1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/swapops.h> 23 #include <linux/interrupt.h> 24 #include <linux/pagemap.h> 25 #include <linux/jiffies.h> 26 #include <linux/memblock.h> 27 #include <linux/compiler.h> 28 #include <linux/kernel.h> 29 #include <linux/kasan.h> 30 #include <linux/kmsan.h> 31 #include <linux/module.h> 32 #include <linux/suspend.h> 33 #include <linux/pagevec.h> 34 #include <linux/blkdev.h> 35 #include <linux/slab.h> 36 #include <linux/ratelimit.h> 37 #include <linux/oom.h> 38 #include <linux/topology.h> 39 #include <linux/sysctl.h> 40 #include <linux/cpu.h> 41 #include <linux/cpuset.h> 42 #include <linux/memory_hotplug.h> 43 #include <linux/nodemask.h> 44 #include <linux/vmalloc.h> 45 #include <linux/vmstat.h> 46 #include <linux/mempolicy.h> 47 #include <linux/memremap.h> 48 #include <linux/stop_machine.h> 49 #include <linux/random.h> 50 #include <linux/sort.h> 51 #include <linux/pfn.h> 52 #include <linux/backing-dev.h> 53 #include <linux/fault-inject.h> 54 #include <linux/page-isolation.h> 55 #include <linux/debugobjects.h> 56 #include <linux/kmemleak.h> 57 #include <linux/compaction.h> 58 #include <trace/events/kmem.h> 59 #include <trace/events/oom.h> 60 #include <linux/prefetch.h> 61 #include <linux/mm_inline.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/migrate.h> 64 #include <linux/hugetlb.h> 65 #include <linux/sched/rt.h> 66 #include <linux/sched/mm.h> 67 #include <linux/page_owner.h> 68 #include <linux/page_table_check.h> 69 #include <linux/kthread.h> 70 #include <linux/memcontrol.h> 71 #include <linux/ftrace.h> 72 #include <linux/lockdep.h> 73 #include <linux/nmi.h> 74 #include <linux/psi.h> 75 #include <linux/padata.h> 76 #include <linux/khugepaged.h> 77 #include <linux/buffer_head.h> 78 #include <linux/delayacct.h> 79 #include <asm/sections.h> 80 #include <asm/tlbflush.h> 81 #include <asm/div64.h> 82 #include "internal.h" 83 #include "shuffle.h" 84 #include "page_reporting.h" 85 #include "swap.h" 86 87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 88 typedef int __bitwise fpi_t; 89 90 /* No special request */ 91 #define FPI_NONE ((__force fpi_t)0) 92 93 /* 94 * Skip free page reporting notification for the (possibly merged) page. 95 * This does not hinder free page reporting from grabbing the page, 96 * reporting it and marking it "reported" - it only skips notifying 97 * the free page reporting infrastructure about a newly freed page. For 98 * example, used when temporarily pulling a page from a freelist and 99 * putting it back unmodified. 100 */ 101 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 102 103 /* 104 * Place the (possibly merged) page to the tail of the freelist. Will ignore 105 * page shuffling (relevant code - e.g., memory onlining - is expected to 106 * shuffle the whole zone). 107 * 108 * Note: No code should rely on this flag for correctness - it's purely 109 * to allow for optimizations when handing back either fresh pages 110 * (memory onlining) or untouched pages (page isolation, free page 111 * reporting). 112 */ 113 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 114 115 /* 116 * Don't poison memory with KASAN (only for the tag-based modes). 117 * During boot, all non-reserved memblock memory is exposed to page_alloc. 118 * Poisoning all that memory lengthens boot time, especially on systems with 119 * large amount of RAM. This flag is used to skip that poisoning. 120 * This is only done for the tag-based KASAN modes, as those are able to 121 * detect memory corruptions with the memory tags assigned by default. 122 * All memory allocated normally after boot gets poisoned as usual. 123 */ 124 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 125 126 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 127 static DEFINE_MUTEX(pcp_batch_high_lock); 128 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 129 130 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 131 /* 132 * On SMP, spin_trylock is sufficient protection. 133 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 134 */ 135 #define pcp_trylock_prepare(flags) do { } while (0) 136 #define pcp_trylock_finish(flag) do { } while (0) 137 #else 138 139 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 140 #define pcp_trylock_prepare(flags) local_irq_save(flags) 141 #define pcp_trylock_finish(flags) local_irq_restore(flags) 142 #endif 143 144 /* 145 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 146 * a migration causing the wrong PCP to be locked and remote memory being 147 * potentially allocated, pin the task to the CPU for the lookup+lock. 148 * preempt_disable is used on !RT because it is faster than migrate_disable. 149 * migrate_disable is used on RT because otherwise RT spinlock usage is 150 * interfered with and a high priority task cannot preempt the allocator. 151 */ 152 #ifndef CONFIG_PREEMPT_RT 153 #define pcpu_task_pin() preempt_disable() 154 #define pcpu_task_unpin() preempt_enable() 155 #else 156 #define pcpu_task_pin() migrate_disable() 157 #define pcpu_task_unpin() migrate_enable() 158 #endif 159 160 /* 161 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 162 * Return value should be used with equivalent unlock helper. 163 */ 164 #define pcpu_spin_lock(type, member, ptr) \ 165 ({ \ 166 type *_ret; \ 167 pcpu_task_pin(); \ 168 _ret = this_cpu_ptr(ptr); \ 169 spin_lock(&_ret->member); \ 170 _ret; \ 171 }) 172 173 #define pcpu_spin_lock_irqsave(type, member, ptr, flags) \ 174 ({ \ 175 type *_ret; \ 176 pcpu_task_pin(); \ 177 _ret = this_cpu_ptr(ptr); \ 178 spin_lock_irqsave(&_ret->member, flags); \ 179 _ret; \ 180 }) 181 182 #define pcpu_spin_trylock_irqsave(type, member, ptr, flags) \ 183 ({ \ 184 type *_ret; \ 185 pcpu_task_pin(); \ 186 _ret = this_cpu_ptr(ptr); \ 187 if (!spin_trylock_irqsave(&_ret->member, flags)) { \ 188 pcpu_task_unpin(); \ 189 _ret = NULL; \ 190 } \ 191 _ret; \ 192 }) 193 194 #define pcpu_spin_unlock(member, ptr) \ 195 ({ \ 196 spin_unlock(&ptr->member); \ 197 pcpu_task_unpin(); \ 198 }) 199 200 #define pcpu_spin_unlock_irqrestore(member, ptr, flags) \ 201 ({ \ 202 spin_unlock_irqrestore(&ptr->member, flags); \ 203 pcpu_task_unpin(); \ 204 }) 205 206 /* struct per_cpu_pages specific helpers. */ 207 #define pcp_spin_lock(ptr) \ 208 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 209 210 #define pcp_spin_lock_irqsave(ptr, flags) \ 211 pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags) 212 213 #define pcp_spin_trylock_irqsave(ptr, flags) \ 214 pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags) 215 216 #define pcp_spin_unlock(ptr) \ 217 pcpu_spin_unlock(lock, ptr) 218 219 #define pcp_spin_unlock_irqrestore(ptr, flags) \ 220 pcpu_spin_unlock_irqrestore(lock, ptr, flags) 221 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 222 DEFINE_PER_CPU(int, numa_node); 223 EXPORT_PER_CPU_SYMBOL(numa_node); 224 #endif 225 226 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 227 228 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 229 /* 230 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 231 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 232 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 233 * defined in <linux/topology.h>. 234 */ 235 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 236 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 237 #endif 238 239 static DEFINE_MUTEX(pcpu_drain_mutex); 240 241 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 242 volatile unsigned long latent_entropy __latent_entropy; 243 EXPORT_SYMBOL(latent_entropy); 244 #endif 245 246 /* 247 * Array of node states. 248 */ 249 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 250 [N_POSSIBLE] = NODE_MASK_ALL, 251 [N_ONLINE] = { { [0] = 1UL } }, 252 #ifndef CONFIG_NUMA 253 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 254 #ifdef CONFIG_HIGHMEM 255 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 256 #endif 257 [N_MEMORY] = { { [0] = 1UL } }, 258 [N_CPU] = { { [0] = 1UL } }, 259 #endif /* NUMA */ 260 }; 261 EXPORT_SYMBOL(node_states); 262 263 atomic_long_t _totalram_pages __read_mostly; 264 EXPORT_SYMBOL(_totalram_pages); 265 unsigned long totalreserve_pages __read_mostly; 266 unsigned long totalcma_pages __read_mostly; 267 268 int percpu_pagelist_high_fraction; 269 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 270 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 271 EXPORT_SYMBOL(init_on_alloc); 272 273 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 274 EXPORT_SYMBOL(init_on_free); 275 276 static bool _init_on_alloc_enabled_early __read_mostly 277 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 278 static int __init early_init_on_alloc(char *buf) 279 { 280 281 return kstrtobool(buf, &_init_on_alloc_enabled_early); 282 } 283 early_param("init_on_alloc", early_init_on_alloc); 284 285 static bool _init_on_free_enabled_early __read_mostly 286 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 287 static int __init early_init_on_free(char *buf) 288 { 289 return kstrtobool(buf, &_init_on_free_enabled_early); 290 } 291 early_param("init_on_free", early_init_on_free); 292 293 /* 294 * A cached value of the page's pageblock's migratetype, used when the page is 295 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 296 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 297 * Also the migratetype set in the page does not necessarily match the pcplist 298 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 299 * other index - this ensures that it will be put on the correct CMA freelist. 300 */ 301 static inline int get_pcppage_migratetype(struct page *page) 302 { 303 return page->index; 304 } 305 306 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 307 { 308 page->index = migratetype; 309 } 310 311 #ifdef CONFIG_PM_SLEEP 312 /* 313 * The following functions are used by the suspend/hibernate code to temporarily 314 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 315 * while devices are suspended. To avoid races with the suspend/hibernate code, 316 * they should always be called with system_transition_mutex held 317 * (gfp_allowed_mask also should only be modified with system_transition_mutex 318 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 319 * with that modification). 320 */ 321 322 static gfp_t saved_gfp_mask; 323 324 void pm_restore_gfp_mask(void) 325 { 326 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 327 if (saved_gfp_mask) { 328 gfp_allowed_mask = saved_gfp_mask; 329 saved_gfp_mask = 0; 330 } 331 } 332 333 void pm_restrict_gfp_mask(void) 334 { 335 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 336 WARN_ON(saved_gfp_mask); 337 saved_gfp_mask = gfp_allowed_mask; 338 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 339 } 340 341 bool pm_suspended_storage(void) 342 { 343 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 344 return false; 345 return true; 346 } 347 #endif /* CONFIG_PM_SLEEP */ 348 349 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 350 unsigned int pageblock_order __read_mostly; 351 #endif 352 353 static void __free_pages_ok(struct page *page, unsigned int order, 354 fpi_t fpi_flags); 355 356 /* 357 * results with 256, 32 in the lowmem_reserve sysctl: 358 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 359 * 1G machine -> (16M dma, 784M normal, 224M high) 360 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 361 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 362 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 363 * 364 * TBD: should special case ZONE_DMA32 machines here - in those we normally 365 * don't need any ZONE_NORMAL reservation 366 */ 367 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 368 #ifdef CONFIG_ZONE_DMA 369 [ZONE_DMA] = 256, 370 #endif 371 #ifdef CONFIG_ZONE_DMA32 372 [ZONE_DMA32] = 256, 373 #endif 374 [ZONE_NORMAL] = 32, 375 #ifdef CONFIG_HIGHMEM 376 [ZONE_HIGHMEM] = 0, 377 #endif 378 [ZONE_MOVABLE] = 0, 379 }; 380 381 static char * const zone_names[MAX_NR_ZONES] = { 382 #ifdef CONFIG_ZONE_DMA 383 "DMA", 384 #endif 385 #ifdef CONFIG_ZONE_DMA32 386 "DMA32", 387 #endif 388 "Normal", 389 #ifdef CONFIG_HIGHMEM 390 "HighMem", 391 #endif 392 "Movable", 393 #ifdef CONFIG_ZONE_DEVICE 394 "Device", 395 #endif 396 }; 397 398 const char * const migratetype_names[MIGRATE_TYPES] = { 399 "Unmovable", 400 "Movable", 401 "Reclaimable", 402 "HighAtomic", 403 #ifdef CONFIG_CMA 404 "CMA", 405 #endif 406 #ifdef CONFIG_MEMORY_ISOLATION 407 "Isolate", 408 #endif 409 }; 410 411 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 412 [NULL_COMPOUND_DTOR] = NULL, 413 [COMPOUND_PAGE_DTOR] = free_compound_page, 414 #ifdef CONFIG_HUGETLB_PAGE 415 [HUGETLB_PAGE_DTOR] = free_huge_page, 416 #endif 417 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 418 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 419 #endif 420 }; 421 422 int min_free_kbytes = 1024; 423 int user_min_free_kbytes = -1; 424 int watermark_boost_factor __read_mostly = 15000; 425 int watermark_scale_factor = 10; 426 427 static unsigned long nr_kernel_pages __initdata; 428 static unsigned long nr_all_pages __initdata; 429 static unsigned long dma_reserve __initdata; 430 431 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 432 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 433 static unsigned long required_kernelcore __initdata; 434 static unsigned long required_kernelcore_percent __initdata; 435 static unsigned long required_movablecore __initdata; 436 static unsigned long required_movablecore_percent __initdata; 437 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 438 bool mirrored_kernelcore __initdata_memblock; 439 440 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 441 int movable_zone; 442 EXPORT_SYMBOL(movable_zone); 443 444 #if MAX_NUMNODES > 1 445 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 446 unsigned int nr_online_nodes __read_mostly = 1; 447 EXPORT_SYMBOL(nr_node_ids); 448 EXPORT_SYMBOL(nr_online_nodes); 449 #endif 450 451 int page_group_by_mobility_disabled __read_mostly; 452 453 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 454 /* 455 * During boot we initialize deferred pages on-demand, as needed, but once 456 * page_alloc_init_late() has finished, the deferred pages are all initialized, 457 * and we can permanently disable that path. 458 */ 459 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 460 461 static inline bool deferred_pages_enabled(void) 462 { 463 return static_branch_unlikely(&deferred_pages); 464 } 465 466 /* Returns true if the struct page for the pfn is uninitialised */ 467 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 468 { 469 int nid = early_pfn_to_nid(pfn); 470 471 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 472 return true; 473 474 return false; 475 } 476 477 /* 478 * Returns true when the remaining initialisation should be deferred until 479 * later in the boot cycle when it can be parallelised. 480 */ 481 static bool __meminit 482 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 483 { 484 static unsigned long prev_end_pfn, nr_initialised; 485 486 if (early_page_ext_enabled()) 487 return false; 488 /* 489 * prev_end_pfn static that contains the end of previous zone 490 * No need to protect because called very early in boot before smp_init. 491 */ 492 if (prev_end_pfn != end_pfn) { 493 prev_end_pfn = end_pfn; 494 nr_initialised = 0; 495 } 496 497 /* Always populate low zones for address-constrained allocations */ 498 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 499 return false; 500 501 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 502 return true; 503 /* 504 * We start only with one section of pages, more pages are added as 505 * needed until the rest of deferred pages are initialized. 506 */ 507 nr_initialised++; 508 if ((nr_initialised > PAGES_PER_SECTION) && 509 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 510 NODE_DATA(nid)->first_deferred_pfn = pfn; 511 return true; 512 } 513 return false; 514 } 515 #else 516 static inline bool deferred_pages_enabled(void) 517 { 518 return false; 519 } 520 521 static inline bool early_page_uninitialised(unsigned long pfn) 522 { 523 return false; 524 } 525 526 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 527 { 528 return false; 529 } 530 #endif 531 532 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 533 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 534 unsigned long pfn) 535 { 536 #ifdef CONFIG_SPARSEMEM 537 return section_to_usemap(__pfn_to_section(pfn)); 538 #else 539 return page_zone(page)->pageblock_flags; 540 #endif /* CONFIG_SPARSEMEM */ 541 } 542 543 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 544 { 545 #ifdef CONFIG_SPARSEMEM 546 pfn &= (PAGES_PER_SECTION-1); 547 #else 548 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 549 #endif /* CONFIG_SPARSEMEM */ 550 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 551 } 552 553 static __always_inline 554 unsigned long __get_pfnblock_flags_mask(const struct page *page, 555 unsigned long pfn, 556 unsigned long mask) 557 { 558 unsigned long *bitmap; 559 unsigned long bitidx, word_bitidx; 560 unsigned long word; 561 562 bitmap = get_pageblock_bitmap(page, pfn); 563 bitidx = pfn_to_bitidx(page, pfn); 564 word_bitidx = bitidx / BITS_PER_LONG; 565 bitidx &= (BITS_PER_LONG-1); 566 /* 567 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 568 * a consistent read of the memory array, so that results, even though 569 * racy, are not corrupted. 570 */ 571 word = READ_ONCE(bitmap[word_bitidx]); 572 return (word >> bitidx) & mask; 573 } 574 575 /** 576 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 577 * @page: The page within the block of interest 578 * @pfn: The target page frame number 579 * @mask: mask of bits that the caller is interested in 580 * 581 * Return: pageblock_bits flags 582 */ 583 unsigned long get_pfnblock_flags_mask(const struct page *page, 584 unsigned long pfn, unsigned long mask) 585 { 586 return __get_pfnblock_flags_mask(page, pfn, mask); 587 } 588 589 static __always_inline int get_pfnblock_migratetype(const struct page *page, 590 unsigned long pfn) 591 { 592 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 593 } 594 595 /** 596 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 597 * @page: The page within the block of interest 598 * @flags: The flags to set 599 * @pfn: The target page frame number 600 * @mask: mask of bits that the caller is interested in 601 */ 602 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 603 unsigned long pfn, 604 unsigned long mask) 605 { 606 unsigned long *bitmap; 607 unsigned long bitidx, word_bitidx; 608 unsigned long word; 609 610 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 611 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 612 613 bitmap = get_pageblock_bitmap(page, pfn); 614 bitidx = pfn_to_bitidx(page, pfn); 615 word_bitidx = bitidx / BITS_PER_LONG; 616 bitidx &= (BITS_PER_LONG-1); 617 618 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 619 620 mask <<= bitidx; 621 flags <<= bitidx; 622 623 word = READ_ONCE(bitmap[word_bitidx]); 624 do { 625 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 626 } 627 628 void set_pageblock_migratetype(struct page *page, int migratetype) 629 { 630 if (unlikely(page_group_by_mobility_disabled && 631 migratetype < MIGRATE_PCPTYPES)) 632 migratetype = MIGRATE_UNMOVABLE; 633 634 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 635 page_to_pfn(page), MIGRATETYPE_MASK); 636 } 637 638 #ifdef CONFIG_DEBUG_VM 639 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 640 { 641 int ret = 0; 642 unsigned seq; 643 unsigned long pfn = page_to_pfn(page); 644 unsigned long sp, start_pfn; 645 646 do { 647 seq = zone_span_seqbegin(zone); 648 start_pfn = zone->zone_start_pfn; 649 sp = zone->spanned_pages; 650 if (!zone_spans_pfn(zone, pfn)) 651 ret = 1; 652 } while (zone_span_seqretry(zone, seq)); 653 654 if (ret) 655 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 656 pfn, zone_to_nid(zone), zone->name, 657 start_pfn, start_pfn + sp); 658 659 return ret; 660 } 661 662 static int page_is_consistent(struct zone *zone, struct page *page) 663 { 664 if (zone != page_zone(page)) 665 return 0; 666 667 return 1; 668 } 669 /* 670 * Temporary debugging check for pages not lying within a given zone. 671 */ 672 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 673 { 674 if (page_outside_zone_boundaries(zone, page)) 675 return 1; 676 if (!page_is_consistent(zone, page)) 677 return 1; 678 679 return 0; 680 } 681 #else 682 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 683 { 684 return 0; 685 } 686 #endif 687 688 static void bad_page(struct page *page, const char *reason) 689 { 690 static unsigned long resume; 691 static unsigned long nr_shown; 692 static unsigned long nr_unshown; 693 694 /* 695 * Allow a burst of 60 reports, then keep quiet for that minute; 696 * or allow a steady drip of one report per second. 697 */ 698 if (nr_shown == 60) { 699 if (time_before(jiffies, resume)) { 700 nr_unshown++; 701 goto out; 702 } 703 if (nr_unshown) { 704 pr_alert( 705 "BUG: Bad page state: %lu messages suppressed\n", 706 nr_unshown); 707 nr_unshown = 0; 708 } 709 nr_shown = 0; 710 } 711 if (nr_shown++ == 0) 712 resume = jiffies + 60 * HZ; 713 714 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 715 current->comm, page_to_pfn(page)); 716 dump_page(page, reason); 717 718 print_modules(); 719 dump_stack(); 720 out: 721 /* Leave bad fields for debug, except PageBuddy could make trouble */ 722 page_mapcount_reset(page); /* remove PageBuddy */ 723 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 724 } 725 726 static inline unsigned int order_to_pindex(int migratetype, int order) 727 { 728 int base = order; 729 730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 731 if (order > PAGE_ALLOC_COSTLY_ORDER) { 732 VM_BUG_ON(order != pageblock_order); 733 return NR_LOWORDER_PCP_LISTS; 734 } 735 #else 736 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 737 #endif 738 739 return (MIGRATE_PCPTYPES * base) + migratetype; 740 } 741 742 static inline int pindex_to_order(unsigned int pindex) 743 { 744 int order = pindex / MIGRATE_PCPTYPES; 745 746 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 747 if (pindex == NR_LOWORDER_PCP_LISTS) 748 order = pageblock_order; 749 #else 750 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 751 #endif 752 753 return order; 754 } 755 756 static inline bool pcp_allowed_order(unsigned int order) 757 { 758 if (order <= PAGE_ALLOC_COSTLY_ORDER) 759 return true; 760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 761 if (order == pageblock_order) 762 return true; 763 #endif 764 return false; 765 } 766 767 static inline void free_the_page(struct page *page, unsigned int order) 768 { 769 if (pcp_allowed_order(order)) /* Via pcp? */ 770 free_unref_page(page, order); 771 else 772 __free_pages_ok(page, order, FPI_NONE); 773 } 774 775 /* 776 * Higher-order pages are called "compound pages". They are structured thusly: 777 * 778 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 779 * 780 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 781 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 782 * 783 * The first tail page's ->compound_dtor holds the offset in array of compound 784 * page destructors. See compound_page_dtors. 785 * 786 * The first tail page's ->compound_order holds the order of allocation. 787 * This usage means that zero-order pages may not be compound. 788 */ 789 790 void free_compound_page(struct page *page) 791 { 792 mem_cgroup_uncharge(page_folio(page)); 793 free_the_page(page, compound_order(page)); 794 } 795 796 static void prep_compound_head(struct page *page, unsigned int order) 797 { 798 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 799 set_compound_order(page, order); 800 atomic_set(compound_mapcount_ptr(page), -1); 801 atomic_set(compound_pincount_ptr(page), 0); 802 } 803 804 static void prep_compound_tail(struct page *head, int tail_idx) 805 { 806 struct page *p = head + tail_idx; 807 808 p->mapping = TAIL_MAPPING; 809 set_compound_head(p, head); 810 set_page_private(p, 0); 811 } 812 813 void prep_compound_page(struct page *page, unsigned int order) 814 { 815 int i; 816 int nr_pages = 1 << order; 817 818 __SetPageHead(page); 819 for (i = 1; i < nr_pages; i++) 820 prep_compound_tail(page, i); 821 822 prep_compound_head(page, order); 823 } 824 825 void destroy_large_folio(struct folio *folio) 826 { 827 enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor; 828 829 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio); 830 compound_page_dtors[dtor](&folio->page); 831 } 832 833 #ifdef CONFIG_DEBUG_PAGEALLOC 834 unsigned int _debug_guardpage_minorder; 835 836 bool _debug_pagealloc_enabled_early __read_mostly 837 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 838 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 839 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 840 EXPORT_SYMBOL(_debug_pagealloc_enabled); 841 842 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 843 844 static int __init early_debug_pagealloc(char *buf) 845 { 846 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 847 } 848 early_param("debug_pagealloc", early_debug_pagealloc); 849 850 static int __init debug_guardpage_minorder_setup(char *buf) 851 { 852 unsigned long res; 853 854 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 855 pr_err("Bad debug_guardpage_minorder value\n"); 856 return 0; 857 } 858 _debug_guardpage_minorder = res; 859 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 860 return 0; 861 } 862 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 863 864 static inline bool set_page_guard(struct zone *zone, struct page *page, 865 unsigned int order, int migratetype) 866 { 867 if (!debug_guardpage_enabled()) 868 return false; 869 870 if (order >= debug_guardpage_minorder()) 871 return false; 872 873 __SetPageGuard(page); 874 INIT_LIST_HEAD(&page->buddy_list); 875 set_page_private(page, order); 876 /* Guard pages are not available for any usage */ 877 if (!is_migrate_isolate(migratetype)) 878 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 879 880 return true; 881 } 882 883 static inline void clear_page_guard(struct zone *zone, struct page *page, 884 unsigned int order, int migratetype) 885 { 886 if (!debug_guardpage_enabled()) 887 return; 888 889 __ClearPageGuard(page); 890 891 set_page_private(page, 0); 892 if (!is_migrate_isolate(migratetype)) 893 __mod_zone_freepage_state(zone, (1 << order), migratetype); 894 } 895 #else 896 static inline bool set_page_guard(struct zone *zone, struct page *page, 897 unsigned int order, int migratetype) { return false; } 898 static inline void clear_page_guard(struct zone *zone, struct page *page, 899 unsigned int order, int migratetype) {} 900 #endif 901 902 /* 903 * Enable static keys related to various memory debugging and hardening options. 904 * Some override others, and depend on early params that are evaluated in the 905 * order of appearance. So we need to first gather the full picture of what was 906 * enabled, and then make decisions. 907 */ 908 void __init init_mem_debugging_and_hardening(void) 909 { 910 bool page_poisoning_requested = false; 911 912 #ifdef CONFIG_PAGE_POISONING 913 /* 914 * Page poisoning is debug page alloc for some arches. If 915 * either of those options are enabled, enable poisoning. 916 */ 917 if (page_poisoning_enabled() || 918 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 919 debug_pagealloc_enabled())) { 920 static_branch_enable(&_page_poisoning_enabled); 921 page_poisoning_requested = true; 922 } 923 #endif 924 925 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 926 page_poisoning_requested) { 927 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 928 "will take precedence over init_on_alloc and init_on_free\n"); 929 _init_on_alloc_enabled_early = false; 930 _init_on_free_enabled_early = false; 931 } 932 933 if (_init_on_alloc_enabled_early) 934 static_branch_enable(&init_on_alloc); 935 else 936 static_branch_disable(&init_on_alloc); 937 938 if (_init_on_free_enabled_early) 939 static_branch_enable(&init_on_free); 940 else 941 static_branch_disable(&init_on_free); 942 943 if (IS_ENABLED(CONFIG_KMSAN) && 944 (_init_on_alloc_enabled_early || _init_on_free_enabled_early)) 945 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n"); 946 947 #ifdef CONFIG_DEBUG_PAGEALLOC 948 if (!debug_pagealloc_enabled()) 949 return; 950 951 static_branch_enable(&_debug_pagealloc_enabled); 952 953 if (!debug_guardpage_minorder()) 954 return; 955 956 static_branch_enable(&_debug_guardpage_enabled); 957 #endif 958 } 959 960 static inline void set_buddy_order(struct page *page, unsigned int order) 961 { 962 set_page_private(page, order); 963 __SetPageBuddy(page); 964 } 965 966 #ifdef CONFIG_COMPACTION 967 static inline struct capture_control *task_capc(struct zone *zone) 968 { 969 struct capture_control *capc = current->capture_control; 970 971 return unlikely(capc) && 972 !(current->flags & PF_KTHREAD) && 973 !capc->page && 974 capc->cc->zone == zone ? capc : NULL; 975 } 976 977 static inline bool 978 compaction_capture(struct capture_control *capc, struct page *page, 979 int order, int migratetype) 980 { 981 if (!capc || order != capc->cc->order) 982 return false; 983 984 /* Do not accidentally pollute CMA or isolated regions*/ 985 if (is_migrate_cma(migratetype) || 986 is_migrate_isolate(migratetype)) 987 return false; 988 989 /* 990 * Do not let lower order allocations pollute a movable pageblock. 991 * This might let an unmovable request use a reclaimable pageblock 992 * and vice-versa but no more than normal fallback logic which can 993 * have trouble finding a high-order free page. 994 */ 995 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 996 return false; 997 998 capc->page = page; 999 return true; 1000 } 1001 1002 #else 1003 static inline struct capture_control *task_capc(struct zone *zone) 1004 { 1005 return NULL; 1006 } 1007 1008 static inline bool 1009 compaction_capture(struct capture_control *capc, struct page *page, 1010 int order, int migratetype) 1011 { 1012 return false; 1013 } 1014 #endif /* CONFIG_COMPACTION */ 1015 1016 /* Used for pages not on another list */ 1017 static inline void add_to_free_list(struct page *page, struct zone *zone, 1018 unsigned int order, int migratetype) 1019 { 1020 struct free_area *area = &zone->free_area[order]; 1021 1022 list_add(&page->buddy_list, &area->free_list[migratetype]); 1023 area->nr_free++; 1024 } 1025 1026 /* Used for pages not on another list */ 1027 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 1028 unsigned int order, int migratetype) 1029 { 1030 struct free_area *area = &zone->free_area[order]; 1031 1032 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 1033 area->nr_free++; 1034 } 1035 1036 /* 1037 * Used for pages which are on another list. Move the pages to the tail 1038 * of the list - so the moved pages won't immediately be considered for 1039 * allocation again (e.g., optimization for memory onlining). 1040 */ 1041 static inline void move_to_free_list(struct page *page, struct zone *zone, 1042 unsigned int order, int migratetype) 1043 { 1044 struct free_area *area = &zone->free_area[order]; 1045 1046 list_move_tail(&page->buddy_list, &area->free_list[migratetype]); 1047 } 1048 1049 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 1050 unsigned int order) 1051 { 1052 /* clear reported state and update reported page count */ 1053 if (page_reported(page)) 1054 __ClearPageReported(page); 1055 1056 list_del(&page->buddy_list); 1057 __ClearPageBuddy(page); 1058 set_page_private(page, 0); 1059 zone->free_area[order].nr_free--; 1060 } 1061 1062 /* 1063 * If this is not the largest possible page, check if the buddy 1064 * of the next-highest order is free. If it is, it's possible 1065 * that pages are being freed that will coalesce soon. In case, 1066 * that is happening, add the free page to the tail of the list 1067 * so it's less likely to be used soon and more likely to be merged 1068 * as a higher order page 1069 */ 1070 static inline bool 1071 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 1072 struct page *page, unsigned int order) 1073 { 1074 unsigned long higher_page_pfn; 1075 struct page *higher_page; 1076 1077 if (order >= MAX_ORDER - 2) 1078 return false; 1079 1080 higher_page_pfn = buddy_pfn & pfn; 1081 higher_page = page + (higher_page_pfn - pfn); 1082 1083 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 1084 NULL) != NULL; 1085 } 1086 1087 /* 1088 * Freeing function for a buddy system allocator. 1089 * 1090 * The concept of a buddy system is to maintain direct-mapped table 1091 * (containing bit values) for memory blocks of various "orders". 1092 * The bottom level table contains the map for the smallest allocatable 1093 * units of memory (here, pages), and each level above it describes 1094 * pairs of units from the levels below, hence, "buddies". 1095 * At a high level, all that happens here is marking the table entry 1096 * at the bottom level available, and propagating the changes upward 1097 * as necessary, plus some accounting needed to play nicely with other 1098 * parts of the VM system. 1099 * At each level, we keep a list of pages, which are heads of continuous 1100 * free pages of length of (1 << order) and marked with PageBuddy. 1101 * Page's order is recorded in page_private(page) field. 1102 * So when we are allocating or freeing one, we can derive the state of the 1103 * other. That is, if we allocate a small block, and both were 1104 * free, the remainder of the region must be split into blocks. 1105 * If a block is freed, and its buddy is also free, then this 1106 * triggers coalescing into a block of larger size. 1107 * 1108 * -- nyc 1109 */ 1110 1111 static inline void __free_one_page(struct page *page, 1112 unsigned long pfn, 1113 struct zone *zone, unsigned int order, 1114 int migratetype, fpi_t fpi_flags) 1115 { 1116 struct capture_control *capc = task_capc(zone); 1117 unsigned long buddy_pfn = 0; 1118 unsigned long combined_pfn; 1119 struct page *buddy; 1120 bool to_tail; 1121 1122 VM_BUG_ON(!zone_is_initialized(zone)); 1123 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1124 1125 VM_BUG_ON(migratetype == -1); 1126 if (likely(!is_migrate_isolate(migratetype))) 1127 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1128 1129 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1130 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1131 1132 while (order < MAX_ORDER - 1) { 1133 if (compaction_capture(capc, page, order, migratetype)) { 1134 __mod_zone_freepage_state(zone, -(1 << order), 1135 migratetype); 1136 return; 1137 } 1138 1139 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 1140 if (!buddy) 1141 goto done_merging; 1142 1143 if (unlikely(order >= pageblock_order)) { 1144 /* 1145 * We want to prevent merge between freepages on pageblock 1146 * without fallbacks and normal pageblock. Without this, 1147 * pageblock isolation could cause incorrect freepage or CMA 1148 * accounting or HIGHATOMIC accounting. 1149 */ 1150 int buddy_mt = get_pageblock_migratetype(buddy); 1151 1152 if (migratetype != buddy_mt 1153 && (!migratetype_is_mergeable(migratetype) || 1154 !migratetype_is_mergeable(buddy_mt))) 1155 goto done_merging; 1156 } 1157 1158 /* 1159 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1160 * merge with it and move up one order. 1161 */ 1162 if (page_is_guard(buddy)) 1163 clear_page_guard(zone, buddy, order, migratetype); 1164 else 1165 del_page_from_free_list(buddy, zone, order); 1166 combined_pfn = buddy_pfn & pfn; 1167 page = page + (combined_pfn - pfn); 1168 pfn = combined_pfn; 1169 order++; 1170 } 1171 1172 done_merging: 1173 set_buddy_order(page, order); 1174 1175 if (fpi_flags & FPI_TO_TAIL) 1176 to_tail = true; 1177 else if (is_shuffle_order(order)) 1178 to_tail = shuffle_pick_tail(); 1179 else 1180 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1181 1182 if (to_tail) 1183 add_to_free_list_tail(page, zone, order, migratetype); 1184 else 1185 add_to_free_list(page, zone, order, migratetype); 1186 1187 /* Notify page reporting subsystem of freed page */ 1188 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1189 page_reporting_notify_free(order); 1190 } 1191 1192 /** 1193 * split_free_page() -- split a free page at split_pfn_offset 1194 * @free_page: the original free page 1195 * @order: the order of the page 1196 * @split_pfn_offset: split offset within the page 1197 * 1198 * Return -ENOENT if the free page is changed, otherwise 0 1199 * 1200 * It is used when the free page crosses two pageblocks with different migratetypes 1201 * at split_pfn_offset within the page. The split free page will be put into 1202 * separate migratetype lists afterwards. Otherwise, the function achieves 1203 * nothing. 1204 */ 1205 int split_free_page(struct page *free_page, 1206 unsigned int order, unsigned long split_pfn_offset) 1207 { 1208 struct zone *zone = page_zone(free_page); 1209 unsigned long free_page_pfn = page_to_pfn(free_page); 1210 unsigned long pfn; 1211 unsigned long flags; 1212 int free_page_order; 1213 int mt; 1214 int ret = 0; 1215 1216 if (split_pfn_offset == 0) 1217 return ret; 1218 1219 spin_lock_irqsave(&zone->lock, flags); 1220 1221 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { 1222 ret = -ENOENT; 1223 goto out; 1224 } 1225 1226 mt = get_pageblock_migratetype(free_page); 1227 if (likely(!is_migrate_isolate(mt))) 1228 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1229 1230 del_page_from_free_list(free_page, zone, order); 1231 for (pfn = free_page_pfn; 1232 pfn < free_page_pfn + (1UL << order);) { 1233 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); 1234 1235 free_page_order = min_t(unsigned int, 1236 pfn ? __ffs(pfn) : order, 1237 __fls(split_pfn_offset)); 1238 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, 1239 mt, FPI_NONE); 1240 pfn += 1UL << free_page_order; 1241 split_pfn_offset -= (1UL << free_page_order); 1242 /* we have done the first part, now switch to second part */ 1243 if (split_pfn_offset == 0) 1244 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); 1245 } 1246 out: 1247 spin_unlock_irqrestore(&zone->lock, flags); 1248 return ret; 1249 } 1250 /* 1251 * A bad page could be due to a number of fields. Instead of multiple branches, 1252 * try and check multiple fields with one check. The caller must do a detailed 1253 * check if necessary. 1254 */ 1255 static inline bool page_expected_state(struct page *page, 1256 unsigned long check_flags) 1257 { 1258 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1259 return false; 1260 1261 if (unlikely((unsigned long)page->mapping | 1262 page_ref_count(page) | 1263 #ifdef CONFIG_MEMCG 1264 page->memcg_data | 1265 #endif 1266 (page->flags & check_flags))) 1267 return false; 1268 1269 return true; 1270 } 1271 1272 static const char *page_bad_reason(struct page *page, unsigned long flags) 1273 { 1274 const char *bad_reason = NULL; 1275 1276 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1277 bad_reason = "nonzero mapcount"; 1278 if (unlikely(page->mapping != NULL)) 1279 bad_reason = "non-NULL mapping"; 1280 if (unlikely(page_ref_count(page) != 0)) 1281 bad_reason = "nonzero _refcount"; 1282 if (unlikely(page->flags & flags)) { 1283 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1284 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1285 else 1286 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1287 } 1288 #ifdef CONFIG_MEMCG 1289 if (unlikely(page->memcg_data)) 1290 bad_reason = "page still charged to cgroup"; 1291 #endif 1292 return bad_reason; 1293 } 1294 1295 static void free_page_is_bad_report(struct page *page) 1296 { 1297 bad_page(page, 1298 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1299 } 1300 1301 static inline bool free_page_is_bad(struct page *page) 1302 { 1303 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1304 return false; 1305 1306 /* Something has gone sideways, find it */ 1307 free_page_is_bad_report(page); 1308 return true; 1309 } 1310 1311 static int free_tail_pages_check(struct page *head_page, struct page *page) 1312 { 1313 int ret = 1; 1314 1315 /* 1316 * We rely page->lru.next never has bit 0 set, unless the page 1317 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1318 */ 1319 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1320 1321 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1322 ret = 0; 1323 goto out; 1324 } 1325 switch (page - head_page) { 1326 case 1: 1327 /* the first tail page: ->mapping may be compound_mapcount() */ 1328 if (unlikely(compound_mapcount(page))) { 1329 bad_page(page, "nonzero compound_mapcount"); 1330 goto out; 1331 } 1332 break; 1333 case 2: 1334 /* 1335 * the second tail page: ->mapping is 1336 * deferred_list.next -- ignore value. 1337 */ 1338 break; 1339 default: 1340 if (page->mapping != TAIL_MAPPING) { 1341 bad_page(page, "corrupted mapping in tail page"); 1342 goto out; 1343 } 1344 break; 1345 } 1346 if (unlikely(!PageTail(page))) { 1347 bad_page(page, "PageTail not set"); 1348 goto out; 1349 } 1350 if (unlikely(compound_head(page) != head_page)) { 1351 bad_page(page, "compound_head not consistent"); 1352 goto out; 1353 } 1354 ret = 0; 1355 out: 1356 page->mapping = NULL; 1357 clear_compound_head(page); 1358 return ret; 1359 } 1360 1361 /* 1362 * Skip KASAN memory poisoning when either: 1363 * 1364 * 1. Deferred memory initialization has not yet completed, 1365 * see the explanation below. 1366 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON, 1367 * see the comment next to it. 1368 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON, 1369 * see the comment next to it. 1370 * 1371 * Poisoning pages during deferred memory init will greatly lengthen the 1372 * process and cause problem in large memory systems as the deferred pages 1373 * initialization is done with interrupt disabled. 1374 * 1375 * Assuming that there will be no reference to those newly initialized 1376 * pages before they are ever allocated, this should have no effect on 1377 * KASAN memory tracking as the poison will be properly inserted at page 1378 * allocation time. The only corner case is when pages are allocated by 1379 * on-demand allocation and then freed again before the deferred pages 1380 * initialization is done, but this is not likely to happen. 1381 */ 1382 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 1383 { 1384 return deferred_pages_enabled() || 1385 (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 1386 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 1387 PageSkipKASanPoison(page); 1388 } 1389 1390 static void kernel_init_pages(struct page *page, int numpages) 1391 { 1392 int i; 1393 1394 /* s390's use of memset() could override KASAN redzones. */ 1395 kasan_disable_current(); 1396 for (i = 0; i < numpages; i++) 1397 clear_highpage_kasan_tagged(page + i); 1398 kasan_enable_current(); 1399 } 1400 1401 static __always_inline bool free_pages_prepare(struct page *page, 1402 unsigned int order, bool check_free, fpi_t fpi_flags) 1403 { 1404 int bad = 0; 1405 bool init = want_init_on_free(); 1406 1407 VM_BUG_ON_PAGE(PageTail(page), page); 1408 1409 trace_mm_page_free(page, order); 1410 kmsan_free_page(page, order); 1411 1412 if (unlikely(PageHWPoison(page)) && !order) { 1413 /* 1414 * Do not let hwpoison pages hit pcplists/buddy 1415 * Untie memcg state and reset page's owner 1416 */ 1417 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1418 __memcg_kmem_uncharge_page(page, order); 1419 reset_page_owner(page, order); 1420 page_table_check_free(page, order); 1421 return false; 1422 } 1423 1424 /* 1425 * Check tail pages before head page information is cleared to 1426 * avoid checking PageCompound for order-0 pages. 1427 */ 1428 if (unlikely(order)) { 1429 bool compound = PageCompound(page); 1430 int i; 1431 1432 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1433 1434 if (compound) { 1435 ClearPageDoubleMap(page); 1436 ClearPageHasHWPoisoned(page); 1437 } 1438 for (i = 1; i < (1 << order); i++) { 1439 if (compound) 1440 bad += free_tail_pages_check(page, page + i); 1441 if (unlikely(free_page_is_bad(page + i))) { 1442 bad++; 1443 continue; 1444 } 1445 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1446 } 1447 } 1448 if (PageMappingFlags(page)) 1449 page->mapping = NULL; 1450 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1451 __memcg_kmem_uncharge_page(page, order); 1452 if (check_free && free_page_is_bad(page)) 1453 bad++; 1454 if (bad) 1455 return false; 1456 1457 page_cpupid_reset_last(page); 1458 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1459 reset_page_owner(page, order); 1460 page_table_check_free(page, order); 1461 1462 if (!PageHighMem(page)) { 1463 debug_check_no_locks_freed(page_address(page), 1464 PAGE_SIZE << order); 1465 debug_check_no_obj_freed(page_address(page), 1466 PAGE_SIZE << order); 1467 } 1468 1469 kernel_poison_pages(page, 1 << order); 1470 1471 /* 1472 * As memory initialization might be integrated into KASAN, 1473 * KASAN poisoning and memory initialization code must be 1474 * kept together to avoid discrepancies in behavior. 1475 * 1476 * With hardware tag-based KASAN, memory tags must be set before the 1477 * page becomes unavailable via debug_pagealloc or arch_free_page. 1478 */ 1479 if (!should_skip_kasan_poison(page, fpi_flags)) { 1480 kasan_poison_pages(page, order, init); 1481 1482 /* Memory is already initialized if KASAN did it internally. */ 1483 if (kasan_has_integrated_init()) 1484 init = false; 1485 } 1486 if (init) 1487 kernel_init_pages(page, 1 << order); 1488 1489 /* 1490 * arch_free_page() can make the page's contents inaccessible. s390 1491 * does this. So nothing which can access the page's contents should 1492 * happen after this. 1493 */ 1494 arch_free_page(page, order); 1495 1496 debug_pagealloc_unmap_pages(page, 1 << order); 1497 1498 return true; 1499 } 1500 1501 #ifdef CONFIG_DEBUG_VM 1502 /* 1503 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1504 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1505 * moved from pcp lists to free lists. 1506 */ 1507 static bool free_pcp_prepare(struct page *page, unsigned int order) 1508 { 1509 return free_pages_prepare(page, order, true, FPI_NONE); 1510 } 1511 1512 /* return true if this page has an inappropriate state */ 1513 static bool bulkfree_pcp_prepare(struct page *page) 1514 { 1515 if (debug_pagealloc_enabled_static()) 1516 return free_page_is_bad(page); 1517 else 1518 return false; 1519 } 1520 #else 1521 /* 1522 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1523 * moving from pcp lists to free list in order to reduce overhead. With 1524 * debug_pagealloc enabled, they are checked also immediately when being freed 1525 * to the pcp lists. 1526 */ 1527 static bool free_pcp_prepare(struct page *page, unsigned int order) 1528 { 1529 if (debug_pagealloc_enabled_static()) 1530 return free_pages_prepare(page, order, true, FPI_NONE); 1531 else 1532 return free_pages_prepare(page, order, false, FPI_NONE); 1533 } 1534 1535 static bool bulkfree_pcp_prepare(struct page *page) 1536 { 1537 return free_page_is_bad(page); 1538 } 1539 #endif /* CONFIG_DEBUG_VM */ 1540 1541 /* 1542 * Frees a number of pages from the PCP lists 1543 * Assumes all pages on list are in same zone. 1544 * count is the number of pages to free. 1545 */ 1546 static void free_pcppages_bulk(struct zone *zone, int count, 1547 struct per_cpu_pages *pcp, 1548 int pindex) 1549 { 1550 int min_pindex = 0; 1551 int max_pindex = NR_PCP_LISTS - 1; 1552 unsigned int order; 1553 bool isolated_pageblocks; 1554 struct page *page; 1555 1556 /* 1557 * Ensure proper count is passed which otherwise would stuck in the 1558 * below while (list_empty(list)) loop. 1559 */ 1560 count = min(pcp->count, count); 1561 1562 /* Ensure requested pindex is drained first. */ 1563 pindex = pindex - 1; 1564 1565 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */ 1566 spin_lock(&zone->lock); 1567 isolated_pageblocks = has_isolate_pageblock(zone); 1568 1569 while (count > 0) { 1570 struct list_head *list; 1571 int nr_pages; 1572 1573 /* Remove pages from lists in a round-robin fashion. */ 1574 do { 1575 if (++pindex > max_pindex) 1576 pindex = min_pindex; 1577 list = &pcp->lists[pindex]; 1578 if (!list_empty(list)) 1579 break; 1580 1581 if (pindex == max_pindex) 1582 max_pindex--; 1583 if (pindex == min_pindex) 1584 min_pindex++; 1585 } while (1); 1586 1587 order = pindex_to_order(pindex); 1588 nr_pages = 1 << order; 1589 do { 1590 int mt; 1591 1592 page = list_last_entry(list, struct page, pcp_list); 1593 mt = get_pcppage_migratetype(page); 1594 1595 /* must delete to avoid corrupting pcp list */ 1596 list_del(&page->pcp_list); 1597 count -= nr_pages; 1598 pcp->count -= nr_pages; 1599 1600 if (bulkfree_pcp_prepare(page)) 1601 continue; 1602 1603 /* MIGRATE_ISOLATE page should not go to pcplists */ 1604 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1605 /* Pageblock could have been isolated meanwhile */ 1606 if (unlikely(isolated_pageblocks)) 1607 mt = get_pageblock_migratetype(page); 1608 1609 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1610 trace_mm_page_pcpu_drain(page, order, mt); 1611 } while (count > 0 && !list_empty(list)); 1612 } 1613 1614 spin_unlock(&zone->lock); 1615 } 1616 1617 static void free_one_page(struct zone *zone, 1618 struct page *page, unsigned long pfn, 1619 unsigned int order, 1620 int migratetype, fpi_t fpi_flags) 1621 { 1622 unsigned long flags; 1623 1624 spin_lock_irqsave(&zone->lock, flags); 1625 if (unlikely(has_isolate_pageblock(zone) || 1626 is_migrate_isolate(migratetype))) { 1627 migratetype = get_pfnblock_migratetype(page, pfn); 1628 } 1629 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1630 spin_unlock_irqrestore(&zone->lock, flags); 1631 } 1632 1633 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1634 unsigned long zone, int nid) 1635 { 1636 mm_zero_struct_page(page); 1637 set_page_links(page, zone, nid, pfn); 1638 init_page_count(page); 1639 page_mapcount_reset(page); 1640 page_cpupid_reset_last(page); 1641 page_kasan_tag_reset(page); 1642 1643 INIT_LIST_HEAD(&page->lru); 1644 #ifdef WANT_PAGE_VIRTUAL 1645 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1646 if (!is_highmem_idx(zone)) 1647 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1648 #endif 1649 } 1650 1651 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1652 static void __meminit init_reserved_page(unsigned long pfn) 1653 { 1654 pg_data_t *pgdat; 1655 int nid, zid; 1656 1657 if (!early_page_uninitialised(pfn)) 1658 return; 1659 1660 nid = early_pfn_to_nid(pfn); 1661 pgdat = NODE_DATA(nid); 1662 1663 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1664 struct zone *zone = &pgdat->node_zones[zid]; 1665 1666 if (zone_spans_pfn(zone, pfn)) 1667 break; 1668 } 1669 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1670 } 1671 #else 1672 static inline void init_reserved_page(unsigned long pfn) 1673 { 1674 } 1675 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1676 1677 /* 1678 * Initialised pages do not have PageReserved set. This function is 1679 * called for each range allocated by the bootmem allocator and 1680 * marks the pages PageReserved. The remaining valid pages are later 1681 * sent to the buddy page allocator. 1682 */ 1683 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1684 { 1685 unsigned long start_pfn = PFN_DOWN(start); 1686 unsigned long end_pfn = PFN_UP(end); 1687 1688 for (; start_pfn < end_pfn; start_pfn++) { 1689 if (pfn_valid(start_pfn)) { 1690 struct page *page = pfn_to_page(start_pfn); 1691 1692 init_reserved_page(start_pfn); 1693 1694 /* Avoid false-positive PageTail() */ 1695 INIT_LIST_HEAD(&page->lru); 1696 1697 /* 1698 * no need for atomic set_bit because the struct 1699 * page is not visible yet so nobody should 1700 * access it yet. 1701 */ 1702 __SetPageReserved(page); 1703 } 1704 } 1705 } 1706 1707 static void __free_pages_ok(struct page *page, unsigned int order, 1708 fpi_t fpi_flags) 1709 { 1710 unsigned long flags; 1711 int migratetype; 1712 unsigned long pfn = page_to_pfn(page); 1713 struct zone *zone = page_zone(page); 1714 1715 if (!free_pages_prepare(page, order, true, fpi_flags)) 1716 return; 1717 1718 migratetype = get_pfnblock_migratetype(page, pfn); 1719 1720 spin_lock_irqsave(&zone->lock, flags); 1721 if (unlikely(has_isolate_pageblock(zone) || 1722 is_migrate_isolate(migratetype))) { 1723 migratetype = get_pfnblock_migratetype(page, pfn); 1724 } 1725 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1726 spin_unlock_irqrestore(&zone->lock, flags); 1727 1728 __count_vm_events(PGFREE, 1 << order); 1729 } 1730 1731 void __free_pages_core(struct page *page, unsigned int order) 1732 { 1733 unsigned int nr_pages = 1 << order; 1734 struct page *p = page; 1735 unsigned int loop; 1736 1737 /* 1738 * When initializing the memmap, __init_single_page() sets the refcount 1739 * of all pages to 1 ("allocated"/"not free"). We have to set the 1740 * refcount of all involved pages to 0. 1741 */ 1742 prefetchw(p); 1743 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1744 prefetchw(p + 1); 1745 __ClearPageReserved(p); 1746 set_page_count(p, 0); 1747 } 1748 __ClearPageReserved(p); 1749 set_page_count(p, 0); 1750 1751 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1752 1753 /* 1754 * Bypass PCP and place fresh pages right to the tail, primarily 1755 * relevant for memory onlining. 1756 */ 1757 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1758 } 1759 1760 #ifdef CONFIG_NUMA 1761 1762 /* 1763 * During memory init memblocks map pfns to nids. The search is expensive and 1764 * this caches recent lookups. The implementation of __early_pfn_to_nid 1765 * treats start/end as pfns. 1766 */ 1767 struct mminit_pfnnid_cache { 1768 unsigned long last_start; 1769 unsigned long last_end; 1770 int last_nid; 1771 }; 1772 1773 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1774 1775 /* 1776 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1777 */ 1778 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1779 struct mminit_pfnnid_cache *state) 1780 { 1781 unsigned long start_pfn, end_pfn; 1782 int nid; 1783 1784 if (state->last_start <= pfn && pfn < state->last_end) 1785 return state->last_nid; 1786 1787 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1788 if (nid != NUMA_NO_NODE) { 1789 state->last_start = start_pfn; 1790 state->last_end = end_pfn; 1791 state->last_nid = nid; 1792 } 1793 1794 return nid; 1795 } 1796 1797 int __meminit early_pfn_to_nid(unsigned long pfn) 1798 { 1799 static DEFINE_SPINLOCK(early_pfn_lock); 1800 int nid; 1801 1802 spin_lock(&early_pfn_lock); 1803 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1804 if (nid < 0) 1805 nid = first_online_node; 1806 spin_unlock(&early_pfn_lock); 1807 1808 return nid; 1809 } 1810 #endif /* CONFIG_NUMA */ 1811 1812 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1813 unsigned int order) 1814 { 1815 if (early_page_uninitialised(pfn)) 1816 return; 1817 if (!kmsan_memblock_free_pages(page, order)) { 1818 /* KMSAN will take care of these pages. */ 1819 return; 1820 } 1821 __free_pages_core(page, order); 1822 } 1823 1824 /* 1825 * Check that the whole (or subset of) a pageblock given by the interval of 1826 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1827 * with the migration of free compaction scanner. 1828 * 1829 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1830 * 1831 * It's possible on some configurations to have a setup like node0 node1 node0 1832 * i.e. it's possible that all pages within a zones range of pages do not 1833 * belong to a single zone. We assume that a border between node0 and node1 1834 * can occur within a single pageblock, but not a node0 node1 node0 1835 * interleaving within a single pageblock. It is therefore sufficient to check 1836 * the first and last page of a pageblock and avoid checking each individual 1837 * page in a pageblock. 1838 */ 1839 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1840 unsigned long end_pfn, struct zone *zone) 1841 { 1842 struct page *start_page; 1843 struct page *end_page; 1844 1845 /* end_pfn is one past the range we are checking */ 1846 end_pfn--; 1847 1848 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1849 return NULL; 1850 1851 start_page = pfn_to_online_page(start_pfn); 1852 if (!start_page) 1853 return NULL; 1854 1855 if (page_zone(start_page) != zone) 1856 return NULL; 1857 1858 end_page = pfn_to_page(end_pfn); 1859 1860 /* This gives a shorter code than deriving page_zone(end_page) */ 1861 if (page_zone_id(start_page) != page_zone_id(end_page)) 1862 return NULL; 1863 1864 return start_page; 1865 } 1866 1867 void set_zone_contiguous(struct zone *zone) 1868 { 1869 unsigned long block_start_pfn = zone->zone_start_pfn; 1870 unsigned long block_end_pfn; 1871 1872 block_end_pfn = pageblock_end_pfn(block_start_pfn); 1873 for (; block_start_pfn < zone_end_pfn(zone); 1874 block_start_pfn = block_end_pfn, 1875 block_end_pfn += pageblock_nr_pages) { 1876 1877 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1878 1879 if (!__pageblock_pfn_to_page(block_start_pfn, 1880 block_end_pfn, zone)) 1881 return; 1882 cond_resched(); 1883 } 1884 1885 /* We confirm that there is no hole */ 1886 zone->contiguous = true; 1887 } 1888 1889 void clear_zone_contiguous(struct zone *zone) 1890 { 1891 zone->contiguous = false; 1892 } 1893 1894 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1895 static void __init deferred_free_range(unsigned long pfn, 1896 unsigned long nr_pages) 1897 { 1898 struct page *page; 1899 unsigned long i; 1900 1901 if (!nr_pages) 1902 return; 1903 1904 page = pfn_to_page(pfn); 1905 1906 /* Free a large naturally-aligned chunk if possible */ 1907 if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) { 1908 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1909 __free_pages_core(page, pageblock_order); 1910 return; 1911 } 1912 1913 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1914 if (pageblock_aligned(pfn)) 1915 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1916 __free_pages_core(page, 0); 1917 } 1918 } 1919 1920 /* Completion tracking for deferred_init_memmap() threads */ 1921 static atomic_t pgdat_init_n_undone __initdata; 1922 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1923 1924 static inline void __init pgdat_init_report_one_done(void) 1925 { 1926 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1927 complete(&pgdat_init_all_done_comp); 1928 } 1929 1930 /* 1931 * Returns true if page needs to be initialized or freed to buddy allocator. 1932 * 1933 * We check if a current large page is valid by only checking the validity 1934 * of the head pfn. 1935 */ 1936 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1937 { 1938 if (pageblock_aligned(pfn) && !pfn_valid(pfn)) 1939 return false; 1940 return true; 1941 } 1942 1943 /* 1944 * Free pages to buddy allocator. Try to free aligned pages in 1945 * pageblock_nr_pages sizes. 1946 */ 1947 static void __init deferred_free_pages(unsigned long pfn, 1948 unsigned long end_pfn) 1949 { 1950 unsigned long nr_free = 0; 1951 1952 for (; pfn < end_pfn; pfn++) { 1953 if (!deferred_pfn_valid(pfn)) { 1954 deferred_free_range(pfn - nr_free, nr_free); 1955 nr_free = 0; 1956 } else if (pageblock_aligned(pfn)) { 1957 deferred_free_range(pfn - nr_free, nr_free); 1958 nr_free = 1; 1959 } else { 1960 nr_free++; 1961 } 1962 } 1963 /* Free the last block of pages to allocator */ 1964 deferred_free_range(pfn - nr_free, nr_free); 1965 } 1966 1967 /* 1968 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1969 * by performing it only once every pageblock_nr_pages. 1970 * Return number of pages initialized. 1971 */ 1972 static unsigned long __init deferred_init_pages(struct zone *zone, 1973 unsigned long pfn, 1974 unsigned long end_pfn) 1975 { 1976 int nid = zone_to_nid(zone); 1977 unsigned long nr_pages = 0; 1978 int zid = zone_idx(zone); 1979 struct page *page = NULL; 1980 1981 for (; pfn < end_pfn; pfn++) { 1982 if (!deferred_pfn_valid(pfn)) { 1983 page = NULL; 1984 continue; 1985 } else if (!page || pageblock_aligned(pfn)) { 1986 page = pfn_to_page(pfn); 1987 } else { 1988 page++; 1989 } 1990 __init_single_page(page, pfn, zid, nid); 1991 nr_pages++; 1992 } 1993 return (nr_pages); 1994 } 1995 1996 /* 1997 * This function is meant to pre-load the iterator for the zone init. 1998 * Specifically it walks through the ranges until we are caught up to the 1999 * first_init_pfn value and exits there. If we never encounter the value we 2000 * return false indicating there are no valid ranges left. 2001 */ 2002 static bool __init 2003 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 2004 unsigned long *spfn, unsigned long *epfn, 2005 unsigned long first_init_pfn) 2006 { 2007 u64 j; 2008 2009 /* 2010 * Start out by walking through the ranges in this zone that have 2011 * already been initialized. We don't need to do anything with them 2012 * so we just need to flush them out of the system. 2013 */ 2014 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 2015 if (*epfn <= first_init_pfn) 2016 continue; 2017 if (*spfn < first_init_pfn) 2018 *spfn = first_init_pfn; 2019 *i = j; 2020 return true; 2021 } 2022 2023 return false; 2024 } 2025 2026 /* 2027 * Initialize and free pages. We do it in two loops: first we initialize 2028 * struct page, then free to buddy allocator, because while we are 2029 * freeing pages we can access pages that are ahead (computing buddy 2030 * page in __free_one_page()). 2031 * 2032 * In order to try and keep some memory in the cache we have the loop 2033 * broken along max page order boundaries. This way we will not cause 2034 * any issues with the buddy page computation. 2035 */ 2036 static unsigned long __init 2037 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 2038 unsigned long *end_pfn) 2039 { 2040 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 2041 unsigned long spfn = *start_pfn, epfn = *end_pfn; 2042 unsigned long nr_pages = 0; 2043 u64 j = *i; 2044 2045 /* First we loop through and initialize the page values */ 2046 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 2047 unsigned long t; 2048 2049 if (mo_pfn <= *start_pfn) 2050 break; 2051 2052 t = min(mo_pfn, *end_pfn); 2053 nr_pages += deferred_init_pages(zone, *start_pfn, t); 2054 2055 if (mo_pfn < *end_pfn) { 2056 *start_pfn = mo_pfn; 2057 break; 2058 } 2059 } 2060 2061 /* Reset values and now loop through freeing pages as needed */ 2062 swap(j, *i); 2063 2064 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 2065 unsigned long t; 2066 2067 if (mo_pfn <= spfn) 2068 break; 2069 2070 t = min(mo_pfn, epfn); 2071 deferred_free_pages(spfn, t); 2072 2073 if (mo_pfn <= epfn) 2074 break; 2075 } 2076 2077 return nr_pages; 2078 } 2079 2080 static void __init 2081 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2082 void *arg) 2083 { 2084 unsigned long spfn, epfn; 2085 struct zone *zone = arg; 2086 u64 i; 2087 2088 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2089 2090 /* 2091 * Initialize and free pages in MAX_ORDER sized increments so that we 2092 * can avoid introducing any issues with the buddy allocator. 2093 */ 2094 while (spfn < end_pfn) { 2095 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2096 cond_resched(); 2097 } 2098 } 2099 2100 /* An arch may override for more concurrency. */ 2101 __weak int __init 2102 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2103 { 2104 return 1; 2105 } 2106 2107 /* Initialise remaining memory on a node */ 2108 static int __init deferred_init_memmap(void *data) 2109 { 2110 pg_data_t *pgdat = data; 2111 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2112 unsigned long spfn = 0, epfn = 0; 2113 unsigned long first_init_pfn, flags; 2114 unsigned long start = jiffies; 2115 struct zone *zone; 2116 int zid, max_threads; 2117 u64 i; 2118 2119 /* Bind memory initialisation thread to a local node if possible */ 2120 if (!cpumask_empty(cpumask)) 2121 set_cpus_allowed_ptr(current, cpumask); 2122 2123 pgdat_resize_lock(pgdat, &flags); 2124 first_init_pfn = pgdat->first_deferred_pfn; 2125 if (first_init_pfn == ULONG_MAX) { 2126 pgdat_resize_unlock(pgdat, &flags); 2127 pgdat_init_report_one_done(); 2128 return 0; 2129 } 2130 2131 /* Sanity check boundaries */ 2132 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2133 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2134 pgdat->first_deferred_pfn = ULONG_MAX; 2135 2136 /* 2137 * Once we unlock here, the zone cannot be grown anymore, thus if an 2138 * interrupt thread must allocate this early in boot, zone must be 2139 * pre-grown prior to start of deferred page initialization. 2140 */ 2141 pgdat_resize_unlock(pgdat, &flags); 2142 2143 /* Only the highest zone is deferred so find it */ 2144 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2145 zone = pgdat->node_zones + zid; 2146 if (first_init_pfn < zone_end_pfn(zone)) 2147 break; 2148 } 2149 2150 /* If the zone is empty somebody else may have cleared out the zone */ 2151 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2152 first_init_pfn)) 2153 goto zone_empty; 2154 2155 max_threads = deferred_page_init_max_threads(cpumask); 2156 2157 while (spfn < epfn) { 2158 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2159 struct padata_mt_job job = { 2160 .thread_fn = deferred_init_memmap_chunk, 2161 .fn_arg = zone, 2162 .start = spfn, 2163 .size = epfn_align - spfn, 2164 .align = PAGES_PER_SECTION, 2165 .min_chunk = PAGES_PER_SECTION, 2166 .max_threads = max_threads, 2167 }; 2168 2169 padata_do_multithreaded(&job); 2170 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2171 epfn_align); 2172 } 2173 zone_empty: 2174 /* Sanity check that the next zone really is unpopulated */ 2175 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2176 2177 pr_info("node %d deferred pages initialised in %ums\n", 2178 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2179 2180 pgdat_init_report_one_done(); 2181 return 0; 2182 } 2183 2184 /* 2185 * If this zone has deferred pages, try to grow it by initializing enough 2186 * deferred pages to satisfy the allocation specified by order, rounded up to 2187 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2188 * of SECTION_SIZE bytes by initializing struct pages in increments of 2189 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2190 * 2191 * Return true when zone was grown, otherwise return false. We return true even 2192 * when we grow less than requested, to let the caller decide if there are 2193 * enough pages to satisfy the allocation. 2194 * 2195 * Note: We use noinline because this function is needed only during boot, and 2196 * it is called from a __ref function _deferred_grow_zone. This way we are 2197 * making sure that it is not inlined into permanent text section. 2198 */ 2199 static noinline bool __init 2200 deferred_grow_zone(struct zone *zone, unsigned int order) 2201 { 2202 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2203 pg_data_t *pgdat = zone->zone_pgdat; 2204 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2205 unsigned long spfn, epfn, flags; 2206 unsigned long nr_pages = 0; 2207 u64 i; 2208 2209 /* Only the last zone may have deferred pages */ 2210 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2211 return false; 2212 2213 pgdat_resize_lock(pgdat, &flags); 2214 2215 /* 2216 * If someone grew this zone while we were waiting for spinlock, return 2217 * true, as there might be enough pages already. 2218 */ 2219 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2220 pgdat_resize_unlock(pgdat, &flags); 2221 return true; 2222 } 2223 2224 /* If the zone is empty somebody else may have cleared out the zone */ 2225 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2226 first_deferred_pfn)) { 2227 pgdat->first_deferred_pfn = ULONG_MAX; 2228 pgdat_resize_unlock(pgdat, &flags); 2229 /* Retry only once. */ 2230 return first_deferred_pfn != ULONG_MAX; 2231 } 2232 2233 /* 2234 * Initialize and free pages in MAX_ORDER sized increments so 2235 * that we can avoid introducing any issues with the buddy 2236 * allocator. 2237 */ 2238 while (spfn < epfn) { 2239 /* update our first deferred PFN for this section */ 2240 first_deferred_pfn = spfn; 2241 2242 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2243 touch_nmi_watchdog(); 2244 2245 /* We should only stop along section boundaries */ 2246 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2247 continue; 2248 2249 /* If our quota has been met we can stop here */ 2250 if (nr_pages >= nr_pages_needed) 2251 break; 2252 } 2253 2254 pgdat->first_deferred_pfn = spfn; 2255 pgdat_resize_unlock(pgdat, &flags); 2256 2257 return nr_pages > 0; 2258 } 2259 2260 /* 2261 * deferred_grow_zone() is __init, but it is called from 2262 * get_page_from_freelist() during early boot until deferred_pages permanently 2263 * disables this call. This is why we have refdata wrapper to avoid warning, 2264 * and to ensure that the function body gets unloaded. 2265 */ 2266 static bool __ref 2267 _deferred_grow_zone(struct zone *zone, unsigned int order) 2268 { 2269 return deferred_grow_zone(zone, order); 2270 } 2271 2272 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2273 2274 void __init page_alloc_init_late(void) 2275 { 2276 struct zone *zone; 2277 int nid; 2278 2279 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2280 2281 /* There will be num_node_state(N_MEMORY) threads */ 2282 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2283 for_each_node_state(nid, N_MEMORY) { 2284 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2285 } 2286 2287 /* Block until all are initialised */ 2288 wait_for_completion(&pgdat_init_all_done_comp); 2289 2290 /* 2291 * We initialized the rest of the deferred pages. Permanently disable 2292 * on-demand struct page initialization. 2293 */ 2294 static_branch_disable(&deferred_pages); 2295 2296 /* Reinit limits that are based on free pages after the kernel is up */ 2297 files_maxfiles_init(); 2298 #endif 2299 2300 buffer_init(); 2301 2302 /* Discard memblock private memory */ 2303 memblock_discard(); 2304 2305 for_each_node_state(nid, N_MEMORY) 2306 shuffle_free_memory(NODE_DATA(nid)); 2307 2308 for_each_populated_zone(zone) 2309 set_zone_contiguous(zone); 2310 } 2311 2312 #ifdef CONFIG_CMA 2313 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2314 void __init init_cma_reserved_pageblock(struct page *page) 2315 { 2316 unsigned i = pageblock_nr_pages; 2317 struct page *p = page; 2318 2319 do { 2320 __ClearPageReserved(p); 2321 set_page_count(p, 0); 2322 } while (++p, --i); 2323 2324 set_pageblock_migratetype(page, MIGRATE_CMA); 2325 set_page_refcounted(page); 2326 __free_pages(page, pageblock_order); 2327 2328 adjust_managed_page_count(page, pageblock_nr_pages); 2329 page_zone(page)->cma_pages += pageblock_nr_pages; 2330 } 2331 #endif 2332 2333 /* 2334 * The order of subdivision here is critical for the IO subsystem. 2335 * Please do not alter this order without good reasons and regression 2336 * testing. Specifically, as large blocks of memory are subdivided, 2337 * the order in which smaller blocks are delivered depends on the order 2338 * they're subdivided in this function. This is the primary factor 2339 * influencing the order in which pages are delivered to the IO 2340 * subsystem according to empirical testing, and this is also justified 2341 * by considering the behavior of a buddy system containing a single 2342 * large block of memory acted on by a series of small allocations. 2343 * This behavior is a critical factor in sglist merging's success. 2344 * 2345 * -- nyc 2346 */ 2347 static inline void expand(struct zone *zone, struct page *page, 2348 int low, int high, int migratetype) 2349 { 2350 unsigned long size = 1 << high; 2351 2352 while (high > low) { 2353 high--; 2354 size >>= 1; 2355 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2356 2357 /* 2358 * Mark as guard pages (or page), that will allow to 2359 * merge back to allocator when buddy will be freed. 2360 * Corresponding page table entries will not be touched, 2361 * pages will stay not present in virtual address space 2362 */ 2363 if (set_page_guard(zone, &page[size], high, migratetype)) 2364 continue; 2365 2366 add_to_free_list(&page[size], zone, high, migratetype); 2367 set_buddy_order(&page[size], high); 2368 } 2369 } 2370 2371 static void check_new_page_bad(struct page *page) 2372 { 2373 if (unlikely(page->flags & __PG_HWPOISON)) { 2374 /* Don't complain about hwpoisoned pages */ 2375 page_mapcount_reset(page); /* remove PageBuddy */ 2376 return; 2377 } 2378 2379 bad_page(page, 2380 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2381 } 2382 2383 /* 2384 * This page is about to be returned from the page allocator 2385 */ 2386 static inline int check_new_page(struct page *page) 2387 { 2388 if (likely(page_expected_state(page, 2389 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2390 return 0; 2391 2392 check_new_page_bad(page); 2393 return 1; 2394 } 2395 2396 static bool check_new_pages(struct page *page, unsigned int order) 2397 { 2398 int i; 2399 for (i = 0; i < (1 << order); i++) { 2400 struct page *p = page + i; 2401 2402 if (unlikely(check_new_page(p))) 2403 return true; 2404 } 2405 2406 return false; 2407 } 2408 2409 #ifdef CONFIG_DEBUG_VM 2410 /* 2411 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2412 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2413 * also checked when pcp lists are refilled from the free lists. 2414 */ 2415 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2416 { 2417 if (debug_pagealloc_enabled_static()) 2418 return check_new_pages(page, order); 2419 else 2420 return false; 2421 } 2422 2423 static inline bool check_new_pcp(struct page *page, unsigned int order) 2424 { 2425 return check_new_pages(page, order); 2426 } 2427 #else 2428 /* 2429 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2430 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2431 * enabled, they are also checked when being allocated from the pcp lists. 2432 */ 2433 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2434 { 2435 return check_new_pages(page, order); 2436 } 2437 static inline bool check_new_pcp(struct page *page, unsigned int order) 2438 { 2439 if (debug_pagealloc_enabled_static()) 2440 return check_new_pages(page, order); 2441 else 2442 return false; 2443 } 2444 #endif /* CONFIG_DEBUG_VM */ 2445 2446 static inline bool should_skip_kasan_unpoison(gfp_t flags) 2447 { 2448 /* Don't skip if a software KASAN mode is enabled. */ 2449 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 2450 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 2451 return false; 2452 2453 /* Skip, if hardware tag-based KASAN is not enabled. */ 2454 if (!kasan_hw_tags_enabled()) 2455 return true; 2456 2457 /* 2458 * With hardware tag-based KASAN enabled, skip if this has been 2459 * requested via __GFP_SKIP_KASAN_UNPOISON. 2460 */ 2461 return flags & __GFP_SKIP_KASAN_UNPOISON; 2462 } 2463 2464 static inline bool should_skip_init(gfp_t flags) 2465 { 2466 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 2467 if (!kasan_hw_tags_enabled()) 2468 return false; 2469 2470 /* For hardware tag-based KASAN, skip if requested. */ 2471 return (flags & __GFP_SKIP_ZERO); 2472 } 2473 2474 inline void post_alloc_hook(struct page *page, unsigned int order, 2475 gfp_t gfp_flags) 2476 { 2477 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 2478 !should_skip_init(gfp_flags); 2479 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS); 2480 int i; 2481 2482 set_page_private(page, 0); 2483 set_page_refcounted(page); 2484 2485 arch_alloc_page(page, order); 2486 debug_pagealloc_map_pages(page, 1 << order); 2487 2488 /* 2489 * Page unpoisoning must happen before memory initialization. 2490 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2491 * allocations and the page unpoisoning code will complain. 2492 */ 2493 kernel_unpoison_pages(page, 1 << order); 2494 2495 /* 2496 * As memory initialization might be integrated into KASAN, 2497 * KASAN unpoisoning and memory initializion code must be 2498 * kept together to avoid discrepancies in behavior. 2499 */ 2500 2501 /* 2502 * If memory tags should be zeroed (which happens only when memory 2503 * should be initialized as well). 2504 */ 2505 if (init_tags) { 2506 /* Initialize both memory and tags. */ 2507 for (i = 0; i != 1 << order; ++i) 2508 tag_clear_highpage(page + i); 2509 2510 /* Note that memory is already initialized by the loop above. */ 2511 init = false; 2512 } 2513 if (!should_skip_kasan_unpoison(gfp_flags)) { 2514 /* Unpoison shadow memory or set memory tags. */ 2515 kasan_unpoison_pages(page, order, init); 2516 2517 /* Note that memory is already initialized by KASAN. */ 2518 if (kasan_has_integrated_init()) 2519 init = false; 2520 } else { 2521 /* Ensure page_address() dereferencing does not fault. */ 2522 for (i = 0; i != 1 << order; ++i) 2523 page_kasan_tag_reset(page + i); 2524 } 2525 /* If memory is still not initialized, do it now. */ 2526 if (init) 2527 kernel_init_pages(page, 1 << order); 2528 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */ 2529 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON)) 2530 SetPageSkipKASanPoison(page); 2531 2532 set_page_owner(page, order, gfp_flags); 2533 page_table_check_alloc(page, order); 2534 } 2535 2536 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2537 unsigned int alloc_flags) 2538 { 2539 post_alloc_hook(page, order, gfp_flags); 2540 2541 if (order && (gfp_flags & __GFP_COMP)) 2542 prep_compound_page(page, order); 2543 2544 /* 2545 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2546 * allocate the page. The expectation is that the caller is taking 2547 * steps that will free more memory. The caller should avoid the page 2548 * being used for !PFMEMALLOC purposes. 2549 */ 2550 if (alloc_flags & ALLOC_NO_WATERMARKS) 2551 set_page_pfmemalloc(page); 2552 else 2553 clear_page_pfmemalloc(page); 2554 } 2555 2556 /* 2557 * Go through the free lists for the given migratetype and remove 2558 * the smallest available page from the freelists 2559 */ 2560 static __always_inline 2561 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2562 int migratetype) 2563 { 2564 unsigned int current_order; 2565 struct free_area *area; 2566 struct page *page; 2567 2568 /* Find a page of the appropriate size in the preferred list */ 2569 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2570 area = &(zone->free_area[current_order]); 2571 page = get_page_from_free_area(area, migratetype); 2572 if (!page) 2573 continue; 2574 del_page_from_free_list(page, zone, current_order); 2575 expand(zone, page, order, current_order, migratetype); 2576 set_pcppage_migratetype(page, migratetype); 2577 trace_mm_page_alloc_zone_locked(page, order, migratetype, 2578 pcp_allowed_order(order) && 2579 migratetype < MIGRATE_PCPTYPES); 2580 return page; 2581 } 2582 2583 return NULL; 2584 } 2585 2586 2587 /* 2588 * This array describes the order lists are fallen back to when 2589 * the free lists for the desirable migrate type are depleted 2590 * 2591 * The other migratetypes do not have fallbacks. 2592 */ 2593 static int fallbacks[MIGRATE_TYPES][3] = { 2594 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2595 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2596 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2597 }; 2598 2599 #ifdef CONFIG_CMA 2600 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2601 unsigned int order) 2602 { 2603 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2604 } 2605 #else 2606 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2607 unsigned int order) { return NULL; } 2608 #endif 2609 2610 /* 2611 * Move the free pages in a range to the freelist tail of the requested type. 2612 * Note that start_page and end_pages are not aligned on a pageblock 2613 * boundary. If alignment is required, use move_freepages_block() 2614 */ 2615 static int move_freepages(struct zone *zone, 2616 unsigned long start_pfn, unsigned long end_pfn, 2617 int migratetype, int *num_movable) 2618 { 2619 struct page *page; 2620 unsigned long pfn; 2621 unsigned int order; 2622 int pages_moved = 0; 2623 2624 for (pfn = start_pfn; pfn <= end_pfn;) { 2625 page = pfn_to_page(pfn); 2626 if (!PageBuddy(page)) { 2627 /* 2628 * We assume that pages that could be isolated for 2629 * migration are movable. But we don't actually try 2630 * isolating, as that would be expensive. 2631 */ 2632 if (num_movable && 2633 (PageLRU(page) || __PageMovable(page))) 2634 (*num_movable)++; 2635 pfn++; 2636 continue; 2637 } 2638 2639 /* Make sure we are not inadvertently changing nodes */ 2640 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2641 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2642 2643 order = buddy_order(page); 2644 move_to_free_list(page, zone, order, migratetype); 2645 pfn += 1 << order; 2646 pages_moved += 1 << order; 2647 } 2648 2649 return pages_moved; 2650 } 2651 2652 int move_freepages_block(struct zone *zone, struct page *page, 2653 int migratetype, int *num_movable) 2654 { 2655 unsigned long start_pfn, end_pfn, pfn; 2656 2657 if (num_movable) 2658 *num_movable = 0; 2659 2660 pfn = page_to_pfn(page); 2661 start_pfn = pageblock_start_pfn(pfn); 2662 end_pfn = pageblock_end_pfn(pfn) - 1; 2663 2664 /* Do not cross zone boundaries */ 2665 if (!zone_spans_pfn(zone, start_pfn)) 2666 start_pfn = pfn; 2667 if (!zone_spans_pfn(zone, end_pfn)) 2668 return 0; 2669 2670 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2671 num_movable); 2672 } 2673 2674 static void change_pageblock_range(struct page *pageblock_page, 2675 int start_order, int migratetype) 2676 { 2677 int nr_pageblocks = 1 << (start_order - pageblock_order); 2678 2679 while (nr_pageblocks--) { 2680 set_pageblock_migratetype(pageblock_page, migratetype); 2681 pageblock_page += pageblock_nr_pages; 2682 } 2683 } 2684 2685 /* 2686 * When we are falling back to another migratetype during allocation, try to 2687 * steal extra free pages from the same pageblocks to satisfy further 2688 * allocations, instead of polluting multiple pageblocks. 2689 * 2690 * If we are stealing a relatively large buddy page, it is likely there will 2691 * be more free pages in the pageblock, so try to steal them all. For 2692 * reclaimable and unmovable allocations, we steal regardless of page size, 2693 * as fragmentation caused by those allocations polluting movable pageblocks 2694 * is worse than movable allocations stealing from unmovable and reclaimable 2695 * pageblocks. 2696 */ 2697 static bool can_steal_fallback(unsigned int order, int start_mt) 2698 { 2699 /* 2700 * Leaving this order check is intended, although there is 2701 * relaxed order check in next check. The reason is that 2702 * we can actually steal whole pageblock if this condition met, 2703 * but, below check doesn't guarantee it and that is just heuristic 2704 * so could be changed anytime. 2705 */ 2706 if (order >= pageblock_order) 2707 return true; 2708 2709 if (order >= pageblock_order / 2 || 2710 start_mt == MIGRATE_RECLAIMABLE || 2711 start_mt == MIGRATE_UNMOVABLE || 2712 page_group_by_mobility_disabled) 2713 return true; 2714 2715 return false; 2716 } 2717 2718 static inline bool boost_watermark(struct zone *zone) 2719 { 2720 unsigned long max_boost; 2721 2722 if (!watermark_boost_factor) 2723 return false; 2724 /* 2725 * Don't bother in zones that are unlikely to produce results. 2726 * On small machines, including kdump capture kernels running 2727 * in a small area, boosting the watermark can cause an out of 2728 * memory situation immediately. 2729 */ 2730 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2731 return false; 2732 2733 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2734 watermark_boost_factor, 10000); 2735 2736 /* 2737 * high watermark may be uninitialised if fragmentation occurs 2738 * very early in boot so do not boost. We do not fall 2739 * through and boost by pageblock_nr_pages as failing 2740 * allocations that early means that reclaim is not going 2741 * to help and it may even be impossible to reclaim the 2742 * boosted watermark resulting in a hang. 2743 */ 2744 if (!max_boost) 2745 return false; 2746 2747 max_boost = max(pageblock_nr_pages, max_boost); 2748 2749 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2750 max_boost); 2751 2752 return true; 2753 } 2754 2755 /* 2756 * This function implements actual steal behaviour. If order is large enough, 2757 * we can steal whole pageblock. If not, we first move freepages in this 2758 * pageblock to our migratetype and determine how many already-allocated pages 2759 * are there in the pageblock with a compatible migratetype. If at least half 2760 * of pages are free or compatible, we can change migratetype of the pageblock 2761 * itself, so pages freed in the future will be put on the correct free list. 2762 */ 2763 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2764 unsigned int alloc_flags, int start_type, bool whole_block) 2765 { 2766 unsigned int current_order = buddy_order(page); 2767 int free_pages, movable_pages, alike_pages; 2768 int old_block_type; 2769 2770 old_block_type = get_pageblock_migratetype(page); 2771 2772 /* 2773 * This can happen due to races and we want to prevent broken 2774 * highatomic accounting. 2775 */ 2776 if (is_migrate_highatomic(old_block_type)) 2777 goto single_page; 2778 2779 /* Take ownership for orders >= pageblock_order */ 2780 if (current_order >= pageblock_order) { 2781 change_pageblock_range(page, current_order, start_type); 2782 goto single_page; 2783 } 2784 2785 /* 2786 * Boost watermarks to increase reclaim pressure to reduce the 2787 * likelihood of future fallbacks. Wake kswapd now as the node 2788 * may be balanced overall and kswapd will not wake naturally. 2789 */ 2790 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2791 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2792 2793 /* We are not allowed to try stealing from the whole block */ 2794 if (!whole_block) 2795 goto single_page; 2796 2797 free_pages = move_freepages_block(zone, page, start_type, 2798 &movable_pages); 2799 /* 2800 * Determine how many pages are compatible with our allocation. 2801 * For movable allocation, it's the number of movable pages which 2802 * we just obtained. For other types it's a bit more tricky. 2803 */ 2804 if (start_type == MIGRATE_MOVABLE) { 2805 alike_pages = movable_pages; 2806 } else { 2807 /* 2808 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2809 * to MOVABLE pageblock, consider all non-movable pages as 2810 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2811 * vice versa, be conservative since we can't distinguish the 2812 * exact migratetype of non-movable pages. 2813 */ 2814 if (old_block_type == MIGRATE_MOVABLE) 2815 alike_pages = pageblock_nr_pages 2816 - (free_pages + movable_pages); 2817 else 2818 alike_pages = 0; 2819 } 2820 2821 /* moving whole block can fail due to zone boundary conditions */ 2822 if (!free_pages) 2823 goto single_page; 2824 2825 /* 2826 * If a sufficient number of pages in the block are either free or of 2827 * comparable migratability as our allocation, claim the whole block. 2828 */ 2829 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2830 page_group_by_mobility_disabled) 2831 set_pageblock_migratetype(page, start_type); 2832 2833 return; 2834 2835 single_page: 2836 move_to_free_list(page, zone, current_order, start_type); 2837 } 2838 2839 /* 2840 * Check whether there is a suitable fallback freepage with requested order. 2841 * If only_stealable is true, this function returns fallback_mt only if 2842 * we can steal other freepages all together. This would help to reduce 2843 * fragmentation due to mixed migratetype pages in one pageblock. 2844 */ 2845 int find_suitable_fallback(struct free_area *area, unsigned int order, 2846 int migratetype, bool only_stealable, bool *can_steal) 2847 { 2848 int i; 2849 int fallback_mt; 2850 2851 if (area->nr_free == 0) 2852 return -1; 2853 2854 *can_steal = false; 2855 for (i = 0;; i++) { 2856 fallback_mt = fallbacks[migratetype][i]; 2857 if (fallback_mt == MIGRATE_TYPES) 2858 break; 2859 2860 if (free_area_empty(area, fallback_mt)) 2861 continue; 2862 2863 if (can_steal_fallback(order, migratetype)) 2864 *can_steal = true; 2865 2866 if (!only_stealable) 2867 return fallback_mt; 2868 2869 if (*can_steal) 2870 return fallback_mt; 2871 } 2872 2873 return -1; 2874 } 2875 2876 /* 2877 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2878 * there are no empty page blocks that contain a page with a suitable order 2879 */ 2880 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2881 unsigned int alloc_order) 2882 { 2883 int mt; 2884 unsigned long max_managed, flags; 2885 2886 /* 2887 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2888 * Check is race-prone but harmless. 2889 */ 2890 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2891 if (zone->nr_reserved_highatomic >= max_managed) 2892 return; 2893 2894 spin_lock_irqsave(&zone->lock, flags); 2895 2896 /* Recheck the nr_reserved_highatomic limit under the lock */ 2897 if (zone->nr_reserved_highatomic >= max_managed) 2898 goto out_unlock; 2899 2900 /* Yoink! */ 2901 mt = get_pageblock_migratetype(page); 2902 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 2903 if (migratetype_is_mergeable(mt)) { 2904 zone->nr_reserved_highatomic += pageblock_nr_pages; 2905 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2906 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2907 } 2908 2909 out_unlock: 2910 spin_unlock_irqrestore(&zone->lock, flags); 2911 } 2912 2913 /* 2914 * Used when an allocation is about to fail under memory pressure. This 2915 * potentially hurts the reliability of high-order allocations when under 2916 * intense memory pressure but failed atomic allocations should be easier 2917 * to recover from than an OOM. 2918 * 2919 * If @force is true, try to unreserve a pageblock even though highatomic 2920 * pageblock is exhausted. 2921 */ 2922 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2923 bool force) 2924 { 2925 struct zonelist *zonelist = ac->zonelist; 2926 unsigned long flags; 2927 struct zoneref *z; 2928 struct zone *zone; 2929 struct page *page; 2930 int order; 2931 bool ret; 2932 2933 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2934 ac->nodemask) { 2935 /* 2936 * Preserve at least one pageblock unless memory pressure 2937 * is really high. 2938 */ 2939 if (!force && zone->nr_reserved_highatomic <= 2940 pageblock_nr_pages) 2941 continue; 2942 2943 spin_lock_irqsave(&zone->lock, flags); 2944 for (order = 0; order < MAX_ORDER; order++) { 2945 struct free_area *area = &(zone->free_area[order]); 2946 2947 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2948 if (!page) 2949 continue; 2950 2951 /* 2952 * In page freeing path, migratetype change is racy so 2953 * we can counter several free pages in a pageblock 2954 * in this loop although we changed the pageblock type 2955 * from highatomic to ac->migratetype. So we should 2956 * adjust the count once. 2957 */ 2958 if (is_migrate_highatomic_page(page)) { 2959 /* 2960 * It should never happen but changes to 2961 * locking could inadvertently allow a per-cpu 2962 * drain to add pages to MIGRATE_HIGHATOMIC 2963 * while unreserving so be safe and watch for 2964 * underflows. 2965 */ 2966 zone->nr_reserved_highatomic -= min( 2967 pageblock_nr_pages, 2968 zone->nr_reserved_highatomic); 2969 } 2970 2971 /* 2972 * Convert to ac->migratetype and avoid the normal 2973 * pageblock stealing heuristics. Minimally, the caller 2974 * is doing the work and needs the pages. More 2975 * importantly, if the block was always converted to 2976 * MIGRATE_UNMOVABLE or another type then the number 2977 * of pageblocks that cannot be completely freed 2978 * may increase. 2979 */ 2980 set_pageblock_migratetype(page, ac->migratetype); 2981 ret = move_freepages_block(zone, page, ac->migratetype, 2982 NULL); 2983 if (ret) { 2984 spin_unlock_irqrestore(&zone->lock, flags); 2985 return ret; 2986 } 2987 } 2988 spin_unlock_irqrestore(&zone->lock, flags); 2989 } 2990 2991 return false; 2992 } 2993 2994 /* 2995 * Try finding a free buddy page on the fallback list and put it on the free 2996 * list of requested migratetype, possibly along with other pages from the same 2997 * block, depending on fragmentation avoidance heuristics. Returns true if 2998 * fallback was found so that __rmqueue_smallest() can grab it. 2999 * 3000 * The use of signed ints for order and current_order is a deliberate 3001 * deviation from the rest of this file, to make the for loop 3002 * condition simpler. 3003 */ 3004 static __always_inline bool 3005 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 3006 unsigned int alloc_flags) 3007 { 3008 struct free_area *area; 3009 int current_order; 3010 int min_order = order; 3011 struct page *page; 3012 int fallback_mt; 3013 bool can_steal; 3014 3015 /* 3016 * Do not steal pages from freelists belonging to other pageblocks 3017 * i.e. orders < pageblock_order. If there are no local zones free, 3018 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 3019 */ 3020 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 3021 min_order = pageblock_order; 3022 3023 /* 3024 * Find the largest available free page in the other list. This roughly 3025 * approximates finding the pageblock with the most free pages, which 3026 * would be too costly to do exactly. 3027 */ 3028 for (current_order = MAX_ORDER - 1; current_order >= min_order; 3029 --current_order) { 3030 area = &(zone->free_area[current_order]); 3031 fallback_mt = find_suitable_fallback(area, current_order, 3032 start_migratetype, false, &can_steal); 3033 if (fallback_mt == -1) 3034 continue; 3035 3036 /* 3037 * We cannot steal all free pages from the pageblock and the 3038 * requested migratetype is movable. In that case it's better to 3039 * steal and split the smallest available page instead of the 3040 * largest available page, because even if the next movable 3041 * allocation falls back into a different pageblock than this 3042 * one, it won't cause permanent fragmentation. 3043 */ 3044 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 3045 && current_order > order) 3046 goto find_smallest; 3047 3048 goto do_steal; 3049 } 3050 3051 return false; 3052 3053 find_smallest: 3054 for (current_order = order; current_order < MAX_ORDER; 3055 current_order++) { 3056 area = &(zone->free_area[current_order]); 3057 fallback_mt = find_suitable_fallback(area, current_order, 3058 start_migratetype, false, &can_steal); 3059 if (fallback_mt != -1) 3060 break; 3061 } 3062 3063 /* 3064 * This should not happen - we already found a suitable fallback 3065 * when looking for the largest page. 3066 */ 3067 VM_BUG_ON(current_order == MAX_ORDER); 3068 3069 do_steal: 3070 page = get_page_from_free_area(area, fallback_mt); 3071 3072 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 3073 can_steal); 3074 3075 trace_mm_page_alloc_extfrag(page, order, current_order, 3076 start_migratetype, fallback_mt); 3077 3078 return true; 3079 3080 } 3081 3082 /* 3083 * Do the hard work of removing an element from the buddy allocator. 3084 * Call me with the zone->lock already held. 3085 */ 3086 static __always_inline struct page * 3087 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 3088 unsigned int alloc_flags) 3089 { 3090 struct page *page; 3091 3092 if (IS_ENABLED(CONFIG_CMA)) { 3093 /* 3094 * Balance movable allocations between regular and CMA areas by 3095 * allocating from CMA when over half of the zone's free memory 3096 * is in the CMA area. 3097 */ 3098 if (alloc_flags & ALLOC_CMA && 3099 zone_page_state(zone, NR_FREE_CMA_PAGES) > 3100 zone_page_state(zone, NR_FREE_PAGES) / 2) { 3101 page = __rmqueue_cma_fallback(zone, order); 3102 if (page) 3103 return page; 3104 } 3105 } 3106 retry: 3107 page = __rmqueue_smallest(zone, order, migratetype); 3108 if (unlikely(!page)) { 3109 if (alloc_flags & ALLOC_CMA) 3110 page = __rmqueue_cma_fallback(zone, order); 3111 3112 if (!page && __rmqueue_fallback(zone, order, migratetype, 3113 alloc_flags)) 3114 goto retry; 3115 } 3116 return page; 3117 } 3118 3119 /* 3120 * Obtain a specified number of elements from the buddy allocator, all under 3121 * a single hold of the lock, for efficiency. Add them to the supplied list. 3122 * Returns the number of new pages which were placed at *list. 3123 */ 3124 static int rmqueue_bulk(struct zone *zone, unsigned int order, 3125 unsigned long count, struct list_head *list, 3126 int migratetype, unsigned int alloc_flags) 3127 { 3128 int i, allocated = 0; 3129 3130 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */ 3131 spin_lock(&zone->lock); 3132 for (i = 0; i < count; ++i) { 3133 struct page *page = __rmqueue(zone, order, migratetype, 3134 alloc_flags); 3135 if (unlikely(page == NULL)) 3136 break; 3137 3138 if (unlikely(check_pcp_refill(page, order))) 3139 continue; 3140 3141 /* 3142 * Split buddy pages returned by expand() are received here in 3143 * physical page order. The page is added to the tail of 3144 * caller's list. From the callers perspective, the linked list 3145 * is ordered by page number under some conditions. This is 3146 * useful for IO devices that can forward direction from the 3147 * head, thus also in the physical page order. This is useful 3148 * for IO devices that can merge IO requests if the physical 3149 * pages are ordered properly. 3150 */ 3151 list_add_tail(&page->pcp_list, list); 3152 allocated++; 3153 if (is_migrate_cma(get_pcppage_migratetype(page))) 3154 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 3155 -(1 << order)); 3156 } 3157 3158 /* 3159 * i pages were removed from the buddy list even if some leak due 3160 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 3161 * on i. Do not confuse with 'allocated' which is the number of 3162 * pages added to the pcp list. 3163 */ 3164 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 3165 spin_unlock(&zone->lock); 3166 return allocated; 3167 } 3168 3169 #ifdef CONFIG_NUMA 3170 /* 3171 * Called from the vmstat counter updater to drain pagesets of this 3172 * currently executing processor on remote nodes after they have 3173 * expired. 3174 */ 3175 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3176 { 3177 int to_drain, batch; 3178 3179 batch = READ_ONCE(pcp->batch); 3180 to_drain = min(pcp->count, batch); 3181 if (to_drain > 0) { 3182 unsigned long flags; 3183 3184 /* 3185 * free_pcppages_bulk expects IRQs disabled for zone->lock 3186 * so even though pcp->lock is not intended to be IRQ-safe, 3187 * it's needed in this context. 3188 */ 3189 spin_lock_irqsave(&pcp->lock, flags); 3190 free_pcppages_bulk(zone, to_drain, pcp, 0); 3191 spin_unlock_irqrestore(&pcp->lock, flags); 3192 } 3193 } 3194 #endif 3195 3196 /* 3197 * Drain pcplists of the indicated processor and zone. 3198 */ 3199 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3200 { 3201 struct per_cpu_pages *pcp; 3202 3203 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3204 if (pcp->count) { 3205 unsigned long flags; 3206 3207 /* See drain_zone_pages on why this is disabling IRQs */ 3208 spin_lock_irqsave(&pcp->lock, flags); 3209 free_pcppages_bulk(zone, pcp->count, pcp, 0); 3210 spin_unlock_irqrestore(&pcp->lock, flags); 3211 } 3212 } 3213 3214 /* 3215 * Drain pcplists of all zones on the indicated processor. 3216 */ 3217 static void drain_pages(unsigned int cpu) 3218 { 3219 struct zone *zone; 3220 3221 for_each_populated_zone(zone) { 3222 drain_pages_zone(cpu, zone); 3223 } 3224 } 3225 3226 /* 3227 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3228 */ 3229 void drain_local_pages(struct zone *zone) 3230 { 3231 int cpu = smp_processor_id(); 3232 3233 if (zone) 3234 drain_pages_zone(cpu, zone); 3235 else 3236 drain_pages(cpu); 3237 } 3238 3239 /* 3240 * The implementation of drain_all_pages(), exposing an extra parameter to 3241 * drain on all cpus. 3242 * 3243 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3244 * not empty. The check for non-emptiness can however race with a free to 3245 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3246 * that need the guarantee that every CPU has drained can disable the 3247 * optimizing racy check. 3248 */ 3249 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3250 { 3251 int cpu; 3252 3253 /* 3254 * Allocate in the BSS so we won't require allocation in 3255 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3256 */ 3257 static cpumask_t cpus_with_pcps; 3258 3259 /* 3260 * Do not drain if one is already in progress unless it's specific to 3261 * a zone. Such callers are primarily CMA and memory hotplug and need 3262 * the drain to be complete when the call returns. 3263 */ 3264 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3265 if (!zone) 3266 return; 3267 mutex_lock(&pcpu_drain_mutex); 3268 } 3269 3270 /* 3271 * We don't care about racing with CPU hotplug event 3272 * as offline notification will cause the notified 3273 * cpu to drain that CPU pcps and on_each_cpu_mask 3274 * disables preemption as part of its processing 3275 */ 3276 for_each_online_cpu(cpu) { 3277 struct per_cpu_pages *pcp; 3278 struct zone *z; 3279 bool has_pcps = false; 3280 3281 if (force_all_cpus) { 3282 /* 3283 * The pcp.count check is racy, some callers need a 3284 * guarantee that no cpu is missed. 3285 */ 3286 has_pcps = true; 3287 } else if (zone) { 3288 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3289 if (pcp->count) 3290 has_pcps = true; 3291 } else { 3292 for_each_populated_zone(z) { 3293 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 3294 if (pcp->count) { 3295 has_pcps = true; 3296 break; 3297 } 3298 } 3299 } 3300 3301 if (has_pcps) 3302 cpumask_set_cpu(cpu, &cpus_with_pcps); 3303 else 3304 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3305 } 3306 3307 for_each_cpu(cpu, &cpus_with_pcps) { 3308 if (zone) 3309 drain_pages_zone(cpu, zone); 3310 else 3311 drain_pages(cpu); 3312 } 3313 3314 mutex_unlock(&pcpu_drain_mutex); 3315 } 3316 3317 /* 3318 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3319 * 3320 * When zone parameter is non-NULL, spill just the single zone's pages. 3321 */ 3322 void drain_all_pages(struct zone *zone) 3323 { 3324 __drain_all_pages(zone, false); 3325 } 3326 3327 #ifdef CONFIG_HIBERNATION 3328 3329 /* 3330 * Touch the watchdog for every WD_PAGE_COUNT pages. 3331 */ 3332 #define WD_PAGE_COUNT (128*1024) 3333 3334 void mark_free_pages(struct zone *zone) 3335 { 3336 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3337 unsigned long flags; 3338 unsigned int order, t; 3339 struct page *page; 3340 3341 if (zone_is_empty(zone)) 3342 return; 3343 3344 spin_lock_irqsave(&zone->lock, flags); 3345 3346 max_zone_pfn = zone_end_pfn(zone); 3347 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3348 if (pfn_valid(pfn)) { 3349 page = pfn_to_page(pfn); 3350 3351 if (!--page_count) { 3352 touch_nmi_watchdog(); 3353 page_count = WD_PAGE_COUNT; 3354 } 3355 3356 if (page_zone(page) != zone) 3357 continue; 3358 3359 if (!swsusp_page_is_forbidden(page)) 3360 swsusp_unset_page_free(page); 3361 } 3362 3363 for_each_migratetype_order(order, t) { 3364 list_for_each_entry(page, 3365 &zone->free_area[order].free_list[t], buddy_list) { 3366 unsigned long i; 3367 3368 pfn = page_to_pfn(page); 3369 for (i = 0; i < (1UL << order); i++) { 3370 if (!--page_count) { 3371 touch_nmi_watchdog(); 3372 page_count = WD_PAGE_COUNT; 3373 } 3374 swsusp_set_page_free(pfn_to_page(pfn + i)); 3375 } 3376 } 3377 } 3378 spin_unlock_irqrestore(&zone->lock, flags); 3379 } 3380 #endif /* CONFIG_PM */ 3381 3382 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 3383 unsigned int order) 3384 { 3385 int migratetype; 3386 3387 if (!free_pcp_prepare(page, order)) 3388 return false; 3389 3390 migratetype = get_pfnblock_migratetype(page, pfn); 3391 set_pcppage_migratetype(page, migratetype); 3392 return true; 3393 } 3394 3395 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch, 3396 bool free_high) 3397 { 3398 int min_nr_free, max_nr_free; 3399 3400 /* Free everything if batch freeing high-order pages. */ 3401 if (unlikely(free_high)) 3402 return pcp->count; 3403 3404 /* Check for PCP disabled or boot pageset */ 3405 if (unlikely(high < batch)) 3406 return 1; 3407 3408 /* Leave at least pcp->batch pages on the list */ 3409 min_nr_free = batch; 3410 max_nr_free = high - batch; 3411 3412 /* 3413 * Double the number of pages freed each time there is subsequent 3414 * freeing of pages without any allocation. 3415 */ 3416 batch <<= pcp->free_factor; 3417 if (batch < max_nr_free) 3418 pcp->free_factor++; 3419 batch = clamp(batch, min_nr_free, max_nr_free); 3420 3421 return batch; 3422 } 3423 3424 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 3425 bool free_high) 3426 { 3427 int high = READ_ONCE(pcp->high); 3428 3429 if (unlikely(!high || free_high)) 3430 return 0; 3431 3432 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 3433 return high; 3434 3435 /* 3436 * If reclaim is active, limit the number of pages that can be 3437 * stored on pcp lists 3438 */ 3439 return min(READ_ONCE(pcp->batch) << 2, high); 3440 } 3441 3442 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 3443 struct page *page, int migratetype, 3444 unsigned int order) 3445 { 3446 int high; 3447 int pindex; 3448 bool free_high; 3449 3450 __count_vm_events(PGFREE, 1 << order); 3451 pindex = order_to_pindex(migratetype, order); 3452 list_add(&page->pcp_list, &pcp->lists[pindex]); 3453 pcp->count += 1 << order; 3454 3455 /* 3456 * As high-order pages other than THP's stored on PCP can contribute 3457 * to fragmentation, limit the number stored when PCP is heavily 3458 * freeing without allocation. The remainder after bulk freeing 3459 * stops will be drained from vmstat refresh context. 3460 */ 3461 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); 3462 3463 high = nr_pcp_high(pcp, zone, free_high); 3464 if (pcp->count >= high) { 3465 int batch = READ_ONCE(pcp->batch); 3466 3467 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex); 3468 } 3469 } 3470 3471 /* 3472 * Free a pcp page 3473 */ 3474 void free_unref_page(struct page *page, unsigned int order) 3475 { 3476 unsigned long flags; 3477 unsigned long __maybe_unused UP_flags; 3478 struct per_cpu_pages *pcp; 3479 struct zone *zone; 3480 unsigned long pfn = page_to_pfn(page); 3481 int migratetype; 3482 3483 if (!free_unref_page_prepare(page, pfn, order)) 3484 return; 3485 3486 /* 3487 * We only track unmovable, reclaimable and movable on pcp lists. 3488 * Place ISOLATE pages on the isolated list because they are being 3489 * offlined but treat HIGHATOMIC as movable pages so we can get those 3490 * areas back if necessary. Otherwise, we may have to free 3491 * excessively into the page allocator 3492 */ 3493 migratetype = get_pcppage_migratetype(page); 3494 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3495 if (unlikely(is_migrate_isolate(migratetype))) { 3496 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 3497 return; 3498 } 3499 migratetype = MIGRATE_MOVABLE; 3500 } 3501 3502 zone = page_zone(page); 3503 pcp_trylock_prepare(UP_flags); 3504 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags); 3505 if (pcp) { 3506 free_unref_page_commit(zone, pcp, page, migratetype, order); 3507 pcp_spin_unlock_irqrestore(pcp, flags); 3508 } else { 3509 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE); 3510 } 3511 pcp_trylock_finish(UP_flags); 3512 } 3513 3514 /* 3515 * Free a list of 0-order pages 3516 */ 3517 void free_unref_page_list(struct list_head *list) 3518 { 3519 struct page *page, *next; 3520 struct per_cpu_pages *pcp = NULL; 3521 struct zone *locked_zone = NULL; 3522 unsigned long flags; 3523 int batch_count = 0; 3524 int migratetype; 3525 3526 /* Prepare pages for freeing */ 3527 list_for_each_entry_safe(page, next, list, lru) { 3528 unsigned long pfn = page_to_pfn(page); 3529 if (!free_unref_page_prepare(page, pfn, 0)) { 3530 list_del(&page->lru); 3531 continue; 3532 } 3533 3534 /* 3535 * Free isolated pages directly to the allocator, see 3536 * comment in free_unref_page. 3537 */ 3538 migratetype = get_pcppage_migratetype(page); 3539 if (unlikely(is_migrate_isolate(migratetype))) { 3540 list_del(&page->lru); 3541 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 3542 continue; 3543 } 3544 } 3545 3546 list_for_each_entry_safe(page, next, list, lru) { 3547 struct zone *zone = page_zone(page); 3548 3549 /* Different zone, different pcp lock. */ 3550 if (zone != locked_zone) { 3551 if (pcp) 3552 pcp_spin_unlock_irqrestore(pcp, flags); 3553 3554 locked_zone = zone; 3555 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags); 3556 } 3557 3558 /* 3559 * Non-isolated types over MIGRATE_PCPTYPES get added 3560 * to the MIGRATE_MOVABLE pcp list. 3561 */ 3562 migratetype = get_pcppage_migratetype(page); 3563 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3564 migratetype = MIGRATE_MOVABLE; 3565 3566 trace_mm_page_free_batched(page); 3567 free_unref_page_commit(zone, pcp, page, migratetype, 0); 3568 3569 /* 3570 * Guard against excessive IRQ disabled times when we get 3571 * a large list of pages to free. 3572 */ 3573 if (++batch_count == SWAP_CLUSTER_MAX) { 3574 pcp_spin_unlock_irqrestore(pcp, flags); 3575 batch_count = 0; 3576 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags); 3577 } 3578 } 3579 3580 if (pcp) 3581 pcp_spin_unlock_irqrestore(pcp, flags); 3582 } 3583 3584 /* 3585 * split_page takes a non-compound higher-order page, and splits it into 3586 * n (1<<order) sub-pages: page[0..n] 3587 * Each sub-page must be freed individually. 3588 * 3589 * Note: this is probably too low level an operation for use in drivers. 3590 * Please consult with lkml before using this in your driver. 3591 */ 3592 void split_page(struct page *page, unsigned int order) 3593 { 3594 int i; 3595 3596 VM_BUG_ON_PAGE(PageCompound(page), page); 3597 VM_BUG_ON_PAGE(!page_count(page), page); 3598 3599 for (i = 1; i < (1 << order); i++) 3600 set_page_refcounted(page + i); 3601 split_page_owner(page, 1 << order); 3602 split_page_memcg(page, 1 << order); 3603 } 3604 EXPORT_SYMBOL_GPL(split_page); 3605 3606 int __isolate_free_page(struct page *page, unsigned int order) 3607 { 3608 struct zone *zone = page_zone(page); 3609 int mt = get_pageblock_migratetype(page); 3610 3611 if (!is_migrate_isolate(mt)) { 3612 unsigned long watermark; 3613 /* 3614 * Obey watermarks as if the page was being allocated. We can 3615 * emulate a high-order watermark check with a raised order-0 3616 * watermark, because we already know our high-order page 3617 * exists. 3618 */ 3619 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3620 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3621 return 0; 3622 3623 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3624 } 3625 3626 del_page_from_free_list(page, zone, order); 3627 3628 /* 3629 * Set the pageblock if the isolated page is at least half of a 3630 * pageblock 3631 */ 3632 if (order >= pageblock_order - 1) { 3633 struct page *endpage = page + (1 << order) - 1; 3634 for (; page < endpage; page += pageblock_nr_pages) { 3635 int mt = get_pageblock_migratetype(page); 3636 /* 3637 * Only change normal pageblocks (i.e., they can merge 3638 * with others) 3639 */ 3640 if (migratetype_is_mergeable(mt)) 3641 set_pageblock_migratetype(page, 3642 MIGRATE_MOVABLE); 3643 } 3644 } 3645 3646 return 1UL << order; 3647 } 3648 3649 /** 3650 * __putback_isolated_page - Return a now-isolated page back where we got it 3651 * @page: Page that was isolated 3652 * @order: Order of the isolated page 3653 * @mt: The page's pageblock's migratetype 3654 * 3655 * This function is meant to return a page pulled from the free lists via 3656 * __isolate_free_page back to the free lists they were pulled from. 3657 */ 3658 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3659 { 3660 struct zone *zone = page_zone(page); 3661 3662 /* zone lock should be held when this function is called */ 3663 lockdep_assert_held(&zone->lock); 3664 3665 /* Return isolated page to tail of freelist. */ 3666 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3667 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3668 } 3669 3670 /* 3671 * Update NUMA hit/miss statistics 3672 */ 3673 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3674 long nr_account) 3675 { 3676 #ifdef CONFIG_NUMA 3677 enum numa_stat_item local_stat = NUMA_LOCAL; 3678 3679 /* skip numa counters update if numa stats is disabled */ 3680 if (!static_branch_likely(&vm_numa_stat_key)) 3681 return; 3682 3683 if (zone_to_nid(z) != numa_node_id()) 3684 local_stat = NUMA_OTHER; 3685 3686 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3687 __count_numa_events(z, NUMA_HIT, nr_account); 3688 else { 3689 __count_numa_events(z, NUMA_MISS, nr_account); 3690 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3691 } 3692 __count_numa_events(z, local_stat, nr_account); 3693 #endif 3694 } 3695 3696 static __always_inline 3697 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 3698 unsigned int order, unsigned int alloc_flags, 3699 int migratetype) 3700 { 3701 struct page *page; 3702 unsigned long flags; 3703 3704 do { 3705 page = NULL; 3706 spin_lock_irqsave(&zone->lock, flags); 3707 /* 3708 * order-0 request can reach here when the pcplist is skipped 3709 * due to non-CMA allocation context. HIGHATOMIC area is 3710 * reserved for high-order atomic allocation, so order-0 3711 * request should skip it. 3712 */ 3713 if (order > 0 && alloc_flags & ALLOC_HARDER) 3714 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3715 if (!page) { 3716 page = __rmqueue(zone, order, migratetype, alloc_flags); 3717 if (!page) { 3718 spin_unlock_irqrestore(&zone->lock, flags); 3719 return NULL; 3720 } 3721 } 3722 __mod_zone_freepage_state(zone, -(1 << order), 3723 get_pcppage_migratetype(page)); 3724 spin_unlock_irqrestore(&zone->lock, flags); 3725 } while (check_new_pages(page, order)); 3726 3727 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3728 zone_statistics(preferred_zone, zone, 1); 3729 3730 return page; 3731 } 3732 3733 /* Remove page from the per-cpu list, caller must protect the list */ 3734 static inline 3735 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3736 int migratetype, 3737 unsigned int alloc_flags, 3738 struct per_cpu_pages *pcp, 3739 struct list_head *list) 3740 { 3741 struct page *page; 3742 3743 do { 3744 if (list_empty(list)) { 3745 int batch = READ_ONCE(pcp->batch); 3746 int alloced; 3747 3748 /* 3749 * Scale batch relative to order if batch implies 3750 * free pages can be stored on the PCP. Batch can 3751 * be 1 for small zones or for boot pagesets which 3752 * should never store free pages as the pages may 3753 * belong to arbitrary zones. 3754 */ 3755 if (batch > 1) 3756 batch = max(batch >> order, 2); 3757 alloced = rmqueue_bulk(zone, order, 3758 batch, list, 3759 migratetype, alloc_flags); 3760 3761 pcp->count += alloced << order; 3762 if (unlikely(list_empty(list))) 3763 return NULL; 3764 } 3765 3766 page = list_first_entry(list, struct page, pcp_list); 3767 list_del(&page->pcp_list); 3768 pcp->count -= 1 << order; 3769 } while (check_new_pcp(page, order)); 3770 3771 return page; 3772 } 3773 3774 /* Lock and remove page from the per-cpu list */ 3775 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3776 struct zone *zone, unsigned int order, 3777 int migratetype, unsigned int alloc_flags) 3778 { 3779 struct per_cpu_pages *pcp; 3780 struct list_head *list; 3781 struct page *page; 3782 unsigned long flags; 3783 unsigned long __maybe_unused UP_flags; 3784 3785 /* 3786 * spin_trylock may fail due to a parallel drain. In the future, the 3787 * trylock will also protect against IRQ reentrancy. 3788 */ 3789 pcp_trylock_prepare(UP_flags); 3790 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags); 3791 if (!pcp) { 3792 pcp_trylock_finish(UP_flags); 3793 return NULL; 3794 } 3795 3796 /* 3797 * On allocation, reduce the number of pages that are batch freed. 3798 * See nr_pcp_free() where free_factor is increased for subsequent 3799 * frees. 3800 */ 3801 pcp->free_factor >>= 1; 3802 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3803 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3804 pcp_spin_unlock_irqrestore(pcp, flags); 3805 pcp_trylock_finish(UP_flags); 3806 if (page) { 3807 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3808 zone_statistics(preferred_zone, zone, 1); 3809 } 3810 return page; 3811 } 3812 3813 /* 3814 * Allocate a page from the given zone. 3815 * Use pcplists for THP or "cheap" high-order allocations. 3816 */ 3817 3818 /* 3819 * Do not instrument rmqueue() with KMSAN. This function may call 3820 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 3821 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3822 * may call rmqueue() again, which will result in a deadlock. 3823 */ 3824 __no_sanitize_memory 3825 static inline 3826 struct page *rmqueue(struct zone *preferred_zone, 3827 struct zone *zone, unsigned int order, 3828 gfp_t gfp_flags, unsigned int alloc_flags, 3829 int migratetype) 3830 { 3831 struct page *page; 3832 3833 /* 3834 * We most definitely don't want callers attempting to 3835 * allocate greater than order-1 page units with __GFP_NOFAIL. 3836 */ 3837 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3838 3839 if (likely(pcp_allowed_order(order))) { 3840 /* 3841 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3842 * we need to skip it when CMA area isn't allowed. 3843 */ 3844 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3845 migratetype != MIGRATE_MOVABLE) { 3846 page = rmqueue_pcplist(preferred_zone, zone, order, 3847 migratetype, alloc_flags); 3848 if (likely(page)) 3849 goto out; 3850 } 3851 } 3852 3853 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3854 migratetype); 3855 3856 out: 3857 /* Separate test+clear to avoid unnecessary atomics */ 3858 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3859 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3860 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3861 } 3862 3863 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3864 return page; 3865 } 3866 3867 #ifdef CONFIG_FAIL_PAGE_ALLOC 3868 3869 static struct { 3870 struct fault_attr attr; 3871 3872 bool ignore_gfp_highmem; 3873 bool ignore_gfp_reclaim; 3874 u32 min_order; 3875 } fail_page_alloc = { 3876 .attr = FAULT_ATTR_INITIALIZER, 3877 .ignore_gfp_reclaim = true, 3878 .ignore_gfp_highmem = true, 3879 .min_order = 1, 3880 }; 3881 3882 static int __init setup_fail_page_alloc(char *str) 3883 { 3884 return setup_fault_attr(&fail_page_alloc.attr, str); 3885 } 3886 __setup("fail_page_alloc=", setup_fail_page_alloc); 3887 3888 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3889 { 3890 if (order < fail_page_alloc.min_order) 3891 return false; 3892 if (gfp_mask & __GFP_NOFAIL) 3893 return false; 3894 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3895 return false; 3896 if (fail_page_alloc.ignore_gfp_reclaim && 3897 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3898 return false; 3899 3900 if (gfp_mask & __GFP_NOWARN) 3901 fail_page_alloc.attr.no_warn = true; 3902 3903 return should_fail(&fail_page_alloc.attr, 1 << order); 3904 } 3905 3906 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3907 3908 static int __init fail_page_alloc_debugfs(void) 3909 { 3910 umode_t mode = S_IFREG | 0600; 3911 struct dentry *dir; 3912 3913 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3914 &fail_page_alloc.attr); 3915 3916 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3917 &fail_page_alloc.ignore_gfp_reclaim); 3918 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3919 &fail_page_alloc.ignore_gfp_highmem); 3920 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3921 3922 return 0; 3923 } 3924 3925 late_initcall(fail_page_alloc_debugfs); 3926 3927 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3928 3929 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3930 3931 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3932 { 3933 return false; 3934 } 3935 3936 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3937 3938 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3939 { 3940 return __should_fail_alloc_page(gfp_mask, order); 3941 } 3942 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3943 3944 static inline long __zone_watermark_unusable_free(struct zone *z, 3945 unsigned int order, unsigned int alloc_flags) 3946 { 3947 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3948 long unusable_free = (1 << order) - 1; 3949 3950 /* 3951 * If the caller does not have rights to ALLOC_HARDER then subtract 3952 * the high-atomic reserves. This will over-estimate the size of the 3953 * atomic reserve but it avoids a search. 3954 */ 3955 if (likely(!alloc_harder)) 3956 unusable_free += z->nr_reserved_highatomic; 3957 3958 #ifdef CONFIG_CMA 3959 /* If allocation can't use CMA areas don't use free CMA pages */ 3960 if (!(alloc_flags & ALLOC_CMA)) 3961 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3962 #endif 3963 3964 return unusable_free; 3965 } 3966 3967 /* 3968 * Return true if free base pages are above 'mark'. For high-order checks it 3969 * will return true of the order-0 watermark is reached and there is at least 3970 * one free page of a suitable size. Checking now avoids taking the zone lock 3971 * to check in the allocation paths if no pages are free. 3972 */ 3973 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3974 int highest_zoneidx, unsigned int alloc_flags, 3975 long free_pages) 3976 { 3977 long min = mark; 3978 int o; 3979 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3980 3981 /* free_pages may go negative - that's OK */ 3982 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3983 3984 if (alloc_flags & ALLOC_HIGH) 3985 min -= min / 2; 3986 3987 if (unlikely(alloc_harder)) { 3988 /* 3989 * OOM victims can try even harder than normal ALLOC_HARDER 3990 * users on the grounds that it's definitely going to be in 3991 * the exit path shortly and free memory. Any allocation it 3992 * makes during the free path will be small and short-lived. 3993 */ 3994 if (alloc_flags & ALLOC_OOM) 3995 min -= min / 2; 3996 else 3997 min -= min / 4; 3998 } 3999 4000 /* 4001 * Check watermarks for an order-0 allocation request. If these 4002 * are not met, then a high-order request also cannot go ahead 4003 * even if a suitable page happened to be free. 4004 */ 4005 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 4006 return false; 4007 4008 /* If this is an order-0 request then the watermark is fine */ 4009 if (!order) 4010 return true; 4011 4012 /* For a high-order request, check at least one suitable page is free */ 4013 for (o = order; o < MAX_ORDER; o++) { 4014 struct free_area *area = &z->free_area[o]; 4015 int mt; 4016 4017 if (!area->nr_free) 4018 continue; 4019 4020 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 4021 if (!free_area_empty(area, mt)) 4022 return true; 4023 } 4024 4025 #ifdef CONFIG_CMA 4026 if ((alloc_flags & ALLOC_CMA) && 4027 !free_area_empty(area, MIGRATE_CMA)) { 4028 return true; 4029 } 4030 #endif 4031 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 4032 return true; 4033 } 4034 return false; 4035 } 4036 4037 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 4038 int highest_zoneidx, unsigned int alloc_flags) 4039 { 4040 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 4041 zone_page_state(z, NR_FREE_PAGES)); 4042 } 4043 4044 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 4045 unsigned long mark, int highest_zoneidx, 4046 unsigned int alloc_flags, gfp_t gfp_mask) 4047 { 4048 long free_pages; 4049 4050 free_pages = zone_page_state(z, NR_FREE_PAGES); 4051 4052 /* 4053 * Fast check for order-0 only. If this fails then the reserves 4054 * need to be calculated. 4055 */ 4056 if (!order) { 4057 long usable_free; 4058 long reserved; 4059 4060 usable_free = free_pages; 4061 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 4062 4063 /* reserved may over estimate high-atomic reserves. */ 4064 usable_free -= min(usable_free, reserved); 4065 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 4066 return true; 4067 } 4068 4069 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 4070 free_pages)) 4071 return true; 4072 /* 4073 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 4074 * when checking the min watermark. The min watermark is the 4075 * point where boosting is ignored so that kswapd is woken up 4076 * when below the low watermark. 4077 */ 4078 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 4079 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 4080 mark = z->_watermark[WMARK_MIN]; 4081 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 4082 alloc_flags, free_pages); 4083 } 4084 4085 return false; 4086 } 4087 4088 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 4089 unsigned long mark, int highest_zoneidx) 4090 { 4091 long free_pages = zone_page_state(z, NR_FREE_PAGES); 4092 4093 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 4094 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 4095 4096 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 4097 free_pages); 4098 } 4099 4100 #ifdef CONFIG_NUMA 4101 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 4102 4103 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4104 { 4105 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 4106 node_reclaim_distance; 4107 } 4108 #else /* CONFIG_NUMA */ 4109 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4110 { 4111 return true; 4112 } 4113 #endif /* CONFIG_NUMA */ 4114 4115 /* 4116 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 4117 * fragmentation is subtle. If the preferred zone was HIGHMEM then 4118 * premature use of a lower zone may cause lowmem pressure problems that 4119 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 4120 * probably too small. It only makes sense to spread allocations to avoid 4121 * fragmentation between the Normal and DMA32 zones. 4122 */ 4123 static inline unsigned int 4124 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 4125 { 4126 unsigned int alloc_flags; 4127 4128 /* 4129 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4130 * to save a branch. 4131 */ 4132 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 4133 4134 #ifdef CONFIG_ZONE_DMA32 4135 if (!zone) 4136 return alloc_flags; 4137 4138 if (zone_idx(zone) != ZONE_NORMAL) 4139 return alloc_flags; 4140 4141 /* 4142 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 4143 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 4144 * on UMA that if Normal is populated then so is DMA32. 4145 */ 4146 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 4147 if (nr_online_nodes > 1 && !populated_zone(--zone)) 4148 return alloc_flags; 4149 4150 alloc_flags |= ALLOC_NOFRAGMENT; 4151 #endif /* CONFIG_ZONE_DMA32 */ 4152 return alloc_flags; 4153 } 4154 4155 /* Must be called after current_gfp_context() which can change gfp_mask */ 4156 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 4157 unsigned int alloc_flags) 4158 { 4159 #ifdef CONFIG_CMA 4160 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4161 alloc_flags |= ALLOC_CMA; 4162 #endif 4163 return alloc_flags; 4164 } 4165 4166 /* 4167 * get_page_from_freelist goes through the zonelist trying to allocate 4168 * a page. 4169 */ 4170 static struct page * 4171 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 4172 const struct alloc_context *ac) 4173 { 4174 struct zoneref *z; 4175 struct zone *zone; 4176 struct pglist_data *last_pgdat = NULL; 4177 bool last_pgdat_dirty_ok = false; 4178 bool no_fallback; 4179 4180 retry: 4181 /* 4182 * Scan zonelist, looking for a zone with enough free. 4183 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 4184 */ 4185 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 4186 z = ac->preferred_zoneref; 4187 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 4188 ac->nodemask) { 4189 struct page *page; 4190 unsigned long mark; 4191 4192 if (cpusets_enabled() && 4193 (alloc_flags & ALLOC_CPUSET) && 4194 !__cpuset_zone_allowed(zone, gfp_mask)) 4195 continue; 4196 /* 4197 * When allocating a page cache page for writing, we 4198 * want to get it from a node that is within its dirty 4199 * limit, such that no single node holds more than its 4200 * proportional share of globally allowed dirty pages. 4201 * The dirty limits take into account the node's 4202 * lowmem reserves and high watermark so that kswapd 4203 * should be able to balance it without having to 4204 * write pages from its LRU list. 4205 * 4206 * XXX: For now, allow allocations to potentially 4207 * exceed the per-node dirty limit in the slowpath 4208 * (spread_dirty_pages unset) before going into reclaim, 4209 * which is important when on a NUMA setup the allowed 4210 * nodes are together not big enough to reach the 4211 * global limit. The proper fix for these situations 4212 * will require awareness of nodes in the 4213 * dirty-throttling and the flusher threads. 4214 */ 4215 if (ac->spread_dirty_pages) { 4216 if (last_pgdat != zone->zone_pgdat) { 4217 last_pgdat = zone->zone_pgdat; 4218 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 4219 } 4220 4221 if (!last_pgdat_dirty_ok) 4222 continue; 4223 } 4224 4225 if (no_fallback && nr_online_nodes > 1 && 4226 zone != ac->preferred_zoneref->zone) { 4227 int local_nid; 4228 4229 /* 4230 * If moving to a remote node, retry but allow 4231 * fragmenting fallbacks. Locality is more important 4232 * than fragmentation avoidance. 4233 */ 4234 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 4235 if (zone_to_nid(zone) != local_nid) { 4236 alloc_flags &= ~ALLOC_NOFRAGMENT; 4237 goto retry; 4238 } 4239 } 4240 4241 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 4242 if (!zone_watermark_fast(zone, order, mark, 4243 ac->highest_zoneidx, alloc_flags, 4244 gfp_mask)) { 4245 int ret; 4246 4247 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4248 /* 4249 * Watermark failed for this zone, but see if we can 4250 * grow this zone if it contains deferred pages. 4251 */ 4252 if (static_branch_unlikely(&deferred_pages)) { 4253 if (_deferred_grow_zone(zone, order)) 4254 goto try_this_zone; 4255 } 4256 #endif 4257 /* Checked here to keep the fast path fast */ 4258 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 4259 if (alloc_flags & ALLOC_NO_WATERMARKS) 4260 goto try_this_zone; 4261 4262 if (!node_reclaim_enabled() || 4263 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 4264 continue; 4265 4266 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 4267 switch (ret) { 4268 case NODE_RECLAIM_NOSCAN: 4269 /* did not scan */ 4270 continue; 4271 case NODE_RECLAIM_FULL: 4272 /* scanned but unreclaimable */ 4273 continue; 4274 default: 4275 /* did we reclaim enough */ 4276 if (zone_watermark_ok(zone, order, mark, 4277 ac->highest_zoneidx, alloc_flags)) 4278 goto try_this_zone; 4279 4280 continue; 4281 } 4282 } 4283 4284 try_this_zone: 4285 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 4286 gfp_mask, alloc_flags, ac->migratetype); 4287 if (page) { 4288 prep_new_page(page, order, gfp_mask, alloc_flags); 4289 4290 /* 4291 * If this is a high-order atomic allocation then check 4292 * if the pageblock should be reserved for the future 4293 */ 4294 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 4295 reserve_highatomic_pageblock(page, zone, order); 4296 4297 return page; 4298 } else { 4299 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4300 /* Try again if zone has deferred pages */ 4301 if (static_branch_unlikely(&deferred_pages)) { 4302 if (_deferred_grow_zone(zone, order)) 4303 goto try_this_zone; 4304 } 4305 #endif 4306 } 4307 } 4308 4309 /* 4310 * It's possible on a UMA machine to get through all zones that are 4311 * fragmented. If avoiding fragmentation, reset and try again. 4312 */ 4313 if (no_fallback) { 4314 alloc_flags &= ~ALLOC_NOFRAGMENT; 4315 goto retry; 4316 } 4317 4318 return NULL; 4319 } 4320 4321 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4322 { 4323 unsigned int filter = SHOW_MEM_FILTER_NODES; 4324 4325 /* 4326 * This documents exceptions given to allocations in certain 4327 * contexts that are allowed to allocate outside current's set 4328 * of allowed nodes. 4329 */ 4330 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4331 if (tsk_is_oom_victim(current) || 4332 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4333 filter &= ~SHOW_MEM_FILTER_NODES; 4334 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4335 filter &= ~SHOW_MEM_FILTER_NODES; 4336 4337 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 4338 } 4339 4340 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4341 { 4342 struct va_format vaf; 4343 va_list args; 4344 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4345 4346 if ((gfp_mask & __GFP_NOWARN) || 4347 !__ratelimit(&nopage_rs) || 4348 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 4349 return; 4350 4351 va_start(args, fmt); 4352 vaf.fmt = fmt; 4353 vaf.va = &args; 4354 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4355 current->comm, &vaf, gfp_mask, &gfp_mask, 4356 nodemask_pr_args(nodemask)); 4357 va_end(args); 4358 4359 cpuset_print_current_mems_allowed(); 4360 pr_cont("\n"); 4361 dump_stack(); 4362 warn_alloc_show_mem(gfp_mask, nodemask); 4363 } 4364 4365 static inline struct page * 4366 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4367 unsigned int alloc_flags, 4368 const struct alloc_context *ac) 4369 { 4370 struct page *page; 4371 4372 page = get_page_from_freelist(gfp_mask, order, 4373 alloc_flags|ALLOC_CPUSET, ac); 4374 /* 4375 * fallback to ignore cpuset restriction if our nodes 4376 * are depleted 4377 */ 4378 if (!page) 4379 page = get_page_from_freelist(gfp_mask, order, 4380 alloc_flags, ac); 4381 4382 return page; 4383 } 4384 4385 static inline struct page * 4386 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4387 const struct alloc_context *ac, unsigned long *did_some_progress) 4388 { 4389 struct oom_control oc = { 4390 .zonelist = ac->zonelist, 4391 .nodemask = ac->nodemask, 4392 .memcg = NULL, 4393 .gfp_mask = gfp_mask, 4394 .order = order, 4395 }; 4396 struct page *page; 4397 4398 *did_some_progress = 0; 4399 4400 /* 4401 * Acquire the oom lock. If that fails, somebody else is 4402 * making progress for us. 4403 */ 4404 if (!mutex_trylock(&oom_lock)) { 4405 *did_some_progress = 1; 4406 schedule_timeout_uninterruptible(1); 4407 return NULL; 4408 } 4409 4410 /* 4411 * Go through the zonelist yet one more time, keep very high watermark 4412 * here, this is only to catch a parallel oom killing, we must fail if 4413 * we're still under heavy pressure. But make sure that this reclaim 4414 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4415 * allocation which will never fail due to oom_lock already held. 4416 */ 4417 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4418 ~__GFP_DIRECT_RECLAIM, order, 4419 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4420 if (page) 4421 goto out; 4422 4423 /* Coredumps can quickly deplete all memory reserves */ 4424 if (current->flags & PF_DUMPCORE) 4425 goto out; 4426 /* The OOM killer will not help higher order allocs */ 4427 if (order > PAGE_ALLOC_COSTLY_ORDER) 4428 goto out; 4429 /* 4430 * We have already exhausted all our reclaim opportunities without any 4431 * success so it is time to admit defeat. We will skip the OOM killer 4432 * because it is very likely that the caller has a more reasonable 4433 * fallback than shooting a random task. 4434 * 4435 * The OOM killer may not free memory on a specific node. 4436 */ 4437 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4438 goto out; 4439 /* The OOM killer does not needlessly kill tasks for lowmem */ 4440 if (ac->highest_zoneidx < ZONE_NORMAL) 4441 goto out; 4442 if (pm_suspended_storage()) 4443 goto out; 4444 /* 4445 * XXX: GFP_NOFS allocations should rather fail than rely on 4446 * other request to make a forward progress. 4447 * We are in an unfortunate situation where out_of_memory cannot 4448 * do much for this context but let's try it to at least get 4449 * access to memory reserved if the current task is killed (see 4450 * out_of_memory). Once filesystems are ready to handle allocation 4451 * failures more gracefully we should just bail out here. 4452 */ 4453 4454 /* Exhausted what can be done so it's blame time */ 4455 if (out_of_memory(&oc) || 4456 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 4457 *did_some_progress = 1; 4458 4459 /* 4460 * Help non-failing allocations by giving them access to memory 4461 * reserves 4462 */ 4463 if (gfp_mask & __GFP_NOFAIL) 4464 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4465 ALLOC_NO_WATERMARKS, ac); 4466 } 4467 out: 4468 mutex_unlock(&oom_lock); 4469 return page; 4470 } 4471 4472 /* 4473 * Maximum number of compaction retries with a progress before OOM 4474 * killer is consider as the only way to move forward. 4475 */ 4476 #define MAX_COMPACT_RETRIES 16 4477 4478 #ifdef CONFIG_COMPACTION 4479 /* Try memory compaction for high-order allocations before reclaim */ 4480 static struct page * 4481 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4482 unsigned int alloc_flags, const struct alloc_context *ac, 4483 enum compact_priority prio, enum compact_result *compact_result) 4484 { 4485 struct page *page = NULL; 4486 unsigned long pflags; 4487 unsigned int noreclaim_flag; 4488 4489 if (!order) 4490 return NULL; 4491 4492 psi_memstall_enter(&pflags); 4493 delayacct_compact_start(); 4494 noreclaim_flag = memalloc_noreclaim_save(); 4495 4496 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4497 prio, &page); 4498 4499 memalloc_noreclaim_restore(noreclaim_flag); 4500 psi_memstall_leave(&pflags); 4501 delayacct_compact_end(); 4502 4503 if (*compact_result == COMPACT_SKIPPED) 4504 return NULL; 4505 /* 4506 * At least in one zone compaction wasn't deferred or skipped, so let's 4507 * count a compaction stall 4508 */ 4509 count_vm_event(COMPACTSTALL); 4510 4511 /* Prep a captured page if available */ 4512 if (page) 4513 prep_new_page(page, order, gfp_mask, alloc_flags); 4514 4515 /* Try get a page from the freelist if available */ 4516 if (!page) 4517 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4518 4519 if (page) { 4520 struct zone *zone = page_zone(page); 4521 4522 zone->compact_blockskip_flush = false; 4523 compaction_defer_reset(zone, order, true); 4524 count_vm_event(COMPACTSUCCESS); 4525 return page; 4526 } 4527 4528 /* 4529 * It's bad if compaction run occurs and fails. The most likely reason 4530 * is that pages exist, but not enough to satisfy watermarks. 4531 */ 4532 count_vm_event(COMPACTFAIL); 4533 4534 cond_resched(); 4535 4536 return NULL; 4537 } 4538 4539 static inline bool 4540 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4541 enum compact_result compact_result, 4542 enum compact_priority *compact_priority, 4543 int *compaction_retries) 4544 { 4545 int max_retries = MAX_COMPACT_RETRIES; 4546 int min_priority; 4547 bool ret = false; 4548 int retries = *compaction_retries; 4549 enum compact_priority priority = *compact_priority; 4550 4551 if (!order) 4552 return false; 4553 4554 if (fatal_signal_pending(current)) 4555 return false; 4556 4557 if (compaction_made_progress(compact_result)) 4558 (*compaction_retries)++; 4559 4560 /* 4561 * compaction considers all the zone as desperately out of memory 4562 * so it doesn't really make much sense to retry except when the 4563 * failure could be caused by insufficient priority 4564 */ 4565 if (compaction_failed(compact_result)) 4566 goto check_priority; 4567 4568 /* 4569 * compaction was skipped because there are not enough order-0 pages 4570 * to work with, so we retry only if it looks like reclaim can help. 4571 */ 4572 if (compaction_needs_reclaim(compact_result)) { 4573 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4574 goto out; 4575 } 4576 4577 /* 4578 * make sure the compaction wasn't deferred or didn't bail out early 4579 * due to locks contention before we declare that we should give up. 4580 * But the next retry should use a higher priority if allowed, so 4581 * we don't just keep bailing out endlessly. 4582 */ 4583 if (compaction_withdrawn(compact_result)) { 4584 goto check_priority; 4585 } 4586 4587 /* 4588 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4589 * costly ones because they are de facto nofail and invoke OOM 4590 * killer to move on while costly can fail and users are ready 4591 * to cope with that. 1/4 retries is rather arbitrary but we 4592 * would need much more detailed feedback from compaction to 4593 * make a better decision. 4594 */ 4595 if (order > PAGE_ALLOC_COSTLY_ORDER) 4596 max_retries /= 4; 4597 if (*compaction_retries <= max_retries) { 4598 ret = true; 4599 goto out; 4600 } 4601 4602 /* 4603 * Make sure there are attempts at the highest priority if we exhausted 4604 * all retries or failed at the lower priorities. 4605 */ 4606 check_priority: 4607 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4608 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4609 4610 if (*compact_priority > min_priority) { 4611 (*compact_priority)--; 4612 *compaction_retries = 0; 4613 ret = true; 4614 } 4615 out: 4616 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4617 return ret; 4618 } 4619 #else 4620 static inline struct page * 4621 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4622 unsigned int alloc_flags, const struct alloc_context *ac, 4623 enum compact_priority prio, enum compact_result *compact_result) 4624 { 4625 *compact_result = COMPACT_SKIPPED; 4626 return NULL; 4627 } 4628 4629 static inline bool 4630 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4631 enum compact_result compact_result, 4632 enum compact_priority *compact_priority, 4633 int *compaction_retries) 4634 { 4635 struct zone *zone; 4636 struct zoneref *z; 4637 4638 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4639 return false; 4640 4641 /* 4642 * There are setups with compaction disabled which would prefer to loop 4643 * inside the allocator rather than hit the oom killer prematurely. 4644 * Let's give them a good hope and keep retrying while the order-0 4645 * watermarks are OK. 4646 */ 4647 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4648 ac->highest_zoneidx, ac->nodemask) { 4649 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4650 ac->highest_zoneidx, alloc_flags)) 4651 return true; 4652 } 4653 return false; 4654 } 4655 #endif /* CONFIG_COMPACTION */ 4656 4657 #ifdef CONFIG_LOCKDEP 4658 static struct lockdep_map __fs_reclaim_map = 4659 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4660 4661 static bool __need_reclaim(gfp_t gfp_mask) 4662 { 4663 /* no reclaim without waiting on it */ 4664 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4665 return false; 4666 4667 /* this guy won't enter reclaim */ 4668 if (current->flags & PF_MEMALLOC) 4669 return false; 4670 4671 if (gfp_mask & __GFP_NOLOCKDEP) 4672 return false; 4673 4674 return true; 4675 } 4676 4677 void __fs_reclaim_acquire(unsigned long ip) 4678 { 4679 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4680 } 4681 4682 void __fs_reclaim_release(unsigned long ip) 4683 { 4684 lock_release(&__fs_reclaim_map, ip); 4685 } 4686 4687 void fs_reclaim_acquire(gfp_t gfp_mask) 4688 { 4689 gfp_mask = current_gfp_context(gfp_mask); 4690 4691 if (__need_reclaim(gfp_mask)) { 4692 if (gfp_mask & __GFP_FS) 4693 __fs_reclaim_acquire(_RET_IP_); 4694 4695 #ifdef CONFIG_MMU_NOTIFIER 4696 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4697 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4698 #endif 4699 4700 } 4701 } 4702 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4703 4704 void fs_reclaim_release(gfp_t gfp_mask) 4705 { 4706 gfp_mask = current_gfp_context(gfp_mask); 4707 4708 if (__need_reclaim(gfp_mask)) { 4709 if (gfp_mask & __GFP_FS) 4710 __fs_reclaim_release(_RET_IP_); 4711 } 4712 } 4713 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4714 #endif 4715 4716 /* 4717 * Zonelists may change due to hotplug during allocation. Detect when zonelists 4718 * have been rebuilt so allocation retries. Reader side does not lock and 4719 * retries the allocation if zonelist changes. Writer side is protected by the 4720 * embedded spin_lock. 4721 */ 4722 static DEFINE_SEQLOCK(zonelist_update_seq); 4723 4724 static unsigned int zonelist_iter_begin(void) 4725 { 4726 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4727 return read_seqbegin(&zonelist_update_seq); 4728 4729 return 0; 4730 } 4731 4732 static unsigned int check_retry_zonelist(unsigned int seq) 4733 { 4734 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4735 return read_seqretry(&zonelist_update_seq, seq); 4736 4737 return seq; 4738 } 4739 4740 /* Perform direct synchronous page reclaim */ 4741 static unsigned long 4742 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4743 const struct alloc_context *ac) 4744 { 4745 unsigned int noreclaim_flag; 4746 unsigned long progress; 4747 4748 cond_resched(); 4749 4750 /* We now go into synchronous reclaim */ 4751 cpuset_memory_pressure_bump(); 4752 fs_reclaim_acquire(gfp_mask); 4753 noreclaim_flag = memalloc_noreclaim_save(); 4754 4755 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4756 ac->nodemask); 4757 4758 memalloc_noreclaim_restore(noreclaim_flag); 4759 fs_reclaim_release(gfp_mask); 4760 4761 cond_resched(); 4762 4763 return progress; 4764 } 4765 4766 /* The really slow allocator path where we enter direct reclaim */ 4767 static inline struct page * 4768 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4769 unsigned int alloc_flags, const struct alloc_context *ac, 4770 unsigned long *did_some_progress) 4771 { 4772 struct page *page = NULL; 4773 unsigned long pflags; 4774 bool drained = false; 4775 4776 psi_memstall_enter(&pflags); 4777 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4778 if (unlikely(!(*did_some_progress))) 4779 goto out; 4780 4781 retry: 4782 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4783 4784 /* 4785 * If an allocation failed after direct reclaim, it could be because 4786 * pages are pinned on the per-cpu lists or in high alloc reserves. 4787 * Shrink them and try again 4788 */ 4789 if (!page && !drained) { 4790 unreserve_highatomic_pageblock(ac, false); 4791 drain_all_pages(NULL); 4792 drained = true; 4793 goto retry; 4794 } 4795 out: 4796 psi_memstall_leave(&pflags); 4797 4798 return page; 4799 } 4800 4801 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4802 const struct alloc_context *ac) 4803 { 4804 struct zoneref *z; 4805 struct zone *zone; 4806 pg_data_t *last_pgdat = NULL; 4807 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4808 4809 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4810 ac->nodemask) { 4811 if (!managed_zone(zone)) 4812 continue; 4813 if (last_pgdat != zone->zone_pgdat) { 4814 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4815 last_pgdat = zone->zone_pgdat; 4816 } 4817 } 4818 } 4819 4820 static inline unsigned int 4821 gfp_to_alloc_flags(gfp_t gfp_mask) 4822 { 4823 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4824 4825 /* 4826 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4827 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4828 * to save two branches. 4829 */ 4830 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4831 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4832 4833 /* 4834 * The caller may dip into page reserves a bit more if the caller 4835 * cannot run direct reclaim, or if the caller has realtime scheduling 4836 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4837 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4838 */ 4839 alloc_flags |= (__force int) 4840 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4841 4842 if (gfp_mask & __GFP_ATOMIC) { 4843 /* 4844 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4845 * if it can't schedule. 4846 */ 4847 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4848 alloc_flags |= ALLOC_HARDER; 4849 /* 4850 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4851 * comment for __cpuset_node_allowed(). 4852 */ 4853 alloc_flags &= ~ALLOC_CPUSET; 4854 } else if (unlikely(rt_task(current)) && in_task()) 4855 alloc_flags |= ALLOC_HARDER; 4856 4857 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4858 4859 return alloc_flags; 4860 } 4861 4862 static bool oom_reserves_allowed(struct task_struct *tsk) 4863 { 4864 if (!tsk_is_oom_victim(tsk)) 4865 return false; 4866 4867 /* 4868 * !MMU doesn't have oom reaper so give access to memory reserves 4869 * only to the thread with TIF_MEMDIE set 4870 */ 4871 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4872 return false; 4873 4874 return true; 4875 } 4876 4877 /* 4878 * Distinguish requests which really need access to full memory 4879 * reserves from oom victims which can live with a portion of it 4880 */ 4881 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4882 { 4883 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4884 return 0; 4885 if (gfp_mask & __GFP_MEMALLOC) 4886 return ALLOC_NO_WATERMARKS; 4887 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4888 return ALLOC_NO_WATERMARKS; 4889 if (!in_interrupt()) { 4890 if (current->flags & PF_MEMALLOC) 4891 return ALLOC_NO_WATERMARKS; 4892 else if (oom_reserves_allowed(current)) 4893 return ALLOC_OOM; 4894 } 4895 4896 return 0; 4897 } 4898 4899 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4900 { 4901 return !!__gfp_pfmemalloc_flags(gfp_mask); 4902 } 4903 4904 /* 4905 * Checks whether it makes sense to retry the reclaim to make a forward progress 4906 * for the given allocation request. 4907 * 4908 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4909 * without success, or when we couldn't even meet the watermark if we 4910 * reclaimed all remaining pages on the LRU lists. 4911 * 4912 * Returns true if a retry is viable or false to enter the oom path. 4913 */ 4914 static inline bool 4915 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4916 struct alloc_context *ac, int alloc_flags, 4917 bool did_some_progress, int *no_progress_loops) 4918 { 4919 struct zone *zone; 4920 struct zoneref *z; 4921 bool ret = false; 4922 4923 /* 4924 * Costly allocations might have made a progress but this doesn't mean 4925 * their order will become available due to high fragmentation so 4926 * always increment the no progress counter for them 4927 */ 4928 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4929 *no_progress_loops = 0; 4930 else 4931 (*no_progress_loops)++; 4932 4933 /* 4934 * Make sure we converge to OOM if we cannot make any progress 4935 * several times in the row. 4936 */ 4937 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4938 /* Before OOM, exhaust highatomic_reserve */ 4939 return unreserve_highatomic_pageblock(ac, true); 4940 } 4941 4942 /* 4943 * Keep reclaiming pages while there is a chance this will lead 4944 * somewhere. If none of the target zones can satisfy our allocation 4945 * request even if all reclaimable pages are considered then we are 4946 * screwed and have to go OOM. 4947 */ 4948 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4949 ac->highest_zoneidx, ac->nodemask) { 4950 unsigned long available; 4951 unsigned long reclaimable; 4952 unsigned long min_wmark = min_wmark_pages(zone); 4953 bool wmark; 4954 4955 available = reclaimable = zone_reclaimable_pages(zone); 4956 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4957 4958 /* 4959 * Would the allocation succeed if we reclaimed all 4960 * reclaimable pages? 4961 */ 4962 wmark = __zone_watermark_ok(zone, order, min_wmark, 4963 ac->highest_zoneidx, alloc_flags, available); 4964 trace_reclaim_retry_zone(z, order, reclaimable, 4965 available, min_wmark, *no_progress_loops, wmark); 4966 if (wmark) { 4967 ret = true; 4968 break; 4969 } 4970 } 4971 4972 /* 4973 * Memory allocation/reclaim might be called from a WQ context and the 4974 * current implementation of the WQ concurrency control doesn't 4975 * recognize that a particular WQ is congested if the worker thread is 4976 * looping without ever sleeping. Therefore we have to do a short sleep 4977 * here rather than calling cond_resched(). 4978 */ 4979 if (current->flags & PF_WQ_WORKER) 4980 schedule_timeout_uninterruptible(1); 4981 else 4982 cond_resched(); 4983 return ret; 4984 } 4985 4986 static inline bool 4987 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4988 { 4989 /* 4990 * It's possible that cpuset's mems_allowed and the nodemask from 4991 * mempolicy don't intersect. This should be normally dealt with by 4992 * policy_nodemask(), but it's possible to race with cpuset update in 4993 * such a way the check therein was true, and then it became false 4994 * before we got our cpuset_mems_cookie here. 4995 * This assumes that for all allocations, ac->nodemask can come only 4996 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4997 * when it does not intersect with the cpuset restrictions) or the 4998 * caller can deal with a violated nodemask. 4999 */ 5000 if (cpusets_enabled() && ac->nodemask && 5001 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 5002 ac->nodemask = NULL; 5003 return true; 5004 } 5005 5006 /* 5007 * When updating a task's mems_allowed or mempolicy nodemask, it is 5008 * possible to race with parallel threads in such a way that our 5009 * allocation can fail while the mask is being updated. If we are about 5010 * to fail, check if the cpuset changed during allocation and if so, 5011 * retry. 5012 */ 5013 if (read_mems_allowed_retry(cpuset_mems_cookie)) 5014 return true; 5015 5016 return false; 5017 } 5018 5019 static inline struct page * 5020 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 5021 struct alloc_context *ac) 5022 { 5023 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 5024 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 5025 struct page *page = NULL; 5026 unsigned int alloc_flags; 5027 unsigned long did_some_progress; 5028 enum compact_priority compact_priority; 5029 enum compact_result compact_result; 5030 int compaction_retries; 5031 int no_progress_loops; 5032 unsigned int cpuset_mems_cookie; 5033 unsigned int zonelist_iter_cookie; 5034 int reserve_flags; 5035 5036 /* 5037 * We also sanity check to catch abuse of atomic reserves being used by 5038 * callers that are not in atomic context. 5039 */ 5040 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 5041 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 5042 gfp_mask &= ~__GFP_ATOMIC; 5043 5044 restart: 5045 compaction_retries = 0; 5046 no_progress_loops = 0; 5047 compact_priority = DEF_COMPACT_PRIORITY; 5048 cpuset_mems_cookie = read_mems_allowed_begin(); 5049 zonelist_iter_cookie = zonelist_iter_begin(); 5050 5051 /* 5052 * The fast path uses conservative alloc_flags to succeed only until 5053 * kswapd needs to be woken up, and to avoid the cost of setting up 5054 * alloc_flags precisely. So we do that now. 5055 */ 5056 alloc_flags = gfp_to_alloc_flags(gfp_mask); 5057 5058 /* 5059 * We need to recalculate the starting point for the zonelist iterator 5060 * because we might have used different nodemask in the fast path, or 5061 * there was a cpuset modification and we are retrying - otherwise we 5062 * could end up iterating over non-eligible zones endlessly. 5063 */ 5064 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5065 ac->highest_zoneidx, ac->nodemask); 5066 if (!ac->preferred_zoneref->zone) 5067 goto nopage; 5068 5069 /* 5070 * Check for insane configurations where the cpuset doesn't contain 5071 * any suitable zone to satisfy the request - e.g. non-movable 5072 * GFP_HIGHUSER allocations from MOVABLE nodes only. 5073 */ 5074 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 5075 struct zoneref *z = first_zones_zonelist(ac->zonelist, 5076 ac->highest_zoneidx, 5077 &cpuset_current_mems_allowed); 5078 if (!z->zone) 5079 goto nopage; 5080 } 5081 5082 if (alloc_flags & ALLOC_KSWAPD) 5083 wake_all_kswapds(order, gfp_mask, ac); 5084 5085 /* 5086 * The adjusted alloc_flags might result in immediate success, so try 5087 * that first 5088 */ 5089 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5090 if (page) 5091 goto got_pg; 5092 5093 /* 5094 * For costly allocations, try direct compaction first, as it's likely 5095 * that we have enough base pages and don't need to reclaim. For non- 5096 * movable high-order allocations, do that as well, as compaction will 5097 * try prevent permanent fragmentation by migrating from blocks of the 5098 * same migratetype. 5099 * Don't try this for allocations that are allowed to ignore 5100 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 5101 */ 5102 if (can_direct_reclaim && 5103 (costly_order || 5104 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 5105 && !gfp_pfmemalloc_allowed(gfp_mask)) { 5106 page = __alloc_pages_direct_compact(gfp_mask, order, 5107 alloc_flags, ac, 5108 INIT_COMPACT_PRIORITY, 5109 &compact_result); 5110 if (page) 5111 goto got_pg; 5112 5113 /* 5114 * Checks for costly allocations with __GFP_NORETRY, which 5115 * includes some THP page fault allocations 5116 */ 5117 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 5118 /* 5119 * If allocating entire pageblock(s) and compaction 5120 * failed because all zones are below low watermarks 5121 * or is prohibited because it recently failed at this 5122 * order, fail immediately unless the allocator has 5123 * requested compaction and reclaim retry. 5124 * 5125 * Reclaim is 5126 * - potentially very expensive because zones are far 5127 * below their low watermarks or this is part of very 5128 * bursty high order allocations, 5129 * - not guaranteed to help because isolate_freepages() 5130 * may not iterate over freed pages as part of its 5131 * linear scan, and 5132 * - unlikely to make entire pageblocks free on its 5133 * own. 5134 */ 5135 if (compact_result == COMPACT_SKIPPED || 5136 compact_result == COMPACT_DEFERRED) 5137 goto nopage; 5138 5139 /* 5140 * Looks like reclaim/compaction is worth trying, but 5141 * sync compaction could be very expensive, so keep 5142 * using async compaction. 5143 */ 5144 compact_priority = INIT_COMPACT_PRIORITY; 5145 } 5146 } 5147 5148 retry: 5149 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 5150 if (alloc_flags & ALLOC_KSWAPD) 5151 wake_all_kswapds(order, gfp_mask, ac); 5152 5153 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 5154 if (reserve_flags) 5155 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 5156 (alloc_flags & ALLOC_KSWAPD); 5157 5158 /* 5159 * Reset the nodemask and zonelist iterators if memory policies can be 5160 * ignored. These allocations are high priority and system rather than 5161 * user oriented. 5162 */ 5163 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 5164 ac->nodemask = NULL; 5165 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5166 ac->highest_zoneidx, ac->nodemask); 5167 } 5168 5169 /* Attempt with potentially adjusted zonelist and alloc_flags */ 5170 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5171 if (page) 5172 goto got_pg; 5173 5174 /* Caller is not willing to reclaim, we can't balance anything */ 5175 if (!can_direct_reclaim) 5176 goto nopage; 5177 5178 /* Avoid recursion of direct reclaim */ 5179 if (current->flags & PF_MEMALLOC) 5180 goto nopage; 5181 5182 /* Try direct reclaim and then allocating */ 5183 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 5184 &did_some_progress); 5185 if (page) 5186 goto got_pg; 5187 5188 /* Try direct compaction and then allocating */ 5189 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 5190 compact_priority, &compact_result); 5191 if (page) 5192 goto got_pg; 5193 5194 /* Do not loop if specifically requested */ 5195 if (gfp_mask & __GFP_NORETRY) 5196 goto nopage; 5197 5198 /* 5199 * Do not retry costly high order allocations unless they are 5200 * __GFP_RETRY_MAYFAIL 5201 */ 5202 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 5203 goto nopage; 5204 5205 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 5206 did_some_progress > 0, &no_progress_loops)) 5207 goto retry; 5208 5209 /* 5210 * It doesn't make any sense to retry for the compaction if the order-0 5211 * reclaim is not able to make any progress because the current 5212 * implementation of the compaction depends on the sufficient amount 5213 * of free memory (see __compaction_suitable) 5214 */ 5215 if (did_some_progress > 0 && 5216 should_compact_retry(ac, order, alloc_flags, 5217 compact_result, &compact_priority, 5218 &compaction_retries)) 5219 goto retry; 5220 5221 5222 /* 5223 * Deal with possible cpuset update races or zonelist updates to avoid 5224 * a unnecessary OOM kill. 5225 */ 5226 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 5227 check_retry_zonelist(zonelist_iter_cookie)) 5228 goto restart; 5229 5230 /* Reclaim has failed us, start killing things */ 5231 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 5232 if (page) 5233 goto got_pg; 5234 5235 /* Avoid allocations with no watermarks from looping endlessly */ 5236 if (tsk_is_oom_victim(current) && 5237 (alloc_flags & ALLOC_OOM || 5238 (gfp_mask & __GFP_NOMEMALLOC))) 5239 goto nopage; 5240 5241 /* Retry as long as the OOM killer is making progress */ 5242 if (did_some_progress) { 5243 no_progress_loops = 0; 5244 goto retry; 5245 } 5246 5247 nopage: 5248 /* 5249 * Deal with possible cpuset update races or zonelist updates to avoid 5250 * a unnecessary OOM kill. 5251 */ 5252 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 5253 check_retry_zonelist(zonelist_iter_cookie)) 5254 goto restart; 5255 5256 /* 5257 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 5258 * we always retry 5259 */ 5260 if (gfp_mask & __GFP_NOFAIL) { 5261 /* 5262 * All existing users of the __GFP_NOFAIL are blockable, so warn 5263 * of any new users that actually require GFP_NOWAIT 5264 */ 5265 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 5266 goto fail; 5267 5268 /* 5269 * PF_MEMALLOC request from this context is rather bizarre 5270 * because we cannot reclaim anything and only can loop waiting 5271 * for somebody to do a work for us 5272 */ 5273 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 5274 5275 /* 5276 * non failing costly orders are a hard requirement which we 5277 * are not prepared for much so let's warn about these users 5278 * so that we can identify them and convert them to something 5279 * else. 5280 */ 5281 WARN_ON_ONCE_GFP(costly_order, gfp_mask); 5282 5283 /* 5284 * Help non-failing allocations by giving them access to memory 5285 * reserves but do not use ALLOC_NO_WATERMARKS because this 5286 * could deplete whole memory reserves which would just make 5287 * the situation worse 5288 */ 5289 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 5290 if (page) 5291 goto got_pg; 5292 5293 cond_resched(); 5294 goto retry; 5295 } 5296 fail: 5297 warn_alloc(gfp_mask, ac->nodemask, 5298 "page allocation failure: order:%u", order); 5299 got_pg: 5300 return page; 5301 } 5302 5303 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 5304 int preferred_nid, nodemask_t *nodemask, 5305 struct alloc_context *ac, gfp_t *alloc_gfp, 5306 unsigned int *alloc_flags) 5307 { 5308 ac->highest_zoneidx = gfp_zone(gfp_mask); 5309 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 5310 ac->nodemask = nodemask; 5311 ac->migratetype = gfp_migratetype(gfp_mask); 5312 5313 if (cpusets_enabled()) { 5314 *alloc_gfp |= __GFP_HARDWALL; 5315 /* 5316 * When we are in the interrupt context, it is irrelevant 5317 * to the current task context. It means that any node ok. 5318 */ 5319 if (in_task() && !ac->nodemask) 5320 ac->nodemask = &cpuset_current_mems_allowed; 5321 else 5322 *alloc_flags |= ALLOC_CPUSET; 5323 } 5324 5325 might_alloc(gfp_mask); 5326 5327 if (should_fail_alloc_page(gfp_mask, order)) 5328 return false; 5329 5330 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5331 5332 /* Dirty zone balancing only done in the fast path */ 5333 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5334 5335 /* 5336 * The preferred zone is used for statistics but crucially it is 5337 * also used as the starting point for the zonelist iterator. It 5338 * may get reset for allocations that ignore memory policies. 5339 */ 5340 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5341 ac->highest_zoneidx, ac->nodemask); 5342 5343 return true; 5344 } 5345 5346 /* 5347 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5348 * @gfp: GFP flags for the allocation 5349 * @preferred_nid: The preferred NUMA node ID to allocate from 5350 * @nodemask: Set of nodes to allocate from, may be NULL 5351 * @nr_pages: The number of pages desired on the list or array 5352 * @page_list: Optional list to store the allocated pages 5353 * @page_array: Optional array to store the pages 5354 * 5355 * This is a batched version of the page allocator that attempts to 5356 * allocate nr_pages quickly. Pages are added to page_list if page_list 5357 * is not NULL, otherwise it is assumed that the page_array is valid. 5358 * 5359 * For lists, nr_pages is the number of pages that should be allocated. 5360 * 5361 * For arrays, only NULL elements are populated with pages and nr_pages 5362 * is the maximum number of pages that will be stored in the array. 5363 * 5364 * Returns the number of pages on the list or array. 5365 */ 5366 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5367 nodemask_t *nodemask, int nr_pages, 5368 struct list_head *page_list, 5369 struct page **page_array) 5370 { 5371 struct page *page; 5372 unsigned long flags; 5373 unsigned long __maybe_unused UP_flags; 5374 struct zone *zone; 5375 struct zoneref *z; 5376 struct per_cpu_pages *pcp; 5377 struct list_head *pcp_list; 5378 struct alloc_context ac; 5379 gfp_t alloc_gfp; 5380 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5381 int nr_populated = 0, nr_account = 0; 5382 5383 /* 5384 * Skip populated array elements to determine if any pages need 5385 * to be allocated before disabling IRQs. 5386 */ 5387 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5388 nr_populated++; 5389 5390 /* No pages requested? */ 5391 if (unlikely(nr_pages <= 0)) 5392 goto out; 5393 5394 /* Already populated array? */ 5395 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5396 goto out; 5397 5398 /* Bulk allocator does not support memcg accounting. */ 5399 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT)) 5400 goto failed; 5401 5402 /* Use the single page allocator for one page. */ 5403 if (nr_pages - nr_populated == 1) 5404 goto failed; 5405 5406 #ifdef CONFIG_PAGE_OWNER 5407 /* 5408 * PAGE_OWNER may recurse into the allocator to allocate space to 5409 * save the stack with pagesets.lock held. Releasing/reacquiring 5410 * removes much of the performance benefit of bulk allocation so 5411 * force the caller to allocate one page at a time as it'll have 5412 * similar performance to added complexity to the bulk allocator. 5413 */ 5414 if (static_branch_unlikely(&page_owner_inited)) 5415 goto failed; 5416 #endif 5417 5418 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5419 gfp &= gfp_allowed_mask; 5420 alloc_gfp = gfp; 5421 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5422 goto out; 5423 gfp = alloc_gfp; 5424 5425 /* Find an allowed local zone that meets the low watermark. */ 5426 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5427 unsigned long mark; 5428 5429 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5430 !__cpuset_zone_allowed(zone, gfp)) { 5431 continue; 5432 } 5433 5434 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5435 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5436 goto failed; 5437 } 5438 5439 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5440 if (zone_watermark_fast(zone, 0, mark, 5441 zonelist_zone_idx(ac.preferred_zoneref), 5442 alloc_flags, gfp)) { 5443 break; 5444 } 5445 } 5446 5447 /* 5448 * If there are no allowed local zones that meets the watermarks then 5449 * try to allocate a single page and reclaim if necessary. 5450 */ 5451 if (unlikely(!zone)) 5452 goto failed; 5453 5454 /* Is a parallel drain in progress? */ 5455 pcp_trylock_prepare(UP_flags); 5456 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags); 5457 if (!pcp) 5458 goto failed_irq; 5459 5460 /* Attempt the batch allocation */ 5461 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5462 while (nr_populated < nr_pages) { 5463 5464 /* Skip existing pages */ 5465 if (page_array && page_array[nr_populated]) { 5466 nr_populated++; 5467 continue; 5468 } 5469 5470 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5471 pcp, pcp_list); 5472 if (unlikely(!page)) { 5473 /* Try and allocate at least one page */ 5474 if (!nr_account) { 5475 pcp_spin_unlock_irqrestore(pcp, flags); 5476 goto failed_irq; 5477 } 5478 break; 5479 } 5480 nr_account++; 5481 5482 prep_new_page(page, 0, gfp, 0); 5483 if (page_list) 5484 list_add(&page->lru, page_list); 5485 else 5486 page_array[nr_populated] = page; 5487 nr_populated++; 5488 } 5489 5490 pcp_spin_unlock_irqrestore(pcp, flags); 5491 pcp_trylock_finish(UP_flags); 5492 5493 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5494 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 5495 5496 out: 5497 return nr_populated; 5498 5499 failed_irq: 5500 pcp_trylock_finish(UP_flags); 5501 5502 failed: 5503 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5504 if (page) { 5505 if (page_list) 5506 list_add(&page->lru, page_list); 5507 else 5508 page_array[nr_populated] = page; 5509 nr_populated++; 5510 } 5511 5512 goto out; 5513 } 5514 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5515 5516 /* 5517 * This is the 'heart' of the zoned buddy allocator. 5518 */ 5519 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5520 nodemask_t *nodemask) 5521 { 5522 struct page *page; 5523 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5524 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5525 struct alloc_context ac = { }; 5526 5527 /* 5528 * There are several places where we assume that the order value is sane 5529 * so bail out early if the request is out of bound. 5530 */ 5531 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp)) 5532 return NULL; 5533 5534 gfp &= gfp_allowed_mask; 5535 /* 5536 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5537 * resp. GFP_NOIO which has to be inherited for all allocation requests 5538 * from a particular context which has been marked by 5539 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5540 * movable zones are not used during allocation. 5541 */ 5542 gfp = current_gfp_context(gfp); 5543 alloc_gfp = gfp; 5544 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5545 &alloc_gfp, &alloc_flags)) 5546 return NULL; 5547 5548 /* 5549 * Forbid the first pass from falling back to types that fragment 5550 * memory until all local zones are considered. 5551 */ 5552 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5553 5554 /* First allocation attempt */ 5555 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5556 if (likely(page)) 5557 goto out; 5558 5559 alloc_gfp = gfp; 5560 ac.spread_dirty_pages = false; 5561 5562 /* 5563 * Restore the original nodemask if it was potentially replaced with 5564 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5565 */ 5566 ac.nodemask = nodemask; 5567 5568 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5569 5570 out: 5571 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && 5572 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5573 __free_pages(page, order); 5574 page = NULL; 5575 } 5576 5577 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5578 kmsan_alloc_page(page, order, alloc_gfp); 5579 5580 return page; 5581 } 5582 EXPORT_SYMBOL(__alloc_pages); 5583 5584 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 5585 nodemask_t *nodemask) 5586 { 5587 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 5588 preferred_nid, nodemask); 5589 5590 if (page && order > 1) 5591 prep_transhuge_page(page); 5592 return (struct folio *)page; 5593 } 5594 EXPORT_SYMBOL(__folio_alloc); 5595 5596 /* 5597 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5598 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5599 * you need to access high mem. 5600 */ 5601 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5602 { 5603 struct page *page; 5604 5605 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5606 if (!page) 5607 return 0; 5608 return (unsigned long) page_address(page); 5609 } 5610 EXPORT_SYMBOL(__get_free_pages); 5611 5612 unsigned long get_zeroed_page(gfp_t gfp_mask) 5613 { 5614 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5615 } 5616 EXPORT_SYMBOL(get_zeroed_page); 5617 5618 /** 5619 * __free_pages - Free pages allocated with alloc_pages(). 5620 * @page: The page pointer returned from alloc_pages(). 5621 * @order: The order of the allocation. 5622 * 5623 * This function can free multi-page allocations that are not compound 5624 * pages. It does not check that the @order passed in matches that of 5625 * the allocation, so it is easy to leak memory. Freeing more memory 5626 * than was allocated will probably emit a warning. 5627 * 5628 * If the last reference to this page is speculative, it will be released 5629 * by put_page() which only frees the first page of a non-compound 5630 * allocation. To prevent the remaining pages from being leaked, we free 5631 * the subsequent pages here. If you want to use the page's reference 5632 * count to decide when to free the allocation, you should allocate a 5633 * compound page, and use put_page() instead of __free_pages(). 5634 * 5635 * Context: May be called in interrupt context or while holding a normal 5636 * spinlock, but not in NMI context or while holding a raw spinlock. 5637 */ 5638 void __free_pages(struct page *page, unsigned int order) 5639 { 5640 if (put_page_testzero(page)) 5641 free_the_page(page, order); 5642 else if (!PageHead(page)) 5643 while (order-- > 0) 5644 free_the_page(page + (1 << order), order); 5645 } 5646 EXPORT_SYMBOL(__free_pages); 5647 5648 void free_pages(unsigned long addr, unsigned int order) 5649 { 5650 if (addr != 0) { 5651 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5652 __free_pages(virt_to_page((void *)addr), order); 5653 } 5654 } 5655 5656 EXPORT_SYMBOL(free_pages); 5657 5658 /* 5659 * Page Fragment: 5660 * An arbitrary-length arbitrary-offset area of memory which resides 5661 * within a 0 or higher order page. Multiple fragments within that page 5662 * are individually refcounted, in the page's reference counter. 5663 * 5664 * The page_frag functions below provide a simple allocation framework for 5665 * page fragments. This is used by the network stack and network device 5666 * drivers to provide a backing region of memory for use as either an 5667 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5668 */ 5669 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5670 gfp_t gfp_mask) 5671 { 5672 struct page *page = NULL; 5673 gfp_t gfp = gfp_mask; 5674 5675 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5676 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5677 __GFP_NOMEMALLOC; 5678 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5679 PAGE_FRAG_CACHE_MAX_ORDER); 5680 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5681 #endif 5682 if (unlikely(!page)) 5683 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5684 5685 nc->va = page ? page_address(page) : NULL; 5686 5687 return page; 5688 } 5689 5690 void __page_frag_cache_drain(struct page *page, unsigned int count) 5691 { 5692 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5693 5694 if (page_ref_sub_and_test(page, count)) 5695 free_the_page(page, compound_order(page)); 5696 } 5697 EXPORT_SYMBOL(__page_frag_cache_drain); 5698 5699 void *page_frag_alloc_align(struct page_frag_cache *nc, 5700 unsigned int fragsz, gfp_t gfp_mask, 5701 unsigned int align_mask) 5702 { 5703 unsigned int size = PAGE_SIZE; 5704 struct page *page; 5705 int offset; 5706 5707 if (unlikely(!nc->va)) { 5708 refill: 5709 page = __page_frag_cache_refill(nc, gfp_mask); 5710 if (!page) 5711 return NULL; 5712 5713 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5714 /* if size can vary use size else just use PAGE_SIZE */ 5715 size = nc->size; 5716 #endif 5717 /* Even if we own the page, we do not use atomic_set(). 5718 * This would break get_page_unless_zero() users. 5719 */ 5720 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5721 5722 /* reset page count bias and offset to start of new frag */ 5723 nc->pfmemalloc = page_is_pfmemalloc(page); 5724 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5725 nc->offset = size; 5726 } 5727 5728 offset = nc->offset - fragsz; 5729 if (unlikely(offset < 0)) { 5730 page = virt_to_page(nc->va); 5731 5732 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5733 goto refill; 5734 5735 if (unlikely(nc->pfmemalloc)) { 5736 free_the_page(page, compound_order(page)); 5737 goto refill; 5738 } 5739 5740 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5741 /* if size can vary use size else just use PAGE_SIZE */ 5742 size = nc->size; 5743 #endif 5744 /* OK, page count is 0, we can safely set it */ 5745 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5746 5747 /* reset page count bias and offset to start of new frag */ 5748 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5749 offset = size - fragsz; 5750 if (unlikely(offset < 0)) { 5751 /* 5752 * The caller is trying to allocate a fragment 5753 * with fragsz > PAGE_SIZE but the cache isn't big 5754 * enough to satisfy the request, this may 5755 * happen in low memory conditions. 5756 * We don't release the cache page because 5757 * it could make memory pressure worse 5758 * so we simply return NULL here. 5759 */ 5760 return NULL; 5761 } 5762 } 5763 5764 nc->pagecnt_bias--; 5765 offset &= align_mask; 5766 nc->offset = offset; 5767 5768 return nc->va + offset; 5769 } 5770 EXPORT_SYMBOL(page_frag_alloc_align); 5771 5772 /* 5773 * Frees a page fragment allocated out of either a compound or order 0 page. 5774 */ 5775 void page_frag_free(void *addr) 5776 { 5777 struct page *page = virt_to_head_page(addr); 5778 5779 if (unlikely(put_page_testzero(page))) 5780 free_the_page(page, compound_order(page)); 5781 } 5782 EXPORT_SYMBOL(page_frag_free); 5783 5784 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5785 size_t size) 5786 { 5787 if (addr) { 5788 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 5789 struct page *page = virt_to_page((void *)addr); 5790 struct page *last = page + nr; 5791 5792 split_page_owner(page, 1 << order); 5793 split_page_memcg(page, 1 << order); 5794 while (page < --last) 5795 set_page_refcounted(last); 5796 5797 last = page + (1UL << order); 5798 for (page += nr; page < last; page++) 5799 __free_pages_ok(page, 0, FPI_TO_TAIL); 5800 } 5801 return (void *)addr; 5802 } 5803 5804 /** 5805 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5806 * @size: the number of bytes to allocate 5807 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5808 * 5809 * This function is similar to alloc_pages(), except that it allocates the 5810 * minimum number of pages to satisfy the request. alloc_pages() can only 5811 * allocate memory in power-of-two pages. 5812 * 5813 * This function is also limited by MAX_ORDER. 5814 * 5815 * Memory allocated by this function must be released by free_pages_exact(). 5816 * 5817 * Return: pointer to the allocated area or %NULL in case of error. 5818 */ 5819 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5820 { 5821 unsigned int order = get_order(size); 5822 unsigned long addr; 5823 5824 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5825 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5826 5827 addr = __get_free_pages(gfp_mask, order); 5828 return make_alloc_exact(addr, order, size); 5829 } 5830 EXPORT_SYMBOL(alloc_pages_exact); 5831 5832 /** 5833 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5834 * pages on a node. 5835 * @nid: the preferred node ID where memory should be allocated 5836 * @size: the number of bytes to allocate 5837 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5838 * 5839 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5840 * back. 5841 * 5842 * Return: pointer to the allocated area or %NULL in case of error. 5843 */ 5844 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5845 { 5846 unsigned int order = get_order(size); 5847 struct page *p; 5848 5849 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5850 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5851 5852 p = alloc_pages_node(nid, gfp_mask, order); 5853 if (!p) 5854 return NULL; 5855 return make_alloc_exact((unsigned long)page_address(p), order, size); 5856 } 5857 5858 /** 5859 * free_pages_exact - release memory allocated via alloc_pages_exact() 5860 * @virt: the value returned by alloc_pages_exact. 5861 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5862 * 5863 * Release the memory allocated by a previous call to alloc_pages_exact. 5864 */ 5865 void free_pages_exact(void *virt, size_t size) 5866 { 5867 unsigned long addr = (unsigned long)virt; 5868 unsigned long end = addr + PAGE_ALIGN(size); 5869 5870 while (addr < end) { 5871 free_page(addr); 5872 addr += PAGE_SIZE; 5873 } 5874 } 5875 EXPORT_SYMBOL(free_pages_exact); 5876 5877 /** 5878 * nr_free_zone_pages - count number of pages beyond high watermark 5879 * @offset: The zone index of the highest zone 5880 * 5881 * nr_free_zone_pages() counts the number of pages which are beyond the 5882 * high watermark within all zones at or below a given zone index. For each 5883 * zone, the number of pages is calculated as: 5884 * 5885 * nr_free_zone_pages = managed_pages - high_pages 5886 * 5887 * Return: number of pages beyond high watermark. 5888 */ 5889 static unsigned long nr_free_zone_pages(int offset) 5890 { 5891 struct zoneref *z; 5892 struct zone *zone; 5893 5894 /* Just pick one node, since fallback list is circular */ 5895 unsigned long sum = 0; 5896 5897 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5898 5899 for_each_zone_zonelist(zone, z, zonelist, offset) { 5900 unsigned long size = zone_managed_pages(zone); 5901 unsigned long high = high_wmark_pages(zone); 5902 if (size > high) 5903 sum += size - high; 5904 } 5905 5906 return sum; 5907 } 5908 5909 /** 5910 * nr_free_buffer_pages - count number of pages beyond high watermark 5911 * 5912 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5913 * watermark within ZONE_DMA and ZONE_NORMAL. 5914 * 5915 * Return: number of pages beyond high watermark within ZONE_DMA and 5916 * ZONE_NORMAL. 5917 */ 5918 unsigned long nr_free_buffer_pages(void) 5919 { 5920 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5921 } 5922 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5923 5924 static inline void show_node(struct zone *zone) 5925 { 5926 if (IS_ENABLED(CONFIG_NUMA)) 5927 printk("Node %d ", zone_to_nid(zone)); 5928 } 5929 5930 long si_mem_available(void) 5931 { 5932 long available; 5933 unsigned long pagecache; 5934 unsigned long wmark_low = 0; 5935 unsigned long pages[NR_LRU_LISTS]; 5936 unsigned long reclaimable; 5937 struct zone *zone; 5938 int lru; 5939 5940 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5941 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5942 5943 for_each_zone(zone) 5944 wmark_low += low_wmark_pages(zone); 5945 5946 /* 5947 * Estimate the amount of memory available for userspace allocations, 5948 * without causing swapping or OOM. 5949 */ 5950 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5951 5952 /* 5953 * Not all the page cache can be freed, otherwise the system will 5954 * start swapping or thrashing. Assume at least half of the page 5955 * cache, or the low watermark worth of cache, needs to stay. 5956 */ 5957 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5958 pagecache -= min(pagecache / 2, wmark_low); 5959 available += pagecache; 5960 5961 /* 5962 * Part of the reclaimable slab and other kernel memory consists of 5963 * items that are in use, and cannot be freed. Cap this estimate at the 5964 * low watermark. 5965 */ 5966 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5967 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5968 available += reclaimable - min(reclaimable / 2, wmark_low); 5969 5970 if (available < 0) 5971 available = 0; 5972 return available; 5973 } 5974 EXPORT_SYMBOL_GPL(si_mem_available); 5975 5976 void si_meminfo(struct sysinfo *val) 5977 { 5978 val->totalram = totalram_pages(); 5979 val->sharedram = global_node_page_state(NR_SHMEM); 5980 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5981 val->bufferram = nr_blockdev_pages(); 5982 val->totalhigh = totalhigh_pages(); 5983 val->freehigh = nr_free_highpages(); 5984 val->mem_unit = PAGE_SIZE; 5985 } 5986 5987 EXPORT_SYMBOL(si_meminfo); 5988 5989 #ifdef CONFIG_NUMA 5990 void si_meminfo_node(struct sysinfo *val, int nid) 5991 { 5992 int zone_type; /* needs to be signed */ 5993 unsigned long managed_pages = 0; 5994 unsigned long managed_highpages = 0; 5995 unsigned long free_highpages = 0; 5996 pg_data_t *pgdat = NODE_DATA(nid); 5997 5998 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5999 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 6000 val->totalram = managed_pages; 6001 val->sharedram = node_page_state(pgdat, NR_SHMEM); 6002 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 6003 #ifdef CONFIG_HIGHMEM 6004 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 6005 struct zone *zone = &pgdat->node_zones[zone_type]; 6006 6007 if (is_highmem(zone)) { 6008 managed_highpages += zone_managed_pages(zone); 6009 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 6010 } 6011 } 6012 val->totalhigh = managed_highpages; 6013 val->freehigh = free_highpages; 6014 #else 6015 val->totalhigh = managed_highpages; 6016 val->freehigh = free_highpages; 6017 #endif 6018 val->mem_unit = PAGE_SIZE; 6019 } 6020 #endif 6021 6022 /* 6023 * Determine whether the node should be displayed or not, depending on whether 6024 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 6025 */ 6026 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 6027 { 6028 if (!(flags & SHOW_MEM_FILTER_NODES)) 6029 return false; 6030 6031 /* 6032 * no node mask - aka implicit memory numa policy. Do not bother with 6033 * the synchronization - read_mems_allowed_begin - because we do not 6034 * have to be precise here. 6035 */ 6036 if (!nodemask) 6037 nodemask = &cpuset_current_mems_allowed; 6038 6039 return !node_isset(nid, *nodemask); 6040 } 6041 6042 #define K(x) ((x) << (PAGE_SHIFT-10)) 6043 6044 static void show_migration_types(unsigned char type) 6045 { 6046 static const char types[MIGRATE_TYPES] = { 6047 [MIGRATE_UNMOVABLE] = 'U', 6048 [MIGRATE_MOVABLE] = 'M', 6049 [MIGRATE_RECLAIMABLE] = 'E', 6050 [MIGRATE_HIGHATOMIC] = 'H', 6051 #ifdef CONFIG_CMA 6052 [MIGRATE_CMA] = 'C', 6053 #endif 6054 #ifdef CONFIG_MEMORY_ISOLATION 6055 [MIGRATE_ISOLATE] = 'I', 6056 #endif 6057 }; 6058 char tmp[MIGRATE_TYPES + 1]; 6059 char *p = tmp; 6060 int i; 6061 6062 for (i = 0; i < MIGRATE_TYPES; i++) { 6063 if (type & (1 << i)) 6064 *p++ = types[i]; 6065 } 6066 6067 *p = '\0'; 6068 printk(KERN_CONT "(%s) ", tmp); 6069 } 6070 6071 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx) 6072 { 6073 int zone_idx; 6074 for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++) 6075 if (zone_managed_pages(pgdat->node_zones + zone_idx)) 6076 return true; 6077 return false; 6078 } 6079 6080 /* 6081 * Show free area list (used inside shift_scroll-lock stuff) 6082 * We also calculate the percentage fragmentation. We do this by counting the 6083 * memory on each free list with the exception of the first item on the list. 6084 * 6085 * Bits in @filter: 6086 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 6087 * cpuset. 6088 */ 6089 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx) 6090 { 6091 unsigned long free_pcp = 0; 6092 int cpu, nid; 6093 struct zone *zone; 6094 pg_data_t *pgdat; 6095 6096 for_each_populated_zone(zone) { 6097 if (zone_idx(zone) > max_zone_idx) 6098 continue; 6099 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6100 continue; 6101 6102 for_each_online_cpu(cpu) 6103 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6104 } 6105 6106 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 6107 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 6108 " unevictable:%lu dirty:%lu writeback:%lu\n" 6109 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 6110 " mapped:%lu shmem:%lu pagetables:%lu\n" 6111 " sec_pagetables:%lu bounce:%lu\n" 6112 " kernel_misc_reclaimable:%lu\n" 6113 " free:%lu free_pcp:%lu free_cma:%lu\n", 6114 global_node_page_state(NR_ACTIVE_ANON), 6115 global_node_page_state(NR_INACTIVE_ANON), 6116 global_node_page_state(NR_ISOLATED_ANON), 6117 global_node_page_state(NR_ACTIVE_FILE), 6118 global_node_page_state(NR_INACTIVE_FILE), 6119 global_node_page_state(NR_ISOLATED_FILE), 6120 global_node_page_state(NR_UNEVICTABLE), 6121 global_node_page_state(NR_FILE_DIRTY), 6122 global_node_page_state(NR_WRITEBACK), 6123 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 6124 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 6125 global_node_page_state(NR_FILE_MAPPED), 6126 global_node_page_state(NR_SHMEM), 6127 global_node_page_state(NR_PAGETABLE), 6128 global_node_page_state(NR_SECONDARY_PAGETABLE), 6129 global_zone_page_state(NR_BOUNCE), 6130 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), 6131 global_zone_page_state(NR_FREE_PAGES), 6132 free_pcp, 6133 global_zone_page_state(NR_FREE_CMA_PAGES)); 6134 6135 for_each_online_pgdat(pgdat) { 6136 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 6137 continue; 6138 if (!node_has_managed_zones(pgdat, max_zone_idx)) 6139 continue; 6140 6141 printk("Node %d" 6142 " active_anon:%lukB" 6143 " inactive_anon:%lukB" 6144 " active_file:%lukB" 6145 " inactive_file:%lukB" 6146 " unevictable:%lukB" 6147 " isolated(anon):%lukB" 6148 " isolated(file):%lukB" 6149 " mapped:%lukB" 6150 " dirty:%lukB" 6151 " writeback:%lukB" 6152 " shmem:%lukB" 6153 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6154 " shmem_thp: %lukB" 6155 " shmem_pmdmapped: %lukB" 6156 " anon_thp: %lukB" 6157 #endif 6158 " writeback_tmp:%lukB" 6159 " kernel_stack:%lukB" 6160 #ifdef CONFIG_SHADOW_CALL_STACK 6161 " shadow_call_stack:%lukB" 6162 #endif 6163 " pagetables:%lukB" 6164 " sec_pagetables:%lukB" 6165 " all_unreclaimable? %s" 6166 "\n", 6167 pgdat->node_id, 6168 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 6169 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 6170 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 6171 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 6172 K(node_page_state(pgdat, NR_UNEVICTABLE)), 6173 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 6174 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 6175 K(node_page_state(pgdat, NR_FILE_MAPPED)), 6176 K(node_page_state(pgdat, NR_FILE_DIRTY)), 6177 K(node_page_state(pgdat, NR_WRITEBACK)), 6178 K(node_page_state(pgdat, NR_SHMEM)), 6179 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6180 K(node_page_state(pgdat, NR_SHMEM_THPS)), 6181 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 6182 K(node_page_state(pgdat, NR_ANON_THPS)), 6183 #endif 6184 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 6185 node_page_state(pgdat, NR_KERNEL_STACK_KB), 6186 #ifdef CONFIG_SHADOW_CALL_STACK 6187 node_page_state(pgdat, NR_KERNEL_SCS_KB), 6188 #endif 6189 K(node_page_state(pgdat, NR_PAGETABLE)), 6190 K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)), 6191 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 6192 "yes" : "no"); 6193 } 6194 6195 for_each_populated_zone(zone) { 6196 int i; 6197 6198 if (zone_idx(zone) > max_zone_idx) 6199 continue; 6200 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6201 continue; 6202 6203 free_pcp = 0; 6204 for_each_online_cpu(cpu) 6205 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6206 6207 show_node(zone); 6208 printk(KERN_CONT 6209 "%s" 6210 " free:%lukB" 6211 " boost:%lukB" 6212 " min:%lukB" 6213 " low:%lukB" 6214 " high:%lukB" 6215 " reserved_highatomic:%luKB" 6216 " active_anon:%lukB" 6217 " inactive_anon:%lukB" 6218 " active_file:%lukB" 6219 " inactive_file:%lukB" 6220 " unevictable:%lukB" 6221 " writepending:%lukB" 6222 " present:%lukB" 6223 " managed:%lukB" 6224 " mlocked:%lukB" 6225 " bounce:%lukB" 6226 " free_pcp:%lukB" 6227 " local_pcp:%ukB" 6228 " free_cma:%lukB" 6229 "\n", 6230 zone->name, 6231 K(zone_page_state(zone, NR_FREE_PAGES)), 6232 K(zone->watermark_boost), 6233 K(min_wmark_pages(zone)), 6234 K(low_wmark_pages(zone)), 6235 K(high_wmark_pages(zone)), 6236 K(zone->nr_reserved_highatomic), 6237 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 6238 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 6239 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 6240 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 6241 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 6242 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 6243 K(zone->present_pages), 6244 K(zone_managed_pages(zone)), 6245 K(zone_page_state(zone, NR_MLOCK)), 6246 K(zone_page_state(zone, NR_BOUNCE)), 6247 K(free_pcp), 6248 K(this_cpu_read(zone->per_cpu_pageset->count)), 6249 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 6250 printk("lowmem_reserve[]:"); 6251 for (i = 0; i < MAX_NR_ZONES; i++) 6252 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 6253 printk(KERN_CONT "\n"); 6254 } 6255 6256 for_each_populated_zone(zone) { 6257 unsigned int order; 6258 unsigned long nr[MAX_ORDER], flags, total = 0; 6259 unsigned char types[MAX_ORDER]; 6260 6261 if (zone_idx(zone) > max_zone_idx) 6262 continue; 6263 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6264 continue; 6265 show_node(zone); 6266 printk(KERN_CONT "%s: ", zone->name); 6267 6268 spin_lock_irqsave(&zone->lock, flags); 6269 for (order = 0; order < MAX_ORDER; order++) { 6270 struct free_area *area = &zone->free_area[order]; 6271 int type; 6272 6273 nr[order] = area->nr_free; 6274 total += nr[order] << order; 6275 6276 types[order] = 0; 6277 for (type = 0; type < MIGRATE_TYPES; type++) { 6278 if (!free_area_empty(area, type)) 6279 types[order] |= 1 << type; 6280 } 6281 } 6282 spin_unlock_irqrestore(&zone->lock, flags); 6283 for (order = 0; order < MAX_ORDER; order++) { 6284 printk(KERN_CONT "%lu*%lukB ", 6285 nr[order], K(1UL) << order); 6286 if (nr[order]) 6287 show_migration_types(types[order]); 6288 } 6289 printk(KERN_CONT "= %lukB\n", K(total)); 6290 } 6291 6292 for_each_online_node(nid) { 6293 if (show_mem_node_skip(filter, nid, nodemask)) 6294 continue; 6295 hugetlb_show_meminfo_node(nid); 6296 } 6297 6298 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 6299 6300 show_swap_cache_info(); 6301 } 6302 6303 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 6304 { 6305 zoneref->zone = zone; 6306 zoneref->zone_idx = zone_idx(zone); 6307 } 6308 6309 /* 6310 * Builds allocation fallback zone lists. 6311 * 6312 * Add all populated zones of a node to the zonelist. 6313 */ 6314 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 6315 { 6316 struct zone *zone; 6317 enum zone_type zone_type = MAX_NR_ZONES; 6318 int nr_zones = 0; 6319 6320 do { 6321 zone_type--; 6322 zone = pgdat->node_zones + zone_type; 6323 if (populated_zone(zone)) { 6324 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 6325 check_highest_zone(zone_type); 6326 } 6327 } while (zone_type); 6328 6329 return nr_zones; 6330 } 6331 6332 #ifdef CONFIG_NUMA 6333 6334 static int __parse_numa_zonelist_order(char *s) 6335 { 6336 /* 6337 * We used to support different zonelists modes but they turned 6338 * out to be just not useful. Let's keep the warning in place 6339 * if somebody still use the cmd line parameter so that we do 6340 * not fail it silently 6341 */ 6342 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 6343 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 6344 return -EINVAL; 6345 } 6346 return 0; 6347 } 6348 6349 char numa_zonelist_order[] = "Node"; 6350 6351 /* 6352 * sysctl handler for numa_zonelist_order 6353 */ 6354 int numa_zonelist_order_handler(struct ctl_table *table, int write, 6355 void *buffer, size_t *length, loff_t *ppos) 6356 { 6357 if (write) 6358 return __parse_numa_zonelist_order(buffer); 6359 return proc_dostring(table, write, buffer, length, ppos); 6360 } 6361 6362 6363 static int node_load[MAX_NUMNODES]; 6364 6365 /** 6366 * find_next_best_node - find the next node that should appear in a given node's fallback list 6367 * @node: node whose fallback list we're appending 6368 * @used_node_mask: nodemask_t of already used nodes 6369 * 6370 * We use a number of factors to determine which is the next node that should 6371 * appear on a given node's fallback list. The node should not have appeared 6372 * already in @node's fallback list, and it should be the next closest node 6373 * according to the distance array (which contains arbitrary distance values 6374 * from each node to each node in the system), and should also prefer nodes 6375 * with no CPUs, since presumably they'll have very little allocation pressure 6376 * on them otherwise. 6377 * 6378 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 6379 */ 6380 int find_next_best_node(int node, nodemask_t *used_node_mask) 6381 { 6382 int n, val; 6383 int min_val = INT_MAX; 6384 int best_node = NUMA_NO_NODE; 6385 6386 /* Use the local node if we haven't already */ 6387 if (!node_isset(node, *used_node_mask)) { 6388 node_set(node, *used_node_mask); 6389 return node; 6390 } 6391 6392 for_each_node_state(n, N_MEMORY) { 6393 6394 /* Don't want a node to appear more than once */ 6395 if (node_isset(n, *used_node_mask)) 6396 continue; 6397 6398 /* Use the distance array to find the distance */ 6399 val = node_distance(node, n); 6400 6401 /* Penalize nodes under us ("prefer the next node") */ 6402 val += (n < node); 6403 6404 /* Give preference to headless and unused nodes */ 6405 if (!cpumask_empty(cpumask_of_node(n))) 6406 val += PENALTY_FOR_NODE_WITH_CPUS; 6407 6408 /* Slight preference for less loaded node */ 6409 val *= MAX_NUMNODES; 6410 val += node_load[n]; 6411 6412 if (val < min_val) { 6413 min_val = val; 6414 best_node = n; 6415 } 6416 } 6417 6418 if (best_node >= 0) 6419 node_set(best_node, *used_node_mask); 6420 6421 return best_node; 6422 } 6423 6424 6425 /* 6426 * Build zonelists ordered by node and zones within node. 6427 * This results in maximum locality--normal zone overflows into local 6428 * DMA zone, if any--but risks exhausting DMA zone. 6429 */ 6430 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6431 unsigned nr_nodes) 6432 { 6433 struct zoneref *zonerefs; 6434 int i; 6435 6436 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6437 6438 for (i = 0; i < nr_nodes; i++) { 6439 int nr_zones; 6440 6441 pg_data_t *node = NODE_DATA(node_order[i]); 6442 6443 nr_zones = build_zonerefs_node(node, zonerefs); 6444 zonerefs += nr_zones; 6445 } 6446 zonerefs->zone = NULL; 6447 zonerefs->zone_idx = 0; 6448 } 6449 6450 /* 6451 * Build gfp_thisnode zonelists 6452 */ 6453 static void build_thisnode_zonelists(pg_data_t *pgdat) 6454 { 6455 struct zoneref *zonerefs; 6456 int nr_zones; 6457 6458 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6459 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6460 zonerefs += nr_zones; 6461 zonerefs->zone = NULL; 6462 zonerefs->zone_idx = 0; 6463 } 6464 6465 /* 6466 * Build zonelists ordered by zone and nodes within zones. 6467 * This results in conserving DMA zone[s] until all Normal memory is 6468 * exhausted, but results in overflowing to remote node while memory 6469 * may still exist in local DMA zone. 6470 */ 6471 6472 static void build_zonelists(pg_data_t *pgdat) 6473 { 6474 static int node_order[MAX_NUMNODES]; 6475 int node, nr_nodes = 0; 6476 nodemask_t used_mask = NODE_MASK_NONE; 6477 int local_node, prev_node; 6478 6479 /* NUMA-aware ordering of nodes */ 6480 local_node = pgdat->node_id; 6481 prev_node = local_node; 6482 6483 memset(node_order, 0, sizeof(node_order)); 6484 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6485 /* 6486 * We don't want to pressure a particular node. 6487 * So adding penalty to the first node in same 6488 * distance group to make it round-robin. 6489 */ 6490 if (node_distance(local_node, node) != 6491 node_distance(local_node, prev_node)) 6492 node_load[node] += 1; 6493 6494 node_order[nr_nodes++] = node; 6495 prev_node = node; 6496 } 6497 6498 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6499 build_thisnode_zonelists(pgdat); 6500 pr_info("Fallback order for Node %d: ", local_node); 6501 for (node = 0; node < nr_nodes; node++) 6502 pr_cont("%d ", node_order[node]); 6503 pr_cont("\n"); 6504 } 6505 6506 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6507 /* 6508 * Return node id of node used for "local" allocations. 6509 * I.e., first node id of first zone in arg node's generic zonelist. 6510 * Used for initializing percpu 'numa_mem', which is used primarily 6511 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6512 */ 6513 int local_memory_node(int node) 6514 { 6515 struct zoneref *z; 6516 6517 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6518 gfp_zone(GFP_KERNEL), 6519 NULL); 6520 return zone_to_nid(z->zone); 6521 } 6522 #endif 6523 6524 static void setup_min_unmapped_ratio(void); 6525 static void setup_min_slab_ratio(void); 6526 #else /* CONFIG_NUMA */ 6527 6528 static void build_zonelists(pg_data_t *pgdat) 6529 { 6530 int node, local_node; 6531 struct zoneref *zonerefs; 6532 int nr_zones; 6533 6534 local_node = pgdat->node_id; 6535 6536 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6537 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6538 zonerefs += nr_zones; 6539 6540 /* 6541 * Now we build the zonelist so that it contains the zones 6542 * of all the other nodes. 6543 * We don't want to pressure a particular node, so when 6544 * building the zones for node N, we make sure that the 6545 * zones coming right after the local ones are those from 6546 * node N+1 (modulo N) 6547 */ 6548 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6549 if (!node_online(node)) 6550 continue; 6551 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6552 zonerefs += nr_zones; 6553 } 6554 for (node = 0; node < local_node; node++) { 6555 if (!node_online(node)) 6556 continue; 6557 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6558 zonerefs += nr_zones; 6559 } 6560 6561 zonerefs->zone = NULL; 6562 zonerefs->zone_idx = 0; 6563 } 6564 6565 #endif /* CONFIG_NUMA */ 6566 6567 /* 6568 * Boot pageset table. One per cpu which is going to be used for all 6569 * zones and all nodes. The parameters will be set in such a way 6570 * that an item put on a list will immediately be handed over to 6571 * the buddy list. This is safe since pageset manipulation is done 6572 * with interrupts disabled. 6573 * 6574 * The boot_pagesets must be kept even after bootup is complete for 6575 * unused processors and/or zones. They do play a role for bootstrapping 6576 * hotplugged processors. 6577 * 6578 * zoneinfo_show() and maybe other functions do 6579 * not check if the processor is online before following the pageset pointer. 6580 * Other parts of the kernel may not check if the zone is available. 6581 */ 6582 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 6583 /* These effectively disable the pcplists in the boot pageset completely */ 6584 #define BOOT_PAGESET_HIGH 0 6585 #define BOOT_PAGESET_BATCH 1 6586 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 6587 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 6588 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6589 6590 static void __build_all_zonelists(void *data) 6591 { 6592 int nid; 6593 int __maybe_unused cpu; 6594 pg_data_t *self = data; 6595 6596 write_seqlock(&zonelist_update_seq); 6597 6598 #ifdef CONFIG_NUMA 6599 memset(node_load, 0, sizeof(node_load)); 6600 #endif 6601 6602 /* 6603 * This node is hotadded and no memory is yet present. So just 6604 * building zonelists is fine - no need to touch other nodes. 6605 */ 6606 if (self && !node_online(self->node_id)) { 6607 build_zonelists(self); 6608 } else { 6609 /* 6610 * All possible nodes have pgdat preallocated 6611 * in free_area_init 6612 */ 6613 for_each_node(nid) { 6614 pg_data_t *pgdat = NODE_DATA(nid); 6615 6616 build_zonelists(pgdat); 6617 } 6618 6619 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6620 /* 6621 * We now know the "local memory node" for each node-- 6622 * i.e., the node of the first zone in the generic zonelist. 6623 * Set up numa_mem percpu variable for on-line cpus. During 6624 * boot, only the boot cpu should be on-line; we'll init the 6625 * secondary cpus' numa_mem as they come on-line. During 6626 * node/memory hotplug, we'll fixup all on-line cpus. 6627 */ 6628 for_each_online_cpu(cpu) 6629 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6630 #endif 6631 } 6632 6633 write_sequnlock(&zonelist_update_seq); 6634 } 6635 6636 static noinline void __init 6637 build_all_zonelists_init(void) 6638 { 6639 int cpu; 6640 6641 __build_all_zonelists(NULL); 6642 6643 /* 6644 * Initialize the boot_pagesets that are going to be used 6645 * for bootstrapping processors. The real pagesets for 6646 * each zone will be allocated later when the per cpu 6647 * allocator is available. 6648 * 6649 * boot_pagesets are used also for bootstrapping offline 6650 * cpus if the system is already booted because the pagesets 6651 * are needed to initialize allocators on a specific cpu too. 6652 * F.e. the percpu allocator needs the page allocator which 6653 * needs the percpu allocator in order to allocate its pagesets 6654 * (a chicken-egg dilemma). 6655 */ 6656 for_each_possible_cpu(cpu) 6657 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 6658 6659 mminit_verify_zonelist(); 6660 cpuset_init_current_mems_allowed(); 6661 } 6662 6663 /* 6664 * unless system_state == SYSTEM_BOOTING. 6665 * 6666 * __ref due to call of __init annotated helper build_all_zonelists_init 6667 * [protected by SYSTEM_BOOTING]. 6668 */ 6669 void __ref build_all_zonelists(pg_data_t *pgdat) 6670 { 6671 unsigned long vm_total_pages; 6672 6673 if (system_state == SYSTEM_BOOTING) { 6674 build_all_zonelists_init(); 6675 } else { 6676 __build_all_zonelists(pgdat); 6677 /* cpuset refresh routine should be here */ 6678 } 6679 /* Get the number of free pages beyond high watermark in all zones. */ 6680 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6681 /* 6682 * Disable grouping by mobility if the number of pages in the 6683 * system is too low to allow the mechanism to work. It would be 6684 * more accurate, but expensive to check per-zone. This check is 6685 * made on memory-hotadd so a system can start with mobility 6686 * disabled and enable it later 6687 */ 6688 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6689 page_group_by_mobility_disabled = 1; 6690 else 6691 page_group_by_mobility_disabled = 0; 6692 6693 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6694 nr_online_nodes, 6695 page_group_by_mobility_disabled ? "off" : "on", 6696 vm_total_pages); 6697 #ifdef CONFIG_NUMA 6698 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6699 #endif 6700 } 6701 6702 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6703 static bool __meminit 6704 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6705 { 6706 static struct memblock_region *r; 6707 6708 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6709 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6710 for_each_mem_region(r) { 6711 if (*pfn < memblock_region_memory_end_pfn(r)) 6712 break; 6713 } 6714 } 6715 if (*pfn >= memblock_region_memory_base_pfn(r) && 6716 memblock_is_mirror(r)) { 6717 *pfn = memblock_region_memory_end_pfn(r); 6718 return true; 6719 } 6720 } 6721 return false; 6722 } 6723 6724 /* 6725 * Initially all pages are reserved - free ones are freed 6726 * up by memblock_free_all() once the early boot process is 6727 * done. Non-atomic initialization, single-pass. 6728 * 6729 * All aligned pageblocks are initialized to the specified migratetype 6730 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6731 * zone stats (e.g., nr_isolate_pageblock) are touched. 6732 */ 6733 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6734 unsigned long start_pfn, unsigned long zone_end_pfn, 6735 enum meminit_context context, 6736 struct vmem_altmap *altmap, int migratetype) 6737 { 6738 unsigned long pfn, end_pfn = start_pfn + size; 6739 struct page *page; 6740 6741 if (highest_memmap_pfn < end_pfn - 1) 6742 highest_memmap_pfn = end_pfn - 1; 6743 6744 #ifdef CONFIG_ZONE_DEVICE 6745 /* 6746 * Honor reservation requested by the driver for this ZONE_DEVICE 6747 * memory. We limit the total number of pages to initialize to just 6748 * those that might contain the memory mapping. We will defer the 6749 * ZONE_DEVICE page initialization until after we have released 6750 * the hotplug lock. 6751 */ 6752 if (zone == ZONE_DEVICE) { 6753 if (!altmap) 6754 return; 6755 6756 if (start_pfn == altmap->base_pfn) 6757 start_pfn += altmap->reserve; 6758 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6759 } 6760 #endif 6761 6762 for (pfn = start_pfn; pfn < end_pfn; ) { 6763 /* 6764 * There can be holes in boot-time mem_map[]s handed to this 6765 * function. They do not exist on hotplugged memory. 6766 */ 6767 if (context == MEMINIT_EARLY) { 6768 if (overlap_memmap_init(zone, &pfn)) 6769 continue; 6770 if (defer_init(nid, pfn, zone_end_pfn)) 6771 break; 6772 } 6773 6774 page = pfn_to_page(pfn); 6775 __init_single_page(page, pfn, zone, nid); 6776 if (context == MEMINIT_HOTPLUG) 6777 __SetPageReserved(page); 6778 6779 /* 6780 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6781 * such that unmovable allocations won't be scattered all 6782 * over the place during system boot. 6783 */ 6784 if (pageblock_aligned(pfn)) { 6785 set_pageblock_migratetype(page, migratetype); 6786 cond_resched(); 6787 } 6788 pfn++; 6789 } 6790 } 6791 6792 #ifdef CONFIG_ZONE_DEVICE 6793 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, 6794 unsigned long zone_idx, int nid, 6795 struct dev_pagemap *pgmap) 6796 { 6797 6798 __init_single_page(page, pfn, zone_idx, nid); 6799 6800 /* 6801 * Mark page reserved as it will need to wait for onlining 6802 * phase for it to be fully associated with a zone. 6803 * 6804 * We can use the non-atomic __set_bit operation for setting 6805 * the flag as we are still initializing the pages. 6806 */ 6807 __SetPageReserved(page); 6808 6809 /* 6810 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6811 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6812 * ever freed or placed on a driver-private list. 6813 */ 6814 page->pgmap = pgmap; 6815 page->zone_device_data = NULL; 6816 6817 /* 6818 * Mark the block movable so that blocks are reserved for 6819 * movable at startup. This will force kernel allocations 6820 * to reserve their blocks rather than leaking throughout 6821 * the address space during boot when many long-lived 6822 * kernel allocations are made. 6823 * 6824 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6825 * because this is done early in section_activate() 6826 */ 6827 if (pageblock_aligned(pfn)) { 6828 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6829 cond_resched(); 6830 } 6831 6832 /* 6833 * ZONE_DEVICE pages are released directly to the driver page allocator 6834 * which will set the page count to 1 when allocating the page. 6835 */ 6836 if (pgmap->type == MEMORY_DEVICE_PRIVATE || 6837 pgmap->type == MEMORY_DEVICE_COHERENT) 6838 set_page_count(page, 0); 6839 } 6840 6841 /* 6842 * With compound page geometry and when struct pages are stored in ram most 6843 * tail pages are reused. Consequently, the amount of unique struct pages to 6844 * initialize is a lot smaller that the total amount of struct pages being 6845 * mapped. This is a paired / mild layering violation with explicit knowledge 6846 * of how the sparse_vmemmap internals handle compound pages in the lack 6847 * of an altmap. See vmemmap_populate_compound_pages(). 6848 */ 6849 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, 6850 unsigned long nr_pages) 6851 { 6852 return is_power_of_2(sizeof(struct page)) && 6853 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages; 6854 } 6855 6856 static void __ref memmap_init_compound(struct page *head, 6857 unsigned long head_pfn, 6858 unsigned long zone_idx, int nid, 6859 struct dev_pagemap *pgmap, 6860 unsigned long nr_pages) 6861 { 6862 unsigned long pfn, end_pfn = head_pfn + nr_pages; 6863 unsigned int order = pgmap->vmemmap_shift; 6864 6865 __SetPageHead(head); 6866 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { 6867 struct page *page = pfn_to_page(pfn); 6868 6869 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6870 prep_compound_tail(head, pfn - head_pfn); 6871 set_page_count(page, 0); 6872 6873 /* 6874 * The first tail page stores compound_mapcount_ptr() and 6875 * compound_order() and the second tail page stores 6876 * compound_pincount_ptr(). Call prep_compound_head() after 6877 * the first and second tail pages have been initialized to 6878 * not have the data overwritten. 6879 */ 6880 if (pfn == head_pfn + 2) 6881 prep_compound_head(head, order); 6882 } 6883 } 6884 6885 void __ref memmap_init_zone_device(struct zone *zone, 6886 unsigned long start_pfn, 6887 unsigned long nr_pages, 6888 struct dev_pagemap *pgmap) 6889 { 6890 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6891 struct pglist_data *pgdat = zone->zone_pgdat; 6892 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6893 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); 6894 unsigned long zone_idx = zone_idx(zone); 6895 unsigned long start = jiffies; 6896 int nid = pgdat->node_id; 6897 6898 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE)) 6899 return; 6900 6901 /* 6902 * The call to memmap_init should have already taken care 6903 * of the pages reserved for the memmap, so we can just jump to 6904 * the end of that region and start processing the device pages. 6905 */ 6906 if (altmap) { 6907 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6908 nr_pages = end_pfn - start_pfn; 6909 } 6910 6911 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { 6912 struct page *page = pfn_to_page(pfn); 6913 6914 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6915 6916 if (pfns_per_compound == 1) 6917 continue; 6918 6919 memmap_init_compound(page, pfn, zone_idx, nid, pgmap, 6920 compound_nr_pages(altmap, pfns_per_compound)); 6921 } 6922 6923 pr_info("%s initialised %lu pages in %ums\n", __func__, 6924 nr_pages, jiffies_to_msecs(jiffies - start)); 6925 } 6926 6927 #endif 6928 static void __meminit zone_init_free_lists(struct zone *zone) 6929 { 6930 unsigned int order, t; 6931 for_each_migratetype_order(order, t) { 6932 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6933 zone->free_area[order].nr_free = 0; 6934 } 6935 } 6936 6937 /* 6938 * Only struct pages that correspond to ranges defined by memblock.memory 6939 * are zeroed and initialized by going through __init_single_page() during 6940 * memmap_init_zone_range(). 6941 * 6942 * But, there could be struct pages that correspond to holes in 6943 * memblock.memory. This can happen because of the following reasons: 6944 * - physical memory bank size is not necessarily the exact multiple of the 6945 * arbitrary section size 6946 * - early reserved memory may not be listed in memblock.memory 6947 * - memory layouts defined with memmap= kernel parameter may not align 6948 * nicely with memmap sections 6949 * 6950 * Explicitly initialize those struct pages so that: 6951 * - PG_Reserved is set 6952 * - zone and node links point to zone and node that span the page if the 6953 * hole is in the middle of a zone 6954 * - zone and node links point to adjacent zone/node if the hole falls on 6955 * the zone boundary; the pages in such holes will be prepended to the 6956 * zone/node above the hole except for the trailing pages in the last 6957 * section that will be appended to the zone/node below. 6958 */ 6959 static void __init init_unavailable_range(unsigned long spfn, 6960 unsigned long epfn, 6961 int zone, int node) 6962 { 6963 unsigned long pfn; 6964 u64 pgcnt = 0; 6965 6966 for (pfn = spfn; pfn < epfn; pfn++) { 6967 if (!pfn_valid(pageblock_start_pfn(pfn))) { 6968 pfn = pageblock_end_pfn(pfn) - 1; 6969 continue; 6970 } 6971 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 6972 __SetPageReserved(pfn_to_page(pfn)); 6973 pgcnt++; 6974 } 6975 6976 if (pgcnt) 6977 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 6978 node, zone_names[zone], pgcnt); 6979 } 6980 6981 static void __init memmap_init_zone_range(struct zone *zone, 6982 unsigned long start_pfn, 6983 unsigned long end_pfn, 6984 unsigned long *hole_pfn) 6985 { 6986 unsigned long zone_start_pfn = zone->zone_start_pfn; 6987 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6988 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6989 6990 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 6991 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 6992 6993 if (start_pfn >= end_pfn) 6994 return; 6995 6996 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 6997 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6998 6999 if (*hole_pfn < start_pfn) 7000 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 7001 7002 *hole_pfn = end_pfn; 7003 } 7004 7005 static void __init memmap_init(void) 7006 { 7007 unsigned long start_pfn, end_pfn; 7008 unsigned long hole_pfn = 0; 7009 int i, j, zone_id = 0, nid; 7010 7011 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7012 struct pglist_data *node = NODE_DATA(nid); 7013 7014 for (j = 0; j < MAX_NR_ZONES; j++) { 7015 struct zone *zone = node->node_zones + j; 7016 7017 if (!populated_zone(zone)) 7018 continue; 7019 7020 memmap_init_zone_range(zone, start_pfn, end_pfn, 7021 &hole_pfn); 7022 zone_id = j; 7023 } 7024 } 7025 7026 #ifdef CONFIG_SPARSEMEM 7027 /* 7028 * Initialize the memory map for hole in the range [memory_end, 7029 * section_end]. 7030 * Append the pages in this hole to the highest zone in the last 7031 * node. 7032 * The call to init_unavailable_range() is outside the ifdef to 7033 * silence the compiler warining about zone_id set but not used; 7034 * for FLATMEM it is a nop anyway 7035 */ 7036 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 7037 if (hole_pfn < end_pfn) 7038 #endif 7039 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 7040 } 7041 7042 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 7043 phys_addr_t min_addr, int nid, bool exact_nid) 7044 { 7045 void *ptr; 7046 7047 if (exact_nid) 7048 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 7049 MEMBLOCK_ALLOC_ACCESSIBLE, 7050 nid); 7051 else 7052 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 7053 MEMBLOCK_ALLOC_ACCESSIBLE, 7054 nid); 7055 7056 if (ptr && size > 0) 7057 page_init_poison(ptr, size); 7058 7059 return ptr; 7060 } 7061 7062 static int zone_batchsize(struct zone *zone) 7063 { 7064 #ifdef CONFIG_MMU 7065 int batch; 7066 7067 /* 7068 * The number of pages to batch allocate is either ~0.1% 7069 * of the zone or 1MB, whichever is smaller. The batch 7070 * size is striking a balance between allocation latency 7071 * and zone lock contention. 7072 */ 7073 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 7074 batch /= 4; /* We effectively *= 4 below */ 7075 if (batch < 1) 7076 batch = 1; 7077 7078 /* 7079 * Clamp the batch to a 2^n - 1 value. Having a power 7080 * of 2 value was found to be more likely to have 7081 * suboptimal cache aliasing properties in some cases. 7082 * 7083 * For example if 2 tasks are alternately allocating 7084 * batches of pages, one task can end up with a lot 7085 * of pages of one half of the possible page colors 7086 * and the other with pages of the other colors. 7087 */ 7088 batch = rounddown_pow_of_two(batch + batch/2) - 1; 7089 7090 return batch; 7091 7092 #else 7093 /* The deferral and batching of frees should be suppressed under NOMMU 7094 * conditions. 7095 * 7096 * The problem is that NOMMU needs to be able to allocate large chunks 7097 * of contiguous memory as there's no hardware page translation to 7098 * assemble apparent contiguous memory from discontiguous pages. 7099 * 7100 * Queueing large contiguous runs of pages for batching, however, 7101 * causes the pages to actually be freed in smaller chunks. As there 7102 * can be a significant delay between the individual batches being 7103 * recycled, this leads to the once large chunks of space being 7104 * fragmented and becoming unavailable for high-order allocations. 7105 */ 7106 return 0; 7107 #endif 7108 } 7109 7110 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 7111 { 7112 #ifdef CONFIG_MMU 7113 int high; 7114 int nr_split_cpus; 7115 unsigned long total_pages; 7116 7117 if (!percpu_pagelist_high_fraction) { 7118 /* 7119 * By default, the high value of the pcp is based on the zone 7120 * low watermark so that if they are full then background 7121 * reclaim will not be started prematurely. 7122 */ 7123 total_pages = low_wmark_pages(zone); 7124 } else { 7125 /* 7126 * If percpu_pagelist_high_fraction is configured, the high 7127 * value is based on a fraction of the managed pages in the 7128 * zone. 7129 */ 7130 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 7131 } 7132 7133 /* 7134 * Split the high value across all online CPUs local to the zone. Note 7135 * that early in boot that CPUs may not be online yet and that during 7136 * CPU hotplug that the cpumask is not yet updated when a CPU is being 7137 * onlined. For memory nodes that have no CPUs, split pcp->high across 7138 * all online CPUs to mitigate the risk that reclaim is triggered 7139 * prematurely due to pages stored on pcp lists. 7140 */ 7141 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 7142 if (!nr_split_cpus) 7143 nr_split_cpus = num_online_cpus(); 7144 high = total_pages / nr_split_cpus; 7145 7146 /* 7147 * Ensure high is at least batch*4. The multiple is based on the 7148 * historical relationship between high and batch. 7149 */ 7150 high = max(high, batch << 2); 7151 7152 return high; 7153 #else 7154 return 0; 7155 #endif 7156 } 7157 7158 /* 7159 * pcp->high and pcp->batch values are related and generally batch is lower 7160 * than high. They are also related to pcp->count such that count is lower 7161 * than high, and as soon as it reaches high, the pcplist is flushed. 7162 * 7163 * However, guaranteeing these relations at all times would require e.g. write 7164 * barriers here but also careful usage of read barriers at the read side, and 7165 * thus be prone to error and bad for performance. Thus the update only prevents 7166 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 7167 * can cope with those fields changing asynchronously, and fully trust only the 7168 * pcp->count field on the local CPU with interrupts disabled. 7169 * 7170 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 7171 * outside of boot time (or some other assurance that no concurrent updaters 7172 * exist). 7173 */ 7174 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 7175 unsigned long batch) 7176 { 7177 WRITE_ONCE(pcp->batch, batch); 7178 WRITE_ONCE(pcp->high, high); 7179 } 7180 7181 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 7182 { 7183 int pindex; 7184 7185 memset(pcp, 0, sizeof(*pcp)); 7186 memset(pzstats, 0, sizeof(*pzstats)); 7187 7188 spin_lock_init(&pcp->lock); 7189 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 7190 INIT_LIST_HEAD(&pcp->lists[pindex]); 7191 7192 /* 7193 * Set batch and high values safe for a boot pageset. A true percpu 7194 * pageset's initialization will update them subsequently. Here we don't 7195 * need to be as careful as pageset_update() as nobody can access the 7196 * pageset yet. 7197 */ 7198 pcp->high = BOOT_PAGESET_HIGH; 7199 pcp->batch = BOOT_PAGESET_BATCH; 7200 pcp->free_factor = 0; 7201 } 7202 7203 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 7204 unsigned long batch) 7205 { 7206 struct per_cpu_pages *pcp; 7207 int cpu; 7208 7209 for_each_possible_cpu(cpu) { 7210 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7211 pageset_update(pcp, high, batch); 7212 } 7213 } 7214 7215 /* 7216 * Calculate and set new high and batch values for all per-cpu pagesets of a 7217 * zone based on the zone's size. 7218 */ 7219 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 7220 { 7221 int new_high, new_batch; 7222 7223 new_batch = max(1, zone_batchsize(zone)); 7224 new_high = zone_highsize(zone, new_batch, cpu_online); 7225 7226 if (zone->pageset_high == new_high && 7227 zone->pageset_batch == new_batch) 7228 return; 7229 7230 zone->pageset_high = new_high; 7231 zone->pageset_batch = new_batch; 7232 7233 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 7234 } 7235 7236 void __meminit setup_zone_pageset(struct zone *zone) 7237 { 7238 int cpu; 7239 7240 /* Size may be 0 on !SMP && !NUMA */ 7241 if (sizeof(struct per_cpu_zonestat) > 0) 7242 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 7243 7244 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 7245 for_each_possible_cpu(cpu) { 7246 struct per_cpu_pages *pcp; 7247 struct per_cpu_zonestat *pzstats; 7248 7249 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7250 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 7251 per_cpu_pages_init(pcp, pzstats); 7252 } 7253 7254 zone_set_pageset_high_and_batch(zone, 0); 7255 } 7256 7257 /* 7258 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7259 * page high values need to be recalculated. 7260 */ 7261 static void zone_pcp_update(struct zone *zone, int cpu_online) 7262 { 7263 mutex_lock(&pcp_batch_high_lock); 7264 zone_set_pageset_high_and_batch(zone, cpu_online); 7265 mutex_unlock(&pcp_batch_high_lock); 7266 } 7267 7268 /* 7269 * Allocate per cpu pagesets and initialize them. 7270 * Before this call only boot pagesets were available. 7271 */ 7272 void __init setup_per_cpu_pageset(void) 7273 { 7274 struct pglist_data *pgdat; 7275 struct zone *zone; 7276 int __maybe_unused cpu; 7277 7278 for_each_populated_zone(zone) 7279 setup_zone_pageset(zone); 7280 7281 #ifdef CONFIG_NUMA 7282 /* 7283 * Unpopulated zones continue using the boot pagesets. 7284 * The numa stats for these pagesets need to be reset. 7285 * Otherwise, they will end up skewing the stats of 7286 * the nodes these zones are associated with. 7287 */ 7288 for_each_possible_cpu(cpu) { 7289 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 7290 memset(pzstats->vm_numa_event, 0, 7291 sizeof(pzstats->vm_numa_event)); 7292 } 7293 #endif 7294 7295 for_each_online_pgdat(pgdat) 7296 pgdat->per_cpu_nodestats = 7297 alloc_percpu(struct per_cpu_nodestat); 7298 } 7299 7300 static __meminit void zone_pcp_init(struct zone *zone) 7301 { 7302 /* 7303 * per cpu subsystem is not up at this point. The following code 7304 * relies on the ability of the linker to provide the 7305 * offset of a (static) per cpu variable into the per cpu area. 7306 */ 7307 zone->per_cpu_pageset = &boot_pageset; 7308 zone->per_cpu_zonestats = &boot_zonestats; 7309 zone->pageset_high = BOOT_PAGESET_HIGH; 7310 zone->pageset_batch = BOOT_PAGESET_BATCH; 7311 7312 if (populated_zone(zone)) 7313 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 7314 zone->present_pages, zone_batchsize(zone)); 7315 } 7316 7317 void __meminit init_currently_empty_zone(struct zone *zone, 7318 unsigned long zone_start_pfn, 7319 unsigned long size) 7320 { 7321 struct pglist_data *pgdat = zone->zone_pgdat; 7322 int zone_idx = zone_idx(zone) + 1; 7323 7324 if (zone_idx > pgdat->nr_zones) 7325 pgdat->nr_zones = zone_idx; 7326 7327 zone->zone_start_pfn = zone_start_pfn; 7328 7329 mminit_dprintk(MMINIT_TRACE, "memmap_init", 7330 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 7331 pgdat->node_id, 7332 (unsigned long)zone_idx(zone), 7333 zone_start_pfn, (zone_start_pfn + size)); 7334 7335 zone_init_free_lists(zone); 7336 zone->initialized = 1; 7337 } 7338 7339 /** 7340 * get_pfn_range_for_nid - Return the start and end page frames for a node 7341 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 7342 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 7343 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 7344 * 7345 * It returns the start and end page frame of a node based on information 7346 * provided by memblock_set_node(). If called for a node 7347 * with no available memory, a warning is printed and the start and end 7348 * PFNs will be 0. 7349 */ 7350 void __init get_pfn_range_for_nid(unsigned int nid, 7351 unsigned long *start_pfn, unsigned long *end_pfn) 7352 { 7353 unsigned long this_start_pfn, this_end_pfn; 7354 int i; 7355 7356 *start_pfn = -1UL; 7357 *end_pfn = 0; 7358 7359 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 7360 *start_pfn = min(*start_pfn, this_start_pfn); 7361 *end_pfn = max(*end_pfn, this_end_pfn); 7362 } 7363 7364 if (*start_pfn == -1UL) 7365 *start_pfn = 0; 7366 } 7367 7368 /* 7369 * This finds a zone that can be used for ZONE_MOVABLE pages. The 7370 * assumption is made that zones within a node are ordered in monotonic 7371 * increasing memory addresses so that the "highest" populated zone is used 7372 */ 7373 static void __init find_usable_zone_for_movable(void) 7374 { 7375 int zone_index; 7376 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 7377 if (zone_index == ZONE_MOVABLE) 7378 continue; 7379 7380 if (arch_zone_highest_possible_pfn[zone_index] > 7381 arch_zone_lowest_possible_pfn[zone_index]) 7382 break; 7383 } 7384 7385 VM_BUG_ON(zone_index == -1); 7386 movable_zone = zone_index; 7387 } 7388 7389 /* 7390 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 7391 * because it is sized independent of architecture. Unlike the other zones, 7392 * the starting point for ZONE_MOVABLE is not fixed. It may be different 7393 * in each node depending on the size of each node and how evenly kernelcore 7394 * is distributed. This helper function adjusts the zone ranges 7395 * provided by the architecture for a given node by using the end of the 7396 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 7397 * zones within a node are in order of monotonic increases memory addresses 7398 */ 7399 static void __init adjust_zone_range_for_zone_movable(int nid, 7400 unsigned long zone_type, 7401 unsigned long node_start_pfn, 7402 unsigned long node_end_pfn, 7403 unsigned long *zone_start_pfn, 7404 unsigned long *zone_end_pfn) 7405 { 7406 /* Only adjust if ZONE_MOVABLE is on this node */ 7407 if (zone_movable_pfn[nid]) { 7408 /* Size ZONE_MOVABLE */ 7409 if (zone_type == ZONE_MOVABLE) { 7410 *zone_start_pfn = zone_movable_pfn[nid]; 7411 *zone_end_pfn = min(node_end_pfn, 7412 arch_zone_highest_possible_pfn[movable_zone]); 7413 7414 /* Adjust for ZONE_MOVABLE starting within this range */ 7415 } else if (!mirrored_kernelcore && 7416 *zone_start_pfn < zone_movable_pfn[nid] && 7417 *zone_end_pfn > zone_movable_pfn[nid]) { 7418 *zone_end_pfn = zone_movable_pfn[nid]; 7419 7420 /* Check if this whole range is within ZONE_MOVABLE */ 7421 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 7422 *zone_start_pfn = *zone_end_pfn; 7423 } 7424 } 7425 7426 /* 7427 * Return the number of pages a zone spans in a node, including holes 7428 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 7429 */ 7430 static unsigned long __init zone_spanned_pages_in_node(int nid, 7431 unsigned long zone_type, 7432 unsigned long node_start_pfn, 7433 unsigned long node_end_pfn, 7434 unsigned long *zone_start_pfn, 7435 unsigned long *zone_end_pfn) 7436 { 7437 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7438 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7439 /* When hotadd a new node from cpu_up(), the node should be empty */ 7440 if (!node_start_pfn && !node_end_pfn) 7441 return 0; 7442 7443 /* Get the start and end of the zone */ 7444 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7445 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7446 adjust_zone_range_for_zone_movable(nid, zone_type, 7447 node_start_pfn, node_end_pfn, 7448 zone_start_pfn, zone_end_pfn); 7449 7450 /* Check that this node has pages within the zone's required range */ 7451 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 7452 return 0; 7453 7454 /* Move the zone boundaries inside the node if necessary */ 7455 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 7456 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 7457 7458 /* Return the spanned pages */ 7459 return *zone_end_pfn - *zone_start_pfn; 7460 } 7461 7462 /* 7463 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 7464 * then all holes in the requested range will be accounted for. 7465 */ 7466 unsigned long __init __absent_pages_in_range(int nid, 7467 unsigned long range_start_pfn, 7468 unsigned long range_end_pfn) 7469 { 7470 unsigned long nr_absent = range_end_pfn - range_start_pfn; 7471 unsigned long start_pfn, end_pfn; 7472 int i; 7473 7474 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7475 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 7476 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 7477 nr_absent -= end_pfn - start_pfn; 7478 } 7479 return nr_absent; 7480 } 7481 7482 /** 7483 * absent_pages_in_range - Return number of page frames in holes within a range 7484 * @start_pfn: The start PFN to start searching for holes 7485 * @end_pfn: The end PFN to stop searching for holes 7486 * 7487 * Return: the number of pages frames in memory holes within a range. 7488 */ 7489 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 7490 unsigned long end_pfn) 7491 { 7492 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 7493 } 7494 7495 /* Return the number of page frames in holes in a zone on a node */ 7496 static unsigned long __init zone_absent_pages_in_node(int nid, 7497 unsigned long zone_type, 7498 unsigned long node_start_pfn, 7499 unsigned long node_end_pfn) 7500 { 7501 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7502 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7503 unsigned long zone_start_pfn, zone_end_pfn; 7504 unsigned long nr_absent; 7505 7506 /* When hotadd a new node from cpu_up(), the node should be empty */ 7507 if (!node_start_pfn && !node_end_pfn) 7508 return 0; 7509 7510 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7511 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7512 7513 adjust_zone_range_for_zone_movable(nid, zone_type, 7514 node_start_pfn, node_end_pfn, 7515 &zone_start_pfn, &zone_end_pfn); 7516 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 7517 7518 /* 7519 * ZONE_MOVABLE handling. 7520 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 7521 * and vice versa. 7522 */ 7523 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 7524 unsigned long start_pfn, end_pfn; 7525 struct memblock_region *r; 7526 7527 for_each_mem_region(r) { 7528 start_pfn = clamp(memblock_region_memory_base_pfn(r), 7529 zone_start_pfn, zone_end_pfn); 7530 end_pfn = clamp(memblock_region_memory_end_pfn(r), 7531 zone_start_pfn, zone_end_pfn); 7532 7533 if (zone_type == ZONE_MOVABLE && 7534 memblock_is_mirror(r)) 7535 nr_absent += end_pfn - start_pfn; 7536 7537 if (zone_type == ZONE_NORMAL && 7538 !memblock_is_mirror(r)) 7539 nr_absent += end_pfn - start_pfn; 7540 } 7541 } 7542 7543 return nr_absent; 7544 } 7545 7546 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 7547 unsigned long node_start_pfn, 7548 unsigned long node_end_pfn) 7549 { 7550 unsigned long realtotalpages = 0, totalpages = 0; 7551 enum zone_type i; 7552 7553 for (i = 0; i < MAX_NR_ZONES; i++) { 7554 struct zone *zone = pgdat->node_zones + i; 7555 unsigned long zone_start_pfn, zone_end_pfn; 7556 unsigned long spanned, absent; 7557 unsigned long size, real_size; 7558 7559 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 7560 node_start_pfn, 7561 node_end_pfn, 7562 &zone_start_pfn, 7563 &zone_end_pfn); 7564 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7565 node_start_pfn, 7566 node_end_pfn); 7567 7568 size = spanned; 7569 real_size = size - absent; 7570 7571 if (size) 7572 zone->zone_start_pfn = zone_start_pfn; 7573 else 7574 zone->zone_start_pfn = 0; 7575 zone->spanned_pages = size; 7576 zone->present_pages = real_size; 7577 #if defined(CONFIG_MEMORY_HOTPLUG) 7578 zone->present_early_pages = real_size; 7579 #endif 7580 7581 totalpages += size; 7582 realtotalpages += real_size; 7583 } 7584 7585 pgdat->node_spanned_pages = totalpages; 7586 pgdat->node_present_pages = realtotalpages; 7587 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 7588 } 7589 7590 #ifndef CONFIG_SPARSEMEM 7591 /* 7592 * Calculate the size of the zone->blockflags rounded to an unsigned long 7593 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7594 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7595 * round what is now in bits to nearest long in bits, then return it in 7596 * bytes. 7597 */ 7598 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7599 { 7600 unsigned long usemapsize; 7601 7602 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7603 usemapsize = roundup(zonesize, pageblock_nr_pages); 7604 usemapsize = usemapsize >> pageblock_order; 7605 usemapsize *= NR_PAGEBLOCK_BITS; 7606 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7607 7608 return usemapsize / 8; 7609 } 7610 7611 static void __ref setup_usemap(struct zone *zone) 7612 { 7613 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7614 zone->spanned_pages); 7615 zone->pageblock_flags = NULL; 7616 if (usemapsize) { 7617 zone->pageblock_flags = 7618 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7619 zone_to_nid(zone)); 7620 if (!zone->pageblock_flags) 7621 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7622 usemapsize, zone->name, zone_to_nid(zone)); 7623 } 7624 } 7625 #else 7626 static inline void setup_usemap(struct zone *zone) {} 7627 #endif /* CONFIG_SPARSEMEM */ 7628 7629 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7630 7631 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7632 void __init set_pageblock_order(void) 7633 { 7634 unsigned int order = MAX_ORDER - 1; 7635 7636 /* Check that pageblock_nr_pages has not already been setup */ 7637 if (pageblock_order) 7638 return; 7639 7640 /* Don't let pageblocks exceed the maximum allocation granularity. */ 7641 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) 7642 order = HUGETLB_PAGE_ORDER; 7643 7644 /* 7645 * Assume the largest contiguous order of interest is a huge page. 7646 * This value may be variable depending on boot parameters on IA64 and 7647 * powerpc. 7648 */ 7649 pageblock_order = order; 7650 } 7651 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7652 7653 /* 7654 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7655 * is unused as pageblock_order is set at compile-time. See 7656 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7657 * the kernel config 7658 */ 7659 void __init set_pageblock_order(void) 7660 { 7661 } 7662 7663 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7664 7665 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7666 unsigned long present_pages) 7667 { 7668 unsigned long pages = spanned_pages; 7669 7670 /* 7671 * Provide a more accurate estimation if there are holes within 7672 * the zone and SPARSEMEM is in use. If there are holes within the 7673 * zone, each populated memory region may cost us one or two extra 7674 * memmap pages due to alignment because memmap pages for each 7675 * populated regions may not be naturally aligned on page boundary. 7676 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7677 */ 7678 if (spanned_pages > present_pages + (present_pages >> 4) && 7679 IS_ENABLED(CONFIG_SPARSEMEM)) 7680 pages = present_pages; 7681 7682 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7683 } 7684 7685 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 7686 static void pgdat_init_split_queue(struct pglist_data *pgdat) 7687 { 7688 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7689 7690 spin_lock_init(&ds_queue->split_queue_lock); 7691 INIT_LIST_HEAD(&ds_queue->split_queue); 7692 ds_queue->split_queue_len = 0; 7693 } 7694 #else 7695 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7696 #endif 7697 7698 #ifdef CONFIG_COMPACTION 7699 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7700 { 7701 init_waitqueue_head(&pgdat->kcompactd_wait); 7702 } 7703 #else 7704 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7705 #endif 7706 7707 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7708 { 7709 int i; 7710 7711 pgdat_resize_init(pgdat); 7712 pgdat_kswapd_lock_init(pgdat); 7713 7714 pgdat_init_split_queue(pgdat); 7715 pgdat_init_kcompactd(pgdat); 7716 7717 init_waitqueue_head(&pgdat->kswapd_wait); 7718 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7719 7720 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 7721 init_waitqueue_head(&pgdat->reclaim_wait[i]); 7722 7723 pgdat_page_ext_init(pgdat); 7724 lruvec_init(&pgdat->__lruvec); 7725 } 7726 7727 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7728 unsigned long remaining_pages) 7729 { 7730 atomic_long_set(&zone->managed_pages, remaining_pages); 7731 zone_set_nid(zone, nid); 7732 zone->name = zone_names[idx]; 7733 zone->zone_pgdat = NODE_DATA(nid); 7734 spin_lock_init(&zone->lock); 7735 zone_seqlock_init(zone); 7736 zone_pcp_init(zone); 7737 } 7738 7739 /* 7740 * Set up the zone data structures 7741 * - init pgdat internals 7742 * - init all zones belonging to this node 7743 * 7744 * NOTE: this function is only called during memory hotplug 7745 */ 7746 #ifdef CONFIG_MEMORY_HOTPLUG 7747 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) 7748 { 7749 int nid = pgdat->node_id; 7750 enum zone_type z; 7751 int cpu; 7752 7753 pgdat_init_internals(pgdat); 7754 7755 if (pgdat->per_cpu_nodestats == &boot_nodestats) 7756 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 7757 7758 /* 7759 * Reset the nr_zones, order and highest_zoneidx before reuse. 7760 * Note that kswapd will init kswapd_highest_zoneidx properly 7761 * when it starts in the near future. 7762 */ 7763 pgdat->nr_zones = 0; 7764 pgdat->kswapd_order = 0; 7765 pgdat->kswapd_highest_zoneidx = 0; 7766 pgdat->node_start_pfn = 0; 7767 for_each_online_cpu(cpu) { 7768 struct per_cpu_nodestat *p; 7769 7770 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 7771 memset(p, 0, sizeof(*p)); 7772 } 7773 7774 for (z = 0; z < MAX_NR_ZONES; z++) 7775 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7776 } 7777 #endif 7778 7779 /* 7780 * Set up the zone data structures: 7781 * - mark all pages reserved 7782 * - mark all memory queues empty 7783 * - clear the memory bitmaps 7784 * 7785 * NOTE: pgdat should get zeroed by caller. 7786 * NOTE: this function is only called during early init. 7787 */ 7788 static void __init free_area_init_core(struct pglist_data *pgdat) 7789 { 7790 enum zone_type j; 7791 int nid = pgdat->node_id; 7792 7793 pgdat_init_internals(pgdat); 7794 pgdat->per_cpu_nodestats = &boot_nodestats; 7795 7796 for (j = 0; j < MAX_NR_ZONES; j++) { 7797 struct zone *zone = pgdat->node_zones + j; 7798 unsigned long size, freesize, memmap_pages; 7799 7800 size = zone->spanned_pages; 7801 freesize = zone->present_pages; 7802 7803 /* 7804 * Adjust freesize so that it accounts for how much memory 7805 * is used by this zone for memmap. This affects the watermark 7806 * and per-cpu initialisations 7807 */ 7808 memmap_pages = calc_memmap_size(size, freesize); 7809 if (!is_highmem_idx(j)) { 7810 if (freesize >= memmap_pages) { 7811 freesize -= memmap_pages; 7812 if (memmap_pages) 7813 pr_debug(" %s zone: %lu pages used for memmap\n", 7814 zone_names[j], memmap_pages); 7815 } else 7816 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 7817 zone_names[j], memmap_pages, freesize); 7818 } 7819 7820 /* Account for reserved pages */ 7821 if (j == 0 && freesize > dma_reserve) { 7822 freesize -= dma_reserve; 7823 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 7824 } 7825 7826 if (!is_highmem_idx(j)) 7827 nr_kernel_pages += freesize; 7828 /* Charge for highmem memmap if there are enough kernel pages */ 7829 else if (nr_kernel_pages > memmap_pages * 2) 7830 nr_kernel_pages -= memmap_pages; 7831 nr_all_pages += freesize; 7832 7833 /* 7834 * Set an approximate value for lowmem here, it will be adjusted 7835 * when the bootmem allocator frees pages into the buddy system. 7836 * And all highmem pages will be managed by the buddy system. 7837 */ 7838 zone_init_internals(zone, j, nid, freesize); 7839 7840 if (!size) 7841 continue; 7842 7843 set_pageblock_order(); 7844 setup_usemap(zone); 7845 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7846 } 7847 } 7848 7849 #ifdef CONFIG_FLATMEM 7850 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 7851 { 7852 unsigned long __maybe_unused start = 0; 7853 unsigned long __maybe_unused offset = 0; 7854 7855 /* Skip empty nodes */ 7856 if (!pgdat->node_spanned_pages) 7857 return; 7858 7859 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7860 offset = pgdat->node_start_pfn - start; 7861 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7862 if (!pgdat->node_mem_map) { 7863 unsigned long size, end; 7864 struct page *map; 7865 7866 /* 7867 * The zone's endpoints aren't required to be MAX_ORDER 7868 * aligned but the node_mem_map endpoints must be in order 7869 * for the buddy allocator to function correctly. 7870 */ 7871 end = pgdat_end_pfn(pgdat); 7872 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7873 size = (end - start) * sizeof(struct page); 7874 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 7875 pgdat->node_id, false); 7876 if (!map) 7877 panic("Failed to allocate %ld bytes for node %d memory map\n", 7878 size, pgdat->node_id); 7879 pgdat->node_mem_map = map + offset; 7880 } 7881 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7882 __func__, pgdat->node_id, (unsigned long)pgdat, 7883 (unsigned long)pgdat->node_mem_map); 7884 #ifndef CONFIG_NUMA 7885 /* 7886 * With no DISCONTIG, the global mem_map is just set as node 0's 7887 */ 7888 if (pgdat == NODE_DATA(0)) { 7889 mem_map = NODE_DATA(0)->node_mem_map; 7890 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7891 mem_map -= offset; 7892 } 7893 #endif 7894 } 7895 #else 7896 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 7897 #endif /* CONFIG_FLATMEM */ 7898 7899 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7900 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7901 { 7902 pgdat->first_deferred_pfn = ULONG_MAX; 7903 } 7904 #else 7905 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7906 #endif 7907 7908 static void __init free_area_init_node(int nid) 7909 { 7910 pg_data_t *pgdat = NODE_DATA(nid); 7911 unsigned long start_pfn = 0; 7912 unsigned long end_pfn = 0; 7913 7914 /* pg_data_t should be reset to zero when it's allocated */ 7915 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7916 7917 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7918 7919 pgdat->node_id = nid; 7920 pgdat->node_start_pfn = start_pfn; 7921 pgdat->per_cpu_nodestats = NULL; 7922 7923 if (start_pfn != end_pfn) { 7924 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7925 (u64)start_pfn << PAGE_SHIFT, 7926 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7927 } else { 7928 pr_info("Initmem setup node %d as memoryless\n", nid); 7929 } 7930 7931 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7932 7933 alloc_node_mem_map(pgdat); 7934 pgdat_set_deferred_range(pgdat); 7935 7936 free_area_init_core(pgdat); 7937 } 7938 7939 static void __init free_area_init_memoryless_node(int nid) 7940 { 7941 free_area_init_node(nid); 7942 } 7943 7944 #if MAX_NUMNODES > 1 7945 /* 7946 * Figure out the number of possible node ids. 7947 */ 7948 void __init setup_nr_node_ids(void) 7949 { 7950 unsigned int highest; 7951 7952 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7953 nr_node_ids = highest + 1; 7954 } 7955 #endif 7956 7957 /** 7958 * node_map_pfn_alignment - determine the maximum internode alignment 7959 * 7960 * This function should be called after node map is populated and sorted. 7961 * It calculates the maximum power of two alignment which can distinguish 7962 * all the nodes. 7963 * 7964 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7965 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7966 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7967 * shifted, 1GiB is enough and this function will indicate so. 7968 * 7969 * This is used to test whether pfn -> nid mapping of the chosen memory 7970 * model has fine enough granularity to avoid incorrect mapping for the 7971 * populated node map. 7972 * 7973 * Return: the determined alignment in pfn's. 0 if there is no alignment 7974 * requirement (single node). 7975 */ 7976 unsigned long __init node_map_pfn_alignment(void) 7977 { 7978 unsigned long accl_mask = 0, last_end = 0; 7979 unsigned long start, end, mask; 7980 int last_nid = NUMA_NO_NODE; 7981 int i, nid; 7982 7983 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7984 if (!start || last_nid < 0 || last_nid == nid) { 7985 last_nid = nid; 7986 last_end = end; 7987 continue; 7988 } 7989 7990 /* 7991 * Start with a mask granular enough to pin-point to the 7992 * start pfn and tick off bits one-by-one until it becomes 7993 * too coarse to separate the current node from the last. 7994 */ 7995 mask = ~((1 << __ffs(start)) - 1); 7996 while (mask && last_end <= (start & (mask << 1))) 7997 mask <<= 1; 7998 7999 /* accumulate all internode masks */ 8000 accl_mask |= mask; 8001 } 8002 8003 /* convert mask to number of pages */ 8004 return ~accl_mask + 1; 8005 } 8006 8007 /* 8008 * early_calculate_totalpages() 8009 * Sum pages in active regions for movable zone. 8010 * Populate N_MEMORY for calculating usable_nodes. 8011 */ 8012 static unsigned long __init early_calculate_totalpages(void) 8013 { 8014 unsigned long totalpages = 0; 8015 unsigned long start_pfn, end_pfn; 8016 int i, nid; 8017 8018 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8019 unsigned long pages = end_pfn - start_pfn; 8020 8021 totalpages += pages; 8022 if (pages) 8023 node_set_state(nid, N_MEMORY); 8024 } 8025 return totalpages; 8026 } 8027 8028 /* 8029 * Find the PFN the Movable zone begins in each node. Kernel memory 8030 * is spread evenly between nodes as long as the nodes have enough 8031 * memory. When they don't, some nodes will have more kernelcore than 8032 * others 8033 */ 8034 static void __init find_zone_movable_pfns_for_nodes(void) 8035 { 8036 int i, nid; 8037 unsigned long usable_startpfn; 8038 unsigned long kernelcore_node, kernelcore_remaining; 8039 /* save the state before borrow the nodemask */ 8040 nodemask_t saved_node_state = node_states[N_MEMORY]; 8041 unsigned long totalpages = early_calculate_totalpages(); 8042 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 8043 struct memblock_region *r; 8044 8045 /* Need to find movable_zone earlier when movable_node is specified. */ 8046 find_usable_zone_for_movable(); 8047 8048 /* 8049 * If movable_node is specified, ignore kernelcore and movablecore 8050 * options. 8051 */ 8052 if (movable_node_is_enabled()) { 8053 for_each_mem_region(r) { 8054 if (!memblock_is_hotpluggable(r)) 8055 continue; 8056 8057 nid = memblock_get_region_node(r); 8058 8059 usable_startpfn = PFN_DOWN(r->base); 8060 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 8061 min(usable_startpfn, zone_movable_pfn[nid]) : 8062 usable_startpfn; 8063 } 8064 8065 goto out2; 8066 } 8067 8068 /* 8069 * If kernelcore=mirror is specified, ignore movablecore option 8070 */ 8071 if (mirrored_kernelcore) { 8072 bool mem_below_4gb_not_mirrored = false; 8073 8074 for_each_mem_region(r) { 8075 if (memblock_is_mirror(r)) 8076 continue; 8077 8078 nid = memblock_get_region_node(r); 8079 8080 usable_startpfn = memblock_region_memory_base_pfn(r); 8081 8082 if (usable_startpfn < PHYS_PFN(SZ_4G)) { 8083 mem_below_4gb_not_mirrored = true; 8084 continue; 8085 } 8086 8087 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 8088 min(usable_startpfn, zone_movable_pfn[nid]) : 8089 usable_startpfn; 8090 } 8091 8092 if (mem_below_4gb_not_mirrored) 8093 pr_warn("This configuration results in unmirrored kernel memory.\n"); 8094 8095 goto out2; 8096 } 8097 8098 /* 8099 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 8100 * amount of necessary memory. 8101 */ 8102 if (required_kernelcore_percent) 8103 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 8104 10000UL; 8105 if (required_movablecore_percent) 8106 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 8107 10000UL; 8108 8109 /* 8110 * If movablecore= was specified, calculate what size of 8111 * kernelcore that corresponds so that memory usable for 8112 * any allocation type is evenly spread. If both kernelcore 8113 * and movablecore are specified, then the value of kernelcore 8114 * will be used for required_kernelcore if it's greater than 8115 * what movablecore would have allowed. 8116 */ 8117 if (required_movablecore) { 8118 unsigned long corepages; 8119 8120 /* 8121 * Round-up so that ZONE_MOVABLE is at least as large as what 8122 * was requested by the user 8123 */ 8124 required_movablecore = 8125 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 8126 required_movablecore = min(totalpages, required_movablecore); 8127 corepages = totalpages - required_movablecore; 8128 8129 required_kernelcore = max(required_kernelcore, corepages); 8130 } 8131 8132 /* 8133 * If kernelcore was not specified or kernelcore size is larger 8134 * than totalpages, there is no ZONE_MOVABLE. 8135 */ 8136 if (!required_kernelcore || required_kernelcore >= totalpages) 8137 goto out; 8138 8139 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 8140 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 8141 8142 restart: 8143 /* Spread kernelcore memory as evenly as possible throughout nodes */ 8144 kernelcore_node = required_kernelcore / usable_nodes; 8145 for_each_node_state(nid, N_MEMORY) { 8146 unsigned long start_pfn, end_pfn; 8147 8148 /* 8149 * Recalculate kernelcore_node if the division per node 8150 * now exceeds what is necessary to satisfy the requested 8151 * amount of memory for the kernel 8152 */ 8153 if (required_kernelcore < kernelcore_node) 8154 kernelcore_node = required_kernelcore / usable_nodes; 8155 8156 /* 8157 * As the map is walked, we track how much memory is usable 8158 * by the kernel using kernelcore_remaining. When it is 8159 * 0, the rest of the node is usable by ZONE_MOVABLE 8160 */ 8161 kernelcore_remaining = kernelcore_node; 8162 8163 /* Go through each range of PFNs within this node */ 8164 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 8165 unsigned long size_pages; 8166 8167 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 8168 if (start_pfn >= end_pfn) 8169 continue; 8170 8171 /* Account for what is only usable for kernelcore */ 8172 if (start_pfn < usable_startpfn) { 8173 unsigned long kernel_pages; 8174 kernel_pages = min(end_pfn, usable_startpfn) 8175 - start_pfn; 8176 8177 kernelcore_remaining -= min(kernel_pages, 8178 kernelcore_remaining); 8179 required_kernelcore -= min(kernel_pages, 8180 required_kernelcore); 8181 8182 /* Continue if range is now fully accounted */ 8183 if (end_pfn <= usable_startpfn) { 8184 8185 /* 8186 * Push zone_movable_pfn to the end so 8187 * that if we have to rebalance 8188 * kernelcore across nodes, we will 8189 * not double account here 8190 */ 8191 zone_movable_pfn[nid] = end_pfn; 8192 continue; 8193 } 8194 start_pfn = usable_startpfn; 8195 } 8196 8197 /* 8198 * The usable PFN range for ZONE_MOVABLE is from 8199 * start_pfn->end_pfn. Calculate size_pages as the 8200 * number of pages used as kernelcore 8201 */ 8202 size_pages = end_pfn - start_pfn; 8203 if (size_pages > kernelcore_remaining) 8204 size_pages = kernelcore_remaining; 8205 zone_movable_pfn[nid] = start_pfn + size_pages; 8206 8207 /* 8208 * Some kernelcore has been met, update counts and 8209 * break if the kernelcore for this node has been 8210 * satisfied 8211 */ 8212 required_kernelcore -= min(required_kernelcore, 8213 size_pages); 8214 kernelcore_remaining -= size_pages; 8215 if (!kernelcore_remaining) 8216 break; 8217 } 8218 } 8219 8220 /* 8221 * If there is still required_kernelcore, we do another pass with one 8222 * less node in the count. This will push zone_movable_pfn[nid] further 8223 * along on the nodes that still have memory until kernelcore is 8224 * satisfied 8225 */ 8226 usable_nodes--; 8227 if (usable_nodes && required_kernelcore > usable_nodes) 8228 goto restart; 8229 8230 out2: 8231 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 8232 for (nid = 0; nid < MAX_NUMNODES; nid++) { 8233 unsigned long start_pfn, end_pfn; 8234 8235 zone_movable_pfn[nid] = 8236 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 8237 8238 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 8239 if (zone_movable_pfn[nid] >= end_pfn) 8240 zone_movable_pfn[nid] = 0; 8241 } 8242 8243 out: 8244 /* restore the node_state */ 8245 node_states[N_MEMORY] = saved_node_state; 8246 } 8247 8248 /* Any regular or high memory on that node ? */ 8249 static void check_for_memory(pg_data_t *pgdat, int nid) 8250 { 8251 enum zone_type zone_type; 8252 8253 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 8254 struct zone *zone = &pgdat->node_zones[zone_type]; 8255 if (populated_zone(zone)) { 8256 if (IS_ENABLED(CONFIG_HIGHMEM)) 8257 node_set_state(nid, N_HIGH_MEMORY); 8258 if (zone_type <= ZONE_NORMAL) 8259 node_set_state(nid, N_NORMAL_MEMORY); 8260 break; 8261 } 8262 } 8263 } 8264 8265 /* 8266 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 8267 * such cases we allow max_zone_pfn sorted in the descending order 8268 */ 8269 bool __weak arch_has_descending_max_zone_pfns(void) 8270 { 8271 return false; 8272 } 8273 8274 /** 8275 * free_area_init - Initialise all pg_data_t and zone data 8276 * @max_zone_pfn: an array of max PFNs for each zone 8277 * 8278 * This will call free_area_init_node() for each active node in the system. 8279 * Using the page ranges provided by memblock_set_node(), the size of each 8280 * zone in each node and their holes is calculated. If the maximum PFN 8281 * between two adjacent zones match, it is assumed that the zone is empty. 8282 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 8283 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 8284 * starts where the previous one ended. For example, ZONE_DMA32 starts 8285 * at arch_max_dma_pfn. 8286 */ 8287 void __init free_area_init(unsigned long *max_zone_pfn) 8288 { 8289 unsigned long start_pfn, end_pfn; 8290 int i, nid, zone; 8291 bool descending; 8292 8293 /* Record where the zone boundaries are */ 8294 memset(arch_zone_lowest_possible_pfn, 0, 8295 sizeof(arch_zone_lowest_possible_pfn)); 8296 memset(arch_zone_highest_possible_pfn, 0, 8297 sizeof(arch_zone_highest_possible_pfn)); 8298 8299 start_pfn = PHYS_PFN(memblock_start_of_DRAM()); 8300 descending = arch_has_descending_max_zone_pfns(); 8301 8302 for (i = 0; i < MAX_NR_ZONES; i++) { 8303 if (descending) 8304 zone = MAX_NR_ZONES - i - 1; 8305 else 8306 zone = i; 8307 8308 if (zone == ZONE_MOVABLE) 8309 continue; 8310 8311 end_pfn = max(max_zone_pfn[zone], start_pfn); 8312 arch_zone_lowest_possible_pfn[zone] = start_pfn; 8313 arch_zone_highest_possible_pfn[zone] = end_pfn; 8314 8315 start_pfn = end_pfn; 8316 } 8317 8318 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 8319 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 8320 find_zone_movable_pfns_for_nodes(); 8321 8322 /* Print out the zone ranges */ 8323 pr_info("Zone ranges:\n"); 8324 for (i = 0; i < MAX_NR_ZONES; i++) { 8325 if (i == ZONE_MOVABLE) 8326 continue; 8327 pr_info(" %-8s ", zone_names[i]); 8328 if (arch_zone_lowest_possible_pfn[i] == 8329 arch_zone_highest_possible_pfn[i]) 8330 pr_cont("empty\n"); 8331 else 8332 pr_cont("[mem %#018Lx-%#018Lx]\n", 8333 (u64)arch_zone_lowest_possible_pfn[i] 8334 << PAGE_SHIFT, 8335 ((u64)arch_zone_highest_possible_pfn[i] 8336 << PAGE_SHIFT) - 1); 8337 } 8338 8339 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 8340 pr_info("Movable zone start for each node\n"); 8341 for (i = 0; i < MAX_NUMNODES; i++) { 8342 if (zone_movable_pfn[i]) 8343 pr_info(" Node %d: %#018Lx\n", i, 8344 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 8345 } 8346 8347 /* 8348 * Print out the early node map, and initialize the 8349 * subsection-map relative to active online memory ranges to 8350 * enable future "sub-section" extensions of the memory map. 8351 */ 8352 pr_info("Early memory node ranges\n"); 8353 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8354 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 8355 (u64)start_pfn << PAGE_SHIFT, 8356 ((u64)end_pfn << PAGE_SHIFT) - 1); 8357 subsection_map_init(start_pfn, end_pfn - start_pfn); 8358 } 8359 8360 /* Initialise every node */ 8361 mminit_verify_pageflags_layout(); 8362 setup_nr_node_ids(); 8363 for_each_node(nid) { 8364 pg_data_t *pgdat; 8365 8366 if (!node_online(nid)) { 8367 pr_info("Initializing node %d as memoryless\n", nid); 8368 8369 /* Allocator not initialized yet */ 8370 pgdat = arch_alloc_nodedata(nid); 8371 if (!pgdat) { 8372 pr_err("Cannot allocate %zuB for node %d.\n", 8373 sizeof(*pgdat), nid); 8374 continue; 8375 } 8376 arch_refresh_nodedata(nid, pgdat); 8377 free_area_init_memoryless_node(nid); 8378 8379 /* 8380 * We do not want to confuse userspace by sysfs 8381 * files/directories for node without any memory 8382 * attached to it, so this node is not marked as 8383 * N_MEMORY and not marked online so that no sysfs 8384 * hierarchy will be created via register_one_node for 8385 * it. The pgdat will get fully initialized by 8386 * hotadd_init_pgdat() when memory is hotplugged into 8387 * this node. 8388 */ 8389 continue; 8390 } 8391 8392 pgdat = NODE_DATA(nid); 8393 free_area_init_node(nid); 8394 8395 /* Any memory on that node */ 8396 if (pgdat->node_present_pages) 8397 node_set_state(nid, N_MEMORY); 8398 check_for_memory(pgdat, nid); 8399 } 8400 8401 memmap_init(); 8402 } 8403 8404 static int __init cmdline_parse_core(char *p, unsigned long *core, 8405 unsigned long *percent) 8406 { 8407 unsigned long long coremem; 8408 char *endptr; 8409 8410 if (!p) 8411 return -EINVAL; 8412 8413 /* Value may be a percentage of total memory, otherwise bytes */ 8414 coremem = simple_strtoull(p, &endptr, 0); 8415 if (*endptr == '%') { 8416 /* Paranoid check for percent values greater than 100 */ 8417 WARN_ON(coremem > 100); 8418 8419 *percent = coremem; 8420 } else { 8421 coremem = memparse(p, &p); 8422 /* Paranoid check that UL is enough for the coremem value */ 8423 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 8424 8425 *core = coremem >> PAGE_SHIFT; 8426 *percent = 0UL; 8427 } 8428 return 0; 8429 } 8430 8431 /* 8432 * kernelcore=size sets the amount of memory for use for allocations that 8433 * cannot be reclaimed or migrated. 8434 */ 8435 static int __init cmdline_parse_kernelcore(char *p) 8436 { 8437 /* parse kernelcore=mirror */ 8438 if (parse_option_str(p, "mirror")) { 8439 mirrored_kernelcore = true; 8440 return 0; 8441 } 8442 8443 return cmdline_parse_core(p, &required_kernelcore, 8444 &required_kernelcore_percent); 8445 } 8446 8447 /* 8448 * movablecore=size sets the amount of memory for use for allocations that 8449 * can be reclaimed or migrated. 8450 */ 8451 static int __init cmdline_parse_movablecore(char *p) 8452 { 8453 return cmdline_parse_core(p, &required_movablecore, 8454 &required_movablecore_percent); 8455 } 8456 8457 early_param("kernelcore", cmdline_parse_kernelcore); 8458 early_param("movablecore", cmdline_parse_movablecore); 8459 8460 void adjust_managed_page_count(struct page *page, long count) 8461 { 8462 atomic_long_add(count, &page_zone(page)->managed_pages); 8463 totalram_pages_add(count); 8464 #ifdef CONFIG_HIGHMEM 8465 if (PageHighMem(page)) 8466 totalhigh_pages_add(count); 8467 #endif 8468 } 8469 EXPORT_SYMBOL(adjust_managed_page_count); 8470 8471 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 8472 { 8473 void *pos; 8474 unsigned long pages = 0; 8475 8476 start = (void *)PAGE_ALIGN((unsigned long)start); 8477 end = (void *)((unsigned long)end & PAGE_MASK); 8478 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 8479 struct page *page = virt_to_page(pos); 8480 void *direct_map_addr; 8481 8482 /* 8483 * 'direct_map_addr' might be different from 'pos' 8484 * because some architectures' virt_to_page() 8485 * work with aliases. Getting the direct map 8486 * address ensures that we get a _writeable_ 8487 * alias for the memset(). 8488 */ 8489 direct_map_addr = page_address(page); 8490 /* 8491 * Perform a kasan-unchecked memset() since this memory 8492 * has not been initialized. 8493 */ 8494 direct_map_addr = kasan_reset_tag(direct_map_addr); 8495 if ((unsigned int)poison <= 0xFF) 8496 memset(direct_map_addr, poison, PAGE_SIZE); 8497 8498 free_reserved_page(page); 8499 } 8500 8501 if (pages && s) 8502 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 8503 8504 return pages; 8505 } 8506 8507 void __init mem_init_print_info(void) 8508 { 8509 unsigned long physpages, codesize, datasize, rosize, bss_size; 8510 unsigned long init_code_size, init_data_size; 8511 8512 physpages = get_num_physpages(); 8513 codesize = _etext - _stext; 8514 datasize = _edata - _sdata; 8515 rosize = __end_rodata - __start_rodata; 8516 bss_size = __bss_stop - __bss_start; 8517 init_data_size = __init_end - __init_begin; 8518 init_code_size = _einittext - _sinittext; 8519 8520 /* 8521 * Detect special cases and adjust section sizes accordingly: 8522 * 1) .init.* may be embedded into .data sections 8523 * 2) .init.text.* may be out of [__init_begin, __init_end], 8524 * please refer to arch/tile/kernel/vmlinux.lds.S. 8525 * 3) .rodata.* may be embedded into .text or .data sections. 8526 */ 8527 #define adj_init_size(start, end, size, pos, adj) \ 8528 do { \ 8529 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ 8530 size -= adj; \ 8531 } while (0) 8532 8533 adj_init_size(__init_begin, __init_end, init_data_size, 8534 _sinittext, init_code_size); 8535 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 8536 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 8537 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 8538 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 8539 8540 #undef adj_init_size 8541 8542 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 8543 #ifdef CONFIG_HIGHMEM 8544 ", %luK highmem" 8545 #endif 8546 ")\n", 8547 K(nr_free_pages()), K(physpages), 8548 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K, 8549 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K, 8550 K(physpages - totalram_pages() - totalcma_pages), 8551 K(totalcma_pages) 8552 #ifdef CONFIG_HIGHMEM 8553 , K(totalhigh_pages()) 8554 #endif 8555 ); 8556 } 8557 8558 /** 8559 * set_dma_reserve - set the specified number of pages reserved in the first zone 8560 * @new_dma_reserve: The number of pages to mark reserved 8561 * 8562 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 8563 * In the DMA zone, a significant percentage may be consumed by kernel image 8564 * and other unfreeable allocations which can skew the watermarks badly. This 8565 * function may optionally be used to account for unfreeable pages in the 8566 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 8567 * smaller per-cpu batchsize. 8568 */ 8569 void __init set_dma_reserve(unsigned long new_dma_reserve) 8570 { 8571 dma_reserve = new_dma_reserve; 8572 } 8573 8574 static int page_alloc_cpu_dead(unsigned int cpu) 8575 { 8576 struct zone *zone; 8577 8578 lru_add_drain_cpu(cpu); 8579 mlock_page_drain_remote(cpu); 8580 drain_pages(cpu); 8581 8582 /* 8583 * Spill the event counters of the dead processor 8584 * into the current processors event counters. 8585 * This artificially elevates the count of the current 8586 * processor. 8587 */ 8588 vm_events_fold_cpu(cpu); 8589 8590 /* 8591 * Zero the differential counters of the dead processor 8592 * so that the vm statistics are consistent. 8593 * 8594 * This is only okay since the processor is dead and cannot 8595 * race with what we are doing. 8596 */ 8597 cpu_vm_stats_fold(cpu); 8598 8599 for_each_populated_zone(zone) 8600 zone_pcp_update(zone, 0); 8601 8602 return 0; 8603 } 8604 8605 static int page_alloc_cpu_online(unsigned int cpu) 8606 { 8607 struct zone *zone; 8608 8609 for_each_populated_zone(zone) 8610 zone_pcp_update(zone, 1); 8611 return 0; 8612 } 8613 8614 #ifdef CONFIG_NUMA 8615 int hashdist = HASHDIST_DEFAULT; 8616 8617 static int __init set_hashdist(char *str) 8618 { 8619 if (!str) 8620 return 0; 8621 hashdist = simple_strtoul(str, &str, 0); 8622 return 1; 8623 } 8624 __setup("hashdist=", set_hashdist); 8625 #endif 8626 8627 void __init page_alloc_init(void) 8628 { 8629 int ret; 8630 8631 #ifdef CONFIG_NUMA 8632 if (num_node_state(N_MEMORY) == 1) 8633 hashdist = 0; 8634 #endif 8635 8636 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 8637 "mm/page_alloc:pcp", 8638 page_alloc_cpu_online, 8639 page_alloc_cpu_dead); 8640 WARN_ON(ret < 0); 8641 } 8642 8643 /* 8644 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8645 * or min_free_kbytes changes. 8646 */ 8647 static void calculate_totalreserve_pages(void) 8648 { 8649 struct pglist_data *pgdat; 8650 unsigned long reserve_pages = 0; 8651 enum zone_type i, j; 8652 8653 for_each_online_pgdat(pgdat) { 8654 8655 pgdat->totalreserve_pages = 0; 8656 8657 for (i = 0; i < MAX_NR_ZONES; i++) { 8658 struct zone *zone = pgdat->node_zones + i; 8659 long max = 0; 8660 unsigned long managed_pages = zone_managed_pages(zone); 8661 8662 /* Find valid and maximum lowmem_reserve in the zone */ 8663 for (j = i; j < MAX_NR_ZONES; j++) { 8664 if (zone->lowmem_reserve[j] > max) 8665 max = zone->lowmem_reserve[j]; 8666 } 8667 8668 /* we treat the high watermark as reserved pages. */ 8669 max += high_wmark_pages(zone); 8670 8671 if (max > managed_pages) 8672 max = managed_pages; 8673 8674 pgdat->totalreserve_pages += max; 8675 8676 reserve_pages += max; 8677 } 8678 } 8679 totalreserve_pages = reserve_pages; 8680 } 8681 8682 /* 8683 * setup_per_zone_lowmem_reserve - called whenever 8684 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8685 * has a correct pages reserved value, so an adequate number of 8686 * pages are left in the zone after a successful __alloc_pages(). 8687 */ 8688 static void setup_per_zone_lowmem_reserve(void) 8689 { 8690 struct pglist_data *pgdat; 8691 enum zone_type i, j; 8692 8693 for_each_online_pgdat(pgdat) { 8694 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8695 struct zone *zone = &pgdat->node_zones[i]; 8696 int ratio = sysctl_lowmem_reserve_ratio[i]; 8697 bool clear = !ratio || !zone_managed_pages(zone); 8698 unsigned long managed_pages = 0; 8699 8700 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8701 struct zone *upper_zone = &pgdat->node_zones[j]; 8702 8703 managed_pages += zone_managed_pages(upper_zone); 8704 8705 if (clear) 8706 zone->lowmem_reserve[j] = 0; 8707 else 8708 zone->lowmem_reserve[j] = managed_pages / ratio; 8709 } 8710 } 8711 } 8712 8713 /* update totalreserve_pages */ 8714 calculate_totalreserve_pages(); 8715 } 8716 8717 static void __setup_per_zone_wmarks(void) 8718 { 8719 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8720 unsigned long lowmem_pages = 0; 8721 struct zone *zone; 8722 unsigned long flags; 8723 8724 /* Calculate total number of !ZONE_HIGHMEM pages */ 8725 for_each_zone(zone) { 8726 if (!is_highmem(zone)) 8727 lowmem_pages += zone_managed_pages(zone); 8728 } 8729 8730 for_each_zone(zone) { 8731 u64 tmp; 8732 8733 spin_lock_irqsave(&zone->lock, flags); 8734 tmp = (u64)pages_min * zone_managed_pages(zone); 8735 do_div(tmp, lowmem_pages); 8736 if (is_highmem(zone)) { 8737 /* 8738 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8739 * need highmem pages, so cap pages_min to a small 8740 * value here. 8741 * 8742 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8743 * deltas control async page reclaim, and so should 8744 * not be capped for highmem. 8745 */ 8746 unsigned long min_pages; 8747 8748 min_pages = zone_managed_pages(zone) / 1024; 8749 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8750 zone->_watermark[WMARK_MIN] = min_pages; 8751 } else { 8752 /* 8753 * If it's a lowmem zone, reserve a number of pages 8754 * proportionate to the zone's size. 8755 */ 8756 zone->_watermark[WMARK_MIN] = tmp; 8757 } 8758 8759 /* 8760 * Set the kswapd watermarks distance according to the 8761 * scale factor in proportion to available memory, but 8762 * ensure a minimum size on small systems. 8763 */ 8764 tmp = max_t(u64, tmp >> 2, 8765 mult_frac(zone_managed_pages(zone), 8766 watermark_scale_factor, 10000)); 8767 8768 zone->watermark_boost = 0; 8769 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8770 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 8771 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 8772 8773 spin_unlock_irqrestore(&zone->lock, flags); 8774 } 8775 8776 /* update totalreserve_pages */ 8777 calculate_totalreserve_pages(); 8778 } 8779 8780 /** 8781 * setup_per_zone_wmarks - called when min_free_kbytes changes 8782 * or when memory is hot-{added|removed} 8783 * 8784 * Ensures that the watermark[min,low,high] values for each zone are set 8785 * correctly with respect to min_free_kbytes. 8786 */ 8787 void setup_per_zone_wmarks(void) 8788 { 8789 struct zone *zone; 8790 static DEFINE_SPINLOCK(lock); 8791 8792 spin_lock(&lock); 8793 __setup_per_zone_wmarks(); 8794 spin_unlock(&lock); 8795 8796 /* 8797 * The watermark size have changed so update the pcpu batch 8798 * and high limits or the limits may be inappropriate. 8799 */ 8800 for_each_zone(zone) 8801 zone_pcp_update(zone, 0); 8802 } 8803 8804 /* 8805 * Initialise min_free_kbytes. 8806 * 8807 * For small machines we want it small (128k min). For large machines 8808 * we want it large (256MB max). But it is not linear, because network 8809 * bandwidth does not increase linearly with machine size. We use 8810 * 8811 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8812 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8813 * 8814 * which yields 8815 * 8816 * 16MB: 512k 8817 * 32MB: 724k 8818 * 64MB: 1024k 8819 * 128MB: 1448k 8820 * 256MB: 2048k 8821 * 512MB: 2896k 8822 * 1024MB: 4096k 8823 * 2048MB: 5792k 8824 * 4096MB: 8192k 8825 * 8192MB: 11584k 8826 * 16384MB: 16384k 8827 */ 8828 void calculate_min_free_kbytes(void) 8829 { 8830 unsigned long lowmem_kbytes; 8831 int new_min_free_kbytes; 8832 8833 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8834 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8835 8836 if (new_min_free_kbytes > user_min_free_kbytes) 8837 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 8838 else 8839 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8840 new_min_free_kbytes, user_min_free_kbytes); 8841 8842 } 8843 8844 int __meminit init_per_zone_wmark_min(void) 8845 { 8846 calculate_min_free_kbytes(); 8847 setup_per_zone_wmarks(); 8848 refresh_zone_stat_thresholds(); 8849 setup_per_zone_lowmem_reserve(); 8850 8851 #ifdef CONFIG_NUMA 8852 setup_min_unmapped_ratio(); 8853 setup_min_slab_ratio(); 8854 #endif 8855 8856 khugepaged_min_free_kbytes_update(); 8857 8858 return 0; 8859 } 8860 postcore_initcall(init_per_zone_wmark_min) 8861 8862 /* 8863 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8864 * that we can call two helper functions whenever min_free_kbytes 8865 * changes. 8866 */ 8867 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8868 void *buffer, size_t *length, loff_t *ppos) 8869 { 8870 int rc; 8871 8872 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8873 if (rc) 8874 return rc; 8875 8876 if (write) { 8877 user_min_free_kbytes = min_free_kbytes; 8878 setup_per_zone_wmarks(); 8879 } 8880 return 0; 8881 } 8882 8883 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8884 void *buffer, size_t *length, loff_t *ppos) 8885 { 8886 int rc; 8887 8888 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8889 if (rc) 8890 return rc; 8891 8892 if (write) 8893 setup_per_zone_wmarks(); 8894 8895 return 0; 8896 } 8897 8898 #ifdef CONFIG_NUMA 8899 static void setup_min_unmapped_ratio(void) 8900 { 8901 pg_data_t *pgdat; 8902 struct zone *zone; 8903 8904 for_each_online_pgdat(pgdat) 8905 pgdat->min_unmapped_pages = 0; 8906 8907 for_each_zone(zone) 8908 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8909 sysctl_min_unmapped_ratio) / 100; 8910 } 8911 8912 8913 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8914 void *buffer, size_t *length, loff_t *ppos) 8915 { 8916 int rc; 8917 8918 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8919 if (rc) 8920 return rc; 8921 8922 setup_min_unmapped_ratio(); 8923 8924 return 0; 8925 } 8926 8927 static void setup_min_slab_ratio(void) 8928 { 8929 pg_data_t *pgdat; 8930 struct zone *zone; 8931 8932 for_each_online_pgdat(pgdat) 8933 pgdat->min_slab_pages = 0; 8934 8935 for_each_zone(zone) 8936 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8937 sysctl_min_slab_ratio) / 100; 8938 } 8939 8940 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8941 void *buffer, size_t *length, loff_t *ppos) 8942 { 8943 int rc; 8944 8945 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8946 if (rc) 8947 return rc; 8948 8949 setup_min_slab_ratio(); 8950 8951 return 0; 8952 } 8953 #endif 8954 8955 /* 8956 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8957 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8958 * whenever sysctl_lowmem_reserve_ratio changes. 8959 * 8960 * The reserve ratio obviously has absolutely no relation with the 8961 * minimum watermarks. The lowmem reserve ratio can only make sense 8962 * if in function of the boot time zone sizes. 8963 */ 8964 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8965 void *buffer, size_t *length, loff_t *ppos) 8966 { 8967 int i; 8968 8969 proc_dointvec_minmax(table, write, buffer, length, ppos); 8970 8971 for (i = 0; i < MAX_NR_ZONES; i++) { 8972 if (sysctl_lowmem_reserve_ratio[i] < 1) 8973 sysctl_lowmem_reserve_ratio[i] = 0; 8974 } 8975 8976 setup_per_zone_lowmem_reserve(); 8977 return 0; 8978 } 8979 8980 /* 8981 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 8982 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8983 * pagelist can have before it gets flushed back to buddy allocator. 8984 */ 8985 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 8986 int write, void *buffer, size_t *length, loff_t *ppos) 8987 { 8988 struct zone *zone; 8989 int old_percpu_pagelist_high_fraction; 8990 int ret; 8991 8992 mutex_lock(&pcp_batch_high_lock); 8993 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 8994 8995 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8996 if (!write || ret < 0) 8997 goto out; 8998 8999 /* Sanity checking to avoid pcp imbalance */ 9000 if (percpu_pagelist_high_fraction && 9001 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 9002 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 9003 ret = -EINVAL; 9004 goto out; 9005 } 9006 9007 /* No change? */ 9008 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 9009 goto out; 9010 9011 for_each_populated_zone(zone) 9012 zone_set_pageset_high_and_batch(zone, 0); 9013 out: 9014 mutex_unlock(&pcp_batch_high_lock); 9015 return ret; 9016 } 9017 9018 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 9019 /* 9020 * Returns the number of pages that arch has reserved but 9021 * is not known to alloc_large_system_hash(). 9022 */ 9023 static unsigned long __init arch_reserved_kernel_pages(void) 9024 { 9025 return 0; 9026 } 9027 #endif 9028 9029 /* 9030 * Adaptive scale is meant to reduce sizes of hash tables on large memory 9031 * machines. As memory size is increased the scale is also increased but at 9032 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 9033 * quadruples the scale is increased by one, which means the size of hash table 9034 * only doubles, instead of quadrupling as well. 9035 * Because 32-bit systems cannot have large physical memory, where this scaling 9036 * makes sense, it is disabled on such platforms. 9037 */ 9038 #if __BITS_PER_LONG > 32 9039 #define ADAPT_SCALE_BASE (64ul << 30) 9040 #define ADAPT_SCALE_SHIFT 2 9041 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 9042 #endif 9043 9044 /* 9045 * allocate a large system hash table from bootmem 9046 * - it is assumed that the hash table must contain an exact power-of-2 9047 * quantity of entries 9048 * - limit is the number of hash buckets, not the total allocation size 9049 */ 9050 void *__init alloc_large_system_hash(const char *tablename, 9051 unsigned long bucketsize, 9052 unsigned long numentries, 9053 int scale, 9054 int flags, 9055 unsigned int *_hash_shift, 9056 unsigned int *_hash_mask, 9057 unsigned long low_limit, 9058 unsigned long high_limit) 9059 { 9060 unsigned long long max = high_limit; 9061 unsigned long log2qty, size; 9062 void *table; 9063 gfp_t gfp_flags; 9064 bool virt; 9065 bool huge; 9066 9067 /* allow the kernel cmdline to have a say */ 9068 if (!numentries) { 9069 /* round applicable memory size up to nearest megabyte */ 9070 numentries = nr_kernel_pages; 9071 numentries -= arch_reserved_kernel_pages(); 9072 9073 /* It isn't necessary when PAGE_SIZE >= 1MB */ 9074 if (PAGE_SIZE < SZ_1M) 9075 numentries = round_up(numentries, SZ_1M / PAGE_SIZE); 9076 9077 #if __BITS_PER_LONG > 32 9078 if (!high_limit) { 9079 unsigned long adapt; 9080 9081 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 9082 adapt <<= ADAPT_SCALE_SHIFT) 9083 scale++; 9084 } 9085 #endif 9086 9087 /* limit to 1 bucket per 2^scale bytes of low memory */ 9088 if (scale > PAGE_SHIFT) 9089 numentries >>= (scale - PAGE_SHIFT); 9090 else 9091 numentries <<= (PAGE_SHIFT - scale); 9092 9093 /* Make sure we've got at least a 0-order allocation.. */ 9094 if (unlikely(flags & HASH_SMALL)) { 9095 /* Makes no sense without HASH_EARLY */ 9096 WARN_ON(!(flags & HASH_EARLY)); 9097 if (!(numentries >> *_hash_shift)) { 9098 numentries = 1UL << *_hash_shift; 9099 BUG_ON(!numentries); 9100 } 9101 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 9102 numentries = PAGE_SIZE / bucketsize; 9103 } 9104 numentries = roundup_pow_of_two(numentries); 9105 9106 /* limit allocation size to 1/16 total memory by default */ 9107 if (max == 0) { 9108 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 9109 do_div(max, bucketsize); 9110 } 9111 max = min(max, 0x80000000ULL); 9112 9113 if (numentries < low_limit) 9114 numentries = low_limit; 9115 if (numentries > max) 9116 numentries = max; 9117 9118 log2qty = ilog2(numentries); 9119 9120 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 9121 do { 9122 virt = false; 9123 size = bucketsize << log2qty; 9124 if (flags & HASH_EARLY) { 9125 if (flags & HASH_ZERO) 9126 table = memblock_alloc(size, SMP_CACHE_BYTES); 9127 else 9128 table = memblock_alloc_raw(size, 9129 SMP_CACHE_BYTES); 9130 } else if (get_order(size) >= MAX_ORDER || hashdist) { 9131 table = vmalloc_huge(size, gfp_flags); 9132 virt = true; 9133 if (table) 9134 huge = is_vm_area_hugepages(table); 9135 } else { 9136 /* 9137 * If bucketsize is not a power-of-two, we may free 9138 * some pages at the end of hash table which 9139 * alloc_pages_exact() automatically does 9140 */ 9141 table = alloc_pages_exact(size, gfp_flags); 9142 kmemleak_alloc(table, size, 1, gfp_flags); 9143 } 9144 } while (!table && size > PAGE_SIZE && --log2qty); 9145 9146 if (!table) 9147 panic("Failed to allocate %s hash table\n", tablename); 9148 9149 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 9150 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 9151 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 9152 9153 if (_hash_shift) 9154 *_hash_shift = log2qty; 9155 if (_hash_mask) 9156 *_hash_mask = (1 << log2qty) - 1; 9157 9158 return table; 9159 } 9160 9161 #ifdef CONFIG_CONTIG_ALLOC 9162 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 9163 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 9164 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 9165 static void alloc_contig_dump_pages(struct list_head *page_list) 9166 { 9167 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 9168 9169 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 9170 struct page *page; 9171 9172 dump_stack(); 9173 list_for_each_entry(page, page_list, lru) 9174 dump_page(page, "migration failure"); 9175 } 9176 } 9177 #else 9178 static inline void alloc_contig_dump_pages(struct list_head *page_list) 9179 { 9180 } 9181 #endif 9182 9183 /* [start, end) must belong to a single zone. */ 9184 int __alloc_contig_migrate_range(struct compact_control *cc, 9185 unsigned long start, unsigned long end) 9186 { 9187 /* This function is based on compact_zone() from compaction.c. */ 9188 unsigned int nr_reclaimed; 9189 unsigned long pfn = start; 9190 unsigned int tries = 0; 9191 int ret = 0; 9192 struct migration_target_control mtc = { 9193 .nid = zone_to_nid(cc->zone), 9194 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 9195 }; 9196 9197 lru_cache_disable(); 9198 9199 while (pfn < end || !list_empty(&cc->migratepages)) { 9200 if (fatal_signal_pending(current)) { 9201 ret = -EINTR; 9202 break; 9203 } 9204 9205 if (list_empty(&cc->migratepages)) { 9206 cc->nr_migratepages = 0; 9207 ret = isolate_migratepages_range(cc, pfn, end); 9208 if (ret && ret != -EAGAIN) 9209 break; 9210 pfn = cc->migrate_pfn; 9211 tries = 0; 9212 } else if (++tries == 5) { 9213 ret = -EBUSY; 9214 break; 9215 } 9216 9217 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 9218 &cc->migratepages); 9219 cc->nr_migratepages -= nr_reclaimed; 9220 9221 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 9222 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 9223 9224 /* 9225 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 9226 * to retry again over this error, so do the same here. 9227 */ 9228 if (ret == -ENOMEM) 9229 break; 9230 } 9231 9232 lru_cache_enable(); 9233 if (ret < 0) { 9234 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 9235 alloc_contig_dump_pages(&cc->migratepages); 9236 putback_movable_pages(&cc->migratepages); 9237 return ret; 9238 } 9239 return 0; 9240 } 9241 9242 /** 9243 * alloc_contig_range() -- tries to allocate given range of pages 9244 * @start: start PFN to allocate 9245 * @end: one-past-the-last PFN to allocate 9246 * @migratetype: migratetype of the underlying pageblocks (either 9247 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 9248 * in range must have the same migratetype and it must 9249 * be either of the two. 9250 * @gfp_mask: GFP mask to use during compaction 9251 * 9252 * The PFN range does not have to be pageblock aligned. The PFN range must 9253 * belong to a single zone. 9254 * 9255 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 9256 * pageblocks in the range. Once isolated, the pageblocks should not 9257 * be modified by others. 9258 * 9259 * Return: zero on success or negative error code. On success all 9260 * pages which PFN is in [start, end) are allocated for the caller and 9261 * need to be freed with free_contig_range(). 9262 */ 9263 int alloc_contig_range(unsigned long start, unsigned long end, 9264 unsigned migratetype, gfp_t gfp_mask) 9265 { 9266 unsigned long outer_start, outer_end; 9267 int order; 9268 int ret = 0; 9269 9270 struct compact_control cc = { 9271 .nr_migratepages = 0, 9272 .order = -1, 9273 .zone = page_zone(pfn_to_page(start)), 9274 .mode = MIGRATE_SYNC, 9275 .ignore_skip_hint = true, 9276 .no_set_skip_hint = true, 9277 .gfp_mask = current_gfp_context(gfp_mask), 9278 .alloc_contig = true, 9279 }; 9280 INIT_LIST_HEAD(&cc.migratepages); 9281 9282 /* 9283 * What we do here is we mark all pageblocks in range as 9284 * MIGRATE_ISOLATE. Because pageblock and max order pages may 9285 * have different sizes, and due to the way page allocator 9286 * work, start_isolate_page_range() has special handlings for this. 9287 * 9288 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 9289 * migrate the pages from an unaligned range (ie. pages that 9290 * we are interested in). This will put all the pages in 9291 * range back to page allocator as MIGRATE_ISOLATE. 9292 * 9293 * When this is done, we take the pages in range from page 9294 * allocator removing them from the buddy system. This way 9295 * page allocator will never consider using them. 9296 * 9297 * This lets us mark the pageblocks back as 9298 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 9299 * aligned range but not in the unaligned, original range are 9300 * put back to page allocator so that buddy can use them. 9301 */ 9302 9303 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 9304 if (ret) 9305 goto done; 9306 9307 drain_all_pages(cc.zone); 9308 9309 /* 9310 * In case of -EBUSY, we'd like to know which page causes problem. 9311 * So, just fall through. test_pages_isolated() has a tracepoint 9312 * which will report the busy page. 9313 * 9314 * It is possible that busy pages could become available before 9315 * the call to test_pages_isolated, and the range will actually be 9316 * allocated. So, if we fall through be sure to clear ret so that 9317 * -EBUSY is not accidentally used or returned to caller. 9318 */ 9319 ret = __alloc_contig_migrate_range(&cc, start, end); 9320 if (ret && ret != -EBUSY) 9321 goto done; 9322 ret = 0; 9323 9324 /* 9325 * Pages from [start, end) are within a pageblock_nr_pages 9326 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 9327 * more, all pages in [start, end) are free in page allocator. 9328 * What we are going to do is to allocate all pages from 9329 * [start, end) (that is remove them from page allocator). 9330 * 9331 * The only problem is that pages at the beginning and at the 9332 * end of interesting range may be not aligned with pages that 9333 * page allocator holds, ie. they can be part of higher order 9334 * pages. Because of this, we reserve the bigger range and 9335 * once this is done free the pages we are not interested in. 9336 * 9337 * We don't have to hold zone->lock here because the pages are 9338 * isolated thus they won't get removed from buddy. 9339 */ 9340 9341 order = 0; 9342 outer_start = start; 9343 while (!PageBuddy(pfn_to_page(outer_start))) { 9344 if (++order >= MAX_ORDER) { 9345 outer_start = start; 9346 break; 9347 } 9348 outer_start &= ~0UL << order; 9349 } 9350 9351 if (outer_start != start) { 9352 order = buddy_order(pfn_to_page(outer_start)); 9353 9354 /* 9355 * outer_start page could be small order buddy page and 9356 * it doesn't include start page. Adjust outer_start 9357 * in this case to report failed page properly 9358 * on tracepoint in test_pages_isolated() 9359 */ 9360 if (outer_start + (1UL << order) <= start) 9361 outer_start = start; 9362 } 9363 9364 /* Make sure the range is really isolated. */ 9365 if (test_pages_isolated(outer_start, end, 0)) { 9366 ret = -EBUSY; 9367 goto done; 9368 } 9369 9370 /* Grab isolated pages from freelists. */ 9371 outer_end = isolate_freepages_range(&cc, outer_start, end); 9372 if (!outer_end) { 9373 ret = -EBUSY; 9374 goto done; 9375 } 9376 9377 /* Free head and tail (if any) */ 9378 if (start != outer_start) 9379 free_contig_range(outer_start, start - outer_start); 9380 if (end != outer_end) 9381 free_contig_range(end, outer_end - end); 9382 9383 done: 9384 undo_isolate_page_range(start, end, migratetype); 9385 return ret; 9386 } 9387 EXPORT_SYMBOL(alloc_contig_range); 9388 9389 static int __alloc_contig_pages(unsigned long start_pfn, 9390 unsigned long nr_pages, gfp_t gfp_mask) 9391 { 9392 unsigned long end_pfn = start_pfn + nr_pages; 9393 9394 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 9395 gfp_mask); 9396 } 9397 9398 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 9399 unsigned long nr_pages) 9400 { 9401 unsigned long i, end_pfn = start_pfn + nr_pages; 9402 struct page *page; 9403 9404 for (i = start_pfn; i < end_pfn; i++) { 9405 page = pfn_to_online_page(i); 9406 if (!page) 9407 return false; 9408 9409 if (page_zone(page) != z) 9410 return false; 9411 9412 if (PageReserved(page)) 9413 return false; 9414 } 9415 return true; 9416 } 9417 9418 static bool zone_spans_last_pfn(const struct zone *zone, 9419 unsigned long start_pfn, unsigned long nr_pages) 9420 { 9421 unsigned long last_pfn = start_pfn + nr_pages - 1; 9422 9423 return zone_spans_pfn(zone, last_pfn); 9424 } 9425 9426 /** 9427 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 9428 * @nr_pages: Number of contiguous pages to allocate 9429 * @gfp_mask: GFP mask to limit search and used during compaction 9430 * @nid: Target node 9431 * @nodemask: Mask for other possible nodes 9432 * 9433 * This routine is a wrapper around alloc_contig_range(). It scans over zones 9434 * on an applicable zonelist to find a contiguous pfn range which can then be 9435 * tried for allocation with alloc_contig_range(). This routine is intended 9436 * for allocation requests which can not be fulfilled with the buddy allocator. 9437 * 9438 * The allocated memory is always aligned to a page boundary. If nr_pages is a 9439 * power of two, then allocated range is also guaranteed to be aligned to same 9440 * nr_pages (e.g. 1GB request would be aligned to 1GB). 9441 * 9442 * Allocated pages can be freed with free_contig_range() or by manually calling 9443 * __free_page() on each allocated page. 9444 * 9445 * Return: pointer to contiguous pages on success, or NULL if not successful. 9446 */ 9447 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 9448 int nid, nodemask_t *nodemask) 9449 { 9450 unsigned long ret, pfn, flags; 9451 struct zonelist *zonelist; 9452 struct zone *zone; 9453 struct zoneref *z; 9454 9455 zonelist = node_zonelist(nid, gfp_mask); 9456 for_each_zone_zonelist_nodemask(zone, z, zonelist, 9457 gfp_zone(gfp_mask), nodemask) { 9458 spin_lock_irqsave(&zone->lock, flags); 9459 9460 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 9461 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 9462 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 9463 /* 9464 * We release the zone lock here because 9465 * alloc_contig_range() will also lock the zone 9466 * at some point. If there's an allocation 9467 * spinning on this lock, it may win the race 9468 * and cause alloc_contig_range() to fail... 9469 */ 9470 spin_unlock_irqrestore(&zone->lock, flags); 9471 ret = __alloc_contig_pages(pfn, nr_pages, 9472 gfp_mask); 9473 if (!ret) 9474 return pfn_to_page(pfn); 9475 spin_lock_irqsave(&zone->lock, flags); 9476 } 9477 pfn += nr_pages; 9478 } 9479 spin_unlock_irqrestore(&zone->lock, flags); 9480 } 9481 return NULL; 9482 } 9483 #endif /* CONFIG_CONTIG_ALLOC */ 9484 9485 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 9486 { 9487 unsigned long count = 0; 9488 9489 for (; nr_pages--; pfn++) { 9490 struct page *page = pfn_to_page(pfn); 9491 9492 count += page_count(page) != 1; 9493 __free_page(page); 9494 } 9495 WARN(count != 0, "%lu pages are still in use!\n", count); 9496 } 9497 EXPORT_SYMBOL(free_contig_range); 9498 9499 /* 9500 * Effectively disable pcplists for the zone by setting the high limit to 0 9501 * and draining all cpus. A concurrent page freeing on another CPU that's about 9502 * to put the page on pcplist will either finish before the drain and the page 9503 * will be drained, or observe the new high limit and skip the pcplist. 9504 * 9505 * Must be paired with a call to zone_pcp_enable(). 9506 */ 9507 void zone_pcp_disable(struct zone *zone) 9508 { 9509 mutex_lock(&pcp_batch_high_lock); 9510 __zone_set_pageset_high_and_batch(zone, 0, 1); 9511 __drain_all_pages(zone, true); 9512 } 9513 9514 void zone_pcp_enable(struct zone *zone) 9515 { 9516 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9517 mutex_unlock(&pcp_batch_high_lock); 9518 } 9519 9520 void zone_pcp_reset(struct zone *zone) 9521 { 9522 int cpu; 9523 struct per_cpu_zonestat *pzstats; 9524 9525 if (zone->per_cpu_pageset != &boot_pageset) { 9526 for_each_online_cpu(cpu) { 9527 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 9528 drain_zonestat(zone, pzstats); 9529 } 9530 free_percpu(zone->per_cpu_pageset); 9531 zone->per_cpu_pageset = &boot_pageset; 9532 if (zone->per_cpu_zonestats != &boot_zonestats) { 9533 free_percpu(zone->per_cpu_zonestats); 9534 zone->per_cpu_zonestats = &boot_zonestats; 9535 } 9536 } 9537 } 9538 9539 #ifdef CONFIG_MEMORY_HOTREMOVE 9540 /* 9541 * All pages in the range must be in a single zone, must not contain holes, 9542 * must span full sections, and must be isolated before calling this function. 9543 */ 9544 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9545 { 9546 unsigned long pfn = start_pfn; 9547 struct page *page; 9548 struct zone *zone; 9549 unsigned int order; 9550 unsigned long flags; 9551 9552 offline_mem_sections(pfn, end_pfn); 9553 zone = page_zone(pfn_to_page(pfn)); 9554 spin_lock_irqsave(&zone->lock, flags); 9555 while (pfn < end_pfn) { 9556 page = pfn_to_page(pfn); 9557 /* 9558 * The HWPoisoned page may be not in buddy system, and 9559 * page_count() is not 0. 9560 */ 9561 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9562 pfn++; 9563 continue; 9564 } 9565 /* 9566 * At this point all remaining PageOffline() pages have a 9567 * reference count of 0 and can simply be skipped. 9568 */ 9569 if (PageOffline(page)) { 9570 BUG_ON(page_count(page)); 9571 BUG_ON(PageBuddy(page)); 9572 pfn++; 9573 continue; 9574 } 9575 9576 BUG_ON(page_count(page)); 9577 BUG_ON(!PageBuddy(page)); 9578 order = buddy_order(page); 9579 del_page_from_free_list(page, zone, order); 9580 pfn += (1 << order); 9581 } 9582 spin_unlock_irqrestore(&zone->lock, flags); 9583 } 9584 #endif 9585 9586 /* 9587 * This function returns a stable result only if called under zone lock. 9588 */ 9589 bool is_free_buddy_page(struct page *page) 9590 { 9591 unsigned long pfn = page_to_pfn(page); 9592 unsigned int order; 9593 9594 for (order = 0; order < MAX_ORDER; order++) { 9595 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9596 9597 if (PageBuddy(page_head) && 9598 buddy_order_unsafe(page_head) >= order) 9599 break; 9600 } 9601 9602 return order < MAX_ORDER; 9603 } 9604 EXPORT_SYMBOL(is_free_buddy_page); 9605 9606 #ifdef CONFIG_MEMORY_FAILURE 9607 /* 9608 * Break down a higher-order page in sub-pages, and keep our target out of 9609 * buddy allocator. 9610 */ 9611 static void break_down_buddy_pages(struct zone *zone, struct page *page, 9612 struct page *target, int low, int high, 9613 int migratetype) 9614 { 9615 unsigned long size = 1 << high; 9616 struct page *current_buddy, *next_page; 9617 9618 while (high > low) { 9619 high--; 9620 size >>= 1; 9621 9622 if (target >= &page[size]) { 9623 next_page = page + size; 9624 current_buddy = page; 9625 } else { 9626 next_page = page; 9627 current_buddy = page + size; 9628 } 9629 9630 if (set_page_guard(zone, current_buddy, high, migratetype)) 9631 continue; 9632 9633 if (current_buddy != target) { 9634 add_to_free_list(current_buddy, zone, high, migratetype); 9635 set_buddy_order(current_buddy, high); 9636 page = next_page; 9637 } 9638 } 9639 } 9640 9641 /* 9642 * Take a page that will be marked as poisoned off the buddy allocator. 9643 */ 9644 bool take_page_off_buddy(struct page *page) 9645 { 9646 struct zone *zone = page_zone(page); 9647 unsigned long pfn = page_to_pfn(page); 9648 unsigned long flags; 9649 unsigned int order; 9650 bool ret = false; 9651 9652 spin_lock_irqsave(&zone->lock, flags); 9653 for (order = 0; order < MAX_ORDER; order++) { 9654 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9655 int page_order = buddy_order(page_head); 9656 9657 if (PageBuddy(page_head) && page_order >= order) { 9658 unsigned long pfn_head = page_to_pfn(page_head); 9659 int migratetype = get_pfnblock_migratetype(page_head, 9660 pfn_head); 9661 9662 del_page_from_free_list(page_head, zone, page_order); 9663 break_down_buddy_pages(zone, page_head, page, 0, 9664 page_order, migratetype); 9665 SetPageHWPoisonTakenOff(page); 9666 if (!is_migrate_isolate(migratetype)) 9667 __mod_zone_freepage_state(zone, -1, migratetype); 9668 ret = true; 9669 break; 9670 } 9671 if (page_count(page_head) > 0) 9672 break; 9673 } 9674 spin_unlock_irqrestore(&zone->lock, flags); 9675 return ret; 9676 } 9677 9678 /* 9679 * Cancel takeoff done by take_page_off_buddy(). 9680 */ 9681 bool put_page_back_buddy(struct page *page) 9682 { 9683 struct zone *zone = page_zone(page); 9684 unsigned long pfn = page_to_pfn(page); 9685 unsigned long flags; 9686 int migratetype = get_pfnblock_migratetype(page, pfn); 9687 bool ret = false; 9688 9689 spin_lock_irqsave(&zone->lock, flags); 9690 if (put_page_testzero(page)) { 9691 ClearPageHWPoisonTakenOff(page); 9692 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 9693 if (TestClearPageHWPoison(page)) { 9694 ret = true; 9695 } 9696 } 9697 spin_unlock_irqrestore(&zone->lock, flags); 9698 9699 return ret; 9700 } 9701 #endif 9702 9703 #ifdef CONFIG_ZONE_DMA 9704 bool has_managed_dma(void) 9705 { 9706 struct pglist_data *pgdat; 9707 9708 for_each_online_pgdat(pgdat) { 9709 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 9710 9711 if (managed_zone(zone)) 9712 return true; 9713 } 9714 return false; 9715 } 9716 #endif /* CONFIG_ZONE_DMA */ 9717