xref: /openbmc/linux/mm/page_alloc.c (revision b246a9d2)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 
68 #include <asm/sections.h>
69 #include <asm/tlbflush.h>
70 #include <asm/div64.h>
71 #include "internal.h"
72 
73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74 static DEFINE_MUTEX(pcp_batch_high_lock);
75 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
76 
77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78 DEFINE_PER_CPU(int, numa_node);
79 EXPORT_PER_CPU_SYMBOL(numa_node);
80 #endif
81 
82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 /*
84  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87  * defined in <linux/topology.h>.
88  */
89 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
90 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
91 int _node_numa_mem_[MAX_NUMNODES];
92 #endif
93 
94 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
95 volatile unsigned long latent_entropy __latent_entropy;
96 EXPORT_SYMBOL(latent_entropy);
97 #endif
98 
99 /*
100  * Array of node states.
101  */
102 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
103 	[N_POSSIBLE] = NODE_MASK_ALL,
104 	[N_ONLINE] = { { [0] = 1UL } },
105 #ifndef CONFIG_NUMA
106 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
107 #ifdef CONFIG_HIGHMEM
108 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
109 #endif
110 #ifdef CONFIG_MOVABLE_NODE
111 	[N_MEMORY] = { { [0] = 1UL } },
112 #endif
113 	[N_CPU] = { { [0] = 1UL } },
114 #endif	/* NUMA */
115 };
116 EXPORT_SYMBOL(node_states);
117 
118 /* Protect totalram_pages and zone->managed_pages */
119 static DEFINE_SPINLOCK(managed_page_count_lock);
120 
121 unsigned long totalram_pages __read_mostly;
122 unsigned long totalreserve_pages __read_mostly;
123 unsigned long totalcma_pages __read_mostly;
124 
125 int percpu_pagelist_fraction;
126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
127 
128 /*
129  * A cached value of the page's pageblock's migratetype, used when the page is
130  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132  * Also the migratetype set in the page does not necessarily match the pcplist
133  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134  * other index - this ensures that it will be put on the correct CMA freelist.
135  */
136 static inline int get_pcppage_migratetype(struct page *page)
137 {
138 	return page->index;
139 }
140 
141 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
142 {
143 	page->index = migratetype;
144 }
145 
146 #ifdef CONFIG_PM_SLEEP
147 /*
148  * The following functions are used by the suspend/hibernate code to temporarily
149  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150  * while devices are suspended.  To avoid races with the suspend/hibernate code,
151  * they should always be called with pm_mutex held (gfp_allowed_mask also should
152  * only be modified with pm_mutex held, unless the suspend/hibernate code is
153  * guaranteed not to run in parallel with that modification).
154  */
155 
156 static gfp_t saved_gfp_mask;
157 
158 void pm_restore_gfp_mask(void)
159 {
160 	WARN_ON(!mutex_is_locked(&pm_mutex));
161 	if (saved_gfp_mask) {
162 		gfp_allowed_mask = saved_gfp_mask;
163 		saved_gfp_mask = 0;
164 	}
165 }
166 
167 void pm_restrict_gfp_mask(void)
168 {
169 	WARN_ON(!mutex_is_locked(&pm_mutex));
170 	WARN_ON(saved_gfp_mask);
171 	saved_gfp_mask = gfp_allowed_mask;
172 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
173 }
174 
175 bool pm_suspended_storage(void)
176 {
177 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
178 		return false;
179 	return true;
180 }
181 #endif /* CONFIG_PM_SLEEP */
182 
183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184 unsigned int pageblock_order __read_mostly;
185 #endif
186 
187 static void __free_pages_ok(struct page *page, unsigned int order);
188 
189 /*
190  * results with 256, 32 in the lowmem_reserve sysctl:
191  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192  *	1G machine -> (16M dma, 784M normal, 224M high)
193  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
195  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
196  *
197  * TBD: should special case ZONE_DMA32 machines here - in those we normally
198  * don't need any ZONE_NORMAL reservation
199  */
200 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
201 #ifdef CONFIG_ZONE_DMA
202 	 256,
203 #endif
204 #ifdef CONFIG_ZONE_DMA32
205 	 256,
206 #endif
207 #ifdef CONFIG_HIGHMEM
208 	 32,
209 #endif
210 	 32,
211 };
212 
213 EXPORT_SYMBOL(totalram_pages);
214 
215 static char * const zone_names[MAX_NR_ZONES] = {
216 #ifdef CONFIG_ZONE_DMA
217 	 "DMA",
218 #endif
219 #ifdef CONFIG_ZONE_DMA32
220 	 "DMA32",
221 #endif
222 	 "Normal",
223 #ifdef CONFIG_HIGHMEM
224 	 "HighMem",
225 #endif
226 	 "Movable",
227 #ifdef CONFIG_ZONE_DEVICE
228 	 "Device",
229 #endif
230 };
231 
232 char * const migratetype_names[MIGRATE_TYPES] = {
233 	"Unmovable",
234 	"Movable",
235 	"Reclaimable",
236 	"HighAtomic",
237 #ifdef CONFIG_CMA
238 	"CMA",
239 #endif
240 #ifdef CONFIG_MEMORY_ISOLATION
241 	"Isolate",
242 #endif
243 };
244 
245 compound_page_dtor * const compound_page_dtors[] = {
246 	NULL,
247 	free_compound_page,
248 #ifdef CONFIG_HUGETLB_PAGE
249 	free_huge_page,
250 #endif
251 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
252 	free_transhuge_page,
253 #endif
254 };
255 
256 int min_free_kbytes = 1024;
257 int user_min_free_kbytes = -1;
258 int watermark_scale_factor = 10;
259 
260 static unsigned long __meminitdata nr_kernel_pages;
261 static unsigned long __meminitdata nr_all_pages;
262 static unsigned long __meminitdata dma_reserve;
263 
264 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
265 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
266 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
267 static unsigned long __initdata required_kernelcore;
268 static unsigned long __initdata required_movablecore;
269 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
270 static bool mirrored_kernelcore;
271 
272 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
273 int movable_zone;
274 EXPORT_SYMBOL(movable_zone);
275 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
276 
277 #if MAX_NUMNODES > 1
278 int nr_node_ids __read_mostly = MAX_NUMNODES;
279 int nr_online_nodes __read_mostly = 1;
280 EXPORT_SYMBOL(nr_node_ids);
281 EXPORT_SYMBOL(nr_online_nodes);
282 #endif
283 
284 int page_group_by_mobility_disabled __read_mostly;
285 
286 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
287 static inline void reset_deferred_meminit(pg_data_t *pgdat)
288 {
289 	pgdat->first_deferred_pfn = ULONG_MAX;
290 }
291 
292 /* Returns true if the struct page for the pfn is uninitialised */
293 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
294 {
295 	int nid = early_pfn_to_nid(pfn);
296 
297 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 		return true;
299 
300 	return false;
301 }
302 
303 /*
304  * Returns false when the remaining initialisation should be deferred until
305  * later in the boot cycle when it can be parallelised.
306  */
307 static inline bool update_defer_init(pg_data_t *pgdat,
308 				unsigned long pfn, unsigned long zone_end,
309 				unsigned long *nr_initialised)
310 {
311 	unsigned long max_initialise;
312 
313 	/* Always populate low zones for address-contrained allocations */
314 	if (zone_end < pgdat_end_pfn(pgdat))
315 		return true;
316 	/*
317 	 * Initialise at least 2G of a node but also take into account that
318 	 * two large system hashes that can take up 1GB for 0.25TB/node.
319 	 */
320 	max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 		(pgdat->node_spanned_pages >> 8));
322 
323 	(*nr_initialised)++;
324 	if ((*nr_initialised > max_initialise) &&
325 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 		pgdat->first_deferred_pfn = pfn;
327 		return false;
328 	}
329 
330 	return true;
331 }
332 #else
333 static inline void reset_deferred_meminit(pg_data_t *pgdat)
334 {
335 }
336 
337 static inline bool early_page_uninitialised(unsigned long pfn)
338 {
339 	return false;
340 }
341 
342 static inline bool update_defer_init(pg_data_t *pgdat,
343 				unsigned long pfn, unsigned long zone_end,
344 				unsigned long *nr_initialised)
345 {
346 	return true;
347 }
348 #endif
349 
350 /* Return a pointer to the bitmap storing bits affecting a block of pages */
351 static inline unsigned long *get_pageblock_bitmap(struct page *page,
352 							unsigned long pfn)
353 {
354 #ifdef CONFIG_SPARSEMEM
355 	return __pfn_to_section(pfn)->pageblock_flags;
356 #else
357 	return page_zone(page)->pageblock_flags;
358 #endif /* CONFIG_SPARSEMEM */
359 }
360 
361 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
362 {
363 #ifdef CONFIG_SPARSEMEM
364 	pfn &= (PAGES_PER_SECTION-1);
365 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
366 #else
367 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
368 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
369 #endif /* CONFIG_SPARSEMEM */
370 }
371 
372 /**
373  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
374  * @page: The page within the block of interest
375  * @pfn: The target page frame number
376  * @end_bitidx: The last bit of interest to retrieve
377  * @mask: mask of bits that the caller is interested in
378  *
379  * Return: pageblock_bits flags
380  */
381 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
382 					unsigned long pfn,
383 					unsigned long end_bitidx,
384 					unsigned long mask)
385 {
386 	unsigned long *bitmap;
387 	unsigned long bitidx, word_bitidx;
388 	unsigned long word;
389 
390 	bitmap = get_pageblock_bitmap(page, pfn);
391 	bitidx = pfn_to_bitidx(page, pfn);
392 	word_bitidx = bitidx / BITS_PER_LONG;
393 	bitidx &= (BITS_PER_LONG-1);
394 
395 	word = bitmap[word_bitidx];
396 	bitidx += end_bitidx;
397 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
398 }
399 
400 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
401 					unsigned long end_bitidx,
402 					unsigned long mask)
403 {
404 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
405 }
406 
407 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
408 {
409 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
410 }
411 
412 /**
413  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
414  * @page: The page within the block of interest
415  * @flags: The flags to set
416  * @pfn: The target page frame number
417  * @end_bitidx: The last bit of interest
418  * @mask: mask of bits that the caller is interested in
419  */
420 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
421 					unsigned long pfn,
422 					unsigned long end_bitidx,
423 					unsigned long mask)
424 {
425 	unsigned long *bitmap;
426 	unsigned long bitidx, word_bitidx;
427 	unsigned long old_word, word;
428 
429 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
430 
431 	bitmap = get_pageblock_bitmap(page, pfn);
432 	bitidx = pfn_to_bitidx(page, pfn);
433 	word_bitidx = bitidx / BITS_PER_LONG;
434 	bitidx &= (BITS_PER_LONG-1);
435 
436 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
437 
438 	bitidx += end_bitidx;
439 	mask <<= (BITS_PER_LONG - bitidx - 1);
440 	flags <<= (BITS_PER_LONG - bitidx - 1);
441 
442 	word = READ_ONCE(bitmap[word_bitidx]);
443 	for (;;) {
444 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
445 		if (word == old_word)
446 			break;
447 		word = old_word;
448 	}
449 }
450 
451 void set_pageblock_migratetype(struct page *page, int migratetype)
452 {
453 	if (unlikely(page_group_by_mobility_disabled &&
454 		     migratetype < MIGRATE_PCPTYPES))
455 		migratetype = MIGRATE_UNMOVABLE;
456 
457 	set_pageblock_flags_group(page, (unsigned long)migratetype,
458 					PB_migrate, PB_migrate_end);
459 }
460 
461 #ifdef CONFIG_DEBUG_VM
462 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
463 {
464 	int ret = 0;
465 	unsigned seq;
466 	unsigned long pfn = page_to_pfn(page);
467 	unsigned long sp, start_pfn;
468 
469 	do {
470 		seq = zone_span_seqbegin(zone);
471 		start_pfn = zone->zone_start_pfn;
472 		sp = zone->spanned_pages;
473 		if (!zone_spans_pfn(zone, pfn))
474 			ret = 1;
475 	} while (zone_span_seqretry(zone, seq));
476 
477 	if (ret)
478 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
479 			pfn, zone_to_nid(zone), zone->name,
480 			start_pfn, start_pfn + sp);
481 
482 	return ret;
483 }
484 
485 static int page_is_consistent(struct zone *zone, struct page *page)
486 {
487 	if (!pfn_valid_within(page_to_pfn(page)))
488 		return 0;
489 	if (zone != page_zone(page))
490 		return 0;
491 
492 	return 1;
493 }
494 /*
495  * Temporary debugging check for pages not lying within a given zone.
496  */
497 static int bad_range(struct zone *zone, struct page *page)
498 {
499 	if (page_outside_zone_boundaries(zone, page))
500 		return 1;
501 	if (!page_is_consistent(zone, page))
502 		return 1;
503 
504 	return 0;
505 }
506 #else
507 static inline int bad_range(struct zone *zone, struct page *page)
508 {
509 	return 0;
510 }
511 #endif
512 
513 static void bad_page(struct page *page, const char *reason,
514 		unsigned long bad_flags)
515 {
516 	static unsigned long resume;
517 	static unsigned long nr_shown;
518 	static unsigned long nr_unshown;
519 
520 	/*
521 	 * Allow a burst of 60 reports, then keep quiet for that minute;
522 	 * or allow a steady drip of one report per second.
523 	 */
524 	if (nr_shown == 60) {
525 		if (time_before(jiffies, resume)) {
526 			nr_unshown++;
527 			goto out;
528 		}
529 		if (nr_unshown) {
530 			pr_alert(
531 			      "BUG: Bad page state: %lu messages suppressed\n",
532 				nr_unshown);
533 			nr_unshown = 0;
534 		}
535 		nr_shown = 0;
536 	}
537 	if (nr_shown++ == 0)
538 		resume = jiffies + 60 * HZ;
539 
540 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
541 		current->comm, page_to_pfn(page));
542 	__dump_page(page, reason);
543 	bad_flags &= page->flags;
544 	if (bad_flags)
545 		pr_alert("bad because of flags: %#lx(%pGp)\n",
546 						bad_flags, &bad_flags);
547 	dump_page_owner(page);
548 
549 	print_modules();
550 	dump_stack();
551 out:
552 	/* Leave bad fields for debug, except PageBuddy could make trouble */
553 	page_mapcount_reset(page); /* remove PageBuddy */
554 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
555 }
556 
557 /*
558  * Higher-order pages are called "compound pages".  They are structured thusly:
559  *
560  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
561  *
562  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
563  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
564  *
565  * The first tail page's ->compound_dtor holds the offset in array of compound
566  * page destructors. See compound_page_dtors.
567  *
568  * The first tail page's ->compound_order holds the order of allocation.
569  * This usage means that zero-order pages may not be compound.
570  */
571 
572 void free_compound_page(struct page *page)
573 {
574 	__free_pages_ok(page, compound_order(page));
575 }
576 
577 void prep_compound_page(struct page *page, unsigned int order)
578 {
579 	int i;
580 	int nr_pages = 1 << order;
581 
582 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
583 	set_compound_order(page, order);
584 	__SetPageHead(page);
585 	for (i = 1; i < nr_pages; i++) {
586 		struct page *p = page + i;
587 		set_page_count(p, 0);
588 		p->mapping = TAIL_MAPPING;
589 		set_compound_head(p, page);
590 	}
591 	atomic_set(compound_mapcount_ptr(page), -1);
592 }
593 
594 #ifdef CONFIG_DEBUG_PAGEALLOC
595 unsigned int _debug_guardpage_minorder;
596 bool _debug_pagealloc_enabled __read_mostly
597 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
598 EXPORT_SYMBOL(_debug_pagealloc_enabled);
599 bool _debug_guardpage_enabled __read_mostly;
600 
601 static int __init early_debug_pagealloc(char *buf)
602 {
603 	if (!buf)
604 		return -EINVAL;
605 	return kstrtobool(buf, &_debug_pagealloc_enabled);
606 }
607 early_param("debug_pagealloc", early_debug_pagealloc);
608 
609 static bool need_debug_guardpage(void)
610 {
611 	/* If we don't use debug_pagealloc, we don't need guard page */
612 	if (!debug_pagealloc_enabled())
613 		return false;
614 
615 	if (!debug_guardpage_minorder())
616 		return false;
617 
618 	return true;
619 }
620 
621 static void init_debug_guardpage(void)
622 {
623 	if (!debug_pagealloc_enabled())
624 		return;
625 
626 	if (!debug_guardpage_minorder())
627 		return;
628 
629 	_debug_guardpage_enabled = true;
630 }
631 
632 struct page_ext_operations debug_guardpage_ops = {
633 	.need = need_debug_guardpage,
634 	.init = init_debug_guardpage,
635 };
636 
637 static int __init debug_guardpage_minorder_setup(char *buf)
638 {
639 	unsigned long res;
640 
641 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
642 		pr_err("Bad debug_guardpage_minorder value\n");
643 		return 0;
644 	}
645 	_debug_guardpage_minorder = res;
646 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
647 	return 0;
648 }
649 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
650 
651 static inline bool set_page_guard(struct zone *zone, struct page *page,
652 				unsigned int order, int migratetype)
653 {
654 	struct page_ext *page_ext;
655 
656 	if (!debug_guardpage_enabled())
657 		return false;
658 
659 	if (order >= debug_guardpage_minorder())
660 		return false;
661 
662 	page_ext = lookup_page_ext(page);
663 	if (unlikely(!page_ext))
664 		return false;
665 
666 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
667 
668 	INIT_LIST_HEAD(&page->lru);
669 	set_page_private(page, order);
670 	/* Guard pages are not available for any usage */
671 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
672 
673 	return true;
674 }
675 
676 static inline void clear_page_guard(struct zone *zone, struct page *page,
677 				unsigned int order, int migratetype)
678 {
679 	struct page_ext *page_ext;
680 
681 	if (!debug_guardpage_enabled())
682 		return;
683 
684 	page_ext = lookup_page_ext(page);
685 	if (unlikely(!page_ext))
686 		return;
687 
688 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
689 
690 	set_page_private(page, 0);
691 	if (!is_migrate_isolate(migratetype))
692 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
693 }
694 #else
695 struct page_ext_operations debug_guardpage_ops;
696 static inline bool set_page_guard(struct zone *zone, struct page *page,
697 			unsigned int order, int migratetype) { return false; }
698 static inline void clear_page_guard(struct zone *zone, struct page *page,
699 				unsigned int order, int migratetype) {}
700 #endif
701 
702 static inline void set_page_order(struct page *page, unsigned int order)
703 {
704 	set_page_private(page, order);
705 	__SetPageBuddy(page);
706 }
707 
708 static inline void rmv_page_order(struct page *page)
709 {
710 	__ClearPageBuddy(page);
711 	set_page_private(page, 0);
712 }
713 
714 /*
715  * This function checks whether a page is free && is the buddy
716  * we can do coalesce a page and its buddy if
717  * (a) the buddy is not in a hole &&
718  * (b) the buddy is in the buddy system &&
719  * (c) a page and its buddy have the same order &&
720  * (d) a page and its buddy are in the same zone.
721  *
722  * For recording whether a page is in the buddy system, we set ->_mapcount
723  * PAGE_BUDDY_MAPCOUNT_VALUE.
724  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
725  * serialized by zone->lock.
726  *
727  * For recording page's order, we use page_private(page).
728  */
729 static inline int page_is_buddy(struct page *page, struct page *buddy,
730 							unsigned int order)
731 {
732 	if (!pfn_valid_within(page_to_pfn(buddy)))
733 		return 0;
734 
735 	if (page_is_guard(buddy) && page_order(buddy) == order) {
736 		if (page_zone_id(page) != page_zone_id(buddy))
737 			return 0;
738 
739 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
740 
741 		return 1;
742 	}
743 
744 	if (PageBuddy(buddy) && page_order(buddy) == order) {
745 		/*
746 		 * zone check is done late to avoid uselessly
747 		 * calculating zone/node ids for pages that could
748 		 * never merge.
749 		 */
750 		if (page_zone_id(page) != page_zone_id(buddy))
751 			return 0;
752 
753 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
754 
755 		return 1;
756 	}
757 	return 0;
758 }
759 
760 /*
761  * Freeing function for a buddy system allocator.
762  *
763  * The concept of a buddy system is to maintain direct-mapped table
764  * (containing bit values) for memory blocks of various "orders".
765  * The bottom level table contains the map for the smallest allocatable
766  * units of memory (here, pages), and each level above it describes
767  * pairs of units from the levels below, hence, "buddies".
768  * At a high level, all that happens here is marking the table entry
769  * at the bottom level available, and propagating the changes upward
770  * as necessary, plus some accounting needed to play nicely with other
771  * parts of the VM system.
772  * At each level, we keep a list of pages, which are heads of continuous
773  * free pages of length of (1 << order) and marked with _mapcount
774  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
775  * field.
776  * So when we are allocating or freeing one, we can derive the state of the
777  * other.  That is, if we allocate a small block, and both were
778  * free, the remainder of the region must be split into blocks.
779  * If a block is freed, and its buddy is also free, then this
780  * triggers coalescing into a block of larger size.
781  *
782  * -- nyc
783  */
784 
785 static inline void __free_one_page(struct page *page,
786 		unsigned long pfn,
787 		struct zone *zone, unsigned int order,
788 		int migratetype)
789 {
790 	unsigned long page_idx;
791 	unsigned long combined_idx;
792 	unsigned long uninitialized_var(buddy_idx);
793 	struct page *buddy;
794 	unsigned int max_order;
795 
796 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
797 
798 	VM_BUG_ON(!zone_is_initialized(zone));
799 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
800 
801 	VM_BUG_ON(migratetype == -1);
802 	if (likely(!is_migrate_isolate(migratetype)))
803 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
804 
805 	page_idx = pfn & ((1 << MAX_ORDER) - 1);
806 
807 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
808 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
809 
810 continue_merging:
811 	while (order < max_order - 1) {
812 		buddy_idx = __find_buddy_index(page_idx, order);
813 		buddy = page + (buddy_idx - page_idx);
814 		if (!page_is_buddy(page, buddy, order))
815 			goto done_merging;
816 		/*
817 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
818 		 * merge with it and move up one order.
819 		 */
820 		if (page_is_guard(buddy)) {
821 			clear_page_guard(zone, buddy, order, migratetype);
822 		} else {
823 			list_del(&buddy->lru);
824 			zone->free_area[order].nr_free--;
825 			rmv_page_order(buddy);
826 		}
827 		combined_idx = buddy_idx & page_idx;
828 		page = page + (combined_idx - page_idx);
829 		page_idx = combined_idx;
830 		order++;
831 	}
832 	if (max_order < MAX_ORDER) {
833 		/* If we are here, it means order is >= pageblock_order.
834 		 * We want to prevent merge between freepages on isolate
835 		 * pageblock and normal pageblock. Without this, pageblock
836 		 * isolation could cause incorrect freepage or CMA accounting.
837 		 *
838 		 * We don't want to hit this code for the more frequent
839 		 * low-order merging.
840 		 */
841 		if (unlikely(has_isolate_pageblock(zone))) {
842 			int buddy_mt;
843 
844 			buddy_idx = __find_buddy_index(page_idx, order);
845 			buddy = page + (buddy_idx - page_idx);
846 			buddy_mt = get_pageblock_migratetype(buddy);
847 
848 			if (migratetype != buddy_mt
849 					&& (is_migrate_isolate(migratetype) ||
850 						is_migrate_isolate(buddy_mt)))
851 				goto done_merging;
852 		}
853 		max_order++;
854 		goto continue_merging;
855 	}
856 
857 done_merging:
858 	set_page_order(page, order);
859 
860 	/*
861 	 * If this is not the largest possible page, check if the buddy
862 	 * of the next-highest order is free. If it is, it's possible
863 	 * that pages are being freed that will coalesce soon. In case,
864 	 * that is happening, add the free page to the tail of the list
865 	 * so it's less likely to be used soon and more likely to be merged
866 	 * as a higher order page
867 	 */
868 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
869 		struct page *higher_page, *higher_buddy;
870 		combined_idx = buddy_idx & page_idx;
871 		higher_page = page + (combined_idx - page_idx);
872 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
873 		higher_buddy = higher_page + (buddy_idx - combined_idx);
874 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
875 			list_add_tail(&page->lru,
876 				&zone->free_area[order].free_list[migratetype]);
877 			goto out;
878 		}
879 	}
880 
881 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
882 out:
883 	zone->free_area[order].nr_free++;
884 }
885 
886 /*
887  * A bad page could be due to a number of fields. Instead of multiple branches,
888  * try and check multiple fields with one check. The caller must do a detailed
889  * check if necessary.
890  */
891 static inline bool page_expected_state(struct page *page,
892 					unsigned long check_flags)
893 {
894 	if (unlikely(atomic_read(&page->_mapcount) != -1))
895 		return false;
896 
897 	if (unlikely((unsigned long)page->mapping |
898 			page_ref_count(page) |
899 #ifdef CONFIG_MEMCG
900 			(unsigned long)page->mem_cgroup |
901 #endif
902 			(page->flags & check_flags)))
903 		return false;
904 
905 	return true;
906 }
907 
908 static void free_pages_check_bad(struct page *page)
909 {
910 	const char *bad_reason;
911 	unsigned long bad_flags;
912 
913 	bad_reason = NULL;
914 	bad_flags = 0;
915 
916 	if (unlikely(atomic_read(&page->_mapcount) != -1))
917 		bad_reason = "nonzero mapcount";
918 	if (unlikely(page->mapping != NULL))
919 		bad_reason = "non-NULL mapping";
920 	if (unlikely(page_ref_count(page) != 0))
921 		bad_reason = "nonzero _refcount";
922 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
923 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
924 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
925 	}
926 #ifdef CONFIG_MEMCG
927 	if (unlikely(page->mem_cgroup))
928 		bad_reason = "page still charged to cgroup";
929 #endif
930 	bad_page(page, bad_reason, bad_flags);
931 }
932 
933 static inline int free_pages_check(struct page *page)
934 {
935 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
936 		return 0;
937 
938 	/* Something has gone sideways, find it */
939 	free_pages_check_bad(page);
940 	return 1;
941 }
942 
943 static int free_tail_pages_check(struct page *head_page, struct page *page)
944 {
945 	int ret = 1;
946 
947 	/*
948 	 * We rely page->lru.next never has bit 0 set, unless the page
949 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
950 	 */
951 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
952 
953 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
954 		ret = 0;
955 		goto out;
956 	}
957 	switch (page - head_page) {
958 	case 1:
959 		/* the first tail page: ->mapping is compound_mapcount() */
960 		if (unlikely(compound_mapcount(page))) {
961 			bad_page(page, "nonzero compound_mapcount", 0);
962 			goto out;
963 		}
964 		break;
965 	case 2:
966 		/*
967 		 * the second tail page: ->mapping is
968 		 * page_deferred_list().next -- ignore value.
969 		 */
970 		break;
971 	default:
972 		if (page->mapping != TAIL_MAPPING) {
973 			bad_page(page, "corrupted mapping in tail page", 0);
974 			goto out;
975 		}
976 		break;
977 	}
978 	if (unlikely(!PageTail(page))) {
979 		bad_page(page, "PageTail not set", 0);
980 		goto out;
981 	}
982 	if (unlikely(compound_head(page) != head_page)) {
983 		bad_page(page, "compound_head not consistent", 0);
984 		goto out;
985 	}
986 	ret = 0;
987 out:
988 	page->mapping = NULL;
989 	clear_compound_head(page);
990 	return ret;
991 }
992 
993 static __always_inline bool free_pages_prepare(struct page *page,
994 					unsigned int order, bool check_free)
995 {
996 	int bad = 0;
997 
998 	VM_BUG_ON_PAGE(PageTail(page), page);
999 
1000 	trace_mm_page_free(page, order);
1001 	kmemcheck_free_shadow(page, order);
1002 
1003 	/*
1004 	 * Check tail pages before head page information is cleared to
1005 	 * avoid checking PageCompound for order-0 pages.
1006 	 */
1007 	if (unlikely(order)) {
1008 		bool compound = PageCompound(page);
1009 		int i;
1010 
1011 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1012 
1013 		if (compound)
1014 			ClearPageDoubleMap(page);
1015 		for (i = 1; i < (1 << order); i++) {
1016 			if (compound)
1017 				bad += free_tail_pages_check(page, page + i);
1018 			if (unlikely(free_pages_check(page + i))) {
1019 				bad++;
1020 				continue;
1021 			}
1022 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1023 		}
1024 	}
1025 	if (PageMappingFlags(page))
1026 		page->mapping = NULL;
1027 	if (memcg_kmem_enabled() && PageKmemcg(page))
1028 		memcg_kmem_uncharge(page, order);
1029 	if (check_free)
1030 		bad += free_pages_check(page);
1031 	if (bad)
1032 		return false;
1033 
1034 	page_cpupid_reset_last(page);
1035 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1036 	reset_page_owner(page, order);
1037 
1038 	if (!PageHighMem(page)) {
1039 		debug_check_no_locks_freed(page_address(page),
1040 					   PAGE_SIZE << order);
1041 		debug_check_no_obj_freed(page_address(page),
1042 					   PAGE_SIZE << order);
1043 	}
1044 	arch_free_page(page, order);
1045 	kernel_poison_pages(page, 1 << order, 0);
1046 	kernel_map_pages(page, 1 << order, 0);
1047 	kasan_free_pages(page, order);
1048 
1049 	return true;
1050 }
1051 
1052 #ifdef CONFIG_DEBUG_VM
1053 static inline bool free_pcp_prepare(struct page *page)
1054 {
1055 	return free_pages_prepare(page, 0, true);
1056 }
1057 
1058 static inline bool bulkfree_pcp_prepare(struct page *page)
1059 {
1060 	return false;
1061 }
1062 #else
1063 static bool free_pcp_prepare(struct page *page)
1064 {
1065 	return free_pages_prepare(page, 0, false);
1066 }
1067 
1068 static bool bulkfree_pcp_prepare(struct page *page)
1069 {
1070 	return free_pages_check(page);
1071 }
1072 #endif /* CONFIG_DEBUG_VM */
1073 
1074 /*
1075  * Frees a number of pages from the PCP lists
1076  * Assumes all pages on list are in same zone, and of same order.
1077  * count is the number of pages to free.
1078  *
1079  * If the zone was previously in an "all pages pinned" state then look to
1080  * see if this freeing clears that state.
1081  *
1082  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1083  * pinned" detection logic.
1084  */
1085 static void free_pcppages_bulk(struct zone *zone, int count,
1086 					struct per_cpu_pages *pcp)
1087 {
1088 	int migratetype = 0;
1089 	int batch_free = 0;
1090 	unsigned long nr_scanned;
1091 	bool isolated_pageblocks;
1092 
1093 	spin_lock(&zone->lock);
1094 	isolated_pageblocks = has_isolate_pageblock(zone);
1095 	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1096 	if (nr_scanned)
1097 		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1098 
1099 	while (count) {
1100 		struct page *page;
1101 		struct list_head *list;
1102 
1103 		/*
1104 		 * Remove pages from lists in a round-robin fashion. A
1105 		 * batch_free count is maintained that is incremented when an
1106 		 * empty list is encountered.  This is so more pages are freed
1107 		 * off fuller lists instead of spinning excessively around empty
1108 		 * lists
1109 		 */
1110 		do {
1111 			batch_free++;
1112 			if (++migratetype == MIGRATE_PCPTYPES)
1113 				migratetype = 0;
1114 			list = &pcp->lists[migratetype];
1115 		} while (list_empty(list));
1116 
1117 		/* This is the only non-empty list. Free them all. */
1118 		if (batch_free == MIGRATE_PCPTYPES)
1119 			batch_free = count;
1120 
1121 		do {
1122 			int mt;	/* migratetype of the to-be-freed page */
1123 
1124 			page = list_last_entry(list, struct page, lru);
1125 			/* must delete as __free_one_page list manipulates */
1126 			list_del(&page->lru);
1127 
1128 			mt = get_pcppage_migratetype(page);
1129 			/* MIGRATE_ISOLATE page should not go to pcplists */
1130 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1131 			/* Pageblock could have been isolated meanwhile */
1132 			if (unlikely(isolated_pageblocks))
1133 				mt = get_pageblock_migratetype(page);
1134 
1135 			if (bulkfree_pcp_prepare(page))
1136 				continue;
1137 
1138 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1139 			trace_mm_page_pcpu_drain(page, 0, mt);
1140 		} while (--count && --batch_free && !list_empty(list));
1141 	}
1142 	spin_unlock(&zone->lock);
1143 }
1144 
1145 static void free_one_page(struct zone *zone,
1146 				struct page *page, unsigned long pfn,
1147 				unsigned int order,
1148 				int migratetype)
1149 {
1150 	unsigned long nr_scanned;
1151 	spin_lock(&zone->lock);
1152 	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1153 	if (nr_scanned)
1154 		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1155 
1156 	if (unlikely(has_isolate_pageblock(zone) ||
1157 		is_migrate_isolate(migratetype))) {
1158 		migratetype = get_pfnblock_migratetype(page, pfn);
1159 	}
1160 	__free_one_page(page, pfn, zone, order, migratetype);
1161 	spin_unlock(&zone->lock);
1162 }
1163 
1164 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1165 				unsigned long zone, int nid)
1166 {
1167 	set_page_links(page, zone, nid, pfn);
1168 	init_page_count(page);
1169 	page_mapcount_reset(page);
1170 	page_cpupid_reset_last(page);
1171 
1172 	INIT_LIST_HEAD(&page->lru);
1173 #ifdef WANT_PAGE_VIRTUAL
1174 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1175 	if (!is_highmem_idx(zone))
1176 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1177 #endif
1178 }
1179 
1180 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1181 					int nid)
1182 {
1183 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1184 }
1185 
1186 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1187 static void init_reserved_page(unsigned long pfn)
1188 {
1189 	pg_data_t *pgdat;
1190 	int nid, zid;
1191 
1192 	if (!early_page_uninitialised(pfn))
1193 		return;
1194 
1195 	nid = early_pfn_to_nid(pfn);
1196 	pgdat = NODE_DATA(nid);
1197 
1198 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1199 		struct zone *zone = &pgdat->node_zones[zid];
1200 
1201 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1202 			break;
1203 	}
1204 	__init_single_pfn(pfn, zid, nid);
1205 }
1206 #else
1207 static inline void init_reserved_page(unsigned long pfn)
1208 {
1209 }
1210 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1211 
1212 /*
1213  * Initialised pages do not have PageReserved set. This function is
1214  * called for each range allocated by the bootmem allocator and
1215  * marks the pages PageReserved. The remaining valid pages are later
1216  * sent to the buddy page allocator.
1217  */
1218 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1219 {
1220 	unsigned long start_pfn = PFN_DOWN(start);
1221 	unsigned long end_pfn = PFN_UP(end);
1222 
1223 	for (; start_pfn < end_pfn; start_pfn++) {
1224 		if (pfn_valid(start_pfn)) {
1225 			struct page *page = pfn_to_page(start_pfn);
1226 
1227 			init_reserved_page(start_pfn);
1228 
1229 			/* Avoid false-positive PageTail() */
1230 			INIT_LIST_HEAD(&page->lru);
1231 
1232 			SetPageReserved(page);
1233 		}
1234 	}
1235 }
1236 
1237 static void __free_pages_ok(struct page *page, unsigned int order)
1238 {
1239 	unsigned long flags;
1240 	int migratetype;
1241 	unsigned long pfn = page_to_pfn(page);
1242 
1243 	if (!free_pages_prepare(page, order, true))
1244 		return;
1245 
1246 	migratetype = get_pfnblock_migratetype(page, pfn);
1247 	local_irq_save(flags);
1248 	__count_vm_events(PGFREE, 1 << order);
1249 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1250 	local_irq_restore(flags);
1251 }
1252 
1253 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1254 {
1255 	unsigned int nr_pages = 1 << order;
1256 	struct page *p = page;
1257 	unsigned int loop;
1258 
1259 	prefetchw(p);
1260 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1261 		prefetchw(p + 1);
1262 		__ClearPageReserved(p);
1263 		set_page_count(p, 0);
1264 	}
1265 	__ClearPageReserved(p);
1266 	set_page_count(p, 0);
1267 
1268 	page_zone(page)->managed_pages += nr_pages;
1269 	set_page_refcounted(page);
1270 	__free_pages(page, order);
1271 }
1272 
1273 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1274 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1275 
1276 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1277 
1278 int __meminit early_pfn_to_nid(unsigned long pfn)
1279 {
1280 	static DEFINE_SPINLOCK(early_pfn_lock);
1281 	int nid;
1282 
1283 	spin_lock(&early_pfn_lock);
1284 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1285 	if (nid < 0)
1286 		nid = first_online_node;
1287 	spin_unlock(&early_pfn_lock);
1288 
1289 	return nid;
1290 }
1291 #endif
1292 
1293 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1294 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1295 					struct mminit_pfnnid_cache *state)
1296 {
1297 	int nid;
1298 
1299 	nid = __early_pfn_to_nid(pfn, state);
1300 	if (nid >= 0 && nid != node)
1301 		return false;
1302 	return true;
1303 }
1304 
1305 /* Only safe to use early in boot when initialisation is single-threaded */
1306 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1307 {
1308 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1309 }
1310 
1311 #else
1312 
1313 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1314 {
1315 	return true;
1316 }
1317 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1318 					struct mminit_pfnnid_cache *state)
1319 {
1320 	return true;
1321 }
1322 #endif
1323 
1324 
1325 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1326 							unsigned int order)
1327 {
1328 	if (early_page_uninitialised(pfn))
1329 		return;
1330 	return __free_pages_boot_core(page, order);
1331 }
1332 
1333 /*
1334  * Check that the whole (or subset of) a pageblock given by the interval of
1335  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1336  * with the migration of free compaction scanner. The scanners then need to
1337  * use only pfn_valid_within() check for arches that allow holes within
1338  * pageblocks.
1339  *
1340  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1341  *
1342  * It's possible on some configurations to have a setup like node0 node1 node0
1343  * i.e. it's possible that all pages within a zones range of pages do not
1344  * belong to a single zone. We assume that a border between node0 and node1
1345  * can occur within a single pageblock, but not a node0 node1 node0
1346  * interleaving within a single pageblock. It is therefore sufficient to check
1347  * the first and last page of a pageblock and avoid checking each individual
1348  * page in a pageblock.
1349  */
1350 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1351 				     unsigned long end_pfn, struct zone *zone)
1352 {
1353 	struct page *start_page;
1354 	struct page *end_page;
1355 
1356 	/* end_pfn is one past the range we are checking */
1357 	end_pfn--;
1358 
1359 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1360 		return NULL;
1361 
1362 	start_page = pfn_to_page(start_pfn);
1363 
1364 	if (page_zone(start_page) != zone)
1365 		return NULL;
1366 
1367 	end_page = pfn_to_page(end_pfn);
1368 
1369 	/* This gives a shorter code than deriving page_zone(end_page) */
1370 	if (page_zone_id(start_page) != page_zone_id(end_page))
1371 		return NULL;
1372 
1373 	return start_page;
1374 }
1375 
1376 void set_zone_contiguous(struct zone *zone)
1377 {
1378 	unsigned long block_start_pfn = zone->zone_start_pfn;
1379 	unsigned long block_end_pfn;
1380 
1381 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1382 	for (; block_start_pfn < zone_end_pfn(zone);
1383 			block_start_pfn = block_end_pfn,
1384 			 block_end_pfn += pageblock_nr_pages) {
1385 
1386 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1387 
1388 		if (!__pageblock_pfn_to_page(block_start_pfn,
1389 					     block_end_pfn, zone))
1390 			return;
1391 	}
1392 
1393 	/* We confirm that there is no hole */
1394 	zone->contiguous = true;
1395 }
1396 
1397 void clear_zone_contiguous(struct zone *zone)
1398 {
1399 	zone->contiguous = false;
1400 }
1401 
1402 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1403 static void __init deferred_free_range(struct page *page,
1404 					unsigned long pfn, int nr_pages)
1405 {
1406 	int i;
1407 
1408 	if (!page)
1409 		return;
1410 
1411 	/* Free a large naturally-aligned chunk if possible */
1412 	if (nr_pages == pageblock_nr_pages &&
1413 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1414 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1415 		__free_pages_boot_core(page, pageblock_order);
1416 		return;
1417 	}
1418 
1419 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1420 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1421 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1422 		__free_pages_boot_core(page, 0);
1423 	}
1424 }
1425 
1426 /* Completion tracking for deferred_init_memmap() threads */
1427 static atomic_t pgdat_init_n_undone __initdata;
1428 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1429 
1430 static inline void __init pgdat_init_report_one_done(void)
1431 {
1432 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1433 		complete(&pgdat_init_all_done_comp);
1434 }
1435 
1436 /* Initialise remaining memory on a node */
1437 static int __init deferred_init_memmap(void *data)
1438 {
1439 	pg_data_t *pgdat = data;
1440 	int nid = pgdat->node_id;
1441 	struct mminit_pfnnid_cache nid_init_state = { };
1442 	unsigned long start = jiffies;
1443 	unsigned long nr_pages = 0;
1444 	unsigned long walk_start, walk_end;
1445 	int i, zid;
1446 	struct zone *zone;
1447 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1448 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1449 
1450 	if (first_init_pfn == ULONG_MAX) {
1451 		pgdat_init_report_one_done();
1452 		return 0;
1453 	}
1454 
1455 	/* Bind memory initialisation thread to a local node if possible */
1456 	if (!cpumask_empty(cpumask))
1457 		set_cpus_allowed_ptr(current, cpumask);
1458 
1459 	/* Sanity check boundaries */
1460 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1461 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1462 	pgdat->first_deferred_pfn = ULONG_MAX;
1463 
1464 	/* Only the highest zone is deferred so find it */
1465 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1466 		zone = pgdat->node_zones + zid;
1467 		if (first_init_pfn < zone_end_pfn(zone))
1468 			break;
1469 	}
1470 
1471 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1472 		unsigned long pfn, end_pfn;
1473 		struct page *page = NULL;
1474 		struct page *free_base_page = NULL;
1475 		unsigned long free_base_pfn = 0;
1476 		int nr_to_free = 0;
1477 
1478 		end_pfn = min(walk_end, zone_end_pfn(zone));
1479 		pfn = first_init_pfn;
1480 		if (pfn < walk_start)
1481 			pfn = walk_start;
1482 		if (pfn < zone->zone_start_pfn)
1483 			pfn = zone->zone_start_pfn;
1484 
1485 		for (; pfn < end_pfn; pfn++) {
1486 			if (!pfn_valid_within(pfn))
1487 				goto free_range;
1488 
1489 			/*
1490 			 * Ensure pfn_valid is checked every
1491 			 * pageblock_nr_pages for memory holes
1492 			 */
1493 			if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1494 				if (!pfn_valid(pfn)) {
1495 					page = NULL;
1496 					goto free_range;
1497 				}
1498 			}
1499 
1500 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1501 				page = NULL;
1502 				goto free_range;
1503 			}
1504 
1505 			/* Minimise pfn page lookups and scheduler checks */
1506 			if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1507 				page++;
1508 			} else {
1509 				nr_pages += nr_to_free;
1510 				deferred_free_range(free_base_page,
1511 						free_base_pfn, nr_to_free);
1512 				free_base_page = NULL;
1513 				free_base_pfn = nr_to_free = 0;
1514 
1515 				page = pfn_to_page(pfn);
1516 				cond_resched();
1517 			}
1518 
1519 			if (page->flags) {
1520 				VM_BUG_ON(page_zone(page) != zone);
1521 				goto free_range;
1522 			}
1523 
1524 			__init_single_page(page, pfn, zid, nid);
1525 			if (!free_base_page) {
1526 				free_base_page = page;
1527 				free_base_pfn = pfn;
1528 				nr_to_free = 0;
1529 			}
1530 			nr_to_free++;
1531 
1532 			/* Where possible, batch up pages for a single free */
1533 			continue;
1534 free_range:
1535 			/* Free the current block of pages to allocator */
1536 			nr_pages += nr_to_free;
1537 			deferred_free_range(free_base_page, free_base_pfn,
1538 								nr_to_free);
1539 			free_base_page = NULL;
1540 			free_base_pfn = nr_to_free = 0;
1541 		}
1542 		/* Free the last block of pages to allocator */
1543 		nr_pages += nr_to_free;
1544 		deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1545 
1546 		first_init_pfn = max(end_pfn, first_init_pfn);
1547 	}
1548 
1549 	/* Sanity check that the next zone really is unpopulated */
1550 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1551 
1552 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1553 					jiffies_to_msecs(jiffies - start));
1554 
1555 	pgdat_init_report_one_done();
1556 	return 0;
1557 }
1558 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1559 
1560 void __init page_alloc_init_late(void)
1561 {
1562 	struct zone *zone;
1563 
1564 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1565 	int nid;
1566 
1567 	/* There will be num_node_state(N_MEMORY) threads */
1568 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1569 	for_each_node_state(nid, N_MEMORY) {
1570 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1571 	}
1572 
1573 	/* Block until all are initialised */
1574 	wait_for_completion(&pgdat_init_all_done_comp);
1575 
1576 	/* Reinit limits that are based on free pages after the kernel is up */
1577 	files_maxfiles_init();
1578 #endif
1579 
1580 	for_each_populated_zone(zone)
1581 		set_zone_contiguous(zone);
1582 }
1583 
1584 #ifdef CONFIG_CMA
1585 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1586 void __init init_cma_reserved_pageblock(struct page *page)
1587 {
1588 	unsigned i = pageblock_nr_pages;
1589 	struct page *p = page;
1590 
1591 	do {
1592 		__ClearPageReserved(p);
1593 		set_page_count(p, 0);
1594 	} while (++p, --i);
1595 
1596 	set_pageblock_migratetype(page, MIGRATE_CMA);
1597 
1598 	if (pageblock_order >= MAX_ORDER) {
1599 		i = pageblock_nr_pages;
1600 		p = page;
1601 		do {
1602 			set_page_refcounted(p);
1603 			__free_pages(p, MAX_ORDER - 1);
1604 			p += MAX_ORDER_NR_PAGES;
1605 		} while (i -= MAX_ORDER_NR_PAGES);
1606 	} else {
1607 		set_page_refcounted(page);
1608 		__free_pages(page, pageblock_order);
1609 	}
1610 
1611 	adjust_managed_page_count(page, pageblock_nr_pages);
1612 }
1613 #endif
1614 
1615 /*
1616  * The order of subdivision here is critical for the IO subsystem.
1617  * Please do not alter this order without good reasons and regression
1618  * testing. Specifically, as large blocks of memory are subdivided,
1619  * the order in which smaller blocks are delivered depends on the order
1620  * they're subdivided in this function. This is the primary factor
1621  * influencing the order in which pages are delivered to the IO
1622  * subsystem according to empirical testing, and this is also justified
1623  * by considering the behavior of a buddy system containing a single
1624  * large block of memory acted on by a series of small allocations.
1625  * This behavior is a critical factor in sglist merging's success.
1626  *
1627  * -- nyc
1628  */
1629 static inline void expand(struct zone *zone, struct page *page,
1630 	int low, int high, struct free_area *area,
1631 	int migratetype)
1632 {
1633 	unsigned long size = 1 << high;
1634 
1635 	while (high > low) {
1636 		area--;
1637 		high--;
1638 		size >>= 1;
1639 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1640 
1641 		/*
1642 		 * Mark as guard pages (or page), that will allow to
1643 		 * merge back to allocator when buddy will be freed.
1644 		 * Corresponding page table entries will not be touched,
1645 		 * pages will stay not present in virtual address space
1646 		 */
1647 		if (set_page_guard(zone, &page[size], high, migratetype))
1648 			continue;
1649 
1650 		list_add(&page[size].lru, &area->free_list[migratetype]);
1651 		area->nr_free++;
1652 		set_page_order(&page[size], high);
1653 	}
1654 }
1655 
1656 static void check_new_page_bad(struct page *page)
1657 {
1658 	const char *bad_reason = NULL;
1659 	unsigned long bad_flags = 0;
1660 
1661 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1662 		bad_reason = "nonzero mapcount";
1663 	if (unlikely(page->mapping != NULL))
1664 		bad_reason = "non-NULL mapping";
1665 	if (unlikely(page_ref_count(page) != 0))
1666 		bad_reason = "nonzero _count";
1667 	if (unlikely(page->flags & __PG_HWPOISON)) {
1668 		bad_reason = "HWPoisoned (hardware-corrupted)";
1669 		bad_flags = __PG_HWPOISON;
1670 		/* Don't complain about hwpoisoned pages */
1671 		page_mapcount_reset(page); /* remove PageBuddy */
1672 		return;
1673 	}
1674 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1675 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1676 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1677 	}
1678 #ifdef CONFIG_MEMCG
1679 	if (unlikely(page->mem_cgroup))
1680 		bad_reason = "page still charged to cgroup";
1681 #endif
1682 	bad_page(page, bad_reason, bad_flags);
1683 }
1684 
1685 /*
1686  * This page is about to be returned from the page allocator
1687  */
1688 static inline int check_new_page(struct page *page)
1689 {
1690 	if (likely(page_expected_state(page,
1691 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1692 		return 0;
1693 
1694 	check_new_page_bad(page);
1695 	return 1;
1696 }
1697 
1698 static inline bool free_pages_prezeroed(bool poisoned)
1699 {
1700 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1701 		page_poisoning_enabled() && poisoned;
1702 }
1703 
1704 #ifdef CONFIG_DEBUG_VM
1705 static bool check_pcp_refill(struct page *page)
1706 {
1707 	return false;
1708 }
1709 
1710 static bool check_new_pcp(struct page *page)
1711 {
1712 	return check_new_page(page);
1713 }
1714 #else
1715 static bool check_pcp_refill(struct page *page)
1716 {
1717 	return check_new_page(page);
1718 }
1719 static bool check_new_pcp(struct page *page)
1720 {
1721 	return false;
1722 }
1723 #endif /* CONFIG_DEBUG_VM */
1724 
1725 static bool check_new_pages(struct page *page, unsigned int order)
1726 {
1727 	int i;
1728 	for (i = 0; i < (1 << order); i++) {
1729 		struct page *p = page + i;
1730 
1731 		if (unlikely(check_new_page(p)))
1732 			return true;
1733 	}
1734 
1735 	return false;
1736 }
1737 
1738 inline void post_alloc_hook(struct page *page, unsigned int order,
1739 				gfp_t gfp_flags)
1740 {
1741 	set_page_private(page, 0);
1742 	set_page_refcounted(page);
1743 
1744 	arch_alloc_page(page, order);
1745 	kernel_map_pages(page, 1 << order, 1);
1746 	kernel_poison_pages(page, 1 << order, 1);
1747 	kasan_alloc_pages(page, order);
1748 	set_page_owner(page, order, gfp_flags);
1749 }
1750 
1751 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1752 							unsigned int alloc_flags)
1753 {
1754 	int i;
1755 	bool poisoned = true;
1756 
1757 	for (i = 0; i < (1 << order); i++) {
1758 		struct page *p = page + i;
1759 		if (poisoned)
1760 			poisoned &= page_is_poisoned(p);
1761 	}
1762 
1763 	post_alloc_hook(page, order, gfp_flags);
1764 
1765 	if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1766 		for (i = 0; i < (1 << order); i++)
1767 			clear_highpage(page + i);
1768 
1769 	if (order && (gfp_flags & __GFP_COMP))
1770 		prep_compound_page(page, order);
1771 
1772 	/*
1773 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1774 	 * allocate the page. The expectation is that the caller is taking
1775 	 * steps that will free more memory. The caller should avoid the page
1776 	 * being used for !PFMEMALLOC purposes.
1777 	 */
1778 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1779 		set_page_pfmemalloc(page);
1780 	else
1781 		clear_page_pfmemalloc(page);
1782 }
1783 
1784 /*
1785  * Go through the free lists for the given migratetype and remove
1786  * the smallest available page from the freelists
1787  */
1788 static inline
1789 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1790 						int migratetype)
1791 {
1792 	unsigned int current_order;
1793 	struct free_area *area;
1794 	struct page *page;
1795 
1796 	/* Find a page of the appropriate size in the preferred list */
1797 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1798 		area = &(zone->free_area[current_order]);
1799 		page = list_first_entry_or_null(&area->free_list[migratetype],
1800 							struct page, lru);
1801 		if (!page)
1802 			continue;
1803 		list_del(&page->lru);
1804 		rmv_page_order(page);
1805 		area->nr_free--;
1806 		expand(zone, page, order, current_order, area, migratetype);
1807 		set_pcppage_migratetype(page, migratetype);
1808 		return page;
1809 	}
1810 
1811 	return NULL;
1812 }
1813 
1814 
1815 /*
1816  * This array describes the order lists are fallen back to when
1817  * the free lists for the desirable migrate type are depleted
1818  */
1819 static int fallbacks[MIGRATE_TYPES][4] = {
1820 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1821 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1822 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1823 #ifdef CONFIG_CMA
1824 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1825 #endif
1826 #ifdef CONFIG_MEMORY_ISOLATION
1827 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1828 #endif
1829 };
1830 
1831 #ifdef CONFIG_CMA
1832 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1833 					unsigned int order)
1834 {
1835 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1836 }
1837 #else
1838 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1839 					unsigned int order) { return NULL; }
1840 #endif
1841 
1842 /*
1843  * Move the free pages in a range to the free lists of the requested type.
1844  * Note that start_page and end_pages are not aligned on a pageblock
1845  * boundary. If alignment is required, use move_freepages_block()
1846  */
1847 int move_freepages(struct zone *zone,
1848 			  struct page *start_page, struct page *end_page,
1849 			  int migratetype)
1850 {
1851 	struct page *page;
1852 	unsigned int order;
1853 	int pages_moved = 0;
1854 
1855 #ifndef CONFIG_HOLES_IN_ZONE
1856 	/*
1857 	 * page_zone is not safe to call in this context when
1858 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1859 	 * anyway as we check zone boundaries in move_freepages_block().
1860 	 * Remove at a later date when no bug reports exist related to
1861 	 * grouping pages by mobility
1862 	 */
1863 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1864 #endif
1865 
1866 	for (page = start_page; page <= end_page;) {
1867 		if (!pfn_valid_within(page_to_pfn(page))) {
1868 			page++;
1869 			continue;
1870 		}
1871 
1872 		/* Make sure we are not inadvertently changing nodes */
1873 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1874 
1875 		if (!PageBuddy(page)) {
1876 			page++;
1877 			continue;
1878 		}
1879 
1880 		order = page_order(page);
1881 		list_move(&page->lru,
1882 			  &zone->free_area[order].free_list[migratetype]);
1883 		page += 1 << order;
1884 		pages_moved += 1 << order;
1885 	}
1886 
1887 	return pages_moved;
1888 }
1889 
1890 int move_freepages_block(struct zone *zone, struct page *page,
1891 				int migratetype)
1892 {
1893 	unsigned long start_pfn, end_pfn;
1894 	struct page *start_page, *end_page;
1895 
1896 	start_pfn = page_to_pfn(page);
1897 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1898 	start_page = pfn_to_page(start_pfn);
1899 	end_page = start_page + pageblock_nr_pages - 1;
1900 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1901 
1902 	/* Do not cross zone boundaries */
1903 	if (!zone_spans_pfn(zone, start_pfn))
1904 		start_page = page;
1905 	if (!zone_spans_pfn(zone, end_pfn))
1906 		return 0;
1907 
1908 	return move_freepages(zone, start_page, end_page, migratetype);
1909 }
1910 
1911 static void change_pageblock_range(struct page *pageblock_page,
1912 					int start_order, int migratetype)
1913 {
1914 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1915 
1916 	while (nr_pageblocks--) {
1917 		set_pageblock_migratetype(pageblock_page, migratetype);
1918 		pageblock_page += pageblock_nr_pages;
1919 	}
1920 }
1921 
1922 /*
1923  * When we are falling back to another migratetype during allocation, try to
1924  * steal extra free pages from the same pageblocks to satisfy further
1925  * allocations, instead of polluting multiple pageblocks.
1926  *
1927  * If we are stealing a relatively large buddy page, it is likely there will
1928  * be more free pages in the pageblock, so try to steal them all. For
1929  * reclaimable and unmovable allocations, we steal regardless of page size,
1930  * as fragmentation caused by those allocations polluting movable pageblocks
1931  * is worse than movable allocations stealing from unmovable and reclaimable
1932  * pageblocks.
1933  */
1934 static bool can_steal_fallback(unsigned int order, int start_mt)
1935 {
1936 	/*
1937 	 * Leaving this order check is intended, although there is
1938 	 * relaxed order check in next check. The reason is that
1939 	 * we can actually steal whole pageblock if this condition met,
1940 	 * but, below check doesn't guarantee it and that is just heuristic
1941 	 * so could be changed anytime.
1942 	 */
1943 	if (order >= pageblock_order)
1944 		return true;
1945 
1946 	if (order >= pageblock_order / 2 ||
1947 		start_mt == MIGRATE_RECLAIMABLE ||
1948 		start_mt == MIGRATE_UNMOVABLE ||
1949 		page_group_by_mobility_disabled)
1950 		return true;
1951 
1952 	return false;
1953 }
1954 
1955 /*
1956  * This function implements actual steal behaviour. If order is large enough,
1957  * we can steal whole pageblock. If not, we first move freepages in this
1958  * pageblock and check whether half of pages are moved or not. If half of
1959  * pages are moved, we can change migratetype of pageblock and permanently
1960  * use it's pages as requested migratetype in the future.
1961  */
1962 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1963 							  int start_type)
1964 {
1965 	unsigned int current_order = page_order(page);
1966 	int pages;
1967 
1968 	/* Take ownership for orders >= pageblock_order */
1969 	if (current_order >= pageblock_order) {
1970 		change_pageblock_range(page, current_order, start_type);
1971 		return;
1972 	}
1973 
1974 	pages = move_freepages_block(zone, page, start_type);
1975 
1976 	/* Claim the whole block if over half of it is free */
1977 	if (pages >= (1 << (pageblock_order-1)) ||
1978 			page_group_by_mobility_disabled)
1979 		set_pageblock_migratetype(page, start_type);
1980 }
1981 
1982 /*
1983  * Check whether there is a suitable fallback freepage with requested order.
1984  * If only_stealable is true, this function returns fallback_mt only if
1985  * we can steal other freepages all together. This would help to reduce
1986  * fragmentation due to mixed migratetype pages in one pageblock.
1987  */
1988 int find_suitable_fallback(struct free_area *area, unsigned int order,
1989 			int migratetype, bool only_stealable, bool *can_steal)
1990 {
1991 	int i;
1992 	int fallback_mt;
1993 
1994 	if (area->nr_free == 0)
1995 		return -1;
1996 
1997 	*can_steal = false;
1998 	for (i = 0;; i++) {
1999 		fallback_mt = fallbacks[migratetype][i];
2000 		if (fallback_mt == MIGRATE_TYPES)
2001 			break;
2002 
2003 		if (list_empty(&area->free_list[fallback_mt]))
2004 			continue;
2005 
2006 		if (can_steal_fallback(order, migratetype))
2007 			*can_steal = true;
2008 
2009 		if (!only_stealable)
2010 			return fallback_mt;
2011 
2012 		if (*can_steal)
2013 			return fallback_mt;
2014 	}
2015 
2016 	return -1;
2017 }
2018 
2019 /*
2020  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2021  * there are no empty page blocks that contain a page with a suitable order
2022  */
2023 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2024 				unsigned int alloc_order)
2025 {
2026 	int mt;
2027 	unsigned long max_managed, flags;
2028 
2029 	/*
2030 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2031 	 * Check is race-prone but harmless.
2032 	 */
2033 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2034 	if (zone->nr_reserved_highatomic >= max_managed)
2035 		return;
2036 
2037 	spin_lock_irqsave(&zone->lock, flags);
2038 
2039 	/* Recheck the nr_reserved_highatomic limit under the lock */
2040 	if (zone->nr_reserved_highatomic >= max_managed)
2041 		goto out_unlock;
2042 
2043 	/* Yoink! */
2044 	mt = get_pageblock_migratetype(page);
2045 	if (mt != MIGRATE_HIGHATOMIC &&
2046 			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2047 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2048 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2049 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2050 	}
2051 
2052 out_unlock:
2053 	spin_unlock_irqrestore(&zone->lock, flags);
2054 }
2055 
2056 /*
2057  * Used when an allocation is about to fail under memory pressure. This
2058  * potentially hurts the reliability of high-order allocations when under
2059  * intense memory pressure but failed atomic allocations should be easier
2060  * to recover from than an OOM.
2061  *
2062  * If @force is true, try to unreserve a pageblock even though highatomic
2063  * pageblock is exhausted.
2064  */
2065 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2066 						bool force)
2067 {
2068 	struct zonelist *zonelist = ac->zonelist;
2069 	unsigned long flags;
2070 	struct zoneref *z;
2071 	struct zone *zone;
2072 	struct page *page;
2073 	int order;
2074 	bool ret;
2075 
2076 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2077 								ac->nodemask) {
2078 		/*
2079 		 * Preserve at least one pageblock unless memory pressure
2080 		 * is really high.
2081 		 */
2082 		if (!force && zone->nr_reserved_highatomic <=
2083 					pageblock_nr_pages)
2084 			continue;
2085 
2086 		spin_lock_irqsave(&zone->lock, flags);
2087 		for (order = 0; order < MAX_ORDER; order++) {
2088 			struct free_area *area = &(zone->free_area[order]);
2089 
2090 			page = list_first_entry_or_null(
2091 					&area->free_list[MIGRATE_HIGHATOMIC],
2092 					struct page, lru);
2093 			if (!page)
2094 				continue;
2095 
2096 			/*
2097 			 * In page freeing path, migratetype change is racy so
2098 			 * we can counter several free pages in a pageblock
2099 			 * in this loop althoug we changed the pageblock type
2100 			 * from highatomic to ac->migratetype. So we should
2101 			 * adjust the count once.
2102 			 */
2103 			if (get_pageblock_migratetype(page) ==
2104 							MIGRATE_HIGHATOMIC) {
2105 				/*
2106 				 * It should never happen but changes to
2107 				 * locking could inadvertently allow a per-cpu
2108 				 * drain to add pages to MIGRATE_HIGHATOMIC
2109 				 * while unreserving so be safe and watch for
2110 				 * underflows.
2111 				 */
2112 				zone->nr_reserved_highatomic -= min(
2113 						pageblock_nr_pages,
2114 						zone->nr_reserved_highatomic);
2115 			}
2116 
2117 			/*
2118 			 * Convert to ac->migratetype and avoid the normal
2119 			 * pageblock stealing heuristics. Minimally, the caller
2120 			 * is doing the work and needs the pages. More
2121 			 * importantly, if the block was always converted to
2122 			 * MIGRATE_UNMOVABLE or another type then the number
2123 			 * of pageblocks that cannot be completely freed
2124 			 * may increase.
2125 			 */
2126 			set_pageblock_migratetype(page, ac->migratetype);
2127 			ret = move_freepages_block(zone, page, ac->migratetype);
2128 			if (ret) {
2129 				spin_unlock_irqrestore(&zone->lock, flags);
2130 				return ret;
2131 			}
2132 		}
2133 		spin_unlock_irqrestore(&zone->lock, flags);
2134 	}
2135 
2136 	return false;
2137 }
2138 
2139 /* Remove an element from the buddy allocator from the fallback list */
2140 static inline struct page *
2141 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2142 {
2143 	struct free_area *area;
2144 	unsigned int current_order;
2145 	struct page *page;
2146 	int fallback_mt;
2147 	bool can_steal;
2148 
2149 	/* Find the largest possible block of pages in the other list */
2150 	for (current_order = MAX_ORDER-1;
2151 				current_order >= order && current_order <= MAX_ORDER-1;
2152 				--current_order) {
2153 		area = &(zone->free_area[current_order]);
2154 		fallback_mt = find_suitable_fallback(area, current_order,
2155 				start_migratetype, false, &can_steal);
2156 		if (fallback_mt == -1)
2157 			continue;
2158 
2159 		page = list_first_entry(&area->free_list[fallback_mt],
2160 						struct page, lru);
2161 		if (can_steal &&
2162 			get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
2163 			steal_suitable_fallback(zone, page, start_migratetype);
2164 
2165 		/* Remove the page from the freelists */
2166 		area->nr_free--;
2167 		list_del(&page->lru);
2168 		rmv_page_order(page);
2169 
2170 		expand(zone, page, order, current_order, area,
2171 					start_migratetype);
2172 		/*
2173 		 * The pcppage_migratetype may differ from pageblock's
2174 		 * migratetype depending on the decisions in
2175 		 * find_suitable_fallback(). This is OK as long as it does not
2176 		 * differ for MIGRATE_CMA pageblocks. Those can be used as
2177 		 * fallback only via special __rmqueue_cma_fallback() function
2178 		 */
2179 		set_pcppage_migratetype(page, start_migratetype);
2180 
2181 		trace_mm_page_alloc_extfrag(page, order, current_order,
2182 			start_migratetype, fallback_mt);
2183 
2184 		return page;
2185 	}
2186 
2187 	return NULL;
2188 }
2189 
2190 /*
2191  * Do the hard work of removing an element from the buddy allocator.
2192  * Call me with the zone->lock already held.
2193  */
2194 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2195 				int migratetype)
2196 {
2197 	struct page *page;
2198 
2199 	page = __rmqueue_smallest(zone, order, migratetype);
2200 	if (unlikely(!page)) {
2201 		if (migratetype == MIGRATE_MOVABLE)
2202 			page = __rmqueue_cma_fallback(zone, order);
2203 
2204 		if (!page)
2205 			page = __rmqueue_fallback(zone, order, migratetype);
2206 	}
2207 
2208 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2209 	return page;
2210 }
2211 
2212 /*
2213  * Obtain a specified number of elements from the buddy allocator, all under
2214  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2215  * Returns the number of new pages which were placed at *list.
2216  */
2217 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2218 			unsigned long count, struct list_head *list,
2219 			int migratetype, bool cold)
2220 {
2221 	int i, alloced = 0;
2222 
2223 	spin_lock(&zone->lock);
2224 	for (i = 0; i < count; ++i) {
2225 		struct page *page = __rmqueue(zone, order, migratetype);
2226 		if (unlikely(page == NULL))
2227 			break;
2228 
2229 		if (unlikely(check_pcp_refill(page)))
2230 			continue;
2231 
2232 		/*
2233 		 * Split buddy pages returned by expand() are received here
2234 		 * in physical page order. The page is added to the callers and
2235 		 * list and the list head then moves forward. From the callers
2236 		 * perspective, the linked list is ordered by page number in
2237 		 * some conditions. This is useful for IO devices that can
2238 		 * merge IO requests if the physical pages are ordered
2239 		 * properly.
2240 		 */
2241 		if (likely(!cold))
2242 			list_add(&page->lru, list);
2243 		else
2244 			list_add_tail(&page->lru, list);
2245 		list = &page->lru;
2246 		alloced++;
2247 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2248 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2249 					      -(1 << order));
2250 	}
2251 
2252 	/*
2253 	 * i pages were removed from the buddy list even if some leak due
2254 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2255 	 * on i. Do not confuse with 'alloced' which is the number of
2256 	 * pages added to the pcp list.
2257 	 */
2258 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2259 	spin_unlock(&zone->lock);
2260 	return alloced;
2261 }
2262 
2263 #ifdef CONFIG_NUMA
2264 /*
2265  * Called from the vmstat counter updater to drain pagesets of this
2266  * currently executing processor on remote nodes after they have
2267  * expired.
2268  *
2269  * Note that this function must be called with the thread pinned to
2270  * a single processor.
2271  */
2272 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2273 {
2274 	unsigned long flags;
2275 	int to_drain, batch;
2276 
2277 	local_irq_save(flags);
2278 	batch = READ_ONCE(pcp->batch);
2279 	to_drain = min(pcp->count, batch);
2280 	if (to_drain > 0) {
2281 		free_pcppages_bulk(zone, to_drain, pcp);
2282 		pcp->count -= to_drain;
2283 	}
2284 	local_irq_restore(flags);
2285 }
2286 #endif
2287 
2288 /*
2289  * Drain pcplists of the indicated processor and zone.
2290  *
2291  * The processor must either be the current processor and the
2292  * thread pinned to the current processor or a processor that
2293  * is not online.
2294  */
2295 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2296 {
2297 	unsigned long flags;
2298 	struct per_cpu_pageset *pset;
2299 	struct per_cpu_pages *pcp;
2300 
2301 	local_irq_save(flags);
2302 	pset = per_cpu_ptr(zone->pageset, cpu);
2303 
2304 	pcp = &pset->pcp;
2305 	if (pcp->count) {
2306 		free_pcppages_bulk(zone, pcp->count, pcp);
2307 		pcp->count = 0;
2308 	}
2309 	local_irq_restore(flags);
2310 }
2311 
2312 /*
2313  * Drain pcplists of all zones on the indicated processor.
2314  *
2315  * The processor must either be the current processor and the
2316  * thread pinned to the current processor or a processor that
2317  * is not online.
2318  */
2319 static void drain_pages(unsigned int cpu)
2320 {
2321 	struct zone *zone;
2322 
2323 	for_each_populated_zone(zone) {
2324 		drain_pages_zone(cpu, zone);
2325 	}
2326 }
2327 
2328 /*
2329  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2330  *
2331  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2332  * the single zone's pages.
2333  */
2334 void drain_local_pages(struct zone *zone)
2335 {
2336 	int cpu = smp_processor_id();
2337 
2338 	if (zone)
2339 		drain_pages_zone(cpu, zone);
2340 	else
2341 		drain_pages(cpu);
2342 }
2343 
2344 /*
2345  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2346  *
2347  * When zone parameter is non-NULL, spill just the single zone's pages.
2348  *
2349  * Note that this code is protected against sending an IPI to an offline
2350  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2351  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2352  * nothing keeps CPUs from showing up after we populated the cpumask and
2353  * before the call to on_each_cpu_mask().
2354  */
2355 void drain_all_pages(struct zone *zone)
2356 {
2357 	int cpu;
2358 
2359 	/*
2360 	 * Allocate in the BSS so we wont require allocation in
2361 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2362 	 */
2363 	static cpumask_t cpus_with_pcps;
2364 
2365 	/*
2366 	 * We don't care about racing with CPU hotplug event
2367 	 * as offline notification will cause the notified
2368 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2369 	 * disables preemption as part of its processing
2370 	 */
2371 	for_each_online_cpu(cpu) {
2372 		struct per_cpu_pageset *pcp;
2373 		struct zone *z;
2374 		bool has_pcps = false;
2375 
2376 		if (zone) {
2377 			pcp = per_cpu_ptr(zone->pageset, cpu);
2378 			if (pcp->pcp.count)
2379 				has_pcps = true;
2380 		} else {
2381 			for_each_populated_zone(z) {
2382 				pcp = per_cpu_ptr(z->pageset, cpu);
2383 				if (pcp->pcp.count) {
2384 					has_pcps = true;
2385 					break;
2386 				}
2387 			}
2388 		}
2389 
2390 		if (has_pcps)
2391 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2392 		else
2393 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2394 	}
2395 	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2396 								zone, 1);
2397 }
2398 
2399 #ifdef CONFIG_HIBERNATION
2400 
2401 void mark_free_pages(struct zone *zone)
2402 {
2403 	unsigned long pfn, max_zone_pfn;
2404 	unsigned long flags;
2405 	unsigned int order, t;
2406 	struct page *page;
2407 
2408 	if (zone_is_empty(zone))
2409 		return;
2410 
2411 	spin_lock_irqsave(&zone->lock, flags);
2412 
2413 	max_zone_pfn = zone_end_pfn(zone);
2414 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2415 		if (pfn_valid(pfn)) {
2416 			page = pfn_to_page(pfn);
2417 
2418 			if (page_zone(page) != zone)
2419 				continue;
2420 
2421 			if (!swsusp_page_is_forbidden(page))
2422 				swsusp_unset_page_free(page);
2423 		}
2424 
2425 	for_each_migratetype_order(order, t) {
2426 		list_for_each_entry(page,
2427 				&zone->free_area[order].free_list[t], lru) {
2428 			unsigned long i;
2429 
2430 			pfn = page_to_pfn(page);
2431 			for (i = 0; i < (1UL << order); i++)
2432 				swsusp_set_page_free(pfn_to_page(pfn + i));
2433 		}
2434 	}
2435 	spin_unlock_irqrestore(&zone->lock, flags);
2436 }
2437 #endif /* CONFIG_PM */
2438 
2439 /*
2440  * Free a 0-order page
2441  * cold == true ? free a cold page : free a hot page
2442  */
2443 void free_hot_cold_page(struct page *page, bool cold)
2444 {
2445 	struct zone *zone = page_zone(page);
2446 	struct per_cpu_pages *pcp;
2447 	unsigned long flags;
2448 	unsigned long pfn = page_to_pfn(page);
2449 	int migratetype;
2450 
2451 	if (!free_pcp_prepare(page))
2452 		return;
2453 
2454 	migratetype = get_pfnblock_migratetype(page, pfn);
2455 	set_pcppage_migratetype(page, migratetype);
2456 	local_irq_save(flags);
2457 	__count_vm_event(PGFREE);
2458 
2459 	/*
2460 	 * We only track unmovable, reclaimable and movable on pcp lists.
2461 	 * Free ISOLATE pages back to the allocator because they are being
2462 	 * offlined but treat RESERVE as movable pages so we can get those
2463 	 * areas back if necessary. Otherwise, we may have to free
2464 	 * excessively into the page allocator
2465 	 */
2466 	if (migratetype >= MIGRATE_PCPTYPES) {
2467 		if (unlikely(is_migrate_isolate(migratetype))) {
2468 			free_one_page(zone, page, pfn, 0, migratetype);
2469 			goto out;
2470 		}
2471 		migratetype = MIGRATE_MOVABLE;
2472 	}
2473 
2474 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2475 	if (!cold)
2476 		list_add(&page->lru, &pcp->lists[migratetype]);
2477 	else
2478 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2479 	pcp->count++;
2480 	if (pcp->count >= pcp->high) {
2481 		unsigned long batch = READ_ONCE(pcp->batch);
2482 		free_pcppages_bulk(zone, batch, pcp);
2483 		pcp->count -= batch;
2484 	}
2485 
2486 out:
2487 	local_irq_restore(flags);
2488 }
2489 
2490 /*
2491  * Free a list of 0-order pages
2492  */
2493 void free_hot_cold_page_list(struct list_head *list, bool cold)
2494 {
2495 	struct page *page, *next;
2496 
2497 	list_for_each_entry_safe(page, next, list, lru) {
2498 		trace_mm_page_free_batched(page, cold);
2499 		free_hot_cold_page(page, cold);
2500 	}
2501 }
2502 
2503 /*
2504  * split_page takes a non-compound higher-order page, and splits it into
2505  * n (1<<order) sub-pages: page[0..n]
2506  * Each sub-page must be freed individually.
2507  *
2508  * Note: this is probably too low level an operation for use in drivers.
2509  * Please consult with lkml before using this in your driver.
2510  */
2511 void split_page(struct page *page, unsigned int order)
2512 {
2513 	int i;
2514 
2515 	VM_BUG_ON_PAGE(PageCompound(page), page);
2516 	VM_BUG_ON_PAGE(!page_count(page), page);
2517 
2518 #ifdef CONFIG_KMEMCHECK
2519 	/*
2520 	 * Split shadow pages too, because free(page[0]) would
2521 	 * otherwise free the whole shadow.
2522 	 */
2523 	if (kmemcheck_page_is_tracked(page))
2524 		split_page(virt_to_page(page[0].shadow), order);
2525 #endif
2526 
2527 	for (i = 1; i < (1 << order); i++)
2528 		set_page_refcounted(page + i);
2529 	split_page_owner(page, order);
2530 }
2531 EXPORT_SYMBOL_GPL(split_page);
2532 
2533 int __isolate_free_page(struct page *page, unsigned int order)
2534 {
2535 	unsigned long watermark;
2536 	struct zone *zone;
2537 	int mt;
2538 
2539 	BUG_ON(!PageBuddy(page));
2540 
2541 	zone = page_zone(page);
2542 	mt = get_pageblock_migratetype(page);
2543 
2544 	if (!is_migrate_isolate(mt)) {
2545 		/*
2546 		 * Obey watermarks as if the page was being allocated. We can
2547 		 * emulate a high-order watermark check with a raised order-0
2548 		 * watermark, because we already know our high-order page
2549 		 * exists.
2550 		 */
2551 		watermark = min_wmark_pages(zone) + (1UL << order);
2552 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2553 			return 0;
2554 
2555 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2556 	}
2557 
2558 	/* Remove page from free list */
2559 	list_del(&page->lru);
2560 	zone->free_area[order].nr_free--;
2561 	rmv_page_order(page);
2562 
2563 	/*
2564 	 * Set the pageblock if the isolated page is at least half of a
2565 	 * pageblock
2566 	 */
2567 	if (order >= pageblock_order - 1) {
2568 		struct page *endpage = page + (1 << order) - 1;
2569 		for (; page < endpage; page += pageblock_nr_pages) {
2570 			int mt = get_pageblock_migratetype(page);
2571 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2572 				&& mt != MIGRATE_HIGHATOMIC)
2573 				set_pageblock_migratetype(page,
2574 							  MIGRATE_MOVABLE);
2575 		}
2576 	}
2577 
2578 
2579 	return 1UL << order;
2580 }
2581 
2582 /*
2583  * Update NUMA hit/miss statistics
2584  *
2585  * Must be called with interrupts disabled.
2586  */
2587 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2588 {
2589 #ifdef CONFIG_NUMA
2590 	enum zone_stat_item local_stat = NUMA_LOCAL;
2591 
2592 	if (z->node != numa_node_id())
2593 		local_stat = NUMA_OTHER;
2594 
2595 	if (z->node == preferred_zone->node)
2596 		__inc_zone_state(z, NUMA_HIT);
2597 	else {
2598 		__inc_zone_state(z, NUMA_MISS);
2599 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
2600 	}
2601 	__inc_zone_state(z, local_stat);
2602 #endif
2603 }
2604 
2605 /*
2606  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2607  */
2608 static inline
2609 struct page *buffered_rmqueue(struct zone *preferred_zone,
2610 			struct zone *zone, unsigned int order,
2611 			gfp_t gfp_flags, unsigned int alloc_flags,
2612 			int migratetype)
2613 {
2614 	unsigned long flags;
2615 	struct page *page;
2616 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2617 
2618 	if (likely(order == 0)) {
2619 		struct per_cpu_pages *pcp;
2620 		struct list_head *list;
2621 
2622 		local_irq_save(flags);
2623 		do {
2624 			pcp = &this_cpu_ptr(zone->pageset)->pcp;
2625 			list = &pcp->lists[migratetype];
2626 			if (list_empty(list)) {
2627 				pcp->count += rmqueue_bulk(zone, 0,
2628 						pcp->batch, list,
2629 						migratetype, cold);
2630 				if (unlikely(list_empty(list)))
2631 					goto failed;
2632 			}
2633 
2634 			if (cold)
2635 				page = list_last_entry(list, struct page, lru);
2636 			else
2637 				page = list_first_entry(list, struct page, lru);
2638 
2639 			list_del(&page->lru);
2640 			pcp->count--;
2641 
2642 		} while (check_new_pcp(page));
2643 	} else {
2644 		/*
2645 		 * We most definitely don't want callers attempting to
2646 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
2647 		 */
2648 		WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2649 		spin_lock_irqsave(&zone->lock, flags);
2650 
2651 		do {
2652 			page = NULL;
2653 			if (alloc_flags & ALLOC_HARDER) {
2654 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2655 				if (page)
2656 					trace_mm_page_alloc_zone_locked(page, order, migratetype);
2657 			}
2658 			if (!page)
2659 				page = __rmqueue(zone, order, migratetype);
2660 		} while (page && check_new_pages(page, order));
2661 		spin_unlock(&zone->lock);
2662 		if (!page)
2663 			goto failed;
2664 		__mod_zone_freepage_state(zone, -(1 << order),
2665 					  get_pcppage_migratetype(page));
2666 	}
2667 
2668 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2669 	zone_statistics(preferred_zone, zone);
2670 	local_irq_restore(flags);
2671 
2672 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
2673 	return page;
2674 
2675 failed:
2676 	local_irq_restore(flags);
2677 	return NULL;
2678 }
2679 
2680 #ifdef CONFIG_FAIL_PAGE_ALLOC
2681 
2682 static struct {
2683 	struct fault_attr attr;
2684 
2685 	bool ignore_gfp_highmem;
2686 	bool ignore_gfp_reclaim;
2687 	u32 min_order;
2688 } fail_page_alloc = {
2689 	.attr = FAULT_ATTR_INITIALIZER,
2690 	.ignore_gfp_reclaim = true,
2691 	.ignore_gfp_highmem = true,
2692 	.min_order = 1,
2693 };
2694 
2695 static int __init setup_fail_page_alloc(char *str)
2696 {
2697 	return setup_fault_attr(&fail_page_alloc.attr, str);
2698 }
2699 __setup("fail_page_alloc=", setup_fail_page_alloc);
2700 
2701 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2702 {
2703 	if (order < fail_page_alloc.min_order)
2704 		return false;
2705 	if (gfp_mask & __GFP_NOFAIL)
2706 		return false;
2707 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2708 		return false;
2709 	if (fail_page_alloc.ignore_gfp_reclaim &&
2710 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2711 		return false;
2712 
2713 	return should_fail(&fail_page_alloc.attr, 1 << order);
2714 }
2715 
2716 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2717 
2718 static int __init fail_page_alloc_debugfs(void)
2719 {
2720 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2721 	struct dentry *dir;
2722 
2723 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2724 					&fail_page_alloc.attr);
2725 	if (IS_ERR(dir))
2726 		return PTR_ERR(dir);
2727 
2728 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2729 				&fail_page_alloc.ignore_gfp_reclaim))
2730 		goto fail;
2731 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2732 				&fail_page_alloc.ignore_gfp_highmem))
2733 		goto fail;
2734 	if (!debugfs_create_u32("min-order", mode, dir,
2735 				&fail_page_alloc.min_order))
2736 		goto fail;
2737 
2738 	return 0;
2739 fail:
2740 	debugfs_remove_recursive(dir);
2741 
2742 	return -ENOMEM;
2743 }
2744 
2745 late_initcall(fail_page_alloc_debugfs);
2746 
2747 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2748 
2749 #else /* CONFIG_FAIL_PAGE_ALLOC */
2750 
2751 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2752 {
2753 	return false;
2754 }
2755 
2756 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2757 
2758 /*
2759  * Return true if free base pages are above 'mark'. For high-order checks it
2760  * will return true of the order-0 watermark is reached and there is at least
2761  * one free page of a suitable size. Checking now avoids taking the zone lock
2762  * to check in the allocation paths if no pages are free.
2763  */
2764 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2765 			 int classzone_idx, unsigned int alloc_flags,
2766 			 long free_pages)
2767 {
2768 	long min = mark;
2769 	int o;
2770 	const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2771 
2772 	/* free_pages may go negative - that's OK */
2773 	free_pages -= (1 << order) - 1;
2774 
2775 	if (alloc_flags & ALLOC_HIGH)
2776 		min -= min / 2;
2777 
2778 	/*
2779 	 * If the caller does not have rights to ALLOC_HARDER then subtract
2780 	 * the high-atomic reserves. This will over-estimate the size of the
2781 	 * atomic reserve but it avoids a search.
2782 	 */
2783 	if (likely(!alloc_harder))
2784 		free_pages -= z->nr_reserved_highatomic;
2785 	else
2786 		min -= min / 4;
2787 
2788 #ifdef CONFIG_CMA
2789 	/* If allocation can't use CMA areas don't use free CMA pages */
2790 	if (!(alloc_flags & ALLOC_CMA))
2791 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2792 #endif
2793 
2794 	/*
2795 	 * Check watermarks for an order-0 allocation request. If these
2796 	 * are not met, then a high-order request also cannot go ahead
2797 	 * even if a suitable page happened to be free.
2798 	 */
2799 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2800 		return false;
2801 
2802 	/* If this is an order-0 request then the watermark is fine */
2803 	if (!order)
2804 		return true;
2805 
2806 	/* For a high-order request, check at least one suitable page is free */
2807 	for (o = order; o < MAX_ORDER; o++) {
2808 		struct free_area *area = &z->free_area[o];
2809 		int mt;
2810 
2811 		if (!area->nr_free)
2812 			continue;
2813 
2814 		if (alloc_harder)
2815 			return true;
2816 
2817 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2818 			if (!list_empty(&area->free_list[mt]))
2819 				return true;
2820 		}
2821 
2822 #ifdef CONFIG_CMA
2823 		if ((alloc_flags & ALLOC_CMA) &&
2824 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2825 			return true;
2826 		}
2827 #endif
2828 	}
2829 	return false;
2830 }
2831 
2832 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2833 		      int classzone_idx, unsigned int alloc_flags)
2834 {
2835 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2836 					zone_page_state(z, NR_FREE_PAGES));
2837 }
2838 
2839 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2840 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2841 {
2842 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2843 	long cma_pages = 0;
2844 
2845 #ifdef CONFIG_CMA
2846 	/* If allocation can't use CMA areas don't use free CMA pages */
2847 	if (!(alloc_flags & ALLOC_CMA))
2848 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2849 #endif
2850 
2851 	/*
2852 	 * Fast check for order-0 only. If this fails then the reserves
2853 	 * need to be calculated. There is a corner case where the check
2854 	 * passes but only the high-order atomic reserve are free. If
2855 	 * the caller is !atomic then it'll uselessly search the free
2856 	 * list. That corner case is then slower but it is harmless.
2857 	 */
2858 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2859 		return true;
2860 
2861 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2862 					free_pages);
2863 }
2864 
2865 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2866 			unsigned long mark, int classzone_idx)
2867 {
2868 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2869 
2870 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2871 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2872 
2873 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2874 								free_pages);
2875 }
2876 
2877 #ifdef CONFIG_NUMA
2878 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2879 {
2880 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2881 				RECLAIM_DISTANCE;
2882 }
2883 #else	/* CONFIG_NUMA */
2884 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2885 {
2886 	return true;
2887 }
2888 #endif	/* CONFIG_NUMA */
2889 
2890 /*
2891  * get_page_from_freelist goes through the zonelist trying to allocate
2892  * a page.
2893  */
2894 static struct page *
2895 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2896 						const struct alloc_context *ac)
2897 {
2898 	struct zoneref *z = ac->preferred_zoneref;
2899 	struct zone *zone;
2900 	struct pglist_data *last_pgdat_dirty_limit = NULL;
2901 
2902 	/*
2903 	 * Scan zonelist, looking for a zone with enough free.
2904 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2905 	 */
2906 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2907 								ac->nodemask) {
2908 		struct page *page;
2909 		unsigned long mark;
2910 
2911 		if (cpusets_enabled() &&
2912 			(alloc_flags & ALLOC_CPUSET) &&
2913 			!__cpuset_zone_allowed(zone, gfp_mask))
2914 				continue;
2915 		/*
2916 		 * When allocating a page cache page for writing, we
2917 		 * want to get it from a node that is within its dirty
2918 		 * limit, such that no single node holds more than its
2919 		 * proportional share of globally allowed dirty pages.
2920 		 * The dirty limits take into account the node's
2921 		 * lowmem reserves and high watermark so that kswapd
2922 		 * should be able to balance it without having to
2923 		 * write pages from its LRU list.
2924 		 *
2925 		 * XXX: For now, allow allocations to potentially
2926 		 * exceed the per-node dirty limit in the slowpath
2927 		 * (spread_dirty_pages unset) before going into reclaim,
2928 		 * which is important when on a NUMA setup the allowed
2929 		 * nodes are together not big enough to reach the
2930 		 * global limit.  The proper fix for these situations
2931 		 * will require awareness of nodes in the
2932 		 * dirty-throttling and the flusher threads.
2933 		 */
2934 		if (ac->spread_dirty_pages) {
2935 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
2936 				continue;
2937 
2938 			if (!node_dirty_ok(zone->zone_pgdat)) {
2939 				last_pgdat_dirty_limit = zone->zone_pgdat;
2940 				continue;
2941 			}
2942 		}
2943 
2944 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2945 		if (!zone_watermark_fast(zone, order, mark,
2946 				       ac_classzone_idx(ac), alloc_flags)) {
2947 			int ret;
2948 
2949 			/* Checked here to keep the fast path fast */
2950 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2951 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2952 				goto try_this_zone;
2953 
2954 			if (node_reclaim_mode == 0 ||
2955 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2956 				continue;
2957 
2958 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
2959 			switch (ret) {
2960 			case NODE_RECLAIM_NOSCAN:
2961 				/* did not scan */
2962 				continue;
2963 			case NODE_RECLAIM_FULL:
2964 				/* scanned but unreclaimable */
2965 				continue;
2966 			default:
2967 				/* did we reclaim enough */
2968 				if (zone_watermark_ok(zone, order, mark,
2969 						ac_classzone_idx(ac), alloc_flags))
2970 					goto try_this_zone;
2971 
2972 				continue;
2973 			}
2974 		}
2975 
2976 try_this_zone:
2977 		page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
2978 				gfp_mask, alloc_flags, ac->migratetype);
2979 		if (page) {
2980 			prep_new_page(page, order, gfp_mask, alloc_flags);
2981 
2982 			/*
2983 			 * If this is a high-order atomic allocation then check
2984 			 * if the pageblock should be reserved for the future
2985 			 */
2986 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2987 				reserve_highatomic_pageblock(page, zone, order);
2988 
2989 			return page;
2990 		}
2991 	}
2992 
2993 	return NULL;
2994 }
2995 
2996 /*
2997  * Large machines with many possible nodes should not always dump per-node
2998  * meminfo in irq context.
2999  */
3000 static inline bool should_suppress_show_mem(void)
3001 {
3002 	bool ret = false;
3003 
3004 #if NODES_SHIFT > 8
3005 	ret = in_interrupt();
3006 #endif
3007 	return ret;
3008 }
3009 
3010 static DEFINE_RATELIMIT_STATE(nopage_rs,
3011 		DEFAULT_RATELIMIT_INTERVAL,
3012 		DEFAULT_RATELIMIT_BURST);
3013 
3014 void warn_alloc(gfp_t gfp_mask, const char *fmt, ...)
3015 {
3016 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3017 	struct va_format vaf;
3018 	va_list args;
3019 
3020 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3021 	    debug_guardpage_minorder() > 0)
3022 		return;
3023 
3024 	/*
3025 	 * This documents exceptions given to allocations in certain
3026 	 * contexts that are allowed to allocate outside current's set
3027 	 * of allowed nodes.
3028 	 */
3029 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3030 		if (test_thread_flag(TIF_MEMDIE) ||
3031 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3032 			filter &= ~SHOW_MEM_FILTER_NODES;
3033 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3034 		filter &= ~SHOW_MEM_FILTER_NODES;
3035 
3036 	pr_warn("%s: ", current->comm);
3037 
3038 	va_start(args, fmt);
3039 	vaf.fmt = fmt;
3040 	vaf.va = &args;
3041 	pr_cont("%pV", &vaf);
3042 	va_end(args);
3043 
3044 	pr_cont(", mode:%#x(%pGg)\n", gfp_mask, &gfp_mask);
3045 
3046 	dump_stack();
3047 	if (!should_suppress_show_mem())
3048 		show_mem(filter);
3049 }
3050 
3051 static inline struct page *
3052 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3053 	const struct alloc_context *ac, unsigned long *did_some_progress)
3054 {
3055 	struct oom_control oc = {
3056 		.zonelist = ac->zonelist,
3057 		.nodemask = ac->nodemask,
3058 		.memcg = NULL,
3059 		.gfp_mask = gfp_mask,
3060 		.order = order,
3061 	};
3062 	struct page *page;
3063 
3064 	*did_some_progress = 0;
3065 
3066 	/*
3067 	 * Acquire the oom lock.  If that fails, somebody else is
3068 	 * making progress for us.
3069 	 */
3070 	if (!mutex_trylock(&oom_lock)) {
3071 		*did_some_progress = 1;
3072 		schedule_timeout_uninterruptible(1);
3073 		return NULL;
3074 	}
3075 
3076 	/*
3077 	 * Go through the zonelist yet one more time, keep very high watermark
3078 	 * here, this is only to catch a parallel oom killing, we must fail if
3079 	 * we're still under heavy pressure.
3080 	 */
3081 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3082 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3083 	if (page)
3084 		goto out;
3085 
3086 	if (!(gfp_mask & __GFP_NOFAIL)) {
3087 		/* Coredumps can quickly deplete all memory reserves */
3088 		if (current->flags & PF_DUMPCORE)
3089 			goto out;
3090 		/* The OOM killer will not help higher order allocs */
3091 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3092 			goto out;
3093 		/* The OOM killer does not needlessly kill tasks for lowmem */
3094 		if (ac->high_zoneidx < ZONE_NORMAL)
3095 			goto out;
3096 		if (pm_suspended_storage())
3097 			goto out;
3098 		/*
3099 		 * XXX: GFP_NOFS allocations should rather fail than rely on
3100 		 * other request to make a forward progress.
3101 		 * We are in an unfortunate situation where out_of_memory cannot
3102 		 * do much for this context but let's try it to at least get
3103 		 * access to memory reserved if the current task is killed (see
3104 		 * out_of_memory). Once filesystems are ready to handle allocation
3105 		 * failures more gracefully we should just bail out here.
3106 		 */
3107 
3108 		/* The OOM killer may not free memory on a specific node */
3109 		if (gfp_mask & __GFP_THISNODE)
3110 			goto out;
3111 	}
3112 	/* Exhausted what can be done so it's blamo time */
3113 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3114 		*did_some_progress = 1;
3115 
3116 		if (gfp_mask & __GFP_NOFAIL) {
3117 			page = get_page_from_freelist(gfp_mask, order,
3118 					ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3119 			/*
3120 			 * fallback to ignore cpuset restriction if our nodes
3121 			 * are depleted
3122 			 */
3123 			if (!page)
3124 				page = get_page_from_freelist(gfp_mask, order,
3125 					ALLOC_NO_WATERMARKS, ac);
3126 		}
3127 	}
3128 out:
3129 	mutex_unlock(&oom_lock);
3130 	return page;
3131 }
3132 
3133 /*
3134  * Maximum number of compaction retries wit a progress before OOM
3135  * killer is consider as the only way to move forward.
3136  */
3137 #define MAX_COMPACT_RETRIES 16
3138 
3139 #ifdef CONFIG_COMPACTION
3140 /* Try memory compaction for high-order allocations before reclaim */
3141 static struct page *
3142 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3143 		unsigned int alloc_flags, const struct alloc_context *ac,
3144 		enum compact_priority prio, enum compact_result *compact_result)
3145 {
3146 	struct page *page;
3147 
3148 	if (!order)
3149 		return NULL;
3150 
3151 	current->flags |= PF_MEMALLOC;
3152 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3153 									prio);
3154 	current->flags &= ~PF_MEMALLOC;
3155 
3156 	if (*compact_result <= COMPACT_INACTIVE)
3157 		return NULL;
3158 
3159 	/*
3160 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3161 	 * count a compaction stall
3162 	 */
3163 	count_vm_event(COMPACTSTALL);
3164 
3165 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3166 
3167 	if (page) {
3168 		struct zone *zone = page_zone(page);
3169 
3170 		zone->compact_blockskip_flush = false;
3171 		compaction_defer_reset(zone, order, true);
3172 		count_vm_event(COMPACTSUCCESS);
3173 		return page;
3174 	}
3175 
3176 	/*
3177 	 * It's bad if compaction run occurs and fails. The most likely reason
3178 	 * is that pages exist, but not enough to satisfy watermarks.
3179 	 */
3180 	count_vm_event(COMPACTFAIL);
3181 
3182 	cond_resched();
3183 
3184 	return NULL;
3185 }
3186 
3187 static inline bool
3188 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3189 		     enum compact_result compact_result,
3190 		     enum compact_priority *compact_priority,
3191 		     int *compaction_retries)
3192 {
3193 	int max_retries = MAX_COMPACT_RETRIES;
3194 	int min_priority;
3195 
3196 	if (!order)
3197 		return false;
3198 
3199 	if (compaction_made_progress(compact_result))
3200 		(*compaction_retries)++;
3201 
3202 	/*
3203 	 * compaction considers all the zone as desperately out of memory
3204 	 * so it doesn't really make much sense to retry except when the
3205 	 * failure could be caused by insufficient priority
3206 	 */
3207 	if (compaction_failed(compact_result))
3208 		goto check_priority;
3209 
3210 	/*
3211 	 * make sure the compaction wasn't deferred or didn't bail out early
3212 	 * due to locks contention before we declare that we should give up.
3213 	 * But do not retry if the given zonelist is not suitable for
3214 	 * compaction.
3215 	 */
3216 	if (compaction_withdrawn(compact_result))
3217 		return compaction_zonelist_suitable(ac, order, alloc_flags);
3218 
3219 	/*
3220 	 * !costly requests are much more important than __GFP_REPEAT
3221 	 * costly ones because they are de facto nofail and invoke OOM
3222 	 * killer to move on while costly can fail and users are ready
3223 	 * to cope with that. 1/4 retries is rather arbitrary but we
3224 	 * would need much more detailed feedback from compaction to
3225 	 * make a better decision.
3226 	 */
3227 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3228 		max_retries /= 4;
3229 	if (*compaction_retries <= max_retries)
3230 		return true;
3231 
3232 	/*
3233 	 * Make sure there are attempts at the highest priority if we exhausted
3234 	 * all retries or failed at the lower priorities.
3235 	 */
3236 check_priority:
3237 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3238 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3239 	if (*compact_priority > min_priority) {
3240 		(*compact_priority)--;
3241 		*compaction_retries = 0;
3242 		return true;
3243 	}
3244 	return false;
3245 }
3246 #else
3247 static inline struct page *
3248 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3249 		unsigned int alloc_flags, const struct alloc_context *ac,
3250 		enum compact_priority prio, enum compact_result *compact_result)
3251 {
3252 	*compact_result = COMPACT_SKIPPED;
3253 	return NULL;
3254 }
3255 
3256 static inline bool
3257 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3258 		     enum compact_result compact_result,
3259 		     enum compact_priority *compact_priority,
3260 		     int *compaction_retries)
3261 {
3262 	struct zone *zone;
3263 	struct zoneref *z;
3264 
3265 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3266 		return false;
3267 
3268 	/*
3269 	 * There are setups with compaction disabled which would prefer to loop
3270 	 * inside the allocator rather than hit the oom killer prematurely.
3271 	 * Let's give them a good hope and keep retrying while the order-0
3272 	 * watermarks are OK.
3273 	 */
3274 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3275 					ac->nodemask) {
3276 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3277 					ac_classzone_idx(ac), alloc_flags))
3278 			return true;
3279 	}
3280 	return false;
3281 }
3282 #endif /* CONFIG_COMPACTION */
3283 
3284 /* Perform direct synchronous page reclaim */
3285 static int
3286 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3287 					const struct alloc_context *ac)
3288 {
3289 	struct reclaim_state reclaim_state;
3290 	int progress;
3291 
3292 	cond_resched();
3293 
3294 	/* We now go into synchronous reclaim */
3295 	cpuset_memory_pressure_bump();
3296 	current->flags |= PF_MEMALLOC;
3297 	lockdep_set_current_reclaim_state(gfp_mask);
3298 	reclaim_state.reclaimed_slab = 0;
3299 	current->reclaim_state = &reclaim_state;
3300 
3301 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3302 								ac->nodemask);
3303 
3304 	current->reclaim_state = NULL;
3305 	lockdep_clear_current_reclaim_state();
3306 	current->flags &= ~PF_MEMALLOC;
3307 
3308 	cond_resched();
3309 
3310 	return progress;
3311 }
3312 
3313 /* The really slow allocator path where we enter direct reclaim */
3314 static inline struct page *
3315 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3316 		unsigned int alloc_flags, const struct alloc_context *ac,
3317 		unsigned long *did_some_progress)
3318 {
3319 	struct page *page = NULL;
3320 	bool drained = false;
3321 
3322 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3323 	if (unlikely(!(*did_some_progress)))
3324 		return NULL;
3325 
3326 retry:
3327 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3328 
3329 	/*
3330 	 * If an allocation failed after direct reclaim, it could be because
3331 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3332 	 * Shrink them them and try again
3333 	 */
3334 	if (!page && !drained) {
3335 		unreserve_highatomic_pageblock(ac, false);
3336 		drain_all_pages(NULL);
3337 		drained = true;
3338 		goto retry;
3339 	}
3340 
3341 	return page;
3342 }
3343 
3344 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3345 {
3346 	struct zoneref *z;
3347 	struct zone *zone;
3348 	pg_data_t *last_pgdat = NULL;
3349 
3350 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3351 					ac->high_zoneidx, ac->nodemask) {
3352 		if (last_pgdat != zone->zone_pgdat)
3353 			wakeup_kswapd(zone, order, ac->high_zoneidx);
3354 		last_pgdat = zone->zone_pgdat;
3355 	}
3356 }
3357 
3358 static inline unsigned int
3359 gfp_to_alloc_flags(gfp_t gfp_mask)
3360 {
3361 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3362 
3363 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3364 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3365 
3366 	/*
3367 	 * The caller may dip into page reserves a bit more if the caller
3368 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3369 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3370 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3371 	 */
3372 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3373 
3374 	if (gfp_mask & __GFP_ATOMIC) {
3375 		/*
3376 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3377 		 * if it can't schedule.
3378 		 */
3379 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3380 			alloc_flags |= ALLOC_HARDER;
3381 		/*
3382 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3383 		 * comment for __cpuset_node_allowed().
3384 		 */
3385 		alloc_flags &= ~ALLOC_CPUSET;
3386 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3387 		alloc_flags |= ALLOC_HARDER;
3388 
3389 #ifdef CONFIG_CMA
3390 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3391 		alloc_flags |= ALLOC_CMA;
3392 #endif
3393 	return alloc_flags;
3394 }
3395 
3396 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3397 {
3398 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3399 		return false;
3400 
3401 	if (gfp_mask & __GFP_MEMALLOC)
3402 		return true;
3403 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3404 		return true;
3405 	if (!in_interrupt() &&
3406 			((current->flags & PF_MEMALLOC) ||
3407 			 unlikely(test_thread_flag(TIF_MEMDIE))))
3408 		return true;
3409 
3410 	return false;
3411 }
3412 
3413 /*
3414  * Maximum number of reclaim retries without any progress before OOM killer
3415  * is consider as the only way to move forward.
3416  */
3417 #define MAX_RECLAIM_RETRIES 16
3418 
3419 /*
3420  * Checks whether it makes sense to retry the reclaim to make a forward progress
3421  * for the given allocation request.
3422  * The reclaim feedback represented by did_some_progress (any progress during
3423  * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3424  * any progress in a row) is considered as well as the reclaimable pages on the
3425  * applicable zone list (with a backoff mechanism which is a function of
3426  * no_progress_loops).
3427  *
3428  * Returns true if a retry is viable or false to enter the oom path.
3429  */
3430 static inline bool
3431 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3432 		     struct alloc_context *ac, int alloc_flags,
3433 		     bool did_some_progress, int *no_progress_loops)
3434 {
3435 	struct zone *zone;
3436 	struct zoneref *z;
3437 
3438 	/*
3439 	 * Costly allocations might have made a progress but this doesn't mean
3440 	 * their order will become available due to high fragmentation so
3441 	 * always increment the no progress counter for them
3442 	 */
3443 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3444 		*no_progress_loops = 0;
3445 	else
3446 		(*no_progress_loops)++;
3447 
3448 	/*
3449 	 * Make sure we converge to OOM if we cannot make any progress
3450 	 * several times in the row.
3451 	 */
3452 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3453 		/* Before OOM, exhaust highatomic_reserve */
3454 		return unreserve_highatomic_pageblock(ac, true);
3455 	}
3456 
3457 	/*
3458 	 * Keep reclaiming pages while there is a chance this will lead
3459 	 * somewhere.  If none of the target zones can satisfy our allocation
3460 	 * request even if all reclaimable pages are considered then we are
3461 	 * screwed and have to go OOM.
3462 	 */
3463 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3464 					ac->nodemask) {
3465 		unsigned long available;
3466 		unsigned long reclaimable;
3467 
3468 		available = reclaimable = zone_reclaimable_pages(zone);
3469 		available -= DIV_ROUND_UP((*no_progress_loops) * available,
3470 					  MAX_RECLAIM_RETRIES);
3471 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3472 
3473 		/*
3474 		 * Would the allocation succeed if we reclaimed the whole
3475 		 * available?
3476 		 */
3477 		if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3478 				ac_classzone_idx(ac), alloc_flags, available)) {
3479 			/*
3480 			 * If we didn't make any progress and have a lot of
3481 			 * dirty + writeback pages then we should wait for
3482 			 * an IO to complete to slow down the reclaim and
3483 			 * prevent from pre mature OOM
3484 			 */
3485 			if (!did_some_progress) {
3486 				unsigned long write_pending;
3487 
3488 				write_pending = zone_page_state_snapshot(zone,
3489 							NR_ZONE_WRITE_PENDING);
3490 
3491 				if (2 * write_pending > reclaimable) {
3492 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3493 					return true;
3494 				}
3495 			}
3496 
3497 			/*
3498 			 * Memory allocation/reclaim might be called from a WQ
3499 			 * context and the current implementation of the WQ
3500 			 * concurrency control doesn't recognize that
3501 			 * a particular WQ is congested if the worker thread is
3502 			 * looping without ever sleeping. Therefore we have to
3503 			 * do a short sleep here rather than calling
3504 			 * cond_resched().
3505 			 */
3506 			if (current->flags & PF_WQ_WORKER)
3507 				schedule_timeout_uninterruptible(1);
3508 			else
3509 				cond_resched();
3510 
3511 			return true;
3512 		}
3513 	}
3514 
3515 	return false;
3516 }
3517 
3518 static inline struct page *
3519 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3520 						struct alloc_context *ac)
3521 {
3522 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3523 	struct page *page = NULL;
3524 	unsigned int alloc_flags;
3525 	unsigned long did_some_progress;
3526 	enum compact_priority compact_priority;
3527 	enum compact_result compact_result;
3528 	int compaction_retries;
3529 	int no_progress_loops;
3530 	unsigned long alloc_start = jiffies;
3531 	unsigned int stall_timeout = 10 * HZ;
3532 	unsigned int cpuset_mems_cookie;
3533 
3534 	/*
3535 	 * In the slowpath, we sanity check order to avoid ever trying to
3536 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3537 	 * be using allocators in order of preference for an area that is
3538 	 * too large.
3539 	 */
3540 	if (order >= MAX_ORDER) {
3541 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3542 		return NULL;
3543 	}
3544 
3545 	/*
3546 	 * We also sanity check to catch abuse of atomic reserves being used by
3547 	 * callers that are not in atomic context.
3548 	 */
3549 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3550 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3551 		gfp_mask &= ~__GFP_ATOMIC;
3552 
3553 retry_cpuset:
3554 	compaction_retries = 0;
3555 	no_progress_loops = 0;
3556 	compact_priority = DEF_COMPACT_PRIORITY;
3557 	cpuset_mems_cookie = read_mems_allowed_begin();
3558 	/*
3559 	 * We need to recalculate the starting point for the zonelist iterator
3560 	 * because we might have used different nodemask in the fast path, or
3561 	 * there was a cpuset modification and we are retrying - otherwise we
3562 	 * could end up iterating over non-eligible zones endlessly.
3563 	 */
3564 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3565 					ac->high_zoneidx, ac->nodemask);
3566 	if (!ac->preferred_zoneref->zone)
3567 		goto nopage;
3568 
3569 
3570 	/*
3571 	 * The fast path uses conservative alloc_flags to succeed only until
3572 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3573 	 * alloc_flags precisely. So we do that now.
3574 	 */
3575 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3576 
3577 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3578 		wake_all_kswapds(order, ac);
3579 
3580 	/*
3581 	 * The adjusted alloc_flags might result in immediate success, so try
3582 	 * that first
3583 	 */
3584 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3585 	if (page)
3586 		goto got_pg;
3587 
3588 	/*
3589 	 * For costly allocations, try direct compaction first, as it's likely
3590 	 * that we have enough base pages and don't need to reclaim. Don't try
3591 	 * that for allocations that are allowed to ignore watermarks, as the
3592 	 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3593 	 */
3594 	if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3595 		!gfp_pfmemalloc_allowed(gfp_mask)) {
3596 		page = __alloc_pages_direct_compact(gfp_mask, order,
3597 						alloc_flags, ac,
3598 						INIT_COMPACT_PRIORITY,
3599 						&compact_result);
3600 		if (page)
3601 			goto got_pg;
3602 
3603 		/*
3604 		 * Checks for costly allocations with __GFP_NORETRY, which
3605 		 * includes THP page fault allocations
3606 		 */
3607 		if (gfp_mask & __GFP_NORETRY) {
3608 			/*
3609 			 * If compaction is deferred for high-order allocations,
3610 			 * it is because sync compaction recently failed. If
3611 			 * this is the case and the caller requested a THP
3612 			 * allocation, we do not want to heavily disrupt the
3613 			 * system, so we fail the allocation instead of entering
3614 			 * direct reclaim.
3615 			 */
3616 			if (compact_result == COMPACT_DEFERRED)
3617 				goto nopage;
3618 
3619 			/*
3620 			 * Looks like reclaim/compaction is worth trying, but
3621 			 * sync compaction could be very expensive, so keep
3622 			 * using async compaction.
3623 			 */
3624 			compact_priority = INIT_COMPACT_PRIORITY;
3625 		}
3626 	}
3627 
3628 retry:
3629 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3630 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3631 		wake_all_kswapds(order, ac);
3632 
3633 	if (gfp_pfmemalloc_allowed(gfp_mask))
3634 		alloc_flags = ALLOC_NO_WATERMARKS;
3635 
3636 	/*
3637 	 * Reset the zonelist iterators if memory policies can be ignored.
3638 	 * These allocations are high priority and system rather than user
3639 	 * orientated.
3640 	 */
3641 	if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3642 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3643 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3644 					ac->high_zoneidx, ac->nodemask);
3645 	}
3646 
3647 	/* Attempt with potentially adjusted zonelist and alloc_flags */
3648 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3649 	if (page)
3650 		goto got_pg;
3651 
3652 	/* Caller is not willing to reclaim, we can't balance anything */
3653 	if (!can_direct_reclaim) {
3654 		/*
3655 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
3656 		 * of any new users that actually allow this type of allocation
3657 		 * to fail.
3658 		 */
3659 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3660 		goto nopage;
3661 	}
3662 
3663 	/* Avoid recursion of direct reclaim */
3664 	if (current->flags & PF_MEMALLOC) {
3665 		/*
3666 		 * __GFP_NOFAIL request from this context is rather bizarre
3667 		 * because we cannot reclaim anything and only can loop waiting
3668 		 * for somebody to do a work for us.
3669 		 */
3670 		if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3671 			cond_resched();
3672 			goto retry;
3673 		}
3674 		goto nopage;
3675 	}
3676 
3677 	/* Avoid allocations with no watermarks from looping endlessly */
3678 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3679 		goto nopage;
3680 
3681 
3682 	/* Try direct reclaim and then allocating */
3683 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3684 							&did_some_progress);
3685 	if (page)
3686 		goto got_pg;
3687 
3688 	/* Try direct compaction and then allocating */
3689 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3690 					compact_priority, &compact_result);
3691 	if (page)
3692 		goto got_pg;
3693 
3694 	/* Do not loop if specifically requested */
3695 	if (gfp_mask & __GFP_NORETRY)
3696 		goto nopage;
3697 
3698 	/*
3699 	 * Do not retry costly high order allocations unless they are
3700 	 * __GFP_REPEAT
3701 	 */
3702 	if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3703 		goto nopage;
3704 
3705 	/* Make sure we know about allocations which stall for too long */
3706 	if (time_after(jiffies, alloc_start + stall_timeout)) {
3707 		warn_alloc(gfp_mask,
3708 			"page allocation stalls for %ums, order:%u",
3709 			jiffies_to_msecs(jiffies-alloc_start), order);
3710 		stall_timeout += 10 * HZ;
3711 	}
3712 
3713 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3714 				 did_some_progress > 0, &no_progress_loops))
3715 		goto retry;
3716 
3717 	/*
3718 	 * It doesn't make any sense to retry for the compaction if the order-0
3719 	 * reclaim is not able to make any progress because the current
3720 	 * implementation of the compaction depends on the sufficient amount
3721 	 * of free memory (see __compaction_suitable)
3722 	 */
3723 	if (did_some_progress > 0 &&
3724 			should_compact_retry(ac, order, alloc_flags,
3725 				compact_result, &compact_priority,
3726 				&compaction_retries))
3727 		goto retry;
3728 
3729 	/*
3730 	 * It's possible we raced with cpuset update so the OOM would be
3731 	 * premature (see below the nopage: label for full explanation).
3732 	 */
3733 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3734 		goto retry_cpuset;
3735 
3736 	/* Reclaim has failed us, start killing things */
3737 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3738 	if (page)
3739 		goto got_pg;
3740 
3741 	/* Retry as long as the OOM killer is making progress */
3742 	if (did_some_progress) {
3743 		no_progress_loops = 0;
3744 		goto retry;
3745 	}
3746 
3747 nopage:
3748 	/*
3749 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3750 	 * possible to race with parallel threads in such a way that our
3751 	 * allocation can fail while the mask is being updated. If we are about
3752 	 * to fail, check if the cpuset changed during allocation and if so,
3753 	 * retry.
3754 	 */
3755 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3756 		goto retry_cpuset;
3757 
3758 	warn_alloc(gfp_mask,
3759 			"page allocation failure: order:%u", order);
3760 got_pg:
3761 	return page;
3762 }
3763 
3764 /*
3765  * This is the 'heart' of the zoned buddy allocator.
3766  */
3767 struct page *
3768 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3769 			struct zonelist *zonelist, nodemask_t *nodemask)
3770 {
3771 	struct page *page;
3772 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
3773 	gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3774 	struct alloc_context ac = {
3775 		.high_zoneidx = gfp_zone(gfp_mask),
3776 		.zonelist = zonelist,
3777 		.nodemask = nodemask,
3778 		.migratetype = gfpflags_to_migratetype(gfp_mask),
3779 	};
3780 
3781 	if (cpusets_enabled()) {
3782 		alloc_mask |= __GFP_HARDWALL;
3783 		alloc_flags |= ALLOC_CPUSET;
3784 		if (!ac.nodemask)
3785 			ac.nodemask = &cpuset_current_mems_allowed;
3786 	}
3787 
3788 	gfp_mask &= gfp_allowed_mask;
3789 
3790 	lockdep_trace_alloc(gfp_mask);
3791 
3792 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3793 
3794 	if (should_fail_alloc_page(gfp_mask, order))
3795 		return NULL;
3796 
3797 	/*
3798 	 * Check the zones suitable for the gfp_mask contain at least one
3799 	 * valid zone. It's possible to have an empty zonelist as a result
3800 	 * of __GFP_THISNODE and a memoryless node
3801 	 */
3802 	if (unlikely(!zonelist->_zonerefs->zone))
3803 		return NULL;
3804 
3805 	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3806 		alloc_flags |= ALLOC_CMA;
3807 
3808 	/* Dirty zone balancing only done in the fast path */
3809 	ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3810 
3811 	/*
3812 	 * The preferred zone is used for statistics but crucially it is
3813 	 * also used as the starting point for the zonelist iterator. It
3814 	 * may get reset for allocations that ignore memory policies.
3815 	 */
3816 	ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3817 					ac.high_zoneidx, ac.nodemask);
3818 	if (!ac.preferred_zoneref->zone) {
3819 		page = NULL;
3820 		/*
3821 		 * This might be due to race with cpuset_current_mems_allowed
3822 		 * update, so make sure we retry with original nodemask in the
3823 		 * slow path.
3824 		 */
3825 		goto no_zone;
3826 	}
3827 
3828 	/* First allocation attempt */
3829 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3830 	if (likely(page))
3831 		goto out;
3832 
3833 no_zone:
3834 	/*
3835 	 * Runtime PM, block IO and its error handling path can deadlock
3836 	 * because I/O on the device might not complete.
3837 	 */
3838 	alloc_mask = memalloc_noio_flags(gfp_mask);
3839 	ac.spread_dirty_pages = false;
3840 
3841 	/*
3842 	 * Restore the original nodemask if it was potentially replaced with
3843 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3844 	 */
3845 	if (unlikely(ac.nodemask != nodemask))
3846 		ac.nodemask = nodemask;
3847 
3848 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3849 
3850 out:
3851 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3852 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3853 		__free_pages(page, order);
3854 		page = NULL;
3855 	}
3856 
3857 	if (kmemcheck_enabled && page)
3858 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3859 
3860 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3861 
3862 	return page;
3863 }
3864 EXPORT_SYMBOL(__alloc_pages_nodemask);
3865 
3866 /*
3867  * Common helper functions.
3868  */
3869 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3870 {
3871 	struct page *page;
3872 
3873 	/*
3874 	 * __get_free_pages() returns a 32-bit address, which cannot represent
3875 	 * a highmem page
3876 	 */
3877 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3878 
3879 	page = alloc_pages(gfp_mask, order);
3880 	if (!page)
3881 		return 0;
3882 	return (unsigned long) page_address(page);
3883 }
3884 EXPORT_SYMBOL(__get_free_pages);
3885 
3886 unsigned long get_zeroed_page(gfp_t gfp_mask)
3887 {
3888 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3889 }
3890 EXPORT_SYMBOL(get_zeroed_page);
3891 
3892 void __free_pages(struct page *page, unsigned int order)
3893 {
3894 	if (put_page_testzero(page)) {
3895 		if (order == 0)
3896 			free_hot_cold_page(page, false);
3897 		else
3898 			__free_pages_ok(page, order);
3899 	}
3900 }
3901 
3902 EXPORT_SYMBOL(__free_pages);
3903 
3904 void free_pages(unsigned long addr, unsigned int order)
3905 {
3906 	if (addr != 0) {
3907 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3908 		__free_pages(virt_to_page((void *)addr), order);
3909 	}
3910 }
3911 
3912 EXPORT_SYMBOL(free_pages);
3913 
3914 /*
3915  * Page Fragment:
3916  *  An arbitrary-length arbitrary-offset area of memory which resides
3917  *  within a 0 or higher order page.  Multiple fragments within that page
3918  *  are individually refcounted, in the page's reference counter.
3919  *
3920  * The page_frag functions below provide a simple allocation framework for
3921  * page fragments.  This is used by the network stack and network device
3922  * drivers to provide a backing region of memory for use as either an
3923  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3924  */
3925 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
3926 					     gfp_t gfp_mask)
3927 {
3928 	struct page *page = NULL;
3929 	gfp_t gfp = gfp_mask;
3930 
3931 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3932 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3933 		    __GFP_NOMEMALLOC;
3934 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3935 				PAGE_FRAG_CACHE_MAX_ORDER);
3936 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3937 #endif
3938 	if (unlikely(!page))
3939 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3940 
3941 	nc->va = page ? page_address(page) : NULL;
3942 
3943 	return page;
3944 }
3945 
3946 void __page_frag_cache_drain(struct page *page, unsigned int count)
3947 {
3948 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
3949 
3950 	if (page_ref_sub_and_test(page, count)) {
3951 		unsigned int order = compound_order(page);
3952 
3953 		if (order == 0)
3954 			free_hot_cold_page(page, false);
3955 		else
3956 			__free_pages_ok(page, order);
3957 	}
3958 }
3959 EXPORT_SYMBOL(__page_frag_cache_drain);
3960 
3961 void *page_frag_alloc(struct page_frag_cache *nc,
3962 		      unsigned int fragsz, gfp_t gfp_mask)
3963 {
3964 	unsigned int size = PAGE_SIZE;
3965 	struct page *page;
3966 	int offset;
3967 
3968 	if (unlikely(!nc->va)) {
3969 refill:
3970 		page = __page_frag_cache_refill(nc, gfp_mask);
3971 		if (!page)
3972 			return NULL;
3973 
3974 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3975 		/* if size can vary use size else just use PAGE_SIZE */
3976 		size = nc->size;
3977 #endif
3978 		/* Even if we own the page, we do not use atomic_set().
3979 		 * This would break get_page_unless_zero() users.
3980 		 */
3981 		page_ref_add(page, size - 1);
3982 
3983 		/* reset page count bias and offset to start of new frag */
3984 		nc->pfmemalloc = page_is_pfmemalloc(page);
3985 		nc->pagecnt_bias = size;
3986 		nc->offset = size;
3987 	}
3988 
3989 	offset = nc->offset - fragsz;
3990 	if (unlikely(offset < 0)) {
3991 		page = virt_to_page(nc->va);
3992 
3993 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3994 			goto refill;
3995 
3996 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3997 		/* if size can vary use size else just use PAGE_SIZE */
3998 		size = nc->size;
3999 #endif
4000 		/* OK, page count is 0, we can safely set it */
4001 		set_page_count(page, size);
4002 
4003 		/* reset page count bias and offset to start of new frag */
4004 		nc->pagecnt_bias = size;
4005 		offset = size - fragsz;
4006 	}
4007 
4008 	nc->pagecnt_bias--;
4009 	nc->offset = offset;
4010 
4011 	return nc->va + offset;
4012 }
4013 EXPORT_SYMBOL(page_frag_alloc);
4014 
4015 /*
4016  * Frees a page fragment allocated out of either a compound or order 0 page.
4017  */
4018 void page_frag_free(void *addr)
4019 {
4020 	struct page *page = virt_to_head_page(addr);
4021 
4022 	if (unlikely(put_page_testzero(page)))
4023 		__free_pages_ok(page, compound_order(page));
4024 }
4025 EXPORT_SYMBOL(page_frag_free);
4026 
4027 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4028 		size_t size)
4029 {
4030 	if (addr) {
4031 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4032 		unsigned long used = addr + PAGE_ALIGN(size);
4033 
4034 		split_page(virt_to_page((void *)addr), order);
4035 		while (used < alloc_end) {
4036 			free_page(used);
4037 			used += PAGE_SIZE;
4038 		}
4039 	}
4040 	return (void *)addr;
4041 }
4042 
4043 /**
4044  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4045  * @size: the number of bytes to allocate
4046  * @gfp_mask: GFP flags for the allocation
4047  *
4048  * This function is similar to alloc_pages(), except that it allocates the
4049  * minimum number of pages to satisfy the request.  alloc_pages() can only
4050  * allocate memory in power-of-two pages.
4051  *
4052  * This function is also limited by MAX_ORDER.
4053  *
4054  * Memory allocated by this function must be released by free_pages_exact().
4055  */
4056 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4057 {
4058 	unsigned int order = get_order(size);
4059 	unsigned long addr;
4060 
4061 	addr = __get_free_pages(gfp_mask, order);
4062 	return make_alloc_exact(addr, order, size);
4063 }
4064 EXPORT_SYMBOL(alloc_pages_exact);
4065 
4066 /**
4067  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4068  *			   pages on a node.
4069  * @nid: the preferred node ID where memory should be allocated
4070  * @size: the number of bytes to allocate
4071  * @gfp_mask: GFP flags for the allocation
4072  *
4073  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4074  * back.
4075  */
4076 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4077 {
4078 	unsigned int order = get_order(size);
4079 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4080 	if (!p)
4081 		return NULL;
4082 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4083 }
4084 
4085 /**
4086  * free_pages_exact - release memory allocated via alloc_pages_exact()
4087  * @virt: the value returned by alloc_pages_exact.
4088  * @size: size of allocation, same value as passed to alloc_pages_exact().
4089  *
4090  * Release the memory allocated by a previous call to alloc_pages_exact.
4091  */
4092 void free_pages_exact(void *virt, size_t size)
4093 {
4094 	unsigned long addr = (unsigned long)virt;
4095 	unsigned long end = addr + PAGE_ALIGN(size);
4096 
4097 	while (addr < end) {
4098 		free_page(addr);
4099 		addr += PAGE_SIZE;
4100 	}
4101 }
4102 EXPORT_SYMBOL(free_pages_exact);
4103 
4104 /**
4105  * nr_free_zone_pages - count number of pages beyond high watermark
4106  * @offset: The zone index of the highest zone
4107  *
4108  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4109  * high watermark within all zones at or below a given zone index.  For each
4110  * zone, the number of pages is calculated as:
4111  *     managed_pages - high_pages
4112  */
4113 static unsigned long nr_free_zone_pages(int offset)
4114 {
4115 	struct zoneref *z;
4116 	struct zone *zone;
4117 
4118 	/* Just pick one node, since fallback list is circular */
4119 	unsigned long sum = 0;
4120 
4121 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4122 
4123 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4124 		unsigned long size = zone->managed_pages;
4125 		unsigned long high = high_wmark_pages(zone);
4126 		if (size > high)
4127 			sum += size - high;
4128 	}
4129 
4130 	return sum;
4131 }
4132 
4133 /**
4134  * nr_free_buffer_pages - count number of pages beyond high watermark
4135  *
4136  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4137  * watermark within ZONE_DMA and ZONE_NORMAL.
4138  */
4139 unsigned long nr_free_buffer_pages(void)
4140 {
4141 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4142 }
4143 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4144 
4145 /**
4146  * nr_free_pagecache_pages - count number of pages beyond high watermark
4147  *
4148  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4149  * high watermark within all zones.
4150  */
4151 unsigned long nr_free_pagecache_pages(void)
4152 {
4153 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4154 }
4155 
4156 static inline void show_node(struct zone *zone)
4157 {
4158 	if (IS_ENABLED(CONFIG_NUMA))
4159 		printk("Node %d ", zone_to_nid(zone));
4160 }
4161 
4162 long si_mem_available(void)
4163 {
4164 	long available;
4165 	unsigned long pagecache;
4166 	unsigned long wmark_low = 0;
4167 	unsigned long pages[NR_LRU_LISTS];
4168 	struct zone *zone;
4169 	int lru;
4170 
4171 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4172 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4173 
4174 	for_each_zone(zone)
4175 		wmark_low += zone->watermark[WMARK_LOW];
4176 
4177 	/*
4178 	 * Estimate the amount of memory available for userspace allocations,
4179 	 * without causing swapping.
4180 	 */
4181 	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4182 
4183 	/*
4184 	 * Not all the page cache can be freed, otherwise the system will
4185 	 * start swapping. Assume at least half of the page cache, or the
4186 	 * low watermark worth of cache, needs to stay.
4187 	 */
4188 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4189 	pagecache -= min(pagecache / 2, wmark_low);
4190 	available += pagecache;
4191 
4192 	/*
4193 	 * Part of the reclaimable slab consists of items that are in use,
4194 	 * and cannot be freed. Cap this estimate at the low watermark.
4195 	 */
4196 	available += global_page_state(NR_SLAB_RECLAIMABLE) -
4197 		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4198 
4199 	if (available < 0)
4200 		available = 0;
4201 	return available;
4202 }
4203 EXPORT_SYMBOL_GPL(si_mem_available);
4204 
4205 void si_meminfo(struct sysinfo *val)
4206 {
4207 	val->totalram = totalram_pages;
4208 	val->sharedram = global_node_page_state(NR_SHMEM);
4209 	val->freeram = global_page_state(NR_FREE_PAGES);
4210 	val->bufferram = nr_blockdev_pages();
4211 	val->totalhigh = totalhigh_pages;
4212 	val->freehigh = nr_free_highpages();
4213 	val->mem_unit = PAGE_SIZE;
4214 }
4215 
4216 EXPORT_SYMBOL(si_meminfo);
4217 
4218 #ifdef CONFIG_NUMA
4219 void si_meminfo_node(struct sysinfo *val, int nid)
4220 {
4221 	int zone_type;		/* needs to be signed */
4222 	unsigned long managed_pages = 0;
4223 	unsigned long managed_highpages = 0;
4224 	unsigned long free_highpages = 0;
4225 	pg_data_t *pgdat = NODE_DATA(nid);
4226 
4227 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4228 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4229 	val->totalram = managed_pages;
4230 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4231 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4232 #ifdef CONFIG_HIGHMEM
4233 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4234 		struct zone *zone = &pgdat->node_zones[zone_type];
4235 
4236 		if (is_highmem(zone)) {
4237 			managed_highpages += zone->managed_pages;
4238 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4239 		}
4240 	}
4241 	val->totalhigh = managed_highpages;
4242 	val->freehigh = free_highpages;
4243 #else
4244 	val->totalhigh = managed_highpages;
4245 	val->freehigh = free_highpages;
4246 #endif
4247 	val->mem_unit = PAGE_SIZE;
4248 }
4249 #endif
4250 
4251 /*
4252  * Determine whether the node should be displayed or not, depending on whether
4253  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4254  */
4255 bool skip_free_areas_node(unsigned int flags, int nid)
4256 {
4257 	bool ret = false;
4258 	unsigned int cpuset_mems_cookie;
4259 
4260 	if (!(flags & SHOW_MEM_FILTER_NODES))
4261 		goto out;
4262 
4263 	do {
4264 		cpuset_mems_cookie = read_mems_allowed_begin();
4265 		ret = !node_isset(nid, cpuset_current_mems_allowed);
4266 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
4267 out:
4268 	return ret;
4269 }
4270 
4271 #define K(x) ((x) << (PAGE_SHIFT-10))
4272 
4273 static void show_migration_types(unsigned char type)
4274 {
4275 	static const char types[MIGRATE_TYPES] = {
4276 		[MIGRATE_UNMOVABLE]	= 'U',
4277 		[MIGRATE_MOVABLE]	= 'M',
4278 		[MIGRATE_RECLAIMABLE]	= 'E',
4279 		[MIGRATE_HIGHATOMIC]	= 'H',
4280 #ifdef CONFIG_CMA
4281 		[MIGRATE_CMA]		= 'C',
4282 #endif
4283 #ifdef CONFIG_MEMORY_ISOLATION
4284 		[MIGRATE_ISOLATE]	= 'I',
4285 #endif
4286 	};
4287 	char tmp[MIGRATE_TYPES + 1];
4288 	char *p = tmp;
4289 	int i;
4290 
4291 	for (i = 0; i < MIGRATE_TYPES; i++) {
4292 		if (type & (1 << i))
4293 			*p++ = types[i];
4294 	}
4295 
4296 	*p = '\0';
4297 	printk(KERN_CONT "(%s) ", tmp);
4298 }
4299 
4300 /*
4301  * Show free area list (used inside shift_scroll-lock stuff)
4302  * We also calculate the percentage fragmentation. We do this by counting the
4303  * memory on each free list with the exception of the first item on the list.
4304  *
4305  * Bits in @filter:
4306  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4307  *   cpuset.
4308  */
4309 void show_free_areas(unsigned int filter)
4310 {
4311 	unsigned long free_pcp = 0;
4312 	int cpu;
4313 	struct zone *zone;
4314 	pg_data_t *pgdat;
4315 
4316 	for_each_populated_zone(zone) {
4317 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4318 			continue;
4319 
4320 		for_each_online_cpu(cpu)
4321 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4322 	}
4323 
4324 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4325 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4326 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4327 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4328 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4329 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4330 		global_node_page_state(NR_ACTIVE_ANON),
4331 		global_node_page_state(NR_INACTIVE_ANON),
4332 		global_node_page_state(NR_ISOLATED_ANON),
4333 		global_node_page_state(NR_ACTIVE_FILE),
4334 		global_node_page_state(NR_INACTIVE_FILE),
4335 		global_node_page_state(NR_ISOLATED_FILE),
4336 		global_node_page_state(NR_UNEVICTABLE),
4337 		global_node_page_state(NR_FILE_DIRTY),
4338 		global_node_page_state(NR_WRITEBACK),
4339 		global_node_page_state(NR_UNSTABLE_NFS),
4340 		global_page_state(NR_SLAB_RECLAIMABLE),
4341 		global_page_state(NR_SLAB_UNRECLAIMABLE),
4342 		global_node_page_state(NR_FILE_MAPPED),
4343 		global_node_page_state(NR_SHMEM),
4344 		global_page_state(NR_PAGETABLE),
4345 		global_page_state(NR_BOUNCE),
4346 		global_page_state(NR_FREE_PAGES),
4347 		free_pcp,
4348 		global_page_state(NR_FREE_CMA_PAGES));
4349 
4350 	for_each_online_pgdat(pgdat) {
4351 		printk("Node %d"
4352 			" active_anon:%lukB"
4353 			" inactive_anon:%lukB"
4354 			" active_file:%lukB"
4355 			" inactive_file:%lukB"
4356 			" unevictable:%lukB"
4357 			" isolated(anon):%lukB"
4358 			" isolated(file):%lukB"
4359 			" mapped:%lukB"
4360 			" dirty:%lukB"
4361 			" writeback:%lukB"
4362 			" shmem:%lukB"
4363 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4364 			" shmem_thp: %lukB"
4365 			" shmem_pmdmapped: %lukB"
4366 			" anon_thp: %lukB"
4367 #endif
4368 			" writeback_tmp:%lukB"
4369 			" unstable:%lukB"
4370 			" pages_scanned:%lu"
4371 			" all_unreclaimable? %s"
4372 			"\n",
4373 			pgdat->node_id,
4374 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4375 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4376 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4377 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4378 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4379 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4380 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4381 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4382 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4383 			K(node_page_state(pgdat, NR_WRITEBACK)),
4384 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4385 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4386 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4387 					* HPAGE_PMD_NR),
4388 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4389 #endif
4390 			K(node_page_state(pgdat, NR_SHMEM)),
4391 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4392 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4393 			node_page_state(pgdat, NR_PAGES_SCANNED),
4394 			!pgdat_reclaimable(pgdat) ? "yes" : "no");
4395 	}
4396 
4397 	for_each_populated_zone(zone) {
4398 		int i;
4399 
4400 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4401 			continue;
4402 
4403 		free_pcp = 0;
4404 		for_each_online_cpu(cpu)
4405 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4406 
4407 		show_node(zone);
4408 		printk(KERN_CONT
4409 			"%s"
4410 			" free:%lukB"
4411 			" min:%lukB"
4412 			" low:%lukB"
4413 			" high:%lukB"
4414 			" active_anon:%lukB"
4415 			" inactive_anon:%lukB"
4416 			" active_file:%lukB"
4417 			" inactive_file:%lukB"
4418 			" unevictable:%lukB"
4419 			" writepending:%lukB"
4420 			" present:%lukB"
4421 			" managed:%lukB"
4422 			" mlocked:%lukB"
4423 			" slab_reclaimable:%lukB"
4424 			" slab_unreclaimable:%lukB"
4425 			" kernel_stack:%lukB"
4426 			" pagetables:%lukB"
4427 			" bounce:%lukB"
4428 			" free_pcp:%lukB"
4429 			" local_pcp:%ukB"
4430 			" free_cma:%lukB"
4431 			"\n",
4432 			zone->name,
4433 			K(zone_page_state(zone, NR_FREE_PAGES)),
4434 			K(min_wmark_pages(zone)),
4435 			K(low_wmark_pages(zone)),
4436 			K(high_wmark_pages(zone)),
4437 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4438 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4439 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4440 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4441 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4442 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4443 			K(zone->present_pages),
4444 			K(zone->managed_pages),
4445 			K(zone_page_state(zone, NR_MLOCK)),
4446 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4447 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4448 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4449 			K(zone_page_state(zone, NR_PAGETABLE)),
4450 			K(zone_page_state(zone, NR_BOUNCE)),
4451 			K(free_pcp),
4452 			K(this_cpu_read(zone->pageset->pcp.count)),
4453 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4454 		printk("lowmem_reserve[]:");
4455 		for (i = 0; i < MAX_NR_ZONES; i++)
4456 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4457 		printk(KERN_CONT "\n");
4458 	}
4459 
4460 	for_each_populated_zone(zone) {
4461 		unsigned int order;
4462 		unsigned long nr[MAX_ORDER], flags, total = 0;
4463 		unsigned char types[MAX_ORDER];
4464 
4465 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4466 			continue;
4467 		show_node(zone);
4468 		printk(KERN_CONT "%s: ", zone->name);
4469 
4470 		spin_lock_irqsave(&zone->lock, flags);
4471 		for (order = 0; order < MAX_ORDER; order++) {
4472 			struct free_area *area = &zone->free_area[order];
4473 			int type;
4474 
4475 			nr[order] = area->nr_free;
4476 			total += nr[order] << order;
4477 
4478 			types[order] = 0;
4479 			for (type = 0; type < MIGRATE_TYPES; type++) {
4480 				if (!list_empty(&area->free_list[type]))
4481 					types[order] |= 1 << type;
4482 			}
4483 		}
4484 		spin_unlock_irqrestore(&zone->lock, flags);
4485 		for (order = 0; order < MAX_ORDER; order++) {
4486 			printk(KERN_CONT "%lu*%lukB ",
4487 			       nr[order], K(1UL) << order);
4488 			if (nr[order])
4489 				show_migration_types(types[order]);
4490 		}
4491 		printk(KERN_CONT "= %lukB\n", K(total));
4492 	}
4493 
4494 	hugetlb_show_meminfo();
4495 
4496 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4497 
4498 	show_swap_cache_info();
4499 }
4500 
4501 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4502 {
4503 	zoneref->zone = zone;
4504 	zoneref->zone_idx = zone_idx(zone);
4505 }
4506 
4507 /*
4508  * Builds allocation fallback zone lists.
4509  *
4510  * Add all populated zones of a node to the zonelist.
4511  */
4512 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4513 				int nr_zones)
4514 {
4515 	struct zone *zone;
4516 	enum zone_type zone_type = MAX_NR_ZONES;
4517 
4518 	do {
4519 		zone_type--;
4520 		zone = pgdat->node_zones + zone_type;
4521 		if (managed_zone(zone)) {
4522 			zoneref_set_zone(zone,
4523 				&zonelist->_zonerefs[nr_zones++]);
4524 			check_highest_zone(zone_type);
4525 		}
4526 	} while (zone_type);
4527 
4528 	return nr_zones;
4529 }
4530 
4531 
4532 /*
4533  *  zonelist_order:
4534  *  0 = automatic detection of better ordering.
4535  *  1 = order by ([node] distance, -zonetype)
4536  *  2 = order by (-zonetype, [node] distance)
4537  *
4538  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4539  *  the same zonelist. So only NUMA can configure this param.
4540  */
4541 #define ZONELIST_ORDER_DEFAULT  0
4542 #define ZONELIST_ORDER_NODE     1
4543 #define ZONELIST_ORDER_ZONE     2
4544 
4545 /* zonelist order in the kernel.
4546  * set_zonelist_order() will set this to NODE or ZONE.
4547  */
4548 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4549 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4550 
4551 
4552 #ifdef CONFIG_NUMA
4553 /* The value user specified ....changed by config */
4554 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4555 /* string for sysctl */
4556 #define NUMA_ZONELIST_ORDER_LEN	16
4557 char numa_zonelist_order[16] = "default";
4558 
4559 /*
4560  * interface for configure zonelist ordering.
4561  * command line option "numa_zonelist_order"
4562  *	= "[dD]efault	- default, automatic configuration.
4563  *	= "[nN]ode 	- order by node locality, then by zone within node
4564  *	= "[zZ]one      - order by zone, then by locality within zone
4565  */
4566 
4567 static int __parse_numa_zonelist_order(char *s)
4568 {
4569 	if (*s == 'd' || *s == 'D') {
4570 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4571 	} else if (*s == 'n' || *s == 'N') {
4572 		user_zonelist_order = ZONELIST_ORDER_NODE;
4573 	} else if (*s == 'z' || *s == 'Z') {
4574 		user_zonelist_order = ZONELIST_ORDER_ZONE;
4575 	} else {
4576 		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4577 		return -EINVAL;
4578 	}
4579 	return 0;
4580 }
4581 
4582 static __init int setup_numa_zonelist_order(char *s)
4583 {
4584 	int ret;
4585 
4586 	if (!s)
4587 		return 0;
4588 
4589 	ret = __parse_numa_zonelist_order(s);
4590 	if (ret == 0)
4591 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4592 
4593 	return ret;
4594 }
4595 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4596 
4597 /*
4598  * sysctl handler for numa_zonelist_order
4599  */
4600 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4601 		void __user *buffer, size_t *length,
4602 		loff_t *ppos)
4603 {
4604 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
4605 	int ret;
4606 	static DEFINE_MUTEX(zl_order_mutex);
4607 
4608 	mutex_lock(&zl_order_mutex);
4609 	if (write) {
4610 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4611 			ret = -EINVAL;
4612 			goto out;
4613 		}
4614 		strcpy(saved_string, (char *)table->data);
4615 	}
4616 	ret = proc_dostring(table, write, buffer, length, ppos);
4617 	if (ret)
4618 		goto out;
4619 	if (write) {
4620 		int oldval = user_zonelist_order;
4621 
4622 		ret = __parse_numa_zonelist_order((char *)table->data);
4623 		if (ret) {
4624 			/*
4625 			 * bogus value.  restore saved string
4626 			 */
4627 			strncpy((char *)table->data, saved_string,
4628 				NUMA_ZONELIST_ORDER_LEN);
4629 			user_zonelist_order = oldval;
4630 		} else if (oldval != user_zonelist_order) {
4631 			mutex_lock(&zonelists_mutex);
4632 			build_all_zonelists(NULL, NULL);
4633 			mutex_unlock(&zonelists_mutex);
4634 		}
4635 	}
4636 out:
4637 	mutex_unlock(&zl_order_mutex);
4638 	return ret;
4639 }
4640 
4641 
4642 #define MAX_NODE_LOAD (nr_online_nodes)
4643 static int node_load[MAX_NUMNODES];
4644 
4645 /**
4646  * find_next_best_node - find the next node that should appear in a given node's fallback list
4647  * @node: node whose fallback list we're appending
4648  * @used_node_mask: nodemask_t of already used nodes
4649  *
4650  * We use a number of factors to determine which is the next node that should
4651  * appear on a given node's fallback list.  The node should not have appeared
4652  * already in @node's fallback list, and it should be the next closest node
4653  * according to the distance array (which contains arbitrary distance values
4654  * from each node to each node in the system), and should also prefer nodes
4655  * with no CPUs, since presumably they'll have very little allocation pressure
4656  * on them otherwise.
4657  * It returns -1 if no node is found.
4658  */
4659 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4660 {
4661 	int n, val;
4662 	int min_val = INT_MAX;
4663 	int best_node = NUMA_NO_NODE;
4664 	const struct cpumask *tmp = cpumask_of_node(0);
4665 
4666 	/* Use the local node if we haven't already */
4667 	if (!node_isset(node, *used_node_mask)) {
4668 		node_set(node, *used_node_mask);
4669 		return node;
4670 	}
4671 
4672 	for_each_node_state(n, N_MEMORY) {
4673 
4674 		/* Don't want a node to appear more than once */
4675 		if (node_isset(n, *used_node_mask))
4676 			continue;
4677 
4678 		/* Use the distance array to find the distance */
4679 		val = node_distance(node, n);
4680 
4681 		/* Penalize nodes under us ("prefer the next node") */
4682 		val += (n < node);
4683 
4684 		/* Give preference to headless and unused nodes */
4685 		tmp = cpumask_of_node(n);
4686 		if (!cpumask_empty(tmp))
4687 			val += PENALTY_FOR_NODE_WITH_CPUS;
4688 
4689 		/* Slight preference for less loaded node */
4690 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4691 		val += node_load[n];
4692 
4693 		if (val < min_val) {
4694 			min_val = val;
4695 			best_node = n;
4696 		}
4697 	}
4698 
4699 	if (best_node >= 0)
4700 		node_set(best_node, *used_node_mask);
4701 
4702 	return best_node;
4703 }
4704 
4705 
4706 /*
4707  * Build zonelists ordered by node and zones within node.
4708  * This results in maximum locality--normal zone overflows into local
4709  * DMA zone, if any--but risks exhausting DMA zone.
4710  */
4711 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4712 {
4713 	int j;
4714 	struct zonelist *zonelist;
4715 
4716 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4717 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4718 		;
4719 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4720 	zonelist->_zonerefs[j].zone = NULL;
4721 	zonelist->_zonerefs[j].zone_idx = 0;
4722 }
4723 
4724 /*
4725  * Build gfp_thisnode zonelists
4726  */
4727 static void build_thisnode_zonelists(pg_data_t *pgdat)
4728 {
4729 	int j;
4730 	struct zonelist *zonelist;
4731 
4732 	zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4733 	j = build_zonelists_node(pgdat, zonelist, 0);
4734 	zonelist->_zonerefs[j].zone = NULL;
4735 	zonelist->_zonerefs[j].zone_idx = 0;
4736 }
4737 
4738 /*
4739  * Build zonelists ordered by zone and nodes within zones.
4740  * This results in conserving DMA zone[s] until all Normal memory is
4741  * exhausted, but results in overflowing to remote node while memory
4742  * may still exist in local DMA zone.
4743  */
4744 static int node_order[MAX_NUMNODES];
4745 
4746 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4747 {
4748 	int pos, j, node;
4749 	int zone_type;		/* needs to be signed */
4750 	struct zone *z;
4751 	struct zonelist *zonelist;
4752 
4753 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4754 	pos = 0;
4755 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4756 		for (j = 0; j < nr_nodes; j++) {
4757 			node = node_order[j];
4758 			z = &NODE_DATA(node)->node_zones[zone_type];
4759 			if (managed_zone(z)) {
4760 				zoneref_set_zone(z,
4761 					&zonelist->_zonerefs[pos++]);
4762 				check_highest_zone(zone_type);
4763 			}
4764 		}
4765 	}
4766 	zonelist->_zonerefs[pos].zone = NULL;
4767 	zonelist->_zonerefs[pos].zone_idx = 0;
4768 }
4769 
4770 #if defined(CONFIG_64BIT)
4771 /*
4772  * Devices that require DMA32/DMA are relatively rare and do not justify a
4773  * penalty to every machine in case the specialised case applies. Default
4774  * to Node-ordering on 64-bit NUMA machines
4775  */
4776 static int default_zonelist_order(void)
4777 {
4778 	return ZONELIST_ORDER_NODE;
4779 }
4780 #else
4781 /*
4782  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4783  * by the kernel. If processes running on node 0 deplete the low memory zone
4784  * then reclaim will occur more frequency increasing stalls and potentially
4785  * be easier to OOM if a large percentage of the zone is under writeback or
4786  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4787  * Hence, default to zone ordering on 32-bit.
4788  */
4789 static int default_zonelist_order(void)
4790 {
4791 	return ZONELIST_ORDER_ZONE;
4792 }
4793 #endif /* CONFIG_64BIT */
4794 
4795 static void set_zonelist_order(void)
4796 {
4797 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4798 		current_zonelist_order = default_zonelist_order();
4799 	else
4800 		current_zonelist_order = user_zonelist_order;
4801 }
4802 
4803 static void build_zonelists(pg_data_t *pgdat)
4804 {
4805 	int i, node, load;
4806 	nodemask_t used_mask;
4807 	int local_node, prev_node;
4808 	struct zonelist *zonelist;
4809 	unsigned int order = current_zonelist_order;
4810 
4811 	/* initialize zonelists */
4812 	for (i = 0; i < MAX_ZONELISTS; i++) {
4813 		zonelist = pgdat->node_zonelists + i;
4814 		zonelist->_zonerefs[0].zone = NULL;
4815 		zonelist->_zonerefs[0].zone_idx = 0;
4816 	}
4817 
4818 	/* NUMA-aware ordering of nodes */
4819 	local_node = pgdat->node_id;
4820 	load = nr_online_nodes;
4821 	prev_node = local_node;
4822 	nodes_clear(used_mask);
4823 
4824 	memset(node_order, 0, sizeof(node_order));
4825 	i = 0;
4826 
4827 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4828 		/*
4829 		 * We don't want to pressure a particular node.
4830 		 * So adding penalty to the first node in same
4831 		 * distance group to make it round-robin.
4832 		 */
4833 		if (node_distance(local_node, node) !=
4834 		    node_distance(local_node, prev_node))
4835 			node_load[node] = load;
4836 
4837 		prev_node = node;
4838 		load--;
4839 		if (order == ZONELIST_ORDER_NODE)
4840 			build_zonelists_in_node_order(pgdat, node);
4841 		else
4842 			node_order[i++] = node;	/* remember order */
4843 	}
4844 
4845 	if (order == ZONELIST_ORDER_ZONE) {
4846 		/* calculate node order -- i.e., DMA last! */
4847 		build_zonelists_in_zone_order(pgdat, i);
4848 	}
4849 
4850 	build_thisnode_zonelists(pgdat);
4851 }
4852 
4853 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4854 /*
4855  * Return node id of node used for "local" allocations.
4856  * I.e., first node id of first zone in arg node's generic zonelist.
4857  * Used for initializing percpu 'numa_mem', which is used primarily
4858  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4859  */
4860 int local_memory_node(int node)
4861 {
4862 	struct zoneref *z;
4863 
4864 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4865 				   gfp_zone(GFP_KERNEL),
4866 				   NULL);
4867 	return z->zone->node;
4868 }
4869 #endif
4870 
4871 static void setup_min_unmapped_ratio(void);
4872 static void setup_min_slab_ratio(void);
4873 #else	/* CONFIG_NUMA */
4874 
4875 static void set_zonelist_order(void)
4876 {
4877 	current_zonelist_order = ZONELIST_ORDER_ZONE;
4878 }
4879 
4880 static void build_zonelists(pg_data_t *pgdat)
4881 {
4882 	int node, local_node;
4883 	enum zone_type j;
4884 	struct zonelist *zonelist;
4885 
4886 	local_node = pgdat->node_id;
4887 
4888 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4889 	j = build_zonelists_node(pgdat, zonelist, 0);
4890 
4891 	/*
4892 	 * Now we build the zonelist so that it contains the zones
4893 	 * of all the other nodes.
4894 	 * We don't want to pressure a particular node, so when
4895 	 * building the zones for node N, we make sure that the
4896 	 * zones coming right after the local ones are those from
4897 	 * node N+1 (modulo N)
4898 	 */
4899 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4900 		if (!node_online(node))
4901 			continue;
4902 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4903 	}
4904 	for (node = 0; node < local_node; node++) {
4905 		if (!node_online(node))
4906 			continue;
4907 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4908 	}
4909 
4910 	zonelist->_zonerefs[j].zone = NULL;
4911 	zonelist->_zonerefs[j].zone_idx = 0;
4912 }
4913 
4914 #endif	/* CONFIG_NUMA */
4915 
4916 /*
4917  * Boot pageset table. One per cpu which is going to be used for all
4918  * zones and all nodes. The parameters will be set in such a way
4919  * that an item put on a list will immediately be handed over to
4920  * the buddy list. This is safe since pageset manipulation is done
4921  * with interrupts disabled.
4922  *
4923  * The boot_pagesets must be kept even after bootup is complete for
4924  * unused processors and/or zones. They do play a role for bootstrapping
4925  * hotplugged processors.
4926  *
4927  * zoneinfo_show() and maybe other functions do
4928  * not check if the processor is online before following the pageset pointer.
4929  * Other parts of the kernel may not check if the zone is available.
4930  */
4931 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4932 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4933 static void setup_zone_pageset(struct zone *zone);
4934 
4935 /*
4936  * Global mutex to protect against size modification of zonelists
4937  * as well as to serialize pageset setup for the new populated zone.
4938  */
4939 DEFINE_MUTEX(zonelists_mutex);
4940 
4941 /* return values int ....just for stop_machine() */
4942 static int __build_all_zonelists(void *data)
4943 {
4944 	int nid;
4945 	int cpu;
4946 	pg_data_t *self = data;
4947 
4948 #ifdef CONFIG_NUMA
4949 	memset(node_load, 0, sizeof(node_load));
4950 #endif
4951 
4952 	if (self && !node_online(self->node_id)) {
4953 		build_zonelists(self);
4954 	}
4955 
4956 	for_each_online_node(nid) {
4957 		pg_data_t *pgdat = NODE_DATA(nid);
4958 
4959 		build_zonelists(pgdat);
4960 	}
4961 
4962 	/*
4963 	 * Initialize the boot_pagesets that are going to be used
4964 	 * for bootstrapping processors. The real pagesets for
4965 	 * each zone will be allocated later when the per cpu
4966 	 * allocator is available.
4967 	 *
4968 	 * boot_pagesets are used also for bootstrapping offline
4969 	 * cpus if the system is already booted because the pagesets
4970 	 * are needed to initialize allocators on a specific cpu too.
4971 	 * F.e. the percpu allocator needs the page allocator which
4972 	 * needs the percpu allocator in order to allocate its pagesets
4973 	 * (a chicken-egg dilemma).
4974 	 */
4975 	for_each_possible_cpu(cpu) {
4976 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4977 
4978 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4979 		/*
4980 		 * We now know the "local memory node" for each node--
4981 		 * i.e., the node of the first zone in the generic zonelist.
4982 		 * Set up numa_mem percpu variable for on-line cpus.  During
4983 		 * boot, only the boot cpu should be on-line;  we'll init the
4984 		 * secondary cpus' numa_mem as they come on-line.  During
4985 		 * node/memory hotplug, we'll fixup all on-line cpus.
4986 		 */
4987 		if (cpu_online(cpu))
4988 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4989 #endif
4990 	}
4991 
4992 	return 0;
4993 }
4994 
4995 static noinline void __init
4996 build_all_zonelists_init(void)
4997 {
4998 	__build_all_zonelists(NULL);
4999 	mminit_verify_zonelist();
5000 	cpuset_init_current_mems_allowed();
5001 }
5002 
5003 /*
5004  * Called with zonelists_mutex held always
5005  * unless system_state == SYSTEM_BOOTING.
5006  *
5007  * __ref due to (1) call of __meminit annotated setup_zone_pageset
5008  * [we're only called with non-NULL zone through __meminit paths] and
5009  * (2) call of __init annotated helper build_all_zonelists_init
5010  * [protected by SYSTEM_BOOTING].
5011  */
5012 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5013 {
5014 	set_zonelist_order();
5015 
5016 	if (system_state == SYSTEM_BOOTING) {
5017 		build_all_zonelists_init();
5018 	} else {
5019 #ifdef CONFIG_MEMORY_HOTPLUG
5020 		if (zone)
5021 			setup_zone_pageset(zone);
5022 #endif
5023 		/* we have to stop all cpus to guarantee there is no user
5024 		   of zonelist */
5025 		stop_machine(__build_all_zonelists, pgdat, NULL);
5026 		/* cpuset refresh routine should be here */
5027 	}
5028 	vm_total_pages = nr_free_pagecache_pages();
5029 	/*
5030 	 * Disable grouping by mobility if the number of pages in the
5031 	 * system is too low to allow the mechanism to work. It would be
5032 	 * more accurate, but expensive to check per-zone. This check is
5033 	 * made on memory-hotadd so a system can start with mobility
5034 	 * disabled and enable it later
5035 	 */
5036 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5037 		page_group_by_mobility_disabled = 1;
5038 	else
5039 		page_group_by_mobility_disabled = 0;
5040 
5041 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
5042 		nr_online_nodes,
5043 		zonelist_order_name[current_zonelist_order],
5044 		page_group_by_mobility_disabled ? "off" : "on",
5045 		vm_total_pages);
5046 #ifdef CONFIG_NUMA
5047 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5048 #endif
5049 }
5050 
5051 /*
5052  * Initially all pages are reserved - free ones are freed
5053  * up by free_all_bootmem() once the early boot process is
5054  * done. Non-atomic initialization, single-pass.
5055  */
5056 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5057 		unsigned long start_pfn, enum memmap_context context)
5058 {
5059 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5060 	unsigned long end_pfn = start_pfn + size;
5061 	pg_data_t *pgdat = NODE_DATA(nid);
5062 	unsigned long pfn;
5063 	unsigned long nr_initialised = 0;
5064 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5065 	struct memblock_region *r = NULL, *tmp;
5066 #endif
5067 
5068 	if (highest_memmap_pfn < end_pfn - 1)
5069 		highest_memmap_pfn = end_pfn - 1;
5070 
5071 	/*
5072 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5073 	 * memory
5074 	 */
5075 	if (altmap && start_pfn == altmap->base_pfn)
5076 		start_pfn += altmap->reserve;
5077 
5078 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5079 		/*
5080 		 * There can be holes in boot-time mem_map[]s handed to this
5081 		 * function.  They do not exist on hotplugged memory.
5082 		 */
5083 		if (context != MEMMAP_EARLY)
5084 			goto not_early;
5085 
5086 		if (!early_pfn_valid(pfn))
5087 			continue;
5088 		if (!early_pfn_in_nid(pfn, nid))
5089 			continue;
5090 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5091 			break;
5092 
5093 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5094 		/*
5095 		 * Check given memblock attribute by firmware which can affect
5096 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5097 		 * mirrored, it's an overlapped memmap init. skip it.
5098 		 */
5099 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5100 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5101 				for_each_memblock(memory, tmp)
5102 					if (pfn < memblock_region_memory_end_pfn(tmp))
5103 						break;
5104 				r = tmp;
5105 			}
5106 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5107 			    memblock_is_mirror(r)) {
5108 				/* already initialized as NORMAL */
5109 				pfn = memblock_region_memory_end_pfn(r);
5110 				continue;
5111 			}
5112 		}
5113 #endif
5114 
5115 not_early:
5116 		/*
5117 		 * Mark the block movable so that blocks are reserved for
5118 		 * movable at startup. This will force kernel allocations
5119 		 * to reserve their blocks rather than leaking throughout
5120 		 * the address space during boot when many long-lived
5121 		 * kernel allocations are made.
5122 		 *
5123 		 * bitmap is created for zone's valid pfn range. but memmap
5124 		 * can be created for invalid pages (for alignment)
5125 		 * check here not to call set_pageblock_migratetype() against
5126 		 * pfn out of zone.
5127 		 */
5128 		if (!(pfn & (pageblock_nr_pages - 1))) {
5129 			struct page *page = pfn_to_page(pfn);
5130 
5131 			__init_single_page(page, pfn, zone, nid);
5132 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5133 		} else {
5134 			__init_single_pfn(pfn, zone, nid);
5135 		}
5136 	}
5137 }
5138 
5139 static void __meminit zone_init_free_lists(struct zone *zone)
5140 {
5141 	unsigned int order, t;
5142 	for_each_migratetype_order(order, t) {
5143 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5144 		zone->free_area[order].nr_free = 0;
5145 	}
5146 }
5147 
5148 #ifndef __HAVE_ARCH_MEMMAP_INIT
5149 #define memmap_init(size, nid, zone, start_pfn) \
5150 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5151 #endif
5152 
5153 static int zone_batchsize(struct zone *zone)
5154 {
5155 #ifdef CONFIG_MMU
5156 	int batch;
5157 
5158 	/*
5159 	 * The per-cpu-pages pools are set to around 1000th of the
5160 	 * size of the zone.  But no more than 1/2 of a meg.
5161 	 *
5162 	 * OK, so we don't know how big the cache is.  So guess.
5163 	 */
5164 	batch = zone->managed_pages / 1024;
5165 	if (batch * PAGE_SIZE > 512 * 1024)
5166 		batch = (512 * 1024) / PAGE_SIZE;
5167 	batch /= 4;		/* We effectively *= 4 below */
5168 	if (batch < 1)
5169 		batch = 1;
5170 
5171 	/*
5172 	 * Clamp the batch to a 2^n - 1 value. Having a power
5173 	 * of 2 value was found to be more likely to have
5174 	 * suboptimal cache aliasing properties in some cases.
5175 	 *
5176 	 * For example if 2 tasks are alternately allocating
5177 	 * batches of pages, one task can end up with a lot
5178 	 * of pages of one half of the possible page colors
5179 	 * and the other with pages of the other colors.
5180 	 */
5181 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5182 
5183 	return batch;
5184 
5185 #else
5186 	/* The deferral and batching of frees should be suppressed under NOMMU
5187 	 * conditions.
5188 	 *
5189 	 * The problem is that NOMMU needs to be able to allocate large chunks
5190 	 * of contiguous memory as there's no hardware page translation to
5191 	 * assemble apparent contiguous memory from discontiguous pages.
5192 	 *
5193 	 * Queueing large contiguous runs of pages for batching, however,
5194 	 * causes the pages to actually be freed in smaller chunks.  As there
5195 	 * can be a significant delay between the individual batches being
5196 	 * recycled, this leads to the once large chunks of space being
5197 	 * fragmented and becoming unavailable for high-order allocations.
5198 	 */
5199 	return 0;
5200 #endif
5201 }
5202 
5203 /*
5204  * pcp->high and pcp->batch values are related and dependent on one another:
5205  * ->batch must never be higher then ->high.
5206  * The following function updates them in a safe manner without read side
5207  * locking.
5208  *
5209  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5210  * those fields changing asynchronously (acording the the above rule).
5211  *
5212  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5213  * outside of boot time (or some other assurance that no concurrent updaters
5214  * exist).
5215  */
5216 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5217 		unsigned long batch)
5218 {
5219        /* start with a fail safe value for batch */
5220 	pcp->batch = 1;
5221 	smp_wmb();
5222 
5223        /* Update high, then batch, in order */
5224 	pcp->high = high;
5225 	smp_wmb();
5226 
5227 	pcp->batch = batch;
5228 }
5229 
5230 /* a companion to pageset_set_high() */
5231 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5232 {
5233 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5234 }
5235 
5236 static void pageset_init(struct per_cpu_pageset *p)
5237 {
5238 	struct per_cpu_pages *pcp;
5239 	int migratetype;
5240 
5241 	memset(p, 0, sizeof(*p));
5242 
5243 	pcp = &p->pcp;
5244 	pcp->count = 0;
5245 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5246 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5247 }
5248 
5249 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5250 {
5251 	pageset_init(p);
5252 	pageset_set_batch(p, batch);
5253 }
5254 
5255 /*
5256  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5257  * to the value high for the pageset p.
5258  */
5259 static void pageset_set_high(struct per_cpu_pageset *p,
5260 				unsigned long high)
5261 {
5262 	unsigned long batch = max(1UL, high / 4);
5263 	if ((high / 4) > (PAGE_SHIFT * 8))
5264 		batch = PAGE_SHIFT * 8;
5265 
5266 	pageset_update(&p->pcp, high, batch);
5267 }
5268 
5269 static void pageset_set_high_and_batch(struct zone *zone,
5270 				       struct per_cpu_pageset *pcp)
5271 {
5272 	if (percpu_pagelist_fraction)
5273 		pageset_set_high(pcp,
5274 			(zone->managed_pages /
5275 				percpu_pagelist_fraction));
5276 	else
5277 		pageset_set_batch(pcp, zone_batchsize(zone));
5278 }
5279 
5280 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5281 {
5282 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5283 
5284 	pageset_init(pcp);
5285 	pageset_set_high_and_batch(zone, pcp);
5286 }
5287 
5288 static void __meminit setup_zone_pageset(struct zone *zone)
5289 {
5290 	int cpu;
5291 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5292 	for_each_possible_cpu(cpu)
5293 		zone_pageset_init(zone, cpu);
5294 }
5295 
5296 /*
5297  * Allocate per cpu pagesets and initialize them.
5298  * Before this call only boot pagesets were available.
5299  */
5300 void __init setup_per_cpu_pageset(void)
5301 {
5302 	struct pglist_data *pgdat;
5303 	struct zone *zone;
5304 
5305 	for_each_populated_zone(zone)
5306 		setup_zone_pageset(zone);
5307 
5308 	for_each_online_pgdat(pgdat)
5309 		pgdat->per_cpu_nodestats =
5310 			alloc_percpu(struct per_cpu_nodestat);
5311 }
5312 
5313 static __meminit void zone_pcp_init(struct zone *zone)
5314 {
5315 	/*
5316 	 * per cpu subsystem is not up at this point. The following code
5317 	 * relies on the ability of the linker to provide the
5318 	 * offset of a (static) per cpu variable into the per cpu area.
5319 	 */
5320 	zone->pageset = &boot_pageset;
5321 
5322 	if (populated_zone(zone))
5323 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5324 			zone->name, zone->present_pages,
5325 					 zone_batchsize(zone));
5326 }
5327 
5328 int __meminit init_currently_empty_zone(struct zone *zone,
5329 					unsigned long zone_start_pfn,
5330 					unsigned long size)
5331 {
5332 	struct pglist_data *pgdat = zone->zone_pgdat;
5333 
5334 	pgdat->nr_zones = zone_idx(zone) + 1;
5335 
5336 	zone->zone_start_pfn = zone_start_pfn;
5337 
5338 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5339 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5340 			pgdat->node_id,
5341 			(unsigned long)zone_idx(zone),
5342 			zone_start_pfn, (zone_start_pfn + size));
5343 
5344 	zone_init_free_lists(zone);
5345 	zone->initialized = 1;
5346 
5347 	return 0;
5348 }
5349 
5350 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5351 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5352 
5353 /*
5354  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5355  */
5356 int __meminit __early_pfn_to_nid(unsigned long pfn,
5357 					struct mminit_pfnnid_cache *state)
5358 {
5359 	unsigned long start_pfn, end_pfn;
5360 	int nid;
5361 
5362 	if (state->last_start <= pfn && pfn < state->last_end)
5363 		return state->last_nid;
5364 
5365 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5366 	if (nid != -1) {
5367 		state->last_start = start_pfn;
5368 		state->last_end = end_pfn;
5369 		state->last_nid = nid;
5370 	}
5371 
5372 	return nid;
5373 }
5374 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5375 
5376 /**
5377  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5378  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5379  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5380  *
5381  * If an architecture guarantees that all ranges registered contain no holes
5382  * and may be freed, this this function may be used instead of calling
5383  * memblock_free_early_nid() manually.
5384  */
5385 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5386 {
5387 	unsigned long start_pfn, end_pfn;
5388 	int i, this_nid;
5389 
5390 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5391 		start_pfn = min(start_pfn, max_low_pfn);
5392 		end_pfn = min(end_pfn, max_low_pfn);
5393 
5394 		if (start_pfn < end_pfn)
5395 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5396 					(end_pfn - start_pfn) << PAGE_SHIFT,
5397 					this_nid);
5398 	}
5399 }
5400 
5401 /**
5402  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5403  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5404  *
5405  * If an architecture guarantees that all ranges registered contain no holes and may
5406  * be freed, this function may be used instead of calling memory_present() manually.
5407  */
5408 void __init sparse_memory_present_with_active_regions(int nid)
5409 {
5410 	unsigned long start_pfn, end_pfn;
5411 	int i, this_nid;
5412 
5413 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5414 		memory_present(this_nid, start_pfn, end_pfn);
5415 }
5416 
5417 /**
5418  * get_pfn_range_for_nid - Return the start and end page frames for a node
5419  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5420  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5421  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5422  *
5423  * It returns the start and end page frame of a node based on information
5424  * provided by memblock_set_node(). If called for a node
5425  * with no available memory, a warning is printed and the start and end
5426  * PFNs will be 0.
5427  */
5428 void __meminit get_pfn_range_for_nid(unsigned int nid,
5429 			unsigned long *start_pfn, unsigned long *end_pfn)
5430 {
5431 	unsigned long this_start_pfn, this_end_pfn;
5432 	int i;
5433 
5434 	*start_pfn = -1UL;
5435 	*end_pfn = 0;
5436 
5437 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5438 		*start_pfn = min(*start_pfn, this_start_pfn);
5439 		*end_pfn = max(*end_pfn, this_end_pfn);
5440 	}
5441 
5442 	if (*start_pfn == -1UL)
5443 		*start_pfn = 0;
5444 }
5445 
5446 /*
5447  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5448  * assumption is made that zones within a node are ordered in monotonic
5449  * increasing memory addresses so that the "highest" populated zone is used
5450  */
5451 static void __init find_usable_zone_for_movable(void)
5452 {
5453 	int zone_index;
5454 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5455 		if (zone_index == ZONE_MOVABLE)
5456 			continue;
5457 
5458 		if (arch_zone_highest_possible_pfn[zone_index] >
5459 				arch_zone_lowest_possible_pfn[zone_index])
5460 			break;
5461 	}
5462 
5463 	VM_BUG_ON(zone_index == -1);
5464 	movable_zone = zone_index;
5465 }
5466 
5467 /*
5468  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5469  * because it is sized independent of architecture. Unlike the other zones,
5470  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5471  * in each node depending on the size of each node and how evenly kernelcore
5472  * is distributed. This helper function adjusts the zone ranges
5473  * provided by the architecture for a given node by using the end of the
5474  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5475  * zones within a node are in order of monotonic increases memory addresses
5476  */
5477 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5478 					unsigned long zone_type,
5479 					unsigned long node_start_pfn,
5480 					unsigned long node_end_pfn,
5481 					unsigned long *zone_start_pfn,
5482 					unsigned long *zone_end_pfn)
5483 {
5484 	/* Only adjust if ZONE_MOVABLE is on this node */
5485 	if (zone_movable_pfn[nid]) {
5486 		/* Size ZONE_MOVABLE */
5487 		if (zone_type == ZONE_MOVABLE) {
5488 			*zone_start_pfn = zone_movable_pfn[nid];
5489 			*zone_end_pfn = min(node_end_pfn,
5490 				arch_zone_highest_possible_pfn[movable_zone]);
5491 
5492 		/* Adjust for ZONE_MOVABLE starting within this range */
5493 		} else if (!mirrored_kernelcore &&
5494 			*zone_start_pfn < zone_movable_pfn[nid] &&
5495 			*zone_end_pfn > zone_movable_pfn[nid]) {
5496 			*zone_end_pfn = zone_movable_pfn[nid];
5497 
5498 		/* Check if this whole range is within ZONE_MOVABLE */
5499 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5500 			*zone_start_pfn = *zone_end_pfn;
5501 	}
5502 }
5503 
5504 /*
5505  * Return the number of pages a zone spans in a node, including holes
5506  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5507  */
5508 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5509 					unsigned long zone_type,
5510 					unsigned long node_start_pfn,
5511 					unsigned long node_end_pfn,
5512 					unsigned long *zone_start_pfn,
5513 					unsigned long *zone_end_pfn,
5514 					unsigned long *ignored)
5515 {
5516 	/* When hotadd a new node from cpu_up(), the node should be empty */
5517 	if (!node_start_pfn && !node_end_pfn)
5518 		return 0;
5519 
5520 	/* Get the start and end of the zone */
5521 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5522 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5523 	adjust_zone_range_for_zone_movable(nid, zone_type,
5524 				node_start_pfn, node_end_pfn,
5525 				zone_start_pfn, zone_end_pfn);
5526 
5527 	/* Check that this node has pages within the zone's required range */
5528 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5529 		return 0;
5530 
5531 	/* Move the zone boundaries inside the node if necessary */
5532 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5533 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5534 
5535 	/* Return the spanned pages */
5536 	return *zone_end_pfn - *zone_start_pfn;
5537 }
5538 
5539 /*
5540  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5541  * then all holes in the requested range will be accounted for.
5542  */
5543 unsigned long __meminit __absent_pages_in_range(int nid,
5544 				unsigned long range_start_pfn,
5545 				unsigned long range_end_pfn)
5546 {
5547 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5548 	unsigned long start_pfn, end_pfn;
5549 	int i;
5550 
5551 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5552 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5553 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5554 		nr_absent -= end_pfn - start_pfn;
5555 	}
5556 	return nr_absent;
5557 }
5558 
5559 /**
5560  * absent_pages_in_range - Return number of page frames in holes within a range
5561  * @start_pfn: The start PFN to start searching for holes
5562  * @end_pfn: The end PFN to stop searching for holes
5563  *
5564  * It returns the number of pages frames in memory holes within a range.
5565  */
5566 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5567 							unsigned long end_pfn)
5568 {
5569 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5570 }
5571 
5572 /* Return the number of page frames in holes in a zone on a node */
5573 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5574 					unsigned long zone_type,
5575 					unsigned long node_start_pfn,
5576 					unsigned long node_end_pfn,
5577 					unsigned long *ignored)
5578 {
5579 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5580 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5581 	unsigned long zone_start_pfn, zone_end_pfn;
5582 	unsigned long nr_absent;
5583 
5584 	/* When hotadd a new node from cpu_up(), the node should be empty */
5585 	if (!node_start_pfn && !node_end_pfn)
5586 		return 0;
5587 
5588 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5589 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5590 
5591 	adjust_zone_range_for_zone_movable(nid, zone_type,
5592 			node_start_pfn, node_end_pfn,
5593 			&zone_start_pfn, &zone_end_pfn);
5594 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5595 
5596 	/*
5597 	 * ZONE_MOVABLE handling.
5598 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5599 	 * and vice versa.
5600 	 */
5601 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5602 		unsigned long start_pfn, end_pfn;
5603 		struct memblock_region *r;
5604 
5605 		for_each_memblock(memory, r) {
5606 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
5607 					  zone_start_pfn, zone_end_pfn);
5608 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
5609 					zone_start_pfn, zone_end_pfn);
5610 
5611 			if (zone_type == ZONE_MOVABLE &&
5612 			    memblock_is_mirror(r))
5613 				nr_absent += end_pfn - start_pfn;
5614 
5615 			if (zone_type == ZONE_NORMAL &&
5616 			    !memblock_is_mirror(r))
5617 				nr_absent += end_pfn - start_pfn;
5618 		}
5619 	}
5620 
5621 	return nr_absent;
5622 }
5623 
5624 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5625 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5626 					unsigned long zone_type,
5627 					unsigned long node_start_pfn,
5628 					unsigned long node_end_pfn,
5629 					unsigned long *zone_start_pfn,
5630 					unsigned long *zone_end_pfn,
5631 					unsigned long *zones_size)
5632 {
5633 	unsigned int zone;
5634 
5635 	*zone_start_pfn = node_start_pfn;
5636 	for (zone = 0; zone < zone_type; zone++)
5637 		*zone_start_pfn += zones_size[zone];
5638 
5639 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5640 
5641 	return zones_size[zone_type];
5642 }
5643 
5644 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5645 						unsigned long zone_type,
5646 						unsigned long node_start_pfn,
5647 						unsigned long node_end_pfn,
5648 						unsigned long *zholes_size)
5649 {
5650 	if (!zholes_size)
5651 		return 0;
5652 
5653 	return zholes_size[zone_type];
5654 }
5655 
5656 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5657 
5658 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5659 						unsigned long node_start_pfn,
5660 						unsigned long node_end_pfn,
5661 						unsigned long *zones_size,
5662 						unsigned long *zholes_size)
5663 {
5664 	unsigned long realtotalpages = 0, totalpages = 0;
5665 	enum zone_type i;
5666 
5667 	for (i = 0; i < MAX_NR_ZONES; i++) {
5668 		struct zone *zone = pgdat->node_zones + i;
5669 		unsigned long zone_start_pfn, zone_end_pfn;
5670 		unsigned long size, real_size;
5671 
5672 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5673 						  node_start_pfn,
5674 						  node_end_pfn,
5675 						  &zone_start_pfn,
5676 						  &zone_end_pfn,
5677 						  zones_size);
5678 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5679 						  node_start_pfn, node_end_pfn,
5680 						  zholes_size);
5681 		if (size)
5682 			zone->zone_start_pfn = zone_start_pfn;
5683 		else
5684 			zone->zone_start_pfn = 0;
5685 		zone->spanned_pages = size;
5686 		zone->present_pages = real_size;
5687 
5688 		totalpages += size;
5689 		realtotalpages += real_size;
5690 	}
5691 
5692 	pgdat->node_spanned_pages = totalpages;
5693 	pgdat->node_present_pages = realtotalpages;
5694 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5695 							realtotalpages);
5696 }
5697 
5698 #ifndef CONFIG_SPARSEMEM
5699 /*
5700  * Calculate the size of the zone->blockflags rounded to an unsigned long
5701  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5702  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5703  * round what is now in bits to nearest long in bits, then return it in
5704  * bytes.
5705  */
5706 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5707 {
5708 	unsigned long usemapsize;
5709 
5710 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5711 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5712 	usemapsize = usemapsize >> pageblock_order;
5713 	usemapsize *= NR_PAGEBLOCK_BITS;
5714 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5715 
5716 	return usemapsize / 8;
5717 }
5718 
5719 static void __init setup_usemap(struct pglist_data *pgdat,
5720 				struct zone *zone,
5721 				unsigned long zone_start_pfn,
5722 				unsigned long zonesize)
5723 {
5724 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5725 	zone->pageblock_flags = NULL;
5726 	if (usemapsize)
5727 		zone->pageblock_flags =
5728 			memblock_virt_alloc_node_nopanic(usemapsize,
5729 							 pgdat->node_id);
5730 }
5731 #else
5732 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5733 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5734 #endif /* CONFIG_SPARSEMEM */
5735 
5736 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5737 
5738 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5739 void __paginginit set_pageblock_order(void)
5740 {
5741 	unsigned int order;
5742 
5743 	/* Check that pageblock_nr_pages has not already been setup */
5744 	if (pageblock_order)
5745 		return;
5746 
5747 	if (HPAGE_SHIFT > PAGE_SHIFT)
5748 		order = HUGETLB_PAGE_ORDER;
5749 	else
5750 		order = MAX_ORDER - 1;
5751 
5752 	/*
5753 	 * Assume the largest contiguous order of interest is a huge page.
5754 	 * This value may be variable depending on boot parameters on IA64 and
5755 	 * powerpc.
5756 	 */
5757 	pageblock_order = order;
5758 }
5759 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5760 
5761 /*
5762  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5763  * is unused as pageblock_order is set at compile-time. See
5764  * include/linux/pageblock-flags.h for the values of pageblock_order based on
5765  * the kernel config
5766  */
5767 void __paginginit set_pageblock_order(void)
5768 {
5769 }
5770 
5771 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5772 
5773 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5774 						   unsigned long present_pages)
5775 {
5776 	unsigned long pages = spanned_pages;
5777 
5778 	/*
5779 	 * Provide a more accurate estimation if there are holes within
5780 	 * the zone and SPARSEMEM is in use. If there are holes within the
5781 	 * zone, each populated memory region may cost us one or two extra
5782 	 * memmap pages due to alignment because memmap pages for each
5783 	 * populated regions may not naturally algined on page boundary.
5784 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5785 	 */
5786 	if (spanned_pages > present_pages + (present_pages >> 4) &&
5787 	    IS_ENABLED(CONFIG_SPARSEMEM))
5788 		pages = present_pages;
5789 
5790 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5791 }
5792 
5793 /*
5794  * Set up the zone data structures:
5795  *   - mark all pages reserved
5796  *   - mark all memory queues empty
5797  *   - clear the memory bitmaps
5798  *
5799  * NOTE: pgdat should get zeroed by caller.
5800  */
5801 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5802 {
5803 	enum zone_type j;
5804 	int nid = pgdat->node_id;
5805 	int ret;
5806 
5807 	pgdat_resize_init(pgdat);
5808 #ifdef CONFIG_NUMA_BALANCING
5809 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5810 	pgdat->numabalancing_migrate_nr_pages = 0;
5811 	pgdat->numabalancing_migrate_next_window = jiffies;
5812 #endif
5813 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5814 	spin_lock_init(&pgdat->split_queue_lock);
5815 	INIT_LIST_HEAD(&pgdat->split_queue);
5816 	pgdat->split_queue_len = 0;
5817 #endif
5818 	init_waitqueue_head(&pgdat->kswapd_wait);
5819 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5820 #ifdef CONFIG_COMPACTION
5821 	init_waitqueue_head(&pgdat->kcompactd_wait);
5822 #endif
5823 	pgdat_page_ext_init(pgdat);
5824 	spin_lock_init(&pgdat->lru_lock);
5825 	lruvec_init(node_lruvec(pgdat));
5826 
5827 	for (j = 0; j < MAX_NR_ZONES; j++) {
5828 		struct zone *zone = pgdat->node_zones + j;
5829 		unsigned long size, realsize, freesize, memmap_pages;
5830 		unsigned long zone_start_pfn = zone->zone_start_pfn;
5831 
5832 		size = zone->spanned_pages;
5833 		realsize = freesize = zone->present_pages;
5834 
5835 		/*
5836 		 * Adjust freesize so that it accounts for how much memory
5837 		 * is used by this zone for memmap. This affects the watermark
5838 		 * and per-cpu initialisations
5839 		 */
5840 		memmap_pages = calc_memmap_size(size, realsize);
5841 		if (!is_highmem_idx(j)) {
5842 			if (freesize >= memmap_pages) {
5843 				freesize -= memmap_pages;
5844 				if (memmap_pages)
5845 					printk(KERN_DEBUG
5846 					       "  %s zone: %lu pages used for memmap\n",
5847 					       zone_names[j], memmap_pages);
5848 			} else
5849 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
5850 					zone_names[j], memmap_pages, freesize);
5851 		}
5852 
5853 		/* Account for reserved pages */
5854 		if (j == 0 && freesize > dma_reserve) {
5855 			freesize -= dma_reserve;
5856 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
5857 					zone_names[0], dma_reserve);
5858 		}
5859 
5860 		if (!is_highmem_idx(j))
5861 			nr_kernel_pages += freesize;
5862 		/* Charge for highmem memmap if there are enough kernel pages */
5863 		else if (nr_kernel_pages > memmap_pages * 2)
5864 			nr_kernel_pages -= memmap_pages;
5865 		nr_all_pages += freesize;
5866 
5867 		/*
5868 		 * Set an approximate value for lowmem here, it will be adjusted
5869 		 * when the bootmem allocator frees pages into the buddy system.
5870 		 * And all highmem pages will be managed by the buddy system.
5871 		 */
5872 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5873 #ifdef CONFIG_NUMA
5874 		zone->node = nid;
5875 #endif
5876 		zone->name = zone_names[j];
5877 		zone->zone_pgdat = pgdat;
5878 		spin_lock_init(&zone->lock);
5879 		zone_seqlock_init(zone);
5880 		zone_pcp_init(zone);
5881 
5882 		if (!size)
5883 			continue;
5884 
5885 		set_pageblock_order();
5886 		setup_usemap(pgdat, zone, zone_start_pfn, size);
5887 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5888 		BUG_ON(ret);
5889 		memmap_init(size, nid, j, zone_start_pfn);
5890 	}
5891 }
5892 
5893 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
5894 {
5895 	unsigned long __maybe_unused start = 0;
5896 	unsigned long __maybe_unused offset = 0;
5897 
5898 	/* Skip empty nodes */
5899 	if (!pgdat->node_spanned_pages)
5900 		return;
5901 
5902 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5903 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5904 	offset = pgdat->node_start_pfn - start;
5905 	/* ia64 gets its own node_mem_map, before this, without bootmem */
5906 	if (!pgdat->node_mem_map) {
5907 		unsigned long size, end;
5908 		struct page *map;
5909 
5910 		/*
5911 		 * The zone's endpoints aren't required to be MAX_ORDER
5912 		 * aligned but the node_mem_map endpoints must be in order
5913 		 * for the buddy allocator to function correctly.
5914 		 */
5915 		end = pgdat_end_pfn(pgdat);
5916 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
5917 		size =  (end - start) * sizeof(struct page);
5918 		map = alloc_remap(pgdat->node_id, size);
5919 		if (!map)
5920 			map = memblock_virt_alloc_node_nopanic(size,
5921 							       pgdat->node_id);
5922 		pgdat->node_mem_map = map + offset;
5923 	}
5924 #ifndef CONFIG_NEED_MULTIPLE_NODES
5925 	/*
5926 	 * With no DISCONTIG, the global mem_map is just set as node 0's
5927 	 */
5928 	if (pgdat == NODE_DATA(0)) {
5929 		mem_map = NODE_DATA(0)->node_mem_map;
5930 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5931 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5932 			mem_map -= offset;
5933 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5934 	}
5935 #endif
5936 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5937 }
5938 
5939 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5940 		unsigned long node_start_pfn, unsigned long *zholes_size)
5941 {
5942 	pg_data_t *pgdat = NODE_DATA(nid);
5943 	unsigned long start_pfn = 0;
5944 	unsigned long end_pfn = 0;
5945 
5946 	/* pg_data_t should be reset to zero when it's allocated */
5947 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
5948 
5949 	reset_deferred_meminit(pgdat);
5950 	pgdat->node_id = nid;
5951 	pgdat->node_start_pfn = node_start_pfn;
5952 	pgdat->per_cpu_nodestats = NULL;
5953 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5954 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5955 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5956 		(u64)start_pfn << PAGE_SHIFT,
5957 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5958 #else
5959 	start_pfn = node_start_pfn;
5960 #endif
5961 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5962 				  zones_size, zholes_size);
5963 
5964 	alloc_node_mem_map(pgdat);
5965 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5966 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5967 		nid, (unsigned long)pgdat,
5968 		(unsigned long)pgdat->node_mem_map);
5969 #endif
5970 
5971 	free_area_init_core(pgdat);
5972 }
5973 
5974 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5975 
5976 #if MAX_NUMNODES > 1
5977 /*
5978  * Figure out the number of possible node ids.
5979  */
5980 void __init setup_nr_node_ids(void)
5981 {
5982 	unsigned int highest;
5983 
5984 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5985 	nr_node_ids = highest + 1;
5986 }
5987 #endif
5988 
5989 /**
5990  * node_map_pfn_alignment - determine the maximum internode alignment
5991  *
5992  * This function should be called after node map is populated and sorted.
5993  * It calculates the maximum power of two alignment which can distinguish
5994  * all the nodes.
5995  *
5996  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5997  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5998  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5999  * shifted, 1GiB is enough and this function will indicate so.
6000  *
6001  * This is used to test whether pfn -> nid mapping of the chosen memory
6002  * model has fine enough granularity to avoid incorrect mapping for the
6003  * populated node map.
6004  *
6005  * Returns the determined alignment in pfn's.  0 if there is no alignment
6006  * requirement (single node).
6007  */
6008 unsigned long __init node_map_pfn_alignment(void)
6009 {
6010 	unsigned long accl_mask = 0, last_end = 0;
6011 	unsigned long start, end, mask;
6012 	int last_nid = -1;
6013 	int i, nid;
6014 
6015 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6016 		if (!start || last_nid < 0 || last_nid == nid) {
6017 			last_nid = nid;
6018 			last_end = end;
6019 			continue;
6020 		}
6021 
6022 		/*
6023 		 * Start with a mask granular enough to pin-point to the
6024 		 * start pfn and tick off bits one-by-one until it becomes
6025 		 * too coarse to separate the current node from the last.
6026 		 */
6027 		mask = ~((1 << __ffs(start)) - 1);
6028 		while (mask && last_end <= (start & (mask << 1)))
6029 			mask <<= 1;
6030 
6031 		/* accumulate all internode masks */
6032 		accl_mask |= mask;
6033 	}
6034 
6035 	/* convert mask to number of pages */
6036 	return ~accl_mask + 1;
6037 }
6038 
6039 /* Find the lowest pfn for a node */
6040 static unsigned long __init find_min_pfn_for_node(int nid)
6041 {
6042 	unsigned long min_pfn = ULONG_MAX;
6043 	unsigned long start_pfn;
6044 	int i;
6045 
6046 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6047 		min_pfn = min(min_pfn, start_pfn);
6048 
6049 	if (min_pfn == ULONG_MAX) {
6050 		pr_warn("Could not find start_pfn for node %d\n", nid);
6051 		return 0;
6052 	}
6053 
6054 	return min_pfn;
6055 }
6056 
6057 /**
6058  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6059  *
6060  * It returns the minimum PFN based on information provided via
6061  * memblock_set_node().
6062  */
6063 unsigned long __init find_min_pfn_with_active_regions(void)
6064 {
6065 	return find_min_pfn_for_node(MAX_NUMNODES);
6066 }
6067 
6068 /*
6069  * early_calculate_totalpages()
6070  * Sum pages in active regions for movable zone.
6071  * Populate N_MEMORY for calculating usable_nodes.
6072  */
6073 static unsigned long __init early_calculate_totalpages(void)
6074 {
6075 	unsigned long totalpages = 0;
6076 	unsigned long start_pfn, end_pfn;
6077 	int i, nid;
6078 
6079 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6080 		unsigned long pages = end_pfn - start_pfn;
6081 
6082 		totalpages += pages;
6083 		if (pages)
6084 			node_set_state(nid, N_MEMORY);
6085 	}
6086 	return totalpages;
6087 }
6088 
6089 /*
6090  * Find the PFN the Movable zone begins in each node. Kernel memory
6091  * is spread evenly between nodes as long as the nodes have enough
6092  * memory. When they don't, some nodes will have more kernelcore than
6093  * others
6094  */
6095 static void __init find_zone_movable_pfns_for_nodes(void)
6096 {
6097 	int i, nid;
6098 	unsigned long usable_startpfn;
6099 	unsigned long kernelcore_node, kernelcore_remaining;
6100 	/* save the state before borrow the nodemask */
6101 	nodemask_t saved_node_state = node_states[N_MEMORY];
6102 	unsigned long totalpages = early_calculate_totalpages();
6103 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6104 	struct memblock_region *r;
6105 
6106 	/* Need to find movable_zone earlier when movable_node is specified. */
6107 	find_usable_zone_for_movable();
6108 
6109 	/*
6110 	 * If movable_node is specified, ignore kernelcore and movablecore
6111 	 * options.
6112 	 */
6113 	if (movable_node_is_enabled()) {
6114 		for_each_memblock(memory, r) {
6115 			if (!memblock_is_hotpluggable(r))
6116 				continue;
6117 
6118 			nid = r->nid;
6119 
6120 			usable_startpfn = PFN_DOWN(r->base);
6121 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6122 				min(usable_startpfn, zone_movable_pfn[nid]) :
6123 				usable_startpfn;
6124 		}
6125 
6126 		goto out2;
6127 	}
6128 
6129 	/*
6130 	 * If kernelcore=mirror is specified, ignore movablecore option
6131 	 */
6132 	if (mirrored_kernelcore) {
6133 		bool mem_below_4gb_not_mirrored = false;
6134 
6135 		for_each_memblock(memory, r) {
6136 			if (memblock_is_mirror(r))
6137 				continue;
6138 
6139 			nid = r->nid;
6140 
6141 			usable_startpfn = memblock_region_memory_base_pfn(r);
6142 
6143 			if (usable_startpfn < 0x100000) {
6144 				mem_below_4gb_not_mirrored = true;
6145 				continue;
6146 			}
6147 
6148 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6149 				min(usable_startpfn, zone_movable_pfn[nid]) :
6150 				usable_startpfn;
6151 		}
6152 
6153 		if (mem_below_4gb_not_mirrored)
6154 			pr_warn("This configuration results in unmirrored kernel memory.");
6155 
6156 		goto out2;
6157 	}
6158 
6159 	/*
6160 	 * If movablecore=nn[KMG] was specified, calculate what size of
6161 	 * kernelcore that corresponds so that memory usable for
6162 	 * any allocation type is evenly spread. If both kernelcore
6163 	 * and movablecore are specified, then the value of kernelcore
6164 	 * will be used for required_kernelcore if it's greater than
6165 	 * what movablecore would have allowed.
6166 	 */
6167 	if (required_movablecore) {
6168 		unsigned long corepages;
6169 
6170 		/*
6171 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6172 		 * was requested by the user
6173 		 */
6174 		required_movablecore =
6175 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6176 		required_movablecore = min(totalpages, required_movablecore);
6177 		corepages = totalpages - required_movablecore;
6178 
6179 		required_kernelcore = max(required_kernelcore, corepages);
6180 	}
6181 
6182 	/*
6183 	 * If kernelcore was not specified or kernelcore size is larger
6184 	 * than totalpages, there is no ZONE_MOVABLE.
6185 	 */
6186 	if (!required_kernelcore || required_kernelcore >= totalpages)
6187 		goto out;
6188 
6189 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6190 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6191 
6192 restart:
6193 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6194 	kernelcore_node = required_kernelcore / usable_nodes;
6195 	for_each_node_state(nid, N_MEMORY) {
6196 		unsigned long start_pfn, end_pfn;
6197 
6198 		/*
6199 		 * Recalculate kernelcore_node if the division per node
6200 		 * now exceeds what is necessary to satisfy the requested
6201 		 * amount of memory for the kernel
6202 		 */
6203 		if (required_kernelcore < kernelcore_node)
6204 			kernelcore_node = required_kernelcore / usable_nodes;
6205 
6206 		/*
6207 		 * As the map is walked, we track how much memory is usable
6208 		 * by the kernel using kernelcore_remaining. When it is
6209 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6210 		 */
6211 		kernelcore_remaining = kernelcore_node;
6212 
6213 		/* Go through each range of PFNs within this node */
6214 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6215 			unsigned long size_pages;
6216 
6217 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6218 			if (start_pfn >= end_pfn)
6219 				continue;
6220 
6221 			/* Account for what is only usable for kernelcore */
6222 			if (start_pfn < usable_startpfn) {
6223 				unsigned long kernel_pages;
6224 				kernel_pages = min(end_pfn, usable_startpfn)
6225 								- start_pfn;
6226 
6227 				kernelcore_remaining -= min(kernel_pages,
6228 							kernelcore_remaining);
6229 				required_kernelcore -= min(kernel_pages,
6230 							required_kernelcore);
6231 
6232 				/* Continue if range is now fully accounted */
6233 				if (end_pfn <= usable_startpfn) {
6234 
6235 					/*
6236 					 * Push zone_movable_pfn to the end so
6237 					 * that if we have to rebalance
6238 					 * kernelcore across nodes, we will
6239 					 * not double account here
6240 					 */
6241 					zone_movable_pfn[nid] = end_pfn;
6242 					continue;
6243 				}
6244 				start_pfn = usable_startpfn;
6245 			}
6246 
6247 			/*
6248 			 * The usable PFN range for ZONE_MOVABLE is from
6249 			 * start_pfn->end_pfn. Calculate size_pages as the
6250 			 * number of pages used as kernelcore
6251 			 */
6252 			size_pages = end_pfn - start_pfn;
6253 			if (size_pages > kernelcore_remaining)
6254 				size_pages = kernelcore_remaining;
6255 			zone_movable_pfn[nid] = start_pfn + size_pages;
6256 
6257 			/*
6258 			 * Some kernelcore has been met, update counts and
6259 			 * break if the kernelcore for this node has been
6260 			 * satisfied
6261 			 */
6262 			required_kernelcore -= min(required_kernelcore,
6263 								size_pages);
6264 			kernelcore_remaining -= size_pages;
6265 			if (!kernelcore_remaining)
6266 				break;
6267 		}
6268 	}
6269 
6270 	/*
6271 	 * If there is still required_kernelcore, we do another pass with one
6272 	 * less node in the count. This will push zone_movable_pfn[nid] further
6273 	 * along on the nodes that still have memory until kernelcore is
6274 	 * satisfied
6275 	 */
6276 	usable_nodes--;
6277 	if (usable_nodes && required_kernelcore > usable_nodes)
6278 		goto restart;
6279 
6280 out2:
6281 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6282 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6283 		zone_movable_pfn[nid] =
6284 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6285 
6286 out:
6287 	/* restore the node_state */
6288 	node_states[N_MEMORY] = saved_node_state;
6289 }
6290 
6291 /* Any regular or high memory on that node ? */
6292 static void check_for_memory(pg_data_t *pgdat, int nid)
6293 {
6294 	enum zone_type zone_type;
6295 
6296 	if (N_MEMORY == N_NORMAL_MEMORY)
6297 		return;
6298 
6299 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6300 		struct zone *zone = &pgdat->node_zones[zone_type];
6301 		if (populated_zone(zone)) {
6302 			node_set_state(nid, N_HIGH_MEMORY);
6303 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6304 			    zone_type <= ZONE_NORMAL)
6305 				node_set_state(nid, N_NORMAL_MEMORY);
6306 			break;
6307 		}
6308 	}
6309 }
6310 
6311 /**
6312  * free_area_init_nodes - Initialise all pg_data_t and zone data
6313  * @max_zone_pfn: an array of max PFNs for each zone
6314  *
6315  * This will call free_area_init_node() for each active node in the system.
6316  * Using the page ranges provided by memblock_set_node(), the size of each
6317  * zone in each node and their holes is calculated. If the maximum PFN
6318  * between two adjacent zones match, it is assumed that the zone is empty.
6319  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6320  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6321  * starts where the previous one ended. For example, ZONE_DMA32 starts
6322  * at arch_max_dma_pfn.
6323  */
6324 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6325 {
6326 	unsigned long start_pfn, end_pfn;
6327 	int i, nid;
6328 
6329 	/* Record where the zone boundaries are */
6330 	memset(arch_zone_lowest_possible_pfn, 0,
6331 				sizeof(arch_zone_lowest_possible_pfn));
6332 	memset(arch_zone_highest_possible_pfn, 0,
6333 				sizeof(arch_zone_highest_possible_pfn));
6334 
6335 	start_pfn = find_min_pfn_with_active_regions();
6336 
6337 	for (i = 0; i < MAX_NR_ZONES; i++) {
6338 		if (i == ZONE_MOVABLE)
6339 			continue;
6340 
6341 		end_pfn = max(max_zone_pfn[i], start_pfn);
6342 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6343 		arch_zone_highest_possible_pfn[i] = end_pfn;
6344 
6345 		start_pfn = end_pfn;
6346 	}
6347 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6348 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6349 
6350 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6351 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6352 	find_zone_movable_pfns_for_nodes();
6353 
6354 	/* Print out the zone ranges */
6355 	pr_info("Zone ranges:\n");
6356 	for (i = 0; i < MAX_NR_ZONES; i++) {
6357 		if (i == ZONE_MOVABLE)
6358 			continue;
6359 		pr_info("  %-8s ", zone_names[i]);
6360 		if (arch_zone_lowest_possible_pfn[i] ==
6361 				arch_zone_highest_possible_pfn[i])
6362 			pr_cont("empty\n");
6363 		else
6364 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6365 				(u64)arch_zone_lowest_possible_pfn[i]
6366 					<< PAGE_SHIFT,
6367 				((u64)arch_zone_highest_possible_pfn[i]
6368 					<< PAGE_SHIFT) - 1);
6369 	}
6370 
6371 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6372 	pr_info("Movable zone start for each node\n");
6373 	for (i = 0; i < MAX_NUMNODES; i++) {
6374 		if (zone_movable_pfn[i])
6375 			pr_info("  Node %d: %#018Lx\n", i,
6376 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6377 	}
6378 
6379 	/* Print out the early node map */
6380 	pr_info("Early memory node ranges\n");
6381 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6382 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6383 			(u64)start_pfn << PAGE_SHIFT,
6384 			((u64)end_pfn << PAGE_SHIFT) - 1);
6385 
6386 	/* Initialise every node */
6387 	mminit_verify_pageflags_layout();
6388 	setup_nr_node_ids();
6389 	for_each_online_node(nid) {
6390 		pg_data_t *pgdat = NODE_DATA(nid);
6391 		free_area_init_node(nid, NULL,
6392 				find_min_pfn_for_node(nid), NULL);
6393 
6394 		/* Any memory on that node */
6395 		if (pgdat->node_present_pages)
6396 			node_set_state(nid, N_MEMORY);
6397 		check_for_memory(pgdat, nid);
6398 	}
6399 }
6400 
6401 static int __init cmdline_parse_core(char *p, unsigned long *core)
6402 {
6403 	unsigned long long coremem;
6404 	if (!p)
6405 		return -EINVAL;
6406 
6407 	coremem = memparse(p, &p);
6408 	*core = coremem >> PAGE_SHIFT;
6409 
6410 	/* Paranoid check that UL is enough for the coremem value */
6411 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6412 
6413 	return 0;
6414 }
6415 
6416 /*
6417  * kernelcore=size sets the amount of memory for use for allocations that
6418  * cannot be reclaimed or migrated.
6419  */
6420 static int __init cmdline_parse_kernelcore(char *p)
6421 {
6422 	/* parse kernelcore=mirror */
6423 	if (parse_option_str(p, "mirror")) {
6424 		mirrored_kernelcore = true;
6425 		return 0;
6426 	}
6427 
6428 	return cmdline_parse_core(p, &required_kernelcore);
6429 }
6430 
6431 /*
6432  * movablecore=size sets the amount of memory for use for allocations that
6433  * can be reclaimed or migrated.
6434  */
6435 static int __init cmdline_parse_movablecore(char *p)
6436 {
6437 	return cmdline_parse_core(p, &required_movablecore);
6438 }
6439 
6440 early_param("kernelcore", cmdline_parse_kernelcore);
6441 early_param("movablecore", cmdline_parse_movablecore);
6442 
6443 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6444 
6445 void adjust_managed_page_count(struct page *page, long count)
6446 {
6447 	spin_lock(&managed_page_count_lock);
6448 	page_zone(page)->managed_pages += count;
6449 	totalram_pages += count;
6450 #ifdef CONFIG_HIGHMEM
6451 	if (PageHighMem(page))
6452 		totalhigh_pages += count;
6453 #endif
6454 	spin_unlock(&managed_page_count_lock);
6455 }
6456 EXPORT_SYMBOL(adjust_managed_page_count);
6457 
6458 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6459 {
6460 	void *pos;
6461 	unsigned long pages = 0;
6462 
6463 	start = (void *)PAGE_ALIGN((unsigned long)start);
6464 	end = (void *)((unsigned long)end & PAGE_MASK);
6465 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6466 		if ((unsigned int)poison <= 0xFF)
6467 			memset(pos, poison, PAGE_SIZE);
6468 		free_reserved_page(virt_to_page(pos));
6469 	}
6470 
6471 	if (pages && s)
6472 		pr_info("Freeing %s memory: %ldK\n",
6473 			s, pages << (PAGE_SHIFT - 10));
6474 
6475 	return pages;
6476 }
6477 EXPORT_SYMBOL(free_reserved_area);
6478 
6479 #ifdef	CONFIG_HIGHMEM
6480 void free_highmem_page(struct page *page)
6481 {
6482 	__free_reserved_page(page);
6483 	totalram_pages++;
6484 	page_zone(page)->managed_pages++;
6485 	totalhigh_pages++;
6486 }
6487 #endif
6488 
6489 
6490 void __init mem_init_print_info(const char *str)
6491 {
6492 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6493 	unsigned long init_code_size, init_data_size;
6494 
6495 	physpages = get_num_physpages();
6496 	codesize = _etext - _stext;
6497 	datasize = _edata - _sdata;
6498 	rosize = __end_rodata - __start_rodata;
6499 	bss_size = __bss_stop - __bss_start;
6500 	init_data_size = __init_end - __init_begin;
6501 	init_code_size = _einittext - _sinittext;
6502 
6503 	/*
6504 	 * Detect special cases and adjust section sizes accordingly:
6505 	 * 1) .init.* may be embedded into .data sections
6506 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6507 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6508 	 * 3) .rodata.* may be embedded into .text or .data sections.
6509 	 */
6510 #define adj_init_size(start, end, size, pos, adj) \
6511 	do { \
6512 		if (start <= pos && pos < end && size > adj) \
6513 			size -= adj; \
6514 	} while (0)
6515 
6516 	adj_init_size(__init_begin, __init_end, init_data_size,
6517 		     _sinittext, init_code_size);
6518 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6519 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6520 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6521 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6522 
6523 #undef	adj_init_size
6524 
6525 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6526 #ifdef	CONFIG_HIGHMEM
6527 		", %luK highmem"
6528 #endif
6529 		"%s%s)\n",
6530 		nr_free_pages() << (PAGE_SHIFT - 10),
6531 		physpages << (PAGE_SHIFT - 10),
6532 		codesize >> 10, datasize >> 10, rosize >> 10,
6533 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6534 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6535 		totalcma_pages << (PAGE_SHIFT - 10),
6536 #ifdef	CONFIG_HIGHMEM
6537 		totalhigh_pages << (PAGE_SHIFT - 10),
6538 #endif
6539 		str ? ", " : "", str ? str : "");
6540 }
6541 
6542 /**
6543  * set_dma_reserve - set the specified number of pages reserved in the first zone
6544  * @new_dma_reserve: The number of pages to mark reserved
6545  *
6546  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6547  * In the DMA zone, a significant percentage may be consumed by kernel image
6548  * and other unfreeable allocations which can skew the watermarks badly. This
6549  * function may optionally be used to account for unfreeable pages in the
6550  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6551  * smaller per-cpu batchsize.
6552  */
6553 void __init set_dma_reserve(unsigned long new_dma_reserve)
6554 {
6555 	dma_reserve = new_dma_reserve;
6556 }
6557 
6558 void __init free_area_init(unsigned long *zones_size)
6559 {
6560 	free_area_init_node(0, zones_size,
6561 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6562 }
6563 
6564 static int page_alloc_cpu_dead(unsigned int cpu)
6565 {
6566 
6567 	lru_add_drain_cpu(cpu);
6568 	drain_pages(cpu);
6569 
6570 	/*
6571 	 * Spill the event counters of the dead processor
6572 	 * into the current processors event counters.
6573 	 * This artificially elevates the count of the current
6574 	 * processor.
6575 	 */
6576 	vm_events_fold_cpu(cpu);
6577 
6578 	/*
6579 	 * Zero the differential counters of the dead processor
6580 	 * so that the vm statistics are consistent.
6581 	 *
6582 	 * This is only okay since the processor is dead and cannot
6583 	 * race with what we are doing.
6584 	 */
6585 	cpu_vm_stats_fold(cpu);
6586 	return 0;
6587 }
6588 
6589 void __init page_alloc_init(void)
6590 {
6591 	int ret;
6592 
6593 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6594 					"mm/page_alloc:dead", NULL,
6595 					page_alloc_cpu_dead);
6596 	WARN_ON(ret < 0);
6597 }
6598 
6599 /*
6600  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6601  *	or min_free_kbytes changes.
6602  */
6603 static void calculate_totalreserve_pages(void)
6604 {
6605 	struct pglist_data *pgdat;
6606 	unsigned long reserve_pages = 0;
6607 	enum zone_type i, j;
6608 
6609 	for_each_online_pgdat(pgdat) {
6610 
6611 		pgdat->totalreserve_pages = 0;
6612 
6613 		for (i = 0; i < MAX_NR_ZONES; i++) {
6614 			struct zone *zone = pgdat->node_zones + i;
6615 			long max = 0;
6616 
6617 			/* Find valid and maximum lowmem_reserve in the zone */
6618 			for (j = i; j < MAX_NR_ZONES; j++) {
6619 				if (zone->lowmem_reserve[j] > max)
6620 					max = zone->lowmem_reserve[j];
6621 			}
6622 
6623 			/* we treat the high watermark as reserved pages. */
6624 			max += high_wmark_pages(zone);
6625 
6626 			if (max > zone->managed_pages)
6627 				max = zone->managed_pages;
6628 
6629 			pgdat->totalreserve_pages += max;
6630 
6631 			reserve_pages += max;
6632 		}
6633 	}
6634 	totalreserve_pages = reserve_pages;
6635 }
6636 
6637 /*
6638  * setup_per_zone_lowmem_reserve - called whenever
6639  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6640  *	has a correct pages reserved value, so an adequate number of
6641  *	pages are left in the zone after a successful __alloc_pages().
6642  */
6643 static void setup_per_zone_lowmem_reserve(void)
6644 {
6645 	struct pglist_data *pgdat;
6646 	enum zone_type j, idx;
6647 
6648 	for_each_online_pgdat(pgdat) {
6649 		for (j = 0; j < MAX_NR_ZONES; j++) {
6650 			struct zone *zone = pgdat->node_zones + j;
6651 			unsigned long managed_pages = zone->managed_pages;
6652 
6653 			zone->lowmem_reserve[j] = 0;
6654 
6655 			idx = j;
6656 			while (idx) {
6657 				struct zone *lower_zone;
6658 
6659 				idx--;
6660 
6661 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6662 					sysctl_lowmem_reserve_ratio[idx] = 1;
6663 
6664 				lower_zone = pgdat->node_zones + idx;
6665 				lower_zone->lowmem_reserve[j] = managed_pages /
6666 					sysctl_lowmem_reserve_ratio[idx];
6667 				managed_pages += lower_zone->managed_pages;
6668 			}
6669 		}
6670 	}
6671 
6672 	/* update totalreserve_pages */
6673 	calculate_totalreserve_pages();
6674 }
6675 
6676 static void __setup_per_zone_wmarks(void)
6677 {
6678 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6679 	unsigned long lowmem_pages = 0;
6680 	struct zone *zone;
6681 	unsigned long flags;
6682 
6683 	/* Calculate total number of !ZONE_HIGHMEM pages */
6684 	for_each_zone(zone) {
6685 		if (!is_highmem(zone))
6686 			lowmem_pages += zone->managed_pages;
6687 	}
6688 
6689 	for_each_zone(zone) {
6690 		u64 tmp;
6691 
6692 		spin_lock_irqsave(&zone->lock, flags);
6693 		tmp = (u64)pages_min * zone->managed_pages;
6694 		do_div(tmp, lowmem_pages);
6695 		if (is_highmem(zone)) {
6696 			/*
6697 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6698 			 * need highmem pages, so cap pages_min to a small
6699 			 * value here.
6700 			 *
6701 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6702 			 * deltas control asynch page reclaim, and so should
6703 			 * not be capped for highmem.
6704 			 */
6705 			unsigned long min_pages;
6706 
6707 			min_pages = zone->managed_pages / 1024;
6708 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6709 			zone->watermark[WMARK_MIN] = min_pages;
6710 		} else {
6711 			/*
6712 			 * If it's a lowmem zone, reserve a number of pages
6713 			 * proportionate to the zone's size.
6714 			 */
6715 			zone->watermark[WMARK_MIN] = tmp;
6716 		}
6717 
6718 		/*
6719 		 * Set the kswapd watermarks distance according to the
6720 		 * scale factor in proportion to available memory, but
6721 		 * ensure a minimum size on small systems.
6722 		 */
6723 		tmp = max_t(u64, tmp >> 2,
6724 			    mult_frac(zone->managed_pages,
6725 				      watermark_scale_factor, 10000));
6726 
6727 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6728 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6729 
6730 		spin_unlock_irqrestore(&zone->lock, flags);
6731 	}
6732 
6733 	/* update totalreserve_pages */
6734 	calculate_totalreserve_pages();
6735 }
6736 
6737 /**
6738  * setup_per_zone_wmarks - called when min_free_kbytes changes
6739  * or when memory is hot-{added|removed}
6740  *
6741  * Ensures that the watermark[min,low,high] values for each zone are set
6742  * correctly with respect to min_free_kbytes.
6743  */
6744 void setup_per_zone_wmarks(void)
6745 {
6746 	mutex_lock(&zonelists_mutex);
6747 	__setup_per_zone_wmarks();
6748 	mutex_unlock(&zonelists_mutex);
6749 }
6750 
6751 /*
6752  * Initialise min_free_kbytes.
6753  *
6754  * For small machines we want it small (128k min).  For large machines
6755  * we want it large (64MB max).  But it is not linear, because network
6756  * bandwidth does not increase linearly with machine size.  We use
6757  *
6758  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6759  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6760  *
6761  * which yields
6762  *
6763  * 16MB:	512k
6764  * 32MB:	724k
6765  * 64MB:	1024k
6766  * 128MB:	1448k
6767  * 256MB:	2048k
6768  * 512MB:	2896k
6769  * 1024MB:	4096k
6770  * 2048MB:	5792k
6771  * 4096MB:	8192k
6772  * 8192MB:	11584k
6773  * 16384MB:	16384k
6774  */
6775 int __meminit init_per_zone_wmark_min(void)
6776 {
6777 	unsigned long lowmem_kbytes;
6778 	int new_min_free_kbytes;
6779 
6780 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6781 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6782 
6783 	if (new_min_free_kbytes > user_min_free_kbytes) {
6784 		min_free_kbytes = new_min_free_kbytes;
6785 		if (min_free_kbytes < 128)
6786 			min_free_kbytes = 128;
6787 		if (min_free_kbytes > 65536)
6788 			min_free_kbytes = 65536;
6789 	} else {
6790 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6791 				new_min_free_kbytes, user_min_free_kbytes);
6792 	}
6793 	setup_per_zone_wmarks();
6794 	refresh_zone_stat_thresholds();
6795 	setup_per_zone_lowmem_reserve();
6796 
6797 #ifdef CONFIG_NUMA
6798 	setup_min_unmapped_ratio();
6799 	setup_min_slab_ratio();
6800 #endif
6801 
6802 	return 0;
6803 }
6804 core_initcall(init_per_zone_wmark_min)
6805 
6806 /*
6807  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6808  *	that we can call two helper functions whenever min_free_kbytes
6809  *	changes.
6810  */
6811 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6812 	void __user *buffer, size_t *length, loff_t *ppos)
6813 {
6814 	int rc;
6815 
6816 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6817 	if (rc)
6818 		return rc;
6819 
6820 	if (write) {
6821 		user_min_free_kbytes = min_free_kbytes;
6822 		setup_per_zone_wmarks();
6823 	}
6824 	return 0;
6825 }
6826 
6827 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6828 	void __user *buffer, size_t *length, loff_t *ppos)
6829 {
6830 	int rc;
6831 
6832 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6833 	if (rc)
6834 		return rc;
6835 
6836 	if (write)
6837 		setup_per_zone_wmarks();
6838 
6839 	return 0;
6840 }
6841 
6842 #ifdef CONFIG_NUMA
6843 static void setup_min_unmapped_ratio(void)
6844 {
6845 	pg_data_t *pgdat;
6846 	struct zone *zone;
6847 
6848 	for_each_online_pgdat(pgdat)
6849 		pgdat->min_unmapped_pages = 0;
6850 
6851 	for_each_zone(zone)
6852 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6853 				sysctl_min_unmapped_ratio) / 100;
6854 }
6855 
6856 
6857 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6858 	void __user *buffer, size_t *length, loff_t *ppos)
6859 {
6860 	int rc;
6861 
6862 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6863 	if (rc)
6864 		return rc;
6865 
6866 	setup_min_unmapped_ratio();
6867 
6868 	return 0;
6869 }
6870 
6871 static void setup_min_slab_ratio(void)
6872 {
6873 	pg_data_t *pgdat;
6874 	struct zone *zone;
6875 
6876 	for_each_online_pgdat(pgdat)
6877 		pgdat->min_slab_pages = 0;
6878 
6879 	for_each_zone(zone)
6880 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
6881 				sysctl_min_slab_ratio) / 100;
6882 }
6883 
6884 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6885 	void __user *buffer, size_t *length, loff_t *ppos)
6886 {
6887 	int rc;
6888 
6889 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6890 	if (rc)
6891 		return rc;
6892 
6893 	setup_min_slab_ratio();
6894 
6895 	return 0;
6896 }
6897 #endif
6898 
6899 /*
6900  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6901  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6902  *	whenever sysctl_lowmem_reserve_ratio changes.
6903  *
6904  * The reserve ratio obviously has absolutely no relation with the
6905  * minimum watermarks. The lowmem reserve ratio can only make sense
6906  * if in function of the boot time zone sizes.
6907  */
6908 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6909 	void __user *buffer, size_t *length, loff_t *ppos)
6910 {
6911 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6912 	setup_per_zone_lowmem_reserve();
6913 	return 0;
6914 }
6915 
6916 /*
6917  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6918  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
6919  * pagelist can have before it gets flushed back to buddy allocator.
6920  */
6921 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6922 	void __user *buffer, size_t *length, loff_t *ppos)
6923 {
6924 	struct zone *zone;
6925 	int old_percpu_pagelist_fraction;
6926 	int ret;
6927 
6928 	mutex_lock(&pcp_batch_high_lock);
6929 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6930 
6931 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6932 	if (!write || ret < 0)
6933 		goto out;
6934 
6935 	/* Sanity checking to avoid pcp imbalance */
6936 	if (percpu_pagelist_fraction &&
6937 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6938 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6939 		ret = -EINVAL;
6940 		goto out;
6941 	}
6942 
6943 	/* No change? */
6944 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6945 		goto out;
6946 
6947 	for_each_populated_zone(zone) {
6948 		unsigned int cpu;
6949 
6950 		for_each_possible_cpu(cpu)
6951 			pageset_set_high_and_batch(zone,
6952 					per_cpu_ptr(zone->pageset, cpu));
6953 	}
6954 out:
6955 	mutex_unlock(&pcp_batch_high_lock);
6956 	return ret;
6957 }
6958 
6959 #ifdef CONFIG_NUMA
6960 int hashdist = HASHDIST_DEFAULT;
6961 
6962 static int __init set_hashdist(char *str)
6963 {
6964 	if (!str)
6965 		return 0;
6966 	hashdist = simple_strtoul(str, &str, 0);
6967 	return 1;
6968 }
6969 __setup("hashdist=", set_hashdist);
6970 #endif
6971 
6972 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
6973 /*
6974  * Returns the number of pages that arch has reserved but
6975  * is not known to alloc_large_system_hash().
6976  */
6977 static unsigned long __init arch_reserved_kernel_pages(void)
6978 {
6979 	return 0;
6980 }
6981 #endif
6982 
6983 /*
6984  * allocate a large system hash table from bootmem
6985  * - it is assumed that the hash table must contain an exact power-of-2
6986  *   quantity of entries
6987  * - limit is the number of hash buckets, not the total allocation size
6988  */
6989 void *__init alloc_large_system_hash(const char *tablename,
6990 				     unsigned long bucketsize,
6991 				     unsigned long numentries,
6992 				     int scale,
6993 				     int flags,
6994 				     unsigned int *_hash_shift,
6995 				     unsigned int *_hash_mask,
6996 				     unsigned long low_limit,
6997 				     unsigned long high_limit)
6998 {
6999 	unsigned long long max = high_limit;
7000 	unsigned long log2qty, size;
7001 	void *table = NULL;
7002 
7003 	/* allow the kernel cmdline to have a say */
7004 	if (!numentries) {
7005 		/* round applicable memory size up to nearest megabyte */
7006 		numentries = nr_kernel_pages;
7007 		numentries -= arch_reserved_kernel_pages();
7008 
7009 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7010 		if (PAGE_SHIFT < 20)
7011 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7012 
7013 		/* limit to 1 bucket per 2^scale bytes of low memory */
7014 		if (scale > PAGE_SHIFT)
7015 			numentries >>= (scale - PAGE_SHIFT);
7016 		else
7017 			numentries <<= (PAGE_SHIFT - scale);
7018 
7019 		/* Make sure we've got at least a 0-order allocation.. */
7020 		if (unlikely(flags & HASH_SMALL)) {
7021 			/* Makes no sense without HASH_EARLY */
7022 			WARN_ON(!(flags & HASH_EARLY));
7023 			if (!(numentries >> *_hash_shift)) {
7024 				numentries = 1UL << *_hash_shift;
7025 				BUG_ON(!numentries);
7026 			}
7027 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7028 			numentries = PAGE_SIZE / bucketsize;
7029 	}
7030 	numentries = roundup_pow_of_two(numentries);
7031 
7032 	/* limit allocation size to 1/16 total memory by default */
7033 	if (max == 0) {
7034 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7035 		do_div(max, bucketsize);
7036 	}
7037 	max = min(max, 0x80000000ULL);
7038 
7039 	if (numentries < low_limit)
7040 		numentries = low_limit;
7041 	if (numentries > max)
7042 		numentries = max;
7043 
7044 	log2qty = ilog2(numentries);
7045 
7046 	do {
7047 		size = bucketsize << log2qty;
7048 		if (flags & HASH_EARLY)
7049 			table = memblock_virt_alloc_nopanic(size, 0);
7050 		else if (hashdist)
7051 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7052 		else {
7053 			/*
7054 			 * If bucketsize is not a power-of-two, we may free
7055 			 * some pages at the end of hash table which
7056 			 * alloc_pages_exact() automatically does
7057 			 */
7058 			if (get_order(size) < MAX_ORDER) {
7059 				table = alloc_pages_exact(size, GFP_ATOMIC);
7060 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7061 			}
7062 		}
7063 	} while (!table && size > PAGE_SIZE && --log2qty);
7064 
7065 	if (!table)
7066 		panic("Failed to allocate %s hash table\n", tablename);
7067 
7068 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7069 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7070 
7071 	if (_hash_shift)
7072 		*_hash_shift = log2qty;
7073 	if (_hash_mask)
7074 		*_hash_mask = (1 << log2qty) - 1;
7075 
7076 	return table;
7077 }
7078 
7079 /*
7080  * This function checks whether pageblock includes unmovable pages or not.
7081  * If @count is not zero, it is okay to include less @count unmovable pages
7082  *
7083  * PageLRU check without isolation or lru_lock could race so that
7084  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7085  * expect this function should be exact.
7086  */
7087 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7088 			 bool skip_hwpoisoned_pages)
7089 {
7090 	unsigned long pfn, iter, found;
7091 	int mt;
7092 
7093 	/*
7094 	 * For avoiding noise data, lru_add_drain_all() should be called
7095 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7096 	 */
7097 	if (zone_idx(zone) == ZONE_MOVABLE)
7098 		return false;
7099 	mt = get_pageblock_migratetype(page);
7100 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7101 		return false;
7102 
7103 	pfn = page_to_pfn(page);
7104 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7105 		unsigned long check = pfn + iter;
7106 
7107 		if (!pfn_valid_within(check))
7108 			continue;
7109 
7110 		page = pfn_to_page(check);
7111 
7112 		/*
7113 		 * Hugepages are not in LRU lists, but they're movable.
7114 		 * We need not scan over tail pages bacause we don't
7115 		 * handle each tail page individually in migration.
7116 		 */
7117 		if (PageHuge(page)) {
7118 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7119 			continue;
7120 		}
7121 
7122 		/*
7123 		 * We can't use page_count without pin a page
7124 		 * because another CPU can free compound page.
7125 		 * This check already skips compound tails of THP
7126 		 * because their page->_refcount is zero at all time.
7127 		 */
7128 		if (!page_ref_count(page)) {
7129 			if (PageBuddy(page))
7130 				iter += (1 << page_order(page)) - 1;
7131 			continue;
7132 		}
7133 
7134 		/*
7135 		 * The HWPoisoned page may be not in buddy system, and
7136 		 * page_count() is not 0.
7137 		 */
7138 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7139 			continue;
7140 
7141 		if (!PageLRU(page))
7142 			found++;
7143 		/*
7144 		 * If there are RECLAIMABLE pages, we need to check
7145 		 * it.  But now, memory offline itself doesn't call
7146 		 * shrink_node_slabs() and it still to be fixed.
7147 		 */
7148 		/*
7149 		 * If the page is not RAM, page_count()should be 0.
7150 		 * we don't need more check. This is an _used_ not-movable page.
7151 		 *
7152 		 * The problematic thing here is PG_reserved pages. PG_reserved
7153 		 * is set to both of a memory hole page and a _used_ kernel
7154 		 * page at boot.
7155 		 */
7156 		if (found > count)
7157 			return true;
7158 	}
7159 	return false;
7160 }
7161 
7162 bool is_pageblock_removable_nolock(struct page *page)
7163 {
7164 	struct zone *zone;
7165 	unsigned long pfn;
7166 
7167 	/*
7168 	 * We have to be careful here because we are iterating over memory
7169 	 * sections which are not zone aware so we might end up outside of
7170 	 * the zone but still within the section.
7171 	 * We have to take care about the node as well. If the node is offline
7172 	 * its NODE_DATA will be NULL - see page_zone.
7173 	 */
7174 	if (!node_online(page_to_nid(page)))
7175 		return false;
7176 
7177 	zone = page_zone(page);
7178 	pfn = page_to_pfn(page);
7179 	if (!zone_spans_pfn(zone, pfn))
7180 		return false;
7181 
7182 	return !has_unmovable_pages(zone, page, 0, true);
7183 }
7184 
7185 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7186 
7187 static unsigned long pfn_max_align_down(unsigned long pfn)
7188 {
7189 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7190 			     pageblock_nr_pages) - 1);
7191 }
7192 
7193 static unsigned long pfn_max_align_up(unsigned long pfn)
7194 {
7195 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7196 				pageblock_nr_pages));
7197 }
7198 
7199 /* [start, end) must belong to a single zone. */
7200 static int __alloc_contig_migrate_range(struct compact_control *cc,
7201 					unsigned long start, unsigned long end)
7202 {
7203 	/* This function is based on compact_zone() from compaction.c. */
7204 	unsigned long nr_reclaimed;
7205 	unsigned long pfn = start;
7206 	unsigned int tries = 0;
7207 	int ret = 0;
7208 
7209 	migrate_prep();
7210 
7211 	while (pfn < end || !list_empty(&cc->migratepages)) {
7212 		if (fatal_signal_pending(current)) {
7213 			ret = -EINTR;
7214 			break;
7215 		}
7216 
7217 		if (list_empty(&cc->migratepages)) {
7218 			cc->nr_migratepages = 0;
7219 			pfn = isolate_migratepages_range(cc, pfn, end);
7220 			if (!pfn) {
7221 				ret = -EINTR;
7222 				break;
7223 			}
7224 			tries = 0;
7225 		} else if (++tries == 5) {
7226 			ret = ret < 0 ? ret : -EBUSY;
7227 			break;
7228 		}
7229 
7230 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7231 							&cc->migratepages);
7232 		cc->nr_migratepages -= nr_reclaimed;
7233 
7234 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7235 				    NULL, 0, cc->mode, MR_CMA);
7236 	}
7237 	if (ret < 0) {
7238 		putback_movable_pages(&cc->migratepages);
7239 		return ret;
7240 	}
7241 	return 0;
7242 }
7243 
7244 /**
7245  * alloc_contig_range() -- tries to allocate given range of pages
7246  * @start:	start PFN to allocate
7247  * @end:	one-past-the-last PFN to allocate
7248  * @migratetype:	migratetype of the underlaying pageblocks (either
7249  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7250  *			in range must have the same migratetype and it must
7251  *			be either of the two.
7252  *
7253  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7254  * aligned, however it's the caller's responsibility to guarantee that
7255  * we are the only thread that changes migrate type of pageblocks the
7256  * pages fall in.
7257  *
7258  * The PFN range must belong to a single zone.
7259  *
7260  * Returns zero on success or negative error code.  On success all
7261  * pages which PFN is in [start, end) are allocated for the caller and
7262  * need to be freed with free_contig_range().
7263  */
7264 int alloc_contig_range(unsigned long start, unsigned long end,
7265 		       unsigned migratetype)
7266 {
7267 	unsigned long outer_start, outer_end;
7268 	unsigned int order;
7269 	int ret = 0;
7270 
7271 	struct compact_control cc = {
7272 		.nr_migratepages = 0,
7273 		.order = -1,
7274 		.zone = page_zone(pfn_to_page(start)),
7275 		.mode = MIGRATE_SYNC,
7276 		.ignore_skip_hint = true,
7277 		.gfp_mask = GFP_KERNEL,
7278 	};
7279 	INIT_LIST_HEAD(&cc.migratepages);
7280 
7281 	/*
7282 	 * What we do here is we mark all pageblocks in range as
7283 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7284 	 * have different sizes, and due to the way page allocator
7285 	 * work, we align the range to biggest of the two pages so
7286 	 * that page allocator won't try to merge buddies from
7287 	 * different pageblocks and change MIGRATE_ISOLATE to some
7288 	 * other migration type.
7289 	 *
7290 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7291 	 * migrate the pages from an unaligned range (ie. pages that
7292 	 * we are interested in).  This will put all the pages in
7293 	 * range back to page allocator as MIGRATE_ISOLATE.
7294 	 *
7295 	 * When this is done, we take the pages in range from page
7296 	 * allocator removing them from the buddy system.  This way
7297 	 * page allocator will never consider using them.
7298 	 *
7299 	 * This lets us mark the pageblocks back as
7300 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7301 	 * aligned range but not in the unaligned, original range are
7302 	 * put back to page allocator so that buddy can use them.
7303 	 */
7304 
7305 	ret = start_isolate_page_range(pfn_max_align_down(start),
7306 				       pfn_max_align_up(end), migratetype,
7307 				       false);
7308 	if (ret)
7309 		return ret;
7310 
7311 	/*
7312 	 * In case of -EBUSY, we'd like to know which page causes problem.
7313 	 * So, just fall through. We will check it in test_pages_isolated().
7314 	 */
7315 	ret = __alloc_contig_migrate_range(&cc, start, end);
7316 	if (ret && ret != -EBUSY)
7317 		goto done;
7318 
7319 	/*
7320 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7321 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7322 	 * more, all pages in [start, end) are free in page allocator.
7323 	 * What we are going to do is to allocate all pages from
7324 	 * [start, end) (that is remove them from page allocator).
7325 	 *
7326 	 * The only problem is that pages at the beginning and at the
7327 	 * end of interesting range may be not aligned with pages that
7328 	 * page allocator holds, ie. they can be part of higher order
7329 	 * pages.  Because of this, we reserve the bigger range and
7330 	 * once this is done free the pages we are not interested in.
7331 	 *
7332 	 * We don't have to hold zone->lock here because the pages are
7333 	 * isolated thus they won't get removed from buddy.
7334 	 */
7335 
7336 	lru_add_drain_all();
7337 	drain_all_pages(cc.zone);
7338 
7339 	order = 0;
7340 	outer_start = start;
7341 	while (!PageBuddy(pfn_to_page(outer_start))) {
7342 		if (++order >= MAX_ORDER) {
7343 			outer_start = start;
7344 			break;
7345 		}
7346 		outer_start &= ~0UL << order;
7347 	}
7348 
7349 	if (outer_start != start) {
7350 		order = page_order(pfn_to_page(outer_start));
7351 
7352 		/*
7353 		 * outer_start page could be small order buddy page and
7354 		 * it doesn't include start page. Adjust outer_start
7355 		 * in this case to report failed page properly
7356 		 * on tracepoint in test_pages_isolated()
7357 		 */
7358 		if (outer_start + (1UL << order) <= start)
7359 			outer_start = start;
7360 	}
7361 
7362 	/* Make sure the range is really isolated. */
7363 	if (test_pages_isolated(outer_start, end, false)) {
7364 		pr_info("%s: [%lx, %lx) PFNs busy\n",
7365 			__func__, outer_start, end);
7366 		ret = -EBUSY;
7367 		goto done;
7368 	}
7369 
7370 	/* Grab isolated pages from freelists. */
7371 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7372 	if (!outer_end) {
7373 		ret = -EBUSY;
7374 		goto done;
7375 	}
7376 
7377 	/* Free head and tail (if any) */
7378 	if (start != outer_start)
7379 		free_contig_range(outer_start, start - outer_start);
7380 	if (end != outer_end)
7381 		free_contig_range(end, outer_end - end);
7382 
7383 done:
7384 	undo_isolate_page_range(pfn_max_align_down(start),
7385 				pfn_max_align_up(end), migratetype);
7386 	return ret;
7387 }
7388 
7389 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7390 {
7391 	unsigned int count = 0;
7392 
7393 	for (; nr_pages--; pfn++) {
7394 		struct page *page = pfn_to_page(pfn);
7395 
7396 		count += page_count(page) != 1;
7397 		__free_page(page);
7398 	}
7399 	WARN(count != 0, "%d pages are still in use!\n", count);
7400 }
7401 #endif
7402 
7403 #ifdef CONFIG_MEMORY_HOTPLUG
7404 /*
7405  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7406  * page high values need to be recalulated.
7407  */
7408 void __meminit zone_pcp_update(struct zone *zone)
7409 {
7410 	unsigned cpu;
7411 	mutex_lock(&pcp_batch_high_lock);
7412 	for_each_possible_cpu(cpu)
7413 		pageset_set_high_and_batch(zone,
7414 				per_cpu_ptr(zone->pageset, cpu));
7415 	mutex_unlock(&pcp_batch_high_lock);
7416 }
7417 #endif
7418 
7419 void zone_pcp_reset(struct zone *zone)
7420 {
7421 	unsigned long flags;
7422 	int cpu;
7423 	struct per_cpu_pageset *pset;
7424 
7425 	/* avoid races with drain_pages()  */
7426 	local_irq_save(flags);
7427 	if (zone->pageset != &boot_pageset) {
7428 		for_each_online_cpu(cpu) {
7429 			pset = per_cpu_ptr(zone->pageset, cpu);
7430 			drain_zonestat(zone, pset);
7431 		}
7432 		free_percpu(zone->pageset);
7433 		zone->pageset = &boot_pageset;
7434 	}
7435 	local_irq_restore(flags);
7436 }
7437 
7438 #ifdef CONFIG_MEMORY_HOTREMOVE
7439 /*
7440  * All pages in the range must be in a single zone and isolated
7441  * before calling this.
7442  */
7443 void
7444 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7445 {
7446 	struct page *page;
7447 	struct zone *zone;
7448 	unsigned int order, i;
7449 	unsigned long pfn;
7450 	unsigned long flags;
7451 	/* find the first valid pfn */
7452 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7453 		if (pfn_valid(pfn))
7454 			break;
7455 	if (pfn == end_pfn)
7456 		return;
7457 	zone = page_zone(pfn_to_page(pfn));
7458 	spin_lock_irqsave(&zone->lock, flags);
7459 	pfn = start_pfn;
7460 	while (pfn < end_pfn) {
7461 		if (!pfn_valid(pfn)) {
7462 			pfn++;
7463 			continue;
7464 		}
7465 		page = pfn_to_page(pfn);
7466 		/*
7467 		 * The HWPoisoned page may be not in buddy system, and
7468 		 * page_count() is not 0.
7469 		 */
7470 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7471 			pfn++;
7472 			SetPageReserved(page);
7473 			continue;
7474 		}
7475 
7476 		BUG_ON(page_count(page));
7477 		BUG_ON(!PageBuddy(page));
7478 		order = page_order(page);
7479 #ifdef CONFIG_DEBUG_VM
7480 		pr_info("remove from free list %lx %d %lx\n",
7481 			pfn, 1 << order, end_pfn);
7482 #endif
7483 		list_del(&page->lru);
7484 		rmv_page_order(page);
7485 		zone->free_area[order].nr_free--;
7486 		for (i = 0; i < (1 << order); i++)
7487 			SetPageReserved((page+i));
7488 		pfn += (1 << order);
7489 	}
7490 	spin_unlock_irqrestore(&zone->lock, flags);
7491 }
7492 #endif
7493 
7494 bool is_free_buddy_page(struct page *page)
7495 {
7496 	struct zone *zone = page_zone(page);
7497 	unsigned long pfn = page_to_pfn(page);
7498 	unsigned long flags;
7499 	unsigned int order;
7500 
7501 	spin_lock_irqsave(&zone->lock, flags);
7502 	for (order = 0; order < MAX_ORDER; order++) {
7503 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7504 
7505 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7506 			break;
7507 	}
7508 	spin_unlock_irqrestore(&zone->lock, flags);
7509 
7510 	return order < MAX_ORDER;
7511 }
7512