xref: /openbmc/linux/mm/page_alloc.c (revision b2441318)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76 
77 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
78 static DEFINE_MUTEX(pcp_batch_high_lock);
79 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
80 
81 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
82 DEFINE_PER_CPU(int, numa_node);
83 EXPORT_PER_CPU_SYMBOL(numa_node);
84 #endif
85 
86 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
87 /*
88  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
89  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
90  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
91  * defined in <linux/topology.h>.
92  */
93 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
94 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
95 int _node_numa_mem_[MAX_NUMNODES];
96 #endif
97 
98 /* work_structs for global per-cpu drains */
99 DEFINE_MUTEX(pcpu_drain_mutex);
100 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
101 
102 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
103 volatile unsigned long latent_entropy __latent_entropy;
104 EXPORT_SYMBOL(latent_entropy);
105 #endif
106 
107 /*
108  * Array of node states.
109  */
110 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
111 	[N_POSSIBLE] = NODE_MASK_ALL,
112 	[N_ONLINE] = { { [0] = 1UL } },
113 #ifndef CONFIG_NUMA
114 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
115 #ifdef CONFIG_HIGHMEM
116 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
117 #endif
118 	[N_MEMORY] = { { [0] = 1UL } },
119 	[N_CPU] = { { [0] = 1UL } },
120 #endif	/* NUMA */
121 };
122 EXPORT_SYMBOL(node_states);
123 
124 /* Protect totalram_pages and zone->managed_pages */
125 static DEFINE_SPINLOCK(managed_page_count_lock);
126 
127 unsigned long totalram_pages __read_mostly;
128 unsigned long totalreserve_pages __read_mostly;
129 unsigned long totalcma_pages __read_mostly;
130 
131 int percpu_pagelist_fraction;
132 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
133 
134 /*
135  * A cached value of the page's pageblock's migratetype, used when the page is
136  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138  * Also the migratetype set in the page does not necessarily match the pcplist
139  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140  * other index - this ensures that it will be put on the correct CMA freelist.
141  */
142 static inline int get_pcppage_migratetype(struct page *page)
143 {
144 	return page->index;
145 }
146 
147 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
148 {
149 	page->index = migratetype;
150 }
151 
152 #ifdef CONFIG_PM_SLEEP
153 /*
154  * The following functions are used by the suspend/hibernate code to temporarily
155  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156  * while devices are suspended.  To avoid races with the suspend/hibernate code,
157  * they should always be called with pm_mutex held (gfp_allowed_mask also should
158  * only be modified with pm_mutex held, unless the suspend/hibernate code is
159  * guaranteed not to run in parallel with that modification).
160  */
161 
162 static gfp_t saved_gfp_mask;
163 
164 void pm_restore_gfp_mask(void)
165 {
166 	WARN_ON(!mutex_is_locked(&pm_mutex));
167 	if (saved_gfp_mask) {
168 		gfp_allowed_mask = saved_gfp_mask;
169 		saved_gfp_mask = 0;
170 	}
171 }
172 
173 void pm_restrict_gfp_mask(void)
174 {
175 	WARN_ON(!mutex_is_locked(&pm_mutex));
176 	WARN_ON(saved_gfp_mask);
177 	saved_gfp_mask = gfp_allowed_mask;
178 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
179 }
180 
181 bool pm_suspended_storage(void)
182 {
183 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
184 		return false;
185 	return true;
186 }
187 #endif /* CONFIG_PM_SLEEP */
188 
189 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
190 unsigned int pageblock_order __read_mostly;
191 #endif
192 
193 static void __free_pages_ok(struct page *page, unsigned int order);
194 
195 /*
196  * results with 256, 32 in the lowmem_reserve sysctl:
197  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
198  *	1G machine -> (16M dma, 784M normal, 224M high)
199  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
200  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
201  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
202  *
203  * TBD: should special case ZONE_DMA32 machines here - in those we normally
204  * don't need any ZONE_NORMAL reservation
205  */
206 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
207 #ifdef CONFIG_ZONE_DMA
208 	 256,
209 #endif
210 #ifdef CONFIG_ZONE_DMA32
211 	 256,
212 #endif
213 #ifdef CONFIG_HIGHMEM
214 	 32,
215 #endif
216 	 32,
217 };
218 
219 EXPORT_SYMBOL(totalram_pages);
220 
221 static char * const zone_names[MAX_NR_ZONES] = {
222 #ifdef CONFIG_ZONE_DMA
223 	 "DMA",
224 #endif
225 #ifdef CONFIG_ZONE_DMA32
226 	 "DMA32",
227 #endif
228 	 "Normal",
229 #ifdef CONFIG_HIGHMEM
230 	 "HighMem",
231 #endif
232 	 "Movable",
233 #ifdef CONFIG_ZONE_DEVICE
234 	 "Device",
235 #endif
236 };
237 
238 char * const migratetype_names[MIGRATE_TYPES] = {
239 	"Unmovable",
240 	"Movable",
241 	"Reclaimable",
242 	"HighAtomic",
243 #ifdef CONFIG_CMA
244 	"CMA",
245 #endif
246 #ifdef CONFIG_MEMORY_ISOLATION
247 	"Isolate",
248 #endif
249 };
250 
251 compound_page_dtor * const compound_page_dtors[] = {
252 	NULL,
253 	free_compound_page,
254 #ifdef CONFIG_HUGETLB_PAGE
255 	free_huge_page,
256 #endif
257 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
258 	free_transhuge_page,
259 #endif
260 };
261 
262 int min_free_kbytes = 1024;
263 int user_min_free_kbytes = -1;
264 int watermark_scale_factor = 10;
265 
266 static unsigned long __meminitdata nr_kernel_pages;
267 static unsigned long __meminitdata nr_all_pages;
268 static unsigned long __meminitdata dma_reserve;
269 
270 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
271 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
272 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
273 static unsigned long __initdata required_kernelcore;
274 static unsigned long __initdata required_movablecore;
275 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
276 static bool mirrored_kernelcore;
277 
278 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
279 int movable_zone;
280 EXPORT_SYMBOL(movable_zone);
281 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
282 
283 #if MAX_NUMNODES > 1
284 int nr_node_ids __read_mostly = MAX_NUMNODES;
285 int nr_online_nodes __read_mostly = 1;
286 EXPORT_SYMBOL(nr_node_ids);
287 EXPORT_SYMBOL(nr_online_nodes);
288 #endif
289 
290 int page_group_by_mobility_disabled __read_mostly;
291 
292 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
293 static inline void reset_deferred_meminit(pg_data_t *pgdat)
294 {
295 	unsigned long max_initialise;
296 	unsigned long reserved_lowmem;
297 
298 	/*
299 	 * Initialise at least 2G of a node but also take into account that
300 	 * two large system hashes that can take up 1GB for 0.25TB/node.
301 	 */
302 	max_initialise = max(2UL << (30 - PAGE_SHIFT),
303 		(pgdat->node_spanned_pages >> 8));
304 
305 	/*
306 	 * Compensate the all the memblock reservations (e.g. crash kernel)
307 	 * from the initial estimation to make sure we will initialize enough
308 	 * memory to boot.
309 	 */
310 	reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
311 			pgdat->node_start_pfn + max_initialise);
312 	max_initialise += reserved_lowmem;
313 
314 	pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
315 	pgdat->first_deferred_pfn = ULONG_MAX;
316 }
317 
318 /* Returns true if the struct page for the pfn is uninitialised */
319 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
320 {
321 	int nid = early_pfn_to_nid(pfn);
322 
323 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
324 		return true;
325 
326 	return false;
327 }
328 
329 /*
330  * Returns false when the remaining initialisation should be deferred until
331  * later in the boot cycle when it can be parallelised.
332  */
333 static inline bool update_defer_init(pg_data_t *pgdat,
334 				unsigned long pfn, unsigned long zone_end,
335 				unsigned long *nr_initialised)
336 {
337 	/* Always populate low zones for address-contrained allocations */
338 	if (zone_end < pgdat_end_pfn(pgdat))
339 		return true;
340 	(*nr_initialised)++;
341 	if ((*nr_initialised > pgdat->static_init_size) &&
342 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
343 		pgdat->first_deferred_pfn = pfn;
344 		return false;
345 	}
346 
347 	return true;
348 }
349 #else
350 static inline void reset_deferred_meminit(pg_data_t *pgdat)
351 {
352 }
353 
354 static inline bool early_page_uninitialised(unsigned long pfn)
355 {
356 	return false;
357 }
358 
359 static inline bool update_defer_init(pg_data_t *pgdat,
360 				unsigned long pfn, unsigned long zone_end,
361 				unsigned long *nr_initialised)
362 {
363 	return true;
364 }
365 #endif
366 
367 /* Return a pointer to the bitmap storing bits affecting a block of pages */
368 static inline unsigned long *get_pageblock_bitmap(struct page *page,
369 							unsigned long pfn)
370 {
371 #ifdef CONFIG_SPARSEMEM
372 	return __pfn_to_section(pfn)->pageblock_flags;
373 #else
374 	return page_zone(page)->pageblock_flags;
375 #endif /* CONFIG_SPARSEMEM */
376 }
377 
378 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
379 {
380 #ifdef CONFIG_SPARSEMEM
381 	pfn &= (PAGES_PER_SECTION-1);
382 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
383 #else
384 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
385 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
386 #endif /* CONFIG_SPARSEMEM */
387 }
388 
389 /**
390  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
391  * @page: The page within the block of interest
392  * @pfn: The target page frame number
393  * @end_bitidx: The last bit of interest to retrieve
394  * @mask: mask of bits that the caller is interested in
395  *
396  * Return: pageblock_bits flags
397  */
398 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
399 					unsigned long pfn,
400 					unsigned long end_bitidx,
401 					unsigned long mask)
402 {
403 	unsigned long *bitmap;
404 	unsigned long bitidx, word_bitidx;
405 	unsigned long word;
406 
407 	bitmap = get_pageblock_bitmap(page, pfn);
408 	bitidx = pfn_to_bitidx(page, pfn);
409 	word_bitidx = bitidx / BITS_PER_LONG;
410 	bitidx &= (BITS_PER_LONG-1);
411 
412 	word = bitmap[word_bitidx];
413 	bitidx += end_bitidx;
414 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
415 }
416 
417 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
418 					unsigned long end_bitidx,
419 					unsigned long mask)
420 {
421 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
422 }
423 
424 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
425 {
426 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
427 }
428 
429 /**
430  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
431  * @page: The page within the block of interest
432  * @flags: The flags to set
433  * @pfn: The target page frame number
434  * @end_bitidx: The last bit of interest
435  * @mask: mask of bits that the caller is interested in
436  */
437 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
438 					unsigned long pfn,
439 					unsigned long end_bitidx,
440 					unsigned long mask)
441 {
442 	unsigned long *bitmap;
443 	unsigned long bitidx, word_bitidx;
444 	unsigned long old_word, word;
445 
446 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
447 
448 	bitmap = get_pageblock_bitmap(page, pfn);
449 	bitidx = pfn_to_bitidx(page, pfn);
450 	word_bitidx = bitidx / BITS_PER_LONG;
451 	bitidx &= (BITS_PER_LONG-1);
452 
453 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
454 
455 	bitidx += end_bitidx;
456 	mask <<= (BITS_PER_LONG - bitidx - 1);
457 	flags <<= (BITS_PER_LONG - bitidx - 1);
458 
459 	word = READ_ONCE(bitmap[word_bitidx]);
460 	for (;;) {
461 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
462 		if (word == old_word)
463 			break;
464 		word = old_word;
465 	}
466 }
467 
468 void set_pageblock_migratetype(struct page *page, int migratetype)
469 {
470 	if (unlikely(page_group_by_mobility_disabled &&
471 		     migratetype < MIGRATE_PCPTYPES))
472 		migratetype = MIGRATE_UNMOVABLE;
473 
474 	set_pageblock_flags_group(page, (unsigned long)migratetype,
475 					PB_migrate, PB_migrate_end);
476 }
477 
478 #ifdef CONFIG_DEBUG_VM
479 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
480 {
481 	int ret = 0;
482 	unsigned seq;
483 	unsigned long pfn = page_to_pfn(page);
484 	unsigned long sp, start_pfn;
485 
486 	do {
487 		seq = zone_span_seqbegin(zone);
488 		start_pfn = zone->zone_start_pfn;
489 		sp = zone->spanned_pages;
490 		if (!zone_spans_pfn(zone, pfn))
491 			ret = 1;
492 	} while (zone_span_seqretry(zone, seq));
493 
494 	if (ret)
495 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
496 			pfn, zone_to_nid(zone), zone->name,
497 			start_pfn, start_pfn + sp);
498 
499 	return ret;
500 }
501 
502 static int page_is_consistent(struct zone *zone, struct page *page)
503 {
504 	if (!pfn_valid_within(page_to_pfn(page)))
505 		return 0;
506 	if (zone != page_zone(page))
507 		return 0;
508 
509 	return 1;
510 }
511 /*
512  * Temporary debugging check for pages not lying within a given zone.
513  */
514 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
515 {
516 	if (page_outside_zone_boundaries(zone, page))
517 		return 1;
518 	if (!page_is_consistent(zone, page))
519 		return 1;
520 
521 	return 0;
522 }
523 #else
524 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
525 {
526 	return 0;
527 }
528 #endif
529 
530 static void bad_page(struct page *page, const char *reason,
531 		unsigned long bad_flags)
532 {
533 	static unsigned long resume;
534 	static unsigned long nr_shown;
535 	static unsigned long nr_unshown;
536 
537 	/*
538 	 * Allow a burst of 60 reports, then keep quiet for that minute;
539 	 * or allow a steady drip of one report per second.
540 	 */
541 	if (nr_shown == 60) {
542 		if (time_before(jiffies, resume)) {
543 			nr_unshown++;
544 			goto out;
545 		}
546 		if (nr_unshown) {
547 			pr_alert(
548 			      "BUG: Bad page state: %lu messages suppressed\n",
549 				nr_unshown);
550 			nr_unshown = 0;
551 		}
552 		nr_shown = 0;
553 	}
554 	if (nr_shown++ == 0)
555 		resume = jiffies + 60 * HZ;
556 
557 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
558 		current->comm, page_to_pfn(page));
559 	__dump_page(page, reason);
560 	bad_flags &= page->flags;
561 	if (bad_flags)
562 		pr_alert("bad because of flags: %#lx(%pGp)\n",
563 						bad_flags, &bad_flags);
564 	dump_page_owner(page);
565 
566 	print_modules();
567 	dump_stack();
568 out:
569 	/* Leave bad fields for debug, except PageBuddy could make trouble */
570 	page_mapcount_reset(page); /* remove PageBuddy */
571 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
572 }
573 
574 /*
575  * Higher-order pages are called "compound pages".  They are structured thusly:
576  *
577  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
578  *
579  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
580  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
581  *
582  * The first tail page's ->compound_dtor holds the offset in array of compound
583  * page destructors. See compound_page_dtors.
584  *
585  * The first tail page's ->compound_order holds the order of allocation.
586  * This usage means that zero-order pages may not be compound.
587  */
588 
589 void free_compound_page(struct page *page)
590 {
591 	__free_pages_ok(page, compound_order(page));
592 }
593 
594 void prep_compound_page(struct page *page, unsigned int order)
595 {
596 	int i;
597 	int nr_pages = 1 << order;
598 
599 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
600 	set_compound_order(page, order);
601 	__SetPageHead(page);
602 	for (i = 1; i < nr_pages; i++) {
603 		struct page *p = page + i;
604 		set_page_count(p, 0);
605 		p->mapping = TAIL_MAPPING;
606 		set_compound_head(p, page);
607 	}
608 	atomic_set(compound_mapcount_ptr(page), -1);
609 }
610 
611 #ifdef CONFIG_DEBUG_PAGEALLOC
612 unsigned int _debug_guardpage_minorder;
613 bool _debug_pagealloc_enabled __read_mostly
614 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
615 EXPORT_SYMBOL(_debug_pagealloc_enabled);
616 bool _debug_guardpage_enabled __read_mostly;
617 
618 static int __init early_debug_pagealloc(char *buf)
619 {
620 	if (!buf)
621 		return -EINVAL;
622 	return kstrtobool(buf, &_debug_pagealloc_enabled);
623 }
624 early_param("debug_pagealloc", early_debug_pagealloc);
625 
626 static bool need_debug_guardpage(void)
627 {
628 	/* If we don't use debug_pagealloc, we don't need guard page */
629 	if (!debug_pagealloc_enabled())
630 		return false;
631 
632 	if (!debug_guardpage_minorder())
633 		return false;
634 
635 	return true;
636 }
637 
638 static void init_debug_guardpage(void)
639 {
640 	if (!debug_pagealloc_enabled())
641 		return;
642 
643 	if (!debug_guardpage_minorder())
644 		return;
645 
646 	_debug_guardpage_enabled = true;
647 }
648 
649 struct page_ext_operations debug_guardpage_ops = {
650 	.need = need_debug_guardpage,
651 	.init = init_debug_guardpage,
652 };
653 
654 static int __init debug_guardpage_minorder_setup(char *buf)
655 {
656 	unsigned long res;
657 
658 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
659 		pr_err("Bad debug_guardpage_minorder value\n");
660 		return 0;
661 	}
662 	_debug_guardpage_minorder = res;
663 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
664 	return 0;
665 }
666 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
667 
668 static inline bool set_page_guard(struct zone *zone, struct page *page,
669 				unsigned int order, int migratetype)
670 {
671 	struct page_ext *page_ext;
672 
673 	if (!debug_guardpage_enabled())
674 		return false;
675 
676 	if (order >= debug_guardpage_minorder())
677 		return false;
678 
679 	page_ext = lookup_page_ext(page);
680 	if (unlikely(!page_ext))
681 		return false;
682 
683 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
684 
685 	INIT_LIST_HEAD(&page->lru);
686 	set_page_private(page, order);
687 	/* Guard pages are not available for any usage */
688 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
689 
690 	return true;
691 }
692 
693 static inline void clear_page_guard(struct zone *zone, struct page *page,
694 				unsigned int order, int migratetype)
695 {
696 	struct page_ext *page_ext;
697 
698 	if (!debug_guardpage_enabled())
699 		return;
700 
701 	page_ext = lookup_page_ext(page);
702 	if (unlikely(!page_ext))
703 		return;
704 
705 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
706 
707 	set_page_private(page, 0);
708 	if (!is_migrate_isolate(migratetype))
709 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
710 }
711 #else
712 struct page_ext_operations debug_guardpage_ops;
713 static inline bool set_page_guard(struct zone *zone, struct page *page,
714 			unsigned int order, int migratetype) { return false; }
715 static inline void clear_page_guard(struct zone *zone, struct page *page,
716 				unsigned int order, int migratetype) {}
717 #endif
718 
719 static inline void set_page_order(struct page *page, unsigned int order)
720 {
721 	set_page_private(page, order);
722 	__SetPageBuddy(page);
723 }
724 
725 static inline void rmv_page_order(struct page *page)
726 {
727 	__ClearPageBuddy(page);
728 	set_page_private(page, 0);
729 }
730 
731 /*
732  * This function checks whether a page is free && is the buddy
733  * we can do coalesce a page and its buddy if
734  * (a) the buddy is not in a hole (check before calling!) &&
735  * (b) the buddy is in the buddy system &&
736  * (c) a page and its buddy have the same order &&
737  * (d) a page and its buddy are in the same zone.
738  *
739  * For recording whether a page is in the buddy system, we set ->_mapcount
740  * PAGE_BUDDY_MAPCOUNT_VALUE.
741  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
742  * serialized by zone->lock.
743  *
744  * For recording page's order, we use page_private(page).
745  */
746 static inline int page_is_buddy(struct page *page, struct page *buddy,
747 							unsigned int order)
748 {
749 	if (page_is_guard(buddy) && page_order(buddy) == order) {
750 		if (page_zone_id(page) != page_zone_id(buddy))
751 			return 0;
752 
753 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
754 
755 		return 1;
756 	}
757 
758 	if (PageBuddy(buddy) && page_order(buddy) == order) {
759 		/*
760 		 * zone check is done late to avoid uselessly
761 		 * calculating zone/node ids for pages that could
762 		 * never merge.
763 		 */
764 		if (page_zone_id(page) != page_zone_id(buddy))
765 			return 0;
766 
767 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
768 
769 		return 1;
770 	}
771 	return 0;
772 }
773 
774 /*
775  * Freeing function for a buddy system allocator.
776  *
777  * The concept of a buddy system is to maintain direct-mapped table
778  * (containing bit values) for memory blocks of various "orders".
779  * The bottom level table contains the map for the smallest allocatable
780  * units of memory (here, pages), and each level above it describes
781  * pairs of units from the levels below, hence, "buddies".
782  * At a high level, all that happens here is marking the table entry
783  * at the bottom level available, and propagating the changes upward
784  * as necessary, plus some accounting needed to play nicely with other
785  * parts of the VM system.
786  * At each level, we keep a list of pages, which are heads of continuous
787  * free pages of length of (1 << order) and marked with _mapcount
788  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
789  * field.
790  * So when we are allocating or freeing one, we can derive the state of the
791  * other.  That is, if we allocate a small block, and both were
792  * free, the remainder of the region must be split into blocks.
793  * If a block is freed, and its buddy is also free, then this
794  * triggers coalescing into a block of larger size.
795  *
796  * -- nyc
797  */
798 
799 static inline void __free_one_page(struct page *page,
800 		unsigned long pfn,
801 		struct zone *zone, unsigned int order,
802 		int migratetype)
803 {
804 	unsigned long combined_pfn;
805 	unsigned long uninitialized_var(buddy_pfn);
806 	struct page *buddy;
807 	unsigned int max_order;
808 
809 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
810 
811 	VM_BUG_ON(!zone_is_initialized(zone));
812 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
813 
814 	VM_BUG_ON(migratetype == -1);
815 	if (likely(!is_migrate_isolate(migratetype)))
816 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
817 
818 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
819 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
820 
821 continue_merging:
822 	while (order < max_order - 1) {
823 		buddy_pfn = __find_buddy_pfn(pfn, order);
824 		buddy = page + (buddy_pfn - pfn);
825 
826 		if (!pfn_valid_within(buddy_pfn))
827 			goto done_merging;
828 		if (!page_is_buddy(page, buddy, order))
829 			goto done_merging;
830 		/*
831 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
832 		 * merge with it and move up one order.
833 		 */
834 		if (page_is_guard(buddy)) {
835 			clear_page_guard(zone, buddy, order, migratetype);
836 		} else {
837 			list_del(&buddy->lru);
838 			zone->free_area[order].nr_free--;
839 			rmv_page_order(buddy);
840 		}
841 		combined_pfn = buddy_pfn & pfn;
842 		page = page + (combined_pfn - pfn);
843 		pfn = combined_pfn;
844 		order++;
845 	}
846 	if (max_order < MAX_ORDER) {
847 		/* If we are here, it means order is >= pageblock_order.
848 		 * We want to prevent merge between freepages on isolate
849 		 * pageblock and normal pageblock. Without this, pageblock
850 		 * isolation could cause incorrect freepage or CMA accounting.
851 		 *
852 		 * We don't want to hit this code for the more frequent
853 		 * low-order merging.
854 		 */
855 		if (unlikely(has_isolate_pageblock(zone))) {
856 			int buddy_mt;
857 
858 			buddy_pfn = __find_buddy_pfn(pfn, order);
859 			buddy = page + (buddy_pfn - pfn);
860 			buddy_mt = get_pageblock_migratetype(buddy);
861 
862 			if (migratetype != buddy_mt
863 					&& (is_migrate_isolate(migratetype) ||
864 						is_migrate_isolate(buddy_mt)))
865 				goto done_merging;
866 		}
867 		max_order++;
868 		goto continue_merging;
869 	}
870 
871 done_merging:
872 	set_page_order(page, order);
873 
874 	/*
875 	 * If this is not the largest possible page, check if the buddy
876 	 * of the next-highest order is free. If it is, it's possible
877 	 * that pages are being freed that will coalesce soon. In case,
878 	 * that is happening, add the free page to the tail of the list
879 	 * so it's less likely to be used soon and more likely to be merged
880 	 * as a higher order page
881 	 */
882 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
883 		struct page *higher_page, *higher_buddy;
884 		combined_pfn = buddy_pfn & pfn;
885 		higher_page = page + (combined_pfn - pfn);
886 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
887 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
888 		if (pfn_valid_within(buddy_pfn) &&
889 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
890 			list_add_tail(&page->lru,
891 				&zone->free_area[order].free_list[migratetype]);
892 			goto out;
893 		}
894 	}
895 
896 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
897 out:
898 	zone->free_area[order].nr_free++;
899 }
900 
901 /*
902  * A bad page could be due to a number of fields. Instead of multiple branches,
903  * try and check multiple fields with one check. The caller must do a detailed
904  * check if necessary.
905  */
906 static inline bool page_expected_state(struct page *page,
907 					unsigned long check_flags)
908 {
909 	if (unlikely(atomic_read(&page->_mapcount) != -1))
910 		return false;
911 
912 	if (unlikely((unsigned long)page->mapping |
913 			page_ref_count(page) |
914 #ifdef CONFIG_MEMCG
915 			(unsigned long)page->mem_cgroup |
916 #endif
917 			(page->flags & check_flags)))
918 		return false;
919 
920 	return true;
921 }
922 
923 static void free_pages_check_bad(struct page *page)
924 {
925 	const char *bad_reason;
926 	unsigned long bad_flags;
927 
928 	bad_reason = NULL;
929 	bad_flags = 0;
930 
931 	if (unlikely(atomic_read(&page->_mapcount) != -1))
932 		bad_reason = "nonzero mapcount";
933 	if (unlikely(page->mapping != NULL))
934 		bad_reason = "non-NULL mapping";
935 	if (unlikely(page_ref_count(page) != 0))
936 		bad_reason = "nonzero _refcount";
937 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
938 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
939 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
940 	}
941 #ifdef CONFIG_MEMCG
942 	if (unlikely(page->mem_cgroup))
943 		bad_reason = "page still charged to cgroup";
944 #endif
945 	bad_page(page, bad_reason, bad_flags);
946 }
947 
948 static inline int free_pages_check(struct page *page)
949 {
950 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
951 		return 0;
952 
953 	/* Something has gone sideways, find it */
954 	free_pages_check_bad(page);
955 	return 1;
956 }
957 
958 static int free_tail_pages_check(struct page *head_page, struct page *page)
959 {
960 	int ret = 1;
961 
962 	/*
963 	 * We rely page->lru.next never has bit 0 set, unless the page
964 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
965 	 */
966 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
967 
968 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
969 		ret = 0;
970 		goto out;
971 	}
972 	switch (page - head_page) {
973 	case 1:
974 		/* the first tail page: ->mapping is compound_mapcount() */
975 		if (unlikely(compound_mapcount(page))) {
976 			bad_page(page, "nonzero compound_mapcount", 0);
977 			goto out;
978 		}
979 		break;
980 	case 2:
981 		/*
982 		 * the second tail page: ->mapping is
983 		 * page_deferred_list().next -- ignore value.
984 		 */
985 		break;
986 	default:
987 		if (page->mapping != TAIL_MAPPING) {
988 			bad_page(page, "corrupted mapping in tail page", 0);
989 			goto out;
990 		}
991 		break;
992 	}
993 	if (unlikely(!PageTail(page))) {
994 		bad_page(page, "PageTail not set", 0);
995 		goto out;
996 	}
997 	if (unlikely(compound_head(page) != head_page)) {
998 		bad_page(page, "compound_head not consistent", 0);
999 		goto out;
1000 	}
1001 	ret = 0;
1002 out:
1003 	page->mapping = NULL;
1004 	clear_compound_head(page);
1005 	return ret;
1006 }
1007 
1008 static __always_inline bool free_pages_prepare(struct page *page,
1009 					unsigned int order, bool check_free)
1010 {
1011 	int bad = 0;
1012 
1013 	VM_BUG_ON_PAGE(PageTail(page), page);
1014 
1015 	trace_mm_page_free(page, order);
1016 	kmemcheck_free_shadow(page, order);
1017 
1018 	/*
1019 	 * Check tail pages before head page information is cleared to
1020 	 * avoid checking PageCompound for order-0 pages.
1021 	 */
1022 	if (unlikely(order)) {
1023 		bool compound = PageCompound(page);
1024 		int i;
1025 
1026 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1027 
1028 		if (compound)
1029 			ClearPageDoubleMap(page);
1030 		for (i = 1; i < (1 << order); i++) {
1031 			if (compound)
1032 				bad += free_tail_pages_check(page, page + i);
1033 			if (unlikely(free_pages_check(page + i))) {
1034 				bad++;
1035 				continue;
1036 			}
1037 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1038 		}
1039 	}
1040 	if (PageMappingFlags(page))
1041 		page->mapping = NULL;
1042 	if (memcg_kmem_enabled() && PageKmemcg(page))
1043 		memcg_kmem_uncharge(page, order);
1044 	if (check_free)
1045 		bad += free_pages_check(page);
1046 	if (bad)
1047 		return false;
1048 
1049 	page_cpupid_reset_last(page);
1050 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1051 	reset_page_owner(page, order);
1052 
1053 	if (!PageHighMem(page)) {
1054 		debug_check_no_locks_freed(page_address(page),
1055 					   PAGE_SIZE << order);
1056 		debug_check_no_obj_freed(page_address(page),
1057 					   PAGE_SIZE << order);
1058 	}
1059 	arch_free_page(page, order);
1060 	kernel_poison_pages(page, 1 << order, 0);
1061 	kernel_map_pages(page, 1 << order, 0);
1062 	kasan_free_pages(page, order);
1063 
1064 	return true;
1065 }
1066 
1067 #ifdef CONFIG_DEBUG_VM
1068 static inline bool free_pcp_prepare(struct page *page)
1069 {
1070 	return free_pages_prepare(page, 0, true);
1071 }
1072 
1073 static inline bool bulkfree_pcp_prepare(struct page *page)
1074 {
1075 	return false;
1076 }
1077 #else
1078 static bool free_pcp_prepare(struct page *page)
1079 {
1080 	return free_pages_prepare(page, 0, false);
1081 }
1082 
1083 static bool bulkfree_pcp_prepare(struct page *page)
1084 {
1085 	return free_pages_check(page);
1086 }
1087 #endif /* CONFIG_DEBUG_VM */
1088 
1089 /*
1090  * Frees a number of pages from the PCP lists
1091  * Assumes all pages on list are in same zone, and of same order.
1092  * count is the number of pages to free.
1093  *
1094  * If the zone was previously in an "all pages pinned" state then look to
1095  * see if this freeing clears that state.
1096  *
1097  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1098  * pinned" detection logic.
1099  */
1100 static void free_pcppages_bulk(struct zone *zone, int count,
1101 					struct per_cpu_pages *pcp)
1102 {
1103 	int migratetype = 0;
1104 	int batch_free = 0;
1105 	bool isolated_pageblocks;
1106 
1107 	spin_lock(&zone->lock);
1108 	isolated_pageblocks = has_isolate_pageblock(zone);
1109 
1110 	while (count) {
1111 		struct page *page;
1112 		struct list_head *list;
1113 
1114 		/*
1115 		 * Remove pages from lists in a round-robin fashion. A
1116 		 * batch_free count is maintained that is incremented when an
1117 		 * empty list is encountered.  This is so more pages are freed
1118 		 * off fuller lists instead of spinning excessively around empty
1119 		 * lists
1120 		 */
1121 		do {
1122 			batch_free++;
1123 			if (++migratetype == MIGRATE_PCPTYPES)
1124 				migratetype = 0;
1125 			list = &pcp->lists[migratetype];
1126 		} while (list_empty(list));
1127 
1128 		/* This is the only non-empty list. Free them all. */
1129 		if (batch_free == MIGRATE_PCPTYPES)
1130 			batch_free = count;
1131 
1132 		do {
1133 			int mt;	/* migratetype of the to-be-freed page */
1134 
1135 			page = list_last_entry(list, struct page, lru);
1136 			/* must delete as __free_one_page list manipulates */
1137 			list_del(&page->lru);
1138 
1139 			mt = get_pcppage_migratetype(page);
1140 			/* MIGRATE_ISOLATE page should not go to pcplists */
1141 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1142 			/* Pageblock could have been isolated meanwhile */
1143 			if (unlikely(isolated_pageblocks))
1144 				mt = get_pageblock_migratetype(page);
1145 
1146 			if (bulkfree_pcp_prepare(page))
1147 				continue;
1148 
1149 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1150 			trace_mm_page_pcpu_drain(page, 0, mt);
1151 		} while (--count && --batch_free && !list_empty(list));
1152 	}
1153 	spin_unlock(&zone->lock);
1154 }
1155 
1156 static void free_one_page(struct zone *zone,
1157 				struct page *page, unsigned long pfn,
1158 				unsigned int order,
1159 				int migratetype)
1160 {
1161 	spin_lock(&zone->lock);
1162 	if (unlikely(has_isolate_pageblock(zone) ||
1163 		is_migrate_isolate(migratetype))) {
1164 		migratetype = get_pfnblock_migratetype(page, pfn);
1165 	}
1166 	__free_one_page(page, pfn, zone, order, migratetype);
1167 	spin_unlock(&zone->lock);
1168 }
1169 
1170 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1171 				unsigned long zone, int nid)
1172 {
1173 	set_page_links(page, zone, nid, pfn);
1174 	init_page_count(page);
1175 	page_mapcount_reset(page);
1176 	page_cpupid_reset_last(page);
1177 
1178 	INIT_LIST_HEAD(&page->lru);
1179 #ifdef WANT_PAGE_VIRTUAL
1180 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1181 	if (!is_highmem_idx(zone))
1182 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1183 #endif
1184 }
1185 
1186 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1187 					int nid)
1188 {
1189 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1190 }
1191 
1192 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1193 static void __meminit init_reserved_page(unsigned long pfn)
1194 {
1195 	pg_data_t *pgdat;
1196 	int nid, zid;
1197 
1198 	if (!early_page_uninitialised(pfn))
1199 		return;
1200 
1201 	nid = early_pfn_to_nid(pfn);
1202 	pgdat = NODE_DATA(nid);
1203 
1204 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1205 		struct zone *zone = &pgdat->node_zones[zid];
1206 
1207 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1208 			break;
1209 	}
1210 	__init_single_pfn(pfn, zid, nid);
1211 }
1212 #else
1213 static inline void init_reserved_page(unsigned long pfn)
1214 {
1215 }
1216 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1217 
1218 /*
1219  * Initialised pages do not have PageReserved set. This function is
1220  * called for each range allocated by the bootmem allocator and
1221  * marks the pages PageReserved. The remaining valid pages are later
1222  * sent to the buddy page allocator.
1223  */
1224 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1225 {
1226 	unsigned long start_pfn = PFN_DOWN(start);
1227 	unsigned long end_pfn = PFN_UP(end);
1228 
1229 	for (; start_pfn < end_pfn; start_pfn++) {
1230 		if (pfn_valid(start_pfn)) {
1231 			struct page *page = pfn_to_page(start_pfn);
1232 
1233 			init_reserved_page(start_pfn);
1234 
1235 			/* Avoid false-positive PageTail() */
1236 			INIT_LIST_HEAD(&page->lru);
1237 
1238 			SetPageReserved(page);
1239 		}
1240 	}
1241 }
1242 
1243 static void __free_pages_ok(struct page *page, unsigned int order)
1244 {
1245 	unsigned long flags;
1246 	int migratetype;
1247 	unsigned long pfn = page_to_pfn(page);
1248 
1249 	if (!free_pages_prepare(page, order, true))
1250 		return;
1251 
1252 	migratetype = get_pfnblock_migratetype(page, pfn);
1253 	local_irq_save(flags);
1254 	__count_vm_events(PGFREE, 1 << order);
1255 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1256 	local_irq_restore(flags);
1257 }
1258 
1259 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1260 {
1261 	unsigned int nr_pages = 1 << order;
1262 	struct page *p = page;
1263 	unsigned int loop;
1264 
1265 	prefetchw(p);
1266 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1267 		prefetchw(p + 1);
1268 		__ClearPageReserved(p);
1269 		set_page_count(p, 0);
1270 	}
1271 	__ClearPageReserved(p);
1272 	set_page_count(p, 0);
1273 
1274 	page_zone(page)->managed_pages += nr_pages;
1275 	set_page_refcounted(page);
1276 	__free_pages(page, order);
1277 }
1278 
1279 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1280 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1281 
1282 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1283 
1284 int __meminit early_pfn_to_nid(unsigned long pfn)
1285 {
1286 	static DEFINE_SPINLOCK(early_pfn_lock);
1287 	int nid;
1288 
1289 	spin_lock(&early_pfn_lock);
1290 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1291 	if (nid < 0)
1292 		nid = first_online_node;
1293 	spin_unlock(&early_pfn_lock);
1294 
1295 	return nid;
1296 }
1297 #endif
1298 
1299 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1300 static inline bool __meminit __maybe_unused
1301 meminit_pfn_in_nid(unsigned long pfn, int node,
1302 		   struct mminit_pfnnid_cache *state)
1303 {
1304 	int nid;
1305 
1306 	nid = __early_pfn_to_nid(pfn, state);
1307 	if (nid >= 0 && nid != node)
1308 		return false;
1309 	return true;
1310 }
1311 
1312 /* Only safe to use early in boot when initialisation is single-threaded */
1313 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1314 {
1315 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1316 }
1317 
1318 #else
1319 
1320 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1321 {
1322 	return true;
1323 }
1324 static inline bool __meminit  __maybe_unused
1325 meminit_pfn_in_nid(unsigned long pfn, int node,
1326 		   struct mminit_pfnnid_cache *state)
1327 {
1328 	return true;
1329 }
1330 #endif
1331 
1332 
1333 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1334 							unsigned int order)
1335 {
1336 	if (early_page_uninitialised(pfn))
1337 		return;
1338 	return __free_pages_boot_core(page, order);
1339 }
1340 
1341 /*
1342  * Check that the whole (or subset of) a pageblock given by the interval of
1343  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1344  * with the migration of free compaction scanner. The scanners then need to
1345  * use only pfn_valid_within() check for arches that allow holes within
1346  * pageblocks.
1347  *
1348  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1349  *
1350  * It's possible on some configurations to have a setup like node0 node1 node0
1351  * i.e. it's possible that all pages within a zones range of pages do not
1352  * belong to a single zone. We assume that a border between node0 and node1
1353  * can occur within a single pageblock, but not a node0 node1 node0
1354  * interleaving within a single pageblock. It is therefore sufficient to check
1355  * the first and last page of a pageblock and avoid checking each individual
1356  * page in a pageblock.
1357  */
1358 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1359 				     unsigned long end_pfn, struct zone *zone)
1360 {
1361 	struct page *start_page;
1362 	struct page *end_page;
1363 
1364 	/* end_pfn is one past the range we are checking */
1365 	end_pfn--;
1366 
1367 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1368 		return NULL;
1369 
1370 	start_page = pfn_to_online_page(start_pfn);
1371 	if (!start_page)
1372 		return NULL;
1373 
1374 	if (page_zone(start_page) != zone)
1375 		return NULL;
1376 
1377 	end_page = pfn_to_page(end_pfn);
1378 
1379 	/* This gives a shorter code than deriving page_zone(end_page) */
1380 	if (page_zone_id(start_page) != page_zone_id(end_page))
1381 		return NULL;
1382 
1383 	return start_page;
1384 }
1385 
1386 void set_zone_contiguous(struct zone *zone)
1387 {
1388 	unsigned long block_start_pfn = zone->zone_start_pfn;
1389 	unsigned long block_end_pfn;
1390 
1391 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1392 	for (; block_start_pfn < zone_end_pfn(zone);
1393 			block_start_pfn = block_end_pfn,
1394 			 block_end_pfn += pageblock_nr_pages) {
1395 
1396 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1397 
1398 		if (!__pageblock_pfn_to_page(block_start_pfn,
1399 					     block_end_pfn, zone))
1400 			return;
1401 	}
1402 
1403 	/* We confirm that there is no hole */
1404 	zone->contiguous = true;
1405 }
1406 
1407 void clear_zone_contiguous(struct zone *zone)
1408 {
1409 	zone->contiguous = false;
1410 }
1411 
1412 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1413 static void __init deferred_free_range(struct page *page,
1414 					unsigned long pfn, int nr_pages)
1415 {
1416 	int i;
1417 
1418 	if (!page)
1419 		return;
1420 
1421 	/* Free a large naturally-aligned chunk if possible */
1422 	if (nr_pages == pageblock_nr_pages &&
1423 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1424 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1425 		__free_pages_boot_core(page, pageblock_order);
1426 		return;
1427 	}
1428 
1429 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1430 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1431 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1432 		__free_pages_boot_core(page, 0);
1433 	}
1434 }
1435 
1436 /* Completion tracking for deferred_init_memmap() threads */
1437 static atomic_t pgdat_init_n_undone __initdata;
1438 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1439 
1440 static inline void __init pgdat_init_report_one_done(void)
1441 {
1442 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1443 		complete(&pgdat_init_all_done_comp);
1444 }
1445 
1446 /* Initialise remaining memory on a node */
1447 static int __init deferred_init_memmap(void *data)
1448 {
1449 	pg_data_t *pgdat = data;
1450 	int nid = pgdat->node_id;
1451 	struct mminit_pfnnid_cache nid_init_state = { };
1452 	unsigned long start = jiffies;
1453 	unsigned long nr_pages = 0;
1454 	unsigned long walk_start, walk_end;
1455 	int i, zid;
1456 	struct zone *zone;
1457 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1458 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1459 
1460 	if (first_init_pfn == ULONG_MAX) {
1461 		pgdat_init_report_one_done();
1462 		return 0;
1463 	}
1464 
1465 	/* Bind memory initialisation thread to a local node if possible */
1466 	if (!cpumask_empty(cpumask))
1467 		set_cpus_allowed_ptr(current, cpumask);
1468 
1469 	/* Sanity check boundaries */
1470 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1471 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1472 	pgdat->first_deferred_pfn = ULONG_MAX;
1473 
1474 	/* Only the highest zone is deferred so find it */
1475 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1476 		zone = pgdat->node_zones + zid;
1477 		if (first_init_pfn < zone_end_pfn(zone))
1478 			break;
1479 	}
1480 
1481 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1482 		unsigned long pfn, end_pfn;
1483 		struct page *page = NULL;
1484 		struct page *free_base_page = NULL;
1485 		unsigned long free_base_pfn = 0;
1486 		int nr_to_free = 0;
1487 
1488 		end_pfn = min(walk_end, zone_end_pfn(zone));
1489 		pfn = first_init_pfn;
1490 		if (pfn < walk_start)
1491 			pfn = walk_start;
1492 		if (pfn < zone->zone_start_pfn)
1493 			pfn = zone->zone_start_pfn;
1494 
1495 		for (; pfn < end_pfn; pfn++) {
1496 			if (!pfn_valid_within(pfn))
1497 				goto free_range;
1498 
1499 			/*
1500 			 * Ensure pfn_valid is checked every
1501 			 * pageblock_nr_pages for memory holes
1502 			 */
1503 			if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1504 				if (!pfn_valid(pfn)) {
1505 					page = NULL;
1506 					goto free_range;
1507 				}
1508 			}
1509 
1510 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1511 				page = NULL;
1512 				goto free_range;
1513 			}
1514 
1515 			/* Minimise pfn page lookups and scheduler checks */
1516 			if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1517 				page++;
1518 			} else {
1519 				nr_pages += nr_to_free;
1520 				deferred_free_range(free_base_page,
1521 						free_base_pfn, nr_to_free);
1522 				free_base_page = NULL;
1523 				free_base_pfn = nr_to_free = 0;
1524 
1525 				page = pfn_to_page(pfn);
1526 				cond_resched();
1527 			}
1528 
1529 			if (page->flags) {
1530 				VM_BUG_ON(page_zone(page) != zone);
1531 				goto free_range;
1532 			}
1533 
1534 			__init_single_page(page, pfn, zid, nid);
1535 			if (!free_base_page) {
1536 				free_base_page = page;
1537 				free_base_pfn = pfn;
1538 				nr_to_free = 0;
1539 			}
1540 			nr_to_free++;
1541 
1542 			/* Where possible, batch up pages for a single free */
1543 			continue;
1544 free_range:
1545 			/* Free the current block of pages to allocator */
1546 			nr_pages += nr_to_free;
1547 			deferred_free_range(free_base_page, free_base_pfn,
1548 								nr_to_free);
1549 			free_base_page = NULL;
1550 			free_base_pfn = nr_to_free = 0;
1551 		}
1552 		/* Free the last block of pages to allocator */
1553 		nr_pages += nr_to_free;
1554 		deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1555 
1556 		first_init_pfn = max(end_pfn, first_init_pfn);
1557 	}
1558 
1559 	/* Sanity check that the next zone really is unpopulated */
1560 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1561 
1562 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1563 					jiffies_to_msecs(jiffies - start));
1564 
1565 	pgdat_init_report_one_done();
1566 	return 0;
1567 }
1568 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1569 
1570 void __init page_alloc_init_late(void)
1571 {
1572 	struct zone *zone;
1573 
1574 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1575 	int nid;
1576 
1577 	/* There will be num_node_state(N_MEMORY) threads */
1578 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1579 	for_each_node_state(nid, N_MEMORY) {
1580 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1581 	}
1582 
1583 	/* Block until all are initialised */
1584 	wait_for_completion(&pgdat_init_all_done_comp);
1585 
1586 	/* Reinit limits that are based on free pages after the kernel is up */
1587 	files_maxfiles_init();
1588 #endif
1589 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1590 	/* Discard memblock private memory */
1591 	memblock_discard();
1592 #endif
1593 
1594 	for_each_populated_zone(zone)
1595 		set_zone_contiguous(zone);
1596 }
1597 
1598 #ifdef CONFIG_CMA
1599 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1600 void __init init_cma_reserved_pageblock(struct page *page)
1601 {
1602 	unsigned i = pageblock_nr_pages;
1603 	struct page *p = page;
1604 
1605 	do {
1606 		__ClearPageReserved(p);
1607 		set_page_count(p, 0);
1608 	} while (++p, --i);
1609 
1610 	set_pageblock_migratetype(page, MIGRATE_CMA);
1611 
1612 	if (pageblock_order >= MAX_ORDER) {
1613 		i = pageblock_nr_pages;
1614 		p = page;
1615 		do {
1616 			set_page_refcounted(p);
1617 			__free_pages(p, MAX_ORDER - 1);
1618 			p += MAX_ORDER_NR_PAGES;
1619 		} while (i -= MAX_ORDER_NR_PAGES);
1620 	} else {
1621 		set_page_refcounted(page);
1622 		__free_pages(page, pageblock_order);
1623 	}
1624 
1625 	adjust_managed_page_count(page, pageblock_nr_pages);
1626 }
1627 #endif
1628 
1629 /*
1630  * The order of subdivision here is critical for the IO subsystem.
1631  * Please do not alter this order without good reasons and regression
1632  * testing. Specifically, as large blocks of memory are subdivided,
1633  * the order in which smaller blocks are delivered depends on the order
1634  * they're subdivided in this function. This is the primary factor
1635  * influencing the order in which pages are delivered to the IO
1636  * subsystem according to empirical testing, and this is also justified
1637  * by considering the behavior of a buddy system containing a single
1638  * large block of memory acted on by a series of small allocations.
1639  * This behavior is a critical factor in sglist merging's success.
1640  *
1641  * -- nyc
1642  */
1643 static inline void expand(struct zone *zone, struct page *page,
1644 	int low, int high, struct free_area *area,
1645 	int migratetype)
1646 {
1647 	unsigned long size = 1 << high;
1648 
1649 	while (high > low) {
1650 		area--;
1651 		high--;
1652 		size >>= 1;
1653 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1654 
1655 		/*
1656 		 * Mark as guard pages (or page), that will allow to
1657 		 * merge back to allocator when buddy will be freed.
1658 		 * Corresponding page table entries will not be touched,
1659 		 * pages will stay not present in virtual address space
1660 		 */
1661 		if (set_page_guard(zone, &page[size], high, migratetype))
1662 			continue;
1663 
1664 		list_add(&page[size].lru, &area->free_list[migratetype]);
1665 		area->nr_free++;
1666 		set_page_order(&page[size], high);
1667 	}
1668 }
1669 
1670 static void check_new_page_bad(struct page *page)
1671 {
1672 	const char *bad_reason = NULL;
1673 	unsigned long bad_flags = 0;
1674 
1675 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1676 		bad_reason = "nonzero mapcount";
1677 	if (unlikely(page->mapping != NULL))
1678 		bad_reason = "non-NULL mapping";
1679 	if (unlikely(page_ref_count(page) != 0))
1680 		bad_reason = "nonzero _count";
1681 	if (unlikely(page->flags & __PG_HWPOISON)) {
1682 		bad_reason = "HWPoisoned (hardware-corrupted)";
1683 		bad_flags = __PG_HWPOISON;
1684 		/* Don't complain about hwpoisoned pages */
1685 		page_mapcount_reset(page); /* remove PageBuddy */
1686 		return;
1687 	}
1688 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1689 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1690 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1691 	}
1692 #ifdef CONFIG_MEMCG
1693 	if (unlikely(page->mem_cgroup))
1694 		bad_reason = "page still charged to cgroup";
1695 #endif
1696 	bad_page(page, bad_reason, bad_flags);
1697 }
1698 
1699 /*
1700  * This page is about to be returned from the page allocator
1701  */
1702 static inline int check_new_page(struct page *page)
1703 {
1704 	if (likely(page_expected_state(page,
1705 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1706 		return 0;
1707 
1708 	check_new_page_bad(page);
1709 	return 1;
1710 }
1711 
1712 static inline bool free_pages_prezeroed(void)
1713 {
1714 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1715 		page_poisoning_enabled();
1716 }
1717 
1718 #ifdef CONFIG_DEBUG_VM
1719 static bool check_pcp_refill(struct page *page)
1720 {
1721 	return false;
1722 }
1723 
1724 static bool check_new_pcp(struct page *page)
1725 {
1726 	return check_new_page(page);
1727 }
1728 #else
1729 static bool check_pcp_refill(struct page *page)
1730 {
1731 	return check_new_page(page);
1732 }
1733 static bool check_new_pcp(struct page *page)
1734 {
1735 	return false;
1736 }
1737 #endif /* CONFIG_DEBUG_VM */
1738 
1739 static bool check_new_pages(struct page *page, unsigned int order)
1740 {
1741 	int i;
1742 	for (i = 0; i < (1 << order); i++) {
1743 		struct page *p = page + i;
1744 
1745 		if (unlikely(check_new_page(p)))
1746 			return true;
1747 	}
1748 
1749 	return false;
1750 }
1751 
1752 inline void post_alloc_hook(struct page *page, unsigned int order,
1753 				gfp_t gfp_flags)
1754 {
1755 	set_page_private(page, 0);
1756 	set_page_refcounted(page);
1757 
1758 	arch_alloc_page(page, order);
1759 	kernel_map_pages(page, 1 << order, 1);
1760 	kernel_poison_pages(page, 1 << order, 1);
1761 	kasan_alloc_pages(page, order);
1762 	set_page_owner(page, order, gfp_flags);
1763 }
1764 
1765 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1766 							unsigned int alloc_flags)
1767 {
1768 	int i;
1769 
1770 	post_alloc_hook(page, order, gfp_flags);
1771 
1772 	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1773 		for (i = 0; i < (1 << order); i++)
1774 			clear_highpage(page + i);
1775 
1776 	if (order && (gfp_flags & __GFP_COMP))
1777 		prep_compound_page(page, order);
1778 
1779 	/*
1780 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1781 	 * allocate the page. The expectation is that the caller is taking
1782 	 * steps that will free more memory. The caller should avoid the page
1783 	 * being used for !PFMEMALLOC purposes.
1784 	 */
1785 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1786 		set_page_pfmemalloc(page);
1787 	else
1788 		clear_page_pfmemalloc(page);
1789 }
1790 
1791 /*
1792  * Go through the free lists for the given migratetype and remove
1793  * the smallest available page from the freelists
1794  */
1795 static inline
1796 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1797 						int migratetype)
1798 {
1799 	unsigned int current_order;
1800 	struct free_area *area;
1801 	struct page *page;
1802 
1803 	/* Find a page of the appropriate size in the preferred list */
1804 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1805 		area = &(zone->free_area[current_order]);
1806 		page = list_first_entry_or_null(&area->free_list[migratetype],
1807 							struct page, lru);
1808 		if (!page)
1809 			continue;
1810 		list_del(&page->lru);
1811 		rmv_page_order(page);
1812 		area->nr_free--;
1813 		expand(zone, page, order, current_order, area, migratetype);
1814 		set_pcppage_migratetype(page, migratetype);
1815 		return page;
1816 	}
1817 
1818 	return NULL;
1819 }
1820 
1821 
1822 /*
1823  * This array describes the order lists are fallen back to when
1824  * the free lists for the desirable migrate type are depleted
1825  */
1826 static int fallbacks[MIGRATE_TYPES][4] = {
1827 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1828 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1829 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1830 #ifdef CONFIG_CMA
1831 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1832 #endif
1833 #ifdef CONFIG_MEMORY_ISOLATION
1834 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1835 #endif
1836 };
1837 
1838 #ifdef CONFIG_CMA
1839 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1840 					unsigned int order)
1841 {
1842 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1843 }
1844 #else
1845 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1846 					unsigned int order) { return NULL; }
1847 #endif
1848 
1849 /*
1850  * Move the free pages in a range to the free lists of the requested type.
1851  * Note that start_page and end_pages are not aligned on a pageblock
1852  * boundary. If alignment is required, use move_freepages_block()
1853  */
1854 static int move_freepages(struct zone *zone,
1855 			  struct page *start_page, struct page *end_page,
1856 			  int migratetype, int *num_movable)
1857 {
1858 	struct page *page;
1859 	unsigned int order;
1860 	int pages_moved = 0;
1861 
1862 #ifndef CONFIG_HOLES_IN_ZONE
1863 	/*
1864 	 * page_zone is not safe to call in this context when
1865 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1866 	 * anyway as we check zone boundaries in move_freepages_block().
1867 	 * Remove at a later date when no bug reports exist related to
1868 	 * grouping pages by mobility
1869 	 */
1870 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1871 #endif
1872 
1873 	if (num_movable)
1874 		*num_movable = 0;
1875 
1876 	for (page = start_page; page <= end_page;) {
1877 		if (!pfn_valid_within(page_to_pfn(page))) {
1878 			page++;
1879 			continue;
1880 		}
1881 
1882 		/* Make sure we are not inadvertently changing nodes */
1883 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1884 
1885 		if (!PageBuddy(page)) {
1886 			/*
1887 			 * We assume that pages that could be isolated for
1888 			 * migration are movable. But we don't actually try
1889 			 * isolating, as that would be expensive.
1890 			 */
1891 			if (num_movable &&
1892 					(PageLRU(page) || __PageMovable(page)))
1893 				(*num_movable)++;
1894 
1895 			page++;
1896 			continue;
1897 		}
1898 
1899 		order = page_order(page);
1900 		list_move(&page->lru,
1901 			  &zone->free_area[order].free_list[migratetype]);
1902 		page += 1 << order;
1903 		pages_moved += 1 << order;
1904 	}
1905 
1906 	return pages_moved;
1907 }
1908 
1909 int move_freepages_block(struct zone *zone, struct page *page,
1910 				int migratetype, int *num_movable)
1911 {
1912 	unsigned long start_pfn, end_pfn;
1913 	struct page *start_page, *end_page;
1914 
1915 	start_pfn = page_to_pfn(page);
1916 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1917 	start_page = pfn_to_page(start_pfn);
1918 	end_page = start_page + pageblock_nr_pages - 1;
1919 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1920 
1921 	/* Do not cross zone boundaries */
1922 	if (!zone_spans_pfn(zone, start_pfn))
1923 		start_page = page;
1924 	if (!zone_spans_pfn(zone, end_pfn))
1925 		return 0;
1926 
1927 	return move_freepages(zone, start_page, end_page, migratetype,
1928 								num_movable);
1929 }
1930 
1931 static void change_pageblock_range(struct page *pageblock_page,
1932 					int start_order, int migratetype)
1933 {
1934 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1935 
1936 	while (nr_pageblocks--) {
1937 		set_pageblock_migratetype(pageblock_page, migratetype);
1938 		pageblock_page += pageblock_nr_pages;
1939 	}
1940 }
1941 
1942 /*
1943  * When we are falling back to another migratetype during allocation, try to
1944  * steal extra free pages from the same pageblocks to satisfy further
1945  * allocations, instead of polluting multiple pageblocks.
1946  *
1947  * If we are stealing a relatively large buddy page, it is likely there will
1948  * be more free pages in the pageblock, so try to steal them all. For
1949  * reclaimable and unmovable allocations, we steal regardless of page size,
1950  * as fragmentation caused by those allocations polluting movable pageblocks
1951  * is worse than movable allocations stealing from unmovable and reclaimable
1952  * pageblocks.
1953  */
1954 static bool can_steal_fallback(unsigned int order, int start_mt)
1955 {
1956 	/*
1957 	 * Leaving this order check is intended, although there is
1958 	 * relaxed order check in next check. The reason is that
1959 	 * we can actually steal whole pageblock if this condition met,
1960 	 * but, below check doesn't guarantee it and that is just heuristic
1961 	 * so could be changed anytime.
1962 	 */
1963 	if (order >= pageblock_order)
1964 		return true;
1965 
1966 	if (order >= pageblock_order / 2 ||
1967 		start_mt == MIGRATE_RECLAIMABLE ||
1968 		start_mt == MIGRATE_UNMOVABLE ||
1969 		page_group_by_mobility_disabled)
1970 		return true;
1971 
1972 	return false;
1973 }
1974 
1975 /*
1976  * This function implements actual steal behaviour. If order is large enough,
1977  * we can steal whole pageblock. If not, we first move freepages in this
1978  * pageblock to our migratetype and determine how many already-allocated pages
1979  * are there in the pageblock with a compatible migratetype. If at least half
1980  * of pages are free or compatible, we can change migratetype of the pageblock
1981  * itself, so pages freed in the future will be put on the correct free list.
1982  */
1983 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1984 					int start_type, bool whole_block)
1985 {
1986 	unsigned int current_order = page_order(page);
1987 	struct free_area *area;
1988 	int free_pages, movable_pages, alike_pages;
1989 	int old_block_type;
1990 
1991 	old_block_type = get_pageblock_migratetype(page);
1992 
1993 	/*
1994 	 * This can happen due to races and we want to prevent broken
1995 	 * highatomic accounting.
1996 	 */
1997 	if (is_migrate_highatomic(old_block_type))
1998 		goto single_page;
1999 
2000 	/* Take ownership for orders >= pageblock_order */
2001 	if (current_order >= pageblock_order) {
2002 		change_pageblock_range(page, current_order, start_type);
2003 		goto single_page;
2004 	}
2005 
2006 	/* We are not allowed to try stealing from the whole block */
2007 	if (!whole_block)
2008 		goto single_page;
2009 
2010 	free_pages = move_freepages_block(zone, page, start_type,
2011 						&movable_pages);
2012 	/*
2013 	 * Determine how many pages are compatible with our allocation.
2014 	 * For movable allocation, it's the number of movable pages which
2015 	 * we just obtained. For other types it's a bit more tricky.
2016 	 */
2017 	if (start_type == MIGRATE_MOVABLE) {
2018 		alike_pages = movable_pages;
2019 	} else {
2020 		/*
2021 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2022 		 * to MOVABLE pageblock, consider all non-movable pages as
2023 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2024 		 * vice versa, be conservative since we can't distinguish the
2025 		 * exact migratetype of non-movable pages.
2026 		 */
2027 		if (old_block_type == MIGRATE_MOVABLE)
2028 			alike_pages = pageblock_nr_pages
2029 						- (free_pages + movable_pages);
2030 		else
2031 			alike_pages = 0;
2032 	}
2033 
2034 	/* moving whole block can fail due to zone boundary conditions */
2035 	if (!free_pages)
2036 		goto single_page;
2037 
2038 	/*
2039 	 * If a sufficient number of pages in the block are either free or of
2040 	 * comparable migratability as our allocation, claim the whole block.
2041 	 */
2042 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2043 			page_group_by_mobility_disabled)
2044 		set_pageblock_migratetype(page, start_type);
2045 
2046 	return;
2047 
2048 single_page:
2049 	area = &zone->free_area[current_order];
2050 	list_move(&page->lru, &area->free_list[start_type]);
2051 }
2052 
2053 /*
2054  * Check whether there is a suitable fallback freepage with requested order.
2055  * If only_stealable is true, this function returns fallback_mt only if
2056  * we can steal other freepages all together. This would help to reduce
2057  * fragmentation due to mixed migratetype pages in one pageblock.
2058  */
2059 int find_suitable_fallback(struct free_area *area, unsigned int order,
2060 			int migratetype, bool only_stealable, bool *can_steal)
2061 {
2062 	int i;
2063 	int fallback_mt;
2064 
2065 	if (area->nr_free == 0)
2066 		return -1;
2067 
2068 	*can_steal = false;
2069 	for (i = 0;; i++) {
2070 		fallback_mt = fallbacks[migratetype][i];
2071 		if (fallback_mt == MIGRATE_TYPES)
2072 			break;
2073 
2074 		if (list_empty(&area->free_list[fallback_mt]))
2075 			continue;
2076 
2077 		if (can_steal_fallback(order, migratetype))
2078 			*can_steal = true;
2079 
2080 		if (!only_stealable)
2081 			return fallback_mt;
2082 
2083 		if (*can_steal)
2084 			return fallback_mt;
2085 	}
2086 
2087 	return -1;
2088 }
2089 
2090 /*
2091  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2092  * there are no empty page blocks that contain a page with a suitable order
2093  */
2094 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2095 				unsigned int alloc_order)
2096 {
2097 	int mt;
2098 	unsigned long max_managed, flags;
2099 
2100 	/*
2101 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2102 	 * Check is race-prone but harmless.
2103 	 */
2104 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2105 	if (zone->nr_reserved_highatomic >= max_managed)
2106 		return;
2107 
2108 	spin_lock_irqsave(&zone->lock, flags);
2109 
2110 	/* Recheck the nr_reserved_highatomic limit under the lock */
2111 	if (zone->nr_reserved_highatomic >= max_managed)
2112 		goto out_unlock;
2113 
2114 	/* Yoink! */
2115 	mt = get_pageblock_migratetype(page);
2116 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2117 	    && !is_migrate_cma(mt)) {
2118 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2119 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2120 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2121 	}
2122 
2123 out_unlock:
2124 	spin_unlock_irqrestore(&zone->lock, flags);
2125 }
2126 
2127 /*
2128  * Used when an allocation is about to fail under memory pressure. This
2129  * potentially hurts the reliability of high-order allocations when under
2130  * intense memory pressure but failed atomic allocations should be easier
2131  * to recover from than an OOM.
2132  *
2133  * If @force is true, try to unreserve a pageblock even though highatomic
2134  * pageblock is exhausted.
2135  */
2136 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2137 						bool force)
2138 {
2139 	struct zonelist *zonelist = ac->zonelist;
2140 	unsigned long flags;
2141 	struct zoneref *z;
2142 	struct zone *zone;
2143 	struct page *page;
2144 	int order;
2145 	bool ret;
2146 
2147 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2148 								ac->nodemask) {
2149 		/*
2150 		 * Preserve at least one pageblock unless memory pressure
2151 		 * is really high.
2152 		 */
2153 		if (!force && zone->nr_reserved_highatomic <=
2154 					pageblock_nr_pages)
2155 			continue;
2156 
2157 		spin_lock_irqsave(&zone->lock, flags);
2158 		for (order = 0; order < MAX_ORDER; order++) {
2159 			struct free_area *area = &(zone->free_area[order]);
2160 
2161 			page = list_first_entry_or_null(
2162 					&area->free_list[MIGRATE_HIGHATOMIC],
2163 					struct page, lru);
2164 			if (!page)
2165 				continue;
2166 
2167 			/*
2168 			 * In page freeing path, migratetype change is racy so
2169 			 * we can counter several free pages in a pageblock
2170 			 * in this loop althoug we changed the pageblock type
2171 			 * from highatomic to ac->migratetype. So we should
2172 			 * adjust the count once.
2173 			 */
2174 			if (is_migrate_highatomic_page(page)) {
2175 				/*
2176 				 * It should never happen but changes to
2177 				 * locking could inadvertently allow a per-cpu
2178 				 * drain to add pages to MIGRATE_HIGHATOMIC
2179 				 * while unreserving so be safe and watch for
2180 				 * underflows.
2181 				 */
2182 				zone->nr_reserved_highatomic -= min(
2183 						pageblock_nr_pages,
2184 						zone->nr_reserved_highatomic);
2185 			}
2186 
2187 			/*
2188 			 * Convert to ac->migratetype and avoid the normal
2189 			 * pageblock stealing heuristics. Minimally, the caller
2190 			 * is doing the work and needs the pages. More
2191 			 * importantly, if the block was always converted to
2192 			 * MIGRATE_UNMOVABLE or another type then the number
2193 			 * of pageblocks that cannot be completely freed
2194 			 * may increase.
2195 			 */
2196 			set_pageblock_migratetype(page, ac->migratetype);
2197 			ret = move_freepages_block(zone, page, ac->migratetype,
2198 									NULL);
2199 			if (ret) {
2200 				spin_unlock_irqrestore(&zone->lock, flags);
2201 				return ret;
2202 			}
2203 		}
2204 		spin_unlock_irqrestore(&zone->lock, flags);
2205 	}
2206 
2207 	return false;
2208 }
2209 
2210 /*
2211  * Try finding a free buddy page on the fallback list and put it on the free
2212  * list of requested migratetype, possibly along with other pages from the same
2213  * block, depending on fragmentation avoidance heuristics. Returns true if
2214  * fallback was found so that __rmqueue_smallest() can grab it.
2215  *
2216  * The use of signed ints for order and current_order is a deliberate
2217  * deviation from the rest of this file, to make the for loop
2218  * condition simpler.
2219  */
2220 static inline bool
2221 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2222 {
2223 	struct free_area *area;
2224 	int current_order;
2225 	struct page *page;
2226 	int fallback_mt;
2227 	bool can_steal;
2228 
2229 	/*
2230 	 * Find the largest available free page in the other list. This roughly
2231 	 * approximates finding the pageblock with the most free pages, which
2232 	 * would be too costly to do exactly.
2233 	 */
2234 	for (current_order = MAX_ORDER - 1; current_order >= order;
2235 				--current_order) {
2236 		area = &(zone->free_area[current_order]);
2237 		fallback_mt = find_suitable_fallback(area, current_order,
2238 				start_migratetype, false, &can_steal);
2239 		if (fallback_mt == -1)
2240 			continue;
2241 
2242 		/*
2243 		 * We cannot steal all free pages from the pageblock and the
2244 		 * requested migratetype is movable. In that case it's better to
2245 		 * steal and split the smallest available page instead of the
2246 		 * largest available page, because even if the next movable
2247 		 * allocation falls back into a different pageblock than this
2248 		 * one, it won't cause permanent fragmentation.
2249 		 */
2250 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2251 					&& current_order > order)
2252 			goto find_smallest;
2253 
2254 		goto do_steal;
2255 	}
2256 
2257 	return false;
2258 
2259 find_smallest:
2260 	for (current_order = order; current_order < MAX_ORDER;
2261 							current_order++) {
2262 		area = &(zone->free_area[current_order]);
2263 		fallback_mt = find_suitable_fallback(area, current_order,
2264 				start_migratetype, false, &can_steal);
2265 		if (fallback_mt != -1)
2266 			break;
2267 	}
2268 
2269 	/*
2270 	 * This should not happen - we already found a suitable fallback
2271 	 * when looking for the largest page.
2272 	 */
2273 	VM_BUG_ON(current_order == MAX_ORDER);
2274 
2275 do_steal:
2276 	page = list_first_entry(&area->free_list[fallback_mt],
2277 							struct page, lru);
2278 
2279 	steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2280 
2281 	trace_mm_page_alloc_extfrag(page, order, current_order,
2282 		start_migratetype, fallback_mt);
2283 
2284 	return true;
2285 
2286 }
2287 
2288 /*
2289  * Do the hard work of removing an element from the buddy allocator.
2290  * Call me with the zone->lock already held.
2291  */
2292 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2293 				int migratetype)
2294 {
2295 	struct page *page;
2296 
2297 retry:
2298 	page = __rmqueue_smallest(zone, order, migratetype);
2299 	if (unlikely(!page)) {
2300 		if (migratetype == MIGRATE_MOVABLE)
2301 			page = __rmqueue_cma_fallback(zone, order);
2302 
2303 		if (!page && __rmqueue_fallback(zone, order, migratetype))
2304 			goto retry;
2305 	}
2306 
2307 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2308 	return page;
2309 }
2310 
2311 /*
2312  * Obtain a specified number of elements from the buddy allocator, all under
2313  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2314  * Returns the number of new pages which were placed at *list.
2315  */
2316 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2317 			unsigned long count, struct list_head *list,
2318 			int migratetype, bool cold)
2319 {
2320 	int i, alloced = 0;
2321 
2322 	spin_lock(&zone->lock);
2323 	for (i = 0; i < count; ++i) {
2324 		struct page *page = __rmqueue(zone, order, migratetype);
2325 		if (unlikely(page == NULL))
2326 			break;
2327 
2328 		if (unlikely(check_pcp_refill(page)))
2329 			continue;
2330 
2331 		/*
2332 		 * Split buddy pages returned by expand() are received here
2333 		 * in physical page order. The page is added to the callers and
2334 		 * list and the list head then moves forward. From the callers
2335 		 * perspective, the linked list is ordered by page number in
2336 		 * some conditions. This is useful for IO devices that can
2337 		 * merge IO requests if the physical pages are ordered
2338 		 * properly.
2339 		 */
2340 		if (likely(!cold))
2341 			list_add(&page->lru, list);
2342 		else
2343 			list_add_tail(&page->lru, list);
2344 		list = &page->lru;
2345 		alloced++;
2346 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2347 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2348 					      -(1 << order));
2349 	}
2350 
2351 	/*
2352 	 * i pages were removed from the buddy list even if some leak due
2353 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2354 	 * on i. Do not confuse with 'alloced' which is the number of
2355 	 * pages added to the pcp list.
2356 	 */
2357 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2358 	spin_unlock(&zone->lock);
2359 	return alloced;
2360 }
2361 
2362 #ifdef CONFIG_NUMA
2363 /*
2364  * Called from the vmstat counter updater to drain pagesets of this
2365  * currently executing processor on remote nodes after they have
2366  * expired.
2367  *
2368  * Note that this function must be called with the thread pinned to
2369  * a single processor.
2370  */
2371 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2372 {
2373 	unsigned long flags;
2374 	int to_drain, batch;
2375 
2376 	local_irq_save(flags);
2377 	batch = READ_ONCE(pcp->batch);
2378 	to_drain = min(pcp->count, batch);
2379 	if (to_drain > 0) {
2380 		free_pcppages_bulk(zone, to_drain, pcp);
2381 		pcp->count -= to_drain;
2382 	}
2383 	local_irq_restore(flags);
2384 }
2385 #endif
2386 
2387 /*
2388  * Drain pcplists of the indicated processor and zone.
2389  *
2390  * The processor must either be the current processor and the
2391  * thread pinned to the current processor or a processor that
2392  * is not online.
2393  */
2394 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2395 {
2396 	unsigned long flags;
2397 	struct per_cpu_pageset *pset;
2398 	struct per_cpu_pages *pcp;
2399 
2400 	local_irq_save(flags);
2401 	pset = per_cpu_ptr(zone->pageset, cpu);
2402 
2403 	pcp = &pset->pcp;
2404 	if (pcp->count) {
2405 		free_pcppages_bulk(zone, pcp->count, pcp);
2406 		pcp->count = 0;
2407 	}
2408 	local_irq_restore(flags);
2409 }
2410 
2411 /*
2412  * Drain pcplists of all zones on the indicated processor.
2413  *
2414  * The processor must either be the current processor and the
2415  * thread pinned to the current processor or a processor that
2416  * is not online.
2417  */
2418 static void drain_pages(unsigned int cpu)
2419 {
2420 	struct zone *zone;
2421 
2422 	for_each_populated_zone(zone) {
2423 		drain_pages_zone(cpu, zone);
2424 	}
2425 }
2426 
2427 /*
2428  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2429  *
2430  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2431  * the single zone's pages.
2432  */
2433 void drain_local_pages(struct zone *zone)
2434 {
2435 	int cpu = smp_processor_id();
2436 
2437 	if (zone)
2438 		drain_pages_zone(cpu, zone);
2439 	else
2440 		drain_pages(cpu);
2441 }
2442 
2443 static void drain_local_pages_wq(struct work_struct *work)
2444 {
2445 	/*
2446 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2447 	 * we can race with cpu offline when the WQ can move this from
2448 	 * a cpu pinned worker to an unbound one. We can operate on a different
2449 	 * cpu which is allright but we also have to make sure to not move to
2450 	 * a different one.
2451 	 */
2452 	preempt_disable();
2453 	drain_local_pages(NULL);
2454 	preempt_enable();
2455 }
2456 
2457 /*
2458  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2459  *
2460  * When zone parameter is non-NULL, spill just the single zone's pages.
2461  *
2462  * Note that this can be extremely slow as the draining happens in a workqueue.
2463  */
2464 void drain_all_pages(struct zone *zone)
2465 {
2466 	int cpu;
2467 
2468 	/*
2469 	 * Allocate in the BSS so we wont require allocation in
2470 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2471 	 */
2472 	static cpumask_t cpus_with_pcps;
2473 
2474 	/*
2475 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2476 	 * initialized.
2477 	 */
2478 	if (WARN_ON_ONCE(!mm_percpu_wq))
2479 		return;
2480 
2481 	/* Workqueues cannot recurse */
2482 	if (current->flags & PF_WQ_WORKER)
2483 		return;
2484 
2485 	/*
2486 	 * Do not drain if one is already in progress unless it's specific to
2487 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2488 	 * the drain to be complete when the call returns.
2489 	 */
2490 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2491 		if (!zone)
2492 			return;
2493 		mutex_lock(&pcpu_drain_mutex);
2494 	}
2495 
2496 	/*
2497 	 * We don't care about racing with CPU hotplug event
2498 	 * as offline notification will cause the notified
2499 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2500 	 * disables preemption as part of its processing
2501 	 */
2502 	for_each_online_cpu(cpu) {
2503 		struct per_cpu_pageset *pcp;
2504 		struct zone *z;
2505 		bool has_pcps = false;
2506 
2507 		if (zone) {
2508 			pcp = per_cpu_ptr(zone->pageset, cpu);
2509 			if (pcp->pcp.count)
2510 				has_pcps = true;
2511 		} else {
2512 			for_each_populated_zone(z) {
2513 				pcp = per_cpu_ptr(z->pageset, cpu);
2514 				if (pcp->pcp.count) {
2515 					has_pcps = true;
2516 					break;
2517 				}
2518 			}
2519 		}
2520 
2521 		if (has_pcps)
2522 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2523 		else
2524 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2525 	}
2526 
2527 	for_each_cpu(cpu, &cpus_with_pcps) {
2528 		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2529 		INIT_WORK(work, drain_local_pages_wq);
2530 		queue_work_on(cpu, mm_percpu_wq, work);
2531 	}
2532 	for_each_cpu(cpu, &cpus_with_pcps)
2533 		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2534 
2535 	mutex_unlock(&pcpu_drain_mutex);
2536 }
2537 
2538 #ifdef CONFIG_HIBERNATION
2539 
2540 /*
2541  * Touch the watchdog for every WD_PAGE_COUNT pages.
2542  */
2543 #define WD_PAGE_COUNT	(128*1024)
2544 
2545 void mark_free_pages(struct zone *zone)
2546 {
2547 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2548 	unsigned long flags;
2549 	unsigned int order, t;
2550 	struct page *page;
2551 
2552 	if (zone_is_empty(zone))
2553 		return;
2554 
2555 	spin_lock_irqsave(&zone->lock, flags);
2556 
2557 	max_zone_pfn = zone_end_pfn(zone);
2558 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2559 		if (pfn_valid(pfn)) {
2560 			page = pfn_to_page(pfn);
2561 
2562 			if (!--page_count) {
2563 				touch_nmi_watchdog();
2564 				page_count = WD_PAGE_COUNT;
2565 			}
2566 
2567 			if (page_zone(page) != zone)
2568 				continue;
2569 
2570 			if (!swsusp_page_is_forbidden(page))
2571 				swsusp_unset_page_free(page);
2572 		}
2573 
2574 	for_each_migratetype_order(order, t) {
2575 		list_for_each_entry(page,
2576 				&zone->free_area[order].free_list[t], lru) {
2577 			unsigned long i;
2578 
2579 			pfn = page_to_pfn(page);
2580 			for (i = 0; i < (1UL << order); i++) {
2581 				if (!--page_count) {
2582 					touch_nmi_watchdog();
2583 					page_count = WD_PAGE_COUNT;
2584 				}
2585 				swsusp_set_page_free(pfn_to_page(pfn + i));
2586 			}
2587 		}
2588 	}
2589 	spin_unlock_irqrestore(&zone->lock, flags);
2590 }
2591 #endif /* CONFIG_PM */
2592 
2593 /*
2594  * Free a 0-order page
2595  * cold == true ? free a cold page : free a hot page
2596  */
2597 void free_hot_cold_page(struct page *page, bool cold)
2598 {
2599 	struct zone *zone = page_zone(page);
2600 	struct per_cpu_pages *pcp;
2601 	unsigned long flags;
2602 	unsigned long pfn = page_to_pfn(page);
2603 	int migratetype;
2604 
2605 	if (!free_pcp_prepare(page))
2606 		return;
2607 
2608 	migratetype = get_pfnblock_migratetype(page, pfn);
2609 	set_pcppage_migratetype(page, migratetype);
2610 	local_irq_save(flags);
2611 	__count_vm_event(PGFREE);
2612 
2613 	/*
2614 	 * We only track unmovable, reclaimable and movable on pcp lists.
2615 	 * Free ISOLATE pages back to the allocator because they are being
2616 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2617 	 * areas back if necessary. Otherwise, we may have to free
2618 	 * excessively into the page allocator
2619 	 */
2620 	if (migratetype >= MIGRATE_PCPTYPES) {
2621 		if (unlikely(is_migrate_isolate(migratetype))) {
2622 			free_one_page(zone, page, pfn, 0, migratetype);
2623 			goto out;
2624 		}
2625 		migratetype = MIGRATE_MOVABLE;
2626 	}
2627 
2628 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2629 	if (!cold)
2630 		list_add(&page->lru, &pcp->lists[migratetype]);
2631 	else
2632 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2633 	pcp->count++;
2634 	if (pcp->count >= pcp->high) {
2635 		unsigned long batch = READ_ONCE(pcp->batch);
2636 		free_pcppages_bulk(zone, batch, pcp);
2637 		pcp->count -= batch;
2638 	}
2639 
2640 out:
2641 	local_irq_restore(flags);
2642 }
2643 
2644 /*
2645  * Free a list of 0-order pages
2646  */
2647 void free_hot_cold_page_list(struct list_head *list, bool cold)
2648 {
2649 	struct page *page, *next;
2650 
2651 	list_for_each_entry_safe(page, next, list, lru) {
2652 		trace_mm_page_free_batched(page, cold);
2653 		free_hot_cold_page(page, cold);
2654 	}
2655 }
2656 
2657 /*
2658  * split_page takes a non-compound higher-order page, and splits it into
2659  * n (1<<order) sub-pages: page[0..n]
2660  * Each sub-page must be freed individually.
2661  *
2662  * Note: this is probably too low level an operation for use in drivers.
2663  * Please consult with lkml before using this in your driver.
2664  */
2665 void split_page(struct page *page, unsigned int order)
2666 {
2667 	int i;
2668 
2669 	VM_BUG_ON_PAGE(PageCompound(page), page);
2670 	VM_BUG_ON_PAGE(!page_count(page), page);
2671 
2672 #ifdef CONFIG_KMEMCHECK
2673 	/*
2674 	 * Split shadow pages too, because free(page[0]) would
2675 	 * otherwise free the whole shadow.
2676 	 */
2677 	if (kmemcheck_page_is_tracked(page))
2678 		split_page(virt_to_page(page[0].shadow), order);
2679 #endif
2680 
2681 	for (i = 1; i < (1 << order); i++)
2682 		set_page_refcounted(page + i);
2683 	split_page_owner(page, order);
2684 }
2685 EXPORT_SYMBOL_GPL(split_page);
2686 
2687 int __isolate_free_page(struct page *page, unsigned int order)
2688 {
2689 	unsigned long watermark;
2690 	struct zone *zone;
2691 	int mt;
2692 
2693 	BUG_ON(!PageBuddy(page));
2694 
2695 	zone = page_zone(page);
2696 	mt = get_pageblock_migratetype(page);
2697 
2698 	if (!is_migrate_isolate(mt)) {
2699 		/*
2700 		 * Obey watermarks as if the page was being allocated. We can
2701 		 * emulate a high-order watermark check with a raised order-0
2702 		 * watermark, because we already know our high-order page
2703 		 * exists.
2704 		 */
2705 		watermark = min_wmark_pages(zone) + (1UL << order);
2706 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2707 			return 0;
2708 
2709 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2710 	}
2711 
2712 	/* Remove page from free list */
2713 	list_del(&page->lru);
2714 	zone->free_area[order].nr_free--;
2715 	rmv_page_order(page);
2716 
2717 	/*
2718 	 * Set the pageblock if the isolated page is at least half of a
2719 	 * pageblock
2720 	 */
2721 	if (order >= pageblock_order - 1) {
2722 		struct page *endpage = page + (1 << order) - 1;
2723 		for (; page < endpage; page += pageblock_nr_pages) {
2724 			int mt = get_pageblock_migratetype(page);
2725 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2726 			    && !is_migrate_highatomic(mt))
2727 				set_pageblock_migratetype(page,
2728 							  MIGRATE_MOVABLE);
2729 		}
2730 	}
2731 
2732 
2733 	return 1UL << order;
2734 }
2735 
2736 /*
2737  * Update NUMA hit/miss statistics
2738  *
2739  * Must be called with interrupts disabled.
2740  */
2741 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2742 {
2743 #ifdef CONFIG_NUMA
2744 	enum numa_stat_item local_stat = NUMA_LOCAL;
2745 
2746 	if (z->node != numa_node_id())
2747 		local_stat = NUMA_OTHER;
2748 
2749 	if (z->node == preferred_zone->node)
2750 		__inc_numa_state(z, NUMA_HIT);
2751 	else {
2752 		__inc_numa_state(z, NUMA_MISS);
2753 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2754 	}
2755 	__inc_numa_state(z, local_stat);
2756 #endif
2757 }
2758 
2759 /* Remove page from the per-cpu list, caller must protect the list */
2760 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2761 			bool cold, struct per_cpu_pages *pcp,
2762 			struct list_head *list)
2763 {
2764 	struct page *page;
2765 
2766 	do {
2767 		if (list_empty(list)) {
2768 			pcp->count += rmqueue_bulk(zone, 0,
2769 					pcp->batch, list,
2770 					migratetype, cold);
2771 			if (unlikely(list_empty(list)))
2772 				return NULL;
2773 		}
2774 
2775 		if (cold)
2776 			page = list_last_entry(list, struct page, lru);
2777 		else
2778 			page = list_first_entry(list, struct page, lru);
2779 
2780 		list_del(&page->lru);
2781 		pcp->count--;
2782 	} while (check_new_pcp(page));
2783 
2784 	return page;
2785 }
2786 
2787 /* Lock and remove page from the per-cpu list */
2788 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2789 			struct zone *zone, unsigned int order,
2790 			gfp_t gfp_flags, int migratetype)
2791 {
2792 	struct per_cpu_pages *pcp;
2793 	struct list_head *list;
2794 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2795 	struct page *page;
2796 	unsigned long flags;
2797 
2798 	local_irq_save(flags);
2799 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2800 	list = &pcp->lists[migratetype];
2801 	page = __rmqueue_pcplist(zone,  migratetype, cold, pcp, list);
2802 	if (page) {
2803 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2804 		zone_statistics(preferred_zone, zone);
2805 	}
2806 	local_irq_restore(flags);
2807 	return page;
2808 }
2809 
2810 /*
2811  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2812  */
2813 static inline
2814 struct page *rmqueue(struct zone *preferred_zone,
2815 			struct zone *zone, unsigned int order,
2816 			gfp_t gfp_flags, unsigned int alloc_flags,
2817 			int migratetype)
2818 {
2819 	unsigned long flags;
2820 	struct page *page;
2821 
2822 	if (likely(order == 0)) {
2823 		page = rmqueue_pcplist(preferred_zone, zone, order,
2824 				gfp_flags, migratetype);
2825 		goto out;
2826 	}
2827 
2828 	/*
2829 	 * We most definitely don't want callers attempting to
2830 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2831 	 */
2832 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2833 	spin_lock_irqsave(&zone->lock, flags);
2834 
2835 	do {
2836 		page = NULL;
2837 		if (alloc_flags & ALLOC_HARDER) {
2838 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2839 			if (page)
2840 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
2841 		}
2842 		if (!page)
2843 			page = __rmqueue(zone, order, migratetype);
2844 	} while (page && check_new_pages(page, order));
2845 	spin_unlock(&zone->lock);
2846 	if (!page)
2847 		goto failed;
2848 	__mod_zone_freepage_state(zone, -(1 << order),
2849 				  get_pcppage_migratetype(page));
2850 
2851 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2852 	zone_statistics(preferred_zone, zone);
2853 	local_irq_restore(flags);
2854 
2855 out:
2856 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2857 	return page;
2858 
2859 failed:
2860 	local_irq_restore(flags);
2861 	return NULL;
2862 }
2863 
2864 #ifdef CONFIG_FAIL_PAGE_ALLOC
2865 
2866 static struct {
2867 	struct fault_attr attr;
2868 
2869 	bool ignore_gfp_highmem;
2870 	bool ignore_gfp_reclaim;
2871 	u32 min_order;
2872 } fail_page_alloc = {
2873 	.attr = FAULT_ATTR_INITIALIZER,
2874 	.ignore_gfp_reclaim = true,
2875 	.ignore_gfp_highmem = true,
2876 	.min_order = 1,
2877 };
2878 
2879 static int __init setup_fail_page_alloc(char *str)
2880 {
2881 	return setup_fault_attr(&fail_page_alloc.attr, str);
2882 }
2883 __setup("fail_page_alloc=", setup_fail_page_alloc);
2884 
2885 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2886 {
2887 	if (order < fail_page_alloc.min_order)
2888 		return false;
2889 	if (gfp_mask & __GFP_NOFAIL)
2890 		return false;
2891 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2892 		return false;
2893 	if (fail_page_alloc.ignore_gfp_reclaim &&
2894 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2895 		return false;
2896 
2897 	return should_fail(&fail_page_alloc.attr, 1 << order);
2898 }
2899 
2900 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2901 
2902 static int __init fail_page_alloc_debugfs(void)
2903 {
2904 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2905 	struct dentry *dir;
2906 
2907 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2908 					&fail_page_alloc.attr);
2909 	if (IS_ERR(dir))
2910 		return PTR_ERR(dir);
2911 
2912 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2913 				&fail_page_alloc.ignore_gfp_reclaim))
2914 		goto fail;
2915 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2916 				&fail_page_alloc.ignore_gfp_highmem))
2917 		goto fail;
2918 	if (!debugfs_create_u32("min-order", mode, dir,
2919 				&fail_page_alloc.min_order))
2920 		goto fail;
2921 
2922 	return 0;
2923 fail:
2924 	debugfs_remove_recursive(dir);
2925 
2926 	return -ENOMEM;
2927 }
2928 
2929 late_initcall(fail_page_alloc_debugfs);
2930 
2931 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2932 
2933 #else /* CONFIG_FAIL_PAGE_ALLOC */
2934 
2935 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2936 {
2937 	return false;
2938 }
2939 
2940 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2941 
2942 /*
2943  * Return true if free base pages are above 'mark'. For high-order checks it
2944  * will return true of the order-0 watermark is reached and there is at least
2945  * one free page of a suitable size. Checking now avoids taking the zone lock
2946  * to check in the allocation paths if no pages are free.
2947  */
2948 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2949 			 int classzone_idx, unsigned int alloc_flags,
2950 			 long free_pages)
2951 {
2952 	long min = mark;
2953 	int o;
2954 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
2955 
2956 	/* free_pages may go negative - that's OK */
2957 	free_pages -= (1 << order) - 1;
2958 
2959 	if (alloc_flags & ALLOC_HIGH)
2960 		min -= min / 2;
2961 
2962 	/*
2963 	 * If the caller does not have rights to ALLOC_HARDER then subtract
2964 	 * the high-atomic reserves. This will over-estimate the size of the
2965 	 * atomic reserve but it avoids a search.
2966 	 */
2967 	if (likely(!alloc_harder)) {
2968 		free_pages -= z->nr_reserved_highatomic;
2969 	} else {
2970 		/*
2971 		 * OOM victims can try even harder than normal ALLOC_HARDER
2972 		 * users on the grounds that it's definitely going to be in
2973 		 * the exit path shortly and free memory. Any allocation it
2974 		 * makes during the free path will be small and short-lived.
2975 		 */
2976 		if (alloc_flags & ALLOC_OOM)
2977 			min -= min / 2;
2978 		else
2979 			min -= min / 4;
2980 	}
2981 
2982 
2983 #ifdef CONFIG_CMA
2984 	/* If allocation can't use CMA areas don't use free CMA pages */
2985 	if (!(alloc_flags & ALLOC_CMA))
2986 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2987 #endif
2988 
2989 	/*
2990 	 * Check watermarks for an order-0 allocation request. If these
2991 	 * are not met, then a high-order request also cannot go ahead
2992 	 * even if a suitable page happened to be free.
2993 	 */
2994 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2995 		return false;
2996 
2997 	/* If this is an order-0 request then the watermark is fine */
2998 	if (!order)
2999 		return true;
3000 
3001 	/* For a high-order request, check at least one suitable page is free */
3002 	for (o = order; o < MAX_ORDER; o++) {
3003 		struct free_area *area = &z->free_area[o];
3004 		int mt;
3005 
3006 		if (!area->nr_free)
3007 			continue;
3008 
3009 		if (alloc_harder)
3010 			return true;
3011 
3012 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3013 			if (!list_empty(&area->free_list[mt]))
3014 				return true;
3015 		}
3016 
3017 #ifdef CONFIG_CMA
3018 		if ((alloc_flags & ALLOC_CMA) &&
3019 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3020 			return true;
3021 		}
3022 #endif
3023 	}
3024 	return false;
3025 }
3026 
3027 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3028 		      int classzone_idx, unsigned int alloc_flags)
3029 {
3030 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3031 					zone_page_state(z, NR_FREE_PAGES));
3032 }
3033 
3034 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3035 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3036 {
3037 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3038 	long cma_pages = 0;
3039 
3040 #ifdef CONFIG_CMA
3041 	/* If allocation can't use CMA areas don't use free CMA pages */
3042 	if (!(alloc_flags & ALLOC_CMA))
3043 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3044 #endif
3045 
3046 	/*
3047 	 * Fast check for order-0 only. If this fails then the reserves
3048 	 * need to be calculated. There is a corner case where the check
3049 	 * passes but only the high-order atomic reserve are free. If
3050 	 * the caller is !atomic then it'll uselessly search the free
3051 	 * list. That corner case is then slower but it is harmless.
3052 	 */
3053 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3054 		return true;
3055 
3056 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3057 					free_pages);
3058 }
3059 
3060 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3061 			unsigned long mark, int classzone_idx)
3062 {
3063 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3064 
3065 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3066 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3067 
3068 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3069 								free_pages);
3070 }
3071 
3072 #ifdef CONFIG_NUMA
3073 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3074 {
3075 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3076 				RECLAIM_DISTANCE;
3077 }
3078 #else	/* CONFIG_NUMA */
3079 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3080 {
3081 	return true;
3082 }
3083 #endif	/* CONFIG_NUMA */
3084 
3085 /*
3086  * get_page_from_freelist goes through the zonelist trying to allocate
3087  * a page.
3088  */
3089 static struct page *
3090 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3091 						const struct alloc_context *ac)
3092 {
3093 	struct zoneref *z = ac->preferred_zoneref;
3094 	struct zone *zone;
3095 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3096 
3097 	/*
3098 	 * Scan zonelist, looking for a zone with enough free.
3099 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3100 	 */
3101 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3102 								ac->nodemask) {
3103 		struct page *page;
3104 		unsigned long mark;
3105 
3106 		if (cpusets_enabled() &&
3107 			(alloc_flags & ALLOC_CPUSET) &&
3108 			!__cpuset_zone_allowed(zone, gfp_mask))
3109 				continue;
3110 		/*
3111 		 * When allocating a page cache page for writing, we
3112 		 * want to get it from a node that is within its dirty
3113 		 * limit, such that no single node holds more than its
3114 		 * proportional share of globally allowed dirty pages.
3115 		 * The dirty limits take into account the node's
3116 		 * lowmem reserves and high watermark so that kswapd
3117 		 * should be able to balance it without having to
3118 		 * write pages from its LRU list.
3119 		 *
3120 		 * XXX: For now, allow allocations to potentially
3121 		 * exceed the per-node dirty limit in the slowpath
3122 		 * (spread_dirty_pages unset) before going into reclaim,
3123 		 * which is important when on a NUMA setup the allowed
3124 		 * nodes are together not big enough to reach the
3125 		 * global limit.  The proper fix for these situations
3126 		 * will require awareness of nodes in the
3127 		 * dirty-throttling and the flusher threads.
3128 		 */
3129 		if (ac->spread_dirty_pages) {
3130 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3131 				continue;
3132 
3133 			if (!node_dirty_ok(zone->zone_pgdat)) {
3134 				last_pgdat_dirty_limit = zone->zone_pgdat;
3135 				continue;
3136 			}
3137 		}
3138 
3139 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3140 		if (!zone_watermark_fast(zone, order, mark,
3141 				       ac_classzone_idx(ac), alloc_flags)) {
3142 			int ret;
3143 
3144 			/* Checked here to keep the fast path fast */
3145 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3146 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3147 				goto try_this_zone;
3148 
3149 			if (node_reclaim_mode == 0 ||
3150 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3151 				continue;
3152 
3153 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3154 			switch (ret) {
3155 			case NODE_RECLAIM_NOSCAN:
3156 				/* did not scan */
3157 				continue;
3158 			case NODE_RECLAIM_FULL:
3159 				/* scanned but unreclaimable */
3160 				continue;
3161 			default:
3162 				/* did we reclaim enough */
3163 				if (zone_watermark_ok(zone, order, mark,
3164 						ac_classzone_idx(ac), alloc_flags))
3165 					goto try_this_zone;
3166 
3167 				continue;
3168 			}
3169 		}
3170 
3171 try_this_zone:
3172 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3173 				gfp_mask, alloc_flags, ac->migratetype);
3174 		if (page) {
3175 			prep_new_page(page, order, gfp_mask, alloc_flags);
3176 
3177 			/*
3178 			 * If this is a high-order atomic allocation then check
3179 			 * if the pageblock should be reserved for the future
3180 			 */
3181 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3182 				reserve_highatomic_pageblock(page, zone, order);
3183 
3184 			return page;
3185 		}
3186 	}
3187 
3188 	return NULL;
3189 }
3190 
3191 /*
3192  * Large machines with many possible nodes should not always dump per-node
3193  * meminfo in irq context.
3194  */
3195 static inline bool should_suppress_show_mem(void)
3196 {
3197 	bool ret = false;
3198 
3199 #if NODES_SHIFT > 8
3200 	ret = in_interrupt();
3201 #endif
3202 	return ret;
3203 }
3204 
3205 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3206 {
3207 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3208 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3209 
3210 	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3211 		return;
3212 
3213 	/*
3214 	 * This documents exceptions given to allocations in certain
3215 	 * contexts that are allowed to allocate outside current's set
3216 	 * of allowed nodes.
3217 	 */
3218 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3219 		if (tsk_is_oom_victim(current) ||
3220 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3221 			filter &= ~SHOW_MEM_FILTER_NODES;
3222 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3223 		filter &= ~SHOW_MEM_FILTER_NODES;
3224 
3225 	show_mem(filter, nodemask);
3226 }
3227 
3228 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3229 {
3230 	struct va_format vaf;
3231 	va_list args;
3232 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3233 				      DEFAULT_RATELIMIT_BURST);
3234 
3235 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3236 		return;
3237 
3238 	pr_warn("%s: ", current->comm);
3239 
3240 	va_start(args, fmt);
3241 	vaf.fmt = fmt;
3242 	vaf.va = &args;
3243 	pr_cont("%pV", &vaf);
3244 	va_end(args);
3245 
3246 	pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3247 	if (nodemask)
3248 		pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3249 	else
3250 		pr_cont("(null)\n");
3251 
3252 	cpuset_print_current_mems_allowed();
3253 
3254 	dump_stack();
3255 	warn_alloc_show_mem(gfp_mask, nodemask);
3256 }
3257 
3258 static inline struct page *
3259 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3260 			      unsigned int alloc_flags,
3261 			      const struct alloc_context *ac)
3262 {
3263 	struct page *page;
3264 
3265 	page = get_page_from_freelist(gfp_mask, order,
3266 			alloc_flags|ALLOC_CPUSET, ac);
3267 	/*
3268 	 * fallback to ignore cpuset restriction if our nodes
3269 	 * are depleted
3270 	 */
3271 	if (!page)
3272 		page = get_page_from_freelist(gfp_mask, order,
3273 				alloc_flags, ac);
3274 
3275 	return page;
3276 }
3277 
3278 static inline struct page *
3279 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3280 	const struct alloc_context *ac, unsigned long *did_some_progress)
3281 {
3282 	struct oom_control oc = {
3283 		.zonelist = ac->zonelist,
3284 		.nodemask = ac->nodemask,
3285 		.memcg = NULL,
3286 		.gfp_mask = gfp_mask,
3287 		.order = order,
3288 	};
3289 	struct page *page;
3290 
3291 	*did_some_progress = 0;
3292 
3293 	/*
3294 	 * Acquire the oom lock.  If that fails, somebody else is
3295 	 * making progress for us.
3296 	 */
3297 	if (!mutex_trylock(&oom_lock)) {
3298 		*did_some_progress = 1;
3299 		schedule_timeout_uninterruptible(1);
3300 		return NULL;
3301 	}
3302 
3303 	/*
3304 	 * Go through the zonelist yet one more time, keep very high watermark
3305 	 * here, this is only to catch a parallel oom killing, we must fail if
3306 	 * we're still under heavy pressure. But make sure that this reclaim
3307 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3308 	 * allocation which will never fail due to oom_lock already held.
3309 	 */
3310 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3311 				      ~__GFP_DIRECT_RECLAIM, order,
3312 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3313 	if (page)
3314 		goto out;
3315 
3316 	/* Coredumps can quickly deplete all memory reserves */
3317 	if (current->flags & PF_DUMPCORE)
3318 		goto out;
3319 	/* The OOM killer will not help higher order allocs */
3320 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3321 		goto out;
3322 	/*
3323 	 * We have already exhausted all our reclaim opportunities without any
3324 	 * success so it is time to admit defeat. We will skip the OOM killer
3325 	 * because it is very likely that the caller has a more reasonable
3326 	 * fallback than shooting a random task.
3327 	 */
3328 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3329 		goto out;
3330 	/* The OOM killer does not needlessly kill tasks for lowmem */
3331 	if (ac->high_zoneidx < ZONE_NORMAL)
3332 		goto out;
3333 	if (pm_suspended_storage())
3334 		goto out;
3335 	/*
3336 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3337 	 * other request to make a forward progress.
3338 	 * We are in an unfortunate situation where out_of_memory cannot
3339 	 * do much for this context but let's try it to at least get
3340 	 * access to memory reserved if the current task is killed (see
3341 	 * out_of_memory). Once filesystems are ready to handle allocation
3342 	 * failures more gracefully we should just bail out here.
3343 	 */
3344 
3345 	/* The OOM killer may not free memory on a specific node */
3346 	if (gfp_mask & __GFP_THISNODE)
3347 		goto out;
3348 
3349 	/* Exhausted what can be done so it's blamo time */
3350 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3351 		*did_some_progress = 1;
3352 
3353 		/*
3354 		 * Help non-failing allocations by giving them access to memory
3355 		 * reserves
3356 		 */
3357 		if (gfp_mask & __GFP_NOFAIL)
3358 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3359 					ALLOC_NO_WATERMARKS, ac);
3360 	}
3361 out:
3362 	mutex_unlock(&oom_lock);
3363 	return page;
3364 }
3365 
3366 /*
3367  * Maximum number of compaction retries wit a progress before OOM
3368  * killer is consider as the only way to move forward.
3369  */
3370 #define MAX_COMPACT_RETRIES 16
3371 
3372 #ifdef CONFIG_COMPACTION
3373 /* Try memory compaction for high-order allocations before reclaim */
3374 static struct page *
3375 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3376 		unsigned int alloc_flags, const struct alloc_context *ac,
3377 		enum compact_priority prio, enum compact_result *compact_result)
3378 {
3379 	struct page *page;
3380 	unsigned int noreclaim_flag;
3381 
3382 	if (!order)
3383 		return NULL;
3384 
3385 	noreclaim_flag = memalloc_noreclaim_save();
3386 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3387 									prio);
3388 	memalloc_noreclaim_restore(noreclaim_flag);
3389 
3390 	if (*compact_result <= COMPACT_INACTIVE)
3391 		return NULL;
3392 
3393 	/*
3394 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3395 	 * count a compaction stall
3396 	 */
3397 	count_vm_event(COMPACTSTALL);
3398 
3399 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3400 
3401 	if (page) {
3402 		struct zone *zone = page_zone(page);
3403 
3404 		zone->compact_blockskip_flush = false;
3405 		compaction_defer_reset(zone, order, true);
3406 		count_vm_event(COMPACTSUCCESS);
3407 		return page;
3408 	}
3409 
3410 	/*
3411 	 * It's bad if compaction run occurs and fails. The most likely reason
3412 	 * is that pages exist, but not enough to satisfy watermarks.
3413 	 */
3414 	count_vm_event(COMPACTFAIL);
3415 
3416 	cond_resched();
3417 
3418 	return NULL;
3419 }
3420 
3421 static inline bool
3422 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3423 		     enum compact_result compact_result,
3424 		     enum compact_priority *compact_priority,
3425 		     int *compaction_retries)
3426 {
3427 	int max_retries = MAX_COMPACT_RETRIES;
3428 	int min_priority;
3429 	bool ret = false;
3430 	int retries = *compaction_retries;
3431 	enum compact_priority priority = *compact_priority;
3432 
3433 	if (!order)
3434 		return false;
3435 
3436 	if (compaction_made_progress(compact_result))
3437 		(*compaction_retries)++;
3438 
3439 	/*
3440 	 * compaction considers all the zone as desperately out of memory
3441 	 * so it doesn't really make much sense to retry except when the
3442 	 * failure could be caused by insufficient priority
3443 	 */
3444 	if (compaction_failed(compact_result))
3445 		goto check_priority;
3446 
3447 	/*
3448 	 * make sure the compaction wasn't deferred or didn't bail out early
3449 	 * due to locks contention before we declare that we should give up.
3450 	 * But do not retry if the given zonelist is not suitable for
3451 	 * compaction.
3452 	 */
3453 	if (compaction_withdrawn(compact_result)) {
3454 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3455 		goto out;
3456 	}
3457 
3458 	/*
3459 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3460 	 * costly ones because they are de facto nofail and invoke OOM
3461 	 * killer to move on while costly can fail and users are ready
3462 	 * to cope with that. 1/4 retries is rather arbitrary but we
3463 	 * would need much more detailed feedback from compaction to
3464 	 * make a better decision.
3465 	 */
3466 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3467 		max_retries /= 4;
3468 	if (*compaction_retries <= max_retries) {
3469 		ret = true;
3470 		goto out;
3471 	}
3472 
3473 	/*
3474 	 * Make sure there are attempts at the highest priority if we exhausted
3475 	 * all retries or failed at the lower priorities.
3476 	 */
3477 check_priority:
3478 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3479 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3480 
3481 	if (*compact_priority > min_priority) {
3482 		(*compact_priority)--;
3483 		*compaction_retries = 0;
3484 		ret = true;
3485 	}
3486 out:
3487 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3488 	return ret;
3489 }
3490 #else
3491 static inline struct page *
3492 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3493 		unsigned int alloc_flags, const struct alloc_context *ac,
3494 		enum compact_priority prio, enum compact_result *compact_result)
3495 {
3496 	*compact_result = COMPACT_SKIPPED;
3497 	return NULL;
3498 }
3499 
3500 static inline bool
3501 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3502 		     enum compact_result compact_result,
3503 		     enum compact_priority *compact_priority,
3504 		     int *compaction_retries)
3505 {
3506 	struct zone *zone;
3507 	struct zoneref *z;
3508 
3509 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3510 		return false;
3511 
3512 	/*
3513 	 * There are setups with compaction disabled which would prefer to loop
3514 	 * inside the allocator rather than hit the oom killer prematurely.
3515 	 * Let's give them a good hope and keep retrying while the order-0
3516 	 * watermarks are OK.
3517 	 */
3518 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3519 					ac->nodemask) {
3520 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3521 					ac_classzone_idx(ac), alloc_flags))
3522 			return true;
3523 	}
3524 	return false;
3525 }
3526 #endif /* CONFIG_COMPACTION */
3527 
3528 #ifdef CONFIG_LOCKDEP
3529 struct lockdep_map __fs_reclaim_map =
3530 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3531 
3532 static bool __need_fs_reclaim(gfp_t gfp_mask)
3533 {
3534 	gfp_mask = current_gfp_context(gfp_mask);
3535 
3536 	/* no reclaim without waiting on it */
3537 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3538 		return false;
3539 
3540 	/* this guy won't enter reclaim */
3541 	if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
3542 		return false;
3543 
3544 	/* We're only interested __GFP_FS allocations for now */
3545 	if (!(gfp_mask & __GFP_FS))
3546 		return false;
3547 
3548 	if (gfp_mask & __GFP_NOLOCKDEP)
3549 		return false;
3550 
3551 	return true;
3552 }
3553 
3554 void fs_reclaim_acquire(gfp_t gfp_mask)
3555 {
3556 	if (__need_fs_reclaim(gfp_mask))
3557 		lock_map_acquire(&__fs_reclaim_map);
3558 }
3559 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3560 
3561 void fs_reclaim_release(gfp_t gfp_mask)
3562 {
3563 	if (__need_fs_reclaim(gfp_mask))
3564 		lock_map_release(&__fs_reclaim_map);
3565 }
3566 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3567 #endif
3568 
3569 /* Perform direct synchronous page reclaim */
3570 static int
3571 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3572 					const struct alloc_context *ac)
3573 {
3574 	struct reclaim_state reclaim_state;
3575 	int progress;
3576 	unsigned int noreclaim_flag;
3577 
3578 	cond_resched();
3579 
3580 	/* We now go into synchronous reclaim */
3581 	cpuset_memory_pressure_bump();
3582 	noreclaim_flag = memalloc_noreclaim_save();
3583 	fs_reclaim_acquire(gfp_mask);
3584 	reclaim_state.reclaimed_slab = 0;
3585 	current->reclaim_state = &reclaim_state;
3586 
3587 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3588 								ac->nodemask);
3589 
3590 	current->reclaim_state = NULL;
3591 	fs_reclaim_release(gfp_mask);
3592 	memalloc_noreclaim_restore(noreclaim_flag);
3593 
3594 	cond_resched();
3595 
3596 	return progress;
3597 }
3598 
3599 /* The really slow allocator path where we enter direct reclaim */
3600 static inline struct page *
3601 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3602 		unsigned int alloc_flags, const struct alloc_context *ac,
3603 		unsigned long *did_some_progress)
3604 {
3605 	struct page *page = NULL;
3606 	bool drained = false;
3607 
3608 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3609 	if (unlikely(!(*did_some_progress)))
3610 		return NULL;
3611 
3612 retry:
3613 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3614 
3615 	/*
3616 	 * If an allocation failed after direct reclaim, it could be because
3617 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3618 	 * Shrink them them and try again
3619 	 */
3620 	if (!page && !drained) {
3621 		unreserve_highatomic_pageblock(ac, false);
3622 		drain_all_pages(NULL);
3623 		drained = true;
3624 		goto retry;
3625 	}
3626 
3627 	return page;
3628 }
3629 
3630 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3631 {
3632 	struct zoneref *z;
3633 	struct zone *zone;
3634 	pg_data_t *last_pgdat = NULL;
3635 
3636 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3637 					ac->high_zoneidx, ac->nodemask) {
3638 		if (last_pgdat != zone->zone_pgdat)
3639 			wakeup_kswapd(zone, order, ac->high_zoneidx);
3640 		last_pgdat = zone->zone_pgdat;
3641 	}
3642 }
3643 
3644 static inline unsigned int
3645 gfp_to_alloc_flags(gfp_t gfp_mask)
3646 {
3647 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3648 
3649 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3650 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3651 
3652 	/*
3653 	 * The caller may dip into page reserves a bit more if the caller
3654 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3655 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3656 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3657 	 */
3658 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3659 
3660 	if (gfp_mask & __GFP_ATOMIC) {
3661 		/*
3662 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3663 		 * if it can't schedule.
3664 		 */
3665 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3666 			alloc_flags |= ALLOC_HARDER;
3667 		/*
3668 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3669 		 * comment for __cpuset_node_allowed().
3670 		 */
3671 		alloc_flags &= ~ALLOC_CPUSET;
3672 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3673 		alloc_flags |= ALLOC_HARDER;
3674 
3675 #ifdef CONFIG_CMA
3676 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3677 		alloc_flags |= ALLOC_CMA;
3678 #endif
3679 	return alloc_flags;
3680 }
3681 
3682 static bool oom_reserves_allowed(struct task_struct *tsk)
3683 {
3684 	if (!tsk_is_oom_victim(tsk))
3685 		return false;
3686 
3687 	/*
3688 	 * !MMU doesn't have oom reaper so give access to memory reserves
3689 	 * only to the thread with TIF_MEMDIE set
3690 	 */
3691 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3692 		return false;
3693 
3694 	return true;
3695 }
3696 
3697 /*
3698  * Distinguish requests which really need access to full memory
3699  * reserves from oom victims which can live with a portion of it
3700  */
3701 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3702 {
3703 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3704 		return 0;
3705 	if (gfp_mask & __GFP_MEMALLOC)
3706 		return ALLOC_NO_WATERMARKS;
3707 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3708 		return ALLOC_NO_WATERMARKS;
3709 	if (!in_interrupt()) {
3710 		if (current->flags & PF_MEMALLOC)
3711 			return ALLOC_NO_WATERMARKS;
3712 		else if (oom_reserves_allowed(current))
3713 			return ALLOC_OOM;
3714 	}
3715 
3716 	return 0;
3717 }
3718 
3719 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3720 {
3721 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3722 }
3723 
3724 /*
3725  * Checks whether it makes sense to retry the reclaim to make a forward progress
3726  * for the given allocation request.
3727  *
3728  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3729  * without success, or when we couldn't even meet the watermark if we
3730  * reclaimed all remaining pages on the LRU lists.
3731  *
3732  * Returns true if a retry is viable or false to enter the oom path.
3733  */
3734 static inline bool
3735 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3736 		     struct alloc_context *ac, int alloc_flags,
3737 		     bool did_some_progress, int *no_progress_loops)
3738 {
3739 	struct zone *zone;
3740 	struct zoneref *z;
3741 
3742 	/*
3743 	 * Costly allocations might have made a progress but this doesn't mean
3744 	 * their order will become available due to high fragmentation so
3745 	 * always increment the no progress counter for them
3746 	 */
3747 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3748 		*no_progress_loops = 0;
3749 	else
3750 		(*no_progress_loops)++;
3751 
3752 	/*
3753 	 * Make sure we converge to OOM if we cannot make any progress
3754 	 * several times in the row.
3755 	 */
3756 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3757 		/* Before OOM, exhaust highatomic_reserve */
3758 		return unreserve_highatomic_pageblock(ac, true);
3759 	}
3760 
3761 	/*
3762 	 * Keep reclaiming pages while there is a chance this will lead
3763 	 * somewhere.  If none of the target zones can satisfy our allocation
3764 	 * request even if all reclaimable pages are considered then we are
3765 	 * screwed and have to go OOM.
3766 	 */
3767 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3768 					ac->nodemask) {
3769 		unsigned long available;
3770 		unsigned long reclaimable;
3771 		unsigned long min_wmark = min_wmark_pages(zone);
3772 		bool wmark;
3773 
3774 		available = reclaimable = zone_reclaimable_pages(zone);
3775 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3776 
3777 		/*
3778 		 * Would the allocation succeed if we reclaimed all
3779 		 * reclaimable pages?
3780 		 */
3781 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3782 				ac_classzone_idx(ac), alloc_flags, available);
3783 		trace_reclaim_retry_zone(z, order, reclaimable,
3784 				available, min_wmark, *no_progress_loops, wmark);
3785 		if (wmark) {
3786 			/*
3787 			 * If we didn't make any progress and have a lot of
3788 			 * dirty + writeback pages then we should wait for
3789 			 * an IO to complete to slow down the reclaim and
3790 			 * prevent from pre mature OOM
3791 			 */
3792 			if (!did_some_progress) {
3793 				unsigned long write_pending;
3794 
3795 				write_pending = zone_page_state_snapshot(zone,
3796 							NR_ZONE_WRITE_PENDING);
3797 
3798 				if (2 * write_pending > reclaimable) {
3799 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3800 					return true;
3801 				}
3802 			}
3803 
3804 			/*
3805 			 * Memory allocation/reclaim might be called from a WQ
3806 			 * context and the current implementation of the WQ
3807 			 * concurrency control doesn't recognize that
3808 			 * a particular WQ is congested if the worker thread is
3809 			 * looping without ever sleeping. Therefore we have to
3810 			 * do a short sleep here rather than calling
3811 			 * cond_resched().
3812 			 */
3813 			if (current->flags & PF_WQ_WORKER)
3814 				schedule_timeout_uninterruptible(1);
3815 			else
3816 				cond_resched();
3817 
3818 			return true;
3819 		}
3820 	}
3821 
3822 	return false;
3823 }
3824 
3825 static inline bool
3826 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3827 {
3828 	/*
3829 	 * It's possible that cpuset's mems_allowed and the nodemask from
3830 	 * mempolicy don't intersect. This should be normally dealt with by
3831 	 * policy_nodemask(), but it's possible to race with cpuset update in
3832 	 * such a way the check therein was true, and then it became false
3833 	 * before we got our cpuset_mems_cookie here.
3834 	 * This assumes that for all allocations, ac->nodemask can come only
3835 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3836 	 * when it does not intersect with the cpuset restrictions) or the
3837 	 * caller can deal with a violated nodemask.
3838 	 */
3839 	if (cpusets_enabled() && ac->nodemask &&
3840 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3841 		ac->nodemask = NULL;
3842 		return true;
3843 	}
3844 
3845 	/*
3846 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3847 	 * possible to race with parallel threads in such a way that our
3848 	 * allocation can fail while the mask is being updated. If we are about
3849 	 * to fail, check if the cpuset changed during allocation and if so,
3850 	 * retry.
3851 	 */
3852 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3853 		return true;
3854 
3855 	return false;
3856 }
3857 
3858 static inline struct page *
3859 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3860 						struct alloc_context *ac)
3861 {
3862 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3863 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3864 	struct page *page = NULL;
3865 	unsigned int alloc_flags;
3866 	unsigned long did_some_progress;
3867 	enum compact_priority compact_priority;
3868 	enum compact_result compact_result;
3869 	int compaction_retries;
3870 	int no_progress_loops;
3871 	unsigned long alloc_start = jiffies;
3872 	unsigned int stall_timeout = 10 * HZ;
3873 	unsigned int cpuset_mems_cookie;
3874 	int reserve_flags;
3875 
3876 	/*
3877 	 * In the slowpath, we sanity check order to avoid ever trying to
3878 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3879 	 * be using allocators in order of preference for an area that is
3880 	 * too large.
3881 	 */
3882 	if (order >= MAX_ORDER) {
3883 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3884 		return NULL;
3885 	}
3886 
3887 	/*
3888 	 * We also sanity check to catch abuse of atomic reserves being used by
3889 	 * callers that are not in atomic context.
3890 	 */
3891 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3892 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3893 		gfp_mask &= ~__GFP_ATOMIC;
3894 
3895 retry_cpuset:
3896 	compaction_retries = 0;
3897 	no_progress_loops = 0;
3898 	compact_priority = DEF_COMPACT_PRIORITY;
3899 	cpuset_mems_cookie = read_mems_allowed_begin();
3900 
3901 	/*
3902 	 * The fast path uses conservative alloc_flags to succeed only until
3903 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3904 	 * alloc_flags precisely. So we do that now.
3905 	 */
3906 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3907 
3908 	/*
3909 	 * We need to recalculate the starting point for the zonelist iterator
3910 	 * because we might have used different nodemask in the fast path, or
3911 	 * there was a cpuset modification and we are retrying - otherwise we
3912 	 * could end up iterating over non-eligible zones endlessly.
3913 	 */
3914 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3915 					ac->high_zoneidx, ac->nodemask);
3916 	if (!ac->preferred_zoneref->zone)
3917 		goto nopage;
3918 
3919 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3920 		wake_all_kswapds(order, ac);
3921 
3922 	/*
3923 	 * The adjusted alloc_flags might result in immediate success, so try
3924 	 * that first
3925 	 */
3926 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3927 	if (page)
3928 		goto got_pg;
3929 
3930 	/*
3931 	 * For costly allocations, try direct compaction first, as it's likely
3932 	 * that we have enough base pages and don't need to reclaim. For non-
3933 	 * movable high-order allocations, do that as well, as compaction will
3934 	 * try prevent permanent fragmentation by migrating from blocks of the
3935 	 * same migratetype.
3936 	 * Don't try this for allocations that are allowed to ignore
3937 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3938 	 */
3939 	if (can_direct_reclaim &&
3940 			(costly_order ||
3941 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3942 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
3943 		page = __alloc_pages_direct_compact(gfp_mask, order,
3944 						alloc_flags, ac,
3945 						INIT_COMPACT_PRIORITY,
3946 						&compact_result);
3947 		if (page)
3948 			goto got_pg;
3949 
3950 		/*
3951 		 * Checks for costly allocations with __GFP_NORETRY, which
3952 		 * includes THP page fault allocations
3953 		 */
3954 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3955 			/*
3956 			 * If compaction is deferred for high-order allocations,
3957 			 * it is because sync compaction recently failed. If
3958 			 * this is the case and the caller requested a THP
3959 			 * allocation, we do not want to heavily disrupt the
3960 			 * system, so we fail the allocation instead of entering
3961 			 * direct reclaim.
3962 			 */
3963 			if (compact_result == COMPACT_DEFERRED)
3964 				goto nopage;
3965 
3966 			/*
3967 			 * Looks like reclaim/compaction is worth trying, but
3968 			 * sync compaction could be very expensive, so keep
3969 			 * using async compaction.
3970 			 */
3971 			compact_priority = INIT_COMPACT_PRIORITY;
3972 		}
3973 	}
3974 
3975 retry:
3976 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3977 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3978 		wake_all_kswapds(order, ac);
3979 
3980 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
3981 	if (reserve_flags)
3982 		alloc_flags = reserve_flags;
3983 
3984 	/*
3985 	 * Reset the zonelist iterators if memory policies can be ignored.
3986 	 * These allocations are high priority and system rather than user
3987 	 * orientated.
3988 	 */
3989 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
3990 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3991 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3992 					ac->high_zoneidx, ac->nodemask);
3993 	}
3994 
3995 	/* Attempt with potentially adjusted zonelist and alloc_flags */
3996 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3997 	if (page)
3998 		goto got_pg;
3999 
4000 	/* Caller is not willing to reclaim, we can't balance anything */
4001 	if (!can_direct_reclaim)
4002 		goto nopage;
4003 
4004 	/* Make sure we know about allocations which stall for too long */
4005 	if (time_after(jiffies, alloc_start + stall_timeout)) {
4006 		warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
4007 			"page allocation stalls for %ums, order:%u",
4008 			jiffies_to_msecs(jiffies-alloc_start), order);
4009 		stall_timeout += 10 * HZ;
4010 	}
4011 
4012 	/* Avoid recursion of direct reclaim */
4013 	if (current->flags & PF_MEMALLOC)
4014 		goto nopage;
4015 
4016 	/* Try direct reclaim and then allocating */
4017 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4018 							&did_some_progress);
4019 	if (page)
4020 		goto got_pg;
4021 
4022 	/* Try direct compaction and then allocating */
4023 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4024 					compact_priority, &compact_result);
4025 	if (page)
4026 		goto got_pg;
4027 
4028 	/* Do not loop if specifically requested */
4029 	if (gfp_mask & __GFP_NORETRY)
4030 		goto nopage;
4031 
4032 	/*
4033 	 * Do not retry costly high order allocations unless they are
4034 	 * __GFP_RETRY_MAYFAIL
4035 	 */
4036 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4037 		goto nopage;
4038 
4039 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4040 				 did_some_progress > 0, &no_progress_loops))
4041 		goto retry;
4042 
4043 	/*
4044 	 * It doesn't make any sense to retry for the compaction if the order-0
4045 	 * reclaim is not able to make any progress because the current
4046 	 * implementation of the compaction depends on the sufficient amount
4047 	 * of free memory (see __compaction_suitable)
4048 	 */
4049 	if (did_some_progress > 0 &&
4050 			should_compact_retry(ac, order, alloc_flags,
4051 				compact_result, &compact_priority,
4052 				&compaction_retries))
4053 		goto retry;
4054 
4055 
4056 	/* Deal with possible cpuset update races before we start OOM killing */
4057 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4058 		goto retry_cpuset;
4059 
4060 	/* Reclaim has failed us, start killing things */
4061 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4062 	if (page)
4063 		goto got_pg;
4064 
4065 	/* Avoid allocations with no watermarks from looping endlessly */
4066 	if (tsk_is_oom_victim(current) &&
4067 	    (alloc_flags == ALLOC_OOM ||
4068 	     (gfp_mask & __GFP_NOMEMALLOC)))
4069 		goto nopage;
4070 
4071 	/* Retry as long as the OOM killer is making progress */
4072 	if (did_some_progress) {
4073 		no_progress_loops = 0;
4074 		goto retry;
4075 	}
4076 
4077 nopage:
4078 	/* Deal with possible cpuset update races before we fail */
4079 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4080 		goto retry_cpuset;
4081 
4082 	/*
4083 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4084 	 * we always retry
4085 	 */
4086 	if (gfp_mask & __GFP_NOFAIL) {
4087 		/*
4088 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4089 		 * of any new users that actually require GFP_NOWAIT
4090 		 */
4091 		if (WARN_ON_ONCE(!can_direct_reclaim))
4092 			goto fail;
4093 
4094 		/*
4095 		 * PF_MEMALLOC request from this context is rather bizarre
4096 		 * because we cannot reclaim anything and only can loop waiting
4097 		 * for somebody to do a work for us
4098 		 */
4099 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4100 
4101 		/*
4102 		 * non failing costly orders are a hard requirement which we
4103 		 * are not prepared for much so let's warn about these users
4104 		 * so that we can identify them and convert them to something
4105 		 * else.
4106 		 */
4107 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4108 
4109 		/*
4110 		 * Help non-failing allocations by giving them access to memory
4111 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4112 		 * could deplete whole memory reserves which would just make
4113 		 * the situation worse
4114 		 */
4115 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4116 		if (page)
4117 			goto got_pg;
4118 
4119 		cond_resched();
4120 		goto retry;
4121 	}
4122 fail:
4123 	warn_alloc(gfp_mask, ac->nodemask,
4124 			"page allocation failure: order:%u", order);
4125 got_pg:
4126 	return page;
4127 }
4128 
4129 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4130 		int preferred_nid, nodemask_t *nodemask,
4131 		struct alloc_context *ac, gfp_t *alloc_mask,
4132 		unsigned int *alloc_flags)
4133 {
4134 	ac->high_zoneidx = gfp_zone(gfp_mask);
4135 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4136 	ac->nodemask = nodemask;
4137 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4138 
4139 	if (cpusets_enabled()) {
4140 		*alloc_mask |= __GFP_HARDWALL;
4141 		if (!ac->nodemask)
4142 			ac->nodemask = &cpuset_current_mems_allowed;
4143 		else
4144 			*alloc_flags |= ALLOC_CPUSET;
4145 	}
4146 
4147 	fs_reclaim_acquire(gfp_mask);
4148 	fs_reclaim_release(gfp_mask);
4149 
4150 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4151 
4152 	if (should_fail_alloc_page(gfp_mask, order))
4153 		return false;
4154 
4155 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4156 		*alloc_flags |= ALLOC_CMA;
4157 
4158 	return true;
4159 }
4160 
4161 /* Determine whether to spread dirty pages and what the first usable zone */
4162 static inline void finalise_ac(gfp_t gfp_mask,
4163 		unsigned int order, struct alloc_context *ac)
4164 {
4165 	/* Dirty zone balancing only done in the fast path */
4166 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4167 
4168 	/*
4169 	 * The preferred zone is used for statistics but crucially it is
4170 	 * also used as the starting point for the zonelist iterator. It
4171 	 * may get reset for allocations that ignore memory policies.
4172 	 */
4173 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4174 					ac->high_zoneidx, ac->nodemask);
4175 }
4176 
4177 /*
4178  * This is the 'heart' of the zoned buddy allocator.
4179  */
4180 struct page *
4181 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4182 							nodemask_t *nodemask)
4183 {
4184 	struct page *page;
4185 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4186 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4187 	struct alloc_context ac = { };
4188 
4189 	gfp_mask &= gfp_allowed_mask;
4190 	alloc_mask = gfp_mask;
4191 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4192 		return NULL;
4193 
4194 	finalise_ac(gfp_mask, order, &ac);
4195 
4196 	/* First allocation attempt */
4197 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4198 	if (likely(page))
4199 		goto out;
4200 
4201 	/*
4202 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4203 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4204 	 * from a particular context which has been marked by
4205 	 * memalloc_no{fs,io}_{save,restore}.
4206 	 */
4207 	alloc_mask = current_gfp_context(gfp_mask);
4208 	ac.spread_dirty_pages = false;
4209 
4210 	/*
4211 	 * Restore the original nodemask if it was potentially replaced with
4212 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4213 	 */
4214 	if (unlikely(ac.nodemask != nodemask))
4215 		ac.nodemask = nodemask;
4216 
4217 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4218 
4219 out:
4220 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4221 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4222 		__free_pages(page, order);
4223 		page = NULL;
4224 	}
4225 
4226 	if (kmemcheck_enabled && page)
4227 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
4228 
4229 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4230 
4231 	return page;
4232 }
4233 EXPORT_SYMBOL(__alloc_pages_nodemask);
4234 
4235 /*
4236  * Common helper functions.
4237  */
4238 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4239 {
4240 	struct page *page;
4241 
4242 	/*
4243 	 * __get_free_pages() returns a 32-bit address, which cannot represent
4244 	 * a highmem page
4245 	 */
4246 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4247 
4248 	page = alloc_pages(gfp_mask, order);
4249 	if (!page)
4250 		return 0;
4251 	return (unsigned long) page_address(page);
4252 }
4253 EXPORT_SYMBOL(__get_free_pages);
4254 
4255 unsigned long get_zeroed_page(gfp_t gfp_mask)
4256 {
4257 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4258 }
4259 EXPORT_SYMBOL(get_zeroed_page);
4260 
4261 void __free_pages(struct page *page, unsigned int order)
4262 {
4263 	if (put_page_testzero(page)) {
4264 		if (order == 0)
4265 			free_hot_cold_page(page, false);
4266 		else
4267 			__free_pages_ok(page, order);
4268 	}
4269 }
4270 
4271 EXPORT_SYMBOL(__free_pages);
4272 
4273 void free_pages(unsigned long addr, unsigned int order)
4274 {
4275 	if (addr != 0) {
4276 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4277 		__free_pages(virt_to_page((void *)addr), order);
4278 	}
4279 }
4280 
4281 EXPORT_SYMBOL(free_pages);
4282 
4283 /*
4284  * Page Fragment:
4285  *  An arbitrary-length arbitrary-offset area of memory which resides
4286  *  within a 0 or higher order page.  Multiple fragments within that page
4287  *  are individually refcounted, in the page's reference counter.
4288  *
4289  * The page_frag functions below provide a simple allocation framework for
4290  * page fragments.  This is used by the network stack and network device
4291  * drivers to provide a backing region of memory for use as either an
4292  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4293  */
4294 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4295 					     gfp_t gfp_mask)
4296 {
4297 	struct page *page = NULL;
4298 	gfp_t gfp = gfp_mask;
4299 
4300 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4301 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4302 		    __GFP_NOMEMALLOC;
4303 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4304 				PAGE_FRAG_CACHE_MAX_ORDER);
4305 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4306 #endif
4307 	if (unlikely(!page))
4308 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4309 
4310 	nc->va = page ? page_address(page) : NULL;
4311 
4312 	return page;
4313 }
4314 
4315 void __page_frag_cache_drain(struct page *page, unsigned int count)
4316 {
4317 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4318 
4319 	if (page_ref_sub_and_test(page, count)) {
4320 		unsigned int order = compound_order(page);
4321 
4322 		if (order == 0)
4323 			free_hot_cold_page(page, false);
4324 		else
4325 			__free_pages_ok(page, order);
4326 	}
4327 }
4328 EXPORT_SYMBOL(__page_frag_cache_drain);
4329 
4330 void *page_frag_alloc(struct page_frag_cache *nc,
4331 		      unsigned int fragsz, gfp_t gfp_mask)
4332 {
4333 	unsigned int size = PAGE_SIZE;
4334 	struct page *page;
4335 	int offset;
4336 
4337 	if (unlikely(!nc->va)) {
4338 refill:
4339 		page = __page_frag_cache_refill(nc, gfp_mask);
4340 		if (!page)
4341 			return NULL;
4342 
4343 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4344 		/* if size can vary use size else just use PAGE_SIZE */
4345 		size = nc->size;
4346 #endif
4347 		/* Even if we own the page, we do not use atomic_set().
4348 		 * This would break get_page_unless_zero() users.
4349 		 */
4350 		page_ref_add(page, size - 1);
4351 
4352 		/* reset page count bias and offset to start of new frag */
4353 		nc->pfmemalloc = page_is_pfmemalloc(page);
4354 		nc->pagecnt_bias = size;
4355 		nc->offset = size;
4356 	}
4357 
4358 	offset = nc->offset - fragsz;
4359 	if (unlikely(offset < 0)) {
4360 		page = virt_to_page(nc->va);
4361 
4362 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4363 			goto refill;
4364 
4365 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4366 		/* if size can vary use size else just use PAGE_SIZE */
4367 		size = nc->size;
4368 #endif
4369 		/* OK, page count is 0, we can safely set it */
4370 		set_page_count(page, size);
4371 
4372 		/* reset page count bias and offset to start of new frag */
4373 		nc->pagecnt_bias = size;
4374 		offset = size - fragsz;
4375 	}
4376 
4377 	nc->pagecnt_bias--;
4378 	nc->offset = offset;
4379 
4380 	return nc->va + offset;
4381 }
4382 EXPORT_SYMBOL(page_frag_alloc);
4383 
4384 /*
4385  * Frees a page fragment allocated out of either a compound or order 0 page.
4386  */
4387 void page_frag_free(void *addr)
4388 {
4389 	struct page *page = virt_to_head_page(addr);
4390 
4391 	if (unlikely(put_page_testzero(page)))
4392 		__free_pages_ok(page, compound_order(page));
4393 }
4394 EXPORT_SYMBOL(page_frag_free);
4395 
4396 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4397 		size_t size)
4398 {
4399 	if (addr) {
4400 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4401 		unsigned long used = addr + PAGE_ALIGN(size);
4402 
4403 		split_page(virt_to_page((void *)addr), order);
4404 		while (used < alloc_end) {
4405 			free_page(used);
4406 			used += PAGE_SIZE;
4407 		}
4408 	}
4409 	return (void *)addr;
4410 }
4411 
4412 /**
4413  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4414  * @size: the number of bytes to allocate
4415  * @gfp_mask: GFP flags for the allocation
4416  *
4417  * This function is similar to alloc_pages(), except that it allocates the
4418  * minimum number of pages to satisfy the request.  alloc_pages() can only
4419  * allocate memory in power-of-two pages.
4420  *
4421  * This function is also limited by MAX_ORDER.
4422  *
4423  * Memory allocated by this function must be released by free_pages_exact().
4424  */
4425 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4426 {
4427 	unsigned int order = get_order(size);
4428 	unsigned long addr;
4429 
4430 	addr = __get_free_pages(gfp_mask, order);
4431 	return make_alloc_exact(addr, order, size);
4432 }
4433 EXPORT_SYMBOL(alloc_pages_exact);
4434 
4435 /**
4436  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4437  *			   pages on a node.
4438  * @nid: the preferred node ID where memory should be allocated
4439  * @size: the number of bytes to allocate
4440  * @gfp_mask: GFP flags for the allocation
4441  *
4442  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4443  * back.
4444  */
4445 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4446 {
4447 	unsigned int order = get_order(size);
4448 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4449 	if (!p)
4450 		return NULL;
4451 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4452 }
4453 
4454 /**
4455  * free_pages_exact - release memory allocated via alloc_pages_exact()
4456  * @virt: the value returned by alloc_pages_exact.
4457  * @size: size of allocation, same value as passed to alloc_pages_exact().
4458  *
4459  * Release the memory allocated by a previous call to alloc_pages_exact.
4460  */
4461 void free_pages_exact(void *virt, size_t size)
4462 {
4463 	unsigned long addr = (unsigned long)virt;
4464 	unsigned long end = addr + PAGE_ALIGN(size);
4465 
4466 	while (addr < end) {
4467 		free_page(addr);
4468 		addr += PAGE_SIZE;
4469 	}
4470 }
4471 EXPORT_SYMBOL(free_pages_exact);
4472 
4473 /**
4474  * nr_free_zone_pages - count number of pages beyond high watermark
4475  * @offset: The zone index of the highest zone
4476  *
4477  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4478  * high watermark within all zones at or below a given zone index.  For each
4479  * zone, the number of pages is calculated as:
4480  *
4481  *     nr_free_zone_pages = managed_pages - high_pages
4482  */
4483 static unsigned long nr_free_zone_pages(int offset)
4484 {
4485 	struct zoneref *z;
4486 	struct zone *zone;
4487 
4488 	/* Just pick one node, since fallback list is circular */
4489 	unsigned long sum = 0;
4490 
4491 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4492 
4493 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4494 		unsigned long size = zone->managed_pages;
4495 		unsigned long high = high_wmark_pages(zone);
4496 		if (size > high)
4497 			sum += size - high;
4498 	}
4499 
4500 	return sum;
4501 }
4502 
4503 /**
4504  * nr_free_buffer_pages - count number of pages beyond high watermark
4505  *
4506  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4507  * watermark within ZONE_DMA and ZONE_NORMAL.
4508  */
4509 unsigned long nr_free_buffer_pages(void)
4510 {
4511 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4512 }
4513 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4514 
4515 /**
4516  * nr_free_pagecache_pages - count number of pages beyond high watermark
4517  *
4518  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4519  * high watermark within all zones.
4520  */
4521 unsigned long nr_free_pagecache_pages(void)
4522 {
4523 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4524 }
4525 
4526 static inline void show_node(struct zone *zone)
4527 {
4528 	if (IS_ENABLED(CONFIG_NUMA))
4529 		printk("Node %d ", zone_to_nid(zone));
4530 }
4531 
4532 long si_mem_available(void)
4533 {
4534 	long available;
4535 	unsigned long pagecache;
4536 	unsigned long wmark_low = 0;
4537 	unsigned long pages[NR_LRU_LISTS];
4538 	struct zone *zone;
4539 	int lru;
4540 
4541 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4542 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4543 
4544 	for_each_zone(zone)
4545 		wmark_low += zone->watermark[WMARK_LOW];
4546 
4547 	/*
4548 	 * Estimate the amount of memory available for userspace allocations,
4549 	 * without causing swapping.
4550 	 */
4551 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4552 
4553 	/*
4554 	 * Not all the page cache can be freed, otherwise the system will
4555 	 * start swapping. Assume at least half of the page cache, or the
4556 	 * low watermark worth of cache, needs to stay.
4557 	 */
4558 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4559 	pagecache -= min(pagecache / 2, wmark_low);
4560 	available += pagecache;
4561 
4562 	/*
4563 	 * Part of the reclaimable slab consists of items that are in use,
4564 	 * and cannot be freed. Cap this estimate at the low watermark.
4565 	 */
4566 	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4567 		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4568 			 wmark_low);
4569 
4570 	if (available < 0)
4571 		available = 0;
4572 	return available;
4573 }
4574 EXPORT_SYMBOL_GPL(si_mem_available);
4575 
4576 void si_meminfo(struct sysinfo *val)
4577 {
4578 	val->totalram = totalram_pages;
4579 	val->sharedram = global_node_page_state(NR_SHMEM);
4580 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
4581 	val->bufferram = nr_blockdev_pages();
4582 	val->totalhigh = totalhigh_pages;
4583 	val->freehigh = nr_free_highpages();
4584 	val->mem_unit = PAGE_SIZE;
4585 }
4586 
4587 EXPORT_SYMBOL(si_meminfo);
4588 
4589 #ifdef CONFIG_NUMA
4590 void si_meminfo_node(struct sysinfo *val, int nid)
4591 {
4592 	int zone_type;		/* needs to be signed */
4593 	unsigned long managed_pages = 0;
4594 	unsigned long managed_highpages = 0;
4595 	unsigned long free_highpages = 0;
4596 	pg_data_t *pgdat = NODE_DATA(nid);
4597 
4598 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4599 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4600 	val->totalram = managed_pages;
4601 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4602 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4603 #ifdef CONFIG_HIGHMEM
4604 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4605 		struct zone *zone = &pgdat->node_zones[zone_type];
4606 
4607 		if (is_highmem(zone)) {
4608 			managed_highpages += zone->managed_pages;
4609 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4610 		}
4611 	}
4612 	val->totalhigh = managed_highpages;
4613 	val->freehigh = free_highpages;
4614 #else
4615 	val->totalhigh = managed_highpages;
4616 	val->freehigh = free_highpages;
4617 #endif
4618 	val->mem_unit = PAGE_SIZE;
4619 }
4620 #endif
4621 
4622 /*
4623  * Determine whether the node should be displayed or not, depending on whether
4624  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4625  */
4626 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4627 {
4628 	if (!(flags & SHOW_MEM_FILTER_NODES))
4629 		return false;
4630 
4631 	/*
4632 	 * no node mask - aka implicit memory numa policy. Do not bother with
4633 	 * the synchronization - read_mems_allowed_begin - because we do not
4634 	 * have to be precise here.
4635 	 */
4636 	if (!nodemask)
4637 		nodemask = &cpuset_current_mems_allowed;
4638 
4639 	return !node_isset(nid, *nodemask);
4640 }
4641 
4642 #define K(x) ((x) << (PAGE_SHIFT-10))
4643 
4644 static void show_migration_types(unsigned char type)
4645 {
4646 	static const char types[MIGRATE_TYPES] = {
4647 		[MIGRATE_UNMOVABLE]	= 'U',
4648 		[MIGRATE_MOVABLE]	= 'M',
4649 		[MIGRATE_RECLAIMABLE]	= 'E',
4650 		[MIGRATE_HIGHATOMIC]	= 'H',
4651 #ifdef CONFIG_CMA
4652 		[MIGRATE_CMA]		= 'C',
4653 #endif
4654 #ifdef CONFIG_MEMORY_ISOLATION
4655 		[MIGRATE_ISOLATE]	= 'I',
4656 #endif
4657 	};
4658 	char tmp[MIGRATE_TYPES + 1];
4659 	char *p = tmp;
4660 	int i;
4661 
4662 	for (i = 0; i < MIGRATE_TYPES; i++) {
4663 		if (type & (1 << i))
4664 			*p++ = types[i];
4665 	}
4666 
4667 	*p = '\0';
4668 	printk(KERN_CONT "(%s) ", tmp);
4669 }
4670 
4671 /*
4672  * Show free area list (used inside shift_scroll-lock stuff)
4673  * We also calculate the percentage fragmentation. We do this by counting the
4674  * memory on each free list with the exception of the first item on the list.
4675  *
4676  * Bits in @filter:
4677  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4678  *   cpuset.
4679  */
4680 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4681 {
4682 	unsigned long free_pcp = 0;
4683 	int cpu;
4684 	struct zone *zone;
4685 	pg_data_t *pgdat;
4686 
4687 	for_each_populated_zone(zone) {
4688 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4689 			continue;
4690 
4691 		for_each_online_cpu(cpu)
4692 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4693 	}
4694 
4695 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4696 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4697 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4698 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4699 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4700 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4701 		global_node_page_state(NR_ACTIVE_ANON),
4702 		global_node_page_state(NR_INACTIVE_ANON),
4703 		global_node_page_state(NR_ISOLATED_ANON),
4704 		global_node_page_state(NR_ACTIVE_FILE),
4705 		global_node_page_state(NR_INACTIVE_FILE),
4706 		global_node_page_state(NR_ISOLATED_FILE),
4707 		global_node_page_state(NR_UNEVICTABLE),
4708 		global_node_page_state(NR_FILE_DIRTY),
4709 		global_node_page_state(NR_WRITEBACK),
4710 		global_node_page_state(NR_UNSTABLE_NFS),
4711 		global_node_page_state(NR_SLAB_RECLAIMABLE),
4712 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4713 		global_node_page_state(NR_FILE_MAPPED),
4714 		global_node_page_state(NR_SHMEM),
4715 		global_zone_page_state(NR_PAGETABLE),
4716 		global_zone_page_state(NR_BOUNCE),
4717 		global_zone_page_state(NR_FREE_PAGES),
4718 		free_pcp,
4719 		global_zone_page_state(NR_FREE_CMA_PAGES));
4720 
4721 	for_each_online_pgdat(pgdat) {
4722 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4723 			continue;
4724 
4725 		printk("Node %d"
4726 			" active_anon:%lukB"
4727 			" inactive_anon:%lukB"
4728 			" active_file:%lukB"
4729 			" inactive_file:%lukB"
4730 			" unevictable:%lukB"
4731 			" isolated(anon):%lukB"
4732 			" isolated(file):%lukB"
4733 			" mapped:%lukB"
4734 			" dirty:%lukB"
4735 			" writeback:%lukB"
4736 			" shmem:%lukB"
4737 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4738 			" shmem_thp: %lukB"
4739 			" shmem_pmdmapped: %lukB"
4740 			" anon_thp: %lukB"
4741 #endif
4742 			" writeback_tmp:%lukB"
4743 			" unstable:%lukB"
4744 			" all_unreclaimable? %s"
4745 			"\n",
4746 			pgdat->node_id,
4747 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4748 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4749 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4750 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4751 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4752 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4753 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4754 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4755 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4756 			K(node_page_state(pgdat, NR_WRITEBACK)),
4757 			K(node_page_state(pgdat, NR_SHMEM)),
4758 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4759 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4760 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4761 					* HPAGE_PMD_NR),
4762 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4763 #endif
4764 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4765 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4766 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4767 				"yes" : "no");
4768 	}
4769 
4770 	for_each_populated_zone(zone) {
4771 		int i;
4772 
4773 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4774 			continue;
4775 
4776 		free_pcp = 0;
4777 		for_each_online_cpu(cpu)
4778 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4779 
4780 		show_node(zone);
4781 		printk(KERN_CONT
4782 			"%s"
4783 			" free:%lukB"
4784 			" min:%lukB"
4785 			" low:%lukB"
4786 			" high:%lukB"
4787 			" active_anon:%lukB"
4788 			" inactive_anon:%lukB"
4789 			" active_file:%lukB"
4790 			" inactive_file:%lukB"
4791 			" unevictable:%lukB"
4792 			" writepending:%lukB"
4793 			" present:%lukB"
4794 			" managed:%lukB"
4795 			" mlocked:%lukB"
4796 			" kernel_stack:%lukB"
4797 			" pagetables:%lukB"
4798 			" bounce:%lukB"
4799 			" free_pcp:%lukB"
4800 			" local_pcp:%ukB"
4801 			" free_cma:%lukB"
4802 			"\n",
4803 			zone->name,
4804 			K(zone_page_state(zone, NR_FREE_PAGES)),
4805 			K(min_wmark_pages(zone)),
4806 			K(low_wmark_pages(zone)),
4807 			K(high_wmark_pages(zone)),
4808 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4809 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4810 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4811 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4812 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4813 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4814 			K(zone->present_pages),
4815 			K(zone->managed_pages),
4816 			K(zone_page_state(zone, NR_MLOCK)),
4817 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4818 			K(zone_page_state(zone, NR_PAGETABLE)),
4819 			K(zone_page_state(zone, NR_BOUNCE)),
4820 			K(free_pcp),
4821 			K(this_cpu_read(zone->pageset->pcp.count)),
4822 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4823 		printk("lowmem_reserve[]:");
4824 		for (i = 0; i < MAX_NR_ZONES; i++)
4825 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4826 		printk(KERN_CONT "\n");
4827 	}
4828 
4829 	for_each_populated_zone(zone) {
4830 		unsigned int order;
4831 		unsigned long nr[MAX_ORDER], flags, total = 0;
4832 		unsigned char types[MAX_ORDER];
4833 
4834 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4835 			continue;
4836 		show_node(zone);
4837 		printk(KERN_CONT "%s: ", zone->name);
4838 
4839 		spin_lock_irqsave(&zone->lock, flags);
4840 		for (order = 0; order < MAX_ORDER; order++) {
4841 			struct free_area *area = &zone->free_area[order];
4842 			int type;
4843 
4844 			nr[order] = area->nr_free;
4845 			total += nr[order] << order;
4846 
4847 			types[order] = 0;
4848 			for (type = 0; type < MIGRATE_TYPES; type++) {
4849 				if (!list_empty(&area->free_list[type]))
4850 					types[order] |= 1 << type;
4851 			}
4852 		}
4853 		spin_unlock_irqrestore(&zone->lock, flags);
4854 		for (order = 0; order < MAX_ORDER; order++) {
4855 			printk(KERN_CONT "%lu*%lukB ",
4856 			       nr[order], K(1UL) << order);
4857 			if (nr[order])
4858 				show_migration_types(types[order]);
4859 		}
4860 		printk(KERN_CONT "= %lukB\n", K(total));
4861 	}
4862 
4863 	hugetlb_show_meminfo();
4864 
4865 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4866 
4867 	show_swap_cache_info();
4868 }
4869 
4870 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4871 {
4872 	zoneref->zone = zone;
4873 	zoneref->zone_idx = zone_idx(zone);
4874 }
4875 
4876 /*
4877  * Builds allocation fallback zone lists.
4878  *
4879  * Add all populated zones of a node to the zonelist.
4880  */
4881 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4882 {
4883 	struct zone *zone;
4884 	enum zone_type zone_type = MAX_NR_ZONES;
4885 	int nr_zones = 0;
4886 
4887 	do {
4888 		zone_type--;
4889 		zone = pgdat->node_zones + zone_type;
4890 		if (managed_zone(zone)) {
4891 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4892 			check_highest_zone(zone_type);
4893 		}
4894 	} while (zone_type);
4895 
4896 	return nr_zones;
4897 }
4898 
4899 #ifdef CONFIG_NUMA
4900 
4901 static int __parse_numa_zonelist_order(char *s)
4902 {
4903 	/*
4904 	 * We used to support different zonlists modes but they turned
4905 	 * out to be just not useful. Let's keep the warning in place
4906 	 * if somebody still use the cmd line parameter so that we do
4907 	 * not fail it silently
4908 	 */
4909 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4910 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4911 		return -EINVAL;
4912 	}
4913 	return 0;
4914 }
4915 
4916 static __init int setup_numa_zonelist_order(char *s)
4917 {
4918 	if (!s)
4919 		return 0;
4920 
4921 	return __parse_numa_zonelist_order(s);
4922 }
4923 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4924 
4925 char numa_zonelist_order[] = "Node";
4926 
4927 /*
4928  * sysctl handler for numa_zonelist_order
4929  */
4930 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4931 		void __user *buffer, size_t *length,
4932 		loff_t *ppos)
4933 {
4934 	char *str;
4935 	int ret;
4936 
4937 	if (!write)
4938 		return proc_dostring(table, write, buffer, length, ppos);
4939 	str = memdup_user_nul(buffer, 16);
4940 	if (IS_ERR(str))
4941 		return PTR_ERR(str);
4942 
4943 	ret = __parse_numa_zonelist_order(str);
4944 	kfree(str);
4945 	return ret;
4946 }
4947 
4948 
4949 #define MAX_NODE_LOAD (nr_online_nodes)
4950 static int node_load[MAX_NUMNODES];
4951 
4952 /**
4953  * find_next_best_node - find the next node that should appear in a given node's fallback list
4954  * @node: node whose fallback list we're appending
4955  * @used_node_mask: nodemask_t of already used nodes
4956  *
4957  * We use a number of factors to determine which is the next node that should
4958  * appear on a given node's fallback list.  The node should not have appeared
4959  * already in @node's fallback list, and it should be the next closest node
4960  * according to the distance array (which contains arbitrary distance values
4961  * from each node to each node in the system), and should also prefer nodes
4962  * with no CPUs, since presumably they'll have very little allocation pressure
4963  * on them otherwise.
4964  * It returns -1 if no node is found.
4965  */
4966 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4967 {
4968 	int n, val;
4969 	int min_val = INT_MAX;
4970 	int best_node = NUMA_NO_NODE;
4971 	const struct cpumask *tmp = cpumask_of_node(0);
4972 
4973 	/* Use the local node if we haven't already */
4974 	if (!node_isset(node, *used_node_mask)) {
4975 		node_set(node, *used_node_mask);
4976 		return node;
4977 	}
4978 
4979 	for_each_node_state(n, N_MEMORY) {
4980 
4981 		/* Don't want a node to appear more than once */
4982 		if (node_isset(n, *used_node_mask))
4983 			continue;
4984 
4985 		/* Use the distance array to find the distance */
4986 		val = node_distance(node, n);
4987 
4988 		/* Penalize nodes under us ("prefer the next node") */
4989 		val += (n < node);
4990 
4991 		/* Give preference to headless and unused nodes */
4992 		tmp = cpumask_of_node(n);
4993 		if (!cpumask_empty(tmp))
4994 			val += PENALTY_FOR_NODE_WITH_CPUS;
4995 
4996 		/* Slight preference for less loaded node */
4997 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4998 		val += node_load[n];
4999 
5000 		if (val < min_val) {
5001 			min_val = val;
5002 			best_node = n;
5003 		}
5004 	}
5005 
5006 	if (best_node >= 0)
5007 		node_set(best_node, *used_node_mask);
5008 
5009 	return best_node;
5010 }
5011 
5012 
5013 /*
5014  * Build zonelists ordered by node and zones within node.
5015  * This results in maximum locality--normal zone overflows into local
5016  * DMA zone, if any--but risks exhausting DMA zone.
5017  */
5018 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5019 		unsigned nr_nodes)
5020 {
5021 	struct zoneref *zonerefs;
5022 	int i;
5023 
5024 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5025 
5026 	for (i = 0; i < nr_nodes; i++) {
5027 		int nr_zones;
5028 
5029 		pg_data_t *node = NODE_DATA(node_order[i]);
5030 
5031 		nr_zones = build_zonerefs_node(node, zonerefs);
5032 		zonerefs += nr_zones;
5033 	}
5034 	zonerefs->zone = NULL;
5035 	zonerefs->zone_idx = 0;
5036 }
5037 
5038 /*
5039  * Build gfp_thisnode zonelists
5040  */
5041 static void build_thisnode_zonelists(pg_data_t *pgdat)
5042 {
5043 	struct zoneref *zonerefs;
5044 	int nr_zones;
5045 
5046 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5047 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5048 	zonerefs += nr_zones;
5049 	zonerefs->zone = NULL;
5050 	zonerefs->zone_idx = 0;
5051 }
5052 
5053 /*
5054  * Build zonelists ordered by zone and nodes within zones.
5055  * This results in conserving DMA zone[s] until all Normal memory is
5056  * exhausted, but results in overflowing to remote node while memory
5057  * may still exist in local DMA zone.
5058  */
5059 
5060 static void build_zonelists(pg_data_t *pgdat)
5061 {
5062 	static int node_order[MAX_NUMNODES];
5063 	int node, load, nr_nodes = 0;
5064 	nodemask_t used_mask;
5065 	int local_node, prev_node;
5066 
5067 	/* NUMA-aware ordering of nodes */
5068 	local_node = pgdat->node_id;
5069 	load = nr_online_nodes;
5070 	prev_node = local_node;
5071 	nodes_clear(used_mask);
5072 
5073 	memset(node_order, 0, sizeof(node_order));
5074 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5075 		/*
5076 		 * We don't want to pressure a particular node.
5077 		 * So adding penalty to the first node in same
5078 		 * distance group to make it round-robin.
5079 		 */
5080 		if (node_distance(local_node, node) !=
5081 		    node_distance(local_node, prev_node))
5082 			node_load[node] = load;
5083 
5084 		node_order[nr_nodes++] = node;
5085 		prev_node = node;
5086 		load--;
5087 	}
5088 
5089 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5090 	build_thisnode_zonelists(pgdat);
5091 }
5092 
5093 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5094 /*
5095  * Return node id of node used for "local" allocations.
5096  * I.e., first node id of first zone in arg node's generic zonelist.
5097  * Used for initializing percpu 'numa_mem', which is used primarily
5098  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5099  */
5100 int local_memory_node(int node)
5101 {
5102 	struct zoneref *z;
5103 
5104 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5105 				   gfp_zone(GFP_KERNEL),
5106 				   NULL);
5107 	return z->zone->node;
5108 }
5109 #endif
5110 
5111 static void setup_min_unmapped_ratio(void);
5112 static void setup_min_slab_ratio(void);
5113 #else	/* CONFIG_NUMA */
5114 
5115 static void build_zonelists(pg_data_t *pgdat)
5116 {
5117 	int node, local_node;
5118 	struct zoneref *zonerefs;
5119 	int nr_zones;
5120 
5121 	local_node = pgdat->node_id;
5122 
5123 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5124 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5125 	zonerefs += nr_zones;
5126 
5127 	/*
5128 	 * Now we build the zonelist so that it contains the zones
5129 	 * of all the other nodes.
5130 	 * We don't want to pressure a particular node, so when
5131 	 * building the zones for node N, we make sure that the
5132 	 * zones coming right after the local ones are those from
5133 	 * node N+1 (modulo N)
5134 	 */
5135 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5136 		if (!node_online(node))
5137 			continue;
5138 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5139 		zonerefs += nr_zones;
5140 	}
5141 	for (node = 0; node < local_node; node++) {
5142 		if (!node_online(node))
5143 			continue;
5144 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5145 		zonerefs += nr_zones;
5146 	}
5147 
5148 	zonerefs->zone = NULL;
5149 	zonerefs->zone_idx = 0;
5150 }
5151 
5152 #endif	/* CONFIG_NUMA */
5153 
5154 /*
5155  * Boot pageset table. One per cpu which is going to be used for all
5156  * zones and all nodes. The parameters will be set in such a way
5157  * that an item put on a list will immediately be handed over to
5158  * the buddy list. This is safe since pageset manipulation is done
5159  * with interrupts disabled.
5160  *
5161  * The boot_pagesets must be kept even after bootup is complete for
5162  * unused processors and/or zones. They do play a role for bootstrapping
5163  * hotplugged processors.
5164  *
5165  * zoneinfo_show() and maybe other functions do
5166  * not check if the processor is online before following the pageset pointer.
5167  * Other parts of the kernel may not check if the zone is available.
5168  */
5169 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5170 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5171 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5172 
5173 static void __build_all_zonelists(void *data)
5174 {
5175 	int nid;
5176 	int __maybe_unused cpu;
5177 	pg_data_t *self = data;
5178 	static DEFINE_SPINLOCK(lock);
5179 
5180 	spin_lock(&lock);
5181 
5182 #ifdef CONFIG_NUMA
5183 	memset(node_load, 0, sizeof(node_load));
5184 #endif
5185 
5186 	/*
5187 	 * This node is hotadded and no memory is yet present.   So just
5188 	 * building zonelists is fine - no need to touch other nodes.
5189 	 */
5190 	if (self && !node_online(self->node_id)) {
5191 		build_zonelists(self);
5192 	} else {
5193 		for_each_online_node(nid) {
5194 			pg_data_t *pgdat = NODE_DATA(nid);
5195 
5196 			build_zonelists(pgdat);
5197 		}
5198 
5199 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5200 		/*
5201 		 * We now know the "local memory node" for each node--
5202 		 * i.e., the node of the first zone in the generic zonelist.
5203 		 * Set up numa_mem percpu variable for on-line cpus.  During
5204 		 * boot, only the boot cpu should be on-line;  we'll init the
5205 		 * secondary cpus' numa_mem as they come on-line.  During
5206 		 * node/memory hotplug, we'll fixup all on-line cpus.
5207 		 */
5208 		for_each_online_cpu(cpu)
5209 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5210 #endif
5211 	}
5212 
5213 	spin_unlock(&lock);
5214 }
5215 
5216 static noinline void __init
5217 build_all_zonelists_init(void)
5218 {
5219 	int cpu;
5220 
5221 	__build_all_zonelists(NULL);
5222 
5223 	/*
5224 	 * Initialize the boot_pagesets that are going to be used
5225 	 * for bootstrapping processors. The real pagesets for
5226 	 * each zone will be allocated later when the per cpu
5227 	 * allocator is available.
5228 	 *
5229 	 * boot_pagesets are used also for bootstrapping offline
5230 	 * cpus if the system is already booted because the pagesets
5231 	 * are needed to initialize allocators on a specific cpu too.
5232 	 * F.e. the percpu allocator needs the page allocator which
5233 	 * needs the percpu allocator in order to allocate its pagesets
5234 	 * (a chicken-egg dilemma).
5235 	 */
5236 	for_each_possible_cpu(cpu)
5237 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5238 
5239 	mminit_verify_zonelist();
5240 	cpuset_init_current_mems_allowed();
5241 }
5242 
5243 /*
5244  * unless system_state == SYSTEM_BOOTING.
5245  *
5246  * __ref due to call of __init annotated helper build_all_zonelists_init
5247  * [protected by SYSTEM_BOOTING].
5248  */
5249 void __ref build_all_zonelists(pg_data_t *pgdat)
5250 {
5251 	if (system_state == SYSTEM_BOOTING) {
5252 		build_all_zonelists_init();
5253 	} else {
5254 		__build_all_zonelists(pgdat);
5255 		/* cpuset refresh routine should be here */
5256 	}
5257 	vm_total_pages = nr_free_pagecache_pages();
5258 	/*
5259 	 * Disable grouping by mobility if the number of pages in the
5260 	 * system is too low to allow the mechanism to work. It would be
5261 	 * more accurate, but expensive to check per-zone. This check is
5262 	 * made on memory-hotadd so a system can start with mobility
5263 	 * disabled and enable it later
5264 	 */
5265 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5266 		page_group_by_mobility_disabled = 1;
5267 	else
5268 		page_group_by_mobility_disabled = 0;
5269 
5270 	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
5271 		nr_online_nodes,
5272 		page_group_by_mobility_disabled ? "off" : "on",
5273 		vm_total_pages);
5274 #ifdef CONFIG_NUMA
5275 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5276 #endif
5277 }
5278 
5279 /*
5280  * Initially all pages are reserved - free ones are freed
5281  * up by free_all_bootmem() once the early boot process is
5282  * done. Non-atomic initialization, single-pass.
5283  */
5284 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5285 		unsigned long start_pfn, enum memmap_context context)
5286 {
5287 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5288 	unsigned long end_pfn = start_pfn + size;
5289 	pg_data_t *pgdat = NODE_DATA(nid);
5290 	unsigned long pfn;
5291 	unsigned long nr_initialised = 0;
5292 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5293 	struct memblock_region *r = NULL, *tmp;
5294 #endif
5295 
5296 	if (highest_memmap_pfn < end_pfn - 1)
5297 		highest_memmap_pfn = end_pfn - 1;
5298 
5299 	/*
5300 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5301 	 * memory
5302 	 */
5303 	if (altmap && start_pfn == altmap->base_pfn)
5304 		start_pfn += altmap->reserve;
5305 
5306 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5307 		/*
5308 		 * There can be holes in boot-time mem_map[]s handed to this
5309 		 * function.  They do not exist on hotplugged memory.
5310 		 */
5311 		if (context != MEMMAP_EARLY)
5312 			goto not_early;
5313 
5314 		if (!early_pfn_valid(pfn)) {
5315 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5316 			/*
5317 			 * Skip to the pfn preceding the next valid one (or
5318 			 * end_pfn), such that we hit a valid pfn (or end_pfn)
5319 			 * on our next iteration of the loop.
5320 			 */
5321 			pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5322 #endif
5323 			continue;
5324 		}
5325 		if (!early_pfn_in_nid(pfn, nid))
5326 			continue;
5327 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5328 			break;
5329 
5330 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5331 		/*
5332 		 * Check given memblock attribute by firmware which can affect
5333 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5334 		 * mirrored, it's an overlapped memmap init. skip it.
5335 		 */
5336 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5337 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5338 				for_each_memblock(memory, tmp)
5339 					if (pfn < memblock_region_memory_end_pfn(tmp))
5340 						break;
5341 				r = tmp;
5342 			}
5343 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5344 			    memblock_is_mirror(r)) {
5345 				/* already initialized as NORMAL */
5346 				pfn = memblock_region_memory_end_pfn(r);
5347 				continue;
5348 			}
5349 		}
5350 #endif
5351 
5352 not_early:
5353 		/*
5354 		 * Mark the block movable so that blocks are reserved for
5355 		 * movable at startup. This will force kernel allocations
5356 		 * to reserve their blocks rather than leaking throughout
5357 		 * the address space during boot when many long-lived
5358 		 * kernel allocations are made.
5359 		 *
5360 		 * bitmap is created for zone's valid pfn range. but memmap
5361 		 * can be created for invalid pages (for alignment)
5362 		 * check here not to call set_pageblock_migratetype() against
5363 		 * pfn out of zone.
5364 		 */
5365 		if (!(pfn & (pageblock_nr_pages - 1))) {
5366 			struct page *page = pfn_to_page(pfn);
5367 
5368 			__init_single_page(page, pfn, zone, nid);
5369 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5370 			cond_resched();
5371 		} else {
5372 			__init_single_pfn(pfn, zone, nid);
5373 		}
5374 	}
5375 }
5376 
5377 static void __meminit zone_init_free_lists(struct zone *zone)
5378 {
5379 	unsigned int order, t;
5380 	for_each_migratetype_order(order, t) {
5381 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5382 		zone->free_area[order].nr_free = 0;
5383 	}
5384 }
5385 
5386 #ifndef __HAVE_ARCH_MEMMAP_INIT
5387 #define memmap_init(size, nid, zone, start_pfn) \
5388 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5389 #endif
5390 
5391 static int zone_batchsize(struct zone *zone)
5392 {
5393 #ifdef CONFIG_MMU
5394 	int batch;
5395 
5396 	/*
5397 	 * The per-cpu-pages pools are set to around 1000th of the
5398 	 * size of the zone.  But no more than 1/2 of a meg.
5399 	 *
5400 	 * OK, so we don't know how big the cache is.  So guess.
5401 	 */
5402 	batch = zone->managed_pages / 1024;
5403 	if (batch * PAGE_SIZE > 512 * 1024)
5404 		batch = (512 * 1024) / PAGE_SIZE;
5405 	batch /= 4;		/* We effectively *= 4 below */
5406 	if (batch < 1)
5407 		batch = 1;
5408 
5409 	/*
5410 	 * Clamp the batch to a 2^n - 1 value. Having a power
5411 	 * of 2 value was found to be more likely to have
5412 	 * suboptimal cache aliasing properties in some cases.
5413 	 *
5414 	 * For example if 2 tasks are alternately allocating
5415 	 * batches of pages, one task can end up with a lot
5416 	 * of pages of one half of the possible page colors
5417 	 * and the other with pages of the other colors.
5418 	 */
5419 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5420 
5421 	return batch;
5422 
5423 #else
5424 	/* The deferral and batching of frees should be suppressed under NOMMU
5425 	 * conditions.
5426 	 *
5427 	 * The problem is that NOMMU needs to be able to allocate large chunks
5428 	 * of contiguous memory as there's no hardware page translation to
5429 	 * assemble apparent contiguous memory from discontiguous pages.
5430 	 *
5431 	 * Queueing large contiguous runs of pages for batching, however,
5432 	 * causes the pages to actually be freed in smaller chunks.  As there
5433 	 * can be a significant delay between the individual batches being
5434 	 * recycled, this leads to the once large chunks of space being
5435 	 * fragmented and becoming unavailable for high-order allocations.
5436 	 */
5437 	return 0;
5438 #endif
5439 }
5440 
5441 /*
5442  * pcp->high and pcp->batch values are related and dependent on one another:
5443  * ->batch must never be higher then ->high.
5444  * The following function updates them in a safe manner without read side
5445  * locking.
5446  *
5447  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5448  * those fields changing asynchronously (acording the the above rule).
5449  *
5450  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5451  * outside of boot time (or some other assurance that no concurrent updaters
5452  * exist).
5453  */
5454 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5455 		unsigned long batch)
5456 {
5457        /* start with a fail safe value for batch */
5458 	pcp->batch = 1;
5459 	smp_wmb();
5460 
5461        /* Update high, then batch, in order */
5462 	pcp->high = high;
5463 	smp_wmb();
5464 
5465 	pcp->batch = batch;
5466 }
5467 
5468 /* a companion to pageset_set_high() */
5469 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5470 {
5471 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5472 }
5473 
5474 static void pageset_init(struct per_cpu_pageset *p)
5475 {
5476 	struct per_cpu_pages *pcp;
5477 	int migratetype;
5478 
5479 	memset(p, 0, sizeof(*p));
5480 
5481 	pcp = &p->pcp;
5482 	pcp->count = 0;
5483 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5484 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5485 }
5486 
5487 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5488 {
5489 	pageset_init(p);
5490 	pageset_set_batch(p, batch);
5491 }
5492 
5493 /*
5494  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5495  * to the value high for the pageset p.
5496  */
5497 static void pageset_set_high(struct per_cpu_pageset *p,
5498 				unsigned long high)
5499 {
5500 	unsigned long batch = max(1UL, high / 4);
5501 	if ((high / 4) > (PAGE_SHIFT * 8))
5502 		batch = PAGE_SHIFT * 8;
5503 
5504 	pageset_update(&p->pcp, high, batch);
5505 }
5506 
5507 static void pageset_set_high_and_batch(struct zone *zone,
5508 				       struct per_cpu_pageset *pcp)
5509 {
5510 	if (percpu_pagelist_fraction)
5511 		pageset_set_high(pcp,
5512 			(zone->managed_pages /
5513 				percpu_pagelist_fraction));
5514 	else
5515 		pageset_set_batch(pcp, zone_batchsize(zone));
5516 }
5517 
5518 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5519 {
5520 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5521 
5522 	pageset_init(pcp);
5523 	pageset_set_high_and_batch(zone, pcp);
5524 }
5525 
5526 void __meminit setup_zone_pageset(struct zone *zone)
5527 {
5528 	int cpu;
5529 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5530 	for_each_possible_cpu(cpu)
5531 		zone_pageset_init(zone, cpu);
5532 }
5533 
5534 /*
5535  * Allocate per cpu pagesets and initialize them.
5536  * Before this call only boot pagesets were available.
5537  */
5538 void __init setup_per_cpu_pageset(void)
5539 {
5540 	struct pglist_data *pgdat;
5541 	struct zone *zone;
5542 
5543 	for_each_populated_zone(zone)
5544 		setup_zone_pageset(zone);
5545 
5546 	for_each_online_pgdat(pgdat)
5547 		pgdat->per_cpu_nodestats =
5548 			alloc_percpu(struct per_cpu_nodestat);
5549 }
5550 
5551 static __meminit void zone_pcp_init(struct zone *zone)
5552 {
5553 	/*
5554 	 * per cpu subsystem is not up at this point. The following code
5555 	 * relies on the ability of the linker to provide the
5556 	 * offset of a (static) per cpu variable into the per cpu area.
5557 	 */
5558 	zone->pageset = &boot_pageset;
5559 
5560 	if (populated_zone(zone))
5561 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5562 			zone->name, zone->present_pages,
5563 					 zone_batchsize(zone));
5564 }
5565 
5566 void __meminit init_currently_empty_zone(struct zone *zone,
5567 					unsigned long zone_start_pfn,
5568 					unsigned long size)
5569 {
5570 	struct pglist_data *pgdat = zone->zone_pgdat;
5571 
5572 	pgdat->nr_zones = zone_idx(zone) + 1;
5573 
5574 	zone->zone_start_pfn = zone_start_pfn;
5575 
5576 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5577 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5578 			pgdat->node_id,
5579 			(unsigned long)zone_idx(zone),
5580 			zone_start_pfn, (zone_start_pfn + size));
5581 
5582 	zone_init_free_lists(zone);
5583 	zone->initialized = 1;
5584 }
5585 
5586 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5587 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5588 
5589 /*
5590  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5591  */
5592 int __meminit __early_pfn_to_nid(unsigned long pfn,
5593 					struct mminit_pfnnid_cache *state)
5594 {
5595 	unsigned long start_pfn, end_pfn;
5596 	int nid;
5597 
5598 	if (state->last_start <= pfn && pfn < state->last_end)
5599 		return state->last_nid;
5600 
5601 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5602 	if (nid != -1) {
5603 		state->last_start = start_pfn;
5604 		state->last_end = end_pfn;
5605 		state->last_nid = nid;
5606 	}
5607 
5608 	return nid;
5609 }
5610 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5611 
5612 /**
5613  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5614  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5615  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5616  *
5617  * If an architecture guarantees that all ranges registered contain no holes
5618  * and may be freed, this this function may be used instead of calling
5619  * memblock_free_early_nid() manually.
5620  */
5621 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5622 {
5623 	unsigned long start_pfn, end_pfn;
5624 	int i, this_nid;
5625 
5626 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5627 		start_pfn = min(start_pfn, max_low_pfn);
5628 		end_pfn = min(end_pfn, max_low_pfn);
5629 
5630 		if (start_pfn < end_pfn)
5631 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5632 					(end_pfn - start_pfn) << PAGE_SHIFT,
5633 					this_nid);
5634 	}
5635 }
5636 
5637 /**
5638  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5639  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5640  *
5641  * If an architecture guarantees that all ranges registered contain no holes and may
5642  * be freed, this function may be used instead of calling memory_present() manually.
5643  */
5644 void __init sparse_memory_present_with_active_regions(int nid)
5645 {
5646 	unsigned long start_pfn, end_pfn;
5647 	int i, this_nid;
5648 
5649 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5650 		memory_present(this_nid, start_pfn, end_pfn);
5651 }
5652 
5653 /**
5654  * get_pfn_range_for_nid - Return the start and end page frames for a node
5655  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5656  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5657  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5658  *
5659  * It returns the start and end page frame of a node based on information
5660  * provided by memblock_set_node(). If called for a node
5661  * with no available memory, a warning is printed and the start and end
5662  * PFNs will be 0.
5663  */
5664 void __meminit get_pfn_range_for_nid(unsigned int nid,
5665 			unsigned long *start_pfn, unsigned long *end_pfn)
5666 {
5667 	unsigned long this_start_pfn, this_end_pfn;
5668 	int i;
5669 
5670 	*start_pfn = -1UL;
5671 	*end_pfn = 0;
5672 
5673 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5674 		*start_pfn = min(*start_pfn, this_start_pfn);
5675 		*end_pfn = max(*end_pfn, this_end_pfn);
5676 	}
5677 
5678 	if (*start_pfn == -1UL)
5679 		*start_pfn = 0;
5680 }
5681 
5682 /*
5683  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5684  * assumption is made that zones within a node are ordered in monotonic
5685  * increasing memory addresses so that the "highest" populated zone is used
5686  */
5687 static void __init find_usable_zone_for_movable(void)
5688 {
5689 	int zone_index;
5690 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5691 		if (zone_index == ZONE_MOVABLE)
5692 			continue;
5693 
5694 		if (arch_zone_highest_possible_pfn[zone_index] >
5695 				arch_zone_lowest_possible_pfn[zone_index])
5696 			break;
5697 	}
5698 
5699 	VM_BUG_ON(zone_index == -1);
5700 	movable_zone = zone_index;
5701 }
5702 
5703 /*
5704  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5705  * because it is sized independent of architecture. Unlike the other zones,
5706  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5707  * in each node depending on the size of each node and how evenly kernelcore
5708  * is distributed. This helper function adjusts the zone ranges
5709  * provided by the architecture for a given node by using the end of the
5710  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5711  * zones within a node are in order of monotonic increases memory addresses
5712  */
5713 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5714 					unsigned long zone_type,
5715 					unsigned long node_start_pfn,
5716 					unsigned long node_end_pfn,
5717 					unsigned long *zone_start_pfn,
5718 					unsigned long *zone_end_pfn)
5719 {
5720 	/* Only adjust if ZONE_MOVABLE is on this node */
5721 	if (zone_movable_pfn[nid]) {
5722 		/* Size ZONE_MOVABLE */
5723 		if (zone_type == ZONE_MOVABLE) {
5724 			*zone_start_pfn = zone_movable_pfn[nid];
5725 			*zone_end_pfn = min(node_end_pfn,
5726 				arch_zone_highest_possible_pfn[movable_zone]);
5727 
5728 		/* Adjust for ZONE_MOVABLE starting within this range */
5729 		} else if (!mirrored_kernelcore &&
5730 			*zone_start_pfn < zone_movable_pfn[nid] &&
5731 			*zone_end_pfn > zone_movable_pfn[nid]) {
5732 			*zone_end_pfn = zone_movable_pfn[nid];
5733 
5734 		/* Check if this whole range is within ZONE_MOVABLE */
5735 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5736 			*zone_start_pfn = *zone_end_pfn;
5737 	}
5738 }
5739 
5740 /*
5741  * Return the number of pages a zone spans in a node, including holes
5742  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5743  */
5744 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5745 					unsigned long zone_type,
5746 					unsigned long node_start_pfn,
5747 					unsigned long node_end_pfn,
5748 					unsigned long *zone_start_pfn,
5749 					unsigned long *zone_end_pfn,
5750 					unsigned long *ignored)
5751 {
5752 	/* When hotadd a new node from cpu_up(), the node should be empty */
5753 	if (!node_start_pfn && !node_end_pfn)
5754 		return 0;
5755 
5756 	/* Get the start and end of the zone */
5757 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5758 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5759 	adjust_zone_range_for_zone_movable(nid, zone_type,
5760 				node_start_pfn, node_end_pfn,
5761 				zone_start_pfn, zone_end_pfn);
5762 
5763 	/* Check that this node has pages within the zone's required range */
5764 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5765 		return 0;
5766 
5767 	/* Move the zone boundaries inside the node if necessary */
5768 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5769 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5770 
5771 	/* Return the spanned pages */
5772 	return *zone_end_pfn - *zone_start_pfn;
5773 }
5774 
5775 /*
5776  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5777  * then all holes in the requested range will be accounted for.
5778  */
5779 unsigned long __meminit __absent_pages_in_range(int nid,
5780 				unsigned long range_start_pfn,
5781 				unsigned long range_end_pfn)
5782 {
5783 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5784 	unsigned long start_pfn, end_pfn;
5785 	int i;
5786 
5787 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5788 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5789 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5790 		nr_absent -= end_pfn - start_pfn;
5791 	}
5792 	return nr_absent;
5793 }
5794 
5795 /**
5796  * absent_pages_in_range - Return number of page frames in holes within a range
5797  * @start_pfn: The start PFN to start searching for holes
5798  * @end_pfn: The end PFN to stop searching for holes
5799  *
5800  * It returns the number of pages frames in memory holes within a range.
5801  */
5802 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5803 							unsigned long end_pfn)
5804 {
5805 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5806 }
5807 
5808 /* Return the number of page frames in holes in a zone on a node */
5809 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5810 					unsigned long zone_type,
5811 					unsigned long node_start_pfn,
5812 					unsigned long node_end_pfn,
5813 					unsigned long *ignored)
5814 {
5815 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5816 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5817 	unsigned long zone_start_pfn, zone_end_pfn;
5818 	unsigned long nr_absent;
5819 
5820 	/* When hotadd a new node from cpu_up(), the node should be empty */
5821 	if (!node_start_pfn && !node_end_pfn)
5822 		return 0;
5823 
5824 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5825 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5826 
5827 	adjust_zone_range_for_zone_movable(nid, zone_type,
5828 			node_start_pfn, node_end_pfn,
5829 			&zone_start_pfn, &zone_end_pfn);
5830 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5831 
5832 	/*
5833 	 * ZONE_MOVABLE handling.
5834 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5835 	 * and vice versa.
5836 	 */
5837 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5838 		unsigned long start_pfn, end_pfn;
5839 		struct memblock_region *r;
5840 
5841 		for_each_memblock(memory, r) {
5842 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
5843 					  zone_start_pfn, zone_end_pfn);
5844 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
5845 					zone_start_pfn, zone_end_pfn);
5846 
5847 			if (zone_type == ZONE_MOVABLE &&
5848 			    memblock_is_mirror(r))
5849 				nr_absent += end_pfn - start_pfn;
5850 
5851 			if (zone_type == ZONE_NORMAL &&
5852 			    !memblock_is_mirror(r))
5853 				nr_absent += end_pfn - start_pfn;
5854 		}
5855 	}
5856 
5857 	return nr_absent;
5858 }
5859 
5860 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5861 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5862 					unsigned long zone_type,
5863 					unsigned long node_start_pfn,
5864 					unsigned long node_end_pfn,
5865 					unsigned long *zone_start_pfn,
5866 					unsigned long *zone_end_pfn,
5867 					unsigned long *zones_size)
5868 {
5869 	unsigned int zone;
5870 
5871 	*zone_start_pfn = node_start_pfn;
5872 	for (zone = 0; zone < zone_type; zone++)
5873 		*zone_start_pfn += zones_size[zone];
5874 
5875 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5876 
5877 	return zones_size[zone_type];
5878 }
5879 
5880 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5881 						unsigned long zone_type,
5882 						unsigned long node_start_pfn,
5883 						unsigned long node_end_pfn,
5884 						unsigned long *zholes_size)
5885 {
5886 	if (!zholes_size)
5887 		return 0;
5888 
5889 	return zholes_size[zone_type];
5890 }
5891 
5892 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5893 
5894 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5895 						unsigned long node_start_pfn,
5896 						unsigned long node_end_pfn,
5897 						unsigned long *zones_size,
5898 						unsigned long *zholes_size)
5899 {
5900 	unsigned long realtotalpages = 0, totalpages = 0;
5901 	enum zone_type i;
5902 
5903 	for (i = 0; i < MAX_NR_ZONES; i++) {
5904 		struct zone *zone = pgdat->node_zones + i;
5905 		unsigned long zone_start_pfn, zone_end_pfn;
5906 		unsigned long size, real_size;
5907 
5908 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5909 						  node_start_pfn,
5910 						  node_end_pfn,
5911 						  &zone_start_pfn,
5912 						  &zone_end_pfn,
5913 						  zones_size);
5914 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5915 						  node_start_pfn, node_end_pfn,
5916 						  zholes_size);
5917 		if (size)
5918 			zone->zone_start_pfn = zone_start_pfn;
5919 		else
5920 			zone->zone_start_pfn = 0;
5921 		zone->spanned_pages = size;
5922 		zone->present_pages = real_size;
5923 
5924 		totalpages += size;
5925 		realtotalpages += real_size;
5926 	}
5927 
5928 	pgdat->node_spanned_pages = totalpages;
5929 	pgdat->node_present_pages = realtotalpages;
5930 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5931 							realtotalpages);
5932 }
5933 
5934 #ifndef CONFIG_SPARSEMEM
5935 /*
5936  * Calculate the size of the zone->blockflags rounded to an unsigned long
5937  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5938  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5939  * round what is now in bits to nearest long in bits, then return it in
5940  * bytes.
5941  */
5942 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5943 {
5944 	unsigned long usemapsize;
5945 
5946 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5947 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5948 	usemapsize = usemapsize >> pageblock_order;
5949 	usemapsize *= NR_PAGEBLOCK_BITS;
5950 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5951 
5952 	return usemapsize / 8;
5953 }
5954 
5955 static void __init setup_usemap(struct pglist_data *pgdat,
5956 				struct zone *zone,
5957 				unsigned long zone_start_pfn,
5958 				unsigned long zonesize)
5959 {
5960 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5961 	zone->pageblock_flags = NULL;
5962 	if (usemapsize)
5963 		zone->pageblock_flags =
5964 			memblock_virt_alloc_node_nopanic(usemapsize,
5965 							 pgdat->node_id);
5966 }
5967 #else
5968 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5969 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5970 #endif /* CONFIG_SPARSEMEM */
5971 
5972 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5973 
5974 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5975 void __paginginit set_pageblock_order(void)
5976 {
5977 	unsigned int order;
5978 
5979 	/* Check that pageblock_nr_pages has not already been setup */
5980 	if (pageblock_order)
5981 		return;
5982 
5983 	if (HPAGE_SHIFT > PAGE_SHIFT)
5984 		order = HUGETLB_PAGE_ORDER;
5985 	else
5986 		order = MAX_ORDER - 1;
5987 
5988 	/*
5989 	 * Assume the largest contiguous order of interest is a huge page.
5990 	 * This value may be variable depending on boot parameters on IA64 and
5991 	 * powerpc.
5992 	 */
5993 	pageblock_order = order;
5994 }
5995 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5996 
5997 /*
5998  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5999  * is unused as pageblock_order is set at compile-time. See
6000  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6001  * the kernel config
6002  */
6003 void __paginginit set_pageblock_order(void)
6004 {
6005 }
6006 
6007 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6008 
6009 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6010 						   unsigned long present_pages)
6011 {
6012 	unsigned long pages = spanned_pages;
6013 
6014 	/*
6015 	 * Provide a more accurate estimation if there are holes within
6016 	 * the zone and SPARSEMEM is in use. If there are holes within the
6017 	 * zone, each populated memory region may cost us one or two extra
6018 	 * memmap pages due to alignment because memmap pages for each
6019 	 * populated regions may not be naturally aligned on page boundary.
6020 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6021 	 */
6022 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6023 	    IS_ENABLED(CONFIG_SPARSEMEM))
6024 		pages = present_pages;
6025 
6026 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6027 }
6028 
6029 /*
6030  * Set up the zone data structures:
6031  *   - mark all pages reserved
6032  *   - mark all memory queues empty
6033  *   - clear the memory bitmaps
6034  *
6035  * NOTE: pgdat should get zeroed by caller.
6036  */
6037 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6038 {
6039 	enum zone_type j;
6040 	int nid = pgdat->node_id;
6041 
6042 	pgdat_resize_init(pgdat);
6043 #ifdef CONFIG_NUMA_BALANCING
6044 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
6045 	pgdat->numabalancing_migrate_nr_pages = 0;
6046 	pgdat->numabalancing_migrate_next_window = jiffies;
6047 #endif
6048 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6049 	spin_lock_init(&pgdat->split_queue_lock);
6050 	INIT_LIST_HEAD(&pgdat->split_queue);
6051 	pgdat->split_queue_len = 0;
6052 #endif
6053 	init_waitqueue_head(&pgdat->kswapd_wait);
6054 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6055 #ifdef CONFIG_COMPACTION
6056 	init_waitqueue_head(&pgdat->kcompactd_wait);
6057 #endif
6058 	pgdat_page_ext_init(pgdat);
6059 	spin_lock_init(&pgdat->lru_lock);
6060 	lruvec_init(node_lruvec(pgdat));
6061 
6062 	pgdat->per_cpu_nodestats = &boot_nodestats;
6063 
6064 	for (j = 0; j < MAX_NR_ZONES; j++) {
6065 		struct zone *zone = pgdat->node_zones + j;
6066 		unsigned long size, realsize, freesize, memmap_pages;
6067 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6068 
6069 		size = zone->spanned_pages;
6070 		realsize = freesize = zone->present_pages;
6071 
6072 		/*
6073 		 * Adjust freesize so that it accounts for how much memory
6074 		 * is used by this zone for memmap. This affects the watermark
6075 		 * and per-cpu initialisations
6076 		 */
6077 		memmap_pages = calc_memmap_size(size, realsize);
6078 		if (!is_highmem_idx(j)) {
6079 			if (freesize >= memmap_pages) {
6080 				freesize -= memmap_pages;
6081 				if (memmap_pages)
6082 					printk(KERN_DEBUG
6083 					       "  %s zone: %lu pages used for memmap\n",
6084 					       zone_names[j], memmap_pages);
6085 			} else
6086 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6087 					zone_names[j], memmap_pages, freesize);
6088 		}
6089 
6090 		/* Account for reserved pages */
6091 		if (j == 0 && freesize > dma_reserve) {
6092 			freesize -= dma_reserve;
6093 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6094 					zone_names[0], dma_reserve);
6095 		}
6096 
6097 		if (!is_highmem_idx(j))
6098 			nr_kernel_pages += freesize;
6099 		/* Charge for highmem memmap if there are enough kernel pages */
6100 		else if (nr_kernel_pages > memmap_pages * 2)
6101 			nr_kernel_pages -= memmap_pages;
6102 		nr_all_pages += freesize;
6103 
6104 		/*
6105 		 * Set an approximate value for lowmem here, it will be adjusted
6106 		 * when the bootmem allocator frees pages into the buddy system.
6107 		 * And all highmem pages will be managed by the buddy system.
6108 		 */
6109 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6110 #ifdef CONFIG_NUMA
6111 		zone->node = nid;
6112 #endif
6113 		zone->name = zone_names[j];
6114 		zone->zone_pgdat = pgdat;
6115 		spin_lock_init(&zone->lock);
6116 		zone_seqlock_init(zone);
6117 		zone_pcp_init(zone);
6118 
6119 		if (!size)
6120 			continue;
6121 
6122 		set_pageblock_order();
6123 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6124 		init_currently_empty_zone(zone, zone_start_pfn, size);
6125 		memmap_init(size, nid, j, zone_start_pfn);
6126 	}
6127 }
6128 
6129 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6130 {
6131 	unsigned long __maybe_unused start = 0;
6132 	unsigned long __maybe_unused offset = 0;
6133 
6134 	/* Skip empty nodes */
6135 	if (!pgdat->node_spanned_pages)
6136 		return;
6137 
6138 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6139 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6140 	offset = pgdat->node_start_pfn - start;
6141 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6142 	if (!pgdat->node_mem_map) {
6143 		unsigned long size, end;
6144 		struct page *map;
6145 
6146 		/*
6147 		 * The zone's endpoints aren't required to be MAX_ORDER
6148 		 * aligned but the node_mem_map endpoints must be in order
6149 		 * for the buddy allocator to function correctly.
6150 		 */
6151 		end = pgdat_end_pfn(pgdat);
6152 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6153 		size =  (end - start) * sizeof(struct page);
6154 		map = alloc_remap(pgdat->node_id, size);
6155 		if (!map)
6156 			map = memblock_virt_alloc_node_nopanic(size,
6157 							       pgdat->node_id);
6158 		pgdat->node_mem_map = map + offset;
6159 	}
6160 #ifndef CONFIG_NEED_MULTIPLE_NODES
6161 	/*
6162 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6163 	 */
6164 	if (pgdat == NODE_DATA(0)) {
6165 		mem_map = NODE_DATA(0)->node_mem_map;
6166 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6167 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6168 			mem_map -= offset;
6169 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6170 	}
6171 #endif
6172 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6173 }
6174 
6175 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6176 		unsigned long node_start_pfn, unsigned long *zholes_size)
6177 {
6178 	pg_data_t *pgdat = NODE_DATA(nid);
6179 	unsigned long start_pfn = 0;
6180 	unsigned long end_pfn = 0;
6181 
6182 	/* pg_data_t should be reset to zero when it's allocated */
6183 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6184 
6185 	pgdat->node_id = nid;
6186 	pgdat->node_start_pfn = node_start_pfn;
6187 	pgdat->per_cpu_nodestats = NULL;
6188 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6189 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6190 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6191 		(u64)start_pfn << PAGE_SHIFT,
6192 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6193 #else
6194 	start_pfn = node_start_pfn;
6195 #endif
6196 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6197 				  zones_size, zholes_size);
6198 
6199 	alloc_node_mem_map(pgdat);
6200 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6201 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6202 		nid, (unsigned long)pgdat,
6203 		(unsigned long)pgdat->node_mem_map);
6204 #endif
6205 
6206 	reset_deferred_meminit(pgdat);
6207 	free_area_init_core(pgdat);
6208 }
6209 
6210 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6211 
6212 #if MAX_NUMNODES > 1
6213 /*
6214  * Figure out the number of possible node ids.
6215  */
6216 void __init setup_nr_node_ids(void)
6217 {
6218 	unsigned int highest;
6219 
6220 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6221 	nr_node_ids = highest + 1;
6222 }
6223 #endif
6224 
6225 /**
6226  * node_map_pfn_alignment - determine the maximum internode alignment
6227  *
6228  * This function should be called after node map is populated and sorted.
6229  * It calculates the maximum power of two alignment which can distinguish
6230  * all the nodes.
6231  *
6232  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6233  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6234  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6235  * shifted, 1GiB is enough and this function will indicate so.
6236  *
6237  * This is used to test whether pfn -> nid mapping of the chosen memory
6238  * model has fine enough granularity to avoid incorrect mapping for the
6239  * populated node map.
6240  *
6241  * Returns the determined alignment in pfn's.  0 if there is no alignment
6242  * requirement (single node).
6243  */
6244 unsigned long __init node_map_pfn_alignment(void)
6245 {
6246 	unsigned long accl_mask = 0, last_end = 0;
6247 	unsigned long start, end, mask;
6248 	int last_nid = -1;
6249 	int i, nid;
6250 
6251 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6252 		if (!start || last_nid < 0 || last_nid == nid) {
6253 			last_nid = nid;
6254 			last_end = end;
6255 			continue;
6256 		}
6257 
6258 		/*
6259 		 * Start with a mask granular enough to pin-point to the
6260 		 * start pfn and tick off bits one-by-one until it becomes
6261 		 * too coarse to separate the current node from the last.
6262 		 */
6263 		mask = ~((1 << __ffs(start)) - 1);
6264 		while (mask && last_end <= (start & (mask << 1)))
6265 			mask <<= 1;
6266 
6267 		/* accumulate all internode masks */
6268 		accl_mask |= mask;
6269 	}
6270 
6271 	/* convert mask to number of pages */
6272 	return ~accl_mask + 1;
6273 }
6274 
6275 /* Find the lowest pfn for a node */
6276 static unsigned long __init find_min_pfn_for_node(int nid)
6277 {
6278 	unsigned long min_pfn = ULONG_MAX;
6279 	unsigned long start_pfn;
6280 	int i;
6281 
6282 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6283 		min_pfn = min(min_pfn, start_pfn);
6284 
6285 	if (min_pfn == ULONG_MAX) {
6286 		pr_warn("Could not find start_pfn for node %d\n", nid);
6287 		return 0;
6288 	}
6289 
6290 	return min_pfn;
6291 }
6292 
6293 /**
6294  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6295  *
6296  * It returns the minimum PFN based on information provided via
6297  * memblock_set_node().
6298  */
6299 unsigned long __init find_min_pfn_with_active_regions(void)
6300 {
6301 	return find_min_pfn_for_node(MAX_NUMNODES);
6302 }
6303 
6304 /*
6305  * early_calculate_totalpages()
6306  * Sum pages in active regions for movable zone.
6307  * Populate N_MEMORY for calculating usable_nodes.
6308  */
6309 static unsigned long __init early_calculate_totalpages(void)
6310 {
6311 	unsigned long totalpages = 0;
6312 	unsigned long start_pfn, end_pfn;
6313 	int i, nid;
6314 
6315 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6316 		unsigned long pages = end_pfn - start_pfn;
6317 
6318 		totalpages += pages;
6319 		if (pages)
6320 			node_set_state(nid, N_MEMORY);
6321 	}
6322 	return totalpages;
6323 }
6324 
6325 /*
6326  * Find the PFN the Movable zone begins in each node. Kernel memory
6327  * is spread evenly between nodes as long as the nodes have enough
6328  * memory. When they don't, some nodes will have more kernelcore than
6329  * others
6330  */
6331 static void __init find_zone_movable_pfns_for_nodes(void)
6332 {
6333 	int i, nid;
6334 	unsigned long usable_startpfn;
6335 	unsigned long kernelcore_node, kernelcore_remaining;
6336 	/* save the state before borrow the nodemask */
6337 	nodemask_t saved_node_state = node_states[N_MEMORY];
6338 	unsigned long totalpages = early_calculate_totalpages();
6339 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6340 	struct memblock_region *r;
6341 
6342 	/* Need to find movable_zone earlier when movable_node is specified. */
6343 	find_usable_zone_for_movable();
6344 
6345 	/*
6346 	 * If movable_node is specified, ignore kernelcore and movablecore
6347 	 * options.
6348 	 */
6349 	if (movable_node_is_enabled()) {
6350 		for_each_memblock(memory, r) {
6351 			if (!memblock_is_hotpluggable(r))
6352 				continue;
6353 
6354 			nid = r->nid;
6355 
6356 			usable_startpfn = PFN_DOWN(r->base);
6357 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6358 				min(usable_startpfn, zone_movable_pfn[nid]) :
6359 				usable_startpfn;
6360 		}
6361 
6362 		goto out2;
6363 	}
6364 
6365 	/*
6366 	 * If kernelcore=mirror is specified, ignore movablecore option
6367 	 */
6368 	if (mirrored_kernelcore) {
6369 		bool mem_below_4gb_not_mirrored = false;
6370 
6371 		for_each_memblock(memory, r) {
6372 			if (memblock_is_mirror(r))
6373 				continue;
6374 
6375 			nid = r->nid;
6376 
6377 			usable_startpfn = memblock_region_memory_base_pfn(r);
6378 
6379 			if (usable_startpfn < 0x100000) {
6380 				mem_below_4gb_not_mirrored = true;
6381 				continue;
6382 			}
6383 
6384 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6385 				min(usable_startpfn, zone_movable_pfn[nid]) :
6386 				usable_startpfn;
6387 		}
6388 
6389 		if (mem_below_4gb_not_mirrored)
6390 			pr_warn("This configuration results in unmirrored kernel memory.");
6391 
6392 		goto out2;
6393 	}
6394 
6395 	/*
6396 	 * If movablecore=nn[KMG] was specified, calculate what size of
6397 	 * kernelcore that corresponds so that memory usable for
6398 	 * any allocation type is evenly spread. If both kernelcore
6399 	 * and movablecore are specified, then the value of kernelcore
6400 	 * will be used for required_kernelcore if it's greater than
6401 	 * what movablecore would have allowed.
6402 	 */
6403 	if (required_movablecore) {
6404 		unsigned long corepages;
6405 
6406 		/*
6407 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6408 		 * was requested by the user
6409 		 */
6410 		required_movablecore =
6411 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6412 		required_movablecore = min(totalpages, required_movablecore);
6413 		corepages = totalpages - required_movablecore;
6414 
6415 		required_kernelcore = max(required_kernelcore, corepages);
6416 	}
6417 
6418 	/*
6419 	 * If kernelcore was not specified or kernelcore size is larger
6420 	 * than totalpages, there is no ZONE_MOVABLE.
6421 	 */
6422 	if (!required_kernelcore || required_kernelcore >= totalpages)
6423 		goto out;
6424 
6425 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6426 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6427 
6428 restart:
6429 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6430 	kernelcore_node = required_kernelcore / usable_nodes;
6431 	for_each_node_state(nid, N_MEMORY) {
6432 		unsigned long start_pfn, end_pfn;
6433 
6434 		/*
6435 		 * Recalculate kernelcore_node if the division per node
6436 		 * now exceeds what is necessary to satisfy the requested
6437 		 * amount of memory for the kernel
6438 		 */
6439 		if (required_kernelcore < kernelcore_node)
6440 			kernelcore_node = required_kernelcore / usable_nodes;
6441 
6442 		/*
6443 		 * As the map is walked, we track how much memory is usable
6444 		 * by the kernel using kernelcore_remaining. When it is
6445 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6446 		 */
6447 		kernelcore_remaining = kernelcore_node;
6448 
6449 		/* Go through each range of PFNs within this node */
6450 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6451 			unsigned long size_pages;
6452 
6453 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6454 			if (start_pfn >= end_pfn)
6455 				continue;
6456 
6457 			/* Account for what is only usable for kernelcore */
6458 			if (start_pfn < usable_startpfn) {
6459 				unsigned long kernel_pages;
6460 				kernel_pages = min(end_pfn, usable_startpfn)
6461 								- start_pfn;
6462 
6463 				kernelcore_remaining -= min(kernel_pages,
6464 							kernelcore_remaining);
6465 				required_kernelcore -= min(kernel_pages,
6466 							required_kernelcore);
6467 
6468 				/* Continue if range is now fully accounted */
6469 				if (end_pfn <= usable_startpfn) {
6470 
6471 					/*
6472 					 * Push zone_movable_pfn to the end so
6473 					 * that if we have to rebalance
6474 					 * kernelcore across nodes, we will
6475 					 * not double account here
6476 					 */
6477 					zone_movable_pfn[nid] = end_pfn;
6478 					continue;
6479 				}
6480 				start_pfn = usable_startpfn;
6481 			}
6482 
6483 			/*
6484 			 * The usable PFN range for ZONE_MOVABLE is from
6485 			 * start_pfn->end_pfn. Calculate size_pages as the
6486 			 * number of pages used as kernelcore
6487 			 */
6488 			size_pages = end_pfn - start_pfn;
6489 			if (size_pages > kernelcore_remaining)
6490 				size_pages = kernelcore_remaining;
6491 			zone_movable_pfn[nid] = start_pfn + size_pages;
6492 
6493 			/*
6494 			 * Some kernelcore has been met, update counts and
6495 			 * break if the kernelcore for this node has been
6496 			 * satisfied
6497 			 */
6498 			required_kernelcore -= min(required_kernelcore,
6499 								size_pages);
6500 			kernelcore_remaining -= size_pages;
6501 			if (!kernelcore_remaining)
6502 				break;
6503 		}
6504 	}
6505 
6506 	/*
6507 	 * If there is still required_kernelcore, we do another pass with one
6508 	 * less node in the count. This will push zone_movable_pfn[nid] further
6509 	 * along on the nodes that still have memory until kernelcore is
6510 	 * satisfied
6511 	 */
6512 	usable_nodes--;
6513 	if (usable_nodes && required_kernelcore > usable_nodes)
6514 		goto restart;
6515 
6516 out2:
6517 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6518 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6519 		zone_movable_pfn[nid] =
6520 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6521 
6522 out:
6523 	/* restore the node_state */
6524 	node_states[N_MEMORY] = saved_node_state;
6525 }
6526 
6527 /* Any regular or high memory on that node ? */
6528 static void check_for_memory(pg_data_t *pgdat, int nid)
6529 {
6530 	enum zone_type zone_type;
6531 
6532 	if (N_MEMORY == N_NORMAL_MEMORY)
6533 		return;
6534 
6535 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6536 		struct zone *zone = &pgdat->node_zones[zone_type];
6537 		if (populated_zone(zone)) {
6538 			node_set_state(nid, N_HIGH_MEMORY);
6539 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6540 			    zone_type <= ZONE_NORMAL)
6541 				node_set_state(nid, N_NORMAL_MEMORY);
6542 			break;
6543 		}
6544 	}
6545 }
6546 
6547 /**
6548  * free_area_init_nodes - Initialise all pg_data_t and zone data
6549  * @max_zone_pfn: an array of max PFNs for each zone
6550  *
6551  * This will call free_area_init_node() for each active node in the system.
6552  * Using the page ranges provided by memblock_set_node(), the size of each
6553  * zone in each node and their holes is calculated. If the maximum PFN
6554  * between two adjacent zones match, it is assumed that the zone is empty.
6555  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6556  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6557  * starts where the previous one ended. For example, ZONE_DMA32 starts
6558  * at arch_max_dma_pfn.
6559  */
6560 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6561 {
6562 	unsigned long start_pfn, end_pfn;
6563 	int i, nid;
6564 
6565 	/* Record where the zone boundaries are */
6566 	memset(arch_zone_lowest_possible_pfn, 0,
6567 				sizeof(arch_zone_lowest_possible_pfn));
6568 	memset(arch_zone_highest_possible_pfn, 0,
6569 				sizeof(arch_zone_highest_possible_pfn));
6570 
6571 	start_pfn = find_min_pfn_with_active_regions();
6572 
6573 	for (i = 0; i < MAX_NR_ZONES; i++) {
6574 		if (i == ZONE_MOVABLE)
6575 			continue;
6576 
6577 		end_pfn = max(max_zone_pfn[i], start_pfn);
6578 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6579 		arch_zone_highest_possible_pfn[i] = end_pfn;
6580 
6581 		start_pfn = end_pfn;
6582 	}
6583 
6584 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6585 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6586 	find_zone_movable_pfns_for_nodes();
6587 
6588 	/* Print out the zone ranges */
6589 	pr_info("Zone ranges:\n");
6590 	for (i = 0; i < MAX_NR_ZONES; i++) {
6591 		if (i == ZONE_MOVABLE)
6592 			continue;
6593 		pr_info("  %-8s ", zone_names[i]);
6594 		if (arch_zone_lowest_possible_pfn[i] ==
6595 				arch_zone_highest_possible_pfn[i])
6596 			pr_cont("empty\n");
6597 		else
6598 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6599 				(u64)arch_zone_lowest_possible_pfn[i]
6600 					<< PAGE_SHIFT,
6601 				((u64)arch_zone_highest_possible_pfn[i]
6602 					<< PAGE_SHIFT) - 1);
6603 	}
6604 
6605 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6606 	pr_info("Movable zone start for each node\n");
6607 	for (i = 0; i < MAX_NUMNODES; i++) {
6608 		if (zone_movable_pfn[i])
6609 			pr_info("  Node %d: %#018Lx\n", i,
6610 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6611 	}
6612 
6613 	/* Print out the early node map */
6614 	pr_info("Early memory node ranges\n");
6615 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6616 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6617 			(u64)start_pfn << PAGE_SHIFT,
6618 			((u64)end_pfn << PAGE_SHIFT) - 1);
6619 
6620 	/* Initialise every node */
6621 	mminit_verify_pageflags_layout();
6622 	setup_nr_node_ids();
6623 	for_each_online_node(nid) {
6624 		pg_data_t *pgdat = NODE_DATA(nid);
6625 		free_area_init_node(nid, NULL,
6626 				find_min_pfn_for_node(nid), NULL);
6627 
6628 		/* Any memory on that node */
6629 		if (pgdat->node_present_pages)
6630 			node_set_state(nid, N_MEMORY);
6631 		check_for_memory(pgdat, nid);
6632 	}
6633 }
6634 
6635 static int __init cmdline_parse_core(char *p, unsigned long *core)
6636 {
6637 	unsigned long long coremem;
6638 	if (!p)
6639 		return -EINVAL;
6640 
6641 	coremem = memparse(p, &p);
6642 	*core = coremem >> PAGE_SHIFT;
6643 
6644 	/* Paranoid check that UL is enough for the coremem value */
6645 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6646 
6647 	return 0;
6648 }
6649 
6650 /*
6651  * kernelcore=size sets the amount of memory for use for allocations that
6652  * cannot be reclaimed or migrated.
6653  */
6654 static int __init cmdline_parse_kernelcore(char *p)
6655 {
6656 	/* parse kernelcore=mirror */
6657 	if (parse_option_str(p, "mirror")) {
6658 		mirrored_kernelcore = true;
6659 		return 0;
6660 	}
6661 
6662 	return cmdline_parse_core(p, &required_kernelcore);
6663 }
6664 
6665 /*
6666  * movablecore=size sets the amount of memory for use for allocations that
6667  * can be reclaimed or migrated.
6668  */
6669 static int __init cmdline_parse_movablecore(char *p)
6670 {
6671 	return cmdline_parse_core(p, &required_movablecore);
6672 }
6673 
6674 early_param("kernelcore", cmdline_parse_kernelcore);
6675 early_param("movablecore", cmdline_parse_movablecore);
6676 
6677 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6678 
6679 void adjust_managed_page_count(struct page *page, long count)
6680 {
6681 	spin_lock(&managed_page_count_lock);
6682 	page_zone(page)->managed_pages += count;
6683 	totalram_pages += count;
6684 #ifdef CONFIG_HIGHMEM
6685 	if (PageHighMem(page))
6686 		totalhigh_pages += count;
6687 #endif
6688 	spin_unlock(&managed_page_count_lock);
6689 }
6690 EXPORT_SYMBOL(adjust_managed_page_count);
6691 
6692 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6693 {
6694 	void *pos;
6695 	unsigned long pages = 0;
6696 
6697 	start = (void *)PAGE_ALIGN((unsigned long)start);
6698 	end = (void *)((unsigned long)end & PAGE_MASK);
6699 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6700 		if ((unsigned int)poison <= 0xFF)
6701 			memset(pos, poison, PAGE_SIZE);
6702 		free_reserved_page(virt_to_page(pos));
6703 	}
6704 
6705 	if (pages && s)
6706 		pr_info("Freeing %s memory: %ldK\n",
6707 			s, pages << (PAGE_SHIFT - 10));
6708 
6709 	return pages;
6710 }
6711 EXPORT_SYMBOL(free_reserved_area);
6712 
6713 #ifdef	CONFIG_HIGHMEM
6714 void free_highmem_page(struct page *page)
6715 {
6716 	__free_reserved_page(page);
6717 	totalram_pages++;
6718 	page_zone(page)->managed_pages++;
6719 	totalhigh_pages++;
6720 }
6721 #endif
6722 
6723 
6724 void __init mem_init_print_info(const char *str)
6725 {
6726 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6727 	unsigned long init_code_size, init_data_size;
6728 
6729 	physpages = get_num_physpages();
6730 	codesize = _etext - _stext;
6731 	datasize = _edata - _sdata;
6732 	rosize = __end_rodata - __start_rodata;
6733 	bss_size = __bss_stop - __bss_start;
6734 	init_data_size = __init_end - __init_begin;
6735 	init_code_size = _einittext - _sinittext;
6736 
6737 	/*
6738 	 * Detect special cases and adjust section sizes accordingly:
6739 	 * 1) .init.* may be embedded into .data sections
6740 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6741 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6742 	 * 3) .rodata.* may be embedded into .text or .data sections.
6743 	 */
6744 #define adj_init_size(start, end, size, pos, adj) \
6745 	do { \
6746 		if (start <= pos && pos < end && size > adj) \
6747 			size -= adj; \
6748 	} while (0)
6749 
6750 	adj_init_size(__init_begin, __init_end, init_data_size,
6751 		     _sinittext, init_code_size);
6752 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6753 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6754 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6755 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6756 
6757 #undef	adj_init_size
6758 
6759 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6760 #ifdef	CONFIG_HIGHMEM
6761 		", %luK highmem"
6762 #endif
6763 		"%s%s)\n",
6764 		nr_free_pages() << (PAGE_SHIFT - 10),
6765 		physpages << (PAGE_SHIFT - 10),
6766 		codesize >> 10, datasize >> 10, rosize >> 10,
6767 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6768 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6769 		totalcma_pages << (PAGE_SHIFT - 10),
6770 #ifdef	CONFIG_HIGHMEM
6771 		totalhigh_pages << (PAGE_SHIFT - 10),
6772 #endif
6773 		str ? ", " : "", str ? str : "");
6774 }
6775 
6776 /**
6777  * set_dma_reserve - set the specified number of pages reserved in the first zone
6778  * @new_dma_reserve: The number of pages to mark reserved
6779  *
6780  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6781  * In the DMA zone, a significant percentage may be consumed by kernel image
6782  * and other unfreeable allocations which can skew the watermarks badly. This
6783  * function may optionally be used to account for unfreeable pages in the
6784  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6785  * smaller per-cpu batchsize.
6786  */
6787 void __init set_dma_reserve(unsigned long new_dma_reserve)
6788 {
6789 	dma_reserve = new_dma_reserve;
6790 }
6791 
6792 void __init free_area_init(unsigned long *zones_size)
6793 {
6794 	free_area_init_node(0, zones_size,
6795 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6796 }
6797 
6798 static int page_alloc_cpu_dead(unsigned int cpu)
6799 {
6800 
6801 	lru_add_drain_cpu(cpu);
6802 	drain_pages(cpu);
6803 
6804 	/*
6805 	 * Spill the event counters of the dead processor
6806 	 * into the current processors event counters.
6807 	 * This artificially elevates the count of the current
6808 	 * processor.
6809 	 */
6810 	vm_events_fold_cpu(cpu);
6811 
6812 	/*
6813 	 * Zero the differential counters of the dead processor
6814 	 * so that the vm statistics are consistent.
6815 	 *
6816 	 * This is only okay since the processor is dead and cannot
6817 	 * race with what we are doing.
6818 	 */
6819 	cpu_vm_stats_fold(cpu);
6820 	return 0;
6821 }
6822 
6823 void __init page_alloc_init(void)
6824 {
6825 	int ret;
6826 
6827 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6828 					"mm/page_alloc:dead", NULL,
6829 					page_alloc_cpu_dead);
6830 	WARN_ON(ret < 0);
6831 }
6832 
6833 /*
6834  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6835  *	or min_free_kbytes changes.
6836  */
6837 static void calculate_totalreserve_pages(void)
6838 {
6839 	struct pglist_data *pgdat;
6840 	unsigned long reserve_pages = 0;
6841 	enum zone_type i, j;
6842 
6843 	for_each_online_pgdat(pgdat) {
6844 
6845 		pgdat->totalreserve_pages = 0;
6846 
6847 		for (i = 0; i < MAX_NR_ZONES; i++) {
6848 			struct zone *zone = pgdat->node_zones + i;
6849 			long max = 0;
6850 
6851 			/* Find valid and maximum lowmem_reserve in the zone */
6852 			for (j = i; j < MAX_NR_ZONES; j++) {
6853 				if (zone->lowmem_reserve[j] > max)
6854 					max = zone->lowmem_reserve[j];
6855 			}
6856 
6857 			/* we treat the high watermark as reserved pages. */
6858 			max += high_wmark_pages(zone);
6859 
6860 			if (max > zone->managed_pages)
6861 				max = zone->managed_pages;
6862 
6863 			pgdat->totalreserve_pages += max;
6864 
6865 			reserve_pages += max;
6866 		}
6867 	}
6868 	totalreserve_pages = reserve_pages;
6869 }
6870 
6871 /*
6872  * setup_per_zone_lowmem_reserve - called whenever
6873  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6874  *	has a correct pages reserved value, so an adequate number of
6875  *	pages are left in the zone after a successful __alloc_pages().
6876  */
6877 static void setup_per_zone_lowmem_reserve(void)
6878 {
6879 	struct pglist_data *pgdat;
6880 	enum zone_type j, idx;
6881 
6882 	for_each_online_pgdat(pgdat) {
6883 		for (j = 0; j < MAX_NR_ZONES; j++) {
6884 			struct zone *zone = pgdat->node_zones + j;
6885 			unsigned long managed_pages = zone->managed_pages;
6886 
6887 			zone->lowmem_reserve[j] = 0;
6888 
6889 			idx = j;
6890 			while (idx) {
6891 				struct zone *lower_zone;
6892 
6893 				idx--;
6894 
6895 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6896 					sysctl_lowmem_reserve_ratio[idx] = 1;
6897 
6898 				lower_zone = pgdat->node_zones + idx;
6899 				lower_zone->lowmem_reserve[j] = managed_pages /
6900 					sysctl_lowmem_reserve_ratio[idx];
6901 				managed_pages += lower_zone->managed_pages;
6902 			}
6903 		}
6904 	}
6905 
6906 	/* update totalreserve_pages */
6907 	calculate_totalreserve_pages();
6908 }
6909 
6910 static void __setup_per_zone_wmarks(void)
6911 {
6912 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6913 	unsigned long lowmem_pages = 0;
6914 	struct zone *zone;
6915 	unsigned long flags;
6916 
6917 	/* Calculate total number of !ZONE_HIGHMEM pages */
6918 	for_each_zone(zone) {
6919 		if (!is_highmem(zone))
6920 			lowmem_pages += zone->managed_pages;
6921 	}
6922 
6923 	for_each_zone(zone) {
6924 		u64 tmp;
6925 
6926 		spin_lock_irqsave(&zone->lock, flags);
6927 		tmp = (u64)pages_min * zone->managed_pages;
6928 		do_div(tmp, lowmem_pages);
6929 		if (is_highmem(zone)) {
6930 			/*
6931 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6932 			 * need highmem pages, so cap pages_min to a small
6933 			 * value here.
6934 			 *
6935 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6936 			 * deltas control asynch page reclaim, and so should
6937 			 * not be capped for highmem.
6938 			 */
6939 			unsigned long min_pages;
6940 
6941 			min_pages = zone->managed_pages / 1024;
6942 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6943 			zone->watermark[WMARK_MIN] = min_pages;
6944 		} else {
6945 			/*
6946 			 * If it's a lowmem zone, reserve a number of pages
6947 			 * proportionate to the zone's size.
6948 			 */
6949 			zone->watermark[WMARK_MIN] = tmp;
6950 		}
6951 
6952 		/*
6953 		 * Set the kswapd watermarks distance according to the
6954 		 * scale factor in proportion to available memory, but
6955 		 * ensure a minimum size on small systems.
6956 		 */
6957 		tmp = max_t(u64, tmp >> 2,
6958 			    mult_frac(zone->managed_pages,
6959 				      watermark_scale_factor, 10000));
6960 
6961 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6962 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6963 
6964 		spin_unlock_irqrestore(&zone->lock, flags);
6965 	}
6966 
6967 	/* update totalreserve_pages */
6968 	calculate_totalreserve_pages();
6969 }
6970 
6971 /**
6972  * setup_per_zone_wmarks - called when min_free_kbytes changes
6973  * or when memory is hot-{added|removed}
6974  *
6975  * Ensures that the watermark[min,low,high] values for each zone are set
6976  * correctly with respect to min_free_kbytes.
6977  */
6978 void setup_per_zone_wmarks(void)
6979 {
6980 	static DEFINE_SPINLOCK(lock);
6981 
6982 	spin_lock(&lock);
6983 	__setup_per_zone_wmarks();
6984 	spin_unlock(&lock);
6985 }
6986 
6987 /*
6988  * Initialise min_free_kbytes.
6989  *
6990  * For small machines we want it small (128k min).  For large machines
6991  * we want it large (64MB max).  But it is not linear, because network
6992  * bandwidth does not increase linearly with machine size.  We use
6993  *
6994  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6995  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6996  *
6997  * which yields
6998  *
6999  * 16MB:	512k
7000  * 32MB:	724k
7001  * 64MB:	1024k
7002  * 128MB:	1448k
7003  * 256MB:	2048k
7004  * 512MB:	2896k
7005  * 1024MB:	4096k
7006  * 2048MB:	5792k
7007  * 4096MB:	8192k
7008  * 8192MB:	11584k
7009  * 16384MB:	16384k
7010  */
7011 int __meminit init_per_zone_wmark_min(void)
7012 {
7013 	unsigned long lowmem_kbytes;
7014 	int new_min_free_kbytes;
7015 
7016 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7017 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7018 
7019 	if (new_min_free_kbytes > user_min_free_kbytes) {
7020 		min_free_kbytes = new_min_free_kbytes;
7021 		if (min_free_kbytes < 128)
7022 			min_free_kbytes = 128;
7023 		if (min_free_kbytes > 65536)
7024 			min_free_kbytes = 65536;
7025 	} else {
7026 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7027 				new_min_free_kbytes, user_min_free_kbytes);
7028 	}
7029 	setup_per_zone_wmarks();
7030 	refresh_zone_stat_thresholds();
7031 	setup_per_zone_lowmem_reserve();
7032 
7033 #ifdef CONFIG_NUMA
7034 	setup_min_unmapped_ratio();
7035 	setup_min_slab_ratio();
7036 #endif
7037 
7038 	return 0;
7039 }
7040 core_initcall(init_per_zone_wmark_min)
7041 
7042 /*
7043  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7044  *	that we can call two helper functions whenever min_free_kbytes
7045  *	changes.
7046  */
7047 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7048 	void __user *buffer, size_t *length, loff_t *ppos)
7049 {
7050 	int rc;
7051 
7052 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7053 	if (rc)
7054 		return rc;
7055 
7056 	if (write) {
7057 		user_min_free_kbytes = min_free_kbytes;
7058 		setup_per_zone_wmarks();
7059 	}
7060 	return 0;
7061 }
7062 
7063 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7064 	void __user *buffer, size_t *length, loff_t *ppos)
7065 {
7066 	int rc;
7067 
7068 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7069 	if (rc)
7070 		return rc;
7071 
7072 	if (write)
7073 		setup_per_zone_wmarks();
7074 
7075 	return 0;
7076 }
7077 
7078 #ifdef CONFIG_NUMA
7079 static void setup_min_unmapped_ratio(void)
7080 {
7081 	pg_data_t *pgdat;
7082 	struct zone *zone;
7083 
7084 	for_each_online_pgdat(pgdat)
7085 		pgdat->min_unmapped_pages = 0;
7086 
7087 	for_each_zone(zone)
7088 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7089 				sysctl_min_unmapped_ratio) / 100;
7090 }
7091 
7092 
7093 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7094 	void __user *buffer, size_t *length, loff_t *ppos)
7095 {
7096 	int rc;
7097 
7098 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7099 	if (rc)
7100 		return rc;
7101 
7102 	setup_min_unmapped_ratio();
7103 
7104 	return 0;
7105 }
7106 
7107 static void setup_min_slab_ratio(void)
7108 {
7109 	pg_data_t *pgdat;
7110 	struct zone *zone;
7111 
7112 	for_each_online_pgdat(pgdat)
7113 		pgdat->min_slab_pages = 0;
7114 
7115 	for_each_zone(zone)
7116 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7117 				sysctl_min_slab_ratio) / 100;
7118 }
7119 
7120 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7121 	void __user *buffer, size_t *length, loff_t *ppos)
7122 {
7123 	int rc;
7124 
7125 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7126 	if (rc)
7127 		return rc;
7128 
7129 	setup_min_slab_ratio();
7130 
7131 	return 0;
7132 }
7133 #endif
7134 
7135 /*
7136  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7137  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7138  *	whenever sysctl_lowmem_reserve_ratio changes.
7139  *
7140  * The reserve ratio obviously has absolutely no relation with the
7141  * minimum watermarks. The lowmem reserve ratio can only make sense
7142  * if in function of the boot time zone sizes.
7143  */
7144 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7145 	void __user *buffer, size_t *length, loff_t *ppos)
7146 {
7147 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7148 	setup_per_zone_lowmem_reserve();
7149 	return 0;
7150 }
7151 
7152 /*
7153  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7154  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7155  * pagelist can have before it gets flushed back to buddy allocator.
7156  */
7157 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7158 	void __user *buffer, size_t *length, loff_t *ppos)
7159 {
7160 	struct zone *zone;
7161 	int old_percpu_pagelist_fraction;
7162 	int ret;
7163 
7164 	mutex_lock(&pcp_batch_high_lock);
7165 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7166 
7167 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7168 	if (!write || ret < 0)
7169 		goto out;
7170 
7171 	/* Sanity checking to avoid pcp imbalance */
7172 	if (percpu_pagelist_fraction &&
7173 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7174 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7175 		ret = -EINVAL;
7176 		goto out;
7177 	}
7178 
7179 	/* No change? */
7180 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7181 		goto out;
7182 
7183 	for_each_populated_zone(zone) {
7184 		unsigned int cpu;
7185 
7186 		for_each_possible_cpu(cpu)
7187 			pageset_set_high_and_batch(zone,
7188 					per_cpu_ptr(zone->pageset, cpu));
7189 	}
7190 out:
7191 	mutex_unlock(&pcp_batch_high_lock);
7192 	return ret;
7193 }
7194 
7195 #ifdef CONFIG_NUMA
7196 int hashdist = HASHDIST_DEFAULT;
7197 
7198 static int __init set_hashdist(char *str)
7199 {
7200 	if (!str)
7201 		return 0;
7202 	hashdist = simple_strtoul(str, &str, 0);
7203 	return 1;
7204 }
7205 __setup("hashdist=", set_hashdist);
7206 #endif
7207 
7208 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7209 /*
7210  * Returns the number of pages that arch has reserved but
7211  * is not known to alloc_large_system_hash().
7212  */
7213 static unsigned long __init arch_reserved_kernel_pages(void)
7214 {
7215 	return 0;
7216 }
7217 #endif
7218 
7219 /*
7220  * Adaptive scale is meant to reduce sizes of hash tables on large memory
7221  * machines. As memory size is increased the scale is also increased but at
7222  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7223  * quadruples the scale is increased by one, which means the size of hash table
7224  * only doubles, instead of quadrupling as well.
7225  * Because 32-bit systems cannot have large physical memory, where this scaling
7226  * makes sense, it is disabled on such platforms.
7227  */
7228 #if __BITS_PER_LONG > 32
7229 #define ADAPT_SCALE_BASE	(64ul << 30)
7230 #define ADAPT_SCALE_SHIFT	2
7231 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7232 #endif
7233 
7234 /*
7235  * allocate a large system hash table from bootmem
7236  * - it is assumed that the hash table must contain an exact power-of-2
7237  *   quantity of entries
7238  * - limit is the number of hash buckets, not the total allocation size
7239  */
7240 void *__init alloc_large_system_hash(const char *tablename,
7241 				     unsigned long bucketsize,
7242 				     unsigned long numentries,
7243 				     int scale,
7244 				     int flags,
7245 				     unsigned int *_hash_shift,
7246 				     unsigned int *_hash_mask,
7247 				     unsigned long low_limit,
7248 				     unsigned long high_limit)
7249 {
7250 	unsigned long long max = high_limit;
7251 	unsigned long log2qty, size;
7252 	void *table = NULL;
7253 	gfp_t gfp_flags;
7254 
7255 	/* allow the kernel cmdline to have a say */
7256 	if (!numentries) {
7257 		/* round applicable memory size up to nearest megabyte */
7258 		numentries = nr_kernel_pages;
7259 		numentries -= arch_reserved_kernel_pages();
7260 
7261 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7262 		if (PAGE_SHIFT < 20)
7263 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7264 
7265 #if __BITS_PER_LONG > 32
7266 		if (!high_limit) {
7267 			unsigned long adapt;
7268 
7269 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7270 			     adapt <<= ADAPT_SCALE_SHIFT)
7271 				scale++;
7272 		}
7273 #endif
7274 
7275 		/* limit to 1 bucket per 2^scale bytes of low memory */
7276 		if (scale > PAGE_SHIFT)
7277 			numentries >>= (scale - PAGE_SHIFT);
7278 		else
7279 			numentries <<= (PAGE_SHIFT - scale);
7280 
7281 		/* Make sure we've got at least a 0-order allocation.. */
7282 		if (unlikely(flags & HASH_SMALL)) {
7283 			/* Makes no sense without HASH_EARLY */
7284 			WARN_ON(!(flags & HASH_EARLY));
7285 			if (!(numentries >> *_hash_shift)) {
7286 				numentries = 1UL << *_hash_shift;
7287 				BUG_ON(!numentries);
7288 			}
7289 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7290 			numentries = PAGE_SIZE / bucketsize;
7291 	}
7292 	numentries = roundup_pow_of_two(numentries);
7293 
7294 	/* limit allocation size to 1/16 total memory by default */
7295 	if (max == 0) {
7296 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7297 		do_div(max, bucketsize);
7298 	}
7299 	max = min(max, 0x80000000ULL);
7300 
7301 	if (numentries < low_limit)
7302 		numentries = low_limit;
7303 	if (numentries > max)
7304 		numentries = max;
7305 
7306 	log2qty = ilog2(numentries);
7307 
7308 	/*
7309 	 * memblock allocator returns zeroed memory already, so HASH_ZERO is
7310 	 * currently not used when HASH_EARLY is specified.
7311 	 */
7312 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7313 	do {
7314 		size = bucketsize << log2qty;
7315 		if (flags & HASH_EARLY)
7316 			table = memblock_virt_alloc_nopanic(size, 0);
7317 		else if (hashdist)
7318 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7319 		else {
7320 			/*
7321 			 * If bucketsize is not a power-of-two, we may free
7322 			 * some pages at the end of hash table which
7323 			 * alloc_pages_exact() automatically does
7324 			 */
7325 			if (get_order(size) < MAX_ORDER) {
7326 				table = alloc_pages_exact(size, gfp_flags);
7327 				kmemleak_alloc(table, size, 1, gfp_flags);
7328 			}
7329 		}
7330 	} while (!table && size > PAGE_SIZE && --log2qty);
7331 
7332 	if (!table)
7333 		panic("Failed to allocate %s hash table\n", tablename);
7334 
7335 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7336 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7337 
7338 	if (_hash_shift)
7339 		*_hash_shift = log2qty;
7340 	if (_hash_mask)
7341 		*_hash_mask = (1 << log2qty) - 1;
7342 
7343 	return table;
7344 }
7345 
7346 /*
7347  * This function checks whether pageblock includes unmovable pages or not.
7348  * If @count is not zero, it is okay to include less @count unmovable pages
7349  *
7350  * PageLRU check without isolation or lru_lock could race so that
7351  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7352  * check without lock_page also may miss some movable non-lru pages at
7353  * race condition. So you can't expect this function should be exact.
7354  */
7355 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7356 			 bool skip_hwpoisoned_pages)
7357 {
7358 	unsigned long pfn, iter, found;
7359 	int mt;
7360 
7361 	/*
7362 	 * For avoiding noise data, lru_add_drain_all() should be called
7363 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7364 	 */
7365 	if (zone_idx(zone) == ZONE_MOVABLE)
7366 		return false;
7367 	mt = get_pageblock_migratetype(page);
7368 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7369 		return false;
7370 
7371 	pfn = page_to_pfn(page);
7372 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7373 		unsigned long check = pfn + iter;
7374 
7375 		if (!pfn_valid_within(check))
7376 			continue;
7377 
7378 		page = pfn_to_page(check);
7379 
7380 		/*
7381 		 * Hugepages are not in LRU lists, but they're movable.
7382 		 * We need not scan over tail pages bacause we don't
7383 		 * handle each tail page individually in migration.
7384 		 */
7385 		if (PageHuge(page)) {
7386 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7387 			continue;
7388 		}
7389 
7390 		/*
7391 		 * We can't use page_count without pin a page
7392 		 * because another CPU can free compound page.
7393 		 * This check already skips compound tails of THP
7394 		 * because their page->_refcount is zero at all time.
7395 		 */
7396 		if (!page_ref_count(page)) {
7397 			if (PageBuddy(page))
7398 				iter += (1 << page_order(page)) - 1;
7399 			continue;
7400 		}
7401 
7402 		/*
7403 		 * The HWPoisoned page may be not in buddy system, and
7404 		 * page_count() is not 0.
7405 		 */
7406 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7407 			continue;
7408 
7409 		if (__PageMovable(page))
7410 			continue;
7411 
7412 		if (!PageLRU(page))
7413 			found++;
7414 		/*
7415 		 * If there are RECLAIMABLE pages, we need to check
7416 		 * it.  But now, memory offline itself doesn't call
7417 		 * shrink_node_slabs() and it still to be fixed.
7418 		 */
7419 		/*
7420 		 * If the page is not RAM, page_count()should be 0.
7421 		 * we don't need more check. This is an _used_ not-movable page.
7422 		 *
7423 		 * The problematic thing here is PG_reserved pages. PG_reserved
7424 		 * is set to both of a memory hole page and a _used_ kernel
7425 		 * page at boot.
7426 		 */
7427 		if (found > count)
7428 			return true;
7429 	}
7430 	return false;
7431 }
7432 
7433 bool is_pageblock_removable_nolock(struct page *page)
7434 {
7435 	struct zone *zone;
7436 	unsigned long pfn;
7437 
7438 	/*
7439 	 * We have to be careful here because we are iterating over memory
7440 	 * sections which are not zone aware so we might end up outside of
7441 	 * the zone but still within the section.
7442 	 * We have to take care about the node as well. If the node is offline
7443 	 * its NODE_DATA will be NULL - see page_zone.
7444 	 */
7445 	if (!node_online(page_to_nid(page)))
7446 		return false;
7447 
7448 	zone = page_zone(page);
7449 	pfn = page_to_pfn(page);
7450 	if (!zone_spans_pfn(zone, pfn))
7451 		return false;
7452 
7453 	return !has_unmovable_pages(zone, page, 0, true);
7454 }
7455 
7456 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7457 
7458 static unsigned long pfn_max_align_down(unsigned long pfn)
7459 {
7460 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7461 			     pageblock_nr_pages) - 1);
7462 }
7463 
7464 static unsigned long pfn_max_align_up(unsigned long pfn)
7465 {
7466 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7467 				pageblock_nr_pages));
7468 }
7469 
7470 /* [start, end) must belong to a single zone. */
7471 static int __alloc_contig_migrate_range(struct compact_control *cc,
7472 					unsigned long start, unsigned long end)
7473 {
7474 	/* This function is based on compact_zone() from compaction.c. */
7475 	unsigned long nr_reclaimed;
7476 	unsigned long pfn = start;
7477 	unsigned int tries = 0;
7478 	int ret = 0;
7479 
7480 	migrate_prep();
7481 
7482 	while (pfn < end || !list_empty(&cc->migratepages)) {
7483 		if (fatal_signal_pending(current)) {
7484 			ret = -EINTR;
7485 			break;
7486 		}
7487 
7488 		if (list_empty(&cc->migratepages)) {
7489 			cc->nr_migratepages = 0;
7490 			pfn = isolate_migratepages_range(cc, pfn, end);
7491 			if (!pfn) {
7492 				ret = -EINTR;
7493 				break;
7494 			}
7495 			tries = 0;
7496 		} else if (++tries == 5) {
7497 			ret = ret < 0 ? ret : -EBUSY;
7498 			break;
7499 		}
7500 
7501 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7502 							&cc->migratepages);
7503 		cc->nr_migratepages -= nr_reclaimed;
7504 
7505 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7506 				    NULL, 0, cc->mode, MR_CMA);
7507 	}
7508 	if (ret < 0) {
7509 		putback_movable_pages(&cc->migratepages);
7510 		return ret;
7511 	}
7512 	return 0;
7513 }
7514 
7515 /**
7516  * alloc_contig_range() -- tries to allocate given range of pages
7517  * @start:	start PFN to allocate
7518  * @end:	one-past-the-last PFN to allocate
7519  * @migratetype:	migratetype of the underlaying pageblocks (either
7520  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7521  *			in range must have the same migratetype and it must
7522  *			be either of the two.
7523  * @gfp_mask:	GFP mask to use during compaction
7524  *
7525  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7526  * aligned, however it's the caller's responsibility to guarantee that
7527  * we are the only thread that changes migrate type of pageblocks the
7528  * pages fall in.
7529  *
7530  * The PFN range must belong to a single zone.
7531  *
7532  * Returns zero on success or negative error code.  On success all
7533  * pages which PFN is in [start, end) are allocated for the caller and
7534  * need to be freed with free_contig_range().
7535  */
7536 int alloc_contig_range(unsigned long start, unsigned long end,
7537 		       unsigned migratetype, gfp_t gfp_mask)
7538 {
7539 	unsigned long outer_start, outer_end;
7540 	unsigned int order;
7541 	int ret = 0;
7542 
7543 	struct compact_control cc = {
7544 		.nr_migratepages = 0,
7545 		.order = -1,
7546 		.zone = page_zone(pfn_to_page(start)),
7547 		.mode = MIGRATE_SYNC,
7548 		.ignore_skip_hint = true,
7549 		.gfp_mask = current_gfp_context(gfp_mask),
7550 	};
7551 	INIT_LIST_HEAD(&cc.migratepages);
7552 
7553 	/*
7554 	 * What we do here is we mark all pageblocks in range as
7555 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7556 	 * have different sizes, and due to the way page allocator
7557 	 * work, we align the range to biggest of the two pages so
7558 	 * that page allocator won't try to merge buddies from
7559 	 * different pageblocks and change MIGRATE_ISOLATE to some
7560 	 * other migration type.
7561 	 *
7562 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7563 	 * migrate the pages from an unaligned range (ie. pages that
7564 	 * we are interested in).  This will put all the pages in
7565 	 * range back to page allocator as MIGRATE_ISOLATE.
7566 	 *
7567 	 * When this is done, we take the pages in range from page
7568 	 * allocator removing them from the buddy system.  This way
7569 	 * page allocator will never consider using them.
7570 	 *
7571 	 * This lets us mark the pageblocks back as
7572 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7573 	 * aligned range but not in the unaligned, original range are
7574 	 * put back to page allocator so that buddy can use them.
7575 	 */
7576 
7577 	ret = start_isolate_page_range(pfn_max_align_down(start),
7578 				       pfn_max_align_up(end), migratetype,
7579 				       false);
7580 	if (ret)
7581 		return ret;
7582 
7583 	/*
7584 	 * In case of -EBUSY, we'd like to know which page causes problem.
7585 	 * So, just fall through. We will check it in test_pages_isolated().
7586 	 */
7587 	ret = __alloc_contig_migrate_range(&cc, start, end);
7588 	if (ret && ret != -EBUSY)
7589 		goto done;
7590 
7591 	/*
7592 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7593 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7594 	 * more, all pages in [start, end) are free in page allocator.
7595 	 * What we are going to do is to allocate all pages from
7596 	 * [start, end) (that is remove them from page allocator).
7597 	 *
7598 	 * The only problem is that pages at the beginning and at the
7599 	 * end of interesting range may be not aligned with pages that
7600 	 * page allocator holds, ie. they can be part of higher order
7601 	 * pages.  Because of this, we reserve the bigger range and
7602 	 * once this is done free the pages we are not interested in.
7603 	 *
7604 	 * We don't have to hold zone->lock here because the pages are
7605 	 * isolated thus they won't get removed from buddy.
7606 	 */
7607 
7608 	lru_add_drain_all();
7609 	drain_all_pages(cc.zone);
7610 
7611 	order = 0;
7612 	outer_start = start;
7613 	while (!PageBuddy(pfn_to_page(outer_start))) {
7614 		if (++order >= MAX_ORDER) {
7615 			outer_start = start;
7616 			break;
7617 		}
7618 		outer_start &= ~0UL << order;
7619 	}
7620 
7621 	if (outer_start != start) {
7622 		order = page_order(pfn_to_page(outer_start));
7623 
7624 		/*
7625 		 * outer_start page could be small order buddy page and
7626 		 * it doesn't include start page. Adjust outer_start
7627 		 * in this case to report failed page properly
7628 		 * on tracepoint in test_pages_isolated()
7629 		 */
7630 		if (outer_start + (1UL << order) <= start)
7631 			outer_start = start;
7632 	}
7633 
7634 	/* Make sure the range is really isolated. */
7635 	if (test_pages_isolated(outer_start, end, false)) {
7636 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7637 			__func__, outer_start, end);
7638 		ret = -EBUSY;
7639 		goto done;
7640 	}
7641 
7642 	/* Grab isolated pages from freelists. */
7643 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7644 	if (!outer_end) {
7645 		ret = -EBUSY;
7646 		goto done;
7647 	}
7648 
7649 	/* Free head and tail (if any) */
7650 	if (start != outer_start)
7651 		free_contig_range(outer_start, start - outer_start);
7652 	if (end != outer_end)
7653 		free_contig_range(end, outer_end - end);
7654 
7655 done:
7656 	undo_isolate_page_range(pfn_max_align_down(start),
7657 				pfn_max_align_up(end), migratetype);
7658 	return ret;
7659 }
7660 
7661 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7662 {
7663 	unsigned int count = 0;
7664 
7665 	for (; nr_pages--; pfn++) {
7666 		struct page *page = pfn_to_page(pfn);
7667 
7668 		count += page_count(page) != 1;
7669 		__free_page(page);
7670 	}
7671 	WARN(count != 0, "%d pages are still in use!\n", count);
7672 }
7673 #endif
7674 
7675 #ifdef CONFIG_MEMORY_HOTPLUG
7676 /*
7677  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7678  * page high values need to be recalulated.
7679  */
7680 void __meminit zone_pcp_update(struct zone *zone)
7681 {
7682 	unsigned cpu;
7683 	mutex_lock(&pcp_batch_high_lock);
7684 	for_each_possible_cpu(cpu)
7685 		pageset_set_high_and_batch(zone,
7686 				per_cpu_ptr(zone->pageset, cpu));
7687 	mutex_unlock(&pcp_batch_high_lock);
7688 }
7689 #endif
7690 
7691 void zone_pcp_reset(struct zone *zone)
7692 {
7693 	unsigned long flags;
7694 	int cpu;
7695 	struct per_cpu_pageset *pset;
7696 
7697 	/* avoid races with drain_pages()  */
7698 	local_irq_save(flags);
7699 	if (zone->pageset != &boot_pageset) {
7700 		for_each_online_cpu(cpu) {
7701 			pset = per_cpu_ptr(zone->pageset, cpu);
7702 			drain_zonestat(zone, pset);
7703 		}
7704 		free_percpu(zone->pageset);
7705 		zone->pageset = &boot_pageset;
7706 	}
7707 	local_irq_restore(flags);
7708 }
7709 
7710 #ifdef CONFIG_MEMORY_HOTREMOVE
7711 /*
7712  * All pages in the range must be in a single zone and isolated
7713  * before calling this.
7714  */
7715 void
7716 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7717 {
7718 	struct page *page;
7719 	struct zone *zone;
7720 	unsigned int order, i;
7721 	unsigned long pfn;
7722 	unsigned long flags;
7723 	/* find the first valid pfn */
7724 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7725 		if (pfn_valid(pfn))
7726 			break;
7727 	if (pfn == end_pfn)
7728 		return;
7729 	offline_mem_sections(pfn, end_pfn);
7730 	zone = page_zone(pfn_to_page(pfn));
7731 	spin_lock_irqsave(&zone->lock, flags);
7732 	pfn = start_pfn;
7733 	while (pfn < end_pfn) {
7734 		if (!pfn_valid(pfn)) {
7735 			pfn++;
7736 			continue;
7737 		}
7738 		page = pfn_to_page(pfn);
7739 		/*
7740 		 * The HWPoisoned page may be not in buddy system, and
7741 		 * page_count() is not 0.
7742 		 */
7743 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7744 			pfn++;
7745 			SetPageReserved(page);
7746 			continue;
7747 		}
7748 
7749 		BUG_ON(page_count(page));
7750 		BUG_ON(!PageBuddy(page));
7751 		order = page_order(page);
7752 #ifdef CONFIG_DEBUG_VM
7753 		pr_info("remove from free list %lx %d %lx\n",
7754 			pfn, 1 << order, end_pfn);
7755 #endif
7756 		list_del(&page->lru);
7757 		rmv_page_order(page);
7758 		zone->free_area[order].nr_free--;
7759 		for (i = 0; i < (1 << order); i++)
7760 			SetPageReserved((page+i));
7761 		pfn += (1 << order);
7762 	}
7763 	spin_unlock_irqrestore(&zone->lock, flags);
7764 }
7765 #endif
7766 
7767 bool is_free_buddy_page(struct page *page)
7768 {
7769 	struct zone *zone = page_zone(page);
7770 	unsigned long pfn = page_to_pfn(page);
7771 	unsigned long flags;
7772 	unsigned int order;
7773 
7774 	spin_lock_irqsave(&zone->lock, flags);
7775 	for (order = 0; order < MAX_ORDER; order++) {
7776 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7777 
7778 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7779 			break;
7780 	}
7781 	spin_unlock_irqrestore(&zone->lock, flags);
7782 
7783 	return order < MAX_ORDER;
7784 }
7785