xref: /openbmc/linux/mm/page_alloc.c (revision c4ee0af3)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69 
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72 
73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74 DEFINE_PER_CPU(int, numa_node);
75 EXPORT_PER_CPU_SYMBOL(numa_node);
76 #endif
77 
78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 /*
80  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83  * defined in <linux/topology.h>.
84  */
85 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
86 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87 #endif
88 
89 /*
90  * Array of node states.
91  */
92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 	[N_POSSIBLE] = NODE_MASK_ALL,
94 	[N_ONLINE] = { { [0] = 1UL } },
95 #ifndef CONFIG_NUMA
96 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
97 #ifdef CONFIG_HIGHMEM
98 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
99 #endif
100 #ifdef CONFIG_MOVABLE_NODE
101 	[N_MEMORY] = { { [0] = 1UL } },
102 #endif
103 	[N_CPU] = { { [0] = 1UL } },
104 #endif	/* NUMA */
105 };
106 EXPORT_SYMBOL(node_states);
107 
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock);
110 
111 unsigned long totalram_pages __read_mostly;
112 unsigned long totalreserve_pages __read_mostly;
113 /*
114  * When calculating the number of globally allowed dirty pages, there
115  * is a certain number of per-zone reserves that should not be
116  * considered dirtyable memory.  This is the sum of those reserves
117  * over all existing zones that contribute dirtyable memory.
118  */
119 unsigned long dirty_balance_reserve __read_mostly;
120 
121 int percpu_pagelist_fraction;
122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123 
124 #ifdef CONFIG_PM_SLEEP
125 /*
126  * The following functions are used by the suspend/hibernate code to temporarily
127  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128  * while devices are suspended.  To avoid races with the suspend/hibernate code,
129  * they should always be called with pm_mutex held (gfp_allowed_mask also should
130  * only be modified with pm_mutex held, unless the suspend/hibernate code is
131  * guaranteed not to run in parallel with that modification).
132  */
133 
134 static gfp_t saved_gfp_mask;
135 
136 void pm_restore_gfp_mask(void)
137 {
138 	WARN_ON(!mutex_is_locked(&pm_mutex));
139 	if (saved_gfp_mask) {
140 		gfp_allowed_mask = saved_gfp_mask;
141 		saved_gfp_mask = 0;
142 	}
143 }
144 
145 void pm_restrict_gfp_mask(void)
146 {
147 	WARN_ON(!mutex_is_locked(&pm_mutex));
148 	WARN_ON(saved_gfp_mask);
149 	saved_gfp_mask = gfp_allowed_mask;
150 	gfp_allowed_mask &= ~GFP_IOFS;
151 }
152 
153 bool pm_suspended_storage(void)
154 {
155 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 		return false;
157 	return true;
158 }
159 #endif /* CONFIG_PM_SLEEP */
160 
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly;
163 #endif
164 
165 static void __free_pages_ok(struct page *page, unsigned int order);
166 
167 /*
168  * results with 256, 32 in the lowmem_reserve sysctl:
169  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170  *	1G machine -> (16M dma, 784M normal, 224M high)
171  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174  *
175  * TBD: should special case ZONE_DMA32 machines here - in those we normally
176  * don't need any ZONE_NORMAL reservation
177  */
178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
179 #ifdef CONFIG_ZONE_DMA
180 	 256,
181 #endif
182 #ifdef CONFIG_ZONE_DMA32
183 	 256,
184 #endif
185 #ifdef CONFIG_HIGHMEM
186 	 32,
187 #endif
188 	 32,
189 };
190 
191 EXPORT_SYMBOL(totalram_pages);
192 
193 static char * const zone_names[MAX_NR_ZONES] = {
194 #ifdef CONFIG_ZONE_DMA
195 	 "DMA",
196 #endif
197 #ifdef CONFIG_ZONE_DMA32
198 	 "DMA32",
199 #endif
200 	 "Normal",
201 #ifdef CONFIG_HIGHMEM
202 	 "HighMem",
203 #endif
204 	 "Movable",
205 };
206 
207 int min_free_kbytes = 1024;
208 int user_min_free_kbytes;
209 
210 static unsigned long __meminitdata nr_kernel_pages;
211 static unsigned long __meminitdata nr_all_pages;
212 static unsigned long __meminitdata dma_reserve;
213 
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __initdata required_kernelcore;
218 static unsigned long __initdata required_movablecore;
219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220 
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222 int movable_zone;
223 EXPORT_SYMBOL(movable_zone);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
225 
226 #if MAX_NUMNODES > 1
227 int nr_node_ids __read_mostly = MAX_NUMNODES;
228 int nr_online_nodes __read_mostly = 1;
229 EXPORT_SYMBOL(nr_node_ids);
230 EXPORT_SYMBOL(nr_online_nodes);
231 #endif
232 
233 int page_group_by_mobility_disabled __read_mostly;
234 
235 void set_pageblock_migratetype(struct page *page, int migratetype)
236 {
237 	if (unlikely(page_group_by_mobility_disabled &&
238 		     migratetype < MIGRATE_PCPTYPES))
239 		migratetype = MIGRATE_UNMOVABLE;
240 
241 	set_pageblock_flags_group(page, (unsigned long)migratetype,
242 					PB_migrate, PB_migrate_end);
243 }
244 
245 bool oom_killer_disabled __read_mostly;
246 
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
249 {
250 	int ret = 0;
251 	unsigned seq;
252 	unsigned long pfn = page_to_pfn(page);
253 	unsigned long sp, start_pfn;
254 
255 	do {
256 		seq = zone_span_seqbegin(zone);
257 		start_pfn = zone->zone_start_pfn;
258 		sp = zone->spanned_pages;
259 		if (!zone_spans_pfn(zone, pfn))
260 			ret = 1;
261 	} while (zone_span_seqretry(zone, seq));
262 
263 	if (ret)
264 		pr_err("page %lu outside zone [ %lu - %lu ]\n",
265 			pfn, start_pfn, start_pfn + sp);
266 
267 	return ret;
268 }
269 
270 static int page_is_consistent(struct zone *zone, struct page *page)
271 {
272 	if (!pfn_valid_within(page_to_pfn(page)))
273 		return 0;
274 	if (zone != page_zone(page))
275 		return 0;
276 
277 	return 1;
278 }
279 /*
280  * Temporary debugging check for pages not lying within a given zone.
281  */
282 static int bad_range(struct zone *zone, struct page *page)
283 {
284 	if (page_outside_zone_boundaries(zone, page))
285 		return 1;
286 	if (!page_is_consistent(zone, page))
287 		return 1;
288 
289 	return 0;
290 }
291 #else
292 static inline int bad_range(struct zone *zone, struct page *page)
293 {
294 	return 0;
295 }
296 #endif
297 
298 static void bad_page(struct page *page)
299 {
300 	static unsigned long resume;
301 	static unsigned long nr_shown;
302 	static unsigned long nr_unshown;
303 
304 	/* Don't complain about poisoned pages */
305 	if (PageHWPoison(page)) {
306 		page_mapcount_reset(page); /* remove PageBuddy */
307 		return;
308 	}
309 
310 	/*
311 	 * Allow a burst of 60 reports, then keep quiet for that minute;
312 	 * or allow a steady drip of one report per second.
313 	 */
314 	if (nr_shown == 60) {
315 		if (time_before(jiffies, resume)) {
316 			nr_unshown++;
317 			goto out;
318 		}
319 		if (nr_unshown) {
320 			printk(KERN_ALERT
321 			      "BUG: Bad page state: %lu messages suppressed\n",
322 				nr_unshown);
323 			nr_unshown = 0;
324 		}
325 		nr_shown = 0;
326 	}
327 	if (nr_shown++ == 0)
328 		resume = jiffies + 60 * HZ;
329 
330 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
331 		current->comm, page_to_pfn(page));
332 	dump_page(page);
333 
334 	print_modules();
335 	dump_stack();
336 out:
337 	/* Leave bad fields for debug, except PageBuddy could make trouble */
338 	page_mapcount_reset(page); /* remove PageBuddy */
339 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
340 }
341 
342 /*
343  * Higher-order pages are called "compound pages".  They are structured thusly:
344  *
345  * The first PAGE_SIZE page is called the "head page".
346  *
347  * The remaining PAGE_SIZE pages are called "tail pages".
348  *
349  * All pages have PG_compound set.  All tail pages have their ->first_page
350  * pointing at the head page.
351  *
352  * The first tail page's ->lru.next holds the address of the compound page's
353  * put_page() function.  Its ->lru.prev holds the order of allocation.
354  * This usage means that zero-order pages may not be compound.
355  */
356 
357 static void free_compound_page(struct page *page)
358 {
359 	__free_pages_ok(page, compound_order(page));
360 }
361 
362 void prep_compound_page(struct page *page, unsigned long order)
363 {
364 	int i;
365 	int nr_pages = 1 << order;
366 
367 	set_compound_page_dtor(page, free_compound_page);
368 	set_compound_order(page, order);
369 	__SetPageHead(page);
370 	for (i = 1; i < nr_pages; i++) {
371 		struct page *p = page + i;
372 		__SetPageTail(p);
373 		set_page_count(p, 0);
374 		p->first_page = page;
375 	}
376 }
377 
378 /* update __split_huge_page_refcount if you change this function */
379 static int destroy_compound_page(struct page *page, unsigned long order)
380 {
381 	int i;
382 	int nr_pages = 1 << order;
383 	int bad = 0;
384 
385 	if (unlikely(compound_order(page) != order)) {
386 		bad_page(page);
387 		bad++;
388 	}
389 
390 	__ClearPageHead(page);
391 
392 	for (i = 1; i < nr_pages; i++) {
393 		struct page *p = page + i;
394 
395 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
396 			bad_page(page);
397 			bad++;
398 		}
399 		__ClearPageTail(p);
400 	}
401 
402 	return bad;
403 }
404 
405 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
406 {
407 	int i;
408 
409 	/*
410 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
411 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
412 	 */
413 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
414 	for (i = 0; i < (1 << order); i++)
415 		clear_highpage(page + i);
416 }
417 
418 #ifdef CONFIG_DEBUG_PAGEALLOC
419 unsigned int _debug_guardpage_minorder;
420 
421 static int __init debug_guardpage_minorder_setup(char *buf)
422 {
423 	unsigned long res;
424 
425 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
426 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
427 		return 0;
428 	}
429 	_debug_guardpage_minorder = res;
430 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
431 	return 0;
432 }
433 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
434 
435 static inline void set_page_guard_flag(struct page *page)
436 {
437 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
438 }
439 
440 static inline void clear_page_guard_flag(struct page *page)
441 {
442 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
443 }
444 #else
445 static inline void set_page_guard_flag(struct page *page) { }
446 static inline void clear_page_guard_flag(struct page *page) { }
447 #endif
448 
449 static inline void set_page_order(struct page *page, int order)
450 {
451 	set_page_private(page, order);
452 	__SetPageBuddy(page);
453 }
454 
455 static inline void rmv_page_order(struct page *page)
456 {
457 	__ClearPageBuddy(page);
458 	set_page_private(page, 0);
459 }
460 
461 /*
462  * Locate the struct page for both the matching buddy in our
463  * pair (buddy1) and the combined O(n+1) page they form (page).
464  *
465  * 1) Any buddy B1 will have an order O twin B2 which satisfies
466  * the following equation:
467  *     B2 = B1 ^ (1 << O)
468  * For example, if the starting buddy (buddy2) is #8 its order
469  * 1 buddy is #10:
470  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
471  *
472  * 2) Any buddy B will have an order O+1 parent P which
473  * satisfies the following equation:
474  *     P = B & ~(1 << O)
475  *
476  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
477  */
478 static inline unsigned long
479 __find_buddy_index(unsigned long page_idx, unsigned int order)
480 {
481 	return page_idx ^ (1 << order);
482 }
483 
484 /*
485  * This function checks whether a page is free && is the buddy
486  * we can do coalesce a page and its buddy if
487  * (a) the buddy is not in a hole &&
488  * (b) the buddy is in the buddy system &&
489  * (c) a page and its buddy have the same order &&
490  * (d) a page and its buddy are in the same zone.
491  *
492  * For recording whether a page is in the buddy system, we set ->_mapcount
493  * PAGE_BUDDY_MAPCOUNT_VALUE.
494  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
495  * serialized by zone->lock.
496  *
497  * For recording page's order, we use page_private(page).
498  */
499 static inline int page_is_buddy(struct page *page, struct page *buddy,
500 								int order)
501 {
502 	if (!pfn_valid_within(page_to_pfn(buddy)))
503 		return 0;
504 
505 	if (page_zone_id(page) != page_zone_id(buddy))
506 		return 0;
507 
508 	if (page_is_guard(buddy) && page_order(buddy) == order) {
509 		VM_BUG_ON(page_count(buddy) != 0);
510 		return 1;
511 	}
512 
513 	if (PageBuddy(buddy) && page_order(buddy) == order) {
514 		VM_BUG_ON(page_count(buddy) != 0);
515 		return 1;
516 	}
517 	return 0;
518 }
519 
520 /*
521  * Freeing function for a buddy system allocator.
522  *
523  * The concept of a buddy system is to maintain direct-mapped table
524  * (containing bit values) for memory blocks of various "orders".
525  * The bottom level table contains the map for the smallest allocatable
526  * units of memory (here, pages), and each level above it describes
527  * pairs of units from the levels below, hence, "buddies".
528  * At a high level, all that happens here is marking the table entry
529  * at the bottom level available, and propagating the changes upward
530  * as necessary, plus some accounting needed to play nicely with other
531  * parts of the VM system.
532  * At each level, we keep a list of pages, which are heads of continuous
533  * free pages of length of (1 << order) and marked with _mapcount
534  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
535  * field.
536  * So when we are allocating or freeing one, we can derive the state of the
537  * other.  That is, if we allocate a small block, and both were
538  * free, the remainder of the region must be split into blocks.
539  * If a block is freed, and its buddy is also free, then this
540  * triggers coalescing into a block of larger size.
541  *
542  * -- nyc
543  */
544 
545 static inline void __free_one_page(struct page *page,
546 		struct zone *zone, unsigned int order,
547 		int migratetype)
548 {
549 	unsigned long page_idx;
550 	unsigned long combined_idx;
551 	unsigned long uninitialized_var(buddy_idx);
552 	struct page *buddy;
553 
554 	VM_BUG_ON(!zone_is_initialized(zone));
555 
556 	if (unlikely(PageCompound(page)))
557 		if (unlikely(destroy_compound_page(page, order)))
558 			return;
559 
560 	VM_BUG_ON(migratetype == -1);
561 
562 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
563 
564 	VM_BUG_ON(page_idx & ((1 << order) - 1));
565 	VM_BUG_ON(bad_range(zone, page));
566 
567 	while (order < MAX_ORDER-1) {
568 		buddy_idx = __find_buddy_index(page_idx, order);
569 		buddy = page + (buddy_idx - page_idx);
570 		if (!page_is_buddy(page, buddy, order))
571 			break;
572 		/*
573 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
574 		 * merge with it and move up one order.
575 		 */
576 		if (page_is_guard(buddy)) {
577 			clear_page_guard_flag(buddy);
578 			set_page_private(page, 0);
579 			__mod_zone_freepage_state(zone, 1 << order,
580 						  migratetype);
581 		} else {
582 			list_del(&buddy->lru);
583 			zone->free_area[order].nr_free--;
584 			rmv_page_order(buddy);
585 		}
586 		combined_idx = buddy_idx & page_idx;
587 		page = page + (combined_idx - page_idx);
588 		page_idx = combined_idx;
589 		order++;
590 	}
591 	set_page_order(page, order);
592 
593 	/*
594 	 * If this is not the largest possible page, check if the buddy
595 	 * of the next-highest order is free. If it is, it's possible
596 	 * that pages are being freed that will coalesce soon. In case,
597 	 * that is happening, add the free page to the tail of the list
598 	 * so it's less likely to be used soon and more likely to be merged
599 	 * as a higher order page
600 	 */
601 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
602 		struct page *higher_page, *higher_buddy;
603 		combined_idx = buddy_idx & page_idx;
604 		higher_page = page + (combined_idx - page_idx);
605 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
606 		higher_buddy = higher_page + (buddy_idx - combined_idx);
607 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
608 			list_add_tail(&page->lru,
609 				&zone->free_area[order].free_list[migratetype]);
610 			goto out;
611 		}
612 	}
613 
614 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
615 out:
616 	zone->free_area[order].nr_free++;
617 }
618 
619 static inline int free_pages_check(struct page *page)
620 {
621 	if (unlikely(page_mapcount(page) |
622 		(page->mapping != NULL)  |
623 		(atomic_read(&page->_count) != 0) |
624 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
625 		(mem_cgroup_bad_page_check(page)))) {
626 		bad_page(page);
627 		return 1;
628 	}
629 	page_cpupid_reset_last(page);
630 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
631 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
632 	return 0;
633 }
634 
635 /*
636  * Frees a number of pages from the PCP lists
637  * Assumes all pages on list are in same zone, and of same order.
638  * count is the number of pages to free.
639  *
640  * If the zone was previously in an "all pages pinned" state then look to
641  * see if this freeing clears that state.
642  *
643  * And clear the zone's pages_scanned counter, to hold off the "all pages are
644  * pinned" detection logic.
645  */
646 static void free_pcppages_bulk(struct zone *zone, int count,
647 					struct per_cpu_pages *pcp)
648 {
649 	int migratetype = 0;
650 	int batch_free = 0;
651 	int to_free = count;
652 
653 	spin_lock(&zone->lock);
654 	zone->pages_scanned = 0;
655 
656 	while (to_free) {
657 		struct page *page;
658 		struct list_head *list;
659 
660 		/*
661 		 * Remove pages from lists in a round-robin fashion. A
662 		 * batch_free count is maintained that is incremented when an
663 		 * empty list is encountered.  This is so more pages are freed
664 		 * off fuller lists instead of spinning excessively around empty
665 		 * lists
666 		 */
667 		do {
668 			batch_free++;
669 			if (++migratetype == MIGRATE_PCPTYPES)
670 				migratetype = 0;
671 			list = &pcp->lists[migratetype];
672 		} while (list_empty(list));
673 
674 		/* This is the only non-empty list. Free them all. */
675 		if (batch_free == MIGRATE_PCPTYPES)
676 			batch_free = to_free;
677 
678 		do {
679 			int mt;	/* migratetype of the to-be-freed page */
680 
681 			page = list_entry(list->prev, struct page, lru);
682 			/* must delete as __free_one_page list manipulates */
683 			list_del(&page->lru);
684 			mt = get_freepage_migratetype(page);
685 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
686 			__free_one_page(page, zone, 0, mt);
687 			trace_mm_page_pcpu_drain(page, 0, mt);
688 			if (likely(!is_migrate_isolate_page(page))) {
689 				__mod_zone_page_state(zone, NR_FREE_PAGES, 1);
690 				if (is_migrate_cma(mt))
691 					__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
692 			}
693 		} while (--to_free && --batch_free && !list_empty(list));
694 	}
695 	spin_unlock(&zone->lock);
696 }
697 
698 static void free_one_page(struct zone *zone, struct page *page, int order,
699 				int migratetype)
700 {
701 	spin_lock(&zone->lock);
702 	zone->pages_scanned = 0;
703 
704 	__free_one_page(page, zone, order, migratetype);
705 	if (unlikely(!is_migrate_isolate(migratetype)))
706 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
707 	spin_unlock(&zone->lock);
708 }
709 
710 static bool free_pages_prepare(struct page *page, unsigned int order)
711 {
712 	int i;
713 	int bad = 0;
714 
715 	trace_mm_page_free(page, order);
716 	kmemcheck_free_shadow(page, order);
717 
718 	if (PageAnon(page))
719 		page->mapping = NULL;
720 	for (i = 0; i < (1 << order); i++)
721 		bad += free_pages_check(page + i);
722 	if (bad)
723 		return false;
724 
725 	if (!PageHighMem(page)) {
726 		debug_check_no_locks_freed(page_address(page),
727 					   PAGE_SIZE << order);
728 		debug_check_no_obj_freed(page_address(page),
729 					   PAGE_SIZE << order);
730 	}
731 	arch_free_page(page, order);
732 	kernel_map_pages(page, 1 << order, 0);
733 
734 	return true;
735 }
736 
737 static void __free_pages_ok(struct page *page, unsigned int order)
738 {
739 	unsigned long flags;
740 	int migratetype;
741 
742 	if (!free_pages_prepare(page, order))
743 		return;
744 
745 	local_irq_save(flags);
746 	__count_vm_events(PGFREE, 1 << order);
747 	migratetype = get_pageblock_migratetype(page);
748 	set_freepage_migratetype(page, migratetype);
749 	free_one_page(page_zone(page), page, order, migratetype);
750 	local_irq_restore(flags);
751 }
752 
753 void __init __free_pages_bootmem(struct page *page, unsigned int order)
754 {
755 	unsigned int nr_pages = 1 << order;
756 	struct page *p = page;
757 	unsigned int loop;
758 
759 	prefetchw(p);
760 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
761 		prefetchw(p + 1);
762 		__ClearPageReserved(p);
763 		set_page_count(p, 0);
764 	}
765 	__ClearPageReserved(p);
766 	set_page_count(p, 0);
767 
768 	page_zone(page)->managed_pages += nr_pages;
769 	set_page_refcounted(page);
770 	__free_pages(page, order);
771 }
772 
773 #ifdef CONFIG_CMA
774 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
775 void __init init_cma_reserved_pageblock(struct page *page)
776 {
777 	unsigned i = pageblock_nr_pages;
778 	struct page *p = page;
779 
780 	do {
781 		__ClearPageReserved(p);
782 		set_page_count(p, 0);
783 	} while (++p, --i);
784 
785 	set_page_refcounted(page);
786 	set_pageblock_migratetype(page, MIGRATE_CMA);
787 	__free_pages(page, pageblock_order);
788 	adjust_managed_page_count(page, pageblock_nr_pages);
789 }
790 #endif
791 
792 /*
793  * The order of subdivision here is critical for the IO subsystem.
794  * Please do not alter this order without good reasons and regression
795  * testing. Specifically, as large blocks of memory are subdivided,
796  * the order in which smaller blocks are delivered depends on the order
797  * they're subdivided in this function. This is the primary factor
798  * influencing the order in which pages are delivered to the IO
799  * subsystem according to empirical testing, and this is also justified
800  * by considering the behavior of a buddy system containing a single
801  * large block of memory acted on by a series of small allocations.
802  * This behavior is a critical factor in sglist merging's success.
803  *
804  * -- nyc
805  */
806 static inline void expand(struct zone *zone, struct page *page,
807 	int low, int high, struct free_area *area,
808 	int migratetype)
809 {
810 	unsigned long size = 1 << high;
811 
812 	while (high > low) {
813 		area--;
814 		high--;
815 		size >>= 1;
816 		VM_BUG_ON(bad_range(zone, &page[size]));
817 
818 #ifdef CONFIG_DEBUG_PAGEALLOC
819 		if (high < debug_guardpage_minorder()) {
820 			/*
821 			 * Mark as guard pages (or page), that will allow to
822 			 * merge back to allocator when buddy will be freed.
823 			 * Corresponding page table entries will not be touched,
824 			 * pages will stay not present in virtual address space
825 			 */
826 			INIT_LIST_HEAD(&page[size].lru);
827 			set_page_guard_flag(&page[size]);
828 			set_page_private(&page[size], high);
829 			/* Guard pages are not available for any usage */
830 			__mod_zone_freepage_state(zone, -(1 << high),
831 						  migratetype);
832 			continue;
833 		}
834 #endif
835 		list_add(&page[size].lru, &area->free_list[migratetype]);
836 		area->nr_free++;
837 		set_page_order(&page[size], high);
838 	}
839 }
840 
841 /*
842  * This page is about to be returned from the page allocator
843  */
844 static inline int check_new_page(struct page *page)
845 {
846 	if (unlikely(page_mapcount(page) |
847 		(page->mapping != NULL)  |
848 		(atomic_read(&page->_count) != 0)  |
849 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
850 		(mem_cgroup_bad_page_check(page)))) {
851 		bad_page(page);
852 		return 1;
853 	}
854 	return 0;
855 }
856 
857 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
858 {
859 	int i;
860 
861 	for (i = 0; i < (1 << order); i++) {
862 		struct page *p = page + i;
863 		if (unlikely(check_new_page(p)))
864 			return 1;
865 	}
866 
867 	set_page_private(page, 0);
868 	set_page_refcounted(page);
869 
870 	arch_alloc_page(page, order);
871 	kernel_map_pages(page, 1 << order, 1);
872 
873 	if (gfp_flags & __GFP_ZERO)
874 		prep_zero_page(page, order, gfp_flags);
875 
876 	if (order && (gfp_flags & __GFP_COMP))
877 		prep_compound_page(page, order);
878 
879 	return 0;
880 }
881 
882 /*
883  * Go through the free lists for the given migratetype and remove
884  * the smallest available page from the freelists
885  */
886 static inline
887 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
888 						int migratetype)
889 {
890 	unsigned int current_order;
891 	struct free_area *area;
892 	struct page *page;
893 
894 	/* Find a page of the appropriate size in the preferred list */
895 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
896 		area = &(zone->free_area[current_order]);
897 		if (list_empty(&area->free_list[migratetype]))
898 			continue;
899 
900 		page = list_entry(area->free_list[migratetype].next,
901 							struct page, lru);
902 		list_del(&page->lru);
903 		rmv_page_order(page);
904 		area->nr_free--;
905 		expand(zone, page, order, current_order, area, migratetype);
906 		return page;
907 	}
908 
909 	return NULL;
910 }
911 
912 
913 /*
914  * This array describes the order lists are fallen back to when
915  * the free lists for the desirable migrate type are depleted
916  */
917 static int fallbacks[MIGRATE_TYPES][4] = {
918 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
919 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
920 #ifdef CONFIG_CMA
921 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
922 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
923 #else
924 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
925 #endif
926 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
927 #ifdef CONFIG_MEMORY_ISOLATION
928 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
929 #endif
930 };
931 
932 /*
933  * Move the free pages in a range to the free lists of the requested type.
934  * Note that start_page and end_pages are not aligned on a pageblock
935  * boundary. If alignment is required, use move_freepages_block()
936  */
937 int move_freepages(struct zone *zone,
938 			  struct page *start_page, struct page *end_page,
939 			  int migratetype)
940 {
941 	struct page *page;
942 	unsigned long order;
943 	int pages_moved = 0;
944 
945 #ifndef CONFIG_HOLES_IN_ZONE
946 	/*
947 	 * page_zone is not safe to call in this context when
948 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
949 	 * anyway as we check zone boundaries in move_freepages_block().
950 	 * Remove at a later date when no bug reports exist related to
951 	 * grouping pages by mobility
952 	 */
953 	BUG_ON(page_zone(start_page) != page_zone(end_page));
954 #endif
955 
956 	for (page = start_page; page <= end_page;) {
957 		/* Make sure we are not inadvertently changing nodes */
958 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
959 
960 		if (!pfn_valid_within(page_to_pfn(page))) {
961 			page++;
962 			continue;
963 		}
964 
965 		if (!PageBuddy(page)) {
966 			page++;
967 			continue;
968 		}
969 
970 		order = page_order(page);
971 		list_move(&page->lru,
972 			  &zone->free_area[order].free_list[migratetype]);
973 		set_freepage_migratetype(page, migratetype);
974 		page += 1 << order;
975 		pages_moved += 1 << order;
976 	}
977 
978 	return pages_moved;
979 }
980 
981 int move_freepages_block(struct zone *zone, struct page *page,
982 				int migratetype)
983 {
984 	unsigned long start_pfn, end_pfn;
985 	struct page *start_page, *end_page;
986 
987 	start_pfn = page_to_pfn(page);
988 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
989 	start_page = pfn_to_page(start_pfn);
990 	end_page = start_page + pageblock_nr_pages - 1;
991 	end_pfn = start_pfn + pageblock_nr_pages - 1;
992 
993 	/* Do not cross zone boundaries */
994 	if (!zone_spans_pfn(zone, start_pfn))
995 		start_page = page;
996 	if (!zone_spans_pfn(zone, end_pfn))
997 		return 0;
998 
999 	return move_freepages(zone, start_page, end_page, migratetype);
1000 }
1001 
1002 static void change_pageblock_range(struct page *pageblock_page,
1003 					int start_order, int migratetype)
1004 {
1005 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1006 
1007 	while (nr_pageblocks--) {
1008 		set_pageblock_migratetype(pageblock_page, migratetype);
1009 		pageblock_page += pageblock_nr_pages;
1010 	}
1011 }
1012 
1013 /*
1014  * If breaking a large block of pages, move all free pages to the preferred
1015  * allocation list. If falling back for a reclaimable kernel allocation, be
1016  * more aggressive about taking ownership of free pages.
1017  *
1018  * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1019  * nor move CMA pages to different free lists. We don't want unmovable pages
1020  * to be allocated from MIGRATE_CMA areas.
1021  *
1022  * Returns the new migratetype of the pageblock (or the same old migratetype
1023  * if it was unchanged).
1024  */
1025 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1026 				  int start_type, int fallback_type)
1027 {
1028 	int current_order = page_order(page);
1029 
1030 	/*
1031 	 * When borrowing from MIGRATE_CMA, we need to release the excess
1032 	 * buddy pages to CMA itself.
1033 	 */
1034 	if (is_migrate_cma(fallback_type))
1035 		return fallback_type;
1036 
1037 	/* Take ownership for orders >= pageblock_order */
1038 	if (current_order >= pageblock_order) {
1039 		change_pageblock_range(page, current_order, start_type);
1040 		return start_type;
1041 	}
1042 
1043 	if (current_order >= pageblock_order / 2 ||
1044 	    start_type == MIGRATE_RECLAIMABLE ||
1045 	    page_group_by_mobility_disabled) {
1046 		int pages;
1047 
1048 		pages = move_freepages_block(zone, page, start_type);
1049 
1050 		/* Claim the whole block if over half of it is free */
1051 		if (pages >= (1 << (pageblock_order-1)) ||
1052 				page_group_by_mobility_disabled) {
1053 
1054 			set_pageblock_migratetype(page, start_type);
1055 			return start_type;
1056 		}
1057 
1058 	}
1059 
1060 	return fallback_type;
1061 }
1062 
1063 /* Remove an element from the buddy allocator from the fallback list */
1064 static inline struct page *
1065 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1066 {
1067 	struct free_area *area;
1068 	int current_order;
1069 	struct page *page;
1070 	int migratetype, new_type, i;
1071 
1072 	/* Find the largest possible block of pages in the other list */
1073 	for (current_order = MAX_ORDER-1; current_order >= order;
1074 						--current_order) {
1075 		for (i = 0;; i++) {
1076 			migratetype = fallbacks[start_migratetype][i];
1077 
1078 			/* MIGRATE_RESERVE handled later if necessary */
1079 			if (migratetype == MIGRATE_RESERVE)
1080 				break;
1081 
1082 			area = &(zone->free_area[current_order]);
1083 			if (list_empty(&area->free_list[migratetype]))
1084 				continue;
1085 
1086 			page = list_entry(area->free_list[migratetype].next,
1087 					struct page, lru);
1088 			area->nr_free--;
1089 
1090 			new_type = try_to_steal_freepages(zone, page,
1091 							  start_migratetype,
1092 							  migratetype);
1093 
1094 			/* Remove the page from the freelists */
1095 			list_del(&page->lru);
1096 			rmv_page_order(page);
1097 
1098 			expand(zone, page, order, current_order, area,
1099 			       new_type);
1100 
1101 			trace_mm_page_alloc_extfrag(page, order, current_order,
1102 				start_migratetype, migratetype, new_type);
1103 
1104 			return page;
1105 		}
1106 	}
1107 
1108 	return NULL;
1109 }
1110 
1111 /*
1112  * Do the hard work of removing an element from the buddy allocator.
1113  * Call me with the zone->lock already held.
1114  */
1115 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1116 						int migratetype)
1117 {
1118 	struct page *page;
1119 
1120 retry_reserve:
1121 	page = __rmqueue_smallest(zone, order, migratetype);
1122 
1123 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1124 		page = __rmqueue_fallback(zone, order, migratetype);
1125 
1126 		/*
1127 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1128 		 * is used because __rmqueue_smallest is an inline function
1129 		 * and we want just one call site
1130 		 */
1131 		if (!page) {
1132 			migratetype = MIGRATE_RESERVE;
1133 			goto retry_reserve;
1134 		}
1135 	}
1136 
1137 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1138 	return page;
1139 }
1140 
1141 /*
1142  * Obtain a specified number of elements from the buddy allocator, all under
1143  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1144  * Returns the number of new pages which were placed at *list.
1145  */
1146 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1147 			unsigned long count, struct list_head *list,
1148 			int migratetype, int cold)
1149 {
1150 	int mt = migratetype, i;
1151 
1152 	spin_lock(&zone->lock);
1153 	for (i = 0; i < count; ++i) {
1154 		struct page *page = __rmqueue(zone, order, migratetype);
1155 		if (unlikely(page == NULL))
1156 			break;
1157 
1158 		/*
1159 		 * Split buddy pages returned by expand() are received here
1160 		 * in physical page order. The page is added to the callers and
1161 		 * list and the list head then moves forward. From the callers
1162 		 * perspective, the linked list is ordered by page number in
1163 		 * some conditions. This is useful for IO devices that can
1164 		 * merge IO requests if the physical pages are ordered
1165 		 * properly.
1166 		 */
1167 		if (likely(cold == 0))
1168 			list_add(&page->lru, list);
1169 		else
1170 			list_add_tail(&page->lru, list);
1171 		if (IS_ENABLED(CONFIG_CMA)) {
1172 			mt = get_pageblock_migratetype(page);
1173 			if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1174 				mt = migratetype;
1175 		}
1176 		set_freepage_migratetype(page, mt);
1177 		list = &page->lru;
1178 		if (is_migrate_cma(mt))
1179 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1180 					      -(1 << order));
1181 	}
1182 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1183 	spin_unlock(&zone->lock);
1184 	return i;
1185 }
1186 
1187 #ifdef CONFIG_NUMA
1188 /*
1189  * Called from the vmstat counter updater to drain pagesets of this
1190  * currently executing processor on remote nodes after they have
1191  * expired.
1192  *
1193  * Note that this function must be called with the thread pinned to
1194  * a single processor.
1195  */
1196 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1197 {
1198 	unsigned long flags;
1199 	int to_drain;
1200 	unsigned long batch;
1201 
1202 	local_irq_save(flags);
1203 	batch = ACCESS_ONCE(pcp->batch);
1204 	if (pcp->count >= batch)
1205 		to_drain = batch;
1206 	else
1207 		to_drain = pcp->count;
1208 	if (to_drain > 0) {
1209 		free_pcppages_bulk(zone, to_drain, pcp);
1210 		pcp->count -= to_drain;
1211 	}
1212 	local_irq_restore(flags);
1213 }
1214 #endif
1215 
1216 /*
1217  * Drain pages of the indicated processor.
1218  *
1219  * The processor must either be the current processor and the
1220  * thread pinned to the current processor or a processor that
1221  * is not online.
1222  */
1223 static void drain_pages(unsigned int cpu)
1224 {
1225 	unsigned long flags;
1226 	struct zone *zone;
1227 
1228 	for_each_populated_zone(zone) {
1229 		struct per_cpu_pageset *pset;
1230 		struct per_cpu_pages *pcp;
1231 
1232 		local_irq_save(flags);
1233 		pset = per_cpu_ptr(zone->pageset, cpu);
1234 
1235 		pcp = &pset->pcp;
1236 		if (pcp->count) {
1237 			free_pcppages_bulk(zone, pcp->count, pcp);
1238 			pcp->count = 0;
1239 		}
1240 		local_irq_restore(flags);
1241 	}
1242 }
1243 
1244 /*
1245  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1246  */
1247 void drain_local_pages(void *arg)
1248 {
1249 	drain_pages(smp_processor_id());
1250 }
1251 
1252 /*
1253  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1254  *
1255  * Note that this code is protected against sending an IPI to an offline
1256  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1257  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1258  * nothing keeps CPUs from showing up after we populated the cpumask and
1259  * before the call to on_each_cpu_mask().
1260  */
1261 void drain_all_pages(void)
1262 {
1263 	int cpu;
1264 	struct per_cpu_pageset *pcp;
1265 	struct zone *zone;
1266 
1267 	/*
1268 	 * Allocate in the BSS so we wont require allocation in
1269 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1270 	 */
1271 	static cpumask_t cpus_with_pcps;
1272 
1273 	/*
1274 	 * We don't care about racing with CPU hotplug event
1275 	 * as offline notification will cause the notified
1276 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1277 	 * disables preemption as part of its processing
1278 	 */
1279 	for_each_online_cpu(cpu) {
1280 		bool has_pcps = false;
1281 		for_each_populated_zone(zone) {
1282 			pcp = per_cpu_ptr(zone->pageset, cpu);
1283 			if (pcp->pcp.count) {
1284 				has_pcps = true;
1285 				break;
1286 			}
1287 		}
1288 		if (has_pcps)
1289 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1290 		else
1291 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1292 	}
1293 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1294 }
1295 
1296 #ifdef CONFIG_HIBERNATION
1297 
1298 void mark_free_pages(struct zone *zone)
1299 {
1300 	unsigned long pfn, max_zone_pfn;
1301 	unsigned long flags;
1302 	int order, t;
1303 	struct list_head *curr;
1304 
1305 	if (zone_is_empty(zone))
1306 		return;
1307 
1308 	spin_lock_irqsave(&zone->lock, flags);
1309 
1310 	max_zone_pfn = zone_end_pfn(zone);
1311 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1312 		if (pfn_valid(pfn)) {
1313 			struct page *page = pfn_to_page(pfn);
1314 
1315 			if (!swsusp_page_is_forbidden(page))
1316 				swsusp_unset_page_free(page);
1317 		}
1318 
1319 	for_each_migratetype_order(order, t) {
1320 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1321 			unsigned long i;
1322 
1323 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1324 			for (i = 0; i < (1UL << order); i++)
1325 				swsusp_set_page_free(pfn_to_page(pfn + i));
1326 		}
1327 	}
1328 	spin_unlock_irqrestore(&zone->lock, flags);
1329 }
1330 #endif /* CONFIG_PM */
1331 
1332 /*
1333  * Free a 0-order page
1334  * cold == 1 ? free a cold page : free a hot page
1335  */
1336 void free_hot_cold_page(struct page *page, int cold)
1337 {
1338 	struct zone *zone = page_zone(page);
1339 	struct per_cpu_pages *pcp;
1340 	unsigned long flags;
1341 	int migratetype;
1342 
1343 	if (!free_pages_prepare(page, 0))
1344 		return;
1345 
1346 	migratetype = get_pageblock_migratetype(page);
1347 	set_freepage_migratetype(page, migratetype);
1348 	local_irq_save(flags);
1349 	__count_vm_event(PGFREE);
1350 
1351 	/*
1352 	 * We only track unmovable, reclaimable and movable on pcp lists.
1353 	 * Free ISOLATE pages back to the allocator because they are being
1354 	 * offlined but treat RESERVE as movable pages so we can get those
1355 	 * areas back if necessary. Otherwise, we may have to free
1356 	 * excessively into the page allocator
1357 	 */
1358 	if (migratetype >= MIGRATE_PCPTYPES) {
1359 		if (unlikely(is_migrate_isolate(migratetype))) {
1360 			free_one_page(zone, page, 0, migratetype);
1361 			goto out;
1362 		}
1363 		migratetype = MIGRATE_MOVABLE;
1364 	}
1365 
1366 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1367 	if (cold)
1368 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1369 	else
1370 		list_add(&page->lru, &pcp->lists[migratetype]);
1371 	pcp->count++;
1372 	if (pcp->count >= pcp->high) {
1373 		unsigned long batch = ACCESS_ONCE(pcp->batch);
1374 		free_pcppages_bulk(zone, batch, pcp);
1375 		pcp->count -= batch;
1376 	}
1377 
1378 out:
1379 	local_irq_restore(flags);
1380 }
1381 
1382 /*
1383  * Free a list of 0-order pages
1384  */
1385 void free_hot_cold_page_list(struct list_head *list, int cold)
1386 {
1387 	struct page *page, *next;
1388 
1389 	list_for_each_entry_safe(page, next, list, lru) {
1390 		trace_mm_page_free_batched(page, cold);
1391 		free_hot_cold_page(page, cold);
1392 	}
1393 }
1394 
1395 /*
1396  * split_page takes a non-compound higher-order page, and splits it into
1397  * n (1<<order) sub-pages: page[0..n]
1398  * Each sub-page must be freed individually.
1399  *
1400  * Note: this is probably too low level an operation for use in drivers.
1401  * Please consult with lkml before using this in your driver.
1402  */
1403 void split_page(struct page *page, unsigned int order)
1404 {
1405 	int i;
1406 
1407 	VM_BUG_ON(PageCompound(page));
1408 	VM_BUG_ON(!page_count(page));
1409 
1410 #ifdef CONFIG_KMEMCHECK
1411 	/*
1412 	 * Split shadow pages too, because free(page[0]) would
1413 	 * otherwise free the whole shadow.
1414 	 */
1415 	if (kmemcheck_page_is_tracked(page))
1416 		split_page(virt_to_page(page[0].shadow), order);
1417 #endif
1418 
1419 	for (i = 1; i < (1 << order); i++)
1420 		set_page_refcounted(page + i);
1421 }
1422 EXPORT_SYMBOL_GPL(split_page);
1423 
1424 static int __isolate_free_page(struct page *page, unsigned int order)
1425 {
1426 	unsigned long watermark;
1427 	struct zone *zone;
1428 	int mt;
1429 
1430 	BUG_ON(!PageBuddy(page));
1431 
1432 	zone = page_zone(page);
1433 	mt = get_pageblock_migratetype(page);
1434 
1435 	if (!is_migrate_isolate(mt)) {
1436 		/* Obey watermarks as if the page was being allocated */
1437 		watermark = low_wmark_pages(zone) + (1 << order);
1438 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1439 			return 0;
1440 
1441 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1442 	}
1443 
1444 	/* Remove page from free list */
1445 	list_del(&page->lru);
1446 	zone->free_area[order].nr_free--;
1447 	rmv_page_order(page);
1448 
1449 	/* Set the pageblock if the isolated page is at least a pageblock */
1450 	if (order >= pageblock_order - 1) {
1451 		struct page *endpage = page + (1 << order) - 1;
1452 		for (; page < endpage; page += pageblock_nr_pages) {
1453 			int mt = get_pageblock_migratetype(page);
1454 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1455 				set_pageblock_migratetype(page,
1456 							  MIGRATE_MOVABLE);
1457 		}
1458 	}
1459 
1460 	return 1UL << order;
1461 }
1462 
1463 /*
1464  * Similar to split_page except the page is already free. As this is only
1465  * being used for migration, the migratetype of the block also changes.
1466  * As this is called with interrupts disabled, the caller is responsible
1467  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1468  * are enabled.
1469  *
1470  * Note: this is probably too low level an operation for use in drivers.
1471  * Please consult with lkml before using this in your driver.
1472  */
1473 int split_free_page(struct page *page)
1474 {
1475 	unsigned int order;
1476 	int nr_pages;
1477 
1478 	order = page_order(page);
1479 
1480 	nr_pages = __isolate_free_page(page, order);
1481 	if (!nr_pages)
1482 		return 0;
1483 
1484 	/* Split into individual pages */
1485 	set_page_refcounted(page);
1486 	split_page(page, order);
1487 	return nr_pages;
1488 }
1489 
1490 /*
1491  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1492  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1493  * or two.
1494  */
1495 static inline
1496 struct page *buffered_rmqueue(struct zone *preferred_zone,
1497 			struct zone *zone, int order, gfp_t gfp_flags,
1498 			int migratetype)
1499 {
1500 	unsigned long flags;
1501 	struct page *page;
1502 	int cold = !!(gfp_flags & __GFP_COLD);
1503 
1504 again:
1505 	if (likely(order == 0)) {
1506 		struct per_cpu_pages *pcp;
1507 		struct list_head *list;
1508 
1509 		local_irq_save(flags);
1510 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1511 		list = &pcp->lists[migratetype];
1512 		if (list_empty(list)) {
1513 			pcp->count += rmqueue_bulk(zone, 0,
1514 					pcp->batch, list,
1515 					migratetype, cold);
1516 			if (unlikely(list_empty(list)))
1517 				goto failed;
1518 		}
1519 
1520 		if (cold)
1521 			page = list_entry(list->prev, struct page, lru);
1522 		else
1523 			page = list_entry(list->next, struct page, lru);
1524 
1525 		list_del(&page->lru);
1526 		pcp->count--;
1527 	} else {
1528 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1529 			/*
1530 			 * __GFP_NOFAIL is not to be used in new code.
1531 			 *
1532 			 * All __GFP_NOFAIL callers should be fixed so that they
1533 			 * properly detect and handle allocation failures.
1534 			 *
1535 			 * We most definitely don't want callers attempting to
1536 			 * allocate greater than order-1 page units with
1537 			 * __GFP_NOFAIL.
1538 			 */
1539 			WARN_ON_ONCE(order > 1);
1540 		}
1541 		spin_lock_irqsave(&zone->lock, flags);
1542 		page = __rmqueue(zone, order, migratetype);
1543 		spin_unlock(&zone->lock);
1544 		if (!page)
1545 			goto failed;
1546 		__mod_zone_freepage_state(zone, -(1 << order),
1547 					  get_pageblock_migratetype(page));
1548 	}
1549 
1550 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1551 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1552 	zone_statistics(preferred_zone, zone, gfp_flags);
1553 	local_irq_restore(flags);
1554 
1555 	VM_BUG_ON(bad_range(zone, page));
1556 	if (prep_new_page(page, order, gfp_flags))
1557 		goto again;
1558 	return page;
1559 
1560 failed:
1561 	local_irq_restore(flags);
1562 	return NULL;
1563 }
1564 
1565 #ifdef CONFIG_FAIL_PAGE_ALLOC
1566 
1567 static struct {
1568 	struct fault_attr attr;
1569 
1570 	u32 ignore_gfp_highmem;
1571 	u32 ignore_gfp_wait;
1572 	u32 min_order;
1573 } fail_page_alloc = {
1574 	.attr = FAULT_ATTR_INITIALIZER,
1575 	.ignore_gfp_wait = 1,
1576 	.ignore_gfp_highmem = 1,
1577 	.min_order = 1,
1578 };
1579 
1580 static int __init setup_fail_page_alloc(char *str)
1581 {
1582 	return setup_fault_attr(&fail_page_alloc.attr, str);
1583 }
1584 __setup("fail_page_alloc=", setup_fail_page_alloc);
1585 
1586 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1587 {
1588 	if (order < fail_page_alloc.min_order)
1589 		return false;
1590 	if (gfp_mask & __GFP_NOFAIL)
1591 		return false;
1592 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1593 		return false;
1594 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1595 		return false;
1596 
1597 	return should_fail(&fail_page_alloc.attr, 1 << order);
1598 }
1599 
1600 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1601 
1602 static int __init fail_page_alloc_debugfs(void)
1603 {
1604 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1605 	struct dentry *dir;
1606 
1607 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1608 					&fail_page_alloc.attr);
1609 	if (IS_ERR(dir))
1610 		return PTR_ERR(dir);
1611 
1612 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1613 				&fail_page_alloc.ignore_gfp_wait))
1614 		goto fail;
1615 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1616 				&fail_page_alloc.ignore_gfp_highmem))
1617 		goto fail;
1618 	if (!debugfs_create_u32("min-order", mode, dir,
1619 				&fail_page_alloc.min_order))
1620 		goto fail;
1621 
1622 	return 0;
1623 fail:
1624 	debugfs_remove_recursive(dir);
1625 
1626 	return -ENOMEM;
1627 }
1628 
1629 late_initcall(fail_page_alloc_debugfs);
1630 
1631 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1632 
1633 #else /* CONFIG_FAIL_PAGE_ALLOC */
1634 
1635 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1636 {
1637 	return false;
1638 }
1639 
1640 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1641 
1642 /*
1643  * Return true if free pages are above 'mark'. This takes into account the order
1644  * of the allocation.
1645  */
1646 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1647 		      int classzone_idx, int alloc_flags, long free_pages)
1648 {
1649 	/* free_pages my go negative - that's OK */
1650 	long min = mark;
1651 	long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1652 	int o;
1653 	long free_cma = 0;
1654 
1655 	free_pages -= (1 << order) - 1;
1656 	if (alloc_flags & ALLOC_HIGH)
1657 		min -= min / 2;
1658 	if (alloc_flags & ALLOC_HARDER)
1659 		min -= min / 4;
1660 #ifdef CONFIG_CMA
1661 	/* If allocation can't use CMA areas don't use free CMA pages */
1662 	if (!(alloc_flags & ALLOC_CMA))
1663 		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1664 #endif
1665 
1666 	if (free_pages - free_cma <= min + lowmem_reserve)
1667 		return false;
1668 	for (o = 0; o < order; o++) {
1669 		/* At the next order, this order's pages become unavailable */
1670 		free_pages -= z->free_area[o].nr_free << o;
1671 
1672 		/* Require fewer higher order pages to be free */
1673 		min >>= 1;
1674 
1675 		if (free_pages <= min)
1676 			return false;
1677 	}
1678 	return true;
1679 }
1680 
1681 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1682 		      int classzone_idx, int alloc_flags)
1683 {
1684 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1685 					zone_page_state(z, NR_FREE_PAGES));
1686 }
1687 
1688 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1689 		      int classzone_idx, int alloc_flags)
1690 {
1691 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1692 
1693 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1694 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1695 
1696 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1697 								free_pages);
1698 }
1699 
1700 #ifdef CONFIG_NUMA
1701 /*
1702  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1703  * skip over zones that are not allowed by the cpuset, or that have
1704  * been recently (in last second) found to be nearly full.  See further
1705  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1706  * that have to skip over a lot of full or unallowed zones.
1707  *
1708  * If the zonelist cache is present in the passed zonelist, then
1709  * returns a pointer to the allowed node mask (either the current
1710  * tasks mems_allowed, or node_states[N_MEMORY].)
1711  *
1712  * If the zonelist cache is not available for this zonelist, does
1713  * nothing and returns NULL.
1714  *
1715  * If the fullzones BITMAP in the zonelist cache is stale (more than
1716  * a second since last zap'd) then we zap it out (clear its bits.)
1717  *
1718  * We hold off even calling zlc_setup, until after we've checked the
1719  * first zone in the zonelist, on the theory that most allocations will
1720  * be satisfied from that first zone, so best to examine that zone as
1721  * quickly as we can.
1722  */
1723 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1724 {
1725 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1726 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1727 
1728 	zlc = zonelist->zlcache_ptr;
1729 	if (!zlc)
1730 		return NULL;
1731 
1732 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1733 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1734 		zlc->last_full_zap = jiffies;
1735 	}
1736 
1737 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1738 					&cpuset_current_mems_allowed :
1739 					&node_states[N_MEMORY];
1740 	return allowednodes;
1741 }
1742 
1743 /*
1744  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1745  * if it is worth looking at further for free memory:
1746  *  1) Check that the zone isn't thought to be full (doesn't have its
1747  *     bit set in the zonelist_cache fullzones BITMAP).
1748  *  2) Check that the zones node (obtained from the zonelist_cache
1749  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1750  * Return true (non-zero) if zone is worth looking at further, or
1751  * else return false (zero) if it is not.
1752  *
1753  * This check -ignores- the distinction between various watermarks,
1754  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1755  * found to be full for any variation of these watermarks, it will
1756  * be considered full for up to one second by all requests, unless
1757  * we are so low on memory on all allowed nodes that we are forced
1758  * into the second scan of the zonelist.
1759  *
1760  * In the second scan we ignore this zonelist cache and exactly
1761  * apply the watermarks to all zones, even it is slower to do so.
1762  * We are low on memory in the second scan, and should leave no stone
1763  * unturned looking for a free page.
1764  */
1765 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1766 						nodemask_t *allowednodes)
1767 {
1768 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1769 	int i;				/* index of *z in zonelist zones */
1770 	int n;				/* node that zone *z is on */
1771 
1772 	zlc = zonelist->zlcache_ptr;
1773 	if (!zlc)
1774 		return 1;
1775 
1776 	i = z - zonelist->_zonerefs;
1777 	n = zlc->z_to_n[i];
1778 
1779 	/* This zone is worth trying if it is allowed but not full */
1780 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1781 }
1782 
1783 /*
1784  * Given 'z' scanning a zonelist, set the corresponding bit in
1785  * zlc->fullzones, so that subsequent attempts to allocate a page
1786  * from that zone don't waste time re-examining it.
1787  */
1788 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1789 {
1790 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1791 	int i;				/* index of *z in zonelist zones */
1792 
1793 	zlc = zonelist->zlcache_ptr;
1794 	if (!zlc)
1795 		return;
1796 
1797 	i = z - zonelist->_zonerefs;
1798 
1799 	set_bit(i, zlc->fullzones);
1800 }
1801 
1802 /*
1803  * clear all zones full, called after direct reclaim makes progress so that
1804  * a zone that was recently full is not skipped over for up to a second
1805  */
1806 static void zlc_clear_zones_full(struct zonelist *zonelist)
1807 {
1808 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1809 
1810 	zlc = zonelist->zlcache_ptr;
1811 	if (!zlc)
1812 		return;
1813 
1814 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1815 }
1816 
1817 static bool zone_local(struct zone *local_zone, struct zone *zone)
1818 {
1819 	return local_zone->node == zone->node;
1820 }
1821 
1822 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1823 {
1824 	return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1825 }
1826 
1827 static void __paginginit init_zone_allows_reclaim(int nid)
1828 {
1829 	int i;
1830 
1831 	for_each_online_node(i)
1832 		if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1833 			node_set(i, NODE_DATA(nid)->reclaim_nodes);
1834 		else
1835 			zone_reclaim_mode = 1;
1836 }
1837 
1838 #else	/* CONFIG_NUMA */
1839 
1840 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1841 {
1842 	return NULL;
1843 }
1844 
1845 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1846 				nodemask_t *allowednodes)
1847 {
1848 	return 1;
1849 }
1850 
1851 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1852 {
1853 }
1854 
1855 static void zlc_clear_zones_full(struct zonelist *zonelist)
1856 {
1857 }
1858 
1859 static bool zone_local(struct zone *local_zone, struct zone *zone)
1860 {
1861 	return true;
1862 }
1863 
1864 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1865 {
1866 	return true;
1867 }
1868 
1869 static inline void init_zone_allows_reclaim(int nid)
1870 {
1871 }
1872 #endif	/* CONFIG_NUMA */
1873 
1874 /*
1875  * get_page_from_freelist goes through the zonelist trying to allocate
1876  * a page.
1877  */
1878 static struct page *
1879 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1880 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1881 		struct zone *preferred_zone, int migratetype)
1882 {
1883 	struct zoneref *z;
1884 	struct page *page = NULL;
1885 	int classzone_idx;
1886 	struct zone *zone;
1887 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1888 	int zlc_active = 0;		/* set if using zonelist_cache */
1889 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1890 
1891 	classzone_idx = zone_idx(preferred_zone);
1892 zonelist_scan:
1893 	/*
1894 	 * Scan zonelist, looking for a zone with enough free.
1895 	 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1896 	 */
1897 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1898 						high_zoneidx, nodemask) {
1899 		unsigned long mark;
1900 
1901 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1902 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1903 				continue;
1904 		if ((alloc_flags & ALLOC_CPUSET) &&
1905 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1906 				continue;
1907 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1908 		if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
1909 			goto try_this_zone;
1910 		/*
1911 		 * Distribute pages in proportion to the individual
1912 		 * zone size to ensure fair page aging.  The zone a
1913 		 * page was allocated in should have no effect on the
1914 		 * time the page has in memory before being reclaimed.
1915 		 *
1916 		 * Try to stay in local zones in the fastpath.  If
1917 		 * that fails, the slowpath is entered, which will do
1918 		 * another pass starting with the local zones, but
1919 		 * ultimately fall back to remote zones that do not
1920 		 * partake in the fairness round-robin cycle of this
1921 		 * zonelist.
1922 		 */
1923 		if (alloc_flags & ALLOC_WMARK_LOW) {
1924 			if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1925 				continue;
1926 			if (!zone_local(preferred_zone, zone))
1927 				continue;
1928 		}
1929 		/*
1930 		 * When allocating a page cache page for writing, we
1931 		 * want to get it from a zone that is within its dirty
1932 		 * limit, such that no single zone holds more than its
1933 		 * proportional share of globally allowed dirty pages.
1934 		 * The dirty limits take into account the zone's
1935 		 * lowmem reserves and high watermark so that kswapd
1936 		 * should be able to balance it without having to
1937 		 * write pages from its LRU list.
1938 		 *
1939 		 * This may look like it could increase pressure on
1940 		 * lower zones by failing allocations in higher zones
1941 		 * before they are full.  But the pages that do spill
1942 		 * over are limited as the lower zones are protected
1943 		 * by this very same mechanism.  It should not become
1944 		 * a practical burden to them.
1945 		 *
1946 		 * XXX: For now, allow allocations to potentially
1947 		 * exceed the per-zone dirty limit in the slowpath
1948 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1949 		 * which is important when on a NUMA setup the allowed
1950 		 * zones are together not big enough to reach the
1951 		 * global limit.  The proper fix for these situations
1952 		 * will require awareness of zones in the
1953 		 * dirty-throttling and the flusher threads.
1954 		 */
1955 		if ((alloc_flags & ALLOC_WMARK_LOW) &&
1956 		    (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1957 			goto this_zone_full;
1958 
1959 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1960 		if (!zone_watermark_ok(zone, order, mark,
1961 				       classzone_idx, alloc_flags)) {
1962 			int ret;
1963 
1964 			if (IS_ENABLED(CONFIG_NUMA) &&
1965 					!did_zlc_setup && nr_online_nodes > 1) {
1966 				/*
1967 				 * we do zlc_setup if there are multiple nodes
1968 				 * and before considering the first zone allowed
1969 				 * by the cpuset.
1970 				 */
1971 				allowednodes = zlc_setup(zonelist, alloc_flags);
1972 				zlc_active = 1;
1973 				did_zlc_setup = 1;
1974 			}
1975 
1976 			if (zone_reclaim_mode == 0 ||
1977 			    !zone_allows_reclaim(preferred_zone, zone))
1978 				goto this_zone_full;
1979 
1980 			/*
1981 			 * As we may have just activated ZLC, check if the first
1982 			 * eligible zone has failed zone_reclaim recently.
1983 			 */
1984 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1985 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
1986 				continue;
1987 
1988 			ret = zone_reclaim(zone, gfp_mask, order);
1989 			switch (ret) {
1990 			case ZONE_RECLAIM_NOSCAN:
1991 				/* did not scan */
1992 				continue;
1993 			case ZONE_RECLAIM_FULL:
1994 				/* scanned but unreclaimable */
1995 				continue;
1996 			default:
1997 				/* did we reclaim enough */
1998 				if (zone_watermark_ok(zone, order, mark,
1999 						classzone_idx, alloc_flags))
2000 					goto try_this_zone;
2001 
2002 				/*
2003 				 * Failed to reclaim enough to meet watermark.
2004 				 * Only mark the zone full if checking the min
2005 				 * watermark or if we failed to reclaim just
2006 				 * 1<<order pages or else the page allocator
2007 				 * fastpath will prematurely mark zones full
2008 				 * when the watermark is between the low and
2009 				 * min watermarks.
2010 				 */
2011 				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2012 				    ret == ZONE_RECLAIM_SOME)
2013 					goto this_zone_full;
2014 
2015 				continue;
2016 			}
2017 		}
2018 
2019 try_this_zone:
2020 		page = buffered_rmqueue(preferred_zone, zone, order,
2021 						gfp_mask, migratetype);
2022 		if (page)
2023 			break;
2024 this_zone_full:
2025 		if (IS_ENABLED(CONFIG_NUMA))
2026 			zlc_mark_zone_full(zonelist, z);
2027 	}
2028 
2029 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
2030 		/* Disable zlc cache for second zonelist scan */
2031 		zlc_active = 0;
2032 		goto zonelist_scan;
2033 	}
2034 
2035 	if (page)
2036 		/*
2037 		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2038 		 * necessary to allocate the page. The expectation is
2039 		 * that the caller is taking steps that will free more
2040 		 * memory. The caller should avoid the page being used
2041 		 * for !PFMEMALLOC purposes.
2042 		 */
2043 		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2044 
2045 	return page;
2046 }
2047 
2048 /*
2049  * Large machines with many possible nodes should not always dump per-node
2050  * meminfo in irq context.
2051  */
2052 static inline bool should_suppress_show_mem(void)
2053 {
2054 	bool ret = false;
2055 
2056 #if NODES_SHIFT > 8
2057 	ret = in_interrupt();
2058 #endif
2059 	return ret;
2060 }
2061 
2062 static DEFINE_RATELIMIT_STATE(nopage_rs,
2063 		DEFAULT_RATELIMIT_INTERVAL,
2064 		DEFAULT_RATELIMIT_BURST);
2065 
2066 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2067 {
2068 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2069 
2070 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2071 	    debug_guardpage_minorder() > 0)
2072 		return;
2073 
2074 	/*
2075 	 * Walking all memory to count page types is very expensive and should
2076 	 * be inhibited in non-blockable contexts.
2077 	 */
2078 	if (!(gfp_mask & __GFP_WAIT))
2079 		filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2080 
2081 	/*
2082 	 * This documents exceptions given to allocations in certain
2083 	 * contexts that are allowed to allocate outside current's set
2084 	 * of allowed nodes.
2085 	 */
2086 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2087 		if (test_thread_flag(TIF_MEMDIE) ||
2088 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2089 			filter &= ~SHOW_MEM_FILTER_NODES;
2090 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2091 		filter &= ~SHOW_MEM_FILTER_NODES;
2092 
2093 	if (fmt) {
2094 		struct va_format vaf;
2095 		va_list args;
2096 
2097 		va_start(args, fmt);
2098 
2099 		vaf.fmt = fmt;
2100 		vaf.va = &args;
2101 
2102 		pr_warn("%pV", &vaf);
2103 
2104 		va_end(args);
2105 	}
2106 
2107 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2108 		current->comm, order, gfp_mask);
2109 
2110 	dump_stack();
2111 	if (!should_suppress_show_mem())
2112 		show_mem(filter);
2113 }
2114 
2115 static inline int
2116 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2117 				unsigned long did_some_progress,
2118 				unsigned long pages_reclaimed)
2119 {
2120 	/* Do not loop if specifically requested */
2121 	if (gfp_mask & __GFP_NORETRY)
2122 		return 0;
2123 
2124 	/* Always retry if specifically requested */
2125 	if (gfp_mask & __GFP_NOFAIL)
2126 		return 1;
2127 
2128 	/*
2129 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2130 	 * making forward progress without invoking OOM. Suspend also disables
2131 	 * storage devices so kswapd will not help. Bail if we are suspending.
2132 	 */
2133 	if (!did_some_progress && pm_suspended_storage())
2134 		return 0;
2135 
2136 	/*
2137 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2138 	 * means __GFP_NOFAIL, but that may not be true in other
2139 	 * implementations.
2140 	 */
2141 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2142 		return 1;
2143 
2144 	/*
2145 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2146 	 * specified, then we retry until we no longer reclaim any pages
2147 	 * (above), or we've reclaimed an order of pages at least as
2148 	 * large as the allocation's order. In both cases, if the
2149 	 * allocation still fails, we stop retrying.
2150 	 */
2151 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2152 		return 1;
2153 
2154 	return 0;
2155 }
2156 
2157 static inline struct page *
2158 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2159 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2160 	nodemask_t *nodemask, struct zone *preferred_zone,
2161 	int migratetype)
2162 {
2163 	struct page *page;
2164 
2165 	/* Acquire the OOM killer lock for the zones in zonelist */
2166 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2167 		schedule_timeout_uninterruptible(1);
2168 		return NULL;
2169 	}
2170 
2171 	/*
2172 	 * Go through the zonelist yet one more time, keep very high watermark
2173 	 * here, this is only to catch a parallel oom killing, we must fail if
2174 	 * we're still under heavy pressure.
2175 	 */
2176 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2177 		order, zonelist, high_zoneidx,
2178 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2179 		preferred_zone, migratetype);
2180 	if (page)
2181 		goto out;
2182 
2183 	if (!(gfp_mask & __GFP_NOFAIL)) {
2184 		/* The OOM killer will not help higher order allocs */
2185 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2186 			goto out;
2187 		/* The OOM killer does not needlessly kill tasks for lowmem */
2188 		if (high_zoneidx < ZONE_NORMAL)
2189 			goto out;
2190 		/*
2191 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2192 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2193 		 * The caller should handle page allocation failure by itself if
2194 		 * it specifies __GFP_THISNODE.
2195 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2196 		 */
2197 		if (gfp_mask & __GFP_THISNODE)
2198 			goto out;
2199 	}
2200 	/* Exhausted what can be done so it's blamo time */
2201 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2202 
2203 out:
2204 	clear_zonelist_oom(zonelist, gfp_mask);
2205 	return page;
2206 }
2207 
2208 #ifdef CONFIG_COMPACTION
2209 /* Try memory compaction for high-order allocations before reclaim */
2210 static struct page *
2211 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2212 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2213 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2214 	int migratetype, bool sync_migration,
2215 	bool *contended_compaction, bool *deferred_compaction,
2216 	unsigned long *did_some_progress)
2217 {
2218 	if (!order)
2219 		return NULL;
2220 
2221 	if (compaction_deferred(preferred_zone, order)) {
2222 		*deferred_compaction = true;
2223 		return NULL;
2224 	}
2225 
2226 	current->flags |= PF_MEMALLOC;
2227 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2228 						nodemask, sync_migration,
2229 						contended_compaction);
2230 	current->flags &= ~PF_MEMALLOC;
2231 
2232 	if (*did_some_progress != COMPACT_SKIPPED) {
2233 		struct page *page;
2234 
2235 		/* Page migration frees to the PCP lists but we want merging */
2236 		drain_pages(get_cpu());
2237 		put_cpu();
2238 
2239 		page = get_page_from_freelist(gfp_mask, nodemask,
2240 				order, zonelist, high_zoneidx,
2241 				alloc_flags & ~ALLOC_NO_WATERMARKS,
2242 				preferred_zone, migratetype);
2243 		if (page) {
2244 			preferred_zone->compact_blockskip_flush = false;
2245 			preferred_zone->compact_considered = 0;
2246 			preferred_zone->compact_defer_shift = 0;
2247 			if (order >= preferred_zone->compact_order_failed)
2248 				preferred_zone->compact_order_failed = order + 1;
2249 			count_vm_event(COMPACTSUCCESS);
2250 			return page;
2251 		}
2252 
2253 		/*
2254 		 * It's bad if compaction run occurs and fails.
2255 		 * The most likely reason is that pages exist,
2256 		 * but not enough to satisfy watermarks.
2257 		 */
2258 		count_vm_event(COMPACTFAIL);
2259 
2260 		/*
2261 		 * As async compaction considers a subset of pageblocks, only
2262 		 * defer if the failure was a sync compaction failure.
2263 		 */
2264 		if (sync_migration)
2265 			defer_compaction(preferred_zone, order);
2266 
2267 		cond_resched();
2268 	}
2269 
2270 	return NULL;
2271 }
2272 #else
2273 static inline struct page *
2274 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2275 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2276 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2277 	int migratetype, bool sync_migration,
2278 	bool *contended_compaction, bool *deferred_compaction,
2279 	unsigned long *did_some_progress)
2280 {
2281 	return NULL;
2282 }
2283 #endif /* CONFIG_COMPACTION */
2284 
2285 /* Perform direct synchronous page reclaim */
2286 static int
2287 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2288 		  nodemask_t *nodemask)
2289 {
2290 	struct reclaim_state reclaim_state;
2291 	int progress;
2292 
2293 	cond_resched();
2294 
2295 	/* We now go into synchronous reclaim */
2296 	cpuset_memory_pressure_bump();
2297 	current->flags |= PF_MEMALLOC;
2298 	lockdep_set_current_reclaim_state(gfp_mask);
2299 	reclaim_state.reclaimed_slab = 0;
2300 	current->reclaim_state = &reclaim_state;
2301 
2302 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2303 
2304 	current->reclaim_state = NULL;
2305 	lockdep_clear_current_reclaim_state();
2306 	current->flags &= ~PF_MEMALLOC;
2307 
2308 	cond_resched();
2309 
2310 	return progress;
2311 }
2312 
2313 /* The really slow allocator path where we enter direct reclaim */
2314 static inline struct page *
2315 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2316 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2317 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2318 	int migratetype, unsigned long *did_some_progress)
2319 {
2320 	struct page *page = NULL;
2321 	bool drained = false;
2322 
2323 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2324 					       nodemask);
2325 	if (unlikely(!(*did_some_progress)))
2326 		return NULL;
2327 
2328 	/* After successful reclaim, reconsider all zones for allocation */
2329 	if (IS_ENABLED(CONFIG_NUMA))
2330 		zlc_clear_zones_full(zonelist);
2331 
2332 retry:
2333 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2334 					zonelist, high_zoneidx,
2335 					alloc_flags & ~ALLOC_NO_WATERMARKS,
2336 					preferred_zone, migratetype);
2337 
2338 	/*
2339 	 * If an allocation failed after direct reclaim, it could be because
2340 	 * pages are pinned on the per-cpu lists. Drain them and try again
2341 	 */
2342 	if (!page && !drained) {
2343 		drain_all_pages();
2344 		drained = true;
2345 		goto retry;
2346 	}
2347 
2348 	return page;
2349 }
2350 
2351 /*
2352  * This is called in the allocator slow-path if the allocation request is of
2353  * sufficient urgency to ignore watermarks and take other desperate measures
2354  */
2355 static inline struct page *
2356 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2357 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2358 	nodemask_t *nodemask, struct zone *preferred_zone,
2359 	int migratetype)
2360 {
2361 	struct page *page;
2362 
2363 	do {
2364 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2365 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2366 			preferred_zone, migratetype);
2367 
2368 		if (!page && gfp_mask & __GFP_NOFAIL)
2369 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2370 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2371 
2372 	return page;
2373 }
2374 
2375 static void prepare_slowpath(gfp_t gfp_mask, unsigned int order,
2376 			     struct zonelist *zonelist,
2377 			     enum zone_type high_zoneidx,
2378 			     struct zone *preferred_zone)
2379 {
2380 	struct zoneref *z;
2381 	struct zone *zone;
2382 
2383 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2384 		if (!(gfp_mask & __GFP_NO_KSWAPD))
2385 			wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2386 		/*
2387 		 * Only reset the batches of zones that were actually
2388 		 * considered in the fast path, we don't want to
2389 		 * thrash fairness information for zones that are not
2390 		 * actually part of this zonelist's round-robin cycle.
2391 		 */
2392 		if (!zone_local(preferred_zone, zone))
2393 			continue;
2394 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2395 				    high_wmark_pages(zone) -
2396 				    low_wmark_pages(zone) -
2397 				    zone_page_state(zone, NR_ALLOC_BATCH));
2398 	}
2399 }
2400 
2401 static inline int
2402 gfp_to_alloc_flags(gfp_t gfp_mask)
2403 {
2404 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2405 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2406 
2407 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2408 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2409 
2410 	/*
2411 	 * The caller may dip into page reserves a bit more if the caller
2412 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2413 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2414 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2415 	 */
2416 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2417 
2418 	if (!wait) {
2419 		/*
2420 		 * Not worth trying to allocate harder for
2421 		 * __GFP_NOMEMALLOC even if it can't schedule.
2422 		 */
2423 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2424 			alloc_flags |= ALLOC_HARDER;
2425 		/*
2426 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2427 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2428 		 */
2429 		alloc_flags &= ~ALLOC_CPUSET;
2430 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2431 		alloc_flags |= ALLOC_HARDER;
2432 
2433 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2434 		if (gfp_mask & __GFP_MEMALLOC)
2435 			alloc_flags |= ALLOC_NO_WATERMARKS;
2436 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2437 			alloc_flags |= ALLOC_NO_WATERMARKS;
2438 		else if (!in_interrupt() &&
2439 				((current->flags & PF_MEMALLOC) ||
2440 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2441 			alloc_flags |= ALLOC_NO_WATERMARKS;
2442 	}
2443 #ifdef CONFIG_CMA
2444 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2445 		alloc_flags |= ALLOC_CMA;
2446 #endif
2447 	return alloc_flags;
2448 }
2449 
2450 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2451 {
2452 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2453 }
2454 
2455 static inline struct page *
2456 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2457 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2458 	nodemask_t *nodemask, struct zone *preferred_zone,
2459 	int migratetype)
2460 {
2461 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2462 	struct page *page = NULL;
2463 	int alloc_flags;
2464 	unsigned long pages_reclaimed = 0;
2465 	unsigned long did_some_progress;
2466 	bool sync_migration = false;
2467 	bool deferred_compaction = false;
2468 	bool contended_compaction = false;
2469 
2470 	/*
2471 	 * In the slowpath, we sanity check order to avoid ever trying to
2472 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2473 	 * be using allocators in order of preference for an area that is
2474 	 * too large.
2475 	 */
2476 	if (order >= MAX_ORDER) {
2477 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2478 		return NULL;
2479 	}
2480 
2481 	/*
2482 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2483 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2484 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2485 	 * using a larger set of nodes after it has established that the
2486 	 * allowed per node queues are empty and that nodes are
2487 	 * over allocated.
2488 	 */
2489 	if (IS_ENABLED(CONFIG_NUMA) &&
2490 			(gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2491 		goto nopage;
2492 
2493 restart:
2494 	prepare_slowpath(gfp_mask, order, zonelist,
2495 			 high_zoneidx, preferred_zone);
2496 
2497 	/*
2498 	 * OK, we're below the kswapd watermark and have kicked background
2499 	 * reclaim. Now things get more complex, so set up alloc_flags according
2500 	 * to how we want to proceed.
2501 	 */
2502 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2503 
2504 	/*
2505 	 * Find the true preferred zone if the allocation is unconstrained by
2506 	 * cpusets.
2507 	 */
2508 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2509 		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2510 					&preferred_zone);
2511 
2512 rebalance:
2513 	/* This is the last chance, in general, before the goto nopage. */
2514 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2515 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2516 			preferred_zone, migratetype);
2517 	if (page)
2518 		goto got_pg;
2519 
2520 	/* Allocate without watermarks if the context allows */
2521 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2522 		/*
2523 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2524 		 * the allocation is high priority and these type of
2525 		 * allocations are system rather than user orientated
2526 		 */
2527 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2528 
2529 		page = __alloc_pages_high_priority(gfp_mask, order,
2530 				zonelist, high_zoneidx, nodemask,
2531 				preferred_zone, migratetype);
2532 		if (page) {
2533 			goto got_pg;
2534 		}
2535 	}
2536 
2537 	/* Atomic allocations - we can't balance anything */
2538 	if (!wait)
2539 		goto nopage;
2540 
2541 	/* Avoid recursion of direct reclaim */
2542 	if (current->flags & PF_MEMALLOC)
2543 		goto nopage;
2544 
2545 	/* Avoid allocations with no watermarks from looping endlessly */
2546 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2547 		goto nopage;
2548 
2549 	/*
2550 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2551 	 * attempts after direct reclaim are synchronous
2552 	 */
2553 	page = __alloc_pages_direct_compact(gfp_mask, order,
2554 					zonelist, high_zoneidx,
2555 					nodemask,
2556 					alloc_flags, preferred_zone,
2557 					migratetype, sync_migration,
2558 					&contended_compaction,
2559 					&deferred_compaction,
2560 					&did_some_progress);
2561 	if (page)
2562 		goto got_pg;
2563 	sync_migration = true;
2564 
2565 	/*
2566 	 * If compaction is deferred for high-order allocations, it is because
2567 	 * sync compaction recently failed. In this is the case and the caller
2568 	 * requested a movable allocation that does not heavily disrupt the
2569 	 * system then fail the allocation instead of entering direct reclaim.
2570 	 */
2571 	if ((deferred_compaction || contended_compaction) &&
2572 						(gfp_mask & __GFP_NO_KSWAPD))
2573 		goto nopage;
2574 
2575 	/* Try direct reclaim and then allocating */
2576 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2577 					zonelist, high_zoneidx,
2578 					nodemask,
2579 					alloc_flags, preferred_zone,
2580 					migratetype, &did_some_progress);
2581 	if (page)
2582 		goto got_pg;
2583 
2584 	/*
2585 	 * If we failed to make any progress reclaiming, then we are
2586 	 * running out of options and have to consider going OOM
2587 	 */
2588 	if (!did_some_progress) {
2589 		if (oom_gfp_allowed(gfp_mask)) {
2590 			if (oom_killer_disabled)
2591 				goto nopage;
2592 			/* Coredumps can quickly deplete all memory reserves */
2593 			if ((current->flags & PF_DUMPCORE) &&
2594 			    !(gfp_mask & __GFP_NOFAIL))
2595 				goto nopage;
2596 			page = __alloc_pages_may_oom(gfp_mask, order,
2597 					zonelist, high_zoneidx,
2598 					nodemask, preferred_zone,
2599 					migratetype);
2600 			if (page)
2601 				goto got_pg;
2602 
2603 			if (!(gfp_mask & __GFP_NOFAIL)) {
2604 				/*
2605 				 * The oom killer is not called for high-order
2606 				 * allocations that may fail, so if no progress
2607 				 * is being made, there are no other options and
2608 				 * retrying is unlikely to help.
2609 				 */
2610 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2611 					goto nopage;
2612 				/*
2613 				 * The oom killer is not called for lowmem
2614 				 * allocations to prevent needlessly killing
2615 				 * innocent tasks.
2616 				 */
2617 				if (high_zoneidx < ZONE_NORMAL)
2618 					goto nopage;
2619 			}
2620 
2621 			goto restart;
2622 		}
2623 	}
2624 
2625 	/* Check if we should retry the allocation */
2626 	pages_reclaimed += did_some_progress;
2627 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2628 						pages_reclaimed)) {
2629 		/* Wait for some write requests to complete then retry */
2630 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2631 		goto rebalance;
2632 	} else {
2633 		/*
2634 		 * High-order allocations do not necessarily loop after
2635 		 * direct reclaim and reclaim/compaction depends on compaction
2636 		 * being called after reclaim so call directly if necessary
2637 		 */
2638 		page = __alloc_pages_direct_compact(gfp_mask, order,
2639 					zonelist, high_zoneidx,
2640 					nodemask,
2641 					alloc_flags, preferred_zone,
2642 					migratetype, sync_migration,
2643 					&contended_compaction,
2644 					&deferred_compaction,
2645 					&did_some_progress);
2646 		if (page)
2647 			goto got_pg;
2648 	}
2649 
2650 nopage:
2651 	warn_alloc_failed(gfp_mask, order, NULL);
2652 	return page;
2653 got_pg:
2654 	if (kmemcheck_enabled)
2655 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2656 
2657 	return page;
2658 }
2659 
2660 /*
2661  * This is the 'heart' of the zoned buddy allocator.
2662  */
2663 struct page *
2664 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2665 			struct zonelist *zonelist, nodemask_t *nodemask)
2666 {
2667 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2668 	struct zone *preferred_zone;
2669 	struct page *page = NULL;
2670 	int migratetype = allocflags_to_migratetype(gfp_mask);
2671 	unsigned int cpuset_mems_cookie;
2672 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2673 	struct mem_cgroup *memcg = NULL;
2674 
2675 	gfp_mask &= gfp_allowed_mask;
2676 
2677 	lockdep_trace_alloc(gfp_mask);
2678 
2679 	might_sleep_if(gfp_mask & __GFP_WAIT);
2680 
2681 	if (should_fail_alloc_page(gfp_mask, order))
2682 		return NULL;
2683 
2684 	/*
2685 	 * Check the zones suitable for the gfp_mask contain at least one
2686 	 * valid zone. It's possible to have an empty zonelist as a result
2687 	 * of GFP_THISNODE and a memoryless node
2688 	 */
2689 	if (unlikely(!zonelist->_zonerefs->zone))
2690 		return NULL;
2691 
2692 	/*
2693 	 * Will only have any effect when __GFP_KMEMCG is set.  This is
2694 	 * verified in the (always inline) callee
2695 	 */
2696 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2697 		return NULL;
2698 
2699 retry_cpuset:
2700 	cpuset_mems_cookie = get_mems_allowed();
2701 
2702 	/* The preferred zone is used for statistics later */
2703 	first_zones_zonelist(zonelist, high_zoneidx,
2704 				nodemask ? : &cpuset_current_mems_allowed,
2705 				&preferred_zone);
2706 	if (!preferred_zone)
2707 		goto out;
2708 
2709 #ifdef CONFIG_CMA
2710 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2711 		alloc_flags |= ALLOC_CMA;
2712 #endif
2713 	/* First allocation attempt */
2714 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2715 			zonelist, high_zoneidx, alloc_flags,
2716 			preferred_zone, migratetype);
2717 	if (unlikely(!page)) {
2718 		/*
2719 		 * Runtime PM, block IO and its error handling path
2720 		 * can deadlock because I/O on the device might not
2721 		 * complete.
2722 		 */
2723 		gfp_mask = memalloc_noio_flags(gfp_mask);
2724 		page = __alloc_pages_slowpath(gfp_mask, order,
2725 				zonelist, high_zoneidx, nodemask,
2726 				preferred_zone, migratetype);
2727 	}
2728 
2729 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2730 
2731 out:
2732 	/*
2733 	 * When updating a task's mems_allowed, it is possible to race with
2734 	 * parallel threads in such a way that an allocation can fail while
2735 	 * the mask is being updated. If a page allocation is about to fail,
2736 	 * check if the cpuset changed during allocation and if so, retry.
2737 	 */
2738 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2739 		goto retry_cpuset;
2740 
2741 	memcg_kmem_commit_charge(page, memcg, order);
2742 
2743 	return page;
2744 }
2745 EXPORT_SYMBOL(__alloc_pages_nodemask);
2746 
2747 /*
2748  * Common helper functions.
2749  */
2750 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2751 {
2752 	struct page *page;
2753 
2754 	/*
2755 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2756 	 * a highmem page
2757 	 */
2758 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2759 
2760 	page = alloc_pages(gfp_mask, order);
2761 	if (!page)
2762 		return 0;
2763 	return (unsigned long) page_address(page);
2764 }
2765 EXPORT_SYMBOL(__get_free_pages);
2766 
2767 unsigned long get_zeroed_page(gfp_t gfp_mask)
2768 {
2769 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2770 }
2771 EXPORT_SYMBOL(get_zeroed_page);
2772 
2773 void __free_pages(struct page *page, unsigned int order)
2774 {
2775 	if (put_page_testzero(page)) {
2776 		if (order == 0)
2777 			free_hot_cold_page(page, 0);
2778 		else
2779 			__free_pages_ok(page, order);
2780 	}
2781 }
2782 
2783 EXPORT_SYMBOL(__free_pages);
2784 
2785 void free_pages(unsigned long addr, unsigned int order)
2786 {
2787 	if (addr != 0) {
2788 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2789 		__free_pages(virt_to_page((void *)addr), order);
2790 	}
2791 }
2792 
2793 EXPORT_SYMBOL(free_pages);
2794 
2795 /*
2796  * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2797  * pages allocated with __GFP_KMEMCG.
2798  *
2799  * Those pages are accounted to a particular memcg, embedded in the
2800  * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2801  * for that information only to find out that it is NULL for users who have no
2802  * interest in that whatsoever, we provide these functions.
2803  *
2804  * The caller knows better which flags it relies on.
2805  */
2806 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2807 {
2808 	memcg_kmem_uncharge_pages(page, order);
2809 	__free_pages(page, order);
2810 }
2811 
2812 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2813 {
2814 	if (addr != 0) {
2815 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2816 		__free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2817 	}
2818 }
2819 
2820 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2821 {
2822 	if (addr) {
2823 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2824 		unsigned long used = addr + PAGE_ALIGN(size);
2825 
2826 		split_page(virt_to_page((void *)addr), order);
2827 		while (used < alloc_end) {
2828 			free_page(used);
2829 			used += PAGE_SIZE;
2830 		}
2831 	}
2832 	return (void *)addr;
2833 }
2834 
2835 /**
2836  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2837  * @size: the number of bytes to allocate
2838  * @gfp_mask: GFP flags for the allocation
2839  *
2840  * This function is similar to alloc_pages(), except that it allocates the
2841  * minimum number of pages to satisfy the request.  alloc_pages() can only
2842  * allocate memory in power-of-two pages.
2843  *
2844  * This function is also limited by MAX_ORDER.
2845  *
2846  * Memory allocated by this function must be released by free_pages_exact().
2847  */
2848 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2849 {
2850 	unsigned int order = get_order(size);
2851 	unsigned long addr;
2852 
2853 	addr = __get_free_pages(gfp_mask, order);
2854 	return make_alloc_exact(addr, order, size);
2855 }
2856 EXPORT_SYMBOL(alloc_pages_exact);
2857 
2858 /**
2859  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2860  *			   pages on a node.
2861  * @nid: the preferred node ID where memory should be allocated
2862  * @size: the number of bytes to allocate
2863  * @gfp_mask: GFP flags for the allocation
2864  *
2865  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2866  * back.
2867  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2868  * but is not exact.
2869  */
2870 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2871 {
2872 	unsigned order = get_order(size);
2873 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2874 	if (!p)
2875 		return NULL;
2876 	return make_alloc_exact((unsigned long)page_address(p), order, size);
2877 }
2878 EXPORT_SYMBOL(alloc_pages_exact_nid);
2879 
2880 /**
2881  * free_pages_exact - release memory allocated via alloc_pages_exact()
2882  * @virt: the value returned by alloc_pages_exact.
2883  * @size: size of allocation, same value as passed to alloc_pages_exact().
2884  *
2885  * Release the memory allocated by a previous call to alloc_pages_exact.
2886  */
2887 void free_pages_exact(void *virt, size_t size)
2888 {
2889 	unsigned long addr = (unsigned long)virt;
2890 	unsigned long end = addr + PAGE_ALIGN(size);
2891 
2892 	while (addr < end) {
2893 		free_page(addr);
2894 		addr += PAGE_SIZE;
2895 	}
2896 }
2897 EXPORT_SYMBOL(free_pages_exact);
2898 
2899 /**
2900  * nr_free_zone_pages - count number of pages beyond high watermark
2901  * @offset: The zone index of the highest zone
2902  *
2903  * nr_free_zone_pages() counts the number of counts pages which are beyond the
2904  * high watermark within all zones at or below a given zone index.  For each
2905  * zone, the number of pages is calculated as:
2906  *     managed_pages - high_pages
2907  */
2908 static unsigned long nr_free_zone_pages(int offset)
2909 {
2910 	struct zoneref *z;
2911 	struct zone *zone;
2912 
2913 	/* Just pick one node, since fallback list is circular */
2914 	unsigned long sum = 0;
2915 
2916 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2917 
2918 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2919 		unsigned long size = zone->managed_pages;
2920 		unsigned long high = high_wmark_pages(zone);
2921 		if (size > high)
2922 			sum += size - high;
2923 	}
2924 
2925 	return sum;
2926 }
2927 
2928 /**
2929  * nr_free_buffer_pages - count number of pages beyond high watermark
2930  *
2931  * nr_free_buffer_pages() counts the number of pages which are beyond the high
2932  * watermark within ZONE_DMA and ZONE_NORMAL.
2933  */
2934 unsigned long nr_free_buffer_pages(void)
2935 {
2936 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2937 }
2938 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2939 
2940 /**
2941  * nr_free_pagecache_pages - count number of pages beyond high watermark
2942  *
2943  * nr_free_pagecache_pages() counts the number of pages which are beyond the
2944  * high watermark within all zones.
2945  */
2946 unsigned long nr_free_pagecache_pages(void)
2947 {
2948 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2949 }
2950 
2951 static inline void show_node(struct zone *zone)
2952 {
2953 	if (IS_ENABLED(CONFIG_NUMA))
2954 		printk("Node %d ", zone_to_nid(zone));
2955 }
2956 
2957 void si_meminfo(struct sysinfo *val)
2958 {
2959 	val->totalram = totalram_pages;
2960 	val->sharedram = 0;
2961 	val->freeram = global_page_state(NR_FREE_PAGES);
2962 	val->bufferram = nr_blockdev_pages();
2963 	val->totalhigh = totalhigh_pages;
2964 	val->freehigh = nr_free_highpages();
2965 	val->mem_unit = PAGE_SIZE;
2966 }
2967 
2968 EXPORT_SYMBOL(si_meminfo);
2969 
2970 #ifdef CONFIG_NUMA
2971 void si_meminfo_node(struct sysinfo *val, int nid)
2972 {
2973 	int zone_type;		/* needs to be signed */
2974 	unsigned long managed_pages = 0;
2975 	pg_data_t *pgdat = NODE_DATA(nid);
2976 
2977 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
2978 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
2979 	val->totalram = managed_pages;
2980 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2981 #ifdef CONFIG_HIGHMEM
2982 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2983 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2984 			NR_FREE_PAGES);
2985 #else
2986 	val->totalhigh = 0;
2987 	val->freehigh = 0;
2988 #endif
2989 	val->mem_unit = PAGE_SIZE;
2990 }
2991 #endif
2992 
2993 /*
2994  * Determine whether the node should be displayed or not, depending on whether
2995  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2996  */
2997 bool skip_free_areas_node(unsigned int flags, int nid)
2998 {
2999 	bool ret = false;
3000 	unsigned int cpuset_mems_cookie;
3001 
3002 	if (!(flags & SHOW_MEM_FILTER_NODES))
3003 		goto out;
3004 
3005 	do {
3006 		cpuset_mems_cookie = get_mems_allowed();
3007 		ret = !node_isset(nid, cpuset_current_mems_allowed);
3008 	} while (!put_mems_allowed(cpuset_mems_cookie));
3009 out:
3010 	return ret;
3011 }
3012 
3013 #define K(x) ((x) << (PAGE_SHIFT-10))
3014 
3015 static void show_migration_types(unsigned char type)
3016 {
3017 	static const char types[MIGRATE_TYPES] = {
3018 		[MIGRATE_UNMOVABLE]	= 'U',
3019 		[MIGRATE_RECLAIMABLE]	= 'E',
3020 		[MIGRATE_MOVABLE]	= 'M',
3021 		[MIGRATE_RESERVE]	= 'R',
3022 #ifdef CONFIG_CMA
3023 		[MIGRATE_CMA]		= 'C',
3024 #endif
3025 #ifdef CONFIG_MEMORY_ISOLATION
3026 		[MIGRATE_ISOLATE]	= 'I',
3027 #endif
3028 	};
3029 	char tmp[MIGRATE_TYPES + 1];
3030 	char *p = tmp;
3031 	int i;
3032 
3033 	for (i = 0; i < MIGRATE_TYPES; i++) {
3034 		if (type & (1 << i))
3035 			*p++ = types[i];
3036 	}
3037 
3038 	*p = '\0';
3039 	printk("(%s) ", tmp);
3040 }
3041 
3042 /*
3043  * Show free area list (used inside shift_scroll-lock stuff)
3044  * We also calculate the percentage fragmentation. We do this by counting the
3045  * memory on each free list with the exception of the first item on the list.
3046  * Suppresses nodes that are not allowed by current's cpuset if
3047  * SHOW_MEM_FILTER_NODES is passed.
3048  */
3049 void show_free_areas(unsigned int filter)
3050 {
3051 	int cpu;
3052 	struct zone *zone;
3053 
3054 	for_each_populated_zone(zone) {
3055 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3056 			continue;
3057 		show_node(zone);
3058 		printk("%s per-cpu:\n", zone->name);
3059 
3060 		for_each_online_cpu(cpu) {
3061 			struct per_cpu_pageset *pageset;
3062 
3063 			pageset = per_cpu_ptr(zone->pageset, cpu);
3064 
3065 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3066 			       cpu, pageset->pcp.high,
3067 			       pageset->pcp.batch, pageset->pcp.count);
3068 		}
3069 	}
3070 
3071 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3072 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3073 		" unevictable:%lu"
3074 		" dirty:%lu writeback:%lu unstable:%lu\n"
3075 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3076 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3077 		" free_cma:%lu\n",
3078 		global_page_state(NR_ACTIVE_ANON),
3079 		global_page_state(NR_INACTIVE_ANON),
3080 		global_page_state(NR_ISOLATED_ANON),
3081 		global_page_state(NR_ACTIVE_FILE),
3082 		global_page_state(NR_INACTIVE_FILE),
3083 		global_page_state(NR_ISOLATED_FILE),
3084 		global_page_state(NR_UNEVICTABLE),
3085 		global_page_state(NR_FILE_DIRTY),
3086 		global_page_state(NR_WRITEBACK),
3087 		global_page_state(NR_UNSTABLE_NFS),
3088 		global_page_state(NR_FREE_PAGES),
3089 		global_page_state(NR_SLAB_RECLAIMABLE),
3090 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3091 		global_page_state(NR_FILE_MAPPED),
3092 		global_page_state(NR_SHMEM),
3093 		global_page_state(NR_PAGETABLE),
3094 		global_page_state(NR_BOUNCE),
3095 		global_page_state(NR_FREE_CMA_PAGES));
3096 
3097 	for_each_populated_zone(zone) {
3098 		int i;
3099 
3100 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3101 			continue;
3102 		show_node(zone);
3103 		printk("%s"
3104 			" free:%lukB"
3105 			" min:%lukB"
3106 			" low:%lukB"
3107 			" high:%lukB"
3108 			" active_anon:%lukB"
3109 			" inactive_anon:%lukB"
3110 			" active_file:%lukB"
3111 			" inactive_file:%lukB"
3112 			" unevictable:%lukB"
3113 			" isolated(anon):%lukB"
3114 			" isolated(file):%lukB"
3115 			" present:%lukB"
3116 			" managed:%lukB"
3117 			" mlocked:%lukB"
3118 			" dirty:%lukB"
3119 			" writeback:%lukB"
3120 			" mapped:%lukB"
3121 			" shmem:%lukB"
3122 			" slab_reclaimable:%lukB"
3123 			" slab_unreclaimable:%lukB"
3124 			" kernel_stack:%lukB"
3125 			" pagetables:%lukB"
3126 			" unstable:%lukB"
3127 			" bounce:%lukB"
3128 			" free_cma:%lukB"
3129 			" writeback_tmp:%lukB"
3130 			" pages_scanned:%lu"
3131 			" all_unreclaimable? %s"
3132 			"\n",
3133 			zone->name,
3134 			K(zone_page_state(zone, NR_FREE_PAGES)),
3135 			K(min_wmark_pages(zone)),
3136 			K(low_wmark_pages(zone)),
3137 			K(high_wmark_pages(zone)),
3138 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3139 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3140 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3141 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3142 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3143 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3144 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3145 			K(zone->present_pages),
3146 			K(zone->managed_pages),
3147 			K(zone_page_state(zone, NR_MLOCK)),
3148 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3149 			K(zone_page_state(zone, NR_WRITEBACK)),
3150 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3151 			K(zone_page_state(zone, NR_SHMEM)),
3152 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3153 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3154 			zone_page_state(zone, NR_KERNEL_STACK) *
3155 				THREAD_SIZE / 1024,
3156 			K(zone_page_state(zone, NR_PAGETABLE)),
3157 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3158 			K(zone_page_state(zone, NR_BOUNCE)),
3159 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3160 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3161 			zone->pages_scanned,
3162 			(!zone_reclaimable(zone) ? "yes" : "no")
3163 			);
3164 		printk("lowmem_reserve[]:");
3165 		for (i = 0; i < MAX_NR_ZONES; i++)
3166 			printk(" %lu", zone->lowmem_reserve[i]);
3167 		printk("\n");
3168 	}
3169 
3170 	for_each_populated_zone(zone) {
3171 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3172 		unsigned char types[MAX_ORDER];
3173 
3174 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3175 			continue;
3176 		show_node(zone);
3177 		printk("%s: ", zone->name);
3178 
3179 		spin_lock_irqsave(&zone->lock, flags);
3180 		for (order = 0; order < MAX_ORDER; order++) {
3181 			struct free_area *area = &zone->free_area[order];
3182 			int type;
3183 
3184 			nr[order] = area->nr_free;
3185 			total += nr[order] << order;
3186 
3187 			types[order] = 0;
3188 			for (type = 0; type < MIGRATE_TYPES; type++) {
3189 				if (!list_empty(&area->free_list[type]))
3190 					types[order] |= 1 << type;
3191 			}
3192 		}
3193 		spin_unlock_irqrestore(&zone->lock, flags);
3194 		for (order = 0; order < MAX_ORDER; order++) {
3195 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3196 			if (nr[order])
3197 				show_migration_types(types[order]);
3198 		}
3199 		printk("= %lukB\n", K(total));
3200 	}
3201 
3202 	hugetlb_show_meminfo();
3203 
3204 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3205 
3206 	show_swap_cache_info();
3207 }
3208 
3209 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3210 {
3211 	zoneref->zone = zone;
3212 	zoneref->zone_idx = zone_idx(zone);
3213 }
3214 
3215 /*
3216  * Builds allocation fallback zone lists.
3217  *
3218  * Add all populated zones of a node to the zonelist.
3219  */
3220 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3221 				int nr_zones)
3222 {
3223 	struct zone *zone;
3224 	enum zone_type zone_type = MAX_NR_ZONES;
3225 
3226 	do {
3227 		zone_type--;
3228 		zone = pgdat->node_zones + zone_type;
3229 		if (populated_zone(zone)) {
3230 			zoneref_set_zone(zone,
3231 				&zonelist->_zonerefs[nr_zones++]);
3232 			check_highest_zone(zone_type);
3233 		}
3234 	} while (zone_type);
3235 
3236 	return nr_zones;
3237 }
3238 
3239 
3240 /*
3241  *  zonelist_order:
3242  *  0 = automatic detection of better ordering.
3243  *  1 = order by ([node] distance, -zonetype)
3244  *  2 = order by (-zonetype, [node] distance)
3245  *
3246  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3247  *  the same zonelist. So only NUMA can configure this param.
3248  */
3249 #define ZONELIST_ORDER_DEFAULT  0
3250 #define ZONELIST_ORDER_NODE     1
3251 #define ZONELIST_ORDER_ZONE     2
3252 
3253 /* zonelist order in the kernel.
3254  * set_zonelist_order() will set this to NODE or ZONE.
3255  */
3256 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3257 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3258 
3259 
3260 #ifdef CONFIG_NUMA
3261 /* The value user specified ....changed by config */
3262 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3263 /* string for sysctl */
3264 #define NUMA_ZONELIST_ORDER_LEN	16
3265 char numa_zonelist_order[16] = "default";
3266 
3267 /*
3268  * interface for configure zonelist ordering.
3269  * command line option "numa_zonelist_order"
3270  *	= "[dD]efault	- default, automatic configuration.
3271  *	= "[nN]ode 	- order by node locality, then by zone within node
3272  *	= "[zZ]one      - order by zone, then by locality within zone
3273  */
3274 
3275 static int __parse_numa_zonelist_order(char *s)
3276 {
3277 	if (*s == 'd' || *s == 'D') {
3278 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3279 	} else if (*s == 'n' || *s == 'N') {
3280 		user_zonelist_order = ZONELIST_ORDER_NODE;
3281 	} else if (*s == 'z' || *s == 'Z') {
3282 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3283 	} else {
3284 		printk(KERN_WARNING
3285 			"Ignoring invalid numa_zonelist_order value:  "
3286 			"%s\n", s);
3287 		return -EINVAL;
3288 	}
3289 	return 0;
3290 }
3291 
3292 static __init int setup_numa_zonelist_order(char *s)
3293 {
3294 	int ret;
3295 
3296 	if (!s)
3297 		return 0;
3298 
3299 	ret = __parse_numa_zonelist_order(s);
3300 	if (ret == 0)
3301 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3302 
3303 	return ret;
3304 }
3305 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3306 
3307 /*
3308  * sysctl handler for numa_zonelist_order
3309  */
3310 int numa_zonelist_order_handler(ctl_table *table, int write,
3311 		void __user *buffer, size_t *length,
3312 		loff_t *ppos)
3313 {
3314 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3315 	int ret;
3316 	static DEFINE_MUTEX(zl_order_mutex);
3317 
3318 	mutex_lock(&zl_order_mutex);
3319 	if (write) {
3320 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3321 			ret = -EINVAL;
3322 			goto out;
3323 		}
3324 		strcpy(saved_string, (char *)table->data);
3325 	}
3326 	ret = proc_dostring(table, write, buffer, length, ppos);
3327 	if (ret)
3328 		goto out;
3329 	if (write) {
3330 		int oldval = user_zonelist_order;
3331 
3332 		ret = __parse_numa_zonelist_order((char *)table->data);
3333 		if (ret) {
3334 			/*
3335 			 * bogus value.  restore saved string
3336 			 */
3337 			strncpy((char *)table->data, saved_string,
3338 				NUMA_ZONELIST_ORDER_LEN);
3339 			user_zonelist_order = oldval;
3340 		} else if (oldval != user_zonelist_order) {
3341 			mutex_lock(&zonelists_mutex);
3342 			build_all_zonelists(NULL, NULL);
3343 			mutex_unlock(&zonelists_mutex);
3344 		}
3345 	}
3346 out:
3347 	mutex_unlock(&zl_order_mutex);
3348 	return ret;
3349 }
3350 
3351 
3352 #define MAX_NODE_LOAD (nr_online_nodes)
3353 static int node_load[MAX_NUMNODES];
3354 
3355 /**
3356  * find_next_best_node - find the next node that should appear in a given node's fallback list
3357  * @node: node whose fallback list we're appending
3358  * @used_node_mask: nodemask_t of already used nodes
3359  *
3360  * We use a number of factors to determine which is the next node that should
3361  * appear on a given node's fallback list.  The node should not have appeared
3362  * already in @node's fallback list, and it should be the next closest node
3363  * according to the distance array (which contains arbitrary distance values
3364  * from each node to each node in the system), and should also prefer nodes
3365  * with no CPUs, since presumably they'll have very little allocation pressure
3366  * on them otherwise.
3367  * It returns -1 if no node is found.
3368  */
3369 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3370 {
3371 	int n, val;
3372 	int min_val = INT_MAX;
3373 	int best_node = NUMA_NO_NODE;
3374 	const struct cpumask *tmp = cpumask_of_node(0);
3375 
3376 	/* Use the local node if we haven't already */
3377 	if (!node_isset(node, *used_node_mask)) {
3378 		node_set(node, *used_node_mask);
3379 		return node;
3380 	}
3381 
3382 	for_each_node_state(n, N_MEMORY) {
3383 
3384 		/* Don't want a node to appear more than once */
3385 		if (node_isset(n, *used_node_mask))
3386 			continue;
3387 
3388 		/* Use the distance array to find the distance */
3389 		val = node_distance(node, n);
3390 
3391 		/* Penalize nodes under us ("prefer the next node") */
3392 		val += (n < node);
3393 
3394 		/* Give preference to headless and unused nodes */
3395 		tmp = cpumask_of_node(n);
3396 		if (!cpumask_empty(tmp))
3397 			val += PENALTY_FOR_NODE_WITH_CPUS;
3398 
3399 		/* Slight preference for less loaded node */
3400 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3401 		val += node_load[n];
3402 
3403 		if (val < min_val) {
3404 			min_val = val;
3405 			best_node = n;
3406 		}
3407 	}
3408 
3409 	if (best_node >= 0)
3410 		node_set(best_node, *used_node_mask);
3411 
3412 	return best_node;
3413 }
3414 
3415 
3416 /*
3417  * Build zonelists ordered by node and zones within node.
3418  * This results in maximum locality--normal zone overflows into local
3419  * DMA zone, if any--but risks exhausting DMA zone.
3420  */
3421 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3422 {
3423 	int j;
3424 	struct zonelist *zonelist;
3425 
3426 	zonelist = &pgdat->node_zonelists[0];
3427 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3428 		;
3429 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3430 	zonelist->_zonerefs[j].zone = NULL;
3431 	zonelist->_zonerefs[j].zone_idx = 0;
3432 }
3433 
3434 /*
3435  * Build gfp_thisnode zonelists
3436  */
3437 static void build_thisnode_zonelists(pg_data_t *pgdat)
3438 {
3439 	int j;
3440 	struct zonelist *zonelist;
3441 
3442 	zonelist = &pgdat->node_zonelists[1];
3443 	j = build_zonelists_node(pgdat, zonelist, 0);
3444 	zonelist->_zonerefs[j].zone = NULL;
3445 	zonelist->_zonerefs[j].zone_idx = 0;
3446 }
3447 
3448 /*
3449  * Build zonelists ordered by zone and nodes within zones.
3450  * This results in conserving DMA zone[s] until all Normal memory is
3451  * exhausted, but results in overflowing to remote node while memory
3452  * may still exist in local DMA zone.
3453  */
3454 static int node_order[MAX_NUMNODES];
3455 
3456 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3457 {
3458 	int pos, j, node;
3459 	int zone_type;		/* needs to be signed */
3460 	struct zone *z;
3461 	struct zonelist *zonelist;
3462 
3463 	zonelist = &pgdat->node_zonelists[0];
3464 	pos = 0;
3465 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3466 		for (j = 0; j < nr_nodes; j++) {
3467 			node = node_order[j];
3468 			z = &NODE_DATA(node)->node_zones[zone_type];
3469 			if (populated_zone(z)) {
3470 				zoneref_set_zone(z,
3471 					&zonelist->_zonerefs[pos++]);
3472 				check_highest_zone(zone_type);
3473 			}
3474 		}
3475 	}
3476 	zonelist->_zonerefs[pos].zone = NULL;
3477 	zonelist->_zonerefs[pos].zone_idx = 0;
3478 }
3479 
3480 static int default_zonelist_order(void)
3481 {
3482 	int nid, zone_type;
3483 	unsigned long low_kmem_size, total_size;
3484 	struct zone *z;
3485 	int average_size;
3486 	/*
3487 	 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3488 	 * If they are really small and used heavily, the system can fall
3489 	 * into OOM very easily.
3490 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3491 	 */
3492 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3493 	low_kmem_size = 0;
3494 	total_size = 0;
3495 	for_each_online_node(nid) {
3496 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3497 			z = &NODE_DATA(nid)->node_zones[zone_type];
3498 			if (populated_zone(z)) {
3499 				if (zone_type < ZONE_NORMAL)
3500 					low_kmem_size += z->managed_pages;
3501 				total_size += z->managed_pages;
3502 			} else if (zone_type == ZONE_NORMAL) {
3503 				/*
3504 				 * If any node has only lowmem, then node order
3505 				 * is preferred to allow kernel allocations
3506 				 * locally; otherwise, they can easily infringe
3507 				 * on other nodes when there is an abundance of
3508 				 * lowmem available to allocate from.
3509 				 */
3510 				return ZONELIST_ORDER_NODE;
3511 			}
3512 		}
3513 	}
3514 	if (!low_kmem_size ||  /* there are no DMA area. */
3515 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3516 		return ZONELIST_ORDER_NODE;
3517 	/*
3518 	 * look into each node's config.
3519 	 * If there is a node whose DMA/DMA32 memory is very big area on
3520 	 * local memory, NODE_ORDER may be suitable.
3521 	 */
3522 	average_size = total_size /
3523 				(nodes_weight(node_states[N_MEMORY]) + 1);
3524 	for_each_online_node(nid) {
3525 		low_kmem_size = 0;
3526 		total_size = 0;
3527 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3528 			z = &NODE_DATA(nid)->node_zones[zone_type];
3529 			if (populated_zone(z)) {
3530 				if (zone_type < ZONE_NORMAL)
3531 					low_kmem_size += z->present_pages;
3532 				total_size += z->present_pages;
3533 			}
3534 		}
3535 		if (low_kmem_size &&
3536 		    total_size > average_size && /* ignore small node */
3537 		    low_kmem_size > total_size * 70/100)
3538 			return ZONELIST_ORDER_NODE;
3539 	}
3540 	return ZONELIST_ORDER_ZONE;
3541 }
3542 
3543 static void set_zonelist_order(void)
3544 {
3545 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3546 		current_zonelist_order = default_zonelist_order();
3547 	else
3548 		current_zonelist_order = user_zonelist_order;
3549 }
3550 
3551 static void build_zonelists(pg_data_t *pgdat)
3552 {
3553 	int j, node, load;
3554 	enum zone_type i;
3555 	nodemask_t used_mask;
3556 	int local_node, prev_node;
3557 	struct zonelist *zonelist;
3558 	int order = current_zonelist_order;
3559 
3560 	/* initialize zonelists */
3561 	for (i = 0; i < MAX_ZONELISTS; i++) {
3562 		zonelist = pgdat->node_zonelists + i;
3563 		zonelist->_zonerefs[0].zone = NULL;
3564 		zonelist->_zonerefs[0].zone_idx = 0;
3565 	}
3566 
3567 	/* NUMA-aware ordering of nodes */
3568 	local_node = pgdat->node_id;
3569 	load = nr_online_nodes;
3570 	prev_node = local_node;
3571 	nodes_clear(used_mask);
3572 
3573 	memset(node_order, 0, sizeof(node_order));
3574 	j = 0;
3575 
3576 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3577 		/*
3578 		 * We don't want to pressure a particular node.
3579 		 * So adding penalty to the first node in same
3580 		 * distance group to make it round-robin.
3581 		 */
3582 		if (node_distance(local_node, node) !=
3583 		    node_distance(local_node, prev_node))
3584 			node_load[node] = load;
3585 
3586 		prev_node = node;
3587 		load--;
3588 		if (order == ZONELIST_ORDER_NODE)
3589 			build_zonelists_in_node_order(pgdat, node);
3590 		else
3591 			node_order[j++] = node;	/* remember order */
3592 	}
3593 
3594 	if (order == ZONELIST_ORDER_ZONE) {
3595 		/* calculate node order -- i.e., DMA last! */
3596 		build_zonelists_in_zone_order(pgdat, j);
3597 	}
3598 
3599 	build_thisnode_zonelists(pgdat);
3600 }
3601 
3602 /* Construct the zonelist performance cache - see further mmzone.h */
3603 static void build_zonelist_cache(pg_data_t *pgdat)
3604 {
3605 	struct zonelist *zonelist;
3606 	struct zonelist_cache *zlc;
3607 	struct zoneref *z;
3608 
3609 	zonelist = &pgdat->node_zonelists[0];
3610 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3611 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3612 	for (z = zonelist->_zonerefs; z->zone; z++)
3613 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3614 }
3615 
3616 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3617 /*
3618  * Return node id of node used for "local" allocations.
3619  * I.e., first node id of first zone in arg node's generic zonelist.
3620  * Used for initializing percpu 'numa_mem', which is used primarily
3621  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3622  */
3623 int local_memory_node(int node)
3624 {
3625 	struct zone *zone;
3626 
3627 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3628 				   gfp_zone(GFP_KERNEL),
3629 				   NULL,
3630 				   &zone);
3631 	return zone->node;
3632 }
3633 #endif
3634 
3635 #else	/* CONFIG_NUMA */
3636 
3637 static void set_zonelist_order(void)
3638 {
3639 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3640 }
3641 
3642 static void build_zonelists(pg_data_t *pgdat)
3643 {
3644 	int node, local_node;
3645 	enum zone_type j;
3646 	struct zonelist *zonelist;
3647 
3648 	local_node = pgdat->node_id;
3649 
3650 	zonelist = &pgdat->node_zonelists[0];
3651 	j = build_zonelists_node(pgdat, zonelist, 0);
3652 
3653 	/*
3654 	 * Now we build the zonelist so that it contains the zones
3655 	 * of all the other nodes.
3656 	 * We don't want to pressure a particular node, so when
3657 	 * building the zones for node N, we make sure that the
3658 	 * zones coming right after the local ones are those from
3659 	 * node N+1 (modulo N)
3660 	 */
3661 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3662 		if (!node_online(node))
3663 			continue;
3664 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3665 	}
3666 	for (node = 0; node < local_node; node++) {
3667 		if (!node_online(node))
3668 			continue;
3669 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3670 	}
3671 
3672 	zonelist->_zonerefs[j].zone = NULL;
3673 	zonelist->_zonerefs[j].zone_idx = 0;
3674 }
3675 
3676 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3677 static void build_zonelist_cache(pg_data_t *pgdat)
3678 {
3679 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3680 }
3681 
3682 #endif	/* CONFIG_NUMA */
3683 
3684 /*
3685  * Boot pageset table. One per cpu which is going to be used for all
3686  * zones and all nodes. The parameters will be set in such a way
3687  * that an item put on a list will immediately be handed over to
3688  * the buddy list. This is safe since pageset manipulation is done
3689  * with interrupts disabled.
3690  *
3691  * The boot_pagesets must be kept even after bootup is complete for
3692  * unused processors and/or zones. They do play a role for bootstrapping
3693  * hotplugged processors.
3694  *
3695  * zoneinfo_show() and maybe other functions do
3696  * not check if the processor is online before following the pageset pointer.
3697  * Other parts of the kernel may not check if the zone is available.
3698  */
3699 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3700 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3701 static void setup_zone_pageset(struct zone *zone);
3702 
3703 /*
3704  * Global mutex to protect against size modification of zonelists
3705  * as well as to serialize pageset setup for the new populated zone.
3706  */
3707 DEFINE_MUTEX(zonelists_mutex);
3708 
3709 /* return values int ....just for stop_machine() */
3710 static int __build_all_zonelists(void *data)
3711 {
3712 	int nid;
3713 	int cpu;
3714 	pg_data_t *self = data;
3715 
3716 #ifdef CONFIG_NUMA
3717 	memset(node_load, 0, sizeof(node_load));
3718 #endif
3719 
3720 	if (self && !node_online(self->node_id)) {
3721 		build_zonelists(self);
3722 		build_zonelist_cache(self);
3723 	}
3724 
3725 	for_each_online_node(nid) {
3726 		pg_data_t *pgdat = NODE_DATA(nid);
3727 
3728 		build_zonelists(pgdat);
3729 		build_zonelist_cache(pgdat);
3730 	}
3731 
3732 	/*
3733 	 * Initialize the boot_pagesets that are going to be used
3734 	 * for bootstrapping processors. The real pagesets for
3735 	 * each zone will be allocated later when the per cpu
3736 	 * allocator is available.
3737 	 *
3738 	 * boot_pagesets are used also for bootstrapping offline
3739 	 * cpus if the system is already booted because the pagesets
3740 	 * are needed to initialize allocators on a specific cpu too.
3741 	 * F.e. the percpu allocator needs the page allocator which
3742 	 * needs the percpu allocator in order to allocate its pagesets
3743 	 * (a chicken-egg dilemma).
3744 	 */
3745 	for_each_possible_cpu(cpu) {
3746 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3747 
3748 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3749 		/*
3750 		 * We now know the "local memory node" for each node--
3751 		 * i.e., the node of the first zone in the generic zonelist.
3752 		 * Set up numa_mem percpu variable for on-line cpus.  During
3753 		 * boot, only the boot cpu should be on-line;  we'll init the
3754 		 * secondary cpus' numa_mem as they come on-line.  During
3755 		 * node/memory hotplug, we'll fixup all on-line cpus.
3756 		 */
3757 		if (cpu_online(cpu))
3758 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3759 #endif
3760 	}
3761 
3762 	return 0;
3763 }
3764 
3765 /*
3766  * Called with zonelists_mutex held always
3767  * unless system_state == SYSTEM_BOOTING.
3768  */
3769 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3770 {
3771 	set_zonelist_order();
3772 
3773 	if (system_state == SYSTEM_BOOTING) {
3774 		__build_all_zonelists(NULL);
3775 		mminit_verify_zonelist();
3776 		cpuset_init_current_mems_allowed();
3777 	} else {
3778 #ifdef CONFIG_MEMORY_HOTPLUG
3779 		if (zone)
3780 			setup_zone_pageset(zone);
3781 #endif
3782 		/* we have to stop all cpus to guarantee there is no user
3783 		   of zonelist */
3784 		stop_machine(__build_all_zonelists, pgdat, NULL);
3785 		/* cpuset refresh routine should be here */
3786 	}
3787 	vm_total_pages = nr_free_pagecache_pages();
3788 	/*
3789 	 * Disable grouping by mobility if the number of pages in the
3790 	 * system is too low to allow the mechanism to work. It would be
3791 	 * more accurate, but expensive to check per-zone. This check is
3792 	 * made on memory-hotadd so a system can start with mobility
3793 	 * disabled and enable it later
3794 	 */
3795 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3796 		page_group_by_mobility_disabled = 1;
3797 	else
3798 		page_group_by_mobility_disabled = 0;
3799 
3800 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3801 		"Total pages: %ld\n",
3802 			nr_online_nodes,
3803 			zonelist_order_name[current_zonelist_order],
3804 			page_group_by_mobility_disabled ? "off" : "on",
3805 			vm_total_pages);
3806 #ifdef CONFIG_NUMA
3807 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3808 #endif
3809 }
3810 
3811 /*
3812  * Helper functions to size the waitqueue hash table.
3813  * Essentially these want to choose hash table sizes sufficiently
3814  * large so that collisions trying to wait on pages are rare.
3815  * But in fact, the number of active page waitqueues on typical
3816  * systems is ridiculously low, less than 200. So this is even
3817  * conservative, even though it seems large.
3818  *
3819  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3820  * waitqueues, i.e. the size of the waitq table given the number of pages.
3821  */
3822 #define PAGES_PER_WAITQUEUE	256
3823 
3824 #ifndef CONFIG_MEMORY_HOTPLUG
3825 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3826 {
3827 	unsigned long size = 1;
3828 
3829 	pages /= PAGES_PER_WAITQUEUE;
3830 
3831 	while (size < pages)
3832 		size <<= 1;
3833 
3834 	/*
3835 	 * Once we have dozens or even hundreds of threads sleeping
3836 	 * on IO we've got bigger problems than wait queue collision.
3837 	 * Limit the size of the wait table to a reasonable size.
3838 	 */
3839 	size = min(size, 4096UL);
3840 
3841 	return max(size, 4UL);
3842 }
3843 #else
3844 /*
3845  * A zone's size might be changed by hot-add, so it is not possible to determine
3846  * a suitable size for its wait_table.  So we use the maximum size now.
3847  *
3848  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3849  *
3850  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3851  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3852  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3853  *
3854  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3855  * or more by the traditional way. (See above).  It equals:
3856  *
3857  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3858  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3859  *    powerpc (64K page size)             : =  (32G +16M)byte.
3860  */
3861 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3862 {
3863 	return 4096UL;
3864 }
3865 #endif
3866 
3867 /*
3868  * This is an integer logarithm so that shifts can be used later
3869  * to extract the more random high bits from the multiplicative
3870  * hash function before the remainder is taken.
3871  */
3872 static inline unsigned long wait_table_bits(unsigned long size)
3873 {
3874 	return ffz(~size);
3875 }
3876 
3877 /*
3878  * Check if a pageblock contains reserved pages
3879  */
3880 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3881 {
3882 	unsigned long pfn;
3883 
3884 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3885 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3886 			return 1;
3887 	}
3888 	return 0;
3889 }
3890 
3891 /*
3892  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3893  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3894  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3895  * higher will lead to a bigger reserve which will get freed as contiguous
3896  * blocks as reclaim kicks in
3897  */
3898 static void setup_zone_migrate_reserve(struct zone *zone)
3899 {
3900 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3901 	struct page *page;
3902 	unsigned long block_migratetype;
3903 	int reserve;
3904 
3905 	/*
3906 	 * Get the start pfn, end pfn and the number of blocks to reserve
3907 	 * We have to be careful to be aligned to pageblock_nr_pages to
3908 	 * make sure that we always check pfn_valid for the first page in
3909 	 * the block.
3910 	 */
3911 	start_pfn = zone->zone_start_pfn;
3912 	end_pfn = zone_end_pfn(zone);
3913 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3914 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3915 							pageblock_order;
3916 
3917 	/*
3918 	 * Reserve blocks are generally in place to help high-order atomic
3919 	 * allocations that are short-lived. A min_free_kbytes value that
3920 	 * would result in more than 2 reserve blocks for atomic allocations
3921 	 * is assumed to be in place to help anti-fragmentation for the
3922 	 * future allocation of hugepages at runtime.
3923 	 */
3924 	reserve = min(2, reserve);
3925 
3926 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3927 		if (!pfn_valid(pfn))
3928 			continue;
3929 		page = pfn_to_page(pfn);
3930 
3931 		/* Watch out for overlapping nodes */
3932 		if (page_to_nid(page) != zone_to_nid(zone))
3933 			continue;
3934 
3935 		block_migratetype = get_pageblock_migratetype(page);
3936 
3937 		/* Only test what is necessary when the reserves are not met */
3938 		if (reserve > 0) {
3939 			/*
3940 			 * Blocks with reserved pages will never free, skip
3941 			 * them.
3942 			 */
3943 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3944 			if (pageblock_is_reserved(pfn, block_end_pfn))
3945 				continue;
3946 
3947 			/* If this block is reserved, account for it */
3948 			if (block_migratetype == MIGRATE_RESERVE) {
3949 				reserve--;
3950 				continue;
3951 			}
3952 
3953 			/* Suitable for reserving if this block is movable */
3954 			if (block_migratetype == MIGRATE_MOVABLE) {
3955 				set_pageblock_migratetype(page,
3956 							MIGRATE_RESERVE);
3957 				move_freepages_block(zone, page,
3958 							MIGRATE_RESERVE);
3959 				reserve--;
3960 				continue;
3961 			}
3962 		}
3963 
3964 		/*
3965 		 * If the reserve is met and this is a previous reserved block,
3966 		 * take it back
3967 		 */
3968 		if (block_migratetype == MIGRATE_RESERVE) {
3969 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3970 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3971 		}
3972 	}
3973 }
3974 
3975 /*
3976  * Initially all pages are reserved - free ones are freed
3977  * up by free_all_bootmem() once the early boot process is
3978  * done. Non-atomic initialization, single-pass.
3979  */
3980 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3981 		unsigned long start_pfn, enum memmap_context context)
3982 {
3983 	struct page *page;
3984 	unsigned long end_pfn = start_pfn + size;
3985 	unsigned long pfn;
3986 	struct zone *z;
3987 
3988 	if (highest_memmap_pfn < end_pfn - 1)
3989 		highest_memmap_pfn = end_pfn - 1;
3990 
3991 	z = &NODE_DATA(nid)->node_zones[zone];
3992 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3993 		/*
3994 		 * There can be holes in boot-time mem_map[]s
3995 		 * handed to this function.  They do not
3996 		 * exist on hotplugged memory.
3997 		 */
3998 		if (context == MEMMAP_EARLY) {
3999 			if (!early_pfn_valid(pfn))
4000 				continue;
4001 			if (!early_pfn_in_nid(pfn, nid))
4002 				continue;
4003 		}
4004 		page = pfn_to_page(pfn);
4005 		set_page_links(page, zone, nid, pfn);
4006 		mminit_verify_page_links(page, zone, nid, pfn);
4007 		init_page_count(page);
4008 		page_mapcount_reset(page);
4009 		page_cpupid_reset_last(page);
4010 		SetPageReserved(page);
4011 		/*
4012 		 * Mark the block movable so that blocks are reserved for
4013 		 * movable at startup. This will force kernel allocations
4014 		 * to reserve their blocks rather than leaking throughout
4015 		 * the address space during boot when many long-lived
4016 		 * kernel allocations are made. Later some blocks near
4017 		 * the start are marked MIGRATE_RESERVE by
4018 		 * setup_zone_migrate_reserve()
4019 		 *
4020 		 * bitmap is created for zone's valid pfn range. but memmap
4021 		 * can be created for invalid pages (for alignment)
4022 		 * check here not to call set_pageblock_migratetype() against
4023 		 * pfn out of zone.
4024 		 */
4025 		if ((z->zone_start_pfn <= pfn)
4026 		    && (pfn < zone_end_pfn(z))
4027 		    && !(pfn & (pageblock_nr_pages - 1)))
4028 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4029 
4030 		INIT_LIST_HEAD(&page->lru);
4031 #ifdef WANT_PAGE_VIRTUAL
4032 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
4033 		if (!is_highmem_idx(zone))
4034 			set_page_address(page, __va(pfn << PAGE_SHIFT));
4035 #endif
4036 	}
4037 }
4038 
4039 static void __meminit zone_init_free_lists(struct zone *zone)
4040 {
4041 	int order, t;
4042 	for_each_migratetype_order(order, t) {
4043 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4044 		zone->free_area[order].nr_free = 0;
4045 	}
4046 }
4047 
4048 #ifndef __HAVE_ARCH_MEMMAP_INIT
4049 #define memmap_init(size, nid, zone, start_pfn) \
4050 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4051 #endif
4052 
4053 static int __meminit zone_batchsize(struct zone *zone)
4054 {
4055 #ifdef CONFIG_MMU
4056 	int batch;
4057 
4058 	/*
4059 	 * The per-cpu-pages pools are set to around 1000th of the
4060 	 * size of the zone.  But no more than 1/2 of a meg.
4061 	 *
4062 	 * OK, so we don't know how big the cache is.  So guess.
4063 	 */
4064 	batch = zone->managed_pages / 1024;
4065 	if (batch * PAGE_SIZE > 512 * 1024)
4066 		batch = (512 * 1024) / PAGE_SIZE;
4067 	batch /= 4;		/* We effectively *= 4 below */
4068 	if (batch < 1)
4069 		batch = 1;
4070 
4071 	/*
4072 	 * Clamp the batch to a 2^n - 1 value. Having a power
4073 	 * of 2 value was found to be more likely to have
4074 	 * suboptimal cache aliasing properties in some cases.
4075 	 *
4076 	 * For example if 2 tasks are alternately allocating
4077 	 * batches of pages, one task can end up with a lot
4078 	 * of pages of one half of the possible page colors
4079 	 * and the other with pages of the other colors.
4080 	 */
4081 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4082 
4083 	return batch;
4084 
4085 #else
4086 	/* The deferral and batching of frees should be suppressed under NOMMU
4087 	 * conditions.
4088 	 *
4089 	 * The problem is that NOMMU needs to be able to allocate large chunks
4090 	 * of contiguous memory as there's no hardware page translation to
4091 	 * assemble apparent contiguous memory from discontiguous pages.
4092 	 *
4093 	 * Queueing large contiguous runs of pages for batching, however,
4094 	 * causes the pages to actually be freed in smaller chunks.  As there
4095 	 * can be a significant delay between the individual batches being
4096 	 * recycled, this leads to the once large chunks of space being
4097 	 * fragmented and becoming unavailable for high-order allocations.
4098 	 */
4099 	return 0;
4100 #endif
4101 }
4102 
4103 /*
4104  * pcp->high and pcp->batch values are related and dependent on one another:
4105  * ->batch must never be higher then ->high.
4106  * The following function updates them in a safe manner without read side
4107  * locking.
4108  *
4109  * Any new users of pcp->batch and pcp->high should ensure they can cope with
4110  * those fields changing asynchronously (acording the the above rule).
4111  *
4112  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4113  * outside of boot time (or some other assurance that no concurrent updaters
4114  * exist).
4115  */
4116 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4117 		unsigned long batch)
4118 {
4119        /* start with a fail safe value for batch */
4120 	pcp->batch = 1;
4121 	smp_wmb();
4122 
4123        /* Update high, then batch, in order */
4124 	pcp->high = high;
4125 	smp_wmb();
4126 
4127 	pcp->batch = batch;
4128 }
4129 
4130 /* a companion to pageset_set_high() */
4131 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4132 {
4133 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4134 }
4135 
4136 static void pageset_init(struct per_cpu_pageset *p)
4137 {
4138 	struct per_cpu_pages *pcp;
4139 	int migratetype;
4140 
4141 	memset(p, 0, sizeof(*p));
4142 
4143 	pcp = &p->pcp;
4144 	pcp->count = 0;
4145 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4146 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4147 }
4148 
4149 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4150 {
4151 	pageset_init(p);
4152 	pageset_set_batch(p, batch);
4153 }
4154 
4155 /*
4156  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4157  * to the value high for the pageset p.
4158  */
4159 static void pageset_set_high(struct per_cpu_pageset *p,
4160 				unsigned long high)
4161 {
4162 	unsigned long batch = max(1UL, high / 4);
4163 	if ((high / 4) > (PAGE_SHIFT * 8))
4164 		batch = PAGE_SHIFT * 8;
4165 
4166 	pageset_update(&p->pcp, high, batch);
4167 }
4168 
4169 static void __meminit pageset_set_high_and_batch(struct zone *zone,
4170 		struct per_cpu_pageset *pcp)
4171 {
4172 	if (percpu_pagelist_fraction)
4173 		pageset_set_high(pcp,
4174 			(zone->managed_pages /
4175 				percpu_pagelist_fraction));
4176 	else
4177 		pageset_set_batch(pcp, zone_batchsize(zone));
4178 }
4179 
4180 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4181 {
4182 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4183 
4184 	pageset_init(pcp);
4185 	pageset_set_high_and_batch(zone, pcp);
4186 }
4187 
4188 static void __meminit setup_zone_pageset(struct zone *zone)
4189 {
4190 	int cpu;
4191 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4192 	for_each_possible_cpu(cpu)
4193 		zone_pageset_init(zone, cpu);
4194 }
4195 
4196 /*
4197  * Allocate per cpu pagesets and initialize them.
4198  * Before this call only boot pagesets were available.
4199  */
4200 void __init setup_per_cpu_pageset(void)
4201 {
4202 	struct zone *zone;
4203 
4204 	for_each_populated_zone(zone)
4205 		setup_zone_pageset(zone);
4206 }
4207 
4208 static noinline __init_refok
4209 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4210 {
4211 	int i;
4212 	struct pglist_data *pgdat = zone->zone_pgdat;
4213 	size_t alloc_size;
4214 
4215 	/*
4216 	 * The per-page waitqueue mechanism uses hashed waitqueues
4217 	 * per zone.
4218 	 */
4219 	zone->wait_table_hash_nr_entries =
4220 		 wait_table_hash_nr_entries(zone_size_pages);
4221 	zone->wait_table_bits =
4222 		wait_table_bits(zone->wait_table_hash_nr_entries);
4223 	alloc_size = zone->wait_table_hash_nr_entries
4224 					* sizeof(wait_queue_head_t);
4225 
4226 	if (!slab_is_available()) {
4227 		zone->wait_table = (wait_queue_head_t *)
4228 			alloc_bootmem_node_nopanic(pgdat, alloc_size);
4229 	} else {
4230 		/*
4231 		 * This case means that a zone whose size was 0 gets new memory
4232 		 * via memory hot-add.
4233 		 * But it may be the case that a new node was hot-added.  In
4234 		 * this case vmalloc() will not be able to use this new node's
4235 		 * memory - this wait_table must be initialized to use this new
4236 		 * node itself as well.
4237 		 * To use this new node's memory, further consideration will be
4238 		 * necessary.
4239 		 */
4240 		zone->wait_table = vmalloc(alloc_size);
4241 	}
4242 	if (!zone->wait_table)
4243 		return -ENOMEM;
4244 
4245 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4246 		init_waitqueue_head(zone->wait_table + i);
4247 
4248 	return 0;
4249 }
4250 
4251 static __meminit void zone_pcp_init(struct zone *zone)
4252 {
4253 	/*
4254 	 * per cpu subsystem is not up at this point. The following code
4255 	 * relies on the ability of the linker to provide the
4256 	 * offset of a (static) per cpu variable into the per cpu area.
4257 	 */
4258 	zone->pageset = &boot_pageset;
4259 
4260 	if (populated_zone(zone))
4261 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4262 			zone->name, zone->present_pages,
4263 					 zone_batchsize(zone));
4264 }
4265 
4266 int __meminit init_currently_empty_zone(struct zone *zone,
4267 					unsigned long zone_start_pfn,
4268 					unsigned long size,
4269 					enum memmap_context context)
4270 {
4271 	struct pglist_data *pgdat = zone->zone_pgdat;
4272 	int ret;
4273 	ret = zone_wait_table_init(zone, size);
4274 	if (ret)
4275 		return ret;
4276 	pgdat->nr_zones = zone_idx(zone) + 1;
4277 
4278 	zone->zone_start_pfn = zone_start_pfn;
4279 
4280 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4281 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4282 			pgdat->node_id,
4283 			(unsigned long)zone_idx(zone),
4284 			zone_start_pfn, (zone_start_pfn + size));
4285 
4286 	zone_init_free_lists(zone);
4287 
4288 	return 0;
4289 }
4290 
4291 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4292 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4293 /*
4294  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4295  * Architectures may implement their own version but if add_active_range()
4296  * was used and there are no special requirements, this is a convenient
4297  * alternative
4298  */
4299 int __meminit __early_pfn_to_nid(unsigned long pfn)
4300 {
4301 	unsigned long start_pfn, end_pfn;
4302 	int nid;
4303 	/*
4304 	 * NOTE: The following SMP-unsafe globals are only used early in boot
4305 	 * when the kernel is running single-threaded.
4306 	 */
4307 	static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4308 	static int __meminitdata last_nid;
4309 
4310 	if (last_start_pfn <= pfn && pfn < last_end_pfn)
4311 		return last_nid;
4312 
4313 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4314 	if (nid != -1) {
4315 		last_start_pfn = start_pfn;
4316 		last_end_pfn = end_pfn;
4317 		last_nid = nid;
4318 	}
4319 
4320 	return nid;
4321 }
4322 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4323 
4324 int __meminit early_pfn_to_nid(unsigned long pfn)
4325 {
4326 	int nid;
4327 
4328 	nid = __early_pfn_to_nid(pfn);
4329 	if (nid >= 0)
4330 		return nid;
4331 	/* just returns 0 */
4332 	return 0;
4333 }
4334 
4335 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4336 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4337 {
4338 	int nid;
4339 
4340 	nid = __early_pfn_to_nid(pfn);
4341 	if (nid >= 0 && nid != node)
4342 		return false;
4343 	return true;
4344 }
4345 #endif
4346 
4347 /**
4348  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4349  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4350  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4351  *
4352  * If an architecture guarantees that all ranges registered with
4353  * add_active_ranges() contain no holes and may be freed, this
4354  * this function may be used instead of calling free_bootmem() manually.
4355  */
4356 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4357 {
4358 	unsigned long start_pfn, end_pfn;
4359 	int i, this_nid;
4360 
4361 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4362 		start_pfn = min(start_pfn, max_low_pfn);
4363 		end_pfn = min(end_pfn, max_low_pfn);
4364 
4365 		if (start_pfn < end_pfn)
4366 			free_bootmem_node(NODE_DATA(this_nid),
4367 					  PFN_PHYS(start_pfn),
4368 					  (end_pfn - start_pfn) << PAGE_SHIFT);
4369 	}
4370 }
4371 
4372 /**
4373  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4374  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4375  *
4376  * If an architecture guarantees that all ranges registered with
4377  * add_active_ranges() contain no holes and may be freed, this
4378  * function may be used instead of calling memory_present() manually.
4379  */
4380 void __init sparse_memory_present_with_active_regions(int nid)
4381 {
4382 	unsigned long start_pfn, end_pfn;
4383 	int i, this_nid;
4384 
4385 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4386 		memory_present(this_nid, start_pfn, end_pfn);
4387 }
4388 
4389 /**
4390  * get_pfn_range_for_nid - Return the start and end page frames for a node
4391  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4392  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4393  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4394  *
4395  * It returns the start and end page frame of a node based on information
4396  * provided by an arch calling add_active_range(). If called for a node
4397  * with no available memory, a warning is printed and the start and end
4398  * PFNs will be 0.
4399  */
4400 void __meminit get_pfn_range_for_nid(unsigned int nid,
4401 			unsigned long *start_pfn, unsigned long *end_pfn)
4402 {
4403 	unsigned long this_start_pfn, this_end_pfn;
4404 	int i;
4405 
4406 	*start_pfn = -1UL;
4407 	*end_pfn = 0;
4408 
4409 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4410 		*start_pfn = min(*start_pfn, this_start_pfn);
4411 		*end_pfn = max(*end_pfn, this_end_pfn);
4412 	}
4413 
4414 	if (*start_pfn == -1UL)
4415 		*start_pfn = 0;
4416 }
4417 
4418 /*
4419  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4420  * assumption is made that zones within a node are ordered in monotonic
4421  * increasing memory addresses so that the "highest" populated zone is used
4422  */
4423 static void __init find_usable_zone_for_movable(void)
4424 {
4425 	int zone_index;
4426 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4427 		if (zone_index == ZONE_MOVABLE)
4428 			continue;
4429 
4430 		if (arch_zone_highest_possible_pfn[zone_index] >
4431 				arch_zone_lowest_possible_pfn[zone_index])
4432 			break;
4433 	}
4434 
4435 	VM_BUG_ON(zone_index == -1);
4436 	movable_zone = zone_index;
4437 }
4438 
4439 /*
4440  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4441  * because it is sized independent of architecture. Unlike the other zones,
4442  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4443  * in each node depending on the size of each node and how evenly kernelcore
4444  * is distributed. This helper function adjusts the zone ranges
4445  * provided by the architecture for a given node by using the end of the
4446  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4447  * zones within a node are in order of monotonic increases memory addresses
4448  */
4449 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4450 					unsigned long zone_type,
4451 					unsigned long node_start_pfn,
4452 					unsigned long node_end_pfn,
4453 					unsigned long *zone_start_pfn,
4454 					unsigned long *zone_end_pfn)
4455 {
4456 	/* Only adjust if ZONE_MOVABLE is on this node */
4457 	if (zone_movable_pfn[nid]) {
4458 		/* Size ZONE_MOVABLE */
4459 		if (zone_type == ZONE_MOVABLE) {
4460 			*zone_start_pfn = zone_movable_pfn[nid];
4461 			*zone_end_pfn = min(node_end_pfn,
4462 				arch_zone_highest_possible_pfn[movable_zone]);
4463 
4464 		/* Adjust for ZONE_MOVABLE starting within this range */
4465 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4466 				*zone_end_pfn > zone_movable_pfn[nid]) {
4467 			*zone_end_pfn = zone_movable_pfn[nid];
4468 
4469 		/* Check if this whole range is within ZONE_MOVABLE */
4470 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4471 			*zone_start_pfn = *zone_end_pfn;
4472 	}
4473 }
4474 
4475 /*
4476  * Return the number of pages a zone spans in a node, including holes
4477  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4478  */
4479 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4480 					unsigned long zone_type,
4481 					unsigned long node_start_pfn,
4482 					unsigned long node_end_pfn,
4483 					unsigned long *ignored)
4484 {
4485 	unsigned long zone_start_pfn, zone_end_pfn;
4486 
4487 	/* Get the start and end of the zone */
4488 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4489 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4490 	adjust_zone_range_for_zone_movable(nid, zone_type,
4491 				node_start_pfn, node_end_pfn,
4492 				&zone_start_pfn, &zone_end_pfn);
4493 
4494 	/* Check that this node has pages within the zone's required range */
4495 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4496 		return 0;
4497 
4498 	/* Move the zone boundaries inside the node if necessary */
4499 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4500 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4501 
4502 	/* Return the spanned pages */
4503 	return zone_end_pfn - zone_start_pfn;
4504 }
4505 
4506 /*
4507  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4508  * then all holes in the requested range will be accounted for.
4509  */
4510 unsigned long __meminit __absent_pages_in_range(int nid,
4511 				unsigned long range_start_pfn,
4512 				unsigned long range_end_pfn)
4513 {
4514 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4515 	unsigned long start_pfn, end_pfn;
4516 	int i;
4517 
4518 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4519 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4520 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4521 		nr_absent -= end_pfn - start_pfn;
4522 	}
4523 	return nr_absent;
4524 }
4525 
4526 /**
4527  * absent_pages_in_range - Return number of page frames in holes within a range
4528  * @start_pfn: The start PFN to start searching for holes
4529  * @end_pfn: The end PFN to stop searching for holes
4530  *
4531  * It returns the number of pages frames in memory holes within a range.
4532  */
4533 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4534 							unsigned long end_pfn)
4535 {
4536 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4537 }
4538 
4539 /* Return the number of page frames in holes in a zone on a node */
4540 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4541 					unsigned long zone_type,
4542 					unsigned long node_start_pfn,
4543 					unsigned long node_end_pfn,
4544 					unsigned long *ignored)
4545 {
4546 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4547 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4548 	unsigned long zone_start_pfn, zone_end_pfn;
4549 
4550 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4551 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4552 
4553 	adjust_zone_range_for_zone_movable(nid, zone_type,
4554 			node_start_pfn, node_end_pfn,
4555 			&zone_start_pfn, &zone_end_pfn);
4556 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4557 }
4558 
4559 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4560 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4561 					unsigned long zone_type,
4562 					unsigned long node_start_pfn,
4563 					unsigned long node_end_pfn,
4564 					unsigned long *zones_size)
4565 {
4566 	return zones_size[zone_type];
4567 }
4568 
4569 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4570 						unsigned long zone_type,
4571 						unsigned long node_start_pfn,
4572 						unsigned long node_end_pfn,
4573 						unsigned long *zholes_size)
4574 {
4575 	if (!zholes_size)
4576 		return 0;
4577 
4578 	return zholes_size[zone_type];
4579 }
4580 
4581 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4582 
4583 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4584 						unsigned long node_start_pfn,
4585 						unsigned long node_end_pfn,
4586 						unsigned long *zones_size,
4587 						unsigned long *zholes_size)
4588 {
4589 	unsigned long realtotalpages, totalpages = 0;
4590 	enum zone_type i;
4591 
4592 	for (i = 0; i < MAX_NR_ZONES; i++)
4593 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4594 							 node_start_pfn,
4595 							 node_end_pfn,
4596 							 zones_size);
4597 	pgdat->node_spanned_pages = totalpages;
4598 
4599 	realtotalpages = totalpages;
4600 	for (i = 0; i < MAX_NR_ZONES; i++)
4601 		realtotalpages -=
4602 			zone_absent_pages_in_node(pgdat->node_id, i,
4603 						  node_start_pfn, node_end_pfn,
4604 						  zholes_size);
4605 	pgdat->node_present_pages = realtotalpages;
4606 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4607 							realtotalpages);
4608 }
4609 
4610 #ifndef CONFIG_SPARSEMEM
4611 /*
4612  * Calculate the size of the zone->blockflags rounded to an unsigned long
4613  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4614  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4615  * round what is now in bits to nearest long in bits, then return it in
4616  * bytes.
4617  */
4618 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4619 {
4620 	unsigned long usemapsize;
4621 
4622 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4623 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4624 	usemapsize = usemapsize >> pageblock_order;
4625 	usemapsize *= NR_PAGEBLOCK_BITS;
4626 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4627 
4628 	return usemapsize / 8;
4629 }
4630 
4631 static void __init setup_usemap(struct pglist_data *pgdat,
4632 				struct zone *zone,
4633 				unsigned long zone_start_pfn,
4634 				unsigned long zonesize)
4635 {
4636 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4637 	zone->pageblock_flags = NULL;
4638 	if (usemapsize)
4639 		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4640 								   usemapsize);
4641 }
4642 #else
4643 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4644 				unsigned long zone_start_pfn, unsigned long zonesize) {}
4645 #endif /* CONFIG_SPARSEMEM */
4646 
4647 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4648 
4649 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4650 void __paginginit set_pageblock_order(void)
4651 {
4652 	unsigned int order;
4653 
4654 	/* Check that pageblock_nr_pages has not already been setup */
4655 	if (pageblock_order)
4656 		return;
4657 
4658 	if (HPAGE_SHIFT > PAGE_SHIFT)
4659 		order = HUGETLB_PAGE_ORDER;
4660 	else
4661 		order = MAX_ORDER - 1;
4662 
4663 	/*
4664 	 * Assume the largest contiguous order of interest is a huge page.
4665 	 * This value may be variable depending on boot parameters on IA64 and
4666 	 * powerpc.
4667 	 */
4668 	pageblock_order = order;
4669 }
4670 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4671 
4672 /*
4673  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4674  * is unused as pageblock_order is set at compile-time. See
4675  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4676  * the kernel config
4677  */
4678 void __paginginit set_pageblock_order(void)
4679 {
4680 }
4681 
4682 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4683 
4684 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4685 						   unsigned long present_pages)
4686 {
4687 	unsigned long pages = spanned_pages;
4688 
4689 	/*
4690 	 * Provide a more accurate estimation if there are holes within
4691 	 * the zone and SPARSEMEM is in use. If there are holes within the
4692 	 * zone, each populated memory region may cost us one or two extra
4693 	 * memmap pages due to alignment because memmap pages for each
4694 	 * populated regions may not naturally algined on page boundary.
4695 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4696 	 */
4697 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4698 	    IS_ENABLED(CONFIG_SPARSEMEM))
4699 		pages = present_pages;
4700 
4701 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4702 }
4703 
4704 /*
4705  * Set up the zone data structures:
4706  *   - mark all pages reserved
4707  *   - mark all memory queues empty
4708  *   - clear the memory bitmaps
4709  *
4710  * NOTE: pgdat should get zeroed by caller.
4711  */
4712 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4713 		unsigned long node_start_pfn, unsigned long node_end_pfn,
4714 		unsigned long *zones_size, unsigned long *zholes_size)
4715 {
4716 	enum zone_type j;
4717 	int nid = pgdat->node_id;
4718 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4719 	int ret;
4720 
4721 	pgdat_resize_init(pgdat);
4722 #ifdef CONFIG_NUMA_BALANCING
4723 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4724 	pgdat->numabalancing_migrate_nr_pages = 0;
4725 	pgdat->numabalancing_migrate_next_window = jiffies;
4726 #endif
4727 	init_waitqueue_head(&pgdat->kswapd_wait);
4728 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4729 	pgdat_page_cgroup_init(pgdat);
4730 
4731 	for (j = 0; j < MAX_NR_ZONES; j++) {
4732 		struct zone *zone = pgdat->node_zones + j;
4733 		unsigned long size, realsize, freesize, memmap_pages;
4734 
4735 		size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4736 						  node_end_pfn, zones_size);
4737 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4738 								node_start_pfn,
4739 								node_end_pfn,
4740 								zholes_size);
4741 
4742 		/*
4743 		 * Adjust freesize so that it accounts for how much memory
4744 		 * is used by this zone for memmap. This affects the watermark
4745 		 * and per-cpu initialisations
4746 		 */
4747 		memmap_pages = calc_memmap_size(size, realsize);
4748 		if (freesize >= memmap_pages) {
4749 			freesize -= memmap_pages;
4750 			if (memmap_pages)
4751 				printk(KERN_DEBUG
4752 				       "  %s zone: %lu pages used for memmap\n",
4753 				       zone_names[j], memmap_pages);
4754 		} else
4755 			printk(KERN_WARNING
4756 				"  %s zone: %lu pages exceeds freesize %lu\n",
4757 				zone_names[j], memmap_pages, freesize);
4758 
4759 		/* Account for reserved pages */
4760 		if (j == 0 && freesize > dma_reserve) {
4761 			freesize -= dma_reserve;
4762 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4763 					zone_names[0], dma_reserve);
4764 		}
4765 
4766 		if (!is_highmem_idx(j))
4767 			nr_kernel_pages += freesize;
4768 		/* Charge for highmem memmap if there are enough kernel pages */
4769 		else if (nr_kernel_pages > memmap_pages * 2)
4770 			nr_kernel_pages -= memmap_pages;
4771 		nr_all_pages += freesize;
4772 
4773 		zone->spanned_pages = size;
4774 		zone->present_pages = realsize;
4775 		/*
4776 		 * Set an approximate value for lowmem here, it will be adjusted
4777 		 * when the bootmem allocator frees pages into the buddy system.
4778 		 * And all highmem pages will be managed by the buddy system.
4779 		 */
4780 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4781 #ifdef CONFIG_NUMA
4782 		zone->node = nid;
4783 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4784 						/ 100;
4785 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4786 #endif
4787 		zone->name = zone_names[j];
4788 		spin_lock_init(&zone->lock);
4789 		spin_lock_init(&zone->lru_lock);
4790 		zone_seqlock_init(zone);
4791 		zone->zone_pgdat = pgdat;
4792 		zone_pcp_init(zone);
4793 
4794 		/* For bootup, initialized properly in watermark setup */
4795 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4796 
4797 		lruvec_init(&zone->lruvec);
4798 		if (!size)
4799 			continue;
4800 
4801 		set_pageblock_order();
4802 		setup_usemap(pgdat, zone, zone_start_pfn, size);
4803 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4804 						size, MEMMAP_EARLY);
4805 		BUG_ON(ret);
4806 		memmap_init(size, nid, j, zone_start_pfn);
4807 		zone_start_pfn += size;
4808 	}
4809 }
4810 
4811 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4812 {
4813 	/* Skip empty nodes */
4814 	if (!pgdat->node_spanned_pages)
4815 		return;
4816 
4817 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4818 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4819 	if (!pgdat->node_mem_map) {
4820 		unsigned long size, start, end;
4821 		struct page *map;
4822 
4823 		/*
4824 		 * The zone's endpoints aren't required to be MAX_ORDER
4825 		 * aligned but the node_mem_map endpoints must be in order
4826 		 * for the buddy allocator to function correctly.
4827 		 */
4828 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4829 		end = pgdat_end_pfn(pgdat);
4830 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4831 		size =  (end - start) * sizeof(struct page);
4832 		map = alloc_remap(pgdat->node_id, size);
4833 		if (!map)
4834 			map = alloc_bootmem_node_nopanic(pgdat, size);
4835 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4836 	}
4837 #ifndef CONFIG_NEED_MULTIPLE_NODES
4838 	/*
4839 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4840 	 */
4841 	if (pgdat == NODE_DATA(0)) {
4842 		mem_map = NODE_DATA(0)->node_mem_map;
4843 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4844 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4845 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4846 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4847 	}
4848 #endif
4849 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4850 }
4851 
4852 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4853 		unsigned long node_start_pfn, unsigned long *zholes_size)
4854 {
4855 	pg_data_t *pgdat = NODE_DATA(nid);
4856 	unsigned long start_pfn = 0;
4857 	unsigned long end_pfn = 0;
4858 
4859 	/* pg_data_t should be reset to zero when it's allocated */
4860 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4861 
4862 	pgdat->node_id = nid;
4863 	pgdat->node_start_pfn = node_start_pfn;
4864 	init_zone_allows_reclaim(nid);
4865 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4866 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4867 #endif
4868 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4869 				  zones_size, zholes_size);
4870 
4871 	alloc_node_mem_map(pgdat);
4872 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4873 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4874 		nid, (unsigned long)pgdat,
4875 		(unsigned long)pgdat->node_mem_map);
4876 #endif
4877 
4878 	free_area_init_core(pgdat, start_pfn, end_pfn,
4879 			    zones_size, zholes_size);
4880 }
4881 
4882 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4883 
4884 #if MAX_NUMNODES > 1
4885 /*
4886  * Figure out the number of possible node ids.
4887  */
4888 void __init setup_nr_node_ids(void)
4889 {
4890 	unsigned int node;
4891 	unsigned int highest = 0;
4892 
4893 	for_each_node_mask(node, node_possible_map)
4894 		highest = node;
4895 	nr_node_ids = highest + 1;
4896 }
4897 #endif
4898 
4899 /**
4900  * node_map_pfn_alignment - determine the maximum internode alignment
4901  *
4902  * This function should be called after node map is populated and sorted.
4903  * It calculates the maximum power of two alignment which can distinguish
4904  * all the nodes.
4905  *
4906  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4907  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4908  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4909  * shifted, 1GiB is enough and this function will indicate so.
4910  *
4911  * This is used to test whether pfn -> nid mapping of the chosen memory
4912  * model has fine enough granularity to avoid incorrect mapping for the
4913  * populated node map.
4914  *
4915  * Returns the determined alignment in pfn's.  0 if there is no alignment
4916  * requirement (single node).
4917  */
4918 unsigned long __init node_map_pfn_alignment(void)
4919 {
4920 	unsigned long accl_mask = 0, last_end = 0;
4921 	unsigned long start, end, mask;
4922 	int last_nid = -1;
4923 	int i, nid;
4924 
4925 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4926 		if (!start || last_nid < 0 || last_nid == nid) {
4927 			last_nid = nid;
4928 			last_end = end;
4929 			continue;
4930 		}
4931 
4932 		/*
4933 		 * Start with a mask granular enough to pin-point to the
4934 		 * start pfn and tick off bits one-by-one until it becomes
4935 		 * too coarse to separate the current node from the last.
4936 		 */
4937 		mask = ~((1 << __ffs(start)) - 1);
4938 		while (mask && last_end <= (start & (mask << 1)))
4939 			mask <<= 1;
4940 
4941 		/* accumulate all internode masks */
4942 		accl_mask |= mask;
4943 	}
4944 
4945 	/* convert mask to number of pages */
4946 	return ~accl_mask + 1;
4947 }
4948 
4949 /* Find the lowest pfn for a node */
4950 static unsigned long __init find_min_pfn_for_node(int nid)
4951 {
4952 	unsigned long min_pfn = ULONG_MAX;
4953 	unsigned long start_pfn;
4954 	int i;
4955 
4956 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4957 		min_pfn = min(min_pfn, start_pfn);
4958 
4959 	if (min_pfn == ULONG_MAX) {
4960 		printk(KERN_WARNING
4961 			"Could not find start_pfn for node %d\n", nid);
4962 		return 0;
4963 	}
4964 
4965 	return min_pfn;
4966 }
4967 
4968 /**
4969  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4970  *
4971  * It returns the minimum PFN based on information provided via
4972  * add_active_range().
4973  */
4974 unsigned long __init find_min_pfn_with_active_regions(void)
4975 {
4976 	return find_min_pfn_for_node(MAX_NUMNODES);
4977 }
4978 
4979 /*
4980  * early_calculate_totalpages()
4981  * Sum pages in active regions for movable zone.
4982  * Populate N_MEMORY for calculating usable_nodes.
4983  */
4984 static unsigned long __init early_calculate_totalpages(void)
4985 {
4986 	unsigned long totalpages = 0;
4987 	unsigned long start_pfn, end_pfn;
4988 	int i, nid;
4989 
4990 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4991 		unsigned long pages = end_pfn - start_pfn;
4992 
4993 		totalpages += pages;
4994 		if (pages)
4995 			node_set_state(nid, N_MEMORY);
4996 	}
4997 	return totalpages;
4998 }
4999 
5000 /*
5001  * Find the PFN the Movable zone begins in each node. Kernel memory
5002  * is spread evenly between nodes as long as the nodes have enough
5003  * memory. When they don't, some nodes will have more kernelcore than
5004  * others
5005  */
5006 static void __init find_zone_movable_pfns_for_nodes(void)
5007 {
5008 	int i, nid;
5009 	unsigned long usable_startpfn;
5010 	unsigned long kernelcore_node, kernelcore_remaining;
5011 	/* save the state before borrow the nodemask */
5012 	nodemask_t saved_node_state = node_states[N_MEMORY];
5013 	unsigned long totalpages = early_calculate_totalpages();
5014 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5015 
5016 	/*
5017 	 * If movablecore was specified, calculate what size of
5018 	 * kernelcore that corresponds so that memory usable for
5019 	 * any allocation type is evenly spread. If both kernelcore
5020 	 * and movablecore are specified, then the value of kernelcore
5021 	 * will be used for required_kernelcore if it's greater than
5022 	 * what movablecore would have allowed.
5023 	 */
5024 	if (required_movablecore) {
5025 		unsigned long corepages;
5026 
5027 		/*
5028 		 * Round-up so that ZONE_MOVABLE is at least as large as what
5029 		 * was requested by the user
5030 		 */
5031 		required_movablecore =
5032 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5033 		corepages = totalpages - required_movablecore;
5034 
5035 		required_kernelcore = max(required_kernelcore, corepages);
5036 	}
5037 
5038 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
5039 	if (!required_kernelcore)
5040 		goto out;
5041 
5042 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5043 	find_usable_zone_for_movable();
5044 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5045 
5046 restart:
5047 	/* Spread kernelcore memory as evenly as possible throughout nodes */
5048 	kernelcore_node = required_kernelcore / usable_nodes;
5049 	for_each_node_state(nid, N_MEMORY) {
5050 		unsigned long start_pfn, end_pfn;
5051 
5052 		/*
5053 		 * Recalculate kernelcore_node if the division per node
5054 		 * now exceeds what is necessary to satisfy the requested
5055 		 * amount of memory for the kernel
5056 		 */
5057 		if (required_kernelcore < kernelcore_node)
5058 			kernelcore_node = required_kernelcore / usable_nodes;
5059 
5060 		/*
5061 		 * As the map is walked, we track how much memory is usable
5062 		 * by the kernel using kernelcore_remaining. When it is
5063 		 * 0, the rest of the node is usable by ZONE_MOVABLE
5064 		 */
5065 		kernelcore_remaining = kernelcore_node;
5066 
5067 		/* Go through each range of PFNs within this node */
5068 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5069 			unsigned long size_pages;
5070 
5071 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5072 			if (start_pfn >= end_pfn)
5073 				continue;
5074 
5075 			/* Account for what is only usable for kernelcore */
5076 			if (start_pfn < usable_startpfn) {
5077 				unsigned long kernel_pages;
5078 				kernel_pages = min(end_pfn, usable_startpfn)
5079 								- start_pfn;
5080 
5081 				kernelcore_remaining -= min(kernel_pages,
5082 							kernelcore_remaining);
5083 				required_kernelcore -= min(kernel_pages,
5084 							required_kernelcore);
5085 
5086 				/* Continue if range is now fully accounted */
5087 				if (end_pfn <= usable_startpfn) {
5088 
5089 					/*
5090 					 * Push zone_movable_pfn to the end so
5091 					 * that if we have to rebalance
5092 					 * kernelcore across nodes, we will
5093 					 * not double account here
5094 					 */
5095 					zone_movable_pfn[nid] = end_pfn;
5096 					continue;
5097 				}
5098 				start_pfn = usable_startpfn;
5099 			}
5100 
5101 			/*
5102 			 * The usable PFN range for ZONE_MOVABLE is from
5103 			 * start_pfn->end_pfn. Calculate size_pages as the
5104 			 * number of pages used as kernelcore
5105 			 */
5106 			size_pages = end_pfn - start_pfn;
5107 			if (size_pages > kernelcore_remaining)
5108 				size_pages = kernelcore_remaining;
5109 			zone_movable_pfn[nid] = start_pfn + size_pages;
5110 
5111 			/*
5112 			 * Some kernelcore has been met, update counts and
5113 			 * break if the kernelcore for this node has been
5114 			 * satisfied
5115 			 */
5116 			required_kernelcore -= min(required_kernelcore,
5117 								size_pages);
5118 			kernelcore_remaining -= size_pages;
5119 			if (!kernelcore_remaining)
5120 				break;
5121 		}
5122 	}
5123 
5124 	/*
5125 	 * If there is still required_kernelcore, we do another pass with one
5126 	 * less node in the count. This will push zone_movable_pfn[nid] further
5127 	 * along on the nodes that still have memory until kernelcore is
5128 	 * satisfied
5129 	 */
5130 	usable_nodes--;
5131 	if (usable_nodes && required_kernelcore > usable_nodes)
5132 		goto restart;
5133 
5134 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5135 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5136 		zone_movable_pfn[nid] =
5137 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5138 
5139 out:
5140 	/* restore the node_state */
5141 	node_states[N_MEMORY] = saved_node_state;
5142 }
5143 
5144 /* Any regular or high memory on that node ? */
5145 static void check_for_memory(pg_data_t *pgdat, int nid)
5146 {
5147 	enum zone_type zone_type;
5148 
5149 	if (N_MEMORY == N_NORMAL_MEMORY)
5150 		return;
5151 
5152 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5153 		struct zone *zone = &pgdat->node_zones[zone_type];
5154 		if (populated_zone(zone)) {
5155 			node_set_state(nid, N_HIGH_MEMORY);
5156 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5157 			    zone_type <= ZONE_NORMAL)
5158 				node_set_state(nid, N_NORMAL_MEMORY);
5159 			break;
5160 		}
5161 	}
5162 }
5163 
5164 /**
5165  * free_area_init_nodes - Initialise all pg_data_t and zone data
5166  * @max_zone_pfn: an array of max PFNs for each zone
5167  *
5168  * This will call free_area_init_node() for each active node in the system.
5169  * Using the page ranges provided by add_active_range(), the size of each
5170  * zone in each node and their holes is calculated. If the maximum PFN
5171  * between two adjacent zones match, it is assumed that the zone is empty.
5172  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5173  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5174  * starts where the previous one ended. For example, ZONE_DMA32 starts
5175  * at arch_max_dma_pfn.
5176  */
5177 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5178 {
5179 	unsigned long start_pfn, end_pfn;
5180 	int i, nid;
5181 
5182 	/* Record where the zone boundaries are */
5183 	memset(arch_zone_lowest_possible_pfn, 0,
5184 				sizeof(arch_zone_lowest_possible_pfn));
5185 	memset(arch_zone_highest_possible_pfn, 0,
5186 				sizeof(arch_zone_highest_possible_pfn));
5187 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5188 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5189 	for (i = 1; i < MAX_NR_ZONES; i++) {
5190 		if (i == ZONE_MOVABLE)
5191 			continue;
5192 		arch_zone_lowest_possible_pfn[i] =
5193 			arch_zone_highest_possible_pfn[i-1];
5194 		arch_zone_highest_possible_pfn[i] =
5195 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5196 	}
5197 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5198 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5199 
5200 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5201 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5202 	find_zone_movable_pfns_for_nodes();
5203 
5204 	/* Print out the zone ranges */
5205 	printk("Zone ranges:\n");
5206 	for (i = 0; i < MAX_NR_ZONES; i++) {
5207 		if (i == ZONE_MOVABLE)
5208 			continue;
5209 		printk(KERN_CONT "  %-8s ", zone_names[i]);
5210 		if (arch_zone_lowest_possible_pfn[i] ==
5211 				arch_zone_highest_possible_pfn[i])
5212 			printk(KERN_CONT "empty\n");
5213 		else
5214 			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5215 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5216 				(arch_zone_highest_possible_pfn[i]
5217 					<< PAGE_SHIFT) - 1);
5218 	}
5219 
5220 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5221 	printk("Movable zone start for each node\n");
5222 	for (i = 0; i < MAX_NUMNODES; i++) {
5223 		if (zone_movable_pfn[i])
5224 			printk("  Node %d: %#010lx\n", i,
5225 			       zone_movable_pfn[i] << PAGE_SHIFT);
5226 	}
5227 
5228 	/* Print out the early node map */
5229 	printk("Early memory node ranges\n");
5230 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5231 		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
5232 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5233 
5234 	/* Initialise every node */
5235 	mminit_verify_pageflags_layout();
5236 	setup_nr_node_ids();
5237 	for_each_online_node(nid) {
5238 		pg_data_t *pgdat = NODE_DATA(nid);
5239 		free_area_init_node(nid, NULL,
5240 				find_min_pfn_for_node(nid), NULL);
5241 
5242 		/* Any memory on that node */
5243 		if (pgdat->node_present_pages)
5244 			node_set_state(nid, N_MEMORY);
5245 		check_for_memory(pgdat, nid);
5246 	}
5247 }
5248 
5249 static int __init cmdline_parse_core(char *p, unsigned long *core)
5250 {
5251 	unsigned long long coremem;
5252 	if (!p)
5253 		return -EINVAL;
5254 
5255 	coremem = memparse(p, &p);
5256 	*core = coremem >> PAGE_SHIFT;
5257 
5258 	/* Paranoid check that UL is enough for the coremem value */
5259 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5260 
5261 	return 0;
5262 }
5263 
5264 /*
5265  * kernelcore=size sets the amount of memory for use for allocations that
5266  * cannot be reclaimed or migrated.
5267  */
5268 static int __init cmdline_parse_kernelcore(char *p)
5269 {
5270 	return cmdline_parse_core(p, &required_kernelcore);
5271 }
5272 
5273 /*
5274  * movablecore=size sets the amount of memory for use for allocations that
5275  * can be reclaimed or migrated.
5276  */
5277 static int __init cmdline_parse_movablecore(char *p)
5278 {
5279 	return cmdline_parse_core(p, &required_movablecore);
5280 }
5281 
5282 early_param("kernelcore", cmdline_parse_kernelcore);
5283 early_param("movablecore", cmdline_parse_movablecore);
5284 
5285 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5286 
5287 void adjust_managed_page_count(struct page *page, long count)
5288 {
5289 	spin_lock(&managed_page_count_lock);
5290 	page_zone(page)->managed_pages += count;
5291 	totalram_pages += count;
5292 #ifdef CONFIG_HIGHMEM
5293 	if (PageHighMem(page))
5294 		totalhigh_pages += count;
5295 #endif
5296 	spin_unlock(&managed_page_count_lock);
5297 }
5298 EXPORT_SYMBOL(adjust_managed_page_count);
5299 
5300 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5301 {
5302 	void *pos;
5303 	unsigned long pages = 0;
5304 
5305 	start = (void *)PAGE_ALIGN((unsigned long)start);
5306 	end = (void *)((unsigned long)end & PAGE_MASK);
5307 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5308 		if ((unsigned int)poison <= 0xFF)
5309 			memset(pos, poison, PAGE_SIZE);
5310 		free_reserved_page(virt_to_page(pos));
5311 	}
5312 
5313 	if (pages && s)
5314 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5315 			s, pages << (PAGE_SHIFT - 10), start, end);
5316 
5317 	return pages;
5318 }
5319 EXPORT_SYMBOL(free_reserved_area);
5320 
5321 #ifdef	CONFIG_HIGHMEM
5322 void free_highmem_page(struct page *page)
5323 {
5324 	__free_reserved_page(page);
5325 	totalram_pages++;
5326 	page_zone(page)->managed_pages++;
5327 	totalhigh_pages++;
5328 }
5329 #endif
5330 
5331 
5332 void __init mem_init_print_info(const char *str)
5333 {
5334 	unsigned long physpages, codesize, datasize, rosize, bss_size;
5335 	unsigned long init_code_size, init_data_size;
5336 
5337 	physpages = get_num_physpages();
5338 	codesize = _etext - _stext;
5339 	datasize = _edata - _sdata;
5340 	rosize = __end_rodata - __start_rodata;
5341 	bss_size = __bss_stop - __bss_start;
5342 	init_data_size = __init_end - __init_begin;
5343 	init_code_size = _einittext - _sinittext;
5344 
5345 	/*
5346 	 * Detect special cases and adjust section sizes accordingly:
5347 	 * 1) .init.* may be embedded into .data sections
5348 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
5349 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
5350 	 * 3) .rodata.* may be embedded into .text or .data sections.
5351 	 */
5352 #define adj_init_size(start, end, size, pos, adj) \
5353 	do { \
5354 		if (start <= pos && pos < end && size > adj) \
5355 			size -= adj; \
5356 	} while (0)
5357 
5358 	adj_init_size(__init_begin, __init_end, init_data_size,
5359 		     _sinittext, init_code_size);
5360 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5361 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5362 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5363 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5364 
5365 #undef	adj_init_size
5366 
5367 	printk("Memory: %luK/%luK available "
5368 	       "(%luK kernel code, %luK rwdata, %luK rodata, "
5369 	       "%luK init, %luK bss, %luK reserved"
5370 #ifdef	CONFIG_HIGHMEM
5371 	       ", %luK highmem"
5372 #endif
5373 	       "%s%s)\n",
5374 	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5375 	       codesize >> 10, datasize >> 10, rosize >> 10,
5376 	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
5377 	       (physpages - totalram_pages) << (PAGE_SHIFT-10),
5378 #ifdef	CONFIG_HIGHMEM
5379 	       totalhigh_pages << (PAGE_SHIFT-10),
5380 #endif
5381 	       str ? ", " : "", str ? str : "");
5382 }
5383 
5384 /**
5385  * set_dma_reserve - set the specified number of pages reserved in the first zone
5386  * @new_dma_reserve: The number of pages to mark reserved
5387  *
5388  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5389  * In the DMA zone, a significant percentage may be consumed by kernel image
5390  * and other unfreeable allocations which can skew the watermarks badly. This
5391  * function may optionally be used to account for unfreeable pages in the
5392  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5393  * smaller per-cpu batchsize.
5394  */
5395 void __init set_dma_reserve(unsigned long new_dma_reserve)
5396 {
5397 	dma_reserve = new_dma_reserve;
5398 }
5399 
5400 void __init free_area_init(unsigned long *zones_size)
5401 {
5402 	free_area_init_node(0, zones_size,
5403 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5404 }
5405 
5406 static int page_alloc_cpu_notify(struct notifier_block *self,
5407 				 unsigned long action, void *hcpu)
5408 {
5409 	int cpu = (unsigned long)hcpu;
5410 
5411 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5412 		lru_add_drain_cpu(cpu);
5413 		drain_pages(cpu);
5414 
5415 		/*
5416 		 * Spill the event counters of the dead processor
5417 		 * into the current processors event counters.
5418 		 * This artificially elevates the count of the current
5419 		 * processor.
5420 		 */
5421 		vm_events_fold_cpu(cpu);
5422 
5423 		/*
5424 		 * Zero the differential counters of the dead processor
5425 		 * so that the vm statistics are consistent.
5426 		 *
5427 		 * This is only okay since the processor is dead and cannot
5428 		 * race with what we are doing.
5429 		 */
5430 		cpu_vm_stats_fold(cpu);
5431 	}
5432 	return NOTIFY_OK;
5433 }
5434 
5435 void __init page_alloc_init(void)
5436 {
5437 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5438 }
5439 
5440 /*
5441  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5442  *	or min_free_kbytes changes.
5443  */
5444 static void calculate_totalreserve_pages(void)
5445 {
5446 	struct pglist_data *pgdat;
5447 	unsigned long reserve_pages = 0;
5448 	enum zone_type i, j;
5449 
5450 	for_each_online_pgdat(pgdat) {
5451 		for (i = 0; i < MAX_NR_ZONES; i++) {
5452 			struct zone *zone = pgdat->node_zones + i;
5453 			unsigned long max = 0;
5454 
5455 			/* Find valid and maximum lowmem_reserve in the zone */
5456 			for (j = i; j < MAX_NR_ZONES; j++) {
5457 				if (zone->lowmem_reserve[j] > max)
5458 					max = zone->lowmem_reserve[j];
5459 			}
5460 
5461 			/* we treat the high watermark as reserved pages. */
5462 			max += high_wmark_pages(zone);
5463 
5464 			if (max > zone->managed_pages)
5465 				max = zone->managed_pages;
5466 			reserve_pages += max;
5467 			/*
5468 			 * Lowmem reserves are not available to
5469 			 * GFP_HIGHUSER page cache allocations and
5470 			 * kswapd tries to balance zones to their high
5471 			 * watermark.  As a result, neither should be
5472 			 * regarded as dirtyable memory, to prevent a
5473 			 * situation where reclaim has to clean pages
5474 			 * in order to balance the zones.
5475 			 */
5476 			zone->dirty_balance_reserve = max;
5477 		}
5478 	}
5479 	dirty_balance_reserve = reserve_pages;
5480 	totalreserve_pages = reserve_pages;
5481 }
5482 
5483 /*
5484  * setup_per_zone_lowmem_reserve - called whenever
5485  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5486  *	has a correct pages reserved value, so an adequate number of
5487  *	pages are left in the zone after a successful __alloc_pages().
5488  */
5489 static void setup_per_zone_lowmem_reserve(void)
5490 {
5491 	struct pglist_data *pgdat;
5492 	enum zone_type j, idx;
5493 
5494 	for_each_online_pgdat(pgdat) {
5495 		for (j = 0; j < MAX_NR_ZONES; j++) {
5496 			struct zone *zone = pgdat->node_zones + j;
5497 			unsigned long managed_pages = zone->managed_pages;
5498 
5499 			zone->lowmem_reserve[j] = 0;
5500 
5501 			idx = j;
5502 			while (idx) {
5503 				struct zone *lower_zone;
5504 
5505 				idx--;
5506 
5507 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5508 					sysctl_lowmem_reserve_ratio[idx] = 1;
5509 
5510 				lower_zone = pgdat->node_zones + idx;
5511 				lower_zone->lowmem_reserve[j] = managed_pages /
5512 					sysctl_lowmem_reserve_ratio[idx];
5513 				managed_pages += lower_zone->managed_pages;
5514 			}
5515 		}
5516 	}
5517 
5518 	/* update totalreserve_pages */
5519 	calculate_totalreserve_pages();
5520 }
5521 
5522 static void __setup_per_zone_wmarks(void)
5523 {
5524 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5525 	unsigned long lowmem_pages = 0;
5526 	struct zone *zone;
5527 	unsigned long flags;
5528 
5529 	/* Calculate total number of !ZONE_HIGHMEM pages */
5530 	for_each_zone(zone) {
5531 		if (!is_highmem(zone))
5532 			lowmem_pages += zone->managed_pages;
5533 	}
5534 
5535 	for_each_zone(zone) {
5536 		u64 tmp;
5537 
5538 		spin_lock_irqsave(&zone->lock, flags);
5539 		tmp = (u64)pages_min * zone->managed_pages;
5540 		do_div(tmp, lowmem_pages);
5541 		if (is_highmem(zone)) {
5542 			/*
5543 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5544 			 * need highmem pages, so cap pages_min to a small
5545 			 * value here.
5546 			 *
5547 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5548 			 * deltas controls asynch page reclaim, and so should
5549 			 * not be capped for highmem.
5550 			 */
5551 			unsigned long min_pages;
5552 
5553 			min_pages = zone->managed_pages / 1024;
5554 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5555 			zone->watermark[WMARK_MIN] = min_pages;
5556 		} else {
5557 			/*
5558 			 * If it's a lowmem zone, reserve a number of pages
5559 			 * proportionate to the zone's size.
5560 			 */
5561 			zone->watermark[WMARK_MIN] = tmp;
5562 		}
5563 
5564 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5565 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5566 
5567 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
5568 				      high_wmark_pages(zone) -
5569 				      low_wmark_pages(zone) -
5570 				      zone_page_state(zone, NR_ALLOC_BATCH));
5571 
5572 		setup_zone_migrate_reserve(zone);
5573 		spin_unlock_irqrestore(&zone->lock, flags);
5574 	}
5575 
5576 	/* update totalreserve_pages */
5577 	calculate_totalreserve_pages();
5578 }
5579 
5580 /**
5581  * setup_per_zone_wmarks - called when min_free_kbytes changes
5582  * or when memory is hot-{added|removed}
5583  *
5584  * Ensures that the watermark[min,low,high] values for each zone are set
5585  * correctly with respect to min_free_kbytes.
5586  */
5587 void setup_per_zone_wmarks(void)
5588 {
5589 	mutex_lock(&zonelists_mutex);
5590 	__setup_per_zone_wmarks();
5591 	mutex_unlock(&zonelists_mutex);
5592 }
5593 
5594 /*
5595  * The inactive anon list should be small enough that the VM never has to
5596  * do too much work, but large enough that each inactive page has a chance
5597  * to be referenced again before it is swapped out.
5598  *
5599  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5600  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5601  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5602  * the anonymous pages are kept on the inactive list.
5603  *
5604  * total     target    max
5605  * memory    ratio     inactive anon
5606  * -------------------------------------
5607  *   10MB       1         5MB
5608  *  100MB       1        50MB
5609  *    1GB       3       250MB
5610  *   10GB      10       0.9GB
5611  *  100GB      31         3GB
5612  *    1TB     101        10GB
5613  *   10TB     320        32GB
5614  */
5615 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5616 {
5617 	unsigned int gb, ratio;
5618 
5619 	/* Zone size in gigabytes */
5620 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5621 	if (gb)
5622 		ratio = int_sqrt(10 * gb);
5623 	else
5624 		ratio = 1;
5625 
5626 	zone->inactive_ratio = ratio;
5627 }
5628 
5629 static void __meminit setup_per_zone_inactive_ratio(void)
5630 {
5631 	struct zone *zone;
5632 
5633 	for_each_zone(zone)
5634 		calculate_zone_inactive_ratio(zone);
5635 }
5636 
5637 /*
5638  * Initialise min_free_kbytes.
5639  *
5640  * For small machines we want it small (128k min).  For large machines
5641  * we want it large (64MB max).  But it is not linear, because network
5642  * bandwidth does not increase linearly with machine size.  We use
5643  *
5644  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5645  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5646  *
5647  * which yields
5648  *
5649  * 16MB:	512k
5650  * 32MB:	724k
5651  * 64MB:	1024k
5652  * 128MB:	1448k
5653  * 256MB:	2048k
5654  * 512MB:	2896k
5655  * 1024MB:	4096k
5656  * 2048MB:	5792k
5657  * 4096MB:	8192k
5658  * 8192MB:	11584k
5659  * 16384MB:	16384k
5660  */
5661 int __meminit init_per_zone_wmark_min(void)
5662 {
5663 	unsigned long lowmem_kbytes;
5664 	int new_min_free_kbytes;
5665 
5666 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5667 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5668 
5669 	if (new_min_free_kbytes > user_min_free_kbytes) {
5670 		min_free_kbytes = new_min_free_kbytes;
5671 		if (min_free_kbytes < 128)
5672 			min_free_kbytes = 128;
5673 		if (min_free_kbytes > 65536)
5674 			min_free_kbytes = 65536;
5675 	} else {
5676 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5677 				new_min_free_kbytes, user_min_free_kbytes);
5678 	}
5679 	setup_per_zone_wmarks();
5680 	refresh_zone_stat_thresholds();
5681 	setup_per_zone_lowmem_reserve();
5682 	setup_per_zone_inactive_ratio();
5683 	return 0;
5684 }
5685 module_init(init_per_zone_wmark_min)
5686 
5687 /*
5688  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5689  *	that we can call two helper functions whenever min_free_kbytes
5690  *	changes.
5691  */
5692 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5693 	void __user *buffer, size_t *length, loff_t *ppos)
5694 {
5695 	proc_dointvec(table, write, buffer, length, ppos);
5696 	if (write) {
5697 		user_min_free_kbytes = min_free_kbytes;
5698 		setup_per_zone_wmarks();
5699 	}
5700 	return 0;
5701 }
5702 
5703 #ifdef CONFIG_NUMA
5704 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5705 	void __user *buffer, size_t *length, loff_t *ppos)
5706 {
5707 	struct zone *zone;
5708 	int rc;
5709 
5710 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5711 	if (rc)
5712 		return rc;
5713 
5714 	for_each_zone(zone)
5715 		zone->min_unmapped_pages = (zone->managed_pages *
5716 				sysctl_min_unmapped_ratio) / 100;
5717 	return 0;
5718 }
5719 
5720 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5721 	void __user *buffer, size_t *length, loff_t *ppos)
5722 {
5723 	struct zone *zone;
5724 	int rc;
5725 
5726 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5727 	if (rc)
5728 		return rc;
5729 
5730 	for_each_zone(zone)
5731 		zone->min_slab_pages = (zone->managed_pages *
5732 				sysctl_min_slab_ratio) / 100;
5733 	return 0;
5734 }
5735 #endif
5736 
5737 /*
5738  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5739  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5740  *	whenever sysctl_lowmem_reserve_ratio changes.
5741  *
5742  * The reserve ratio obviously has absolutely no relation with the
5743  * minimum watermarks. The lowmem reserve ratio can only make sense
5744  * if in function of the boot time zone sizes.
5745  */
5746 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5747 	void __user *buffer, size_t *length, loff_t *ppos)
5748 {
5749 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5750 	setup_per_zone_lowmem_reserve();
5751 	return 0;
5752 }
5753 
5754 /*
5755  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5756  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
5757  * pagelist can have before it gets flushed back to buddy allocator.
5758  */
5759 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5760 	void __user *buffer, size_t *length, loff_t *ppos)
5761 {
5762 	struct zone *zone;
5763 	unsigned int cpu;
5764 	int ret;
5765 
5766 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5767 	if (!write || (ret < 0))
5768 		return ret;
5769 
5770 	mutex_lock(&pcp_batch_high_lock);
5771 	for_each_populated_zone(zone) {
5772 		unsigned long  high;
5773 		high = zone->managed_pages / percpu_pagelist_fraction;
5774 		for_each_possible_cpu(cpu)
5775 			pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5776 					 high);
5777 	}
5778 	mutex_unlock(&pcp_batch_high_lock);
5779 	return 0;
5780 }
5781 
5782 int hashdist = HASHDIST_DEFAULT;
5783 
5784 #ifdef CONFIG_NUMA
5785 static int __init set_hashdist(char *str)
5786 {
5787 	if (!str)
5788 		return 0;
5789 	hashdist = simple_strtoul(str, &str, 0);
5790 	return 1;
5791 }
5792 __setup("hashdist=", set_hashdist);
5793 #endif
5794 
5795 /*
5796  * allocate a large system hash table from bootmem
5797  * - it is assumed that the hash table must contain an exact power-of-2
5798  *   quantity of entries
5799  * - limit is the number of hash buckets, not the total allocation size
5800  */
5801 void *__init alloc_large_system_hash(const char *tablename,
5802 				     unsigned long bucketsize,
5803 				     unsigned long numentries,
5804 				     int scale,
5805 				     int flags,
5806 				     unsigned int *_hash_shift,
5807 				     unsigned int *_hash_mask,
5808 				     unsigned long low_limit,
5809 				     unsigned long high_limit)
5810 {
5811 	unsigned long long max = high_limit;
5812 	unsigned long log2qty, size;
5813 	void *table = NULL;
5814 
5815 	/* allow the kernel cmdline to have a say */
5816 	if (!numentries) {
5817 		/* round applicable memory size up to nearest megabyte */
5818 		numentries = nr_kernel_pages;
5819 
5820 		/* It isn't necessary when PAGE_SIZE >= 1MB */
5821 		if (PAGE_SHIFT < 20)
5822 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5823 
5824 		/* limit to 1 bucket per 2^scale bytes of low memory */
5825 		if (scale > PAGE_SHIFT)
5826 			numentries >>= (scale - PAGE_SHIFT);
5827 		else
5828 			numentries <<= (PAGE_SHIFT - scale);
5829 
5830 		/* Make sure we've got at least a 0-order allocation.. */
5831 		if (unlikely(flags & HASH_SMALL)) {
5832 			/* Makes no sense without HASH_EARLY */
5833 			WARN_ON(!(flags & HASH_EARLY));
5834 			if (!(numentries >> *_hash_shift)) {
5835 				numentries = 1UL << *_hash_shift;
5836 				BUG_ON(!numentries);
5837 			}
5838 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5839 			numentries = PAGE_SIZE / bucketsize;
5840 	}
5841 	numentries = roundup_pow_of_two(numentries);
5842 
5843 	/* limit allocation size to 1/16 total memory by default */
5844 	if (max == 0) {
5845 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5846 		do_div(max, bucketsize);
5847 	}
5848 	max = min(max, 0x80000000ULL);
5849 
5850 	if (numentries < low_limit)
5851 		numentries = low_limit;
5852 	if (numentries > max)
5853 		numentries = max;
5854 
5855 	log2qty = ilog2(numentries);
5856 
5857 	do {
5858 		size = bucketsize << log2qty;
5859 		if (flags & HASH_EARLY)
5860 			table = alloc_bootmem_nopanic(size);
5861 		else if (hashdist)
5862 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5863 		else {
5864 			/*
5865 			 * If bucketsize is not a power-of-two, we may free
5866 			 * some pages at the end of hash table which
5867 			 * alloc_pages_exact() automatically does
5868 			 */
5869 			if (get_order(size) < MAX_ORDER) {
5870 				table = alloc_pages_exact(size, GFP_ATOMIC);
5871 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5872 			}
5873 		}
5874 	} while (!table && size > PAGE_SIZE && --log2qty);
5875 
5876 	if (!table)
5877 		panic("Failed to allocate %s hash table\n", tablename);
5878 
5879 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5880 	       tablename,
5881 	       (1UL << log2qty),
5882 	       ilog2(size) - PAGE_SHIFT,
5883 	       size);
5884 
5885 	if (_hash_shift)
5886 		*_hash_shift = log2qty;
5887 	if (_hash_mask)
5888 		*_hash_mask = (1 << log2qty) - 1;
5889 
5890 	return table;
5891 }
5892 
5893 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5894 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5895 							unsigned long pfn)
5896 {
5897 #ifdef CONFIG_SPARSEMEM
5898 	return __pfn_to_section(pfn)->pageblock_flags;
5899 #else
5900 	return zone->pageblock_flags;
5901 #endif /* CONFIG_SPARSEMEM */
5902 }
5903 
5904 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5905 {
5906 #ifdef CONFIG_SPARSEMEM
5907 	pfn &= (PAGES_PER_SECTION-1);
5908 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5909 #else
5910 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5911 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5912 #endif /* CONFIG_SPARSEMEM */
5913 }
5914 
5915 /**
5916  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5917  * @page: The page within the block of interest
5918  * @start_bitidx: The first bit of interest to retrieve
5919  * @end_bitidx: The last bit of interest
5920  * returns pageblock_bits flags
5921  */
5922 unsigned long get_pageblock_flags_group(struct page *page,
5923 					int start_bitidx, int end_bitidx)
5924 {
5925 	struct zone *zone;
5926 	unsigned long *bitmap;
5927 	unsigned long pfn, bitidx;
5928 	unsigned long flags = 0;
5929 	unsigned long value = 1;
5930 
5931 	zone = page_zone(page);
5932 	pfn = page_to_pfn(page);
5933 	bitmap = get_pageblock_bitmap(zone, pfn);
5934 	bitidx = pfn_to_bitidx(zone, pfn);
5935 
5936 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5937 		if (test_bit(bitidx + start_bitidx, bitmap))
5938 			flags |= value;
5939 
5940 	return flags;
5941 }
5942 
5943 /**
5944  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5945  * @page: The page within the block of interest
5946  * @start_bitidx: The first bit of interest
5947  * @end_bitidx: The last bit of interest
5948  * @flags: The flags to set
5949  */
5950 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5951 					int start_bitidx, int end_bitidx)
5952 {
5953 	struct zone *zone;
5954 	unsigned long *bitmap;
5955 	unsigned long pfn, bitidx;
5956 	unsigned long value = 1;
5957 
5958 	zone = page_zone(page);
5959 	pfn = page_to_pfn(page);
5960 	bitmap = get_pageblock_bitmap(zone, pfn);
5961 	bitidx = pfn_to_bitidx(zone, pfn);
5962 	VM_BUG_ON(!zone_spans_pfn(zone, pfn));
5963 
5964 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5965 		if (flags & value)
5966 			__set_bit(bitidx + start_bitidx, bitmap);
5967 		else
5968 			__clear_bit(bitidx + start_bitidx, bitmap);
5969 }
5970 
5971 /*
5972  * This function checks whether pageblock includes unmovable pages or not.
5973  * If @count is not zero, it is okay to include less @count unmovable pages
5974  *
5975  * PageLRU check without isolation or lru_lock could race so that
5976  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5977  * expect this function should be exact.
5978  */
5979 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5980 			 bool skip_hwpoisoned_pages)
5981 {
5982 	unsigned long pfn, iter, found;
5983 	int mt;
5984 
5985 	/*
5986 	 * For avoiding noise data, lru_add_drain_all() should be called
5987 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
5988 	 */
5989 	if (zone_idx(zone) == ZONE_MOVABLE)
5990 		return false;
5991 	mt = get_pageblock_migratetype(page);
5992 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5993 		return false;
5994 
5995 	pfn = page_to_pfn(page);
5996 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5997 		unsigned long check = pfn + iter;
5998 
5999 		if (!pfn_valid_within(check))
6000 			continue;
6001 
6002 		page = pfn_to_page(check);
6003 
6004 		/*
6005 		 * Hugepages are not in LRU lists, but they're movable.
6006 		 * We need not scan over tail pages bacause we don't
6007 		 * handle each tail page individually in migration.
6008 		 */
6009 		if (PageHuge(page)) {
6010 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6011 			continue;
6012 		}
6013 
6014 		/*
6015 		 * We can't use page_count without pin a page
6016 		 * because another CPU can free compound page.
6017 		 * This check already skips compound tails of THP
6018 		 * because their page->_count is zero at all time.
6019 		 */
6020 		if (!atomic_read(&page->_count)) {
6021 			if (PageBuddy(page))
6022 				iter += (1 << page_order(page)) - 1;
6023 			continue;
6024 		}
6025 
6026 		/*
6027 		 * The HWPoisoned page may be not in buddy system, and
6028 		 * page_count() is not 0.
6029 		 */
6030 		if (skip_hwpoisoned_pages && PageHWPoison(page))
6031 			continue;
6032 
6033 		if (!PageLRU(page))
6034 			found++;
6035 		/*
6036 		 * If there are RECLAIMABLE pages, we need to check it.
6037 		 * But now, memory offline itself doesn't call shrink_slab()
6038 		 * and it still to be fixed.
6039 		 */
6040 		/*
6041 		 * If the page is not RAM, page_count()should be 0.
6042 		 * we don't need more check. This is an _used_ not-movable page.
6043 		 *
6044 		 * The problematic thing here is PG_reserved pages. PG_reserved
6045 		 * is set to both of a memory hole page and a _used_ kernel
6046 		 * page at boot.
6047 		 */
6048 		if (found > count)
6049 			return true;
6050 	}
6051 	return false;
6052 }
6053 
6054 bool is_pageblock_removable_nolock(struct page *page)
6055 {
6056 	struct zone *zone;
6057 	unsigned long pfn;
6058 
6059 	/*
6060 	 * We have to be careful here because we are iterating over memory
6061 	 * sections which are not zone aware so we might end up outside of
6062 	 * the zone but still within the section.
6063 	 * We have to take care about the node as well. If the node is offline
6064 	 * its NODE_DATA will be NULL - see page_zone.
6065 	 */
6066 	if (!node_online(page_to_nid(page)))
6067 		return false;
6068 
6069 	zone = page_zone(page);
6070 	pfn = page_to_pfn(page);
6071 	if (!zone_spans_pfn(zone, pfn))
6072 		return false;
6073 
6074 	return !has_unmovable_pages(zone, page, 0, true);
6075 }
6076 
6077 #ifdef CONFIG_CMA
6078 
6079 static unsigned long pfn_max_align_down(unsigned long pfn)
6080 {
6081 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6082 			     pageblock_nr_pages) - 1);
6083 }
6084 
6085 static unsigned long pfn_max_align_up(unsigned long pfn)
6086 {
6087 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6088 				pageblock_nr_pages));
6089 }
6090 
6091 /* [start, end) must belong to a single zone. */
6092 static int __alloc_contig_migrate_range(struct compact_control *cc,
6093 					unsigned long start, unsigned long end)
6094 {
6095 	/* This function is based on compact_zone() from compaction.c. */
6096 	unsigned long nr_reclaimed;
6097 	unsigned long pfn = start;
6098 	unsigned int tries = 0;
6099 	int ret = 0;
6100 
6101 	migrate_prep();
6102 
6103 	while (pfn < end || !list_empty(&cc->migratepages)) {
6104 		if (fatal_signal_pending(current)) {
6105 			ret = -EINTR;
6106 			break;
6107 		}
6108 
6109 		if (list_empty(&cc->migratepages)) {
6110 			cc->nr_migratepages = 0;
6111 			pfn = isolate_migratepages_range(cc->zone, cc,
6112 							 pfn, end, true);
6113 			if (!pfn) {
6114 				ret = -EINTR;
6115 				break;
6116 			}
6117 			tries = 0;
6118 		} else if (++tries == 5) {
6119 			ret = ret < 0 ? ret : -EBUSY;
6120 			break;
6121 		}
6122 
6123 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6124 							&cc->migratepages);
6125 		cc->nr_migratepages -= nr_reclaimed;
6126 
6127 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6128 				    0, MIGRATE_SYNC, MR_CMA);
6129 	}
6130 	if (ret < 0) {
6131 		putback_movable_pages(&cc->migratepages);
6132 		return ret;
6133 	}
6134 	return 0;
6135 }
6136 
6137 /**
6138  * alloc_contig_range() -- tries to allocate given range of pages
6139  * @start:	start PFN to allocate
6140  * @end:	one-past-the-last PFN to allocate
6141  * @migratetype:	migratetype of the underlaying pageblocks (either
6142  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6143  *			in range must have the same migratetype and it must
6144  *			be either of the two.
6145  *
6146  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6147  * aligned, however it's the caller's responsibility to guarantee that
6148  * we are the only thread that changes migrate type of pageblocks the
6149  * pages fall in.
6150  *
6151  * The PFN range must belong to a single zone.
6152  *
6153  * Returns zero on success or negative error code.  On success all
6154  * pages which PFN is in [start, end) are allocated for the caller and
6155  * need to be freed with free_contig_range().
6156  */
6157 int alloc_contig_range(unsigned long start, unsigned long end,
6158 		       unsigned migratetype)
6159 {
6160 	unsigned long outer_start, outer_end;
6161 	int ret = 0, order;
6162 
6163 	struct compact_control cc = {
6164 		.nr_migratepages = 0,
6165 		.order = -1,
6166 		.zone = page_zone(pfn_to_page(start)),
6167 		.sync = true,
6168 		.ignore_skip_hint = true,
6169 	};
6170 	INIT_LIST_HEAD(&cc.migratepages);
6171 
6172 	/*
6173 	 * What we do here is we mark all pageblocks in range as
6174 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6175 	 * have different sizes, and due to the way page allocator
6176 	 * work, we align the range to biggest of the two pages so
6177 	 * that page allocator won't try to merge buddies from
6178 	 * different pageblocks and change MIGRATE_ISOLATE to some
6179 	 * other migration type.
6180 	 *
6181 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6182 	 * migrate the pages from an unaligned range (ie. pages that
6183 	 * we are interested in).  This will put all the pages in
6184 	 * range back to page allocator as MIGRATE_ISOLATE.
6185 	 *
6186 	 * When this is done, we take the pages in range from page
6187 	 * allocator removing them from the buddy system.  This way
6188 	 * page allocator will never consider using them.
6189 	 *
6190 	 * This lets us mark the pageblocks back as
6191 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6192 	 * aligned range but not in the unaligned, original range are
6193 	 * put back to page allocator so that buddy can use them.
6194 	 */
6195 
6196 	ret = start_isolate_page_range(pfn_max_align_down(start),
6197 				       pfn_max_align_up(end), migratetype,
6198 				       false);
6199 	if (ret)
6200 		return ret;
6201 
6202 	ret = __alloc_contig_migrate_range(&cc, start, end);
6203 	if (ret)
6204 		goto done;
6205 
6206 	/*
6207 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6208 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6209 	 * more, all pages in [start, end) are free in page allocator.
6210 	 * What we are going to do is to allocate all pages from
6211 	 * [start, end) (that is remove them from page allocator).
6212 	 *
6213 	 * The only problem is that pages at the beginning and at the
6214 	 * end of interesting range may be not aligned with pages that
6215 	 * page allocator holds, ie. they can be part of higher order
6216 	 * pages.  Because of this, we reserve the bigger range and
6217 	 * once this is done free the pages we are not interested in.
6218 	 *
6219 	 * We don't have to hold zone->lock here because the pages are
6220 	 * isolated thus they won't get removed from buddy.
6221 	 */
6222 
6223 	lru_add_drain_all();
6224 	drain_all_pages();
6225 
6226 	order = 0;
6227 	outer_start = start;
6228 	while (!PageBuddy(pfn_to_page(outer_start))) {
6229 		if (++order >= MAX_ORDER) {
6230 			ret = -EBUSY;
6231 			goto done;
6232 		}
6233 		outer_start &= ~0UL << order;
6234 	}
6235 
6236 	/* Make sure the range is really isolated. */
6237 	if (test_pages_isolated(outer_start, end, false)) {
6238 		pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6239 		       outer_start, end);
6240 		ret = -EBUSY;
6241 		goto done;
6242 	}
6243 
6244 
6245 	/* Grab isolated pages from freelists. */
6246 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6247 	if (!outer_end) {
6248 		ret = -EBUSY;
6249 		goto done;
6250 	}
6251 
6252 	/* Free head and tail (if any) */
6253 	if (start != outer_start)
6254 		free_contig_range(outer_start, start - outer_start);
6255 	if (end != outer_end)
6256 		free_contig_range(end, outer_end - end);
6257 
6258 done:
6259 	undo_isolate_page_range(pfn_max_align_down(start),
6260 				pfn_max_align_up(end), migratetype);
6261 	return ret;
6262 }
6263 
6264 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6265 {
6266 	unsigned int count = 0;
6267 
6268 	for (; nr_pages--; pfn++) {
6269 		struct page *page = pfn_to_page(pfn);
6270 
6271 		count += page_count(page) != 1;
6272 		__free_page(page);
6273 	}
6274 	WARN(count != 0, "%d pages are still in use!\n", count);
6275 }
6276 #endif
6277 
6278 #ifdef CONFIG_MEMORY_HOTPLUG
6279 /*
6280  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6281  * page high values need to be recalulated.
6282  */
6283 void __meminit zone_pcp_update(struct zone *zone)
6284 {
6285 	unsigned cpu;
6286 	mutex_lock(&pcp_batch_high_lock);
6287 	for_each_possible_cpu(cpu)
6288 		pageset_set_high_and_batch(zone,
6289 				per_cpu_ptr(zone->pageset, cpu));
6290 	mutex_unlock(&pcp_batch_high_lock);
6291 }
6292 #endif
6293 
6294 void zone_pcp_reset(struct zone *zone)
6295 {
6296 	unsigned long flags;
6297 	int cpu;
6298 	struct per_cpu_pageset *pset;
6299 
6300 	/* avoid races with drain_pages()  */
6301 	local_irq_save(flags);
6302 	if (zone->pageset != &boot_pageset) {
6303 		for_each_online_cpu(cpu) {
6304 			pset = per_cpu_ptr(zone->pageset, cpu);
6305 			drain_zonestat(zone, pset);
6306 		}
6307 		free_percpu(zone->pageset);
6308 		zone->pageset = &boot_pageset;
6309 	}
6310 	local_irq_restore(flags);
6311 }
6312 
6313 #ifdef CONFIG_MEMORY_HOTREMOVE
6314 /*
6315  * All pages in the range must be isolated before calling this.
6316  */
6317 void
6318 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6319 {
6320 	struct page *page;
6321 	struct zone *zone;
6322 	int order, i;
6323 	unsigned long pfn;
6324 	unsigned long flags;
6325 	/* find the first valid pfn */
6326 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6327 		if (pfn_valid(pfn))
6328 			break;
6329 	if (pfn == end_pfn)
6330 		return;
6331 	zone = page_zone(pfn_to_page(pfn));
6332 	spin_lock_irqsave(&zone->lock, flags);
6333 	pfn = start_pfn;
6334 	while (pfn < end_pfn) {
6335 		if (!pfn_valid(pfn)) {
6336 			pfn++;
6337 			continue;
6338 		}
6339 		page = pfn_to_page(pfn);
6340 		/*
6341 		 * The HWPoisoned page may be not in buddy system, and
6342 		 * page_count() is not 0.
6343 		 */
6344 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6345 			pfn++;
6346 			SetPageReserved(page);
6347 			continue;
6348 		}
6349 
6350 		BUG_ON(page_count(page));
6351 		BUG_ON(!PageBuddy(page));
6352 		order = page_order(page);
6353 #ifdef CONFIG_DEBUG_VM
6354 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6355 		       pfn, 1 << order, end_pfn);
6356 #endif
6357 		list_del(&page->lru);
6358 		rmv_page_order(page);
6359 		zone->free_area[order].nr_free--;
6360 		for (i = 0; i < (1 << order); i++)
6361 			SetPageReserved((page+i));
6362 		pfn += (1 << order);
6363 	}
6364 	spin_unlock_irqrestore(&zone->lock, flags);
6365 }
6366 #endif
6367 
6368 #ifdef CONFIG_MEMORY_FAILURE
6369 bool is_free_buddy_page(struct page *page)
6370 {
6371 	struct zone *zone = page_zone(page);
6372 	unsigned long pfn = page_to_pfn(page);
6373 	unsigned long flags;
6374 	int order;
6375 
6376 	spin_lock_irqsave(&zone->lock, flags);
6377 	for (order = 0; order < MAX_ORDER; order++) {
6378 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6379 
6380 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6381 			break;
6382 	}
6383 	spin_unlock_irqrestore(&zone->lock, flags);
6384 
6385 	return order < MAX_ORDER;
6386 }
6387 #endif
6388 
6389 static const struct trace_print_flags pageflag_names[] = {
6390 	{1UL << PG_locked,		"locked"	},
6391 	{1UL << PG_error,		"error"		},
6392 	{1UL << PG_referenced,		"referenced"	},
6393 	{1UL << PG_uptodate,		"uptodate"	},
6394 	{1UL << PG_dirty,		"dirty"		},
6395 	{1UL << PG_lru,			"lru"		},
6396 	{1UL << PG_active,		"active"	},
6397 	{1UL << PG_slab,		"slab"		},
6398 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
6399 	{1UL << PG_arch_1,		"arch_1"	},
6400 	{1UL << PG_reserved,		"reserved"	},
6401 	{1UL << PG_private,		"private"	},
6402 	{1UL << PG_private_2,		"private_2"	},
6403 	{1UL << PG_writeback,		"writeback"	},
6404 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6405 	{1UL << PG_head,		"head"		},
6406 	{1UL << PG_tail,		"tail"		},
6407 #else
6408 	{1UL << PG_compound,		"compound"	},
6409 #endif
6410 	{1UL << PG_swapcache,		"swapcache"	},
6411 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
6412 	{1UL << PG_reclaim,		"reclaim"	},
6413 	{1UL << PG_swapbacked,		"swapbacked"	},
6414 	{1UL << PG_unevictable,		"unevictable"	},
6415 #ifdef CONFIG_MMU
6416 	{1UL << PG_mlocked,		"mlocked"	},
6417 #endif
6418 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6419 	{1UL << PG_uncached,		"uncached"	},
6420 #endif
6421 #ifdef CONFIG_MEMORY_FAILURE
6422 	{1UL << PG_hwpoison,		"hwpoison"	},
6423 #endif
6424 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6425 	{1UL << PG_compound_lock,	"compound_lock"	},
6426 #endif
6427 };
6428 
6429 static void dump_page_flags(unsigned long flags)
6430 {
6431 	const char *delim = "";
6432 	unsigned long mask;
6433 	int i;
6434 
6435 	BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6436 
6437 	printk(KERN_ALERT "page flags: %#lx(", flags);
6438 
6439 	/* remove zone id */
6440 	flags &= (1UL << NR_PAGEFLAGS) - 1;
6441 
6442 	for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6443 
6444 		mask = pageflag_names[i].mask;
6445 		if ((flags & mask) != mask)
6446 			continue;
6447 
6448 		flags &= ~mask;
6449 		printk("%s%s", delim, pageflag_names[i].name);
6450 		delim = "|";
6451 	}
6452 
6453 	/* check for left over flags */
6454 	if (flags)
6455 		printk("%s%#lx", delim, flags);
6456 
6457 	printk(")\n");
6458 }
6459 
6460 void dump_page(struct page *page)
6461 {
6462 	printk(KERN_ALERT
6463 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6464 		page, atomic_read(&page->_count), page_mapcount(page),
6465 		page->mapping, page->index);
6466 	dump_page_flags(page->flags);
6467 	mem_cgroup_print_bad_page(page);
6468 }
6469