xref: /openbmc/linux/mm/page_alloc.c (revision b5ffd297)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/delayacct.h>
55 #include <asm/div64.h>
56 #include "internal.h"
57 #include "shuffle.h"
58 #include "page_reporting.h"
59 
60 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
61 typedef int __bitwise fpi_t;
62 
63 /* No special request */
64 #define FPI_NONE		((__force fpi_t)0)
65 
66 /*
67  * Skip free page reporting notification for the (possibly merged) page.
68  * This does not hinder free page reporting from grabbing the page,
69  * reporting it and marking it "reported" -  it only skips notifying
70  * the free page reporting infrastructure about a newly freed page. For
71  * example, used when temporarily pulling a page from a freelist and
72  * putting it back unmodified.
73  */
74 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
75 
76 /*
77  * Place the (possibly merged) page to the tail of the freelist. Will ignore
78  * page shuffling (relevant code - e.g., memory onlining - is expected to
79  * shuffle the whole zone).
80  *
81  * Note: No code should rely on this flag for correctness - it's purely
82  *       to allow for optimizations when handing back either fresh pages
83  *       (memory onlining) or untouched pages (page isolation, free page
84  *       reporting).
85  */
86 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
87 
88 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
89 static DEFINE_MUTEX(pcp_batch_high_lock);
90 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
91 
92 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
93 /*
94  * On SMP, spin_trylock is sufficient protection.
95  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
96  */
97 #define pcp_trylock_prepare(flags)	do { } while (0)
98 #define pcp_trylock_finish(flag)	do { } while (0)
99 #else
100 
101 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
102 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
103 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
104 #endif
105 
106 /*
107  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
108  * a migration causing the wrong PCP to be locked and remote memory being
109  * potentially allocated, pin the task to the CPU for the lookup+lock.
110  * preempt_disable is used on !RT because it is faster than migrate_disable.
111  * migrate_disable is used on RT because otherwise RT spinlock usage is
112  * interfered with and a high priority task cannot preempt the allocator.
113  */
114 #ifndef CONFIG_PREEMPT_RT
115 #define pcpu_task_pin()		preempt_disable()
116 #define pcpu_task_unpin()	preempt_enable()
117 #else
118 #define pcpu_task_pin()		migrate_disable()
119 #define pcpu_task_unpin()	migrate_enable()
120 #endif
121 
122 /*
123  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
124  * Return value should be used with equivalent unlock helper.
125  */
126 #define pcpu_spin_lock(type, member, ptr)				\
127 ({									\
128 	type *_ret;							\
129 	pcpu_task_pin();						\
130 	_ret = this_cpu_ptr(ptr);					\
131 	spin_lock(&_ret->member);					\
132 	_ret;								\
133 })
134 
135 #define pcpu_spin_trylock(type, member, ptr)				\
136 ({									\
137 	type *_ret;							\
138 	pcpu_task_pin();						\
139 	_ret = this_cpu_ptr(ptr);					\
140 	if (!spin_trylock(&_ret->member)) {				\
141 		pcpu_task_unpin();					\
142 		_ret = NULL;						\
143 	}								\
144 	_ret;								\
145 })
146 
147 #define pcpu_spin_unlock(member, ptr)					\
148 ({									\
149 	spin_unlock(&ptr->member);					\
150 	pcpu_task_unpin();						\
151 })
152 
153 /* struct per_cpu_pages specific helpers. */
154 #define pcp_spin_lock(ptr)						\
155 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
156 
157 #define pcp_spin_trylock(ptr)						\
158 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_unlock(ptr)						\
161 	pcpu_spin_unlock(lock, ptr)
162 
163 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
164 DEFINE_PER_CPU(int, numa_node);
165 EXPORT_PER_CPU_SYMBOL(numa_node);
166 #endif
167 
168 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
169 
170 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
171 /*
172  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
173  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
174  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
175  * defined in <linux/topology.h>.
176  */
177 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
178 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
179 #endif
180 
181 static DEFINE_MUTEX(pcpu_drain_mutex);
182 
183 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
184 volatile unsigned long latent_entropy __latent_entropy;
185 EXPORT_SYMBOL(latent_entropy);
186 #endif
187 
188 /*
189  * Array of node states.
190  */
191 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
192 	[N_POSSIBLE] = NODE_MASK_ALL,
193 	[N_ONLINE] = { { [0] = 1UL } },
194 #ifndef CONFIG_NUMA
195 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
196 #ifdef CONFIG_HIGHMEM
197 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
198 #endif
199 	[N_MEMORY] = { { [0] = 1UL } },
200 	[N_CPU] = { { [0] = 1UL } },
201 #endif	/* NUMA */
202 };
203 EXPORT_SYMBOL(node_states);
204 
205 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
206 
207 /*
208  * A cached value of the page's pageblock's migratetype, used when the page is
209  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
210  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
211  * Also the migratetype set in the page does not necessarily match the pcplist
212  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
213  * other index - this ensures that it will be put on the correct CMA freelist.
214  */
215 static inline int get_pcppage_migratetype(struct page *page)
216 {
217 	return page->index;
218 }
219 
220 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
221 {
222 	page->index = migratetype;
223 }
224 
225 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
226 unsigned int pageblock_order __read_mostly;
227 #endif
228 
229 static void __free_pages_ok(struct page *page, unsigned int order,
230 			    fpi_t fpi_flags);
231 
232 /*
233  * results with 256, 32 in the lowmem_reserve sysctl:
234  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
235  *	1G machine -> (16M dma, 784M normal, 224M high)
236  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
237  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
238  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
239  *
240  * TBD: should special case ZONE_DMA32 machines here - in those we normally
241  * don't need any ZONE_NORMAL reservation
242  */
243 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
244 #ifdef CONFIG_ZONE_DMA
245 	[ZONE_DMA] = 256,
246 #endif
247 #ifdef CONFIG_ZONE_DMA32
248 	[ZONE_DMA32] = 256,
249 #endif
250 	[ZONE_NORMAL] = 32,
251 #ifdef CONFIG_HIGHMEM
252 	[ZONE_HIGHMEM] = 0,
253 #endif
254 	[ZONE_MOVABLE] = 0,
255 };
256 
257 char * const zone_names[MAX_NR_ZONES] = {
258 #ifdef CONFIG_ZONE_DMA
259 	 "DMA",
260 #endif
261 #ifdef CONFIG_ZONE_DMA32
262 	 "DMA32",
263 #endif
264 	 "Normal",
265 #ifdef CONFIG_HIGHMEM
266 	 "HighMem",
267 #endif
268 	 "Movable",
269 #ifdef CONFIG_ZONE_DEVICE
270 	 "Device",
271 #endif
272 };
273 
274 const char * const migratetype_names[MIGRATE_TYPES] = {
275 	"Unmovable",
276 	"Movable",
277 	"Reclaimable",
278 	"HighAtomic",
279 #ifdef CONFIG_CMA
280 	"CMA",
281 #endif
282 #ifdef CONFIG_MEMORY_ISOLATION
283 	"Isolate",
284 #endif
285 };
286 
287 static compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
288 	[NULL_COMPOUND_DTOR] = NULL,
289 	[COMPOUND_PAGE_DTOR] = free_compound_page,
290 #ifdef CONFIG_HUGETLB_PAGE
291 	[HUGETLB_PAGE_DTOR] = free_huge_page,
292 #endif
293 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
294 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
295 #endif
296 };
297 
298 int min_free_kbytes = 1024;
299 int user_min_free_kbytes = -1;
300 static int watermark_boost_factor __read_mostly = 15000;
301 static int watermark_scale_factor = 10;
302 
303 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
304 int movable_zone;
305 EXPORT_SYMBOL(movable_zone);
306 
307 #if MAX_NUMNODES > 1
308 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
309 unsigned int nr_online_nodes __read_mostly = 1;
310 EXPORT_SYMBOL(nr_node_ids);
311 EXPORT_SYMBOL(nr_online_nodes);
312 #endif
313 
314 static bool page_contains_unaccepted(struct page *page, unsigned int order);
315 static void accept_page(struct page *page, unsigned int order);
316 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
317 static inline bool has_unaccepted_memory(void);
318 static bool __free_unaccepted(struct page *page);
319 
320 int page_group_by_mobility_disabled __read_mostly;
321 
322 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
323 /*
324  * During boot we initialize deferred pages on-demand, as needed, but once
325  * page_alloc_init_late() has finished, the deferred pages are all initialized,
326  * and we can permanently disable that path.
327  */
328 DEFINE_STATIC_KEY_TRUE(deferred_pages);
329 
330 static inline bool deferred_pages_enabled(void)
331 {
332 	return static_branch_unlikely(&deferred_pages);
333 }
334 
335 /*
336  * deferred_grow_zone() is __init, but it is called from
337  * get_page_from_freelist() during early boot until deferred_pages permanently
338  * disables this call. This is why we have refdata wrapper to avoid warning,
339  * and to ensure that the function body gets unloaded.
340  */
341 static bool __ref
342 _deferred_grow_zone(struct zone *zone, unsigned int order)
343 {
344        return deferred_grow_zone(zone, order);
345 }
346 #else
347 static inline bool deferred_pages_enabled(void)
348 {
349 	return false;
350 }
351 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
352 
353 /* Return a pointer to the bitmap storing bits affecting a block of pages */
354 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
355 							unsigned long pfn)
356 {
357 #ifdef CONFIG_SPARSEMEM
358 	return section_to_usemap(__pfn_to_section(pfn));
359 #else
360 	return page_zone(page)->pageblock_flags;
361 #endif /* CONFIG_SPARSEMEM */
362 }
363 
364 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
365 {
366 #ifdef CONFIG_SPARSEMEM
367 	pfn &= (PAGES_PER_SECTION-1);
368 #else
369 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
370 #endif /* CONFIG_SPARSEMEM */
371 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
372 }
373 
374 /**
375  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
376  * @page: The page within the block of interest
377  * @pfn: The target page frame number
378  * @mask: mask of bits that the caller is interested in
379  *
380  * Return: pageblock_bits flags
381  */
382 unsigned long get_pfnblock_flags_mask(const struct page *page,
383 					unsigned long pfn, unsigned long mask)
384 {
385 	unsigned long *bitmap;
386 	unsigned long bitidx, word_bitidx;
387 	unsigned long word;
388 
389 	bitmap = get_pageblock_bitmap(page, pfn);
390 	bitidx = pfn_to_bitidx(page, pfn);
391 	word_bitidx = bitidx / BITS_PER_LONG;
392 	bitidx &= (BITS_PER_LONG-1);
393 	/*
394 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
395 	 * a consistent read of the memory array, so that results, even though
396 	 * racy, are not corrupted.
397 	 */
398 	word = READ_ONCE(bitmap[word_bitidx]);
399 	return (word >> bitidx) & mask;
400 }
401 
402 static __always_inline int get_pfnblock_migratetype(const struct page *page,
403 					unsigned long pfn)
404 {
405 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
406 }
407 
408 /**
409  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
410  * @page: The page within the block of interest
411  * @flags: The flags to set
412  * @pfn: The target page frame number
413  * @mask: mask of bits that the caller is interested in
414  */
415 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
416 					unsigned long pfn,
417 					unsigned long mask)
418 {
419 	unsigned long *bitmap;
420 	unsigned long bitidx, word_bitidx;
421 	unsigned long word;
422 
423 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
424 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
425 
426 	bitmap = get_pageblock_bitmap(page, pfn);
427 	bitidx = pfn_to_bitidx(page, pfn);
428 	word_bitidx = bitidx / BITS_PER_LONG;
429 	bitidx &= (BITS_PER_LONG-1);
430 
431 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
432 
433 	mask <<= bitidx;
434 	flags <<= bitidx;
435 
436 	word = READ_ONCE(bitmap[word_bitidx]);
437 	do {
438 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
439 }
440 
441 void set_pageblock_migratetype(struct page *page, int migratetype)
442 {
443 	if (unlikely(page_group_by_mobility_disabled &&
444 		     migratetype < MIGRATE_PCPTYPES))
445 		migratetype = MIGRATE_UNMOVABLE;
446 
447 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
448 				page_to_pfn(page), MIGRATETYPE_MASK);
449 }
450 
451 #ifdef CONFIG_DEBUG_VM
452 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
453 {
454 	int ret;
455 	unsigned seq;
456 	unsigned long pfn = page_to_pfn(page);
457 	unsigned long sp, start_pfn;
458 
459 	do {
460 		seq = zone_span_seqbegin(zone);
461 		start_pfn = zone->zone_start_pfn;
462 		sp = zone->spanned_pages;
463 		ret = !zone_spans_pfn(zone, pfn);
464 	} while (zone_span_seqretry(zone, seq));
465 
466 	if (ret)
467 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
468 			pfn, zone_to_nid(zone), zone->name,
469 			start_pfn, start_pfn + sp);
470 
471 	return ret;
472 }
473 
474 /*
475  * Temporary debugging check for pages not lying within a given zone.
476  */
477 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
478 {
479 	if (page_outside_zone_boundaries(zone, page))
480 		return 1;
481 	if (zone != page_zone(page))
482 		return 1;
483 
484 	return 0;
485 }
486 #else
487 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
488 {
489 	return 0;
490 }
491 #endif
492 
493 static void bad_page(struct page *page, const char *reason)
494 {
495 	static unsigned long resume;
496 	static unsigned long nr_shown;
497 	static unsigned long nr_unshown;
498 
499 	/*
500 	 * Allow a burst of 60 reports, then keep quiet for that minute;
501 	 * or allow a steady drip of one report per second.
502 	 */
503 	if (nr_shown == 60) {
504 		if (time_before(jiffies, resume)) {
505 			nr_unshown++;
506 			goto out;
507 		}
508 		if (nr_unshown) {
509 			pr_alert(
510 			      "BUG: Bad page state: %lu messages suppressed\n",
511 				nr_unshown);
512 			nr_unshown = 0;
513 		}
514 		nr_shown = 0;
515 	}
516 	if (nr_shown++ == 0)
517 		resume = jiffies + 60 * HZ;
518 
519 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
520 		current->comm, page_to_pfn(page));
521 	dump_page(page, reason);
522 
523 	print_modules();
524 	dump_stack();
525 out:
526 	/* Leave bad fields for debug, except PageBuddy could make trouble */
527 	page_mapcount_reset(page); /* remove PageBuddy */
528 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
529 }
530 
531 static inline unsigned int order_to_pindex(int migratetype, int order)
532 {
533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
534 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
535 		VM_BUG_ON(order != pageblock_order);
536 		return NR_LOWORDER_PCP_LISTS;
537 	}
538 #else
539 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
540 #endif
541 
542 	return (MIGRATE_PCPTYPES * order) + migratetype;
543 }
544 
545 static inline int pindex_to_order(unsigned int pindex)
546 {
547 	int order = pindex / MIGRATE_PCPTYPES;
548 
549 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
550 	if (pindex == NR_LOWORDER_PCP_LISTS)
551 		order = pageblock_order;
552 #else
553 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
554 #endif
555 
556 	return order;
557 }
558 
559 static inline bool pcp_allowed_order(unsigned int order)
560 {
561 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
562 		return true;
563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
564 	if (order == pageblock_order)
565 		return true;
566 #endif
567 	return false;
568 }
569 
570 static inline void free_the_page(struct page *page, unsigned int order)
571 {
572 	if (pcp_allowed_order(order))		/* Via pcp? */
573 		free_unref_page(page, order);
574 	else
575 		__free_pages_ok(page, order, FPI_NONE);
576 }
577 
578 /*
579  * Higher-order pages are called "compound pages".  They are structured thusly:
580  *
581  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
582  *
583  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
584  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
585  *
586  * The first tail page's ->compound_dtor holds the offset in array of compound
587  * page destructors. See compound_page_dtors.
588  *
589  * The first tail page's ->compound_order holds the order of allocation.
590  * This usage means that zero-order pages may not be compound.
591  */
592 
593 void free_compound_page(struct page *page)
594 {
595 	mem_cgroup_uncharge(page_folio(page));
596 	free_the_page(page, compound_order(page));
597 }
598 
599 void prep_compound_page(struct page *page, unsigned int order)
600 {
601 	int i;
602 	int nr_pages = 1 << order;
603 
604 	__SetPageHead(page);
605 	for (i = 1; i < nr_pages; i++)
606 		prep_compound_tail(page, i);
607 
608 	prep_compound_head(page, order);
609 }
610 
611 void destroy_large_folio(struct folio *folio)
612 {
613 	enum compound_dtor_id dtor = folio->_folio_dtor;
614 
615 	VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
616 	compound_page_dtors[dtor](&folio->page);
617 }
618 
619 static inline void set_buddy_order(struct page *page, unsigned int order)
620 {
621 	set_page_private(page, order);
622 	__SetPageBuddy(page);
623 }
624 
625 #ifdef CONFIG_COMPACTION
626 static inline struct capture_control *task_capc(struct zone *zone)
627 {
628 	struct capture_control *capc = current->capture_control;
629 
630 	return unlikely(capc) &&
631 		!(current->flags & PF_KTHREAD) &&
632 		!capc->page &&
633 		capc->cc->zone == zone ? capc : NULL;
634 }
635 
636 static inline bool
637 compaction_capture(struct capture_control *capc, struct page *page,
638 		   int order, int migratetype)
639 {
640 	if (!capc || order != capc->cc->order)
641 		return false;
642 
643 	/* Do not accidentally pollute CMA or isolated regions*/
644 	if (is_migrate_cma(migratetype) ||
645 	    is_migrate_isolate(migratetype))
646 		return false;
647 
648 	/*
649 	 * Do not let lower order allocations pollute a movable pageblock.
650 	 * This might let an unmovable request use a reclaimable pageblock
651 	 * and vice-versa but no more than normal fallback logic which can
652 	 * have trouble finding a high-order free page.
653 	 */
654 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
655 		return false;
656 
657 	capc->page = page;
658 	return true;
659 }
660 
661 #else
662 static inline struct capture_control *task_capc(struct zone *zone)
663 {
664 	return NULL;
665 }
666 
667 static inline bool
668 compaction_capture(struct capture_control *capc, struct page *page,
669 		   int order, int migratetype)
670 {
671 	return false;
672 }
673 #endif /* CONFIG_COMPACTION */
674 
675 /* Used for pages not on another list */
676 static inline void add_to_free_list(struct page *page, struct zone *zone,
677 				    unsigned int order, int migratetype)
678 {
679 	struct free_area *area = &zone->free_area[order];
680 
681 	list_add(&page->buddy_list, &area->free_list[migratetype]);
682 	area->nr_free++;
683 }
684 
685 /* Used for pages not on another list */
686 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
687 					 unsigned int order, int migratetype)
688 {
689 	struct free_area *area = &zone->free_area[order];
690 
691 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
692 	area->nr_free++;
693 }
694 
695 /*
696  * Used for pages which are on another list. Move the pages to the tail
697  * of the list - so the moved pages won't immediately be considered for
698  * allocation again (e.g., optimization for memory onlining).
699  */
700 static inline void move_to_free_list(struct page *page, struct zone *zone,
701 				     unsigned int order, int migratetype)
702 {
703 	struct free_area *area = &zone->free_area[order];
704 
705 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
706 }
707 
708 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
709 					   unsigned int order)
710 {
711 	/* clear reported state and update reported page count */
712 	if (page_reported(page))
713 		__ClearPageReported(page);
714 
715 	list_del(&page->buddy_list);
716 	__ClearPageBuddy(page);
717 	set_page_private(page, 0);
718 	zone->free_area[order].nr_free--;
719 }
720 
721 static inline struct page *get_page_from_free_area(struct free_area *area,
722 					    int migratetype)
723 {
724 	return list_first_entry_or_null(&area->free_list[migratetype],
725 					struct page, buddy_list);
726 }
727 
728 /*
729  * If this is not the largest possible page, check if the buddy
730  * of the next-highest order is free. If it is, it's possible
731  * that pages are being freed that will coalesce soon. In case,
732  * that is happening, add the free page to the tail of the list
733  * so it's less likely to be used soon and more likely to be merged
734  * as a higher order page
735  */
736 static inline bool
737 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
738 		   struct page *page, unsigned int order)
739 {
740 	unsigned long higher_page_pfn;
741 	struct page *higher_page;
742 
743 	if (order >= MAX_ORDER - 1)
744 		return false;
745 
746 	higher_page_pfn = buddy_pfn & pfn;
747 	higher_page = page + (higher_page_pfn - pfn);
748 
749 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
750 			NULL) != NULL;
751 }
752 
753 /*
754  * Freeing function for a buddy system allocator.
755  *
756  * The concept of a buddy system is to maintain direct-mapped table
757  * (containing bit values) for memory blocks of various "orders".
758  * The bottom level table contains the map for the smallest allocatable
759  * units of memory (here, pages), and each level above it describes
760  * pairs of units from the levels below, hence, "buddies".
761  * At a high level, all that happens here is marking the table entry
762  * at the bottom level available, and propagating the changes upward
763  * as necessary, plus some accounting needed to play nicely with other
764  * parts of the VM system.
765  * At each level, we keep a list of pages, which are heads of continuous
766  * free pages of length of (1 << order) and marked with PageBuddy.
767  * Page's order is recorded in page_private(page) field.
768  * So when we are allocating or freeing one, we can derive the state of the
769  * other.  That is, if we allocate a small block, and both were
770  * free, the remainder of the region must be split into blocks.
771  * If a block is freed, and its buddy is also free, then this
772  * triggers coalescing into a block of larger size.
773  *
774  * -- nyc
775  */
776 
777 static inline void __free_one_page(struct page *page,
778 		unsigned long pfn,
779 		struct zone *zone, unsigned int order,
780 		int migratetype, fpi_t fpi_flags)
781 {
782 	struct capture_control *capc = task_capc(zone);
783 	unsigned long buddy_pfn = 0;
784 	unsigned long combined_pfn;
785 	struct page *buddy;
786 	bool to_tail;
787 
788 	VM_BUG_ON(!zone_is_initialized(zone));
789 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
790 
791 	VM_BUG_ON(migratetype == -1);
792 	if (likely(!is_migrate_isolate(migratetype)))
793 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
794 
795 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
796 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
797 
798 	while (order < MAX_ORDER) {
799 		if (compaction_capture(capc, page, order, migratetype)) {
800 			__mod_zone_freepage_state(zone, -(1 << order),
801 								migratetype);
802 			return;
803 		}
804 
805 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
806 		if (!buddy)
807 			goto done_merging;
808 
809 		if (unlikely(order >= pageblock_order)) {
810 			/*
811 			 * We want to prevent merge between freepages on pageblock
812 			 * without fallbacks and normal pageblock. Without this,
813 			 * pageblock isolation could cause incorrect freepage or CMA
814 			 * accounting or HIGHATOMIC accounting.
815 			 */
816 			int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
817 
818 			if (migratetype != buddy_mt
819 					&& (!migratetype_is_mergeable(migratetype) ||
820 						!migratetype_is_mergeable(buddy_mt)))
821 				goto done_merging;
822 		}
823 
824 		/*
825 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
826 		 * merge with it and move up one order.
827 		 */
828 		if (page_is_guard(buddy))
829 			clear_page_guard(zone, buddy, order, migratetype);
830 		else
831 			del_page_from_free_list(buddy, zone, order);
832 		combined_pfn = buddy_pfn & pfn;
833 		page = page + (combined_pfn - pfn);
834 		pfn = combined_pfn;
835 		order++;
836 	}
837 
838 done_merging:
839 	set_buddy_order(page, order);
840 
841 	if (fpi_flags & FPI_TO_TAIL)
842 		to_tail = true;
843 	else if (is_shuffle_order(order))
844 		to_tail = shuffle_pick_tail();
845 	else
846 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
847 
848 	if (to_tail)
849 		add_to_free_list_tail(page, zone, order, migratetype);
850 	else
851 		add_to_free_list(page, zone, order, migratetype);
852 
853 	/* Notify page reporting subsystem of freed page */
854 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
855 		page_reporting_notify_free(order);
856 }
857 
858 /**
859  * split_free_page() -- split a free page at split_pfn_offset
860  * @free_page:		the original free page
861  * @order:		the order of the page
862  * @split_pfn_offset:	split offset within the page
863  *
864  * Return -ENOENT if the free page is changed, otherwise 0
865  *
866  * It is used when the free page crosses two pageblocks with different migratetypes
867  * at split_pfn_offset within the page. The split free page will be put into
868  * separate migratetype lists afterwards. Otherwise, the function achieves
869  * nothing.
870  */
871 int split_free_page(struct page *free_page,
872 			unsigned int order, unsigned long split_pfn_offset)
873 {
874 	struct zone *zone = page_zone(free_page);
875 	unsigned long free_page_pfn = page_to_pfn(free_page);
876 	unsigned long pfn;
877 	unsigned long flags;
878 	int free_page_order;
879 	int mt;
880 	int ret = 0;
881 
882 	if (split_pfn_offset == 0)
883 		return ret;
884 
885 	spin_lock_irqsave(&zone->lock, flags);
886 
887 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
888 		ret = -ENOENT;
889 		goto out;
890 	}
891 
892 	mt = get_pfnblock_migratetype(free_page, free_page_pfn);
893 	if (likely(!is_migrate_isolate(mt)))
894 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
895 
896 	del_page_from_free_list(free_page, zone, order);
897 	for (pfn = free_page_pfn;
898 	     pfn < free_page_pfn + (1UL << order);) {
899 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
900 
901 		free_page_order = min_t(unsigned int,
902 					pfn ? __ffs(pfn) : order,
903 					__fls(split_pfn_offset));
904 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
905 				mt, FPI_NONE);
906 		pfn += 1UL << free_page_order;
907 		split_pfn_offset -= (1UL << free_page_order);
908 		/* we have done the first part, now switch to second part */
909 		if (split_pfn_offset == 0)
910 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
911 	}
912 out:
913 	spin_unlock_irqrestore(&zone->lock, flags);
914 	return ret;
915 }
916 /*
917  * A bad page could be due to a number of fields. Instead of multiple branches,
918  * try and check multiple fields with one check. The caller must do a detailed
919  * check if necessary.
920  */
921 static inline bool page_expected_state(struct page *page,
922 					unsigned long check_flags)
923 {
924 	if (unlikely(atomic_read(&page->_mapcount) != -1))
925 		return false;
926 
927 	if (unlikely((unsigned long)page->mapping |
928 			page_ref_count(page) |
929 #ifdef CONFIG_MEMCG
930 			page->memcg_data |
931 #endif
932 			(page->flags & check_flags)))
933 		return false;
934 
935 	return true;
936 }
937 
938 static const char *page_bad_reason(struct page *page, unsigned long flags)
939 {
940 	const char *bad_reason = NULL;
941 
942 	if (unlikely(atomic_read(&page->_mapcount) != -1))
943 		bad_reason = "nonzero mapcount";
944 	if (unlikely(page->mapping != NULL))
945 		bad_reason = "non-NULL mapping";
946 	if (unlikely(page_ref_count(page) != 0))
947 		bad_reason = "nonzero _refcount";
948 	if (unlikely(page->flags & flags)) {
949 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
950 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
951 		else
952 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
953 	}
954 #ifdef CONFIG_MEMCG
955 	if (unlikely(page->memcg_data))
956 		bad_reason = "page still charged to cgroup";
957 #endif
958 	return bad_reason;
959 }
960 
961 static void free_page_is_bad_report(struct page *page)
962 {
963 	bad_page(page,
964 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
965 }
966 
967 static inline bool free_page_is_bad(struct page *page)
968 {
969 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
970 		return false;
971 
972 	/* Something has gone sideways, find it */
973 	free_page_is_bad_report(page);
974 	return true;
975 }
976 
977 static inline bool is_check_pages_enabled(void)
978 {
979 	return static_branch_unlikely(&check_pages_enabled);
980 }
981 
982 static int free_tail_page_prepare(struct page *head_page, struct page *page)
983 {
984 	struct folio *folio = (struct folio *)head_page;
985 	int ret = 1;
986 
987 	/*
988 	 * We rely page->lru.next never has bit 0 set, unless the page
989 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
990 	 */
991 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
992 
993 	if (!is_check_pages_enabled()) {
994 		ret = 0;
995 		goto out;
996 	}
997 	switch (page - head_page) {
998 	case 1:
999 		/* the first tail page: these may be in place of ->mapping */
1000 		if (unlikely(folio_entire_mapcount(folio))) {
1001 			bad_page(page, "nonzero entire_mapcount");
1002 			goto out;
1003 		}
1004 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1005 			bad_page(page, "nonzero nr_pages_mapped");
1006 			goto out;
1007 		}
1008 		if (unlikely(atomic_read(&folio->_pincount))) {
1009 			bad_page(page, "nonzero pincount");
1010 			goto out;
1011 		}
1012 		break;
1013 	case 2:
1014 		/*
1015 		 * the second tail page: ->mapping is
1016 		 * deferred_list.next -- ignore value.
1017 		 */
1018 		break;
1019 	default:
1020 		if (page->mapping != TAIL_MAPPING) {
1021 			bad_page(page, "corrupted mapping in tail page");
1022 			goto out;
1023 		}
1024 		break;
1025 	}
1026 	if (unlikely(!PageTail(page))) {
1027 		bad_page(page, "PageTail not set");
1028 		goto out;
1029 	}
1030 	if (unlikely(compound_head(page) != head_page)) {
1031 		bad_page(page, "compound_head not consistent");
1032 		goto out;
1033 	}
1034 	ret = 0;
1035 out:
1036 	page->mapping = NULL;
1037 	clear_compound_head(page);
1038 	return ret;
1039 }
1040 
1041 /*
1042  * Skip KASAN memory poisoning when either:
1043  *
1044  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1045  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1046  *    using page tags instead (see below).
1047  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1048  *    that error detection is disabled for accesses via the page address.
1049  *
1050  * Pages will have match-all tags in the following circumstances:
1051  *
1052  * 1. Pages are being initialized for the first time, including during deferred
1053  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1054  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1055  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1056  * 3. The allocation was excluded from being checked due to sampling,
1057  *    see the call to kasan_unpoison_pages.
1058  *
1059  * Poisoning pages during deferred memory init will greatly lengthen the
1060  * process and cause problem in large memory systems as the deferred pages
1061  * initialization is done with interrupt disabled.
1062  *
1063  * Assuming that there will be no reference to those newly initialized
1064  * pages before they are ever allocated, this should have no effect on
1065  * KASAN memory tracking as the poison will be properly inserted at page
1066  * allocation time. The only corner case is when pages are allocated by
1067  * on-demand allocation and then freed again before the deferred pages
1068  * initialization is done, but this is not likely to happen.
1069  */
1070 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1071 {
1072 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1073 		return deferred_pages_enabled();
1074 
1075 	return page_kasan_tag(page) == 0xff;
1076 }
1077 
1078 static void kernel_init_pages(struct page *page, int numpages)
1079 {
1080 	int i;
1081 
1082 	/* s390's use of memset() could override KASAN redzones. */
1083 	kasan_disable_current();
1084 	for (i = 0; i < numpages; i++)
1085 		clear_highpage_kasan_tagged(page + i);
1086 	kasan_enable_current();
1087 }
1088 
1089 static __always_inline bool free_pages_prepare(struct page *page,
1090 			unsigned int order, fpi_t fpi_flags)
1091 {
1092 	int bad = 0;
1093 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1094 	bool init = want_init_on_free();
1095 
1096 	VM_BUG_ON_PAGE(PageTail(page), page);
1097 
1098 	trace_mm_page_free(page, order);
1099 	kmsan_free_page(page, order);
1100 
1101 	if (unlikely(PageHWPoison(page)) && !order) {
1102 		/*
1103 		 * Do not let hwpoison pages hit pcplists/buddy
1104 		 * Untie memcg state and reset page's owner
1105 		 */
1106 		if (memcg_kmem_online() && PageMemcgKmem(page))
1107 			__memcg_kmem_uncharge_page(page, order);
1108 		reset_page_owner(page, order);
1109 		page_table_check_free(page, order);
1110 		return false;
1111 	}
1112 
1113 	/*
1114 	 * Check tail pages before head page information is cleared to
1115 	 * avoid checking PageCompound for order-0 pages.
1116 	 */
1117 	if (unlikely(order)) {
1118 		bool compound = PageCompound(page);
1119 		int i;
1120 
1121 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1122 
1123 		if (compound)
1124 			ClearPageHasHWPoisoned(page);
1125 		for (i = 1; i < (1 << order); i++) {
1126 			if (compound)
1127 				bad += free_tail_page_prepare(page, page + i);
1128 			if (is_check_pages_enabled()) {
1129 				if (free_page_is_bad(page + i)) {
1130 					bad++;
1131 					continue;
1132 				}
1133 			}
1134 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1135 		}
1136 	}
1137 	if (PageMappingFlags(page))
1138 		page->mapping = NULL;
1139 	if (memcg_kmem_online() && PageMemcgKmem(page))
1140 		__memcg_kmem_uncharge_page(page, order);
1141 	if (is_check_pages_enabled()) {
1142 		if (free_page_is_bad(page))
1143 			bad++;
1144 		if (bad)
1145 			return false;
1146 	}
1147 
1148 	page_cpupid_reset_last(page);
1149 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1150 	reset_page_owner(page, order);
1151 	page_table_check_free(page, order);
1152 
1153 	if (!PageHighMem(page)) {
1154 		debug_check_no_locks_freed(page_address(page),
1155 					   PAGE_SIZE << order);
1156 		debug_check_no_obj_freed(page_address(page),
1157 					   PAGE_SIZE << order);
1158 	}
1159 
1160 	kernel_poison_pages(page, 1 << order);
1161 
1162 	/*
1163 	 * As memory initialization might be integrated into KASAN,
1164 	 * KASAN poisoning and memory initialization code must be
1165 	 * kept together to avoid discrepancies in behavior.
1166 	 *
1167 	 * With hardware tag-based KASAN, memory tags must be set before the
1168 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1169 	 */
1170 	if (!skip_kasan_poison) {
1171 		kasan_poison_pages(page, order, init);
1172 
1173 		/* Memory is already initialized if KASAN did it internally. */
1174 		if (kasan_has_integrated_init())
1175 			init = false;
1176 	}
1177 	if (init)
1178 		kernel_init_pages(page, 1 << order);
1179 
1180 	/*
1181 	 * arch_free_page() can make the page's contents inaccessible.  s390
1182 	 * does this.  So nothing which can access the page's contents should
1183 	 * happen after this.
1184 	 */
1185 	arch_free_page(page, order);
1186 
1187 	debug_pagealloc_unmap_pages(page, 1 << order);
1188 
1189 	return true;
1190 }
1191 
1192 /*
1193  * Frees a number of pages from the PCP lists
1194  * Assumes all pages on list are in same zone.
1195  * count is the number of pages to free.
1196  */
1197 static void free_pcppages_bulk(struct zone *zone, int count,
1198 					struct per_cpu_pages *pcp,
1199 					int pindex)
1200 {
1201 	unsigned long flags;
1202 	unsigned int order;
1203 	bool isolated_pageblocks;
1204 	struct page *page;
1205 
1206 	/*
1207 	 * Ensure proper count is passed which otherwise would stuck in the
1208 	 * below while (list_empty(list)) loop.
1209 	 */
1210 	count = min(pcp->count, count);
1211 
1212 	/* Ensure requested pindex is drained first. */
1213 	pindex = pindex - 1;
1214 
1215 	spin_lock_irqsave(&zone->lock, flags);
1216 	isolated_pageblocks = has_isolate_pageblock(zone);
1217 
1218 	while (count > 0) {
1219 		struct list_head *list;
1220 		int nr_pages;
1221 
1222 		/* Remove pages from lists in a round-robin fashion. */
1223 		do {
1224 			if (++pindex > NR_PCP_LISTS - 1)
1225 				pindex = 0;
1226 			list = &pcp->lists[pindex];
1227 		} while (list_empty(list));
1228 
1229 		order = pindex_to_order(pindex);
1230 		nr_pages = 1 << order;
1231 		do {
1232 			int mt;
1233 
1234 			page = list_last_entry(list, struct page, pcp_list);
1235 			mt = get_pcppage_migratetype(page);
1236 
1237 			/* must delete to avoid corrupting pcp list */
1238 			list_del(&page->pcp_list);
1239 			count -= nr_pages;
1240 			pcp->count -= nr_pages;
1241 
1242 			/* MIGRATE_ISOLATE page should not go to pcplists */
1243 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1244 			/* Pageblock could have been isolated meanwhile */
1245 			if (unlikely(isolated_pageblocks))
1246 				mt = get_pageblock_migratetype(page);
1247 
1248 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1249 			trace_mm_page_pcpu_drain(page, order, mt);
1250 		} while (count > 0 && !list_empty(list));
1251 	}
1252 
1253 	spin_unlock_irqrestore(&zone->lock, flags);
1254 }
1255 
1256 static void free_one_page(struct zone *zone,
1257 				struct page *page, unsigned long pfn,
1258 				unsigned int order,
1259 				int migratetype, fpi_t fpi_flags)
1260 {
1261 	unsigned long flags;
1262 
1263 	spin_lock_irqsave(&zone->lock, flags);
1264 	if (unlikely(has_isolate_pageblock(zone) ||
1265 		is_migrate_isolate(migratetype))) {
1266 		migratetype = get_pfnblock_migratetype(page, pfn);
1267 	}
1268 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1269 	spin_unlock_irqrestore(&zone->lock, flags);
1270 }
1271 
1272 static void __free_pages_ok(struct page *page, unsigned int order,
1273 			    fpi_t fpi_flags)
1274 {
1275 	unsigned long flags;
1276 	int migratetype;
1277 	unsigned long pfn = page_to_pfn(page);
1278 	struct zone *zone = page_zone(page);
1279 
1280 	if (!free_pages_prepare(page, order, fpi_flags))
1281 		return;
1282 
1283 	/*
1284 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1285 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1286 	 * This will reduce the lock holding time.
1287 	 */
1288 	migratetype = get_pfnblock_migratetype(page, pfn);
1289 
1290 	spin_lock_irqsave(&zone->lock, flags);
1291 	if (unlikely(has_isolate_pageblock(zone) ||
1292 		is_migrate_isolate(migratetype))) {
1293 		migratetype = get_pfnblock_migratetype(page, pfn);
1294 	}
1295 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1296 	spin_unlock_irqrestore(&zone->lock, flags);
1297 
1298 	__count_vm_events(PGFREE, 1 << order);
1299 }
1300 
1301 void __free_pages_core(struct page *page, unsigned int order)
1302 {
1303 	unsigned int nr_pages = 1 << order;
1304 	struct page *p = page;
1305 	unsigned int loop;
1306 
1307 	/*
1308 	 * When initializing the memmap, __init_single_page() sets the refcount
1309 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1310 	 * refcount of all involved pages to 0.
1311 	 */
1312 	prefetchw(p);
1313 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1314 		prefetchw(p + 1);
1315 		__ClearPageReserved(p);
1316 		set_page_count(p, 0);
1317 	}
1318 	__ClearPageReserved(p);
1319 	set_page_count(p, 0);
1320 
1321 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1322 
1323 	if (page_contains_unaccepted(page, order)) {
1324 		if (order == MAX_ORDER && __free_unaccepted(page))
1325 			return;
1326 
1327 		accept_page(page, order);
1328 	}
1329 
1330 	/*
1331 	 * Bypass PCP and place fresh pages right to the tail, primarily
1332 	 * relevant for memory onlining.
1333 	 */
1334 	__free_pages_ok(page, order, FPI_TO_TAIL);
1335 }
1336 
1337 /*
1338  * Check that the whole (or subset of) a pageblock given by the interval of
1339  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1340  * with the migration of free compaction scanner.
1341  *
1342  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1343  *
1344  * It's possible on some configurations to have a setup like node0 node1 node0
1345  * i.e. it's possible that all pages within a zones range of pages do not
1346  * belong to a single zone. We assume that a border between node0 and node1
1347  * can occur within a single pageblock, but not a node0 node1 node0
1348  * interleaving within a single pageblock. It is therefore sufficient to check
1349  * the first and last page of a pageblock and avoid checking each individual
1350  * page in a pageblock.
1351  *
1352  * Note: the function may return non-NULL struct page even for a page block
1353  * which contains a memory hole (i.e. there is no physical memory for a subset
1354  * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1355  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1356  * even though the start pfn is online and valid. This should be safe most of
1357  * the time because struct pages are still initialized via init_unavailable_range()
1358  * and pfn walkers shouldn't touch any physical memory range for which they do
1359  * not recognize any specific metadata in struct pages.
1360  */
1361 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1362 				     unsigned long end_pfn, struct zone *zone)
1363 {
1364 	struct page *start_page;
1365 	struct page *end_page;
1366 
1367 	/* end_pfn is one past the range we are checking */
1368 	end_pfn--;
1369 
1370 	if (!pfn_valid(end_pfn))
1371 		return NULL;
1372 
1373 	start_page = pfn_to_online_page(start_pfn);
1374 	if (!start_page)
1375 		return NULL;
1376 
1377 	if (page_zone(start_page) != zone)
1378 		return NULL;
1379 
1380 	end_page = pfn_to_page(end_pfn);
1381 
1382 	/* This gives a shorter code than deriving page_zone(end_page) */
1383 	if (page_zone_id(start_page) != page_zone_id(end_page))
1384 		return NULL;
1385 
1386 	return start_page;
1387 }
1388 
1389 /*
1390  * The order of subdivision here is critical for the IO subsystem.
1391  * Please do not alter this order without good reasons and regression
1392  * testing. Specifically, as large blocks of memory are subdivided,
1393  * the order in which smaller blocks are delivered depends on the order
1394  * they're subdivided in this function. This is the primary factor
1395  * influencing the order in which pages are delivered to the IO
1396  * subsystem according to empirical testing, and this is also justified
1397  * by considering the behavior of a buddy system containing a single
1398  * large block of memory acted on by a series of small allocations.
1399  * This behavior is a critical factor in sglist merging's success.
1400  *
1401  * -- nyc
1402  */
1403 static inline void expand(struct zone *zone, struct page *page,
1404 	int low, int high, int migratetype)
1405 {
1406 	unsigned long size = 1 << high;
1407 
1408 	while (high > low) {
1409 		high--;
1410 		size >>= 1;
1411 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1412 
1413 		/*
1414 		 * Mark as guard pages (or page), that will allow to
1415 		 * merge back to allocator when buddy will be freed.
1416 		 * Corresponding page table entries will not be touched,
1417 		 * pages will stay not present in virtual address space
1418 		 */
1419 		if (set_page_guard(zone, &page[size], high, migratetype))
1420 			continue;
1421 
1422 		add_to_free_list(&page[size], zone, high, migratetype);
1423 		set_buddy_order(&page[size], high);
1424 	}
1425 }
1426 
1427 static void check_new_page_bad(struct page *page)
1428 {
1429 	if (unlikely(page->flags & __PG_HWPOISON)) {
1430 		/* Don't complain about hwpoisoned pages */
1431 		page_mapcount_reset(page); /* remove PageBuddy */
1432 		return;
1433 	}
1434 
1435 	bad_page(page,
1436 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1437 }
1438 
1439 /*
1440  * This page is about to be returned from the page allocator
1441  */
1442 static int check_new_page(struct page *page)
1443 {
1444 	if (likely(page_expected_state(page,
1445 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1446 		return 0;
1447 
1448 	check_new_page_bad(page);
1449 	return 1;
1450 }
1451 
1452 static inline bool check_new_pages(struct page *page, unsigned int order)
1453 {
1454 	if (is_check_pages_enabled()) {
1455 		for (int i = 0; i < (1 << order); i++) {
1456 			struct page *p = page + i;
1457 
1458 			if (check_new_page(p))
1459 				return true;
1460 		}
1461 	}
1462 
1463 	return false;
1464 }
1465 
1466 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1467 {
1468 	/* Don't skip if a software KASAN mode is enabled. */
1469 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1470 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1471 		return false;
1472 
1473 	/* Skip, if hardware tag-based KASAN is not enabled. */
1474 	if (!kasan_hw_tags_enabled())
1475 		return true;
1476 
1477 	/*
1478 	 * With hardware tag-based KASAN enabled, skip if this has been
1479 	 * requested via __GFP_SKIP_KASAN.
1480 	 */
1481 	return flags & __GFP_SKIP_KASAN;
1482 }
1483 
1484 static inline bool should_skip_init(gfp_t flags)
1485 {
1486 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1487 	if (!kasan_hw_tags_enabled())
1488 		return false;
1489 
1490 	/* For hardware tag-based KASAN, skip if requested. */
1491 	return (flags & __GFP_SKIP_ZERO);
1492 }
1493 
1494 inline void post_alloc_hook(struct page *page, unsigned int order,
1495 				gfp_t gfp_flags)
1496 {
1497 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1498 			!should_skip_init(gfp_flags);
1499 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1500 	int i;
1501 
1502 	set_page_private(page, 0);
1503 	set_page_refcounted(page);
1504 
1505 	arch_alloc_page(page, order);
1506 	debug_pagealloc_map_pages(page, 1 << order);
1507 
1508 	/*
1509 	 * Page unpoisoning must happen before memory initialization.
1510 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1511 	 * allocations and the page unpoisoning code will complain.
1512 	 */
1513 	kernel_unpoison_pages(page, 1 << order);
1514 
1515 	/*
1516 	 * As memory initialization might be integrated into KASAN,
1517 	 * KASAN unpoisoning and memory initializion code must be
1518 	 * kept together to avoid discrepancies in behavior.
1519 	 */
1520 
1521 	/*
1522 	 * If memory tags should be zeroed
1523 	 * (which happens only when memory should be initialized as well).
1524 	 */
1525 	if (zero_tags) {
1526 		/* Initialize both memory and memory tags. */
1527 		for (i = 0; i != 1 << order; ++i)
1528 			tag_clear_highpage(page + i);
1529 
1530 		/* Take note that memory was initialized by the loop above. */
1531 		init = false;
1532 	}
1533 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1534 	    kasan_unpoison_pages(page, order, init)) {
1535 		/* Take note that memory was initialized by KASAN. */
1536 		if (kasan_has_integrated_init())
1537 			init = false;
1538 	} else {
1539 		/*
1540 		 * If memory tags have not been set by KASAN, reset the page
1541 		 * tags to ensure page_address() dereferencing does not fault.
1542 		 */
1543 		for (i = 0; i != 1 << order; ++i)
1544 			page_kasan_tag_reset(page + i);
1545 	}
1546 	/* If memory is still not initialized, initialize it now. */
1547 	if (init)
1548 		kernel_init_pages(page, 1 << order);
1549 
1550 	set_page_owner(page, order, gfp_flags);
1551 	page_table_check_alloc(page, order);
1552 }
1553 
1554 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1555 							unsigned int alloc_flags)
1556 {
1557 	post_alloc_hook(page, order, gfp_flags);
1558 
1559 	if (order && (gfp_flags & __GFP_COMP))
1560 		prep_compound_page(page, order);
1561 
1562 	/*
1563 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1564 	 * allocate the page. The expectation is that the caller is taking
1565 	 * steps that will free more memory. The caller should avoid the page
1566 	 * being used for !PFMEMALLOC purposes.
1567 	 */
1568 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1569 		set_page_pfmemalloc(page);
1570 	else
1571 		clear_page_pfmemalloc(page);
1572 }
1573 
1574 /*
1575  * Go through the free lists for the given migratetype and remove
1576  * the smallest available page from the freelists
1577  */
1578 static __always_inline
1579 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1580 						int migratetype)
1581 {
1582 	unsigned int current_order;
1583 	struct free_area *area;
1584 	struct page *page;
1585 
1586 	/* Find a page of the appropriate size in the preferred list */
1587 	for (current_order = order; current_order <= MAX_ORDER; ++current_order) {
1588 		area = &(zone->free_area[current_order]);
1589 		page = get_page_from_free_area(area, migratetype);
1590 		if (!page)
1591 			continue;
1592 		del_page_from_free_list(page, zone, current_order);
1593 		expand(zone, page, order, current_order, migratetype);
1594 		set_pcppage_migratetype(page, migratetype);
1595 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1596 				pcp_allowed_order(order) &&
1597 				migratetype < MIGRATE_PCPTYPES);
1598 		return page;
1599 	}
1600 
1601 	return NULL;
1602 }
1603 
1604 
1605 /*
1606  * This array describes the order lists are fallen back to when
1607  * the free lists for the desirable migrate type are depleted
1608  *
1609  * The other migratetypes do not have fallbacks.
1610  */
1611 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1612 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1613 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1614 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1615 };
1616 
1617 #ifdef CONFIG_CMA
1618 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1619 					unsigned int order)
1620 {
1621 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1622 }
1623 #else
1624 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1625 					unsigned int order) { return NULL; }
1626 #endif
1627 
1628 /*
1629  * Move the free pages in a range to the freelist tail of the requested type.
1630  * Note that start_page and end_pages are not aligned on a pageblock
1631  * boundary. If alignment is required, use move_freepages_block()
1632  */
1633 static int move_freepages(struct zone *zone,
1634 			  unsigned long start_pfn, unsigned long end_pfn,
1635 			  int migratetype, int *num_movable)
1636 {
1637 	struct page *page;
1638 	unsigned long pfn;
1639 	unsigned int order;
1640 	int pages_moved = 0;
1641 
1642 	for (pfn = start_pfn; pfn <= end_pfn;) {
1643 		page = pfn_to_page(pfn);
1644 		if (!PageBuddy(page)) {
1645 			/*
1646 			 * We assume that pages that could be isolated for
1647 			 * migration are movable. But we don't actually try
1648 			 * isolating, as that would be expensive.
1649 			 */
1650 			if (num_movable &&
1651 					(PageLRU(page) || __PageMovable(page)))
1652 				(*num_movable)++;
1653 			pfn++;
1654 			continue;
1655 		}
1656 
1657 		/* Make sure we are not inadvertently changing nodes */
1658 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1659 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1660 
1661 		order = buddy_order(page);
1662 		move_to_free_list(page, zone, order, migratetype);
1663 		pfn += 1 << order;
1664 		pages_moved += 1 << order;
1665 	}
1666 
1667 	return pages_moved;
1668 }
1669 
1670 int move_freepages_block(struct zone *zone, struct page *page,
1671 				int migratetype, int *num_movable)
1672 {
1673 	unsigned long start_pfn, end_pfn, pfn;
1674 
1675 	if (num_movable)
1676 		*num_movable = 0;
1677 
1678 	pfn = page_to_pfn(page);
1679 	start_pfn = pageblock_start_pfn(pfn);
1680 	end_pfn = pageblock_end_pfn(pfn) - 1;
1681 
1682 	/* Do not cross zone boundaries */
1683 	if (!zone_spans_pfn(zone, start_pfn))
1684 		start_pfn = pfn;
1685 	if (!zone_spans_pfn(zone, end_pfn))
1686 		return 0;
1687 
1688 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1689 								num_movable);
1690 }
1691 
1692 static void change_pageblock_range(struct page *pageblock_page,
1693 					int start_order, int migratetype)
1694 {
1695 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1696 
1697 	while (nr_pageblocks--) {
1698 		set_pageblock_migratetype(pageblock_page, migratetype);
1699 		pageblock_page += pageblock_nr_pages;
1700 	}
1701 }
1702 
1703 /*
1704  * When we are falling back to another migratetype during allocation, try to
1705  * steal extra free pages from the same pageblocks to satisfy further
1706  * allocations, instead of polluting multiple pageblocks.
1707  *
1708  * If we are stealing a relatively large buddy page, it is likely there will
1709  * be more free pages in the pageblock, so try to steal them all. For
1710  * reclaimable and unmovable allocations, we steal regardless of page size,
1711  * as fragmentation caused by those allocations polluting movable pageblocks
1712  * is worse than movable allocations stealing from unmovable and reclaimable
1713  * pageblocks.
1714  */
1715 static bool can_steal_fallback(unsigned int order, int start_mt)
1716 {
1717 	/*
1718 	 * Leaving this order check is intended, although there is
1719 	 * relaxed order check in next check. The reason is that
1720 	 * we can actually steal whole pageblock if this condition met,
1721 	 * but, below check doesn't guarantee it and that is just heuristic
1722 	 * so could be changed anytime.
1723 	 */
1724 	if (order >= pageblock_order)
1725 		return true;
1726 
1727 	if (order >= pageblock_order / 2 ||
1728 		start_mt == MIGRATE_RECLAIMABLE ||
1729 		start_mt == MIGRATE_UNMOVABLE ||
1730 		page_group_by_mobility_disabled)
1731 		return true;
1732 
1733 	return false;
1734 }
1735 
1736 static inline bool boost_watermark(struct zone *zone)
1737 {
1738 	unsigned long max_boost;
1739 
1740 	if (!watermark_boost_factor)
1741 		return false;
1742 	/*
1743 	 * Don't bother in zones that are unlikely to produce results.
1744 	 * On small machines, including kdump capture kernels running
1745 	 * in a small area, boosting the watermark can cause an out of
1746 	 * memory situation immediately.
1747 	 */
1748 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1749 		return false;
1750 
1751 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1752 			watermark_boost_factor, 10000);
1753 
1754 	/*
1755 	 * high watermark may be uninitialised if fragmentation occurs
1756 	 * very early in boot so do not boost. We do not fall
1757 	 * through and boost by pageblock_nr_pages as failing
1758 	 * allocations that early means that reclaim is not going
1759 	 * to help and it may even be impossible to reclaim the
1760 	 * boosted watermark resulting in a hang.
1761 	 */
1762 	if (!max_boost)
1763 		return false;
1764 
1765 	max_boost = max(pageblock_nr_pages, max_boost);
1766 
1767 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1768 		max_boost);
1769 
1770 	return true;
1771 }
1772 
1773 /*
1774  * This function implements actual steal behaviour. If order is large enough,
1775  * we can steal whole pageblock. If not, we first move freepages in this
1776  * pageblock to our migratetype and determine how many already-allocated pages
1777  * are there in the pageblock with a compatible migratetype. If at least half
1778  * of pages are free or compatible, we can change migratetype of the pageblock
1779  * itself, so pages freed in the future will be put on the correct free list.
1780  */
1781 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1782 		unsigned int alloc_flags, int start_type, bool whole_block)
1783 {
1784 	unsigned int current_order = buddy_order(page);
1785 	int free_pages, movable_pages, alike_pages;
1786 	int old_block_type;
1787 
1788 	old_block_type = get_pageblock_migratetype(page);
1789 
1790 	/*
1791 	 * This can happen due to races and we want to prevent broken
1792 	 * highatomic accounting.
1793 	 */
1794 	if (is_migrate_highatomic(old_block_type))
1795 		goto single_page;
1796 
1797 	/* Take ownership for orders >= pageblock_order */
1798 	if (current_order >= pageblock_order) {
1799 		change_pageblock_range(page, current_order, start_type);
1800 		goto single_page;
1801 	}
1802 
1803 	/*
1804 	 * Boost watermarks to increase reclaim pressure to reduce the
1805 	 * likelihood of future fallbacks. Wake kswapd now as the node
1806 	 * may be balanced overall and kswapd will not wake naturally.
1807 	 */
1808 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1809 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1810 
1811 	/* We are not allowed to try stealing from the whole block */
1812 	if (!whole_block)
1813 		goto single_page;
1814 
1815 	free_pages = move_freepages_block(zone, page, start_type,
1816 						&movable_pages);
1817 	/* moving whole block can fail due to zone boundary conditions */
1818 	if (!free_pages)
1819 		goto single_page;
1820 
1821 	/*
1822 	 * Determine how many pages are compatible with our allocation.
1823 	 * For movable allocation, it's the number of movable pages which
1824 	 * we just obtained. For other types it's a bit more tricky.
1825 	 */
1826 	if (start_type == MIGRATE_MOVABLE) {
1827 		alike_pages = movable_pages;
1828 	} else {
1829 		/*
1830 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1831 		 * to MOVABLE pageblock, consider all non-movable pages as
1832 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1833 		 * vice versa, be conservative since we can't distinguish the
1834 		 * exact migratetype of non-movable pages.
1835 		 */
1836 		if (old_block_type == MIGRATE_MOVABLE)
1837 			alike_pages = pageblock_nr_pages
1838 						- (free_pages + movable_pages);
1839 		else
1840 			alike_pages = 0;
1841 	}
1842 	/*
1843 	 * If a sufficient number of pages in the block are either free or of
1844 	 * compatible migratability as our allocation, claim the whole block.
1845 	 */
1846 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1847 			page_group_by_mobility_disabled)
1848 		set_pageblock_migratetype(page, start_type);
1849 
1850 	return;
1851 
1852 single_page:
1853 	move_to_free_list(page, zone, current_order, start_type);
1854 }
1855 
1856 /*
1857  * Check whether there is a suitable fallback freepage with requested order.
1858  * If only_stealable is true, this function returns fallback_mt only if
1859  * we can steal other freepages all together. This would help to reduce
1860  * fragmentation due to mixed migratetype pages in one pageblock.
1861  */
1862 int find_suitable_fallback(struct free_area *area, unsigned int order,
1863 			int migratetype, bool only_stealable, bool *can_steal)
1864 {
1865 	int i;
1866 	int fallback_mt;
1867 
1868 	if (area->nr_free == 0)
1869 		return -1;
1870 
1871 	*can_steal = false;
1872 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1873 		fallback_mt = fallbacks[migratetype][i];
1874 		if (free_area_empty(area, fallback_mt))
1875 			continue;
1876 
1877 		if (can_steal_fallback(order, migratetype))
1878 			*can_steal = true;
1879 
1880 		if (!only_stealable)
1881 			return fallback_mt;
1882 
1883 		if (*can_steal)
1884 			return fallback_mt;
1885 	}
1886 
1887 	return -1;
1888 }
1889 
1890 /*
1891  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1892  * there are no empty page blocks that contain a page with a suitable order
1893  */
1894 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1895 {
1896 	int mt;
1897 	unsigned long max_managed, flags;
1898 
1899 	/*
1900 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1901 	 * Check is race-prone but harmless.
1902 	 */
1903 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
1904 	if (zone->nr_reserved_highatomic >= max_managed)
1905 		return;
1906 
1907 	spin_lock_irqsave(&zone->lock, flags);
1908 
1909 	/* Recheck the nr_reserved_highatomic limit under the lock */
1910 	if (zone->nr_reserved_highatomic >= max_managed)
1911 		goto out_unlock;
1912 
1913 	/* Yoink! */
1914 	mt = get_pageblock_migratetype(page);
1915 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1916 	if (migratetype_is_mergeable(mt)) {
1917 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1918 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1919 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1920 	}
1921 
1922 out_unlock:
1923 	spin_unlock_irqrestore(&zone->lock, flags);
1924 }
1925 
1926 /*
1927  * Used when an allocation is about to fail under memory pressure. This
1928  * potentially hurts the reliability of high-order allocations when under
1929  * intense memory pressure but failed atomic allocations should be easier
1930  * to recover from than an OOM.
1931  *
1932  * If @force is true, try to unreserve a pageblock even though highatomic
1933  * pageblock is exhausted.
1934  */
1935 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1936 						bool force)
1937 {
1938 	struct zonelist *zonelist = ac->zonelist;
1939 	unsigned long flags;
1940 	struct zoneref *z;
1941 	struct zone *zone;
1942 	struct page *page;
1943 	int order;
1944 	bool ret;
1945 
1946 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1947 								ac->nodemask) {
1948 		/*
1949 		 * Preserve at least one pageblock unless memory pressure
1950 		 * is really high.
1951 		 */
1952 		if (!force && zone->nr_reserved_highatomic <=
1953 					pageblock_nr_pages)
1954 			continue;
1955 
1956 		spin_lock_irqsave(&zone->lock, flags);
1957 		for (order = 0; order <= MAX_ORDER; order++) {
1958 			struct free_area *area = &(zone->free_area[order]);
1959 
1960 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1961 			if (!page)
1962 				continue;
1963 
1964 			/*
1965 			 * In page freeing path, migratetype change is racy so
1966 			 * we can counter several free pages in a pageblock
1967 			 * in this loop although we changed the pageblock type
1968 			 * from highatomic to ac->migratetype. So we should
1969 			 * adjust the count once.
1970 			 */
1971 			if (is_migrate_highatomic_page(page)) {
1972 				/*
1973 				 * It should never happen but changes to
1974 				 * locking could inadvertently allow a per-cpu
1975 				 * drain to add pages to MIGRATE_HIGHATOMIC
1976 				 * while unreserving so be safe and watch for
1977 				 * underflows.
1978 				 */
1979 				zone->nr_reserved_highatomic -= min(
1980 						pageblock_nr_pages,
1981 						zone->nr_reserved_highatomic);
1982 			}
1983 
1984 			/*
1985 			 * Convert to ac->migratetype and avoid the normal
1986 			 * pageblock stealing heuristics. Minimally, the caller
1987 			 * is doing the work and needs the pages. More
1988 			 * importantly, if the block was always converted to
1989 			 * MIGRATE_UNMOVABLE or another type then the number
1990 			 * of pageblocks that cannot be completely freed
1991 			 * may increase.
1992 			 */
1993 			set_pageblock_migratetype(page, ac->migratetype);
1994 			ret = move_freepages_block(zone, page, ac->migratetype,
1995 									NULL);
1996 			if (ret) {
1997 				spin_unlock_irqrestore(&zone->lock, flags);
1998 				return ret;
1999 			}
2000 		}
2001 		spin_unlock_irqrestore(&zone->lock, flags);
2002 	}
2003 
2004 	return false;
2005 }
2006 
2007 /*
2008  * Try finding a free buddy page on the fallback list and put it on the free
2009  * list of requested migratetype, possibly along with other pages from the same
2010  * block, depending on fragmentation avoidance heuristics. Returns true if
2011  * fallback was found so that __rmqueue_smallest() can grab it.
2012  *
2013  * The use of signed ints for order and current_order is a deliberate
2014  * deviation from the rest of this file, to make the for loop
2015  * condition simpler.
2016  */
2017 static __always_inline bool
2018 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2019 						unsigned int alloc_flags)
2020 {
2021 	struct free_area *area;
2022 	int current_order;
2023 	int min_order = order;
2024 	struct page *page;
2025 	int fallback_mt;
2026 	bool can_steal;
2027 
2028 	/*
2029 	 * Do not steal pages from freelists belonging to other pageblocks
2030 	 * i.e. orders < pageblock_order. If there are no local zones free,
2031 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2032 	 */
2033 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2034 		min_order = pageblock_order;
2035 
2036 	/*
2037 	 * Find the largest available free page in the other list. This roughly
2038 	 * approximates finding the pageblock with the most free pages, which
2039 	 * would be too costly to do exactly.
2040 	 */
2041 	for (current_order = MAX_ORDER; current_order >= min_order;
2042 				--current_order) {
2043 		area = &(zone->free_area[current_order]);
2044 		fallback_mt = find_suitable_fallback(area, current_order,
2045 				start_migratetype, false, &can_steal);
2046 		if (fallback_mt == -1)
2047 			continue;
2048 
2049 		/*
2050 		 * We cannot steal all free pages from the pageblock and the
2051 		 * requested migratetype is movable. In that case it's better to
2052 		 * steal and split the smallest available page instead of the
2053 		 * largest available page, because even if the next movable
2054 		 * allocation falls back into a different pageblock than this
2055 		 * one, it won't cause permanent fragmentation.
2056 		 */
2057 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2058 					&& current_order > order)
2059 			goto find_smallest;
2060 
2061 		goto do_steal;
2062 	}
2063 
2064 	return false;
2065 
2066 find_smallest:
2067 	for (current_order = order; current_order <= MAX_ORDER;
2068 							current_order++) {
2069 		area = &(zone->free_area[current_order]);
2070 		fallback_mt = find_suitable_fallback(area, current_order,
2071 				start_migratetype, false, &can_steal);
2072 		if (fallback_mt != -1)
2073 			break;
2074 	}
2075 
2076 	/*
2077 	 * This should not happen - we already found a suitable fallback
2078 	 * when looking for the largest page.
2079 	 */
2080 	VM_BUG_ON(current_order > MAX_ORDER);
2081 
2082 do_steal:
2083 	page = get_page_from_free_area(area, fallback_mt);
2084 
2085 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2086 								can_steal);
2087 
2088 	trace_mm_page_alloc_extfrag(page, order, current_order,
2089 		start_migratetype, fallback_mt);
2090 
2091 	return true;
2092 
2093 }
2094 
2095 /*
2096  * Do the hard work of removing an element from the buddy allocator.
2097  * Call me with the zone->lock already held.
2098  */
2099 static __always_inline struct page *
2100 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2101 						unsigned int alloc_flags)
2102 {
2103 	struct page *page;
2104 
2105 	if (IS_ENABLED(CONFIG_CMA)) {
2106 		/*
2107 		 * Balance movable allocations between regular and CMA areas by
2108 		 * allocating from CMA when over half of the zone's free memory
2109 		 * is in the CMA area.
2110 		 */
2111 		if (alloc_flags & ALLOC_CMA &&
2112 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2113 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2114 			page = __rmqueue_cma_fallback(zone, order);
2115 			if (page)
2116 				return page;
2117 		}
2118 	}
2119 retry:
2120 	page = __rmqueue_smallest(zone, order, migratetype);
2121 	if (unlikely(!page)) {
2122 		if (alloc_flags & ALLOC_CMA)
2123 			page = __rmqueue_cma_fallback(zone, order);
2124 
2125 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2126 								alloc_flags))
2127 			goto retry;
2128 	}
2129 	return page;
2130 }
2131 
2132 /*
2133  * Obtain a specified number of elements from the buddy allocator, all under
2134  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2135  * Returns the number of new pages which were placed at *list.
2136  */
2137 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2138 			unsigned long count, struct list_head *list,
2139 			int migratetype, unsigned int alloc_flags)
2140 {
2141 	unsigned long flags;
2142 	int i;
2143 
2144 	spin_lock_irqsave(&zone->lock, flags);
2145 	for (i = 0; i < count; ++i) {
2146 		struct page *page = __rmqueue(zone, order, migratetype,
2147 								alloc_flags);
2148 		if (unlikely(page == NULL))
2149 			break;
2150 
2151 		/*
2152 		 * Split buddy pages returned by expand() are received here in
2153 		 * physical page order. The page is added to the tail of
2154 		 * caller's list. From the callers perspective, the linked list
2155 		 * is ordered by page number under some conditions. This is
2156 		 * useful for IO devices that can forward direction from the
2157 		 * head, thus also in the physical page order. This is useful
2158 		 * for IO devices that can merge IO requests if the physical
2159 		 * pages are ordered properly.
2160 		 */
2161 		list_add_tail(&page->pcp_list, list);
2162 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2163 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2164 					      -(1 << order));
2165 	}
2166 
2167 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2168 	spin_unlock_irqrestore(&zone->lock, flags);
2169 
2170 	return i;
2171 }
2172 
2173 #ifdef CONFIG_NUMA
2174 /*
2175  * Called from the vmstat counter updater to drain pagesets of this
2176  * currently executing processor on remote nodes after they have
2177  * expired.
2178  */
2179 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2180 {
2181 	int to_drain, batch;
2182 
2183 	batch = READ_ONCE(pcp->batch);
2184 	to_drain = min(pcp->count, batch);
2185 	if (to_drain > 0) {
2186 		spin_lock(&pcp->lock);
2187 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2188 		spin_unlock(&pcp->lock);
2189 	}
2190 }
2191 #endif
2192 
2193 /*
2194  * Drain pcplists of the indicated processor and zone.
2195  */
2196 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2197 {
2198 	struct per_cpu_pages *pcp;
2199 
2200 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2201 	if (pcp->count) {
2202 		spin_lock(&pcp->lock);
2203 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
2204 		spin_unlock(&pcp->lock);
2205 	}
2206 }
2207 
2208 /*
2209  * Drain pcplists of all zones on the indicated processor.
2210  */
2211 static void drain_pages(unsigned int cpu)
2212 {
2213 	struct zone *zone;
2214 
2215 	for_each_populated_zone(zone) {
2216 		drain_pages_zone(cpu, zone);
2217 	}
2218 }
2219 
2220 /*
2221  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2222  */
2223 void drain_local_pages(struct zone *zone)
2224 {
2225 	int cpu = smp_processor_id();
2226 
2227 	if (zone)
2228 		drain_pages_zone(cpu, zone);
2229 	else
2230 		drain_pages(cpu);
2231 }
2232 
2233 /*
2234  * The implementation of drain_all_pages(), exposing an extra parameter to
2235  * drain on all cpus.
2236  *
2237  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2238  * not empty. The check for non-emptiness can however race with a free to
2239  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2240  * that need the guarantee that every CPU has drained can disable the
2241  * optimizing racy check.
2242  */
2243 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2244 {
2245 	int cpu;
2246 
2247 	/*
2248 	 * Allocate in the BSS so we won't require allocation in
2249 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2250 	 */
2251 	static cpumask_t cpus_with_pcps;
2252 
2253 	/*
2254 	 * Do not drain if one is already in progress unless it's specific to
2255 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2256 	 * the drain to be complete when the call returns.
2257 	 */
2258 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2259 		if (!zone)
2260 			return;
2261 		mutex_lock(&pcpu_drain_mutex);
2262 	}
2263 
2264 	/*
2265 	 * We don't care about racing with CPU hotplug event
2266 	 * as offline notification will cause the notified
2267 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2268 	 * disables preemption as part of its processing
2269 	 */
2270 	for_each_online_cpu(cpu) {
2271 		struct per_cpu_pages *pcp;
2272 		struct zone *z;
2273 		bool has_pcps = false;
2274 
2275 		if (force_all_cpus) {
2276 			/*
2277 			 * The pcp.count check is racy, some callers need a
2278 			 * guarantee that no cpu is missed.
2279 			 */
2280 			has_pcps = true;
2281 		} else if (zone) {
2282 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2283 			if (pcp->count)
2284 				has_pcps = true;
2285 		} else {
2286 			for_each_populated_zone(z) {
2287 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2288 				if (pcp->count) {
2289 					has_pcps = true;
2290 					break;
2291 				}
2292 			}
2293 		}
2294 
2295 		if (has_pcps)
2296 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2297 		else
2298 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2299 	}
2300 
2301 	for_each_cpu(cpu, &cpus_with_pcps) {
2302 		if (zone)
2303 			drain_pages_zone(cpu, zone);
2304 		else
2305 			drain_pages(cpu);
2306 	}
2307 
2308 	mutex_unlock(&pcpu_drain_mutex);
2309 }
2310 
2311 /*
2312  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2313  *
2314  * When zone parameter is non-NULL, spill just the single zone's pages.
2315  */
2316 void drain_all_pages(struct zone *zone)
2317 {
2318 	__drain_all_pages(zone, false);
2319 }
2320 
2321 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2322 							unsigned int order)
2323 {
2324 	int migratetype;
2325 
2326 	if (!free_pages_prepare(page, order, FPI_NONE))
2327 		return false;
2328 
2329 	migratetype = get_pfnblock_migratetype(page, pfn);
2330 	set_pcppage_migratetype(page, migratetype);
2331 	return true;
2332 }
2333 
2334 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, bool free_high)
2335 {
2336 	int min_nr_free, max_nr_free;
2337 	int batch = READ_ONCE(pcp->batch);
2338 
2339 	/* Free everything if batch freeing high-order pages. */
2340 	if (unlikely(free_high))
2341 		return pcp->count;
2342 
2343 	/* Check for PCP disabled or boot pageset */
2344 	if (unlikely(high < batch))
2345 		return 1;
2346 
2347 	/* Leave at least pcp->batch pages on the list */
2348 	min_nr_free = batch;
2349 	max_nr_free = high - batch;
2350 
2351 	/*
2352 	 * Double the number of pages freed each time there is subsequent
2353 	 * freeing of pages without any allocation.
2354 	 */
2355 	batch <<= pcp->free_factor;
2356 	if (batch < max_nr_free)
2357 		pcp->free_factor++;
2358 	batch = clamp(batch, min_nr_free, max_nr_free);
2359 
2360 	return batch;
2361 }
2362 
2363 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2364 		       bool free_high)
2365 {
2366 	int high = READ_ONCE(pcp->high);
2367 
2368 	if (unlikely(!high || free_high))
2369 		return 0;
2370 
2371 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2372 		return high;
2373 
2374 	/*
2375 	 * If reclaim is active, limit the number of pages that can be
2376 	 * stored on pcp lists
2377 	 */
2378 	return min(READ_ONCE(pcp->batch) << 2, high);
2379 }
2380 
2381 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2382 				   struct page *page, int migratetype,
2383 				   unsigned int order)
2384 {
2385 	int high;
2386 	int pindex;
2387 	bool free_high;
2388 
2389 	__count_vm_events(PGFREE, 1 << order);
2390 	pindex = order_to_pindex(migratetype, order);
2391 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2392 	pcp->count += 1 << order;
2393 
2394 	/*
2395 	 * As high-order pages other than THP's stored on PCP can contribute
2396 	 * to fragmentation, limit the number stored when PCP is heavily
2397 	 * freeing without allocation. The remainder after bulk freeing
2398 	 * stops will be drained from vmstat refresh context.
2399 	 */
2400 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2401 
2402 	high = nr_pcp_high(pcp, zone, free_high);
2403 	if (pcp->count >= high) {
2404 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, free_high), pcp, pindex);
2405 	}
2406 }
2407 
2408 /*
2409  * Free a pcp page
2410  */
2411 void free_unref_page(struct page *page, unsigned int order)
2412 {
2413 	unsigned long __maybe_unused UP_flags;
2414 	struct per_cpu_pages *pcp;
2415 	struct zone *zone;
2416 	unsigned long pfn = page_to_pfn(page);
2417 	int migratetype;
2418 
2419 	if (!free_unref_page_prepare(page, pfn, order))
2420 		return;
2421 
2422 	/*
2423 	 * We only track unmovable, reclaimable and movable on pcp lists.
2424 	 * Place ISOLATE pages on the isolated list because they are being
2425 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2426 	 * areas back if necessary. Otherwise, we may have to free
2427 	 * excessively into the page allocator
2428 	 */
2429 	migratetype = get_pcppage_migratetype(page);
2430 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2431 		if (unlikely(is_migrate_isolate(migratetype))) {
2432 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2433 			return;
2434 		}
2435 		migratetype = MIGRATE_MOVABLE;
2436 	}
2437 
2438 	zone = page_zone(page);
2439 	pcp_trylock_prepare(UP_flags);
2440 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2441 	if (pcp) {
2442 		free_unref_page_commit(zone, pcp, page, migratetype, order);
2443 		pcp_spin_unlock(pcp);
2444 	} else {
2445 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2446 	}
2447 	pcp_trylock_finish(UP_flags);
2448 }
2449 
2450 /*
2451  * Free a list of 0-order pages
2452  */
2453 void free_unref_page_list(struct list_head *list)
2454 {
2455 	unsigned long __maybe_unused UP_flags;
2456 	struct page *page, *next;
2457 	struct per_cpu_pages *pcp = NULL;
2458 	struct zone *locked_zone = NULL;
2459 	int batch_count = 0;
2460 	int migratetype;
2461 
2462 	/* Prepare pages for freeing */
2463 	list_for_each_entry_safe(page, next, list, lru) {
2464 		unsigned long pfn = page_to_pfn(page);
2465 		if (!free_unref_page_prepare(page, pfn, 0)) {
2466 			list_del(&page->lru);
2467 			continue;
2468 		}
2469 
2470 		/*
2471 		 * Free isolated pages directly to the allocator, see
2472 		 * comment in free_unref_page.
2473 		 */
2474 		migratetype = get_pcppage_migratetype(page);
2475 		if (unlikely(is_migrate_isolate(migratetype))) {
2476 			list_del(&page->lru);
2477 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2478 			continue;
2479 		}
2480 	}
2481 
2482 	list_for_each_entry_safe(page, next, list, lru) {
2483 		struct zone *zone = page_zone(page);
2484 
2485 		list_del(&page->lru);
2486 		migratetype = get_pcppage_migratetype(page);
2487 
2488 		/*
2489 		 * Either different zone requiring a different pcp lock or
2490 		 * excessive lock hold times when freeing a large list of
2491 		 * pages.
2492 		 */
2493 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2494 			if (pcp) {
2495 				pcp_spin_unlock(pcp);
2496 				pcp_trylock_finish(UP_flags);
2497 			}
2498 
2499 			batch_count = 0;
2500 
2501 			/*
2502 			 * trylock is necessary as pages may be getting freed
2503 			 * from IRQ or SoftIRQ context after an IO completion.
2504 			 */
2505 			pcp_trylock_prepare(UP_flags);
2506 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2507 			if (unlikely(!pcp)) {
2508 				pcp_trylock_finish(UP_flags);
2509 				free_one_page(zone, page, page_to_pfn(page),
2510 					      0, migratetype, FPI_NONE);
2511 				locked_zone = NULL;
2512 				continue;
2513 			}
2514 			locked_zone = zone;
2515 		}
2516 
2517 		/*
2518 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2519 		 * to the MIGRATE_MOVABLE pcp list.
2520 		 */
2521 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2522 			migratetype = MIGRATE_MOVABLE;
2523 
2524 		trace_mm_page_free_batched(page);
2525 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
2526 		batch_count++;
2527 	}
2528 
2529 	if (pcp) {
2530 		pcp_spin_unlock(pcp);
2531 		pcp_trylock_finish(UP_flags);
2532 	}
2533 }
2534 
2535 /*
2536  * split_page takes a non-compound higher-order page, and splits it into
2537  * n (1<<order) sub-pages: page[0..n]
2538  * Each sub-page must be freed individually.
2539  *
2540  * Note: this is probably too low level an operation for use in drivers.
2541  * Please consult with lkml before using this in your driver.
2542  */
2543 void split_page(struct page *page, unsigned int order)
2544 {
2545 	int i;
2546 
2547 	VM_BUG_ON_PAGE(PageCompound(page), page);
2548 	VM_BUG_ON_PAGE(!page_count(page), page);
2549 
2550 	for (i = 1; i < (1 << order); i++)
2551 		set_page_refcounted(page + i);
2552 	split_page_owner(page, 1 << order);
2553 	split_page_memcg(page, 1 << order);
2554 }
2555 EXPORT_SYMBOL_GPL(split_page);
2556 
2557 int __isolate_free_page(struct page *page, unsigned int order)
2558 {
2559 	struct zone *zone = page_zone(page);
2560 	int mt = get_pageblock_migratetype(page);
2561 
2562 	if (!is_migrate_isolate(mt)) {
2563 		unsigned long watermark;
2564 		/*
2565 		 * Obey watermarks as if the page was being allocated. We can
2566 		 * emulate a high-order watermark check with a raised order-0
2567 		 * watermark, because we already know our high-order page
2568 		 * exists.
2569 		 */
2570 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2571 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2572 			return 0;
2573 
2574 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2575 	}
2576 
2577 	del_page_from_free_list(page, zone, order);
2578 
2579 	/*
2580 	 * Set the pageblock if the isolated page is at least half of a
2581 	 * pageblock
2582 	 */
2583 	if (order >= pageblock_order - 1) {
2584 		struct page *endpage = page + (1 << order) - 1;
2585 		for (; page < endpage; page += pageblock_nr_pages) {
2586 			int mt = get_pageblock_migratetype(page);
2587 			/*
2588 			 * Only change normal pageblocks (i.e., they can merge
2589 			 * with others)
2590 			 */
2591 			if (migratetype_is_mergeable(mt))
2592 				set_pageblock_migratetype(page,
2593 							  MIGRATE_MOVABLE);
2594 		}
2595 	}
2596 
2597 	return 1UL << order;
2598 }
2599 
2600 /**
2601  * __putback_isolated_page - Return a now-isolated page back where we got it
2602  * @page: Page that was isolated
2603  * @order: Order of the isolated page
2604  * @mt: The page's pageblock's migratetype
2605  *
2606  * This function is meant to return a page pulled from the free lists via
2607  * __isolate_free_page back to the free lists they were pulled from.
2608  */
2609 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2610 {
2611 	struct zone *zone = page_zone(page);
2612 
2613 	/* zone lock should be held when this function is called */
2614 	lockdep_assert_held(&zone->lock);
2615 
2616 	/* Return isolated page to tail of freelist. */
2617 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2618 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2619 }
2620 
2621 /*
2622  * Update NUMA hit/miss statistics
2623  */
2624 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2625 				   long nr_account)
2626 {
2627 #ifdef CONFIG_NUMA
2628 	enum numa_stat_item local_stat = NUMA_LOCAL;
2629 
2630 	/* skip numa counters update if numa stats is disabled */
2631 	if (!static_branch_likely(&vm_numa_stat_key))
2632 		return;
2633 
2634 	if (zone_to_nid(z) != numa_node_id())
2635 		local_stat = NUMA_OTHER;
2636 
2637 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2638 		__count_numa_events(z, NUMA_HIT, nr_account);
2639 	else {
2640 		__count_numa_events(z, NUMA_MISS, nr_account);
2641 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2642 	}
2643 	__count_numa_events(z, local_stat, nr_account);
2644 #endif
2645 }
2646 
2647 static __always_inline
2648 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2649 			   unsigned int order, unsigned int alloc_flags,
2650 			   int migratetype)
2651 {
2652 	struct page *page;
2653 	unsigned long flags;
2654 
2655 	do {
2656 		page = NULL;
2657 		spin_lock_irqsave(&zone->lock, flags);
2658 		/*
2659 		 * order-0 request can reach here when the pcplist is skipped
2660 		 * due to non-CMA allocation context. HIGHATOMIC area is
2661 		 * reserved for high-order atomic allocation, so order-0
2662 		 * request should skip it.
2663 		 */
2664 		if (alloc_flags & ALLOC_HIGHATOMIC)
2665 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2666 		if (!page) {
2667 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2668 
2669 			/*
2670 			 * If the allocation fails, allow OOM handling access
2671 			 * to HIGHATOMIC reserves as failing now is worse than
2672 			 * failing a high-order atomic allocation in the
2673 			 * future.
2674 			 */
2675 			if (!page && (alloc_flags & ALLOC_OOM))
2676 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2677 
2678 			if (!page) {
2679 				spin_unlock_irqrestore(&zone->lock, flags);
2680 				return NULL;
2681 			}
2682 		}
2683 		__mod_zone_freepage_state(zone, -(1 << order),
2684 					  get_pcppage_migratetype(page));
2685 		spin_unlock_irqrestore(&zone->lock, flags);
2686 	} while (check_new_pages(page, order));
2687 
2688 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2689 	zone_statistics(preferred_zone, zone, 1);
2690 
2691 	return page;
2692 }
2693 
2694 /* Remove page from the per-cpu list, caller must protect the list */
2695 static inline
2696 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2697 			int migratetype,
2698 			unsigned int alloc_flags,
2699 			struct per_cpu_pages *pcp,
2700 			struct list_head *list)
2701 {
2702 	struct page *page;
2703 
2704 	do {
2705 		if (list_empty(list)) {
2706 			int batch = READ_ONCE(pcp->batch);
2707 			int alloced;
2708 
2709 			/*
2710 			 * Scale batch relative to order if batch implies
2711 			 * free pages can be stored on the PCP. Batch can
2712 			 * be 1 for small zones or for boot pagesets which
2713 			 * should never store free pages as the pages may
2714 			 * belong to arbitrary zones.
2715 			 */
2716 			if (batch > 1)
2717 				batch = max(batch >> order, 2);
2718 			alloced = rmqueue_bulk(zone, order,
2719 					batch, list,
2720 					migratetype, alloc_flags);
2721 
2722 			pcp->count += alloced << order;
2723 			if (unlikely(list_empty(list)))
2724 				return NULL;
2725 		}
2726 
2727 		page = list_first_entry(list, struct page, pcp_list);
2728 		list_del(&page->pcp_list);
2729 		pcp->count -= 1 << order;
2730 	} while (check_new_pages(page, order));
2731 
2732 	return page;
2733 }
2734 
2735 /* Lock and remove page from the per-cpu list */
2736 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2737 			struct zone *zone, unsigned int order,
2738 			int migratetype, unsigned int alloc_flags)
2739 {
2740 	struct per_cpu_pages *pcp;
2741 	struct list_head *list;
2742 	struct page *page;
2743 	unsigned long __maybe_unused UP_flags;
2744 
2745 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2746 	pcp_trylock_prepare(UP_flags);
2747 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2748 	if (!pcp) {
2749 		pcp_trylock_finish(UP_flags);
2750 		return NULL;
2751 	}
2752 
2753 	/*
2754 	 * On allocation, reduce the number of pages that are batch freed.
2755 	 * See nr_pcp_free() where free_factor is increased for subsequent
2756 	 * frees.
2757 	 */
2758 	pcp->free_factor >>= 1;
2759 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2760 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2761 	pcp_spin_unlock(pcp);
2762 	pcp_trylock_finish(UP_flags);
2763 	if (page) {
2764 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2765 		zone_statistics(preferred_zone, zone, 1);
2766 	}
2767 	return page;
2768 }
2769 
2770 /*
2771  * Allocate a page from the given zone.
2772  * Use pcplists for THP or "cheap" high-order allocations.
2773  */
2774 
2775 /*
2776  * Do not instrument rmqueue() with KMSAN. This function may call
2777  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2778  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2779  * may call rmqueue() again, which will result in a deadlock.
2780  */
2781 __no_sanitize_memory
2782 static inline
2783 struct page *rmqueue(struct zone *preferred_zone,
2784 			struct zone *zone, unsigned int order,
2785 			gfp_t gfp_flags, unsigned int alloc_flags,
2786 			int migratetype)
2787 {
2788 	struct page *page;
2789 
2790 	/*
2791 	 * We most definitely don't want callers attempting to
2792 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2793 	 */
2794 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2795 
2796 	if (likely(pcp_allowed_order(order))) {
2797 		/*
2798 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
2799 		 * we need to skip it when CMA area isn't allowed.
2800 		 */
2801 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
2802 				migratetype != MIGRATE_MOVABLE) {
2803 			page = rmqueue_pcplist(preferred_zone, zone, order,
2804 					migratetype, alloc_flags);
2805 			if (likely(page))
2806 				goto out;
2807 		}
2808 	}
2809 
2810 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2811 							migratetype);
2812 
2813 out:
2814 	/* Separate test+clear to avoid unnecessary atomics */
2815 	if ((alloc_flags & ALLOC_KSWAPD) &&
2816 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2817 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2818 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2819 	}
2820 
2821 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2822 	return page;
2823 }
2824 
2825 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2826 {
2827 	return __should_fail_alloc_page(gfp_mask, order);
2828 }
2829 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2830 
2831 static inline long __zone_watermark_unusable_free(struct zone *z,
2832 				unsigned int order, unsigned int alloc_flags)
2833 {
2834 	long unusable_free = (1 << order) - 1;
2835 
2836 	/*
2837 	 * If the caller does not have rights to reserves below the min
2838 	 * watermark then subtract the high-atomic reserves. This will
2839 	 * over-estimate the size of the atomic reserve but it avoids a search.
2840 	 */
2841 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2842 		unusable_free += z->nr_reserved_highatomic;
2843 
2844 #ifdef CONFIG_CMA
2845 	/* If allocation can't use CMA areas don't use free CMA pages */
2846 	if (!(alloc_flags & ALLOC_CMA))
2847 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2848 #endif
2849 #ifdef CONFIG_UNACCEPTED_MEMORY
2850 	unusable_free += zone_page_state(z, NR_UNACCEPTED);
2851 #endif
2852 
2853 	return unusable_free;
2854 }
2855 
2856 /*
2857  * Return true if free base pages are above 'mark'. For high-order checks it
2858  * will return true of the order-0 watermark is reached and there is at least
2859  * one free page of a suitable size. Checking now avoids taking the zone lock
2860  * to check in the allocation paths if no pages are free.
2861  */
2862 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2863 			 int highest_zoneidx, unsigned int alloc_flags,
2864 			 long free_pages)
2865 {
2866 	long min = mark;
2867 	int o;
2868 
2869 	/* free_pages may go negative - that's OK */
2870 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2871 
2872 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2873 		/*
2874 		 * __GFP_HIGH allows access to 50% of the min reserve as well
2875 		 * as OOM.
2876 		 */
2877 		if (alloc_flags & ALLOC_MIN_RESERVE) {
2878 			min -= min / 2;
2879 
2880 			/*
2881 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2882 			 * access more reserves than just __GFP_HIGH. Other
2883 			 * non-blocking allocations requests such as GFP_NOWAIT
2884 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2885 			 * access to the min reserve.
2886 			 */
2887 			if (alloc_flags & ALLOC_NON_BLOCK)
2888 				min -= min / 4;
2889 		}
2890 
2891 		/*
2892 		 * OOM victims can try even harder than the normal reserve
2893 		 * users on the grounds that it's definitely going to be in
2894 		 * the exit path shortly and free memory. Any allocation it
2895 		 * makes during the free path will be small and short-lived.
2896 		 */
2897 		if (alloc_flags & ALLOC_OOM)
2898 			min -= min / 2;
2899 	}
2900 
2901 	/*
2902 	 * Check watermarks for an order-0 allocation request. If these
2903 	 * are not met, then a high-order request also cannot go ahead
2904 	 * even if a suitable page happened to be free.
2905 	 */
2906 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
2907 		return false;
2908 
2909 	/* If this is an order-0 request then the watermark is fine */
2910 	if (!order)
2911 		return true;
2912 
2913 	/* For a high-order request, check at least one suitable page is free */
2914 	for (o = order; o <= MAX_ORDER; o++) {
2915 		struct free_area *area = &z->free_area[o];
2916 		int mt;
2917 
2918 		if (!area->nr_free)
2919 			continue;
2920 
2921 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2922 			if (!free_area_empty(area, mt))
2923 				return true;
2924 		}
2925 
2926 #ifdef CONFIG_CMA
2927 		if ((alloc_flags & ALLOC_CMA) &&
2928 		    !free_area_empty(area, MIGRATE_CMA)) {
2929 			return true;
2930 		}
2931 #endif
2932 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
2933 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
2934 			return true;
2935 		}
2936 	}
2937 	return false;
2938 }
2939 
2940 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2941 		      int highest_zoneidx, unsigned int alloc_flags)
2942 {
2943 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2944 					zone_page_state(z, NR_FREE_PAGES));
2945 }
2946 
2947 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2948 				unsigned long mark, int highest_zoneidx,
2949 				unsigned int alloc_flags, gfp_t gfp_mask)
2950 {
2951 	long free_pages;
2952 
2953 	free_pages = zone_page_state(z, NR_FREE_PAGES);
2954 
2955 	/*
2956 	 * Fast check for order-0 only. If this fails then the reserves
2957 	 * need to be calculated.
2958 	 */
2959 	if (!order) {
2960 		long usable_free;
2961 		long reserved;
2962 
2963 		usable_free = free_pages;
2964 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
2965 
2966 		/* reserved may over estimate high-atomic reserves. */
2967 		usable_free -= min(usable_free, reserved);
2968 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
2969 			return true;
2970 	}
2971 
2972 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2973 					free_pages))
2974 		return true;
2975 
2976 	/*
2977 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
2978 	 * when checking the min watermark. The min watermark is the
2979 	 * point where boosting is ignored so that kswapd is woken up
2980 	 * when below the low watermark.
2981 	 */
2982 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
2983 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
2984 		mark = z->_watermark[WMARK_MIN];
2985 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
2986 					alloc_flags, free_pages);
2987 	}
2988 
2989 	return false;
2990 }
2991 
2992 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2993 			unsigned long mark, int highest_zoneidx)
2994 {
2995 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2996 
2997 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2998 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2999 
3000 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3001 								free_pages);
3002 }
3003 
3004 #ifdef CONFIG_NUMA
3005 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3006 
3007 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3008 {
3009 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3010 				node_reclaim_distance;
3011 }
3012 #else	/* CONFIG_NUMA */
3013 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3014 {
3015 	return true;
3016 }
3017 #endif	/* CONFIG_NUMA */
3018 
3019 /*
3020  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3021  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3022  * premature use of a lower zone may cause lowmem pressure problems that
3023  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3024  * probably too small. It only makes sense to spread allocations to avoid
3025  * fragmentation between the Normal and DMA32 zones.
3026  */
3027 static inline unsigned int
3028 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3029 {
3030 	unsigned int alloc_flags;
3031 
3032 	/*
3033 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3034 	 * to save a branch.
3035 	 */
3036 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3037 
3038 #ifdef CONFIG_ZONE_DMA32
3039 	if (!zone)
3040 		return alloc_flags;
3041 
3042 	if (zone_idx(zone) != ZONE_NORMAL)
3043 		return alloc_flags;
3044 
3045 	/*
3046 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3047 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3048 	 * on UMA that if Normal is populated then so is DMA32.
3049 	 */
3050 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3051 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3052 		return alloc_flags;
3053 
3054 	alloc_flags |= ALLOC_NOFRAGMENT;
3055 #endif /* CONFIG_ZONE_DMA32 */
3056 	return alloc_flags;
3057 }
3058 
3059 /* Must be called after current_gfp_context() which can change gfp_mask */
3060 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3061 						  unsigned int alloc_flags)
3062 {
3063 #ifdef CONFIG_CMA
3064 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3065 		alloc_flags |= ALLOC_CMA;
3066 #endif
3067 	return alloc_flags;
3068 }
3069 
3070 /*
3071  * get_page_from_freelist goes through the zonelist trying to allocate
3072  * a page.
3073  */
3074 static struct page *
3075 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3076 						const struct alloc_context *ac)
3077 {
3078 	struct zoneref *z;
3079 	struct zone *zone;
3080 	struct pglist_data *last_pgdat = NULL;
3081 	bool last_pgdat_dirty_ok = false;
3082 	bool no_fallback;
3083 
3084 retry:
3085 	/*
3086 	 * Scan zonelist, looking for a zone with enough free.
3087 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3088 	 */
3089 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3090 	z = ac->preferred_zoneref;
3091 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3092 					ac->nodemask) {
3093 		struct page *page;
3094 		unsigned long mark;
3095 
3096 		if (cpusets_enabled() &&
3097 			(alloc_flags & ALLOC_CPUSET) &&
3098 			!__cpuset_zone_allowed(zone, gfp_mask))
3099 				continue;
3100 		/*
3101 		 * When allocating a page cache page for writing, we
3102 		 * want to get it from a node that is within its dirty
3103 		 * limit, such that no single node holds more than its
3104 		 * proportional share of globally allowed dirty pages.
3105 		 * The dirty limits take into account the node's
3106 		 * lowmem reserves and high watermark so that kswapd
3107 		 * should be able to balance it without having to
3108 		 * write pages from its LRU list.
3109 		 *
3110 		 * XXX: For now, allow allocations to potentially
3111 		 * exceed the per-node dirty limit in the slowpath
3112 		 * (spread_dirty_pages unset) before going into reclaim,
3113 		 * which is important when on a NUMA setup the allowed
3114 		 * nodes are together not big enough to reach the
3115 		 * global limit.  The proper fix for these situations
3116 		 * will require awareness of nodes in the
3117 		 * dirty-throttling and the flusher threads.
3118 		 */
3119 		if (ac->spread_dirty_pages) {
3120 			if (last_pgdat != zone->zone_pgdat) {
3121 				last_pgdat = zone->zone_pgdat;
3122 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3123 			}
3124 
3125 			if (!last_pgdat_dirty_ok)
3126 				continue;
3127 		}
3128 
3129 		if (no_fallback && nr_online_nodes > 1 &&
3130 		    zone != ac->preferred_zoneref->zone) {
3131 			int local_nid;
3132 
3133 			/*
3134 			 * If moving to a remote node, retry but allow
3135 			 * fragmenting fallbacks. Locality is more important
3136 			 * than fragmentation avoidance.
3137 			 */
3138 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3139 			if (zone_to_nid(zone) != local_nid) {
3140 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3141 				goto retry;
3142 			}
3143 		}
3144 
3145 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3146 		if (!zone_watermark_fast(zone, order, mark,
3147 				       ac->highest_zoneidx, alloc_flags,
3148 				       gfp_mask)) {
3149 			int ret;
3150 
3151 			if (has_unaccepted_memory()) {
3152 				if (try_to_accept_memory(zone, order))
3153 					goto try_this_zone;
3154 			}
3155 
3156 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3157 			/*
3158 			 * Watermark failed for this zone, but see if we can
3159 			 * grow this zone if it contains deferred pages.
3160 			 */
3161 			if (deferred_pages_enabled()) {
3162 				if (_deferred_grow_zone(zone, order))
3163 					goto try_this_zone;
3164 			}
3165 #endif
3166 			/* Checked here to keep the fast path fast */
3167 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3168 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3169 				goto try_this_zone;
3170 
3171 			if (!node_reclaim_enabled() ||
3172 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3173 				continue;
3174 
3175 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3176 			switch (ret) {
3177 			case NODE_RECLAIM_NOSCAN:
3178 				/* did not scan */
3179 				continue;
3180 			case NODE_RECLAIM_FULL:
3181 				/* scanned but unreclaimable */
3182 				continue;
3183 			default:
3184 				/* did we reclaim enough */
3185 				if (zone_watermark_ok(zone, order, mark,
3186 					ac->highest_zoneidx, alloc_flags))
3187 					goto try_this_zone;
3188 
3189 				continue;
3190 			}
3191 		}
3192 
3193 try_this_zone:
3194 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3195 				gfp_mask, alloc_flags, ac->migratetype);
3196 		if (page) {
3197 			prep_new_page(page, order, gfp_mask, alloc_flags);
3198 
3199 			/*
3200 			 * If this is a high-order atomic allocation then check
3201 			 * if the pageblock should be reserved for the future
3202 			 */
3203 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3204 				reserve_highatomic_pageblock(page, zone);
3205 
3206 			return page;
3207 		} else {
3208 			if (has_unaccepted_memory()) {
3209 				if (try_to_accept_memory(zone, order))
3210 					goto try_this_zone;
3211 			}
3212 
3213 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3214 			/* Try again if zone has deferred pages */
3215 			if (deferred_pages_enabled()) {
3216 				if (_deferred_grow_zone(zone, order))
3217 					goto try_this_zone;
3218 			}
3219 #endif
3220 		}
3221 	}
3222 
3223 	/*
3224 	 * It's possible on a UMA machine to get through all zones that are
3225 	 * fragmented. If avoiding fragmentation, reset and try again.
3226 	 */
3227 	if (no_fallback) {
3228 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3229 		goto retry;
3230 	}
3231 
3232 	return NULL;
3233 }
3234 
3235 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3236 {
3237 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3238 
3239 	/*
3240 	 * This documents exceptions given to allocations in certain
3241 	 * contexts that are allowed to allocate outside current's set
3242 	 * of allowed nodes.
3243 	 */
3244 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3245 		if (tsk_is_oom_victim(current) ||
3246 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3247 			filter &= ~SHOW_MEM_FILTER_NODES;
3248 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3249 		filter &= ~SHOW_MEM_FILTER_NODES;
3250 
3251 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3252 }
3253 
3254 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3255 {
3256 	struct va_format vaf;
3257 	va_list args;
3258 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3259 
3260 	if ((gfp_mask & __GFP_NOWARN) ||
3261 	     !__ratelimit(&nopage_rs) ||
3262 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3263 		return;
3264 
3265 	va_start(args, fmt);
3266 	vaf.fmt = fmt;
3267 	vaf.va = &args;
3268 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3269 			current->comm, &vaf, gfp_mask, &gfp_mask,
3270 			nodemask_pr_args(nodemask));
3271 	va_end(args);
3272 
3273 	cpuset_print_current_mems_allowed();
3274 	pr_cont("\n");
3275 	dump_stack();
3276 	warn_alloc_show_mem(gfp_mask, nodemask);
3277 }
3278 
3279 static inline struct page *
3280 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3281 			      unsigned int alloc_flags,
3282 			      const struct alloc_context *ac)
3283 {
3284 	struct page *page;
3285 
3286 	page = get_page_from_freelist(gfp_mask, order,
3287 			alloc_flags|ALLOC_CPUSET, ac);
3288 	/*
3289 	 * fallback to ignore cpuset restriction if our nodes
3290 	 * are depleted
3291 	 */
3292 	if (!page)
3293 		page = get_page_from_freelist(gfp_mask, order,
3294 				alloc_flags, ac);
3295 
3296 	return page;
3297 }
3298 
3299 static inline struct page *
3300 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3301 	const struct alloc_context *ac, unsigned long *did_some_progress)
3302 {
3303 	struct oom_control oc = {
3304 		.zonelist = ac->zonelist,
3305 		.nodemask = ac->nodemask,
3306 		.memcg = NULL,
3307 		.gfp_mask = gfp_mask,
3308 		.order = order,
3309 	};
3310 	struct page *page;
3311 
3312 	*did_some_progress = 0;
3313 
3314 	/*
3315 	 * Acquire the oom lock.  If that fails, somebody else is
3316 	 * making progress for us.
3317 	 */
3318 	if (!mutex_trylock(&oom_lock)) {
3319 		*did_some_progress = 1;
3320 		schedule_timeout_uninterruptible(1);
3321 		return NULL;
3322 	}
3323 
3324 	/*
3325 	 * Go through the zonelist yet one more time, keep very high watermark
3326 	 * here, this is only to catch a parallel oom killing, we must fail if
3327 	 * we're still under heavy pressure. But make sure that this reclaim
3328 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3329 	 * allocation which will never fail due to oom_lock already held.
3330 	 */
3331 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3332 				      ~__GFP_DIRECT_RECLAIM, order,
3333 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3334 	if (page)
3335 		goto out;
3336 
3337 	/* Coredumps can quickly deplete all memory reserves */
3338 	if (current->flags & PF_DUMPCORE)
3339 		goto out;
3340 	/* The OOM killer will not help higher order allocs */
3341 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3342 		goto out;
3343 	/*
3344 	 * We have already exhausted all our reclaim opportunities without any
3345 	 * success so it is time to admit defeat. We will skip the OOM killer
3346 	 * because it is very likely that the caller has a more reasonable
3347 	 * fallback than shooting a random task.
3348 	 *
3349 	 * The OOM killer may not free memory on a specific node.
3350 	 */
3351 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3352 		goto out;
3353 	/* The OOM killer does not needlessly kill tasks for lowmem */
3354 	if (ac->highest_zoneidx < ZONE_NORMAL)
3355 		goto out;
3356 	if (pm_suspended_storage())
3357 		goto out;
3358 	/*
3359 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3360 	 * other request to make a forward progress.
3361 	 * We are in an unfortunate situation where out_of_memory cannot
3362 	 * do much for this context but let's try it to at least get
3363 	 * access to memory reserved if the current task is killed (see
3364 	 * out_of_memory). Once filesystems are ready to handle allocation
3365 	 * failures more gracefully we should just bail out here.
3366 	 */
3367 
3368 	/* Exhausted what can be done so it's blame time */
3369 	if (out_of_memory(&oc) ||
3370 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3371 		*did_some_progress = 1;
3372 
3373 		/*
3374 		 * Help non-failing allocations by giving them access to memory
3375 		 * reserves
3376 		 */
3377 		if (gfp_mask & __GFP_NOFAIL)
3378 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3379 					ALLOC_NO_WATERMARKS, ac);
3380 	}
3381 out:
3382 	mutex_unlock(&oom_lock);
3383 	return page;
3384 }
3385 
3386 /*
3387  * Maximum number of compaction retries with a progress before OOM
3388  * killer is consider as the only way to move forward.
3389  */
3390 #define MAX_COMPACT_RETRIES 16
3391 
3392 #ifdef CONFIG_COMPACTION
3393 /* Try memory compaction for high-order allocations before reclaim */
3394 static struct page *
3395 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3396 		unsigned int alloc_flags, const struct alloc_context *ac,
3397 		enum compact_priority prio, enum compact_result *compact_result)
3398 {
3399 	struct page *page = NULL;
3400 	unsigned long pflags;
3401 	unsigned int noreclaim_flag;
3402 
3403 	if (!order)
3404 		return NULL;
3405 
3406 	psi_memstall_enter(&pflags);
3407 	delayacct_compact_start();
3408 	noreclaim_flag = memalloc_noreclaim_save();
3409 
3410 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3411 								prio, &page);
3412 
3413 	memalloc_noreclaim_restore(noreclaim_flag);
3414 	psi_memstall_leave(&pflags);
3415 	delayacct_compact_end();
3416 
3417 	if (*compact_result == COMPACT_SKIPPED)
3418 		return NULL;
3419 	/*
3420 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3421 	 * count a compaction stall
3422 	 */
3423 	count_vm_event(COMPACTSTALL);
3424 
3425 	/* Prep a captured page if available */
3426 	if (page)
3427 		prep_new_page(page, order, gfp_mask, alloc_flags);
3428 
3429 	/* Try get a page from the freelist if available */
3430 	if (!page)
3431 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3432 
3433 	if (page) {
3434 		struct zone *zone = page_zone(page);
3435 
3436 		zone->compact_blockskip_flush = false;
3437 		compaction_defer_reset(zone, order, true);
3438 		count_vm_event(COMPACTSUCCESS);
3439 		return page;
3440 	}
3441 
3442 	/*
3443 	 * It's bad if compaction run occurs and fails. The most likely reason
3444 	 * is that pages exist, but not enough to satisfy watermarks.
3445 	 */
3446 	count_vm_event(COMPACTFAIL);
3447 
3448 	cond_resched();
3449 
3450 	return NULL;
3451 }
3452 
3453 static inline bool
3454 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3455 		     enum compact_result compact_result,
3456 		     enum compact_priority *compact_priority,
3457 		     int *compaction_retries)
3458 {
3459 	int max_retries = MAX_COMPACT_RETRIES;
3460 	int min_priority;
3461 	bool ret = false;
3462 	int retries = *compaction_retries;
3463 	enum compact_priority priority = *compact_priority;
3464 
3465 	if (!order)
3466 		return false;
3467 
3468 	if (fatal_signal_pending(current))
3469 		return false;
3470 
3471 	/*
3472 	 * Compaction was skipped due to a lack of free order-0
3473 	 * migration targets. Continue if reclaim can help.
3474 	 */
3475 	if (compact_result == COMPACT_SKIPPED) {
3476 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3477 		goto out;
3478 	}
3479 
3480 	/*
3481 	 * Compaction managed to coalesce some page blocks, but the
3482 	 * allocation failed presumably due to a race. Retry some.
3483 	 */
3484 	if (compact_result == COMPACT_SUCCESS) {
3485 		/*
3486 		 * !costly requests are much more important than
3487 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3488 		 * facto nofail and invoke OOM killer to move on while
3489 		 * costly can fail and users are ready to cope with
3490 		 * that. 1/4 retries is rather arbitrary but we would
3491 		 * need much more detailed feedback from compaction to
3492 		 * make a better decision.
3493 		 */
3494 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3495 			max_retries /= 4;
3496 
3497 		if (++(*compaction_retries) <= max_retries) {
3498 			ret = true;
3499 			goto out;
3500 		}
3501 	}
3502 
3503 	/*
3504 	 * Compaction failed. Retry with increasing priority.
3505 	 */
3506 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3507 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3508 
3509 	if (*compact_priority > min_priority) {
3510 		(*compact_priority)--;
3511 		*compaction_retries = 0;
3512 		ret = true;
3513 	}
3514 out:
3515 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3516 	return ret;
3517 }
3518 #else
3519 static inline struct page *
3520 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3521 		unsigned int alloc_flags, const struct alloc_context *ac,
3522 		enum compact_priority prio, enum compact_result *compact_result)
3523 {
3524 	*compact_result = COMPACT_SKIPPED;
3525 	return NULL;
3526 }
3527 
3528 static inline bool
3529 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3530 		     enum compact_result compact_result,
3531 		     enum compact_priority *compact_priority,
3532 		     int *compaction_retries)
3533 {
3534 	struct zone *zone;
3535 	struct zoneref *z;
3536 
3537 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3538 		return false;
3539 
3540 	/*
3541 	 * There are setups with compaction disabled which would prefer to loop
3542 	 * inside the allocator rather than hit the oom killer prematurely.
3543 	 * Let's give them a good hope and keep retrying while the order-0
3544 	 * watermarks are OK.
3545 	 */
3546 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3547 				ac->highest_zoneidx, ac->nodemask) {
3548 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3549 					ac->highest_zoneidx, alloc_flags))
3550 			return true;
3551 	}
3552 	return false;
3553 }
3554 #endif /* CONFIG_COMPACTION */
3555 
3556 #ifdef CONFIG_LOCKDEP
3557 static struct lockdep_map __fs_reclaim_map =
3558 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3559 
3560 static bool __need_reclaim(gfp_t gfp_mask)
3561 {
3562 	/* no reclaim without waiting on it */
3563 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3564 		return false;
3565 
3566 	/* this guy won't enter reclaim */
3567 	if (current->flags & PF_MEMALLOC)
3568 		return false;
3569 
3570 	if (gfp_mask & __GFP_NOLOCKDEP)
3571 		return false;
3572 
3573 	return true;
3574 }
3575 
3576 void __fs_reclaim_acquire(unsigned long ip)
3577 {
3578 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3579 }
3580 
3581 void __fs_reclaim_release(unsigned long ip)
3582 {
3583 	lock_release(&__fs_reclaim_map, ip);
3584 }
3585 
3586 void fs_reclaim_acquire(gfp_t gfp_mask)
3587 {
3588 	gfp_mask = current_gfp_context(gfp_mask);
3589 
3590 	if (__need_reclaim(gfp_mask)) {
3591 		if (gfp_mask & __GFP_FS)
3592 			__fs_reclaim_acquire(_RET_IP_);
3593 
3594 #ifdef CONFIG_MMU_NOTIFIER
3595 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3596 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3597 #endif
3598 
3599 	}
3600 }
3601 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3602 
3603 void fs_reclaim_release(gfp_t gfp_mask)
3604 {
3605 	gfp_mask = current_gfp_context(gfp_mask);
3606 
3607 	if (__need_reclaim(gfp_mask)) {
3608 		if (gfp_mask & __GFP_FS)
3609 			__fs_reclaim_release(_RET_IP_);
3610 	}
3611 }
3612 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3613 #endif
3614 
3615 /*
3616  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3617  * have been rebuilt so allocation retries. Reader side does not lock and
3618  * retries the allocation if zonelist changes. Writer side is protected by the
3619  * embedded spin_lock.
3620  */
3621 static DEFINE_SEQLOCK(zonelist_update_seq);
3622 
3623 static unsigned int zonelist_iter_begin(void)
3624 {
3625 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3626 		return read_seqbegin(&zonelist_update_seq);
3627 
3628 	return 0;
3629 }
3630 
3631 static unsigned int check_retry_zonelist(unsigned int seq)
3632 {
3633 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3634 		return read_seqretry(&zonelist_update_seq, seq);
3635 
3636 	return seq;
3637 }
3638 
3639 /* Perform direct synchronous page reclaim */
3640 static unsigned long
3641 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3642 					const struct alloc_context *ac)
3643 {
3644 	unsigned int noreclaim_flag;
3645 	unsigned long progress;
3646 
3647 	cond_resched();
3648 
3649 	/* We now go into synchronous reclaim */
3650 	cpuset_memory_pressure_bump();
3651 	fs_reclaim_acquire(gfp_mask);
3652 	noreclaim_flag = memalloc_noreclaim_save();
3653 
3654 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3655 								ac->nodemask);
3656 
3657 	memalloc_noreclaim_restore(noreclaim_flag);
3658 	fs_reclaim_release(gfp_mask);
3659 
3660 	cond_resched();
3661 
3662 	return progress;
3663 }
3664 
3665 /* The really slow allocator path where we enter direct reclaim */
3666 static inline struct page *
3667 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3668 		unsigned int alloc_flags, const struct alloc_context *ac,
3669 		unsigned long *did_some_progress)
3670 {
3671 	struct page *page = NULL;
3672 	unsigned long pflags;
3673 	bool drained = false;
3674 
3675 	psi_memstall_enter(&pflags);
3676 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3677 	if (unlikely(!(*did_some_progress)))
3678 		goto out;
3679 
3680 retry:
3681 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3682 
3683 	/*
3684 	 * If an allocation failed after direct reclaim, it could be because
3685 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3686 	 * Shrink them and try again
3687 	 */
3688 	if (!page && !drained) {
3689 		unreserve_highatomic_pageblock(ac, false);
3690 		drain_all_pages(NULL);
3691 		drained = true;
3692 		goto retry;
3693 	}
3694 out:
3695 	psi_memstall_leave(&pflags);
3696 
3697 	return page;
3698 }
3699 
3700 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3701 			     const struct alloc_context *ac)
3702 {
3703 	struct zoneref *z;
3704 	struct zone *zone;
3705 	pg_data_t *last_pgdat = NULL;
3706 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3707 
3708 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3709 					ac->nodemask) {
3710 		if (!managed_zone(zone))
3711 			continue;
3712 		if (last_pgdat != zone->zone_pgdat) {
3713 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3714 			last_pgdat = zone->zone_pgdat;
3715 		}
3716 	}
3717 }
3718 
3719 static inline unsigned int
3720 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3721 {
3722 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3723 
3724 	/*
3725 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3726 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3727 	 * to save two branches.
3728 	 */
3729 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3730 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3731 
3732 	/*
3733 	 * The caller may dip into page reserves a bit more if the caller
3734 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3735 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3736 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3737 	 */
3738 	alloc_flags |= (__force int)
3739 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3740 
3741 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3742 		/*
3743 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3744 		 * if it can't schedule.
3745 		 */
3746 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3747 			alloc_flags |= ALLOC_NON_BLOCK;
3748 
3749 			if (order > 0)
3750 				alloc_flags |= ALLOC_HIGHATOMIC;
3751 		}
3752 
3753 		/*
3754 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3755 		 * GFP_ATOMIC) rather than fail, see the comment for
3756 		 * cpuset_node_allowed().
3757 		 */
3758 		if (alloc_flags & ALLOC_MIN_RESERVE)
3759 			alloc_flags &= ~ALLOC_CPUSET;
3760 	} else if (unlikely(rt_task(current)) && in_task())
3761 		alloc_flags |= ALLOC_MIN_RESERVE;
3762 
3763 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3764 
3765 	return alloc_flags;
3766 }
3767 
3768 static bool oom_reserves_allowed(struct task_struct *tsk)
3769 {
3770 	if (!tsk_is_oom_victim(tsk))
3771 		return false;
3772 
3773 	/*
3774 	 * !MMU doesn't have oom reaper so give access to memory reserves
3775 	 * only to the thread with TIF_MEMDIE set
3776 	 */
3777 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3778 		return false;
3779 
3780 	return true;
3781 }
3782 
3783 /*
3784  * Distinguish requests which really need access to full memory
3785  * reserves from oom victims which can live with a portion of it
3786  */
3787 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3788 {
3789 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3790 		return 0;
3791 	if (gfp_mask & __GFP_MEMALLOC)
3792 		return ALLOC_NO_WATERMARKS;
3793 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3794 		return ALLOC_NO_WATERMARKS;
3795 	if (!in_interrupt()) {
3796 		if (current->flags & PF_MEMALLOC)
3797 			return ALLOC_NO_WATERMARKS;
3798 		else if (oom_reserves_allowed(current))
3799 			return ALLOC_OOM;
3800 	}
3801 
3802 	return 0;
3803 }
3804 
3805 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3806 {
3807 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3808 }
3809 
3810 /*
3811  * Checks whether it makes sense to retry the reclaim to make a forward progress
3812  * for the given allocation request.
3813  *
3814  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3815  * without success, or when we couldn't even meet the watermark if we
3816  * reclaimed all remaining pages on the LRU lists.
3817  *
3818  * Returns true if a retry is viable or false to enter the oom path.
3819  */
3820 static inline bool
3821 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3822 		     struct alloc_context *ac, int alloc_flags,
3823 		     bool did_some_progress, int *no_progress_loops)
3824 {
3825 	struct zone *zone;
3826 	struct zoneref *z;
3827 	bool ret = false;
3828 
3829 	/*
3830 	 * Costly allocations might have made a progress but this doesn't mean
3831 	 * their order will become available due to high fragmentation so
3832 	 * always increment the no progress counter for them
3833 	 */
3834 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3835 		*no_progress_loops = 0;
3836 	else
3837 		(*no_progress_loops)++;
3838 
3839 	/*
3840 	 * Make sure we converge to OOM if we cannot make any progress
3841 	 * several times in the row.
3842 	 */
3843 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3844 		/* Before OOM, exhaust highatomic_reserve */
3845 		return unreserve_highatomic_pageblock(ac, true);
3846 	}
3847 
3848 	/*
3849 	 * Keep reclaiming pages while there is a chance this will lead
3850 	 * somewhere.  If none of the target zones can satisfy our allocation
3851 	 * request even if all reclaimable pages are considered then we are
3852 	 * screwed and have to go OOM.
3853 	 */
3854 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3855 				ac->highest_zoneidx, ac->nodemask) {
3856 		unsigned long available;
3857 		unsigned long reclaimable;
3858 		unsigned long min_wmark = min_wmark_pages(zone);
3859 		bool wmark;
3860 
3861 		available = reclaimable = zone_reclaimable_pages(zone);
3862 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3863 
3864 		/*
3865 		 * Would the allocation succeed if we reclaimed all
3866 		 * reclaimable pages?
3867 		 */
3868 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3869 				ac->highest_zoneidx, alloc_flags, available);
3870 		trace_reclaim_retry_zone(z, order, reclaimable,
3871 				available, min_wmark, *no_progress_loops, wmark);
3872 		if (wmark) {
3873 			ret = true;
3874 			break;
3875 		}
3876 	}
3877 
3878 	/*
3879 	 * Memory allocation/reclaim might be called from a WQ context and the
3880 	 * current implementation of the WQ concurrency control doesn't
3881 	 * recognize that a particular WQ is congested if the worker thread is
3882 	 * looping without ever sleeping. Therefore we have to do a short sleep
3883 	 * here rather than calling cond_resched().
3884 	 */
3885 	if (current->flags & PF_WQ_WORKER)
3886 		schedule_timeout_uninterruptible(1);
3887 	else
3888 		cond_resched();
3889 	return ret;
3890 }
3891 
3892 static inline bool
3893 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3894 {
3895 	/*
3896 	 * It's possible that cpuset's mems_allowed and the nodemask from
3897 	 * mempolicy don't intersect. This should be normally dealt with by
3898 	 * policy_nodemask(), but it's possible to race with cpuset update in
3899 	 * such a way the check therein was true, and then it became false
3900 	 * before we got our cpuset_mems_cookie here.
3901 	 * This assumes that for all allocations, ac->nodemask can come only
3902 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3903 	 * when it does not intersect with the cpuset restrictions) or the
3904 	 * caller can deal with a violated nodemask.
3905 	 */
3906 	if (cpusets_enabled() && ac->nodemask &&
3907 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3908 		ac->nodemask = NULL;
3909 		return true;
3910 	}
3911 
3912 	/*
3913 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3914 	 * possible to race with parallel threads in such a way that our
3915 	 * allocation can fail while the mask is being updated. If we are about
3916 	 * to fail, check if the cpuset changed during allocation and if so,
3917 	 * retry.
3918 	 */
3919 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3920 		return true;
3921 
3922 	return false;
3923 }
3924 
3925 static inline struct page *
3926 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3927 						struct alloc_context *ac)
3928 {
3929 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3930 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3931 	struct page *page = NULL;
3932 	unsigned int alloc_flags;
3933 	unsigned long did_some_progress;
3934 	enum compact_priority compact_priority;
3935 	enum compact_result compact_result;
3936 	int compaction_retries;
3937 	int no_progress_loops;
3938 	unsigned int cpuset_mems_cookie;
3939 	unsigned int zonelist_iter_cookie;
3940 	int reserve_flags;
3941 
3942 restart:
3943 	compaction_retries = 0;
3944 	no_progress_loops = 0;
3945 	compact_priority = DEF_COMPACT_PRIORITY;
3946 	cpuset_mems_cookie = read_mems_allowed_begin();
3947 	zonelist_iter_cookie = zonelist_iter_begin();
3948 
3949 	/*
3950 	 * The fast path uses conservative alloc_flags to succeed only until
3951 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3952 	 * alloc_flags precisely. So we do that now.
3953 	 */
3954 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
3955 
3956 	/*
3957 	 * We need to recalculate the starting point for the zonelist iterator
3958 	 * because we might have used different nodemask in the fast path, or
3959 	 * there was a cpuset modification and we are retrying - otherwise we
3960 	 * could end up iterating over non-eligible zones endlessly.
3961 	 */
3962 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3963 					ac->highest_zoneidx, ac->nodemask);
3964 	if (!ac->preferred_zoneref->zone)
3965 		goto nopage;
3966 
3967 	/*
3968 	 * Check for insane configurations where the cpuset doesn't contain
3969 	 * any suitable zone to satisfy the request - e.g. non-movable
3970 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
3971 	 */
3972 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
3973 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
3974 					ac->highest_zoneidx,
3975 					&cpuset_current_mems_allowed);
3976 		if (!z->zone)
3977 			goto nopage;
3978 	}
3979 
3980 	if (alloc_flags & ALLOC_KSWAPD)
3981 		wake_all_kswapds(order, gfp_mask, ac);
3982 
3983 	/*
3984 	 * The adjusted alloc_flags might result in immediate success, so try
3985 	 * that first
3986 	 */
3987 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3988 	if (page)
3989 		goto got_pg;
3990 
3991 	/*
3992 	 * For costly allocations, try direct compaction first, as it's likely
3993 	 * that we have enough base pages and don't need to reclaim. For non-
3994 	 * movable high-order allocations, do that as well, as compaction will
3995 	 * try prevent permanent fragmentation by migrating from blocks of the
3996 	 * same migratetype.
3997 	 * Don't try this for allocations that are allowed to ignore
3998 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3999 	 */
4000 	if (can_direct_reclaim &&
4001 			(costly_order ||
4002 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4003 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4004 		page = __alloc_pages_direct_compact(gfp_mask, order,
4005 						alloc_flags, ac,
4006 						INIT_COMPACT_PRIORITY,
4007 						&compact_result);
4008 		if (page)
4009 			goto got_pg;
4010 
4011 		/*
4012 		 * Checks for costly allocations with __GFP_NORETRY, which
4013 		 * includes some THP page fault allocations
4014 		 */
4015 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4016 			/*
4017 			 * If allocating entire pageblock(s) and compaction
4018 			 * failed because all zones are below low watermarks
4019 			 * or is prohibited because it recently failed at this
4020 			 * order, fail immediately unless the allocator has
4021 			 * requested compaction and reclaim retry.
4022 			 *
4023 			 * Reclaim is
4024 			 *  - potentially very expensive because zones are far
4025 			 *    below their low watermarks or this is part of very
4026 			 *    bursty high order allocations,
4027 			 *  - not guaranteed to help because isolate_freepages()
4028 			 *    may not iterate over freed pages as part of its
4029 			 *    linear scan, and
4030 			 *  - unlikely to make entire pageblocks free on its
4031 			 *    own.
4032 			 */
4033 			if (compact_result == COMPACT_SKIPPED ||
4034 			    compact_result == COMPACT_DEFERRED)
4035 				goto nopage;
4036 
4037 			/*
4038 			 * Looks like reclaim/compaction is worth trying, but
4039 			 * sync compaction could be very expensive, so keep
4040 			 * using async compaction.
4041 			 */
4042 			compact_priority = INIT_COMPACT_PRIORITY;
4043 		}
4044 	}
4045 
4046 retry:
4047 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4048 	if (alloc_flags & ALLOC_KSWAPD)
4049 		wake_all_kswapds(order, gfp_mask, ac);
4050 
4051 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4052 	if (reserve_flags)
4053 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4054 					  (alloc_flags & ALLOC_KSWAPD);
4055 
4056 	/*
4057 	 * Reset the nodemask and zonelist iterators if memory policies can be
4058 	 * ignored. These allocations are high priority and system rather than
4059 	 * user oriented.
4060 	 */
4061 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4062 		ac->nodemask = NULL;
4063 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4064 					ac->highest_zoneidx, ac->nodemask);
4065 	}
4066 
4067 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4068 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4069 	if (page)
4070 		goto got_pg;
4071 
4072 	/* Caller is not willing to reclaim, we can't balance anything */
4073 	if (!can_direct_reclaim)
4074 		goto nopage;
4075 
4076 	/* Avoid recursion of direct reclaim */
4077 	if (current->flags & PF_MEMALLOC)
4078 		goto nopage;
4079 
4080 	/* Try direct reclaim and then allocating */
4081 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4082 							&did_some_progress);
4083 	if (page)
4084 		goto got_pg;
4085 
4086 	/* Try direct compaction and then allocating */
4087 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4088 					compact_priority, &compact_result);
4089 	if (page)
4090 		goto got_pg;
4091 
4092 	/* Do not loop if specifically requested */
4093 	if (gfp_mask & __GFP_NORETRY)
4094 		goto nopage;
4095 
4096 	/*
4097 	 * Do not retry costly high order allocations unless they are
4098 	 * __GFP_RETRY_MAYFAIL
4099 	 */
4100 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4101 		goto nopage;
4102 
4103 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4104 				 did_some_progress > 0, &no_progress_loops))
4105 		goto retry;
4106 
4107 	/*
4108 	 * It doesn't make any sense to retry for the compaction if the order-0
4109 	 * reclaim is not able to make any progress because the current
4110 	 * implementation of the compaction depends on the sufficient amount
4111 	 * of free memory (see __compaction_suitable)
4112 	 */
4113 	if (did_some_progress > 0 &&
4114 			should_compact_retry(ac, order, alloc_flags,
4115 				compact_result, &compact_priority,
4116 				&compaction_retries))
4117 		goto retry;
4118 
4119 
4120 	/*
4121 	 * Deal with possible cpuset update races or zonelist updates to avoid
4122 	 * a unnecessary OOM kill.
4123 	 */
4124 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4125 	    check_retry_zonelist(zonelist_iter_cookie))
4126 		goto restart;
4127 
4128 	/* Reclaim has failed us, start killing things */
4129 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4130 	if (page)
4131 		goto got_pg;
4132 
4133 	/* Avoid allocations with no watermarks from looping endlessly */
4134 	if (tsk_is_oom_victim(current) &&
4135 	    (alloc_flags & ALLOC_OOM ||
4136 	     (gfp_mask & __GFP_NOMEMALLOC)))
4137 		goto nopage;
4138 
4139 	/* Retry as long as the OOM killer is making progress */
4140 	if (did_some_progress) {
4141 		no_progress_loops = 0;
4142 		goto retry;
4143 	}
4144 
4145 nopage:
4146 	/*
4147 	 * Deal with possible cpuset update races or zonelist updates to avoid
4148 	 * a unnecessary OOM kill.
4149 	 */
4150 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4151 	    check_retry_zonelist(zonelist_iter_cookie))
4152 		goto restart;
4153 
4154 	/*
4155 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4156 	 * we always retry
4157 	 */
4158 	if (gfp_mask & __GFP_NOFAIL) {
4159 		/*
4160 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4161 		 * of any new users that actually require GFP_NOWAIT
4162 		 */
4163 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4164 			goto fail;
4165 
4166 		/*
4167 		 * PF_MEMALLOC request from this context is rather bizarre
4168 		 * because we cannot reclaim anything and only can loop waiting
4169 		 * for somebody to do a work for us
4170 		 */
4171 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4172 
4173 		/*
4174 		 * non failing costly orders are a hard requirement which we
4175 		 * are not prepared for much so let's warn about these users
4176 		 * so that we can identify them and convert them to something
4177 		 * else.
4178 		 */
4179 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4180 
4181 		/*
4182 		 * Help non-failing allocations by giving some access to memory
4183 		 * reserves normally used for high priority non-blocking
4184 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4185 		 * could deplete whole memory reserves which would just make
4186 		 * the situation worse.
4187 		 */
4188 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4189 		if (page)
4190 			goto got_pg;
4191 
4192 		cond_resched();
4193 		goto retry;
4194 	}
4195 fail:
4196 	warn_alloc(gfp_mask, ac->nodemask,
4197 			"page allocation failure: order:%u", order);
4198 got_pg:
4199 	return page;
4200 }
4201 
4202 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4203 		int preferred_nid, nodemask_t *nodemask,
4204 		struct alloc_context *ac, gfp_t *alloc_gfp,
4205 		unsigned int *alloc_flags)
4206 {
4207 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4208 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4209 	ac->nodemask = nodemask;
4210 	ac->migratetype = gfp_migratetype(gfp_mask);
4211 
4212 	if (cpusets_enabled()) {
4213 		*alloc_gfp |= __GFP_HARDWALL;
4214 		/*
4215 		 * When we are in the interrupt context, it is irrelevant
4216 		 * to the current task context. It means that any node ok.
4217 		 */
4218 		if (in_task() && !ac->nodemask)
4219 			ac->nodemask = &cpuset_current_mems_allowed;
4220 		else
4221 			*alloc_flags |= ALLOC_CPUSET;
4222 	}
4223 
4224 	might_alloc(gfp_mask);
4225 
4226 	if (should_fail_alloc_page(gfp_mask, order))
4227 		return false;
4228 
4229 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4230 
4231 	/* Dirty zone balancing only done in the fast path */
4232 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4233 
4234 	/*
4235 	 * The preferred zone is used for statistics but crucially it is
4236 	 * also used as the starting point for the zonelist iterator. It
4237 	 * may get reset for allocations that ignore memory policies.
4238 	 */
4239 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4240 					ac->highest_zoneidx, ac->nodemask);
4241 
4242 	return true;
4243 }
4244 
4245 /*
4246  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4247  * @gfp: GFP flags for the allocation
4248  * @preferred_nid: The preferred NUMA node ID to allocate from
4249  * @nodemask: Set of nodes to allocate from, may be NULL
4250  * @nr_pages: The number of pages desired on the list or array
4251  * @page_list: Optional list to store the allocated pages
4252  * @page_array: Optional array to store the pages
4253  *
4254  * This is a batched version of the page allocator that attempts to
4255  * allocate nr_pages quickly. Pages are added to page_list if page_list
4256  * is not NULL, otherwise it is assumed that the page_array is valid.
4257  *
4258  * For lists, nr_pages is the number of pages that should be allocated.
4259  *
4260  * For arrays, only NULL elements are populated with pages and nr_pages
4261  * is the maximum number of pages that will be stored in the array.
4262  *
4263  * Returns the number of pages on the list or array.
4264  */
4265 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4266 			nodemask_t *nodemask, int nr_pages,
4267 			struct list_head *page_list,
4268 			struct page **page_array)
4269 {
4270 	struct page *page;
4271 	unsigned long __maybe_unused UP_flags;
4272 	struct zone *zone;
4273 	struct zoneref *z;
4274 	struct per_cpu_pages *pcp;
4275 	struct list_head *pcp_list;
4276 	struct alloc_context ac;
4277 	gfp_t alloc_gfp;
4278 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4279 	int nr_populated = 0, nr_account = 0;
4280 
4281 	/*
4282 	 * Skip populated array elements to determine if any pages need
4283 	 * to be allocated before disabling IRQs.
4284 	 */
4285 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4286 		nr_populated++;
4287 
4288 	/* No pages requested? */
4289 	if (unlikely(nr_pages <= 0))
4290 		goto out;
4291 
4292 	/* Already populated array? */
4293 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4294 		goto out;
4295 
4296 	/* Bulk allocator does not support memcg accounting. */
4297 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4298 		goto failed;
4299 
4300 	/* Use the single page allocator for one page. */
4301 	if (nr_pages - nr_populated == 1)
4302 		goto failed;
4303 
4304 #ifdef CONFIG_PAGE_OWNER
4305 	/*
4306 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4307 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4308 	 * removes much of the performance benefit of bulk allocation so
4309 	 * force the caller to allocate one page at a time as it'll have
4310 	 * similar performance to added complexity to the bulk allocator.
4311 	 */
4312 	if (static_branch_unlikely(&page_owner_inited))
4313 		goto failed;
4314 #endif
4315 
4316 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4317 	gfp &= gfp_allowed_mask;
4318 	alloc_gfp = gfp;
4319 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4320 		goto out;
4321 	gfp = alloc_gfp;
4322 
4323 	/* Find an allowed local zone that meets the low watermark. */
4324 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4325 		unsigned long mark;
4326 
4327 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4328 		    !__cpuset_zone_allowed(zone, gfp)) {
4329 			continue;
4330 		}
4331 
4332 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4333 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4334 			goto failed;
4335 		}
4336 
4337 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4338 		if (zone_watermark_fast(zone, 0,  mark,
4339 				zonelist_zone_idx(ac.preferred_zoneref),
4340 				alloc_flags, gfp)) {
4341 			break;
4342 		}
4343 	}
4344 
4345 	/*
4346 	 * If there are no allowed local zones that meets the watermarks then
4347 	 * try to allocate a single page and reclaim if necessary.
4348 	 */
4349 	if (unlikely(!zone))
4350 		goto failed;
4351 
4352 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4353 	pcp_trylock_prepare(UP_flags);
4354 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4355 	if (!pcp)
4356 		goto failed_irq;
4357 
4358 	/* Attempt the batch allocation */
4359 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4360 	while (nr_populated < nr_pages) {
4361 
4362 		/* Skip existing pages */
4363 		if (page_array && page_array[nr_populated]) {
4364 			nr_populated++;
4365 			continue;
4366 		}
4367 
4368 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4369 								pcp, pcp_list);
4370 		if (unlikely(!page)) {
4371 			/* Try and allocate at least one page */
4372 			if (!nr_account) {
4373 				pcp_spin_unlock(pcp);
4374 				goto failed_irq;
4375 			}
4376 			break;
4377 		}
4378 		nr_account++;
4379 
4380 		prep_new_page(page, 0, gfp, 0);
4381 		if (page_list)
4382 			list_add(&page->lru, page_list);
4383 		else
4384 			page_array[nr_populated] = page;
4385 		nr_populated++;
4386 	}
4387 
4388 	pcp_spin_unlock(pcp);
4389 	pcp_trylock_finish(UP_flags);
4390 
4391 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4392 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4393 
4394 out:
4395 	return nr_populated;
4396 
4397 failed_irq:
4398 	pcp_trylock_finish(UP_flags);
4399 
4400 failed:
4401 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4402 	if (page) {
4403 		if (page_list)
4404 			list_add(&page->lru, page_list);
4405 		else
4406 			page_array[nr_populated] = page;
4407 		nr_populated++;
4408 	}
4409 
4410 	goto out;
4411 }
4412 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4413 
4414 /*
4415  * This is the 'heart' of the zoned buddy allocator.
4416  */
4417 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4418 							nodemask_t *nodemask)
4419 {
4420 	struct page *page;
4421 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4422 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4423 	struct alloc_context ac = { };
4424 
4425 	/*
4426 	 * There are several places where we assume that the order value is sane
4427 	 * so bail out early if the request is out of bound.
4428 	 */
4429 	if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4430 		return NULL;
4431 
4432 	gfp &= gfp_allowed_mask;
4433 	/*
4434 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4435 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4436 	 * from a particular context which has been marked by
4437 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4438 	 * movable zones are not used during allocation.
4439 	 */
4440 	gfp = current_gfp_context(gfp);
4441 	alloc_gfp = gfp;
4442 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4443 			&alloc_gfp, &alloc_flags))
4444 		return NULL;
4445 
4446 	/*
4447 	 * Forbid the first pass from falling back to types that fragment
4448 	 * memory until all local zones are considered.
4449 	 */
4450 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4451 
4452 	/* First allocation attempt */
4453 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4454 	if (likely(page))
4455 		goto out;
4456 
4457 	alloc_gfp = gfp;
4458 	ac.spread_dirty_pages = false;
4459 
4460 	/*
4461 	 * Restore the original nodemask if it was potentially replaced with
4462 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4463 	 */
4464 	ac.nodemask = nodemask;
4465 
4466 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4467 
4468 out:
4469 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4470 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4471 		__free_pages(page, order);
4472 		page = NULL;
4473 	}
4474 
4475 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4476 	kmsan_alloc_page(page, order, alloc_gfp);
4477 
4478 	return page;
4479 }
4480 EXPORT_SYMBOL(__alloc_pages);
4481 
4482 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4483 		nodemask_t *nodemask)
4484 {
4485 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4486 			preferred_nid, nodemask);
4487 
4488 	if (page && order > 1)
4489 		prep_transhuge_page(page);
4490 	return (struct folio *)page;
4491 }
4492 EXPORT_SYMBOL(__folio_alloc);
4493 
4494 /*
4495  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4496  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4497  * you need to access high mem.
4498  */
4499 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4500 {
4501 	struct page *page;
4502 
4503 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4504 	if (!page)
4505 		return 0;
4506 	return (unsigned long) page_address(page);
4507 }
4508 EXPORT_SYMBOL(__get_free_pages);
4509 
4510 unsigned long get_zeroed_page(gfp_t gfp_mask)
4511 {
4512 	return __get_free_page(gfp_mask | __GFP_ZERO);
4513 }
4514 EXPORT_SYMBOL(get_zeroed_page);
4515 
4516 /**
4517  * __free_pages - Free pages allocated with alloc_pages().
4518  * @page: The page pointer returned from alloc_pages().
4519  * @order: The order of the allocation.
4520  *
4521  * This function can free multi-page allocations that are not compound
4522  * pages.  It does not check that the @order passed in matches that of
4523  * the allocation, so it is easy to leak memory.  Freeing more memory
4524  * than was allocated will probably emit a warning.
4525  *
4526  * If the last reference to this page is speculative, it will be released
4527  * by put_page() which only frees the first page of a non-compound
4528  * allocation.  To prevent the remaining pages from being leaked, we free
4529  * the subsequent pages here.  If you want to use the page's reference
4530  * count to decide when to free the allocation, you should allocate a
4531  * compound page, and use put_page() instead of __free_pages().
4532  *
4533  * Context: May be called in interrupt context or while holding a normal
4534  * spinlock, but not in NMI context or while holding a raw spinlock.
4535  */
4536 void __free_pages(struct page *page, unsigned int order)
4537 {
4538 	/* get PageHead before we drop reference */
4539 	int head = PageHead(page);
4540 
4541 	if (put_page_testzero(page))
4542 		free_the_page(page, order);
4543 	else if (!head)
4544 		while (order-- > 0)
4545 			free_the_page(page + (1 << order), order);
4546 }
4547 EXPORT_SYMBOL(__free_pages);
4548 
4549 void free_pages(unsigned long addr, unsigned int order)
4550 {
4551 	if (addr != 0) {
4552 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4553 		__free_pages(virt_to_page((void *)addr), order);
4554 	}
4555 }
4556 
4557 EXPORT_SYMBOL(free_pages);
4558 
4559 /*
4560  * Page Fragment:
4561  *  An arbitrary-length arbitrary-offset area of memory which resides
4562  *  within a 0 or higher order page.  Multiple fragments within that page
4563  *  are individually refcounted, in the page's reference counter.
4564  *
4565  * The page_frag functions below provide a simple allocation framework for
4566  * page fragments.  This is used by the network stack and network device
4567  * drivers to provide a backing region of memory for use as either an
4568  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4569  */
4570 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4571 					     gfp_t gfp_mask)
4572 {
4573 	struct page *page = NULL;
4574 	gfp_t gfp = gfp_mask;
4575 
4576 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4577 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4578 		    __GFP_NOMEMALLOC;
4579 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4580 				PAGE_FRAG_CACHE_MAX_ORDER);
4581 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4582 #endif
4583 	if (unlikely(!page))
4584 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4585 
4586 	nc->va = page ? page_address(page) : NULL;
4587 
4588 	return page;
4589 }
4590 
4591 void __page_frag_cache_drain(struct page *page, unsigned int count)
4592 {
4593 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4594 
4595 	if (page_ref_sub_and_test(page, count))
4596 		free_the_page(page, compound_order(page));
4597 }
4598 EXPORT_SYMBOL(__page_frag_cache_drain);
4599 
4600 void *page_frag_alloc_align(struct page_frag_cache *nc,
4601 		      unsigned int fragsz, gfp_t gfp_mask,
4602 		      unsigned int align_mask)
4603 {
4604 	unsigned int size = PAGE_SIZE;
4605 	struct page *page;
4606 	int offset;
4607 
4608 	if (unlikely(!nc->va)) {
4609 refill:
4610 		page = __page_frag_cache_refill(nc, gfp_mask);
4611 		if (!page)
4612 			return NULL;
4613 
4614 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4615 		/* if size can vary use size else just use PAGE_SIZE */
4616 		size = nc->size;
4617 #endif
4618 		/* Even if we own the page, we do not use atomic_set().
4619 		 * This would break get_page_unless_zero() users.
4620 		 */
4621 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4622 
4623 		/* reset page count bias and offset to start of new frag */
4624 		nc->pfmemalloc = page_is_pfmemalloc(page);
4625 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4626 		nc->offset = size;
4627 	}
4628 
4629 	offset = nc->offset - fragsz;
4630 	if (unlikely(offset < 0)) {
4631 		page = virt_to_page(nc->va);
4632 
4633 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4634 			goto refill;
4635 
4636 		if (unlikely(nc->pfmemalloc)) {
4637 			free_the_page(page, compound_order(page));
4638 			goto refill;
4639 		}
4640 
4641 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4642 		/* if size can vary use size else just use PAGE_SIZE */
4643 		size = nc->size;
4644 #endif
4645 		/* OK, page count is 0, we can safely set it */
4646 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4647 
4648 		/* reset page count bias and offset to start of new frag */
4649 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4650 		offset = size - fragsz;
4651 		if (unlikely(offset < 0)) {
4652 			/*
4653 			 * The caller is trying to allocate a fragment
4654 			 * with fragsz > PAGE_SIZE but the cache isn't big
4655 			 * enough to satisfy the request, this may
4656 			 * happen in low memory conditions.
4657 			 * We don't release the cache page because
4658 			 * it could make memory pressure worse
4659 			 * so we simply return NULL here.
4660 			 */
4661 			return NULL;
4662 		}
4663 	}
4664 
4665 	nc->pagecnt_bias--;
4666 	offset &= align_mask;
4667 	nc->offset = offset;
4668 
4669 	return nc->va + offset;
4670 }
4671 EXPORT_SYMBOL(page_frag_alloc_align);
4672 
4673 /*
4674  * Frees a page fragment allocated out of either a compound or order 0 page.
4675  */
4676 void page_frag_free(void *addr)
4677 {
4678 	struct page *page = virt_to_head_page(addr);
4679 
4680 	if (unlikely(put_page_testzero(page)))
4681 		free_the_page(page, compound_order(page));
4682 }
4683 EXPORT_SYMBOL(page_frag_free);
4684 
4685 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4686 		size_t size)
4687 {
4688 	if (addr) {
4689 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4690 		struct page *page = virt_to_page((void *)addr);
4691 		struct page *last = page + nr;
4692 
4693 		split_page_owner(page, 1 << order);
4694 		split_page_memcg(page, 1 << order);
4695 		while (page < --last)
4696 			set_page_refcounted(last);
4697 
4698 		last = page + (1UL << order);
4699 		for (page += nr; page < last; page++)
4700 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4701 	}
4702 	return (void *)addr;
4703 }
4704 
4705 /**
4706  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4707  * @size: the number of bytes to allocate
4708  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4709  *
4710  * This function is similar to alloc_pages(), except that it allocates the
4711  * minimum number of pages to satisfy the request.  alloc_pages() can only
4712  * allocate memory in power-of-two pages.
4713  *
4714  * This function is also limited by MAX_ORDER.
4715  *
4716  * Memory allocated by this function must be released by free_pages_exact().
4717  *
4718  * Return: pointer to the allocated area or %NULL in case of error.
4719  */
4720 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4721 {
4722 	unsigned int order = get_order(size);
4723 	unsigned long addr;
4724 
4725 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4726 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4727 
4728 	addr = __get_free_pages(gfp_mask, order);
4729 	return make_alloc_exact(addr, order, size);
4730 }
4731 EXPORT_SYMBOL(alloc_pages_exact);
4732 
4733 /**
4734  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4735  *			   pages on a node.
4736  * @nid: the preferred node ID where memory should be allocated
4737  * @size: the number of bytes to allocate
4738  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4739  *
4740  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4741  * back.
4742  *
4743  * Return: pointer to the allocated area or %NULL in case of error.
4744  */
4745 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4746 {
4747 	unsigned int order = get_order(size);
4748 	struct page *p;
4749 
4750 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4751 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4752 
4753 	p = alloc_pages_node(nid, gfp_mask, order);
4754 	if (!p)
4755 		return NULL;
4756 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4757 }
4758 
4759 /**
4760  * free_pages_exact - release memory allocated via alloc_pages_exact()
4761  * @virt: the value returned by alloc_pages_exact.
4762  * @size: size of allocation, same value as passed to alloc_pages_exact().
4763  *
4764  * Release the memory allocated by a previous call to alloc_pages_exact.
4765  */
4766 void free_pages_exact(void *virt, size_t size)
4767 {
4768 	unsigned long addr = (unsigned long)virt;
4769 	unsigned long end = addr + PAGE_ALIGN(size);
4770 
4771 	while (addr < end) {
4772 		free_page(addr);
4773 		addr += PAGE_SIZE;
4774 	}
4775 }
4776 EXPORT_SYMBOL(free_pages_exact);
4777 
4778 /**
4779  * nr_free_zone_pages - count number of pages beyond high watermark
4780  * @offset: The zone index of the highest zone
4781  *
4782  * nr_free_zone_pages() counts the number of pages which are beyond the
4783  * high watermark within all zones at or below a given zone index.  For each
4784  * zone, the number of pages is calculated as:
4785  *
4786  *     nr_free_zone_pages = managed_pages - high_pages
4787  *
4788  * Return: number of pages beyond high watermark.
4789  */
4790 static unsigned long nr_free_zone_pages(int offset)
4791 {
4792 	struct zoneref *z;
4793 	struct zone *zone;
4794 
4795 	/* Just pick one node, since fallback list is circular */
4796 	unsigned long sum = 0;
4797 
4798 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4799 
4800 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4801 		unsigned long size = zone_managed_pages(zone);
4802 		unsigned long high = high_wmark_pages(zone);
4803 		if (size > high)
4804 			sum += size - high;
4805 	}
4806 
4807 	return sum;
4808 }
4809 
4810 /**
4811  * nr_free_buffer_pages - count number of pages beyond high watermark
4812  *
4813  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4814  * watermark within ZONE_DMA and ZONE_NORMAL.
4815  *
4816  * Return: number of pages beyond high watermark within ZONE_DMA and
4817  * ZONE_NORMAL.
4818  */
4819 unsigned long nr_free_buffer_pages(void)
4820 {
4821 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4822 }
4823 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4824 
4825 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4826 {
4827 	zoneref->zone = zone;
4828 	zoneref->zone_idx = zone_idx(zone);
4829 }
4830 
4831 /*
4832  * Builds allocation fallback zone lists.
4833  *
4834  * Add all populated zones of a node to the zonelist.
4835  */
4836 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4837 {
4838 	struct zone *zone;
4839 	enum zone_type zone_type = MAX_NR_ZONES;
4840 	int nr_zones = 0;
4841 
4842 	do {
4843 		zone_type--;
4844 		zone = pgdat->node_zones + zone_type;
4845 		if (populated_zone(zone)) {
4846 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4847 			check_highest_zone(zone_type);
4848 		}
4849 	} while (zone_type);
4850 
4851 	return nr_zones;
4852 }
4853 
4854 #ifdef CONFIG_NUMA
4855 
4856 static int __parse_numa_zonelist_order(char *s)
4857 {
4858 	/*
4859 	 * We used to support different zonelists modes but they turned
4860 	 * out to be just not useful. Let's keep the warning in place
4861 	 * if somebody still use the cmd line parameter so that we do
4862 	 * not fail it silently
4863 	 */
4864 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4865 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4866 		return -EINVAL;
4867 	}
4868 	return 0;
4869 }
4870 
4871 static char numa_zonelist_order[] = "Node";
4872 #define NUMA_ZONELIST_ORDER_LEN	16
4873 /*
4874  * sysctl handler for numa_zonelist_order
4875  */
4876 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4877 		void *buffer, size_t *length, loff_t *ppos)
4878 {
4879 	if (write)
4880 		return __parse_numa_zonelist_order(buffer);
4881 	return proc_dostring(table, write, buffer, length, ppos);
4882 }
4883 
4884 static int node_load[MAX_NUMNODES];
4885 
4886 /**
4887  * find_next_best_node - find the next node that should appear in a given node's fallback list
4888  * @node: node whose fallback list we're appending
4889  * @used_node_mask: nodemask_t of already used nodes
4890  *
4891  * We use a number of factors to determine which is the next node that should
4892  * appear on a given node's fallback list.  The node should not have appeared
4893  * already in @node's fallback list, and it should be the next closest node
4894  * according to the distance array (which contains arbitrary distance values
4895  * from each node to each node in the system), and should also prefer nodes
4896  * with no CPUs, since presumably they'll have very little allocation pressure
4897  * on them otherwise.
4898  *
4899  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
4900  */
4901 int find_next_best_node(int node, nodemask_t *used_node_mask)
4902 {
4903 	int n, val;
4904 	int min_val = INT_MAX;
4905 	int best_node = NUMA_NO_NODE;
4906 
4907 	/* Use the local node if we haven't already */
4908 	if (!node_isset(node, *used_node_mask)) {
4909 		node_set(node, *used_node_mask);
4910 		return node;
4911 	}
4912 
4913 	for_each_node_state(n, N_MEMORY) {
4914 
4915 		/* Don't want a node to appear more than once */
4916 		if (node_isset(n, *used_node_mask))
4917 			continue;
4918 
4919 		/* Use the distance array to find the distance */
4920 		val = node_distance(node, n);
4921 
4922 		/* Penalize nodes under us ("prefer the next node") */
4923 		val += (n < node);
4924 
4925 		/* Give preference to headless and unused nodes */
4926 		if (!cpumask_empty(cpumask_of_node(n)))
4927 			val += PENALTY_FOR_NODE_WITH_CPUS;
4928 
4929 		/* Slight preference for less loaded node */
4930 		val *= MAX_NUMNODES;
4931 		val += node_load[n];
4932 
4933 		if (val < min_val) {
4934 			min_val = val;
4935 			best_node = n;
4936 		}
4937 	}
4938 
4939 	if (best_node >= 0)
4940 		node_set(best_node, *used_node_mask);
4941 
4942 	return best_node;
4943 }
4944 
4945 
4946 /*
4947  * Build zonelists ordered by node and zones within node.
4948  * This results in maximum locality--normal zone overflows into local
4949  * DMA zone, if any--but risks exhausting DMA zone.
4950  */
4951 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
4952 		unsigned nr_nodes)
4953 {
4954 	struct zoneref *zonerefs;
4955 	int i;
4956 
4957 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
4958 
4959 	for (i = 0; i < nr_nodes; i++) {
4960 		int nr_zones;
4961 
4962 		pg_data_t *node = NODE_DATA(node_order[i]);
4963 
4964 		nr_zones = build_zonerefs_node(node, zonerefs);
4965 		zonerefs += nr_zones;
4966 	}
4967 	zonerefs->zone = NULL;
4968 	zonerefs->zone_idx = 0;
4969 }
4970 
4971 /*
4972  * Build gfp_thisnode zonelists
4973  */
4974 static void build_thisnode_zonelists(pg_data_t *pgdat)
4975 {
4976 	struct zoneref *zonerefs;
4977 	int nr_zones;
4978 
4979 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
4980 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
4981 	zonerefs += nr_zones;
4982 	zonerefs->zone = NULL;
4983 	zonerefs->zone_idx = 0;
4984 }
4985 
4986 /*
4987  * Build zonelists ordered by zone and nodes within zones.
4988  * This results in conserving DMA zone[s] until all Normal memory is
4989  * exhausted, but results in overflowing to remote node while memory
4990  * may still exist in local DMA zone.
4991  */
4992 
4993 static void build_zonelists(pg_data_t *pgdat)
4994 {
4995 	static int node_order[MAX_NUMNODES];
4996 	int node, nr_nodes = 0;
4997 	nodemask_t used_mask = NODE_MASK_NONE;
4998 	int local_node, prev_node;
4999 
5000 	/* NUMA-aware ordering of nodes */
5001 	local_node = pgdat->node_id;
5002 	prev_node = local_node;
5003 
5004 	memset(node_order, 0, sizeof(node_order));
5005 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5006 		/*
5007 		 * We don't want to pressure a particular node.
5008 		 * So adding penalty to the first node in same
5009 		 * distance group to make it round-robin.
5010 		 */
5011 		if (node_distance(local_node, node) !=
5012 		    node_distance(local_node, prev_node))
5013 			node_load[node] += 1;
5014 
5015 		node_order[nr_nodes++] = node;
5016 		prev_node = node;
5017 	}
5018 
5019 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5020 	build_thisnode_zonelists(pgdat);
5021 	pr_info("Fallback order for Node %d: ", local_node);
5022 	for (node = 0; node < nr_nodes; node++)
5023 		pr_cont("%d ", node_order[node]);
5024 	pr_cont("\n");
5025 }
5026 
5027 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5028 /*
5029  * Return node id of node used for "local" allocations.
5030  * I.e., first node id of first zone in arg node's generic zonelist.
5031  * Used for initializing percpu 'numa_mem', which is used primarily
5032  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5033  */
5034 int local_memory_node(int node)
5035 {
5036 	struct zoneref *z;
5037 
5038 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5039 				   gfp_zone(GFP_KERNEL),
5040 				   NULL);
5041 	return zone_to_nid(z->zone);
5042 }
5043 #endif
5044 
5045 static void setup_min_unmapped_ratio(void);
5046 static void setup_min_slab_ratio(void);
5047 #else	/* CONFIG_NUMA */
5048 
5049 static void build_zonelists(pg_data_t *pgdat)
5050 {
5051 	int node, local_node;
5052 	struct zoneref *zonerefs;
5053 	int nr_zones;
5054 
5055 	local_node = pgdat->node_id;
5056 
5057 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5058 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5059 	zonerefs += nr_zones;
5060 
5061 	/*
5062 	 * Now we build the zonelist so that it contains the zones
5063 	 * of all the other nodes.
5064 	 * We don't want to pressure a particular node, so when
5065 	 * building the zones for node N, we make sure that the
5066 	 * zones coming right after the local ones are those from
5067 	 * node N+1 (modulo N)
5068 	 */
5069 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5070 		if (!node_online(node))
5071 			continue;
5072 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5073 		zonerefs += nr_zones;
5074 	}
5075 	for (node = 0; node < local_node; node++) {
5076 		if (!node_online(node))
5077 			continue;
5078 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5079 		zonerefs += nr_zones;
5080 	}
5081 
5082 	zonerefs->zone = NULL;
5083 	zonerefs->zone_idx = 0;
5084 }
5085 
5086 #endif	/* CONFIG_NUMA */
5087 
5088 /*
5089  * Boot pageset table. One per cpu which is going to be used for all
5090  * zones and all nodes. The parameters will be set in such a way
5091  * that an item put on a list will immediately be handed over to
5092  * the buddy list. This is safe since pageset manipulation is done
5093  * with interrupts disabled.
5094  *
5095  * The boot_pagesets must be kept even after bootup is complete for
5096  * unused processors and/or zones. They do play a role for bootstrapping
5097  * hotplugged processors.
5098  *
5099  * zoneinfo_show() and maybe other functions do
5100  * not check if the processor is online before following the pageset pointer.
5101  * Other parts of the kernel may not check if the zone is available.
5102  */
5103 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5104 /* These effectively disable the pcplists in the boot pageset completely */
5105 #define BOOT_PAGESET_HIGH	0
5106 #define BOOT_PAGESET_BATCH	1
5107 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5108 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5109 
5110 static void __build_all_zonelists(void *data)
5111 {
5112 	int nid;
5113 	int __maybe_unused cpu;
5114 	pg_data_t *self = data;
5115 	unsigned long flags;
5116 
5117 	/*
5118 	 * The zonelist_update_seq must be acquired with irqsave because the
5119 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5120 	 */
5121 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5122 	/*
5123 	 * Also disable synchronous printk() to prevent any printk() from
5124 	 * trying to hold port->lock, for
5125 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5126 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5127 	 */
5128 	printk_deferred_enter();
5129 
5130 #ifdef CONFIG_NUMA
5131 	memset(node_load, 0, sizeof(node_load));
5132 #endif
5133 
5134 	/*
5135 	 * This node is hotadded and no memory is yet present.   So just
5136 	 * building zonelists is fine - no need to touch other nodes.
5137 	 */
5138 	if (self && !node_online(self->node_id)) {
5139 		build_zonelists(self);
5140 	} else {
5141 		/*
5142 		 * All possible nodes have pgdat preallocated
5143 		 * in free_area_init
5144 		 */
5145 		for_each_node(nid) {
5146 			pg_data_t *pgdat = NODE_DATA(nid);
5147 
5148 			build_zonelists(pgdat);
5149 		}
5150 
5151 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5152 		/*
5153 		 * We now know the "local memory node" for each node--
5154 		 * i.e., the node of the first zone in the generic zonelist.
5155 		 * Set up numa_mem percpu variable for on-line cpus.  During
5156 		 * boot, only the boot cpu should be on-line;  we'll init the
5157 		 * secondary cpus' numa_mem as they come on-line.  During
5158 		 * node/memory hotplug, we'll fixup all on-line cpus.
5159 		 */
5160 		for_each_online_cpu(cpu)
5161 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5162 #endif
5163 	}
5164 
5165 	printk_deferred_exit();
5166 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5167 }
5168 
5169 static noinline void __init
5170 build_all_zonelists_init(void)
5171 {
5172 	int cpu;
5173 
5174 	__build_all_zonelists(NULL);
5175 
5176 	/*
5177 	 * Initialize the boot_pagesets that are going to be used
5178 	 * for bootstrapping processors. The real pagesets for
5179 	 * each zone will be allocated later when the per cpu
5180 	 * allocator is available.
5181 	 *
5182 	 * boot_pagesets are used also for bootstrapping offline
5183 	 * cpus if the system is already booted because the pagesets
5184 	 * are needed to initialize allocators on a specific cpu too.
5185 	 * F.e. the percpu allocator needs the page allocator which
5186 	 * needs the percpu allocator in order to allocate its pagesets
5187 	 * (a chicken-egg dilemma).
5188 	 */
5189 	for_each_possible_cpu(cpu)
5190 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5191 
5192 	mminit_verify_zonelist();
5193 	cpuset_init_current_mems_allowed();
5194 }
5195 
5196 /*
5197  * unless system_state == SYSTEM_BOOTING.
5198  *
5199  * __ref due to call of __init annotated helper build_all_zonelists_init
5200  * [protected by SYSTEM_BOOTING].
5201  */
5202 void __ref build_all_zonelists(pg_data_t *pgdat)
5203 {
5204 	unsigned long vm_total_pages;
5205 
5206 	if (system_state == SYSTEM_BOOTING) {
5207 		build_all_zonelists_init();
5208 	} else {
5209 		__build_all_zonelists(pgdat);
5210 		/* cpuset refresh routine should be here */
5211 	}
5212 	/* Get the number of free pages beyond high watermark in all zones. */
5213 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5214 	/*
5215 	 * Disable grouping by mobility if the number of pages in the
5216 	 * system is too low to allow the mechanism to work. It would be
5217 	 * more accurate, but expensive to check per-zone. This check is
5218 	 * made on memory-hotadd so a system can start with mobility
5219 	 * disabled and enable it later
5220 	 */
5221 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5222 		page_group_by_mobility_disabled = 1;
5223 	else
5224 		page_group_by_mobility_disabled = 0;
5225 
5226 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5227 		nr_online_nodes,
5228 		page_group_by_mobility_disabled ? "off" : "on",
5229 		vm_total_pages);
5230 #ifdef CONFIG_NUMA
5231 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5232 #endif
5233 }
5234 
5235 static int zone_batchsize(struct zone *zone)
5236 {
5237 #ifdef CONFIG_MMU
5238 	int batch;
5239 
5240 	/*
5241 	 * The number of pages to batch allocate is either ~0.1%
5242 	 * of the zone or 1MB, whichever is smaller. The batch
5243 	 * size is striking a balance between allocation latency
5244 	 * and zone lock contention.
5245 	 */
5246 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5247 	batch /= 4;		/* We effectively *= 4 below */
5248 	if (batch < 1)
5249 		batch = 1;
5250 
5251 	/*
5252 	 * Clamp the batch to a 2^n - 1 value. Having a power
5253 	 * of 2 value was found to be more likely to have
5254 	 * suboptimal cache aliasing properties in some cases.
5255 	 *
5256 	 * For example if 2 tasks are alternately allocating
5257 	 * batches of pages, one task can end up with a lot
5258 	 * of pages of one half of the possible page colors
5259 	 * and the other with pages of the other colors.
5260 	 */
5261 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5262 
5263 	return batch;
5264 
5265 #else
5266 	/* The deferral and batching of frees should be suppressed under NOMMU
5267 	 * conditions.
5268 	 *
5269 	 * The problem is that NOMMU needs to be able to allocate large chunks
5270 	 * of contiguous memory as there's no hardware page translation to
5271 	 * assemble apparent contiguous memory from discontiguous pages.
5272 	 *
5273 	 * Queueing large contiguous runs of pages for batching, however,
5274 	 * causes the pages to actually be freed in smaller chunks.  As there
5275 	 * can be a significant delay between the individual batches being
5276 	 * recycled, this leads to the once large chunks of space being
5277 	 * fragmented and becoming unavailable for high-order allocations.
5278 	 */
5279 	return 0;
5280 #endif
5281 }
5282 
5283 static int percpu_pagelist_high_fraction;
5284 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5285 {
5286 #ifdef CONFIG_MMU
5287 	int high;
5288 	int nr_split_cpus;
5289 	unsigned long total_pages;
5290 
5291 	if (!percpu_pagelist_high_fraction) {
5292 		/*
5293 		 * By default, the high value of the pcp is based on the zone
5294 		 * low watermark so that if they are full then background
5295 		 * reclaim will not be started prematurely.
5296 		 */
5297 		total_pages = low_wmark_pages(zone);
5298 	} else {
5299 		/*
5300 		 * If percpu_pagelist_high_fraction is configured, the high
5301 		 * value is based on a fraction of the managed pages in the
5302 		 * zone.
5303 		 */
5304 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
5305 	}
5306 
5307 	/*
5308 	 * Split the high value across all online CPUs local to the zone. Note
5309 	 * that early in boot that CPUs may not be online yet and that during
5310 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5311 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
5312 	 * all online CPUs to mitigate the risk that reclaim is triggered
5313 	 * prematurely due to pages stored on pcp lists.
5314 	 */
5315 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5316 	if (!nr_split_cpus)
5317 		nr_split_cpus = num_online_cpus();
5318 	high = total_pages / nr_split_cpus;
5319 
5320 	/*
5321 	 * Ensure high is at least batch*4. The multiple is based on the
5322 	 * historical relationship between high and batch.
5323 	 */
5324 	high = max(high, batch << 2);
5325 
5326 	return high;
5327 #else
5328 	return 0;
5329 #endif
5330 }
5331 
5332 /*
5333  * pcp->high and pcp->batch values are related and generally batch is lower
5334  * than high. They are also related to pcp->count such that count is lower
5335  * than high, and as soon as it reaches high, the pcplist is flushed.
5336  *
5337  * However, guaranteeing these relations at all times would require e.g. write
5338  * barriers here but also careful usage of read barriers at the read side, and
5339  * thus be prone to error and bad for performance. Thus the update only prevents
5340  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
5341  * can cope with those fields changing asynchronously, and fully trust only the
5342  * pcp->count field on the local CPU with interrupts disabled.
5343  *
5344  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5345  * outside of boot time (or some other assurance that no concurrent updaters
5346  * exist).
5347  */
5348 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5349 		unsigned long batch)
5350 {
5351 	WRITE_ONCE(pcp->batch, batch);
5352 	WRITE_ONCE(pcp->high, high);
5353 }
5354 
5355 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5356 {
5357 	int pindex;
5358 
5359 	memset(pcp, 0, sizeof(*pcp));
5360 	memset(pzstats, 0, sizeof(*pzstats));
5361 
5362 	spin_lock_init(&pcp->lock);
5363 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5364 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5365 
5366 	/*
5367 	 * Set batch and high values safe for a boot pageset. A true percpu
5368 	 * pageset's initialization will update them subsequently. Here we don't
5369 	 * need to be as careful as pageset_update() as nobody can access the
5370 	 * pageset yet.
5371 	 */
5372 	pcp->high = BOOT_PAGESET_HIGH;
5373 	pcp->batch = BOOT_PAGESET_BATCH;
5374 	pcp->free_factor = 0;
5375 }
5376 
5377 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
5378 		unsigned long batch)
5379 {
5380 	struct per_cpu_pages *pcp;
5381 	int cpu;
5382 
5383 	for_each_possible_cpu(cpu) {
5384 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5385 		pageset_update(pcp, high, batch);
5386 	}
5387 }
5388 
5389 /*
5390  * Calculate and set new high and batch values for all per-cpu pagesets of a
5391  * zone based on the zone's size.
5392  */
5393 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5394 {
5395 	int new_high, new_batch;
5396 
5397 	new_batch = max(1, zone_batchsize(zone));
5398 	new_high = zone_highsize(zone, new_batch, cpu_online);
5399 
5400 	if (zone->pageset_high == new_high &&
5401 	    zone->pageset_batch == new_batch)
5402 		return;
5403 
5404 	zone->pageset_high = new_high;
5405 	zone->pageset_batch = new_batch;
5406 
5407 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
5408 }
5409 
5410 void __meminit setup_zone_pageset(struct zone *zone)
5411 {
5412 	int cpu;
5413 
5414 	/* Size may be 0 on !SMP && !NUMA */
5415 	if (sizeof(struct per_cpu_zonestat) > 0)
5416 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5417 
5418 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5419 	for_each_possible_cpu(cpu) {
5420 		struct per_cpu_pages *pcp;
5421 		struct per_cpu_zonestat *pzstats;
5422 
5423 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5424 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5425 		per_cpu_pages_init(pcp, pzstats);
5426 	}
5427 
5428 	zone_set_pageset_high_and_batch(zone, 0);
5429 }
5430 
5431 /*
5432  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5433  * page high values need to be recalculated.
5434  */
5435 static void zone_pcp_update(struct zone *zone, int cpu_online)
5436 {
5437 	mutex_lock(&pcp_batch_high_lock);
5438 	zone_set_pageset_high_and_batch(zone, cpu_online);
5439 	mutex_unlock(&pcp_batch_high_lock);
5440 }
5441 
5442 /*
5443  * Allocate per cpu pagesets and initialize them.
5444  * Before this call only boot pagesets were available.
5445  */
5446 void __init setup_per_cpu_pageset(void)
5447 {
5448 	struct pglist_data *pgdat;
5449 	struct zone *zone;
5450 	int __maybe_unused cpu;
5451 
5452 	for_each_populated_zone(zone)
5453 		setup_zone_pageset(zone);
5454 
5455 #ifdef CONFIG_NUMA
5456 	/*
5457 	 * Unpopulated zones continue using the boot pagesets.
5458 	 * The numa stats for these pagesets need to be reset.
5459 	 * Otherwise, they will end up skewing the stats of
5460 	 * the nodes these zones are associated with.
5461 	 */
5462 	for_each_possible_cpu(cpu) {
5463 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5464 		memset(pzstats->vm_numa_event, 0,
5465 		       sizeof(pzstats->vm_numa_event));
5466 	}
5467 #endif
5468 
5469 	for_each_online_pgdat(pgdat)
5470 		pgdat->per_cpu_nodestats =
5471 			alloc_percpu(struct per_cpu_nodestat);
5472 }
5473 
5474 __meminit void zone_pcp_init(struct zone *zone)
5475 {
5476 	/*
5477 	 * per cpu subsystem is not up at this point. The following code
5478 	 * relies on the ability of the linker to provide the
5479 	 * offset of a (static) per cpu variable into the per cpu area.
5480 	 */
5481 	zone->per_cpu_pageset = &boot_pageset;
5482 	zone->per_cpu_zonestats = &boot_zonestats;
5483 	zone->pageset_high = BOOT_PAGESET_HIGH;
5484 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5485 
5486 	if (populated_zone(zone))
5487 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5488 			 zone->present_pages, zone_batchsize(zone));
5489 }
5490 
5491 void adjust_managed_page_count(struct page *page, long count)
5492 {
5493 	atomic_long_add(count, &page_zone(page)->managed_pages);
5494 	totalram_pages_add(count);
5495 #ifdef CONFIG_HIGHMEM
5496 	if (PageHighMem(page))
5497 		totalhigh_pages_add(count);
5498 #endif
5499 }
5500 EXPORT_SYMBOL(adjust_managed_page_count);
5501 
5502 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5503 {
5504 	void *pos;
5505 	unsigned long pages = 0;
5506 
5507 	start = (void *)PAGE_ALIGN((unsigned long)start);
5508 	end = (void *)((unsigned long)end & PAGE_MASK);
5509 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5510 		struct page *page = virt_to_page(pos);
5511 		void *direct_map_addr;
5512 
5513 		/*
5514 		 * 'direct_map_addr' might be different from 'pos'
5515 		 * because some architectures' virt_to_page()
5516 		 * work with aliases.  Getting the direct map
5517 		 * address ensures that we get a _writeable_
5518 		 * alias for the memset().
5519 		 */
5520 		direct_map_addr = page_address(page);
5521 		/*
5522 		 * Perform a kasan-unchecked memset() since this memory
5523 		 * has not been initialized.
5524 		 */
5525 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5526 		if ((unsigned int)poison <= 0xFF)
5527 			memset(direct_map_addr, poison, PAGE_SIZE);
5528 
5529 		free_reserved_page(page);
5530 	}
5531 
5532 	if (pages && s)
5533 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5534 
5535 	return pages;
5536 }
5537 
5538 static int page_alloc_cpu_dead(unsigned int cpu)
5539 {
5540 	struct zone *zone;
5541 
5542 	lru_add_drain_cpu(cpu);
5543 	mlock_drain_remote(cpu);
5544 	drain_pages(cpu);
5545 
5546 	/*
5547 	 * Spill the event counters of the dead processor
5548 	 * into the current processors event counters.
5549 	 * This artificially elevates the count of the current
5550 	 * processor.
5551 	 */
5552 	vm_events_fold_cpu(cpu);
5553 
5554 	/*
5555 	 * Zero the differential counters of the dead processor
5556 	 * so that the vm statistics are consistent.
5557 	 *
5558 	 * This is only okay since the processor is dead and cannot
5559 	 * race with what we are doing.
5560 	 */
5561 	cpu_vm_stats_fold(cpu);
5562 
5563 	for_each_populated_zone(zone)
5564 		zone_pcp_update(zone, 0);
5565 
5566 	return 0;
5567 }
5568 
5569 static int page_alloc_cpu_online(unsigned int cpu)
5570 {
5571 	struct zone *zone;
5572 
5573 	for_each_populated_zone(zone)
5574 		zone_pcp_update(zone, 1);
5575 	return 0;
5576 }
5577 
5578 void __init page_alloc_init_cpuhp(void)
5579 {
5580 	int ret;
5581 
5582 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5583 					"mm/page_alloc:pcp",
5584 					page_alloc_cpu_online,
5585 					page_alloc_cpu_dead);
5586 	WARN_ON(ret < 0);
5587 }
5588 
5589 /*
5590  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5591  *	or min_free_kbytes changes.
5592  */
5593 static void calculate_totalreserve_pages(void)
5594 {
5595 	struct pglist_data *pgdat;
5596 	unsigned long reserve_pages = 0;
5597 	enum zone_type i, j;
5598 
5599 	for_each_online_pgdat(pgdat) {
5600 
5601 		pgdat->totalreserve_pages = 0;
5602 
5603 		for (i = 0; i < MAX_NR_ZONES; i++) {
5604 			struct zone *zone = pgdat->node_zones + i;
5605 			long max = 0;
5606 			unsigned long managed_pages = zone_managed_pages(zone);
5607 
5608 			/* Find valid and maximum lowmem_reserve in the zone */
5609 			for (j = i; j < MAX_NR_ZONES; j++) {
5610 				if (zone->lowmem_reserve[j] > max)
5611 					max = zone->lowmem_reserve[j];
5612 			}
5613 
5614 			/* we treat the high watermark as reserved pages. */
5615 			max += high_wmark_pages(zone);
5616 
5617 			if (max > managed_pages)
5618 				max = managed_pages;
5619 
5620 			pgdat->totalreserve_pages += max;
5621 
5622 			reserve_pages += max;
5623 		}
5624 	}
5625 	totalreserve_pages = reserve_pages;
5626 }
5627 
5628 /*
5629  * setup_per_zone_lowmem_reserve - called whenever
5630  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5631  *	has a correct pages reserved value, so an adequate number of
5632  *	pages are left in the zone after a successful __alloc_pages().
5633  */
5634 static void setup_per_zone_lowmem_reserve(void)
5635 {
5636 	struct pglist_data *pgdat;
5637 	enum zone_type i, j;
5638 
5639 	for_each_online_pgdat(pgdat) {
5640 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5641 			struct zone *zone = &pgdat->node_zones[i];
5642 			int ratio = sysctl_lowmem_reserve_ratio[i];
5643 			bool clear = !ratio || !zone_managed_pages(zone);
5644 			unsigned long managed_pages = 0;
5645 
5646 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5647 				struct zone *upper_zone = &pgdat->node_zones[j];
5648 
5649 				managed_pages += zone_managed_pages(upper_zone);
5650 
5651 				if (clear)
5652 					zone->lowmem_reserve[j] = 0;
5653 				else
5654 					zone->lowmem_reserve[j] = managed_pages / ratio;
5655 			}
5656 		}
5657 	}
5658 
5659 	/* update totalreserve_pages */
5660 	calculate_totalreserve_pages();
5661 }
5662 
5663 static void __setup_per_zone_wmarks(void)
5664 {
5665 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5666 	unsigned long lowmem_pages = 0;
5667 	struct zone *zone;
5668 	unsigned long flags;
5669 
5670 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5671 	for_each_zone(zone) {
5672 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5673 			lowmem_pages += zone_managed_pages(zone);
5674 	}
5675 
5676 	for_each_zone(zone) {
5677 		u64 tmp;
5678 
5679 		spin_lock_irqsave(&zone->lock, flags);
5680 		tmp = (u64)pages_min * zone_managed_pages(zone);
5681 		do_div(tmp, lowmem_pages);
5682 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5683 			/*
5684 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5685 			 * need highmem and movable zones pages, so cap pages_min
5686 			 * to a small  value here.
5687 			 *
5688 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5689 			 * deltas control async page reclaim, and so should
5690 			 * not be capped for highmem and movable zones.
5691 			 */
5692 			unsigned long min_pages;
5693 
5694 			min_pages = zone_managed_pages(zone) / 1024;
5695 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5696 			zone->_watermark[WMARK_MIN] = min_pages;
5697 		} else {
5698 			/*
5699 			 * If it's a lowmem zone, reserve a number of pages
5700 			 * proportionate to the zone's size.
5701 			 */
5702 			zone->_watermark[WMARK_MIN] = tmp;
5703 		}
5704 
5705 		/*
5706 		 * Set the kswapd watermarks distance according to the
5707 		 * scale factor in proportion to available memory, but
5708 		 * ensure a minimum size on small systems.
5709 		 */
5710 		tmp = max_t(u64, tmp >> 2,
5711 			    mult_frac(zone_managed_pages(zone),
5712 				      watermark_scale_factor, 10000));
5713 
5714 		zone->watermark_boost = 0;
5715 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5716 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5717 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5718 
5719 		spin_unlock_irqrestore(&zone->lock, flags);
5720 	}
5721 
5722 	/* update totalreserve_pages */
5723 	calculate_totalreserve_pages();
5724 }
5725 
5726 /**
5727  * setup_per_zone_wmarks - called when min_free_kbytes changes
5728  * or when memory is hot-{added|removed}
5729  *
5730  * Ensures that the watermark[min,low,high] values for each zone are set
5731  * correctly with respect to min_free_kbytes.
5732  */
5733 void setup_per_zone_wmarks(void)
5734 {
5735 	struct zone *zone;
5736 	static DEFINE_SPINLOCK(lock);
5737 
5738 	spin_lock(&lock);
5739 	__setup_per_zone_wmarks();
5740 	spin_unlock(&lock);
5741 
5742 	/*
5743 	 * The watermark size have changed so update the pcpu batch
5744 	 * and high limits or the limits may be inappropriate.
5745 	 */
5746 	for_each_zone(zone)
5747 		zone_pcp_update(zone, 0);
5748 }
5749 
5750 /*
5751  * Initialise min_free_kbytes.
5752  *
5753  * For small machines we want it small (128k min).  For large machines
5754  * we want it large (256MB max).  But it is not linear, because network
5755  * bandwidth does not increase linearly with machine size.  We use
5756  *
5757  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5758  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5759  *
5760  * which yields
5761  *
5762  * 16MB:	512k
5763  * 32MB:	724k
5764  * 64MB:	1024k
5765  * 128MB:	1448k
5766  * 256MB:	2048k
5767  * 512MB:	2896k
5768  * 1024MB:	4096k
5769  * 2048MB:	5792k
5770  * 4096MB:	8192k
5771  * 8192MB:	11584k
5772  * 16384MB:	16384k
5773  */
5774 void calculate_min_free_kbytes(void)
5775 {
5776 	unsigned long lowmem_kbytes;
5777 	int new_min_free_kbytes;
5778 
5779 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5780 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5781 
5782 	if (new_min_free_kbytes > user_min_free_kbytes)
5783 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5784 	else
5785 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5786 				new_min_free_kbytes, user_min_free_kbytes);
5787 
5788 }
5789 
5790 int __meminit init_per_zone_wmark_min(void)
5791 {
5792 	calculate_min_free_kbytes();
5793 	setup_per_zone_wmarks();
5794 	refresh_zone_stat_thresholds();
5795 	setup_per_zone_lowmem_reserve();
5796 
5797 #ifdef CONFIG_NUMA
5798 	setup_min_unmapped_ratio();
5799 	setup_min_slab_ratio();
5800 #endif
5801 
5802 	khugepaged_min_free_kbytes_update();
5803 
5804 	return 0;
5805 }
5806 postcore_initcall(init_per_zone_wmark_min)
5807 
5808 /*
5809  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5810  *	that we can call two helper functions whenever min_free_kbytes
5811  *	changes.
5812  */
5813 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5814 		void *buffer, size_t *length, loff_t *ppos)
5815 {
5816 	int rc;
5817 
5818 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5819 	if (rc)
5820 		return rc;
5821 
5822 	if (write) {
5823 		user_min_free_kbytes = min_free_kbytes;
5824 		setup_per_zone_wmarks();
5825 	}
5826 	return 0;
5827 }
5828 
5829 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5830 		void *buffer, size_t *length, loff_t *ppos)
5831 {
5832 	int rc;
5833 
5834 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5835 	if (rc)
5836 		return rc;
5837 
5838 	if (write)
5839 		setup_per_zone_wmarks();
5840 
5841 	return 0;
5842 }
5843 
5844 #ifdef CONFIG_NUMA
5845 static void setup_min_unmapped_ratio(void)
5846 {
5847 	pg_data_t *pgdat;
5848 	struct zone *zone;
5849 
5850 	for_each_online_pgdat(pgdat)
5851 		pgdat->min_unmapped_pages = 0;
5852 
5853 	for_each_zone(zone)
5854 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
5855 						         sysctl_min_unmapped_ratio) / 100;
5856 }
5857 
5858 
5859 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5860 		void *buffer, size_t *length, loff_t *ppos)
5861 {
5862 	int rc;
5863 
5864 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5865 	if (rc)
5866 		return rc;
5867 
5868 	setup_min_unmapped_ratio();
5869 
5870 	return 0;
5871 }
5872 
5873 static void setup_min_slab_ratio(void)
5874 {
5875 	pg_data_t *pgdat;
5876 	struct zone *zone;
5877 
5878 	for_each_online_pgdat(pgdat)
5879 		pgdat->min_slab_pages = 0;
5880 
5881 	for_each_zone(zone)
5882 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
5883 						     sysctl_min_slab_ratio) / 100;
5884 }
5885 
5886 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5887 		void *buffer, size_t *length, loff_t *ppos)
5888 {
5889 	int rc;
5890 
5891 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5892 	if (rc)
5893 		return rc;
5894 
5895 	setup_min_slab_ratio();
5896 
5897 	return 0;
5898 }
5899 #endif
5900 
5901 /*
5902  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5903  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5904  *	whenever sysctl_lowmem_reserve_ratio changes.
5905  *
5906  * The reserve ratio obviously has absolutely no relation with the
5907  * minimum watermarks. The lowmem reserve ratio can only make sense
5908  * if in function of the boot time zone sizes.
5909  */
5910 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
5911 		int write, void *buffer, size_t *length, loff_t *ppos)
5912 {
5913 	int i;
5914 
5915 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5916 
5917 	for (i = 0; i < MAX_NR_ZONES; i++) {
5918 		if (sysctl_lowmem_reserve_ratio[i] < 1)
5919 			sysctl_lowmem_reserve_ratio[i] = 0;
5920 	}
5921 
5922 	setup_per_zone_lowmem_reserve();
5923 	return 0;
5924 }
5925 
5926 /*
5927  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
5928  * cpu. It is the fraction of total pages in each zone that a hot per cpu
5929  * pagelist can have before it gets flushed back to buddy allocator.
5930  */
5931 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
5932 		int write, void *buffer, size_t *length, loff_t *ppos)
5933 {
5934 	struct zone *zone;
5935 	int old_percpu_pagelist_high_fraction;
5936 	int ret;
5937 
5938 	mutex_lock(&pcp_batch_high_lock);
5939 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
5940 
5941 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5942 	if (!write || ret < 0)
5943 		goto out;
5944 
5945 	/* Sanity checking to avoid pcp imbalance */
5946 	if (percpu_pagelist_high_fraction &&
5947 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
5948 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
5949 		ret = -EINVAL;
5950 		goto out;
5951 	}
5952 
5953 	/* No change? */
5954 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
5955 		goto out;
5956 
5957 	for_each_populated_zone(zone)
5958 		zone_set_pageset_high_and_batch(zone, 0);
5959 out:
5960 	mutex_unlock(&pcp_batch_high_lock);
5961 	return ret;
5962 }
5963 
5964 static struct ctl_table page_alloc_sysctl_table[] = {
5965 	{
5966 		.procname	= "min_free_kbytes",
5967 		.data		= &min_free_kbytes,
5968 		.maxlen		= sizeof(min_free_kbytes),
5969 		.mode		= 0644,
5970 		.proc_handler	= min_free_kbytes_sysctl_handler,
5971 		.extra1		= SYSCTL_ZERO,
5972 	},
5973 	{
5974 		.procname	= "watermark_boost_factor",
5975 		.data		= &watermark_boost_factor,
5976 		.maxlen		= sizeof(watermark_boost_factor),
5977 		.mode		= 0644,
5978 		.proc_handler	= proc_dointvec_minmax,
5979 		.extra1		= SYSCTL_ZERO,
5980 	},
5981 	{
5982 		.procname	= "watermark_scale_factor",
5983 		.data		= &watermark_scale_factor,
5984 		.maxlen		= sizeof(watermark_scale_factor),
5985 		.mode		= 0644,
5986 		.proc_handler	= watermark_scale_factor_sysctl_handler,
5987 		.extra1		= SYSCTL_ONE,
5988 		.extra2		= SYSCTL_THREE_THOUSAND,
5989 	},
5990 	{
5991 		.procname	= "percpu_pagelist_high_fraction",
5992 		.data		= &percpu_pagelist_high_fraction,
5993 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
5994 		.mode		= 0644,
5995 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
5996 		.extra1		= SYSCTL_ZERO,
5997 	},
5998 	{
5999 		.procname	= "lowmem_reserve_ratio",
6000 		.data		= &sysctl_lowmem_reserve_ratio,
6001 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6002 		.mode		= 0644,
6003 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6004 	},
6005 #ifdef CONFIG_NUMA
6006 	{
6007 		.procname	= "numa_zonelist_order",
6008 		.data		= &numa_zonelist_order,
6009 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6010 		.mode		= 0644,
6011 		.proc_handler	= numa_zonelist_order_handler,
6012 	},
6013 	{
6014 		.procname	= "min_unmapped_ratio",
6015 		.data		= &sysctl_min_unmapped_ratio,
6016 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6017 		.mode		= 0644,
6018 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6019 		.extra1		= SYSCTL_ZERO,
6020 		.extra2		= SYSCTL_ONE_HUNDRED,
6021 	},
6022 	{
6023 		.procname	= "min_slab_ratio",
6024 		.data		= &sysctl_min_slab_ratio,
6025 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6026 		.mode		= 0644,
6027 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6028 		.extra1		= SYSCTL_ZERO,
6029 		.extra2		= SYSCTL_ONE_HUNDRED,
6030 	},
6031 #endif
6032 	{}
6033 };
6034 
6035 void __init page_alloc_sysctl_init(void)
6036 {
6037 	register_sysctl_init("vm", page_alloc_sysctl_table);
6038 }
6039 
6040 #ifdef CONFIG_CONTIG_ALLOC
6041 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6042 static void alloc_contig_dump_pages(struct list_head *page_list)
6043 {
6044 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6045 
6046 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6047 		struct page *page;
6048 
6049 		dump_stack();
6050 		list_for_each_entry(page, page_list, lru)
6051 			dump_page(page, "migration failure");
6052 	}
6053 }
6054 
6055 /* [start, end) must belong to a single zone. */
6056 int __alloc_contig_migrate_range(struct compact_control *cc,
6057 					unsigned long start, unsigned long end)
6058 {
6059 	/* This function is based on compact_zone() from compaction.c. */
6060 	unsigned int nr_reclaimed;
6061 	unsigned long pfn = start;
6062 	unsigned int tries = 0;
6063 	int ret = 0;
6064 	struct migration_target_control mtc = {
6065 		.nid = zone_to_nid(cc->zone),
6066 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6067 	};
6068 
6069 	lru_cache_disable();
6070 
6071 	while (pfn < end || !list_empty(&cc->migratepages)) {
6072 		if (fatal_signal_pending(current)) {
6073 			ret = -EINTR;
6074 			break;
6075 		}
6076 
6077 		if (list_empty(&cc->migratepages)) {
6078 			cc->nr_migratepages = 0;
6079 			ret = isolate_migratepages_range(cc, pfn, end);
6080 			if (ret && ret != -EAGAIN)
6081 				break;
6082 			pfn = cc->migrate_pfn;
6083 			tries = 0;
6084 		} else if (++tries == 5) {
6085 			ret = -EBUSY;
6086 			break;
6087 		}
6088 
6089 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6090 							&cc->migratepages);
6091 		cc->nr_migratepages -= nr_reclaimed;
6092 
6093 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6094 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6095 
6096 		/*
6097 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6098 		 * to retry again over this error, so do the same here.
6099 		 */
6100 		if (ret == -ENOMEM)
6101 			break;
6102 	}
6103 
6104 	lru_cache_enable();
6105 	if (ret < 0) {
6106 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6107 			alloc_contig_dump_pages(&cc->migratepages);
6108 		putback_movable_pages(&cc->migratepages);
6109 		return ret;
6110 	}
6111 	return 0;
6112 }
6113 
6114 /**
6115  * alloc_contig_range() -- tries to allocate given range of pages
6116  * @start:	start PFN to allocate
6117  * @end:	one-past-the-last PFN to allocate
6118  * @migratetype:	migratetype of the underlying pageblocks (either
6119  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6120  *			in range must have the same migratetype and it must
6121  *			be either of the two.
6122  * @gfp_mask:	GFP mask to use during compaction
6123  *
6124  * The PFN range does not have to be pageblock aligned. The PFN range must
6125  * belong to a single zone.
6126  *
6127  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6128  * pageblocks in the range.  Once isolated, the pageblocks should not
6129  * be modified by others.
6130  *
6131  * Return: zero on success or negative error code.  On success all
6132  * pages which PFN is in [start, end) are allocated for the caller and
6133  * need to be freed with free_contig_range().
6134  */
6135 int alloc_contig_range(unsigned long start, unsigned long end,
6136 		       unsigned migratetype, gfp_t gfp_mask)
6137 {
6138 	unsigned long outer_start, outer_end;
6139 	int order;
6140 	int ret = 0;
6141 
6142 	struct compact_control cc = {
6143 		.nr_migratepages = 0,
6144 		.order = -1,
6145 		.zone = page_zone(pfn_to_page(start)),
6146 		.mode = MIGRATE_SYNC,
6147 		.ignore_skip_hint = true,
6148 		.no_set_skip_hint = true,
6149 		.gfp_mask = current_gfp_context(gfp_mask),
6150 		.alloc_contig = true,
6151 	};
6152 	INIT_LIST_HEAD(&cc.migratepages);
6153 
6154 	/*
6155 	 * What we do here is we mark all pageblocks in range as
6156 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6157 	 * have different sizes, and due to the way page allocator
6158 	 * work, start_isolate_page_range() has special handlings for this.
6159 	 *
6160 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6161 	 * migrate the pages from an unaligned range (ie. pages that
6162 	 * we are interested in). This will put all the pages in
6163 	 * range back to page allocator as MIGRATE_ISOLATE.
6164 	 *
6165 	 * When this is done, we take the pages in range from page
6166 	 * allocator removing them from the buddy system.  This way
6167 	 * page allocator will never consider using them.
6168 	 *
6169 	 * This lets us mark the pageblocks back as
6170 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6171 	 * aligned range but not in the unaligned, original range are
6172 	 * put back to page allocator so that buddy can use them.
6173 	 */
6174 
6175 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6176 	if (ret)
6177 		goto done;
6178 
6179 	drain_all_pages(cc.zone);
6180 
6181 	/*
6182 	 * In case of -EBUSY, we'd like to know which page causes problem.
6183 	 * So, just fall through. test_pages_isolated() has a tracepoint
6184 	 * which will report the busy page.
6185 	 *
6186 	 * It is possible that busy pages could become available before
6187 	 * the call to test_pages_isolated, and the range will actually be
6188 	 * allocated.  So, if we fall through be sure to clear ret so that
6189 	 * -EBUSY is not accidentally used or returned to caller.
6190 	 */
6191 	ret = __alloc_contig_migrate_range(&cc, start, end);
6192 	if (ret && ret != -EBUSY)
6193 		goto done;
6194 	ret = 0;
6195 
6196 	/*
6197 	 * Pages from [start, end) are within a pageblock_nr_pages
6198 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6199 	 * more, all pages in [start, end) are free in page allocator.
6200 	 * What we are going to do is to allocate all pages from
6201 	 * [start, end) (that is remove them from page allocator).
6202 	 *
6203 	 * The only problem is that pages at the beginning and at the
6204 	 * end of interesting range may be not aligned with pages that
6205 	 * page allocator holds, ie. they can be part of higher order
6206 	 * pages.  Because of this, we reserve the bigger range and
6207 	 * once this is done free the pages we are not interested in.
6208 	 *
6209 	 * We don't have to hold zone->lock here because the pages are
6210 	 * isolated thus they won't get removed from buddy.
6211 	 */
6212 
6213 	order = 0;
6214 	outer_start = start;
6215 	while (!PageBuddy(pfn_to_page(outer_start))) {
6216 		if (++order > MAX_ORDER) {
6217 			outer_start = start;
6218 			break;
6219 		}
6220 		outer_start &= ~0UL << order;
6221 	}
6222 
6223 	if (outer_start != start) {
6224 		order = buddy_order(pfn_to_page(outer_start));
6225 
6226 		/*
6227 		 * outer_start page could be small order buddy page and
6228 		 * it doesn't include start page. Adjust outer_start
6229 		 * in this case to report failed page properly
6230 		 * on tracepoint in test_pages_isolated()
6231 		 */
6232 		if (outer_start + (1UL << order) <= start)
6233 			outer_start = start;
6234 	}
6235 
6236 	/* Make sure the range is really isolated. */
6237 	if (test_pages_isolated(outer_start, end, 0)) {
6238 		ret = -EBUSY;
6239 		goto done;
6240 	}
6241 
6242 	/* Grab isolated pages from freelists. */
6243 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6244 	if (!outer_end) {
6245 		ret = -EBUSY;
6246 		goto done;
6247 	}
6248 
6249 	/* Free head and tail (if any) */
6250 	if (start != outer_start)
6251 		free_contig_range(outer_start, start - outer_start);
6252 	if (end != outer_end)
6253 		free_contig_range(end, outer_end - end);
6254 
6255 done:
6256 	undo_isolate_page_range(start, end, migratetype);
6257 	return ret;
6258 }
6259 EXPORT_SYMBOL(alloc_contig_range);
6260 
6261 static int __alloc_contig_pages(unsigned long start_pfn,
6262 				unsigned long nr_pages, gfp_t gfp_mask)
6263 {
6264 	unsigned long end_pfn = start_pfn + nr_pages;
6265 
6266 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6267 				  gfp_mask);
6268 }
6269 
6270 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6271 				   unsigned long nr_pages)
6272 {
6273 	unsigned long i, end_pfn = start_pfn + nr_pages;
6274 	struct page *page;
6275 
6276 	for (i = start_pfn; i < end_pfn; i++) {
6277 		page = pfn_to_online_page(i);
6278 		if (!page)
6279 			return false;
6280 
6281 		if (page_zone(page) != z)
6282 			return false;
6283 
6284 		if (PageReserved(page))
6285 			return false;
6286 
6287 		if (PageHuge(page))
6288 			return false;
6289 	}
6290 	return true;
6291 }
6292 
6293 static bool zone_spans_last_pfn(const struct zone *zone,
6294 				unsigned long start_pfn, unsigned long nr_pages)
6295 {
6296 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6297 
6298 	return zone_spans_pfn(zone, last_pfn);
6299 }
6300 
6301 /**
6302  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6303  * @nr_pages:	Number of contiguous pages to allocate
6304  * @gfp_mask:	GFP mask to limit search and used during compaction
6305  * @nid:	Target node
6306  * @nodemask:	Mask for other possible nodes
6307  *
6308  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6309  * on an applicable zonelist to find a contiguous pfn range which can then be
6310  * tried for allocation with alloc_contig_range(). This routine is intended
6311  * for allocation requests which can not be fulfilled with the buddy allocator.
6312  *
6313  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6314  * power of two, then allocated range is also guaranteed to be aligned to same
6315  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6316  *
6317  * Allocated pages can be freed with free_contig_range() or by manually calling
6318  * __free_page() on each allocated page.
6319  *
6320  * Return: pointer to contiguous pages on success, or NULL if not successful.
6321  */
6322 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6323 				int nid, nodemask_t *nodemask)
6324 {
6325 	unsigned long ret, pfn, flags;
6326 	struct zonelist *zonelist;
6327 	struct zone *zone;
6328 	struct zoneref *z;
6329 
6330 	zonelist = node_zonelist(nid, gfp_mask);
6331 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6332 					gfp_zone(gfp_mask), nodemask) {
6333 		spin_lock_irqsave(&zone->lock, flags);
6334 
6335 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6336 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6337 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6338 				/*
6339 				 * We release the zone lock here because
6340 				 * alloc_contig_range() will also lock the zone
6341 				 * at some point. If there's an allocation
6342 				 * spinning on this lock, it may win the race
6343 				 * and cause alloc_contig_range() to fail...
6344 				 */
6345 				spin_unlock_irqrestore(&zone->lock, flags);
6346 				ret = __alloc_contig_pages(pfn, nr_pages,
6347 							gfp_mask);
6348 				if (!ret)
6349 					return pfn_to_page(pfn);
6350 				spin_lock_irqsave(&zone->lock, flags);
6351 			}
6352 			pfn += nr_pages;
6353 		}
6354 		spin_unlock_irqrestore(&zone->lock, flags);
6355 	}
6356 	return NULL;
6357 }
6358 #endif /* CONFIG_CONTIG_ALLOC */
6359 
6360 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6361 {
6362 	unsigned long count = 0;
6363 
6364 	for (; nr_pages--; pfn++) {
6365 		struct page *page = pfn_to_page(pfn);
6366 
6367 		count += page_count(page) != 1;
6368 		__free_page(page);
6369 	}
6370 	WARN(count != 0, "%lu pages are still in use!\n", count);
6371 }
6372 EXPORT_SYMBOL(free_contig_range);
6373 
6374 /*
6375  * Effectively disable pcplists for the zone by setting the high limit to 0
6376  * and draining all cpus. A concurrent page freeing on another CPU that's about
6377  * to put the page on pcplist will either finish before the drain and the page
6378  * will be drained, or observe the new high limit and skip the pcplist.
6379  *
6380  * Must be paired with a call to zone_pcp_enable().
6381  */
6382 void zone_pcp_disable(struct zone *zone)
6383 {
6384 	mutex_lock(&pcp_batch_high_lock);
6385 	__zone_set_pageset_high_and_batch(zone, 0, 1);
6386 	__drain_all_pages(zone, true);
6387 }
6388 
6389 void zone_pcp_enable(struct zone *zone)
6390 {
6391 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
6392 	mutex_unlock(&pcp_batch_high_lock);
6393 }
6394 
6395 void zone_pcp_reset(struct zone *zone)
6396 {
6397 	int cpu;
6398 	struct per_cpu_zonestat *pzstats;
6399 
6400 	if (zone->per_cpu_pageset != &boot_pageset) {
6401 		for_each_online_cpu(cpu) {
6402 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6403 			drain_zonestat(zone, pzstats);
6404 		}
6405 		free_percpu(zone->per_cpu_pageset);
6406 		zone->per_cpu_pageset = &boot_pageset;
6407 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6408 			free_percpu(zone->per_cpu_zonestats);
6409 			zone->per_cpu_zonestats = &boot_zonestats;
6410 		}
6411 	}
6412 }
6413 
6414 #ifdef CONFIG_MEMORY_HOTREMOVE
6415 /*
6416  * All pages in the range must be in a single zone, must not contain holes,
6417  * must span full sections, and must be isolated before calling this function.
6418  */
6419 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6420 {
6421 	unsigned long pfn = start_pfn;
6422 	struct page *page;
6423 	struct zone *zone;
6424 	unsigned int order;
6425 	unsigned long flags;
6426 
6427 	offline_mem_sections(pfn, end_pfn);
6428 	zone = page_zone(pfn_to_page(pfn));
6429 	spin_lock_irqsave(&zone->lock, flags);
6430 	while (pfn < end_pfn) {
6431 		page = pfn_to_page(pfn);
6432 		/*
6433 		 * The HWPoisoned page may be not in buddy system, and
6434 		 * page_count() is not 0.
6435 		 */
6436 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6437 			pfn++;
6438 			continue;
6439 		}
6440 		/*
6441 		 * At this point all remaining PageOffline() pages have a
6442 		 * reference count of 0 and can simply be skipped.
6443 		 */
6444 		if (PageOffline(page)) {
6445 			BUG_ON(page_count(page));
6446 			BUG_ON(PageBuddy(page));
6447 			pfn++;
6448 			continue;
6449 		}
6450 
6451 		BUG_ON(page_count(page));
6452 		BUG_ON(!PageBuddy(page));
6453 		order = buddy_order(page);
6454 		del_page_from_free_list(page, zone, order);
6455 		pfn += (1 << order);
6456 	}
6457 	spin_unlock_irqrestore(&zone->lock, flags);
6458 }
6459 #endif
6460 
6461 /*
6462  * This function returns a stable result only if called under zone lock.
6463  */
6464 bool is_free_buddy_page(struct page *page)
6465 {
6466 	unsigned long pfn = page_to_pfn(page);
6467 	unsigned int order;
6468 
6469 	for (order = 0; order <= MAX_ORDER; order++) {
6470 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6471 
6472 		if (PageBuddy(page_head) &&
6473 		    buddy_order_unsafe(page_head) >= order)
6474 			break;
6475 	}
6476 
6477 	return order <= MAX_ORDER;
6478 }
6479 EXPORT_SYMBOL(is_free_buddy_page);
6480 
6481 #ifdef CONFIG_MEMORY_FAILURE
6482 /*
6483  * Break down a higher-order page in sub-pages, and keep our target out of
6484  * buddy allocator.
6485  */
6486 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6487 				   struct page *target, int low, int high,
6488 				   int migratetype)
6489 {
6490 	unsigned long size = 1 << high;
6491 	struct page *current_buddy, *next_page;
6492 
6493 	while (high > low) {
6494 		high--;
6495 		size >>= 1;
6496 
6497 		if (target >= &page[size]) {
6498 			next_page = page + size;
6499 			current_buddy = page;
6500 		} else {
6501 			next_page = page;
6502 			current_buddy = page + size;
6503 		}
6504 
6505 		if (set_page_guard(zone, current_buddy, high, migratetype))
6506 			continue;
6507 
6508 		if (current_buddy != target) {
6509 			add_to_free_list(current_buddy, zone, high, migratetype);
6510 			set_buddy_order(current_buddy, high);
6511 			page = next_page;
6512 		}
6513 	}
6514 }
6515 
6516 /*
6517  * Take a page that will be marked as poisoned off the buddy allocator.
6518  */
6519 bool take_page_off_buddy(struct page *page)
6520 {
6521 	struct zone *zone = page_zone(page);
6522 	unsigned long pfn = page_to_pfn(page);
6523 	unsigned long flags;
6524 	unsigned int order;
6525 	bool ret = false;
6526 
6527 	spin_lock_irqsave(&zone->lock, flags);
6528 	for (order = 0; order <= MAX_ORDER; order++) {
6529 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6530 		int page_order = buddy_order(page_head);
6531 
6532 		if (PageBuddy(page_head) && page_order >= order) {
6533 			unsigned long pfn_head = page_to_pfn(page_head);
6534 			int migratetype = get_pfnblock_migratetype(page_head,
6535 								   pfn_head);
6536 
6537 			del_page_from_free_list(page_head, zone, page_order);
6538 			break_down_buddy_pages(zone, page_head, page, 0,
6539 						page_order, migratetype);
6540 			SetPageHWPoisonTakenOff(page);
6541 			if (!is_migrate_isolate(migratetype))
6542 				__mod_zone_freepage_state(zone, -1, migratetype);
6543 			ret = true;
6544 			break;
6545 		}
6546 		if (page_count(page_head) > 0)
6547 			break;
6548 	}
6549 	spin_unlock_irqrestore(&zone->lock, flags);
6550 	return ret;
6551 }
6552 
6553 /*
6554  * Cancel takeoff done by take_page_off_buddy().
6555  */
6556 bool put_page_back_buddy(struct page *page)
6557 {
6558 	struct zone *zone = page_zone(page);
6559 	unsigned long pfn = page_to_pfn(page);
6560 	unsigned long flags;
6561 	int migratetype = get_pfnblock_migratetype(page, pfn);
6562 	bool ret = false;
6563 
6564 	spin_lock_irqsave(&zone->lock, flags);
6565 	if (put_page_testzero(page)) {
6566 		ClearPageHWPoisonTakenOff(page);
6567 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6568 		if (TestClearPageHWPoison(page)) {
6569 			ret = true;
6570 		}
6571 	}
6572 	spin_unlock_irqrestore(&zone->lock, flags);
6573 
6574 	return ret;
6575 }
6576 #endif
6577 
6578 #ifdef CONFIG_ZONE_DMA
6579 bool has_managed_dma(void)
6580 {
6581 	struct pglist_data *pgdat;
6582 
6583 	for_each_online_pgdat(pgdat) {
6584 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6585 
6586 		if (managed_zone(zone))
6587 			return true;
6588 	}
6589 	return false;
6590 }
6591 #endif /* CONFIG_ZONE_DMA */
6592 
6593 #ifdef CONFIG_UNACCEPTED_MEMORY
6594 
6595 /* Counts number of zones with unaccepted pages. */
6596 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6597 
6598 static bool lazy_accept = true;
6599 
6600 static int __init accept_memory_parse(char *p)
6601 {
6602 	if (!strcmp(p, "lazy")) {
6603 		lazy_accept = true;
6604 		return 0;
6605 	} else if (!strcmp(p, "eager")) {
6606 		lazy_accept = false;
6607 		return 0;
6608 	} else {
6609 		return -EINVAL;
6610 	}
6611 }
6612 early_param("accept_memory", accept_memory_parse);
6613 
6614 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6615 {
6616 	phys_addr_t start = page_to_phys(page);
6617 	phys_addr_t end = start + (PAGE_SIZE << order);
6618 
6619 	return range_contains_unaccepted_memory(start, end);
6620 }
6621 
6622 static void accept_page(struct page *page, unsigned int order)
6623 {
6624 	phys_addr_t start = page_to_phys(page);
6625 
6626 	accept_memory(start, start + (PAGE_SIZE << order));
6627 }
6628 
6629 static bool try_to_accept_memory_one(struct zone *zone)
6630 {
6631 	unsigned long flags;
6632 	struct page *page;
6633 	bool last;
6634 
6635 	if (list_empty(&zone->unaccepted_pages))
6636 		return false;
6637 
6638 	spin_lock_irqsave(&zone->lock, flags);
6639 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6640 					struct page, lru);
6641 	if (!page) {
6642 		spin_unlock_irqrestore(&zone->lock, flags);
6643 		return false;
6644 	}
6645 
6646 	list_del(&page->lru);
6647 	last = list_empty(&zone->unaccepted_pages);
6648 
6649 	__mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6650 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6651 	spin_unlock_irqrestore(&zone->lock, flags);
6652 
6653 	accept_page(page, MAX_ORDER);
6654 
6655 	__free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6656 
6657 	if (last)
6658 		static_branch_dec(&zones_with_unaccepted_pages);
6659 
6660 	return true;
6661 }
6662 
6663 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6664 {
6665 	long to_accept;
6666 	int ret = false;
6667 
6668 	/* How much to accept to get to high watermark? */
6669 	to_accept = high_wmark_pages(zone) -
6670 		    (zone_page_state(zone, NR_FREE_PAGES) -
6671 		    __zone_watermark_unusable_free(zone, order, 0));
6672 
6673 	/* Accept at least one page */
6674 	do {
6675 		if (!try_to_accept_memory_one(zone))
6676 			break;
6677 		ret = true;
6678 		to_accept -= MAX_ORDER_NR_PAGES;
6679 	} while (to_accept > 0);
6680 
6681 	return ret;
6682 }
6683 
6684 static inline bool has_unaccepted_memory(void)
6685 {
6686 	return static_branch_unlikely(&zones_with_unaccepted_pages);
6687 }
6688 
6689 static bool __free_unaccepted(struct page *page)
6690 {
6691 	struct zone *zone = page_zone(page);
6692 	unsigned long flags;
6693 	bool first = false;
6694 
6695 	if (!lazy_accept)
6696 		return false;
6697 
6698 	spin_lock_irqsave(&zone->lock, flags);
6699 	first = list_empty(&zone->unaccepted_pages);
6700 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6701 	__mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6702 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6703 	spin_unlock_irqrestore(&zone->lock, flags);
6704 
6705 	if (first)
6706 		static_branch_inc(&zones_with_unaccepted_pages);
6707 
6708 	return true;
6709 }
6710 
6711 #else
6712 
6713 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6714 {
6715 	return false;
6716 }
6717 
6718 static void accept_page(struct page *page, unsigned int order)
6719 {
6720 }
6721 
6722 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6723 {
6724 	return false;
6725 }
6726 
6727 static inline bool has_unaccepted_memory(void)
6728 {
6729 	return false;
6730 }
6731 
6732 static bool __free_unaccepted(struct page *page)
6733 {
6734 	BUILD_BUG();
6735 	return false;
6736 }
6737 
6738 #endif /* CONFIG_UNACCEPTED_MEMORY */
6739