1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/sched/mm.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/lockdep.h> 69 #include <linux/nmi.h> 70 #include <linux/psi.h> 71 72 #include <asm/sections.h> 73 #include <asm/tlbflush.h> 74 #include <asm/div64.h> 75 #include "internal.h" 76 #include "shuffle.h" 77 #include "page_reporting.h" 78 79 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 80 static DEFINE_MUTEX(pcp_batch_high_lock); 81 #define MIN_PERCPU_PAGELIST_FRACTION (8) 82 83 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 84 DEFINE_PER_CPU(int, numa_node); 85 EXPORT_PER_CPU_SYMBOL(numa_node); 86 #endif 87 88 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 89 90 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 91 /* 92 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 93 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 94 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 95 * defined in <linux/topology.h>. 96 */ 97 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 98 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 99 #endif 100 101 /* work_structs for global per-cpu drains */ 102 struct pcpu_drain { 103 struct zone *zone; 104 struct work_struct work; 105 }; 106 static DEFINE_MUTEX(pcpu_drain_mutex); 107 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 108 109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 110 volatile unsigned long latent_entropy __latent_entropy; 111 EXPORT_SYMBOL(latent_entropy); 112 #endif 113 114 /* 115 * Array of node states. 116 */ 117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 118 [N_POSSIBLE] = NODE_MASK_ALL, 119 [N_ONLINE] = { { [0] = 1UL } }, 120 #ifndef CONFIG_NUMA 121 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 122 #ifdef CONFIG_HIGHMEM 123 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 124 #endif 125 [N_MEMORY] = { { [0] = 1UL } }, 126 [N_CPU] = { { [0] = 1UL } }, 127 #endif /* NUMA */ 128 }; 129 EXPORT_SYMBOL(node_states); 130 131 atomic_long_t _totalram_pages __read_mostly; 132 EXPORT_SYMBOL(_totalram_pages); 133 unsigned long totalreserve_pages __read_mostly; 134 unsigned long totalcma_pages __read_mostly; 135 136 int percpu_pagelist_fraction; 137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 139 DEFINE_STATIC_KEY_TRUE(init_on_alloc); 140 #else 141 DEFINE_STATIC_KEY_FALSE(init_on_alloc); 142 #endif 143 EXPORT_SYMBOL(init_on_alloc); 144 145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 146 DEFINE_STATIC_KEY_TRUE(init_on_free); 147 #else 148 DEFINE_STATIC_KEY_FALSE(init_on_free); 149 #endif 150 EXPORT_SYMBOL(init_on_free); 151 152 static int __init early_init_on_alloc(char *buf) 153 { 154 int ret; 155 bool bool_result; 156 157 if (!buf) 158 return -EINVAL; 159 ret = kstrtobool(buf, &bool_result); 160 if (bool_result && page_poisoning_enabled()) 161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n"); 162 if (bool_result) 163 static_branch_enable(&init_on_alloc); 164 else 165 static_branch_disable(&init_on_alloc); 166 return ret; 167 } 168 early_param("init_on_alloc", early_init_on_alloc); 169 170 static int __init early_init_on_free(char *buf) 171 { 172 int ret; 173 bool bool_result; 174 175 if (!buf) 176 return -EINVAL; 177 ret = kstrtobool(buf, &bool_result); 178 if (bool_result && page_poisoning_enabled()) 179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n"); 180 if (bool_result) 181 static_branch_enable(&init_on_free); 182 else 183 static_branch_disable(&init_on_free); 184 return ret; 185 } 186 early_param("init_on_free", early_init_on_free); 187 188 /* 189 * A cached value of the page's pageblock's migratetype, used when the page is 190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 191 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 192 * Also the migratetype set in the page does not necessarily match the pcplist 193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 194 * other index - this ensures that it will be put on the correct CMA freelist. 195 */ 196 static inline int get_pcppage_migratetype(struct page *page) 197 { 198 return page->index; 199 } 200 201 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 202 { 203 page->index = migratetype; 204 } 205 206 #ifdef CONFIG_PM_SLEEP 207 /* 208 * The following functions are used by the suspend/hibernate code to temporarily 209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 210 * while devices are suspended. To avoid races with the suspend/hibernate code, 211 * they should always be called with system_transition_mutex held 212 * (gfp_allowed_mask also should only be modified with system_transition_mutex 213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 214 * with that modification). 215 */ 216 217 static gfp_t saved_gfp_mask; 218 219 void pm_restore_gfp_mask(void) 220 { 221 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 222 if (saved_gfp_mask) { 223 gfp_allowed_mask = saved_gfp_mask; 224 saved_gfp_mask = 0; 225 } 226 } 227 228 void pm_restrict_gfp_mask(void) 229 { 230 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 231 WARN_ON(saved_gfp_mask); 232 saved_gfp_mask = gfp_allowed_mask; 233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 234 } 235 236 bool pm_suspended_storage(void) 237 { 238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 239 return false; 240 return true; 241 } 242 #endif /* CONFIG_PM_SLEEP */ 243 244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 245 unsigned int pageblock_order __read_mostly; 246 #endif 247 248 static void __free_pages_ok(struct page *page, unsigned int order); 249 250 /* 251 * results with 256, 32 in the lowmem_reserve sysctl: 252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 253 * 1G machine -> (16M dma, 784M normal, 224M high) 254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 257 * 258 * TBD: should special case ZONE_DMA32 machines here - in those we normally 259 * don't need any ZONE_NORMAL reservation 260 */ 261 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 262 #ifdef CONFIG_ZONE_DMA 263 [ZONE_DMA] = 256, 264 #endif 265 #ifdef CONFIG_ZONE_DMA32 266 [ZONE_DMA32] = 256, 267 #endif 268 [ZONE_NORMAL] = 32, 269 #ifdef CONFIG_HIGHMEM 270 [ZONE_HIGHMEM] = 0, 271 #endif 272 [ZONE_MOVABLE] = 0, 273 }; 274 275 static char * const zone_names[MAX_NR_ZONES] = { 276 #ifdef CONFIG_ZONE_DMA 277 "DMA", 278 #endif 279 #ifdef CONFIG_ZONE_DMA32 280 "DMA32", 281 #endif 282 "Normal", 283 #ifdef CONFIG_HIGHMEM 284 "HighMem", 285 #endif 286 "Movable", 287 #ifdef CONFIG_ZONE_DEVICE 288 "Device", 289 #endif 290 }; 291 292 const char * const migratetype_names[MIGRATE_TYPES] = { 293 "Unmovable", 294 "Movable", 295 "Reclaimable", 296 "HighAtomic", 297 #ifdef CONFIG_CMA 298 "CMA", 299 #endif 300 #ifdef CONFIG_MEMORY_ISOLATION 301 "Isolate", 302 #endif 303 }; 304 305 compound_page_dtor * const compound_page_dtors[] = { 306 NULL, 307 free_compound_page, 308 #ifdef CONFIG_HUGETLB_PAGE 309 free_huge_page, 310 #endif 311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 312 free_transhuge_page, 313 #endif 314 }; 315 316 int min_free_kbytes = 1024; 317 int user_min_free_kbytes = -1; 318 #ifdef CONFIG_DISCONTIGMEM 319 /* 320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges 321 * are not on separate NUMA nodes. Functionally this works but with 322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be 323 * quite small. By default, do not boost watermarks on discontigmem as in 324 * many cases very high-order allocations like THP are likely to be 325 * unsupported and the premature reclaim offsets the advantage of long-term 326 * fragmentation avoidance. 327 */ 328 int watermark_boost_factor __read_mostly; 329 #else 330 int watermark_boost_factor __read_mostly = 15000; 331 #endif 332 int watermark_scale_factor = 10; 333 334 static unsigned long nr_kernel_pages __initdata; 335 static unsigned long nr_all_pages __initdata; 336 static unsigned long dma_reserve __initdata; 337 338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 341 static unsigned long required_kernelcore __initdata; 342 static unsigned long required_kernelcore_percent __initdata; 343 static unsigned long required_movablecore __initdata; 344 static unsigned long required_movablecore_percent __initdata; 345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 346 static bool mirrored_kernelcore __meminitdata; 347 348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 349 int movable_zone; 350 EXPORT_SYMBOL(movable_zone); 351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 352 353 #if MAX_NUMNODES > 1 354 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 355 unsigned int nr_online_nodes __read_mostly = 1; 356 EXPORT_SYMBOL(nr_node_ids); 357 EXPORT_SYMBOL(nr_online_nodes); 358 #endif 359 360 int page_group_by_mobility_disabled __read_mostly; 361 362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 363 /* 364 * During boot we initialize deferred pages on-demand, as needed, but once 365 * page_alloc_init_late() has finished, the deferred pages are all initialized, 366 * and we can permanently disable that path. 367 */ 368 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 369 370 /* 371 * Calling kasan_free_pages() only after deferred memory initialization 372 * has completed. Poisoning pages during deferred memory init will greatly 373 * lengthen the process and cause problem in large memory systems as the 374 * deferred pages initialization is done with interrupt disabled. 375 * 376 * Assuming that there will be no reference to those newly initialized 377 * pages before they are ever allocated, this should have no effect on 378 * KASAN memory tracking as the poison will be properly inserted at page 379 * allocation time. The only corner case is when pages are allocated by 380 * on-demand allocation and then freed again before the deferred pages 381 * initialization is done, but this is not likely to happen. 382 */ 383 static inline void kasan_free_nondeferred_pages(struct page *page, int order) 384 { 385 if (!static_branch_unlikely(&deferred_pages)) 386 kasan_free_pages(page, order); 387 } 388 389 /* Returns true if the struct page for the pfn is uninitialised */ 390 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 391 { 392 int nid = early_pfn_to_nid(pfn); 393 394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 395 return true; 396 397 return false; 398 } 399 400 /* 401 * Returns true when the remaining initialisation should be deferred until 402 * later in the boot cycle when it can be parallelised. 403 */ 404 static bool __meminit 405 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 406 { 407 static unsigned long prev_end_pfn, nr_initialised; 408 409 /* 410 * prev_end_pfn static that contains the end of previous zone 411 * No need to protect because called very early in boot before smp_init. 412 */ 413 if (prev_end_pfn != end_pfn) { 414 prev_end_pfn = end_pfn; 415 nr_initialised = 0; 416 } 417 418 /* Always populate low zones for address-constrained allocations */ 419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 420 return false; 421 422 /* 423 * We start only with one section of pages, more pages are added as 424 * needed until the rest of deferred pages are initialized. 425 */ 426 nr_initialised++; 427 if ((nr_initialised > PAGES_PER_SECTION) && 428 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 429 NODE_DATA(nid)->first_deferred_pfn = pfn; 430 return true; 431 } 432 return false; 433 } 434 #else 435 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 436 437 static inline bool early_page_uninitialised(unsigned long pfn) 438 { 439 return false; 440 } 441 442 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 443 { 444 return false; 445 } 446 #endif 447 448 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 449 static inline unsigned long *get_pageblock_bitmap(struct page *page, 450 unsigned long pfn) 451 { 452 #ifdef CONFIG_SPARSEMEM 453 return section_to_usemap(__pfn_to_section(pfn)); 454 #else 455 return page_zone(page)->pageblock_flags; 456 #endif /* CONFIG_SPARSEMEM */ 457 } 458 459 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 460 { 461 #ifdef CONFIG_SPARSEMEM 462 pfn &= (PAGES_PER_SECTION-1); 463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 464 #else 465 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 467 #endif /* CONFIG_SPARSEMEM */ 468 } 469 470 /** 471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 472 * @page: The page within the block of interest 473 * @pfn: The target page frame number 474 * @end_bitidx: The last bit of interest to retrieve 475 * @mask: mask of bits that the caller is interested in 476 * 477 * Return: pageblock_bits flags 478 */ 479 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 480 unsigned long pfn, 481 unsigned long end_bitidx, 482 unsigned long mask) 483 { 484 unsigned long *bitmap; 485 unsigned long bitidx, word_bitidx; 486 unsigned long word; 487 488 bitmap = get_pageblock_bitmap(page, pfn); 489 bitidx = pfn_to_bitidx(page, pfn); 490 word_bitidx = bitidx / BITS_PER_LONG; 491 bitidx &= (BITS_PER_LONG-1); 492 493 word = bitmap[word_bitidx]; 494 bitidx += end_bitidx; 495 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 496 } 497 498 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 499 unsigned long end_bitidx, 500 unsigned long mask) 501 { 502 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 503 } 504 505 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 506 { 507 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 508 } 509 510 /** 511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 512 * @page: The page within the block of interest 513 * @flags: The flags to set 514 * @pfn: The target page frame number 515 * @end_bitidx: The last bit of interest 516 * @mask: mask of bits that the caller is interested in 517 */ 518 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 519 unsigned long pfn, 520 unsigned long end_bitidx, 521 unsigned long mask) 522 { 523 unsigned long *bitmap; 524 unsigned long bitidx, word_bitidx; 525 unsigned long old_word, word; 526 527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 529 530 bitmap = get_pageblock_bitmap(page, pfn); 531 bitidx = pfn_to_bitidx(page, pfn); 532 word_bitidx = bitidx / BITS_PER_LONG; 533 bitidx &= (BITS_PER_LONG-1); 534 535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 536 537 bitidx += end_bitidx; 538 mask <<= (BITS_PER_LONG - bitidx - 1); 539 flags <<= (BITS_PER_LONG - bitidx - 1); 540 541 word = READ_ONCE(bitmap[word_bitidx]); 542 for (;;) { 543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 544 if (word == old_word) 545 break; 546 word = old_word; 547 } 548 } 549 550 void set_pageblock_migratetype(struct page *page, int migratetype) 551 { 552 if (unlikely(page_group_by_mobility_disabled && 553 migratetype < MIGRATE_PCPTYPES)) 554 migratetype = MIGRATE_UNMOVABLE; 555 556 set_pageblock_flags_group(page, (unsigned long)migratetype, 557 PB_migrate, PB_migrate_end); 558 } 559 560 #ifdef CONFIG_DEBUG_VM 561 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 562 { 563 int ret = 0; 564 unsigned seq; 565 unsigned long pfn = page_to_pfn(page); 566 unsigned long sp, start_pfn; 567 568 do { 569 seq = zone_span_seqbegin(zone); 570 start_pfn = zone->zone_start_pfn; 571 sp = zone->spanned_pages; 572 if (!zone_spans_pfn(zone, pfn)) 573 ret = 1; 574 } while (zone_span_seqretry(zone, seq)); 575 576 if (ret) 577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 578 pfn, zone_to_nid(zone), zone->name, 579 start_pfn, start_pfn + sp); 580 581 return ret; 582 } 583 584 static int page_is_consistent(struct zone *zone, struct page *page) 585 { 586 if (!pfn_valid_within(page_to_pfn(page))) 587 return 0; 588 if (zone != page_zone(page)) 589 return 0; 590 591 return 1; 592 } 593 /* 594 * Temporary debugging check for pages not lying within a given zone. 595 */ 596 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 597 { 598 if (page_outside_zone_boundaries(zone, page)) 599 return 1; 600 if (!page_is_consistent(zone, page)) 601 return 1; 602 603 return 0; 604 } 605 #else 606 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 607 { 608 return 0; 609 } 610 #endif 611 612 static void bad_page(struct page *page, const char *reason, 613 unsigned long bad_flags) 614 { 615 static unsigned long resume; 616 static unsigned long nr_shown; 617 static unsigned long nr_unshown; 618 619 /* 620 * Allow a burst of 60 reports, then keep quiet for that minute; 621 * or allow a steady drip of one report per second. 622 */ 623 if (nr_shown == 60) { 624 if (time_before(jiffies, resume)) { 625 nr_unshown++; 626 goto out; 627 } 628 if (nr_unshown) { 629 pr_alert( 630 "BUG: Bad page state: %lu messages suppressed\n", 631 nr_unshown); 632 nr_unshown = 0; 633 } 634 nr_shown = 0; 635 } 636 if (nr_shown++ == 0) 637 resume = jiffies + 60 * HZ; 638 639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 640 current->comm, page_to_pfn(page)); 641 __dump_page(page, reason); 642 bad_flags &= page->flags; 643 if (bad_flags) 644 pr_alert("bad because of flags: %#lx(%pGp)\n", 645 bad_flags, &bad_flags); 646 dump_page_owner(page); 647 648 print_modules(); 649 dump_stack(); 650 out: 651 /* Leave bad fields for debug, except PageBuddy could make trouble */ 652 page_mapcount_reset(page); /* remove PageBuddy */ 653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 654 } 655 656 /* 657 * Higher-order pages are called "compound pages". They are structured thusly: 658 * 659 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 660 * 661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 663 * 664 * The first tail page's ->compound_dtor holds the offset in array of compound 665 * page destructors. See compound_page_dtors. 666 * 667 * The first tail page's ->compound_order holds the order of allocation. 668 * This usage means that zero-order pages may not be compound. 669 */ 670 671 void free_compound_page(struct page *page) 672 { 673 mem_cgroup_uncharge(page); 674 __free_pages_ok(page, compound_order(page)); 675 } 676 677 void prep_compound_page(struct page *page, unsigned int order) 678 { 679 int i; 680 int nr_pages = 1 << order; 681 682 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 683 set_compound_order(page, order); 684 __SetPageHead(page); 685 for (i = 1; i < nr_pages; i++) { 686 struct page *p = page + i; 687 set_page_count(p, 0); 688 p->mapping = TAIL_MAPPING; 689 set_compound_head(p, page); 690 } 691 atomic_set(compound_mapcount_ptr(page), -1); 692 if (hpage_pincount_available(page)) 693 atomic_set(compound_pincount_ptr(page), 0); 694 } 695 696 #ifdef CONFIG_DEBUG_PAGEALLOC 697 unsigned int _debug_guardpage_minorder; 698 699 bool _debug_pagealloc_enabled_early __read_mostly 700 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 701 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 702 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 703 EXPORT_SYMBOL(_debug_pagealloc_enabled); 704 705 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 706 707 static int __init early_debug_pagealloc(char *buf) 708 { 709 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 710 } 711 early_param("debug_pagealloc", early_debug_pagealloc); 712 713 void init_debug_pagealloc(void) 714 { 715 if (!debug_pagealloc_enabled()) 716 return; 717 718 static_branch_enable(&_debug_pagealloc_enabled); 719 720 if (!debug_guardpage_minorder()) 721 return; 722 723 static_branch_enable(&_debug_guardpage_enabled); 724 } 725 726 static int __init debug_guardpage_minorder_setup(char *buf) 727 { 728 unsigned long res; 729 730 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 731 pr_err("Bad debug_guardpage_minorder value\n"); 732 return 0; 733 } 734 _debug_guardpage_minorder = res; 735 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 736 return 0; 737 } 738 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 739 740 static inline bool set_page_guard(struct zone *zone, struct page *page, 741 unsigned int order, int migratetype) 742 { 743 if (!debug_guardpage_enabled()) 744 return false; 745 746 if (order >= debug_guardpage_minorder()) 747 return false; 748 749 __SetPageGuard(page); 750 INIT_LIST_HEAD(&page->lru); 751 set_page_private(page, order); 752 /* Guard pages are not available for any usage */ 753 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 754 755 return true; 756 } 757 758 static inline void clear_page_guard(struct zone *zone, struct page *page, 759 unsigned int order, int migratetype) 760 { 761 if (!debug_guardpage_enabled()) 762 return; 763 764 __ClearPageGuard(page); 765 766 set_page_private(page, 0); 767 if (!is_migrate_isolate(migratetype)) 768 __mod_zone_freepage_state(zone, (1 << order), migratetype); 769 } 770 #else 771 static inline bool set_page_guard(struct zone *zone, struct page *page, 772 unsigned int order, int migratetype) { return false; } 773 static inline void clear_page_guard(struct zone *zone, struct page *page, 774 unsigned int order, int migratetype) {} 775 #endif 776 777 static inline void set_page_order(struct page *page, unsigned int order) 778 { 779 set_page_private(page, order); 780 __SetPageBuddy(page); 781 } 782 783 /* 784 * This function checks whether a page is free && is the buddy 785 * we can coalesce a page and its buddy if 786 * (a) the buddy is not in a hole (check before calling!) && 787 * (b) the buddy is in the buddy system && 788 * (c) a page and its buddy have the same order && 789 * (d) a page and its buddy are in the same zone. 790 * 791 * For recording whether a page is in the buddy system, we set PageBuddy. 792 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 793 * 794 * For recording page's order, we use page_private(page). 795 */ 796 static inline bool page_is_buddy(struct page *page, struct page *buddy, 797 unsigned int order) 798 { 799 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 800 return false; 801 802 if (page_order(buddy) != order) 803 return false; 804 805 /* 806 * zone check is done late to avoid uselessly calculating 807 * zone/node ids for pages that could never merge. 808 */ 809 if (page_zone_id(page) != page_zone_id(buddy)) 810 return false; 811 812 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 813 814 return true; 815 } 816 817 #ifdef CONFIG_COMPACTION 818 static inline struct capture_control *task_capc(struct zone *zone) 819 { 820 struct capture_control *capc = current->capture_control; 821 822 return capc && 823 !(current->flags & PF_KTHREAD) && 824 !capc->page && 825 capc->cc->zone == zone && 826 capc->cc->direct_compaction ? capc : NULL; 827 } 828 829 static inline bool 830 compaction_capture(struct capture_control *capc, struct page *page, 831 int order, int migratetype) 832 { 833 if (!capc || order != capc->cc->order) 834 return false; 835 836 /* Do not accidentally pollute CMA or isolated regions*/ 837 if (is_migrate_cma(migratetype) || 838 is_migrate_isolate(migratetype)) 839 return false; 840 841 /* 842 * Do not let lower order allocations polluate a movable pageblock. 843 * This might let an unmovable request use a reclaimable pageblock 844 * and vice-versa but no more than normal fallback logic which can 845 * have trouble finding a high-order free page. 846 */ 847 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 848 return false; 849 850 capc->page = page; 851 return true; 852 } 853 854 #else 855 static inline struct capture_control *task_capc(struct zone *zone) 856 { 857 return NULL; 858 } 859 860 static inline bool 861 compaction_capture(struct capture_control *capc, struct page *page, 862 int order, int migratetype) 863 { 864 return false; 865 } 866 #endif /* CONFIG_COMPACTION */ 867 868 /* Used for pages not on another list */ 869 static inline void add_to_free_list(struct page *page, struct zone *zone, 870 unsigned int order, int migratetype) 871 { 872 struct free_area *area = &zone->free_area[order]; 873 874 list_add(&page->lru, &area->free_list[migratetype]); 875 area->nr_free++; 876 } 877 878 /* Used for pages not on another list */ 879 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 880 unsigned int order, int migratetype) 881 { 882 struct free_area *area = &zone->free_area[order]; 883 884 list_add_tail(&page->lru, &area->free_list[migratetype]); 885 area->nr_free++; 886 } 887 888 /* Used for pages which are on another list */ 889 static inline void move_to_free_list(struct page *page, struct zone *zone, 890 unsigned int order, int migratetype) 891 { 892 struct free_area *area = &zone->free_area[order]; 893 894 list_move(&page->lru, &area->free_list[migratetype]); 895 } 896 897 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 898 unsigned int order) 899 { 900 /* clear reported state and update reported page count */ 901 if (page_reported(page)) 902 __ClearPageReported(page); 903 904 list_del(&page->lru); 905 __ClearPageBuddy(page); 906 set_page_private(page, 0); 907 zone->free_area[order].nr_free--; 908 } 909 910 /* 911 * If this is not the largest possible page, check if the buddy 912 * of the next-highest order is free. If it is, it's possible 913 * that pages are being freed that will coalesce soon. In case, 914 * that is happening, add the free page to the tail of the list 915 * so it's less likely to be used soon and more likely to be merged 916 * as a higher order page 917 */ 918 static inline bool 919 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 920 struct page *page, unsigned int order) 921 { 922 struct page *higher_page, *higher_buddy; 923 unsigned long combined_pfn; 924 925 if (order >= MAX_ORDER - 2) 926 return false; 927 928 if (!pfn_valid_within(buddy_pfn)) 929 return false; 930 931 combined_pfn = buddy_pfn & pfn; 932 higher_page = page + (combined_pfn - pfn); 933 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 934 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 935 936 return pfn_valid_within(buddy_pfn) && 937 page_is_buddy(higher_page, higher_buddy, order + 1); 938 } 939 940 /* 941 * Freeing function for a buddy system allocator. 942 * 943 * The concept of a buddy system is to maintain direct-mapped table 944 * (containing bit values) for memory blocks of various "orders". 945 * The bottom level table contains the map for the smallest allocatable 946 * units of memory (here, pages), and each level above it describes 947 * pairs of units from the levels below, hence, "buddies". 948 * At a high level, all that happens here is marking the table entry 949 * at the bottom level available, and propagating the changes upward 950 * as necessary, plus some accounting needed to play nicely with other 951 * parts of the VM system. 952 * At each level, we keep a list of pages, which are heads of continuous 953 * free pages of length of (1 << order) and marked with PageBuddy. 954 * Page's order is recorded in page_private(page) field. 955 * So when we are allocating or freeing one, we can derive the state of the 956 * other. That is, if we allocate a small block, and both were 957 * free, the remainder of the region must be split into blocks. 958 * If a block is freed, and its buddy is also free, then this 959 * triggers coalescing into a block of larger size. 960 * 961 * -- nyc 962 */ 963 964 static inline void __free_one_page(struct page *page, 965 unsigned long pfn, 966 struct zone *zone, unsigned int order, 967 int migratetype, bool report) 968 { 969 struct capture_control *capc = task_capc(zone); 970 unsigned long uninitialized_var(buddy_pfn); 971 unsigned long combined_pfn; 972 unsigned int max_order; 973 struct page *buddy; 974 bool to_tail; 975 976 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 977 978 VM_BUG_ON(!zone_is_initialized(zone)); 979 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 980 981 VM_BUG_ON(migratetype == -1); 982 if (likely(!is_migrate_isolate(migratetype))) 983 __mod_zone_freepage_state(zone, 1 << order, migratetype); 984 985 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 986 VM_BUG_ON_PAGE(bad_range(zone, page), page); 987 988 continue_merging: 989 while (order < max_order - 1) { 990 if (compaction_capture(capc, page, order, migratetype)) { 991 __mod_zone_freepage_state(zone, -(1 << order), 992 migratetype); 993 return; 994 } 995 buddy_pfn = __find_buddy_pfn(pfn, order); 996 buddy = page + (buddy_pfn - pfn); 997 998 if (!pfn_valid_within(buddy_pfn)) 999 goto done_merging; 1000 if (!page_is_buddy(page, buddy, order)) 1001 goto done_merging; 1002 /* 1003 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1004 * merge with it and move up one order. 1005 */ 1006 if (page_is_guard(buddy)) 1007 clear_page_guard(zone, buddy, order, migratetype); 1008 else 1009 del_page_from_free_list(buddy, zone, order); 1010 combined_pfn = buddy_pfn & pfn; 1011 page = page + (combined_pfn - pfn); 1012 pfn = combined_pfn; 1013 order++; 1014 } 1015 if (max_order < MAX_ORDER) { 1016 /* If we are here, it means order is >= pageblock_order. 1017 * We want to prevent merge between freepages on isolate 1018 * pageblock and normal pageblock. Without this, pageblock 1019 * isolation could cause incorrect freepage or CMA accounting. 1020 * 1021 * We don't want to hit this code for the more frequent 1022 * low-order merging. 1023 */ 1024 if (unlikely(has_isolate_pageblock(zone))) { 1025 int buddy_mt; 1026 1027 buddy_pfn = __find_buddy_pfn(pfn, order); 1028 buddy = page + (buddy_pfn - pfn); 1029 buddy_mt = get_pageblock_migratetype(buddy); 1030 1031 if (migratetype != buddy_mt 1032 && (is_migrate_isolate(migratetype) || 1033 is_migrate_isolate(buddy_mt))) 1034 goto done_merging; 1035 } 1036 max_order++; 1037 goto continue_merging; 1038 } 1039 1040 done_merging: 1041 set_page_order(page, order); 1042 1043 if (is_shuffle_order(order)) 1044 to_tail = shuffle_pick_tail(); 1045 else 1046 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1047 1048 if (to_tail) 1049 add_to_free_list_tail(page, zone, order, migratetype); 1050 else 1051 add_to_free_list(page, zone, order, migratetype); 1052 1053 /* Notify page reporting subsystem of freed page */ 1054 if (report) 1055 page_reporting_notify_free(order); 1056 } 1057 1058 /* 1059 * A bad page could be due to a number of fields. Instead of multiple branches, 1060 * try and check multiple fields with one check. The caller must do a detailed 1061 * check if necessary. 1062 */ 1063 static inline bool page_expected_state(struct page *page, 1064 unsigned long check_flags) 1065 { 1066 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1067 return false; 1068 1069 if (unlikely((unsigned long)page->mapping | 1070 page_ref_count(page) | 1071 #ifdef CONFIG_MEMCG 1072 (unsigned long)page->mem_cgroup | 1073 #endif 1074 (page->flags & check_flags))) 1075 return false; 1076 1077 return true; 1078 } 1079 1080 static void free_pages_check_bad(struct page *page) 1081 { 1082 const char *bad_reason; 1083 unsigned long bad_flags; 1084 1085 bad_reason = NULL; 1086 bad_flags = 0; 1087 1088 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1089 bad_reason = "nonzero mapcount"; 1090 if (unlikely(page->mapping != NULL)) 1091 bad_reason = "non-NULL mapping"; 1092 if (unlikely(page_ref_count(page) != 0)) 1093 bad_reason = "nonzero _refcount"; 1094 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 1095 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1096 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 1097 } 1098 #ifdef CONFIG_MEMCG 1099 if (unlikely(page->mem_cgroup)) 1100 bad_reason = "page still charged to cgroup"; 1101 #endif 1102 bad_page(page, bad_reason, bad_flags); 1103 } 1104 1105 static inline int free_pages_check(struct page *page) 1106 { 1107 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1108 return 0; 1109 1110 /* Something has gone sideways, find it */ 1111 free_pages_check_bad(page); 1112 return 1; 1113 } 1114 1115 static int free_tail_pages_check(struct page *head_page, struct page *page) 1116 { 1117 int ret = 1; 1118 1119 /* 1120 * We rely page->lru.next never has bit 0 set, unless the page 1121 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1122 */ 1123 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1124 1125 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1126 ret = 0; 1127 goto out; 1128 } 1129 switch (page - head_page) { 1130 case 1: 1131 /* the first tail page: ->mapping may be compound_mapcount() */ 1132 if (unlikely(compound_mapcount(page))) { 1133 bad_page(page, "nonzero compound_mapcount", 0); 1134 goto out; 1135 } 1136 break; 1137 case 2: 1138 /* 1139 * the second tail page: ->mapping is 1140 * deferred_list.next -- ignore value. 1141 */ 1142 break; 1143 default: 1144 if (page->mapping != TAIL_MAPPING) { 1145 bad_page(page, "corrupted mapping in tail page", 0); 1146 goto out; 1147 } 1148 break; 1149 } 1150 if (unlikely(!PageTail(page))) { 1151 bad_page(page, "PageTail not set", 0); 1152 goto out; 1153 } 1154 if (unlikely(compound_head(page) != head_page)) { 1155 bad_page(page, "compound_head not consistent", 0); 1156 goto out; 1157 } 1158 ret = 0; 1159 out: 1160 page->mapping = NULL; 1161 clear_compound_head(page); 1162 return ret; 1163 } 1164 1165 static void kernel_init_free_pages(struct page *page, int numpages) 1166 { 1167 int i; 1168 1169 for (i = 0; i < numpages; i++) 1170 clear_highpage(page + i); 1171 } 1172 1173 static __always_inline bool free_pages_prepare(struct page *page, 1174 unsigned int order, bool check_free) 1175 { 1176 int bad = 0; 1177 1178 VM_BUG_ON_PAGE(PageTail(page), page); 1179 1180 trace_mm_page_free(page, order); 1181 1182 /* 1183 * Check tail pages before head page information is cleared to 1184 * avoid checking PageCompound for order-0 pages. 1185 */ 1186 if (unlikely(order)) { 1187 bool compound = PageCompound(page); 1188 int i; 1189 1190 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1191 1192 if (compound) 1193 ClearPageDoubleMap(page); 1194 for (i = 1; i < (1 << order); i++) { 1195 if (compound) 1196 bad += free_tail_pages_check(page, page + i); 1197 if (unlikely(free_pages_check(page + i))) { 1198 bad++; 1199 continue; 1200 } 1201 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1202 } 1203 } 1204 if (PageMappingFlags(page)) 1205 page->mapping = NULL; 1206 if (memcg_kmem_enabled() && PageKmemcg(page)) 1207 __memcg_kmem_uncharge_page(page, order); 1208 if (check_free) 1209 bad += free_pages_check(page); 1210 if (bad) 1211 return false; 1212 1213 page_cpupid_reset_last(page); 1214 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1215 reset_page_owner(page, order); 1216 1217 if (!PageHighMem(page)) { 1218 debug_check_no_locks_freed(page_address(page), 1219 PAGE_SIZE << order); 1220 debug_check_no_obj_freed(page_address(page), 1221 PAGE_SIZE << order); 1222 } 1223 if (want_init_on_free()) 1224 kernel_init_free_pages(page, 1 << order); 1225 1226 kernel_poison_pages(page, 1 << order, 0); 1227 /* 1228 * arch_free_page() can make the page's contents inaccessible. s390 1229 * does this. So nothing which can access the page's contents should 1230 * happen after this. 1231 */ 1232 arch_free_page(page, order); 1233 1234 if (debug_pagealloc_enabled_static()) 1235 kernel_map_pages(page, 1 << order, 0); 1236 1237 kasan_free_nondeferred_pages(page, order); 1238 1239 return true; 1240 } 1241 1242 #ifdef CONFIG_DEBUG_VM 1243 /* 1244 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1245 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1246 * moved from pcp lists to free lists. 1247 */ 1248 static bool free_pcp_prepare(struct page *page) 1249 { 1250 return free_pages_prepare(page, 0, true); 1251 } 1252 1253 static bool bulkfree_pcp_prepare(struct page *page) 1254 { 1255 if (debug_pagealloc_enabled_static()) 1256 return free_pages_check(page); 1257 else 1258 return false; 1259 } 1260 #else 1261 /* 1262 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1263 * moving from pcp lists to free list in order to reduce overhead. With 1264 * debug_pagealloc enabled, they are checked also immediately when being freed 1265 * to the pcp lists. 1266 */ 1267 static bool free_pcp_prepare(struct page *page) 1268 { 1269 if (debug_pagealloc_enabled_static()) 1270 return free_pages_prepare(page, 0, true); 1271 else 1272 return free_pages_prepare(page, 0, false); 1273 } 1274 1275 static bool bulkfree_pcp_prepare(struct page *page) 1276 { 1277 return free_pages_check(page); 1278 } 1279 #endif /* CONFIG_DEBUG_VM */ 1280 1281 static inline void prefetch_buddy(struct page *page) 1282 { 1283 unsigned long pfn = page_to_pfn(page); 1284 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1285 struct page *buddy = page + (buddy_pfn - pfn); 1286 1287 prefetch(buddy); 1288 } 1289 1290 /* 1291 * Frees a number of pages from the PCP lists 1292 * Assumes all pages on list are in same zone, and of same order. 1293 * count is the number of pages to free. 1294 * 1295 * If the zone was previously in an "all pages pinned" state then look to 1296 * see if this freeing clears that state. 1297 * 1298 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1299 * pinned" detection logic. 1300 */ 1301 static void free_pcppages_bulk(struct zone *zone, int count, 1302 struct per_cpu_pages *pcp) 1303 { 1304 int migratetype = 0; 1305 int batch_free = 0; 1306 int prefetch_nr = 0; 1307 bool isolated_pageblocks; 1308 struct page *page, *tmp; 1309 LIST_HEAD(head); 1310 1311 while (count) { 1312 struct list_head *list; 1313 1314 /* 1315 * Remove pages from lists in a round-robin fashion. A 1316 * batch_free count is maintained that is incremented when an 1317 * empty list is encountered. This is so more pages are freed 1318 * off fuller lists instead of spinning excessively around empty 1319 * lists 1320 */ 1321 do { 1322 batch_free++; 1323 if (++migratetype == MIGRATE_PCPTYPES) 1324 migratetype = 0; 1325 list = &pcp->lists[migratetype]; 1326 } while (list_empty(list)); 1327 1328 /* This is the only non-empty list. Free them all. */ 1329 if (batch_free == MIGRATE_PCPTYPES) 1330 batch_free = count; 1331 1332 do { 1333 page = list_last_entry(list, struct page, lru); 1334 /* must delete to avoid corrupting pcp list */ 1335 list_del(&page->lru); 1336 pcp->count--; 1337 1338 if (bulkfree_pcp_prepare(page)) 1339 continue; 1340 1341 list_add_tail(&page->lru, &head); 1342 1343 /* 1344 * We are going to put the page back to the global 1345 * pool, prefetch its buddy to speed up later access 1346 * under zone->lock. It is believed the overhead of 1347 * an additional test and calculating buddy_pfn here 1348 * can be offset by reduced memory latency later. To 1349 * avoid excessive prefetching due to large count, only 1350 * prefetch buddy for the first pcp->batch nr of pages. 1351 */ 1352 if (prefetch_nr++ < pcp->batch) 1353 prefetch_buddy(page); 1354 } while (--count && --batch_free && !list_empty(list)); 1355 } 1356 1357 spin_lock(&zone->lock); 1358 isolated_pageblocks = has_isolate_pageblock(zone); 1359 1360 /* 1361 * Use safe version since after __free_one_page(), 1362 * page->lru.next will not point to original list. 1363 */ 1364 list_for_each_entry_safe(page, tmp, &head, lru) { 1365 int mt = get_pcppage_migratetype(page); 1366 /* MIGRATE_ISOLATE page should not go to pcplists */ 1367 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1368 /* Pageblock could have been isolated meanwhile */ 1369 if (unlikely(isolated_pageblocks)) 1370 mt = get_pageblock_migratetype(page); 1371 1372 __free_one_page(page, page_to_pfn(page), zone, 0, mt, true); 1373 trace_mm_page_pcpu_drain(page, 0, mt); 1374 } 1375 spin_unlock(&zone->lock); 1376 } 1377 1378 static void free_one_page(struct zone *zone, 1379 struct page *page, unsigned long pfn, 1380 unsigned int order, 1381 int migratetype) 1382 { 1383 spin_lock(&zone->lock); 1384 if (unlikely(has_isolate_pageblock(zone) || 1385 is_migrate_isolate(migratetype))) { 1386 migratetype = get_pfnblock_migratetype(page, pfn); 1387 } 1388 __free_one_page(page, pfn, zone, order, migratetype, true); 1389 spin_unlock(&zone->lock); 1390 } 1391 1392 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1393 unsigned long zone, int nid) 1394 { 1395 mm_zero_struct_page(page); 1396 set_page_links(page, zone, nid, pfn); 1397 init_page_count(page); 1398 page_mapcount_reset(page); 1399 page_cpupid_reset_last(page); 1400 page_kasan_tag_reset(page); 1401 1402 INIT_LIST_HEAD(&page->lru); 1403 #ifdef WANT_PAGE_VIRTUAL 1404 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1405 if (!is_highmem_idx(zone)) 1406 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1407 #endif 1408 } 1409 1410 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1411 static void __meminit init_reserved_page(unsigned long pfn) 1412 { 1413 pg_data_t *pgdat; 1414 int nid, zid; 1415 1416 if (!early_page_uninitialised(pfn)) 1417 return; 1418 1419 nid = early_pfn_to_nid(pfn); 1420 pgdat = NODE_DATA(nid); 1421 1422 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1423 struct zone *zone = &pgdat->node_zones[zid]; 1424 1425 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1426 break; 1427 } 1428 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1429 } 1430 #else 1431 static inline void init_reserved_page(unsigned long pfn) 1432 { 1433 } 1434 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1435 1436 /* 1437 * Initialised pages do not have PageReserved set. This function is 1438 * called for each range allocated by the bootmem allocator and 1439 * marks the pages PageReserved. The remaining valid pages are later 1440 * sent to the buddy page allocator. 1441 */ 1442 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1443 { 1444 unsigned long start_pfn = PFN_DOWN(start); 1445 unsigned long end_pfn = PFN_UP(end); 1446 1447 for (; start_pfn < end_pfn; start_pfn++) { 1448 if (pfn_valid(start_pfn)) { 1449 struct page *page = pfn_to_page(start_pfn); 1450 1451 init_reserved_page(start_pfn); 1452 1453 /* Avoid false-positive PageTail() */ 1454 INIT_LIST_HEAD(&page->lru); 1455 1456 /* 1457 * no need for atomic set_bit because the struct 1458 * page is not visible yet so nobody should 1459 * access it yet. 1460 */ 1461 __SetPageReserved(page); 1462 } 1463 } 1464 } 1465 1466 static void __free_pages_ok(struct page *page, unsigned int order) 1467 { 1468 unsigned long flags; 1469 int migratetype; 1470 unsigned long pfn = page_to_pfn(page); 1471 1472 if (!free_pages_prepare(page, order, true)) 1473 return; 1474 1475 migratetype = get_pfnblock_migratetype(page, pfn); 1476 local_irq_save(flags); 1477 __count_vm_events(PGFREE, 1 << order); 1478 free_one_page(page_zone(page), page, pfn, order, migratetype); 1479 local_irq_restore(flags); 1480 } 1481 1482 void __free_pages_core(struct page *page, unsigned int order) 1483 { 1484 unsigned int nr_pages = 1 << order; 1485 struct page *p = page; 1486 unsigned int loop; 1487 1488 prefetchw(p); 1489 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1490 prefetchw(p + 1); 1491 __ClearPageReserved(p); 1492 set_page_count(p, 0); 1493 } 1494 __ClearPageReserved(p); 1495 set_page_count(p, 0); 1496 1497 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1498 set_page_refcounted(page); 1499 __free_pages(page, order); 1500 } 1501 1502 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1503 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1504 1505 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1506 1507 int __meminit early_pfn_to_nid(unsigned long pfn) 1508 { 1509 static DEFINE_SPINLOCK(early_pfn_lock); 1510 int nid; 1511 1512 spin_lock(&early_pfn_lock); 1513 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1514 if (nid < 0) 1515 nid = first_online_node; 1516 spin_unlock(&early_pfn_lock); 1517 1518 return nid; 1519 } 1520 #endif 1521 1522 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1523 /* Only safe to use early in boot when initialisation is single-threaded */ 1524 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1525 { 1526 int nid; 1527 1528 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1529 if (nid >= 0 && nid != node) 1530 return false; 1531 return true; 1532 } 1533 1534 #else 1535 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1536 { 1537 return true; 1538 } 1539 #endif 1540 1541 1542 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1543 unsigned int order) 1544 { 1545 if (early_page_uninitialised(pfn)) 1546 return; 1547 __free_pages_core(page, order); 1548 } 1549 1550 /* 1551 * Check that the whole (or subset of) a pageblock given by the interval of 1552 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1553 * with the migration of free compaction scanner. The scanners then need to 1554 * use only pfn_valid_within() check for arches that allow holes within 1555 * pageblocks. 1556 * 1557 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1558 * 1559 * It's possible on some configurations to have a setup like node0 node1 node0 1560 * i.e. it's possible that all pages within a zones range of pages do not 1561 * belong to a single zone. We assume that a border between node0 and node1 1562 * can occur within a single pageblock, but not a node0 node1 node0 1563 * interleaving within a single pageblock. It is therefore sufficient to check 1564 * the first and last page of a pageblock and avoid checking each individual 1565 * page in a pageblock. 1566 */ 1567 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1568 unsigned long end_pfn, struct zone *zone) 1569 { 1570 struct page *start_page; 1571 struct page *end_page; 1572 1573 /* end_pfn is one past the range we are checking */ 1574 end_pfn--; 1575 1576 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1577 return NULL; 1578 1579 start_page = pfn_to_online_page(start_pfn); 1580 if (!start_page) 1581 return NULL; 1582 1583 if (page_zone(start_page) != zone) 1584 return NULL; 1585 1586 end_page = pfn_to_page(end_pfn); 1587 1588 /* This gives a shorter code than deriving page_zone(end_page) */ 1589 if (page_zone_id(start_page) != page_zone_id(end_page)) 1590 return NULL; 1591 1592 return start_page; 1593 } 1594 1595 void set_zone_contiguous(struct zone *zone) 1596 { 1597 unsigned long block_start_pfn = zone->zone_start_pfn; 1598 unsigned long block_end_pfn; 1599 1600 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1601 for (; block_start_pfn < zone_end_pfn(zone); 1602 block_start_pfn = block_end_pfn, 1603 block_end_pfn += pageblock_nr_pages) { 1604 1605 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1606 1607 if (!__pageblock_pfn_to_page(block_start_pfn, 1608 block_end_pfn, zone)) 1609 return; 1610 } 1611 1612 /* We confirm that there is no hole */ 1613 zone->contiguous = true; 1614 } 1615 1616 void clear_zone_contiguous(struct zone *zone) 1617 { 1618 zone->contiguous = false; 1619 } 1620 1621 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1622 static void __init deferred_free_range(unsigned long pfn, 1623 unsigned long nr_pages) 1624 { 1625 struct page *page; 1626 unsigned long i; 1627 1628 if (!nr_pages) 1629 return; 1630 1631 page = pfn_to_page(pfn); 1632 1633 /* Free a large naturally-aligned chunk if possible */ 1634 if (nr_pages == pageblock_nr_pages && 1635 (pfn & (pageblock_nr_pages - 1)) == 0) { 1636 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1637 __free_pages_core(page, pageblock_order); 1638 return; 1639 } 1640 1641 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1642 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1643 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1644 __free_pages_core(page, 0); 1645 } 1646 } 1647 1648 /* Completion tracking for deferred_init_memmap() threads */ 1649 static atomic_t pgdat_init_n_undone __initdata; 1650 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1651 1652 static inline void __init pgdat_init_report_one_done(void) 1653 { 1654 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1655 complete(&pgdat_init_all_done_comp); 1656 } 1657 1658 /* 1659 * Returns true if page needs to be initialized or freed to buddy allocator. 1660 * 1661 * First we check if pfn is valid on architectures where it is possible to have 1662 * holes within pageblock_nr_pages. On systems where it is not possible, this 1663 * function is optimized out. 1664 * 1665 * Then, we check if a current large page is valid by only checking the validity 1666 * of the head pfn. 1667 */ 1668 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1669 { 1670 if (!pfn_valid_within(pfn)) 1671 return false; 1672 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1673 return false; 1674 return true; 1675 } 1676 1677 /* 1678 * Free pages to buddy allocator. Try to free aligned pages in 1679 * pageblock_nr_pages sizes. 1680 */ 1681 static void __init deferred_free_pages(unsigned long pfn, 1682 unsigned long end_pfn) 1683 { 1684 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1685 unsigned long nr_free = 0; 1686 1687 for (; pfn < end_pfn; pfn++) { 1688 if (!deferred_pfn_valid(pfn)) { 1689 deferred_free_range(pfn - nr_free, nr_free); 1690 nr_free = 0; 1691 } else if (!(pfn & nr_pgmask)) { 1692 deferred_free_range(pfn - nr_free, nr_free); 1693 nr_free = 1; 1694 touch_nmi_watchdog(); 1695 } else { 1696 nr_free++; 1697 } 1698 } 1699 /* Free the last block of pages to allocator */ 1700 deferred_free_range(pfn - nr_free, nr_free); 1701 } 1702 1703 /* 1704 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1705 * by performing it only once every pageblock_nr_pages. 1706 * Return number of pages initialized. 1707 */ 1708 static unsigned long __init deferred_init_pages(struct zone *zone, 1709 unsigned long pfn, 1710 unsigned long end_pfn) 1711 { 1712 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1713 int nid = zone_to_nid(zone); 1714 unsigned long nr_pages = 0; 1715 int zid = zone_idx(zone); 1716 struct page *page = NULL; 1717 1718 for (; pfn < end_pfn; pfn++) { 1719 if (!deferred_pfn_valid(pfn)) { 1720 page = NULL; 1721 continue; 1722 } else if (!page || !(pfn & nr_pgmask)) { 1723 page = pfn_to_page(pfn); 1724 touch_nmi_watchdog(); 1725 } else { 1726 page++; 1727 } 1728 __init_single_page(page, pfn, zid, nid); 1729 nr_pages++; 1730 } 1731 return (nr_pages); 1732 } 1733 1734 /* 1735 * This function is meant to pre-load the iterator for the zone init. 1736 * Specifically it walks through the ranges until we are caught up to the 1737 * first_init_pfn value and exits there. If we never encounter the value we 1738 * return false indicating there are no valid ranges left. 1739 */ 1740 static bool __init 1741 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1742 unsigned long *spfn, unsigned long *epfn, 1743 unsigned long first_init_pfn) 1744 { 1745 u64 j; 1746 1747 /* 1748 * Start out by walking through the ranges in this zone that have 1749 * already been initialized. We don't need to do anything with them 1750 * so we just need to flush them out of the system. 1751 */ 1752 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1753 if (*epfn <= first_init_pfn) 1754 continue; 1755 if (*spfn < first_init_pfn) 1756 *spfn = first_init_pfn; 1757 *i = j; 1758 return true; 1759 } 1760 1761 return false; 1762 } 1763 1764 /* 1765 * Initialize and free pages. We do it in two loops: first we initialize 1766 * struct page, then free to buddy allocator, because while we are 1767 * freeing pages we can access pages that are ahead (computing buddy 1768 * page in __free_one_page()). 1769 * 1770 * In order to try and keep some memory in the cache we have the loop 1771 * broken along max page order boundaries. This way we will not cause 1772 * any issues with the buddy page computation. 1773 */ 1774 static unsigned long __init 1775 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1776 unsigned long *end_pfn) 1777 { 1778 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1779 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1780 unsigned long nr_pages = 0; 1781 u64 j = *i; 1782 1783 /* First we loop through and initialize the page values */ 1784 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1785 unsigned long t; 1786 1787 if (mo_pfn <= *start_pfn) 1788 break; 1789 1790 t = min(mo_pfn, *end_pfn); 1791 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1792 1793 if (mo_pfn < *end_pfn) { 1794 *start_pfn = mo_pfn; 1795 break; 1796 } 1797 } 1798 1799 /* Reset values and now loop through freeing pages as needed */ 1800 swap(j, *i); 1801 1802 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1803 unsigned long t; 1804 1805 if (mo_pfn <= spfn) 1806 break; 1807 1808 t = min(mo_pfn, epfn); 1809 deferred_free_pages(spfn, t); 1810 1811 if (mo_pfn <= epfn) 1812 break; 1813 } 1814 1815 return nr_pages; 1816 } 1817 1818 /* Initialise remaining memory on a node */ 1819 static int __init deferred_init_memmap(void *data) 1820 { 1821 pg_data_t *pgdat = data; 1822 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1823 unsigned long spfn = 0, epfn = 0, nr_pages = 0; 1824 unsigned long first_init_pfn, flags; 1825 unsigned long start = jiffies; 1826 struct zone *zone; 1827 int zid; 1828 u64 i; 1829 1830 /* Bind memory initialisation thread to a local node if possible */ 1831 if (!cpumask_empty(cpumask)) 1832 set_cpus_allowed_ptr(current, cpumask); 1833 1834 pgdat_resize_lock(pgdat, &flags); 1835 first_init_pfn = pgdat->first_deferred_pfn; 1836 if (first_init_pfn == ULONG_MAX) { 1837 pgdat_resize_unlock(pgdat, &flags); 1838 pgdat_init_report_one_done(); 1839 return 0; 1840 } 1841 1842 /* Sanity check boundaries */ 1843 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1844 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1845 pgdat->first_deferred_pfn = ULONG_MAX; 1846 1847 /* Only the highest zone is deferred so find it */ 1848 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1849 zone = pgdat->node_zones + zid; 1850 if (first_init_pfn < zone_end_pfn(zone)) 1851 break; 1852 } 1853 1854 /* If the zone is empty somebody else may have cleared out the zone */ 1855 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1856 first_init_pfn)) 1857 goto zone_empty; 1858 1859 /* 1860 * Initialize and free pages in MAX_ORDER sized increments so 1861 * that we can avoid introducing any issues with the buddy 1862 * allocator. 1863 */ 1864 while (spfn < epfn) 1865 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1866 zone_empty: 1867 pgdat_resize_unlock(pgdat, &flags); 1868 1869 /* Sanity check that the next zone really is unpopulated */ 1870 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1871 1872 pr_info("node %d initialised, %lu pages in %ums\n", 1873 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start)); 1874 1875 pgdat_init_report_one_done(); 1876 return 0; 1877 } 1878 1879 /* 1880 * If this zone has deferred pages, try to grow it by initializing enough 1881 * deferred pages to satisfy the allocation specified by order, rounded up to 1882 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1883 * of SECTION_SIZE bytes by initializing struct pages in increments of 1884 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1885 * 1886 * Return true when zone was grown, otherwise return false. We return true even 1887 * when we grow less than requested, to let the caller decide if there are 1888 * enough pages to satisfy the allocation. 1889 * 1890 * Note: We use noinline because this function is needed only during boot, and 1891 * it is called from a __ref function _deferred_grow_zone. This way we are 1892 * making sure that it is not inlined into permanent text section. 1893 */ 1894 static noinline bool __init 1895 deferred_grow_zone(struct zone *zone, unsigned int order) 1896 { 1897 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 1898 pg_data_t *pgdat = zone->zone_pgdat; 1899 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 1900 unsigned long spfn, epfn, flags; 1901 unsigned long nr_pages = 0; 1902 u64 i; 1903 1904 /* Only the last zone may have deferred pages */ 1905 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 1906 return false; 1907 1908 pgdat_resize_lock(pgdat, &flags); 1909 1910 /* 1911 * If deferred pages have been initialized while we were waiting for 1912 * the lock, return true, as the zone was grown. The caller will retry 1913 * this zone. We won't return to this function since the caller also 1914 * has this static branch. 1915 */ 1916 if (!static_branch_unlikely(&deferred_pages)) { 1917 pgdat_resize_unlock(pgdat, &flags); 1918 return true; 1919 } 1920 1921 /* 1922 * If someone grew this zone while we were waiting for spinlock, return 1923 * true, as there might be enough pages already. 1924 */ 1925 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 1926 pgdat_resize_unlock(pgdat, &flags); 1927 return true; 1928 } 1929 1930 /* If the zone is empty somebody else may have cleared out the zone */ 1931 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1932 first_deferred_pfn)) { 1933 pgdat->first_deferred_pfn = ULONG_MAX; 1934 pgdat_resize_unlock(pgdat, &flags); 1935 /* Retry only once. */ 1936 return first_deferred_pfn != ULONG_MAX; 1937 } 1938 1939 /* 1940 * Initialize and free pages in MAX_ORDER sized increments so 1941 * that we can avoid introducing any issues with the buddy 1942 * allocator. 1943 */ 1944 while (spfn < epfn) { 1945 /* update our first deferred PFN for this section */ 1946 first_deferred_pfn = spfn; 1947 1948 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1949 1950 /* We should only stop along section boundaries */ 1951 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 1952 continue; 1953 1954 /* If our quota has been met we can stop here */ 1955 if (nr_pages >= nr_pages_needed) 1956 break; 1957 } 1958 1959 pgdat->first_deferred_pfn = spfn; 1960 pgdat_resize_unlock(pgdat, &flags); 1961 1962 return nr_pages > 0; 1963 } 1964 1965 /* 1966 * deferred_grow_zone() is __init, but it is called from 1967 * get_page_from_freelist() during early boot until deferred_pages permanently 1968 * disables this call. This is why we have refdata wrapper to avoid warning, 1969 * and to ensure that the function body gets unloaded. 1970 */ 1971 static bool __ref 1972 _deferred_grow_zone(struct zone *zone, unsigned int order) 1973 { 1974 return deferred_grow_zone(zone, order); 1975 } 1976 1977 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1978 1979 void __init page_alloc_init_late(void) 1980 { 1981 struct zone *zone; 1982 int nid; 1983 1984 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1985 1986 /* There will be num_node_state(N_MEMORY) threads */ 1987 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1988 for_each_node_state(nid, N_MEMORY) { 1989 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1990 } 1991 1992 /* Block until all are initialised */ 1993 wait_for_completion(&pgdat_init_all_done_comp); 1994 1995 /* 1996 * The number of managed pages has changed due to the initialisation 1997 * so the pcpu batch and high limits needs to be updated or the limits 1998 * will be artificially small. 1999 */ 2000 for_each_populated_zone(zone) 2001 zone_pcp_update(zone); 2002 2003 /* 2004 * We initialized the rest of the deferred pages. Permanently disable 2005 * on-demand struct page initialization. 2006 */ 2007 static_branch_disable(&deferred_pages); 2008 2009 /* Reinit limits that are based on free pages after the kernel is up */ 2010 files_maxfiles_init(); 2011 #endif 2012 2013 /* Discard memblock private memory */ 2014 memblock_discard(); 2015 2016 for_each_node_state(nid, N_MEMORY) 2017 shuffle_free_memory(NODE_DATA(nid)); 2018 2019 for_each_populated_zone(zone) 2020 set_zone_contiguous(zone); 2021 } 2022 2023 #ifdef CONFIG_CMA 2024 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2025 void __init init_cma_reserved_pageblock(struct page *page) 2026 { 2027 unsigned i = pageblock_nr_pages; 2028 struct page *p = page; 2029 2030 do { 2031 __ClearPageReserved(p); 2032 set_page_count(p, 0); 2033 } while (++p, --i); 2034 2035 set_pageblock_migratetype(page, MIGRATE_CMA); 2036 2037 if (pageblock_order >= MAX_ORDER) { 2038 i = pageblock_nr_pages; 2039 p = page; 2040 do { 2041 set_page_refcounted(p); 2042 __free_pages(p, MAX_ORDER - 1); 2043 p += MAX_ORDER_NR_PAGES; 2044 } while (i -= MAX_ORDER_NR_PAGES); 2045 } else { 2046 set_page_refcounted(page); 2047 __free_pages(page, pageblock_order); 2048 } 2049 2050 adjust_managed_page_count(page, pageblock_nr_pages); 2051 } 2052 #endif 2053 2054 /* 2055 * The order of subdivision here is critical for the IO subsystem. 2056 * Please do not alter this order without good reasons and regression 2057 * testing. Specifically, as large blocks of memory are subdivided, 2058 * the order in which smaller blocks are delivered depends on the order 2059 * they're subdivided in this function. This is the primary factor 2060 * influencing the order in which pages are delivered to the IO 2061 * subsystem according to empirical testing, and this is also justified 2062 * by considering the behavior of a buddy system containing a single 2063 * large block of memory acted on by a series of small allocations. 2064 * This behavior is a critical factor in sglist merging's success. 2065 * 2066 * -- nyc 2067 */ 2068 static inline void expand(struct zone *zone, struct page *page, 2069 int low, int high, int migratetype) 2070 { 2071 unsigned long size = 1 << high; 2072 2073 while (high > low) { 2074 high--; 2075 size >>= 1; 2076 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2077 2078 /* 2079 * Mark as guard pages (or page), that will allow to 2080 * merge back to allocator when buddy will be freed. 2081 * Corresponding page table entries will not be touched, 2082 * pages will stay not present in virtual address space 2083 */ 2084 if (set_page_guard(zone, &page[size], high, migratetype)) 2085 continue; 2086 2087 add_to_free_list(&page[size], zone, high, migratetype); 2088 set_page_order(&page[size], high); 2089 } 2090 } 2091 2092 static void check_new_page_bad(struct page *page) 2093 { 2094 const char *bad_reason = NULL; 2095 unsigned long bad_flags = 0; 2096 2097 if (unlikely(atomic_read(&page->_mapcount) != -1)) 2098 bad_reason = "nonzero mapcount"; 2099 if (unlikely(page->mapping != NULL)) 2100 bad_reason = "non-NULL mapping"; 2101 if (unlikely(page_ref_count(page) != 0)) 2102 bad_reason = "nonzero _refcount"; 2103 if (unlikely(page->flags & __PG_HWPOISON)) { 2104 bad_reason = "HWPoisoned (hardware-corrupted)"; 2105 bad_flags = __PG_HWPOISON; 2106 /* Don't complain about hwpoisoned pages */ 2107 page_mapcount_reset(page); /* remove PageBuddy */ 2108 return; 2109 } 2110 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 2111 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 2112 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 2113 } 2114 #ifdef CONFIG_MEMCG 2115 if (unlikely(page->mem_cgroup)) 2116 bad_reason = "page still charged to cgroup"; 2117 #endif 2118 bad_page(page, bad_reason, bad_flags); 2119 } 2120 2121 /* 2122 * This page is about to be returned from the page allocator 2123 */ 2124 static inline int check_new_page(struct page *page) 2125 { 2126 if (likely(page_expected_state(page, 2127 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2128 return 0; 2129 2130 check_new_page_bad(page); 2131 return 1; 2132 } 2133 2134 static inline bool free_pages_prezeroed(void) 2135 { 2136 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 2137 page_poisoning_enabled()) || want_init_on_free(); 2138 } 2139 2140 #ifdef CONFIG_DEBUG_VM 2141 /* 2142 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2143 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2144 * also checked when pcp lists are refilled from the free lists. 2145 */ 2146 static inline bool check_pcp_refill(struct page *page) 2147 { 2148 if (debug_pagealloc_enabled_static()) 2149 return check_new_page(page); 2150 else 2151 return false; 2152 } 2153 2154 static inline bool check_new_pcp(struct page *page) 2155 { 2156 return check_new_page(page); 2157 } 2158 #else 2159 /* 2160 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2161 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2162 * enabled, they are also checked when being allocated from the pcp lists. 2163 */ 2164 static inline bool check_pcp_refill(struct page *page) 2165 { 2166 return check_new_page(page); 2167 } 2168 static inline bool check_new_pcp(struct page *page) 2169 { 2170 if (debug_pagealloc_enabled_static()) 2171 return check_new_page(page); 2172 else 2173 return false; 2174 } 2175 #endif /* CONFIG_DEBUG_VM */ 2176 2177 static bool check_new_pages(struct page *page, unsigned int order) 2178 { 2179 int i; 2180 for (i = 0; i < (1 << order); i++) { 2181 struct page *p = page + i; 2182 2183 if (unlikely(check_new_page(p))) 2184 return true; 2185 } 2186 2187 return false; 2188 } 2189 2190 inline void post_alloc_hook(struct page *page, unsigned int order, 2191 gfp_t gfp_flags) 2192 { 2193 set_page_private(page, 0); 2194 set_page_refcounted(page); 2195 2196 arch_alloc_page(page, order); 2197 if (debug_pagealloc_enabled_static()) 2198 kernel_map_pages(page, 1 << order, 1); 2199 kasan_alloc_pages(page, order); 2200 kernel_poison_pages(page, 1 << order, 1); 2201 set_page_owner(page, order, gfp_flags); 2202 } 2203 2204 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2205 unsigned int alloc_flags) 2206 { 2207 post_alloc_hook(page, order, gfp_flags); 2208 2209 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags)) 2210 kernel_init_free_pages(page, 1 << order); 2211 2212 if (order && (gfp_flags & __GFP_COMP)) 2213 prep_compound_page(page, order); 2214 2215 /* 2216 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2217 * allocate the page. The expectation is that the caller is taking 2218 * steps that will free more memory. The caller should avoid the page 2219 * being used for !PFMEMALLOC purposes. 2220 */ 2221 if (alloc_flags & ALLOC_NO_WATERMARKS) 2222 set_page_pfmemalloc(page); 2223 else 2224 clear_page_pfmemalloc(page); 2225 } 2226 2227 /* 2228 * Go through the free lists for the given migratetype and remove 2229 * the smallest available page from the freelists 2230 */ 2231 static __always_inline 2232 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2233 int migratetype) 2234 { 2235 unsigned int current_order; 2236 struct free_area *area; 2237 struct page *page; 2238 2239 /* Find a page of the appropriate size in the preferred list */ 2240 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2241 area = &(zone->free_area[current_order]); 2242 page = get_page_from_free_area(area, migratetype); 2243 if (!page) 2244 continue; 2245 del_page_from_free_list(page, zone, current_order); 2246 expand(zone, page, order, current_order, migratetype); 2247 set_pcppage_migratetype(page, migratetype); 2248 return page; 2249 } 2250 2251 return NULL; 2252 } 2253 2254 2255 /* 2256 * This array describes the order lists are fallen back to when 2257 * the free lists for the desirable migrate type are depleted 2258 */ 2259 static int fallbacks[MIGRATE_TYPES][4] = { 2260 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2261 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2262 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2263 #ifdef CONFIG_CMA 2264 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2265 #endif 2266 #ifdef CONFIG_MEMORY_ISOLATION 2267 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2268 #endif 2269 }; 2270 2271 #ifdef CONFIG_CMA 2272 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2273 unsigned int order) 2274 { 2275 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2276 } 2277 #else 2278 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2279 unsigned int order) { return NULL; } 2280 #endif 2281 2282 /* 2283 * Move the free pages in a range to the free lists of the requested type. 2284 * Note that start_page and end_pages are not aligned on a pageblock 2285 * boundary. If alignment is required, use move_freepages_block() 2286 */ 2287 static int move_freepages(struct zone *zone, 2288 struct page *start_page, struct page *end_page, 2289 int migratetype, int *num_movable) 2290 { 2291 struct page *page; 2292 unsigned int order; 2293 int pages_moved = 0; 2294 2295 for (page = start_page; page <= end_page;) { 2296 if (!pfn_valid_within(page_to_pfn(page))) { 2297 page++; 2298 continue; 2299 } 2300 2301 if (!PageBuddy(page)) { 2302 /* 2303 * We assume that pages that could be isolated for 2304 * migration are movable. But we don't actually try 2305 * isolating, as that would be expensive. 2306 */ 2307 if (num_movable && 2308 (PageLRU(page) || __PageMovable(page))) 2309 (*num_movable)++; 2310 2311 page++; 2312 continue; 2313 } 2314 2315 /* Make sure we are not inadvertently changing nodes */ 2316 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2317 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2318 2319 order = page_order(page); 2320 move_to_free_list(page, zone, order, migratetype); 2321 page += 1 << order; 2322 pages_moved += 1 << order; 2323 } 2324 2325 return pages_moved; 2326 } 2327 2328 int move_freepages_block(struct zone *zone, struct page *page, 2329 int migratetype, int *num_movable) 2330 { 2331 unsigned long start_pfn, end_pfn; 2332 struct page *start_page, *end_page; 2333 2334 if (num_movable) 2335 *num_movable = 0; 2336 2337 start_pfn = page_to_pfn(page); 2338 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2339 start_page = pfn_to_page(start_pfn); 2340 end_page = start_page + pageblock_nr_pages - 1; 2341 end_pfn = start_pfn + pageblock_nr_pages - 1; 2342 2343 /* Do not cross zone boundaries */ 2344 if (!zone_spans_pfn(zone, start_pfn)) 2345 start_page = page; 2346 if (!zone_spans_pfn(zone, end_pfn)) 2347 return 0; 2348 2349 return move_freepages(zone, start_page, end_page, migratetype, 2350 num_movable); 2351 } 2352 2353 static void change_pageblock_range(struct page *pageblock_page, 2354 int start_order, int migratetype) 2355 { 2356 int nr_pageblocks = 1 << (start_order - pageblock_order); 2357 2358 while (nr_pageblocks--) { 2359 set_pageblock_migratetype(pageblock_page, migratetype); 2360 pageblock_page += pageblock_nr_pages; 2361 } 2362 } 2363 2364 /* 2365 * When we are falling back to another migratetype during allocation, try to 2366 * steal extra free pages from the same pageblocks to satisfy further 2367 * allocations, instead of polluting multiple pageblocks. 2368 * 2369 * If we are stealing a relatively large buddy page, it is likely there will 2370 * be more free pages in the pageblock, so try to steal them all. For 2371 * reclaimable and unmovable allocations, we steal regardless of page size, 2372 * as fragmentation caused by those allocations polluting movable pageblocks 2373 * is worse than movable allocations stealing from unmovable and reclaimable 2374 * pageblocks. 2375 */ 2376 static bool can_steal_fallback(unsigned int order, int start_mt) 2377 { 2378 /* 2379 * Leaving this order check is intended, although there is 2380 * relaxed order check in next check. The reason is that 2381 * we can actually steal whole pageblock if this condition met, 2382 * but, below check doesn't guarantee it and that is just heuristic 2383 * so could be changed anytime. 2384 */ 2385 if (order >= pageblock_order) 2386 return true; 2387 2388 if (order >= pageblock_order / 2 || 2389 start_mt == MIGRATE_RECLAIMABLE || 2390 start_mt == MIGRATE_UNMOVABLE || 2391 page_group_by_mobility_disabled) 2392 return true; 2393 2394 return false; 2395 } 2396 2397 static inline void boost_watermark(struct zone *zone) 2398 { 2399 unsigned long max_boost; 2400 2401 if (!watermark_boost_factor) 2402 return; 2403 2404 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2405 watermark_boost_factor, 10000); 2406 2407 /* 2408 * high watermark may be uninitialised if fragmentation occurs 2409 * very early in boot so do not boost. We do not fall 2410 * through and boost by pageblock_nr_pages as failing 2411 * allocations that early means that reclaim is not going 2412 * to help and it may even be impossible to reclaim the 2413 * boosted watermark resulting in a hang. 2414 */ 2415 if (!max_boost) 2416 return; 2417 2418 max_boost = max(pageblock_nr_pages, max_boost); 2419 2420 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2421 max_boost); 2422 } 2423 2424 /* 2425 * This function implements actual steal behaviour. If order is large enough, 2426 * we can steal whole pageblock. If not, we first move freepages in this 2427 * pageblock to our migratetype and determine how many already-allocated pages 2428 * are there in the pageblock with a compatible migratetype. If at least half 2429 * of pages are free or compatible, we can change migratetype of the pageblock 2430 * itself, so pages freed in the future will be put on the correct free list. 2431 */ 2432 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2433 unsigned int alloc_flags, int start_type, bool whole_block) 2434 { 2435 unsigned int current_order = page_order(page); 2436 int free_pages, movable_pages, alike_pages; 2437 int old_block_type; 2438 2439 old_block_type = get_pageblock_migratetype(page); 2440 2441 /* 2442 * This can happen due to races and we want to prevent broken 2443 * highatomic accounting. 2444 */ 2445 if (is_migrate_highatomic(old_block_type)) 2446 goto single_page; 2447 2448 /* Take ownership for orders >= pageblock_order */ 2449 if (current_order >= pageblock_order) { 2450 change_pageblock_range(page, current_order, start_type); 2451 goto single_page; 2452 } 2453 2454 /* 2455 * Boost watermarks to increase reclaim pressure to reduce the 2456 * likelihood of future fallbacks. Wake kswapd now as the node 2457 * may be balanced overall and kswapd will not wake naturally. 2458 */ 2459 boost_watermark(zone); 2460 if (alloc_flags & ALLOC_KSWAPD) 2461 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2462 2463 /* We are not allowed to try stealing from the whole block */ 2464 if (!whole_block) 2465 goto single_page; 2466 2467 free_pages = move_freepages_block(zone, page, start_type, 2468 &movable_pages); 2469 /* 2470 * Determine how many pages are compatible with our allocation. 2471 * For movable allocation, it's the number of movable pages which 2472 * we just obtained. For other types it's a bit more tricky. 2473 */ 2474 if (start_type == MIGRATE_MOVABLE) { 2475 alike_pages = movable_pages; 2476 } else { 2477 /* 2478 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2479 * to MOVABLE pageblock, consider all non-movable pages as 2480 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2481 * vice versa, be conservative since we can't distinguish the 2482 * exact migratetype of non-movable pages. 2483 */ 2484 if (old_block_type == MIGRATE_MOVABLE) 2485 alike_pages = pageblock_nr_pages 2486 - (free_pages + movable_pages); 2487 else 2488 alike_pages = 0; 2489 } 2490 2491 /* moving whole block can fail due to zone boundary conditions */ 2492 if (!free_pages) 2493 goto single_page; 2494 2495 /* 2496 * If a sufficient number of pages in the block are either free or of 2497 * comparable migratability as our allocation, claim the whole block. 2498 */ 2499 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2500 page_group_by_mobility_disabled) 2501 set_pageblock_migratetype(page, start_type); 2502 2503 return; 2504 2505 single_page: 2506 move_to_free_list(page, zone, current_order, start_type); 2507 } 2508 2509 /* 2510 * Check whether there is a suitable fallback freepage with requested order. 2511 * If only_stealable is true, this function returns fallback_mt only if 2512 * we can steal other freepages all together. This would help to reduce 2513 * fragmentation due to mixed migratetype pages in one pageblock. 2514 */ 2515 int find_suitable_fallback(struct free_area *area, unsigned int order, 2516 int migratetype, bool only_stealable, bool *can_steal) 2517 { 2518 int i; 2519 int fallback_mt; 2520 2521 if (area->nr_free == 0) 2522 return -1; 2523 2524 *can_steal = false; 2525 for (i = 0;; i++) { 2526 fallback_mt = fallbacks[migratetype][i]; 2527 if (fallback_mt == MIGRATE_TYPES) 2528 break; 2529 2530 if (free_area_empty(area, fallback_mt)) 2531 continue; 2532 2533 if (can_steal_fallback(order, migratetype)) 2534 *can_steal = true; 2535 2536 if (!only_stealable) 2537 return fallback_mt; 2538 2539 if (*can_steal) 2540 return fallback_mt; 2541 } 2542 2543 return -1; 2544 } 2545 2546 /* 2547 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2548 * there are no empty page blocks that contain a page with a suitable order 2549 */ 2550 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2551 unsigned int alloc_order) 2552 { 2553 int mt; 2554 unsigned long max_managed, flags; 2555 2556 /* 2557 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2558 * Check is race-prone but harmless. 2559 */ 2560 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2561 if (zone->nr_reserved_highatomic >= max_managed) 2562 return; 2563 2564 spin_lock_irqsave(&zone->lock, flags); 2565 2566 /* Recheck the nr_reserved_highatomic limit under the lock */ 2567 if (zone->nr_reserved_highatomic >= max_managed) 2568 goto out_unlock; 2569 2570 /* Yoink! */ 2571 mt = get_pageblock_migratetype(page); 2572 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2573 && !is_migrate_cma(mt)) { 2574 zone->nr_reserved_highatomic += pageblock_nr_pages; 2575 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2576 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2577 } 2578 2579 out_unlock: 2580 spin_unlock_irqrestore(&zone->lock, flags); 2581 } 2582 2583 /* 2584 * Used when an allocation is about to fail under memory pressure. This 2585 * potentially hurts the reliability of high-order allocations when under 2586 * intense memory pressure but failed atomic allocations should be easier 2587 * to recover from than an OOM. 2588 * 2589 * If @force is true, try to unreserve a pageblock even though highatomic 2590 * pageblock is exhausted. 2591 */ 2592 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2593 bool force) 2594 { 2595 struct zonelist *zonelist = ac->zonelist; 2596 unsigned long flags; 2597 struct zoneref *z; 2598 struct zone *zone; 2599 struct page *page; 2600 int order; 2601 bool ret; 2602 2603 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2604 ac->nodemask) { 2605 /* 2606 * Preserve at least one pageblock unless memory pressure 2607 * is really high. 2608 */ 2609 if (!force && zone->nr_reserved_highatomic <= 2610 pageblock_nr_pages) 2611 continue; 2612 2613 spin_lock_irqsave(&zone->lock, flags); 2614 for (order = 0; order < MAX_ORDER; order++) { 2615 struct free_area *area = &(zone->free_area[order]); 2616 2617 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2618 if (!page) 2619 continue; 2620 2621 /* 2622 * In page freeing path, migratetype change is racy so 2623 * we can counter several free pages in a pageblock 2624 * in this loop althoug we changed the pageblock type 2625 * from highatomic to ac->migratetype. So we should 2626 * adjust the count once. 2627 */ 2628 if (is_migrate_highatomic_page(page)) { 2629 /* 2630 * It should never happen but changes to 2631 * locking could inadvertently allow a per-cpu 2632 * drain to add pages to MIGRATE_HIGHATOMIC 2633 * while unreserving so be safe and watch for 2634 * underflows. 2635 */ 2636 zone->nr_reserved_highatomic -= min( 2637 pageblock_nr_pages, 2638 zone->nr_reserved_highatomic); 2639 } 2640 2641 /* 2642 * Convert to ac->migratetype and avoid the normal 2643 * pageblock stealing heuristics. Minimally, the caller 2644 * is doing the work and needs the pages. More 2645 * importantly, if the block was always converted to 2646 * MIGRATE_UNMOVABLE or another type then the number 2647 * of pageblocks that cannot be completely freed 2648 * may increase. 2649 */ 2650 set_pageblock_migratetype(page, ac->migratetype); 2651 ret = move_freepages_block(zone, page, ac->migratetype, 2652 NULL); 2653 if (ret) { 2654 spin_unlock_irqrestore(&zone->lock, flags); 2655 return ret; 2656 } 2657 } 2658 spin_unlock_irqrestore(&zone->lock, flags); 2659 } 2660 2661 return false; 2662 } 2663 2664 /* 2665 * Try finding a free buddy page on the fallback list and put it on the free 2666 * list of requested migratetype, possibly along with other pages from the same 2667 * block, depending on fragmentation avoidance heuristics. Returns true if 2668 * fallback was found so that __rmqueue_smallest() can grab it. 2669 * 2670 * The use of signed ints for order and current_order is a deliberate 2671 * deviation from the rest of this file, to make the for loop 2672 * condition simpler. 2673 */ 2674 static __always_inline bool 2675 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2676 unsigned int alloc_flags) 2677 { 2678 struct free_area *area; 2679 int current_order; 2680 int min_order = order; 2681 struct page *page; 2682 int fallback_mt; 2683 bool can_steal; 2684 2685 /* 2686 * Do not steal pages from freelists belonging to other pageblocks 2687 * i.e. orders < pageblock_order. If there are no local zones free, 2688 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2689 */ 2690 if (alloc_flags & ALLOC_NOFRAGMENT) 2691 min_order = pageblock_order; 2692 2693 /* 2694 * Find the largest available free page in the other list. This roughly 2695 * approximates finding the pageblock with the most free pages, which 2696 * would be too costly to do exactly. 2697 */ 2698 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2699 --current_order) { 2700 area = &(zone->free_area[current_order]); 2701 fallback_mt = find_suitable_fallback(area, current_order, 2702 start_migratetype, false, &can_steal); 2703 if (fallback_mt == -1) 2704 continue; 2705 2706 /* 2707 * We cannot steal all free pages from the pageblock and the 2708 * requested migratetype is movable. In that case it's better to 2709 * steal and split the smallest available page instead of the 2710 * largest available page, because even if the next movable 2711 * allocation falls back into a different pageblock than this 2712 * one, it won't cause permanent fragmentation. 2713 */ 2714 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2715 && current_order > order) 2716 goto find_smallest; 2717 2718 goto do_steal; 2719 } 2720 2721 return false; 2722 2723 find_smallest: 2724 for (current_order = order; current_order < MAX_ORDER; 2725 current_order++) { 2726 area = &(zone->free_area[current_order]); 2727 fallback_mt = find_suitable_fallback(area, current_order, 2728 start_migratetype, false, &can_steal); 2729 if (fallback_mt != -1) 2730 break; 2731 } 2732 2733 /* 2734 * This should not happen - we already found a suitable fallback 2735 * when looking for the largest page. 2736 */ 2737 VM_BUG_ON(current_order == MAX_ORDER); 2738 2739 do_steal: 2740 page = get_page_from_free_area(area, fallback_mt); 2741 2742 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2743 can_steal); 2744 2745 trace_mm_page_alloc_extfrag(page, order, current_order, 2746 start_migratetype, fallback_mt); 2747 2748 return true; 2749 2750 } 2751 2752 /* 2753 * Do the hard work of removing an element from the buddy allocator. 2754 * Call me with the zone->lock already held. 2755 */ 2756 static __always_inline struct page * 2757 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2758 unsigned int alloc_flags) 2759 { 2760 struct page *page; 2761 2762 retry: 2763 page = __rmqueue_smallest(zone, order, migratetype); 2764 if (unlikely(!page)) { 2765 if (migratetype == MIGRATE_MOVABLE) 2766 page = __rmqueue_cma_fallback(zone, order); 2767 2768 if (!page && __rmqueue_fallback(zone, order, migratetype, 2769 alloc_flags)) 2770 goto retry; 2771 } 2772 2773 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2774 return page; 2775 } 2776 2777 /* 2778 * Obtain a specified number of elements from the buddy allocator, all under 2779 * a single hold of the lock, for efficiency. Add them to the supplied list. 2780 * Returns the number of new pages which were placed at *list. 2781 */ 2782 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2783 unsigned long count, struct list_head *list, 2784 int migratetype, unsigned int alloc_flags) 2785 { 2786 int i, alloced = 0; 2787 2788 spin_lock(&zone->lock); 2789 for (i = 0; i < count; ++i) { 2790 struct page *page = __rmqueue(zone, order, migratetype, 2791 alloc_flags); 2792 if (unlikely(page == NULL)) 2793 break; 2794 2795 if (unlikely(check_pcp_refill(page))) 2796 continue; 2797 2798 /* 2799 * Split buddy pages returned by expand() are received here in 2800 * physical page order. The page is added to the tail of 2801 * caller's list. From the callers perspective, the linked list 2802 * is ordered by page number under some conditions. This is 2803 * useful for IO devices that can forward direction from the 2804 * head, thus also in the physical page order. This is useful 2805 * for IO devices that can merge IO requests if the physical 2806 * pages are ordered properly. 2807 */ 2808 list_add_tail(&page->lru, list); 2809 alloced++; 2810 if (is_migrate_cma(get_pcppage_migratetype(page))) 2811 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2812 -(1 << order)); 2813 } 2814 2815 /* 2816 * i pages were removed from the buddy list even if some leak due 2817 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2818 * on i. Do not confuse with 'alloced' which is the number of 2819 * pages added to the pcp list. 2820 */ 2821 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2822 spin_unlock(&zone->lock); 2823 return alloced; 2824 } 2825 2826 #ifdef CONFIG_NUMA 2827 /* 2828 * Called from the vmstat counter updater to drain pagesets of this 2829 * currently executing processor on remote nodes after they have 2830 * expired. 2831 * 2832 * Note that this function must be called with the thread pinned to 2833 * a single processor. 2834 */ 2835 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2836 { 2837 unsigned long flags; 2838 int to_drain, batch; 2839 2840 local_irq_save(flags); 2841 batch = READ_ONCE(pcp->batch); 2842 to_drain = min(pcp->count, batch); 2843 if (to_drain > 0) 2844 free_pcppages_bulk(zone, to_drain, pcp); 2845 local_irq_restore(flags); 2846 } 2847 #endif 2848 2849 /* 2850 * Drain pcplists of the indicated processor and zone. 2851 * 2852 * The processor must either be the current processor and the 2853 * thread pinned to the current processor or a processor that 2854 * is not online. 2855 */ 2856 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2857 { 2858 unsigned long flags; 2859 struct per_cpu_pageset *pset; 2860 struct per_cpu_pages *pcp; 2861 2862 local_irq_save(flags); 2863 pset = per_cpu_ptr(zone->pageset, cpu); 2864 2865 pcp = &pset->pcp; 2866 if (pcp->count) 2867 free_pcppages_bulk(zone, pcp->count, pcp); 2868 local_irq_restore(flags); 2869 } 2870 2871 /* 2872 * Drain pcplists of all zones on the indicated processor. 2873 * 2874 * The processor must either be the current processor and the 2875 * thread pinned to the current processor or a processor that 2876 * is not online. 2877 */ 2878 static void drain_pages(unsigned int cpu) 2879 { 2880 struct zone *zone; 2881 2882 for_each_populated_zone(zone) { 2883 drain_pages_zone(cpu, zone); 2884 } 2885 } 2886 2887 /* 2888 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2889 * 2890 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2891 * the single zone's pages. 2892 */ 2893 void drain_local_pages(struct zone *zone) 2894 { 2895 int cpu = smp_processor_id(); 2896 2897 if (zone) 2898 drain_pages_zone(cpu, zone); 2899 else 2900 drain_pages(cpu); 2901 } 2902 2903 static void drain_local_pages_wq(struct work_struct *work) 2904 { 2905 struct pcpu_drain *drain; 2906 2907 drain = container_of(work, struct pcpu_drain, work); 2908 2909 /* 2910 * drain_all_pages doesn't use proper cpu hotplug protection so 2911 * we can race with cpu offline when the WQ can move this from 2912 * a cpu pinned worker to an unbound one. We can operate on a different 2913 * cpu which is allright but we also have to make sure to not move to 2914 * a different one. 2915 */ 2916 preempt_disable(); 2917 drain_local_pages(drain->zone); 2918 preempt_enable(); 2919 } 2920 2921 /* 2922 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2923 * 2924 * When zone parameter is non-NULL, spill just the single zone's pages. 2925 * 2926 * Note that this can be extremely slow as the draining happens in a workqueue. 2927 */ 2928 void drain_all_pages(struct zone *zone) 2929 { 2930 int cpu; 2931 2932 /* 2933 * Allocate in the BSS so we wont require allocation in 2934 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2935 */ 2936 static cpumask_t cpus_with_pcps; 2937 2938 /* 2939 * Make sure nobody triggers this path before mm_percpu_wq is fully 2940 * initialized. 2941 */ 2942 if (WARN_ON_ONCE(!mm_percpu_wq)) 2943 return; 2944 2945 /* 2946 * Do not drain if one is already in progress unless it's specific to 2947 * a zone. Such callers are primarily CMA and memory hotplug and need 2948 * the drain to be complete when the call returns. 2949 */ 2950 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2951 if (!zone) 2952 return; 2953 mutex_lock(&pcpu_drain_mutex); 2954 } 2955 2956 /* 2957 * We don't care about racing with CPU hotplug event 2958 * as offline notification will cause the notified 2959 * cpu to drain that CPU pcps and on_each_cpu_mask 2960 * disables preemption as part of its processing 2961 */ 2962 for_each_online_cpu(cpu) { 2963 struct per_cpu_pageset *pcp; 2964 struct zone *z; 2965 bool has_pcps = false; 2966 2967 if (zone) { 2968 pcp = per_cpu_ptr(zone->pageset, cpu); 2969 if (pcp->pcp.count) 2970 has_pcps = true; 2971 } else { 2972 for_each_populated_zone(z) { 2973 pcp = per_cpu_ptr(z->pageset, cpu); 2974 if (pcp->pcp.count) { 2975 has_pcps = true; 2976 break; 2977 } 2978 } 2979 } 2980 2981 if (has_pcps) 2982 cpumask_set_cpu(cpu, &cpus_with_pcps); 2983 else 2984 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2985 } 2986 2987 for_each_cpu(cpu, &cpus_with_pcps) { 2988 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 2989 2990 drain->zone = zone; 2991 INIT_WORK(&drain->work, drain_local_pages_wq); 2992 queue_work_on(cpu, mm_percpu_wq, &drain->work); 2993 } 2994 for_each_cpu(cpu, &cpus_with_pcps) 2995 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 2996 2997 mutex_unlock(&pcpu_drain_mutex); 2998 } 2999 3000 #ifdef CONFIG_HIBERNATION 3001 3002 /* 3003 * Touch the watchdog for every WD_PAGE_COUNT pages. 3004 */ 3005 #define WD_PAGE_COUNT (128*1024) 3006 3007 void mark_free_pages(struct zone *zone) 3008 { 3009 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3010 unsigned long flags; 3011 unsigned int order, t; 3012 struct page *page; 3013 3014 if (zone_is_empty(zone)) 3015 return; 3016 3017 spin_lock_irqsave(&zone->lock, flags); 3018 3019 max_zone_pfn = zone_end_pfn(zone); 3020 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3021 if (pfn_valid(pfn)) { 3022 page = pfn_to_page(pfn); 3023 3024 if (!--page_count) { 3025 touch_nmi_watchdog(); 3026 page_count = WD_PAGE_COUNT; 3027 } 3028 3029 if (page_zone(page) != zone) 3030 continue; 3031 3032 if (!swsusp_page_is_forbidden(page)) 3033 swsusp_unset_page_free(page); 3034 } 3035 3036 for_each_migratetype_order(order, t) { 3037 list_for_each_entry(page, 3038 &zone->free_area[order].free_list[t], lru) { 3039 unsigned long i; 3040 3041 pfn = page_to_pfn(page); 3042 for (i = 0; i < (1UL << order); i++) { 3043 if (!--page_count) { 3044 touch_nmi_watchdog(); 3045 page_count = WD_PAGE_COUNT; 3046 } 3047 swsusp_set_page_free(pfn_to_page(pfn + i)); 3048 } 3049 } 3050 } 3051 spin_unlock_irqrestore(&zone->lock, flags); 3052 } 3053 #endif /* CONFIG_PM */ 3054 3055 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 3056 { 3057 int migratetype; 3058 3059 if (!free_pcp_prepare(page)) 3060 return false; 3061 3062 migratetype = get_pfnblock_migratetype(page, pfn); 3063 set_pcppage_migratetype(page, migratetype); 3064 return true; 3065 } 3066 3067 static void free_unref_page_commit(struct page *page, unsigned long pfn) 3068 { 3069 struct zone *zone = page_zone(page); 3070 struct per_cpu_pages *pcp; 3071 int migratetype; 3072 3073 migratetype = get_pcppage_migratetype(page); 3074 __count_vm_event(PGFREE); 3075 3076 /* 3077 * We only track unmovable, reclaimable and movable on pcp lists. 3078 * Free ISOLATE pages back to the allocator because they are being 3079 * offlined but treat HIGHATOMIC as movable pages so we can get those 3080 * areas back if necessary. Otherwise, we may have to free 3081 * excessively into the page allocator 3082 */ 3083 if (migratetype >= MIGRATE_PCPTYPES) { 3084 if (unlikely(is_migrate_isolate(migratetype))) { 3085 free_one_page(zone, page, pfn, 0, migratetype); 3086 return; 3087 } 3088 migratetype = MIGRATE_MOVABLE; 3089 } 3090 3091 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3092 list_add(&page->lru, &pcp->lists[migratetype]); 3093 pcp->count++; 3094 if (pcp->count >= pcp->high) { 3095 unsigned long batch = READ_ONCE(pcp->batch); 3096 free_pcppages_bulk(zone, batch, pcp); 3097 } 3098 } 3099 3100 /* 3101 * Free a 0-order page 3102 */ 3103 void free_unref_page(struct page *page) 3104 { 3105 unsigned long flags; 3106 unsigned long pfn = page_to_pfn(page); 3107 3108 if (!free_unref_page_prepare(page, pfn)) 3109 return; 3110 3111 local_irq_save(flags); 3112 free_unref_page_commit(page, pfn); 3113 local_irq_restore(flags); 3114 } 3115 3116 /* 3117 * Free a list of 0-order pages 3118 */ 3119 void free_unref_page_list(struct list_head *list) 3120 { 3121 struct page *page, *next; 3122 unsigned long flags, pfn; 3123 int batch_count = 0; 3124 3125 /* Prepare pages for freeing */ 3126 list_for_each_entry_safe(page, next, list, lru) { 3127 pfn = page_to_pfn(page); 3128 if (!free_unref_page_prepare(page, pfn)) 3129 list_del(&page->lru); 3130 set_page_private(page, pfn); 3131 } 3132 3133 local_irq_save(flags); 3134 list_for_each_entry_safe(page, next, list, lru) { 3135 unsigned long pfn = page_private(page); 3136 3137 set_page_private(page, 0); 3138 trace_mm_page_free_batched(page); 3139 free_unref_page_commit(page, pfn); 3140 3141 /* 3142 * Guard against excessive IRQ disabled times when we get 3143 * a large list of pages to free. 3144 */ 3145 if (++batch_count == SWAP_CLUSTER_MAX) { 3146 local_irq_restore(flags); 3147 batch_count = 0; 3148 local_irq_save(flags); 3149 } 3150 } 3151 local_irq_restore(flags); 3152 } 3153 3154 /* 3155 * split_page takes a non-compound higher-order page, and splits it into 3156 * n (1<<order) sub-pages: page[0..n] 3157 * Each sub-page must be freed individually. 3158 * 3159 * Note: this is probably too low level an operation for use in drivers. 3160 * Please consult with lkml before using this in your driver. 3161 */ 3162 void split_page(struct page *page, unsigned int order) 3163 { 3164 int i; 3165 3166 VM_BUG_ON_PAGE(PageCompound(page), page); 3167 VM_BUG_ON_PAGE(!page_count(page), page); 3168 3169 for (i = 1; i < (1 << order); i++) 3170 set_page_refcounted(page + i); 3171 split_page_owner(page, order); 3172 } 3173 EXPORT_SYMBOL_GPL(split_page); 3174 3175 int __isolate_free_page(struct page *page, unsigned int order) 3176 { 3177 unsigned long watermark; 3178 struct zone *zone; 3179 int mt; 3180 3181 BUG_ON(!PageBuddy(page)); 3182 3183 zone = page_zone(page); 3184 mt = get_pageblock_migratetype(page); 3185 3186 if (!is_migrate_isolate(mt)) { 3187 /* 3188 * Obey watermarks as if the page was being allocated. We can 3189 * emulate a high-order watermark check with a raised order-0 3190 * watermark, because we already know our high-order page 3191 * exists. 3192 */ 3193 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3194 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3195 return 0; 3196 3197 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3198 } 3199 3200 /* Remove page from free list */ 3201 3202 del_page_from_free_list(page, zone, order); 3203 3204 /* 3205 * Set the pageblock if the isolated page is at least half of a 3206 * pageblock 3207 */ 3208 if (order >= pageblock_order - 1) { 3209 struct page *endpage = page + (1 << order) - 1; 3210 for (; page < endpage; page += pageblock_nr_pages) { 3211 int mt = get_pageblock_migratetype(page); 3212 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3213 && !is_migrate_highatomic(mt)) 3214 set_pageblock_migratetype(page, 3215 MIGRATE_MOVABLE); 3216 } 3217 } 3218 3219 3220 return 1UL << order; 3221 } 3222 3223 /** 3224 * __putback_isolated_page - Return a now-isolated page back where we got it 3225 * @page: Page that was isolated 3226 * @order: Order of the isolated page 3227 * @mt: The page's pageblock's migratetype 3228 * 3229 * This function is meant to return a page pulled from the free lists via 3230 * __isolate_free_page back to the free lists they were pulled from. 3231 */ 3232 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3233 { 3234 struct zone *zone = page_zone(page); 3235 3236 /* zone lock should be held when this function is called */ 3237 lockdep_assert_held(&zone->lock); 3238 3239 /* Return isolated page to tail of freelist. */ 3240 __free_one_page(page, page_to_pfn(page), zone, order, mt, false); 3241 } 3242 3243 /* 3244 * Update NUMA hit/miss statistics 3245 * 3246 * Must be called with interrupts disabled. 3247 */ 3248 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3249 { 3250 #ifdef CONFIG_NUMA 3251 enum numa_stat_item local_stat = NUMA_LOCAL; 3252 3253 /* skip numa counters update if numa stats is disabled */ 3254 if (!static_branch_likely(&vm_numa_stat_key)) 3255 return; 3256 3257 if (zone_to_nid(z) != numa_node_id()) 3258 local_stat = NUMA_OTHER; 3259 3260 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3261 __inc_numa_state(z, NUMA_HIT); 3262 else { 3263 __inc_numa_state(z, NUMA_MISS); 3264 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3265 } 3266 __inc_numa_state(z, local_stat); 3267 #endif 3268 } 3269 3270 /* Remove page from the per-cpu list, caller must protect the list */ 3271 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3272 unsigned int alloc_flags, 3273 struct per_cpu_pages *pcp, 3274 struct list_head *list) 3275 { 3276 struct page *page; 3277 3278 do { 3279 if (list_empty(list)) { 3280 pcp->count += rmqueue_bulk(zone, 0, 3281 pcp->batch, list, 3282 migratetype, alloc_flags); 3283 if (unlikely(list_empty(list))) 3284 return NULL; 3285 } 3286 3287 page = list_first_entry(list, struct page, lru); 3288 list_del(&page->lru); 3289 pcp->count--; 3290 } while (check_new_pcp(page)); 3291 3292 return page; 3293 } 3294 3295 /* Lock and remove page from the per-cpu list */ 3296 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3297 struct zone *zone, gfp_t gfp_flags, 3298 int migratetype, unsigned int alloc_flags) 3299 { 3300 struct per_cpu_pages *pcp; 3301 struct list_head *list; 3302 struct page *page; 3303 unsigned long flags; 3304 3305 local_irq_save(flags); 3306 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3307 list = &pcp->lists[migratetype]; 3308 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3309 if (page) { 3310 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3311 zone_statistics(preferred_zone, zone); 3312 } 3313 local_irq_restore(flags); 3314 return page; 3315 } 3316 3317 /* 3318 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3319 */ 3320 static inline 3321 struct page *rmqueue(struct zone *preferred_zone, 3322 struct zone *zone, unsigned int order, 3323 gfp_t gfp_flags, unsigned int alloc_flags, 3324 int migratetype) 3325 { 3326 unsigned long flags; 3327 struct page *page; 3328 3329 if (likely(order == 0)) { 3330 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, 3331 migratetype, alloc_flags); 3332 goto out; 3333 } 3334 3335 /* 3336 * We most definitely don't want callers attempting to 3337 * allocate greater than order-1 page units with __GFP_NOFAIL. 3338 */ 3339 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3340 spin_lock_irqsave(&zone->lock, flags); 3341 3342 do { 3343 page = NULL; 3344 if (alloc_flags & ALLOC_HARDER) { 3345 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3346 if (page) 3347 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3348 } 3349 if (!page) 3350 page = __rmqueue(zone, order, migratetype, alloc_flags); 3351 } while (page && check_new_pages(page, order)); 3352 spin_unlock(&zone->lock); 3353 if (!page) 3354 goto failed; 3355 __mod_zone_freepage_state(zone, -(1 << order), 3356 get_pcppage_migratetype(page)); 3357 3358 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3359 zone_statistics(preferred_zone, zone); 3360 local_irq_restore(flags); 3361 3362 out: 3363 /* Separate test+clear to avoid unnecessary atomics */ 3364 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3365 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3366 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3367 } 3368 3369 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3370 return page; 3371 3372 failed: 3373 local_irq_restore(flags); 3374 return NULL; 3375 } 3376 3377 #ifdef CONFIG_FAIL_PAGE_ALLOC 3378 3379 static struct { 3380 struct fault_attr attr; 3381 3382 bool ignore_gfp_highmem; 3383 bool ignore_gfp_reclaim; 3384 u32 min_order; 3385 } fail_page_alloc = { 3386 .attr = FAULT_ATTR_INITIALIZER, 3387 .ignore_gfp_reclaim = true, 3388 .ignore_gfp_highmem = true, 3389 .min_order = 1, 3390 }; 3391 3392 static int __init setup_fail_page_alloc(char *str) 3393 { 3394 return setup_fault_attr(&fail_page_alloc.attr, str); 3395 } 3396 __setup("fail_page_alloc=", setup_fail_page_alloc); 3397 3398 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3399 { 3400 if (order < fail_page_alloc.min_order) 3401 return false; 3402 if (gfp_mask & __GFP_NOFAIL) 3403 return false; 3404 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3405 return false; 3406 if (fail_page_alloc.ignore_gfp_reclaim && 3407 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3408 return false; 3409 3410 return should_fail(&fail_page_alloc.attr, 1 << order); 3411 } 3412 3413 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3414 3415 static int __init fail_page_alloc_debugfs(void) 3416 { 3417 umode_t mode = S_IFREG | 0600; 3418 struct dentry *dir; 3419 3420 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3421 &fail_page_alloc.attr); 3422 3423 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3424 &fail_page_alloc.ignore_gfp_reclaim); 3425 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3426 &fail_page_alloc.ignore_gfp_highmem); 3427 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3428 3429 return 0; 3430 } 3431 3432 late_initcall(fail_page_alloc_debugfs); 3433 3434 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3435 3436 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3437 3438 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3439 { 3440 return false; 3441 } 3442 3443 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3444 3445 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3446 { 3447 return __should_fail_alloc_page(gfp_mask, order); 3448 } 3449 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3450 3451 /* 3452 * Return true if free base pages are above 'mark'. For high-order checks it 3453 * will return true of the order-0 watermark is reached and there is at least 3454 * one free page of a suitable size. Checking now avoids taking the zone lock 3455 * to check in the allocation paths if no pages are free. 3456 */ 3457 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3458 int classzone_idx, unsigned int alloc_flags, 3459 long free_pages) 3460 { 3461 long min = mark; 3462 int o; 3463 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3464 3465 /* free_pages may go negative - that's OK */ 3466 free_pages -= (1 << order) - 1; 3467 3468 if (alloc_flags & ALLOC_HIGH) 3469 min -= min / 2; 3470 3471 /* 3472 * If the caller does not have rights to ALLOC_HARDER then subtract 3473 * the high-atomic reserves. This will over-estimate the size of the 3474 * atomic reserve but it avoids a search. 3475 */ 3476 if (likely(!alloc_harder)) { 3477 free_pages -= z->nr_reserved_highatomic; 3478 } else { 3479 /* 3480 * OOM victims can try even harder than normal ALLOC_HARDER 3481 * users on the grounds that it's definitely going to be in 3482 * the exit path shortly and free memory. Any allocation it 3483 * makes during the free path will be small and short-lived. 3484 */ 3485 if (alloc_flags & ALLOC_OOM) 3486 min -= min / 2; 3487 else 3488 min -= min / 4; 3489 } 3490 3491 3492 #ifdef CONFIG_CMA 3493 /* If allocation can't use CMA areas don't use free CMA pages */ 3494 if (!(alloc_flags & ALLOC_CMA)) 3495 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3496 #endif 3497 3498 /* 3499 * Check watermarks for an order-0 allocation request. If these 3500 * are not met, then a high-order request also cannot go ahead 3501 * even if a suitable page happened to be free. 3502 */ 3503 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3504 return false; 3505 3506 /* If this is an order-0 request then the watermark is fine */ 3507 if (!order) 3508 return true; 3509 3510 /* For a high-order request, check at least one suitable page is free */ 3511 for (o = order; o < MAX_ORDER; o++) { 3512 struct free_area *area = &z->free_area[o]; 3513 int mt; 3514 3515 if (!area->nr_free) 3516 continue; 3517 3518 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3519 if (!free_area_empty(area, mt)) 3520 return true; 3521 } 3522 3523 #ifdef CONFIG_CMA 3524 if ((alloc_flags & ALLOC_CMA) && 3525 !free_area_empty(area, MIGRATE_CMA)) { 3526 return true; 3527 } 3528 #endif 3529 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3530 return true; 3531 } 3532 return false; 3533 } 3534 3535 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3536 int classzone_idx, unsigned int alloc_flags) 3537 { 3538 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3539 zone_page_state(z, NR_FREE_PAGES)); 3540 } 3541 3542 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3543 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3544 { 3545 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3546 long cma_pages = 0; 3547 3548 #ifdef CONFIG_CMA 3549 /* If allocation can't use CMA areas don't use free CMA pages */ 3550 if (!(alloc_flags & ALLOC_CMA)) 3551 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3552 #endif 3553 3554 /* 3555 * Fast check for order-0 only. If this fails then the reserves 3556 * need to be calculated. There is a corner case where the check 3557 * passes but only the high-order atomic reserve are free. If 3558 * the caller is !atomic then it'll uselessly search the free 3559 * list. That corner case is then slower but it is harmless. 3560 */ 3561 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3562 return true; 3563 3564 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3565 free_pages); 3566 } 3567 3568 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3569 unsigned long mark, int classzone_idx) 3570 { 3571 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3572 3573 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3574 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3575 3576 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3577 free_pages); 3578 } 3579 3580 #ifdef CONFIG_NUMA 3581 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3582 { 3583 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3584 node_reclaim_distance; 3585 } 3586 #else /* CONFIG_NUMA */ 3587 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3588 { 3589 return true; 3590 } 3591 #endif /* CONFIG_NUMA */ 3592 3593 /* 3594 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3595 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3596 * premature use of a lower zone may cause lowmem pressure problems that 3597 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3598 * probably too small. It only makes sense to spread allocations to avoid 3599 * fragmentation between the Normal and DMA32 zones. 3600 */ 3601 static inline unsigned int 3602 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3603 { 3604 unsigned int alloc_flags; 3605 3606 /* 3607 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3608 * to save a branch. 3609 */ 3610 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3611 3612 #ifdef CONFIG_ZONE_DMA32 3613 if (!zone) 3614 return alloc_flags; 3615 3616 if (zone_idx(zone) != ZONE_NORMAL) 3617 return alloc_flags; 3618 3619 /* 3620 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3621 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3622 * on UMA that if Normal is populated then so is DMA32. 3623 */ 3624 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3625 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3626 return alloc_flags; 3627 3628 alloc_flags |= ALLOC_NOFRAGMENT; 3629 #endif /* CONFIG_ZONE_DMA32 */ 3630 return alloc_flags; 3631 } 3632 3633 /* 3634 * get_page_from_freelist goes through the zonelist trying to allocate 3635 * a page. 3636 */ 3637 static struct page * 3638 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3639 const struct alloc_context *ac) 3640 { 3641 struct zoneref *z; 3642 struct zone *zone; 3643 struct pglist_data *last_pgdat_dirty_limit = NULL; 3644 bool no_fallback; 3645 3646 retry: 3647 /* 3648 * Scan zonelist, looking for a zone with enough free. 3649 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3650 */ 3651 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3652 z = ac->preferred_zoneref; 3653 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3654 ac->nodemask) { 3655 struct page *page; 3656 unsigned long mark; 3657 3658 if (cpusets_enabled() && 3659 (alloc_flags & ALLOC_CPUSET) && 3660 !__cpuset_zone_allowed(zone, gfp_mask)) 3661 continue; 3662 /* 3663 * When allocating a page cache page for writing, we 3664 * want to get it from a node that is within its dirty 3665 * limit, such that no single node holds more than its 3666 * proportional share of globally allowed dirty pages. 3667 * The dirty limits take into account the node's 3668 * lowmem reserves and high watermark so that kswapd 3669 * should be able to balance it without having to 3670 * write pages from its LRU list. 3671 * 3672 * XXX: For now, allow allocations to potentially 3673 * exceed the per-node dirty limit in the slowpath 3674 * (spread_dirty_pages unset) before going into reclaim, 3675 * which is important when on a NUMA setup the allowed 3676 * nodes are together not big enough to reach the 3677 * global limit. The proper fix for these situations 3678 * will require awareness of nodes in the 3679 * dirty-throttling and the flusher threads. 3680 */ 3681 if (ac->spread_dirty_pages) { 3682 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3683 continue; 3684 3685 if (!node_dirty_ok(zone->zone_pgdat)) { 3686 last_pgdat_dirty_limit = zone->zone_pgdat; 3687 continue; 3688 } 3689 } 3690 3691 if (no_fallback && nr_online_nodes > 1 && 3692 zone != ac->preferred_zoneref->zone) { 3693 int local_nid; 3694 3695 /* 3696 * If moving to a remote node, retry but allow 3697 * fragmenting fallbacks. Locality is more important 3698 * than fragmentation avoidance. 3699 */ 3700 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3701 if (zone_to_nid(zone) != local_nid) { 3702 alloc_flags &= ~ALLOC_NOFRAGMENT; 3703 goto retry; 3704 } 3705 } 3706 3707 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3708 if (!zone_watermark_fast(zone, order, mark, 3709 ac_classzone_idx(ac), alloc_flags)) { 3710 int ret; 3711 3712 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3713 /* 3714 * Watermark failed for this zone, but see if we can 3715 * grow this zone if it contains deferred pages. 3716 */ 3717 if (static_branch_unlikely(&deferred_pages)) { 3718 if (_deferred_grow_zone(zone, order)) 3719 goto try_this_zone; 3720 } 3721 #endif 3722 /* Checked here to keep the fast path fast */ 3723 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3724 if (alloc_flags & ALLOC_NO_WATERMARKS) 3725 goto try_this_zone; 3726 3727 if (node_reclaim_mode == 0 || 3728 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3729 continue; 3730 3731 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3732 switch (ret) { 3733 case NODE_RECLAIM_NOSCAN: 3734 /* did not scan */ 3735 continue; 3736 case NODE_RECLAIM_FULL: 3737 /* scanned but unreclaimable */ 3738 continue; 3739 default: 3740 /* did we reclaim enough */ 3741 if (zone_watermark_ok(zone, order, mark, 3742 ac_classzone_idx(ac), alloc_flags)) 3743 goto try_this_zone; 3744 3745 continue; 3746 } 3747 } 3748 3749 try_this_zone: 3750 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3751 gfp_mask, alloc_flags, ac->migratetype); 3752 if (page) { 3753 prep_new_page(page, order, gfp_mask, alloc_flags); 3754 3755 /* 3756 * If this is a high-order atomic allocation then check 3757 * if the pageblock should be reserved for the future 3758 */ 3759 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3760 reserve_highatomic_pageblock(page, zone, order); 3761 3762 return page; 3763 } else { 3764 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3765 /* Try again if zone has deferred pages */ 3766 if (static_branch_unlikely(&deferred_pages)) { 3767 if (_deferred_grow_zone(zone, order)) 3768 goto try_this_zone; 3769 } 3770 #endif 3771 } 3772 } 3773 3774 /* 3775 * It's possible on a UMA machine to get through all zones that are 3776 * fragmented. If avoiding fragmentation, reset and try again. 3777 */ 3778 if (no_fallback) { 3779 alloc_flags &= ~ALLOC_NOFRAGMENT; 3780 goto retry; 3781 } 3782 3783 return NULL; 3784 } 3785 3786 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3787 { 3788 unsigned int filter = SHOW_MEM_FILTER_NODES; 3789 3790 /* 3791 * This documents exceptions given to allocations in certain 3792 * contexts that are allowed to allocate outside current's set 3793 * of allowed nodes. 3794 */ 3795 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3796 if (tsk_is_oom_victim(current) || 3797 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3798 filter &= ~SHOW_MEM_FILTER_NODES; 3799 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3800 filter &= ~SHOW_MEM_FILTER_NODES; 3801 3802 show_mem(filter, nodemask); 3803 } 3804 3805 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3806 { 3807 struct va_format vaf; 3808 va_list args; 3809 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3810 3811 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3812 return; 3813 3814 va_start(args, fmt); 3815 vaf.fmt = fmt; 3816 vaf.va = &args; 3817 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3818 current->comm, &vaf, gfp_mask, &gfp_mask, 3819 nodemask_pr_args(nodemask)); 3820 va_end(args); 3821 3822 cpuset_print_current_mems_allowed(); 3823 pr_cont("\n"); 3824 dump_stack(); 3825 warn_alloc_show_mem(gfp_mask, nodemask); 3826 } 3827 3828 static inline struct page * 3829 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3830 unsigned int alloc_flags, 3831 const struct alloc_context *ac) 3832 { 3833 struct page *page; 3834 3835 page = get_page_from_freelist(gfp_mask, order, 3836 alloc_flags|ALLOC_CPUSET, ac); 3837 /* 3838 * fallback to ignore cpuset restriction if our nodes 3839 * are depleted 3840 */ 3841 if (!page) 3842 page = get_page_from_freelist(gfp_mask, order, 3843 alloc_flags, ac); 3844 3845 return page; 3846 } 3847 3848 static inline struct page * 3849 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3850 const struct alloc_context *ac, unsigned long *did_some_progress) 3851 { 3852 struct oom_control oc = { 3853 .zonelist = ac->zonelist, 3854 .nodemask = ac->nodemask, 3855 .memcg = NULL, 3856 .gfp_mask = gfp_mask, 3857 .order = order, 3858 }; 3859 struct page *page; 3860 3861 *did_some_progress = 0; 3862 3863 /* 3864 * Acquire the oom lock. If that fails, somebody else is 3865 * making progress for us. 3866 */ 3867 if (!mutex_trylock(&oom_lock)) { 3868 *did_some_progress = 1; 3869 schedule_timeout_uninterruptible(1); 3870 return NULL; 3871 } 3872 3873 /* 3874 * Go through the zonelist yet one more time, keep very high watermark 3875 * here, this is only to catch a parallel oom killing, we must fail if 3876 * we're still under heavy pressure. But make sure that this reclaim 3877 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3878 * allocation which will never fail due to oom_lock already held. 3879 */ 3880 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3881 ~__GFP_DIRECT_RECLAIM, order, 3882 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3883 if (page) 3884 goto out; 3885 3886 /* Coredumps can quickly deplete all memory reserves */ 3887 if (current->flags & PF_DUMPCORE) 3888 goto out; 3889 /* The OOM killer will not help higher order allocs */ 3890 if (order > PAGE_ALLOC_COSTLY_ORDER) 3891 goto out; 3892 /* 3893 * We have already exhausted all our reclaim opportunities without any 3894 * success so it is time to admit defeat. We will skip the OOM killer 3895 * because it is very likely that the caller has a more reasonable 3896 * fallback than shooting a random task. 3897 */ 3898 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3899 goto out; 3900 /* The OOM killer does not needlessly kill tasks for lowmem */ 3901 if (ac->high_zoneidx < ZONE_NORMAL) 3902 goto out; 3903 if (pm_suspended_storage()) 3904 goto out; 3905 /* 3906 * XXX: GFP_NOFS allocations should rather fail than rely on 3907 * other request to make a forward progress. 3908 * We are in an unfortunate situation where out_of_memory cannot 3909 * do much for this context but let's try it to at least get 3910 * access to memory reserved if the current task is killed (see 3911 * out_of_memory). Once filesystems are ready to handle allocation 3912 * failures more gracefully we should just bail out here. 3913 */ 3914 3915 /* The OOM killer may not free memory on a specific node */ 3916 if (gfp_mask & __GFP_THISNODE) 3917 goto out; 3918 3919 /* Exhausted what can be done so it's blame time */ 3920 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3921 *did_some_progress = 1; 3922 3923 /* 3924 * Help non-failing allocations by giving them access to memory 3925 * reserves 3926 */ 3927 if (gfp_mask & __GFP_NOFAIL) 3928 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3929 ALLOC_NO_WATERMARKS, ac); 3930 } 3931 out: 3932 mutex_unlock(&oom_lock); 3933 return page; 3934 } 3935 3936 /* 3937 * Maximum number of compaction retries wit a progress before OOM 3938 * killer is consider as the only way to move forward. 3939 */ 3940 #define MAX_COMPACT_RETRIES 16 3941 3942 #ifdef CONFIG_COMPACTION 3943 /* Try memory compaction for high-order allocations before reclaim */ 3944 static struct page * 3945 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3946 unsigned int alloc_flags, const struct alloc_context *ac, 3947 enum compact_priority prio, enum compact_result *compact_result) 3948 { 3949 struct page *page = NULL; 3950 unsigned long pflags; 3951 unsigned int noreclaim_flag; 3952 3953 if (!order) 3954 return NULL; 3955 3956 psi_memstall_enter(&pflags); 3957 noreclaim_flag = memalloc_noreclaim_save(); 3958 3959 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3960 prio, &page); 3961 3962 memalloc_noreclaim_restore(noreclaim_flag); 3963 psi_memstall_leave(&pflags); 3964 3965 /* 3966 * At least in one zone compaction wasn't deferred or skipped, so let's 3967 * count a compaction stall 3968 */ 3969 count_vm_event(COMPACTSTALL); 3970 3971 /* Prep a captured page if available */ 3972 if (page) 3973 prep_new_page(page, order, gfp_mask, alloc_flags); 3974 3975 /* Try get a page from the freelist if available */ 3976 if (!page) 3977 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3978 3979 if (page) { 3980 struct zone *zone = page_zone(page); 3981 3982 zone->compact_blockskip_flush = false; 3983 compaction_defer_reset(zone, order, true); 3984 count_vm_event(COMPACTSUCCESS); 3985 return page; 3986 } 3987 3988 /* 3989 * It's bad if compaction run occurs and fails. The most likely reason 3990 * is that pages exist, but not enough to satisfy watermarks. 3991 */ 3992 count_vm_event(COMPACTFAIL); 3993 3994 cond_resched(); 3995 3996 return NULL; 3997 } 3998 3999 static inline bool 4000 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4001 enum compact_result compact_result, 4002 enum compact_priority *compact_priority, 4003 int *compaction_retries) 4004 { 4005 int max_retries = MAX_COMPACT_RETRIES; 4006 int min_priority; 4007 bool ret = false; 4008 int retries = *compaction_retries; 4009 enum compact_priority priority = *compact_priority; 4010 4011 if (!order) 4012 return false; 4013 4014 if (compaction_made_progress(compact_result)) 4015 (*compaction_retries)++; 4016 4017 /* 4018 * compaction considers all the zone as desperately out of memory 4019 * so it doesn't really make much sense to retry except when the 4020 * failure could be caused by insufficient priority 4021 */ 4022 if (compaction_failed(compact_result)) 4023 goto check_priority; 4024 4025 /* 4026 * compaction was skipped because there are not enough order-0 pages 4027 * to work with, so we retry only if it looks like reclaim can help. 4028 */ 4029 if (compaction_needs_reclaim(compact_result)) { 4030 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4031 goto out; 4032 } 4033 4034 /* 4035 * make sure the compaction wasn't deferred or didn't bail out early 4036 * due to locks contention before we declare that we should give up. 4037 * But the next retry should use a higher priority if allowed, so 4038 * we don't just keep bailing out endlessly. 4039 */ 4040 if (compaction_withdrawn(compact_result)) { 4041 goto check_priority; 4042 } 4043 4044 /* 4045 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4046 * costly ones because they are de facto nofail and invoke OOM 4047 * killer to move on while costly can fail and users are ready 4048 * to cope with that. 1/4 retries is rather arbitrary but we 4049 * would need much more detailed feedback from compaction to 4050 * make a better decision. 4051 */ 4052 if (order > PAGE_ALLOC_COSTLY_ORDER) 4053 max_retries /= 4; 4054 if (*compaction_retries <= max_retries) { 4055 ret = true; 4056 goto out; 4057 } 4058 4059 /* 4060 * Make sure there are attempts at the highest priority if we exhausted 4061 * all retries or failed at the lower priorities. 4062 */ 4063 check_priority: 4064 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4065 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4066 4067 if (*compact_priority > min_priority) { 4068 (*compact_priority)--; 4069 *compaction_retries = 0; 4070 ret = true; 4071 } 4072 out: 4073 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4074 return ret; 4075 } 4076 #else 4077 static inline struct page * 4078 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4079 unsigned int alloc_flags, const struct alloc_context *ac, 4080 enum compact_priority prio, enum compact_result *compact_result) 4081 { 4082 *compact_result = COMPACT_SKIPPED; 4083 return NULL; 4084 } 4085 4086 static inline bool 4087 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4088 enum compact_result compact_result, 4089 enum compact_priority *compact_priority, 4090 int *compaction_retries) 4091 { 4092 struct zone *zone; 4093 struct zoneref *z; 4094 4095 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4096 return false; 4097 4098 /* 4099 * There are setups with compaction disabled which would prefer to loop 4100 * inside the allocator rather than hit the oom killer prematurely. 4101 * Let's give them a good hope and keep retrying while the order-0 4102 * watermarks are OK. 4103 */ 4104 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4105 ac->nodemask) { 4106 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4107 ac_classzone_idx(ac), alloc_flags)) 4108 return true; 4109 } 4110 return false; 4111 } 4112 #endif /* CONFIG_COMPACTION */ 4113 4114 #ifdef CONFIG_LOCKDEP 4115 static struct lockdep_map __fs_reclaim_map = 4116 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4117 4118 static bool __need_fs_reclaim(gfp_t gfp_mask) 4119 { 4120 gfp_mask = current_gfp_context(gfp_mask); 4121 4122 /* no reclaim without waiting on it */ 4123 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4124 return false; 4125 4126 /* this guy won't enter reclaim */ 4127 if (current->flags & PF_MEMALLOC) 4128 return false; 4129 4130 /* We're only interested __GFP_FS allocations for now */ 4131 if (!(gfp_mask & __GFP_FS)) 4132 return false; 4133 4134 if (gfp_mask & __GFP_NOLOCKDEP) 4135 return false; 4136 4137 return true; 4138 } 4139 4140 void __fs_reclaim_acquire(void) 4141 { 4142 lock_map_acquire(&__fs_reclaim_map); 4143 } 4144 4145 void __fs_reclaim_release(void) 4146 { 4147 lock_map_release(&__fs_reclaim_map); 4148 } 4149 4150 void fs_reclaim_acquire(gfp_t gfp_mask) 4151 { 4152 if (__need_fs_reclaim(gfp_mask)) 4153 __fs_reclaim_acquire(); 4154 } 4155 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4156 4157 void fs_reclaim_release(gfp_t gfp_mask) 4158 { 4159 if (__need_fs_reclaim(gfp_mask)) 4160 __fs_reclaim_release(); 4161 } 4162 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4163 #endif 4164 4165 /* Perform direct synchronous page reclaim */ 4166 static int 4167 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4168 const struct alloc_context *ac) 4169 { 4170 int progress; 4171 unsigned int noreclaim_flag; 4172 unsigned long pflags; 4173 4174 cond_resched(); 4175 4176 /* We now go into synchronous reclaim */ 4177 cpuset_memory_pressure_bump(); 4178 psi_memstall_enter(&pflags); 4179 fs_reclaim_acquire(gfp_mask); 4180 noreclaim_flag = memalloc_noreclaim_save(); 4181 4182 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4183 ac->nodemask); 4184 4185 memalloc_noreclaim_restore(noreclaim_flag); 4186 fs_reclaim_release(gfp_mask); 4187 psi_memstall_leave(&pflags); 4188 4189 cond_resched(); 4190 4191 return progress; 4192 } 4193 4194 /* The really slow allocator path where we enter direct reclaim */ 4195 static inline struct page * 4196 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4197 unsigned int alloc_flags, const struct alloc_context *ac, 4198 unsigned long *did_some_progress) 4199 { 4200 struct page *page = NULL; 4201 bool drained = false; 4202 4203 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4204 if (unlikely(!(*did_some_progress))) 4205 return NULL; 4206 4207 retry: 4208 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4209 4210 /* 4211 * If an allocation failed after direct reclaim, it could be because 4212 * pages are pinned on the per-cpu lists or in high alloc reserves. 4213 * Shrink them them and try again 4214 */ 4215 if (!page && !drained) { 4216 unreserve_highatomic_pageblock(ac, false); 4217 drain_all_pages(NULL); 4218 drained = true; 4219 goto retry; 4220 } 4221 4222 return page; 4223 } 4224 4225 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4226 const struct alloc_context *ac) 4227 { 4228 struct zoneref *z; 4229 struct zone *zone; 4230 pg_data_t *last_pgdat = NULL; 4231 enum zone_type high_zoneidx = ac->high_zoneidx; 4232 4233 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx, 4234 ac->nodemask) { 4235 if (last_pgdat != zone->zone_pgdat) 4236 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx); 4237 last_pgdat = zone->zone_pgdat; 4238 } 4239 } 4240 4241 static inline unsigned int 4242 gfp_to_alloc_flags(gfp_t gfp_mask) 4243 { 4244 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4245 4246 /* 4247 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4248 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4249 * to save two branches. 4250 */ 4251 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4252 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4253 4254 /* 4255 * The caller may dip into page reserves a bit more if the caller 4256 * cannot run direct reclaim, or if the caller has realtime scheduling 4257 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4258 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4259 */ 4260 alloc_flags |= (__force int) 4261 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4262 4263 if (gfp_mask & __GFP_ATOMIC) { 4264 /* 4265 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4266 * if it can't schedule. 4267 */ 4268 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4269 alloc_flags |= ALLOC_HARDER; 4270 /* 4271 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4272 * comment for __cpuset_node_allowed(). 4273 */ 4274 alloc_flags &= ~ALLOC_CPUSET; 4275 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4276 alloc_flags |= ALLOC_HARDER; 4277 4278 #ifdef CONFIG_CMA 4279 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4280 alloc_flags |= ALLOC_CMA; 4281 #endif 4282 return alloc_flags; 4283 } 4284 4285 static bool oom_reserves_allowed(struct task_struct *tsk) 4286 { 4287 if (!tsk_is_oom_victim(tsk)) 4288 return false; 4289 4290 /* 4291 * !MMU doesn't have oom reaper so give access to memory reserves 4292 * only to the thread with TIF_MEMDIE set 4293 */ 4294 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4295 return false; 4296 4297 return true; 4298 } 4299 4300 /* 4301 * Distinguish requests which really need access to full memory 4302 * reserves from oom victims which can live with a portion of it 4303 */ 4304 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4305 { 4306 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4307 return 0; 4308 if (gfp_mask & __GFP_MEMALLOC) 4309 return ALLOC_NO_WATERMARKS; 4310 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4311 return ALLOC_NO_WATERMARKS; 4312 if (!in_interrupt()) { 4313 if (current->flags & PF_MEMALLOC) 4314 return ALLOC_NO_WATERMARKS; 4315 else if (oom_reserves_allowed(current)) 4316 return ALLOC_OOM; 4317 } 4318 4319 return 0; 4320 } 4321 4322 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4323 { 4324 return !!__gfp_pfmemalloc_flags(gfp_mask); 4325 } 4326 4327 /* 4328 * Checks whether it makes sense to retry the reclaim to make a forward progress 4329 * for the given allocation request. 4330 * 4331 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4332 * without success, or when we couldn't even meet the watermark if we 4333 * reclaimed all remaining pages on the LRU lists. 4334 * 4335 * Returns true if a retry is viable or false to enter the oom path. 4336 */ 4337 static inline bool 4338 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4339 struct alloc_context *ac, int alloc_flags, 4340 bool did_some_progress, int *no_progress_loops) 4341 { 4342 struct zone *zone; 4343 struct zoneref *z; 4344 bool ret = false; 4345 4346 /* 4347 * Costly allocations might have made a progress but this doesn't mean 4348 * their order will become available due to high fragmentation so 4349 * always increment the no progress counter for them 4350 */ 4351 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4352 *no_progress_loops = 0; 4353 else 4354 (*no_progress_loops)++; 4355 4356 /* 4357 * Make sure we converge to OOM if we cannot make any progress 4358 * several times in the row. 4359 */ 4360 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4361 /* Before OOM, exhaust highatomic_reserve */ 4362 return unreserve_highatomic_pageblock(ac, true); 4363 } 4364 4365 /* 4366 * Keep reclaiming pages while there is a chance this will lead 4367 * somewhere. If none of the target zones can satisfy our allocation 4368 * request even if all reclaimable pages are considered then we are 4369 * screwed and have to go OOM. 4370 */ 4371 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4372 ac->nodemask) { 4373 unsigned long available; 4374 unsigned long reclaimable; 4375 unsigned long min_wmark = min_wmark_pages(zone); 4376 bool wmark; 4377 4378 available = reclaimable = zone_reclaimable_pages(zone); 4379 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4380 4381 /* 4382 * Would the allocation succeed if we reclaimed all 4383 * reclaimable pages? 4384 */ 4385 wmark = __zone_watermark_ok(zone, order, min_wmark, 4386 ac_classzone_idx(ac), alloc_flags, available); 4387 trace_reclaim_retry_zone(z, order, reclaimable, 4388 available, min_wmark, *no_progress_loops, wmark); 4389 if (wmark) { 4390 /* 4391 * If we didn't make any progress and have a lot of 4392 * dirty + writeback pages then we should wait for 4393 * an IO to complete to slow down the reclaim and 4394 * prevent from pre mature OOM 4395 */ 4396 if (!did_some_progress) { 4397 unsigned long write_pending; 4398 4399 write_pending = zone_page_state_snapshot(zone, 4400 NR_ZONE_WRITE_PENDING); 4401 4402 if (2 * write_pending > reclaimable) { 4403 congestion_wait(BLK_RW_ASYNC, HZ/10); 4404 return true; 4405 } 4406 } 4407 4408 ret = true; 4409 goto out; 4410 } 4411 } 4412 4413 out: 4414 /* 4415 * Memory allocation/reclaim might be called from a WQ context and the 4416 * current implementation of the WQ concurrency control doesn't 4417 * recognize that a particular WQ is congested if the worker thread is 4418 * looping without ever sleeping. Therefore we have to do a short sleep 4419 * here rather than calling cond_resched(). 4420 */ 4421 if (current->flags & PF_WQ_WORKER) 4422 schedule_timeout_uninterruptible(1); 4423 else 4424 cond_resched(); 4425 return ret; 4426 } 4427 4428 static inline bool 4429 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4430 { 4431 /* 4432 * It's possible that cpuset's mems_allowed and the nodemask from 4433 * mempolicy don't intersect. This should be normally dealt with by 4434 * policy_nodemask(), but it's possible to race with cpuset update in 4435 * such a way the check therein was true, and then it became false 4436 * before we got our cpuset_mems_cookie here. 4437 * This assumes that for all allocations, ac->nodemask can come only 4438 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4439 * when it does not intersect with the cpuset restrictions) or the 4440 * caller can deal with a violated nodemask. 4441 */ 4442 if (cpusets_enabled() && ac->nodemask && 4443 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4444 ac->nodemask = NULL; 4445 return true; 4446 } 4447 4448 /* 4449 * When updating a task's mems_allowed or mempolicy nodemask, it is 4450 * possible to race with parallel threads in such a way that our 4451 * allocation can fail while the mask is being updated. If we are about 4452 * to fail, check if the cpuset changed during allocation and if so, 4453 * retry. 4454 */ 4455 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4456 return true; 4457 4458 return false; 4459 } 4460 4461 static inline struct page * 4462 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4463 struct alloc_context *ac) 4464 { 4465 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4466 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4467 struct page *page = NULL; 4468 unsigned int alloc_flags; 4469 unsigned long did_some_progress; 4470 enum compact_priority compact_priority; 4471 enum compact_result compact_result; 4472 int compaction_retries; 4473 int no_progress_loops; 4474 unsigned int cpuset_mems_cookie; 4475 int reserve_flags; 4476 4477 /* 4478 * We also sanity check to catch abuse of atomic reserves being used by 4479 * callers that are not in atomic context. 4480 */ 4481 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4482 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4483 gfp_mask &= ~__GFP_ATOMIC; 4484 4485 retry_cpuset: 4486 compaction_retries = 0; 4487 no_progress_loops = 0; 4488 compact_priority = DEF_COMPACT_PRIORITY; 4489 cpuset_mems_cookie = read_mems_allowed_begin(); 4490 4491 /* 4492 * The fast path uses conservative alloc_flags to succeed only until 4493 * kswapd needs to be woken up, and to avoid the cost of setting up 4494 * alloc_flags precisely. So we do that now. 4495 */ 4496 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4497 4498 /* 4499 * We need to recalculate the starting point for the zonelist iterator 4500 * because we might have used different nodemask in the fast path, or 4501 * there was a cpuset modification and we are retrying - otherwise we 4502 * could end up iterating over non-eligible zones endlessly. 4503 */ 4504 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4505 ac->high_zoneidx, ac->nodemask); 4506 if (!ac->preferred_zoneref->zone) 4507 goto nopage; 4508 4509 if (alloc_flags & ALLOC_KSWAPD) 4510 wake_all_kswapds(order, gfp_mask, ac); 4511 4512 /* 4513 * The adjusted alloc_flags might result in immediate success, so try 4514 * that first 4515 */ 4516 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4517 if (page) 4518 goto got_pg; 4519 4520 /* 4521 * For costly allocations, try direct compaction first, as it's likely 4522 * that we have enough base pages and don't need to reclaim. For non- 4523 * movable high-order allocations, do that as well, as compaction will 4524 * try prevent permanent fragmentation by migrating from blocks of the 4525 * same migratetype. 4526 * Don't try this for allocations that are allowed to ignore 4527 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4528 */ 4529 if (can_direct_reclaim && 4530 (costly_order || 4531 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4532 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4533 page = __alloc_pages_direct_compact(gfp_mask, order, 4534 alloc_flags, ac, 4535 INIT_COMPACT_PRIORITY, 4536 &compact_result); 4537 if (page) 4538 goto got_pg; 4539 4540 /* 4541 * Checks for costly allocations with __GFP_NORETRY, which 4542 * includes some THP page fault allocations 4543 */ 4544 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4545 /* 4546 * If allocating entire pageblock(s) and compaction 4547 * failed because all zones are below low watermarks 4548 * or is prohibited because it recently failed at this 4549 * order, fail immediately unless the allocator has 4550 * requested compaction and reclaim retry. 4551 * 4552 * Reclaim is 4553 * - potentially very expensive because zones are far 4554 * below their low watermarks or this is part of very 4555 * bursty high order allocations, 4556 * - not guaranteed to help because isolate_freepages() 4557 * may not iterate over freed pages as part of its 4558 * linear scan, and 4559 * - unlikely to make entire pageblocks free on its 4560 * own. 4561 */ 4562 if (compact_result == COMPACT_SKIPPED || 4563 compact_result == COMPACT_DEFERRED) 4564 goto nopage; 4565 4566 /* 4567 * Looks like reclaim/compaction is worth trying, but 4568 * sync compaction could be very expensive, so keep 4569 * using async compaction. 4570 */ 4571 compact_priority = INIT_COMPACT_PRIORITY; 4572 } 4573 } 4574 4575 retry: 4576 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4577 if (alloc_flags & ALLOC_KSWAPD) 4578 wake_all_kswapds(order, gfp_mask, ac); 4579 4580 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4581 if (reserve_flags) 4582 alloc_flags = reserve_flags; 4583 4584 /* 4585 * Reset the nodemask and zonelist iterators if memory policies can be 4586 * ignored. These allocations are high priority and system rather than 4587 * user oriented. 4588 */ 4589 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4590 ac->nodemask = NULL; 4591 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4592 ac->high_zoneidx, ac->nodemask); 4593 } 4594 4595 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4596 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4597 if (page) 4598 goto got_pg; 4599 4600 /* Caller is not willing to reclaim, we can't balance anything */ 4601 if (!can_direct_reclaim) 4602 goto nopage; 4603 4604 /* Avoid recursion of direct reclaim */ 4605 if (current->flags & PF_MEMALLOC) 4606 goto nopage; 4607 4608 /* Try direct reclaim and then allocating */ 4609 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4610 &did_some_progress); 4611 if (page) 4612 goto got_pg; 4613 4614 /* Try direct compaction and then allocating */ 4615 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4616 compact_priority, &compact_result); 4617 if (page) 4618 goto got_pg; 4619 4620 /* Do not loop if specifically requested */ 4621 if (gfp_mask & __GFP_NORETRY) 4622 goto nopage; 4623 4624 /* 4625 * Do not retry costly high order allocations unless they are 4626 * __GFP_RETRY_MAYFAIL 4627 */ 4628 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4629 goto nopage; 4630 4631 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4632 did_some_progress > 0, &no_progress_loops)) 4633 goto retry; 4634 4635 /* 4636 * It doesn't make any sense to retry for the compaction if the order-0 4637 * reclaim is not able to make any progress because the current 4638 * implementation of the compaction depends on the sufficient amount 4639 * of free memory (see __compaction_suitable) 4640 */ 4641 if (did_some_progress > 0 && 4642 should_compact_retry(ac, order, alloc_flags, 4643 compact_result, &compact_priority, 4644 &compaction_retries)) 4645 goto retry; 4646 4647 4648 /* Deal with possible cpuset update races before we start OOM killing */ 4649 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4650 goto retry_cpuset; 4651 4652 /* Reclaim has failed us, start killing things */ 4653 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4654 if (page) 4655 goto got_pg; 4656 4657 /* Avoid allocations with no watermarks from looping endlessly */ 4658 if (tsk_is_oom_victim(current) && 4659 (alloc_flags == ALLOC_OOM || 4660 (gfp_mask & __GFP_NOMEMALLOC))) 4661 goto nopage; 4662 4663 /* Retry as long as the OOM killer is making progress */ 4664 if (did_some_progress) { 4665 no_progress_loops = 0; 4666 goto retry; 4667 } 4668 4669 nopage: 4670 /* Deal with possible cpuset update races before we fail */ 4671 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4672 goto retry_cpuset; 4673 4674 /* 4675 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4676 * we always retry 4677 */ 4678 if (gfp_mask & __GFP_NOFAIL) { 4679 /* 4680 * All existing users of the __GFP_NOFAIL are blockable, so warn 4681 * of any new users that actually require GFP_NOWAIT 4682 */ 4683 if (WARN_ON_ONCE(!can_direct_reclaim)) 4684 goto fail; 4685 4686 /* 4687 * PF_MEMALLOC request from this context is rather bizarre 4688 * because we cannot reclaim anything and only can loop waiting 4689 * for somebody to do a work for us 4690 */ 4691 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4692 4693 /* 4694 * non failing costly orders are a hard requirement which we 4695 * are not prepared for much so let's warn about these users 4696 * so that we can identify them and convert them to something 4697 * else. 4698 */ 4699 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4700 4701 /* 4702 * Help non-failing allocations by giving them access to memory 4703 * reserves but do not use ALLOC_NO_WATERMARKS because this 4704 * could deplete whole memory reserves which would just make 4705 * the situation worse 4706 */ 4707 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4708 if (page) 4709 goto got_pg; 4710 4711 cond_resched(); 4712 goto retry; 4713 } 4714 fail: 4715 warn_alloc(gfp_mask, ac->nodemask, 4716 "page allocation failure: order:%u", order); 4717 got_pg: 4718 return page; 4719 } 4720 4721 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4722 int preferred_nid, nodemask_t *nodemask, 4723 struct alloc_context *ac, gfp_t *alloc_mask, 4724 unsigned int *alloc_flags) 4725 { 4726 ac->high_zoneidx = gfp_zone(gfp_mask); 4727 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4728 ac->nodemask = nodemask; 4729 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4730 4731 if (cpusets_enabled()) { 4732 *alloc_mask |= __GFP_HARDWALL; 4733 if (!ac->nodemask) 4734 ac->nodemask = &cpuset_current_mems_allowed; 4735 else 4736 *alloc_flags |= ALLOC_CPUSET; 4737 } 4738 4739 fs_reclaim_acquire(gfp_mask); 4740 fs_reclaim_release(gfp_mask); 4741 4742 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4743 4744 if (should_fail_alloc_page(gfp_mask, order)) 4745 return false; 4746 4747 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4748 *alloc_flags |= ALLOC_CMA; 4749 4750 return true; 4751 } 4752 4753 /* Determine whether to spread dirty pages and what the first usable zone */ 4754 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac) 4755 { 4756 /* Dirty zone balancing only done in the fast path */ 4757 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4758 4759 /* 4760 * The preferred zone is used for statistics but crucially it is 4761 * also used as the starting point for the zonelist iterator. It 4762 * may get reset for allocations that ignore memory policies. 4763 */ 4764 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4765 ac->high_zoneidx, ac->nodemask); 4766 } 4767 4768 /* 4769 * This is the 'heart' of the zoned buddy allocator. 4770 */ 4771 struct page * 4772 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4773 nodemask_t *nodemask) 4774 { 4775 struct page *page; 4776 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4777 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4778 struct alloc_context ac = { }; 4779 4780 /* 4781 * There are several places where we assume that the order value is sane 4782 * so bail out early if the request is out of bound. 4783 */ 4784 if (unlikely(order >= MAX_ORDER)) { 4785 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4786 return NULL; 4787 } 4788 4789 gfp_mask &= gfp_allowed_mask; 4790 alloc_mask = gfp_mask; 4791 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4792 return NULL; 4793 4794 finalise_ac(gfp_mask, &ac); 4795 4796 /* 4797 * Forbid the first pass from falling back to types that fragment 4798 * memory until all local zones are considered. 4799 */ 4800 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4801 4802 /* First allocation attempt */ 4803 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4804 if (likely(page)) 4805 goto out; 4806 4807 /* 4808 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4809 * resp. GFP_NOIO which has to be inherited for all allocation requests 4810 * from a particular context which has been marked by 4811 * memalloc_no{fs,io}_{save,restore}. 4812 */ 4813 alloc_mask = current_gfp_context(gfp_mask); 4814 ac.spread_dirty_pages = false; 4815 4816 /* 4817 * Restore the original nodemask if it was potentially replaced with 4818 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4819 */ 4820 ac.nodemask = nodemask; 4821 4822 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4823 4824 out: 4825 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4826 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) { 4827 __free_pages(page, order); 4828 page = NULL; 4829 } 4830 4831 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4832 4833 return page; 4834 } 4835 EXPORT_SYMBOL(__alloc_pages_nodemask); 4836 4837 /* 4838 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4839 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4840 * you need to access high mem. 4841 */ 4842 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4843 { 4844 struct page *page; 4845 4846 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4847 if (!page) 4848 return 0; 4849 return (unsigned long) page_address(page); 4850 } 4851 EXPORT_SYMBOL(__get_free_pages); 4852 4853 unsigned long get_zeroed_page(gfp_t gfp_mask) 4854 { 4855 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4856 } 4857 EXPORT_SYMBOL(get_zeroed_page); 4858 4859 static inline void free_the_page(struct page *page, unsigned int order) 4860 { 4861 if (order == 0) /* Via pcp? */ 4862 free_unref_page(page); 4863 else 4864 __free_pages_ok(page, order); 4865 } 4866 4867 void __free_pages(struct page *page, unsigned int order) 4868 { 4869 if (put_page_testzero(page)) 4870 free_the_page(page, order); 4871 } 4872 EXPORT_SYMBOL(__free_pages); 4873 4874 void free_pages(unsigned long addr, unsigned int order) 4875 { 4876 if (addr != 0) { 4877 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4878 __free_pages(virt_to_page((void *)addr), order); 4879 } 4880 } 4881 4882 EXPORT_SYMBOL(free_pages); 4883 4884 /* 4885 * Page Fragment: 4886 * An arbitrary-length arbitrary-offset area of memory which resides 4887 * within a 0 or higher order page. Multiple fragments within that page 4888 * are individually refcounted, in the page's reference counter. 4889 * 4890 * The page_frag functions below provide a simple allocation framework for 4891 * page fragments. This is used by the network stack and network device 4892 * drivers to provide a backing region of memory for use as either an 4893 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4894 */ 4895 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4896 gfp_t gfp_mask) 4897 { 4898 struct page *page = NULL; 4899 gfp_t gfp = gfp_mask; 4900 4901 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4902 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4903 __GFP_NOMEMALLOC; 4904 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4905 PAGE_FRAG_CACHE_MAX_ORDER); 4906 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4907 #endif 4908 if (unlikely(!page)) 4909 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4910 4911 nc->va = page ? page_address(page) : NULL; 4912 4913 return page; 4914 } 4915 4916 void __page_frag_cache_drain(struct page *page, unsigned int count) 4917 { 4918 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4919 4920 if (page_ref_sub_and_test(page, count)) 4921 free_the_page(page, compound_order(page)); 4922 } 4923 EXPORT_SYMBOL(__page_frag_cache_drain); 4924 4925 void *page_frag_alloc(struct page_frag_cache *nc, 4926 unsigned int fragsz, gfp_t gfp_mask) 4927 { 4928 unsigned int size = PAGE_SIZE; 4929 struct page *page; 4930 int offset; 4931 4932 if (unlikely(!nc->va)) { 4933 refill: 4934 page = __page_frag_cache_refill(nc, gfp_mask); 4935 if (!page) 4936 return NULL; 4937 4938 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4939 /* if size can vary use size else just use PAGE_SIZE */ 4940 size = nc->size; 4941 #endif 4942 /* Even if we own the page, we do not use atomic_set(). 4943 * This would break get_page_unless_zero() users. 4944 */ 4945 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4946 4947 /* reset page count bias and offset to start of new frag */ 4948 nc->pfmemalloc = page_is_pfmemalloc(page); 4949 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4950 nc->offset = size; 4951 } 4952 4953 offset = nc->offset - fragsz; 4954 if (unlikely(offset < 0)) { 4955 page = virt_to_page(nc->va); 4956 4957 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4958 goto refill; 4959 4960 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4961 /* if size can vary use size else just use PAGE_SIZE */ 4962 size = nc->size; 4963 #endif 4964 /* OK, page count is 0, we can safely set it */ 4965 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4966 4967 /* reset page count bias and offset to start of new frag */ 4968 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4969 offset = size - fragsz; 4970 } 4971 4972 nc->pagecnt_bias--; 4973 nc->offset = offset; 4974 4975 return nc->va + offset; 4976 } 4977 EXPORT_SYMBOL(page_frag_alloc); 4978 4979 /* 4980 * Frees a page fragment allocated out of either a compound or order 0 page. 4981 */ 4982 void page_frag_free(void *addr) 4983 { 4984 struct page *page = virt_to_head_page(addr); 4985 4986 if (unlikely(put_page_testzero(page))) 4987 free_the_page(page, compound_order(page)); 4988 } 4989 EXPORT_SYMBOL(page_frag_free); 4990 4991 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4992 size_t size) 4993 { 4994 if (addr) { 4995 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4996 unsigned long used = addr + PAGE_ALIGN(size); 4997 4998 split_page(virt_to_page((void *)addr), order); 4999 while (used < alloc_end) { 5000 free_page(used); 5001 used += PAGE_SIZE; 5002 } 5003 } 5004 return (void *)addr; 5005 } 5006 5007 /** 5008 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5009 * @size: the number of bytes to allocate 5010 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5011 * 5012 * This function is similar to alloc_pages(), except that it allocates the 5013 * minimum number of pages to satisfy the request. alloc_pages() can only 5014 * allocate memory in power-of-two pages. 5015 * 5016 * This function is also limited by MAX_ORDER. 5017 * 5018 * Memory allocated by this function must be released by free_pages_exact(). 5019 * 5020 * Return: pointer to the allocated area or %NULL in case of error. 5021 */ 5022 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5023 { 5024 unsigned int order = get_order(size); 5025 unsigned long addr; 5026 5027 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5028 gfp_mask &= ~__GFP_COMP; 5029 5030 addr = __get_free_pages(gfp_mask, order); 5031 return make_alloc_exact(addr, order, size); 5032 } 5033 EXPORT_SYMBOL(alloc_pages_exact); 5034 5035 /** 5036 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5037 * pages on a node. 5038 * @nid: the preferred node ID where memory should be allocated 5039 * @size: the number of bytes to allocate 5040 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5041 * 5042 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5043 * back. 5044 * 5045 * Return: pointer to the allocated area or %NULL in case of error. 5046 */ 5047 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5048 { 5049 unsigned int order = get_order(size); 5050 struct page *p; 5051 5052 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5053 gfp_mask &= ~__GFP_COMP; 5054 5055 p = alloc_pages_node(nid, gfp_mask, order); 5056 if (!p) 5057 return NULL; 5058 return make_alloc_exact((unsigned long)page_address(p), order, size); 5059 } 5060 5061 /** 5062 * free_pages_exact - release memory allocated via alloc_pages_exact() 5063 * @virt: the value returned by alloc_pages_exact. 5064 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5065 * 5066 * Release the memory allocated by a previous call to alloc_pages_exact. 5067 */ 5068 void free_pages_exact(void *virt, size_t size) 5069 { 5070 unsigned long addr = (unsigned long)virt; 5071 unsigned long end = addr + PAGE_ALIGN(size); 5072 5073 while (addr < end) { 5074 free_page(addr); 5075 addr += PAGE_SIZE; 5076 } 5077 } 5078 EXPORT_SYMBOL(free_pages_exact); 5079 5080 /** 5081 * nr_free_zone_pages - count number of pages beyond high watermark 5082 * @offset: The zone index of the highest zone 5083 * 5084 * nr_free_zone_pages() counts the number of pages which are beyond the 5085 * high watermark within all zones at or below a given zone index. For each 5086 * zone, the number of pages is calculated as: 5087 * 5088 * nr_free_zone_pages = managed_pages - high_pages 5089 * 5090 * Return: number of pages beyond high watermark. 5091 */ 5092 static unsigned long nr_free_zone_pages(int offset) 5093 { 5094 struct zoneref *z; 5095 struct zone *zone; 5096 5097 /* Just pick one node, since fallback list is circular */ 5098 unsigned long sum = 0; 5099 5100 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5101 5102 for_each_zone_zonelist(zone, z, zonelist, offset) { 5103 unsigned long size = zone_managed_pages(zone); 5104 unsigned long high = high_wmark_pages(zone); 5105 if (size > high) 5106 sum += size - high; 5107 } 5108 5109 return sum; 5110 } 5111 5112 /** 5113 * nr_free_buffer_pages - count number of pages beyond high watermark 5114 * 5115 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5116 * watermark within ZONE_DMA and ZONE_NORMAL. 5117 * 5118 * Return: number of pages beyond high watermark within ZONE_DMA and 5119 * ZONE_NORMAL. 5120 */ 5121 unsigned long nr_free_buffer_pages(void) 5122 { 5123 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5124 } 5125 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5126 5127 /** 5128 * nr_free_pagecache_pages - count number of pages beyond high watermark 5129 * 5130 * nr_free_pagecache_pages() counts the number of pages which are beyond the 5131 * high watermark within all zones. 5132 * 5133 * Return: number of pages beyond high watermark within all zones. 5134 */ 5135 unsigned long nr_free_pagecache_pages(void) 5136 { 5137 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5138 } 5139 5140 static inline void show_node(struct zone *zone) 5141 { 5142 if (IS_ENABLED(CONFIG_NUMA)) 5143 printk("Node %d ", zone_to_nid(zone)); 5144 } 5145 5146 long si_mem_available(void) 5147 { 5148 long available; 5149 unsigned long pagecache; 5150 unsigned long wmark_low = 0; 5151 unsigned long pages[NR_LRU_LISTS]; 5152 unsigned long reclaimable; 5153 struct zone *zone; 5154 int lru; 5155 5156 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5157 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5158 5159 for_each_zone(zone) 5160 wmark_low += low_wmark_pages(zone); 5161 5162 /* 5163 * Estimate the amount of memory available for userspace allocations, 5164 * without causing swapping. 5165 */ 5166 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5167 5168 /* 5169 * Not all the page cache can be freed, otherwise the system will 5170 * start swapping. Assume at least half of the page cache, or the 5171 * low watermark worth of cache, needs to stay. 5172 */ 5173 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5174 pagecache -= min(pagecache / 2, wmark_low); 5175 available += pagecache; 5176 5177 /* 5178 * Part of the reclaimable slab and other kernel memory consists of 5179 * items that are in use, and cannot be freed. Cap this estimate at the 5180 * low watermark. 5181 */ 5182 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) + 5183 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5184 available += reclaimable - min(reclaimable / 2, wmark_low); 5185 5186 if (available < 0) 5187 available = 0; 5188 return available; 5189 } 5190 EXPORT_SYMBOL_GPL(si_mem_available); 5191 5192 void si_meminfo(struct sysinfo *val) 5193 { 5194 val->totalram = totalram_pages(); 5195 val->sharedram = global_node_page_state(NR_SHMEM); 5196 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5197 val->bufferram = nr_blockdev_pages(); 5198 val->totalhigh = totalhigh_pages(); 5199 val->freehigh = nr_free_highpages(); 5200 val->mem_unit = PAGE_SIZE; 5201 } 5202 5203 EXPORT_SYMBOL(si_meminfo); 5204 5205 #ifdef CONFIG_NUMA 5206 void si_meminfo_node(struct sysinfo *val, int nid) 5207 { 5208 int zone_type; /* needs to be signed */ 5209 unsigned long managed_pages = 0; 5210 unsigned long managed_highpages = 0; 5211 unsigned long free_highpages = 0; 5212 pg_data_t *pgdat = NODE_DATA(nid); 5213 5214 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5215 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5216 val->totalram = managed_pages; 5217 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5218 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5219 #ifdef CONFIG_HIGHMEM 5220 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5221 struct zone *zone = &pgdat->node_zones[zone_type]; 5222 5223 if (is_highmem(zone)) { 5224 managed_highpages += zone_managed_pages(zone); 5225 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5226 } 5227 } 5228 val->totalhigh = managed_highpages; 5229 val->freehigh = free_highpages; 5230 #else 5231 val->totalhigh = managed_highpages; 5232 val->freehigh = free_highpages; 5233 #endif 5234 val->mem_unit = PAGE_SIZE; 5235 } 5236 #endif 5237 5238 /* 5239 * Determine whether the node should be displayed or not, depending on whether 5240 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5241 */ 5242 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5243 { 5244 if (!(flags & SHOW_MEM_FILTER_NODES)) 5245 return false; 5246 5247 /* 5248 * no node mask - aka implicit memory numa policy. Do not bother with 5249 * the synchronization - read_mems_allowed_begin - because we do not 5250 * have to be precise here. 5251 */ 5252 if (!nodemask) 5253 nodemask = &cpuset_current_mems_allowed; 5254 5255 return !node_isset(nid, *nodemask); 5256 } 5257 5258 #define K(x) ((x) << (PAGE_SHIFT-10)) 5259 5260 static void show_migration_types(unsigned char type) 5261 { 5262 static const char types[MIGRATE_TYPES] = { 5263 [MIGRATE_UNMOVABLE] = 'U', 5264 [MIGRATE_MOVABLE] = 'M', 5265 [MIGRATE_RECLAIMABLE] = 'E', 5266 [MIGRATE_HIGHATOMIC] = 'H', 5267 #ifdef CONFIG_CMA 5268 [MIGRATE_CMA] = 'C', 5269 #endif 5270 #ifdef CONFIG_MEMORY_ISOLATION 5271 [MIGRATE_ISOLATE] = 'I', 5272 #endif 5273 }; 5274 char tmp[MIGRATE_TYPES + 1]; 5275 char *p = tmp; 5276 int i; 5277 5278 for (i = 0; i < MIGRATE_TYPES; i++) { 5279 if (type & (1 << i)) 5280 *p++ = types[i]; 5281 } 5282 5283 *p = '\0'; 5284 printk(KERN_CONT "(%s) ", tmp); 5285 } 5286 5287 /* 5288 * Show free area list (used inside shift_scroll-lock stuff) 5289 * We also calculate the percentage fragmentation. We do this by counting the 5290 * memory on each free list with the exception of the first item on the list. 5291 * 5292 * Bits in @filter: 5293 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5294 * cpuset. 5295 */ 5296 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5297 { 5298 unsigned long free_pcp = 0; 5299 int cpu; 5300 struct zone *zone; 5301 pg_data_t *pgdat; 5302 5303 for_each_populated_zone(zone) { 5304 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5305 continue; 5306 5307 for_each_online_cpu(cpu) 5308 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5309 } 5310 5311 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5312 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5313 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 5314 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5315 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5316 " free:%lu free_pcp:%lu free_cma:%lu\n", 5317 global_node_page_state(NR_ACTIVE_ANON), 5318 global_node_page_state(NR_INACTIVE_ANON), 5319 global_node_page_state(NR_ISOLATED_ANON), 5320 global_node_page_state(NR_ACTIVE_FILE), 5321 global_node_page_state(NR_INACTIVE_FILE), 5322 global_node_page_state(NR_ISOLATED_FILE), 5323 global_node_page_state(NR_UNEVICTABLE), 5324 global_node_page_state(NR_FILE_DIRTY), 5325 global_node_page_state(NR_WRITEBACK), 5326 global_node_page_state(NR_UNSTABLE_NFS), 5327 global_node_page_state(NR_SLAB_RECLAIMABLE), 5328 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 5329 global_node_page_state(NR_FILE_MAPPED), 5330 global_node_page_state(NR_SHMEM), 5331 global_zone_page_state(NR_PAGETABLE), 5332 global_zone_page_state(NR_BOUNCE), 5333 global_zone_page_state(NR_FREE_PAGES), 5334 free_pcp, 5335 global_zone_page_state(NR_FREE_CMA_PAGES)); 5336 5337 for_each_online_pgdat(pgdat) { 5338 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5339 continue; 5340 5341 printk("Node %d" 5342 " active_anon:%lukB" 5343 " inactive_anon:%lukB" 5344 " active_file:%lukB" 5345 " inactive_file:%lukB" 5346 " unevictable:%lukB" 5347 " isolated(anon):%lukB" 5348 " isolated(file):%lukB" 5349 " mapped:%lukB" 5350 " dirty:%lukB" 5351 " writeback:%lukB" 5352 " shmem:%lukB" 5353 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5354 " shmem_thp: %lukB" 5355 " shmem_pmdmapped: %lukB" 5356 " anon_thp: %lukB" 5357 #endif 5358 " writeback_tmp:%lukB" 5359 " unstable:%lukB" 5360 " all_unreclaimable? %s" 5361 "\n", 5362 pgdat->node_id, 5363 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5364 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5365 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5366 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5367 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5368 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5369 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5370 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5371 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5372 K(node_page_state(pgdat, NR_WRITEBACK)), 5373 K(node_page_state(pgdat, NR_SHMEM)), 5374 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5375 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5376 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5377 * HPAGE_PMD_NR), 5378 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5379 #endif 5380 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5381 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 5382 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5383 "yes" : "no"); 5384 } 5385 5386 for_each_populated_zone(zone) { 5387 int i; 5388 5389 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5390 continue; 5391 5392 free_pcp = 0; 5393 for_each_online_cpu(cpu) 5394 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5395 5396 show_node(zone); 5397 printk(KERN_CONT 5398 "%s" 5399 " free:%lukB" 5400 " min:%lukB" 5401 " low:%lukB" 5402 " high:%lukB" 5403 " reserved_highatomic:%luKB" 5404 " active_anon:%lukB" 5405 " inactive_anon:%lukB" 5406 " active_file:%lukB" 5407 " inactive_file:%lukB" 5408 " unevictable:%lukB" 5409 " writepending:%lukB" 5410 " present:%lukB" 5411 " managed:%lukB" 5412 " mlocked:%lukB" 5413 " kernel_stack:%lukB" 5414 " pagetables:%lukB" 5415 " bounce:%lukB" 5416 " free_pcp:%lukB" 5417 " local_pcp:%ukB" 5418 " free_cma:%lukB" 5419 "\n", 5420 zone->name, 5421 K(zone_page_state(zone, NR_FREE_PAGES)), 5422 K(min_wmark_pages(zone)), 5423 K(low_wmark_pages(zone)), 5424 K(high_wmark_pages(zone)), 5425 K(zone->nr_reserved_highatomic), 5426 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5427 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5428 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5429 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5430 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5431 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5432 K(zone->present_pages), 5433 K(zone_managed_pages(zone)), 5434 K(zone_page_state(zone, NR_MLOCK)), 5435 zone_page_state(zone, NR_KERNEL_STACK_KB), 5436 K(zone_page_state(zone, NR_PAGETABLE)), 5437 K(zone_page_state(zone, NR_BOUNCE)), 5438 K(free_pcp), 5439 K(this_cpu_read(zone->pageset->pcp.count)), 5440 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5441 printk("lowmem_reserve[]:"); 5442 for (i = 0; i < MAX_NR_ZONES; i++) 5443 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5444 printk(KERN_CONT "\n"); 5445 } 5446 5447 for_each_populated_zone(zone) { 5448 unsigned int order; 5449 unsigned long nr[MAX_ORDER], flags, total = 0; 5450 unsigned char types[MAX_ORDER]; 5451 5452 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5453 continue; 5454 show_node(zone); 5455 printk(KERN_CONT "%s: ", zone->name); 5456 5457 spin_lock_irqsave(&zone->lock, flags); 5458 for (order = 0; order < MAX_ORDER; order++) { 5459 struct free_area *area = &zone->free_area[order]; 5460 int type; 5461 5462 nr[order] = area->nr_free; 5463 total += nr[order] << order; 5464 5465 types[order] = 0; 5466 for (type = 0; type < MIGRATE_TYPES; type++) { 5467 if (!free_area_empty(area, type)) 5468 types[order] |= 1 << type; 5469 } 5470 } 5471 spin_unlock_irqrestore(&zone->lock, flags); 5472 for (order = 0; order < MAX_ORDER; order++) { 5473 printk(KERN_CONT "%lu*%lukB ", 5474 nr[order], K(1UL) << order); 5475 if (nr[order]) 5476 show_migration_types(types[order]); 5477 } 5478 printk(KERN_CONT "= %lukB\n", K(total)); 5479 } 5480 5481 hugetlb_show_meminfo(); 5482 5483 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5484 5485 show_swap_cache_info(); 5486 } 5487 5488 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5489 { 5490 zoneref->zone = zone; 5491 zoneref->zone_idx = zone_idx(zone); 5492 } 5493 5494 /* 5495 * Builds allocation fallback zone lists. 5496 * 5497 * Add all populated zones of a node to the zonelist. 5498 */ 5499 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5500 { 5501 struct zone *zone; 5502 enum zone_type zone_type = MAX_NR_ZONES; 5503 int nr_zones = 0; 5504 5505 do { 5506 zone_type--; 5507 zone = pgdat->node_zones + zone_type; 5508 if (managed_zone(zone)) { 5509 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5510 check_highest_zone(zone_type); 5511 } 5512 } while (zone_type); 5513 5514 return nr_zones; 5515 } 5516 5517 #ifdef CONFIG_NUMA 5518 5519 static int __parse_numa_zonelist_order(char *s) 5520 { 5521 /* 5522 * We used to support different zonlists modes but they turned 5523 * out to be just not useful. Let's keep the warning in place 5524 * if somebody still use the cmd line parameter so that we do 5525 * not fail it silently 5526 */ 5527 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5528 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5529 return -EINVAL; 5530 } 5531 return 0; 5532 } 5533 5534 static __init int setup_numa_zonelist_order(char *s) 5535 { 5536 if (!s) 5537 return 0; 5538 5539 return __parse_numa_zonelist_order(s); 5540 } 5541 early_param("numa_zonelist_order", setup_numa_zonelist_order); 5542 5543 char numa_zonelist_order[] = "Node"; 5544 5545 /* 5546 * sysctl handler for numa_zonelist_order 5547 */ 5548 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5549 void __user *buffer, size_t *length, 5550 loff_t *ppos) 5551 { 5552 char *str; 5553 int ret; 5554 5555 if (!write) 5556 return proc_dostring(table, write, buffer, length, ppos); 5557 str = memdup_user_nul(buffer, 16); 5558 if (IS_ERR(str)) 5559 return PTR_ERR(str); 5560 5561 ret = __parse_numa_zonelist_order(str); 5562 kfree(str); 5563 return ret; 5564 } 5565 5566 5567 #define MAX_NODE_LOAD (nr_online_nodes) 5568 static int node_load[MAX_NUMNODES]; 5569 5570 /** 5571 * find_next_best_node - find the next node that should appear in a given node's fallback list 5572 * @node: node whose fallback list we're appending 5573 * @used_node_mask: nodemask_t of already used nodes 5574 * 5575 * We use a number of factors to determine which is the next node that should 5576 * appear on a given node's fallback list. The node should not have appeared 5577 * already in @node's fallback list, and it should be the next closest node 5578 * according to the distance array (which contains arbitrary distance values 5579 * from each node to each node in the system), and should also prefer nodes 5580 * with no CPUs, since presumably they'll have very little allocation pressure 5581 * on them otherwise. 5582 * 5583 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5584 */ 5585 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5586 { 5587 int n, val; 5588 int min_val = INT_MAX; 5589 int best_node = NUMA_NO_NODE; 5590 const struct cpumask *tmp = cpumask_of_node(0); 5591 5592 /* Use the local node if we haven't already */ 5593 if (!node_isset(node, *used_node_mask)) { 5594 node_set(node, *used_node_mask); 5595 return node; 5596 } 5597 5598 for_each_node_state(n, N_MEMORY) { 5599 5600 /* Don't want a node to appear more than once */ 5601 if (node_isset(n, *used_node_mask)) 5602 continue; 5603 5604 /* Use the distance array to find the distance */ 5605 val = node_distance(node, n); 5606 5607 /* Penalize nodes under us ("prefer the next node") */ 5608 val += (n < node); 5609 5610 /* Give preference to headless and unused nodes */ 5611 tmp = cpumask_of_node(n); 5612 if (!cpumask_empty(tmp)) 5613 val += PENALTY_FOR_NODE_WITH_CPUS; 5614 5615 /* Slight preference for less loaded node */ 5616 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5617 val += node_load[n]; 5618 5619 if (val < min_val) { 5620 min_val = val; 5621 best_node = n; 5622 } 5623 } 5624 5625 if (best_node >= 0) 5626 node_set(best_node, *used_node_mask); 5627 5628 return best_node; 5629 } 5630 5631 5632 /* 5633 * Build zonelists ordered by node and zones within node. 5634 * This results in maximum locality--normal zone overflows into local 5635 * DMA zone, if any--but risks exhausting DMA zone. 5636 */ 5637 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5638 unsigned nr_nodes) 5639 { 5640 struct zoneref *zonerefs; 5641 int i; 5642 5643 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5644 5645 for (i = 0; i < nr_nodes; i++) { 5646 int nr_zones; 5647 5648 pg_data_t *node = NODE_DATA(node_order[i]); 5649 5650 nr_zones = build_zonerefs_node(node, zonerefs); 5651 zonerefs += nr_zones; 5652 } 5653 zonerefs->zone = NULL; 5654 zonerefs->zone_idx = 0; 5655 } 5656 5657 /* 5658 * Build gfp_thisnode zonelists 5659 */ 5660 static void build_thisnode_zonelists(pg_data_t *pgdat) 5661 { 5662 struct zoneref *zonerefs; 5663 int nr_zones; 5664 5665 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5666 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5667 zonerefs += nr_zones; 5668 zonerefs->zone = NULL; 5669 zonerefs->zone_idx = 0; 5670 } 5671 5672 /* 5673 * Build zonelists ordered by zone and nodes within zones. 5674 * This results in conserving DMA zone[s] until all Normal memory is 5675 * exhausted, but results in overflowing to remote node while memory 5676 * may still exist in local DMA zone. 5677 */ 5678 5679 static void build_zonelists(pg_data_t *pgdat) 5680 { 5681 static int node_order[MAX_NUMNODES]; 5682 int node, load, nr_nodes = 0; 5683 nodemask_t used_mask; 5684 int local_node, prev_node; 5685 5686 /* NUMA-aware ordering of nodes */ 5687 local_node = pgdat->node_id; 5688 load = nr_online_nodes; 5689 prev_node = local_node; 5690 nodes_clear(used_mask); 5691 5692 memset(node_order, 0, sizeof(node_order)); 5693 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5694 /* 5695 * We don't want to pressure a particular node. 5696 * So adding penalty to the first node in same 5697 * distance group to make it round-robin. 5698 */ 5699 if (node_distance(local_node, node) != 5700 node_distance(local_node, prev_node)) 5701 node_load[node] = load; 5702 5703 node_order[nr_nodes++] = node; 5704 prev_node = node; 5705 load--; 5706 } 5707 5708 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5709 build_thisnode_zonelists(pgdat); 5710 } 5711 5712 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5713 /* 5714 * Return node id of node used for "local" allocations. 5715 * I.e., first node id of first zone in arg node's generic zonelist. 5716 * Used for initializing percpu 'numa_mem', which is used primarily 5717 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5718 */ 5719 int local_memory_node(int node) 5720 { 5721 struct zoneref *z; 5722 5723 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5724 gfp_zone(GFP_KERNEL), 5725 NULL); 5726 return zone_to_nid(z->zone); 5727 } 5728 #endif 5729 5730 static void setup_min_unmapped_ratio(void); 5731 static void setup_min_slab_ratio(void); 5732 #else /* CONFIG_NUMA */ 5733 5734 static void build_zonelists(pg_data_t *pgdat) 5735 { 5736 int node, local_node; 5737 struct zoneref *zonerefs; 5738 int nr_zones; 5739 5740 local_node = pgdat->node_id; 5741 5742 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5743 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5744 zonerefs += nr_zones; 5745 5746 /* 5747 * Now we build the zonelist so that it contains the zones 5748 * of all the other nodes. 5749 * We don't want to pressure a particular node, so when 5750 * building the zones for node N, we make sure that the 5751 * zones coming right after the local ones are those from 5752 * node N+1 (modulo N) 5753 */ 5754 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5755 if (!node_online(node)) 5756 continue; 5757 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5758 zonerefs += nr_zones; 5759 } 5760 for (node = 0; node < local_node; node++) { 5761 if (!node_online(node)) 5762 continue; 5763 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5764 zonerefs += nr_zones; 5765 } 5766 5767 zonerefs->zone = NULL; 5768 zonerefs->zone_idx = 0; 5769 } 5770 5771 #endif /* CONFIG_NUMA */ 5772 5773 /* 5774 * Boot pageset table. One per cpu which is going to be used for all 5775 * zones and all nodes. The parameters will be set in such a way 5776 * that an item put on a list will immediately be handed over to 5777 * the buddy list. This is safe since pageset manipulation is done 5778 * with interrupts disabled. 5779 * 5780 * The boot_pagesets must be kept even after bootup is complete for 5781 * unused processors and/or zones. They do play a role for bootstrapping 5782 * hotplugged processors. 5783 * 5784 * zoneinfo_show() and maybe other functions do 5785 * not check if the processor is online before following the pageset pointer. 5786 * Other parts of the kernel may not check if the zone is available. 5787 */ 5788 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5789 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5790 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5791 5792 static void __build_all_zonelists(void *data) 5793 { 5794 int nid; 5795 int __maybe_unused cpu; 5796 pg_data_t *self = data; 5797 static DEFINE_SPINLOCK(lock); 5798 5799 spin_lock(&lock); 5800 5801 #ifdef CONFIG_NUMA 5802 memset(node_load, 0, sizeof(node_load)); 5803 #endif 5804 5805 /* 5806 * This node is hotadded and no memory is yet present. So just 5807 * building zonelists is fine - no need to touch other nodes. 5808 */ 5809 if (self && !node_online(self->node_id)) { 5810 build_zonelists(self); 5811 } else { 5812 for_each_online_node(nid) { 5813 pg_data_t *pgdat = NODE_DATA(nid); 5814 5815 build_zonelists(pgdat); 5816 } 5817 5818 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5819 /* 5820 * We now know the "local memory node" for each node-- 5821 * i.e., the node of the first zone in the generic zonelist. 5822 * Set up numa_mem percpu variable for on-line cpus. During 5823 * boot, only the boot cpu should be on-line; we'll init the 5824 * secondary cpus' numa_mem as they come on-line. During 5825 * node/memory hotplug, we'll fixup all on-line cpus. 5826 */ 5827 for_each_online_cpu(cpu) 5828 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5829 #endif 5830 } 5831 5832 spin_unlock(&lock); 5833 } 5834 5835 static noinline void __init 5836 build_all_zonelists_init(void) 5837 { 5838 int cpu; 5839 5840 __build_all_zonelists(NULL); 5841 5842 /* 5843 * Initialize the boot_pagesets that are going to be used 5844 * for bootstrapping processors. The real pagesets for 5845 * each zone will be allocated later when the per cpu 5846 * allocator is available. 5847 * 5848 * boot_pagesets are used also for bootstrapping offline 5849 * cpus if the system is already booted because the pagesets 5850 * are needed to initialize allocators on a specific cpu too. 5851 * F.e. the percpu allocator needs the page allocator which 5852 * needs the percpu allocator in order to allocate its pagesets 5853 * (a chicken-egg dilemma). 5854 */ 5855 for_each_possible_cpu(cpu) 5856 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5857 5858 mminit_verify_zonelist(); 5859 cpuset_init_current_mems_allowed(); 5860 } 5861 5862 /* 5863 * unless system_state == SYSTEM_BOOTING. 5864 * 5865 * __ref due to call of __init annotated helper build_all_zonelists_init 5866 * [protected by SYSTEM_BOOTING]. 5867 */ 5868 void __ref build_all_zonelists(pg_data_t *pgdat) 5869 { 5870 if (system_state == SYSTEM_BOOTING) { 5871 build_all_zonelists_init(); 5872 } else { 5873 __build_all_zonelists(pgdat); 5874 /* cpuset refresh routine should be here */ 5875 } 5876 vm_total_pages = nr_free_pagecache_pages(); 5877 /* 5878 * Disable grouping by mobility if the number of pages in the 5879 * system is too low to allow the mechanism to work. It would be 5880 * more accurate, but expensive to check per-zone. This check is 5881 * made on memory-hotadd so a system can start with mobility 5882 * disabled and enable it later 5883 */ 5884 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5885 page_group_by_mobility_disabled = 1; 5886 else 5887 page_group_by_mobility_disabled = 0; 5888 5889 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5890 nr_online_nodes, 5891 page_group_by_mobility_disabled ? "off" : "on", 5892 vm_total_pages); 5893 #ifdef CONFIG_NUMA 5894 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5895 #endif 5896 } 5897 5898 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 5899 static bool __meminit 5900 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 5901 { 5902 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5903 static struct memblock_region *r; 5904 5905 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5906 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 5907 for_each_memblock(memory, r) { 5908 if (*pfn < memblock_region_memory_end_pfn(r)) 5909 break; 5910 } 5911 } 5912 if (*pfn >= memblock_region_memory_base_pfn(r) && 5913 memblock_is_mirror(r)) { 5914 *pfn = memblock_region_memory_end_pfn(r); 5915 return true; 5916 } 5917 } 5918 #endif 5919 return false; 5920 } 5921 5922 #ifdef CONFIG_SPARSEMEM 5923 /* Skip PFNs that belong to non-present sections */ 5924 static inline __meminit unsigned long next_pfn(unsigned long pfn) 5925 { 5926 const unsigned long section_nr = pfn_to_section_nr(++pfn); 5927 5928 if (present_section_nr(section_nr)) 5929 return pfn; 5930 return section_nr_to_pfn(next_present_section_nr(section_nr)); 5931 } 5932 #else 5933 static inline __meminit unsigned long next_pfn(unsigned long pfn) 5934 { 5935 return pfn++; 5936 } 5937 #endif 5938 5939 /* 5940 * Initially all pages are reserved - free ones are freed 5941 * up by memblock_free_all() once the early boot process is 5942 * done. Non-atomic initialization, single-pass. 5943 */ 5944 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5945 unsigned long start_pfn, enum memmap_context context, 5946 struct vmem_altmap *altmap) 5947 { 5948 unsigned long pfn, end_pfn = start_pfn + size; 5949 struct page *page; 5950 5951 if (highest_memmap_pfn < end_pfn - 1) 5952 highest_memmap_pfn = end_pfn - 1; 5953 5954 #ifdef CONFIG_ZONE_DEVICE 5955 /* 5956 * Honor reservation requested by the driver for this ZONE_DEVICE 5957 * memory. We limit the total number of pages to initialize to just 5958 * those that might contain the memory mapping. We will defer the 5959 * ZONE_DEVICE page initialization until after we have released 5960 * the hotplug lock. 5961 */ 5962 if (zone == ZONE_DEVICE) { 5963 if (!altmap) 5964 return; 5965 5966 if (start_pfn == altmap->base_pfn) 5967 start_pfn += altmap->reserve; 5968 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5969 } 5970 #endif 5971 5972 for (pfn = start_pfn; pfn < end_pfn; ) { 5973 /* 5974 * There can be holes in boot-time mem_map[]s handed to this 5975 * function. They do not exist on hotplugged memory. 5976 */ 5977 if (context == MEMMAP_EARLY) { 5978 if (!early_pfn_valid(pfn)) { 5979 pfn = next_pfn(pfn); 5980 continue; 5981 } 5982 if (!early_pfn_in_nid(pfn, nid)) { 5983 pfn++; 5984 continue; 5985 } 5986 if (overlap_memmap_init(zone, &pfn)) 5987 continue; 5988 if (defer_init(nid, pfn, end_pfn)) 5989 break; 5990 } 5991 5992 page = pfn_to_page(pfn); 5993 __init_single_page(page, pfn, zone, nid); 5994 if (context == MEMMAP_HOTPLUG) 5995 __SetPageReserved(page); 5996 5997 /* 5998 * Mark the block movable so that blocks are reserved for 5999 * movable at startup. This will force kernel allocations 6000 * to reserve their blocks rather than leaking throughout 6001 * the address space during boot when many long-lived 6002 * kernel allocations are made. 6003 * 6004 * bitmap is created for zone's valid pfn range. but memmap 6005 * can be created for invalid pages (for alignment) 6006 * check here not to call set_pageblock_migratetype() against 6007 * pfn out of zone. 6008 */ 6009 if (!(pfn & (pageblock_nr_pages - 1))) { 6010 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6011 cond_resched(); 6012 } 6013 pfn++; 6014 } 6015 } 6016 6017 #ifdef CONFIG_ZONE_DEVICE 6018 void __ref memmap_init_zone_device(struct zone *zone, 6019 unsigned long start_pfn, 6020 unsigned long nr_pages, 6021 struct dev_pagemap *pgmap) 6022 { 6023 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6024 struct pglist_data *pgdat = zone->zone_pgdat; 6025 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6026 unsigned long zone_idx = zone_idx(zone); 6027 unsigned long start = jiffies; 6028 int nid = pgdat->node_id; 6029 6030 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6031 return; 6032 6033 /* 6034 * The call to memmap_init_zone should have already taken care 6035 * of the pages reserved for the memmap, so we can just jump to 6036 * the end of that region and start processing the device pages. 6037 */ 6038 if (altmap) { 6039 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6040 nr_pages = end_pfn - start_pfn; 6041 } 6042 6043 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 6044 struct page *page = pfn_to_page(pfn); 6045 6046 __init_single_page(page, pfn, zone_idx, nid); 6047 6048 /* 6049 * Mark page reserved as it will need to wait for onlining 6050 * phase for it to be fully associated with a zone. 6051 * 6052 * We can use the non-atomic __set_bit operation for setting 6053 * the flag as we are still initializing the pages. 6054 */ 6055 __SetPageReserved(page); 6056 6057 /* 6058 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6059 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6060 * ever freed or placed on a driver-private list. 6061 */ 6062 page->pgmap = pgmap; 6063 page->zone_device_data = NULL; 6064 6065 /* 6066 * Mark the block movable so that blocks are reserved for 6067 * movable at startup. This will force kernel allocations 6068 * to reserve their blocks rather than leaking throughout 6069 * the address space during boot when many long-lived 6070 * kernel allocations are made. 6071 * 6072 * bitmap is created for zone's valid pfn range. but memmap 6073 * can be created for invalid pages (for alignment) 6074 * check here not to call set_pageblock_migratetype() against 6075 * pfn out of zone. 6076 * 6077 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 6078 * because this is done early in section_activate() 6079 */ 6080 if (!(pfn & (pageblock_nr_pages - 1))) { 6081 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6082 cond_resched(); 6083 } 6084 } 6085 6086 pr_info("%s initialised %lu pages in %ums\n", __func__, 6087 nr_pages, jiffies_to_msecs(jiffies - start)); 6088 } 6089 6090 #endif 6091 static void __meminit zone_init_free_lists(struct zone *zone) 6092 { 6093 unsigned int order, t; 6094 for_each_migratetype_order(order, t) { 6095 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6096 zone->free_area[order].nr_free = 0; 6097 } 6098 } 6099 6100 void __meminit __weak memmap_init(unsigned long size, int nid, 6101 unsigned long zone, unsigned long start_pfn) 6102 { 6103 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL); 6104 } 6105 6106 static int zone_batchsize(struct zone *zone) 6107 { 6108 #ifdef CONFIG_MMU 6109 int batch; 6110 6111 /* 6112 * The per-cpu-pages pools are set to around 1000th of the 6113 * size of the zone. 6114 */ 6115 batch = zone_managed_pages(zone) / 1024; 6116 /* But no more than a meg. */ 6117 if (batch * PAGE_SIZE > 1024 * 1024) 6118 batch = (1024 * 1024) / PAGE_SIZE; 6119 batch /= 4; /* We effectively *= 4 below */ 6120 if (batch < 1) 6121 batch = 1; 6122 6123 /* 6124 * Clamp the batch to a 2^n - 1 value. Having a power 6125 * of 2 value was found to be more likely to have 6126 * suboptimal cache aliasing properties in some cases. 6127 * 6128 * For example if 2 tasks are alternately allocating 6129 * batches of pages, one task can end up with a lot 6130 * of pages of one half of the possible page colors 6131 * and the other with pages of the other colors. 6132 */ 6133 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6134 6135 return batch; 6136 6137 #else 6138 /* The deferral and batching of frees should be suppressed under NOMMU 6139 * conditions. 6140 * 6141 * The problem is that NOMMU needs to be able to allocate large chunks 6142 * of contiguous memory as there's no hardware page translation to 6143 * assemble apparent contiguous memory from discontiguous pages. 6144 * 6145 * Queueing large contiguous runs of pages for batching, however, 6146 * causes the pages to actually be freed in smaller chunks. As there 6147 * can be a significant delay between the individual batches being 6148 * recycled, this leads to the once large chunks of space being 6149 * fragmented and becoming unavailable for high-order allocations. 6150 */ 6151 return 0; 6152 #endif 6153 } 6154 6155 /* 6156 * pcp->high and pcp->batch values are related and dependent on one another: 6157 * ->batch must never be higher then ->high. 6158 * The following function updates them in a safe manner without read side 6159 * locking. 6160 * 6161 * Any new users of pcp->batch and pcp->high should ensure they can cope with 6162 * those fields changing asynchronously (acording the the above rule). 6163 * 6164 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6165 * outside of boot time (or some other assurance that no concurrent updaters 6166 * exist). 6167 */ 6168 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6169 unsigned long batch) 6170 { 6171 /* start with a fail safe value for batch */ 6172 pcp->batch = 1; 6173 smp_wmb(); 6174 6175 /* Update high, then batch, in order */ 6176 pcp->high = high; 6177 smp_wmb(); 6178 6179 pcp->batch = batch; 6180 } 6181 6182 /* a companion to pageset_set_high() */ 6183 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 6184 { 6185 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 6186 } 6187 6188 static void pageset_init(struct per_cpu_pageset *p) 6189 { 6190 struct per_cpu_pages *pcp; 6191 int migratetype; 6192 6193 memset(p, 0, sizeof(*p)); 6194 6195 pcp = &p->pcp; 6196 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 6197 INIT_LIST_HEAD(&pcp->lists[migratetype]); 6198 } 6199 6200 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 6201 { 6202 pageset_init(p); 6203 pageset_set_batch(p, batch); 6204 } 6205 6206 /* 6207 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 6208 * to the value high for the pageset p. 6209 */ 6210 static void pageset_set_high(struct per_cpu_pageset *p, 6211 unsigned long high) 6212 { 6213 unsigned long batch = max(1UL, high / 4); 6214 if ((high / 4) > (PAGE_SHIFT * 8)) 6215 batch = PAGE_SHIFT * 8; 6216 6217 pageset_update(&p->pcp, high, batch); 6218 } 6219 6220 static void pageset_set_high_and_batch(struct zone *zone, 6221 struct per_cpu_pageset *pcp) 6222 { 6223 if (percpu_pagelist_fraction) 6224 pageset_set_high(pcp, 6225 (zone_managed_pages(zone) / 6226 percpu_pagelist_fraction)); 6227 else 6228 pageset_set_batch(pcp, zone_batchsize(zone)); 6229 } 6230 6231 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 6232 { 6233 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 6234 6235 pageset_init(pcp); 6236 pageset_set_high_and_batch(zone, pcp); 6237 } 6238 6239 void __meminit setup_zone_pageset(struct zone *zone) 6240 { 6241 int cpu; 6242 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6243 for_each_possible_cpu(cpu) 6244 zone_pageset_init(zone, cpu); 6245 } 6246 6247 /* 6248 * Allocate per cpu pagesets and initialize them. 6249 * Before this call only boot pagesets were available. 6250 */ 6251 void __init setup_per_cpu_pageset(void) 6252 { 6253 struct pglist_data *pgdat; 6254 struct zone *zone; 6255 6256 for_each_populated_zone(zone) 6257 setup_zone_pageset(zone); 6258 6259 for_each_online_pgdat(pgdat) 6260 pgdat->per_cpu_nodestats = 6261 alloc_percpu(struct per_cpu_nodestat); 6262 } 6263 6264 static __meminit void zone_pcp_init(struct zone *zone) 6265 { 6266 /* 6267 * per cpu subsystem is not up at this point. The following code 6268 * relies on the ability of the linker to provide the 6269 * offset of a (static) per cpu variable into the per cpu area. 6270 */ 6271 zone->pageset = &boot_pageset; 6272 6273 if (populated_zone(zone)) 6274 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6275 zone->name, zone->present_pages, 6276 zone_batchsize(zone)); 6277 } 6278 6279 void __meminit init_currently_empty_zone(struct zone *zone, 6280 unsigned long zone_start_pfn, 6281 unsigned long size) 6282 { 6283 struct pglist_data *pgdat = zone->zone_pgdat; 6284 int zone_idx = zone_idx(zone) + 1; 6285 6286 if (zone_idx > pgdat->nr_zones) 6287 pgdat->nr_zones = zone_idx; 6288 6289 zone->zone_start_pfn = zone_start_pfn; 6290 6291 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6292 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6293 pgdat->node_id, 6294 (unsigned long)zone_idx(zone), 6295 zone_start_pfn, (zone_start_pfn + size)); 6296 6297 zone_init_free_lists(zone); 6298 zone->initialized = 1; 6299 } 6300 6301 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6302 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 6303 6304 /* 6305 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 6306 */ 6307 int __meminit __early_pfn_to_nid(unsigned long pfn, 6308 struct mminit_pfnnid_cache *state) 6309 { 6310 unsigned long start_pfn, end_pfn; 6311 int nid; 6312 6313 if (state->last_start <= pfn && pfn < state->last_end) 6314 return state->last_nid; 6315 6316 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 6317 if (nid != NUMA_NO_NODE) { 6318 state->last_start = start_pfn; 6319 state->last_end = end_pfn; 6320 state->last_nid = nid; 6321 } 6322 6323 return nid; 6324 } 6325 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 6326 6327 /** 6328 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 6329 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 6330 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 6331 * 6332 * If an architecture guarantees that all ranges registered contain no holes 6333 * and may be freed, this this function may be used instead of calling 6334 * memblock_free_early_nid() manually. 6335 */ 6336 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 6337 { 6338 unsigned long start_pfn, end_pfn; 6339 int i, this_nid; 6340 6341 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 6342 start_pfn = min(start_pfn, max_low_pfn); 6343 end_pfn = min(end_pfn, max_low_pfn); 6344 6345 if (start_pfn < end_pfn) 6346 memblock_free_early_nid(PFN_PHYS(start_pfn), 6347 (end_pfn - start_pfn) << PAGE_SHIFT, 6348 this_nid); 6349 } 6350 } 6351 6352 /** 6353 * sparse_memory_present_with_active_regions - Call memory_present for each active range 6354 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 6355 * 6356 * If an architecture guarantees that all ranges registered contain no holes and may 6357 * be freed, this function may be used instead of calling memory_present() manually. 6358 */ 6359 void __init sparse_memory_present_with_active_regions(int nid) 6360 { 6361 unsigned long start_pfn, end_pfn; 6362 int i, this_nid; 6363 6364 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 6365 memory_present(this_nid, start_pfn, end_pfn); 6366 } 6367 6368 /** 6369 * get_pfn_range_for_nid - Return the start and end page frames for a node 6370 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6371 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6372 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6373 * 6374 * It returns the start and end page frame of a node based on information 6375 * provided by memblock_set_node(). If called for a node 6376 * with no available memory, a warning is printed and the start and end 6377 * PFNs will be 0. 6378 */ 6379 void __init get_pfn_range_for_nid(unsigned int nid, 6380 unsigned long *start_pfn, unsigned long *end_pfn) 6381 { 6382 unsigned long this_start_pfn, this_end_pfn; 6383 int i; 6384 6385 *start_pfn = -1UL; 6386 *end_pfn = 0; 6387 6388 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6389 *start_pfn = min(*start_pfn, this_start_pfn); 6390 *end_pfn = max(*end_pfn, this_end_pfn); 6391 } 6392 6393 if (*start_pfn == -1UL) 6394 *start_pfn = 0; 6395 } 6396 6397 /* 6398 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6399 * assumption is made that zones within a node are ordered in monotonic 6400 * increasing memory addresses so that the "highest" populated zone is used 6401 */ 6402 static void __init find_usable_zone_for_movable(void) 6403 { 6404 int zone_index; 6405 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6406 if (zone_index == ZONE_MOVABLE) 6407 continue; 6408 6409 if (arch_zone_highest_possible_pfn[zone_index] > 6410 arch_zone_lowest_possible_pfn[zone_index]) 6411 break; 6412 } 6413 6414 VM_BUG_ON(zone_index == -1); 6415 movable_zone = zone_index; 6416 } 6417 6418 /* 6419 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6420 * because it is sized independent of architecture. Unlike the other zones, 6421 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6422 * in each node depending on the size of each node and how evenly kernelcore 6423 * is distributed. This helper function adjusts the zone ranges 6424 * provided by the architecture for a given node by using the end of the 6425 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6426 * zones within a node are in order of monotonic increases memory addresses 6427 */ 6428 static void __init adjust_zone_range_for_zone_movable(int nid, 6429 unsigned long zone_type, 6430 unsigned long node_start_pfn, 6431 unsigned long node_end_pfn, 6432 unsigned long *zone_start_pfn, 6433 unsigned long *zone_end_pfn) 6434 { 6435 /* Only adjust if ZONE_MOVABLE is on this node */ 6436 if (zone_movable_pfn[nid]) { 6437 /* Size ZONE_MOVABLE */ 6438 if (zone_type == ZONE_MOVABLE) { 6439 *zone_start_pfn = zone_movable_pfn[nid]; 6440 *zone_end_pfn = min(node_end_pfn, 6441 arch_zone_highest_possible_pfn[movable_zone]); 6442 6443 /* Adjust for ZONE_MOVABLE starting within this range */ 6444 } else if (!mirrored_kernelcore && 6445 *zone_start_pfn < zone_movable_pfn[nid] && 6446 *zone_end_pfn > zone_movable_pfn[nid]) { 6447 *zone_end_pfn = zone_movable_pfn[nid]; 6448 6449 /* Check if this whole range is within ZONE_MOVABLE */ 6450 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6451 *zone_start_pfn = *zone_end_pfn; 6452 } 6453 } 6454 6455 /* 6456 * Return the number of pages a zone spans in a node, including holes 6457 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6458 */ 6459 static unsigned long __init zone_spanned_pages_in_node(int nid, 6460 unsigned long zone_type, 6461 unsigned long node_start_pfn, 6462 unsigned long node_end_pfn, 6463 unsigned long *zone_start_pfn, 6464 unsigned long *zone_end_pfn, 6465 unsigned long *ignored) 6466 { 6467 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6468 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6469 /* When hotadd a new node from cpu_up(), the node should be empty */ 6470 if (!node_start_pfn && !node_end_pfn) 6471 return 0; 6472 6473 /* Get the start and end of the zone */ 6474 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6475 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6476 adjust_zone_range_for_zone_movable(nid, zone_type, 6477 node_start_pfn, node_end_pfn, 6478 zone_start_pfn, zone_end_pfn); 6479 6480 /* Check that this node has pages within the zone's required range */ 6481 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6482 return 0; 6483 6484 /* Move the zone boundaries inside the node if necessary */ 6485 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6486 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6487 6488 /* Return the spanned pages */ 6489 return *zone_end_pfn - *zone_start_pfn; 6490 } 6491 6492 /* 6493 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6494 * then all holes in the requested range will be accounted for. 6495 */ 6496 unsigned long __init __absent_pages_in_range(int nid, 6497 unsigned long range_start_pfn, 6498 unsigned long range_end_pfn) 6499 { 6500 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6501 unsigned long start_pfn, end_pfn; 6502 int i; 6503 6504 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6505 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6506 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6507 nr_absent -= end_pfn - start_pfn; 6508 } 6509 return nr_absent; 6510 } 6511 6512 /** 6513 * absent_pages_in_range - Return number of page frames in holes within a range 6514 * @start_pfn: The start PFN to start searching for holes 6515 * @end_pfn: The end PFN to stop searching for holes 6516 * 6517 * Return: the number of pages frames in memory holes within a range. 6518 */ 6519 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6520 unsigned long end_pfn) 6521 { 6522 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6523 } 6524 6525 /* Return the number of page frames in holes in a zone on a node */ 6526 static unsigned long __init zone_absent_pages_in_node(int nid, 6527 unsigned long zone_type, 6528 unsigned long node_start_pfn, 6529 unsigned long node_end_pfn, 6530 unsigned long *ignored) 6531 { 6532 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6533 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6534 unsigned long zone_start_pfn, zone_end_pfn; 6535 unsigned long nr_absent; 6536 6537 /* When hotadd a new node from cpu_up(), the node should be empty */ 6538 if (!node_start_pfn && !node_end_pfn) 6539 return 0; 6540 6541 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6542 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6543 6544 adjust_zone_range_for_zone_movable(nid, zone_type, 6545 node_start_pfn, node_end_pfn, 6546 &zone_start_pfn, &zone_end_pfn); 6547 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6548 6549 /* 6550 * ZONE_MOVABLE handling. 6551 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6552 * and vice versa. 6553 */ 6554 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6555 unsigned long start_pfn, end_pfn; 6556 struct memblock_region *r; 6557 6558 for_each_memblock(memory, r) { 6559 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6560 zone_start_pfn, zone_end_pfn); 6561 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6562 zone_start_pfn, zone_end_pfn); 6563 6564 if (zone_type == ZONE_MOVABLE && 6565 memblock_is_mirror(r)) 6566 nr_absent += end_pfn - start_pfn; 6567 6568 if (zone_type == ZONE_NORMAL && 6569 !memblock_is_mirror(r)) 6570 nr_absent += end_pfn - start_pfn; 6571 } 6572 } 6573 6574 return nr_absent; 6575 } 6576 6577 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6578 static inline unsigned long __init zone_spanned_pages_in_node(int nid, 6579 unsigned long zone_type, 6580 unsigned long node_start_pfn, 6581 unsigned long node_end_pfn, 6582 unsigned long *zone_start_pfn, 6583 unsigned long *zone_end_pfn, 6584 unsigned long *zones_size) 6585 { 6586 unsigned int zone; 6587 6588 *zone_start_pfn = node_start_pfn; 6589 for (zone = 0; zone < zone_type; zone++) 6590 *zone_start_pfn += zones_size[zone]; 6591 6592 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 6593 6594 return zones_size[zone_type]; 6595 } 6596 6597 static inline unsigned long __init zone_absent_pages_in_node(int nid, 6598 unsigned long zone_type, 6599 unsigned long node_start_pfn, 6600 unsigned long node_end_pfn, 6601 unsigned long *zholes_size) 6602 { 6603 if (!zholes_size) 6604 return 0; 6605 6606 return zholes_size[zone_type]; 6607 } 6608 6609 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6610 6611 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6612 unsigned long node_start_pfn, 6613 unsigned long node_end_pfn, 6614 unsigned long *zones_size, 6615 unsigned long *zholes_size) 6616 { 6617 unsigned long realtotalpages = 0, totalpages = 0; 6618 enum zone_type i; 6619 6620 for (i = 0; i < MAX_NR_ZONES; i++) { 6621 struct zone *zone = pgdat->node_zones + i; 6622 unsigned long zone_start_pfn, zone_end_pfn; 6623 unsigned long size, real_size; 6624 6625 size = zone_spanned_pages_in_node(pgdat->node_id, i, 6626 node_start_pfn, 6627 node_end_pfn, 6628 &zone_start_pfn, 6629 &zone_end_pfn, 6630 zones_size); 6631 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 6632 node_start_pfn, node_end_pfn, 6633 zholes_size); 6634 if (size) 6635 zone->zone_start_pfn = zone_start_pfn; 6636 else 6637 zone->zone_start_pfn = 0; 6638 zone->spanned_pages = size; 6639 zone->present_pages = real_size; 6640 6641 totalpages += size; 6642 realtotalpages += real_size; 6643 } 6644 6645 pgdat->node_spanned_pages = totalpages; 6646 pgdat->node_present_pages = realtotalpages; 6647 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6648 realtotalpages); 6649 } 6650 6651 #ifndef CONFIG_SPARSEMEM 6652 /* 6653 * Calculate the size of the zone->blockflags rounded to an unsigned long 6654 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6655 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6656 * round what is now in bits to nearest long in bits, then return it in 6657 * bytes. 6658 */ 6659 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6660 { 6661 unsigned long usemapsize; 6662 6663 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6664 usemapsize = roundup(zonesize, pageblock_nr_pages); 6665 usemapsize = usemapsize >> pageblock_order; 6666 usemapsize *= NR_PAGEBLOCK_BITS; 6667 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6668 6669 return usemapsize / 8; 6670 } 6671 6672 static void __ref setup_usemap(struct pglist_data *pgdat, 6673 struct zone *zone, 6674 unsigned long zone_start_pfn, 6675 unsigned long zonesize) 6676 { 6677 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6678 zone->pageblock_flags = NULL; 6679 if (usemapsize) { 6680 zone->pageblock_flags = 6681 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 6682 pgdat->node_id); 6683 if (!zone->pageblock_flags) 6684 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 6685 usemapsize, zone->name, pgdat->node_id); 6686 } 6687 } 6688 #else 6689 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6690 unsigned long zone_start_pfn, unsigned long zonesize) {} 6691 #endif /* CONFIG_SPARSEMEM */ 6692 6693 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6694 6695 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6696 void __init set_pageblock_order(void) 6697 { 6698 unsigned int order; 6699 6700 /* Check that pageblock_nr_pages has not already been setup */ 6701 if (pageblock_order) 6702 return; 6703 6704 if (HPAGE_SHIFT > PAGE_SHIFT) 6705 order = HUGETLB_PAGE_ORDER; 6706 else 6707 order = MAX_ORDER - 1; 6708 6709 /* 6710 * Assume the largest contiguous order of interest is a huge page. 6711 * This value may be variable depending on boot parameters on IA64 and 6712 * powerpc. 6713 */ 6714 pageblock_order = order; 6715 } 6716 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6717 6718 /* 6719 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6720 * is unused as pageblock_order is set at compile-time. See 6721 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6722 * the kernel config 6723 */ 6724 void __init set_pageblock_order(void) 6725 { 6726 } 6727 6728 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6729 6730 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6731 unsigned long present_pages) 6732 { 6733 unsigned long pages = spanned_pages; 6734 6735 /* 6736 * Provide a more accurate estimation if there are holes within 6737 * the zone and SPARSEMEM is in use. If there are holes within the 6738 * zone, each populated memory region may cost us one or two extra 6739 * memmap pages due to alignment because memmap pages for each 6740 * populated regions may not be naturally aligned on page boundary. 6741 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6742 */ 6743 if (spanned_pages > present_pages + (present_pages >> 4) && 6744 IS_ENABLED(CONFIG_SPARSEMEM)) 6745 pages = present_pages; 6746 6747 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6748 } 6749 6750 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6751 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6752 { 6753 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 6754 6755 spin_lock_init(&ds_queue->split_queue_lock); 6756 INIT_LIST_HEAD(&ds_queue->split_queue); 6757 ds_queue->split_queue_len = 0; 6758 } 6759 #else 6760 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6761 #endif 6762 6763 #ifdef CONFIG_COMPACTION 6764 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6765 { 6766 init_waitqueue_head(&pgdat->kcompactd_wait); 6767 } 6768 #else 6769 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6770 #endif 6771 6772 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6773 { 6774 pgdat_resize_init(pgdat); 6775 6776 pgdat_init_split_queue(pgdat); 6777 pgdat_init_kcompactd(pgdat); 6778 6779 init_waitqueue_head(&pgdat->kswapd_wait); 6780 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6781 6782 pgdat_page_ext_init(pgdat); 6783 spin_lock_init(&pgdat->lru_lock); 6784 lruvec_init(&pgdat->__lruvec); 6785 } 6786 6787 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6788 unsigned long remaining_pages) 6789 { 6790 atomic_long_set(&zone->managed_pages, remaining_pages); 6791 zone_set_nid(zone, nid); 6792 zone->name = zone_names[idx]; 6793 zone->zone_pgdat = NODE_DATA(nid); 6794 spin_lock_init(&zone->lock); 6795 zone_seqlock_init(zone); 6796 zone_pcp_init(zone); 6797 } 6798 6799 /* 6800 * Set up the zone data structures 6801 * - init pgdat internals 6802 * - init all zones belonging to this node 6803 * 6804 * NOTE: this function is only called during memory hotplug 6805 */ 6806 #ifdef CONFIG_MEMORY_HOTPLUG 6807 void __ref free_area_init_core_hotplug(int nid) 6808 { 6809 enum zone_type z; 6810 pg_data_t *pgdat = NODE_DATA(nid); 6811 6812 pgdat_init_internals(pgdat); 6813 for (z = 0; z < MAX_NR_ZONES; z++) 6814 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6815 } 6816 #endif 6817 6818 /* 6819 * Set up the zone data structures: 6820 * - mark all pages reserved 6821 * - mark all memory queues empty 6822 * - clear the memory bitmaps 6823 * 6824 * NOTE: pgdat should get zeroed by caller. 6825 * NOTE: this function is only called during early init. 6826 */ 6827 static void __init free_area_init_core(struct pglist_data *pgdat) 6828 { 6829 enum zone_type j; 6830 int nid = pgdat->node_id; 6831 6832 pgdat_init_internals(pgdat); 6833 pgdat->per_cpu_nodestats = &boot_nodestats; 6834 6835 for (j = 0; j < MAX_NR_ZONES; j++) { 6836 struct zone *zone = pgdat->node_zones + j; 6837 unsigned long size, freesize, memmap_pages; 6838 unsigned long zone_start_pfn = zone->zone_start_pfn; 6839 6840 size = zone->spanned_pages; 6841 freesize = zone->present_pages; 6842 6843 /* 6844 * Adjust freesize so that it accounts for how much memory 6845 * is used by this zone for memmap. This affects the watermark 6846 * and per-cpu initialisations 6847 */ 6848 memmap_pages = calc_memmap_size(size, freesize); 6849 if (!is_highmem_idx(j)) { 6850 if (freesize >= memmap_pages) { 6851 freesize -= memmap_pages; 6852 if (memmap_pages) 6853 printk(KERN_DEBUG 6854 " %s zone: %lu pages used for memmap\n", 6855 zone_names[j], memmap_pages); 6856 } else 6857 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6858 zone_names[j], memmap_pages, freesize); 6859 } 6860 6861 /* Account for reserved pages */ 6862 if (j == 0 && freesize > dma_reserve) { 6863 freesize -= dma_reserve; 6864 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6865 zone_names[0], dma_reserve); 6866 } 6867 6868 if (!is_highmem_idx(j)) 6869 nr_kernel_pages += freesize; 6870 /* Charge for highmem memmap if there are enough kernel pages */ 6871 else if (nr_kernel_pages > memmap_pages * 2) 6872 nr_kernel_pages -= memmap_pages; 6873 nr_all_pages += freesize; 6874 6875 /* 6876 * Set an approximate value for lowmem here, it will be adjusted 6877 * when the bootmem allocator frees pages into the buddy system. 6878 * And all highmem pages will be managed by the buddy system. 6879 */ 6880 zone_init_internals(zone, j, nid, freesize); 6881 6882 if (!size) 6883 continue; 6884 6885 set_pageblock_order(); 6886 setup_usemap(pgdat, zone, zone_start_pfn, size); 6887 init_currently_empty_zone(zone, zone_start_pfn, size); 6888 memmap_init(size, nid, j, zone_start_pfn); 6889 } 6890 } 6891 6892 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6893 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6894 { 6895 unsigned long __maybe_unused start = 0; 6896 unsigned long __maybe_unused offset = 0; 6897 6898 /* Skip empty nodes */ 6899 if (!pgdat->node_spanned_pages) 6900 return; 6901 6902 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6903 offset = pgdat->node_start_pfn - start; 6904 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6905 if (!pgdat->node_mem_map) { 6906 unsigned long size, end; 6907 struct page *map; 6908 6909 /* 6910 * The zone's endpoints aren't required to be MAX_ORDER 6911 * aligned but the node_mem_map endpoints must be in order 6912 * for the buddy allocator to function correctly. 6913 */ 6914 end = pgdat_end_pfn(pgdat); 6915 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6916 size = (end - start) * sizeof(struct page); 6917 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 6918 pgdat->node_id); 6919 if (!map) 6920 panic("Failed to allocate %ld bytes for node %d memory map\n", 6921 size, pgdat->node_id); 6922 pgdat->node_mem_map = map + offset; 6923 } 6924 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6925 __func__, pgdat->node_id, (unsigned long)pgdat, 6926 (unsigned long)pgdat->node_mem_map); 6927 #ifndef CONFIG_NEED_MULTIPLE_NODES 6928 /* 6929 * With no DISCONTIG, the global mem_map is just set as node 0's 6930 */ 6931 if (pgdat == NODE_DATA(0)) { 6932 mem_map = NODE_DATA(0)->node_mem_map; 6933 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6934 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6935 mem_map -= offset; 6936 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6937 } 6938 #endif 6939 } 6940 #else 6941 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6942 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6943 6944 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6945 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 6946 { 6947 pgdat->first_deferred_pfn = ULONG_MAX; 6948 } 6949 #else 6950 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 6951 #endif 6952 6953 void __init free_area_init_node(int nid, unsigned long *zones_size, 6954 unsigned long node_start_pfn, 6955 unsigned long *zholes_size) 6956 { 6957 pg_data_t *pgdat = NODE_DATA(nid); 6958 unsigned long start_pfn = 0; 6959 unsigned long end_pfn = 0; 6960 6961 /* pg_data_t should be reset to zero when it's allocated */ 6962 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6963 6964 pgdat->node_id = nid; 6965 pgdat->node_start_pfn = node_start_pfn; 6966 pgdat->per_cpu_nodestats = NULL; 6967 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6968 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6969 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6970 (u64)start_pfn << PAGE_SHIFT, 6971 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6972 #else 6973 start_pfn = node_start_pfn; 6974 #endif 6975 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6976 zones_size, zholes_size); 6977 6978 alloc_node_mem_map(pgdat); 6979 pgdat_set_deferred_range(pgdat); 6980 6981 free_area_init_core(pgdat); 6982 } 6983 6984 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 6985 /* 6986 * Initialize all valid struct pages in the range [spfn, epfn) and mark them 6987 * PageReserved(). Return the number of struct pages that were initialized. 6988 */ 6989 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn) 6990 { 6991 unsigned long pfn; 6992 u64 pgcnt = 0; 6993 6994 for (pfn = spfn; pfn < epfn; pfn++) { 6995 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6996 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6997 + pageblock_nr_pages - 1; 6998 continue; 6999 } 7000 /* 7001 * Use a fake node/zone (0) for now. Some of these pages 7002 * (in memblock.reserved but not in memblock.memory) will 7003 * get re-initialized via reserve_bootmem_region() later. 7004 */ 7005 __init_single_page(pfn_to_page(pfn), pfn, 0, 0); 7006 __SetPageReserved(pfn_to_page(pfn)); 7007 pgcnt++; 7008 } 7009 7010 return pgcnt; 7011 } 7012 7013 /* 7014 * Only struct pages that are backed by physical memory are zeroed and 7015 * initialized by going through __init_single_page(). But, there are some 7016 * struct pages which are reserved in memblock allocator and their fields 7017 * may be accessed (for example page_to_pfn() on some configuration accesses 7018 * flags). We must explicitly initialize those struct pages. 7019 * 7020 * This function also addresses a similar issue where struct pages are left 7021 * uninitialized because the physical address range is not covered by 7022 * memblock.memory or memblock.reserved. That could happen when memblock 7023 * layout is manually configured via memmap=, or when the highest physical 7024 * address (max_pfn) does not end on a section boundary. 7025 */ 7026 static void __init init_unavailable_mem(void) 7027 { 7028 phys_addr_t start, end; 7029 u64 i, pgcnt; 7030 phys_addr_t next = 0; 7031 7032 /* 7033 * Loop through unavailable ranges not covered by memblock.memory. 7034 */ 7035 pgcnt = 0; 7036 for_each_mem_range(i, &memblock.memory, NULL, 7037 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) { 7038 if (next < start) 7039 pgcnt += init_unavailable_range(PFN_DOWN(next), 7040 PFN_UP(start)); 7041 next = end; 7042 } 7043 7044 /* 7045 * Early sections always have a fully populated memmap for the whole 7046 * section - see pfn_valid(). If the last section has holes at the 7047 * end and that section is marked "online", the memmap will be 7048 * considered initialized. Make sure that memmap has a well defined 7049 * state. 7050 */ 7051 pgcnt += init_unavailable_range(PFN_DOWN(next), 7052 round_up(max_pfn, PAGES_PER_SECTION)); 7053 7054 /* 7055 * Struct pages that do not have backing memory. This could be because 7056 * firmware is using some of this memory, or for some other reasons. 7057 */ 7058 if (pgcnt) 7059 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 7060 } 7061 #else 7062 static inline void __init init_unavailable_mem(void) 7063 { 7064 } 7065 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 7066 7067 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 7068 7069 #if MAX_NUMNODES > 1 7070 /* 7071 * Figure out the number of possible node ids. 7072 */ 7073 void __init setup_nr_node_ids(void) 7074 { 7075 unsigned int highest; 7076 7077 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7078 nr_node_ids = highest + 1; 7079 } 7080 #endif 7081 7082 /** 7083 * node_map_pfn_alignment - determine the maximum internode alignment 7084 * 7085 * This function should be called after node map is populated and sorted. 7086 * It calculates the maximum power of two alignment which can distinguish 7087 * all the nodes. 7088 * 7089 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7090 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7091 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7092 * shifted, 1GiB is enough and this function will indicate so. 7093 * 7094 * This is used to test whether pfn -> nid mapping of the chosen memory 7095 * model has fine enough granularity to avoid incorrect mapping for the 7096 * populated node map. 7097 * 7098 * Return: the determined alignment in pfn's. 0 if there is no alignment 7099 * requirement (single node). 7100 */ 7101 unsigned long __init node_map_pfn_alignment(void) 7102 { 7103 unsigned long accl_mask = 0, last_end = 0; 7104 unsigned long start, end, mask; 7105 int last_nid = NUMA_NO_NODE; 7106 int i, nid; 7107 7108 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7109 if (!start || last_nid < 0 || last_nid == nid) { 7110 last_nid = nid; 7111 last_end = end; 7112 continue; 7113 } 7114 7115 /* 7116 * Start with a mask granular enough to pin-point to the 7117 * start pfn and tick off bits one-by-one until it becomes 7118 * too coarse to separate the current node from the last. 7119 */ 7120 mask = ~((1 << __ffs(start)) - 1); 7121 while (mask && last_end <= (start & (mask << 1))) 7122 mask <<= 1; 7123 7124 /* accumulate all internode masks */ 7125 accl_mask |= mask; 7126 } 7127 7128 /* convert mask to number of pages */ 7129 return ~accl_mask + 1; 7130 } 7131 7132 /* Find the lowest pfn for a node */ 7133 static unsigned long __init find_min_pfn_for_node(int nid) 7134 { 7135 unsigned long min_pfn = ULONG_MAX; 7136 unsigned long start_pfn; 7137 int i; 7138 7139 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 7140 min_pfn = min(min_pfn, start_pfn); 7141 7142 if (min_pfn == ULONG_MAX) { 7143 pr_warn("Could not find start_pfn for node %d\n", nid); 7144 return 0; 7145 } 7146 7147 return min_pfn; 7148 } 7149 7150 /** 7151 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7152 * 7153 * Return: the minimum PFN based on information provided via 7154 * memblock_set_node(). 7155 */ 7156 unsigned long __init find_min_pfn_with_active_regions(void) 7157 { 7158 return find_min_pfn_for_node(MAX_NUMNODES); 7159 } 7160 7161 /* 7162 * early_calculate_totalpages() 7163 * Sum pages in active regions for movable zone. 7164 * Populate N_MEMORY for calculating usable_nodes. 7165 */ 7166 static unsigned long __init early_calculate_totalpages(void) 7167 { 7168 unsigned long totalpages = 0; 7169 unsigned long start_pfn, end_pfn; 7170 int i, nid; 7171 7172 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7173 unsigned long pages = end_pfn - start_pfn; 7174 7175 totalpages += pages; 7176 if (pages) 7177 node_set_state(nid, N_MEMORY); 7178 } 7179 return totalpages; 7180 } 7181 7182 /* 7183 * Find the PFN the Movable zone begins in each node. Kernel memory 7184 * is spread evenly between nodes as long as the nodes have enough 7185 * memory. When they don't, some nodes will have more kernelcore than 7186 * others 7187 */ 7188 static void __init find_zone_movable_pfns_for_nodes(void) 7189 { 7190 int i, nid; 7191 unsigned long usable_startpfn; 7192 unsigned long kernelcore_node, kernelcore_remaining; 7193 /* save the state before borrow the nodemask */ 7194 nodemask_t saved_node_state = node_states[N_MEMORY]; 7195 unsigned long totalpages = early_calculate_totalpages(); 7196 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7197 struct memblock_region *r; 7198 7199 /* Need to find movable_zone earlier when movable_node is specified. */ 7200 find_usable_zone_for_movable(); 7201 7202 /* 7203 * If movable_node is specified, ignore kernelcore and movablecore 7204 * options. 7205 */ 7206 if (movable_node_is_enabled()) { 7207 for_each_memblock(memory, r) { 7208 if (!memblock_is_hotpluggable(r)) 7209 continue; 7210 7211 nid = r->nid; 7212 7213 usable_startpfn = PFN_DOWN(r->base); 7214 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7215 min(usable_startpfn, zone_movable_pfn[nid]) : 7216 usable_startpfn; 7217 } 7218 7219 goto out2; 7220 } 7221 7222 /* 7223 * If kernelcore=mirror is specified, ignore movablecore option 7224 */ 7225 if (mirrored_kernelcore) { 7226 bool mem_below_4gb_not_mirrored = false; 7227 7228 for_each_memblock(memory, r) { 7229 if (memblock_is_mirror(r)) 7230 continue; 7231 7232 nid = r->nid; 7233 7234 usable_startpfn = memblock_region_memory_base_pfn(r); 7235 7236 if (usable_startpfn < 0x100000) { 7237 mem_below_4gb_not_mirrored = true; 7238 continue; 7239 } 7240 7241 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7242 min(usable_startpfn, zone_movable_pfn[nid]) : 7243 usable_startpfn; 7244 } 7245 7246 if (mem_below_4gb_not_mirrored) 7247 pr_warn("This configuration results in unmirrored kernel memory."); 7248 7249 goto out2; 7250 } 7251 7252 /* 7253 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7254 * amount of necessary memory. 7255 */ 7256 if (required_kernelcore_percent) 7257 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7258 10000UL; 7259 if (required_movablecore_percent) 7260 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7261 10000UL; 7262 7263 /* 7264 * If movablecore= was specified, calculate what size of 7265 * kernelcore that corresponds so that memory usable for 7266 * any allocation type is evenly spread. If both kernelcore 7267 * and movablecore are specified, then the value of kernelcore 7268 * will be used for required_kernelcore if it's greater than 7269 * what movablecore would have allowed. 7270 */ 7271 if (required_movablecore) { 7272 unsigned long corepages; 7273 7274 /* 7275 * Round-up so that ZONE_MOVABLE is at least as large as what 7276 * was requested by the user 7277 */ 7278 required_movablecore = 7279 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7280 required_movablecore = min(totalpages, required_movablecore); 7281 corepages = totalpages - required_movablecore; 7282 7283 required_kernelcore = max(required_kernelcore, corepages); 7284 } 7285 7286 /* 7287 * If kernelcore was not specified or kernelcore size is larger 7288 * than totalpages, there is no ZONE_MOVABLE. 7289 */ 7290 if (!required_kernelcore || required_kernelcore >= totalpages) 7291 goto out; 7292 7293 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7294 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7295 7296 restart: 7297 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7298 kernelcore_node = required_kernelcore / usable_nodes; 7299 for_each_node_state(nid, N_MEMORY) { 7300 unsigned long start_pfn, end_pfn; 7301 7302 /* 7303 * Recalculate kernelcore_node if the division per node 7304 * now exceeds what is necessary to satisfy the requested 7305 * amount of memory for the kernel 7306 */ 7307 if (required_kernelcore < kernelcore_node) 7308 kernelcore_node = required_kernelcore / usable_nodes; 7309 7310 /* 7311 * As the map is walked, we track how much memory is usable 7312 * by the kernel using kernelcore_remaining. When it is 7313 * 0, the rest of the node is usable by ZONE_MOVABLE 7314 */ 7315 kernelcore_remaining = kernelcore_node; 7316 7317 /* Go through each range of PFNs within this node */ 7318 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7319 unsigned long size_pages; 7320 7321 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7322 if (start_pfn >= end_pfn) 7323 continue; 7324 7325 /* Account for what is only usable for kernelcore */ 7326 if (start_pfn < usable_startpfn) { 7327 unsigned long kernel_pages; 7328 kernel_pages = min(end_pfn, usable_startpfn) 7329 - start_pfn; 7330 7331 kernelcore_remaining -= min(kernel_pages, 7332 kernelcore_remaining); 7333 required_kernelcore -= min(kernel_pages, 7334 required_kernelcore); 7335 7336 /* Continue if range is now fully accounted */ 7337 if (end_pfn <= usable_startpfn) { 7338 7339 /* 7340 * Push zone_movable_pfn to the end so 7341 * that if we have to rebalance 7342 * kernelcore across nodes, we will 7343 * not double account here 7344 */ 7345 zone_movable_pfn[nid] = end_pfn; 7346 continue; 7347 } 7348 start_pfn = usable_startpfn; 7349 } 7350 7351 /* 7352 * The usable PFN range for ZONE_MOVABLE is from 7353 * start_pfn->end_pfn. Calculate size_pages as the 7354 * number of pages used as kernelcore 7355 */ 7356 size_pages = end_pfn - start_pfn; 7357 if (size_pages > kernelcore_remaining) 7358 size_pages = kernelcore_remaining; 7359 zone_movable_pfn[nid] = start_pfn + size_pages; 7360 7361 /* 7362 * Some kernelcore has been met, update counts and 7363 * break if the kernelcore for this node has been 7364 * satisfied 7365 */ 7366 required_kernelcore -= min(required_kernelcore, 7367 size_pages); 7368 kernelcore_remaining -= size_pages; 7369 if (!kernelcore_remaining) 7370 break; 7371 } 7372 } 7373 7374 /* 7375 * If there is still required_kernelcore, we do another pass with one 7376 * less node in the count. This will push zone_movable_pfn[nid] further 7377 * along on the nodes that still have memory until kernelcore is 7378 * satisfied 7379 */ 7380 usable_nodes--; 7381 if (usable_nodes && required_kernelcore > usable_nodes) 7382 goto restart; 7383 7384 out2: 7385 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7386 for (nid = 0; nid < MAX_NUMNODES; nid++) 7387 zone_movable_pfn[nid] = 7388 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7389 7390 out: 7391 /* restore the node_state */ 7392 node_states[N_MEMORY] = saved_node_state; 7393 } 7394 7395 /* Any regular or high memory on that node ? */ 7396 static void check_for_memory(pg_data_t *pgdat, int nid) 7397 { 7398 enum zone_type zone_type; 7399 7400 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7401 struct zone *zone = &pgdat->node_zones[zone_type]; 7402 if (populated_zone(zone)) { 7403 if (IS_ENABLED(CONFIG_HIGHMEM)) 7404 node_set_state(nid, N_HIGH_MEMORY); 7405 if (zone_type <= ZONE_NORMAL) 7406 node_set_state(nid, N_NORMAL_MEMORY); 7407 break; 7408 } 7409 } 7410 } 7411 7412 /** 7413 * free_area_init_nodes - Initialise all pg_data_t and zone data 7414 * @max_zone_pfn: an array of max PFNs for each zone 7415 * 7416 * This will call free_area_init_node() for each active node in the system. 7417 * Using the page ranges provided by memblock_set_node(), the size of each 7418 * zone in each node and their holes is calculated. If the maximum PFN 7419 * between two adjacent zones match, it is assumed that the zone is empty. 7420 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7421 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7422 * starts where the previous one ended. For example, ZONE_DMA32 starts 7423 * at arch_max_dma_pfn. 7424 */ 7425 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 7426 { 7427 unsigned long start_pfn, end_pfn; 7428 int i, nid; 7429 7430 /* Record where the zone boundaries are */ 7431 memset(arch_zone_lowest_possible_pfn, 0, 7432 sizeof(arch_zone_lowest_possible_pfn)); 7433 memset(arch_zone_highest_possible_pfn, 0, 7434 sizeof(arch_zone_highest_possible_pfn)); 7435 7436 start_pfn = find_min_pfn_with_active_regions(); 7437 7438 for (i = 0; i < MAX_NR_ZONES; i++) { 7439 if (i == ZONE_MOVABLE) 7440 continue; 7441 7442 end_pfn = max(max_zone_pfn[i], start_pfn); 7443 arch_zone_lowest_possible_pfn[i] = start_pfn; 7444 arch_zone_highest_possible_pfn[i] = end_pfn; 7445 7446 start_pfn = end_pfn; 7447 } 7448 7449 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7450 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7451 find_zone_movable_pfns_for_nodes(); 7452 7453 /* Print out the zone ranges */ 7454 pr_info("Zone ranges:\n"); 7455 for (i = 0; i < MAX_NR_ZONES; i++) { 7456 if (i == ZONE_MOVABLE) 7457 continue; 7458 pr_info(" %-8s ", zone_names[i]); 7459 if (arch_zone_lowest_possible_pfn[i] == 7460 arch_zone_highest_possible_pfn[i]) 7461 pr_cont("empty\n"); 7462 else 7463 pr_cont("[mem %#018Lx-%#018Lx]\n", 7464 (u64)arch_zone_lowest_possible_pfn[i] 7465 << PAGE_SHIFT, 7466 ((u64)arch_zone_highest_possible_pfn[i] 7467 << PAGE_SHIFT) - 1); 7468 } 7469 7470 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7471 pr_info("Movable zone start for each node\n"); 7472 for (i = 0; i < MAX_NUMNODES; i++) { 7473 if (zone_movable_pfn[i]) 7474 pr_info(" Node %d: %#018Lx\n", i, 7475 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7476 } 7477 7478 /* 7479 * Print out the early node map, and initialize the 7480 * subsection-map relative to active online memory ranges to 7481 * enable future "sub-section" extensions of the memory map. 7482 */ 7483 pr_info("Early memory node ranges\n"); 7484 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7485 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7486 (u64)start_pfn << PAGE_SHIFT, 7487 ((u64)end_pfn << PAGE_SHIFT) - 1); 7488 subsection_map_init(start_pfn, end_pfn - start_pfn); 7489 } 7490 7491 /* Initialise every node */ 7492 mminit_verify_pageflags_layout(); 7493 setup_nr_node_ids(); 7494 init_unavailable_mem(); 7495 for_each_online_node(nid) { 7496 pg_data_t *pgdat = NODE_DATA(nid); 7497 free_area_init_node(nid, NULL, 7498 find_min_pfn_for_node(nid), NULL); 7499 7500 /* Any memory on that node */ 7501 if (pgdat->node_present_pages) 7502 node_set_state(nid, N_MEMORY); 7503 check_for_memory(pgdat, nid); 7504 } 7505 } 7506 7507 static int __init cmdline_parse_core(char *p, unsigned long *core, 7508 unsigned long *percent) 7509 { 7510 unsigned long long coremem; 7511 char *endptr; 7512 7513 if (!p) 7514 return -EINVAL; 7515 7516 /* Value may be a percentage of total memory, otherwise bytes */ 7517 coremem = simple_strtoull(p, &endptr, 0); 7518 if (*endptr == '%') { 7519 /* Paranoid check for percent values greater than 100 */ 7520 WARN_ON(coremem > 100); 7521 7522 *percent = coremem; 7523 } else { 7524 coremem = memparse(p, &p); 7525 /* Paranoid check that UL is enough for the coremem value */ 7526 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7527 7528 *core = coremem >> PAGE_SHIFT; 7529 *percent = 0UL; 7530 } 7531 return 0; 7532 } 7533 7534 /* 7535 * kernelcore=size sets the amount of memory for use for allocations that 7536 * cannot be reclaimed or migrated. 7537 */ 7538 static int __init cmdline_parse_kernelcore(char *p) 7539 { 7540 /* parse kernelcore=mirror */ 7541 if (parse_option_str(p, "mirror")) { 7542 mirrored_kernelcore = true; 7543 return 0; 7544 } 7545 7546 return cmdline_parse_core(p, &required_kernelcore, 7547 &required_kernelcore_percent); 7548 } 7549 7550 /* 7551 * movablecore=size sets the amount of memory for use for allocations that 7552 * can be reclaimed or migrated. 7553 */ 7554 static int __init cmdline_parse_movablecore(char *p) 7555 { 7556 return cmdline_parse_core(p, &required_movablecore, 7557 &required_movablecore_percent); 7558 } 7559 7560 early_param("kernelcore", cmdline_parse_kernelcore); 7561 early_param("movablecore", cmdline_parse_movablecore); 7562 7563 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 7564 7565 void adjust_managed_page_count(struct page *page, long count) 7566 { 7567 atomic_long_add(count, &page_zone(page)->managed_pages); 7568 totalram_pages_add(count); 7569 #ifdef CONFIG_HIGHMEM 7570 if (PageHighMem(page)) 7571 totalhigh_pages_add(count); 7572 #endif 7573 } 7574 EXPORT_SYMBOL(adjust_managed_page_count); 7575 7576 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7577 { 7578 void *pos; 7579 unsigned long pages = 0; 7580 7581 start = (void *)PAGE_ALIGN((unsigned long)start); 7582 end = (void *)((unsigned long)end & PAGE_MASK); 7583 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7584 struct page *page = virt_to_page(pos); 7585 void *direct_map_addr; 7586 7587 /* 7588 * 'direct_map_addr' might be different from 'pos' 7589 * because some architectures' virt_to_page() 7590 * work with aliases. Getting the direct map 7591 * address ensures that we get a _writeable_ 7592 * alias for the memset(). 7593 */ 7594 direct_map_addr = page_address(page); 7595 if ((unsigned int)poison <= 0xFF) 7596 memset(direct_map_addr, poison, PAGE_SIZE); 7597 7598 free_reserved_page(page); 7599 } 7600 7601 if (pages && s) 7602 pr_info("Freeing %s memory: %ldK\n", 7603 s, pages << (PAGE_SHIFT - 10)); 7604 7605 return pages; 7606 } 7607 7608 #ifdef CONFIG_HIGHMEM 7609 void free_highmem_page(struct page *page) 7610 { 7611 __free_reserved_page(page); 7612 totalram_pages_inc(); 7613 atomic_long_inc(&page_zone(page)->managed_pages); 7614 totalhigh_pages_inc(); 7615 } 7616 #endif 7617 7618 7619 void __init mem_init_print_info(const char *str) 7620 { 7621 unsigned long physpages, codesize, datasize, rosize, bss_size; 7622 unsigned long init_code_size, init_data_size; 7623 7624 physpages = get_num_physpages(); 7625 codesize = _etext - _stext; 7626 datasize = _edata - _sdata; 7627 rosize = __end_rodata - __start_rodata; 7628 bss_size = __bss_stop - __bss_start; 7629 init_data_size = __init_end - __init_begin; 7630 init_code_size = _einittext - _sinittext; 7631 7632 /* 7633 * Detect special cases and adjust section sizes accordingly: 7634 * 1) .init.* may be embedded into .data sections 7635 * 2) .init.text.* may be out of [__init_begin, __init_end], 7636 * please refer to arch/tile/kernel/vmlinux.lds.S. 7637 * 3) .rodata.* may be embedded into .text or .data sections. 7638 */ 7639 #define adj_init_size(start, end, size, pos, adj) \ 7640 do { \ 7641 if (start <= pos && pos < end && size > adj) \ 7642 size -= adj; \ 7643 } while (0) 7644 7645 adj_init_size(__init_begin, __init_end, init_data_size, 7646 _sinittext, init_code_size); 7647 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7648 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7649 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7650 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7651 7652 #undef adj_init_size 7653 7654 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7655 #ifdef CONFIG_HIGHMEM 7656 ", %luK highmem" 7657 #endif 7658 "%s%s)\n", 7659 nr_free_pages() << (PAGE_SHIFT - 10), 7660 physpages << (PAGE_SHIFT - 10), 7661 codesize >> 10, datasize >> 10, rosize >> 10, 7662 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7663 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7664 totalcma_pages << (PAGE_SHIFT - 10), 7665 #ifdef CONFIG_HIGHMEM 7666 totalhigh_pages() << (PAGE_SHIFT - 10), 7667 #endif 7668 str ? ", " : "", str ? str : ""); 7669 } 7670 7671 /** 7672 * set_dma_reserve - set the specified number of pages reserved in the first zone 7673 * @new_dma_reserve: The number of pages to mark reserved 7674 * 7675 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7676 * In the DMA zone, a significant percentage may be consumed by kernel image 7677 * and other unfreeable allocations which can skew the watermarks badly. This 7678 * function may optionally be used to account for unfreeable pages in the 7679 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7680 * smaller per-cpu batchsize. 7681 */ 7682 void __init set_dma_reserve(unsigned long new_dma_reserve) 7683 { 7684 dma_reserve = new_dma_reserve; 7685 } 7686 7687 void __init free_area_init(unsigned long *zones_size) 7688 { 7689 init_unavailable_mem(); 7690 free_area_init_node(0, zones_size, 7691 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 7692 } 7693 7694 static int page_alloc_cpu_dead(unsigned int cpu) 7695 { 7696 7697 lru_add_drain_cpu(cpu); 7698 drain_pages(cpu); 7699 7700 /* 7701 * Spill the event counters of the dead processor 7702 * into the current processors event counters. 7703 * This artificially elevates the count of the current 7704 * processor. 7705 */ 7706 vm_events_fold_cpu(cpu); 7707 7708 /* 7709 * Zero the differential counters of the dead processor 7710 * so that the vm statistics are consistent. 7711 * 7712 * This is only okay since the processor is dead and cannot 7713 * race with what we are doing. 7714 */ 7715 cpu_vm_stats_fold(cpu); 7716 return 0; 7717 } 7718 7719 #ifdef CONFIG_NUMA 7720 int hashdist = HASHDIST_DEFAULT; 7721 7722 static int __init set_hashdist(char *str) 7723 { 7724 if (!str) 7725 return 0; 7726 hashdist = simple_strtoul(str, &str, 0); 7727 return 1; 7728 } 7729 __setup("hashdist=", set_hashdist); 7730 #endif 7731 7732 void __init page_alloc_init(void) 7733 { 7734 int ret; 7735 7736 #ifdef CONFIG_NUMA 7737 if (num_node_state(N_MEMORY) == 1) 7738 hashdist = 0; 7739 #endif 7740 7741 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7742 "mm/page_alloc:dead", NULL, 7743 page_alloc_cpu_dead); 7744 WARN_ON(ret < 0); 7745 } 7746 7747 /* 7748 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7749 * or min_free_kbytes changes. 7750 */ 7751 static void calculate_totalreserve_pages(void) 7752 { 7753 struct pglist_data *pgdat; 7754 unsigned long reserve_pages = 0; 7755 enum zone_type i, j; 7756 7757 for_each_online_pgdat(pgdat) { 7758 7759 pgdat->totalreserve_pages = 0; 7760 7761 for (i = 0; i < MAX_NR_ZONES; i++) { 7762 struct zone *zone = pgdat->node_zones + i; 7763 long max = 0; 7764 unsigned long managed_pages = zone_managed_pages(zone); 7765 7766 /* Find valid and maximum lowmem_reserve in the zone */ 7767 for (j = i; j < MAX_NR_ZONES; j++) { 7768 if (zone->lowmem_reserve[j] > max) 7769 max = zone->lowmem_reserve[j]; 7770 } 7771 7772 /* we treat the high watermark as reserved pages. */ 7773 max += high_wmark_pages(zone); 7774 7775 if (max > managed_pages) 7776 max = managed_pages; 7777 7778 pgdat->totalreserve_pages += max; 7779 7780 reserve_pages += max; 7781 } 7782 } 7783 totalreserve_pages = reserve_pages; 7784 } 7785 7786 /* 7787 * setup_per_zone_lowmem_reserve - called whenever 7788 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7789 * has a correct pages reserved value, so an adequate number of 7790 * pages are left in the zone after a successful __alloc_pages(). 7791 */ 7792 static void setup_per_zone_lowmem_reserve(void) 7793 { 7794 struct pglist_data *pgdat; 7795 enum zone_type j, idx; 7796 7797 for_each_online_pgdat(pgdat) { 7798 for (j = 0; j < MAX_NR_ZONES; j++) { 7799 struct zone *zone = pgdat->node_zones + j; 7800 unsigned long managed_pages = zone_managed_pages(zone); 7801 7802 zone->lowmem_reserve[j] = 0; 7803 7804 idx = j; 7805 while (idx) { 7806 struct zone *lower_zone; 7807 7808 idx--; 7809 lower_zone = pgdat->node_zones + idx; 7810 7811 if (sysctl_lowmem_reserve_ratio[idx] < 1) { 7812 sysctl_lowmem_reserve_ratio[idx] = 0; 7813 lower_zone->lowmem_reserve[j] = 0; 7814 } else { 7815 lower_zone->lowmem_reserve[j] = 7816 managed_pages / sysctl_lowmem_reserve_ratio[idx]; 7817 } 7818 managed_pages += zone_managed_pages(lower_zone); 7819 } 7820 } 7821 } 7822 7823 /* update totalreserve_pages */ 7824 calculate_totalreserve_pages(); 7825 } 7826 7827 static void __setup_per_zone_wmarks(void) 7828 { 7829 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7830 unsigned long lowmem_pages = 0; 7831 struct zone *zone; 7832 unsigned long flags; 7833 7834 /* Calculate total number of !ZONE_HIGHMEM pages */ 7835 for_each_zone(zone) { 7836 if (!is_highmem(zone)) 7837 lowmem_pages += zone_managed_pages(zone); 7838 } 7839 7840 for_each_zone(zone) { 7841 u64 tmp; 7842 7843 spin_lock_irqsave(&zone->lock, flags); 7844 tmp = (u64)pages_min * zone_managed_pages(zone); 7845 do_div(tmp, lowmem_pages); 7846 if (is_highmem(zone)) { 7847 /* 7848 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7849 * need highmem pages, so cap pages_min to a small 7850 * value here. 7851 * 7852 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7853 * deltas control async page reclaim, and so should 7854 * not be capped for highmem. 7855 */ 7856 unsigned long min_pages; 7857 7858 min_pages = zone_managed_pages(zone) / 1024; 7859 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7860 zone->_watermark[WMARK_MIN] = min_pages; 7861 } else { 7862 /* 7863 * If it's a lowmem zone, reserve a number of pages 7864 * proportionate to the zone's size. 7865 */ 7866 zone->_watermark[WMARK_MIN] = tmp; 7867 } 7868 7869 /* 7870 * Set the kswapd watermarks distance according to the 7871 * scale factor in proportion to available memory, but 7872 * ensure a minimum size on small systems. 7873 */ 7874 tmp = max_t(u64, tmp >> 2, 7875 mult_frac(zone_managed_pages(zone), 7876 watermark_scale_factor, 10000)); 7877 7878 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7879 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7880 zone->watermark_boost = 0; 7881 7882 spin_unlock_irqrestore(&zone->lock, flags); 7883 } 7884 7885 /* update totalreserve_pages */ 7886 calculate_totalreserve_pages(); 7887 } 7888 7889 /** 7890 * setup_per_zone_wmarks - called when min_free_kbytes changes 7891 * or when memory is hot-{added|removed} 7892 * 7893 * Ensures that the watermark[min,low,high] values for each zone are set 7894 * correctly with respect to min_free_kbytes. 7895 */ 7896 void setup_per_zone_wmarks(void) 7897 { 7898 static DEFINE_SPINLOCK(lock); 7899 7900 spin_lock(&lock); 7901 __setup_per_zone_wmarks(); 7902 spin_unlock(&lock); 7903 } 7904 7905 /* 7906 * Initialise min_free_kbytes. 7907 * 7908 * For small machines we want it small (128k min). For large machines 7909 * we want it large (64MB max). But it is not linear, because network 7910 * bandwidth does not increase linearly with machine size. We use 7911 * 7912 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7913 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7914 * 7915 * which yields 7916 * 7917 * 16MB: 512k 7918 * 32MB: 724k 7919 * 64MB: 1024k 7920 * 128MB: 1448k 7921 * 256MB: 2048k 7922 * 512MB: 2896k 7923 * 1024MB: 4096k 7924 * 2048MB: 5792k 7925 * 4096MB: 8192k 7926 * 8192MB: 11584k 7927 * 16384MB: 16384k 7928 */ 7929 int __meminit init_per_zone_wmark_min(void) 7930 { 7931 unsigned long lowmem_kbytes; 7932 int new_min_free_kbytes; 7933 7934 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7935 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7936 7937 if (new_min_free_kbytes > user_min_free_kbytes) { 7938 min_free_kbytes = new_min_free_kbytes; 7939 if (min_free_kbytes < 128) 7940 min_free_kbytes = 128; 7941 if (min_free_kbytes > 262144) 7942 min_free_kbytes = 262144; 7943 } else { 7944 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7945 new_min_free_kbytes, user_min_free_kbytes); 7946 } 7947 setup_per_zone_wmarks(); 7948 refresh_zone_stat_thresholds(); 7949 setup_per_zone_lowmem_reserve(); 7950 7951 #ifdef CONFIG_NUMA 7952 setup_min_unmapped_ratio(); 7953 setup_min_slab_ratio(); 7954 #endif 7955 7956 return 0; 7957 } 7958 core_initcall(init_per_zone_wmark_min) 7959 7960 /* 7961 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7962 * that we can call two helper functions whenever min_free_kbytes 7963 * changes. 7964 */ 7965 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7966 void __user *buffer, size_t *length, loff_t *ppos) 7967 { 7968 int rc; 7969 7970 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7971 if (rc) 7972 return rc; 7973 7974 if (write) { 7975 user_min_free_kbytes = min_free_kbytes; 7976 setup_per_zone_wmarks(); 7977 } 7978 return 0; 7979 } 7980 7981 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write, 7982 void __user *buffer, size_t *length, loff_t *ppos) 7983 { 7984 int rc; 7985 7986 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7987 if (rc) 7988 return rc; 7989 7990 return 0; 7991 } 7992 7993 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7994 void __user *buffer, size_t *length, loff_t *ppos) 7995 { 7996 int rc; 7997 7998 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7999 if (rc) 8000 return rc; 8001 8002 if (write) 8003 setup_per_zone_wmarks(); 8004 8005 return 0; 8006 } 8007 8008 #ifdef CONFIG_NUMA 8009 static void setup_min_unmapped_ratio(void) 8010 { 8011 pg_data_t *pgdat; 8012 struct zone *zone; 8013 8014 for_each_online_pgdat(pgdat) 8015 pgdat->min_unmapped_pages = 0; 8016 8017 for_each_zone(zone) 8018 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8019 sysctl_min_unmapped_ratio) / 100; 8020 } 8021 8022 8023 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8024 void __user *buffer, size_t *length, loff_t *ppos) 8025 { 8026 int rc; 8027 8028 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8029 if (rc) 8030 return rc; 8031 8032 setup_min_unmapped_ratio(); 8033 8034 return 0; 8035 } 8036 8037 static void setup_min_slab_ratio(void) 8038 { 8039 pg_data_t *pgdat; 8040 struct zone *zone; 8041 8042 for_each_online_pgdat(pgdat) 8043 pgdat->min_slab_pages = 0; 8044 8045 for_each_zone(zone) 8046 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8047 sysctl_min_slab_ratio) / 100; 8048 } 8049 8050 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8051 void __user *buffer, size_t *length, loff_t *ppos) 8052 { 8053 int rc; 8054 8055 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8056 if (rc) 8057 return rc; 8058 8059 setup_min_slab_ratio(); 8060 8061 return 0; 8062 } 8063 #endif 8064 8065 /* 8066 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8067 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8068 * whenever sysctl_lowmem_reserve_ratio changes. 8069 * 8070 * The reserve ratio obviously has absolutely no relation with the 8071 * minimum watermarks. The lowmem reserve ratio can only make sense 8072 * if in function of the boot time zone sizes. 8073 */ 8074 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8075 void __user *buffer, size_t *length, loff_t *ppos) 8076 { 8077 proc_dointvec_minmax(table, write, buffer, length, ppos); 8078 setup_per_zone_lowmem_reserve(); 8079 return 0; 8080 } 8081 8082 static void __zone_pcp_update(struct zone *zone) 8083 { 8084 unsigned int cpu; 8085 8086 for_each_possible_cpu(cpu) 8087 pageset_set_high_and_batch(zone, 8088 per_cpu_ptr(zone->pageset, cpu)); 8089 } 8090 8091 /* 8092 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 8093 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8094 * pagelist can have before it gets flushed back to buddy allocator. 8095 */ 8096 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 8097 void __user *buffer, size_t *length, loff_t *ppos) 8098 { 8099 struct zone *zone; 8100 int old_percpu_pagelist_fraction; 8101 int ret; 8102 8103 mutex_lock(&pcp_batch_high_lock); 8104 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 8105 8106 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8107 if (!write || ret < 0) 8108 goto out; 8109 8110 /* Sanity checking to avoid pcp imbalance */ 8111 if (percpu_pagelist_fraction && 8112 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 8113 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 8114 ret = -EINVAL; 8115 goto out; 8116 } 8117 8118 /* No change? */ 8119 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 8120 goto out; 8121 8122 for_each_populated_zone(zone) 8123 __zone_pcp_update(zone); 8124 out: 8125 mutex_unlock(&pcp_batch_high_lock); 8126 return ret; 8127 } 8128 8129 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8130 /* 8131 * Returns the number of pages that arch has reserved but 8132 * is not known to alloc_large_system_hash(). 8133 */ 8134 static unsigned long __init arch_reserved_kernel_pages(void) 8135 { 8136 return 0; 8137 } 8138 #endif 8139 8140 /* 8141 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8142 * machines. As memory size is increased the scale is also increased but at 8143 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8144 * quadruples the scale is increased by one, which means the size of hash table 8145 * only doubles, instead of quadrupling as well. 8146 * Because 32-bit systems cannot have large physical memory, where this scaling 8147 * makes sense, it is disabled on such platforms. 8148 */ 8149 #if __BITS_PER_LONG > 32 8150 #define ADAPT_SCALE_BASE (64ul << 30) 8151 #define ADAPT_SCALE_SHIFT 2 8152 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8153 #endif 8154 8155 /* 8156 * allocate a large system hash table from bootmem 8157 * - it is assumed that the hash table must contain an exact power-of-2 8158 * quantity of entries 8159 * - limit is the number of hash buckets, not the total allocation size 8160 */ 8161 void *__init alloc_large_system_hash(const char *tablename, 8162 unsigned long bucketsize, 8163 unsigned long numentries, 8164 int scale, 8165 int flags, 8166 unsigned int *_hash_shift, 8167 unsigned int *_hash_mask, 8168 unsigned long low_limit, 8169 unsigned long high_limit) 8170 { 8171 unsigned long long max = high_limit; 8172 unsigned long log2qty, size; 8173 void *table = NULL; 8174 gfp_t gfp_flags; 8175 bool virt; 8176 8177 /* allow the kernel cmdline to have a say */ 8178 if (!numentries) { 8179 /* round applicable memory size up to nearest megabyte */ 8180 numentries = nr_kernel_pages; 8181 numentries -= arch_reserved_kernel_pages(); 8182 8183 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8184 if (PAGE_SHIFT < 20) 8185 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8186 8187 #if __BITS_PER_LONG > 32 8188 if (!high_limit) { 8189 unsigned long adapt; 8190 8191 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8192 adapt <<= ADAPT_SCALE_SHIFT) 8193 scale++; 8194 } 8195 #endif 8196 8197 /* limit to 1 bucket per 2^scale bytes of low memory */ 8198 if (scale > PAGE_SHIFT) 8199 numentries >>= (scale - PAGE_SHIFT); 8200 else 8201 numentries <<= (PAGE_SHIFT - scale); 8202 8203 /* Make sure we've got at least a 0-order allocation.. */ 8204 if (unlikely(flags & HASH_SMALL)) { 8205 /* Makes no sense without HASH_EARLY */ 8206 WARN_ON(!(flags & HASH_EARLY)); 8207 if (!(numentries >> *_hash_shift)) { 8208 numentries = 1UL << *_hash_shift; 8209 BUG_ON(!numentries); 8210 } 8211 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8212 numentries = PAGE_SIZE / bucketsize; 8213 } 8214 numentries = roundup_pow_of_two(numentries); 8215 8216 /* limit allocation size to 1/16 total memory by default */ 8217 if (max == 0) { 8218 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8219 do_div(max, bucketsize); 8220 } 8221 max = min(max, 0x80000000ULL); 8222 8223 if (numentries < low_limit) 8224 numentries = low_limit; 8225 if (numentries > max) 8226 numentries = max; 8227 8228 log2qty = ilog2(numentries); 8229 8230 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8231 do { 8232 virt = false; 8233 size = bucketsize << log2qty; 8234 if (flags & HASH_EARLY) { 8235 if (flags & HASH_ZERO) 8236 table = memblock_alloc(size, SMP_CACHE_BYTES); 8237 else 8238 table = memblock_alloc_raw(size, 8239 SMP_CACHE_BYTES); 8240 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8241 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 8242 virt = true; 8243 } else { 8244 /* 8245 * If bucketsize is not a power-of-two, we may free 8246 * some pages at the end of hash table which 8247 * alloc_pages_exact() automatically does 8248 */ 8249 table = alloc_pages_exact(size, gfp_flags); 8250 kmemleak_alloc(table, size, 1, gfp_flags); 8251 } 8252 } while (!table && size > PAGE_SIZE && --log2qty); 8253 8254 if (!table) 8255 panic("Failed to allocate %s hash table\n", tablename); 8256 8257 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8258 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8259 virt ? "vmalloc" : "linear"); 8260 8261 if (_hash_shift) 8262 *_hash_shift = log2qty; 8263 if (_hash_mask) 8264 *_hash_mask = (1 << log2qty) - 1; 8265 8266 return table; 8267 } 8268 8269 /* 8270 * This function checks whether pageblock includes unmovable pages or not. 8271 * 8272 * PageLRU check without isolation or lru_lock could race so that 8273 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8274 * check without lock_page also may miss some movable non-lru pages at 8275 * race condition. So you can't expect this function should be exact. 8276 * 8277 * Returns a page without holding a reference. If the caller wants to 8278 * dereference that page (e.g., dumping), it has to make sure that that it 8279 * cannot get removed (e.g., via memory unplug) concurrently. 8280 * 8281 */ 8282 struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8283 int migratetype, int flags) 8284 { 8285 unsigned long iter = 0; 8286 unsigned long pfn = page_to_pfn(page); 8287 8288 /* 8289 * TODO we could make this much more efficient by not checking every 8290 * page in the range if we know all of them are in MOVABLE_ZONE and 8291 * that the movable zone guarantees that pages are migratable but 8292 * the later is not the case right now unfortunatelly. E.g. movablecore 8293 * can still lead to having bootmem allocations in zone_movable. 8294 */ 8295 8296 if (is_migrate_cma_page(page)) { 8297 /* 8298 * CMA allocations (alloc_contig_range) really need to mark 8299 * isolate CMA pageblocks even when they are not movable in fact 8300 * so consider them movable here. 8301 */ 8302 if (is_migrate_cma(migratetype)) 8303 return NULL; 8304 8305 return page; 8306 } 8307 8308 for (; iter < pageblock_nr_pages; iter++) { 8309 if (!pfn_valid_within(pfn + iter)) 8310 continue; 8311 8312 page = pfn_to_page(pfn + iter); 8313 8314 if (PageReserved(page)) 8315 return page; 8316 8317 /* 8318 * If the zone is movable and we have ruled out all reserved 8319 * pages then it should be reasonably safe to assume the rest 8320 * is movable. 8321 */ 8322 if (zone_idx(zone) == ZONE_MOVABLE) 8323 continue; 8324 8325 /* 8326 * Hugepages are not in LRU lists, but they're movable. 8327 * THPs are on the LRU, but need to be counted as #small pages. 8328 * We need not scan over tail pages because we don't 8329 * handle each tail page individually in migration. 8330 */ 8331 if (PageHuge(page) || PageTransCompound(page)) { 8332 struct page *head = compound_head(page); 8333 unsigned int skip_pages; 8334 8335 if (PageHuge(page)) { 8336 if (!hugepage_migration_supported(page_hstate(head))) 8337 return page; 8338 } else if (!PageLRU(head) && !__PageMovable(head)) { 8339 return page; 8340 } 8341 8342 skip_pages = compound_nr(head) - (page - head); 8343 iter += skip_pages - 1; 8344 continue; 8345 } 8346 8347 /* 8348 * We can't use page_count without pin a page 8349 * because another CPU can free compound page. 8350 * This check already skips compound tails of THP 8351 * because their page->_refcount is zero at all time. 8352 */ 8353 if (!page_ref_count(page)) { 8354 if (PageBuddy(page)) 8355 iter += (1 << page_order(page)) - 1; 8356 continue; 8357 } 8358 8359 /* 8360 * The HWPoisoned page may be not in buddy system, and 8361 * page_count() is not 0. 8362 */ 8363 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8364 continue; 8365 8366 if (__PageMovable(page) || PageLRU(page)) 8367 continue; 8368 8369 /* 8370 * If there are RECLAIMABLE pages, we need to check 8371 * it. But now, memory offline itself doesn't call 8372 * shrink_node_slabs() and it still to be fixed. 8373 */ 8374 /* 8375 * If the page is not RAM, page_count()should be 0. 8376 * we don't need more check. This is an _used_ not-movable page. 8377 * 8378 * The problematic thing here is PG_reserved pages. PG_reserved 8379 * is set to both of a memory hole page and a _used_ kernel 8380 * page at boot. 8381 */ 8382 return page; 8383 } 8384 return NULL; 8385 } 8386 8387 #ifdef CONFIG_CONTIG_ALLOC 8388 static unsigned long pfn_max_align_down(unsigned long pfn) 8389 { 8390 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8391 pageblock_nr_pages) - 1); 8392 } 8393 8394 static unsigned long pfn_max_align_up(unsigned long pfn) 8395 { 8396 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8397 pageblock_nr_pages)); 8398 } 8399 8400 /* [start, end) must belong to a single zone. */ 8401 static int __alloc_contig_migrate_range(struct compact_control *cc, 8402 unsigned long start, unsigned long end) 8403 { 8404 /* This function is based on compact_zone() from compaction.c. */ 8405 unsigned long nr_reclaimed; 8406 unsigned long pfn = start; 8407 unsigned int tries = 0; 8408 int ret = 0; 8409 8410 migrate_prep(); 8411 8412 while (pfn < end || !list_empty(&cc->migratepages)) { 8413 if (fatal_signal_pending(current)) { 8414 ret = -EINTR; 8415 break; 8416 } 8417 8418 if (list_empty(&cc->migratepages)) { 8419 cc->nr_migratepages = 0; 8420 pfn = isolate_migratepages_range(cc, pfn, end); 8421 if (!pfn) { 8422 ret = -EINTR; 8423 break; 8424 } 8425 tries = 0; 8426 } else if (++tries == 5) { 8427 ret = ret < 0 ? ret : -EBUSY; 8428 break; 8429 } 8430 8431 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8432 &cc->migratepages); 8433 cc->nr_migratepages -= nr_reclaimed; 8434 8435 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 8436 NULL, 0, cc->mode, MR_CONTIG_RANGE); 8437 } 8438 if (ret < 0) { 8439 putback_movable_pages(&cc->migratepages); 8440 return ret; 8441 } 8442 return 0; 8443 } 8444 8445 /** 8446 * alloc_contig_range() -- tries to allocate given range of pages 8447 * @start: start PFN to allocate 8448 * @end: one-past-the-last PFN to allocate 8449 * @migratetype: migratetype of the underlaying pageblocks (either 8450 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8451 * in range must have the same migratetype and it must 8452 * be either of the two. 8453 * @gfp_mask: GFP mask to use during compaction 8454 * 8455 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8456 * aligned. The PFN range must belong to a single zone. 8457 * 8458 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8459 * pageblocks in the range. Once isolated, the pageblocks should not 8460 * be modified by others. 8461 * 8462 * Return: zero on success or negative error code. On success all 8463 * pages which PFN is in [start, end) are allocated for the caller and 8464 * need to be freed with free_contig_range(). 8465 */ 8466 int alloc_contig_range(unsigned long start, unsigned long end, 8467 unsigned migratetype, gfp_t gfp_mask) 8468 { 8469 unsigned long outer_start, outer_end; 8470 unsigned int order; 8471 int ret = 0; 8472 8473 struct compact_control cc = { 8474 .nr_migratepages = 0, 8475 .order = -1, 8476 .zone = page_zone(pfn_to_page(start)), 8477 .mode = MIGRATE_SYNC, 8478 .ignore_skip_hint = true, 8479 .no_set_skip_hint = true, 8480 .gfp_mask = current_gfp_context(gfp_mask), 8481 .alloc_contig = true, 8482 }; 8483 INIT_LIST_HEAD(&cc.migratepages); 8484 8485 /* 8486 * What we do here is we mark all pageblocks in range as 8487 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8488 * have different sizes, and due to the way page allocator 8489 * work, we align the range to biggest of the two pages so 8490 * that page allocator won't try to merge buddies from 8491 * different pageblocks and change MIGRATE_ISOLATE to some 8492 * other migration type. 8493 * 8494 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8495 * migrate the pages from an unaligned range (ie. pages that 8496 * we are interested in). This will put all the pages in 8497 * range back to page allocator as MIGRATE_ISOLATE. 8498 * 8499 * When this is done, we take the pages in range from page 8500 * allocator removing them from the buddy system. This way 8501 * page allocator will never consider using them. 8502 * 8503 * This lets us mark the pageblocks back as 8504 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8505 * aligned range but not in the unaligned, original range are 8506 * put back to page allocator so that buddy can use them. 8507 */ 8508 8509 ret = start_isolate_page_range(pfn_max_align_down(start), 8510 pfn_max_align_up(end), migratetype, 0); 8511 if (ret < 0) 8512 return ret; 8513 8514 /* 8515 * In case of -EBUSY, we'd like to know which page causes problem. 8516 * So, just fall through. test_pages_isolated() has a tracepoint 8517 * which will report the busy page. 8518 * 8519 * It is possible that busy pages could become available before 8520 * the call to test_pages_isolated, and the range will actually be 8521 * allocated. So, if we fall through be sure to clear ret so that 8522 * -EBUSY is not accidentally used or returned to caller. 8523 */ 8524 ret = __alloc_contig_migrate_range(&cc, start, end); 8525 if (ret && ret != -EBUSY) 8526 goto done; 8527 ret =0; 8528 8529 /* 8530 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8531 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8532 * more, all pages in [start, end) are free in page allocator. 8533 * What we are going to do is to allocate all pages from 8534 * [start, end) (that is remove them from page allocator). 8535 * 8536 * The only problem is that pages at the beginning and at the 8537 * end of interesting range may be not aligned with pages that 8538 * page allocator holds, ie. they can be part of higher order 8539 * pages. Because of this, we reserve the bigger range and 8540 * once this is done free the pages we are not interested in. 8541 * 8542 * We don't have to hold zone->lock here because the pages are 8543 * isolated thus they won't get removed from buddy. 8544 */ 8545 8546 lru_add_drain_all(); 8547 8548 order = 0; 8549 outer_start = start; 8550 while (!PageBuddy(pfn_to_page(outer_start))) { 8551 if (++order >= MAX_ORDER) { 8552 outer_start = start; 8553 break; 8554 } 8555 outer_start &= ~0UL << order; 8556 } 8557 8558 if (outer_start != start) { 8559 order = page_order(pfn_to_page(outer_start)); 8560 8561 /* 8562 * outer_start page could be small order buddy page and 8563 * it doesn't include start page. Adjust outer_start 8564 * in this case to report failed page properly 8565 * on tracepoint in test_pages_isolated() 8566 */ 8567 if (outer_start + (1UL << order) <= start) 8568 outer_start = start; 8569 } 8570 8571 /* Make sure the range is really isolated. */ 8572 if (test_pages_isolated(outer_start, end, 0)) { 8573 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8574 __func__, outer_start, end); 8575 ret = -EBUSY; 8576 goto done; 8577 } 8578 8579 /* Grab isolated pages from freelists. */ 8580 outer_end = isolate_freepages_range(&cc, outer_start, end); 8581 if (!outer_end) { 8582 ret = -EBUSY; 8583 goto done; 8584 } 8585 8586 /* Free head and tail (if any) */ 8587 if (start != outer_start) 8588 free_contig_range(outer_start, start - outer_start); 8589 if (end != outer_end) 8590 free_contig_range(end, outer_end - end); 8591 8592 done: 8593 undo_isolate_page_range(pfn_max_align_down(start), 8594 pfn_max_align_up(end), migratetype); 8595 return ret; 8596 } 8597 8598 static int __alloc_contig_pages(unsigned long start_pfn, 8599 unsigned long nr_pages, gfp_t gfp_mask) 8600 { 8601 unsigned long end_pfn = start_pfn + nr_pages; 8602 8603 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 8604 gfp_mask); 8605 } 8606 8607 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 8608 unsigned long nr_pages) 8609 { 8610 unsigned long i, end_pfn = start_pfn + nr_pages; 8611 struct page *page; 8612 8613 for (i = start_pfn; i < end_pfn; i++) { 8614 page = pfn_to_online_page(i); 8615 if (!page) 8616 return false; 8617 8618 if (page_zone(page) != z) 8619 return false; 8620 8621 if (PageReserved(page)) 8622 return false; 8623 8624 if (page_count(page) > 0) 8625 return false; 8626 8627 if (PageHuge(page)) 8628 return false; 8629 } 8630 return true; 8631 } 8632 8633 static bool zone_spans_last_pfn(const struct zone *zone, 8634 unsigned long start_pfn, unsigned long nr_pages) 8635 { 8636 unsigned long last_pfn = start_pfn + nr_pages - 1; 8637 8638 return zone_spans_pfn(zone, last_pfn); 8639 } 8640 8641 /** 8642 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 8643 * @nr_pages: Number of contiguous pages to allocate 8644 * @gfp_mask: GFP mask to limit search and used during compaction 8645 * @nid: Target node 8646 * @nodemask: Mask for other possible nodes 8647 * 8648 * This routine is a wrapper around alloc_contig_range(). It scans over zones 8649 * on an applicable zonelist to find a contiguous pfn range which can then be 8650 * tried for allocation with alloc_contig_range(). This routine is intended 8651 * for allocation requests which can not be fulfilled with the buddy allocator. 8652 * 8653 * The allocated memory is always aligned to a page boundary. If nr_pages is a 8654 * power of two then the alignment is guaranteed to be to the given nr_pages 8655 * (e.g. 1GB request would be aligned to 1GB). 8656 * 8657 * Allocated pages can be freed with free_contig_range() or by manually calling 8658 * __free_page() on each allocated page. 8659 * 8660 * Return: pointer to contiguous pages on success, or NULL if not successful. 8661 */ 8662 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 8663 int nid, nodemask_t *nodemask) 8664 { 8665 unsigned long ret, pfn, flags; 8666 struct zonelist *zonelist; 8667 struct zone *zone; 8668 struct zoneref *z; 8669 8670 zonelist = node_zonelist(nid, gfp_mask); 8671 for_each_zone_zonelist_nodemask(zone, z, zonelist, 8672 gfp_zone(gfp_mask), nodemask) { 8673 spin_lock_irqsave(&zone->lock, flags); 8674 8675 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 8676 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 8677 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 8678 /* 8679 * We release the zone lock here because 8680 * alloc_contig_range() will also lock the zone 8681 * at some point. If there's an allocation 8682 * spinning on this lock, it may win the race 8683 * and cause alloc_contig_range() to fail... 8684 */ 8685 spin_unlock_irqrestore(&zone->lock, flags); 8686 ret = __alloc_contig_pages(pfn, nr_pages, 8687 gfp_mask); 8688 if (!ret) 8689 return pfn_to_page(pfn); 8690 spin_lock_irqsave(&zone->lock, flags); 8691 } 8692 pfn += nr_pages; 8693 } 8694 spin_unlock_irqrestore(&zone->lock, flags); 8695 } 8696 return NULL; 8697 } 8698 #endif /* CONFIG_CONTIG_ALLOC */ 8699 8700 void free_contig_range(unsigned long pfn, unsigned int nr_pages) 8701 { 8702 unsigned int count = 0; 8703 8704 for (; nr_pages--; pfn++) { 8705 struct page *page = pfn_to_page(pfn); 8706 8707 count += page_count(page) != 1; 8708 __free_page(page); 8709 } 8710 WARN(count != 0, "%d pages are still in use!\n", count); 8711 } 8712 8713 /* 8714 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8715 * page high values need to be recalulated. 8716 */ 8717 void __meminit zone_pcp_update(struct zone *zone) 8718 { 8719 mutex_lock(&pcp_batch_high_lock); 8720 __zone_pcp_update(zone); 8721 mutex_unlock(&pcp_batch_high_lock); 8722 } 8723 8724 void zone_pcp_reset(struct zone *zone) 8725 { 8726 unsigned long flags; 8727 int cpu; 8728 struct per_cpu_pageset *pset; 8729 8730 /* avoid races with drain_pages() */ 8731 local_irq_save(flags); 8732 if (zone->pageset != &boot_pageset) { 8733 for_each_online_cpu(cpu) { 8734 pset = per_cpu_ptr(zone->pageset, cpu); 8735 drain_zonestat(zone, pset); 8736 } 8737 free_percpu(zone->pageset); 8738 zone->pageset = &boot_pageset; 8739 } 8740 local_irq_restore(flags); 8741 } 8742 8743 #ifdef CONFIG_MEMORY_HOTREMOVE 8744 /* 8745 * All pages in the range must be in a single zone and isolated 8746 * before calling this. 8747 */ 8748 unsigned long 8749 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8750 { 8751 struct page *page; 8752 struct zone *zone; 8753 unsigned int order; 8754 unsigned long pfn; 8755 unsigned long flags; 8756 unsigned long offlined_pages = 0; 8757 8758 /* find the first valid pfn */ 8759 for (pfn = start_pfn; pfn < end_pfn; pfn++) 8760 if (pfn_valid(pfn)) 8761 break; 8762 if (pfn == end_pfn) 8763 return offlined_pages; 8764 8765 offline_mem_sections(pfn, end_pfn); 8766 zone = page_zone(pfn_to_page(pfn)); 8767 spin_lock_irqsave(&zone->lock, flags); 8768 pfn = start_pfn; 8769 while (pfn < end_pfn) { 8770 if (!pfn_valid(pfn)) { 8771 pfn++; 8772 continue; 8773 } 8774 page = pfn_to_page(pfn); 8775 /* 8776 * The HWPoisoned page may be not in buddy system, and 8777 * page_count() is not 0. 8778 */ 8779 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8780 pfn++; 8781 offlined_pages++; 8782 continue; 8783 } 8784 8785 BUG_ON(page_count(page)); 8786 BUG_ON(!PageBuddy(page)); 8787 order = page_order(page); 8788 offlined_pages += 1 << order; 8789 del_page_from_free_list(page, zone, order); 8790 pfn += (1 << order); 8791 } 8792 spin_unlock_irqrestore(&zone->lock, flags); 8793 8794 return offlined_pages; 8795 } 8796 #endif 8797 8798 bool is_free_buddy_page(struct page *page) 8799 { 8800 struct zone *zone = page_zone(page); 8801 unsigned long pfn = page_to_pfn(page); 8802 unsigned long flags; 8803 unsigned int order; 8804 8805 spin_lock_irqsave(&zone->lock, flags); 8806 for (order = 0; order < MAX_ORDER; order++) { 8807 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8808 8809 if (PageBuddy(page_head) && page_order(page_head) >= order) 8810 break; 8811 } 8812 spin_unlock_irqrestore(&zone->lock, flags); 8813 8814 return order < MAX_ORDER; 8815 } 8816 8817 #ifdef CONFIG_MEMORY_FAILURE 8818 /* 8819 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This 8820 * test is performed under the zone lock to prevent a race against page 8821 * allocation. 8822 */ 8823 bool set_hwpoison_free_buddy_page(struct page *page) 8824 { 8825 struct zone *zone = page_zone(page); 8826 unsigned long pfn = page_to_pfn(page); 8827 unsigned long flags; 8828 unsigned int order; 8829 bool hwpoisoned = false; 8830 8831 spin_lock_irqsave(&zone->lock, flags); 8832 for (order = 0; order < MAX_ORDER; order++) { 8833 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8834 8835 if (PageBuddy(page_head) && page_order(page_head) >= order) { 8836 if (!TestSetPageHWPoison(page)) 8837 hwpoisoned = true; 8838 break; 8839 } 8840 } 8841 spin_unlock_irqrestore(&zone->lock, flags); 8842 8843 return hwpoisoned; 8844 } 8845 #endif 8846