xref: /openbmc/linux/mm/page_alloc.c (revision c4a11bf4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/div64.h>
78 #include "internal.h"
79 #include "shuffle.h"
80 #include "page_reporting.h"
81 
82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83 typedef int __bitwise fpi_t;
84 
85 /* No special request */
86 #define FPI_NONE		((__force fpi_t)0)
87 
88 /*
89  * Skip free page reporting notification for the (possibly merged) page.
90  * This does not hinder free page reporting from grabbing the page,
91  * reporting it and marking it "reported" -  it only skips notifying
92  * the free page reporting infrastructure about a newly freed page. For
93  * example, used when temporarily pulling a page from a freelist and
94  * putting it back unmodified.
95  */
96 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
97 
98 /*
99  * Place the (possibly merged) page to the tail of the freelist. Will ignore
100  * page shuffling (relevant code - e.g., memory onlining - is expected to
101  * shuffle the whole zone).
102  *
103  * Note: No code should rely on this flag for correctness - it's purely
104  *       to allow for optimizations when handing back either fresh pages
105  *       (memory onlining) or untouched pages (page isolation, free page
106  *       reporting).
107  */
108 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
109 
110 /*
111  * Don't poison memory with KASAN (only for the tag-based modes).
112  * During boot, all non-reserved memblock memory is exposed to page_alloc.
113  * Poisoning all that memory lengthens boot time, especially on systems with
114  * large amount of RAM. This flag is used to skip that poisoning.
115  * This is only done for the tag-based KASAN modes, as those are able to
116  * detect memory corruptions with the memory tags assigned by default.
117  * All memory allocated normally after boot gets poisoned as usual.
118  */
119 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
120 
121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122 static DEFINE_MUTEX(pcp_batch_high_lock);
123 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
124 
125 struct pagesets {
126 	local_lock_t lock;
127 };
128 static DEFINE_PER_CPU(struct pagesets, pagesets) = {
129 	.lock = INIT_LOCAL_LOCK(lock),
130 };
131 
132 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
133 DEFINE_PER_CPU(int, numa_node);
134 EXPORT_PER_CPU_SYMBOL(numa_node);
135 #endif
136 
137 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
138 
139 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
140 /*
141  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
142  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
143  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
144  * defined in <linux/topology.h>.
145  */
146 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
147 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
148 #endif
149 
150 /* work_structs for global per-cpu drains */
151 struct pcpu_drain {
152 	struct zone *zone;
153 	struct work_struct work;
154 };
155 static DEFINE_MUTEX(pcpu_drain_mutex);
156 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
157 
158 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
159 volatile unsigned long latent_entropy __latent_entropy;
160 EXPORT_SYMBOL(latent_entropy);
161 #endif
162 
163 /*
164  * Array of node states.
165  */
166 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
167 	[N_POSSIBLE] = NODE_MASK_ALL,
168 	[N_ONLINE] = { { [0] = 1UL } },
169 #ifndef CONFIG_NUMA
170 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
171 #ifdef CONFIG_HIGHMEM
172 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
173 #endif
174 	[N_MEMORY] = { { [0] = 1UL } },
175 	[N_CPU] = { { [0] = 1UL } },
176 #endif	/* NUMA */
177 };
178 EXPORT_SYMBOL(node_states);
179 
180 atomic_long_t _totalram_pages __read_mostly;
181 EXPORT_SYMBOL(_totalram_pages);
182 unsigned long totalreserve_pages __read_mostly;
183 unsigned long totalcma_pages __read_mostly;
184 
185 int percpu_pagelist_high_fraction;
186 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
187 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
188 EXPORT_SYMBOL(init_on_alloc);
189 
190 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
191 EXPORT_SYMBOL(init_on_free);
192 
193 static bool _init_on_alloc_enabled_early __read_mostly
194 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
195 static int __init early_init_on_alloc(char *buf)
196 {
197 
198 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
199 }
200 early_param("init_on_alloc", early_init_on_alloc);
201 
202 static bool _init_on_free_enabled_early __read_mostly
203 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
204 static int __init early_init_on_free(char *buf)
205 {
206 	return kstrtobool(buf, &_init_on_free_enabled_early);
207 }
208 early_param("init_on_free", early_init_on_free);
209 
210 /*
211  * A cached value of the page's pageblock's migratetype, used when the page is
212  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
213  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
214  * Also the migratetype set in the page does not necessarily match the pcplist
215  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
216  * other index - this ensures that it will be put on the correct CMA freelist.
217  */
218 static inline int get_pcppage_migratetype(struct page *page)
219 {
220 	return page->index;
221 }
222 
223 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
224 {
225 	page->index = migratetype;
226 }
227 
228 #ifdef CONFIG_PM_SLEEP
229 /*
230  * The following functions are used by the suspend/hibernate code to temporarily
231  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
232  * while devices are suspended.  To avoid races with the suspend/hibernate code,
233  * they should always be called with system_transition_mutex held
234  * (gfp_allowed_mask also should only be modified with system_transition_mutex
235  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
236  * with that modification).
237  */
238 
239 static gfp_t saved_gfp_mask;
240 
241 void pm_restore_gfp_mask(void)
242 {
243 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
244 	if (saved_gfp_mask) {
245 		gfp_allowed_mask = saved_gfp_mask;
246 		saved_gfp_mask = 0;
247 	}
248 }
249 
250 void pm_restrict_gfp_mask(void)
251 {
252 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
253 	WARN_ON(saved_gfp_mask);
254 	saved_gfp_mask = gfp_allowed_mask;
255 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
256 }
257 
258 bool pm_suspended_storage(void)
259 {
260 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
261 		return false;
262 	return true;
263 }
264 #endif /* CONFIG_PM_SLEEP */
265 
266 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
267 unsigned int pageblock_order __read_mostly;
268 #endif
269 
270 static void __free_pages_ok(struct page *page, unsigned int order,
271 			    fpi_t fpi_flags);
272 
273 /*
274  * results with 256, 32 in the lowmem_reserve sysctl:
275  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
276  *	1G machine -> (16M dma, 784M normal, 224M high)
277  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
278  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
279  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
280  *
281  * TBD: should special case ZONE_DMA32 machines here - in those we normally
282  * don't need any ZONE_NORMAL reservation
283  */
284 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
285 #ifdef CONFIG_ZONE_DMA
286 	[ZONE_DMA] = 256,
287 #endif
288 #ifdef CONFIG_ZONE_DMA32
289 	[ZONE_DMA32] = 256,
290 #endif
291 	[ZONE_NORMAL] = 32,
292 #ifdef CONFIG_HIGHMEM
293 	[ZONE_HIGHMEM] = 0,
294 #endif
295 	[ZONE_MOVABLE] = 0,
296 };
297 
298 static char * const zone_names[MAX_NR_ZONES] = {
299 #ifdef CONFIG_ZONE_DMA
300 	 "DMA",
301 #endif
302 #ifdef CONFIG_ZONE_DMA32
303 	 "DMA32",
304 #endif
305 	 "Normal",
306 #ifdef CONFIG_HIGHMEM
307 	 "HighMem",
308 #endif
309 	 "Movable",
310 #ifdef CONFIG_ZONE_DEVICE
311 	 "Device",
312 #endif
313 };
314 
315 const char * const migratetype_names[MIGRATE_TYPES] = {
316 	"Unmovable",
317 	"Movable",
318 	"Reclaimable",
319 	"HighAtomic",
320 #ifdef CONFIG_CMA
321 	"CMA",
322 #endif
323 #ifdef CONFIG_MEMORY_ISOLATION
324 	"Isolate",
325 #endif
326 };
327 
328 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
329 	[NULL_COMPOUND_DTOR] = NULL,
330 	[COMPOUND_PAGE_DTOR] = free_compound_page,
331 #ifdef CONFIG_HUGETLB_PAGE
332 	[HUGETLB_PAGE_DTOR] = free_huge_page,
333 #endif
334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
335 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
336 #endif
337 };
338 
339 int min_free_kbytes = 1024;
340 int user_min_free_kbytes = -1;
341 int watermark_boost_factor __read_mostly = 15000;
342 int watermark_scale_factor = 10;
343 
344 static unsigned long nr_kernel_pages __initdata;
345 static unsigned long nr_all_pages __initdata;
346 static unsigned long dma_reserve __initdata;
347 
348 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
349 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
350 static unsigned long required_kernelcore __initdata;
351 static unsigned long required_kernelcore_percent __initdata;
352 static unsigned long required_movablecore __initdata;
353 static unsigned long required_movablecore_percent __initdata;
354 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
355 static bool mirrored_kernelcore __meminitdata;
356 
357 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
358 int movable_zone;
359 EXPORT_SYMBOL(movable_zone);
360 
361 #if MAX_NUMNODES > 1
362 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
363 unsigned int nr_online_nodes __read_mostly = 1;
364 EXPORT_SYMBOL(nr_node_ids);
365 EXPORT_SYMBOL(nr_online_nodes);
366 #endif
367 
368 int page_group_by_mobility_disabled __read_mostly;
369 
370 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
371 /*
372  * During boot we initialize deferred pages on-demand, as needed, but once
373  * page_alloc_init_late() has finished, the deferred pages are all initialized,
374  * and we can permanently disable that path.
375  */
376 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
377 
378 /*
379  * Calling kasan_poison_pages() only after deferred memory initialization
380  * has completed. Poisoning pages during deferred memory init will greatly
381  * lengthen the process and cause problem in large memory systems as the
382  * deferred pages initialization is done with interrupt disabled.
383  *
384  * Assuming that there will be no reference to those newly initialized
385  * pages before they are ever allocated, this should have no effect on
386  * KASAN memory tracking as the poison will be properly inserted at page
387  * allocation time. The only corner case is when pages are allocated by
388  * on-demand allocation and then freed again before the deferred pages
389  * initialization is done, but this is not likely to happen.
390  */
391 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
392 {
393 	return static_branch_unlikely(&deferred_pages) ||
394 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
395 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
396 	       PageSkipKASanPoison(page);
397 }
398 
399 /* Returns true if the struct page for the pfn is uninitialised */
400 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
401 {
402 	int nid = early_pfn_to_nid(pfn);
403 
404 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
405 		return true;
406 
407 	return false;
408 }
409 
410 /*
411  * Returns true when the remaining initialisation should be deferred until
412  * later in the boot cycle when it can be parallelised.
413  */
414 static bool __meminit
415 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
416 {
417 	static unsigned long prev_end_pfn, nr_initialised;
418 
419 	/*
420 	 * prev_end_pfn static that contains the end of previous zone
421 	 * No need to protect because called very early in boot before smp_init.
422 	 */
423 	if (prev_end_pfn != end_pfn) {
424 		prev_end_pfn = end_pfn;
425 		nr_initialised = 0;
426 	}
427 
428 	/* Always populate low zones for address-constrained allocations */
429 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
430 		return false;
431 
432 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
433 		return true;
434 	/*
435 	 * We start only with one section of pages, more pages are added as
436 	 * needed until the rest of deferred pages are initialized.
437 	 */
438 	nr_initialised++;
439 	if ((nr_initialised > PAGES_PER_SECTION) &&
440 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
441 		NODE_DATA(nid)->first_deferred_pfn = pfn;
442 		return true;
443 	}
444 	return false;
445 }
446 #else
447 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
448 {
449 	return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
450 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
451 	       PageSkipKASanPoison(page);
452 }
453 
454 static inline bool early_page_uninitialised(unsigned long pfn)
455 {
456 	return false;
457 }
458 
459 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
460 {
461 	return false;
462 }
463 #endif
464 
465 /* Return a pointer to the bitmap storing bits affecting a block of pages */
466 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
467 							unsigned long pfn)
468 {
469 #ifdef CONFIG_SPARSEMEM
470 	return section_to_usemap(__pfn_to_section(pfn));
471 #else
472 	return page_zone(page)->pageblock_flags;
473 #endif /* CONFIG_SPARSEMEM */
474 }
475 
476 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
477 {
478 #ifdef CONFIG_SPARSEMEM
479 	pfn &= (PAGES_PER_SECTION-1);
480 #else
481 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
482 #endif /* CONFIG_SPARSEMEM */
483 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
484 }
485 
486 static __always_inline
487 unsigned long __get_pfnblock_flags_mask(const struct page *page,
488 					unsigned long pfn,
489 					unsigned long mask)
490 {
491 	unsigned long *bitmap;
492 	unsigned long bitidx, word_bitidx;
493 	unsigned long word;
494 
495 	bitmap = get_pageblock_bitmap(page, pfn);
496 	bitidx = pfn_to_bitidx(page, pfn);
497 	word_bitidx = bitidx / BITS_PER_LONG;
498 	bitidx &= (BITS_PER_LONG-1);
499 
500 	word = bitmap[word_bitidx];
501 	return (word >> bitidx) & mask;
502 }
503 
504 /**
505  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
506  * @page: The page within the block of interest
507  * @pfn: The target page frame number
508  * @mask: mask of bits that the caller is interested in
509  *
510  * Return: pageblock_bits flags
511  */
512 unsigned long get_pfnblock_flags_mask(const struct page *page,
513 					unsigned long pfn, unsigned long mask)
514 {
515 	return __get_pfnblock_flags_mask(page, pfn, mask);
516 }
517 
518 static __always_inline int get_pfnblock_migratetype(const struct page *page,
519 					unsigned long pfn)
520 {
521 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
522 }
523 
524 /**
525  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
526  * @page: The page within the block of interest
527  * @flags: The flags to set
528  * @pfn: The target page frame number
529  * @mask: mask of bits that the caller is interested in
530  */
531 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
532 					unsigned long pfn,
533 					unsigned long mask)
534 {
535 	unsigned long *bitmap;
536 	unsigned long bitidx, word_bitidx;
537 	unsigned long old_word, word;
538 
539 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
540 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
541 
542 	bitmap = get_pageblock_bitmap(page, pfn);
543 	bitidx = pfn_to_bitidx(page, pfn);
544 	word_bitidx = bitidx / BITS_PER_LONG;
545 	bitidx &= (BITS_PER_LONG-1);
546 
547 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
548 
549 	mask <<= bitidx;
550 	flags <<= bitidx;
551 
552 	word = READ_ONCE(bitmap[word_bitidx]);
553 	for (;;) {
554 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
555 		if (word == old_word)
556 			break;
557 		word = old_word;
558 	}
559 }
560 
561 void set_pageblock_migratetype(struct page *page, int migratetype)
562 {
563 	if (unlikely(page_group_by_mobility_disabled &&
564 		     migratetype < MIGRATE_PCPTYPES))
565 		migratetype = MIGRATE_UNMOVABLE;
566 
567 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
568 				page_to_pfn(page), MIGRATETYPE_MASK);
569 }
570 
571 #ifdef CONFIG_DEBUG_VM
572 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
573 {
574 	int ret = 0;
575 	unsigned seq;
576 	unsigned long pfn = page_to_pfn(page);
577 	unsigned long sp, start_pfn;
578 
579 	do {
580 		seq = zone_span_seqbegin(zone);
581 		start_pfn = zone->zone_start_pfn;
582 		sp = zone->spanned_pages;
583 		if (!zone_spans_pfn(zone, pfn))
584 			ret = 1;
585 	} while (zone_span_seqretry(zone, seq));
586 
587 	if (ret)
588 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
589 			pfn, zone_to_nid(zone), zone->name,
590 			start_pfn, start_pfn + sp);
591 
592 	return ret;
593 }
594 
595 static int page_is_consistent(struct zone *zone, struct page *page)
596 {
597 	if (zone != page_zone(page))
598 		return 0;
599 
600 	return 1;
601 }
602 /*
603  * Temporary debugging check for pages not lying within a given zone.
604  */
605 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
606 {
607 	if (page_outside_zone_boundaries(zone, page))
608 		return 1;
609 	if (!page_is_consistent(zone, page))
610 		return 1;
611 
612 	return 0;
613 }
614 #else
615 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
616 {
617 	return 0;
618 }
619 #endif
620 
621 static void bad_page(struct page *page, const char *reason)
622 {
623 	static unsigned long resume;
624 	static unsigned long nr_shown;
625 	static unsigned long nr_unshown;
626 
627 	/*
628 	 * Allow a burst of 60 reports, then keep quiet for that minute;
629 	 * or allow a steady drip of one report per second.
630 	 */
631 	if (nr_shown == 60) {
632 		if (time_before(jiffies, resume)) {
633 			nr_unshown++;
634 			goto out;
635 		}
636 		if (nr_unshown) {
637 			pr_alert(
638 			      "BUG: Bad page state: %lu messages suppressed\n",
639 				nr_unshown);
640 			nr_unshown = 0;
641 		}
642 		nr_shown = 0;
643 	}
644 	if (nr_shown++ == 0)
645 		resume = jiffies + 60 * HZ;
646 
647 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
648 		current->comm, page_to_pfn(page));
649 	dump_page(page, reason);
650 
651 	print_modules();
652 	dump_stack();
653 out:
654 	/* Leave bad fields for debug, except PageBuddy could make trouble */
655 	page_mapcount_reset(page); /* remove PageBuddy */
656 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
657 }
658 
659 static inline unsigned int order_to_pindex(int migratetype, int order)
660 {
661 	int base = order;
662 
663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
664 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
665 		VM_BUG_ON(order != pageblock_order);
666 		base = PAGE_ALLOC_COSTLY_ORDER + 1;
667 	}
668 #else
669 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
670 #endif
671 
672 	return (MIGRATE_PCPTYPES * base) + migratetype;
673 }
674 
675 static inline int pindex_to_order(unsigned int pindex)
676 {
677 	int order = pindex / MIGRATE_PCPTYPES;
678 
679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
680 	if (order > PAGE_ALLOC_COSTLY_ORDER)
681 		order = pageblock_order;
682 #else
683 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
684 #endif
685 
686 	return order;
687 }
688 
689 static inline bool pcp_allowed_order(unsigned int order)
690 {
691 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
692 		return true;
693 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
694 	if (order == pageblock_order)
695 		return true;
696 #endif
697 	return false;
698 }
699 
700 static inline void free_the_page(struct page *page, unsigned int order)
701 {
702 	if (pcp_allowed_order(order))		/* Via pcp? */
703 		free_unref_page(page, order);
704 	else
705 		__free_pages_ok(page, order, FPI_NONE);
706 }
707 
708 /*
709  * Higher-order pages are called "compound pages".  They are structured thusly:
710  *
711  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
712  *
713  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
714  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
715  *
716  * The first tail page's ->compound_dtor holds the offset in array of compound
717  * page destructors. See compound_page_dtors.
718  *
719  * The first tail page's ->compound_order holds the order of allocation.
720  * This usage means that zero-order pages may not be compound.
721  */
722 
723 void free_compound_page(struct page *page)
724 {
725 	mem_cgroup_uncharge(page_folio(page));
726 	free_the_page(page, compound_order(page));
727 }
728 
729 void prep_compound_page(struct page *page, unsigned int order)
730 {
731 	int i;
732 	int nr_pages = 1 << order;
733 
734 	__SetPageHead(page);
735 	for (i = 1; i < nr_pages; i++) {
736 		struct page *p = page + i;
737 		p->mapping = TAIL_MAPPING;
738 		set_compound_head(p, page);
739 	}
740 
741 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
742 	set_compound_order(page, order);
743 	atomic_set(compound_mapcount_ptr(page), -1);
744 	if (hpage_pincount_available(page))
745 		atomic_set(compound_pincount_ptr(page), 0);
746 }
747 
748 #ifdef CONFIG_DEBUG_PAGEALLOC
749 unsigned int _debug_guardpage_minorder;
750 
751 bool _debug_pagealloc_enabled_early __read_mostly
752 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
753 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
754 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
755 EXPORT_SYMBOL(_debug_pagealloc_enabled);
756 
757 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
758 
759 static int __init early_debug_pagealloc(char *buf)
760 {
761 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
762 }
763 early_param("debug_pagealloc", early_debug_pagealloc);
764 
765 static int __init debug_guardpage_minorder_setup(char *buf)
766 {
767 	unsigned long res;
768 
769 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
770 		pr_err("Bad debug_guardpage_minorder value\n");
771 		return 0;
772 	}
773 	_debug_guardpage_minorder = res;
774 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
775 	return 0;
776 }
777 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
778 
779 static inline bool set_page_guard(struct zone *zone, struct page *page,
780 				unsigned int order, int migratetype)
781 {
782 	if (!debug_guardpage_enabled())
783 		return false;
784 
785 	if (order >= debug_guardpage_minorder())
786 		return false;
787 
788 	__SetPageGuard(page);
789 	INIT_LIST_HEAD(&page->lru);
790 	set_page_private(page, order);
791 	/* Guard pages are not available for any usage */
792 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
793 
794 	return true;
795 }
796 
797 static inline void clear_page_guard(struct zone *zone, struct page *page,
798 				unsigned int order, int migratetype)
799 {
800 	if (!debug_guardpage_enabled())
801 		return;
802 
803 	__ClearPageGuard(page);
804 
805 	set_page_private(page, 0);
806 	if (!is_migrate_isolate(migratetype))
807 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
808 }
809 #else
810 static inline bool set_page_guard(struct zone *zone, struct page *page,
811 			unsigned int order, int migratetype) { return false; }
812 static inline void clear_page_guard(struct zone *zone, struct page *page,
813 				unsigned int order, int migratetype) {}
814 #endif
815 
816 /*
817  * Enable static keys related to various memory debugging and hardening options.
818  * Some override others, and depend on early params that are evaluated in the
819  * order of appearance. So we need to first gather the full picture of what was
820  * enabled, and then make decisions.
821  */
822 void init_mem_debugging_and_hardening(void)
823 {
824 	bool page_poisoning_requested = false;
825 
826 #ifdef CONFIG_PAGE_POISONING
827 	/*
828 	 * Page poisoning is debug page alloc for some arches. If
829 	 * either of those options are enabled, enable poisoning.
830 	 */
831 	if (page_poisoning_enabled() ||
832 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
833 	      debug_pagealloc_enabled())) {
834 		static_branch_enable(&_page_poisoning_enabled);
835 		page_poisoning_requested = true;
836 	}
837 #endif
838 
839 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
840 	    page_poisoning_requested) {
841 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
842 			"will take precedence over init_on_alloc and init_on_free\n");
843 		_init_on_alloc_enabled_early = false;
844 		_init_on_free_enabled_early = false;
845 	}
846 
847 	if (_init_on_alloc_enabled_early)
848 		static_branch_enable(&init_on_alloc);
849 	else
850 		static_branch_disable(&init_on_alloc);
851 
852 	if (_init_on_free_enabled_early)
853 		static_branch_enable(&init_on_free);
854 	else
855 		static_branch_disable(&init_on_free);
856 
857 #ifdef CONFIG_DEBUG_PAGEALLOC
858 	if (!debug_pagealloc_enabled())
859 		return;
860 
861 	static_branch_enable(&_debug_pagealloc_enabled);
862 
863 	if (!debug_guardpage_minorder())
864 		return;
865 
866 	static_branch_enable(&_debug_guardpage_enabled);
867 #endif
868 }
869 
870 static inline void set_buddy_order(struct page *page, unsigned int order)
871 {
872 	set_page_private(page, order);
873 	__SetPageBuddy(page);
874 }
875 
876 /*
877  * This function checks whether a page is free && is the buddy
878  * we can coalesce a page and its buddy if
879  * (a) the buddy is not in a hole (check before calling!) &&
880  * (b) the buddy is in the buddy system &&
881  * (c) a page and its buddy have the same order &&
882  * (d) a page and its buddy are in the same zone.
883  *
884  * For recording whether a page is in the buddy system, we set PageBuddy.
885  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
886  *
887  * For recording page's order, we use page_private(page).
888  */
889 static inline bool page_is_buddy(struct page *page, struct page *buddy,
890 							unsigned int order)
891 {
892 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
893 		return false;
894 
895 	if (buddy_order(buddy) != order)
896 		return false;
897 
898 	/*
899 	 * zone check is done late to avoid uselessly calculating
900 	 * zone/node ids for pages that could never merge.
901 	 */
902 	if (page_zone_id(page) != page_zone_id(buddy))
903 		return false;
904 
905 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
906 
907 	return true;
908 }
909 
910 #ifdef CONFIG_COMPACTION
911 static inline struct capture_control *task_capc(struct zone *zone)
912 {
913 	struct capture_control *capc = current->capture_control;
914 
915 	return unlikely(capc) &&
916 		!(current->flags & PF_KTHREAD) &&
917 		!capc->page &&
918 		capc->cc->zone == zone ? capc : NULL;
919 }
920 
921 static inline bool
922 compaction_capture(struct capture_control *capc, struct page *page,
923 		   int order, int migratetype)
924 {
925 	if (!capc || order != capc->cc->order)
926 		return false;
927 
928 	/* Do not accidentally pollute CMA or isolated regions*/
929 	if (is_migrate_cma(migratetype) ||
930 	    is_migrate_isolate(migratetype))
931 		return false;
932 
933 	/*
934 	 * Do not let lower order allocations pollute a movable pageblock.
935 	 * This might let an unmovable request use a reclaimable pageblock
936 	 * and vice-versa but no more than normal fallback logic which can
937 	 * have trouble finding a high-order free page.
938 	 */
939 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
940 		return false;
941 
942 	capc->page = page;
943 	return true;
944 }
945 
946 #else
947 static inline struct capture_control *task_capc(struct zone *zone)
948 {
949 	return NULL;
950 }
951 
952 static inline bool
953 compaction_capture(struct capture_control *capc, struct page *page,
954 		   int order, int migratetype)
955 {
956 	return false;
957 }
958 #endif /* CONFIG_COMPACTION */
959 
960 /* Used for pages not on another list */
961 static inline void add_to_free_list(struct page *page, struct zone *zone,
962 				    unsigned int order, int migratetype)
963 {
964 	struct free_area *area = &zone->free_area[order];
965 
966 	list_add(&page->lru, &area->free_list[migratetype]);
967 	area->nr_free++;
968 }
969 
970 /* Used for pages not on another list */
971 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
972 					 unsigned int order, int migratetype)
973 {
974 	struct free_area *area = &zone->free_area[order];
975 
976 	list_add_tail(&page->lru, &area->free_list[migratetype]);
977 	area->nr_free++;
978 }
979 
980 /*
981  * Used for pages which are on another list. Move the pages to the tail
982  * of the list - so the moved pages won't immediately be considered for
983  * allocation again (e.g., optimization for memory onlining).
984  */
985 static inline void move_to_free_list(struct page *page, struct zone *zone,
986 				     unsigned int order, int migratetype)
987 {
988 	struct free_area *area = &zone->free_area[order];
989 
990 	list_move_tail(&page->lru, &area->free_list[migratetype]);
991 }
992 
993 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
994 					   unsigned int order)
995 {
996 	/* clear reported state and update reported page count */
997 	if (page_reported(page))
998 		__ClearPageReported(page);
999 
1000 	list_del(&page->lru);
1001 	__ClearPageBuddy(page);
1002 	set_page_private(page, 0);
1003 	zone->free_area[order].nr_free--;
1004 }
1005 
1006 /*
1007  * If this is not the largest possible page, check if the buddy
1008  * of the next-highest order is free. If it is, it's possible
1009  * that pages are being freed that will coalesce soon. In case,
1010  * that is happening, add the free page to the tail of the list
1011  * so it's less likely to be used soon and more likely to be merged
1012  * as a higher order page
1013  */
1014 static inline bool
1015 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1016 		   struct page *page, unsigned int order)
1017 {
1018 	struct page *higher_page, *higher_buddy;
1019 	unsigned long combined_pfn;
1020 
1021 	if (order >= MAX_ORDER - 2)
1022 		return false;
1023 
1024 	combined_pfn = buddy_pfn & pfn;
1025 	higher_page = page + (combined_pfn - pfn);
1026 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1027 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1028 
1029 	return page_is_buddy(higher_page, higher_buddy, order + 1);
1030 }
1031 
1032 /*
1033  * Freeing function for a buddy system allocator.
1034  *
1035  * The concept of a buddy system is to maintain direct-mapped table
1036  * (containing bit values) for memory blocks of various "orders".
1037  * The bottom level table contains the map for the smallest allocatable
1038  * units of memory (here, pages), and each level above it describes
1039  * pairs of units from the levels below, hence, "buddies".
1040  * At a high level, all that happens here is marking the table entry
1041  * at the bottom level available, and propagating the changes upward
1042  * as necessary, plus some accounting needed to play nicely with other
1043  * parts of the VM system.
1044  * At each level, we keep a list of pages, which are heads of continuous
1045  * free pages of length of (1 << order) and marked with PageBuddy.
1046  * Page's order is recorded in page_private(page) field.
1047  * So when we are allocating or freeing one, we can derive the state of the
1048  * other.  That is, if we allocate a small block, and both were
1049  * free, the remainder of the region must be split into blocks.
1050  * If a block is freed, and its buddy is also free, then this
1051  * triggers coalescing into a block of larger size.
1052  *
1053  * -- nyc
1054  */
1055 
1056 static inline void __free_one_page(struct page *page,
1057 		unsigned long pfn,
1058 		struct zone *zone, unsigned int order,
1059 		int migratetype, fpi_t fpi_flags)
1060 {
1061 	struct capture_control *capc = task_capc(zone);
1062 	unsigned long buddy_pfn;
1063 	unsigned long combined_pfn;
1064 	unsigned int max_order;
1065 	struct page *buddy;
1066 	bool to_tail;
1067 
1068 	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1069 
1070 	VM_BUG_ON(!zone_is_initialized(zone));
1071 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1072 
1073 	VM_BUG_ON(migratetype == -1);
1074 	if (likely(!is_migrate_isolate(migratetype)))
1075 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1076 
1077 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1078 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1079 
1080 continue_merging:
1081 	while (order < max_order) {
1082 		if (compaction_capture(capc, page, order, migratetype)) {
1083 			__mod_zone_freepage_state(zone, -(1 << order),
1084 								migratetype);
1085 			return;
1086 		}
1087 		buddy_pfn = __find_buddy_pfn(pfn, order);
1088 		buddy = page + (buddy_pfn - pfn);
1089 
1090 		if (!page_is_buddy(page, buddy, order))
1091 			goto done_merging;
1092 		/*
1093 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1094 		 * merge with it and move up one order.
1095 		 */
1096 		if (page_is_guard(buddy))
1097 			clear_page_guard(zone, buddy, order, migratetype);
1098 		else
1099 			del_page_from_free_list(buddy, zone, order);
1100 		combined_pfn = buddy_pfn & pfn;
1101 		page = page + (combined_pfn - pfn);
1102 		pfn = combined_pfn;
1103 		order++;
1104 	}
1105 	if (order < MAX_ORDER - 1) {
1106 		/* If we are here, it means order is >= pageblock_order.
1107 		 * We want to prevent merge between freepages on isolate
1108 		 * pageblock and normal pageblock. Without this, pageblock
1109 		 * isolation could cause incorrect freepage or CMA accounting.
1110 		 *
1111 		 * We don't want to hit this code for the more frequent
1112 		 * low-order merging.
1113 		 */
1114 		if (unlikely(has_isolate_pageblock(zone))) {
1115 			int buddy_mt;
1116 
1117 			buddy_pfn = __find_buddy_pfn(pfn, order);
1118 			buddy = page + (buddy_pfn - pfn);
1119 			buddy_mt = get_pageblock_migratetype(buddy);
1120 
1121 			if (migratetype != buddy_mt
1122 					&& (is_migrate_isolate(migratetype) ||
1123 						is_migrate_isolate(buddy_mt)))
1124 				goto done_merging;
1125 		}
1126 		max_order = order + 1;
1127 		goto continue_merging;
1128 	}
1129 
1130 done_merging:
1131 	set_buddy_order(page, order);
1132 
1133 	if (fpi_flags & FPI_TO_TAIL)
1134 		to_tail = true;
1135 	else if (is_shuffle_order(order))
1136 		to_tail = shuffle_pick_tail();
1137 	else
1138 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1139 
1140 	if (to_tail)
1141 		add_to_free_list_tail(page, zone, order, migratetype);
1142 	else
1143 		add_to_free_list(page, zone, order, migratetype);
1144 
1145 	/* Notify page reporting subsystem of freed page */
1146 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1147 		page_reporting_notify_free(order);
1148 }
1149 
1150 /*
1151  * A bad page could be due to a number of fields. Instead of multiple branches,
1152  * try and check multiple fields with one check. The caller must do a detailed
1153  * check if necessary.
1154  */
1155 static inline bool page_expected_state(struct page *page,
1156 					unsigned long check_flags)
1157 {
1158 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1159 		return false;
1160 
1161 	if (unlikely((unsigned long)page->mapping |
1162 			page_ref_count(page) |
1163 #ifdef CONFIG_MEMCG
1164 			page->memcg_data |
1165 #endif
1166 			(page->flags & check_flags)))
1167 		return false;
1168 
1169 	return true;
1170 }
1171 
1172 static const char *page_bad_reason(struct page *page, unsigned long flags)
1173 {
1174 	const char *bad_reason = NULL;
1175 
1176 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1177 		bad_reason = "nonzero mapcount";
1178 	if (unlikely(page->mapping != NULL))
1179 		bad_reason = "non-NULL mapping";
1180 	if (unlikely(page_ref_count(page) != 0))
1181 		bad_reason = "nonzero _refcount";
1182 	if (unlikely(page->flags & flags)) {
1183 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1184 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1185 		else
1186 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1187 	}
1188 #ifdef CONFIG_MEMCG
1189 	if (unlikely(page->memcg_data))
1190 		bad_reason = "page still charged to cgroup";
1191 #endif
1192 	return bad_reason;
1193 }
1194 
1195 static void check_free_page_bad(struct page *page)
1196 {
1197 	bad_page(page,
1198 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1199 }
1200 
1201 static inline int check_free_page(struct page *page)
1202 {
1203 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1204 		return 0;
1205 
1206 	/* Something has gone sideways, find it */
1207 	check_free_page_bad(page);
1208 	return 1;
1209 }
1210 
1211 static int free_tail_pages_check(struct page *head_page, struct page *page)
1212 {
1213 	int ret = 1;
1214 
1215 	/*
1216 	 * We rely page->lru.next never has bit 0 set, unless the page
1217 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1218 	 */
1219 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1220 
1221 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1222 		ret = 0;
1223 		goto out;
1224 	}
1225 	switch (page - head_page) {
1226 	case 1:
1227 		/* the first tail page: ->mapping may be compound_mapcount() */
1228 		if (unlikely(compound_mapcount(page))) {
1229 			bad_page(page, "nonzero compound_mapcount");
1230 			goto out;
1231 		}
1232 		break;
1233 	case 2:
1234 		/*
1235 		 * the second tail page: ->mapping is
1236 		 * deferred_list.next -- ignore value.
1237 		 */
1238 		break;
1239 	default:
1240 		if (page->mapping != TAIL_MAPPING) {
1241 			bad_page(page, "corrupted mapping in tail page");
1242 			goto out;
1243 		}
1244 		break;
1245 	}
1246 	if (unlikely(!PageTail(page))) {
1247 		bad_page(page, "PageTail not set");
1248 		goto out;
1249 	}
1250 	if (unlikely(compound_head(page) != head_page)) {
1251 		bad_page(page, "compound_head not consistent");
1252 		goto out;
1253 	}
1254 	ret = 0;
1255 out:
1256 	page->mapping = NULL;
1257 	clear_compound_head(page);
1258 	return ret;
1259 }
1260 
1261 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1262 {
1263 	int i;
1264 
1265 	if (zero_tags) {
1266 		for (i = 0; i < numpages; i++)
1267 			tag_clear_highpage(page + i);
1268 		return;
1269 	}
1270 
1271 	/* s390's use of memset() could override KASAN redzones. */
1272 	kasan_disable_current();
1273 	for (i = 0; i < numpages; i++) {
1274 		u8 tag = page_kasan_tag(page + i);
1275 		page_kasan_tag_reset(page + i);
1276 		clear_highpage(page + i);
1277 		page_kasan_tag_set(page + i, tag);
1278 	}
1279 	kasan_enable_current();
1280 }
1281 
1282 static __always_inline bool free_pages_prepare(struct page *page,
1283 			unsigned int order, bool check_free, fpi_t fpi_flags)
1284 {
1285 	int bad = 0;
1286 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1287 
1288 	VM_BUG_ON_PAGE(PageTail(page), page);
1289 
1290 	trace_mm_page_free(page, order);
1291 
1292 	if (unlikely(PageHWPoison(page)) && !order) {
1293 		/*
1294 		 * Do not let hwpoison pages hit pcplists/buddy
1295 		 * Untie memcg state and reset page's owner
1296 		 */
1297 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1298 			__memcg_kmem_uncharge_page(page, order);
1299 		reset_page_owner(page, order);
1300 		return false;
1301 	}
1302 
1303 	/*
1304 	 * Check tail pages before head page information is cleared to
1305 	 * avoid checking PageCompound for order-0 pages.
1306 	 */
1307 	if (unlikely(order)) {
1308 		bool compound = PageCompound(page);
1309 		int i;
1310 
1311 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1312 
1313 		if (compound) {
1314 			ClearPageDoubleMap(page);
1315 			ClearPageHasHWPoisoned(page);
1316 		}
1317 		for (i = 1; i < (1 << order); i++) {
1318 			if (compound)
1319 				bad += free_tail_pages_check(page, page + i);
1320 			if (unlikely(check_free_page(page + i))) {
1321 				bad++;
1322 				continue;
1323 			}
1324 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1325 		}
1326 	}
1327 	if (PageMappingFlags(page))
1328 		page->mapping = NULL;
1329 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1330 		__memcg_kmem_uncharge_page(page, order);
1331 	if (check_free)
1332 		bad += check_free_page(page);
1333 	if (bad)
1334 		return false;
1335 
1336 	page_cpupid_reset_last(page);
1337 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1338 	reset_page_owner(page, order);
1339 
1340 	if (!PageHighMem(page)) {
1341 		debug_check_no_locks_freed(page_address(page),
1342 					   PAGE_SIZE << order);
1343 		debug_check_no_obj_freed(page_address(page),
1344 					   PAGE_SIZE << order);
1345 	}
1346 
1347 	kernel_poison_pages(page, 1 << order);
1348 
1349 	/*
1350 	 * As memory initialization might be integrated into KASAN,
1351 	 * kasan_free_pages and kernel_init_free_pages must be
1352 	 * kept together to avoid discrepancies in behavior.
1353 	 *
1354 	 * With hardware tag-based KASAN, memory tags must be set before the
1355 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1356 	 */
1357 	if (kasan_has_integrated_init()) {
1358 		if (!skip_kasan_poison)
1359 			kasan_free_pages(page, order);
1360 	} else {
1361 		bool init = want_init_on_free();
1362 
1363 		if (init)
1364 			kernel_init_free_pages(page, 1 << order, false);
1365 		if (!skip_kasan_poison)
1366 			kasan_poison_pages(page, order, init);
1367 	}
1368 
1369 	/*
1370 	 * arch_free_page() can make the page's contents inaccessible.  s390
1371 	 * does this.  So nothing which can access the page's contents should
1372 	 * happen after this.
1373 	 */
1374 	arch_free_page(page, order);
1375 
1376 	debug_pagealloc_unmap_pages(page, 1 << order);
1377 
1378 	return true;
1379 }
1380 
1381 #ifdef CONFIG_DEBUG_VM
1382 /*
1383  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1384  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1385  * moved from pcp lists to free lists.
1386  */
1387 static bool free_pcp_prepare(struct page *page, unsigned int order)
1388 {
1389 	return free_pages_prepare(page, order, true, FPI_NONE);
1390 }
1391 
1392 static bool bulkfree_pcp_prepare(struct page *page)
1393 {
1394 	if (debug_pagealloc_enabled_static())
1395 		return check_free_page(page);
1396 	else
1397 		return false;
1398 }
1399 #else
1400 /*
1401  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1402  * moving from pcp lists to free list in order to reduce overhead. With
1403  * debug_pagealloc enabled, they are checked also immediately when being freed
1404  * to the pcp lists.
1405  */
1406 static bool free_pcp_prepare(struct page *page, unsigned int order)
1407 {
1408 	if (debug_pagealloc_enabled_static())
1409 		return free_pages_prepare(page, order, true, FPI_NONE);
1410 	else
1411 		return free_pages_prepare(page, order, false, FPI_NONE);
1412 }
1413 
1414 static bool bulkfree_pcp_prepare(struct page *page)
1415 {
1416 	return check_free_page(page);
1417 }
1418 #endif /* CONFIG_DEBUG_VM */
1419 
1420 static inline void prefetch_buddy(struct page *page)
1421 {
1422 	unsigned long pfn = page_to_pfn(page);
1423 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1424 	struct page *buddy = page + (buddy_pfn - pfn);
1425 
1426 	prefetch(buddy);
1427 }
1428 
1429 /*
1430  * Frees a number of pages from the PCP lists
1431  * Assumes all pages on list are in same zone.
1432  * count is the number of pages to free.
1433  */
1434 static void free_pcppages_bulk(struct zone *zone, int count,
1435 					struct per_cpu_pages *pcp)
1436 {
1437 	int pindex = 0;
1438 	int batch_free = 0;
1439 	int nr_freed = 0;
1440 	unsigned int order;
1441 	int prefetch_nr = READ_ONCE(pcp->batch);
1442 	bool isolated_pageblocks;
1443 	struct page *page, *tmp;
1444 	LIST_HEAD(head);
1445 
1446 	/*
1447 	 * Ensure proper count is passed which otherwise would stuck in the
1448 	 * below while (list_empty(list)) loop.
1449 	 */
1450 	count = min(pcp->count, count);
1451 	while (count > 0) {
1452 		struct list_head *list;
1453 
1454 		/*
1455 		 * Remove pages from lists in a round-robin fashion. A
1456 		 * batch_free count is maintained that is incremented when an
1457 		 * empty list is encountered.  This is so more pages are freed
1458 		 * off fuller lists instead of spinning excessively around empty
1459 		 * lists
1460 		 */
1461 		do {
1462 			batch_free++;
1463 			if (++pindex == NR_PCP_LISTS)
1464 				pindex = 0;
1465 			list = &pcp->lists[pindex];
1466 		} while (list_empty(list));
1467 
1468 		/* This is the only non-empty list. Free them all. */
1469 		if (batch_free == NR_PCP_LISTS)
1470 			batch_free = count;
1471 
1472 		order = pindex_to_order(pindex);
1473 		BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1474 		do {
1475 			page = list_last_entry(list, struct page, lru);
1476 			/* must delete to avoid corrupting pcp list */
1477 			list_del(&page->lru);
1478 			nr_freed += 1 << order;
1479 			count -= 1 << order;
1480 
1481 			if (bulkfree_pcp_prepare(page))
1482 				continue;
1483 
1484 			/* Encode order with the migratetype */
1485 			page->index <<= NR_PCP_ORDER_WIDTH;
1486 			page->index |= order;
1487 
1488 			list_add_tail(&page->lru, &head);
1489 
1490 			/*
1491 			 * We are going to put the page back to the global
1492 			 * pool, prefetch its buddy to speed up later access
1493 			 * under zone->lock. It is believed the overhead of
1494 			 * an additional test and calculating buddy_pfn here
1495 			 * can be offset by reduced memory latency later. To
1496 			 * avoid excessive prefetching due to large count, only
1497 			 * prefetch buddy for the first pcp->batch nr of pages.
1498 			 */
1499 			if (prefetch_nr) {
1500 				prefetch_buddy(page);
1501 				prefetch_nr--;
1502 			}
1503 		} while (count > 0 && --batch_free && !list_empty(list));
1504 	}
1505 	pcp->count -= nr_freed;
1506 
1507 	/*
1508 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
1509 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1510 	 */
1511 	spin_lock(&zone->lock);
1512 	isolated_pageblocks = has_isolate_pageblock(zone);
1513 
1514 	/*
1515 	 * Use safe version since after __free_one_page(),
1516 	 * page->lru.next will not point to original list.
1517 	 */
1518 	list_for_each_entry_safe(page, tmp, &head, lru) {
1519 		int mt = get_pcppage_migratetype(page);
1520 
1521 		/* mt has been encoded with the order (see above) */
1522 		order = mt & NR_PCP_ORDER_MASK;
1523 		mt >>= NR_PCP_ORDER_WIDTH;
1524 
1525 		/* MIGRATE_ISOLATE page should not go to pcplists */
1526 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1527 		/* Pageblock could have been isolated meanwhile */
1528 		if (unlikely(isolated_pageblocks))
1529 			mt = get_pageblock_migratetype(page);
1530 
1531 		__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1532 		trace_mm_page_pcpu_drain(page, order, mt);
1533 	}
1534 	spin_unlock(&zone->lock);
1535 }
1536 
1537 static void free_one_page(struct zone *zone,
1538 				struct page *page, unsigned long pfn,
1539 				unsigned int order,
1540 				int migratetype, fpi_t fpi_flags)
1541 {
1542 	unsigned long flags;
1543 
1544 	spin_lock_irqsave(&zone->lock, flags);
1545 	if (unlikely(has_isolate_pageblock(zone) ||
1546 		is_migrate_isolate(migratetype))) {
1547 		migratetype = get_pfnblock_migratetype(page, pfn);
1548 	}
1549 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1550 	spin_unlock_irqrestore(&zone->lock, flags);
1551 }
1552 
1553 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1554 				unsigned long zone, int nid)
1555 {
1556 	mm_zero_struct_page(page);
1557 	set_page_links(page, zone, nid, pfn);
1558 	init_page_count(page);
1559 	page_mapcount_reset(page);
1560 	page_cpupid_reset_last(page);
1561 	page_kasan_tag_reset(page);
1562 
1563 	INIT_LIST_HEAD(&page->lru);
1564 #ifdef WANT_PAGE_VIRTUAL
1565 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1566 	if (!is_highmem_idx(zone))
1567 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1568 #endif
1569 }
1570 
1571 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1572 static void __meminit init_reserved_page(unsigned long pfn)
1573 {
1574 	pg_data_t *pgdat;
1575 	int nid, zid;
1576 
1577 	if (!early_page_uninitialised(pfn))
1578 		return;
1579 
1580 	nid = early_pfn_to_nid(pfn);
1581 	pgdat = NODE_DATA(nid);
1582 
1583 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1584 		struct zone *zone = &pgdat->node_zones[zid];
1585 
1586 		if (zone_spans_pfn(zone, pfn))
1587 			break;
1588 	}
1589 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1590 }
1591 #else
1592 static inline void init_reserved_page(unsigned long pfn)
1593 {
1594 }
1595 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1596 
1597 /*
1598  * Initialised pages do not have PageReserved set. This function is
1599  * called for each range allocated by the bootmem allocator and
1600  * marks the pages PageReserved. The remaining valid pages are later
1601  * sent to the buddy page allocator.
1602  */
1603 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1604 {
1605 	unsigned long start_pfn = PFN_DOWN(start);
1606 	unsigned long end_pfn = PFN_UP(end);
1607 
1608 	for (; start_pfn < end_pfn; start_pfn++) {
1609 		if (pfn_valid(start_pfn)) {
1610 			struct page *page = pfn_to_page(start_pfn);
1611 
1612 			init_reserved_page(start_pfn);
1613 
1614 			/* Avoid false-positive PageTail() */
1615 			INIT_LIST_HEAD(&page->lru);
1616 
1617 			/*
1618 			 * no need for atomic set_bit because the struct
1619 			 * page is not visible yet so nobody should
1620 			 * access it yet.
1621 			 */
1622 			__SetPageReserved(page);
1623 		}
1624 	}
1625 }
1626 
1627 static void __free_pages_ok(struct page *page, unsigned int order,
1628 			    fpi_t fpi_flags)
1629 {
1630 	unsigned long flags;
1631 	int migratetype;
1632 	unsigned long pfn = page_to_pfn(page);
1633 	struct zone *zone = page_zone(page);
1634 
1635 	if (!free_pages_prepare(page, order, true, fpi_flags))
1636 		return;
1637 
1638 	migratetype = get_pfnblock_migratetype(page, pfn);
1639 
1640 	spin_lock_irqsave(&zone->lock, flags);
1641 	if (unlikely(has_isolate_pageblock(zone) ||
1642 		is_migrate_isolate(migratetype))) {
1643 		migratetype = get_pfnblock_migratetype(page, pfn);
1644 	}
1645 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1646 	spin_unlock_irqrestore(&zone->lock, flags);
1647 
1648 	__count_vm_events(PGFREE, 1 << order);
1649 }
1650 
1651 void __free_pages_core(struct page *page, unsigned int order)
1652 {
1653 	unsigned int nr_pages = 1 << order;
1654 	struct page *p = page;
1655 	unsigned int loop;
1656 
1657 	/*
1658 	 * When initializing the memmap, __init_single_page() sets the refcount
1659 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1660 	 * refcount of all involved pages to 0.
1661 	 */
1662 	prefetchw(p);
1663 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1664 		prefetchw(p + 1);
1665 		__ClearPageReserved(p);
1666 		set_page_count(p, 0);
1667 	}
1668 	__ClearPageReserved(p);
1669 	set_page_count(p, 0);
1670 
1671 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1672 
1673 	/*
1674 	 * Bypass PCP and place fresh pages right to the tail, primarily
1675 	 * relevant for memory onlining.
1676 	 */
1677 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1678 }
1679 
1680 #ifdef CONFIG_NUMA
1681 
1682 /*
1683  * During memory init memblocks map pfns to nids. The search is expensive and
1684  * this caches recent lookups. The implementation of __early_pfn_to_nid
1685  * treats start/end as pfns.
1686  */
1687 struct mminit_pfnnid_cache {
1688 	unsigned long last_start;
1689 	unsigned long last_end;
1690 	int last_nid;
1691 };
1692 
1693 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1694 
1695 /*
1696  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1697  */
1698 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1699 					struct mminit_pfnnid_cache *state)
1700 {
1701 	unsigned long start_pfn, end_pfn;
1702 	int nid;
1703 
1704 	if (state->last_start <= pfn && pfn < state->last_end)
1705 		return state->last_nid;
1706 
1707 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1708 	if (nid != NUMA_NO_NODE) {
1709 		state->last_start = start_pfn;
1710 		state->last_end = end_pfn;
1711 		state->last_nid = nid;
1712 	}
1713 
1714 	return nid;
1715 }
1716 
1717 int __meminit early_pfn_to_nid(unsigned long pfn)
1718 {
1719 	static DEFINE_SPINLOCK(early_pfn_lock);
1720 	int nid;
1721 
1722 	spin_lock(&early_pfn_lock);
1723 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1724 	if (nid < 0)
1725 		nid = first_online_node;
1726 	spin_unlock(&early_pfn_lock);
1727 
1728 	return nid;
1729 }
1730 #endif /* CONFIG_NUMA */
1731 
1732 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1733 							unsigned int order)
1734 {
1735 	if (early_page_uninitialised(pfn))
1736 		return;
1737 	__free_pages_core(page, order);
1738 }
1739 
1740 /*
1741  * Check that the whole (or subset of) a pageblock given by the interval of
1742  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1743  * with the migration of free compaction scanner.
1744  *
1745  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1746  *
1747  * It's possible on some configurations to have a setup like node0 node1 node0
1748  * i.e. it's possible that all pages within a zones range of pages do not
1749  * belong to a single zone. We assume that a border between node0 and node1
1750  * can occur within a single pageblock, but not a node0 node1 node0
1751  * interleaving within a single pageblock. It is therefore sufficient to check
1752  * the first and last page of a pageblock and avoid checking each individual
1753  * page in a pageblock.
1754  */
1755 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1756 				     unsigned long end_pfn, struct zone *zone)
1757 {
1758 	struct page *start_page;
1759 	struct page *end_page;
1760 
1761 	/* end_pfn is one past the range we are checking */
1762 	end_pfn--;
1763 
1764 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1765 		return NULL;
1766 
1767 	start_page = pfn_to_online_page(start_pfn);
1768 	if (!start_page)
1769 		return NULL;
1770 
1771 	if (page_zone(start_page) != zone)
1772 		return NULL;
1773 
1774 	end_page = pfn_to_page(end_pfn);
1775 
1776 	/* This gives a shorter code than deriving page_zone(end_page) */
1777 	if (page_zone_id(start_page) != page_zone_id(end_page))
1778 		return NULL;
1779 
1780 	return start_page;
1781 }
1782 
1783 void set_zone_contiguous(struct zone *zone)
1784 {
1785 	unsigned long block_start_pfn = zone->zone_start_pfn;
1786 	unsigned long block_end_pfn;
1787 
1788 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1789 	for (; block_start_pfn < zone_end_pfn(zone);
1790 			block_start_pfn = block_end_pfn,
1791 			 block_end_pfn += pageblock_nr_pages) {
1792 
1793 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1794 
1795 		if (!__pageblock_pfn_to_page(block_start_pfn,
1796 					     block_end_pfn, zone))
1797 			return;
1798 		cond_resched();
1799 	}
1800 
1801 	/* We confirm that there is no hole */
1802 	zone->contiguous = true;
1803 }
1804 
1805 void clear_zone_contiguous(struct zone *zone)
1806 {
1807 	zone->contiguous = false;
1808 }
1809 
1810 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1811 static void __init deferred_free_range(unsigned long pfn,
1812 				       unsigned long nr_pages)
1813 {
1814 	struct page *page;
1815 	unsigned long i;
1816 
1817 	if (!nr_pages)
1818 		return;
1819 
1820 	page = pfn_to_page(pfn);
1821 
1822 	/* Free a large naturally-aligned chunk if possible */
1823 	if (nr_pages == pageblock_nr_pages &&
1824 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1825 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1826 		__free_pages_core(page, pageblock_order);
1827 		return;
1828 	}
1829 
1830 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1831 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1832 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1833 		__free_pages_core(page, 0);
1834 	}
1835 }
1836 
1837 /* Completion tracking for deferred_init_memmap() threads */
1838 static atomic_t pgdat_init_n_undone __initdata;
1839 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1840 
1841 static inline void __init pgdat_init_report_one_done(void)
1842 {
1843 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1844 		complete(&pgdat_init_all_done_comp);
1845 }
1846 
1847 /*
1848  * Returns true if page needs to be initialized or freed to buddy allocator.
1849  *
1850  * First we check if pfn is valid on architectures where it is possible to have
1851  * holes within pageblock_nr_pages. On systems where it is not possible, this
1852  * function is optimized out.
1853  *
1854  * Then, we check if a current large page is valid by only checking the validity
1855  * of the head pfn.
1856  */
1857 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1858 {
1859 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1860 		return false;
1861 	return true;
1862 }
1863 
1864 /*
1865  * Free pages to buddy allocator. Try to free aligned pages in
1866  * pageblock_nr_pages sizes.
1867  */
1868 static void __init deferred_free_pages(unsigned long pfn,
1869 				       unsigned long end_pfn)
1870 {
1871 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1872 	unsigned long nr_free = 0;
1873 
1874 	for (; pfn < end_pfn; pfn++) {
1875 		if (!deferred_pfn_valid(pfn)) {
1876 			deferred_free_range(pfn - nr_free, nr_free);
1877 			nr_free = 0;
1878 		} else if (!(pfn & nr_pgmask)) {
1879 			deferred_free_range(pfn - nr_free, nr_free);
1880 			nr_free = 1;
1881 		} else {
1882 			nr_free++;
1883 		}
1884 	}
1885 	/* Free the last block of pages to allocator */
1886 	deferred_free_range(pfn - nr_free, nr_free);
1887 }
1888 
1889 /*
1890  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1891  * by performing it only once every pageblock_nr_pages.
1892  * Return number of pages initialized.
1893  */
1894 static unsigned long  __init deferred_init_pages(struct zone *zone,
1895 						 unsigned long pfn,
1896 						 unsigned long end_pfn)
1897 {
1898 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1899 	int nid = zone_to_nid(zone);
1900 	unsigned long nr_pages = 0;
1901 	int zid = zone_idx(zone);
1902 	struct page *page = NULL;
1903 
1904 	for (; pfn < end_pfn; pfn++) {
1905 		if (!deferred_pfn_valid(pfn)) {
1906 			page = NULL;
1907 			continue;
1908 		} else if (!page || !(pfn & nr_pgmask)) {
1909 			page = pfn_to_page(pfn);
1910 		} else {
1911 			page++;
1912 		}
1913 		__init_single_page(page, pfn, zid, nid);
1914 		nr_pages++;
1915 	}
1916 	return (nr_pages);
1917 }
1918 
1919 /*
1920  * This function is meant to pre-load the iterator for the zone init.
1921  * Specifically it walks through the ranges until we are caught up to the
1922  * first_init_pfn value and exits there. If we never encounter the value we
1923  * return false indicating there are no valid ranges left.
1924  */
1925 static bool __init
1926 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1927 				    unsigned long *spfn, unsigned long *epfn,
1928 				    unsigned long first_init_pfn)
1929 {
1930 	u64 j;
1931 
1932 	/*
1933 	 * Start out by walking through the ranges in this zone that have
1934 	 * already been initialized. We don't need to do anything with them
1935 	 * so we just need to flush them out of the system.
1936 	 */
1937 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1938 		if (*epfn <= first_init_pfn)
1939 			continue;
1940 		if (*spfn < first_init_pfn)
1941 			*spfn = first_init_pfn;
1942 		*i = j;
1943 		return true;
1944 	}
1945 
1946 	return false;
1947 }
1948 
1949 /*
1950  * Initialize and free pages. We do it in two loops: first we initialize
1951  * struct page, then free to buddy allocator, because while we are
1952  * freeing pages we can access pages that are ahead (computing buddy
1953  * page in __free_one_page()).
1954  *
1955  * In order to try and keep some memory in the cache we have the loop
1956  * broken along max page order boundaries. This way we will not cause
1957  * any issues with the buddy page computation.
1958  */
1959 static unsigned long __init
1960 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1961 		       unsigned long *end_pfn)
1962 {
1963 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1964 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1965 	unsigned long nr_pages = 0;
1966 	u64 j = *i;
1967 
1968 	/* First we loop through and initialize the page values */
1969 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1970 		unsigned long t;
1971 
1972 		if (mo_pfn <= *start_pfn)
1973 			break;
1974 
1975 		t = min(mo_pfn, *end_pfn);
1976 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1977 
1978 		if (mo_pfn < *end_pfn) {
1979 			*start_pfn = mo_pfn;
1980 			break;
1981 		}
1982 	}
1983 
1984 	/* Reset values and now loop through freeing pages as needed */
1985 	swap(j, *i);
1986 
1987 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1988 		unsigned long t;
1989 
1990 		if (mo_pfn <= spfn)
1991 			break;
1992 
1993 		t = min(mo_pfn, epfn);
1994 		deferred_free_pages(spfn, t);
1995 
1996 		if (mo_pfn <= epfn)
1997 			break;
1998 	}
1999 
2000 	return nr_pages;
2001 }
2002 
2003 static void __init
2004 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2005 			   void *arg)
2006 {
2007 	unsigned long spfn, epfn;
2008 	struct zone *zone = arg;
2009 	u64 i;
2010 
2011 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2012 
2013 	/*
2014 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2015 	 * can avoid introducing any issues with the buddy allocator.
2016 	 */
2017 	while (spfn < end_pfn) {
2018 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2019 		cond_resched();
2020 	}
2021 }
2022 
2023 /* An arch may override for more concurrency. */
2024 __weak int __init
2025 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2026 {
2027 	return 1;
2028 }
2029 
2030 /* Initialise remaining memory on a node */
2031 static int __init deferred_init_memmap(void *data)
2032 {
2033 	pg_data_t *pgdat = data;
2034 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2035 	unsigned long spfn = 0, epfn = 0;
2036 	unsigned long first_init_pfn, flags;
2037 	unsigned long start = jiffies;
2038 	struct zone *zone;
2039 	int zid, max_threads;
2040 	u64 i;
2041 
2042 	/* Bind memory initialisation thread to a local node if possible */
2043 	if (!cpumask_empty(cpumask))
2044 		set_cpus_allowed_ptr(current, cpumask);
2045 
2046 	pgdat_resize_lock(pgdat, &flags);
2047 	first_init_pfn = pgdat->first_deferred_pfn;
2048 	if (first_init_pfn == ULONG_MAX) {
2049 		pgdat_resize_unlock(pgdat, &flags);
2050 		pgdat_init_report_one_done();
2051 		return 0;
2052 	}
2053 
2054 	/* Sanity check boundaries */
2055 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2056 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2057 	pgdat->first_deferred_pfn = ULONG_MAX;
2058 
2059 	/*
2060 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2061 	 * interrupt thread must allocate this early in boot, zone must be
2062 	 * pre-grown prior to start of deferred page initialization.
2063 	 */
2064 	pgdat_resize_unlock(pgdat, &flags);
2065 
2066 	/* Only the highest zone is deferred so find it */
2067 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2068 		zone = pgdat->node_zones + zid;
2069 		if (first_init_pfn < zone_end_pfn(zone))
2070 			break;
2071 	}
2072 
2073 	/* If the zone is empty somebody else may have cleared out the zone */
2074 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2075 						 first_init_pfn))
2076 		goto zone_empty;
2077 
2078 	max_threads = deferred_page_init_max_threads(cpumask);
2079 
2080 	while (spfn < epfn) {
2081 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2082 		struct padata_mt_job job = {
2083 			.thread_fn   = deferred_init_memmap_chunk,
2084 			.fn_arg      = zone,
2085 			.start       = spfn,
2086 			.size        = epfn_align - spfn,
2087 			.align       = PAGES_PER_SECTION,
2088 			.min_chunk   = PAGES_PER_SECTION,
2089 			.max_threads = max_threads,
2090 		};
2091 
2092 		padata_do_multithreaded(&job);
2093 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2094 						    epfn_align);
2095 	}
2096 zone_empty:
2097 	/* Sanity check that the next zone really is unpopulated */
2098 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2099 
2100 	pr_info("node %d deferred pages initialised in %ums\n",
2101 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2102 
2103 	pgdat_init_report_one_done();
2104 	return 0;
2105 }
2106 
2107 /*
2108  * If this zone has deferred pages, try to grow it by initializing enough
2109  * deferred pages to satisfy the allocation specified by order, rounded up to
2110  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2111  * of SECTION_SIZE bytes by initializing struct pages in increments of
2112  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2113  *
2114  * Return true when zone was grown, otherwise return false. We return true even
2115  * when we grow less than requested, to let the caller decide if there are
2116  * enough pages to satisfy the allocation.
2117  *
2118  * Note: We use noinline because this function is needed only during boot, and
2119  * it is called from a __ref function _deferred_grow_zone. This way we are
2120  * making sure that it is not inlined into permanent text section.
2121  */
2122 static noinline bool __init
2123 deferred_grow_zone(struct zone *zone, unsigned int order)
2124 {
2125 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2126 	pg_data_t *pgdat = zone->zone_pgdat;
2127 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2128 	unsigned long spfn, epfn, flags;
2129 	unsigned long nr_pages = 0;
2130 	u64 i;
2131 
2132 	/* Only the last zone may have deferred pages */
2133 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2134 		return false;
2135 
2136 	pgdat_resize_lock(pgdat, &flags);
2137 
2138 	/*
2139 	 * If someone grew this zone while we were waiting for spinlock, return
2140 	 * true, as there might be enough pages already.
2141 	 */
2142 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2143 		pgdat_resize_unlock(pgdat, &flags);
2144 		return true;
2145 	}
2146 
2147 	/* If the zone is empty somebody else may have cleared out the zone */
2148 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2149 						 first_deferred_pfn)) {
2150 		pgdat->first_deferred_pfn = ULONG_MAX;
2151 		pgdat_resize_unlock(pgdat, &flags);
2152 		/* Retry only once. */
2153 		return first_deferred_pfn != ULONG_MAX;
2154 	}
2155 
2156 	/*
2157 	 * Initialize and free pages in MAX_ORDER sized increments so
2158 	 * that we can avoid introducing any issues with the buddy
2159 	 * allocator.
2160 	 */
2161 	while (spfn < epfn) {
2162 		/* update our first deferred PFN for this section */
2163 		first_deferred_pfn = spfn;
2164 
2165 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2166 		touch_nmi_watchdog();
2167 
2168 		/* We should only stop along section boundaries */
2169 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2170 			continue;
2171 
2172 		/* If our quota has been met we can stop here */
2173 		if (nr_pages >= nr_pages_needed)
2174 			break;
2175 	}
2176 
2177 	pgdat->first_deferred_pfn = spfn;
2178 	pgdat_resize_unlock(pgdat, &flags);
2179 
2180 	return nr_pages > 0;
2181 }
2182 
2183 /*
2184  * deferred_grow_zone() is __init, but it is called from
2185  * get_page_from_freelist() during early boot until deferred_pages permanently
2186  * disables this call. This is why we have refdata wrapper to avoid warning,
2187  * and to ensure that the function body gets unloaded.
2188  */
2189 static bool __ref
2190 _deferred_grow_zone(struct zone *zone, unsigned int order)
2191 {
2192 	return deferred_grow_zone(zone, order);
2193 }
2194 
2195 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2196 
2197 void __init page_alloc_init_late(void)
2198 {
2199 	struct zone *zone;
2200 	int nid;
2201 
2202 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2203 
2204 	/* There will be num_node_state(N_MEMORY) threads */
2205 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2206 	for_each_node_state(nid, N_MEMORY) {
2207 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2208 	}
2209 
2210 	/* Block until all are initialised */
2211 	wait_for_completion(&pgdat_init_all_done_comp);
2212 
2213 	/*
2214 	 * We initialized the rest of the deferred pages.  Permanently disable
2215 	 * on-demand struct page initialization.
2216 	 */
2217 	static_branch_disable(&deferred_pages);
2218 
2219 	/* Reinit limits that are based on free pages after the kernel is up */
2220 	files_maxfiles_init();
2221 #endif
2222 
2223 	buffer_init();
2224 
2225 	/* Discard memblock private memory */
2226 	memblock_discard();
2227 
2228 	for_each_node_state(nid, N_MEMORY)
2229 		shuffle_free_memory(NODE_DATA(nid));
2230 
2231 	for_each_populated_zone(zone)
2232 		set_zone_contiguous(zone);
2233 }
2234 
2235 #ifdef CONFIG_CMA
2236 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2237 void __init init_cma_reserved_pageblock(struct page *page)
2238 {
2239 	unsigned i = pageblock_nr_pages;
2240 	struct page *p = page;
2241 
2242 	do {
2243 		__ClearPageReserved(p);
2244 		set_page_count(p, 0);
2245 	} while (++p, --i);
2246 
2247 	set_pageblock_migratetype(page, MIGRATE_CMA);
2248 
2249 	if (pageblock_order >= MAX_ORDER) {
2250 		i = pageblock_nr_pages;
2251 		p = page;
2252 		do {
2253 			set_page_refcounted(p);
2254 			__free_pages(p, MAX_ORDER - 1);
2255 			p += MAX_ORDER_NR_PAGES;
2256 		} while (i -= MAX_ORDER_NR_PAGES);
2257 	} else {
2258 		set_page_refcounted(page);
2259 		__free_pages(page, pageblock_order);
2260 	}
2261 
2262 	adjust_managed_page_count(page, pageblock_nr_pages);
2263 	page_zone(page)->cma_pages += pageblock_nr_pages;
2264 }
2265 #endif
2266 
2267 /*
2268  * The order of subdivision here is critical for the IO subsystem.
2269  * Please do not alter this order without good reasons and regression
2270  * testing. Specifically, as large blocks of memory are subdivided,
2271  * the order in which smaller blocks are delivered depends on the order
2272  * they're subdivided in this function. This is the primary factor
2273  * influencing the order in which pages are delivered to the IO
2274  * subsystem according to empirical testing, and this is also justified
2275  * by considering the behavior of a buddy system containing a single
2276  * large block of memory acted on by a series of small allocations.
2277  * This behavior is a critical factor in sglist merging's success.
2278  *
2279  * -- nyc
2280  */
2281 static inline void expand(struct zone *zone, struct page *page,
2282 	int low, int high, int migratetype)
2283 {
2284 	unsigned long size = 1 << high;
2285 
2286 	while (high > low) {
2287 		high--;
2288 		size >>= 1;
2289 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2290 
2291 		/*
2292 		 * Mark as guard pages (or page), that will allow to
2293 		 * merge back to allocator when buddy will be freed.
2294 		 * Corresponding page table entries will not be touched,
2295 		 * pages will stay not present in virtual address space
2296 		 */
2297 		if (set_page_guard(zone, &page[size], high, migratetype))
2298 			continue;
2299 
2300 		add_to_free_list(&page[size], zone, high, migratetype);
2301 		set_buddy_order(&page[size], high);
2302 	}
2303 }
2304 
2305 static void check_new_page_bad(struct page *page)
2306 {
2307 	if (unlikely(page->flags & __PG_HWPOISON)) {
2308 		/* Don't complain about hwpoisoned pages */
2309 		page_mapcount_reset(page); /* remove PageBuddy */
2310 		return;
2311 	}
2312 
2313 	bad_page(page,
2314 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2315 }
2316 
2317 /*
2318  * This page is about to be returned from the page allocator
2319  */
2320 static inline int check_new_page(struct page *page)
2321 {
2322 	if (likely(page_expected_state(page,
2323 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2324 		return 0;
2325 
2326 	check_new_page_bad(page);
2327 	return 1;
2328 }
2329 
2330 #ifdef CONFIG_DEBUG_VM
2331 /*
2332  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2333  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2334  * also checked when pcp lists are refilled from the free lists.
2335  */
2336 static inline bool check_pcp_refill(struct page *page)
2337 {
2338 	if (debug_pagealloc_enabled_static())
2339 		return check_new_page(page);
2340 	else
2341 		return false;
2342 }
2343 
2344 static inline bool check_new_pcp(struct page *page)
2345 {
2346 	return check_new_page(page);
2347 }
2348 #else
2349 /*
2350  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2351  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2352  * enabled, they are also checked when being allocated from the pcp lists.
2353  */
2354 static inline bool check_pcp_refill(struct page *page)
2355 {
2356 	return check_new_page(page);
2357 }
2358 static inline bool check_new_pcp(struct page *page)
2359 {
2360 	if (debug_pagealloc_enabled_static())
2361 		return check_new_page(page);
2362 	else
2363 		return false;
2364 }
2365 #endif /* CONFIG_DEBUG_VM */
2366 
2367 static bool check_new_pages(struct page *page, unsigned int order)
2368 {
2369 	int i;
2370 	for (i = 0; i < (1 << order); i++) {
2371 		struct page *p = page + i;
2372 
2373 		if (unlikely(check_new_page(p)))
2374 			return true;
2375 	}
2376 
2377 	return false;
2378 }
2379 
2380 inline void post_alloc_hook(struct page *page, unsigned int order,
2381 				gfp_t gfp_flags)
2382 {
2383 	set_page_private(page, 0);
2384 	set_page_refcounted(page);
2385 
2386 	arch_alloc_page(page, order);
2387 	debug_pagealloc_map_pages(page, 1 << order);
2388 
2389 	/*
2390 	 * Page unpoisoning must happen before memory initialization.
2391 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2392 	 * allocations and the page unpoisoning code will complain.
2393 	 */
2394 	kernel_unpoison_pages(page, 1 << order);
2395 
2396 	/*
2397 	 * As memory initialization might be integrated into KASAN,
2398 	 * kasan_alloc_pages and kernel_init_free_pages must be
2399 	 * kept together to avoid discrepancies in behavior.
2400 	 */
2401 	if (kasan_has_integrated_init()) {
2402 		kasan_alloc_pages(page, order, gfp_flags);
2403 	} else {
2404 		bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2405 
2406 		kasan_unpoison_pages(page, order, init);
2407 		if (init)
2408 			kernel_init_free_pages(page, 1 << order,
2409 					       gfp_flags & __GFP_ZEROTAGS);
2410 	}
2411 
2412 	set_page_owner(page, order, gfp_flags);
2413 }
2414 
2415 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2416 							unsigned int alloc_flags)
2417 {
2418 	post_alloc_hook(page, order, gfp_flags);
2419 
2420 	if (order && (gfp_flags & __GFP_COMP))
2421 		prep_compound_page(page, order);
2422 
2423 	/*
2424 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2425 	 * allocate the page. The expectation is that the caller is taking
2426 	 * steps that will free more memory. The caller should avoid the page
2427 	 * being used for !PFMEMALLOC purposes.
2428 	 */
2429 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2430 		set_page_pfmemalloc(page);
2431 	else
2432 		clear_page_pfmemalloc(page);
2433 }
2434 
2435 /*
2436  * Go through the free lists for the given migratetype and remove
2437  * the smallest available page from the freelists
2438  */
2439 static __always_inline
2440 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2441 						int migratetype)
2442 {
2443 	unsigned int current_order;
2444 	struct free_area *area;
2445 	struct page *page;
2446 
2447 	/* Find a page of the appropriate size in the preferred list */
2448 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2449 		area = &(zone->free_area[current_order]);
2450 		page = get_page_from_free_area(area, migratetype);
2451 		if (!page)
2452 			continue;
2453 		del_page_from_free_list(page, zone, current_order);
2454 		expand(zone, page, order, current_order, migratetype);
2455 		set_pcppage_migratetype(page, migratetype);
2456 		return page;
2457 	}
2458 
2459 	return NULL;
2460 }
2461 
2462 
2463 /*
2464  * This array describes the order lists are fallen back to when
2465  * the free lists for the desirable migrate type are depleted
2466  */
2467 static int fallbacks[MIGRATE_TYPES][3] = {
2468 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2469 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2470 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2471 #ifdef CONFIG_CMA
2472 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2473 #endif
2474 #ifdef CONFIG_MEMORY_ISOLATION
2475 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2476 #endif
2477 };
2478 
2479 #ifdef CONFIG_CMA
2480 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2481 					unsigned int order)
2482 {
2483 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2484 }
2485 #else
2486 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2487 					unsigned int order) { return NULL; }
2488 #endif
2489 
2490 /*
2491  * Move the free pages in a range to the freelist tail of the requested type.
2492  * Note that start_page and end_pages are not aligned on a pageblock
2493  * boundary. If alignment is required, use move_freepages_block()
2494  */
2495 static int move_freepages(struct zone *zone,
2496 			  unsigned long start_pfn, unsigned long end_pfn,
2497 			  int migratetype, int *num_movable)
2498 {
2499 	struct page *page;
2500 	unsigned long pfn;
2501 	unsigned int order;
2502 	int pages_moved = 0;
2503 
2504 	for (pfn = start_pfn; pfn <= end_pfn;) {
2505 		page = pfn_to_page(pfn);
2506 		if (!PageBuddy(page)) {
2507 			/*
2508 			 * We assume that pages that could be isolated for
2509 			 * migration are movable. But we don't actually try
2510 			 * isolating, as that would be expensive.
2511 			 */
2512 			if (num_movable &&
2513 					(PageLRU(page) || __PageMovable(page)))
2514 				(*num_movable)++;
2515 			pfn++;
2516 			continue;
2517 		}
2518 
2519 		/* Make sure we are not inadvertently changing nodes */
2520 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2521 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2522 
2523 		order = buddy_order(page);
2524 		move_to_free_list(page, zone, order, migratetype);
2525 		pfn += 1 << order;
2526 		pages_moved += 1 << order;
2527 	}
2528 
2529 	return pages_moved;
2530 }
2531 
2532 int move_freepages_block(struct zone *zone, struct page *page,
2533 				int migratetype, int *num_movable)
2534 {
2535 	unsigned long start_pfn, end_pfn, pfn;
2536 
2537 	if (num_movable)
2538 		*num_movable = 0;
2539 
2540 	pfn = page_to_pfn(page);
2541 	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2542 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2543 
2544 	/* Do not cross zone boundaries */
2545 	if (!zone_spans_pfn(zone, start_pfn))
2546 		start_pfn = pfn;
2547 	if (!zone_spans_pfn(zone, end_pfn))
2548 		return 0;
2549 
2550 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2551 								num_movable);
2552 }
2553 
2554 static void change_pageblock_range(struct page *pageblock_page,
2555 					int start_order, int migratetype)
2556 {
2557 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2558 
2559 	while (nr_pageblocks--) {
2560 		set_pageblock_migratetype(pageblock_page, migratetype);
2561 		pageblock_page += pageblock_nr_pages;
2562 	}
2563 }
2564 
2565 /*
2566  * When we are falling back to another migratetype during allocation, try to
2567  * steal extra free pages from the same pageblocks to satisfy further
2568  * allocations, instead of polluting multiple pageblocks.
2569  *
2570  * If we are stealing a relatively large buddy page, it is likely there will
2571  * be more free pages in the pageblock, so try to steal them all. For
2572  * reclaimable and unmovable allocations, we steal regardless of page size,
2573  * as fragmentation caused by those allocations polluting movable pageblocks
2574  * is worse than movable allocations stealing from unmovable and reclaimable
2575  * pageblocks.
2576  */
2577 static bool can_steal_fallback(unsigned int order, int start_mt)
2578 {
2579 	/*
2580 	 * Leaving this order check is intended, although there is
2581 	 * relaxed order check in next check. The reason is that
2582 	 * we can actually steal whole pageblock if this condition met,
2583 	 * but, below check doesn't guarantee it and that is just heuristic
2584 	 * so could be changed anytime.
2585 	 */
2586 	if (order >= pageblock_order)
2587 		return true;
2588 
2589 	if (order >= pageblock_order / 2 ||
2590 		start_mt == MIGRATE_RECLAIMABLE ||
2591 		start_mt == MIGRATE_UNMOVABLE ||
2592 		page_group_by_mobility_disabled)
2593 		return true;
2594 
2595 	return false;
2596 }
2597 
2598 static inline bool boost_watermark(struct zone *zone)
2599 {
2600 	unsigned long max_boost;
2601 
2602 	if (!watermark_boost_factor)
2603 		return false;
2604 	/*
2605 	 * Don't bother in zones that are unlikely to produce results.
2606 	 * On small machines, including kdump capture kernels running
2607 	 * in a small area, boosting the watermark can cause an out of
2608 	 * memory situation immediately.
2609 	 */
2610 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2611 		return false;
2612 
2613 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2614 			watermark_boost_factor, 10000);
2615 
2616 	/*
2617 	 * high watermark may be uninitialised if fragmentation occurs
2618 	 * very early in boot so do not boost. We do not fall
2619 	 * through and boost by pageblock_nr_pages as failing
2620 	 * allocations that early means that reclaim is not going
2621 	 * to help and it may even be impossible to reclaim the
2622 	 * boosted watermark resulting in a hang.
2623 	 */
2624 	if (!max_boost)
2625 		return false;
2626 
2627 	max_boost = max(pageblock_nr_pages, max_boost);
2628 
2629 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2630 		max_boost);
2631 
2632 	return true;
2633 }
2634 
2635 /*
2636  * This function implements actual steal behaviour. If order is large enough,
2637  * we can steal whole pageblock. If not, we first move freepages in this
2638  * pageblock to our migratetype and determine how many already-allocated pages
2639  * are there in the pageblock with a compatible migratetype. If at least half
2640  * of pages are free or compatible, we can change migratetype of the pageblock
2641  * itself, so pages freed in the future will be put on the correct free list.
2642  */
2643 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2644 		unsigned int alloc_flags, int start_type, bool whole_block)
2645 {
2646 	unsigned int current_order = buddy_order(page);
2647 	int free_pages, movable_pages, alike_pages;
2648 	int old_block_type;
2649 
2650 	old_block_type = get_pageblock_migratetype(page);
2651 
2652 	/*
2653 	 * This can happen due to races and we want to prevent broken
2654 	 * highatomic accounting.
2655 	 */
2656 	if (is_migrate_highatomic(old_block_type))
2657 		goto single_page;
2658 
2659 	/* Take ownership for orders >= pageblock_order */
2660 	if (current_order >= pageblock_order) {
2661 		change_pageblock_range(page, current_order, start_type);
2662 		goto single_page;
2663 	}
2664 
2665 	/*
2666 	 * Boost watermarks to increase reclaim pressure to reduce the
2667 	 * likelihood of future fallbacks. Wake kswapd now as the node
2668 	 * may be balanced overall and kswapd will not wake naturally.
2669 	 */
2670 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2671 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2672 
2673 	/* We are not allowed to try stealing from the whole block */
2674 	if (!whole_block)
2675 		goto single_page;
2676 
2677 	free_pages = move_freepages_block(zone, page, start_type,
2678 						&movable_pages);
2679 	/*
2680 	 * Determine how many pages are compatible with our allocation.
2681 	 * For movable allocation, it's the number of movable pages which
2682 	 * we just obtained. For other types it's a bit more tricky.
2683 	 */
2684 	if (start_type == MIGRATE_MOVABLE) {
2685 		alike_pages = movable_pages;
2686 	} else {
2687 		/*
2688 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2689 		 * to MOVABLE pageblock, consider all non-movable pages as
2690 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2691 		 * vice versa, be conservative since we can't distinguish the
2692 		 * exact migratetype of non-movable pages.
2693 		 */
2694 		if (old_block_type == MIGRATE_MOVABLE)
2695 			alike_pages = pageblock_nr_pages
2696 						- (free_pages + movable_pages);
2697 		else
2698 			alike_pages = 0;
2699 	}
2700 
2701 	/* moving whole block can fail due to zone boundary conditions */
2702 	if (!free_pages)
2703 		goto single_page;
2704 
2705 	/*
2706 	 * If a sufficient number of pages in the block are either free or of
2707 	 * comparable migratability as our allocation, claim the whole block.
2708 	 */
2709 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2710 			page_group_by_mobility_disabled)
2711 		set_pageblock_migratetype(page, start_type);
2712 
2713 	return;
2714 
2715 single_page:
2716 	move_to_free_list(page, zone, current_order, start_type);
2717 }
2718 
2719 /*
2720  * Check whether there is a suitable fallback freepage with requested order.
2721  * If only_stealable is true, this function returns fallback_mt only if
2722  * we can steal other freepages all together. This would help to reduce
2723  * fragmentation due to mixed migratetype pages in one pageblock.
2724  */
2725 int find_suitable_fallback(struct free_area *area, unsigned int order,
2726 			int migratetype, bool only_stealable, bool *can_steal)
2727 {
2728 	int i;
2729 	int fallback_mt;
2730 
2731 	if (area->nr_free == 0)
2732 		return -1;
2733 
2734 	*can_steal = false;
2735 	for (i = 0;; i++) {
2736 		fallback_mt = fallbacks[migratetype][i];
2737 		if (fallback_mt == MIGRATE_TYPES)
2738 			break;
2739 
2740 		if (free_area_empty(area, fallback_mt))
2741 			continue;
2742 
2743 		if (can_steal_fallback(order, migratetype))
2744 			*can_steal = true;
2745 
2746 		if (!only_stealable)
2747 			return fallback_mt;
2748 
2749 		if (*can_steal)
2750 			return fallback_mt;
2751 	}
2752 
2753 	return -1;
2754 }
2755 
2756 /*
2757  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2758  * there are no empty page blocks that contain a page with a suitable order
2759  */
2760 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2761 				unsigned int alloc_order)
2762 {
2763 	int mt;
2764 	unsigned long max_managed, flags;
2765 
2766 	/*
2767 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2768 	 * Check is race-prone but harmless.
2769 	 */
2770 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2771 	if (zone->nr_reserved_highatomic >= max_managed)
2772 		return;
2773 
2774 	spin_lock_irqsave(&zone->lock, flags);
2775 
2776 	/* Recheck the nr_reserved_highatomic limit under the lock */
2777 	if (zone->nr_reserved_highatomic >= max_managed)
2778 		goto out_unlock;
2779 
2780 	/* Yoink! */
2781 	mt = get_pageblock_migratetype(page);
2782 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2783 	    && !is_migrate_cma(mt)) {
2784 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2785 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2786 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2787 	}
2788 
2789 out_unlock:
2790 	spin_unlock_irqrestore(&zone->lock, flags);
2791 }
2792 
2793 /*
2794  * Used when an allocation is about to fail under memory pressure. This
2795  * potentially hurts the reliability of high-order allocations when under
2796  * intense memory pressure but failed atomic allocations should be easier
2797  * to recover from than an OOM.
2798  *
2799  * If @force is true, try to unreserve a pageblock even though highatomic
2800  * pageblock is exhausted.
2801  */
2802 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2803 						bool force)
2804 {
2805 	struct zonelist *zonelist = ac->zonelist;
2806 	unsigned long flags;
2807 	struct zoneref *z;
2808 	struct zone *zone;
2809 	struct page *page;
2810 	int order;
2811 	bool ret;
2812 
2813 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2814 								ac->nodemask) {
2815 		/*
2816 		 * Preserve at least one pageblock unless memory pressure
2817 		 * is really high.
2818 		 */
2819 		if (!force && zone->nr_reserved_highatomic <=
2820 					pageblock_nr_pages)
2821 			continue;
2822 
2823 		spin_lock_irqsave(&zone->lock, flags);
2824 		for (order = 0; order < MAX_ORDER; order++) {
2825 			struct free_area *area = &(zone->free_area[order]);
2826 
2827 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2828 			if (!page)
2829 				continue;
2830 
2831 			/*
2832 			 * In page freeing path, migratetype change is racy so
2833 			 * we can counter several free pages in a pageblock
2834 			 * in this loop although we changed the pageblock type
2835 			 * from highatomic to ac->migratetype. So we should
2836 			 * adjust the count once.
2837 			 */
2838 			if (is_migrate_highatomic_page(page)) {
2839 				/*
2840 				 * It should never happen but changes to
2841 				 * locking could inadvertently allow a per-cpu
2842 				 * drain to add pages to MIGRATE_HIGHATOMIC
2843 				 * while unreserving so be safe and watch for
2844 				 * underflows.
2845 				 */
2846 				zone->nr_reserved_highatomic -= min(
2847 						pageblock_nr_pages,
2848 						zone->nr_reserved_highatomic);
2849 			}
2850 
2851 			/*
2852 			 * Convert to ac->migratetype and avoid the normal
2853 			 * pageblock stealing heuristics. Minimally, the caller
2854 			 * is doing the work and needs the pages. More
2855 			 * importantly, if the block was always converted to
2856 			 * MIGRATE_UNMOVABLE or another type then the number
2857 			 * of pageblocks that cannot be completely freed
2858 			 * may increase.
2859 			 */
2860 			set_pageblock_migratetype(page, ac->migratetype);
2861 			ret = move_freepages_block(zone, page, ac->migratetype,
2862 									NULL);
2863 			if (ret) {
2864 				spin_unlock_irqrestore(&zone->lock, flags);
2865 				return ret;
2866 			}
2867 		}
2868 		spin_unlock_irqrestore(&zone->lock, flags);
2869 	}
2870 
2871 	return false;
2872 }
2873 
2874 /*
2875  * Try finding a free buddy page on the fallback list and put it on the free
2876  * list of requested migratetype, possibly along with other pages from the same
2877  * block, depending on fragmentation avoidance heuristics. Returns true if
2878  * fallback was found so that __rmqueue_smallest() can grab it.
2879  *
2880  * The use of signed ints for order and current_order is a deliberate
2881  * deviation from the rest of this file, to make the for loop
2882  * condition simpler.
2883  */
2884 static __always_inline bool
2885 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2886 						unsigned int alloc_flags)
2887 {
2888 	struct free_area *area;
2889 	int current_order;
2890 	int min_order = order;
2891 	struct page *page;
2892 	int fallback_mt;
2893 	bool can_steal;
2894 
2895 	/*
2896 	 * Do not steal pages from freelists belonging to other pageblocks
2897 	 * i.e. orders < pageblock_order. If there are no local zones free,
2898 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2899 	 */
2900 	if (alloc_flags & ALLOC_NOFRAGMENT)
2901 		min_order = pageblock_order;
2902 
2903 	/*
2904 	 * Find the largest available free page in the other list. This roughly
2905 	 * approximates finding the pageblock with the most free pages, which
2906 	 * would be too costly to do exactly.
2907 	 */
2908 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2909 				--current_order) {
2910 		area = &(zone->free_area[current_order]);
2911 		fallback_mt = find_suitable_fallback(area, current_order,
2912 				start_migratetype, false, &can_steal);
2913 		if (fallback_mt == -1)
2914 			continue;
2915 
2916 		/*
2917 		 * We cannot steal all free pages from the pageblock and the
2918 		 * requested migratetype is movable. In that case it's better to
2919 		 * steal and split the smallest available page instead of the
2920 		 * largest available page, because even if the next movable
2921 		 * allocation falls back into a different pageblock than this
2922 		 * one, it won't cause permanent fragmentation.
2923 		 */
2924 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2925 					&& current_order > order)
2926 			goto find_smallest;
2927 
2928 		goto do_steal;
2929 	}
2930 
2931 	return false;
2932 
2933 find_smallest:
2934 	for (current_order = order; current_order < MAX_ORDER;
2935 							current_order++) {
2936 		area = &(zone->free_area[current_order]);
2937 		fallback_mt = find_suitable_fallback(area, current_order,
2938 				start_migratetype, false, &can_steal);
2939 		if (fallback_mt != -1)
2940 			break;
2941 	}
2942 
2943 	/*
2944 	 * This should not happen - we already found a suitable fallback
2945 	 * when looking for the largest page.
2946 	 */
2947 	VM_BUG_ON(current_order == MAX_ORDER);
2948 
2949 do_steal:
2950 	page = get_page_from_free_area(area, fallback_mt);
2951 
2952 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2953 								can_steal);
2954 
2955 	trace_mm_page_alloc_extfrag(page, order, current_order,
2956 		start_migratetype, fallback_mt);
2957 
2958 	return true;
2959 
2960 }
2961 
2962 /*
2963  * Do the hard work of removing an element from the buddy allocator.
2964  * Call me with the zone->lock already held.
2965  */
2966 static __always_inline struct page *
2967 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2968 						unsigned int alloc_flags)
2969 {
2970 	struct page *page;
2971 
2972 	if (IS_ENABLED(CONFIG_CMA)) {
2973 		/*
2974 		 * Balance movable allocations between regular and CMA areas by
2975 		 * allocating from CMA when over half of the zone's free memory
2976 		 * is in the CMA area.
2977 		 */
2978 		if (alloc_flags & ALLOC_CMA &&
2979 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2980 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2981 			page = __rmqueue_cma_fallback(zone, order);
2982 			if (page)
2983 				goto out;
2984 		}
2985 	}
2986 retry:
2987 	page = __rmqueue_smallest(zone, order, migratetype);
2988 	if (unlikely(!page)) {
2989 		if (alloc_flags & ALLOC_CMA)
2990 			page = __rmqueue_cma_fallback(zone, order);
2991 
2992 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2993 								alloc_flags))
2994 			goto retry;
2995 	}
2996 out:
2997 	if (page)
2998 		trace_mm_page_alloc_zone_locked(page, order, migratetype);
2999 	return page;
3000 }
3001 
3002 /*
3003  * Obtain a specified number of elements from the buddy allocator, all under
3004  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3005  * Returns the number of new pages which were placed at *list.
3006  */
3007 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3008 			unsigned long count, struct list_head *list,
3009 			int migratetype, unsigned int alloc_flags)
3010 {
3011 	int i, allocated = 0;
3012 
3013 	/*
3014 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
3015 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3016 	 */
3017 	spin_lock(&zone->lock);
3018 	for (i = 0; i < count; ++i) {
3019 		struct page *page = __rmqueue(zone, order, migratetype,
3020 								alloc_flags);
3021 		if (unlikely(page == NULL))
3022 			break;
3023 
3024 		if (unlikely(check_pcp_refill(page)))
3025 			continue;
3026 
3027 		/*
3028 		 * Split buddy pages returned by expand() are received here in
3029 		 * physical page order. The page is added to the tail of
3030 		 * caller's list. From the callers perspective, the linked list
3031 		 * is ordered by page number under some conditions. This is
3032 		 * useful for IO devices that can forward direction from the
3033 		 * head, thus also in the physical page order. This is useful
3034 		 * for IO devices that can merge IO requests if the physical
3035 		 * pages are ordered properly.
3036 		 */
3037 		list_add_tail(&page->lru, list);
3038 		allocated++;
3039 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3040 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3041 					      -(1 << order));
3042 	}
3043 
3044 	/*
3045 	 * i pages were removed from the buddy list even if some leak due
3046 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3047 	 * on i. Do not confuse with 'allocated' which is the number of
3048 	 * pages added to the pcp list.
3049 	 */
3050 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3051 	spin_unlock(&zone->lock);
3052 	return allocated;
3053 }
3054 
3055 #ifdef CONFIG_NUMA
3056 /*
3057  * Called from the vmstat counter updater to drain pagesets of this
3058  * currently executing processor on remote nodes after they have
3059  * expired.
3060  *
3061  * Note that this function must be called with the thread pinned to
3062  * a single processor.
3063  */
3064 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3065 {
3066 	unsigned long flags;
3067 	int to_drain, batch;
3068 
3069 	local_lock_irqsave(&pagesets.lock, flags);
3070 	batch = READ_ONCE(pcp->batch);
3071 	to_drain = min(pcp->count, batch);
3072 	if (to_drain > 0)
3073 		free_pcppages_bulk(zone, to_drain, pcp);
3074 	local_unlock_irqrestore(&pagesets.lock, flags);
3075 }
3076 #endif
3077 
3078 /*
3079  * Drain pcplists of the indicated processor and zone.
3080  *
3081  * The processor must either be the current processor and the
3082  * thread pinned to the current processor or a processor that
3083  * is not online.
3084  */
3085 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3086 {
3087 	unsigned long flags;
3088 	struct per_cpu_pages *pcp;
3089 
3090 	local_lock_irqsave(&pagesets.lock, flags);
3091 
3092 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3093 	if (pcp->count)
3094 		free_pcppages_bulk(zone, pcp->count, pcp);
3095 
3096 	local_unlock_irqrestore(&pagesets.lock, flags);
3097 }
3098 
3099 /*
3100  * Drain pcplists of all zones on the indicated processor.
3101  *
3102  * The processor must either be the current processor and the
3103  * thread pinned to the current processor or a processor that
3104  * is not online.
3105  */
3106 static void drain_pages(unsigned int cpu)
3107 {
3108 	struct zone *zone;
3109 
3110 	for_each_populated_zone(zone) {
3111 		drain_pages_zone(cpu, zone);
3112 	}
3113 }
3114 
3115 /*
3116  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3117  *
3118  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3119  * the single zone's pages.
3120  */
3121 void drain_local_pages(struct zone *zone)
3122 {
3123 	int cpu = smp_processor_id();
3124 
3125 	if (zone)
3126 		drain_pages_zone(cpu, zone);
3127 	else
3128 		drain_pages(cpu);
3129 }
3130 
3131 static void drain_local_pages_wq(struct work_struct *work)
3132 {
3133 	struct pcpu_drain *drain;
3134 
3135 	drain = container_of(work, struct pcpu_drain, work);
3136 
3137 	/*
3138 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3139 	 * we can race with cpu offline when the WQ can move this from
3140 	 * a cpu pinned worker to an unbound one. We can operate on a different
3141 	 * cpu which is alright but we also have to make sure to not move to
3142 	 * a different one.
3143 	 */
3144 	migrate_disable();
3145 	drain_local_pages(drain->zone);
3146 	migrate_enable();
3147 }
3148 
3149 /*
3150  * The implementation of drain_all_pages(), exposing an extra parameter to
3151  * drain on all cpus.
3152  *
3153  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3154  * not empty. The check for non-emptiness can however race with a free to
3155  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3156  * that need the guarantee that every CPU has drained can disable the
3157  * optimizing racy check.
3158  */
3159 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3160 {
3161 	int cpu;
3162 
3163 	/*
3164 	 * Allocate in the BSS so we won't require allocation in
3165 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3166 	 */
3167 	static cpumask_t cpus_with_pcps;
3168 
3169 	/*
3170 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3171 	 * initialized.
3172 	 */
3173 	if (WARN_ON_ONCE(!mm_percpu_wq))
3174 		return;
3175 
3176 	/*
3177 	 * Do not drain if one is already in progress unless it's specific to
3178 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3179 	 * the drain to be complete when the call returns.
3180 	 */
3181 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3182 		if (!zone)
3183 			return;
3184 		mutex_lock(&pcpu_drain_mutex);
3185 	}
3186 
3187 	/*
3188 	 * We don't care about racing with CPU hotplug event
3189 	 * as offline notification will cause the notified
3190 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3191 	 * disables preemption as part of its processing
3192 	 */
3193 	for_each_online_cpu(cpu) {
3194 		struct per_cpu_pages *pcp;
3195 		struct zone *z;
3196 		bool has_pcps = false;
3197 
3198 		if (force_all_cpus) {
3199 			/*
3200 			 * The pcp.count check is racy, some callers need a
3201 			 * guarantee that no cpu is missed.
3202 			 */
3203 			has_pcps = true;
3204 		} else if (zone) {
3205 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3206 			if (pcp->count)
3207 				has_pcps = true;
3208 		} else {
3209 			for_each_populated_zone(z) {
3210 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3211 				if (pcp->count) {
3212 					has_pcps = true;
3213 					break;
3214 				}
3215 			}
3216 		}
3217 
3218 		if (has_pcps)
3219 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3220 		else
3221 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3222 	}
3223 
3224 	for_each_cpu(cpu, &cpus_with_pcps) {
3225 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3226 
3227 		drain->zone = zone;
3228 		INIT_WORK(&drain->work, drain_local_pages_wq);
3229 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3230 	}
3231 	for_each_cpu(cpu, &cpus_with_pcps)
3232 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3233 
3234 	mutex_unlock(&pcpu_drain_mutex);
3235 }
3236 
3237 /*
3238  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3239  *
3240  * When zone parameter is non-NULL, spill just the single zone's pages.
3241  *
3242  * Note that this can be extremely slow as the draining happens in a workqueue.
3243  */
3244 void drain_all_pages(struct zone *zone)
3245 {
3246 	__drain_all_pages(zone, false);
3247 }
3248 
3249 #ifdef CONFIG_HIBERNATION
3250 
3251 /*
3252  * Touch the watchdog for every WD_PAGE_COUNT pages.
3253  */
3254 #define WD_PAGE_COUNT	(128*1024)
3255 
3256 void mark_free_pages(struct zone *zone)
3257 {
3258 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3259 	unsigned long flags;
3260 	unsigned int order, t;
3261 	struct page *page;
3262 
3263 	if (zone_is_empty(zone))
3264 		return;
3265 
3266 	spin_lock_irqsave(&zone->lock, flags);
3267 
3268 	max_zone_pfn = zone_end_pfn(zone);
3269 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3270 		if (pfn_valid(pfn)) {
3271 			page = pfn_to_page(pfn);
3272 
3273 			if (!--page_count) {
3274 				touch_nmi_watchdog();
3275 				page_count = WD_PAGE_COUNT;
3276 			}
3277 
3278 			if (page_zone(page) != zone)
3279 				continue;
3280 
3281 			if (!swsusp_page_is_forbidden(page))
3282 				swsusp_unset_page_free(page);
3283 		}
3284 
3285 	for_each_migratetype_order(order, t) {
3286 		list_for_each_entry(page,
3287 				&zone->free_area[order].free_list[t], lru) {
3288 			unsigned long i;
3289 
3290 			pfn = page_to_pfn(page);
3291 			for (i = 0; i < (1UL << order); i++) {
3292 				if (!--page_count) {
3293 					touch_nmi_watchdog();
3294 					page_count = WD_PAGE_COUNT;
3295 				}
3296 				swsusp_set_page_free(pfn_to_page(pfn + i));
3297 			}
3298 		}
3299 	}
3300 	spin_unlock_irqrestore(&zone->lock, flags);
3301 }
3302 #endif /* CONFIG_PM */
3303 
3304 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3305 							unsigned int order)
3306 {
3307 	int migratetype;
3308 
3309 	if (!free_pcp_prepare(page, order))
3310 		return false;
3311 
3312 	migratetype = get_pfnblock_migratetype(page, pfn);
3313 	set_pcppage_migratetype(page, migratetype);
3314 	return true;
3315 }
3316 
3317 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3318 {
3319 	int min_nr_free, max_nr_free;
3320 
3321 	/* Check for PCP disabled or boot pageset */
3322 	if (unlikely(high < batch))
3323 		return 1;
3324 
3325 	/* Leave at least pcp->batch pages on the list */
3326 	min_nr_free = batch;
3327 	max_nr_free = high - batch;
3328 
3329 	/*
3330 	 * Double the number of pages freed each time there is subsequent
3331 	 * freeing of pages without any allocation.
3332 	 */
3333 	batch <<= pcp->free_factor;
3334 	if (batch < max_nr_free)
3335 		pcp->free_factor++;
3336 	batch = clamp(batch, min_nr_free, max_nr_free);
3337 
3338 	return batch;
3339 }
3340 
3341 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3342 {
3343 	int high = READ_ONCE(pcp->high);
3344 
3345 	if (unlikely(!high))
3346 		return 0;
3347 
3348 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3349 		return high;
3350 
3351 	/*
3352 	 * If reclaim is active, limit the number of pages that can be
3353 	 * stored on pcp lists
3354 	 */
3355 	return min(READ_ONCE(pcp->batch) << 2, high);
3356 }
3357 
3358 static void free_unref_page_commit(struct page *page, unsigned long pfn,
3359 				   int migratetype, unsigned int order)
3360 {
3361 	struct zone *zone = page_zone(page);
3362 	struct per_cpu_pages *pcp;
3363 	int high;
3364 	int pindex;
3365 
3366 	__count_vm_event(PGFREE);
3367 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3368 	pindex = order_to_pindex(migratetype, order);
3369 	list_add(&page->lru, &pcp->lists[pindex]);
3370 	pcp->count += 1 << order;
3371 	high = nr_pcp_high(pcp, zone);
3372 	if (pcp->count >= high) {
3373 		int batch = READ_ONCE(pcp->batch);
3374 
3375 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3376 	}
3377 }
3378 
3379 /*
3380  * Free a pcp page
3381  */
3382 void free_unref_page(struct page *page, unsigned int order)
3383 {
3384 	unsigned long flags;
3385 	unsigned long pfn = page_to_pfn(page);
3386 	int migratetype;
3387 
3388 	if (!free_unref_page_prepare(page, pfn, order))
3389 		return;
3390 
3391 	/*
3392 	 * We only track unmovable, reclaimable and movable on pcp lists.
3393 	 * Place ISOLATE pages on the isolated list because they are being
3394 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3395 	 * areas back if necessary. Otherwise, we may have to free
3396 	 * excessively into the page allocator
3397 	 */
3398 	migratetype = get_pcppage_migratetype(page);
3399 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3400 		if (unlikely(is_migrate_isolate(migratetype))) {
3401 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3402 			return;
3403 		}
3404 		migratetype = MIGRATE_MOVABLE;
3405 	}
3406 
3407 	local_lock_irqsave(&pagesets.lock, flags);
3408 	free_unref_page_commit(page, pfn, migratetype, order);
3409 	local_unlock_irqrestore(&pagesets.lock, flags);
3410 }
3411 
3412 /*
3413  * Free a list of 0-order pages
3414  */
3415 void free_unref_page_list(struct list_head *list)
3416 {
3417 	struct page *page, *next;
3418 	unsigned long flags, pfn;
3419 	int batch_count = 0;
3420 	int migratetype;
3421 
3422 	/* Prepare pages for freeing */
3423 	list_for_each_entry_safe(page, next, list, lru) {
3424 		pfn = page_to_pfn(page);
3425 		if (!free_unref_page_prepare(page, pfn, 0)) {
3426 			list_del(&page->lru);
3427 			continue;
3428 		}
3429 
3430 		/*
3431 		 * Free isolated pages directly to the allocator, see
3432 		 * comment in free_unref_page.
3433 		 */
3434 		migratetype = get_pcppage_migratetype(page);
3435 		if (unlikely(is_migrate_isolate(migratetype))) {
3436 			list_del(&page->lru);
3437 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3438 			continue;
3439 		}
3440 
3441 		set_page_private(page, pfn);
3442 	}
3443 
3444 	local_lock_irqsave(&pagesets.lock, flags);
3445 	list_for_each_entry_safe(page, next, list, lru) {
3446 		pfn = page_private(page);
3447 		set_page_private(page, 0);
3448 
3449 		/*
3450 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3451 		 * to the MIGRATE_MOVABLE pcp list.
3452 		 */
3453 		migratetype = get_pcppage_migratetype(page);
3454 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3455 			migratetype = MIGRATE_MOVABLE;
3456 
3457 		trace_mm_page_free_batched(page);
3458 		free_unref_page_commit(page, pfn, migratetype, 0);
3459 
3460 		/*
3461 		 * Guard against excessive IRQ disabled times when we get
3462 		 * a large list of pages to free.
3463 		 */
3464 		if (++batch_count == SWAP_CLUSTER_MAX) {
3465 			local_unlock_irqrestore(&pagesets.lock, flags);
3466 			batch_count = 0;
3467 			local_lock_irqsave(&pagesets.lock, flags);
3468 		}
3469 	}
3470 	local_unlock_irqrestore(&pagesets.lock, flags);
3471 }
3472 
3473 /*
3474  * split_page takes a non-compound higher-order page, and splits it into
3475  * n (1<<order) sub-pages: page[0..n]
3476  * Each sub-page must be freed individually.
3477  *
3478  * Note: this is probably too low level an operation for use in drivers.
3479  * Please consult with lkml before using this in your driver.
3480  */
3481 void split_page(struct page *page, unsigned int order)
3482 {
3483 	int i;
3484 
3485 	VM_BUG_ON_PAGE(PageCompound(page), page);
3486 	VM_BUG_ON_PAGE(!page_count(page), page);
3487 
3488 	for (i = 1; i < (1 << order); i++)
3489 		set_page_refcounted(page + i);
3490 	split_page_owner(page, 1 << order);
3491 	split_page_memcg(page, 1 << order);
3492 }
3493 EXPORT_SYMBOL_GPL(split_page);
3494 
3495 int __isolate_free_page(struct page *page, unsigned int order)
3496 {
3497 	unsigned long watermark;
3498 	struct zone *zone;
3499 	int mt;
3500 
3501 	BUG_ON(!PageBuddy(page));
3502 
3503 	zone = page_zone(page);
3504 	mt = get_pageblock_migratetype(page);
3505 
3506 	if (!is_migrate_isolate(mt)) {
3507 		/*
3508 		 * Obey watermarks as if the page was being allocated. We can
3509 		 * emulate a high-order watermark check with a raised order-0
3510 		 * watermark, because we already know our high-order page
3511 		 * exists.
3512 		 */
3513 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3514 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3515 			return 0;
3516 
3517 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3518 	}
3519 
3520 	/* Remove page from free list */
3521 
3522 	del_page_from_free_list(page, zone, order);
3523 
3524 	/*
3525 	 * Set the pageblock if the isolated page is at least half of a
3526 	 * pageblock
3527 	 */
3528 	if (order >= pageblock_order - 1) {
3529 		struct page *endpage = page + (1 << order) - 1;
3530 		for (; page < endpage; page += pageblock_nr_pages) {
3531 			int mt = get_pageblock_migratetype(page);
3532 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3533 			    && !is_migrate_highatomic(mt))
3534 				set_pageblock_migratetype(page,
3535 							  MIGRATE_MOVABLE);
3536 		}
3537 	}
3538 
3539 
3540 	return 1UL << order;
3541 }
3542 
3543 /**
3544  * __putback_isolated_page - Return a now-isolated page back where we got it
3545  * @page: Page that was isolated
3546  * @order: Order of the isolated page
3547  * @mt: The page's pageblock's migratetype
3548  *
3549  * This function is meant to return a page pulled from the free lists via
3550  * __isolate_free_page back to the free lists they were pulled from.
3551  */
3552 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3553 {
3554 	struct zone *zone = page_zone(page);
3555 
3556 	/* zone lock should be held when this function is called */
3557 	lockdep_assert_held(&zone->lock);
3558 
3559 	/* Return isolated page to tail of freelist. */
3560 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3561 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3562 }
3563 
3564 /*
3565  * Update NUMA hit/miss statistics
3566  *
3567  * Must be called with interrupts disabled.
3568  */
3569 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3570 				   long nr_account)
3571 {
3572 #ifdef CONFIG_NUMA
3573 	enum numa_stat_item local_stat = NUMA_LOCAL;
3574 
3575 	/* skip numa counters update if numa stats is disabled */
3576 	if (!static_branch_likely(&vm_numa_stat_key))
3577 		return;
3578 
3579 	if (zone_to_nid(z) != numa_node_id())
3580 		local_stat = NUMA_OTHER;
3581 
3582 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3583 		__count_numa_events(z, NUMA_HIT, nr_account);
3584 	else {
3585 		__count_numa_events(z, NUMA_MISS, nr_account);
3586 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3587 	}
3588 	__count_numa_events(z, local_stat, nr_account);
3589 #endif
3590 }
3591 
3592 /* Remove page from the per-cpu list, caller must protect the list */
3593 static inline
3594 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3595 			int migratetype,
3596 			unsigned int alloc_flags,
3597 			struct per_cpu_pages *pcp,
3598 			struct list_head *list)
3599 {
3600 	struct page *page;
3601 
3602 	do {
3603 		if (list_empty(list)) {
3604 			int batch = READ_ONCE(pcp->batch);
3605 			int alloced;
3606 
3607 			/*
3608 			 * Scale batch relative to order if batch implies
3609 			 * free pages can be stored on the PCP. Batch can
3610 			 * be 1 for small zones or for boot pagesets which
3611 			 * should never store free pages as the pages may
3612 			 * belong to arbitrary zones.
3613 			 */
3614 			if (batch > 1)
3615 				batch = max(batch >> order, 2);
3616 			alloced = rmqueue_bulk(zone, order,
3617 					batch, list,
3618 					migratetype, alloc_flags);
3619 
3620 			pcp->count += alloced << order;
3621 			if (unlikely(list_empty(list)))
3622 				return NULL;
3623 		}
3624 
3625 		page = list_first_entry(list, struct page, lru);
3626 		list_del(&page->lru);
3627 		pcp->count -= 1 << order;
3628 	} while (check_new_pcp(page));
3629 
3630 	return page;
3631 }
3632 
3633 /* Lock and remove page from the per-cpu list */
3634 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3635 			struct zone *zone, unsigned int order,
3636 			gfp_t gfp_flags, int migratetype,
3637 			unsigned int alloc_flags)
3638 {
3639 	struct per_cpu_pages *pcp;
3640 	struct list_head *list;
3641 	struct page *page;
3642 	unsigned long flags;
3643 
3644 	local_lock_irqsave(&pagesets.lock, flags);
3645 
3646 	/*
3647 	 * On allocation, reduce the number of pages that are batch freed.
3648 	 * See nr_pcp_free() where free_factor is increased for subsequent
3649 	 * frees.
3650 	 */
3651 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3652 	pcp->free_factor >>= 1;
3653 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3654 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3655 	local_unlock_irqrestore(&pagesets.lock, flags);
3656 	if (page) {
3657 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3658 		zone_statistics(preferred_zone, zone, 1);
3659 	}
3660 	return page;
3661 }
3662 
3663 /*
3664  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3665  */
3666 static inline
3667 struct page *rmqueue(struct zone *preferred_zone,
3668 			struct zone *zone, unsigned int order,
3669 			gfp_t gfp_flags, unsigned int alloc_flags,
3670 			int migratetype)
3671 {
3672 	unsigned long flags;
3673 	struct page *page;
3674 
3675 	if (likely(pcp_allowed_order(order))) {
3676 		/*
3677 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3678 		 * we need to skip it when CMA area isn't allowed.
3679 		 */
3680 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3681 				migratetype != MIGRATE_MOVABLE) {
3682 			page = rmqueue_pcplist(preferred_zone, zone, order,
3683 					gfp_flags, migratetype, alloc_flags);
3684 			goto out;
3685 		}
3686 	}
3687 
3688 	/*
3689 	 * We most definitely don't want callers attempting to
3690 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3691 	 */
3692 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3693 	spin_lock_irqsave(&zone->lock, flags);
3694 
3695 	do {
3696 		page = NULL;
3697 		/*
3698 		 * order-0 request can reach here when the pcplist is skipped
3699 		 * due to non-CMA allocation context. HIGHATOMIC area is
3700 		 * reserved for high-order atomic allocation, so order-0
3701 		 * request should skip it.
3702 		 */
3703 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3704 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3705 			if (page)
3706 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3707 		}
3708 		if (!page)
3709 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3710 	} while (page && check_new_pages(page, order));
3711 	if (!page)
3712 		goto failed;
3713 
3714 	__mod_zone_freepage_state(zone, -(1 << order),
3715 				  get_pcppage_migratetype(page));
3716 	spin_unlock_irqrestore(&zone->lock, flags);
3717 
3718 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3719 	zone_statistics(preferred_zone, zone, 1);
3720 
3721 out:
3722 	/* Separate test+clear to avoid unnecessary atomics */
3723 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3724 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3725 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3726 	}
3727 
3728 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3729 	return page;
3730 
3731 failed:
3732 	spin_unlock_irqrestore(&zone->lock, flags);
3733 	return NULL;
3734 }
3735 
3736 #ifdef CONFIG_FAIL_PAGE_ALLOC
3737 
3738 static struct {
3739 	struct fault_attr attr;
3740 
3741 	bool ignore_gfp_highmem;
3742 	bool ignore_gfp_reclaim;
3743 	u32 min_order;
3744 } fail_page_alloc = {
3745 	.attr = FAULT_ATTR_INITIALIZER,
3746 	.ignore_gfp_reclaim = true,
3747 	.ignore_gfp_highmem = true,
3748 	.min_order = 1,
3749 };
3750 
3751 static int __init setup_fail_page_alloc(char *str)
3752 {
3753 	return setup_fault_attr(&fail_page_alloc.attr, str);
3754 }
3755 __setup("fail_page_alloc=", setup_fail_page_alloc);
3756 
3757 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3758 {
3759 	if (order < fail_page_alloc.min_order)
3760 		return false;
3761 	if (gfp_mask & __GFP_NOFAIL)
3762 		return false;
3763 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3764 		return false;
3765 	if (fail_page_alloc.ignore_gfp_reclaim &&
3766 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3767 		return false;
3768 
3769 	return should_fail(&fail_page_alloc.attr, 1 << order);
3770 }
3771 
3772 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3773 
3774 static int __init fail_page_alloc_debugfs(void)
3775 {
3776 	umode_t mode = S_IFREG | 0600;
3777 	struct dentry *dir;
3778 
3779 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3780 					&fail_page_alloc.attr);
3781 
3782 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3783 			    &fail_page_alloc.ignore_gfp_reclaim);
3784 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3785 			    &fail_page_alloc.ignore_gfp_highmem);
3786 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3787 
3788 	return 0;
3789 }
3790 
3791 late_initcall(fail_page_alloc_debugfs);
3792 
3793 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3794 
3795 #else /* CONFIG_FAIL_PAGE_ALLOC */
3796 
3797 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3798 {
3799 	return false;
3800 }
3801 
3802 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3803 
3804 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3805 {
3806 	return __should_fail_alloc_page(gfp_mask, order);
3807 }
3808 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3809 
3810 static inline long __zone_watermark_unusable_free(struct zone *z,
3811 				unsigned int order, unsigned int alloc_flags)
3812 {
3813 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3814 	long unusable_free = (1 << order) - 1;
3815 
3816 	/*
3817 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3818 	 * the high-atomic reserves. This will over-estimate the size of the
3819 	 * atomic reserve but it avoids a search.
3820 	 */
3821 	if (likely(!alloc_harder))
3822 		unusable_free += z->nr_reserved_highatomic;
3823 
3824 #ifdef CONFIG_CMA
3825 	/* If allocation can't use CMA areas don't use free CMA pages */
3826 	if (!(alloc_flags & ALLOC_CMA))
3827 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3828 #endif
3829 
3830 	return unusable_free;
3831 }
3832 
3833 /*
3834  * Return true if free base pages are above 'mark'. For high-order checks it
3835  * will return true of the order-0 watermark is reached and there is at least
3836  * one free page of a suitable size. Checking now avoids taking the zone lock
3837  * to check in the allocation paths if no pages are free.
3838  */
3839 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3840 			 int highest_zoneidx, unsigned int alloc_flags,
3841 			 long free_pages)
3842 {
3843 	long min = mark;
3844 	int o;
3845 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3846 
3847 	/* free_pages may go negative - that's OK */
3848 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3849 
3850 	if (alloc_flags & ALLOC_HIGH)
3851 		min -= min / 2;
3852 
3853 	if (unlikely(alloc_harder)) {
3854 		/*
3855 		 * OOM victims can try even harder than normal ALLOC_HARDER
3856 		 * users on the grounds that it's definitely going to be in
3857 		 * the exit path shortly and free memory. Any allocation it
3858 		 * makes during the free path will be small and short-lived.
3859 		 */
3860 		if (alloc_flags & ALLOC_OOM)
3861 			min -= min / 2;
3862 		else
3863 			min -= min / 4;
3864 	}
3865 
3866 	/*
3867 	 * Check watermarks for an order-0 allocation request. If these
3868 	 * are not met, then a high-order request also cannot go ahead
3869 	 * even if a suitable page happened to be free.
3870 	 */
3871 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3872 		return false;
3873 
3874 	/* If this is an order-0 request then the watermark is fine */
3875 	if (!order)
3876 		return true;
3877 
3878 	/* For a high-order request, check at least one suitable page is free */
3879 	for (o = order; o < MAX_ORDER; o++) {
3880 		struct free_area *area = &z->free_area[o];
3881 		int mt;
3882 
3883 		if (!area->nr_free)
3884 			continue;
3885 
3886 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3887 			if (!free_area_empty(area, mt))
3888 				return true;
3889 		}
3890 
3891 #ifdef CONFIG_CMA
3892 		if ((alloc_flags & ALLOC_CMA) &&
3893 		    !free_area_empty(area, MIGRATE_CMA)) {
3894 			return true;
3895 		}
3896 #endif
3897 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3898 			return true;
3899 	}
3900 	return false;
3901 }
3902 
3903 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3904 		      int highest_zoneidx, unsigned int alloc_flags)
3905 {
3906 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3907 					zone_page_state(z, NR_FREE_PAGES));
3908 }
3909 
3910 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3911 				unsigned long mark, int highest_zoneidx,
3912 				unsigned int alloc_flags, gfp_t gfp_mask)
3913 {
3914 	long free_pages;
3915 
3916 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3917 
3918 	/*
3919 	 * Fast check for order-0 only. If this fails then the reserves
3920 	 * need to be calculated.
3921 	 */
3922 	if (!order) {
3923 		long fast_free;
3924 
3925 		fast_free = free_pages;
3926 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3927 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3928 			return true;
3929 	}
3930 
3931 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3932 					free_pages))
3933 		return true;
3934 	/*
3935 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3936 	 * when checking the min watermark. The min watermark is the
3937 	 * point where boosting is ignored so that kswapd is woken up
3938 	 * when below the low watermark.
3939 	 */
3940 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3941 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3942 		mark = z->_watermark[WMARK_MIN];
3943 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3944 					alloc_flags, free_pages);
3945 	}
3946 
3947 	return false;
3948 }
3949 
3950 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3951 			unsigned long mark, int highest_zoneidx)
3952 {
3953 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3954 
3955 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3956 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3957 
3958 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3959 								free_pages);
3960 }
3961 
3962 #ifdef CONFIG_NUMA
3963 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3964 
3965 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3966 {
3967 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3968 				node_reclaim_distance;
3969 }
3970 #else	/* CONFIG_NUMA */
3971 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3972 {
3973 	return true;
3974 }
3975 #endif	/* CONFIG_NUMA */
3976 
3977 /*
3978  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3979  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3980  * premature use of a lower zone may cause lowmem pressure problems that
3981  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3982  * probably too small. It only makes sense to spread allocations to avoid
3983  * fragmentation between the Normal and DMA32 zones.
3984  */
3985 static inline unsigned int
3986 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3987 {
3988 	unsigned int alloc_flags;
3989 
3990 	/*
3991 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3992 	 * to save a branch.
3993 	 */
3994 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3995 
3996 #ifdef CONFIG_ZONE_DMA32
3997 	if (!zone)
3998 		return alloc_flags;
3999 
4000 	if (zone_idx(zone) != ZONE_NORMAL)
4001 		return alloc_flags;
4002 
4003 	/*
4004 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4005 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4006 	 * on UMA that if Normal is populated then so is DMA32.
4007 	 */
4008 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4009 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4010 		return alloc_flags;
4011 
4012 	alloc_flags |= ALLOC_NOFRAGMENT;
4013 #endif /* CONFIG_ZONE_DMA32 */
4014 	return alloc_flags;
4015 }
4016 
4017 /* Must be called after current_gfp_context() which can change gfp_mask */
4018 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4019 						  unsigned int alloc_flags)
4020 {
4021 #ifdef CONFIG_CMA
4022 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4023 		alloc_flags |= ALLOC_CMA;
4024 #endif
4025 	return alloc_flags;
4026 }
4027 
4028 /*
4029  * get_page_from_freelist goes through the zonelist trying to allocate
4030  * a page.
4031  */
4032 static struct page *
4033 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4034 						const struct alloc_context *ac)
4035 {
4036 	struct zoneref *z;
4037 	struct zone *zone;
4038 	struct pglist_data *last_pgdat_dirty_limit = NULL;
4039 	bool no_fallback;
4040 
4041 retry:
4042 	/*
4043 	 * Scan zonelist, looking for a zone with enough free.
4044 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4045 	 */
4046 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4047 	z = ac->preferred_zoneref;
4048 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4049 					ac->nodemask) {
4050 		struct page *page;
4051 		unsigned long mark;
4052 
4053 		if (cpusets_enabled() &&
4054 			(alloc_flags & ALLOC_CPUSET) &&
4055 			!__cpuset_zone_allowed(zone, gfp_mask))
4056 				continue;
4057 		/*
4058 		 * When allocating a page cache page for writing, we
4059 		 * want to get it from a node that is within its dirty
4060 		 * limit, such that no single node holds more than its
4061 		 * proportional share of globally allowed dirty pages.
4062 		 * The dirty limits take into account the node's
4063 		 * lowmem reserves and high watermark so that kswapd
4064 		 * should be able to balance it without having to
4065 		 * write pages from its LRU list.
4066 		 *
4067 		 * XXX: For now, allow allocations to potentially
4068 		 * exceed the per-node dirty limit in the slowpath
4069 		 * (spread_dirty_pages unset) before going into reclaim,
4070 		 * which is important when on a NUMA setup the allowed
4071 		 * nodes are together not big enough to reach the
4072 		 * global limit.  The proper fix for these situations
4073 		 * will require awareness of nodes in the
4074 		 * dirty-throttling and the flusher threads.
4075 		 */
4076 		if (ac->spread_dirty_pages) {
4077 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
4078 				continue;
4079 
4080 			if (!node_dirty_ok(zone->zone_pgdat)) {
4081 				last_pgdat_dirty_limit = zone->zone_pgdat;
4082 				continue;
4083 			}
4084 		}
4085 
4086 		if (no_fallback && nr_online_nodes > 1 &&
4087 		    zone != ac->preferred_zoneref->zone) {
4088 			int local_nid;
4089 
4090 			/*
4091 			 * If moving to a remote node, retry but allow
4092 			 * fragmenting fallbacks. Locality is more important
4093 			 * than fragmentation avoidance.
4094 			 */
4095 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4096 			if (zone_to_nid(zone) != local_nid) {
4097 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4098 				goto retry;
4099 			}
4100 		}
4101 
4102 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4103 		if (!zone_watermark_fast(zone, order, mark,
4104 				       ac->highest_zoneidx, alloc_flags,
4105 				       gfp_mask)) {
4106 			int ret;
4107 
4108 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4109 			/*
4110 			 * Watermark failed for this zone, but see if we can
4111 			 * grow this zone if it contains deferred pages.
4112 			 */
4113 			if (static_branch_unlikely(&deferred_pages)) {
4114 				if (_deferred_grow_zone(zone, order))
4115 					goto try_this_zone;
4116 			}
4117 #endif
4118 			/* Checked here to keep the fast path fast */
4119 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4120 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4121 				goto try_this_zone;
4122 
4123 			if (!node_reclaim_enabled() ||
4124 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4125 				continue;
4126 
4127 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4128 			switch (ret) {
4129 			case NODE_RECLAIM_NOSCAN:
4130 				/* did not scan */
4131 				continue;
4132 			case NODE_RECLAIM_FULL:
4133 				/* scanned but unreclaimable */
4134 				continue;
4135 			default:
4136 				/* did we reclaim enough */
4137 				if (zone_watermark_ok(zone, order, mark,
4138 					ac->highest_zoneidx, alloc_flags))
4139 					goto try_this_zone;
4140 
4141 				continue;
4142 			}
4143 		}
4144 
4145 try_this_zone:
4146 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4147 				gfp_mask, alloc_flags, ac->migratetype);
4148 		if (page) {
4149 			prep_new_page(page, order, gfp_mask, alloc_flags);
4150 
4151 			/*
4152 			 * If this is a high-order atomic allocation then check
4153 			 * if the pageblock should be reserved for the future
4154 			 */
4155 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4156 				reserve_highatomic_pageblock(page, zone, order);
4157 
4158 			return page;
4159 		} else {
4160 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4161 			/* Try again if zone has deferred pages */
4162 			if (static_branch_unlikely(&deferred_pages)) {
4163 				if (_deferred_grow_zone(zone, order))
4164 					goto try_this_zone;
4165 			}
4166 #endif
4167 		}
4168 	}
4169 
4170 	/*
4171 	 * It's possible on a UMA machine to get through all zones that are
4172 	 * fragmented. If avoiding fragmentation, reset and try again.
4173 	 */
4174 	if (no_fallback) {
4175 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4176 		goto retry;
4177 	}
4178 
4179 	return NULL;
4180 }
4181 
4182 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4183 {
4184 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4185 
4186 	/*
4187 	 * This documents exceptions given to allocations in certain
4188 	 * contexts that are allowed to allocate outside current's set
4189 	 * of allowed nodes.
4190 	 */
4191 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4192 		if (tsk_is_oom_victim(current) ||
4193 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4194 			filter &= ~SHOW_MEM_FILTER_NODES;
4195 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4196 		filter &= ~SHOW_MEM_FILTER_NODES;
4197 
4198 	show_mem(filter, nodemask);
4199 }
4200 
4201 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4202 {
4203 	struct va_format vaf;
4204 	va_list args;
4205 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4206 
4207 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4208 		return;
4209 
4210 	va_start(args, fmt);
4211 	vaf.fmt = fmt;
4212 	vaf.va = &args;
4213 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4214 			current->comm, &vaf, gfp_mask, &gfp_mask,
4215 			nodemask_pr_args(nodemask));
4216 	va_end(args);
4217 
4218 	cpuset_print_current_mems_allowed();
4219 	pr_cont("\n");
4220 	dump_stack();
4221 	warn_alloc_show_mem(gfp_mask, nodemask);
4222 }
4223 
4224 static inline struct page *
4225 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4226 			      unsigned int alloc_flags,
4227 			      const struct alloc_context *ac)
4228 {
4229 	struct page *page;
4230 
4231 	page = get_page_from_freelist(gfp_mask, order,
4232 			alloc_flags|ALLOC_CPUSET, ac);
4233 	/*
4234 	 * fallback to ignore cpuset restriction if our nodes
4235 	 * are depleted
4236 	 */
4237 	if (!page)
4238 		page = get_page_from_freelist(gfp_mask, order,
4239 				alloc_flags, ac);
4240 
4241 	return page;
4242 }
4243 
4244 static inline struct page *
4245 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4246 	const struct alloc_context *ac, unsigned long *did_some_progress)
4247 {
4248 	struct oom_control oc = {
4249 		.zonelist = ac->zonelist,
4250 		.nodemask = ac->nodemask,
4251 		.memcg = NULL,
4252 		.gfp_mask = gfp_mask,
4253 		.order = order,
4254 	};
4255 	struct page *page;
4256 
4257 	*did_some_progress = 0;
4258 
4259 	/*
4260 	 * Acquire the oom lock.  If that fails, somebody else is
4261 	 * making progress for us.
4262 	 */
4263 	if (!mutex_trylock(&oom_lock)) {
4264 		*did_some_progress = 1;
4265 		schedule_timeout_uninterruptible(1);
4266 		return NULL;
4267 	}
4268 
4269 	/*
4270 	 * Go through the zonelist yet one more time, keep very high watermark
4271 	 * here, this is only to catch a parallel oom killing, we must fail if
4272 	 * we're still under heavy pressure. But make sure that this reclaim
4273 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4274 	 * allocation which will never fail due to oom_lock already held.
4275 	 */
4276 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4277 				      ~__GFP_DIRECT_RECLAIM, order,
4278 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4279 	if (page)
4280 		goto out;
4281 
4282 	/* Coredumps can quickly deplete all memory reserves */
4283 	if (current->flags & PF_DUMPCORE)
4284 		goto out;
4285 	/* The OOM killer will not help higher order allocs */
4286 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4287 		goto out;
4288 	/*
4289 	 * We have already exhausted all our reclaim opportunities without any
4290 	 * success so it is time to admit defeat. We will skip the OOM killer
4291 	 * because it is very likely that the caller has a more reasonable
4292 	 * fallback than shooting a random task.
4293 	 *
4294 	 * The OOM killer may not free memory on a specific node.
4295 	 */
4296 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4297 		goto out;
4298 	/* The OOM killer does not needlessly kill tasks for lowmem */
4299 	if (ac->highest_zoneidx < ZONE_NORMAL)
4300 		goto out;
4301 	if (pm_suspended_storage())
4302 		goto out;
4303 	/*
4304 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4305 	 * other request to make a forward progress.
4306 	 * We are in an unfortunate situation where out_of_memory cannot
4307 	 * do much for this context but let's try it to at least get
4308 	 * access to memory reserved if the current task is killed (see
4309 	 * out_of_memory). Once filesystems are ready to handle allocation
4310 	 * failures more gracefully we should just bail out here.
4311 	 */
4312 
4313 	/* Exhausted what can be done so it's blame time */
4314 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4315 		*did_some_progress = 1;
4316 
4317 		/*
4318 		 * Help non-failing allocations by giving them access to memory
4319 		 * reserves
4320 		 */
4321 		if (gfp_mask & __GFP_NOFAIL)
4322 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4323 					ALLOC_NO_WATERMARKS, ac);
4324 	}
4325 out:
4326 	mutex_unlock(&oom_lock);
4327 	return page;
4328 }
4329 
4330 /*
4331  * Maximum number of compaction retries with a progress before OOM
4332  * killer is consider as the only way to move forward.
4333  */
4334 #define MAX_COMPACT_RETRIES 16
4335 
4336 #ifdef CONFIG_COMPACTION
4337 /* Try memory compaction for high-order allocations before reclaim */
4338 static struct page *
4339 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4340 		unsigned int alloc_flags, const struct alloc_context *ac,
4341 		enum compact_priority prio, enum compact_result *compact_result)
4342 {
4343 	struct page *page = NULL;
4344 	unsigned long pflags;
4345 	unsigned int noreclaim_flag;
4346 
4347 	if (!order)
4348 		return NULL;
4349 
4350 	psi_memstall_enter(&pflags);
4351 	noreclaim_flag = memalloc_noreclaim_save();
4352 
4353 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4354 								prio, &page);
4355 
4356 	memalloc_noreclaim_restore(noreclaim_flag);
4357 	psi_memstall_leave(&pflags);
4358 
4359 	if (*compact_result == COMPACT_SKIPPED)
4360 		return NULL;
4361 	/*
4362 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4363 	 * count a compaction stall
4364 	 */
4365 	count_vm_event(COMPACTSTALL);
4366 
4367 	/* Prep a captured page if available */
4368 	if (page)
4369 		prep_new_page(page, order, gfp_mask, alloc_flags);
4370 
4371 	/* Try get a page from the freelist if available */
4372 	if (!page)
4373 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4374 
4375 	if (page) {
4376 		struct zone *zone = page_zone(page);
4377 
4378 		zone->compact_blockskip_flush = false;
4379 		compaction_defer_reset(zone, order, true);
4380 		count_vm_event(COMPACTSUCCESS);
4381 		return page;
4382 	}
4383 
4384 	/*
4385 	 * It's bad if compaction run occurs and fails. The most likely reason
4386 	 * is that pages exist, but not enough to satisfy watermarks.
4387 	 */
4388 	count_vm_event(COMPACTFAIL);
4389 
4390 	cond_resched();
4391 
4392 	return NULL;
4393 }
4394 
4395 static inline bool
4396 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4397 		     enum compact_result compact_result,
4398 		     enum compact_priority *compact_priority,
4399 		     int *compaction_retries)
4400 {
4401 	int max_retries = MAX_COMPACT_RETRIES;
4402 	int min_priority;
4403 	bool ret = false;
4404 	int retries = *compaction_retries;
4405 	enum compact_priority priority = *compact_priority;
4406 
4407 	if (!order)
4408 		return false;
4409 
4410 	if (fatal_signal_pending(current))
4411 		return false;
4412 
4413 	if (compaction_made_progress(compact_result))
4414 		(*compaction_retries)++;
4415 
4416 	/*
4417 	 * compaction considers all the zone as desperately out of memory
4418 	 * so it doesn't really make much sense to retry except when the
4419 	 * failure could be caused by insufficient priority
4420 	 */
4421 	if (compaction_failed(compact_result))
4422 		goto check_priority;
4423 
4424 	/*
4425 	 * compaction was skipped because there are not enough order-0 pages
4426 	 * to work with, so we retry only if it looks like reclaim can help.
4427 	 */
4428 	if (compaction_needs_reclaim(compact_result)) {
4429 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4430 		goto out;
4431 	}
4432 
4433 	/*
4434 	 * make sure the compaction wasn't deferred or didn't bail out early
4435 	 * due to locks contention before we declare that we should give up.
4436 	 * But the next retry should use a higher priority if allowed, so
4437 	 * we don't just keep bailing out endlessly.
4438 	 */
4439 	if (compaction_withdrawn(compact_result)) {
4440 		goto check_priority;
4441 	}
4442 
4443 	/*
4444 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4445 	 * costly ones because they are de facto nofail and invoke OOM
4446 	 * killer to move on while costly can fail and users are ready
4447 	 * to cope with that. 1/4 retries is rather arbitrary but we
4448 	 * would need much more detailed feedback from compaction to
4449 	 * make a better decision.
4450 	 */
4451 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4452 		max_retries /= 4;
4453 	if (*compaction_retries <= max_retries) {
4454 		ret = true;
4455 		goto out;
4456 	}
4457 
4458 	/*
4459 	 * Make sure there are attempts at the highest priority if we exhausted
4460 	 * all retries or failed at the lower priorities.
4461 	 */
4462 check_priority:
4463 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4464 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4465 
4466 	if (*compact_priority > min_priority) {
4467 		(*compact_priority)--;
4468 		*compaction_retries = 0;
4469 		ret = true;
4470 	}
4471 out:
4472 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4473 	return ret;
4474 }
4475 #else
4476 static inline struct page *
4477 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4478 		unsigned int alloc_flags, const struct alloc_context *ac,
4479 		enum compact_priority prio, enum compact_result *compact_result)
4480 {
4481 	*compact_result = COMPACT_SKIPPED;
4482 	return NULL;
4483 }
4484 
4485 static inline bool
4486 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4487 		     enum compact_result compact_result,
4488 		     enum compact_priority *compact_priority,
4489 		     int *compaction_retries)
4490 {
4491 	struct zone *zone;
4492 	struct zoneref *z;
4493 
4494 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4495 		return false;
4496 
4497 	/*
4498 	 * There are setups with compaction disabled which would prefer to loop
4499 	 * inside the allocator rather than hit the oom killer prematurely.
4500 	 * Let's give them a good hope and keep retrying while the order-0
4501 	 * watermarks are OK.
4502 	 */
4503 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4504 				ac->highest_zoneidx, ac->nodemask) {
4505 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4506 					ac->highest_zoneidx, alloc_flags))
4507 			return true;
4508 	}
4509 	return false;
4510 }
4511 #endif /* CONFIG_COMPACTION */
4512 
4513 #ifdef CONFIG_LOCKDEP
4514 static struct lockdep_map __fs_reclaim_map =
4515 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4516 
4517 static bool __need_reclaim(gfp_t gfp_mask)
4518 {
4519 	/* no reclaim without waiting on it */
4520 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4521 		return false;
4522 
4523 	/* this guy won't enter reclaim */
4524 	if (current->flags & PF_MEMALLOC)
4525 		return false;
4526 
4527 	if (gfp_mask & __GFP_NOLOCKDEP)
4528 		return false;
4529 
4530 	return true;
4531 }
4532 
4533 void __fs_reclaim_acquire(unsigned long ip)
4534 {
4535 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4536 }
4537 
4538 void __fs_reclaim_release(unsigned long ip)
4539 {
4540 	lock_release(&__fs_reclaim_map, ip);
4541 }
4542 
4543 void fs_reclaim_acquire(gfp_t gfp_mask)
4544 {
4545 	gfp_mask = current_gfp_context(gfp_mask);
4546 
4547 	if (__need_reclaim(gfp_mask)) {
4548 		if (gfp_mask & __GFP_FS)
4549 			__fs_reclaim_acquire(_RET_IP_);
4550 
4551 #ifdef CONFIG_MMU_NOTIFIER
4552 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4553 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4554 #endif
4555 
4556 	}
4557 }
4558 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4559 
4560 void fs_reclaim_release(gfp_t gfp_mask)
4561 {
4562 	gfp_mask = current_gfp_context(gfp_mask);
4563 
4564 	if (__need_reclaim(gfp_mask)) {
4565 		if (gfp_mask & __GFP_FS)
4566 			__fs_reclaim_release(_RET_IP_);
4567 	}
4568 }
4569 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4570 #endif
4571 
4572 /* Perform direct synchronous page reclaim */
4573 static unsigned long
4574 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4575 					const struct alloc_context *ac)
4576 {
4577 	unsigned int noreclaim_flag;
4578 	unsigned long pflags, progress;
4579 
4580 	cond_resched();
4581 
4582 	/* We now go into synchronous reclaim */
4583 	cpuset_memory_pressure_bump();
4584 	psi_memstall_enter(&pflags);
4585 	fs_reclaim_acquire(gfp_mask);
4586 	noreclaim_flag = memalloc_noreclaim_save();
4587 
4588 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4589 								ac->nodemask);
4590 
4591 	memalloc_noreclaim_restore(noreclaim_flag);
4592 	fs_reclaim_release(gfp_mask);
4593 	psi_memstall_leave(&pflags);
4594 
4595 	cond_resched();
4596 
4597 	return progress;
4598 }
4599 
4600 /* The really slow allocator path where we enter direct reclaim */
4601 static inline struct page *
4602 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4603 		unsigned int alloc_flags, const struct alloc_context *ac,
4604 		unsigned long *did_some_progress)
4605 {
4606 	struct page *page = NULL;
4607 	bool drained = false;
4608 
4609 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4610 	if (unlikely(!(*did_some_progress)))
4611 		return NULL;
4612 
4613 retry:
4614 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4615 
4616 	/*
4617 	 * If an allocation failed after direct reclaim, it could be because
4618 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4619 	 * Shrink them and try again
4620 	 */
4621 	if (!page && !drained) {
4622 		unreserve_highatomic_pageblock(ac, false);
4623 		drain_all_pages(NULL);
4624 		drained = true;
4625 		goto retry;
4626 	}
4627 
4628 	return page;
4629 }
4630 
4631 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4632 			     const struct alloc_context *ac)
4633 {
4634 	struct zoneref *z;
4635 	struct zone *zone;
4636 	pg_data_t *last_pgdat = NULL;
4637 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4638 
4639 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4640 					ac->nodemask) {
4641 		if (last_pgdat != zone->zone_pgdat)
4642 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4643 		last_pgdat = zone->zone_pgdat;
4644 	}
4645 }
4646 
4647 static inline unsigned int
4648 gfp_to_alloc_flags(gfp_t gfp_mask)
4649 {
4650 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4651 
4652 	/*
4653 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4654 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4655 	 * to save two branches.
4656 	 */
4657 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4658 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4659 
4660 	/*
4661 	 * The caller may dip into page reserves a bit more if the caller
4662 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4663 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4664 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4665 	 */
4666 	alloc_flags |= (__force int)
4667 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4668 
4669 	if (gfp_mask & __GFP_ATOMIC) {
4670 		/*
4671 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4672 		 * if it can't schedule.
4673 		 */
4674 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4675 			alloc_flags |= ALLOC_HARDER;
4676 		/*
4677 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4678 		 * comment for __cpuset_node_allowed().
4679 		 */
4680 		alloc_flags &= ~ALLOC_CPUSET;
4681 	} else if (unlikely(rt_task(current)) && in_task())
4682 		alloc_flags |= ALLOC_HARDER;
4683 
4684 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4685 
4686 	return alloc_flags;
4687 }
4688 
4689 static bool oom_reserves_allowed(struct task_struct *tsk)
4690 {
4691 	if (!tsk_is_oom_victim(tsk))
4692 		return false;
4693 
4694 	/*
4695 	 * !MMU doesn't have oom reaper so give access to memory reserves
4696 	 * only to the thread with TIF_MEMDIE set
4697 	 */
4698 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4699 		return false;
4700 
4701 	return true;
4702 }
4703 
4704 /*
4705  * Distinguish requests which really need access to full memory
4706  * reserves from oom victims which can live with a portion of it
4707  */
4708 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4709 {
4710 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4711 		return 0;
4712 	if (gfp_mask & __GFP_MEMALLOC)
4713 		return ALLOC_NO_WATERMARKS;
4714 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4715 		return ALLOC_NO_WATERMARKS;
4716 	if (!in_interrupt()) {
4717 		if (current->flags & PF_MEMALLOC)
4718 			return ALLOC_NO_WATERMARKS;
4719 		else if (oom_reserves_allowed(current))
4720 			return ALLOC_OOM;
4721 	}
4722 
4723 	return 0;
4724 }
4725 
4726 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4727 {
4728 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4729 }
4730 
4731 /*
4732  * Checks whether it makes sense to retry the reclaim to make a forward progress
4733  * for the given allocation request.
4734  *
4735  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4736  * without success, or when we couldn't even meet the watermark if we
4737  * reclaimed all remaining pages on the LRU lists.
4738  *
4739  * Returns true if a retry is viable or false to enter the oom path.
4740  */
4741 static inline bool
4742 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4743 		     struct alloc_context *ac, int alloc_flags,
4744 		     bool did_some_progress, int *no_progress_loops)
4745 {
4746 	struct zone *zone;
4747 	struct zoneref *z;
4748 	bool ret = false;
4749 
4750 	/*
4751 	 * Costly allocations might have made a progress but this doesn't mean
4752 	 * their order will become available due to high fragmentation so
4753 	 * always increment the no progress counter for them
4754 	 */
4755 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4756 		*no_progress_loops = 0;
4757 	else
4758 		(*no_progress_loops)++;
4759 
4760 	/*
4761 	 * Make sure we converge to OOM if we cannot make any progress
4762 	 * several times in the row.
4763 	 */
4764 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4765 		/* Before OOM, exhaust highatomic_reserve */
4766 		return unreserve_highatomic_pageblock(ac, true);
4767 	}
4768 
4769 	/*
4770 	 * Keep reclaiming pages while there is a chance this will lead
4771 	 * somewhere.  If none of the target zones can satisfy our allocation
4772 	 * request even if all reclaimable pages are considered then we are
4773 	 * screwed and have to go OOM.
4774 	 */
4775 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4776 				ac->highest_zoneidx, ac->nodemask) {
4777 		unsigned long available;
4778 		unsigned long reclaimable;
4779 		unsigned long min_wmark = min_wmark_pages(zone);
4780 		bool wmark;
4781 
4782 		available = reclaimable = zone_reclaimable_pages(zone);
4783 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4784 
4785 		/*
4786 		 * Would the allocation succeed if we reclaimed all
4787 		 * reclaimable pages?
4788 		 */
4789 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4790 				ac->highest_zoneidx, alloc_flags, available);
4791 		trace_reclaim_retry_zone(z, order, reclaimable,
4792 				available, min_wmark, *no_progress_loops, wmark);
4793 		if (wmark) {
4794 			ret = true;
4795 			break;
4796 		}
4797 	}
4798 
4799 	/*
4800 	 * Memory allocation/reclaim might be called from a WQ context and the
4801 	 * current implementation of the WQ concurrency control doesn't
4802 	 * recognize that a particular WQ is congested if the worker thread is
4803 	 * looping without ever sleeping. Therefore we have to do a short sleep
4804 	 * here rather than calling cond_resched().
4805 	 */
4806 	if (current->flags & PF_WQ_WORKER)
4807 		schedule_timeout_uninterruptible(1);
4808 	else
4809 		cond_resched();
4810 	return ret;
4811 }
4812 
4813 static inline bool
4814 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4815 {
4816 	/*
4817 	 * It's possible that cpuset's mems_allowed and the nodemask from
4818 	 * mempolicy don't intersect. This should be normally dealt with by
4819 	 * policy_nodemask(), but it's possible to race with cpuset update in
4820 	 * such a way the check therein was true, and then it became false
4821 	 * before we got our cpuset_mems_cookie here.
4822 	 * This assumes that for all allocations, ac->nodemask can come only
4823 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4824 	 * when it does not intersect with the cpuset restrictions) or the
4825 	 * caller can deal with a violated nodemask.
4826 	 */
4827 	if (cpusets_enabled() && ac->nodemask &&
4828 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4829 		ac->nodemask = NULL;
4830 		return true;
4831 	}
4832 
4833 	/*
4834 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4835 	 * possible to race with parallel threads in such a way that our
4836 	 * allocation can fail while the mask is being updated. If we are about
4837 	 * to fail, check if the cpuset changed during allocation and if so,
4838 	 * retry.
4839 	 */
4840 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4841 		return true;
4842 
4843 	return false;
4844 }
4845 
4846 static inline struct page *
4847 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4848 						struct alloc_context *ac)
4849 {
4850 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4851 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4852 	struct page *page = NULL;
4853 	unsigned int alloc_flags;
4854 	unsigned long did_some_progress;
4855 	enum compact_priority compact_priority;
4856 	enum compact_result compact_result;
4857 	int compaction_retries;
4858 	int no_progress_loops;
4859 	unsigned int cpuset_mems_cookie;
4860 	int reserve_flags;
4861 
4862 	/*
4863 	 * We also sanity check to catch abuse of atomic reserves being used by
4864 	 * callers that are not in atomic context.
4865 	 */
4866 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4867 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4868 		gfp_mask &= ~__GFP_ATOMIC;
4869 
4870 retry_cpuset:
4871 	compaction_retries = 0;
4872 	no_progress_loops = 0;
4873 	compact_priority = DEF_COMPACT_PRIORITY;
4874 	cpuset_mems_cookie = read_mems_allowed_begin();
4875 
4876 	/*
4877 	 * The fast path uses conservative alloc_flags to succeed only until
4878 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4879 	 * alloc_flags precisely. So we do that now.
4880 	 */
4881 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4882 
4883 	/*
4884 	 * We need to recalculate the starting point for the zonelist iterator
4885 	 * because we might have used different nodemask in the fast path, or
4886 	 * there was a cpuset modification and we are retrying - otherwise we
4887 	 * could end up iterating over non-eligible zones endlessly.
4888 	 */
4889 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4890 					ac->highest_zoneidx, ac->nodemask);
4891 	if (!ac->preferred_zoneref->zone)
4892 		goto nopage;
4893 
4894 	/*
4895 	 * Check for insane configurations where the cpuset doesn't contain
4896 	 * any suitable zone to satisfy the request - e.g. non-movable
4897 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4898 	 */
4899 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4900 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4901 					ac->highest_zoneidx,
4902 					&cpuset_current_mems_allowed);
4903 		if (!z->zone)
4904 			goto nopage;
4905 	}
4906 
4907 	if (alloc_flags & ALLOC_KSWAPD)
4908 		wake_all_kswapds(order, gfp_mask, ac);
4909 
4910 	/*
4911 	 * The adjusted alloc_flags might result in immediate success, so try
4912 	 * that first
4913 	 */
4914 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4915 	if (page)
4916 		goto got_pg;
4917 
4918 	/*
4919 	 * For costly allocations, try direct compaction first, as it's likely
4920 	 * that we have enough base pages and don't need to reclaim. For non-
4921 	 * movable high-order allocations, do that as well, as compaction will
4922 	 * try prevent permanent fragmentation by migrating from blocks of the
4923 	 * same migratetype.
4924 	 * Don't try this for allocations that are allowed to ignore
4925 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4926 	 */
4927 	if (can_direct_reclaim &&
4928 			(costly_order ||
4929 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4930 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4931 		page = __alloc_pages_direct_compact(gfp_mask, order,
4932 						alloc_flags, ac,
4933 						INIT_COMPACT_PRIORITY,
4934 						&compact_result);
4935 		if (page)
4936 			goto got_pg;
4937 
4938 		/*
4939 		 * Checks for costly allocations with __GFP_NORETRY, which
4940 		 * includes some THP page fault allocations
4941 		 */
4942 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4943 			/*
4944 			 * If allocating entire pageblock(s) and compaction
4945 			 * failed because all zones are below low watermarks
4946 			 * or is prohibited because it recently failed at this
4947 			 * order, fail immediately unless the allocator has
4948 			 * requested compaction and reclaim retry.
4949 			 *
4950 			 * Reclaim is
4951 			 *  - potentially very expensive because zones are far
4952 			 *    below their low watermarks or this is part of very
4953 			 *    bursty high order allocations,
4954 			 *  - not guaranteed to help because isolate_freepages()
4955 			 *    may not iterate over freed pages as part of its
4956 			 *    linear scan, and
4957 			 *  - unlikely to make entire pageblocks free on its
4958 			 *    own.
4959 			 */
4960 			if (compact_result == COMPACT_SKIPPED ||
4961 			    compact_result == COMPACT_DEFERRED)
4962 				goto nopage;
4963 
4964 			/*
4965 			 * Looks like reclaim/compaction is worth trying, but
4966 			 * sync compaction could be very expensive, so keep
4967 			 * using async compaction.
4968 			 */
4969 			compact_priority = INIT_COMPACT_PRIORITY;
4970 		}
4971 	}
4972 
4973 retry:
4974 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4975 	if (alloc_flags & ALLOC_KSWAPD)
4976 		wake_all_kswapds(order, gfp_mask, ac);
4977 
4978 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4979 	if (reserve_flags)
4980 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
4981 
4982 	/*
4983 	 * Reset the nodemask and zonelist iterators if memory policies can be
4984 	 * ignored. These allocations are high priority and system rather than
4985 	 * user oriented.
4986 	 */
4987 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4988 		ac->nodemask = NULL;
4989 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4990 					ac->highest_zoneidx, ac->nodemask);
4991 	}
4992 
4993 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4994 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4995 	if (page)
4996 		goto got_pg;
4997 
4998 	/* Caller is not willing to reclaim, we can't balance anything */
4999 	if (!can_direct_reclaim)
5000 		goto nopage;
5001 
5002 	/* Avoid recursion of direct reclaim */
5003 	if (current->flags & PF_MEMALLOC)
5004 		goto nopage;
5005 
5006 	/* Try direct reclaim and then allocating */
5007 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5008 							&did_some_progress);
5009 	if (page)
5010 		goto got_pg;
5011 
5012 	/* Try direct compaction and then allocating */
5013 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5014 					compact_priority, &compact_result);
5015 	if (page)
5016 		goto got_pg;
5017 
5018 	/* Do not loop if specifically requested */
5019 	if (gfp_mask & __GFP_NORETRY)
5020 		goto nopage;
5021 
5022 	/*
5023 	 * Do not retry costly high order allocations unless they are
5024 	 * __GFP_RETRY_MAYFAIL
5025 	 */
5026 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5027 		goto nopage;
5028 
5029 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5030 				 did_some_progress > 0, &no_progress_loops))
5031 		goto retry;
5032 
5033 	/*
5034 	 * It doesn't make any sense to retry for the compaction if the order-0
5035 	 * reclaim is not able to make any progress because the current
5036 	 * implementation of the compaction depends on the sufficient amount
5037 	 * of free memory (see __compaction_suitable)
5038 	 */
5039 	if (did_some_progress > 0 &&
5040 			should_compact_retry(ac, order, alloc_flags,
5041 				compact_result, &compact_priority,
5042 				&compaction_retries))
5043 		goto retry;
5044 
5045 
5046 	/* Deal with possible cpuset update races before we start OOM killing */
5047 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5048 		goto retry_cpuset;
5049 
5050 	/* Reclaim has failed us, start killing things */
5051 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5052 	if (page)
5053 		goto got_pg;
5054 
5055 	/* Avoid allocations with no watermarks from looping endlessly */
5056 	if (tsk_is_oom_victim(current) &&
5057 	    (alloc_flags & ALLOC_OOM ||
5058 	     (gfp_mask & __GFP_NOMEMALLOC)))
5059 		goto nopage;
5060 
5061 	/* Retry as long as the OOM killer is making progress */
5062 	if (did_some_progress) {
5063 		no_progress_loops = 0;
5064 		goto retry;
5065 	}
5066 
5067 nopage:
5068 	/* Deal with possible cpuset update races before we fail */
5069 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5070 		goto retry_cpuset;
5071 
5072 	/*
5073 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5074 	 * we always retry
5075 	 */
5076 	if (gfp_mask & __GFP_NOFAIL) {
5077 		/*
5078 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5079 		 * of any new users that actually require GFP_NOWAIT
5080 		 */
5081 		if (WARN_ON_ONCE(!can_direct_reclaim))
5082 			goto fail;
5083 
5084 		/*
5085 		 * PF_MEMALLOC request from this context is rather bizarre
5086 		 * because we cannot reclaim anything and only can loop waiting
5087 		 * for somebody to do a work for us
5088 		 */
5089 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5090 
5091 		/*
5092 		 * non failing costly orders are a hard requirement which we
5093 		 * are not prepared for much so let's warn about these users
5094 		 * so that we can identify them and convert them to something
5095 		 * else.
5096 		 */
5097 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5098 
5099 		/*
5100 		 * Help non-failing allocations by giving them access to memory
5101 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5102 		 * could deplete whole memory reserves which would just make
5103 		 * the situation worse
5104 		 */
5105 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5106 		if (page)
5107 			goto got_pg;
5108 
5109 		cond_resched();
5110 		goto retry;
5111 	}
5112 fail:
5113 	warn_alloc(gfp_mask, ac->nodemask,
5114 			"page allocation failure: order:%u", order);
5115 got_pg:
5116 	return page;
5117 }
5118 
5119 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5120 		int preferred_nid, nodemask_t *nodemask,
5121 		struct alloc_context *ac, gfp_t *alloc_gfp,
5122 		unsigned int *alloc_flags)
5123 {
5124 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5125 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5126 	ac->nodemask = nodemask;
5127 	ac->migratetype = gfp_migratetype(gfp_mask);
5128 
5129 	if (cpusets_enabled()) {
5130 		*alloc_gfp |= __GFP_HARDWALL;
5131 		/*
5132 		 * When we are in the interrupt context, it is irrelevant
5133 		 * to the current task context. It means that any node ok.
5134 		 */
5135 		if (in_task() && !ac->nodemask)
5136 			ac->nodemask = &cpuset_current_mems_allowed;
5137 		else
5138 			*alloc_flags |= ALLOC_CPUSET;
5139 	}
5140 
5141 	fs_reclaim_acquire(gfp_mask);
5142 	fs_reclaim_release(gfp_mask);
5143 
5144 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5145 
5146 	if (should_fail_alloc_page(gfp_mask, order))
5147 		return false;
5148 
5149 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5150 
5151 	/* Dirty zone balancing only done in the fast path */
5152 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5153 
5154 	/*
5155 	 * The preferred zone is used for statistics but crucially it is
5156 	 * also used as the starting point for the zonelist iterator. It
5157 	 * may get reset for allocations that ignore memory policies.
5158 	 */
5159 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5160 					ac->highest_zoneidx, ac->nodemask);
5161 
5162 	return true;
5163 }
5164 
5165 /*
5166  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5167  * @gfp: GFP flags for the allocation
5168  * @preferred_nid: The preferred NUMA node ID to allocate from
5169  * @nodemask: Set of nodes to allocate from, may be NULL
5170  * @nr_pages: The number of pages desired on the list or array
5171  * @page_list: Optional list to store the allocated pages
5172  * @page_array: Optional array to store the pages
5173  *
5174  * This is a batched version of the page allocator that attempts to
5175  * allocate nr_pages quickly. Pages are added to page_list if page_list
5176  * is not NULL, otherwise it is assumed that the page_array is valid.
5177  *
5178  * For lists, nr_pages is the number of pages that should be allocated.
5179  *
5180  * For arrays, only NULL elements are populated with pages and nr_pages
5181  * is the maximum number of pages that will be stored in the array.
5182  *
5183  * Returns the number of pages on the list or array.
5184  */
5185 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5186 			nodemask_t *nodemask, int nr_pages,
5187 			struct list_head *page_list,
5188 			struct page **page_array)
5189 {
5190 	struct page *page;
5191 	unsigned long flags;
5192 	struct zone *zone;
5193 	struct zoneref *z;
5194 	struct per_cpu_pages *pcp;
5195 	struct list_head *pcp_list;
5196 	struct alloc_context ac;
5197 	gfp_t alloc_gfp;
5198 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5199 	int nr_populated = 0, nr_account = 0;
5200 
5201 	/*
5202 	 * Skip populated array elements to determine if any pages need
5203 	 * to be allocated before disabling IRQs.
5204 	 */
5205 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5206 		nr_populated++;
5207 
5208 	/* No pages requested? */
5209 	if (unlikely(nr_pages <= 0))
5210 		goto out;
5211 
5212 	/* Already populated array? */
5213 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5214 		goto out;
5215 
5216 	/* Bulk allocator does not support memcg accounting. */
5217 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5218 		goto failed;
5219 
5220 	/* Use the single page allocator for one page. */
5221 	if (nr_pages - nr_populated == 1)
5222 		goto failed;
5223 
5224 #ifdef CONFIG_PAGE_OWNER
5225 	/*
5226 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5227 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5228 	 * removes much of the performance benefit of bulk allocation so
5229 	 * force the caller to allocate one page at a time as it'll have
5230 	 * similar performance to added complexity to the bulk allocator.
5231 	 */
5232 	if (static_branch_unlikely(&page_owner_inited))
5233 		goto failed;
5234 #endif
5235 
5236 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5237 	gfp &= gfp_allowed_mask;
5238 	alloc_gfp = gfp;
5239 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5240 		goto out;
5241 	gfp = alloc_gfp;
5242 
5243 	/* Find an allowed local zone that meets the low watermark. */
5244 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5245 		unsigned long mark;
5246 
5247 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5248 		    !__cpuset_zone_allowed(zone, gfp)) {
5249 			continue;
5250 		}
5251 
5252 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5253 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5254 			goto failed;
5255 		}
5256 
5257 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5258 		if (zone_watermark_fast(zone, 0,  mark,
5259 				zonelist_zone_idx(ac.preferred_zoneref),
5260 				alloc_flags, gfp)) {
5261 			break;
5262 		}
5263 	}
5264 
5265 	/*
5266 	 * If there are no allowed local zones that meets the watermarks then
5267 	 * try to allocate a single page and reclaim if necessary.
5268 	 */
5269 	if (unlikely(!zone))
5270 		goto failed;
5271 
5272 	/* Attempt the batch allocation */
5273 	local_lock_irqsave(&pagesets.lock, flags);
5274 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
5275 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5276 
5277 	while (nr_populated < nr_pages) {
5278 
5279 		/* Skip existing pages */
5280 		if (page_array && page_array[nr_populated]) {
5281 			nr_populated++;
5282 			continue;
5283 		}
5284 
5285 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5286 								pcp, pcp_list);
5287 		if (unlikely(!page)) {
5288 			/* Try and get at least one page */
5289 			if (!nr_populated)
5290 				goto failed_irq;
5291 			break;
5292 		}
5293 		nr_account++;
5294 
5295 		prep_new_page(page, 0, gfp, 0);
5296 		if (page_list)
5297 			list_add(&page->lru, page_list);
5298 		else
5299 			page_array[nr_populated] = page;
5300 		nr_populated++;
5301 	}
5302 
5303 	local_unlock_irqrestore(&pagesets.lock, flags);
5304 
5305 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5306 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5307 
5308 out:
5309 	return nr_populated;
5310 
5311 failed_irq:
5312 	local_unlock_irqrestore(&pagesets.lock, flags);
5313 
5314 failed:
5315 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5316 	if (page) {
5317 		if (page_list)
5318 			list_add(&page->lru, page_list);
5319 		else
5320 			page_array[nr_populated] = page;
5321 		nr_populated++;
5322 	}
5323 
5324 	goto out;
5325 }
5326 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5327 
5328 /*
5329  * This is the 'heart' of the zoned buddy allocator.
5330  */
5331 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5332 							nodemask_t *nodemask)
5333 {
5334 	struct page *page;
5335 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5336 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5337 	struct alloc_context ac = { };
5338 
5339 	/*
5340 	 * There are several places where we assume that the order value is sane
5341 	 * so bail out early if the request is out of bound.
5342 	 */
5343 	if (unlikely(order >= MAX_ORDER)) {
5344 		WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5345 		return NULL;
5346 	}
5347 
5348 	gfp &= gfp_allowed_mask;
5349 	/*
5350 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5351 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5352 	 * from a particular context which has been marked by
5353 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5354 	 * movable zones are not used during allocation.
5355 	 */
5356 	gfp = current_gfp_context(gfp);
5357 	alloc_gfp = gfp;
5358 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5359 			&alloc_gfp, &alloc_flags))
5360 		return NULL;
5361 
5362 	/*
5363 	 * Forbid the first pass from falling back to types that fragment
5364 	 * memory until all local zones are considered.
5365 	 */
5366 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5367 
5368 	/* First allocation attempt */
5369 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5370 	if (likely(page))
5371 		goto out;
5372 
5373 	alloc_gfp = gfp;
5374 	ac.spread_dirty_pages = false;
5375 
5376 	/*
5377 	 * Restore the original nodemask if it was potentially replaced with
5378 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5379 	 */
5380 	ac.nodemask = nodemask;
5381 
5382 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5383 
5384 out:
5385 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5386 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5387 		__free_pages(page, order);
5388 		page = NULL;
5389 	}
5390 
5391 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5392 
5393 	return page;
5394 }
5395 EXPORT_SYMBOL(__alloc_pages);
5396 
5397 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5398 		nodemask_t *nodemask)
5399 {
5400 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5401 			preferred_nid, nodemask);
5402 
5403 	if (page && order > 1)
5404 		prep_transhuge_page(page);
5405 	return (struct folio *)page;
5406 }
5407 EXPORT_SYMBOL(__folio_alloc);
5408 
5409 /*
5410  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5411  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5412  * you need to access high mem.
5413  */
5414 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5415 {
5416 	struct page *page;
5417 
5418 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5419 	if (!page)
5420 		return 0;
5421 	return (unsigned long) page_address(page);
5422 }
5423 EXPORT_SYMBOL(__get_free_pages);
5424 
5425 unsigned long get_zeroed_page(gfp_t gfp_mask)
5426 {
5427 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5428 }
5429 EXPORT_SYMBOL(get_zeroed_page);
5430 
5431 /**
5432  * __free_pages - Free pages allocated with alloc_pages().
5433  * @page: The page pointer returned from alloc_pages().
5434  * @order: The order of the allocation.
5435  *
5436  * This function can free multi-page allocations that are not compound
5437  * pages.  It does not check that the @order passed in matches that of
5438  * the allocation, so it is easy to leak memory.  Freeing more memory
5439  * than was allocated will probably emit a warning.
5440  *
5441  * If the last reference to this page is speculative, it will be released
5442  * by put_page() which only frees the first page of a non-compound
5443  * allocation.  To prevent the remaining pages from being leaked, we free
5444  * the subsequent pages here.  If you want to use the page's reference
5445  * count to decide when to free the allocation, you should allocate a
5446  * compound page, and use put_page() instead of __free_pages().
5447  *
5448  * Context: May be called in interrupt context or while holding a normal
5449  * spinlock, but not in NMI context or while holding a raw spinlock.
5450  */
5451 void __free_pages(struct page *page, unsigned int order)
5452 {
5453 	if (put_page_testzero(page))
5454 		free_the_page(page, order);
5455 	else if (!PageHead(page))
5456 		while (order-- > 0)
5457 			free_the_page(page + (1 << order), order);
5458 }
5459 EXPORT_SYMBOL(__free_pages);
5460 
5461 void free_pages(unsigned long addr, unsigned int order)
5462 {
5463 	if (addr != 0) {
5464 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5465 		__free_pages(virt_to_page((void *)addr), order);
5466 	}
5467 }
5468 
5469 EXPORT_SYMBOL(free_pages);
5470 
5471 /*
5472  * Page Fragment:
5473  *  An arbitrary-length arbitrary-offset area of memory which resides
5474  *  within a 0 or higher order page.  Multiple fragments within that page
5475  *  are individually refcounted, in the page's reference counter.
5476  *
5477  * The page_frag functions below provide a simple allocation framework for
5478  * page fragments.  This is used by the network stack and network device
5479  * drivers to provide a backing region of memory for use as either an
5480  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5481  */
5482 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5483 					     gfp_t gfp_mask)
5484 {
5485 	struct page *page = NULL;
5486 	gfp_t gfp = gfp_mask;
5487 
5488 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5489 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5490 		    __GFP_NOMEMALLOC;
5491 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5492 				PAGE_FRAG_CACHE_MAX_ORDER);
5493 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5494 #endif
5495 	if (unlikely(!page))
5496 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5497 
5498 	nc->va = page ? page_address(page) : NULL;
5499 
5500 	return page;
5501 }
5502 
5503 void __page_frag_cache_drain(struct page *page, unsigned int count)
5504 {
5505 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5506 
5507 	if (page_ref_sub_and_test(page, count))
5508 		free_the_page(page, compound_order(page));
5509 }
5510 EXPORT_SYMBOL(__page_frag_cache_drain);
5511 
5512 void *page_frag_alloc_align(struct page_frag_cache *nc,
5513 		      unsigned int fragsz, gfp_t gfp_mask,
5514 		      unsigned int align_mask)
5515 {
5516 	unsigned int size = PAGE_SIZE;
5517 	struct page *page;
5518 	int offset;
5519 
5520 	if (unlikely(!nc->va)) {
5521 refill:
5522 		page = __page_frag_cache_refill(nc, gfp_mask);
5523 		if (!page)
5524 			return NULL;
5525 
5526 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5527 		/* if size can vary use size else just use PAGE_SIZE */
5528 		size = nc->size;
5529 #endif
5530 		/* Even if we own the page, we do not use atomic_set().
5531 		 * This would break get_page_unless_zero() users.
5532 		 */
5533 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5534 
5535 		/* reset page count bias and offset to start of new frag */
5536 		nc->pfmemalloc = page_is_pfmemalloc(page);
5537 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5538 		nc->offset = size;
5539 	}
5540 
5541 	offset = nc->offset - fragsz;
5542 	if (unlikely(offset < 0)) {
5543 		page = virt_to_page(nc->va);
5544 
5545 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5546 			goto refill;
5547 
5548 		if (unlikely(nc->pfmemalloc)) {
5549 			free_the_page(page, compound_order(page));
5550 			goto refill;
5551 		}
5552 
5553 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5554 		/* if size can vary use size else just use PAGE_SIZE */
5555 		size = nc->size;
5556 #endif
5557 		/* OK, page count is 0, we can safely set it */
5558 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5559 
5560 		/* reset page count bias and offset to start of new frag */
5561 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5562 		offset = size - fragsz;
5563 	}
5564 
5565 	nc->pagecnt_bias--;
5566 	offset &= align_mask;
5567 	nc->offset = offset;
5568 
5569 	return nc->va + offset;
5570 }
5571 EXPORT_SYMBOL(page_frag_alloc_align);
5572 
5573 /*
5574  * Frees a page fragment allocated out of either a compound or order 0 page.
5575  */
5576 void page_frag_free(void *addr)
5577 {
5578 	struct page *page = virt_to_head_page(addr);
5579 
5580 	if (unlikely(put_page_testzero(page)))
5581 		free_the_page(page, compound_order(page));
5582 }
5583 EXPORT_SYMBOL(page_frag_free);
5584 
5585 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5586 		size_t size)
5587 {
5588 	if (addr) {
5589 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5590 		unsigned long used = addr + PAGE_ALIGN(size);
5591 
5592 		split_page(virt_to_page((void *)addr), order);
5593 		while (used < alloc_end) {
5594 			free_page(used);
5595 			used += PAGE_SIZE;
5596 		}
5597 	}
5598 	return (void *)addr;
5599 }
5600 
5601 /**
5602  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5603  * @size: the number of bytes to allocate
5604  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5605  *
5606  * This function is similar to alloc_pages(), except that it allocates the
5607  * minimum number of pages to satisfy the request.  alloc_pages() can only
5608  * allocate memory in power-of-two pages.
5609  *
5610  * This function is also limited by MAX_ORDER.
5611  *
5612  * Memory allocated by this function must be released by free_pages_exact().
5613  *
5614  * Return: pointer to the allocated area or %NULL in case of error.
5615  */
5616 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5617 {
5618 	unsigned int order = get_order(size);
5619 	unsigned long addr;
5620 
5621 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5622 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5623 
5624 	addr = __get_free_pages(gfp_mask, order);
5625 	return make_alloc_exact(addr, order, size);
5626 }
5627 EXPORT_SYMBOL(alloc_pages_exact);
5628 
5629 /**
5630  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5631  *			   pages on a node.
5632  * @nid: the preferred node ID where memory should be allocated
5633  * @size: the number of bytes to allocate
5634  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5635  *
5636  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5637  * back.
5638  *
5639  * Return: pointer to the allocated area or %NULL in case of error.
5640  */
5641 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5642 {
5643 	unsigned int order = get_order(size);
5644 	struct page *p;
5645 
5646 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5647 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5648 
5649 	p = alloc_pages_node(nid, gfp_mask, order);
5650 	if (!p)
5651 		return NULL;
5652 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5653 }
5654 
5655 /**
5656  * free_pages_exact - release memory allocated via alloc_pages_exact()
5657  * @virt: the value returned by alloc_pages_exact.
5658  * @size: size of allocation, same value as passed to alloc_pages_exact().
5659  *
5660  * Release the memory allocated by a previous call to alloc_pages_exact.
5661  */
5662 void free_pages_exact(void *virt, size_t size)
5663 {
5664 	unsigned long addr = (unsigned long)virt;
5665 	unsigned long end = addr + PAGE_ALIGN(size);
5666 
5667 	while (addr < end) {
5668 		free_page(addr);
5669 		addr += PAGE_SIZE;
5670 	}
5671 }
5672 EXPORT_SYMBOL(free_pages_exact);
5673 
5674 /**
5675  * nr_free_zone_pages - count number of pages beyond high watermark
5676  * @offset: The zone index of the highest zone
5677  *
5678  * nr_free_zone_pages() counts the number of pages which are beyond the
5679  * high watermark within all zones at or below a given zone index.  For each
5680  * zone, the number of pages is calculated as:
5681  *
5682  *     nr_free_zone_pages = managed_pages - high_pages
5683  *
5684  * Return: number of pages beyond high watermark.
5685  */
5686 static unsigned long nr_free_zone_pages(int offset)
5687 {
5688 	struct zoneref *z;
5689 	struct zone *zone;
5690 
5691 	/* Just pick one node, since fallback list is circular */
5692 	unsigned long sum = 0;
5693 
5694 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5695 
5696 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5697 		unsigned long size = zone_managed_pages(zone);
5698 		unsigned long high = high_wmark_pages(zone);
5699 		if (size > high)
5700 			sum += size - high;
5701 	}
5702 
5703 	return sum;
5704 }
5705 
5706 /**
5707  * nr_free_buffer_pages - count number of pages beyond high watermark
5708  *
5709  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5710  * watermark within ZONE_DMA and ZONE_NORMAL.
5711  *
5712  * Return: number of pages beyond high watermark within ZONE_DMA and
5713  * ZONE_NORMAL.
5714  */
5715 unsigned long nr_free_buffer_pages(void)
5716 {
5717 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5718 }
5719 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5720 
5721 static inline void show_node(struct zone *zone)
5722 {
5723 	if (IS_ENABLED(CONFIG_NUMA))
5724 		printk("Node %d ", zone_to_nid(zone));
5725 }
5726 
5727 long si_mem_available(void)
5728 {
5729 	long available;
5730 	unsigned long pagecache;
5731 	unsigned long wmark_low = 0;
5732 	unsigned long pages[NR_LRU_LISTS];
5733 	unsigned long reclaimable;
5734 	struct zone *zone;
5735 	int lru;
5736 
5737 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5738 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5739 
5740 	for_each_zone(zone)
5741 		wmark_low += low_wmark_pages(zone);
5742 
5743 	/*
5744 	 * Estimate the amount of memory available for userspace allocations,
5745 	 * without causing swapping.
5746 	 */
5747 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5748 
5749 	/*
5750 	 * Not all the page cache can be freed, otherwise the system will
5751 	 * start swapping. Assume at least half of the page cache, or the
5752 	 * low watermark worth of cache, needs to stay.
5753 	 */
5754 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5755 	pagecache -= min(pagecache / 2, wmark_low);
5756 	available += pagecache;
5757 
5758 	/*
5759 	 * Part of the reclaimable slab and other kernel memory consists of
5760 	 * items that are in use, and cannot be freed. Cap this estimate at the
5761 	 * low watermark.
5762 	 */
5763 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5764 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5765 	available += reclaimable - min(reclaimable / 2, wmark_low);
5766 
5767 	if (available < 0)
5768 		available = 0;
5769 	return available;
5770 }
5771 EXPORT_SYMBOL_GPL(si_mem_available);
5772 
5773 void si_meminfo(struct sysinfo *val)
5774 {
5775 	val->totalram = totalram_pages();
5776 	val->sharedram = global_node_page_state(NR_SHMEM);
5777 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5778 	val->bufferram = nr_blockdev_pages();
5779 	val->totalhigh = totalhigh_pages();
5780 	val->freehigh = nr_free_highpages();
5781 	val->mem_unit = PAGE_SIZE;
5782 }
5783 
5784 EXPORT_SYMBOL(si_meminfo);
5785 
5786 #ifdef CONFIG_NUMA
5787 void si_meminfo_node(struct sysinfo *val, int nid)
5788 {
5789 	int zone_type;		/* needs to be signed */
5790 	unsigned long managed_pages = 0;
5791 	unsigned long managed_highpages = 0;
5792 	unsigned long free_highpages = 0;
5793 	pg_data_t *pgdat = NODE_DATA(nid);
5794 
5795 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5796 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5797 	val->totalram = managed_pages;
5798 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5799 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5800 #ifdef CONFIG_HIGHMEM
5801 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5802 		struct zone *zone = &pgdat->node_zones[zone_type];
5803 
5804 		if (is_highmem(zone)) {
5805 			managed_highpages += zone_managed_pages(zone);
5806 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5807 		}
5808 	}
5809 	val->totalhigh = managed_highpages;
5810 	val->freehigh = free_highpages;
5811 #else
5812 	val->totalhigh = managed_highpages;
5813 	val->freehigh = free_highpages;
5814 #endif
5815 	val->mem_unit = PAGE_SIZE;
5816 }
5817 #endif
5818 
5819 /*
5820  * Determine whether the node should be displayed or not, depending on whether
5821  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5822  */
5823 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5824 {
5825 	if (!(flags & SHOW_MEM_FILTER_NODES))
5826 		return false;
5827 
5828 	/*
5829 	 * no node mask - aka implicit memory numa policy. Do not bother with
5830 	 * the synchronization - read_mems_allowed_begin - because we do not
5831 	 * have to be precise here.
5832 	 */
5833 	if (!nodemask)
5834 		nodemask = &cpuset_current_mems_allowed;
5835 
5836 	return !node_isset(nid, *nodemask);
5837 }
5838 
5839 #define K(x) ((x) << (PAGE_SHIFT-10))
5840 
5841 static void show_migration_types(unsigned char type)
5842 {
5843 	static const char types[MIGRATE_TYPES] = {
5844 		[MIGRATE_UNMOVABLE]	= 'U',
5845 		[MIGRATE_MOVABLE]	= 'M',
5846 		[MIGRATE_RECLAIMABLE]	= 'E',
5847 		[MIGRATE_HIGHATOMIC]	= 'H',
5848 #ifdef CONFIG_CMA
5849 		[MIGRATE_CMA]		= 'C',
5850 #endif
5851 #ifdef CONFIG_MEMORY_ISOLATION
5852 		[MIGRATE_ISOLATE]	= 'I',
5853 #endif
5854 	};
5855 	char tmp[MIGRATE_TYPES + 1];
5856 	char *p = tmp;
5857 	int i;
5858 
5859 	for (i = 0; i < MIGRATE_TYPES; i++) {
5860 		if (type & (1 << i))
5861 			*p++ = types[i];
5862 	}
5863 
5864 	*p = '\0';
5865 	printk(KERN_CONT "(%s) ", tmp);
5866 }
5867 
5868 /*
5869  * Show free area list (used inside shift_scroll-lock stuff)
5870  * We also calculate the percentage fragmentation. We do this by counting the
5871  * memory on each free list with the exception of the first item on the list.
5872  *
5873  * Bits in @filter:
5874  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5875  *   cpuset.
5876  */
5877 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5878 {
5879 	unsigned long free_pcp = 0;
5880 	int cpu;
5881 	struct zone *zone;
5882 	pg_data_t *pgdat;
5883 
5884 	for_each_populated_zone(zone) {
5885 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5886 			continue;
5887 
5888 		for_each_online_cpu(cpu)
5889 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5890 	}
5891 
5892 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5893 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5894 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5895 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5896 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5897 		" kernel_misc_reclaimable:%lu\n"
5898 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5899 		global_node_page_state(NR_ACTIVE_ANON),
5900 		global_node_page_state(NR_INACTIVE_ANON),
5901 		global_node_page_state(NR_ISOLATED_ANON),
5902 		global_node_page_state(NR_ACTIVE_FILE),
5903 		global_node_page_state(NR_INACTIVE_FILE),
5904 		global_node_page_state(NR_ISOLATED_FILE),
5905 		global_node_page_state(NR_UNEVICTABLE),
5906 		global_node_page_state(NR_FILE_DIRTY),
5907 		global_node_page_state(NR_WRITEBACK),
5908 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5909 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5910 		global_node_page_state(NR_FILE_MAPPED),
5911 		global_node_page_state(NR_SHMEM),
5912 		global_node_page_state(NR_PAGETABLE),
5913 		global_zone_page_state(NR_BOUNCE),
5914 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5915 		global_zone_page_state(NR_FREE_PAGES),
5916 		free_pcp,
5917 		global_zone_page_state(NR_FREE_CMA_PAGES));
5918 
5919 	for_each_online_pgdat(pgdat) {
5920 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5921 			continue;
5922 
5923 		printk("Node %d"
5924 			" active_anon:%lukB"
5925 			" inactive_anon:%lukB"
5926 			" active_file:%lukB"
5927 			" inactive_file:%lukB"
5928 			" unevictable:%lukB"
5929 			" isolated(anon):%lukB"
5930 			" isolated(file):%lukB"
5931 			" mapped:%lukB"
5932 			" dirty:%lukB"
5933 			" writeback:%lukB"
5934 			" shmem:%lukB"
5935 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5936 			" shmem_thp: %lukB"
5937 			" shmem_pmdmapped: %lukB"
5938 			" anon_thp: %lukB"
5939 #endif
5940 			" writeback_tmp:%lukB"
5941 			" kernel_stack:%lukB"
5942 #ifdef CONFIG_SHADOW_CALL_STACK
5943 			" shadow_call_stack:%lukB"
5944 #endif
5945 			" pagetables:%lukB"
5946 			" all_unreclaimable? %s"
5947 			"\n",
5948 			pgdat->node_id,
5949 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5950 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5951 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5952 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5953 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5954 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5955 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5956 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5957 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5958 			K(node_page_state(pgdat, NR_WRITEBACK)),
5959 			K(node_page_state(pgdat, NR_SHMEM)),
5960 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5961 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
5962 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5963 			K(node_page_state(pgdat, NR_ANON_THPS)),
5964 #endif
5965 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5966 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5967 #ifdef CONFIG_SHADOW_CALL_STACK
5968 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5969 #endif
5970 			K(node_page_state(pgdat, NR_PAGETABLE)),
5971 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5972 				"yes" : "no");
5973 	}
5974 
5975 	for_each_populated_zone(zone) {
5976 		int i;
5977 
5978 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5979 			continue;
5980 
5981 		free_pcp = 0;
5982 		for_each_online_cpu(cpu)
5983 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5984 
5985 		show_node(zone);
5986 		printk(KERN_CONT
5987 			"%s"
5988 			" free:%lukB"
5989 			" boost:%lukB"
5990 			" min:%lukB"
5991 			" low:%lukB"
5992 			" high:%lukB"
5993 			" reserved_highatomic:%luKB"
5994 			" active_anon:%lukB"
5995 			" inactive_anon:%lukB"
5996 			" active_file:%lukB"
5997 			" inactive_file:%lukB"
5998 			" unevictable:%lukB"
5999 			" writepending:%lukB"
6000 			" present:%lukB"
6001 			" managed:%lukB"
6002 			" mlocked:%lukB"
6003 			" bounce:%lukB"
6004 			" free_pcp:%lukB"
6005 			" local_pcp:%ukB"
6006 			" free_cma:%lukB"
6007 			"\n",
6008 			zone->name,
6009 			K(zone_page_state(zone, NR_FREE_PAGES)),
6010 			K(zone->watermark_boost),
6011 			K(min_wmark_pages(zone)),
6012 			K(low_wmark_pages(zone)),
6013 			K(high_wmark_pages(zone)),
6014 			K(zone->nr_reserved_highatomic),
6015 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6016 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6017 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6018 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6019 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6020 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6021 			K(zone->present_pages),
6022 			K(zone_managed_pages(zone)),
6023 			K(zone_page_state(zone, NR_MLOCK)),
6024 			K(zone_page_state(zone, NR_BOUNCE)),
6025 			K(free_pcp),
6026 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6027 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6028 		printk("lowmem_reserve[]:");
6029 		for (i = 0; i < MAX_NR_ZONES; i++)
6030 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6031 		printk(KERN_CONT "\n");
6032 	}
6033 
6034 	for_each_populated_zone(zone) {
6035 		unsigned int order;
6036 		unsigned long nr[MAX_ORDER], flags, total = 0;
6037 		unsigned char types[MAX_ORDER];
6038 
6039 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6040 			continue;
6041 		show_node(zone);
6042 		printk(KERN_CONT "%s: ", zone->name);
6043 
6044 		spin_lock_irqsave(&zone->lock, flags);
6045 		for (order = 0; order < MAX_ORDER; order++) {
6046 			struct free_area *area = &zone->free_area[order];
6047 			int type;
6048 
6049 			nr[order] = area->nr_free;
6050 			total += nr[order] << order;
6051 
6052 			types[order] = 0;
6053 			for (type = 0; type < MIGRATE_TYPES; type++) {
6054 				if (!free_area_empty(area, type))
6055 					types[order] |= 1 << type;
6056 			}
6057 		}
6058 		spin_unlock_irqrestore(&zone->lock, flags);
6059 		for (order = 0; order < MAX_ORDER; order++) {
6060 			printk(KERN_CONT "%lu*%lukB ",
6061 			       nr[order], K(1UL) << order);
6062 			if (nr[order])
6063 				show_migration_types(types[order]);
6064 		}
6065 		printk(KERN_CONT "= %lukB\n", K(total));
6066 	}
6067 
6068 	hugetlb_show_meminfo();
6069 
6070 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6071 
6072 	show_swap_cache_info();
6073 }
6074 
6075 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6076 {
6077 	zoneref->zone = zone;
6078 	zoneref->zone_idx = zone_idx(zone);
6079 }
6080 
6081 /*
6082  * Builds allocation fallback zone lists.
6083  *
6084  * Add all populated zones of a node to the zonelist.
6085  */
6086 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6087 {
6088 	struct zone *zone;
6089 	enum zone_type zone_type = MAX_NR_ZONES;
6090 	int nr_zones = 0;
6091 
6092 	do {
6093 		zone_type--;
6094 		zone = pgdat->node_zones + zone_type;
6095 		if (managed_zone(zone)) {
6096 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6097 			check_highest_zone(zone_type);
6098 		}
6099 	} while (zone_type);
6100 
6101 	return nr_zones;
6102 }
6103 
6104 #ifdef CONFIG_NUMA
6105 
6106 static int __parse_numa_zonelist_order(char *s)
6107 {
6108 	/*
6109 	 * We used to support different zonelists modes but they turned
6110 	 * out to be just not useful. Let's keep the warning in place
6111 	 * if somebody still use the cmd line parameter so that we do
6112 	 * not fail it silently
6113 	 */
6114 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6115 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6116 		return -EINVAL;
6117 	}
6118 	return 0;
6119 }
6120 
6121 char numa_zonelist_order[] = "Node";
6122 
6123 /*
6124  * sysctl handler for numa_zonelist_order
6125  */
6126 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6127 		void *buffer, size_t *length, loff_t *ppos)
6128 {
6129 	if (write)
6130 		return __parse_numa_zonelist_order(buffer);
6131 	return proc_dostring(table, write, buffer, length, ppos);
6132 }
6133 
6134 
6135 #define MAX_NODE_LOAD (nr_online_nodes)
6136 static int node_load[MAX_NUMNODES];
6137 
6138 /**
6139  * find_next_best_node - find the next node that should appear in a given node's fallback list
6140  * @node: node whose fallback list we're appending
6141  * @used_node_mask: nodemask_t of already used nodes
6142  *
6143  * We use a number of factors to determine which is the next node that should
6144  * appear on a given node's fallback list.  The node should not have appeared
6145  * already in @node's fallback list, and it should be the next closest node
6146  * according to the distance array (which contains arbitrary distance values
6147  * from each node to each node in the system), and should also prefer nodes
6148  * with no CPUs, since presumably they'll have very little allocation pressure
6149  * on them otherwise.
6150  *
6151  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6152  */
6153 int find_next_best_node(int node, nodemask_t *used_node_mask)
6154 {
6155 	int n, val;
6156 	int min_val = INT_MAX;
6157 	int best_node = NUMA_NO_NODE;
6158 
6159 	/* Use the local node if we haven't already */
6160 	if (!node_isset(node, *used_node_mask)) {
6161 		node_set(node, *used_node_mask);
6162 		return node;
6163 	}
6164 
6165 	for_each_node_state(n, N_MEMORY) {
6166 
6167 		/* Don't want a node to appear more than once */
6168 		if (node_isset(n, *used_node_mask))
6169 			continue;
6170 
6171 		/* Use the distance array to find the distance */
6172 		val = node_distance(node, n);
6173 
6174 		/* Penalize nodes under us ("prefer the next node") */
6175 		val += (n < node);
6176 
6177 		/* Give preference to headless and unused nodes */
6178 		if (!cpumask_empty(cpumask_of_node(n)))
6179 			val += PENALTY_FOR_NODE_WITH_CPUS;
6180 
6181 		/* Slight preference for less loaded node */
6182 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6183 		val += node_load[n];
6184 
6185 		if (val < min_val) {
6186 			min_val = val;
6187 			best_node = n;
6188 		}
6189 	}
6190 
6191 	if (best_node >= 0)
6192 		node_set(best_node, *used_node_mask);
6193 
6194 	return best_node;
6195 }
6196 
6197 
6198 /*
6199  * Build zonelists ordered by node and zones within node.
6200  * This results in maximum locality--normal zone overflows into local
6201  * DMA zone, if any--but risks exhausting DMA zone.
6202  */
6203 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6204 		unsigned nr_nodes)
6205 {
6206 	struct zoneref *zonerefs;
6207 	int i;
6208 
6209 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6210 
6211 	for (i = 0; i < nr_nodes; i++) {
6212 		int nr_zones;
6213 
6214 		pg_data_t *node = NODE_DATA(node_order[i]);
6215 
6216 		nr_zones = build_zonerefs_node(node, zonerefs);
6217 		zonerefs += nr_zones;
6218 	}
6219 	zonerefs->zone = NULL;
6220 	zonerefs->zone_idx = 0;
6221 }
6222 
6223 /*
6224  * Build gfp_thisnode zonelists
6225  */
6226 static void build_thisnode_zonelists(pg_data_t *pgdat)
6227 {
6228 	struct zoneref *zonerefs;
6229 	int nr_zones;
6230 
6231 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6232 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6233 	zonerefs += nr_zones;
6234 	zonerefs->zone = NULL;
6235 	zonerefs->zone_idx = 0;
6236 }
6237 
6238 /*
6239  * Build zonelists ordered by zone and nodes within zones.
6240  * This results in conserving DMA zone[s] until all Normal memory is
6241  * exhausted, but results in overflowing to remote node while memory
6242  * may still exist in local DMA zone.
6243  */
6244 
6245 static void build_zonelists(pg_data_t *pgdat)
6246 {
6247 	static int node_order[MAX_NUMNODES];
6248 	int node, load, nr_nodes = 0;
6249 	nodemask_t used_mask = NODE_MASK_NONE;
6250 	int local_node, prev_node;
6251 
6252 	/* NUMA-aware ordering of nodes */
6253 	local_node = pgdat->node_id;
6254 	load = nr_online_nodes;
6255 	prev_node = local_node;
6256 
6257 	memset(node_order, 0, sizeof(node_order));
6258 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6259 		/*
6260 		 * We don't want to pressure a particular node.
6261 		 * So adding penalty to the first node in same
6262 		 * distance group to make it round-robin.
6263 		 */
6264 		if (node_distance(local_node, node) !=
6265 		    node_distance(local_node, prev_node))
6266 			node_load[node] += load;
6267 
6268 		node_order[nr_nodes++] = node;
6269 		prev_node = node;
6270 		load--;
6271 	}
6272 
6273 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6274 	build_thisnode_zonelists(pgdat);
6275 	pr_info("Fallback order for Node %d: ", local_node);
6276 	for (node = 0; node < nr_nodes; node++)
6277 		pr_cont("%d ", node_order[node]);
6278 	pr_cont("\n");
6279 }
6280 
6281 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6282 /*
6283  * Return node id of node used for "local" allocations.
6284  * I.e., first node id of first zone in arg node's generic zonelist.
6285  * Used for initializing percpu 'numa_mem', which is used primarily
6286  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6287  */
6288 int local_memory_node(int node)
6289 {
6290 	struct zoneref *z;
6291 
6292 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6293 				   gfp_zone(GFP_KERNEL),
6294 				   NULL);
6295 	return zone_to_nid(z->zone);
6296 }
6297 #endif
6298 
6299 static void setup_min_unmapped_ratio(void);
6300 static void setup_min_slab_ratio(void);
6301 #else	/* CONFIG_NUMA */
6302 
6303 static void build_zonelists(pg_data_t *pgdat)
6304 {
6305 	int node, local_node;
6306 	struct zoneref *zonerefs;
6307 	int nr_zones;
6308 
6309 	local_node = pgdat->node_id;
6310 
6311 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6312 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6313 	zonerefs += nr_zones;
6314 
6315 	/*
6316 	 * Now we build the zonelist so that it contains the zones
6317 	 * of all the other nodes.
6318 	 * We don't want to pressure a particular node, so when
6319 	 * building the zones for node N, we make sure that the
6320 	 * zones coming right after the local ones are those from
6321 	 * node N+1 (modulo N)
6322 	 */
6323 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6324 		if (!node_online(node))
6325 			continue;
6326 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6327 		zonerefs += nr_zones;
6328 	}
6329 	for (node = 0; node < local_node; node++) {
6330 		if (!node_online(node))
6331 			continue;
6332 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6333 		zonerefs += nr_zones;
6334 	}
6335 
6336 	zonerefs->zone = NULL;
6337 	zonerefs->zone_idx = 0;
6338 }
6339 
6340 #endif	/* CONFIG_NUMA */
6341 
6342 /*
6343  * Boot pageset table. One per cpu which is going to be used for all
6344  * zones and all nodes. The parameters will be set in such a way
6345  * that an item put on a list will immediately be handed over to
6346  * the buddy list. This is safe since pageset manipulation is done
6347  * with interrupts disabled.
6348  *
6349  * The boot_pagesets must be kept even after bootup is complete for
6350  * unused processors and/or zones. They do play a role for bootstrapping
6351  * hotplugged processors.
6352  *
6353  * zoneinfo_show() and maybe other functions do
6354  * not check if the processor is online before following the pageset pointer.
6355  * Other parts of the kernel may not check if the zone is available.
6356  */
6357 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6358 /* These effectively disable the pcplists in the boot pageset completely */
6359 #define BOOT_PAGESET_HIGH	0
6360 #define BOOT_PAGESET_BATCH	1
6361 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6362 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6363 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6364 
6365 static void __build_all_zonelists(void *data)
6366 {
6367 	int nid;
6368 	int __maybe_unused cpu;
6369 	pg_data_t *self = data;
6370 	static DEFINE_SPINLOCK(lock);
6371 
6372 	spin_lock(&lock);
6373 
6374 #ifdef CONFIG_NUMA
6375 	memset(node_load, 0, sizeof(node_load));
6376 #endif
6377 
6378 	/*
6379 	 * This node is hotadded and no memory is yet present.   So just
6380 	 * building zonelists is fine - no need to touch other nodes.
6381 	 */
6382 	if (self && !node_online(self->node_id)) {
6383 		build_zonelists(self);
6384 	} else {
6385 		for_each_online_node(nid) {
6386 			pg_data_t *pgdat = NODE_DATA(nid);
6387 
6388 			build_zonelists(pgdat);
6389 		}
6390 
6391 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6392 		/*
6393 		 * We now know the "local memory node" for each node--
6394 		 * i.e., the node of the first zone in the generic zonelist.
6395 		 * Set up numa_mem percpu variable for on-line cpus.  During
6396 		 * boot, only the boot cpu should be on-line;  we'll init the
6397 		 * secondary cpus' numa_mem as they come on-line.  During
6398 		 * node/memory hotplug, we'll fixup all on-line cpus.
6399 		 */
6400 		for_each_online_cpu(cpu)
6401 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6402 #endif
6403 	}
6404 
6405 	spin_unlock(&lock);
6406 }
6407 
6408 static noinline void __init
6409 build_all_zonelists_init(void)
6410 {
6411 	int cpu;
6412 
6413 	__build_all_zonelists(NULL);
6414 
6415 	/*
6416 	 * Initialize the boot_pagesets that are going to be used
6417 	 * for bootstrapping processors. The real pagesets for
6418 	 * each zone will be allocated later when the per cpu
6419 	 * allocator is available.
6420 	 *
6421 	 * boot_pagesets are used also for bootstrapping offline
6422 	 * cpus if the system is already booted because the pagesets
6423 	 * are needed to initialize allocators on a specific cpu too.
6424 	 * F.e. the percpu allocator needs the page allocator which
6425 	 * needs the percpu allocator in order to allocate its pagesets
6426 	 * (a chicken-egg dilemma).
6427 	 */
6428 	for_each_possible_cpu(cpu)
6429 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6430 
6431 	mminit_verify_zonelist();
6432 	cpuset_init_current_mems_allowed();
6433 }
6434 
6435 /*
6436  * unless system_state == SYSTEM_BOOTING.
6437  *
6438  * __ref due to call of __init annotated helper build_all_zonelists_init
6439  * [protected by SYSTEM_BOOTING].
6440  */
6441 void __ref build_all_zonelists(pg_data_t *pgdat)
6442 {
6443 	unsigned long vm_total_pages;
6444 
6445 	if (system_state == SYSTEM_BOOTING) {
6446 		build_all_zonelists_init();
6447 	} else {
6448 		__build_all_zonelists(pgdat);
6449 		/* cpuset refresh routine should be here */
6450 	}
6451 	/* Get the number of free pages beyond high watermark in all zones. */
6452 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6453 	/*
6454 	 * Disable grouping by mobility if the number of pages in the
6455 	 * system is too low to allow the mechanism to work. It would be
6456 	 * more accurate, but expensive to check per-zone. This check is
6457 	 * made on memory-hotadd so a system can start with mobility
6458 	 * disabled and enable it later
6459 	 */
6460 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6461 		page_group_by_mobility_disabled = 1;
6462 	else
6463 		page_group_by_mobility_disabled = 0;
6464 
6465 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6466 		nr_online_nodes,
6467 		page_group_by_mobility_disabled ? "off" : "on",
6468 		vm_total_pages);
6469 #ifdef CONFIG_NUMA
6470 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6471 #endif
6472 }
6473 
6474 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6475 static bool __meminit
6476 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6477 {
6478 	static struct memblock_region *r;
6479 
6480 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6481 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6482 			for_each_mem_region(r) {
6483 				if (*pfn < memblock_region_memory_end_pfn(r))
6484 					break;
6485 			}
6486 		}
6487 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6488 		    memblock_is_mirror(r)) {
6489 			*pfn = memblock_region_memory_end_pfn(r);
6490 			return true;
6491 		}
6492 	}
6493 	return false;
6494 }
6495 
6496 /*
6497  * Initially all pages are reserved - free ones are freed
6498  * up by memblock_free_all() once the early boot process is
6499  * done. Non-atomic initialization, single-pass.
6500  *
6501  * All aligned pageblocks are initialized to the specified migratetype
6502  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6503  * zone stats (e.g., nr_isolate_pageblock) are touched.
6504  */
6505 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6506 		unsigned long start_pfn, unsigned long zone_end_pfn,
6507 		enum meminit_context context,
6508 		struct vmem_altmap *altmap, int migratetype)
6509 {
6510 	unsigned long pfn, end_pfn = start_pfn + size;
6511 	struct page *page;
6512 
6513 	if (highest_memmap_pfn < end_pfn - 1)
6514 		highest_memmap_pfn = end_pfn - 1;
6515 
6516 #ifdef CONFIG_ZONE_DEVICE
6517 	/*
6518 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6519 	 * memory. We limit the total number of pages to initialize to just
6520 	 * those that might contain the memory mapping. We will defer the
6521 	 * ZONE_DEVICE page initialization until after we have released
6522 	 * the hotplug lock.
6523 	 */
6524 	if (zone == ZONE_DEVICE) {
6525 		if (!altmap)
6526 			return;
6527 
6528 		if (start_pfn == altmap->base_pfn)
6529 			start_pfn += altmap->reserve;
6530 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6531 	}
6532 #endif
6533 
6534 	for (pfn = start_pfn; pfn < end_pfn; ) {
6535 		/*
6536 		 * There can be holes in boot-time mem_map[]s handed to this
6537 		 * function.  They do not exist on hotplugged memory.
6538 		 */
6539 		if (context == MEMINIT_EARLY) {
6540 			if (overlap_memmap_init(zone, &pfn))
6541 				continue;
6542 			if (defer_init(nid, pfn, zone_end_pfn))
6543 				break;
6544 		}
6545 
6546 		page = pfn_to_page(pfn);
6547 		__init_single_page(page, pfn, zone, nid);
6548 		if (context == MEMINIT_HOTPLUG)
6549 			__SetPageReserved(page);
6550 
6551 		/*
6552 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6553 		 * such that unmovable allocations won't be scattered all
6554 		 * over the place during system boot.
6555 		 */
6556 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6557 			set_pageblock_migratetype(page, migratetype);
6558 			cond_resched();
6559 		}
6560 		pfn++;
6561 	}
6562 }
6563 
6564 #ifdef CONFIG_ZONE_DEVICE
6565 void __ref memmap_init_zone_device(struct zone *zone,
6566 				   unsigned long start_pfn,
6567 				   unsigned long nr_pages,
6568 				   struct dev_pagemap *pgmap)
6569 {
6570 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6571 	struct pglist_data *pgdat = zone->zone_pgdat;
6572 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6573 	unsigned long zone_idx = zone_idx(zone);
6574 	unsigned long start = jiffies;
6575 	int nid = pgdat->node_id;
6576 
6577 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6578 		return;
6579 
6580 	/*
6581 	 * The call to memmap_init should have already taken care
6582 	 * of the pages reserved for the memmap, so we can just jump to
6583 	 * the end of that region and start processing the device pages.
6584 	 */
6585 	if (altmap) {
6586 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6587 		nr_pages = end_pfn - start_pfn;
6588 	}
6589 
6590 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6591 		struct page *page = pfn_to_page(pfn);
6592 
6593 		__init_single_page(page, pfn, zone_idx, nid);
6594 
6595 		/*
6596 		 * Mark page reserved as it will need to wait for onlining
6597 		 * phase for it to be fully associated with a zone.
6598 		 *
6599 		 * We can use the non-atomic __set_bit operation for setting
6600 		 * the flag as we are still initializing the pages.
6601 		 */
6602 		__SetPageReserved(page);
6603 
6604 		/*
6605 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6606 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6607 		 * ever freed or placed on a driver-private list.
6608 		 */
6609 		page->pgmap = pgmap;
6610 		page->zone_device_data = NULL;
6611 
6612 		/*
6613 		 * Mark the block movable so that blocks are reserved for
6614 		 * movable at startup. This will force kernel allocations
6615 		 * to reserve their blocks rather than leaking throughout
6616 		 * the address space during boot when many long-lived
6617 		 * kernel allocations are made.
6618 		 *
6619 		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6620 		 * because this is done early in section_activate()
6621 		 */
6622 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6623 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6624 			cond_resched();
6625 		}
6626 	}
6627 
6628 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6629 		nr_pages, jiffies_to_msecs(jiffies - start));
6630 }
6631 
6632 #endif
6633 static void __meminit zone_init_free_lists(struct zone *zone)
6634 {
6635 	unsigned int order, t;
6636 	for_each_migratetype_order(order, t) {
6637 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6638 		zone->free_area[order].nr_free = 0;
6639 	}
6640 }
6641 
6642 /*
6643  * Only struct pages that correspond to ranges defined by memblock.memory
6644  * are zeroed and initialized by going through __init_single_page() during
6645  * memmap_init_zone_range().
6646  *
6647  * But, there could be struct pages that correspond to holes in
6648  * memblock.memory. This can happen because of the following reasons:
6649  * - physical memory bank size is not necessarily the exact multiple of the
6650  *   arbitrary section size
6651  * - early reserved memory may not be listed in memblock.memory
6652  * - memory layouts defined with memmap= kernel parameter may not align
6653  *   nicely with memmap sections
6654  *
6655  * Explicitly initialize those struct pages so that:
6656  * - PG_Reserved is set
6657  * - zone and node links point to zone and node that span the page if the
6658  *   hole is in the middle of a zone
6659  * - zone and node links point to adjacent zone/node if the hole falls on
6660  *   the zone boundary; the pages in such holes will be prepended to the
6661  *   zone/node above the hole except for the trailing pages in the last
6662  *   section that will be appended to the zone/node below.
6663  */
6664 static void __init init_unavailable_range(unsigned long spfn,
6665 					  unsigned long epfn,
6666 					  int zone, int node)
6667 {
6668 	unsigned long pfn;
6669 	u64 pgcnt = 0;
6670 
6671 	for (pfn = spfn; pfn < epfn; pfn++) {
6672 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6673 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6674 				+ pageblock_nr_pages - 1;
6675 			continue;
6676 		}
6677 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6678 		__SetPageReserved(pfn_to_page(pfn));
6679 		pgcnt++;
6680 	}
6681 
6682 	if (pgcnt)
6683 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6684 			node, zone_names[zone], pgcnt);
6685 }
6686 
6687 static void __init memmap_init_zone_range(struct zone *zone,
6688 					  unsigned long start_pfn,
6689 					  unsigned long end_pfn,
6690 					  unsigned long *hole_pfn)
6691 {
6692 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6693 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6694 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6695 
6696 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6697 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6698 
6699 	if (start_pfn >= end_pfn)
6700 		return;
6701 
6702 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6703 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6704 
6705 	if (*hole_pfn < start_pfn)
6706 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6707 
6708 	*hole_pfn = end_pfn;
6709 }
6710 
6711 static void __init memmap_init(void)
6712 {
6713 	unsigned long start_pfn, end_pfn;
6714 	unsigned long hole_pfn = 0;
6715 	int i, j, zone_id = 0, nid;
6716 
6717 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6718 		struct pglist_data *node = NODE_DATA(nid);
6719 
6720 		for (j = 0; j < MAX_NR_ZONES; j++) {
6721 			struct zone *zone = node->node_zones + j;
6722 
6723 			if (!populated_zone(zone))
6724 				continue;
6725 
6726 			memmap_init_zone_range(zone, start_pfn, end_pfn,
6727 					       &hole_pfn);
6728 			zone_id = j;
6729 		}
6730 	}
6731 
6732 #ifdef CONFIG_SPARSEMEM
6733 	/*
6734 	 * Initialize the memory map for hole in the range [memory_end,
6735 	 * section_end].
6736 	 * Append the pages in this hole to the highest zone in the last
6737 	 * node.
6738 	 * The call to init_unavailable_range() is outside the ifdef to
6739 	 * silence the compiler warining about zone_id set but not used;
6740 	 * for FLATMEM it is a nop anyway
6741 	 */
6742 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6743 	if (hole_pfn < end_pfn)
6744 #endif
6745 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6746 }
6747 
6748 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6749 			  phys_addr_t min_addr, int nid, bool exact_nid)
6750 {
6751 	void *ptr;
6752 
6753 	if (exact_nid)
6754 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6755 						   MEMBLOCK_ALLOC_ACCESSIBLE,
6756 						   nid);
6757 	else
6758 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6759 						 MEMBLOCK_ALLOC_ACCESSIBLE,
6760 						 nid);
6761 
6762 	if (ptr && size > 0)
6763 		page_init_poison(ptr, size);
6764 
6765 	return ptr;
6766 }
6767 
6768 static int zone_batchsize(struct zone *zone)
6769 {
6770 #ifdef CONFIG_MMU
6771 	int batch;
6772 
6773 	/*
6774 	 * The number of pages to batch allocate is either ~0.1%
6775 	 * of the zone or 1MB, whichever is smaller. The batch
6776 	 * size is striking a balance between allocation latency
6777 	 * and zone lock contention.
6778 	 */
6779 	batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6780 	batch /= 4;		/* We effectively *= 4 below */
6781 	if (batch < 1)
6782 		batch = 1;
6783 
6784 	/*
6785 	 * Clamp the batch to a 2^n - 1 value. Having a power
6786 	 * of 2 value was found to be more likely to have
6787 	 * suboptimal cache aliasing properties in some cases.
6788 	 *
6789 	 * For example if 2 tasks are alternately allocating
6790 	 * batches of pages, one task can end up with a lot
6791 	 * of pages of one half of the possible page colors
6792 	 * and the other with pages of the other colors.
6793 	 */
6794 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6795 
6796 	return batch;
6797 
6798 #else
6799 	/* The deferral and batching of frees should be suppressed under NOMMU
6800 	 * conditions.
6801 	 *
6802 	 * The problem is that NOMMU needs to be able to allocate large chunks
6803 	 * of contiguous memory as there's no hardware page translation to
6804 	 * assemble apparent contiguous memory from discontiguous pages.
6805 	 *
6806 	 * Queueing large contiguous runs of pages for batching, however,
6807 	 * causes the pages to actually be freed in smaller chunks.  As there
6808 	 * can be a significant delay between the individual batches being
6809 	 * recycled, this leads to the once large chunks of space being
6810 	 * fragmented and becoming unavailable for high-order allocations.
6811 	 */
6812 	return 0;
6813 #endif
6814 }
6815 
6816 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6817 {
6818 #ifdef CONFIG_MMU
6819 	int high;
6820 	int nr_split_cpus;
6821 	unsigned long total_pages;
6822 
6823 	if (!percpu_pagelist_high_fraction) {
6824 		/*
6825 		 * By default, the high value of the pcp is based on the zone
6826 		 * low watermark so that if they are full then background
6827 		 * reclaim will not be started prematurely.
6828 		 */
6829 		total_pages = low_wmark_pages(zone);
6830 	} else {
6831 		/*
6832 		 * If percpu_pagelist_high_fraction is configured, the high
6833 		 * value is based on a fraction of the managed pages in the
6834 		 * zone.
6835 		 */
6836 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6837 	}
6838 
6839 	/*
6840 	 * Split the high value across all online CPUs local to the zone. Note
6841 	 * that early in boot that CPUs may not be online yet and that during
6842 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6843 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
6844 	 * all online CPUs to mitigate the risk that reclaim is triggered
6845 	 * prematurely due to pages stored on pcp lists.
6846 	 */
6847 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6848 	if (!nr_split_cpus)
6849 		nr_split_cpus = num_online_cpus();
6850 	high = total_pages / nr_split_cpus;
6851 
6852 	/*
6853 	 * Ensure high is at least batch*4. The multiple is based on the
6854 	 * historical relationship between high and batch.
6855 	 */
6856 	high = max(high, batch << 2);
6857 
6858 	return high;
6859 #else
6860 	return 0;
6861 #endif
6862 }
6863 
6864 /*
6865  * pcp->high and pcp->batch values are related and generally batch is lower
6866  * than high. They are also related to pcp->count such that count is lower
6867  * than high, and as soon as it reaches high, the pcplist is flushed.
6868  *
6869  * However, guaranteeing these relations at all times would require e.g. write
6870  * barriers here but also careful usage of read barriers at the read side, and
6871  * thus be prone to error and bad for performance. Thus the update only prevents
6872  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6873  * can cope with those fields changing asynchronously, and fully trust only the
6874  * pcp->count field on the local CPU with interrupts disabled.
6875  *
6876  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6877  * outside of boot time (or some other assurance that no concurrent updaters
6878  * exist).
6879  */
6880 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6881 		unsigned long batch)
6882 {
6883 	WRITE_ONCE(pcp->batch, batch);
6884 	WRITE_ONCE(pcp->high, high);
6885 }
6886 
6887 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6888 {
6889 	int pindex;
6890 
6891 	memset(pcp, 0, sizeof(*pcp));
6892 	memset(pzstats, 0, sizeof(*pzstats));
6893 
6894 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6895 		INIT_LIST_HEAD(&pcp->lists[pindex]);
6896 
6897 	/*
6898 	 * Set batch and high values safe for a boot pageset. A true percpu
6899 	 * pageset's initialization will update them subsequently. Here we don't
6900 	 * need to be as careful as pageset_update() as nobody can access the
6901 	 * pageset yet.
6902 	 */
6903 	pcp->high = BOOT_PAGESET_HIGH;
6904 	pcp->batch = BOOT_PAGESET_BATCH;
6905 	pcp->free_factor = 0;
6906 }
6907 
6908 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6909 		unsigned long batch)
6910 {
6911 	struct per_cpu_pages *pcp;
6912 	int cpu;
6913 
6914 	for_each_possible_cpu(cpu) {
6915 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6916 		pageset_update(pcp, high, batch);
6917 	}
6918 }
6919 
6920 /*
6921  * Calculate and set new high and batch values for all per-cpu pagesets of a
6922  * zone based on the zone's size.
6923  */
6924 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6925 {
6926 	int new_high, new_batch;
6927 
6928 	new_batch = max(1, zone_batchsize(zone));
6929 	new_high = zone_highsize(zone, new_batch, cpu_online);
6930 
6931 	if (zone->pageset_high == new_high &&
6932 	    zone->pageset_batch == new_batch)
6933 		return;
6934 
6935 	zone->pageset_high = new_high;
6936 	zone->pageset_batch = new_batch;
6937 
6938 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6939 }
6940 
6941 void __meminit setup_zone_pageset(struct zone *zone)
6942 {
6943 	int cpu;
6944 
6945 	/* Size may be 0 on !SMP && !NUMA */
6946 	if (sizeof(struct per_cpu_zonestat) > 0)
6947 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6948 
6949 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6950 	for_each_possible_cpu(cpu) {
6951 		struct per_cpu_pages *pcp;
6952 		struct per_cpu_zonestat *pzstats;
6953 
6954 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6955 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6956 		per_cpu_pages_init(pcp, pzstats);
6957 	}
6958 
6959 	zone_set_pageset_high_and_batch(zone, 0);
6960 }
6961 
6962 /*
6963  * Allocate per cpu pagesets and initialize them.
6964  * Before this call only boot pagesets were available.
6965  */
6966 void __init setup_per_cpu_pageset(void)
6967 {
6968 	struct pglist_data *pgdat;
6969 	struct zone *zone;
6970 	int __maybe_unused cpu;
6971 
6972 	for_each_populated_zone(zone)
6973 		setup_zone_pageset(zone);
6974 
6975 #ifdef CONFIG_NUMA
6976 	/*
6977 	 * Unpopulated zones continue using the boot pagesets.
6978 	 * The numa stats for these pagesets need to be reset.
6979 	 * Otherwise, they will end up skewing the stats of
6980 	 * the nodes these zones are associated with.
6981 	 */
6982 	for_each_possible_cpu(cpu) {
6983 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6984 		memset(pzstats->vm_numa_event, 0,
6985 		       sizeof(pzstats->vm_numa_event));
6986 	}
6987 #endif
6988 
6989 	for_each_online_pgdat(pgdat)
6990 		pgdat->per_cpu_nodestats =
6991 			alloc_percpu(struct per_cpu_nodestat);
6992 }
6993 
6994 static __meminit void zone_pcp_init(struct zone *zone)
6995 {
6996 	/*
6997 	 * per cpu subsystem is not up at this point. The following code
6998 	 * relies on the ability of the linker to provide the
6999 	 * offset of a (static) per cpu variable into the per cpu area.
7000 	 */
7001 	zone->per_cpu_pageset = &boot_pageset;
7002 	zone->per_cpu_zonestats = &boot_zonestats;
7003 	zone->pageset_high = BOOT_PAGESET_HIGH;
7004 	zone->pageset_batch = BOOT_PAGESET_BATCH;
7005 
7006 	if (populated_zone(zone))
7007 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7008 			 zone->present_pages, zone_batchsize(zone));
7009 }
7010 
7011 void __meminit init_currently_empty_zone(struct zone *zone,
7012 					unsigned long zone_start_pfn,
7013 					unsigned long size)
7014 {
7015 	struct pglist_data *pgdat = zone->zone_pgdat;
7016 	int zone_idx = zone_idx(zone) + 1;
7017 
7018 	if (zone_idx > pgdat->nr_zones)
7019 		pgdat->nr_zones = zone_idx;
7020 
7021 	zone->zone_start_pfn = zone_start_pfn;
7022 
7023 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7024 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7025 			pgdat->node_id,
7026 			(unsigned long)zone_idx(zone),
7027 			zone_start_pfn, (zone_start_pfn + size));
7028 
7029 	zone_init_free_lists(zone);
7030 	zone->initialized = 1;
7031 }
7032 
7033 /**
7034  * get_pfn_range_for_nid - Return the start and end page frames for a node
7035  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7036  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7037  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7038  *
7039  * It returns the start and end page frame of a node based on information
7040  * provided by memblock_set_node(). If called for a node
7041  * with no available memory, a warning is printed and the start and end
7042  * PFNs will be 0.
7043  */
7044 void __init get_pfn_range_for_nid(unsigned int nid,
7045 			unsigned long *start_pfn, unsigned long *end_pfn)
7046 {
7047 	unsigned long this_start_pfn, this_end_pfn;
7048 	int i;
7049 
7050 	*start_pfn = -1UL;
7051 	*end_pfn = 0;
7052 
7053 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7054 		*start_pfn = min(*start_pfn, this_start_pfn);
7055 		*end_pfn = max(*end_pfn, this_end_pfn);
7056 	}
7057 
7058 	if (*start_pfn == -1UL)
7059 		*start_pfn = 0;
7060 }
7061 
7062 /*
7063  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7064  * assumption is made that zones within a node are ordered in monotonic
7065  * increasing memory addresses so that the "highest" populated zone is used
7066  */
7067 static void __init find_usable_zone_for_movable(void)
7068 {
7069 	int zone_index;
7070 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7071 		if (zone_index == ZONE_MOVABLE)
7072 			continue;
7073 
7074 		if (arch_zone_highest_possible_pfn[zone_index] >
7075 				arch_zone_lowest_possible_pfn[zone_index])
7076 			break;
7077 	}
7078 
7079 	VM_BUG_ON(zone_index == -1);
7080 	movable_zone = zone_index;
7081 }
7082 
7083 /*
7084  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7085  * because it is sized independent of architecture. Unlike the other zones,
7086  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7087  * in each node depending on the size of each node and how evenly kernelcore
7088  * is distributed. This helper function adjusts the zone ranges
7089  * provided by the architecture for a given node by using the end of the
7090  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7091  * zones within a node are in order of monotonic increases memory addresses
7092  */
7093 static void __init adjust_zone_range_for_zone_movable(int nid,
7094 					unsigned long zone_type,
7095 					unsigned long node_start_pfn,
7096 					unsigned long node_end_pfn,
7097 					unsigned long *zone_start_pfn,
7098 					unsigned long *zone_end_pfn)
7099 {
7100 	/* Only adjust if ZONE_MOVABLE is on this node */
7101 	if (zone_movable_pfn[nid]) {
7102 		/* Size ZONE_MOVABLE */
7103 		if (zone_type == ZONE_MOVABLE) {
7104 			*zone_start_pfn = zone_movable_pfn[nid];
7105 			*zone_end_pfn = min(node_end_pfn,
7106 				arch_zone_highest_possible_pfn[movable_zone]);
7107 
7108 		/* Adjust for ZONE_MOVABLE starting within this range */
7109 		} else if (!mirrored_kernelcore &&
7110 			*zone_start_pfn < zone_movable_pfn[nid] &&
7111 			*zone_end_pfn > zone_movable_pfn[nid]) {
7112 			*zone_end_pfn = zone_movable_pfn[nid];
7113 
7114 		/* Check if this whole range is within ZONE_MOVABLE */
7115 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7116 			*zone_start_pfn = *zone_end_pfn;
7117 	}
7118 }
7119 
7120 /*
7121  * Return the number of pages a zone spans in a node, including holes
7122  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7123  */
7124 static unsigned long __init zone_spanned_pages_in_node(int nid,
7125 					unsigned long zone_type,
7126 					unsigned long node_start_pfn,
7127 					unsigned long node_end_pfn,
7128 					unsigned long *zone_start_pfn,
7129 					unsigned long *zone_end_pfn)
7130 {
7131 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7132 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7133 	/* When hotadd a new node from cpu_up(), the node should be empty */
7134 	if (!node_start_pfn && !node_end_pfn)
7135 		return 0;
7136 
7137 	/* Get the start and end of the zone */
7138 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7139 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7140 	adjust_zone_range_for_zone_movable(nid, zone_type,
7141 				node_start_pfn, node_end_pfn,
7142 				zone_start_pfn, zone_end_pfn);
7143 
7144 	/* Check that this node has pages within the zone's required range */
7145 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7146 		return 0;
7147 
7148 	/* Move the zone boundaries inside the node if necessary */
7149 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7150 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7151 
7152 	/* Return the spanned pages */
7153 	return *zone_end_pfn - *zone_start_pfn;
7154 }
7155 
7156 /*
7157  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7158  * then all holes in the requested range will be accounted for.
7159  */
7160 unsigned long __init __absent_pages_in_range(int nid,
7161 				unsigned long range_start_pfn,
7162 				unsigned long range_end_pfn)
7163 {
7164 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7165 	unsigned long start_pfn, end_pfn;
7166 	int i;
7167 
7168 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7169 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7170 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7171 		nr_absent -= end_pfn - start_pfn;
7172 	}
7173 	return nr_absent;
7174 }
7175 
7176 /**
7177  * absent_pages_in_range - Return number of page frames in holes within a range
7178  * @start_pfn: The start PFN to start searching for holes
7179  * @end_pfn: The end PFN to stop searching for holes
7180  *
7181  * Return: the number of pages frames in memory holes within a range.
7182  */
7183 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7184 							unsigned long end_pfn)
7185 {
7186 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7187 }
7188 
7189 /* Return the number of page frames in holes in a zone on a node */
7190 static unsigned long __init zone_absent_pages_in_node(int nid,
7191 					unsigned long zone_type,
7192 					unsigned long node_start_pfn,
7193 					unsigned long node_end_pfn)
7194 {
7195 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7196 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7197 	unsigned long zone_start_pfn, zone_end_pfn;
7198 	unsigned long nr_absent;
7199 
7200 	/* When hotadd a new node from cpu_up(), the node should be empty */
7201 	if (!node_start_pfn && !node_end_pfn)
7202 		return 0;
7203 
7204 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7205 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7206 
7207 	adjust_zone_range_for_zone_movable(nid, zone_type,
7208 			node_start_pfn, node_end_pfn,
7209 			&zone_start_pfn, &zone_end_pfn);
7210 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7211 
7212 	/*
7213 	 * ZONE_MOVABLE handling.
7214 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7215 	 * and vice versa.
7216 	 */
7217 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7218 		unsigned long start_pfn, end_pfn;
7219 		struct memblock_region *r;
7220 
7221 		for_each_mem_region(r) {
7222 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7223 					  zone_start_pfn, zone_end_pfn);
7224 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7225 					zone_start_pfn, zone_end_pfn);
7226 
7227 			if (zone_type == ZONE_MOVABLE &&
7228 			    memblock_is_mirror(r))
7229 				nr_absent += end_pfn - start_pfn;
7230 
7231 			if (zone_type == ZONE_NORMAL &&
7232 			    !memblock_is_mirror(r))
7233 				nr_absent += end_pfn - start_pfn;
7234 		}
7235 	}
7236 
7237 	return nr_absent;
7238 }
7239 
7240 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7241 						unsigned long node_start_pfn,
7242 						unsigned long node_end_pfn)
7243 {
7244 	unsigned long realtotalpages = 0, totalpages = 0;
7245 	enum zone_type i;
7246 
7247 	for (i = 0; i < MAX_NR_ZONES; i++) {
7248 		struct zone *zone = pgdat->node_zones + i;
7249 		unsigned long zone_start_pfn, zone_end_pfn;
7250 		unsigned long spanned, absent;
7251 		unsigned long size, real_size;
7252 
7253 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7254 						     node_start_pfn,
7255 						     node_end_pfn,
7256 						     &zone_start_pfn,
7257 						     &zone_end_pfn);
7258 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7259 						   node_start_pfn,
7260 						   node_end_pfn);
7261 
7262 		size = spanned;
7263 		real_size = size - absent;
7264 
7265 		if (size)
7266 			zone->zone_start_pfn = zone_start_pfn;
7267 		else
7268 			zone->zone_start_pfn = 0;
7269 		zone->spanned_pages = size;
7270 		zone->present_pages = real_size;
7271 #if defined(CONFIG_MEMORY_HOTPLUG)
7272 		zone->present_early_pages = real_size;
7273 #endif
7274 
7275 		totalpages += size;
7276 		realtotalpages += real_size;
7277 	}
7278 
7279 	pgdat->node_spanned_pages = totalpages;
7280 	pgdat->node_present_pages = realtotalpages;
7281 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7282 }
7283 
7284 #ifndef CONFIG_SPARSEMEM
7285 /*
7286  * Calculate the size of the zone->blockflags rounded to an unsigned long
7287  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7288  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7289  * round what is now in bits to nearest long in bits, then return it in
7290  * bytes.
7291  */
7292 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7293 {
7294 	unsigned long usemapsize;
7295 
7296 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7297 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7298 	usemapsize = usemapsize >> pageblock_order;
7299 	usemapsize *= NR_PAGEBLOCK_BITS;
7300 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7301 
7302 	return usemapsize / 8;
7303 }
7304 
7305 static void __ref setup_usemap(struct zone *zone)
7306 {
7307 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7308 					       zone->spanned_pages);
7309 	zone->pageblock_flags = NULL;
7310 	if (usemapsize) {
7311 		zone->pageblock_flags =
7312 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7313 					    zone_to_nid(zone));
7314 		if (!zone->pageblock_flags)
7315 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7316 			      usemapsize, zone->name, zone_to_nid(zone));
7317 	}
7318 }
7319 #else
7320 static inline void setup_usemap(struct zone *zone) {}
7321 #endif /* CONFIG_SPARSEMEM */
7322 
7323 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7324 
7325 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7326 void __init set_pageblock_order(void)
7327 {
7328 	unsigned int order;
7329 
7330 	/* Check that pageblock_nr_pages has not already been setup */
7331 	if (pageblock_order)
7332 		return;
7333 
7334 	if (HPAGE_SHIFT > PAGE_SHIFT)
7335 		order = HUGETLB_PAGE_ORDER;
7336 	else
7337 		order = MAX_ORDER - 1;
7338 
7339 	/*
7340 	 * Assume the largest contiguous order of interest is a huge page.
7341 	 * This value may be variable depending on boot parameters on IA64 and
7342 	 * powerpc.
7343 	 */
7344 	pageblock_order = order;
7345 }
7346 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7347 
7348 /*
7349  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7350  * is unused as pageblock_order is set at compile-time. See
7351  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7352  * the kernel config
7353  */
7354 void __init set_pageblock_order(void)
7355 {
7356 }
7357 
7358 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7359 
7360 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7361 						unsigned long present_pages)
7362 {
7363 	unsigned long pages = spanned_pages;
7364 
7365 	/*
7366 	 * Provide a more accurate estimation if there are holes within
7367 	 * the zone and SPARSEMEM is in use. If there are holes within the
7368 	 * zone, each populated memory region may cost us one or two extra
7369 	 * memmap pages due to alignment because memmap pages for each
7370 	 * populated regions may not be naturally aligned on page boundary.
7371 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7372 	 */
7373 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7374 	    IS_ENABLED(CONFIG_SPARSEMEM))
7375 		pages = present_pages;
7376 
7377 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7378 }
7379 
7380 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7381 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7382 {
7383 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7384 
7385 	spin_lock_init(&ds_queue->split_queue_lock);
7386 	INIT_LIST_HEAD(&ds_queue->split_queue);
7387 	ds_queue->split_queue_len = 0;
7388 }
7389 #else
7390 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7391 #endif
7392 
7393 #ifdef CONFIG_COMPACTION
7394 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7395 {
7396 	init_waitqueue_head(&pgdat->kcompactd_wait);
7397 }
7398 #else
7399 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7400 #endif
7401 
7402 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7403 {
7404 	int i;
7405 
7406 	pgdat_resize_init(pgdat);
7407 
7408 	pgdat_init_split_queue(pgdat);
7409 	pgdat_init_kcompactd(pgdat);
7410 
7411 	init_waitqueue_head(&pgdat->kswapd_wait);
7412 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7413 
7414 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7415 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
7416 
7417 	pgdat_page_ext_init(pgdat);
7418 	lruvec_init(&pgdat->__lruvec);
7419 }
7420 
7421 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7422 							unsigned long remaining_pages)
7423 {
7424 	atomic_long_set(&zone->managed_pages, remaining_pages);
7425 	zone_set_nid(zone, nid);
7426 	zone->name = zone_names[idx];
7427 	zone->zone_pgdat = NODE_DATA(nid);
7428 	spin_lock_init(&zone->lock);
7429 	zone_seqlock_init(zone);
7430 	zone_pcp_init(zone);
7431 }
7432 
7433 /*
7434  * Set up the zone data structures
7435  * - init pgdat internals
7436  * - init all zones belonging to this node
7437  *
7438  * NOTE: this function is only called during memory hotplug
7439  */
7440 #ifdef CONFIG_MEMORY_HOTPLUG
7441 void __ref free_area_init_core_hotplug(int nid)
7442 {
7443 	enum zone_type z;
7444 	pg_data_t *pgdat = NODE_DATA(nid);
7445 
7446 	pgdat_init_internals(pgdat);
7447 	for (z = 0; z < MAX_NR_ZONES; z++)
7448 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7449 }
7450 #endif
7451 
7452 /*
7453  * Set up the zone data structures:
7454  *   - mark all pages reserved
7455  *   - mark all memory queues empty
7456  *   - clear the memory bitmaps
7457  *
7458  * NOTE: pgdat should get zeroed by caller.
7459  * NOTE: this function is only called during early init.
7460  */
7461 static void __init free_area_init_core(struct pglist_data *pgdat)
7462 {
7463 	enum zone_type j;
7464 	int nid = pgdat->node_id;
7465 
7466 	pgdat_init_internals(pgdat);
7467 	pgdat->per_cpu_nodestats = &boot_nodestats;
7468 
7469 	for (j = 0; j < MAX_NR_ZONES; j++) {
7470 		struct zone *zone = pgdat->node_zones + j;
7471 		unsigned long size, freesize, memmap_pages;
7472 
7473 		size = zone->spanned_pages;
7474 		freesize = zone->present_pages;
7475 
7476 		/*
7477 		 * Adjust freesize so that it accounts for how much memory
7478 		 * is used by this zone for memmap. This affects the watermark
7479 		 * and per-cpu initialisations
7480 		 */
7481 		memmap_pages = calc_memmap_size(size, freesize);
7482 		if (!is_highmem_idx(j)) {
7483 			if (freesize >= memmap_pages) {
7484 				freesize -= memmap_pages;
7485 				if (memmap_pages)
7486 					pr_debug("  %s zone: %lu pages used for memmap\n",
7487 						 zone_names[j], memmap_pages);
7488 			} else
7489 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7490 					zone_names[j], memmap_pages, freesize);
7491 		}
7492 
7493 		/* Account for reserved pages */
7494 		if (j == 0 && freesize > dma_reserve) {
7495 			freesize -= dma_reserve;
7496 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7497 		}
7498 
7499 		if (!is_highmem_idx(j))
7500 			nr_kernel_pages += freesize;
7501 		/* Charge for highmem memmap if there are enough kernel pages */
7502 		else if (nr_kernel_pages > memmap_pages * 2)
7503 			nr_kernel_pages -= memmap_pages;
7504 		nr_all_pages += freesize;
7505 
7506 		/*
7507 		 * Set an approximate value for lowmem here, it will be adjusted
7508 		 * when the bootmem allocator frees pages into the buddy system.
7509 		 * And all highmem pages will be managed by the buddy system.
7510 		 */
7511 		zone_init_internals(zone, j, nid, freesize);
7512 
7513 		if (!size)
7514 			continue;
7515 
7516 		set_pageblock_order();
7517 		setup_usemap(zone);
7518 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7519 	}
7520 }
7521 
7522 #ifdef CONFIG_FLATMEM
7523 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7524 {
7525 	unsigned long __maybe_unused start = 0;
7526 	unsigned long __maybe_unused offset = 0;
7527 
7528 	/* Skip empty nodes */
7529 	if (!pgdat->node_spanned_pages)
7530 		return;
7531 
7532 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7533 	offset = pgdat->node_start_pfn - start;
7534 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7535 	if (!pgdat->node_mem_map) {
7536 		unsigned long size, end;
7537 		struct page *map;
7538 
7539 		/*
7540 		 * The zone's endpoints aren't required to be MAX_ORDER
7541 		 * aligned but the node_mem_map endpoints must be in order
7542 		 * for the buddy allocator to function correctly.
7543 		 */
7544 		end = pgdat_end_pfn(pgdat);
7545 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7546 		size =  (end - start) * sizeof(struct page);
7547 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7548 				   pgdat->node_id, false);
7549 		if (!map)
7550 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7551 			      size, pgdat->node_id);
7552 		pgdat->node_mem_map = map + offset;
7553 	}
7554 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7555 				__func__, pgdat->node_id, (unsigned long)pgdat,
7556 				(unsigned long)pgdat->node_mem_map);
7557 #ifndef CONFIG_NUMA
7558 	/*
7559 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7560 	 */
7561 	if (pgdat == NODE_DATA(0)) {
7562 		mem_map = NODE_DATA(0)->node_mem_map;
7563 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7564 			mem_map -= offset;
7565 	}
7566 #endif
7567 }
7568 #else
7569 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7570 #endif /* CONFIG_FLATMEM */
7571 
7572 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7573 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7574 {
7575 	pgdat->first_deferred_pfn = ULONG_MAX;
7576 }
7577 #else
7578 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7579 #endif
7580 
7581 static void __init free_area_init_node(int nid)
7582 {
7583 	pg_data_t *pgdat = NODE_DATA(nid);
7584 	unsigned long start_pfn = 0;
7585 	unsigned long end_pfn = 0;
7586 
7587 	/* pg_data_t should be reset to zero when it's allocated */
7588 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7589 
7590 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7591 
7592 	pgdat->node_id = nid;
7593 	pgdat->node_start_pfn = start_pfn;
7594 	pgdat->per_cpu_nodestats = NULL;
7595 
7596 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7597 		(u64)start_pfn << PAGE_SHIFT,
7598 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7599 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7600 
7601 	alloc_node_mem_map(pgdat);
7602 	pgdat_set_deferred_range(pgdat);
7603 
7604 	free_area_init_core(pgdat);
7605 }
7606 
7607 void __init free_area_init_memoryless_node(int nid)
7608 {
7609 	free_area_init_node(nid);
7610 }
7611 
7612 #if MAX_NUMNODES > 1
7613 /*
7614  * Figure out the number of possible node ids.
7615  */
7616 void __init setup_nr_node_ids(void)
7617 {
7618 	unsigned int highest;
7619 
7620 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7621 	nr_node_ids = highest + 1;
7622 }
7623 #endif
7624 
7625 /**
7626  * node_map_pfn_alignment - determine the maximum internode alignment
7627  *
7628  * This function should be called after node map is populated and sorted.
7629  * It calculates the maximum power of two alignment which can distinguish
7630  * all the nodes.
7631  *
7632  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7633  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7634  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7635  * shifted, 1GiB is enough and this function will indicate so.
7636  *
7637  * This is used to test whether pfn -> nid mapping of the chosen memory
7638  * model has fine enough granularity to avoid incorrect mapping for the
7639  * populated node map.
7640  *
7641  * Return: the determined alignment in pfn's.  0 if there is no alignment
7642  * requirement (single node).
7643  */
7644 unsigned long __init node_map_pfn_alignment(void)
7645 {
7646 	unsigned long accl_mask = 0, last_end = 0;
7647 	unsigned long start, end, mask;
7648 	int last_nid = NUMA_NO_NODE;
7649 	int i, nid;
7650 
7651 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7652 		if (!start || last_nid < 0 || last_nid == nid) {
7653 			last_nid = nid;
7654 			last_end = end;
7655 			continue;
7656 		}
7657 
7658 		/*
7659 		 * Start with a mask granular enough to pin-point to the
7660 		 * start pfn and tick off bits one-by-one until it becomes
7661 		 * too coarse to separate the current node from the last.
7662 		 */
7663 		mask = ~((1 << __ffs(start)) - 1);
7664 		while (mask && last_end <= (start & (mask << 1)))
7665 			mask <<= 1;
7666 
7667 		/* accumulate all internode masks */
7668 		accl_mask |= mask;
7669 	}
7670 
7671 	/* convert mask to number of pages */
7672 	return ~accl_mask + 1;
7673 }
7674 
7675 /**
7676  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7677  *
7678  * Return: the minimum PFN based on information provided via
7679  * memblock_set_node().
7680  */
7681 unsigned long __init find_min_pfn_with_active_regions(void)
7682 {
7683 	return PHYS_PFN(memblock_start_of_DRAM());
7684 }
7685 
7686 /*
7687  * early_calculate_totalpages()
7688  * Sum pages in active regions for movable zone.
7689  * Populate N_MEMORY for calculating usable_nodes.
7690  */
7691 static unsigned long __init early_calculate_totalpages(void)
7692 {
7693 	unsigned long totalpages = 0;
7694 	unsigned long start_pfn, end_pfn;
7695 	int i, nid;
7696 
7697 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7698 		unsigned long pages = end_pfn - start_pfn;
7699 
7700 		totalpages += pages;
7701 		if (pages)
7702 			node_set_state(nid, N_MEMORY);
7703 	}
7704 	return totalpages;
7705 }
7706 
7707 /*
7708  * Find the PFN the Movable zone begins in each node. Kernel memory
7709  * is spread evenly between nodes as long as the nodes have enough
7710  * memory. When they don't, some nodes will have more kernelcore than
7711  * others
7712  */
7713 static void __init find_zone_movable_pfns_for_nodes(void)
7714 {
7715 	int i, nid;
7716 	unsigned long usable_startpfn;
7717 	unsigned long kernelcore_node, kernelcore_remaining;
7718 	/* save the state before borrow the nodemask */
7719 	nodemask_t saved_node_state = node_states[N_MEMORY];
7720 	unsigned long totalpages = early_calculate_totalpages();
7721 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7722 	struct memblock_region *r;
7723 
7724 	/* Need to find movable_zone earlier when movable_node is specified. */
7725 	find_usable_zone_for_movable();
7726 
7727 	/*
7728 	 * If movable_node is specified, ignore kernelcore and movablecore
7729 	 * options.
7730 	 */
7731 	if (movable_node_is_enabled()) {
7732 		for_each_mem_region(r) {
7733 			if (!memblock_is_hotpluggable(r))
7734 				continue;
7735 
7736 			nid = memblock_get_region_node(r);
7737 
7738 			usable_startpfn = PFN_DOWN(r->base);
7739 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7740 				min(usable_startpfn, zone_movable_pfn[nid]) :
7741 				usable_startpfn;
7742 		}
7743 
7744 		goto out2;
7745 	}
7746 
7747 	/*
7748 	 * If kernelcore=mirror is specified, ignore movablecore option
7749 	 */
7750 	if (mirrored_kernelcore) {
7751 		bool mem_below_4gb_not_mirrored = false;
7752 
7753 		for_each_mem_region(r) {
7754 			if (memblock_is_mirror(r))
7755 				continue;
7756 
7757 			nid = memblock_get_region_node(r);
7758 
7759 			usable_startpfn = memblock_region_memory_base_pfn(r);
7760 
7761 			if (usable_startpfn < 0x100000) {
7762 				mem_below_4gb_not_mirrored = true;
7763 				continue;
7764 			}
7765 
7766 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7767 				min(usable_startpfn, zone_movable_pfn[nid]) :
7768 				usable_startpfn;
7769 		}
7770 
7771 		if (mem_below_4gb_not_mirrored)
7772 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7773 
7774 		goto out2;
7775 	}
7776 
7777 	/*
7778 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7779 	 * amount of necessary memory.
7780 	 */
7781 	if (required_kernelcore_percent)
7782 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7783 				       10000UL;
7784 	if (required_movablecore_percent)
7785 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7786 					10000UL;
7787 
7788 	/*
7789 	 * If movablecore= was specified, calculate what size of
7790 	 * kernelcore that corresponds so that memory usable for
7791 	 * any allocation type is evenly spread. If both kernelcore
7792 	 * and movablecore are specified, then the value of kernelcore
7793 	 * will be used for required_kernelcore if it's greater than
7794 	 * what movablecore would have allowed.
7795 	 */
7796 	if (required_movablecore) {
7797 		unsigned long corepages;
7798 
7799 		/*
7800 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7801 		 * was requested by the user
7802 		 */
7803 		required_movablecore =
7804 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7805 		required_movablecore = min(totalpages, required_movablecore);
7806 		corepages = totalpages - required_movablecore;
7807 
7808 		required_kernelcore = max(required_kernelcore, corepages);
7809 	}
7810 
7811 	/*
7812 	 * If kernelcore was not specified or kernelcore size is larger
7813 	 * than totalpages, there is no ZONE_MOVABLE.
7814 	 */
7815 	if (!required_kernelcore || required_kernelcore >= totalpages)
7816 		goto out;
7817 
7818 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7819 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7820 
7821 restart:
7822 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7823 	kernelcore_node = required_kernelcore / usable_nodes;
7824 	for_each_node_state(nid, N_MEMORY) {
7825 		unsigned long start_pfn, end_pfn;
7826 
7827 		/*
7828 		 * Recalculate kernelcore_node if the division per node
7829 		 * now exceeds what is necessary to satisfy the requested
7830 		 * amount of memory for the kernel
7831 		 */
7832 		if (required_kernelcore < kernelcore_node)
7833 			kernelcore_node = required_kernelcore / usable_nodes;
7834 
7835 		/*
7836 		 * As the map is walked, we track how much memory is usable
7837 		 * by the kernel using kernelcore_remaining. When it is
7838 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7839 		 */
7840 		kernelcore_remaining = kernelcore_node;
7841 
7842 		/* Go through each range of PFNs within this node */
7843 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7844 			unsigned long size_pages;
7845 
7846 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7847 			if (start_pfn >= end_pfn)
7848 				continue;
7849 
7850 			/* Account for what is only usable for kernelcore */
7851 			if (start_pfn < usable_startpfn) {
7852 				unsigned long kernel_pages;
7853 				kernel_pages = min(end_pfn, usable_startpfn)
7854 								- start_pfn;
7855 
7856 				kernelcore_remaining -= min(kernel_pages,
7857 							kernelcore_remaining);
7858 				required_kernelcore -= min(kernel_pages,
7859 							required_kernelcore);
7860 
7861 				/* Continue if range is now fully accounted */
7862 				if (end_pfn <= usable_startpfn) {
7863 
7864 					/*
7865 					 * Push zone_movable_pfn to the end so
7866 					 * that if we have to rebalance
7867 					 * kernelcore across nodes, we will
7868 					 * not double account here
7869 					 */
7870 					zone_movable_pfn[nid] = end_pfn;
7871 					continue;
7872 				}
7873 				start_pfn = usable_startpfn;
7874 			}
7875 
7876 			/*
7877 			 * The usable PFN range for ZONE_MOVABLE is from
7878 			 * start_pfn->end_pfn. Calculate size_pages as the
7879 			 * number of pages used as kernelcore
7880 			 */
7881 			size_pages = end_pfn - start_pfn;
7882 			if (size_pages > kernelcore_remaining)
7883 				size_pages = kernelcore_remaining;
7884 			zone_movable_pfn[nid] = start_pfn + size_pages;
7885 
7886 			/*
7887 			 * Some kernelcore has been met, update counts and
7888 			 * break if the kernelcore for this node has been
7889 			 * satisfied
7890 			 */
7891 			required_kernelcore -= min(required_kernelcore,
7892 								size_pages);
7893 			kernelcore_remaining -= size_pages;
7894 			if (!kernelcore_remaining)
7895 				break;
7896 		}
7897 	}
7898 
7899 	/*
7900 	 * If there is still required_kernelcore, we do another pass with one
7901 	 * less node in the count. This will push zone_movable_pfn[nid] further
7902 	 * along on the nodes that still have memory until kernelcore is
7903 	 * satisfied
7904 	 */
7905 	usable_nodes--;
7906 	if (usable_nodes && required_kernelcore > usable_nodes)
7907 		goto restart;
7908 
7909 out2:
7910 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7911 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7912 		zone_movable_pfn[nid] =
7913 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7914 
7915 out:
7916 	/* restore the node_state */
7917 	node_states[N_MEMORY] = saved_node_state;
7918 }
7919 
7920 /* Any regular or high memory on that node ? */
7921 static void check_for_memory(pg_data_t *pgdat, int nid)
7922 {
7923 	enum zone_type zone_type;
7924 
7925 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7926 		struct zone *zone = &pgdat->node_zones[zone_type];
7927 		if (populated_zone(zone)) {
7928 			if (IS_ENABLED(CONFIG_HIGHMEM))
7929 				node_set_state(nid, N_HIGH_MEMORY);
7930 			if (zone_type <= ZONE_NORMAL)
7931 				node_set_state(nid, N_NORMAL_MEMORY);
7932 			break;
7933 		}
7934 	}
7935 }
7936 
7937 /*
7938  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7939  * such cases we allow max_zone_pfn sorted in the descending order
7940  */
7941 bool __weak arch_has_descending_max_zone_pfns(void)
7942 {
7943 	return false;
7944 }
7945 
7946 /**
7947  * free_area_init - Initialise all pg_data_t and zone data
7948  * @max_zone_pfn: an array of max PFNs for each zone
7949  *
7950  * This will call free_area_init_node() for each active node in the system.
7951  * Using the page ranges provided by memblock_set_node(), the size of each
7952  * zone in each node and their holes is calculated. If the maximum PFN
7953  * between two adjacent zones match, it is assumed that the zone is empty.
7954  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7955  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7956  * starts where the previous one ended. For example, ZONE_DMA32 starts
7957  * at arch_max_dma_pfn.
7958  */
7959 void __init free_area_init(unsigned long *max_zone_pfn)
7960 {
7961 	unsigned long start_pfn, end_pfn;
7962 	int i, nid, zone;
7963 	bool descending;
7964 
7965 	/* Record where the zone boundaries are */
7966 	memset(arch_zone_lowest_possible_pfn, 0,
7967 				sizeof(arch_zone_lowest_possible_pfn));
7968 	memset(arch_zone_highest_possible_pfn, 0,
7969 				sizeof(arch_zone_highest_possible_pfn));
7970 
7971 	start_pfn = find_min_pfn_with_active_regions();
7972 	descending = arch_has_descending_max_zone_pfns();
7973 
7974 	for (i = 0; i < MAX_NR_ZONES; i++) {
7975 		if (descending)
7976 			zone = MAX_NR_ZONES - i - 1;
7977 		else
7978 			zone = i;
7979 
7980 		if (zone == ZONE_MOVABLE)
7981 			continue;
7982 
7983 		end_pfn = max(max_zone_pfn[zone], start_pfn);
7984 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7985 		arch_zone_highest_possible_pfn[zone] = end_pfn;
7986 
7987 		start_pfn = end_pfn;
7988 	}
7989 
7990 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7991 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7992 	find_zone_movable_pfns_for_nodes();
7993 
7994 	/* Print out the zone ranges */
7995 	pr_info("Zone ranges:\n");
7996 	for (i = 0; i < MAX_NR_ZONES; i++) {
7997 		if (i == ZONE_MOVABLE)
7998 			continue;
7999 		pr_info("  %-8s ", zone_names[i]);
8000 		if (arch_zone_lowest_possible_pfn[i] ==
8001 				arch_zone_highest_possible_pfn[i])
8002 			pr_cont("empty\n");
8003 		else
8004 			pr_cont("[mem %#018Lx-%#018Lx]\n",
8005 				(u64)arch_zone_lowest_possible_pfn[i]
8006 					<< PAGE_SHIFT,
8007 				((u64)arch_zone_highest_possible_pfn[i]
8008 					<< PAGE_SHIFT) - 1);
8009 	}
8010 
8011 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8012 	pr_info("Movable zone start for each node\n");
8013 	for (i = 0; i < MAX_NUMNODES; i++) {
8014 		if (zone_movable_pfn[i])
8015 			pr_info("  Node %d: %#018Lx\n", i,
8016 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8017 	}
8018 
8019 	/*
8020 	 * Print out the early node map, and initialize the
8021 	 * subsection-map relative to active online memory ranges to
8022 	 * enable future "sub-section" extensions of the memory map.
8023 	 */
8024 	pr_info("Early memory node ranges\n");
8025 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8026 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8027 			(u64)start_pfn << PAGE_SHIFT,
8028 			((u64)end_pfn << PAGE_SHIFT) - 1);
8029 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8030 	}
8031 
8032 	/* Initialise every node */
8033 	mminit_verify_pageflags_layout();
8034 	setup_nr_node_ids();
8035 	for_each_online_node(nid) {
8036 		pg_data_t *pgdat = NODE_DATA(nid);
8037 		free_area_init_node(nid);
8038 
8039 		/* Any memory on that node */
8040 		if (pgdat->node_present_pages)
8041 			node_set_state(nid, N_MEMORY);
8042 		check_for_memory(pgdat, nid);
8043 	}
8044 
8045 	memmap_init();
8046 }
8047 
8048 static int __init cmdline_parse_core(char *p, unsigned long *core,
8049 				     unsigned long *percent)
8050 {
8051 	unsigned long long coremem;
8052 	char *endptr;
8053 
8054 	if (!p)
8055 		return -EINVAL;
8056 
8057 	/* Value may be a percentage of total memory, otherwise bytes */
8058 	coremem = simple_strtoull(p, &endptr, 0);
8059 	if (*endptr == '%') {
8060 		/* Paranoid check for percent values greater than 100 */
8061 		WARN_ON(coremem > 100);
8062 
8063 		*percent = coremem;
8064 	} else {
8065 		coremem = memparse(p, &p);
8066 		/* Paranoid check that UL is enough for the coremem value */
8067 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8068 
8069 		*core = coremem >> PAGE_SHIFT;
8070 		*percent = 0UL;
8071 	}
8072 	return 0;
8073 }
8074 
8075 /*
8076  * kernelcore=size sets the amount of memory for use for allocations that
8077  * cannot be reclaimed or migrated.
8078  */
8079 static int __init cmdline_parse_kernelcore(char *p)
8080 {
8081 	/* parse kernelcore=mirror */
8082 	if (parse_option_str(p, "mirror")) {
8083 		mirrored_kernelcore = true;
8084 		return 0;
8085 	}
8086 
8087 	return cmdline_parse_core(p, &required_kernelcore,
8088 				  &required_kernelcore_percent);
8089 }
8090 
8091 /*
8092  * movablecore=size sets the amount of memory for use for allocations that
8093  * can be reclaimed or migrated.
8094  */
8095 static int __init cmdline_parse_movablecore(char *p)
8096 {
8097 	return cmdline_parse_core(p, &required_movablecore,
8098 				  &required_movablecore_percent);
8099 }
8100 
8101 early_param("kernelcore", cmdline_parse_kernelcore);
8102 early_param("movablecore", cmdline_parse_movablecore);
8103 
8104 void adjust_managed_page_count(struct page *page, long count)
8105 {
8106 	atomic_long_add(count, &page_zone(page)->managed_pages);
8107 	totalram_pages_add(count);
8108 #ifdef CONFIG_HIGHMEM
8109 	if (PageHighMem(page))
8110 		totalhigh_pages_add(count);
8111 #endif
8112 }
8113 EXPORT_SYMBOL(adjust_managed_page_count);
8114 
8115 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8116 {
8117 	void *pos;
8118 	unsigned long pages = 0;
8119 
8120 	start = (void *)PAGE_ALIGN((unsigned long)start);
8121 	end = (void *)((unsigned long)end & PAGE_MASK);
8122 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8123 		struct page *page = virt_to_page(pos);
8124 		void *direct_map_addr;
8125 
8126 		/*
8127 		 * 'direct_map_addr' might be different from 'pos'
8128 		 * because some architectures' virt_to_page()
8129 		 * work with aliases.  Getting the direct map
8130 		 * address ensures that we get a _writeable_
8131 		 * alias for the memset().
8132 		 */
8133 		direct_map_addr = page_address(page);
8134 		/*
8135 		 * Perform a kasan-unchecked memset() since this memory
8136 		 * has not been initialized.
8137 		 */
8138 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8139 		if ((unsigned int)poison <= 0xFF)
8140 			memset(direct_map_addr, poison, PAGE_SIZE);
8141 
8142 		free_reserved_page(page);
8143 	}
8144 
8145 	if (pages && s)
8146 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8147 
8148 	return pages;
8149 }
8150 
8151 void __init mem_init_print_info(void)
8152 {
8153 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8154 	unsigned long init_code_size, init_data_size;
8155 
8156 	physpages = get_num_physpages();
8157 	codesize = _etext - _stext;
8158 	datasize = _edata - _sdata;
8159 	rosize = __end_rodata - __start_rodata;
8160 	bss_size = __bss_stop - __bss_start;
8161 	init_data_size = __init_end - __init_begin;
8162 	init_code_size = _einittext - _sinittext;
8163 
8164 	/*
8165 	 * Detect special cases and adjust section sizes accordingly:
8166 	 * 1) .init.* may be embedded into .data sections
8167 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8168 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8169 	 * 3) .rodata.* may be embedded into .text or .data sections.
8170 	 */
8171 #define adj_init_size(start, end, size, pos, adj) \
8172 	do { \
8173 		if (start <= pos && pos < end && size > adj) \
8174 			size -= adj; \
8175 	} while (0)
8176 
8177 	adj_init_size(__init_begin, __init_end, init_data_size,
8178 		     _sinittext, init_code_size);
8179 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8180 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8181 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8182 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8183 
8184 #undef	adj_init_size
8185 
8186 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8187 #ifdef	CONFIG_HIGHMEM
8188 		", %luK highmem"
8189 #endif
8190 		")\n",
8191 		K(nr_free_pages()), K(physpages),
8192 		codesize >> 10, datasize >> 10, rosize >> 10,
8193 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
8194 		K(physpages - totalram_pages() - totalcma_pages),
8195 		K(totalcma_pages)
8196 #ifdef	CONFIG_HIGHMEM
8197 		, K(totalhigh_pages())
8198 #endif
8199 		);
8200 }
8201 
8202 /**
8203  * set_dma_reserve - set the specified number of pages reserved in the first zone
8204  * @new_dma_reserve: The number of pages to mark reserved
8205  *
8206  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8207  * In the DMA zone, a significant percentage may be consumed by kernel image
8208  * and other unfreeable allocations which can skew the watermarks badly. This
8209  * function may optionally be used to account for unfreeable pages in the
8210  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8211  * smaller per-cpu batchsize.
8212  */
8213 void __init set_dma_reserve(unsigned long new_dma_reserve)
8214 {
8215 	dma_reserve = new_dma_reserve;
8216 }
8217 
8218 static int page_alloc_cpu_dead(unsigned int cpu)
8219 {
8220 	struct zone *zone;
8221 
8222 	lru_add_drain_cpu(cpu);
8223 	drain_pages(cpu);
8224 
8225 	/*
8226 	 * Spill the event counters of the dead processor
8227 	 * into the current processors event counters.
8228 	 * This artificially elevates the count of the current
8229 	 * processor.
8230 	 */
8231 	vm_events_fold_cpu(cpu);
8232 
8233 	/*
8234 	 * Zero the differential counters of the dead processor
8235 	 * so that the vm statistics are consistent.
8236 	 *
8237 	 * This is only okay since the processor is dead and cannot
8238 	 * race with what we are doing.
8239 	 */
8240 	cpu_vm_stats_fold(cpu);
8241 
8242 	for_each_populated_zone(zone)
8243 		zone_pcp_update(zone, 0);
8244 
8245 	return 0;
8246 }
8247 
8248 static int page_alloc_cpu_online(unsigned int cpu)
8249 {
8250 	struct zone *zone;
8251 
8252 	for_each_populated_zone(zone)
8253 		zone_pcp_update(zone, 1);
8254 	return 0;
8255 }
8256 
8257 #ifdef CONFIG_NUMA
8258 int hashdist = HASHDIST_DEFAULT;
8259 
8260 static int __init set_hashdist(char *str)
8261 {
8262 	if (!str)
8263 		return 0;
8264 	hashdist = simple_strtoul(str, &str, 0);
8265 	return 1;
8266 }
8267 __setup("hashdist=", set_hashdist);
8268 #endif
8269 
8270 void __init page_alloc_init(void)
8271 {
8272 	int ret;
8273 
8274 #ifdef CONFIG_NUMA
8275 	if (num_node_state(N_MEMORY) == 1)
8276 		hashdist = 0;
8277 #endif
8278 
8279 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8280 					"mm/page_alloc:pcp",
8281 					page_alloc_cpu_online,
8282 					page_alloc_cpu_dead);
8283 	WARN_ON(ret < 0);
8284 }
8285 
8286 /*
8287  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8288  *	or min_free_kbytes changes.
8289  */
8290 static void calculate_totalreserve_pages(void)
8291 {
8292 	struct pglist_data *pgdat;
8293 	unsigned long reserve_pages = 0;
8294 	enum zone_type i, j;
8295 
8296 	for_each_online_pgdat(pgdat) {
8297 
8298 		pgdat->totalreserve_pages = 0;
8299 
8300 		for (i = 0; i < MAX_NR_ZONES; i++) {
8301 			struct zone *zone = pgdat->node_zones + i;
8302 			long max = 0;
8303 			unsigned long managed_pages = zone_managed_pages(zone);
8304 
8305 			/* Find valid and maximum lowmem_reserve in the zone */
8306 			for (j = i; j < MAX_NR_ZONES; j++) {
8307 				if (zone->lowmem_reserve[j] > max)
8308 					max = zone->lowmem_reserve[j];
8309 			}
8310 
8311 			/* we treat the high watermark as reserved pages. */
8312 			max += high_wmark_pages(zone);
8313 
8314 			if (max > managed_pages)
8315 				max = managed_pages;
8316 
8317 			pgdat->totalreserve_pages += max;
8318 
8319 			reserve_pages += max;
8320 		}
8321 	}
8322 	totalreserve_pages = reserve_pages;
8323 }
8324 
8325 /*
8326  * setup_per_zone_lowmem_reserve - called whenever
8327  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8328  *	has a correct pages reserved value, so an adequate number of
8329  *	pages are left in the zone after a successful __alloc_pages().
8330  */
8331 static void setup_per_zone_lowmem_reserve(void)
8332 {
8333 	struct pglist_data *pgdat;
8334 	enum zone_type i, j;
8335 
8336 	for_each_online_pgdat(pgdat) {
8337 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8338 			struct zone *zone = &pgdat->node_zones[i];
8339 			int ratio = sysctl_lowmem_reserve_ratio[i];
8340 			bool clear = !ratio || !zone_managed_pages(zone);
8341 			unsigned long managed_pages = 0;
8342 
8343 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8344 				struct zone *upper_zone = &pgdat->node_zones[j];
8345 
8346 				managed_pages += zone_managed_pages(upper_zone);
8347 
8348 				if (clear)
8349 					zone->lowmem_reserve[j] = 0;
8350 				else
8351 					zone->lowmem_reserve[j] = managed_pages / ratio;
8352 			}
8353 		}
8354 	}
8355 
8356 	/* update totalreserve_pages */
8357 	calculate_totalreserve_pages();
8358 }
8359 
8360 static void __setup_per_zone_wmarks(void)
8361 {
8362 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8363 	unsigned long lowmem_pages = 0;
8364 	struct zone *zone;
8365 	unsigned long flags;
8366 
8367 	/* Calculate total number of !ZONE_HIGHMEM pages */
8368 	for_each_zone(zone) {
8369 		if (!is_highmem(zone))
8370 			lowmem_pages += zone_managed_pages(zone);
8371 	}
8372 
8373 	for_each_zone(zone) {
8374 		u64 tmp;
8375 
8376 		spin_lock_irqsave(&zone->lock, flags);
8377 		tmp = (u64)pages_min * zone_managed_pages(zone);
8378 		do_div(tmp, lowmem_pages);
8379 		if (is_highmem(zone)) {
8380 			/*
8381 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8382 			 * need highmem pages, so cap pages_min to a small
8383 			 * value here.
8384 			 *
8385 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8386 			 * deltas control async page reclaim, and so should
8387 			 * not be capped for highmem.
8388 			 */
8389 			unsigned long min_pages;
8390 
8391 			min_pages = zone_managed_pages(zone) / 1024;
8392 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8393 			zone->_watermark[WMARK_MIN] = min_pages;
8394 		} else {
8395 			/*
8396 			 * If it's a lowmem zone, reserve a number of pages
8397 			 * proportionate to the zone's size.
8398 			 */
8399 			zone->_watermark[WMARK_MIN] = tmp;
8400 		}
8401 
8402 		/*
8403 		 * Set the kswapd watermarks distance according to the
8404 		 * scale factor in proportion to available memory, but
8405 		 * ensure a minimum size on small systems.
8406 		 */
8407 		tmp = max_t(u64, tmp >> 2,
8408 			    mult_frac(zone_managed_pages(zone),
8409 				      watermark_scale_factor, 10000));
8410 
8411 		zone->watermark_boost = 0;
8412 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8413 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8414 
8415 		spin_unlock_irqrestore(&zone->lock, flags);
8416 	}
8417 
8418 	/* update totalreserve_pages */
8419 	calculate_totalreserve_pages();
8420 }
8421 
8422 /**
8423  * setup_per_zone_wmarks - called when min_free_kbytes changes
8424  * or when memory is hot-{added|removed}
8425  *
8426  * Ensures that the watermark[min,low,high] values for each zone are set
8427  * correctly with respect to min_free_kbytes.
8428  */
8429 void setup_per_zone_wmarks(void)
8430 {
8431 	struct zone *zone;
8432 	static DEFINE_SPINLOCK(lock);
8433 
8434 	spin_lock(&lock);
8435 	__setup_per_zone_wmarks();
8436 	spin_unlock(&lock);
8437 
8438 	/*
8439 	 * The watermark size have changed so update the pcpu batch
8440 	 * and high limits or the limits may be inappropriate.
8441 	 */
8442 	for_each_zone(zone)
8443 		zone_pcp_update(zone, 0);
8444 }
8445 
8446 /*
8447  * Initialise min_free_kbytes.
8448  *
8449  * For small machines we want it small (128k min).  For large machines
8450  * we want it large (256MB max).  But it is not linear, because network
8451  * bandwidth does not increase linearly with machine size.  We use
8452  *
8453  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8454  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8455  *
8456  * which yields
8457  *
8458  * 16MB:	512k
8459  * 32MB:	724k
8460  * 64MB:	1024k
8461  * 128MB:	1448k
8462  * 256MB:	2048k
8463  * 512MB:	2896k
8464  * 1024MB:	4096k
8465  * 2048MB:	5792k
8466  * 4096MB:	8192k
8467  * 8192MB:	11584k
8468  * 16384MB:	16384k
8469  */
8470 void calculate_min_free_kbytes(void)
8471 {
8472 	unsigned long lowmem_kbytes;
8473 	int new_min_free_kbytes;
8474 
8475 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8476 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8477 
8478 	if (new_min_free_kbytes > user_min_free_kbytes)
8479 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8480 	else
8481 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8482 				new_min_free_kbytes, user_min_free_kbytes);
8483 
8484 }
8485 
8486 int __meminit init_per_zone_wmark_min(void)
8487 {
8488 	calculate_min_free_kbytes();
8489 	setup_per_zone_wmarks();
8490 	refresh_zone_stat_thresholds();
8491 	setup_per_zone_lowmem_reserve();
8492 
8493 #ifdef CONFIG_NUMA
8494 	setup_min_unmapped_ratio();
8495 	setup_min_slab_ratio();
8496 #endif
8497 
8498 	khugepaged_min_free_kbytes_update();
8499 
8500 	return 0;
8501 }
8502 postcore_initcall(init_per_zone_wmark_min)
8503 
8504 /*
8505  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8506  *	that we can call two helper functions whenever min_free_kbytes
8507  *	changes.
8508  */
8509 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8510 		void *buffer, size_t *length, loff_t *ppos)
8511 {
8512 	int rc;
8513 
8514 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8515 	if (rc)
8516 		return rc;
8517 
8518 	if (write) {
8519 		user_min_free_kbytes = min_free_kbytes;
8520 		setup_per_zone_wmarks();
8521 	}
8522 	return 0;
8523 }
8524 
8525 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8526 		void *buffer, size_t *length, loff_t *ppos)
8527 {
8528 	int rc;
8529 
8530 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8531 	if (rc)
8532 		return rc;
8533 
8534 	if (write)
8535 		setup_per_zone_wmarks();
8536 
8537 	return 0;
8538 }
8539 
8540 #ifdef CONFIG_NUMA
8541 static void setup_min_unmapped_ratio(void)
8542 {
8543 	pg_data_t *pgdat;
8544 	struct zone *zone;
8545 
8546 	for_each_online_pgdat(pgdat)
8547 		pgdat->min_unmapped_pages = 0;
8548 
8549 	for_each_zone(zone)
8550 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8551 						         sysctl_min_unmapped_ratio) / 100;
8552 }
8553 
8554 
8555 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8556 		void *buffer, size_t *length, loff_t *ppos)
8557 {
8558 	int rc;
8559 
8560 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8561 	if (rc)
8562 		return rc;
8563 
8564 	setup_min_unmapped_ratio();
8565 
8566 	return 0;
8567 }
8568 
8569 static void setup_min_slab_ratio(void)
8570 {
8571 	pg_data_t *pgdat;
8572 	struct zone *zone;
8573 
8574 	for_each_online_pgdat(pgdat)
8575 		pgdat->min_slab_pages = 0;
8576 
8577 	for_each_zone(zone)
8578 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8579 						     sysctl_min_slab_ratio) / 100;
8580 }
8581 
8582 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8583 		void *buffer, size_t *length, loff_t *ppos)
8584 {
8585 	int rc;
8586 
8587 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8588 	if (rc)
8589 		return rc;
8590 
8591 	setup_min_slab_ratio();
8592 
8593 	return 0;
8594 }
8595 #endif
8596 
8597 /*
8598  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8599  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8600  *	whenever sysctl_lowmem_reserve_ratio changes.
8601  *
8602  * The reserve ratio obviously has absolutely no relation with the
8603  * minimum watermarks. The lowmem reserve ratio can only make sense
8604  * if in function of the boot time zone sizes.
8605  */
8606 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8607 		void *buffer, size_t *length, loff_t *ppos)
8608 {
8609 	int i;
8610 
8611 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8612 
8613 	for (i = 0; i < MAX_NR_ZONES; i++) {
8614 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8615 			sysctl_lowmem_reserve_ratio[i] = 0;
8616 	}
8617 
8618 	setup_per_zone_lowmem_reserve();
8619 	return 0;
8620 }
8621 
8622 /*
8623  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8624  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8625  * pagelist can have before it gets flushed back to buddy allocator.
8626  */
8627 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8628 		int write, void *buffer, size_t *length, loff_t *ppos)
8629 {
8630 	struct zone *zone;
8631 	int old_percpu_pagelist_high_fraction;
8632 	int ret;
8633 
8634 	mutex_lock(&pcp_batch_high_lock);
8635 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8636 
8637 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8638 	if (!write || ret < 0)
8639 		goto out;
8640 
8641 	/* Sanity checking to avoid pcp imbalance */
8642 	if (percpu_pagelist_high_fraction &&
8643 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8644 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8645 		ret = -EINVAL;
8646 		goto out;
8647 	}
8648 
8649 	/* No change? */
8650 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8651 		goto out;
8652 
8653 	for_each_populated_zone(zone)
8654 		zone_set_pageset_high_and_batch(zone, 0);
8655 out:
8656 	mutex_unlock(&pcp_batch_high_lock);
8657 	return ret;
8658 }
8659 
8660 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8661 /*
8662  * Returns the number of pages that arch has reserved but
8663  * is not known to alloc_large_system_hash().
8664  */
8665 static unsigned long __init arch_reserved_kernel_pages(void)
8666 {
8667 	return 0;
8668 }
8669 #endif
8670 
8671 /*
8672  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8673  * machines. As memory size is increased the scale is also increased but at
8674  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8675  * quadruples the scale is increased by one, which means the size of hash table
8676  * only doubles, instead of quadrupling as well.
8677  * Because 32-bit systems cannot have large physical memory, where this scaling
8678  * makes sense, it is disabled on such platforms.
8679  */
8680 #if __BITS_PER_LONG > 32
8681 #define ADAPT_SCALE_BASE	(64ul << 30)
8682 #define ADAPT_SCALE_SHIFT	2
8683 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8684 #endif
8685 
8686 /*
8687  * allocate a large system hash table from bootmem
8688  * - it is assumed that the hash table must contain an exact power-of-2
8689  *   quantity of entries
8690  * - limit is the number of hash buckets, not the total allocation size
8691  */
8692 void *__init alloc_large_system_hash(const char *tablename,
8693 				     unsigned long bucketsize,
8694 				     unsigned long numentries,
8695 				     int scale,
8696 				     int flags,
8697 				     unsigned int *_hash_shift,
8698 				     unsigned int *_hash_mask,
8699 				     unsigned long low_limit,
8700 				     unsigned long high_limit)
8701 {
8702 	unsigned long long max = high_limit;
8703 	unsigned long log2qty, size;
8704 	void *table = NULL;
8705 	gfp_t gfp_flags;
8706 	bool virt;
8707 	bool huge;
8708 
8709 	/* allow the kernel cmdline to have a say */
8710 	if (!numentries) {
8711 		/* round applicable memory size up to nearest megabyte */
8712 		numentries = nr_kernel_pages;
8713 		numentries -= arch_reserved_kernel_pages();
8714 
8715 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8716 		if (PAGE_SHIFT < 20)
8717 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8718 
8719 #if __BITS_PER_LONG > 32
8720 		if (!high_limit) {
8721 			unsigned long adapt;
8722 
8723 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8724 			     adapt <<= ADAPT_SCALE_SHIFT)
8725 				scale++;
8726 		}
8727 #endif
8728 
8729 		/* limit to 1 bucket per 2^scale bytes of low memory */
8730 		if (scale > PAGE_SHIFT)
8731 			numentries >>= (scale - PAGE_SHIFT);
8732 		else
8733 			numentries <<= (PAGE_SHIFT - scale);
8734 
8735 		/* Make sure we've got at least a 0-order allocation.. */
8736 		if (unlikely(flags & HASH_SMALL)) {
8737 			/* Makes no sense without HASH_EARLY */
8738 			WARN_ON(!(flags & HASH_EARLY));
8739 			if (!(numentries >> *_hash_shift)) {
8740 				numentries = 1UL << *_hash_shift;
8741 				BUG_ON(!numentries);
8742 			}
8743 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8744 			numentries = PAGE_SIZE / bucketsize;
8745 	}
8746 	numentries = roundup_pow_of_two(numentries);
8747 
8748 	/* limit allocation size to 1/16 total memory by default */
8749 	if (max == 0) {
8750 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8751 		do_div(max, bucketsize);
8752 	}
8753 	max = min(max, 0x80000000ULL);
8754 
8755 	if (numentries < low_limit)
8756 		numentries = low_limit;
8757 	if (numentries > max)
8758 		numentries = max;
8759 
8760 	log2qty = ilog2(numentries);
8761 
8762 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8763 	do {
8764 		virt = false;
8765 		size = bucketsize << log2qty;
8766 		if (flags & HASH_EARLY) {
8767 			if (flags & HASH_ZERO)
8768 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8769 			else
8770 				table = memblock_alloc_raw(size,
8771 							   SMP_CACHE_BYTES);
8772 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8773 			table = __vmalloc(size, gfp_flags);
8774 			virt = true;
8775 			if (table)
8776 				huge = is_vm_area_hugepages(table);
8777 		} else {
8778 			/*
8779 			 * If bucketsize is not a power-of-two, we may free
8780 			 * some pages at the end of hash table which
8781 			 * alloc_pages_exact() automatically does
8782 			 */
8783 			table = alloc_pages_exact(size, gfp_flags);
8784 			kmemleak_alloc(table, size, 1, gfp_flags);
8785 		}
8786 	} while (!table && size > PAGE_SIZE && --log2qty);
8787 
8788 	if (!table)
8789 		panic("Failed to allocate %s hash table\n", tablename);
8790 
8791 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8792 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8793 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8794 
8795 	if (_hash_shift)
8796 		*_hash_shift = log2qty;
8797 	if (_hash_mask)
8798 		*_hash_mask = (1 << log2qty) - 1;
8799 
8800 	return table;
8801 }
8802 
8803 /*
8804  * This function checks whether pageblock includes unmovable pages or not.
8805  *
8806  * PageLRU check without isolation or lru_lock could race so that
8807  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8808  * check without lock_page also may miss some movable non-lru pages at
8809  * race condition. So you can't expect this function should be exact.
8810  *
8811  * Returns a page without holding a reference. If the caller wants to
8812  * dereference that page (e.g., dumping), it has to make sure that it
8813  * cannot get removed (e.g., via memory unplug) concurrently.
8814  *
8815  */
8816 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8817 				 int migratetype, int flags)
8818 {
8819 	unsigned long iter = 0;
8820 	unsigned long pfn = page_to_pfn(page);
8821 	unsigned long offset = pfn % pageblock_nr_pages;
8822 
8823 	if (is_migrate_cma_page(page)) {
8824 		/*
8825 		 * CMA allocations (alloc_contig_range) really need to mark
8826 		 * isolate CMA pageblocks even when they are not movable in fact
8827 		 * so consider them movable here.
8828 		 */
8829 		if (is_migrate_cma(migratetype))
8830 			return NULL;
8831 
8832 		return page;
8833 	}
8834 
8835 	for (; iter < pageblock_nr_pages - offset; iter++) {
8836 		page = pfn_to_page(pfn + iter);
8837 
8838 		/*
8839 		 * Both, bootmem allocations and memory holes are marked
8840 		 * PG_reserved and are unmovable. We can even have unmovable
8841 		 * allocations inside ZONE_MOVABLE, for example when
8842 		 * specifying "movablecore".
8843 		 */
8844 		if (PageReserved(page))
8845 			return page;
8846 
8847 		/*
8848 		 * If the zone is movable and we have ruled out all reserved
8849 		 * pages then it should be reasonably safe to assume the rest
8850 		 * is movable.
8851 		 */
8852 		if (zone_idx(zone) == ZONE_MOVABLE)
8853 			continue;
8854 
8855 		/*
8856 		 * Hugepages are not in LRU lists, but they're movable.
8857 		 * THPs are on the LRU, but need to be counted as #small pages.
8858 		 * We need not scan over tail pages because we don't
8859 		 * handle each tail page individually in migration.
8860 		 */
8861 		if (PageHuge(page) || PageTransCompound(page)) {
8862 			struct page *head = compound_head(page);
8863 			unsigned int skip_pages;
8864 
8865 			if (PageHuge(page)) {
8866 				if (!hugepage_migration_supported(page_hstate(head)))
8867 					return page;
8868 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8869 				return page;
8870 			}
8871 
8872 			skip_pages = compound_nr(head) - (page - head);
8873 			iter += skip_pages - 1;
8874 			continue;
8875 		}
8876 
8877 		/*
8878 		 * We can't use page_count without pin a page
8879 		 * because another CPU can free compound page.
8880 		 * This check already skips compound tails of THP
8881 		 * because their page->_refcount is zero at all time.
8882 		 */
8883 		if (!page_ref_count(page)) {
8884 			if (PageBuddy(page))
8885 				iter += (1 << buddy_order(page)) - 1;
8886 			continue;
8887 		}
8888 
8889 		/*
8890 		 * The HWPoisoned page may be not in buddy system, and
8891 		 * page_count() is not 0.
8892 		 */
8893 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8894 			continue;
8895 
8896 		/*
8897 		 * We treat all PageOffline() pages as movable when offlining
8898 		 * to give drivers a chance to decrement their reference count
8899 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8900 		 * can be offlined as there are no direct references anymore.
8901 		 * For actually unmovable PageOffline() where the driver does
8902 		 * not support this, we will fail later when trying to actually
8903 		 * move these pages that still have a reference count > 0.
8904 		 * (false negatives in this function only)
8905 		 */
8906 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8907 			continue;
8908 
8909 		if (__PageMovable(page) || PageLRU(page))
8910 			continue;
8911 
8912 		/*
8913 		 * If there are RECLAIMABLE pages, we need to check
8914 		 * it.  But now, memory offline itself doesn't call
8915 		 * shrink_node_slabs() and it still to be fixed.
8916 		 */
8917 		return page;
8918 	}
8919 	return NULL;
8920 }
8921 
8922 #ifdef CONFIG_CONTIG_ALLOC
8923 static unsigned long pfn_max_align_down(unsigned long pfn)
8924 {
8925 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8926 			     pageblock_nr_pages) - 1);
8927 }
8928 
8929 static unsigned long pfn_max_align_up(unsigned long pfn)
8930 {
8931 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8932 				pageblock_nr_pages));
8933 }
8934 
8935 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8936 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8937 /* Usage: See admin-guide/dynamic-debug-howto.rst */
8938 static void alloc_contig_dump_pages(struct list_head *page_list)
8939 {
8940 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8941 
8942 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8943 		struct page *page;
8944 
8945 		dump_stack();
8946 		list_for_each_entry(page, page_list, lru)
8947 			dump_page(page, "migration failure");
8948 	}
8949 }
8950 #else
8951 static inline void alloc_contig_dump_pages(struct list_head *page_list)
8952 {
8953 }
8954 #endif
8955 
8956 /* [start, end) must belong to a single zone. */
8957 static int __alloc_contig_migrate_range(struct compact_control *cc,
8958 					unsigned long start, unsigned long end)
8959 {
8960 	/* This function is based on compact_zone() from compaction.c. */
8961 	unsigned int nr_reclaimed;
8962 	unsigned long pfn = start;
8963 	unsigned int tries = 0;
8964 	int ret = 0;
8965 	struct migration_target_control mtc = {
8966 		.nid = zone_to_nid(cc->zone),
8967 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8968 	};
8969 
8970 	lru_cache_disable();
8971 
8972 	while (pfn < end || !list_empty(&cc->migratepages)) {
8973 		if (fatal_signal_pending(current)) {
8974 			ret = -EINTR;
8975 			break;
8976 		}
8977 
8978 		if (list_empty(&cc->migratepages)) {
8979 			cc->nr_migratepages = 0;
8980 			ret = isolate_migratepages_range(cc, pfn, end);
8981 			if (ret && ret != -EAGAIN)
8982 				break;
8983 			pfn = cc->migrate_pfn;
8984 			tries = 0;
8985 		} else if (++tries == 5) {
8986 			ret = -EBUSY;
8987 			break;
8988 		}
8989 
8990 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8991 							&cc->migratepages);
8992 		cc->nr_migratepages -= nr_reclaimed;
8993 
8994 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8995 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
8996 
8997 		/*
8998 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8999 		 * to retry again over this error, so do the same here.
9000 		 */
9001 		if (ret == -ENOMEM)
9002 			break;
9003 	}
9004 
9005 	lru_cache_enable();
9006 	if (ret < 0) {
9007 		if (ret == -EBUSY)
9008 			alloc_contig_dump_pages(&cc->migratepages);
9009 		putback_movable_pages(&cc->migratepages);
9010 		return ret;
9011 	}
9012 	return 0;
9013 }
9014 
9015 /**
9016  * alloc_contig_range() -- tries to allocate given range of pages
9017  * @start:	start PFN to allocate
9018  * @end:	one-past-the-last PFN to allocate
9019  * @migratetype:	migratetype of the underlying pageblocks (either
9020  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9021  *			in range must have the same migratetype and it must
9022  *			be either of the two.
9023  * @gfp_mask:	GFP mask to use during compaction
9024  *
9025  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9026  * aligned.  The PFN range must belong to a single zone.
9027  *
9028  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9029  * pageblocks in the range.  Once isolated, the pageblocks should not
9030  * be modified by others.
9031  *
9032  * Return: zero on success or negative error code.  On success all
9033  * pages which PFN is in [start, end) are allocated for the caller and
9034  * need to be freed with free_contig_range().
9035  */
9036 int alloc_contig_range(unsigned long start, unsigned long end,
9037 		       unsigned migratetype, gfp_t gfp_mask)
9038 {
9039 	unsigned long outer_start, outer_end;
9040 	unsigned int order;
9041 	int ret = 0;
9042 
9043 	struct compact_control cc = {
9044 		.nr_migratepages = 0,
9045 		.order = -1,
9046 		.zone = page_zone(pfn_to_page(start)),
9047 		.mode = MIGRATE_SYNC,
9048 		.ignore_skip_hint = true,
9049 		.no_set_skip_hint = true,
9050 		.gfp_mask = current_gfp_context(gfp_mask),
9051 		.alloc_contig = true,
9052 	};
9053 	INIT_LIST_HEAD(&cc.migratepages);
9054 
9055 	/*
9056 	 * What we do here is we mark all pageblocks in range as
9057 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9058 	 * have different sizes, and due to the way page allocator
9059 	 * work, we align the range to biggest of the two pages so
9060 	 * that page allocator won't try to merge buddies from
9061 	 * different pageblocks and change MIGRATE_ISOLATE to some
9062 	 * other migration type.
9063 	 *
9064 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9065 	 * migrate the pages from an unaligned range (ie. pages that
9066 	 * we are interested in).  This will put all the pages in
9067 	 * range back to page allocator as MIGRATE_ISOLATE.
9068 	 *
9069 	 * When this is done, we take the pages in range from page
9070 	 * allocator removing them from the buddy system.  This way
9071 	 * page allocator will never consider using them.
9072 	 *
9073 	 * This lets us mark the pageblocks back as
9074 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9075 	 * aligned range but not in the unaligned, original range are
9076 	 * put back to page allocator so that buddy can use them.
9077 	 */
9078 
9079 	ret = start_isolate_page_range(pfn_max_align_down(start),
9080 				       pfn_max_align_up(end), migratetype, 0);
9081 	if (ret)
9082 		return ret;
9083 
9084 	drain_all_pages(cc.zone);
9085 
9086 	/*
9087 	 * In case of -EBUSY, we'd like to know which page causes problem.
9088 	 * So, just fall through. test_pages_isolated() has a tracepoint
9089 	 * which will report the busy page.
9090 	 *
9091 	 * It is possible that busy pages could become available before
9092 	 * the call to test_pages_isolated, and the range will actually be
9093 	 * allocated.  So, if we fall through be sure to clear ret so that
9094 	 * -EBUSY is not accidentally used or returned to caller.
9095 	 */
9096 	ret = __alloc_contig_migrate_range(&cc, start, end);
9097 	if (ret && ret != -EBUSY)
9098 		goto done;
9099 	ret = 0;
9100 
9101 	/*
9102 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9103 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9104 	 * more, all pages in [start, end) are free in page allocator.
9105 	 * What we are going to do is to allocate all pages from
9106 	 * [start, end) (that is remove them from page allocator).
9107 	 *
9108 	 * The only problem is that pages at the beginning and at the
9109 	 * end of interesting range may be not aligned with pages that
9110 	 * page allocator holds, ie. they can be part of higher order
9111 	 * pages.  Because of this, we reserve the bigger range and
9112 	 * once this is done free the pages we are not interested in.
9113 	 *
9114 	 * We don't have to hold zone->lock here because the pages are
9115 	 * isolated thus they won't get removed from buddy.
9116 	 */
9117 
9118 	order = 0;
9119 	outer_start = start;
9120 	while (!PageBuddy(pfn_to_page(outer_start))) {
9121 		if (++order >= MAX_ORDER) {
9122 			outer_start = start;
9123 			break;
9124 		}
9125 		outer_start &= ~0UL << order;
9126 	}
9127 
9128 	if (outer_start != start) {
9129 		order = buddy_order(pfn_to_page(outer_start));
9130 
9131 		/*
9132 		 * outer_start page could be small order buddy page and
9133 		 * it doesn't include start page. Adjust outer_start
9134 		 * in this case to report failed page properly
9135 		 * on tracepoint in test_pages_isolated()
9136 		 */
9137 		if (outer_start + (1UL << order) <= start)
9138 			outer_start = start;
9139 	}
9140 
9141 	/* Make sure the range is really isolated. */
9142 	if (test_pages_isolated(outer_start, end, 0)) {
9143 		ret = -EBUSY;
9144 		goto done;
9145 	}
9146 
9147 	/* Grab isolated pages from freelists. */
9148 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9149 	if (!outer_end) {
9150 		ret = -EBUSY;
9151 		goto done;
9152 	}
9153 
9154 	/* Free head and tail (if any) */
9155 	if (start != outer_start)
9156 		free_contig_range(outer_start, start - outer_start);
9157 	if (end != outer_end)
9158 		free_contig_range(end, outer_end - end);
9159 
9160 done:
9161 	undo_isolate_page_range(pfn_max_align_down(start),
9162 				pfn_max_align_up(end), migratetype);
9163 	return ret;
9164 }
9165 EXPORT_SYMBOL(alloc_contig_range);
9166 
9167 static int __alloc_contig_pages(unsigned long start_pfn,
9168 				unsigned long nr_pages, gfp_t gfp_mask)
9169 {
9170 	unsigned long end_pfn = start_pfn + nr_pages;
9171 
9172 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9173 				  gfp_mask);
9174 }
9175 
9176 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9177 				   unsigned long nr_pages)
9178 {
9179 	unsigned long i, end_pfn = start_pfn + nr_pages;
9180 	struct page *page;
9181 
9182 	for (i = start_pfn; i < end_pfn; i++) {
9183 		page = pfn_to_online_page(i);
9184 		if (!page)
9185 			return false;
9186 
9187 		if (page_zone(page) != z)
9188 			return false;
9189 
9190 		if (PageReserved(page))
9191 			return false;
9192 	}
9193 	return true;
9194 }
9195 
9196 static bool zone_spans_last_pfn(const struct zone *zone,
9197 				unsigned long start_pfn, unsigned long nr_pages)
9198 {
9199 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9200 
9201 	return zone_spans_pfn(zone, last_pfn);
9202 }
9203 
9204 /**
9205  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9206  * @nr_pages:	Number of contiguous pages to allocate
9207  * @gfp_mask:	GFP mask to limit search and used during compaction
9208  * @nid:	Target node
9209  * @nodemask:	Mask for other possible nodes
9210  *
9211  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9212  * on an applicable zonelist to find a contiguous pfn range which can then be
9213  * tried for allocation with alloc_contig_range(). This routine is intended
9214  * for allocation requests which can not be fulfilled with the buddy allocator.
9215  *
9216  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9217  * power of two then the alignment is guaranteed to be to the given nr_pages
9218  * (e.g. 1GB request would be aligned to 1GB).
9219  *
9220  * Allocated pages can be freed with free_contig_range() or by manually calling
9221  * __free_page() on each allocated page.
9222  *
9223  * Return: pointer to contiguous pages on success, or NULL if not successful.
9224  */
9225 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9226 				int nid, nodemask_t *nodemask)
9227 {
9228 	unsigned long ret, pfn, flags;
9229 	struct zonelist *zonelist;
9230 	struct zone *zone;
9231 	struct zoneref *z;
9232 
9233 	zonelist = node_zonelist(nid, gfp_mask);
9234 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9235 					gfp_zone(gfp_mask), nodemask) {
9236 		spin_lock_irqsave(&zone->lock, flags);
9237 
9238 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9239 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9240 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9241 				/*
9242 				 * We release the zone lock here because
9243 				 * alloc_contig_range() will also lock the zone
9244 				 * at some point. If there's an allocation
9245 				 * spinning on this lock, it may win the race
9246 				 * and cause alloc_contig_range() to fail...
9247 				 */
9248 				spin_unlock_irqrestore(&zone->lock, flags);
9249 				ret = __alloc_contig_pages(pfn, nr_pages,
9250 							gfp_mask);
9251 				if (!ret)
9252 					return pfn_to_page(pfn);
9253 				spin_lock_irqsave(&zone->lock, flags);
9254 			}
9255 			pfn += nr_pages;
9256 		}
9257 		spin_unlock_irqrestore(&zone->lock, flags);
9258 	}
9259 	return NULL;
9260 }
9261 #endif /* CONFIG_CONTIG_ALLOC */
9262 
9263 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9264 {
9265 	unsigned long count = 0;
9266 
9267 	for (; nr_pages--; pfn++) {
9268 		struct page *page = pfn_to_page(pfn);
9269 
9270 		count += page_count(page) != 1;
9271 		__free_page(page);
9272 	}
9273 	WARN(count != 0, "%lu pages are still in use!\n", count);
9274 }
9275 EXPORT_SYMBOL(free_contig_range);
9276 
9277 /*
9278  * The zone indicated has a new number of managed_pages; batch sizes and percpu
9279  * page high values need to be recalculated.
9280  */
9281 void zone_pcp_update(struct zone *zone, int cpu_online)
9282 {
9283 	mutex_lock(&pcp_batch_high_lock);
9284 	zone_set_pageset_high_and_batch(zone, cpu_online);
9285 	mutex_unlock(&pcp_batch_high_lock);
9286 }
9287 
9288 /*
9289  * Effectively disable pcplists for the zone by setting the high limit to 0
9290  * and draining all cpus. A concurrent page freeing on another CPU that's about
9291  * to put the page on pcplist will either finish before the drain and the page
9292  * will be drained, or observe the new high limit and skip the pcplist.
9293  *
9294  * Must be paired with a call to zone_pcp_enable().
9295  */
9296 void zone_pcp_disable(struct zone *zone)
9297 {
9298 	mutex_lock(&pcp_batch_high_lock);
9299 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9300 	__drain_all_pages(zone, true);
9301 }
9302 
9303 void zone_pcp_enable(struct zone *zone)
9304 {
9305 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9306 	mutex_unlock(&pcp_batch_high_lock);
9307 }
9308 
9309 void zone_pcp_reset(struct zone *zone)
9310 {
9311 	int cpu;
9312 	struct per_cpu_zonestat *pzstats;
9313 
9314 	if (zone->per_cpu_pageset != &boot_pageset) {
9315 		for_each_online_cpu(cpu) {
9316 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9317 			drain_zonestat(zone, pzstats);
9318 		}
9319 		free_percpu(zone->per_cpu_pageset);
9320 		free_percpu(zone->per_cpu_zonestats);
9321 		zone->per_cpu_pageset = &boot_pageset;
9322 		zone->per_cpu_zonestats = &boot_zonestats;
9323 	}
9324 }
9325 
9326 #ifdef CONFIG_MEMORY_HOTREMOVE
9327 /*
9328  * All pages in the range must be in a single zone, must not contain holes,
9329  * must span full sections, and must be isolated before calling this function.
9330  */
9331 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9332 {
9333 	unsigned long pfn = start_pfn;
9334 	struct page *page;
9335 	struct zone *zone;
9336 	unsigned int order;
9337 	unsigned long flags;
9338 
9339 	offline_mem_sections(pfn, end_pfn);
9340 	zone = page_zone(pfn_to_page(pfn));
9341 	spin_lock_irqsave(&zone->lock, flags);
9342 	while (pfn < end_pfn) {
9343 		page = pfn_to_page(pfn);
9344 		/*
9345 		 * The HWPoisoned page may be not in buddy system, and
9346 		 * page_count() is not 0.
9347 		 */
9348 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9349 			pfn++;
9350 			continue;
9351 		}
9352 		/*
9353 		 * At this point all remaining PageOffline() pages have a
9354 		 * reference count of 0 and can simply be skipped.
9355 		 */
9356 		if (PageOffline(page)) {
9357 			BUG_ON(page_count(page));
9358 			BUG_ON(PageBuddy(page));
9359 			pfn++;
9360 			continue;
9361 		}
9362 
9363 		BUG_ON(page_count(page));
9364 		BUG_ON(!PageBuddy(page));
9365 		order = buddy_order(page);
9366 		del_page_from_free_list(page, zone, order);
9367 		pfn += (1 << order);
9368 	}
9369 	spin_unlock_irqrestore(&zone->lock, flags);
9370 }
9371 #endif
9372 
9373 /*
9374  * This function returns a stable result only if called under zone lock.
9375  */
9376 bool is_free_buddy_page(struct page *page)
9377 {
9378 	unsigned long pfn = page_to_pfn(page);
9379 	unsigned int order;
9380 
9381 	for (order = 0; order < MAX_ORDER; order++) {
9382 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9383 
9384 		if (PageBuddy(page_head) &&
9385 		    buddy_order_unsafe(page_head) >= order)
9386 			break;
9387 	}
9388 
9389 	return order < MAX_ORDER;
9390 }
9391 
9392 #ifdef CONFIG_MEMORY_FAILURE
9393 /*
9394  * Break down a higher-order page in sub-pages, and keep our target out of
9395  * buddy allocator.
9396  */
9397 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9398 				   struct page *target, int low, int high,
9399 				   int migratetype)
9400 {
9401 	unsigned long size = 1 << high;
9402 	struct page *current_buddy, *next_page;
9403 
9404 	while (high > low) {
9405 		high--;
9406 		size >>= 1;
9407 
9408 		if (target >= &page[size]) {
9409 			next_page = page + size;
9410 			current_buddy = page;
9411 		} else {
9412 			next_page = page;
9413 			current_buddy = page + size;
9414 		}
9415 
9416 		if (set_page_guard(zone, current_buddy, high, migratetype))
9417 			continue;
9418 
9419 		if (current_buddy != target) {
9420 			add_to_free_list(current_buddy, zone, high, migratetype);
9421 			set_buddy_order(current_buddy, high);
9422 			page = next_page;
9423 		}
9424 	}
9425 }
9426 
9427 /*
9428  * Take a page that will be marked as poisoned off the buddy allocator.
9429  */
9430 bool take_page_off_buddy(struct page *page)
9431 {
9432 	struct zone *zone = page_zone(page);
9433 	unsigned long pfn = page_to_pfn(page);
9434 	unsigned long flags;
9435 	unsigned int order;
9436 	bool ret = false;
9437 
9438 	spin_lock_irqsave(&zone->lock, flags);
9439 	for (order = 0; order < MAX_ORDER; order++) {
9440 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9441 		int page_order = buddy_order(page_head);
9442 
9443 		if (PageBuddy(page_head) && page_order >= order) {
9444 			unsigned long pfn_head = page_to_pfn(page_head);
9445 			int migratetype = get_pfnblock_migratetype(page_head,
9446 								   pfn_head);
9447 
9448 			del_page_from_free_list(page_head, zone, page_order);
9449 			break_down_buddy_pages(zone, page_head, page, 0,
9450 						page_order, migratetype);
9451 			if (!is_migrate_isolate(migratetype))
9452 				__mod_zone_freepage_state(zone, -1, migratetype);
9453 			ret = true;
9454 			break;
9455 		}
9456 		if (page_count(page_head) > 0)
9457 			break;
9458 	}
9459 	spin_unlock_irqrestore(&zone->lock, flags);
9460 	return ret;
9461 }
9462 #endif
9463