xref: /openbmc/linux/mm/page_alloc.c (revision ab55c050)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
70 #include "internal.h"
71 
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock);
74 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
75 
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node);
78 EXPORT_PER_CPU_SYMBOL(numa_node);
79 #endif
80 
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 /*
83  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86  * defined in <linux/topology.h>.
87  */
88 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90 int _node_numa_mem_[MAX_NUMNODES];
91 #endif
92 
93 /*
94  * Array of node states.
95  */
96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 	[N_POSSIBLE] = NODE_MASK_ALL,
98 	[N_ONLINE] = { { [0] = 1UL } },
99 #ifndef CONFIG_NUMA
100 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
103 #endif
104 #ifdef CONFIG_MOVABLE_NODE
105 	[N_MEMORY] = { { [0] = 1UL } },
106 #endif
107 	[N_CPU] = { { [0] = 1UL } },
108 #endif	/* NUMA */
109 };
110 EXPORT_SYMBOL(node_states);
111 
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock);
114 
115 unsigned long totalram_pages __read_mostly;
116 unsigned long totalreserve_pages __read_mostly;
117 unsigned long totalcma_pages __read_mostly;
118 
119 int percpu_pagelist_fraction;
120 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
121 
122 /*
123  * A cached value of the page's pageblock's migratetype, used when the page is
124  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126  * Also the migratetype set in the page does not necessarily match the pcplist
127  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128  * other index - this ensures that it will be put on the correct CMA freelist.
129  */
130 static inline int get_pcppage_migratetype(struct page *page)
131 {
132 	return page->index;
133 }
134 
135 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136 {
137 	page->index = migratetype;
138 }
139 
140 #ifdef CONFIG_PM_SLEEP
141 /*
142  * The following functions are used by the suspend/hibernate code to temporarily
143  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144  * while devices are suspended.  To avoid races with the suspend/hibernate code,
145  * they should always be called with pm_mutex held (gfp_allowed_mask also should
146  * only be modified with pm_mutex held, unless the suspend/hibernate code is
147  * guaranteed not to run in parallel with that modification).
148  */
149 
150 static gfp_t saved_gfp_mask;
151 
152 void pm_restore_gfp_mask(void)
153 {
154 	WARN_ON(!mutex_is_locked(&pm_mutex));
155 	if (saved_gfp_mask) {
156 		gfp_allowed_mask = saved_gfp_mask;
157 		saved_gfp_mask = 0;
158 	}
159 }
160 
161 void pm_restrict_gfp_mask(void)
162 {
163 	WARN_ON(!mutex_is_locked(&pm_mutex));
164 	WARN_ON(saved_gfp_mask);
165 	saved_gfp_mask = gfp_allowed_mask;
166 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
167 }
168 
169 bool pm_suspended_storage(void)
170 {
171 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
172 		return false;
173 	return true;
174 }
175 #endif /* CONFIG_PM_SLEEP */
176 
177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
178 unsigned int pageblock_order __read_mostly;
179 #endif
180 
181 static void __free_pages_ok(struct page *page, unsigned int order);
182 
183 /*
184  * results with 256, 32 in the lowmem_reserve sysctl:
185  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186  *	1G machine -> (16M dma, 784M normal, 224M high)
187  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
189  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
190  *
191  * TBD: should special case ZONE_DMA32 machines here - in those we normally
192  * don't need any ZONE_NORMAL reservation
193  */
194 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
195 #ifdef CONFIG_ZONE_DMA
196 	 256,
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 	 256,
200 #endif
201 #ifdef CONFIG_HIGHMEM
202 	 32,
203 #endif
204 	 32,
205 };
206 
207 EXPORT_SYMBOL(totalram_pages);
208 
209 static char * const zone_names[MAX_NR_ZONES] = {
210 #ifdef CONFIG_ZONE_DMA
211 	 "DMA",
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 	 "DMA32",
215 #endif
216 	 "Normal",
217 #ifdef CONFIG_HIGHMEM
218 	 "HighMem",
219 #endif
220 	 "Movable",
221 #ifdef CONFIG_ZONE_DEVICE
222 	 "Device",
223 #endif
224 };
225 
226 char * const migratetype_names[MIGRATE_TYPES] = {
227 	"Unmovable",
228 	"Movable",
229 	"Reclaimable",
230 	"HighAtomic",
231 #ifdef CONFIG_CMA
232 	"CMA",
233 #endif
234 #ifdef CONFIG_MEMORY_ISOLATION
235 	"Isolate",
236 #endif
237 };
238 
239 compound_page_dtor * const compound_page_dtors[] = {
240 	NULL,
241 	free_compound_page,
242 #ifdef CONFIG_HUGETLB_PAGE
243 	free_huge_page,
244 #endif
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 	free_transhuge_page,
247 #endif
248 };
249 
250 int min_free_kbytes = 1024;
251 int user_min_free_kbytes = -1;
252 int watermark_scale_factor = 10;
253 
254 static unsigned long __meminitdata nr_kernel_pages;
255 static unsigned long __meminitdata nr_all_pages;
256 static unsigned long __meminitdata dma_reserve;
257 
258 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __initdata required_kernelcore;
262 static unsigned long __initdata required_movablecore;
263 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
264 static bool mirrored_kernelcore;
265 
266 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267 int movable_zone;
268 EXPORT_SYMBOL(movable_zone);
269 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
270 
271 #if MAX_NUMNODES > 1
272 int nr_node_ids __read_mostly = MAX_NUMNODES;
273 int nr_online_nodes __read_mostly = 1;
274 EXPORT_SYMBOL(nr_node_ids);
275 EXPORT_SYMBOL(nr_online_nodes);
276 #endif
277 
278 int page_group_by_mobility_disabled __read_mostly;
279 
280 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281 static inline void reset_deferred_meminit(pg_data_t *pgdat)
282 {
283 	pgdat->first_deferred_pfn = ULONG_MAX;
284 }
285 
286 /* Returns true if the struct page for the pfn is uninitialised */
287 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
288 {
289 	if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
290 		return true;
291 
292 	return false;
293 }
294 
295 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296 {
297 	if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 		return true;
299 
300 	return false;
301 }
302 
303 /*
304  * Returns false when the remaining initialisation should be deferred until
305  * later in the boot cycle when it can be parallelised.
306  */
307 static inline bool update_defer_init(pg_data_t *pgdat,
308 				unsigned long pfn, unsigned long zone_end,
309 				unsigned long *nr_initialised)
310 {
311 	unsigned long max_initialise;
312 
313 	/* Always populate low zones for address-contrained allocations */
314 	if (zone_end < pgdat_end_pfn(pgdat))
315 		return true;
316 	/*
317 	 * Initialise at least 2G of a node but also take into account that
318 	 * two large system hashes that can take up 1GB for 0.25TB/node.
319 	 */
320 	max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 		(pgdat->node_spanned_pages >> 8));
322 
323 	(*nr_initialised)++;
324 	if ((*nr_initialised > max_initialise) &&
325 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 		pgdat->first_deferred_pfn = pfn;
327 		return false;
328 	}
329 
330 	return true;
331 }
332 #else
333 static inline void reset_deferred_meminit(pg_data_t *pgdat)
334 {
335 }
336 
337 static inline bool early_page_uninitialised(unsigned long pfn)
338 {
339 	return false;
340 }
341 
342 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343 {
344 	return false;
345 }
346 
347 static inline bool update_defer_init(pg_data_t *pgdat,
348 				unsigned long pfn, unsigned long zone_end,
349 				unsigned long *nr_initialised)
350 {
351 	return true;
352 }
353 #endif
354 
355 /* Return a pointer to the bitmap storing bits affecting a block of pages */
356 static inline unsigned long *get_pageblock_bitmap(struct page *page,
357 							unsigned long pfn)
358 {
359 #ifdef CONFIG_SPARSEMEM
360 	return __pfn_to_section(pfn)->pageblock_flags;
361 #else
362 	return page_zone(page)->pageblock_flags;
363 #endif /* CONFIG_SPARSEMEM */
364 }
365 
366 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
367 {
368 #ifdef CONFIG_SPARSEMEM
369 	pfn &= (PAGES_PER_SECTION-1);
370 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
371 #else
372 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374 #endif /* CONFIG_SPARSEMEM */
375 }
376 
377 /**
378  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379  * @page: The page within the block of interest
380  * @pfn: The target page frame number
381  * @end_bitidx: The last bit of interest to retrieve
382  * @mask: mask of bits that the caller is interested in
383  *
384  * Return: pageblock_bits flags
385  */
386 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
387 					unsigned long pfn,
388 					unsigned long end_bitidx,
389 					unsigned long mask)
390 {
391 	unsigned long *bitmap;
392 	unsigned long bitidx, word_bitidx;
393 	unsigned long word;
394 
395 	bitmap = get_pageblock_bitmap(page, pfn);
396 	bitidx = pfn_to_bitidx(page, pfn);
397 	word_bitidx = bitidx / BITS_PER_LONG;
398 	bitidx &= (BITS_PER_LONG-1);
399 
400 	word = bitmap[word_bitidx];
401 	bitidx += end_bitidx;
402 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
403 }
404 
405 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 					unsigned long end_bitidx,
407 					unsigned long mask)
408 {
409 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
410 }
411 
412 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
413 {
414 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
415 }
416 
417 /**
418  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419  * @page: The page within the block of interest
420  * @flags: The flags to set
421  * @pfn: The target page frame number
422  * @end_bitidx: The last bit of interest
423  * @mask: mask of bits that the caller is interested in
424  */
425 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
426 					unsigned long pfn,
427 					unsigned long end_bitidx,
428 					unsigned long mask)
429 {
430 	unsigned long *bitmap;
431 	unsigned long bitidx, word_bitidx;
432 	unsigned long old_word, word;
433 
434 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
435 
436 	bitmap = get_pageblock_bitmap(page, pfn);
437 	bitidx = pfn_to_bitidx(page, pfn);
438 	word_bitidx = bitidx / BITS_PER_LONG;
439 	bitidx &= (BITS_PER_LONG-1);
440 
441 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
442 
443 	bitidx += end_bitidx;
444 	mask <<= (BITS_PER_LONG - bitidx - 1);
445 	flags <<= (BITS_PER_LONG - bitidx - 1);
446 
447 	word = READ_ONCE(bitmap[word_bitidx]);
448 	for (;;) {
449 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 		if (word == old_word)
451 			break;
452 		word = old_word;
453 	}
454 }
455 
456 void set_pageblock_migratetype(struct page *page, int migratetype)
457 {
458 	if (unlikely(page_group_by_mobility_disabled &&
459 		     migratetype < MIGRATE_PCPTYPES))
460 		migratetype = MIGRATE_UNMOVABLE;
461 
462 	set_pageblock_flags_group(page, (unsigned long)migratetype,
463 					PB_migrate, PB_migrate_end);
464 }
465 
466 #ifdef CONFIG_DEBUG_VM
467 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
468 {
469 	int ret = 0;
470 	unsigned seq;
471 	unsigned long pfn = page_to_pfn(page);
472 	unsigned long sp, start_pfn;
473 
474 	do {
475 		seq = zone_span_seqbegin(zone);
476 		start_pfn = zone->zone_start_pfn;
477 		sp = zone->spanned_pages;
478 		if (!zone_spans_pfn(zone, pfn))
479 			ret = 1;
480 	} while (zone_span_seqretry(zone, seq));
481 
482 	if (ret)
483 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 			pfn, zone_to_nid(zone), zone->name,
485 			start_pfn, start_pfn + sp);
486 
487 	return ret;
488 }
489 
490 static int page_is_consistent(struct zone *zone, struct page *page)
491 {
492 	if (!pfn_valid_within(page_to_pfn(page)))
493 		return 0;
494 	if (zone != page_zone(page))
495 		return 0;
496 
497 	return 1;
498 }
499 /*
500  * Temporary debugging check for pages not lying within a given zone.
501  */
502 static int bad_range(struct zone *zone, struct page *page)
503 {
504 	if (page_outside_zone_boundaries(zone, page))
505 		return 1;
506 	if (!page_is_consistent(zone, page))
507 		return 1;
508 
509 	return 0;
510 }
511 #else
512 static inline int bad_range(struct zone *zone, struct page *page)
513 {
514 	return 0;
515 }
516 #endif
517 
518 static void bad_page(struct page *page, const char *reason,
519 		unsigned long bad_flags)
520 {
521 	static unsigned long resume;
522 	static unsigned long nr_shown;
523 	static unsigned long nr_unshown;
524 
525 	/*
526 	 * Allow a burst of 60 reports, then keep quiet for that minute;
527 	 * or allow a steady drip of one report per second.
528 	 */
529 	if (nr_shown == 60) {
530 		if (time_before(jiffies, resume)) {
531 			nr_unshown++;
532 			goto out;
533 		}
534 		if (nr_unshown) {
535 			pr_alert(
536 			      "BUG: Bad page state: %lu messages suppressed\n",
537 				nr_unshown);
538 			nr_unshown = 0;
539 		}
540 		nr_shown = 0;
541 	}
542 	if (nr_shown++ == 0)
543 		resume = jiffies + 60 * HZ;
544 
545 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
546 		current->comm, page_to_pfn(page));
547 	__dump_page(page, reason);
548 	bad_flags &= page->flags;
549 	if (bad_flags)
550 		pr_alert("bad because of flags: %#lx(%pGp)\n",
551 						bad_flags, &bad_flags);
552 	dump_page_owner(page);
553 
554 	print_modules();
555 	dump_stack();
556 out:
557 	/* Leave bad fields for debug, except PageBuddy could make trouble */
558 	page_mapcount_reset(page); /* remove PageBuddy */
559 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
560 }
561 
562 /*
563  * Higher-order pages are called "compound pages".  They are structured thusly:
564  *
565  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
566  *
567  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
568  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
569  *
570  * The first tail page's ->compound_dtor holds the offset in array of compound
571  * page destructors. See compound_page_dtors.
572  *
573  * The first tail page's ->compound_order holds the order of allocation.
574  * This usage means that zero-order pages may not be compound.
575  */
576 
577 void free_compound_page(struct page *page)
578 {
579 	__free_pages_ok(page, compound_order(page));
580 }
581 
582 void prep_compound_page(struct page *page, unsigned int order)
583 {
584 	int i;
585 	int nr_pages = 1 << order;
586 
587 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
588 	set_compound_order(page, order);
589 	__SetPageHead(page);
590 	for (i = 1; i < nr_pages; i++) {
591 		struct page *p = page + i;
592 		set_page_count(p, 0);
593 		p->mapping = TAIL_MAPPING;
594 		set_compound_head(p, page);
595 	}
596 	atomic_set(compound_mapcount_ptr(page), -1);
597 }
598 
599 #ifdef CONFIG_DEBUG_PAGEALLOC
600 unsigned int _debug_guardpage_minorder;
601 bool _debug_pagealloc_enabled __read_mostly
602 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
603 EXPORT_SYMBOL(_debug_pagealloc_enabled);
604 bool _debug_guardpage_enabled __read_mostly;
605 
606 static int __init early_debug_pagealloc(char *buf)
607 {
608 	if (!buf)
609 		return -EINVAL;
610 	return kstrtobool(buf, &_debug_pagealloc_enabled);
611 }
612 early_param("debug_pagealloc", early_debug_pagealloc);
613 
614 static bool need_debug_guardpage(void)
615 {
616 	/* If we don't use debug_pagealloc, we don't need guard page */
617 	if (!debug_pagealloc_enabled())
618 		return false;
619 
620 	return true;
621 }
622 
623 static void init_debug_guardpage(void)
624 {
625 	if (!debug_pagealloc_enabled())
626 		return;
627 
628 	_debug_guardpage_enabled = true;
629 }
630 
631 struct page_ext_operations debug_guardpage_ops = {
632 	.need = need_debug_guardpage,
633 	.init = init_debug_guardpage,
634 };
635 
636 static int __init debug_guardpage_minorder_setup(char *buf)
637 {
638 	unsigned long res;
639 
640 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
641 		pr_err("Bad debug_guardpage_minorder value\n");
642 		return 0;
643 	}
644 	_debug_guardpage_minorder = res;
645 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
646 	return 0;
647 }
648 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
649 
650 static inline void set_page_guard(struct zone *zone, struct page *page,
651 				unsigned int order, int migratetype)
652 {
653 	struct page_ext *page_ext;
654 
655 	if (!debug_guardpage_enabled())
656 		return;
657 
658 	page_ext = lookup_page_ext(page);
659 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
660 
661 	INIT_LIST_HEAD(&page->lru);
662 	set_page_private(page, order);
663 	/* Guard pages are not available for any usage */
664 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
665 }
666 
667 static inline void clear_page_guard(struct zone *zone, struct page *page,
668 				unsigned int order, int migratetype)
669 {
670 	struct page_ext *page_ext;
671 
672 	if (!debug_guardpage_enabled())
673 		return;
674 
675 	page_ext = lookup_page_ext(page);
676 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
677 
678 	set_page_private(page, 0);
679 	if (!is_migrate_isolate(migratetype))
680 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
681 }
682 #else
683 struct page_ext_operations debug_guardpage_ops = { NULL, };
684 static inline void set_page_guard(struct zone *zone, struct page *page,
685 				unsigned int order, int migratetype) {}
686 static inline void clear_page_guard(struct zone *zone, struct page *page,
687 				unsigned int order, int migratetype) {}
688 #endif
689 
690 static inline void set_page_order(struct page *page, unsigned int order)
691 {
692 	set_page_private(page, order);
693 	__SetPageBuddy(page);
694 }
695 
696 static inline void rmv_page_order(struct page *page)
697 {
698 	__ClearPageBuddy(page);
699 	set_page_private(page, 0);
700 }
701 
702 /*
703  * This function checks whether a page is free && is the buddy
704  * we can do coalesce a page and its buddy if
705  * (a) the buddy is not in a hole &&
706  * (b) the buddy is in the buddy system &&
707  * (c) a page and its buddy have the same order &&
708  * (d) a page and its buddy are in the same zone.
709  *
710  * For recording whether a page is in the buddy system, we set ->_mapcount
711  * PAGE_BUDDY_MAPCOUNT_VALUE.
712  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
713  * serialized by zone->lock.
714  *
715  * For recording page's order, we use page_private(page).
716  */
717 static inline int page_is_buddy(struct page *page, struct page *buddy,
718 							unsigned int order)
719 {
720 	if (!pfn_valid_within(page_to_pfn(buddy)))
721 		return 0;
722 
723 	if (page_is_guard(buddy) && page_order(buddy) == order) {
724 		if (page_zone_id(page) != page_zone_id(buddy))
725 			return 0;
726 
727 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
728 
729 		return 1;
730 	}
731 
732 	if (PageBuddy(buddy) && page_order(buddy) == order) {
733 		/*
734 		 * zone check is done late to avoid uselessly
735 		 * calculating zone/node ids for pages that could
736 		 * never merge.
737 		 */
738 		if (page_zone_id(page) != page_zone_id(buddy))
739 			return 0;
740 
741 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
742 
743 		return 1;
744 	}
745 	return 0;
746 }
747 
748 /*
749  * Freeing function for a buddy system allocator.
750  *
751  * The concept of a buddy system is to maintain direct-mapped table
752  * (containing bit values) for memory blocks of various "orders".
753  * The bottom level table contains the map for the smallest allocatable
754  * units of memory (here, pages), and each level above it describes
755  * pairs of units from the levels below, hence, "buddies".
756  * At a high level, all that happens here is marking the table entry
757  * at the bottom level available, and propagating the changes upward
758  * as necessary, plus some accounting needed to play nicely with other
759  * parts of the VM system.
760  * At each level, we keep a list of pages, which are heads of continuous
761  * free pages of length of (1 << order) and marked with _mapcount
762  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
763  * field.
764  * So when we are allocating or freeing one, we can derive the state of the
765  * other.  That is, if we allocate a small block, and both were
766  * free, the remainder of the region must be split into blocks.
767  * If a block is freed, and its buddy is also free, then this
768  * triggers coalescing into a block of larger size.
769  *
770  * -- nyc
771  */
772 
773 static inline void __free_one_page(struct page *page,
774 		unsigned long pfn,
775 		struct zone *zone, unsigned int order,
776 		int migratetype)
777 {
778 	unsigned long page_idx;
779 	unsigned long combined_idx;
780 	unsigned long uninitialized_var(buddy_idx);
781 	struct page *buddy;
782 	unsigned int max_order;
783 
784 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
785 
786 	VM_BUG_ON(!zone_is_initialized(zone));
787 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
788 
789 	VM_BUG_ON(migratetype == -1);
790 	if (likely(!is_migrate_isolate(migratetype)))
791 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
792 
793 	page_idx = pfn & ((1 << MAX_ORDER) - 1);
794 
795 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
796 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
797 
798 continue_merging:
799 	while (order < max_order - 1) {
800 		buddy_idx = __find_buddy_index(page_idx, order);
801 		buddy = page + (buddy_idx - page_idx);
802 		if (!page_is_buddy(page, buddy, order))
803 			goto done_merging;
804 		/*
805 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
806 		 * merge with it and move up one order.
807 		 */
808 		if (page_is_guard(buddy)) {
809 			clear_page_guard(zone, buddy, order, migratetype);
810 		} else {
811 			list_del(&buddy->lru);
812 			zone->free_area[order].nr_free--;
813 			rmv_page_order(buddy);
814 		}
815 		combined_idx = buddy_idx & page_idx;
816 		page = page + (combined_idx - page_idx);
817 		page_idx = combined_idx;
818 		order++;
819 	}
820 	if (max_order < MAX_ORDER) {
821 		/* If we are here, it means order is >= pageblock_order.
822 		 * We want to prevent merge between freepages on isolate
823 		 * pageblock and normal pageblock. Without this, pageblock
824 		 * isolation could cause incorrect freepage or CMA accounting.
825 		 *
826 		 * We don't want to hit this code for the more frequent
827 		 * low-order merging.
828 		 */
829 		if (unlikely(has_isolate_pageblock(zone))) {
830 			int buddy_mt;
831 
832 			buddy_idx = __find_buddy_index(page_idx, order);
833 			buddy = page + (buddy_idx - page_idx);
834 			buddy_mt = get_pageblock_migratetype(buddy);
835 
836 			if (migratetype != buddy_mt
837 					&& (is_migrate_isolate(migratetype) ||
838 						is_migrate_isolate(buddy_mt)))
839 				goto done_merging;
840 		}
841 		max_order++;
842 		goto continue_merging;
843 	}
844 
845 done_merging:
846 	set_page_order(page, order);
847 
848 	/*
849 	 * If this is not the largest possible page, check if the buddy
850 	 * of the next-highest order is free. If it is, it's possible
851 	 * that pages are being freed that will coalesce soon. In case,
852 	 * that is happening, add the free page to the tail of the list
853 	 * so it's less likely to be used soon and more likely to be merged
854 	 * as a higher order page
855 	 */
856 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
857 		struct page *higher_page, *higher_buddy;
858 		combined_idx = buddy_idx & page_idx;
859 		higher_page = page + (combined_idx - page_idx);
860 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
861 		higher_buddy = higher_page + (buddy_idx - combined_idx);
862 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
863 			list_add_tail(&page->lru,
864 				&zone->free_area[order].free_list[migratetype]);
865 			goto out;
866 		}
867 	}
868 
869 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
870 out:
871 	zone->free_area[order].nr_free++;
872 }
873 
874 /*
875  * A bad page could be due to a number of fields. Instead of multiple branches,
876  * try and check multiple fields with one check. The caller must do a detailed
877  * check if necessary.
878  */
879 static inline bool page_expected_state(struct page *page,
880 					unsigned long check_flags)
881 {
882 	if (unlikely(atomic_read(&page->_mapcount) != -1))
883 		return false;
884 
885 	if (unlikely((unsigned long)page->mapping |
886 			page_ref_count(page) |
887 #ifdef CONFIG_MEMCG
888 			(unsigned long)page->mem_cgroup |
889 #endif
890 			(page->flags & check_flags)))
891 		return false;
892 
893 	return true;
894 }
895 
896 static void free_pages_check_bad(struct page *page)
897 {
898 	const char *bad_reason;
899 	unsigned long bad_flags;
900 
901 	bad_reason = NULL;
902 	bad_flags = 0;
903 
904 	if (unlikely(atomic_read(&page->_mapcount) != -1))
905 		bad_reason = "nonzero mapcount";
906 	if (unlikely(page->mapping != NULL))
907 		bad_reason = "non-NULL mapping";
908 	if (unlikely(page_ref_count(page) != 0))
909 		bad_reason = "nonzero _refcount";
910 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
911 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
912 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
913 	}
914 #ifdef CONFIG_MEMCG
915 	if (unlikely(page->mem_cgroup))
916 		bad_reason = "page still charged to cgroup";
917 #endif
918 	bad_page(page, bad_reason, bad_flags);
919 }
920 
921 static inline int free_pages_check(struct page *page)
922 {
923 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
924 		return 0;
925 
926 	/* Something has gone sideways, find it */
927 	free_pages_check_bad(page);
928 	return 1;
929 }
930 
931 static int free_tail_pages_check(struct page *head_page, struct page *page)
932 {
933 	int ret = 1;
934 
935 	/*
936 	 * We rely page->lru.next never has bit 0 set, unless the page
937 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
938 	 */
939 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
940 
941 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
942 		ret = 0;
943 		goto out;
944 	}
945 	switch (page - head_page) {
946 	case 1:
947 		/* the first tail page: ->mapping is compound_mapcount() */
948 		if (unlikely(compound_mapcount(page))) {
949 			bad_page(page, "nonzero compound_mapcount", 0);
950 			goto out;
951 		}
952 		break;
953 	case 2:
954 		/*
955 		 * the second tail page: ->mapping is
956 		 * page_deferred_list().next -- ignore value.
957 		 */
958 		break;
959 	default:
960 		if (page->mapping != TAIL_MAPPING) {
961 			bad_page(page, "corrupted mapping in tail page", 0);
962 			goto out;
963 		}
964 		break;
965 	}
966 	if (unlikely(!PageTail(page))) {
967 		bad_page(page, "PageTail not set", 0);
968 		goto out;
969 	}
970 	if (unlikely(compound_head(page) != head_page)) {
971 		bad_page(page, "compound_head not consistent", 0);
972 		goto out;
973 	}
974 	ret = 0;
975 out:
976 	page->mapping = NULL;
977 	clear_compound_head(page);
978 	return ret;
979 }
980 
981 static __always_inline bool free_pages_prepare(struct page *page,
982 					unsigned int order, bool check_free)
983 {
984 	int bad = 0;
985 
986 	VM_BUG_ON_PAGE(PageTail(page), page);
987 
988 	trace_mm_page_free(page, order);
989 	kmemcheck_free_shadow(page, order);
990 
991 	/*
992 	 * Check tail pages before head page information is cleared to
993 	 * avoid checking PageCompound for order-0 pages.
994 	 */
995 	if (unlikely(order)) {
996 		bool compound = PageCompound(page);
997 		int i;
998 
999 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1000 
1001 		for (i = 1; i < (1 << order); i++) {
1002 			if (compound)
1003 				bad += free_tail_pages_check(page, page + i);
1004 			if (unlikely(free_pages_check(page + i))) {
1005 				bad++;
1006 				continue;
1007 			}
1008 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1009 		}
1010 	}
1011 	if (PageAnonHead(page))
1012 		page->mapping = NULL;
1013 	if (check_free)
1014 		bad += free_pages_check(page);
1015 	if (bad)
1016 		return false;
1017 
1018 	page_cpupid_reset_last(page);
1019 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1020 	reset_page_owner(page, order);
1021 
1022 	if (!PageHighMem(page)) {
1023 		debug_check_no_locks_freed(page_address(page),
1024 					   PAGE_SIZE << order);
1025 		debug_check_no_obj_freed(page_address(page),
1026 					   PAGE_SIZE << order);
1027 	}
1028 	arch_free_page(page, order);
1029 	kernel_poison_pages(page, 1 << order, 0);
1030 	kernel_map_pages(page, 1 << order, 0);
1031 	kasan_free_pages(page, order);
1032 
1033 	return true;
1034 }
1035 
1036 #ifdef CONFIG_DEBUG_VM
1037 static inline bool free_pcp_prepare(struct page *page)
1038 {
1039 	return free_pages_prepare(page, 0, true);
1040 }
1041 
1042 static inline bool bulkfree_pcp_prepare(struct page *page)
1043 {
1044 	return false;
1045 }
1046 #else
1047 static bool free_pcp_prepare(struct page *page)
1048 {
1049 	return free_pages_prepare(page, 0, false);
1050 }
1051 
1052 static bool bulkfree_pcp_prepare(struct page *page)
1053 {
1054 	return free_pages_check(page);
1055 }
1056 #endif /* CONFIG_DEBUG_VM */
1057 
1058 /*
1059  * Frees a number of pages from the PCP lists
1060  * Assumes all pages on list are in same zone, and of same order.
1061  * count is the number of pages to free.
1062  *
1063  * If the zone was previously in an "all pages pinned" state then look to
1064  * see if this freeing clears that state.
1065  *
1066  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1067  * pinned" detection logic.
1068  */
1069 static void free_pcppages_bulk(struct zone *zone, int count,
1070 					struct per_cpu_pages *pcp)
1071 {
1072 	int migratetype = 0;
1073 	int batch_free = 0;
1074 	unsigned long nr_scanned;
1075 	bool isolated_pageblocks;
1076 
1077 	spin_lock(&zone->lock);
1078 	isolated_pageblocks = has_isolate_pageblock(zone);
1079 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1080 	if (nr_scanned)
1081 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
1082 
1083 	while (count) {
1084 		struct page *page;
1085 		struct list_head *list;
1086 
1087 		/*
1088 		 * Remove pages from lists in a round-robin fashion. A
1089 		 * batch_free count is maintained that is incremented when an
1090 		 * empty list is encountered.  This is so more pages are freed
1091 		 * off fuller lists instead of spinning excessively around empty
1092 		 * lists
1093 		 */
1094 		do {
1095 			batch_free++;
1096 			if (++migratetype == MIGRATE_PCPTYPES)
1097 				migratetype = 0;
1098 			list = &pcp->lists[migratetype];
1099 		} while (list_empty(list));
1100 
1101 		/* This is the only non-empty list. Free them all. */
1102 		if (batch_free == MIGRATE_PCPTYPES)
1103 			batch_free = count;
1104 
1105 		do {
1106 			int mt;	/* migratetype of the to-be-freed page */
1107 
1108 			page = list_last_entry(list, struct page, lru);
1109 			/* must delete as __free_one_page list manipulates */
1110 			list_del(&page->lru);
1111 
1112 			mt = get_pcppage_migratetype(page);
1113 			/* MIGRATE_ISOLATE page should not go to pcplists */
1114 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1115 			/* Pageblock could have been isolated meanwhile */
1116 			if (unlikely(isolated_pageblocks))
1117 				mt = get_pageblock_migratetype(page);
1118 
1119 			if (bulkfree_pcp_prepare(page))
1120 				continue;
1121 
1122 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1123 			trace_mm_page_pcpu_drain(page, 0, mt);
1124 		} while (--count && --batch_free && !list_empty(list));
1125 	}
1126 	spin_unlock(&zone->lock);
1127 }
1128 
1129 static void free_one_page(struct zone *zone,
1130 				struct page *page, unsigned long pfn,
1131 				unsigned int order,
1132 				int migratetype)
1133 {
1134 	unsigned long nr_scanned;
1135 	spin_lock(&zone->lock);
1136 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1137 	if (nr_scanned)
1138 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
1139 
1140 	if (unlikely(has_isolate_pageblock(zone) ||
1141 		is_migrate_isolate(migratetype))) {
1142 		migratetype = get_pfnblock_migratetype(page, pfn);
1143 	}
1144 	__free_one_page(page, pfn, zone, order, migratetype);
1145 	spin_unlock(&zone->lock);
1146 }
1147 
1148 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1149 				unsigned long zone, int nid)
1150 {
1151 	set_page_links(page, zone, nid, pfn);
1152 	init_page_count(page);
1153 	page_mapcount_reset(page);
1154 	page_cpupid_reset_last(page);
1155 
1156 	INIT_LIST_HEAD(&page->lru);
1157 #ifdef WANT_PAGE_VIRTUAL
1158 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1159 	if (!is_highmem_idx(zone))
1160 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1161 #endif
1162 }
1163 
1164 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1165 					int nid)
1166 {
1167 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1168 }
1169 
1170 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1171 static void init_reserved_page(unsigned long pfn)
1172 {
1173 	pg_data_t *pgdat;
1174 	int nid, zid;
1175 
1176 	if (!early_page_uninitialised(pfn))
1177 		return;
1178 
1179 	nid = early_pfn_to_nid(pfn);
1180 	pgdat = NODE_DATA(nid);
1181 
1182 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1183 		struct zone *zone = &pgdat->node_zones[zid];
1184 
1185 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1186 			break;
1187 	}
1188 	__init_single_pfn(pfn, zid, nid);
1189 }
1190 #else
1191 static inline void init_reserved_page(unsigned long pfn)
1192 {
1193 }
1194 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1195 
1196 /*
1197  * Initialised pages do not have PageReserved set. This function is
1198  * called for each range allocated by the bootmem allocator and
1199  * marks the pages PageReserved. The remaining valid pages are later
1200  * sent to the buddy page allocator.
1201  */
1202 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1203 {
1204 	unsigned long start_pfn = PFN_DOWN(start);
1205 	unsigned long end_pfn = PFN_UP(end);
1206 
1207 	for (; start_pfn < end_pfn; start_pfn++) {
1208 		if (pfn_valid(start_pfn)) {
1209 			struct page *page = pfn_to_page(start_pfn);
1210 
1211 			init_reserved_page(start_pfn);
1212 
1213 			/* Avoid false-positive PageTail() */
1214 			INIT_LIST_HEAD(&page->lru);
1215 
1216 			SetPageReserved(page);
1217 		}
1218 	}
1219 }
1220 
1221 static void __free_pages_ok(struct page *page, unsigned int order)
1222 {
1223 	unsigned long flags;
1224 	int migratetype;
1225 	unsigned long pfn = page_to_pfn(page);
1226 
1227 	if (!free_pages_prepare(page, order, true))
1228 		return;
1229 
1230 	migratetype = get_pfnblock_migratetype(page, pfn);
1231 	local_irq_save(flags);
1232 	__count_vm_events(PGFREE, 1 << order);
1233 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1234 	local_irq_restore(flags);
1235 }
1236 
1237 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1238 {
1239 	unsigned int nr_pages = 1 << order;
1240 	struct page *p = page;
1241 	unsigned int loop;
1242 
1243 	prefetchw(p);
1244 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1245 		prefetchw(p + 1);
1246 		__ClearPageReserved(p);
1247 		set_page_count(p, 0);
1248 	}
1249 	__ClearPageReserved(p);
1250 	set_page_count(p, 0);
1251 
1252 	page_zone(page)->managed_pages += nr_pages;
1253 	set_page_refcounted(page);
1254 	__free_pages(page, order);
1255 }
1256 
1257 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1258 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1259 
1260 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1261 
1262 int __meminit early_pfn_to_nid(unsigned long pfn)
1263 {
1264 	static DEFINE_SPINLOCK(early_pfn_lock);
1265 	int nid;
1266 
1267 	spin_lock(&early_pfn_lock);
1268 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1269 	if (nid < 0)
1270 		nid = 0;
1271 	spin_unlock(&early_pfn_lock);
1272 
1273 	return nid;
1274 }
1275 #endif
1276 
1277 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1278 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1279 					struct mminit_pfnnid_cache *state)
1280 {
1281 	int nid;
1282 
1283 	nid = __early_pfn_to_nid(pfn, state);
1284 	if (nid >= 0 && nid != node)
1285 		return false;
1286 	return true;
1287 }
1288 
1289 /* Only safe to use early in boot when initialisation is single-threaded */
1290 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1291 {
1292 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1293 }
1294 
1295 #else
1296 
1297 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1298 {
1299 	return true;
1300 }
1301 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1302 					struct mminit_pfnnid_cache *state)
1303 {
1304 	return true;
1305 }
1306 #endif
1307 
1308 
1309 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1310 							unsigned int order)
1311 {
1312 	if (early_page_uninitialised(pfn))
1313 		return;
1314 	return __free_pages_boot_core(page, order);
1315 }
1316 
1317 /*
1318  * Check that the whole (or subset of) a pageblock given by the interval of
1319  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1320  * with the migration of free compaction scanner. The scanners then need to
1321  * use only pfn_valid_within() check for arches that allow holes within
1322  * pageblocks.
1323  *
1324  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1325  *
1326  * It's possible on some configurations to have a setup like node0 node1 node0
1327  * i.e. it's possible that all pages within a zones range of pages do not
1328  * belong to a single zone. We assume that a border between node0 and node1
1329  * can occur within a single pageblock, but not a node0 node1 node0
1330  * interleaving within a single pageblock. It is therefore sufficient to check
1331  * the first and last page of a pageblock and avoid checking each individual
1332  * page in a pageblock.
1333  */
1334 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1335 				     unsigned long end_pfn, struct zone *zone)
1336 {
1337 	struct page *start_page;
1338 	struct page *end_page;
1339 
1340 	/* end_pfn is one past the range we are checking */
1341 	end_pfn--;
1342 
1343 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1344 		return NULL;
1345 
1346 	start_page = pfn_to_page(start_pfn);
1347 
1348 	if (page_zone(start_page) != zone)
1349 		return NULL;
1350 
1351 	end_page = pfn_to_page(end_pfn);
1352 
1353 	/* This gives a shorter code than deriving page_zone(end_page) */
1354 	if (page_zone_id(start_page) != page_zone_id(end_page))
1355 		return NULL;
1356 
1357 	return start_page;
1358 }
1359 
1360 void set_zone_contiguous(struct zone *zone)
1361 {
1362 	unsigned long block_start_pfn = zone->zone_start_pfn;
1363 	unsigned long block_end_pfn;
1364 
1365 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1366 	for (; block_start_pfn < zone_end_pfn(zone);
1367 			block_start_pfn = block_end_pfn,
1368 			 block_end_pfn += pageblock_nr_pages) {
1369 
1370 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1371 
1372 		if (!__pageblock_pfn_to_page(block_start_pfn,
1373 					     block_end_pfn, zone))
1374 			return;
1375 	}
1376 
1377 	/* We confirm that there is no hole */
1378 	zone->contiguous = true;
1379 }
1380 
1381 void clear_zone_contiguous(struct zone *zone)
1382 {
1383 	zone->contiguous = false;
1384 }
1385 
1386 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1387 static void __init deferred_free_range(struct page *page,
1388 					unsigned long pfn, int nr_pages)
1389 {
1390 	int i;
1391 
1392 	if (!page)
1393 		return;
1394 
1395 	/* Free a large naturally-aligned chunk if possible */
1396 	if (nr_pages == MAX_ORDER_NR_PAGES &&
1397 	    (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1398 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1399 		__free_pages_boot_core(page, MAX_ORDER-1);
1400 		return;
1401 	}
1402 
1403 	for (i = 0; i < nr_pages; i++, page++)
1404 		__free_pages_boot_core(page, 0);
1405 }
1406 
1407 /* Completion tracking for deferred_init_memmap() threads */
1408 static atomic_t pgdat_init_n_undone __initdata;
1409 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1410 
1411 static inline void __init pgdat_init_report_one_done(void)
1412 {
1413 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1414 		complete(&pgdat_init_all_done_comp);
1415 }
1416 
1417 /* Initialise remaining memory on a node */
1418 static int __init deferred_init_memmap(void *data)
1419 {
1420 	pg_data_t *pgdat = data;
1421 	int nid = pgdat->node_id;
1422 	struct mminit_pfnnid_cache nid_init_state = { };
1423 	unsigned long start = jiffies;
1424 	unsigned long nr_pages = 0;
1425 	unsigned long walk_start, walk_end;
1426 	int i, zid;
1427 	struct zone *zone;
1428 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1429 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1430 
1431 	if (first_init_pfn == ULONG_MAX) {
1432 		pgdat_init_report_one_done();
1433 		return 0;
1434 	}
1435 
1436 	/* Bind memory initialisation thread to a local node if possible */
1437 	if (!cpumask_empty(cpumask))
1438 		set_cpus_allowed_ptr(current, cpumask);
1439 
1440 	/* Sanity check boundaries */
1441 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1442 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1443 	pgdat->first_deferred_pfn = ULONG_MAX;
1444 
1445 	/* Only the highest zone is deferred so find it */
1446 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1447 		zone = pgdat->node_zones + zid;
1448 		if (first_init_pfn < zone_end_pfn(zone))
1449 			break;
1450 	}
1451 
1452 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1453 		unsigned long pfn, end_pfn;
1454 		struct page *page = NULL;
1455 		struct page *free_base_page = NULL;
1456 		unsigned long free_base_pfn = 0;
1457 		int nr_to_free = 0;
1458 
1459 		end_pfn = min(walk_end, zone_end_pfn(zone));
1460 		pfn = first_init_pfn;
1461 		if (pfn < walk_start)
1462 			pfn = walk_start;
1463 		if (pfn < zone->zone_start_pfn)
1464 			pfn = zone->zone_start_pfn;
1465 
1466 		for (; pfn < end_pfn; pfn++) {
1467 			if (!pfn_valid_within(pfn))
1468 				goto free_range;
1469 
1470 			/*
1471 			 * Ensure pfn_valid is checked every
1472 			 * MAX_ORDER_NR_PAGES for memory holes
1473 			 */
1474 			if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1475 				if (!pfn_valid(pfn)) {
1476 					page = NULL;
1477 					goto free_range;
1478 				}
1479 			}
1480 
1481 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1482 				page = NULL;
1483 				goto free_range;
1484 			}
1485 
1486 			/* Minimise pfn page lookups and scheduler checks */
1487 			if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1488 				page++;
1489 			} else {
1490 				nr_pages += nr_to_free;
1491 				deferred_free_range(free_base_page,
1492 						free_base_pfn, nr_to_free);
1493 				free_base_page = NULL;
1494 				free_base_pfn = nr_to_free = 0;
1495 
1496 				page = pfn_to_page(pfn);
1497 				cond_resched();
1498 			}
1499 
1500 			if (page->flags) {
1501 				VM_BUG_ON(page_zone(page) != zone);
1502 				goto free_range;
1503 			}
1504 
1505 			__init_single_page(page, pfn, zid, nid);
1506 			if (!free_base_page) {
1507 				free_base_page = page;
1508 				free_base_pfn = pfn;
1509 				nr_to_free = 0;
1510 			}
1511 			nr_to_free++;
1512 
1513 			/* Where possible, batch up pages for a single free */
1514 			continue;
1515 free_range:
1516 			/* Free the current block of pages to allocator */
1517 			nr_pages += nr_to_free;
1518 			deferred_free_range(free_base_page, free_base_pfn,
1519 								nr_to_free);
1520 			free_base_page = NULL;
1521 			free_base_pfn = nr_to_free = 0;
1522 		}
1523 
1524 		first_init_pfn = max(end_pfn, first_init_pfn);
1525 	}
1526 
1527 	/* Sanity check that the next zone really is unpopulated */
1528 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1529 
1530 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1531 					jiffies_to_msecs(jiffies - start));
1532 
1533 	pgdat_init_report_one_done();
1534 	return 0;
1535 }
1536 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1537 
1538 void __init page_alloc_init_late(void)
1539 {
1540 	struct zone *zone;
1541 
1542 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1543 	int nid;
1544 
1545 	/* There will be num_node_state(N_MEMORY) threads */
1546 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1547 	for_each_node_state(nid, N_MEMORY) {
1548 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1549 	}
1550 
1551 	/* Block until all are initialised */
1552 	wait_for_completion(&pgdat_init_all_done_comp);
1553 
1554 	/* Reinit limits that are based on free pages after the kernel is up */
1555 	files_maxfiles_init();
1556 #endif
1557 
1558 	for_each_populated_zone(zone)
1559 		set_zone_contiguous(zone);
1560 }
1561 
1562 #ifdef CONFIG_CMA
1563 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1564 void __init init_cma_reserved_pageblock(struct page *page)
1565 {
1566 	unsigned i = pageblock_nr_pages;
1567 	struct page *p = page;
1568 
1569 	do {
1570 		__ClearPageReserved(p);
1571 		set_page_count(p, 0);
1572 	} while (++p, --i);
1573 
1574 	set_pageblock_migratetype(page, MIGRATE_CMA);
1575 
1576 	if (pageblock_order >= MAX_ORDER) {
1577 		i = pageblock_nr_pages;
1578 		p = page;
1579 		do {
1580 			set_page_refcounted(p);
1581 			__free_pages(p, MAX_ORDER - 1);
1582 			p += MAX_ORDER_NR_PAGES;
1583 		} while (i -= MAX_ORDER_NR_PAGES);
1584 	} else {
1585 		set_page_refcounted(page);
1586 		__free_pages(page, pageblock_order);
1587 	}
1588 
1589 	adjust_managed_page_count(page, pageblock_nr_pages);
1590 }
1591 #endif
1592 
1593 /*
1594  * The order of subdivision here is critical for the IO subsystem.
1595  * Please do not alter this order without good reasons and regression
1596  * testing. Specifically, as large blocks of memory are subdivided,
1597  * the order in which smaller blocks are delivered depends on the order
1598  * they're subdivided in this function. This is the primary factor
1599  * influencing the order in which pages are delivered to the IO
1600  * subsystem according to empirical testing, and this is also justified
1601  * by considering the behavior of a buddy system containing a single
1602  * large block of memory acted on by a series of small allocations.
1603  * This behavior is a critical factor in sglist merging's success.
1604  *
1605  * -- nyc
1606  */
1607 static inline void expand(struct zone *zone, struct page *page,
1608 	int low, int high, struct free_area *area,
1609 	int migratetype)
1610 {
1611 	unsigned long size = 1 << high;
1612 
1613 	while (high > low) {
1614 		area--;
1615 		high--;
1616 		size >>= 1;
1617 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1618 
1619 		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1620 			debug_guardpage_enabled() &&
1621 			high < debug_guardpage_minorder()) {
1622 			/*
1623 			 * Mark as guard pages (or page), that will allow to
1624 			 * merge back to allocator when buddy will be freed.
1625 			 * Corresponding page table entries will not be touched,
1626 			 * pages will stay not present in virtual address space
1627 			 */
1628 			set_page_guard(zone, &page[size], high, migratetype);
1629 			continue;
1630 		}
1631 		list_add(&page[size].lru, &area->free_list[migratetype]);
1632 		area->nr_free++;
1633 		set_page_order(&page[size], high);
1634 	}
1635 }
1636 
1637 static void check_new_page_bad(struct page *page)
1638 {
1639 	const char *bad_reason = NULL;
1640 	unsigned long bad_flags = 0;
1641 
1642 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1643 		bad_reason = "nonzero mapcount";
1644 	if (unlikely(page->mapping != NULL))
1645 		bad_reason = "non-NULL mapping";
1646 	if (unlikely(page_ref_count(page) != 0))
1647 		bad_reason = "nonzero _count";
1648 	if (unlikely(page->flags & __PG_HWPOISON)) {
1649 		bad_reason = "HWPoisoned (hardware-corrupted)";
1650 		bad_flags = __PG_HWPOISON;
1651 		/* Don't complain about hwpoisoned pages */
1652 		page_mapcount_reset(page); /* remove PageBuddy */
1653 		return;
1654 	}
1655 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1656 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1657 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1658 	}
1659 #ifdef CONFIG_MEMCG
1660 	if (unlikely(page->mem_cgroup))
1661 		bad_reason = "page still charged to cgroup";
1662 #endif
1663 	bad_page(page, bad_reason, bad_flags);
1664 }
1665 
1666 /*
1667  * This page is about to be returned from the page allocator
1668  */
1669 static inline int check_new_page(struct page *page)
1670 {
1671 	if (likely(page_expected_state(page,
1672 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1673 		return 0;
1674 
1675 	check_new_page_bad(page);
1676 	return 1;
1677 }
1678 
1679 static inline bool free_pages_prezeroed(bool poisoned)
1680 {
1681 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1682 		page_poisoning_enabled() && poisoned;
1683 }
1684 
1685 #ifdef CONFIG_DEBUG_VM
1686 static bool check_pcp_refill(struct page *page)
1687 {
1688 	return false;
1689 }
1690 
1691 static bool check_new_pcp(struct page *page)
1692 {
1693 	return check_new_page(page);
1694 }
1695 #else
1696 static bool check_pcp_refill(struct page *page)
1697 {
1698 	return check_new_page(page);
1699 }
1700 static bool check_new_pcp(struct page *page)
1701 {
1702 	return false;
1703 }
1704 #endif /* CONFIG_DEBUG_VM */
1705 
1706 static bool check_new_pages(struct page *page, unsigned int order)
1707 {
1708 	int i;
1709 	for (i = 0; i < (1 << order); i++) {
1710 		struct page *p = page + i;
1711 
1712 		if (unlikely(check_new_page(p)))
1713 			return true;
1714 	}
1715 
1716 	return false;
1717 }
1718 
1719 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1720 							unsigned int alloc_flags)
1721 {
1722 	int i;
1723 	bool poisoned = true;
1724 
1725 	for (i = 0; i < (1 << order); i++) {
1726 		struct page *p = page + i;
1727 		if (poisoned)
1728 			poisoned &= page_is_poisoned(p);
1729 	}
1730 
1731 	set_page_private(page, 0);
1732 	set_page_refcounted(page);
1733 
1734 	arch_alloc_page(page, order);
1735 	kernel_map_pages(page, 1 << order, 1);
1736 	kernel_poison_pages(page, 1 << order, 1);
1737 	kasan_alloc_pages(page, order);
1738 
1739 	if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1740 		for (i = 0; i < (1 << order); i++)
1741 			clear_highpage(page + i);
1742 
1743 	if (order && (gfp_flags & __GFP_COMP))
1744 		prep_compound_page(page, order);
1745 
1746 	set_page_owner(page, order, gfp_flags);
1747 
1748 	/*
1749 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1750 	 * allocate the page. The expectation is that the caller is taking
1751 	 * steps that will free more memory. The caller should avoid the page
1752 	 * being used for !PFMEMALLOC purposes.
1753 	 */
1754 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1755 		set_page_pfmemalloc(page);
1756 	else
1757 		clear_page_pfmemalloc(page);
1758 }
1759 
1760 /*
1761  * Go through the free lists for the given migratetype and remove
1762  * the smallest available page from the freelists
1763  */
1764 static inline
1765 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1766 						int migratetype)
1767 {
1768 	unsigned int current_order;
1769 	struct free_area *area;
1770 	struct page *page;
1771 
1772 	/* Find a page of the appropriate size in the preferred list */
1773 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1774 		area = &(zone->free_area[current_order]);
1775 		page = list_first_entry_or_null(&area->free_list[migratetype],
1776 							struct page, lru);
1777 		if (!page)
1778 			continue;
1779 		list_del(&page->lru);
1780 		rmv_page_order(page);
1781 		area->nr_free--;
1782 		expand(zone, page, order, current_order, area, migratetype);
1783 		set_pcppage_migratetype(page, migratetype);
1784 		return page;
1785 	}
1786 
1787 	return NULL;
1788 }
1789 
1790 
1791 /*
1792  * This array describes the order lists are fallen back to when
1793  * the free lists for the desirable migrate type are depleted
1794  */
1795 static int fallbacks[MIGRATE_TYPES][4] = {
1796 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1797 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1798 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1799 #ifdef CONFIG_CMA
1800 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1801 #endif
1802 #ifdef CONFIG_MEMORY_ISOLATION
1803 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1804 #endif
1805 };
1806 
1807 #ifdef CONFIG_CMA
1808 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1809 					unsigned int order)
1810 {
1811 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1812 }
1813 #else
1814 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1815 					unsigned int order) { return NULL; }
1816 #endif
1817 
1818 /*
1819  * Move the free pages in a range to the free lists of the requested type.
1820  * Note that start_page and end_pages are not aligned on a pageblock
1821  * boundary. If alignment is required, use move_freepages_block()
1822  */
1823 int move_freepages(struct zone *zone,
1824 			  struct page *start_page, struct page *end_page,
1825 			  int migratetype)
1826 {
1827 	struct page *page;
1828 	unsigned int order;
1829 	int pages_moved = 0;
1830 
1831 #ifndef CONFIG_HOLES_IN_ZONE
1832 	/*
1833 	 * page_zone is not safe to call in this context when
1834 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1835 	 * anyway as we check zone boundaries in move_freepages_block().
1836 	 * Remove at a later date when no bug reports exist related to
1837 	 * grouping pages by mobility
1838 	 */
1839 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1840 #endif
1841 
1842 	for (page = start_page; page <= end_page;) {
1843 		/* Make sure we are not inadvertently changing nodes */
1844 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1845 
1846 		if (!pfn_valid_within(page_to_pfn(page))) {
1847 			page++;
1848 			continue;
1849 		}
1850 
1851 		if (!PageBuddy(page)) {
1852 			page++;
1853 			continue;
1854 		}
1855 
1856 		order = page_order(page);
1857 		list_move(&page->lru,
1858 			  &zone->free_area[order].free_list[migratetype]);
1859 		page += 1 << order;
1860 		pages_moved += 1 << order;
1861 	}
1862 
1863 	return pages_moved;
1864 }
1865 
1866 int move_freepages_block(struct zone *zone, struct page *page,
1867 				int migratetype)
1868 {
1869 	unsigned long start_pfn, end_pfn;
1870 	struct page *start_page, *end_page;
1871 
1872 	start_pfn = page_to_pfn(page);
1873 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1874 	start_page = pfn_to_page(start_pfn);
1875 	end_page = start_page + pageblock_nr_pages - 1;
1876 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1877 
1878 	/* Do not cross zone boundaries */
1879 	if (!zone_spans_pfn(zone, start_pfn))
1880 		start_page = page;
1881 	if (!zone_spans_pfn(zone, end_pfn))
1882 		return 0;
1883 
1884 	return move_freepages(zone, start_page, end_page, migratetype);
1885 }
1886 
1887 static void change_pageblock_range(struct page *pageblock_page,
1888 					int start_order, int migratetype)
1889 {
1890 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1891 
1892 	while (nr_pageblocks--) {
1893 		set_pageblock_migratetype(pageblock_page, migratetype);
1894 		pageblock_page += pageblock_nr_pages;
1895 	}
1896 }
1897 
1898 /*
1899  * When we are falling back to another migratetype during allocation, try to
1900  * steal extra free pages from the same pageblocks to satisfy further
1901  * allocations, instead of polluting multiple pageblocks.
1902  *
1903  * If we are stealing a relatively large buddy page, it is likely there will
1904  * be more free pages in the pageblock, so try to steal them all. For
1905  * reclaimable and unmovable allocations, we steal regardless of page size,
1906  * as fragmentation caused by those allocations polluting movable pageblocks
1907  * is worse than movable allocations stealing from unmovable and reclaimable
1908  * pageblocks.
1909  */
1910 static bool can_steal_fallback(unsigned int order, int start_mt)
1911 {
1912 	/*
1913 	 * Leaving this order check is intended, although there is
1914 	 * relaxed order check in next check. The reason is that
1915 	 * we can actually steal whole pageblock if this condition met,
1916 	 * but, below check doesn't guarantee it and that is just heuristic
1917 	 * so could be changed anytime.
1918 	 */
1919 	if (order >= pageblock_order)
1920 		return true;
1921 
1922 	if (order >= pageblock_order / 2 ||
1923 		start_mt == MIGRATE_RECLAIMABLE ||
1924 		start_mt == MIGRATE_UNMOVABLE ||
1925 		page_group_by_mobility_disabled)
1926 		return true;
1927 
1928 	return false;
1929 }
1930 
1931 /*
1932  * This function implements actual steal behaviour. If order is large enough,
1933  * we can steal whole pageblock. If not, we first move freepages in this
1934  * pageblock and check whether half of pages are moved or not. If half of
1935  * pages are moved, we can change migratetype of pageblock and permanently
1936  * use it's pages as requested migratetype in the future.
1937  */
1938 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1939 							  int start_type)
1940 {
1941 	unsigned int current_order = page_order(page);
1942 	int pages;
1943 
1944 	/* Take ownership for orders >= pageblock_order */
1945 	if (current_order >= pageblock_order) {
1946 		change_pageblock_range(page, current_order, start_type);
1947 		return;
1948 	}
1949 
1950 	pages = move_freepages_block(zone, page, start_type);
1951 
1952 	/* Claim the whole block if over half of it is free */
1953 	if (pages >= (1 << (pageblock_order-1)) ||
1954 			page_group_by_mobility_disabled)
1955 		set_pageblock_migratetype(page, start_type);
1956 }
1957 
1958 /*
1959  * Check whether there is a suitable fallback freepage with requested order.
1960  * If only_stealable is true, this function returns fallback_mt only if
1961  * we can steal other freepages all together. This would help to reduce
1962  * fragmentation due to mixed migratetype pages in one pageblock.
1963  */
1964 int find_suitable_fallback(struct free_area *area, unsigned int order,
1965 			int migratetype, bool only_stealable, bool *can_steal)
1966 {
1967 	int i;
1968 	int fallback_mt;
1969 
1970 	if (area->nr_free == 0)
1971 		return -1;
1972 
1973 	*can_steal = false;
1974 	for (i = 0;; i++) {
1975 		fallback_mt = fallbacks[migratetype][i];
1976 		if (fallback_mt == MIGRATE_TYPES)
1977 			break;
1978 
1979 		if (list_empty(&area->free_list[fallback_mt]))
1980 			continue;
1981 
1982 		if (can_steal_fallback(order, migratetype))
1983 			*can_steal = true;
1984 
1985 		if (!only_stealable)
1986 			return fallback_mt;
1987 
1988 		if (*can_steal)
1989 			return fallback_mt;
1990 	}
1991 
1992 	return -1;
1993 }
1994 
1995 /*
1996  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1997  * there are no empty page blocks that contain a page with a suitable order
1998  */
1999 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2000 				unsigned int alloc_order)
2001 {
2002 	int mt;
2003 	unsigned long max_managed, flags;
2004 
2005 	/*
2006 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2007 	 * Check is race-prone but harmless.
2008 	 */
2009 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2010 	if (zone->nr_reserved_highatomic >= max_managed)
2011 		return;
2012 
2013 	spin_lock_irqsave(&zone->lock, flags);
2014 
2015 	/* Recheck the nr_reserved_highatomic limit under the lock */
2016 	if (zone->nr_reserved_highatomic >= max_managed)
2017 		goto out_unlock;
2018 
2019 	/* Yoink! */
2020 	mt = get_pageblock_migratetype(page);
2021 	if (mt != MIGRATE_HIGHATOMIC &&
2022 			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2023 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2024 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2025 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2026 	}
2027 
2028 out_unlock:
2029 	spin_unlock_irqrestore(&zone->lock, flags);
2030 }
2031 
2032 /*
2033  * Used when an allocation is about to fail under memory pressure. This
2034  * potentially hurts the reliability of high-order allocations when under
2035  * intense memory pressure but failed atomic allocations should be easier
2036  * to recover from than an OOM.
2037  */
2038 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2039 {
2040 	struct zonelist *zonelist = ac->zonelist;
2041 	unsigned long flags;
2042 	struct zoneref *z;
2043 	struct zone *zone;
2044 	struct page *page;
2045 	int order;
2046 
2047 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2048 								ac->nodemask) {
2049 		/* Preserve at least one pageblock */
2050 		if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2051 			continue;
2052 
2053 		spin_lock_irqsave(&zone->lock, flags);
2054 		for (order = 0; order < MAX_ORDER; order++) {
2055 			struct free_area *area = &(zone->free_area[order]);
2056 
2057 			page = list_first_entry_or_null(
2058 					&area->free_list[MIGRATE_HIGHATOMIC],
2059 					struct page, lru);
2060 			if (!page)
2061 				continue;
2062 
2063 			/*
2064 			 * It should never happen but changes to locking could
2065 			 * inadvertently allow a per-cpu drain to add pages
2066 			 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2067 			 * and watch for underflows.
2068 			 */
2069 			zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2070 				zone->nr_reserved_highatomic);
2071 
2072 			/*
2073 			 * Convert to ac->migratetype and avoid the normal
2074 			 * pageblock stealing heuristics. Minimally, the caller
2075 			 * is doing the work and needs the pages. More
2076 			 * importantly, if the block was always converted to
2077 			 * MIGRATE_UNMOVABLE or another type then the number
2078 			 * of pageblocks that cannot be completely freed
2079 			 * may increase.
2080 			 */
2081 			set_pageblock_migratetype(page, ac->migratetype);
2082 			move_freepages_block(zone, page, ac->migratetype);
2083 			spin_unlock_irqrestore(&zone->lock, flags);
2084 			return;
2085 		}
2086 		spin_unlock_irqrestore(&zone->lock, flags);
2087 	}
2088 }
2089 
2090 /* Remove an element from the buddy allocator from the fallback list */
2091 static inline struct page *
2092 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2093 {
2094 	struct free_area *area;
2095 	unsigned int current_order;
2096 	struct page *page;
2097 	int fallback_mt;
2098 	bool can_steal;
2099 
2100 	/* Find the largest possible block of pages in the other list */
2101 	for (current_order = MAX_ORDER-1;
2102 				current_order >= order && current_order <= MAX_ORDER-1;
2103 				--current_order) {
2104 		area = &(zone->free_area[current_order]);
2105 		fallback_mt = find_suitable_fallback(area, current_order,
2106 				start_migratetype, false, &can_steal);
2107 		if (fallback_mt == -1)
2108 			continue;
2109 
2110 		page = list_first_entry(&area->free_list[fallback_mt],
2111 						struct page, lru);
2112 		if (can_steal)
2113 			steal_suitable_fallback(zone, page, start_migratetype);
2114 
2115 		/* Remove the page from the freelists */
2116 		area->nr_free--;
2117 		list_del(&page->lru);
2118 		rmv_page_order(page);
2119 
2120 		expand(zone, page, order, current_order, area,
2121 					start_migratetype);
2122 		/*
2123 		 * The pcppage_migratetype may differ from pageblock's
2124 		 * migratetype depending on the decisions in
2125 		 * find_suitable_fallback(). This is OK as long as it does not
2126 		 * differ for MIGRATE_CMA pageblocks. Those can be used as
2127 		 * fallback only via special __rmqueue_cma_fallback() function
2128 		 */
2129 		set_pcppage_migratetype(page, start_migratetype);
2130 
2131 		trace_mm_page_alloc_extfrag(page, order, current_order,
2132 			start_migratetype, fallback_mt);
2133 
2134 		return page;
2135 	}
2136 
2137 	return NULL;
2138 }
2139 
2140 /*
2141  * Do the hard work of removing an element from the buddy allocator.
2142  * Call me with the zone->lock already held.
2143  */
2144 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2145 				int migratetype)
2146 {
2147 	struct page *page;
2148 
2149 	page = __rmqueue_smallest(zone, order, migratetype);
2150 	if (unlikely(!page)) {
2151 		if (migratetype == MIGRATE_MOVABLE)
2152 			page = __rmqueue_cma_fallback(zone, order);
2153 
2154 		if (!page)
2155 			page = __rmqueue_fallback(zone, order, migratetype);
2156 	}
2157 
2158 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2159 	return page;
2160 }
2161 
2162 /*
2163  * Obtain a specified number of elements from the buddy allocator, all under
2164  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2165  * Returns the number of new pages which were placed at *list.
2166  */
2167 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2168 			unsigned long count, struct list_head *list,
2169 			int migratetype, bool cold)
2170 {
2171 	int i;
2172 
2173 	spin_lock(&zone->lock);
2174 	for (i = 0; i < count; ++i) {
2175 		struct page *page = __rmqueue(zone, order, migratetype);
2176 		if (unlikely(page == NULL))
2177 			break;
2178 
2179 		if (unlikely(check_pcp_refill(page)))
2180 			continue;
2181 
2182 		/*
2183 		 * Split buddy pages returned by expand() are received here
2184 		 * in physical page order. The page is added to the callers and
2185 		 * list and the list head then moves forward. From the callers
2186 		 * perspective, the linked list is ordered by page number in
2187 		 * some conditions. This is useful for IO devices that can
2188 		 * merge IO requests if the physical pages are ordered
2189 		 * properly.
2190 		 */
2191 		if (likely(!cold))
2192 			list_add(&page->lru, list);
2193 		else
2194 			list_add_tail(&page->lru, list);
2195 		list = &page->lru;
2196 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2197 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2198 					      -(1 << order));
2199 	}
2200 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2201 	spin_unlock(&zone->lock);
2202 	return i;
2203 }
2204 
2205 #ifdef CONFIG_NUMA
2206 /*
2207  * Called from the vmstat counter updater to drain pagesets of this
2208  * currently executing processor on remote nodes after they have
2209  * expired.
2210  *
2211  * Note that this function must be called with the thread pinned to
2212  * a single processor.
2213  */
2214 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2215 {
2216 	unsigned long flags;
2217 	int to_drain, batch;
2218 
2219 	local_irq_save(flags);
2220 	batch = READ_ONCE(pcp->batch);
2221 	to_drain = min(pcp->count, batch);
2222 	if (to_drain > 0) {
2223 		free_pcppages_bulk(zone, to_drain, pcp);
2224 		pcp->count -= to_drain;
2225 	}
2226 	local_irq_restore(flags);
2227 }
2228 #endif
2229 
2230 /*
2231  * Drain pcplists of the indicated processor and zone.
2232  *
2233  * The processor must either be the current processor and the
2234  * thread pinned to the current processor or a processor that
2235  * is not online.
2236  */
2237 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2238 {
2239 	unsigned long flags;
2240 	struct per_cpu_pageset *pset;
2241 	struct per_cpu_pages *pcp;
2242 
2243 	local_irq_save(flags);
2244 	pset = per_cpu_ptr(zone->pageset, cpu);
2245 
2246 	pcp = &pset->pcp;
2247 	if (pcp->count) {
2248 		free_pcppages_bulk(zone, pcp->count, pcp);
2249 		pcp->count = 0;
2250 	}
2251 	local_irq_restore(flags);
2252 }
2253 
2254 /*
2255  * Drain pcplists of all zones on the indicated processor.
2256  *
2257  * The processor must either be the current processor and the
2258  * thread pinned to the current processor or a processor that
2259  * is not online.
2260  */
2261 static void drain_pages(unsigned int cpu)
2262 {
2263 	struct zone *zone;
2264 
2265 	for_each_populated_zone(zone) {
2266 		drain_pages_zone(cpu, zone);
2267 	}
2268 }
2269 
2270 /*
2271  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2272  *
2273  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2274  * the single zone's pages.
2275  */
2276 void drain_local_pages(struct zone *zone)
2277 {
2278 	int cpu = smp_processor_id();
2279 
2280 	if (zone)
2281 		drain_pages_zone(cpu, zone);
2282 	else
2283 		drain_pages(cpu);
2284 }
2285 
2286 /*
2287  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2288  *
2289  * When zone parameter is non-NULL, spill just the single zone's pages.
2290  *
2291  * Note that this code is protected against sending an IPI to an offline
2292  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2293  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2294  * nothing keeps CPUs from showing up after we populated the cpumask and
2295  * before the call to on_each_cpu_mask().
2296  */
2297 void drain_all_pages(struct zone *zone)
2298 {
2299 	int cpu;
2300 
2301 	/*
2302 	 * Allocate in the BSS so we wont require allocation in
2303 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2304 	 */
2305 	static cpumask_t cpus_with_pcps;
2306 
2307 	/*
2308 	 * We don't care about racing with CPU hotplug event
2309 	 * as offline notification will cause the notified
2310 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2311 	 * disables preemption as part of its processing
2312 	 */
2313 	for_each_online_cpu(cpu) {
2314 		struct per_cpu_pageset *pcp;
2315 		struct zone *z;
2316 		bool has_pcps = false;
2317 
2318 		if (zone) {
2319 			pcp = per_cpu_ptr(zone->pageset, cpu);
2320 			if (pcp->pcp.count)
2321 				has_pcps = true;
2322 		} else {
2323 			for_each_populated_zone(z) {
2324 				pcp = per_cpu_ptr(z->pageset, cpu);
2325 				if (pcp->pcp.count) {
2326 					has_pcps = true;
2327 					break;
2328 				}
2329 			}
2330 		}
2331 
2332 		if (has_pcps)
2333 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2334 		else
2335 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2336 	}
2337 	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2338 								zone, 1);
2339 }
2340 
2341 #ifdef CONFIG_HIBERNATION
2342 
2343 void mark_free_pages(struct zone *zone)
2344 {
2345 	unsigned long pfn, max_zone_pfn;
2346 	unsigned long flags;
2347 	unsigned int order, t;
2348 	struct page *page;
2349 
2350 	if (zone_is_empty(zone))
2351 		return;
2352 
2353 	spin_lock_irqsave(&zone->lock, flags);
2354 
2355 	max_zone_pfn = zone_end_pfn(zone);
2356 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2357 		if (pfn_valid(pfn)) {
2358 			page = pfn_to_page(pfn);
2359 
2360 			if (page_zone(page) != zone)
2361 				continue;
2362 
2363 			if (!swsusp_page_is_forbidden(page))
2364 				swsusp_unset_page_free(page);
2365 		}
2366 
2367 	for_each_migratetype_order(order, t) {
2368 		list_for_each_entry(page,
2369 				&zone->free_area[order].free_list[t], lru) {
2370 			unsigned long i;
2371 
2372 			pfn = page_to_pfn(page);
2373 			for (i = 0; i < (1UL << order); i++)
2374 				swsusp_set_page_free(pfn_to_page(pfn + i));
2375 		}
2376 	}
2377 	spin_unlock_irqrestore(&zone->lock, flags);
2378 }
2379 #endif /* CONFIG_PM */
2380 
2381 /*
2382  * Free a 0-order page
2383  * cold == true ? free a cold page : free a hot page
2384  */
2385 void free_hot_cold_page(struct page *page, bool cold)
2386 {
2387 	struct zone *zone = page_zone(page);
2388 	struct per_cpu_pages *pcp;
2389 	unsigned long flags;
2390 	unsigned long pfn = page_to_pfn(page);
2391 	int migratetype;
2392 
2393 	if (!free_pcp_prepare(page))
2394 		return;
2395 
2396 	migratetype = get_pfnblock_migratetype(page, pfn);
2397 	set_pcppage_migratetype(page, migratetype);
2398 	local_irq_save(flags);
2399 	__count_vm_event(PGFREE);
2400 
2401 	/*
2402 	 * We only track unmovable, reclaimable and movable on pcp lists.
2403 	 * Free ISOLATE pages back to the allocator because they are being
2404 	 * offlined but treat RESERVE as movable pages so we can get those
2405 	 * areas back if necessary. Otherwise, we may have to free
2406 	 * excessively into the page allocator
2407 	 */
2408 	if (migratetype >= MIGRATE_PCPTYPES) {
2409 		if (unlikely(is_migrate_isolate(migratetype))) {
2410 			free_one_page(zone, page, pfn, 0, migratetype);
2411 			goto out;
2412 		}
2413 		migratetype = MIGRATE_MOVABLE;
2414 	}
2415 
2416 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2417 	if (!cold)
2418 		list_add(&page->lru, &pcp->lists[migratetype]);
2419 	else
2420 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2421 	pcp->count++;
2422 	if (pcp->count >= pcp->high) {
2423 		unsigned long batch = READ_ONCE(pcp->batch);
2424 		free_pcppages_bulk(zone, batch, pcp);
2425 		pcp->count -= batch;
2426 	}
2427 
2428 out:
2429 	local_irq_restore(flags);
2430 }
2431 
2432 /*
2433  * Free a list of 0-order pages
2434  */
2435 void free_hot_cold_page_list(struct list_head *list, bool cold)
2436 {
2437 	struct page *page, *next;
2438 
2439 	list_for_each_entry_safe(page, next, list, lru) {
2440 		trace_mm_page_free_batched(page, cold);
2441 		free_hot_cold_page(page, cold);
2442 	}
2443 }
2444 
2445 /*
2446  * split_page takes a non-compound higher-order page, and splits it into
2447  * n (1<<order) sub-pages: page[0..n]
2448  * Each sub-page must be freed individually.
2449  *
2450  * Note: this is probably too low level an operation for use in drivers.
2451  * Please consult with lkml before using this in your driver.
2452  */
2453 void split_page(struct page *page, unsigned int order)
2454 {
2455 	int i;
2456 	gfp_t gfp_mask;
2457 
2458 	VM_BUG_ON_PAGE(PageCompound(page), page);
2459 	VM_BUG_ON_PAGE(!page_count(page), page);
2460 
2461 #ifdef CONFIG_KMEMCHECK
2462 	/*
2463 	 * Split shadow pages too, because free(page[0]) would
2464 	 * otherwise free the whole shadow.
2465 	 */
2466 	if (kmemcheck_page_is_tracked(page))
2467 		split_page(virt_to_page(page[0].shadow), order);
2468 #endif
2469 
2470 	gfp_mask = get_page_owner_gfp(page);
2471 	set_page_owner(page, 0, gfp_mask);
2472 	for (i = 1; i < (1 << order); i++) {
2473 		set_page_refcounted(page + i);
2474 		set_page_owner(page + i, 0, gfp_mask);
2475 	}
2476 }
2477 EXPORT_SYMBOL_GPL(split_page);
2478 
2479 int __isolate_free_page(struct page *page, unsigned int order)
2480 {
2481 	unsigned long watermark;
2482 	struct zone *zone;
2483 	int mt;
2484 
2485 	BUG_ON(!PageBuddy(page));
2486 
2487 	zone = page_zone(page);
2488 	mt = get_pageblock_migratetype(page);
2489 
2490 	if (!is_migrate_isolate(mt)) {
2491 		/* Obey watermarks as if the page was being allocated */
2492 		watermark = low_wmark_pages(zone) + (1 << order);
2493 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2494 			return 0;
2495 
2496 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2497 	}
2498 
2499 	/* Remove page from free list */
2500 	list_del(&page->lru);
2501 	zone->free_area[order].nr_free--;
2502 	rmv_page_order(page);
2503 
2504 	set_page_owner(page, order, __GFP_MOVABLE);
2505 
2506 	/* Set the pageblock if the isolated page is at least a pageblock */
2507 	if (order >= pageblock_order - 1) {
2508 		struct page *endpage = page + (1 << order) - 1;
2509 		for (; page < endpage; page += pageblock_nr_pages) {
2510 			int mt = get_pageblock_migratetype(page);
2511 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2512 				set_pageblock_migratetype(page,
2513 							  MIGRATE_MOVABLE);
2514 		}
2515 	}
2516 
2517 
2518 	return 1UL << order;
2519 }
2520 
2521 /*
2522  * Similar to split_page except the page is already free. As this is only
2523  * being used for migration, the migratetype of the block also changes.
2524  * As this is called with interrupts disabled, the caller is responsible
2525  * for calling arch_alloc_page() and kernel_map_page() after interrupts
2526  * are enabled.
2527  *
2528  * Note: this is probably too low level an operation for use in drivers.
2529  * Please consult with lkml before using this in your driver.
2530  */
2531 int split_free_page(struct page *page)
2532 {
2533 	unsigned int order;
2534 	int nr_pages;
2535 
2536 	order = page_order(page);
2537 
2538 	nr_pages = __isolate_free_page(page, order);
2539 	if (!nr_pages)
2540 		return 0;
2541 
2542 	/* Split into individual pages */
2543 	set_page_refcounted(page);
2544 	split_page(page, order);
2545 	return nr_pages;
2546 }
2547 
2548 /*
2549  * Update NUMA hit/miss statistics
2550  *
2551  * Must be called with interrupts disabled.
2552  *
2553  * When __GFP_OTHER_NODE is set assume the node of the preferred
2554  * zone is the local node. This is useful for daemons who allocate
2555  * memory on behalf of other processes.
2556  */
2557 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2558 								gfp_t flags)
2559 {
2560 #ifdef CONFIG_NUMA
2561 	int local_nid = numa_node_id();
2562 	enum zone_stat_item local_stat = NUMA_LOCAL;
2563 
2564 	if (unlikely(flags & __GFP_OTHER_NODE)) {
2565 		local_stat = NUMA_OTHER;
2566 		local_nid = preferred_zone->node;
2567 	}
2568 
2569 	if (z->node == local_nid) {
2570 		__inc_zone_state(z, NUMA_HIT);
2571 		__inc_zone_state(z, local_stat);
2572 	} else {
2573 		__inc_zone_state(z, NUMA_MISS);
2574 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
2575 	}
2576 #endif
2577 }
2578 
2579 /*
2580  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2581  */
2582 static inline
2583 struct page *buffered_rmqueue(struct zone *preferred_zone,
2584 			struct zone *zone, unsigned int order,
2585 			gfp_t gfp_flags, unsigned int alloc_flags,
2586 			int migratetype)
2587 {
2588 	unsigned long flags;
2589 	struct page *page;
2590 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2591 
2592 	if (likely(order == 0)) {
2593 		struct per_cpu_pages *pcp;
2594 		struct list_head *list;
2595 
2596 		local_irq_save(flags);
2597 		do {
2598 			pcp = &this_cpu_ptr(zone->pageset)->pcp;
2599 			list = &pcp->lists[migratetype];
2600 			if (list_empty(list)) {
2601 				pcp->count += rmqueue_bulk(zone, 0,
2602 						pcp->batch, list,
2603 						migratetype, cold);
2604 				if (unlikely(list_empty(list)))
2605 					goto failed;
2606 			}
2607 
2608 			if (cold)
2609 				page = list_last_entry(list, struct page, lru);
2610 			else
2611 				page = list_first_entry(list, struct page, lru);
2612 		} while (page && check_new_pcp(page));
2613 
2614 		__dec_zone_state(zone, NR_ALLOC_BATCH);
2615 		list_del(&page->lru);
2616 		pcp->count--;
2617 	} else {
2618 		/*
2619 		 * We most definitely don't want callers attempting to
2620 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
2621 		 */
2622 		WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2623 		spin_lock_irqsave(&zone->lock, flags);
2624 
2625 		do {
2626 			page = NULL;
2627 			if (alloc_flags & ALLOC_HARDER) {
2628 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2629 				if (page)
2630 					trace_mm_page_alloc_zone_locked(page, order, migratetype);
2631 			}
2632 			if (!page)
2633 				page = __rmqueue(zone, order, migratetype);
2634 		} while (page && check_new_pages(page, order));
2635 		spin_unlock(&zone->lock);
2636 		if (!page)
2637 			goto failed;
2638 		__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2639 		__mod_zone_freepage_state(zone, -(1 << order),
2640 					  get_pcppage_migratetype(page));
2641 	}
2642 
2643 	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2644 	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2645 		set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2646 
2647 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
2648 	zone_statistics(preferred_zone, zone, gfp_flags);
2649 	local_irq_restore(flags);
2650 
2651 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
2652 	return page;
2653 
2654 failed:
2655 	local_irq_restore(flags);
2656 	return NULL;
2657 }
2658 
2659 #ifdef CONFIG_FAIL_PAGE_ALLOC
2660 
2661 static struct {
2662 	struct fault_attr attr;
2663 
2664 	bool ignore_gfp_highmem;
2665 	bool ignore_gfp_reclaim;
2666 	u32 min_order;
2667 } fail_page_alloc = {
2668 	.attr = FAULT_ATTR_INITIALIZER,
2669 	.ignore_gfp_reclaim = true,
2670 	.ignore_gfp_highmem = true,
2671 	.min_order = 1,
2672 };
2673 
2674 static int __init setup_fail_page_alloc(char *str)
2675 {
2676 	return setup_fault_attr(&fail_page_alloc.attr, str);
2677 }
2678 __setup("fail_page_alloc=", setup_fail_page_alloc);
2679 
2680 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2681 {
2682 	if (order < fail_page_alloc.min_order)
2683 		return false;
2684 	if (gfp_mask & __GFP_NOFAIL)
2685 		return false;
2686 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2687 		return false;
2688 	if (fail_page_alloc.ignore_gfp_reclaim &&
2689 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2690 		return false;
2691 
2692 	return should_fail(&fail_page_alloc.attr, 1 << order);
2693 }
2694 
2695 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2696 
2697 static int __init fail_page_alloc_debugfs(void)
2698 {
2699 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2700 	struct dentry *dir;
2701 
2702 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2703 					&fail_page_alloc.attr);
2704 	if (IS_ERR(dir))
2705 		return PTR_ERR(dir);
2706 
2707 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2708 				&fail_page_alloc.ignore_gfp_reclaim))
2709 		goto fail;
2710 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2711 				&fail_page_alloc.ignore_gfp_highmem))
2712 		goto fail;
2713 	if (!debugfs_create_u32("min-order", mode, dir,
2714 				&fail_page_alloc.min_order))
2715 		goto fail;
2716 
2717 	return 0;
2718 fail:
2719 	debugfs_remove_recursive(dir);
2720 
2721 	return -ENOMEM;
2722 }
2723 
2724 late_initcall(fail_page_alloc_debugfs);
2725 
2726 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2727 
2728 #else /* CONFIG_FAIL_PAGE_ALLOC */
2729 
2730 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2731 {
2732 	return false;
2733 }
2734 
2735 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2736 
2737 /*
2738  * Return true if free base pages are above 'mark'. For high-order checks it
2739  * will return true of the order-0 watermark is reached and there is at least
2740  * one free page of a suitable size. Checking now avoids taking the zone lock
2741  * to check in the allocation paths if no pages are free.
2742  */
2743 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2744 			 int classzone_idx, unsigned int alloc_flags,
2745 			 long free_pages)
2746 {
2747 	long min = mark;
2748 	int o;
2749 	const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2750 
2751 	/* free_pages may go negative - that's OK */
2752 	free_pages -= (1 << order) - 1;
2753 
2754 	if (alloc_flags & ALLOC_HIGH)
2755 		min -= min / 2;
2756 
2757 	/*
2758 	 * If the caller does not have rights to ALLOC_HARDER then subtract
2759 	 * the high-atomic reserves. This will over-estimate the size of the
2760 	 * atomic reserve but it avoids a search.
2761 	 */
2762 	if (likely(!alloc_harder))
2763 		free_pages -= z->nr_reserved_highatomic;
2764 	else
2765 		min -= min / 4;
2766 
2767 #ifdef CONFIG_CMA
2768 	/* If allocation can't use CMA areas don't use free CMA pages */
2769 	if (!(alloc_flags & ALLOC_CMA))
2770 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2771 #endif
2772 
2773 	/*
2774 	 * Check watermarks for an order-0 allocation request. If these
2775 	 * are not met, then a high-order request also cannot go ahead
2776 	 * even if a suitable page happened to be free.
2777 	 */
2778 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2779 		return false;
2780 
2781 	/* If this is an order-0 request then the watermark is fine */
2782 	if (!order)
2783 		return true;
2784 
2785 	/* For a high-order request, check at least one suitable page is free */
2786 	for (o = order; o < MAX_ORDER; o++) {
2787 		struct free_area *area = &z->free_area[o];
2788 		int mt;
2789 
2790 		if (!area->nr_free)
2791 			continue;
2792 
2793 		if (alloc_harder)
2794 			return true;
2795 
2796 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2797 			if (!list_empty(&area->free_list[mt]))
2798 				return true;
2799 		}
2800 
2801 #ifdef CONFIG_CMA
2802 		if ((alloc_flags & ALLOC_CMA) &&
2803 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2804 			return true;
2805 		}
2806 #endif
2807 	}
2808 	return false;
2809 }
2810 
2811 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2812 		      int classzone_idx, unsigned int alloc_flags)
2813 {
2814 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2815 					zone_page_state(z, NR_FREE_PAGES));
2816 }
2817 
2818 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2819 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2820 {
2821 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2822 	long cma_pages = 0;
2823 
2824 #ifdef CONFIG_CMA
2825 	/* If allocation can't use CMA areas don't use free CMA pages */
2826 	if (!(alloc_flags & ALLOC_CMA))
2827 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2828 #endif
2829 
2830 	/*
2831 	 * Fast check for order-0 only. If this fails then the reserves
2832 	 * need to be calculated. There is a corner case where the check
2833 	 * passes but only the high-order atomic reserve are free. If
2834 	 * the caller is !atomic then it'll uselessly search the free
2835 	 * list. That corner case is then slower but it is harmless.
2836 	 */
2837 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2838 		return true;
2839 
2840 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2841 					free_pages);
2842 }
2843 
2844 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2845 			unsigned long mark, int classzone_idx)
2846 {
2847 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2848 
2849 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2850 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2851 
2852 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2853 								free_pages);
2854 }
2855 
2856 #ifdef CONFIG_NUMA
2857 static bool zone_local(struct zone *local_zone, struct zone *zone)
2858 {
2859 	return local_zone->node == zone->node;
2860 }
2861 
2862 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2863 {
2864 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2865 				RECLAIM_DISTANCE;
2866 }
2867 #else	/* CONFIG_NUMA */
2868 static bool zone_local(struct zone *local_zone, struct zone *zone)
2869 {
2870 	return true;
2871 }
2872 
2873 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2874 {
2875 	return true;
2876 }
2877 #endif	/* CONFIG_NUMA */
2878 
2879 static void reset_alloc_batches(struct zone *preferred_zone)
2880 {
2881 	struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2882 
2883 	do {
2884 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2885 			high_wmark_pages(zone) - low_wmark_pages(zone) -
2886 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2887 		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2888 	} while (zone++ != preferred_zone);
2889 }
2890 
2891 /*
2892  * get_page_from_freelist goes through the zonelist trying to allocate
2893  * a page.
2894  */
2895 static struct page *
2896 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2897 						const struct alloc_context *ac)
2898 {
2899 	struct zoneref *z = ac->preferred_zoneref;
2900 	struct zone *zone;
2901 	bool fair_skipped = false;
2902 	bool apply_fair = (alloc_flags & ALLOC_FAIR);
2903 
2904 zonelist_scan:
2905 	/*
2906 	 * Scan zonelist, looking for a zone with enough free.
2907 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2908 	 */
2909 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2910 								ac->nodemask) {
2911 		struct page *page;
2912 		unsigned long mark;
2913 
2914 		if (cpusets_enabled() &&
2915 			(alloc_flags & ALLOC_CPUSET) &&
2916 			!__cpuset_zone_allowed(zone, gfp_mask))
2917 				continue;
2918 		/*
2919 		 * Distribute pages in proportion to the individual
2920 		 * zone size to ensure fair page aging.  The zone a
2921 		 * page was allocated in should have no effect on the
2922 		 * time the page has in memory before being reclaimed.
2923 		 */
2924 		if (apply_fair) {
2925 			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2926 				fair_skipped = true;
2927 				continue;
2928 			}
2929 			if (!zone_local(ac->preferred_zoneref->zone, zone)) {
2930 				if (fair_skipped)
2931 					goto reset_fair;
2932 				apply_fair = false;
2933 			}
2934 		}
2935 		/*
2936 		 * When allocating a page cache page for writing, we
2937 		 * want to get it from a zone that is within its dirty
2938 		 * limit, such that no single zone holds more than its
2939 		 * proportional share of globally allowed dirty pages.
2940 		 * The dirty limits take into account the zone's
2941 		 * lowmem reserves and high watermark so that kswapd
2942 		 * should be able to balance it without having to
2943 		 * write pages from its LRU list.
2944 		 *
2945 		 * This may look like it could increase pressure on
2946 		 * lower zones by failing allocations in higher zones
2947 		 * before they are full.  But the pages that do spill
2948 		 * over are limited as the lower zones are protected
2949 		 * by this very same mechanism.  It should not become
2950 		 * a practical burden to them.
2951 		 *
2952 		 * XXX: For now, allow allocations to potentially
2953 		 * exceed the per-zone dirty limit in the slowpath
2954 		 * (spread_dirty_pages unset) before going into reclaim,
2955 		 * which is important when on a NUMA setup the allowed
2956 		 * zones are together not big enough to reach the
2957 		 * global limit.  The proper fix for these situations
2958 		 * will require awareness of zones in the
2959 		 * dirty-throttling and the flusher threads.
2960 		 */
2961 		if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2962 			continue;
2963 
2964 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2965 		if (!zone_watermark_fast(zone, order, mark,
2966 				       ac_classzone_idx(ac), alloc_flags)) {
2967 			int ret;
2968 
2969 			/* Checked here to keep the fast path fast */
2970 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2971 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2972 				goto try_this_zone;
2973 
2974 			if (zone_reclaim_mode == 0 ||
2975 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2976 				continue;
2977 
2978 			ret = zone_reclaim(zone, gfp_mask, order);
2979 			switch (ret) {
2980 			case ZONE_RECLAIM_NOSCAN:
2981 				/* did not scan */
2982 				continue;
2983 			case ZONE_RECLAIM_FULL:
2984 				/* scanned but unreclaimable */
2985 				continue;
2986 			default:
2987 				/* did we reclaim enough */
2988 				if (zone_watermark_ok(zone, order, mark,
2989 						ac_classzone_idx(ac), alloc_flags))
2990 					goto try_this_zone;
2991 
2992 				continue;
2993 			}
2994 		}
2995 
2996 try_this_zone:
2997 		page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
2998 				gfp_mask, alloc_flags, ac->migratetype);
2999 		if (page) {
3000 			prep_new_page(page, order, gfp_mask, alloc_flags);
3001 
3002 			/*
3003 			 * If this is a high-order atomic allocation then check
3004 			 * if the pageblock should be reserved for the future
3005 			 */
3006 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3007 				reserve_highatomic_pageblock(page, zone, order);
3008 
3009 			return page;
3010 		}
3011 	}
3012 
3013 	/*
3014 	 * The first pass makes sure allocations are spread fairly within the
3015 	 * local node.  However, the local node might have free pages left
3016 	 * after the fairness batches are exhausted, and remote zones haven't
3017 	 * even been considered yet.  Try once more without fairness, and
3018 	 * include remote zones now, before entering the slowpath and waking
3019 	 * kswapd: prefer spilling to a remote zone over swapping locally.
3020 	 */
3021 	if (fair_skipped) {
3022 reset_fair:
3023 		apply_fair = false;
3024 		fair_skipped = false;
3025 		reset_alloc_batches(ac->preferred_zoneref->zone);
3026 		goto zonelist_scan;
3027 	}
3028 
3029 	return NULL;
3030 }
3031 
3032 /*
3033  * Large machines with many possible nodes should not always dump per-node
3034  * meminfo in irq context.
3035  */
3036 static inline bool should_suppress_show_mem(void)
3037 {
3038 	bool ret = false;
3039 
3040 #if NODES_SHIFT > 8
3041 	ret = in_interrupt();
3042 #endif
3043 	return ret;
3044 }
3045 
3046 static DEFINE_RATELIMIT_STATE(nopage_rs,
3047 		DEFAULT_RATELIMIT_INTERVAL,
3048 		DEFAULT_RATELIMIT_BURST);
3049 
3050 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
3051 {
3052 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3053 
3054 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3055 	    debug_guardpage_minorder() > 0)
3056 		return;
3057 
3058 	/*
3059 	 * This documents exceptions given to allocations in certain
3060 	 * contexts that are allowed to allocate outside current's set
3061 	 * of allowed nodes.
3062 	 */
3063 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3064 		if (test_thread_flag(TIF_MEMDIE) ||
3065 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3066 			filter &= ~SHOW_MEM_FILTER_NODES;
3067 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3068 		filter &= ~SHOW_MEM_FILTER_NODES;
3069 
3070 	if (fmt) {
3071 		struct va_format vaf;
3072 		va_list args;
3073 
3074 		va_start(args, fmt);
3075 
3076 		vaf.fmt = fmt;
3077 		vaf.va = &args;
3078 
3079 		pr_warn("%pV", &vaf);
3080 
3081 		va_end(args);
3082 	}
3083 
3084 	pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3085 		current->comm, order, gfp_mask, &gfp_mask);
3086 	dump_stack();
3087 	if (!should_suppress_show_mem())
3088 		show_mem(filter);
3089 }
3090 
3091 static inline struct page *
3092 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3093 	const struct alloc_context *ac, unsigned long *did_some_progress)
3094 {
3095 	struct oom_control oc = {
3096 		.zonelist = ac->zonelist,
3097 		.nodemask = ac->nodemask,
3098 		.gfp_mask = gfp_mask,
3099 		.order = order,
3100 	};
3101 	struct page *page;
3102 
3103 	*did_some_progress = 0;
3104 
3105 	/*
3106 	 * Acquire the oom lock.  If that fails, somebody else is
3107 	 * making progress for us.
3108 	 */
3109 	if (!mutex_trylock(&oom_lock)) {
3110 		*did_some_progress = 1;
3111 		schedule_timeout_uninterruptible(1);
3112 		return NULL;
3113 	}
3114 
3115 	/*
3116 	 * Go through the zonelist yet one more time, keep very high watermark
3117 	 * here, this is only to catch a parallel oom killing, we must fail if
3118 	 * we're still under heavy pressure.
3119 	 */
3120 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3121 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3122 	if (page)
3123 		goto out;
3124 
3125 	if (!(gfp_mask & __GFP_NOFAIL)) {
3126 		/* Coredumps can quickly deplete all memory reserves */
3127 		if (current->flags & PF_DUMPCORE)
3128 			goto out;
3129 		/* The OOM killer will not help higher order allocs */
3130 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3131 			goto out;
3132 		/* The OOM killer does not needlessly kill tasks for lowmem */
3133 		if (ac->high_zoneidx < ZONE_NORMAL)
3134 			goto out;
3135 		if (pm_suspended_storage())
3136 			goto out;
3137 		/*
3138 		 * XXX: GFP_NOFS allocations should rather fail than rely on
3139 		 * other request to make a forward progress.
3140 		 * We are in an unfortunate situation where out_of_memory cannot
3141 		 * do much for this context but let's try it to at least get
3142 		 * access to memory reserved if the current task is killed (see
3143 		 * out_of_memory). Once filesystems are ready to handle allocation
3144 		 * failures more gracefully we should just bail out here.
3145 		 */
3146 
3147 		/* The OOM killer may not free memory on a specific node */
3148 		if (gfp_mask & __GFP_THISNODE)
3149 			goto out;
3150 	}
3151 	/* Exhausted what can be done so it's blamo time */
3152 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3153 		*did_some_progress = 1;
3154 
3155 		if (gfp_mask & __GFP_NOFAIL) {
3156 			page = get_page_from_freelist(gfp_mask, order,
3157 					ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3158 			/*
3159 			 * fallback to ignore cpuset restriction if our nodes
3160 			 * are depleted
3161 			 */
3162 			if (!page)
3163 				page = get_page_from_freelist(gfp_mask, order,
3164 					ALLOC_NO_WATERMARKS, ac);
3165 		}
3166 	}
3167 out:
3168 	mutex_unlock(&oom_lock);
3169 	return page;
3170 }
3171 
3172 
3173 /*
3174  * Maximum number of compaction retries wit a progress before OOM
3175  * killer is consider as the only way to move forward.
3176  */
3177 #define MAX_COMPACT_RETRIES 16
3178 
3179 #ifdef CONFIG_COMPACTION
3180 /* Try memory compaction for high-order allocations before reclaim */
3181 static struct page *
3182 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3183 		unsigned int alloc_flags, const struct alloc_context *ac,
3184 		enum migrate_mode mode, enum compact_result *compact_result)
3185 {
3186 	struct page *page;
3187 	int contended_compaction;
3188 
3189 	if (!order)
3190 		return NULL;
3191 
3192 	current->flags |= PF_MEMALLOC;
3193 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3194 						mode, &contended_compaction);
3195 	current->flags &= ~PF_MEMALLOC;
3196 
3197 	if (*compact_result <= COMPACT_INACTIVE)
3198 		return NULL;
3199 
3200 	/*
3201 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3202 	 * count a compaction stall
3203 	 */
3204 	count_vm_event(COMPACTSTALL);
3205 
3206 	page = get_page_from_freelist(gfp_mask, order,
3207 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3208 
3209 	if (page) {
3210 		struct zone *zone = page_zone(page);
3211 
3212 		zone->compact_blockskip_flush = false;
3213 		compaction_defer_reset(zone, order, true);
3214 		count_vm_event(COMPACTSUCCESS);
3215 		return page;
3216 	}
3217 
3218 	/*
3219 	 * It's bad if compaction run occurs and fails. The most likely reason
3220 	 * is that pages exist, but not enough to satisfy watermarks.
3221 	 */
3222 	count_vm_event(COMPACTFAIL);
3223 
3224 	/*
3225 	 * In all zones where compaction was attempted (and not
3226 	 * deferred or skipped), lock contention has been detected.
3227 	 * For THP allocation we do not want to disrupt the others
3228 	 * so we fallback to base pages instead.
3229 	 */
3230 	if (contended_compaction == COMPACT_CONTENDED_LOCK)
3231 		*compact_result = COMPACT_CONTENDED;
3232 
3233 	/*
3234 	 * If compaction was aborted due to need_resched(), we do not
3235 	 * want to further increase allocation latency, unless it is
3236 	 * khugepaged trying to collapse.
3237 	 */
3238 	if (contended_compaction == COMPACT_CONTENDED_SCHED
3239 		&& !(current->flags & PF_KTHREAD))
3240 		*compact_result = COMPACT_CONTENDED;
3241 
3242 	cond_resched();
3243 
3244 	return NULL;
3245 }
3246 
3247 static inline bool
3248 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3249 		     enum compact_result compact_result, enum migrate_mode *migrate_mode,
3250 		     int compaction_retries)
3251 {
3252 	int max_retries = MAX_COMPACT_RETRIES;
3253 
3254 	if (!order)
3255 		return false;
3256 
3257 	/*
3258 	 * compaction considers all the zone as desperately out of memory
3259 	 * so it doesn't really make much sense to retry except when the
3260 	 * failure could be caused by weak migration mode.
3261 	 */
3262 	if (compaction_failed(compact_result)) {
3263 		if (*migrate_mode == MIGRATE_ASYNC) {
3264 			*migrate_mode = MIGRATE_SYNC_LIGHT;
3265 			return true;
3266 		}
3267 		return false;
3268 	}
3269 
3270 	/*
3271 	 * make sure the compaction wasn't deferred or didn't bail out early
3272 	 * due to locks contention before we declare that we should give up.
3273 	 * But do not retry if the given zonelist is not suitable for
3274 	 * compaction.
3275 	 */
3276 	if (compaction_withdrawn(compact_result))
3277 		return compaction_zonelist_suitable(ac, order, alloc_flags);
3278 
3279 	/*
3280 	 * !costly requests are much more important than __GFP_REPEAT
3281 	 * costly ones because they are de facto nofail and invoke OOM
3282 	 * killer to move on while costly can fail and users are ready
3283 	 * to cope with that. 1/4 retries is rather arbitrary but we
3284 	 * would need much more detailed feedback from compaction to
3285 	 * make a better decision.
3286 	 */
3287 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3288 		max_retries /= 4;
3289 	if (compaction_retries <= max_retries)
3290 		return true;
3291 
3292 	return false;
3293 }
3294 #else
3295 static inline struct page *
3296 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3297 		unsigned int alloc_flags, const struct alloc_context *ac,
3298 		enum migrate_mode mode, enum compact_result *compact_result)
3299 {
3300 	*compact_result = COMPACT_SKIPPED;
3301 	return NULL;
3302 }
3303 
3304 static inline bool
3305 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3306 		     enum compact_result compact_result,
3307 		     enum migrate_mode *migrate_mode,
3308 		     int compaction_retries)
3309 {
3310 	struct zone *zone;
3311 	struct zoneref *z;
3312 
3313 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3314 		return false;
3315 
3316 	/*
3317 	 * There are setups with compaction disabled which would prefer to loop
3318 	 * inside the allocator rather than hit the oom killer prematurely.
3319 	 * Let's give them a good hope and keep retrying while the order-0
3320 	 * watermarks are OK.
3321 	 */
3322 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3323 					ac->nodemask) {
3324 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3325 					ac_classzone_idx(ac), alloc_flags))
3326 			return true;
3327 	}
3328 	return false;
3329 }
3330 #endif /* CONFIG_COMPACTION */
3331 
3332 /* Perform direct synchronous page reclaim */
3333 static int
3334 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3335 					const struct alloc_context *ac)
3336 {
3337 	struct reclaim_state reclaim_state;
3338 	int progress;
3339 
3340 	cond_resched();
3341 
3342 	/* We now go into synchronous reclaim */
3343 	cpuset_memory_pressure_bump();
3344 	current->flags |= PF_MEMALLOC;
3345 	lockdep_set_current_reclaim_state(gfp_mask);
3346 	reclaim_state.reclaimed_slab = 0;
3347 	current->reclaim_state = &reclaim_state;
3348 
3349 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3350 								ac->nodemask);
3351 
3352 	current->reclaim_state = NULL;
3353 	lockdep_clear_current_reclaim_state();
3354 	current->flags &= ~PF_MEMALLOC;
3355 
3356 	cond_resched();
3357 
3358 	return progress;
3359 }
3360 
3361 /* The really slow allocator path where we enter direct reclaim */
3362 static inline struct page *
3363 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3364 		unsigned int alloc_flags, const struct alloc_context *ac,
3365 		unsigned long *did_some_progress)
3366 {
3367 	struct page *page = NULL;
3368 	bool drained = false;
3369 
3370 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3371 	if (unlikely(!(*did_some_progress)))
3372 		return NULL;
3373 
3374 retry:
3375 	page = get_page_from_freelist(gfp_mask, order,
3376 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3377 
3378 	/*
3379 	 * If an allocation failed after direct reclaim, it could be because
3380 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3381 	 * Shrink them them and try again
3382 	 */
3383 	if (!page && !drained) {
3384 		unreserve_highatomic_pageblock(ac);
3385 		drain_all_pages(NULL);
3386 		drained = true;
3387 		goto retry;
3388 	}
3389 
3390 	return page;
3391 }
3392 
3393 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3394 {
3395 	struct zoneref *z;
3396 	struct zone *zone;
3397 
3398 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3399 						ac->high_zoneidx, ac->nodemask)
3400 		wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3401 }
3402 
3403 static inline unsigned int
3404 gfp_to_alloc_flags(gfp_t gfp_mask)
3405 {
3406 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3407 
3408 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3409 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3410 
3411 	/*
3412 	 * The caller may dip into page reserves a bit more if the caller
3413 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3414 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3415 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3416 	 */
3417 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3418 
3419 	if (gfp_mask & __GFP_ATOMIC) {
3420 		/*
3421 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3422 		 * if it can't schedule.
3423 		 */
3424 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3425 			alloc_flags |= ALLOC_HARDER;
3426 		/*
3427 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3428 		 * comment for __cpuset_node_allowed().
3429 		 */
3430 		alloc_flags &= ~ALLOC_CPUSET;
3431 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3432 		alloc_flags |= ALLOC_HARDER;
3433 
3434 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3435 		if (gfp_mask & __GFP_MEMALLOC)
3436 			alloc_flags |= ALLOC_NO_WATERMARKS;
3437 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3438 			alloc_flags |= ALLOC_NO_WATERMARKS;
3439 		else if (!in_interrupt() &&
3440 				((current->flags & PF_MEMALLOC) ||
3441 				 unlikely(test_thread_flag(TIF_MEMDIE))))
3442 			alloc_flags |= ALLOC_NO_WATERMARKS;
3443 	}
3444 #ifdef CONFIG_CMA
3445 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3446 		alloc_flags |= ALLOC_CMA;
3447 #endif
3448 	return alloc_flags;
3449 }
3450 
3451 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3452 {
3453 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3454 }
3455 
3456 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3457 {
3458 	return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3459 }
3460 
3461 /*
3462  * Maximum number of reclaim retries without any progress before OOM killer
3463  * is consider as the only way to move forward.
3464  */
3465 #define MAX_RECLAIM_RETRIES 16
3466 
3467 /*
3468  * Checks whether it makes sense to retry the reclaim to make a forward progress
3469  * for the given allocation request.
3470  * The reclaim feedback represented by did_some_progress (any progress during
3471  * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3472  * any progress in a row) is considered as well as the reclaimable pages on the
3473  * applicable zone list (with a backoff mechanism which is a function of
3474  * no_progress_loops).
3475  *
3476  * Returns true if a retry is viable or false to enter the oom path.
3477  */
3478 static inline bool
3479 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3480 		     struct alloc_context *ac, int alloc_flags,
3481 		     bool did_some_progress, int no_progress_loops)
3482 {
3483 	struct zone *zone;
3484 	struct zoneref *z;
3485 
3486 	/*
3487 	 * Make sure we converge to OOM if we cannot make any progress
3488 	 * several times in the row.
3489 	 */
3490 	if (no_progress_loops > MAX_RECLAIM_RETRIES)
3491 		return false;
3492 
3493 	/*
3494 	 * Keep reclaiming pages while there is a chance this will lead somewhere.
3495 	 * If none of the target zones can satisfy our allocation request even
3496 	 * if all reclaimable pages are considered then we are screwed and have
3497 	 * to go OOM.
3498 	 */
3499 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3500 					ac->nodemask) {
3501 		unsigned long available;
3502 		unsigned long reclaimable;
3503 
3504 		available = reclaimable = zone_reclaimable_pages(zone);
3505 		available -= DIV_ROUND_UP(no_progress_loops * available,
3506 					  MAX_RECLAIM_RETRIES);
3507 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3508 
3509 		/*
3510 		 * Would the allocation succeed if we reclaimed the whole
3511 		 * available?
3512 		 */
3513 		if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3514 				ac_classzone_idx(ac), alloc_flags, available)) {
3515 			/*
3516 			 * If we didn't make any progress and have a lot of
3517 			 * dirty + writeback pages then we should wait for
3518 			 * an IO to complete to slow down the reclaim and
3519 			 * prevent from pre mature OOM
3520 			 */
3521 			if (!did_some_progress) {
3522 				unsigned long writeback;
3523 				unsigned long dirty;
3524 
3525 				writeback = zone_page_state_snapshot(zone,
3526 								     NR_WRITEBACK);
3527 				dirty = zone_page_state_snapshot(zone, NR_FILE_DIRTY);
3528 
3529 				if (2*(writeback + dirty) > reclaimable) {
3530 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3531 					return true;
3532 				}
3533 			}
3534 
3535 			/*
3536 			 * Memory allocation/reclaim might be called from a WQ
3537 			 * context and the current implementation of the WQ
3538 			 * concurrency control doesn't recognize that
3539 			 * a particular WQ is congested if the worker thread is
3540 			 * looping without ever sleeping. Therefore we have to
3541 			 * do a short sleep here rather than calling
3542 			 * cond_resched().
3543 			 */
3544 			if (current->flags & PF_WQ_WORKER)
3545 				schedule_timeout_uninterruptible(1);
3546 			else
3547 				cond_resched();
3548 
3549 			return true;
3550 		}
3551 	}
3552 
3553 	return false;
3554 }
3555 
3556 static inline struct page *
3557 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3558 						struct alloc_context *ac)
3559 {
3560 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3561 	struct page *page = NULL;
3562 	unsigned int alloc_flags;
3563 	unsigned long did_some_progress;
3564 	enum migrate_mode migration_mode = MIGRATE_ASYNC;
3565 	enum compact_result compact_result;
3566 	int compaction_retries = 0;
3567 	int no_progress_loops = 0;
3568 
3569 	/*
3570 	 * In the slowpath, we sanity check order to avoid ever trying to
3571 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3572 	 * be using allocators in order of preference for an area that is
3573 	 * too large.
3574 	 */
3575 	if (order >= MAX_ORDER) {
3576 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3577 		return NULL;
3578 	}
3579 
3580 	/*
3581 	 * We also sanity check to catch abuse of atomic reserves being used by
3582 	 * callers that are not in atomic context.
3583 	 */
3584 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3585 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3586 		gfp_mask &= ~__GFP_ATOMIC;
3587 
3588 retry:
3589 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3590 		wake_all_kswapds(order, ac);
3591 
3592 	/*
3593 	 * OK, we're below the kswapd watermark and have kicked background
3594 	 * reclaim. Now things get more complex, so set up alloc_flags according
3595 	 * to how we want to proceed.
3596 	 */
3597 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3598 
3599 	/* This is the last chance, in general, before the goto nopage. */
3600 	page = get_page_from_freelist(gfp_mask, order,
3601 				alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3602 	if (page)
3603 		goto got_pg;
3604 
3605 	/* Allocate without watermarks if the context allows */
3606 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
3607 		/*
3608 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3609 		 * the allocation is high priority and these type of
3610 		 * allocations are system rather than user orientated
3611 		 */
3612 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3613 		page = get_page_from_freelist(gfp_mask, order,
3614 						ALLOC_NO_WATERMARKS, ac);
3615 		if (page)
3616 			goto got_pg;
3617 	}
3618 
3619 	/* Caller is not willing to reclaim, we can't balance anything */
3620 	if (!can_direct_reclaim) {
3621 		/*
3622 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
3623 		 * of any new users that actually allow this type of allocation
3624 		 * to fail.
3625 		 */
3626 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3627 		goto nopage;
3628 	}
3629 
3630 	/* Avoid recursion of direct reclaim */
3631 	if (current->flags & PF_MEMALLOC) {
3632 		/*
3633 		 * __GFP_NOFAIL request from this context is rather bizarre
3634 		 * because we cannot reclaim anything and only can loop waiting
3635 		 * for somebody to do a work for us.
3636 		 */
3637 		if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3638 			cond_resched();
3639 			goto retry;
3640 		}
3641 		goto nopage;
3642 	}
3643 
3644 	/* Avoid allocations with no watermarks from looping endlessly */
3645 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3646 		goto nopage;
3647 
3648 	/*
3649 	 * Try direct compaction. The first pass is asynchronous. Subsequent
3650 	 * attempts after direct reclaim are synchronous
3651 	 */
3652 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3653 					migration_mode,
3654 					&compact_result);
3655 	if (page)
3656 		goto got_pg;
3657 
3658 	/* Checks for THP-specific high-order allocations */
3659 	if (is_thp_gfp_mask(gfp_mask)) {
3660 		/*
3661 		 * If compaction is deferred for high-order allocations, it is
3662 		 * because sync compaction recently failed. If this is the case
3663 		 * and the caller requested a THP allocation, we do not want
3664 		 * to heavily disrupt the system, so we fail the allocation
3665 		 * instead of entering direct reclaim.
3666 		 */
3667 		if (compact_result == COMPACT_DEFERRED)
3668 			goto nopage;
3669 
3670 		/*
3671 		 * Compaction is contended so rather back off than cause
3672 		 * excessive stalls.
3673 		 */
3674 		if(compact_result == COMPACT_CONTENDED)
3675 			goto nopage;
3676 	}
3677 
3678 	if (order && compaction_made_progress(compact_result))
3679 		compaction_retries++;
3680 
3681 	/* Try direct reclaim and then allocating */
3682 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3683 							&did_some_progress);
3684 	if (page)
3685 		goto got_pg;
3686 
3687 	/* Do not loop if specifically requested */
3688 	if (gfp_mask & __GFP_NORETRY)
3689 		goto noretry;
3690 
3691 	/*
3692 	 * Do not retry costly high order allocations unless they are
3693 	 * __GFP_REPEAT
3694 	 */
3695 	if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3696 		goto noretry;
3697 
3698 	/*
3699 	 * Costly allocations might have made a progress but this doesn't mean
3700 	 * their order will become available due to high fragmentation so
3701 	 * always increment the no progress counter for them
3702 	 */
3703 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3704 		no_progress_loops = 0;
3705 	else
3706 		no_progress_loops++;
3707 
3708 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3709 				 did_some_progress > 0, no_progress_loops))
3710 		goto retry;
3711 
3712 	/*
3713 	 * It doesn't make any sense to retry for the compaction if the order-0
3714 	 * reclaim is not able to make any progress because the current
3715 	 * implementation of the compaction depends on the sufficient amount
3716 	 * of free memory (see __compaction_suitable)
3717 	 */
3718 	if (did_some_progress > 0 &&
3719 			should_compact_retry(ac, order, alloc_flags,
3720 				compact_result, &migration_mode,
3721 				compaction_retries))
3722 		goto retry;
3723 
3724 	/* Reclaim has failed us, start killing things */
3725 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3726 	if (page)
3727 		goto got_pg;
3728 
3729 	/* Retry as long as the OOM killer is making progress */
3730 	if (did_some_progress) {
3731 		no_progress_loops = 0;
3732 		goto retry;
3733 	}
3734 
3735 noretry:
3736 	/*
3737 	 * High-order allocations do not necessarily loop after direct reclaim
3738 	 * and reclaim/compaction depends on compaction being called after
3739 	 * reclaim so call directly if necessary.
3740 	 * It can become very expensive to allocate transparent hugepages at
3741 	 * fault, so use asynchronous memory compaction for THP unless it is
3742 	 * khugepaged trying to collapse. All other requests should tolerate
3743 	 * at least light sync migration.
3744 	 */
3745 	if (is_thp_gfp_mask(gfp_mask) && !(current->flags & PF_KTHREAD))
3746 		migration_mode = MIGRATE_ASYNC;
3747 	else
3748 		migration_mode = MIGRATE_SYNC_LIGHT;
3749 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3750 					    ac, migration_mode,
3751 					    &compact_result);
3752 	if (page)
3753 		goto got_pg;
3754 nopage:
3755 	warn_alloc_failed(gfp_mask, order, NULL);
3756 got_pg:
3757 	return page;
3758 }
3759 
3760 /*
3761  * This is the 'heart' of the zoned buddy allocator.
3762  */
3763 struct page *
3764 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3765 			struct zonelist *zonelist, nodemask_t *nodemask)
3766 {
3767 	struct page *page;
3768 	unsigned int cpuset_mems_cookie;
3769 	unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
3770 	gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3771 	struct alloc_context ac = {
3772 		.high_zoneidx = gfp_zone(gfp_mask),
3773 		.zonelist = zonelist,
3774 		.nodemask = nodemask,
3775 		.migratetype = gfpflags_to_migratetype(gfp_mask),
3776 	};
3777 
3778 	if (cpusets_enabled()) {
3779 		alloc_mask |= __GFP_HARDWALL;
3780 		alloc_flags |= ALLOC_CPUSET;
3781 		if (!ac.nodemask)
3782 			ac.nodemask = &cpuset_current_mems_allowed;
3783 	}
3784 
3785 	gfp_mask &= gfp_allowed_mask;
3786 
3787 	lockdep_trace_alloc(gfp_mask);
3788 
3789 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3790 
3791 	if (should_fail_alloc_page(gfp_mask, order))
3792 		return NULL;
3793 
3794 	/*
3795 	 * Check the zones suitable for the gfp_mask contain at least one
3796 	 * valid zone. It's possible to have an empty zonelist as a result
3797 	 * of __GFP_THISNODE and a memoryless node
3798 	 */
3799 	if (unlikely(!zonelist->_zonerefs->zone))
3800 		return NULL;
3801 
3802 	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3803 		alloc_flags |= ALLOC_CMA;
3804 
3805 retry_cpuset:
3806 	cpuset_mems_cookie = read_mems_allowed_begin();
3807 
3808 	/* Dirty zone balancing only done in the fast path */
3809 	ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3810 
3811 	/* The preferred zone is used for statistics later */
3812 	ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3813 					ac.high_zoneidx, ac.nodemask);
3814 	if (!ac.preferred_zoneref) {
3815 		page = NULL;
3816 		goto no_zone;
3817 	}
3818 
3819 	/* First allocation attempt */
3820 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3821 	if (likely(page))
3822 		goto out;
3823 
3824 	/*
3825 	 * Runtime PM, block IO and its error handling path can deadlock
3826 	 * because I/O on the device might not complete.
3827 	 */
3828 	alloc_mask = memalloc_noio_flags(gfp_mask);
3829 	ac.spread_dirty_pages = false;
3830 
3831 	/*
3832 	 * Restore the original nodemask if it was potentially replaced with
3833 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3834 	 */
3835 	if (cpusets_enabled())
3836 		ac.nodemask = nodemask;
3837 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3838 
3839 no_zone:
3840 	/*
3841 	 * When updating a task's mems_allowed, it is possible to race with
3842 	 * parallel threads in such a way that an allocation can fail while
3843 	 * the mask is being updated. If a page allocation is about to fail,
3844 	 * check if the cpuset changed during allocation and if so, retry.
3845 	 */
3846 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3847 		alloc_mask = gfp_mask;
3848 		goto retry_cpuset;
3849 	}
3850 
3851 out:
3852 	if (kmemcheck_enabled && page)
3853 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3854 
3855 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3856 
3857 	return page;
3858 }
3859 EXPORT_SYMBOL(__alloc_pages_nodemask);
3860 
3861 /*
3862  * Common helper functions.
3863  */
3864 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3865 {
3866 	struct page *page;
3867 
3868 	/*
3869 	 * __get_free_pages() returns a 32-bit address, which cannot represent
3870 	 * a highmem page
3871 	 */
3872 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3873 
3874 	page = alloc_pages(gfp_mask, order);
3875 	if (!page)
3876 		return 0;
3877 	return (unsigned long) page_address(page);
3878 }
3879 EXPORT_SYMBOL(__get_free_pages);
3880 
3881 unsigned long get_zeroed_page(gfp_t gfp_mask)
3882 {
3883 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3884 }
3885 EXPORT_SYMBOL(get_zeroed_page);
3886 
3887 void __free_pages(struct page *page, unsigned int order)
3888 {
3889 	if (put_page_testzero(page)) {
3890 		if (order == 0)
3891 			free_hot_cold_page(page, false);
3892 		else
3893 			__free_pages_ok(page, order);
3894 	}
3895 }
3896 
3897 EXPORT_SYMBOL(__free_pages);
3898 
3899 void free_pages(unsigned long addr, unsigned int order)
3900 {
3901 	if (addr != 0) {
3902 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3903 		__free_pages(virt_to_page((void *)addr), order);
3904 	}
3905 }
3906 
3907 EXPORT_SYMBOL(free_pages);
3908 
3909 /*
3910  * Page Fragment:
3911  *  An arbitrary-length arbitrary-offset area of memory which resides
3912  *  within a 0 or higher order page.  Multiple fragments within that page
3913  *  are individually refcounted, in the page's reference counter.
3914  *
3915  * The page_frag functions below provide a simple allocation framework for
3916  * page fragments.  This is used by the network stack and network device
3917  * drivers to provide a backing region of memory for use as either an
3918  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3919  */
3920 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3921 				       gfp_t gfp_mask)
3922 {
3923 	struct page *page = NULL;
3924 	gfp_t gfp = gfp_mask;
3925 
3926 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3927 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3928 		    __GFP_NOMEMALLOC;
3929 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3930 				PAGE_FRAG_CACHE_MAX_ORDER);
3931 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3932 #endif
3933 	if (unlikely(!page))
3934 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3935 
3936 	nc->va = page ? page_address(page) : NULL;
3937 
3938 	return page;
3939 }
3940 
3941 void *__alloc_page_frag(struct page_frag_cache *nc,
3942 			unsigned int fragsz, gfp_t gfp_mask)
3943 {
3944 	unsigned int size = PAGE_SIZE;
3945 	struct page *page;
3946 	int offset;
3947 
3948 	if (unlikely(!nc->va)) {
3949 refill:
3950 		page = __page_frag_refill(nc, gfp_mask);
3951 		if (!page)
3952 			return NULL;
3953 
3954 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3955 		/* if size can vary use size else just use PAGE_SIZE */
3956 		size = nc->size;
3957 #endif
3958 		/* Even if we own the page, we do not use atomic_set().
3959 		 * This would break get_page_unless_zero() users.
3960 		 */
3961 		page_ref_add(page, size - 1);
3962 
3963 		/* reset page count bias and offset to start of new frag */
3964 		nc->pfmemalloc = page_is_pfmemalloc(page);
3965 		nc->pagecnt_bias = size;
3966 		nc->offset = size;
3967 	}
3968 
3969 	offset = nc->offset - fragsz;
3970 	if (unlikely(offset < 0)) {
3971 		page = virt_to_page(nc->va);
3972 
3973 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3974 			goto refill;
3975 
3976 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3977 		/* if size can vary use size else just use PAGE_SIZE */
3978 		size = nc->size;
3979 #endif
3980 		/* OK, page count is 0, we can safely set it */
3981 		set_page_count(page, size);
3982 
3983 		/* reset page count bias and offset to start of new frag */
3984 		nc->pagecnt_bias = size;
3985 		offset = size - fragsz;
3986 	}
3987 
3988 	nc->pagecnt_bias--;
3989 	nc->offset = offset;
3990 
3991 	return nc->va + offset;
3992 }
3993 EXPORT_SYMBOL(__alloc_page_frag);
3994 
3995 /*
3996  * Frees a page fragment allocated out of either a compound or order 0 page.
3997  */
3998 void __free_page_frag(void *addr)
3999 {
4000 	struct page *page = virt_to_head_page(addr);
4001 
4002 	if (unlikely(put_page_testzero(page)))
4003 		__free_pages_ok(page, compound_order(page));
4004 }
4005 EXPORT_SYMBOL(__free_page_frag);
4006 
4007 /*
4008  * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
4009  * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
4010  * equivalent to alloc_pages.
4011  *
4012  * It should be used when the caller would like to use kmalloc, but since the
4013  * allocation is large, it has to fall back to the page allocator.
4014  */
4015 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
4016 {
4017 	struct page *page;
4018 
4019 	page = alloc_pages(gfp_mask, order);
4020 	if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4021 		__free_pages(page, order);
4022 		page = NULL;
4023 	}
4024 	return page;
4025 }
4026 
4027 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
4028 {
4029 	struct page *page;
4030 
4031 	page = alloc_pages_node(nid, gfp_mask, order);
4032 	if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4033 		__free_pages(page, order);
4034 		page = NULL;
4035 	}
4036 	return page;
4037 }
4038 
4039 /*
4040  * __free_kmem_pages and free_kmem_pages will free pages allocated with
4041  * alloc_kmem_pages.
4042  */
4043 void __free_kmem_pages(struct page *page, unsigned int order)
4044 {
4045 	memcg_kmem_uncharge(page, order);
4046 	__free_pages(page, order);
4047 }
4048 
4049 void free_kmem_pages(unsigned long addr, unsigned int order)
4050 {
4051 	if (addr != 0) {
4052 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4053 		__free_kmem_pages(virt_to_page((void *)addr), order);
4054 	}
4055 }
4056 
4057 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4058 		size_t size)
4059 {
4060 	if (addr) {
4061 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4062 		unsigned long used = addr + PAGE_ALIGN(size);
4063 
4064 		split_page(virt_to_page((void *)addr), order);
4065 		while (used < alloc_end) {
4066 			free_page(used);
4067 			used += PAGE_SIZE;
4068 		}
4069 	}
4070 	return (void *)addr;
4071 }
4072 
4073 /**
4074  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4075  * @size: the number of bytes to allocate
4076  * @gfp_mask: GFP flags for the allocation
4077  *
4078  * This function is similar to alloc_pages(), except that it allocates the
4079  * minimum number of pages to satisfy the request.  alloc_pages() can only
4080  * allocate memory in power-of-two pages.
4081  *
4082  * This function is also limited by MAX_ORDER.
4083  *
4084  * Memory allocated by this function must be released by free_pages_exact().
4085  */
4086 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4087 {
4088 	unsigned int order = get_order(size);
4089 	unsigned long addr;
4090 
4091 	addr = __get_free_pages(gfp_mask, order);
4092 	return make_alloc_exact(addr, order, size);
4093 }
4094 EXPORT_SYMBOL(alloc_pages_exact);
4095 
4096 /**
4097  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4098  *			   pages on a node.
4099  * @nid: the preferred node ID where memory should be allocated
4100  * @size: the number of bytes to allocate
4101  * @gfp_mask: GFP flags for the allocation
4102  *
4103  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4104  * back.
4105  */
4106 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4107 {
4108 	unsigned int order = get_order(size);
4109 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4110 	if (!p)
4111 		return NULL;
4112 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4113 }
4114 
4115 /**
4116  * free_pages_exact - release memory allocated via alloc_pages_exact()
4117  * @virt: the value returned by alloc_pages_exact.
4118  * @size: size of allocation, same value as passed to alloc_pages_exact().
4119  *
4120  * Release the memory allocated by a previous call to alloc_pages_exact.
4121  */
4122 void free_pages_exact(void *virt, size_t size)
4123 {
4124 	unsigned long addr = (unsigned long)virt;
4125 	unsigned long end = addr + PAGE_ALIGN(size);
4126 
4127 	while (addr < end) {
4128 		free_page(addr);
4129 		addr += PAGE_SIZE;
4130 	}
4131 }
4132 EXPORT_SYMBOL(free_pages_exact);
4133 
4134 /**
4135  * nr_free_zone_pages - count number of pages beyond high watermark
4136  * @offset: The zone index of the highest zone
4137  *
4138  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4139  * high watermark within all zones at or below a given zone index.  For each
4140  * zone, the number of pages is calculated as:
4141  *     managed_pages - high_pages
4142  */
4143 static unsigned long nr_free_zone_pages(int offset)
4144 {
4145 	struct zoneref *z;
4146 	struct zone *zone;
4147 
4148 	/* Just pick one node, since fallback list is circular */
4149 	unsigned long sum = 0;
4150 
4151 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4152 
4153 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4154 		unsigned long size = zone->managed_pages;
4155 		unsigned long high = high_wmark_pages(zone);
4156 		if (size > high)
4157 			sum += size - high;
4158 	}
4159 
4160 	return sum;
4161 }
4162 
4163 /**
4164  * nr_free_buffer_pages - count number of pages beyond high watermark
4165  *
4166  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4167  * watermark within ZONE_DMA and ZONE_NORMAL.
4168  */
4169 unsigned long nr_free_buffer_pages(void)
4170 {
4171 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4172 }
4173 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4174 
4175 /**
4176  * nr_free_pagecache_pages - count number of pages beyond high watermark
4177  *
4178  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4179  * high watermark within all zones.
4180  */
4181 unsigned long nr_free_pagecache_pages(void)
4182 {
4183 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4184 }
4185 
4186 static inline void show_node(struct zone *zone)
4187 {
4188 	if (IS_ENABLED(CONFIG_NUMA))
4189 		printk("Node %d ", zone_to_nid(zone));
4190 }
4191 
4192 long si_mem_available(void)
4193 {
4194 	long available;
4195 	unsigned long pagecache;
4196 	unsigned long wmark_low = 0;
4197 	unsigned long pages[NR_LRU_LISTS];
4198 	struct zone *zone;
4199 	int lru;
4200 
4201 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4202 		pages[lru] = global_page_state(NR_LRU_BASE + lru);
4203 
4204 	for_each_zone(zone)
4205 		wmark_low += zone->watermark[WMARK_LOW];
4206 
4207 	/*
4208 	 * Estimate the amount of memory available for userspace allocations,
4209 	 * without causing swapping.
4210 	 */
4211 	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4212 
4213 	/*
4214 	 * Not all the page cache can be freed, otherwise the system will
4215 	 * start swapping. Assume at least half of the page cache, or the
4216 	 * low watermark worth of cache, needs to stay.
4217 	 */
4218 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4219 	pagecache -= min(pagecache / 2, wmark_low);
4220 	available += pagecache;
4221 
4222 	/*
4223 	 * Part of the reclaimable slab consists of items that are in use,
4224 	 * and cannot be freed. Cap this estimate at the low watermark.
4225 	 */
4226 	available += global_page_state(NR_SLAB_RECLAIMABLE) -
4227 		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4228 
4229 	if (available < 0)
4230 		available = 0;
4231 	return available;
4232 }
4233 EXPORT_SYMBOL_GPL(si_mem_available);
4234 
4235 void si_meminfo(struct sysinfo *val)
4236 {
4237 	val->totalram = totalram_pages;
4238 	val->sharedram = global_page_state(NR_SHMEM);
4239 	val->freeram = global_page_state(NR_FREE_PAGES);
4240 	val->bufferram = nr_blockdev_pages();
4241 	val->totalhigh = totalhigh_pages;
4242 	val->freehigh = nr_free_highpages();
4243 	val->mem_unit = PAGE_SIZE;
4244 }
4245 
4246 EXPORT_SYMBOL(si_meminfo);
4247 
4248 #ifdef CONFIG_NUMA
4249 void si_meminfo_node(struct sysinfo *val, int nid)
4250 {
4251 	int zone_type;		/* needs to be signed */
4252 	unsigned long managed_pages = 0;
4253 	unsigned long managed_highpages = 0;
4254 	unsigned long free_highpages = 0;
4255 	pg_data_t *pgdat = NODE_DATA(nid);
4256 
4257 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4258 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4259 	val->totalram = managed_pages;
4260 	val->sharedram = node_page_state(nid, NR_SHMEM);
4261 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
4262 #ifdef CONFIG_HIGHMEM
4263 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4264 		struct zone *zone = &pgdat->node_zones[zone_type];
4265 
4266 		if (is_highmem(zone)) {
4267 			managed_highpages += zone->managed_pages;
4268 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4269 		}
4270 	}
4271 	val->totalhigh = managed_highpages;
4272 	val->freehigh = free_highpages;
4273 #else
4274 	val->totalhigh = managed_highpages;
4275 	val->freehigh = free_highpages;
4276 #endif
4277 	val->mem_unit = PAGE_SIZE;
4278 }
4279 #endif
4280 
4281 /*
4282  * Determine whether the node should be displayed or not, depending on whether
4283  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4284  */
4285 bool skip_free_areas_node(unsigned int flags, int nid)
4286 {
4287 	bool ret = false;
4288 	unsigned int cpuset_mems_cookie;
4289 
4290 	if (!(flags & SHOW_MEM_FILTER_NODES))
4291 		goto out;
4292 
4293 	do {
4294 		cpuset_mems_cookie = read_mems_allowed_begin();
4295 		ret = !node_isset(nid, cpuset_current_mems_allowed);
4296 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
4297 out:
4298 	return ret;
4299 }
4300 
4301 #define K(x) ((x) << (PAGE_SHIFT-10))
4302 
4303 static void show_migration_types(unsigned char type)
4304 {
4305 	static const char types[MIGRATE_TYPES] = {
4306 		[MIGRATE_UNMOVABLE]	= 'U',
4307 		[MIGRATE_MOVABLE]	= 'M',
4308 		[MIGRATE_RECLAIMABLE]	= 'E',
4309 		[MIGRATE_HIGHATOMIC]	= 'H',
4310 #ifdef CONFIG_CMA
4311 		[MIGRATE_CMA]		= 'C',
4312 #endif
4313 #ifdef CONFIG_MEMORY_ISOLATION
4314 		[MIGRATE_ISOLATE]	= 'I',
4315 #endif
4316 	};
4317 	char tmp[MIGRATE_TYPES + 1];
4318 	char *p = tmp;
4319 	int i;
4320 
4321 	for (i = 0; i < MIGRATE_TYPES; i++) {
4322 		if (type & (1 << i))
4323 			*p++ = types[i];
4324 	}
4325 
4326 	*p = '\0';
4327 	printk("(%s) ", tmp);
4328 }
4329 
4330 /*
4331  * Show free area list (used inside shift_scroll-lock stuff)
4332  * We also calculate the percentage fragmentation. We do this by counting the
4333  * memory on each free list with the exception of the first item on the list.
4334  *
4335  * Bits in @filter:
4336  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4337  *   cpuset.
4338  */
4339 void show_free_areas(unsigned int filter)
4340 {
4341 	unsigned long free_pcp = 0;
4342 	int cpu;
4343 	struct zone *zone;
4344 
4345 	for_each_populated_zone(zone) {
4346 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4347 			continue;
4348 
4349 		for_each_online_cpu(cpu)
4350 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4351 	}
4352 
4353 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4354 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4355 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4356 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4357 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4358 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4359 		global_page_state(NR_ACTIVE_ANON),
4360 		global_page_state(NR_INACTIVE_ANON),
4361 		global_page_state(NR_ISOLATED_ANON),
4362 		global_page_state(NR_ACTIVE_FILE),
4363 		global_page_state(NR_INACTIVE_FILE),
4364 		global_page_state(NR_ISOLATED_FILE),
4365 		global_page_state(NR_UNEVICTABLE),
4366 		global_page_state(NR_FILE_DIRTY),
4367 		global_page_state(NR_WRITEBACK),
4368 		global_page_state(NR_UNSTABLE_NFS),
4369 		global_page_state(NR_SLAB_RECLAIMABLE),
4370 		global_page_state(NR_SLAB_UNRECLAIMABLE),
4371 		global_page_state(NR_FILE_MAPPED),
4372 		global_page_state(NR_SHMEM),
4373 		global_page_state(NR_PAGETABLE),
4374 		global_page_state(NR_BOUNCE),
4375 		global_page_state(NR_FREE_PAGES),
4376 		free_pcp,
4377 		global_page_state(NR_FREE_CMA_PAGES));
4378 
4379 	for_each_populated_zone(zone) {
4380 		int i;
4381 
4382 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4383 			continue;
4384 
4385 		free_pcp = 0;
4386 		for_each_online_cpu(cpu)
4387 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4388 
4389 		show_node(zone);
4390 		printk("%s"
4391 			" free:%lukB"
4392 			" min:%lukB"
4393 			" low:%lukB"
4394 			" high:%lukB"
4395 			" active_anon:%lukB"
4396 			" inactive_anon:%lukB"
4397 			" active_file:%lukB"
4398 			" inactive_file:%lukB"
4399 			" unevictable:%lukB"
4400 			" isolated(anon):%lukB"
4401 			" isolated(file):%lukB"
4402 			" present:%lukB"
4403 			" managed:%lukB"
4404 			" mlocked:%lukB"
4405 			" dirty:%lukB"
4406 			" writeback:%lukB"
4407 			" mapped:%lukB"
4408 			" shmem:%lukB"
4409 			" slab_reclaimable:%lukB"
4410 			" slab_unreclaimable:%lukB"
4411 			" kernel_stack:%lukB"
4412 			" pagetables:%lukB"
4413 			" unstable:%lukB"
4414 			" bounce:%lukB"
4415 			" free_pcp:%lukB"
4416 			" local_pcp:%ukB"
4417 			" free_cma:%lukB"
4418 			" writeback_tmp:%lukB"
4419 			" pages_scanned:%lu"
4420 			" all_unreclaimable? %s"
4421 			"\n",
4422 			zone->name,
4423 			K(zone_page_state(zone, NR_FREE_PAGES)),
4424 			K(min_wmark_pages(zone)),
4425 			K(low_wmark_pages(zone)),
4426 			K(high_wmark_pages(zone)),
4427 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
4428 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
4429 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
4430 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
4431 			K(zone_page_state(zone, NR_UNEVICTABLE)),
4432 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
4433 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
4434 			K(zone->present_pages),
4435 			K(zone->managed_pages),
4436 			K(zone_page_state(zone, NR_MLOCK)),
4437 			K(zone_page_state(zone, NR_FILE_DIRTY)),
4438 			K(zone_page_state(zone, NR_WRITEBACK)),
4439 			K(zone_page_state(zone, NR_FILE_MAPPED)),
4440 			K(zone_page_state(zone, NR_SHMEM)),
4441 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4442 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4443 			zone_page_state(zone, NR_KERNEL_STACK) *
4444 				THREAD_SIZE / 1024,
4445 			K(zone_page_state(zone, NR_PAGETABLE)),
4446 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4447 			K(zone_page_state(zone, NR_BOUNCE)),
4448 			K(free_pcp),
4449 			K(this_cpu_read(zone->pageset->pcp.count)),
4450 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4451 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
4452 			K(zone_page_state(zone, NR_PAGES_SCANNED)),
4453 			(!zone_reclaimable(zone) ? "yes" : "no")
4454 			);
4455 		printk("lowmem_reserve[]:");
4456 		for (i = 0; i < MAX_NR_ZONES; i++)
4457 			printk(" %ld", zone->lowmem_reserve[i]);
4458 		printk("\n");
4459 	}
4460 
4461 	for_each_populated_zone(zone) {
4462 		unsigned int order;
4463 		unsigned long nr[MAX_ORDER], flags, total = 0;
4464 		unsigned char types[MAX_ORDER];
4465 
4466 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4467 			continue;
4468 		show_node(zone);
4469 		printk("%s: ", zone->name);
4470 
4471 		spin_lock_irqsave(&zone->lock, flags);
4472 		for (order = 0; order < MAX_ORDER; order++) {
4473 			struct free_area *area = &zone->free_area[order];
4474 			int type;
4475 
4476 			nr[order] = area->nr_free;
4477 			total += nr[order] << order;
4478 
4479 			types[order] = 0;
4480 			for (type = 0; type < MIGRATE_TYPES; type++) {
4481 				if (!list_empty(&area->free_list[type]))
4482 					types[order] |= 1 << type;
4483 			}
4484 		}
4485 		spin_unlock_irqrestore(&zone->lock, flags);
4486 		for (order = 0; order < MAX_ORDER; order++) {
4487 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
4488 			if (nr[order])
4489 				show_migration_types(types[order]);
4490 		}
4491 		printk("= %lukB\n", K(total));
4492 	}
4493 
4494 	hugetlb_show_meminfo();
4495 
4496 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4497 
4498 	show_swap_cache_info();
4499 }
4500 
4501 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4502 {
4503 	zoneref->zone = zone;
4504 	zoneref->zone_idx = zone_idx(zone);
4505 }
4506 
4507 /*
4508  * Builds allocation fallback zone lists.
4509  *
4510  * Add all populated zones of a node to the zonelist.
4511  */
4512 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4513 				int nr_zones)
4514 {
4515 	struct zone *zone;
4516 	enum zone_type zone_type = MAX_NR_ZONES;
4517 
4518 	do {
4519 		zone_type--;
4520 		zone = pgdat->node_zones + zone_type;
4521 		if (populated_zone(zone)) {
4522 			zoneref_set_zone(zone,
4523 				&zonelist->_zonerefs[nr_zones++]);
4524 			check_highest_zone(zone_type);
4525 		}
4526 	} while (zone_type);
4527 
4528 	return nr_zones;
4529 }
4530 
4531 
4532 /*
4533  *  zonelist_order:
4534  *  0 = automatic detection of better ordering.
4535  *  1 = order by ([node] distance, -zonetype)
4536  *  2 = order by (-zonetype, [node] distance)
4537  *
4538  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4539  *  the same zonelist. So only NUMA can configure this param.
4540  */
4541 #define ZONELIST_ORDER_DEFAULT  0
4542 #define ZONELIST_ORDER_NODE     1
4543 #define ZONELIST_ORDER_ZONE     2
4544 
4545 /* zonelist order in the kernel.
4546  * set_zonelist_order() will set this to NODE or ZONE.
4547  */
4548 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4549 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4550 
4551 
4552 #ifdef CONFIG_NUMA
4553 /* The value user specified ....changed by config */
4554 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4555 /* string for sysctl */
4556 #define NUMA_ZONELIST_ORDER_LEN	16
4557 char numa_zonelist_order[16] = "default";
4558 
4559 /*
4560  * interface for configure zonelist ordering.
4561  * command line option "numa_zonelist_order"
4562  *	= "[dD]efault	- default, automatic configuration.
4563  *	= "[nN]ode 	- order by node locality, then by zone within node
4564  *	= "[zZ]one      - order by zone, then by locality within zone
4565  */
4566 
4567 static int __parse_numa_zonelist_order(char *s)
4568 {
4569 	if (*s == 'd' || *s == 'D') {
4570 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4571 	} else if (*s == 'n' || *s == 'N') {
4572 		user_zonelist_order = ZONELIST_ORDER_NODE;
4573 	} else if (*s == 'z' || *s == 'Z') {
4574 		user_zonelist_order = ZONELIST_ORDER_ZONE;
4575 	} else {
4576 		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4577 		return -EINVAL;
4578 	}
4579 	return 0;
4580 }
4581 
4582 static __init int setup_numa_zonelist_order(char *s)
4583 {
4584 	int ret;
4585 
4586 	if (!s)
4587 		return 0;
4588 
4589 	ret = __parse_numa_zonelist_order(s);
4590 	if (ret == 0)
4591 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4592 
4593 	return ret;
4594 }
4595 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4596 
4597 /*
4598  * sysctl handler for numa_zonelist_order
4599  */
4600 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4601 		void __user *buffer, size_t *length,
4602 		loff_t *ppos)
4603 {
4604 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
4605 	int ret;
4606 	static DEFINE_MUTEX(zl_order_mutex);
4607 
4608 	mutex_lock(&zl_order_mutex);
4609 	if (write) {
4610 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4611 			ret = -EINVAL;
4612 			goto out;
4613 		}
4614 		strcpy(saved_string, (char *)table->data);
4615 	}
4616 	ret = proc_dostring(table, write, buffer, length, ppos);
4617 	if (ret)
4618 		goto out;
4619 	if (write) {
4620 		int oldval = user_zonelist_order;
4621 
4622 		ret = __parse_numa_zonelist_order((char *)table->data);
4623 		if (ret) {
4624 			/*
4625 			 * bogus value.  restore saved string
4626 			 */
4627 			strncpy((char *)table->data, saved_string,
4628 				NUMA_ZONELIST_ORDER_LEN);
4629 			user_zonelist_order = oldval;
4630 		} else if (oldval != user_zonelist_order) {
4631 			mutex_lock(&zonelists_mutex);
4632 			build_all_zonelists(NULL, NULL);
4633 			mutex_unlock(&zonelists_mutex);
4634 		}
4635 	}
4636 out:
4637 	mutex_unlock(&zl_order_mutex);
4638 	return ret;
4639 }
4640 
4641 
4642 #define MAX_NODE_LOAD (nr_online_nodes)
4643 static int node_load[MAX_NUMNODES];
4644 
4645 /**
4646  * find_next_best_node - find the next node that should appear in a given node's fallback list
4647  * @node: node whose fallback list we're appending
4648  * @used_node_mask: nodemask_t of already used nodes
4649  *
4650  * We use a number of factors to determine which is the next node that should
4651  * appear on a given node's fallback list.  The node should not have appeared
4652  * already in @node's fallback list, and it should be the next closest node
4653  * according to the distance array (which contains arbitrary distance values
4654  * from each node to each node in the system), and should also prefer nodes
4655  * with no CPUs, since presumably they'll have very little allocation pressure
4656  * on them otherwise.
4657  * It returns -1 if no node is found.
4658  */
4659 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4660 {
4661 	int n, val;
4662 	int min_val = INT_MAX;
4663 	int best_node = NUMA_NO_NODE;
4664 	const struct cpumask *tmp = cpumask_of_node(0);
4665 
4666 	/* Use the local node if we haven't already */
4667 	if (!node_isset(node, *used_node_mask)) {
4668 		node_set(node, *used_node_mask);
4669 		return node;
4670 	}
4671 
4672 	for_each_node_state(n, N_MEMORY) {
4673 
4674 		/* Don't want a node to appear more than once */
4675 		if (node_isset(n, *used_node_mask))
4676 			continue;
4677 
4678 		/* Use the distance array to find the distance */
4679 		val = node_distance(node, n);
4680 
4681 		/* Penalize nodes under us ("prefer the next node") */
4682 		val += (n < node);
4683 
4684 		/* Give preference to headless and unused nodes */
4685 		tmp = cpumask_of_node(n);
4686 		if (!cpumask_empty(tmp))
4687 			val += PENALTY_FOR_NODE_WITH_CPUS;
4688 
4689 		/* Slight preference for less loaded node */
4690 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4691 		val += node_load[n];
4692 
4693 		if (val < min_val) {
4694 			min_val = val;
4695 			best_node = n;
4696 		}
4697 	}
4698 
4699 	if (best_node >= 0)
4700 		node_set(best_node, *used_node_mask);
4701 
4702 	return best_node;
4703 }
4704 
4705 
4706 /*
4707  * Build zonelists ordered by node and zones within node.
4708  * This results in maximum locality--normal zone overflows into local
4709  * DMA zone, if any--but risks exhausting DMA zone.
4710  */
4711 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4712 {
4713 	int j;
4714 	struct zonelist *zonelist;
4715 
4716 	zonelist = &pgdat->node_zonelists[0];
4717 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4718 		;
4719 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4720 	zonelist->_zonerefs[j].zone = NULL;
4721 	zonelist->_zonerefs[j].zone_idx = 0;
4722 }
4723 
4724 /*
4725  * Build gfp_thisnode zonelists
4726  */
4727 static void build_thisnode_zonelists(pg_data_t *pgdat)
4728 {
4729 	int j;
4730 	struct zonelist *zonelist;
4731 
4732 	zonelist = &pgdat->node_zonelists[1];
4733 	j = build_zonelists_node(pgdat, zonelist, 0);
4734 	zonelist->_zonerefs[j].zone = NULL;
4735 	zonelist->_zonerefs[j].zone_idx = 0;
4736 }
4737 
4738 /*
4739  * Build zonelists ordered by zone and nodes within zones.
4740  * This results in conserving DMA zone[s] until all Normal memory is
4741  * exhausted, but results in overflowing to remote node while memory
4742  * may still exist in local DMA zone.
4743  */
4744 static int node_order[MAX_NUMNODES];
4745 
4746 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4747 {
4748 	int pos, j, node;
4749 	int zone_type;		/* needs to be signed */
4750 	struct zone *z;
4751 	struct zonelist *zonelist;
4752 
4753 	zonelist = &pgdat->node_zonelists[0];
4754 	pos = 0;
4755 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4756 		for (j = 0; j < nr_nodes; j++) {
4757 			node = node_order[j];
4758 			z = &NODE_DATA(node)->node_zones[zone_type];
4759 			if (populated_zone(z)) {
4760 				zoneref_set_zone(z,
4761 					&zonelist->_zonerefs[pos++]);
4762 				check_highest_zone(zone_type);
4763 			}
4764 		}
4765 	}
4766 	zonelist->_zonerefs[pos].zone = NULL;
4767 	zonelist->_zonerefs[pos].zone_idx = 0;
4768 }
4769 
4770 #if defined(CONFIG_64BIT)
4771 /*
4772  * Devices that require DMA32/DMA are relatively rare and do not justify a
4773  * penalty to every machine in case the specialised case applies. Default
4774  * to Node-ordering on 64-bit NUMA machines
4775  */
4776 static int default_zonelist_order(void)
4777 {
4778 	return ZONELIST_ORDER_NODE;
4779 }
4780 #else
4781 /*
4782  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4783  * by the kernel. If processes running on node 0 deplete the low memory zone
4784  * then reclaim will occur more frequency increasing stalls and potentially
4785  * be easier to OOM if a large percentage of the zone is under writeback or
4786  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4787  * Hence, default to zone ordering on 32-bit.
4788  */
4789 static int default_zonelist_order(void)
4790 {
4791 	return ZONELIST_ORDER_ZONE;
4792 }
4793 #endif /* CONFIG_64BIT */
4794 
4795 static void set_zonelist_order(void)
4796 {
4797 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4798 		current_zonelist_order = default_zonelist_order();
4799 	else
4800 		current_zonelist_order = user_zonelist_order;
4801 }
4802 
4803 static void build_zonelists(pg_data_t *pgdat)
4804 {
4805 	int i, node, load;
4806 	nodemask_t used_mask;
4807 	int local_node, prev_node;
4808 	struct zonelist *zonelist;
4809 	unsigned int order = current_zonelist_order;
4810 
4811 	/* initialize zonelists */
4812 	for (i = 0; i < MAX_ZONELISTS; i++) {
4813 		zonelist = pgdat->node_zonelists + i;
4814 		zonelist->_zonerefs[0].zone = NULL;
4815 		zonelist->_zonerefs[0].zone_idx = 0;
4816 	}
4817 
4818 	/* NUMA-aware ordering of nodes */
4819 	local_node = pgdat->node_id;
4820 	load = nr_online_nodes;
4821 	prev_node = local_node;
4822 	nodes_clear(used_mask);
4823 
4824 	memset(node_order, 0, sizeof(node_order));
4825 	i = 0;
4826 
4827 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4828 		/*
4829 		 * We don't want to pressure a particular node.
4830 		 * So adding penalty to the first node in same
4831 		 * distance group to make it round-robin.
4832 		 */
4833 		if (node_distance(local_node, node) !=
4834 		    node_distance(local_node, prev_node))
4835 			node_load[node] = load;
4836 
4837 		prev_node = node;
4838 		load--;
4839 		if (order == ZONELIST_ORDER_NODE)
4840 			build_zonelists_in_node_order(pgdat, node);
4841 		else
4842 			node_order[i++] = node;	/* remember order */
4843 	}
4844 
4845 	if (order == ZONELIST_ORDER_ZONE) {
4846 		/* calculate node order -- i.e., DMA last! */
4847 		build_zonelists_in_zone_order(pgdat, i);
4848 	}
4849 
4850 	build_thisnode_zonelists(pgdat);
4851 }
4852 
4853 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4854 /*
4855  * Return node id of node used for "local" allocations.
4856  * I.e., first node id of first zone in arg node's generic zonelist.
4857  * Used for initializing percpu 'numa_mem', which is used primarily
4858  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4859  */
4860 int local_memory_node(int node)
4861 {
4862 	struct zoneref *z;
4863 
4864 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4865 				   gfp_zone(GFP_KERNEL),
4866 				   NULL);
4867 	return z->zone->node;
4868 }
4869 #endif
4870 
4871 #else	/* CONFIG_NUMA */
4872 
4873 static void set_zonelist_order(void)
4874 {
4875 	current_zonelist_order = ZONELIST_ORDER_ZONE;
4876 }
4877 
4878 static void build_zonelists(pg_data_t *pgdat)
4879 {
4880 	int node, local_node;
4881 	enum zone_type j;
4882 	struct zonelist *zonelist;
4883 
4884 	local_node = pgdat->node_id;
4885 
4886 	zonelist = &pgdat->node_zonelists[0];
4887 	j = build_zonelists_node(pgdat, zonelist, 0);
4888 
4889 	/*
4890 	 * Now we build the zonelist so that it contains the zones
4891 	 * of all the other nodes.
4892 	 * We don't want to pressure a particular node, so when
4893 	 * building the zones for node N, we make sure that the
4894 	 * zones coming right after the local ones are those from
4895 	 * node N+1 (modulo N)
4896 	 */
4897 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4898 		if (!node_online(node))
4899 			continue;
4900 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4901 	}
4902 	for (node = 0; node < local_node; node++) {
4903 		if (!node_online(node))
4904 			continue;
4905 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4906 	}
4907 
4908 	zonelist->_zonerefs[j].zone = NULL;
4909 	zonelist->_zonerefs[j].zone_idx = 0;
4910 }
4911 
4912 #endif	/* CONFIG_NUMA */
4913 
4914 /*
4915  * Boot pageset table. One per cpu which is going to be used for all
4916  * zones and all nodes. The parameters will be set in such a way
4917  * that an item put on a list will immediately be handed over to
4918  * the buddy list. This is safe since pageset manipulation is done
4919  * with interrupts disabled.
4920  *
4921  * The boot_pagesets must be kept even after bootup is complete for
4922  * unused processors and/or zones. They do play a role for bootstrapping
4923  * hotplugged processors.
4924  *
4925  * zoneinfo_show() and maybe other functions do
4926  * not check if the processor is online before following the pageset pointer.
4927  * Other parts of the kernel may not check if the zone is available.
4928  */
4929 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4930 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4931 static void setup_zone_pageset(struct zone *zone);
4932 
4933 /*
4934  * Global mutex to protect against size modification of zonelists
4935  * as well as to serialize pageset setup for the new populated zone.
4936  */
4937 DEFINE_MUTEX(zonelists_mutex);
4938 
4939 /* return values int ....just for stop_machine() */
4940 static int __build_all_zonelists(void *data)
4941 {
4942 	int nid;
4943 	int cpu;
4944 	pg_data_t *self = data;
4945 
4946 #ifdef CONFIG_NUMA
4947 	memset(node_load, 0, sizeof(node_load));
4948 #endif
4949 
4950 	if (self && !node_online(self->node_id)) {
4951 		build_zonelists(self);
4952 	}
4953 
4954 	for_each_online_node(nid) {
4955 		pg_data_t *pgdat = NODE_DATA(nid);
4956 
4957 		build_zonelists(pgdat);
4958 	}
4959 
4960 	/*
4961 	 * Initialize the boot_pagesets that are going to be used
4962 	 * for bootstrapping processors. The real pagesets for
4963 	 * each zone will be allocated later when the per cpu
4964 	 * allocator is available.
4965 	 *
4966 	 * boot_pagesets are used also for bootstrapping offline
4967 	 * cpus if the system is already booted because the pagesets
4968 	 * are needed to initialize allocators on a specific cpu too.
4969 	 * F.e. the percpu allocator needs the page allocator which
4970 	 * needs the percpu allocator in order to allocate its pagesets
4971 	 * (a chicken-egg dilemma).
4972 	 */
4973 	for_each_possible_cpu(cpu) {
4974 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4975 
4976 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4977 		/*
4978 		 * We now know the "local memory node" for each node--
4979 		 * i.e., the node of the first zone in the generic zonelist.
4980 		 * Set up numa_mem percpu variable for on-line cpus.  During
4981 		 * boot, only the boot cpu should be on-line;  we'll init the
4982 		 * secondary cpus' numa_mem as they come on-line.  During
4983 		 * node/memory hotplug, we'll fixup all on-line cpus.
4984 		 */
4985 		if (cpu_online(cpu))
4986 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4987 #endif
4988 	}
4989 
4990 	return 0;
4991 }
4992 
4993 static noinline void __init
4994 build_all_zonelists_init(void)
4995 {
4996 	__build_all_zonelists(NULL);
4997 	mminit_verify_zonelist();
4998 	cpuset_init_current_mems_allowed();
4999 }
5000 
5001 /*
5002  * Called with zonelists_mutex held always
5003  * unless system_state == SYSTEM_BOOTING.
5004  *
5005  * __ref due to (1) call of __meminit annotated setup_zone_pageset
5006  * [we're only called with non-NULL zone through __meminit paths] and
5007  * (2) call of __init annotated helper build_all_zonelists_init
5008  * [protected by SYSTEM_BOOTING].
5009  */
5010 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5011 {
5012 	set_zonelist_order();
5013 
5014 	if (system_state == SYSTEM_BOOTING) {
5015 		build_all_zonelists_init();
5016 	} else {
5017 #ifdef CONFIG_MEMORY_HOTPLUG
5018 		if (zone)
5019 			setup_zone_pageset(zone);
5020 #endif
5021 		/* we have to stop all cpus to guarantee there is no user
5022 		   of zonelist */
5023 		stop_machine(__build_all_zonelists, pgdat, NULL);
5024 		/* cpuset refresh routine should be here */
5025 	}
5026 	vm_total_pages = nr_free_pagecache_pages();
5027 	/*
5028 	 * Disable grouping by mobility if the number of pages in the
5029 	 * system is too low to allow the mechanism to work. It would be
5030 	 * more accurate, but expensive to check per-zone. This check is
5031 	 * made on memory-hotadd so a system can start with mobility
5032 	 * disabled and enable it later
5033 	 */
5034 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5035 		page_group_by_mobility_disabled = 1;
5036 	else
5037 		page_group_by_mobility_disabled = 0;
5038 
5039 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
5040 		nr_online_nodes,
5041 		zonelist_order_name[current_zonelist_order],
5042 		page_group_by_mobility_disabled ? "off" : "on",
5043 		vm_total_pages);
5044 #ifdef CONFIG_NUMA
5045 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5046 #endif
5047 }
5048 
5049 /*
5050  * Helper functions to size the waitqueue hash table.
5051  * Essentially these want to choose hash table sizes sufficiently
5052  * large so that collisions trying to wait on pages are rare.
5053  * But in fact, the number of active page waitqueues on typical
5054  * systems is ridiculously low, less than 200. So this is even
5055  * conservative, even though it seems large.
5056  *
5057  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
5058  * waitqueues, i.e. the size of the waitq table given the number of pages.
5059  */
5060 #define PAGES_PER_WAITQUEUE	256
5061 
5062 #ifndef CONFIG_MEMORY_HOTPLUG
5063 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5064 {
5065 	unsigned long size = 1;
5066 
5067 	pages /= PAGES_PER_WAITQUEUE;
5068 
5069 	while (size < pages)
5070 		size <<= 1;
5071 
5072 	/*
5073 	 * Once we have dozens or even hundreds of threads sleeping
5074 	 * on IO we've got bigger problems than wait queue collision.
5075 	 * Limit the size of the wait table to a reasonable size.
5076 	 */
5077 	size = min(size, 4096UL);
5078 
5079 	return max(size, 4UL);
5080 }
5081 #else
5082 /*
5083  * A zone's size might be changed by hot-add, so it is not possible to determine
5084  * a suitable size for its wait_table.  So we use the maximum size now.
5085  *
5086  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
5087  *
5088  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
5089  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5090  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
5091  *
5092  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5093  * or more by the traditional way. (See above).  It equals:
5094  *
5095  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
5096  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
5097  *    powerpc (64K page size)             : =  (32G +16M)byte.
5098  */
5099 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5100 {
5101 	return 4096UL;
5102 }
5103 #endif
5104 
5105 /*
5106  * This is an integer logarithm so that shifts can be used later
5107  * to extract the more random high bits from the multiplicative
5108  * hash function before the remainder is taken.
5109  */
5110 static inline unsigned long wait_table_bits(unsigned long size)
5111 {
5112 	return ffz(~size);
5113 }
5114 
5115 /*
5116  * Initially all pages are reserved - free ones are freed
5117  * up by free_all_bootmem() once the early boot process is
5118  * done. Non-atomic initialization, single-pass.
5119  */
5120 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5121 		unsigned long start_pfn, enum memmap_context context)
5122 {
5123 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5124 	unsigned long end_pfn = start_pfn + size;
5125 	pg_data_t *pgdat = NODE_DATA(nid);
5126 	unsigned long pfn;
5127 	unsigned long nr_initialised = 0;
5128 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5129 	struct memblock_region *r = NULL, *tmp;
5130 #endif
5131 
5132 	if (highest_memmap_pfn < end_pfn - 1)
5133 		highest_memmap_pfn = end_pfn - 1;
5134 
5135 	/*
5136 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5137 	 * memory
5138 	 */
5139 	if (altmap && start_pfn == altmap->base_pfn)
5140 		start_pfn += altmap->reserve;
5141 
5142 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5143 		/*
5144 		 * There can be holes in boot-time mem_map[]s handed to this
5145 		 * function.  They do not exist on hotplugged memory.
5146 		 */
5147 		if (context != MEMMAP_EARLY)
5148 			goto not_early;
5149 
5150 		if (!early_pfn_valid(pfn))
5151 			continue;
5152 		if (!early_pfn_in_nid(pfn, nid))
5153 			continue;
5154 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5155 			break;
5156 
5157 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5158 		/*
5159 		 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5160 		 * from zone_movable_pfn[nid] to end of each node should be
5161 		 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5162 		 */
5163 		if (!mirrored_kernelcore && zone_movable_pfn[nid])
5164 			if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5165 				continue;
5166 
5167 		/*
5168 		 * Check given memblock attribute by firmware which can affect
5169 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5170 		 * mirrored, it's an overlapped memmap init. skip it.
5171 		 */
5172 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5173 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5174 				for_each_memblock(memory, tmp)
5175 					if (pfn < memblock_region_memory_end_pfn(tmp))
5176 						break;
5177 				r = tmp;
5178 			}
5179 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5180 			    memblock_is_mirror(r)) {
5181 				/* already initialized as NORMAL */
5182 				pfn = memblock_region_memory_end_pfn(r);
5183 				continue;
5184 			}
5185 		}
5186 #endif
5187 
5188 not_early:
5189 		/*
5190 		 * Mark the block movable so that blocks are reserved for
5191 		 * movable at startup. This will force kernel allocations
5192 		 * to reserve their blocks rather than leaking throughout
5193 		 * the address space during boot when many long-lived
5194 		 * kernel allocations are made.
5195 		 *
5196 		 * bitmap is created for zone's valid pfn range. but memmap
5197 		 * can be created for invalid pages (for alignment)
5198 		 * check here not to call set_pageblock_migratetype() against
5199 		 * pfn out of zone.
5200 		 */
5201 		if (!(pfn & (pageblock_nr_pages - 1))) {
5202 			struct page *page = pfn_to_page(pfn);
5203 
5204 			__init_single_page(page, pfn, zone, nid);
5205 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5206 		} else {
5207 			__init_single_pfn(pfn, zone, nid);
5208 		}
5209 	}
5210 }
5211 
5212 static void __meminit zone_init_free_lists(struct zone *zone)
5213 {
5214 	unsigned int order, t;
5215 	for_each_migratetype_order(order, t) {
5216 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5217 		zone->free_area[order].nr_free = 0;
5218 	}
5219 }
5220 
5221 #ifndef __HAVE_ARCH_MEMMAP_INIT
5222 #define memmap_init(size, nid, zone, start_pfn) \
5223 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5224 #endif
5225 
5226 static int zone_batchsize(struct zone *zone)
5227 {
5228 #ifdef CONFIG_MMU
5229 	int batch;
5230 
5231 	/*
5232 	 * The per-cpu-pages pools are set to around 1000th of the
5233 	 * size of the zone.  But no more than 1/2 of a meg.
5234 	 *
5235 	 * OK, so we don't know how big the cache is.  So guess.
5236 	 */
5237 	batch = zone->managed_pages / 1024;
5238 	if (batch * PAGE_SIZE > 512 * 1024)
5239 		batch = (512 * 1024) / PAGE_SIZE;
5240 	batch /= 4;		/* We effectively *= 4 below */
5241 	if (batch < 1)
5242 		batch = 1;
5243 
5244 	/*
5245 	 * Clamp the batch to a 2^n - 1 value. Having a power
5246 	 * of 2 value was found to be more likely to have
5247 	 * suboptimal cache aliasing properties in some cases.
5248 	 *
5249 	 * For example if 2 tasks are alternately allocating
5250 	 * batches of pages, one task can end up with a lot
5251 	 * of pages of one half of the possible page colors
5252 	 * and the other with pages of the other colors.
5253 	 */
5254 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5255 
5256 	return batch;
5257 
5258 #else
5259 	/* The deferral and batching of frees should be suppressed under NOMMU
5260 	 * conditions.
5261 	 *
5262 	 * The problem is that NOMMU needs to be able to allocate large chunks
5263 	 * of contiguous memory as there's no hardware page translation to
5264 	 * assemble apparent contiguous memory from discontiguous pages.
5265 	 *
5266 	 * Queueing large contiguous runs of pages for batching, however,
5267 	 * causes the pages to actually be freed in smaller chunks.  As there
5268 	 * can be a significant delay between the individual batches being
5269 	 * recycled, this leads to the once large chunks of space being
5270 	 * fragmented and becoming unavailable for high-order allocations.
5271 	 */
5272 	return 0;
5273 #endif
5274 }
5275 
5276 /*
5277  * pcp->high and pcp->batch values are related and dependent on one another:
5278  * ->batch must never be higher then ->high.
5279  * The following function updates them in a safe manner without read side
5280  * locking.
5281  *
5282  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5283  * those fields changing asynchronously (acording the the above rule).
5284  *
5285  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5286  * outside of boot time (or some other assurance that no concurrent updaters
5287  * exist).
5288  */
5289 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5290 		unsigned long batch)
5291 {
5292        /* start with a fail safe value for batch */
5293 	pcp->batch = 1;
5294 	smp_wmb();
5295 
5296        /* Update high, then batch, in order */
5297 	pcp->high = high;
5298 	smp_wmb();
5299 
5300 	pcp->batch = batch;
5301 }
5302 
5303 /* a companion to pageset_set_high() */
5304 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5305 {
5306 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5307 }
5308 
5309 static void pageset_init(struct per_cpu_pageset *p)
5310 {
5311 	struct per_cpu_pages *pcp;
5312 	int migratetype;
5313 
5314 	memset(p, 0, sizeof(*p));
5315 
5316 	pcp = &p->pcp;
5317 	pcp->count = 0;
5318 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5319 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5320 }
5321 
5322 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5323 {
5324 	pageset_init(p);
5325 	pageset_set_batch(p, batch);
5326 }
5327 
5328 /*
5329  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5330  * to the value high for the pageset p.
5331  */
5332 static void pageset_set_high(struct per_cpu_pageset *p,
5333 				unsigned long high)
5334 {
5335 	unsigned long batch = max(1UL, high / 4);
5336 	if ((high / 4) > (PAGE_SHIFT * 8))
5337 		batch = PAGE_SHIFT * 8;
5338 
5339 	pageset_update(&p->pcp, high, batch);
5340 }
5341 
5342 static void pageset_set_high_and_batch(struct zone *zone,
5343 				       struct per_cpu_pageset *pcp)
5344 {
5345 	if (percpu_pagelist_fraction)
5346 		pageset_set_high(pcp,
5347 			(zone->managed_pages /
5348 				percpu_pagelist_fraction));
5349 	else
5350 		pageset_set_batch(pcp, zone_batchsize(zone));
5351 }
5352 
5353 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5354 {
5355 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5356 
5357 	pageset_init(pcp);
5358 	pageset_set_high_and_batch(zone, pcp);
5359 }
5360 
5361 static void __meminit setup_zone_pageset(struct zone *zone)
5362 {
5363 	int cpu;
5364 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5365 	for_each_possible_cpu(cpu)
5366 		zone_pageset_init(zone, cpu);
5367 }
5368 
5369 /*
5370  * Allocate per cpu pagesets and initialize them.
5371  * Before this call only boot pagesets were available.
5372  */
5373 void __init setup_per_cpu_pageset(void)
5374 {
5375 	struct zone *zone;
5376 
5377 	for_each_populated_zone(zone)
5378 		setup_zone_pageset(zone);
5379 }
5380 
5381 static noinline __init_refok
5382 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
5383 {
5384 	int i;
5385 	size_t alloc_size;
5386 
5387 	/*
5388 	 * The per-page waitqueue mechanism uses hashed waitqueues
5389 	 * per zone.
5390 	 */
5391 	zone->wait_table_hash_nr_entries =
5392 		 wait_table_hash_nr_entries(zone_size_pages);
5393 	zone->wait_table_bits =
5394 		wait_table_bits(zone->wait_table_hash_nr_entries);
5395 	alloc_size = zone->wait_table_hash_nr_entries
5396 					* sizeof(wait_queue_head_t);
5397 
5398 	if (!slab_is_available()) {
5399 		zone->wait_table = (wait_queue_head_t *)
5400 			memblock_virt_alloc_node_nopanic(
5401 				alloc_size, zone->zone_pgdat->node_id);
5402 	} else {
5403 		/*
5404 		 * This case means that a zone whose size was 0 gets new memory
5405 		 * via memory hot-add.
5406 		 * But it may be the case that a new node was hot-added.  In
5407 		 * this case vmalloc() will not be able to use this new node's
5408 		 * memory - this wait_table must be initialized to use this new
5409 		 * node itself as well.
5410 		 * To use this new node's memory, further consideration will be
5411 		 * necessary.
5412 		 */
5413 		zone->wait_table = vmalloc(alloc_size);
5414 	}
5415 	if (!zone->wait_table)
5416 		return -ENOMEM;
5417 
5418 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
5419 		init_waitqueue_head(zone->wait_table + i);
5420 
5421 	return 0;
5422 }
5423 
5424 static __meminit void zone_pcp_init(struct zone *zone)
5425 {
5426 	/*
5427 	 * per cpu subsystem is not up at this point. The following code
5428 	 * relies on the ability of the linker to provide the
5429 	 * offset of a (static) per cpu variable into the per cpu area.
5430 	 */
5431 	zone->pageset = &boot_pageset;
5432 
5433 	if (populated_zone(zone))
5434 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5435 			zone->name, zone->present_pages,
5436 					 zone_batchsize(zone));
5437 }
5438 
5439 int __meminit init_currently_empty_zone(struct zone *zone,
5440 					unsigned long zone_start_pfn,
5441 					unsigned long size)
5442 {
5443 	struct pglist_data *pgdat = zone->zone_pgdat;
5444 	int ret;
5445 	ret = zone_wait_table_init(zone, size);
5446 	if (ret)
5447 		return ret;
5448 	pgdat->nr_zones = zone_idx(zone) + 1;
5449 
5450 	zone->zone_start_pfn = zone_start_pfn;
5451 
5452 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5453 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5454 			pgdat->node_id,
5455 			(unsigned long)zone_idx(zone),
5456 			zone_start_pfn, (zone_start_pfn + size));
5457 
5458 	zone_init_free_lists(zone);
5459 
5460 	return 0;
5461 }
5462 
5463 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5464 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5465 
5466 /*
5467  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5468  */
5469 int __meminit __early_pfn_to_nid(unsigned long pfn,
5470 					struct mminit_pfnnid_cache *state)
5471 {
5472 	unsigned long start_pfn, end_pfn;
5473 	int nid;
5474 
5475 	if (state->last_start <= pfn && pfn < state->last_end)
5476 		return state->last_nid;
5477 
5478 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5479 	if (nid != -1) {
5480 		state->last_start = start_pfn;
5481 		state->last_end = end_pfn;
5482 		state->last_nid = nid;
5483 	}
5484 
5485 	return nid;
5486 }
5487 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5488 
5489 /**
5490  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5491  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5492  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5493  *
5494  * If an architecture guarantees that all ranges registered contain no holes
5495  * and may be freed, this this function may be used instead of calling
5496  * memblock_free_early_nid() manually.
5497  */
5498 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5499 {
5500 	unsigned long start_pfn, end_pfn;
5501 	int i, this_nid;
5502 
5503 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5504 		start_pfn = min(start_pfn, max_low_pfn);
5505 		end_pfn = min(end_pfn, max_low_pfn);
5506 
5507 		if (start_pfn < end_pfn)
5508 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5509 					(end_pfn - start_pfn) << PAGE_SHIFT,
5510 					this_nid);
5511 	}
5512 }
5513 
5514 /**
5515  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5516  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5517  *
5518  * If an architecture guarantees that all ranges registered contain no holes and may
5519  * be freed, this function may be used instead of calling memory_present() manually.
5520  */
5521 void __init sparse_memory_present_with_active_regions(int nid)
5522 {
5523 	unsigned long start_pfn, end_pfn;
5524 	int i, this_nid;
5525 
5526 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5527 		memory_present(this_nid, start_pfn, end_pfn);
5528 }
5529 
5530 /**
5531  * get_pfn_range_for_nid - Return the start and end page frames for a node
5532  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5533  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5534  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5535  *
5536  * It returns the start and end page frame of a node based on information
5537  * provided by memblock_set_node(). If called for a node
5538  * with no available memory, a warning is printed and the start and end
5539  * PFNs will be 0.
5540  */
5541 void __meminit get_pfn_range_for_nid(unsigned int nid,
5542 			unsigned long *start_pfn, unsigned long *end_pfn)
5543 {
5544 	unsigned long this_start_pfn, this_end_pfn;
5545 	int i;
5546 
5547 	*start_pfn = -1UL;
5548 	*end_pfn = 0;
5549 
5550 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5551 		*start_pfn = min(*start_pfn, this_start_pfn);
5552 		*end_pfn = max(*end_pfn, this_end_pfn);
5553 	}
5554 
5555 	if (*start_pfn == -1UL)
5556 		*start_pfn = 0;
5557 }
5558 
5559 /*
5560  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5561  * assumption is made that zones within a node are ordered in monotonic
5562  * increasing memory addresses so that the "highest" populated zone is used
5563  */
5564 static void __init find_usable_zone_for_movable(void)
5565 {
5566 	int zone_index;
5567 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5568 		if (zone_index == ZONE_MOVABLE)
5569 			continue;
5570 
5571 		if (arch_zone_highest_possible_pfn[zone_index] >
5572 				arch_zone_lowest_possible_pfn[zone_index])
5573 			break;
5574 	}
5575 
5576 	VM_BUG_ON(zone_index == -1);
5577 	movable_zone = zone_index;
5578 }
5579 
5580 /*
5581  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5582  * because it is sized independent of architecture. Unlike the other zones,
5583  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5584  * in each node depending on the size of each node and how evenly kernelcore
5585  * is distributed. This helper function adjusts the zone ranges
5586  * provided by the architecture for a given node by using the end of the
5587  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5588  * zones within a node are in order of monotonic increases memory addresses
5589  */
5590 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5591 					unsigned long zone_type,
5592 					unsigned long node_start_pfn,
5593 					unsigned long node_end_pfn,
5594 					unsigned long *zone_start_pfn,
5595 					unsigned long *zone_end_pfn)
5596 {
5597 	/* Only adjust if ZONE_MOVABLE is on this node */
5598 	if (zone_movable_pfn[nid]) {
5599 		/* Size ZONE_MOVABLE */
5600 		if (zone_type == ZONE_MOVABLE) {
5601 			*zone_start_pfn = zone_movable_pfn[nid];
5602 			*zone_end_pfn = min(node_end_pfn,
5603 				arch_zone_highest_possible_pfn[movable_zone]);
5604 
5605 		/* Check if this whole range is within ZONE_MOVABLE */
5606 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5607 			*zone_start_pfn = *zone_end_pfn;
5608 	}
5609 }
5610 
5611 /*
5612  * Return the number of pages a zone spans in a node, including holes
5613  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5614  */
5615 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5616 					unsigned long zone_type,
5617 					unsigned long node_start_pfn,
5618 					unsigned long node_end_pfn,
5619 					unsigned long *zone_start_pfn,
5620 					unsigned long *zone_end_pfn,
5621 					unsigned long *ignored)
5622 {
5623 	/* When hotadd a new node from cpu_up(), the node should be empty */
5624 	if (!node_start_pfn && !node_end_pfn)
5625 		return 0;
5626 
5627 	/* Get the start and end of the zone */
5628 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5629 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5630 	adjust_zone_range_for_zone_movable(nid, zone_type,
5631 				node_start_pfn, node_end_pfn,
5632 				zone_start_pfn, zone_end_pfn);
5633 
5634 	/* Check that this node has pages within the zone's required range */
5635 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5636 		return 0;
5637 
5638 	/* Move the zone boundaries inside the node if necessary */
5639 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5640 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5641 
5642 	/* Return the spanned pages */
5643 	return *zone_end_pfn - *zone_start_pfn;
5644 }
5645 
5646 /*
5647  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5648  * then all holes in the requested range will be accounted for.
5649  */
5650 unsigned long __meminit __absent_pages_in_range(int nid,
5651 				unsigned long range_start_pfn,
5652 				unsigned long range_end_pfn)
5653 {
5654 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5655 	unsigned long start_pfn, end_pfn;
5656 	int i;
5657 
5658 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5659 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5660 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5661 		nr_absent -= end_pfn - start_pfn;
5662 	}
5663 	return nr_absent;
5664 }
5665 
5666 /**
5667  * absent_pages_in_range - Return number of page frames in holes within a range
5668  * @start_pfn: The start PFN to start searching for holes
5669  * @end_pfn: The end PFN to stop searching for holes
5670  *
5671  * It returns the number of pages frames in memory holes within a range.
5672  */
5673 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5674 							unsigned long end_pfn)
5675 {
5676 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5677 }
5678 
5679 /* Return the number of page frames in holes in a zone on a node */
5680 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5681 					unsigned long zone_type,
5682 					unsigned long node_start_pfn,
5683 					unsigned long node_end_pfn,
5684 					unsigned long *ignored)
5685 {
5686 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5687 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5688 	unsigned long zone_start_pfn, zone_end_pfn;
5689 	unsigned long nr_absent;
5690 
5691 	/* When hotadd a new node from cpu_up(), the node should be empty */
5692 	if (!node_start_pfn && !node_end_pfn)
5693 		return 0;
5694 
5695 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5696 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5697 
5698 	adjust_zone_range_for_zone_movable(nid, zone_type,
5699 			node_start_pfn, node_end_pfn,
5700 			&zone_start_pfn, &zone_end_pfn);
5701 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5702 
5703 	/*
5704 	 * ZONE_MOVABLE handling.
5705 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5706 	 * and vice versa.
5707 	 */
5708 	if (zone_movable_pfn[nid]) {
5709 		if (mirrored_kernelcore) {
5710 			unsigned long start_pfn, end_pfn;
5711 			struct memblock_region *r;
5712 
5713 			for_each_memblock(memory, r) {
5714 				start_pfn = clamp(memblock_region_memory_base_pfn(r),
5715 						  zone_start_pfn, zone_end_pfn);
5716 				end_pfn = clamp(memblock_region_memory_end_pfn(r),
5717 						zone_start_pfn, zone_end_pfn);
5718 
5719 				if (zone_type == ZONE_MOVABLE &&
5720 				    memblock_is_mirror(r))
5721 					nr_absent += end_pfn - start_pfn;
5722 
5723 				if (zone_type == ZONE_NORMAL &&
5724 				    !memblock_is_mirror(r))
5725 					nr_absent += end_pfn - start_pfn;
5726 			}
5727 		} else {
5728 			if (zone_type == ZONE_NORMAL)
5729 				nr_absent += node_end_pfn - zone_movable_pfn[nid];
5730 		}
5731 	}
5732 
5733 	return nr_absent;
5734 }
5735 
5736 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5737 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5738 					unsigned long zone_type,
5739 					unsigned long node_start_pfn,
5740 					unsigned long node_end_pfn,
5741 					unsigned long *zone_start_pfn,
5742 					unsigned long *zone_end_pfn,
5743 					unsigned long *zones_size)
5744 {
5745 	unsigned int zone;
5746 
5747 	*zone_start_pfn = node_start_pfn;
5748 	for (zone = 0; zone < zone_type; zone++)
5749 		*zone_start_pfn += zones_size[zone];
5750 
5751 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5752 
5753 	return zones_size[zone_type];
5754 }
5755 
5756 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5757 						unsigned long zone_type,
5758 						unsigned long node_start_pfn,
5759 						unsigned long node_end_pfn,
5760 						unsigned long *zholes_size)
5761 {
5762 	if (!zholes_size)
5763 		return 0;
5764 
5765 	return zholes_size[zone_type];
5766 }
5767 
5768 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5769 
5770 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5771 						unsigned long node_start_pfn,
5772 						unsigned long node_end_pfn,
5773 						unsigned long *zones_size,
5774 						unsigned long *zholes_size)
5775 {
5776 	unsigned long realtotalpages = 0, totalpages = 0;
5777 	enum zone_type i;
5778 
5779 	for (i = 0; i < MAX_NR_ZONES; i++) {
5780 		struct zone *zone = pgdat->node_zones + i;
5781 		unsigned long zone_start_pfn, zone_end_pfn;
5782 		unsigned long size, real_size;
5783 
5784 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5785 						  node_start_pfn,
5786 						  node_end_pfn,
5787 						  &zone_start_pfn,
5788 						  &zone_end_pfn,
5789 						  zones_size);
5790 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5791 						  node_start_pfn, node_end_pfn,
5792 						  zholes_size);
5793 		if (size)
5794 			zone->zone_start_pfn = zone_start_pfn;
5795 		else
5796 			zone->zone_start_pfn = 0;
5797 		zone->spanned_pages = size;
5798 		zone->present_pages = real_size;
5799 
5800 		totalpages += size;
5801 		realtotalpages += real_size;
5802 	}
5803 
5804 	pgdat->node_spanned_pages = totalpages;
5805 	pgdat->node_present_pages = realtotalpages;
5806 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5807 							realtotalpages);
5808 }
5809 
5810 #ifndef CONFIG_SPARSEMEM
5811 /*
5812  * Calculate the size of the zone->blockflags rounded to an unsigned long
5813  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5814  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5815  * round what is now in bits to nearest long in bits, then return it in
5816  * bytes.
5817  */
5818 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5819 {
5820 	unsigned long usemapsize;
5821 
5822 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5823 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5824 	usemapsize = usemapsize >> pageblock_order;
5825 	usemapsize *= NR_PAGEBLOCK_BITS;
5826 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5827 
5828 	return usemapsize / 8;
5829 }
5830 
5831 static void __init setup_usemap(struct pglist_data *pgdat,
5832 				struct zone *zone,
5833 				unsigned long zone_start_pfn,
5834 				unsigned long zonesize)
5835 {
5836 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5837 	zone->pageblock_flags = NULL;
5838 	if (usemapsize)
5839 		zone->pageblock_flags =
5840 			memblock_virt_alloc_node_nopanic(usemapsize,
5841 							 pgdat->node_id);
5842 }
5843 #else
5844 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5845 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5846 #endif /* CONFIG_SPARSEMEM */
5847 
5848 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5849 
5850 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5851 void __paginginit set_pageblock_order(void)
5852 {
5853 	unsigned int order;
5854 
5855 	/* Check that pageblock_nr_pages has not already been setup */
5856 	if (pageblock_order)
5857 		return;
5858 
5859 	if (HPAGE_SHIFT > PAGE_SHIFT)
5860 		order = HUGETLB_PAGE_ORDER;
5861 	else
5862 		order = MAX_ORDER - 1;
5863 
5864 	/*
5865 	 * Assume the largest contiguous order of interest is a huge page.
5866 	 * This value may be variable depending on boot parameters on IA64 and
5867 	 * powerpc.
5868 	 */
5869 	pageblock_order = order;
5870 }
5871 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5872 
5873 /*
5874  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5875  * is unused as pageblock_order is set at compile-time. See
5876  * include/linux/pageblock-flags.h for the values of pageblock_order based on
5877  * the kernel config
5878  */
5879 void __paginginit set_pageblock_order(void)
5880 {
5881 }
5882 
5883 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5884 
5885 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5886 						   unsigned long present_pages)
5887 {
5888 	unsigned long pages = spanned_pages;
5889 
5890 	/*
5891 	 * Provide a more accurate estimation if there are holes within
5892 	 * the zone and SPARSEMEM is in use. If there are holes within the
5893 	 * zone, each populated memory region may cost us one or two extra
5894 	 * memmap pages due to alignment because memmap pages for each
5895 	 * populated regions may not naturally algined on page boundary.
5896 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5897 	 */
5898 	if (spanned_pages > present_pages + (present_pages >> 4) &&
5899 	    IS_ENABLED(CONFIG_SPARSEMEM))
5900 		pages = present_pages;
5901 
5902 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5903 }
5904 
5905 /*
5906  * Set up the zone data structures:
5907  *   - mark all pages reserved
5908  *   - mark all memory queues empty
5909  *   - clear the memory bitmaps
5910  *
5911  * NOTE: pgdat should get zeroed by caller.
5912  */
5913 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5914 {
5915 	enum zone_type j;
5916 	int nid = pgdat->node_id;
5917 	int ret;
5918 
5919 	pgdat_resize_init(pgdat);
5920 #ifdef CONFIG_NUMA_BALANCING
5921 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5922 	pgdat->numabalancing_migrate_nr_pages = 0;
5923 	pgdat->numabalancing_migrate_next_window = jiffies;
5924 #endif
5925 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5926 	spin_lock_init(&pgdat->split_queue_lock);
5927 	INIT_LIST_HEAD(&pgdat->split_queue);
5928 	pgdat->split_queue_len = 0;
5929 #endif
5930 	init_waitqueue_head(&pgdat->kswapd_wait);
5931 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5932 #ifdef CONFIG_COMPACTION
5933 	init_waitqueue_head(&pgdat->kcompactd_wait);
5934 #endif
5935 	pgdat_page_ext_init(pgdat);
5936 
5937 	for (j = 0; j < MAX_NR_ZONES; j++) {
5938 		struct zone *zone = pgdat->node_zones + j;
5939 		unsigned long size, realsize, freesize, memmap_pages;
5940 		unsigned long zone_start_pfn = zone->zone_start_pfn;
5941 
5942 		size = zone->spanned_pages;
5943 		realsize = freesize = zone->present_pages;
5944 
5945 		/*
5946 		 * Adjust freesize so that it accounts for how much memory
5947 		 * is used by this zone for memmap. This affects the watermark
5948 		 * and per-cpu initialisations
5949 		 */
5950 		memmap_pages = calc_memmap_size(size, realsize);
5951 		if (!is_highmem_idx(j)) {
5952 			if (freesize >= memmap_pages) {
5953 				freesize -= memmap_pages;
5954 				if (memmap_pages)
5955 					printk(KERN_DEBUG
5956 					       "  %s zone: %lu pages used for memmap\n",
5957 					       zone_names[j], memmap_pages);
5958 			} else
5959 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
5960 					zone_names[j], memmap_pages, freesize);
5961 		}
5962 
5963 		/* Account for reserved pages */
5964 		if (j == 0 && freesize > dma_reserve) {
5965 			freesize -= dma_reserve;
5966 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
5967 					zone_names[0], dma_reserve);
5968 		}
5969 
5970 		if (!is_highmem_idx(j))
5971 			nr_kernel_pages += freesize;
5972 		/* Charge for highmem memmap if there are enough kernel pages */
5973 		else if (nr_kernel_pages > memmap_pages * 2)
5974 			nr_kernel_pages -= memmap_pages;
5975 		nr_all_pages += freesize;
5976 
5977 		/*
5978 		 * Set an approximate value for lowmem here, it will be adjusted
5979 		 * when the bootmem allocator frees pages into the buddy system.
5980 		 * And all highmem pages will be managed by the buddy system.
5981 		 */
5982 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5983 #ifdef CONFIG_NUMA
5984 		zone->node = nid;
5985 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5986 						/ 100;
5987 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5988 #endif
5989 		zone->name = zone_names[j];
5990 		spin_lock_init(&zone->lock);
5991 		spin_lock_init(&zone->lru_lock);
5992 		zone_seqlock_init(zone);
5993 		zone->zone_pgdat = pgdat;
5994 		zone_pcp_init(zone);
5995 
5996 		/* For bootup, initialized properly in watermark setup */
5997 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5998 
5999 		lruvec_init(&zone->lruvec);
6000 		if (!size)
6001 			continue;
6002 
6003 		set_pageblock_order();
6004 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6005 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6006 		BUG_ON(ret);
6007 		memmap_init(size, nid, j, zone_start_pfn);
6008 	}
6009 }
6010 
6011 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
6012 {
6013 	unsigned long __maybe_unused start = 0;
6014 	unsigned long __maybe_unused offset = 0;
6015 
6016 	/* Skip empty nodes */
6017 	if (!pgdat->node_spanned_pages)
6018 		return;
6019 
6020 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6021 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6022 	offset = pgdat->node_start_pfn - start;
6023 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6024 	if (!pgdat->node_mem_map) {
6025 		unsigned long size, end;
6026 		struct page *map;
6027 
6028 		/*
6029 		 * The zone's endpoints aren't required to be MAX_ORDER
6030 		 * aligned but the node_mem_map endpoints must be in order
6031 		 * for the buddy allocator to function correctly.
6032 		 */
6033 		end = pgdat_end_pfn(pgdat);
6034 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6035 		size =  (end - start) * sizeof(struct page);
6036 		map = alloc_remap(pgdat->node_id, size);
6037 		if (!map)
6038 			map = memblock_virt_alloc_node_nopanic(size,
6039 							       pgdat->node_id);
6040 		pgdat->node_mem_map = map + offset;
6041 	}
6042 #ifndef CONFIG_NEED_MULTIPLE_NODES
6043 	/*
6044 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6045 	 */
6046 	if (pgdat == NODE_DATA(0)) {
6047 		mem_map = NODE_DATA(0)->node_mem_map;
6048 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6049 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6050 			mem_map -= offset;
6051 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6052 	}
6053 #endif
6054 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6055 }
6056 
6057 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6058 		unsigned long node_start_pfn, unsigned long *zholes_size)
6059 {
6060 	pg_data_t *pgdat = NODE_DATA(nid);
6061 	unsigned long start_pfn = 0;
6062 	unsigned long end_pfn = 0;
6063 
6064 	/* pg_data_t should be reset to zero when it's allocated */
6065 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
6066 
6067 	reset_deferred_meminit(pgdat);
6068 	pgdat->node_id = nid;
6069 	pgdat->node_start_pfn = node_start_pfn;
6070 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6071 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6072 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6073 		(u64)start_pfn << PAGE_SHIFT,
6074 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6075 #else
6076 	start_pfn = node_start_pfn;
6077 #endif
6078 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6079 				  zones_size, zholes_size);
6080 
6081 	alloc_node_mem_map(pgdat);
6082 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6083 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6084 		nid, (unsigned long)pgdat,
6085 		(unsigned long)pgdat->node_mem_map);
6086 #endif
6087 
6088 	free_area_init_core(pgdat);
6089 }
6090 
6091 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6092 
6093 #if MAX_NUMNODES > 1
6094 /*
6095  * Figure out the number of possible node ids.
6096  */
6097 void __init setup_nr_node_ids(void)
6098 {
6099 	unsigned int highest;
6100 
6101 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6102 	nr_node_ids = highest + 1;
6103 }
6104 #endif
6105 
6106 /**
6107  * node_map_pfn_alignment - determine the maximum internode alignment
6108  *
6109  * This function should be called after node map is populated and sorted.
6110  * It calculates the maximum power of two alignment which can distinguish
6111  * all the nodes.
6112  *
6113  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6114  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6115  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6116  * shifted, 1GiB is enough and this function will indicate so.
6117  *
6118  * This is used to test whether pfn -> nid mapping of the chosen memory
6119  * model has fine enough granularity to avoid incorrect mapping for the
6120  * populated node map.
6121  *
6122  * Returns the determined alignment in pfn's.  0 if there is no alignment
6123  * requirement (single node).
6124  */
6125 unsigned long __init node_map_pfn_alignment(void)
6126 {
6127 	unsigned long accl_mask = 0, last_end = 0;
6128 	unsigned long start, end, mask;
6129 	int last_nid = -1;
6130 	int i, nid;
6131 
6132 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6133 		if (!start || last_nid < 0 || last_nid == nid) {
6134 			last_nid = nid;
6135 			last_end = end;
6136 			continue;
6137 		}
6138 
6139 		/*
6140 		 * Start with a mask granular enough to pin-point to the
6141 		 * start pfn and tick off bits one-by-one until it becomes
6142 		 * too coarse to separate the current node from the last.
6143 		 */
6144 		mask = ~((1 << __ffs(start)) - 1);
6145 		while (mask && last_end <= (start & (mask << 1)))
6146 			mask <<= 1;
6147 
6148 		/* accumulate all internode masks */
6149 		accl_mask |= mask;
6150 	}
6151 
6152 	/* convert mask to number of pages */
6153 	return ~accl_mask + 1;
6154 }
6155 
6156 /* Find the lowest pfn for a node */
6157 static unsigned long __init find_min_pfn_for_node(int nid)
6158 {
6159 	unsigned long min_pfn = ULONG_MAX;
6160 	unsigned long start_pfn;
6161 	int i;
6162 
6163 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6164 		min_pfn = min(min_pfn, start_pfn);
6165 
6166 	if (min_pfn == ULONG_MAX) {
6167 		pr_warn("Could not find start_pfn for node %d\n", nid);
6168 		return 0;
6169 	}
6170 
6171 	return min_pfn;
6172 }
6173 
6174 /**
6175  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6176  *
6177  * It returns the minimum PFN based on information provided via
6178  * memblock_set_node().
6179  */
6180 unsigned long __init find_min_pfn_with_active_regions(void)
6181 {
6182 	return find_min_pfn_for_node(MAX_NUMNODES);
6183 }
6184 
6185 /*
6186  * early_calculate_totalpages()
6187  * Sum pages in active regions for movable zone.
6188  * Populate N_MEMORY for calculating usable_nodes.
6189  */
6190 static unsigned long __init early_calculate_totalpages(void)
6191 {
6192 	unsigned long totalpages = 0;
6193 	unsigned long start_pfn, end_pfn;
6194 	int i, nid;
6195 
6196 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6197 		unsigned long pages = end_pfn - start_pfn;
6198 
6199 		totalpages += pages;
6200 		if (pages)
6201 			node_set_state(nid, N_MEMORY);
6202 	}
6203 	return totalpages;
6204 }
6205 
6206 /*
6207  * Find the PFN the Movable zone begins in each node. Kernel memory
6208  * is spread evenly between nodes as long as the nodes have enough
6209  * memory. When they don't, some nodes will have more kernelcore than
6210  * others
6211  */
6212 static void __init find_zone_movable_pfns_for_nodes(void)
6213 {
6214 	int i, nid;
6215 	unsigned long usable_startpfn;
6216 	unsigned long kernelcore_node, kernelcore_remaining;
6217 	/* save the state before borrow the nodemask */
6218 	nodemask_t saved_node_state = node_states[N_MEMORY];
6219 	unsigned long totalpages = early_calculate_totalpages();
6220 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6221 	struct memblock_region *r;
6222 
6223 	/* Need to find movable_zone earlier when movable_node is specified. */
6224 	find_usable_zone_for_movable();
6225 
6226 	/*
6227 	 * If movable_node is specified, ignore kernelcore and movablecore
6228 	 * options.
6229 	 */
6230 	if (movable_node_is_enabled()) {
6231 		for_each_memblock(memory, r) {
6232 			if (!memblock_is_hotpluggable(r))
6233 				continue;
6234 
6235 			nid = r->nid;
6236 
6237 			usable_startpfn = PFN_DOWN(r->base);
6238 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6239 				min(usable_startpfn, zone_movable_pfn[nid]) :
6240 				usable_startpfn;
6241 		}
6242 
6243 		goto out2;
6244 	}
6245 
6246 	/*
6247 	 * If kernelcore=mirror is specified, ignore movablecore option
6248 	 */
6249 	if (mirrored_kernelcore) {
6250 		bool mem_below_4gb_not_mirrored = false;
6251 
6252 		for_each_memblock(memory, r) {
6253 			if (memblock_is_mirror(r))
6254 				continue;
6255 
6256 			nid = r->nid;
6257 
6258 			usable_startpfn = memblock_region_memory_base_pfn(r);
6259 
6260 			if (usable_startpfn < 0x100000) {
6261 				mem_below_4gb_not_mirrored = true;
6262 				continue;
6263 			}
6264 
6265 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6266 				min(usable_startpfn, zone_movable_pfn[nid]) :
6267 				usable_startpfn;
6268 		}
6269 
6270 		if (mem_below_4gb_not_mirrored)
6271 			pr_warn("This configuration results in unmirrored kernel memory.");
6272 
6273 		goto out2;
6274 	}
6275 
6276 	/*
6277 	 * If movablecore=nn[KMG] was specified, calculate what size of
6278 	 * kernelcore that corresponds so that memory usable for
6279 	 * any allocation type is evenly spread. If both kernelcore
6280 	 * and movablecore are specified, then the value of kernelcore
6281 	 * will be used for required_kernelcore if it's greater than
6282 	 * what movablecore would have allowed.
6283 	 */
6284 	if (required_movablecore) {
6285 		unsigned long corepages;
6286 
6287 		/*
6288 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6289 		 * was requested by the user
6290 		 */
6291 		required_movablecore =
6292 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6293 		required_movablecore = min(totalpages, required_movablecore);
6294 		corepages = totalpages - required_movablecore;
6295 
6296 		required_kernelcore = max(required_kernelcore, corepages);
6297 	}
6298 
6299 	/*
6300 	 * If kernelcore was not specified or kernelcore size is larger
6301 	 * than totalpages, there is no ZONE_MOVABLE.
6302 	 */
6303 	if (!required_kernelcore || required_kernelcore >= totalpages)
6304 		goto out;
6305 
6306 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6307 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6308 
6309 restart:
6310 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6311 	kernelcore_node = required_kernelcore / usable_nodes;
6312 	for_each_node_state(nid, N_MEMORY) {
6313 		unsigned long start_pfn, end_pfn;
6314 
6315 		/*
6316 		 * Recalculate kernelcore_node if the division per node
6317 		 * now exceeds what is necessary to satisfy the requested
6318 		 * amount of memory for the kernel
6319 		 */
6320 		if (required_kernelcore < kernelcore_node)
6321 			kernelcore_node = required_kernelcore / usable_nodes;
6322 
6323 		/*
6324 		 * As the map is walked, we track how much memory is usable
6325 		 * by the kernel using kernelcore_remaining. When it is
6326 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6327 		 */
6328 		kernelcore_remaining = kernelcore_node;
6329 
6330 		/* Go through each range of PFNs within this node */
6331 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6332 			unsigned long size_pages;
6333 
6334 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6335 			if (start_pfn >= end_pfn)
6336 				continue;
6337 
6338 			/* Account for what is only usable for kernelcore */
6339 			if (start_pfn < usable_startpfn) {
6340 				unsigned long kernel_pages;
6341 				kernel_pages = min(end_pfn, usable_startpfn)
6342 								- start_pfn;
6343 
6344 				kernelcore_remaining -= min(kernel_pages,
6345 							kernelcore_remaining);
6346 				required_kernelcore -= min(kernel_pages,
6347 							required_kernelcore);
6348 
6349 				/* Continue if range is now fully accounted */
6350 				if (end_pfn <= usable_startpfn) {
6351 
6352 					/*
6353 					 * Push zone_movable_pfn to the end so
6354 					 * that if we have to rebalance
6355 					 * kernelcore across nodes, we will
6356 					 * not double account here
6357 					 */
6358 					zone_movable_pfn[nid] = end_pfn;
6359 					continue;
6360 				}
6361 				start_pfn = usable_startpfn;
6362 			}
6363 
6364 			/*
6365 			 * The usable PFN range for ZONE_MOVABLE is from
6366 			 * start_pfn->end_pfn. Calculate size_pages as the
6367 			 * number of pages used as kernelcore
6368 			 */
6369 			size_pages = end_pfn - start_pfn;
6370 			if (size_pages > kernelcore_remaining)
6371 				size_pages = kernelcore_remaining;
6372 			zone_movable_pfn[nid] = start_pfn + size_pages;
6373 
6374 			/*
6375 			 * Some kernelcore has been met, update counts and
6376 			 * break if the kernelcore for this node has been
6377 			 * satisfied
6378 			 */
6379 			required_kernelcore -= min(required_kernelcore,
6380 								size_pages);
6381 			kernelcore_remaining -= size_pages;
6382 			if (!kernelcore_remaining)
6383 				break;
6384 		}
6385 	}
6386 
6387 	/*
6388 	 * If there is still required_kernelcore, we do another pass with one
6389 	 * less node in the count. This will push zone_movable_pfn[nid] further
6390 	 * along on the nodes that still have memory until kernelcore is
6391 	 * satisfied
6392 	 */
6393 	usable_nodes--;
6394 	if (usable_nodes && required_kernelcore > usable_nodes)
6395 		goto restart;
6396 
6397 out2:
6398 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6399 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6400 		zone_movable_pfn[nid] =
6401 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6402 
6403 out:
6404 	/* restore the node_state */
6405 	node_states[N_MEMORY] = saved_node_state;
6406 }
6407 
6408 /* Any regular or high memory on that node ? */
6409 static void check_for_memory(pg_data_t *pgdat, int nid)
6410 {
6411 	enum zone_type zone_type;
6412 
6413 	if (N_MEMORY == N_NORMAL_MEMORY)
6414 		return;
6415 
6416 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6417 		struct zone *zone = &pgdat->node_zones[zone_type];
6418 		if (populated_zone(zone)) {
6419 			node_set_state(nid, N_HIGH_MEMORY);
6420 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6421 			    zone_type <= ZONE_NORMAL)
6422 				node_set_state(nid, N_NORMAL_MEMORY);
6423 			break;
6424 		}
6425 	}
6426 }
6427 
6428 /**
6429  * free_area_init_nodes - Initialise all pg_data_t and zone data
6430  * @max_zone_pfn: an array of max PFNs for each zone
6431  *
6432  * This will call free_area_init_node() for each active node in the system.
6433  * Using the page ranges provided by memblock_set_node(), the size of each
6434  * zone in each node and their holes is calculated. If the maximum PFN
6435  * between two adjacent zones match, it is assumed that the zone is empty.
6436  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6437  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6438  * starts where the previous one ended. For example, ZONE_DMA32 starts
6439  * at arch_max_dma_pfn.
6440  */
6441 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6442 {
6443 	unsigned long start_pfn, end_pfn;
6444 	int i, nid;
6445 
6446 	/* Record where the zone boundaries are */
6447 	memset(arch_zone_lowest_possible_pfn, 0,
6448 				sizeof(arch_zone_lowest_possible_pfn));
6449 	memset(arch_zone_highest_possible_pfn, 0,
6450 				sizeof(arch_zone_highest_possible_pfn));
6451 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6452 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6453 	for (i = 1; i < MAX_NR_ZONES; i++) {
6454 		if (i == ZONE_MOVABLE)
6455 			continue;
6456 		arch_zone_lowest_possible_pfn[i] =
6457 			arch_zone_highest_possible_pfn[i-1];
6458 		arch_zone_highest_possible_pfn[i] =
6459 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6460 	}
6461 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6462 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6463 
6464 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6465 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6466 	find_zone_movable_pfns_for_nodes();
6467 
6468 	/* Print out the zone ranges */
6469 	pr_info("Zone ranges:\n");
6470 	for (i = 0; i < MAX_NR_ZONES; i++) {
6471 		if (i == ZONE_MOVABLE)
6472 			continue;
6473 		pr_info("  %-8s ", zone_names[i]);
6474 		if (arch_zone_lowest_possible_pfn[i] ==
6475 				arch_zone_highest_possible_pfn[i])
6476 			pr_cont("empty\n");
6477 		else
6478 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6479 				(u64)arch_zone_lowest_possible_pfn[i]
6480 					<< PAGE_SHIFT,
6481 				((u64)arch_zone_highest_possible_pfn[i]
6482 					<< PAGE_SHIFT) - 1);
6483 	}
6484 
6485 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6486 	pr_info("Movable zone start for each node\n");
6487 	for (i = 0; i < MAX_NUMNODES; i++) {
6488 		if (zone_movable_pfn[i])
6489 			pr_info("  Node %d: %#018Lx\n", i,
6490 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6491 	}
6492 
6493 	/* Print out the early node map */
6494 	pr_info("Early memory node ranges\n");
6495 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6496 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6497 			(u64)start_pfn << PAGE_SHIFT,
6498 			((u64)end_pfn << PAGE_SHIFT) - 1);
6499 
6500 	/* Initialise every node */
6501 	mminit_verify_pageflags_layout();
6502 	setup_nr_node_ids();
6503 	for_each_online_node(nid) {
6504 		pg_data_t *pgdat = NODE_DATA(nid);
6505 		free_area_init_node(nid, NULL,
6506 				find_min_pfn_for_node(nid), NULL);
6507 
6508 		/* Any memory on that node */
6509 		if (pgdat->node_present_pages)
6510 			node_set_state(nid, N_MEMORY);
6511 		check_for_memory(pgdat, nid);
6512 	}
6513 }
6514 
6515 static int __init cmdline_parse_core(char *p, unsigned long *core)
6516 {
6517 	unsigned long long coremem;
6518 	if (!p)
6519 		return -EINVAL;
6520 
6521 	coremem = memparse(p, &p);
6522 	*core = coremem >> PAGE_SHIFT;
6523 
6524 	/* Paranoid check that UL is enough for the coremem value */
6525 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6526 
6527 	return 0;
6528 }
6529 
6530 /*
6531  * kernelcore=size sets the amount of memory for use for allocations that
6532  * cannot be reclaimed or migrated.
6533  */
6534 static int __init cmdline_parse_kernelcore(char *p)
6535 {
6536 	/* parse kernelcore=mirror */
6537 	if (parse_option_str(p, "mirror")) {
6538 		mirrored_kernelcore = true;
6539 		return 0;
6540 	}
6541 
6542 	return cmdline_parse_core(p, &required_kernelcore);
6543 }
6544 
6545 /*
6546  * movablecore=size sets the amount of memory for use for allocations that
6547  * can be reclaimed or migrated.
6548  */
6549 static int __init cmdline_parse_movablecore(char *p)
6550 {
6551 	return cmdline_parse_core(p, &required_movablecore);
6552 }
6553 
6554 early_param("kernelcore", cmdline_parse_kernelcore);
6555 early_param("movablecore", cmdline_parse_movablecore);
6556 
6557 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6558 
6559 void adjust_managed_page_count(struct page *page, long count)
6560 {
6561 	spin_lock(&managed_page_count_lock);
6562 	page_zone(page)->managed_pages += count;
6563 	totalram_pages += count;
6564 #ifdef CONFIG_HIGHMEM
6565 	if (PageHighMem(page))
6566 		totalhigh_pages += count;
6567 #endif
6568 	spin_unlock(&managed_page_count_lock);
6569 }
6570 EXPORT_SYMBOL(adjust_managed_page_count);
6571 
6572 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6573 {
6574 	void *pos;
6575 	unsigned long pages = 0;
6576 
6577 	start = (void *)PAGE_ALIGN((unsigned long)start);
6578 	end = (void *)((unsigned long)end & PAGE_MASK);
6579 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6580 		if ((unsigned int)poison <= 0xFF)
6581 			memset(pos, poison, PAGE_SIZE);
6582 		free_reserved_page(virt_to_page(pos));
6583 	}
6584 
6585 	if (pages && s)
6586 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6587 			s, pages << (PAGE_SHIFT - 10), start, end);
6588 
6589 	return pages;
6590 }
6591 EXPORT_SYMBOL(free_reserved_area);
6592 
6593 #ifdef	CONFIG_HIGHMEM
6594 void free_highmem_page(struct page *page)
6595 {
6596 	__free_reserved_page(page);
6597 	totalram_pages++;
6598 	page_zone(page)->managed_pages++;
6599 	totalhigh_pages++;
6600 }
6601 #endif
6602 
6603 
6604 void __init mem_init_print_info(const char *str)
6605 {
6606 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6607 	unsigned long init_code_size, init_data_size;
6608 
6609 	physpages = get_num_physpages();
6610 	codesize = _etext - _stext;
6611 	datasize = _edata - _sdata;
6612 	rosize = __end_rodata - __start_rodata;
6613 	bss_size = __bss_stop - __bss_start;
6614 	init_data_size = __init_end - __init_begin;
6615 	init_code_size = _einittext - _sinittext;
6616 
6617 	/*
6618 	 * Detect special cases and adjust section sizes accordingly:
6619 	 * 1) .init.* may be embedded into .data sections
6620 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6621 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6622 	 * 3) .rodata.* may be embedded into .text or .data sections.
6623 	 */
6624 #define adj_init_size(start, end, size, pos, adj) \
6625 	do { \
6626 		if (start <= pos && pos < end && size > adj) \
6627 			size -= adj; \
6628 	} while (0)
6629 
6630 	adj_init_size(__init_begin, __init_end, init_data_size,
6631 		     _sinittext, init_code_size);
6632 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6633 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6634 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6635 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6636 
6637 #undef	adj_init_size
6638 
6639 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6640 #ifdef	CONFIG_HIGHMEM
6641 		", %luK highmem"
6642 #endif
6643 		"%s%s)\n",
6644 		nr_free_pages() << (PAGE_SHIFT - 10),
6645 		physpages << (PAGE_SHIFT - 10),
6646 		codesize >> 10, datasize >> 10, rosize >> 10,
6647 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6648 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6649 		totalcma_pages << (PAGE_SHIFT - 10),
6650 #ifdef	CONFIG_HIGHMEM
6651 		totalhigh_pages << (PAGE_SHIFT - 10),
6652 #endif
6653 		str ? ", " : "", str ? str : "");
6654 }
6655 
6656 /**
6657  * set_dma_reserve - set the specified number of pages reserved in the first zone
6658  * @new_dma_reserve: The number of pages to mark reserved
6659  *
6660  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6661  * In the DMA zone, a significant percentage may be consumed by kernel image
6662  * and other unfreeable allocations which can skew the watermarks badly. This
6663  * function may optionally be used to account for unfreeable pages in the
6664  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6665  * smaller per-cpu batchsize.
6666  */
6667 void __init set_dma_reserve(unsigned long new_dma_reserve)
6668 {
6669 	dma_reserve = new_dma_reserve;
6670 }
6671 
6672 void __init free_area_init(unsigned long *zones_size)
6673 {
6674 	free_area_init_node(0, zones_size,
6675 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6676 }
6677 
6678 static int page_alloc_cpu_notify(struct notifier_block *self,
6679 				 unsigned long action, void *hcpu)
6680 {
6681 	int cpu = (unsigned long)hcpu;
6682 
6683 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6684 		lru_add_drain_cpu(cpu);
6685 		drain_pages(cpu);
6686 
6687 		/*
6688 		 * Spill the event counters of the dead processor
6689 		 * into the current processors event counters.
6690 		 * This artificially elevates the count of the current
6691 		 * processor.
6692 		 */
6693 		vm_events_fold_cpu(cpu);
6694 
6695 		/*
6696 		 * Zero the differential counters of the dead processor
6697 		 * so that the vm statistics are consistent.
6698 		 *
6699 		 * This is only okay since the processor is dead and cannot
6700 		 * race with what we are doing.
6701 		 */
6702 		cpu_vm_stats_fold(cpu);
6703 	}
6704 	return NOTIFY_OK;
6705 }
6706 
6707 void __init page_alloc_init(void)
6708 {
6709 	hotcpu_notifier(page_alloc_cpu_notify, 0);
6710 }
6711 
6712 /*
6713  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6714  *	or min_free_kbytes changes.
6715  */
6716 static void calculate_totalreserve_pages(void)
6717 {
6718 	struct pglist_data *pgdat;
6719 	unsigned long reserve_pages = 0;
6720 	enum zone_type i, j;
6721 
6722 	for_each_online_pgdat(pgdat) {
6723 		for (i = 0; i < MAX_NR_ZONES; i++) {
6724 			struct zone *zone = pgdat->node_zones + i;
6725 			long max = 0;
6726 
6727 			/* Find valid and maximum lowmem_reserve in the zone */
6728 			for (j = i; j < MAX_NR_ZONES; j++) {
6729 				if (zone->lowmem_reserve[j] > max)
6730 					max = zone->lowmem_reserve[j];
6731 			}
6732 
6733 			/* we treat the high watermark as reserved pages. */
6734 			max += high_wmark_pages(zone);
6735 
6736 			if (max > zone->managed_pages)
6737 				max = zone->managed_pages;
6738 
6739 			zone->totalreserve_pages = max;
6740 
6741 			reserve_pages += max;
6742 		}
6743 	}
6744 	totalreserve_pages = reserve_pages;
6745 }
6746 
6747 /*
6748  * setup_per_zone_lowmem_reserve - called whenever
6749  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6750  *	has a correct pages reserved value, so an adequate number of
6751  *	pages are left in the zone after a successful __alloc_pages().
6752  */
6753 static void setup_per_zone_lowmem_reserve(void)
6754 {
6755 	struct pglist_data *pgdat;
6756 	enum zone_type j, idx;
6757 
6758 	for_each_online_pgdat(pgdat) {
6759 		for (j = 0; j < MAX_NR_ZONES; j++) {
6760 			struct zone *zone = pgdat->node_zones + j;
6761 			unsigned long managed_pages = zone->managed_pages;
6762 
6763 			zone->lowmem_reserve[j] = 0;
6764 
6765 			idx = j;
6766 			while (idx) {
6767 				struct zone *lower_zone;
6768 
6769 				idx--;
6770 
6771 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6772 					sysctl_lowmem_reserve_ratio[idx] = 1;
6773 
6774 				lower_zone = pgdat->node_zones + idx;
6775 				lower_zone->lowmem_reserve[j] = managed_pages /
6776 					sysctl_lowmem_reserve_ratio[idx];
6777 				managed_pages += lower_zone->managed_pages;
6778 			}
6779 		}
6780 	}
6781 
6782 	/* update totalreserve_pages */
6783 	calculate_totalreserve_pages();
6784 }
6785 
6786 static void __setup_per_zone_wmarks(void)
6787 {
6788 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6789 	unsigned long lowmem_pages = 0;
6790 	struct zone *zone;
6791 	unsigned long flags;
6792 
6793 	/* Calculate total number of !ZONE_HIGHMEM pages */
6794 	for_each_zone(zone) {
6795 		if (!is_highmem(zone))
6796 			lowmem_pages += zone->managed_pages;
6797 	}
6798 
6799 	for_each_zone(zone) {
6800 		u64 tmp;
6801 
6802 		spin_lock_irqsave(&zone->lock, flags);
6803 		tmp = (u64)pages_min * zone->managed_pages;
6804 		do_div(tmp, lowmem_pages);
6805 		if (is_highmem(zone)) {
6806 			/*
6807 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6808 			 * need highmem pages, so cap pages_min to a small
6809 			 * value here.
6810 			 *
6811 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6812 			 * deltas control asynch page reclaim, and so should
6813 			 * not be capped for highmem.
6814 			 */
6815 			unsigned long min_pages;
6816 
6817 			min_pages = zone->managed_pages / 1024;
6818 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6819 			zone->watermark[WMARK_MIN] = min_pages;
6820 		} else {
6821 			/*
6822 			 * If it's a lowmem zone, reserve a number of pages
6823 			 * proportionate to the zone's size.
6824 			 */
6825 			zone->watermark[WMARK_MIN] = tmp;
6826 		}
6827 
6828 		/*
6829 		 * Set the kswapd watermarks distance according to the
6830 		 * scale factor in proportion to available memory, but
6831 		 * ensure a minimum size on small systems.
6832 		 */
6833 		tmp = max_t(u64, tmp >> 2,
6834 			    mult_frac(zone->managed_pages,
6835 				      watermark_scale_factor, 10000));
6836 
6837 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6838 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6839 
6840 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
6841 			high_wmark_pages(zone) - low_wmark_pages(zone) -
6842 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6843 
6844 		spin_unlock_irqrestore(&zone->lock, flags);
6845 	}
6846 
6847 	/* update totalreserve_pages */
6848 	calculate_totalreserve_pages();
6849 }
6850 
6851 /**
6852  * setup_per_zone_wmarks - called when min_free_kbytes changes
6853  * or when memory is hot-{added|removed}
6854  *
6855  * Ensures that the watermark[min,low,high] values for each zone are set
6856  * correctly with respect to min_free_kbytes.
6857  */
6858 void setup_per_zone_wmarks(void)
6859 {
6860 	mutex_lock(&zonelists_mutex);
6861 	__setup_per_zone_wmarks();
6862 	mutex_unlock(&zonelists_mutex);
6863 }
6864 
6865 /*
6866  * Initialise min_free_kbytes.
6867  *
6868  * For small machines we want it small (128k min).  For large machines
6869  * we want it large (64MB max).  But it is not linear, because network
6870  * bandwidth does not increase linearly with machine size.  We use
6871  *
6872  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6873  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6874  *
6875  * which yields
6876  *
6877  * 16MB:	512k
6878  * 32MB:	724k
6879  * 64MB:	1024k
6880  * 128MB:	1448k
6881  * 256MB:	2048k
6882  * 512MB:	2896k
6883  * 1024MB:	4096k
6884  * 2048MB:	5792k
6885  * 4096MB:	8192k
6886  * 8192MB:	11584k
6887  * 16384MB:	16384k
6888  */
6889 int __meminit init_per_zone_wmark_min(void)
6890 {
6891 	unsigned long lowmem_kbytes;
6892 	int new_min_free_kbytes;
6893 
6894 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6895 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6896 
6897 	if (new_min_free_kbytes > user_min_free_kbytes) {
6898 		min_free_kbytes = new_min_free_kbytes;
6899 		if (min_free_kbytes < 128)
6900 			min_free_kbytes = 128;
6901 		if (min_free_kbytes > 65536)
6902 			min_free_kbytes = 65536;
6903 	} else {
6904 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6905 				new_min_free_kbytes, user_min_free_kbytes);
6906 	}
6907 	setup_per_zone_wmarks();
6908 	refresh_zone_stat_thresholds();
6909 	setup_per_zone_lowmem_reserve();
6910 	return 0;
6911 }
6912 core_initcall(init_per_zone_wmark_min)
6913 
6914 /*
6915  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6916  *	that we can call two helper functions whenever min_free_kbytes
6917  *	changes.
6918  */
6919 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6920 	void __user *buffer, size_t *length, loff_t *ppos)
6921 {
6922 	int rc;
6923 
6924 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6925 	if (rc)
6926 		return rc;
6927 
6928 	if (write) {
6929 		user_min_free_kbytes = min_free_kbytes;
6930 		setup_per_zone_wmarks();
6931 	}
6932 	return 0;
6933 }
6934 
6935 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6936 	void __user *buffer, size_t *length, loff_t *ppos)
6937 {
6938 	int rc;
6939 
6940 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6941 	if (rc)
6942 		return rc;
6943 
6944 	if (write)
6945 		setup_per_zone_wmarks();
6946 
6947 	return 0;
6948 }
6949 
6950 #ifdef CONFIG_NUMA
6951 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6952 	void __user *buffer, size_t *length, loff_t *ppos)
6953 {
6954 	struct zone *zone;
6955 	int rc;
6956 
6957 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6958 	if (rc)
6959 		return rc;
6960 
6961 	for_each_zone(zone)
6962 		zone->min_unmapped_pages = (zone->managed_pages *
6963 				sysctl_min_unmapped_ratio) / 100;
6964 	return 0;
6965 }
6966 
6967 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6968 	void __user *buffer, size_t *length, loff_t *ppos)
6969 {
6970 	struct zone *zone;
6971 	int rc;
6972 
6973 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6974 	if (rc)
6975 		return rc;
6976 
6977 	for_each_zone(zone)
6978 		zone->min_slab_pages = (zone->managed_pages *
6979 				sysctl_min_slab_ratio) / 100;
6980 	return 0;
6981 }
6982 #endif
6983 
6984 /*
6985  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6986  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6987  *	whenever sysctl_lowmem_reserve_ratio changes.
6988  *
6989  * The reserve ratio obviously has absolutely no relation with the
6990  * minimum watermarks. The lowmem reserve ratio can only make sense
6991  * if in function of the boot time zone sizes.
6992  */
6993 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6994 	void __user *buffer, size_t *length, loff_t *ppos)
6995 {
6996 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6997 	setup_per_zone_lowmem_reserve();
6998 	return 0;
6999 }
7000 
7001 /*
7002  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7003  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7004  * pagelist can have before it gets flushed back to buddy allocator.
7005  */
7006 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7007 	void __user *buffer, size_t *length, loff_t *ppos)
7008 {
7009 	struct zone *zone;
7010 	int old_percpu_pagelist_fraction;
7011 	int ret;
7012 
7013 	mutex_lock(&pcp_batch_high_lock);
7014 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7015 
7016 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7017 	if (!write || ret < 0)
7018 		goto out;
7019 
7020 	/* Sanity checking to avoid pcp imbalance */
7021 	if (percpu_pagelist_fraction &&
7022 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7023 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7024 		ret = -EINVAL;
7025 		goto out;
7026 	}
7027 
7028 	/* No change? */
7029 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7030 		goto out;
7031 
7032 	for_each_populated_zone(zone) {
7033 		unsigned int cpu;
7034 
7035 		for_each_possible_cpu(cpu)
7036 			pageset_set_high_and_batch(zone,
7037 					per_cpu_ptr(zone->pageset, cpu));
7038 	}
7039 out:
7040 	mutex_unlock(&pcp_batch_high_lock);
7041 	return ret;
7042 }
7043 
7044 #ifdef CONFIG_NUMA
7045 int hashdist = HASHDIST_DEFAULT;
7046 
7047 static int __init set_hashdist(char *str)
7048 {
7049 	if (!str)
7050 		return 0;
7051 	hashdist = simple_strtoul(str, &str, 0);
7052 	return 1;
7053 }
7054 __setup("hashdist=", set_hashdist);
7055 #endif
7056 
7057 /*
7058  * allocate a large system hash table from bootmem
7059  * - it is assumed that the hash table must contain an exact power-of-2
7060  *   quantity of entries
7061  * - limit is the number of hash buckets, not the total allocation size
7062  */
7063 void *__init alloc_large_system_hash(const char *tablename,
7064 				     unsigned long bucketsize,
7065 				     unsigned long numentries,
7066 				     int scale,
7067 				     int flags,
7068 				     unsigned int *_hash_shift,
7069 				     unsigned int *_hash_mask,
7070 				     unsigned long low_limit,
7071 				     unsigned long high_limit)
7072 {
7073 	unsigned long long max = high_limit;
7074 	unsigned long log2qty, size;
7075 	void *table = NULL;
7076 
7077 	/* allow the kernel cmdline to have a say */
7078 	if (!numentries) {
7079 		/* round applicable memory size up to nearest megabyte */
7080 		numentries = nr_kernel_pages;
7081 
7082 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7083 		if (PAGE_SHIFT < 20)
7084 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7085 
7086 		/* limit to 1 bucket per 2^scale bytes of low memory */
7087 		if (scale > PAGE_SHIFT)
7088 			numentries >>= (scale - PAGE_SHIFT);
7089 		else
7090 			numentries <<= (PAGE_SHIFT - scale);
7091 
7092 		/* Make sure we've got at least a 0-order allocation.. */
7093 		if (unlikely(flags & HASH_SMALL)) {
7094 			/* Makes no sense without HASH_EARLY */
7095 			WARN_ON(!(flags & HASH_EARLY));
7096 			if (!(numentries >> *_hash_shift)) {
7097 				numentries = 1UL << *_hash_shift;
7098 				BUG_ON(!numentries);
7099 			}
7100 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7101 			numentries = PAGE_SIZE / bucketsize;
7102 	}
7103 	numentries = roundup_pow_of_two(numentries);
7104 
7105 	/* limit allocation size to 1/16 total memory by default */
7106 	if (max == 0) {
7107 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7108 		do_div(max, bucketsize);
7109 	}
7110 	max = min(max, 0x80000000ULL);
7111 
7112 	if (numentries < low_limit)
7113 		numentries = low_limit;
7114 	if (numentries > max)
7115 		numentries = max;
7116 
7117 	log2qty = ilog2(numentries);
7118 
7119 	do {
7120 		size = bucketsize << log2qty;
7121 		if (flags & HASH_EARLY)
7122 			table = memblock_virt_alloc_nopanic(size, 0);
7123 		else if (hashdist)
7124 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7125 		else {
7126 			/*
7127 			 * If bucketsize is not a power-of-two, we may free
7128 			 * some pages at the end of hash table which
7129 			 * alloc_pages_exact() automatically does
7130 			 */
7131 			if (get_order(size) < MAX_ORDER) {
7132 				table = alloc_pages_exact(size, GFP_ATOMIC);
7133 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7134 			}
7135 		}
7136 	} while (!table && size > PAGE_SIZE && --log2qty);
7137 
7138 	if (!table)
7139 		panic("Failed to allocate %s hash table\n", tablename);
7140 
7141 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7142 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7143 
7144 	if (_hash_shift)
7145 		*_hash_shift = log2qty;
7146 	if (_hash_mask)
7147 		*_hash_mask = (1 << log2qty) - 1;
7148 
7149 	return table;
7150 }
7151 
7152 /*
7153  * This function checks whether pageblock includes unmovable pages or not.
7154  * If @count is not zero, it is okay to include less @count unmovable pages
7155  *
7156  * PageLRU check without isolation or lru_lock could race so that
7157  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7158  * expect this function should be exact.
7159  */
7160 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7161 			 bool skip_hwpoisoned_pages)
7162 {
7163 	unsigned long pfn, iter, found;
7164 	int mt;
7165 
7166 	/*
7167 	 * For avoiding noise data, lru_add_drain_all() should be called
7168 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7169 	 */
7170 	if (zone_idx(zone) == ZONE_MOVABLE)
7171 		return false;
7172 	mt = get_pageblock_migratetype(page);
7173 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7174 		return false;
7175 
7176 	pfn = page_to_pfn(page);
7177 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7178 		unsigned long check = pfn + iter;
7179 
7180 		if (!pfn_valid_within(check))
7181 			continue;
7182 
7183 		page = pfn_to_page(check);
7184 
7185 		/*
7186 		 * Hugepages are not in LRU lists, but they're movable.
7187 		 * We need not scan over tail pages bacause we don't
7188 		 * handle each tail page individually in migration.
7189 		 */
7190 		if (PageHuge(page)) {
7191 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7192 			continue;
7193 		}
7194 
7195 		/*
7196 		 * We can't use page_count without pin a page
7197 		 * because another CPU can free compound page.
7198 		 * This check already skips compound tails of THP
7199 		 * because their page->_refcount is zero at all time.
7200 		 */
7201 		if (!page_ref_count(page)) {
7202 			if (PageBuddy(page))
7203 				iter += (1 << page_order(page)) - 1;
7204 			continue;
7205 		}
7206 
7207 		/*
7208 		 * The HWPoisoned page may be not in buddy system, and
7209 		 * page_count() is not 0.
7210 		 */
7211 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7212 			continue;
7213 
7214 		if (!PageLRU(page))
7215 			found++;
7216 		/*
7217 		 * If there are RECLAIMABLE pages, we need to check
7218 		 * it.  But now, memory offline itself doesn't call
7219 		 * shrink_node_slabs() and it still to be fixed.
7220 		 */
7221 		/*
7222 		 * If the page is not RAM, page_count()should be 0.
7223 		 * we don't need more check. This is an _used_ not-movable page.
7224 		 *
7225 		 * The problematic thing here is PG_reserved pages. PG_reserved
7226 		 * is set to both of a memory hole page and a _used_ kernel
7227 		 * page at boot.
7228 		 */
7229 		if (found > count)
7230 			return true;
7231 	}
7232 	return false;
7233 }
7234 
7235 bool is_pageblock_removable_nolock(struct page *page)
7236 {
7237 	struct zone *zone;
7238 	unsigned long pfn;
7239 
7240 	/*
7241 	 * We have to be careful here because we are iterating over memory
7242 	 * sections which are not zone aware so we might end up outside of
7243 	 * the zone but still within the section.
7244 	 * We have to take care about the node as well. If the node is offline
7245 	 * its NODE_DATA will be NULL - see page_zone.
7246 	 */
7247 	if (!node_online(page_to_nid(page)))
7248 		return false;
7249 
7250 	zone = page_zone(page);
7251 	pfn = page_to_pfn(page);
7252 	if (!zone_spans_pfn(zone, pfn))
7253 		return false;
7254 
7255 	return !has_unmovable_pages(zone, page, 0, true);
7256 }
7257 
7258 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7259 
7260 static unsigned long pfn_max_align_down(unsigned long pfn)
7261 {
7262 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7263 			     pageblock_nr_pages) - 1);
7264 }
7265 
7266 static unsigned long pfn_max_align_up(unsigned long pfn)
7267 {
7268 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7269 				pageblock_nr_pages));
7270 }
7271 
7272 /* [start, end) must belong to a single zone. */
7273 static int __alloc_contig_migrate_range(struct compact_control *cc,
7274 					unsigned long start, unsigned long end)
7275 {
7276 	/* This function is based on compact_zone() from compaction.c. */
7277 	unsigned long nr_reclaimed;
7278 	unsigned long pfn = start;
7279 	unsigned int tries = 0;
7280 	int ret = 0;
7281 
7282 	migrate_prep();
7283 
7284 	while (pfn < end || !list_empty(&cc->migratepages)) {
7285 		if (fatal_signal_pending(current)) {
7286 			ret = -EINTR;
7287 			break;
7288 		}
7289 
7290 		if (list_empty(&cc->migratepages)) {
7291 			cc->nr_migratepages = 0;
7292 			pfn = isolate_migratepages_range(cc, pfn, end);
7293 			if (!pfn) {
7294 				ret = -EINTR;
7295 				break;
7296 			}
7297 			tries = 0;
7298 		} else if (++tries == 5) {
7299 			ret = ret < 0 ? ret : -EBUSY;
7300 			break;
7301 		}
7302 
7303 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7304 							&cc->migratepages);
7305 		cc->nr_migratepages -= nr_reclaimed;
7306 
7307 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7308 				    NULL, 0, cc->mode, MR_CMA);
7309 	}
7310 	if (ret < 0) {
7311 		putback_movable_pages(&cc->migratepages);
7312 		return ret;
7313 	}
7314 	return 0;
7315 }
7316 
7317 /**
7318  * alloc_contig_range() -- tries to allocate given range of pages
7319  * @start:	start PFN to allocate
7320  * @end:	one-past-the-last PFN to allocate
7321  * @migratetype:	migratetype of the underlaying pageblocks (either
7322  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7323  *			in range must have the same migratetype and it must
7324  *			be either of the two.
7325  *
7326  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7327  * aligned, however it's the caller's responsibility to guarantee that
7328  * we are the only thread that changes migrate type of pageblocks the
7329  * pages fall in.
7330  *
7331  * The PFN range must belong to a single zone.
7332  *
7333  * Returns zero on success or negative error code.  On success all
7334  * pages which PFN is in [start, end) are allocated for the caller and
7335  * need to be freed with free_contig_range().
7336  */
7337 int alloc_contig_range(unsigned long start, unsigned long end,
7338 		       unsigned migratetype)
7339 {
7340 	unsigned long outer_start, outer_end;
7341 	unsigned int order;
7342 	int ret = 0;
7343 
7344 	struct compact_control cc = {
7345 		.nr_migratepages = 0,
7346 		.order = -1,
7347 		.zone = page_zone(pfn_to_page(start)),
7348 		.mode = MIGRATE_SYNC,
7349 		.ignore_skip_hint = true,
7350 	};
7351 	INIT_LIST_HEAD(&cc.migratepages);
7352 
7353 	/*
7354 	 * What we do here is we mark all pageblocks in range as
7355 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7356 	 * have different sizes, and due to the way page allocator
7357 	 * work, we align the range to biggest of the two pages so
7358 	 * that page allocator won't try to merge buddies from
7359 	 * different pageblocks and change MIGRATE_ISOLATE to some
7360 	 * other migration type.
7361 	 *
7362 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7363 	 * migrate the pages from an unaligned range (ie. pages that
7364 	 * we are interested in).  This will put all the pages in
7365 	 * range back to page allocator as MIGRATE_ISOLATE.
7366 	 *
7367 	 * When this is done, we take the pages in range from page
7368 	 * allocator removing them from the buddy system.  This way
7369 	 * page allocator will never consider using them.
7370 	 *
7371 	 * This lets us mark the pageblocks back as
7372 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7373 	 * aligned range but not in the unaligned, original range are
7374 	 * put back to page allocator so that buddy can use them.
7375 	 */
7376 
7377 	ret = start_isolate_page_range(pfn_max_align_down(start),
7378 				       pfn_max_align_up(end), migratetype,
7379 				       false);
7380 	if (ret)
7381 		return ret;
7382 
7383 	/*
7384 	 * In case of -EBUSY, we'd like to know which page causes problem.
7385 	 * So, just fall through. We will check it in test_pages_isolated().
7386 	 */
7387 	ret = __alloc_contig_migrate_range(&cc, start, end);
7388 	if (ret && ret != -EBUSY)
7389 		goto done;
7390 
7391 	/*
7392 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7393 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7394 	 * more, all pages in [start, end) are free in page allocator.
7395 	 * What we are going to do is to allocate all pages from
7396 	 * [start, end) (that is remove them from page allocator).
7397 	 *
7398 	 * The only problem is that pages at the beginning and at the
7399 	 * end of interesting range may be not aligned with pages that
7400 	 * page allocator holds, ie. they can be part of higher order
7401 	 * pages.  Because of this, we reserve the bigger range and
7402 	 * once this is done free the pages we are not interested in.
7403 	 *
7404 	 * We don't have to hold zone->lock here because the pages are
7405 	 * isolated thus they won't get removed from buddy.
7406 	 */
7407 
7408 	lru_add_drain_all();
7409 	drain_all_pages(cc.zone);
7410 
7411 	order = 0;
7412 	outer_start = start;
7413 	while (!PageBuddy(pfn_to_page(outer_start))) {
7414 		if (++order >= MAX_ORDER) {
7415 			outer_start = start;
7416 			break;
7417 		}
7418 		outer_start &= ~0UL << order;
7419 	}
7420 
7421 	if (outer_start != start) {
7422 		order = page_order(pfn_to_page(outer_start));
7423 
7424 		/*
7425 		 * outer_start page could be small order buddy page and
7426 		 * it doesn't include start page. Adjust outer_start
7427 		 * in this case to report failed page properly
7428 		 * on tracepoint in test_pages_isolated()
7429 		 */
7430 		if (outer_start + (1UL << order) <= start)
7431 			outer_start = start;
7432 	}
7433 
7434 	/* Make sure the range is really isolated. */
7435 	if (test_pages_isolated(outer_start, end, false)) {
7436 		pr_info("%s: [%lx, %lx) PFNs busy\n",
7437 			__func__, outer_start, end);
7438 		ret = -EBUSY;
7439 		goto done;
7440 	}
7441 
7442 	/* Grab isolated pages from freelists. */
7443 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7444 	if (!outer_end) {
7445 		ret = -EBUSY;
7446 		goto done;
7447 	}
7448 
7449 	/* Free head and tail (if any) */
7450 	if (start != outer_start)
7451 		free_contig_range(outer_start, start - outer_start);
7452 	if (end != outer_end)
7453 		free_contig_range(end, outer_end - end);
7454 
7455 done:
7456 	undo_isolate_page_range(pfn_max_align_down(start),
7457 				pfn_max_align_up(end), migratetype);
7458 	return ret;
7459 }
7460 
7461 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7462 {
7463 	unsigned int count = 0;
7464 
7465 	for (; nr_pages--; pfn++) {
7466 		struct page *page = pfn_to_page(pfn);
7467 
7468 		count += page_count(page) != 1;
7469 		__free_page(page);
7470 	}
7471 	WARN(count != 0, "%d pages are still in use!\n", count);
7472 }
7473 #endif
7474 
7475 #ifdef CONFIG_MEMORY_HOTPLUG
7476 /*
7477  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7478  * page high values need to be recalulated.
7479  */
7480 void __meminit zone_pcp_update(struct zone *zone)
7481 {
7482 	unsigned cpu;
7483 	mutex_lock(&pcp_batch_high_lock);
7484 	for_each_possible_cpu(cpu)
7485 		pageset_set_high_and_batch(zone,
7486 				per_cpu_ptr(zone->pageset, cpu));
7487 	mutex_unlock(&pcp_batch_high_lock);
7488 }
7489 #endif
7490 
7491 void zone_pcp_reset(struct zone *zone)
7492 {
7493 	unsigned long flags;
7494 	int cpu;
7495 	struct per_cpu_pageset *pset;
7496 
7497 	/* avoid races with drain_pages()  */
7498 	local_irq_save(flags);
7499 	if (zone->pageset != &boot_pageset) {
7500 		for_each_online_cpu(cpu) {
7501 			pset = per_cpu_ptr(zone->pageset, cpu);
7502 			drain_zonestat(zone, pset);
7503 		}
7504 		free_percpu(zone->pageset);
7505 		zone->pageset = &boot_pageset;
7506 	}
7507 	local_irq_restore(flags);
7508 }
7509 
7510 #ifdef CONFIG_MEMORY_HOTREMOVE
7511 /*
7512  * All pages in the range must be in a single zone and isolated
7513  * before calling this.
7514  */
7515 void
7516 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7517 {
7518 	struct page *page;
7519 	struct zone *zone;
7520 	unsigned int order, i;
7521 	unsigned long pfn;
7522 	unsigned long flags;
7523 	/* find the first valid pfn */
7524 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7525 		if (pfn_valid(pfn))
7526 			break;
7527 	if (pfn == end_pfn)
7528 		return;
7529 	zone = page_zone(pfn_to_page(pfn));
7530 	spin_lock_irqsave(&zone->lock, flags);
7531 	pfn = start_pfn;
7532 	while (pfn < end_pfn) {
7533 		if (!pfn_valid(pfn)) {
7534 			pfn++;
7535 			continue;
7536 		}
7537 		page = pfn_to_page(pfn);
7538 		/*
7539 		 * The HWPoisoned page may be not in buddy system, and
7540 		 * page_count() is not 0.
7541 		 */
7542 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7543 			pfn++;
7544 			SetPageReserved(page);
7545 			continue;
7546 		}
7547 
7548 		BUG_ON(page_count(page));
7549 		BUG_ON(!PageBuddy(page));
7550 		order = page_order(page);
7551 #ifdef CONFIG_DEBUG_VM
7552 		pr_info("remove from free list %lx %d %lx\n",
7553 			pfn, 1 << order, end_pfn);
7554 #endif
7555 		list_del(&page->lru);
7556 		rmv_page_order(page);
7557 		zone->free_area[order].nr_free--;
7558 		for (i = 0; i < (1 << order); i++)
7559 			SetPageReserved((page+i));
7560 		pfn += (1 << order);
7561 	}
7562 	spin_unlock_irqrestore(&zone->lock, flags);
7563 }
7564 #endif
7565 
7566 bool is_free_buddy_page(struct page *page)
7567 {
7568 	struct zone *zone = page_zone(page);
7569 	unsigned long pfn = page_to_pfn(page);
7570 	unsigned long flags;
7571 	unsigned int order;
7572 
7573 	spin_lock_irqsave(&zone->lock, flags);
7574 	for (order = 0; order < MAX_ORDER; order++) {
7575 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7576 
7577 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7578 			break;
7579 	}
7580 	spin_unlock_irqrestore(&zone->lock, flags);
7581 
7582 	return order < MAX_ORDER;
7583 }
7584