 8043 } 8044 8045 memmap_init(); 8046 } 8047 8048 static int __init cmdline_parse_core(char *p, unsigned long *core, 8049 unsigned long *percent) 8050 { 8051 unsigned long long coremem; 8052 char *endptr; 8053 8054 if (!p) 8055 return -EINVAL; 8056 8057 /* Value may be a percentage of total memory, otherwise bytes */ 8058 coremem = simple_strtoull(p, &endptr, 0); 8059 if (*endptr == '%') { 8060 /* Paranoid check for percent values greater than 100 */ 8061 WARN_ON(coremem > 100); 8062 8063 *percent = coremem; 8064 } else { 8065 coremem = memparse(p, &p); 8066 /* Paranoid check that UL is enough for the coremem value */ 8067 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 8068 8069 *core = coremem >> PAGE_SHIFT; 8070 *percent = 0UL; 8071 } 8072 return 0; 8073 } 8074 8075 /* 8076 * kernelcore=size sets the amount of memory for use for allocations that 8077 * cannot be reclaimed or migrated. 8078 */ 8079 static int __init cmdline_parse_kernelcore(char *p) 8080 { 8081 /* parse kernelcore=mirror */ 8082 if (parse_option_str(p, "mirror")) { 8083 mirrored_kernelcore = true; 8084 return 0; 8085 } 8086 8087 return cmdline_parse_core(p, &required_kernelcore, 8088 &required_kernelcore_percent); 8089 } 8090 8091 /* 8092 * movablecore=size sets the amount of memory for use for allocations that 8093 * can be reclaimed or migrated. 8094 */ 8095 static int __init cmdline_parse_movablecore(char *p) 8096 { 8097 return cmdline_parse_core(p, &required_movablecore, 8098 &required_movablecore_percent); 8099 } 8100 8101 early_param("kernelcore", cmdline_parse_kernelcore); 8102 early_param("movablecore", cmdline_parse_movablecore); 8103 8104 void adjust_managed_page_count(struct page *page, long count) 8105 { 8106 atomic_long_add(count, &page_zone(page)->managed_pages); 8107 totalram_pages_add(count); 8108 #ifdef CONFIG_HIGHMEM 8109 if (PageHighMem(page)) 8110 totalhigh_pages_add(count); 8111 #endif 8112 } 8113 EXPORT_SYMBOL(adjust_managed_page_count); 8114 8115 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 8116 { 8117 void *pos; 8118 unsigned long pages = 0; 8119 8120 start = (void *)PAGE_ALIGN((unsigned long)start); 8121 end = (void *)((unsigned long)end & PAGE_MASK); 8122 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 8123 struct page *page = virt_to_page(pos); 8124 void *direct_map_addr; 8125 8126 /* 8127 * 'direct_map_addr' might be different from 'pos' 8128 * because some architectures' virt_to_page() 8129 * work with aliases. Getting the direct map 8130 * address ensures that we get a _writeable_ 8131 * alias for the memset(). 8132 */ 8133 direct_map_addr = page_address(page); 8134 /* 8135 * Perform a kasan-unchecked memset() since this memory 8136 * has not been initialized. 8137 */ 8138 direct_map_addr = kasan_reset_tag(direct_map_addr); 8139 if ((unsigned int)poison <= 0xFF) 8140 memset(direct_map_addr, poison, PAGE_SIZE); 8141 8142 free_reserved_page(page); 8143 } 8144 8145 if (pages && s) 8146 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 8147 8148 return pages; 8149 } 8150 8151 void __init mem_init_print_info(void) 8152 { 8153 unsigned long physpages, codesize, datasize, rosize, bss_size; 8154 unsigned long init_code_size, init_data_size; 8155 8156 physpages = get_num_physpages(); 8157 codesize = _etext - _stext; 8158 datasize = _edata - _sdata; 8159 rosize = __end_rodata - __start_rodata; 8160 bss_size = __bss_stop - __bss_start; 8161 init_data_size = __init_end - __init_begin; 8162 init_code_size = _einittext - _sinittext; 8163 8164 /* 8165 * Detect special cases and adjust section sizes accordingly: 8166 * 1) .init.* may be embedded into .data sections 8167 * 2) .init.text.* may be out of [__init_begin, __init_end], 8168 * please refer to arch/tile/kernel/vmlinux.lds.S. 8169 * 3) .rodata.* may be embedded into .text or .data sections. 8170 */ 8171 #define adj_init_size(start, end, size, pos, adj) \ 8172 do { \ 8173 if (start <= pos && pos < end && size > adj) \ 8174 size -= adj; \ 8175 } while (0) 8176 8177 adj_init_size(__init_begin, __init_end, init_data_size, 8178 _sinittext, init_code_size); 8179 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 8180 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 8181 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 8182 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 8183 8184 #undef adj_init_size 8185 8186 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 8187 #ifdef CONFIG_HIGHMEM 8188 ", %luK highmem" 8189 #endif 8190 ")\n", 8191 K(nr_free_pages()), K(physpages), 8192 codesize >> 10, datasize >> 10, rosize >> 10, 8193 (init_data_size + init_code_size) >> 10, bss_size >> 10, 8194 K(physpages - totalram_pages() - totalcma_pages), 8195 K(totalcma_pages) 8196 #ifdef CONFIG_HIGHMEM 8197 , K(totalhigh_pages()) 8198 #endif 8199 ); 8200 } 8201 8202 /** 8203 * set_dma_reserve - set the specified number of pages reserved in the first zone 8204 * @new_dma_reserve: The number of pages to mark reserved 8205 * 8206 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 8207 * In the DMA zone, a significant percentage may be consumed by kernel image 8208 * and other unfreeable allocations which can skew the watermarks badly. This 8209 * function may optionally be used to account for unfreeable pages in the 8210 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 8211 * smaller per-cpu batchsize. 8212 */ 8213 void __init set_dma_reserve(unsigned long new_dma_reserve) 8214 { 8215 dma_reserve = new_dma_reserve; 8216 } 8217 8218 static int page_alloc_cpu_dead(unsigned int cpu) 8219 { 8220 struct zone *zone; 8221 8222 lru_add_drain_cpu(cpu); 8223 drain_pages(cpu); 8224 8225 /* 8226 * Spill the event counters of the dead processor 8227 * into the current processors event counters. 8228 * This artificially elevates the count of the current 8229 * processor. 8230 */ 8231 vm_events_fold_cpu(cpu); 8232 8233 /* 8234 * Zero the differential counters of the dead processor 8235 * so that the vm statistics are consistent. 8236 * 8237 * This is only okay since the processor is dead and cannot 8238 * race with what we are doing. 8239 */ 8240 cpu_vm_stats_fold(cpu); 8241 8242 for_each_populated_zone(zone) 8243 zone_pcp_update(zone, 0); 8244 8245 return 0; 8246 } 8247 8248 static int page_alloc_cpu_online(unsigned int cpu) 8249 { 8250 struct zone *zone; 8251 8252 for_each_populated_zone(zone) 8253 zone_pcp_update(zone, 1); 8254 return 0; 8255 } 8256 8257 #ifdef CONFIG_NUMA 8258 int hashdist = HASHDIST_DEFAULT; 8259 8260 static int __init set_hashdist(char *str) 8261 { 8262 if (!str) 8263 return 0; 8264 hashdist = simple_strtoul(str, &str, 0); 8265 return 1; 8266 } 8267 __setup("hashdist=", set_hashdist); 8268 #endif 8269 8270 void __init page_alloc_init(void) 8271 { 8272 int ret; 8273 8274 #ifdef CONFIG_NUMA 8275 if (num_node_state(N_MEMORY) == 1) 8276 hashdist = 0; 8277 #endif 8278 8279 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 8280 "mm/page_alloc:pcp", 8281 page_alloc_cpu_online, 8282 page_alloc_cpu_dead); 8283 WARN_ON(ret < 0); 8284 } 8285 8286 /* 8287 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8288 * or min_free_kbytes changes. 8289 */ 8290 static void calculate_totalreserve_pages(void) 8291 { 8292 struct pglist_data *pgdat; 8293 unsigned long reserve_pages = 0; 8294 enum zone_type i, j; 8295 8296 for_each_online_pgdat(pgdat) { 8297 8298 pgdat->totalreserve_pages = 0; 8299 8300 for (i = 0; i < MAX_NR_ZONES; i++) { 8301 struct zone *zone = pgdat->node_zones + i; 8302 long max = 0; 8303 unsigned long managed_pages = zone_managed_pages(zone); 8304 8305 /* Find valid and maximum lowmem_reserve in the zone */ 8306 for (j = i; j < MAX_NR_ZONES; j++) { 8307 if (zone->lowmem_reserve[j] > max) 8308 max = zone->lowmem_reserve[j]; 8309 } 8310 8311 /* we treat the high watermark as reserved pages. */ 8312 max += high_wmark_pages(zone); 8313 8314 if (max > managed_pages) 8315 max = managed_pages; 8316 8317 pgdat->totalreserve_pages += max; 8318 8319 reserve_pages += max; 8320 } 8321 } 8322 totalreserve_pages = reserve_pages; 8323 } 8324 8325 /* 8326 * setup_per_zone_lowmem_reserve - called whenever 8327 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8328 * has a correct pages reserved value, so an adequate number of 8329 * pages are left in the zone after a successful __alloc_pages(). 8330 */ 8331 static void setup_per_zone_lowmem_reserve(void) 8332 { 8333 struct pglist_data *pgdat; 8334 enum zone_type i, j; 8335 8336 for_each_online_pgdat(pgdat) { 8337 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8338 struct zone *zone = &pgdat->node_zones[i]; 8339 int ratio = sysctl_lowmem_reserve_ratio[i]; 8340 bool clear = !ratio || !zone_managed_pages(zone); 8341 unsigned long managed_pages = 0; 8342 8343 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8344 struct zone *upper_zone = &pgdat->node_zones[j]; 8345 8346 managed_pages += zone_managed_pages(upper_zone); 8347 8348 if (clear) 8349 zone->lowmem_reserve[j] = 0; 8350 else 8351 zone->lowmem_reserve[j] = managed_pages / ratio; 8352 } 8353 } 8354 } 8355 8356 /* update totalreserve_pages */ 8357 calculate_totalreserve_pages(); 8358 } 8359 8360 static void __setup_per_zone_wmarks(void) 8361 { 8362 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8363 unsigned long lowmem_pages = 0; 8364 struct zone *zone; 8365 unsigned long flags; 8366 8367 /* Calculate total number of !ZONE_HIGHMEM pages */ 8368 for_each_zone(zone) { 8369 if (!is_highmem(zone)) 8370 lowmem_pages += zone_managed_pages(zone); 8371 } 8372 8373 for_each_zone(zone) { 8374 u64 tmp; 8375 8376 spin_lock_irqsave(&zone->lock, flags); 8377 tmp = (u64)pages_min * zone_managed_pages(zone); 8378 do_div(tmp, lowmem_pages); 8379 if (is_highmem(zone)) { 8380 /* 8381 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8382 * need highmem pages, so cap pages_min to a small 8383 * value here. 8384 * 8385 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8386 * deltas control async page reclaim, and so should 8387 * not be capped for highmem. 8388 */ 8389 unsigned long min_pages; 8390 8391 min_pages = zone_managed_pages(zone) / 1024; 8392 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8393 zone->_watermark[WMARK_MIN] = min_pages; 8394 } else { 8395 /* 8396 * If it's a lowmem zone, reserve a number of pages 8397 * proportionate to the zone's size. 8398 */ 8399 zone->_watermark[WMARK_MIN] = tmp; 8400 } 8401 8402 /* 8403 * Set the kswapd watermarks distance according to the 8404 * scale factor in proportion to available memory, but 8405 * ensure a minimum size on small systems. 8406 */ 8407 tmp = max_t(u64, tmp >> 2, 8408 mult_frac(zone_managed_pages(zone), 8409 watermark_scale_factor, 10000)); 8410 8411 zone->watermark_boost = 0; 8412 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8413 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 8414 8415 spin_unlock_irqrestore(&zone->lock, flags); 8416 } 8417 8418 /* update totalreserve_pages */ 8419 calculate_totalreserve_pages(); 8420 } 8421 8422 /** 8423 * setup_per_zone_wmarks - called when min_free_kbytes changes 8424 * or when memory is hot-{added|removed} 8425 * 8426 * Ensures that the watermark[min,low,high] values for each zone are set 8427 * correctly with respect to min_free_kbytes. 8428 */ 8429 void setup_per_zone_wmarks(void) 8430 { 8431 struct zone *zone; 8432 static DEFINE_SPINLOCK(lock); 8433 8434 spin_lock(&lock); 8435 __setup_per_zone_wmarks(); 8436 spin_unlock(&lock); 8437 8438 /* 8439 * The watermark size have changed so update the pcpu batch 8440 * and high limits or the limits may be inappropriate. 8441 */ 8442 for_each_zone(zone) 8443 zone_pcp_update(zone, 0); 8444 } 8445 8446 /* 8447 * Initialise min_free_kbytes. 8448 * 8449 * For small machines we want it small (128k min). For large machines 8450 * we want it large (256MB max). But it is not linear, because network 8451 * bandwidth does not increase linearly with machine size. We use 8452 * 8453 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8454 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8455 * 8456 * which yields 8457 * 8458 * 16MB: 512k 8459 * 32MB: 724k 8460 * 64MB: 1024k 8461 * 128MB: 1448k 8462 * 256MB: 2048k 8463 * 512MB: 2896k 8464 * 1024MB: 4096k 8465 * 2048MB: 5792k 8466 * 4096MB: 8192k 8467 * 8192MB: 11584k 8468 * 16384MB: 16384k 8469 */ 8470 void calculate_min_free_kbytes(void) 8471 { 8472 unsigned long lowmem_kbytes; 8473 int new_min_free_kbytes; 8474 8475 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8476 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8477 8478 if (new_min_free_kbytes > user_min_free_kbytes) 8479 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 8480 else 8481 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8482 new_min_free_kbytes, user_min_free_kbytes); 8483 8484 } 8485 8486 int __meminit init_per_zone_wmark_min(void) 8487 { 8488 calculate_min_free_kbytes(); 8489 setup_per_zone_wmarks(); 8490 refresh_zone_stat_thresholds(); 8491 setup_per_zone_lowmem_reserve(); 8492 8493 #ifdef CONFIG_NUMA 8494 setup_min_unmapped_ratio(); 8495 setup_min_slab_ratio(); 8496 #endif 8497 8498 khugepaged_min_free_kbytes_update(); 8499 8500 return 0; 8501 } 8502 postcore_initcall(init_per_zone_wmark_min) 8503 8504 /* 8505 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8506 * that we can call two helper functions whenever min_free_kbytes 8507 * changes. 8508 */ 8509 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8510 void *buffer, size_t *length, loff_t *ppos) 8511 { 8512 int rc; 8513 8514 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8515 if (rc) 8516 return rc; 8517 8518 if (write) { 8519 user_min_free_kbytes = min_free_kbytes; 8520 setup_per_zone_wmarks(); 8521 } 8522 return 0; 8523 } 8524 8525 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8526 void *buffer, size_t *length, loff_t *ppos) 8527 { 8528 int rc; 8529 8530 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8531 if (rc) 8532 return rc; 8533 8534 if (write) 8535 setup_per_zone_wmarks(); 8536 8537 return 0; 8538 } 8539 8540 #ifdef CONFIG_NUMA 8541 static void setup_min_unmapped_ratio(void) 8542 { 8543 pg_data_t *pgdat; 8544 struct zone *zone; 8545 8546 for_each_online_pgdat(pgdat) 8547 pgdat->min_unmapped_pages = 0; 8548 8549 for_each_zone(zone) 8550 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8551 sysctl_min_unmapped_ratio) / 100; 8552 } 8553 8554 8555 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8556 void *buffer, size_t *length, loff_t *ppos) 8557 { 8558 int rc; 8559 8560 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8561 if (rc) 8562 return rc; 8563 8564 setup_min_unmapped_ratio(); 8565 8566 return 0; 8567 } 8568 8569 static void setup_min_slab_ratio(void) 8570 { 8571 pg_data_t *pgdat; 8572 struct zone *zone; 8573 8574 for_each_online_pgdat(pgdat) 8575 pgdat->min_slab_pages = 0; 8576 8577 for_each_zone(zone) 8578 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8579 sysctl_min_slab_ratio) / 100; 8580 } 8581 8582 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8583 void *buffer, size_t *length, loff_t *ppos) 8584 { 8585 int rc; 8586 8587 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8588 if (rc) 8589 return rc; 8590 8591 setup_min_slab_ratio(); 8592 8593 return 0; 8594 } 8595 #endif 8596 8597 /* 8598 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8599 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8600 * whenever sysctl_lowmem_reserve_ratio changes. 8601 * 8602 * The reserve ratio obviously has absolutely no relation with the 8603 * minimum watermarks. The lowmem reserve ratio can only make sense 8604 * if in function of the boot time zone sizes. 8605 */ 8606 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8607 void *buffer, size_t *length, loff_t *ppos) 8608 { 8609 int i; 8610 8611 proc_dointvec_minmax(table, write, buffer, length, ppos); 8612 8613 for (i = 0; i < MAX_NR_ZONES; i++) { 8614 if (sysctl_lowmem_reserve_ratio[i] < 1) 8615 sysctl_lowmem_reserve_ratio[i] = 0; 8616 } 8617 8618 setup_per_zone_lowmem_reserve(); 8619 return 0; 8620 } 8621 8622 /* 8623 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 8624 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8625 * pagelist can have before it gets flushed back to buddy allocator. 8626 */ 8627 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 8628 int write, void *buffer, size_t *length, loff_t *ppos) 8629 { 8630 struct zone *zone; 8631 int old_percpu_pagelist_high_fraction; 8632 int ret; 8633 8634 mutex_lock(&pcp_batch_high_lock); 8635 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 8636 8637 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8638 if (!write || ret < 0) 8639 goto out; 8640 8641 /* Sanity checking to avoid pcp imbalance */ 8642 if (percpu_pagelist_high_fraction && 8643 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 8644 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 8645 ret = -EINVAL; 8646 goto out; 8647 } 8648 8649 /* No change? */ 8650 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 8651 goto out; 8652 8653 for_each_populated_zone(zone) 8654 zone_set_pageset_high_and_batch(zone, 0); 8655 out: 8656 mutex_unlock(&pcp_batch_high_lock); 8657 return ret; 8658 } 8659 8660 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8661 /* 8662 * Returns the number of pages that arch has reserved but 8663 * is not known to alloc_large_system_hash(). 8664 */ 8665 static unsigned long __init arch_reserved_kernel_pages(void) 8666 { 8667 return 0; 8668 } 8669 #endif 8670 8671 /* 8672 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8673 * machines. As memory size is increased the scale is also increased but at 8674 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8675 * quadruples the scale is increased by one, which means the size of hash table 8676 * only doubles, instead of quadrupling as well. 8677 * Because 32-bit systems cannot have large physical memory, where this scaling 8678 * makes sense, it is disabled on such platforms. 8679 */ 8680 #if __BITS_PER_LONG > 32 8681 #define ADAPT_SCALE_BASE (64ul << 30) 8682 #define ADAPT_SCALE_SHIFT 2 8683 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8684 #endif 8685 8686 /* 8687 * allocate a large system hash table from bootmem 8688 * - it is assumed that the hash table must contain an exact power-of-2 8689 * quantity of entries 8690 * - limit is the number of hash buckets, not the total allocation size 8691 */ 8692 void *__init alloc_large_system_hash(const char *tablename, 8693 unsigned long bucketsize, 8694 unsigned long numentries, 8695 int scale, 8696 int flags, 8697 unsigned int *_hash_shift, 8698 unsigned int *_hash_mask, 8699 unsigned long low_limit, 8700 unsigned long high_limit) 8701 { 8702 unsigned long long max = high_limit; 8703 unsigned long log2qty, size; 8704 void *table = NULL; 8705 gfp_t gfp_flags; 8706 bool virt; 8707 bool huge; 8708 8709 /* allow the kernel cmdline to have a say */ 8710 if (!numentries) { 8711 /* round applicable memory size up to nearest megabyte */ 8712 numentries = nr_kernel_pages; 8713 numentries -= arch_reserved_kernel_pages(); 8714 8715 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8716 if (PAGE_SHIFT < 20) 8717 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8718 8719 #if __BITS_PER_LONG > 32 8720 if (!high_limit) { 8721 unsigned long adapt; 8722 8723 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8724 adapt <<= ADAPT_SCALE_SHIFT) 8725 scale++; 8726 } 8727 #endif 8728 8729 /* limit to 1 bucket per 2^scale bytes of low memory */ 8730 if (scale > PAGE_SHIFT) 8731 numentries >>= (scale - PAGE_SHIFT); 8732 else 8733 numentries <<= (PAGE_SHIFT - scale); 8734 8735 /* Make sure we've got at least a 0-order allocation.. */ 8736 if (unlikely(flags & HASH_SMALL)) { 8737 /* Makes no sense without HASH_EARLY */ 8738 WARN_ON(!(flags & HASH_EARLY)); 8739 if (!(numentries >> *_hash_shift)) { 8740 numentries = 1UL << *_hash_shift; 8741 BUG_ON(!numentries); 8742 } 8743 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8744 numentries = PAGE_SIZE / bucketsize; 8745 } 8746 numentries = roundup_pow_of_two(numentries); 8747 8748 /* limit allocation size to 1/16 total memory by default */ 8749 if (max == 0) { 8750 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8751 do_div(max, bucketsize); 8752 } 8753 max = min(max, 0x80000000ULL); 8754 8755 if (numentries < low_limit) 8756 numentries = low_limit; 8757 if (numentries > max) 8758 numentries = max; 8759 8760 log2qty = ilog2(numentries); 8761 8762 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8763 do { 8764 virt = false; 8765 size = bucketsize << log2qty; 8766 if (flags & HASH_EARLY) { 8767 if (flags & HASH_ZERO) 8768 table = memblock_alloc(size, SMP_CACHE_BYTES); 8769 else 8770 table = memblock_alloc_raw(size, 8771 SMP_CACHE_BYTES); 8772 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8773 table = __vmalloc(size, gfp_flags); 8774 virt = true; 8775 if (table) 8776 huge = is_vm_area_hugepages(table); 8777 } else { 8778 /* 8779 * If bucketsize is not a power-of-two, we may free 8780 * some pages at the end of hash table which 8781 * alloc_pages_exact() automatically does 8782 */ 8783 table = alloc_pages_exact(size, gfp_flags); 8784 kmemleak_alloc(table, size, 1, gfp_flags); 8785 } 8786 } while (!table && size > PAGE_SIZE && --log2qty); 8787 8788 if (!table) 8789 panic("Failed to allocate %s hash table\n", tablename); 8790 8791 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8792 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8793 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 8794 8795 if (_hash_shift) 8796 *_hash_shift = log2qty; 8797 if (_hash_mask) 8798 *_hash_mask = (1 << log2qty) - 1; 8799 8800 return table; 8801 } 8802 8803 /* 8804 * This function checks whether pageblock includes unmovable pages or not. 8805 * 8806 * PageLRU check without isolation or lru_lock could race so that 8807 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8808 * check without lock_page also may miss some movable non-lru pages at 8809 * race condition. So you can't expect this function should be exact. 8810 * 8811 * Returns a page without holding a reference. If the caller wants to 8812 * dereference that page (e.g., dumping), it has to make sure that it 8813 * cannot get removed (e.g., via memory unplug) concurrently. 8814 * 8815 */ 8816 struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8817 int migratetype, int flags) 8818 { 8819 unsigned long iter = 0; 8820 unsigned long pfn = page_to_pfn(page); 8821 unsigned long offset = pfn % pageblock_nr_pages; 8822 8823 if (is_migrate_cma_page(page)) { 8824 /* 8825 * CMA allocations (alloc_contig_range) really need to mark 8826 * isolate CMA pageblocks even when they are not movable in fact 8827 * so consider them movable here. 8828 */ 8829 if (is_migrate_cma(migratetype)) 8830 return NULL; 8831 8832 return page; 8833 } 8834 8835 for (; iter < pageblock_nr_pages - offset; iter++) { 8836 page = pfn_to_page(pfn + iter); 8837 8838 /* 8839 * Both, bootmem allocations and memory holes are marked 8840 * PG_reserved and are unmovable. We can even have unmovable 8841 * allocations inside ZONE_MOVABLE, for example when 8842 * specifying "movablecore". 8843 */ 8844 if (PageReserved(page)) 8845 return page; 8846 8847 /* 8848 * If the zone is movable and we have ruled out all reserved 8849 * pages then it should be reasonably safe to assume the rest 8850 * is movable. 8851 */ 8852 if (zone_idx(zone) == ZONE_MOVABLE) 8853 continue; 8854 8855 /* 8856 * Hugepages are not in LRU lists, but they're movable. 8857 * THPs are on the LRU, but need to be counted as #small pages. 8858 * We need not scan over tail pages because we don't 8859 * handle each tail page individually in migration. 8860 */ 8861 if (PageHuge(page) || PageTransCompound(page)) { 8862 struct page *head = compound_head(page); 8863 unsigned int skip_pages; 8864 8865 if (PageHuge(page)) { 8866 if (!hugepage_migration_supported(page_hstate(head))) 8867 return page; 8868 } else if (!PageLRU(head) && !__PageMovable(head)) { 8869 return page; 8870 } 8871 8872 skip_pages = compound_nr(head) - (page - head); 8873 iter += skip_pages - 1; 8874 continue; 8875 } 8876 8877 /* 8878 * We can't use page_count without pin a page 8879 * because another CPU can free compound page. 8880 * This check already skips compound tails of THP 8881 * because their page->_refcount is zero at all time. 8882 */ 8883 if (!page_ref_count(page)) { 8884 if (PageBuddy(page)) 8885 iter += (1 << buddy_order(page)) - 1; 8886 continue; 8887 } 8888 8889 /* 8890 * The HWPoisoned page may be not in buddy system, and 8891 * page_count() is not 0. 8892 */ 8893 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8894 continue; 8895 8896 /* 8897 * We treat all PageOffline() pages as movable when offlining 8898 * to give drivers a chance to decrement their reference count 8899 * in MEM_GOING_OFFLINE in order to indicate that these pages 8900 * can be offlined as there are no direct references anymore. 8901 * For actually unmovable PageOffline() where the driver does 8902 * not support this, we will fail later when trying to actually 8903 * move these pages that still have a reference count > 0. 8904 * (false negatives in this function only) 8905 */ 8906 if ((flags & MEMORY_OFFLINE) && PageOffline(page)) 8907 continue; 8908 8909 if (__PageMovable(page) || PageLRU(page)) 8910 continue; 8911 8912 /* 8913 * If there are RECLAIMABLE pages, we need to check 8914 * it. But now, memory offline itself doesn't call 8915 * shrink_node_slabs() and it still to be fixed. 8916 */ 8917 return page; 8918 } 8919 return NULL; 8920 } 8921 8922 #ifdef CONFIG_CONTIG_ALLOC 8923 static unsigned long pfn_max_align_down(unsigned long pfn) 8924 { 8925 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8926 pageblock_nr_pages) - 1); 8927 } 8928 8929 static unsigned long pfn_max_align_up(unsigned long pfn) 8930 { 8931 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8932 pageblock_nr_pages)); 8933 } 8934 8935 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 8936 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 8937 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 8938 static void alloc_contig_dump_pages(struct list_head *page_list) 8939 { 8940 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 8941 8942 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 8943 struct page *page; 8944 8945 dump_stack(); 8946 list_for_each_entry(page, page_list, lru) 8947 dump_page(page, "migration failure"); 8948 } 8949 } 8950 #else 8951 static inline void alloc_contig_dump_pages(struct list_head *page_list) 8952 { 8953 } 8954 #endif 8955 8956 /* [start, end) must belong to a single zone. */ 8957 static int __alloc_contig_migrate_range(struct compact_control *cc, 8958 unsigned long start, unsigned long end) 8959 { 8960 /* This function is based on compact_zone() from compaction.c. */ 8961 unsigned int nr_reclaimed; 8962 unsigned long pfn = start; 8963 unsigned int tries = 0; 8964 int ret = 0; 8965 struct migration_target_control mtc = { 8966 .nid = zone_to_nid(cc->zone), 8967 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 8968 }; 8969 8970 lru_cache_disable(); 8971 8972 while (pfn < end || !list_empty(&cc->migratepages)) { 8973 if (fatal_signal_pending(current)) { 8974 ret = -EINTR; 8975 break; 8976 } 8977 8978 if (list_empty(&cc->migratepages)) { 8979 cc->nr_migratepages = 0; 8980 ret = isolate_migratepages_range(cc, pfn, end); 8981 if (ret && ret != -EAGAIN) 8982 break; 8983 pfn = cc->migrate_pfn; 8984 tries = 0; 8985 } else if (++tries == 5) { 8986 ret = -EBUSY; 8987 break; 8988 } 8989 8990 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8991 &cc->migratepages); 8992 cc->nr_migratepages -= nr_reclaimed; 8993 8994 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 8995 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 8996 8997 /* 8998 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 8999 * to retry again over this error, so do the same here. 9000 */ 9001 if (ret == -ENOMEM) 9002 break; 9003 } 9004 9005 lru_cache_enable(); 9006 if (ret < 0) { 9007 if (ret == -EBUSY) 9008 alloc_contig_dump_pages(&cc->migratepages); 9009 putback_movable_pages(&cc->migratepages); 9010 return ret; 9011 } 9012 return 0; 9013 } 9014 9015 /** 9016 * alloc_contig_range() -- tries to allocate given range of pages 9017 * @start: start PFN to allocate 9018 * @end: one-past-the-last PFN to allocate 9019 * @migratetype: migratetype of the underlying pageblocks (either 9020 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 9021 * in range must have the same migratetype and it must 9022 * be either of the two. 9023 * @gfp_mask: GFP mask to use during compaction 9024 * 9025 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 9026 * aligned. The PFN range must belong to a single zone. 9027 * 9028 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 9029 * pageblocks in the range. Once isolated, the pageblocks should not 9030 * be modified by others. 9031 * 9032 * Return: zero on success or negative error code. On success all 9033 * pages which PFN is in [start, end) are allocated for the caller and 9034 * need to be freed with free_contig_range(). 9035 */ 9036 int alloc_contig_range(unsigned long start, unsigned long end, 9037 unsigned migratetype, gfp_t gfp_mask) 9038 { 9039 unsigned long outer_start, outer_end; 9040 unsigned int order; 9041 int ret = 0; 9042 9043 struct compact_control cc = { 9044 .nr_migratepages = 0, 9045 .order = -1, 9046 .zone = page_zone(pfn_to_page(start)), 9047 .mode = MIGRATE_SYNC, 9048 .ignore_skip_hint = true, 9049 .no_set_skip_hint = true, 9050 .gfp_mask = current_gfp_context(gfp_mask), 9051 .alloc_contig = true, 9052 }; 9053 INIT_LIST_HEAD(&cc.migratepages); 9054 9055 /* 9056 * What we do here is we mark all pageblocks in range as 9057 * MIGRATE_ISOLATE. Because pageblock and max order pages may 9058 * have different sizes, and due to the way page allocator 9059 * work, we align the range to biggest of the two pages so 9060 * that page allocator won't try to merge buddies from 9061 * different pageblocks and change MIGRATE_ISOLATE to some 9062 * other migration type. 9063 * 9064 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 9065 * migrate the pages from an unaligned range (ie. pages that 9066 * we are interested in). This will put all the pages in 9067 * range back to page allocator as MIGRATE_ISOLATE. 9068 * 9069 * When this is done, we take the pages in range from page 9070 * allocator removing them from the buddy system. This way 9071 * page allocator will never consider using them. 9072 * 9073 * This lets us mark the pageblocks back as 9074 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 9075 * aligned range but not in the unaligned, original range are 9076 * put back to page allocator so that buddy can use them. 9077 */ 9078 9079 ret = start_isolate_page_range(pfn_max_align_down(start), 9080 pfn_max_align_up(end), migratetype, 0); 9081 if (ret) 9082 return ret; 9083 9084 drain_all_pages(cc.zone); 9085 9086 /* 9087 * In case of -EBUSY, we'd like to know which page causes problem. 9088 * So, just fall through. test_pages_isolated() has a tracepoint 9089 * which will report the busy page. 9090 * 9091 * It is possible that busy pages could become available before 9092 * the call to test_pages_isolated, and the range will actually be 9093 * allocated. So, if we fall through be sure to clear ret so that 9094 * -EBUSY is not accidentally used or returned to caller. 9095 */ 9096 ret = __alloc_contig_migrate_range(&cc, start, end); 9097 if (ret && ret != -EBUSY) 9098 goto done; 9099 ret = 0; 9100 9101 /* 9102 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 9103 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 9104 * more, all pages in [start, end) are free in page allocator. 9105 * What we are going to do is to allocate all pages from 9106 * [start, end) (that is remove them from page allocator). 9107 * 9108 * The only problem is that pages at the beginning and at the 9109 * end of interesting range may be not aligned with pages that 9110 * page allocator holds, ie. they can be part of higher order 9111 * pages. Because of this, we reserve the bigger range and 9112 * once this is done free the pages we are not interested in. 9113 * 9114 * We don't have to hold zone->lock here because the pages are 9115 * isolated thus they won't get removed from buddy. 9116 */ 9117 9118 order = 0; 9119 outer_start = start; 9120 while (!PageBuddy(pfn_to_page(outer_start))) { 9121 if (++order >= MAX_ORDER) { 9122 outer_start = start; 9123 break; 9124 } 9125 outer_start &= ~0UL << order; 9126 } 9127 9128 if (outer_start != start) { 9129 order = buddy_order(pfn_to_page(outer_start)); 9130 9131 /* 9132 * outer_start page could be small order buddy page and 9133 * it doesn't include start page. Adjust outer_start 9134 * in this case to report failed page properly 9135 * on tracepoint in test_pages_isolated() 9136 */ 9137 if (outer_start + (1UL << order) <= start) 9138 outer_start = start; 9139 } 9140 9141 /* Make sure the range is really isolated. */ 9142 if (test_pages_isolated(outer_start, end, 0)) { 9143 ret = -EBUSY; 9144 goto done; 9145 } 9146 9147 /* Grab isolated pages from freelists. */ 9148 outer_end = isolate_freepages_range(&cc, outer_start, end); 9149 if (!outer_end) { 9150 ret = -EBUSY; 9151 goto done; 9152 } 9153 9154 /* Free head and tail (if any) */ 9155 if (start != outer_start) 9156 free_contig_range(outer_start, start - outer_start); 9157 if (end != outer_end) 9158 free_contig_range(end, outer_end - end); 9159 9160 done: 9161 undo_isolate_page_range(pfn_max_align_down(start), 9162 pfn_max_align_up(end), migratetype); 9163 return ret; 9164 } 9165 EXPORT_SYMBOL(alloc_contig_range); 9166 9167 static int __alloc_contig_pages(unsigned long start_pfn, 9168 unsigned long nr_pages, gfp_t gfp_mask) 9169 { 9170 unsigned long end_pfn = start_pfn + nr_pages; 9171 9172 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 9173 gfp_mask); 9174 } 9175 9176 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 9177 unsigned long nr_pages) 9178 { 9179 unsigned long i, end_pfn = start_pfn + nr_pages; 9180 struct page *page; 9181 9182 for (i = start_pfn; i < end_pfn; i++) { 9183 page = pfn_to_online_page(i); 9184 if (!page) 9185 return false; 9186 9187 if (page_zone(page) != z) 9188 return false; 9189 9190 if (PageReserved(page)) 9191 return false; 9192 } 9193 return true; 9194 } 9195 9196 static bool zone_spans_last_pfn(const struct zone *zone, 9197 unsigned long start_pfn, unsigned long nr_pages) 9198 { 9199 unsigned long last_pfn = start_pfn + nr_pages - 1; 9200 9201 return zone_spans_pfn(zone, last_pfn); 9202 } 9203 9204 /** 9205 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 9206 * @nr_pages: Number of contiguous pages to allocate 9207 * @gfp_mask: GFP mask to limit search and used during compaction 9208 * @nid: Target node 9209 * @nodemask: Mask for other possible nodes 9210 * 9211 * This routine is a wrapper around alloc_contig_range(). It scans over zones 9212 * on an applicable zonelist to find a contiguous pfn range which can then be 9213 * tried for allocation with alloc_contig_range(). This routine is intended 9214 * for allocation requests which can not be fulfilled with the buddy allocator. 9215 * 9216 * The allocated memory is always aligned to a page boundary. If nr_pages is a 9217 * power of two then the alignment is guaranteed to be to the given nr_pages 9218 * (e.g. 1GB request would be aligned to 1GB). 9219 * 9220 * Allocated pages can be freed with free_contig_range() or by manually calling 9221 * __free_page() on each allocated page. 9222 * 9223 * Return: pointer to contiguous pages on success, or NULL if not successful. 9224 */ 9225 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 9226 int nid, nodemask_t *nodemask) 9227 { 9228 unsigned long ret, pfn, flags; 9229 struct zonelist *zonelist; 9230 struct zone *zone; 9231 struct zoneref *z; 9232 9233 zonelist = node_zonelist(nid, gfp_mask); 9234 for_each_zone_zonelist_nodemask(zone, z, zonelist, 9235 gfp_zone(gfp_mask), nodemask) { 9236 spin_lock_irqsave(&zone->lock, flags); 9237 9238 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 9239 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 9240 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 9241 /* 9242 * We release the zone lock here because 9243 * alloc_contig_range() will also lock the zone 9244 * at some point. If there's an allocation 9245 * spinning on this lock, it may win the race 9246 * and cause alloc_contig_range() to fail... 9247 */ 9248 spin_unlock_irqrestore(&zone->lock, flags); 9249 ret = __alloc_contig_pages(pfn, nr_pages, 9250 gfp_mask); 9251 if (!ret) 9252 return pfn_to_page(pfn); 9253 spin_lock_irqsave(&zone->lock, flags); 9254 } 9255 pfn += nr_pages; 9256 } 9257 spin_unlock_irqrestore(&zone->lock, flags); 9258 } 9259 return NULL; 9260 } 9261 #endif /* CONFIG_CONTIG_ALLOC */ 9262 9263 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 9264 { 9265 unsigned long count = 0; 9266 9267 for (; nr_pages--; pfn++) { 9268 struct page *page = pfn_to_page(pfn); 9269 9270 count += page_count(page) != 1; 9271 __free_page(page); 9272 } 9273 WARN(count != 0, "%lu pages are still in use!\n", count); 9274 } 9275 EXPORT_SYMBOL(free_contig_range); 9276 9277 /* 9278 * The zone indicated has a new number of managed_pages; batch sizes and percpu 9279 * page high values need to be recalculated. 9280 */ 9281 void zone_pcp_update(struct zone *zone, int cpu_online) 9282 { 9283 mutex_lock(&pcp_batch_high_lock); 9284 zone_set_pageset_high_and_batch(zone, cpu_online); 9285 mutex_unlock(&pcp_batch_high_lock); 9286 } 9287 9288 /* 9289 * Effectively disable pcplists for the zone by setting the high limit to 0 9290 * and draining all cpus. A concurrent page freeing on another CPU that's about 9291 * to put the page on pcplist will either finish before the drain and the page 9292 * will be drained, or observe the new high limit and skip the pcplist. 9293 * 9294 * Must be paired with a call to zone_pcp_enable(). 9295 */ 9296 void zone_pcp_disable(struct zone *zone) 9297 { 9298 mutex_lock(&pcp_batch_high_lock); 9299 __zone_set_pageset_high_and_batch(zone, 0, 1); 9300 __drain_all_pages(zone, true); 9301 } 9302 9303 void zone_pcp_enable(struct zone *zone) 9304 { 9305 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9306 mutex_unlock(&pcp_batch_high_lock); 9307 } 9308 9309 void zone_pcp_reset(struct zone *zone) 9310 { 9311 int cpu; 9312 struct per_cpu_zonestat *pzstats; 9313 9314 if (zone->per_cpu_pageset != &boot_pageset) { 9315 for_each_online_cpu(cpu) { 9316 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 9317 drain_zonestat(zone, pzstats); 9318 } 9319 free_percpu(zone->per_cpu_pageset); 9320 free_percpu(zone->per_cpu_zonestats); 9321 zone->per_cpu_pageset = &boot_pageset; 9322 zone->per_cpu_zonestats = &boot_zonestats; 9323 } 9324 } 9325 9326 #ifdef CONFIG_MEMORY_HOTREMOVE 9327 /* 9328 * All pages in the range must be in a single zone, must not contain holes, 9329 * must span full sections, and must be isolated before calling this function. 9330 */ 9331 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9332 { 9333 unsigned long pfn = start_pfn; 9334 struct page *page; 9335 struct zone *zone; 9336 unsigned int order; 9337 unsigned long flags; 9338 9339 offline_mem_sections(pfn, end_pfn); 9340 zone = page_zone(pfn_to_page(pfn)); 9341 spin_lock_irqsave(&zone->lock, flags); 9342 while (pfn < end_pfn) { 9343 page = pfn_to_page(pfn); 9344 /* 9345 * The HWPoisoned page may be not in buddy system, and 9346 * page_count() is not 0. 9347 */ 9348 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9349 pfn++; 9350 continue; 9351 } 9352 /* 9353 * At this point all remaining PageOffline() pages have a 9354 * reference count of 0 and can simply be skipped. 9355 */ 9356 if (PageOffline(page)) { 9357 BUG_ON(page_count(page)); 9358 BUG_ON(PageBuddy(page)); 9359 pfn++; 9360 continue; 9361 } 9362 9363 BUG_ON(page_count(page)); 9364 BUG_ON(!PageBuddy(page)); 9365 order = buddy_order(page); 9366 del_page_from_free_list(page, zone, order); 9367 pfn += (1 << order); 9368 } 9369 spin_unlock_irqrestore(&zone->lock, flags); 9370 } 9371 #endif 9372 9373 /* 9374 * This function returns a stable result only if called under zone lock. 9375 */ 9376 bool is_free_buddy_page(struct page *page) 9377 { 9378 unsigned long pfn = page_to_pfn(page); 9379 unsigned int order; 9380 9381 for (order = 0; order < MAX_ORDER; order++) { 9382 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9383 9384 if (PageBuddy(page_head) && 9385 buddy_order_unsafe(page_head) >= order) 9386 break; 9387 } 9388 9389 return order < MAX_ORDER; 9390 } 9391 9392 #ifdef CONFIG_MEMORY_FAILURE 9393 /* 9394 * Break down a higher-order page in sub-pages, and keep our target out of 9395 * buddy allocator. 9396 */ 9397 static void break_down_buddy_pages(struct zone *zone, struct page *page, 9398 struct page *target, int low, int high, 9399 int migratetype) 9400 { 9401 unsigned long size = 1 << high; 9402 struct page *current_buddy, *next_page; 9403 9404 while (high > low) { 9405 high--; 9406 size >>= 1; 9407 9408 if (target >= &page[size]) { 9409 next_page = page + size; 9410 current_buddy = page; 9411 } else { 9412 next_page = page; 9413 current_buddy = page + size; 9414 } 9415 9416 if (set_page_guard(zone, current_buddy, high, migratetype)) 9417 continue; 9418 9419 if (current_buddy != target) { 9420 add_to_free_list(current_buddy, zone, high, migratetype); 9421 set_buddy_order(current_buddy, high); 9422 page = next_page; 9423 } 9424 } 9425 } 9426 9427 /* 9428 * Take a page that will be marked as poisoned off the buddy allocator. 9429 */ 9430 bool take_page_off_buddy(struct page *page) 9431 { 9432 struct zone *zone = page_zone(page); 9433 unsigned long pfn = page_to_pfn(page); 9434 unsigned long flags; 9435 unsigned int order; 9436 bool ret = false; 9437 9438 spin_lock_irqsave(&zone->lock, flags); 9439 for (order = 0; order < MAX_ORDER; order++) { 9440 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9441 int page_order = buddy_order(page_head); 9442 9443 if (PageBuddy(page_head) && page_order >= order) { 9444 unsigned long pfn_head = page_to_pfn(page_head); 9445 int migratetype = get_pfnblock_migratetype(page_head, 9446 pfn_head); 9447 9448 del_page_from_free_list(page_head, zone, page_order); 9449 break_down_buddy_pages(zone, page_head, page, 0, 9450 page_order, migratetype); 9451 if (!is_migrate_isolate(migratetype)) 9452 __mod_zone_freepage_state(zone, -1, migratetype); 9453 ret = true; 9454 break; 9455 } 9456 if (page_count(page_head) > 0) 9457 break; 9458 } 9459 spin_unlock_irqrestore(&zone->lock, flags); 9460 return ret; 9461 } 9462 #endif 9463