xref: /openbmc/linux/mm/page_alloc.c (revision bf74b964)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
44 
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
47 #include "internal.h"
48 
49 /*
50  * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51  * initializer cleaner
52  */
53 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54 EXPORT_SYMBOL(node_online_map);
55 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56 EXPORT_SYMBOL(node_possible_map);
57 unsigned long totalram_pages __read_mostly;
58 unsigned long totalreserve_pages __read_mostly;
59 long nr_swap_pages;
60 int percpu_pagelist_fraction;
61 
62 static void __free_pages_ok(struct page *page, unsigned int order);
63 
64 /*
65  * results with 256, 32 in the lowmem_reserve sysctl:
66  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67  *	1G machine -> (16M dma, 784M normal, 224M high)
68  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
71  *
72  * TBD: should special case ZONE_DMA32 machines here - in those we normally
73  * don't need any ZONE_NORMAL reservation
74  */
75 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76 #ifdef CONFIG_ZONE_DMA
77 	 256,
78 #endif
79 #ifdef CONFIG_ZONE_DMA32
80 	 256,
81 #endif
82 #ifdef CONFIG_HIGHMEM
83 	 32
84 #endif
85 };
86 
87 EXPORT_SYMBOL(totalram_pages);
88 
89 static char * const zone_names[MAX_NR_ZONES] = {
90 #ifdef CONFIG_ZONE_DMA
91 	 "DMA",
92 #endif
93 #ifdef CONFIG_ZONE_DMA32
94 	 "DMA32",
95 #endif
96 	 "Normal",
97 #ifdef CONFIG_HIGHMEM
98 	 "HighMem"
99 #endif
100 };
101 
102 int min_free_kbytes = 1024;
103 
104 unsigned long __meminitdata nr_kernel_pages;
105 unsigned long __meminitdata nr_all_pages;
106 static unsigned long __meminitdata dma_reserve;
107 
108 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
109   /*
110    * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
111    * ranges of memory (RAM) that may be registered with add_active_range().
112    * Ranges passed to add_active_range() will be merged if possible
113    * so the number of times add_active_range() can be called is
114    * related to the number of nodes and the number of holes
115    */
116   #ifdef CONFIG_MAX_ACTIVE_REGIONS
117     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
118     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
119   #else
120     #if MAX_NUMNODES >= 32
121       /* If there can be many nodes, allow up to 50 holes per node */
122       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
123     #else
124       /* By default, allow up to 256 distinct regions */
125       #define MAX_ACTIVE_REGIONS 256
126     #endif
127   #endif
128 
129   struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
130   int __meminitdata nr_nodemap_entries;
131   unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
132   unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
133 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
134   unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
135   unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
136 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
137 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
138 
139 #if MAX_NUMNODES > 1
140 int nr_node_ids __read_mostly = MAX_NUMNODES;
141 EXPORT_SYMBOL(nr_node_ids);
142 #endif
143 
144 #ifdef CONFIG_DEBUG_VM
145 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
146 {
147 	int ret = 0;
148 	unsigned seq;
149 	unsigned long pfn = page_to_pfn(page);
150 
151 	do {
152 		seq = zone_span_seqbegin(zone);
153 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
154 			ret = 1;
155 		else if (pfn < zone->zone_start_pfn)
156 			ret = 1;
157 	} while (zone_span_seqretry(zone, seq));
158 
159 	return ret;
160 }
161 
162 static int page_is_consistent(struct zone *zone, struct page *page)
163 {
164 	if (!pfn_valid_within(page_to_pfn(page)))
165 		return 0;
166 	if (zone != page_zone(page))
167 		return 0;
168 
169 	return 1;
170 }
171 /*
172  * Temporary debugging check for pages not lying within a given zone.
173  */
174 static int bad_range(struct zone *zone, struct page *page)
175 {
176 	if (page_outside_zone_boundaries(zone, page))
177 		return 1;
178 	if (!page_is_consistent(zone, page))
179 		return 1;
180 
181 	return 0;
182 }
183 #else
184 static inline int bad_range(struct zone *zone, struct page *page)
185 {
186 	return 0;
187 }
188 #endif
189 
190 static void bad_page(struct page *page)
191 {
192 	printk(KERN_EMERG "Bad page state in process '%s'\n"
193 		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
194 		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
195 		KERN_EMERG "Backtrace:\n",
196 		current->comm, page, (int)(2*sizeof(unsigned long)),
197 		(unsigned long)page->flags, page->mapping,
198 		page_mapcount(page), page_count(page));
199 	dump_stack();
200 	page->flags &= ~(1 << PG_lru	|
201 			1 << PG_private |
202 			1 << PG_locked	|
203 			1 << PG_active	|
204 			1 << PG_dirty	|
205 			1 << PG_reclaim |
206 			1 << PG_slab    |
207 			1 << PG_swapcache |
208 			1 << PG_writeback |
209 			1 << PG_buddy );
210 	set_page_count(page, 0);
211 	reset_page_mapcount(page);
212 	page->mapping = NULL;
213 	add_taint(TAINT_BAD_PAGE);
214 }
215 
216 /*
217  * Higher-order pages are called "compound pages".  They are structured thusly:
218  *
219  * The first PAGE_SIZE page is called the "head page".
220  *
221  * The remaining PAGE_SIZE pages are called "tail pages".
222  *
223  * All pages have PG_compound set.  All pages have their ->private pointing at
224  * the head page (even the head page has this).
225  *
226  * The first tail page's ->lru.next holds the address of the compound page's
227  * put_page() function.  Its ->lru.prev holds the order of allocation.
228  * This usage means that zero-order pages may not be compound.
229  */
230 
231 static void free_compound_page(struct page *page)
232 {
233 	__free_pages_ok(page, compound_order(page));
234 }
235 
236 static void prep_compound_page(struct page *page, unsigned long order)
237 {
238 	int i;
239 	int nr_pages = 1 << order;
240 
241 	set_compound_page_dtor(page, free_compound_page);
242 	set_compound_order(page, order);
243 	__SetPageHead(page);
244 	for (i = 1; i < nr_pages; i++) {
245 		struct page *p = page + i;
246 
247 		__SetPageTail(p);
248 		p->first_page = page;
249 	}
250 }
251 
252 static void destroy_compound_page(struct page *page, unsigned long order)
253 {
254 	int i;
255 	int nr_pages = 1 << order;
256 
257 	if (unlikely(compound_order(page) != order))
258 		bad_page(page);
259 
260 	if (unlikely(!PageHead(page)))
261 			bad_page(page);
262 	__ClearPageHead(page);
263 	for (i = 1; i < nr_pages; i++) {
264 		struct page *p = page + i;
265 
266 		if (unlikely(!PageTail(p) |
267 				(p->first_page != page)))
268 			bad_page(page);
269 		__ClearPageTail(p);
270 	}
271 }
272 
273 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
274 {
275 	int i;
276 
277 	VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
278 	/*
279 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
280 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
281 	 */
282 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
283 	for (i = 0; i < (1 << order); i++)
284 		clear_highpage(page + i);
285 }
286 
287 /*
288  * function for dealing with page's order in buddy system.
289  * zone->lock is already acquired when we use these.
290  * So, we don't need atomic page->flags operations here.
291  */
292 static inline unsigned long page_order(struct page *page)
293 {
294 	return page_private(page);
295 }
296 
297 static inline void set_page_order(struct page *page, int order)
298 {
299 	set_page_private(page, order);
300 	__SetPageBuddy(page);
301 }
302 
303 static inline void rmv_page_order(struct page *page)
304 {
305 	__ClearPageBuddy(page);
306 	set_page_private(page, 0);
307 }
308 
309 /*
310  * Locate the struct page for both the matching buddy in our
311  * pair (buddy1) and the combined O(n+1) page they form (page).
312  *
313  * 1) Any buddy B1 will have an order O twin B2 which satisfies
314  * the following equation:
315  *     B2 = B1 ^ (1 << O)
316  * For example, if the starting buddy (buddy2) is #8 its order
317  * 1 buddy is #10:
318  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
319  *
320  * 2) Any buddy B will have an order O+1 parent P which
321  * satisfies the following equation:
322  *     P = B & ~(1 << O)
323  *
324  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
325  */
326 static inline struct page *
327 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
328 {
329 	unsigned long buddy_idx = page_idx ^ (1 << order);
330 
331 	return page + (buddy_idx - page_idx);
332 }
333 
334 static inline unsigned long
335 __find_combined_index(unsigned long page_idx, unsigned int order)
336 {
337 	return (page_idx & ~(1 << order));
338 }
339 
340 /*
341  * This function checks whether a page is free && is the buddy
342  * we can do coalesce a page and its buddy if
343  * (a) the buddy is not in a hole &&
344  * (b) the buddy is in the buddy system &&
345  * (c) a page and its buddy have the same order &&
346  * (d) a page and its buddy are in the same zone.
347  *
348  * For recording whether a page is in the buddy system, we use PG_buddy.
349  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
350  *
351  * For recording page's order, we use page_private(page).
352  */
353 static inline int page_is_buddy(struct page *page, struct page *buddy,
354 								int order)
355 {
356 	if (!pfn_valid_within(page_to_pfn(buddy)))
357 		return 0;
358 
359 	if (page_zone_id(page) != page_zone_id(buddy))
360 		return 0;
361 
362 	if (PageBuddy(buddy) && page_order(buddy) == order) {
363 		BUG_ON(page_count(buddy) != 0);
364 		return 1;
365 	}
366 	return 0;
367 }
368 
369 /*
370  * Freeing function for a buddy system allocator.
371  *
372  * The concept of a buddy system is to maintain direct-mapped table
373  * (containing bit values) for memory blocks of various "orders".
374  * The bottom level table contains the map for the smallest allocatable
375  * units of memory (here, pages), and each level above it describes
376  * pairs of units from the levels below, hence, "buddies".
377  * At a high level, all that happens here is marking the table entry
378  * at the bottom level available, and propagating the changes upward
379  * as necessary, plus some accounting needed to play nicely with other
380  * parts of the VM system.
381  * At each level, we keep a list of pages, which are heads of continuous
382  * free pages of length of (1 << order) and marked with PG_buddy. Page's
383  * order is recorded in page_private(page) field.
384  * So when we are allocating or freeing one, we can derive the state of the
385  * other.  That is, if we allocate a small block, and both were
386  * free, the remainder of the region must be split into blocks.
387  * If a block is freed, and its buddy is also free, then this
388  * triggers coalescing into a block of larger size.
389  *
390  * -- wli
391  */
392 
393 static inline void __free_one_page(struct page *page,
394 		struct zone *zone, unsigned int order)
395 {
396 	unsigned long page_idx;
397 	int order_size = 1 << order;
398 
399 	if (unlikely(PageCompound(page)))
400 		destroy_compound_page(page, order);
401 
402 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
403 
404 	VM_BUG_ON(page_idx & (order_size - 1));
405 	VM_BUG_ON(bad_range(zone, page));
406 
407 	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
408 	while (order < MAX_ORDER-1) {
409 		unsigned long combined_idx;
410 		struct free_area *area;
411 		struct page *buddy;
412 
413 		buddy = __page_find_buddy(page, page_idx, order);
414 		if (!page_is_buddy(page, buddy, order))
415 			break;		/* Move the buddy up one level. */
416 
417 		list_del(&buddy->lru);
418 		area = zone->free_area + order;
419 		area->nr_free--;
420 		rmv_page_order(buddy);
421 		combined_idx = __find_combined_index(page_idx, order);
422 		page = page + (combined_idx - page_idx);
423 		page_idx = combined_idx;
424 		order++;
425 	}
426 	set_page_order(page, order);
427 	list_add(&page->lru, &zone->free_area[order].free_list);
428 	zone->free_area[order].nr_free++;
429 }
430 
431 static inline int free_pages_check(struct page *page)
432 {
433 	if (unlikely(page_mapcount(page) |
434 		(page->mapping != NULL)  |
435 		(page_count(page) != 0)  |
436 		(page->flags & (
437 			1 << PG_lru	|
438 			1 << PG_private |
439 			1 << PG_locked	|
440 			1 << PG_active	|
441 			1 << PG_slab	|
442 			1 << PG_swapcache |
443 			1 << PG_writeback |
444 			1 << PG_reserved |
445 			1 << PG_buddy ))))
446 		bad_page(page);
447 	/*
448 	 * PageReclaim == PageTail. It is only an error
449 	 * for PageReclaim to be set if PageCompound is clear.
450 	 */
451 	if (unlikely(!PageCompound(page) && PageReclaim(page)))
452 		bad_page(page);
453 	if (PageDirty(page))
454 		__ClearPageDirty(page);
455 	/*
456 	 * For now, we report if PG_reserved was found set, but do not
457 	 * clear it, and do not free the page.  But we shall soon need
458 	 * to do more, for when the ZERO_PAGE count wraps negative.
459 	 */
460 	return PageReserved(page);
461 }
462 
463 /*
464  * Frees a list of pages.
465  * Assumes all pages on list are in same zone, and of same order.
466  * count is the number of pages to free.
467  *
468  * If the zone was previously in an "all pages pinned" state then look to
469  * see if this freeing clears that state.
470  *
471  * And clear the zone's pages_scanned counter, to hold off the "all pages are
472  * pinned" detection logic.
473  */
474 static void free_pages_bulk(struct zone *zone, int count,
475 					struct list_head *list, int order)
476 {
477 	spin_lock(&zone->lock);
478 	zone->all_unreclaimable = 0;
479 	zone->pages_scanned = 0;
480 	while (count--) {
481 		struct page *page;
482 
483 		VM_BUG_ON(list_empty(list));
484 		page = list_entry(list->prev, struct page, lru);
485 		/* have to delete it as __free_one_page list manipulates */
486 		list_del(&page->lru);
487 		__free_one_page(page, zone, order);
488 	}
489 	spin_unlock(&zone->lock);
490 }
491 
492 static void free_one_page(struct zone *zone, struct page *page, int order)
493 {
494 	spin_lock(&zone->lock);
495 	zone->all_unreclaimable = 0;
496 	zone->pages_scanned = 0;
497 	__free_one_page(page, zone, order);
498 	spin_unlock(&zone->lock);
499 }
500 
501 static void __free_pages_ok(struct page *page, unsigned int order)
502 {
503 	unsigned long flags;
504 	int i;
505 	int reserved = 0;
506 
507 	for (i = 0 ; i < (1 << order) ; ++i)
508 		reserved += free_pages_check(page + i);
509 	if (reserved)
510 		return;
511 
512 	if (!PageHighMem(page))
513 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
514 	arch_free_page(page, order);
515 	kernel_map_pages(page, 1 << order, 0);
516 
517 	local_irq_save(flags);
518 	__count_vm_events(PGFREE, 1 << order);
519 	free_one_page(page_zone(page), page, order);
520 	local_irq_restore(flags);
521 }
522 
523 /*
524  * permit the bootmem allocator to evade page validation on high-order frees
525  */
526 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
527 {
528 	if (order == 0) {
529 		__ClearPageReserved(page);
530 		set_page_count(page, 0);
531 		set_page_refcounted(page);
532 		__free_page(page);
533 	} else {
534 		int loop;
535 
536 		prefetchw(page);
537 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
538 			struct page *p = &page[loop];
539 
540 			if (loop + 1 < BITS_PER_LONG)
541 				prefetchw(p + 1);
542 			__ClearPageReserved(p);
543 			set_page_count(p, 0);
544 		}
545 
546 		set_page_refcounted(page);
547 		__free_pages(page, order);
548 	}
549 }
550 
551 
552 /*
553  * The order of subdivision here is critical for the IO subsystem.
554  * Please do not alter this order without good reasons and regression
555  * testing. Specifically, as large blocks of memory are subdivided,
556  * the order in which smaller blocks are delivered depends on the order
557  * they're subdivided in this function. This is the primary factor
558  * influencing the order in which pages are delivered to the IO
559  * subsystem according to empirical testing, and this is also justified
560  * by considering the behavior of a buddy system containing a single
561  * large block of memory acted on by a series of small allocations.
562  * This behavior is a critical factor in sglist merging's success.
563  *
564  * -- wli
565  */
566 static inline void expand(struct zone *zone, struct page *page,
567  	int low, int high, struct free_area *area)
568 {
569 	unsigned long size = 1 << high;
570 
571 	while (high > low) {
572 		area--;
573 		high--;
574 		size >>= 1;
575 		VM_BUG_ON(bad_range(zone, &page[size]));
576 		list_add(&page[size].lru, &area->free_list);
577 		area->nr_free++;
578 		set_page_order(&page[size], high);
579 	}
580 }
581 
582 /*
583  * This page is about to be returned from the page allocator
584  */
585 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
586 {
587 	if (unlikely(page_mapcount(page) |
588 		(page->mapping != NULL)  |
589 		(page_count(page) != 0)  |
590 		(page->flags & (
591 			1 << PG_lru	|
592 			1 << PG_private	|
593 			1 << PG_locked	|
594 			1 << PG_active	|
595 			1 << PG_dirty	|
596 			1 << PG_reclaim	|
597 			1 << PG_slab    |
598 			1 << PG_swapcache |
599 			1 << PG_writeback |
600 			1 << PG_reserved |
601 			1 << PG_buddy ))))
602 		bad_page(page);
603 
604 	/*
605 	 * For now, we report if PG_reserved was found set, but do not
606 	 * clear it, and do not allocate the page: as a safety net.
607 	 */
608 	if (PageReserved(page))
609 		return 1;
610 
611 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
612 			1 << PG_referenced | 1 << PG_arch_1 |
613 			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
614 	set_page_private(page, 0);
615 	set_page_refcounted(page);
616 
617 	arch_alloc_page(page, order);
618 	kernel_map_pages(page, 1 << order, 1);
619 
620 	if (gfp_flags & __GFP_ZERO)
621 		prep_zero_page(page, order, gfp_flags);
622 
623 	if (order && (gfp_flags & __GFP_COMP))
624 		prep_compound_page(page, order);
625 
626 	return 0;
627 }
628 
629 /*
630  * Do the hard work of removing an element from the buddy allocator.
631  * Call me with the zone->lock already held.
632  */
633 static struct page *__rmqueue(struct zone *zone, unsigned int order)
634 {
635 	struct free_area * area;
636 	unsigned int current_order;
637 	struct page *page;
638 
639 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
640 		area = zone->free_area + current_order;
641 		if (list_empty(&area->free_list))
642 			continue;
643 
644 		page = list_entry(area->free_list.next, struct page, lru);
645 		list_del(&page->lru);
646 		rmv_page_order(page);
647 		area->nr_free--;
648 		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
649 		expand(zone, page, order, current_order, area);
650 		return page;
651 	}
652 
653 	return NULL;
654 }
655 
656 /*
657  * Obtain a specified number of elements from the buddy allocator, all under
658  * a single hold of the lock, for efficiency.  Add them to the supplied list.
659  * Returns the number of new pages which were placed at *list.
660  */
661 static int rmqueue_bulk(struct zone *zone, unsigned int order,
662 			unsigned long count, struct list_head *list)
663 {
664 	int i;
665 
666 	spin_lock(&zone->lock);
667 	for (i = 0; i < count; ++i) {
668 		struct page *page = __rmqueue(zone, order);
669 		if (unlikely(page == NULL))
670 			break;
671 		list_add_tail(&page->lru, list);
672 	}
673 	spin_unlock(&zone->lock);
674 	return i;
675 }
676 
677 #ifdef CONFIG_NUMA
678 /*
679  * Called from the vmstat counter updater to drain pagesets of this
680  * currently executing processor on remote nodes after they have
681  * expired.
682  *
683  * Note that this function must be called with the thread pinned to
684  * a single processor.
685  */
686 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
687 {
688 	unsigned long flags;
689 	int to_drain;
690 
691 	local_irq_save(flags);
692 	if (pcp->count >= pcp->batch)
693 		to_drain = pcp->batch;
694 	else
695 		to_drain = pcp->count;
696 	free_pages_bulk(zone, to_drain, &pcp->list, 0);
697 	pcp->count -= to_drain;
698 	local_irq_restore(flags);
699 }
700 #endif
701 
702 static void __drain_pages(unsigned int cpu)
703 {
704 	unsigned long flags;
705 	struct zone *zone;
706 	int i;
707 
708 	for_each_zone(zone) {
709 		struct per_cpu_pageset *pset;
710 
711 		if (!populated_zone(zone))
712 			continue;
713 
714 		pset = zone_pcp(zone, cpu);
715 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
716 			struct per_cpu_pages *pcp;
717 
718 			pcp = &pset->pcp[i];
719 			local_irq_save(flags);
720 			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
721 			pcp->count = 0;
722 			local_irq_restore(flags);
723 		}
724 	}
725 }
726 
727 #ifdef CONFIG_PM
728 
729 void mark_free_pages(struct zone *zone)
730 {
731 	unsigned long pfn, max_zone_pfn;
732 	unsigned long flags;
733 	int order;
734 	struct list_head *curr;
735 
736 	if (!zone->spanned_pages)
737 		return;
738 
739 	spin_lock_irqsave(&zone->lock, flags);
740 
741 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
742 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
743 		if (pfn_valid(pfn)) {
744 			struct page *page = pfn_to_page(pfn);
745 
746 			if (!swsusp_page_is_forbidden(page))
747 				swsusp_unset_page_free(page);
748 		}
749 
750 	for (order = MAX_ORDER - 1; order >= 0; --order)
751 		list_for_each(curr, &zone->free_area[order].free_list) {
752 			unsigned long i;
753 
754 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
755 			for (i = 0; i < (1UL << order); i++)
756 				swsusp_set_page_free(pfn_to_page(pfn + i));
757 		}
758 
759 	spin_unlock_irqrestore(&zone->lock, flags);
760 }
761 
762 /*
763  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
764  */
765 void drain_local_pages(void)
766 {
767 	unsigned long flags;
768 
769 	local_irq_save(flags);
770 	__drain_pages(smp_processor_id());
771 	local_irq_restore(flags);
772 }
773 #endif /* CONFIG_PM */
774 
775 /*
776  * Free a 0-order page
777  */
778 static void fastcall free_hot_cold_page(struct page *page, int cold)
779 {
780 	struct zone *zone = page_zone(page);
781 	struct per_cpu_pages *pcp;
782 	unsigned long flags;
783 
784 	if (PageAnon(page))
785 		page->mapping = NULL;
786 	if (free_pages_check(page))
787 		return;
788 
789 	if (!PageHighMem(page))
790 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
791 	arch_free_page(page, 0);
792 	kernel_map_pages(page, 1, 0);
793 
794 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
795 	local_irq_save(flags);
796 	__count_vm_event(PGFREE);
797 	list_add(&page->lru, &pcp->list);
798 	pcp->count++;
799 	if (pcp->count >= pcp->high) {
800 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
801 		pcp->count -= pcp->batch;
802 	}
803 	local_irq_restore(flags);
804 	put_cpu();
805 }
806 
807 void fastcall free_hot_page(struct page *page)
808 {
809 	free_hot_cold_page(page, 0);
810 }
811 
812 void fastcall free_cold_page(struct page *page)
813 {
814 	free_hot_cold_page(page, 1);
815 }
816 
817 /*
818  * split_page takes a non-compound higher-order page, and splits it into
819  * n (1<<order) sub-pages: page[0..n]
820  * Each sub-page must be freed individually.
821  *
822  * Note: this is probably too low level an operation for use in drivers.
823  * Please consult with lkml before using this in your driver.
824  */
825 void split_page(struct page *page, unsigned int order)
826 {
827 	int i;
828 
829 	VM_BUG_ON(PageCompound(page));
830 	VM_BUG_ON(!page_count(page));
831 	for (i = 1; i < (1 << order); i++)
832 		set_page_refcounted(page + i);
833 }
834 
835 /*
836  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
837  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
838  * or two.
839  */
840 static struct page *buffered_rmqueue(struct zonelist *zonelist,
841 			struct zone *zone, int order, gfp_t gfp_flags)
842 {
843 	unsigned long flags;
844 	struct page *page;
845 	int cold = !!(gfp_flags & __GFP_COLD);
846 	int cpu;
847 
848 again:
849 	cpu  = get_cpu();
850 	if (likely(order == 0)) {
851 		struct per_cpu_pages *pcp;
852 
853 		pcp = &zone_pcp(zone, cpu)->pcp[cold];
854 		local_irq_save(flags);
855 		if (!pcp->count) {
856 			pcp->count = rmqueue_bulk(zone, 0,
857 						pcp->batch, &pcp->list);
858 			if (unlikely(!pcp->count))
859 				goto failed;
860 		}
861 		page = list_entry(pcp->list.next, struct page, lru);
862 		list_del(&page->lru);
863 		pcp->count--;
864 	} else {
865 		spin_lock_irqsave(&zone->lock, flags);
866 		page = __rmqueue(zone, order);
867 		spin_unlock(&zone->lock);
868 		if (!page)
869 			goto failed;
870 	}
871 
872 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
873 	zone_statistics(zonelist, zone);
874 	local_irq_restore(flags);
875 	put_cpu();
876 
877 	VM_BUG_ON(bad_range(zone, page));
878 	if (prep_new_page(page, order, gfp_flags))
879 		goto again;
880 	return page;
881 
882 failed:
883 	local_irq_restore(flags);
884 	put_cpu();
885 	return NULL;
886 }
887 
888 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
889 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
890 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
891 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
892 #define ALLOC_HARDER		0x10 /* try to alloc harder */
893 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
894 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
895 
896 #ifdef CONFIG_FAIL_PAGE_ALLOC
897 
898 static struct fail_page_alloc_attr {
899 	struct fault_attr attr;
900 
901 	u32 ignore_gfp_highmem;
902 	u32 ignore_gfp_wait;
903 
904 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
905 
906 	struct dentry *ignore_gfp_highmem_file;
907 	struct dentry *ignore_gfp_wait_file;
908 
909 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
910 
911 } fail_page_alloc = {
912 	.attr = FAULT_ATTR_INITIALIZER,
913 	.ignore_gfp_wait = 1,
914 	.ignore_gfp_highmem = 1,
915 };
916 
917 static int __init setup_fail_page_alloc(char *str)
918 {
919 	return setup_fault_attr(&fail_page_alloc.attr, str);
920 }
921 __setup("fail_page_alloc=", setup_fail_page_alloc);
922 
923 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
924 {
925 	if (gfp_mask & __GFP_NOFAIL)
926 		return 0;
927 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
928 		return 0;
929 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
930 		return 0;
931 
932 	return should_fail(&fail_page_alloc.attr, 1 << order);
933 }
934 
935 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
936 
937 static int __init fail_page_alloc_debugfs(void)
938 {
939 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
940 	struct dentry *dir;
941 	int err;
942 
943 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
944 				       "fail_page_alloc");
945 	if (err)
946 		return err;
947 	dir = fail_page_alloc.attr.dentries.dir;
948 
949 	fail_page_alloc.ignore_gfp_wait_file =
950 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
951 				      &fail_page_alloc.ignore_gfp_wait);
952 
953 	fail_page_alloc.ignore_gfp_highmem_file =
954 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
955 				      &fail_page_alloc.ignore_gfp_highmem);
956 
957 	if (!fail_page_alloc.ignore_gfp_wait_file ||
958 			!fail_page_alloc.ignore_gfp_highmem_file) {
959 		err = -ENOMEM;
960 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
961 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
962 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
963 	}
964 
965 	return err;
966 }
967 
968 late_initcall(fail_page_alloc_debugfs);
969 
970 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
971 
972 #else /* CONFIG_FAIL_PAGE_ALLOC */
973 
974 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
975 {
976 	return 0;
977 }
978 
979 #endif /* CONFIG_FAIL_PAGE_ALLOC */
980 
981 /*
982  * Return 1 if free pages are above 'mark'. This takes into account the order
983  * of the allocation.
984  */
985 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
986 		      int classzone_idx, int alloc_flags)
987 {
988 	/* free_pages my go negative - that's OK */
989 	long min = mark;
990 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
991 	int o;
992 
993 	if (alloc_flags & ALLOC_HIGH)
994 		min -= min / 2;
995 	if (alloc_flags & ALLOC_HARDER)
996 		min -= min / 4;
997 
998 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
999 		return 0;
1000 	for (o = 0; o < order; o++) {
1001 		/* At the next order, this order's pages become unavailable */
1002 		free_pages -= z->free_area[o].nr_free << o;
1003 
1004 		/* Require fewer higher order pages to be free */
1005 		min >>= 1;
1006 
1007 		if (free_pages <= min)
1008 			return 0;
1009 	}
1010 	return 1;
1011 }
1012 
1013 #ifdef CONFIG_NUMA
1014 /*
1015  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1016  * skip over zones that are not allowed by the cpuset, or that have
1017  * been recently (in last second) found to be nearly full.  See further
1018  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1019  * that have to skip over alot of full or unallowed zones.
1020  *
1021  * If the zonelist cache is present in the passed in zonelist, then
1022  * returns a pointer to the allowed node mask (either the current
1023  * tasks mems_allowed, or node_online_map.)
1024  *
1025  * If the zonelist cache is not available for this zonelist, does
1026  * nothing and returns NULL.
1027  *
1028  * If the fullzones BITMAP in the zonelist cache is stale (more than
1029  * a second since last zap'd) then we zap it out (clear its bits.)
1030  *
1031  * We hold off even calling zlc_setup, until after we've checked the
1032  * first zone in the zonelist, on the theory that most allocations will
1033  * be satisfied from that first zone, so best to examine that zone as
1034  * quickly as we can.
1035  */
1036 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1037 {
1038 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1039 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1040 
1041 	zlc = zonelist->zlcache_ptr;
1042 	if (!zlc)
1043 		return NULL;
1044 
1045 	if (jiffies - zlc->last_full_zap > 1 * HZ) {
1046 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1047 		zlc->last_full_zap = jiffies;
1048 	}
1049 
1050 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1051 					&cpuset_current_mems_allowed :
1052 					&node_online_map;
1053 	return allowednodes;
1054 }
1055 
1056 /*
1057  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1058  * if it is worth looking at further for free memory:
1059  *  1) Check that the zone isn't thought to be full (doesn't have its
1060  *     bit set in the zonelist_cache fullzones BITMAP).
1061  *  2) Check that the zones node (obtained from the zonelist_cache
1062  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1063  * Return true (non-zero) if zone is worth looking at further, or
1064  * else return false (zero) if it is not.
1065  *
1066  * This check -ignores- the distinction between various watermarks,
1067  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1068  * found to be full for any variation of these watermarks, it will
1069  * be considered full for up to one second by all requests, unless
1070  * we are so low on memory on all allowed nodes that we are forced
1071  * into the second scan of the zonelist.
1072  *
1073  * In the second scan we ignore this zonelist cache and exactly
1074  * apply the watermarks to all zones, even it is slower to do so.
1075  * We are low on memory in the second scan, and should leave no stone
1076  * unturned looking for a free page.
1077  */
1078 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1079 						nodemask_t *allowednodes)
1080 {
1081 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1082 	int i;				/* index of *z in zonelist zones */
1083 	int n;				/* node that zone *z is on */
1084 
1085 	zlc = zonelist->zlcache_ptr;
1086 	if (!zlc)
1087 		return 1;
1088 
1089 	i = z - zonelist->zones;
1090 	n = zlc->z_to_n[i];
1091 
1092 	/* This zone is worth trying if it is allowed but not full */
1093 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1094 }
1095 
1096 /*
1097  * Given 'z' scanning a zonelist, set the corresponding bit in
1098  * zlc->fullzones, so that subsequent attempts to allocate a page
1099  * from that zone don't waste time re-examining it.
1100  */
1101 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1102 {
1103 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1104 	int i;				/* index of *z in zonelist zones */
1105 
1106 	zlc = zonelist->zlcache_ptr;
1107 	if (!zlc)
1108 		return;
1109 
1110 	i = z - zonelist->zones;
1111 
1112 	set_bit(i, zlc->fullzones);
1113 }
1114 
1115 #else	/* CONFIG_NUMA */
1116 
1117 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1118 {
1119 	return NULL;
1120 }
1121 
1122 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1123 				nodemask_t *allowednodes)
1124 {
1125 	return 1;
1126 }
1127 
1128 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1129 {
1130 }
1131 #endif	/* CONFIG_NUMA */
1132 
1133 /*
1134  * get_page_from_freelist goes through the zonelist trying to allocate
1135  * a page.
1136  */
1137 static struct page *
1138 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1139 		struct zonelist *zonelist, int alloc_flags)
1140 {
1141 	struct zone **z;
1142 	struct page *page = NULL;
1143 	int classzone_idx = zone_idx(zonelist->zones[0]);
1144 	struct zone *zone;
1145 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1146 	int zlc_active = 0;		/* set if using zonelist_cache */
1147 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1148 
1149 zonelist_scan:
1150 	/*
1151 	 * Scan zonelist, looking for a zone with enough free.
1152 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1153 	 */
1154 	z = zonelist->zones;
1155 
1156 	do {
1157 		if (NUMA_BUILD && zlc_active &&
1158 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1159 				continue;
1160 		zone = *z;
1161 		if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1162 			zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1163 				break;
1164 		if ((alloc_flags & ALLOC_CPUSET) &&
1165 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1166 				goto try_next_zone;
1167 
1168 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1169 			unsigned long mark;
1170 			if (alloc_flags & ALLOC_WMARK_MIN)
1171 				mark = zone->pages_min;
1172 			else if (alloc_flags & ALLOC_WMARK_LOW)
1173 				mark = zone->pages_low;
1174 			else
1175 				mark = zone->pages_high;
1176 			if (!zone_watermark_ok(zone, order, mark,
1177 				    classzone_idx, alloc_flags)) {
1178 				if (!zone_reclaim_mode ||
1179 				    !zone_reclaim(zone, gfp_mask, order))
1180 					goto this_zone_full;
1181 			}
1182 		}
1183 
1184 		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1185 		if (page)
1186 			break;
1187 this_zone_full:
1188 		if (NUMA_BUILD)
1189 			zlc_mark_zone_full(zonelist, z);
1190 try_next_zone:
1191 		if (NUMA_BUILD && !did_zlc_setup) {
1192 			/* we do zlc_setup after the first zone is tried */
1193 			allowednodes = zlc_setup(zonelist, alloc_flags);
1194 			zlc_active = 1;
1195 			did_zlc_setup = 1;
1196 		}
1197 	} while (*(++z) != NULL);
1198 
1199 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1200 		/* Disable zlc cache for second zonelist scan */
1201 		zlc_active = 0;
1202 		goto zonelist_scan;
1203 	}
1204 	return page;
1205 }
1206 
1207 /*
1208  * This is the 'heart' of the zoned buddy allocator.
1209  */
1210 struct page * fastcall
1211 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1212 		struct zonelist *zonelist)
1213 {
1214 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1215 	struct zone **z;
1216 	struct page *page;
1217 	struct reclaim_state reclaim_state;
1218 	struct task_struct *p = current;
1219 	int do_retry;
1220 	int alloc_flags;
1221 	int did_some_progress;
1222 
1223 	might_sleep_if(wait);
1224 
1225 	if (should_fail_alloc_page(gfp_mask, order))
1226 		return NULL;
1227 
1228 restart:
1229 	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
1230 
1231 	if (unlikely(*z == NULL)) {
1232 		/* Should this ever happen?? */
1233 		return NULL;
1234 	}
1235 
1236 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1237 				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1238 	if (page)
1239 		goto got_pg;
1240 
1241 	/*
1242 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1243 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1244 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1245 	 * using a larger set of nodes after it has established that the
1246 	 * allowed per node queues are empty and that nodes are
1247 	 * over allocated.
1248 	 */
1249 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1250 		goto nopage;
1251 
1252 	for (z = zonelist->zones; *z; z++)
1253 		wakeup_kswapd(*z, order);
1254 
1255 	/*
1256 	 * OK, we're below the kswapd watermark and have kicked background
1257 	 * reclaim. Now things get more complex, so set up alloc_flags according
1258 	 * to how we want to proceed.
1259 	 *
1260 	 * The caller may dip into page reserves a bit more if the caller
1261 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1262 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1263 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1264 	 */
1265 	alloc_flags = ALLOC_WMARK_MIN;
1266 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1267 		alloc_flags |= ALLOC_HARDER;
1268 	if (gfp_mask & __GFP_HIGH)
1269 		alloc_flags |= ALLOC_HIGH;
1270 	if (wait)
1271 		alloc_flags |= ALLOC_CPUSET;
1272 
1273 	/*
1274 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1275 	 * coming from realtime tasks go deeper into reserves.
1276 	 *
1277 	 * This is the last chance, in general, before the goto nopage.
1278 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1279 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1280 	 */
1281 	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1282 	if (page)
1283 		goto got_pg;
1284 
1285 	/* This allocation should allow future memory freeing. */
1286 
1287 rebalance:
1288 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1289 			&& !in_interrupt()) {
1290 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1291 nofail_alloc:
1292 			/* go through the zonelist yet again, ignoring mins */
1293 			page = get_page_from_freelist(gfp_mask, order,
1294 				zonelist, ALLOC_NO_WATERMARKS);
1295 			if (page)
1296 				goto got_pg;
1297 			if (gfp_mask & __GFP_NOFAIL) {
1298 				congestion_wait(WRITE, HZ/50);
1299 				goto nofail_alloc;
1300 			}
1301 		}
1302 		goto nopage;
1303 	}
1304 
1305 	/* Atomic allocations - we can't balance anything */
1306 	if (!wait)
1307 		goto nopage;
1308 
1309 	cond_resched();
1310 
1311 	/* We now go into synchronous reclaim */
1312 	cpuset_memory_pressure_bump();
1313 	p->flags |= PF_MEMALLOC;
1314 	reclaim_state.reclaimed_slab = 0;
1315 	p->reclaim_state = &reclaim_state;
1316 
1317 	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1318 
1319 	p->reclaim_state = NULL;
1320 	p->flags &= ~PF_MEMALLOC;
1321 
1322 	cond_resched();
1323 
1324 	if (likely(did_some_progress)) {
1325 		page = get_page_from_freelist(gfp_mask, order,
1326 						zonelist, alloc_flags);
1327 		if (page)
1328 			goto got_pg;
1329 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1330 		/*
1331 		 * Go through the zonelist yet one more time, keep
1332 		 * very high watermark here, this is only to catch
1333 		 * a parallel oom killing, we must fail if we're still
1334 		 * under heavy pressure.
1335 		 */
1336 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1337 				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1338 		if (page)
1339 			goto got_pg;
1340 
1341 		out_of_memory(zonelist, gfp_mask, order);
1342 		goto restart;
1343 	}
1344 
1345 	/*
1346 	 * Don't let big-order allocations loop unless the caller explicitly
1347 	 * requests that.  Wait for some write requests to complete then retry.
1348 	 *
1349 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1350 	 * <= 3, but that may not be true in other implementations.
1351 	 */
1352 	do_retry = 0;
1353 	if (!(gfp_mask & __GFP_NORETRY)) {
1354 		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1355 			do_retry = 1;
1356 		if (gfp_mask & __GFP_NOFAIL)
1357 			do_retry = 1;
1358 	}
1359 	if (do_retry) {
1360 		congestion_wait(WRITE, HZ/50);
1361 		goto rebalance;
1362 	}
1363 
1364 nopage:
1365 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1366 		printk(KERN_WARNING "%s: page allocation failure."
1367 			" order:%d, mode:0x%x\n",
1368 			p->comm, order, gfp_mask);
1369 		dump_stack();
1370 		show_mem();
1371 	}
1372 got_pg:
1373 	return page;
1374 }
1375 
1376 EXPORT_SYMBOL(__alloc_pages);
1377 
1378 /*
1379  * Common helper functions.
1380  */
1381 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1382 {
1383 	struct page * page;
1384 	page = alloc_pages(gfp_mask, order);
1385 	if (!page)
1386 		return 0;
1387 	return (unsigned long) page_address(page);
1388 }
1389 
1390 EXPORT_SYMBOL(__get_free_pages);
1391 
1392 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1393 {
1394 	struct page * page;
1395 
1396 	/*
1397 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1398 	 * a highmem page
1399 	 */
1400 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1401 
1402 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1403 	if (page)
1404 		return (unsigned long) page_address(page);
1405 	return 0;
1406 }
1407 
1408 EXPORT_SYMBOL(get_zeroed_page);
1409 
1410 void __pagevec_free(struct pagevec *pvec)
1411 {
1412 	int i = pagevec_count(pvec);
1413 
1414 	while (--i >= 0)
1415 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1416 }
1417 
1418 fastcall void __free_pages(struct page *page, unsigned int order)
1419 {
1420 	if (put_page_testzero(page)) {
1421 		if (order == 0)
1422 			free_hot_page(page);
1423 		else
1424 			__free_pages_ok(page, order);
1425 	}
1426 }
1427 
1428 EXPORT_SYMBOL(__free_pages);
1429 
1430 fastcall void free_pages(unsigned long addr, unsigned int order)
1431 {
1432 	if (addr != 0) {
1433 		VM_BUG_ON(!virt_addr_valid((void *)addr));
1434 		__free_pages(virt_to_page((void *)addr), order);
1435 	}
1436 }
1437 
1438 EXPORT_SYMBOL(free_pages);
1439 
1440 static unsigned int nr_free_zone_pages(int offset)
1441 {
1442 	/* Just pick one node, since fallback list is circular */
1443 	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1444 	unsigned int sum = 0;
1445 
1446 	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1447 	struct zone **zonep = zonelist->zones;
1448 	struct zone *zone;
1449 
1450 	for (zone = *zonep++; zone; zone = *zonep++) {
1451 		unsigned long size = zone->present_pages;
1452 		unsigned long high = zone->pages_high;
1453 		if (size > high)
1454 			sum += size - high;
1455 	}
1456 
1457 	return sum;
1458 }
1459 
1460 /*
1461  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1462  */
1463 unsigned int nr_free_buffer_pages(void)
1464 {
1465 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1466 }
1467 
1468 /*
1469  * Amount of free RAM allocatable within all zones
1470  */
1471 unsigned int nr_free_pagecache_pages(void)
1472 {
1473 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1474 }
1475 
1476 static inline void show_node(struct zone *zone)
1477 {
1478 	if (NUMA_BUILD)
1479 		printk("Node %d ", zone_to_nid(zone));
1480 }
1481 
1482 void si_meminfo(struct sysinfo *val)
1483 {
1484 	val->totalram = totalram_pages;
1485 	val->sharedram = 0;
1486 	val->freeram = global_page_state(NR_FREE_PAGES);
1487 	val->bufferram = nr_blockdev_pages();
1488 	val->totalhigh = totalhigh_pages;
1489 	val->freehigh = nr_free_highpages();
1490 	val->mem_unit = PAGE_SIZE;
1491 }
1492 
1493 EXPORT_SYMBOL(si_meminfo);
1494 
1495 #ifdef CONFIG_NUMA
1496 void si_meminfo_node(struct sysinfo *val, int nid)
1497 {
1498 	pg_data_t *pgdat = NODE_DATA(nid);
1499 
1500 	val->totalram = pgdat->node_present_pages;
1501 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1502 #ifdef CONFIG_HIGHMEM
1503 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1504 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1505 			NR_FREE_PAGES);
1506 #else
1507 	val->totalhigh = 0;
1508 	val->freehigh = 0;
1509 #endif
1510 	val->mem_unit = PAGE_SIZE;
1511 }
1512 #endif
1513 
1514 #define K(x) ((x) << (PAGE_SHIFT-10))
1515 
1516 /*
1517  * Show free area list (used inside shift_scroll-lock stuff)
1518  * We also calculate the percentage fragmentation. We do this by counting the
1519  * memory on each free list with the exception of the first item on the list.
1520  */
1521 void show_free_areas(void)
1522 {
1523 	int cpu;
1524 	struct zone *zone;
1525 
1526 	for_each_zone(zone) {
1527 		if (!populated_zone(zone))
1528 			continue;
1529 
1530 		show_node(zone);
1531 		printk("%s per-cpu:\n", zone->name);
1532 
1533 		for_each_online_cpu(cpu) {
1534 			struct per_cpu_pageset *pageset;
1535 
1536 			pageset = zone_pcp(zone, cpu);
1537 
1538 			printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d   "
1539 			       "Cold: hi:%5d, btch:%4d usd:%4d\n",
1540 			       cpu, pageset->pcp[0].high,
1541 			       pageset->pcp[0].batch, pageset->pcp[0].count,
1542 			       pageset->pcp[1].high, pageset->pcp[1].batch,
1543 			       pageset->pcp[1].count);
1544 		}
1545 	}
1546 
1547 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1548 		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1549 		global_page_state(NR_ACTIVE),
1550 		global_page_state(NR_INACTIVE),
1551 		global_page_state(NR_FILE_DIRTY),
1552 		global_page_state(NR_WRITEBACK),
1553 		global_page_state(NR_UNSTABLE_NFS),
1554 		global_page_state(NR_FREE_PAGES),
1555 		global_page_state(NR_SLAB_RECLAIMABLE) +
1556 			global_page_state(NR_SLAB_UNRECLAIMABLE),
1557 		global_page_state(NR_FILE_MAPPED),
1558 		global_page_state(NR_PAGETABLE),
1559 		global_page_state(NR_BOUNCE));
1560 
1561 	for_each_zone(zone) {
1562 		int i;
1563 
1564 		if (!populated_zone(zone))
1565 			continue;
1566 
1567 		show_node(zone);
1568 		printk("%s"
1569 			" free:%lukB"
1570 			" min:%lukB"
1571 			" low:%lukB"
1572 			" high:%lukB"
1573 			" active:%lukB"
1574 			" inactive:%lukB"
1575 			" present:%lukB"
1576 			" pages_scanned:%lu"
1577 			" all_unreclaimable? %s"
1578 			"\n",
1579 			zone->name,
1580 			K(zone_page_state(zone, NR_FREE_PAGES)),
1581 			K(zone->pages_min),
1582 			K(zone->pages_low),
1583 			K(zone->pages_high),
1584 			K(zone_page_state(zone, NR_ACTIVE)),
1585 			K(zone_page_state(zone, NR_INACTIVE)),
1586 			K(zone->present_pages),
1587 			zone->pages_scanned,
1588 			(zone->all_unreclaimable ? "yes" : "no")
1589 			);
1590 		printk("lowmem_reserve[]:");
1591 		for (i = 0; i < MAX_NR_ZONES; i++)
1592 			printk(" %lu", zone->lowmem_reserve[i]);
1593 		printk("\n");
1594 	}
1595 
1596 	for_each_zone(zone) {
1597  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1598 
1599 		if (!populated_zone(zone))
1600 			continue;
1601 
1602 		show_node(zone);
1603 		printk("%s: ", zone->name);
1604 
1605 		spin_lock_irqsave(&zone->lock, flags);
1606 		for (order = 0; order < MAX_ORDER; order++) {
1607 			nr[order] = zone->free_area[order].nr_free;
1608 			total += nr[order] << order;
1609 		}
1610 		spin_unlock_irqrestore(&zone->lock, flags);
1611 		for (order = 0; order < MAX_ORDER; order++)
1612 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1613 		printk("= %lukB\n", K(total));
1614 	}
1615 
1616 	show_swap_cache_info();
1617 }
1618 
1619 /*
1620  * Builds allocation fallback zone lists.
1621  *
1622  * Add all populated zones of a node to the zonelist.
1623  */
1624 static int __meminit build_zonelists_node(pg_data_t *pgdat,
1625 			struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1626 {
1627 	struct zone *zone;
1628 
1629 	BUG_ON(zone_type >= MAX_NR_ZONES);
1630 	zone_type++;
1631 
1632 	do {
1633 		zone_type--;
1634 		zone = pgdat->node_zones + zone_type;
1635 		if (populated_zone(zone)) {
1636 			zonelist->zones[nr_zones++] = zone;
1637 			check_highest_zone(zone_type);
1638 		}
1639 
1640 	} while (zone_type);
1641 	return nr_zones;
1642 }
1643 
1644 #ifdef CONFIG_NUMA
1645 #define MAX_NODE_LOAD (num_online_nodes())
1646 static int __meminitdata node_load[MAX_NUMNODES];
1647 /**
1648  * find_next_best_node - find the next node that should appear in a given node's fallback list
1649  * @node: node whose fallback list we're appending
1650  * @used_node_mask: nodemask_t of already used nodes
1651  *
1652  * We use a number of factors to determine which is the next node that should
1653  * appear on a given node's fallback list.  The node should not have appeared
1654  * already in @node's fallback list, and it should be the next closest node
1655  * according to the distance array (which contains arbitrary distance values
1656  * from each node to each node in the system), and should also prefer nodes
1657  * with no CPUs, since presumably they'll have very little allocation pressure
1658  * on them otherwise.
1659  * It returns -1 if no node is found.
1660  */
1661 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1662 {
1663 	int n, val;
1664 	int min_val = INT_MAX;
1665 	int best_node = -1;
1666 
1667 	/* Use the local node if we haven't already */
1668 	if (!node_isset(node, *used_node_mask)) {
1669 		node_set(node, *used_node_mask);
1670 		return node;
1671 	}
1672 
1673 	for_each_online_node(n) {
1674 		cpumask_t tmp;
1675 
1676 		/* Don't want a node to appear more than once */
1677 		if (node_isset(n, *used_node_mask))
1678 			continue;
1679 
1680 		/* Use the distance array to find the distance */
1681 		val = node_distance(node, n);
1682 
1683 		/* Penalize nodes under us ("prefer the next node") */
1684 		val += (n < node);
1685 
1686 		/* Give preference to headless and unused nodes */
1687 		tmp = node_to_cpumask(n);
1688 		if (!cpus_empty(tmp))
1689 			val += PENALTY_FOR_NODE_WITH_CPUS;
1690 
1691 		/* Slight preference for less loaded node */
1692 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1693 		val += node_load[n];
1694 
1695 		if (val < min_val) {
1696 			min_val = val;
1697 			best_node = n;
1698 		}
1699 	}
1700 
1701 	if (best_node >= 0)
1702 		node_set(best_node, *used_node_mask);
1703 
1704 	return best_node;
1705 }
1706 
1707 static void __meminit build_zonelists(pg_data_t *pgdat)
1708 {
1709 	int j, node, local_node;
1710 	enum zone_type i;
1711 	int prev_node, load;
1712 	struct zonelist *zonelist;
1713 	nodemask_t used_mask;
1714 
1715 	/* initialize zonelists */
1716 	for (i = 0; i < MAX_NR_ZONES; i++) {
1717 		zonelist = pgdat->node_zonelists + i;
1718 		zonelist->zones[0] = NULL;
1719 	}
1720 
1721 	/* NUMA-aware ordering of nodes */
1722 	local_node = pgdat->node_id;
1723 	load = num_online_nodes();
1724 	prev_node = local_node;
1725 	nodes_clear(used_mask);
1726 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1727 		int distance = node_distance(local_node, node);
1728 
1729 		/*
1730 		 * If another node is sufficiently far away then it is better
1731 		 * to reclaim pages in a zone before going off node.
1732 		 */
1733 		if (distance > RECLAIM_DISTANCE)
1734 			zone_reclaim_mode = 1;
1735 
1736 		/*
1737 		 * We don't want to pressure a particular node.
1738 		 * So adding penalty to the first node in same
1739 		 * distance group to make it round-robin.
1740 		 */
1741 
1742 		if (distance != node_distance(local_node, prev_node))
1743 			node_load[node] += load;
1744 		prev_node = node;
1745 		load--;
1746 		for (i = 0; i < MAX_NR_ZONES; i++) {
1747 			zonelist = pgdat->node_zonelists + i;
1748 			for (j = 0; zonelist->zones[j] != NULL; j++);
1749 
1750 	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1751 			zonelist->zones[j] = NULL;
1752 		}
1753 	}
1754 }
1755 
1756 /* Construct the zonelist performance cache - see further mmzone.h */
1757 static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1758 {
1759 	int i;
1760 
1761 	for (i = 0; i < MAX_NR_ZONES; i++) {
1762 		struct zonelist *zonelist;
1763 		struct zonelist_cache *zlc;
1764 		struct zone **z;
1765 
1766 		zonelist = pgdat->node_zonelists + i;
1767 		zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
1768 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1769 		for (z = zonelist->zones; *z; z++)
1770 			zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
1771 	}
1772 }
1773 
1774 #else	/* CONFIG_NUMA */
1775 
1776 static void __meminit build_zonelists(pg_data_t *pgdat)
1777 {
1778 	int node, local_node;
1779 	enum zone_type i,j;
1780 
1781 	local_node = pgdat->node_id;
1782 	for (i = 0; i < MAX_NR_ZONES; i++) {
1783 		struct zonelist *zonelist;
1784 
1785 		zonelist = pgdat->node_zonelists + i;
1786 
1787  		j = build_zonelists_node(pgdat, zonelist, 0, i);
1788  		/*
1789  		 * Now we build the zonelist so that it contains the zones
1790  		 * of all the other nodes.
1791  		 * We don't want to pressure a particular node, so when
1792  		 * building the zones for node N, we make sure that the
1793  		 * zones coming right after the local ones are those from
1794  		 * node N+1 (modulo N)
1795  		 */
1796 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1797 			if (!node_online(node))
1798 				continue;
1799 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1800 		}
1801 		for (node = 0; node < local_node; node++) {
1802 			if (!node_online(node))
1803 				continue;
1804 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1805 		}
1806 
1807 		zonelist->zones[j] = NULL;
1808 	}
1809 }
1810 
1811 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
1812 static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1813 {
1814 	int i;
1815 
1816 	for (i = 0; i < MAX_NR_ZONES; i++)
1817 		pgdat->node_zonelists[i].zlcache_ptr = NULL;
1818 }
1819 
1820 #endif	/* CONFIG_NUMA */
1821 
1822 /* return values int ....just for stop_machine_run() */
1823 static int __meminit __build_all_zonelists(void *dummy)
1824 {
1825 	int nid;
1826 
1827 	for_each_online_node(nid) {
1828 		build_zonelists(NODE_DATA(nid));
1829 		build_zonelist_cache(NODE_DATA(nid));
1830 	}
1831 	return 0;
1832 }
1833 
1834 void __meminit build_all_zonelists(void)
1835 {
1836 	if (system_state == SYSTEM_BOOTING) {
1837 		__build_all_zonelists(NULL);
1838 		cpuset_init_current_mems_allowed();
1839 	} else {
1840 		/* we have to stop all cpus to guaranntee there is no user
1841 		   of zonelist */
1842 		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1843 		/* cpuset refresh routine should be here */
1844 	}
1845 	vm_total_pages = nr_free_pagecache_pages();
1846 	printk("Built %i zonelists.  Total pages: %ld\n",
1847 			num_online_nodes(), vm_total_pages);
1848 }
1849 
1850 /*
1851  * Helper functions to size the waitqueue hash table.
1852  * Essentially these want to choose hash table sizes sufficiently
1853  * large so that collisions trying to wait on pages are rare.
1854  * But in fact, the number of active page waitqueues on typical
1855  * systems is ridiculously low, less than 200. So this is even
1856  * conservative, even though it seems large.
1857  *
1858  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1859  * waitqueues, i.e. the size of the waitq table given the number of pages.
1860  */
1861 #define PAGES_PER_WAITQUEUE	256
1862 
1863 #ifndef CONFIG_MEMORY_HOTPLUG
1864 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1865 {
1866 	unsigned long size = 1;
1867 
1868 	pages /= PAGES_PER_WAITQUEUE;
1869 
1870 	while (size < pages)
1871 		size <<= 1;
1872 
1873 	/*
1874 	 * Once we have dozens or even hundreds of threads sleeping
1875 	 * on IO we've got bigger problems than wait queue collision.
1876 	 * Limit the size of the wait table to a reasonable size.
1877 	 */
1878 	size = min(size, 4096UL);
1879 
1880 	return max(size, 4UL);
1881 }
1882 #else
1883 /*
1884  * A zone's size might be changed by hot-add, so it is not possible to determine
1885  * a suitable size for its wait_table.  So we use the maximum size now.
1886  *
1887  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
1888  *
1889  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
1890  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1891  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
1892  *
1893  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1894  * or more by the traditional way. (See above).  It equals:
1895  *
1896  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
1897  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
1898  *    powerpc (64K page size)             : =  (32G +16M)byte.
1899  */
1900 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1901 {
1902 	return 4096UL;
1903 }
1904 #endif
1905 
1906 /*
1907  * This is an integer logarithm so that shifts can be used later
1908  * to extract the more random high bits from the multiplicative
1909  * hash function before the remainder is taken.
1910  */
1911 static inline unsigned long wait_table_bits(unsigned long size)
1912 {
1913 	return ffz(~size);
1914 }
1915 
1916 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1917 
1918 /*
1919  * Initially all pages are reserved - free ones are freed
1920  * up by free_all_bootmem() once the early boot process is
1921  * done. Non-atomic initialization, single-pass.
1922  */
1923 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1924 		unsigned long start_pfn, enum memmap_context context)
1925 {
1926 	struct page *page;
1927 	unsigned long end_pfn = start_pfn + size;
1928 	unsigned long pfn;
1929 
1930 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1931 		/*
1932 		 * There can be holes in boot-time mem_map[]s
1933 		 * handed to this function.  They do not
1934 		 * exist on hotplugged memory.
1935 		 */
1936 		if (context == MEMMAP_EARLY) {
1937 			if (!early_pfn_valid(pfn))
1938 				continue;
1939 			if (!early_pfn_in_nid(pfn, nid))
1940 				continue;
1941 		}
1942 		page = pfn_to_page(pfn);
1943 		set_page_links(page, zone, nid, pfn);
1944 		init_page_count(page);
1945 		reset_page_mapcount(page);
1946 		SetPageReserved(page);
1947 		INIT_LIST_HEAD(&page->lru);
1948 #ifdef WANT_PAGE_VIRTUAL
1949 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1950 		if (!is_highmem_idx(zone))
1951 			set_page_address(page, __va(pfn << PAGE_SHIFT));
1952 #endif
1953 	}
1954 }
1955 
1956 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1957 				unsigned long size)
1958 {
1959 	int order;
1960 	for (order = 0; order < MAX_ORDER ; order++) {
1961 		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1962 		zone->free_area[order].nr_free = 0;
1963 	}
1964 }
1965 
1966 #ifndef __HAVE_ARCH_MEMMAP_INIT
1967 #define memmap_init(size, nid, zone, start_pfn) \
1968 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1969 #endif
1970 
1971 static int __devinit zone_batchsize(struct zone *zone)
1972 {
1973 	int batch;
1974 
1975 	/*
1976 	 * The per-cpu-pages pools are set to around 1000th of the
1977 	 * size of the zone.  But no more than 1/2 of a meg.
1978 	 *
1979 	 * OK, so we don't know how big the cache is.  So guess.
1980 	 */
1981 	batch = zone->present_pages / 1024;
1982 	if (batch * PAGE_SIZE > 512 * 1024)
1983 		batch = (512 * 1024) / PAGE_SIZE;
1984 	batch /= 4;		/* We effectively *= 4 below */
1985 	if (batch < 1)
1986 		batch = 1;
1987 
1988 	/*
1989 	 * Clamp the batch to a 2^n - 1 value. Having a power
1990 	 * of 2 value was found to be more likely to have
1991 	 * suboptimal cache aliasing properties in some cases.
1992 	 *
1993 	 * For example if 2 tasks are alternately allocating
1994 	 * batches of pages, one task can end up with a lot
1995 	 * of pages of one half of the possible page colors
1996 	 * and the other with pages of the other colors.
1997 	 */
1998 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
1999 
2000 	return batch;
2001 }
2002 
2003 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2004 {
2005 	struct per_cpu_pages *pcp;
2006 
2007 	memset(p, 0, sizeof(*p));
2008 
2009 	pcp = &p->pcp[0];		/* hot */
2010 	pcp->count = 0;
2011 	pcp->high = 6 * batch;
2012 	pcp->batch = max(1UL, 1 * batch);
2013 	INIT_LIST_HEAD(&pcp->list);
2014 
2015 	pcp = &p->pcp[1];		/* cold*/
2016 	pcp->count = 0;
2017 	pcp->high = 2 * batch;
2018 	pcp->batch = max(1UL, batch/2);
2019 	INIT_LIST_HEAD(&pcp->list);
2020 }
2021 
2022 /*
2023  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2024  * to the value high for the pageset p.
2025  */
2026 
2027 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2028 				unsigned long high)
2029 {
2030 	struct per_cpu_pages *pcp;
2031 
2032 	pcp = &p->pcp[0]; /* hot list */
2033 	pcp->high = high;
2034 	pcp->batch = max(1UL, high/4);
2035 	if ((high/4) > (PAGE_SHIFT * 8))
2036 		pcp->batch = PAGE_SHIFT * 8;
2037 }
2038 
2039 
2040 #ifdef CONFIG_NUMA
2041 /*
2042  * Boot pageset table. One per cpu which is going to be used for all
2043  * zones and all nodes. The parameters will be set in such a way
2044  * that an item put on a list will immediately be handed over to
2045  * the buddy list. This is safe since pageset manipulation is done
2046  * with interrupts disabled.
2047  *
2048  * Some NUMA counter updates may also be caught by the boot pagesets.
2049  *
2050  * The boot_pagesets must be kept even after bootup is complete for
2051  * unused processors and/or zones. They do play a role for bootstrapping
2052  * hotplugged processors.
2053  *
2054  * zoneinfo_show() and maybe other functions do
2055  * not check if the processor is online before following the pageset pointer.
2056  * Other parts of the kernel may not check if the zone is available.
2057  */
2058 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2059 
2060 /*
2061  * Dynamically allocate memory for the
2062  * per cpu pageset array in struct zone.
2063  */
2064 static int __cpuinit process_zones(int cpu)
2065 {
2066 	struct zone *zone, *dzone;
2067 
2068 	for_each_zone(zone) {
2069 
2070 		if (!populated_zone(zone))
2071 			continue;
2072 
2073 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2074 					 GFP_KERNEL, cpu_to_node(cpu));
2075 		if (!zone_pcp(zone, cpu))
2076 			goto bad;
2077 
2078 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2079 
2080 		if (percpu_pagelist_fraction)
2081 			setup_pagelist_highmark(zone_pcp(zone, cpu),
2082 			 	(zone->present_pages / percpu_pagelist_fraction));
2083 	}
2084 
2085 	return 0;
2086 bad:
2087 	for_each_zone(dzone) {
2088 		if (dzone == zone)
2089 			break;
2090 		kfree(zone_pcp(dzone, cpu));
2091 		zone_pcp(dzone, cpu) = NULL;
2092 	}
2093 	return -ENOMEM;
2094 }
2095 
2096 static inline void free_zone_pagesets(int cpu)
2097 {
2098 	struct zone *zone;
2099 
2100 	for_each_zone(zone) {
2101 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2102 
2103 		/* Free per_cpu_pageset if it is slab allocated */
2104 		if (pset != &boot_pageset[cpu])
2105 			kfree(pset);
2106 		zone_pcp(zone, cpu) = NULL;
2107 	}
2108 }
2109 
2110 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2111 		unsigned long action,
2112 		void *hcpu)
2113 {
2114 	int cpu = (long)hcpu;
2115 	int ret = NOTIFY_OK;
2116 
2117 	switch (action) {
2118 	case CPU_UP_PREPARE:
2119 	case CPU_UP_PREPARE_FROZEN:
2120 		if (process_zones(cpu))
2121 			ret = NOTIFY_BAD;
2122 		break;
2123 	case CPU_UP_CANCELED:
2124 	case CPU_UP_CANCELED_FROZEN:
2125 	case CPU_DEAD:
2126 	case CPU_DEAD_FROZEN:
2127 		free_zone_pagesets(cpu);
2128 		break;
2129 	default:
2130 		break;
2131 	}
2132 	return ret;
2133 }
2134 
2135 static struct notifier_block __cpuinitdata pageset_notifier =
2136 	{ &pageset_cpuup_callback, NULL, 0 };
2137 
2138 void __init setup_per_cpu_pageset(void)
2139 {
2140 	int err;
2141 
2142 	/* Initialize per_cpu_pageset for cpu 0.
2143 	 * A cpuup callback will do this for every cpu
2144 	 * as it comes online
2145 	 */
2146 	err = process_zones(smp_processor_id());
2147 	BUG_ON(err);
2148 	register_cpu_notifier(&pageset_notifier);
2149 }
2150 
2151 #endif
2152 
2153 static noinline __init_refok
2154 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2155 {
2156 	int i;
2157 	struct pglist_data *pgdat = zone->zone_pgdat;
2158 	size_t alloc_size;
2159 
2160 	/*
2161 	 * The per-page waitqueue mechanism uses hashed waitqueues
2162 	 * per zone.
2163 	 */
2164 	zone->wait_table_hash_nr_entries =
2165 		 wait_table_hash_nr_entries(zone_size_pages);
2166 	zone->wait_table_bits =
2167 		wait_table_bits(zone->wait_table_hash_nr_entries);
2168 	alloc_size = zone->wait_table_hash_nr_entries
2169 					* sizeof(wait_queue_head_t);
2170 
2171  	if (system_state == SYSTEM_BOOTING) {
2172 		zone->wait_table = (wait_queue_head_t *)
2173 			alloc_bootmem_node(pgdat, alloc_size);
2174 	} else {
2175 		/*
2176 		 * This case means that a zone whose size was 0 gets new memory
2177 		 * via memory hot-add.
2178 		 * But it may be the case that a new node was hot-added.  In
2179 		 * this case vmalloc() will not be able to use this new node's
2180 		 * memory - this wait_table must be initialized to use this new
2181 		 * node itself as well.
2182 		 * To use this new node's memory, further consideration will be
2183 		 * necessary.
2184 		 */
2185 		zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2186 	}
2187 	if (!zone->wait_table)
2188 		return -ENOMEM;
2189 
2190 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2191 		init_waitqueue_head(zone->wait_table + i);
2192 
2193 	return 0;
2194 }
2195 
2196 static __meminit void zone_pcp_init(struct zone *zone)
2197 {
2198 	int cpu;
2199 	unsigned long batch = zone_batchsize(zone);
2200 
2201 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2202 #ifdef CONFIG_NUMA
2203 		/* Early boot. Slab allocator not functional yet */
2204 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2205 		setup_pageset(&boot_pageset[cpu],0);
2206 #else
2207 		setup_pageset(zone_pcp(zone,cpu), batch);
2208 #endif
2209 	}
2210 	if (zone->present_pages)
2211 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2212 			zone->name, zone->present_pages, batch);
2213 }
2214 
2215 __meminit int init_currently_empty_zone(struct zone *zone,
2216 					unsigned long zone_start_pfn,
2217 					unsigned long size,
2218 					enum memmap_context context)
2219 {
2220 	struct pglist_data *pgdat = zone->zone_pgdat;
2221 	int ret;
2222 	ret = zone_wait_table_init(zone, size);
2223 	if (ret)
2224 		return ret;
2225 	pgdat->nr_zones = zone_idx(zone) + 1;
2226 
2227 	zone->zone_start_pfn = zone_start_pfn;
2228 
2229 	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2230 
2231 	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2232 
2233 	return 0;
2234 }
2235 
2236 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2237 /*
2238  * Basic iterator support. Return the first range of PFNs for a node
2239  * Note: nid == MAX_NUMNODES returns first region regardless of node
2240  */
2241 static int __meminit first_active_region_index_in_nid(int nid)
2242 {
2243 	int i;
2244 
2245 	for (i = 0; i < nr_nodemap_entries; i++)
2246 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2247 			return i;
2248 
2249 	return -1;
2250 }
2251 
2252 /*
2253  * Basic iterator support. Return the next active range of PFNs for a node
2254  * Note: nid == MAX_NUMNODES returns next region regardles of node
2255  */
2256 static int __meminit next_active_region_index_in_nid(int index, int nid)
2257 {
2258 	for (index = index + 1; index < nr_nodemap_entries; index++)
2259 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2260 			return index;
2261 
2262 	return -1;
2263 }
2264 
2265 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2266 /*
2267  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2268  * Architectures may implement their own version but if add_active_range()
2269  * was used and there are no special requirements, this is a convenient
2270  * alternative
2271  */
2272 int __meminit early_pfn_to_nid(unsigned long pfn)
2273 {
2274 	int i;
2275 
2276 	for (i = 0; i < nr_nodemap_entries; i++) {
2277 		unsigned long start_pfn = early_node_map[i].start_pfn;
2278 		unsigned long end_pfn = early_node_map[i].end_pfn;
2279 
2280 		if (start_pfn <= pfn && pfn < end_pfn)
2281 			return early_node_map[i].nid;
2282 	}
2283 
2284 	return 0;
2285 }
2286 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2287 
2288 /* Basic iterator support to walk early_node_map[] */
2289 #define for_each_active_range_index_in_nid(i, nid) \
2290 	for (i = first_active_region_index_in_nid(nid); i != -1; \
2291 				i = next_active_region_index_in_nid(i, nid))
2292 
2293 /**
2294  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2295  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2296  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2297  *
2298  * If an architecture guarantees that all ranges registered with
2299  * add_active_ranges() contain no holes and may be freed, this
2300  * this function may be used instead of calling free_bootmem() manually.
2301  */
2302 void __init free_bootmem_with_active_regions(int nid,
2303 						unsigned long max_low_pfn)
2304 {
2305 	int i;
2306 
2307 	for_each_active_range_index_in_nid(i, nid) {
2308 		unsigned long size_pages = 0;
2309 		unsigned long end_pfn = early_node_map[i].end_pfn;
2310 
2311 		if (early_node_map[i].start_pfn >= max_low_pfn)
2312 			continue;
2313 
2314 		if (end_pfn > max_low_pfn)
2315 			end_pfn = max_low_pfn;
2316 
2317 		size_pages = end_pfn - early_node_map[i].start_pfn;
2318 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2319 				PFN_PHYS(early_node_map[i].start_pfn),
2320 				size_pages << PAGE_SHIFT);
2321 	}
2322 }
2323 
2324 /**
2325  * sparse_memory_present_with_active_regions - Call memory_present for each active range
2326  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2327  *
2328  * If an architecture guarantees that all ranges registered with
2329  * add_active_ranges() contain no holes and may be freed, this
2330  * function may be used instead of calling memory_present() manually.
2331  */
2332 void __init sparse_memory_present_with_active_regions(int nid)
2333 {
2334 	int i;
2335 
2336 	for_each_active_range_index_in_nid(i, nid)
2337 		memory_present(early_node_map[i].nid,
2338 				early_node_map[i].start_pfn,
2339 				early_node_map[i].end_pfn);
2340 }
2341 
2342 /**
2343  * push_node_boundaries - Push node boundaries to at least the requested boundary
2344  * @nid: The nid of the node to push the boundary for
2345  * @start_pfn: The start pfn of the node
2346  * @end_pfn: The end pfn of the node
2347  *
2348  * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2349  * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2350  * be hotplugged even though no physical memory exists. This function allows
2351  * an arch to push out the node boundaries so mem_map is allocated that can
2352  * be used later.
2353  */
2354 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2355 void __init push_node_boundaries(unsigned int nid,
2356 		unsigned long start_pfn, unsigned long end_pfn)
2357 {
2358 	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2359 			nid, start_pfn, end_pfn);
2360 
2361 	/* Initialise the boundary for this node if necessary */
2362 	if (node_boundary_end_pfn[nid] == 0)
2363 		node_boundary_start_pfn[nid] = -1UL;
2364 
2365 	/* Update the boundaries */
2366 	if (node_boundary_start_pfn[nid] > start_pfn)
2367 		node_boundary_start_pfn[nid] = start_pfn;
2368 	if (node_boundary_end_pfn[nid] < end_pfn)
2369 		node_boundary_end_pfn[nid] = end_pfn;
2370 }
2371 
2372 /* If necessary, push the node boundary out for reserve hotadd */
2373 static void __init account_node_boundary(unsigned int nid,
2374 		unsigned long *start_pfn, unsigned long *end_pfn)
2375 {
2376 	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2377 			nid, *start_pfn, *end_pfn);
2378 
2379 	/* Return if boundary information has not been provided */
2380 	if (node_boundary_end_pfn[nid] == 0)
2381 		return;
2382 
2383 	/* Check the boundaries and update if necessary */
2384 	if (node_boundary_start_pfn[nid] < *start_pfn)
2385 		*start_pfn = node_boundary_start_pfn[nid];
2386 	if (node_boundary_end_pfn[nid] > *end_pfn)
2387 		*end_pfn = node_boundary_end_pfn[nid];
2388 }
2389 #else
2390 void __init push_node_boundaries(unsigned int nid,
2391 		unsigned long start_pfn, unsigned long end_pfn) {}
2392 
2393 static void __init account_node_boundary(unsigned int nid,
2394 		unsigned long *start_pfn, unsigned long *end_pfn) {}
2395 #endif
2396 
2397 
2398 /**
2399  * get_pfn_range_for_nid - Return the start and end page frames for a node
2400  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2401  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2402  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2403  *
2404  * It returns the start and end page frame of a node based on information
2405  * provided by an arch calling add_active_range(). If called for a node
2406  * with no available memory, a warning is printed and the start and end
2407  * PFNs will be 0.
2408  */
2409 void __meminit get_pfn_range_for_nid(unsigned int nid,
2410 			unsigned long *start_pfn, unsigned long *end_pfn)
2411 {
2412 	int i;
2413 	*start_pfn = -1UL;
2414 	*end_pfn = 0;
2415 
2416 	for_each_active_range_index_in_nid(i, nid) {
2417 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2418 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2419 	}
2420 
2421 	if (*start_pfn == -1UL) {
2422 		printk(KERN_WARNING "Node %u active with no memory\n", nid);
2423 		*start_pfn = 0;
2424 	}
2425 
2426 	/* Push the node boundaries out if requested */
2427 	account_node_boundary(nid, start_pfn, end_pfn);
2428 }
2429 
2430 /*
2431  * Return the number of pages a zone spans in a node, including holes
2432  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2433  */
2434 unsigned long __meminit zone_spanned_pages_in_node(int nid,
2435 					unsigned long zone_type,
2436 					unsigned long *ignored)
2437 {
2438 	unsigned long node_start_pfn, node_end_pfn;
2439 	unsigned long zone_start_pfn, zone_end_pfn;
2440 
2441 	/* Get the start and end of the node and zone */
2442 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2443 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2444 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2445 
2446 	/* Check that this node has pages within the zone's required range */
2447 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2448 		return 0;
2449 
2450 	/* Move the zone boundaries inside the node if necessary */
2451 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2452 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2453 
2454 	/* Return the spanned pages */
2455 	return zone_end_pfn - zone_start_pfn;
2456 }
2457 
2458 /*
2459  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2460  * then all holes in the requested range will be accounted for.
2461  */
2462 unsigned long __meminit __absent_pages_in_range(int nid,
2463 				unsigned long range_start_pfn,
2464 				unsigned long range_end_pfn)
2465 {
2466 	int i = 0;
2467 	unsigned long prev_end_pfn = 0, hole_pages = 0;
2468 	unsigned long start_pfn;
2469 
2470 	/* Find the end_pfn of the first active range of pfns in the node */
2471 	i = first_active_region_index_in_nid(nid);
2472 	if (i == -1)
2473 		return 0;
2474 
2475 	/* Account for ranges before physical memory on this node */
2476 	if (early_node_map[i].start_pfn > range_start_pfn)
2477 		hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2478 
2479 	prev_end_pfn = early_node_map[i].start_pfn;
2480 
2481 	/* Find all holes for the zone within the node */
2482 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2483 
2484 		/* No need to continue if prev_end_pfn is outside the zone */
2485 		if (prev_end_pfn >= range_end_pfn)
2486 			break;
2487 
2488 		/* Make sure the end of the zone is not within the hole */
2489 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2490 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2491 
2492 		/* Update the hole size cound and move on */
2493 		if (start_pfn > range_start_pfn) {
2494 			BUG_ON(prev_end_pfn > start_pfn);
2495 			hole_pages += start_pfn - prev_end_pfn;
2496 		}
2497 		prev_end_pfn = early_node_map[i].end_pfn;
2498 	}
2499 
2500 	/* Account for ranges past physical memory on this node */
2501 	if (range_end_pfn > prev_end_pfn)
2502 		hole_pages += range_end_pfn -
2503 				max(range_start_pfn, prev_end_pfn);
2504 
2505 	return hole_pages;
2506 }
2507 
2508 /**
2509  * absent_pages_in_range - Return number of page frames in holes within a range
2510  * @start_pfn: The start PFN to start searching for holes
2511  * @end_pfn: The end PFN to stop searching for holes
2512  *
2513  * It returns the number of pages frames in memory holes within a range.
2514  */
2515 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2516 							unsigned long end_pfn)
2517 {
2518 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2519 }
2520 
2521 /* Return the number of page frames in holes in a zone on a node */
2522 unsigned long __meminit zone_absent_pages_in_node(int nid,
2523 					unsigned long zone_type,
2524 					unsigned long *ignored)
2525 {
2526 	unsigned long node_start_pfn, node_end_pfn;
2527 	unsigned long zone_start_pfn, zone_end_pfn;
2528 
2529 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2530 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2531 							node_start_pfn);
2532 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2533 							node_end_pfn);
2534 
2535 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2536 }
2537 
2538 #else
2539 static inline unsigned long zone_spanned_pages_in_node(int nid,
2540 					unsigned long zone_type,
2541 					unsigned long *zones_size)
2542 {
2543 	return zones_size[zone_type];
2544 }
2545 
2546 static inline unsigned long zone_absent_pages_in_node(int nid,
2547 						unsigned long zone_type,
2548 						unsigned long *zholes_size)
2549 {
2550 	if (!zholes_size)
2551 		return 0;
2552 
2553 	return zholes_size[zone_type];
2554 }
2555 
2556 #endif
2557 
2558 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
2559 		unsigned long *zones_size, unsigned long *zholes_size)
2560 {
2561 	unsigned long realtotalpages, totalpages = 0;
2562 	enum zone_type i;
2563 
2564 	for (i = 0; i < MAX_NR_ZONES; i++)
2565 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2566 								zones_size);
2567 	pgdat->node_spanned_pages = totalpages;
2568 
2569 	realtotalpages = totalpages;
2570 	for (i = 0; i < MAX_NR_ZONES; i++)
2571 		realtotalpages -=
2572 			zone_absent_pages_in_node(pgdat->node_id, i,
2573 								zholes_size);
2574 	pgdat->node_present_pages = realtotalpages;
2575 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2576 							realtotalpages);
2577 }
2578 
2579 /*
2580  * Set up the zone data structures:
2581  *   - mark all pages reserved
2582  *   - mark all memory queues empty
2583  *   - clear the memory bitmaps
2584  */
2585 static void __meminit free_area_init_core(struct pglist_data *pgdat,
2586 		unsigned long *zones_size, unsigned long *zholes_size)
2587 {
2588 	enum zone_type j;
2589 	int nid = pgdat->node_id;
2590 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
2591 	int ret;
2592 
2593 	pgdat_resize_init(pgdat);
2594 	pgdat->nr_zones = 0;
2595 	init_waitqueue_head(&pgdat->kswapd_wait);
2596 	pgdat->kswapd_max_order = 0;
2597 
2598 	for (j = 0; j < MAX_NR_ZONES; j++) {
2599 		struct zone *zone = pgdat->node_zones + j;
2600 		unsigned long size, realsize, memmap_pages;
2601 
2602 		size = zone_spanned_pages_in_node(nid, j, zones_size);
2603 		realsize = size - zone_absent_pages_in_node(nid, j,
2604 								zholes_size);
2605 
2606 		/*
2607 		 * Adjust realsize so that it accounts for how much memory
2608 		 * is used by this zone for memmap. This affects the watermark
2609 		 * and per-cpu initialisations
2610 		 */
2611 		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2612 		if (realsize >= memmap_pages) {
2613 			realsize -= memmap_pages;
2614 			printk(KERN_DEBUG
2615 				"  %s zone: %lu pages used for memmap\n",
2616 				zone_names[j], memmap_pages);
2617 		} else
2618 			printk(KERN_WARNING
2619 				"  %s zone: %lu pages exceeds realsize %lu\n",
2620 				zone_names[j], memmap_pages, realsize);
2621 
2622 		/* Account for reserved pages */
2623 		if (j == 0 && realsize > dma_reserve) {
2624 			realsize -= dma_reserve;
2625 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
2626 					zone_names[0], dma_reserve);
2627 		}
2628 
2629 		if (!is_highmem_idx(j))
2630 			nr_kernel_pages += realsize;
2631 		nr_all_pages += realsize;
2632 
2633 		zone->spanned_pages = size;
2634 		zone->present_pages = realsize;
2635 #ifdef CONFIG_NUMA
2636 		zone->node = nid;
2637 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2638 						/ 100;
2639 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2640 #endif
2641 		zone->name = zone_names[j];
2642 		spin_lock_init(&zone->lock);
2643 		spin_lock_init(&zone->lru_lock);
2644 		zone_seqlock_init(zone);
2645 		zone->zone_pgdat = pgdat;
2646 
2647 		zone->prev_priority = DEF_PRIORITY;
2648 
2649 		zone_pcp_init(zone);
2650 		INIT_LIST_HEAD(&zone->active_list);
2651 		INIT_LIST_HEAD(&zone->inactive_list);
2652 		zone->nr_scan_active = 0;
2653 		zone->nr_scan_inactive = 0;
2654 		zap_zone_vm_stats(zone);
2655 		atomic_set(&zone->reclaim_in_progress, 0);
2656 		if (!size)
2657 			continue;
2658 
2659 		ret = init_currently_empty_zone(zone, zone_start_pfn,
2660 						size, MEMMAP_EARLY);
2661 		BUG_ON(ret);
2662 		zone_start_pfn += size;
2663 	}
2664 }
2665 
2666 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
2667 {
2668 	/* Skip empty nodes */
2669 	if (!pgdat->node_spanned_pages)
2670 		return;
2671 
2672 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2673 	/* ia64 gets its own node_mem_map, before this, without bootmem */
2674 	if (!pgdat->node_mem_map) {
2675 		unsigned long size, start, end;
2676 		struct page *map;
2677 
2678 		/*
2679 		 * The zone's endpoints aren't required to be MAX_ORDER
2680 		 * aligned but the node_mem_map endpoints must be in order
2681 		 * for the buddy allocator to function correctly.
2682 		 */
2683 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2684 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2685 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
2686 		size =  (end - start) * sizeof(struct page);
2687 		map = alloc_remap(pgdat->node_id, size);
2688 		if (!map)
2689 			map = alloc_bootmem_node(pgdat, size);
2690 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2691 	}
2692 #ifndef CONFIG_NEED_MULTIPLE_NODES
2693 	/*
2694 	 * With no DISCONTIG, the global mem_map is just set as node 0's
2695 	 */
2696 	if (pgdat == NODE_DATA(0)) {
2697 		mem_map = NODE_DATA(0)->node_mem_map;
2698 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2699 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2700 			mem_map -= pgdat->node_start_pfn;
2701 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2702 	}
2703 #endif
2704 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2705 }
2706 
2707 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2708 		unsigned long *zones_size, unsigned long node_start_pfn,
2709 		unsigned long *zholes_size)
2710 {
2711 	pgdat->node_id = nid;
2712 	pgdat->node_start_pfn = node_start_pfn;
2713 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
2714 
2715 	alloc_node_mem_map(pgdat);
2716 
2717 	free_area_init_core(pgdat, zones_size, zholes_size);
2718 }
2719 
2720 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2721 
2722 #if MAX_NUMNODES > 1
2723 /*
2724  * Figure out the number of possible node ids.
2725  */
2726 static void __init setup_nr_node_ids(void)
2727 {
2728 	unsigned int node;
2729 	unsigned int highest = 0;
2730 
2731 	for_each_node_mask(node, node_possible_map)
2732 		highest = node;
2733 	nr_node_ids = highest + 1;
2734 }
2735 #else
2736 static inline void setup_nr_node_ids(void)
2737 {
2738 }
2739 #endif
2740 
2741 /**
2742  * add_active_range - Register a range of PFNs backed by physical memory
2743  * @nid: The node ID the range resides on
2744  * @start_pfn: The start PFN of the available physical memory
2745  * @end_pfn: The end PFN of the available physical memory
2746  *
2747  * These ranges are stored in an early_node_map[] and later used by
2748  * free_area_init_nodes() to calculate zone sizes and holes. If the
2749  * range spans a memory hole, it is up to the architecture to ensure
2750  * the memory is not freed by the bootmem allocator. If possible
2751  * the range being registered will be merged with existing ranges.
2752  */
2753 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2754 						unsigned long end_pfn)
2755 {
2756 	int i;
2757 
2758 	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2759 			  "%d entries of %d used\n",
2760 			  nid, start_pfn, end_pfn,
2761 			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2762 
2763 	/* Merge with existing active regions if possible */
2764 	for (i = 0; i < nr_nodemap_entries; i++) {
2765 		if (early_node_map[i].nid != nid)
2766 			continue;
2767 
2768 		/* Skip if an existing region covers this new one */
2769 		if (start_pfn >= early_node_map[i].start_pfn &&
2770 				end_pfn <= early_node_map[i].end_pfn)
2771 			return;
2772 
2773 		/* Merge forward if suitable */
2774 		if (start_pfn <= early_node_map[i].end_pfn &&
2775 				end_pfn > early_node_map[i].end_pfn) {
2776 			early_node_map[i].end_pfn = end_pfn;
2777 			return;
2778 		}
2779 
2780 		/* Merge backward if suitable */
2781 		if (start_pfn < early_node_map[i].end_pfn &&
2782 				end_pfn >= early_node_map[i].start_pfn) {
2783 			early_node_map[i].start_pfn = start_pfn;
2784 			return;
2785 		}
2786 	}
2787 
2788 	/* Check that early_node_map is large enough */
2789 	if (i >= MAX_ACTIVE_REGIONS) {
2790 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
2791 							MAX_ACTIVE_REGIONS);
2792 		return;
2793 	}
2794 
2795 	early_node_map[i].nid = nid;
2796 	early_node_map[i].start_pfn = start_pfn;
2797 	early_node_map[i].end_pfn = end_pfn;
2798 	nr_nodemap_entries = i + 1;
2799 }
2800 
2801 /**
2802  * shrink_active_range - Shrink an existing registered range of PFNs
2803  * @nid: The node id the range is on that should be shrunk
2804  * @old_end_pfn: The old end PFN of the range
2805  * @new_end_pfn: The new PFN of the range
2806  *
2807  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2808  * The map is kept at the end physical page range that has already been
2809  * registered with add_active_range(). This function allows an arch to shrink
2810  * an existing registered range.
2811  */
2812 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
2813 						unsigned long new_end_pfn)
2814 {
2815 	int i;
2816 
2817 	/* Find the old active region end and shrink */
2818 	for_each_active_range_index_in_nid(i, nid)
2819 		if (early_node_map[i].end_pfn == old_end_pfn) {
2820 			early_node_map[i].end_pfn = new_end_pfn;
2821 			break;
2822 		}
2823 }
2824 
2825 /**
2826  * remove_all_active_ranges - Remove all currently registered regions
2827  *
2828  * During discovery, it may be found that a table like SRAT is invalid
2829  * and an alternative discovery method must be used. This function removes
2830  * all currently registered regions.
2831  */
2832 void __init remove_all_active_ranges(void)
2833 {
2834 	memset(early_node_map, 0, sizeof(early_node_map));
2835 	nr_nodemap_entries = 0;
2836 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2837 	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
2838 	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
2839 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2840 }
2841 
2842 /* Compare two active node_active_regions */
2843 static int __init cmp_node_active_region(const void *a, const void *b)
2844 {
2845 	struct node_active_region *arange = (struct node_active_region *)a;
2846 	struct node_active_region *brange = (struct node_active_region *)b;
2847 
2848 	/* Done this way to avoid overflows */
2849 	if (arange->start_pfn > brange->start_pfn)
2850 		return 1;
2851 	if (arange->start_pfn < brange->start_pfn)
2852 		return -1;
2853 
2854 	return 0;
2855 }
2856 
2857 /* sort the node_map by start_pfn */
2858 static void __init sort_node_map(void)
2859 {
2860 	sort(early_node_map, (size_t)nr_nodemap_entries,
2861 			sizeof(struct node_active_region),
2862 			cmp_node_active_region, NULL);
2863 }
2864 
2865 /* Find the lowest pfn for a node */
2866 unsigned long __init find_min_pfn_for_node(unsigned long nid)
2867 {
2868 	int i;
2869 	unsigned long min_pfn = ULONG_MAX;
2870 
2871 	/* Assuming a sorted map, the first range found has the starting pfn */
2872 	for_each_active_range_index_in_nid(i, nid)
2873 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
2874 
2875 	if (min_pfn == ULONG_MAX) {
2876 		printk(KERN_WARNING
2877 			"Could not find start_pfn for node %lu\n", nid);
2878 		return 0;
2879 	}
2880 
2881 	return min_pfn;
2882 }
2883 
2884 /**
2885  * find_min_pfn_with_active_regions - Find the minimum PFN registered
2886  *
2887  * It returns the minimum PFN based on information provided via
2888  * add_active_range().
2889  */
2890 unsigned long __init find_min_pfn_with_active_regions(void)
2891 {
2892 	return find_min_pfn_for_node(MAX_NUMNODES);
2893 }
2894 
2895 /**
2896  * find_max_pfn_with_active_regions - Find the maximum PFN registered
2897  *
2898  * It returns the maximum PFN based on information provided via
2899  * add_active_range().
2900  */
2901 unsigned long __init find_max_pfn_with_active_regions(void)
2902 {
2903 	int i;
2904 	unsigned long max_pfn = 0;
2905 
2906 	for (i = 0; i < nr_nodemap_entries; i++)
2907 		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
2908 
2909 	return max_pfn;
2910 }
2911 
2912 /**
2913  * free_area_init_nodes - Initialise all pg_data_t and zone data
2914  * @max_zone_pfn: an array of max PFNs for each zone
2915  *
2916  * This will call free_area_init_node() for each active node in the system.
2917  * Using the page ranges provided by add_active_range(), the size of each
2918  * zone in each node and their holes is calculated. If the maximum PFN
2919  * between two adjacent zones match, it is assumed that the zone is empty.
2920  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2921  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2922  * starts where the previous one ended. For example, ZONE_DMA32 starts
2923  * at arch_max_dma_pfn.
2924  */
2925 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
2926 {
2927 	unsigned long nid;
2928 	enum zone_type i;
2929 
2930 	/* Sort early_node_map as initialisation assumes it is sorted */
2931 	sort_node_map();
2932 
2933 	/* Record where the zone boundaries are */
2934 	memset(arch_zone_lowest_possible_pfn, 0,
2935 				sizeof(arch_zone_lowest_possible_pfn));
2936 	memset(arch_zone_highest_possible_pfn, 0,
2937 				sizeof(arch_zone_highest_possible_pfn));
2938 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
2939 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
2940 	for (i = 1; i < MAX_NR_ZONES; i++) {
2941 		arch_zone_lowest_possible_pfn[i] =
2942 			arch_zone_highest_possible_pfn[i-1];
2943 		arch_zone_highest_possible_pfn[i] =
2944 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
2945 	}
2946 
2947 	/* Print out the zone ranges */
2948 	printk("Zone PFN ranges:\n");
2949 	for (i = 0; i < MAX_NR_ZONES; i++)
2950 		printk("  %-8s %8lu -> %8lu\n",
2951 				zone_names[i],
2952 				arch_zone_lowest_possible_pfn[i],
2953 				arch_zone_highest_possible_pfn[i]);
2954 
2955 	/* Print out the early_node_map[] */
2956 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
2957 	for (i = 0; i < nr_nodemap_entries; i++)
2958 		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
2959 						early_node_map[i].start_pfn,
2960 						early_node_map[i].end_pfn);
2961 
2962 	/* Initialise every node */
2963 	setup_nr_node_ids();
2964 	for_each_online_node(nid) {
2965 		pg_data_t *pgdat = NODE_DATA(nid);
2966 		free_area_init_node(nid, pgdat, NULL,
2967 				find_min_pfn_for_node(nid), NULL);
2968 	}
2969 }
2970 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2971 
2972 /**
2973  * set_dma_reserve - set the specified number of pages reserved in the first zone
2974  * @new_dma_reserve: The number of pages to mark reserved
2975  *
2976  * The per-cpu batchsize and zone watermarks are determined by present_pages.
2977  * In the DMA zone, a significant percentage may be consumed by kernel image
2978  * and other unfreeable allocations which can skew the watermarks badly. This
2979  * function may optionally be used to account for unfreeable pages in the
2980  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2981  * smaller per-cpu batchsize.
2982  */
2983 void __init set_dma_reserve(unsigned long new_dma_reserve)
2984 {
2985 	dma_reserve = new_dma_reserve;
2986 }
2987 
2988 #ifndef CONFIG_NEED_MULTIPLE_NODES
2989 static bootmem_data_t contig_bootmem_data;
2990 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2991 
2992 EXPORT_SYMBOL(contig_page_data);
2993 #endif
2994 
2995 void __init free_area_init(unsigned long *zones_size)
2996 {
2997 	free_area_init_node(0, NODE_DATA(0), zones_size,
2998 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2999 }
3000 
3001 static int page_alloc_cpu_notify(struct notifier_block *self,
3002 				 unsigned long action, void *hcpu)
3003 {
3004 	int cpu = (unsigned long)hcpu;
3005 
3006 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3007 		local_irq_disable();
3008 		__drain_pages(cpu);
3009 		vm_events_fold_cpu(cpu);
3010 		local_irq_enable();
3011 		refresh_cpu_vm_stats(cpu);
3012 	}
3013 	return NOTIFY_OK;
3014 }
3015 
3016 void __init page_alloc_init(void)
3017 {
3018 	hotcpu_notifier(page_alloc_cpu_notify, 0);
3019 }
3020 
3021 /*
3022  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3023  *	or min_free_kbytes changes.
3024  */
3025 static void calculate_totalreserve_pages(void)
3026 {
3027 	struct pglist_data *pgdat;
3028 	unsigned long reserve_pages = 0;
3029 	enum zone_type i, j;
3030 
3031 	for_each_online_pgdat(pgdat) {
3032 		for (i = 0; i < MAX_NR_ZONES; i++) {
3033 			struct zone *zone = pgdat->node_zones + i;
3034 			unsigned long max = 0;
3035 
3036 			/* Find valid and maximum lowmem_reserve in the zone */
3037 			for (j = i; j < MAX_NR_ZONES; j++) {
3038 				if (zone->lowmem_reserve[j] > max)
3039 					max = zone->lowmem_reserve[j];
3040 			}
3041 
3042 			/* we treat pages_high as reserved pages. */
3043 			max += zone->pages_high;
3044 
3045 			if (max > zone->present_pages)
3046 				max = zone->present_pages;
3047 			reserve_pages += max;
3048 		}
3049 	}
3050 	totalreserve_pages = reserve_pages;
3051 }
3052 
3053 /*
3054  * setup_per_zone_lowmem_reserve - called whenever
3055  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
3056  *	has a correct pages reserved value, so an adequate number of
3057  *	pages are left in the zone after a successful __alloc_pages().
3058  */
3059 static void setup_per_zone_lowmem_reserve(void)
3060 {
3061 	struct pglist_data *pgdat;
3062 	enum zone_type j, idx;
3063 
3064 	for_each_online_pgdat(pgdat) {
3065 		for (j = 0; j < MAX_NR_ZONES; j++) {
3066 			struct zone *zone = pgdat->node_zones + j;
3067 			unsigned long present_pages = zone->present_pages;
3068 
3069 			zone->lowmem_reserve[j] = 0;
3070 
3071 			idx = j;
3072 			while (idx) {
3073 				struct zone *lower_zone;
3074 
3075 				idx--;
3076 
3077 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
3078 					sysctl_lowmem_reserve_ratio[idx] = 1;
3079 
3080 				lower_zone = pgdat->node_zones + idx;
3081 				lower_zone->lowmem_reserve[j] = present_pages /
3082 					sysctl_lowmem_reserve_ratio[idx];
3083 				present_pages += lower_zone->present_pages;
3084 			}
3085 		}
3086 	}
3087 
3088 	/* update totalreserve_pages */
3089 	calculate_totalreserve_pages();
3090 }
3091 
3092 /**
3093  * setup_per_zone_pages_min - called when min_free_kbytes changes.
3094  *
3095  * Ensures that the pages_{min,low,high} values for each zone are set correctly
3096  * with respect to min_free_kbytes.
3097  */
3098 void setup_per_zone_pages_min(void)
3099 {
3100 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3101 	unsigned long lowmem_pages = 0;
3102 	struct zone *zone;
3103 	unsigned long flags;
3104 
3105 	/* Calculate total number of !ZONE_HIGHMEM pages */
3106 	for_each_zone(zone) {
3107 		if (!is_highmem(zone))
3108 			lowmem_pages += zone->present_pages;
3109 	}
3110 
3111 	for_each_zone(zone) {
3112 		u64 tmp;
3113 
3114 		spin_lock_irqsave(&zone->lru_lock, flags);
3115 		tmp = (u64)pages_min * zone->present_pages;
3116 		do_div(tmp, lowmem_pages);
3117 		if (is_highmem(zone)) {
3118 			/*
3119 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3120 			 * need highmem pages, so cap pages_min to a small
3121 			 * value here.
3122 			 *
3123 			 * The (pages_high-pages_low) and (pages_low-pages_min)
3124 			 * deltas controls asynch page reclaim, and so should
3125 			 * not be capped for highmem.
3126 			 */
3127 			int min_pages;
3128 
3129 			min_pages = zone->present_pages / 1024;
3130 			if (min_pages < SWAP_CLUSTER_MAX)
3131 				min_pages = SWAP_CLUSTER_MAX;
3132 			if (min_pages > 128)
3133 				min_pages = 128;
3134 			zone->pages_min = min_pages;
3135 		} else {
3136 			/*
3137 			 * If it's a lowmem zone, reserve a number of pages
3138 			 * proportionate to the zone's size.
3139 			 */
3140 			zone->pages_min = tmp;
3141 		}
3142 
3143 		zone->pages_low   = zone->pages_min + (tmp >> 2);
3144 		zone->pages_high  = zone->pages_min + (tmp >> 1);
3145 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3146 	}
3147 
3148 	/* update totalreserve_pages */
3149 	calculate_totalreserve_pages();
3150 }
3151 
3152 /*
3153  * Initialise min_free_kbytes.
3154  *
3155  * For small machines we want it small (128k min).  For large machines
3156  * we want it large (64MB max).  But it is not linear, because network
3157  * bandwidth does not increase linearly with machine size.  We use
3158  *
3159  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3160  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
3161  *
3162  * which yields
3163  *
3164  * 16MB:	512k
3165  * 32MB:	724k
3166  * 64MB:	1024k
3167  * 128MB:	1448k
3168  * 256MB:	2048k
3169  * 512MB:	2896k
3170  * 1024MB:	4096k
3171  * 2048MB:	5792k
3172  * 4096MB:	8192k
3173  * 8192MB:	11584k
3174  * 16384MB:	16384k
3175  */
3176 static int __init init_per_zone_pages_min(void)
3177 {
3178 	unsigned long lowmem_kbytes;
3179 
3180 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3181 
3182 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3183 	if (min_free_kbytes < 128)
3184 		min_free_kbytes = 128;
3185 	if (min_free_kbytes > 65536)
3186 		min_free_kbytes = 65536;
3187 	setup_per_zone_pages_min();
3188 	setup_per_zone_lowmem_reserve();
3189 	return 0;
3190 }
3191 module_init(init_per_zone_pages_min)
3192 
3193 /*
3194  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3195  *	that we can call two helper functions whenever min_free_kbytes
3196  *	changes.
3197  */
3198 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3199 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3200 {
3201 	proc_dointvec(table, write, file, buffer, length, ppos);
3202 	if (write)
3203 		setup_per_zone_pages_min();
3204 	return 0;
3205 }
3206 
3207 #ifdef CONFIG_NUMA
3208 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3209 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3210 {
3211 	struct zone *zone;
3212 	int rc;
3213 
3214 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3215 	if (rc)
3216 		return rc;
3217 
3218 	for_each_zone(zone)
3219 		zone->min_unmapped_pages = (zone->present_pages *
3220 				sysctl_min_unmapped_ratio) / 100;
3221 	return 0;
3222 }
3223 
3224 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3225 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3226 {
3227 	struct zone *zone;
3228 	int rc;
3229 
3230 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3231 	if (rc)
3232 		return rc;
3233 
3234 	for_each_zone(zone)
3235 		zone->min_slab_pages = (zone->present_pages *
3236 				sysctl_min_slab_ratio) / 100;
3237 	return 0;
3238 }
3239 #endif
3240 
3241 /*
3242  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3243  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3244  *	whenever sysctl_lowmem_reserve_ratio changes.
3245  *
3246  * The reserve ratio obviously has absolutely no relation with the
3247  * pages_min watermarks. The lowmem reserve ratio can only make sense
3248  * if in function of the boot time zone sizes.
3249  */
3250 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3251 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3252 {
3253 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3254 	setup_per_zone_lowmem_reserve();
3255 	return 0;
3256 }
3257 
3258 /*
3259  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3260  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
3261  * can have before it gets flushed back to buddy allocator.
3262  */
3263 
3264 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3265 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3266 {
3267 	struct zone *zone;
3268 	unsigned int cpu;
3269 	int ret;
3270 
3271 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3272 	if (!write || (ret == -EINVAL))
3273 		return ret;
3274 	for_each_zone(zone) {
3275 		for_each_online_cpu(cpu) {
3276 			unsigned long  high;
3277 			high = zone->present_pages / percpu_pagelist_fraction;
3278 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3279 		}
3280 	}
3281 	return 0;
3282 }
3283 
3284 int hashdist = HASHDIST_DEFAULT;
3285 
3286 #ifdef CONFIG_NUMA
3287 static int __init set_hashdist(char *str)
3288 {
3289 	if (!str)
3290 		return 0;
3291 	hashdist = simple_strtoul(str, &str, 0);
3292 	return 1;
3293 }
3294 __setup("hashdist=", set_hashdist);
3295 #endif
3296 
3297 /*
3298  * allocate a large system hash table from bootmem
3299  * - it is assumed that the hash table must contain an exact power-of-2
3300  *   quantity of entries
3301  * - limit is the number of hash buckets, not the total allocation size
3302  */
3303 void *__init alloc_large_system_hash(const char *tablename,
3304 				     unsigned long bucketsize,
3305 				     unsigned long numentries,
3306 				     int scale,
3307 				     int flags,
3308 				     unsigned int *_hash_shift,
3309 				     unsigned int *_hash_mask,
3310 				     unsigned long limit)
3311 {
3312 	unsigned long long max = limit;
3313 	unsigned long log2qty, size;
3314 	void *table = NULL;
3315 
3316 	/* allow the kernel cmdline to have a say */
3317 	if (!numentries) {
3318 		/* round applicable memory size up to nearest megabyte */
3319 		numentries = nr_kernel_pages;
3320 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3321 		numentries >>= 20 - PAGE_SHIFT;
3322 		numentries <<= 20 - PAGE_SHIFT;
3323 
3324 		/* limit to 1 bucket per 2^scale bytes of low memory */
3325 		if (scale > PAGE_SHIFT)
3326 			numentries >>= (scale - PAGE_SHIFT);
3327 		else
3328 			numentries <<= (PAGE_SHIFT - scale);
3329 
3330 		/* Make sure we've got at least a 0-order allocation.. */
3331 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3332 			numentries = PAGE_SIZE / bucketsize;
3333 	}
3334 	numentries = roundup_pow_of_two(numentries);
3335 
3336 	/* limit allocation size to 1/16 total memory by default */
3337 	if (max == 0) {
3338 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3339 		do_div(max, bucketsize);
3340 	}
3341 
3342 	if (numentries > max)
3343 		numentries = max;
3344 
3345 	log2qty = ilog2(numentries);
3346 
3347 	do {
3348 		size = bucketsize << log2qty;
3349 		if (flags & HASH_EARLY)
3350 			table = alloc_bootmem(size);
3351 		else if (hashdist)
3352 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3353 		else {
3354 			unsigned long order;
3355 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3356 				;
3357 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
3358 		}
3359 	} while (!table && size > PAGE_SIZE && --log2qty);
3360 
3361 	if (!table)
3362 		panic("Failed to allocate %s hash table\n", tablename);
3363 
3364 	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3365 	       tablename,
3366 	       (1U << log2qty),
3367 	       ilog2(size) - PAGE_SHIFT,
3368 	       size);
3369 
3370 	if (_hash_shift)
3371 		*_hash_shift = log2qty;
3372 	if (_hash_mask)
3373 		*_hash_mask = (1 << log2qty) - 1;
3374 
3375 	return table;
3376 }
3377 
3378 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3379 struct page *pfn_to_page(unsigned long pfn)
3380 {
3381 	return __pfn_to_page(pfn);
3382 }
3383 unsigned long page_to_pfn(struct page *page)
3384 {
3385 	return __page_to_pfn(page);
3386 }
3387 EXPORT_SYMBOL(pfn_to_page);
3388 EXPORT_SYMBOL(page_to_pfn);
3389 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3390 
3391 
3392