1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/oom.h> 34 #include <linux/notifier.h> 35 #include <linux/topology.h> 36 #include <linux/sysctl.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/memory_hotplug.h> 40 #include <linux/nodemask.h> 41 #include <linux/vmalloc.h> 42 #include <linux/mempolicy.h> 43 #include <linux/stop_machine.h> 44 #include <linux/sort.h> 45 #include <linux/pfn.h> 46 #include <linux/backing-dev.h> 47 #include <linux/fault-inject.h> 48 #include <linux/page-isolation.h> 49 #include <linux/page_cgroup.h> 50 #include <linux/debugobjects.h> 51 #include <linux/kmemleak.h> 52 #include <linux/memory.h> 53 #include <linux/compaction.h> 54 #include <trace/events/kmem.h> 55 #include <linux/ftrace_event.h> 56 57 #include <asm/tlbflush.h> 58 #include <asm/div64.h> 59 #include "internal.h" 60 61 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 62 DEFINE_PER_CPU(int, numa_node); 63 EXPORT_PER_CPU_SYMBOL(numa_node); 64 #endif 65 66 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 67 /* 68 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 69 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 70 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 71 * defined in <linux/topology.h>. 72 */ 73 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 74 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 75 #endif 76 77 /* 78 * Array of node states. 79 */ 80 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 81 [N_POSSIBLE] = NODE_MASK_ALL, 82 [N_ONLINE] = { { [0] = 1UL } }, 83 #ifndef CONFIG_NUMA 84 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 85 #ifdef CONFIG_HIGHMEM 86 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 87 #endif 88 [N_CPU] = { { [0] = 1UL } }, 89 #endif /* NUMA */ 90 }; 91 EXPORT_SYMBOL(node_states); 92 93 unsigned long totalram_pages __read_mostly; 94 unsigned long totalreserve_pages __read_mostly; 95 int percpu_pagelist_fraction; 96 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 97 98 #ifdef CONFIG_PM_SLEEP 99 /* 100 * The following functions are used by the suspend/hibernate code to temporarily 101 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 102 * while devices are suspended. To avoid races with the suspend/hibernate code, 103 * they should always be called with pm_mutex held (gfp_allowed_mask also should 104 * only be modified with pm_mutex held, unless the suspend/hibernate code is 105 * guaranteed not to run in parallel with that modification). 106 */ 107 108 static gfp_t saved_gfp_mask; 109 110 void pm_restore_gfp_mask(void) 111 { 112 WARN_ON(!mutex_is_locked(&pm_mutex)); 113 if (saved_gfp_mask) { 114 gfp_allowed_mask = saved_gfp_mask; 115 saved_gfp_mask = 0; 116 } 117 } 118 119 void pm_restrict_gfp_mask(void) 120 { 121 WARN_ON(!mutex_is_locked(&pm_mutex)); 122 WARN_ON(saved_gfp_mask); 123 saved_gfp_mask = gfp_allowed_mask; 124 gfp_allowed_mask &= ~GFP_IOFS; 125 } 126 #endif /* CONFIG_PM_SLEEP */ 127 128 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 129 int pageblock_order __read_mostly; 130 #endif 131 132 static void __free_pages_ok(struct page *page, unsigned int order); 133 134 /* 135 * results with 256, 32 in the lowmem_reserve sysctl: 136 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 137 * 1G machine -> (16M dma, 784M normal, 224M high) 138 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 139 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 140 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 141 * 142 * TBD: should special case ZONE_DMA32 machines here - in those we normally 143 * don't need any ZONE_NORMAL reservation 144 */ 145 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 146 #ifdef CONFIG_ZONE_DMA 147 256, 148 #endif 149 #ifdef CONFIG_ZONE_DMA32 150 256, 151 #endif 152 #ifdef CONFIG_HIGHMEM 153 32, 154 #endif 155 32, 156 }; 157 158 EXPORT_SYMBOL(totalram_pages); 159 160 static char * const zone_names[MAX_NR_ZONES] = { 161 #ifdef CONFIG_ZONE_DMA 162 "DMA", 163 #endif 164 #ifdef CONFIG_ZONE_DMA32 165 "DMA32", 166 #endif 167 "Normal", 168 #ifdef CONFIG_HIGHMEM 169 "HighMem", 170 #endif 171 "Movable", 172 }; 173 174 int min_free_kbytes = 1024; 175 176 static unsigned long __meminitdata nr_kernel_pages; 177 static unsigned long __meminitdata nr_all_pages; 178 static unsigned long __meminitdata dma_reserve; 179 180 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 181 /* 182 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 183 * ranges of memory (RAM) that may be registered with add_active_range(). 184 * Ranges passed to add_active_range() will be merged if possible 185 * so the number of times add_active_range() can be called is 186 * related to the number of nodes and the number of holes 187 */ 188 #ifdef CONFIG_MAX_ACTIVE_REGIONS 189 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 190 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 191 #else 192 #if MAX_NUMNODES >= 32 193 /* If there can be many nodes, allow up to 50 holes per node */ 194 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 195 #else 196 /* By default, allow up to 256 distinct regions */ 197 #define MAX_ACTIVE_REGIONS 256 198 #endif 199 #endif 200 201 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 202 static int __meminitdata nr_nodemap_entries; 203 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 204 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 205 static unsigned long __initdata required_kernelcore; 206 static unsigned long __initdata required_movablecore; 207 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 208 209 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 210 int movable_zone; 211 EXPORT_SYMBOL(movable_zone); 212 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 213 214 #if MAX_NUMNODES > 1 215 int nr_node_ids __read_mostly = MAX_NUMNODES; 216 int nr_online_nodes __read_mostly = 1; 217 EXPORT_SYMBOL(nr_node_ids); 218 EXPORT_SYMBOL(nr_online_nodes); 219 #endif 220 221 int page_group_by_mobility_disabled __read_mostly; 222 223 static void set_pageblock_migratetype(struct page *page, int migratetype) 224 { 225 226 if (unlikely(page_group_by_mobility_disabled)) 227 migratetype = MIGRATE_UNMOVABLE; 228 229 set_pageblock_flags_group(page, (unsigned long)migratetype, 230 PB_migrate, PB_migrate_end); 231 } 232 233 bool oom_killer_disabled __read_mostly; 234 235 #ifdef CONFIG_DEBUG_VM 236 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 237 { 238 int ret = 0; 239 unsigned seq; 240 unsigned long pfn = page_to_pfn(page); 241 242 do { 243 seq = zone_span_seqbegin(zone); 244 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 245 ret = 1; 246 else if (pfn < zone->zone_start_pfn) 247 ret = 1; 248 } while (zone_span_seqretry(zone, seq)); 249 250 return ret; 251 } 252 253 static int page_is_consistent(struct zone *zone, struct page *page) 254 { 255 if (!pfn_valid_within(page_to_pfn(page))) 256 return 0; 257 if (zone != page_zone(page)) 258 return 0; 259 260 return 1; 261 } 262 /* 263 * Temporary debugging check for pages not lying within a given zone. 264 */ 265 static int bad_range(struct zone *zone, struct page *page) 266 { 267 if (page_outside_zone_boundaries(zone, page)) 268 return 1; 269 if (!page_is_consistent(zone, page)) 270 return 1; 271 272 return 0; 273 } 274 #else 275 static inline int bad_range(struct zone *zone, struct page *page) 276 { 277 return 0; 278 } 279 #endif 280 281 static void bad_page(struct page *page) 282 { 283 static unsigned long resume; 284 static unsigned long nr_shown; 285 static unsigned long nr_unshown; 286 287 /* Don't complain about poisoned pages */ 288 if (PageHWPoison(page)) { 289 __ClearPageBuddy(page); 290 return; 291 } 292 293 /* 294 * Allow a burst of 60 reports, then keep quiet for that minute; 295 * or allow a steady drip of one report per second. 296 */ 297 if (nr_shown == 60) { 298 if (time_before(jiffies, resume)) { 299 nr_unshown++; 300 goto out; 301 } 302 if (nr_unshown) { 303 printk(KERN_ALERT 304 "BUG: Bad page state: %lu messages suppressed\n", 305 nr_unshown); 306 nr_unshown = 0; 307 } 308 nr_shown = 0; 309 } 310 if (nr_shown++ == 0) 311 resume = jiffies + 60 * HZ; 312 313 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 314 current->comm, page_to_pfn(page)); 315 dump_page(page); 316 317 dump_stack(); 318 out: 319 /* Leave bad fields for debug, except PageBuddy could make trouble */ 320 __ClearPageBuddy(page); 321 add_taint(TAINT_BAD_PAGE); 322 } 323 324 /* 325 * Higher-order pages are called "compound pages". They are structured thusly: 326 * 327 * The first PAGE_SIZE page is called the "head page". 328 * 329 * The remaining PAGE_SIZE pages are called "tail pages". 330 * 331 * All pages have PG_compound set. All pages have their ->private pointing at 332 * the head page (even the head page has this). 333 * 334 * The first tail page's ->lru.next holds the address of the compound page's 335 * put_page() function. Its ->lru.prev holds the order of allocation. 336 * This usage means that zero-order pages may not be compound. 337 */ 338 339 static void free_compound_page(struct page *page) 340 { 341 __free_pages_ok(page, compound_order(page)); 342 } 343 344 void prep_compound_page(struct page *page, unsigned long order) 345 { 346 int i; 347 int nr_pages = 1 << order; 348 349 set_compound_page_dtor(page, free_compound_page); 350 set_compound_order(page, order); 351 __SetPageHead(page); 352 for (i = 1; i < nr_pages; i++) { 353 struct page *p = page + i; 354 355 __SetPageTail(p); 356 p->first_page = page; 357 } 358 } 359 360 static int destroy_compound_page(struct page *page, unsigned long order) 361 { 362 int i; 363 int nr_pages = 1 << order; 364 int bad = 0; 365 366 if (unlikely(compound_order(page) != order) || 367 unlikely(!PageHead(page))) { 368 bad_page(page); 369 bad++; 370 } 371 372 __ClearPageHead(page); 373 374 for (i = 1; i < nr_pages; i++) { 375 struct page *p = page + i; 376 377 if (unlikely(!PageTail(p) || (p->first_page != page))) { 378 bad_page(page); 379 bad++; 380 } 381 __ClearPageTail(p); 382 } 383 384 return bad; 385 } 386 387 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 388 { 389 int i; 390 391 /* 392 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 393 * and __GFP_HIGHMEM from hard or soft interrupt context. 394 */ 395 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 396 for (i = 0; i < (1 << order); i++) 397 clear_highpage(page + i); 398 } 399 400 static inline void set_page_order(struct page *page, int order) 401 { 402 set_page_private(page, order); 403 __SetPageBuddy(page); 404 } 405 406 static inline void rmv_page_order(struct page *page) 407 { 408 __ClearPageBuddy(page); 409 set_page_private(page, 0); 410 } 411 412 /* 413 * Locate the struct page for both the matching buddy in our 414 * pair (buddy1) and the combined O(n+1) page they form (page). 415 * 416 * 1) Any buddy B1 will have an order O twin B2 which satisfies 417 * the following equation: 418 * B2 = B1 ^ (1 << O) 419 * For example, if the starting buddy (buddy2) is #8 its order 420 * 1 buddy is #10: 421 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 422 * 423 * 2) Any buddy B will have an order O+1 parent P which 424 * satisfies the following equation: 425 * P = B & ~(1 << O) 426 * 427 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 428 */ 429 static inline struct page * 430 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 431 { 432 unsigned long buddy_idx = page_idx ^ (1 << order); 433 434 return page + (buddy_idx - page_idx); 435 } 436 437 static inline unsigned long 438 __find_combined_index(unsigned long page_idx, unsigned int order) 439 { 440 return (page_idx & ~(1 << order)); 441 } 442 443 /* 444 * This function checks whether a page is free && is the buddy 445 * we can do coalesce a page and its buddy if 446 * (a) the buddy is not in a hole && 447 * (b) the buddy is in the buddy system && 448 * (c) a page and its buddy have the same order && 449 * (d) a page and its buddy are in the same zone. 450 * 451 * For recording whether a page is in the buddy system, we use PG_buddy. 452 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 453 * 454 * For recording page's order, we use page_private(page). 455 */ 456 static inline int page_is_buddy(struct page *page, struct page *buddy, 457 int order) 458 { 459 if (!pfn_valid_within(page_to_pfn(buddy))) 460 return 0; 461 462 if (page_zone_id(page) != page_zone_id(buddy)) 463 return 0; 464 465 if (PageBuddy(buddy) && page_order(buddy) == order) { 466 VM_BUG_ON(page_count(buddy) != 0); 467 return 1; 468 } 469 return 0; 470 } 471 472 /* 473 * Freeing function for a buddy system allocator. 474 * 475 * The concept of a buddy system is to maintain direct-mapped table 476 * (containing bit values) for memory blocks of various "orders". 477 * The bottom level table contains the map for the smallest allocatable 478 * units of memory (here, pages), and each level above it describes 479 * pairs of units from the levels below, hence, "buddies". 480 * At a high level, all that happens here is marking the table entry 481 * at the bottom level available, and propagating the changes upward 482 * as necessary, plus some accounting needed to play nicely with other 483 * parts of the VM system. 484 * At each level, we keep a list of pages, which are heads of continuous 485 * free pages of length of (1 << order) and marked with PG_buddy. Page's 486 * order is recorded in page_private(page) field. 487 * So when we are allocating or freeing one, we can derive the state of the 488 * other. That is, if we allocate a small block, and both were 489 * free, the remainder of the region must be split into blocks. 490 * If a block is freed, and its buddy is also free, then this 491 * triggers coalescing into a block of larger size. 492 * 493 * -- wli 494 */ 495 496 static inline void __free_one_page(struct page *page, 497 struct zone *zone, unsigned int order, 498 int migratetype) 499 { 500 unsigned long page_idx; 501 unsigned long combined_idx; 502 struct page *buddy; 503 504 if (unlikely(PageCompound(page))) 505 if (unlikely(destroy_compound_page(page, order))) 506 return; 507 508 VM_BUG_ON(migratetype == -1); 509 510 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 511 512 VM_BUG_ON(page_idx & ((1 << order) - 1)); 513 VM_BUG_ON(bad_range(zone, page)); 514 515 while (order < MAX_ORDER-1) { 516 buddy = __page_find_buddy(page, page_idx, order); 517 if (!page_is_buddy(page, buddy, order)) 518 break; 519 520 /* Our buddy is free, merge with it and move up one order. */ 521 list_del(&buddy->lru); 522 zone->free_area[order].nr_free--; 523 rmv_page_order(buddy); 524 combined_idx = __find_combined_index(page_idx, order); 525 page = page + (combined_idx - page_idx); 526 page_idx = combined_idx; 527 order++; 528 } 529 set_page_order(page, order); 530 531 /* 532 * If this is not the largest possible page, check if the buddy 533 * of the next-highest order is free. If it is, it's possible 534 * that pages are being freed that will coalesce soon. In case, 535 * that is happening, add the free page to the tail of the list 536 * so it's less likely to be used soon and more likely to be merged 537 * as a higher order page 538 */ 539 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 540 struct page *higher_page, *higher_buddy; 541 combined_idx = __find_combined_index(page_idx, order); 542 higher_page = page + combined_idx - page_idx; 543 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1); 544 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 545 list_add_tail(&page->lru, 546 &zone->free_area[order].free_list[migratetype]); 547 goto out; 548 } 549 } 550 551 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 552 out: 553 zone->free_area[order].nr_free++; 554 } 555 556 /* 557 * free_page_mlock() -- clean up attempts to free and mlocked() page. 558 * Page should not be on lru, so no need to fix that up. 559 * free_pages_check() will verify... 560 */ 561 static inline void free_page_mlock(struct page *page) 562 { 563 __dec_zone_page_state(page, NR_MLOCK); 564 __count_vm_event(UNEVICTABLE_MLOCKFREED); 565 } 566 567 static inline int free_pages_check(struct page *page) 568 { 569 if (unlikely(page_mapcount(page) | 570 (page->mapping != NULL) | 571 (atomic_read(&page->_count) != 0) | 572 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) { 573 bad_page(page); 574 return 1; 575 } 576 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 577 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 578 return 0; 579 } 580 581 /* 582 * Frees a number of pages from the PCP lists 583 * Assumes all pages on list are in same zone, and of same order. 584 * count is the number of pages to free. 585 * 586 * If the zone was previously in an "all pages pinned" state then look to 587 * see if this freeing clears that state. 588 * 589 * And clear the zone's pages_scanned counter, to hold off the "all pages are 590 * pinned" detection logic. 591 */ 592 static void free_pcppages_bulk(struct zone *zone, int count, 593 struct per_cpu_pages *pcp) 594 { 595 int migratetype = 0; 596 int batch_free = 0; 597 int to_free = count; 598 599 spin_lock(&zone->lock); 600 zone->all_unreclaimable = 0; 601 zone->pages_scanned = 0; 602 603 while (to_free) { 604 struct page *page; 605 struct list_head *list; 606 607 /* 608 * Remove pages from lists in a round-robin fashion. A 609 * batch_free count is maintained that is incremented when an 610 * empty list is encountered. This is so more pages are freed 611 * off fuller lists instead of spinning excessively around empty 612 * lists 613 */ 614 do { 615 batch_free++; 616 if (++migratetype == MIGRATE_PCPTYPES) 617 migratetype = 0; 618 list = &pcp->lists[migratetype]; 619 } while (list_empty(list)); 620 621 do { 622 page = list_entry(list->prev, struct page, lru); 623 /* must delete as __free_one_page list manipulates */ 624 list_del(&page->lru); 625 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 626 __free_one_page(page, zone, 0, page_private(page)); 627 trace_mm_page_pcpu_drain(page, 0, page_private(page)); 628 } while (--to_free && --batch_free && !list_empty(list)); 629 } 630 __mod_zone_page_state(zone, NR_FREE_PAGES, count); 631 spin_unlock(&zone->lock); 632 } 633 634 static void free_one_page(struct zone *zone, struct page *page, int order, 635 int migratetype) 636 { 637 spin_lock(&zone->lock); 638 zone->all_unreclaimable = 0; 639 zone->pages_scanned = 0; 640 641 __free_one_page(page, zone, order, migratetype); 642 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 643 spin_unlock(&zone->lock); 644 } 645 646 static bool free_pages_prepare(struct page *page, unsigned int order) 647 { 648 int i; 649 int bad = 0; 650 651 trace_mm_page_free_direct(page, order); 652 kmemcheck_free_shadow(page, order); 653 654 for (i = 0; i < (1 << order); i++) { 655 struct page *pg = page + i; 656 657 if (PageAnon(pg)) 658 pg->mapping = NULL; 659 bad += free_pages_check(pg); 660 } 661 if (bad) 662 return false; 663 664 if (!PageHighMem(page)) { 665 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 666 debug_check_no_obj_freed(page_address(page), 667 PAGE_SIZE << order); 668 } 669 arch_free_page(page, order); 670 kernel_map_pages(page, 1 << order, 0); 671 672 return true; 673 } 674 675 static void __free_pages_ok(struct page *page, unsigned int order) 676 { 677 unsigned long flags; 678 int wasMlocked = __TestClearPageMlocked(page); 679 680 if (!free_pages_prepare(page, order)) 681 return; 682 683 local_irq_save(flags); 684 if (unlikely(wasMlocked)) 685 free_page_mlock(page); 686 __count_vm_events(PGFREE, 1 << order); 687 free_one_page(page_zone(page), page, order, 688 get_pageblock_migratetype(page)); 689 local_irq_restore(flags); 690 } 691 692 /* 693 * permit the bootmem allocator to evade page validation on high-order frees 694 */ 695 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 696 { 697 if (order == 0) { 698 __ClearPageReserved(page); 699 set_page_count(page, 0); 700 set_page_refcounted(page); 701 __free_page(page); 702 } else { 703 int loop; 704 705 prefetchw(page); 706 for (loop = 0; loop < BITS_PER_LONG; loop++) { 707 struct page *p = &page[loop]; 708 709 if (loop + 1 < BITS_PER_LONG) 710 prefetchw(p + 1); 711 __ClearPageReserved(p); 712 set_page_count(p, 0); 713 } 714 715 set_page_refcounted(page); 716 __free_pages(page, order); 717 } 718 } 719 720 721 /* 722 * The order of subdivision here is critical for the IO subsystem. 723 * Please do not alter this order without good reasons and regression 724 * testing. Specifically, as large blocks of memory are subdivided, 725 * the order in which smaller blocks are delivered depends on the order 726 * they're subdivided in this function. This is the primary factor 727 * influencing the order in which pages are delivered to the IO 728 * subsystem according to empirical testing, and this is also justified 729 * by considering the behavior of a buddy system containing a single 730 * large block of memory acted on by a series of small allocations. 731 * This behavior is a critical factor in sglist merging's success. 732 * 733 * -- wli 734 */ 735 static inline void expand(struct zone *zone, struct page *page, 736 int low, int high, struct free_area *area, 737 int migratetype) 738 { 739 unsigned long size = 1 << high; 740 741 while (high > low) { 742 area--; 743 high--; 744 size >>= 1; 745 VM_BUG_ON(bad_range(zone, &page[size])); 746 list_add(&page[size].lru, &area->free_list[migratetype]); 747 area->nr_free++; 748 set_page_order(&page[size], high); 749 } 750 } 751 752 /* 753 * This page is about to be returned from the page allocator 754 */ 755 static inline int check_new_page(struct page *page) 756 { 757 if (unlikely(page_mapcount(page) | 758 (page->mapping != NULL) | 759 (atomic_read(&page->_count) != 0) | 760 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) { 761 bad_page(page); 762 return 1; 763 } 764 return 0; 765 } 766 767 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 768 { 769 int i; 770 771 for (i = 0; i < (1 << order); i++) { 772 struct page *p = page + i; 773 if (unlikely(check_new_page(p))) 774 return 1; 775 } 776 777 set_page_private(page, 0); 778 set_page_refcounted(page); 779 780 arch_alloc_page(page, order); 781 kernel_map_pages(page, 1 << order, 1); 782 783 if (gfp_flags & __GFP_ZERO) 784 prep_zero_page(page, order, gfp_flags); 785 786 if (order && (gfp_flags & __GFP_COMP)) 787 prep_compound_page(page, order); 788 789 return 0; 790 } 791 792 /* 793 * Go through the free lists for the given migratetype and remove 794 * the smallest available page from the freelists 795 */ 796 static inline 797 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 798 int migratetype) 799 { 800 unsigned int current_order; 801 struct free_area * area; 802 struct page *page; 803 804 /* Find a page of the appropriate size in the preferred list */ 805 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 806 area = &(zone->free_area[current_order]); 807 if (list_empty(&area->free_list[migratetype])) 808 continue; 809 810 page = list_entry(area->free_list[migratetype].next, 811 struct page, lru); 812 list_del(&page->lru); 813 rmv_page_order(page); 814 area->nr_free--; 815 expand(zone, page, order, current_order, area, migratetype); 816 return page; 817 } 818 819 return NULL; 820 } 821 822 823 /* 824 * This array describes the order lists are fallen back to when 825 * the free lists for the desirable migrate type are depleted 826 */ 827 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 828 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 829 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 830 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 831 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 832 }; 833 834 /* 835 * Move the free pages in a range to the free lists of the requested type. 836 * Note that start_page and end_pages are not aligned on a pageblock 837 * boundary. If alignment is required, use move_freepages_block() 838 */ 839 static int move_freepages(struct zone *zone, 840 struct page *start_page, struct page *end_page, 841 int migratetype) 842 { 843 struct page *page; 844 unsigned long order; 845 int pages_moved = 0; 846 847 #ifndef CONFIG_HOLES_IN_ZONE 848 /* 849 * page_zone is not safe to call in this context when 850 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 851 * anyway as we check zone boundaries in move_freepages_block(). 852 * Remove at a later date when no bug reports exist related to 853 * grouping pages by mobility 854 */ 855 BUG_ON(page_zone(start_page) != page_zone(end_page)); 856 #endif 857 858 for (page = start_page; page <= end_page;) { 859 /* Make sure we are not inadvertently changing nodes */ 860 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 861 862 if (!pfn_valid_within(page_to_pfn(page))) { 863 page++; 864 continue; 865 } 866 867 if (!PageBuddy(page)) { 868 page++; 869 continue; 870 } 871 872 order = page_order(page); 873 list_del(&page->lru); 874 list_add(&page->lru, 875 &zone->free_area[order].free_list[migratetype]); 876 page += 1 << order; 877 pages_moved += 1 << order; 878 } 879 880 return pages_moved; 881 } 882 883 static int move_freepages_block(struct zone *zone, struct page *page, 884 int migratetype) 885 { 886 unsigned long start_pfn, end_pfn; 887 struct page *start_page, *end_page; 888 889 start_pfn = page_to_pfn(page); 890 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 891 start_page = pfn_to_page(start_pfn); 892 end_page = start_page + pageblock_nr_pages - 1; 893 end_pfn = start_pfn + pageblock_nr_pages - 1; 894 895 /* Do not cross zone boundaries */ 896 if (start_pfn < zone->zone_start_pfn) 897 start_page = page; 898 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 899 return 0; 900 901 return move_freepages(zone, start_page, end_page, migratetype); 902 } 903 904 static void change_pageblock_range(struct page *pageblock_page, 905 int start_order, int migratetype) 906 { 907 int nr_pageblocks = 1 << (start_order - pageblock_order); 908 909 while (nr_pageblocks--) { 910 set_pageblock_migratetype(pageblock_page, migratetype); 911 pageblock_page += pageblock_nr_pages; 912 } 913 } 914 915 /* Remove an element from the buddy allocator from the fallback list */ 916 static inline struct page * 917 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 918 { 919 struct free_area * area; 920 int current_order; 921 struct page *page; 922 int migratetype, i; 923 924 /* Find the largest possible block of pages in the other list */ 925 for (current_order = MAX_ORDER-1; current_order >= order; 926 --current_order) { 927 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 928 migratetype = fallbacks[start_migratetype][i]; 929 930 /* MIGRATE_RESERVE handled later if necessary */ 931 if (migratetype == MIGRATE_RESERVE) 932 continue; 933 934 area = &(zone->free_area[current_order]); 935 if (list_empty(&area->free_list[migratetype])) 936 continue; 937 938 page = list_entry(area->free_list[migratetype].next, 939 struct page, lru); 940 area->nr_free--; 941 942 /* 943 * If breaking a large block of pages, move all free 944 * pages to the preferred allocation list. If falling 945 * back for a reclaimable kernel allocation, be more 946 * agressive about taking ownership of free pages 947 */ 948 if (unlikely(current_order >= (pageblock_order >> 1)) || 949 start_migratetype == MIGRATE_RECLAIMABLE || 950 page_group_by_mobility_disabled) { 951 unsigned long pages; 952 pages = move_freepages_block(zone, page, 953 start_migratetype); 954 955 /* Claim the whole block if over half of it is free */ 956 if (pages >= (1 << (pageblock_order-1)) || 957 page_group_by_mobility_disabled) 958 set_pageblock_migratetype(page, 959 start_migratetype); 960 961 migratetype = start_migratetype; 962 } 963 964 /* Remove the page from the freelists */ 965 list_del(&page->lru); 966 rmv_page_order(page); 967 968 /* Take ownership for orders >= pageblock_order */ 969 if (current_order >= pageblock_order) 970 change_pageblock_range(page, current_order, 971 start_migratetype); 972 973 expand(zone, page, order, current_order, area, migratetype); 974 975 trace_mm_page_alloc_extfrag(page, order, current_order, 976 start_migratetype, migratetype); 977 978 return page; 979 } 980 } 981 982 return NULL; 983 } 984 985 /* 986 * Do the hard work of removing an element from the buddy allocator. 987 * Call me with the zone->lock already held. 988 */ 989 static struct page *__rmqueue(struct zone *zone, unsigned int order, 990 int migratetype) 991 { 992 struct page *page; 993 994 retry_reserve: 995 page = __rmqueue_smallest(zone, order, migratetype); 996 997 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 998 page = __rmqueue_fallback(zone, order, migratetype); 999 1000 /* 1001 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1002 * is used because __rmqueue_smallest is an inline function 1003 * and we want just one call site 1004 */ 1005 if (!page) { 1006 migratetype = MIGRATE_RESERVE; 1007 goto retry_reserve; 1008 } 1009 } 1010 1011 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1012 return page; 1013 } 1014 1015 /* 1016 * Obtain a specified number of elements from the buddy allocator, all under 1017 * a single hold of the lock, for efficiency. Add them to the supplied list. 1018 * Returns the number of new pages which were placed at *list. 1019 */ 1020 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1021 unsigned long count, struct list_head *list, 1022 int migratetype, int cold) 1023 { 1024 int i; 1025 1026 spin_lock(&zone->lock); 1027 for (i = 0; i < count; ++i) { 1028 struct page *page = __rmqueue(zone, order, migratetype); 1029 if (unlikely(page == NULL)) 1030 break; 1031 1032 /* 1033 * Split buddy pages returned by expand() are received here 1034 * in physical page order. The page is added to the callers and 1035 * list and the list head then moves forward. From the callers 1036 * perspective, the linked list is ordered by page number in 1037 * some conditions. This is useful for IO devices that can 1038 * merge IO requests if the physical pages are ordered 1039 * properly. 1040 */ 1041 if (likely(cold == 0)) 1042 list_add(&page->lru, list); 1043 else 1044 list_add_tail(&page->lru, list); 1045 set_page_private(page, migratetype); 1046 list = &page->lru; 1047 } 1048 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1049 spin_unlock(&zone->lock); 1050 return i; 1051 } 1052 1053 #ifdef CONFIG_NUMA 1054 /* 1055 * Called from the vmstat counter updater to drain pagesets of this 1056 * currently executing processor on remote nodes after they have 1057 * expired. 1058 * 1059 * Note that this function must be called with the thread pinned to 1060 * a single processor. 1061 */ 1062 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1063 { 1064 unsigned long flags; 1065 int to_drain; 1066 1067 local_irq_save(flags); 1068 if (pcp->count >= pcp->batch) 1069 to_drain = pcp->batch; 1070 else 1071 to_drain = pcp->count; 1072 free_pcppages_bulk(zone, to_drain, pcp); 1073 pcp->count -= to_drain; 1074 local_irq_restore(flags); 1075 } 1076 #endif 1077 1078 /* 1079 * Drain pages of the indicated processor. 1080 * 1081 * The processor must either be the current processor and the 1082 * thread pinned to the current processor or a processor that 1083 * is not online. 1084 */ 1085 static void drain_pages(unsigned int cpu) 1086 { 1087 unsigned long flags; 1088 struct zone *zone; 1089 1090 for_each_populated_zone(zone) { 1091 struct per_cpu_pageset *pset; 1092 struct per_cpu_pages *pcp; 1093 1094 local_irq_save(flags); 1095 pset = per_cpu_ptr(zone->pageset, cpu); 1096 1097 pcp = &pset->pcp; 1098 free_pcppages_bulk(zone, pcp->count, pcp); 1099 pcp->count = 0; 1100 local_irq_restore(flags); 1101 } 1102 } 1103 1104 /* 1105 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1106 */ 1107 void drain_local_pages(void *arg) 1108 { 1109 drain_pages(smp_processor_id()); 1110 } 1111 1112 /* 1113 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 1114 */ 1115 void drain_all_pages(void) 1116 { 1117 on_each_cpu(drain_local_pages, NULL, 1); 1118 } 1119 1120 #ifdef CONFIG_HIBERNATION 1121 1122 void mark_free_pages(struct zone *zone) 1123 { 1124 unsigned long pfn, max_zone_pfn; 1125 unsigned long flags; 1126 int order, t; 1127 struct list_head *curr; 1128 1129 if (!zone->spanned_pages) 1130 return; 1131 1132 spin_lock_irqsave(&zone->lock, flags); 1133 1134 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1135 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1136 if (pfn_valid(pfn)) { 1137 struct page *page = pfn_to_page(pfn); 1138 1139 if (!swsusp_page_is_forbidden(page)) 1140 swsusp_unset_page_free(page); 1141 } 1142 1143 for_each_migratetype_order(order, t) { 1144 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1145 unsigned long i; 1146 1147 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1148 for (i = 0; i < (1UL << order); i++) 1149 swsusp_set_page_free(pfn_to_page(pfn + i)); 1150 } 1151 } 1152 spin_unlock_irqrestore(&zone->lock, flags); 1153 } 1154 #endif /* CONFIG_PM */ 1155 1156 /* 1157 * Free a 0-order page 1158 * cold == 1 ? free a cold page : free a hot page 1159 */ 1160 void free_hot_cold_page(struct page *page, int cold) 1161 { 1162 struct zone *zone = page_zone(page); 1163 struct per_cpu_pages *pcp; 1164 unsigned long flags; 1165 int migratetype; 1166 int wasMlocked = __TestClearPageMlocked(page); 1167 1168 if (!free_pages_prepare(page, 0)) 1169 return; 1170 1171 migratetype = get_pageblock_migratetype(page); 1172 set_page_private(page, migratetype); 1173 local_irq_save(flags); 1174 if (unlikely(wasMlocked)) 1175 free_page_mlock(page); 1176 __count_vm_event(PGFREE); 1177 1178 /* 1179 * We only track unmovable, reclaimable and movable on pcp lists. 1180 * Free ISOLATE pages back to the allocator because they are being 1181 * offlined but treat RESERVE as movable pages so we can get those 1182 * areas back if necessary. Otherwise, we may have to free 1183 * excessively into the page allocator 1184 */ 1185 if (migratetype >= MIGRATE_PCPTYPES) { 1186 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1187 free_one_page(zone, page, 0, migratetype); 1188 goto out; 1189 } 1190 migratetype = MIGRATE_MOVABLE; 1191 } 1192 1193 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1194 if (cold) 1195 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1196 else 1197 list_add(&page->lru, &pcp->lists[migratetype]); 1198 pcp->count++; 1199 if (pcp->count >= pcp->high) { 1200 free_pcppages_bulk(zone, pcp->batch, pcp); 1201 pcp->count -= pcp->batch; 1202 } 1203 1204 out: 1205 local_irq_restore(flags); 1206 } 1207 1208 /* 1209 * split_page takes a non-compound higher-order page, and splits it into 1210 * n (1<<order) sub-pages: page[0..n] 1211 * Each sub-page must be freed individually. 1212 * 1213 * Note: this is probably too low level an operation for use in drivers. 1214 * Please consult with lkml before using this in your driver. 1215 */ 1216 void split_page(struct page *page, unsigned int order) 1217 { 1218 int i; 1219 1220 VM_BUG_ON(PageCompound(page)); 1221 VM_BUG_ON(!page_count(page)); 1222 1223 #ifdef CONFIG_KMEMCHECK 1224 /* 1225 * Split shadow pages too, because free(page[0]) would 1226 * otherwise free the whole shadow. 1227 */ 1228 if (kmemcheck_page_is_tracked(page)) 1229 split_page(virt_to_page(page[0].shadow), order); 1230 #endif 1231 1232 for (i = 1; i < (1 << order); i++) 1233 set_page_refcounted(page + i); 1234 } 1235 1236 /* 1237 * Similar to split_page except the page is already free. As this is only 1238 * being used for migration, the migratetype of the block also changes. 1239 * As this is called with interrupts disabled, the caller is responsible 1240 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1241 * are enabled. 1242 * 1243 * Note: this is probably too low level an operation for use in drivers. 1244 * Please consult with lkml before using this in your driver. 1245 */ 1246 int split_free_page(struct page *page) 1247 { 1248 unsigned int order; 1249 unsigned long watermark; 1250 struct zone *zone; 1251 1252 BUG_ON(!PageBuddy(page)); 1253 1254 zone = page_zone(page); 1255 order = page_order(page); 1256 1257 /* Obey watermarks as if the page was being allocated */ 1258 watermark = low_wmark_pages(zone) + (1 << order); 1259 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1260 return 0; 1261 1262 /* Remove page from free list */ 1263 list_del(&page->lru); 1264 zone->free_area[order].nr_free--; 1265 rmv_page_order(page); 1266 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order)); 1267 1268 /* Split into individual pages */ 1269 set_page_refcounted(page); 1270 split_page(page, order); 1271 1272 if (order >= pageblock_order - 1) { 1273 struct page *endpage = page + (1 << order) - 1; 1274 for (; page < endpage; page += pageblock_nr_pages) 1275 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1276 } 1277 1278 return 1 << order; 1279 } 1280 1281 /* 1282 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1283 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1284 * or two. 1285 */ 1286 static inline 1287 struct page *buffered_rmqueue(struct zone *preferred_zone, 1288 struct zone *zone, int order, gfp_t gfp_flags, 1289 int migratetype) 1290 { 1291 unsigned long flags; 1292 struct page *page; 1293 int cold = !!(gfp_flags & __GFP_COLD); 1294 1295 again: 1296 if (likely(order == 0)) { 1297 struct per_cpu_pages *pcp; 1298 struct list_head *list; 1299 1300 local_irq_save(flags); 1301 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1302 list = &pcp->lists[migratetype]; 1303 if (list_empty(list)) { 1304 pcp->count += rmqueue_bulk(zone, 0, 1305 pcp->batch, list, 1306 migratetype, cold); 1307 if (unlikely(list_empty(list))) 1308 goto failed; 1309 } 1310 1311 if (cold) 1312 page = list_entry(list->prev, struct page, lru); 1313 else 1314 page = list_entry(list->next, struct page, lru); 1315 1316 list_del(&page->lru); 1317 pcp->count--; 1318 } else { 1319 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1320 /* 1321 * __GFP_NOFAIL is not to be used in new code. 1322 * 1323 * All __GFP_NOFAIL callers should be fixed so that they 1324 * properly detect and handle allocation failures. 1325 * 1326 * We most definitely don't want callers attempting to 1327 * allocate greater than order-1 page units with 1328 * __GFP_NOFAIL. 1329 */ 1330 WARN_ON_ONCE(order > 1); 1331 } 1332 spin_lock_irqsave(&zone->lock, flags); 1333 page = __rmqueue(zone, order, migratetype); 1334 spin_unlock(&zone->lock); 1335 if (!page) 1336 goto failed; 1337 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1338 } 1339 1340 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1341 zone_statistics(preferred_zone, zone); 1342 local_irq_restore(flags); 1343 1344 VM_BUG_ON(bad_range(zone, page)); 1345 if (prep_new_page(page, order, gfp_flags)) 1346 goto again; 1347 return page; 1348 1349 failed: 1350 local_irq_restore(flags); 1351 return NULL; 1352 } 1353 1354 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1355 #define ALLOC_WMARK_MIN WMARK_MIN 1356 #define ALLOC_WMARK_LOW WMARK_LOW 1357 #define ALLOC_WMARK_HIGH WMARK_HIGH 1358 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1359 1360 /* Mask to get the watermark bits */ 1361 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1362 1363 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1364 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1365 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1366 1367 #ifdef CONFIG_FAIL_PAGE_ALLOC 1368 1369 static struct fail_page_alloc_attr { 1370 struct fault_attr attr; 1371 1372 u32 ignore_gfp_highmem; 1373 u32 ignore_gfp_wait; 1374 u32 min_order; 1375 1376 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1377 1378 struct dentry *ignore_gfp_highmem_file; 1379 struct dentry *ignore_gfp_wait_file; 1380 struct dentry *min_order_file; 1381 1382 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1383 1384 } fail_page_alloc = { 1385 .attr = FAULT_ATTR_INITIALIZER, 1386 .ignore_gfp_wait = 1, 1387 .ignore_gfp_highmem = 1, 1388 .min_order = 1, 1389 }; 1390 1391 static int __init setup_fail_page_alloc(char *str) 1392 { 1393 return setup_fault_attr(&fail_page_alloc.attr, str); 1394 } 1395 __setup("fail_page_alloc=", setup_fail_page_alloc); 1396 1397 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1398 { 1399 if (order < fail_page_alloc.min_order) 1400 return 0; 1401 if (gfp_mask & __GFP_NOFAIL) 1402 return 0; 1403 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1404 return 0; 1405 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1406 return 0; 1407 1408 return should_fail(&fail_page_alloc.attr, 1 << order); 1409 } 1410 1411 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1412 1413 static int __init fail_page_alloc_debugfs(void) 1414 { 1415 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1416 struct dentry *dir; 1417 int err; 1418 1419 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1420 "fail_page_alloc"); 1421 if (err) 1422 return err; 1423 dir = fail_page_alloc.attr.dentries.dir; 1424 1425 fail_page_alloc.ignore_gfp_wait_file = 1426 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1427 &fail_page_alloc.ignore_gfp_wait); 1428 1429 fail_page_alloc.ignore_gfp_highmem_file = 1430 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1431 &fail_page_alloc.ignore_gfp_highmem); 1432 fail_page_alloc.min_order_file = 1433 debugfs_create_u32("min-order", mode, dir, 1434 &fail_page_alloc.min_order); 1435 1436 if (!fail_page_alloc.ignore_gfp_wait_file || 1437 !fail_page_alloc.ignore_gfp_highmem_file || 1438 !fail_page_alloc.min_order_file) { 1439 err = -ENOMEM; 1440 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1441 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1442 debugfs_remove(fail_page_alloc.min_order_file); 1443 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1444 } 1445 1446 return err; 1447 } 1448 1449 late_initcall(fail_page_alloc_debugfs); 1450 1451 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1452 1453 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1454 1455 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1456 { 1457 return 0; 1458 } 1459 1460 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1461 1462 /* 1463 * Return 1 if free pages are above 'mark'. This takes into account the order 1464 * of the allocation. 1465 */ 1466 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1467 int classzone_idx, int alloc_flags) 1468 { 1469 /* free_pages my go negative - that's OK */ 1470 long min = mark; 1471 long free_pages = zone_nr_free_pages(z) - (1 << order) + 1; 1472 int o; 1473 1474 if (alloc_flags & ALLOC_HIGH) 1475 min -= min / 2; 1476 if (alloc_flags & ALLOC_HARDER) 1477 min -= min / 4; 1478 1479 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1480 return 0; 1481 for (o = 0; o < order; o++) { 1482 /* At the next order, this order's pages become unavailable */ 1483 free_pages -= z->free_area[o].nr_free << o; 1484 1485 /* Require fewer higher order pages to be free */ 1486 min >>= 1; 1487 1488 if (free_pages <= min) 1489 return 0; 1490 } 1491 return 1; 1492 } 1493 1494 #ifdef CONFIG_NUMA 1495 /* 1496 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1497 * skip over zones that are not allowed by the cpuset, or that have 1498 * been recently (in last second) found to be nearly full. See further 1499 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1500 * that have to skip over a lot of full or unallowed zones. 1501 * 1502 * If the zonelist cache is present in the passed in zonelist, then 1503 * returns a pointer to the allowed node mask (either the current 1504 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1505 * 1506 * If the zonelist cache is not available for this zonelist, does 1507 * nothing and returns NULL. 1508 * 1509 * If the fullzones BITMAP in the zonelist cache is stale (more than 1510 * a second since last zap'd) then we zap it out (clear its bits.) 1511 * 1512 * We hold off even calling zlc_setup, until after we've checked the 1513 * first zone in the zonelist, on the theory that most allocations will 1514 * be satisfied from that first zone, so best to examine that zone as 1515 * quickly as we can. 1516 */ 1517 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1518 { 1519 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1520 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1521 1522 zlc = zonelist->zlcache_ptr; 1523 if (!zlc) 1524 return NULL; 1525 1526 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1527 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1528 zlc->last_full_zap = jiffies; 1529 } 1530 1531 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1532 &cpuset_current_mems_allowed : 1533 &node_states[N_HIGH_MEMORY]; 1534 return allowednodes; 1535 } 1536 1537 /* 1538 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1539 * if it is worth looking at further for free memory: 1540 * 1) Check that the zone isn't thought to be full (doesn't have its 1541 * bit set in the zonelist_cache fullzones BITMAP). 1542 * 2) Check that the zones node (obtained from the zonelist_cache 1543 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1544 * Return true (non-zero) if zone is worth looking at further, or 1545 * else return false (zero) if it is not. 1546 * 1547 * This check -ignores- the distinction between various watermarks, 1548 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1549 * found to be full for any variation of these watermarks, it will 1550 * be considered full for up to one second by all requests, unless 1551 * we are so low on memory on all allowed nodes that we are forced 1552 * into the second scan of the zonelist. 1553 * 1554 * In the second scan we ignore this zonelist cache and exactly 1555 * apply the watermarks to all zones, even it is slower to do so. 1556 * We are low on memory in the second scan, and should leave no stone 1557 * unturned looking for a free page. 1558 */ 1559 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1560 nodemask_t *allowednodes) 1561 { 1562 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1563 int i; /* index of *z in zonelist zones */ 1564 int n; /* node that zone *z is on */ 1565 1566 zlc = zonelist->zlcache_ptr; 1567 if (!zlc) 1568 return 1; 1569 1570 i = z - zonelist->_zonerefs; 1571 n = zlc->z_to_n[i]; 1572 1573 /* This zone is worth trying if it is allowed but not full */ 1574 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1575 } 1576 1577 /* 1578 * Given 'z' scanning a zonelist, set the corresponding bit in 1579 * zlc->fullzones, so that subsequent attempts to allocate a page 1580 * from that zone don't waste time re-examining it. 1581 */ 1582 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1583 { 1584 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1585 int i; /* index of *z in zonelist zones */ 1586 1587 zlc = zonelist->zlcache_ptr; 1588 if (!zlc) 1589 return; 1590 1591 i = z - zonelist->_zonerefs; 1592 1593 set_bit(i, zlc->fullzones); 1594 } 1595 1596 #else /* CONFIG_NUMA */ 1597 1598 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1599 { 1600 return NULL; 1601 } 1602 1603 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1604 nodemask_t *allowednodes) 1605 { 1606 return 1; 1607 } 1608 1609 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1610 { 1611 } 1612 #endif /* CONFIG_NUMA */ 1613 1614 /* 1615 * get_page_from_freelist goes through the zonelist trying to allocate 1616 * a page. 1617 */ 1618 static struct page * 1619 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1620 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1621 struct zone *preferred_zone, int migratetype) 1622 { 1623 struct zoneref *z; 1624 struct page *page = NULL; 1625 int classzone_idx; 1626 struct zone *zone; 1627 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1628 int zlc_active = 0; /* set if using zonelist_cache */ 1629 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1630 1631 classzone_idx = zone_idx(preferred_zone); 1632 zonelist_scan: 1633 /* 1634 * Scan zonelist, looking for a zone with enough free. 1635 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1636 */ 1637 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1638 high_zoneidx, nodemask) { 1639 if (NUMA_BUILD && zlc_active && 1640 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1641 continue; 1642 if ((alloc_flags & ALLOC_CPUSET) && 1643 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1644 goto try_next_zone; 1645 1646 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1647 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1648 unsigned long mark; 1649 int ret; 1650 1651 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1652 if (zone_watermark_ok(zone, order, mark, 1653 classzone_idx, alloc_flags)) 1654 goto try_this_zone; 1655 1656 if (zone_reclaim_mode == 0) 1657 goto this_zone_full; 1658 1659 ret = zone_reclaim(zone, gfp_mask, order); 1660 switch (ret) { 1661 case ZONE_RECLAIM_NOSCAN: 1662 /* did not scan */ 1663 goto try_next_zone; 1664 case ZONE_RECLAIM_FULL: 1665 /* scanned but unreclaimable */ 1666 goto this_zone_full; 1667 default: 1668 /* did we reclaim enough */ 1669 if (!zone_watermark_ok(zone, order, mark, 1670 classzone_idx, alloc_flags)) 1671 goto this_zone_full; 1672 } 1673 } 1674 1675 try_this_zone: 1676 page = buffered_rmqueue(preferred_zone, zone, order, 1677 gfp_mask, migratetype); 1678 if (page) 1679 break; 1680 this_zone_full: 1681 if (NUMA_BUILD) 1682 zlc_mark_zone_full(zonelist, z); 1683 try_next_zone: 1684 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1685 /* 1686 * we do zlc_setup after the first zone is tried but only 1687 * if there are multiple nodes make it worthwhile 1688 */ 1689 allowednodes = zlc_setup(zonelist, alloc_flags); 1690 zlc_active = 1; 1691 did_zlc_setup = 1; 1692 } 1693 } 1694 1695 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1696 /* Disable zlc cache for second zonelist scan */ 1697 zlc_active = 0; 1698 goto zonelist_scan; 1699 } 1700 return page; 1701 } 1702 1703 static inline int 1704 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 1705 unsigned long pages_reclaimed) 1706 { 1707 /* Do not loop if specifically requested */ 1708 if (gfp_mask & __GFP_NORETRY) 1709 return 0; 1710 1711 /* 1712 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1713 * means __GFP_NOFAIL, but that may not be true in other 1714 * implementations. 1715 */ 1716 if (order <= PAGE_ALLOC_COSTLY_ORDER) 1717 return 1; 1718 1719 /* 1720 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1721 * specified, then we retry until we no longer reclaim any pages 1722 * (above), or we've reclaimed an order of pages at least as 1723 * large as the allocation's order. In both cases, if the 1724 * allocation still fails, we stop retrying. 1725 */ 1726 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 1727 return 1; 1728 1729 /* 1730 * Don't let big-order allocations loop unless the caller 1731 * explicitly requests that. 1732 */ 1733 if (gfp_mask & __GFP_NOFAIL) 1734 return 1; 1735 1736 return 0; 1737 } 1738 1739 static inline struct page * 1740 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 1741 struct zonelist *zonelist, enum zone_type high_zoneidx, 1742 nodemask_t *nodemask, struct zone *preferred_zone, 1743 int migratetype) 1744 { 1745 struct page *page; 1746 1747 /* Acquire the OOM killer lock for the zones in zonelist */ 1748 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 1749 schedule_timeout_uninterruptible(1); 1750 return NULL; 1751 } 1752 1753 /* 1754 * Go through the zonelist yet one more time, keep very high watermark 1755 * here, this is only to catch a parallel oom killing, we must fail if 1756 * we're still under heavy pressure. 1757 */ 1758 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1759 order, zonelist, high_zoneidx, 1760 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 1761 preferred_zone, migratetype); 1762 if (page) 1763 goto out; 1764 1765 if (!(gfp_mask & __GFP_NOFAIL)) { 1766 /* The OOM killer will not help higher order allocs */ 1767 if (order > PAGE_ALLOC_COSTLY_ORDER) 1768 goto out; 1769 /* The OOM killer does not needlessly kill tasks for lowmem */ 1770 if (high_zoneidx < ZONE_NORMAL) 1771 goto out; 1772 /* 1773 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 1774 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 1775 * The caller should handle page allocation failure by itself if 1776 * it specifies __GFP_THISNODE. 1777 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 1778 */ 1779 if (gfp_mask & __GFP_THISNODE) 1780 goto out; 1781 } 1782 /* Exhausted what can be done so it's blamo time */ 1783 out_of_memory(zonelist, gfp_mask, order, nodemask); 1784 1785 out: 1786 clear_zonelist_oom(zonelist, gfp_mask); 1787 return page; 1788 } 1789 1790 #ifdef CONFIG_COMPACTION 1791 /* Try memory compaction for high-order allocations before reclaim */ 1792 static struct page * 1793 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1794 struct zonelist *zonelist, enum zone_type high_zoneidx, 1795 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1796 int migratetype, unsigned long *did_some_progress) 1797 { 1798 struct page *page; 1799 1800 if (!order || compaction_deferred(preferred_zone)) 1801 return NULL; 1802 1803 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 1804 nodemask); 1805 if (*did_some_progress != COMPACT_SKIPPED) { 1806 1807 /* Page migration frees to the PCP lists but we want merging */ 1808 drain_pages(get_cpu()); 1809 put_cpu(); 1810 1811 page = get_page_from_freelist(gfp_mask, nodemask, 1812 order, zonelist, high_zoneidx, 1813 alloc_flags, preferred_zone, 1814 migratetype); 1815 if (page) { 1816 preferred_zone->compact_considered = 0; 1817 preferred_zone->compact_defer_shift = 0; 1818 count_vm_event(COMPACTSUCCESS); 1819 return page; 1820 } 1821 1822 /* 1823 * It's bad if compaction run occurs and fails. 1824 * The most likely reason is that pages exist, 1825 * but not enough to satisfy watermarks. 1826 */ 1827 count_vm_event(COMPACTFAIL); 1828 defer_compaction(preferred_zone); 1829 1830 cond_resched(); 1831 } 1832 1833 return NULL; 1834 } 1835 #else 1836 static inline struct page * 1837 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1838 struct zonelist *zonelist, enum zone_type high_zoneidx, 1839 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1840 int migratetype, unsigned long *did_some_progress) 1841 { 1842 return NULL; 1843 } 1844 #endif /* CONFIG_COMPACTION */ 1845 1846 /* The really slow allocator path where we enter direct reclaim */ 1847 static inline struct page * 1848 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 1849 struct zonelist *zonelist, enum zone_type high_zoneidx, 1850 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1851 int migratetype, unsigned long *did_some_progress) 1852 { 1853 struct page *page = NULL; 1854 struct reclaim_state reclaim_state; 1855 struct task_struct *p = current; 1856 bool drained = false; 1857 1858 cond_resched(); 1859 1860 /* We now go into synchronous reclaim */ 1861 cpuset_memory_pressure_bump(); 1862 p->flags |= PF_MEMALLOC; 1863 lockdep_set_current_reclaim_state(gfp_mask); 1864 reclaim_state.reclaimed_slab = 0; 1865 p->reclaim_state = &reclaim_state; 1866 1867 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 1868 1869 p->reclaim_state = NULL; 1870 lockdep_clear_current_reclaim_state(); 1871 p->flags &= ~PF_MEMALLOC; 1872 1873 cond_resched(); 1874 1875 if (unlikely(!(*did_some_progress))) 1876 return NULL; 1877 1878 retry: 1879 page = get_page_from_freelist(gfp_mask, nodemask, order, 1880 zonelist, high_zoneidx, 1881 alloc_flags, preferred_zone, 1882 migratetype); 1883 1884 /* 1885 * If an allocation failed after direct reclaim, it could be because 1886 * pages are pinned on the per-cpu lists. Drain them and try again 1887 */ 1888 if (!page && !drained) { 1889 drain_all_pages(); 1890 drained = true; 1891 goto retry; 1892 } 1893 1894 return page; 1895 } 1896 1897 /* 1898 * This is called in the allocator slow-path if the allocation request is of 1899 * sufficient urgency to ignore watermarks and take other desperate measures 1900 */ 1901 static inline struct page * 1902 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 1903 struct zonelist *zonelist, enum zone_type high_zoneidx, 1904 nodemask_t *nodemask, struct zone *preferred_zone, 1905 int migratetype) 1906 { 1907 struct page *page; 1908 1909 do { 1910 page = get_page_from_freelist(gfp_mask, nodemask, order, 1911 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 1912 preferred_zone, migratetype); 1913 1914 if (!page && gfp_mask & __GFP_NOFAIL) 1915 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 1916 } while (!page && (gfp_mask & __GFP_NOFAIL)); 1917 1918 return page; 1919 } 1920 1921 static inline 1922 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 1923 enum zone_type high_zoneidx) 1924 { 1925 struct zoneref *z; 1926 struct zone *zone; 1927 1928 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 1929 wakeup_kswapd(zone, order); 1930 } 1931 1932 static inline int 1933 gfp_to_alloc_flags(gfp_t gfp_mask) 1934 { 1935 struct task_struct *p = current; 1936 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 1937 const gfp_t wait = gfp_mask & __GFP_WAIT; 1938 1939 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 1940 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 1941 1942 /* 1943 * The caller may dip into page reserves a bit more if the caller 1944 * cannot run direct reclaim, or if the caller has realtime scheduling 1945 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1946 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1947 */ 1948 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 1949 1950 if (!wait) { 1951 alloc_flags |= ALLOC_HARDER; 1952 /* 1953 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1954 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1955 */ 1956 alloc_flags &= ~ALLOC_CPUSET; 1957 } else if (unlikely(rt_task(p)) && !in_interrupt()) 1958 alloc_flags |= ALLOC_HARDER; 1959 1960 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 1961 if (!in_interrupt() && 1962 ((p->flags & PF_MEMALLOC) || 1963 unlikely(test_thread_flag(TIF_MEMDIE)))) 1964 alloc_flags |= ALLOC_NO_WATERMARKS; 1965 } 1966 1967 return alloc_flags; 1968 } 1969 1970 static inline struct page * 1971 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 1972 struct zonelist *zonelist, enum zone_type high_zoneidx, 1973 nodemask_t *nodemask, struct zone *preferred_zone, 1974 int migratetype) 1975 { 1976 const gfp_t wait = gfp_mask & __GFP_WAIT; 1977 struct page *page = NULL; 1978 int alloc_flags; 1979 unsigned long pages_reclaimed = 0; 1980 unsigned long did_some_progress; 1981 struct task_struct *p = current; 1982 1983 /* 1984 * In the slowpath, we sanity check order to avoid ever trying to 1985 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 1986 * be using allocators in order of preference for an area that is 1987 * too large. 1988 */ 1989 if (order >= MAX_ORDER) { 1990 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 1991 return NULL; 1992 } 1993 1994 /* 1995 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1996 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1997 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1998 * using a larger set of nodes after it has established that the 1999 * allowed per node queues are empty and that nodes are 2000 * over allocated. 2001 */ 2002 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2003 goto nopage; 2004 2005 restart: 2006 wake_all_kswapd(order, zonelist, high_zoneidx); 2007 2008 /* 2009 * OK, we're below the kswapd watermark and have kicked background 2010 * reclaim. Now things get more complex, so set up alloc_flags according 2011 * to how we want to proceed. 2012 */ 2013 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2014 2015 /* This is the last chance, in general, before the goto nopage. */ 2016 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2017 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2018 preferred_zone, migratetype); 2019 if (page) 2020 goto got_pg; 2021 2022 rebalance: 2023 /* Allocate without watermarks if the context allows */ 2024 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2025 page = __alloc_pages_high_priority(gfp_mask, order, 2026 zonelist, high_zoneidx, nodemask, 2027 preferred_zone, migratetype); 2028 if (page) 2029 goto got_pg; 2030 } 2031 2032 /* Atomic allocations - we can't balance anything */ 2033 if (!wait) 2034 goto nopage; 2035 2036 /* Avoid recursion of direct reclaim */ 2037 if (p->flags & PF_MEMALLOC) 2038 goto nopage; 2039 2040 /* Avoid allocations with no watermarks from looping endlessly */ 2041 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2042 goto nopage; 2043 2044 /* Try direct compaction */ 2045 page = __alloc_pages_direct_compact(gfp_mask, order, 2046 zonelist, high_zoneidx, 2047 nodemask, 2048 alloc_flags, preferred_zone, 2049 migratetype, &did_some_progress); 2050 if (page) 2051 goto got_pg; 2052 2053 /* Try direct reclaim and then allocating */ 2054 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2055 zonelist, high_zoneidx, 2056 nodemask, 2057 alloc_flags, preferred_zone, 2058 migratetype, &did_some_progress); 2059 if (page) 2060 goto got_pg; 2061 2062 /* 2063 * If we failed to make any progress reclaiming, then we are 2064 * running out of options and have to consider going OOM 2065 */ 2066 if (!did_some_progress) { 2067 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2068 if (oom_killer_disabled) 2069 goto nopage; 2070 page = __alloc_pages_may_oom(gfp_mask, order, 2071 zonelist, high_zoneidx, 2072 nodemask, preferred_zone, 2073 migratetype); 2074 if (page) 2075 goto got_pg; 2076 2077 if (!(gfp_mask & __GFP_NOFAIL)) { 2078 /* 2079 * The oom killer is not called for high-order 2080 * allocations that may fail, so if no progress 2081 * is being made, there are no other options and 2082 * retrying is unlikely to help. 2083 */ 2084 if (order > PAGE_ALLOC_COSTLY_ORDER) 2085 goto nopage; 2086 /* 2087 * The oom killer is not called for lowmem 2088 * allocations to prevent needlessly killing 2089 * innocent tasks. 2090 */ 2091 if (high_zoneidx < ZONE_NORMAL) 2092 goto nopage; 2093 } 2094 2095 goto restart; 2096 } 2097 } 2098 2099 /* Check if we should retry the allocation */ 2100 pages_reclaimed += did_some_progress; 2101 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) { 2102 /* Wait for some write requests to complete then retry */ 2103 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2104 goto rebalance; 2105 } 2106 2107 nopage: 2108 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 2109 printk(KERN_WARNING "%s: page allocation failure." 2110 " order:%d, mode:0x%x\n", 2111 p->comm, order, gfp_mask); 2112 dump_stack(); 2113 show_mem(); 2114 } 2115 return page; 2116 got_pg: 2117 if (kmemcheck_enabled) 2118 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2119 return page; 2120 2121 } 2122 2123 /* 2124 * This is the 'heart' of the zoned buddy allocator. 2125 */ 2126 struct page * 2127 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2128 struct zonelist *zonelist, nodemask_t *nodemask) 2129 { 2130 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2131 struct zone *preferred_zone; 2132 struct page *page; 2133 int migratetype = allocflags_to_migratetype(gfp_mask); 2134 2135 gfp_mask &= gfp_allowed_mask; 2136 2137 lockdep_trace_alloc(gfp_mask); 2138 2139 might_sleep_if(gfp_mask & __GFP_WAIT); 2140 2141 if (should_fail_alloc_page(gfp_mask, order)) 2142 return NULL; 2143 2144 /* 2145 * Check the zones suitable for the gfp_mask contain at least one 2146 * valid zone. It's possible to have an empty zonelist as a result 2147 * of GFP_THISNODE and a memoryless node 2148 */ 2149 if (unlikely(!zonelist->_zonerefs->zone)) 2150 return NULL; 2151 2152 get_mems_allowed(); 2153 /* The preferred zone is used for statistics later */ 2154 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone); 2155 if (!preferred_zone) { 2156 put_mems_allowed(); 2157 return NULL; 2158 } 2159 2160 /* First allocation attempt */ 2161 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2162 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 2163 preferred_zone, migratetype); 2164 if (unlikely(!page)) 2165 page = __alloc_pages_slowpath(gfp_mask, order, 2166 zonelist, high_zoneidx, nodemask, 2167 preferred_zone, migratetype); 2168 put_mems_allowed(); 2169 2170 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2171 return page; 2172 } 2173 EXPORT_SYMBOL(__alloc_pages_nodemask); 2174 2175 /* 2176 * Common helper functions. 2177 */ 2178 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2179 { 2180 struct page *page; 2181 2182 /* 2183 * __get_free_pages() returns a 32-bit address, which cannot represent 2184 * a highmem page 2185 */ 2186 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2187 2188 page = alloc_pages(gfp_mask, order); 2189 if (!page) 2190 return 0; 2191 return (unsigned long) page_address(page); 2192 } 2193 EXPORT_SYMBOL(__get_free_pages); 2194 2195 unsigned long get_zeroed_page(gfp_t gfp_mask) 2196 { 2197 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2198 } 2199 EXPORT_SYMBOL(get_zeroed_page); 2200 2201 void __pagevec_free(struct pagevec *pvec) 2202 { 2203 int i = pagevec_count(pvec); 2204 2205 while (--i >= 0) { 2206 trace_mm_pagevec_free(pvec->pages[i], pvec->cold); 2207 free_hot_cold_page(pvec->pages[i], pvec->cold); 2208 } 2209 } 2210 2211 void __free_pages(struct page *page, unsigned int order) 2212 { 2213 if (put_page_testzero(page)) { 2214 if (order == 0) 2215 free_hot_cold_page(page, 0); 2216 else 2217 __free_pages_ok(page, order); 2218 } 2219 } 2220 2221 EXPORT_SYMBOL(__free_pages); 2222 2223 void free_pages(unsigned long addr, unsigned int order) 2224 { 2225 if (addr != 0) { 2226 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2227 __free_pages(virt_to_page((void *)addr), order); 2228 } 2229 } 2230 2231 EXPORT_SYMBOL(free_pages); 2232 2233 /** 2234 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2235 * @size: the number of bytes to allocate 2236 * @gfp_mask: GFP flags for the allocation 2237 * 2238 * This function is similar to alloc_pages(), except that it allocates the 2239 * minimum number of pages to satisfy the request. alloc_pages() can only 2240 * allocate memory in power-of-two pages. 2241 * 2242 * This function is also limited by MAX_ORDER. 2243 * 2244 * Memory allocated by this function must be released by free_pages_exact(). 2245 */ 2246 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2247 { 2248 unsigned int order = get_order(size); 2249 unsigned long addr; 2250 2251 addr = __get_free_pages(gfp_mask, order); 2252 if (addr) { 2253 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2254 unsigned long used = addr + PAGE_ALIGN(size); 2255 2256 split_page(virt_to_page((void *)addr), order); 2257 while (used < alloc_end) { 2258 free_page(used); 2259 used += PAGE_SIZE; 2260 } 2261 } 2262 2263 return (void *)addr; 2264 } 2265 EXPORT_SYMBOL(alloc_pages_exact); 2266 2267 /** 2268 * free_pages_exact - release memory allocated via alloc_pages_exact() 2269 * @virt: the value returned by alloc_pages_exact. 2270 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2271 * 2272 * Release the memory allocated by a previous call to alloc_pages_exact. 2273 */ 2274 void free_pages_exact(void *virt, size_t size) 2275 { 2276 unsigned long addr = (unsigned long)virt; 2277 unsigned long end = addr + PAGE_ALIGN(size); 2278 2279 while (addr < end) { 2280 free_page(addr); 2281 addr += PAGE_SIZE; 2282 } 2283 } 2284 EXPORT_SYMBOL(free_pages_exact); 2285 2286 static unsigned int nr_free_zone_pages(int offset) 2287 { 2288 struct zoneref *z; 2289 struct zone *zone; 2290 2291 /* Just pick one node, since fallback list is circular */ 2292 unsigned int sum = 0; 2293 2294 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2295 2296 for_each_zone_zonelist(zone, z, zonelist, offset) { 2297 unsigned long size = zone->present_pages; 2298 unsigned long high = high_wmark_pages(zone); 2299 if (size > high) 2300 sum += size - high; 2301 } 2302 2303 return sum; 2304 } 2305 2306 /* 2307 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2308 */ 2309 unsigned int nr_free_buffer_pages(void) 2310 { 2311 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2312 } 2313 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2314 2315 /* 2316 * Amount of free RAM allocatable within all zones 2317 */ 2318 unsigned int nr_free_pagecache_pages(void) 2319 { 2320 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2321 } 2322 2323 static inline void show_node(struct zone *zone) 2324 { 2325 if (NUMA_BUILD) 2326 printk("Node %d ", zone_to_nid(zone)); 2327 } 2328 2329 void si_meminfo(struct sysinfo *val) 2330 { 2331 val->totalram = totalram_pages; 2332 val->sharedram = 0; 2333 val->freeram = global_page_state(NR_FREE_PAGES); 2334 val->bufferram = nr_blockdev_pages(); 2335 val->totalhigh = totalhigh_pages; 2336 val->freehigh = nr_free_highpages(); 2337 val->mem_unit = PAGE_SIZE; 2338 } 2339 2340 EXPORT_SYMBOL(si_meminfo); 2341 2342 #ifdef CONFIG_NUMA 2343 void si_meminfo_node(struct sysinfo *val, int nid) 2344 { 2345 pg_data_t *pgdat = NODE_DATA(nid); 2346 2347 val->totalram = pgdat->node_present_pages; 2348 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2349 #ifdef CONFIG_HIGHMEM 2350 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2351 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2352 NR_FREE_PAGES); 2353 #else 2354 val->totalhigh = 0; 2355 val->freehigh = 0; 2356 #endif 2357 val->mem_unit = PAGE_SIZE; 2358 } 2359 #endif 2360 2361 #define K(x) ((x) << (PAGE_SHIFT-10)) 2362 2363 /* 2364 * Show free area list (used inside shift_scroll-lock stuff) 2365 * We also calculate the percentage fragmentation. We do this by counting the 2366 * memory on each free list with the exception of the first item on the list. 2367 */ 2368 void show_free_areas(void) 2369 { 2370 int cpu; 2371 struct zone *zone; 2372 2373 for_each_populated_zone(zone) { 2374 show_node(zone); 2375 printk("%s per-cpu:\n", zone->name); 2376 2377 for_each_online_cpu(cpu) { 2378 struct per_cpu_pageset *pageset; 2379 2380 pageset = per_cpu_ptr(zone->pageset, cpu); 2381 2382 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2383 cpu, pageset->pcp.high, 2384 pageset->pcp.batch, pageset->pcp.count); 2385 } 2386 } 2387 2388 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2389 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2390 " unevictable:%lu" 2391 " dirty:%lu writeback:%lu unstable:%lu\n" 2392 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2393 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", 2394 global_page_state(NR_ACTIVE_ANON), 2395 global_page_state(NR_INACTIVE_ANON), 2396 global_page_state(NR_ISOLATED_ANON), 2397 global_page_state(NR_ACTIVE_FILE), 2398 global_page_state(NR_INACTIVE_FILE), 2399 global_page_state(NR_ISOLATED_FILE), 2400 global_page_state(NR_UNEVICTABLE), 2401 global_page_state(NR_FILE_DIRTY), 2402 global_page_state(NR_WRITEBACK), 2403 global_page_state(NR_UNSTABLE_NFS), 2404 global_page_state(NR_FREE_PAGES), 2405 global_page_state(NR_SLAB_RECLAIMABLE), 2406 global_page_state(NR_SLAB_UNRECLAIMABLE), 2407 global_page_state(NR_FILE_MAPPED), 2408 global_page_state(NR_SHMEM), 2409 global_page_state(NR_PAGETABLE), 2410 global_page_state(NR_BOUNCE)); 2411 2412 for_each_populated_zone(zone) { 2413 int i; 2414 2415 show_node(zone); 2416 printk("%s" 2417 " free:%lukB" 2418 " min:%lukB" 2419 " low:%lukB" 2420 " high:%lukB" 2421 " active_anon:%lukB" 2422 " inactive_anon:%lukB" 2423 " active_file:%lukB" 2424 " inactive_file:%lukB" 2425 " unevictable:%lukB" 2426 " isolated(anon):%lukB" 2427 " isolated(file):%lukB" 2428 " present:%lukB" 2429 " mlocked:%lukB" 2430 " dirty:%lukB" 2431 " writeback:%lukB" 2432 " mapped:%lukB" 2433 " shmem:%lukB" 2434 " slab_reclaimable:%lukB" 2435 " slab_unreclaimable:%lukB" 2436 " kernel_stack:%lukB" 2437 " pagetables:%lukB" 2438 " unstable:%lukB" 2439 " bounce:%lukB" 2440 " writeback_tmp:%lukB" 2441 " pages_scanned:%lu" 2442 " all_unreclaimable? %s" 2443 "\n", 2444 zone->name, 2445 K(zone_nr_free_pages(zone)), 2446 K(min_wmark_pages(zone)), 2447 K(low_wmark_pages(zone)), 2448 K(high_wmark_pages(zone)), 2449 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2450 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2451 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2452 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2453 K(zone_page_state(zone, NR_UNEVICTABLE)), 2454 K(zone_page_state(zone, NR_ISOLATED_ANON)), 2455 K(zone_page_state(zone, NR_ISOLATED_FILE)), 2456 K(zone->present_pages), 2457 K(zone_page_state(zone, NR_MLOCK)), 2458 K(zone_page_state(zone, NR_FILE_DIRTY)), 2459 K(zone_page_state(zone, NR_WRITEBACK)), 2460 K(zone_page_state(zone, NR_FILE_MAPPED)), 2461 K(zone_page_state(zone, NR_SHMEM)), 2462 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 2463 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 2464 zone_page_state(zone, NR_KERNEL_STACK) * 2465 THREAD_SIZE / 1024, 2466 K(zone_page_state(zone, NR_PAGETABLE)), 2467 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 2468 K(zone_page_state(zone, NR_BOUNCE)), 2469 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 2470 zone->pages_scanned, 2471 (zone->all_unreclaimable ? "yes" : "no") 2472 ); 2473 printk("lowmem_reserve[]:"); 2474 for (i = 0; i < MAX_NR_ZONES; i++) 2475 printk(" %lu", zone->lowmem_reserve[i]); 2476 printk("\n"); 2477 } 2478 2479 for_each_populated_zone(zone) { 2480 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2481 2482 show_node(zone); 2483 printk("%s: ", zone->name); 2484 2485 spin_lock_irqsave(&zone->lock, flags); 2486 for (order = 0; order < MAX_ORDER; order++) { 2487 nr[order] = zone->free_area[order].nr_free; 2488 total += nr[order] << order; 2489 } 2490 spin_unlock_irqrestore(&zone->lock, flags); 2491 for (order = 0; order < MAX_ORDER; order++) 2492 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2493 printk("= %lukB\n", K(total)); 2494 } 2495 2496 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2497 2498 show_swap_cache_info(); 2499 } 2500 2501 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2502 { 2503 zoneref->zone = zone; 2504 zoneref->zone_idx = zone_idx(zone); 2505 } 2506 2507 /* 2508 * Builds allocation fallback zone lists. 2509 * 2510 * Add all populated zones of a node to the zonelist. 2511 */ 2512 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2513 int nr_zones, enum zone_type zone_type) 2514 { 2515 struct zone *zone; 2516 2517 BUG_ON(zone_type >= MAX_NR_ZONES); 2518 zone_type++; 2519 2520 do { 2521 zone_type--; 2522 zone = pgdat->node_zones + zone_type; 2523 if (populated_zone(zone)) { 2524 zoneref_set_zone(zone, 2525 &zonelist->_zonerefs[nr_zones++]); 2526 check_highest_zone(zone_type); 2527 } 2528 2529 } while (zone_type); 2530 return nr_zones; 2531 } 2532 2533 2534 /* 2535 * zonelist_order: 2536 * 0 = automatic detection of better ordering. 2537 * 1 = order by ([node] distance, -zonetype) 2538 * 2 = order by (-zonetype, [node] distance) 2539 * 2540 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2541 * the same zonelist. So only NUMA can configure this param. 2542 */ 2543 #define ZONELIST_ORDER_DEFAULT 0 2544 #define ZONELIST_ORDER_NODE 1 2545 #define ZONELIST_ORDER_ZONE 2 2546 2547 /* zonelist order in the kernel. 2548 * set_zonelist_order() will set this to NODE or ZONE. 2549 */ 2550 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2551 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2552 2553 2554 #ifdef CONFIG_NUMA 2555 /* The value user specified ....changed by config */ 2556 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2557 /* string for sysctl */ 2558 #define NUMA_ZONELIST_ORDER_LEN 16 2559 char numa_zonelist_order[16] = "default"; 2560 2561 /* 2562 * interface for configure zonelist ordering. 2563 * command line option "numa_zonelist_order" 2564 * = "[dD]efault - default, automatic configuration. 2565 * = "[nN]ode - order by node locality, then by zone within node 2566 * = "[zZ]one - order by zone, then by locality within zone 2567 */ 2568 2569 static int __parse_numa_zonelist_order(char *s) 2570 { 2571 if (*s == 'd' || *s == 'D') { 2572 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2573 } else if (*s == 'n' || *s == 'N') { 2574 user_zonelist_order = ZONELIST_ORDER_NODE; 2575 } else if (*s == 'z' || *s == 'Z') { 2576 user_zonelist_order = ZONELIST_ORDER_ZONE; 2577 } else { 2578 printk(KERN_WARNING 2579 "Ignoring invalid numa_zonelist_order value: " 2580 "%s\n", s); 2581 return -EINVAL; 2582 } 2583 return 0; 2584 } 2585 2586 static __init int setup_numa_zonelist_order(char *s) 2587 { 2588 if (s) 2589 return __parse_numa_zonelist_order(s); 2590 return 0; 2591 } 2592 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2593 2594 /* 2595 * sysctl handler for numa_zonelist_order 2596 */ 2597 int numa_zonelist_order_handler(ctl_table *table, int write, 2598 void __user *buffer, size_t *length, 2599 loff_t *ppos) 2600 { 2601 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2602 int ret; 2603 static DEFINE_MUTEX(zl_order_mutex); 2604 2605 mutex_lock(&zl_order_mutex); 2606 if (write) 2607 strcpy(saved_string, (char*)table->data); 2608 ret = proc_dostring(table, write, buffer, length, ppos); 2609 if (ret) 2610 goto out; 2611 if (write) { 2612 int oldval = user_zonelist_order; 2613 if (__parse_numa_zonelist_order((char*)table->data)) { 2614 /* 2615 * bogus value. restore saved string 2616 */ 2617 strncpy((char*)table->data, saved_string, 2618 NUMA_ZONELIST_ORDER_LEN); 2619 user_zonelist_order = oldval; 2620 } else if (oldval != user_zonelist_order) { 2621 mutex_lock(&zonelists_mutex); 2622 build_all_zonelists(NULL); 2623 mutex_unlock(&zonelists_mutex); 2624 } 2625 } 2626 out: 2627 mutex_unlock(&zl_order_mutex); 2628 return ret; 2629 } 2630 2631 2632 #define MAX_NODE_LOAD (nr_online_nodes) 2633 static int node_load[MAX_NUMNODES]; 2634 2635 /** 2636 * find_next_best_node - find the next node that should appear in a given node's fallback list 2637 * @node: node whose fallback list we're appending 2638 * @used_node_mask: nodemask_t of already used nodes 2639 * 2640 * We use a number of factors to determine which is the next node that should 2641 * appear on a given node's fallback list. The node should not have appeared 2642 * already in @node's fallback list, and it should be the next closest node 2643 * according to the distance array (which contains arbitrary distance values 2644 * from each node to each node in the system), and should also prefer nodes 2645 * with no CPUs, since presumably they'll have very little allocation pressure 2646 * on them otherwise. 2647 * It returns -1 if no node is found. 2648 */ 2649 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2650 { 2651 int n, val; 2652 int min_val = INT_MAX; 2653 int best_node = -1; 2654 const struct cpumask *tmp = cpumask_of_node(0); 2655 2656 /* Use the local node if we haven't already */ 2657 if (!node_isset(node, *used_node_mask)) { 2658 node_set(node, *used_node_mask); 2659 return node; 2660 } 2661 2662 for_each_node_state(n, N_HIGH_MEMORY) { 2663 2664 /* Don't want a node to appear more than once */ 2665 if (node_isset(n, *used_node_mask)) 2666 continue; 2667 2668 /* Use the distance array to find the distance */ 2669 val = node_distance(node, n); 2670 2671 /* Penalize nodes under us ("prefer the next node") */ 2672 val += (n < node); 2673 2674 /* Give preference to headless and unused nodes */ 2675 tmp = cpumask_of_node(n); 2676 if (!cpumask_empty(tmp)) 2677 val += PENALTY_FOR_NODE_WITH_CPUS; 2678 2679 /* Slight preference for less loaded node */ 2680 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2681 val += node_load[n]; 2682 2683 if (val < min_val) { 2684 min_val = val; 2685 best_node = n; 2686 } 2687 } 2688 2689 if (best_node >= 0) 2690 node_set(best_node, *used_node_mask); 2691 2692 return best_node; 2693 } 2694 2695 2696 /* 2697 * Build zonelists ordered by node and zones within node. 2698 * This results in maximum locality--normal zone overflows into local 2699 * DMA zone, if any--but risks exhausting DMA zone. 2700 */ 2701 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2702 { 2703 int j; 2704 struct zonelist *zonelist; 2705 2706 zonelist = &pgdat->node_zonelists[0]; 2707 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2708 ; 2709 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2710 MAX_NR_ZONES - 1); 2711 zonelist->_zonerefs[j].zone = NULL; 2712 zonelist->_zonerefs[j].zone_idx = 0; 2713 } 2714 2715 /* 2716 * Build gfp_thisnode zonelists 2717 */ 2718 static void build_thisnode_zonelists(pg_data_t *pgdat) 2719 { 2720 int j; 2721 struct zonelist *zonelist; 2722 2723 zonelist = &pgdat->node_zonelists[1]; 2724 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2725 zonelist->_zonerefs[j].zone = NULL; 2726 zonelist->_zonerefs[j].zone_idx = 0; 2727 } 2728 2729 /* 2730 * Build zonelists ordered by zone and nodes within zones. 2731 * This results in conserving DMA zone[s] until all Normal memory is 2732 * exhausted, but results in overflowing to remote node while memory 2733 * may still exist in local DMA zone. 2734 */ 2735 static int node_order[MAX_NUMNODES]; 2736 2737 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2738 { 2739 int pos, j, node; 2740 int zone_type; /* needs to be signed */ 2741 struct zone *z; 2742 struct zonelist *zonelist; 2743 2744 zonelist = &pgdat->node_zonelists[0]; 2745 pos = 0; 2746 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2747 for (j = 0; j < nr_nodes; j++) { 2748 node = node_order[j]; 2749 z = &NODE_DATA(node)->node_zones[zone_type]; 2750 if (populated_zone(z)) { 2751 zoneref_set_zone(z, 2752 &zonelist->_zonerefs[pos++]); 2753 check_highest_zone(zone_type); 2754 } 2755 } 2756 } 2757 zonelist->_zonerefs[pos].zone = NULL; 2758 zonelist->_zonerefs[pos].zone_idx = 0; 2759 } 2760 2761 static int default_zonelist_order(void) 2762 { 2763 int nid, zone_type; 2764 unsigned long low_kmem_size,total_size; 2765 struct zone *z; 2766 int average_size; 2767 /* 2768 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 2769 * If they are really small and used heavily, the system can fall 2770 * into OOM very easily. 2771 * This function detect ZONE_DMA/DMA32 size and configures zone order. 2772 */ 2773 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2774 low_kmem_size = 0; 2775 total_size = 0; 2776 for_each_online_node(nid) { 2777 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2778 z = &NODE_DATA(nid)->node_zones[zone_type]; 2779 if (populated_zone(z)) { 2780 if (zone_type < ZONE_NORMAL) 2781 low_kmem_size += z->present_pages; 2782 total_size += z->present_pages; 2783 } else if (zone_type == ZONE_NORMAL) { 2784 /* 2785 * If any node has only lowmem, then node order 2786 * is preferred to allow kernel allocations 2787 * locally; otherwise, they can easily infringe 2788 * on other nodes when there is an abundance of 2789 * lowmem available to allocate from. 2790 */ 2791 return ZONELIST_ORDER_NODE; 2792 } 2793 } 2794 } 2795 if (!low_kmem_size || /* there are no DMA area. */ 2796 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2797 return ZONELIST_ORDER_NODE; 2798 /* 2799 * look into each node's config. 2800 * If there is a node whose DMA/DMA32 memory is very big area on 2801 * local memory, NODE_ORDER may be suitable. 2802 */ 2803 average_size = total_size / 2804 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2805 for_each_online_node(nid) { 2806 low_kmem_size = 0; 2807 total_size = 0; 2808 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2809 z = &NODE_DATA(nid)->node_zones[zone_type]; 2810 if (populated_zone(z)) { 2811 if (zone_type < ZONE_NORMAL) 2812 low_kmem_size += z->present_pages; 2813 total_size += z->present_pages; 2814 } 2815 } 2816 if (low_kmem_size && 2817 total_size > average_size && /* ignore small node */ 2818 low_kmem_size > total_size * 70/100) 2819 return ZONELIST_ORDER_NODE; 2820 } 2821 return ZONELIST_ORDER_ZONE; 2822 } 2823 2824 static void set_zonelist_order(void) 2825 { 2826 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2827 current_zonelist_order = default_zonelist_order(); 2828 else 2829 current_zonelist_order = user_zonelist_order; 2830 } 2831 2832 static void build_zonelists(pg_data_t *pgdat) 2833 { 2834 int j, node, load; 2835 enum zone_type i; 2836 nodemask_t used_mask; 2837 int local_node, prev_node; 2838 struct zonelist *zonelist; 2839 int order = current_zonelist_order; 2840 2841 /* initialize zonelists */ 2842 for (i = 0; i < MAX_ZONELISTS; i++) { 2843 zonelist = pgdat->node_zonelists + i; 2844 zonelist->_zonerefs[0].zone = NULL; 2845 zonelist->_zonerefs[0].zone_idx = 0; 2846 } 2847 2848 /* NUMA-aware ordering of nodes */ 2849 local_node = pgdat->node_id; 2850 load = nr_online_nodes; 2851 prev_node = local_node; 2852 nodes_clear(used_mask); 2853 2854 memset(node_order, 0, sizeof(node_order)); 2855 j = 0; 2856 2857 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 2858 int distance = node_distance(local_node, node); 2859 2860 /* 2861 * If another node is sufficiently far away then it is better 2862 * to reclaim pages in a zone before going off node. 2863 */ 2864 if (distance > RECLAIM_DISTANCE) 2865 zone_reclaim_mode = 1; 2866 2867 /* 2868 * We don't want to pressure a particular node. 2869 * So adding penalty to the first node in same 2870 * distance group to make it round-robin. 2871 */ 2872 if (distance != node_distance(local_node, prev_node)) 2873 node_load[node] = load; 2874 2875 prev_node = node; 2876 load--; 2877 if (order == ZONELIST_ORDER_NODE) 2878 build_zonelists_in_node_order(pgdat, node); 2879 else 2880 node_order[j++] = node; /* remember order */ 2881 } 2882 2883 if (order == ZONELIST_ORDER_ZONE) { 2884 /* calculate node order -- i.e., DMA last! */ 2885 build_zonelists_in_zone_order(pgdat, j); 2886 } 2887 2888 build_thisnode_zonelists(pgdat); 2889 } 2890 2891 /* Construct the zonelist performance cache - see further mmzone.h */ 2892 static void build_zonelist_cache(pg_data_t *pgdat) 2893 { 2894 struct zonelist *zonelist; 2895 struct zonelist_cache *zlc; 2896 struct zoneref *z; 2897 2898 zonelist = &pgdat->node_zonelists[0]; 2899 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 2900 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2901 for (z = zonelist->_zonerefs; z->zone; z++) 2902 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 2903 } 2904 2905 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 2906 /* 2907 * Return node id of node used for "local" allocations. 2908 * I.e., first node id of first zone in arg node's generic zonelist. 2909 * Used for initializing percpu 'numa_mem', which is used primarily 2910 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 2911 */ 2912 int local_memory_node(int node) 2913 { 2914 struct zone *zone; 2915 2916 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 2917 gfp_zone(GFP_KERNEL), 2918 NULL, 2919 &zone); 2920 return zone->node; 2921 } 2922 #endif 2923 2924 #else /* CONFIG_NUMA */ 2925 2926 static void set_zonelist_order(void) 2927 { 2928 current_zonelist_order = ZONELIST_ORDER_ZONE; 2929 } 2930 2931 static void build_zonelists(pg_data_t *pgdat) 2932 { 2933 int node, local_node; 2934 enum zone_type j; 2935 struct zonelist *zonelist; 2936 2937 local_node = pgdat->node_id; 2938 2939 zonelist = &pgdat->node_zonelists[0]; 2940 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2941 2942 /* 2943 * Now we build the zonelist so that it contains the zones 2944 * of all the other nodes. 2945 * We don't want to pressure a particular node, so when 2946 * building the zones for node N, we make sure that the 2947 * zones coming right after the local ones are those from 2948 * node N+1 (modulo N) 2949 */ 2950 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 2951 if (!node_online(node)) 2952 continue; 2953 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2954 MAX_NR_ZONES - 1); 2955 } 2956 for (node = 0; node < local_node; node++) { 2957 if (!node_online(node)) 2958 continue; 2959 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2960 MAX_NR_ZONES - 1); 2961 } 2962 2963 zonelist->_zonerefs[j].zone = NULL; 2964 zonelist->_zonerefs[j].zone_idx = 0; 2965 } 2966 2967 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 2968 static void build_zonelist_cache(pg_data_t *pgdat) 2969 { 2970 pgdat->node_zonelists[0].zlcache_ptr = NULL; 2971 } 2972 2973 #endif /* CONFIG_NUMA */ 2974 2975 /* 2976 * Boot pageset table. One per cpu which is going to be used for all 2977 * zones and all nodes. The parameters will be set in such a way 2978 * that an item put on a list will immediately be handed over to 2979 * the buddy list. This is safe since pageset manipulation is done 2980 * with interrupts disabled. 2981 * 2982 * The boot_pagesets must be kept even after bootup is complete for 2983 * unused processors and/or zones. They do play a role for bootstrapping 2984 * hotplugged processors. 2985 * 2986 * zoneinfo_show() and maybe other functions do 2987 * not check if the processor is online before following the pageset pointer. 2988 * Other parts of the kernel may not check if the zone is available. 2989 */ 2990 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 2991 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 2992 static void setup_zone_pageset(struct zone *zone); 2993 2994 /* 2995 * Global mutex to protect against size modification of zonelists 2996 * as well as to serialize pageset setup for the new populated zone. 2997 */ 2998 DEFINE_MUTEX(zonelists_mutex); 2999 3000 /* return values int ....just for stop_machine() */ 3001 static __init_refok int __build_all_zonelists(void *data) 3002 { 3003 int nid; 3004 int cpu; 3005 3006 #ifdef CONFIG_NUMA 3007 memset(node_load, 0, sizeof(node_load)); 3008 #endif 3009 for_each_online_node(nid) { 3010 pg_data_t *pgdat = NODE_DATA(nid); 3011 3012 build_zonelists(pgdat); 3013 build_zonelist_cache(pgdat); 3014 } 3015 3016 /* 3017 * Initialize the boot_pagesets that are going to be used 3018 * for bootstrapping processors. The real pagesets for 3019 * each zone will be allocated later when the per cpu 3020 * allocator is available. 3021 * 3022 * boot_pagesets are used also for bootstrapping offline 3023 * cpus if the system is already booted because the pagesets 3024 * are needed to initialize allocators on a specific cpu too. 3025 * F.e. the percpu allocator needs the page allocator which 3026 * needs the percpu allocator in order to allocate its pagesets 3027 * (a chicken-egg dilemma). 3028 */ 3029 for_each_possible_cpu(cpu) { 3030 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3031 3032 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3033 /* 3034 * We now know the "local memory node" for each node-- 3035 * i.e., the node of the first zone in the generic zonelist. 3036 * Set up numa_mem percpu variable for on-line cpus. During 3037 * boot, only the boot cpu should be on-line; we'll init the 3038 * secondary cpus' numa_mem as they come on-line. During 3039 * node/memory hotplug, we'll fixup all on-line cpus. 3040 */ 3041 if (cpu_online(cpu)) 3042 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3043 #endif 3044 } 3045 3046 return 0; 3047 } 3048 3049 /* 3050 * Called with zonelists_mutex held always 3051 * unless system_state == SYSTEM_BOOTING. 3052 */ 3053 void build_all_zonelists(void *data) 3054 { 3055 set_zonelist_order(); 3056 3057 if (system_state == SYSTEM_BOOTING) { 3058 __build_all_zonelists(NULL); 3059 mminit_verify_zonelist(); 3060 cpuset_init_current_mems_allowed(); 3061 } else { 3062 /* we have to stop all cpus to guarantee there is no user 3063 of zonelist */ 3064 #ifdef CONFIG_MEMORY_HOTPLUG 3065 if (data) 3066 setup_zone_pageset((struct zone *)data); 3067 #endif 3068 stop_machine(__build_all_zonelists, NULL, NULL); 3069 /* cpuset refresh routine should be here */ 3070 } 3071 vm_total_pages = nr_free_pagecache_pages(); 3072 /* 3073 * Disable grouping by mobility if the number of pages in the 3074 * system is too low to allow the mechanism to work. It would be 3075 * more accurate, but expensive to check per-zone. This check is 3076 * made on memory-hotadd so a system can start with mobility 3077 * disabled and enable it later 3078 */ 3079 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3080 page_group_by_mobility_disabled = 1; 3081 else 3082 page_group_by_mobility_disabled = 0; 3083 3084 printk("Built %i zonelists in %s order, mobility grouping %s. " 3085 "Total pages: %ld\n", 3086 nr_online_nodes, 3087 zonelist_order_name[current_zonelist_order], 3088 page_group_by_mobility_disabled ? "off" : "on", 3089 vm_total_pages); 3090 #ifdef CONFIG_NUMA 3091 printk("Policy zone: %s\n", zone_names[policy_zone]); 3092 #endif 3093 } 3094 3095 /* 3096 * Helper functions to size the waitqueue hash table. 3097 * Essentially these want to choose hash table sizes sufficiently 3098 * large so that collisions trying to wait on pages are rare. 3099 * But in fact, the number of active page waitqueues on typical 3100 * systems is ridiculously low, less than 200. So this is even 3101 * conservative, even though it seems large. 3102 * 3103 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3104 * waitqueues, i.e. the size of the waitq table given the number of pages. 3105 */ 3106 #define PAGES_PER_WAITQUEUE 256 3107 3108 #ifndef CONFIG_MEMORY_HOTPLUG 3109 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3110 { 3111 unsigned long size = 1; 3112 3113 pages /= PAGES_PER_WAITQUEUE; 3114 3115 while (size < pages) 3116 size <<= 1; 3117 3118 /* 3119 * Once we have dozens or even hundreds of threads sleeping 3120 * on IO we've got bigger problems than wait queue collision. 3121 * Limit the size of the wait table to a reasonable size. 3122 */ 3123 size = min(size, 4096UL); 3124 3125 return max(size, 4UL); 3126 } 3127 #else 3128 /* 3129 * A zone's size might be changed by hot-add, so it is not possible to determine 3130 * a suitable size for its wait_table. So we use the maximum size now. 3131 * 3132 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3133 * 3134 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3135 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3136 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3137 * 3138 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3139 * or more by the traditional way. (See above). It equals: 3140 * 3141 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3142 * ia64(16K page size) : = ( 8G + 4M)byte. 3143 * powerpc (64K page size) : = (32G +16M)byte. 3144 */ 3145 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3146 { 3147 return 4096UL; 3148 } 3149 #endif 3150 3151 /* 3152 * This is an integer logarithm so that shifts can be used later 3153 * to extract the more random high bits from the multiplicative 3154 * hash function before the remainder is taken. 3155 */ 3156 static inline unsigned long wait_table_bits(unsigned long size) 3157 { 3158 return ffz(~size); 3159 } 3160 3161 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3162 3163 /* 3164 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3165 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3166 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3167 * higher will lead to a bigger reserve which will get freed as contiguous 3168 * blocks as reclaim kicks in 3169 */ 3170 static void setup_zone_migrate_reserve(struct zone *zone) 3171 { 3172 unsigned long start_pfn, pfn, end_pfn; 3173 struct page *page; 3174 unsigned long block_migratetype; 3175 int reserve; 3176 3177 /* Get the start pfn, end pfn and the number of blocks to reserve */ 3178 start_pfn = zone->zone_start_pfn; 3179 end_pfn = start_pfn + zone->spanned_pages; 3180 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3181 pageblock_order; 3182 3183 /* 3184 * Reserve blocks are generally in place to help high-order atomic 3185 * allocations that are short-lived. A min_free_kbytes value that 3186 * would result in more than 2 reserve blocks for atomic allocations 3187 * is assumed to be in place to help anti-fragmentation for the 3188 * future allocation of hugepages at runtime. 3189 */ 3190 reserve = min(2, reserve); 3191 3192 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3193 if (!pfn_valid(pfn)) 3194 continue; 3195 page = pfn_to_page(pfn); 3196 3197 /* Watch out for overlapping nodes */ 3198 if (page_to_nid(page) != zone_to_nid(zone)) 3199 continue; 3200 3201 /* Blocks with reserved pages will never free, skip them. */ 3202 if (PageReserved(page)) 3203 continue; 3204 3205 block_migratetype = get_pageblock_migratetype(page); 3206 3207 /* If this block is reserved, account for it */ 3208 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 3209 reserve--; 3210 continue; 3211 } 3212 3213 /* Suitable for reserving if this block is movable */ 3214 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 3215 set_pageblock_migratetype(page, MIGRATE_RESERVE); 3216 move_freepages_block(zone, page, MIGRATE_RESERVE); 3217 reserve--; 3218 continue; 3219 } 3220 3221 /* 3222 * If the reserve is met and this is a previous reserved block, 3223 * take it back 3224 */ 3225 if (block_migratetype == MIGRATE_RESERVE) { 3226 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3227 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3228 } 3229 } 3230 } 3231 3232 /* 3233 * Initially all pages are reserved - free ones are freed 3234 * up by free_all_bootmem() once the early boot process is 3235 * done. Non-atomic initialization, single-pass. 3236 */ 3237 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3238 unsigned long start_pfn, enum memmap_context context) 3239 { 3240 struct page *page; 3241 unsigned long end_pfn = start_pfn + size; 3242 unsigned long pfn; 3243 struct zone *z; 3244 3245 if (highest_memmap_pfn < end_pfn - 1) 3246 highest_memmap_pfn = end_pfn - 1; 3247 3248 z = &NODE_DATA(nid)->node_zones[zone]; 3249 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3250 /* 3251 * There can be holes in boot-time mem_map[]s 3252 * handed to this function. They do not 3253 * exist on hotplugged memory. 3254 */ 3255 if (context == MEMMAP_EARLY) { 3256 if (!early_pfn_valid(pfn)) 3257 continue; 3258 if (!early_pfn_in_nid(pfn, nid)) 3259 continue; 3260 } 3261 page = pfn_to_page(pfn); 3262 set_page_links(page, zone, nid, pfn); 3263 mminit_verify_page_links(page, zone, nid, pfn); 3264 init_page_count(page); 3265 reset_page_mapcount(page); 3266 SetPageReserved(page); 3267 /* 3268 * Mark the block movable so that blocks are reserved for 3269 * movable at startup. This will force kernel allocations 3270 * to reserve their blocks rather than leaking throughout 3271 * the address space during boot when many long-lived 3272 * kernel allocations are made. Later some blocks near 3273 * the start are marked MIGRATE_RESERVE by 3274 * setup_zone_migrate_reserve() 3275 * 3276 * bitmap is created for zone's valid pfn range. but memmap 3277 * can be created for invalid pages (for alignment) 3278 * check here not to call set_pageblock_migratetype() against 3279 * pfn out of zone. 3280 */ 3281 if ((z->zone_start_pfn <= pfn) 3282 && (pfn < z->zone_start_pfn + z->spanned_pages) 3283 && !(pfn & (pageblock_nr_pages - 1))) 3284 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3285 3286 INIT_LIST_HEAD(&page->lru); 3287 #ifdef WANT_PAGE_VIRTUAL 3288 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3289 if (!is_highmem_idx(zone)) 3290 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3291 #endif 3292 } 3293 } 3294 3295 static void __meminit zone_init_free_lists(struct zone *zone) 3296 { 3297 int order, t; 3298 for_each_migratetype_order(order, t) { 3299 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3300 zone->free_area[order].nr_free = 0; 3301 } 3302 } 3303 3304 #ifndef __HAVE_ARCH_MEMMAP_INIT 3305 #define memmap_init(size, nid, zone, start_pfn) \ 3306 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3307 #endif 3308 3309 static int zone_batchsize(struct zone *zone) 3310 { 3311 #ifdef CONFIG_MMU 3312 int batch; 3313 3314 /* 3315 * The per-cpu-pages pools are set to around 1000th of the 3316 * size of the zone. But no more than 1/2 of a meg. 3317 * 3318 * OK, so we don't know how big the cache is. So guess. 3319 */ 3320 batch = zone->present_pages / 1024; 3321 if (batch * PAGE_SIZE > 512 * 1024) 3322 batch = (512 * 1024) / PAGE_SIZE; 3323 batch /= 4; /* We effectively *= 4 below */ 3324 if (batch < 1) 3325 batch = 1; 3326 3327 /* 3328 * Clamp the batch to a 2^n - 1 value. Having a power 3329 * of 2 value was found to be more likely to have 3330 * suboptimal cache aliasing properties in some cases. 3331 * 3332 * For example if 2 tasks are alternately allocating 3333 * batches of pages, one task can end up with a lot 3334 * of pages of one half of the possible page colors 3335 * and the other with pages of the other colors. 3336 */ 3337 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3338 3339 return batch; 3340 3341 #else 3342 /* The deferral and batching of frees should be suppressed under NOMMU 3343 * conditions. 3344 * 3345 * The problem is that NOMMU needs to be able to allocate large chunks 3346 * of contiguous memory as there's no hardware page translation to 3347 * assemble apparent contiguous memory from discontiguous pages. 3348 * 3349 * Queueing large contiguous runs of pages for batching, however, 3350 * causes the pages to actually be freed in smaller chunks. As there 3351 * can be a significant delay between the individual batches being 3352 * recycled, this leads to the once large chunks of space being 3353 * fragmented and becoming unavailable for high-order allocations. 3354 */ 3355 return 0; 3356 #endif 3357 } 3358 3359 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3360 { 3361 struct per_cpu_pages *pcp; 3362 int migratetype; 3363 3364 memset(p, 0, sizeof(*p)); 3365 3366 pcp = &p->pcp; 3367 pcp->count = 0; 3368 pcp->high = 6 * batch; 3369 pcp->batch = max(1UL, 1 * batch); 3370 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3371 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3372 } 3373 3374 /* 3375 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3376 * to the value high for the pageset p. 3377 */ 3378 3379 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3380 unsigned long high) 3381 { 3382 struct per_cpu_pages *pcp; 3383 3384 pcp = &p->pcp; 3385 pcp->high = high; 3386 pcp->batch = max(1UL, high/4); 3387 if ((high/4) > (PAGE_SHIFT * 8)) 3388 pcp->batch = PAGE_SHIFT * 8; 3389 } 3390 3391 static __meminit void setup_zone_pageset(struct zone *zone) 3392 { 3393 int cpu; 3394 3395 zone->pageset = alloc_percpu(struct per_cpu_pageset); 3396 3397 for_each_possible_cpu(cpu) { 3398 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 3399 3400 setup_pageset(pcp, zone_batchsize(zone)); 3401 3402 if (percpu_pagelist_fraction) 3403 setup_pagelist_highmark(pcp, 3404 (zone->present_pages / 3405 percpu_pagelist_fraction)); 3406 } 3407 } 3408 3409 /* 3410 * Allocate per cpu pagesets and initialize them. 3411 * Before this call only boot pagesets were available. 3412 */ 3413 void __init setup_per_cpu_pageset(void) 3414 { 3415 struct zone *zone; 3416 3417 for_each_populated_zone(zone) 3418 setup_zone_pageset(zone); 3419 } 3420 3421 static noinline __init_refok 3422 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3423 { 3424 int i; 3425 struct pglist_data *pgdat = zone->zone_pgdat; 3426 size_t alloc_size; 3427 3428 /* 3429 * The per-page waitqueue mechanism uses hashed waitqueues 3430 * per zone. 3431 */ 3432 zone->wait_table_hash_nr_entries = 3433 wait_table_hash_nr_entries(zone_size_pages); 3434 zone->wait_table_bits = 3435 wait_table_bits(zone->wait_table_hash_nr_entries); 3436 alloc_size = zone->wait_table_hash_nr_entries 3437 * sizeof(wait_queue_head_t); 3438 3439 if (!slab_is_available()) { 3440 zone->wait_table = (wait_queue_head_t *) 3441 alloc_bootmem_node(pgdat, alloc_size); 3442 } else { 3443 /* 3444 * This case means that a zone whose size was 0 gets new memory 3445 * via memory hot-add. 3446 * But it may be the case that a new node was hot-added. In 3447 * this case vmalloc() will not be able to use this new node's 3448 * memory - this wait_table must be initialized to use this new 3449 * node itself as well. 3450 * To use this new node's memory, further consideration will be 3451 * necessary. 3452 */ 3453 zone->wait_table = vmalloc(alloc_size); 3454 } 3455 if (!zone->wait_table) 3456 return -ENOMEM; 3457 3458 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3459 init_waitqueue_head(zone->wait_table + i); 3460 3461 return 0; 3462 } 3463 3464 static int __zone_pcp_update(void *data) 3465 { 3466 struct zone *zone = data; 3467 int cpu; 3468 unsigned long batch = zone_batchsize(zone), flags; 3469 3470 for_each_possible_cpu(cpu) { 3471 struct per_cpu_pageset *pset; 3472 struct per_cpu_pages *pcp; 3473 3474 pset = per_cpu_ptr(zone->pageset, cpu); 3475 pcp = &pset->pcp; 3476 3477 local_irq_save(flags); 3478 free_pcppages_bulk(zone, pcp->count, pcp); 3479 setup_pageset(pset, batch); 3480 local_irq_restore(flags); 3481 } 3482 return 0; 3483 } 3484 3485 void zone_pcp_update(struct zone *zone) 3486 { 3487 stop_machine(__zone_pcp_update, zone, NULL); 3488 } 3489 3490 static __meminit void zone_pcp_init(struct zone *zone) 3491 { 3492 /* 3493 * per cpu subsystem is not up at this point. The following code 3494 * relies on the ability of the linker to provide the 3495 * offset of a (static) per cpu variable into the per cpu area. 3496 */ 3497 zone->pageset = &boot_pageset; 3498 3499 if (zone->present_pages) 3500 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 3501 zone->name, zone->present_pages, 3502 zone_batchsize(zone)); 3503 } 3504 3505 __meminit int init_currently_empty_zone(struct zone *zone, 3506 unsigned long zone_start_pfn, 3507 unsigned long size, 3508 enum memmap_context context) 3509 { 3510 struct pglist_data *pgdat = zone->zone_pgdat; 3511 int ret; 3512 ret = zone_wait_table_init(zone, size); 3513 if (ret) 3514 return ret; 3515 pgdat->nr_zones = zone_idx(zone) + 1; 3516 3517 zone->zone_start_pfn = zone_start_pfn; 3518 3519 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3520 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 3521 pgdat->node_id, 3522 (unsigned long)zone_idx(zone), 3523 zone_start_pfn, (zone_start_pfn + size)); 3524 3525 zone_init_free_lists(zone); 3526 3527 return 0; 3528 } 3529 3530 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3531 /* 3532 * Basic iterator support. Return the first range of PFNs for a node 3533 * Note: nid == MAX_NUMNODES returns first region regardless of node 3534 */ 3535 static int __meminit first_active_region_index_in_nid(int nid) 3536 { 3537 int i; 3538 3539 for (i = 0; i < nr_nodemap_entries; i++) 3540 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 3541 return i; 3542 3543 return -1; 3544 } 3545 3546 /* 3547 * Basic iterator support. Return the next active range of PFNs for a node 3548 * Note: nid == MAX_NUMNODES returns next region regardless of node 3549 */ 3550 static int __meminit next_active_region_index_in_nid(int index, int nid) 3551 { 3552 for (index = index + 1; index < nr_nodemap_entries; index++) 3553 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 3554 return index; 3555 3556 return -1; 3557 } 3558 3559 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 3560 /* 3561 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 3562 * Architectures may implement their own version but if add_active_range() 3563 * was used and there are no special requirements, this is a convenient 3564 * alternative 3565 */ 3566 int __meminit __early_pfn_to_nid(unsigned long pfn) 3567 { 3568 int i; 3569 3570 for (i = 0; i < nr_nodemap_entries; i++) { 3571 unsigned long start_pfn = early_node_map[i].start_pfn; 3572 unsigned long end_pfn = early_node_map[i].end_pfn; 3573 3574 if (start_pfn <= pfn && pfn < end_pfn) 3575 return early_node_map[i].nid; 3576 } 3577 /* This is a memory hole */ 3578 return -1; 3579 } 3580 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3581 3582 int __meminit early_pfn_to_nid(unsigned long pfn) 3583 { 3584 int nid; 3585 3586 nid = __early_pfn_to_nid(pfn); 3587 if (nid >= 0) 3588 return nid; 3589 /* just returns 0 */ 3590 return 0; 3591 } 3592 3593 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3594 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3595 { 3596 int nid; 3597 3598 nid = __early_pfn_to_nid(pfn); 3599 if (nid >= 0 && nid != node) 3600 return false; 3601 return true; 3602 } 3603 #endif 3604 3605 /* Basic iterator support to walk early_node_map[] */ 3606 #define for_each_active_range_index_in_nid(i, nid) \ 3607 for (i = first_active_region_index_in_nid(nid); i != -1; \ 3608 i = next_active_region_index_in_nid(i, nid)) 3609 3610 /** 3611 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3612 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3613 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3614 * 3615 * If an architecture guarantees that all ranges registered with 3616 * add_active_ranges() contain no holes and may be freed, this 3617 * this function may be used instead of calling free_bootmem() manually. 3618 */ 3619 void __init free_bootmem_with_active_regions(int nid, 3620 unsigned long max_low_pfn) 3621 { 3622 int i; 3623 3624 for_each_active_range_index_in_nid(i, nid) { 3625 unsigned long size_pages = 0; 3626 unsigned long end_pfn = early_node_map[i].end_pfn; 3627 3628 if (early_node_map[i].start_pfn >= max_low_pfn) 3629 continue; 3630 3631 if (end_pfn > max_low_pfn) 3632 end_pfn = max_low_pfn; 3633 3634 size_pages = end_pfn - early_node_map[i].start_pfn; 3635 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 3636 PFN_PHYS(early_node_map[i].start_pfn), 3637 size_pages << PAGE_SHIFT); 3638 } 3639 } 3640 3641 #ifdef CONFIG_HAVE_MEMBLOCK 3642 u64 __init find_memory_core_early(int nid, u64 size, u64 align, 3643 u64 goal, u64 limit) 3644 { 3645 int i; 3646 3647 /* Need to go over early_node_map to find out good range for node */ 3648 for_each_active_range_index_in_nid(i, nid) { 3649 u64 addr; 3650 u64 ei_start, ei_last; 3651 u64 final_start, final_end; 3652 3653 ei_last = early_node_map[i].end_pfn; 3654 ei_last <<= PAGE_SHIFT; 3655 ei_start = early_node_map[i].start_pfn; 3656 ei_start <<= PAGE_SHIFT; 3657 3658 final_start = max(ei_start, goal); 3659 final_end = min(ei_last, limit); 3660 3661 if (final_start >= final_end) 3662 continue; 3663 3664 addr = memblock_find_in_range(final_start, final_end, size, align); 3665 3666 if (addr == MEMBLOCK_ERROR) 3667 continue; 3668 3669 return addr; 3670 } 3671 3672 return MEMBLOCK_ERROR; 3673 } 3674 #endif 3675 3676 int __init add_from_early_node_map(struct range *range, int az, 3677 int nr_range, int nid) 3678 { 3679 int i; 3680 u64 start, end; 3681 3682 /* need to go over early_node_map to find out good range for node */ 3683 for_each_active_range_index_in_nid(i, nid) { 3684 start = early_node_map[i].start_pfn; 3685 end = early_node_map[i].end_pfn; 3686 nr_range = add_range(range, az, nr_range, start, end); 3687 } 3688 return nr_range; 3689 } 3690 3691 #ifdef CONFIG_NO_BOOTMEM 3692 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align, 3693 u64 goal, u64 limit) 3694 { 3695 void *ptr; 3696 u64 addr; 3697 3698 if (limit > memblock.current_limit) 3699 limit = memblock.current_limit; 3700 3701 addr = find_memory_core_early(nid, size, align, goal, limit); 3702 3703 if (addr == MEMBLOCK_ERROR) 3704 return NULL; 3705 3706 ptr = phys_to_virt(addr); 3707 memset(ptr, 0, size); 3708 memblock_x86_reserve_range(addr, addr + size, "BOOTMEM"); 3709 /* 3710 * The min_count is set to 0 so that bootmem allocated blocks 3711 * are never reported as leaks. 3712 */ 3713 kmemleak_alloc(ptr, size, 0, 0); 3714 return ptr; 3715 } 3716 #endif 3717 3718 3719 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 3720 { 3721 int i; 3722 int ret; 3723 3724 for_each_active_range_index_in_nid(i, nid) { 3725 ret = work_fn(early_node_map[i].start_pfn, 3726 early_node_map[i].end_pfn, data); 3727 if (ret) 3728 break; 3729 } 3730 } 3731 /** 3732 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3733 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3734 * 3735 * If an architecture guarantees that all ranges registered with 3736 * add_active_ranges() contain no holes and may be freed, this 3737 * function may be used instead of calling memory_present() manually. 3738 */ 3739 void __init sparse_memory_present_with_active_regions(int nid) 3740 { 3741 int i; 3742 3743 for_each_active_range_index_in_nid(i, nid) 3744 memory_present(early_node_map[i].nid, 3745 early_node_map[i].start_pfn, 3746 early_node_map[i].end_pfn); 3747 } 3748 3749 /** 3750 * get_pfn_range_for_nid - Return the start and end page frames for a node 3751 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3752 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3753 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3754 * 3755 * It returns the start and end page frame of a node based on information 3756 * provided by an arch calling add_active_range(). If called for a node 3757 * with no available memory, a warning is printed and the start and end 3758 * PFNs will be 0. 3759 */ 3760 void __meminit get_pfn_range_for_nid(unsigned int nid, 3761 unsigned long *start_pfn, unsigned long *end_pfn) 3762 { 3763 int i; 3764 *start_pfn = -1UL; 3765 *end_pfn = 0; 3766 3767 for_each_active_range_index_in_nid(i, nid) { 3768 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3769 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3770 } 3771 3772 if (*start_pfn == -1UL) 3773 *start_pfn = 0; 3774 } 3775 3776 /* 3777 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3778 * assumption is made that zones within a node are ordered in monotonic 3779 * increasing memory addresses so that the "highest" populated zone is used 3780 */ 3781 static void __init find_usable_zone_for_movable(void) 3782 { 3783 int zone_index; 3784 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3785 if (zone_index == ZONE_MOVABLE) 3786 continue; 3787 3788 if (arch_zone_highest_possible_pfn[zone_index] > 3789 arch_zone_lowest_possible_pfn[zone_index]) 3790 break; 3791 } 3792 3793 VM_BUG_ON(zone_index == -1); 3794 movable_zone = zone_index; 3795 } 3796 3797 /* 3798 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3799 * because it is sized independant of architecture. Unlike the other zones, 3800 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3801 * in each node depending on the size of each node and how evenly kernelcore 3802 * is distributed. This helper function adjusts the zone ranges 3803 * provided by the architecture for a given node by using the end of the 3804 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3805 * zones within a node are in order of monotonic increases memory addresses 3806 */ 3807 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3808 unsigned long zone_type, 3809 unsigned long node_start_pfn, 3810 unsigned long node_end_pfn, 3811 unsigned long *zone_start_pfn, 3812 unsigned long *zone_end_pfn) 3813 { 3814 /* Only adjust if ZONE_MOVABLE is on this node */ 3815 if (zone_movable_pfn[nid]) { 3816 /* Size ZONE_MOVABLE */ 3817 if (zone_type == ZONE_MOVABLE) { 3818 *zone_start_pfn = zone_movable_pfn[nid]; 3819 *zone_end_pfn = min(node_end_pfn, 3820 arch_zone_highest_possible_pfn[movable_zone]); 3821 3822 /* Adjust for ZONE_MOVABLE starting within this range */ 3823 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3824 *zone_end_pfn > zone_movable_pfn[nid]) { 3825 *zone_end_pfn = zone_movable_pfn[nid]; 3826 3827 /* Check if this whole range is within ZONE_MOVABLE */ 3828 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3829 *zone_start_pfn = *zone_end_pfn; 3830 } 3831 } 3832 3833 /* 3834 * Return the number of pages a zone spans in a node, including holes 3835 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3836 */ 3837 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3838 unsigned long zone_type, 3839 unsigned long *ignored) 3840 { 3841 unsigned long node_start_pfn, node_end_pfn; 3842 unsigned long zone_start_pfn, zone_end_pfn; 3843 3844 /* Get the start and end of the node and zone */ 3845 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3846 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3847 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3848 adjust_zone_range_for_zone_movable(nid, zone_type, 3849 node_start_pfn, node_end_pfn, 3850 &zone_start_pfn, &zone_end_pfn); 3851 3852 /* Check that this node has pages within the zone's required range */ 3853 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3854 return 0; 3855 3856 /* Move the zone boundaries inside the node if necessary */ 3857 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3858 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3859 3860 /* Return the spanned pages */ 3861 return zone_end_pfn - zone_start_pfn; 3862 } 3863 3864 /* 3865 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3866 * then all holes in the requested range will be accounted for. 3867 */ 3868 unsigned long __meminit __absent_pages_in_range(int nid, 3869 unsigned long range_start_pfn, 3870 unsigned long range_end_pfn) 3871 { 3872 int i = 0; 3873 unsigned long prev_end_pfn = 0, hole_pages = 0; 3874 unsigned long start_pfn; 3875 3876 /* Find the end_pfn of the first active range of pfns in the node */ 3877 i = first_active_region_index_in_nid(nid); 3878 if (i == -1) 3879 return 0; 3880 3881 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3882 3883 /* Account for ranges before physical memory on this node */ 3884 if (early_node_map[i].start_pfn > range_start_pfn) 3885 hole_pages = prev_end_pfn - range_start_pfn; 3886 3887 /* Find all holes for the zone within the node */ 3888 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 3889 3890 /* No need to continue if prev_end_pfn is outside the zone */ 3891 if (prev_end_pfn >= range_end_pfn) 3892 break; 3893 3894 /* Make sure the end of the zone is not within the hole */ 3895 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3896 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 3897 3898 /* Update the hole size cound and move on */ 3899 if (start_pfn > range_start_pfn) { 3900 BUG_ON(prev_end_pfn > start_pfn); 3901 hole_pages += start_pfn - prev_end_pfn; 3902 } 3903 prev_end_pfn = early_node_map[i].end_pfn; 3904 } 3905 3906 /* Account for ranges past physical memory on this node */ 3907 if (range_end_pfn > prev_end_pfn) 3908 hole_pages += range_end_pfn - 3909 max(range_start_pfn, prev_end_pfn); 3910 3911 return hole_pages; 3912 } 3913 3914 /** 3915 * absent_pages_in_range - Return number of page frames in holes within a range 3916 * @start_pfn: The start PFN to start searching for holes 3917 * @end_pfn: The end PFN to stop searching for holes 3918 * 3919 * It returns the number of pages frames in memory holes within a range. 3920 */ 3921 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 3922 unsigned long end_pfn) 3923 { 3924 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 3925 } 3926 3927 /* Return the number of page frames in holes in a zone on a node */ 3928 static unsigned long __meminit zone_absent_pages_in_node(int nid, 3929 unsigned long zone_type, 3930 unsigned long *ignored) 3931 { 3932 unsigned long node_start_pfn, node_end_pfn; 3933 unsigned long zone_start_pfn, zone_end_pfn; 3934 3935 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3936 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 3937 node_start_pfn); 3938 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 3939 node_end_pfn); 3940 3941 adjust_zone_range_for_zone_movable(nid, zone_type, 3942 node_start_pfn, node_end_pfn, 3943 &zone_start_pfn, &zone_end_pfn); 3944 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 3945 } 3946 3947 #else 3948 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 3949 unsigned long zone_type, 3950 unsigned long *zones_size) 3951 { 3952 return zones_size[zone_type]; 3953 } 3954 3955 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 3956 unsigned long zone_type, 3957 unsigned long *zholes_size) 3958 { 3959 if (!zholes_size) 3960 return 0; 3961 3962 return zholes_size[zone_type]; 3963 } 3964 3965 #endif 3966 3967 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 3968 unsigned long *zones_size, unsigned long *zholes_size) 3969 { 3970 unsigned long realtotalpages, totalpages = 0; 3971 enum zone_type i; 3972 3973 for (i = 0; i < MAX_NR_ZONES; i++) 3974 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 3975 zones_size); 3976 pgdat->node_spanned_pages = totalpages; 3977 3978 realtotalpages = totalpages; 3979 for (i = 0; i < MAX_NR_ZONES; i++) 3980 realtotalpages -= 3981 zone_absent_pages_in_node(pgdat->node_id, i, 3982 zholes_size); 3983 pgdat->node_present_pages = realtotalpages; 3984 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 3985 realtotalpages); 3986 } 3987 3988 #ifndef CONFIG_SPARSEMEM 3989 /* 3990 * Calculate the size of the zone->blockflags rounded to an unsigned long 3991 * Start by making sure zonesize is a multiple of pageblock_order by rounding 3992 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 3993 * round what is now in bits to nearest long in bits, then return it in 3994 * bytes. 3995 */ 3996 static unsigned long __init usemap_size(unsigned long zonesize) 3997 { 3998 unsigned long usemapsize; 3999 4000 usemapsize = roundup(zonesize, pageblock_nr_pages); 4001 usemapsize = usemapsize >> pageblock_order; 4002 usemapsize *= NR_PAGEBLOCK_BITS; 4003 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4004 4005 return usemapsize / 8; 4006 } 4007 4008 static void __init setup_usemap(struct pglist_data *pgdat, 4009 struct zone *zone, unsigned long zonesize) 4010 { 4011 unsigned long usemapsize = usemap_size(zonesize); 4012 zone->pageblock_flags = NULL; 4013 if (usemapsize) 4014 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); 4015 } 4016 #else 4017 static void inline setup_usemap(struct pglist_data *pgdat, 4018 struct zone *zone, unsigned long zonesize) {} 4019 #endif /* CONFIG_SPARSEMEM */ 4020 4021 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4022 4023 /* Return a sensible default order for the pageblock size. */ 4024 static inline int pageblock_default_order(void) 4025 { 4026 if (HPAGE_SHIFT > PAGE_SHIFT) 4027 return HUGETLB_PAGE_ORDER; 4028 4029 return MAX_ORDER-1; 4030 } 4031 4032 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4033 static inline void __init set_pageblock_order(unsigned int order) 4034 { 4035 /* Check that pageblock_nr_pages has not already been setup */ 4036 if (pageblock_order) 4037 return; 4038 4039 /* 4040 * Assume the largest contiguous order of interest is a huge page. 4041 * This value may be variable depending on boot parameters on IA64 4042 */ 4043 pageblock_order = order; 4044 } 4045 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4046 4047 /* 4048 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4049 * and pageblock_default_order() are unused as pageblock_order is set 4050 * at compile-time. See include/linux/pageblock-flags.h for the values of 4051 * pageblock_order based on the kernel config 4052 */ 4053 static inline int pageblock_default_order(unsigned int order) 4054 { 4055 return MAX_ORDER-1; 4056 } 4057 #define set_pageblock_order(x) do {} while (0) 4058 4059 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4060 4061 /* 4062 * Set up the zone data structures: 4063 * - mark all pages reserved 4064 * - mark all memory queues empty 4065 * - clear the memory bitmaps 4066 */ 4067 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4068 unsigned long *zones_size, unsigned long *zholes_size) 4069 { 4070 enum zone_type j; 4071 int nid = pgdat->node_id; 4072 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4073 int ret; 4074 4075 pgdat_resize_init(pgdat); 4076 pgdat->nr_zones = 0; 4077 init_waitqueue_head(&pgdat->kswapd_wait); 4078 pgdat->kswapd_max_order = 0; 4079 pgdat_page_cgroup_init(pgdat); 4080 4081 for (j = 0; j < MAX_NR_ZONES; j++) { 4082 struct zone *zone = pgdat->node_zones + j; 4083 unsigned long size, realsize, memmap_pages; 4084 enum lru_list l; 4085 4086 size = zone_spanned_pages_in_node(nid, j, zones_size); 4087 realsize = size - zone_absent_pages_in_node(nid, j, 4088 zholes_size); 4089 4090 /* 4091 * Adjust realsize so that it accounts for how much memory 4092 * is used by this zone for memmap. This affects the watermark 4093 * and per-cpu initialisations 4094 */ 4095 memmap_pages = 4096 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 4097 if (realsize >= memmap_pages) { 4098 realsize -= memmap_pages; 4099 if (memmap_pages) 4100 printk(KERN_DEBUG 4101 " %s zone: %lu pages used for memmap\n", 4102 zone_names[j], memmap_pages); 4103 } else 4104 printk(KERN_WARNING 4105 " %s zone: %lu pages exceeds realsize %lu\n", 4106 zone_names[j], memmap_pages, realsize); 4107 4108 /* Account for reserved pages */ 4109 if (j == 0 && realsize > dma_reserve) { 4110 realsize -= dma_reserve; 4111 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4112 zone_names[0], dma_reserve); 4113 } 4114 4115 if (!is_highmem_idx(j)) 4116 nr_kernel_pages += realsize; 4117 nr_all_pages += realsize; 4118 4119 zone->spanned_pages = size; 4120 zone->present_pages = realsize; 4121 #ifdef CONFIG_NUMA 4122 zone->node = nid; 4123 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 4124 / 100; 4125 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 4126 #endif 4127 zone->name = zone_names[j]; 4128 spin_lock_init(&zone->lock); 4129 spin_lock_init(&zone->lru_lock); 4130 zone_seqlock_init(zone); 4131 zone->zone_pgdat = pgdat; 4132 4133 zone_pcp_init(zone); 4134 for_each_lru(l) { 4135 INIT_LIST_HEAD(&zone->lru[l].list); 4136 zone->reclaim_stat.nr_saved_scan[l] = 0; 4137 } 4138 zone->reclaim_stat.recent_rotated[0] = 0; 4139 zone->reclaim_stat.recent_rotated[1] = 0; 4140 zone->reclaim_stat.recent_scanned[0] = 0; 4141 zone->reclaim_stat.recent_scanned[1] = 0; 4142 zap_zone_vm_stats(zone); 4143 zone->flags = 0; 4144 if (!size) 4145 continue; 4146 4147 set_pageblock_order(pageblock_default_order()); 4148 setup_usemap(pgdat, zone, size); 4149 ret = init_currently_empty_zone(zone, zone_start_pfn, 4150 size, MEMMAP_EARLY); 4151 BUG_ON(ret); 4152 memmap_init(size, nid, j, zone_start_pfn); 4153 zone_start_pfn += size; 4154 } 4155 } 4156 4157 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4158 { 4159 /* Skip empty nodes */ 4160 if (!pgdat->node_spanned_pages) 4161 return; 4162 4163 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4164 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4165 if (!pgdat->node_mem_map) { 4166 unsigned long size, start, end; 4167 struct page *map; 4168 4169 /* 4170 * The zone's endpoints aren't required to be MAX_ORDER 4171 * aligned but the node_mem_map endpoints must be in order 4172 * for the buddy allocator to function correctly. 4173 */ 4174 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4175 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 4176 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4177 size = (end - start) * sizeof(struct page); 4178 map = alloc_remap(pgdat->node_id, size); 4179 if (!map) 4180 map = alloc_bootmem_node(pgdat, size); 4181 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4182 } 4183 #ifndef CONFIG_NEED_MULTIPLE_NODES 4184 /* 4185 * With no DISCONTIG, the global mem_map is just set as node 0's 4186 */ 4187 if (pgdat == NODE_DATA(0)) { 4188 mem_map = NODE_DATA(0)->node_mem_map; 4189 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 4190 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4191 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4192 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4193 } 4194 #endif 4195 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4196 } 4197 4198 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4199 unsigned long node_start_pfn, unsigned long *zholes_size) 4200 { 4201 pg_data_t *pgdat = NODE_DATA(nid); 4202 4203 pgdat->node_id = nid; 4204 pgdat->node_start_pfn = node_start_pfn; 4205 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4206 4207 alloc_node_mem_map(pgdat); 4208 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4209 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4210 nid, (unsigned long)pgdat, 4211 (unsigned long)pgdat->node_mem_map); 4212 #endif 4213 4214 free_area_init_core(pgdat, zones_size, zholes_size); 4215 } 4216 4217 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 4218 4219 #if MAX_NUMNODES > 1 4220 /* 4221 * Figure out the number of possible node ids. 4222 */ 4223 static void __init setup_nr_node_ids(void) 4224 { 4225 unsigned int node; 4226 unsigned int highest = 0; 4227 4228 for_each_node_mask(node, node_possible_map) 4229 highest = node; 4230 nr_node_ids = highest + 1; 4231 } 4232 #else 4233 static inline void setup_nr_node_ids(void) 4234 { 4235 } 4236 #endif 4237 4238 /** 4239 * add_active_range - Register a range of PFNs backed by physical memory 4240 * @nid: The node ID the range resides on 4241 * @start_pfn: The start PFN of the available physical memory 4242 * @end_pfn: The end PFN of the available physical memory 4243 * 4244 * These ranges are stored in an early_node_map[] and later used by 4245 * free_area_init_nodes() to calculate zone sizes and holes. If the 4246 * range spans a memory hole, it is up to the architecture to ensure 4247 * the memory is not freed by the bootmem allocator. If possible 4248 * the range being registered will be merged with existing ranges. 4249 */ 4250 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 4251 unsigned long end_pfn) 4252 { 4253 int i; 4254 4255 mminit_dprintk(MMINIT_TRACE, "memory_register", 4256 "Entering add_active_range(%d, %#lx, %#lx) " 4257 "%d entries of %d used\n", 4258 nid, start_pfn, end_pfn, 4259 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 4260 4261 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 4262 4263 /* Merge with existing active regions if possible */ 4264 for (i = 0; i < nr_nodemap_entries; i++) { 4265 if (early_node_map[i].nid != nid) 4266 continue; 4267 4268 /* Skip if an existing region covers this new one */ 4269 if (start_pfn >= early_node_map[i].start_pfn && 4270 end_pfn <= early_node_map[i].end_pfn) 4271 return; 4272 4273 /* Merge forward if suitable */ 4274 if (start_pfn <= early_node_map[i].end_pfn && 4275 end_pfn > early_node_map[i].end_pfn) { 4276 early_node_map[i].end_pfn = end_pfn; 4277 return; 4278 } 4279 4280 /* Merge backward if suitable */ 4281 if (start_pfn < early_node_map[i].start_pfn && 4282 end_pfn >= early_node_map[i].start_pfn) { 4283 early_node_map[i].start_pfn = start_pfn; 4284 return; 4285 } 4286 } 4287 4288 /* Check that early_node_map is large enough */ 4289 if (i >= MAX_ACTIVE_REGIONS) { 4290 printk(KERN_CRIT "More than %d memory regions, truncating\n", 4291 MAX_ACTIVE_REGIONS); 4292 return; 4293 } 4294 4295 early_node_map[i].nid = nid; 4296 early_node_map[i].start_pfn = start_pfn; 4297 early_node_map[i].end_pfn = end_pfn; 4298 nr_nodemap_entries = i + 1; 4299 } 4300 4301 /** 4302 * remove_active_range - Shrink an existing registered range of PFNs 4303 * @nid: The node id the range is on that should be shrunk 4304 * @start_pfn: The new PFN of the range 4305 * @end_pfn: The new PFN of the range 4306 * 4307 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 4308 * The map is kept near the end physical page range that has already been 4309 * registered. This function allows an arch to shrink an existing registered 4310 * range. 4311 */ 4312 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 4313 unsigned long end_pfn) 4314 { 4315 int i, j; 4316 int removed = 0; 4317 4318 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 4319 nid, start_pfn, end_pfn); 4320 4321 /* Find the old active region end and shrink */ 4322 for_each_active_range_index_in_nid(i, nid) { 4323 if (early_node_map[i].start_pfn >= start_pfn && 4324 early_node_map[i].end_pfn <= end_pfn) { 4325 /* clear it */ 4326 early_node_map[i].start_pfn = 0; 4327 early_node_map[i].end_pfn = 0; 4328 removed = 1; 4329 continue; 4330 } 4331 if (early_node_map[i].start_pfn < start_pfn && 4332 early_node_map[i].end_pfn > start_pfn) { 4333 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 4334 early_node_map[i].end_pfn = start_pfn; 4335 if (temp_end_pfn > end_pfn) 4336 add_active_range(nid, end_pfn, temp_end_pfn); 4337 continue; 4338 } 4339 if (early_node_map[i].start_pfn >= start_pfn && 4340 early_node_map[i].end_pfn > end_pfn && 4341 early_node_map[i].start_pfn < end_pfn) { 4342 early_node_map[i].start_pfn = end_pfn; 4343 continue; 4344 } 4345 } 4346 4347 if (!removed) 4348 return; 4349 4350 /* remove the blank ones */ 4351 for (i = nr_nodemap_entries - 1; i > 0; i--) { 4352 if (early_node_map[i].nid != nid) 4353 continue; 4354 if (early_node_map[i].end_pfn) 4355 continue; 4356 /* we found it, get rid of it */ 4357 for (j = i; j < nr_nodemap_entries - 1; j++) 4358 memcpy(&early_node_map[j], &early_node_map[j+1], 4359 sizeof(early_node_map[j])); 4360 j = nr_nodemap_entries - 1; 4361 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 4362 nr_nodemap_entries--; 4363 } 4364 } 4365 4366 /** 4367 * remove_all_active_ranges - Remove all currently registered regions 4368 * 4369 * During discovery, it may be found that a table like SRAT is invalid 4370 * and an alternative discovery method must be used. This function removes 4371 * all currently registered regions. 4372 */ 4373 void __init remove_all_active_ranges(void) 4374 { 4375 memset(early_node_map, 0, sizeof(early_node_map)); 4376 nr_nodemap_entries = 0; 4377 } 4378 4379 /* Compare two active node_active_regions */ 4380 static int __init cmp_node_active_region(const void *a, const void *b) 4381 { 4382 struct node_active_region *arange = (struct node_active_region *)a; 4383 struct node_active_region *brange = (struct node_active_region *)b; 4384 4385 /* Done this way to avoid overflows */ 4386 if (arange->start_pfn > brange->start_pfn) 4387 return 1; 4388 if (arange->start_pfn < brange->start_pfn) 4389 return -1; 4390 4391 return 0; 4392 } 4393 4394 /* sort the node_map by start_pfn */ 4395 void __init sort_node_map(void) 4396 { 4397 sort(early_node_map, (size_t)nr_nodemap_entries, 4398 sizeof(struct node_active_region), 4399 cmp_node_active_region, NULL); 4400 } 4401 4402 /* Find the lowest pfn for a node */ 4403 static unsigned long __init find_min_pfn_for_node(int nid) 4404 { 4405 int i; 4406 unsigned long min_pfn = ULONG_MAX; 4407 4408 /* Assuming a sorted map, the first range found has the starting pfn */ 4409 for_each_active_range_index_in_nid(i, nid) 4410 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 4411 4412 if (min_pfn == ULONG_MAX) { 4413 printk(KERN_WARNING 4414 "Could not find start_pfn for node %d\n", nid); 4415 return 0; 4416 } 4417 4418 return min_pfn; 4419 } 4420 4421 /** 4422 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4423 * 4424 * It returns the minimum PFN based on information provided via 4425 * add_active_range(). 4426 */ 4427 unsigned long __init find_min_pfn_with_active_regions(void) 4428 { 4429 return find_min_pfn_for_node(MAX_NUMNODES); 4430 } 4431 4432 /* 4433 * early_calculate_totalpages() 4434 * Sum pages in active regions for movable zone. 4435 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4436 */ 4437 static unsigned long __init early_calculate_totalpages(void) 4438 { 4439 int i; 4440 unsigned long totalpages = 0; 4441 4442 for (i = 0; i < nr_nodemap_entries; i++) { 4443 unsigned long pages = early_node_map[i].end_pfn - 4444 early_node_map[i].start_pfn; 4445 totalpages += pages; 4446 if (pages) 4447 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 4448 } 4449 return totalpages; 4450 } 4451 4452 /* 4453 * Find the PFN the Movable zone begins in each node. Kernel memory 4454 * is spread evenly between nodes as long as the nodes have enough 4455 * memory. When they don't, some nodes will have more kernelcore than 4456 * others 4457 */ 4458 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 4459 { 4460 int i, nid; 4461 unsigned long usable_startpfn; 4462 unsigned long kernelcore_node, kernelcore_remaining; 4463 /* save the state before borrow the nodemask */ 4464 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4465 unsigned long totalpages = early_calculate_totalpages(); 4466 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4467 4468 /* 4469 * If movablecore was specified, calculate what size of 4470 * kernelcore that corresponds so that memory usable for 4471 * any allocation type is evenly spread. If both kernelcore 4472 * and movablecore are specified, then the value of kernelcore 4473 * will be used for required_kernelcore if it's greater than 4474 * what movablecore would have allowed. 4475 */ 4476 if (required_movablecore) { 4477 unsigned long corepages; 4478 4479 /* 4480 * Round-up so that ZONE_MOVABLE is at least as large as what 4481 * was requested by the user 4482 */ 4483 required_movablecore = 4484 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4485 corepages = totalpages - required_movablecore; 4486 4487 required_kernelcore = max(required_kernelcore, corepages); 4488 } 4489 4490 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4491 if (!required_kernelcore) 4492 goto out; 4493 4494 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4495 find_usable_zone_for_movable(); 4496 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4497 4498 restart: 4499 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4500 kernelcore_node = required_kernelcore / usable_nodes; 4501 for_each_node_state(nid, N_HIGH_MEMORY) { 4502 /* 4503 * Recalculate kernelcore_node if the division per node 4504 * now exceeds what is necessary to satisfy the requested 4505 * amount of memory for the kernel 4506 */ 4507 if (required_kernelcore < kernelcore_node) 4508 kernelcore_node = required_kernelcore / usable_nodes; 4509 4510 /* 4511 * As the map is walked, we track how much memory is usable 4512 * by the kernel using kernelcore_remaining. When it is 4513 * 0, the rest of the node is usable by ZONE_MOVABLE 4514 */ 4515 kernelcore_remaining = kernelcore_node; 4516 4517 /* Go through each range of PFNs within this node */ 4518 for_each_active_range_index_in_nid(i, nid) { 4519 unsigned long start_pfn, end_pfn; 4520 unsigned long size_pages; 4521 4522 start_pfn = max(early_node_map[i].start_pfn, 4523 zone_movable_pfn[nid]); 4524 end_pfn = early_node_map[i].end_pfn; 4525 if (start_pfn >= end_pfn) 4526 continue; 4527 4528 /* Account for what is only usable for kernelcore */ 4529 if (start_pfn < usable_startpfn) { 4530 unsigned long kernel_pages; 4531 kernel_pages = min(end_pfn, usable_startpfn) 4532 - start_pfn; 4533 4534 kernelcore_remaining -= min(kernel_pages, 4535 kernelcore_remaining); 4536 required_kernelcore -= min(kernel_pages, 4537 required_kernelcore); 4538 4539 /* Continue if range is now fully accounted */ 4540 if (end_pfn <= usable_startpfn) { 4541 4542 /* 4543 * Push zone_movable_pfn to the end so 4544 * that if we have to rebalance 4545 * kernelcore across nodes, we will 4546 * not double account here 4547 */ 4548 zone_movable_pfn[nid] = end_pfn; 4549 continue; 4550 } 4551 start_pfn = usable_startpfn; 4552 } 4553 4554 /* 4555 * The usable PFN range for ZONE_MOVABLE is from 4556 * start_pfn->end_pfn. Calculate size_pages as the 4557 * number of pages used as kernelcore 4558 */ 4559 size_pages = end_pfn - start_pfn; 4560 if (size_pages > kernelcore_remaining) 4561 size_pages = kernelcore_remaining; 4562 zone_movable_pfn[nid] = start_pfn + size_pages; 4563 4564 /* 4565 * Some kernelcore has been met, update counts and 4566 * break if the kernelcore for this node has been 4567 * satisified 4568 */ 4569 required_kernelcore -= min(required_kernelcore, 4570 size_pages); 4571 kernelcore_remaining -= size_pages; 4572 if (!kernelcore_remaining) 4573 break; 4574 } 4575 } 4576 4577 /* 4578 * If there is still required_kernelcore, we do another pass with one 4579 * less node in the count. This will push zone_movable_pfn[nid] further 4580 * along on the nodes that still have memory until kernelcore is 4581 * satisified 4582 */ 4583 usable_nodes--; 4584 if (usable_nodes && required_kernelcore > usable_nodes) 4585 goto restart; 4586 4587 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4588 for (nid = 0; nid < MAX_NUMNODES; nid++) 4589 zone_movable_pfn[nid] = 4590 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4591 4592 out: 4593 /* restore the node_state */ 4594 node_states[N_HIGH_MEMORY] = saved_node_state; 4595 } 4596 4597 /* Any regular memory on that node ? */ 4598 static void check_for_regular_memory(pg_data_t *pgdat) 4599 { 4600 #ifdef CONFIG_HIGHMEM 4601 enum zone_type zone_type; 4602 4603 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4604 struct zone *zone = &pgdat->node_zones[zone_type]; 4605 if (zone->present_pages) 4606 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4607 } 4608 #endif 4609 } 4610 4611 /** 4612 * free_area_init_nodes - Initialise all pg_data_t and zone data 4613 * @max_zone_pfn: an array of max PFNs for each zone 4614 * 4615 * This will call free_area_init_node() for each active node in the system. 4616 * Using the page ranges provided by add_active_range(), the size of each 4617 * zone in each node and their holes is calculated. If the maximum PFN 4618 * between two adjacent zones match, it is assumed that the zone is empty. 4619 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4620 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4621 * starts where the previous one ended. For example, ZONE_DMA32 starts 4622 * at arch_max_dma_pfn. 4623 */ 4624 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4625 { 4626 unsigned long nid; 4627 int i; 4628 4629 /* Sort early_node_map as initialisation assumes it is sorted */ 4630 sort_node_map(); 4631 4632 /* Record where the zone boundaries are */ 4633 memset(arch_zone_lowest_possible_pfn, 0, 4634 sizeof(arch_zone_lowest_possible_pfn)); 4635 memset(arch_zone_highest_possible_pfn, 0, 4636 sizeof(arch_zone_highest_possible_pfn)); 4637 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4638 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4639 for (i = 1; i < MAX_NR_ZONES; i++) { 4640 if (i == ZONE_MOVABLE) 4641 continue; 4642 arch_zone_lowest_possible_pfn[i] = 4643 arch_zone_highest_possible_pfn[i-1]; 4644 arch_zone_highest_possible_pfn[i] = 4645 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4646 } 4647 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4648 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4649 4650 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4651 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4652 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4653 4654 /* Print out the zone ranges */ 4655 printk("Zone PFN ranges:\n"); 4656 for (i = 0; i < MAX_NR_ZONES; i++) { 4657 if (i == ZONE_MOVABLE) 4658 continue; 4659 printk(" %-8s ", zone_names[i]); 4660 if (arch_zone_lowest_possible_pfn[i] == 4661 arch_zone_highest_possible_pfn[i]) 4662 printk("empty\n"); 4663 else 4664 printk("%0#10lx -> %0#10lx\n", 4665 arch_zone_lowest_possible_pfn[i], 4666 arch_zone_highest_possible_pfn[i]); 4667 } 4668 4669 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4670 printk("Movable zone start PFN for each node\n"); 4671 for (i = 0; i < MAX_NUMNODES; i++) { 4672 if (zone_movable_pfn[i]) 4673 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4674 } 4675 4676 /* Print out the early_node_map[] */ 4677 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 4678 for (i = 0; i < nr_nodemap_entries; i++) 4679 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4680 early_node_map[i].start_pfn, 4681 early_node_map[i].end_pfn); 4682 4683 /* Initialise every node */ 4684 mminit_verify_pageflags_layout(); 4685 setup_nr_node_ids(); 4686 for_each_online_node(nid) { 4687 pg_data_t *pgdat = NODE_DATA(nid); 4688 free_area_init_node(nid, NULL, 4689 find_min_pfn_for_node(nid), NULL); 4690 4691 /* Any memory on that node */ 4692 if (pgdat->node_present_pages) 4693 node_set_state(nid, N_HIGH_MEMORY); 4694 check_for_regular_memory(pgdat); 4695 } 4696 } 4697 4698 static int __init cmdline_parse_core(char *p, unsigned long *core) 4699 { 4700 unsigned long long coremem; 4701 if (!p) 4702 return -EINVAL; 4703 4704 coremem = memparse(p, &p); 4705 *core = coremem >> PAGE_SHIFT; 4706 4707 /* Paranoid check that UL is enough for the coremem value */ 4708 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4709 4710 return 0; 4711 } 4712 4713 /* 4714 * kernelcore=size sets the amount of memory for use for allocations that 4715 * cannot be reclaimed or migrated. 4716 */ 4717 static int __init cmdline_parse_kernelcore(char *p) 4718 { 4719 return cmdline_parse_core(p, &required_kernelcore); 4720 } 4721 4722 /* 4723 * movablecore=size sets the amount of memory for use for allocations that 4724 * can be reclaimed or migrated. 4725 */ 4726 static int __init cmdline_parse_movablecore(char *p) 4727 { 4728 return cmdline_parse_core(p, &required_movablecore); 4729 } 4730 4731 early_param("kernelcore", cmdline_parse_kernelcore); 4732 early_param("movablecore", cmdline_parse_movablecore); 4733 4734 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4735 4736 /** 4737 * set_dma_reserve - set the specified number of pages reserved in the first zone 4738 * @new_dma_reserve: The number of pages to mark reserved 4739 * 4740 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4741 * In the DMA zone, a significant percentage may be consumed by kernel image 4742 * and other unfreeable allocations which can skew the watermarks badly. This 4743 * function may optionally be used to account for unfreeable pages in the 4744 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4745 * smaller per-cpu batchsize. 4746 */ 4747 void __init set_dma_reserve(unsigned long new_dma_reserve) 4748 { 4749 dma_reserve = new_dma_reserve; 4750 } 4751 4752 #ifndef CONFIG_NEED_MULTIPLE_NODES 4753 struct pglist_data __refdata contig_page_data = { 4754 #ifndef CONFIG_NO_BOOTMEM 4755 .bdata = &bootmem_node_data[0] 4756 #endif 4757 }; 4758 EXPORT_SYMBOL(contig_page_data); 4759 #endif 4760 4761 void __init free_area_init(unsigned long *zones_size) 4762 { 4763 free_area_init_node(0, zones_size, 4764 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4765 } 4766 4767 static int page_alloc_cpu_notify(struct notifier_block *self, 4768 unsigned long action, void *hcpu) 4769 { 4770 int cpu = (unsigned long)hcpu; 4771 4772 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4773 drain_pages(cpu); 4774 4775 /* 4776 * Spill the event counters of the dead processor 4777 * into the current processors event counters. 4778 * This artificially elevates the count of the current 4779 * processor. 4780 */ 4781 vm_events_fold_cpu(cpu); 4782 4783 /* 4784 * Zero the differential counters of the dead processor 4785 * so that the vm statistics are consistent. 4786 * 4787 * This is only okay since the processor is dead and cannot 4788 * race with what we are doing. 4789 */ 4790 refresh_cpu_vm_stats(cpu); 4791 } 4792 return NOTIFY_OK; 4793 } 4794 4795 void __init page_alloc_init(void) 4796 { 4797 hotcpu_notifier(page_alloc_cpu_notify, 0); 4798 } 4799 4800 /* 4801 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4802 * or min_free_kbytes changes. 4803 */ 4804 static void calculate_totalreserve_pages(void) 4805 { 4806 struct pglist_data *pgdat; 4807 unsigned long reserve_pages = 0; 4808 enum zone_type i, j; 4809 4810 for_each_online_pgdat(pgdat) { 4811 for (i = 0; i < MAX_NR_ZONES; i++) { 4812 struct zone *zone = pgdat->node_zones + i; 4813 unsigned long max = 0; 4814 4815 /* Find valid and maximum lowmem_reserve in the zone */ 4816 for (j = i; j < MAX_NR_ZONES; j++) { 4817 if (zone->lowmem_reserve[j] > max) 4818 max = zone->lowmem_reserve[j]; 4819 } 4820 4821 /* we treat the high watermark as reserved pages. */ 4822 max += high_wmark_pages(zone); 4823 4824 if (max > zone->present_pages) 4825 max = zone->present_pages; 4826 reserve_pages += max; 4827 } 4828 } 4829 totalreserve_pages = reserve_pages; 4830 } 4831 4832 /* 4833 * setup_per_zone_lowmem_reserve - called whenever 4834 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4835 * has a correct pages reserved value, so an adequate number of 4836 * pages are left in the zone after a successful __alloc_pages(). 4837 */ 4838 static void setup_per_zone_lowmem_reserve(void) 4839 { 4840 struct pglist_data *pgdat; 4841 enum zone_type j, idx; 4842 4843 for_each_online_pgdat(pgdat) { 4844 for (j = 0; j < MAX_NR_ZONES; j++) { 4845 struct zone *zone = pgdat->node_zones + j; 4846 unsigned long present_pages = zone->present_pages; 4847 4848 zone->lowmem_reserve[j] = 0; 4849 4850 idx = j; 4851 while (idx) { 4852 struct zone *lower_zone; 4853 4854 idx--; 4855 4856 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4857 sysctl_lowmem_reserve_ratio[idx] = 1; 4858 4859 lower_zone = pgdat->node_zones + idx; 4860 lower_zone->lowmem_reserve[j] = present_pages / 4861 sysctl_lowmem_reserve_ratio[idx]; 4862 present_pages += lower_zone->present_pages; 4863 } 4864 } 4865 } 4866 4867 /* update totalreserve_pages */ 4868 calculate_totalreserve_pages(); 4869 } 4870 4871 /** 4872 * setup_per_zone_wmarks - called when min_free_kbytes changes 4873 * or when memory is hot-{added|removed} 4874 * 4875 * Ensures that the watermark[min,low,high] values for each zone are set 4876 * correctly with respect to min_free_kbytes. 4877 */ 4878 void setup_per_zone_wmarks(void) 4879 { 4880 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4881 unsigned long lowmem_pages = 0; 4882 struct zone *zone; 4883 unsigned long flags; 4884 4885 /* Calculate total number of !ZONE_HIGHMEM pages */ 4886 for_each_zone(zone) { 4887 if (!is_highmem(zone)) 4888 lowmem_pages += zone->present_pages; 4889 } 4890 4891 for_each_zone(zone) { 4892 u64 tmp; 4893 4894 spin_lock_irqsave(&zone->lock, flags); 4895 tmp = (u64)pages_min * zone->present_pages; 4896 do_div(tmp, lowmem_pages); 4897 if (is_highmem(zone)) { 4898 /* 4899 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4900 * need highmem pages, so cap pages_min to a small 4901 * value here. 4902 * 4903 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 4904 * deltas controls asynch page reclaim, and so should 4905 * not be capped for highmem. 4906 */ 4907 int min_pages; 4908 4909 min_pages = zone->present_pages / 1024; 4910 if (min_pages < SWAP_CLUSTER_MAX) 4911 min_pages = SWAP_CLUSTER_MAX; 4912 if (min_pages > 128) 4913 min_pages = 128; 4914 zone->watermark[WMARK_MIN] = min_pages; 4915 } else { 4916 /* 4917 * If it's a lowmem zone, reserve a number of pages 4918 * proportionate to the zone's size. 4919 */ 4920 zone->watermark[WMARK_MIN] = tmp; 4921 } 4922 4923 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 4924 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 4925 setup_zone_migrate_reserve(zone); 4926 spin_unlock_irqrestore(&zone->lock, flags); 4927 } 4928 4929 /* update totalreserve_pages */ 4930 calculate_totalreserve_pages(); 4931 } 4932 4933 /* 4934 * The inactive anon list should be small enough that the VM never has to 4935 * do too much work, but large enough that each inactive page has a chance 4936 * to be referenced again before it is swapped out. 4937 * 4938 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 4939 * INACTIVE_ANON pages on this zone's LRU, maintained by the 4940 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 4941 * the anonymous pages are kept on the inactive list. 4942 * 4943 * total target max 4944 * memory ratio inactive anon 4945 * ------------------------------------- 4946 * 10MB 1 5MB 4947 * 100MB 1 50MB 4948 * 1GB 3 250MB 4949 * 10GB 10 0.9GB 4950 * 100GB 31 3GB 4951 * 1TB 101 10GB 4952 * 10TB 320 32GB 4953 */ 4954 void calculate_zone_inactive_ratio(struct zone *zone) 4955 { 4956 unsigned int gb, ratio; 4957 4958 /* Zone size in gigabytes */ 4959 gb = zone->present_pages >> (30 - PAGE_SHIFT); 4960 if (gb) 4961 ratio = int_sqrt(10 * gb); 4962 else 4963 ratio = 1; 4964 4965 zone->inactive_ratio = ratio; 4966 } 4967 4968 static void __init setup_per_zone_inactive_ratio(void) 4969 { 4970 struct zone *zone; 4971 4972 for_each_zone(zone) 4973 calculate_zone_inactive_ratio(zone); 4974 } 4975 4976 /* 4977 * Initialise min_free_kbytes. 4978 * 4979 * For small machines we want it small (128k min). For large machines 4980 * we want it large (64MB max). But it is not linear, because network 4981 * bandwidth does not increase linearly with machine size. We use 4982 * 4983 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 4984 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 4985 * 4986 * which yields 4987 * 4988 * 16MB: 512k 4989 * 32MB: 724k 4990 * 64MB: 1024k 4991 * 128MB: 1448k 4992 * 256MB: 2048k 4993 * 512MB: 2896k 4994 * 1024MB: 4096k 4995 * 2048MB: 5792k 4996 * 4096MB: 8192k 4997 * 8192MB: 11584k 4998 * 16384MB: 16384k 4999 */ 5000 static int __init init_per_zone_wmark_min(void) 5001 { 5002 unsigned long lowmem_kbytes; 5003 5004 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5005 5006 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5007 if (min_free_kbytes < 128) 5008 min_free_kbytes = 128; 5009 if (min_free_kbytes > 65536) 5010 min_free_kbytes = 65536; 5011 setup_per_zone_wmarks(); 5012 setup_per_zone_lowmem_reserve(); 5013 setup_per_zone_inactive_ratio(); 5014 return 0; 5015 } 5016 module_init(init_per_zone_wmark_min) 5017 5018 /* 5019 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5020 * that we can call two helper functions whenever min_free_kbytes 5021 * changes. 5022 */ 5023 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5024 void __user *buffer, size_t *length, loff_t *ppos) 5025 { 5026 proc_dointvec(table, write, buffer, length, ppos); 5027 if (write) 5028 setup_per_zone_wmarks(); 5029 return 0; 5030 } 5031 5032 #ifdef CONFIG_NUMA 5033 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5034 void __user *buffer, size_t *length, loff_t *ppos) 5035 { 5036 struct zone *zone; 5037 int rc; 5038 5039 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5040 if (rc) 5041 return rc; 5042 5043 for_each_zone(zone) 5044 zone->min_unmapped_pages = (zone->present_pages * 5045 sysctl_min_unmapped_ratio) / 100; 5046 return 0; 5047 } 5048 5049 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5050 void __user *buffer, size_t *length, loff_t *ppos) 5051 { 5052 struct zone *zone; 5053 int rc; 5054 5055 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5056 if (rc) 5057 return rc; 5058 5059 for_each_zone(zone) 5060 zone->min_slab_pages = (zone->present_pages * 5061 sysctl_min_slab_ratio) / 100; 5062 return 0; 5063 } 5064 #endif 5065 5066 /* 5067 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5068 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5069 * whenever sysctl_lowmem_reserve_ratio changes. 5070 * 5071 * The reserve ratio obviously has absolutely no relation with the 5072 * minimum watermarks. The lowmem reserve ratio can only make sense 5073 * if in function of the boot time zone sizes. 5074 */ 5075 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5076 void __user *buffer, size_t *length, loff_t *ppos) 5077 { 5078 proc_dointvec_minmax(table, write, buffer, length, ppos); 5079 setup_per_zone_lowmem_reserve(); 5080 return 0; 5081 } 5082 5083 /* 5084 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5085 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5086 * can have before it gets flushed back to buddy allocator. 5087 */ 5088 5089 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5090 void __user *buffer, size_t *length, loff_t *ppos) 5091 { 5092 struct zone *zone; 5093 unsigned int cpu; 5094 int ret; 5095 5096 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5097 if (!write || (ret == -EINVAL)) 5098 return ret; 5099 for_each_populated_zone(zone) { 5100 for_each_possible_cpu(cpu) { 5101 unsigned long high; 5102 high = zone->present_pages / percpu_pagelist_fraction; 5103 setup_pagelist_highmark( 5104 per_cpu_ptr(zone->pageset, cpu), high); 5105 } 5106 } 5107 return 0; 5108 } 5109 5110 int hashdist = HASHDIST_DEFAULT; 5111 5112 #ifdef CONFIG_NUMA 5113 static int __init set_hashdist(char *str) 5114 { 5115 if (!str) 5116 return 0; 5117 hashdist = simple_strtoul(str, &str, 0); 5118 return 1; 5119 } 5120 __setup("hashdist=", set_hashdist); 5121 #endif 5122 5123 /* 5124 * allocate a large system hash table from bootmem 5125 * - it is assumed that the hash table must contain an exact power-of-2 5126 * quantity of entries 5127 * - limit is the number of hash buckets, not the total allocation size 5128 */ 5129 void *__init alloc_large_system_hash(const char *tablename, 5130 unsigned long bucketsize, 5131 unsigned long numentries, 5132 int scale, 5133 int flags, 5134 unsigned int *_hash_shift, 5135 unsigned int *_hash_mask, 5136 unsigned long limit) 5137 { 5138 unsigned long long max = limit; 5139 unsigned long log2qty, size; 5140 void *table = NULL; 5141 5142 /* allow the kernel cmdline to have a say */ 5143 if (!numentries) { 5144 /* round applicable memory size up to nearest megabyte */ 5145 numentries = nr_kernel_pages; 5146 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5147 numentries >>= 20 - PAGE_SHIFT; 5148 numentries <<= 20 - PAGE_SHIFT; 5149 5150 /* limit to 1 bucket per 2^scale bytes of low memory */ 5151 if (scale > PAGE_SHIFT) 5152 numentries >>= (scale - PAGE_SHIFT); 5153 else 5154 numentries <<= (PAGE_SHIFT - scale); 5155 5156 /* Make sure we've got at least a 0-order allocation.. */ 5157 if (unlikely(flags & HASH_SMALL)) { 5158 /* Makes no sense without HASH_EARLY */ 5159 WARN_ON(!(flags & HASH_EARLY)); 5160 if (!(numentries >> *_hash_shift)) { 5161 numentries = 1UL << *_hash_shift; 5162 BUG_ON(!numentries); 5163 } 5164 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5165 numentries = PAGE_SIZE / bucketsize; 5166 } 5167 numentries = roundup_pow_of_two(numentries); 5168 5169 /* limit allocation size to 1/16 total memory by default */ 5170 if (max == 0) { 5171 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5172 do_div(max, bucketsize); 5173 } 5174 5175 if (numentries > max) 5176 numentries = max; 5177 5178 log2qty = ilog2(numentries); 5179 5180 do { 5181 size = bucketsize << log2qty; 5182 if (flags & HASH_EARLY) 5183 table = alloc_bootmem_nopanic(size); 5184 else if (hashdist) 5185 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5186 else { 5187 /* 5188 * If bucketsize is not a power-of-two, we may free 5189 * some pages at the end of hash table which 5190 * alloc_pages_exact() automatically does 5191 */ 5192 if (get_order(size) < MAX_ORDER) { 5193 table = alloc_pages_exact(size, GFP_ATOMIC); 5194 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5195 } 5196 } 5197 } while (!table && size > PAGE_SIZE && --log2qty); 5198 5199 if (!table) 5200 panic("Failed to allocate %s hash table\n", tablename); 5201 5202 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5203 tablename, 5204 (1UL << log2qty), 5205 ilog2(size) - PAGE_SHIFT, 5206 size); 5207 5208 if (_hash_shift) 5209 *_hash_shift = log2qty; 5210 if (_hash_mask) 5211 *_hash_mask = (1 << log2qty) - 1; 5212 5213 return table; 5214 } 5215 5216 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5217 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5218 unsigned long pfn) 5219 { 5220 #ifdef CONFIG_SPARSEMEM 5221 return __pfn_to_section(pfn)->pageblock_flags; 5222 #else 5223 return zone->pageblock_flags; 5224 #endif /* CONFIG_SPARSEMEM */ 5225 } 5226 5227 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5228 { 5229 #ifdef CONFIG_SPARSEMEM 5230 pfn &= (PAGES_PER_SECTION-1); 5231 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5232 #else 5233 pfn = pfn - zone->zone_start_pfn; 5234 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5235 #endif /* CONFIG_SPARSEMEM */ 5236 } 5237 5238 /** 5239 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5240 * @page: The page within the block of interest 5241 * @start_bitidx: The first bit of interest to retrieve 5242 * @end_bitidx: The last bit of interest 5243 * returns pageblock_bits flags 5244 */ 5245 unsigned long get_pageblock_flags_group(struct page *page, 5246 int start_bitidx, int end_bitidx) 5247 { 5248 struct zone *zone; 5249 unsigned long *bitmap; 5250 unsigned long pfn, bitidx; 5251 unsigned long flags = 0; 5252 unsigned long value = 1; 5253 5254 zone = page_zone(page); 5255 pfn = page_to_pfn(page); 5256 bitmap = get_pageblock_bitmap(zone, pfn); 5257 bitidx = pfn_to_bitidx(zone, pfn); 5258 5259 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5260 if (test_bit(bitidx + start_bitidx, bitmap)) 5261 flags |= value; 5262 5263 return flags; 5264 } 5265 5266 /** 5267 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5268 * @page: The page within the block of interest 5269 * @start_bitidx: The first bit of interest 5270 * @end_bitidx: The last bit of interest 5271 * @flags: The flags to set 5272 */ 5273 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5274 int start_bitidx, int end_bitidx) 5275 { 5276 struct zone *zone; 5277 unsigned long *bitmap; 5278 unsigned long pfn, bitidx; 5279 unsigned long value = 1; 5280 5281 zone = page_zone(page); 5282 pfn = page_to_pfn(page); 5283 bitmap = get_pageblock_bitmap(zone, pfn); 5284 bitidx = pfn_to_bitidx(zone, pfn); 5285 VM_BUG_ON(pfn < zone->zone_start_pfn); 5286 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5287 5288 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5289 if (flags & value) 5290 __set_bit(bitidx + start_bitidx, bitmap); 5291 else 5292 __clear_bit(bitidx + start_bitidx, bitmap); 5293 } 5294 5295 /* 5296 * This is designed as sub function...plz see page_isolation.c also. 5297 * set/clear page block's type to be ISOLATE. 5298 * page allocater never alloc memory from ISOLATE block. 5299 */ 5300 5301 static int 5302 __count_immobile_pages(struct zone *zone, struct page *page, int count) 5303 { 5304 unsigned long pfn, iter, found; 5305 /* 5306 * For avoiding noise data, lru_add_drain_all() should be called 5307 * If ZONE_MOVABLE, the zone never contains immobile pages 5308 */ 5309 if (zone_idx(zone) == ZONE_MOVABLE) 5310 return true; 5311 5312 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE) 5313 return true; 5314 5315 pfn = page_to_pfn(page); 5316 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5317 unsigned long check = pfn + iter; 5318 5319 if (!pfn_valid_within(check)) { 5320 iter++; 5321 continue; 5322 } 5323 page = pfn_to_page(check); 5324 if (!page_count(page)) { 5325 if (PageBuddy(page)) 5326 iter += (1 << page_order(page)) - 1; 5327 continue; 5328 } 5329 if (!PageLRU(page)) 5330 found++; 5331 /* 5332 * If there are RECLAIMABLE pages, we need to check it. 5333 * But now, memory offline itself doesn't call shrink_slab() 5334 * and it still to be fixed. 5335 */ 5336 /* 5337 * If the page is not RAM, page_count()should be 0. 5338 * we don't need more check. This is an _used_ not-movable page. 5339 * 5340 * The problematic thing here is PG_reserved pages. PG_reserved 5341 * is set to both of a memory hole page and a _used_ kernel 5342 * page at boot. 5343 */ 5344 if (found > count) 5345 return false; 5346 } 5347 return true; 5348 } 5349 5350 bool is_pageblock_removable_nolock(struct page *page) 5351 { 5352 struct zone *zone = page_zone(page); 5353 return __count_immobile_pages(zone, page, 0); 5354 } 5355 5356 int set_migratetype_isolate(struct page *page) 5357 { 5358 struct zone *zone; 5359 unsigned long flags, pfn; 5360 struct memory_isolate_notify arg; 5361 int notifier_ret; 5362 int ret = -EBUSY; 5363 int zone_idx; 5364 5365 zone = page_zone(page); 5366 zone_idx = zone_idx(zone); 5367 5368 spin_lock_irqsave(&zone->lock, flags); 5369 5370 pfn = page_to_pfn(page); 5371 arg.start_pfn = pfn; 5372 arg.nr_pages = pageblock_nr_pages; 5373 arg.pages_found = 0; 5374 5375 /* 5376 * It may be possible to isolate a pageblock even if the 5377 * migratetype is not MIGRATE_MOVABLE. The memory isolation 5378 * notifier chain is used by balloon drivers to return the 5379 * number of pages in a range that are held by the balloon 5380 * driver to shrink memory. If all the pages are accounted for 5381 * by balloons, are free, or on the LRU, isolation can continue. 5382 * Later, for example, when memory hotplug notifier runs, these 5383 * pages reported as "can be isolated" should be isolated(freed) 5384 * by the balloon driver through the memory notifier chain. 5385 */ 5386 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg); 5387 notifier_ret = notifier_to_errno(notifier_ret); 5388 if (notifier_ret) 5389 goto out; 5390 /* 5391 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself. 5392 * We just check MOVABLE pages. 5393 */ 5394 if (__count_immobile_pages(zone, page, arg.pages_found)) 5395 ret = 0; 5396 5397 /* 5398 * immobile means "not-on-lru" paes. If immobile is larger than 5399 * removable-by-driver pages reported by notifier, we'll fail. 5400 */ 5401 5402 out: 5403 if (!ret) { 5404 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 5405 move_freepages_block(zone, page, MIGRATE_ISOLATE); 5406 } 5407 5408 spin_unlock_irqrestore(&zone->lock, flags); 5409 if (!ret) 5410 drain_all_pages(); 5411 return ret; 5412 } 5413 5414 void unset_migratetype_isolate(struct page *page) 5415 { 5416 struct zone *zone; 5417 unsigned long flags; 5418 zone = page_zone(page); 5419 spin_lock_irqsave(&zone->lock, flags); 5420 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 5421 goto out; 5422 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5423 move_freepages_block(zone, page, MIGRATE_MOVABLE); 5424 out: 5425 spin_unlock_irqrestore(&zone->lock, flags); 5426 } 5427 5428 #ifdef CONFIG_MEMORY_HOTREMOVE 5429 /* 5430 * All pages in the range must be isolated before calling this. 5431 */ 5432 void 5433 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 5434 { 5435 struct page *page; 5436 struct zone *zone; 5437 int order, i; 5438 unsigned long pfn; 5439 unsigned long flags; 5440 /* find the first valid pfn */ 5441 for (pfn = start_pfn; pfn < end_pfn; pfn++) 5442 if (pfn_valid(pfn)) 5443 break; 5444 if (pfn == end_pfn) 5445 return; 5446 zone = page_zone(pfn_to_page(pfn)); 5447 spin_lock_irqsave(&zone->lock, flags); 5448 pfn = start_pfn; 5449 while (pfn < end_pfn) { 5450 if (!pfn_valid(pfn)) { 5451 pfn++; 5452 continue; 5453 } 5454 page = pfn_to_page(pfn); 5455 BUG_ON(page_count(page)); 5456 BUG_ON(!PageBuddy(page)); 5457 order = page_order(page); 5458 #ifdef CONFIG_DEBUG_VM 5459 printk(KERN_INFO "remove from free list %lx %d %lx\n", 5460 pfn, 1 << order, end_pfn); 5461 #endif 5462 list_del(&page->lru); 5463 rmv_page_order(page); 5464 zone->free_area[order].nr_free--; 5465 __mod_zone_page_state(zone, NR_FREE_PAGES, 5466 - (1UL << order)); 5467 for (i = 0; i < (1 << order); i++) 5468 SetPageReserved((page+i)); 5469 pfn += (1 << order); 5470 } 5471 spin_unlock_irqrestore(&zone->lock, flags); 5472 } 5473 #endif 5474 5475 #ifdef CONFIG_MEMORY_FAILURE 5476 bool is_free_buddy_page(struct page *page) 5477 { 5478 struct zone *zone = page_zone(page); 5479 unsigned long pfn = page_to_pfn(page); 5480 unsigned long flags; 5481 int order; 5482 5483 spin_lock_irqsave(&zone->lock, flags); 5484 for (order = 0; order < MAX_ORDER; order++) { 5485 struct page *page_head = page - (pfn & ((1 << order) - 1)); 5486 5487 if (PageBuddy(page_head) && page_order(page_head) >= order) 5488 break; 5489 } 5490 spin_unlock_irqrestore(&zone->lock, flags); 5491 5492 return order < MAX_ORDER; 5493 } 5494 #endif 5495 5496 static struct trace_print_flags pageflag_names[] = { 5497 {1UL << PG_locked, "locked" }, 5498 {1UL << PG_error, "error" }, 5499 {1UL << PG_referenced, "referenced" }, 5500 {1UL << PG_uptodate, "uptodate" }, 5501 {1UL << PG_dirty, "dirty" }, 5502 {1UL << PG_lru, "lru" }, 5503 {1UL << PG_active, "active" }, 5504 {1UL << PG_slab, "slab" }, 5505 {1UL << PG_owner_priv_1, "owner_priv_1" }, 5506 {1UL << PG_arch_1, "arch_1" }, 5507 {1UL << PG_reserved, "reserved" }, 5508 {1UL << PG_private, "private" }, 5509 {1UL << PG_private_2, "private_2" }, 5510 {1UL << PG_writeback, "writeback" }, 5511 #ifdef CONFIG_PAGEFLAGS_EXTENDED 5512 {1UL << PG_head, "head" }, 5513 {1UL << PG_tail, "tail" }, 5514 #else 5515 {1UL << PG_compound, "compound" }, 5516 #endif 5517 {1UL << PG_swapcache, "swapcache" }, 5518 {1UL << PG_mappedtodisk, "mappedtodisk" }, 5519 {1UL << PG_reclaim, "reclaim" }, 5520 {1UL << PG_buddy, "buddy" }, 5521 {1UL << PG_swapbacked, "swapbacked" }, 5522 {1UL << PG_unevictable, "unevictable" }, 5523 #ifdef CONFIG_MMU 5524 {1UL << PG_mlocked, "mlocked" }, 5525 #endif 5526 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 5527 {1UL << PG_uncached, "uncached" }, 5528 #endif 5529 #ifdef CONFIG_MEMORY_FAILURE 5530 {1UL << PG_hwpoison, "hwpoison" }, 5531 #endif 5532 {-1UL, NULL }, 5533 }; 5534 5535 static void dump_page_flags(unsigned long flags) 5536 { 5537 const char *delim = ""; 5538 unsigned long mask; 5539 int i; 5540 5541 printk(KERN_ALERT "page flags: %#lx(", flags); 5542 5543 /* remove zone id */ 5544 flags &= (1UL << NR_PAGEFLAGS) - 1; 5545 5546 for (i = 0; pageflag_names[i].name && flags; i++) { 5547 5548 mask = pageflag_names[i].mask; 5549 if ((flags & mask) != mask) 5550 continue; 5551 5552 flags &= ~mask; 5553 printk("%s%s", delim, pageflag_names[i].name); 5554 delim = "|"; 5555 } 5556 5557 /* check for left over flags */ 5558 if (flags) 5559 printk("%s%#lx", delim, flags); 5560 5561 printk(")\n"); 5562 } 5563 5564 void dump_page(struct page *page) 5565 { 5566 printk(KERN_ALERT 5567 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 5568 page, page_count(page), page_mapcount(page), 5569 page->mapping, page->index); 5570 dump_page_flags(page->flags); 5571 } 5572