xref: /openbmc/linux/mm/page_alloc.c (revision b1a3e75e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 #include <linux/padata.h>
72 
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
75 #include <asm/div64.h>
76 #include "internal.h"
77 #include "shuffle.h"
78 #include "page_reporting.h"
79 
80 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
81 static DEFINE_MUTEX(pcp_batch_high_lock);
82 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
83 
84 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
85 DEFINE_PER_CPU(int, numa_node);
86 EXPORT_PER_CPU_SYMBOL(numa_node);
87 #endif
88 
89 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
90 
91 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
92 /*
93  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
94  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
95  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
96  * defined in <linux/topology.h>.
97  */
98 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
99 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
100 #endif
101 
102 /* work_structs for global per-cpu drains */
103 struct pcpu_drain {
104 	struct zone *zone;
105 	struct work_struct work;
106 };
107 static DEFINE_MUTEX(pcpu_drain_mutex);
108 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
109 
110 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
111 volatile unsigned long latent_entropy __latent_entropy;
112 EXPORT_SYMBOL(latent_entropy);
113 #endif
114 
115 /*
116  * Array of node states.
117  */
118 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
119 	[N_POSSIBLE] = NODE_MASK_ALL,
120 	[N_ONLINE] = { { [0] = 1UL } },
121 #ifndef CONFIG_NUMA
122 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
123 #ifdef CONFIG_HIGHMEM
124 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
125 #endif
126 	[N_MEMORY] = { { [0] = 1UL } },
127 	[N_CPU] = { { [0] = 1UL } },
128 #endif	/* NUMA */
129 };
130 EXPORT_SYMBOL(node_states);
131 
132 atomic_long_t _totalram_pages __read_mostly;
133 EXPORT_SYMBOL(_totalram_pages);
134 unsigned long totalreserve_pages __read_mostly;
135 unsigned long totalcma_pages __read_mostly;
136 
137 int percpu_pagelist_fraction;
138 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
139 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
140 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
141 #else
142 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
143 #endif
144 EXPORT_SYMBOL(init_on_alloc);
145 
146 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
147 DEFINE_STATIC_KEY_TRUE(init_on_free);
148 #else
149 DEFINE_STATIC_KEY_FALSE(init_on_free);
150 #endif
151 EXPORT_SYMBOL(init_on_free);
152 
153 static int __init early_init_on_alloc(char *buf)
154 {
155 	int ret;
156 	bool bool_result;
157 
158 	if (!buf)
159 		return -EINVAL;
160 	ret = kstrtobool(buf, &bool_result);
161 	if (bool_result && page_poisoning_enabled())
162 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
163 	if (bool_result)
164 		static_branch_enable(&init_on_alloc);
165 	else
166 		static_branch_disable(&init_on_alloc);
167 	return ret;
168 }
169 early_param("init_on_alloc", early_init_on_alloc);
170 
171 static int __init early_init_on_free(char *buf)
172 {
173 	int ret;
174 	bool bool_result;
175 
176 	if (!buf)
177 		return -EINVAL;
178 	ret = kstrtobool(buf, &bool_result);
179 	if (bool_result && page_poisoning_enabled())
180 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
181 	if (bool_result)
182 		static_branch_enable(&init_on_free);
183 	else
184 		static_branch_disable(&init_on_free);
185 	return ret;
186 }
187 early_param("init_on_free", early_init_on_free);
188 
189 /*
190  * A cached value of the page's pageblock's migratetype, used when the page is
191  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
192  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
193  * Also the migratetype set in the page does not necessarily match the pcplist
194  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
195  * other index - this ensures that it will be put on the correct CMA freelist.
196  */
197 static inline int get_pcppage_migratetype(struct page *page)
198 {
199 	return page->index;
200 }
201 
202 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
203 {
204 	page->index = migratetype;
205 }
206 
207 #ifdef CONFIG_PM_SLEEP
208 /*
209  * The following functions are used by the suspend/hibernate code to temporarily
210  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
211  * while devices are suspended.  To avoid races with the suspend/hibernate code,
212  * they should always be called with system_transition_mutex held
213  * (gfp_allowed_mask also should only be modified with system_transition_mutex
214  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
215  * with that modification).
216  */
217 
218 static gfp_t saved_gfp_mask;
219 
220 void pm_restore_gfp_mask(void)
221 {
222 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
223 	if (saved_gfp_mask) {
224 		gfp_allowed_mask = saved_gfp_mask;
225 		saved_gfp_mask = 0;
226 	}
227 }
228 
229 void pm_restrict_gfp_mask(void)
230 {
231 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
232 	WARN_ON(saved_gfp_mask);
233 	saved_gfp_mask = gfp_allowed_mask;
234 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
235 }
236 
237 bool pm_suspended_storage(void)
238 {
239 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
240 		return false;
241 	return true;
242 }
243 #endif /* CONFIG_PM_SLEEP */
244 
245 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
246 unsigned int pageblock_order __read_mostly;
247 #endif
248 
249 static void __free_pages_ok(struct page *page, unsigned int order);
250 
251 /*
252  * results with 256, 32 in the lowmem_reserve sysctl:
253  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
254  *	1G machine -> (16M dma, 784M normal, 224M high)
255  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
256  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
257  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
258  *
259  * TBD: should special case ZONE_DMA32 machines here - in those we normally
260  * don't need any ZONE_NORMAL reservation
261  */
262 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
263 #ifdef CONFIG_ZONE_DMA
264 	[ZONE_DMA] = 256,
265 #endif
266 #ifdef CONFIG_ZONE_DMA32
267 	[ZONE_DMA32] = 256,
268 #endif
269 	[ZONE_NORMAL] = 32,
270 #ifdef CONFIG_HIGHMEM
271 	[ZONE_HIGHMEM] = 0,
272 #endif
273 	[ZONE_MOVABLE] = 0,
274 };
275 
276 static char * const zone_names[MAX_NR_ZONES] = {
277 #ifdef CONFIG_ZONE_DMA
278 	 "DMA",
279 #endif
280 #ifdef CONFIG_ZONE_DMA32
281 	 "DMA32",
282 #endif
283 	 "Normal",
284 #ifdef CONFIG_HIGHMEM
285 	 "HighMem",
286 #endif
287 	 "Movable",
288 #ifdef CONFIG_ZONE_DEVICE
289 	 "Device",
290 #endif
291 };
292 
293 const char * const migratetype_names[MIGRATE_TYPES] = {
294 	"Unmovable",
295 	"Movable",
296 	"Reclaimable",
297 	"HighAtomic",
298 #ifdef CONFIG_CMA
299 	"CMA",
300 #endif
301 #ifdef CONFIG_MEMORY_ISOLATION
302 	"Isolate",
303 #endif
304 };
305 
306 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
307 	[NULL_COMPOUND_DTOR] = NULL,
308 	[COMPOUND_PAGE_DTOR] = free_compound_page,
309 #ifdef CONFIG_HUGETLB_PAGE
310 	[HUGETLB_PAGE_DTOR] = free_huge_page,
311 #endif
312 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
313 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
314 #endif
315 };
316 
317 int min_free_kbytes = 1024;
318 int user_min_free_kbytes = -1;
319 #ifdef CONFIG_DISCONTIGMEM
320 /*
321  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
322  * are not on separate NUMA nodes. Functionally this works but with
323  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
324  * quite small. By default, do not boost watermarks on discontigmem as in
325  * many cases very high-order allocations like THP are likely to be
326  * unsupported and the premature reclaim offsets the advantage of long-term
327  * fragmentation avoidance.
328  */
329 int watermark_boost_factor __read_mostly;
330 #else
331 int watermark_boost_factor __read_mostly = 15000;
332 #endif
333 int watermark_scale_factor = 10;
334 
335 static unsigned long nr_kernel_pages __initdata;
336 static unsigned long nr_all_pages __initdata;
337 static unsigned long dma_reserve __initdata;
338 
339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341 static unsigned long required_kernelcore __initdata;
342 static unsigned long required_kernelcore_percent __initdata;
343 static unsigned long required_movablecore __initdata;
344 static unsigned long required_movablecore_percent __initdata;
345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346 static bool mirrored_kernelcore __meminitdata;
347 
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349 int movable_zone;
350 EXPORT_SYMBOL(movable_zone);
351 
352 #if MAX_NUMNODES > 1
353 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
354 unsigned int nr_online_nodes __read_mostly = 1;
355 EXPORT_SYMBOL(nr_node_ids);
356 EXPORT_SYMBOL(nr_online_nodes);
357 #endif
358 
359 int page_group_by_mobility_disabled __read_mostly;
360 
361 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
362 /*
363  * During boot we initialize deferred pages on-demand, as needed, but once
364  * page_alloc_init_late() has finished, the deferred pages are all initialized,
365  * and we can permanently disable that path.
366  */
367 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
368 
369 /*
370  * Calling kasan_free_pages() only after deferred memory initialization
371  * has completed. Poisoning pages during deferred memory init will greatly
372  * lengthen the process and cause problem in large memory systems as the
373  * deferred pages initialization is done with interrupt disabled.
374  *
375  * Assuming that there will be no reference to those newly initialized
376  * pages before they are ever allocated, this should have no effect on
377  * KASAN memory tracking as the poison will be properly inserted at page
378  * allocation time. The only corner case is when pages are allocated by
379  * on-demand allocation and then freed again before the deferred pages
380  * initialization is done, but this is not likely to happen.
381  */
382 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
383 {
384 	if (!static_branch_unlikely(&deferred_pages))
385 		kasan_free_pages(page, order);
386 }
387 
388 /* Returns true if the struct page for the pfn is uninitialised */
389 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
390 {
391 	int nid = early_pfn_to_nid(pfn);
392 
393 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
394 		return true;
395 
396 	return false;
397 }
398 
399 /*
400  * Returns true when the remaining initialisation should be deferred until
401  * later in the boot cycle when it can be parallelised.
402  */
403 static bool __meminit
404 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
405 {
406 	static unsigned long prev_end_pfn, nr_initialised;
407 
408 	/*
409 	 * prev_end_pfn static that contains the end of previous zone
410 	 * No need to protect because called very early in boot before smp_init.
411 	 */
412 	if (prev_end_pfn != end_pfn) {
413 		prev_end_pfn = end_pfn;
414 		nr_initialised = 0;
415 	}
416 
417 	/* Always populate low zones for address-constrained allocations */
418 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
419 		return false;
420 
421 	/*
422 	 * We start only with one section of pages, more pages are added as
423 	 * needed until the rest of deferred pages are initialized.
424 	 */
425 	nr_initialised++;
426 	if ((nr_initialised > PAGES_PER_SECTION) &&
427 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
428 		NODE_DATA(nid)->first_deferred_pfn = pfn;
429 		return true;
430 	}
431 	return false;
432 }
433 #else
434 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
435 
436 static inline bool early_page_uninitialised(unsigned long pfn)
437 {
438 	return false;
439 }
440 
441 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
442 {
443 	return false;
444 }
445 #endif
446 
447 /* Return a pointer to the bitmap storing bits affecting a block of pages */
448 static inline unsigned long *get_pageblock_bitmap(struct page *page,
449 							unsigned long pfn)
450 {
451 #ifdef CONFIG_SPARSEMEM
452 	return section_to_usemap(__pfn_to_section(pfn));
453 #else
454 	return page_zone(page)->pageblock_flags;
455 #endif /* CONFIG_SPARSEMEM */
456 }
457 
458 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
459 {
460 #ifdef CONFIG_SPARSEMEM
461 	pfn &= (PAGES_PER_SECTION-1);
462 #else
463 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
464 #endif /* CONFIG_SPARSEMEM */
465 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
466 }
467 
468 /**
469  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
470  * @page: The page within the block of interest
471  * @pfn: The target page frame number
472  * @mask: mask of bits that the caller is interested in
473  *
474  * Return: pageblock_bits flags
475  */
476 static __always_inline
477 unsigned long __get_pfnblock_flags_mask(struct page *page,
478 					unsigned long pfn,
479 					unsigned long mask)
480 {
481 	unsigned long *bitmap;
482 	unsigned long bitidx, word_bitidx;
483 	unsigned long word;
484 
485 	bitmap = get_pageblock_bitmap(page, pfn);
486 	bitidx = pfn_to_bitidx(page, pfn);
487 	word_bitidx = bitidx / BITS_PER_LONG;
488 	bitidx &= (BITS_PER_LONG-1);
489 
490 	word = bitmap[word_bitidx];
491 	return (word >> bitidx) & mask;
492 }
493 
494 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
495 					unsigned long mask)
496 {
497 	return __get_pfnblock_flags_mask(page, pfn, mask);
498 }
499 
500 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
501 {
502 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
503 }
504 
505 /**
506  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
507  * @page: The page within the block of interest
508  * @flags: The flags to set
509  * @pfn: The target page frame number
510  * @mask: mask of bits that the caller is interested in
511  */
512 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
513 					unsigned long pfn,
514 					unsigned long mask)
515 {
516 	unsigned long *bitmap;
517 	unsigned long bitidx, word_bitidx;
518 	unsigned long old_word, word;
519 
520 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
521 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
522 
523 	bitmap = get_pageblock_bitmap(page, pfn);
524 	bitidx = pfn_to_bitidx(page, pfn);
525 	word_bitidx = bitidx / BITS_PER_LONG;
526 	bitidx &= (BITS_PER_LONG-1);
527 
528 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
529 
530 	mask <<= bitidx;
531 	flags <<= bitidx;
532 
533 	word = READ_ONCE(bitmap[word_bitidx]);
534 	for (;;) {
535 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
536 		if (word == old_word)
537 			break;
538 		word = old_word;
539 	}
540 }
541 
542 void set_pageblock_migratetype(struct page *page, int migratetype)
543 {
544 	if (unlikely(page_group_by_mobility_disabled &&
545 		     migratetype < MIGRATE_PCPTYPES))
546 		migratetype = MIGRATE_UNMOVABLE;
547 
548 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
549 				page_to_pfn(page), MIGRATETYPE_MASK);
550 }
551 
552 #ifdef CONFIG_DEBUG_VM
553 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
554 {
555 	int ret = 0;
556 	unsigned seq;
557 	unsigned long pfn = page_to_pfn(page);
558 	unsigned long sp, start_pfn;
559 
560 	do {
561 		seq = zone_span_seqbegin(zone);
562 		start_pfn = zone->zone_start_pfn;
563 		sp = zone->spanned_pages;
564 		if (!zone_spans_pfn(zone, pfn))
565 			ret = 1;
566 	} while (zone_span_seqretry(zone, seq));
567 
568 	if (ret)
569 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
570 			pfn, zone_to_nid(zone), zone->name,
571 			start_pfn, start_pfn + sp);
572 
573 	return ret;
574 }
575 
576 static int page_is_consistent(struct zone *zone, struct page *page)
577 {
578 	if (!pfn_valid_within(page_to_pfn(page)))
579 		return 0;
580 	if (zone != page_zone(page))
581 		return 0;
582 
583 	return 1;
584 }
585 /*
586  * Temporary debugging check for pages not lying within a given zone.
587  */
588 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
589 {
590 	if (page_outside_zone_boundaries(zone, page))
591 		return 1;
592 	if (!page_is_consistent(zone, page))
593 		return 1;
594 
595 	return 0;
596 }
597 #else
598 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
599 {
600 	return 0;
601 }
602 #endif
603 
604 static void bad_page(struct page *page, const char *reason)
605 {
606 	static unsigned long resume;
607 	static unsigned long nr_shown;
608 	static unsigned long nr_unshown;
609 
610 	/*
611 	 * Allow a burst of 60 reports, then keep quiet for that minute;
612 	 * or allow a steady drip of one report per second.
613 	 */
614 	if (nr_shown == 60) {
615 		if (time_before(jiffies, resume)) {
616 			nr_unshown++;
617 			goto out;
618 		}
619 		if (nr_unshown) {
620 			pr_alert(
621 			      "BUG: Bad page state: %lu messages suppressed\n",
622 				nr_unshown);
623 			nr_unshown = 0;
624 		}
625 		nr_shown = 0;
626 	}
627 	if (nr_shown++ == 0)
628 		resume = jiffies + 60 * HZ;
629 
630 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
631 		current->comm, page_to_pfn(page));
632 	__dump_page(page, reason);
633 	dump_page_owner(page);
634 
635 	print_modules();
636 	dump_stack();
637 out:
638 	/* Leave bad fields for debug, except PageBuddy could make trouble */
639 	page_mapcount_reset(page); /* remove PageBuddy */
640 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
641 }
642 
643 /*
644  * Higher-order pages are called "compound pages".  They are structured thusly:
645  *
646  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
647  *
648  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
649  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
650  *
651  * The first tail page's ->compound_dtor holds the offset in array of compound
652  * page destructors. See compound_page_dtors.
653  *
654  * The first tail page's ->compound_order holds the order of allocation.
655  * This usage means that zero-order pages may not be compound.
656  */
657 
658 void free_compound_page(struct page *page)
659 {
660 	mem_cgroup_uncharge(page);
661 	__free_pages_ok(page, compound_order(page));
662 }
663 
664 void prep_compound_page(struct page *page, unsigned int order)
665 {
666 	int i;
667 	int nr_pages = 1 << order;
668 
669 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
670 	set_compound_order(page, order);
671 	__SetPageHead(page);
672 	for (i = 1; i < nr_pages; i++) {
673 		struct page *p = page + i;
674 		set_page_count(p, 0);
675 		p->mapping = TAIL_MAPPING;
676 		set_compound_head(p, page);
677 	}
678 	atomic_set(compound_mapcount_ptr(page), -1);
679 	if (hpage_pincount_available(page))
680 		atomic_set(compound_pincount_ptr(page), 0);
681 }
682 
683 #ifdef CONFIG_DEBUG_PAGEALLOC
684 unsigned int _debug_guardpage_minorder;
685 
686 bool _debug_pagealloc_enabled_early __read_mostly
687 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
688 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
689 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
690 EXPORT_SYMBOL(_debug_pagealloc_enabled);
691 
692 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
693 
694 static int __init early_debug_pagealloc(char *buf)
695 {
696 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
697 }
698 early_param("debug_pagealloc", early_debug_pagealloc);
699 
700 void init_debug_pagealloc(void)
701 {
702 	if (!debug_pagealloc_enabled())
703 		return;
704 
705 	static_branch_enable(&_debug_pagealloc_enabled);
706 
707 	if (!debug_guardpage_minorder())
708 		return;
709 
710 	static_branch_enable(&_debug_guardpage_enabled);
711 }
712 
713 static int __init debug_guardpage_minorder_setup(char *buf)
714 {
715 	unsigned long res;
716 
717 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
718 		pr_err("Bad debug_guardpage_minorder value\n");
719 		return 0;
720 	}
721 	_debug_guardpage_minorder = res;
722 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
723 	return 0;
724 }
725 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
726 
727 static inline bool set_page_guard(struct zone *zone, struct page *page,
728 				unsigned int order, int migratetype)
729 {
730 	if (!debug_guardpage_enabled())
731 		return false;
732 
733 	if (order >= debug_guardpage_minorder())
734 		return false;
735 
736 	__SetPageGuard(page);
737 	INIT_LIST_HEAD(&page->lru);
738 	set_page_private(page, order);
739 	/* Guard pages are not available for any usage */
740 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
741 
742 	return true;
743 }
744 
745 static inline void clear_page_guard(struct zone *zone, struct page *page,
746 				unsigned int order, int migratetype)
747 {
748 	if (!debug_guardpage_enabled())
749 		return;
750 
751 	__ClearPageGuard(page);
752 
753 	set_page_private(page, 0);
754 	if (!is_migrate_isolate(migratetype))
755 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
756 }
757 #else
758 static inline bool set_page_guard(struct zone *zone, struct page *page,
759 			unsigned int order, int migratetype) { return false; }
760 static inline void clear_page_guard(struct zone *zone, struct page *page,
761 				unsigned int order, int migratetype) {}
762 #endif
763 
764 static inline void set_page_order(struct page *page, unsigned int order)
765 {
766 	set_page_private(page, order);
767 	__SetPageBuddy(page);
768 }
769 
770 /*
771  * This function checks whether a page is free && is the buddy
772  * we can coalesce a page and its buddy if
773  * (a) the buddy is not in a hole (check before calling!) &&
774  * (b) the buddy is in the buddy system &&
775  * (c) a page and its buddy have the same order &&
776  * (d) a page and its buddy are in the same zone.
777  *
778  * For recording whether a page is in the buddy system, we set PageBuddy.
779  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
780  *
781  * For recording page's order, we use page_private(page).
782  */
783 static inline bool page_is_buddy(struct page *page, struct page *buddy,
784 							unsigned int order)
785 {
786 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
787 		return false;
788 
789 	if (page_order(buddy) != order)
790 		return false;
791 
792 	/*
793 	 * zone check is done late to avoid uselessly calculating
794 	 * zone/node ids for pages that could never merge.
795 	 */
796 	if (page_zone_id(page) != page_zone_id(buddy))
797 		return false;
798 
799 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
800 
801 	return true;
802 }
803 
804 #ifdef CONFIG_COMPACTION
805 static inline struct capture_control *task_capc(struct zone *zone)
806 {
807 	struct capture_control *capc = current->capture_control;
808 
809 	return unlikely(capc) &&
810 		!(current->flags & PF_KTHREAD) &&
811 		!capc->page &&
812 		capc->cc->zone == zone ? capc : NULL;
813 }
814 
815 static inline bool
816 compaction_capture(struct capture_control *capc, struct page *page,
817 		   int order, int migratetype)
818 {
819 	if (!capc || order != capc->cc->order)
820 		return false;
821 
822 	/* Do not accidentally pollute CMA or isolated regions*/
823 	if (is_migrate_cma(migratetype) ||
824 	    is_migrate_isolate(migratetype))
825 		return false;
826 
827 	/*
828 	 * Do not let lower order allocations polluate a movable pageblock.
829 	 * This might let an unmovable request use a reclaimable pageblock
830 	 * and vice-versa but no more than normal fallback logic which can
831 	 * have trouble finding a high-order free page.
832 	 */
833 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
834 		return false;
835 
836 	capc->page = page;
837 	return true;
838 }
839 
840 #else
841 static inline struct capture_control *task_capc(struct zone *zone)
842 {
843 	return NULL;
844 }
845 
846 static inline bool
847 compaction_capture(struct capture_control *capc, struct page *page,
848 		   int order, int migratetype)
849 {
850 	return false;
851 }
852 #endif /* CONFIG_COMPACTION */
853 
854 /* Used for pages not on another list */
855 static inline void add_to_free_list(struct page *page, struct zone *zone,
856 				    unsigned int order, int migratetype)
857 {
858 	struct free_area *area = &zone->free_area[order];
859 
860 	list_add(&page->lru, &area->free_list[migratetype]);
861 	area->nr_free++;
862 }
863 
864 /* Used for pages not on another list */
865 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
866 					 unsigned int order, int migratetype)
867 {
868 	struct free_area *area = &zone->free_area[order];
869 
870 	list_add_tail(&page->lru, &area->free_list[migratetype]);
871 	area->nr_free++;
872 }
873 
874 /* Used for pages which are on another list */
875 static inline void move_to_free_list(struct page *page, struct zone *zone,
876 				     unsigned int order, int migratetype)
877 {
878 	struct free_area *area = &zone->free_area[order];
879 
880 	list_move(&page->lru, &area->free_list[migratetype]);
881 }
882 
883 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
884 					   unsigned int order)
885 {
886 	/* clear reported state and update reported page count */
887 	if (page_reported(page))
888 		__ClearPageReported(page);
889 
890 	list_del(&page->lru);
891 	__ClearPageBuddy(page);
892 	set_page_private(page, 0);
893 	zone->free_area[order].nr_free--;
894 }
895 
896 /*
897  * If this is not the largest possible page, check if the buddy
898  * of the next-highest order is free. If it is, it's possible
899  * that pages are being freed that will coalesce soon. In case,
900  * that is happening, add the free page to the tail of the list
901  * so it's less likely to be used soon and more likely to be merged
902  * as a higher order page
903  */
904 static inline bool
905 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
906 		   struct page *page, unsigned int order)
907 {
908 	struct page *higher_page, *higher_buddy;
909 	unsigned long combined_pfn;
910 
911 	if (order >= MAX_ORDER - 2)
912 		return false;
913 
914 	if (!pfn_valid_within(buddy_pfn))
915 		return false;
916 
917 	combined_pfn = buddy_pfn & pfn;
918 	higher_page = page + (combined_pfn - pfn);
919 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
920 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
921 
922 	return pfn_valid_within(buddy_pfn) &&
923 	       page_is_buddy(higher_page, higher_buddy, order + 1);
924 }
925 
926 /*
927  * Freeing function for a buddy system allocator.
928  *
929  * The concept of a buddy system is to maintain direct-mapped table
930  * (containing bit values) for memory blocks of various "orders".
931  * The bottom level table contains the map for the smallest allocatable
932  * units of memory (here, pages), and each level above it describes
933  * pairs of units from the levels below, hence, "buddies".
934  * At a high level, all that happens here is marking the table entry
935  * at the bottom level available, and propagating the changes upward
936  * as necessary, plus some accounting needed to play nicely with other
937  * parts of the VM system.
938  * At each level, we keep a list of pages, which are heads of continuous
939  * free pages of length of (1 << order) and marked with PageBuddy.
940  * Page's order is recorded in page_private(page) field.
941  * So when we are allocating or freeing one, we can derive the state of the
942  * other.  That is, if we allocate a small block, and both were
943  * free, the remainder of the region must be split into blocks.
944  * If a block is freed, and its buddy is also free, then this
945  * triggers coalescing into a block of larger size.
946  *
947  * -- nyc
948  */
949 
950 static inline void __free_one_page(struct page *page,
951 		unsigned long pfn,
952 		struct zone *zone, unsigned int order,
953 		int migratetype, bool report)
954 {
955 	struct capture_control *capc = task_capc(zone);
956 	unsigned long buddy_pfn;
957 	unsigned long combined_pfn;
958 	unsigned int max_order;
959 	struct page *buddy;
960 	bool to_tail;
961 
962 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
963 
964 	VM_BUG_ON(!zone_is_initialized(zone));
965 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
966 
967 	VM_BUG_ON(migratetype == -1);
968 	if (likely(!is_migrate_isolate(migratetype)))
969 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
970 
971 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
972 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
973 
974 continue_merging:
975 	while (order < max_order - 1) {
976 		if (compaction_capture(capc, page, order, migratetype)) {
977 			__mod_zone_freepage_state(zone, -(1 << order),
978 								migratetype);
979 			return;
980 		}
981 		buddy_pfn = __find_buddy_pfn(pfn, order);
982 		buddy = page + (buddy_pfn - pfn);
983 
984 		if (!pfn_valid_within(buddy_pfn))
985 			goto done_merging;
986 		if (!page_is_buddy(page, buddy, order))
987 			goto done_merging;
988 		/*
989 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
990 		 * merge with it and move up one order.
991 		 */
992 		if (page_is_guard(buddy))
993 			clear_page_guard(zone, buddy, order, migratetype);
994 		else
995 			del_page_from_free_list(buddy, zone, order);
996 		combined_pfn = buddy_pfn & pfn;
997 		page = page + (combined_pfn - pfn);
998 		pfn = combined_pfn;
999 		order++;
1000 	}
1001 	if (max_order < MAX_ORDER) {
1002 		/* If we are here, it means order is >= pageblock_order.
1003 		 * We want to prevent merge between freepages on isolate
1004 		 * pageblock and normal pageblock. Without this, pageblock
1005 		 * isolation could cause incorrect freepage or CMA accounting.
1006 		 *
1007 		 * We don't want to hit this code for the more frequent
1008 		 * low-order merging.
1009 		 */
1010 		if (unlikely(has_isolate_pageblock(zone))) {
1011 			int buddy_mt;
1012 
1013 			buddy_pfn = __find_buddy_pfn(pfn, order);
1014 			buddy = page + (buddy_pfn - pfn);
1015 			buddy_mt = get_pageblock_migratetype(buddy);
1016 
1017 			if (migratetype != buddy_mt
1018 					&& (is_migrate_isolate(migratetype) ||
1019 						is_migrate_isolate(buddy_mt)))
1020 				goto done_merging;
1021 		}
1022 		max_order++;
1023 		goto continue_merging;
1024 	}
1025 
1026 done_merging:
1027 	set_page_order(page, order);
1028 
1029 	if (is_shuffle_order(order))
1030 		to_tail = shuffle_pick_tail();
1031 	else
1032 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1033 
1034 	if (to_tail)
1035 		add_to_free_list_tail(page, zone, order, migratetype);
1036 	else
1037 		add_to_free_list(page, zone, order, migratetype);
1038 
1039 	/* Notify page reporting subsystem of freed page */
1040 	if (report)
1041 		page_reporting_notify_free(order);
1042 }
1043 
1044 /*
1045  * A bad page could be due to a number of fields. Instead of multiple branches,
1046  * try and check multiple fields with one check. The caller must do a detailed
1047  * check if necessary.
1048  */
1049 static inline bool page_expected_state(struct page *page,
1050 					unsigned long check_flags)
1051 {
1052 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1053 		return false;
1054 
1055 	if (unlikely((unsigned long)page->mapping |
1056 			page_ref_count(page) |
1057 #ifdef CONFIG_MEMCG
1058 			(unsigned long)page->mem_cgroup |
1059 #endif
1060 			(page->flags & check_flags)))
1061 		return false;
1062 
1063 	return true;
1064 }
1065 
1066 static const char *page_bad_reason(struct page *page, unsigned long flags)
1067 {
1068 	const char *bad_reason = NULL;
1069 
1070 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1071 		bad_reason = "nonzero mapcount";
1072 	if (unlikely(page->mapping != NULL))
1073 		bad_reason = "non-NULL mapping";
1074 	if (unlikely(page_ref_count(page) != 0))
1075 		bad_reason = "nonzero _refcount";
1076 	if (unlikely(page->flags & flags)) {
1077 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1078 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1079 		else
1080 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1081 	}
1082 #ifdef CONFIG_MEMCG
1083 	if (unlikely(page->mem_cgroup))
1084 		bad_reason = "page still charged to cgroup";
1085 #endif
1086 	return bad_reason;
1087 }
1088 
1089 static void check_free_page_bad(struct page *page)
1090 {
1091 	bad_page(page,
1092 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1093 }
1094 
1095 static inline int check_free_page(struct page *page)
1096 {
1097 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1098 		return 0;
1099 
1100 	/* Something has gone sideways, find it */
1101 	check_free_page_bad(page);
1102 	return 1;
1103 }
1104 
1105 static int free_tail_pages_check(struct page *head_page, struct page *page)
1106 {
1107 	int ret = 1;
1108 
1109 	/*
1110 	 * We rely page->lru.next never has bit 0 set, unless the page
1111 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1112 	 */
1113 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1114 
1115 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1116 		ret = 0;
1117 		goto out;
1118 	}
1119 	switch (page - head_page) {
1120 	case 1:
1121 		/* the first tail page: ->mapping may be compound_mapcount() */
1122 		if (unlikely(compound_mapcount(page))) {
1123 			bad_page(page, "nonzero compound_mapcount");
1124 			goto out;
1125 		}
1126 		break;
1127 	case 2:
1128 		/*
1129 		 * the second tail page: ->mapping is
1130 		 * deferred_list.next -- ignore value.
1131 		 */
1132 		break;
1133 	default:
1134 		if (page->mapping != TAIL_MAPPING) {
1135 			bad_page(page, "corrupted mapping in tail page");
1136 			goto out;
1137 		}
1138 		break;
1139 	}
1140 	if (unlikely(!PageTail(page))) {
1141 		bad_page(page, "PageTail not set");
1142 		goto out;
1143 	}
1144 	if (unlikely(compound_head(page) != head_page)) {
1145 		bad_page(page, "compound_head not consistent");
1146 		goto out;
1147 	}
1148 	ret = 0;
1149 out:
1150 	page->mapping = NULL;
1151 	clear_compound_head(page);
1152 	return ret;
1153 }
1154 
1155 static void kernel_init_free_pages(struct page *page, int numpages)
1156 {
1157 	int i;
1158 
1159 	/* s390's use of memset() could override KASAN redzones. */
1160 	kasan_disable_current();
1161 	for (i = 0; i < numpages; i++)
1162 		clear_highpage(page + i);
1163 	kasan_enable_current();
1164 }
1165 
1166 static __always_inline bool free_pages_prepare(struct page *page,
1167 					unsigned int order, bool check_free)
1168 {
1169 	int bad = 0;
1170 
1171 	VM_BUG_ON_PAGE(PageTail(page), page);
1172 
1173 	trace_mm_page_free(page, order);
1174 
1175 	/*
1176 	 * Check tail pages before head page information is cleared to
1177 	 * avoid checking PageCompound for order-0 pages.
1178 	 */
1179 	if (unlikely(order)) {
1180 		bool compound = PageCompound(page);
1181 		int i;
1182 
1183 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1184 
1185 		if (compound)
1186 			ClearPageDoubleMap(page);
1187 		for (i = 1; i < (1 << order); i++) {
1188 			if (compound)
1189 				bad += free_tail_pages_check(page, page + i);
1190 			if (unlikely(check_free_page(page + i))) {
1191 				bad++;
1192 				continue;
1193 			}
1194 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1195 		}
1196 	}
1197 	if (PageMappingFlags(page))
1198 		page->mapping = NULL;
1199 	if (memcg_kmem_enabled() && PageKmemcg(page))
1200 		__memcg_kmem_uncharge_page(page, order);
1201 	if (check_free)
1202 		bad += check_free_page(page);
1203 	if (bad)
1204 		return false;
1205 
1206 	page_cpupid_reset_last(page);
1207 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1208 	reset_page_owner(page, order);
1209 
1210 	if (!PageHighMem(page)) {
1211 		debug_check_no_locks_freed(page_address(page),
1212 					   PAGE_SIZE << order);
1213 		debug_check_no_obj_freed(page_address(page),
1214 					   PAGE_SIZE << order);
1215 	}
1216 	if (want_init_on_free())
1217 		kernel_init_free_pages(page, 1 << order);
1218 
1219 	kernel_poison_pages(page, 1 << order, 0);
1220 	/*
1221 	 * arch_free_page() can make the page's contents inaccessible.  s390
1222 	 * does this.  So nothing which can access the page's contents should
1223 	 * happen after this.
1224 	 */
1225 	arch_free_page(page, order);
1226 
1227 	if (debug_pagealloc_enabled_static())
1228 		kernel_map_pages(page, 1 << order, 0);
1229 
1230 	kasan_free_nondeferred_pages(page, order);
1231 
1232 	return true;
1233 }
1234 
1235 #ifdef CONFIG_DEBUG_VM
1236 /*
1237  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1238  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1239  * moved from pcp lists to free lists.
1240  */
1241 static bool free_pcp_prepare(struct page *page)
1242 {
1243 	return free_pages_prepare(page, 0, true);
1244 }
1245 
1246 static bool bulkfree_pcp_prepare(struct page *page)
1247 {
1248 	if (debug_pagealloc_enabled_static())
1249 		return check_free_page(page);
1250 	else
1251 		return false;
1252 }
1253 #else
1254 /*
1255  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1256  * moving from pcp lists to free list in order to reduce overhead. With
1257  * debug_pagealloc enabled, they are checked also immediately when being freed
1258  * to the pcp lists.
1259  */
1260 static bool free_pcp_prepare(struct page *page)
1261 {
1262 	if (debug_pagealloc_enabled_static())
1263 		return free_pages_prepare(page, 0, true);
1264 	else
1265 		return free_pages_prepare(page, 0, false);
1266 }
1267 
1268 static bool bulkfree_pcp_prepare(struct page *page)
1269 {
1270 	return check_free_page(page);
1271 }
1272 #endif /* CONFIG_DEBUG_VM */
1273 
1274 static inline void prefetch_buddy(struct page *page)
1275 {
1276 	unsigned long pfn = page_to_pfn(page);
1277 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1278 	struct page *buddy = page + (buddy_pfn - pfn);
1279 
1280 	prefetch(buddy);
1281 }
1282 
1283 /*
1284  * Frees a number of pages from the PCP lists
1285  * Assumes all pages on list are in same zone, and of same order.
1286  * count is the number of pages to free.
1287  *
1288  * If the zone was previously in an "all pages pinned" state then look to
1289  * see if this freeing clears that state.
1290  *
1291  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1292  * pinned" detection logic.
1293  */
1294 static void free_pcppages_bulk(struct zone *zone, int count,
1295 					struct per_cpu_pages *pcp)
1296 {
1297 	int migratetype = 0;
1298 	int batch_free = 0;
1299 	int prefetch_nr = 0;
1300 	bool isolated_pageblocks;
1301 	struct page *page, *tmp;
1302 	LIST_HEAD(head);
1303 
1304 	while (count) {
1305 		struct list_head *list;
1306 
1307 		/*
1308 		 * Remove pages from lists in a round-robin fashion. A
1309 		 * batch_free count is maintained that is incremented when an
1310 		 * empty list is encountered.  This is so more pages are freed
1311 		 * off fuller lists instead of spinning excessively around empty
1312 		 * lists
1313 		 */
1314 		do {
1315 			batch_free++;
1316 			if (++migratetype == MIGRATE_PCPTYPES)
1317 				migratetype = 0;
1318 			list = &pcp->lists[migratetype];
1319 		} while (list_empty(list));
1320 
1321 		/* This is the only non-empty list. Free them all. */
1322 		if (batch_free == MIGRATE_PCPTYPES)
1323 			batch_free = count;
1324 
1325 		do {
1326 			page = list_last_entry(list, struct page, lru);
1327 			/* must delete to avoid corrupting pcp list */
1328 			list_del(&page->lru);
1329 			pcp->count--;
1330 
1331 			if (bulkfree_pcp_prepare(page))
1332 				continue;
1333 
1334 			list_add_tail(&page->lru, &head);
1335 
1336 			/*
1337 			 * We are going to put the page back to the global
1338 			 * pool, prefetch its buddy to speed up later access
1339 			 * under zone->lock. It is believed the overhead of
1340 			 * an additional test and calculating buddy_pfn here
1341 			 * can be offset by reduced memory latency later. To
1342 			 * avoid excessive prefetching due to large count, only
1343 			 * prefetch buddy for the first pcp->batch nr of pages.
1344 			 */
1345 			if (prefetch_nr++ < pcp->batch)
1346 				prefetch_buddy(page);
1347 		} while (--count && --batch_free && !list_empty(list));
1348 	}
1349 
1350 	spin_lock(&zone->lock);
1351 	isolated_pageblocks = has_isolate_pageblock(zone);
1352 
1353 	/*
1354 	 * Use safe version since after __free_one_page(),
1355 	 * page->lru.next will not point to original list.
1356 	 */
1357 	list_for_each_entry_safe(page, tmp, &head, lru) {
1358 		int mt = get_pcppage_migratetype(page);
1359 		/* MIGRATE_ISOLATE page should not go to pcplists */
1360 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1361 		/* Pageblock could have been isolated meanwhile */
1362 		if (unlikely(isolated_pageblocks))
1363 			mt = get_pageblock_migratetype(page);
1364 
1365 		__free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
1366 		trace_mm_page_pcpu_drain(page, 0, mt);
1367 	}
1368 	spin_unlock(&zone->lock);
1369 }
1370 
1371 static void free_one_page(struct zone *zone,
1372 				struct page *page, unsigned long pfn,
1373 				unsigned int order,
1374 				int migratetype)
1375 {
1376 	spin_lock(&zone->lock);
1377 	if (unlikely(has_isolate_pageblock(zone) ||
1378 		is_migrate_isolate(migratetype))) {
1379 		migratetype = get_pfnblock_migratetype(page, pfn);
1380 	}
1381 	__free_one_page(page, pfn, zone, order, migratetype, true);
1382 	spin_unlock(&zone->lock);
1383 }
1384 
1385 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1386 				unsigned long zone, int nid)
1387 {
1388 	mm_zero_struct_page(page);
1389 	set_page_links(page, zone, nid, pfn);
1390 	init_page_count(page);
1391 	page_mapcount_reset(page);
1392 	page_cpupid_reset_last(page);
1393 	page_kasan_tag_reset(page);
1394 
1395 	INIT_LIST_HEAD(&page->lru);
1396 #ifdef WANT_PAGE_VIRTUAL
1397 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1398 	if (!is_highmem_idx(zone))
1399 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1400 #endif
1401 }
1402 
1403 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1404 static void __meminit init_reserved_page(unsigned long pfn)
1405 {
1406 	pg_data_t *pgdat;
1407 	int nid, zid;
1408 
1409 	if (!early_page_uninitialised(pfn))
1410 		return;
1411 
1412 	nid = early_pfn_to_nid(pfn);
1413 	pgdat = NODE_DATA(nid);
1414 
1415 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1416 		struct zone *zone = &pgdat->node_zones[zid];
1417 
1418 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1419 			break;
1420 	}
1421 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1422 }
1423 #else
1424 static inline void init_reserved_page(unsigned long pfn)
1425 {
1426 }
1427 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1428 
1429 /*
1430  * Initialised pages do not have PageReserved set. This function is
1431  * called for each range allocated by the bootmem allocator and
1432  * marks the pages PageReserved. The remaining valid pages are later
1433  * sent to the buddy page allocator.
1434  */
1435 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1436 {
1437 	unsigned long start_pfn = PFN_DOWN(start);
1438 	unsigned long end_pfn = PFN_UP(end);
1439 
1440 	for (; start_pfn < end_pfn; start_pfn++) {
1441 		if (pfn_valid(start_pfn)) {
1442 			struct page *page = pfn_to_page(start_pfn);
1443 
1444 			init_reserved_page(start_pfn);
1445 
1446 			/* Avoid false-positive PageTail() */
1447 			INIT_LIST_HEAD(&page->lru);
1448 
1449 			/*
1450 			 * no need for atomic set_bit because the struct
1451 			 * page is not visible yet so nobody should
1452 			 * access it yet.
1453 			 */
1454 			__SetPageReserved(page);
1455 		}
1456 	}
1457 }
1458 
1459 static void __free_pages_ok(struct page *page, unsigned int order)
1460 {
1461 	unsigned long flags;
1462 	int migratetype;
1463 	unsigned long pfn = page_to_pfn(page);
1464 
1465 	if (!free_pages_prepare(page, order, true))
1466 		return;
1467 
1468 	migratetype = get_pfnblock_migratetype(page, pfn);
1469 	local_irq_save(flags);
1470 	__count_vm_events(PGFREE, 1 << order);
1471 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1472 	local_irq_restore(flags);
1473 }
1474 
1475 void __free_pages_core(struct page *page, unsigned int order)
1476 {
1477 	unsigned int nr_pages = 1 << order;
1478 	struct page *p = page;
1479 	unsigned int loop;
1480 
1481 	prefetchw(p);
1482 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1483 		prefetchw(p + 1);
1484 		__ClearPageReserved(p);
1485 		set_page_count(p, 0);
1486 	}
1487 	__ClearPageReserved(p);
1488 	set_page_count(p, 0);
1489 
1490 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1491 	set_page_refcounted(page);
1492 	__free_pages(page, order);
1493 }
1494 
1495 #ifdef CONFIG_NEED_MULTIPLE_NODES
1496 
1497 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1498 
1499 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1500 
1501 /*
1502  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1503  */
1504 int __meminit __early_pfn_to_nid(unsigned long pfn,
1505 					struct mminit_pfnnid_cache *state)
1506 {
1507 	unsigned long start_pfn, end_pfn;
1508 	int nid;
1509 
1510 	if (state->last_start <= pfn && pfn < state->last_end)
1511 		return state->last_nid;
1512 
1513 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1514 	if (nid != NUMA_NO_NODE) {
1515 		state->last_start = start_pfn;
1516 		state->last_end = end_pfn;
1517 		state->last_nid = nid;
1518 	}
1519 
1520 	return nid;
1521 }
1522 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1523 
1524 int __meminit early_pfn_to_nid(unsigned long pfn)
1525 {
1526 	static DEFINE_SPINLOCK(early_pfn_lock);
1527 	int nid;
1528 
1529 	spin_lock(&early_pfn_lock);
1530 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1531 	if (nid < 0)
1532 		nid = first_online_node;
1533 	spin_unlock(&early_pfn_lock);
1534 
1535 	return nid;
1536 }
1537 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1538 
1539 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1540 							unsigned int order)
1541 {
1542 	if (early_page_uninitialised(pfn))
1543 		return;
1544 	__free_pages_core(page, order);
1545 }
1546 
1547 /*
1548  * Check that the whole (or subset of) a pageblock given by the interval of
1549  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1550  * with the migration of free compaction scanner. The scanners then need to
1551  * use only pfn_valid_within() check for arches that allow holes within
1552  * pageblocks.
1553  *
1554  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1555  *
1556  * It's possible on some configurations to have a setup like node0 node1 node0
1557  * i.e. it's possible that all pages within a zones range of pages do not
1558  * belong to a single zone. We assume that a border between node0 and node1
1559  * can occur within a single pageblock, but not a node0 node1 node0
1560  * interleaving within a single pageblock. It is therefore sufficient to check
1561  * the first and last page of a pageblock and avoid checking each individual
1562  * page in a pageblock.
1563  */
1564 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1565 				     unsigned long end_pfn, struct zone *zone)
1566 {
1567 	struct page *start_page;
1568 	struct page *end_page;
1569 
1570 	/* end_pfn is one past the range we are checking */
1571 	end_pfn--;
1572 
1573 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1574 		return NULL;
1575 
1576 	start_page = pfn_to_online_page(start_pfn);
1577 	if (!start_page)
1578 		return NULL;
1579 
1580 	if (page_zone(start_page) != zone)
1581 		return NULL;
1582 
1583 	end_page = pfn_to_page(end_pfn);
1584 
1585 	/* This gives a shorter code than deriving page_zone(end_page) */
1586 	if (page_zone_id(start_page) != page_zone_id(end_page))
1587 		return NULL;
1588 
1589 	return start_page;
1590 }
1591 
1592 void set_zone_contiguous(struct zone *zone)
1593 {
1594 	unsigned long block_start_pfn = zone->zone_start_pfn;
1595 	unsigned long block_end_pfn;
1596 
1597 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1598 	for (; block_start_pfn < zone_end_pfn(zone);
1599 			block_start_pfn = block_end_pfn,
1600 			 block_end_pfn += pageblock_nr_pages) {
1601 
1602 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1603 
1604 		if (!__pageblock_pfn_to_page(block_start_pfn,
1605 					     block_end_pfn, zone))
1606 			return;
1607 		cond_resched();
1608 	}
1609 
1610 	/* We confirm that there is no hole */
1611 	zone->contiguous = true;
1612 }
1613 
1614 void clear_zone_contiguous(struct zone *zone)
1615 {
1616 	zone->contiguous = false;
1617 }
1618 
1619 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1620 static void __init deferred_free_range(unsigned long pfn,
1621 				       unsigned long nr_pages)
1622 {
1623 	struct page *page;
1624 	unsigned long i;
1625 
1626 	if (!nr_pages)
1627 		return;
1628 
1629 	page = pfn_to_page(pfn);
1630 
1631 	/* Free a large naturally-aligned chunk if possible */
1632 	if (nr_pages == pageblock_nr_pages &&
1633 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1634 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1635 		__free_pages_core(page, pageblock_order);
1636 		return;
1637 	}
1638 
1639 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1640 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1641 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1642 		__free_pages_core(page, 0);
1643 	}
1644 }
1645 
1646 /* Completion tracking for deferred_init_memmap() threads */
1647 static atomic_t pgdat_init_n_undone __initdata;
1648 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1649 
1650 static inline void __init pgdat_init_report_one_done(void)
1651 {
1652 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1653 		complete(&pgdat_init_all_done_comp);
1654 }
1655 
1656 /*
1657  * Returns true if page needs to be initialized or freed to buddy allocator.
1658  *
1659  * First we check if pfn is valid on architectures where it is possible to have
1660  * holes within pageblock_nr_pages. On systems where it is not possible, this
1661  * function is optimized out.
1662  *
1663  * Then, we check if a current large page is valid by only checking the validity
1664  * of the head pfn.
1665  */
1666 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1667 {
1668 	if (!pfn_valid_within(pfn))
1669 		return false;
1670 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1671 		return false;
1672 	return true;
1673 }
1674 
1675 /*
1676  * Free pages to buddy allocator. Try to free aligned pages in
1677  * pageblock_nr_pages sizes.
1678  */
1679 static void __init deferred_free_pages(unsigned long pfn,
1680 				       unsigned long end_pfn)
1681 {
1682 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1683 	unsigned long nr_free = 0;
1684 
1685 	for (; pfn < end_pfn; pfn++) {
1686 		if (!deferred_pfn_valid(pfn)) {
1687 			deferred_free_range(pfn - nr_free, nr_free);
1688 			nr_free = 0;
1689 		} else if (!(pfn & nr_pgmask)) {
1690 			deferred_free_range(pfn - nr_free, nr_free);
1691 			nr_free = 1;
1692 		} else {
1693 			nr_free++;
1694 		}
1695 	}
1696 	/* Free the last block of pages to allocator */
1697 	deferred_free_range(pfn - nr_free, nr_free);
1698 }
1699 
1700 /*
1701  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1702  * by performing it only once every pageblock_nr_pages.
1703  * Return number of pages initialized.
1704  */
1705 static unsigned long  __init deferred_init_pages(struct zone *zone,
1706 						 unsigned long pfn,
1707 						 unsigned long end_pfn)
1708 {
1709 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1710 	int nid = zone_to_nid(zone);
1711 	unsigned long nr_pages = 0;
1712 	int zid = zone_idx(zone);
1713 	struct page *page = NULL;
1714 
1715 	for (; pfn < end_pfn; pfn++) {
1716 		if (!deferred_pfn_valid(pfn)) {
1717 			page = NULL;
1718 			continue;
1719 		} else if (!page || !(pfn & nr_pgmask)) {
1720 			page = pfn_to_page(pfn);
1721 		} else {
1722 			page++;
1723 		}
1724 		__init_single_page(page, pfn, zid, nid);
1725 		nr_pages++;
1726 	}
1727 	return (nr_pages);
1728 }
1729 
1730 /*
1731  * This function is meant to pre-load the iterator for the zone init.
1732  * Specifically it walks through the ranges until we are caught up to the
1733  * first_init_pfn value and exits there. If we never encounter the value we
1734  * return false indicating there are no valid ranges left.
1735  */
1736 static bool __init
1737 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1738 				    unsigned long *spfn, unsigned long *epfn,
1739 				    unsigned long first_init_pfn)
1740 {
1741 	u64 j;
1742 
1743 	/*
1744 	 * Start out by walking through the ranges in this zone that have
1745 	 * already been initialized. We don't need to do anything with them
1746 	 * so we just need to flush them out of the system.
1747 	 */
1748 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1749 		if (*epfn <= first_init_pfn)
1750 			continue;
1751 		if (*spfn < first_init_pfn)
1752 			*spfn = first_init_pfn;
1753 		*i = j;
1754 		return true;
1755 	}
1756 
1757 	return false;
1758 }
1759 
1760 /*
1761  * Initialize and free pages. We do it in two loops: first we initialize
1762  * struct page, then free to buddy allocator, because while we are
1763  * freeing pages we can access pages that are ahead (computing buddy
1764  * page in __free_one_page()).
1765  *
1766  * In order to try and keep some memory in the cache we have the loop
1767  * broken along max page order boundaries. This way we will not cause
1768  * any issues with the buddy page computation.
1769  */
1770 static unsigned long __init
1771 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1772 		       unsigned long *end_pfn)
1773 {
1774 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1775 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1776 	unsigned long nr_pages = 0;
1777 	u64 j = *i;
1778 
1779 	/* First we loop through and initialize the page values */
1780 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1781 		unsigned long t;
1782 
1783 		if (mo_pfn <= *start_pfn)
1784 			break;
1785 
1786 		t = min(mo_pfn, *end_pfn);
1787 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1788 
1789 		if (mo_pfn < *end_pfn) {
1790 			*start_pfn = mo_pfn;
1791 			break;
1792 		}
1793 	}
1794 
1795 	/* Reset values and now loop through freeing pages as needed */
1796 	swap(j, *i);
1797 
1798 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1799 		unsigned long t;
1800 
1801 		if (mo_pfn <= spfn)
1802 			break;
1803 
1804 		t = min(mo_pfn, epfn);
1805 		deferred_free_pages(spfn, t);
1806 
1807 		if (mo_pfn <= epfn)
1808 			break;
1809 	}
1810 
1811 	return nr_pages;
1812 }
1813 
1814 static void __init
1815 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1816 			   void *arg)
1817 {
1818 	unsigned long spfn, epfn;
1819 	struct zone *zone = arg;
1820 	u64 i;
1821 
1822 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1823 
1824 	/*
1825 	 * Initialize and free pages in MAX_ORDER sized increments so that we
1826 	 * can avoid introducing any issues with the buddy allocator.
1827 	 */
1828 	while (spfn < end_pfn) {
1829 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
1830 		cond_resched();
1831 	}
1832 }
1833 
1834 /* An arch may override for more concurrency. */
1835 __weak int __init
1836 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1837 {
1838 	return 1;
1839 }
1840 
1841 /* Initialise remaining memory on a node */
1842 static int __init deferred_init_memmap(void *data)
1843 {
1844 	pg_data_t *pgdat = data;
1845 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1846 	unsigned long spfn = 0, epfn = 0;
1847 	unsigned long first_init_pfn, flags;
1848 	unsigned long start = jiffies;
1849 	struct zone *zone;
1850 	int zid, max_threads;
1851 	u64 i;
1852 
1853 	/* Bind memory initialisation thread to a local node if possible */
1854 	if (!cpumask_empty(cpumask))
1855 		set_cpus_allowed_ptr(current, cpumask);
1856 
1857 	pgdat_resize_lock(pgdat, &flags);
1858 	first_init_pfn = pgdat->first_deferred_pfn;
1859 	if (first_init_pfn == ULONG_MAX) {
1860 		pgdat_resize_unlock(pgdat, &flags);
1861 		pgdat_init_report_one_done();
1862 		return 0;
1863 	}
1864 
1865 	/* Sanity check boundaries */
1866 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1867 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1868 	pgdat->first_deferred_pfn = ULONG_MAX;
1869 
1870 	/*
1871 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
1872 	 * interrupt thread must allocate this early in boot, zone must be
1873 	 * pre-grown prior to start of deferred page initialization.
1874 	 */
1875 	pgdat_resize_unlock(pgdat, &flags);
1876 
1877 	/* Only the highest zone is deferred so find it */
1878 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1879 		zone = pgdat->node_zones + zid;
1880 		if (first_init_pfn < zone_end_pfn(zone))
1881 			break;
1882 	}
1883 
1884 	/* If the zone is empty somebody else may have cleared out the zone */
1885 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1886 						 first_init_pfn))
1887 		goto zone_empty;
1888 
1889 	max_threads = deferred_page_init_max_threads(cpumask);
1890 
1891 	while (spfn < epfn) {
1892 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1893 		struct padata_mt_job job = {
1894 			.thread_fn   = deferred_init_memmap_chunk,
1895 			.fn_arg      = zone,
1896 			.start       = spfn,
1897 			.size        = epfn_align - spfn,
1898 			.align       = PAGES_PER_SECTION,
1899 			.min_chunk   = PAGES_PER_SECTION,
1900 			.max_threads = max_threads,
1901 		};
1902 
1903 		padata_do_multithreaded(&job);
1904 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1905 						    epfn_align);
1906 	}
1907 zone_empty:
1908 	/* Sanity check that the next zone really is unpopulated */
1909 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1910 
1911 	pr_info("node %d deferred pages initialised in %ums\n",
1912 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
1913 
1914 	pgdat_init_report_one_done();
1915 	return 0;
1916 }
1917 
1918 /*
1919  * If this zone has deferred pages, try to grow it by initializing enough
1920  * deferred pages to satisfy the allocation specified by order, rounded up to
1921  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1922  * of SECTION_SIZE bytes by initializing struct pages in increments of
1923  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1924  *
1925  * Return true when zone was grown, otherwise return false. We return true even
1926  * when we grow less than requested, to let the caller decide if there are
1927  * enough pages to satisfy the allocation.
1928  *
1929  * Note: We use noinline because this function is needed only during boot, and
1930  * it is called from a __ref function _deferred_grow_zone. This way we are
1931  * making sure that it is not inlined into permanent text section.
1932  */
1933 static noinline bool __init
1934 deferred_grow_zone(struct zone *zone, unsigned int order)
1935 {
1936 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1937 	pg_data_t *pgdat = zone->zone_pgdat;
1938 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1939 	unsigned long spfn, epfn, flags;
1940 	unsigned long nr_pages = 0;
1941 	u64 i;
1942 
1943 	/* Only the last zone may have deferred pages */
1944 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1945 		return false;
1946 
1947 	pgdat_resize_lock(pgdat, &flags);
1948 
1949 	/*
1950 	 * If someone grew this zone while we were waiting for spinlock, return
1951 	 * true, as there might be enough pages already.
1952 	 */
1953 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1954 		pgdat_resize_unlock(pgdat, &flags);
1955 		return true;
1956 	}
1957 
1958 	/* If the zone is empty somebody else may have cleared out the zone */
1959 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1960 						 first_deferred_pfn)) {
1961 		pgdat->first_deferred_pfn = ULONG_MAX;
1962 		pgdat_resize_unlock(pgdat, &flags);
1963 		/* Retry only once. */
1964 		return first_deferred_pfn != ULONG_MAX;
1965 	}
1966 
1967 	/*
1968 	 * Initialize and free pages in MAX_ORDER sized increments so
1969 	 * that we can avoid introducing any issues with the buddy
1970 	 * allocator.
1971 	 */
1972 	while (spfn < epfn) {
1973 		/* update our first deferred PFN for this section */
1974 		first_deferred_pfn = spfn;
1975 
1976 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1977 		touch_nmi_watchdog();
1978 
1979 		/* We should only stop along section boundaries */
1980 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1981 			continue;
1982 
1983 		/* If our quota has been met we can stop here */
1984 		if (nr_pages >= nr_pages_needed)
1985 			break;
1986 	}
1987 
1988 	pgdat->first_deferred_pfn = spfn;
1989 	pgdat_resize_unlock(pgdat, &flags);
1990 
1991 	return nr_pages > 0;
1992 }
1993 
1994 /*
1995  * deferred_grow_zone() is __init, but it is called from
1996  * get_page_from_freelist() during early boot until deferred_pages permanently
1997  * disables this call. This is why we have refdata wrapper to avoid warning,
1998  * and to ensure that the function body gets unloaded.
1999  */
2000 static bool __ref
2001 _deferred_grow_zone(struct zone *zone, unsigned int order)
2002 {
2003 	return deferred_grow_zone(zone, order);
2004 }
2005 
2006 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2007 
2008 void __init page_alloc_init_late(void)
2009 {
2010 	struct zone *zone;
2011 	int nid;
2012 
2013 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2014 
2015 	/* There will be num_node_state(N_MEMORY) threads */
2016 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2017 	for_each_node_state(nid, N_MEMORY) {
2018 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2019 	}
2020 
2021 	/* Block until all are initialised */
2022 	wait_for_completion(&pgdat_init_all_done_comp);
2023 
2024 	/*
2025 	 * The number of managed pages has changed due to the initialisation
2026 	 * so the pcpu batch and high limits needs to be updated or the limits
2027 	 * will be artificially small.
2028 	 */
2029 	for_each_populated_zone(zone)
2030 		zone_pcp_update(zone);
2031 
2032 	/*
2033 	 * We initialized the rest of the deferred pages.  Permanently disable
2034 	 * on-demand struct page initialization.
2035 	 */
2036 	static_branch_disable(&deferred_pages);
2037 
2038 	/* Reinit limits that are based on free pages after the kernel is up */
2039 	files_maxfiles_init();
2040 #endif
2041 
2042 	/* Discard memblock private memory */
2043 	memblock_discard();
2044 
2045 	for_each_node_state(nid, N_MEMORY)
2046 		shuffle_free_memory(NODE_DATA(nid));
2047 
2048 	for_each_populated_zone(zone)
2049 		set_zone_contiguous(zone);
2050 }
2051 
2052 #ifdef CONFIG_CMA
2053 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2054 void __init init_cma_reserved_pageblock(struct page *page)
2055 {
2056 	unsigned i = pageblock_nr_pages;
2057 	struct page *p = page;
2058 
2059 	do {
2060 		__ClearPageReserved(p);
2061 		set_page_count(p, 0);
2062 	} while (++p, --i);
2063 
2064 	set_pageblock_migratetype(page, MIGRATE_CMA);
2065 
2066 	if (pageblock_order >= MAX_ORDER) {
2067 		i = pageblock_nr_pages;
2068 		p = page;
2069 		do {
2070 			set_page_refcounted(p);
2071 			__free_pages(p, MAX_ORDER - 1);
2072 			p += MAX_ORDER_NR_PAGES;
2073 		} while (i -= MAX_ORDER_NR_PAGES);
2074 	} else {
2075 		set_page_refcounted(page);
2076 		__free_pages(page, pageblock_order);
2077 	}
2078 
2079 	adjust_managed_page_count(page, pageblock_nr_pages);
2080 }
2081 #endif
2082 
2083 /*
2084  * The order of subdivision here is critical for the IO subsystem.
2085  * Please do not alter this order without good reasons and regression
2086  * testing. Specifically, as large blocks of memory are subdivided,
2087  * the order in which smaller blocks are delivered depends on the order
2088  * they're subdivided in this function. This is the primary factor
2089  * influencing the order in which pages are delivered to the IO
2090  * subsystem according to empirical testing, and this is also justified
2091  * by considering the behavior of a buddy system containing a single
2092  * large block of memory acted on by a series of small allocations.
2093  * This behavior is a critical factor in sglist merging's success.
2094  *
2095  * -- nyc
2096  */
2097 static inline void expand(struct zone *zone, struct page *page,
2098 	int low, int high, int migratetype)
2099 {
2100 	unsigned long size = 1 << high;
2101 
2102 	while (high > low) {
2103 		high--;
2104 		size >>= 1;
2105 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2106 
2107 		/*
2108 		 * Mark as guard pages (or page), that will allow to
2109 		 * merge back to allocator when buddy will be freed.
2110 		 * Corresponding page table entries will not be touched,
2111 		 * pages will stay not present in virtual address space
2112 		 */
2113 		if (set_page_guard(zone, &page[size], high, migratetype))
2114 			continue;
2115 
2116 		add_to_free_list(&page[size], zone, high, migratetype);
2117 		set_page_order(&page[size], high);
2118 	}
2119 }
2120 
2121 static void check_new_page_bad(struct page *page)
2122 {
2123 	if (unlikely(page->flags & __PG_HWPOISON)) {
2124 		/* Don't complain about hwpoisoned pages */
2125 		page_mapcount_reset(page); /* remove PageBuddy */
2126 		return;
2127 	}
2128 
2129 	bad_page(page,
2130 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2131 }
2132 
2133 /*
2134  * This page is about to be returned from the page allocator
2135  */
2136 static inline int check_new_page(struct page *page)
2137 {
2138 	if (likely(page_expected_state(page,
2139 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2140 		return 0;
2141 
2142 	check_new_page_bad(page);
2143 	return 1;
2144 }
2145 
2146 static inline bool free_pages_prezeroed(void)
2147 {
2148 	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2149 		page_poisoning_enabled()) || want_init_on_free();
2150 }
2151 
2152 #ifdef CONFIG_DEBUG_VM
2153 /*
2154  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2155  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2156  * also checked when pcp lists are refilled from the free lists.
2157  */
2158 static inline bool check_pcp_refill(struct page *page)
2159 {
2160 	if (debug_pagealloc_enabled_static())
2161 		return check_new_page(page);
2162 	else
2163 		return false;
2164 }
2165 
2166 static inline bool check_new_pcp(struct page *page)
2167 {
2168 	return check_new_page(page);
2169 }
2170 #else
2171 /*
2172  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2173  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2174  * enabled, they are also checked when being allocated from the pcp lists.
2175  */
2176 static inline bool check_pcp_refill(struct page *page)
2177 {
2178 	return check_new_page(page);
2179 }
2180 static inline bool check_new_pcp(struct page *page)
2181 {
2182 	if (debug_pagealloc_enabled_static())
2183 		return check_new_page(page);
2184 	else
2185 		return false;
2186 }
2187 #endif /* CONFIG_DEBUG_VM */
2188 
2189 static bool check_new_pages(struct page *page, unsigned int order)
2190 {
2191 	int i;
2192 	for (i = 0; i < (1 << order); i++) {
2193 		struct page *p = page + i;
2194 
2195 		if (unlikely(check_new_page(p)))
2196 			return true;
2197 	}
2198 
2199 	return false;
2200 }
2201 
2202 inline void post_alloc_hook(struct page *page, unsigned int order,
2203 				gfp_t gfp_flags)
2204 {
2205 	set_page_private(page, 0);
2206 	set_page_refcounted(page);
2207 
2208 	arch_alloc_page(page, order);
2209 	if (debug_pagealloc_enabled_static())
2210 		kernel_map_pages(page, 1 << order, 1);
2211 	kasan_alloc_pages(page, order);
2212 	kernel_poison_pages(page, 1 << order, 1);
2213 	set_page_owner(page, order, gfp_flags);
2214 }
2215 
2216 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2217 							unsigned int alloc_flags)
2218 {
2219 	post_alloc_hook(page, order, gfp_flags);
2220 
2221 	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2222 		kernel_init_free_pages(page, 1 << order);
2223 
2224 	if (order && (gfp_flags & __GFP_COMP))
2225 		prep_compound_page(page, order);
2226 
2227 	/*
2228 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2229 	 * allocate the page. The expectation is that the caller is taking
2230 	 * steps that will free more memory. The caller should avoid the page
2231 	 * being used for !PFMEMALLOC purposes.
2232 	 */
2233 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2234 		set_page_pfmemalloc(page);
2235 	else
2236 		clear_page_pfmemalloc(page);
2237 }
2238 
2239 /*
2240  * Go through the free lists for the given migratetype and remove
2241  * the smallest available page from the freelists
2242  */
2243 static __always_inline
2244 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2245 						int migratetype)
2246 {
2247 	unsigned int current_order;
2248 	struct free_area *area;
2249 	struct page *page;
2250 
2251 	/* Find a page of the appropriate size in the preferred list */
2252 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2253 		area = &(zone->free_area[current_order]);
2254 		page = get_page_from_free_area(area, migratetype);
2255 		if (!page)
2256 			continue;
2257 		del_page_from_free_list(page, zone, current_order);
2258 		expand(zone, page, order, current_order, migratetype);
2259 		set_pcppage_migratetype(page, migratetype);
2260 		return page;
2261 	}
2262 
2263 	return NULL;
2264 }
2265 
2266 
2267 /*
2268  * This array describes the order lists are fallen back to when
2269  * the free lists for the desirable migrate type are depleted
2270  */
2271 static int fallbacks[MIGRATE_TYPES][3] = {
2272 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2273 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2274 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2275 #ifdef CONFIG_CMA
2276 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2277 #endif
2278 #ifdef CONFIG_MEMORY_ISOLATION
2279 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2280 #endif
2281 };
2282 
2283 #ifdef CONFIG_CMA
2284 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2285 					unsigned int order)
2286 {
2287 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2288 }
2289 #else
2290 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2291 					unsigned int order) { return NULL; }
2292 #endif
2293 
2294 /*
2295  * Move the free pages in a range to the free lists of the requested type.
2296  * Note that start_page and end_pages are not aligned on a pageblock
2297  * boundary. If alignment is required, use move_freepages_block()
2298  */
2299 static int move_freepages(struct zone *zone,
2300 			  struct page *start_page, struct page *end_page,
2301 			  int migratetype, int *num_movable)
2302 {
2303 	struct page *page;
2304 	unsigned int order;
2305 	int pages_moved = 0;
2306 
2307 	for (page = start_page; page <= end_page;) {
2308 		if (!pfn_valid_within(page_to_pfn(page))) {
2309 			page++;
2310 			continue;
2311 		}
2312 
2313 		if (!PageBuddy(page)) {
2314 			/*
2315 			 * We assume that pages that could be isolated for
2316 			 * migration are movable. But we don't actually try
2317 			 * isolating, as that would be expensive.
2318 			 */
2319 			if (num_movable &&
2320 					(PageLRU(page) || __PageMovable(page)))
2321 				(*num_movable)++;
2322 
2323 			page++;
2324 			continue;
2325 		}
2326 
2327 		/* Make sure we are not inadvertently changing nodes */
2328 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2329 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2330 
2331 		order = page_order(page);
2332 		move_to_free_list(page, zone, order, migratetype);
2333 		page += 1 << order;
2334 		pages_moved += 1 << order;
2335 	}
2336 
2337 	return pages_moved;
2338 }
2339 
2340 int move_freepages_block(struct zone *zone, struct page *page,
2341 				int migratetype, int *num_movable)
2342 {
2343 	unsigned long start_pfn, end_pfn;
2344 	struct page *start_page, *end_page;
2345 
2346 	if (num_movable)
2347 		*num_movable = 0;
2348 
2349 	start_pfn = page_to_pfn(page);
2350 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2351 	start_page = pfn_to_page(start_pfn);
2352 	end_page = start_page + pageblock_nr_pages - 1;
2353 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2354 
2355 	/* Do not cross zone boundaries */
2356 	if (!zone_spans_pfn(zone, start_pfn))
2357 		start_page = page;
2358 	if (!zone_spans_pfn(zone, end_pfn))
2359 		return 0;
2360 
2361 	return move_freepages(zone, start_page, end_page, migratetype,
2362 								num_movable);
2363 }
2364 
2365 static void change_pageblock_range(struct page *pageblock_page,
2366 					int start_order, int migratetype)
2367 {
2368 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2369 
2370 	while (nr_pageblocks--) {
2371 		set_pageblock_migratetype(pageblock_page, migratetype);
2372 		pageblock_page += pageblock_nr_pages;
2373 	}
2374 }
2375 
2376 /*
2377  * When we are falling back to another migratetype during allocation, try to
2378  * steal extra free pages from the same pageblocks to satisfy further
2379  * allocations, instead of polluting multiple pageblocks.
2380  *
2381  * If we are stealing a relatively large buddy page, it is likely there will
2382  * be more free pages in the pageblock, so try to steal them all. For
2383  * reclaimable and unmovable allocations, we steal regardless of page size,
2384  * as fragmentation caused by those allocations polluting movable pageblocks
2385  * is worse than movable allocations stealing from unmovable and reclaimable
2386  * pageblocks.
2387  */
2388 static bool can_steal_fallback(unsigned int order, int start_mt)
2389 {
2390 	/*
2391 	 * Leaving this order check is intended, although there is
2392 	 * relaxed order check in next check. The reason is that
2393 	 * we can actually steal whole pageblock if this condition met,
2394 	 * but, below check doesn't guarantee it and that is just heuristic
2395 	 * so could be changed anytime.
2396 	 */
2397 	if (order >= pageblock_order)
2398 		return true;
2399 
2400 	if (order >= pageblock_order / 2 ||
2401 		start_mt == MIGRATE_RECLAIMABLE ||
2402 		start_mt == MIGRATE_UNMOVABLE ||
2403 		page_group_by_mobility_disabled)
2404 		return true;
2405 
2406 	return false;
2407 }
2408 
2409 static inline void boost_watermark(struct zone *zone)
2410 {
2411 	unsigned long max_boost;
2412 
2413 	if (!watermark_boost_factor)
2414 		return;
2415 	/*
2416 	 * Don't bother in zones that are unlikely to produce results.
2417 	 * On small machines, including kdump capture kernels running
2418 	 * in a small area, boosting the watermark can cause an out of
2419 	 * memory situation immediately.
2420 	 */
2421 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2422 		return;
2423 
2424 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2425 			watermark_boost_factor, 10000);
2426 
2427 	/*
2428 	 * high watermark may be uninitialised if fragmentation occurs
2429 	 * very early in boot so do not boost. We do not fall
2430 	 * through and boost by pageblock_nr_pages as failing
2431 	 * allocations that early means that reclaim is not going
2432 	 * to help and it may even be impossible to reclaim the
2433 	 * boosted watermark resulting in a hang.
2434 	 */
2435 	if (!max_boost)
2436 		return;
2437 
2438 	max_boost = max(pageblock_nr_pages, max_boost);
2439 
2440 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2441 		max_boost);
2442 }
2443 
2444 /*
2445  * This function implements actual steal behaviour. If order is large enough,
2446  * we can steal whole pageblock. If not, we first move freepages in this
2447  * pageblock to our migratetype and determine how many already-allocated pages
2448  * are there in the pageblock with a compatible migratetype. If at least half
2449  * of pages are free or compatible, we can change migratetype of the pageblock
2450  * itself, so pages freed in the future will be put on the correct free list.
2451  */
2452 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2453 		unsigned int alloc_flags, int start_type, bool whole_block)
2454 {
2455 	unsigned int current_order = page_order(page);
2456 	int free_pages, movable_pages, alike_pages;
2457 	int old_block_type;
2458 
2459 	old_block_type = get_pageblock_migratetype(page);
2460 
2461 	/*
2462 	 * This can happen due to races and we want to prevent broken
2463 	 * highatomic accounting.
2464 	 */
2465 	if (is_migrate_highatomic(old_block_type))
2466 		goto single_page;
2467 
2468 	/* Take ownership for orders >= pageblock_order */
2469 	if (current_order >= pageblock_order) {
2470 		change_pageblock_range(page, current_order, start_type);
2471 		goto single_page;
2472 	}
2473 
2474 	/*
2475 	 * Boost watermarks to increase reclaim pressure to reduce the
2476 	 * likelihood of future fallbacks. Wake kswapd now as the node
2477 	 * may be balanced overall and kswapd will not wake naturally.
2478 	 */
2479 	boost_watermark(zone);
2480 	if (alloc_flags & ALLOC_KSWAPD)
2481 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2482 
2483 	/* We are not allowed to try stealing from the whole block */
2484 	if (!whole_block)
2485 		goto single_page;
2486 
2487 	free_pages = move_freepages_block(zone, page, start_type,
2488 						&movable_pages);
2489 	/*
2490 	 * Determine how many pages are compatible with our allocation.
2491 	 * For movable allocation, it's the number of movable pages which
2492 	 * we just obtained. For other types it's a bit more tricky.
2493 	 */
2494 	if (start_type == MIGRATE_MOVABLE) {
2495 		alike_pages = movable_pages;
2496 	} else {
2497 		/*
2498 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2499 		 * to MOVABLE pageblock, consider all non-movable pages as
2500 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2501 		 * vice versa, be conservative since we can't distinguish the
2502 		 * exact migratetype of non-movable pages.
2503 		 */
2504 		if (old_block_type == MIGRATE_MOVABLE)
2505 			alike_pages = pageblock_nr_pages
2506 						- (free_pages + movable_pages);
2507 		else
2508 			alike_pages = 0;
2509 	}
2510 
2511 	/* moving whole block can fail due to zone boundary conditions */
2512 	if (!free_pages)
2513 		goto single_page;
2514 
2515 	/*
2516 	 * If a sufficient number of pages in the block are either free or of
2517 	 * comparable migratability as our allocation, claim the whole block.
2518 	 */
2519 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2520 			page_group_by_mobility_disabled)
2521 		set_pageblock_migratetype(page, start_type);
2522 
2523 	return;
2524 
2525 single_page:
2526 	move_to_free_list(page, zone, current_order, start_type);
2527 }
2528 
2529 /*
2530  * Check whether there is a suitable fallback freepage with requested order.
2531  * If only_stealable is true, this function returns fallback_mt only if
2532  * we can steal other freepages all together. This would help to reduce
2533  * fragmentation due to mixed migratetype pages in one pageblock.
2534  */
2535 int find_suitable_fallback(struct free_area *area, unsigned int order,
2536 			int migratetype, bool only_stealable, bool *can_steal)
2537 {
2538 	int i;
2539 	int fallback_mt;
2540 
2541 	if (area->nr_free == 0)
2542 		return -1;
2543 
2544 	*can_steal = false;
2545 	for (i = 0;; i++) {
2546 		fallback_mt = fallbacks[migratetype][i];
2547 		if (fallback_mt == MIGRATE_TYPES)
2548 			break;
2549 
2550 		if (free_area_empty(area, fallback_mt))
2551 			continue;
2552 
2553 		if (can_steal_fallback(order, migratetype))
2554 			*can_steal = true;
2555 
2556 		if (!only_stealable)
2557 			return fallback_mt;
2558 
2559 		if (*can_steal)
2560 			return fallback_mt;
2561 	}
2562 
2563 	return -1;
2564 }
2565 
2566 /*
2567  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2568  * there are no empty page blocks that contain a page with a suitable order
2569  */
2570 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2571 				unsigned int alloc_order)
2572 {
2573 	int mt;
2574 	unsigned long max_managed, flags;
2575 
2576 	/*
2577 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2578 	 * Check is race-prone but harmless.
2579 	 */
2580 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2581 	if (zone->nr_reserved_highatomic >= max_managed)
2582 		return;
2583 
2584 	spin_lock_irqsave(&zone->lock, flags);
2585 
2586 	/* Recheck the nr_reserved_highatomic limit under the lock */
2587 	if (zone->nr_reserved_highatomic >= max_managed)
2588 		goto out_unlock;
2589 
2590 	/* Yoink! */
2591 	mt = get_pageblock_migratetype(page);
2592 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2593 	    && !is_migrate_cma(mt)) {
2594 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2595 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2596 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2597 	}
2598 
2599 out_unlock:
2600 	spin_unlock_irqrestore(&zone->lock, flags);
2601 }
2602 
2603 /*
2604  * Used when an allocation is about to fail under memory pressure. This
2605  * potentially hurts the reliability of high-order allocations when under
2606  * intense memory pressure but failed atomic allocations should be easier
2607  * to recover from than an OOM.
2608  *
2609  * If @force is true, try to unreserve a pageblock even though highatomic
2610  * pageblock is exhausted.
2611  */
2612 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2613 						bool force)
2614 {
2615 	struct zonelist *zonelist = ac->zonelist;
2616 	unsigned long flags;
2617 	struct zoneref *z;
2618 	struct zone *zone;
2619 	struct page *page;
2620 	int order;
2621 	bool ret;
2622 
2623 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2624 								ac->nodemask) {
2625 		/*
2626 		 * Preserve at least one pageblock unless memory pressure
2627 		 * is really high.
2628 		 */
2629 		if (!force && zone->nr_reserved_highatomic <=
2630 					pageblock_nr_pages)
2631 			continue;
2632 
2633 		spin_lock_irqsave(&zone->lock, flags);
2634 		for (order = 0; order < MAX_ORDER; order++) {
2635 			struct free_area *area = &(zone->free_area[order]);
2636 
2637 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2638 			if (!page)
2639 				continue;
2640 
2641 			/*
2642 			 * In page freeing path, migratetype change is racy so
2643 			 * we can counter several free pages in a pageblock
2644 			 * in this loop althoug we changed the pageblock type
2645 			 * from highatomic to ac->migratetype. So we should
2646 			 * adjust the count once.
2647 			 */
2648 			if (is_migrate_highatomic_page(page)) {
2649 				/*
2650 				 * It should never happen but changes to
2651 				 * locking could inadvertently allow a per-cpu
2652 				 * drain to add pages to MIGRATE_HIGHATOMIC
2653 				 * while unreserving so be safe and watch for
2654 				 * underflows.
2655 				 */
2656 				zone->nr_reserved_highatomic -= min(
2657 						pageblock_nr_pages,
2658 						zone->nr_reserved_highatomic);
2659 			}
2660 
2661 			/*
2662 			 * Convert to ac->migratetype and avoid the normal
2663 			 * pageblock stealing heuristics. Minimally, the caller
2664 			 * is doing the work and needs the pages. More
2665 			 * importantly, if the block was always converted to
2666 			 * MIGRATE_UNMOVABLE or another type then the number
2667 			 * of pageblocks that cannot be completely freed
2668 			 * may increase.
2669 			 */
2670 			set_pageblock_migratetype(page, ac->migratetype);
2671 			ret = move_freepages_block(zone, page, ac->migratetype,
2672 									NULL);
2673 			if (ret) {
2674 				spin_unlock_irqrestore(&zone->lock, flags);
2675 				return ret;
2676 			}
2677 		}
2678 		spin_unlock_irqrestore(&zone->lock, flags);
2679 	}
2680 
2681 	return false;
2682 }
2683 
2684 /*
2685  * Try finding a free buddy page on the fallback list and put it on the free
2686  * list of requested migratetype, possibly along with other pages from the same
2687  * block, depending on fragmentation avoidance heuristics. Returns true if
2688  * fallback was found so that __rmqueue_smallest() can grab it.
2689  *
2690  * The use of signed ints for order and current_order is a deliberate
2691  * deviation from the rest of this file, to make the for loop
2692  * condition simpler.
2693  */
2694 static __always_inline bool
2695 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2696 						unsigned int alloc_flags)
2697 {
2698 	struct free_area *area;
2699 	int current_order;
2700 	int min_order = order;
2701 	struct page *page;
2702 	int fallback_mt;
2703 	bool can_steal;
2704 
2705 	/*
2706 	 * Do not steal pages from freelists belonging to other pageblocks
2707 	 * i.e. orders < pageblock_order. If there are no local zones free,
2708 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2709 	 */
2710 	if (alloc_flags & ALLOC_NOFRAGMENT)
2711 		min_order = pageblock_order;
2712 
2713 	/*
2714 	 * Find the largest available free page in the other list. This roughly
2715 	 * approximates finding the pageblock with the most free pages, which
2716 	 * would be too costly to do exactly.
2717 	 */
2718 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2719 				--current_order) {
2720 		area = &(zone->free_area[current_order]);
2721 		fallback_mt = find_suitable_fallback(area, current_order,
2722 				start_migratetype, false, &can_steal);
2723 		if (fallback_mt == -1)
2724 			continue;
2725 
2726 		/*
2727 		 * We cannot steal all free pages from the pageblock and the
2728 		 * requested migratetype is movable. In that case it's better to
2729 		 * steal and split the smallest available page instead of the
2730 		 * largest available page, because even if the next movable
2731 		 * allocation falls back into a different pageblock than this
2732 		 * one, it won't cause permanent fragmentation.
2733 		 */
2734 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2735 					&& current_order > order)
2736 			goto find_smallest;
2737 
2738 		goto do_steal;
2739 	}
2740 
2741 	return false;
2742 
2743 find_smallest:
2744 	for (current_order = order; current_order < MAX_ORDER;
2745 							current_order++) {
2746 		area = &(zone->free_area[current_order]);
2747 		fallback_mt = find_suitable_fallback(area, current_order,
2748 				start_migratetype, false, &can_steal);
2749 		if (fallback_mt != -1)
2750 			break;
2751 	}
2752 
2753 	/*
2754 	 * This should not happen - we already found a suitable fallback
2755 	 * when looking for the largest page.
2756 	 */
2757 	VM_BUG_ON(current_order == MAX_ORDER);
2758 
2759 do_steal:
2760 	page = get_page_from_free_area(area, fallback_mt);
2761 
2762 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2763 								can_steal);
2764 
2765 	trace_mm_page_alloc_extfrag(page, order, current_order,
2766 		start_migratetype, fallback_mt);
2767 
2768 	return true;
2769 
2770 }
2771 
2772 /*
2773  * Do the hard work of removing an element from the buddy allocator.
2774  * Call me with the zone->lock already held.
2775  */
2776 static __always_inline struct page *
2777 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2778 						unsigned int alloc_flags)
2779 {
2780 	struct page *page;
2781 
2782 #ifdef CONFIG_CMA
2783 	/*
2784 	 * Balance movable allocations between regular and CMA areas by
2785 	 * allocating from CMA when over half of the zone's free memory
2786 	 * is in the CMA area.
2787 	 */
2788 	if (alloc_flags & ALLOC_CMA &&
2789 	    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2790 	    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2791 		page = __rmqueue_cma_fallback(zone, order);
2792 		if (page)
2793 			return page;
2794 	}
2795 #endif
2796 retry:
2797 	page = __rmqueue_smallest(zone, order, migratetype);
2798 	if (unlikely(!page)) {
2799 		if (alloc_flags & ALLOC_CMA)
2800 			page = __rmqueue_cma_fallback(zone, order);
2801 
2802 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2803 								alloc_flags))
2804 			goto retry;
2805 	}
2806 
2807 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2808 	return page;
2809 }
2810 
2811 /*
2812  * Obtain a specified number of elements from the buddy allocator, all under
2813  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2814  * Returns the number of new pages which were placed at *list.
2815  */
2816 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2817 			unsigned long count, struct list_head *list,
2818 			int migratetype, unsigned int alloc_flags)
2819 {
2820 	int i, alloced = 0;
2821 
2822 	spin_lock(&zone->lock);
2823 	for (i = 0; i < count; ++i) {
2824 		struct page *page = __rmqueue(zone, order, migratetype,
2825 								alloc_flags);
2826 		if (unlikely(page == NULL))
2827 			break;
2828 
2829 		if (unlikely(check_pcp_refill(page)))
2830 			continue;
2831 
2832 		/*
2833 		 * Split buddy pages returned by expand() are received here in
2834 		 * physical page order. The page is added to the tail of
2835 		 * caller's list. From the callers perspective, the linked list
2836 		 * is ordered by page number under some conditions. This is
2837 		 * useful for IO devices that can forward direction from the
2838 		 * head, thus also in the physical page order. This is useful
2839 		 * for IO devices that can merge IO requests if the physical
2840 		 * pages are ordered properly.
2841 		 */
2842 		list_add_tail(&page->lru, list);
2843 		alloced++;
2844 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2845 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2846 					      -(1 << order));
2847 	}
2848 
2849 	/*
2850 	 * i pages were removed from the buddy list even if some leak due
2851 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2852 	 * on i. Do not confuse with 'alloced' which is the number of
2853 	 * pages added to the pcp list.
2854 	 */
2855 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2856 	spin_unlock(&zone->lock);
2857 	return alloced;
2858 }
2859 
2860 #ifdef CONFIG_NUMA
2861 /*
2862  * Called from the vmstat counter updater to drain pagesets of this
2863  * currently executing processor on remote nodes after they have
2864  * expired.
2865  *
2866  * Note that this function must be called with the thread pinned to
2867  * a single processor.
2868  */
2869 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2870 {
2871 	unsigned long flags;
2872 	int to_drain, batch;
2873 
2874 	local_irq_save(flags);
2875 	batch = READ_ONCE(pcp->batch);
2876 	to_drain = min(pcp->count, batch);
2877 	if (to_drain > 0)
2878 		free_pcppages_bulk(zone, to_drain, pcp);
2879 	local_irq_restore(flags);
2880 }
2881 #endif
2882 
2883 /*
2884  * Drain pcplists of the indicated processor and zone.
2885  *
2886  * The processor must either be the current processor and the
2887  * thread pinned to the current processor or a processor that
2888  * is not online.
2889  */
2890 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2891 {
2892 	unsigned long flags;
2893 	struct per_cpu_pageset *pset;
2894 	struct per_cpu_pages *pcp;
2895 
2896 	local_irq_save(flags);
2897 	pset = per_cpu_ptr(zone->pageset, cpu);
2898 
2899 	pcp = &pset->pcp;
2900 	if (pcp->count)
2901 		free_pcppages_bulk(zone, pcp->count, pcp);
2902 	local_irq_restore(flags);
2903 }
2904 
2905 /*
2906  * Drain pcplists of all zones on the indicated processor.
2907  *
2908  * The processor must either be the current processor and the
2909  * thread pinned to the current processor or a processor that
2910  * is not online.
2911  */
2912 static void drain_pages(unsigned int cpu)
2913 {
2914 	struct zone *zone;
2915 
2916 	for_each_populated_zone(zone) {
2917 		drain_pages_zone(cpu, zone);
2918 	}
2919 }
2920 
2921 /*
2922  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2923  *
2924  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2925  * the single zone's pages.
2926  */
2927 void drain_local_pages(struct zone *zone)
2928 {
2929 	int cpu = smp_processor_id();
2930 
2931 	if (zone)
2932 		drain_pages_zone(cpu, zone);
2933 	else
2934 		drain_pages(cpu);
2935 }
2936 
2937 static void drain_local_pages_wq(struct work_struct *work)
2938 {
2939 	struct pcpu_drain *drain;
2940 
2941 	drain = container_of(work, struct pcpu_drain, work);
2942 
2943 	/*
2944 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2945 	 * we can race with cpu offline when the WQ can move this from
2946 	 * a cpu pinned worker to an unbound one. We can operate on a different
2947 	 * cpu which is allright but we also have to make sure to not move to
2948 	 * a different one.
2949 	 */
2950 	preempt_disable();
2951 	drain_local_pages(drain->zone);
2952 	preempt_enable();
2953 }
2954 
2955 /*
2956  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2957  *
2958  * When zone parameter is non-NULL, spill just the single zone's pages.
2959  *
2960  * Note that this can be extremely slow as the draining happens in a workqueue.
2961  */
2962 void drain_all_pages(struct zone *zone)
2963 {
2964 	int cpu;
2965 
2966 	/*
2967 	 * Allocate in the BSS so we wont require allocation in
2968 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2969 	 */
2970 	static cpumask_t cpus_with_pcps;
2971 
2972 	/*
2973 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2974 	 * initialized.
2975 	 */
2976 	if (WARN_ON_ONCE(!mm_percpu_wq))
2977 		return;
2978 
2979 	/*
2980 	 * Do not drain if one is already in progress unless it's specific to
2981 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2982 	 * the drain to be complete when the call returns.
2983 	 */
2984 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2985 		if (!zone)
2986 			return;
2987 		mutex_lock(&pcpu_drain_mutex);
2988 	}
2989 
2990 	/*
2991 	 * We don't care about racing with CPU hotplug event
2992 	 * as offline notification will cause the notified
2993 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2994 	 * disables preemption as part of its processing
2995 	 */
2996 	for_each_online_cpu(cpu) {
2997 		struct per_cpu_pageset *pcp;
2998 		struct zone *z;
2999 		bool has_pcps = false;
3000 
3001 		if (zone) {
3002 			pcp = per_cpu_ptr(zone->pageset, cpu);
3003 			if (pcp->pcp.count)
3004 				has_pcps = true;
3005 		} else {
3006 			for_each_populated_zone(z) {
3007 				pcp = per_cpu_ptr(z->pageset, cpu);
3008 				if (pcp->pcp.count) {
3009 					has_pcps = true;
3010 					break;
3011 				}
3012 			}
3013 		}
3014 
3015 		if (has_pcps)
3016 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3017 		else
3018 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3019 	}
3020 
3021 	for_each_cpu(cpu, &cpus_with_pcps) {
3022 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3023 
3024 		drain->zone = zone;
3025 		INIT_WORK(&drain->work, drain_local_pages_wq);
3026 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3027 	}
3028 	for_each_cpu(cpu, &cpus_with_pcps)
3029 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3030 
3031 	mutex_unlock(&pcpu_drain_mutex);
3032 }
3033 
3034 #ifdef CONFIG_HIBERNATION
3035 
3036 /*
3037  * Touch the watchdog for every WD_PAGE_COUNT pages.
3038  */
3039 #define WD_PAGE_COUNT	(128*1024)
3040 
3041 void mark_free_pages(struct zone *zone)
3042 {
3043 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3044 	unsigned long flags;
3045 	unsigned int order, t;
3046 	struct page *page;
3047 
3048 	if (zone_is_empty(zone))
3049 		return;
3050 
3051 	spin_lock_irqsave(&zone->lock, flags);
3052 
3053 	max_zone_pfn = zone_end_pfn(zone);
3054 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3055 		if (pfn_valid(pfn)) {
3056 			page = pfn_to_page(pfn);
3057 
3058 			if (!--page_count) {
3059 				touch_nmi_watchdog();
3060 				page_count = WD_PAGE_COUNT;
3061 			}
3062 
3063 			if (page_zone(page) != zone)
3064 				continue;
3065 
3066 			if (!swsusp_page_is_forbidden(page))
3067 				swsusp_unset_page_free(page);
3068 		}
3069 
3070 	for_each_migratetype_order(order, t) {
3071 		list_for_each_entry(page,
3072 				&zone->free_area[order].free_list[t], lru) {
3073 			unsigned long i;
3074 
3075 			pfn = page_to_pfn(page);
3076 			for (i = 0; i < (1UL << order); i++) {
3077 				if (!--page_count) {
3078 					touch_nmi_watchdog();
3079 					page_count = WD_PAGE_COUNT;
3080 				}
3081 				swsusp_set_page_free(pfn_to_page(pfn + i));
3082 			}
3083 		}
3084 	}
3085 	spin_unlock_irqrestore(&zone->lock, flags);
3086 }
3087 #endif /* CONFIG_PM */
3088 
3089 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3090 {
3091 	int migratetype;
3092 
3093 	if (!free_pcp_prepare(page))
3094 		return false;
3095 
3096 	migratetype = get_pfnblock_migratetype(page, pfn);
3097 	set_pcppage_migratetype(page, migratetype);
3098 	return true;
3099 }
3100 
3101 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3102 {
3103 	struct zone *zone = page_zone(page);
3104 	struct per_cpu_pages *pcp;
3105 	int migratetype;
3106 
3107 	migratetype = get_pcppage_migratetype(page);
3108 	__count_vm_event(PGFREE);
3109 
3110 	/*
3111 	 * We only track unmovable, reclaimable and movable on pcp lists.
3112 	 * Free ISOLATE pages back to the allocator because they are being
3113 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3114 	 * areas back if necessary. Otherwise, we may have to free
3115 	 * excessively into the page allocator
3116 	 */
3117 	if (migratetype >= MIGRATE_PCPTYPES) {
3118 		if (unlikely(is_migrate_isolate(migratetype))) {
3119 			free_one_page(zone, page, pfn, 0, migratetype);
3120 			return;
3121 		}
3122 		migratetype = MIGRATE_MOVABLE;
3123 	}
3124 
3125 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3126 	list_add(&page->lru, &pcp->lists[migratetype]);
3127 	pcp->count++;
3128 	if (pcp->count >= pcp->high) {
3129 		unsigned long batch = READ_ONCE(pcp->batch);
3130 		free_pcppages_bulk(zone, batch, pcp);
3131 	}
3132 }
3133 
3134 /*
3135  * Free a 0-order page
3136  */
3137 void free_unref_page(struct page *page)
3138 {
3139 	unsigned long flags;
3140 	unsigned long pfn = page_to_pfn(page);
3141 
3142 	if (!free_unref_page_prepare(page, pfn))
3143 		return;
3144 
3145 	local_irq_save(flags);
3146 	free_unref_page_commit(page, pfn);
3147 	local_irq_restore(flags);
3148 }
3149 
3150 /*
3151  * Free a list of 0-order pages
3152  */
3153 void free_unref_page_list(struct list_head *list)
3154 {
3155 	struct page *page, *next;
3156 	unsigned long flags, pfn;
3157 	int batch_count = 0;
3158 
3159 	/* Prepare pages for freeing */
3160 	list_for_each_entry_safe(page, next, list, lru) {
3161 		pfn = page_to_pfn(page);
3162 		if (!free_unref_page_prepare(page, pfn))
3163 			list_del(&page->lru);
3164 		set_page_private(page, pfn);
3165 	}
3166 
3167 	local_irq_save(flags);
3168 	list_for_each_entry_safe(page, next, list, lru) {
3169 		unsigned long pfn = page_private(page);
3170 
3171 		set_page_private(page, 0);
3172 		trace_mm_page_free_batched(page);
3173 		free_unref_page_commit(page, pfn);
3174 
3175 		/*
3176 		 * Guard against excessive IRQ disabled times when we get
3177 		 * a large list of pages to free.
3178 		 */
3179 		if (++batch_count == SWAP_CLUSTER_MAX) {
3180 			local_irq_restore(flags);
3181 			batch_count = 0;
3182 			local_irq_save(flags);
3183 		}
3184 	}
3185 	local_irq_restore(flags);
3186 }
3187 
3188 /*
3189  * split_page takes a non-compound higher-order page, and splits it into
3190  * n (1<<order) sub-pages: page[0..n]
3191  * Each sub-page must be freed individually.
3192  *
3193  * Note: this is probably too low level an operation for use in drivers.
3194  * Please consult with lkml before using this in your driver.
3195  */
3196 void split_page(struct page *page, unsigned int order)
3197 {
3198 	int i;
3199 
3200 	VM_BUG_ON_PAGE(PageCompound(page), page);
3201 	VM_BUG_ON_PAGE(!page_count(page), page);
3202 
3203 	for (i = 1; i < (1 << order); i++)
3204 		set_page_refcounted(page + i);
3205 	split_page_owner(page, order);
3206 }
3207 EXPORT_SYMBOL_GPL(split_page);
3208 
3209 int __isolate_free_page(struct page *page, unsigned int order)
3210 {
3211 	unsigned long watermark;
3212 	struct zone *zone;
3213 	int mt;
3214 
3215 	BUG_ON(!PageBuddy(page));
3216 
3217 	zone = page_zone(page);
3218 	mt = get_pageblock_migratetype(page);
3219 
3220 	if (!is_migrate_isolate(mt)) {
3221 		/*
3222 		 * Obey watermarks as if the page was being allocated. We can
3223 		 * emulate a high-order watermark check with a raised order-0
3224 		 * watermark, because we already know our high-order page
3225 		 * exists.
3226 		 */
3227 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3228 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3229 			return 0;
3230 
3231 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3232 	}
3233 
3234 	/* Remove page from free list */
3235 
3236 	del_page_from_free_list(page, zone, order);
3237 
3238 	/*
3239 	 * Set the pageblock if the isolated page is at least half of a
3240 	 * pageblock
3241 	 */
3242 	if (order >= pageblock_order - 1) {
3243 		struct page *endpage = page + (1 << order) - 1;
3244 		for (; page < endpage; page += pageblock_nr_pages) {
3245 			int mt = get_pageblock_migratetype(page);
3246 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3247 			    && !is_migrate_highatomic(mt))
3248 				set_pageblock_migratetype(page,
3249 							  MIGRATE_MOVABLE);
3250 		}
3251 	}
3252 
3253 
3254 	return 1UL << order;
3255 }
3256 
3257 /**
3258  * __putback_isolated_page - Return a now-isolated page back where we got it
3259  * @page: Page that was isolated
3260  * @order: Order of the isolated page
3261  * @mt: The page's pageblock's migratetype
3262  *
3263  * This function is meant to return a page pulled from the free lists via
3264  * __isolate_free_page back to the free lists they were pulled from.
3265  */
3266 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3267 {
3268 	struct zone *zone = page_zone(page);
3269 
3270 	/* zone lock should be held when this function is called */
3271 	lockdep_assert_held(&zone->lock);
3272 
3273 	/* Return isolated page to tail of freelist. */
3274 	__free_one_page(page, page_to_pfn(page), zone, order, mt, false);
3275 }
3276 
3277 /*
3278  * Update NUMA hit/miss statistics
3279  *
3280  * Must be called with interrupts disabled.
3281  */
3282 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3283 {
3284 #ifdef CONFIG_NUMA
3285 	enum numa_stat_item local_stat = NUMA_LOCAL;
3286 
3287 	/* skip numa counters update if numa stats is disabled */
3288 	if (!static_branch_likely(&vm_numa_stat_key))
3289 		return;
3290 
3291 	if (zone_to_nid(z) != numa_node_id())
3292 		local_stat = NUMA_OTHER;
3293 
3294 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3295 		__inc_numa_state(z, NUMA_HIT);
3296 	else {
3297 		__inc_numa_state(z, NUMA_MISS);
3298 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3299 	}
3300 	__inc_numa_state(z, local_stat);
3301 #endif
3302 }
3303 
3304 /* Remove page from the per-cpu list, caller must protect the list */
3305 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3306 			unsigned int alloc_flags,
3307 			struct per_cpu_pages *pcp,
3308 			struct list_head *list)
3309 {
3310 	struct page *page;
3311 
3312 	do {
3313 		if (list_empty(list)) {
3314 			pcp->count += rmqueue_bulk(zone, 0,
3315 					pcp->batch, list,
3316 					migratetype, alloc_flags);
3317 			if (unlikely(list_empty(list)))
3318 				return NULL;
3319 		}
3320 
3321 		page = list_first_entry(list, struct page, lru);
3322 		list_del(&page->lru);
3323 		pcp->count--;
3324 	} while (check_new_pcp(page));
3325 
3326 	return page;
3327 }
3328 
3329 /* Lock and remove page from the per-cpu list */
3330 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3331 			struct zone *zone, gfp_t gfp_flags,
3332 			int migratetype, unsigned int alloc_flags)
3333 {
3334 	struct per_cpu_pages *pcp;
3335 	struct list_head *list;
3336 	struct page *page;
3337 	unsigned long flags;
3338 
3339 	local_irq_save(flags);
3340 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3341 	list = &pcp->lists[migratetype];
3342 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3343 	if (page) {
3344 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3345 		zone_statistics(preferred_zone, zone);
3346 	}
3347 	local_irq_restore(flags);
3348 	return page;
3349 }
3350 
3351 /*
3352  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3353  */
3354 static inline
3355 struct page *rmqueue(struct zone *preferred_zone,
3356 			struct zone *zone, unsigned int order,
3357 			gfp_t gfp_flags, unsigned int alloc_flags,
3358 			int migratetype)
3359 {
3360 	unsigned long flags;
3361 	struct page *page;
3362 
3363 	if (likely(order == 0)) {
3364 		page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3365 					migratetype, alloc_flags);
3366 		goto out;
3367 	}
3368 
3369 	/*
3370 	 * We most definitely don't want callers attempting to
3371 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3372 	 */
3373 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3374 	spin_lock_irqsave(&zone->lock, flags);
3375 
3376 	do {
3377 		page = NULL;
3378 		if (alloc_flags & ALLOC_HARDER) {
3379 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3380 			if (page)
3381 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3382 		}
3383 		if (!page)
3384 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3385 	} while (page && check_new_pages(page, order));
3386 	spin_unlock(&zone->lock);
3387 	if (!page)
3388 		goto failed;
3389 	__mod_zone_freepage_state(zone, -(1 << order),
3390 				  get_pcppage_migratetype(page));
3391 
3392 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3393 	zone_statistics(preferred_zone, zone);
3394 	local_irq_restore(flags);
3395 
3396 out:
3397 	/* Separate test+clear to avoid unnecessary atomics */
3398 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3399 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3400 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3401 	}
3402 
3403 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3404 	return page;
3405 
3406 failed:
3407 	local_irq_restore(flags);
3408 	return NULL;
3409 }
3410 
3411 #ifdef CONFIG_FAIL_PAGE_ALLOC
3412 
3413 static struct {
3414 	struct fault_attr attr;
3415 
3416 	bool ignore_gfp_highmem;
3417 	bool ignore_gfp_reclaim;
3418 	u32 min_order;
3419 } fail_page_alloc = {
3420 	.attr = FAULT_ATTR_INITIALIZER,
3421 	.ignore_gfp_reclaim = true,
3422 	.ignore_gfp_highmem = true,
3423 	.min_order = 1,
3424 };
3425 
3426 static int __init setup_fail_page_alloc(char *str)
3427 {
3428 	return setup_fault_attr(&fail_page_alloc.attr, str);
3429 }
3430 __setup("fail_page_alloc=", setup_fail_page_alloc);
3431 
3432 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3433 {
3434 	if (order < fail_page_alloc.min_order)
3435 		return false;
3436 	if (gfp_mask & __GFP_NOFAIL)
3437 		return false;
3438 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3439 		return false;
3440 	if (fail_page_alloc.ignore_gfp_reclaim &&
3441 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3442 		return false;
3443 
3444 	return should_fail(&fail_page_alloc.attr, 1 << order);
3445 }
3446 
3447 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3448 
3449 static int __init fail_page_alloc_debugfs(void)
3450 {
3451 	umode_t mode = S_IFREG | 0600;
3452 	struct dentry *dir;
3453 
3454 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3455 					&fail_page_alloc.attr);
3456 
3457 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3458 			    &fail_page_alloc.ignore_gfp_reclaim);
3459 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3460 			    &fail_page_alloc.ignore_gfp_highmem);
3461 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3462 
3463 	return 0;
3464 }
3465 
3466 late_initcall(fail_page_alloc_debugfs);
3467 
3468 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3469 
3470 #else /* CONFIG_FAIL_PAGE_ALLOC */
3471 
3472 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3473 {
3474 	return false;
3475 }
3476 
3477 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3478 
3479 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3480 {
3481 	return __should_fail_alloc_page(gfp_mask, order);
3482 }
3483 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3484 
3485 static inline long __zone_watermark_unusable_free(struct zone *z,
3486 				unsigned int order, unsigned int alloc_flags)
3487 {
3488 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3489 	long unusable_free = (1 << order) - 1;
3490 
3491 	/*
3492 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3493 	 * the high-atomic reserves. This will over-estimate the size of the
3494 	 * atomic reserve but it avoids a search.
3495 	 */
3496 	if (likely(!alloc_harder))
3497 		unusable_free += z->nr_reserved_highatomic;
3498 
3499 #ifdef CONFIG_CMA
3500 	/* If allocation can't use CMA areas don't use free CMA pages */
3501 	if (!(alloc_flags & ALLOC_CMA))
3502 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3503 #endif
3504 
3505 	return unusable_free;
3506 }
3507 
3508 /*
3509  * Return true if free base pages are above 'mark'. For high-order checks it
3510  * will return true of the order-0 watermark is reached and there is at least
3511  * one free page of a suitable size. Checking now avoids taking the zone lock
3512  * to check in the allocation paths if no pages are free.
3513  */
3514 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3515 			 int highest_zoneidx, unsigned int alloc_flags,
3516 			 long free_pages)
3517 {
3518 	long min = mark;
3519 	int o;
3520 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3521 
3522 	/* free_pages may go negative - that's OK */
3523 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3524 
3525 	if (alloc_flags & ALLOC_HIGH)
3526 		min -= min / 2;
3527 
3528 	if (unlikely(alloc_harder)) {
3529 		/*
3530 		 * OOM victims can try even harder than normal ALLOC_HARDER
3531 		 * users on the grounds that it's definitely going to be in
3532 		 * the exit path shortly and free memory. Any allocation it
3533 		 * makes during the free path will be small and short-lived.
3534 		 */
3535 		if (alloc_flags & ALLOC_OOM)
3536 			min -= min / 2;
3537 		else
3538 			min -= min / 4;
3539 	}
3540 
3541 	/*
3542 	 * Check watermarks for an order-0 allocation request. If these
3543 	 * are not met, then a high-order request also cannot go ahead
3544 	 * even if a suitable page happened to be free.
3545 	 */
3546 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3547 		return false;
3548 
3549 	/* If this is an order-0 request then the watermark is fine */
3550 	if (!order)
3551 		return true;
3552 
3553 	/* For a high-order request, check at least one suitable page is free */
3554 	for (o = order; o < MAX_ORDER; o++) {
3555 		struct free_area *area = &z->free_area[o];
3556 		int mt;
3557 
3558 		if (!area->nr_free)
3559 			continue;
3560 
3561 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3562 			if (!free_area_empty(area, mt))
3563 				return true;
3564 		}
3565 
3566 #ifdef CONFIG_CMA
3567 		if ((alloc_flags & ALLOC_CMA) &&
3568 		    !free_area_empty(area, MIGRATE_CMA)) {
3569 			return true;
3570 		}
3571 #endif
3572 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3573 			return true;
3574 	}
3575 	return false;
3576 }
3577 
3578 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3579 		      int highest_zoneidx, unsigned int alloc_flags)
3580 {
3581 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3582 					zone_page_state(z, NR_FREE_PAGES));
3583 }
3584 
3585 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3586 				unsigned long mark, int highest_zoneidx,
3587 				unsigned int alloc_flags, gfp_t gfp_mask)
3588 {
3589 	long free_pages;
3590 
3591 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3592 
3593 	/*
3594 	 * Fast check for order-0 only. If this fails then the reserves
3595 	 * need to be calculated.
3596 	 */
3597 	if (!order) {
3598 		long fast_free;
3599 
3600 		fast_free = free_pages;
3601 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3602 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3603 			return true;
3604 	}
3605 
3606 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3607 					free_pages))
3608 		return true;
3609 	/*
3610 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3611 	 * when checking the min watermark. The min watermark is the
3612 	 * point where boosting is ignored so that kswapd is woken up
3613 	 * when below the low watermark.
3614 	 */
3615 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3616 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3617 		mark = z->_watermark[WMARK_MIN];
3618 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3619 					alloc_flags, free_pages);
3620 	}
3621 
3622 	return false;
3623 }
3624 
3625 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3626 			unsigned long mark, int highest_zoneidx)
3627 {
3628 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3629 
3630 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3631 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3632 
3633 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3634 								free_pages);
3635 }
3636 
3637 #ifdef CONFIG_NUMA
3638 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3639 {
3640 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3641 				node_reclaim_distance;
3642 }
3643 #else	/* CONFIG_NUMA */
3644 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3645 {
3646 	return true;
3647 }
3648 #endif	/* CONFIG_NUMA */
3649 
3650 /*
3651  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3652  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3653  * premature use of a lower zone may cause lowmem pressure problems that
3654  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3655  * probably too small. It only makes sense to spread allocations to avoid
3656  * fragmentation between the Normal and DMA32 zones.
3657  */
3658 static inline unsigned int
3659 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3660 {
3661 	unsigned int alloc_flags;
3662 
3663 	/*
3664 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3665 	 * to save a branch.
3666 	 */
3667 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3668 
3669 #ifdef CONFIG_ZONE_DMA32
3670 	if (!zone)
3671 		return alloc_flags;
3672 
3673 	if (zone_idx(zone) != ZONE_NORMAL)
3674 		return alloc_flags;
3675 
3676 	/*
3677 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3678 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3679 	 * on UMA that if Normal is populated then so is DMA32.
3680 	 */
3681 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3682 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3683 		return alloc_flags;
3684 
3685 	alloc_flags |= ALLOC_NOFRAGMENT;
3686 #endif /* CONFIG_ZONE_DMA32 */
3687 	return alloc_flags;
3688 }
3689 
3690 static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3691 					unsigned int alloc_flags)
3692 {
3693 #ifdef CONFIG_CMA
3694 	unsigned int pflags = current->flags;
3695 
3696 	if (!(pflags & PF_MEMALLOC_NOCMA) &&
3697 			gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3698 		alloc_flags |= ALLOC_CMA;
3699 
3700 #endif
3701 	return alloc_flags;
3702 }
3703 
3704 /*
3705  * get_page_from_freelist goes through the zonelist trying to allocate
3706  * a page.
3707  */
3708 static struct page *
3709 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3710 						const struct alloc_context *ac)
3711 {
3712 	struct zoneref *z;
3713 	struct zone *zone;
3714 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3715 	bool no_fallback;
3716 
3717 retry:
3718 	/*
3719 	 * Scan zonelist, looking for a zone with enough free.
3720 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3721 	 */
3722 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3723 	z = ac->preferred_zoneref;
3724 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist,
3725 					ac->highest_zoneidx, ac->nodemask) {
3726 		struct page *page;
3727 		unsigned long mark;
3728 
3729 		if (cpusets_enabled() &&
3730 			(alloc_flags & ALLOC_CPUSET) &&
3731 			!__cpuset_zone_allowed(zone, gfp_mask))
3732 				continue;
3733 		/*
3734 		 * When allocating a page cache page for writing, we
3735 		 * want to get it from a node that is within its dirty
3736 		 * limit, such that no single node holds more than its
3737 		 * proportional share of globally allowed dirty pages.
3738 		 * The dirty limits take into account the node's
3739 		 * lowmem reserves and high watermark so that kswapd
3740 		 * should be able to balance it without having to
3741 		 * write pages from its LRU list.
3742 		 *
3743 		 * XXX: For now, allow allocations to potentially
3744 		 * exceed the per-node dirty limit in the slowpath
3745 		 * (spread_dirty_pages unset) before going into reclaim,
3746 		 * which is important when on a NUMA setup the allowed
3747 		 * nodes are together not big enough to reach the
3748 		 * global limit.  The proper fix for these situations
3749 		 * will require awareness of nodes in the
3750 		 * dirty-throttling and the flusher threads.
3751 		 */
3752 		if (ac->spread_dirty_pages) {
3753 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3754 				continue;
3755 
3756 			if (!node_dirty_ok(zone->zone_pgdat)) {
3757 				last_pgdat_dirty_limit = zone->zone_pgdat;
3758 				continue;
3759 			}
3760 		}
3761 
3762 		if (no_fallback && nr_online_nodes > 1 &&
3763 		    zone != ac->preferred_zoneref->zone) {
3764 			int local_nid;
3765 
3766 			/*
3767 			 * If moving to a remote node, retry but allow
3768 			 * fragmenting fallbacks. Locality is more important
3769 			 * than fragmentation avoidance.
3770 			 */
3771 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3772 			if (zone_to_nid(zone) != local_nid) {
3773 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3774 				goto retry;
3775 			}
3776 		}
3777 
3778 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3779 		if (!zone_watermark_fast(zone, order, mark,
3780 				       ac->highest_zoneidx, alloc_flags,
3781 				       gfp_mask)) {
3782 			int ret;
3783 
3784 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3785 			/*
3786 			 * Watermark failed for this zone, but see if we can
3787 			 * grow this zone if it contains deferred pages.
3788 			 */
3789 			if (static_branch_unlikely(&deferred_pages)) {
3790 				if (_deferred_grow_zone(zone, order))
3791 					goto try_this_zone;
3792 			}
3793 #endif
3794 			/* Checked here to keep the fast path fast */
3795 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3796 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3797 				goto try_this_zone;
3798 
3799 			if (node_reclaim_mode == 0 ||
3800 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3801 				continue;
3802 
3803 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3804 			switch (ret) {
3805 			case NODE_RECLAIM_NOSCAN:
3806 				/* did not scan */
3807 				continue;
3808 			case NODE_RECLAIM_FULL:
3809 				/* scanned but unreclaimable */
3810 				continue;
3811 			default:
3812 				/* did we reclaim enough */
3813 				if (zone_watermark_ok(zone, order, mark,
3814 					ac->highest_zoneidx, alloc_flags))
3815 					goto try_this_zone;
3816 
3817 				continue;
3818 			}
3819 		}
3820 
3821 try_this_zone:
3822 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3823 				gfp_mask, alloc_flags, ac->migratetype);
3824 		if (page) {
3825 			prep_new_page(page, order, gfp_mask, alloc_flags);
3826 
3827 			/*
3828 			 * If this is a high-order atomic allocation then check
3829 			 * if the pageblock should be reserved for the future
3830 			 */
3831 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3832 				reserve_highatomic_pageblock(page, zone, order);
3833 
3834 			return page;
3835 		} else {
3836 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3837 			/* Try again if zone has deferred pages */
3838 			if (static_branch_unlikely(&deferred_pages)) {
3839 				if (_deferred_grow_zone(zone, order))
3840 					goto try_this_zone;
3841 			}
3842 #endif
3843 		}
3844 	}
3845 
3846 	/*
3847 	 * It's possible on a UMA machine to get through all zones that are
3848 	 * fragmented. If avoiding fragmentation, reset and try again.
3849 	 */
3850 	if (no_fallback) {
3851 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3852 		goto retry;
3853 	}
3854 
3855 	return NULL;
3856 }
3857 
3858 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3859 {
3860 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3861 
3862 	/*
3863 	 * This documents exceptions given to allocations in certain
3864 	 * contexts that are allowed to allocate outside current's set
3865 	 * of allowed nodes.
3866 	 */
3867 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3868 		if (tsk_is_oom_victim(current) ||
3869 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3870 			filter &= ~SHOW_MEM_FILTER_NODES;
3871 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3872 		filter &= ~SHOW_MEM_FILTER_NODES;
3873 
3874 	show_mem(filter, nodemask);
3875 }
3876 
3877 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3878 {
3879 	struct va_format vaf;
3880 	va_list args;
3881 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3882 
3883 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3884 		return;
3885 
3886 	va_start(args, fmt);
3887 	vaf.fmt = fmt;
3888 	vaf.va = &args;
3889 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3890 			current->comm, &vaf, gfp_mask, &gfp_mask,
3891 			nodemask_pr_args(nodemask));
3892 	va_end(args);
3893 
3894 	cpuset_print_current_mems_allowed();
3895 	pr_cont("\n");
3896 	dump_stack();
3897 	warn_alloc_show_mem(gfp_mask, nodemask);
3898 }
3899 
3900 static inline struct page *
3901 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3902 			      unsigned int alloc_flags,
3903 			      const struct alloc_context *ac)
3904 {
3905 	struct page *page;
3906 
3907 	page = get_page_from_freelist(gfp_mask, order,
3908 			alloc_flags|ALLOC_CPUSET, ac);
3909 	/*
3910 	 * fallback to ignore cpuset restriction if our nodes
3911 	 * are depleted
3912 	 */
3913 	if (!page)
3914 		page = get_page_from_freelist(gfp_mask, order,
3915 				alloc_flags, ac);
3916 
3917 	return page;
3918 }
3919 
3920 static inline struct page *
3921 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3922 	const struct alloc_context *ac, unsigned long *did_some_progress)
3923 {
3924 	struct oom_control oc = {
3925 		.zonelist = ac->zonelist,
3926 		.nodemask = ac->nodemask,
3927 		.memcg = NULL,
3928 		.gfp_mask = gfp_mask,
3929 		.order = order,
3930 	};
3931 	struct page *page;
3932 
3933 	*did_some_progress = 0;
3934 
3935 	/*
3936 	 * Acquire the oom lock.  If that fails, somebody else is
3937 	 * making progress for us.
3938 	 */
3939 	if (!mutex_trylock(&oom_lock)) {
3940 		*did_some_progress = 1;
3941 		schedule_timeout_uninterruptible(1);
3942 		return NULL;
3943 	}
3944 
3945 	/*
3946 	 * Go through the zonelist yet one more time, keep very high watermark
3947 	 * here, this is only to catch a parallel oom killing, we must fail if
3948 	 * we're still under heavy pressure. But make sure that this reclaim
3949 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3950 	 * allocation which will never fail due to oom_lock already held.
3951 	 */
3952 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3953 				      ~__GFP_DIRECT_RECLAIM, order,
3954 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3955 	if (page)
3956 		goto out;
3957 
3958 	/* Coredumps can quickly deplete all memory reserves */
3959 	if (current->flags & PF_DUMPCORE)
3960 		goto out;
3961 	/* The OOM killer will not help higher order allocs */
3962 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3963 		goto out;
3964 	/*
3965 	 * We have already exhausted all our reclaim opportunities without any
3966 	 * success so it is time to admit defeat. We will skip the OOM killer
3967 	 * because it is very likely that the caller has a more reasonable
3968 	 * fallback than shooting a random task.
3969 	 */
3970 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3971 		goto out;
3972 	/* The OOM killer does not needlessly kill tasks for lowmem */
3973 	if (ac->highest_zoneidx < ZONE_NORMAL)
3974 		goto out;
3975 	if (pm_suspended_storage())
3976 		goto out;
3977 	/*
3978 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3979 	 * other request to make a forward progress.
3980 	 * We are in an unfortunate situation where out_of_memory cannot
3981 	 * do much for this context but let's try it to at least get
3982 	 * access to memory reserved if the current task is killed (see
3983 	 * out_of_memory). Once filesystems are ready to handle allocation
3984 	 * failures more gracefully we should just bail out here.
3985 	 */
3986 
3987 	/* The OOM killer may not free memory on a specific node */
3988 	if (gfp_mask & __GFP_THISNODE)
3989 		goto out;
3990 
3991 	/* Exhausted what can be done so it's blame time */
3992 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3993 		*did_some_progress = 1;
3994 
3995 		/*
3996 		 * Help non-failing allocations by giving them access to memory
3997 		 * reserves
3998 		 */
3999 		if (gfp_mask & __GFP_NOFAIL)
4000 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4001 					ALLOC_NO_WATERMARKS, ac);
4002 	}
4003 out:
4004 	mutex_unlock(&oom_lock);
4005 	return page;
4006 }
4007 
4008 /*
4009  * Maximum number of compaction retries wit a progress before OOM
4010  * killer is consider as the only way to move forward.
4011  */
4012 #define MAX_COMPACT_RETRIES 16
4013 
4014 #ifdef CONFIG_COMPACTION
4015 /* Try memory compaction for high-order allocations before reclaim */
4016 static struct page *
4017 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4018 		unsigned int alloc_flags, const struct alloc_context *ac,
4019 		enum compact_priority prio, enum compact_result *compact_result)
4020 {
4021 	struct page *page = NULL;
4022 	unsigned long pflags;
4023 	unsigned int noreclaim_flag;
4024 
4025 	if (!order)
4026 		return NULL;
4027 
4028 	psi_memstall_enter(&pflags);
4029 	noreclaim_flag = memalloc_noreclaim_save();
4030 
4031 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4032 								prio, &page);
4033 
4034 	memalloc_noreclaim_restore(noreclaim_flag);
4035 	psi_memstall_leave(&pflags);
4036 
4037 	/*
4038 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4039 	 * count a compaction stall
4040 	 */
4041 	count_vm_event(COMPACTSTALL);
4042 
4043 	/* Prep a captured page if available */
4044 	if (page)
4045 		prep_new_page(page, order, gfp_mask, alloc_flags);
4046 
4047 	/* Try get a page from the freelist if available */
4048 	if (!page)
4049 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4050 
4051 	if (page) {
4052 		struct zone *zone = page_zone(page);
4053 
4054 		zone->compact_blockskip_flush = false;
4055 		compaction_defer_reset(zone, order, true);
4056 		count_vm_event(COMPACTSUCCESS);
4057 		return page;
4058 	}
4059 
4060 	/*
4061 	 * It's bad if compaction run occurs and fails. The most likely reason
4062 	 * is that pages exist, but not enough to satisfy watermarks.
4063 	 */
4064 	count_vm_event(COMPACTFAIL);
4065 
4066 	cond_resched();
4067 
4068 	return NULL;
4069 }
4070 
4071 static inline bool
4072 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4073 		     enum compact_result compact_result,
4074 		     enum compact_priority *compact_priority,
4075 		     int *compaction_retries)
4076 {
4077 	int max_retries = MAX_COMPACT_RETRIES;
4078 	int min_priority;
4079 	bool ret = false;
4080 	int retries = *compaction_retries;
4081 	enum compact_priority priority = *compact_priority;
4082 
4083 	if (!order)
4084 		return false;
4085 
4086 	if (compaction_made_progress(compact_result))
4087 		(*compaction_retries)++;
4088 
4089 	/*
4090 	 * compaction considers all the zone as desperately out of memory
4091 	 * so it doesn't really make much sense to retry except when the
4092 	 * failure could be caused by insufficient priority
4093 	 */
4094 	if (compaction_failed(compact_result))
4095 		goto check_priority;
4096 
4097 	/*
4098 	 * compaction was skipped because there are not enough order-0 pages
4099 	 * to work with, so we retry only if it looks like reclaim can help.
4100 	 */
4101 	if (compaction_needs_reclaim(compact_result)) {
4102 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4103 		goto out;
4104 	}
4105 
4106 	/*
4107 	 * make sure the compaction wasn't deferred or didn't bail out early
4108 	 * due to locks contention before we declare that we should give up.
4109 	 * But the next retry should use a higher priority if allowed, so
4110 	 * we don't just keep bailing out endlessly.
4111 	 */
4112 	if (compaction_withdrawn(compact_result)) {
4113 		goto check_priority;
4114 	}
4115 
4116 	/*
4117 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4118 	 * costly ones because they are de facto nofail and invoke OOM
4119 	 * killer to move on while costly can fail and users are ready
4120 	 * to cope with that. 1/4 retries is rather arbitrary but we
4121 	 * would need much more detailed feedback from compaction to
4122 	 * make a better decision.
4123 	 */
4124 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4125 		max_retries /= 4;
4126 	if (*compaction_retries <= max_retries) {
4127 		ret = true;
4128 		goto out;
4129 	}
4130 
4131 	/*
4132 	 * Make sure there are attempts at the highest priority if we exhausted
4133 	 * all retries or failed at the lower priorities.
4134 	 */
4135 check_priority:
4136 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4137 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4138 
4139 	if (*compact_priority > min_priority) {
4140 		(*compact_priority)--;
4141 		*compaction_retries = 0;
4142 		ret = true;
4143 	}
4144 out:
4145 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4146 	return ret;
4147 }
4148 #else
4149 static inline struct page *
4150 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4151 		unsigned int alloc_flags, const struct alloc_context *ac,
4152 		enum compact_priority prio, enum compact_result *compact_result)
4153 {
4154 	*compact_result = COMPACT_SKIPPED;
4155 	return NULL;
4156 }
4157 
4158 static inline bool
4159 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4160 		     enum compact_result compact_result,
4161 		     enum compact_priority *compact_priority,
4162 		     int *compaction_retries)
4163 {
4164 	struct zone *zone;
4165 	struct zoneref *z;
4166 
4167 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4168 		return false;
4169 
4170 	/*
4171 	 * There are setups with compaction disabled which would prefer to loop
4172 	 * inside the allocator rather than hit the oom killer prematurely.
4173 	 * Let's give them a good hope and keep retrying while the order-0
4174 	 * watermarks are OK.
4175 	 */
4176 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4177 				ac->highest_zoneidx, ac->nodemask) {
4178 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4179 					ac->highest_zoneidx, alloc_flags))
4180 			return true;
4181 	}
4182 	return false;
4183 }
4184 #endif /* CONFIG_COMPACTION */
4185 
4186 #ifdef CONFIG_LOCKDEP
4187 static struct lockdep_map __fs_reclaim_map =
4188 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4189 
4190 static bool __need_fs_reclaim(gfp_t gfp_mask)
4191 {
4192 	gfp_mask = current_gfp_context(gfp_mask);
4193 
4194 	/* no reclaim without waiting on it */
4195 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4196 		return false;
4197 
4198 	/* this guy won't enter reclaim */
4199 	if (current->flags & PF_MEMALLOC)
4200 		return false;
4201 
4202 	/* We're only interested __GFP_FS allocations for now */
4203 	if (!(gfp_mask & __GFP_FS))
4204 		return false;
4205 
4206 	if (gfp_mask & __GFP_NOLOCKDEP)
4207 		return false;
4208 
4209 	return true;
4210 }
4211 
4212 void __fs_reclaim_acquire(void)
4213 {
4214 	lock_map_acquire(&__fs_reclaim_map);
4215 }
4216 
4217 void __fs_reclaim_release(void)
4218 {
4219 	lock_map_release(&__fs_reclaim_map);
4220 }
4221 
4222 void fs_reclaim_acquire(gfp_t gfp_mask)
4223 {
4224 	if (__need_fs_reclaim(gfp_mask))
4225 		__fs_reclaim_acquire();
4226 }
4227 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4228 
4229 void fs_reclaim_release(gfp_t gfp_mask)
4230 {
4231 	if (__need_fs_reclaim(gfp_mask))
4232 		__fs_reclaim_release();
4233 }
4234 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4235 #endif
4236 
4237 /* Perform direct synchronous page reclaim */
4238 static int
4239 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4240 					const struct alloc_context *ac)
4241 {
4242 	int progress;
4243 	unsigned int noreclaim_flag;
4244 	unsigned long pflags;
4245 
4246 	cond_resched();
4247 
4248 	/* We now go into synchronous reclaim */
4249 	cpuset_memory_pressure_bump();
4250 	psi_memstall_enter(&pflags);
4251 	fs_reclaim_acquire(gfp_mask);
4252 	noreclaim_flag = memalloc_noreclaim_save();
4253 
4254 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4255 								ac->nodemask);
4256 
4257 	memalloc_noreclaim_restore(noreclaim_flag);
4258 	fs_reclaim_release(gfp_mask);
4259 	psi_memstall_leave(&pflags);
4260 
4261 	cond_resched();
4262 
4263 	return progress;
4264 }
4265 
4266 /* The really slow allocator path where we enter direct reclaim */
4267 static inline struct page *
4268 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4269 		unsigned int alloc_flags, const struct alloc_context *ac,
4270 		unsigned long *did_some_progress)
4271 {
4272 	struct page *page = NULL;
4273 	bool drained = false;
4274 
4275 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4276 	if (unlikely(!(*did_some_progress)))
4277 		return NULL;
4278 
4279 retry:
4280 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4281 
4282 	/*
4283 	 * If an allocation failed after direct reclaim, it could be because
4284 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4285 	 * Shrink them and try again
4286 	 */
4287 	if (!page && !drained) {
4288 		unreserve_highatomic_pageblock(ac, false);
4289 		drain_all_pages(NULL);
4290 		drained = true;
4291 		goto retry;
4292 	}
4293 
4294 	return page;
4295 }
4296 
4297 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4298 			     const struct alloc_context *ac)
4299 {
4300 	struct zoneref *z;
4301 	struct zone *zone;
4302 	pg_data_t *last_pgdat = NULL;
4303 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4304 
4305 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4306 					ac->nodemask) {
4307 		if (last_pgdat != zone->zone_pgdat)
4308 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4309 		last_pgdat = zone->zone_pgdat;
4310 	}
4311 }
4312 
4313 static inline unsigned int
4314 gfp_to_alloc_flags(gfp_t gfp_mask)
4315 {
4316 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4317 
4318 	/*
4319 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4320 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4321 	 * to save two branches.
4322 	 */
4323 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4324 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4325 
4326 	/*
4327 	 * The caller may dip into page reserves a bit more if the caller
4328 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4329 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4330 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4331 	 */
4332 	alloc_flags |= (__force int)
4333 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4334 
4335 	if (gfp_mask & __GFP_ATOMIC) {
4336 		/*
4337 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4338 		 * if it can't schedule.
4339 		 */
4340 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4341 			alloc_flags |= ALLOC_HARDER;
4342 		/*
4343 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4344 		 * comment for __cpuset_node_allowed().
4345 		 */
4346 		alloc_flags &= ~ALLOC_CPUSET;
4347 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4348 		alloc_flags |= ALLOC_HARDER;
4349 
4350 	alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4351 
4352 	return alloc_flags;
4353 }
4354 
4355 static bool oom_reserves_allowed(struct task_struct *tsk)
4356 {
4357 	if (!tsk_is_oom_victim(tsk))
4358 		return false;
4359 
4360 	/*
4361 	 * !MMU doesn't have oom reaper so give access to memory reserves
4362 	 * only to the thread with TIF_MEMDIE set
4363 	 */
4364 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4365 		return false;
4366 
4367 	return true;
4368 }
4369 
4370 /*
4371  * Distinguish requests which really need access to full memory
4372  * reserves from oom victims which can live with a portion of it
4373  */
4374 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4375 {
4376 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4377 		return 0;
4378 	if (gfp_mask & __GFP_MEMALLOC)
4379 		return ALLOC_NO_WATERMARKS;
4380 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4381 		return ALLOC_NO_WATERMARKS;
4382 	if (!in_interrupt()) {
4383 		if (current->flags & PF_MEMALLOC)
4384 			return ALLOC_NO_WATERMARKS;
4385 		else if (oom_reserves_allowed(current))
4386 			return ALLOC_OOM;
4387 	}
4388 
4389 	return 0;
4390 }
4391 
4392 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4393 {
4394 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4395 }
4396 
4397 /*
4398  * Checks whether it makes sense to retry the reclaim to make a forward progress
4399  * for the given allocation request.
4400  *
4401  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4402  * without success, or when we couldn't even meet the watermark if we
4403  * reclaimed all remaining pages on the LRU lists.
4404  *
4405  * Returns true if a retry is viable or false to enter the oom path.
4406  */
4407 static inline bool
4408 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4409 		     struct alloc_context *ac, int alloc_flags,
4410 		     bool did_some_progress, int *no_progress_loops)
4411 {
4412 	struct zone *zone;
4413 	struct zoneref *z;
4414 	bool ret = false;
4415 
4416 	/*
4417 	 * Costly allocations might have made a progress but this doesn't mean
4418 	 * their order will become available due to high fragmentation so
4419 	 * always increment the no progress counter for them
4420 	 */
4421 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4422 		*no_progress_loops = 0;
4423 	else
4424 		(*no_progress_loops)++;
4425 
4426 	/*
4427 	 * Make sure we converge to OOM if we cannot make any progress
4428 	 * several times in the row.
4429 	 */
4430 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4431 		/* Before OOM, exhaust highatomic_reserve */
4432 		return unreserve_highatomic_pageblock(ac, true);
4433 	}
4434 
4435 	/*
4436 	 * Keep reclaiming pages while there is a chance this will lead
4437 	 * somewhere.  If none of the target zones can satisfy our allocation
4438 	 * request even if all reclaimable pages are considered then we are
4439 	 * screwed and have to go OOM.
4440 	 */
4441 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4442 				ac->highest_zoneidx, ac->nodemask) {
4443 		unsigned long available;
4444 		unsigned long reclaimable;
4445 		unsigned long min_wmark = min_wmark_pages(zone);
4446 		bool wmark;
4447 
4448 		available = reclaimable = zone_reclaimable_pages(zone);
4449 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4450 
4451 		/*
4452 		 * Would the allocation succeed if we reclaimed all
4453 		 * reclaimable pages?
4454 		 */
4455 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4456 				ac->highest_zoneidx, alloc_flags, available);
4457 		trace_reclaim_retry_zone(z, order, reclaimable,
4458 				available, min_wmark, *no_progress_loops, wmark);
4459 		if (wmark) {
4460 			/*
4461 			 * If we didn't make any progress and have a lot of
4462 			 * dirty + writeback pages then we should wait for
4463 			 * an IO to complete to slow down the reclaim and
4464 			 * prevent from pre mature OOM
4465 			 */
4466 			if (!did_some_progress) {
4467 				unsigned long write_pending;
4468 
4469 				write_pending = zone_page_state_snapshot(zone,
4470 							NR_ZONE_WRITE_PENDING);
4471 
4472 				if (2 * write_pending > reclaimable) {
4473 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4474 					return true;
4475 				}
4476 			}
4477 
4478 			ret = true;
4479 			goto out;
4480 		}
4481 	}
4482 
4483 out:
4484 	/*
4485 	 * Memory allocation/reclaim might be called from a WQ context and the
4486 	 * current implementation of the WQ concurrency control doesn't
4487 	 * recognize that a particular WQ is congested if the worker thread is
4488 	 * looping without ever sleeping. Therefore we have to do a short sleep
4489 	 * here rather than calling cond_resched().
4490 	 */
4491 	if (current->flags & PF_WQ_WORKER)
4492 		schedule_timeout_uninterruptible(1);
4493 	else
4494 		cond_resched();
4495 	return ret;
4496 }
4497 
4498 static inline bool
4499 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4500 {
4501 	/*
4502 	 * It's possible that cpuset's mems_allowed and the nodemask from
4503 	 * mempolicy don't intersect. This should be normally dealt with by
4504 	 * policy_nodemask(), but it's possible to race with cpuset update in
4505 	 * such a way the check therein was true, and then it became false
4506 	 * before we got our cpuset_mems_cookie here.
4507 	 * This assumes that for all allocations, ac->nodemask can come only
4508 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4509 	 * when it does not intersect with the cpuset restrictions) or the
4510 	 * caller can deal with a violated nodemask.
4511 	 */
4512 	if (cpusets_enabled() && ac->nodemask &&
4513 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4514 		ac->nodemask = NULL;
4515 		return true;
4516 	}
4517 
4518 	/*
4519 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4520 	 * possible to race with parallel threads in such a way that our
4521 	 * allocation can fail while the mask is being updated. If we are about
4522 	 * to fail, check if the cpuset changed during allocation and if so,
4523 	 * retry.
4524 	 */
4525 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4526 		return true;
4527 
4528 	return false;
4529 }
4530 
4531 static inline struct page *
4532 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4533 						struct alloc_context *ac)
4534 {
4535 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4536 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4537 	struct page *page = NULL;
4538 	unsigned int alloc_flags;
4539 	unsigned long did_some_progress;
4540 	enum compact_priority compact_priority;
4541 	enum compact_result compact_result;
4542 	int compaction_retries;
4543 	int no_progress_loops;
4544 	unsigned int cpuset_mems_cookie;
4545 	int reserve_flags;
4546 
4547 	/*
4548 	 * We also sanity check to catch abuse of atomic reserves being used by
4549 	 * callers that are not in atomic context.
4550 	 */
4551 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4552 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4553 		gfp_mask &= ~__GFP_ATOMIC;
4554 
4555 retry_cpuset:
4556 	compaction_retries = 0;
4557 	no_progress_loops = 0;
4558 	compact_priority = DEF_COMPACT_PRIORITY;
4559 	cpuset_mems_cookie = read_mems_allowed_begin();
4560 
4561 	/*
4562 	 * The fast path uses conservative alloc_flags to succeed only until
4563 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4564 	 * alloc_flags precisely. So we do that now.
4565 	 */
4566 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4567 
4568 	/*
4569 	 * We need to recalculate the starting point for the zonelist iterator
4570 	 * because we might have used different nodemask in the fast path, or
4571 	 * there was a cpuset modification and we are retrying - otherwise we
4572 	 * could end up iterating over non-eligible zones endlessly.
4573 	 */
4574 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4575 					ac->highest_zoneidx, ac->nodemask);
4576 	if (!ac->preferred_zoneref->zone)
4577 		goto nopage;
4578 
4579 	if (alloc_flags & ALLOC_KSWAPD)
4580 		wake_all_kswapds(order, gfp_mask, ac);
4581 
4582 	/*
4583 	 * The adjusted alloc_flags might result in immediate success, so try
4584 	 * that first
4585 	 */
4586 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4587 	if (page)
4588 		goto got_pg;
4589 
4590 	/*
4591 	 * For costly allocations, try direct compaction first, as it's likely
4592 	 * that we have enough base pages and don't need to reclaim. For non-
4593 	 * movable high-order allocations, do that as well, as compaction will
4594 	 * try prevent permanent fragmentation by migrating from blocks of the
4595 	 * same migratetype.
4596 	 * Don't try this for allocations that are allowed to ignore
4597 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4598 	 */
4599 	if (can_direct_reclaim &&
4600 			(costly_order ||
4601 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4602 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4603 		page = __alloc_pages_direct_compact(gfp_mask, order,
4604 						alloc_flags, ac,
4605 						INIT_COMPACT_PRIORITY,
4606 						&compact_result);
4607 		if (page)
4608 			goto got_pg;
4609 
4610 		/*
4611 		 * Checks for costly allocations with __GFP_NORETRY, which
4612 		 * includes some THP page fault allocations
4613 		 */
4614 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4615 			/*
4616 			 * If allocating entire pageblock(s) and compaction
4617 			 * failed because all zones are below low watermarks
4618 			 * or is prohibited because it recently failed at this
4619 			 * order, fail immediately unless the allocator has
4620 			 * requested compaction and reclaim retry.
4621 			 *
4622 			 * Reclaim is
4623 			 *  - potentially very expensive because zones are far
4624 			 *    below their low watermarks or this is part of very
4625 			 *    bursty high order allocations,
4626 			 *  - not guaranteed to help because isolate_freepages()
4627 			 *    may not iterate over freed pages as part of its
4628 			 *    linear scan, and
4629 			 *  - unlikely to make entire pageblocks free on its
4630 			 *    own.
4631 			 */
4632 			if (compact_result == COMPACT_SKIPPED ||
4633 			    compact_result == COMPACT_DEFERRED)
4634 				goto nopage;
4635 
4636 			/*
4637 			 * Looks like reclaim/compaction is worth trying, but
4638 			 * sync compaction could be very expensive, so keep
4639 			 * using async compaction.
4640 			 */
4641 			compact_priority = INIT_COMPACT_PRIORITY;
4642 		}
4643 	}
4644 
4645 retry:
4646 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4647 	if (alloc_flags & ALLOC_KSWAPD)
4648 		wake_all_kswapds(order, gfp_mask, ac);
4649 
4650 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4651 	if (reserve_flags)
4652 		alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4653 
4654 	/*
4655 	 * Reset the nodemask and zonelist iterators if memory policies can be
4656 	 * ignored. These allocations are high priority and system rather than
4657 	 * user oriented.
4658 	 */
4659 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4660 		ac->nodemask = NULL;
4661 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4662 					ac->highest_zoneidx, ac->nodemask);
4663 	}
4664 
4665 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4666 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4667 	if (page)
4668 		goto got_pg;
4669 
4670 	/* Caller is not willing to reclaim, we can't balance anything */
4671 	if (!can_direct_reclaim)
4672 		goto nopage;
4673 
4674 	/* Avoid recursion of direct reclaim */
4675 	if (current->flags & PF_MEMALLOC)
4676 		goto nopage;
4677 
4678 	/* Try direct reclaim and then allocating */
4679 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4680 							&did_some_progress);
4681 	if (page)
4682 		goto got_pg;
4683 
4684 	/* Try direct compaction and then allocating */
4685 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4686 					compact_priority, &compact_result);
4687 	if (page)
4688 		goto got_pg;
4689 
4690 	/* Do not loop if specifically requested */
4691 	if (gfp_mask & __GFP_NORETRY)
4692 		goto nopage;
4693 
4694 	/*
4695 	 * Do not retry costly high order allocations unless they are
4696 	 * __GFP_RETRY_MAYFAIL
4697 	 */
4698 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4699 		goto nopage;
4700 
4701 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4702 				 did_some_progress > 0, &no_progress_loops))
4703 		goto retry;
4704 
4705 	/*
4706 	 * It doesn't make any sense to retry for the compaction if the order-0
4707 	 * reclaim is not able to make any progress because the current
4708 	 * implementation of the compaction depends on the sufficient amount
4709 	 * of free memory (see __compaction_suitable)
4710 	 */
4711 	if (did_some_progress > 0 &&
4712 			should_compact_retry(ac, order, alloc_flags,
4713 				compact_result, &compact_priority,
4714 				&compaction_retries))
4715 		goto retry;
4716 
4717 
4718 	/* Deal with possible cpuset update races before we start OOM killing */
4719 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4720 		goto retry_cpuset;
4721 
4722 	/* Reclaim has failed us, start killing things */
4723 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4724 	if (page)
4725 		goto got_pg;
4726 
4727 	/* Avoid allocations with no watermarks from looping endlessly */
4728 	if (tsk_is_oom_victim(current) &&
4729 	    (alloc_flags & ALLOC_OOM ||
4730 	     (gfp_mask & __GFP_NOMEMALLOC)))
4731 		goto nopage;
4732 
4733 	/* Retry as long as the OOM killer is making progress */
4734 	if (did_some_progress) {
4735 		no_progress_loops = 0;
4736 		goto retry;
4737 	}
4738 
4739 nopage:
4740 	/* Deal with possible cpuset update races before we fail */
4741 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4742 		goto retry_cpuset;
4743 
4744 	/*
4745 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4746 	 * we always retry
4747 	 */
4748 	if (gfp_mask & __GFP_NOFAIL) {
4749 		/*
4750 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4751 		 * of any new users that actually require GFP_NOWAIT
4752 		 */
4753 		if (WARN_ON_ONCE(!can_direct_reclaim))
4754 			goto fail;
4755 
4756 		/*
4757 		 * PF_MEMALLOC request from this context is rather bizarre
4758 		 * because we cannot reclaim anything and only can loop waiting
4759 		 * for somebody to do a work for us
4760 		 */
4761 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4762 
4763 		/*
4764 		 * non failing costly orders are a hard requirement which we
4765 		 * are not prepared for much so let's warn about these users
4766 		 * so that we can identify them and convert them to something
4767 		 * else.
4768 		 */
4769 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4770 
4771 		/*
4772 		 * Help non-failing allocations by giving them access to memory
4773 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4774 		 * could deplete whole memory reserves which would just make
4775 		 * the situation worse
4776 		 */
4777 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4778 		if (page)
4779 			goto got_pg;
4780 
4781 		cond_resched();
4782 		goto retry;
4783 	}
4784 fail:
4785 	warn_alloc(gfp_mask, ac->nodemask,
4786 			"page allocation failure: order:%u", order);
4787 got_pg:
4788 	return page;
4789 }
4790 
4791 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4792 		int preferred_nid, nodemask_t *nodemask,
4793 		struct alloc_context *ac, gfp_t *alloc_mask,
4794 		unsigned int *alloc_flags)
4795 {
4796 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4797 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4798 	ac->nodemask = nodemask;
4799 	ac->migratetype = gfp_migratetype(gfp_mask);
4800 
4801 	if (cpusets_enabled()) {
4802 		*alloc_mask |= __GFP_HARDWALL;
4803 		/*
4804 		 * When we are in the interrupt context, it is irrelevant
4805 		 * to the current task context. It means that any node ok.
4806 		 */
4807 		if (!in_interrupt() && !ac->nodemask)
4808 			ac->nodemask = &cpuset_current_mems_allowed;
4809 		else
4810 			*alloc_flags |= ALLOC_CPUSET;
4811 	}
4812 
4813 	fs_reclaim_acquire(gfp_mask);
4814 	fs_reclaim_release(gfp_mask);
4815 
4816 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4817 
4818 	if (should_fail_alloc_page(gfp_mask, order))
4819 		return false;
4820 
4821 	*alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4822 
4823 	return true;
4824 }
4825 
4826 /* Determine whether to spread dirty pages and what the first usable zone */
4827 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4828 {
4829 	/* Dirty zone balancing only done in the fast path */
4830 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4831 
4832 	/*
4833 	 * The preferred zone is used for statistics but crucially it is
4834 	 * also used as the starting point for the zonelist iterator. It
4835 	 * may get reset for allocations that ignore memory policies.
4836 	 */
4837 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4838 					ac->highest_zoneidx, ac->nodemask);
4839 }
4840 
4841 /*
4842  * This is the 'heart' of the zoned buddy allocator.
4843  */
4844 struct page *
4845 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4846 							nodemask_t *nodemask)
4847 {
4848 	struct page *page;
4849 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4850 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4851 	struct alloc_context ac = { };
4852 
4853 	/*
4854 	 * There are several places where we assume that the order value is sane
4855 	 * so bail out early if the request is out of bound.
4856 	 */
4857 	if (unlikely(order >= MAX_ORDER)) {
4858 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4859 		return NULL;
4860 	}
4861 
4862 	gfp_mask &= gfp_allowed_mask;
4863 	alloc_mask = gfp_mask;
4864 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4865 		return NULL;
4866 
4867 	finalise_ac(gfp_mask, &ac);
4868 
4869 	/*
4870 	 * Forbid the first pass from falling back to types that fragment
4871 	 * memory until all local zones are considered.
4872 	 */
4873 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4874 
4875 	/* First allocation attempt */
4876 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4877 	if (likely(page))
4878 		goto out;
4879 
4880 	/*
4881 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4882 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4883 	 * from a particular context which has been marked by
4884 	 * memalloc_no{fs,io}_{save,restore}.
4885 	 */
4886 	alloc_mask = current_gfp_context(gfp_mask);
4887 	ac.spread_dirty_pages = false;
4888 
4889 	/*
4890 	 * Restore the original nodemask if it was potentially replaced with
4891 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4892 	 */
4893 	ac.nodemask = nodemask;
4894 
4895 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4896 
4897 out:
4898 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4899 	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4900 		__free_pages(page, order);
4901 		page = NULL;
4902 	}
4903 
4904 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4905 
4906 	return page;
4907 }
4908 EXPORT_SYMBOL(__alloc_pages_nodemask);
4909 
4910 /*
4911  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4912  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4913  * you need to access high mem.
4914  */
4915 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4916 {
4917 	struct page *page;
4918 
4919 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4920 	if (!page)
4921 		return 0;
4922 	return (unsigned long) page_address(page);
4923 }
4924 EXPORT_SYMBOL(__get_free_pages);
4925 
4926 unsigned long get_zeroed_page(gfp_t gfp_mask)
4927 {
4928 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4929 }
4930 EXPORT_SYMBOL(get_zeroed_page);
4931 
4932 static inline void free_the_page(struct page *page, unsigned int order)
4933 {
4934 	if (order == 0)		/* Via pcp? */
4935 		free_unref_page(page);
4936 	else
4937 		__free_pages_ok(page, order);
4938 }
4939 
4940 void __free_pages(struct page *page, unsigned int order)
4941 {
4942 	if (put_page_testzero(page))
4943 		free_the_page(page, order);
4944 }
4945 EXPORT_SYMBOL(__free_pages);
4946 
4947 void free_pages(unsigned long addr, unsigned int order)
4948 {
4949 	if (addr != 0) {
4950 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4951 		__free_pages(virt_to_page((void *)addr), order);
4952 	}
4953 }
4954 
4955 EXPORT_SYMBOL(free_pages);
4956 
4957 /*
4958  * Page Fragment:
4959  *  An arbitrary-length arbitrary-offset area of memory which resides
4960  *  within a 0 or higher order page.  Multiple fragments within that page
4961  *  are individually refcounted, in the page's reference counter.
4962  *
4963  * The page_frag functions below provide a simple allocation framework for
4964  * page fragments.  This is used by the network stack and network device
4965  * drivers to provide a backing region of memory for use as either an
4966  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4967  */
4968 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4969 					     gfp_t gfp_mask)
4970 {
4971 	struct page *page = NULL;
4972 	gfp_t gfp = gfp_mask;
4973 
4974 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4975 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4976 		    __GFP_NOMEMALLOC;
4977 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4978 				PAGE_FRAG_CACHE_MAX_ORDER);
4979 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4980 #endif
4981 	if (unlikely(!page))
4982 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4983 
4984 	nc->va = page ? page_address(page) : NULL;
4985 
4986 	return page;
4987 }
4988 
4989 void __page_frag_cache_drain(struct page *page, unsigned int count)
4990 {
4991 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4992 
4993 	if (page_ref_sub_and_test(page, count))
4994 		free_the_page(page, compound_order(page));
4995 }
4996 EXPORT_SYMBOL(__page_frag_cache_drain);
4997 
4998 void *page_frag_alloc(struct page_frag_cache *nc,
4999 		      unsigned int fragsz, gfp_t gfp_mask)
5000 {
5001 	unsigned int size = PAGE_SIZE;
5002 	struct page *page;
5003 	int offset;
5004 
5005 	if (unlikely(!nc->va)) {
5006 refill:
5007 		page = __page_frag_cache_refill(nc, gfp_mask);
5008 		if (!page)
5009 			return NULL;
5010 
5011 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5012 		/* if size can vary use size else just use PAGE_SIZE */
5013 		size = nc->size;
5014 #endif
5015 		/* Even if we own the page, we do not use atomic_set().
5016 		 * This would break get_page_unless_zero() users.
5017 		 */
5018 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5019 
5020 		/* reset page count bias and offset to start of new frag */
5021 		nc->pfmemalloc = page_is_pfmemalloc(page);
5022 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5023 		nc->offset = size;
5024 	}
5025 
5026 	offset = nc->offset - fragsz;
5027 	if (unlikely(offset < 0)) {
5028 		page = virt_to_page(nc->va);
5029 
5030 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5031 			goto refill;
5032 
5033 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5034 		/* if size can vary use size else just use PAGE_SIZE */
5035 		size = nc->size;
5036 #endif
5037 		/* OK, page count is 0, we can safely set it */
5038 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5039 
5040 		/* reset page count bias and offset to start of new frag */
5041 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5042 		offset = size - fragsz;
5043 	}
5044 
5045 	nc->pagecnt_bias--;
5046 	nc->offset = offset;
5047 
5048 	return nc->va + offset;
5049 }
5050 EXPORT_SYMBOL(page_frag_alloc);
5051 
5052 /*
5053  * Frees a page fragment allocated out of either a compound or order 0 page.
5054  */
5055 void page_frag_free(void *addr)
5056 {
5057 	struct page *page = virt_to_head_page(addr);
5058 
5059 	if (unlikely(put_page_testzero(page)))
5060 		free_the_page(page, compound_order(page));
5061 }
5062 EXPORT_SYMBOL(page_frag_free);
5063 
5064 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5065 		size_t size)
5066 {
5067 	if (addr) {
5068 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5069 		unsigned long used = addr + PAGE_ALIGN(size);
5070 
5071 		split_page(virt_to_page((void *)addr), order);
5072 		while (used < alloc_end) {
5073 			free_page(used);
5074 			used += PAGE_SIZE;
5075 		}
5076 	}
5077 	return (void *)addr;
5078 }
5079 
5080 /**
5081  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5082  * @size: the number of bytes to allocate
5083  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5084  *
5085  * This function is similar to alloc_pages(), except that it allocates the
5086  * minimum number of pages to satisfy the request.  alloc_pages() can only
5087  * allocate memory in power-of-two pages.
5088  *
5089  * This function is also limited by MAX_ORDER.
5090  *
5091  * Memory allocated by this function must be released by free_pages_exact().
5092  *
5093  * Return: pointer to the allocated area or %NULL in case of error.
5094  */
5095 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5096 {
5097 	unsigned int order = get_order(size);
5098 	unsigned long addr;
5099 
5100 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5101 		gfp_mask &= ~__GFP_COMP;
5102 
5103 	addr = __get_free_pages(gfp_mask, order);
5104 	return make_alloc_exact(addr, order, size);
5105 }
5106 EXPORT_SYMBOL(alloc_pages_exact);
5107 
5108 /**
5109  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5110  *			   pages on a node.
5111  * @nid: the preferred node ID where memory should be allocated
5112  * @size: the number of bytes to allocate
5113  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5114  *
5115  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5116  * back.
5117  *
5118  * Return: pointer to the allocated area or %NULL in case of error.
5119  */
5120 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5121 {
5122 	unsigned int order = get_order(size);
5123 	struct page *p;
5124 
5125 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5126 		gfp_mask &= ~__GFP_COMP;
5127 
5128 	p = alloc_pages_node(nid, gfp_mask, order);
5129 	if (!p)
5130 		return NULL;
5131 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5132 }
5133 
5134 /**
5135  * free_pages_exact - release memory allocated via alloc_pages_exact()
5136  * @virt: the value returned by alloc_pages_exact.
5137  * @size: size of allocation, same value as passed to alloc_pages_exact().
5138  *
5139  * Release the memory allocated by a previous call to alloc_pages_exact.
5140  */
5141 void free_pages_exact(void *virt, size_t size)
5142 {
5143 	unsigned long addr = (unsigned long)virt;
5144 	unsigned long end = addr + PAGE_ALIGN(size);
5145 
5146 	while (addr < end) {
5147 		free_page(addr);
5148 		addr += PAGE_SIZE;
5149 	}
5150 }
5151 EXPORT_SYMBOL(free_pages_exact);
5152 
5153 /**
5154  * nr_free_zone_pages - count number of pages beyond high watermark
5155  * @offset: The zone index of the highest zone
5156  *
5157  * nr_free_zone_pages() counts the number of pages which are beyond the
5158  * high watermark within all zones at or below a given zone index.  For each
5159  * zone, the number of pages is calculated as:
5160  *
5161  *     nr_free_zone_pages = managed_pages - high_pages
5162  *
5163  * Return: number of pages beyond high watermark.
5164  */
5165 static unsigned long nr_free_zone_pages(int offset)
5166 {
5167 	struct zoneref *z;
5168 	struct zone *zone;
5169 
5170 	/* Just pick one node, since fallback list is circular */
5171 	unsigned long sum = 0;
5172 
5173 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5174 
5175 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5176 		unsigned long size = zone_managed_pages(zone);
5177 		unsigned long high = high_wmark_pages(zone);
5178 		if (size > high)
5179 			sum += size - high;
5180 	}
5181 
5182 	return sum;
5183 }
5184 
5185 /**
5186  * nr_free_buffer_pages - count number of pages beyond high watermark
5187  *
5188  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5189  * watermark within ZONE_DMA and ZONE_NORMAL.
5190  *
5191  * Return: number of pages beyond high watermark within ZONE_DMA and
5192  * ZONE_NORMAL.
5193  */
5194 unsigned long nr_free_buffer_pages(void)
5195 {
5196 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5197 }
5198 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5199 
5200 static inline void show_node(struct zone *zone)
5201 {
5202 	if (IS_ENABLED(CONFIG_NUMA))
5203 		printk("Node %d ", zone_to_nid(zone));
5204 }
5205 
5206 long si_mem_available(void)
5207 {
5208 	long available;
5209 	unsigned long pagecache;
5210 	unsigned long wmark_low = 0;
5211 	unsigned long pages[NR_LRU_LISTS];
5212 	unsigned long reclaimable;
5213 	struct zone *zone;
5214 	int lru;
5215 
5216 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5217 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5218 
5219 	for_each_zone(zone)
5220 		wmark_low += low_wmark_pages(zone);
5221 
5222 	/*
5223 	 * Estimate the amount of memory available for userspace allocations,
5224 	 * without causing swapping.
5225 	 */
5226 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5227 
5228 	/*
5229 	 * Not all the page cache can be freed, otherwise the system will
5230 	 * start swapping. Assume at least half of the page cache, or the
5231 	 * low watermark worth of cache, needs to stay.
5232 	 */
5233 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5234 	pagecache -= min(pagecache / 2, wmark_low);
5235 	available += pagecache;
5236 
5237 	/*
5238 	 * Part of the reclaimable slab and other kernel memory consists of
5239 	 * items that are in use, and cannot be freed. Cap this estimate at the
5240 	 * low watermark.
5241 	 */
5242 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5243 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5244 	available += reclaimable - min(reclaimable / 2, wmark_low);
5245 
5246 	if (available < 0)
5247 		available = 0;
5248 	return available;
5249 }
5250 EXPORT_SYMBOL_GPL(si_mem_available);
5251 
5252 void si_meminfo(struct sysinfo *val)
5253 {
5254 	val->totalram = totalram_pages();
5255 	val->sharedram = global_node_page_state(NR_SHMEM);
5256 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5257 	val->bufferram = nr_blockdev_pages();
5258 	val->totalhigh = totalhigh_pages();
5259 	val->freehigh = nr_free_highpages();
5260 	val->mem_unit = PAGE_SIZE;
5261 }
5262 
5263 EXPORT_SYMBOL(si_meminfo);
5264 
5265 #ifdef CONFIG_NUMA
5266 void si_meminfo_node(struct sysinfo *val, int nid)
5267 {
5268 	int zone_type;		/* needs to be signed */
5269 	unsigned long managed_pages = 0;
5270 	unsigned long managed_highpages = 0;
5271 	unsigned long free_highpages = 0;
5272 	pg_data_t *pgdat = NODE_DATA(nid);
5273 
5274 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5275 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5276 	val->totalram = managed_pages;
5277 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5278 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5279 #ifdef CONFIG_HIGHMEM
5280 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5281 		struct zone *zone = &pgdat->node_zones[zone_type];
5282 
5283 		if (is_highmem(zone)) {
5284 			managed_highpages += zone_managed_pages(zone);
5285 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5286 		}
5287 	}
5288 	val->totalhigh = managed_highpages;
5289 	val->freehigh = free_highpages;
5290 #else
5291 	val->totalhigh = managed_highpages;
5292 	val->freehigh = free_highpages;
5293 #endif
5294 	val->mem_unit = PAGE_SIZE;
5295 }
5296 #endif
5297 
5298 /*
5299  * Determine whether the node should be displayed or not, depending on whether
5300  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5301  */
5302 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5303 {
5304 	if (!(flags & SHOW_MEM_FILTER_NODES))
5305 		return false;
5306 
5307 	/*
5308 	 * no node mask - aka implicit memory numa policy. Do not bother with
5309 	 * the synchronization - read_mems_allowed_begin - because we do not
5310 	 * have to be precise here.
5311 	 */
5312 	if (!nodemask)
5313 		nodemask = &cpuset_current_mems_allowed;
5314 
5315 	return !node_isset(nid, *nodemask);
5316 }
5317 
5318 #define K(x) ((x) << (PAGE_SHIFT-10))
5319 
5320 static void show_migration_types(unsigned char type)
5321 {
5322 	static const char types[MIGRATE_TYPES] = {
5323 		[MIGRATE_UNMOVABLE]	= 'U',
5324 		[MIGRATE_MOVABLE]	= 'M',
5325 		[MIGRATE_RECLAIMABLE]	= 'E',
5326 		[MIGRATE_HIGHATOMIC]	= 'H',
5327 #ifdef CONFIG_CMA
5328 		[MIGRATE_CMA]		= 'C',
5329 #endif
5330 #ifdef CONFIG_MEMORY_ISOLATION
5331 		[MIGRATE_ISOLATE]	= 'I',
5332 #endif
5333 	};
5334 	char tmp[MIGRATE_TYPES + 1];
5335 	char *p = tmp;
5336 	int i;
5337 
5338 	for (i = 0; i < MIGRATE_TYPES; i++) {
5339 		if (type & (1 << i))
5340 			*p++ = types[i];
5341 	}
5342 
5343 	*p = '\0';
5344 	printk(KERN_CONT "(%s) ", tmp);
5345 }
5346 
5347 /*
5348  * Show free area list (used inside shift_scroll-lock stuff)
5349  * We also calculate the percentage fragmentation. We do this by counting the
5350  * memory on each free list with the exception of the first item on the list.
5351  *
5352  * Bits in @filter:
5353  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5354  *   cpuset.
5355  */
5356 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5357 {
5358 	unsigned long free_pcp = 0;
5359 	int cpu;
5360 	struct zone *zone;
5361 	pg_data_t *pgdat;
5362 
5363 	for_each_populated_zone(zone) {
5364 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5365 			continue;
5366 
5367 		for_each_online_cpu(cpu)
5368 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5369 	}
5370 
5371 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5372 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5373 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5374 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5375 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5376 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5377 		global_node_page_state(NR_ACTIVE_ANON),
5378 		global_node_page_state(NR_INACTIVE_ANON),
5379 		global_node_page_state(NR_ISOLATED_ANON),
5380 		global_node_page_state(NR_ACTIVE_FILE),
5381 		global_node_page_state(NR_INACTIVE_FILE),
5382 		global_node_page_state(NR_ISOLATED_FILE),
5383 		global_node_page_state(NR_UNEVICTABLE),
5384 		global_node_page_state(NR_FILE_DIRTY),
5385 		global_node_page_state(NR_WRITEBACK),
5386 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5387 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5388 		global_node_page_state(NR_FILE_MAPPED),
5389 		global_node_page_state(NR_SHMEM),
5390 		global_zone_page_state(NR_PAGETABLE),
5391 		global_zone_page_state(NR_BOUNCE),
5392 		global_zone_page_state(NR_FREE_PAGES),
5393 		free_pcp,
5394 		global_zone_page_state(NR_FREE_CMA_PAGES));
5395 
5396 	for_each_online_pgdat(pgdat) {
5397 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5398 			continue;
5399 
5400 		printk("Node %d"
5401 			" active_anon:%lukB"
5402 			" inactive_anon:%lukB"
5403 			" active_file:%lukB"
5404 			" inactive_file:%lukB"
5405 			" unevictable:%lukB"
5406 			" isolated(anon):%lukB"
5407 			" isolated(file):%lukB"
5408 			" mapped:%lukB"
5409 			" dirty:%lukB"
5410 			" writeback:%lukB"
5411 			" shmem:%lukB"
5412 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5413 			" shmem_thp: %lukB"
5414 			" shmem_pmdmapped: %lukB"
5415 			" anon_thp: %lukB"
5416 #endif
5417 			" writeback_tmp:%lukB"
5418 			" kernel_stack:%lukB"
5419 #ifdef CONFIG_SHADOW_CALL_STACK
5420 			" shadow_call_stack:%lukB"
5421 #endif
5422 			" all_unreclaimable? %s"
5423 			"\n",
5424 			pgdat->node_id,
5425 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5426 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5427 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5428 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5429 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5430 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5431 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5432 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5433 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5434 			K(node_page_state(pgdat, NR_WRITEBACK)),
5435 			K(node_page_state(pgdat, NR_SHMEM)),
5436 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5437 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5438 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5439 					* HPAGE_PMD_NR),
5440 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5441 #endif
5442 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5443 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5444 #ifdef CONFIG_SHADOW_CALL_STACK
5445 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5446 #endif
5447 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5448 				"yes" : "no");
5449 	}
5450 
5451 	for_each_populated_zone(zone) {
5452 		int i;
5453 
5454 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5455 			continue;
5456 
5457 		free_pcp = 0;
5458 		for_each_online_cpu(cpu)
5459 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5460 
5461 		show_node(zone);
5462 		printk(KERN_CONT
5463 			"%s"
5464 			" free:%lukB"
5465 			" min:%lukB"
5466 			" low:%lukB"
5467 			" high:%lukB"
5468 			" reserved_highatomic:%luKB"
5469 			" active_anon:%lukB"
5470 			" inactive_anon:%lukB"
5471 			" active_file:%lukB"
5472 			" inactive_file:%lukB"
5473 			" unevictable:%lukB"
5474 			" writepending:%lukB"
5475 			" present:%lukB"
5476 			" managed:%lukB"
5477 			" mlocked:%lukB"
5478 			" pagetables:%lukB"
5479 			" bounce:%lukB"
5480 			" free_pcp:%lukB"
5481 			" local_pcp:%ukB"
5482 			" free_cma:%lukB"
5483 			"\n",
5484 			zone->name,
5485 			K(zone_page_state(zone, NR_FREE_PAGES)),
5486 			K(min_wmark_pages(zone)),
5487 			K(low_wmark_pages(zone)),
5488 			K(high_wmark_pages(zone)),
5489 			K(zone->nr_reserved_highatomic),
5490 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5491 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5492 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5493 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5494 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5495 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5496 			K(zone->present_pages),
5497 			K(zone_managed_pages(zone)),
5498 			K(zone_page_state(zone, NR_MLOCK)),
5499 			K(zone_page_state(zone, NR_PAGETABLE)),
5500 			K(zone_page_state(zone, NR_BOUNCE)),
5501 			K(free_pcp),
5502 			K(this_cpu_read(zone->pageset->pcp.count)),
5503 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5504 		printk("lowmem_reserve[]:");
5505 		for (i = 0; i < MAX_NR_ZONES; i++)
5506 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5507 		printk(KERN_CONT "\n");
5508 	}
5509 
5510 	for_each_populated_zone(zone) {
5511 		unsigned int order;
5512 		unsigned long nr[MAX_ORDER], flags, total = 0;
5513 		unsigned char types[MAX_ORDER];
5514 
5515 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5516 			continue;
5517 		show_node(zone);
5518 		printk(KERN_CONT "%s: ", zone->name);
5519 
5520 		spin_lock_irqsave(&zone->lock, flags);
5521 		for (order = 0; order < MAX_ORDER; order++) {
5522 			struct free_area *area = &zone->free_area[order];
5523 			int type;
5524 
5525 			nr[order] = area->nr_free;
5526 			total += nr[order] << order;
5527 
5528 			types[order] = 0;
5529 			for (type = 0; type < MIGRATE_TYPES; type++) {
5530 				if (!free_area_empty(area, type))
5531 					types[order] |= 1 << type;
5532 			}
5533 		}
5534 		spin_unlock_irqrestore(&zone->lock, flags);
5535 		for (order = 0; order < MAX_ORDER; order++) {
5536 			printk(KERN_CONT "%lu*%lukB ",
5537 			       nr[order], K(1UL) << order);
5538 			if (nr[order])
5539 				show_migration_types(types[order]);
5540 		}
5541 		printk(KERN_CONT "= %lukB\n", K(total));
5542 	}
5543 
5544 	hugetlb_show_meminfo();
5545 
5546 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5547 
5548 	show_swap_cache_info();
5549 }
5550 
5551 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5552 {
5553 	zoneref->zone = zone;
5554 	zoneref->zone_idx = zone_idx(zone);
5555 }
5556 
5557 /*
5558  * Builds allocation fallback zone lists.
5559  *
5560  * Add all populated zones of a node to the zonelist.
5561  */
5562 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5563 {
5564 	struct zone *zone;
5565 	enum zone_type zone_type = MAX_NR_ZONES;
5566 	int nr_zones = 0;
5567 
5568 	do {
5569 		zone_type--;
5570 		zone = pgdat->node_zones + zone_type;
5571 		if (managed_zone(zone)) {
5572 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5573 			check_highest_zone(zone_type);
5574 		}
5575 	} while (zone_type);
5576 
5577 	return nr_zones;
5578 }
5579 
5580 #ifdef CONFIG_NUMA
5581 
5582 static int __parse_numa_zonelist_order(char *s)
5583 {
5584 	/*
5585 	 * We used to support different zonlists modes but they turned
5586 	 * out to be just not useful. Let's keep the warning in place
5587 	 * if somebody still use the cmd line parameter so that we do
5588 	 * not fail it silently
5589 	 */
5590 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5591 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5592 		return -EINVAL;
5593 	}
5594 	return 0;
5595 }
5596 
5597 char numa_zonelist_order[] = "Node";
5598 
5599 /*
5600  * sysctl handler for numa_zonelist_order
5601  */
5602 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5603 		void *buffer, size_t *length, loff_t *ppos)
5604 {
5605 	if (write)
5606 		return __parse_numa_zonelist_order(buffer);
5607 	return proc_dostring(table, write, buffer, length, ppos);
5608 }
5609 
5610 
5611 #define MAX_NODE_LOAD (nr_online_nodes)
5612 static int node_load[MAX_NUMNODES];
5613 
5614 /**
5615  * find_next_best_node - find the next node that should appear in a given node's fallback list
5616  * @node: node whose fallback list we're appending
5617  * @used_node_mask: nodemask_t of already used nodes
5618  *
5619  * We use a number of factors to determine which is the next node that should
5620  * appear on a given node's fallback list.  The node should not have appeared
5621  * already in @node's fallback list, and it should be the next closest node
5622  * according to the distance array (which contains arbitrary distance values
5623  * from each node to each node in the system), and should also prefer nodes
5624  * with no CPUs, since presumably they'll have very little allocation pressure
5625  * on them otherwise.
5626  *
5627  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5628  */
5629 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5630 {
5631 	int n, val;
5632 	int min_val = INT_MAX;
5633 	int best_node = NUMA_NO_NODE;
5634 	const struct cpumask *tmp = cpumask_of_node(0);
5635 
5636 	/* Use the local node if we haven't already */
5637 	if (!node_isset(node, *used_node_mask)) {
5638 		node_set(node, *used_node_mask);
5639 		return node;
5640 	}
5641 
5642 	for_each_node_state(n, N_MEMORY) {
5643 
5644 		/* Don't want a node to appear more than once */
5645 		if (node_isset(n, *used_node_mask))
5646 			continue;
5647 
5648 		/* Use the distance array to find the distance */
5649 		val = node_distance(node, n);
5650 
5651 		/* Penalize nodes under us ("prefer the next node") */
5652 		val += (n < node);
5653 
5654 		/* Give preference to headless and unused nodes */
5655 		tmp = cpumask_of_node(n);
5656 		if (!cpumask_empty(tmp))
5657 			val += PENALTY_FOR_NODE_WITH_CPUS;
5658 
5659 		/* Slight preference for less loaded node */
5660 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5661 		val += node_load[n];
5662 
5663 		if (val < min_val) {
5664 			min_val = val;
5665 			best_node = n;
5666 		}
5667 	}
5668 
5669 	if (best_node >= 0)
5670 		node_set(best_node, *used_node_mask);
5671 
5672 	return best_node;
5673 }
5674 
5675 
5676 /*
5677  * Build zonelists ordered by node and zones within node.
5678  * This results in maximum locality--normal zone overflows into local
5679  * DMA zone, if any--but risks exhausting DMA zone.
5680  */
5681 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5682 		unsigned nr_nodes)
5683 {
5684 	struct zoneref *zonerefs;
5685 	int i;
5686 
5687 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5688 
5689 	for (i = 0; i < nr_nodes; i++) {
5690 		int nr_zones;
5691 
5692 		pg_data_t *node = NODE_DATA(node_order[i]);
5693 
5694 		nr_zones = build_zonerefs_node(node, zonerefs);
5695 		zonerefs += nr_zones;
5696 	}
5697 	zonerefs->zone = NULL;
5698 	zonerefs->zone_idx = 0;
5699 }
5700 
5701 /*
5702  * Build gfp_thisnode zonelists
5703  */
5704 static void build_thisnode_zonelists(pg_data_t *pgdat)
5705 {
5706 	struct zoneref *zonerefs;
5707 	int nr_zones;
5708 
5709 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5710 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5711 	zonerefs += nr_zones;
5712 	zonerefs->zone = NULL;
5713 	zonerefs->zone_idx = 0;
5714 }
5715 
5716 /*
5717  * Build zonelists ordered by zone and nodes within zones.
5718  * This results in conserving DMA zone[s] until all Normal memory is
5719  * exhausted, but results in overflowing to remote node while memory
5720  * may still exist in local DMA zone.
5721  */
5722 
5723 static void build_zonelists(pg_data_t *pgdat)
5724 {
5725 	static int node_order[MAX_NUMNODES];
5726 	int node, load, nr_nodes = 0;
5727 	nodemask_t used_mask = NODE_MASK_NONE;
5728 	int local_node, prev_node;
5729 
5730 	/* NUMA-aware ordering of nodes */
5731 	local_node = pgdat->node_id;
5732 	load = nr_online_nodes;
5733 	prev_node = local_node;
5734 
5735 	memset(node_order, 0, sizeof(node_order));
5736 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5737 		/*
5738 		 * We don't want to pressure a particular node.
5739 		 * So adding penalty to the first node in same
5740 		 * distance group to make it round-robin.
5741 		 */
5742 		if (node_distance(local_node, node) !=
5743 		    node_distance(local_node, prev_node))
5744 			node_load[node] = load;
5745 
5746 		node_order[nr_nodes++] = node;
5747 		prev_node = node;
5748 		load--;
5749 	}
5750 
5751 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5752 	build_thisnode_zonelists(pgdat);
5753 }
5754 
5755 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5756 /*
5757  * Return node id of node used for "local" allocations.
5758  * I.e., first node id of first zone in arg node's generic zonelist.
5759  * Used for initializing percpu 'numa_mem', which is used primarily
5760  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5761  */
5762 int local_memory_node(int node)
5763 {
5764 	struct zoneref *z;
5765 
5766 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5767 				   gfp_zone(GFP_KERNEL),
5768 				   NULL);
5769 	return zone_to_nid(z->zone);
5770 }
5771 #endif
5772 
5773 static void setup_min_unmapped_ratio(void);
5774 static void setup_min_slab_ratio(void);
5775 #else	/* CONFIG_NUMA */
5776 
5777 static void build_zonelists(pg_data_t *pgdat)
5778 {
5779 	int node, local_node;
5780 	struct zoneref *zonerefs;
5781 	int nr_zones;
5782 
5783 	local_node = pgdat->node_id;
5784 
5785 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5786 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5787 	zonerefs += nr_zones;
5788 
5789 	/*
5790 	 * Now we build the zonelist so that it contains the zones
5791 	 * of all the other nodes.
5792 	 * We don't want to pressure a particular node, so when
5793 	 * building the zones for node N, we make sure that the
5794 	 * zones coming right after the local ones are those from
5795 	 * node N+1 (modulo N)
5796 	 */
5797 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5798 		if (!node_online(node))
5799 			continue;
5800 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5801 		zonerefs += nr_zones;
5802 	}
5803 	for (node = 0; node < local_node; node++) {
5804 		if (!node_online(node))
5805 			continue;
5806 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5807 		zonerefs += nr_zones;
5808 	}
5809 
5810 	zonerefs->zone = NULL;
5811 	zonerefs->zone_idx = 0;
5812 }
5813 
5814 #endif	/* CONFIG_NUMA */
5815 
5816 /*
5817  * Boot pageset table. One per cpu which is going to be used for all
5818  * zones and all nodes. The parameters will be set in such a way
5819  * that an item put on a list will immediately be handed over to
5820  * the buddy list. This is safe since pageset manipulation is done
5821  * with interrupts disabled.
5822  *
5823  * The boot_pagesets must be kept even after bootup is complete for
5824  * unused processors and/or zones. They do play a role for bootstrapping
5825  * hotplugged processors.
5826  *
5827  * zoneinfo_show() and maybe other functions do
5828  * not check if the processor is online before following the pageset pointer.
5829  * Other parts of the kernel may not check if the zone is available.
5830  */
5831 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5832 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5833 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5834 
5835 static void __build_all_zonelists(void *data)
5836 {
5837 	int nid;
5838 	int __maybe_unused cpu;
5839 	pg_data_t *self = data;
5840 	static DEFINE_SPINLOCK(lock);
5841 
5842 	spin_lock(&lock);
5843 
5844 #ifdef CONFIG_NUMA
5845 	memset(node_load, 0, sizeof(node_load));
5846 #endif
5847 
5848 	/*
5849 	 * This node is hotadded and no memory is yet present.   So just
5850 	 * building zonelists is fine - no need to touch other nodes.
5851 	 */
5852 	if (self && !node_online(self->node_id)) {
5853 		build_zonelists(self);
5854 	} else {
5855 		for_each_online_node(nid) {
5856 			pg_data_t *pgdat = NODE_DATA(nid);
5857 
5858 			build_zonelists(pgdat);
5859 		}
5860 
5861 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5862 		/*
5863 		 * We now know the "local memory node" for each node--
5864 		 * i.e., the node of the first zone in the generic zonelist.
5865 		 * Set up numa_mem percpu variable for on-line cpus.  During
5866 		 * boot, only the boot cpu should be on-line;  we'll init the
5867 		 * secondary cpus' numa_mem as they come on-line.  During
5868 		 * node/memory hotplug, we'll fixup all on-line cpus.
5869 		 */
5870 		for_each_online_cpu(cpu)
5871 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5872 #endif
5873 	}
5874 
5875 	spin_unlock(&lock);
5876 }
5877 
5878 static noinline void __init
5879 build_all_zonelists_init(void)
5880 {
5881 	int cpu;
5882 
5883 	__build_all_zonelists(NULL);
5884 
5885 	/*
5886 	 * Initialize the boot_pagesets that are going to be used
5887 	 * for bootstrapping processors. The real pagesets for
5888 	 * each zone will be allocated later when the per cpu
5889 	 * allocator is available.
5890 	 *
5891 	 * boot_pagesets are used also for bootstrapping offline
5892 	 * cpus if the system is already booted because the pagesets
5893 	 * are needed to initialize allocators on a specific cpu too.
5894 	 * F.e. the percpu allocator needs the page allocator which
5895 	 * needs the percpu allocator in order to allocate its pagesets
5896 	 * (a chicken-egg dilemma).
5897 	 */
5898 	for_each_possible_cpu(cpu)
5899 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5900 
5901 	mminit_verify_zonelist();
5902 	cpuset_init_current_mems_allowed();
5903 }
5904 
5905 /*
5906  * unless system_state == SYSTEM_BOOTING.
5907  *
5908  * __ref due to call of __init annotated helper build_all_zonelists_init
5909  * [protected by SYSTEM_BOOTING].
5910  */
5911 void __ref build_all_zonelists(pg_data_t *pgdat)
5912 {
5913 	unsigned long vm_total_pages;
5914 
5915 	if (system_state == SYSTEM_BOOTING) {
5916 		build_all_zonelists_init();
5917 	} else {
5918 		__build_all_zonelists(pgdat);
5919 		/* cpuset refresh routine should be here */
5920 	}
5921 	/* Get the number of free pages beyond high watermark in all zones. */
5922 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5923 	/*
5924 	 * Disable grouping by mobility if the number of pages in the
5925 	 * system is too low to allow the mechanism to work. It would be
5926 	 * more accurate, but expensive to check per-zone. This check is
5927 	 * made on memory-hotadd so a system can start with mobility
5928 	 * disabled and enable it later
5929 	 */
5930 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5931 		page_group_by_mobility_disabled = 1;
5932 	else
5933 		page_group_by_mobility_disabled = 0;
5934 
5935 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5936 		nr_online_nodes,
5937 		page_group_by_mobility_disabled ? "off" : "on",
5938 		vm_total_pages);
5939 #ifdef CONFIG_NUMA
5940 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5941 #endif
5942 }
5943 
5944 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5945 static bool __meminit
5946 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5947 {
5948 	static struct memblock_region *r;
5949 
5950 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5951 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5952 			for_each_memblock(memory, r) {
5953 				if (*pfn < memblock_region_memory_end_pfn(r))
5954 					break;
5955 			}
5956 		}
5957 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
5958 		    memblock_is_mirror(r)) {
5959 			*pfn = memblock_region_memory_end_pfn(r);
5960 			return true;
5961 		}
5962 	}
5963 	return false;
5964 }
5965 
5966 /*
5967  * Initially all pages are reserved - free ones are freed
5968  * up by memblock_free_all() once the early boot process is
5969  * done. Non-atomic initialization, single-pass.
5970  */
5971 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5972 		unsigned long start_pfn, enum memmap_context context,
5973 		struct vmem_altmap *altmap)
5974 {
5975 	unsigned long pfn, end_pfn = start_pfn + size;
5976 	struct page *page;
5977 
5978 	if (highest_memmap_pfn < end_pfn - 1)
5979 		highest_memmap_pfn = end_pfn - 1;
5980 
5981 #ifdef CONFIG_ZONE_DEVICE
5982 	/*
5983 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5984 	 * memory. We limit the total number of pages to initialize to just
5985 	 * those that might contain the memory mapping. We will defer the
5986 	 * ZONE_DEVICE page initialization until after we have released
5987 	 * the hotplug lock.
5988 	 */
5989 	if (zone == ZONE_DEVICE) {
5990 		if (!altmap)
5991 			return;
5992 
5993 		if (start_pfn == altmap->base_pfn)
5994 			start_pfn += altmap->reserve;
5995 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5996 	}
5997 #endif
5998 
5999 	for (pfn = start_pfn; pfn < end_pfn; ) {
6000 		/*
6001 		 * There can be holes in boot-time mem_map[]s handed to this
6002 		 * function.  They do not exist on hotplugged memory.
6003 		 */
6004 		if (context == MEMMAP_EARLY) {
6005 			if (overlap_memmap_init(zone, &pfn))
6006 				continue;
6007 			if (defer_init(nid, pfn, end_pfn))
6008 				break;
6009 		}
6010 
6011 		page = pfn_to_page(pfn);
6012 		__init_single_page(page, pfn, zone, nid);
6013 		if (context == MEMMAP_HOTPLUG)
6014 			__SetPageReserved(page);
6015 
6016 		/*
6017 		 * Mark the block movable so that blocks are reserved for
6018 		 * movable at startup. This will force kernel allocations
6019 		 * to reserve their blocks rather than leaking throughout
6020 		 * the address space during boot when many long-lived
6021 		 * kernel allocations are made.
6022 		 *
6023 		 * bitmap is created for zone's valid pfn range. but memmap
6024 		 * can be created for invalid pages (for alignment)
6025 		 * check here not to call set_pageblock_migratetype() against
6026 		 * pfn out of zone.
6027 		 */
6028 		if (!(pfn & (pageblock_nr_pages - 1))) {
6029 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6030 			cond_resched();
6031 		}
6032 		pfn++;
6033 	}
6034 }
6035 
6036 #ifdef CONFIG_ZONE_DEVICE
6037 void __ref memmap_init_zone_device(struct zone *zone,
6038 				   unsigned long start_pfn,
6039 				   unsigned long nr_pages,
6040 				   struct dev_pagemap *pgmap)
6041 {
6042 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6043 	struct pglist_data *pgdat = zone->zone_pgdat;
6044 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6045 	unsigned long zone_idx = zone_idx(zone);
6046 	unsigned long start = jiffies;
6047 	int nid = pgdat->node_id;
6048 
6049 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6050 		return;
6051 
6052 	/*
6053 	 * The call to memmap_init_zone should have already taken care
6054 	 * of the pages reserved for the memmap, so we can just jump to
6055 	 * the end of that region and start processing the device pages.
6056 	 */
6057 	if (altmap) {
6058 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6059 		nr_pages = end_pfn - start_pfn;
6060 	}
6061 
6062 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6063 		struct page *page = pfn_to_page(pfn);
6064 
6065 		__init_single_page(page, pfn, zone_idx, nid);
6066 
6067 		/*
6068 		 * Mark page reserved as it will need to wait for onlining
6069 		 * phase for it to be fully associated with a zone.
6070 		 *
6071 		 * We can use the non-atomic __set_bit operation for setting
6072 		 * the flag as we are still initializing the pages.
6073 		 */
6074 		__SetPageReserved(page);
6075 
6076 		/*
6077 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6078 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6079 		 * ever freed or placed on a driver-private list.
6080 		 */
6081 		page->pgmap = pgmap;
6082 		page->zone_device_data = NULL;
6083 
6084 		/*
6085 		 * Mark the block movable so that blocks are reserved for
6086 		 * movable at startup. This will force kernel allocations
6087 		 * to reserve their blocks rather than leaking throughout
6088 		 * the address space during boot when many long-lived
6089 		 * kernel allocations are made.
6090 		 *
6091 		 * bitmap is created for zone's valid pfn range. but memmap
6092 		 * can be created for invalid pages (for alignment)
6093 		 * check here not to call set_pageblock_migratetype() against
6094 		 * pfn out of zone.
6095 		 *
6096 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6097 		 * because this is done early in section_activate()
6098 		 */
6099 		if (!(pfn & (pageblock_nr_pages - 1))) {
6100 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6101 			cond_resched();
6102 		}
6103 	}
6104 
6105 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6106 		nr_pages, jiffies_to_msecs(jiffies - start));
6107 }
6108 
6109 #endif
6110 static void __meminit zone_init_free_lists(struct zone *zone)
6111 {
6112 	unsigned int order, t;
6113 	for_each_migratetype_order(order, t) {
6114 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6115 		zone->free_area[order].nr_free = 0;
6116 	}
6117 }
6118 
6119 void __meminit __weak memmap_init(unsigned long size, int nid,
6120 				  unsigned long zone,
6121 				  unsigned long range_start_pfn)
6122 {
6123 	unsigned long start_pfn, end_pfn;
6124 	unsigned long range_end_pfn = range_start_pfn + size;
6125 	int i;
6126 
6127 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6128 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6129 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6130 
6131 		if (end_pfn > start_pfn) {
6132 			size = end_pfn - start_pfn;
6133 			memmap_init_zone(size, nid, zone, start_pfn,
6134 					 MEMMAP_EARLY, NULL);
6135 		}
6136 	}
6137 }
6138 
6139 static int zone_batchsize(struct zone *zone)
6140 {
6141 #ifdef CONFIG_MMU
6142 	int batch;
6143 
6144 	/*
6145 	 * The per-cpu-pages pools are set to around 1000th of the
6146 	 * size of the zone.
6147 	 */
6148 	batch = zone_managed_pages(zone) / 1024;
6149 	/* But no more than a meg. */
6150 	if (batch * PAGE_SIZE > 1024 * 1024)
6151 		batch = (1024 * 1024) / PAGE_SIZE;
6152 	batch /= 4;		/* We effectively *= 4 below */
6153 	if (batch < 1)
6154 		batch = 1;
6155 
6156 	/*
6157 	 * Clamp the batch to a 2^n - 1 value. Having a power
6158 	 * of 2 value was found to be more likely to have
6159 	 * suboptimal cache aliasing properties in some cases.
6160 	 *
6161 	 * For example if 2 tasks are alternately allocating
6162 	 * batches of pages, one task can end up with a lot
6163 	 * of pages of one half of the possible page colors
6164 	 * and the other with pages of the other colors.
6165 	 */
6166 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6167 
6168 	return batch;
6169 
6170 #else
6171 	/* The deferral and batching of frees should be suppressed under NOMMU
6172 	 * conditions.
6173 	 *
6174 	 * The problem is that NOMMU needs to be able to allocate large chunks
6175 	 * of contiguous memory as there's no hardware page translation to
6176 	 * assemble apparent contiguous memory from discontiguous pages.
6177 	 *
6178 	 * Queueing large contiguous runs of pages for batching, however,
6179 	 * causes the pages to actually be freed in smaller chunks.  As there
6180 	 * can be a significant delay between the individual batches being
6181 	 * recycled, this leads to the once large chunks of space being
6182 	 * fragmented and becoming unavailable for high-order allocations.
6183 	 */
6184 	return 0;
6185 #endif
6186 }
6187 
6188 /*
6189  * pcp->high and pcp->batch values are related and dependent on one another:
6190  * ->batch must never be higher then ->high.
6191  * The following function updates them in a safe manner without read side
6192  * locking.
6193  *
6194  * Any new users of pcp->batch and pcp->high should ensure they can cope with
6195  * those fields changing asynchronously (acording to the above rule).
6196  *
6197  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6198  * outside of boot time (or some other assurance that no concurrent updaters
6199  * exist).
6200  */
6201 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6202 		unsigned long batch)
6203 {
6204        /* start with a fail safe value for batch */
6205 	pcp->batch = 1;
6206 	smp_wmb();
6207 
6208        /* Update high, then batch, in order */
6209 	pcp->high = high;
6210 	smp_wmb();
6211 
6212 	pcp->batch = batch;
6213 }
6214 
6215 /* a companion to pageset_set_high() */
6216 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6217 {
6218 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6219 }
6220 
6221 static void pageset_init(struct per_cpu_pageset *p)
6222 {
6223 	struct per_cpu_pages *pcp;
6224 	int migratetype;
6225 
6226 	memset(p, 0, sizeof(*p));
6227 
6228 	pcp = &p->pcp;
6229 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6230 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6231 }
6232 
6233 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6234 {
6235 	pageset_init(p);
6236 	pageset_set_batch(p, batch);
6237 }
6238 
6239 /*
6240  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6241  * to the value high for the pageset p.
6242  */
6243 static void pageset_set_high(struct per_cpu_pageset *p,
6244 				unsigned long high)
6245 {
6246 	unsigned long batch = max(1UL, high / 4);
6247 	if ((high / 4) > (PAGE_SHIFT * 8))
6248 		batch = PAGE_SHIFT * 8;
6249 
6250 	pageset_update(&p->pcp, high, batch);
6251 }
6252 
6253 static void pageset_set_high_and_batch(struct zone *zone,
6254 				       struct per_cpu_pageset *pcp)
6255 {
6256 	if (percpu_pagelist_fraction)
6257 		pageset_set_high(pcp,
6258 			(zone_managed_pages(zone) /
6259 				percpu_pagelist_fraction));
6260 	else
6261 		pageset_set_batch(pcp, zone_batchsize(zone));
6262 }
6263 
6264 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6265 {
6266 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6267 
6268 	pageset_init(pcp);
6269 	pageset_set_high_and_batch(zone, pcp);
6270 }
6271 
6272 void __meminit setup_zone_pageset(struct zone *zone)
6273 {
6274 	int cpu;
6275 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6276 	for_each_possible_cpu(cpu)
6277 		zone_pageset_init(zone, cpu);
6278 }
6279 
6280 /*
6281  * Allocate per cpu pagesets and initialize them.
6282  * Before this call only boot pagesets were available.
6283  */
6284 void __init setup_per_cpu_pageset(void)
6285 {
6286 	struct pglist_data *pgdat;
6287 	struct zone *zone;
6288 	int __maybe_unused cpu;
6289 
6290 	for_each_populated_zone(zone)
6291 		setup_zone_pageset(zone);
6292 
6293 #ifdef CONFIG_NUMA
6294 	/*
6295 	 * Unpopulated zones continue using the boot pagesets.
6296 	 * The numa stats for these pagesets need to be reset.
6297 	 * Otherwise, they will end up skewing the stats of
6298 	 * the nodes these zones are associated with.
6299 	 */
6300 	for_each_possible_cpu(cpu) {
6301 		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6302 		memset(pcp->vm_numa_stat_diff, 0,
6303 		       sizeof(pcp->vm_numa_stat_diff));
6304 	}
6305 #endif
6306 
6307 	for_each_online_pgdat(pgdat)
6308 		pgdat->per_cpu_nodestats =
6309 			alloc_percpu(struct per_cpu_nodestat);
6310 }
6311 
6312 static __meminit void zone_pcp_init(struct zone *zone)
6313 {
6314 	/*
6315 	 * per cpu subsystem is not up at this point. The following code
6316 	 * relies on the ability of the linker to provide the
6317 	 * offset of a (static) per cpu variable into the per cpu area.
6318 	 */
6319 	zone->pageset = &boot_pageset;
6320 
6321 	if (populated_zone(zone))
6322 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6323 			zone->name, zone->present_pages,
6324 					 zone_batchsize(zone));
6325 }
6326 
6327 void __meminit init_currently_empty_zone(struct zone *zone,
6328 					unsigned long zone_start_pfn,
6329 					unsigned long size)
6330 {
6331 	struct pglist_data *pgdat = zone->zone_pgdat;
6332 	int zone_idx = zone_idx(zone) + 1;
6333 
6334 	if (zone_idx > pgdat->nr_zones)
6335 		pgdat->nr_zones = zone_idx;
6336 
6337 	zone->zone_start_pfn = zone_start_pfn;
6338 
6339 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6340 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6341 			pgdat->node_id,
6342 			(unsigned long)zone_idx(zone),
6343 			zone_start_pfn, (zone_start_pfn + size));
6344 
6345 	zone_init_free_lists(zone);
6346 	zone->initialized = 1;
6347 }
6348 
6349 /**
6350  * get_pfn_range_for_nid - Return the start and end page frames for a node
6351  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6352  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6353  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6354  *
6355  * It returns the start and end page frame of a node based on information
6356  * provided by memblock_set_node(). If called for a node
6357  * with no available memory, a warning is printed and the start and end
6358  * PFNs will be 0.
6359  */
6360 void __init get_pfn_range_for_nid(unsigned int nid,
6361 			unsigned long *start_pfn, unsigned long *end_pfn)
6362 {
6363 	unsigned long this_start_pfn, this_end_pfn;
6364 	int i;
6365 
6366 	*start_pfn = -1UL;
6367 	*end_pfn = 0;
6368 
6369 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6370 		*start_pfn = min(*start_pfn, this_start_pfn);
6371 		*end_pfn = max(*end_pfn, this_end_pfn);
6372 	}
6373 
6374 	if (*start_pfn == -1UL)
6375 		*start_pfn = 0;
6376 }
6377 
6378 /*
6379  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6380  * assumption is made that zones within a node are ordered in monotonic
6381  * increasing memory addresses so that the "highest" populated zone is used
6382  */
6383 static void __init find_usable_zone_for_movable(void)
6384 {
6385 	int zone_index;
6386 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6387 		if (zone_index == ZONE_MOVABLE)
6388 			continue;
6389 
6390 		if (arch_zone_highest_possible_pfn[zone_index] >
6391 				arch_zone_lowest_possible_pfn[zone_index])
6392 			break;
6393 	}
6394 
6395 	VM_BUG_ON(zone_index == -1);
6396 	movable_zone = zone_index;
6397 }
6398 
6399 /*
6400  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6401  * because it is sized independent of architecture. Unlike the other zones,
6402  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6403  * in each node depending on the size of each node and how evenly kernelcore
6404  * is distributed. This helper function adjusts the zone ranges
6405  * provided by the architecture for a given node by using the end of the
6406  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6407  * zones within a node are in order of monotonic increases memory addresses
6408  */
6409 static void __init adjust_zone_range_for_zone_movable(int nid,
6410 					unsigned long zone_type,
6411 					unsigned long node_start_pfn,
6412 					unsigned long node_end_pfn,
6413 					unsigned long *zone_start_pfn,
6414 					unsigned long *zone_end_pfn)
6415 {
6416 	/* Only adjust if ZONE_MOVABLE is on this node */
6417 	if (zone_movable_pfn[nid]) {
6418 		/* Size ZONE_MOVABLE */
6419 		if (zone_type == ZONE_MOVABLE) {
6420 			*zone_start_pfn = zone_movable_pfn[nid];
6421 			*zone_end_pfn = min(node_end_pfn,
6422 				arch_zone_highest_possible_pfn[movable_zone]);
6423 
6424 		/* Adjust for ZONE_MOVABLE starting within this range */
6425 		} else if (!mirrored_kernelcore &&
6426 			*zone_start_pfn < zone_movable_pfn[nid] &&
6427 			*zone_end_pfn > zone_movable_pfn[nid]) {
6428 			*zone_end_pfn = zone_movable_pfn[nid];
6429 
6430 		/* Check if this whole range is within ZONE_MOVABLE */
6431 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6432 			*zone_start_pfn = *zone_end_pfn;
6433 	}
6434 }
6435 
6436 /*
6437  * Return the number of pages a zone spans in a node, including holes
6438  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6439  */
6440 static unsigned long __init zone_spanned_pages_in_node(int nid,
6441 					unsigned long zone_type,
6442 					unsigned long node_start_pfn,
6443 					unsigned long node_end_pfn,
6444 					unsigned long *zone_start_pfn,
6445 					unsigned long *zone_end_pfn)
6446 {
6447 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6448 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6449 	/* When hotadd a new node from cpu_up(), the node should be empty */
6450 	if (!node_start_pfn && !node_end_pfn)
6451 		return 0;
6452 
6453 	/* Get the start and end of the zone */
6454 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6455 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6456 	adjust_zone_range_for_zone_movable(nid, zone_type,
6457 				node_start_pfn, node_end_pfn,
6458 				zone_start_pfn, zone_end_pfn);
6459 
6460 	/* Check that this node has pages within the zone's required range */
6461 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6462 		return 0;
6463 
6464 	/* Move the zone boundaries inside the node if necessary */
6465 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6466 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6467 
6468 	/* Return the spanned pages */
6469 	return *zone_end_pfn - *zone_start_pfn;
6470 }
6471 
6472 /*
6473  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6474  * then all holes in the requested range will be accounted for.
6475  */
6476 unsigned long __init __absent_pages_in_range(int nid,
6477 				unsigned long range_start_pfn,
6478 				unsigned long range_end_pfn)
6479 {
6480 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6481 	unsigned long start_pfn, end_pfn;
6482 	int i;
6483 
6484 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6485 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6486 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6487 		nr_absent -= end_pfn - start_pfn;
6488 	}
6489 	return nr_absent;
6490 }
6491 
6492 /**
6493  * absent_pages_in_range - Return number of page frames in holes within a range
6494  * @start_pfn: The start PFN to start searching for holes
6495  * @end_pfn: The end PFN to stop searching for holes
6496  *
6497  * Return: the number of pages frames in memory holes within a range.
6498  */
6499 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6500 							unsigned long end_pfn)
6501 {
6502 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6503 }
6504 
6505 /* Return the number of page frames in holes in a zone on a node */
6506 static unsigned long __init zone_absent_pages_in_node(int nid,
6507 					unsigned long zone_type,
6508 					unsigned long node_start_pfn,
6509 					unsigned long node_end_pfn)
6510 {
6511 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6512 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6513 	unsigned long zone_start_pfn, zone_end_pfn;
6514 	unsigned long nr_absent;
6515 
6516 	/* When hotadd a new node from cpu_up(), the node should be empty */
6517 	if (!node_start_pfn && !node_end_pfn)
6518 		return 0;
6519 
6520 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6521 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6522 
6523 	adjust_zone_range_for_zone_movable(nid, zone_type,
6524 			node_start_pfn, node_end_pfn,
6525 			&zone_start_pfn, &zone_end_pfn);
6526 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6527 
6528 	/*
6529 	 * ZONE_MOVABLE handling.
6530 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6531 	 * and vice versa.
6532 	 */
6533 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6534 		unsigned long start_pfn, end_pfn;
6535 		struct memblock_region *r;
6536 
6537 		for_each_memblock(memory, r) {
6538 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6539 					  zone_start_pfn, zone_end_pfn);
6540 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6541 					zone_start_pfn, zone_end_pfn);
6542 
6543 			if (zone_type == ZONE_MOVABLE &&
6544 			    memblock_is_mirror(r))
6545 				nr_absent += end_pfn - start_pfn;
6546 
6547 			if (zone_type == ZONE_NORMAL &&
6548 			    !memblock_is_mirror(r))
6549 				nr_absent += end_pfn - start_pfn;
6550 		}
6551 	}
6552 
6553 	return nr_absent;
6554 }
6555 
6556 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6557 						unsigned long node_start_pfn,
6558 						unsigned long node_end_pfn)
6559 {
6560 	unsigned long realtotalpages = 0, totalpages = 0;
6561 	enum zone_type i;
6562 
6563 	for (i = 0; i < MAX_NR_ZONES; i++) {
6564 		struct zone *zone = pgdat->node_zones + i;
6565 		unsigned long zone_start_pfn, zone_end_pfn;
6566 		unsigned long spanned, absent;
6567 		unsigned long size, real_size;
6568 
6569 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6570 						     node_start_pfn,
6571 						     node_end_pfn,
6572 						     &zone_start_pfn,
6573 						     &zone_end_pfn);
6574 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
6575 						   node_start_pfn,
6576 						   node_end_pfn);
6577 
6578 		size = spanned;
6579 		real_size = size - absent;
6580 
6581 		if (size)
6582 			zone->zone_start_pfn = zone_start_pfn;
6583 		else
6584 			zone->zone_start_pfn = 0;
6585 		zone->spanned_pages = size;
6586 		zone->present_pages = real_size;
6587 
6588 		totalpages += size;
6589 		realtotalpages += real_size;
6590 	}
6591 
6592 	pgdat->node_spanned_pages = totalpages;
6593 	pgdat->node_present_pages = realtotalpages;
6594 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6595 							realtotalpages);
6596 }
6597 
6598 #ifndef CONFIG_SPARSEMEM
6599 /*
6600  * Calculate the size of the zone->blockflags rounded to an unsigned long
6601  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6602  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6603  * round what is now in bits to nearest long in bits, then return it in
6604  * bytes.
6605  */
6606 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6607 {
6608 	unsigned long usemapsize;
6609 
6610 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6611 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6612 	usemapsize = usemapsize >> pageblock_order;
6613 	usemapsize *= NR_PAGEBLOCK_BITS;
6614 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6615 
6616 	return usemapsize / 8;
6617 }
6618 
6619 static void __ref setup_usemap(struct pglist_data *pgdat,
6620 				struct zone *zone,
6621 				unsigned long zone_start_pfn,
6622 				unsigned long zonesize)
6623 {
6624 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6625 	zone->pageblock_flags = NULL;
6626 	if (usemapsize) {
6627 		zone->pageblock_flags =
6628 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6629 					    pgdat->node_id);
6630 		if (!zone->pageblock_flags)
6631 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6632 			      usemapsize, zone->name, pgdat->node_id);
6633 	}
6634 }
6635 #else
6636 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6637 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6638 #endif /* CONFIG_SPARSEMEM */
6639 
6640 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6641 
6642 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6643 void __init set_pageblock_order(void)
6644 {
6645 	unsigned int order;
6646 
6647 	/* Check that pageblock_nr_pages has not already been setup */
6648 	if (pageblock_order)
6649 		return;
6650 
6651 	if (HPAGE_SHIFT > PAGE_SHIFT)
6652 		order = HUGETLB_PAGE_ORDER;
6653 	else
6654 		order = MAX_ORDER - 1;
6655 
6656 	/*
6657 	 * Assume the largest contiguous order of interest is a huge page.
6658 	 * This value may be variable depending on boot parameters on IA64 and
6659 	 * powerpc.
6660 	 */
6661 	pageblock_order = order;
6662 }
6663 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6664 
6665 /*
6666  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6667  * is unused as pageblock_order is set at compile-time. See
6668  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6669  * the kernel config
6670  */
6671 void __init set_pageblock_order(void)
6672 {
6673 }
6674 
6675 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6676 
6677 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6678 						unsigned long present_pages)
6679 {
6680 	unsigned long pages = spanned_pages;
6681 
6682 	/*
6683 	 * Provide a more accurate estimation if there are holes within
6684 	 * the zone and SPARSEMEM is in use. If there are holes within the
6685 	 * zone, each populated memory region may cost us one or two extra
6686 	 * memmap pages due to alignment because memmap pages for each
6687 	 * populated regions may not be naturally aligned on page boundary.
6688 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6689 	 */
6690 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6691 	    IS_ENABLED(CONFIG_SPARSEMEM))
6692 		pages = present_pages;
6693 
6694 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6695 }
6696 
6697 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6698 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6699 {
6700 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6701 
6702 	spin_lock_init(&ds_queue->split_queue_lock);
6703 	INIT_LIST_HEAD(&ds_queue->split_queue);
6704 	ds_queue->split_queue_len = 0;
6705 }
6706 #else
6707 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6708 #endif
6709 
6710 #ifdef CONFIG_COMPACTION
6711 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6712 {
6713 	init_waitqueue_head(&pgdat->kcompactd_wait);
6714 }
6715 #else
6716 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6717 #endif
6718 
6719 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6720 {
6721 	pgdat_resize_init(pgdat);
6722 
6723 	pgdat_init_split_queue(pgdat);
6724 	pgdat_init_kcompactd(pgdat);
6725 
6726 	init_waitqueue_head(&pgdat->kswapd_wait);
6727 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6728 
6729 	pgdat_page_ext_init(pgdat);
6730 	spin_lock_init(&pgdat->lru_lock);
6731 	lruvec_init(&pgdat->__lruvec);
6732 }
6733 
6734 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6735 							unsigned long remaining_pages)
6736 {
6737 	atomic_long_set(&zone->managed_pages, remaining_pages);
6738 	zone_set_nid(zone, nid);
6739 	zone->name = zone_names[idx];
6740 	zone->zone_pgdat = NODE_DATA(nid);
6741 	spin_lock_init(&zone->lock);
6742 	zone_seqlock_init(zone);
6743 	zone_pcp_init(zone);
6744 }
6745 
6746 /*
6747  * Set up the zone data structures
6748  * - init pgdat internals
6749  * - init all zones belonging to this node
6750  *
6751  * NOTE: this function is only called during memory hotplug
6752  */
6753 #ifdef CONFIG_MEMORY_HOTPLUG
6754 void __ref free_area_init_core_hotplug(int nid)
6755 {
6756 	enum zone_type z;
6757 	pg_data_t *pgdat = NODE_DATA(nid);
6758 
6759 	pgdat_init_internals(pgdat);
6760 	for (z = 0; z < MAX_NR_ZONES; z++)
6761 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6762 }
6763 #endif
6764 
6765 /*
6766  * Set up the zone data structures:
6767  *   - mark all pages reserved
6768  *   - mark all memory queues empty
6769  *   - clear the memory bitmaps
6770  *
6771  * NOTE: pgdat should get zeroed by caller.
6772  * NOTE: this function is only called during early init.
6773  */
6774 static void __init free_area_init_core(struct pglist_data *pgdat)
6775 {
6776 	enum zone_type j;
6777 	int nid = pgdat->node_id;
6778 
6779 	pgdat_init_internals(pgdat);
6780 	pgdat->per_cpu_nodestats = &boot_nodestats;
6781 
6782 	for (j = 0; j < MAX_NR_ZONES; j++) {
6783 		struct zone *zone = pgdat->node_zones + j;
6784 		unsigned long size, freesize, memmap_pages;
6785 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6786 
6787 		size = zone->spanned_pages;
6788 		freesize = zone->present_pages;
6789 
6790 		/*
6791 		 * Adjust freesize so that it accounts for how much memory
6792 		 * is used by this zone for memmap. This affects the watermark
6793 		 * and per-cpu initialisations
6794 		 */
6795 		memmap_pages = calc_memmap_size(size, freesize);
6796 		if (!is_highmem_idx(j)) {
6797 			if (freesize >= memmap_pages) {
6798 				freesize -= memmap_pages;
6799 				if (memmap_pages)
6800 					printk(KERN_DEBUG
6801 					       "  %s zone: %lu pages used for memmap\n",
6802 					       zone_names[j], memmap_pages);
6803 			} else
6804 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6805 					zone_names[j], memmap_pages, freesize);
6806 		}
6807 
6808 		/* Account for reserved pages */
6809 		if (j == 0 && freesize > dma_reserve) {
6810 			freesize -= dma_reserve;
6811 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6812 					zone_names[0], dma_reserve);
6813 		}
6814 
6815 		if (!is_highmem_idx(j))
6816 			nr_kernel_pages += freesize;
6817 		/* Charge for highmem memmap if there are enough kernel pages */
6818 		else if (nr_kernel_pages > memmap_pages * 2)
6819 			nr_kernel_pages -= memmap_pages;
6820 		nr_all_pages += freesize;
6821 
6822 		/*
6823 		 * Set an approximate value for lowmem here, it will be adjusted
6824 		 * when the bootmem allocator frees pages into the buddy system.
6825 		 * And all highmem pages will be managed by the buddy system.
6826 		 */
6827 		zone_init_internals(zone, j, nid, freesize);
6828 
6829 		if (!size)
6830 			continue;
6831 
6832 		set_pageblock_order();
6833 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6834 		init_currently_empty_zone(zone, zone_start_pfn, size);
6835 		memmap_init(size, nid, j, zone_start_pfn);
6836 	}
6837 }
6838 
6839 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6840 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6841 {
6842 	unsigned long __maybe_unused start = 0;
6843 	unsigned long __maybe_unused offset = 0;
6844 
6845 	/* Skip empty nodes */
6846 	if (!pgdat->node_spanned_pages)
6847 		return;
6848 
6849 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6850 	offset = pgdat->node_start_pfn - start;
6851 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6852 	if (!pgdat->node_mem_map) {
6853 		unsigned long size, end;
6854 		struct page *map;
6855 
6856 		/*
6857 		 * The zone's endpoints aren't required to be MAX_ORDER
6858 		 * aligned but the node_mem_map endpoints must be in order
6859 		 * for the buddy allocator to function correctly.
6860 		 */
6861 		end = pgdat_end_pfn(pgdat);
6862 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6863 		size =  (end - start) * sizeof(struct page);
6864 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6865 					  pgdat->node_id);
6866 		if (!map)
6867 			panic("Failed to allocate %ld bytes for node %d memory map\n",
6868 			      size, pgdat->node_id);
6869 		pgdat->node_mem_map = map + offset;
6870 	}
6871 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6872 				__func__, pgdat->node_id, (unsigned long)pgdat,
6873 				(unsigned long)pgdat->node_mem_map);
6874 #ifndef CONFIG_NEED_MULTIPLE_NODES
6875 	/*
6876 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6877 	 */
6878 	if (pgdat == NODE_DATA(0)) {
6879 		mem_map = NODE_DATA(0)->node_mem_map;
6880 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6881 			mem_map -= offset;
6882 	}
6883 #endif
6884 }
6885 #else
6886 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6887 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6888 
6889 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6890 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6891 {
6892 	pgdat->first_deferred_pfn = ULONG_MAX;
6893 }
6894 #else
6895 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6896 #endif
6897 
6898 static void __init free_area_init_node(int nid)
6899 {
6900 	pg_data_t *pgdat = NODE_DATA(nid);
6901 	unsigned long start_pfn = 0;
6902 	unsigned long end_pfn = 0;
6903 
6904 	/* pg_data_t should be reset to zero when it's allocated */
6905 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
6906 
6907 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6908 
6909 	pgdat->node_id = nid;
6910 	pgdat->node_start_pfn = start_pfn;
6911 	pgdat->per_cpu_nodestats = NULL;
6912 
6913 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6914 		(u64)start_pfn << PAGE_SHIFT,
6915 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6916 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
6917 
6918 	alloc_node_mem_map(pgdat);
6919 	pgdat_set_deferred_range(pgdat);
6920 
6921 	free_area_init_core(pgdat);
6922 }
6923 
6924 void __init free_area_init_memoryless_node(int nid)
6925 {
6926 	free_area_init_node(nid);
6927 }
6928 
6929 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6930 /*
6931  * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6932  * PageReserved(). Return the number of struct pages that were initialized.
6933  */
6934 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
6935 {
6936 	unsigned long pfn;
6937 	u64 pgcnt = 0;
6938 
6939 	for (pfn = spfn; pfn < epfn; pfn++) {
6940 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6941 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6942 				+ pageblock_nr_pages - 1;
6943 			continue;
6944 		}
6945 		/*
6946 		 * Use a fake node/zone (0) for now. Some of these pages
6947 		 * (in memblock.reserved but not in memblock.memory) will
6948 		 * get re-initialized via reserve_bootmem_region() later.
6949 		 */
6950 		__init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6951 		__SetPageReserved(pfn_to_page(pfn));
6952 		pgcnt++;
6953 	}
6954 
6955 	return pgcnt;
6956 }
6957 
6958 /*
6959  * Only struct pages that are backed by physical memory are zeroed and
6960  * initialized by going through __init_single_page(). But, there are some
6961  * struct pages which are reserved in memblock allocator and their fields
6962  * may be accessed (for example page_to_pfn() on some configuration accesses
6963  * flags). We must explicitly initialize those struct pages.
6964  *
6965  * This function also addresses a similar issue where struct pages are left
6966  * uninitialized because the physical address range is not covered by
6967  * memblock.memory or memblock.reserved. That could happen when memblock
6968  * layout is manually configured via memmap=, or when the highest physical
6969  * address (max_pfn) does not end on a section boundary.
6970  */
6971 static void __init init_unavailable_mem(void)
6972 {
6973 	phys_addr_t start, end;
6974 	u64 i, pgcnt;
6975 	phys_addr_t next = 0;
6976 
6977 	/*
6978 	 * Loop through unavailable ranges not covered by memblock.memory.
6979 	 */
6980 	pgcnt = 0;
6981 	for_each_mem_range(i, &memblock.memory, NULL,
6982 			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6983 		if (next < start)
6984 			pgcnt += init_unavailable_range(PFN_DOWN(next),
6985 							PFN_UP(start));
6986 		next = end;
6987 	}
6988 
6989 	/*
6990 	 * Early sections always have a fully populated memmap for the whole
6991 	 * section - see pfn_valid(). If the last section has holes at the
6992 	 * end and that section is marked "online", the memmap will be
6993 	 * considered initialized. Make sure that memmap has a well defined
6994 	 * state.
6995 	 */
6996 	pgcnt += init_unavailable_range(PFN_DOWN(next),
6997 					round_up(max_pfn, PAGES_PER_SECTION));
6998 
6999 	/*
7000 	 * Struct pages that do not have backing memory. This could be because
7001 	 * firmware is using some of this memory, or for some other reasons.
7002 	 */
7003 	if (pgcnt)
7004 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7005 }
7006 #else
7007 static inline void __init init_unavailable_mem(void)
7008 {
7009 }
7010 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7011 
7012 #if MAX_NUMNODES > 1
7013 /*
7014  * Figure out the number of possible node ids.
7015  */
7016 void __init setup_nr_node_ids(void)
7017 {
7018 	unsigned int highest;
7019 
7020 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7021 	nr_node_ids = highest + 1;
7022 }
7023 #endif
7024 
7025 /**
7026  * node_map_pfn_alignment - determine the maximum internode alignment
7027  *
7028  * This function should be called after node map is populated and sorted.
7029  * It calculates the maximum power of two alignment which can distinguish
7030  * all the nodes.
7031  *
7032  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7033  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7034  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7035  * shifted, 1GiB is enough and this function will indicate so.
7036  *
7037  * This is used to test whether pfn -> nid mapping of the chosen memory
7038  * model has fine enough granularity to avoid incorrect mapping for the
7039  * populated node map.
7040  *
7041  * Return: the determined alignment in pfn's.  0 if there is no alignment
7042  * requirement (single node).
7043  */
7044 unsigned long __init node_map_pfn_alignment(void)
7045 {
7046 	unsigned long accl_mask = 0, last_end = 0;
7047 	unsigned long start, end, mask;
7048 	int last_nid = NUMA_NO_NODE;
7049 	int i, nid;
7050 
7051 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7052 		if (!start || last_nid < 0 || last_nid == nid) {
7053 			last_nid = nid;
7054 			last_end = end;
7055 			continue;
7056 		}
7057 
7058 		/*
7059 		 * Start with a mask granular enough to pin-point to the
7060 		 * start pfn and tick off bits one-by-one until it becomes
7061 		 * too coarse to separate the current node from the last.
7062 		 */
7063 		mask = ~((1 << __ffs(start)) - 1);
7064 		while (mask && last_end <= (start & (mask << 1)))
7065 			mask <<= 1;
7066 
7067 		/* accumulate all internode masks */
7068 		accl_mask |= mask;
7069 	}
7070 
7071 	/* convert mask to number of pages */
7072 	return ~accl_mask + 1;
7073 }
7074 
7075 /**
7076  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7077  *
7078  * Return: the minimum PFN based on information provided via
7079  * memblock_set_node().
7080  */
7081 unsigned long __init find_min_pfn_with_active_regions(void)
7082 {
7083 	return PHYS_PFN(memblock_start_of_DRAM());
7084 }
7085 
7086 /*
7087  * early_calculate_totalpages()
7088  * Sum pages in active regions for movable zone.
7089  * Populate N_MEMORY for calculating usable_nodes.
7090  */
7091 static unsigned long __init early_calculate_totalpages(void)
7092 {
7093 	unsigned long totalpages = 0;
7094 	unsigned long start_pfn, end_pfn;
7095 	int i, nid;
7096 
7097 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7098 		unsigned long pages = end_pfn - start_pfn;
7099 
7100 		totalpages += pages;
7101 		if (pages)
7102 			node_set_state(nid, N_MEMORY);
7103 	}
7104 	return totalpages;
7105 }
7106 
7107 /*
7108  * Find the PFN the Movable zone begins in each node. Kernel memory
7109  * is spread evenly between nodes as long as the nodes have enough
7110  * memory. When they don't, some nodes will have more kernelcore than
7111  * others
7112  */
7113 static void __init find_zone_movable_pfns_for_nodes(void)
7114 {
7115 	int i, nid;
7116 	unsigned long usable_startpfn;
7117 	unsigned long kernelcore_node, kernelcore_remaining;
7118 	/* save the state before borrow the nodemask */
7119 	nodemask_t saved_node_state = node_states[N_MEMORY];
7120 	unsigned long totalpages = early_calculate_totalpages();
7121 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7122 	struct memblock_region *r;
7123 
7124 	/* Need to find movable_zone earlier when movable_node is specified. */
7125 	find_usable_zone_for_movable();
7126 
7127 	/*
7128 	 * If movable_node is specified, ignore kernelcore and movablecore
7129 	 * options.
7130 	 */
7131 	if (movable_node_is_enabled()) {
7132 		for_each_memblock(memory, r) {
7133 			if (!memblock_is_hotpluggable(r))
7134 				continue;
7135 
7136 			nid = memblock_get_region_node(r);
7137 
7138 			usable_startpfn = PFN_DOWN(r->base);
7139 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7140 				min(usable_startpfn, zone_movable_pfn[nid]) :
7141 				usable_startpfn;
7142 		}
7143 
7144 		goto out2;
7145 	}
7146 
7147 	/*
7148 	 * If kernelcore=mirror is specified, ignore movablecore option
7149 	 */
7150 	if (mirrored_kernelcore) {
7151 		bool mem_below_4gb_not_mirrored = false;
7152 
7153 		for_each_memblock(memory, r) {
7154 			if (memblock_is_mirror(r))
7155 				continue;
7156 
7157 			nid = memblock_get_region_node(r);
7158 
7159 			usable_startpfn = memblock_region_memory_base_pfn(r);
7160 
7161 			if (usable_startpfn < 0x100000) {
7162 				mem_below_4gb_not_mirrored = true;
7163 				continue;
7164 			}
7165 
7166 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7167 				min(usable_startpfn, zone_movable_pfn[nid]) :
7168 				usable_startpfn;
7169 		}
7170 
7171 		if (mem_below_4gb_not_mirrored)
7172 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7173 
7174 		goto out2;
7175 	}
7176 
7177 	/*
7178 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7179 	 * amount of necessary memory.
7180 	 */
7181 	if (required_kernelcore_percent)
7182 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7183 				       10000UL;
7184 	if (required_movablecore_percent)
7185 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7186 					10000UL;
7187 
7188 	/*
7189 	 * If movablecore= was specified, calculate what size of
7190 	 * kernelcore that corresponds so that memory usable for
7191 	 * any allocation type is evenly spread. If both kernelcore
7192 	 * and movablecore are specified, then the value of kernelcore
7193 	 * will be used for required_kernelcore if it's greater than
7194 	 * what movablecore would have allowed.
7195 	 */
7196 	if (required_movablecore) {
7197 		unsigned long corepages;
7198 
7199 		/*
7200 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7201 		 * was requested by the user
7202 		 */
7203 		required_movablecore =
7204 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7205 		required_movablecore = min(totalpages, required_movablecore);
7206 		corepages = totalpages - required_movablecore;
7207 
7208 		required_kernelcore = max(required_kernelcore, corepages);
7209 	}
7210 
7211 	/*
7212 	 * If kernelcore was not specified or kernelcore size is larger
7213 	 * than totalpages, there is no ZONE_MOVABLE.
7214 	 */
7215 	if (!required_kernelcore || required_kernelcore >= totalpages)
7216 		goto out;
7217 
7218 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7219 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7220 
7221 restart:
7222 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7223 	kernelcore_node = required_kernelcore / usable_nodes;
7224 	for_each_node_state(nid, N_MEMORY) {
7225 		unsigned long start_pfn, end_pfn;
7226 
7227 		/*
7228 		 * Recalculate kernelcore_node if the division per node
7229 		 * now exceeds what is necessary to satisfy the requested
7230 		 * amount of memory for the kernel
7231 		 */
7232 		if (required_kernelcore < kernelcore_node)
7233 			kernelcore_node = required_kernelcore / usable_nodes;
7234 
7235 		/*
7236 		 * As the map is walked, we track how much memory is usable
7237 		 * by the kernel using kernelcore_remaining. When it is
7238 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7239 		 */
7240 		kernelcore_remaining = kernelcore_node;
7241 
7242 		/* Go through each range of PFNs within this node */
7243 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7244 			unsigned long size_pages;
7245 
7246 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7247 			if (start_pfn >= end_pfn)
7248 				continue;
7249 
7250 			/* Account for what is only usable for kernelcore */
7251 			if (start_pfn < usable_startpfn) {
7252 				unsigned long kernel_pages;
7253 				kernel_pages = min(end_pfn, usable_startpfn)
7254 								- start_pfn;
7255 
7256 				kernelcore_remaining -= min(kernel_pages,
7257 							kernelcore_remaining);
7258 				required_kernelcore -= min(kernel_pages,
7259 							required_kernelcore);
7260 
7261 				/* Continue if range is now fully accounted */
7262 				if (end_pfn <= usable_startpfn) {
7263 
7264 					/*
7265 					 * Push zone_movable_pfn to the end so
7266 					 * that if we have to rebalance
7267 					 * kernelcore across nodes, we will
7268 					 * not double account here
7269 					 */
7270 					zone_movable_pfn[nid] = end_pfn;
7271 					continue;
7272 				}
7273 				start_pfn = usable_startpfn;
7274 			}
7275 
7276 			/*
7277 			 * The usable PFN range for ZONE_MOVABLE is from
7278 			 * start_pfn->end_pfn. Calculate size_pages as the
7279 			 * number of pages used as kernelcore
7280 			 */
7281 			size_pages = end_pfn - start_pfn;
7282 			if (size_pages > kernelcore_remaining)
7283 				size_pages = kernelcore_remaining;
7284 			zone_movable_pfn[nid] = start_pfn + size_pages;
7285 
7286 			/*
7287 			 * Some kernelcore has been met, update counts and
7288 			 * break if the kernelcore for this node has been
7289 			 * satisfied
7290 			 */
7291 			required_kernelcore -= min(required_kernelcore,
7292 								size_pages);
7293 			kernelcore_remaining -= size_pages;
7294 			if (!kernelcore_remaining)
7295 				break;
7296 		}
7297 	}
7298 
7299 	/*
7300 	 * If there is still required_kernelcore, we do another pass with one
7301 	 * less node in the count. This will push zone_movable_pfn[nid] further
7302 	 * along on the nodes that still have memory until kernelcore is
7303 	 * satisfied
7304 	 */
7305 	usable_nodes--;
7306 	if (usable_nodes && required_kernelcore > usable_nodes)
7307 		goto restart;
7308 
7309 out2:
7310 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7311 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7312 		zone_movable_pfn[nid] =
7313 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7314 
7315 out:
7316 	/* restore the node_state */
7317 	node_states[N_MEMORY] = saved_node_state;
7318 }
7319 
7320 /* Any regular or high memory on that node ? */
7321 static void check_for_memory(pg_data_t *pgdat, int nid)
7322 {
7323 	enum zone_type zone_type;
7324 
7325 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7326 		struct zone *zone = &pgdat->node_zones[zone_type];
7327 		if (populated_zone(zone)) {
7328 			if (IS_ENABLED(CONFIG_HIGHMEM))
7329 				node_set_state(nid, N_HIGH_MEMORY);
7330 			if (zone_type <= ZONE_NORMAL)
7331 				node_set_state(nid, N_NORMAL_MEMORY);
7332 			break;
7333 		}
7334 	}
7335 }
7336 
7337 /*
7338  * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7339  * such cases we allow max_zone_pfn sorted in the descending order
7340  */
7341 bool __weak arch_has_descending_max_zone_pfns(void)
7342 {
7343 	return false;
7344 }
7345 
7346 /**
7347  * free_area_init - Initialise all pg_data_t and zone data
7348  * @max_zone_pfn: an array of max PFNs for each zone
7349  *
7350  * This will call free_area_init_node() for each active node in the system.
7351  * Using the page ranges provided by memblock_set_node(), the size of each
7352  * zone in each node and their holes is calculated. If the maximum PFN
7353  * between two adjacent zones match, it is assumed that the zone is empty.
7354  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7355  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7356  * starts where the previous one ended. For example, ZONE_DMA32 starts
7357  * at arch_max_dma_pfn.
7358  */
7359 void __init free_area_init(unsigned long *max_zone_pfn)
7360 {
7361 	unsigned long start_pfn, end_pfn;
7362 	int i, nid, zone;
7363 	bool descending;
7364 
7365 	/* Record where the zone boundaries are */
7366 	memset(arch_zone_lowest_possible_pfn, 0,
7367 				sizeof(arch_zone_lowest_possible_pfn));
7368 	memset(arch_zone_highest_possible_pfn, 0,
7369 				sizeof(arch_zone_highest_possible_pfn));
7370 
7371 	start_pfn = find_min_pfn_with_active_regions();
7372 	descending = arch_has_descending_max_zone_pfns();
7373 
7374 	for (i = 0; i < MAX_NR_ZONES; i++) {
7375 		if (descending)
7376 			zone = MAX_NR_ZONES - i - 1;
7377 		else
7378 			zone = i;
7379 
7380 		if (zone == ZONE_MOVABLE)
7381 			continue;
7382 
7383 		end_pfn = max(max_zone_pfn[zone], start_pfn);
7384 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7385 		arch_zone_highest_possible_pfn[zone] = end_pfn;
7386 
7387 		start_pfn = end_pfn;
7388 	}
7389 
7390 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7391 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7392 	find_zone_movable_pfns_for_nodes();
7393 
7394 	/* Print out the zone ranges */
7395 	pr_info("Zone ranges:\n");
7396 	for (i = 0; i < MAX_NR_ZONES; i++) {
7397 		if (i == ZONE_MOVABLE)
7398 			continue;
7399 		pr_info("  %-8s ", zone_names[i]);
7400 		if (arch_zone_lowest_possible_pfn[i] ==
7401 				arch_zone_highest_possible_pfn[i])
7402 			pr_cont("empty\n");
7403 		else
7404 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7405 				(u64)arch_zone_lowest_possible_pfn[i]
7406 					<< PAGE_SHIFT,
7407 				((u64)arch_zone_highest_possible_pfn[i]
7408 					<< PAGE_SHIFT) - 1);
7409 	}
7410 
7411 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7412 	pr_info("Movable zone start for each node\n");
7413 	for (i = 0; i < MAX_NUMNODES; i++) {
7414 		if (zone_movable_pfn[i])
7415 			pr_info("  Node %d: %#018Lx\n", i,
7416 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7417 	}
7418 
7419 	/*
7420 	 * Print out the early node map, and initialize the
7421 	 * subsection-map relative to active online memory ranges to
7422 	 * enable future "sub-section" extensions of the memory map.
7423 	 */
7424 	pr_info("Early memory node ranges\n");
7425 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7426 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7427 			(u64)start_pfn << PAGE_SHIFT,
7428 			((u64)end_pfn << PAGE_SHIFT) - 1);
7429 		subsection_map_init(start_pfn, end_pfn - start_pfn);
7430 	}
7431 
7432 	/* Initialise every node */
7433 	mminit_verify_pageflags_layout();
7434 	setup_nr_node_ids();
7435 	init_unavailable_mem();
7436 	for_each_online_node(nid) {
7437 		pg_data_t *pgdat = NODE_DATA(nid);
7438 		free_area_init_node(nid);
7439 
7440 		/* Any memory on that node */
7441 		if (pgdat->node_present_pages)
7442 			node_set_state(nid, N_MEMORY);
7443 		check_for_memory(pgdat, nid);
7444 	}
7445 }
7446 
7447 static int __init cmdline_parse_core(char *p, unsigned long *core,
7448 				     unsigned long *percent)
7449 {
7450 	unsigned long long coremem;
7451 	char *endptr;
7452 
7453 	if (!p)
7454 		return -EINVAL;
7455 
7456 	/* Value may be a percentage of total memory, otherwise bytes */
7457 	coremem = simple_strtoull(p, &endptr, 0);
7458 	if (*endptr == '%') {
7459 		/* Paranoid check for percent values greater than 100 */
7460 		WARN_ON(coremem > 100);
7461 
7462 		*percent = coremem;
7463 	} else {
7464 		coremem = memparse(p, &p);
7465 		/* Paranoid check that UL is enough for the coremem value */
7466 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7467 
7468 		*core = coremem >> PAGE_SHIFT;
7469 		*percent = 0UL;
7470 	}
7471 	return 0;
7472 }
7473 
7474 /*
7475  * kernelcore=size sets the amount of memory for use for allocations that
7476  * cannot be reclaimed or migrated.
7477  */
7478 static int __init cmdline_parse_kernelcore(char *p)
7479 {
7480 	/* parse kernelcore=mirror */
7481 	if (parse_option_str(p, "mirror")) {
7482 		mirrored_kernelcore = true;
7483 		return 0;
7484 	}
7485 
7486 	return cmdline_parse_core(p, &required_kernelcore,
7487 				  &required_kernelcore_percent);
7488 }
7489 
7490 /*
7491  * movablecore=size sets the amount of memory for use for allocations that
7492  * can be reclaimed or migrated.
7493  */
7494 static int __init cmdline_parse_movablecore(char *p)
7495 {
7496 	return cmdline_parse_core(p, &required_movablecore,
7497 				  &required_movablecore_percent);
7498 }
7499 
7500 early_param("kernelcore", cmdline_parse_kernelcore);
7501 early_param("movablecore", cmdline_parse_movablecore);
7502 
7503 void adjust_managed_page_count(struct page *page, long count)
7504 {
7505 	atomic_long_add(count, &page_zone(page)->managed_pages);
7506 	totalram_pages_add(count);
7507 #ifdef CONFIG_HIGHMEM
7508 	if (PageHighMem(page))
7509 		totalhigh_pages_add(count);
7510 #endif
7511 }
7512 EXPORT_SYMBOL(adjust_managed_page_count);
7513 
7514 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7515 {
7516 	void *pos;
7517 	unsigned long pages = 0;
7518 
7519 	start = (void *)PAGE_ALIGN((unsigned long)start);
7520 	end = (void *)((unsigned long)end & PAGE_MASK);
7521 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7522 		struct page *page = virt_to_page(pos);
7523 		void *direct_map_addr;
7524 
7525 		/*
7526 		 * 'direct_map_addr' might be different from 'pos'
7527 		 * because some architectures' virt_to_page()
7528 		 * work with aliases.  Getting the direct map
7529 		 * address ensures that we get a _writeable_
7530 		 * alias for the memset().
7531 		 */
7532 		direct_map_addr = page_address(page);
7533 		if ((unsigned int)poison <= 0xFF)
7534 			memset(direct_map_addr, poison, PAGE_SIZE);
7535 
7536 		free_reserved_page(page);
7537 	}
7538 
7539 	if (pages && s)
7540 		pr_info("Freeing %s memory: %ldK\n",
7541 			s, pages << (PAGE_SHIFT - 10));
7542 
7543 	return pages;
7544 }
7545 
7546 #ifdef	CONFIG_HIGHMEM
7547 void free_highmem_page(struct page *page)
7548 {
7549 	__free_reserved_page(page);
7550 	totalram_pages_inc();
7551 	atomic_long_inc(&page_zone(page)->managed_pages);
7552 	totalhigh_pages_inc();
7553 }
7554 #endif
7555 
7556 
7557 void __init mem_init_print_info(const char *str)
7558 {
7559 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7560 	unsigned long init_code_size, init_data_size;
7561 
7562 	physpages = get_num_physpages();
7563 	codesize = _etext - _stext;
7564 	datasize = _edata - _sdata;
7565 	rosize = __end_rodata - __start_rodata;
7566 	bss_size = __bss_stop - __bss_start;
7567 	init_data_size = __init_end - __init_begin;
7568 	init_code_size = _einittext - _sinittext;
7569 
7570 	/*
7571 	 * Detect special cases and adjust section sizes accordingly:
7572 	 * 1) .init.* may be embedded into .data sections
7573 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7574 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7575 	 * 3) .rodata.* may be embedded into .text or .data sections.
7576 	 */
7577 #define adj_init_size(start, end, size, pos, adj) \
7578 	do { \
7579 		if (start <= pos && pos < end && size > adj) \
7580 			size -= adj; \
7581 	} while (0)
7582 
7583 	adj_init_size(__init_begin, __init_end, init_data_size,
7584 		     _sinittext, init_code_size);
7585 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7586 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7587 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7588 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7589 
7590 #undef	adj_init_size
7591 
7592 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7593 #ifdef	CONFIG_HIGHMEM
7594 		", %luK highmem"
7595 #endif
7596 		"%s%s)\n",
7597 		nr_free_pages() << (PAGE_SHIFT - 10),
7598 		physpages << (PAGE_SHIFT - 10),
7599 		codesize >> 10, datasize >> 10, rosize >> 10,
7600 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7601 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7602 		totalcma_pages << (PAGE_SHIFT - 10),
7603 #ifdef	CONFIG_HIGHMEM
7604 		totalhigh_pages() << (PAGE_SHIFT - 10),
7605 #endif
7606 		str ? ", " : "", str ? str : "");
7607 }
7608 
7609 /**
7610  * set_dma_reserve - set the specified number of pages reserved in the first zone
7611  * @new_dma_reserve: The number of pages to mark reserved
7612  *
7613  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7614  * In the DMA zone, a significant percentage may be consumed by kernel image
7615  * and other unfreeable allocations which can skew the watermarks badly. This
7616  * function may optionally be used to account for unfreeable pages in the
7617  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7618  * smaller per-cpu batchsize.
7619  */
7620 void __init set_dma_reserve(unsigned long new_dma_reserve)
7621 {
7622 	dma_reserve = new_dma_reserve;
7623 }
7624 
7625 static int page_alloc_cpu_dead(unsigned int cpu)
7626 {
7627 
7628 	lru_add_drain_cpu(cpu);
7629 	drain_pages(cpu);
7630 
7631 	/*
7632 	 * Spill the event counters of the dead processor
7633 	 * into the current processors event counters.
7634 	 * This artificially elevates the count of the current
7635 	 * processor.
7636 	 */
7637 	vm_events_fold_cpu(cpu);
7638 
7639 	/*
7640 	 * Zero the differential counters of the dead processor
7641 	 * so that the vm statistics are consistent.
7642 	 *
7643 	 * This is only okay since the processor is dead and cannot
7644 	 * race with what we are doing.
7645 	 */
7646 	cpu_vm_stats_fold(cpu);
7647 	return 0;
7648 }
7649 
7650 #ifdef CONFIG_NUMA
7651 int hashdist = HASHDIST_DEFAULT;
7652 
7653 static int __init set_hashdist(char *str)
7654 {
7655 	if (!str)
7656 		return 0;
7657 	hashdist = simple_strtoul(str, &str, 0);
7658 	return 1;
7659 }
7660 __setup("hashdist=", set_hashdist);
7661 #endif
7662 
7663 void __init page_alloc_init(void)
7664 {
7665 	int ret;
7666 
7667 #ifdef CONFIG_NUMA
7668 	if (num_node_state(N_MEMORY) == 1)
7669 		hashdist = 0;
7670 #endif
7671 
7672 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7673 					"mm/page_alloc:dead", NULL,
7674 					page_alloc_cpu_dead);
7675 	WARN_ON(ret < 0);
7676 }
7677 
7678 /*
7679  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7680  *	or min_free_kbytes changes.
7681  */
7682 static void calculate_totalreserve_pages(void)
7683 {
7684 	struct pglist_data *pgdat;
7685 	unsigned long reserve_pages = 0;
7686 	enum zone_type i, j;
7687 
7688 	for_each_online_pgdat(pgdat) {
7689 
7690 		pgdat->totalreserve_pages = 0;
7691 
7692 		for (i = 0; i < MAX_NR_ZONES; i++) {
7693 			struct zone *zone = pgdat->node_zones + i;
7694 			long max = 0;
7695 			unsigned long managed_pages = zone_managed_pages(zone);
7696 
7697 			/* Find valid and maximum lowmem_reserve in the zone */
7698 			for (j = i; j < MAX_NR_ZONES; j++) {
7699 				if (zone->lowmem_reserve[j] > max)
7700 					max = zone->lowmem_reserve[j];
7701 			}
7702 
7703 			/* we treat the high watermark as reserved pages. */
7704 			max += high_wmark_pages(zone);
7705 
7706 			if (max > managed_pages)
7707 				max = managed_pages;
7708 
7709 			pgdat->totalreserve_pages += max;
7710 
7711 			reserve_pages += max;
7712 		}
7713 	}
7714 	totalreserve_pages = reserve_pages;
7715 }
7716 
7717 /*
7718  * setup_per_zone_lowmem_reserve - called whenever
7719  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7720  *	has a correct pages reserved value, so an adequate number of
7721  *	pages are left in the zone after a successful __alloc_pages().
7722  */
7723 static void setup_per_zone_lowmem_reserve(void)
7724 {
7725 	struct pglist_data *pgdat;
7726 	enum zone_type j, idx;
7727 
7728 	for_each_online_pgdat(pgdat) {
7729 		for (j = 0; j < MAX_NR_ZONES; j++) {
7730 			struct zone *zone = pgdat->node_zones + j;
7731 			unsigned long managed_pages = zone_managed_pages(zone);
7732 
7733 			zone->lowmem_reserve[j] = 0;
7734 
7735 			idx = j;
7736 			while (idx) {
7737 				struct zone *lower_zone;
7738 
7739 				idx--;
7740 				lower_zone = pgdat->node_zones + idx;
7741 
7742 				if (!sysctl_lowmem_reserve_ratio[idx] ||
7743 				    !zone_managed_pages(lower_zone)) {
7744 					lower_zone->lowmem_reserve[j] = 0;
7745 					continue;
7746 				} else {
7747 					lower_zone->lowmem_reserve[j] =
7748 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7749 				}
7750 				managed_pages += zone_managed_pages(lower_zone);
7751 			}
7752 		}
7753 	}
7754 
7755 	/* update totalreserve_pages */
7756 	calculate_totalreserve_pages();
7757 }
7758 
7759 static void __setup_per_zone_wmarks(void)
7760 {
7761 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7762 	unsigned long lowmem_pages = 0;
7763 	struct zone *zone;
7764 	unsigned long flags;
7765 
7766 	/* Calculate total number of !ZONE_HIGHMEM pages */
7767 	for_each_zone(zone) {
7768 		if (!is_highmem(zone))
7769 			lowmem_pages += zone_managed_pages(zone);
7770 	}
7771 
7772 	for_each_zone(zone) {
7773 		u64 tmp;
7774 
7775 		spin_lock_irqsave(&zone->lock, flags);
7776 		tmp = (u64)pages_min * zone_managed_pages(zone);
7777 		do_div(tmp, lowmem_pages);
7778 		if (is_highmem(zone)) {
7779 			/*
7780 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7781 			 * need highmem pages, so cap pages_min to a small
7782 			 * value here.
7783 			 *
7784 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7785 			 * deltas control async page reclaim, and so should
7786 			 * not be capped for highmem.
7787 			 */
7788 			unsigned long min_pages;
7789 
7790 			min_pages = zone_managed_pages(zone) / 1024;
7791 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7792 			zone->_watermark[WMARK_MIN] = min_pages;
7793 		} else {
7794 			/*
7795 			 * If it's a lowmem zone, reserve a number of pages
7796 			 * proportionate to the zone's size.
7797 			 */
7798 			zone->_watermark[WMARK_MIN] = tmp;
7799 		}
7800 
7801 		/*
7802 		 * Set the kswapd watermarks distance according to the
7803 		 * scale factor in proportion to available memory, but
7804 		 * ensure a minimum size on small systems.
7805 		 */
7806 		tmp = max_t(u64, tmp >> 2,
7807 			    mult_frac(zone_managed_pages(zone),
7808 				      watermark_scale_factor, 10000));
7809 
7810 		zone->watermark_boost = 0;
7811 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7812 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7813 
7814 		spin_unlock_irqrestore(&zone->lock, flags);
7815 	}
7816 
7817 	/* update totalreserve_pages */
7818 	calculate_totalreserve_pages();
7819 }
7820 
7821 /**
7822  * setup_per_zone_wmarks - called when min_free_kbytes changes
7823  * or when memory is hot-{added|removed}
7824  *
7825  * Ensures that the watermark[min,low,high] values for each zone are set
7826  * correctly with respect to min_free_kbytes.
7827  */
7828 void setup_per_zone_wmarks(void)
7829 {
7830 	static DEFINE_SPINLOCK(lock);
7831 
7832 	spin_lock(&lock);
7833 	__setup_per_zone_wmarks();
7834 	spin_unlock(&lock);
7835 }
7836 
7837 /*
7838  * Initialise min_free_kbytes.
7839  *
7840  * For small machines we want it small (128k min).  For large machines
7841  * we want it large (256MB max).  But it is not linear, because network
7842  * bandwidth does not increase linearly with machine size.  We use
7843  *
7844  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7845  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7846  *
7847  * which yields
7848  *
7849  * 16MB:	512k
7850  * 32MB:	724k
7851  * 64MB:	1024k
7852  * 128MB:	1448k
7853  * 256MB:	2048k
7854  * 512MB:	2896k
7855  * 1024MB:	4096k
7856  * 2048MB:	5792k
7857  * 4096MB:	8192k
7858  * 8192MB:	11584k
7859  * 16384MB:	16384k
7860  */
7861 int __meminit init_per_zone_wmark_min(void)
7862 {
7863 	unsigned long lowmem_kbytes;
7864 	int new_min_free_kbytes;
7865 
7866 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7867 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7868 
7869 	if (new_min_free_kbytes > user_min_free_kbytes) {
7870 		min_free_kbytes = new_min_free_kbytes;
7871 		if (min_free_kbytes < 128)
7872 			min_free_kbytes = 128;
7873 		if (min_free_kbytes > 262144)
7874 			min_free_kbytes = 262144;
7875 	} else {
7876 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7877 				new_min_free_kbytes, user_min_free_kbytes);
7878 	}
7879 	setup_per_zone_wmarks();
7880 	refresh_zone_stat_thresholds();
7881 	setup_per_zone_lowmem_reserve();
7882 
7883 #ifdef CONFIG_NUMA
7884 	setup_min_unmapped_ratio();
7885 	setup_min_slab_ratio();
7886 #endif
7887 
7888 	return 0;
7889 }
7890 core_initcall(init_per_zone_wmark_min)
7891 
7892 /*
7893  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7894  *	that we can call two helper functions whenever min_free_kbytes
7895  *	changes.
7896  */
7897 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7898 		void *buffer, size_t *length, loff_t *ppos)
7899 {
7900 	int rc;
7901 
7902 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7903 	if (rc)
7904 		return rc;
7905 
7906 	if (write) {
7907 		user_min_free_kbytes = min_free_kbytes;
7908 		setup_per_zone_wmarks();
7909 	}
7910 	return 0;
7911 }
7912 
7913 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7914 		void *buffer, size_t *length, loff_t *ppos)
7915 {
7916 	int rc;
7917 
7918 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7919 	if (rc)
7920 		return rc;
7921 
7922 	if (write)
7923 		setup_per_zone_wmarks();
7924 
7925 	return 0;
7926 }
7927 
7928 #ifdef CONFIG_NUMA
7929 static void setup_min_unmapped_ratio(void)
7930 {
7931 	pg_data_t *pgdat;
7932 	struct zone *zone;
7933 
7934 	for_each_online_pgdat(pgdat)
7935 		pgdat->min_unmapped_pages = 0;
7936 
7937 	for_each_zone(zone)
7938 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7939 						         sysctl_min_unmapped_ratio) / 100;
7940 }
7941 
7942 
7943 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7944 		void *buffer, size_t *length, loff_t *ppos)
7945 {
7946 	int rc;
7947 
7948 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7949 	if (rc)
7950 		return rc;
7951 
7952 	setup_min_unmapped_ratio();
7953 
7954 	return 0;
7955 }
7956 
7957 static void setup_min_slab_ratio(void)
7958 {
7959 	pg_data_t *pgdat;
7960 	struct zone *zone;
7961 
7962 	for_each_online_pgdat(pgdat)
7963 		pgdat->min_slab_pages = 0;
7964 
7965 	for_each_zone(zone)
7966 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7967 						     sysctl_min_slab_ratio) / 100;
7968 }
7969 
7970 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7971 		void *buffer, size_t *length, loff_t *ppos)
7972 {
7973 	int rc;
7974 
7975 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7976 	if (rc)
7977 		return rc;
7978 
7979 	setup_min_slab_ratio();
7980 
7981 	return 0;
7982 }
7983 #endif
7984 
7985 /*
7986  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7987  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7988  *	whenever sysctl_lowmem_reserve_ratio changes.
7989  *
7990  * The reserve ratio obviously has absolutely no relation with the
7991  * minimum watermarks. The lowmem reserve ratio can only make sense
7992  * if in function of the boot time zone sizes.
7993  */
7994 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7995 		void *buffer, size_t *length, loff_t *ppos)
7996 {
7997 	int i;
7998 
7999 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8000 
8001 	for (i = 0; i < MAX_NR_ZONES; i++) {
8002 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8003 			sysctl_lowmem_reserve_ratio[i] = 0;
8004 	}
8005 
8006 	setup_per_zone_lowmem_reserve();
8007 	return 0;
8008 }
8009 
8010 static void __zone_pcp_update(struct zone *zone)
8011 {
8012 	unsigned int cpu;
8013 
8014 	for_each_possible_cpu(cpu)
8015 		pageset_set_high_and_batch(zone,
8016 				per_cpu_ptr(zone->pageset, cpu));
8017 }
8018 
8019 /*
8020  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8021  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8022  * pagelist can have before it gets flushed back to buddy allocator.
8023  */
8024 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8025 		void *buffer, size_t *length, loff_t *ppos)
8026 {
8027 	struct zone *zone;
8028 	int old_percpu_pagelist_fraction;
8029 	int ret;
8030 
8031 	mutex_lock(&pcp_batch_high_lock);
8032 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8033 
8034 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8035 	if (!write || ret < 0)
8036 		goto out;
8037 
8038 	/* Sanity checking to avoid pcp imbalance */
8039 	if (percpu_pagelist_fraction &&
8040 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8041 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8042 		ret = -EINVAL;
8043 		goto out;
8044 	}
8045 
8046 	/* No change? */
8047 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8048 		goto out;
8049 
8050 	for_each_populated_zone(zone)
8051 		__zone_pcp_update(zone);
8052 out:
8053 	mutex_unlock(&pcp_batch_high_lock);
8054 	return ret;
8055 }
8056 
8057 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8058 /*
8059  * Returns the number of pages that arch has reserved but
8060  * is not known to alloc_large_system_hash().
8061  */
8062 static unsigned long __init arch_reserved_kernel_pages(void)
8063 {
8064 	return 0;
8065 }
8066 #endif
8067 
8068 /*
8069  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8070  * machines. As memory size is increased the scale is also increased but at
8071  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8072  * quadruples the scale is increased by one, which means the size of hash table
8073  * only doubles, instead of quadrupling as well.
8074  * Because 32-bit systems cannot have large physical memory, where this scaling
8075  * makes sense, it is disabled on such platforms.
8076  */
8077 #if __BITS_PER_LONG > 32
8078 #define ADAPT_SCALE_BASE	(64ul << 30)
8079 #define ADAPT_SCALE_SHIFT	2
8080 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8081 #endif
8082 
8083 /*
8084  * allocate a large system hash table from bootmem
8085  * - it is assumed that the hash table must contain an exact power-of-2
8086  *   quantity of entries
8087  * - limit is the number of hash buckets, not the total allocation size
8088  */
8089 void *__init alloc_large_system_hash(const char *tablename,
8090 				     unsigned long bucketsize,
8091 				     unsigned long numentries,
8092 				     int scale,
8093 				     int flags,
8094 				     unsigned int *_hash_shift,
8095 				     unsigned int *_hash_mask,
8096 				     unsigned long low_limit,
8097 				     unsigned long high_limit)
8098 {
8099 	unsigned long long max = high_limit;
8100 	unsigned long log2qty, size;
8101 	void *table = NULL;
8102 	gfp_t gfp_flags;
8103 	bool virt;
8104 
8105 	/* allow the kernel cmdline to have a say */
8106 	if (!numentries) {
8107 		/* round applicable memory size up to nearest megabyte */
8108 		numentries = nr_kernel_pages;
8109 		numentries -= arch_reserved_kernel_pages();
8110 
8111 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8112 		if (PAGE_SHIFT < 20)
8113 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8114 
8115 #if __BITS_PER_LONG > 32
8116 		if (!high_limit) {
8117 			unsigned long adapt;
8118 
8119 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8120 			     adapt <<= ADAPT_SCALE_SHIFT)
8121 				scale++;
8122 		}
8123 #endif
8124 
8125 		/* limit to 1 bucket per 2^scale bytes of low memory */
8126 		if (scale > PAGE_SHIFT)
8127 			numentries >>= (scale - PAGE_SHIFT);
8128 		else
8129 			numentries <<= (PAGE_SHIFT - scale);
8130 
8131 		/* Make sure we've got at least a 0-order allocation.. */
8132 		if (unlikely(flags & HASH_SMALL)) {
8133 			/* Makes no sense without HASH_EARLY */
8134 			WARN_ON(!(flags & HASH_EARLY));
8135 			if (!(numentries >> *_hash_shift)) {
8136 				numentries = 1UL << *_hash_shift;
8137 				BUG_ON(!numentries);
8138 			}
8139 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8140 			numentries = PAGE_SIZE / bucketsize;
8141 	}
8142 	numentries = roundup_pow_of_two(numentries);
8143 
8144 	/* limit allocation size to 1/16 total memory by default */
8145 	if (max == 0) {
8146 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8147 		do_div(max, bucketsize);
8148 	}
8149 	max = min(max, 0x80000000ULL);
8150 
8151 	if (numentries < low_limit)
8152 		numentries = low_limit;
8153 	if (numentries > max)
8154 		numentries = max;
8155 
8156 	log2qty = ilog2(numentries);
8157 
8158 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8159 	do {
8160 		virt = false;
8161 		size = bucketsize << log2qty;
8162 		if (flags & HASH_EARLY) {
8163 			if (flags & HASH_ZERO)
8164 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8165 			else
8166 				table = memblock_alloc_raw(size,
8167 							   SMP_CACHE_BYTES);
8168 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8169 			table = __vmalloc(size, gfp_flags);
8170 			virt = true;
8171 		} else {
8172 			/*
8173 			 * If bucketsize is not a power-of-two, we may free
8174 			 * some pages at the end of hash table which
8175 			 * alloc_pages_exact() automatically does
8176 			 */
8177 			table = alloc_pages_exact(size, gfp_flags);
8178 			kmemleak_alloc(table, size, 1, gfp_flags);
8179 		}
8180 	} while (!table && size > PAGE_SIZE && --log2qty);
8181 
8182 	if (!table)
8183 		panic("Failed to allocate %s hash table\n", tablename);
8184 
8185 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8186 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8187 		virt ? "vmalloc" : "linear");
8188 
8189 	if (_hash_shift)
8190 		*_hash_shift = log2qty;
8191 	if (_hash_mask)
8192 		*_hash_mask = (1 << log2qty) - 1;
8193 
8194 	return table;
8195 }
8196 
8197 /*
8198  * This function checks whether pageblock includes unmovable pages or not.
8199  *
8200  * PageLRU check without isolation or lru_lock could race so that
8201  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8202  * check without lock_page also may miss some movable non-lru pages at
8203  * race condition. So you can't expect this function should be exact.
8204  *
8205  * Returns a page without holding a reference. If the caller wants to
8206  * dereference that page (e.g., dumping), it has to make sure that it
8207  * cannot get removed (e.g., via memory unplug) concurrently.
8208  *
8209  */
8210 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8211 				 int migratetype, int flags)
8212 {
8213 	unsigned long iter = 0;
8214 	unsigned long pfn = page_to_pfn(page);
8215 
8216 	/*
8217 	 * TODO we could make this much more efficient by not checking every
8218 	 * page in the range if we know all of them are in MOVABLE_ZONE and
8219 	 * that the movable zone guarantees that pages are migratable but
8220 	 * the later is not the case right now unfortunatelly. E.g. movablecore
8221 	 * can still lead to having bootmem allocations in zone_movable.
8222 	 */
8223 
8224 	if (is_migrate_cma_page(page)) {
8225 		/*
8226 		 * CMA allocations (alloc_contig_range) really need to mark
8227 		 * isolate CMA pageblocks even when they are not movable in fact
8228 		 * so consider them movable here.
8229 		 */
8230 		if (is_migrate_cma(migratetype))
8231 			return NULL;
8232 
8233 		return page;
8234 	}
8235 
8236 	for (; iter < pageblock_nr_pages; iter++) {
8237 		if (!pfn_valid_within(pfn + iter))
8238 			continue;
8239 
8240 		page = pfn_to_page(pfn + iter);
8241 
8242 		if (PageReserved(page))
8243 			return page;
8244 
8245 		/*
8246 		 * If the zone is movable and we have ruled out all reserved
8247 		 * pages then it should be reasonably safe to assume the rest
8248 		 * is movable.
8249 		 */
8250 		if (zone_idx(zone) == ZONE_MOVABLE)
8251 			continue;
8252 
8253 		/*
8254 		 * Hugepages are not in LRU lists, but they're movable.
8255 		 * THPs are on the LRU, but need to be counted as #small pages.
8256 		 * We need not scan over tail pages because we don't
8257 		 * handle each tail page individually in migration.
8258 		 */
8259 		if (PageHuge(page) || PageTransCompound(page)) {
8260 			struct page *head = compound_head(page);
8261 			unsigned int skip_pages;
8262 
8263 			if (PageHuge(page)) {
8264 				if (!hugepage_migration_supported(page_hstate(head)))
8265 					return page;
8266 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8267 				return page;
8268 			}
8269 
8270 			skip_pages = compound_nr(head) - (page - head);
8271 			iter += skip_pages - 1;
8272 			continue;
8273 		}
8274 
8275 		/*
8276 		 * We can't use page_count without pin a page
8277 		 * because another CPU can free compound page.
8278 		 * This check already skips compound tails of THP
8279 		 * because their page->_refcount is zero at all time.
8280 		 */
8281 		if (!page_ref_count(page)) {
8282 			if (PageBuddy(page))
8283 				iter += (1 << page_order(page)) - 1;
8284 			continue;
8285 		}
8286 
8287 		/*
8288 		 * The HWPoisoned page may be not in buddy system, and
8289 		 * page_count() is not 0.
8290 		 */
8291 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8292 			continue;
8293 
8294 		/*
8295 		 * We treat all PageOffline() pages as movable when offlining
8296 		 * to give drivers a chance to decrement their reference count
8297 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8298 		 * can be offlined as there are no direct references anymore.
8299 		 * For actually unmovable PageOffline() where the driver does
8300 		 * not support this, we will fail later when trying to actually
8301 		 * move these pages that still have a reference count > 0.
8302 		 * (false negatives in this function only)
8303 		 */
8304 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8305 			continue;
8306 
8307 		if (__PageMovable(page) || PageLRU(page))
8308 			continue;
8309 
8310 		/*
8311 		 * If there are RECLAIMABLE pages, we need to check
8312 		 * it.  But now, memory offline itself doesn't call
8313 		 * shrink_node_slabs() and it still to be fixed.
8314 		 */
8315 		/*
8316 		 * If the page is not RAM, page_count()should be 0.
8317 		 * we don't need more check. This is an _used_ not-movable page.
8318 		 *
8319 		 * The problematic thing here is PG_reserved pages. PG_reserved
8320 		 * is set to both of a memory hole page and a _used_ kernel
8321 		 * page at boot.
8322 		 */
8323 		return page;
8324 	}
8325 	return NULL;
8326 }
8327 
8328 #ifdef CONFIG_CONTIG_ALLOC
8329 static unsigned long pfn_max_align_down(unsigned long pfn)
8330 {
8331 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8332 			     pageblock_nr_pages) - 1);
8333 }
8334 
8335 static unsigned long pfn_max_align_up(unsigned long pfn)
8336 {
8337 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8338 				pageblock_nr_pages));
8339 }
8340 
8341 /* [start, end) must belong to a single zone. */
8342 static int __alloc_contig_migrate_range(struct compact_control *cc,
8343 					unsigned long start, unsigned long end)
8344 {
8345 	/* This function is based on compact_zone() from compaction.c. */
8346 	unsigned int nr_reclaimed;
8347 	unsigned long pfn = start;
8348 	unsigned int tries = 0;
8349 	int ret = 0;
8350 	struct migration_target_control mtc = {
8351 		.nid = zone_to_nid(cc->zone),
8352 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8353 	};
8354 
8355 	migrate_prep();
8356 
8357 	while (pfn < end || !list_empty(&cc->migratepages)) {
8358 		if (fatal_signal_pending(current)) {
8359 			ret = -EINTR;
8360 			break;
8361 		}
8362 
8363 		if (list_empty(&cc->migratepages)) {
8364 			cc->nr_migratepages = 0;
8365 			pfn = isolate_migratepages_range(cc, pfn, end);
8366 			if (!pfn) {
8367 				ret = -EINTR;
8368 				break;
8369 			}
8370 			tries = 0;
8371 		} else if (++tries == 5) {
8372 			ret = ret < 0 ? ret : -EBUSY;
8373 			break;
8374 		}
8375 
8376 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8377 							&cc->migratepages);
8378 		cc->nr_migratepages -= nr_reclaimed;
8379 
8380 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8381 				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8382 	}
8383 	if (ret < 0) {
8384 		putback_movable_pages(&cc->migratepages);
8385 		return ret;
8386 	}
8387 	return 0;
8388 }
8389 
8390 /**
8391  * alloc_contig_range() -- tries to allocate given range of pages
8392  * @start:	start PFN to allocate
8393  * @end:	one-past-the-last PFN to allocate
8394  * @migratetype:	migratetype of the underlaying pageblocks (either
8395  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8396  *			in range must have the same migratetype and it must
8397  *			be either of the two.
8398  * @gfp_mask:	GFP mask to use during compaction
8399  *
8400  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8401  * aligned.  The PFN range must belong to a single zone.
8402  *
8403  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8404  * pageblocks in the range.  Once isolated, the pageblocks should not
8405  * be modified by others.
8406  *
8407  * Return: zero on success or negative error code.  On success all
8408  * pages which PFN is in [start, end) are allocated for the caller and
8409  * need to be freed with free_contig_range().
8410  */
8411 int alloc_contig_range(unsigned long start, unsigned long end,
8412 		       unsigned migratetype, gfp_t gfp_mask)
8413 {
8414 	unsigned long outer_start, outer_end;
8415 	unsigned int order;
8416 	int ret = 0;
8417 
8418 	struct compact_control cc = {
8419 		.nr_migratepages = 0,
8420 		.order = -1,
8421 		.zone = page_zone(pfn_to_page(start)),
8422 		.mode = MIGRATE_SYNC,
8423 		.ignore_skip_hint = true,
8424 		.no_set_skip_hint = true,
8425 		.gfp_mask = current_gfp_context(gfp_mask),
8426 		.alloc_contig = true,
8427 	};
8428 	INIT_LIST_HEAD(&cc.migratepages);
8429 
8430 	/*
8431 	 * What we do here is we mark all pageblocks in range as
8432 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8433 	 * have different sizes, and due to the way page allocator
8434 	 * work, we align the range to biggest of the two pages so
8435 	 * that page allocator won't try to merge buddies from
8436 	 * different pageblocks and change MIGRATE_ISOLATE to some
8437 	 * other migration type.
8438 	 *
8439 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8440 	 * migrate the pages from an unaligned range (ie. pages that
8441 	 * we are interested in).  This will put all the pages in
8442 	 * range back to page allocator as MIGRATE_ISOLATE.
8443 	 *
8444 	 * When this is done, we take the pages in range from page
8445 	 * allocator removing them from the buddy system.  This way
8446 	 * page allocator will never consider using them.
8447 	 *
8448 	 * This lets us mark the pageblocks back as
8449 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8450 	 * aligned range but not in the unaligned, original range are
8451 	 * put back to page allocator so that buddy can use them.
8452 	 */
8453 
8454 	ret = start_isolate_page_range(pfn_max_align_down(start),
8455 				       pfn_max_align_up(end), migratetype, 0);
8456 	if (ret < 0)
8457 		return ret;
8458 
8459 	/*
8460 	 * In case of -EBUSY, we'd like to know which page causes problem.
8461 	 * So, just fall through. test_pages_isolated() has a tracepoint
8462 	 * which will report the busy page.
8463 	 *
8464 	 * It is possible that busy pages could become available before
8465 	 * the call to test_pages_isolated, and the range will actually be
8466 	 * allocated.  So, if we fall through be sure to clear ret so that
8467 	 * -EBUSY is not accidentally used or returned to caller.
8468 	 */
8469 	ret = __alloc_contig_migrate_range(&cc, start, end);
8470 	if (ret && ret != -EBUSY)
8471 		goto done;
8472 	ret =0;
8473 
8474 	/*
8475 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8476 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8477 	 * more, all pages in [start, end) are free in page allocator.
8478 	 * What we are going to do is to allocate all pages from
8479 	 * [start, end) (that is remove them from page allocator).
8480 	 *
8481 	 * The only problem is that pages at the beginning and at the
8482 	 * end of interesting range may be not aligned with pages that
8483 	 * page allocator holds, ie. they can be part of higher order
8484 	 * pages.  Because of this, we reserve the bigger range and
8485 	 * once this is done free the pages we are not interested in.
8486 	 *
8487 	 * We don't have to hold zone->lock here because the pages are
8488 	 * isolated thus they won't get removed from buddy.
8489 	 */
8490 
8491 	lru_add_drain_all();
8492 
8493 	order = 0;
8494 	outer_start = start;
8495 	while (!PageBuddy(pfn_to_page(outer_start))) {
8496 		if (++order >= MAX_ORDER) {
8497 			outer_start = start;
8498 			break;
8499 		}
8500 		outer_start &= ~0UL << order;
8501 	}
8502 
8503 	if (outer_start != start) {
8504 		order = page_order(pfn_to_page(outer_start));
8505 
8506 		/*
8507 		 * outer_start page could be small order buddy page and
8508 		 * it doesn't include start page. Adjust outer_start
8509 		 * in this case to report failed page properly
8510 		 * on tracepoint in test_pages_isolated()
8511 		 */
8512 		if (outer_start + (1UL << order) <= start)
8513 			outer_start = start;
8514 	}
8515 
8516 	/* Make sure the range is really isolated. */
8517 	if (test_pages_isolated(outer_start, end, 0)) {
8518 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8519 			__func__, outer_start, end);
8520 		ret = -EBUSY;
8521 		goto done;
8522 	}
8523 
8524 	/* Grab isolated pages from freelists. */
8525 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8526 	if (!outer_end) {
8527 		ret = -EBUSY;
8528 		goto done;
8529 	}
8530 
8531 	/* Free head and tail (if any) */
8532 	if (start != outer_start)
8533 		free_contig_range(outer_start, start - outer_start);
8534 	if (end != outer_end)
8535 		free_contig_range(end, outer_end - end);
8536 
8537 done:
8538 	undo_isolate_page_range(pfn_max_align_down(start),
8539 				pfn_max_align_up(end), migratetype);
8540 	return ret;
8541 }
8542 EXPORT_SYMBOL(alloc_contig_range);
8543 
8544 static int __alloc_contig_pages(unsigned long start_pfn,
8545 				unsigned long nr_pages, gfp_t gfp_mask)
8546 {
8547 	unsigned long end_pfn = start_pfn + nr_pages;
8548 
8549 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8550 				  gfp_mask);
8551 }
8552 
8553 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8554 				   unsigned long nr_pages)
8555 {
8556 	unsigned long i, end_pfn = start_pfn + nr_pages;
8557 	struct page *page;
8558 
8559 	for (i = start_pfn; i < end_pfn; i++) {
8560 		page = pfn_to_online_page(i);
8561 		if (!page)
8562 			return false;
8563 
8564 		if (page_zone(page) != z)
8565 			return false;
8566 
8567 		if (PageReserved(page))
8568 			return false;
8569 
8570 		if (page_count(page) > 0)
8571 			return false;
8572 
8573 		if (PageHuge(page))
8574 			return false;
8575 	}
8576 	return true;
8577 }
8578 
8579 static bool zone_spans_last_pfn(const struct zone *zone,
8580 				unsigned long start_pfn, unsigned long nr_pages)
8581 {
8582 	unsigned long last_pfn = start_pfn + nr_pages - 1;
8583 
8584 	return zone_spans_pfn(zone, last_pfn);
8585 }
8586 
8587 /**
8588  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8589  * @nr_pages:	Number of contiguous pages to allocate
8590  * @gfp_mask:	GFP mask to limit search and used during compaction
8591  * @nid:	Target node
8592  * @nodemask:	Mask for other possible nodes
8593  *
8594  * This routine is a wrapper around alloc_contig_range(). It scans over zones
8595  * on an applicable zonelist to find a contiguous pfn range which can then be
8596  * tried for allocation with alloc_contig_range(). This routine is intended
8597  * for allocation requests which can not be fulfilled with the buddy allocator.
8598  *
8599  * The allocated memory is always aligned to a page boundary. If nr_pages is a
8600  * power of two then the alignment is guaranteed to be to the given nr_pages
8601  * (e.g. 1GB request would be aligned to 1GB).
8602  *
8603  * Allocated pages can be freed with free_contig_range() or by manually calling
8604  * __free_page() on each allocated page.
8605  *
8606  * Return: pointer to contiguous pages on success, or NULL if not successful.
8607  */
8608 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8609 				int nid, nodemask_t *nodemask)
8610 {
8611 	unsigned long ret, pfn, flags;
8612 	struct zonelist *zonelist;
8613 	struct zone *zone;
8614 	struct zoneref *z;
8615 
8616 	zonelist = node_zonelist(nid, gfp_mask);
8617 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
8618 					gfp_zone(gfp_mask), nodemask) {
8619 		spin_lock_irqsave(&zone->lock, flags);
8620 
8621 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8622 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8623 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8624 				/*
8625 				 * We release the zone lock here because
8626 				 * alloc_contig_range() will also lock the zone
8627 				 * at some point. If there's an allocation
8628 				 * spinning on this lock, it may win the race
8629 				 * and cause alloc_contig_range() to fail...
8630 				 */
8631 				spin_unlock_irqrestore(&zone->lock, flags);
8632 				ret = __alloc_contig_pages(pfn, nr_pages,
8633 							gfp_mask);
8634 				if (!ret)
8635 					return pfn_to_page(pfn);
8636 				spin_lock_irqsave(&zone->lock, flags);
8637 			}
8638 			pfn += nr_pages;
8639 		}
8640 		spin_unlock_irqrestore(&zone->lock, flags);
8641 	}
8642 	return NULL;
8643 }
8644 #endif /* CONFIG_CONTIG_ALLOC */
8645 
8646 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8647 {
8648 	unsigned int count = 0;
8649 
8650 	for (; nr_pages--; pfn++) {
8651 		struct page *page = pfn_to_page(pfn);
8652 
8653 		count += page_count(page) != 1;
8654 		__free_page(page);
8655 	}
8656 	WARN(count != 0, "%d pages are still in use!\n", count);
8657 }
8658 EXPORT_SYMBOL(free_contig_range);
8659 
8660 /*
8661  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8662  * page high values need to be recalulated.
8663  */
8664 void __meminit zone_pcp_update(struct zone *zone)
8665 {
8666 	mutex_lock(&pcp_batch_high_lock);
8667 	__zone_pcp_update(zone);
8668 	mutex_unlock(&pcp_batch_high_lock);
8669 }
8670 
8671 void zone_pcp_reset(struct zone *zone)
8672 {
8673 	unsigned long flags;
8674 	int cpu;
8675 	struct per_cpu_pageset *pset;
8676 
8677 	/* avoid races with drain_pages()  */
8678 	local_irq_save(flags);
8679 	if (zone->pageset != &boot_pageset) {
8680 		for_each_online_cpu(cpu) {
8681 			pset = per_cpu_ptr(zone->pageset, cpu);
8682 			drain_zonestat(zone, pset);
8683 		}
8684 		free_percpu(zone->pageset);
8685 		zone->pageset = &boot_pageset;
8686 	}
8687 	local_irq_restore(flags);
8688 }
8689 
8690 #ifdef CONFIG_MEMORY_HOTREMOVE
8691 /*
8692  * All pages in the range must be in a single zone and isolated
8693  * before calling this.
8694  */
8695 unsigned long
8696 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8697 {
8698 	struct page *page;
8699 	struct zone *zone;
8700 	unsigned int order;
8701 	unsigned long pfn;
8702 	unsigned long flags;
8703 	unsigned long offlined_pages = 0;
8704 
8705 	/* find the first valid pfn */
8706 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
8707 		if (pfn_valid(pfn))
8708 			break;
8709 	if (pfn == end_pfn)
8710 		return offlined_pages;
8711 
8712 	offline_mem_sections(pfn, end_pfn);
8713 	zone = page_zone(pfn_to_page(pfn));
8714 	spin_lock_irqsave(&zone->lock, flags);
8715 	pfn = start_pfn;
8716 	while (pfn < end_pfn) {
8717 		if (!pfn_valid(pfn)) {
8718 			pfn++;
8719 			continue;
8720 		}
8721 		page = pfn_to_page(pfn);
8722 		/*
8723 		 * The HWPoisoned page may be not in buddy system, and
8724 		 * page_count() is not 0.
8725 		 */
8726 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8727 			pfn++;
8728 			offlined_pages++;
8729 			continue;
8730 		}
8731 		/*
8732 		 * At this point all remaining PageOffline() pages have a
8733 		 * reference count of 0 and can simply be skipped.
8734 		 */
8735 		if (PageOffline(page)) {
8736 			BUG_ON(page_count(page));
8737 			BUG_ON(PageBuddy(page));
8738 			pfn++;
8739 			offlined_pages++;
8740 			continue;
8741 		}
8742 
8743 		BUG_ON(page_count(page));
8744 		BUG_ON(!PageBuddy(page));
8745 		order = page_order(page);
8746 		offlined_pages += 1 << order;
8747 		del_page_from_free_list(page, zone, order);
8748 		pfn += (1 << order);
8749 	}
8750 	spin_unlock_irqrestore(&zone->lock, flags);
8751 
8752 	return offlined_pages;
8753 }
8754 #endif
8755 
8756 bool is_free_buddy_page(struct page *page)
8757 {
8758 	struct zone *zone = page_zone(page);
8759 	unsigned long pfn = page_to_pfn(page);
8760 	unsigned long flags;
8761 	unsigned int order;
8762 
8763 	spin_lock_irqsave(&zone->lock, flags);
8764 	for (order = 0; order < MAX_ORDER; order++) {
8765 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8766 
8767 		if (PageBuddy(page_head) && page_order(page_head) >= order)
8768 			break;
8769 	}
8770 	spin_unlock_irqrestore(&zone->lock, flags);
8771 
8772 	return order < MAX_ORDER;
8773 }
8774 
8775 #ifdef CONFIG_MEMORY_FAILURE
8776 /*
8777  * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8778  * test is performed under the zone lock to prevent a race against page
8779  * allocation.
8780  */
8781 bool set_hwpoison_free_buddy_page(struct page *page)
8782 {
8783 	struct zone *zone = page_zone(page);
8784 	unsigned long pfn = page_to_pfn(page);
8785 	unsigned long flags;
8786 	unsigned int order;
8787 	bool hwpoisoned = false;
8788 
8789 	spin_lock_irqsave(&zone->lock, flags);
8790 	for (order = 0; order < MAX_ORDER; order++) {
8791 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8792 
8793 		if (PageBuddy(page_head) && page_order(page_head) >= order) {
8794 			if (!TestSetPageHWPoison(page))
8795 				hwpoisoned = true;
8796 			break;
8797 		}
8798 	}
8799 	spin_unlock_irqrestore(&zone->lock, flags);
8800 
8801 	return hwpoisoned;
8802 }
8803 #endif
8804