xref: /openbmc/linux/mm/page_alloc.c (revision c4a7b9b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/kmsan.h>
31 #include <linux/module.h>
32 #include <linux/suspend.h>
33 #include <linux/pagevec.h>
34 #include <linux/blkdev.h>
35 #include <linux/slab.h>
36 #include <linux/ratelimit.h>
37 #include <linux/oom.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/memremap.h>
48 #include <linux/stop_machine.h>
49 #include <linux/random.h>
50 #include <linux/sort.h>
51 #include <linux/pfn.h>
52 #include <linux/backing-dev.h>
53 #include <linux/fault-inject.h>
54 #include <linux/page-isolation.h>
55 #include <linux/debugobjects.h>
56 #include <linux/kmemleak.h>
57 #include <linux/compaction.h>
58 #include <trace/events/kmem.h>
59 #include <trace/events/oom.h>
60 #include <linux/prefetch.h>
61 #include <linux/mm_inline.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/migrate.h>
64 #include <linux/hugetlb.h>
65 #include <linux/sched/rt.h>
66 #include <linux/sched/mm.h>
67 #include <linux/page_owner.h>
68 #include <linux/page_table_check.h>
69 #include <linux/kthread.h>
70 #include <linux/memcontrol.h>
71 #include <linux/ftrace.h>
72 #include <linux/lockdep.h>
73 #include <linux/nmi.h>
74 #include <linux/psi.h>
75 #include <linux/padata.h>
76 #include <linux/khugepaged.h>
77 #include <linux/buffer_head.h>
78 #include <linux/delayacct.h>
79 #include <asm/sections.h>
80 #include <asm/tlbflush.h>
81 #include <asm/div64.h>
82 #include "internal.h"
83 #include "shuffle.h"
84 #include "page_reporting.h"
85 #include "swap.h"
86 
87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
88 typedef int __bitwise fpi_t;
89 
90 /* No special request */
91 #define FPI_NONE		((__force fpi_t)0)
92 
93 /*
94  * Skip free page reporting notification for the (possibly merged) page.
95  * This does not hinder free page reporting from grabbing the page,
96  * reporting it and marking it "reported" -  it only skips notifying
97  * the free page reporting infrastructure about a newly freed page. For
98  * example, used when temporarily pulling a page from a freelist and
99  * putting it back unmodified.
100  */
101 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
102 
103 /*
104  * Place the (possibly merged) page to the tail of the freelist. Will ignore
105  * page shuffling (relevant code - e.g., memory onlining - is expected to
106  * shuffle the whole zone).
107  *
108  * Note: No code should rely on this flag for correctness - it's purely
109  *       to allow for optimizations when handing back either fresh pages
110  *       (memory onlining) or untouched pages (page isolation, free page
111  *       reporting).
112  */
113 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
114 
115 /*
116  * Don't poison memory with KASAN (only for the tag-based modes).
117  * During boot, all non-reserved memblock memory is exposed to page_alloc.
118  * Poisoning all that memory lengthens boot time, especially on systems with
119  * large amount of RAM. This flag is used to skip that poisoning.
120  * This is only done for the tag-based KASAN modes, as those are able to
121  * detect memory corruptions with the memory tags assigned by default.
122  * All memory allocated normally after boot gets poisoned as usual.
123  */
124 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
125 
126 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
127 static DEFINE_MUTEX(pcp_batch_high_lock);
128 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
129 
130 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
131 /*
132  * On SMP, spin_trylock is sufficient protection.
133  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
134  */
135 #define pcp_trylock_prepare(flags)	do { } while (0)
136 #define pcp_trylock_finish(flag)	do { } while (0)
137 #else
138 
139 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
140 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
141 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
142 #endif
143 
144 /*
145  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
146  * a migration causing the wrong PCP to be locked and remote memory being
147  * potentially allocated, pin the task to the CPU for the lookup+lock.
148  * preempt_disable is used on !RT because it is faster than migrate_disable.
149  * migrate_disable is used on RT because otherwise RT spinlock usage is
150  * interfered with and a high priority task cannot preempt the allocator.
151  */
152 #ifndef CONFIG_PREEMPT_RT
153 #define pcpu_task_pin()		preempt_disable()
154 #define pcpu_task_unpin()	preempt_enable()
155 #else
156 #define pcpu_task_pin()		migrate_disable()
157 #define pcpu_task_unpin()	migrate_enable()
158 #endif
159 
160 /*
161  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
162  * Return value should be used with equivalent unlock helper.
163  */
164 #define pcpu_spin_lock(type, member, ptr)				\
165 ({									\
166 	type *_ret;							\
167 	pcpu_task_pin();						\
168 	_ret = this_cpu_ptr(ptr);					\
169 	spin_lock(&_ret->member);					\
170 	_ret;								\
171 })
172 
173 #define pcpu_spin_lock_irqsave(type, member, ptr, flags)		\
174 ({									\
175 	type *_ret;							\
176 	pcpu_task_pin();						\
177 	_ret = this_cpu_ptr(ptr);					\
178 	spin_lock_irqsave(&_ret->member, flags);			\
179 	_ret;								\
180 })
181 
182 #define pcpu_spin_trylock_irqsave(type, member, ptr, flags)		\
183 ({									\
184 	type *_ret;							\
185 	pcpu_task_pin();						\
186 	_ret = this_cpu_ptr(ptr);					\
187 	if (!spin_trylock_irqsave(&_ret->member, flags)) {		\
188 		pcpu_task_unpin();					\
189 		_ret = NULL;						\
190 	}								\
191 	_ret;								\
192 })
193 
194 #define pcpu_spin_unlock(member, ptr)					\
195 ({									\
196 	spin_unlock(&ptr->member);					\
197 	pcpu_task_unpin();						\
198 })
199 
200 #define pcpu_spin_unlock_irqrestore(member, ptr, flags)			\
201 ({									\
202 	spin_unlock_irqrestore(&ptr->member, flags);			\
203 	pcpu_task_unpin();						\
204 })
205 
206 /* struct per_cpu_pages specific helpers. */
207 #define pcp_spin_lock(ptr)						\
208 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
209 
210 #define pcp_spin_lock_irqsave(ptr, flags)				\
211 	pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags)
212 
213 #define pcp_spin_trylock_irqsave(ptr, flags)				\
214 	pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags)
215 
216 #define pcp_spin_unlock(ptr)						\
217 	pcpu_spin_unlock(lock, ptr)
218 
219 #define pcp_spin_unlock_irqrestore(ptr, flags)				\
220 	pcpu_spin_unlock_irqrestore(lock, ptr, flags)
221 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
222 DEFINE_PER_CPU(int, numa_node);
223 EXPORT_PER_CPU_SYMBOL(numa_node);
224 #endif
225 
226 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
227 
228 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
229 /*
230  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
231  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
232  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
233  * defined in <linux/topology.h>.
234  */
235 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
236 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
237 #endif
238 
239 static DEFINE_MUTEX(pcpu_drain_mutex);
240 
241 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
242 volatile unsigned long latent_entropy __latent_entropy;
243 EXPORT_SYMBOL(latent_entropy);
244 #endif
245 
246 /*
247  * Array of node states.
248  */
249 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
250 	[N_POSSIBLE] = NODE_MASK_ALL,
251 	[N_ONLINE] = { { [0] = 1UL } },
252 #ifndef CONFIG_NUMA
253 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
254 #ifdef CONFIG_HIGHMEM
255 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
256 #endif
257 	[N_MEMORY] = { { [0] = 1UL } },
258 	[N_CPU] = { { [0] = 1UL } },
259 #endif	/* NUMA */
260 };
261 EXPORT_SYMBOL(node_states);
262 
263 atomic_long_t _totalram_pages __read_mostly;
264 EXPORT_SYMBOL(_totalram_pages);
265 unsigned long totalreserve_pages __read_mostly;
266 unsigned long totalcma_pages __read_mostly;
267 
268 int percpu_pagelist_high_fraction;
269 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
270 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
271 EXPORT_SYMBOL(init_on_alloc);
272 
273 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
274 EXPORT_SYMBOL(init_on_free);
275 
276 static bool _init_on_alloc_enabled_early __read_mostly
277 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
278 static int __init early_init_on_alloc(char *buf)
279 {
280 
281 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
282 }
283 early_param("init_on_alloc", early_init_on_alloc);
284 
285 static bool _init_on_free_enabled_early __read_mostly
286 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
287 static int __init early_init_on_free(char *buf)
288 {
289 	return kstrtobool(buf, &_init_on_free_enabled_early);
290 }
291 early_param("init_on_free", early_init_on_free);
292 
293 /*
294  * A cached value of the page's pageblock's migratetype, used when the page is
295  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
296  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
297  * Also the migratetype set in the page does not necessarily match the pcplist
298  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
299  * other index - this ensures that it will be put on the correct CMA freelist.
300  */
301 static inline int get_pcppage_migratetype(struct page *page)
302 {
303 	return page->index;
304 }
305 
306 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
307 {
308 	page->index = migratetype;
309 }
310 
311 #ifdef CONFIG_PM_SLEEP
312 /*
313  * The following functions are used by the suspend/hibernate code to temporarily
314  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
315  * while devices are suspended.  To avoid races with the suspend/hibernate code,
316  * they should always be called with system_transition_mutex held
317  * (gfp_allowed_mask also should only be modified with system_transition_mutex
318  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
319  * with that modification).
320  */
321 
322 static gfp_t saved_gfp_mask;
323 
324 void pm_restore_gfp_mask(void)
325 {
326 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
327 	if (saved_gfp_mask) {
328 		gfp_allowed_mask = saved_gfp_mask;
329 		saved_gfp_mask = 0;
330 	}
331 }
332 
333 void pm_restrict_gfp_mask(void)
334 {
335 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
336 	WARN_ON(saved_gfp_mask);
337 	saved_gfp_mask = gfp_allowed_mask;
338 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
339 }
340 
341 bool pm_suspended_storage(void)
342 {
343 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
344 		return false;
345 	return true;
346 }
347 #endif /* CONFIG_PM_SLEEP */
348 
349 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
350 unsigned int pageblock_order __read_mostly;
351 #endif
352 
353 static void __free_pages_ok(struct page *page, unsigned int order,
354 			    fpi_t fpi_flags);
355 
356 /*
357  * results with 256, 32 in the lowmem_reserve sysctl:
358  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
359  *	1G machine -> (16M dma, 784M normal, 224M high)
360  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
361  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
362  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
363  *
364  * TBD: should special case ZONE_DMA32 machines here - in those we normally
365  * don't need any ZONE_NORMAL reservation
366  */
367 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
368 #ifdef CONFIG_ZONE_DMA
369 	[ZONE_DMA] = 256,
370 #endif
371 #ifdef CONFIG_ZONE_DMA32
372 	[ZONE_DMA32] = 256,
373 #endif
374 	[ZONE_NORMAL] = 32,
375 #ifdef CONFIG_HIGHMEM
376 	[ZONE_HIGHMEM] = 0,
377 #endif
378 	[ZONE_MOVABLE] = 0,
379 };
380 
381 static char * const zone_names[MAX_NR_ZONES] = {
382 #ifdef CONFIG_ZONE_DMA
383 	 "DMA",
384 #endif
385 #ifdef CONFIG_ZONE_DMA32
386 	 "DMA32",
387 #endif
388 	 "Normal",
389 #ifdef CONFIG_HIGHMEM
390 	 "HighMem",
391 #endif
392 	 "Movable",
393 #ifdef CONFIG_ZONE_DEVICE
394 	 "Device",
395 #endif
396 };
397 
398 const char * const migratetype_names[MIGRATE_TYPES] = {
399 	"Unmovable",
400 	"Movable",
401 	"Reclaimable",
402 	"HighAtomic",
403 #ifdef CONFIG_CMA
404 	"CMA",
405 #endif
406 #ifdef CONFIG_MEMORY_ISOLATION
407 	"Isolate",
408 #endif
409 };
410 
411 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
412 	[NULL_COMPOUND_DTOR] = NULL,
413 	[COMPOUND_PAGE_DTOR] = free_compound_page,
414 #ifdef CONFIG_HUGETLB_PAGE
415 	[HUGETLB_PAGE_DTOR] = free_huge_page,
416 #endif
417 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
418 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
419 #endif
420 };
421 
422 int min_free_kbytes = 1024;
423 int user_min_free_kbytes = -1;
424 int watermark_boost_factor __read_mostly = 15000;
425 int watermark_scale_factor = 10;
426 
427 static unsigned long nr_kernel_pages __initdata;
428 static unsigned long nr_all_pages __initdata;
429 static unsigned long dma_reserve __initdata;
430 
431 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
432 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
433 static unsigned long required_kernelcore __initdata;
434 static unsigned long required_kernelcore_percent __initdata;
435 static unsigned long required_movablecore __initdata;
436 static unsigned long required_movablecore_percent __initdata;
437 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
438 bool mirrored_kernelcore __initdata_memblock;
439 
440 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
441 int movable_zone;
442 EXPORT_SYMBOL(movable_zone);
443 
444 #if MAX_NUMNODES > 1
445 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
446 unsigned int nr_online_nodes __read_mostly = 1;
447 EXPORT_SYMBOL(nr_node_ids);
448 EXPORT_SYMBOL(nr_online_nodes);
449 #endif
450 
451 int page_group_by_mobility_disabled __read_mostly;
452 
453 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
454 /*
455  * During boot we initialize deferred pages on-demand, as needed, but once
456  * page_alloc_init_late() has finished, the deferred pages are all initialized,
457  * and we can permanently disable that path.
458  */
459 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
460 
461 static inline bool deferred_pages_enabled(void)
462 {
463 	return static_branch_unlikely(&deferred_pages);
464 }
465 
466 /* Returns true if the struct page for the pfn is uninitialised */
467 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
468 {
469 	int nid = early_pfn_to_nid(pfn);
470 
471 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
472 		return true;
473 
474 	return false;
475 }
476 
477 /*
478  * Returns true when the remaining initialisation should be deferred until
479  * later in the boot cycle when it can be parallelised.
480  */
481 static bool __meminit
482 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
483 {
484 	static unsigned long prev_end_pfn, nr_initialised;
485 
486 	if (early_page_ext_enabled())
487 		return false;
488 	/*
489 	 * prev_end_pfn static that contains the end of previous zone
490 	 * No need to protect because called very early in boot before smp_init.
491 	 */
492 	if (prev_end_pfn != end_pfn) {
493 		prev_end_pfn = end_pfn;
494 		nr_initialised = 0;
495 	}
496 
497 	/* Always populate low zones for address-constrained allocations */
498 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
499 		return false;
500 
501 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
502 		return true;
503 	/*
504 	 * We start only with one section of pages, more pages are added as
505 	 * needed until the rest of deferred pages are initialized.
506 	 */
507 	nr_initialised++;
508 	if ((nr_initialised > PAGES_PER_SECTION) &&
509 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
510 		NODE_DATA(nid)->first_deferred_pfn = pfn;
511 		return true;
512 	}
513 	return false;
514 }
515 #else
516 static inline bool deferred_pages_enabled(void)
517 {
518 	return false;
519 }
520 
521 static inline bool early_page_uninitialised(unsigned long pfn)
522 {
523 	return false;
524 }
525 
526 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
527 {
528 	return false;
529 }
530 #endif
531 
532 /* Return a pointer to the bitmap storing bits affecting a block of pages */
533 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
534 							unsigned long pfn)
535 {
536 #ifdef CONFIG_SPARSEMEM
537 	return section_to_usemap(__pfn_to_section(pfn));
538 #else
539 	return page_zone(page)->pageblock_flags;
540 #endif /* CONFIG_SPARSEMEM */
541 }
542 
543 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
544 {
545 #ifdef CONFIG_SPARSEMEM
546 	pfn &= (PAGES_PER_SECTION-1);
547 #else
548 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
549 #endif /* CONFIG_SPARSEMEM */
550 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
551 }
552 
553 static __always_inline
554 unsigned long __get_pfnblock_flags_mask(const struct page *page,
555 					unsigned long pfn,
556 					unsigned long mask)
557 {
558 	unsigned long *bitmap;
559 	unsigned long bitidx, word_bitidx;
560 	unsigned long word;
561 
562 	bitmap = get_pageblock_bitmap(page, pfn);
563 	bitidx = pfn_to_bitidx(page, pfn);
564 	word_bitidx = bitidx / BITS_PER_LONG;
565 	bitidx &= (BITS_PER_LONG-1);
566 	/*
567 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
568 	 * a consistent read of the memory array, so that results, even though
569 	 * racy, are not corrupted.
570 	 */
571 	word = READ_ONCE(bitmap[word_bitidx]);
572 	return (word >> bitidx) & mask;
573 }
574 
575 /**
576  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
577  * @page: The page within the block of interest
578  * @pfn: The target page frame number
579  * @mask: mask of bits that the caller is interested in
580  *
581  * Return: pageblock_bits flags
582  */
583 unsigned long get_pfnblock_flags_mask(const struct page *page,
584 					unsigned long pfn, unsigned long mask)
585 {
586 	return __get_pfnblock_flags_mask(page, pfn, mask);
587 }
588 
589 static __always_inline int get_pfnblock_migratetype(const struct page *page,
590 					unsigned long pfn)
591 {
592 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
593 }
594 
595 /**
596  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
597  * @page: The page within the block of interest
598  * @flags: The flags to set
599  * @pfn: The target page frame number
600  * @mask: mask of bits that the caller is interested in
601  */
602 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
603 					unsigned long pfn,
604 					unsigned long mask)
605 {
606 	unsigned long *bitmap;
607 	unsigned long bitidx, word_bitidx;
608 	unsigned long word;
609 
610 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
611 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
612 
613 	bitmap = get_pageblock_bitmap(page, pfn);
614 	bitidx = pfn_to_bitidx(page, pfn);
615 	word_bitidx = bitidx / BITS_PER_LONG;
616 	bitidx &= (BITS_PER_LONG-1);
617 
618 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
619 
620 	mask <<= bitidx;
621 	flags <<= bitidx;
622 
623 	word = READ_ONCE(bitmap[word_bitidx]);
624 	do {
625 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
626 }
627 
628 void set_pageblock_migratetype(struct page *page, int migratetype)
629 {
630 	if (unlikely(page_group_by_mobility_disabled &&
631 		     migratetype < MIGRATE_PCPTYPES))
632 		migratetype = MIGRATE_UNMOVABLE;
633 
634 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
635 				page_to_pfn(page), MIGRATETYPE_MASK);
636 }
637 
638 #ifdef CONFIG_DEBUG_VM
639 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
640 {
641 	int ret = 0;
642 	unsigned seq;
643 	unsigned long pfn = page_to_pfn(page);
644 	unsigned long sp, start_pfn;
645 
646 	do {
647 		seq = zone_span_seqbegin(zone);
648 		start_pfn = zone->zone_start_pfn;
649 		sp = zone->spanned_pages;
650 		if (!zone_spans_pfn(zone, pfn))
651 			ret = 1;
652 	} while (zone_span_seqretry(zone, seq));
653 
654 	if (ret)
655 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
656 			pfn, zone_to_nid(zone), zone->name,
657 			start_pfn, start_pfn + sp);
658 
659 	return ret;
660 }
661 
662 static int page_is_consistent(struct zone *zone, struct page *page)
663 {
664 	if (zone != page_zone(page))
665 		return 0;
666 
667 	return 1;
668 }
669 /*
670  * Temporary debugging check for pages not lying within a given zone.
671  */
672 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
673 {
674 	if (page_outside_zone_boundaries(zone, page))
675 		return 1;
676 	if (!page_is_consistent(zone, page))
677 		return 1;
678 
679 	return 0;
680 }
681 #else
682 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
683 {
684 	return 0;
685 }
686 #endif
687 
688 static void bad_page(struct page *page, const char *reason)
689 {
690 	static unsigned long resume;
691 	static unsigned long nr_shown;
692 	static unsigned long nr_unshown;
693 
694 	/*
695 	 * Allow a burst of 60 reports, then keep quiet for that minute;
696 	 * or allow a steady drip of one report per second.
697 	 */
698 	if (nr_shown == 60) {
699 		if (time_before(jiffies, resume)) {
700 			nr_unshown++;
701 			goto out;
702 		}
703 		if (nr_unshown) {
704 			pr_alert(
705 			      "BUG: Bad page state: %lu messages suppressed\n",
706 				nr_unshown);
707 			nr_unshown = 0;
708 		}
709 		nr_shown = 0;
710 	}
711 	if (nr_shown++ == 0)
712 		resume = jiffies + 60 * HZ;
713 
714 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
715 		current->comm, page_to_pfn(page));
716 	dump_page(page, reason);
717 
718 	print_modules();
719 	dump_stack();
720 out:
721 	/* Leave bad fields for debug, except PageBuddy could make trouble */
722 	page_mapcount_reset(page); /* remove PageBuddy */
723 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
724 }
725 
726 static inline unsigned int order_to_pindex(int migratetype, int order)
727 {
728 	int base = order;
729 
730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
731 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
732 		VM_BUG_ON(order != pageblock_order);
733 		return NR_LOWORDER_PCP_LISTS;
734 	}
735 #else
736 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
737 #endif
738 
739 	return (MIGRATE_PCPTYPES * base) + migratetype;
740 }
741 
742 static inline int pindex_to_order(unsigned int pindex)
743 {
744 	int order = pindex / MIGRATE_PCPTYPES;
745 
746 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
747 	if (pindex == NR_LOWORDER_PCP_LISTS)
748 		order = pageblock_order;
749 #else
750 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
751 #endif
752 
753 	return order;
754 }
755 
756 static inline bool pcp_allowed_order(unsigned int order)
757 {
758 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
759 		return true;
760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
761 	if (order == pageblock_order)
762 		return true;
763 #endif
764 	return false;
765 }
766 
767 static inline void free_the_page(struct page *page, unsigned int order)
768 {
769 	if (pcp_allowed_order(order))		/* Via pcp? */
770 		free_unref_page(page, order);
771 	else
772 		__free_pages_ok(page, order, FPI_NONE);
773 }
774 
775 /*
776  * Higher-order pages are called "compound pages".  They are structured thusly:
777  *
778  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
779  *
780  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
781  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
782  *
783  * The first tail page's ->compound_dtor holds the offset in array of compound
784  * page destructors. See compound_page_dtors.
785  *
786  * The first tail page's ->compound_order holds the order of allocation.
787  * This usage means that zero-order pages may not be compound.
788  */
789 
790 void free_compound_page(struct page *page)
791 {
792 	mem_cgroup_uncharge(page_folio(page));
793 	free_the_page(page, compound_order(page));
794 }
795 
796 static void prep_compound_head(struct page *page, unsigned int order)
797 {
798 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
799 	set_compound_order(page, order);
800 	atomic_set(compound_mapcount_ptr(page), -1);
801 	atomic_set(compound_pincount_ptr(page), 0);
802 }
803 
804 static void prep_compound_tail(struct page *head, int tail_idx)
805 {
806 	struct page *p = head + tail_idx;
807 
808 	p->mapping = TAIL_MAPPING;
809 	set_compound_head(p, head);
810 }
811 
812 void prep_compound_page(struct page *page, unsigned int order)
813 {
814 	int i;
815 	int nr_pages = 1 << order;
816 
817 	__SetPageHead(page);
818 	for (i = 1; i < nr_pages; i++)
819 		prep_compound_tail(page, i);
820 
821 	prep_compound_head(page, order);
822 }
823 
824 void destroy_large_folio(struct folio *folio)
825 {
826 	enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor;
827 
828 	VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
829 	compound_page_dtors[dtor](&folio->page);
830 }
831 
832 #ifdef CONFIG_DEBUG_PAGEALLOC
833 unsigned int _debug_guardpage_minorder;
834 
835 bool _debug_pagealloc_enabled_early __read_mostly
836 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
837 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
838 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
839 EXPORT_SYMBOL(_debug_pagealloc_enabled);
840 
841 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
842 
843 static int __init early_debug_pagealloc(char *buf)
844 {
845 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
846 }
847 early_param("debug_pagealloc", early_debug_pagealloc);
848 
849 static int __init debug_guardpage_minorder_setup(char *buf)
850 {
851 	unsigned long res;
852 
853 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
854 		pr_err("Bad debug_guardpage_minorder value\n");
855 		return 0;
856 	}
857 	_debug_guardpage_minorder = res;
858 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
859 	return 0;
860 }
861 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
862 
863 static inline bool set_page_guard(struct zone *zone, struct page *page,
864 				unsigned int order, int migratetype)
865 {
866 	if (!debug_guardpage_enabled())
867 		return false;
868 
869 	if (order >= debug_guardpage_minorder())
870 		return false;
871 
872 	__SetPageGuard(page);
873 	INIT_LIST_HEAD(&page->buddy_list);
874 	set_page_private(page, order);
875 	/* Guard pages are not available for any usage */
876 	if (!is_migrate_isolate(migratetype))
877 		__mod_zone_freepage_state(zone, -(1 << order), migratetype);
878 
879 	return true;
880 }
881 
882 static inline void clear_page_guard(struct zone *zone, struct page *page,
883 				unsigned int order, int migratetype)
884 {
885 	if (!debug_guardpage_enabled())
886 		return;
887 
888 	__ClearPageGuard(page);
889 
890 	set_page_private(page, 0);
891 	if (!is_migrate_isolate(migratetype))
892 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
893 }
894 #else
895 static inline bool set_page_guard(struct zone *zone, struct page *page,
896 			unsigned int order, int migratetype) { return false; }
897 static inline void clear_page_guard(struct zone *zone, struct page *page,
898 				unsigned int order, int migratetype) {}
899 #endif
900 
901 /*
902  * Enable static keys related to various memory debugging and hardening options.
903  * Some override others, and depend on early params that are evaluated in the
904  * order of appearance. So we need to first gather the full picture of what was
905  * enabled, and then make decisions.
906  */
907 void __init init_mem_debugging_and_hardening(void)
908 {
909 	bool page_poisoning_requested = false;
910 
911 #ifdef CONFIG_PAGE_POISONING
912 	/*
913 	 * Page poisoning is debug page alloc for some arches. If
914 	 * either of those options are enabled, enable poisoning.
915 	 */
916 	if (page_poisoning_enabled() ||
917 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
918 	      debug_pagealloc_enabled())) {
919 		static_branch_enable(&_page_poisoning_enabled);
920 		page_poisoning_requested = true;
921 	}
922 #endif
923 
924 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
925 	    page_poisoning_requested) {
926 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
927 			"will take precedence over init_on_alloc and init_on_free\n");
928 		_init_on_alloc_enabled_early = false;
929 		_init_on_free_enabled_early = false;
930 	}
931 
932 	if (_init_on_alloc_enabled_early)
933 		static_branch_enable(&init_on_alloc);
934 	else
935 		static_branch_disable(&init_on_alloc);
936 
937 	if (_init_on_free_enabled_early)
938 		static_branch_enable(&init_on_free);
939 	else
940 		static_branch_disable(&init_on_free);
941 
942 	if (IS_ENABLED(CONFIG_KMSAN) &&
943 	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
944 		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
945 
946 #ifdef CONFIG_DEBUG_PAGEALLOC
947 	if (!debug_pagealloc_enabled())
948 		return;
949 
950 	static_branch_enable(&_debug_pagealloc_enabled);
951 
952 	if (!debug_guardpage_minorder())
953 		return;
954 
955 	static_branch_enable(&_debug_guardpage_enabled);
956 #endif
957 }
958 
959 static inline void set_buddy_order(struct page *page, unsigned int order)
960 {
961 	set_page_private(page, order);
962 	__SetPageBuddy(page);
963 }
964 
965 #ifdef CONFIG_COMPACTION
966 static inline struct capture_control *task_capc(struct zone *zone)
967 {
968 	struct capture_control *capc = current->capture_control;
969 
970 	return unlikely(capc) &&
971 		!(current->flags & PF_KTHREAD) &&
972 		!capc->page &&
973 		capc->cc->zone == zone ? capc : NULL;
974 }
975 
976 static inline bool
977 compaction_capture(struct capture_control *capc, struct page *page,
978 		   int order, int migratetype)
979 {
980 	if (!capc || order != capc->cc->order)
981 		return false;
982 
983 	/* Do not accidentally pollute CMA or isolated regions*/
984 	if (is_migrate_cma(migratetype) ||
985 	    is_migrate_isolate(migratetype))
986 		return false;
987 
988 	/*
989 	 * Do not let lower order allocations pollute a movable pageblock.
990 	 * This might let an unmovable request use a reclaimable pageblock
991 	 * and vice-versa but no more than normal fallback logic which can
992 	 * have trouble finding a high-order free page.
993 	 */
994 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
995 		return false;
996 
997 	capc->page = page;
998 	return true;
999 }
1000 
1001 #else
1002 static inline struct capture_control *task_capc(struct zone *zone)
1003 {
1004 	return NULL;
1005 }
1006 
1007 static inline bool
1008 compaction_capture(struct capture_control *capc, struct page *page,
1009 		   int order, int migratetype)
1010 {
1011 	return false;
1012 }
1013 #endif /* CONFIG_COMPACTION */
1014 
1015 /* Used for pages not on another list */
1016 static inline void add_to_free_list(struct page *page, struct zone *zone,
1017 				    unsigned int order, int migratetype)
1018 {
1019 	struct free_area *area = &zone->free_area[order];
1020 
1021 	list_add(&page->buddy_list, &area->free_list[migratetype]);
1022 	area->nr_free++;
1023 }
1024 
1025 /* Used for pages not on another list */
1026 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1027 					 unsigned int order, int migratetype)
1028 {
1029 	struct free_area *area = &zone->free_area[order];
1030 
1031 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1032 	area->nr_free++;
1033 }
1034 
1035 /*
1036  * Used for pages which are on another list. Move the pages to the tail
1037  * of the list - so the moved pages won't immediately be considered for
1038  * allocation again (e.g., optimization for memory onlining).
1039  */
1040 static inline void move_to_free_list(struct page *page, struct zone *zone,
1041 				     unsigned int order, int migratetype)
1042 {
1043 	struct free_area *area = &zone->free_area[order];
1044 
1045 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1046 }
1047 
1048 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1049 					   unsigned int order)
1050 {
1051 	/* clear reported state and update reported page count */
1052 	if (page_reported(page))
1053 		__ClearPageReported(page);
1054 
1055 	list_del(&page->buddy_list);
1056 	__ClearPageBuddy(page);
1057 	set_page_private(page, 0);
1058 	zone->free_area[order].nr_free--;
1059 }
1060 
1061 /*
1062  * If this is not the largest possible page, check if the buddy
1063  * of the next-highest order is free. If it is, it's possible
1064  * that pages are being freed that will coalesce soon. In case,
1065  * that is happening, add the free page to the tail of the list
1066  * so it's less likely to be used soon and more likely to be merged
1067  * as a higher order page
1068  */
1069 static inline bool
1070 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1071 		   struct page *page, unsigned int order)
1072 {
1073 	unsigned long higher_page_pfn;
1074 	struct page *higher_page;
1075 
1076 	if (order >= MAX_ORDER - 2)
1077 		return false;
1078 
1079 	higher_page_pfn = buddy_pfn & pfn;
1080 	higher_page = page + (higher_page_pfn - pfn);
1081 
1082 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1083 			NULL) != NULL;
1084 }
1085 
1086 /*
1087  * Freeing function for a buddy system allocator.
1088  *
1089  * The concept of a buddy system is to maintain direct-mapped table
1090  * (containing bit values) for memory blocks of various "orders".
1091  * The bottom level table contains the map for the smallest allocatable
1092  * units of memory (here, pages), and each level above it describes
1093  * pairs of units from the levels below, hence, "buddies".
1094  * At a high level, all that happens here is marking the table entry
1095  * at the bottom level available, and propagating the changes upward
1096  * as necessary, plus some accounting needed to play nicely with other
1097  * parts of the VM system.
1098  * At each level, we keep a list of pages, which are heads of continuous
1099  * free pages of length of (1 << order) and marked with PageBuddy.
1100  * Page's order is recorded in page_private(page) field.
1101  * So when we are allocating or freeing one, we can derive the state of the
1102  * other.  That is, if we allocate a small block, and both were
1103  * free, the remainder of the region must be split into blocks.
1104  * If a block is freed, and its buddy is also free, then this
1105  * triggers coalescing into a block of larger size.
1106  *
1107  * -- nyc
1108  */
1109 
1110 static inline void __free_one_page(struct page *page,
1111 		unsigned long pfn,
1112 		struct zone *zone, unsigned int order,
1113 		int migratetype, fpi_t fpi_flags)
1114 {
1115 	struct capture_control *capc = task_capc(zone);
1116 	unsigned long buddy_pfn = 0;
1117 	unsigned long combined_pfn;
1118 	struct page *buddy;
1119 	bool to_tail;
1120 
1121 	VM_BUG_ON(!zone_is_initialized(zone));
1122 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1123 
1124 	VM_BUG_ON(migratetype == -1);
1125 	if (likely(!is_migrate_isolate(migratetype)))
1126 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1127 
1128 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1129 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1130 
1131 	while (order < MAX_ORDER - 1) {
1132 		if (compaction_capture(capc, page, order, migratetype)) {
1133 			__mod_zone_freepage_state(zone, -(1 << order),
1134 								migratetype);
1135 			return;
1136 		}
1137 
1138 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1139 		if (!buddy)
1140 			goto done_merging;
1141 
1142 		if (unlikely(order >= pageblock_order)) {
1143 			/*
1144 			 * We want to prevent merge between freepages on pageblock
1145 			 * without fallbacks and normal pageblock. Without this,
1146 			 * pageblock isolation could cause incorrect freepage or CMA
1147 			 * accounting or HIGHATOMIC accounting.
1148 			 */
1149 			int buddy_mt = get_pageblock_migratetype(buddy);
1150 
1151 			if (migratetype != buddy_mt
1152 					&& (!migratetype_is_mergeable(migratetype) ||
1153 						!migratetype_is_mergeable(buddy_mt)))
1154 				goto done_merging;
1155 		}
1156 
1157 		/*
1158 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1159 		 * merge with it and move up one order.
1160 		 */
1161 		if (page_is_guard(buddy))
1162 			clear_page_guard(zone, buddy, order, migratetype);
1163 		else
1164 			del_page_from_free_list(buddy, zone, order);
1165 		combined_pfn = buddy_pfn & pfn;
1166 		page = page + (combined_pfn - pfn);
1167 		pfn = combined_pfn;
1168 		order++;
1169 	}
1170 
1171 done_merging:
1172 	set_buddy_order(page, order);
1173 
1174 	if (fpi_flags & FPI_TO_TAIL)
1175 		to_tail = true;
1176 	else if (is_shuffle_order(order))
1177 		to_tail = shuffle_pick_tail();
1178 	else
1179 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1180 
1181 	if (to_tail)
1182 		add_to_free_list_tail(page, zone, order, migratetype);
1183 	else
1184 		add_to_free_list(page, zone, order, migratetype);
1185 
1186 	/* Notify page reporting subsystem of freed page */
1187 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1188 		page_reporting_notify_free(order);
1189 }
1190 
1191 /**
1192  * split_free_page() -- split a free page at split_pfn_offset
1193  * @free_page:		the original free page
1194  * @order:		the order of the page
1195  * @split_pfn_offset:	split offset within the page
1196  *
1197  * Return -ENOENT if the free page is changed, otherwise 0
1198  *
1199  * It is used when the free page crosses two pageblocks with different migratetypes
1200  * at split_pfn_offset within the page. The split free page will be put into
1201  * separate migratetype lists afterwards. Otherwise, the function achieves
1202  * nothing.
1203  */
1204 int split_free_page(struct page *free_page,
1205 			unsigned int order, unsigned long split_pfn_offset)
1206 {
1207 	struct zone *zone = page_zone(free_page);
1208 	unsigned long free_page_pfn = page_to_pfn(free_page);
1209 	unsigned long pfn;
1210 	unsigned long flags;
1211 	int free_page_order;
1212 	int mt;
1213 	int ret = 0;
1214 
1215 	if (split_pfn_offset == 0)
1216 		return ret;
1217 
1218 	spin_lock_irqsave(&zone->lock, flags);
1219 
1220 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1221 		ret = -ENOENT;
1222 		goto out;
1223 	}
1224 
1225 	mt = get_pageblock_migratetype(free_page);
1226 	if (likely(!is_migrate_isolate(mt)))
1227 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1228 
1229 	del_page_from_free_list(free_page, zone, order);
1230 	for (pfn = free_page_pfn;
1231 	     pfn < free_page_pfn + (1UL << order);) {
1232 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1233 
1234 		free_page_order = min_t(unsigned int,
1235 					pfn ? __ffs(pfn) : order,
1236 					__fls(split_pfn_offset));
1237 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1238 				mt, FPI_NONE);
1239 		pfn += 1UL << free_page_order;
1240 		split_pfn_offset -= (1UL << free_page_order);
1241 		/* we have done the first part, now switch to second part */
1242 		if (split_pfn_offset == 0)
1243 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1244 	}
1245 out:
1246 	spin_unlock_irqrestore(&zone->lock, flags);
1247 	return ret;
1248 }
1249 /*
1250  * A bad page could be due to a number of fields. Instead of multiple branches,
1251  * try and check multiple fields with one check. The caller must do a detailed
1252  * check if necessary.
1253  */
1254 static inline bool page_expected_state(struct page *page,
1255 					unsigned long check_flags)
1256 {
1257 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1258 		return false;
1259 
1260 	if (unlikely((unsigned long)page->mapping |
1261 			page_ref_count(page) |
1262 #ifdef CONFIG_MEMCG
1263 			page->memcg_data |
1264 #endif
1265 			(page->flags & check_flags)))
1266 		return false;
1267 
1268 	return true;
1269 }
1270 
1271 static const char *page_bad_reason(struct page *page, unsigned long flags)
1272 {
1273 	const char *bad_reason = NULL;
1274 
1275 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1276 		bad_reason = "nonzero mapcount";
1277 	if (unlikely(page->mapping != NULL))
1278 		bad_reason = "non-NULL mapping";
1279 	if (unlikely(page_ref_count(page) != 0))
1280 		bad_reason = "nonzero _refcount";
1281 	if (unlikely(page->flags & flags)) {
1282 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1283 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1284 		else
1285 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1286 	}
1287 #ifdef CONFIG_MEMCG
1288 	if (unlikely(page->memcg_data))
1289 		bad_reason = "page still charged to cgroup";
1290 #endif
1291 	return bad_reason;
1292 }
1293 
1294 static void free_page_is_bad_report(struct page *page)
1295 {
1296 	bad_page(page,
1297 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1298 }
1299 
1300 static inline bool free_page_is_bad(struct page *page)
1301 {
1302 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1303 		return false;
1304 
1305 	/* Something has gone sideways, find it */
1306 	free_page_is_bad_report(page);
1307 	return true;
1308 }
1309 
1310 static int free_tail_pages_check(struct page *head_page, struct page *page)
1311 {
1312 	int ret = 1;
1313 
1314 	/*
1315 	 * We rely page->lru.next never has bit 0 set, unless the page
1316 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1317 	 */
1318 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1319 
1320 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1321 		ret = 0;
1322 		goto out;
1323 	}
1324 	switch (page - head_page) {
1325 	case 1:
1326 		/* the first tail page: ->mapping may be compound_mapcount() */
1327 		if (unlikely(compound_mapcount(page))) {
1328 			bad_page(page, "nonzero compound_mapcount");
1329 			goto out;
1330 		}
1331 		break;
1332 	case 2:
1333 		/*
1334 		 * the second tail page: ->mapping is
1335 		 * deferred_list.next -- ignore value.
1336 		 */
1337 		break;
1338 	default:
1339 		if (page->mapping != TAIL_MAPPING) {
1340 			bad_page(page, "corrupted mapping in tail page");
1341 			goto out;
1342 		}
1343 		break;
1344 	}
1345 	if (unlikely(!PageTail(page))) {
1346 		bad_page(page, "PageTail not set");
1347 		goto out;
1348 	}
1349 	if (unlikely(compound_head(page) != head_page)) {
1350 		bad_page(page, "compound_head not consistent");
1351 		goto out;
1352 	}
1353 	ret = 0;
1354 out:
1355 	page->mapping = NULL;
1356 	clear_compound_head(page);
1357 	return ret;
1358 }
1359 
1360 /*
1361  * Skip KASAN memory poisoning when either:
1362  *
1363  * 1. Deferred memory initialization has not yet completed,
1364  *    see the explanation below.
1365  * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1366  *    see the comment next to it.
1367  * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1368  *    see the comment next to it.
1369  *
1370  * Poisoning pages during deferred memory init will greatly lengthen the
1371  * process and cause problem in large memory systems as the deferred pages
1372  * initialization is done with interrupt disabled.
1373  *
1374  * Assuming that there will be no reference to those newly initialized
1375  * pages before they are ever allocated, this should have no effect on
1376  * KASAN memory tracking as the poison will be properly inserted at page
1377  * allocation time. The only corner case is when pages are allocated by
1378  * on-demand allocation and then freed again before the deferred pages
1379  * initialization is done, but this is not likely to happen.
1380  */
1381 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1382 {
1383 	return deferred_pages_enabled() ||
1384 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1385 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1386 	       PageSkipKASanPoison(page);
1387 }
1388 
1389 static void kernel_init_pages(struct page *page, int numpages)
1390 {
1391 	int i;
1392 
1393 	/* s390's use of memset() could override KASAN redzones. */
1394 	kasan_disable_current();
1395 	for (i = 0; i < numpages; i++)
1396 		clear_highpage_kasan_tagged(page + i);
1397 	kasan_enable_current();
1398 }
1399 
1400 static __always_inline bool free_pages_prepare(struct page *page,
1401 			unsigned int order, bool check_free, fpi_t fpi_flags)
1402 {
1403 	int bad = 0;
1404 	bool init = want_init_on_free();
1405 
1406 	VM_BUG_ON_PAGE(PageTail(page), page);
1407 
1408 	trace_mm_page_free(page, order);
1409 	kmsan_free_page(page, order);
1410 
1411 	if (unlikely(PageHWPoison(page)) && !order) {
1412 		/*
1413 		 * Do not let hwpoison pages hit pcplists/buddy
1414 		 * Untie memcg state and reset page's owner
1415 		 */
1416 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1417 			__memcg_kmem_uncharge_page(page, order);
1418 		reset_page_owner(page, order);
1419 		page_table_check_free(page, order);
1420 		return false;
1421 	}
1422 
1423 	/*
1424 	 * Check tail pages before head page information is cleared to
1425 	 * avoid checking PageCompound for order-0 pages.
1426 	 */
1427 	if (unlikely(order)) {
1428 		bool compound = PageCompound(page);
1429 		int i;
1430 
1431 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1432 
1433 		if (compound) {
1434 			ClearPageDoubleMap(page);
1435 			ClearPageHasHWPoisoned(page);
1436 		}
1437 		for (i = 1; i < (1 << order); i++) {
1438 			if (compound)
1439 				bad += free_tail_pages_check(page, page + i);
1440 			if (unlikely(free_page_is_bad(page + i))) {
1441 				bad++;
1442 				continue;
1443 			}
1444 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1445 		}
1446 	}
1447 	if (PageMappingFlags(page))
1448 		page->mapping = NULL;
1449 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1450 		__memcg_kmem_uncharge_page(page, order);
1451 	if (check_free && free_page_is_bad(page))
1452 		bad++;
1453 	if (bad)
1454 		return false;
1455 
1456 	page_cpupid_reset_last(page);
1457 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1458 	reset_page_owner(page, order);
1459 	page_table_check_free(page, order);
1460 
1461 	if (!PageHighMem(page)) {
1462 		debug_check_no_locks_freed(page_address(page),
1463 					   PAGE_SIZE << order);
1464 		debug_check_no_obj_freed(page_address(page),
1465 					   PAGE_SIZE << order);
1466 	}
1467 
1468 	kernel_poison_pages(page, 1 << order);
1469 
1470 	/*
1471 	 * As memory initialization might be integrated into KASAN,
1472 	 * KASAN poisoning and memory initialization code must be
1473 	 * kept together to avoid discrepancies in behavior.
1474 	 *
1475 	 * With hardware tag-based KASAN, memory tags must be set before the
1476 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1477 	 */
1478 	if (!should_skip_kasan_poison(page, fpi_flags)) {
1479 		kasan_poison_pages(page, order, init);
1480 
1481 		/* Memory is already initialized if KASAN did it internally. */
1482 		if (kasan_has_integrated_init())
1483 			init = false;
1484 	}
1485 	if (init)
1486 		kernel_init_pages(page, 1 << order);
1487 
1488 	/*
1489 	 * arch_free_page() can make the page's contents inaccessible.  s390
1490 	 * does this.  So nothing which can access the page's contents should
1491 	 * happen after this.
1492 	 */
1493 	arch_free_page(page, order);
1494 
1495 	debug_pagealloc_unmap_pages(page, 1 << order);
1496 
1497 	return true;
1498 }
1499 
1500 #ifdef CONFIG_DEBUG_VM
1501 /*
1502  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1503  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1504  * moved from pcp lists to free lists.
1505  */
1506 static bool free_pcp_prepare(struct page *page, unsigned int order)
1507 {
1508 	return free_pages_prepare(page, order, true, FPI_NONE);
1509 }
1510 
1511 /* return true if this page has an inappropriate state */
1512 static bool bulkfree_pcp_prepare(struct page *page)
1513 {
1514 	if (debug_pagealloc_enabled_static())
1515 		return free_page_is_bad(page);
1516 	else
1517 		return false;
1518 }
1519 #else
1520 /*
1521  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1522  * moving from pcp lists to free list in order to reduce overhead. With
1523  * debug_pagealloc enabled, they are checked also immediately when being freed
1524  * to the pcp lists.
1525  */
1526 static bool free_pcp_prepare(struct page *page, unsigned int order)
1527 {
1528 	if (debug_pagealloc_enabled_static())
1529 		return free_pages_prepare(page, order, true, FPI_NONE);
1530 	else
1531 		return free_pages_prepare(page, order, false, FPI_NONE);
1532 }
1533 
1534 static bool bulkfree_pcp_prepare(struct page *page)
1535 {
1536 	return free_page_is_bad(page);
1537 }
1538 #endif /* CONFIG_DEBUG_VM */
1539 
1540 /*
1541  * Frees a number of pages from the PCP lists
1542  * Assumes all pages on list are in same zone.
1543  * count is the number of pages to free.
1544  */
1545 static void free_pcppages_bulk(struct zone *zone, int count,
1546 					struct per_cpu_pages *pcp,
1547 					int pindex)
1548 {
1549 	int min_pindex = 0;
1550 	int max_pindex = NR_PCP_LISTS - 1;
1551 	unsigned int order;
1552 	bool isolated_pageblocks;
1553 	struct page *page;
1554 
1555 	/*
1556 	 * Ensure proper count is passed which otherwise would stuck in the
1557 	 * below while (list_empty(list)) loop.
1558 	 */
1559 	count = min(pcp->count, count);
1560 
1561 	/* Ensure requested pindex is drained first. */
1562 	pindex = pindex - 1;
1563 
1564 	/* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
1565 	spin_lock(&zone->lock);
1566 	isolated_pageblocks = has_isolate_pageblock(zone);
1567 
1568 	while (count > 0) {
1569 		struct list_head *list;
1570 		int nr_pages;
1571 
1572 		/* Remove pages from lists in a round-robin fashion. */
1573 		do {
1574 			if (++pindex > max_pindex)
1575 				pindex = min_pindex;
1576 			list = &pcp->lists[pindex];
1577 			if (!list_empty(list))
1578 				break;
1579 
1580 			if (pindex == max_pindex)
1581 				max_pindex--;
1582 			if (pindex == min_pindex)
1583 				min_pindex++;
1584 		} while (1);
1585 
1586 		order = pindex_to_order(pindex);
1587 		nr_pages = 1 << order;
1588 		do {
1589 			int mt;
1590 
1591 			page = list_last_entry(list, struct page, pcp_list);
1592 			mt = get_pcppage_migratetype(page);
1593 
1594 			/* must delete to avoid corrupting pcp list */
1595 			list_del(&page->pcp_list);
1596 			count -= nr_pages;
1597 			pcp->count -= nr_pages;
1598 
1599 			if (bulkfree_pcp_prepare(page))
1600 				continue;
1601 
1602 			/* MIGRATE_ISOLATE page should not go to pcplists */
1603 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1604 			/* Pageblock could have been isolated meanwhile */
1605 			if (unlikely(isolated_pageblocks))
1606 				mt = get_pageblock_migratetype(page);
1607 
1608 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1609 			trace_mm_page_pcpu_drain(page, order, mt);
1610 		} while (count > 0 && !list_empty(list));
1611 	}
1612 
1613 	spin_unlock(&zone->lock);
1614 }
1615 
1616 static void free_one_page(struct zone *zone,
1617 				struct page *page, unsigned long pfn,
1618 				unsigned int order,
1619 				int migratetype, fpi_t fpi_flags)
1620 {
1621 	unsigned long flags;
1622 
1623 	spin_lock_irqsave(&zone->lock, flags);
1624 	if (unlikely(has_isolate_pageblock(zone) ||
1625 		is_migrate_isolate(migratetype))) {
1626 		migratetype = get_pfnblock_migratetype(page, pfn);
1627 	}
1628 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1629 	spin_unlock_irqrestore(&zone->lock, flags);
1630 }
1631 
1632 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1633 				unsigned long zone, int nid)
1634 {
1635 	mm_zero_struct_page(page);
1636 	set_page_links(page, zone, nid, pfn);
1637 	init_page_count(page);
1638 	page_mapcount_reset(page);
1639 	page_cpupid_reset_last(page);
1640 	page_kasan_tag_reset(page);
1641 
1642 	INIT_LIST_HEAD(&page->lru);
1643 #ifdef WANT_PAGE_VIRTUAL
1644 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1645 	if (!is_highmem_idx(zone))
1646 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1647 #endif
1648 }
1649 
1650 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1651 static void __meminit init_reserved_page(unsigned long pfn)
1652 {
1653 	pg_data_t *pgdat;
1654 	int nid, zid;
1655 
1656 	if (!early_page_uninitialised(pfn))
1657 		return;
1658 
1659 	nid = early_pfn_to_nid(pfn);
1660 	pgdat = NODE_DATA(nid);
1661 
1662 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1663 		struct zone *zone = &pgdat->node_zones[zid];
1664 
1665 		if (zone_spans_pfn(zone, pfn))
1666 			break;
1667 	}
1668 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1669 }
1670 #else
1671 static inline void init_reserved_page(unsigned long pfn)
1672 {
1673 }
1674 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1675 
1676 /*
1677  * Initialised pages do not have PageReserved set. This function is
1678  * called for each range allocated by the bootmem allocator and
1679  * marks the pages PageReserved. The remaining valid pages are later
1680  * sent to the buddy page allocator.
1681  */
1682 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1683 {
1684 	unsigned long start_pfn = PFN_DOWN(start);
1685 	unsigned long end_pfn = PFN_UP(end);
1686 
1687 	for (; start_pfn < end_pfn; start_pfn++) {
1688 		if (pfn_valid(start_pfn)) {
1689 			struct page *page = pfn_to_page(start_pfn);
1690 
1691 			init_reserved_page(start_pfn);
1692 
1693 			/* Avoid false-positive PageTail() */
1694 			INIT_LIST_HEAD(&page->lru);
1695 
1696 			/*
1697 			 * no need for atomic set_bit because the struct
1698 			 * page is not visible yet so nobody should
1699 			 * access it yet.
1700 			 */
1701 			__SetPageReserved(page);
1702 		}
1703 	}
1704 }
1705 
1706 static void __free_pages_ok(struct page *page, unsigned int order,
1707 			    fpi_t fpi_flags)
1708 {
1709 	unsigned long flags;
1710 	int migratetype;
1711 	unsigned long pfn = page_to_pfn(page);
1712 	struct zone *zone = page_zone(page);
1713 
1714 	if (!free_pages_prepare(page, order, true, fpi_flags))
1715 		return;
1716 
1717 	migratetype = get_pfnblock_migratetype(page, pfn);
1718 
1719 	spin_lock_irqsave(&zone->lock, flags);
1720 	if (unlikely(has_isolate_pageblock(zone) ||
1721 		is_migrate_isolate(migratetype))) {
1722 		migratetype = get_pfnblock_migratetype(page, pfn);
1723 	}
1724 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1725 	spin_unlock_irqrestore(&zone->lock, flags);
1726 
1727 	__count_vm_events(PGFREE, 1 << order);
1728 }
1729 
1730 void __free_pages_core(struct page *page, unsigned int order)
1731 {
1732 	unsigned int nr_pages = 1 << order;
1733 	struct page *p = page;
1734 	unsigned int loop;
1735 
1736 	/*
1737 	 * When initializing the memmap, __init_single_page() sets the refcount
1738 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1739 	 * refcount of all involved pages to 0.
1740 	 */
1741 	prefetchw(p);
1742 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1743 		prefetchw(p + 1);
1744 		__ClearPageReserved(p);
1745 		set_page_count(p, 0);
1746 	}
1747 	__ClearPageReserved(p);
1748 	set_page_count(p, 0);
1749 
1750 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1751 
1752 	/*
1753 	 * Bypass PCP and place fresh pages right to the tail, primarily
1754 	 * relevant for memory onlining.
1755 	 */
1756 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1757 }
1758 
1759 #ifdef CONFIG_NUMA
1760 
1761 /*
1762  * During memory init memblocks map pfns to nids. The search is expensive and
1763  * this caches recent lookups. The implementation of __early_pfn_to_nid
1764  * treats start/end as pfns.
1765  */
1766 struct mminit_pfnnid_cache {
1767 	unsigned long last_start;
1768 	unsigned long last_end;
1769 	int last_nid;
1770 };
1771 
1772 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1773 
1774 /*
1775  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1776  */
1777 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1778 					struct mminit_pfnnid_cache *state)
1779 {
1780 	unsigned long start_pfn, end_pfn;
1781 	int nid;
1782 
1783 	if (state->last_start <= pfn && pfn < state->last_end)
1784 		return state->last_nid;
1785 
1786 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1787 	if (nid != NUMA_NO_NODE) {
1788 		state->last_start = start_pfn;
1789 		state->last_end = end_pfn;
1790 		state->last_nid = nid;
1791 	}
1792 
1793 	return nid;
1794 }
1795 
1796 int __meminit early_pfn_to_nid(unsigned long pfn)
1797 {
1798 	static DEFINE_SPINLOCK(early_pfn_lock);
1799 	int nid;
1800 
1801 	spin_lock(&early_pfn_lock);
1802 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1803 	if (nid < 0)
1804 		nid = first_online_node;
1805 	spin_unlock(&early_pfn_lock);
1806 
1807 	return nid;
1808 }
1809 #endif /* CONFIG_NUMA */
1810 
1811 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1812 							unsigned int order)
1813 {
1814 	if (early_page_uninitialised(pfn))
1815 		return;
1816 	if (!kmsan_memblock_free_pages(page, order)) {
1817 		/* KMSAN will take care of these pages. */
1818 		return;
1819 	}
1820 	__free_pages_core(page, order);
1821 }
1822 
1823 /*
1824  * Check that the whole (or subset of) a pageblock given by the interval of
1825  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1826  * with the migration of free compaction scanner.
1827  *
1828  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1829  *
1830  * It's possible on some configurations to have a setup like node0 node1 node0
1831  * i.e. it's possible that all pages within a zones range of pages do not
1832  * belong to a single zone. We assume that a border between node0 and node1
1833  * can occur within a single pageblock, but not a node0 node1 node0
1834  * interleaving within a single pageblock. It is therefore sufficient to check
1835  * the first and last page of a pageblock and avoid checking each individual
1836  * page in a pageblock.
1837  */
1838 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1839 				     unsigned long end_pfn, struct zone *zone)
1840 {
1841 	struct page *start_page;
1842 	struct page *end_page;
1843 
1844 	/* end_pfn is one past the range we are checking */
1845 	end_pfn--;
1846 
1847 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1848 		return NULL;
1849 
1850 	start_page = pfn_to_online_page(start_pfn);
1851 	if (!start_page)
1852 		return NULL;
1853 
1854 	if (page_zone(start_page) != zone)
1855 		return NULL;
1856 
1857 	end_page = pfn_to_page(end_pfn);
1858 
1859 	/* This gives a shorter code than deriving page_zone(end_page) */
1860 	if (page_zone_id(start_page) != page_zone_id(end_page))
1861 		return NULL;
1862 
1863 	return start_page;
1864 }
1865 
1866 void set_zone_contiguous(struct zone *zone)
1867 {
1868 	unsigned long block_start_pfn = zone->zone_start_pfn;
1869 	unsigned long block_end_pfn;
1870 
1871 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
1872 	for (; block_start_pfn < zone_end_pfn(zone);
1873 			block_start_pfn = block_end_pfn,
1874 			 block_end_pfn += pageblock_nr_pages) {
1875 
1876 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1877 
1878 		if (!__pageblock_pfn_to_page(block_start_pfn,
1879 					     block_end_pfn, zone))
1880 			return;
1881 		cond_resched();
1882 	}
1883 
1884 	/* We confirm that there is no hole */
1885 	zone->contiguous = true;
1886 }
1887 
1888 void clear_zone_contiguous(struct zone *zone)
1889 {
1890 	zone->contiguous = false;
1891 }
1892 
1893 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1894 static void __init deferred_free_range(unsigned long pfn,
1895 				       unsigned long nr_pages)
1896 {
1897 	struct page *page;
1898 	unsigned long i;
1899 
1900 	if (!nr_pages)
1901 		return;
1902 
1903 	page = pfn_to_page(pfn);
1904 
1905 	/* Free a large naturally-aligned chunk if possible */
1906 	if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) {
1907 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1908 		__free_pages_core(page, pageblock_order);
1909 		return;
1910 	}
1911 
1912 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1913 		if (pageblock_aligned(pfn))
1914 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1915 		__free_pages_core(page, 0);
1916 	}
1917 }
1918 
1919 /* Completion tracking for deferred_init_memmap() threads */
1920 static atomic_t pgdat_init_n_undone __initdata;
1921 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1922 
1923 static inline void __init pgdat_init_report_one_done(void)
1924 {
1925 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1926 		complete(&pgdat_init_all_done_comp);
1927 }
1928 
1929 /*
1930  * Returns true if page needs to be initialized or freed to buddy allocator.
1931  *
1932  * We check if a current large page is valid by only checking the validity
1933  * of the head pfn.
1934  */
1935 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1936 {
1937 	if (pageblock_aligned(pfn) && !pfn_valid(pfn))
1938 		return false;
1939 	return true;
1940 }
1941 
1942 /*
1943  * Free pages to buddy allocator. Try to free aligned pages in
1944  * pageblock_nr_pages sizes.
1945  */
1946 static void __init deferred_free_pages(unsigned long pfn,
1947 				       unsigned long end_pfn)
1948 {
1949 	unsigned long nr_free = 0;
1950 
1951 	for (; pfn < end_pfn; pfn++) {
1952 		if (!deferred_pfn_valid(pfn)) {
1953 			deferred_free_range(pfn - nr_free, nr_free);
1954 			nr_free = 0;
1955 		} else if (pageblock_aligned(pfn)) {
1956 			deferred_free_range(pfn - nr_free, nr_free);
1957 			nr_free = 1;
1958 		} else {
1959 			nr_free++;
1960 		}
1961 	}
1962 	/* Free the last block of pages to allocator */
1963 	deferred_free_range(pfn - nr_free, nr_free);
1964 }
1965 
1966 /*
1967  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1968  * by performing it only once every pageblock_nr_pages.
1969  * Return number of pages initialized.
1970  */
1971 static unsigned long  __init deferred_init_pages(struct zone *zone,
1972 						 unsigned long pfn,
1973 						 unsigned long end_pfn)
1974 {
1975 	int nid = zone_to_nid(zone);
1976 	unsigned long nr_pages = 0;
1977 	int zid = zone_idx(zone);
1978 	struct page *page = NULL;
1979 
1980 	for (; pfn < end_pfn; pfn++) {
1981 		if (!deferred_pfn_valid(pfn)) {
1982 			page = NULL;
1983 			continue;
1984 		} else if (!page || pageblock_aligned(pfn)) {
1985 			page = pfn_to_page(pfn);
1986 		} else {
1987 			page++;
1988 		}
1989 		__init_single_page(page, pfn, zid, nid);
1990 		nr_pages++;
1991 	}
1992 	return (nr_pages);
1993 }
1994 
1995 /*
1996  * This function is meant to pre-load the iterator for the zone init.
1997  * Specifically it walks through the ranges until we are caught up to the
1998  * first_init_pfn value and exits there. If we never encounter the value we
1999  * return false indicating there are no valid ranges left.
2000  */
2001 static bool __init
2002 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2003 				    unsigned long *spfn, unsigned long *epfn,
2004 				    unsigned long first_init_pfn)
2005 {
2006 	u64 j;
2007 
2008 	/*
2009 	 * Start out by walking through the ranges in this zone that have
2010 	 * already been initialized. We don't need to do anything with them
2011 	 * so we just need to flush them out of the system.
2012 	 */
2013 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2014 		if (*epfn <= first_init_pfn)
2015 			continue;
2016 		if (*spfn < first_init_pfn)
2017 			*spfn = first_init_pfn;
2018 		*i = j;
2019 		return true;
2020 	}
2021 
2022 	return false;
2023 }
2024 
2025 /*
2026  * Initialize and free pages. We do it in two loops: first we initialize
2027  * struct page, then free to buddy allocator, because while we are
2028  * freeing pages we can access pages that are ahead (computing buddy
2029  * page in __free_one_page()).
2030  *
2031  * In order to try and keep some memory in the cache we have the loop
2032  * broken along max page order boundaries. This way we will not cause
2033  * any issues with the buddy page computation.
2034  */
2035 static unsigned long __init
2036 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2037 		       unsigned long *end_pfn)
2038 {
2039 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2040 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2041 	unsigned long nr_pages = 0;
2042 	u64 j = *i;
2043 
2044 	/* First we loop through and initialize the page values */
2045 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2046 		unsigned long t;
2047 
2048 		if (mo_pfn <= *start_pfn)
2049 			break;
2050 
2051 		t = min(mo_pfn, *end_pfn);
2052 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2053 
2054 		if (mo_pfn < *end_pfn) {
2055 			*start_pfn = mo_pfn;
2056 			break;
2057 		}
2058 	}
2059 
2060 	/* Reset values and now loop through freeing pages as needed */
2061 	swap(j, *i);
2062 
2063 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2064 		unsigned long t;
2065 
2066 		if (mo_pfn <= spfn)
2067 			break;
2068 
2069 		t = min(mo_pfn, epfn);
2070 		deferred_free_pages(spfn, t);
2071 
2072 		if (mo_pfn <= epfn)
2073 			break;
2074 	}
2075 
2076 	return nr_pages;
2077 }
2078 
2079 static void __init
2080 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2081 			   void *arg)
2082 {
2083 	unsigned long spfn, epfn;
2084 	struct zone *zone = arg;
2085 	u64 i;
2086 
2087 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2088 
2089 	/*
2090 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2091 	 * can avoid introducing any issues with the buddy allocator.
2092 	 */
2093 	while (spfn < end_pfn) {
2094 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2095 		cond_resched();
2096 	}
2097 }
2098 
2099 /* An arch may override for more concurrency. */
2100 __weak int __init
2101 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2102 {
2103 	return 1;
2104 }
2105 
2106 /* Initialise remaining memory on a node */
2107 static int __init deferred_init_memmap(void *data)
2108 {
2109 	pg_data_t *pgdat = data;
2110 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2111 	unsigned long spfn = 0, epfn = 0;
2112 	unsigned long first_init_pfn, flags;
2113 	unsigned long start = jiffies;
2114 	struct zone *zone;
2115 	int zid, max_threads;
2116 	u64 i;
2117 
2118 	/* Bind memory initialisation thread to a local node if possible */
2119 	if (!cpumask_empty(cpumask))
2120 		set_cpus_allowed_ptr(current, cpumask);
2121 
2122 	pgdat_resize_lock(pgdat, &flags);
2123 	first_init_pfn = pgdat->first_deferred_pfn;
2124 	if (first_init_pfn == ULONG_MAX) {
2125 		pgdat_resize_unlock(pgdat, &flags);
2126 		pgdat_init_report_one_done();
2127 		return 0;
2128 	}
2129 
2130 	/* Sanity check boundaries */
2131 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2132 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2133 	pgdat->first_deferred_pfn = ULONG_MAX;
2134 
2135 	/*
2136 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2137 	 * interrupt thread must allocate this early in boot, zone must be
2138 	 * pre-grown prior to start of deferred page initialization.
2139 	 */
2140 	pgdat_resize_unlock(pgdat, &flags);
2141 
2142 	/* Only the highest zone is deferred so find it */
2143 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2144 		zone = pgdat->node_zones + zid;
2145 		if (first_init_pfn < zone_end_pfn(zone))
2146 			break;
2147 	}
2148 
2149 	/* If the zone is empty somebody else may have cleared out the zone */
2150 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2151 						 first_init_pfn))
2152 		goto zone_empty;
2153 
2154 	max_threads = deferred_page_init_max_threads(cpumask);
2155 
2156 	while (spfn < epfn) {
2157 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2158 		struct padata_mt_job job = {
2159 			.thread_fn   = deferred_init_memmap_chunk,
2160 			.fn_arg      = zone,
2161 			.start       = spfn,
2162 			.size        = epfn_align - spfn,
2163 			.align       = PAGES_PER_SECTION,
2164 			.min_chunk   = PAGES_PER_SECTION,
2165 			.max_threads = max_threads,
2166 		};
2167 
2168 		padata_do_multithreaded(&job);
2169 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2170 						    epfn_align);
2171 	}
2172 zone_empty:
2173 	/* Sanity check that the next zone really is unpopulated */
2174 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2175 
2176 	pr_info("node %d deferred pages initialised in %ums\n",
2177 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2178 
2179 	pgdat_init_report_one_done();
2180 	return 0;
2181 }
2182 
2183 /*
2184  * If this zone has deferred pages, try to grow it by initializing enough
2185  * deferred pages to satisfy the allocation specified by order, rounded up to
2186  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2187  * of SECTION_SIZE bytes by initializing struct pages in increments of
2188  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2189  *
2190  * Return true when zone was grown, otherwise return false. We return true even
2191  * when we grow less than requested, to let the caller decide if there are
2192  * enough pages to satisfy the allocation.
2193  *
2194  * Note: We use noinline because this function is needed only during boot, and
2195  * it is called from a __ref function _deferred_grow_zone. This way we are
2196  * making sure that it is not inlined into permanent text section.
2197  */
2198 static noinline bool __init
2199 deferred_grow_zone(struct zone *zone, unsigned int order)
2200 {
2201 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2202 	pg_data_t *pgdat = zone->zone_pgdat;
2203 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2204 	unsigned long spfn, epfn, flags;
2205 	unsigned long nr_pages = 0;
2206 	u64 i;
2207 
2208 	/* Only the last zone may have deferred pages */
2209 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2210 		return false;
2211 
2212 	pgdat_resize_lock(pgdat, &flags);
2213 
2214 	/*
2215 	 * If someone grew this zone while we were waiting for spinlock, return
2216 	 * true, as there might be enough pages already.
2217 	 */
2218 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2219 		pgdat_resize_unlock(pgdat, &flags);
2220 		return true;
2221 	}
2222 
2223 	/* If the zone is empty somebody else may have cleared out the zone */
2224 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2225 						 first_deferred_pfn)) {
2226 		pgdat->first_deferred_pfn = ULONG_MAX;
2227 		pgdat_resize_unlock(pgdat, &flags);
2228 		/* Retry only once. */
2229 		return first_deferred_pfn != ULONG_MAX;
2230 	}
2231 
2232 	/*
2233 	 * Initialize and free pages in MAX_ORDER sized increments so
2234 	 * that we can avoid introducing any issues with the buddy
2235 	 * allocator.
2236 	 */
2237 	while (spfn < epfn) {
2238 		/* update our first deferred PFN for this section */
2239 		first_deferred_pfn = spfn;
2240 
2241 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2242 		touch_nmi_watchdog();
2243 
2244 		/* We should only stop along section boundaries */
2245 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2246 			continue;
2247 
2248 		/* If our quota has been met we can stop here */
2249 		if (nr_pages >= nr_pages_needed)
2250 			break;
2251 	}
2252 
2253 	pgdat->first_deferred_pfn = spfn;
2254 	pgdat_resize_unlock(pgdat, &flags);
2255 
2256 	return nr_pages > 0;
2257 }
2258 
2259 /*
2260  * deferred_grow_zone() is __init, but it is called from
2261  * get_page_from_freelist() during early boot until deferred_pages permanently
2262  * disables this call. This is why we have refdata wrapper to avoid warning,
2263  * and to ensure that the function body gets unloaded.
2264  */
2265 static bool __ref
2266 _deferred_grow_zone(struct zone *zone, unsigned int order)
2267 {
2268 	return deferred_grow_zone(zone, order);
2269 }
2270 
2271 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2272 
2273 void __init page_alloc_init_late(void)
2274 {
2275 	struct zone *zone;
2276 	int nid;
2277 
2278 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2279 
2280 	/* There will be num_node_state(N_MEMORY) threads */
2281 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2282 	for_each_node_state(nid, N_MEMORY) {
2283 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2284 	}
2285 
2286 	/* Block until all are initialised */
2287 	wait_for_completion(&pgdat_init_all_done_comp);
2288 
2289 	/*
2290 	 * We initialized the rest of the deferred pages.  Permanently disable
2291 	 * on-demand struct page initialization.
2292 	 */
2293 	static_branch_disable(&deferred_pages);
2294 
2295 	/* Reinit limits that are based on free pages after the kernel is up */
2296 	files_maxfiles_init();
2297 #endif
2298 
2299 	buffer_init();
2300 
2301 	/* Discard memblock private memory */
2302 	memblock_discard();
2303 
2304 	for_each_node_state(nid, N_MEMORY)
2305 		shuffle_free_memory(NODE_DATA(nid));
2306 
2307 	for_each_populated_zone(zone)
2308 		set_zone_contiguous(zone);
2309 }
2310 
2311 #ifdef CONFIG_CMA
2312 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2313 void __init init_cma_reserved_pageblock(struct page *page)
2314 {
2315 	unsigned i = pageblock_nr_pages;
2316 	struct page *p = page;
2317 
2318 	do {
2319 		__ClearPageReserved(p);
2320 		set_page_count(p, 0);
2321 	} while (++p, --i);
2322 
2323 	set_pageblock_migratetype(page, MIGRATE_CMA);
2324 	set_page_refcounted(page);
2325 	__free_pages(page, pageblock_order);
2326 
2327 	adjust_managed_page_count(page, pageblock_nr_pages);
2328 	page_zone(page)->cma_pages += pageblock_nr_pages;
2329 }
2330 #endif
2331 
2332 /*
2333  * The order of subdivision here is critical for the IO subsystem.
2334  * Please do not alter this order without good reasons and regression
2335  * testing. Specifically, as large blocks of memory are subdivided,
2336  * the order in which smaller blocks are delivered depends on the order
2337  * they're subdivided in this function. This is the primary factor
2338  * influencing the order in which pages are delivered to the IO
2339  * subsystem according to empirical testing, and this is also justified
2340  * by considering the behavior of a buddy system containing a single
2341  * large block of memory acted on by a series of small allocations.
2342  * This behavior is a critical factor in sglist merging's success.
2343  *
2344  * -- nyc
2345  */
2346 static inline void expand(struct zone *zone, struct page *page,
2347 	int low, int high, int migratetype)
2348 {
2349 	unsigned long size = 1 << high;
2350 
2351 	while (high > low) {
2352 		high--;
2353 		size >>= 1;
2354 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2355 
2356 		/*
2357 		 * Mark as guard pages (or page), that will allow to
2358 		 * merge back to allocator when buddy will be freed.
2359 		 * Corresponding page table entries will not be touched,
2360 		 * pages will stay not present in virtual address space
2361 		 */
2362 		if (set_page_guard(zone, &page[size], high, migratetype))
2363 			continue;
2364 
2365 		add_to_free_list(&page[size], zone, high, migratetype);
2366 		set_buddy_order(&page[size], high);
2367 	}
2368 }
2369 
2370 static void check_new_page_bad(struct page *page)
2371 {
2372 	if (unlikely(page->flags & __PG_HWPOISON)) {
2373 		/* Don't complain about hwpoisoned pages */
2374 		page_mapcount_reset(page); /* remove PageBuddy */
2375 		return;
2376 	}
2377 
2378 	bad_page(page,
2379 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2380 }
2381 
2382 /*
2383  * This page is about to be returned from the page allocator
2384  */
2385 static inline int check_new_page(struct page *page)
2386 {
2387 	if (likely(page_expected_state(page,
2388 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2389 		return 0;
2390 
2391 	check_new_page_bad(page);
2392 	return 1;
2393 }
2394 
2395 static bool check_new_pages(struct page *page, unsigned int order)
2396 {
2397 	int i;
2398 	for (i = 0; i < (1 << order); i++) {
2399 		struct page *p = page + i;
2400 
2401 		if (unlikely(check_new_page(p)))
2402 			return true;
2403 	}
2404 
2405 	return false;
2406 }
2407 
2408 #ifdef CONFIG_DEBUG_VM
2409 /*
2410  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2411  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2412  * also checked when pcp lists are refilled from the free lists.
2413  */
2414 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2415 {
2416 	if (debug_pagealloc_enabled_static())
2417 		return check_new_pages(page, order);
2418 	else
2419 		return false;
2420 }
2421 
2422 static inline bool check_new_pcp(struct page *page, unsigned int order)
2423 {
2424 	return check_new_pages(page, order);
2425 }
2426 #else
2427 /*
2428  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2429  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2430  * enabled, they are also checked when being allocated from the pcp lists.
2431  */
2432 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2433 {
2434 	return check_new_pages(page, order);
2435 }
2436 static inline bool check_new_pcp(struct page *page, unsigned int order)
2437 {
2438 	if (debug_pagealloc_enabled_static())
2439 		return check_new_pages(page, order);
2440 	else
2441 		return false;
2442 }
2443 #endif /* CONFIG_DEBUG_VM */
2444 
2445 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2446 {
2447 	/* Don't skip if a software KASAN mode is enabled. */
2448 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2449 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2450 		return false;
2451 
2452 	/* Skip, if hardware tag-based KASAN is not enabled. */
2453 	if (!kasan_hw_tags_enabled())
2454 		return true;
2455 
2456 	/*
2457 	 * With hardware tag-based KASAN enabled, skip if this has been
2458 	 * requested via __GFP_SKIP_KASAN_UNPOISON.
2459 	 */
2460 	return flags & __GFP_SKIP_KASAN_UNPOISON;
2461 }
2462 
2463 static inline bool should_skip_init(gfp_t flags)
2464 {
2465 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
2466 	if (!kasan_hw_tags_enabled())
2467 		return false;
2468 
2469 	/* For hardware tag-based KASAN, skip if requested. */
2470 	return (flags & __GFP_SKIP_ZERO);
2471 }
2472 
2473 inline void post_alloc_hook(struct page *page, unsigned int order,
2474 				gfp_t gfp_flags)
2475 {
2476 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2477 			!should_skip_init(gfp_flags);
2478 	bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2479 	int i;
2480 
2481 	set_page_private(page, 0);
2482 	set_page_refcounted(page);
2483 
2484 	arch_alloc_page(page, order);
2485 	debug_pagealloc_map_pages(page, 1 << order);
2486 
2487 	/*
2488 	 * Page unpoisoning must happen before memory initialization.
2489 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2490 	 * allocations and the page unpoisoning code will complain.
2491 	 */
2492 	kernel_unpoison_pages(page, 1 << order);
2493 
2494 	/*
2495 	 * As memory initialization might be integrated into KASAN,
2496 	 * KASAN unpoisoning and memory initializion code must be
2497 	 * kept together to avoid discrepancies in behavior.
2498 	 */
2499 
2500 	/*
2501 	 * If memory tags should be zeroed (which happens only when memory
2502 	 * should be initialized as well).
2503 	 */
2504 	if (init_tags) {
2505 		/* Initialize both memory and tags. */
2506 		for (i = 0; i != 1 << order; ++i)
2507 			tag_clear_highpage(page + i);
2508 
2509 		/* Note that memory is already initialized by the loop above. */
2510 		init = false;
2511 	}
2512 	if (!should_skip_kasan_unpoison(gfp_flags)) {
2513 		/* Unpoison shadow memory or set memory tags. */
2514 		kasan_unpoison_pages(page, order, init);
2515 
2516 		/* Note that memory is already initialized by KASAN. */
2517 		if (kasan_has_integrated_init())
2518 			init = false;
2519 	} else {
2520 		/* Ensure page_address() dereferencing does not fault. */
2521 		for (i = 0; i != 1 << order; ++i)
2522 			page_kasan_tag_reset(page + i);
2523 	}
2524 	/* If memory is still not initialized, do it now. */
2525 	if (init)
2526 		kernel_init_pages(page, 1 << order);
2527 	/* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2528 	if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2529 		SetPageSkipKASanPoison(page);
2530 
2531 	set_page_owner(page, order, gfp_flags);
2532 	page_table_check_alloc(page, order);
2533 }
2534 
2535 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2536 							unsigned int alloc_flags)
2537 {
2538 	post_alloc_hook(page, order, gfp_flags);
2539 
2540 	if (order && (gfp_flags & __GFP_COMP))
2541 		prep_compound_page(page, order);
2542 
2543 	/*
2544 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2545 	 * allocate the page. The expectation is that the caller is taking
2546 	 * steps that will free more memory. The caller should avoid the page
2547 	 * being used for !PFMEMALLOC purposes.
2548 	 */
2549 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2550 		set_page_pfmemalloc(page);
2551 	else
2552 		clear_page_pfmemalloc(page);
2553 }
2554 
2555 /*
2556  * Go through the free lists for the given migratetype and remove
2557  * the smallest available page from the freelists
2558  */
2559 static __always_inline
2560 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2561 						int migratetype)
2562 {
2563 	unsigned int current_order;
2564 	struct free_area *area;
2565 	struct page *page;
2566 
2567 	/* Find a page of the appropriate size in the preferred list */
2568 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2569 		area = &(zone->free_area[current_order]);
2570 		page = get_page_from_free_area(area, migratetype);
2571 		if (!page)
2572 			continue;
2573 		del_page_from_free_list(page, zone, current_order);
2574 		expand(zone, page, order, current_order, migratetype);
2575 		set_pcppage_migratetype(page, migratetype);
2576 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
2577 				pcp_allowed_order(order) &&
2578 				migratetype < MIGRATE_PCPTYPES);
2579 		return page;
2580 	}
2581 
2582 	return NULL;
2583 }
2584 
2585 
2586 /*
2587  * This array describes the order lists are fallen back to when
2588  * the free lists for the desirable migrate type are depleted
2589  *
2590  * The other migratetypes do not have fallbacks.
2591  */
2592 static int fallbacks[MIGRATE_TYPES][3] = {
2593 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2594 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2595 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2596 };
2597 
2598 #ifdef CONFIG_CMA
2599 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2600 					unsigned int order)
2601 {
2602 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2603 }
2604 #else
2605 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2606 					unsigned int order) { return NULL; }
2607 #endif
2608 
2609 /*
2610  * Move the free pages in a range to the freelist tail of the requested type.
2611  * Note that start_page and end_pages are not aligned on a pageblock
2612  * boundary. If alignment is required, use move_freepages_block()
2613  */
2614 static int move_freepages(struct zone *zone,
2615 			  unsigned long start_pfn, unsigned long end_pfn,
2616 			  int migratetype, int *num_movable)
2617 {
2618 	struct page *page;
2619 	unsigned long pfn;
2620 	unsigned int order;
2621 	int pages_moved = 0;
2622 
2623 	for (pfn = start_pfn; pfn <= end_pfn;) {
2624 		page = pfn_to_page(pfn);
2625 		if (!PageBuddy(page)) {
2626 			/*
2627 			 * We assume that pages that could be isolated for
2628 			 * migration are movable. But we don't actually try
2629 			 * isolating, as that would be expensive.
2630 			 */
2631 			if (num_movable &&
2632 					(PageLRU(page) || __PageMovable(page)))
2633 				(*num_movable)++;
2634 			pfn++;
2635 			continue;
2636 		}
2637 
2638 		/* Make sure we are not inadvertently changing nodes */
2639 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2640 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2641 
2642 		order = buddy_order(page);
2643 		move_to_free_list(page, zone, order, migratetype);
2644 		pfn += 1 << order;
2645 		pages_moved += 1 << order;
2646 	}
2647 
2648 	return pages_moved;
2649 }
2650 
2651 int move_freepages_block(struct zone *zone, struct page *page,
2652 				int migratetype, int *num_movable)
2653 {
2654 	unsigned long start_pfn, end_pfn, pfn;
2655 
2656 	if (num_movable)
2657 		*num_movable = 0;
2658 
2659 	pfn = page_to_pfn(page);
2660 	start_pfn = pageblock_start_pfn(pfn);
2661 	end_pfn = pageblock_end_pfn(pfn) - 1;
2662 
2663 	/* Do not cross zone boundaries */
2664 	if (!zone_spans_pfn(zone, start_pfn))
2665 		start_pfn = pfn;
2666 	if (!zone_spans_pfn(zone, end_pfn))
2667 		return 0;
2668 
2669 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2670 								num_movable);
2671 }
2672 
2673 static void change_pageblock_range(struct page *pageblock_page,
2674 					int start_order, int migratetype)
2675 {
2676 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2677 
2678 	while (nr_pageblocks--) {
2679 		set_pageblock_migratetype(pageblock_page, migratetype);
2680 		pageblock_page += pageblock_nr_pages;
2681 	}
2682 }
2683 
2684 /*
2685  * When we are falling back to another migratetype during allocation, try to
2686  * steal extra free pages from the same pageblocks to satisfy further
2687  * allocations, instead of polluting multiple pageblocks.
2688  *
2689  * If we are stealing a relatively large buddy page, it is likely there will
2690  * be more free pages in the pageblock, so try to steal them all. For
2691  * reclaimable and unmovable allocations, we steal regardless of page size,
2692  * as fragmentation caused by those allocations polluting movable pageblocks
2693  * is worse than movable allocations stealing from unmovable and reclaimable
2694  * pageblocks.
2695  */
2696 static bool can_steal_fallback(unsigned int order, int start_mt)
2697 {
2698 	/*
2699 	 * Leaving this order check is intended, although there is
2700 	 * relaxed order check in next check. The reason is that
2701 	 * we can actually steal whole pageblock if this condition met,
2702 	 * but, below check doesn't guarantee it and that is just heuristic
2703 	 * so could be changed anytime.
2704 	 */
2705 	if (order >= pageblock_order)
2706 		return true;
2707 
2708 	if (order >= pageblock_order / 2 ||
2709 		start_mt == MIGRATE_RECLAIMABLE ||
2710 		start_mt == MIGRATE_UNMOVABLE ||
2711 		page_group_by_mobility_disabled)
2712 		return true;
2713 
2714 	return false;
2715 }
2716 
2717 static inline bool boost_watermark(struct zone *zone)
2718 {
2719 	unsigned long max_boost;
2720 
2721 	if (!watermark_boost_factor)
2722 		return false;
2723 	/*
2724 	 * Don't bother in zones that are unlikely to produce results.
2725 	 * On small machines, including kdump capture kernels running
2726 	 * in a small area, boosting the watermark can cause an out of
2727 	 * memory situation immediately.
2728 	 */
2729 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2730 		return false;
2731 
2732 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2733 			watermark_boost_factor, 10000);
2734 
2735 	/*
2736 	 * high watermark may be uninitialised if fragmentation occurs
2737 	 * very early in boot so do not boost. We do not fall
2738 	 * through and boost by pageblock_nr_pages as failing
2739 	 * allocations that early means that reclaim is not going
2740 	 * to help and it may even be impossible to reclaim the
2741 	 * boosted watermark resulting in a hang.
2742 	 */
2743 	if (!max_boost)
2744 		return false;
2745 
2746 	max_boost = max(pageblock_nr_pages, max_boost);
2747 
2748 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2749 		max_boost);
2750 
2751 	return true;
2752 }
2753 
2754 /*
2755  * This function implements actual steal behaviour. If order is large enough,
2756  * we can steal whole pageblock. If not, we first move freepages in this
2757  * pageblock to our migratetype and determine how many already-allocated pages
2758  * are there in the pageblock with a compatible migratetype. If at least half
2759  * of pages are free or compatible, we can change migratetype of the pageblock
2760  * itself, so pages freed in the future will be put on the correct free list.
2761  */
2762 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2763 		unsigned int alloc_flags, int start_type, bool whole_block)
2764 {
2765 	unsigned int current_order = buddy_order(page);
2766 	int free_pages, movable_pages, alike_pages;
2767 	int old_block_type;
2768 
2769 	old_block_type = get_pageblock_migratetype(page);
2770 
2771 	/*
2772 	 * This can happen due to races and we want to prevent broken
2773 	 * highatomic accounting.
2774 	 */
2775 	if (is_migrate_highatomic(old_block_type))
2776 		goto single_page;
2777 
2778 	/* Take ownership for orders >= pageblock_order */
2779 	if (current_order >= pageblock_order) {
2780 		change_pageblock_range(page, current_order, start_type);
2781 		goto single_page;
2782 	}
2783 
2784 	/*
2785 	 * Boost watermarks to increase reclaim pressure to reduce the
2786 	 * likelihood of future fallbacks. Wake kswapd now as the node
2787 	 * may be balanced overall and kswapd will not wake naturally.
2788 	 */
2789 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2790 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2791 
2792 	/* We are not allowed to try stealing from the whole block */
2793 	if (!whole_block)
2794 		goto single_page;
2795 
2796 	free_pages = move_freepages_block(zone, page, start_type,
2797 						&movable_pages);
2798 	/*
2799 	 * Determine how many pages are compatible with our allocation.
2800 	 * For movable allocation, it's the number of movable pages which
2801 	 * we just obtained. For other types it's a bit more tricky.
2802 	 */
2803 	if (start_type == MIGRATE_MOVABLE) {
2804 		alike_pages = movable_pages;
2805 	} else {
2806 		/*
2807 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2808 		 * to MOVABLE pageblock, consider all non-movable pages as
2809 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2810 		 * vice versa, be conservative since we can't distinguish the
2811 		 * exact migratetype of non-movable pages.
2812 		 */
2813 		if (old_block_type == MIGRATE_MOVABLE)
2814 			alike_pages = pageblock_nr_pages
2815 						- (free_pages + movable_pages);
2816 		else
2817 			alike_pages = 0;
2818 	}
2819 
2820 	/* moving whole block can fail due to zone boundary conditions */
2821 	if (!free_pages)
2822 		goto single_page;
2823 
2824 	/*
2825 	 * If a sufficient number of pages in the block are either free or of
2826 	 * comparable migratability as our allocation, claim the whole block.
2827 	 */
2828 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2829 			page_group_by_mobility_disabled)
2830 		set_pageblock_migratetype(page, start_type);
2831 
2832 	return;
2833 
2834 single_page:
2835 	move_to_free_list(page, zone, current_order, start_type);
2836 }
2837 
2838 /*
2839  * Check whether there is a suitable fallback freepage with requested order.
2840  * If only_stealable is true, this function returns fallback_mt only if
2841  * we can steal other freepages all together. This would help to reduce
2842  * fragmentation due to mixed migratetype pages in one pageblock.
2843  */
2844 int find_suitable_fallback(struct free_area *area, unsigned int order,
2845 			int migratetype, bool only_stealable, bool *can_steal)
2846 {
2847 	int i;
2848 	int fallback_mt;
2849 
2850 	if (area->nr_free == 0)
2851 		return -1;
2852 
2853 	*can_steal = false;
2854 	for (i = 0;; i++) {
2855 		fallback_mt = fallbacks[migratetype][i];
2856 		if (fallback_mt == MIGRATE_TYPES)
2857 			break;
2858 
2859 		if (free_area_empty(area, fallback_mt))
2860 			continue;
2861 
2862 		if (can_steal_fallback(order, migratetype))
2863 			*can_steal = true;
2864 
2865 		if (!only_stealable)
2866 			return fallback_mt;
2867 
2868 		if (*can_steal)
2869 			return fallback_mt;
2870 	}
2871 
2872 	return -1;
2873 }
2874 
2875 /*
2876  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2877  * there are no empty page blocks that contain a page with a suitable order
2878  */
2879 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2880 				unsigned int alloc_order)
2881 {
2882 	int mt;
2883 	unsigned long max_managed, flags;
2884 
2885 	/*
2886 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2887 	 * Check is race-prone but harmless.
2888 	 */
2889 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2890 	if (zone->nr_reserved_highatomic >= max_managed)
2891 		return;
2892 
2893 	spin_lock_irqsave(&zone->lock, flags);
2894 
2895 	/* Recheck the nr_reserved_highatomic limit under the lock */
2896 	if (zone->nr_reserved_highatomic >= max_managed)
2897 		goto out_unlock;
2898 
2899 	/* Yoink! */
2900 	mt = get_pageblock_migratetype(page);
2901 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2902 	if (migratetype_is_mergeable(mt)) {
2903 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2904 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2905 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2906 	}
2907 
2908 out_unlock:
2909 	spin_unlock_irqrestore(&zone->lock, flags);
2910 }
2911 
2912 /*
2913  * Used when an allocation is about to fail under memory pressure. This
2914  * potentially hurts the reliability of high-order allocations when under
2915  * intense memory pressure but failed atomic allocations should be easier
2916  * to recover from than an OOM.
2917  *
2918  * If @force is true, try to unreserve a pageblock even though highatomic
2919  * pageblock is exhausted.
2920  */
2921 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2922 						bool force)
2923 {
2924 	struct zonelist *zonelist = ac->zonelist;
2925 	unsigned long flags;
2926 	struct zoneref *z;
2927 	struct zone *zone;
2928 	struct page *page;
2929 	int order;
2930 	bool ret;
2931 
2932 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2933 								ac->nodemask) {
2934 		/*
2935 		 * Preserve at least one pageblock unless memory pressure
2936 		 * is really high.
2937 		 */
2938 		if (!force && zone->nr_reserved_highatomic <=
2939 					pageblock_nr_pages)
2940 			continue;
2941 
2942 		spin_lock_irqsave(&zone->lock, flags);
2943 		for (order = 0; order < MAX_ORDER; order++) {
2944 			struct free_area *area = &(zone->free_area[order]);
2945 
2946 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2947 			if (!page)
2948 				continue;
2949 
2950 			/*
2951 			 * In page freeing path, migratetype change is racy so
2952 			 * we can counter several free pages in a pageblock
2953 			 * in this loop although we changed the pageblock type
2954 			 * from highatomic to ac->migratetype. So we should
2955 			 * adjust the count once.
2956 			 */
2957 			if (is_migrate_highatomic_page(page)) {
2958 				/*
2959 				 * It should never happen but changes to
2960 				 * locking could inadvertently allow a per-cpu
2961 				 * drain to add pages to MIGRATE_HIGHATOMIC
2962 				 * while unreserving so be safe and watch for
2963 				 * underflows.
2964 				 */
2965 				zone->nr_reserved_highatomic -= min(
2966 						pageblock_nr_pages,
2967 						zone->nr_reserved_highatomic);
2968 			}
2969 
2970 			/*
2971 			 * Convert to ac->migratetype and avoid the normal
2972 			 * pageblock stealing heuristics. Minimally, the caller
2973 			 * is doing the work and needs the pages. More
2974 			 * importantly, if the block was always converted to
2975 			 * MIGRATE_UNMOVABLE or another type then the number
2976 			 * of pageblocks that cannot be completely freed
2977 			 * may increase.
2978 			 */
2979 			set_pageblock_migratetype(page, ac->migratetype);
2980 			ret = move_freepages_block(zone, page, ac->migratetype,
2981 									NULL);
2982 			if (ret) {
2983 				spin_unlock_irqrestore(&zone->lock, flags);
2984 				return ret;
2985 			}
2986 		}
2987 		spin_unlock_irqrestore(&zone->lock, flags);
2988 	}
2989 
2990 	return false;
2991 }
2992 
2993 /*
2994  * Try finding a free buddy page on the fallback list and put it on the free
2995  * list of requested migratetype, possibly along with other pages from the same
2996  * block, depending on fragmentation avoidance heuristics. Returns true if
2997  * fallback was found so that __rmqueue_smallest() can grab it.
2998  *
2999  * The use of signed ints for order and current_order is a deliberate
3000  * deviation from the rest of this file, to make the for loop
3001  * condition simpler.
3002  */
3003 static __always_inline bool
3004 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
3005 						unsigned int alloc_flags)
3006 {
3007 	struct free_area *area;
3008 	int current_order;
3009 	int min_order = order;
3010 	struct page *page;
3011 	int fallback_mt;
3012 	bool can_steal;
3013 
3014 	/*
3015 	 * Do not steal pages from freelists belonging to other pageblocks
3016 	 * i.e. orders < pageblock_order. If there are no local zones free,
3017 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3018 	 */
3019 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
3020 		min_order = pageblock_order;
3021 
3022 	/*
3023 	 * Find the largest available free page in the other list. This roughly
3024 	 * approximates finding the pageblock with the most free pages, which
3025 	 * would be too costly to do exactly.
3026 	 */
3027 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
3028 				--current_order) {
3029 		area = &(zone->free_area[current_order]);
3030 		fallback_mt = find_suitable_fallback(area, current_order,
3031 				start_migratetype, false, &can_steal);
3032 		if (fallback_mt == -1)
3033 			continue;
3034 
3035 		/*
3036 		 * We cannot steal all free pages from the pageblock and the
3037 		 * requested migratetype is movable. In that case it's better to
3038 		 * steal and split the smallest available page instead of the
3039 		 * largest available page, because even if the next movable
3040 		 * allocation falls back into a different pageblock than this
3041 		 * one, it won't cause permanent fragmentation.
3042 		 */
3043 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3044 					&& current_order > order)
3045 			goto find_smallest;
3046 
3047 		goto do_steal;
3048 	}
3049 
3050 	return false;
3051 
3052 find_smallest:
3053 	for (current_order = order; current_order < MAX_ORDER;
3054 							current_order++) {
3055 		area = &(zone->free_area[current_order]);
3056 		fallback_mt = find_suitable_fallback(area, current_order,
3057 				start_migratetype, false, &can_steal);
3058 		if (fallback_mt != -1)
3059 			break;
3060 	}
3061 
3062 	/*
3063 	 * This should not happen - we already found a suitable fallback
3064 	 * when looking for the largest page.
3065 	 */
3066 	VM_BUG_ON(current_order == MAX_ORDER);
3067 
3068 do_steal:
3069 	page = get_page_from_free_area(area, fallback_mt);
3070 
3071 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3072 								can_steal);
3073 
3074 	trace_mm_page_alloc_extfrag(page, order, current_order,
3075 		start_migratetype, fallback_mt);
3076 
3077 	return true;
3078 
3079 }
3080 
3081 /*
3082  * Do the hard work of removing an element from the buddy allocator.
3083  * Call me with the zone->lock already held.
3084  */
3085 static __always_inline struct page *
3086 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3087 						unsigned int alloc_flags)
3088 {
3089 	struct page *page;
3090 
3091 	if (IS_ENABLED(CONFIG_CMA)) {
3092 		/*
3093 		 * Balance movable allocations between regular and CMA areas by
3094 		 * allocating from CMA when over half of the zone's free memory
3095 		 * is in the CMA area.
3096 		 */
3097 		if (alloc_flags & ALLOC_CMA &&
3098 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
3099 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
3100 			page = __rmqueue_cma_fallback(zone, order);
3101 			if (page)
3102 				return page;
3103 		}
3104 	}
3105 retry:
3106 	page = __rmqueue_smallest(zone, order, migratetype);
3107 	if (unlikely(!page)) {
3108 		if (alloc_flags & ALLOC_CMA)
3109 			page = __rmqueue_cma_fallback(zone, order);
3110 
3111 		if (!page && __rmqueue_fallback(zone, order, migratetype,
3112 								alloc_flags))
3113 			goto retry;
3114 	}
3115 	return page;
3116 }
3117 
3118 /*
3119  * Obtain a specified number of elements from the buddy allocator, all under
3120  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3121  * Returns the number of new pages which were placed at *list.
3122  */
3123 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3124 			unsigned long count, struct list_head *list,
3125 			int migratetype, unsigned int alloc_flags)
3126 {
3127 	int i, allocated = 0;
3128 
3129 	/* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
3130 	spin_lock(&zone->lock);
3131 	for (i = 0; i < count; ++i) {
3132 		struct page *page = __rmqueue(zone, order, migratetype,
3133 								alloc_flags);
3134 		if (unlikely(page == NULL))
3135 			break;
3136 
3137 		if (unlikely(check_pcp_refill(page, order)))
3138 			continue;
3139 
3140 		/*
3141 		 * Split buddy pages returned by expand() are received here in
3142 		 * physical page order. The page is added to the tail of
3143 		 * caller's list. From the callers perspective, the linked list
3144 		 * is ordered by page number under some conditions. This is
3145 		 * useful for IO devices that can forward direction from the
3146 		 * head, thus also in the physical page order. This is useful
3147 		 * for IO devices that can merge IO requests if the physical
3148 		 * pages are ordered properly.
3149 		 */
3150 		list_add_tail(&page->pcp_list, list);
3151 		allocated++;
3152 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3153 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3154 					      -(1 << order));
3155 	}
3156 
3157 	/*
3158 	 * i pages were removed from the buddy list even if some leak due
3159 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3160 	 * on i. Do not confuse with 'allocated' which is the number of
3161 	 * pages added to the pcp list.
3162 	 */
3163 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3164 	spin_unlock(&zone->lock);
3165 	return allocated;
3166 }
3167 
3168 #ifdef CONFIG_NUMA
3169 /*
3170  * Called from the vmstat counter updater to drain pagesets of this
3171  * currently executing processor on remote nodes after they have
3172  * expired.
3173  */
3174 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3175 {
3176 	int to_drain, batch;
3177 
3178 	batch = READ_ONCE(pcp->batch);
3179 	to_drain = min(pcp->count, batch);
3180 	if (to_drain > 0) {
3181 		unsigned long flags;
3182 
3183 		/*
3184 		 * free_pcppages_bulk expects IRQs disabled for zone->lock
3185 		 * so even though pcp->lock is not intended to be IRQ-safe,
3186 		 * it's needed in this context.
3187 		 */
3188 		spin_lock_irqsave(&pcp->lock, flags);
3189 		free_pcppages_bulk(zone, to_drain, pcp, 0);
3190 		spin_unlock_irqrestore(&pcp->lock, flags);
3191 	}
3192 }
3193 #endif
3194 
3195 /*
3196  * Drain pcplists of the indicated processor and zone.
3197  */
3198 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3199 {
3200 	struct per_cpu_pages *pcp;
3201 
3202 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3203 	if (pcp->count) {
3204 		unsigned long flags;
3205 
3206 		/* See drain_zone_pages on why this is disabling IRQs */
3207 		spin_lock_irqsave(&pcp->lock, flags);
3208 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
3209 		spin_unlock_irqrestore(&pcp->lock, flags);
3210 	}
3211 }
3212 
3213 /*
3214  * Drain pcplists of all zones on the indicated processor.
3215  */
3216 static void drain_pages(unsigned int cpu)
3217 {
3218 	struct zone *zone;
3219 
3220 	for_each_populated_zone(zone) {
3221 		drain_pages_zone(cpu, zone);
3222 	}
3223 }
3224 
3225 /*
3226  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3227  */
3228 void drain_local_pages(struct zone *zone)
3229 {
3230 	int cpu = smp_processor_id();
3231 
3232 	if (zone)
3233 		drain_pages_zone(cpu, zone);
3234 	else
3235 		drain_pages(cpu);
3236 }
3237 
3238 /*
3239  * The implementation of drain_all_pages(), exposing an extra parameter to
3240  * drain on all cpus.
3241  *
3242  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3243  * not empty. The check for non-emptiness can however race with a free to
3244  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3245  * that need the guarantee that every CPU has drained can disable the
3246  * optimizing racy check.
3247  */
3248 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3249 {
3250 	int cpu;
3251 
3252 	/*
3253 	 * Allocate in the BSS so we won't require allocation in
3254 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3255 	 */
3256 	static cpumask_t cpus_with_pcps;
3257 
3258 	/*
3259 	 * Do not drain if one is already in progress unless it's specific to
3260 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3261 	 * the drain to be complete when the call returns.
3262 	 */
3263 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3264 		if (!zone)
3265 			return;
3266 		mutex_lock(&pcpu_drain_mutex);
3267 	}
3268 
3269 	/*
3270 	 * We don't care about racing with CPU hotplug event
3271 	 * as offline notification will cause the notified
3272 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3273 	 * disables preemption as part of its processing
3274 	 */
3275 	for_each_online_cpu(cpu) {
3276 		struct per_cpu_pages *pcp;
3277 		struct zone *z;
3278 		bool has_pcps = false;
3279 
3280 		if (force_all_cpus) {
3281 			/*
3282 			 * The pcp.count check is racy, some callers need a
3283 			 * guarantee that no cpu is missed.
3284 			 */
3285 			has_pcps = true;
3286 		} else if (zone) {
3287 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3288 			if (pcp->count)
3289 				has_pcps = true;
3290 		} else {
3291 			for_each_populated_zone(z) {
3292 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3293 				if (pcp->count) {
3294 					has_pcps = true;
3295 					break;
3296 				}
3297 			}
3298 		}
3299 
3300 		if (has_pcps)
3301 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3302 		else
3303 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3304 	}
3305 
3306 	for_each_cpu(cpu, &cpus_with_pcps) {
3307 		if (zone)
3308 			drain_pages_zone(cpu, zone);
3309 		else
3310 			drain_pages(cpu);
3311 	}
3312 
3313 	mutex_unlock(&pcpu_drain_mutex);
3314 }
3315 
3316 /*
3317  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3318  *
3319  * When zone parameter is non-NULL, spill just the single zone's pages.
3320  */
3321 void drain_all_pages(struct zone *zone)
3322 {
3323 	__drain_all_pages(zone, false);
3324 }
3325 
3326 #ifdef CONFIG_HIBERNATION
3327 
3328 /*
3329  * Touch the watchdog for every WD_PAGE_COUNT pages.
3330  */
3331 #define WD_PAGE_COUNT	(128*1024)
3332 
3333 void mark_free_pages(struct zone *zone)
3334 {
3335 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3336 	unsigned long flags;
3337 	unsigned int order, t;
3338 	struct page *page;
3339 
3340 	if (zone_is_empty(zone))
3341 		return;
3342 
3343 	spin_lock_irqsave(&zone->lock, flags);
3344 
3345 	max_zone_pfn = zone_end_pfn(zone);
3346 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3347 		if (pfn_valid(pfn)) {
3348 			page = pfn_to_page(pfn);
3349 
3350 			if (!--page_count) {
3351 				touch_nmi_watchdog();
3352 				page_count = WD_PAGE_COUNT;
3353 			}
3354 
3355 			if (page_zone(page) != zone)
3356 				continue;
3357 
3358 			if (!swsusp_page_is_forbidden(page))
3359 				swsusp_unset_page_free(page);
3360 		}
3361 
3362 	for_each_migratetype_order(order, t) {
3363 		list_for_each_entry(page,
3364 				&zone->free_area[order].free_list[t], buddy_list) {
3365 			unsigned long i;
3366 
3367 			pfn = page_to_pfn(page);
3368 			for (i = 0; i < (1UL << order); i++) {
3369 				if (!--page_count) {
3370 					touch_nmi_watchdog();
3371 					page_count = WD_PAGE_COUNT;
3372 				}
3373 				swsusp_set_page_free(pfn_to_page(pfn + i));
3374 			}
3375 		}
3376 	}
3377 	spin_unlock_irqrestore(&zone->lock, flags);
3378 }
3379 #endif /* CONFIG_PM */
3380 
3381 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3382 							unsigned int order)
3383 {
3384 	int migratetype;
3385 
3386 	if (!free_pcp_prepare(page, order))
3387 		return false;
3388 
3389 	migratetype = get_pfnblock_migratetype(page, pfn);
3390 	set_pcppage_migratetype(page, migratetype);
3391 	return true;
3392 }
3393 
3394 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3395 		       bool free_high)
3396 {
3397 	int min_nr_free, max_nr_free;
3398 
3399 	/* Free everything if batch freeing high-order pages. */
3400 	if (unlikely(free_high))
3401 		return pcp->count;
3402 
3403 	/* Check for PCP disabled or boot pageset */
3404 	if (unlikely(high < batch))
3405 		return 1;
3406 
3407 	/* Leave at least pcp->batch pages on the list */
3408 	min_nr_free = batch;
3409 	max_nr_free = high - batch;
3410 
3411 	/*
3412 	 * Double the number of pages freed each time there is subsequent
3413 	 * freeing of pages without any allocation.
3414 	 */
3415 	batch <<= pcp->free_factor;
3416 	if (batch < max_nr_free)
3417 		pcp->free_factor++;
3418 	batch = clamp(batch, min_nr_free, max_nr_free);
3419 
3420 	return batch;
3421 }
3422 
3423 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3424 		       bool free_high)
3425 {
3426 	int high = READ_ONCE(pcp->high);
3427 
3428 	if (unlikely(!high || free_high))
3429 		return 0;
3430 
3431 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3432 		return high;
3433 
3434 	/*
3435 	 * If reclaim is active, limit the number of pages that can be
3436 	 * stored on pcp lists
3437 	 */
3438 	return min(READ_ONCE(pcp->batch) << 2, high);
3439 }
3440 
3441 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3442 				   struct page *page, int migratetype,
3443 				   unsigned int order)
3444 {
3445 	int high;
3446 	int pindex;
3447 	bool free_high;
3448 
3449 	__count_vm_events(PGFREE, 1 << order);
3450 	pindex = order_to_pindex(migratetype, order);
3451 	list_add(&page->pcp_list, &pcp->lists[pindex]);
3452 	pcp->count += 1 << order;
3453 
3454 	/*
3455 	 * As high-order pages other than THP's stored on PCP can contribute
3456 	 * to fragmentation, limit the number stored when PCP is heavily
3457 	 * freeing without allocation. The remainder after bulk freeing
3458 	 * stops will be drained from vmstat refresh context.
3459 	 */
3460 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3461 
3462 	high = nr_pcp_high(pcp, zone, free_high);
3463 	if (pcp->count >= high) {
3464 		int batch = READ_ONCE(pcp->batch);
3465 
3466 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3467 	}
3468 }
3469 
3470 /*
3471  * Free a pcp page
3472  */
3473 void free_unref_page(struct page *page, unsigned int order)
3474 {
3475 	unsigned long flags;
3476 	unsigned long __maybe_unused UP_flags;
3477 	struct per_cpu_pages *pcp;
3478 	struct zone *zone;
3479 	unsigned long pfn = page_to_pfn(page);
3480 	int migratetype;
3481 
3482 	if (!free_unref_page_prepare(page, pfn, order))
3483 		return;
3484 
3485 	/*
3486 	 * We only track unmovable, reclaimable and movable on pcp lists.
3487 	 * Place ISOLATE pages on the isolated list because they are being
3488 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3489 	 * areas back if necessary. Otherwise, we may have to free
3490 	 * excessively into the page allocator
3491 	 */
3492 	migratetype = get_pcppage_migratetype(page);
3493 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3494 		if (unlikely(is_migrate_isolate(migratetype))) {
3495 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3496 			return;
3497 		}
3498 		migratetype = MIGRATE_MOVABLE;
3499 	}
3500 
3501 	zone = page_zone(page);
3502 	pcp_trylock_prepare(UP_flags);
3503 	pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3504 	if (pcp) {
3505 		free_unref_page_commit(zone, pcp, page, migratetype, order);
3506 		pcp_spin_unlock_irqrestore(pcp, flags);
3507 	} else {
3508 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3509 	}
3510 	pcp_trylock_finish(UP_flags);
3511 }
3512 
3513 /*
3514  * Free a list of 0-order pages
3515  */
3516 void free_unref_page_list(struct list_head *list)
3517 {
3518 	struct page *page, *next;
3519 	struct per_cpu_pages *pcp = NULL;
3520 	struct zone *locked_zone = NULL;
3521 	unsigned long flags;
3522 	int batch_count = 0;
3523 	int migratetype;
3524 
3525 	/* Prepare pages for freeing */
3526 	list_for_each_entry_safe(page, next, list, lru) {
3527 		unsigned long pfn = page_to_pfn(page);
3528 		if (!free_unref_page_prepare(page, pfn, 0)) {
3529 			list_del(&page->lru);
3530 			continue;
3531 		}
3532 
3533 		/*
3534 		 * Free isolated pages directly to the allocator, see
3535 		 * comment in free_unref_page.
3536 		 */
3537 		migratetype = get_pcppage_migratetype(page);
3538 		if (unlikely(is_migrate_isolate(migratetype))) {
3539 			list_del(&page->lru);
3540 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3541 			continue;
3542 		}
3543 	}
3544 
3545 	list_for_each_entry_safe(page, next, list, lru) {
3546 		struct zone *zone = page_zone(page);
3547 
3548 		/* Different zone, different pcp lock. */
3549 		if (zone != locked_zone) {
3550 			if (pcp)
3551 				pcp_spin_unlock_irqrestore(pcp, flags);
3552 
3553 			locked_zone = zone;
3554 			pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3555 		}
3556 
3557 		/*
3558 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3559 		 * to the MIGRATE_MOVABLE pcp list.
3560 		 */
3561 		migratetype = get_pcppage_migratetype(page);
3562 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3563 			migratetype = MIGRATE_MOVABLE;
3564 
3565 		trace_mm_page_free_batched(page);
3566 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
3567 
3568 		/*
3569 		 * Guard against excessive IRQ disabled times when we get
3570 		 * a large list of pages to free.
3571 		 */
3572 		if (++batch_count == SWAP_CLUSTER_MAX) {
3573 			pcp_spin_unlock_irqrestore(pcp, flags);
3574 			batch_count = 0;
3575 			pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3576 		}
3577 	}
3578 
3579 	if (pcp)
3580 		pcp_spin_unlock_irqrestore(pcp, flags);
3581 }
3582 
3583 /*
3584  * split_page takes a non-compound higher-order page, and splits it into
3585  * n (1<<order) sub-pages: page[0..n]
3586  * Each sub-page must be freed individually.
3587  *
3588  * Note: this is probably too low level an operation for use in drivers.
3589  * Please consult with lkml before using this in your driver.
3590  */
3591 void split_page(struct page *page, unsigned int order)
3592 {
3593 	int i;
3594 
3595 	VM_BUG_ON_PAGE(PageCompound(page), page);
3596 	VM_BUG_ON_PAGE(!page_count(page), page);
3597 
3598 	for (i = 1; i < (1 << order); i++)
3599 		set_page_refcounted(page + i);
3600 	split_page_owner(page, 1 << order);
3601 	split_page_memcg(page, 1 << order);
3602 }
3603 EXPORT_SYMBOL_GPL(split_page);
3604 
3605 int __isolate_free_page(struct page *page, unsigned int order)
3606 {
3607 	struct zone *zone = page_zone(page);
3608 	int mt = get_pageblock_migratetype(page);
3609 
3610 	if (!is_migrate_isolate(mt)) {
3611 		unsigned long watermark;
3612 		/*
3613 		 * Obey watermarks as if the page was being allocated. We can
3614 		 * emulate a high-order watermark check with a raised order-0
3615 		 * watermark, because we already know our high-order page
3616 		 * exists.
3617 		 */
3618 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3619 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3620 			return 0;
3621 
3622 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3623 	}
3624 
3625 	del_page_from_free_list(page, zone, order);
3626 
3627 	/*
3628 	 * Set the pageblock if the isolated page is at least half of a
3629 	 * pageblock
3630 	 */
3631 	if (order >= pageblock_order - 1) {
3632 		struct page *endpage = page + (1 << order) - 1;
3633 		for (; page < endpage; page += pageblock_nr_pages) {
3634 			int mt = get_pageblock_migratetype(page);
3635 			/*
3636 			 * Only change normal pageblocks (i.e., they can merge
3637 			 * with others)
3638 			 */
3639 			if (migratetype_is_mergeable(mt))
3640 				set_pageblock_migratetype(page,
3641 							  MIGRATE_MOVABLE);
3642 		}
3643 	}
3644 
3645 	return 1UL << order;
3646 }
3647 
3648 /**
3649  * __putback_isolated_page - Return a now-isolated page back where we got it
3650  * @page: Page that was isolated
3651  * @order: Order of the isolated page
3652  * @mt: The page's pageblock's migratetype
3653  *
3654  * This function is meant to return a page pulled from the free lists via
3655  * __isolate_free_page back to the free lists they were pulled from.
3656  */
3657 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3658 {
3659 	struct zone *zone = page_zone(page);
3660 
3661 	/* zone lock should be held when this function is called */
3662 	lockdep_assert_held(&zone->lock);
3663 
3664 	/* Return isolated page to tail of freelist. */
3665 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3666 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3667 }
3668 
3669 /*
3670  * Update NUMA hit/miss statistics
3671  */
3672 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3673 				   long nr_account)
3674 {
3675 #ifdef CONFIG_NUMA
3676 	enum numa_stat_item local_stat = NUMA_LOCAL;
3677 
3678 	/* skip numa counters update if numa stats is disabled */
3679 	if (!static_branch_likely(&vm_numa_stat_key))
3680 		return;
3681 
3682 	if (zone_to_nid(z) != numa_node_id())
3683 		local_stat = NUMA_OTHER;
3684 
3685 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3686 		__count_numa_events(z, NUMA_HIT, nr_account);
3687 	else {
3688 		__count_numa_events(z, NUMA_MISS, nr_account);
3689 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3690 	}
3691 	__count_numa_events(z, local_stat, nr_account);
3692 #endif
3693 }
3694 
3695 static __always_inline
3696 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3697 			   unsigned int order, unsigned int alloc_flags,
3698 			   int migratetype)
3699 {
3700 	struct page *page;
3701 	unsigned long flags;
3702 
3703 	do {
3704 		page = NULL;
3705 		spin_lock_irqsave(&zone->lock, flags);
3706 		/*
3707 		 * order-0 request can reach here when the pcplist is skipped
3708 		 * due to non-CMA allocation context. HIGHATOMIC area is
3709 		 * reserved for high-order atomic allocation, so order-0
3710 		 * request should skip it.
3711 		 */
3712 		if (order > 0 && alloc_flags & ALLOC_HARDER)
3713 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3714 		if (!page) {
3715 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3716 			if (!page) {
3717 				spin_unlock_irqrestore(&zone->lock, flags);
3718 				return NULL;
3719 			}
3720 		}
3721 		__mod_zone_freepage_state(zone, -(1 << order),
3722 					  get_pcppage_migratetype(page));
3723 		spin_unlock_irqrestore(&zone->lock, flags);
3724 	} while (check_new_pages(page, order));
3725 
3726 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3727 	zone_statistics(preferred_zone, zone, 1);
3728 
3729 	return page;
3730 }
3731 
3732 /* Remove page from the per-cpu list, caller must protect the list */
3733 static inline
3734 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3735 			int migratetype,
3736 			unsigned int alloc_flags,
3737 			struct per_cpu_pages *pcp,
3738 			struct list_head *list)
3739 {
3740 	struct page *page;
3741 
3742 	do {
3743 		if (list_empty(list)) {
3744 			int batch = READ_ONCE(pcp->batch);
3745 			int alloced;
3746 
3747 			/*
3748 			 * Scale batch relative to order if batch implies
3749 			 * free pages can be stored on the PCP. Batch can
3750 			 * be 1 for small zones or for boot pagesets which
3751 			 * should never store free pages as the pages may
3752 			 * belong to arbitrary zones.
3753 			 */
3754 			if (batch > 1)
3755 				batch = max(batch >> order, 2);
3756 			alloced = rmqueue_bulk(zone, order,
3757 					batch, list,
3758 					migratetype, alloc_flags);
3759 
3760 			pcp->count += alloced << order;
3761 			if (unlikely(list_empty(list)))
3762 				return NULL;
3763 		}
3764 
3765 		page = list_first_entry(list, struct page, pcp_list);
3766 		list_del(&page->pcp_list);
3767 		pcp->count -= 1 << order;
3768 	} while (check_new_pcp(page, order));
3769 
3770 	return page;
3771 }
3772 
3773 /* Lock and remove page from the per-cpu list */
3774 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3775 			struct zone *zone, unsigned int order,
3776 			int migratetype, unsigned int alloc_flags)
3777 {
3778 	struct per_cpu_pages *pcp;
3779 	struct list_head *list;
3780 	struct page *page;
3781 	unsigned long flags;
3782 	unsigned long __maybe_unused UP_flags;
3783 
3784 	/*
3785 	 * spin_trylock may fail due to a parallel drain. In the future, the
3786 	 * trylock will also protect against IRQ reentrancy.
3787 	 */
3788 	pcp_trylock_prepare(UP_flags);
3789 	pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3790 	if (!pcp) {
3791 		pcp_trylock_finish(UP_flags);
3792 		return NULL;
3793 	}
3794 
3795 	/*
3796 	 * On allocation, reduce the number of pages that are batch freed.
3797 	 * See nr_pcp_free() where free_factor is increased for subsequent
3798 	 * frees.
3799 	 */
3800 	pcp->free_factor >>= 1;
3801 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3802 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3803 	pcp_spin_unlock_irqrestore(pcp, flags);
3804 	pcp_trylock_finish(UP_flags);
3805 	if (page) {
3806 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3807 		zone_statistics(preferred_zone, zone, 1);
3808 	}
3809 	return page;
3810 }
3811 
3812 /*
3813  * Allocate a page from the given zone.
3814  * Use pcplists for THP or "cheap" high-order allocations.
3815  */
3816 
3817 /*
3818  * Do not instrument rmqueue() with KMSAN. This function may call
3819  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3820  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3821  * may call rmqueue() again, which will result in a deadlock.
3822  */
3823 __no_sanitize_memory
3824 static inline
3825 struct page *rmqueue(struct zone *preferred_zone,
3826 			struct zone *zone, unsigned int order,
3827 			gfp_t gfp_flags, unsigned int alloc_flags,
3828 			int migratetype)
3829 {
3830 	struct page *page;
3831 
3832 	/*
3833 	 * We most definitely don't want callers attempting to
3834 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3835 	 */
3836 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3837 
3838 	if (likely(pcp_allowed_order(order))) {
3839 		/*
3840 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3841 		 * we need to skip it when CMA area isn't allowed.
3842 		 */
3843 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3844 				migratetype != MIGRATE_MOVABLE) {
3845 			page = rmqueue_pcplist(preferred_zone, zone, order,
3846 					migratetype, alloc_flags);
3847 			if (likely(page))
3848 				goto out;
3849 		}
3850 	}
3851 
3852 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3853 							migratetype);
3854 
3855 out:
3856 	/* Separate test+clear to avoid unnecessary atomics */
3857 	if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3858 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3859 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3860 	}
3861 
3862 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3863 	return page;
3864 }
3865 
3866 #ifdef CONFIG_FAIL_PAGE_ALLOC
3867 
3868 static struct {
3869 	struct fault_attr attr;
3870 
3871 	bool ignore_gfp_highmem;
3872 	bool ignore_gfp_reclaim;
3873 	u32 min_order;
3874 } fail_page_alloc = {
3875 	.attr = FAULT_ATTR_INITIALIZER,
3876 	.ignore_gfp_reclaim = true,
3877 	.ignore_gfp_highmem = true,
3878 	.min_order = 1,
3879 };
3880 
3881 static int __init setup_fail_page_alloc(char *str)
3882 {
3883 	return setup_fault_attr(&fail_page_alloc.attr, str);
3884 }
3885 __setup("fail_page_alloc=", setup_fail_page_alloc);
3886 
3887 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3888 {
3889 	if (order < fail_page_alloc.min_order)
3890 		return false;
3891 	if (gfp_mask & __GFP_NOFAIL)
3892 		return false;
3893 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3894 		return false;
3895 	if (fail_page_alloc.ignore_gfp_reclaim &&
3896 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3897 		return false;
3898 
3899 	if (gfp_mask & __GFP_NOWARN)
3900 		fail_page_alloc.attr.no_warn = true;
3901 
3902 	return should_fail(&fail_page_alloc.attr, 1 << order);
3903 }
3904 
3905 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3906 
3907 static int __init fail_page_alloc_debugfs(void)
3908 {
3909 	umode_t mode = S_IFREG | 0600;
3910 	struct dentry *dir;
3911 
3912 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3913 					&fail_page_alloc.attr);
3914 
3915 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3916 			    &fail_page_alloc.ignore_gfp_reclaim);
3917 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3918 			    &fail_page_alloc.ignore_gfp_highmem);
3919 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3920 
3921 	return 0;
3922 }
3923 
3924 late_initcall(fail_page_alloc_debugfs);
3925 
3926 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3927 
3928 #else /* CONFIG_FAIL_PAGE_ALLOC */
3929 
3930 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3931 {
3932 	return false;
3933 }
3934 
3935 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3936 
3937 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3938 {
3939 	return __should_fail_alloc_page(gfp_mask, order);
3940 }
3941 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3942 
3943 static inline long __zone_watermark_unusable_free(struct zone *z,
3944 				unsigned int order, unsigned int alloc_flags)
3945 {
3946 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3947 	long unusable_free = (1 << order) - 1;
3948 
3949 	/*
3950 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3951 	 * the high-atomic reserves. This will over-estimate the size of the
3952 	 * atomic reserve but it avoids a search.
3953 	 */
3954 	if (likely(!alloc_harder))
3955 		unusable_free += z->nr_reserved_highatomic;
3956 
3957 #ifdef CONFIG_CMA
3958 	/* If allocation can't use CMA areas don't use free CMA pages */
3959 	if (!(alloc_flags & ALLOC_CMA))
3960 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3961 #endif
3962 
3963 	return unusable_free;
3964 }
3965 
3966 /*
3967  * Return true if free base pages are above 'mark'. For high-order checks it
3968  * will return true of the order-0 watermark is reached and there is at least
3969  * one free page of a suitable size. Checking now avoids taking the zone lock
3970  * to check in the allocation paths if no pages are free.
3971  */
3972 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3973 			 int highest_zoneidx, unsigned int alloc_flags,
3974 			 long free_pages)
3975 {
3976 	long min = mark;
3977 	int o;
3978 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3979 
3980 	/* free_pages may go negative - that's OK */
3981 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3982 
3983 	if (alloc_flags & ALLOC_HIGH)
3984 		min -= min / 2;
3985 
3986 	if (unlikely(alloc_harder)) {
3987 		/*
3988 		 * OOM victims can try even harder than normal ALLOC_HARDER
3989 		 * users on the grounds that it's definitely going to be in
3990 		 * the exit path shortly and free memory. Any allocation it
3991 		 * makes during the free path will be small and short-lived.
3992 		 */
3993 		if (alloc_flags & ALLOC_OOM)
3994 			min -= min / 2;
3995 		else
3996 			min -= min / 4;
3997 	}
3998 
3999 	/*
4000 	 * Check watermarks for an order-0 allocation request. If these
4001 	 * are not met, then a high-order request also cannot go ahead
4002 	 * even if a suitable page happened to be free.
4003 	 */
4004 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
4005 		return false;
4006 
4007 	/* If this is an order-0 request then the watermark is fine */
4008 	if (!order)
4009 		return true;
4010 
4011 	/* For a high-order request, check at least one suitable page is free */
4012 	for (o = order; o < MAX_ORDER; o++) {
4013 		struct free_area *area = &z->free_area[o];
4014 		int mt;
4015 
4016 		if (!area->nr_free)
4017 			continue;
4018 
4019 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4020 			if (!free_area_empty(area, mt))
4021 				return true;
4022 		}
4023 
4024 #ifdef CONFIG_CMA
4025 		if ((alloc_flags & ALLOC_CMA) &&
4026 		    !free_area_empty(area, MIGRATE_CMA)) {
4027 			return true;
4028 		}
4029 #endif
4030 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
4031 			return true;
4032 	}
4033 	return false;
4034 }
4035 
4036 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4037 		      int highest_zoneidx, unsigned int alloc_flags)
4038 {
4039 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4040 					zone_page_state(z, NR_FREE_PAGES));
4041 }
4042 
4043 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4044 				unsigned long mark, int highest_zoneidx,
4045 				unsigned int alloc_flags, gfp_t gfp_mask)
4046 {
4047 	long free_pages;
4048 
4049 	free_pages = zone_page_state(z, NR_FREE_PAGES);
4050 
4051 	/*
4052 	 * Fast check for order-0 only. If this fails then the reserves
4053 	 * need to be calculated.
4054 	 */
4055 	if (!order) {
4056 		long usable_free;
4057 		long reserved;
4058 
4059 		usable_free = free_pages;
4060 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4061 
4062 		/* reserved may over estimate high-atomic reserves. */
4063 		usable_free -= min(usable_free, reserved);
4064 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4065 			return true;
4066 	}
4067 
4068 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4069 					free_pages))
4070 		return true;
4071 	/*
4072 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4073 	 * when checking the min watermark. The min watermark is the
4074 	 * point where boosting is ignored so that kswapd is woken up
4075 	 * when below the low watermark.
4076 	 */
4077 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4078 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4079 		mark = z->_watermark[WMARK_MIN];
4080 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4081 					alloc_flags, free_pages);
4082 	}
4083 
4084 	return false;
4085 }
4086 
4087 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4088 			unsigned long mark, int highest_zoneidx)
4089 {
4090 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
4091 
4092 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4093 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4094 
4095 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4096 								free_pages);
4097 }
4098 
4099 #ifdef CONFIG_NUMA
4100 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4101 
4102 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4103 {
4104 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4105 				node_reclaim_distance;
4106 }
4107 #else	/* CONFIG_NUMA */
4108 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4109 {
4110 	return true;
4111 }
4112 #endif	/* CONFIG_NUMA */
4113 
4114 /*
4115  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4116  * fragmentation is subtle. If the preferred zone was HIGHMEM then
4117  * premature use of a lower zone may cause lowmem pressure problems that
4118  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4119  * probably too small. It only makes sense to spread allocations to avoid
4120  * fragmentation between the Normal and DMA32 zones.
4121  */
4122 static inline unsigned int
4123 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4124 {
4125 	unsigned int alloc_flags;
4126 
4127 	/*
4128 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4129 	 * to save a branch.
4130 	 */
4131 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4132 
4133 #ifdef CONFIG_ZONE_DMA32
4134 	if (!zone)
4135 		return alloc_flags;
4136 
4137 	if (zone_idx(zone) != ZONE_NORMAL)
4138 		return alloc_flags;
4139 
4140 	/*
4141 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4142 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4143 	 * on UMA that if Normal is populated then so is DMA32.
4144 	 */
4145 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4146 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4147 		return alloc_flags;
4148 
4149 	alloc_flags |= ALLOC_NOFRAGMENT;
4150 #endif /* CONFIG_ZONE_DMA32 */
4151 	return alloc_flags;
4152 }
4153 
4154 /* Must be called after current_gfp_context() which can change gfp_mask */
4155 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4156 						  unsigned int alloc_flags)
4157 {
4158 #ifdef CONFIG_CMA
4159 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4160 		alloc_flags |= ALLOC_CMA;
4161 #endif
4162 	return alloc_flags;
4163 }
4164 
4165 /*
4166  * get_page_from_freelist goes through the zonelist trying to allocate
4167  * a page.
4168  */
4169 static struct page *
4170 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4171 						const struct alloc_context *ac)
4172 {
4173 	struct zoneref *z;
4174 	struct zone *zone;
4175 	struct pglist_data *last_pgdat = NULL;
4176 	bool last_pgdat_dirty_ok = false;
4177 	bool no_fallback;
4178 
4179 retry:
4180 	/*
4181 	 * Scan zonelist, looking for a zone with enough free.
4182 	 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4183 	 */
4184 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4185 	z = ac->preferred_zoneref;
4186 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4187 					ac->nodemask) {
4188 		struct page *page;
4189 		unsigned long mark;
4190 
4191 		if (cpusets_enabled() &&
4192 			(alloc_flags & ALLOC_CPUSET) &&
4193 			!__cpuset_zone_allowed(zone, gfp_mask))
4194 				continue;
4195 		/*
4196 		 * When allocating a page cache page for writing, we
4197 		 * want to get it from a node that is within its dirty
4198 		 * limit, such that no single node holds more than its
4199 		 * proportional share of globally allowed dirty pages.
4200 		 * The dirty limits take into account the node's
4201 		 * lowmem reserves and high watermark so that kswapd
4202 		 * should be able to balance it without having to
4203 		 * write pages from its LRU list.
4204 		 *
4205 		 * XXX: For now, allow allocations to potentially
4206 		 * exceed the per-node dirty limit in the slowpath
4207 		 * (spread_dirty_pages unset) before going into reclaim,
4208 		 * which is important when on a NUMA setup the allowed
4209 		 * nodes are together not big enough to reach the
4210 		 * global limit.  The proper fix for these situations
4211 		 * will require awareness of nodes in the
4212 		 * dirty-throttling and the flusher threads.
4213 		 */
4214 		if (ac->spread_dirty_pages) {
4215 			if (last_pgdat != zone->zone_pgdat) {
4216 				last_pgdat = zone->zone_pgdat;
4217 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4218 			}
4219 
4220 			if (!last_pgdat_dirty_ok)
4221 				continue;
4222 		}
4223 
4224 		if (no_fallback && nr_online_nodes > 1 &&
4225 		    zone != ac->preferred_zoneref->zone) {
4226 			int local_nid;
4227 
4228 			/*
4229 			 * If moving to a remote node, retry but allow
4230 			 * fragmenting fallbacks. Locality is more important
4231 			 * than fragmentation avoidance.
4232 			 */
4233 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4234 			if (zone_to_nid(zone) != local_nid) {
4235 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4236 				goto retry;
4237 			}
4238 		}
4239 
4240 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4241 		if (!zone_watermark_fast(zone, order, mark,
4242 				       ac->highest_zoneidx, alloc_flags,
4243 				       gfp_mask)) {
4244 			int ret;
4245 
4246 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4247 			/*
4248 			 * Watermark failed for this zone, but see if we can
4249 			 * grow this zone if it contains deferred pages.
4250 			 */
4251 			if (static_branch_unlikely(&deferred_pages)) {
4252 				if (_deferred_grow_zone(zone, order))
4253 					goto try_this_zone;
4254 			}
4255 #endif
4256 			/* Checked here to keep the fast path fast */
4257 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4258 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4259 				goto try_this_zone;
4260 
4261 			if (!node_reclaim_enabled() ||
4262 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4263 				continue;
4264 
4265 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4266 			switch (ret) {
4267 			case NODE_RECLAIM_NOSCAN:
4268 				/* did not scan */
4269 				continue;
4270 			case NODE_RECLAIM_FULL:
4271 				/* scanned but unreclaimable */
4272 				continue;
4273 			default:
4274 				/* did we reclaim enough */
4275 				if (zone_watermark_ok(zone, order, mark,
4276 					ac->highest_zoneidx, alloc_flags))
4277 					goto try_this_zone;
4278 
4279 				continue;
4280 			}
4281 		}
4282 
4283 try_this_zone:
4284 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4285 				gfp_mask, alloc_flags, ac->migratetype);
4286 		if (page) {
4287 			prep_new_page(page, order, gfp_mask, alloc_flags);
4288 
4289 			/*
4290 			 * If this is a high-order atomic allocation then check
4291 			 * if the pageblock should be reserved for the future
4292 			 */
4293 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4294 				reserve_highatomic_pageblock(page, zone, order);
4295 
4296 			return page;
4297 		} else {
4298 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4299 			/* Try again if zone has deferred pages */
4300 			if (static_branch_unlikely(&deferred_pages)) {
4301 				if (_deferred_grow_zone(zone, order))
4302 					goto try_this_zone;
4303 			}
4304 #endif
4305 		}
4306 	}
4307 
4308 	/*
4309 	 * It's possible on a UMA machine to get through all zones that are
4310 	 * fragmented. If avoiding fragmentation, reset and try again.
4311 	 */
4312 	if (no_fallback) {
4313 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4314 		goto retry;
4315 	}
4316 
4317 	return NULL;
4318 }
4319 
4320 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4321 {
4322 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4323 
4324 	/*
4325 	 * This documents exceptions given to allocations in certain
4326 	 * contexts that are allowed to allocate outside current's set
4327 	 * of allowed nodes.
4328 	 */
4329 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4330 		if (tsk_is_oom_victim(current) ||
4331 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4332 			filter &= ~SHOW_MEM_FILTER_NODES;
4333 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4334 		filter &= ~SHOW_MEM_FILTER_NODES;
4335 
4336 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
4337 }
4338 
4339 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4340 {
4341 	struct va_format vaf;
4342 	va_list args;
4343 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4344 
4345 	if ((gfp_mask & __GFP_NOWARN) ||
4346 	     !__ratelimit(&nopage_rs) ||
4347 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4348 		return;
4349 
4350 	va_start(args, fmt);
4351 	vaf.fmt = fmt;
4352 	vaf.va = &args;
4353 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4354 			current->comm, &vaf, gfp_mask, &gfp_mask,
4355 			nodemask_pr_args(nodemask));
4356 	va_end(args);
4357 
4358 	cpuset_print_current_mems_allowed();
4359 	pr_cont("\n");
4360 	dump_stack();
4361 	warn_alloc_show_mem(gfp_mask, nodemask);
4362 }
4363 
4364 static inline struct page *
4365 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4366 			      unsigned int alloc_flags,
4367 			      const struct alloc_context *ac)
4368 {
4369 	struct page *page;
4370 
4371 	page = get_page_from_freelist(gfp_mask, order,
4372 			alloc_flags|ALLOC_CPUSET, ac);
4373 	/*
4374 	 * fallback to ignore cpuset restriction if our nodes
4375 	 * are depleted
4376 	 */
4377 	if (!page)
4378 		page = get_page_from_freelist(gfp_mask, order,
4379 				alloc_flags, ac);
4380 
4381 	return page;
4382 }
4383 
4384 static inline struct page *
4385 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4386 	const struct alloc_context *ac, unsigned long *did_some_progress)
4387 {
4388 	struct oom_control oc = {
4389 		.zonelist = ac->zonelist,
4390 		.nodemask = ac->nodemask,
4391 		.memcg = NULL,
4392 		.gfp_mask = gfp_mask,
4393 		.order = order,
4394 	};
4395 	struct page *page;
4396 
4397 	*did_some_progress = 0;
4398 
4399 	/*
4400 	 * Acquire the oom lock.  If that fails, somebody else is
4401 	 * making progress for us.
4402 	 */
4403 	if (!mutex_trylock(&oom_lock)) {
4404 		*did_some_progress = 1;
4405 		schedule_timeout_uninterruptible(1);
4406 		return NULL;
4407 	}
4408 
4409 	/*
4410 	 * Go through the zonelist yet one more time, keep very high watermark
4411 	 * here, this is only to catch a parallel oom killing, we must fail if
4412 	 * we're still under heavy pressure. But make sure that this reclaim
4413 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4414 	 * allocation which will never fail due to oom_lock already held.
4415 	 */
4416 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4417 				      ~__GFP_DIRECT_RECLAIM, order,
4418 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4419 	if (page)
4420 		goto out;
4421 
4422 	/* Coredumps can quickly deplete all memory reserves */
4423 	if (current->flags & PF_DUMPCORE)
4424 		goto out;
4425 	/* The OOM killer will not help higher order allocs */
4426 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4427 		goto out;
4428 	/*
4429 	 * We have already exhausted all our reclaim opportunities without any
4430 	 * success so it is time to admit defeat. We will skip the OOM killer
4431 	 * because it is very likely that the caller has a more reasonable
4432 	 * fallback than shooting a random task.
4433 	 *
4434 	 * The OOM killer may not free memory on a specific node.
4435 	 */
4436 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4437 		goto out;
4438 	/* The OOM killer does not needlessly kill tasks for lowmem */
4439 	if (ac->highest_zoneidx < ZONE_NORMAL)
4440 		goto out;
4441 	if (pm_suspended_storage())
4442 		goto out;
4443 	/*
4444 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4445 	 * other request to make a forward progress.
4446 	 * We are in an unfortunate situation where out_of_memory cannot
4447 	 * do much for this context but let's try it to at least get
4448 	 * access to memory reserved if the current task is killed (see
4449 	 * out_of_memory). Once filesystems are ready to handle allocation
4450 	 * failures more gracefully we should just bail out here.
4451 	 */
4452 
4453 	/* Exhausted what can be done so it's blame time */
4454 	if (out_of_memory(&oc) ||
4455 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4456 		*did_some_progress = 1;
4457 
4458 		/*
4459 		 * Help non-failing allocations by giving them access to memory
4460 		 * reserves
4461 		 */
4462 		if (gfp_mask & __GFP_NOFAIL)
4463 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4464 					ALLOC_NO_WATERMARKS, ac);
4465 	}
4466 out:
4467 	mutex_unlock(&oom_lock);
4468 	return page;
4469 }
4470 
4471 /*
4472  * Maximum number of compaction retries with a progress before OOM
4473  * killer is consider as the only way to move forward.
4474  */
4475 #define MAX_COMPACT_RETRIES 16
4476 
4477 #ifdef CONFIG_COMPACTION
4478 /* Try memory compaction for high-order allocations before reclaim */
4479 static struct page *
4480 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4481 		unsigned int alloc_flags, const struct alloc_context *ac,
4482 		enum compact_priority prio, enum compact_result *compact_result)
4483 {
4484 	struct page *page = NULL;
4485 	unsigned long pflags;
4486 	unsigned int noreclaim_flag;
4487 
4488 	if (!order)
4489 		return NULL;
4490 
4491 	psi_memstall_enter(&pflags);
4492 	delayacct_compact_start();
4493 	noreclaim_flag = memalloc_noreclaim_save();
4494 
4495 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4496 								prio, &page);
4497 
4498 	memalloc_noreclaim_restore(noreclaim_flag);
4499 	psi_memstall_leave(&pflags);
4500 	delayacct_compact_end();
4501 
4502 	if (*compact_result == COMPACT_SKIPPED)
4503 		return NULL;
4504 	/*
4505 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4506 	 * count a compaction stall
4507 	 */
4508 	count_vm_event(COMPACTSTALL);
4509 
4510 	/* Prep a captured page if available */
4511 	if (page)
4512 		prep_new_page(page, order, gfp_mask, alloc_flags);
4513 
4514 	/* Try get a page from the freelist if available */
4515 	if (!page)
4516 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4517 
4518 	if (page) {
4519 		struct zone *zone = page_zone(page);
4520 
4521 		zone->compact_blockskip_flush = false;
4522 		compaction_defer_reset(zone, order, true);
4523 		count_vm_event(COMPACTSUCCESS);
4524 		return page;
4525 	}
4526 
4527 	/*
4528 	 * It's bad if compaction run occurs and fails. The most likely reason
4529 	 * is that pages exist, but not enough to satisfy watermarks.
4530 	 */
4531 	count_vm_event(COMPACTFAIL);
4532 
4533 	cond_resched();
4534 
4535 	return NULL;
4536 }
4537 
4538 static inline bool
4539 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4540 		     enum compact_result compact_result,
4541 		     enum compact_priority *compact_priority,
4542 		     int *compaction_retries)
4543 {
4544 	int max_retries = MAX_COMPACT_RETRIES;
4545 	int min_priority;
4546 	bool ret = false;
4547 	int retries = *compaction_retries;
4548 	enum compact_priority priority = *compact_priority;
4549 
4550 	if (!order)
4551 		return false;
4552 
4553 	if (fatal_signal_pending(current))
4554 		return false;
4555 
4556 	if (compaction_made_progress(compact_result))
4557 		(*compaction_retries)++;
4558 
4559 	/*
4560 	 * compaction considers all the zone as desperately out of memory
4561 	 * so it doesn't really make much sense to retry except when the
4562 	 * failure could be caused by insufficient priority
4563 	 */
4564 	if (compaction_failed(compact_result))
4565 		goto check_priority;
4566 
4567 	/*
4568 	 * compaction was skipped because there are not enough order-0 pages
4569 	 * to work with, so we retry only if it looks like reclaim can help.
4570 	 */
4571 	if (compaction_needs_reclaim(compact_result)) {
4572 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4573 		goto out;
4574 	}
4575 
4576 	/*
4577 	 * make sure the compaction wasn't deferred or didn't bail out early
4578 	 * due to locks contention before we declare that we should give up.
4579 	 * But the next retry should use a higher priority if allowed, so
4580 	 * we don't just keep bailing out endlessly.
4581 	 */
4582 	if (compaction_withdrawn(compact_result)) {
4583 		goto check_priority;
4584 	}
4585 
4586 	/*
4587 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4588 	 * costly ones because they are de facto nofail and invoke OOM
4589 	 * killer to move on while costly can fail and users are ready
4590 	 * to cope with that. 1/4 retries is rather arbitrary but we
4591 	 * would need much more detailed feedback from compaction to
4592 	 * make a better decision.
4593 	 */
4594 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4595 		max_retries /= 4;
4596 	if (*compaction_retries <= max_retries) {
4597 		ret = true;
4598 		goto out;
4599 	}
4600 
4601 	/*
4602 	 * Make sure there are attempts at the highest priority if we exhausted
4603 	 * all retries or failed at the lower priorities.
4604 	 */
4605 check_priority:
4606 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4607 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4608 
4609 	if (*compact_priority > min_priority) {
4610 		(*compact_priority)--;
4611 		*compaction_retries = 0;
4612 		ret = true;
4613 	}
4614 out:
4615 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4616 	return ret;
4617 }
4618 #else
4619 static inline struct page *
4620 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4621 		unsigned int alloc_flags, const struct alloc_context *ac,
4622 		enum compact_priority prio, enum compact_result *compact_result)
4623 {
4624 	*compact_result = COMPACT_SKIPPED;
4625 	return NULL;
4626 }
4627 
4628 static inline bool
4629 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4630 		     enum compact_result compact_result,
4631 		     enum compact_priority *compact_priority,
4632 		     int *compaction_retries)
4633 {
4634 	struct zone *zone;
4635 	struct zoneref *z;
4636 
4637 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4638 		return false;
4639 
4640 	/*
4641 	 * There are setups with compaction disabled which would prefer to loop
4642 	 * inside the allocator rather than hit the oom killer prematurely.
4643 	 * Let's give them a good hope and keep retrying while the order-0
4644 	 * watermarks are OK.
4645 	 */
4646 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4647 				ac->highest_zoneidx, ac->nodemask) {
4648 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4649 					ac->highest_zoneidx, alloc_flags))
4650 			return true;
4651 	}
4652 	return false;
4653 }
4654 #endif /* CONFIG_COMPACTION */
4655 
4656 #ifdef CONFIG_LOCKDEP
4657 static struct lockdep_map __fs_reclaim_map =
4658 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4659 
4660 static bool __need_reclaim(gfp_t gfp_mask)
4661 {
4662 	/* no reclaim without waiting on it */
4663 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4664 		return false;
4665 
4666 	/* this guy won't enter reclaim */
4667 	if (current->flags & PF_MEMALLOC)
4668 		return false;
4669 
4670 	if (gfp_mask & __GFP_NOLOCKDEP)
4671 		return false;
4672 
4673 	return true;
4674 }
4675 
4676 void __fs_reclaim_acquire(unsigned long ip)
4677 {
4678 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4679 }
4680 
4681 void __fs_reclaim_release(unsigned long ip)
4682 {
4683 	lock_release(&__fs_reclaim_map, ip);
4684 }
4685 
4686 void fs_reclaim_acquire(gfp_t gfp_mask)
4687 {
4688 	gfp_mask = current_gfp_context(gfp_mask);
4689 
4690 	if (__need_reclaim(gfp_mask)) {
4691 		if (gfp_mask & __GFP_FS)
4692 			__fs_reclaim_acquire(_RET_IP_);
4693 
4694 #ifdef CONFIG_MMU_NOTIFIER
4695 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4696 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4697 #endif
4698 
4699 	}
4700 }
4701 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4702 
4703 void fs_reclaim_release(gfp_t gfp_mask)
4704 {
4705 	gfp_mask = current_gfp_context(gfp_mask);
4706 
4707 	if (__need_reclaim(gfp_mask)) {
4708 		if (gfp_mask & __GFP_FS)
4709 			__fs_reclaim_release(_RET_IP_);
4710 	}
4711 }
4712 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4713 #endif
4714 
4715 /*
4716  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4717  * have been rebuilt so allocation retries. Reader side does not lock and
4718  * retries the allocation if zonelist changes. Writer side is protected by the
4719  * embedded spin_lock.
4720  */
4721 static DEFINE_SEQLOCK(zonelist_update_seq);
4722 
4723 static unsigned int zonelist_iter_begin(void)
4724 {
4725 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4726 		return read_seqbegin(&zonelist_update_seq);
4727 
4728 	return 0;
4729 }
4730 
4731 static unsigned int check_retry_zonelist(unsigned int seq)
4732 {
4733 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4734 		return read_seqretry(&zonelist_update_seq, seq);
4735 
4736 	return seq;
4737 }
4738 
4739 /* Perform direct synchronous page reclaim */
4740 static unsigned long
4741 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4742 					const struct alloc_context *ac)
4743 {
4744 	unsigned int noreclaim_flag;
4745 	unsigned long progress;
4746 
4747 	cond_resched();
4748 
4749 	/* We now go into synchronous reclaim */
4750 	cpuset_memory_pressure_bump();
4751 	fs_reclaim_acquire(gfp_mask);
4752 	noreclaim_flag = memalloc_noreclaim_save();
4753 
4754 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4755 								ac->nodemask);
4756 
4757 	memalloc_noreclaim_restore(noreclaim_flag);
4758 	fs_reclaim_release(gfp_mask);
4759 
4760 	cond_resched();
4761 
4762 	return progress;
4763 }
4764 
4765 /* The really slow allocator path where we enter direct reclaim */
4766 static inline struct page *
4767 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4768 		unsigned int alloc_flags, const struct alloc_context *ac,
4769 		unsigned long *did_some_progress)
4770 {
4771 	struct page *page = NULL;
4772 	unsigned long pflags;
4773 	bool drained = false;
4774 
4775 	psi_memstall_enter(&pflags);
4776 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4777 	if (unlikely(!(*did_some_progress)))
4778 		goto out;
4779 
4780 retry:
4781 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4782 
4783 	/*
4784 	 * If an allocation failed after direct reclaim, it could be because
4785 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4786 	 * Shrink them and try again
4787 	 */
4788 	if (!page && !drained) {
4789 		unreserve_highatomic_pageblock(ac, false);
4790 		drain_all_pages(NULL);
4791 		drained = true;
4792 		goto retry;
4793 	}
4794 out:
4795 	psi_memstall_leave(&pflags);
4796 
4797 	return page;
4798 }
4799 
4800 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4801 			     const struct alloc_context *ac)
4802 {
4803 	struct zoneref *z;
4804 	struct zone *zone;
4805 	pg_data_t *last_pgdat = NULL;
4806 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4807 
4808 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4809 					ac->nodemask) {
4810 		if (!managed_zone(zone))
4811 			continue;
4812 		if (last_pgdat != zone->zone_pgdat) {
4813 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4814 			last_pgdat = zone->zone_pgdat;
4815 		}
4816 	}
4817 }
4818 
4819 static inline unsigned int
4820 gfp_to_alloc_flags(gfp_t gfp_mask)
4821 {
4822 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4823 
4824 	/*
4825 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4826 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4827 	 * to save two branches.
4828 	 */
4829 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4830 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4831 
4832 	/*
4833 	 * The caller may dip into page reserves a bit more if the caller
4834 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4835 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4836 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4837 	 */
4838 	alloc_flags |= (__force int)
4839 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4840 
4841 	if (gfp_mask & __GFP_ATOMIC) {
4842 		/*
4843 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4844 		 * if it can't schedule.
4845 		 */
4846 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4847 			alloc_flags |= ALLOC_HARDER;
4848 		/*
4849 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4850 		 * comment for __cpuset_node_allowed().
4851 		 */
4852 		alloc_flags &= ~ALLOC_CPUSET;
4853 	} else if (unlikely(rt_task(current)) && in_task())
4854 		alloc_flags |= ALLOC_HARDER;
4855 
4856 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4857 
4858 	return alloc_flags;
4859 }
4860 
4861 static bool oom_reserves_allowed(struct task_struct *tsk)
4862 {
4863 	if (!tsk_is_oom_victim(tsk))
4864 		return false;
4865 
4866 	/*
4867 	 * !MMU doesn't have oom reaper so give access to memory reserves
4868 	 * only to the thread with TIF_MEMDIE set
4869 	 */
4870 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4871 		return false;
4872 
4873 	return true;
4874 }
4875 
4876 /*
4877  * Distinguish requests which really need access to full memory
4878  * reserves from oom victims which can live with a portion of it
4879  */
4880 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4881 {
4882 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4883 		return 0;
4884 	if (gfp_mask & __GFP_MEMALLOC)
4885 		return ALLOC_NO_WATERMARKS;
4886 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4887 		return ALLOC_NO_WATERMARKS;
4888 	if (!in_interrupt()) {
4889 		if (current->flags & PF_MEMALLOC)
4890 			return ALLOC_NO_WATERMARKS;
4891 		else if (oom_reserves_allowed(current))
4892 			return ALLOC_OOM;
4893 	}
4894 
4895 	return 0;
4896 }
4897 
4898 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4899 {
4900 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4901 }
4902 
4903 /*
4904  * Checks whether it makes sense to retry the reclaim to make a forward progress
4905  * for the given allocation request.
4906  *
4907  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4908  * without success, or when we couldn't even meet the watermark if we
4909  * reclaimed all remaining pages on the LRU lists.
4910  *
4911  * Returns true if a retry is viable or false to enter the oom path.
4912  */
4913 static inline bool
4914 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4915 		     struct alloc_context *ac, int alloc_flags,
4916 		     bool did_some_progress, int *no_progress_loops)
4917 {
4918 	struct zone *zone;
4919 	struct zoneref *z;
4920 	bool ret = false;
4921 
4922 	/*
4923 	 * Costly allocations might have made a progress but this doesn't mean
4924 	 * their order will become available due to high fragmentation so
4925 	 * always increment the no progress counter for them
4926 	 */
4927 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4928 		*no_progress_loops = 0;
4929 	else
4930 		(*no_progress_loops)++;
4931 
4932 	/*
4933 	 * Make sure we converge to OOM if we cannot make any progress
4934 	 * several times in the row.
4935 	 */
4936 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4937 		/* Before OOM, exhaust highatomic_reserve */
4938 		return unreserve_highatomic_pageblock(ac, true);
4939 	}
4940 
4941 	/*
4942 	 * Keep reclaiming pages while there is a chance this will lead
4943 	 * somewhere.  If none of the target zones can satisfy our allocation
4944 	 * request even if all reclaimable pages are considered then we are
4945 	 * screwed and have to go OOM.
4946 	 */
4947 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4948 				ac->highest_zoneidx, ac->nodemask) {
4949 		unsigned long available;
4950 		unsigned long reclaimable;
4951 		unsigned long min_wmark = min_wmark_pages(zone);
4952 		bool wmark;
4953 
4954 		available = reclaimable = zone_reclaimable_pages(zone);
4955 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4956 
4957 		/*
4958 		 * Would the allocation succeed if we reclaimed all
4959 		 * reclaimable pages?
4960 		 */
4961 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4962 				ac->highest_zoneidx, alloc_flags, available);
4963 		trace_reclaim_retry_zone(z, order, reclaimable,
4964 				available, min_wmark, *no_progress_loops, wmark);
4965 		if (wmark) {
4966 			ret = true;
4967 			break;
4968 		}
4969 	}
4970 
4971 	/*
4972 	 * Memory allocation/reclaim might be called from a WQ context and the
4973 	 * current implementation of the WQ concurrency control doesn't
4974 	 * recognize that a particular WQ is congested if the worker thread is
4975 	 * looping without ever sleeping. Therefore we have to do a short sleep
4976 	 * here rather than calling cond_resched().
4977 	 */
4978 	if (current->flags & PF_WQ_WORKER)
4979 		schedule_timeout_uninterruptible(1);
4980 	else
4981 		cond_resched();
4982 	return ret;
4983 }
4984 
4985 static inline bool
4986 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4987 {
4988 	/*
4989 	 * It's possible that cpuset's mems_allowed and the nodemask from
4990 	 * mempolicy don't intersect. This should be normally dealt with by
4991 	 * policy_nodemask(), but it's possible to race with cpuset update in
4992 	 * such a way the check therein was true, and then it became false
4993 	 * before we got our cpuset_mems_cookie here.
4994 	 * This assumes that for all allocations, ac->nodemask can come only
4995 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4996 	 * when it does not intersect with the cpuset restrictions) or the
4997 	 * caller can deal with a violated nodemask.
4998 	 */
4999 	if (cpusets_enabled() && ac->nodemask &&
5000 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
5001 		ac->nodemask = NULL;
5002 		return true;
5003 	}
5004 
5005 	/*
5006 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
5007 	 * possible to race with parallel threads in such a way that our
5008 	 * allocation can fail while the mask is being updated. If we are about
5009 	 * to fail, check if the cpuset changed during allocation and if so,
5010 	 * retry.
5011 	 */
5012 	if (read_mems_allowed_retry(cpuset_mems_cookie))
5013 		return true;
5014 
5015 	return false;
5016 }
5017 
5018 static inline struct page *
5019 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
5020 						struct alloc_context *ac)
5021 {
5022 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
5023 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
5024 	struct page *page = NULL;
5025 	unsigned int alloc_flags;
5026 	unsigned long did_some_progress;
5027 	enum compact_priority compact_priority;
5028 	enum compact_result compact_result;
5029 	int compaction_retries;
5030 	int no_progress_loops;
5031 	unsigned int cpuset_mems_cookie;
5032 	unsigned int zonelist_iter_cookie;
5033 	int reserve_flags;
5034 
5035 	/*
5036 	 * We also sanity check to catch abuse of atomic reserves being used by
5037 	 * callers that are not in atomic context.
5038 	 */
5039 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5040 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5041 		gfp_mask &= ~__GFP_ATOMIC;
5042 
5043 restart:
5044 	compaction_retries = 0;
5045 	no_progress_loops = 0;
5046 	compact_priority = DEF_COMPACT_PRIORITY;
5047 	cpuset_mems_cookie = read_mems_allowed_begin();
5048 	zonelist_iter_cookie = zonelist_iter_begin();
5049 
5050 	/*
5051 	 * The fast path uses conservative alloc_flags to succeed only until
5052 	 * kswapd needs to be woken up, and to avoid the cost of setting up
5053 	 * alloc_flags precisely. So we do that now.
5054 	 */
5055 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
5056 
5057 	/*
5058 	 * We need to recalculate the starting point for the zonelist iterator
5059 	 * because we might have used different nodemask in the fast path, or
5060 	 * there was a cpuset modification and we are retrying - otherwise we
5061 	 * could end up iterating over non-eligible zones endlessly.
5062 	 */
5063 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5064 					ac->highest_zoneidx, ac->nodemask);
5065 	if (!ac->preferred_zoneref->zone)
5066 		goto nopage;
5067 
5068 	/*
5069 	 * Check for insane configurations where the cpuset doesn't contain
5070 	 * any suitable zone to satisfy the request - e.g. non-movable
5071 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5072 	 */
5073 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5074 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
5075 					ac->highest_zoneidx,
5076 					&cpuset_current_mems_allowed);
5077 		if (!z->zone)
5078 			goto nopage;
5079 	}
5080 
5081 	if (alloc_flags & ALLOC_KSWAPD)
5082 		wake_all_kswapds(order, gfp_mask, ac);
5083 
5084 	/*
5085 	 * The adjusted alloc_flags might result in immediate success, so try
5086 	 * that first
5087 	 */
5088 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5089 	if (page)
5090 		goto got_pg;
5091 
5092 	/*
5093 	 * For costly allocations, try direct compaction first, as it's likely
5094 	 * that we have enough base pages and don't need to reclaim. For non-
5095 	 * movable high-order allocations, do that as well, as compaction will
5096 	 * try prevent permanent fragmentation by migrating from blocks of the
5097 	 * same migratetype.
5098 	 * Don't try this for allocations that are allowed to ignore
5099 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5100 	 */
5101 	if (can_direct_reclaim &&
5102 			(costly_order ||
5103 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5104 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
5105 		page = __alloc_pages_direct_compact(gfp_mask, order,
5106 						alloc_flags, ac,
5107 						INIT_COMPACT_PRIORITY,
5108 						&compact_result);
5109 		if (page)
5110 			goto got_pg;
5111 
5112 		/*
5113 		 * Checks for costly allocations with __GFP_NORETRY, which
5114 		 * includes some THP page fault allocations
5115 		 */
5116 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5117 			/*
5118 			 * If allocating entire pageblock(s) and compaction
5119 			 * failed because all zones are below low watermarks
5120 			 * or is prohibited because it recently failed at this
5121 			 * order, fail immediately unless the allocator has
5122 			 * requested compaction and reclaim retry.
5123 			 *
5124 			 * Reclaim is
5125 			 *  - potentially very expensive because zones are far
5126 			 *    below their low watermarks or this is part of very
5127 			 *    bursty high order allocations,
5128 			 *  - not guaranteed to help because isolate_freepages()
5129 			 *    may not iterate over freed pages as part of its
5130 			 *    linear scan, and
5131 			 *  - unlikely to make entire pageblocks free on its
5132 			 *    own.
5133 			 */
5134 			if (compact_result == COMPACT_SKIPPED ||
5135 			    compact_result == COMPACT_DEFERRED)
5136 				goto nopage;
5137 
5138 			/*
5139 			 * Looks like reclaim/compaction is worth trying, but
5140 			 * sync compaction could be very expensive, so keep
5141 			 * using async compaction.
5142 			 */
5143 			compact_priority = INIT_COMPACT_PRIORITY;
5144 		}
5145 	}
5146 
5147 retry:
5148 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5149 	if (alloc_flags & ALLOC_KSWAPD)
5150 		wake_all_kswapds(order, gfp_mask, ac);
5151 
5152 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5153 	if (reserve_flags)
5154 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
5155 					  (alloc_flags & ALLOC_KSWAPD);
5156 
5157 	/*
5158 	 * Reset the nodemask and zonelist iterators if memory policies can be
5159 	 * ignored. These allocations are high priority and system rather than
5160 	 * user oriented.
5161 	 */
5162 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5163 		ac->nodemask = NULL;
5164 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5165 					ac->highest_zoneidx, ac->nodemask);
5166 	}
5167 
5168 	/* Attempt with potentially adjusted zonelist and alloc_flags */
5169 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5170 	if (page)
5171 		goto got_pg;
5172 
5173 	/* Caller is not willing to reclaim, we can't balance anything */
5174 	if (!can_direct_reclaim)
5175 		goto nopage;
5176 
5177 	/* Avoid recursion of direct reclaim */
5178 	if (current->flags & PF_MEMALLOC)
5179 		goto nopage;
5180 
5181 	/* Try direct reclaim and then allocating */
5182 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5183 							&did_some_progress);
5184 	if (page)
5185 		goto got_pg;
5186 
5187 	/* Try direct compaction and then allocating */
5188 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5189 					compact_priority, &compact_result);
5190 	if (page)
5191 		goto got_pg;
5192 
5193 	/* Do not loop if specifically requested */
5194 	if (gfp_mask & __GFP_NORETRY)
5195 		goto nopage;
5196 
5197 	/*
5198 	 * Do not retry costly high order allocations unless they are
5199 	 * __GFP_RETRY_MAYFAIL
5200 	 */
5201 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5202 		goto nopage;
5203 
5204 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5205 				 did_some_progress > 0, &no_progress_loops))
5206 		goto retry;
5207 
5208 	/*
5209 	 * It doesn't make any sense to retry for the compaction if the order-0
5210 	 * reclaim is not able to make any progress because the current
5211 	 * implementation of the compaction depends on the sufficient amount
5212 	 * of free memory (see __compaction_suitable)
5213 	 */
5214 	if (did_some_progress > 0 &&
5215 			should_compact_retry(ac, order, alloc_flags,
5216 				compact_result, &compact_priority,
5217 				&compaction_retries))
5218 		goto retry;
5219 
5220 
5221 	/*
5222 	 * Deal with possible cpuset update races or zonelist updates to avoid
5223 	 * a unnecessary OOM kill.
5224 	 */
5225 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5226 	    check_retry_zonelist(zonelist_iter_cookie))
5227 		goto restart;
5228 
5229 	/* Reclaim has failed us, start killing things */
5230 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5231 	if (page)
5232 		goto got_pg;
5233 
5234 	/* Avoid allocations with no watermarks from looping endlessly */
5235 	if (tsk_is_oom_victim(current) &&
5236 	    (alloc_flags & ALLOC_OOM ||
5237 	     (gfp_mask & __GFP_NOMEMALLOC)))
5238 		goto nopage;
5239 
5240 	/* Retry as long as the OOM killer is making progress */
5241 	if (did_some_progress) {
5242 		no_progress_loops = 0;
5243 		goto retry;
5244 	}
5245 
5246 nopage:
5247 	/*
5248 	 * Deal with possible cpuset update races or zonelist updates to avoid
5249 	 * a unnecessary OOM kill.
5250 	 */
5251 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5252 	    check_retry_zonelist(zonelist_iter_cookie))
5253 		goto restart;
5254 
5255 	/*
5256 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5257 	 * we always retry
5258 	 */
5259 	if (gfp_mask & __GFP_NOFAIL) {
5260 		/*
5261 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5262 		 * of any new users that actually require GFP_NOWAIT
5263 		 */
5264 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5265 			goto fail;
5266 
5267 		/*
5268 		 * PF_MEMALLOC request from this context is rather bizarre
5269 		 * because we cannot reclaim anything and only can loop waiting
5270 		 * for somebody to do a work for us
5271 		 */
5272 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5273 
5274 		/*
5275 		 * non failing costly orders are a hard requirement which we
5276 		 * are not prepared for much so let's warn about these users
5277 		 * so that we can identify them and convert them to something
5278 		 * else.
5279 		 */
5280 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
5281 
5282 		/*
5283 		 * Help non-failing allocations by giving them access to memory
5284 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5285 		 * could deplete whole memory reserves which would just make
5286 		 * the situation worse
5287 		 */
5288 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5289 		if (page)
5290 			goto got_pg;
5291 
5292 		cond_resched();
5293 		goto retry;
5294 	}
5295 fail:
5296 	warn_alloc(gfp_mask, ac->nodemask,
5297 			"page allocation failure: order:%u", order);
5298 got_pg:
5299 	return page;
5300 }
5301 
5302 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5303 		int preferred_nid, nodemask_t *nodemask,
5304 		struct alloc_context *ac, gfp_t *alloc_gfp,
5305 		unsigned int *alloc_flags)
5306 {
5307 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5308 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5309 	ac->nodemask = nodemask;
5310 	ac->migratetype = gfp_migratetype(gfp_mask);
5311 
5312 	if (cpusets_enabled()) {
5313 		*alloc_gfp |= __GFP_HARDWALL;
5314 		/*
5315 		 * When we are in the interrupt context, it is irrelevant
5316 		 * to the current task context. It means that any node ok.
5317 		 */
5318 		if (in_task() && !ac->nodemask)
5319 			ac->nodemask = &cpuset_current_mems_allowed;
5320 		else
5321 			*alloc_flags |= ALLOC_CPUSET;
5322 	}
5323 
5324 	might_alloc(gfp_mask);
5325 
5326 	if (should_fail_alloc_page(gfp_mask, order))
5327 		return false;
5328 
5329 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5330 
5331 	/* Dirty zone balancing only done in the fast path */
5332 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5333 
5334 	/*
5335 	 * The preferred zone is used for statistics but crucially it is
5336 	 * also used as the starting point for the zonelist iterator. It
5337 	 * may get reset for allocations that ignore memory policies.
5338 	 */
5339 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5340 					ac->highest_zoneidx, ac->nodemask);
5341 
5342 	return true;
5343 }
5344 
5345 /*
5346  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5347  * @gfp: GFP flags for the allocation
5348  * @preferred_nid: The preferred NUMA node ID to allocate from
5349  * @nodemask: Set of nodes to allocate from, may be NULL
5350  * @nr_pages: The number of pages desired on the list or array
5351  * @page_list: Optional list to store the allocated pages
5352  * @page_array: Optional array to store the pages
5353  *
5354  * This is a batched version of the page allocator that attempts to
5355  * allocate nr_pages quickly. Pages are added to page_list if page_list
5356  * is not NULL, otherwise it is assumed that the page_array is valid.
5357  *
5358  * For lists, nr_pages is the number of pages that should be allocated.
5359  *
5360  * For arrays, only NULL elements are populated with pages and nr_pages
5361  * is the maximum number of pages that will be stored in the array.
5362  *
5363  * Returns the number of pages on the list or array.
5364  */
5365 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5366 			nodemask_t *nodemask, int nr_pages,
5367 			struct list_head *page_list,
5368 			struct page **page_array)
5369 {
5370 	struct page *page;
5371 	unsigned long flags;
5372 	unsigned long __maybe_unused UP_flags;
5373 	struct zone *zone;
5374 	struct zoneref *z;
5375 	struct per_cpu_pages *pcp;
5376 	struct list_head *pcp_list;
5377 	struct alloc_context ac;
5378 	gfp_t alloc_gfp;
5379 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5380 	int nr_populated = 0, nr_account = 0;
5381 
5382 	/*
5383 	 * Skip populated array elements to determine if any pages need
5384 	 * to be allocated before disabling IRQs.
5385 	 */
5386 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5387 		nr_populated++;
5388 
5389 	/* No pages requested? */
5390 	if (unlikely(nr_pages <= 0))
5391 		goto out;
5392 
5393 	/* Already populated array? */
5394 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5395 		goto out;
5396 
5397 	/* Bulk allocator does not support memcg accounting. */
5398 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5399 		goto failed;
5400 
5401 	/* Use the single page allocator for one page. */
5402 	if (nr_pages - nr_populated == 1)
5403 		goto failed;
5404 
5405 #ifdef CONFIG_PAGE_OWNER
5406 	/*
5407 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5408 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5409 	 * removes much of the performance benefit of bulk allocation so
5410 	 * force the caller to allocate one page at a time as it'll have
5411 	 * similar performance to added complexity to the bulk allocator.
5412 	 */
5413 	if (static_branch_unlikely(&page_owner_inited))
5414 		goto failed;
5415 #endif
5416 
5417 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5418 	gfp &= gfp_allowed_mask;
5419 	alloc_gfp = gfp;
5420 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5421 		goto out;
5422 	gfp = alloc_gfp;
5423 
5424 	/* Find an allowed local zone that meets the low watermark. */
5425 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5426 		unsigned long mark;
5427 
5428 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5429 		    !__cpuset_zone_allowed(zone, gfp)) {
5430 			continue;
5431 		}
5432 
5433 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5434 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5435 			goto failed;
5436 		}
5437 
5438 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5439 		if (zone_watermark_fast(zone, 0,  mark,
5440 				zonelist_zone_idx(ac.preferred_zoneref),
5441 				alloc_flags, gfp)) {
5442 			break;
5443 		}
5444 	}
5445 
5446 	/*
5447 	 * If there are no allowed local zones that meets the watermarks then
5448 	 * try to allocate a single page and reclaim if necessary.
5449 	 */
5450 	if (unlikely(!zone))
5451 		goto failed;
5452 
5453 	/* Is a parallel drain in progress? */
5454 	pcp_trylock_prepare(UP_flags);
5455 	pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
5456 	if (!pcp)
5457 		goto failed_irq;
5458 
5459 	/* Attempt the batch allocation */
5460 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5461 	while (nr_populated < nr_pages) {
5462 
5463 		/* Skip existing pages */
5464 		if (page_array && page_array[nr_populated]) {
5465 			nr_populated++;
5466 			continue;
5467 		}
5468 
5469 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5470 								pcp, pcp_list);
5471 		if (unlikely(!page)) {
5472 			/* Try and allocate at least one page */
5473 			if (!nr_account) {
5474 				pcp_spin_unlock_irqrestore(pcp, flags);
5475 				goto failed_irq;
5476 			}
5477 			break;
5478 		}
5479 		nr_account++;
5480 
5481 		prep_new_page(page, 0, gfp, 0);
5482 		if (page_list)
5483 			list_add(&page->lru, page_list);
5484 		else
5485 			page_array[nr_populated] = page;
5486 		nr_populated++;
5487 	}
5488 
5489 	pcp_spin_unlock_irqrestore(pcp, flags);
5490 	pcp_trylock_finish(UP_flags);
5491 
5492 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5493 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5494 
5495 out:
5496 	return nr_populated;
5497 
5498 failed_irq:
5499 	pcp_trylock_finish(UP_flags);
5500 
5501 failed:
5502 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5503 	if (page) {
5504 		if (page_list)
5505 			list_add(&page->lru, page_list);
5506 		else
5507 			page_array[nr_populated] = page;
5508 		nr_populated++;
5509 	}
5510 
5511 	goto out;
5512 }
5513 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5514 
5515 /*
5516  * This is the 'heart' of the zoned buddy allocator.
5517  */
5518 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5519 							nodemask_t *nodemask)
5520 {
5521 	struct page *page;
5522 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5523 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5524 	struct alloc_context ac = { };
5525 
5526 	/*
5527 	 * There are several places where we assume that the order value is sane
5528 	 * so bail out early if the request is out of bound.
5529 	 */
5530 	if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5531 		return NULL;
5532 
5533 	gfp &= gfp_allowed_mask;
5534 	/*
5535 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5536 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5537 	 * from a particular context which has been marked by
5538 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5539 	 * movable zones are not used during allocation.
5540 	 */
5541 	gfp = current_gfp_context(gfp);
5542 	alloc_gfp = gfp;
5543 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5544 			&alloc_gfp, &alloc_flags))
5545 		return NULL;
5546 
5547 	/*
5548 	 * Forbid the first pass from falling back to types that fragment
5549 	 * memory until all local zones are considered.
5550 	 */
5551 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5552 
5553 	/* First allocation attempt */
5554 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5555 	if (likely(page))
5556 		goto out;
5557 
5558 	alloc_gfp = gfp;
5559 	ac.spread_dirty_pages = false;
5560 
5561 	/*
5562 	 * Restore the original nodemask if it was potentially replaced with
5563 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5564 	 */
5565 	ac.nodemask = nodemask;
5566 
5567 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5568 
5569 out:
5570 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5571 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5572 		__free_pages(page, order);
5573 		page = NULL;
5574 	}
5575 
5576 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5577 	kmsan_alloc_page(page, order, alloc_gfp);
5578 
5579 	return page;
5580 }
5581 EXPORT_SYMBOL(__alloc_pages);
5582 
5583 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5584 		nodemask_t *nodemask)
5585 {
5586 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5587 			preferred_nid, nodemask);
5588 
5589 	if (page && order > 1)
5590 		prep_transhuge_page(page);
5591 	return (struct folio *)page;
5592 }
5593 EXPORT_SYMBOL(__folio_alloc);
5594 
5595 /*
5596  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5597  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5598  * you need to access high mem.
5599  */
5600 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5601 {
5602 	struct page *page;
5603 
5604 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5605 	if (!page)
5606 		return 0;
5607 	return (unsigned long) page_address(page);
5608 }
5609 EXPORT_SYMBOL(__get_free_pages);
5610 
5611 unsigned long get_zeroed_page(gfp_t gfp_mask)
5612 {
5613 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5614 }
5615 EXPORT_SYMBOL(get_zeroed_page);
5616 
5617 /**
5618  * __free_pages - Free pages allocated with alloc_pages().
5619  * @page: The page pointer returned from alloc_pages().
5620  * @order: The order of the allocation.
5621  *
5622  * This function can free multi-page allocations that are not compound
5623  * pages.  It does not check that the @order passed in matches that of
5624  * the allocation, so it is easy to leak memory.  Freeing more memory
5625  * than was allocated will probably emit a warning.
5626  *
5627  * If the last reference to this page is speculative, it will be released
5628  * by put_page() which only frees the first page of a non-compound
5629  * allocation.  To prevent the remaining pages from being leaked, we free
5630  * the subsequent pages here.  If you want to use the page's reference
5631  * count to decide when to free the allocation, you should allocate a
5632  * compound page, and use put_page() instead of __free_pages().
5633  *
5634  * Context: May be called in interrupt context or while holding a normal
5635  * spinlock, but not in NMI context or while holding a raw spinlock.
5636  */
5637 void __free_pages(struct page *page, unsigned int order)
5638 {
5639 	if (put_page_testzero(page))
5640 		free_the_page(page, order);
5641 	else if (!PageHead(page))
5642 		while (order-- > 0)
5643 			free_the_page(page + (1 << order), order);
5644 }
5645 EXPORT_SYMBOL(__free_pages);
5646 
5647 void free_pages(unsigned long addr, unsigned int order)
5648 {
5649 	if (addr != 0) {
5650 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5651 		__free_pages(virt_to_page((void *)addr), order);
5652 	}
5653 }
5654 
5655 EXPORT_SYMBOL(free_pages);
5656 
5657 /*
5658  * Page Fragment:
5659  *  An arbitrary-length arbitrary-offset area of memory which resides
5660  *  within a 0 or higher order page.  Multiple fragments within that page
5661  *  are individually refcounted, in the page's reference counter.
5662  *
5663  * The page_frag functions below provide a simple allocation framework for
5664  * page fragments.  This is used by the network stack and network device
5665  * drivers to provide a backing region of memory for use as either an
5666  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5667  */
5668 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5669 					     gfp_t gfp_mask)
5670 {
5671 	struct page *page = NULL;
5672 	gfp_t gfp = gfp_mask;
5673 
5674 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5675 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5676 		    __GFP_NOMEMALLOC;
5677 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5678 				PAGE_FRAG_CACHE_MAX_ORDER);
5679 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5680 #endif
5681 	if (unlikely(!page))
5682 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5683 
5684 	nc->va = page ? page_address(page) : NULL;
5685 
5686 	return page;
5687 }
5688 
5689 void __page_frag_cache_drain(struct page *page, unsigned int count)
5690 {
5691 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5692 
5693 	if (page_ref_sub_and_test(page, count))
5694 		free_the_page(page, compound_order(page));
5695 }
5696 EXPORT_SYMBOL(__page_frag_cache_drain);
5697 
5698 void *page_frag_alloc_align(struct page_frag_cache *nc,
5699 		      unsigned int fragsz, gfp_t gfp_mask,
5700 		      unsigned int align_mask)
5701 {
5702 	unsigned int size = PAGE_SIZE;
5703 	struct page *page;
5704 	int offset;
5705 
5706 	if (unlikely(!nc->va)) {
5707 refill:
5708 		page = __page_frag_cache_refill(nc, gfp_mask);
5709 		if (!page)
5710 			return NULL;
5711 
5712 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5713 		/* if size can vary use size else just use PAGE_SIZE */
5714 		size = nc->size;
5715 #endif
5716 		/* Even if we own the page, we do not use atomic_set().
5717 		 * This would break get_page_unless_zero() users.
5718 		 */
5719 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5720 
5721 		/* reset page count bias and offset to start of new frag */
5722 		nc->pfmemalloc = page_is_pfmemalloc(page);
5723 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5724 		nc->offset = size;
5725 	}
5726 
5727 	offset = nc->offset - fragsz;
5728 	if (unlikely(offset < 0)) {
5729 		page = virt_to_page(nc->va);
5730 
5731 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5732 			goto refill;
5733 
5734 		if (unlikely(nc->pfmemalloc)) {
5735 			free_the_page(page, compound_order(page));
5736 			goto refill;
5737 		}
5738 
5739 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5740 		/* if size can vary use size else just use PAGE_SIZE */
5741 		size = nc->size;
5742 #endif
5743 		/* OK, page count is 0, we can safely set it */
5744 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5745 
5746 		/* reset page count bias and offset to start of new frag */
5747 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5748 		offset = size - fragsz;
5749 		if (unlikely(offset < 0)) {
5750 			/*
5751 			 * The caller is trying to allocate a fragment
5752 			 * with fragsz > PAGE_SIZE but the cache isn't big
5753 			 * enough to satisfy the request, this may
5754 			 * happen in low memory conditions.
5755 			 * We don't release the cache page because
5756 			 * it could make memory pressure worse
5757 			 * so we simply return NULL here.
5758 			 */
5759 			return NULL;
5760 		}
5761 	}
5762 
5763 	nc->pagecnt_bias--;
5764 	offset &= align_mask;
5765 	nc->offset = offset;
5766 
5767 	return nc->va + offset;
5768 }
5769 EXPORT_SYMBOL(page_frag_alloc_align);
5770 
5771 /*
5772  * Frees a page fragment allocated out of either a compound or order 0 page.
5773  */
5774 void page_frag_free(void *addr)
5775 {
5776 	struct page *page = virt_to_head_page(addr);
5777 
5778 	if (unlikely(put_page_testzero(page)))
5779 		free_the_page(page, compound_order(page));
5780 }
5781 EXPORT_SYMBOL(page_frag_free);
5782 
5783 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5784 		size_t size)
5785 {
5786 	if (addr) {
5787 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5788 		unsigned long used = addr + PAGE_ALIGN(size);
5789 
5790 		split_page(virt_to_page((void *)addr), order);
5791 		while (used < alloc_end) {
5792 			free_page(used);
5793 			used += PAGE_SIZE;
5794 		}
5795 	}
5796 	return (void *)addr;
5797 }
5798 
5799 /**
5800  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5801  * @size: the number of bytes to allocate
5802  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5803  *
5804  * This function is similar to alloc_pages(), except that it allocates the
5805  * minimum number of pages to satisfy the request.  alloc_pages() can only
5806  * allocate memory in power-of-two pages.
5807  *
5808  * This function is also limited by MAX_ORDER.
5809  *
5810  * Memory allocated by this function must be released by free_pages_exact().
5811  *
5812  * Return: pointer to the allocated area or %NULL in case of error.
5813  */
5814 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5815 {
5816 	unsigned int order = get_order(size);
5817 	unsigned long addr;
5818 
5819 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5820 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5821 
5822 	addr = __get_free_pages(gfp_mask, order);
5823 	return make_alloc_exact(addr, order, size);
5824 }
5825 EXPORT_SYMBOL(alloc_pages_exact);
5826 
5827 /**
5828  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5829  *			   pages on a node.
5830  * @nid: the preferred node ID where memory should be allocated
5831  * @size: the number of bytes to allocate
5832  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5833  *
5834  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5835  * back.
5836  *
5837  * Return: pointer to the allocated area or %NULL in case of error.
5838  */
5839 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5840 {
5841 	unsigned int order = get_order(size);
5842 	struct page *p;
5843 
5844 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5845 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5846 
5847 	p = alloc_pages_node(nid, gfp_mask, order);
5848 	if (!p)
5849 		return NULL;
5850 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5851 }
5852 
5853 /**
5854  * free_pages_exact - release memory allocated via alloc_pages_exact()
5855  * @virt: the value returned by alloc_pages_exact.
5856  * @size: size of allocation, same value as passed to alloc_pages_exact().
5857  *
5858  * Release the memory allocated by a previous call to alloc_pages_exact.
5859  */
5860 void free_pages_exact(void *virt, size_t size)
5861 {
5862 	unsigned long addr = (unsigned long)virt;
5863 	unsigned long end = addr + PAGE_ALIGN(size);
5864 
5865 	while (addr < end) {
5866 		free_page(addr);
5867 		addr += PAGE_SIZE;
5868 	}
5869 }
5870 EXPORT_SYMBOL(free_pages_exact);
5871 
5872 /**
5873  * nr_free_zone_pages - count number of pages beyond high watermark
5874  * @offset: The zone index of the highest zone
5875  *
5876  * nr_free_zone_pages() counts the number of pages which are beyond the
5877  * high watermark within all zones at or below a given zone index.  For each
5878  * zone, the number of pages is calculated as:
5879  *
5880  *     nr_free_zone_pages = managed_pages - high_pages
5881  *
5882  * Return: number of pages beyond high watermark.
5883  */
5884 static unsigned long nr_free_zone_pages(int offset)
5885 {
5886 	struct zoneref *z;
5887 	struct zone *zone;
5888 
5889 	/* Just pick one node, since fallback list is circular */
5890 	unsigned long sum = 0;
5891 
5892 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5893 
5894 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5895 		unsigned long size = zone_managed_pages(zone);
5896 		unsigned long high = high_wmark_pages(zone);
5897 		if (size > high)
5898 			sum += size - high;
5899 	}
5900 
5901 	return sum;
5902 }
5903 
5904 /**
5905  * nr_free_buffer_pages - count number of pages beyond high watermark
5906  *
5907  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5908  * watermark within ZONE_DMA and ZONE_NORMAL.
5909  *
5910  * Return: number of pages beyond high watermark within ZONE_DMA and
5911  * ZONE_NORMAL.
5912  */
5913 unsigned long nr_free_buffer_pages(void)
5914 {
5915 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5916 }
5917 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5918 
5919 static inline void show_node(struct zone *zone)
5920 {
5921 	if (IS_ENABLED(CONFIG_NUMA))
5922 		printk("Node %d ", zone_to_nid(zone));
5923 }
5924 
5925 long si_mem_available(void)
5926 {
5927 	long available;
5928 	unsigned long pagecache;
5929 	unsigned long wmark_low = 0;
5930 	unsigned long pages[NR_LRU_LISTS];
5931 	unsigned long reclaimable;
5932 	struct zone *zone;
5933 	int lru;
5934 
5935 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5936 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5937 
5938 	for_each_zone(zone)
5939 		wmark_low += low_wmark_pages(zone);
5940 
5941 	/*
5942 	 * Estimate the amount of memory available for userspace allocations,
5943 	 * without causing swapping or OOM.
5944 	 */
5945 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5946 
5947 	/*
5948 	 * Not all the page cache can be freed, otherwise the system will
5949 	 * start swapping or thrashing. Assume at least half of the page
5950 	 * cache, or the low watermark worth of cache, needs to stay.
5951 	 */
5952 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5953 	pagecache -= min(pagecache / 2, wmark_low);
5954 	available += pagecache;
5955 
5956 	/*
5957 	 * Part of the reclaimable slab and other kernel memory consists of
5958 	 * items that are in use, and cannot be freed. Cap this estimate at the
5959 	 * low watermark.
5960 	 */
5961 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5962 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5963 	available += reclaimable - min(reclaimable / 2, wmark_low);
5964 
5965 	if (available < 0)
5966 		available = 0;
5967 	return available;
5968 }
5969 EXPORT_SYMBOL_GPL(si_mem_available);
5970 
5971 void si_meminfo(struct sysinfo *val)
5972 {
5973 	val->totalram = totalram_pages();
5974 	val->sharedram = global_node_page_state(NR_SHMEM);
5975 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5976 	val->bufferram = nr_blockdev_pages();
5977 	val->totalhigh = totalhigh_pages();
5978 	val->freehigh = nr_free_highpages();
5979 	val->mem_unit = PAGE_SIZE;
5980 }
5981 
5982 EXPORT_SYMBOL(si_meminfo);
5983 
5984 #ifdef CONFIG_NUMA
5985 void si_meminfo_node(struct sysinfo *val, int nid)
5986 {
5987 	int zone_type;		/* needs to be signed */
5988 	unsigned long managed_pages = 0;
5989 	unsigned long managed_highpages = 0;
5990 	unsigned long free_highpages = 0;
5991 	pg_data_t *pgdat = NODE_DATA(nid);
5992 
5993 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5994 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5995 	val->totalram = managed_pages;
5996 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5997 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5998 #ifdef CONFIG_HIGHMEM
5999 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
6000 		struct zone *zone = &pgdat->node_zones[zone_type];
6001 
6002 		if (is_highmem(zone)) {
6003 			managed_highpages += zone_managed_pages(zone);
6004 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
6005 		}
6006 	}
6007 	val->totalhigh = managed_highpages;
6008 	val->freehigh = free_highpages;
6009 #else
6010 	val->totalhigh = managed_highpages;
6011 	val->freehigh = free_highpages;
6012 #endif
6013 	val->mem_unit = PAGE_SIZE;
6014 }
6015 #endif
6016 
6017 /*
6018  * Determine whether the node should be displayed or not, depending on whether
6019  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
6020  */
6021 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
6022 {
6023 	if (!(flags & SHOW_MEM_FILTER_NODES))
6024 		return false;
6025 
6026 	/*
6027 	 * no node mask - aka implicit memory numa policy. Do not bother with
6028 	 * the synchronization - read_mems_allowed_begin - because we do not
6029 	 * have to be precise here.
6030 	 */
6031 	if (!nodemask)
6032 		nodemask = &cpuset_current_mems_allowed;
6033 
6034 	return !node_isset(nid, *nodemask);
6035 }
6036 
6037 #define K(x) ((x) << (PAGE_SHIFT-10))
6038 
6039 static void show_migration_types(unsigned char type)
6040 {
6041 	static const char types[MIGRATE_TYPES] = {
6042 		[MIGRATE_UNMOVABLE]	= 'U',
6043 		[MIGRATE_MOVABLE]	= 'M',
6044 		[MIGRATE_RECLAIMABLE]	= 'E',
6045 		[MIGRATE_HIGHATOMIC]	= 'H',
6046 #ifdef CONFIG_CMA
6047 		[MIGRATE_CMA]		= 'C',
6048 #endif
6049 #ifdef CONFIG_MEMORY_ISOLATION
6050 		[MIGRATE_ISOLATE]	= 'I',
6051 #endif
6052 	};
6053 	char tmp[MIGRATE_TYPES + 1];
6054 	char *p = tmp;
6055 	int i;
6056 
6057 	for (i = 0; i < MIGRATE_TYPES; i++) {
6058 		if (type & (1 << i))
6059 			*p++ = types[i];
6060 	}
6061 
6062 	*p = '\0';
6063 	printk(KERN_CONT "(%s) ", tmp);
6064 }
6065 
6066 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
6067 {
6068 	int zone_idx;
6069 	for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
6070 		if (zone_managed_pages(pgdat->node_zones + zone_idx))
6071 			return true;
6072 	return false;
6073 }
6074 
6075 /*
6076  * Show free area list (used inside shift_scroll-lock stuff)
6077  * We also calculate the percentage fragmentation. We do this by counting the
6078  * memory on each free list with the exception of the first item on the list.
6079  *
6080  * Bits in @filter:
6081  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6082  *   cpuset.
6083  */
6084 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
6085 {
6086 	unsigned long free_pcp = 0;
6087 	int cpu, nid;
6088 	struct zone *zone;
6089 	pg_data_t *pgdat;
6090 
6091 	for_each_populated_zone(zone) {
6092 		if (zone_idx(zone) > max_zone_idx)
6093 			continue;
6094 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6095 			continue;
6096 
6097 		for_each_online_cpu(cpu)
6098 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6099 	}
6100 
6101 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6102 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6103 		" unevictable:%lu dirty:%lu writeback:%lu\n"
6104 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6105 		" mapped:%lu shmem:%lu pagetables:%lu\n"
6106 		" sec_pagetables:%lu bounce:%lu\n"
6107 		" kernel_misc_reclaimable:%lu\n"
6108 		" free:%lu free_pcp:%lu free_cma:%lu\n",
6109 		global_node_page_state(NR_ACTIVE_ANON),
6110 		global_node_page_state(NR_INACTIVE_ANON),
6111 		global_node_page_state(NR_ISOLATED_ANON),
6112 		global_node_page_state(NR_ACTIVE_FILE),
6113 		global_node_page_state(NR_INACTIVE_FILE),
6114 		global_node_page_state(NR_ISOLATED_FILE),
6115 		global_node_page_state(NR_UNEVICTABLE),
6116 		global_node_page_state(NR_FILE_DIRTY),
6117 		global_node_page_state(NR_WRITEBACK),
6118 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6119 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6120 		global_node_page_state(NR_FILE_MAPPED),
6121 		global_node_page_state(NR_SHMEM),
6122 		global_node_page_state(NR_PAGETABLE),
6123 		global_node_page_state(NR_SECONDARY_PAGETABLE),
6124 		global_zone_page_state(NR_BOUNCE),
6125 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6126 		global_zone_page_state(NR_FREE_PAGES),
6127 		free_pcp,
6128 		global_zone_page_state(NR_FREE_CMA_PAGES));
6129 
6130 	for_each_online_pgdat(pgdat) {
6131 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6132 			continue;
6133 		if (!node_has_managed_zones(pgdat, max_zone_idx))
6134 			continue;
6135 
6136 		printk("Node %d"
6137 			" active_anon:%lukB"
6138 			" inactive_anon:%lukB"
6139 			" active_file:%lukB"
6140 			" inactive_file:%lukB"
6141 			" unevictable:%lukB"
6142 			" isolated(anon):%lukB"
6143 			" isolated(file):%lukB"
6144 			" mapped:%lukB"
6145 			" dirty:%lukB"
6146 			" writeback:%lukB"
6147 			" shmem:%lukB"
6148 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6149 			" shmem_thp: %lukB"
6150 			" shmem_pmdmapped: %lukB"
6151 			" anon_thp: %lukB"
6152 #endif
6153 			" writeback_tmp:%lukB"
6154 			" kernel_stack:%lukB"
6155 #ifdef CONFIG_SHADOW_CALL_STACK
6156 			" shadow_call_stack:%lukB"
6157 #endif
6158 			" pagetables:%lukB"
6159 			" sec_pagetables:%lukB"
6160 			" all_unreclaimable? %s"
6161 			"\n",
6162 			pgdat->node_id,
6163 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6164 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6165 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6166 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6167 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
6168 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6169 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6170 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
6171 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
6172 			K(node_page_state(pgdat, NR_WRITEBACK)),
6173 			K(node_page_state(pgdat, NR_SHMEM)),
6174 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6175 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
6176 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6177 			K(node_page_state(pgdat, NR_ANON_THPS)),
6178 #endif
6179 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6180 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
6181 #ifdef CONFIG_SHADOW_CALL_STACK
6182 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
6183 #endif
6184 			K(node_page_state(pgdat, NR_PAGETABLE)),
6185 			K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
6186 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6187 				"yes" : "no");
6188 	}
6189 
6190 	for_each_populated_zone(zone) {
6191 		int i;
6192 
6193 		if (zone_idx(zone) > max_zone_idx)
6194 			continue;
6195 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6196 			continue;
6197 
6198 		free_pcp = 0;
6199 		for_each_online_cpu(cpu)
6200 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6201 
6202 		show_node(zone);
6203 		printk(KERN_CONT
6204 			"%s"
6205 			" free:%lukB"
6206 			" boost:%lukB"
6207 			" min:%lukB"
6208 			" low:%lukB"
6209 			" high:%lukB"
6210 			" reserved_highatomic:%luKB"
6211 			" active_anon:%lukB"
6212 			" inactive_anon:%lukB"
6213 			" active_file:%lukB"
6214 			" inactive_file:%lukB"
6215 			" unevictable:%lukB"
6216 			" writepending:%lukB"
6217 			" present:%lukB"
6218 			" managed:%lukB"
6219 			" mlocked:%lukB"
6220 			" bounce:%lukB"
6221 			" free_pcp:%lukB"
6222 			" local_pcp:%ukB"
6223 			" free_cma:%lukB"
6224 			"\n",
6225 			zone->name,
6226 			K(zone_page_state(zone, NR_FREE_PAGES)),
6227 			K(zone->watermark_boost),
6228 			K(min_wmark_pages(zone)),
6229 			K(low_wmark_pages(zone)),
6230 			K(high_wmark_pages(zone)),
6231 			K(zone->nr_reserved_highatomic),
6232 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6233 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6234 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6235 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6236 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6237 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6238 			K(zone->present_pages),
6239 			K(zone_managed_pages(zone)),
6240 			K(zone_page_state(zone, NR_MLOCK)),
6241 			K(zone_page_state(zone, NR_BOUNCE)),
6242 			K(free_pcp),
6243 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6244 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6245 		printk("lowmem_reserve[]:");
6246 		for (i = 0; i < MAX_NR_ZONES; i++)
6247 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6248 		printk(KERN_CONT "\n");
6249 	}
6250 
6251 	for_each_populated_zone(zone) {
6252 		unsigned int order;
6253 		unsigned long nr[MAX_ORDER], flags, total = 0;
6254 		unsigned char types[MAX_ORDER];
6255 
6256 		if (zone_idx(zone) > max_zone_idx)
6257 			continue;
6258 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6259 			continue;
6260 		show_node(zone);
6261 		printk(KERN_CONT "%s: ", zone->name);
6262 
6263 		spin_lock_irqsave(&zone->lock, flags);
6264 		for (order = 0; order < MAX_ORDER; order++) {
6265 			struct free_area *area = &zone->free_area[order];
6266 			int type;
6267 
6268 			nr[order] = area->nr_free;
6269 			total += nr[order] << order;
6270 
6271 			types[order] = 0;
6272 			for (type = 0; type < MIGRATE_TYPES; type++) {
6273 				if (!free_area_empty(area, type))
6274 					types[order] |= 1 << type;
6275 			}
6276 		}
6277 		spin_unlock_irqrestore(&zone->lock, flags);
6278 		for (order = 0; order < MAX_ORDER; order++) {
6279 			printk(KERN_CONT "%lu*%lukB ",
6280 			       nr[order], K(1UL) << order);
6281 			if (nr[order])
6282 				show_migration_types(types[order]);
6283 		}
6284 		printk(KERN_CONT "= %lukB\n", K(total));
6285 	}
6286 
6287 	for_each_online_node(nid) {
6288 		if (show_mem_node_skip(filter, nid, nodemask))
6289 			continue;
6290 		hugetlb_show_meminfo_node(nid);
6291 	}
6292 
6293 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6294 
6295 	show_swap_cache_info();
6296 }
6297 
6298 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6299 {
6300 	zoneref->zone = zone;
6301 	zoneref->zone_idx = zone_idx(zone);
6302 }
6303 
6304 /*
6305  * Builds allocation fallback zone lists.
6306  *
6307  * Add all populated zones of a node to the zonelist.
6308  */
6309 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6310 {
6311 	struct zone *zone;
6312 	enum zone_type zone_type = MAX_NR_ZONES;
6313 	int nr_zones = 0;
6314 
6315 	do {
6316 		zone_type--;
6317 		zone = pgdat->node_zones + zone_type;
6318 		if (populated_zone(zone)) {
6319 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6320 			check_highest_zone(zone_type);
6321 		}
6322 	} while (zone_type);
6323 
6324 	return nr_zones;
6325 }
6326 
6327 #ifdef CONFIG_NUMA
6328 
6329 static int __parse_numa_zonelist_order(char *s)
6330 {
6331 	/*
6332 	 * We used to support different zonelists modes but they turned
6333 	 * out to be just not useful. Let's keep the warning in place
6334 	 * if somebody still use the cmd line parameter so that we do
6335 	 * not fail it silently
6336 	 */
6337 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6338 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6339 		return -EINVAL;
6340 	}
6341 	return 0;
6342 }
6343 
6344 char numa_zonelist_order[] = "Node";
6345 
6346 /*
6347  * sysctl handler for numa_zonelist_order
6348  */
6349 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6350 		void *buffer, size_t *length, loff_t *ppos)
6351 {
6352 	if (write)
6353 		return __parse_numa_zonelist_order(buffer);
6354 	return proc_dostring(table, write, buffer, length, ppos);
6355 }
6356 
6357 
6358 static int node_load[MAX_NUMNODES];
6359 
6360 /**
6361  * find_next_best_node - find the next node that should appear in a given node's fallback list
6362  * @node: node whose fallback list we're appending
6363  * @used_node_mask: nodemask_t of already used nodes
6364  *
6365  * We use a number of factors to determine which is the next node that should
6366  * appear on a given node's fallback list.  The node should not have appeared
6367  * already in @node's fallback list, and it should be the next closest node
6368  * according to the distance array (which contains arbitrary distance values
6369  * from each node to each node in the system), and should also prefer nodes
6370  * with no CPUs, since presumably they'll have very little allocation pressure
6371  * on them otherwise.
6372  *
6373  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6374  */
6375 int find_next_best_node(int node, nodemask_t *used_node_mask)
6376 {
6377 	int n, val;
6378 	int min_val = INT_MAX;
6379 	int best_node = NUMA_NO_NODE;
6380 
6381 	/* Use the local node if we haven't already */
6382 	if (!node_isset(node, *used_node_mask)) {
6383 		node_set(node, *used_node_mask);
6384 		return node;
6385 	}
6386 
6387 	for_each_node_state(n, N_MEMORY) {
6388 
6389 		/* Don't want a node to appear more than once */
6390 		if (node_isset(n, *used_node_mask))
6391 			continue;
6392 
6393 		/* Use the distance array to find the distance */
6394 		val = node_distance(node, n);
6395 
6396 		/* Penalize nodes under us ("prefer the next node") */
6397 		val += (n < node);
6398 
6399 		/* Give preference to headless and unused nodes */
6400 		if (!cpumask_empty(cpumask_of_node(n)))
6401 			val += PENALTY_FOR_NODE_WITH_CPUS;
6402 
6403 		/* Slight preference for less loaded node */
6404 		val *= MAX_NUMNODES;
6405 		val += node_load[n];
6406 
6407 		if (val < min_val) {
6408 			min_val = val;
6409 			best_node = n;
6410 		}
6411 	}
6412 
6413 	if (best_node >= 0)
6414 		node_set(best_node, *used_node_mask);
6415 
6416 	return best_node;
6417 }
6418 
6419 
6420 /*
6421  * Build zonelists ordered by node and zones within node.
6422  * This results in maximum locality--normal zone overflows into local
6423  * DMA zone, if any--but risks exhausting DMA zone.
6424  */
6425 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6426 		unsigned nr_nodes)
6427 {
6428 	struct zoneref *zonerefs;
6429 	int i;
6430 
6431 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6432 
6433 	for (i = 0; i < nr_nodes; i++) {
6434 		int nr_zones;
6435 
6436 		pg_data_t *node = NODE_DATA(node_order[i]);
6437 
6438 		nr_zones = build_zonerefs_node(node, zonerefs);
6439 		zonerefs += nr_zones;
6440 	}
6441 	zonerefs->zone = NULL;
6442 	zonerefs->zone_idx = 0;
6443 }
6444 
6445 /*
6446  * Build gfp_thisnode zonelists
6447  */
6448 static void build_thisnode_zonelists(pg_data_t *pgdat)
6449 {
6450 	struct zoneref *zonerefs;
6451 	int nr_zones;
6452 
6453 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6454 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6455 	zonerefs += nr_zones;
6456 	zonerefs->zone = NULL;
6457 	zonerefs->zone_idx = 0;
6458 }
6459 
6460 /*
6461  * Build zonelists ordered by zone and nodes within zones.
6462  * This results in conserving DMA zone[s] until all Normal memory is
6463  * exhausted, but results in overflowing to remote node while memory
6464  * may still exist in local DMA zone.
6465  */
6466 
6467 static void build_zonelists(pg_data_t *pgdat)
6468 {
6469 	static int node_order[MAX_NUMNODES];
6470 	int node, nr_nodes = 0;
6471 	nodemask_t used_mask = NODE_MASK_NONE;
6472 	int local_node, prev_node;
6473 
6474 	/* NUMA-aware ordering of nodes */
6475 	local_node = pgdat->node_id;
6476 	prev_node = local_node;
6477 
6478 	memset(node_order, 0, sizeof(node_order));
6479 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6480 		/*
6481 		 * We don't want to pressure a particular node.
6482 		 * So adding penalty to the first node in same
6483 		 * distance group to make it round-robin.
6484 		 */
6485 		if (node_distance(local_node, node) !=
6486 		    node_distance(local_node, prev_node))
6487 			node_load[node] += 1;
6488 
6489 		node_order[nr_nodes++] = node;
6490 		prev_node = node;
6491 	}
6492 
6493 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6494 	build_thisnode_zonelists(pgdat);
6495 	pr_info("Fallback order for Node %d: ", local_node);
6496 	for (node = 0; node < nr_nodes; node++)
6497 		pr_cont("%d ", node_order[node]);
6498 	pr_cont("\n");
6499 }
6500 
6501 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6502 /*
6503  * Return node id of node used for "local" allocations.
6504  * I.e., first node id of first zone in arg node's generic zonelist.
6505  * Used for initializing percpu 'numa_mem', which is used primarily
6506  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6507  */
6508 int local_memory_node(int node)
6509 {
6510 	struct zoneref *z;
6511 
6512 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6513 				   gfp_zone(GFP_KERNEL),
6514 				   NULL);
6515 	return zone_to_nid(z->zone);
6516 }
6517 #endif
6518 
6519 static void setup_min_unmapped_ratio(void);
6520 static void setup_min_slab_ratio(void);
6521 #else	/* CONFIG_NUMA */
6522 
6523 static void build_zonelists(pg_data_t *pgdat)
6524 {
6525 	int node, local_node;
6526 	struct zoneref *zonerefs;
6527 	int nr_zones;
6528 
6529 	local_node = pgdat->node_id;
6530 
6531 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6532 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6533 	zonerefs += nr_zones;
6534 
6535 	/*
6536 	 * Now we build the zonelist so that it contains the zones
6537 	 * of all the other nodes.
6538 	 * We don't want to pressure a particular node, so when
6539 	 * building the zones for node N, we make sure that the
6540 	 * zones coming right after the local ones are those from
6541 	 * node N+1 (modulo N)
6542 	 */
6543 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6544 		if (!node_online(node))
6545 			continue;
6546 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6547 		zonerefs += nr_zones;
6548 	}
6549 	for (node = 0; node < local_node; node++) {
6550 		if (!node_online(node))
6551 			continue;
6552 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6553 		zonerefs += nr_zones;
6554 	}
6555 
6556 	zonerefs->zone = NULL;
6557 	zonerefs->zone_idx = 0;
6558 }
6559 
6560 #endif	/* CONFIG_NUMA */
6561 
6562 /*
6563  * Boot pageset table. One per cpu which is going to be used for all
6564  * zones and all nodes. The parameters will be set in such a way
6565  * that an item put on a list will immediately be handed over to
6566  * the buddy list. This is safe since pageset manipulation is done
6567  * with interrupts disabled.
6568  *
6569  * The boot_pagesets must be kept even after bootup is complete for
6570  * unused processors and/or zones. They do play a role for bootstrapping
6571  * hotplugged processors.
6572  *
6573  * zoneinfo_show() and maybe other functions do
6574  * not check if the processor is online before following the pageset pointer.
6575  * Other parts of the kernel may not check if the zone is available.
6576  */
6577 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6578 /* These effectively disable the pcplists in the boot pageset completely */
6579 #define BOOT_PAGESET_HIGH	0
6580 #define BOOT_PAGESET_BATCH	1
6581 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6582 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6583 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6584 
6585 static void __build_all_zonelists(void *data)
6586 {
6587 	int nid;
6588 	int __maybe_unused cpu;
6589 	pg_data_t *self = data;
6590 
6591 	write_seqlock(&zonelist_update_seq);
6592 
6593 #ifdef CONFIG_NUMA
6594 	memset(node_load, 0, sizeof(node_load));
6595 #endif
6596 
6597 	/*
6598 	 * This node is hotadded and no memory is yet present.   So just
6599 	 * building zonelists is fine - no need to touch other nodes.
6600 	 */
6601 	if (self && !node_online(self->node_id)) {
6602 		build_zonelists(self);
6603 	} else {
6604 		/*
6605 		 * All possible nodes have pgdat preallocated
6606 		 * in free_area_init
6607 		 */
6608 		for_each_node(nid) {
6609 			pg_data_t *pgdat = NODE_DATA(nid);
6610 
6611 			build_zonelists(pgdat);
6612 		}
6613 
6614 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6615 		/*
6616 		 * We now know the "local memory node" for each node--
6617 		 * i.e., the node of the first zone in the generic zonelist.
6618 		 * Set up numa_mem percpu variable for on-line cpus.  During
6619 		 * boot, only the boot cpu should be on-line;  we'll init the
6620 		 * secondary cpus' numa_mem as they come on-line.  During
6621 		 * node/memory hotplug, we'll fixup all on-line cpus.
6622 		 */
6623 		for_each_online_cpu(cpu)
6624 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6625 #endif
6626 	}
6627 
6628 	write_sequnlock(&zonelist_update_seq);
6629 }
6630 
6631 static noinline void __init
6632 build_all_zonelists_init(void)
6633 {
6634 	int cpu;
6635 
6636 	__build_all_zonelists(NULL);
6637 
6638 	/*
6639 	 * Initialize the boot_pagesets that are going to be used
6640 	 * for bootstrapping processors. The real pagesets for
6641 	 * each zone will be allocated later when the per cpu
6642 	 * allocator is available.
6643 	 *
6644 	 * boot_pagesets are used also for bootstrapping offline
6645 	 * cpus if the system is already booted because the pagesets
6646 	 * are needed to initialize allocators on a specific cpu too.
6647 	 * F.e. the percpu allocator needs the page allocator which
6648 	 * needs the percpu allocator in order to allocate its pagesets
6649 	 * (a chicken-egg dilemma).
6650 	 */
6651 	for_each_possible_cpu(cpu)
6652 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6653 
6654 	mminit_verify_zonelist();
6655 	cpuset_init_current_mems_allowed();
6656 }
6657 
6658 /*
6659  * unless system_state == SYSTEM_BOOTING.
6660  *
6661  * __ref due to call of __init annotated helper build_all_zonelists_init
6662  * [protected by SYSTEM_BOOTING].
6663  */
6664 void __ref build_all_zonelists(pg_data_t *pgdat)
6665 {
6666 	unsigned long vm_total_pages;
6667 
6668 	if (system_state == SYSTEM_BOOTING) {
6669 		build_all_zonelists_init();
6670 	} else {
6671 		__build_all_zonelists(pgdat);
6672 		/* cpuset refresh routine should be here */
6673 	}
6674 	/* Get the number of free pages beyond high watermark in all zones. */
6675 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6676 	/*
6677 	 * Disable grouping by mobility if the number of pages in the
6678 	 * system is too low to allow the mechanism to work. It would be
6679 	 * more accurate, but expensive to check per-zone. This check is
6680 	 * made on memory-hotadd so a system can start with mobility
6681 	 * disabled and enable it later
6682 	 */
6683 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6684 		page_group_by_mobility_disabled = 1;
6685 	else
6686 		page_group_by_mobility_disabled = 0;
6687 
6688 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6689 		nr_online_nodes,
6690 		page_group_by_mobility_disabled ? "off" : "on",
6691 		vm_total_pages);
6692 #ifdef CONFIG_NUMA
6693 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6694 #endif
6695 }
6696 
6697 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6698 static bool __meminit
6699 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6700 {
6701 	static struct memblock_region *r;
6702 
6703 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6704 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6705 			for_each_mem_region(r) {
6706 				if (*pfn < memblock_region_memory_end_pfn(r))
6707 					break;
6708 			}
6709 		}
6710 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6711 		    memblock_is_mirror(r)) {
6712 			*pfn = memblock_region_memory_end_pfn(r);
6713 			return true;
6714 		}
6715 	}
6716 	return false;
6717 }
6718 
6719 /*
6720  * Initially all pages are reserved - free ones are freed
6721  * up by memblock_free_all() once the early boot process is
6722  * done. Non-atomic initialization, single-pass.
6723  *
6724  * All aligned pageblocks are initialized to the specified migratetype
6725  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6726  * zone stats (e.g., nr_isolate_pageblock) are touched.
6727  */
6728 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6729 		unsigned long start_pfn, unsigned long zone_end_pfn,
6730 		enum meminit_context context,
6731 		struct vmem_altmap *altmap, int migratetype)
6732 {
6733 	unsigned long pfn, end_pfn = start_pfn + size;
6734 	struct page *page;
6735 
6736 	if (highest_memmap_pfn < end_pfn - 1)
6737 		highest_memmap_pfn = end_pfn - 1;
6738 
6739 #ifdef CONFIG_ZONE_DEVICE
6740 	/*
6741 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6742 	 * memory. We limit the total number of pages to initialize to just
6743 	 * those that might contain the memory mapping. We will defer the
6744 	 * ZONE_DEVICE page initialization until after we have released
6745 	 * the hotplug lock.
6746 	 */
6747 	if (zone == ZONE_DEVICE) {
6748 		if (!altmap)
6749 			return;
6750 
6751 		if (start_pfn == altmap->base_pfn)
6752 			start_pfn += altmap->reserve;
6753 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6754 	}
6755 #endif
6756 
6757 	for (pfn = start_pfn; pfn < end_pfn; ) {
6758 		/*
6759 		 * There can be holes in boot-time mem_map[]s handed to this
6760 		 * function.  They do not exist on hotplugged memory.
6761 		 */
6762 		if (context == MEMINIT_EARLY) {
6763 			if (overlap_memmap_init(zone, &pfn))
6764 				continue;
6765 			if (defer_init(nid, pfn, zone_end_pfn))
6766 				break;
6767 		}
6768 
6769 		page = pfn_to_page(pfn);
6770 		__init_single_page(page, pfn, zone, nid);
6771 		if (context == MEMINIT_HOTPLUG)
6772 			__SetPageReserved(page);
6773 
6774 		/*
6775 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6776 		 * such that unmovable allocations won't be scattered all
6777 		 * over the place during system boot.
6778 		 */
6779 		if (pageblock_aligned(pfn)) {
6780 			set_pageblock_migratetype(page, migratetype);
6781 			cond_resched();
6782 		}
6783 		pfn++;
6784 	}
6785 }
6786 
6787 #ifdef CONFIG_ZONE_DEVICE
6788 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6789 					  unsigned long zone_idx, int nid,
6790 					  struct dev_pagemap *pgmap)
6791 {
6792 
6793 	__init_single_page(page, pfn, zone_idx, nid);
6794 
6795 	/*
6796 	 * Mark page reserved as it will need to wait for onlining
6797 	 * phase for it to be fully associated with a zone.
6798 	 *
6799 	 * We can use the non-atomic __set_bit operation for setting
6800 	 * the flag as we are still initializing the pages.
6801 	 */
6802 	__SetPageReserved(page);
6803 
6804 	/*
6805 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6806 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6807 	 * ever freed or placed on a driver-private list.
6808 	 */
6809 	page->pgmap = pgmap;
6810 	page->zone_device_data = NULL;
6811 
6812 	/*
6813 	 * Mark the block movable so that blocks are reserved for
6814 	 * movable at startup. This will force kernel allocations
6815 	 * to reserve their blocks rather than leaking throughout
6816 	 * the address space during boot when many long-lived
6817 	 * kernel allocations are made.
6818 	 *
6819 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6820 	 * because this is done early in section_activate()
6821 	 */
6822 	if (pageblock_aligned(pfn)) {
6823 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6824 		cond_resched();
6825 	}
6826 
6827 	/*
6828 	 * ZONE_DEVICE pages are released directly to the driver page allocator
6829 	 * which will set the page count to 1 when allocating the page.
6830 	 */
6831 	if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
6832 	    pgmap->type == MEMORY_DEVICE_COHERENT)
6833 		set_page_count(page, 0);
6834 }
6835 
6836 /*
6837  * With compound page geometry and when struct pages are stored in ram most
6838  * tail pages are reused. Consequently, the amount of unique struct pages to
6839  * initialize is a lot smaller that the total amount of struct pages being
6840  * mapped. This is a paired / mild layering violation with explicit knowledge
6841  * of how the sparse_vmemmap internals handle compound pages in the lack
6842  * of an altmap. See vmemmap_populate_compound_pages().
6843  */
6844 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6845 					      unsigned long nr_pages)
6846 {
6847 	return is_power_of_2(sizeof(struct page)) &&
6848 		!altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6849 }
6850 
6851 static void __ref memmap_init_compound(struct page *head,
6852 				       unsigned long head_pfn,
6853 				       unsigned long zone_idx, int nid,
6854 				       struct dev_pagemap *pgmap,
6855 				       unsigned long nr_pages)
6856 {
6857 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
6858 	unsigned int order = pgmap->vmemmap_shift;
6859 
6860 	__SetPageHead(head);
6861 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6862 		struct page *page = pfn_to_page(pfn);
6863 
6864 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6865 		prep_compound_tail(head, pfn - head_pfn);
6866 		set_page_count(page, 0);
6867 
6868 		/*
6869 		 * The first tail page stores compound_mapcount_ptr() and
6870 		 * compound_order() and the second tail page stores
6871 		 * compound_pincount_ptr(). Call prep_compound_head() after
6872 		 * the first and second tail pages have been initialized to
6873 		 * not have the data overwritten.
6874 		 */
6875 		if (pfn == head_pfn + 2)
6876 			prep_compound_head(head, order);
6877 	}
6878 }
6879 
6880 void __ref memmap_init_zone_device(struct zone *zone,
6881 				   unsigned long start_pfn,
6882 				   unsigned long nr_pages,
6883 				   struct dev_pagemap *pgmap)
6884 {
6885 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6886 	struct pglist_data *pgdat = zone->zone_pgdat;
6887 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6888 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6889 	unsigned long zone_idx = zone_idx(zone);
6890 	unsigned long start = jiffies;
6891 	int nid = pgdat->node_id;
6892 
6893 	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
6894 		return;
6895 
6896 	/*
6897 	 * The call to memmap_init should have already taken care
6898 	 * of the pages reserved for the memmap, so we can just jump to
6899 	 * the end of that region and start processing the device pages.
6900 	 */
6901 	if (altmap) {
6902 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6903 		nr_pages = end_pfn - start_pfn;
6904 	}
6905 
6906 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6907 		struct page *page = pfn_to_page(pfn);
6908 
6909 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6910 
6911 		if (pfns_per_compound == 1)
6912 			continue;
6913 
6914 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6915 				     compound_nr_pages(altmap, pfns_per_compound));
6916 	}
6917 
6918 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6919 		nr_pages, jiffies_to_msecs(jiffies - start));
6920 }
6921 
6922 #endif
6923 static void __meminit zone_init_free_lists(struct zone *zone)
6924 {
6925 	unsigned int order, t;
6926 	for_each_migratetype_order(order, t) {
6927 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6928 		zone->free_area[order].nr_free = 0;
6929 	}
6930 }
6931 
6932 /*
6933  * Only struct pages that correspond to ranges defined by memblock.memory
6934  * are zeroed and initialized by going through __init_single_page() during
6935  * memmap_init_zone_range().
6936  *
6937  * But, there could be struct pages that correspond to holes in
6938  * memblock.memory. This can happen because of the following reasons:
6939  * - physical memory bank size is not necessarily the exact multiple of the
6940  *   arbitrary section size
6941  * - early reserved memory may not be listed in memblock.memory
6942  * - memory layouts defined with memmap= kernel parameter may not align
6943  *   nicely with memmap sections
6944  *
6945  * Explicitly initialize those struct pages so that:
6946  * - PG_Reserved is set
6947  * - zone and node links point to zone and node that span the page if the
6948  *   hole is in the middle of a zone
6949  * - zone and node links point to adjacent zone/node if the hole falls on
6950  *   the zone boundary; the pages in such holes will be prepended to the
6951  *   zone/node above the hole except for the trailing pages in the last
6952  *   section that will be appended to the zone/node below.
6953  */
6954 static void __init init_unavailable_range(unsigned long spfn,
6955 					  unsigned long epfn,
6956 					  int zone, int node)
6957 {
6958 	unsigned long pfn;
6959 	u64 pgcnt = 0;
6960 
6961 	for (pfn = spfn; pfn < epfn; pfn++) {
6962 		if (!pfn_valid(pageblock_start_pfn(pfn))) {
6963 			pfn = pageblock_end_pfn(pfn) - 1;
6964 			continue;
6965 		}
6966 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6967 		__SetPageReserved(pfn_to_page(pfn));
6968 		pgcnt++;
6969 	}
6970 
6971 	if (pgcnt)
6972 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6973 			node, zone_names[zone], pgcnt);
6974 }
6975 
6976 static void __init memmap_init_zone_range(struct zone *zone,
6977 					  unsigned long start_pfn,
6978 					  unsigned long end_pfn,
6979 					  unsigned long *hole_pfn)
6980 {
6981 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6982 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6983 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6984 
6985 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6986 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6987 
6988 	if (start_pfn >= end_pfn)
6989 		return;
6990 
6991 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6992 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6993 
6994 	if (*hole_pfn < start_pfn)
6995 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6996 
6997 	*hole_pfn = end_pfn;
6998 }
6999 
7000 static void __init memmap_init(void)
7001 {
7002 	unsigned long start_pfn, end_pfn;
7003 	unsigned long hole_pfn = 0;
7004 	int i, j, zone_id = 0, nid;
7005 
7006 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7007 		struct pglist_data *node = NODE_DATA(nid);
7008 
7009 		for (j = 0; j < MAX_NR_ZONES; j++) {
7010 			struct zone *zone = node->node_zones + j;
7011 
7012 			if (!populated_zone(zone))
7013 				continue;
7014 
7015 			memmap_init_zone_range(zone, start_pfn, end_pfn,
7016 					       &hole_pfn);
7017 			zone_id = j;
7018 		}
7019 	}
7020 
7021 #ifdef CONFIG_SPARSEMEM
7022 	/*
7023 	 * Initialize the memory map for hole in the range [memory_end,
7024 	 * section_end].
7025 	 * Append the pages in this hole to the highest zone in the last
7026 	 * node.
7027 	 * The call to init_unavailable_range() is outside the ifdef to
7028 	 * silence the compiler warining about zone_id set but not used;
7029 	 * for FLATMEM it is a nop anyway
7030 	 */
7031 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
7032 	if (hole_pfn < end_pfn)
7033 #endif
7034 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
7035 }
7036 
7037 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7038 			  phys_addr_t min_addr, int nid, bool exact_nid)
7039 {
7040 	void *ptr;
7041 
7042 	if (exact_nid)
7043 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7044 						   MEMBLOCK_ALLOC_ACCESSIBLE,
7045 						   nid);
7046 	else
7047 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7048 						 MEMBLOCK_ALLOC_ACCESSIBLE,
7049 						 nid);
7050 
7051 	if (ptr && size > 0)
7052 		page_init_poison(ptr, size);
7053 
7054 	return ptr;
7055 }
7056 
7057 static int zone_batchsize(struct zone *zone)
7058 {
7059 #ifdef CONFIG_MMU
7060 	int batch;
7061 
7062 	/*
7063 	 * The number of pages to batch allocate is either ~0.1%
7064 	 * of the zone or 1MB, whichever is smaller. The batch
7065 	 * size is striking a balance between allocation latency
7066 	 * and zone lock contention.
7067 	 */
7068 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
7069 	batch /= 4;		/* We effectively *= 4 below */
7070 	if (batch < 1)
7071 		batch = 1;
7072 
7073 	/*
7074 	 * Clamp the batch to a 2^n - 1 value. Having a power
7075 	 * of 2 value was found to be more likely to have
7076 	 * suboptimal cache aliasing properties in some cases.
7077 	 *
7078 	 * For example if 2 tasks are alternately allocating
7079 	 * batches of pages, one task can end up with a lot
7080 	 * of pages of one half of the possible page colors
7081 	 * and the other with pages of the other colors.
7082 	 */
7083 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
7084 
7085 	return batch;
7086 
7087 #else
7088 	/* The deferral and batching of frees should be suppressed under NOMMU
7089 	 * conditions.
7090 	 *
7091 	 * The problem is that NOMMU needs to be able to allocate large chunks
7092 	 * of contiguous memory as there's no hardware page translation to
7093 	 * assemble apparent contiguous memory from discontiguous pages.
7094 	 *
7095 	 * Queueing large contiguous runs of pages for batching, however,
7096 	 * causes the pages to actually be freed in smaller chunks.  As there
7097 	 * can be a significant delay between the individual batches being
7098 	 * recycled, this leads to the once large chunks of space being
7099 	 * fragmented and becoming unavailable for high-order allocations.
7100 	 */
7101 	return 0;
7102 #endif
7103 }
7104 
7105 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7106 {
7107 #ifdef CONFIG_MMU
7108 	int high;
7109 	int nr_split_cpus;
7110 	unsigned long total_pages;
7111 
7112 	if (!percpu_pagelist_high_fraction) {
7113 		/*
7114 		 * By default, the high value of the pcp is based on the zone
7115 		 * low watermark so that if they are full then background
7116 		 * reclaim will not be started prematurely.
7117 		 */
7118 		total_pages = low_wmark_pages(zone);
7119 	} else {
7120 		/*
7121 		 * If percpu_pagelist_high_fraction is configured, the high
7122 		 * value is based on a fraction of the managed pages in the
7123 		 * zone.
7124 		 */
7125 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7126 	}
7127 
7128 	/*
7129 	 * Split the high value across all online CPUs local to the zone. Note
7130 	 * that early in boot that CPUs may not be online yet and that during
7131 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7132 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
7133 	 * all online CPUs to mitigate the risk that reclaim is triggered
7134 	 * prematurely due to pages stored on pcp lists.
7135 	 */
7136 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7137 	if (!nr_split_cpus)
7138 		nr_split_cpus = num_online_cpus();
7139 	high = total_pages / nr_split_cpus;
7140 
7141 	/*
7142 	 * Ensure high is at least batch*4. The multiple is based on the
7143 	 * historical relationship between high and batch.
7144 	 */
7145 	high = max(high, batch << 2);
7146 
7147 	return high;
7148 #else
7149 	return 0;
7150 #endif
7151 }
7152 
7153 /*
7154  * pcp->high and pcp->batch values are related and generally batch is lower
7155  * than high. They are also related to pcp->count such that count is lower
7156  * than high, and as soon as it reaches high, the pcplist is flushed.
7157  *
7158  * However, guaranteeing these relations at all times would require e.g. write
7159  * barriers here but also careful usage of read barriers at the read side, and
7160  * thus be prone to error and bad for performance. Thus the update only prevents
7161  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7162  * can cope with those fields changing asynchronously, and fully trust only the
7163  * pcp->count field on the local CPU with interrupts disabled.
7164  *
7165  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7166  * outside of boot time (or some other assurance that no concurrent updaters
7167  * exist).
7168  */
7169 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7170 		unsigned long batch)
7171 {
7172 	WRITE_ONCE(pcp->batch, batch);
7173 	WRITE_ONCE(pcp->high, high);
7174 }
7175 
7176 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7177 {
7178 	int pindex;
7179 
7180 	memset(pcp, 0, sizeof(*pcp));
7181 	memset(pzstats, 0, sizeof(*pzstats));
7182 
7183 	spin_lock_init(&pcp->lock);
7184 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7185 		INIT_LIST_HEAD(&pcp->lists[pindex]);
7186 
7187 	/*
7188 	 * Set batch and high values safe for a boot pageset. A true percpu
7189 	 * pageset's initialization will update them subsequently. Here we don't
7190 	 * need to be as careful as pageset_update() as nobody can access the
7191 	 * pageset yet.
7192 	 */
7193 	pcp->high = BOOT_PAGESET_HIGH;
7194 	pcp->batch = BOOT_PAGESET_BATCH;
7195 	pcp->free_factor = 0;
7196 }
7197 
7198 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7199 		unsigned long batch)
7200 {
7201 	struct per_cpu_pages *pcp;
7202 	int cpu;
7203 
7204 	for_each_possible_cpu(cpu) {
7205 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7206 		pageset_update(pcp, high, batch);
7207 	}
7208 }
7209 
7210 /*
7211  * Calculate and set new high and batch values for all per-cpu pagesets of a
7212  * zone based on the zone's size.
7213  */
7214 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7215 {
7216 	int new_high, new_batch;
7217 
7218 	new_batch = max(1, zone_batchsize(zone));
7219 	new_high = zone_highsize(zone, new_batch, cpu_online);
7220 
7221 	if (zone->pageset_high == new_high &&
7222 	    zone->pageset_batch == new_batch)
7223 		return;
7224 
7225 	zone->pageset_high = new_high;
7226 	zone->pageset_batch = new_batch;
7227 
7228 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7229 }
7230 
7231 void __meminit setup_zone_pageset(struct zone *zone)
7232 {
7233 	int cpu;
7234 
7235 	/* Size may be 0 on !SMP && !NUMA */
7236 	if (sizeof(struct per_cpu_zonestat) > 0)
7237 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7238 
7239 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7240 	for_each_possible_cpu(cpu) {
7241 		struct per_cpu_pages *pcp;
7242 		struct per_cpu_zonestat *pzstats;
7243 
7244 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7245 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7246 		per_cpu_pages_init(pcp, pzstats);
7247 	}
7248 
7249 	zone_set_pageset_high_and_batch(zone, 0);
7250 }
7251 
7252 /*
7253  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7254  * page high values need to be recalculated.
7255  */
7256 static void zone_pcp_update(struct zone *zone, int cpu_online)
7257 {
7258 	mutex_lock(&pcp_batch_high_lock);
7259 	zone_set_pageset_high_and_batch(zone, cpu_online);
7260 	mutex_unlock(&pcp_batch_high_lock);
7261 }
7262 
7263 /*
7264  * Allocate per cpu pagesets and initialize them.
7265  * Before this call only boot pagesets were available.
7266  */
7267 void __init setup_per_cpu_pageset(void)
7268 {
7269 	struct pglist_data *pgdat;
7270 	struct zone *zone;
7271 	int __maybe_unused cpu;
7272 
7273 	for_each_populated_zone(zone)
7274 		setup_zone_pageset(zone);
7275 
7276 #ifdef CONFIG_NUMA
7277 	/*
7278 	 * Unpopulated zones continue using the boot pagesets.
7279 	 * The numa stats for these pagesets need to be reset.
7280 	 * Otherwise, they will end up skewing the stats of
7281 	 * the nodes these zones are associated with.
7282 	 */
7283 	for_each_possible_cpu(cpu) {
7284 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7285 		memset(pzstats->vm_numa_event, 0,
7286 		       sizeof(pzstats->vm_numa_event));
7287 	}
7288 #endif
7289 
7290 	for_each_online_pgdat(pgdat)
7291 		pgdat->per_cpu_nodestats =
7292 			alloc_percpu(struct per_cpu_nodestat);
7293 }
7294 
7295 static __meminit void zone_pcp_init(struct zone *zone)
7296 {
7297 	/*
7298 	 * per cpu subsystem is not up at this point. The following code
7299 	 * relies on the ability of the linker to provide the
7300 	 * offset of a (static) per cpu variable into the per cpu area.
7301 	 */
7302 	zone->per_cpu_pageset = &boot_pageset;
7303 	zone->per_cpu_zonestats = &boot_zonestats;
7304 	zone->pageset_high = BOOT_PAGESET_HIGH;
7305 	zone->pageset_batch = BOOT_PAGESET_BATCH;
7306 
7307 	if (populated_zone(zone))
7308 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7309 			 zone->present_pages, zone_batchsize(zone));
7310 }
7311 
7312 void __meminit init_currently_empty_zone(struct zone *zone,
7313 					unsigned long zone_start_pfn,
7314 					unsigned long size)
7315 {
7316 	struct pglist_data *pgdat = zone->zone_pgdat;
7317 	int zone_idx = zone_idx(zone) + 1;
7318 
7319 	if (zone_idx > pgdat->nr_zones)
7320 		pgdat->nr_zones = zone_idx;
7321 
7322 	zone->zone_start_pfn = zone_start_pfn;
7323 
7324 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7325 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7326 			pgdat->node_id,
7327 			(unsigned long)zone_idx(zone),
7328 			zone_start_pfn, (zone_start_pfn + size));
7329 
7330 	zone_init_free_lists(zone);
7331 	zone->initialized = 1;
7332 }
7333 
7334 /**
7335  * get_pfn_range_for_nid - Return the start and end page frames for a node
7336  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7337  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7338  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7339  *
7340  * It returns the start and end page frame of a node based on information
7341  * provided by memblock_set_node(). If called for a node
7342  * with no available memory, a warning is printed and the start and end
7343  * PFNs will be 0.
7344  */
7345 void __init get_pfn_range_for_nid(unsigned int nid,
7346 			unsigned long *start_pfn, unsigned long *end_pfn)
7347 {
7348 	unsigned long this_start_pfn, this_end_pfn;
7349 	int i;
7350 
7351 	*start_pfn = -1UL;
7352 	*end_pfn = 0;
7353 
7354 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7355 		*start_pfn = min(*start_pfn, this_start_pfn);
7356 		*end_pfn = max(*end_pfn, this_end_pfn);
7357 	}
7358 
7359 	if (*start_pfn == -1UL)
7360 		*start_pfn = 0;
7361 }
7362 
7363 /*
7364  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7365  * assumption is made that zones within a node are ordered in monotonic
7366  * increasing memory addresses so that the "highest" populated zone is used
7367  */
7368 static void __init find_usable_zone_for_movable(void)
7369 {
7370 	int zone_index;
7371 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7372 		if (zone_index == ZONE_MOVABLE)
7373 			continue;
7374 
7375 		if (arch_zone_highest_possible_pfn[zone_index] >
7376 				arch_zone_lowest_possible_pfn[zone_index])
7377 			break;
7378 	}
7379 
7380 	VM_BUG_ON(zone_index == -1);
7381 	movable_zone = zone_index;
7382 }
7383 
7384 /*
7385  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7386  * because it is sized independent of architecture. Unlike the other zones,
7387  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7388  * in each node depending on the size of each node and how evenly kernelcore
7389  * is distributed. This helper function adjusts the zone ranges
7390  * provided by the architecture for a given node by using the end of the
7391  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7392  * zones within a node are in order of monotonic increases memory addresses
7393  */
7394 static void __init adjust_zone_range_for_zone_movable(int nid,
7395 					unsigned long zone_type,
7396 					unsigned long node_start_pfn,
7397 					unsigned long node_end_pfn,
7398 					unsigned long *zone_start_pfn,
7399 					unsigned long *zone_end_pfn)
7400 {
7401 	/* Only adjust if ZONE_MOVABLE is on this node */
7402 	if (zone_movable_pfn[nid]) {
7403 		/* Size ZONE_MOVABLE */
7404 		if (zone_type == ZONE_MOVABLE) {
7405 			*zone_start_pfn = zone_movable_pfn[nid];
7406 			*zone_end_pfn = min(node_end_pfn,
7407 				arch_zone_highest_possible_pfn[movable_zone]);
7408 
7409 		/* Adjust for ZONE_MOVABLE starting within this range */
7410 		} else if (!mirrored_kernelcore &&
7411 			*zone_start_pfn < zone_movable_pfn[nid] &&
7412 			*zone_end_pfn > zone_movable_pfn[nid]) {
7413 			*zone_end_pfn = zone_movable_pfn[nid];
7414 
7415 		/* Check if this whole range is within ZONE_MOVABLE */
7416 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7417 			*zone_start_pfn = *zone_end_pfn;
7418 	}
7419 }
7420 
7421 /*
7422  * Return the number of pages a zone spans in a node, including holes
7423  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7424  */
7425 static unsigned long __init zone_spanned_pages_in_node(int nid,
7426 					unsigned long zone_type,
7427 					unsigned long node_start_pfn,
7428 					unsigned long node_end_pfn,
7429 					unsigned long *zone_start_pfn,
7430 					unsigned long *zone_end_pfn)
7431 {
7432 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7433 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7434 	/* When hotadd a new node from cpu_up(), the node should be empty */
7435 	if (!node_start_pfn && !node_end_pfn)
7436 		return 0;
7437 
7438 	/* Get the start and end of the zone */
7439 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7440 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7441 	adjust_zone_range_for_zone_movable(nid, zone_type,
7442 				node_start_pfn, node_end_pfn,
7443 				zone_start_pfn, zone_end_pfn);
7444 
7445 	/* Check that this node has pages within the zone's required range */
7446 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7447 		return 0;
7448 
7449 	/* Move the zone boundaries inside the node if necessary */
7450 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7451 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7452 
7453 	/* Return the spanned pages */
7454 	return *zone_end_pfn - *zone_start_pfn;
7455 }
7456 
7457 /*
7458  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7459  * then all holes in the requested range will be accounted for.
7460  */
7461 unsigned long __init __absent_pages_in_range(int nid,
7462 				unsigned long range_start_pfn,
7463 				unsigned long range_end_pfn)
7464 {
7465 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7466 	unsigned long start_pfn, end_pfn;
7467 	int i;
7468 
7469 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7470 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7471 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7472 		nr_absent -= end_pfn - start_pfn;
7473 	}
7474 	return nr_absent;
7475 }
7476 
7477 /**
7478  * absent_pages_in_range - Return number of page frames in holes within a range
7479  * @start_pfn: The start PFN to start searching for holes
7480  * @end_pfn: The end PFN to stop searching for holes
7481  *
7482  * Return: the number of pages frames in memory holes within a range.
7483  */
7484 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7485 							unsigned long end_pfn)
7486 {
7487 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7488 }
7489 
7490 /* Return the number of page frames in holes in a zone on a node */
7491 static unsigned long __init zone_absent_pages_in_node(int nid,
7492 					unsigned long zone_type,
7493 					unsigned long node_start_pfn,
7494 					unsigned long node_end_pfn)
7495 {
7496 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7497 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7498 	unsigned long zone_start_pfn, zone_end_pfn;
7499 	unsigned long nr_absent;
7500 
7501 	/* When hotadd a new node from cpu_up(), the node should be empty */
7502 	if (!node_start_pfn && !node_end_pfn)
7503 		return 0;
7504 
7505 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7506 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7507 
7508 	adjust_zone_range_for_zone_movable(nid, zone_type,
7509 			node_start_pfn, node_end_pfn,
7510 			&zone_start_pfn, &zone_end_pfn);
7511 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7512 
7513 	/*
7514 	 * ZONE_MOVABLE handling.
7515 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7516 	 * and vice versa.
7517 	 */
7518 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7519 		unsigned long start_pfn, end_pfn;
7520 		struct memblock_region *r;
7521 
7522 		for_each_mem_region(r) {
7523 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7524 					  zone_start_pfn, zone_end_pfn);
7525 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7526 					zone_start_pfn, zone_end_pfn);
7527 
7528 			if (zone_type == ZONE_MOVABLE &&
7529 			    memblock_is_mirror(r))
7530 				nr_absent += end_pfn - start_pfn;
7531 
7532 			if (zone_type == ZONE_NORMAL &&
7533 			    !memblock_is_mirror(r))
7534 				nr_absent += end_pfn - start_pfn;
7535 		}
7536 	}
7537 
7538 	return nr_absent;
7539 }
7540 
7541 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7542 						unsigned long node_start_pfn,
7543 						unsigned long node_end_pfn)
7544 {
7545 	unsigned long realtotalpages = 0, totalpages = 0;
7546 	enum zone_type i;
7547 
7548 	for (i = 0; i < MAX_NR_ZONES; i++) {
7549 		struct zone *zone = pgdat->node_zones + i;
7550 		unsigned long zone_start_pfn, zone_end_pfn;
7551 		unsigned long spanned, absent;
7552 		unsigned long size, real_size;
7553 
7554 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7555 						     node_start_pfn,
7556 						     node_end_pfn,
7557 						     &zone_start_pfn,
7558 						     &zone_end_pfn);
7559 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7560 						   node_start_pfn,
7561 						   node_end_pfn);
7562 
7563 		size = spanned;
7564 		real_size = size - absent;
7565 
7566 		if (size)
7567 			zone->zone_start_pfn = zone_start_pfn;
7568 		else
7569 			zone->zone_start_pfn = 0;
7570 		zone->spanned_pages = size;
7571 		zone->present_pages = real_size;
7572 #if defined(CONFIG_MEMORY_HOTPLUG)
7573 		zone->present_early_pages = real_size;
7574 #endif
7575 
7576 		totalpages += size;
7577 		realtotalpages += real_size;
7578 	}
7579 
7580 	pgdat->node_spanned_pages = totalpages;
7581 	pgdat->node_present_pages = realtotalpages;
7582 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7583 }
7584 
7585 #ifndef CONFIG_SPARSEMEM
7586 /*
7587  * Calculate the size of the zone->blockflags rounded to an unsigned long
7588  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7589  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7590  * round what is now in bits to nearest long in bits, then return it in
7591  * bytes.
7592  */
7593 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7594 {
7595 	unsigned long usemapsize;
7596 
7597 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7598 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7599 	usemapsize = usemapsize >> pageblock_order;
7600 	usemapsize *= NR_PAGEBLOCK_BITS;
7601 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7602 
7603 	return usemapsize / 8;
7604 }
7605 
7606 static void __ref setup_usemap(struct zone *zone)
7607 {
7608 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7609 					       zone->spanned_pages);
7610 	zone->pageblock_flags = NULL;
7611 	if (usemapsize) {
7612 		zone->pageblock_flags =
7613 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7614 					    zone_to_nid(zone));
7615 		if (!zone->pageblock_flags)
7616 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7617 			      usemapsize, zone->name, zone_to_nid(zone));
7618 	}
7619 }
7620 #else
7621 static inline void setup_usemap(struct zone *zone) {}
7622 #endif /* CONFIG_SPARSEMEM */
7623 
7624 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7625 
7626 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7627 void __init set_pageblock_order(void)
7628 {
7629 	unsigned int order = MAX_ORDER - 1;
7630 
7631 	/* Check that pageblock_nr_pages has not already been setup */
7632 	if (pageblock_order)
7633 		return;
7634 
7635 	/* Don't let pageblocks exceed the maximum allocation granularity. */
7636 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7637 		order = HUGETLB_PAGE_ORDER;
7638 
7639 	/*
7640 	 * Assume the largest contiguous order of interest is a huge page.
7641 	 * This value may be variable depending on boot parameters on IA64 and
7642 	 * powerpc.
7643 	 */
7644 	pageblock_order = order;
7645 }
7646 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7647 
7648 /*
7649  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7650  * is unused as pageblock_order is set at compile-time. See
7651  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7652  * the kernel config
7653  */
7654 void __init set_pageblock_order(void)
7655 {
7656 }
7657 
7658 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7659 
7660 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7661 						unsigned long present_pages)
7662 {
7663 	unsigned long pages = spanned_pages;
7664 
7665 	/*
7666 	 * Provide a more accurate estimation if there are holes within
7667 	 * the zone and SPARSEMEM is in use. If there are holes within the
7668 	 * zone, each populated memory region may cost us one or two extra
7669 	 * memmap pages due to alignment because memmap pages for each
7670 	 * populated regions may not be naturally aligned on page boundary.
7671 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7672 	 */
7673 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7674 	    IS_ENABLED(CONFIG_SPARSEMEM))
7675 		pages = present_pages;
7676 
7677 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7678 }
7679 
7680 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7681 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7682 {
7683 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7684 
7685 	spin_lock_init(&ds_queue->split_queue_lock);
7686 	INIT_LIST_HEAD(&ds_queue->split_queue);
7687 	ds_queue->split_queue_len = 0;
7688 }
7689 #else
7690 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7691 #endif
7692 
7693 #ifdef CONFIG_COMPACTION
7694 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7695 {
7696 	init_waitqueue_head(&pgdat->kcompactd_wait);
7697 }
7698 #else
7699 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7700 #endif
7701 
7702 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7703 {
7704 	int i;
7705 
7706 	pgdat_resize_init(pgdat);
7707 	pgdat_kswapd_lock_init(pgdat);
7708 
7709 	pgdat_init_split_queue(pgdat);
7710 	pgdat_init_kcompactd(pgdat);
7711 
7712 	init_waitqueue_head(&pgdat->kswapd_wait);
7713 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7714 
7715 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7716 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
7717 
7718 	pgdat_page_ext_init(pgdat);
7719 	lruvec_init(&pgdat->__lruvec);
7720 }
7721 
7722 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7723 							unsigned long remaining_pages)
7724 {
7725 	atomic_long_set(&zone->managed_pages, remaining_pages);
7726 	zone_set_nid(zone, nid);
7727 	zone->name = zone_names[idx];
7728 	zone->zone_pgdat = NODE_DATA(nid);
7729 	spin_lock_init(&zone->lock);
7730 	zone_seqlock_init(zone);
7731 	zone_pcp_init(zone);
7732 }
7733 
7734 /*
7735  * Set up the zone data structures
7736  * - init pgdat internals
7737  * - init all zones belonging to this node
7738  *
7739  * NOTE: this function is only called during memory hotplug
7740  */
7741 #ifdef CONFIG_MEMORY_HOTPLUG
7742 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7743 {
7744 	int nid = pgdat->node_id;
7745 	enum zone_type z;
7746 	int cpu;
7747 
7748 	pgdat_init_internals(pgdat);
7749 
7750 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
7751 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7752 
7753 	/*
7754 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
7755 	 * Note that kswapd will init kswapd_highest_zoneidx properly
7756 	 * when it starts in the near future.
7757 	 */
7758 	pgdat->nr_zones = 0;
7759 	pgdat->kswapd_order = 0;
7760 	pgdat->kswapd_highest_zoneidx = 0;
7761 	pgdat->node_start_pfn = 0;
7762 	for_each_online_cpu(cpu) {
7763 		struct per_cpu_nodestat *p;
7764 
7765 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7766 		memset(p, 0, sizeof(*p));
7767 	}
7768 
7769 	for (z = 0; z < MAX_NR_ZONES; z++)
7770 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7771 }
7772 #endif
7773 
7774 /*
7775  * Set up the zone data structures:
7776  *   - mark all pages reserved
7777  *   - mark all memory queues empty
7778  *   - clear the memory bitmaps
7779  *
7780  * NOTE: pgdat should get zeroed by caller.
7781  * NOTE: this function is only called during early init.
7782  */
7783 static void __init free_area_init_core(struct pglist_data *pgdat)
7784 {
7785 	enum zone_type j;
7786 	int nid = pgdat->node_id;
7787 
7788 	pgdat_init_internals(pgdat);
7789 	pgdat->per_cpu_nodestats = &boot_nodestats;
7790 
7791 	for (j = 0; j < MAX_NR_ZONES; j++) {
7792 		struct zone *zone = pgdat->node_zones + j;
7793 		unsigned long size, freesize, memmap_pages;
7794 
7795 		size = zone->spanned_pages;
7796 		freesize = zone->present_pages;
7797 
7798 		/*
7799 		 * Adjust freesize so that it accounts for how much memory
7800 		 * is used by this zone for memmap. This affects the watermark
7801 		 * and per-cpu initialisations
7802 		 */
7803 		memmap_pages = calc_memmap_size(size, freesize);
7804 		if (!is_highmem_idx(j)) {
7805 			if (freesize >= memmap_pages) {
7806 				freesize -= memmap_pages;
7807 				if (memmap_pages)
7808 					pr_debug("  %s zone: %lu pages used for memmap\n",
7809 						 zone_names[j], memmap_pages);
7810 			} else
7811 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7812 					zone_names[j], memmap_pages, freesize);
7813 		}
7814 
7815 		/* Account for reserved pages */
7816 		if (j == 0 && freesize > dma_reserve) {
7817 			freesize -= dma_reserve;
7818 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7819 		}
7820 
7821 		if (!is_highmem_idx(j))
7822 			nr_kernel_pages += freesize;
7823 		/* Charge for highmem memmap if there are enough kernel pages */
7824 		else if (nr_kernel_pages > memmap_pages * 2)
7825 			nr_kernel_pages -= memmap_pages;
7826 		nr_all_pages += freesize;
7827 
7828 		/*
7829 		 * Set an approximate value for lowmem here, it will be adjusted
7830 		 * when the bootmem allocator frees pages into the buddy system.
7831 		 * And all highmem pages will be managed by the buddy system.
7832 		 */
7833 		zone_init_internals(zone, j, nid, freesize);
7834 
7835 		if (!size)
7836 			continue;
7837 
7838 		set_pageblock_order();
7839 		setup_usemap(zone);
7840 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7841 	}
7842 }
7843 
7844 #ifdef CONFIG_FLATMEM
7845 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7846 {
7847 	unsigned long __maybe_unused start = 0;
7848 	unsigned long __maybe_unused offset = 0;
7849 
7850 	/* Skip empty nodes */
7851 	if (!pgdat->node_spanned_pages)
7852 		return;
7853 
7854 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7855 	offset = pgdat->node_start_pfn - start;
7856 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7857 	if (!pgdat->node_mem_map) {
7858 		unsigned long size, end;
7859 		struct page *map;
7860 
7861 		/*
7862 		 * The zone's endpoints aren't required to be MAX_ORDER
7863 		 * aligned but the node_mem_map endpoints must be in order
7864 		 * for the buddy allocator to function correctly.
7865 		 */
7866 		end = pgdat_end_pfn(pgdat);
7867 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7868 		size =  (end - start) * sizeof(struct page);
7869 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7870 				   pgdat->node_id, false);
7871 		if (!map)
7872 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7873 			      size, pgdat->node_id);
7874 		pgdat->node_mem_map = map + offset;
7875 	}
7876 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7877 				__func__, pgdat->node_id, (unsigned long)pgdat,
7878 				(unsigned long)pgdat->node_mem_map);
7879 #ifndef CONFIG_NUMA
7880 	/*
7881 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7882 	 */
7883 	if (pgdat == NODE_DATA(0)) {
7884 		mem_map = NODE_DATA(0)->node_mem_map;
7885 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7886 			mem_map -= offset;
7887 	}
7888 #endif
7889 }
7890 #else
7891 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7892 #endif /* CONFIG_FLATMEM */
7893 
7894 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7895 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7896 {
7897 	pgdat->first_deferred_pfn = ULONG_MAX;
7898 }
7899 #else
7900 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7901 #endif
7902 
7903 static void __init free_area_init_node(int nid)
7904 {
7905 	pg_data_t *pgdat = NODE_DATA(nid);
7906 	unsigned long start_pfn = 0;
7907 	unsigned long end_pfn = 0;
7908 
7909 	/* pg_data_t should be reset to zero when it's allocated */
7910 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7911 
7912 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7913 
7914 	pgdat->node_id = nid;
7915 	pgdat->node_start_pfn = start_pfn;
7916 	pgdat->per_cpu_nodestats = NULL;
7917 
7918 	if (start_pfn != end_pfn) {
7919 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7920 			(u64)start_pfn << PAGE_SHIFT,
7921 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7922 	} else {
7923 		pr_info("Initmem setup node %d as memoryless\n", nid);
7924 	}
7925 
7926 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7927 
7928 	alloc_node_mem_map(pgdat);
7929 	pgdat_set_deferred_range(pgdat);
7930 
7931 	free_area_init_core(pgdat);
7932 }
7933 
7934 static void __init free_area_init_memoryless_node(int nid)
7935 {
7936 	free_area_init_node(nid);
7937 }
7938 
7939 #if MAX_NUMNODES > 1
7940 /*
7941  * Figure out the number of possible node ids.
7942  */
7943 void __init setup_nr_node_ids(void)
7944 {
7945 	unsigned int highest;
7946 
7947 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7948 	nr_node_ids = highest + 1;
7949 }
7950 #endif
7951 
7952 /**
7953  * node_map_pfn_alignment - determine the maximum internode alignment
7954  *
7955  * This function should be called after node map is populated and sorted.
7956  * It calculates the maximum power of two alignment which can distinguish
7957  * all the nodes.
7958  *
7959  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7960  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7961  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7962  * shifted, 1GiB is enough and this function will indicate so.
7963  *
7964  * This is used to test whether pfn -> nid mapping of the chosen memory
7965  * model has fine enough granularity to avoid incorrect mapping for the
7966  * populated node map.
7967  *
7968  * Return: the determined alignment in pfn's.  0 if there is no alignment
7969  * requirement (single node).
7970  */
7971 unsigned long __init node_map_pfn_alignment(void)
7972 {
7973 	unsigned long accl_mask = 0, last_end = 0;
7974 	unsigned long start, end, mask;
7975 	int last_nid = NUMA_NO_NODE;
7976 	int i, nid;
7977 
7978 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7979 		if (!start || last_nid < 0 || last_nid == nid) {
7980 			last_nid = nid;
7981 			last_end = end;
7982 			continue;
7983 		}
7984 
7985 		/*
7986 		 * Start with a mask granular enough to pin-point to the
7987 		 * start pfn and tick off bits one-by-one until it becomes
7988 		 * too coarse to separate the current node from the last.
7989 		 */
7990 		mask = ~((1 << __ffs(start)) - 1);
7991 		while (mask && last_end <= (start & (mask << 1)))
7992 			mask <<= 1;
7993 
7994 		/* accumulate all internode masks */
7995 		accl_mask |= mask;
7996 	}
7997 
7998 	/* convert mask to number of pages */
7999 	return ~accl_mask + 1;
8000 }
8001 
8002 /*
8003  * early_calculate_totalpages()
8004  * Sum pages in active regions for movable zone.
8005  * Populate N_MEMORY for calculating usable_nodes.
8006  */
8007 static unsigned long __init early_calculate_totalpages(void)
8008 {
8009 	unsigned long totalpages = 0;
8010 	unsigned long start_pfn, end_pfn;
8011 	int i, nid;
8012 
8013 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8014 		unsigned long pages = end_pfn - start_pfn;
8015 
8016 		totalpages += pages;
8017 		if (pages)
8018 			node_set_state(nid, N_MEMORY);
8019 	}
8020 	return totalpages;
8021 }
8022 
8023 /*
8024  * Find the PFN the Movable zone begins in each node. Kernel memory
8025  * is spread evenly between nodes as long as the nodes have enough
8026  * memory. When they don't, some nodes will have more kernelcore than
8027  * others
8028  */
8029 static void __init find_zone_movable_pfns_for_nodes(void)
8030 {
8031 	int i, nid;
8032 	unsigned long usable_startpfn;
8033 	unsigned long kernelcore_node, kernelcore_remaining;
8034 	/* save the state before borrow the nodemask */
8035 	nodemask_t saved_node_state = node_states[N_MEMORY];
8036 	unsigned long totalpages = early_calculate_totalpages();
8037 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
8038 	struct memblock_region *r;
8039 
8040 	/* Need to find movable_zone earlier when movable_node is specified. */
8041 	find_usable_zone_for_movable();
8042 
8043 	/*
8044 	 * If movable_node is specified, ignore kernelcore and movablecore
8045 	 * options.
8046 	 */
8047 	if (movable_node_is_enabled()) {
8048 		for_each_mem_region(r) {
8049 			if (!memblock_is_hotpluggable(r))
8050 				continue;
8051 
8052 			nid = memblock_get_region_node(r);
8053 
8054 			usable_startpfn = PFN_DOWN(r->base);
8055 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8056 				min(usable_startpfn, zone_movable_pfn[nid]) :
8057 				usable_startpfn;
8058 		}
8059 
8060 		goto out2;
8061 	}
8062 
8063 	/*
8064 	 * If kernelcore=mirror is specified, ignore movablecore option
8065 	 */
8066 	if (mirrored_kernelcore) {
8067 		bool mem_below_4gb_not_mirrored = false;
8068 
8069 		for_each_mem_region(r) {
8070 			if (memblock_is_mirror(r))
8071 				continue;
8072 
8073 			nid = memblock_get_region_node(r);
8074 
8075 			usable_startpfn = memblock_region_memory_base_pfn(r);
8076 
8077 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
8078 				mem_below_4gb_not_mirrored = true;
8079 				continue;
8080 			}
8081 
8082 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8083 				min(usable_startpfn, zone_movable_pfn[nid]) :
8084 				usable_startpfn;
8085 		}
8086 
8087 		if (mem_below_4gb_not_mirrored)
8088 			pr_warn("This configuration results in unmirrored kernel memory.\n");
8089 
8090 		goto out2;
8091 	}
8092 
8093 	/*
8094 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8095 	 * amount of necessary memory.
8096 	 */
8097 	if (required_kernelcore_percent)
8098 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8099 				       10000UL;
8100 	if (required_movablecore_percent)
8101 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8102 					10000UL;
8103 
8104 	/*
8105 	 * If movablecore= was specified, calculate what size of
8106 	 * kernelcore that corresponds so that memory usable for
8107 	 * any allocation type is evenly spread. If both kernelcore
8108 	 * and movablecore are specified, then the value of kernelcore
8109 	 * will be used for required_kernelcore if it's greater than
8110 	 * what movablecore would have allowed.
8111 	 */
8112 	if (required_movablecore) {
8113 		unsigned long corepages;
8114 
8115 		/*
8116 		 * Round-up so that ZONE_MOVABLE is at least as large as what
8117 		 * was requested by the user
8118 		 */
8119 		required_movablecore =
8120 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8121 		required_movablecore = min(totalpages, required_movablecore);
8122 		corepages = totalpages - required_movablecore;
8123 
8124 		required_kernelcore = max(required_kernelcore, corepages);
8125 	}
8126 
8127 	/*
8128 	 * If kernelcore was not specified or kernelcore size is larger
8129 	 * than totalpages, there is no ZONE_MOVABLE.
8130 	 */
8131 	if (!required_kernelcore || required_kernelcore >= totalpages)
8132 		goto out;
8133 
8134 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8135 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8136 
8137 restart:
8138 	/* Spread kernelcore memory as evenly as possible throughout nodes */
8139 	kernelcore_node = required_kernelcore / usable_nodes;
8140 	for_each_node_state(nid, N_MEMORY) {
8141 		unsigned long start_pfn, end_pfn;
8142 
8143 		/*
8144 		 * Recalculate kernelcore_node if the division per node
8145 		 * now exceeds what is necessary to satisfy the requested
8146 		 * amount of memory for the kernel
8147 		 */
8148 		if (required_kernelcore < kernelcore_node)
8149 			kernelcore_node = required_kernelcore / usable_nodes;
8150 
8151 		/*
8152 		 * As the map is walked, we track how much memory is usable
8153 		 * by the kernel using kernelcore_remaining. When it is
8154 		 * 0, the rest of the node is usable by ZONE_MOVABLE
8155 		 */
8156 		kernelcore_remaining = kernelcore_node;
8157 
8158 		/* Go through each range of PFNs within this node */
8159 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8160 			unsigned long size_pages;
8161 
8162 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8163 			if (start_pfn >= end_pfn)
8164 				continue;
8165 
8166 			/* Account for what is only usable for kernelcore */
8167 			if (start_pfn < usable_startpfn) {
8168 				unsigned long kernel_pages;
8169 				kernel_pages = min(end_pfn, usable_startpfn)
8170 								- start_pfn;
8171 
8172 				kernelcore_remaining -= min(kernel_pages,
8173 							kernelcore_remaining);
8174 				required_kernelcore -= min(kernel_pages,
8175 							required_kernelcore);
8176 
8177 				/* Continue if range is now fully accounted */
8178 				if (end_pfn <= usable_startpfn) {
8179 
8180 					/*
8181 					 * Push zone_movable_pfn to the end so
8182 					 * that if we have to rebalance
8183 					 * kernelcore across nodes, we will
8184 					 * not double account here
8185 					 */
8186 					zone_movable_pfn[nid] = end_pfn;
8187 					continue;
8188 				}
8189 				start_pfn = usable_startpfn;
8190 			}
8191 
8192 			/*
8193 			 * The usable PFN range for ZONE_MOVABLE is from
8194 			 * start_pfn->end_pfn. Calculate size_pages as the
8195 			 * number of pages used as kernelcore
8196 			 */
8197 			size_pages = end_pfn - start_pfn;
8198 			if (size_pages > kernelcore_remaining)
8199 				size_pages = kernelcore_remaining;
8200 			zone_movable_pfn[nid] = start_pfn + size_pages;
8201 
8202 			/*
8203 			 * Some kernelcore has been met, update counts and
8204 			 * break if the kernelcore for this node has been
8205 			 * satisfied
8206 			 */
8207 			required_kernelcore -= min(required_kernelcore,
8208 								size_pages);
8209 			kernelcore_remaining -= size_pages;
8210 			if (!kernelcore_remaining)
8211 				break;
8212 		}
8213 	}
8214 
8215 	/*
8216 	 * If there is still required_kernelcore, we do another pass with one
8217 	 * less node in the count. This will push zone_movable_pfn[nid] further
8218 	 * along on the nodes that still have memory until kernelcore is
8219 	 * satisfied
8220 	 */
8221 	usable_nodes--;
8222 	if (usable_nodes && required_kernelcore > usable_nodes)
8223 		goto restart;
8224 
8225 out2:
8226 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8227 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
8228 		unsigned long start_pfn, end_pfn;
8229 
8230 		zone_movable_pfn[nid] =
8231 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8232 
8233 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8234 		if (zone_movable_pfn[nid] >= end_pfn)
8235 			zone_movable_pfn[nid] = 0;
8236 	}
8237 
8238 out:
8239 	/* restore the node_state */
8240 	node_states[N_MEMORY] = saved_node_state;
8241 }
8242 
8243 /* Any regular or high memory on that node ? */
8244 static void check_for_memory(pg_data_t *pgdat, int nid)
8245 {
8246 	enum zone_type zone_type;
8247 
8248 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8249 		struct zone *zone = &pgdat->node_zones[zone_type];
8250 		if (populated_zone(zone)) {
8251 			if (IS_ENABLED(CONFIG_HIGHMEM))
8252 				node_set_state(nid, N_HIGH_MEMORY);
8253 			if (zone_type <= ZONE_NORMAL)
8254 				node_set_state(nid, N_NORMAL_MEMORY);
8255 			break;
8256 		}
8257 	}
8258 }
8259 
8260 /*
8261  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8262  * such cases we allow max_zone_pfn sorted in the descending order
8263  */
8264 bool __weak arch_has_descending_max_zone_pfns(void)
8265 {
8266 	return false;
8267 }
8268 
8269 /**
8270  * free_area_init - Initialise all pg_data_t and zone data
8271  * @max_zone_pfn: an array of max PFNs for each zone
8272  *
8273  * This will call free_area_init_node() for each active node in the system.
8274  * Using the page ranges provided by memblock_set_node(), the size of each
8275  * zone in each node and their holes is calculated. If the maximum PFN
8276  * between two adjacent zones match, it is assumed that the zone is empty.
8277  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8278  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8279  * starts where the previous one ended. For example, ZONE_DMA32 starts
8280  * at arch_max_dma_pfn.
8281  */
8282 void __init free_area_init(unsigned long *max_zone_pfn)
8283 {
8284 	unsigned long start_pfn, end_pfn;
8285 	int i, nid, zone;
8286 	bool descending;
8287 
8288 	/* Record where the zone boundaries are */
8289 	memset(arch_zone_lowest_possible_pfn, 0,
8290 				sizeof(arch_zone_lowest_possible_pfn));
8291 	memset(arch_zone_highest_possible_pfn, 0,
8292 				sizeof(arch_zone_highest_possible_pfn));
8293 
8294 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
8295 	descending = arch_has_descending_max_zone_pfns();
8296 
8297 	for (i = 0; i < MAX_NR_ZONES; i++) {
8298 		if (descending)
8299 			zone = MAX_NR_ZONES - i - 1;
8300 		else
8301 			zone = i;
8302 
8303 		if (zone == ZONE_MOVABLE)
8304 			continue;
8305 
8306 		end_pfn = max(max_zone_pfn[zone], start_pfn);
8307 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
8308 		arch_zone_highest_possible_pfn[zone] = end_pfn;
8309 
8310 		start_pfn = end_pfn;
8311 	}
8312 
8313 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
8314 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8315 	find_zone_movable_pfns_for_nodes();
8316 
8317 	/* Print out the zone ranges */
8318 	pr_info("Zone ranges:\n");
8319 	for (i = 0; i < MAX_NR_ZONES; i++) {
8320 		if (i == ZONE_MOVABLE)
8321 			continue;
8322 		pr_info("  %-8s ", zone_names[i]);
8323 		if (arch_zone_lowest_possible_pfn[i] ==
8324 				arch_zone_highest_possible_pfn[i])
8325 			pr_cont("empty\n");
8326 		else
8327 			pr_cont("[mem %#018Lx-%#018Lx]\n",
8328 				(u64)arch_zone_lowest_possible_pfn[i]
8329 					<< PAGE_SHIFT,
8330 				((u64)arch_zone_highest_possible_pfn[i]
8331 					<< PAGE_SHIFT) - 1);
8332 	}
8333 
8334 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8335 	pr_info("Movable zone start for each node\n");
8336 	for (i = 0; i < MAX_NUMNODES; i++) {
8337 		if (zone_movable_pfn[i])
8338 			pr_info("  Node %d: %#018Lx\n", i,
8339 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8340 	}
8341 
8342 	/*
8343 	 * Print out the early node map, and initialize the
8344 	 * subsection-map relative to active online memory ranges to
8345 	 * enable future "sub-section" extensions of the memory map.
8346 	 */
8347 	pr_info("Early memory node ranges\n");
8348 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8349 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8350 			(u64)start_pfn << PAGE_SHIFT,
8351 			((u64)end_pfn << PAGE_SHIFT) - 1);
8352 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8353 	}
8354 
8355 	/* Initialise every node */
8356 	mminit_verify_pageflags_layout();
8357 	setup_nr_node_ids();
8358 	for_each_node(nid) {
8359 		pg_data_t *pgdat;
8360 
8361 		if (!node_online(nid)) {
8362 			pr_info("Initializing node %d as memoryless\n", nid);
8363 
8364 			/* Allocator not initialized yet */
8365 			pgdat = arch_alloc_nodedata(nid);
8366 			if (!pgdat) {
8367 				pr_err("Cannot allocate %zuB for node %d.\n",
8368 						sizeof(*pgdat), nid);
8369 				continue;
8370 			}
8371 			arch_refresh_nodedata(nid, pgdat);
8372 			free_area_init_memoryless_node(nid);
8373 
8374 			/*
8375 			 * We do not want to confuse userspace by sysfs
8376 			 * files/directories for node without any memory
8377 			 * attached to it, so this node is not marked as
8378 			 * N_MEMORY and not marked online so that no sysfs
8379 			 * hierarchy will be created via register_one_node for
8380 			 * it. The pgdat will get fully initialized by
8381 			 * hotadd_init_pgdat() when memory is hotplugged into
8382 			 * this node.
8383 			 */
8384 			continue;
8385 		}
8386 
8387 		pgdat = NODE_DATA(nid);
8388 		free_area_init_node(nid);
8389 
8390 		/* Any memory on that node */
8391 		if (pgdat->node_present_pages)
8392 			node_set_state(nid, N_MEMORY);
8393 		check_for_memory(pgdat, nid);
8394 	}
8395 
8396 	memmap_init();
8397 }
8398 
8399 static int __init cmdline_parse_core(char *p, unsigned long *core,
8400 				     unsigned long *percent)
8401 {
8402 	unsigned long long coremem;
8403 	char *endptr;
8404 
8405 	if (!p)
8406 		return -EINVAL;
8407 
8408 	/* Value may be a percentage of total memory, otherwise bytes */
8409 	coremem = simple_strtoull(p, &endptr, 0);
8410 	if (*endptr == '%') {
8411 		/* Paranoid check for percent values greater than 100 */
8412 		WARN_ON(coremem > 100);
8413 
8414 		*percent = coremem;
8415 	} else {
8416 		coremem = memparse(p, &p);
8417 		/* Paranoid check that UL is enough for the coremem value */
8418 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8419 
8420 		*core = coremem >> PAGE_SHIFT;
8421 		*percent = 0UL;
8422 	}
8423 	return 0;
8424 }
8425 
8426 /*
8427  * kernelcore=size sets the amount of memory for use for allocations that
8428  * cannot be reclaimed or migrated.
8429  */
8430 static int __init cmdline_parse_kernelcore(char *p)
8431 {
8432 	/* parse kernelcore=mirror */
8433 	if (parse_option_str(p, "mirror")) {
8434 		mirrored_kernelcore = true;
8435 		return 0;
8436 	}
8437 
8438 	return cmdline_parse_core(p, &required_kernelcore,
8439 				  &required_kernelcore_percent);
8440 }
8441 
8442 /*
8443  * movablecore=size sets the amount of memory for use for allocations that
8444  * can be reclaimed or migrated.
8445  */
8446 static int __init cmdline_parse_movablecore(char *p)
8447 {
8448 	return cmdline_parse_core(p, &required_movablecore,
8449 				  &required_movablecore_percent);
8450 }
8451 
8452 early_param("kernelcore", cmdline_parse_kernelcore);
8453 early_param("movablecore", cmdline_parse_movablecore);
8454 
8455 void adjust_managed_page_count(struct page *page, long count)
8456 {
8457 	atomic_long_add(count, &page_zone(page)->managed_pages);
8458 	totalram_pages_add(count);
8459 #ifdef CONFIG_HIGHMEM
8460 	if (PageHighMem(page))
8461 		totalhigh_pages_add(count);
8462 #endif
8463 }
8464 EXPORT_SYMBOL(adjust_managed_page_count);
8465 
8466 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8467 {
8468 	void *pos;
8469 	unsigned long pages = 0;
8470 
8471 	start = (void *)PAGE_ALIGN((unsigned long)start);
8472 	end = (void *)((unsigned long)end & PAGE_MASK);
8473 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8474 		struct page *page = virt_to_page(pos);
8475 		void *direct_map_addr;
8476 
8477 		/*
8478 		 * 'direct_map_addr' might be different from 'pos'
8479 		 * because some architectures' virt_to_page()
8480 		 * work with aliases.  Getting the direct map
8481 		 * address ensures that we get a _writeable_
8482 		 * alias for the memset().
8483 		 */
8484 		direct_map_addr = page_address(page);
8485 		/*
8486 		 * Perform a kasan-unchecked memset() since this memory
8487 		 * has not been initialized.
8488 		 */
8489 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8490 		if ((unsigned int)poison <= 0xFF)
8491 			memset(direct_map_addr, poison, PAGE_SIZE);
8492 
8493 		free_reserved_page(page);
8494 	}
8495 
8496 	if (pages && s)
8497 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8498 
8499 	return pages;
8500 }
8501 
8502 void __init mem_init_print_info(void)
8503 {
8504 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8505 	unsigned long init_code_size, init_data_size;
8506 
8507 	physpages = get_num_physpages();
8508 	codesize = _etext - _stext;
8509 	datasize = _edata - _sdata;
8510 	rosize = __end_rodata - __start_rodata;
8511 	bss_size = __bss_stop - __bss_start;
8512 	init_data_size = __init_end - __init_begin;
8513 	init_code_size = _einittext - _sinittext;
8514 
8515 	/*
8516 	 * Detect special cases and adjust section sizes accordingly:
8517 	 * 1) .init.* may be embedded into .data sections
8518 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8519 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8520 	 * 3) .rodata.* may be embedded into .text or .data sections.
8521 	 */
8522 #define adj_init_size(start, end, size, pos, adj) \
8523 	do { \
8524 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8525 			size -= adj; \
8526 	} while (0)
8527 
8528 	adj_init_size(__init_begin, __init_end, init_data_size,
8529 		     _sinittext, init_code_size);
8530 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8531 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8532 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8533 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8534 
8535 #undef	adj_init_size
8536 
8537 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8538 #ifdef	CONFIG_HIGHMEM
8539 		", %luK highmem"
8540 #endif
8541 		")\n",
8542 		K(nr_free_pages()), K(physpages),
8543 		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
8544 		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
8545 		K(physpages - totalram_pages() - totalcma_pages),
8546 		K(totalcma_pages)
8547 #ifdef	CONFIG_HIGHMEM
8548 		, K(totalhigh_pages())
8549 #endif
8550 		);
8551 }
8552 
8553 /**
8554  * set_dma_reserve - set the specified number of pages reserved in the first zone
8555  * @new_dma_reserve: The number of pages to mark reserved
8556  *
8557  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8558  * In the DMA zone, a significant percentage may be consumed by kernel image
8559  * and other unfreeable allocations which can skew the watermarks badly. This
8560  * function may optionally be used to account for unfreeable pages in the
8561  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8562  * smaller per-cpu batchsize.
8563  */
8564 void __init set_dma_reserve(unsigned long new_dma_reserve)
8565 {
8566 	dma_reserve = new_dma_reserve;
8567 }
8568 
8569 static int page_alloc_cpu_dead(unsigned int cpu)
8570 {
8571 	struct zone *zone;
8572 
8573 	lru_add_drain_cpu(cpu);
8574 	mlock_page_drain_remote(cpu);
8575 	drain_pages(cpu);
8576 
8577 	/*
8578 	 * Spill the event counters of the dead processor
8579 	 * into the current processors event counters.
8580 	 * This artificially elevates the count of the current
8581 	 * processor.
8582 	 */
8583 	vm_events_fold_cpu(cpu);
8584 
8585 	/*
8586 	 * Zero the differential counters of the dead processor
8587 	 * so that the vm statistics are consistent.
8588 	 *
8589 	 * This is only okay since the processor is dead and cannot
8590 	 * race with what we are doing.
8591 	 */
8592 	cpu_vm_stats_fold(cpu);
8593 
8594 	for_each_populated_zone(zone)
8595 		zone_pcp_update(zone, 0);
8596 
8597 	return 0;
8598 }
8599 
8600 static int page_alloc_cpu_online(unsigned int cpu)
8601 {
8602 	struct zone *zone;
8603 
8604 	for_each_populated_zone(zone)
8605 		zone_pcp_update(zone, 1);
8606 	return 0;
8607 }
8608 
8609 #ifdef CONFIG_NUMA
8610 int hashdist = HASHDIST_DEFAULT;
8611 
8612 static int __init set_hashdist(char *str)
8613 {
8614 	if (!str)
8615 		return 0;
8616 	hashdist = simple_strtoul(str, &str, 0);
8617 	return 1;
8618 }
8619 __setup("hashdist=", set_hashdist);
8620 #endif
8621 
8622 void __init page_alloc_init(void)
8623 {
8624 	int ret;
8625 
8626 #ifdef CONFIG_NUMA
8627 	if (num_node_state(N_MEMORY) == 1)
8628 		hashdist = 0;
8629 #endif
8630 
8631 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8632 					"mm/page_alloc:pcp",
8633 					page_alloc_cpu_online,
8634 					page_alloc_cpu_dead);
8635 	WARN_ON(ret < 0);
8636 }
8637 
8638 /*
8639  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8640  *	or min_free_kbytes changes.
8641  */
8642 static void calculate_totalreserve_pages(void)
8643 {
8644 	struct pglist_data *pgdat;
8645 	unsigned long reserve_pages = 0;
8646 	enum zone_type i, j;
8647 
8648 	for_each_online_pgdat(pgdat) {
8649 
8650 		pgdat->totalreserve_pages = 0;
8651 
8652 		for (i = 0; i < MAX_NR_ZONES; i++) {
8653 			struct zone *zone = pgdat->node_zones + i;
8654 			long max = 0;
8655 			unsigned long managed_pages = zone_managed_pages(zone);
8656 
8657 			/* Find valid and maximum lowmem_reserve in the zone */
8658 			for (j = i; j < MAX_NR_ZONES; j++) {
8659 				if (zone->lowmem_reserve[j] > max)
8660 					max = zone->lowmem_reserve[j];
8661 			}
8662 
8663 			/* we treat the high watermark as reserved pages. */
8664 			max += high_wmark_pages(zone);
8665 
8666 			if (max > managed_pages)
8667 				max = managed_pages;
8668 
8669 			pgdat->totalreserve_pages += max;
8670 
8671 			reserve_pages += max;
8672 		}
8673 	}
8674 	totalreserve_pages = reserve_pages;
8675 }
8676 
8677 /*
8678  * setup_per_zone_lowmem_reserve - called whenever
8679  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8680  *	has a correct pages reserved value, so an adequate number of
8681  *	pages are left in the zone after a successful __alloc_pages().
8682  */
8683 static void setup_per_zone_lowmem_reserve(void)
8684 {
8685 	struct pglist_data *pgdat;
8686 	enum zone_type i, j;
8687 
8688 	for_each_online_pgdat(pgdat) {
8689 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8690 			struct zone *zone = &pgdat->node_zones[i];
8691 			int ratio = sysctl_lowmem_reserve_ratio[i];
8692 			bool clear = !ratio || !zone_managed_pages(zone);
8693 			unsigned long managed_pages = 0;
8694 
8695 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8696 				struct zone *upper_zone = &pgdat->node_zones[j];
8697 
8698 				managed_pages += zone_managed_pages(upper_zone);
8699 
8700 				if (clear)
8701 					zone->lowmem_reserve[j] = 0;
8702 				else
8703 					zone->lowmem_reserve[j] = managed_pages / ratio;
8704 			}
8705 		}
8706 	}
8707 
8708 	/* update totalreserve_pages */
8709 	calculate_totalreserve_pages();
8710 }
8711 
8712 static void __setup_per_zone_wmarks(void)
8713 {
8714 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8715 	unsigned long lowmem_pages = 0;
8716 	struct zone *zone;
8717 	unsigned long flags;
8718 
8719 	/* Calculate total number of !ZONE_HIGHMEM pages */
8720 	for_each_zone(zone) {
8721 		if (!is_highmem(zone))
8722 			lowmem_pages += zone_managed_pages(zone);
8723 	}
8724 
8725 	for_each_zone(zone) {
8726 		u64 tmp;
8727 
8728 		spin_lock_irqsave(&zone->lock, flags);
8729 		tmp = (u64)pages_min * zone_managed_pages(zone);
8730 		do_div(tmp, lowmem_pages);
8731 		if (is_highmem(zone)) {
8732 			/*
8733 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8734 			 * need highmem pages, so cap pages_min to a small
8735 			 * value here.
8736 			 *
8737 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8738 			 * deltas control async page reclaim, and so should
8739 			 * not be capped for highmem.
8740 			 */
8741 			unsigned long min_pages;
8742 
8743 			min_pages = zone_managed_pages(zone) / 1024;
8744 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8745 			zone->_watermark[WMARK_MIN] = min_pages;
8746 		} else {
8747 			/*
8748 			 * If it's a lowmem zone, reserve a number of pages
8749 			 * proportionate to the zone's size.
8750 			 */
8751 			zone->_watermark[WMARK_MIN] = tmp;
8752 		}
8753 
8754 		/*
8755 		 * Set the kswapd watermarks distance according to the
8756 		 * scale factor in proportion to available memory, but
8757 		 * ensure a minimum size on small systems.
8758 		 */
8759 		tmp = max_t(u64, tmp >> 2,
8760 			    mult_frac(zone_managed_pages(zone),
8761 				      watermark_scale_factor, 10000));
8762 
8763 		zone->watermark_boost = 0;
8764 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8765 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8766 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8767 
8768 		spin_unlock_irqrestore(&zone->lock, flags);
8769 	}
8770 
8771 	/* update totalreserve_pages */
8772 	calculate_totalreserve_pages();
8773 }
8774 
8775 /**
8776  * setup_per_zone_wmarks - called when min_free_kbytes changes
8777  * or when memory is hot-{added|removed}
8778  *
8779  * Ensures that the watermark[min,low,high] values for each zone are set
8780  * correctly with respect to min_free_kbytes.
8781  */
8782 void setup_per_zone_wmarks(void)
8783 {
8784 	struct zone *zone;
8785 	static DEFINE_SPINLOCK(lock);
8786 
8787 	spin_lock(&lock);
8788 	__setup_per_zone_wmarks();
8789 	spin_unlock(&lock);
8790 
8791 	/*
8792 	 * The watermark size have changed so update the pcpu batch
8793 	 * and high limits or the limits may be inappropriate.
8794 	 */
8795 	for_each_zone(zone)
8796 		zone_pcp_update(zone, 0);
8797 }
8798 
8799 /*
8800  * Initialise min_free_kbytes.
8801  *
8802  * For small machines we want it small (128k min).  For large machines
8803  * we want it large (256MB max).  But it is not linear, because network
8804  * bandwidth does not increase linearly with machine size.  We use
8805  *
8806  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8807  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8808  *
8809  * which yields
8810  *
8811  * 16MB:	512k
8812  * 32MB:	724k
8813  * 64MB:	1024k
8814  * 128MB:	1448k
8815  * 256MB:	2048k
8816  * 512MB:	2896k
8817  * 1024MB:	4096k
8818  * 2048MB:	5792k
8819  * 4096MB:	8192k
8820  * 8192MB:	11584k
8821  * 16384MB:	16384k
8822  */
8823 void calculate_min_free_kbytes(void)
8824 {
8825 	unsigned long lowmem_kbytes;
8826 	int new_min_free_kbytes;
8827 
8828 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8829 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8830 
8831 	if (new_min_free_kbytes > user_min_free_kbytes)
8832 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8833 	else
8834 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8835 				new_min_free_kbytes, user_min_free_kbytes);
8836 
8837 }
8838 
8839 int __meminit init_per_zone_wmark_min(void)
8840 {
8841 	calculate_min_free_kbytes();
8842 	setup_per_zone_wmarks();
8843 	refresh_zone_stat_thresholds();
8844 	setup_per_zone_lowmem_reserve();
8845 
8846 #ifdef CONFIG_NUMA
8847 	setup_min_unmapped_ratio();
8848 	setup_min_slab_ratio();
8849 #endif
8850 
8851 	khugepaged_min_free_kbytes_update();
8852 
8853 	return 0;
8854 }
8855 postcore_initcall(init_per_zone_wmark_min)
8856 
8857 /*
8858  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8859  *	that we can call two helper functions whenever min_free_kbytes
8860  *	changes.
8861  */
8862 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8863 		void *buffer, size_t *length, loff_t *ppos)
8864 {
8865 	int rc;
8866 
8867 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8868 	if (rc)
8869 		return rc;
8870 
8871 	if (write) {
8872 		user_min_free_kbytes = min_free_kbytes;
8873 		setup_per_zone_wmarks();
8874 	}
8875 	return 0;
8876 }
8877 
8878 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8879 		void *buffer, size_t *length, loff_t *ppos)
8880 {
8881 	int rc;
8882 
8883 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8884 	if (rc)
8885 		return rc;
8886 
8887 	if (write)
8888 		setup_per_zone_wmarks();
8889 
8890 	return 0;
8891 }
8892 
8893 #ifdef CONFIG_NUMA
8894 static void setup_min_unmapped_ratio(void)
8895 {
8896 	pg_data_t *pgdat;
8897 	struct zone *zone;
8898 
8899 	for_each_online_pgdat(pgdat)
8900 		pgdat->min_unmapped_pages = 0;
8901 
8902 	for_each_zone(zone)
8903 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8904 						         sysctl_min_unmapped_ratio) / 100;
8905 }
8906 
8907 
8908 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8909 		void *buffer, size_t *length, loff_t *ppos)
8910 {
8911 	int rc;
8912 
8913 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8914 	if (rc)
8915 		return rc;
8916 
8917 	setup_min_unmapped_ratio();
8918 
8919 	return 0;
8920 }
8921 
8922 static void setup_min_slab_ratio(void)
8923 {
8924 	pg_data_t *pgdat;
8925 	struct zone *zone;
8926 
8927 	for_each_online_pgdat(pgdat)
8928 		pgdat->min_slab_pages = 0;
8929 
8930 	for_each_zone(zone)
8931 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8932 						     sysctl_min_slab_ratio) / 100;
8933 }
8934 
8935 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8936 		void *buffer, size_t *length, loff_t *ppos)
8937 {
8938 	int rc;
8939 
8940 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8941 	if (rc)
8942 		return rc;
8943 
8944 	setup_min_slab_ratio();
8945 
8946 	return 0;
8947 }
8948 #endif
8949 
8950 /*
8951  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8952  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8953  *	whenever sysctl_lowmem_reserve_ratio changes.
8954  *
8955  * The reserve ratio obviously has absolutely no relation with the
8956  * minimum watermarks. The lowmem reserve ratio can only make sense
8957  * if in function of the boot time zone sizes.
8958  */
8959 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8960 		void *buffer, size_t *length, loff_t *ppos)
8961 {
8962 	int i;
8963 
8964 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8965 
8966 	for (i = 0; i < MAX_NR_ZONES; i++) {
8967 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8968 			sysctl_lowmem_reserve_ratio[i] = 0;
8969 	}
8970 
8971 	setup_per_zone_lowmem_reserve();
8972 	return 0;
8973 }
8974 
8975 /*
8976  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8977  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8978  * pagelist can have before it gets flushed back to buddy allocator.
8979  */
8980 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8981 		int write, void *buffer, size_t *length, loff_t *ppos)
8982 {
8983 	struct zone *zone;
8984 	int old_percpu_pagelist_high_fraction;
8985 	int ret;
8986 
8987 	mutex_lock(&pcp_batch_high_lock);
8988 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8989 
8990 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8991 	if (!write || ret < 0)
8992 		goto out;
8993 
8994 	/* Sanity checking to avoid pcp imbalance */
8995 	if (percpu_pagelist_high_fraction &&
8996 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8997 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8998 		ret = -EINVAL;
8999 		goto out;
9000 	}
9001 
9002 	/* No change? */
9003 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
9004 		goto out;
9005 
9006 	for_each_populated_zone(zone)
9007 		zone_set_pageset_high_and_batch(zone, 0);
9008 out:
9009 	mutex_unlock(&pcp_batch_high_lock);
9010 	return ret;
9011 }
9012 
9013 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
9014 /*
9015  * Returns the number of pages that arch has reserved but
9016  * is not known to alloc_large_system_hash().
9017  */
9018 static unsigned long __init arch_reserved_kernel_pages(void)
9019 {
9020 	return 0;
9021 }
9022 #endif
9023 
9024 /*
9025  * Adaptive scale is meant to reduce sizes of hash tables on large memory
9026  * machines. As memory size is increased the scale is also increased but at
9027  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
9028  * quadruples the scale is increased by one, which means the size of hash table
9029  * only doubles, instead of quadrupling as well.
9030  * Because 32-bit systems cannot have large physical memory, where this scaling
9031  * makes sense, it is disabled on such platforms.
9032  */
9033 #if __BITS_PER_LONG > 32
9034 #define ADAPT_SCALE_BASE	(64ul << 30)
9035 #define ADAPT_SCALE_SHIFT	2
9036 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
9037 #endif
9038 
9039 /*
9040  * allocate a large system hash table from bootmem
9041  * - it is assumed that the hash table must contain an exact power-of-2
9042  *   quantity of entries
9043  * - limit is the number of hash buckets, not the total allocation size
9044  */
9045 void *__init alloc_large_system_hash(const char *tablename,
9046 				     unsigned long bucketsize,
9047 				     unsigned long numentries,
9048 				     int scale,
9049 				     int flags,
9050 				     unsigned int *_hash_shift,
9051 				     unsigned int *_hash_mask,
9052 				     unsigned long low_limit,
9053 				     unsigned long high_limit)
9054 {
9055 	unsigned long long max = high_limit;
9056 	unsigned long log2qty, size;
9057 	void *table;
9058 	gfp_t gfp_flags;
9059 	bool virt;
9060 	bool huge;
9061 
9062 	/* allow the kernel cmdline to have a say */
9063 	if (!numentries) {
9064 		/* round applicable memory size up to nearest megabyte */
9065 		numentries = nr_kernel_pages;
9066 		numentries -= arch_reserved_kernel_pages();
9067 
9068 		/* It isn't necessary when PAGE_SIZE >= 1MB */
9069 		if (PAGE_SIZE < SZ_1M)
9070 			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
9071 
9072 #if __BITS_PER_LONG > 32
9073 		if (!high_limit) {
9074 			unsigned long adapt;
9075 
9076 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9077 			     adapt <<= ADAPT_SCALE_SHIFT)
9078 				scale++;
9079 		}
9080 #endif
9081 
9082 		/* limit to 1 bucket per 2^scale bytes of low memory */
9083 		if (scale > PAGE_SHIFT)
9084 			numentries >>= (scale - PAGE_SHIFT);
9085 		else
9086 			numentries <<= (PAGE_SHIFT - scale);
9087 
9088 		/* Make sure we've got at least a 0-order allocation.. */
9089 		if (unlikely(flags & HASH_SMALL)) {
9090 			/* Makes no sense without HASH_EARLY */
9091 			WARN_ON(!(flags & HASH_EARLY));
9092 			if (!(numentries >> *_hash_shift)) {
9093 				numentries = 1UL << *_hash_shift;
9094 				BUG_ON(!numentries);
9095 			}
9096 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9097 			numentries = PAGE_SIZE / bucketsize;
9098 	}
9099 	numentries = roundup_pow_of_two(numentries);
9100 
9101 	/* limit allocation size to 1/16 total memory by default */
9102 	if (max == 0) {
9103 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9104 		do_div(max, bucketsize);
9105 	}
9106 	max = min(max, 0x80000000ULL);
9107 
9108 	if (numentries < low_limit)
9109 		numentries = low_limit;
9110 	if (numentries > max)
9111 		numentries = max;
9112 
9113 	log2qty = ilog2(numentries);
9114 
9115 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9116 	do {
9117 		virt = false;
9118 		size = bucketsize << log2qty;
9119 		if (flags & HASH_EARLY) {
9120 			if (flags & HASH_ZERO)
9121 				table = memblock_alloc(size, SMP_CACHE_BYTES);
9122 			else
9123 				table = memblock_alloc_raw(size,
9124 							   SMP_CACHE_BYTES);
9125 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
9126 			table = vmalloc_huge(size, gfp_flags);
9127 			virt = true;
9128 			if (table)
9129 				huge = is_vm_area_hugepages(table);
9130 		} else {
9131 			/*
9132 			 * If bucketsize is not a power-of-two, we may free
9133 			 * some pages at the end of hash table which
9134 			 * alloc_pages_exact() automatically does
9135 			 */
9136 			table = alloc_pages_exact(size, gfp_flags);
9137 			kmemleak_alloc(table, size, 1, gfp_flags);
9138 		}
9139 	} while (!table && size > PAGE_SIZE && --log2qty);
9140 
9141 	if (!table)
9142 		panic("Failed to allocate %s hash table\n", tablename);
9143 
9144 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9145 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9146 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9147 
9148 	if (_hash_shift)
9149 		*_hash_shift = log2qty;
9150 	if (_hash_mask)
9151 		*_hash_mask = (1 << log2qty) - 1;
9152 
9153 	return table;
9154 }
9155 
9156 #ifdef CONFIG_CONTIG_ALLOC
9157 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9158 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9159 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9160 static void alloc_contig_dump_pages(struct list_head *page_list)
9161 {
9162 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9163 
9164 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9165 		struct page *page;
9166 
9167 		dump_stack();
9168 		list_for_each_entry(page, page_list, lru)
9169 			dump_page(page, "migration failure");
9170 	}
9171 }
9172 #else
9173 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9174 {
9175 }
9176 #endif
9177 
9178 /* [start, end) must belong to a single zone. */
9179 int __alloc_contig_migrate_range(struct compact_control *cc,
9180 					unsigned long start, unsigned long end)
9181 {
9182 	/* This function is based on compact_zone() from compaction.c. */
9183 	unsigned int nr_reclaimed;
9184 	unsigned long pfn = start;
9185 	unsigned int tries = 0;
9186 	int ret = 0;
9187 	struct migration_target_control mtc = {
9188 		.nid = zone_to_nid(cc->zone),
9189 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9190 	};
9191 
9192 	lru_cache_disable();
9193 
9194 	while (pfn < end || !list_empty(&cc->migratepages)) {
9195 		if (fatal_signal_pending(current)) {
9196 			ret = -EINTR;
9197 			break;
9198 		}
9199 
9200 		if (list_empty(&cc->migratepages)) {
9201 			cc->nr_migratepages = 0;
9202 			ret = isolate_migratepages_range(cc, pfn, end);
9203 			if (ret && ret != -EAGAIN)
9204 				break;
9205 			pfn = cc->migrate_pfn;
9206 			tries = 0;
9207 		} else if (++tries == 5) {
9208 			ret = -EBUSY;
9209 			break;
9210 		}
9211 
9212 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9213 							&cc->migratepages);
9214 		cc->nr_migratepages -= nr_reclaimed;
9215 
9216 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9217 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9218 
9219 		/*
9220 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9221 		 * to retry again over this error, so do the same here.
9222 		 */
9223 		if (ret == -ENOMEM)
9224 			break;
9225 	}
9226 
9227 	lru_cache_enable();
9228 	if (ret < 0) {
9229 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9230 			alloc_contig_dump_pages(&cc->migratepages);
9231 		putback_movable_pages(&cc->migratepages);
9232 		return ret;
9233 	}
9234 	return 0;
9235 }
9236 
9237 /**
9238  * alloc_contig_range() -- tries to allocate given range of pages
9239  * @start:	start PFN to allocate
9240  * @end:	one-past-the-last PFN to allocate
9241  * @migratetype:	migratetype of the underlying pageblocks (either
9242  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9243  *			in range must have the same migratetype and it must
9244  *			be either of the two.
9245  * @gfp_mask:	GFP mask to use during compaction
9246  *
9247  * The PFN range does not have to be pageblock aligned. The PFN range must
9248  * belong to a single zone.
9249  *
9250  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9251  * pageblocks in the range.  Once isolated, the pageblocks should not
9252  * be modified by others.
9253  *
9254  * Return: zero on success or negative error code.  On success all
9255  * pages which PFN is in [start, end) are allocated for the caller and
9256  * need to be freed with free_contig_range().
9257  */
9258 int alloc_contig_range(unsigned long start, unsigned long end,
9259 		       unsigned migratetype, gfp_t gfp_mask)
9260 {
9261 	unsigned long outer_start, outer_end;
9262 	int order;
9263 	int ret = 0;
9264 
9265 	struct compact_control cc = {
9266 		.nr_migratepages = 0,
9267 		.order = -1,
9268 		.zone = page_zone(pfn_to_page(start)),
9269 		.mode = MIGRATE_SYNC,
9270 		.ignore_skip_hint = true,
9271 		.no_set_skip_hint = true,
9272 		.gfp_mask = current_gfp_context(gfp_mask),
9273 		.alloc_contig = true,
9274 	};
9275 	INIT_LIST_HEAD(&cc.migratepages);
9276 
9277 	/*
9278 	 * What we do here is we mark all pageblocks in range as
9279 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9280 	 * have different sizes, and due to the way page allocator
9281 	 * work, start_isolate_page_range() has special handlings for this.
9282 	 *
9283 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9284 	 * migrate the pages from an unaligned range (ie. pages that
9285 	 * we are interested in). This will put all the pages in
9286 	 * range back to page allocator as MIGRATE_ISOLATE.
9287 	 *
9288 	 * When this is done, we take the pages in range from page
9289 	 * allocator removing them from the buddy system.  This way
9290 	 * page allocator will never consider using them.
9291 	 *
9292 	 * This lets us mark the pageblocks back as
9293 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9294 	 * aligned range but not in the unaligned, original range are
9295 	 * put back to page allocator so that buddy can use them.
9296 	 */
9297 
9298 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9299 	if (ret)
9300 		goto done;
9301 
9302 	drain_all_pages(cc.zone);
9303 
9304 	/*
9305 	 * In case of -EBUSY, we'd like to know which page causes problem.
9306 	 * So, just fall through. test_pages_isolated() has a tracepoint
9307 	 * which will report the busy page.
9308 	 *
9309 	 * It is possible that busy pages could become available before
9310 	 * the call to test_pages_isolated, and the range will actually be
9311 	 * allocated.  So, if we fall through be sure to clear ret so that
9312 	 * -EBUSY is not accidentally used or returned to caller.
9313 	 */
9314 	ret = __alloc_contig_migrate_range(&cc, start, end);
9315 	if (ret && ret != -EBUSY)
9316 		goto done;
9317 	ret = 0;
9318 
9319 	/*
9320 	 * Pages from [start, end) are within a pageblock_nr_pages
9321 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9322 	 * more, all pages in [start, end) are free in page allocator.
9323 	 * What we are going to do is to allocate all pages from
9324 	 * [start, end) (that is remove them from page allocator).
9325 	 *
9326 	 * The only problem is that pages at the beginning and at the
9327 	 * end of interesting range may be not aligned with pages that
9328 	 * page allocator holds, ie. they can be part of higher order
9329 	 * pages.  Because of this, we reserve the bigger range and
9330 	 * once this is done free the pages we are not interested in.
9331 	 *
9332 	 * We don't have to hold zone->lock here because the pages are
9333 	 * isolated thus they won't get removed from buddy.
9334 	 */
9335 
9336 	order = 0;
9337 	outer_start = start;
9338 	while (!PageBuddy(pfn_to_page(outer_start))) {
9339 		if (++order >= MAX_ORDER) {
9340 			outer_start = start;
9341 			break;
9342 		}
9343 		outer_start &= ~0UL << order;
9344 	}
9345 
9346 	if (outer_start != start) {
9347 		order = buddy_order(pfn_to_page(outer_start));
9348 
9349 		/*
9350 		 * outer_start page could be small order buddy page and
9351 		 * it doesn't include start page. Adjust outer_start
9352 		 * in this case to report failed page properly
9353 		 * on tracepoint in test_pages_isolated()
9354 		 */
9355 		if (outer_start + (1UL << order) <= start)
9356 			outer_start = start;
9357 	}
9358 
9359 	/* Make sure the range is really isolated. */
9360 	if (test_pages_isolated(outer_start, end, 0)) {
9361 		ret = -EBUSY;
9362 		goto done;
9363 	}
9364 
9365 	/* Grab isolated pages from freelists. */
9366 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9367 	if (!outer_end) {
9368 		ret = -EBUSY;
9369 		goto done;
9370 	}
9371 
9372 	/* Free head and tail (if any) */
9373 	if (start != outer_start)
9374 		free_contig_range(outer_start, start - outer_start);
9375 	if (end != outer_end)
9376 		free_contig_range(end, outer_end - end);
9377 
9378 done:
9379 	undo_isolate_page_range(start, end, migratetype);
9380 	return ret;
9381 }
9382 EXPORT_SYMBOL(alloc_contig_range);
9383 
9384 static int __alloc_contig_pages(unsigned long start_pfn,
9385 				unsigned long nr_pages, gfp_t gfp_mask)
9386 {
9387 	unsigned long end_pfn = start_pfn + nr_pages;
9388 
9389 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9390 				  gfp_mask);
9391 }
9392 
9393 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9394 				   unsigned long nr_pages)
9395 {
9396 	unsigned long i, end_pfn = start_pfn + nr_pages;
9397 	struct page *page;
9398 
9399 	for (i = start_pfn; i < end_pfn; i++) {
9400 		page = pfn_to_online_page(i);
9401 		if (!page)
9402 			return false;
9403 
9404 		if (page_zone(page) != z)
9405 			return false;
9406 
9407 		if (PageReserved(page))
9408 			return false;
9409 	}
9410 	return true;
9411 }
9412 
9413 static bool zone_spans_last_pfn(const struct zone *zone,
9414 				unsigned long start_pfn, unsigned long nr_pages)
9415 {
9416 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9417 
9418 	return zone_spans_pfn(zone, last_pfn);
9419 }
9420 
9421 /**
9422  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9423  * @nr_pages:	Number of contiguous pages to allocate
9424  * @gfp_mask:	GFP mask to limit search and used during compaction
9425  * @nid:	Target node
9426  * @nodemask:	Mask for other possible nodes
9427  *
9428  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9429  * on an applicable zonelist to find a contiguous pfn range which can then be
9430  * tried for allocation with alloc_contig_range(). This routine is intended
9431  * for allocation requests which can not be fulfilled with the buddy allocator.
9432  *
9433  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9434  * power of two, then allocated range is also guaranteed to be aligned to same
9435  * nr_pages (e.g. 1GB request would be aligned to 1GB).
9436  *
9437  * Allocated pages can be freed with free_contig_range() or by manually calling
9438  * __free_page() on each allocated page.
9439  *
9440  * Return: pointer to contiguous pages on success, or NULL if not successful.
9441  */
9442 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9443 				int nid, nodemask_t *nodemask)
9444 {
9445 	unsigned long ret, pfn, flags;
9446 	struct zonelist *zonelist;
9447 	struct zone *zone;
9448 	struct zoneref *z;
9449 
9450 	zonelist = node_zonelist(nid, gfp_mask);
9451 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9452 					gfp_zone(gfp_mask), nodemask) {
9453 		spin_lock_irqsave(&zone->lock, flags);
9454 
9455 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9456 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9457 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9458 				/*
9459 				 * We release the zone lock here because
9460 				 * alloc_contig_range() will also lock the zone
9461 				 * at some point. If there's an allocation
9462 				 * spinning on this lock, it may win the race
9463 				 * and cause alloc_contig_range() to fail...
9464 				 */
9465 				spin_unlock_irqrestore(&zone->lock, flags);
9466 				ret = __alloc_contig_pages(pfn, nr_pages,
9467 							gfp_mask);
9468 				if (!ret)
9469 					return pfn_to_page(pfn);
9470 				spin_lock_irqsave(&zone->lock, flags);
9471 			}
9472 			pfn += nr_pages;
9473 		}
9474 		spin_unlock_irqrestore(&zone->lock, flags);
9475 	}
9476 	return NULL;
9477 }
9478 #endif /* CONFIG_CONTIG_ALLOC */
9479 
9480 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9481 {
9482 	unsigned long count = 0;
9483 
9484 	for (; nr_pages--; pfn++) {
9485 		struct page *page = pfn_to_page(pfn);
9486 
9487 		count += page_count(page) != 1;
9488 		__free_page(page);
9489 	}
9490 	WARN(count != 0, "%lu pages are still in use!\n", count);
9491 }
9492 EXPORT_SYMBOL(free_contig_range);
9493 
9494 /*
9495  * Effectively disable pcplists for the zone by setting the high limit to 0
9496  * and draining all cpus. A concurrent page freeing on another CPU that's about
9497  * to put the page on pcplist will either finish before the drain and the page
9498  * will be drained, or observe the new high limit and skip the pcplist.
9499  *
9500  * Must be paired with a call to zone_pcp_enable().
9501  */
9502 void zone_pcp_disable(struct zone *zone)
9503 {
9504 	mutex_lock(&pcp_batch_high_lock);
9505 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9506 	__drain_all_pages(zone, true);
9507 }
9508 
9509 void zone_pcp_enable(struct zone *zone)
9510 {
9511 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9512 	mutex_unlock(&pcp_batch_high_lock);
9513 }
9514 
9515 void zone_pcp_reset(struct zone *zone)
9516 {
9517 	int cpu;
9518 	struct per_cpu_zonestat *pzstats;
9519 
9520 	if (zone->per_cpu_pageset != &boot_pageset) {
9521 		for_each_online_cpu(cpu) {
9522 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9523 			drain_zonestat(zone, pzstats);
9524 		}
9525 		free_percpu(zone->per_cpu_pageset);
9526 		zone->per_cpu_pageset = &boot_pageset;
9527 		if (zone->per_cpu_zonestats != &boot_zonestats) {
9528 			free_percpu(zone->per_cpu_zonestats);
9529 			zone->per_cpu_zonestats = &boot_zonestats;
9530 		}
9531 	}
9532 }
9533 
9534 #ifdef CONFIG_MEMORY_HOTREMOVE
9535 /*
9536  * All pages in the range must be in a single zone, must not contain holes,
9537  * must span full sections, and must be isolated before calling this function.
9538  */
9539 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9540 {
9541 	unsigned long pfn = start_pfn;
9542 	struct page *page;
9543 	struct zone *zone;
9544 	unsigned int order;
9545 	unsigned long flags;
9546 
9547 	offline_mem_sections(pfn, end_pfn);
9548 	zone = page_zone(pfn_to_page(pfn));
9549 	spin_lock_irqsave(&zone->lock, flags);
9550 	while (pfn < end_pfn) {
9551 		page = pfn_to_page(pfn);
9552 		/*
9553 		 * The HWPoisoned page may be not in buddy system, and
9554 		 * page_count() is not 0.
9555 		 */
9556 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9557 			pfn++;
9558 			continue;
9559 		}
9560 		/*
9561 		 * At this point all remaining PageOffline() pages have a
9562 		 * reference count of 0 and can simply be skipped.
9563 		 */
9564 		if (PageOffline(page)) {
9565 			BUG_ON(page_count(page));
9566 			BUG_ON(PageBuddy(page));
9567 			pfn++;
9568 			continue;
9569 		}
9570 
9571 		BUG_ON(page_count(page));
9572 		BUG_ON(!PageBuddy(page));
9573 		order = buddy_order(page);
9574 		del_page_from_free_list(page, zone, order);
9575 		pfn += (1 << order);
9576 	}
9577 	spin_unlock_irqrestore(&zone->lock, flags);
9578 }
9579 #endif
9580 
9581 /*
9582  * This function returns a stable result only if called under zone lock.
9583  */
9584 bool is_free_buddy_page(struct page *page)
9585 {
9586 	unsigned long pfn = page_to_pfn(page);
9587 	unsigned int order;
9588 
9589 	for (order = 0; order < MAX_ORDER; order++) {
9590 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9591 
9592 		if (PageBuddy(page_head) &&
9593 		    buddy_order_unsafe(page_head) >= order)
9594 			break;
9595 	}
9596 
9597 	return order < MAX_ORDER;
9598 }
9599 EXPORT_SYMBOL(is_free_buddy_page);
9600 
9601 #ifdef CONFIG_MEMORY_FAILURE
9602 /*
9603  * Break down a higher-order page in sub-pages, and keep our target out of
9604  * buddy allocator.
9605  */
9606 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9607 				   struct page *target, int low, int high,
9608 				   int migratetype)
9609 {
9610 	unsigned long size = 1 << high;
9611 	struct page *current_buddy, *next_page;
9612 
9613 	while (high > low) {
9614 		high--;
9615 		size >>= 1;
9616 
9617 		if (target >= &page[size]) {
9618 			next_page = page + size;
9619 			current_buddy = page;
9620 		} else {
9621 			next_page = page;
9622 			current_buddy = page + size;
9623 		}
9624 
9625 		if (set_page_guard(zone, current_buddy, high, migratetype))
9626 			continue;
9627 
9628 		if (current_buddy != target) {
9629 			add_to_free_list(current_buddy, zone, high, migratetype);
9630 			set_buddy_order(current_buddy, high);
9631 			page = next_page;
9632 		}
9633 	}
9634 }
9635 
9636 /*
9637  * Take a page that will be marked as poisoned off the buddy allocator.
9638  */
9639 bool take_page_off_buddy(struct page *page)
9640 {
9641 	struct zone *zone = page_zone(page);
9642 	unsigned long pfn = page_to_pfn(page);
9643 	unsigned long flags;
9644 	unsigned int order;
9645 	bool ret = false;
9646 
9647 	spin_lock_irqsave(&zone->lock, flags);
9648 	for (order = 0; order < MAX_ORDER; order++) {
9649 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9650 		int page_order = buddy_order(page_head);
9651 
9652 		if (PageBuddy(page_head) && page_order >= order) {
9653 			unsigned long pfn_head = page_to_pfn(page_head);
9654 			int migratetype = get_pfnblock_migratetype(page_head,
9655 								   pfn_head);
9656 
9657 			del_page_from_free_list(page_head, zone, page_order);
9658 			break_down_buddy_pages(zone, page_head, page, 0,
9659 						page_order, migratetype);
9660 			SetPageHWPoisonTakenOff(page);
9661 			if (!is_migrate_isolate(migratetype))
9662 				__mod_zone_freepage_state(zone, -1, migratetype);
9663 			ret = true;
9664 			break;
9665 		}
9666 		if (page_count(page_head) > 0)
9667 			break;
9668 	}
9669 	spin_unlock_irqrestore(&zone->lock, flags);
9670 	return ret;
9671 }
9672 
9673 /*
9674  * Cancel takeoff done by take_page_off_buddy().
9675  */
9676 bool put_page_back_buddy(struct page *page)
9677 {
9678 	struct zone *zone = page_zone(page);
9679 	unsigned long pfn = page_to_pfn(page);
9680 	unsigned long flags;
9681 	int migratetype = get_pfnblock_migratetype(page, pfn);
9682 	bool ret = false;
9683 
9684 	spin_lock_irqsave(&zone->lock, flags);
9685 	if (put_page_testzero(page)) {
9686 		ClearPageHWPoisonTakenOff(page);
9687 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9688 		if (TestClearPageHWPoison(page)) {
9689 			ret = true;
9690 		}
9691 	}
9692 	spin_unlock_irqrestore(&zone->lock, flags);
9693 
9694 	return ret;
9695 }
9696 #endif
9697 
9698 #ifdef CONFIG_ZONE_DMA
9699 bool has_managed_dma(void)
9700 {
9701 	struct pglist_data *pgdat;
9702 
9703 	for_each_online_pgdat(pgdat) {
9704 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9705 
9706 		if (managed_zone(zone))
9707 			return true;
9708 	}
9709 	return false;
9710 }
9711 #endif /* CONFIG_ZONE_DMA */
9712