xref: /openbmc/linux/mm/page_alloc.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/oom.h>
34 #include <linux/notifier.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/mempolicy.h>
43 #include <linux/stop_machine.h>
44 #include <linux/sort.h>
45 #include <linux/pfn.h>
46 #include <linux/backing-dev.h>
47 #include <linux/fault-inject.h>
48 #include <linux/page-isolation.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/debugobjects.h>
51 #include <linux/kmemleak.h>
52 #include <linux/memory.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <linux/ftrace_event.h>
56 
57 #include <asm/tlbflush.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 
61 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
62 DEFINE_PER_CPU(int, numa_node);
63 EXPORT_PER_CPU_SYMBOL(numa_node);
64 #endif
65 
66 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
67 /*
68  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
69  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
70  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
71  * defined in <linux/topology.h>.
72  */
73 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
74 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
75 #endif
76 
77 /*
78  * Array of node states.
79  */
80 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
81 	[N_POSSIBLE] = NODE_MASK_ALL,
82 	[N_ONLINE] = { { [0] = 1UL } },
83 #ifndef CONFIG_NUMA
84 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
85 #ifdef CONFIG_HIGHMEM
86 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
87 #endif
88 	[N_CPU] = { { [0] = 1UL } },
89 #endif	/* NUMA */
90 };
91 EXPORT_SYMBOL(node_states);
92 
93 unsigned long totalram_pages __read_mostly;
94 unsigned long totalreserve_pages __read_mostly;
95 int percpu_pagelist_fraction;
96 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
97 
98 #ifdef CONFIG_PM_SLEEP
99 /*
100  * The following functions are used by the suspend/hibernate code to temporarily
101  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
102  * while devices are suspended.  To avoid races with the suspend/hibernate code,
103  * they should always be called with pm_mutex held (gfp_allowed_mask also should
104  * only be modified with pm_mutex held, unless the suspend/hibernate code is
105  * guaranteed not to run in parallel with that modification).
106  */
107 
108 static gfp_t saved_gfp_mask;
109 
110 void pm_restore_gfp_mask(void)
111 {
112 	WARN_ON(!mutex_is_locked(&pm_mutex));
113 	if (saved_gfp_mask) {
114 		gfp_allowed_mask = saved_gfp_mask;
115 		saved_gfp_mask = 0;
116 	}
117 }
118 
119 void pm_restrict_gfp_mask(void)
120 {
121 	WARN_ON(!mutex_is_locked(&pm_mutex));
122 	WARN_ON(saved_gfp_mask);
123 	saved_gfp_mask = gfp_allowed_mask;
124 	gfp_allowed_mask &= ~GFP_IOFS;
125 }
126 #endif /* CONFIG_PM_SLEEP */
127 
128 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
129 int pageblock_order __read_mostly;
130 #endif
131 
132 static void __free_pages_ok(struct page *page, unsigned int order);
133 
134 /*
135  * results with 256, 32 in the lowmem_reserve sysctl:
136  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
137  *	1G machine -> (16M dma, 784M normal, 224M high)
138  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
139  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
140  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
141  *
142  * TBD: should special case ZONE_DMA32 machines here - in those we normally
143  * don't need any ZONE_NORMAL reservation
144  */
145 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
146 #ifdef CONFIG_ZONE_DMA
147 	 256,
148 #endif
149 #ifdef CONFIG_ZONE_DMA32
150 	 256,
151 #endif
152 #ifdef CONFIG_HIGHMEM
153 	 32,
154 #endif
155 	 32,
156 };
157 
158 EXPORT_SYMBOL(totalram_pages);
159 
160 static char * const zone_names[MAX_NR_ZONES] = {
161 #ifdef CONFIG_ZONE_DMA
162 	 "DMA",
163 #endif
164 #ifdef CONFIG_ZONE_DMA32
165 	 "DMA32",
166 #endif
167 	 "Normal",
168 #ifdef CONFIG_HIGHMEM
169 	 "HighMem",
170 #endif
171 	 "Movable",
172 };
173 
174 int min_free_kbytes = 1024;
175 
176 static unsigned long __meminitdata nr_kernel_pages;
177 static unsigned long __meminitdata nr_all_pages;
178 static unsigned long __meminitdata dma_reserve;
179 
180 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
181   /*
182    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
183    * ranges of memory (RAM) that may be registered with add_active_range().
184    * Ranges passed to add_active_range() will be merged if possible
185    * so the number of times add_active_range() can be called is
186    * related to the number of nodes and the number of holes
187    */
188   #ifdef CONFIG_MAX_ACTIVE_REGIONS
189     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
190     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
191   #else
192     #if MAX_NUMNODES >= 32
193       /* If there can be many nodes, allow up to 50 holes per node */
194       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
195     #else
196       /* By default, allow up to 256 distinct regions */
197       #define MAX_ACTIVE_REGIONS 256
198     #endif
199   #endif
200 
201   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
202   static int __meminitdata nr_nodemap_entries;
203   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
204   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
205   static unsigned long __initdata required_kernelcore;
206   static unsigned long __initdata required_movablecore;
207   static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
208 
209   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
210   int movable_zone;
211   EXPORT_SYMBOL(movable_zone);
212 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
213 
214 #if MAX_NUMNODES > 1
215 int nr_node_ids __read_mostly = MAX_NUMNODES;
216 int nr_online_nodes __read_mostly = 1;
217 EXPORT_SYMBOL(nr_node_ids);
218 EXPORT_SYMBOL(nr_online_nodes);
219 #endif
220 
221 int page_group_by_mobility_disabled __read_mostly;
222 
223 static void set_pageblock_migratetype(struct page *page, int migratetype)
224 {
225 
226 	if (unlikely(page_group_by_mobility_disabled))
227 		migratetype = MIGRATE_UNMOVABLE;
228 
229 	set_pageblock_flags_group(page, (unsigned long)migratetype,
230 					PB_migrate, PB_migrate_end);
231 }
232 
233 bool oom_killer_disabled __read_mostly;
234 
235 #ifdef CONFIG_DEBUG_VM
236 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
237 {
238 	int ret = 0;
239 	unsigned seq;
240 	unsigned long pfn = page_to_pfn(page);
241 
242 	do {
243 		seq = zone_span_seqbegin(zone);
244 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
245 			ret = 1;
246 		else if (pfn < zone->zone_start_pfn)
247 			ret = 1;
248 	} while (zone_span_seqretry(zone, seq));
249 
250 	return ret;
251 }
252 
253 static int page_is_consistent(struct zone *zone, struct page *page)
254 {
255 	if (!pfn_valid_within(page_to_pfn(page)))
256 		return 0;
257 	if (zone != page_zone(page))
258 		return 0;
259 
260 	return 1;
261 }
262 /*
263  * Temporary debugging check for pages not lying within a given zone.
264  */
265 static int bad_range(struct zone *zone, struct page *page)
266 {
267 	if (page_outside_zone_boundaries(zone, page))
268 		return 1;
269 	if (!page_is_consistent(zone, page))
270 		return 1;
271 
272 	return 0;
273 }
274 #else
275 static inline int bad_range(struct zone *zone, struct page *page)
276 {
277 	return 0;
278 }
279 #endif
280 
281 static void bad_page(struct page *page)
282 {
283 	static unsigned long resume;
284 	static unsigned long nr_shown;
285 	static unsigned long nr_unshown;
286 
287 	/* Don't complain about poisoned pages */
288 	if (PageHWPoison(page)) {
289 		__ClearPageBuddy(page);
290 		return;
291 	}
292 
293 	/*
294 	 * Allow a burst of 60 reports, then keep quiet for that minute;
295 	 * or allow a steady drip of one report per second.
296 	 */
297 	if (nr_shown == 60) {
298 		if (time_before(jiffies, resume)) {
299 			nr_unshown++;
300 			goto out;
301 		}
302 		if (nr_unshown) {
303 			printk(KERN_ALERT
304 			      "BUG: Bad page state: %lu messages suppressed\n",
305 				nr_unshown);
306 			nr_unshown = 0;
307 		}
308 		nr_shown = 0;
309 	}
310 	if (nr_shown++ == 0)
311 		resume = jiffies + 60 * HZ;
312 
313 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
314 		current->comm, page_to_pfn(page));
315 	dump_page(page);
316 
317 	dump_stack();
318 out:
319 	/* Leave bad fields for debug, except PageBuddy could make trouble */
320 	__ClearPageBuddy(page);
321 	add_taint(TAINT_BAD_PAGE);
322 }
323 
324 /*
325  * Higher-order pages are called "compound pages".  They are structured thusly:
326  *
327  * The first PAGE_SIZE page is called the "head page".
328  *
329  * The remaining PAGE_SIZE pages are called "tail pages".
330  *
331  * All pages have PG_compound set.  All pages have their ->private pointing at
332  * the head page (even the head page has this).
333  *
334  * The first tail page's ->lru.next holds the address of the compound page's
335  * put_page() function.  Its ->lru.prev holds the order of allocation.
336  * This usage means that zero-order pages may not be compound.
337  */
338 
339 static void free_compound_page(struct page *page)
340 {
341 	__free_pages_ok(page, compound_order(page));
342 }
343 
344 void prep_compound_page(struct page *page, unsigned long order)
345 {
346 	int i;
347 	int nr_pages = 1 << order;
348 
349 	set_compound_page_dtor(page, free_compound_page);
350 	set_compound_order(page, order);
351 	__SetPageHead(page);
352 	for (i = 1; i < nr_pages; i++) {
353 		struct page *p = page + i;
354 
355 		__SetPageTail(p);
356 		p->first_page = page;
357 	}
358 }
359 
360 static int destroy_compound_page(struct page *page, unsigned long order)
361 {
362 	int i;
363 	int nr_pages = 1 << order;
364 	int bad = 0;
365 
366 	if (unlikely(compound_order(page) != order) ||
367 	    unlikely(!PageHead(page))) {
368 		bad_page(page);
369 		bad++;
370 	}
371 
372 	__ClearPageHead(page);
373 
374 	for (i = 1; i < nr_pages; i++) {
375 		struct page *p = page + i;
376 
377 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
378 			bad_page(page);
379 			bad++;
380 		}
381 		__ClearPageTail(p);
382 	}
383 
384 	return bad;
385 }
386 
387 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
388 {
389 	int i;
390 
391 	/*
392 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
393 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
394 	 */
395 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
396 	for (i = 0; i < (1 << order); i++)
397 		clear_highpage(page + i);
398 }
399 
400 static inline void set_page_order(struct page *page, int order)
401 {
402 	set_page_private(page, order);
403 	__SetPageBuddy(page);
404 }
405 
406 static inline void rmv_page_order(struct page *page)
407 {
408 	__ClearPageBuddy(page);
409 	set_page_private(page, 0);
410 }
411 
412 /*
413  * Locate the struct page for both the matching buddy in our
414  * pair (buddy1) and the combined O(n+1) page they form (page).
415  *
416  * 1) Any buddy B1 will have an order O twin B2 which satisfies
417  * the following equation:
418  *     B2 = B1 ^ (1 << O)
419  * For example, if the starting buddy (buddy2) is #8 its order
420  * 1 buddy is #10:
421  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
422  *
423  * 2) Any buddy B will have an order O+1 parent P which
424  * satisfies the following equation:
425  *     P = B & ~(1 << O)
426  *
427  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
428  */
429 static inline struct page *
430 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
431 {
432 	unsigned long buddy_idx = page_idx ^ (1 << order);
433 
434 	return page + (buddy_idx - page_idx);
435 }
436 
437 static inline unsigned long
438 __find_combined_index(unsigned long page_idx, unsigned int order)
439 {
440 	return (page_idx & ~(1 << order));
441 }
442 
443 /*
444  * This function checks whether a page is free && is the buddy
445  * we can do coalesce a page and its buddy if
446  * (a) the buddy is not in a hole &&
447  * (b) the buddy is in the buddy system &&
448  * (c) a page and its buddy have the same order &&
449  * (d) a page and its buddy are in the same zone.
450  *
451  * For recording whether a page is in the buddy system, we use PG_buddy.
452  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
453  *
454  * For recording page's order, we use page_private(page).
455  */
456 static inline int page_is_buddy(struct page *page, struct page *buddy,
457 								int order)
458 {
459 	if (!pfn_valid_within(page_to_pfn(buddy)))
460 		return 0;
461 
462 	if (page_zone_id(page) != page_zone_id(buddy))
463 		return 0;
464 
465 	if (PageBuddy(buddy) && page_order(buddy) == order) {
466 		VM_BUG_ON(page_count(buddy) != 0);
467 		return 1;
468 	}
469 	return 0;
470 }
471 
472 /*
473  * Freeing function for a buddy system allocator.
474  *
475  * The concept of a buddy system is to maintain direct-mapped table
476  * (containing bit values) for memory blocks of various "orders".
477  * The bottom level table contains the map for the smallest allocatable
478  * units of memory (here, pages), and each level above it describes
479  * pairs of units from the levels below, hence, "buddies".
480  * At a high level, all that happens here is marking the table entry
481  * at the bottom level available, and propagating the changes upward
482  * as necessary, plus some accounting needed to play nicely with other
483  * parts of the VM system.
484  * At each level, we keep a list of pages, which are heads of continuous
485  * free pages of length of (1 << order) and marked with PG_buddy. Page's
486  * order is recorded in page_private(page) field.
487  * So when we are allocating or freeing one, we can derive the state of the
488  * other.  That is, if we allocate a small block, and both were
489  * free, the remainder of the region must be split into blocks.
490  * If a block is freed, and its buddy is also free, then this
491  * triggers coalescing into a block of larger size.
492  *
493  * -- wli
494  */
495 
496 static inline void __free_one_page(struct page *page,
497 		struct zone *zone, unsigned int order,
498 		int migratetype)
499 {
500 	unsigned long page_idx;
501 	unsigned long combined_idx;
502 	struct page *buddy;
503 
504 	if (unlikely(PageCompound(page)))
505 		if (unlikely(destroy_compound_page(page, order)))
506 			return;
507 
508 	VM_BUG_ON(migratetype == -1);
509 
510 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
511 
512 	VM_BUG_ON(page_idx & ((1 << order) - 1));
513 	VM_BUG_ON(bad_range(zone, page));
514 
515 	while (order < MAX_ORDER-1) {
516 		buddy = __page_find_buddy(page, page_idx, order);
517 		if (!page_is_buddy(page, buddy, order))
518 			break;
519 
520 		/* Our buddy is free, merge with it and move up one order. */
521 		list_del(&buddy->lru);
522 		zone->free_area[order].nr_free--;
523 		rmv_page_order(buddy);
524 		combined_idx = __find_combined_index(page_idx, order);
525 		page = page + (combined_idx - page_idx);
526 		page_idx = combined_idx;
527 		order++;
528 	}
529 	set_page_order(page, order);
530 
531 	/*
532 	 * If this is not the largest possible page, check if the buddy
533 	 * of the next-highest order is free. If it is, it's possible
534 	 * that pages are being freed that will coalesce soon. In case,
535 	 * that is happening, add the free page to the tail of the list
536 	 * so it's less likely to be used soon and more likely to be merged
537 	 * as a higher order page
538 	 */
539 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
540 		struct page *higher_page, *higher_buddy;
541 		combined_idx = __find_combined_index(page_idx, order);
542 		higher_page = page + combined_idx - page_idx;
543 		higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
544 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
545 			list_add_tail(&page->lru,
546 				&zone->free_area[order].free_list[migratetype]);
547 			goto out;
548 		}
549 	}
550 
551 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
552 out:
553 	zone->free_area[order].nr_free++;
554 }
555 
556 /*
557  * free_page_mlock() -- clean up attempts to free and mlocked() page.
558  * Page should not be on lru, so no need to fix that up.
559  * free_pages_check() will verify...
560  */
561 static inline void free_page_mlock(struct page *page)
562 {
563 	__dec_zone_page_state(page, NR_MLOCK);
564 	__count_vm_event(UNEVICTABLE_MLOCKFREED);
565 }
566 
567 static inline int free_pages_check(struct page *page)
568 {
569 	if (unlikely(page_mapcount(page) |
570 		(page->mapping != NULL)  |
571 		(atomic_read(&page->_count) != 0) |
572 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
573 		bad_page(page);
574 		return 1;
575 	}
576 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
577 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
578 	return 0;
579 }
580 
581 /*
582  * Frees a number of pages from the PCP lists
583  * Assumes all pages on list are in same zone, and of same order.
584  * count is the number of pages to free.
585  *
586  * If the zone was previously in an "all pages pinned" state then look to
587  * see if this freeing clears that state.
588  *
589  * And clear the zone's pages_scanned counter, to hold off the "all pages are
590  * pinned" detection logic.
591  */
592 static void free_pcppages_bulk(struct zone *zone, int count,
593 					struct per_cpu_pages *pcp)
594 {
595 	int migratetype = 0;
596 	int batch_free = 0;
597 	int to_free = count;
598 
599 	spin_lock(&zone->lock);
600 	zone->all_unreclaimable = 0;
601 	zone->pages_scanned = 0;
602 
603 	while (to_free) {
604 		struct page *page;
605 		struct list_head *list;
606 
607 		/*
608 		 * Remove pages from lists in a round-robin fashion. A
609 		 * batch_free count is maintained that is incremented when an
610 		 * empty list is encountered.  This is so more pages are freed
611 		 * off fuller lists instead of spinning excessively around empty
612 		 * lists
613 		 */
614 		do {
615 			batch_free++;
616 			if (++migratetype == MIGRATE_PCPTYPES)
617 				migratetype = 0;
618 			list = &pcp->lists[migratetype];
619 		} while (list_empty(list));
620 
621 		do {
622 			page = list_entry(list->prev, struct page, lru);
623 			/* must delete as __free_one_page list manipulates */
624 			list_del(&page->lru);
625 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
626 			__free_one_page(page, zone, 0, page_private(page));
627 			trace_mm_page_pcpu_drain(page, 0, page_private(page));
628 		} while (--to_free && --batch_free && !list_empty(list));
629 	}
630 	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
631 	spin_unlock(&zone->lock);
632 }
633 
634 static void free_one_page(struct zone *zone, struct page *page, int order,
635 				int migratetype)
636 {
637 	spin_lock(&zone->lock);
638 	zone->all_unreclaimable = 0;
639 	zone->pages_scanned = 0;
640 
641 	__free_one_page(page, zone, order, migratetype);
642 	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
643 	spin_unlock(&zone->lock);
644 }
645 
646 static bool free_pages_prepare(struct page *page, unsigned int order)
647 {
648 	int i;
649 	int bad = 0;
650 
651 	trace_mm_page_free_direct(page, order);
652 	kmemcheck_free_shadow(page, order);
653 
654 	for (i = 0; i < (1 << order); i++) {
655 		struct page *pg = page + i;
656 
657 		if (PageAnon(pg))
658 			pg->mapping = NULL;
659 		bad += free_pages_check(pg);
660 	}
661 	if (bad)
662 		return false;
663 
664 	if (!PageHighMem(page)) {
665 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
666 		debug_check_no_obj_freed(page_address(page),
667 					   PAGE_SIZE << order);
668 	}
669 	arch_free_page(page, order);
670 	kernel_map_pages(page, 1 << order, 0);
671 
672 	return true;
673 }
674 
675 static void __free_pages_ok(struct page *page, unsigned int order)
676 {
677 	unsigned long flags;
678 	int wasMlocked = __TestClearPageMlocked(page);
679 
680 	if (!free_pages_prepare(page, order))
681 		return;
682 
683 	local_irq_save(flags);
684 	if (unlikely(wasMlocked))
685 		free_page_mlock(page);
686 	__count_vm_events(PGFREE, 1 << order);
687 	free_one_page(page_zone(page), page, order,
688 					get_pageblock_migratetype(page));
689 	local_irq_restore(flags);
690 }
691 
692 /*
693  * permit the bootmem allocator to evade page validation on high-order frees
694  */
695 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
696 {
697 	if (order == 0) {
698 		__ClearPageReserved(page);
699 		set_page_count(page, 0);
700 		set_page_refcounted(page);
701 		__free_page(page);
702 	} else {
703 		int loop;
704 
705 		prefetchw(page);
706 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
707 			struct page *p = &page[loop];
708 
709 			if (loop + 1 < BITS_PER_LONG)
710 				prefetchw(p + 1);
711 			__ClearPageReserved(p);
712 			set_page_count(p, 0);
713 		}
714 
715 		set_page_refcounted(page);
716 		__free_pages(page, order);
717 	}
718 }
719 
720 
721 /*
722  * The order of subdivision here is critical for the IO subsystem.
723  * Please do not alter this order without good reasons and regression
724  * testing. Specifically, as large blocks of memory are subdivided,
725  * the order in which smaller blocks are delivered depends on the order
726  * they're subdivided in this function. This is the primary factor
727  * influencing the order in which pages are delivered to the IO
728  * subsystem according to empirical testing, and this is also justified
729  * by considering the behavior of a buddy system containing a single
730  * large block of memory acted on by a series of small allocations.
731  * This behavior is a critical factor in sglist merging's success.
732  *
733  * -- wli
734  */
735 static inline void expand(struct zone *zone, struct page *page,
736 	int low, int high, struct free_area *area,
737 	int migratetype)
738 {
739 	unsigned long size = 1 << high;
740 
741 	while (high > low) {
742 		area--;
743 		high--;
744 		size >>= 1;
745 		VM_BUG_ON(bad_range(zone, &page[size]));
746 		list_add(&page[size].lru, &area->free_list[migratetype]);
747 		area->nr_free++;
748 		set_page_order(&page[size], high);
749 	}
750 }
751 
752 /*
753  * This page is about to be returned from the page allocator
754  */
755 static inline int check_new_page(struct page *page)
756 {
757 	if (unlikely(page_mapcount(page) |
758 		(page->mapping != NULL)  |
759 		(atomic_read(&page->_count) != 0)  |
760 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
761 		bad_page(page);
762 		return 1;
763 	}
764 	return 0;
765 }
766 
767 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
768 {
769 	int i;
770 
771 	for (i = 0; i < (1 << order); i++) {
772 		struct page *p = page + i;
773 		if (unlikely(check_new_page(p)))
774 			return 1;
775 	}
776 
777 	set_page_private(page, 0);
778 	set_page_refcounted(page);
779 
780 	arch_alloc_page(page, order);
781 	kernel_map_pages(page, 1 << order, 1);
782 
783 	if (gfp_flags & __GFP_ZERO)
784 		prep_zero_page(page, order, gfp_flags);
785 
786 	if (order && (gfp_flags & __GFP_COMP))
787 		prep_compound_page(page, order);
788 
789 	return 0;
790 }
791 
792 /*
793  * Go through the free lists for the given migratetype and remove
794  * the smallest available page from the freelists
795  */
796 static inline
797 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
798 						int migratetype)
799 {
800 	unsigned int current_order;
801 	struct free_area * area;
802 	struct page *page;
803 
804 	/* Find a page of the appropriate size in the preferred list */
805 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
806 		area = &(zone->free_area[current_order]);
807 		if (list_empty(&area->free_list[migratetype]))
808 			continue;
809 
810 		page = list_entry(area->free_list[migratetype].next,
811 							struct page, lru);
812 		list_del(&page->lru);
813 		rmv_page_order(page);
814 		area->nr_free--;
815 		expand(zone, page, order, current_order, area, migratetype);
816 		return page;
817 	}
818 
819 	return NULL;
820 }
821 
822 
823 /*
824  * This array describes the order lists are fallen back to when
825  * the free lists for the desirable migrate type are depleted
826  */
827 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
828 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
829 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
830 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
831 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
832 };
833 
834 /*
835  * Move the free pages in a range to the free lists of the requested type.
836  * Note that start_page and end_pages are not aligned on a pageblock
837  * boundary. If alignment is required, use move_freepages_block()
838  */
839 static int move_freepages(struct zone *zone,
840 			  struct page *start_page, struct page *end_page,
841 			  int migratetype)
842 {
843 	struct page *page;
844 	unsigned long order;
845 	int pages_moved = 0;
846 
847 #ifndef CONFIG_HOLES_IN_ZONE
848 	/*
849 	 * page_zone is not safe to call in this context when
850 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
851 	 * anyway as we check zone boundaries in move_freepages_block().
852 	 * Remove at a later date when no bug reports exist related to
853 	 * grouping pages by mobility
854 	 */
855 	BUG_ON(page_zone(start_page) != page_zone(end_page));
856 #endif
857 
858 	for (page = start_page; page <= end_page;) {
859 		/* Make sure we are not inadvertently changing nodes */
860 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
861 
862 		if (!pfn_valid_within(page_to_pfn(page))) {
863 			page++;
864 			continue;
865 		}
866 
867 		if (!PageBuddy(page)) {
868 			page++;
869 			continue;
870 		}
871 
872 		order = page_order(page);
873 		list_del(&page->lru);
874 		list_add(&page->lru,
875 			&zone->free_area[order].free_list[migratetype]);
876 		page += 1 << order;
877 		pages_moved += 1 << order;
878 	}
879 
880 	return pages_moved;
881 }
882 
883 static int move_freepages_block(struct zone *zone, struct page *page,
884 				int migratetype)
885 {
886 	unsigned long start_pfn, end_pfn;
887 	struct page *start_page, *end_page;
888 
889 	start_pfn = page_to_pfn(page);
890 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
891 	start_page = pfn_to_page(start_pfn);
892 	end_page = start_page + pageblock_nr_pages - 1;
893 	end_pfn = start_pfn + pageblock_nr_pages - 1;
894 
895 	/* Do not cross zone boundaries */
896 	if (start_pfn < zone->zone_start_pfn)
897 		start_page = page;
898 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
899 		return 0;
900 
901 	return move_freepages(zone, start_page, end_page, migratetype);
902 }
903 
904 static void change_pageblock_range(struct page *pageblock_page,
905 					int start_order, int migratetype)
906 {
907 	int nr_pageblocks = 1 << (start_order - pageblock_order);
908 
909 	while (nr_pageblocks--) {
910 		set_pageblock_migratetype(pageblock_page, migratetype);
911 		pageblock_page += pageblock_nr_pages;
912 	}
913 }
914 
915 /* Remove an element from the buddy allocator from the fallback list */
916 static inline struct page *
917 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
918 {
919 	struct free_area * area;
920 	int current_order;
921 	struct page *page;
922 	int migratetype, i;
923 
924 	/* Find the largest possible block of pages in the other list */
925 	for (current_order = MAX_ORDER-1; current_order >= order;
926 						--current_order) {
927 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
928 			migratetype = fallbacks[start_migratetype][i];
929 
930 			/* MIGRATE_RESERVE handled later if necessary */
931 			if (migratetype == MIGRATE_RESERVE)
932 				continue;
933 
934 			area = &(zone->free_area[current_order]);
935 			if (list_empty(&area->free_list[migratetype]))
936 				continue;
937 
938 			page = list_entry(area->free_list[migratetype].next,
939 					struct page, lru);
940 			area->nr_free--;
941 
942 			/*
943 			 * If breaking a large block of pages, move all free
944 			 * pages to the preferred allocation list. If falling
945 			 * back for a reclaimable kernel allocation, be more
946 			 * agressive about taking ownership of free pages
947 			 */
948 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
949 					start_migratetype == MIGRATE_RECLAIMABLE ||
950 					page_group_by_mobility_disabled) {
951 				unsigned long pages;
952 				pages = move_freepages_block(zone, page,
953 								start_migratetype);
954 
955 				/* Claim the whole block if over half of it is free */
956 				if (pages >= (1 << (pageblock_order-1)) ||
957 						page_group_by_mobility_disabled)
958 					set_pageblock_migratetype(page,
959 								start_migratetype);
960 
961 				migratetype = start_migratetype;
962 			}
963 
964 			/* Remove the page from the freelists */
965 			list_del(&page->lru);
966 			rmv_page_order(page);
967 
968 			/* Take ownership for orders >= pageblock_order */
969 			if (current_order >= pageblock_order)
970 				change_pageblock_range(page, current_order,
971 							start_migratetype);
972 
973 			expand(zone, page, order, current_order, area, migratetype);
974 
975 			trace_mm_page_alloc_extfrag(page, order, current_order,
976 				start_migratetype, migratetype);
977 
978 			return page;
979 		}
980 	}
981 
982 	return NULL;
983 }
984 
985 /*
986  * Do the hard work of removing an element from the buddy allocator.
987  * Call me with the zone->lock already held.
988  */
989 static struct page *__rmqueue(struct zone *zone, unsigned int order,
990 						int migratetype)
991 {
992 	struct page *page;
993 
994 retry_reserve:
995 	page = __rmqueue_smallest(zone, order, migratetype);
996 
997 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
998 		page = __rmqueue_fallback(zone, order, migratetype);
999 
1000 		/*
1001 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1002 		 * is used because __rmqueue_smallest is an inline function
1003 		 * and we want just one call site
1004 		 */
1005 		if (!page) {
1006 			migratetype = MIGRATE_RESERVE;
1007 			goto retry_reserve;
1008 		}
1009 	}
1010 
1011 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1012 	return page;
1013 }
1014 
1015 /*
1016  * Obtain a specified number of elements from the buddy allocator, all under
1017  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1018  * Returns the number of new pages which were placed at *list.
1019  */
1020 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1021 			unsigned long count, struct list_head *list,
1022 			int migratetype, int cold)
1023 {
1024 	int i;
1025 
1026 	spin_lock(&zone->lock);
1027 	for (i = 0; i < count; ++i) {
1028 		struct page *page = __rmqueue(zone, order, migratetype);
1029 		if (unlikely(page == NULL))
1030 			break;
1031 
1032 		/*
1033 		 * Split buddy pages returned by expand() are received here
1034 		 * in physical page order. The page is added to the callers and
1035 		 * list and the list head then moves forward. From the callers
1036 		 * perspective, the linked list is ordered by page number in
1037 		 * some conditions. This is useful for IO devices that can
1038 		 * merge IO requests if the physical pages are ordered
1039 		 * properly.
1040 		 */
1041 		if (likely(cold == 0))
1042 			list_add(&page->lru, list);
1043 		else
1044 			list_add_tail(&page->lru, list);
1045 		set_page_private(page, migratetype);
1046 		list = &page->lru;
1047 	}
1048 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1049 	spin_unlock(&zone->lock);
1050 	return i;
1051 }
1052 
1053 #ifdef CONFIG_NUMA
1054 /*
1055  * Called from the vmstat counter updater to drain pagesets of this
1056  * currently executing processor on remote nodes after they have
1057  * expired.
1058  *
1059  * Note that this function must be called with the thread pinned to
1060  * a single processor.
1061  */
1062 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1063 {
1064 	unsigned long flags;
1065 	int to_drain;
1066 
1067 	local_irq_save(flags);
1068 	if (pcp->count >= pcp->batch)
1069 		to_drain = pcp->batch;
1070 	else
1071 		to_drain = pcp->count;
1072 	free_pcppages_bulk(zone, to_drain, pcp);
1073 	pcp->count -= to_drain;
1074 	local_irq_restore(flags);
1075 }
1076 #endif
1077 
1078 /*
1079  * Drain pages of the indicated processor.
1080  *
1081  * The processor must either be the current processor and the
1082  * thread pinned to the current processor or a processor that
1083  * is not online.
1084  */
1085 static void drain_pages(unsigned int cpu)
1086 {
1087 	unsigned long flags;
1088 	struct zone *zone;
1089 
1090 	for_each_populated_zone(zone) {
1091 		struct per_cpu_pageset *pset;
1092 		struct per_cpu_pages *pcp;
1093 
1094 		local_irq_save(flags);
1095 		pset = per_cpu_ptr(zone->pageset, cpu);
1096 
1097 		pcp = &pset->pcp;
1098 		free_pcppages_bulk(zone, pcp->count, pcp);
1099 		pcp->count = 0;
1100 		local_irq_restore(flags);
1101 	}
1102 }
1103 
1104 /*
1105  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1106  */
1107 void drain_local_pages(void *arg)
1108 {
1109 	drain_pages(smp_processor_id());
1110 }
1111 
1112 /*
1113  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1114  */
1115 void drain_all_pages(void)
1116 {
1117 	on_each_cpu(drain_local_pages, NULL, 1);
1118 }
1119 
1120 #ifdef CONFIG_HIBERNATION
1121 
1122 void mark_free_pages(struct zone *zone)
1123 {
1124 	unsigned long pfn, max_zone_pfn;
1125 	unsigned long flags;
1126 	int order, t;
1127 	struct list_head *curr;
1128 
1129 	if (!zone->spanned_pages)
1130 		return;
1131 
1132 	spin_lock_irqsave(&zone->lock, flags);
1133 
1134 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1135 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1136 		if (pfn_valid(pfn)) {
1137 			struct page *page = pfn_to_page(pfn);
1138 
1139 			if (!swsusp_page_is_forbidden(page))
1140 				swsusp_unset_page_free(page);
1141 		}
1142 
1143 	for_each_migratetype_order(order, t) {
1144 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1145 			unsigned long i;
1146 
1147 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1148 			for (i = 0; i < (1UL << order); i++)
1149 				swsusp_set_page_free(pfn_to_page(pfn + i));
1150 		}
1151 	}
1152 	spin_unlock_irqrestore(&zone->lock, flags);
1153 }
1154 #endif /* CONFIG_PM */
1155 
1156 /*
1157  * Free a 0-order page
1158  * cold == 1 ? free a cold page : free a hot page
1159  */
1160 void free_hot_cold_page(struct page *page, int cold)
1161 {
1162 	struct zone *zone = page_zone(page);
1163 	struct per_cpu_pages *pcp;
1164 	unsigned long flags;
1165 	int migratetype;
1166 	int wasMlocked = __TestClearPageMlocked(page);
1167 
1168 	if (!free_pages_prepare(page, 0))
1169 		return;
1170 
1171 	migratetype = get_pageblock_migratetype(page);
1172 	set_page_private(page, migratetype);
1173 	local_irq_save(flags);
1174 	if (unlikely(wasMlocked))
1175 		free_page_mlock(page);
1176 	__count_vm_event(PGFREE);
1177 
1178 	/*
1179 	 * We only track unmovable, reclaimable and movable on pcp lists.
1180 	 * Free ISOLATE pages back to the allocator because they are being
1181 	 * offlined but treat RESERVE as movable pages so we can get those
1182 	 * areas back if necessary. Otherwise, we may have to free
1183 	 * excessively into the page allocator
1184 	 */
1185 	if (migratetype >= MIGRATE_PCPTYPES) {
1186 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1187 			free_one_page(zone, page, 0, migratetype);
1188 			goto out;
1189 		}
1190 		migratetype = MIGRATE_MOVABLE;
1191 	}
1192 
1193 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1194 	if (cold)
1195 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1196 	else
1197 		list_add(&page->lru, &pcp->lists[migratetype]);
1198 	pcp->count++;
1199 	if (pcp->count >= pcp->high) {
1200 		free_pcppages_bulk(zone, pcp->batch, pcp);
1201 		pcp->count -= pcp->batch;
1202 	}
1203 
1204 out:
1205 	local_irq_restore(flags);
1206 }
1207 
1208 /*
1209  * split_page takes a non-compound higher-order page, and splits it into
1210  * n (1<<order) sub-pages: page[0..n]
1211  * Each sub-page must be freed individually.
1212  *
1213  * Note: this is probably too low level an operation for use in drivers.
1214  * Please consult with lkml before using this in your driver.
1215  */
1216 void split_page(struct page *page, unsigned int order)
1217 {
1218 	int i;
1219 
1220 	VM_BUG_ON(PageCompound(page));
1221 	VM_BUG_ON(!page_count(page));
1222 
1223 #ifdef CONFIG_KMEMCHECK
1224 	/*
1225 	 * Split shadow pages too, because free(page[0]) would
1226 	 * otherwise free the whole shadow.
1227 	 */
1228 	if (kmemcheck_page_is_tracked(page))
1229 		split_page(virt_to_page(page[0].shadow), order);
1230 #endif
1231 
1232 	for (i = 1; i < (1 << order); i++)
1233 		set_page_refcounted(page + i);
1234 }
1235 
1236 /*
1237  * Similar to split_page except the page is already free. As this is only
1238  * being used for migration, the migratetype of the block also changes.
1239  * As this is called with interrupts disabled, the caller is responsible
1240  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1241  * are enabled.
1242  *
1243  * Note: this is probably too low level an operation for use in drivers.
1244  * Please consult with lkml before using this in your driver.
1245  */
1246 int split_free_page(struct page *page)
1247 {
1248 	unsigned int order;
1249 	unsigned long watermark;
1250 	struct zone *zone;
1251 
1252 	BUG_ON(!PageBuddy(page));
1253 
1254 	zone = page_zone(page);
1255 	order = page_order(page);
1256 
1257 	/* Obey watermarks as if the page was being allocated */
1258 	watermark = low_wmark_pages(zone) + (1 << order);
1259 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1260 		return 0;
1261 
1262 	/* Remove page from free list */
1263 	list_del(&page->lru);
1264 	zone->free_area[order].nr_free--;
1265 	rmv_page_order(page);
1266 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1267 
1268 	/* Split into individual pages */
1269 	set_page_refcounted(page);
1270 	split_page(page, order);
1271 
1272 	if (order >= pageblock_order - 1) {
1273 		struct page *endpage = page + (1 << order) - 1;
1274 		for (; page < endpage; page += pageblock_nr_pages)
1275 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1276 	}
1277 
1278 	return 1 << order;
1279 }
1280 
1281 /*
1282  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1283  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1284  * or two.
1285  */
1286 static inline
1287 struct page *buffered_rmqueue(struct zone *preferred_zone,
1288 			struct zone *zone, int order, gfp_t gfp_flags,
1289 			int migratetype)
1290 {
1291 	unsigned long flags;
1292 	struct page *page;
1293 	int cold = !!(gfp_flags & __GFP_COLD);
1294 
1295 again:
1296 	if (likely(order == 0)) {
1297 		struct per_cpu_pages *pcp;
1298 		struct list_head *list;
1299 
1300 		local_irq_save(flags);
1301 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1302 		list = &pcp->lists[migratetype];
1303 		if (list_empty(list)) {
1304 			pcp->count += rmqueue_bulk(zone, 0,
1305 					pcp->batch, list,
1306 					migratetype, cold);
1307 			if (unlikely(list_empty(list)))
1308 				goto failed;
1309 		}
1310 
1311 		if (cold)
1312 			page = list_entry(list->prev, struct page, lru);
1313 		else
1314 			page = list_entry(list->next, struct page, lru);
1315 
1316 		list_del(&page->lru);
1317 		pcp->count--;
1318 	} else {
1319 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1320 			/*
1321 			 * __GFP_NOFAIL is not to be used in new code.
1322 			 *
1323 			 * All __GFP_NOFAIL callers should be fixed so that they
1324 			 * properly detect and handle allocation failures.
1325 			 *
1326 			 * We most definitely don't want callers attempting to
1327 			 * allocate greater than order-1 page units with
1328 			 * __GFP_NOFAIL.
1329 			 */
1330 			WARN_ON_ONCE(order > 1);
1331 		}
1332 		spin_lock_irqsave(&zone->lock, flags);
1333 		page = __rmqueue(zone, order, migratetype);
1334 		spin_unlock(&zone->lock);
1335 		if (!page)
1336 			goto failed;
1337 		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1338 	}
1339 
1340 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1341 	zone_statistics(preferred_zone, zone);
1342 	local_irq_restore(flags);
1343 
1344 	VM_BUG_ON(bad_range(zone, page));
1345 	if (prep_new_page(page, order, gfp_flags))
1346 		goto again;
1347 	return page;
1348 
1349 failed:
1350 	local_irq_restore(flags);
1351 	return NULL;
1352 }
1353 
1354 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1355 #define ALLOC_WMARK_MIN		WMARK_MIN
1356 #define ALLOC_WMARK_LOW		WMARK_LOW
1357 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1358 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1359 
1360 /* Mask to get the watermark bits */
1361 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1362 
1363 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1364 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1365 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1366 
1367 #ifdef CONFIG_FAIL_PAGE_ALLOC
1368 
1369 static struct fail_page_alloc_attr {
1370 	struct fault_attr attr;
1371 
1372 	u32 ignore_gfp_highmem;
1373 	u32 ignore_gfp_wait;
1374 	u32 min_order;
1375 
1376 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1377 
1378 	struct dentry *ignore_gfp_highmem_file;
1379 	struct dentry *ignore_gfp_wait_file;
1380 	struct dentry *min_order_file;
1381 
1382 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1383 
1384 } fail_page_alloc = {
1385 	.attr = FAULT_ATTR_INITIALIZER,
1386 	.ignore_gfp_wait = 1,
1387 	.ignore_gfp_highmem = 1,
1388 	.min_order = 1,
1389 };
1390 
1391 static int __init setup_fail_page_alloc(char *str)
1392 {
1393 	return setup_fault_attr(&fail_page_alloc.attr, str);
1394 }
1395 __setup("fail_page_alloc=", setup_fail_page_alloc);
1396 
1397 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1398 {
1399 	if (order < fail_page_alloc.min_order)
1400 		return 0;
1401 	if (gfp_mask & __GFP_NOFAIL)
1402 		return 0;
1403 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1404 		return 0;
1405 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1406 		return 0;
1407 
1408 	return should_fail(&fail_page_alloc.attr, 1 << order);
1409 }
1410 
1411 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1412 
1413 static int __init fail_page_alloc_debugfs(void)
1414 {
1415 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1416 	struct dentry *dir;
1417 	int err;
1418 
1419 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1420 				       "fail_page_alloc");
1421 	if (err)
1422 		return err;
1423 	dir = fail_page_alloc.attr.dentries.dir;
1424 
1425 	fail_page_alloc.ignore_gfp_wait_file =
1426 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1427 				      &fail_page_alloc.ignore_gfp_wait);
1428 
1429 	fail_page_alloc.ignore_gfp_highmem_file =
1430 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1431 				      &fail_page_alloc.ignore_gfp_highmem);
1432 	fail_page_alloc.min_order_file =
1433 		debugfs_create_u32("min-order", mode, dir,
1434 				   &fail_page_alloc.min_order);
1435 
1436 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1437             !fail_page_alloc.ignore_gfp_highmem_file ||
1438             !fail_page_alloc.min_order_file) {
1439 		err = -ENOMEM;
1440 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1441 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1442 		debugfs_remove(fail_page_alloc.min_order_file);
1443 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1444 	}
1445 
1446 	return err;
1447 }
1448 
1449 late_initcall(fail_page_alloc_debugfs);
1450 
1451 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1452 
1453 #else /* CONFIG_FAIL_PAGE_ALLOC */
1454 
1455 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1456 {
1457 	return 0;
1458 }
1459 
1460 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1461 
1462 /*
1463  * Return 1 if free pages are above 'mark'. This takes into account the order
1464  * of the allocation.
1465  */
1466 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1467 		      int classzone_idx, int alloc_flags)
1468 {
1469 	/* free_pages my go negative - that's OK */
1470 	long min = mark;
1471 	long free_pages = zone_nr_free_pages(z) - (1 << order) + 1;
1472 	int o;
1473 
1474 	if (alloc_flags & ALLOC_HIGH)
1475 		min -= min / 2;
1476 	if (alloc_flags & ALLOC_HARDER)
1477 		min -= min / 4;
1478 
1479 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1480 		return 0;
1481 	for (o = 0; o < order; o++) {
1482 		/* At the next order, this order's pages become unavailable */
1483 		free_pages -= z->free_area[o].nr_free << o;
1484 
1485 		/* Require fewer higher order pages to be free */
1486 		min >>= 1;
1487 
1488 		if (free_pages <= min)
1489 			return 0;
1490 	}
1491 	return 1;
1492 }
1493 
1494 #ifdef CONFIG_NUMA
1495 /*
1496  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1497  * skip over zones that are not allowed by the cpuset, or that have
1498  * been recently (in last second) found to be nearly full.  See further
1499  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1500  * that have to skip over a lot of full or unallowed zones.
1501  *
1502  * If the zonelist cache is present in the passed in zonelist, then
1503  * returns a pointer to the allowed node mask (either the current
1504  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1505  *
1506  * If the zonelist cache is not available for this zonelist, does
1507  * nothing and returns NULL.
1508  *
1509  * If the fullzones BITMAP in the zonelist cache is stale (more than
1510  * a second since last zap'd) then we zap it out (clear its bits.)
1511  *
1512  * We hold off even calling zlc_setup, until after we've checked the
1513  * first zone in the zonelist, on the theory that most allocations will
1514  * be satisfied from that first zone, so best to examine that zone as
1515  * quickly as we can.
1516  */
1517 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1518 {
1519 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1520 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1521 
1522 	zlc = zonelist->zlcache_ptr;
1523 	if (!zlc)
1524 		return NULL;
1525 
1526 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1527 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1528 		zlc->last_full_zap = jiffies;
1529 	}
1530 
1531 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1532 					&cpuset_current_mems_allowed :
1533 					&node_states[N_HIGH_MEMORY];
1534 	return allowednodes;
1535 }
1536 
1537 /*
1538  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1539  * if it is worth looking at further for free memory:
1540  *  1) Check that the zone isn't thought to be full (doesn't have its
1541  *     bit set in the zonelist_cache fullzones BITMAP).
1542  *  2) Check that the zones node (obtained from the zonelist_cache
1543  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1544  * Return true (non-zero) if zone is worth looking at further, or
1545  * else return false (zero) if it is not.
1546  *
1547  * This check -ignores- the distinction between various watermarks,
1548  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1549  * found to be full for any variation of these watermarks, it will
1550  * be considered full for up to one second by all requests, unless
1551  * we are so low on memory on all allowed nodes that we are forced
1552  * into the second scan of the zonelist.
1553  *
1554  * In the second scan we ignore this zonelist cache and exactly
1555  * apply the watermarks to all zones, even it is slower to do so.
1556  * We are low on memory in the second scan, and should leave no stone
1557  * unturned looking for a free page.
1558  */
1559 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1560 						nodemask_t *allowednodes)
1561 {
1562 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1563 	int i;				/* index of *z in zonelist zones */
1564 	int n;				/* node that zone *z is on */
1565 
1566 	zlc = zonelist->zlcache_ptr;
1567 	if (!zlc)
1568 		return 1;
1569 
1570 	i = z - zonelist->_zonerefs;
1571 	n = zlc->z_to_n[i];
1572 
1573 	/* This zone is worth trying if it is allowed but not full */
1574 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1575 }
1576 
1577 /*
1578  * Given 'z' scanning a zonelist, set the corresponding bit in
1579  * zlc->fullzones, so that subsequent attempts to allocate a page
1580  * from that zone don't waste time re-examining it.
1581  */
1582 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1583 {
1584 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1585 	int i;				/* index of *z in zonelist zones */
1586 
1587 	zlc = zonelist->zlcache_ptr;
1588 	if (!zlc)
1589 		return;
1590 
1591 	i = z - zonelist->_zonerefs;
1592 
1593 	set_bit(i, zlc->fullzones);
1594 }
1595 
1596 #else	/* CONFIG_NUMA */
1597 
1598 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1599 {
1600 	return NULL;
1601 }
1602 
1603 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1604 				nodemask_t *allowednodes)
1605 {
1606 	return 1;
1607 }
1608 
1609 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1610 {
1611 }
1612 #endif	/* CONFIG_NUMA */
1613 
1614 /*
1615  * get_page_from_freelist goes through the zonelist trying to allocate
1616  * a page.
1617  */
1618 static struct page *
1619 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1620 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1621 		struct zone *preferred_zone, int migratetype)
1622 {
1623 	struct zoneref *z;
1624 	struct page *page = NULL;
1625 	int classzone_idx;
1626 	struct zone *zone;
1627 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1628 	int zlc_active = 0;		/* set if using zonelist_cache */
1629 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1630 
1631 	classzone_idx = zone_idx(preferred_zone);
1632 zonelist_scan:
1633 	/*
1634 	 * Scan zonelist, looking for a zone with enough free.
1635 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1636 	 */
1637 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1638 						high_zoneidx, nodemask) {
1639 		if (NUMA_BUILD && zlc_active &&
1640 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1641 				continue;
1642 		if ((alloc_flags & ALLOC_CPUSET) &&
1643 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1644 				goto try_next_zone;
1645 
1646 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1647 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1648 			unsigned long mark;
1649 			int ret;
1650 
1651 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1652 			if (zone_watermark_ok(zone, order, mark,
1653 				    classzone_idx, alloc_flags))
1654 				goto try_this_zone;
1655 
1656 			if (zone_reclaim_mode == 0)
1657 				goto this_zone_full;
1658 
1659 			ret = zone_reclaim(zone, gfp_mask, order);
1660 			switch (ret) {
1661 			case ZONE_RECLAIM_NOSCAN:
1662 				/* did not scan */
1663 				goto try_next_zone;
1664 			case ZONE_RECLAIM_FULL:
1665 				/* scanned but unreclaimable */
1666 				goto this_zone_full;
1667 			default:
1668 				/* did we reclaim enough */
1669 				if (!zone_watermark_ok(zone, order, mark,
1670 						classzone_idx, alloc_flags))
1671 					goto this_zone_full;
1672 			}
1673 		}
1674 
1675 try_this_zone:
1676 		page = buffered_rmqueue(preferred_zone, zone, order,
1677 						gfp_mask, migratetype);
1678 		if (page)
1679 			break;
1680 this_zone_full:
1681 		if (NUMA_BUILD)
1682 			zlc_mark_zone_full(zonelist, z);
1683 try_next_zone:
1684 		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1685 			/*
1686 			 * we do zlc_setup after the first zone is tried but only
1687 			 * if there are multiple nodes make it worthwhile
1688 			 */
1689 			allowednodes = zlc_setup(zonelist, alloc_flags);
1690 			zlc_active = 1;
1691 			did_zlc_setup = 1;
1692 		}
1693 	}
1694 
1695 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1696 		/* Disable zlc cache for second zonelist scan */
1697 		zlc_active = 0;
1698 		goto zonelist_scan;
1699 	}
1700 	return page;
1701 }
1702 
1703 static inline int
1704 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1705 				unsigned long pages_reclaimed)
1706 {
1707 	/* Do not loop if specifically requested */
1708 	if (gfp_mask & __GFP_NORETRY)
1709 		return 0;
1710 
1711 	/*
1712 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1713 	 * means __GFP_NOFAIL, but that may not be true in other
1714 	 * implementations.
1715 	 */
1716 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1717 		return 1;
1718 
1719 	/*
1720 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1721 	 * specified, then we retry until we no longer reclaim any pages
1722 	 * (above), or we've reclaimed an order of pages at least as
1723 	 * large as the allocation's order. In both cases, if the
1724 	 * allocation still fails, we stop retrying.
1725 	 */
1726 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1727 		return 1;
1728 
1729 	/*
1730 	 * Don't let big-order allocations loop unless the caller
1731 	 * explicitly requests that.
1732 	 */
1733 	if (gfp_mask & __GFP_NOFAIL)
1734 		return 1;
1735 
1736 	return 0;
1737 }
1738 
1739 static inline struct page *
1740 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1741 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1742 	nodemask_t *nodemask, struct zone *preferred_zone,
1743 	int migratetype)
1744 {
1745 	struct page *page;
1746 
1747 	/* Acquire the OOM killer lock for the zones in zonelist */
1748 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1749 		schedule_timeout_uninterruptible(1);
1750 		return NULL;
1751 	}
1752 
1753 	/*
1754 	 * Go through the zonelist yet one more time, keep very high watermark
1755 	 * here, this is only to catch a parallel oom killing, we must fail if
1756 	 * we're still under heavy pressure.
1757 	 */
1758 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1759 		order, zonelist, high_zoneidx,
1760 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1761 		preferred_zone, migratetype);
1762 	if (page)
1763 		goto out;
1764 
1765 	if (!(gfp_mask & __GFP_NOFAIL)) {
1766 		/* The OOM killer will not help higher order allocs */
1767 		if (order > PAGE_ALLOC_COSTLY_ORDER)
1768 			goto out;
1769 		/* The OOM killer does not needlessly kill tasks for lowmem */
1770 		if (high_zoneidx < ZONE_NORMAL)
1771 			goto out;
1772 		/*
1773 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1774 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1775 		 * The caller should handle page allocation failure by itself if
1776 		 * it specifies __GFP_THISNODE.
1777 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1778 		 */
1779 		if (gfp_mask & __GFP_THISNODE)
1780 			goto out;
1781 	}
1782 	/* Exhausted what can be done so it's blamo time */
1783 	out_of_memory(zonelist, gfp_mask, order, nodemask);
1784 
1785 out:
1786 	clear_zonelist_oom(zonelist, gfp_mask);
1787 	return page;
1788 }
1789 
1790 #ifdef CONFIG_COMPACTION
1791 /* Try memory compaction for high-order allocations before reclaim */
1792 static struct page *
1793 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1794 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1795 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1796 	int migratetype, unsigned long *did_some_progress)
1797 {
1798 	struct page *page;
1799 
1800 	if (!order || compaction_deferred(preferred_zone))
1801 		return NULL;
1802 
1803 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1804 								nodemask);
1805 	if (*did_some_progress != COMPACT_SKIPPED) {
1806 
1807 		/* Page migration frees to the PCP lists but we want merging */
1808 		drain_pages(get_cpu());
1809 		put_cpu();
1810 
1811 		page = get_page_from_freelist(gfp_mask, nodemask,
1812 				order, zonelist, high_zoneidx,
1813 				alloc_flags, preferred_zone,
1814 				migratetype);
1815 		if (page) {
1816 			preferred_zone->compact_considered = 0;
1817 			preferred_zone->compact_defer_shift = 0;
1818 			count_vm_event(COMPACTSUCCESS);
1819 			return page;
1820 		}
1821 
1822 		/*
1823 		 * It's bad if compaction run occurs and fails.
1824 		 * The most likely reason is that pages exist,
1825 		 * but not enough to satisfy watermarks.
1826 		 */
1827 		count_vm_event(COMPACTFAIL);
1828 		defer_compaction(preferred_zone);
1829 
1830 		cond_resched();
1831 	}
1832 
1833 	return NULL;
1834 }
1835 #else
1836 static inline struct page *
1837 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1838 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1839 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1840 	int migratetype, unsigned long *did_some_progress)
1841 {
1842 	return NULL;
1843 }
1844 #endif /* CONFIG_COMPACTION */
1845 
1846 /* The really slow allocator path where we enter direct reclaim */
1847 static inline struct page *
1848 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1849 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1850 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1851 	int migratetype, unsigned long *did_some_progress)
1852 {
1853 	struct page *page = NULL;
1854 	struct reclaim_state reclaim_state;
1855 	struct task_struct *p = current;
1856 	bool drained = false;
1857 
1858 	cond_resched();
1859 
1860 	/* We now go into synchronous reclaim */
1861 	cpuset_memory_pressure_bump();
1862 	p->flags |= PF_MEMALLOC;
1863 	lockdep_set_current_reclaim_state(gfp_mask);
1864 	reclaim_state.reclaimed_slab = 0;
1865 	p->reclaim_state = &reclaim_state;
1866 
1867 	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1868 
1869 	p->reclaim_state = NULL;
1870 	lockdep_clear_current_reclaim_state();
1871 	p->flags &= ~PF_MEMALLOC;
1872 
1873 	cond_resched();
1874 
1875 	if (unlikely(!(*did_some_progress)))
1876 		return NULL;
1877 
1878 retry:
1879 	page = get_page_from_freelist(gfp_mask, nodemask, order,
1880 					zonelist, high_zoneidx,
1881 					alloc_flags, preferred_zone,
1882 					migratetype);
1883 
1884 	/*
1885 	 * If an allocation failed after direct reclaim, it could be because
1886 	 * pages are pinned on the per-cpu lists. Drain them and try again
1887 	 */
1888 	if (!page && !drained) {
1889 		drain_all_pages();
1890 		drained = true;
1891 		goto retry;
1892 	}
1893 
1894 	return page;
1895 }
1896 
1897 /*
1898  * This is called in the allocator slow-path if the allocation request is of
1899  * sufficient urgency to ignore watermarks and take other desperate measures
1900  */
1901 static inline struct page *
1902 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1903 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1904 	nodemask_t *nodemask, struct zone *preferred_zone,
1905 	int migratetype)
1906 {
1907 	struct page *page;
1908 
1909 	do {
1910 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1911 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1912 			preferred_zone, migratetype);
1913 
1914 		if (!page && gfp_mask & __GFP_NOFAIL)
1915 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1916 	} while (!page && (gfp_mask & __GFP_NOFAIL));
1917 
1918 	return page;
1919 }
1920 
1921 static inline
1922 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1923 						enum zone_type high_zoneidx)
1924 {
1925 	struct zoneref *z;
1926 	struct zone *zone;
1927 
1928 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1929 		wakeup_kswapd(zone, order);
1930 }
1931 
1932 static inline int
1933 gfp_to_alloc_flags(gfp_t gfp_mask)
1934 {
1935 	struct task_struct *p = current;
1936 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1937 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1938 
1939 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1940 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
1941 
1942 	/*
1943 	 * The caller may dip into page reserves a bit more if the caller
1944 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1945 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1946 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1947 	 */
1948 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1949 
1950 	if (!wait) {
1951 		alloc_flags |= ALLOC_HARDER;
1952 		/*
1953 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1954 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1955 		 */
1956 		alloc_flags &= ~ALLOC_CPUSET;
1957 	} else if (unlikely(rt_task(p)) && !in_interrupt())
1958 		alloc_flags |= ALLOC_HARDER;
1959 
1960 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1961 		if (!in_interrupt() &&
1962 		    ((p->flags & PF_MEMALLOC) ||
1963 		     unlikely(test_thread_flag(TIF_MEMDIE))))
1964 			alloc_flags |= ALLOC_NO_WATERMARKS;
1965 	}
1966 
1967 	return alloc_flags;
1968 }
1969 
1970 static inline struct page *
1971 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1972 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1973 	nodemask_t *nodemask, struct zone *preferred_zone,
1974 	int migratetype)
1975 {
1976 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1977 	struct page *page = NULL;
1978 	int alloc_flags;
1979 	unsigned long pages_reclaimed = 0;
1980 	unsigned long did_some_progress;
1981 	struct task_struct *p = current;
1982 
1983 	/*
1984 	 * In the slowpath, we sanity check order to avoid ever trying to
1985 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1986 	 * be using allocators in order of preference for an area that is
1987 	 * too large.
1988 	 */
1989 	if (order >= MAX_ORDER) {
1990 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1991 		return NULL;
1992 	}
1993 
1994 	/*
1995 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1996 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1997 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1998 	 * using a larger set of nodes after it has established that the
1999 	 * allowed per node queues are empty and that nodes are
2000 	 * over allocated.
2001 	 */
2002 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2003 		goto nopage;
2004 
2005 restart:
2006 	wake_all_kswapd(order, zonelist, high_zoneidx);
2007 
2008 	/*
2009 	 * OK, we're below the kswapd watermark and have kicked background
2010 	 * reclaim. Now things get more complex, so set up alloc_flags according
2011 	 * to how we want to proceed.
2012 	 */
2013 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2014 
2015 	/* This is the last chance, in general, before the goto nopage. */
2016 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2017 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2018 			preferred_zone, migratetype);
2019 	if (page)
2020 		goto got_pg;
2021 
2022 rebalance:
2023 	/* Allocate without watermarks if the context allows */
2024 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2025 		page = __alloc_pages_high_priority(gfp_mask, order,
2026 				zonelist, high_zoneidx, nodemask,
2027 				preferred_zone, migratetype);
2028 		if (page)
2029 			goto got_pg;
2030 	}
2031 
2032 	/* Atomic allocations - we can't balance anything */
2033 	if (!wait)
2034 		goto nopage;
2035 
2036 	/* Avoid recursion of direct reclaim */
2037 	if (p->flags & PF_MEMALLOC)
2038 		goto nopage;
2039 
2040 	/* Avoid allocations with no watermarks from looping endlessly */
2041 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2042 		goto nopage;
2043 
2044 	/* Try direct compaction */
2045 	page = __alloc_pages_direct_compact(gfp_mask, order,
2046 					zonelist, high_zoneidx,
2047 					nodemask,
2048 					alloc_flags, preferred_zone,
2049 					migratetype, &did_some_progress);
2050 	if (page)
2051 		goto got_pg;
2052 
2053 	/* Try direct reclaim and then allocating */
2054 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2055 					zonelist, high_zoneidx,
2056 					nodemask,
2057 					alloc_flags, preferred_zone,
2058 					migratetype, &did_some_progress);
2059 	if (page)
2060 		goto got_pg;
2061 
2062 	/*
2063 	 * If we failed to make any progress reclaiming, then we are
2064 	 * running out of options and have to consider going OOM
2065 	 */
2066 	if (!did_some_progress) {
2067 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2068 			if (oom_killer_disabled)
2069 				goto nopage;
2070 			page = __alloc_pages_may_oom(gfp_mask, order,
2071 					zonelist, high_zoneidx,
2072 					nodemask, preferred_zone,
2073 					migratetype);
2074 			if (page)
2075 				goto got_pg;
2076 
2077 			if (!(gfp_mask & __GFP_NOFAIL)) {
2078 				/*
2079 				 * The oom killer is not called for high-order
2080 				 * allocations that may fail, so if no progress
2081 				 * is being made, there are no other options and
2082 				 * retrying is unlikely to help.
2083 				 */
2084 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2085 					goto nopage;
2086 				/*
2087 				 * The oom killer is not called for lowmem
2088 				 * allocations to prevent needlessly killing
2089 				 * innocent tasks.
2090 				 */
2091 				if (high_zoneidx < ZONE_NORMAL)
2092 					goto nopage;
2093 			}
2094 
2095 			goto restart;
2096 		}
2097 	}
2098 
2099 	/* Check if we should retry the allocation */
2100 	pages_reclaimed += did_some_progress;
2101 	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2102 		/* Wait for some write requests to complete then retry */
2103 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2104 		goto rebalance;
2105 	}
2106 
2107 nopage:
2108 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2109 		printk(KERN_WARNING "%s: page allocation failure."
2110 			" order:%d, mode:0x%x\n",
2111 			p->comm, order, gfp_mask);
2112 		dump_stack();
2113 		show_mem();
2114 	}
2115 	return page;
2116 got_pg:
2117 	if (kmemcheck_enabled)
2118 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2119 	return page;
2120 
2121 }
2122 
2123 /*
2124  * This is the 'heart' of the zoned buddy allocator.
2125  */
2126 struct page *
2127 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2128 			struct zonelist *zonelist, nodemask_t *nodemask)
2129 {
2130 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2131 	struct zone *preferred_zone;
2132 	struct page *page;
2133 	int migratetype = allocflags_to_migratetype(gfp_mask);
2134 
2135 	gfp_mask &= gfp_allowed_mask;
2136 
2137 	lockdep_trace_alloc(gfp_mask);
2138 
2139 	might_sleep_if(gfp_mask & __GFP_WAIT);
2140 
2141 	if (should_fail_alloc_page(gfp_mask, order))
2142 		return NULL;
2143 
2144 	/*
2145 	 * Check the zones suitable for the gfp_mask contain at least one
2146 	 * valid zone. It's possible to have an empty zonelist as a result
2147 	 * of GFP_THISNODE and a memoryless node
2148 	 */
2149 	if (unlikely(!zonelist->_zonerefs->zone))
2150 		return NULL;
2151 
2152 	get_mems_allowed();
2153 	/* The preferred zone is used for statistics later */
2154 	first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
2155 	if (!preferred_zone) {
2156 		put_mems_allowed();
2157 		return NULL;
2158 	}
2159 
2160 	/* First allocation attempt */
2161 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2162 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2163 			preferred_zone, migratetype);
2164 	if (unlikely(!page))
2165 		page = __alloc_pages_slowpath(gfp_mask, order,
2166 				zonelist, high_zoneidx, nodemask,
2167 				preferred_zone, migratetype);
2168 	put_mems_allowed();
2169 
2170 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2171 	return page;
2172 }
2173 EXPORT_SYMBOL(__alloc_pages_nodemask);
2174 
2175 /*
2176  * Common helper functions.
2177  */
2178 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2179 {
2180 	struct page *page;
2181 
2182 	/*
2183 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2184 	 * a highmem page
2185 	 */
2186 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2187 
2188 	page = alloc_pages(gfp_mask, order);
2189 	if (!page)
2190 		return 0;
2191 	return (unsigned long) page_address(page);
2192 }
2193 EXPORT_SYMBOL(__get_free_pages);
2194 
2195 unsigned long get_zeroed_page(gfp_t gfp_mask)
2196 {
2197 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2198 }
2199 EXPORT_SYMBOL(get_zeroed_page);
2200 
2201 void __pagevec_free(struct pagevec *pvec)
2202 {
2203 	int i = pagevec_count(pvec);
2204 
2205 	while (--i >= 0) {
2206 		trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2207 		free_hot_cold_page(pvec->pages[i], pvec->cold);
2208 	}
2209 }
2210 
2211 void __free_pages(struct page *page, unsigned int order)
2212 {
2213 	if (put_page_testzero(page)) {
2214 		if (order == 0)
2215 			free_hot_cold_page(page, 0);
2216 		else
2217 			__free_pages_ok(page, order);
2218 	}
2219 }
2220 
2221 EXPORT_SYMBOL(__free_pages);
2222 
2223 void free_pages(unsigned long addr, unsigned int order)
2224 {
2225 	if (addr != 0) {
2226 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2227 		__free_pages(virt_to_page((void *)addr), order);
2228 	}
2229 }
2230 
2231 EXPORT_SYMBOL(free_pages);
2232 
2233 /**
2234  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2235  * @size: the number of bytes to allocate
2236  * @gfp_mask: GFP flags for the allocation
2237  *
2238  * This function is similar to alloc_pages(), except that it allocates the
2239  * minimum number of pages to satisfy the request.  alloc_pages() can only
2240  * allocate memory in power-of-two pages.
2241  *
2242  * This function is also limited by MAX_ORDER.
2243  *
2244  * Memory allocated by this function must be released by free_pages_exact().
2245  */
2246 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2247 {
2248 	unsigned int order = get_order(size);
2249 	unsigned long addr;
2250 
2251 	addr = __get_free_pages(gfp_mask, order);
2252 	if (addr) {
2253 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2254 		unsigned long used = addr + PAGE_ALIGN(size);
2255 
2256 		split_page(virt_to_page((void *)addr), order);
2257 		while (used < alloc_end) {
2258 			free_page(used);
2259 			used += PAGE_SIZE;
2260 		}
2261 	}
2262 
2263 	return (void *)addr;
2264 }
2265 EXPORT_SYMBOL(alloc_pages_exact);
2266 
2267 /**
2268  * free_pages_exact - release memory allocated via alloc_pages_exact()
2269  * @virt: the value returned by alloc_pages_exact.
2270  * @size: size of allocation, same value as passed to alloc_pages_exact().
2271  *
2272  * Release the memory allocated by a previous call to alloc_pages_exact.
2273  */
2274 void free_pages_exact(void *virt, size_t size)
2275 {
2276 	unsigned long addr = (unsigned long)virt;
2277 	unsigned long end = addr + PAGE_ALIGN(size);
2278 
2279 	while (addr < end) {
2280 		free_page(addr);
2281 		addr += PAGE_SIZE;
2282 	}
2283 }
2284 EXPORT_SYMBOL(free_pages_exact);
2285 
2286 static unsigned int nr_free_zone_pages(int offset)
2287 {
2288 	struct zoneref *z;
2289 	struct zone *zone;
2290 
2291 	/* Just pick one node, since fallback list is circular */
2292 	unsigned int sum = 0;
2293 
2294 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2295 
2296 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2297 		unsigned long size = zone->present_pages;
2298 		unsigned long high = high_wmark_pages(zone);
2299 		if (size > high)
2300 			sum += size - high;
2301 	}
2302 
2303 	return sum;
2304 }
2305 
2306 /*
2307  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2308  */
2309 unsigned int nr_free_buffer_pages(void)
2310 {
2311 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2312 }
2313 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2314 
2315 /*
2316  * Amount of free RAM allocatable within all zones
2317  */
2318 unsigned int nr_free_pagecache_pages(void)
2319 {
2320 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2321 }
2322 
2323 static inline void show_node(struct zone *zone)
2324 {
2325 	if (NUMA_BUILD)
2326 		printk("Node %d ", zone_to_nid(zone));
2327 }
2328 
2329 void si_meminfo(struct sysinfo *val)
2330 {
2331 	val->totalram = totalram_pages;
2332 	val->sharedram = 0;
2333 	val->freeram = global_page_state(NR_FREE_PAGES);
2334 	val->bufferram = nr_blockdev_pages();
2335 	val->totalhigh = totalhigh_pages;
2336 	val->freehigh = nr_free_highpages();
2337 	val->mem_unit = PAGE_SIZE;
2338 }
2339 
2340 EXPORT_SYMBOL(si_meminfo);
2341 
2342 #ifdef CONFIG_NUMA
2343 void si_meminfo_node(struct sysinfo *val, int nid)
2344 {
2345 	pg_data_t *pgdat = NODE_DATA(nid);
2346 
2347 	val->totalram = pgdat->node_present_pages;
2348 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2349 #ifdef CONFIG_HIGHMEM
2350 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2351 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2352 			NR_FREE_PAGES);
2353 #else
2354 	val->totalhigh = 0;
2355 	val->freehigh = 0;
2356 #endif
2357 	val->mem_unit = PAGE_SIZE;
2358 }
2359 #endif
2360 
2361 #define K(x) ((x) << (PAGE_SHIFT-10))
2362 
2363 /*
2364  * Show free area list (used inside shift_scroll-lock stuff)
2365  * We also calculate the percentage fragmentation. We do this by counting the
2366  * memory on each free list with the exception of the first item on the list.
2367  */
2368 void show_free_areas(void)
2369 {
2370 	int cpu;
2371 	struct zone *zone;
2372 
2373 	for_each_populated_zone(zone) {
2374 		show_node(zone);
2375 		printk("%s per-cpu:\n", zone->name);
2376 
2377 		for_each_online_cpu(cpu) {
2378 			struct per_cpu_pageset *pageset;
2379 
2380 			pageset = per_cpu_ptr(zone->pageset, cpu);
2381 
2382 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2383 			       cpu, pageset->pcp.high,
2384 			       pageset->pcp.batch, pageset->pcp.count);
2385 		}
2386 	}
2387 
2388 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2389 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2390 		" unevictable:%lu"
2391 		" dirty:%lu writeback:%lu unstable:%lu\n"
2392 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2393 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2394 		global_page_state(NR_ACTIVE_ANON),
2395 		global_page_state(NR_INACTIVE_ANON),
2396 		global_page_state(NR_ISOLATED_ANON),
2397 		global_page_state(NR_ACTIVE_FILE),
2398 		global_page_state(NR_INACTIVE_FILE),
2399 		global_page_state(NR_ISOLATED_FILE),
2400 		global_page_state(NR_UNEVICTABLE),
2401 		global_page_state(NR_FILE_DIRTY),
2402 		global_page_state(NR_WRITEBACK),
2403 		global_page_state(NR_UNSTABLE_NFS),
2404 		global_page_state(NR_FREE_PAGES),
2405 		global_page_state(NR_SLAB_RECLAIMABLE),
2406 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2407 		global_page_state(NR_FILE_MAPPED),
2408 		global_page_state(NR_SHMEM),
2409 		global_page_state(NR_PAGETABLE),
2410 		global_page_state(NR_BOUNCE));
2411 
2412 	for_each_populated_zone(zone) {
2413 		int i;
2414 
2415 		show_node(zone);
2416 		printk("%s"
2417 			" free:%lukB"
2418 			" min:%lukB"
2419 			" low:%lukB"
2420 			" high:%lukB"
2421 			" active_anon:%lukB"
2422 			" inactive_anon:%lukB"
2423 			" active_file:%lukB"
2424 			" inactive_file:%lukB"
2425 			" unevictable:%lukB"
2426 			" isolated(anon):%lukB"
2427 			" isolated(file):%lukB"
2428 			" present:%lukB"
2429 			" mlocked:%lukB"
2430 			" dirty:%lukB"
2431 			" writeback:%lukB"
2432 			" mapped:%lukB"
2433 			" shmem:%lukB"
2434 			" slab_reclaimable:%lukB"
2435 			" slab_unreclaimable:%lukB"
2436 			" kernel_stack:%lukB"
2437 			" pagetables:%lukB"
2438 			" unstable:%lukB"
2439 			" bounce:%lukB"
2440 			" writeback_tmp:%lukB"
2441 			" pages_scanned:%lu"
2442 			" all_unreclaimable? %s"
2443 			"\n",
2444 			zone->name,
2445 			K(zone_nr_free_pages(zone)),
2446 			K(min_wmark_pages(zone)),
2447 			K(low_wmark_pages(zone)),
2448 			K(high_wmark_pages(zone)),
2449 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2450 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2451 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2452 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2453 			K(zone_page_state(zone, NR_UNEVICTABLE)),
2454 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2455 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2456 			K(zone->present_pages),
2457 			K(zone_page_state(zone, NR_MLOCK)),
2458 			K(zone_page_state(zone, NR_FILE_DIRTY)),
2459 			K(zone_page_state(zone, NR_WRITEBACK)),
2460 			K(zone_page_state(zone, NR_FILE_MAPPED)),
2461 			K(zone_page_state(zone, NR_SHMEM)),
2462 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2463 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2464 			zone_page_state(zone, NR_KERNEL_STACK) *
2465 				THREAD_SIZE / 1024,
2466 			K(zone_page_state(zone, NR_PAGETABLE)),
2467 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2468 			K(zone_page_state(zone, NR_BOUNCE)),
2469 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2470 			zone->pages_scanned,
2471 			(zone->all_unreclaimable ? "yes" : "no")
2472 			);
2473 		printk("lowmem_reserve[]:");
2474 		for (i = 0; i < MAX_NR_ZONES; i++)
2475 			printk(" %lu", zone->lowmem_reserve[i]);
2476 		printk("\n");
2477 	}
2478 
2479 	for_each_populated_zone(zone) {
2480  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2481 
2482 		show_node(zone);
2483 		printk("%s: ", zone->name);
2484 
2485 		spin_lock_irqsave(&zone->lock, flags);
2486 		for (order = 0; order < MAX_ORDER; order++) {
2487 			nr[order] = zone->free_area[order].nr_free;
2488 			total += nr[order] << order;
2489 		}
2490 		spin_unlock_irqrestore(&zone->lock, flags);
2491 		for (order = 0; order < MAX_ORDER; order++)
2492 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2493 		printk("= %lukB\n", K(total));
2494 	}
2495 
2496 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2497 
2498 	show_swap_cache_info();
2499 }
2500 
2501 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2502 {
2503 	zoneref->zone = zone;
2504 	zoneref->zone_idx = zone_idx(zone);
2505 }
2506 
2507 /*
2508  * Builds allocation fallback zone lists.
2509  *
2510  * Add all populated zones of a node to the zonelist.
2511  */
2512 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2513 				int nr_zones, enum zone_type zone_type)
2514 {
2515 	struct zone *zone;
2516 
2517 	BUG_ON(zone_type >= MAX_NR_ZONES);
2518 	zone_type++;
2519 
2520 	do {
2521 		zone_type--;
2522 		zone = pgdat->node_zones + zone_type;
2523 		if (populated_zone(zone)) {
2524 			zoneref_set_zone(zone,
2525 				&zonelist->_zonerefs[nr_zones++]);
2526 			check_highest_zone(zone_type);
2527 		}
2528 
2529 	} while (zone_type);
2530 	return nr_zones;
2531 }
2532 
2533 
2534 /*
2535  *  zonelist_order:
2536  *  0 = automatic detection of better ordering.
2537  *  1 = order by ([node] distance, -zonetype)
2538  *  2 = order by (-zonetype, [node] distance)
2539  *
2540  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2541  *  the same zonelist. So only NUMA can configure this param.
2542  */
2543 #define ZONELIST_ORDER_DEFAULT  0
2544 #define ZONELIST_ORDER_NODE     1
2545 #define ZONELIST_ORDER_ZONE     2
2546 
2547 /* zonelist order in the kernel.
2548  * set_zonelist_order() will set this to NODE or ZONE.
2549  */
2550 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2551 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2552 
2553 
2554 #ifdef CONFIG_NUMA
2555 /* The value user specified ....changed by config */
2556 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2557 /* string for sysctl */
2558 #define NUMA_ZONELIST_ORDER_LEN	16
2559 char numa_zonelist_order[16] = "default";
2560 
2561 /*
2562  * interface for configure zonelist ordering.
2563  * command line option "numa_zonelist_order"
2564  *	= "[dD]efault	- default, automatic configuration.
2565  *	= "[nN]ode 	- order by node locality, then by zone within node
2566  *	= "[zZ]one      - order by zone, then by locality within zone
2567  */
2568 
2569 static int __parse_numa_zonelist_order(char *s)
2570 {
2571 	if (*s == 'd' || *s == 'D') {
2572 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2573 	} else if (*s == 'n' || *s == 'N') {
2574 		user_zonelist_order = ZONELIST_ORDER_NODE;
2575 	} else if (*s == 'z' || *s == 'Z') {
2576 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2577 	} else {
2578 		printk(KERN_WARNING
2579 			"Ignoring invalid numa_zonelist_order value:  "
2580 			"%s\n", s);
2581 		return -EINVAL;
2582 	}
2583 	return 0;
2584 }
2585 
2586 static __init int setup_numa_zonelist_order(char *s)
2587 {
2588 	if (s)
2589 		return __parse_numa_zonelist_order(s);
2590 	return 0;
2591 }
2592 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2593 
2594 /*
2595  * sysctl handler for numa_zonelist_order
2596  */
2597 int numa_zonelist_order_handler(ctl_table *table, int write,
2598 		void __user *buffer, size_t *length,
2599 		loff_t *ppos)
2600 {
2601 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2602 	int ret;
2603 	static DEFINE_MUTEX(zl_order_mutex);
2604 
2605 	mutex_lock(&zl_order_mutex);
2606 	if (write)
2607 		strcpy(saved_string, (char*)table->data);
2608 	ret = proc_dostring(table, write, buffer, length, ppos);
2609 	if (ret)
2610 		goto out;
2611 	if (write) {
2612 		int oldval = user_zonelist_order;
2613 		if (__parse_numa_zonelist_order((char*)table->data)) {
2614 			/*
2615 			 * bogus value.  restore saved string
2616 			 */
2617 			strncpy((char*)table->data, saved_string,
2618 				NUMA_ZONELIST_ORDER_LEN);
2619 			user_zonelist_order = oldval;
2620 		} else if (oldval != user_zonelist_order) {
2621 			mutex_lock(&zonelists_mutex);
2622 			build_all_zonelists(NULL);
2623 			mutex_unlock(&zonelists_mutex);
2624 		}
2625 	}
2626 out:
2627 	mutex_unlock(&zl_order_mutex);
2628 	return ret;
2629 }
2630 
2631 
2632 #define MAX_NODE_LOAD (nr_online_nodes)
2633 static int node_load[MAX_NUMNODES];
2634 
2635 /**
2636  * find_next_best_node - find the next node that should appear in a given node's fallback list
2637  * @node: node whose fallback list we're appending
2638  * @used_node_mask: nodemask_t of already used nodes
2639  *
2640  * We use a number of factors to determine which is the next node that should
2641  * appear on a given node's fallback list.  The node should not have appeared
2642  * already in @node's fallback list, and it should be the next closest node
2643  * according to the distance array (which contains arbitrary distance values
2644  * from each node to each node in the system), and should also prefer nodes
2645  * with no CPUs, since presumably they'll have very little allocation pressure
2646  * on them otherwise.
2647  * It returns -1 if no node is found.
2648  */
2649 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2650 {
2651 	int n, val;
2652 	int min_val = INT_MAX;
2653 	int best_node = -1;
2654 	const struct cpumask *tmp = cpumask_of_node(0);
2655 
2656 	/* Use the local node if we haven't already */
2657 	if (!node_isset(node, *used_node_mask)) {
2658 		node_set(node, *used_node_mask);
2659 		return node;
2660 	}
2661 
2662 	for_each_node_state(n, N_HIGH_MEMORY) {
2663 
2664 		/* Don't want a node to appear more than once */
2665 		if (node_isset(n, *used_node_mask))
2666 			continue;
2667 
2668 		/* Use the distance array to find the distance */
2669 		val = node_distance(node, n);
2670 
2671 		/* Penalize nodes under us ("prefer the next node") */
2672 		val += (n < node);
2673 
2674 		/* Give preference to headless and unused nodes */
2675 		tmp = cpumask_of_node(n);
2676 		if (!cpumask_empty(tmp))
2677 			val += PENALTY_FOR_NODE_WITH_CPUS;
2678 
2679 		/* Slight preference for less loaded node */
2680 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2681 		val += node_load[n];
2682 
2683 		if (val < min_val) {
2684 			min_val = val;
2685 			best_node = n;
2686 		}
2687 	}
2688 
2689 	if (best_node >= 0)
2690 		node_set(best_node, *used_node_mask);
2691 
2692 	return best_node;
2693 }
2694 
2695 
2696 /*
2697  * Build zonelists ordered by node and zones within node.
2698  * This results in maximum locality--normal zone overflows into local
2699  * DMA zone, if any--but risks exhausting DMA zone.
2700  */
2701 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2702 {
2703 	int j;
2704 	struct zonelist *zonelist;
2705 
2706 	zonelist = &pgdat->node_zonelists[0];
2707 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2708 		;
2709 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2710 							MAX_NR_ZONES - 1);
2711 	zonelist->_zonerefs[j].zone = NULL;
2712 	zonelist->_zonerefs[j].zone_idx = 0;
2713 }
2714 
2715 /*
2716  * Build gfp_thisnode zonelists
2717  */
2718 static void build_thisnode_zonelists(pg_data_t *pgdat)
2719 {
2720 	int j;
2721 	struct zonelist *zonelist;
2722 
2723 	zonelist = &pgdat->node_zonelists[1];
2724 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2725 	zonelist->_zonerefs[j].zone = NULL;
2726 	zonelist->_zonerefs[j].zone_idx = 0;
2727 }
2728 
2729 /*
2730  * Build zonelists ordered by zone and nodes within zones.
2731  * This results in conserving DMA zone[s] until all Normal memory is
2732  * exhausted, but results in overflowing to remote node while memory
2733  * may still exist in local DMA zone.
2734  */
2735 static int node_order[MAX_NUMNODES];
2736 
2737 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2738 {
2739 	int pos, j, node;
2740 	int zone_type;		/* needs to be signed */
2741 	struct zone *z;
2742 	struct zonelist *zonelist;
2743 
2744 	zonelist = &pgdat->node_zonelists[0];
2745 	pos = 0;
2746 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2747 		for (j = 0; j < nr_nodes; j++) {
2748 			node = node_order[j];
2749 			z = &NODE_DATA(node)->node_zones[zone_type];
2750 			if (populated_zone(z)) {
2751 				zoneref_set_zone(z,
2752 					&zonelist->_zonerefs[pos++]);
2753 				check_highest_zone(zone_type);
2754 			}
2755 		}
2756 	}
2757 	zonelist->_zonerefs[pos].zone = NULL;
2758 	zonelist->_zonerefs[pos].zone_idx = 0;
2759 }
2760 
2761 static int default_zonelist_order(void)
2762 {
2763 	int nid, zone_type;
2764 	unsigned long low_kmem_size,total_size;
2765 	struct zone *z;
2766 	int average_size;
2767 	/*
2768          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2769 	 * If they are really small and used heavily, the system can fall
2770 	 * into OOM very easily.
2771 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2772 	 */
2773 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2774 	low_kmem_size = 0;
2775 	total_size = 0;
2776 	for_each_online_node(nid) {
2777 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2778 			z = &NODE_DATA(nid)->node_zones[zone_type];
2779 			if (populated_zone(z)) {
2780 				if (zone_type < ZONE_NORMAL)
2781 					low_kmem_size += z->present_pages;
2782 				total_size += z->present_pages;
2783 			} else if (zone_type == ZONE_NORMAL) {
2784 				/*
2785 				 * If any node has only lowmem, then node order
2786 				 * is preferred to allow kernel allocations
2787 				 * locally; otherwise, they can easily infringe
2788 				 * on other nodes when there is an abundance of
2789 				 * lowmem available to allocate from.
2790 				 */
2791 				return ZONELIST_ORDER_NODE;
2792 			}
2793 		}
2794 	}
2795 	if (!low_kmem_size ||  /* there are no DMA area. */
2796 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2797 		return ZONELIST_ORDER_NODE;
2798 	/*
2799 	 * look into each node's config.
2800   	 * If there is a node whose DMA/DMA32 memory is very big area on
2801  	 * local memory, NODE_ORDER may be suitable.
2802          */
2803 	average_size = total_size /
2804 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2805 	for_each_online_node(nid) {
2806 		low_kmem_size = 0;
2807 		total_size = 0;
2808 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2809 			z = &NODE_DATA(nid)->node_zones[zone_type];
2810 			if (populated_zone(z)) {
2811 				if (zone_type < ZONE_NORMAL)
2812 					low_kmem_size += z->present_pages;
2813 				total_size += z->present_pages;
2814 			}
2815 		}
2816 		if (low_kmem_size &&
2817 		    total_size > average_size && /* ignore small node */
2818 		    low_kmem_size > total_size * 70/100)
2819 			return ZONELIST_ORDER_NODE;
2820 	}
2821 	return ZONELIST_ORDER_ZONE;
2822 }
2823 
2824 static void set_zonelist_order(void)
2825 {
2826 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2827 		current_zonelist_order = default_zonelist_order();
2828 	else
2829 		current_zonelist_order = user_zonelist_order;
2830 }
2831 
2832 static void build_zonelists(pg_data_t *pgdat)
2833 {
2834 	int j, node, load;
2835 	enum zone_type i;
2836 	nodemask_t used_mask;
2837 	int local_node, prev_node;
2838 	struct zonelist *zonelist;
2839 	int order = current_zonelist_order;
2840 
2841 	/* initialize zonelists */
2842 	for (i = 0; i < MAX_ZONELISTS; i++) {
2843 		zonelist = pgdat->node_zonelists + i;
2844 		zonelist->_zonerefs[0].zone = NULL;
2845 		zonelist->_zonerefs[0].zone_idx = 0;
2846 	}
2847 
2848 	/* NUMA-aware ordering of nodes */
2849 	local_node = pgdat->node_id;
2850 	load = nr_online_nodes;
2851 	prev_node = local_node;
2852 	nodes_clear(used_mask);
2853 
2854 	memset(node_order, 0, sizeof(node_order));
2855 	j = 0;
2856 
2857 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2858 		int distance = node_distance(local_node, node);
2859 
2860 		/*
2861 		 * If another node is sufficiently far away then it is better
2862 		 * to reclaim pages in a zone before going off node.
2863 		 */
2864 		if (distance > RECLAIM_DISTANCE)
2865 			zone_reclaim_mode = 1;
2866 
2867 		/*
2868 		 * We don't want to pressure a particular node.
2869 		 * So adding penalty to the first node in same
2870 		 * distance group to make it round-robin.
2871 		 */
2872 		if (distance != node_distance(local_node, prev_node))
2873 			node_load[node] = load;
2874 
2875 		prev_node = node;
2876 		load--;
2877 		if (order == ZONELIST_ORDER_NODE)
2878 			build_zonelists_in_node_order(pgdat, node);
2879 		else
2880 			node_order[j++] = node;	/* remember order */
2881 	}
2882 
2883 	if (order == ZONELIST_ORDER_ZONE) {
2884 		/* calculate node order -- i.e., DMA last! */
2885 		build_zonelists_in_zone_order(pgdat, j);
2886 	}
2887 
2888 	build_thisnode_zonelists(pgdat);
2889 }
2890 
2891 /* Construct the zonelist performance cache - see further mmzone.h */
2892 static void build_zonelist_cache(pg_data_t *pgdat)
2893 {
2894 	struct zonelist *zonelist;
2895 	struct zonelist_cache *zlc;
2896 	struct zoneref *z;
2897 
2898 	zonelist = &pgdat->node_zonelists[0];
2899 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2900 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2901 	for (z = zonelist->_zonerefs; z->zone; z++)
2902 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2903 }
2904 
2905 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
2906 /*
2907  * Return node id of node used for "local" allocations.
2908  * I.e., first node id of first zone in arg node's generic zonelist.
2909  * Used for initializing percpu 'numa_mem', which is used primarily
2910  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2911  */
2912 int local_memory_node(int node)
2913 {
2914 	struct zone *zone;
2915 
2916 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2917 				   gfp_zone(GFP_KERNEL),
2918 				   NULL,
2919 				   &zone);
2920 	return zone->node;
2921 }
2922 #endif
2923 
2924 #else	/* CONFIG_NUMA */
2925 
2926 static void set_zonelist_order(void)
2927 {
2928 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2929 }
2930 
2931 static void build_zonelists(pg_data_t *pgdat)
2932 {
2933 	int node, local_node;
2934 	enum zone_type j;
2935 	struct zonelist *zonelist;
2936 
2937 	local_node = pgdat->node_id;
2938 
2939 	zonelist = &pgdat->node_zonelists[0];
2940 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2941 
2942 	/*
2943 	 * Now we build the zonelist so that it contains the zones
2944 	 * of all the other nodes.
2945 	 * We don't want to pressure a particular node, so when
2946 	 * building the zones for node N, we make sure that the
2947 	 * zones coming right after the local ones are those from
2948 	 * node N+1 (modulo N)
2949 	 */
2950 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2951 		if (!node_online(node))
2952 			continue;
2953 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2954 							MAX_NR_ZONES - 1);
2955 	}
2956 	for (node = 0; node < local_node; node++) {
2957 		if (!node_online(node))
2958 			continue;
2959 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2960 							MAX_NR_ZONES - 1);
2961 	}
2962 
2963 	zonelist->_zonerefs[j].zone = NULL;
2964 	zonelist->_zonerefs[j].zone_idx = 0;
2965 }
2966 
2967 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2968 static void build_zonelist_cache(pg_data_t *pgdat)
2969 {
2970 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2971 }
2972 
2973 #endif	/* CONFIG_NUMA */
2974 
2975 /*
2976  * Boot pageset table. One per cpu which is going to be used for all
2977  * zones and all nodes. The parameters will be set in such a way
2978  * that an item put on a list will immediately be handed over to
2979  * the buddy list. This is safe since pageset manipulation is done
2980  * with interrupts disabled.
2981  *
2982  * The boot_pagesets must be kept even after bootup is complete for
2983  * unused processors and/or zones. They do play a role for bootstrapping
2984  * hotplugged processors.
2985  *
2986  * zoneinfo_show() and maybe other functions do
2987  * not check if the processor is online before following the pageset pointer.
2988  * Other parts of the kernel may not check if the zone is available.
2989  */
2990 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2991 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2992 static void setup_zone_pageset(struct zone *zone);
2993 
2994 /*
2995  * Global mutex to protect against size modification of zonelists
2996  * as well as to serialize pageset setup for the new populated zone.
2997  */
2998 DEFINE_MUTEX(zonelists_mutex);
2999 
3000 /* return values int ....just for stop_machine() */
3001 static __init_refok int __build_all_zonelists(void *data)
3002 {
3003 	int nid;
3004 	int cpu;
3005 
3006 #ifdef CONFIG_NUMA
3007 	memset(node_load, 0, sizeof(node_load));
3008 #endif
3009 	for_each_online_node(nid) {
3010 		pg_data_t *pgdat = NODE_DATA(nid);
3011 
3012 		build_zonelists(pgdat);
3013 		build_zonelist_cache(pgdat);
3014 	}
3015 
3016 	/*
3017 	 * Initialize the boot_pagesets that are going to be used
3018 	 * for bootstrapping processors. The real pagesets for
3019 	 * each zone will be allocated later when the per cpu
3020 	 * allocator is available.
3021 	 *
3022 	 * boot_pagesets are used also for bootstrapping offline
3023 	 * cpus if the system is already booted because the pagesets
3024 	 * are needed to initialize allocators on a specific cpu too.
3025 	 * F.e. the percpu allocator needs the page allocator which
3026 	 * needs the percpu allocator in order to allocate its pagesets
3027 	 * (a chicken-egg dilemma).
3028 	 */
3029 	for_each_possible_cpu(cpu) {
3030 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3031 
3032 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3033 		/*
3034 		 * We now know the "local memory node" for each node--
3035 		 * i.e., the node of the first zone in the generic zonelist.
3036 		 * Set up numa_mem percpu variable for on-line cpus.  During
3037 		 * boot, only the boot cpu should be on-line;  we'll init the
3038 		 * secondary cpus' numa_mem as they come on-line.  During
3039 		 * node/memory hotplug, we'll fixup all on-line cpus.
3040 		 */
3041 		if (cpu_online(cpu))
3042 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3043 #endif
3044 	}
3045 
3046 	return 0;
3047 }
3048 
3049 /*
3050  * Called with zonelists_mutex held always
3051  * unless system_state == SYSTEM_BOOTING.
3052  */
3053 void build_all_zonelists(void *data)
3054 {
3055 	set_zonelist_order();
3056 
3057 	if (system_state == SYSTEM_BOOTING) {
3058 		__build_all_zonelists(NULL);
3059 		mminit_verify_zonelist();
3060 		cpuset_init_current_mems_allowed();
3061 	} else {
3062 		/* we have to stop all cpus to guarantee there is no user
3063 		   of zonelist */
3064 #ifdef CONFIG_MEMORY_HOTPLUG
3065 		if (data)
3066 			setup_zone_pageset((struct zone *)data);
3067 #endif
3068 		stop_machine(__build_all_zonelists, NULL, NULL);
3069 		/* cpuset refresh routine should be here */
3070 	}
3071 	vm_total_pages = nr_free_pagecache_pages();
3072 	/*
3073 	 * Disable grouping by mobility if the number of pages in the
3074 	 * system is too low to allow the mechanism to work. It would be
3075 	 * more accurate, but expensive to check per-zone. This check is
3076 	 * made on memory-hotadd so a system can start with mobility
3077 	 * disabled and enable it later
3078 	 */
3079 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3080 		page_group_by_mobility_disabled = 1;
3081 	else
3082 		page_group_by_mobility_disabled = 0;
3083 
3084 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3085 		"Total pages: %ld\n",
3086 			nr_online_nodes,
3087 			zonelist_order_name[current_zonelist_order],
3088 			page_group_by_mobility_disabled ? "off" : "on",
3089 			vm_total_pages);
3090 #ifdef CONFIG_NUMA
3091 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3092 #endif
3093 }
3094 
3095 /*
3096  * Helper functions to size the waitqueue hash table.
3097  * Essentially these want to choose hash table sizes sufficiently
3098  * large so that collisions trying to wait on pages are rare.
3099  * But in fact, the number of active page waitqueues on typical
3100  * systems is ridiculously low, less than 200. So this is even
3101  * conservative, even though it seems large.
3102  *
3103  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3104  * waitqueues, i.e. the size of the waitq table given the number of pages.
3105  */
3106 #define PAGES_PER_WAITQUEUE	256
3107 
3108 #ifndef CONFIG_MEMORY_HOTPLUG
3109 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3110 {
3111 	unsigned long size = 1;
3112 
3113 	pages /= PAGES_PER_WAITQUEUE;
3114 
3115 	while (size < pages)
3116 		size <<= 1;
3117 
3118 	/*
3119 	 * Once we have dozens or even hundreds of threads sleeping
3120 	 * on IO we've got bigger problems than wait queue collision.
3121 	 * Limit the size of the wait table to a reasonable size.
3122 	 */
3123 	size = min(size, 4096UL);
3124 
3125 	return max(size, 4UL);
3126 }
3127 #else
3128 /*
3129  * A zone's size might be changed by hot-add, so it is not possible to determine
3130  * a suitable size for its wait_table.  So we use the maximum size now.
3131  *
3132  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3133  *
3134  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3135  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3136  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3137  *
3138  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3139  * or more by the traditional way. (See above).  It equals:
3140  *
3141  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3142  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3143  *    powerpc (64K page size)             : =  (32G +16M)byte.
3144  */
3145 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3146 {
3147 	return 4096UL;
3148 }
3149 #endif
3150 
3151 /*
3152  * This is an integer logarithm so that shifts can be used later
3153  * to extract the more random high bits from the multiplicative
3154  * hash function before the remainder is taken.
3155  */
3156 static inline unsigned long wait_table_bits(unsigned long size)
3157 {
3158 	return ffz(~size);
3159 }
3160 
3161 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3162 
3163 /*
3164  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3165  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3166  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3167  * higher will lead to a bigger reserve which will get freed as contiguous
3168  * blocks as reclaim kicks in
3169  */
3170 static void setup_zone_migrate_reserve(struct zone *zone)
3171 {
3172 	unsigned long start_pfn, pfn, end_pfn;
3173 	struct page *page;
3174 	unsigned long block_migratetype;
3175 	int reserve;
3176 
3177 	/* Get the start pfn, end pfn and the number of blocks to reserve */
3178 	start_pfn = zone->zone_start_pfn;
3179 	end_pfn = start_pfn + zone->spanned_pages;
3180 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3181 							pageblock_order;
3182 
3183 	/*
3184 	 * Reserve blocks are generally in place to help high-order atomic
3185 	 * allocations that are short-lived. A min_free_kbytes value that
3186 	 * would result in more than 2 reserve blocks for atomic allocations
3187 	 * is assumed to be in place to help anti-fragmentation for the
3188 	 * future allocation of hugepages at runtime.
3189 	 */
3190 	reserve = min(2, reserve);
3191 
3192 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3193 		if (!pfn_valid(pfn))
3194 			continue;
3195 		page = pfn_to_page(pfn);
3196 
3197 		/* Watch out for overlapping nodes */
3198 		if (page_to_nid(page) != zone_to_nid(zone))
3199 			continue;
3200 
3201 		/* Blocks with reserved pages will never free, skip them. */
3202 		if (PageReserved(page))
3203 			continue;
3204 
3205 		block_migratetype = get_pageblock_migratetype(page);
3206 
3207 		/* If this block is reserved, account for it */
3208 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3209 			reserve--;
3210 			continue;
3211 		}
3212 
3213 		/* Suitable for reserving if this block is movable */
3214 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3215 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
3216 			move_freepages_block(zone, page, MIGRATE_RESERVE);
3217 			reserve--;
3218 			continue;
3219 		}
3220 
3221 		/*
3222 		 * If the reserve is met and this is a previous reserved block,
3223 		 * take it back
3224 		 */
3225 		if (block_migratetype == MIGRATE_RESERVE) {
3226 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3227 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3228 		}
3229 	}
3230 }
3231 
3232 /*
3233  * Initially all pages are reserved - free ones are freed
3234  * up by free_all_bootmem() once the early boot process is
3235  * done. Non-atomic initialization, single-pass.
3236  */
3237 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3238 		unsigned long start_pfn, enum memmap_context context)
3239 {
3240 	struct page *page;
3241 	unsigned long end_pfn = start_pfn + size;
3242 	unsigned long pfn;
3243 	struct zone *z;
3244 
3245 	if (highest_memmap_pfn < end_pfn - 1)
3246 		highest_memmap_pfn = end_pfn - 1;
3247 
3248 	z = &NODE_DATA(nid)->node_zones[zone];
3249 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3250 		/*
3251 		 * There can be holes in boot-time mem_map[]s
3252 		 * handed to this function.  They do not
3253 		 * exist on hotplugged memory.
3254 		 */
3255 		if (context == MEMMAP_EARLY) {
3256 			if (!early_pfn_valid(pfn))
3257 				continue;
3258 			if (!early_pfn_in_nid(pfn, nid))
3259 				continue;
3260 		}
3261 		page = pfn_to_page(pfn);
3262 		set_page_links(page, zone, nid, pfn);
3263 		mminit_verify_page_links(page, zone, nid, pfn);
3264 		init_page_count(page);
3265 		reset_page_mapcount(page);
3266 		SetPageReserved(page);
3267 		/*
3268 		 * Mark the block movable so that blocks are reserved for
3269 		 * movable at startup. This will force kernel allocations
3270 		 * to reserve their blocks rather than leaking throughout
3271 		 * the address space during boot when many long-lived
3272 		 * kernel allocations are made. Later some blocks near
3273 		 * the start are marked MIGRATE_RESERVE by
3274 		 * setup_zone_migrate_reserve()
3275 		 *
3276 		 * bitmap is created for zone's valid pfn range. but memmap
3277 		 * can be created for invalid pages (for alignment)
3278 		 * check here not to call set_pageblock_migratetype() against
3279 		 * pfn out of zone.
3280 		 */
3281 		if ((z->zone_start_pfn <= pfn)
3282 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3283 		    && !(pfn & (pageblock_nr_pages - 1)))
3284 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3285 
3286 		INIT_LIST_HEAD(&page->lru);
3287 #ifdef WANT_PAGE_VIRTUAL
3288 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3289 		if (!is_highmem_idx(zone))
3290 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3291 #endif
3292 	}
3293 }
3294 
3295 static void __meminit zone_init_free_lists(struct zone *zone)
3296 {
3297 	int order, t;
3298 	for_each_migratetype_order(order, t) {
3299 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3300 		zone->free_area[order].nr_free = 0;
3301 	}
3302 }
3303 
3304 #ifndef __HAVE_ARCH_MEMMAP_INIT
3305 #define memmap_init(size, nid, zone, start_pfn) \
3306 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3307 #endif
3308 
3309 static int zone_batchsize(struct zone *zone)
3310 {
3311 #ifdef CONFIG_MMU
3312 	int batch;
3313 
3314 	/*
3315 	 * The per-cpu-pages pools are set to around 1000th of the
3316 	 * size of the zone.  But no more than 1/2 of a meg.
3317 	 *
3318 	 * OK, so we don't know how big the cache is.  So guess.
3319 	 */
3320 	batch = zone->present_pages / 1024;
3321 	if (batch * PAGE_SIZE > 512 * 1024)
3322 		batch = (512 * 1024) / PAGE_SIZE;
3323 	batch /= 4;		/* We effectively *= 4 below */
3324 	if (batch < 1)
3325 		batch = 1;
3326 
3327 	/*
3328 	 * Clamp the batch to a 2^n - 1 value. Having a power
3329 	 * of 2 value was found to be more likely to have
3330 	 * suboptimal cache aliasing properties in some cases.
3331 	 *
3332 	 * For example if 2 tasks are alternately allocating
3333 	 * batches of pages, one task can end up with a lot
3334 	 * of pages of one half of the possible page colors
3335 	 * and the other with pages of the other colors.
3336 	 */
3337 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3338 
3339 	return batch;
3340 
3341 #else
3342 	/* The deferral and batching of frees should be suppressed under NOMMU
3343 	 * conditions.
3344 	 *
3345 	 * The problem is that NOMMU needs to be able to allocate large chunks
3346 	 * of contiguous memory as there's no hardware page translation to
3347 	 * assemble apparent contiguous memory from discontiguous pages.
3348 	 *
3349 	 * Queueing large contiguous runs of pages for batching, however,
3350 	 * causes the pages to actually be freed in smaller chunks.  As there
3351 	 * can be a significant delay between the individual batches being
3352 	 * recycled, this leads to the once large chunks of space being
3353 	 * fragmented and becoming unavailable for high-order allocations.
3354 	 */
3355 	return 0;
3356 #endif
3357 }
3358 
3359 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3360 {
3361 	struct per_cpu_pages *pcp;
3362 	int migratetype;
3363 
3364 	memset(p, 0, sizeof(*p));
3365 
3366 	pcp = &p->pcp;
3367 	pcp->count = 0;
3368 	pcp->high = 6 * batch;
3369 	pcp->batch = max(1UL, 1 * batch);
3370 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3371 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3372 }
3373 
3374 /*
3375  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3376  * to the value high for the pageset p.
3377  */
3378 
3379 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3380 				unsigned long high)
3381 {
3382 	struct per_cpu_pages *pcp;
3383 
3384 	pcp = &p->pcp;
3385 	pcp->high = high;
3386 	pcp->batch = max(1UL, high/4);
3387 	if ((high/4) > (PAGE_SHIFT * 8))
3388 		pcp->batch = PAGE_SHIFT * 8;
3389 }
3390 
3391 static __meminit void setup_zone_pageset(struct zone *zone)
3392 {
3393 	int cpu;
3394 
3395 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
3396 
3397 	for_each_possible_cpu(cpu) {
3398 		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3399 
3400 		setup_pageset(pcp, zone_batchsize(zone));
3401 
3402 		if (percpu_pagelist_fraction)
3403 			setup_pagelist_highmark(pcp,
3404 				(zone->present_pages /
3405 					percpu_pagelist_fraction));
3406 	}
3407 }
3408 
3409 /*
3410  * Allocate per cpu pagesets and initialize them.
3411  * Before this call only boot pagesets were available.
3412  */
3413 void __init setup_per_cpu_pageset(void)
3414 {
3415 	struct zone *zone;
3416 
3417 	for_each_populated_zone(zone)
3418 		setup_zone_pageset(zone);
3419 }
3420 
3421 static noinline __init_refok
3422 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3423 {
3424 	int i;
3425 	struct pglist_data *pgdat = zone->zone_pgdat;
3426 	size_t alloc_size;
3427 
3428 	/*
3429 	 * The per-page waitqueue mechanism uses hashed waitqueues
3430 	 * per zone.
3431 	 */
3432 	zone->wait_table_hash_nr_entries =
3433 		 wait_table_hash_nr_entries(zone_size_pages);
3434 	zone->wait_table_bits =
3435 		wait_table_bits(zone->wait_table_hash_nr_entries);
3436 	alloc_size = zone->wait_table_hash_nr_entries
3437 					* sizeof(wait_queue_head_t);
3438 
3439 	if (!slab_is_available()) {
3440 		zone->wait_table = (wait_queue_head_t *)
3441 			alloc_bootmem_node(pgdat, alloc_size);
3442 	} else {
3443 		/*
3444 		 * This case means that a zone whose size was 0 gets new memory
3445 		 * via memory hot-add.
3446 		 * But it may be the case that a new node was hot-added.  In
3447 		 * this case vmalloc() will not be able to use this new node's
3448 		 * memory - this wait_table must be initialized to use this new
3449 		 * node itself as well.
3450 		 * To use this new node's memory, further consideration will be
3451 		 * necessary.
3452 		 */
3453 		zone->wait_table = vmalloc(alloc_size);
3454 	}
3455 	if (!zone->wait_table)
3456 		return -ENOMEM;
3457 
3458 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3459 		init_waitqueue_head(zone->wait_table + i);
3460 
3461 	return 0;
3462 }
3463 
3464 static int __zone_pcp_update(void *data)
3465 {
3466 	struct zone *zone = data;
3467 	int cpu;
3468 	unsigned long batch = zone_batchsize(zone), flags;
3469 
3470 	for_each_possible_cpu(cpu) {
3471 		struct per_cpu_pageset *pset;
3472 		struct per_cpu_pages *pcp;
3473 
3474 		pset = per_cpu_ptr(zone->pageset, cpu);
3475 		pcp = &pset->pcp;
3476 
3477 		local_irq_save(flags);
3478 		free_pcppages_bulk(zone, pcp->count, pcp);
3479 		setup_pageset(pset, batch);
3480 		local_irq_restore(flags);
3481 	}
3482 	return 0;
3483 }
3484 
3485 void zone_pcp_update(struct zone *zone)
3486 {
3487 	stop_machine(__zone_pcp_update, zone, NULL);
3488 }
3489 
3490 static __meminit void zone_pcp_init(struct zone *zone)
3491 {
3492 	/*
3493 	 * per cpu subsystem is not up at this point. The following code
3494 	 * relies on the ability of the linker to provide the
3495 	 * offset of a (static) per cpu variable into the per cpu area.
3496 	 */
3497 	zone->pageset = &boot_pageset;
3498 
3499 	if (zone->present_pages)
3500 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3501 			zone->name, zone->present_pages,
3502 					 zone_batchsize(zone));
3503 }
3504 
3505 __meminit int init_currently_empty_zone(struct zone *zone,
3506 					unsigned long zone_start_pfn,
3507 					unsigned long size,
3508 					enum memmap_context context)
3509 {
3510 	struct pglist_data *pgdat = zone->zone_pgdat;
3511 	int ret;
3512 	ret = zone_wait_table_init(zone, size);
3513 	if (ret)
3514 		return ret;
3515 	pgdat->nr_zones = zone_idx(zone) + 1;
3516 
3517 	zone->zone_start_pfn = zone_start_pfn;
3518 
3519 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3520 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3521 			pgdat->node_id,
3522 			(unsigned long)zone_idx(zone),
3523 			zone_start_pfn, (zone_start_pfn + size));
3524 
3525 	zone_init_free_lists(zone);
3526 
3527 	return 0;
3528 }
3529 
3530 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3531 /*
3532  * Basic iterator support. Return the first range of PFNs for a node
3533  * Note: nid == MAX_NUMNODES returns first region regardless of node
3534  */
3535 static int __meminit first_active_region_index_in_nid(int nid)
3536 {
3537 	int i;
3538 
3539 	for (i = 0; i < nr_nodemap_entries; i++)
3540 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3541 			return i;
3542 
3543 	return -1;
3544 }
3545 
3546 /*
3547  * Basic iterator support. Return the next active range of PFNs for a node
3548  * Note: nid == MAX_NUMNODES returns next region regardless of node
3549  */
3550 static int __meminit next_active_region_index_in_nid(int index, int nid)
3551 {
3552 	for (index = index + 1; index < nr_nodemap_entries; index++)
3553 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3554 			return index;
3555 
3556 	return -1;
3557 }
3558 
3559 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3560 /*
3561  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3562  * Architectures may implement their own version but if add_active_range()
3563  * was used and there are no special requirements, this is a convenient
3564  * alternative
3565  */
3566 int __meminit __early_pfn_to_nid(unsigned long pfn)
3567 {
3568 	int i;
3569 
3570 	for (i = 0; i < nr_nodemap_entries; i++) {
3571 		unsigned long start_pfn = early_node_map[i].start_pfn;
3572 		unsigned long end_pfn = early_node_map[i].end_pfn;
3573 
3574 		if (start_pfn <= pfn && pfn < end_pfn)
3575 			return early_node_map[i].nid;
3576 	}
3577 	/* This is a memory hole */
3578 	return -1;
3579 }
3580 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3581 
3582 int __meminit early_pfn_to_nid(unsigned long pfn)
3583 {
3584 	int nid;
3585 
3586 	nid = __early_pfn_to_nid(pfn);
3587 	if (nid >= 0)
3588 		return nid;
3589 	/* just returns 0 */
3590 	return 0;
3591 }
3592 
3593 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3594 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3595 {
3596 	int nid;
3597 
3598 	nid = __early_pfn_to_nid(pfn);
3599 	if (nid >= 0 && nid != node)
3600 		return false;
3601 	return true;
3602 }
3603 #endif
3604 
3605 /* Basic iterator support to walk early_node_map[] */
3606 #define for_each_active_range_index_in_nid(i, nid) \
3607 	for (i = first_active_region_index_in_nid(nid); i != -1; \
3608 				i = next_active_region_index_in_nid(i, nid))
3609 
3610 /**
3611  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3612  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3613  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3614  *
3615  * If an architecture guarantees that all ranges registered with
3616  * add_active_ranges() contain no holes and may be freed, this
3617  * this function may be used instead of calling free_bootmem() manually.
3618  */
3619 void __init free_bootmem_with_active_regions(int nid,
3620 						unsigned long max_low_pfn)
3621 {
3622 	int i;
3623 
3624 	for_each_active_range_index_in_nid(i, nid) {
3625 		unsigned long size_pages = 0;
3626 		unsigned long end_pfn = early_node_map[i].end_pfn;
3627 
3628 		if (early_node_map[i].start_pfn >= max_low_pfn)
3629 			continue;
3630 
3631 		if (end_pfn > max_low_pfn)
3632 			end_pfn = max_low_pfn;
3633 
3634 		size_pages = end_pfn - early_node_map[i].start_pfn;
3635 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3636 				PFN_PHYS(early_node_map[i].start_pfn),
3637 				size_pages << PAGE_SHIFT);
3638 	}
3639 }
3640 
3641 #ifdef CONFIG_HAVE_MEMBLOCK
3642 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3643 					u64 goal, u64 limit)
3644 {
3645 	int i;
3646 
3647 	/* Need to go over early_node_map to find out good range for node */
3648 	for_each_active_range_index_in_nid(i, nid) {
3649 		u64 addr;
3650 		u64 ei_start, ei_last;
3651 		u64 final_start, final_end;
3652 
3653 		ei_last = early_node_map[i].end_pfn;
3654 		ei_last <<= PAGE_SHIFT;
3655 		ei_start = early_node_map[i].start_pfn;
3656 		ei_start <<= PAGE_SHIFT;
3657 
3658 		final_start = max(ei_start, goal);
3659 		final_end = min(ei_last, limit);
3660 
3661 		if (final_start >= final_end)
3662 			continue;
3663 
3664 		addr = memblock_find_in_range(final_start, final_end, size, align);
3665 
3666 		if (addr == MEMBLOCK_ERROR)
3667 			continue;
3668 
3669 		return addr;
3670 	}
3671 
3672 	return MEMBLOCK_ERROR;
3673 }
3674 #endif
3675 
3676 int __init add_from_early_node_map(struct range *range, int az,
3677 				   int nr_range, int nid)
3678 {
3679 	int i;
3680 	u64 start, end;
3681 
3682 	/* need to go over early_node_map to find out good range for node */
3683 	for_each_active_range_index_in_nid(i, nid) {
3684 		start = early_node_map[i].start_pfn;
3685 		end = early_node_map[i].end_pfn;
3686 		nr_range = add_range(range, az, nr_range, start, end);
3687 	}
3688 	return nr_range;
3689 }
3690 
3691 #ifdef CONFIG_NO_BOOTMEM
3692 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3693 					u64 goal, u64 limit)
3694 {
3695 	void *ptr;
3696 	u64 addr;
3697 
3698 	if (limit > memblock.current_limit)
3699 		limit = memblock.current_limit;
3700 
3701 	addr = find_memory_core_early(nid, size, align, goal, limit);
3702 
3703 	if (addr == MEMBLOCK_ERROR)
3704 		return NULL;
3705 
3706 	ptr = phys_to_virt(addr);
3707 	memset(ptr, 0, size);
3708 	memblock_x86_reserve_range(addr, addr + size, "BOOTMEM");
3709 	/*
3710 	 * The min_count is set to 0 so that bootmem allocated blocks
3711 	 * are never reported as leaks.
3712 	 */
3713 	kmemleak_alloc(ptr, size, 0, 0);
3714 	return ptr;
3715 }
3716 #endif
3717 
3718 
3719 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3720 {
3721 	int i;
3722 	int ret;
3723 
3724 	for_each_active_range_index_in_nid(i, nid) {
3725 		ret = work_fn(early_node_map[i].start_pfn,
3726 			      early_node_map[i].end_pfn, data);
3727 		if (ret)
3728 			break;
3729 	}
3730 }
3731 /**
3732  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3733  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3734  *
3735  * If an architecture guarantees that all ranges registered with
3736  * add_active_ranges() contain no holes and may be freed, this
3737  * function may be used instead of calling memory_present() manually.
3738  */
3739 void __init sparse_memory_present_with_active_regions(int nid)
3740 {
3741 	int i;
3742 
3743 	for_each_active_range_index_in_nid(i, nid)
3744 		memory_present(early_node_map[i].nid,
3745 				early_node_map[i].start_pfn,
3746 				early_node_map[i].end_pfn);
3747 }
3748 
3749 /**
3750  * get_pfn_range_for_nid - Return the start and end page frames for a node
3751  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3752  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3753  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3754  *
3755  * It returns the start and end page frame of a node based on information
3756  * provided by an arch calling add_active_range(). If called for a node
3757  * with no available memory, a warning is printed and the start and end
3758  * PFNs will be 0.
3759  */
3760 void __meminit get_pfn_range_for_nid(unsigned int nid,
3761 			unsigned long *start_pfn, unsigned long *end_pfn)
3762 {
3763 	int i;
3764 	*start_pfn = -1UL;
3765 	*end_pfn = 0;
3766 
3767 	for_each_active_range_index_in_nid(i, nid) {
3768 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3769 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3770 	}
3771 
3772 	if (*start_pfn == -1UL)
3773 		*start_pfn = 0;
3774 }
3775 
3776 /*
3777  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3778  * assumption is made that zones within a node are ordered in monotonic
3779  * increasing memory addresses so that the "highest" populated zone is used
3780  */
3781 static void __init find_usable_zone_for_movable(void)
3782 {
3783 	int zone_index;
3784 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3785 		if (zone_index == ZONE_MOVABLE)
3786 			continue;
3787 
3788 		if (arch_zone_highest_possible_pfn[zone_index] >
3789 				arch_zone_lowest_possible_pfn[zone_index])
3790 			break;
3791 	}
3792 
3793 	VM_BUG_ON(zone_index == -1);
3794 	movable_zone = zone_index;
3795 }
3796 
3797 /*
3798  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3799  * because it is sized independant of architecture. Unlike the other zones,
3800  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3801  * in each node depending on the size of each node and how evenly kernelcore
3802  * is distributed. This helper function adjusts the zone ranges
3803  * provided by the architecture for a given node by using the end of the
3804  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3805  * zones within a node are in order of monotonic increases memory addresses
3806  */
3807 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3808 					unsigned long zone_type,
3809 					unsigned long node_start_pfn,
3810 					unsigned long node_end_pfn,
3811 					unsigned long *zone_start_pfn,
3812 					unsigned long *zone_end_pfn)
3813 {
3814 	/* Only adjust if ZONE_MOVABLE is on this node */
3815 	if (zone_movable_pfn[nid]) {
3816 		/* Size ZONE_MOVABLE */
3817 		if (zone_type == ZONE_MOVABLE) {
3818 			*zone_start_pfn = zone_movable_pfn[nid];
3819 			*zone_end_pfn = min(node_end_pfn,
3820 				arch_zone_highest_possible_pfn[movable_zone]);
3821 
3822 		/* Adjust for ZONE_MOVABLE starting within this range */
3823 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3824 				*zone_end_pfn > zone_movable_pfn[nid]) {
3825 			*zone_end_pfn = zone_movable_pfn[nid];
3826 
3827 		/* Check if this whole range is within ZONE_MOVABLE */
3828 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3829 			*zone_start_pfn = *zone_end_pfn;
3830 	}
3831 }
3832 
3833 /*
3834  * Return the number of pages a zone spans in a node, including holes
3835  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3836  */
3837 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3838 					unsigned long zone_type,
3839 					unsigned long *ignored)
3840 {
3841 	unsigned long node_start_pfn, node_end_pfn;
3842 	unsigned long zone_start_pfn, zone_end_pfn;
3843 
3844 	/* Get the start and end of the node and zone */
3845 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3846 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3847 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3848 	adjust_zone_range_for_zone_movable(nid, zone_type,
3849 				node_start_pfn, node_end_pfn,
3850 				&zone_start_pfn, &zone_end_pfn);
3851 
3852 	/* Check that this node has pages within the zone's required range */
3853 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3854 		return 0;
3855 
3856 	/* Move the zone boundaries inside the node if necessary */
3857 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3858 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3859 
3860 	/* Return the spanned pages */
3861 	return zone_end_pfn - zone_start_pfn;
3862 }
3863 
3864 /*
3865  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3866  * then all holes in the requested range will be accounted for.
3867  */
3868 unsigned long __meminit __absent_pages_in_range(int nid,
3869 				unsigned long range_start_pfn,
3870 				unsigned long range_end_pfn)
3871 {
3872 	int i = 0;
3873 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3874 	unsigned long start_pfn;
3875 
3876 	/* Find the end_pfn of the first active range of pfns in the node */
3877 	i = first_active_region_index_in_nid(nid);
3878 	if (i == -1)
3879 		return 0;
3880 
3881 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3882 
3883 	/* Account for ranges before physical memory on this node */
3884 	if (early_node_map[i].start_pfn > range_start_pfn)
3885 		hole_pages = prev_end_pfn - range_start_pfn;
3886 
3887 	/* Find all holes for the zone within the node */
3888 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3889 
3890 		/* No need to continue if prev_end_pfn is outside the zone */
3891 		if (prev_end_pfn >= range_end_pfn)
3892 			break;
3893 
3894 		/* Make sure the end of the zone is not within the hole */
3895 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3896 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3897 
3898 		/* Update the hole size cound and move on */
3899 		if (start_pfn > range_start_pfn) {
3900 			BUG_ON(prev_end_pfn > start_pfn);
3901 			hole_pages += start_pfn - prev_end_pfn;
3902 		}
3903 		prev_end_pfn = early_node_map[i].end_pfn;
3904 	}
3905 
3906 	/* Account for ranges past physical memory on this node */
3907 	if (range_end_pfn > prev_end_pfn)
3908 		hole_pages += range_end_pfn -
3909 				max(range_start_pfn, prev_end_pfn);
3910 
3911 	return hole_pages;
3912 }
3913 
3914 /**
3915  * absent_pages_in_range - Return number of page frames in holes within a range
3916  * @start_pfn: The start PFN to start searching for holes
3917  * @end_pfn: The end PFN to stop searching for holes
3918  *
3919  * It returns the number of pages frames in memory holes within a range.
3920  */
3921 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3922 							unsigned long end_pfn)
3923 {
3924 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3925 }
3926 
3927 /* Return the number of page frames in holes in a zone on a node */
3928 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3929 					unsigned long zone_type,
3930 					unsigned long *ignored)
3931 {
3932 	unsigned long node_start_pfn, node_end_pfn;
3933 	unsigned long zone_start_pfn, zone_end_pfn;
3934 
3935 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3936 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3937 							node_start_pfn);
3938 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3939 							node_end_pfn);
3940 
3941 	adjust_zone_range_for_zone_movable(nid, zone_type,
3942 			node_start_pfn, node_end_pfn,
3943 			&zone_start_pfn, &zone_end_pfn);
3944 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3945 }
3946 
3947 #else
3948 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3949 					unsigned long zone_type,
3950 					unsigned long *zones_size)
3951 {
3952 	return zones_size[zone_type];
3953 }
3954 
3955 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3956 						unsigned long zone_type,
3957 						unsigned long *zholes_size)
3958 {
3959 	if (!zholes_size)
3960 		return 0;
3961 
3962 	return zholes_size[zone_type];
3963 }
3964 
3965 #endif
3966 
3967 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3968 		unsigned long *zones_size, unsigned long *zholes_size)
3969 {
3970 	unsigned long realtotalpages, totalpages = 0;
3971 	enum zone_type i;
3972 
3973 	for (i = 0; i < MAX_NR_ZONES; i++)
3974 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3975 								zones_size);
3976 	pgdat->node_spanned_pages = totalpages;
3977 
3978 	realtotalpages = totalpages;
3979 	for (i = 0; i < MAX_NR_ZONES; i++)
3980 		realtotalpages -=
3981 			zone_absent_pages_in_node(pgdat->node_id, i,
3982 								zholes_size);
3983 	pgdat->node_present_pages = realtotalpages;
3984 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3985 							realtotalpages);
3986 }
3987 
3988 #ifndef CONFIG_SPARSEMEM
3989 /*
3990  * Calculate the size of the zone->blockflags rounded to an unsigned long
3991  * Start by making sure zonesize is a multiple of pageblock_order by rounding
3992  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3993  * round what is now in bits to nearest long in bits, then return it in
3994  * bytes.
3995  */
3996 static unsigned long __init usemap_size(unsigned long zonesize)
3997 {
3998 	unsigned long usemapsize;
3999 
4000 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4001 	usemapsize = usemapsize >> pageblock_order;
4002 	usemapsize *= NR_PAGEBLOCK_BITS;
4003 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4004 
4005 	return usemapsize / 8;
4006 }
4007 
4008 static void __init setup_usemap(struct pglist_data *pgdat,
4009 				struct zone *zone, unsigned long zonesize)
4010 {
4011 	unsigned long usemapsize = usemap_size(zonesize);
4012 	zone->pageblock_flags = NULL;
4013 	if (usemapsize)
4014 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
4015 }
4016 #else
4017 static void inline setup_usemap(struct pglist_data *pgdat,
4018 				struct zone *zone, unsigned long zonesize) {}
4019 #endif /* CONFIG_SPARSEMEM */
4020 
4021 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4022 
4023 /* Return a sensible default order for the pageblock size. */
4024 static inline int pageblock_default_order(void)
4025 {
4026 	if (HPAGE_SHIFT > PAGE_SHIFT)
4027 		return HUGETLB_PAGE_ORDER;
4028 
4029 	return MAX_ORDER-1;
4030 }
4031 
4032 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4033 static inline void __init set_pageblock_order(unsigned int order)
4034 {
4035 	/* Check that pageblock_nr_pages has not already been setup */
4036 	if (pageblock_order)
4037 		return;
4038 
4039 	/*
4040 	 * Assume the largest contiguous order of interest is a huge page.
4041 	 * This value may be variable depending on boot parameters on IA64
4042 	 */
4043 	pageblock_order = order;
4044 }
4045 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4046 
4047 /*
4048  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4049  * and pageblock_default_order() are unused as pageblock_order is set
4050  * at compile-time. See include/linux/pageblock-flags.h for the values of
4051  * pageblock_order based on the kernel config
4052  */
4053 static inline int pageblock_default_order(unsigned int order)
4054 {
4055 	return MAX_ORDER-1;
4056 }
4057 #define set_pageblock_order(x)	do {} while (0)
4058 
4059 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4060 
4061 /*
4062  * Set up the zone data structures:
4063  *   - mark all pages reserved
4064  *   - mark all memory queues empty
4065  *   - clear the memory bitmaps
4066  */
4067 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4068 		unsigned long *zones_size, unsigned long *zholes_size)
4069 {
4070 	enum zone_type j;
4071 	int nid = pgdat->node_id;
4072 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4073 	int ret;
4074 
4075 	pgdat_resize_init(pgdat);
4076 	pgdat->nr_zones = 0;
4077 	init_waitqueue_head(&pgdat->kswapd_wait);
4078 	pgdat->kswapd_max_order = 0;
4079 	pgdat_page_cgroup_init(pgdat);
4080 
4081 	for (j = 0; j < MAX_NR_ZONES; j++) {
4082 		struct zone *zone = pgdat->node_zones + j;
4083 		unsigned long size, realsize, memmap_pages;
4084 		enum lru_list l;
4085 
4086 		size = zone_spanned_pages_in_node(nid, j, zones_size);
4087 		realsize = size - zone_absent_pages_in_node(nid, j,
4088 								zholes_size);
4089 
4090 		/*
4091 		 * Adjust realsize so that it accounts for how much memory
4092 		 * is used by this zone for memmap. This affects the watermark
4093 		 * and per-cpu initialisations
4094 		 */
4095 		memmap_pages =
4096 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4097 		if (realsize >= memmap_pages) {
4098 			realsize -= memmap_pages;
4099 			if (memmap_pages)
4100 				printk(KERN_DEBUG
4101 				       "  %s zone: %lu pages used for memmap\n",
4102 				       zone_names[j], memmap_pages);
4103 		} else
4104 			printk(KERN_WARNING
4105 				"  %s zone: %lu pages exceeds realsize %lu\n",
4106 				zone_names[j], memmap_pages, realsize);
4107 
4108 		/* Account for reserved pages */
4109 		if (j == 0 && realsize > dma_reserve) {
4110 			realsize -= dma_reserve;
4111 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4112 					zone_names[0], dma_reserve);
4113 		}
4114 
4115 		if (!is_highmem_idx(j))
4116 			nr_kernel_pages += realsize;
4117 		nr_all_pages += realsize;
4118 
4119 		zone->spanned_pages = size;
4120 		zone->present_pages = realsize;
4121 #ifdef CONFIG_NUMA
4122 		zone->node = nid;
4123 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4124 						/ 100;
4125 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4126 #endif
4127 		zone->name = zone_names[j];
4128 		spin_lock_init(&zone->lock);
4129 		spin_lock_init(&zone->lru_lock);
4130 		zone_seqlock_init(zone);
4131 		zone->zone_pgdat = pgdat;
4132 
4133 		zone_pcp_init(zone);
4134 		for_each_lru(l) {
4135 			INIT_LIST_HEAD(&zone->lru[l].list);
4136 			zone->reclaim_stat.nr_saved_scan[l] = 0;
4137 		}
4138 		zone->reclaim_stat.recent_rotated[0] = 0;
4139 		zone->reclaim_stat.recent_rotated[1] = 0;
4140 		zone->reclaim_stat.recent_scanned[0] = 0;
4141 		zone->reclaim_stat.recent_scanned[1] = 0;
4142 		zap_zone_vm_stats(zone);
4143 		zone->flags = 0;
4144 		if (!size)
4145 			continue;
4146 
4147 		set_pageblock_order(pageblock_default_order());
4148 		setup_usemap(pgdat, zone, size);
4149 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4150 						size, MEMMAP_EARLY);
4151 		BUG_ON(ret);
4152 		memmap_init(size, nid, j, zone_start_pfn);
4153 		zone_start_pfn += size;
4154 	}
4155 }
4156 
4157 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4158 {
4159 	/* Skip empty nodes */
4160 	if (!pgdat->node_spanned_pages)
4161 		return;
4162 
4163 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4164 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4165 	if (!pgdat->node_mem_map) {
4166 		unsigned long size, start, end;
4167 		struct page *map;
4168 
4169 		/*
4170 		 * The zone's endpoints aren't required to be MAX_ORDER
4171 		 * aligned but the node_mem_map endpoints must be in order
4172 		 * for the buddy allocator to function correctly.
4173 		 */
4174 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4175 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4176 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4177 		size =  (end - start) * sizeof(struct page);
4178 		map = alloc_remap(pgdat->node_id, size);
4179 		if (!map)
4180 			map = alloc_bootmem_node(pgdat, size);
4181 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4182 	}
4183 #ifndef CONFIG_NEED_MULTIPLE_NODES
4184 	/*
4185 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4186 	 */
4187 	if (pgdat == NODE_DATA(0)) {
4188 		mem_map = NODE_DATA(0)->node_mem_map;
4189 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4190 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4191 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4192 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4193 	}
4194 #endif
4195 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4196 }
4197 
4198 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4199 		unsigned long node_start_pfn, unsigned long *zholes_size)
4200 {
4201 	pg_data_t *pgdat = NODE_DATA(nid);
4202 
4203 	pgdat->node_id = nid;
4204 	pgdat->node_start_pfn = node_start_pfn;
4205 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4206 
4207 	alloc_node_mem_map(pgdat);
4208 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4209 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4210 		nid, (unsigned long)pgdat,
4211 		(unsigned long)pgdat->node_mem_map);
4212 #endif
4213 
4214 	free_area_init_core(pgdat, zones_size, zholes_size);
4215 }
4216 
4217 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4218 
4219 #if MAX_NUMNODES > 1
4220 /*
4221  * Figure out the number of possible node ids.
4222  */
4223 static void __init setup_nr_node_ids(void)
4224 {
4225 	unsigned int node;
4226 	unsigned int highest = 0;
4227 
4228 	for_each_node_mask(node, node_possible_map)
4229 		highest = node;
4230 	nr_node_ids = highest + 1;
4231 }
4232 #else
4233 static inline void setup_nr_node_ids(void)
4234 {
4235 }
4236 #endif
4237 
4238 /**
4239  * add_active_range - Register a range of PFNs backed by physical memory
4240  * @nid: The node ID the range resides on
4241  * @start_pfn: The start PFN of the available physical memory
4242  * @end_pfn: The end PFN of the available physical memory
4243  *
4244  * These ranges are stored in an early_node_map[] and later used by
4245  * free_area_init_nodes() to calculate zone sizes and holes. If the
4246  * range spans a memory hole, it is up to the architecture to ensure
4247  * the memory is not freed by the bootmem allocator. If possible
4248  * the range being registered will be merged with existing ranges.
4249  */
4250 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4251 						unsigned long end_pfn)
4252 {
4253 	int i;
4254 
4255 	mminit_dprintk(MMINIT_TRACE, "memory_register",
4256 			"Entering add_active_range(%d, %#lx, %#lx) "
4257 			"%d entries of %d used\n",
4258 			nid, start_pfn, end_pfn,
4259 			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4260 
4261 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4262 
4263 	/* Merge with existing active regions if possible */
4264 	for (i = 0; i < nr_nodemap_entries; i++) {
4265 		if (early_node_map[i].nid != nid)
4266 			continue;
4267 
4268 		/* Skip if an existing region covers this new one */
4269 		if (start_pfn >= early_node_map[i].start_pfn &&
4270 				end_pfn <= early_node_map[i].end_pfn)
4271 			return;
4272 
4273 		/* Merge forward if suitable */
4274 		if (start_pfn <= early_node_map[i].end_pfn &&
4275 				end_pfn > early_node_map[i].end_pfn) {
4276 			early_node_map[i].end_pfn = end_pfn;
4277 			return;
4278 		}
4279 
4280 		/* Merge backward if suitable */
4281 		if (start_pfn < early_node_map[i].start_pfn &&
4282 				end_pfn >= early_node_map[i].start_pfn) {
4283 			early_node_map[i].start_pfn = start_pfn;
4284 			return;
4285 		}
4286 	}
4287 
4288 	/* Check that early_node_map is large enough */
4289 	if (i >= MAX_ACTIVE_REGIONS) {
4290 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
4291 							MAX_ACTIVE_REGIONS);
4292 		return;
4293 	}
4294 
4295 	early_node_map[i].nid = nid;
4296 	early_node_map[i].start_pfn = start_pfn;
4297 	early_node_map[i].end_pfn = end_pfn;
4298 	nr_nodemap_entries = i + 1;
4299 }
4300 
4301 /**
4302  * remove_active_range - Shrink an existing registered range of PFNs
4303  * @nid: The node id the range is on that should be shrunk
4304  * @start_pfn: The new PFN of the range
4305  * @end_pfn: The new PFN of the range
4306  *
4307  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4308  * The map is kept near the end physical page range that has already been
4309  * registered. This function allows an arch to shrink an existing registered
4310  * range.
4311  */
4312 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4313 				unsigned long end_pfn)
4314 {
4315 	int i, j;
4316 	int removed = 0;
4317 
4318 	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4319 			  nid, start_pfn, end_pfn);
4320 
4321 	/* Find the old active region end and shrink */
4322 	for_each_active_range_index_in_nid(i, nid) {
4323 		if (early_node_map[i].start_pfn >= start_pfn &&
4324 		    early_node_map[i].end_pfn <= end_pfn) {
4325 			/* clear it */
4326 			early_node_map[i].start_pfn = 0;
4327 			early_node_map[i].end_pfn = 0;
4328 			removed = 1;
4329 			continue;
4330 		}
4331 		if (early_node_map[i].start_pfn < start_pfn &&
4332 		    early_node_map[i].end_pfn > start_pfn) {
4333 			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4334 			early_node_map[i].end_pfn = start_pfn;
4335 			if (temp_end_pfn > end_pfn)
4336 				add_active_range(nid, end_pfn, temp_end_pfn);
4337 			continue;
4338 		}
4339 		if (early_node_map[i].start_pfn >= start_pfn &&
4340 		    early_node_map[i].end_pfn > end_pfn &&
4341 		    early_node_map[i].start_pfn < end_pfn) {
4342 			early_node_map[i].start_pfn = end_pfn;
4343 			continue;
4344 		}
4345 	}
4346 
4347 	if (!removed)
4348 		return;
4349 
4350 	/* remove the blank ones */
4351 	for (i = nr_nodemap_entries - 1; i > 0; i--) {
4352 		if (early_node_map[i].nid != nid)
4353 			continue;
4354 		if (early_node_map[i].end_pfn)
4355 			continue;
4356 		/* we found it, get rid of it */
4357 		for (j = i; j < nr_nodemap_entries - 1; j++)
4358 			memcpy(&early_node_map[j], &early_node_map[j+1],
4359 				sizeof(early_node_map[j]));
4360 		j = nr_nodemap_entries - 1;
4361 		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4362 		nr_nodemap_entries--;
4363 	}
4364 }
4365 
4366 /**
4367  * remove_all_active_ranges - Remove all currently registered regions
4368  *
4369  * During discovery, it may be found that a table like SRAT is invalid
4370  * and an alternative discovery method must be used. This function removes
4371  * all currently registered regions.
4372  */
4373 void __init remove_all_active_ranges(void)
4374 {
4375 	memset(early_node_map, 0, sizeof(early_node_map));
4376 	nr_nodemap_entries = 0;
4377 }
4378 
4379 /* Compare two active node_active_regions */
4380 static int __init cmp_node_active_region(const void *a, const void *b)
4381 {
4382 	struct node_active_region *arange = (struct node_active_region *)a;
4383 	struct node_active_region *brange = (struct node_active_region *)b;
4384 
4385 	/* Done this way to avoid overflows */
4386 	if (arange->start_pfn > brange->start_pfn)
4387 		return 1;
4388 	if (arange->start_pfn < brange->start_pfn)
4389 		return -1;
4390 
4391 	return 0;
4392 }
4393 
4394 /* sort the node_map by start_pfn */
4395 void __init sort_node_map(void)
4396 {
4397 	sort(early_node_map, (size_t)nr_nodemap_entries,
4398 			sizeof(struct node_active_region),
4399 			cmp_node_active_region, NULL);
4400 }
4401 
4402 /* Find the lowest pfn for a node */
4403 static unsigned long __init find_min_pfn_for_node(int nid)
4404 {
4405 	int i;
4406 	unsigned long min_pfn = ULONG_MAX;
4407 
4408 	/* Assuming a sorted map, the first range found has the starting pfn */
4409 	for_each_active_range_index_in_nid(i, nid)
4410 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4411 
4412 	if (min_pfn == ULONG_MAX) {
4413 		printk(KERN_WARNING
4414 			"Could not find start_pfn for node %d\n", nid);
4415 		return 0;
4416 	}
4417 
4418 	return min_pfn;
4419 }
4420 
4421 /**
4422  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4423  *
4424  * It returns the minimum PFN based on information provided via
4425  * add_active_range().
4426  */
4427 unsigned long __init find_min_pfn_with_active_regions(void)
4428 {
4429 	return find_min_pfn_for_node(MAX_NUMNODES);
4430 }
4431 
4432 /*
4433  * early_calculate_totalpages()
4434  * Sum pages in active regions for movable zone.
4435  * Populate N_HIGH_MEMORY for calculating usable_nodes.
4436  */
4437 static unsigned long __init early_calculate_totalpages(void)
4438 {
4439 	int i;
4440 	unsigned long totalpages = 0;
4441 
4442 	for (i = 0; i < nr_nodemap_entries; i++) {
4443 		unsigned long pages = early_node_map[i].end_pfn -
4444 						early_node_map[i].start_pfn;
4445 		totalpages += pages;
4446 		if (pages)
4447 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4448 	}
4449   	return totalpages;
4450 }
4451 
4452 /*
4453  * Find the PFN the Movable zone begins in each node. Kernel memory
4454  * is spread evenly between nodes as long as the nodes have enough
4455  * memory. When they don't, some nodes will have more kernelcore than
4456  * others
4457  */
4458 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4459 {
4460 	int i, nid;
4461 	unsigned long usable_startpfn;
4462 	unsigned long kernelcore_node, kernelcore_remaining;
4463 	/* save the state before borrow the nodemask */
4464 	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4465 	unsigned long totalpages = early_calculate_totalpages();
4466 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4467 
4468 	/*
4469 	 * If movablecore was specified, calculate what size of
4470 	 * kernelcore that corresponds so that memory usable for
4471 	 * any allocation type is evenly spread. If both kernelcore
4472 	 * and movablecore are specified, then the value of kernelcore
4473 	 * will be used for required_kernelcore if it's greater than
4474 	 * what movablecore would have allowed.
4475 	 */
4476 	if (required_movablecore) {
4477 		unsigned long corepages;
4478 
4479 		/*
4480 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4481 		 * was requested by the user
4482 		 */
4483 		required_movablecore =
4484 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4485 		corepages = totalpages - required_movablecore;
4486 
4487 		required_kernelcore = max(required_kernelcore, corepages);
4488 	}
4489 
4490 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4491 	if (!required_kernelcore)
4492 		goto out;
4493 
4494 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4495 	find_usable_zone_for_movable();
4496 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4497 
4498 restart:
4499 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4500 	kernelcore_node = required_kernelcore / usable_nodes;
4501 	for_each_node_state(nid, N_HIGH_MEMORY) {
4502 		/*
4503 		 * Recalculate kernelcore_node if the division per node
4504 		 * now exceeds what is necessary to satisfy the requested
4505 		 * amount of memory for the kernel
4506 		 */
4507 		if (required_kernelcore < kernelcore_node)
4508 			kernelcore_node = required_kernelcore / usable_nodes;
4509 
4510 		/*
4511 		 * As the map is walked, we track how much memory is usable
4512 		 * by the kernel using kernelcore_remaining. When it is
4513 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4514 		 */
4515 		kernelcore_remaining = kernelcore_node;
4516 
4517 		/* Go through each range of PFNs within this node */
4518 		for_each_active_range_index_in_nid(i, nid) {
4519 			unsigned long start_pfn, end_pfn;
4520 			unsigned long size_pages;
4521 
4522 			start_pfn = max(early_node_map[i].start_pfn,
4523 						zone_movable_pfn[nid]);
4524 			end_pfn = early_node_map[i].end_pfn;
4525 			if (start_pfn >= end_pfn)
4526 				continue;
4527 
4528 			/* Account for what is only usable for kernelcore */
4529 			if (start_pfn < usable_startpfn) {
4530 				unsigned long kernel_pages;
4531 				kernel_pages = min(end_pfn, usable_startpfn)
4532 								- start_pfn;
4533 
4534 				kernelcore_remaining -= min(kernel_pages,
4535 							kernelcore_remaining);
4536 				required_kernelcore -= min(kernel_pages,
4537 							required_kernelcore);
4538 
4539 				/* Continue if range is now fully accounted */
4540 				if (end_pfn <= usable_startpfn) {
4541 
4542 					/*
4543 					 * Push zone_movable_pfn to the end so
4544 					 * that if we have to rebalance
4545 					 * kernelcore across nodes, we will
4546 					 * not double account here
4547 					 */
4548 					zone_movable_pfn[nid] = end_pfn;
4549 					continue;
4550 				}
4551 				start_pfn = usable_startpfn;
4552 			}
4553 
4554 			/*
4555 			 * The usable PFN range for ZONE_MOVABLE is from
4556 			 * start_pfn->end_pfn. Calculate size_pages as the
4557 			 * number of pages used as kernelcore
4558 			 */
4559 			size_pages = end_pfn - start_pfn;
4560 			if (size_pages > kernelcore_remaining)
4561 				size_pages = kernelcore_remaining;
4562 			zone_movable_pfn[nid] = start_pfn + size_pages;
4563 
4564 			/*
4565 			 * Some kernelcore has been met, update counts and
4566 			 * break if the kernelcore for this node has been
4567 			 * satisified
4568 			 */
4569 			required_kernelcore -= min(required_kernelcore,
4570 								size_pages);
4571 			kernelcore_remaining -= size_pages;
4572 			if (!kernelcore_remaining)
4573 				break;
4574 		}
4575 	}
4576 
4577 	/*
4578 	 * If there is still required_kernelcore, we do another pass with one
4579 	 * less node in the count. This will push zone_movable_pfn[nid] further
4580 	 * along on the nodes that still have memory until kernelcore is
4581 	 * satisified
4582 	 */
4583 	usable_nodes--;
4584 	if (usable_nodes && required_kernelcore > usable_nodes)
4585 		goto restart;
4586 
4587 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4588 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4589 		zone_movable_pfn[nid] =
4590 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4591 
4592 out:
4593 	/* restore the node_state */
4594 	node_states[N_HIGH_MEMORY] = saved_node_state;
4595 }
4596 
4597 /* Any regular memory on that node ? */
4598 static void check_for_regular_memory(pg_data_t *pgdat)
4599 {
4600 #ifdef CONFIG_HIGHMEM
4601 	enum zone_type zone_type;
4602 
4603 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4604 		struct zone *zone = &pgdat->node_zones[zone_type];
4605 		if (zone->present_pages)
4606 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4607 	}
4608 #endif
4609 }
4610 
4611 /**
4612  * free_area_init_nodes - Initialise all pg_data_t and zone data
4613  * @max_zone_pfn: an array of max PFNs for each zone
4614  *
4615  * This will call free_area_init_node() for each active node in the system.
4616  * Using the page ranges provided by add_active_range(), the size of each
4617  * zone in each node and their holes is calculated. If the maximum PFN
4618  * between two adjacent zones match, it is assumed that the zone is empty.
4619  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4620  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4621  * starts where the previous one ended. For example, ZONE_DMA32 starts
4622  * at arch_max_dma_pfn.
4623  */
4624 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4625 {
4626 	unsigned long nid;
4627 	int i;
4628 
4629 	/* Sort early_node_map as initialisation assumes it is sorted */
4630 	sort_node_map();
4631 
4632 	/* Record where the zone boundaries are */
4633 	memset(arch_zone_lowest_possible_pfn, 0,
4634 				sizeof(arch_zone_lowest_possible_pfn));
4635 	memset(arch_zone_highest_possible_pfn, 0,
4636 				sizeof(arch_zone_highest_possible_pfn));
4637 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4638 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4639 	for (i = 1; i < MAX_NR_ZONES; i++) {
4640 		if (i == ZONE_MOVABLE)
4641 			continue;
4642 		arch_zone_lowest_possible_pfn[i] =
4643 			arch_zone_highest_possible_pfn[i-1];
4644 		arch_zone_highest_possible_pfn[i] =
4645 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4646 	}
4647 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4648 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4649 
4650 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4651 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4652 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4653 
4654 	/* Print out the zone ranges */
4655 	printk("Zone PFN ranges:\n");
4656 	for (i = 0; i < MAX_NR_ZONES; i++) {
4657 		if (i == ZONE_MOVABLE)
4658 			continue;
4659 		printk("  %-8s ", zone_names[i]);
4660 		if (arch_zone_lowest_possible_pfn[i] ==
4661 				arch_zone_highest_possible_pfn[i])
4662 			printk("empty\n");
4663 		else
4664 			printk("%0#10lx -> %0#10lx\n",
4665 				arch_zone_lowest_possible_pfn[i],
4666 				arch_zone_highest_possible_pfn[i]);
4667 	}
4668 
4669 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4670 	printk("Movable zone start PFN for each node\n");
4671 	for (i = 0; i < MAX_NUMNODES; i++) {
4672 		if (zone_movable_pfn[i])
4673 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4674 	}
4675 
4676 	/* Print out the early_node_map[] */
4677 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4678 	for (i = 0; i < nr_nodemap_entries; i++)
4679 		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4680 						early_node_map[i].start_pfn,
4681 						early_node_map[i].end_pfn);
4682 
4683 	/* Initialise every node */
4684 	mminit_verify_pageflags_layout();
4685 	setup_nr_node_ids();
4686 	for_each_online_node(nid) {
4687 		pg_data_t *pgdat = NODE_DATA(nid);
4688 		free_area_init_node(nid, NULL,
4689 				find_min_pfn_for_node(nid), NULL);
4690 
4691 		/* Any memory on that node */
4692 		if (pgdat->node_present_pages)
4693 			node_set_state(nid, N_HIGH_MEMORY);
4694 		check_for_regular_memory(pgdat);
4695 	}
4696 }
4697 
4698 static int __init cmdline_parse_core(char *p, unsigned long *core)
4699 {
4700 	unsigned long long coremem;
4701 	if (!p)
4702 		return -EINVAL;
4703 
4704 	coremem = memparse(p, &p);
4705 	*core = coremem >> PAGE_SHIFT;
4706 
4707 	/* Paranoid check that UL is enough for the coremem value */
4708 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4709 
4710 	return 0;
4711 }
4712 
4713 /*
4714  * kernelcore=size sets the amount of memory for use for allocations that
4715  * cannot be reclaimed or migrated.
4716  */
4717 static int __init cmdline_parse_kernelcore(char *p)
4718 {
4719 	return cmdline_parse_core(p, &required_kernelcore);
4720 }
4721 
4722 /*
4723  * movablecore=size sets the amount of memory for use for allocations that
4724  * can be reclaimed or migrated.
4725  */
4726 static int __init cmdline_parse_movablecore(char *p)
4727 {
4728 	return cmdline_parse_core(p, &required_movablecore);
4729 }
4730 
4731 early_param("kernelcore", cmdline_parse_kernelcore);
4732 early_param("movablecore", cmdline_parse_movablecore);
4733 
4734 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4735 
4736 /**
4737  * set_dma_reserve - set the specified number of pages reserved in the first zone
4738  * @new_dma_reserve: The number of pages to mark reserved
4739  *
4740  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4741  * In the DMA zone, a significant percentage may be consumed by kernel image
4742  * and other unfreeable allocations which can skew the watermarks badly. This
4743  * function may optionally be used to account for unfreeable pages in the
4744  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4745  * smaller per-cpu batchsize.
4746  */
4747 void __init set_dma_reserve(unsigned long new_dma_reserve)
4748 {
4749 	dma_reserve = new_dma_reserve;
4750 }
4751 
4752 #ifndef CONFIG_NEED_MULTIPLE_NODES
4753 struct pglist_data __refdata contig_page_data = {
4754 #ifndef CONFIG_NO_BOOTMEM
4755  .bdata = &bootmem_node_data[0]
4756 #endif
4757  };
4758 EXPORT_SYMBOL(contig_page_data);
4759 #endif
4760 
4761 void __init free_area_init(unsigned long *zones_size)
4762 {
4763 	free_area_init_node(0, zones_size,
4764 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4765 }
4766 
4767 static int page_alloc_cpu_notify(struct notifier_block *self,
4768 				 unsigned long action, void *hcpu)
4769 {
4770 	int cpu = (unsigned long)hcpu;
4771 
4772 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4773 		drain_pages(cpu);
4774 
4775 		/*
4776 		 * Spill the event counters of the dead processor
4777 		 * into the current processors event counters.
4778 		 * This artificially elevates the count of the current
4779 		 * processor.
4780 		 */
4781 		vm_events_fold_cpu(cpu);
4782 
4783 		/*
4784 		 * Zero the differential counters of the dead processor
4785 		 * so that the vm statistics are consistent.
4786 		 *
4787 		 * This is only okay since the processor is dead and cannot
4788 		 * race with what we are doing.
4789 		 */
4790 		refresh_cpu_vm_stats(cpu);
4791 	}
4792 	return NOTIFY_OK;
4793 }
4794 
4795 void __init page_alloc_init(void)
4796 {
4797 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4798 }
4799 
4800 /*
4801  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4802  *	or min_free_kbytes changes.
4803  */
4804 static void calculate_totalreserve_pages(void)
4805 {
4806 	struct pglist_data *pgdat;
4807 	unsigned long reserve_pages = 0;
4808 	enum zone_type i, j;
4809 
4810 	for_each_online_pgdat(pgdat) {
4811 		for (i = 0; i < MAX_NR_ZONES; i++) {
4812 			struct zone *zone = pgdat->node_zones + i;
4813 			unsigned long max = 0;
4814 
4815 			/* Find valid and maximum lowmem_reserve in the zone */
4816 			for (j = i; j < MAX_NR_ZONES; j++) {
4817 				if (zone->lowmem_reserve[j] > max)
4818 					max = zone->lowmem_reserve[j];
4819 			}
4820 
4821 			/* we treat the high watermark as reserved pages. */
4822 			max += high_wmark_pages(zone);
4823 
4824 			if (max > zone->present_pages)
4825 				max = zone->present_pages;
4826 			reserve_pages += max;
4827 		}
4828 	}
4829 	totalreserve_pages = reserve_pages;
4830 }
4831 
4832 /*
4833  * setup_per_zone_lowmem_reserve - called whenever
4834  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4835  *	has a correct pages reserved value, so an adequate number of
4836  *	pages are left in the zone after a successful __alloc_pages().
4837  */
4838 static void setup_per_zone_lowmem_reserve(void)
4839 {
4840 	struct pglist_data *pgdat;
4841 	enum zone_type j, idx;
4842 
4843 	for_each_online_pgdat(pgdat) {
4844 		for (j = 0; j < MAX_NR_ZONES; j++) {
4845 			struct zone *zone = pgdat->node_zones + j;
4846 			unsigned long present_pages = zone->present_pages;
4847 
4848 			zone->lowmem_reserve[j] = 0;
4849 
4850 			idx = j;
4851 			while (idx) {
4852 				struct zone *lower_zone;
4853 
4854 				idx--;
4855 
4856 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4857 					sysctl_lowmem_reserve_ratio[idx] = 1;
4858 
4859 				lower_zone = pgdat->node_zones + idx;
4860 				lower_zone->lowmem_reserve[j] = present_pages /
4861 					sysctl_lowmem_reserve_ratio[idx];
4862 				present_pages += lower_zone->present_pages;
4863 			}
4864 		}
4865 	}
4866 
4867 	/* update totalreserve_pages */
4868 	calculate_totalreserve_pages();
4869 }
4870 
4871 /**
4872  * setup_per_zone_wmarks - called when min_free_kbytes changes
4873  * or when memory is hot-{added|removed}
4874  *
4875  * Ensures that the watermark[min,low,high] values for each zone are set
4876  * correctly with respect to min_free_kbytes.
4877  */
4878 void setup_per_zone_wmarks(void)
4879 {
4880 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4881 	unsigned long lowmem_pages = 0;
4882 	struct zone *zone;
4883 	unsigned long flags;
4884 
4885 	/* Calculate total number of !ZONE_HIGHMEM pages */
4886 	for_each_zone(zone) {
4887 		if (!is_highmem(zone))
4888 			lowmem_pages += zone->present_pages;
4889 	}
4890 
4891 	for_each_zone(zone) {
4892 		u64 tmp;
4893 
4894 		spin_lock_irqsave(&zone->lock, flags);
4895 		tmp = (u64)pages_min * zone->present_pages;
4896 		do_div(tmp, lowmem_pages);
4897 		if (is_highmem(zone)) {
4898 			/*
4899 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4900 			 * need highmem pages, so cap pages_min to a small
4901 			 * value here.
4902 			 *
4903 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4904 			 * deltas controls asynch page reclaim, and so should
4905 			 * not be capped for highmem.
4906 			 */
4907 			int min_pages;
4908 
4909 			min_pages = zone->present_pages / 1024;
4910 			if (min_pages < SWAP_CLUSTER_MAX)
4911 				min_pages = SWAP_CLUSTER_MAX;
4912 			if (min_pages > 128)
4913 				min_pages = 128;
4914 			zone->watermark[WMARK_MIN] = min_pages;
4915 		} else {
4916 			/*
4917 			 * If it's a lowmem zone, reserve a number of pages
4918 			 * proportionate to the zone's size.
4919 			 */
4920 			zone->watermark[WMARK_MIN] = tmp;
4921 		}
4922 
4923 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4924 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4925 		setup_zone_migrate_reserve(zone);
4926 		spin_unlock_irqrestore(&zone->lock, flags);
4927 	}
4928 
4929 	/* update totalreserve_pages */
4930 	calculate_totalreserve_pages();
4931 }
4932 
4933 /*
4934  * The inactive anon list should be small enough that the VM never has to
4935  * do too much work, but large enough that each inactive page has a chance
4936  * to be referenced again before it is swapped out.
4937  *
4938  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4939  * INACTIVE_ANON pages on this zone's LRU, maintained by the
4940  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4941  * the anonymous pages are kept on the inactive list.
4942  *
4943  * total     target    max
4944  * memory    ratio     inactive anon
4945  * -------------------------------------
4946  *   10MB       1         5MB
4947  *  100MB       1        50MB
4948  *    1GB       3       250MB
4949  *   10GB      10       0.9GB
4950  *  100GB      31         3GB
4951  *    1TB     101        10GB
4952  *   10TB     320        32GB
4953  */
4954 void calculate_zone_inactive_ratio(struct zone *zone)
4955 {
4956 	unsigned int gb, ratio;
4957 
4958 	/* Zone size in gigabytes */
4959 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
4960 	if (gb)
4961 		ratio = int_sqrt(10 * gb);
4962 	else
4963 		ratio = 1;
4964 
4965 	zone->inactive_ratio = ratio;
4966 }
4967 
4968 static void __init setup_per_zone_inactive_ratio(void)
4969 {
4970 	struct zone *zone;
4971 
4972 	for_each_zone(zone)
4973 		calculate_zone_inactive_ratio(zone);
4974 }
4975 
4976 /*
4977  * Initialise min_free_kbytes.
4978  *
4979  * For small machines we want it small (128k min).  For large machines
4980  * we want it large (64MB max).  But it is not linear, because network
4981  * bandwidth does not increase linearly with machine size.  We use
4982  *
4983  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4984  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4985  *
4986  * which yields
4987  *
4988  * 16MB:	512k
4989  * 32MB:	724k
4990  * 64MB:	1024k
4991  * 128MB:	1448k
4992  * 256MB:	2048k
4993  * 512MB:	2896k
4994  * 1024MB:	4096k
4995  * 2048MB:	5792k
4996  * 4096MB:	8192k
4997  * 8192MB:	11584k
4998  * 16384MB:	16384k
4999  */
5000 static int __init init_per_zone_wmark_min(void)
5001 {
5002 	unsigned long lowmem_kbytes;
5003 
5004 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5005 
5006 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5007 	if (min_free_kbytes < 128)
5008 		min_free_kbytes = 128;
5009 	if (min_free_kbytes > 65536)
5010 		min_free_kbytes = 65536;
5011 	setup_per_zone_wmarks();
5012 	setup_per_zone_lowmem_reserve();
5013 	setup_per_zone_inactive_ratio();
5014 	return 0;
5015 }
5016 module_init(init_per_zone_wmark_min)
5017 
5018 /*
5019  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5020  *	that we can call two helper functions whenever min_free_kbytes
5021  *	changes.
5022  */
5023 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5024 	void __user *buffer, size_t *length, loff_t *ppos)
5025 {
5026 	proc_dointvec(table, write, buffer, length, ppos);
5027 	if (write)
5028 		setup_per_zone_wmarks();
5029 	return 0;
5030 }
5031 
5032 #ifdef CONFIG_NUMA
5033 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5034 	void __user *buffer, size_t *length, loff_t *ppos)
5035 {
5036 	struct zone *zone;
5037 	int rc;
5038 
5039 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5040 	if (rc)
5041 		return rc;
5042 
5043 	for_each_zone(zone)
5044 		zone->min_unmapped_pages = (zone->present_pages *
5045 				sysctl_min_unmapped_ratio) / 100;
5046 	return 0;
5047 }
5048 
5049 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5050 	void __user *buffer, size_t *length, loff_t *ppos)
5051 {
5052 	struct zone *zone;
5053 	int rc;
5054 
5055 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5056 	if (rc)
5057 		return rc;
5058 
5059 	for_each_zone(zone)
5060 		zone->min_slab_pages = (zone->present_pages *
5061 				sysctl_min_slab_ratio) / 100;
5062 	return 0;
5063 }
5064 #endif
5065 
5066 /*
5067  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5068  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5069  *	whenever sysctl_lowmem_reserve_ratio changes.
5070  *
5071  * The reserve ratio obviously has absolutely no relation with the
5072  * minimum watermarks. The lowmem reserve ratio can only make sense
5073  * if in function of the boot time zone sizes.
5074  */
5075 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5076 	void __user *buffer, size_t *length, loff_t *ppos)
5077 {
5078 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5079 	setup_per_zone_lowmem_reserve();
5080 	return 0;
5081 }
5082 
5083 /*
5084  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5085  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5086  * can have before it gets flushed back to buddy allocator.
5087  */
5088 
5089 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5090 	void __user *buffer, size_t *length, loff_t *ppos)
5091 {
5092 	struct zone *zone;
5093 	unsigned int cpu;
5094 	int ret;
5095 
5096 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5097 	if (!write || (ret == -EINVAL))
5098 		return ret;
5099 	for_each_populated_zone(zone) {
5100 		for_each_possible_cpu(cpu) {
5101 			unsigned long  high;
5102 			high = zone->present_pages / percpu_pagelist_fraction;
5103 			setup_pagelist_highmark(
5104 				per_cpu_ptr(zone->pageset, cpu), high);
5105 		}
5106 	}
5107 	return 0;
5108 }
5109 
5110 int hashdist = HASHDIST_DEFAULT;
5111 
5112 #ifdef CONFIG_NUMA
5113 static int __init set_hashdist(char *str)
5114 {
5115 	if (!str)
5116 		return 0;
5117 	hashdist = simple_strtoul(str, &str, 0);
5118 	return 1;
5119 }
5120 __setup("hashdist=", set_hashdist);
5121 #endif
5122 
5123 /*
5124  * allocate a large system hash table from bootmem
5125  * - it is assumed that the hash table must contain an exact power-of-2
5126  *   quantity of entries
5127  * - limit is the number of hash buckets, not the total allocation size
5128  */
5129 void *__init alloc_large_system_hash(const char *tablename,
5130 				     unsigned long bucketsize,
5131 				     unsigned long numentries,
5132 				     int scale,
5133 				     int flags,
5134 				     unsigned int *_hash_shift,
5135 				     unsigned int *_hash_mask,
5136 				     unsigned long limit)
5137 {
5138 	unsigned long long max = limit;
5139 	unsigned long log2qty, size;
5140 	void *table = NULL;
5141 
5142 	/* allow the kernel cmdline to have a say */
5143 	if (!numentries) {
5144 		/* round applicable memory size up to nearest megabyte */
5145 		numentries = nr_kernel_pages;
5146 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5147 		numentries >>= 20 - PAGE_SHIFT;
5148 		numentries <<= 20 - PAGE_SHIFT;
5149 
5150 		/* limit to 1 bucket per 2^scale bytes of low memory */
5151 		if (scale > PAGE_SHIFT)
5152 			numentries >>= (scale - PAGE_SHIFT);
5153 		else
5154 			numentries <<= (PAGE_SHIFT - scale);
5155 
5156 		/* Make sure we've got at least a 0-order allocation.. */
5157 		if (unlikely(flags & HASH_SMALL)) {
5158 			/* Makes no sense without HASH_EARLY */
5159 			WARN_ON(!(flags & HASH_EARLY));
5160 			if (!(numentries >> *_hash_shift)) {
5161 				numentries = 1UL << *_hash_shift;
5162 				BUG_ON(!numentries);
5163 			}
5164 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5165 			numentries = PAGE_SIZE / bucketsize;
5166 	}
5167 	numentries = roundup_pow_of_two(numentries);
5168 
5169 	/* limit allocation size to 1/16 total memory by default */
5170 	if (max == 0) {
5171 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5172 		do_div(max, bucketsize);
5173 	}
5174 
5175 	if (numentries > max)
5176 		numentries = max;
5177 
5178 	log2qty = ilog2(numentries);
5179 
5180 	do {
5181 		size = bucketsize << log2qty;
5182 		if (flags & HASH_EARLY)
5183 			table = alloc_bootmem_nopanic(size);
5184 		else if (hashdist)
5185 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5186 		else {
5187 			/*
5188 			 * If bucketsize is not a power-of-two, we may free
5189 			 * some pages at the end of hash table which
5190 			 * alloc_pages_exact() automatically does
5191 			 */
5192 			if (get_order(size) < MAX_ORDER) {
5193 				table = alloc_pages_exact(size, GFP_ATOMIC);
5194 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5195 			}
5196 		}
5197 	} while (!table && size > PAGE_SIZE && --log2qty);
5198 
5199 	if (!table)
5200 		panic("Failed to allocate %s hash table\n", tablename);
5201 
5202 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5203 	       tablename,
5204 	       (1UL << log2qty),
5205 	       ilog2(size) - PAGE_SHIFT,
5206 	       size);
5207 
5208 	if (_hash_shift)
5209 		*_hash_shift = log2qty;
5210 	if (_hash_mask)
5211 		*_hash_mask = (1 << log2qty) - 1;
5212 
5213 	return table;
5214 }
5215 
5216 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5217 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5218 							unsigned long pfn)
5219 {
5220 #ifdef CONFIG_SPARSEMEM
5221 	return __pfn_to_section(pfn)->pageblock_flags;
5222 #else
5223 	return zone->pageblock_flags;
5224 #endif /* CONFIG_SPARSEMEM */
5225 }
5226 
5227 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5228 {
5229 #ifdef CONFIG_SPARSEMEM
5230 	pfn &= (PAGES_PER_SECTION-1);
5231 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5232 #else
5233 	pfn = pfn - zone->zone_start_pfn;
5234 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5235 #endif /* CONFIG_SPARSEMEM */
5236 }
5237 
5238 /**
5239  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5240  * @page: The page within the block of interest
5241  * @start_bitidx: The first bit of interest to retrieve
5242  * @end_bitidx: The last bit of interest
5243  * returns pageblock_bits flags
5244  */
5245 unsigned long get_pageblock_flags_group(struct page *page,
5246 					int start_bitidx, int end_bitidx)
5247 {
5248 	struct zone *zone;
5249 	unsigned long *bitmap;
5250 	unsigned long pfn, bitidx;
5251 	unsigned long flags = 0;
5252 	unsigned long value = 1;
5253 
5254 	zone = page_zone(page);
5255 	pfn = page_to_pfn(page);
5256 	bitmap = get_pageblock_bitmap(zone, pfn);
5257 	bitidx = pfn_to_bitidx(zone, pfn);
5258 
5259 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5260 		if (test_bit(bitidx + start_bitidx, bitmap))
5261 			flags |= value;
5262 
5263 	return flags;
5264 }
5265 
5266 /**
5267  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5268  * @page: The page within the block of interest
5269  * @start_bitidx: The first bit of interest
5270  * @end_bitidx: The last bit of interest
5271  * @flags: The flags to set
5272  */
5273 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5274 					int start_bitidx, int end_bitidx)
5275 {
5276 	struct zone *zone;
5277 	unsigned long *bitmap;
5278 	unsigned long pfn, bitidx;
5279 	unsigned long value = 1;
5280 
5281 	zone = page_zone(page);
5282 	pfn = page_to_pfn(page);
5283 	bitmap = get_pageblock_bitmap(zone, pfn);
5284 	bitidx = pfn_to_bitidx(zone, pfn);
5285 	VM_BUG_ON(pfn < zone->zone_start_pfn);
5286 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5287 
5288 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5289 		if (flags & value)
5290 			__set_bit(bitidx + start_bitidx, bitmap);
5291 		else
5292 			__clear_bit(bitidx + start_bitidx, bitmap);
5293 }
5294 
5295 /*
5296  * This is designed as sub function...plz see page_isolation.c also.
5297  * set/clear page block's type to be ISOLATE.
5298  * page allocater never alloc memory from ISOLATE block.
5299  */
5300 
5301 static int
5302 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5303 {
5304 	unsigned long pfn, iter, found;
5305 	/*
5306 	 * For avoiding noise data, lru_add_drain_all() should be called
5307 	 * If ZONE_MOVABLE, the zone never contains immobile pages
5308 	 */
5309 	if (zone_idx(zone) == ZONE_MOVABLE)
5310 		return true;
5311 
5312 	if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5313 		return true;
5314 
5315 	pfn = page_to_pfn(page);
5316 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5317 		unsigned long check = pfn + iter;
5318 
5319 		if (!pfn_valid_within(check)) {
5320 			iter++;
5321 			continue;
5322 		}
5323 		page = pfn_to_page(check);
5324 		if (!page_count(page)) {
5325 			if (PageBuddy(page))
5326 				iter += (1 << page_order(page)) - 1;
5327 			continue;
5328 		}
5329 		if (!PageLRU(page))
5330 			found++;
5331 		/*
5332 		 * If there are RECLAIMABLE pages, we need to check it.
5333 		 * But now, memory offline itself doesn't call shrink_slab()
5334 		 * and it still to be fixed.
5335 		 */
5336 		/*
5337 		 * If the page is not RAM, page_count()should be 0.
5338 		 * we don't need more check. This is an _used_ not-movable page.
5339 		 *
5340 		 * The problematic thing here is PG_reserved pages. PG_reserved
5341 		 * is set to both of a memory hole page and a _used_ kernel
5342 		 * page at boot.
5343 		 */
5344 		if (found > count)
5345 			return false;
5346 	}
5347 	return true;
5348 }
5349 
5350 bool is_pageblock_removable_nolock(struct page *page)
5351 {
5352 	struct zone *zone = page_zone(page);
5353 	return __count_immobile_pages(zone, page, 0);
5354 }
5355 
5356 int set_migratetype_isolate(struct page *page)
5357 {
5358 	struct zone *zone;
5359 	unsigned long flags, pfn;
5360 	struct memory_isolate_notify arg;
5361 	int notifier_ret;
5362 	int ret = -EBUSY;
5363 	int zone_idx;
5364 
5365 	zone = page_zone(page);
5366 	zone_idx = zone_idx(zone);
5367 
5368 	spin_lock_irqsave(&zone->lock, flags);
5369 
5370 	pfn = page_to_pfn(page);
5371 	arg.start_pfn = pfn;
5372 	arg.nr_pages = pageblock_nr_pages;
5373 	arg.pages_found = 0;
5374 
5375 	/*
5376 	 * It may be possible to isolate a pageblock even if the
5377 	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5378 	 * notifier chain is used by balloon drivers to return the
5379 	 * number of pages in a range that are held by the balloon
5380 	 * driver to shrink memory. If all the pages are accounted for
5381 	 * by balloons, are free, or on the LRU, isolation can continue.
5382 	 * Later, for example, when memory hotplug notifier runs, these
5383 	 * pages reported as "can be isolated" should be isolated(freed)
5384 	 * by the balloon driver through the memory notifier chain.
5385 	 */
5386 	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5387 	notifier_ret = notifier_to_errno(notifier_ret);
5388 	if (notifier_ret)
5389 		goto out;
5390 	/*
5391 	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5392 	 * We just check MOVABLE pages.
5393 	 */
5394 	if (__count_immobile_pages(zone, page, arg.pages_found))
5395 		ret = 0;
5396 
5397 	/*
5398 	 * immobile means "not-on-lru" paes. If immobile is larger than
5399 	 * removable-by-driver pages reported by notifier, we'll fail.
5400 	 */
5401 
5402 out:
5403 	if (!ret) {
5404 		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5405 		move_freepages_block(zone, page, MIGRATE_ISOLATE);
5406 	}
5407 
5408 	spin_unlock_irqrestore(&zone->lock, flags);
5409 	if (!ret)
5410 		drain_all_pages();
5411 	return ret;
5412 }
5413 
5414 void unset_migratetype_isolate(struct page *page)
5415 {
5416 	struct zone *zone;
5417 	unsigned long flags;
5418 	zone = page_zone(page);
5419 	spin_lock_irqsave(&zone->lock, flags);
5420 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5421 		goto out;
5422 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5423 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5424 out:
5425 	spin_unlock_irqrestore(&zone->lock, flags);
5426 }
5427 
5428 #ifdef CONFIG_MEMORY_HOTREMOVE
5429 /*
5430  * All pages in the range must be isolated before calling this.
5431  */
5432 void
5433 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5434 {
5435 	struct page *page;
5436 	struct zone *zone;
5437 	int order, i;
5438 	unsigned long pfn;
5439 	unsigned long flags;
5440 	/* find the first valid pfn */
5441 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5442 		if (pfn_valid(pfn))
5443 			break;
5444 	if (pfn == end_pfn)
5445 		return;
5446 	zone = page_zone(pfn_to_page(pfn));
5447 	spin_lock_irqsave(&zone->lock, flags);
5448 	pfn = start_pfn;
5449 	while (pfn < end_pfn) {
5450 		if (!pfn_valid(pfn)) {
5451 			pfn++;
5452 			continue;
5453 		}
5454 		page = pfn_to_page(pfn);
5455 		BUG_ON(page_count(page));
5456 		BUG_ON(!PageBuddy(page));
5457 		order = page_order(page);
5458 #ifdef CONFIG_DEBUG_VM
5459 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5460 		       pfn, 1 << order, end_pfn);
5461 #endif
5462 		list_del(&page->lru);
5463 		rmv_page_order(page);
5464 		zone->free_area[order].nr_free--;
5465 		__mod_zone_page_state(zone, NR_FREE_PAGES,
5466 				      - (1UL << order));
5467 		for (i = 0; i < (1 << order); i++)
5468 			SetPageReserved((page+i));
5469 		pfn += (1 << order);
5470 	}
5471 	spin_unlock_irqrestore(&zone->lock, flags);
5472 }
5473 #endif
5474 
5475 #ifdef CONFIG_MEMORY_FAILURE
5476 bool is_free_buddy_page(struct page *page)
5477 {
5478 	struct zone *zone = page_zone(page);
5479 	unsigned long pfn = page_to_pfn(page);
5480 	unsigned long flags;
5481 	int order;
5482 
5483 	spin_lock_irqsave(&zone->lock, flags);
5484 	for (order = 0; order < MAX_ORDER; order++) {
5485 		struct page *page_head = page - (pfn & ((1 << order) - 1));
5486 
5487 		if (PageBuddy(page_head) && page_order(page_head) >= order)
5488 			break;
5489 	}
5490 	spin_unlock_irqrestore(&zone->lock, flags);
5491 
5492 	return order < MAX_ORDER;
5493 }
5494 #endif
5495 
5496 static struct trace_print_flags pageflag_names[] = {
5497 	{1UL << PG_locked,		"locked"	},
5498 	{1UL << PG_error,		"error"		},
5499 	{1UL << PG_referenced,		"referenced"	},
5500 	{1UL << PG_uptodate,		"uptodate"	},
5501 	{1UL << PG_dirty,		"dirty"		},
5502 	{1UL << PG_lru,			"lru"		},
5503 	{1UL << PG_active,		"active"	},
5504 	{1UL << PG_slab,		"slab"		},
5505 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5506 	{1UL << PG_arch_1,		"arch_1"	},
5507 	{1UL << PG_reserved,		"reserved"	},
5508 	{1UL << PG_private,		"private"	},
5509 	{1UL << PG_private_2,		"private_2"	},
5510 	{1UL << PG_writeback,		"writeback"	},
5511 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5512 	{1UL << PG_head,		"head"		},
5513 	{1UL << PG_tail,		"tail"		},
5514 #else
5515 	{1UL << PG_compound,		"compound"	},
5516 #endif
5517 	{1UL << PG_swapcache,		"swapcache"	},
5518 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5519 	{1UL << PG_reclaim,		"reclaim"	},
5520 	{1UL << PG_buddy,		"buddy"		},
5521 	{1UL << PG_swapbacked,		"swapbacked"	},
5522 	{1UL << PG_unevictable,		"unevictable"	},
5523 #ifdef CONFIG_MMU
5524 	{1UL << PG_mlocked,		"mlocked"	},
5525 #endif
5526 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5527 	{1UL << PG_uncached,		"uncached"	},
5528 #endif
5529 #ifdef CONFIG_MEMORY_FAILURE
5530 	{1UL << PG_hwpoison,		"hwpoison"	},
5531 #endif
5532 	{-1UL,				NULL		},
5533 };
5534 
5535 static void dump_page_flags(unsigned long flags)
5536 {
5537 	const char *delim = "";
5538 	unsigned long mask;
5539 	int i;
5540 
5541 	printk(KERN_ALERT "page flags: %#lx(", flags);
5542 
5543 	/* remove zone id */
5544 	flags &= (1UL << NR_PAGEFLAGS) - 1;
5545 
5546 	for (i = 0; pageflag_names[i].name && flags; i++) {
5547 
5548 		mask = pageflag_names[i].mask;
5549 		if ((flags & mask) != mask)
5550 			continue;
5551 
5552 		flags &= ~mask;
5553 		printk("%s%s", delim, pageflag_names[i].name);
5554 		delim = "|";
5555 	}
5556 
5557 	/* check for left over flags */
5558 	if (flags)
5559 		printk("%s%#lx", delim, flags);
5560 
5561 	printk(")\n");
5562 }
5563 
5564 void dump_page(struct page *page)
5565 {
5566 	printk(KERN_ALERT
5567 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5568 		page, page_count(page), page_mapcount(page),
5569 		page->mapping, page->index);
5570 	dump_page_flags(page->flags);
5571 }
5572