xref: /openbmc/linux/mm/page_alloc.c (revision aac5987a)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 
69 #include <asm/sections.h>
70 #include <asm/tlbflush.h>
71 #include <asm/div64.h>
72 #include "internal.h"
73 
74 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
75 static DEFINE_MUTEX(pcp_batch_high_lock);
76 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
77 
78 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
79 DEFINE_PER_CPU(int, numa_node);
80 EXPORT_PER_CPU_SYMBOL(numa_node);
81 #endif
82 
83 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
84 /*
85  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
86  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
87  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
88  * defined in <linux/topology.h>.
89  */
90 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
91 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
92 int _node_numa_mem_[MAX_NUMNODES];
93 #endif
94 
95 /* work_structs for global per-cpu drains */
96 DEFINE_MUTEX(pcpu_drain_mutex);
97 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
98 
99 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
100 volatile unsigned long latent_entropy __latent_entropy;
101 EXPORT_SYMBOL(latent_entropy);
102 #endif
103 
104 /*
105  * Array of node states.
106  */
107 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
108 	[N_POSSIBLE] = NODE_MASK_ALL,
109 	[N_ONLINE] = { { [0] = 1UL } },
110 #ifndef CONFIG_NUMA
111 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
112 #ifdef CONFIG_HIGHMEM
113 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
114 #endif
115 #ifdef CONFIG_MOVABLE_NODE
116 	[N_MEMORY] = { { [0] = 1UL } },
117 #endif
118 	[N_CPU] = { { [0] = 1UL } },
119 #endif	/* NUMA */
120 };
121 EXPORT_SYMBOL(node_states);
122 
123 /* Protect totalram_pages and zone->managed_pages */
124 static DEFINE_SPINLOCK(managed_page_count_lock);
125 
126 unsigned long totalram_pages __read_mostly;
127 unsigned long totalreserve_pages __read_mostly;
128 unsigned long totalcma_pages __read_mostly;
129 
130 int percpu_pagelist_fraction;
131 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
132 
133 /*
134  * A cached value of the page's pageblock's migratetype, used when the page is
135  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137  * Also the migratetype set in the page does not necessarily match the pcplist
138  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139  * other index - this ensures that it will be put on the correct CMA freelist.
140  */
141 static inline int get_pcppage_migratetype(struct page *page)
142 {
143 	return page->index;
144 }
145 
146 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
147 {
148 	page->index = migratetype;
149 }
150 
151 #ifdef CONFIG_PM_SLEEP
152 /*
153  * The following functions are used by the suspend/hibernate code to temporarily
154  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155  * while devices are suspended.  To avoid races with the suspend/hibernate code,
156  * they should always be called with pm_mutex held (gfp_allowed_mask also should
157  * only be modified with pm_mutex held, unless the suspend/hibernate code is
158  * guaranteed not to run in parallel with that modification).
159  */
160 
161 static gfp_t saved_gfp_mask;
162 
163 void pm_restore_gfp_mask(void)
164 {
165 	WARN_ON(!mutex_is_locked(&pm_mutex));
166 	if (saved_gfp_mask) {
167 		gfp_allowed_mask = saved_gfp_mask;
168 		saved_gfp_mask = 0;
169 	}
170 }
171 
172 void pm_restrict_gfp_mask(void)
173 {
174 	WARN_ON(!mutex_is_locked(&pm_mutex));
175 	WARN_ON(saved_gfp_mask);
176 	saved_gfp_mask = gfp_allowed_mask;
177 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
178 }
179 
180 bool pm_suspended_storage(void)
181 {
182 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
183 		return false;
184 	return true;
185 }
186 #endif /* CONFIG_PM_SLEEP */
187 
188 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
189 unsigned int pageblock_order __read_mostly;
190 #endif
191 
192 static void __free_pages_ok(struct page *page, unsigned int order);
193 
194 /*
195  * results with 256, 32 in the lowmem_reserve sysctl:
196  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
197  *	1G machine -> (16M dma, 784M normal, 224M high)
198  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
199  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
200  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
201  *
202  * TBD: should special case ZONE_DMA32 machines here - in those we normally
203  * don't need any ZONE_NORMAL reservation
204  */
205 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
206 #ifdef CONFIG_ZONE_DMA
207 	 256,
208 #endif
209 #ifdef CONFIG_ZONE_DMA32
210 	 256,
211 #endif
212 #ifdef CONFIG_HIGHMEM
213 	 32,
214 #endif
215 	 32,
216 };
217 
218 EXPORT_SYMBOL(totalram_pages);
219 
220 static char * const zone_names[MAX_NR_ZONES] = {
221 #ifdef CONFIG_ZONE_DMA
222 	 "DMA",
223 #endif
224 #ifdef CONFIG_ZONE_DMA32
225 	 "DMA32",
226 #endif
227 	 "Normal",
228 #ifdef CONFIG_HIGHMEM
229 	 "HighMem",
230 #endif
231 	 "Movable",
232 #ifdef CONFIG_ZONE_DEVICE
233 	 "Device",
234 #endif
235 };
236 
237 char * const migratetype_names[MIGRATE_TYPES] = {
238 	"Unmovable",
239 	"Movable",
240 	"Reclaimable",
241 	"HighAtomic",
242 #ifdef CONFIG_CMA
243 	"CMA",
244 #endif
245 #ifdef CONFIG_MEMORY_ISOLATION
246 	"Isolate",
247 #endif
248 };
249 
250 compound_page_dtor * const compound_page_dtors[] = {
251 	NULL,
252 	free_compound_page,
253 #ifdef CONFIG_HUGETLB_PAGE
254 	free_huge_page,
255 #endif
256 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
257 	free_transhuge_page,
258 #endif
259 };
260 
261 int min_free_kbytes = 1024;
262 int user_min_free_kbytes = -1;
263 int watermark_scale_factor = 10;
264 
265 static unsigned long __meminitdata nr_kernel_pages;
266 static unsigned long __meminitdata nr_all_pages;
267 static unsigned long __meminitdata dma_reserve;
268 
269 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
270 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
271 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
272 static unsigned long __initdata required_kernelcore;
273 static unsigned long __initdata required_movablecore;
274 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
275 static bool mirrored_kernelcore;
276 
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
281 
282 #if MAX_NUMNODES > 1
283 int nr_node_ids __read_mostly = MAX_NUMNODES;
284 int nr_online_nodes __read_mostly = 1;
285 EXPORT_SYMBOL(nr_node_ids);
286 EXPORT_SYMBOL(nr_online_nodes);
287 #endif
288 
289 int page_group_by_mobility_disabled __read_mostly;
290 
291 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
292 static inline void reset_deferred_meminit(pg_data_t *pgdat)
293 {
294 	pgdat->first_deferred_pfn = ULONG_MAX;
295 }
296 
297 /* Returns true if the struct page for the pfn is uninitialised */
298 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
299 {
300 	int nid = early_pfn_to_nid(pfn);
301 
302 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
303 		return true;
304 
305 	return false;
306 }
307 
308 /*
309  * Returns false when the remaining initialisation should be deferred until
310  * later in the boot cycle when it can be parallelised.
311  */
312 static inline bool update_defer_init(pg_data_t *pgdat,
313 				unsigned long pfn, unsigned long zone_end,
314 				unsigned long *nr_initialised)
315 {
316 	unsigned long max_initialise;
317 
318 	/* Always populate low zones for address-contrained allocations */
319 	if (zone_end < pgdat_end_pfn(pgdat))
320 		return true;
321 	/*
322 	 * Initialise at least 2G of a node but also take into account that
323 	 * two large system hashes that can take up 1GB for 0.25TB/node.
324 	 */
325 	max_initialise = max(2UL << (30 - PAGE_SHIFT),
326 		(pgdat->node_spanned_pages >> 8));
327 
328 	(*nr_initialised)++;
329 	if ((*nr_initialised > max_initialise) &&
330 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
331 		pgdat->first_deferred_pfn = pfn;
332 		return false;
333 	}
334 
335 	return true;
336 }
337 #else
338 static inline void reset_deferred_meminit(pg_data_t *pgdat)
339 {
340 }
341 
342 static inline bool early_page_uninitialised(unsigned long pfn)
343 {
344 	return false;
345 }
346 
347 static inline bool update_defer_init(pg_data_t *pgdat,
348 				unsigned long pfn, unsigned long zone_end,
349 				unsigned long *nr_initialised)
350 {
351 	return true;
352 }
353 #endif
354 
355 /* Return a pointer to the bitmap storing bits affecting a block of pages */
356 static inline unsigned long *get_pageblock_bitmap(struct page *page,
357 							unsigned long pfn)
358 {
359 #ifdef CONFIG_SPARSEMEM
360 	return __pfn_to_section(pfn)->pageblock_flags;
361 #else
362 	return page_zone(page)->pageblock_flags;
363 #endif /* CONFIG_SPARSEMEM */
364 }
365 
366 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
367 {
368 #ifdef CONFIG_SPARSEMEM
369 	pfn &= (PAGES_PER_SECTION-1);
370 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
371 #else
372 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374 #endif /* CONFIG_SPARSEMEM */
375 }
376 
377 /**
378  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379  * @page: The page within the block of interest
380  * @pfn: The target page frame number
381  * @end_bitidx: The last bit of interest to retrieve
382  * @mask: mask of bits that the caller is interested in
383  *
384  * Return: pageblock_bits flags
385  */
386 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
387 					unsigned long pfn,
388 					unsigned long end_bitidx,
389 					unsigned long mask)
390 {
391 	unsigned long *bitmap;
392 	unsigned long bitidx, word_bitidx;
393 	unsigned long word;
394 
395 	bitmap = get_pageblock_bitmap(page, pfn);
396 	bitidx = pfn_to_bitidx(page, pfn);
397 	word_bitidx = bitidx / BITS_PER_LONG;
398 	bitidx &= (BITS_PER_LONG-1);
399 
400 	word = bitmap[word_bitidx];
401 	bitidx += end_bitidx;
402 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
403 }
404 
405 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 					unsigned long end_bitidx,
407 					unsigned long mask)
408 {
409 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
410 }
411 
412 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
413 {
414 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
415 }
416 
417 /**
418  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419  * @page: The page within the block of interest
420  * @flags: The flags to set
421  * @pfn: The target page frame number
422  * @end_bitidx: The last bit of interest
423  * @mask: mask of bits that the caller is interested in
424  */
425 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
426 					unsigned long pfn,
427 					unsigned long end_bitidx,
428 					unsigned long mask)
429 {
430 	unsigned long *bitmap;
431 	unsigned long bitidx, word_bitidx;
432 	unsigned long old_word, word;
433 
434 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
435 
436 	bitmap = get_pageblock_bitmap(page, pfn);
437 	bitidx = pfn_to_bitidx(page, pfn);
438 	word_bitidx = bitidx / BITS_PER_LONG;
439 	bitidx &= (BITS_PER_LONG-1);
440 
441 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
442 
443 	bitidx += end_bitidx;
444 	mask <<= (BITS_PER_LONG - bitidx - 1);
445 	flags <<= (BITS_PER_LONG - bitidx - 1);
446 
447 	word = READ_ONCE(bitmap[word_bitidx]);
448 	for (;;) {
449 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 		if (word == old_word)
451 			break;
452 		word = old_word;
453 	}
454 }
455 
456 void set_pageblock_migratetype(struct page *page, int migratetype)
457 {
458 	if (unlikely(page_group_by_mobility_disabled &&
459 		     migratetype < MIGRATE_PCPTYPES))
460 		migratetype = MIGRATE_UNMOVABLE;
461 
462 	set_pageblock_flags_group(page, (unsigned long)migratetype,
463 					PB_migrate, PB_migrate_end);
464 }
465 
466 #ifdef CONFIG_DEBUG_VM
467 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
468 {
469 	int ret = 0;
470 	unsigned seq;
471 	unsigned long pfn = page_to_pfn(page);
472 	unsigned long sp, start_pfn;
473 
474 	do {
475 		seq = zone_span_seqbegin(zone);
476 		start_pfn = zone->zone_start_pfn;
477 		sp = zone->spanned_pages;
478 		if (!zone_spans_pfn(zone, pfn))
479 			ret = 1;
480 	} while (zone_span_seqretry(zone, seq));
481 
482 	if (ret)
483 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 			pfn, zone_to_nid(zone), zone->name,
485 			start_pfn, start_pfn + sp);
486 
487 	return ret;
488 }
489 
490 static int page_is_consistent(struct zone *zone, struct page *page)
491 {
492 	if (!pfn_valid_within(page_to_pfn(page)))
493 		return 0;
494 	if (zone != page_zone(page))
495 		return 0;
496 
497 	return 1;
498 }
499 /*
500  * Temporary debugging check for pages not lying within a given zone.
501  */
502 static int bad_range(struct zone *zone, struct page *page)
503 {
504 	if (page_outside_zone_boundaries(zone, page))
505 		return 1;
506 	if (!page_is_consistent(zone, page))
507 		return 1;
508 
509 	return 0;
510 }
511 #else
512 static inline int bad_range(struct zone *zone, struct page *page)
513 {
514 	return 0;
515 }
516 #endif
517 
518 static void bad_page(struct page *page, const char *reason,
519 		unsigned long bad_flags)
520 {
521 	static unsigned long resume;
522 	static unsigned long nr_shown;
523 	static unsigned long nr_unshown;
524 
525 	/*
526 	 * Allow a burst of 60 reports, then keep quiet for that minute;
527 	 * or allow a steady drip of one report per second.
528 	 */
529 	if (nr_shown == 60) {
530 		if (time_before(jiffies, resume)) {
531 			nr_unshown++;
532 			goto out;
533 		}
534 		if (nr_unshown) {
535 			pr_alert(
536 			      "BUG: Bad page state: %lu messages suppressed\n",
537 				nr_unshown);
538 			nr_unshown = 0;
539 		}
540 		nr_shown = 0;
541 	}
542 	if (nr_shown++ == 0)
543 		resume = jiffies + 60 * HZ;
544 
545 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
546 		current->comm, page_to_pfn(page));
547 	__dump_page(page, reason);
548 	bad_flags &= page->flags;
549 	if (bad_flags)
550 		pr_alert("bad because of flags: %#lx(%pGp)\n",
551 						bad_flags, &bad_flags);
552 	dump_page_owner(page);
553 
554 	print_modules();
555 	dump_stack();
556 out:
557 	/* Leave bad fields for debug, except PageBuddy could make trouble */
558 	page_mapcount_reset(page); /* remove PageBuddy */
559 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
560 }
561 
562 /*
563  * Higher-order pages are called "compound pages".  They are structured thusly:
564  *
565  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
566  *
567  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
568  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
569  *
570  * The first tail page's ->compound_dtor holds the offset in array of compound
571  * page destructors. See compound_page_dtors.
572  *
573  * The first tail page's ->compound_order holds the order of allocation.
574  * This usage means that zero-order pages may not be compound.
575  */
576 
577 void free_compound_page(struct page *page)
578 {
579 	__free_pages_ok(page, compound_order(page));
580 }
581 
582 void prep_compound_page(struct page *page, unsigned int order)
583 {
584 	int i;
585 	int nr_pages = 1 << order;
586 
587 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
588 	set_compound_order(page, order);
589 	__SetPageHead(page);
590 	for (i = 1; i < nr_pages; i++) {
591 		struct page *p = page + i;
592 		set_page_count(p, 0);
593 		p->mapping = TAIL_MAPPING;
594 		set_compound_head(p, page);
595 	}
596 	atomic_set(compound_mapcount_ptr(page), -1);
597 }
598 
599 #ifdef CONFIG_DEBUG_PAGEALLOC
600 unsigned int _debug_guardpage_minorder;
601 bool _debug_pagealloc_enabled __read_mostly
602 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
603 EXPORT_SYMBOL(_debug_pagealloc_enabled);
604 bool _debug_guardpage_enabled __read_mostly;
605 
606 static int __init early_debug_pagealloc(char *buf)
607 {
608 	if (!buf)
609 		return -EINVAL;
610 	return kstrtobool(buf, &_debug_pagealloc_enabled);
611 }
612 early_param("debug_pagealloc", early_debug_pagealloc);
613 
614 static bool need_debug_guardpage(void)
615 {
616 	/* If we don't use debug_pagealloc, we don't need guard page */
617 	if (!debug_pagealloc_enabled())
618 		return false;
619 
620 	if (!debug_guardpage_minorder())
621 		return false;
622 
623 	return true;
624 }
625 
626 static void init_debug_guardpage(void)
627 {
628 	if (!debug_pagealloc_enabled())
629 		return;
630 
631 	if (!debug_guardpage_minorder())
632 		return;
633 
634 	_debug_guardpage_enabled = true;
635 }
636 
637 struct page_ext_operations debug_guardpage_ops = {
638 	.need = need_debug_guardpage,
639 	.init = init_debug_guardpage,
640 };
641 
642 static int __init debug_guardpage_minorder_setup(char *buf)
643 {
644 	unsigned long res;
645 
646 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
647 		pr_err("Bad debug_guardpage_minorder value\n");
648 		return 0;
649 	}
650 	_debug_guardpage_minorder = res;
651 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
652 	return 0;
653 }
654 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
655 
656 static inline bool set_page_guard(struct zone *zone, struct page *page,
657 				unsigned int order, int migratetype)
658 {
659 	struct page_ext *page_ext;
660 
661 	if (!debug_guardpage_enabled())
662 		return false;
663 
664 	if (order >= debug_guardpage_minorder())
665 		return false;
666 
667 	page_ext = lookup_page_ext(page);
668 	if (unlikely(!page_ext))
669 		return false;
670 
671 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
672 
673 	INIT_LIST_HEAD(&page->lru);
674 	set_page_private(page, order);
675 	/* Guard pages are not available for any usage */
676 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
677 
678 	return true;
679 }
680 
681 static inline void clear_page_guard(struct zone *zone, struct page *page,
682 				unsigned int order, int migratetype)
683 {
684 	struct page_ext *page_ext;
685 
686 	if (!debug_guardpage_enabled())
687 		return;
688 
689 	page_ext = lookup_page_ext(page);
690 	if (unlikely(!page_ext))
691 		return;
692 
693 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
694 
695 	set_page_private(page, 0);
696 	if (!is_migrate_isolate(migratetype))
697 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
698 }
699 #else
700 struct page_ext_operations debug_guardpage_ops;
701 static inline bool set_page_guard(struct zone *zone, struct page *page,
702 			unsigned int order, int migratetype) { return false; }
703 static inline void clear_page_guard(struct zone *zone, struct page *page,
704 				unsigned int order, int migratetype) {}
705 #endif
706 
707 static inline void set_page_order(struct page *page, unsigned int order)
708 {
709 	set_page_private(page, order);
710 	__SetPageBuddy(page);
711 }
712 
713 static inline void rmv_page_order(struct page *page)
714 {
715 	__ClearPageBuddy(page);
716 	set_page_private(page, 0);
717 }
718 
719 /*
720  * This function checks whether a page is free && is the buddy
721  * we can do coalesce a page and its buddy if
722  * (a) the buddy is not in a hole (check before calling!) &&
723  * (b) the buddy is in the buddy system &&
724  * (c) a page and its buddy have the same order &&
725  * (d) a page and its buddy are in the same zone.
726  *
727  * For recording whether a page is in the buddy system, we set ->_mapcount
728  * PAGE_BUDDY_MAPCOUNT_VALUE.
729  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
730  * serialized by zone->lock.
731  *
732  * For recording page's order, we use page_private(page).
733  */
734 static inline int page_is_buddy(struct page *page, struct page *buddy,
735 							unsigned int order)
736 {
737 	if (page_is_guard(buddy) && page_order(buddy) == order) {
738 		if (page_zone_id(page) != page_zone_id(buddy))
739 			return 0;
740 
741 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
742 
743 		return 1;
744 	}
745 
746 	if (PageBuddy(buddy) && page_order(buddy) == order) {
747 		/*
748 		 * zone check is done late to avoid uselessly
749 		 * calculating zone/node ids for pages that could
750 		 * never merge.
751 		 */
752 		if (page_zone_id(page) != page_zone_id(buddy))
753 			return 0;
754 
755 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
756 
757 		return 1;
758 	}
759 	return 0;
760 }
761 
762 /*
763  * Freeing function for a buddy system allocator.
764  *
765  * The concept of a buddy system is to maintain direct-mapped table
766  * (containing bit values) for memory blocks of various "orders".
767  * The bottom level table contains the map for the smallest allocatable
768  * units of memory (here, pages), and each level above it describes
769  * pairs of units from the levels below, hence, "buddies".
770  * At a high level, all that happens here is marking the table entry
771  * at the bottom level available, and propagating the changes upward
772  * as necessary, plus some accounting needed to play nicely with other
773  * parts of the VM system.
774  * At each level, we keep a list of pages, which are heads of continuous
775  * free pages of length of (1 << order) and marked with _mapcount
776  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
777  * field.
778  * So when we are allocating or freeing one, we can derive the state of the
779  * other.  That is, if we allocate a small block, and both were
780  * free, the remainder of the region must be split into blocks.
781  * If a block is freed, and its buddy is also free, then this
782  * triggers coalescing into a block of larger size.
783  *
784  * -- nyc
785  */
786 
787 static inline void __free_one_page(struct page *page,
788 		unsigned long pfn,
789 		struct zone *zone, unsigned int order,
790 		int migratetype)
791 {
792 	unsigned long combined_pfn;
793 	unsigned long uninitialized_var(buddy_pfn);
794 	struct page *buddy;
795 	unsigned int max_order;
796 
797 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
798 
799 	VM_BUG_ON(!zone_is_initialized(zone));
800 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
801 
802 	VM_BUG_ON(migratetype == -1);
803 	if (likely(!is_migrate_isolate(migratetype)))
804 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
805 
806 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
807 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
808 
809 continue_merging:
810 	while (order < max_order - 1) {
811 		buddy_pfn = __find_buddy_pfn(pfn, order);
812 		buddy = page + (buddy_pfn - pfn);
813 
814 		if (!pfn_valid_within(buddy_pfn))
815 			goto done_merging;
816 		if (!page_is_buddy(page, buddy, order))
817 			goto done_merging;
818 		/*
819 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
820 		 * merge with it and move up one order.
821 		 */
822 		if (page_is_guard(buddy)) {
823 			clear_page_guard(zone, buddy, order, migratetype);
824 		} else {
825 			list_del(&buddy->lru);
826 			zone->free_area[order].nr_free--;
827 			rmv_page_order(buddy);
828 		}
829 		combined_pfn = buddy_pfn & pfn;
830 		page = page + (combined_pfn - pfn);
831 		pfn = combined_pfn;
832 		order++;
833 	}
834 	if (max_order < MAX_ORDER) {
835 		/* If we are here, it means order is >= pageblock_order.
836 		 * We want to prevent merge between freepages on isolate
837 		 * pageblock and normal pageblock. Without this, pageblock
838 		 * isolation could cause incorrect freepage or CMA accounting.
839 		 *
840 		 * We don't want to hit this code for the more frequent
841 		 * low-order merging.
842 		 */
843 		if (unlikely(has_isolate_pageblock(zone))) {
844 			int buddy_mt;
845 
846 			buddy_pfn = __find_buddy_pfn(pfn, order);
847 			buddy = page + (buddy_pfn - pfn);
848 			buddy_mt = get_pageblock_migratetype(buddy);
849 
850 			if (migratetype != buddy_mt
851 					&& (is_migrate_isolate(migratetype) ||
852 						is_migrate_isolate(buddy_mt)))
853 				goto done_merging;
854 		}
855 		max_order++;
856 		goto continue_merging;
857 	}
858 
859 done_merging:
860 	set_page_order(page, order);
861 
862 	/*
863 	 * If this is not the largest possible page, check if the buddy
864 	 * of the next-highest order is free. If it is, it's possible
865 	 * that pages are being freed that will coalesce soon. In case,
866 	 * that is happening, add the free page to the tail of the list
867 	 * so it's less likely to be used soon and more likely to be merged
868 	 * as a higher order page
869 	 */
870 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
871 		struct page *higher_page, *higher_buddy;
872 		combined_pfn = buddy_pfn & pfn;
873 		higher_page = page + (combined_pfn - pfn);
874 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
875 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
876 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
877 			list_add_tail(&page->lru,
878 				&zone->free_area[order].free_list[migratetype]);
879 			goto out;
880 		}
881 	}
882 
883 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
884 out:
885 	zone->free_area[order].nr_free++;
886 }
887 
888 /*
889  * A bad page could be due to a number of fields. Instead of multiple branches,
890  * try and check multiple fields with one check. The caller must do a detailed
891  * check if necessary.
892  */
893 static inline bool page_expected_state(struct page *page,
894 					unsigned long check_flags)
895 {
896 	if (unlikely(atomic_read(&page->_mapcount) != -1))
897 		return false;
898 
899 	if (unlikely((unsigned long)page->mapping |
900 			page_ref_count(page) |
901 #ifdef CONFIG_MEMCG
902 			(unsigned long)page->mem_cgroup |
903 #endif
904 			(page->flags & check_flags)))
905 		return false;
906 
907 	return true;
908 }
909 
910 static void free_pages_check_bad(struct page *page)
911 {
912 	const char *bad_reason;
913 	unsigned long bad_flags;
914 
915 	bad_reason = NULL;
916 	bad_flags = 0;
917 
918 	if (unlikely(atomic_read(&page->_mapcount) != -1))
919 		bad_reason = "nonzero mapcount";
920 	if (unlikely(page->mapping != NULL))
921 		bad_reason = "non-NULL mapping";
922 	if (unlikely(page_ref_count(page) != 0))
923 		bad_reason = "nonzero _refcount";
924 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
925 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
926 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
927 	}
928 #ifdef CONFIG_MEMCG
929 	if (unlikely(page->mem_cgroup))
930 		bad_reason = "page still charged to cgroup";
931 #endif
932 	bad_page(page, bad_reason, bad_flags);
933 }
934 
935 static inline int free_pages_check(struct page *page)
936 {
937 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
938 		return 0;
939 
940 	/* Something has gone sideways, find it */
941 	free_pages_check_bad(page);
942 	return 1;
943 }
944 
945 static int free_tail_pages_check(struct page *head_page, struct page *page)
946 {
947 	int ret = 1;
948 
949 	/*
950 	 * We rely page->lru.next never has bit 0 set, unless the page
951 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
952 	 */
953 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
954 
955 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
956 		ret = 0;
957 		goto out;
958 	}
959 	switch (page - head_page) {
960 	case 1:
961 		/* the first tail page: ->mapping is compound_mapcount() */
962 		if (unlikely(compound_mapcount(page))) {
963 			bad_page(page, "nonzero compound_mapcount", 0);
964 			goto out;
965 		}
966 		break;
967 	case 2:
968 		/*
969 		 * the second tail page: ->mapping is
970 		 * page_deferred_list().next -- ignore value.
971 		 */
972 		break;
973 	default:
974 		if (page->mapping != TAIL_MAPPING) {
975 			bad_page(page, "corrupted mapping in tail page", 0);
976 			goto out;
977 		}
978 		break;
979 	}
980 	if (unlikely(!PageTail(page))) {
981 		bad_page(page, "PageTail not set", 0);
982 		goto out;
983 	}
984 	if (unlikely(compound_head(page) != head_page)) {
985 		bad_page(page, "compound_head not consistent", 0);
986 		goto out;
987 	}
988 	ret = 0;
989 out:
990 	page->mapping = NULL;
991 	clear_compound_head(page);
992 	return ret;
993 }
994 
995 static __always_inline bool free_pages_prepare(struct page *page,
996 					unsigned int order, bool check_free)
997 {
998 	int bad = 0;
999 
1000 	VM_BUG_ON_PAGE(PageTail(page), page);
1001 
1002 	trace_mm_page_free(page, order);
1003 	kmemcheck_free_shadow(page, order);
1004 
1005 	/*
1006 	 * Check tail pages before head page information is cleared to
1007 	 * avoid checking PageCompound for order-0 pages.
1008 	 */
1009 	if (unlikely(order)) {
1010 		bool compound = PageCompound(page);
1011 		int i;
1012 
1013 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1014 
1015 		if (compound)
1016 			ClearPageDoubleMap(page);
1017 		for (i = 1; i < (1 << order); i++) {
1018 			if (compound)
1019 				bad += free_tail_pages_check(page, page + i);
1020 			if (unlikely(free_pages_check(page + i))) {
1021 				bad++;
1022 				continue;
1023 			}
1024 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1025 		}
1026 	}
1027 	if (PageMappingFlags(page))
1028 		page->mapping = NULL;
1029 	if (memcg_kmem_enabled() && PageKmemcg(page))
1030 		memcg_kmem_uncharge(page, order);
1031 	if (check_free)
1032 		bad += free_pages_check(page);
1033 	if (bad)
1034 		return false;
1035 
1036 	page_cpupid_reset_last(page);
1037 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1038 	reset_page_owner(page, order);
1039 
1040 	if (!PageHighMem(page)) {
1041 		debug_check_no_locks_freed(page_address(page),
1042 					   PAGE_SIZE << order);
1043 		debug_check_no_obj_freed(page_address(page),
1044 					   PAGE_SIZE << order);
1045 	}
1046 	arch_free_page(page, order);
1047 	kernel_poison_pages(page, 1 << order, 0);
1048 	kernel_map_pages(page, 1 << order, 0);
1049 	kasan_free_pages(page, order);
1050 
1051 	return true;
1052 }
1053 
1054 #ifdef CONFIG_DEBUG_VM
1055 static inline bool free_pcp_prepare(struct page *page)
1056 {
1057 	return free_pages_prepare(page, 0, true);
1058 }
1059 
1060 static inline bool bulkfree_pcp_prepare(struct page *page)
1061 {
1062 	return false;
1063 }
1064 #else
1065 static bool free_pcp_prepare(struct page *page)
1066 {
1067 	return free_pages_prepare(page, 0, false);
1068 }
1069 
1070 static bool bulkfree_pcp_prepare(struct page *page)
1071 {
1072 	return free_pages_check(page);
1073 }
1074 #endif /* CONFIG_DEBUG_VM */
1075 
1076 /*
1077  * Frees a number of pages from the PCP lists
1078  * Assumes all pages on list are in same zone, and of same order.
1079  * count is the number of pages to free.
1080  *
1081  * If the zone was previously in an "all pages pinned" state then look to
1082  * see if this freeing clears that state.
1083  *
1084  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1085  * pinned" detection logic.
1086  */
1087 static void free_pcppages_bulk(struct zone *zone, int count,
1088 					struct per_cpu_pages *pcp)
1089 {
1090 	int migratetype = 0;
1091 	int batch_free = 0;
1092 	unsigned long nr_scanned, flags;
1093 	bool isolated_pageblocks;
1094 
1095 	spin_lock_irqsave(&zone->lock, flags);
1096 	isolated_pageblocks = has_isolate_pageblock(zone);
1097 	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1098 	if (nr_scanned)
1099 		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1100 
1101 	while (count) {
1102 		struct page *page;
1103 		struct list_head *list;
1104 
1105 		/*
1106 		 * Remove pages from lists in a round-robin fashion. A
1107 		 * batch_free count is maintained that is incremented when an
1108 		 * empty list is encountered.  This is so more pages are freed
1109 		 * off fuller lists instead of spinning excessively around empty
1110 		 * lists
1111 		 */
1112 		do {
1113 			batch_free++;
1114 			if (++migratetype == MIGRATE_PCPTYPES)
1115 				migratetype = 0;
1116 			list = &pcp->lists[migratetype];
1117 		} while (list_empty(list));
1118 
1119 		/* This is the only non-empty list. Free them all. */
1120 		if (batch_free == MIGRATE_PCPTYPES)
1121 			batch_free = count;
1122 
1123 		do {
1124 			int mt;	/* migratetype of the to-be-freed page */
1125 
1126 			page = list_last_entry(list, struct page, lru);
1127 			/* must delete as __free_one_page list manipulates */
1128 			list_del(&page->lru);
1129 
1130 			mt = get_pcppage_migratetype(page);
1131 			/* MIGRATE_ISOLATE page should not go to pcplists */
1132 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1133 			/* Pageblock could have been isolated meanwhile */
1134 			if (unlikely(isolated_pageblocks))
1135 				mt = get_pageblock_migratetype(page);
1136 
1137 			if (bulkfree_pcp_prepare(page))
1138 				continue;
1139 
1140 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1141 			trace_mm_page_pcpu_drain(page, 0, mt);
1142 		} while (--count && --batch_free && !list_empty(list));
1143 	}
1144 	spin_unlock_irqrestore(&zone->lock, flags);
1145 }
1146 
1147 static void free_one_page(struct zone *zone,
1148 				struct page *page, unsigned long pfn,
1149 				unsigned int order,
1150 				int migratetype)
1151 {
1152 	unsigned long nr_scanned, flags;
1153 	spin_lock_irqsave(&zone->lock, flags);
1154 	__count_vm_events(PGFREE, 1 << order);
1155 	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1156 	if (nr_scanned)
1157 		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1158 
1159 	if (unlikely(has_isolate_pageblock(zone) ||
1160 		is_migrate_isolate(migratetype))) {
1161 		migratetype = get_pfnblock_migratetype(page, pfn);
1162 	}
1163 	__free_one_page(page, pfn, zone, order, migratetype);
1164 	spin_unlock_irqrestore(&zone->lock, flags);
1165 }
1166 
1167 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1168 				unsigned long zone, int nid)
1169 {
1170 	set_page_links(page, zone, nid, pfn);
1171 	init_page_count(page);
1172 	page_mapcount_reset(page);
1173 	page_cpupid_reset_last(page);
1174 
1175 	INIT_LIST_HEAD(&page->lru);
1176 #ifdef WANT_PAGE_VIRTUAL
1177 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1178 	if (!is_highmem_idx(zone))
1179 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1180 #endif
1181 }
1182 
1183 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1184 					int nid)
1185 {
1186 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1187 }
1188 
1189 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1190 static void init_reserved_page(unsigned long pfn)
1191 {
1192 	pg_data_t *pgdat;
1193 	int nid, zid;
1194 
1195 	if (!early_page_uninitialised(pfn))
1196 		return;
1197 
1198 	nid = early_pfn_to_nid(pfn);
1199 	pgdat = NODE_DATA(nid);
1200 
1201 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1202 		struct zone *zone = &pgdat->node_zones[zid];
1203 
1204 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1205 			break;
1206 	}
1207 	__init_single_pfn(pfn, zid, nid);
1208 }
1209 #else
1210 static inline void init_reserved_page(unsigned long pfn)
1211 {
1212 }
1213 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1214 
1215 /*
1216  * Initialised pages do not have PageReserved set. This function is
1217  * called for each range allocated by the bootmem allocator and
1218  * marks the pages PageReserved. The remaining valid pages are later
1219  * sent to the buddy page allocator.
1220  */
1221 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1222 {
1223 	unsigned long start_pfn = PFN_DOWN(start);
1224 	unsigned long end_pfn = PFN_UP(end);
1225 
1226 	for (; start_pfn < end_pfn; start_pfn++) {
1227 		if (pfn_valid(start_pfn)) {
1228 			struct page *page = pfn_to_page(start_pfn);
1229 
1230 			init_reserved_page(start_pfn);
1231 
1232 			/* Avoid false-positive PageTail() */
1233 			INIT_LIST_HEAD(&page->lru);
1234 
1235 			SetPageReserved(page);
1236 		}
1237 	}
1238 }
1239 
1240 static void __free_pages_ok(struct page *page, unsigned int order)
1241 {
1242 	int migratetype;
1243 	unsigned long pfn = page_to_pfn(page);
1244 
1245 	if (!free_pages_prepare(page, order, true))
1246 		return;
1247 
1248 	migratetype = get_pfnblock_migratetype(page, pfn);
1249 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1250 }
1251 
1252 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1253 {
1254 	unsigned int nr_pages = 1 << order;
1255 	struct page *p = page;
1256 	unsigned int loop;
1257 
1258 	prefetchw(p);
1259 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1260 		prefetchw(p + 1);
1261 		__ClearPageReserved(p);
1262 		set_page_count(p, 0);
1263 	}
1264 	__ClearPageReserved(p);
1265 	set_page_count(p, 0);
1266 
1267 	page_zone(page)->managed_pages += nr_pages;
1268 	set_page_refcounted(page);
1269 	__free_pages(page, order);
1270 }
1271 
1272 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1273 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1274 
1275 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1276 
1277 int __meminit early_pfn_to_nid(unsigned long pfn)
1278 {
1279 	static DEFINE_SPINLOCK(early_pfn_lock);
1280 	int nid;
1281 
1282 	spin_lock(&early_pfn_lock);
1283 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1284 	if (nid < 0)
1285 		nid = first_online_node;
1286 	spin_unlock(&early_pfn_lock);
1287 
1288 	return nid;
1289 }
1290 #endif
1291 
1292 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1293 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1294 					struct mminit_pfnnid_cache *state)
1295 {
1296 	int nid;
1297 
1298 	nid = __early_pfn_to_nid(pfn, state);
1299 	if (nid >= 0 && nid != node)
1300 		return false;
1301 	return true;
1302 }
1303 
1304 /* Only safe to use early in boot when initialisation is single-threaded */
1305 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1306 {
1307 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1308 }
1309 
1310 #else
1311 
1312 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1313 {
1314 	return true;
1315 }
1316 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1317 					struct mminit_pfnnid_cache *state)
1318 {
1319 	return true;
1320 }
1321 #endif
1322 
1323 
1324 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1325 							unsigned int order)
1326 {
1327 	if (early_page_uninitialised(pfn))
1328 		return;
1329 	return __free_pages_boot_core(page, order);
1330 }
1331 
1332 /*
1333  * Check that the whole (or subset of) a pageblock given by the interval of
1334  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1335  * with the migration of free compaction scanner. The scanners then need to
1336  * use only pfn_valid_within() check for arches that allow holes within
1337  * pageblocks.
1338  *
1339  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1340  *
1341  * It's possible on some configurations to have a setup like node0 node1 node0
1342  * i.e. it's possible that all pages within a zones range of pages do not
1343  * belong to a single zone. We assume that a border between node0 and node1
1344  * can occur within a single pageblock, but not a node0 node1 node0
1345  * interleaving within a single pageblock. It is therefore sufficient to check
1346  * the first and last page of a pageblock and avoid checking each individual
1347  * page in a pageblock.
1348  */
1349 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1350 				     unsigned long end_pfn, struct zone *zone)
1351 {
1352 	struct page *start_page;
1353 	struct page *end_page;
1354 
1355 	/* end_pfn is one past the range we are checking */
1356 	end_pfn--;
1357 
1358 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1359 		return NULL;
1360 
1361 	start_page = pfn_to_page(start_pfn);
1362 
1363 	if (page_zone(start_page) != zone)
1364 		return NULL;
1365 
1366 	end_page = pfn_to_page(end_pfn);
1367 
1368 	/* This gives a shorter code than deriving page_zone(end_page) */
1369 	if (page_zone_id(start_page) != page_zone_id(end_page))
1370 		return NULL;
1371 
1372 	return start_page;
1373 }
1374 
1375 void set_zone_contiguous(struct zone *zone)
1376 {
1377 	unsigned long block_start_pfn = zone->zone_start_pfn;
1378 	unsigned long block_end_pfn;
1379 
1380 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1381 	for (; block_start_pfn < zone_end_pfn(zone);
1382 			block_start_pfn = block_end_pfn,
1383 			 block_end_pfn += pageblock_nr_pages) {
1384 
1385 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1386 
1387 		if (!__pageblock_pfn_to_page(block_start_pfn,
1388 					     block_end_pfn, zone))
1389 			return;
1390 	}
1391 
1392 	/* We confirm that there is no hole */
1393 	zone->contiguous = true;
1394 }
1395 
1396 void clear_zone_contiguous(struct zone *zone)
1397 {
1398 	zone->contiguous = false;
1399 }
1400 
1401 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1402 static void __init deferred_free_range(struct page *page,
1403 					unsigned long pfn, int nr_pages)
1404 {
1405 	int i;
1406 
1407 	if (!page)
1408 		return;
1409 
1410 	/* Free a large naturally-aligned chunk if possible */
1411 	if (nr_pages == pageblock_nr_pages &&
1412 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1413 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1414 		__free_pages_boot_core(page, pageblock_order);
1415 		return;
1416 	}
1417 
1418 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1419 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1420 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1421 		__free_pages_boot_core(page, 0);
1422 	}
1423 }
1424 
1425 /* Completion tracking for deferred_init_memmap() threads */
1426 static atomic_t pgdat_init_n_undone __initdata;
1427 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1428 
1429 static inline void __init pgdat_init_report_one_done(void)
1430 {
1431 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1432 		complete(&pgdat_init_all_done_comp);
1433 }
1434 
1435 /* Initialise remaining memory on a node */
1436 static int __init deferred_init_memmap(void *data)
1437 {
1438 	pg_data_t *pgdat = data;
1439 	int nid = pgdat->node_id;
1440 	struct mminit_pfnnid_cache nid_init_state = { };
1441 	unsigned long start = jiffies;
1442 	unsigned long nr_pages = 0;
1443 	unsigned long walk_start, walk_end;
1444 	int i, zid;
1445 	struct zone *zone;
1446 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1447 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1448 
1449 	if (first_init_pfn == ULONG_MAX) {
1450 		pgdat_init_report_one_done();
1451 		return 0;
1452 	}
1453 
1454 	/* Bind memory initialisation thread to a local node if possible */
1455 	if (!cpumask_empty(cpumask))
1456 		set_cpus_allowed_ptr(current, cpumask);
1457 
1458 	/* Sanity check boundaries */
1459 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1460 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1461 	pgdat->first_deferred_pfn = ULONG_MAX;
1462 
1463 	/* Only the highest zone is deferred so find it */
1464 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1465 		zone = pgdat->node_zones + zid;
1466 		if (first_init_pfn < zone_end_pfn(zone))
1467 			break;
1468 	}
1469 
1470 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1471 		unsigned long pfn, end_pfn;
1472 		struct page *page = NULL;
1473 		struct page *free_base_page = NULL;
1474 		unsigned long free_base_pfn = 0;
1475 		int nr_to_free = 0;
1476 
1477 		end_pfn = min(walk_end, zone_end_pfn(zone));
1478 		pfn = first_init_pfn;
1479 		if (pfn < walk_start)
1480 			pfn = walk_start;
1481 		if (pfn < zone->zone_start_pfn)
1482 			pfn = zone->zone_start_pfn;
1483 
1484 		for (; pfn < end_pfn; pfn++) {
1485 			if (!pfn_valid_within(pfn))
1486 				goto free_range;
1487 
1488 			/*
1489 			 * Ensure pfn_valid is checked every
1490 			 * pageblock_nr_pages for memory holes
1491 			 */
1492 			if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1493 				if (!pfn_valid(pfn)) {
1494 					page = NULL;
1495 					goto free_range;
1496 				}
1497 			}
1498 
1499 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1500 				page = NULL;
1501 				goto free_range;
1502 			}
1503 
1504 			/* Minimise pfn page lookups and scheduler checks */
1505 			if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1506 				page++;
1507 			} else {
1508 				nr_pages += nr_to_free;
1509 				deferred_free_range(free_base_page,
1510 						free_base_pfn, nr_to_free);
1511 				free_base_page = NULL;
1512 				free_base_pfn = nr_to_free = 0;
1513 
1514 				page = pfn_to_page(pfn);
1515 				cond_resched();
1516 			}
1517 
1518 			if (page->flags) {
1519 				VM_BUG_ON(page_zone(page) != zone);
1520 				goto free_range;
1521 			}
1522 
1523 			__init_single_page(page, pfn, zid, nid);
1524 			if (!free_base_page) {
1525 				free_base_page = page;
1526 				free_base_pfn = pfn;
1527 				nr_to_free = 0;
1528 			}
1529 			nr_to_free++;
1530 
1531 			/* Where possible, batch up pages for a single free */
1532 			continue;
1533 free_range:
1534 			/* Free the current block of pages to allocator */
1535 			nr_pages += nr_to_free;
1536 			deferred_free_range(free_base_page, free_base_pfn,
1537 								nr_to_free);
1538 			free_base_page = NULL;
1539 			free_base_pfn = nr_to_free = 0;
1540 		}
1541 		/* Free the last block of pages to allocator */
1542 		nr_pages += nr_to_free;
1543 		deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1544 
1545 		first_init_pfn = max(end_pfn, first_init_pfn);
1546 	}
1547 
1548 	/* Sanity check that the next zone really is unpopulated */
1549 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1550 
1551 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1552 					jiffies_to_msecs(jiffies - start));
1553 
1554 	pgdat_init_report_one_done();
1555 	return 0;
1556 }
1557 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1558 
1559 void __init page_alloc_init_late(void)
1560 {
1561 	struct zone *zone;
1562 
1563 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1564 	int nid;
1565 
1566 	/* There will be num_node_state(N_MEMORY) threads */
1567 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1568 	for_each_node_state(nid, N_MEMORY) {
1569 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1570 	}
1571 
1572 	/* Block until all are initialised */
1573 	wait_for_completion(&pgdat_init_all_done_comp);
1574 
1575 	/* Reinit limits that are based on free pages after the kernel is up */
1576 	files_maxfiles_init();
1577 #endif
1578 
1579 	for_each_populated_zone(zone)
1580 		set_zone_contiguous(zone);
1581 }
1582 
1583 #ifdef CONFIG_CMA
1584 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1585 void __init init_cma_reserved_pageblock(struct page *page)
1586 {
1587 	unsigned i = pageblock_nr_pages;
1588 	struct page *p = page;
1589 
1590 	do {
1591 		__ClearPageReserved(p);
1592 		set_page_count(p, 0);
1593 	} while (++p, --i);
1594 
1595 	set_pageblock_migratetype(page, MIGRATE_CMA);
1596 
1597 	if (pageblock_order >= MAX_ORDER) {
1598 		i = pageblock_nr_pages;
1599 		p = page;
1600 		do {
1601 			set_page_refcounted(p);
1602 			__free_pages(p, MAX_ORDER - 1);
1603 			p += MAX_ORDER_NR_PAGES;
1604 		} while (i -= MAX_ORDER_NR_PAGES);
1605 	} else {
1606 		set_page_refcounted(page);
1607 		__free_pages(page, pageblock_order);
1608 	}
1609 
1610 	adjust_managed_page_count(page, pageblock_nr_pages);
1611 }
1612 #endif
1613 
1614 /*
1615  * The order of subdivision here is critical for the IO subsystem.
1616  * Please do not alter this order without good reasons and regression
1617  * testing. Specifically, as large blocks of memory are subdivided,
1618  * the order in which smaller blocks are delivered depends on the order
1619  * they're subdivided in this function. This is the primary factor
1620  * influencing the order in which pages are delivered to the IO
1621  * subsystem according to empirical testing, and this is also justified
1622  * by considering the behavior of a buddy system containing a single
1623  * large block of memory acted on by a series of small allocations.
1624  * This behavior is a critical factor in sglist merging's success.
1625  *
1626  * -- nyc
1627  */
1628 static inline void expand(struct zone *zone, struct page *page,
1629 	int low, int high, struct free_area *area,
1630 	int migratetype)
1631 {
1632 	unsigned long size = 1 << high;
1633 
1634 	while (high > low) {
1635 		area--;
1636 		high--;
1637 		size >>= 1;
1638 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1639 
1640 		/*
1641 		 * Mark as guard pages (or page), that will allow to
1642 		 * merge back to allocator when buddy will be freed.
1643 		 * Corresponding page table entries will not be touched,
1644 		 * pages will stay not present in virtual address space
1645 		 */
1646 		if (set_page_guard(zone, &page[size], high, migratetype))
1647 			continue;
1648 
1649 		list_add(&page[size].lru, &area->free_list[migratetype]);
1650 		area->nr_free++;
1651 		set_page_order(&page[size], high);
1652 	}
1653 }
1654 
1655 static void check_new_page_bad(struct page *page)
1656 {
1657 	const char *bad_reason = NULL;
1658 	unsigned long bad_flags = 0;
1659 
1660 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1661 		bad_reason = "nonzero mapcount";
1662 	if (unlikely(page->mapping != NULL))
1663 		bad_reason = "non-NULL mapping";
1664 	if (unlikely(page_ref_count(page) != 0))
1665 		bad_reason = "nonzero _count";
1666 	if (unlikely(page->flags & __PG_HWPOISON)) {
1667 		bad_reason = "HWPoisoned (hardware-corrupted)";
1668 		bad_flags = __PG_HWPOISON;
1669 		/* Don't complain about hwpoisoned pages */
1670 		page_mapcount_reset(page); /* remove PageBuddy */
1671 		return;
1672 	}
1673 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1674 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1675 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1676 	}
1677 #ifdef CONFIG_MEMCG
1678 	if (unlikely(page->mem_cgroup))
1679 		bad_reason = "page still charged to cgroup";
1680 #endif
1681 	bad_page(page, bad_reason, bad_flags);
1682 }
1683 
1684 /*
1685  * This page is about to be returned from the page allocator
1686  */
1687 static inline int check_new_page(struct page *page)
1688 {
1689 	if (likely(page_expected_state(page,
1690 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1691 		return 0;
1692 
1693 	check_new_page_bad(page);
1694 	return 1;
1695 }
1696 
1697 static inline bool free_pages_prezeroed(bool poisoned)
1698 {
1699 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1700 		page_poisoning_enabled() && poisoned;
1701 }
1702 
1703 #ifdef CONFIG_DEBUG_VM
1704 static bool check_pcp_refill(struct page *page)
1705 {
1706 	return false;
1707 }
1708 
1709 static bool check_new_pcp(struct page *page)
1710 {
1711 	return check_new_page(page);
1712 }
1713 #else
1714 static bool check_pcp_refill(struct page *page)
1715 {
1716 	return check_new_page(page);
1717 }
1718 static bool check_new_pcp(struct page *page)
1719 {
1720 	return false;
1721 }
1722 #endif /* CONFIG_DEBUG_VM */
1723 
1724 static bool check_new_pages(struct page *page, unsigned int order)
1725 {
1726 	int i;
1727 	for (i = 0; i < (1 << order); i++) {
1728 		struct page *p = page + i;
1729 
1730 		if (unlikely(check_new_page(p)))
1731 			return true;
1732 	}
1733 
1734 	return false;
1735 }
1736 
1737 inline void post_alloc_hook(struct page *page, unsigned int order,
1738 				gfp_t gfp_flags)
1739 {
1740 	set_page_private(page, 0);
1741 	set_page_refcounted(page);
1742 
1743 	arch_alloc_page(page, order);
1744 	kernel_map_pages(page, 1 << order, 1);
1745 	kernel_poison_pages(page, 1 << order, 1);
1746 	kasan_alloc_pages(page, order);
1747 	set_page_owner(page, order, gfp_flags);
1748 }
1749 
1750 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1751 							unsigned int alloc_flags)
1752 {
1753 	int i;
1754 	bool poisoned = true;
1755 
1756 	for (i = 0; i < (1 << order); i++) {
1757 		struct page *p = page + i;
1758 		if (poisoned)
1759 			poisoned &= page_is_poisoned(p);
1760 	}
1761 
1762 	post_alloc_hook(page, order, gfp_flags);
1763 
1764 	if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1765 		for (i = 0; i < (1 << order); i++)
1766 			clear_highpage(page + i);
1767 
1768 	if (order && (gfp_flags & __GFP_COMP))
1769 		prep_compound_page(page, order);
1770 
1771 	/*
1772 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1773 	 * allocate the page. The expectation is that the caller is taking
1774 	 * steps that will free more memory. The caller should avoid the page
1775 	 * being used for !PFMEMALLOC purposes.
1776 	 */
1777 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1778 		set_page_pfmemalloc(page);
1779 	else
1780 		clear_page_pfmemalloc(page);
1781 }
1782 
1783 /*
1784  * Go through the free lists for the given migratetype and remove
1785  * the smallest available page from the freelists
1786  */
1787 static inline
1788 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1789 						int migratetype)
1790 {
1791 	unsigned int current_order;
1792 	struct free_area *area;
1793 	struct page *page;
1794 
1795 	/* Find a page of the appropriate size in the preferred list */
1796 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1797 		area = &(zone->free_area[current_order]);
1798 		page = list_first_entry_or_null(&area->free_list[migratetype],
1799 							struct page, lru);
1800 		if (!page)
1801 			continue;
1802 		list_del(&page->lru);
1803 		rmv_page_order(page);
1804 		area->nr_free--;
1805 		expand(zone, page, order, current_order, area, migratetype);
1806 		set_pcppage_migratetype(page, migratetype);
1807 		return page;
1808 	}
1809 
1810 	return NULL;
1811 }
1812 
1813 
1814 /*
1815  * This array describes the order lists are fallen back to when
1816  * the free lists for the desirable migrate type are depleted
1817  */
1818 static int fallbacks[MIGRATE_TYPES][4] = {
1819 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1820 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1821 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1822 #ifdef CONFIG_CMA
1823 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1824 #endif
1825 #ifdef CONFIG_MEMORY_ISOLATION
1826 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1827 #endif
1828 };
1829 
1830 #ifdef CONFIG_CMA
1831 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1832 					unsigned int order)
1833 {
1834 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1835 }
1836 #else
1837 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1838 					unsigned int order) { return NULL; }
1839 #endif
1840 
1841 /*
1842  * Move the free pages in a range to the free lists of the requested type.
1843  * Note that start_page and end_pages are not aligned on a pageblock
1844  * boundary. If alignment is required, use move_freepages_block()
1845  */
1846 int move_freepages(struct zone *zone,
1847 			  struct page *start_page, struct page *end_page,
1848 			  int migratetype)
1849 {
1850 	struct page *page;
1851 	unsigned int order;
1852 	int pages_moved = 0;
1853 
1854 #ifndef CONFIG_HOLES_IN_ZONE
1855 	/*
1856 	 * page_zone is not safe to call in this context when
1857 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1858 	 * anyway as we check zone boundaries in move_freepages_block().
1859 	 * Remove at a later date when no bug reports exist related to
1860 	 * grouping pages by mobility
1861 	 */
1862 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1863 #endif
1864 
1865 	for (page = start_page; page <= end_page;) {
1866 		if (!pfn_valid_within(page_to_pfn(page))) {
1867 			page++;
1868 			continue;
1869 		}
1870 
1871 		/* Make sure we are not inadvertently changing nodes */
1872 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1873 
1874 		if (!PageBuddy(page)) {
1875 			page++;
1876 			continue;
1877 		}
1878 
1879 		order = page_order(page);
1880 		list_move(&page->lru,
1881 			  &zone->free_area[order].free_list[migratetype]);
1882 		page += 1 << order;
1883 		pages_moved += 1 << order;
1884 	}
1885 
1886 	return pages_moved;
1887 }
1888 
1889 int move_freepages_block(struct zone *zone, struct page *page,
1890 				int migratetype)
1891 {
1892 	unsigned long start_pfn, end_pfn;
1893 	struct page *start_page, *end_page;
1894 
1895 	start_pfn = page_to_pfn(page);
1896 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1897 	start_page = pfn_to_page(start_pfn);
1898 	end_page = start_page + pageblock_nr_pages - 1;
1899 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1900 
1901 	/* Do not cross zone boundaries */
1902 	if (!zone_spans_pfn(zone, start_pfn))
1903 		start_page = page;
1904 	if (!zone_spans_pfn(zone, end_pfn))
1905 		return 0;
1906 
1907 	return move_freepages(zone, start_page, end_page, migratetype);
1908 }
1909 
1910 static void change_pageblock_range(struct page *pageblock_page,
1911 					int start_order, int migratetype)
1912 {
1913 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1914 
1915 	while (nr_pageblocks--) {
1916 		set_pageblock_migratetype(pageblock_page, migratetype);
1917 		pageblock_page += pageblock_nr_pages;
1918 	}
1919 }
1920 
1921 /*
1922  * When we are falling back to another migratetype during allocation, try to
1923  * steal extra free pages from the same pageblocks to satisfy further
1924  * allocations, instead of polluting multiple pageblocks.
1925  *
1926  * If we are stealing a relatively large buddy page, it is likely there will
1927  * be more free pages in the pageblock, so try to steal them all. For
1928  * reclaimable and unmovable allocations, we steal regardless of page size,
1929  * as fragmentation caused by those allocations polluting movable pageblocks
1930  * is worse than movable allocations stealing from unmovable and reclaimable
1931  * pageblocks.
1932  */
1933 static bool can_steal_fallback(unsigned int order, int start_mt)
1934 {
1935 	/*
1936 	 * Leaving this order check is intended, although there is
1937 	 * relaxed order check in next check. The reason is that
1938 	 * we can actually steal whole pageblock if this condition met,
1939 	 * but, below check doesn't guarantee it and that is just heuristic
1940 	 * so could be changed anytime.
1941 	 */
1942 	if (order >= pageblock_order)
1943 		return true;
1944 
1945 	if (order >= pageblock_order / 2 ||
1946 		start_mt == MIGRATE_RECLAIMABLE ||
1947 		start_mt == MIGRATE_UNMOVABLE ||
1948 		page_group_by_mobility_disabled)
1949 		return true;
1950 
1951 	return false;
1952 }
1953 
1954 /*
1955  * This function implements actual steal behaviour. If order is large enough,
1956  * we can steal whole pageblock. If not, we first move freepages in this
1957  * pageblock and check whether half of pages are moved or not. If half of
1958  * pages are moved, we can change migratetype of pageblock and permanently
1959  * use it's pages as requested migratetype in the future.
1960  */
1961 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1962 							  int start_type)
1963 {
1964 	unsigned int current_order = page_order(page);
1965 	int pages;
1966 
1967 	/* Take ownership for orders >= pageblock_order */
1968 	if (current_order >= pageblock_order) {
1969 		change_pageblock_range(page, current_order, start_type);
1970 		return;
1971 	}
1972 
1973 	pages = move_freepages_block(zone, page, start_type);
1974 
1975 	/* Claim the whole block if over half of it is free */
1976 	if (pages >= (1 << (pageblock_order-1)) ||
1977 			page_group_by_mobility_disabled)
1978 		set_pageblock_migratetype(page, start_type);
1979 }
1980 
1981 /*
1982  * Check whether there is a suitable fallback freepage with requested order.
1983  * If only_stealable is true, this function returns fallback_mt only if
1984  * we can steal other freepages all together. This would help to reduce
1985  * fragmentation due to mixed migratetype pages in one pageblock.
1986  */
1987 int find_suitable_fallback(struct free_area *area, unsigned int order,
1988 			int migratetype, bool only_stealable, bool *can_steal)
1989 {
1990 	int i;
1991 	int fallback_mt;
1992 
1993 	if (area->nr_free == 0)
1994 		return -1;
1995 
1996 	*can_steal = false;
1997 	for (i = 0;; i++) {
1998 		fallback_mt = fallbacks[migratetype][i];
1999 		if (fallback_mt == MIGRATE_TYPES)
2000 			break;
2001 
2002 		if (list_empty(&area->free_list[fallback_mt]))
2003 			continue;
2004 
2005 		if (can_steal_fallback(order, migratetype))
2006 			*can_steal = true;
2007 
2008 		if (!only_stealable)
2009 			return fallback_mt;
2010 
2011 		if (*can_steal)
2012 			return fallback_mt;
2013 	}
2014 
2015 	return -1;
2016 }
2017 
2018 /*
2019  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2020  * there are no empty page blocks that contain a page with a suitable order
2021  */
2022 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2023 				unsigned int alloc_order)
2024 {
2025 	int mt;
2026 	unsigned long max_managed, flags;
2027 
2028 	/*
2029 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2030 	 * Check is race-prone but harmless.
2031 	 */
2032 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2033 	if (zone->nr_reserved_highatomic >= max_managed)
2034 		return;
2035 
2036 	spin_lock_irqsave(&zone->lock, flags);
2037 
2038 	/* Recheck the nr_reserved_highatomic limit under the lock */
2039 	if (zone->nr_reserved_highatomic >= max_managed)
2040 		goto out_unlock;
2041 
2042 	/* Yoink! */
2043 	mt = get_pageblock_migratetype(page);
2044 	if (mt != MIGRATE_HIGHATOMIC &&
2045 			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2046 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2047 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2048 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2049 	}
2050 
2051 out_unlock:
2052 	spin_unlock_irqrestore(&zone->lock, flags);
2053 }
2054 
2055 /*
2056  * Used when an allocation is about to fail under memory pressure. This
2057  * potentially hurts the reliability of high-order allocations when under
2058  * intense memory pressure but failed atomic allocations should be easier
2059  * to recover from than an OOM.
2060  *
2061  * If @force is true, try to unreserve a pageblock even though highatomic
2062  * pageblock is exhausted.
2063  */
2064 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2065 						bool force)
2066 {
2067 	struct zonelist *zonelist = ac->zonelist;
2068 	unsigned long flags;
2069 	struct zoneref *z;
2070 	struct zone *zone;
2071 	struct page *page;
2072 	int order;
2073 	bool ret;
2074 
2075 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2076 								ac->nodemask) {
2077 		/*
2078 		 * Preserve at least one pageblock unless memory pressure
2079 		 * is really high.
2080 		 */
2081 		if (!force && zone->nr_reserved_highatomic <=
2082 					pageblock_nr_pages)
2083 			continue;
2084 
2085 		spin_lock_irqsave(&zone->lock, flags);
2086 		for (order = 0; order < MAX_ORDER; order++) {
2087 			struct free_area *area = &(zone->free_area[order]);
2088 
2089 			page = list_first_entry_or_null(
2090 					&area->free_list[MIGRATE_HIGHATOMIC],
2091 					struct page, lru);
2092 			if (!page)
2093 				continue;
2094 
2095 			/*
2096 			 * In page freeing path, migratetype change is racy so
2097 			 * we can counter several free pages in a pageblock
2098 			 * in this loop althoug we changed the pageblock type
2099 			 * from highatomic to ac->migratetype. So we should
2100 			 * adjust the count once.
2101 			 */
2102 			if (get_pageblock_migratetype(page) ==
2103 							MIGRATE_HIGHATOMIC) {
2104 				/*
2105 				 * It should never happen but changes to
2106 				 * locking could inadvertently allow a per-cpu
2107 				 * drain to add pages to MIGRATE_HIGHATOMIC
2108 				 * while unreserving so be safe and watch for
2109 				 * underflows.
2110 				 */
2111 				zone->nr_reserved_highatomic -= min(
2112 						pageblock_nr_pages,
2113 						zone->nr_reserved_highatomic);
2114 			}
2115 
2116 			/*
2117 			 * Convert to ac->migratetype and avoid the normal
2118 			 * pageblock stealing heuristics. Minimally, the caller
2119 			 * is doing the work and needs the pages. More
2120 			 * importantly, if the block was always converted to
2121 			 * MIGRATE_UNMOVABLE or another type then the number
2122 			 * of pageblocks that cannot be completely freed
2123 			 * may increase.
2124 			 */
2125 			set_pageblock_migratetype(page, ac->migratetype);
2126 			ret = move_freepages_block(zone, page, ac->migratetype);
2127 			if (ret) {
2128 				spin_unlock_irqrestore(&zone->lock, flags);
2129 				return ret;
2130 			}
2131 		}
2132 		spin_unlock_irqrestore(&zone->lock, flags);
2133 	}
2134 
2135 	return false;
2136 }
2137 
2138 /* Remove an element from the buddy allocator from the fallback list */
2139 static inline struct page *
2140 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2141 {
2142 	struct free_area *area;
2143 	unsigned int current_order;
2144 	struct page *page;
2145 	int fallback_mt;
2146 	bool can_steal;
2147 
2148 	/* Find the largest possible block of pages in the other list */
2149 	for (current_order = MAX_ORDER-1;
2150 				current_order >= order && current_order <= MAX_ORDER-1;
2151 				--current_order) {
2152 		area = &(zone->free_area[current_order]);
2153 		fallback_mt = find_suitable_fallback(area, current_order,
2154 				start_migratetype, false, &can_steal);
2155 		if (fallback_mt == -1)
2156 			continue;
2157 
2158 		page = list_first_entry(&area->free_list[fallback_mt],
2159 						struct page, lru);
2160 		if (can_steal &&
2161 			get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
2162 			steal_suitable_fallback(zone, page, start_migratetype);
2163 
2164 		/* Remove the page from the freelists */
2165 		area->nr_free--;
2166 		list_del(&page->lru);
2167 		rmv_page_order(page);
2168 
2169 		expand(zone, page, order, current_order, area,
2170 					start_migratetype);
2171 		/*
2172 		 * The pcppage_migratetype may differ from pageblock's
2173 		 * migratetype depending on the decisions in
2174 		 * find_suitable_fallback(). This is OK as long as it does not
2175 		 * differ for MIGRATE_CMA pageblocks. Those can be used as
2176 		 * fallback only via special __rmqueue_cma_fallback() function
2177 		 */
2178 		set_pcppage_migratetype(page, start_migratetype);
2179 
2180 		trace_mm_page_alloc_extfrag(page, order, current_order,
2181 			start_migratetype, fallback_mt);
2182 
2183 		return page;
2184 	}
2185 
2186 	return NULL;
2187 }
2188 
2189 /*
2190  * Do the hard work of removing an element from the buddy allocator.
2191  * Call me with the zone->lock already held.
2192  */
2193 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2194 				int migratetype)
2195 {
2196 	struct page *page;
2197 
2198 	page = __rmqueue_smallest(zone, order, migratetype);
2199 	if (unlikely(!page)) {
2200 		if (migratetype == MIGRATE_MOVABLE)
2201 			page = __rmqueue_cma_fallback(zone, order);
2202 
2203 		if (!page)
2204 			page = __rmqueue_fallback(zone, order, migratetype);
2205 	}
2206 
2207 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2208 	return page;
2209 }
2210 
2211 /*
2212  * Obtain a specified number of elements from the buddy allocator, all under
2213  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2214  * Returns the number of new pages which were placed at *list.
2215  */
2216 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2217 			unsigned long count, struct list_head *list,
2218 			int migratetype, bool cold)
2219 {
2220 	int i, alloced = 0;
2221 	unsigned long flags;
2222 
2223 	spin_lock_irqsave(&zone->lock, flags);
2224 	for (i = 0; i < count; ++i) {
2225 		struct page *page = __rmqueue(zone, order, migratetype);
2226 		if (unlikely(page == NULL))
2227 			break;
2228 
2229 		if (unlikely(check_pcp_refill(page)))
2230 			continue;
2231 
2232 		/*
2233 		 * Split buddy pages returned by expand() are received here
2234 		 * in physical page order. The page is added to the callers and
2235 		 * list and the list head then moves forward. From the callers
2236 		 * perspective, the linked list is ordered by page number in
2237 		 * some conditions. This is useful for IO devices that can
2238 		 * merge IO requests if the physical pages are ordered
2239 		 * properly.
2240 		 */
2241 		if (likely(!cold))
2242 			list_add(&page->lru, list);
2243 		else
2244 			list_add_tail(&page->lru, list);
2245 		list = &page->lru;
2246 		alloced++;
2247 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2248 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2249 					      -(1 << order));
2250 	}
2251 
2252 	/*
2253 	 * i pages were removed from the buddy list even if some leak due
2254 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2255 	 * on i. Do not confuse with 'alloced' which is the number of
2256 	 * pages added to the pcp list.
2257 	 */
2258 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2259 	spin_unlock_irqrestore(&zone->lock, flags);
2260 	return alloced;
2261 }
2262 
2263 #ifdef CONFIG_NUMA
2264 /*
2265  * Called from the vmstat counter updater to drain pagesets of this
2266  * currently executing processor on remote nodes after they have
2267  * expired.
2268  *
2269  * Note that this function must be called with the thread pinned to
2270  * a single processor.
2271  */
2272 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2273 {
2274 	unsigned long flags;
2275 	int to_drain, batch;
2276 
2277 	local_irq_save(flags);
2278 	batch = READ_ONCE(pcp->batch);
2279 	to_drain = min(pcp->count, batch);
2280 	if (to_drain > 0) {
2281 		free_pcppages_bulk(zone, to_drain, pcp);
2282 		pcp->count -= to_drain;
2283 	}
2284 	local_irq_restore(flags);
2285 }
2286 #endif
2287 
2288 /*
2289  * Drain pcplists of the indicated processor and zone.
2290  *
2291  * The processor must either be the current processor and the
2292  * thread pinned to the current processor or a processor that
2293  * is not online.
2294  */
2295 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2296 {
2297 	unsigned long flags;
2298 	struct per_cpu_pageset *pset;
2299 	struct per_cpu_pages *pcp;
2300 
2301 	local_irq_save(flags);
2302 	pset = per_cpu_ptr(zone->pageset, cpu);
2303 
2304 	pcp = &pset->pcp;
2305 	if (pcp->count) {
2306 		free_pcppages_bulk(zone, pcp->count, pcp);
2307 		pcp->count = 0;
2308 	}
2309 	local_irq_restore(flags);
2310 }
2311 
2312 /*
2313  * Drain pcplists of all zones on the indicated processor.
2314  *
2315  * The processor must either be the current processor and the
2316  * thread pinned to the current processor or a processor that
2317  * is not online.
2318  */
2319 static void drain_pages(unsigned int cpu)
2320 {
2321 	struct zone *zone;
2322 
2323 	for_each_populated_zone(zone) {
2324 		drain_pages_zone(cpu, zone);
2325 	}
2326 }
2327 
2328 /*
2329  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2330  *
2331  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2332  * the single zone's pages.
2333  */
2334 void drain_local_pages(struct zone *zone)
2335 {
2336 	int cpu = smp_processor_id();
2337 
2338 	if (zone)
2339 		drain_pages_zone(cpu, zone);
2340 	else
2341 		drain_pages(cpu);
2342 }
2343 
2344 static void drain_local_pages_wq(struct work_struct *work)
2345 {
2346 	/*
2347 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2348 	 * we can race with cpu offline when the WQ can move this from
2349 	 * a cpu pinned worker to an unbound one. We can operate on a different
2350 	 * cpu which is allright but we also have to make sure to not move to
2351 	 * a different one.
2352 	 */
2353 	preempt_disable();
2354 	drain_local_pages(NULL);
2355 	preempt_enable();
2356 }
2357 
2358 /*
2359  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2360  *
2361  * When zone parameter is non-NULL, spill just the single zone's pages.
2362  *
2363  * Note that this can be extremely slow as the draining happens in a workqueue.
2364  */
2365 void drain_all_pages(struct zone *zone)
2366 {
2367 	int cpu;
2368 
2369 	/*
2370 	 * Allocate in the BSS so we wont require allocation in
2371 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2372 	 */
2373 	static cpumask_t cpus_with_pcps;
2374 
2375 	/* Workqueues cannot recurse */
2376 	if (current->flags & PF_WQ_WORKER)
2377 		return;
2378 
2379 	/*
2380 	 * Do not drain if one is already in progress unless it's specific to
2381 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2382 	 * the drain to be complete when the call returns.
2383 	 */
2384 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2385 		if (!zone)
2386 			return;
2387 		mutex_lock(&pcpu_drain_mutex);
2388 	}
2389 
2390 	/*
2391 	 * We don't care about racing with CPU hotplug event
2392 	 * as offline notification will cause the notified
2393 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2394 	 * disables preemption as part of its processing
2395 	 */
2396 	for_each_online_cpu(cpu) {
2397 		struct per_cpu_pageset *pcp;
2398 		struct zone *z;
2399 		bool has_pcps = false;
2400 
2401 		if (zone) {
2402 			pcp = per_cpu_ptr(zone->pageset, cpu);
2403 			if (pcp->pcp.count)
2404 				has_pcps = true;
2405 		} else {
2406 			for_each_populated_zone(z) {
2407 				pcp = per_cpu_ptr(z->pageset, cpu);
2408 				if (pcp->pcp.count) {
2409 					has_pcps = true;
2410 					break;
2411 				}
2412 			}
2413 		}
2414 
2415 		if (has_pcps)
2416 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2417 		else
2418 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2419 	}
2420 
2421 	for_each_cpu(cpu, &cpus_with_pcps) {
2422 		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2423 		INIT_WORK(work, drain_local_pages_wq);
2424 		schedule_work_on(cpu, work);
2425 	}
2426 	for_each_cpu(cpu, &cpus_with_pcps)
2427 		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2428 
2429 	mutex_unlock(&pcpu_drain_mutex);
2430 }
2431 
2432 #ifdef CONFIG_HIBERNATION
2433 
2434 void mark_free_pages(struct zone *zone)
2435 {
2436 	unsigned long pfn, max_zone_pfn;
2437 	unsigned long flags;
2438 	unsigned int order, t;
2439 	struct page *page;
2440 
2441 	if (zone_is_empty(zone))
2442 		return;
2443 
2444 	spin_lock_irqsave(&zone->lock, flags);
2445 
2446 	max_zone_pfn = zone_end_pfn(zone);
2447 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2448 		if (pfn_valid(pfn)) {
2449 			page = pfn_to_page(pfn);
2450 
2451 			if (page_zone(page) != zone)
2452 				continue;
2453 
2454 			if (!swsusp_page_is_forbidden(page))
2455 				swsusp_unset_page_free(page);
2456 		}
2457 
2458 	for_each_migratetype_order(order, t) {
2459 		list_for_each_entry(page,
2460 				&zone->free_area[order].free_list[t], lru) {
2461 			unsigned long i;
2462 
2463 			pfn = page_to_pfn(page);
2464 			for (i = 0; i < (1UL << order); i++)
2465 				swsusp_set_page_free(pfn_to_page(pfn + i));
2466 		}
2467 	}
2468 	spin_unlock_irqrestore(&zone->lock, flags);
2469 }
2470 #endif /* CONFIG_PM */
2471 
2472 /*
2473  * Free a 0-order page
2474  * cold == true ? free a cold page : free a hot page
2475  */
2476 void free_hot_cold_page(struct page *page, bool cold)
2477 {
2478 	struct zone *zone = page_zone(page);
2479 	struct per_cpu_pages *pcp;
2480 	unsigned long pfn = page_to_pfn(page);
2481 	int migratetype;
2482 
2483 	if (in_interrupt()) {
2484 		__free_pages_ok(page, 0);
2485 		return;
2486 	}
2487 
2488 	if (!free_pcp_prepare(page))
2489 		return;
2490 
2491 	migratetype = get_pfnblock_migratetype(page, pfn);
2492 	set_pcppage_migratetype(page, migratetype);
2493 	preempt_disable();
2494 
2495 	/*
2496 	 * We only track unmovable, reclaimable and movable on pcp lists.
2497 	 * Free ISOLATE pages back to the allocator because they are being
2498 	 * offlined but treat RESERVE as movable pages so we can get those
2499 	 * areas back if necessary. Otherwise, we may have to free
2500 	 * excessively into the page allocator
2501 	 */
2502 	if (migratetype >= MIGRATE_PCPTYPES) {
2503 		if (unlikely(is_migrate_isolate(migratetype))) {
2504 			free_one_page(zone, page, pfn, 0, migratetype);
2505 			goto out;
2506 		}
2507 		migratetype = MIGRATE_MOVABLE;
2508 	}
2509 
2510 	__count_vm_event(PGFREE);
2511 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2512 	if (!cold)
2513 		list_add(&page->lru, &pcp->lists[migratetype]);
2514 	else
2515 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2516 	pcp->count++;
2517 	if (pcp->count >= pcp->high) {
2518 		unsigned long batch = READ_ONCE(pcp->batch);
2519 		free_pcppages_bulk(zone, batch, pcp);
2520 		pcp->count -= batch;
2521 	}
2522 
2523 out:
2524 	preempt_enable();
2525 }
2526 
2527 /*
2528  * Free a list of 0-order pages
2529  */
2530 void free_hot_cold_page_list(struct list_head *list, bool cold)
2531 {
2532 	struct page *page, *next;
2533 
2534 	list_for_each_entry_safe(page, next, list, lru) {
2535 		trace_mm_page_free_batched(page, cold);
2536 		free_hot_cold_page(page, cold);
2537 	}
2538 }
2539 
2540 /*
2541  * split_page takes a non-compound higher-order page, and splits it into
2542  * n (1<<order) sub-pages: page[0..n]
2543  * Each sub-page must be freed individually.
2544  *
2545  * Note: this is probably too low level an operation for use in drivers.
2546  * Please consult with lkml before using this in your driver.
2547  */
2548 void split_page(struct page *page, unsigned int order)
2549 {
2550 	int i;
2551 
2552 	VM_BUG_ON_PAGE(PageCompound(page), page);
2553 	VM_BUG_ON_PAGE(!page_count(page), page);
2554 
2555 #ifdef CONFIG_KMEMCHECK
2556 	/*
2557 	 * Split shadow pages too, because free(page[0]) would
2558 	 * otherwise free the whole shadow.
2559 	 */
2560 	if (kmemcheck_page_is_tracked(page))
2561 		split_page(virt_to_page(page[0].shadow), order);
2562 #endif
2563 
2564 	for (i = 1; i < (1 << order); i++)
2565 		set_page_refcounted(page + i);
2566 	split_page_owner(page, order);
2567 }
2568 EXPORT_SYMBOL_GPL(split_page);
2569 
2570 int __isolate_free_page(struct page *page, unsigned int order)
2571 {
2572 	unsigned long watermark;
2573 	struct zone *zone;
2574 	int mt;
2575 
2576 	BUG_ON(!PageBuddy(page));
2577 
2578 	zone = page_zone(page);
2579 	mt = get_pageblock_migratetype(page);
2580 
2581 	if (!is_migrate_isolate(mt)) {
2582 		/*
2583 		 * Obey watermarks as if the page was being allocated. We can
2584 		 * emulate a high-order watermark check with a raised order-0
2585 		 * watermark, because we already know our high-order page
2586 		 * exists.
2587 		 */
2588 		watermark = min_wmark_pages(zone) + (1UL << order);
2589 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2590 			return 0;
2591 
2592 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2593 	}
2594 
2595 	/* Remove page from free list */
2596 	list_del(&page->lru);
2597 	zone->free_area[order].nr_free--;
2598 	rmv_page_order(page);
2599 
2600 	/*
2601 	 * Set the pageblock if the isolated page is at least half of a
2602 	 * pageblock
2603 	 */
2604 	if (order >= pageblock_order - 1) {
2605 		struct page *endpage = page + (1 << order) - 1;
2606 		for (; page < endpage; page += pageblock_nr_pages) {
2607 			int mt = get_pageblock_migratetype(page);
2608 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2609 				&& mt != MIGRATE_HIGHATOMIC)
2610 				set_pageblock_migratetype(page,
2611 							  MIGRATE_MOVABLE);
2612 		}
2613 	}
2614 
2615 
2616 	return 1UL << order;
2617 }
2618 
2619 /*
2620  * Update NUMA hit/miss statistics
2621  *
2622  * Must be called with interrupts disabled.
2623  */
2624 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2625 {
2626 #ifdef CONFIG_NUMA
2627 	enum zone_stat_item local_stat = NUMA_LOCAL;
2628 
2629 	if (z->node != numa_node_id())
2630 		local_stat = NUMA_OTHER;
2631 
2632 	if (z->node == preferred_zone->node)
2633 		__inc_zone_state(z, NUMA_HIT);
2634 	else {
2635 		__inc_zone_state(z, NUMA_MISS);
2636 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
2637 	}
2638 	__inc_zone_state(z, local_stat);
2639 #endif
2640 }
2641 
2642 /* Remove page from the per-cpu list, caller must protect the list */
2643 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2644 			bool cold, struct per_cpu_pages *pcp,
2645 			struct list_head *list)
2646 {
2647 	struct page *page;
2648 
2649 	VM_BUG_ON(in_interrupt());
2650 
2651 	do {
2652 		if (list_empty(list)) {
2653 			pcp->count += rmqueue_bulk(zone, 0,
2654 					pcp->batch, list,
2655 					migratetype, cold);
2656 			if (unlikely(list_empty(list)))
2657 				return NULL;
2658 		}
2659 
2660 		if (cold)
2661 			page = list_last_entry(list, struct page, lru);
2662 		else
2663 			page = list_first_entry(list, struct page, lru);
2664 
2665 		list_del(&page->lru);
2666 		pcp->count--;
2667 	} while (check_new_pcp(page));
2668 
2669 	return page;
2670 }
2671 
2672 /* Lock and remove page from the per-cpu list */
2673 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2674 			struct zone *zone, unsigned int order,
2675 			gfp_t gfp_flags, int migratetype)
2676 {
2677 	struct per_cpu_pages *pcp;
2678 	struct list_head *list;
2679 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2680 	struct page *page;
2681 
2682 	preempt_disable();
2683 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2684 	list = &pcp->lists[migratetype];
2685 	page = __rmqueue_pcplist(zone,  migratetype, cold, pcp, list);
2686 	if (page) {
2687 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2688 		zone_statistics(preferred_zone, zone);
2689 	}
2690 	preempt_enable();
2691 	return page;
2692 }
2693 
2694 /*
2695  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2696  */
2697 static inline
2698 struct page *rmqueue(struct zone *preferred_zone,
2699 			struct zone *zone, unsigned int order,
2700 			gfp_t gfp_flags, unsigned int alloc_flags,
2701 			int migratetype)
2702 {
2703 	unsigned long flags;
2704 	struct page *page;
2705 
2706 	if (likely(order == 0) && !in_interrupt()) {
2707 		page = rmqueue_pcplist(preferred_zone, zone, order,
2708 				gfp_flags, migratetype);
2709 		goto out;
2710 	}
2711 
2712 	/*
2713 	 * We most definitely don't want callers attempting to
2714 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2715 	 */
2716 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2717 	spin_lock_irqsave(&zone->lock, flags);
2718 
2719 	do {
2720 		page = NULL;
2721 		if (alloc_flags & ALLOC_HARDER) {
2722 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2723 			if (page)
2724 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
2725 		}
2726 		if (!page)
2727 			page = __rmqueue(zone, order, migratetype);
2728 	} while (page && check_new_pages(page, order));
2729 	spin_unlock(&zone->lock);
2730 	if (!page)
2731 		goto failed;
2732 	__mod_zone_freepage_state(zone, -(1 << order),
2733 				  get_pcppage_migratetype(page));
2734 
2735 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2736 	zone_statistics(preferred_zone, zone);
2737 	local_irq_restore(flags);
2738 
2739 out:
2740 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2741 	return page;
2742 
2743 failed:
2744 	local_irq_restore(flags);
2745 	return NULL;
2746 }
2747 
2748 #ifdef CONFIG_FAIL_PAGE_ALLOC
2749 
2750 static struct {
2751 	struct fault_attr attr;
2752 
2753 	bool ignore_gfp_highmem;
2754 	bool ignore_gfp_reclaim;
2755 	u32 min_order;
2756 } fail_page_alloc = {
2757 	.attr = FAULT_ATTR_INITIALIZER,
2758 	.ignore_gfp_reclaim = true,
2759 	.ignore_gfp_highmem = true,
2760 	.min_order = 1,
2761 };
2762 
2763 static int __init setup_fail_page_alloc(char *str)
2764 {
2765 	return setup_fault_attr(&fail_page_alloc.attr, str);
2766 }
2767 __setup("fail_page_alloc=", setup_fail_page_alloc);
2768 
2769 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2770 {
2771 	if (order < fail_page_alloc.min_order)
2772 		return false;
2773 	if (gfp_mask & __GFP_NOFAIL)
2774 		return false;
2775 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2776 		return false;
2777 	if (fail_page_alloc.ignore_gfp_reclaim &&
2778 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2779 		return false;
2780 
2781 	return should_fail(&fail_page_alloc.attr, 1 << order);
2782 }
2783 
2784 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2785 
2786 static int __init fail_page_alloc_debugfs(void)
2787 {
2788 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2789 	struct dentry *dir;
2790 
2791 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2792 					&fail_page_alloc.attr);
2793 	if (IS_ERR(dir))
2794 		return PTR_ERR(dir);
2795 
2796 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2797 				&fail_page_alloc.ignore_gfp_reclaim))
2798 		goto fail;
2799 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2800 				&fail_page_alloc.ignore_gfp_highmem))
2801 		goto fail;
2802 	if (!debugfs_create_u32("min-order", mode, dir,
2803 				&fail_page_alloc.min_order))
2804 		goto fail;
2805 
2806 	return 0;
2807 fail:
2808 	debugfs_remove_recursive(dir);
2809 
2810 	return -ENOMEM;
2811 }
2812 
2813 late_initcall(fail_page_alloc_debugfs);
2814 
2815 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2816 
2817 #else /* CONFIG_FAIL_PAGE_ALLOC */
2818 
2819 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2820 {
2821 	return false;
2822 }
2823 
2824 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2825 
2826 /*
2827  * Return true if free base pages are above 'mark'. For high-order checks it
2828  * will return true of the order-0 watermark is reached and there is at least
2829  * one free page of a suitable size. Checking now avoids taking the zone lock
2830  * to check in the allocation paths if no pages are free.
2831  */
2832 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2833 			 int classzone_idx, unsigned int alloc_flags,
2834 			 long free_pages)
2835 {
2836 	long min = mark;
2837 	int o;
2838 	const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2839 
2840 	/* free_pages may go negative - that's OK */
2841 	free_pages -= (1 << order) - 1;
2842 
2843 	if (alloc_flags & ALLOC_HIGH)
2844 		min -= min / 2;
2845 
2846 	/*
2847 	 * If the caller does not have rights to ALLOC_HARDER then subtract
2848 	 * the high-atomic reserves. This will over-estimate the size of the
2849 	 * atomic reserve but it avoids a search.
2850 	 */
2851 	if (likely(!alloc_harder))
2852 		free_pages -= z->nr_reserved_highatomic;
2853 	else
2854 		min -= min / 4;
2855 
2856 #ifdef CONFIG_CMA
2857 	/* If allocation can't use CMA areas don't use free CMA pages */
2858 	if (!(alloc_flags & ALLOC_CMA))
2859 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2860 #endif
2861 
2862 	/*
2863 	 * Check watermarks for an order-0 allocation request. If these
2864 	 * are not met, then a high-order request also cannot go ahead
2865 	 * even if a suitable page happened to be free.
2866 	 */
2867 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2868 		return false;
2869 
2870 	/* If this is an order-0 request then the watermark is fine */
2871 	if (!order)
2872 		return true;
2873 
2874 	/* For a high-order request, check at least one suitable page is free */
2875 	for (o = order; o < MAX_ORDER; o++) {
2876 		struct free_area *area = &z->free_area[o];
2877 		int mt;
2878 
2879 		if (!area->nr_free)
2880 			continue;
2881 
2882 		if (alloc_harder)
2883 			return true;
2884 
2885 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2886 			if (!list_empty(&area->free_list[mt]))
2887 				return true;
2888 		}
2889 
2890 #ifdef CONFIG_CMA
2891 		if ((alloc_flags & ALLOC_CMA) &&
2892 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2893 			return true;
2894 		}
2895 #endif
2896 	}
2897 	return false;
2898 }
2899 
2900 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2901 		      int classzone_idx, unsigned int alloc_flags)
2902 {
2903 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2904 					zone_page_state(z, NR_FREE_PAGES));
2905 }
2906 
2907 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2908 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2909 {
2910 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2911 	long cma_pages = 0;
2912 
2913 #ifdef CONFIG_CMA
2914 	/* If allocation can't use CMA areas don't use free CMA pages */
2915 	if (!(alloc_flags & ALLOC_CMA))
2916 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2917 #endif
2918 
2919 	/*
2920 	 * Fast check for order-0 only. If this fails then the reserves
2921 	 * need to be calculated. There is a corner case where the check
2922 	 * passes but only the high-order atomic reserve are free. If
2923 	 * the caller is !atomic then it'll uselessly search the free
2924 	 * list. That corner case is then slower but it is harmless.
2925 	 */
2926 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2927 		return true;
2928 
2929 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2930 					free_pages);
2931 }
2932 
2933 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2934 			unsigned long mark, int classzone_idx)
2935 {
2936 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2937 
2938 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2939 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2940 
2941 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2942 								free_pages);
2943 }
2944 
2945 #ifdef CONFIG_NUMA
2946 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2947 {
2948 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2949 				RECLAIM_DISTANCE;
2950 }
2951 #else	/* CONFIG_NUMA */
2952 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2953 {
2954 	return true;
2955 }
2956 #endif	/* CONFIG_NUMA */
2957 
2958 /*
2959  * get_page_from_freelist goes through the zonelist trying to allocate
2960  * a page.
2961  */
2962 static struct page *
2963 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2964 						const struct alloc_context *ac)
2965 {
2966 	struct zoneref *z = ac->preferred_zoneref;
2967 	struct zone *zone;
2968 	struct pglist_data *last_pgdat_dirty_limit = NULL;
2969 
2970 	/*
2971 	 * Scan zonelist, looking for a zone with enough free.
2972 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2973 	 */
2974 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2975 								ac->nodemask) {
2976 		struct page *page;
2977 		unsigned long mark;
2978 
2979 		if (cpusets_enabled() &&
2980 			(alloc_flags & ALLOC_CPUSET) &&
2981 			!__cpuset_zone_allowed(zone, gfp_mask))
2982 				continue;
2983 		/*
2984 		 * When allocating a page cache page for writing, we
2985 		 * want to get it from a node that is within its dirty
2986 		 * limit, such that no single node holds more than its
2987 		 * proportional share of globally allowed dirty pages.
2988 		 * The dirty limits take into account the node's
2989 		 * lowmem reserves and high watermark so that kswapd
2990 		 * should be able to balance it without having to
2991 		 * write pages from its LRU list.
2992 		 *
2993 		 * XXX: For now, allow allocations to potentially
2994 		 * exceed the per-node dirty limit in the slowpath
2995 		 * (spread_dirty_pages unset) before going into reclaim,
2996 		 * which is important when on a NUMA setup the allowed
2997 		 * nodes are together not big enough to reach the
2998 		 * global limit.  The proper fix for these situations
2999 		 * will require awareness of nodes in the
3000 		 * dirty-throttling and the flusher threads.
3001 		 */
3002 		if (ac->spread_dirty_pages) {
3003 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3004 				continue;
3005 
3006 			if (!node_dirty_ok(zone->zone_pgdat)) {
3007 				last_pgdat_dirty_limit = zone->zone_pgdat;
3008 				continue;
3009 			}
3010 		}
3011 
3012 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3013 		if (!zone_watermark_fast(zone, order, mark,
3014 				       ac_classzone_idx(ac), alloc_flags)) {
3015 			int ret;
3016 
3017 			/* Checked here to keep the fast path fast */
3018 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3019 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3020 				goto try_this_zone;
3021 
3022 			if (node_reclaim_mode == 0 ||
3023 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3024 				continue;
3025 
3026 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3027 			switch (ret) {
3028 			case NODE_RECLAIM_NOSCAN:
3029 				/* did not scan */
3030 				continue;
3031 			case NODE_RECLAIM_FULL:
3032 				/* scanned but unreclaimable */
3033 				continue;
3034 			default:
3035 				/* did we reclaim enough */
3036 				if (zone_watermark_ok(zone, order, mark,
3037 						ac_classzone_idx(ac), alloc_flags))
3038 					goto try_this_zone;
3039 
3040 				continue;
3041 			}
3042 		}
3043 
3044 try_this_zone:
3045 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3046 				gfp_mask, alloc_flags, ac->migratetype);
3047 		if (page) {
3048 			prep_new_page(page, order, gfp_mask, alloc_flags);
3049 
3050 			/*
3051 			 * If this is a high-order atomic allocation then check
3052 			 * if the pageblock should be reserved for the future
3053 			 */
3054 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3055 				reserve_highatomic_pageblock(page, zone, order);
3056 
3057 			return page;
3058 		}
3059 	}
3060 
3061 	return NULL;
3062 }
3063 
3064 /*
3065  * Large machines with many possible nodes should not always dump per-node
3066  * meminfo in irq context.
3067  */
3068 static inline bool should_suppress_show_mem(void)
3069 {
3070 	bool ret = false;
3071 
3072 #if NODES_SHIFT > 8
3073 	ret = in_interrupt();
3074 #endif
3075 	return ret;
3076 }
3077 
3078 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3079 {
3080 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3081 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3082 
3083 	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3084 		return;
3085 
3086 	/*
3087 	 * This documents exceptions given to allocations in certain
3088 	 * contexts that are allowed to allocate outside current's set
3089 	 * of allowed nodes.
3090 	 */
3091 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3092 		if (test_thread_flag(TIF_MEMDIE) ||
3093 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3094 			filter &= ~SHOW_MEM_FILTER_NODES;
3095 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3096 		filter &= ~SHOW_MEM_FILTER_NODES;
3097 
3098 	show_mem(filter, nodemask);
3099 }
3100 
3101 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3102 {
3103 	struct va_format vaf;
3104 	va_list args;
3105 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3106 				      DEFAULT_RATELIMIT_BURST);
3107 
3108 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3109 	    debug_guardpage_minorder() > 0)
3110 		return;
3111 
3112 	pr_warn("%s: ", current->comm);
3113 
3114 	va_start(args, fmt);
3115 	vaf.fmt = fmt;
3116 	vaf.va = &args;
3117 	pr_cont("%pV", &vaf);
3118 	va_end(args);
3119 
3120 	pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3121 	if (nodemask)
3122 		pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3123 	else
3124 		pr_cont("(null)\n");
3125 
3126 	cpuset_print_current_mems_allowed();
3127 
3128 	dump_stack();
3129 	warn_alloc_show_mem(gfp_mask, nodemask);
3130 }
3131 
3132 static inline struct page *
3133 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3134 			      unsigned int alloc_flags,
3135 			      const struct alloc_context *ac)
3136 {
3137 	struct page *page;
3138 
3139 	page = get_page_from_freelist(gfp_mask, order,
3140 			alloc_flags|ALLOC_CPUSET, ac);
3141 	/*
3142 	 * fallback to ignore cpuset restriction if our nodes
3143 	 * are depleted
3144 	 */
3145 	if (!page)
3146 		page = get_page_from_freelist(gfp_mask, order,
3147 				alloc_flags, ac);
3148 
3149 	return page;
3150 }
3151 
3152 static inline struct page *
3153 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3154 	const struct alloc_context *ac, unsigned long *did_some_progress)
3155 {
3156 	struct oom_control oc = {
3157 		.zonelist = ac->zonelist,
3158 		.nodemask = ac->nodemask,
3159 		.memcg = NULL,
3160 		.gfp_mask = gfp_mask,
3161 		.order = order,
3162 	};
3163 	struct page *page;
3164 
3165 	*did_some_progress = 0;
3166 
3167 	/*
3168 	 * Acquire the oom lock.  If that fails, somebody else is
3169 	 * making progress for us.
3170 	 */
3171 	if (!mutex_trylock(&oom_lock)) {
3172 		*did_some_progress = 1;
3173 		schedule_timeout_uninterruptible(1);
3174 		return NULL;
3175 	}
3176 
3177 	/*
3178 	 * Go through the zonelist yet one more time, keep very high watermark
3179 	 * here, this is only to catch a parallel oom killing, we must fail if
3180 	 * we're still under heavy pressure.
3181 	 */
3182 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3183 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3184 	if (page)
3185 		goto out;
3186 
3187 	/* Coredumps can quickly deplete all memory reserves */
3188 	if (current->flags & PF_DUMPCORE)
3189 		goto out;
3190 	/* The OOM killer will not help higher order allocs */
3191 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3192 		goto out;
3193 	/* The OOM killer does not needlessly kill tasks for lowmem */
3194 	if (ac->high_zoneidx < ZONE_NORMAL)
3195 		goto out;
3196 	if (pm_suspended_storage())
3197 		goto out;
3198 	/*
3199 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3200 	 * other request to make a forward progress.
3201 	 * We are in an unfortunate situation where out_of_memory cannot
3202 	 * do much for this context but let's try it to at least get
3203 	 * access to memory reserved if the current task is killed (see
3204 	 * out_of_memory). Once filesystems are ready to handle allocation
3205 	 * failures more gracefully we should just bail out here.
3206 	 */
3207 
3208 	/* The OOM killer may not free memory on a specific node */
3209 	if (gfp_mask & __GFP_THISNODE)
3210 		goto out;
3211 
3212 	/* Exhausted what can be done so it's blamo time */
3213 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3214 		*did_some_progress = 1;
3215 
3216 		/*
3217 		 * Help non-failing allocations by giving them access to memory
3218 		 * reserves
3219 		 */
3220 		if (gfp_mask & __GFP_NOFAIL)
3221 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3222 					ALLOC_NO_WATERMARKS, ac);
3223 	}
3224 out:
3225 	mutex_unlock(&oom_lock);
3226 	return page;
3227 }
3228 
3229 /*
3230  * Maximum number of compaction retries wit a progress before OOM
3231  * killer is consider as the only way to move forward.
3232  */
3233 #define MAX_COMPACT_RETRIES 16
3234 
3235 #ifdef CONFIG_COMPACTION
3236 /* Try memory compaction for high-order allocations before reclaim */
3237 static struct page *
3238 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3239 		unsigned int alloc_flags, const struct alloc_context *ac,
3240 		enum compact_priority prio, enum compact_result *compact_result)
3241 {
3242 	struct page *page;
3243 
3244 	if (!order)
3245 		return NULL;
3246 
3247 	current->flags |= PF_MEMALLOC;
3248 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3249 									prio);
3250 	current->flags &= ~PF_MEMALLOC;
3251 
3252 	if (*compact_result <= COMPACT_INACTIVE)
3253 		return NULL;
3254 
3255 	/*
3256 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3257 	 * count a compaction stall
3258 	 */
3259 	count_vm_event(COMPACTSTALL);
3260 
3261 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3262 
3263 	if (page) {
3264 		struct zone *zone = page_zone(page);
3265 
3266 		zone->compact_blockskip_flush = false;
3267 		compaction_defer_reset(zone, order, true);
3268 		count_vm_event(COMPACTSUCCESS);
3269 		return page;
3270 	}
3271 
3272 	/*
3273 	 * It's bad if compaction run occurs and fails. The most likely reason
3274 	 * is that pages exist, but not enough to satisfy watermarks.
3275 	 */
3276 	count_vm_event(COMPACTFAIL);
3277 
3278 	cond_resched();
3279 
3280 	return NULL;
3281 }
3282 
3283 static inline bool
3284 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3285 		     enum compact_result compact_result,
3286 		     enum compact_priority *compact_priority,
3287 		     int *compaction_retries)
3288 {
3289 	int max_retries = MAX_COMPACT_RETRIES;
3290 	int min_priority;
3291 	bool ret = false;
3292 	int retries = *compaction_retries;
3293 	enum compact_priority priority = *compact_priority;
3294 
3295 	if (!order)
3296 		return false;
3297 
3298 	if (compaction_made_progress(compact_result))
3299 		(*compaction_retries)++;
3300 
3301 	/*
3302 	 * compaction considers all the zone as desperately out of memory
3303 	 * so it doesn't really make much sense to retry except when the
3304 	 * failure could be caused by insufficient priority
3305 	 */
3306 	if (compaction_failed(compact_result))
3307 		goto check_priority;
3308 
3309 	/*
3310 	 * make sure the compaction wasn't deferred or didn't bail out early
3311 	 * due to locks contention before we declare that we should give up.
3312 	 * But do not retry if the given zonelist is not suitable for
3313 	 * compaction.
3314 	 */
3315 	if (compaction_withdrawn(compact_result)) {
3316 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3317 		goto out;
3318 	}
3319 
3320 	/*
3321 	 * !costly requests are much more important than __GFP_REPEAT
3322 	 * costly ones because they are de facto nofail and invoke OOM
3323 	 * killer to move on while costly can fail and users are ready
3324 	 * to cope with that. 1/4 retries is rather arbitrary but we
3325 	 * would need much more detailed feedback from compaction to
3326 	 * make a better decision.
3327 	 */
3328 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3329 		max_retries /= 4;
3330 	if (*compaction_retries <= max_retries) {
3331 		ret = true;
3332 		goto out;
3333 	}
3334 
3335 	/*
3336 	 * Make sure there are attempts at the highest priority if we exhausted
3337 	 * all retries or failed at the lower priorities.
3338 	 */
3339 check_priority:
3340 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3341 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3342 
3343 	if (*compact_priority > min_priority) {
3344 		(*compact_priority)--;
3345 		*compaction_retries = 0;
3346 		ret = true;
3347 	}
3348 out:
3349 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3350 	return ret;
3351 }
3352 #else
3353 static inline struct page *
3354 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3355 		unsigned int alloc_flags, const struct alloc_context *ac,
3356 		enum compact_priority prio, enum compact_result *compact_result)
3357 {
3358 	*compact_result = COMPACT_SKIPPED;
3359 	return NULL;
3360 }
3361 
3362 static inline bool
3363 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3364 		     enum compact_result compact_result,
3365 		     enum compact_priority *compact_priority,
3366 		     int *compaction_retries)
3367 {
3368 	struct zone *zone;
3369 	struct zoneref *z;
3370 
3371 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3372 		return false;
3373 
3374 	/*
3375 	 * There are setups with compaction disabled which would prefer to loop
3376 	 * inside the allocator rather than hit the oom killer prematurely.
3377 	 * Let's give them a good hope and keep retrying while the order-0
3378 	 * watermarks are OK.
3379 	 */
3380 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3381 					ac->nodemask) {
3382 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3383 					ac_classzone_idx(ac), alloc_flags))
3384 			return true;
3385 	}
3386 	return false;
3387 }
3388 #endif /* CONFIG_COMPACTION */
3389 
3390 /* Perform direct synchronous page reclaim */
3391 static int
3392 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3393 					const struct alloc_context *ac)
3394 {
3395 	struct reclaim_state reclaim_state;
3396 	int progress;
3397 
3398 	cond_resched();
3399 
3400 	/* We now go into synchronous reclaim */
3401 	cpuset_memory_pressure_bump();
3402 	current->flags |= PF_MEMALLOC;
3403 	lockdep_set_current_reclaim_state(gfp_mask);
3404 	reclaim_state.reclaimed_slab = 0;
3405 	current->reclaim_state = &reclaim_state;
3406 
3407 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3408 								ac->nodemask);
3409 
3410 	current->reclaim_state = NULL;
3411 	lockdep_clear_current_reclaim_state();
3412 	current->flags &= ~PF_MEMALLOC;
3413 
3414 	cond_resched();
3415 
3416 	return progress;
3417 }
3418 
3419 /* The really slow allocator path where we enter direct reclaim */
3420 static inline struct page *
3421 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3422 		unsigned int alloc_flags, const struct alloc_context *ac,
3423 		unsigned long *did_some_progress)
3424 {
3425 	struct page *page = NULL;
3426 	bool drained = false;
3427 
3428 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3429 	if (unlikely(!(*did_some_progress)))
3430 		return NULL;
3431 
3432 retry:
3433 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3434 
3435 	/*
3436 	 * If an allocation failed after direct reclaim, it could be because
3437 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3438 	 * Shrink them them and try again
3439 	 */
3440 	if (!page && !drained) {
3441 		unreserve_highatomic_pageblock(ac, false);
3442 		drain_all_pages(NULL);
3443 		drained = true;
3444 		goto retry;
3445 	}
3446 
3447 	return page;
3448 }
3449 
3450 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3451 {
3452 	struct zoneref *z;
3453 	struct zone *zone;
3454 	pg_data_t *last_pgdat = NULL;
3455 
3456 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3457 					ac->high_zoneidx, ac->nodemask) {
3458 		if (last_pgdat != zone->zone_pgdat)
3459 			wakeup_kswapd(zone, order, ac->high_zoneidx);
3460 		last_pgdat = zone->zone_pgdat;
3461 	}
3462 }
3463 
3464 static inline unsigned int
3465 gfp_to_alloc_flags(gfp_t gfp_mask)
3466 {
3467 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3468 
3469 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3470 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3471 
3472 	/*
3473 	 * The caller may dip into page reserves a bit more if the caller
3474 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3475 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3476 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3477 	 */
3478 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3479 
3480 	if (gfp_mask & __GFP_ATOMIC) {
3481 		/*
3482 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3483 		 * if it can't schedule.
3484 		 */
3485 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3486 			alloc_flags |= ALLOC_HARDER;
3487 		/*
3488 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3489 		 * comment for __cpuset_node_allowed().
3490 		 */
3491 		alloc_flags &= ~ALLOC_CPUSET;
3492 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3493 		alloc_flags |= ALLOC_HARDER;
3494 
3495 #ifdef CONFIG_CMA
3496 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3497 		alloc_flags |= ALLOC_CMA;
3498 #endif
3499 	return alloc_flags;
3500 }
3501 
3502 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3503 {
3504 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3505 		return false;
3506 
3507 	if (gfp_mask & __GFP_MEMALLOC)
3508 		return true;
3509 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3510 		return true;
3511 	if (!in_interrupt() &&
3512 			((current->flags & PF_MEMALLOC) ||
3513 			 unlikely(test_thread_flag(TIF_MEMDIE))))
3514 		return true;
3515 
3516 	return false;
3517 }
3518 
3519 /*
3520  * Maximum number of reclaim retries without any progress before OOM killer
3521  * is consider as the only way to move forward.
3522  */
3523 #define MAX_RECLAIM_RETRIES 16
3524 
3525 /*
3526  * Checks whether it makes sense to retry the reclaim to make a forward progress
3527  * for the given allocation request.
3528  * The reclaim feedback represented by did_some_progress (any progress during
3529  * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3530  * any progress in a row) is considered as well as the reclaimable pages on the
3531  * applicable zone list (with a backoff mechanism which is a function of
3532  * no_progress_loops).
3533  *
3534  * Returns true if a retry is viable or false to enter the oom path.
3535  */
3536 static inline bool
3537 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3538 		     struct alloc_context *ac, int alloc_flags,
3539 		     bool did_some_progress, int *no_progress_loops)
3540 {
3541 	struct zone *zone;
3542 	struct zoneref *z;
3543 
3544 	/*
3545 	 * Costly allocations might have made a progress but this doesn't mean
3546 	 * their order will become available due to high fragmentation so
3547 	 * always increment the no progress counter for them
3548 	 */
3549 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3550 		*no_progress_loops = 0;
3551 	else
3552 		(*no_progress_loops)++;
3553 
3554 	/*
3555 	 * Make sure we converge to OOM if we cannot make any progress
3556 	 * several times in the row.
3557 	 */
3558 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3559 		/* Before OOM, exhaust highatomic_reserve */
3560 		return unreserve_highatomic_pageblock(ac, true);
3561 	}
3562 
3563 	/*
3564 	 * Keep reclaiming pages while there is a chance this will lead
3565 	 * somewhere.  If none of the target zones can satisfy our allocation
3566 	 * request even if all reclaimable pages are considered then we are
3567 	 * screwed and have to go OOM.
3568 	 */
3569 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3570 					ac->nodemask) {
3571 		unsigned long available;
3572 		unsigned long reclaimable;
3573 		unsigned long min_wmark = min_wmark_pages(zone);
3574 		bool wmark;
3575 
3576 		available = reclaimable = zone_reclaimable_pages(zone);
3577 		available -= DIV_ROUND_UP((*no_progress_loops) * available,
3578 					  MAX_RECLAIM_RETRIES);
3579 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3580 
3581 		/*
3582 		 * Would the allocation succeed if we reclaimed the whole
3583 		 * available?
3584 		 */
3585 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3586 				ac_classzone_idx(ac), alloc_flags, available);
3587 		trace_reclaim_retry_zone(z, order, reclaimable,
3588 				available, min_wmark, *no_progress_loops, wmark);
3589 		if (wmark) {
3590 			/*
3591 			 * If we didn't make any progress and have a lot of
3592 			 * dirty + writeback pages then we should wait for
3593 			 * an IO to complete to slow down the reclaim and
3594 			 * prevent from pre mature OOM
3595 			 */
3596 			if (!did_some_progress) {
3597 				unsigned long write_pending;
3598 
3599 				write_pending = zone_page_state_snapshot(zone,
3600 							NR_ZONE_WRITE_PENDING);
3601 
3602 				if (2 * write_pending > reclaimable) {
3603 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3604 					return true;
3605 				}
3606 			}
3607 
3608 			/*
3609 			 * Memory allocation/reclaim might be called from a WQ
3610 			 * context and the current implementation of the WQ
3611 			 * concurrency control doesn't recognize that
3612 			 * a particular WQ is congested if the worker thread is
3613 			 * looping without ever sleeping. Therefore we have to
3614 			 * do a short sleep here rather than calling
3615 			 * cond_resched().
3616 			 */
3617 			if (current->flags & PF_WQ_WORKER)
3618 				schedule_timeout_uninterruptible(1);
3619 			else
3620 				cond_resched();
3621 
3622 			return true;
3623 		}
3624 	}
3625 
3626 	return false;
3627 }
3628 
3629 static inline struct page *
3630 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3631 						struct alloc_context *ac)
3632 {
3633 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3634 	struct page *page = NULL;
3635 	unsigned int alloc_flags;
3636 	unsigned long did_some_progress;
3637 	enum compact_priority compact_priority;
3638 	enum compact_result compact_result;
3639 	int compaction_retries;
3640 	int no_progress_loops;
3641 	unsigned long alloc_start = jiffies;
3642 	unsigned int stall_timeout = 10 * HZ;
3643 	unsigned int cpuset_mems_cookie;
3644 
3645 	/*
3646 	 * In the slowpath, we sanity check order to avoid ever trying to
3647 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3648 	 * be using allocators in order of preference for an area that is
3649 	 * too large.
3650 	 */
3651 	if (order >= MAX_ORDER) {
3652 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3653 		return NULL;
3654 	}
3655 
3656 	/*
3657 	 * We also sanity check to catch abuse of atomic reserves being used by
3658 	 * callers that are not in atomic context.
3659 	 */
3660 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3661 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3662 		gfp_mask &= ~__GFP_ATOMIC;
3663 
3664 retry_cpuset:
3665 	compaction_retries = 0;
3666 	no_progress_loops = 0;
3667 	compact_priority = DEF_COMPACT_PRIORITY;
3668 	cpuset_mems_cookie = read_mems_allowed_begin();
3669 
3670 	/*
3671 	 * The fast path uses conservative alloc_flags to succeed only until
3672 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3673 	 * alloc_flags precisely. So we do that now.
3674 	 */
3675 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3676 
3677 	/*
3678 	 * We need to recalculate the starting point for the zonelist iterator
3679 	 * because we might have used different nodemask in the fast path, or
3680 	 * there was a cpuset modification and we are retrying - otherwise we
3681 	 * could end up iterating over non-eligible zones endlessly.
3682 	 */
3683 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3684 					ac->high_zoneidx, ac->nodemask);
3685 	if (!ac->preferred_zoneref->zone)
3686 		goto nopage;
3687 
3688 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3689 		wake_all_kswapds(order, ac);
3690 
3691 	/*
3692 	 * The adjusted alloc_flags might result in immediate success, so try
3693 	 * that first
3694 	 */
3695 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3696 	if (page)
3697 		goto got_pg;
3698 
3699 	/*
3700 	 * For costly allocations, try direct compaction first, as it's likely
3701 	 * that we have enough base pages and don't need to reclaim. Don't try
3702 	 * that for allocations that are allowed to ignore watermarks, as the
3703 	 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3704 	 */
3705 	if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3706 		!gfp_pfmemalloc_allowed(gfp_mask)) {
3707 		page = __alloc_pages_direct_compact(gfp_mask, order,
3708 						alloc_flags, ac,
3709 						INIT_COMPACT_PRIORITY,
3710 						&compact_result);
3711 		if (page)
3712 			goto got_pg;
3713 
3714 		/*
3715 		 * Checks for costly allocations with __GFP_NORETRY, which
3716 		 * includes THP page fault allocations
3717 		 */
3718 		if (gfp_mask & __GFP_NORETRY) {
3719 			/*
3720 			 * If compaction is deferred for high-order allocations,
3721 			 * it is because sync compaction recently failed. If
3722 			 * this is the case and the caller requested a THP
3723 			 * allocation, we do not want to heavily disrupt the
3724 			 * system, so we fail the allocation instead of entering
3725 			 * direct reclaim.
3726 			 */
3727 			if (compact_result == COMPACT_DEFERRED)
3728 				goto nopage;
3729 
3730 			/*
3731 			 * Looks like reclaim/compaction is worth trying, but
3732 			 * sync compaction could be very expensive, so keep
3733 			 * using async compaction.
3734 			 */
3735 			compact_priority = INIT_COMPACT_PRIORITY;
3736 		}
3737 	}
3738 
3739 retry:
3740 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3741 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3742 		wake_all_kswapds(order, ac);
3743 
3744 	if (gfp_pfmemalloc_allowed(gfp_mask))
3745 		alloc_flags = ALLOC_NO_WATERMARKS;
3746 
3747 	/*
3748 	 * Reset the zonelist iterators if memory policies can be ignored.
3749 	 * These allocations are high priority and system rather than user
3750 	 * orientated.
3751 	 */
3752 	if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3753 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3754 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3755 					ac->high_zoneidx, ac->nodemask);
3756 	}
3757 
3758 	/* Attempt with potentially adjusted zonelist and alloc_flags */
3759 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3760 	if (page)
3761 		goto got_pg;
3762 
3763 	/* Caller is not willing to reclaim, we can't balance anything */
3764 	if (!can_direct_reclaim)
3765 		goto nopage;
3766 
3767 	/* Make sure we know about allocations which stall for too long */
3768 	if (time_after(jiffies, alloc_start + stall_timeout)) {
3769 		warn_alloc(gfp_mask, ac->nodemask,
3770 			"page allocation stalls for %ums, order:%u",
3771 			jiffies_to_msecs(jiffies-alloc_start), order);
3772 		stall_timeout += 10 * HZ;
3773 	}
3774 
3775 	/* Avoid recursion of direct reclaim */
3776 	if (current->flags & PF_MEMALLOC)
3777 		goto nopage;
3778 
3779 	/* Try direct reclaim and then allocating */
3780 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3781 							&did_some_progress);
3782 	if (page)
3783 		goto got_pg;
3784 
3785 	/* Try direct compaction and then allocating */
3786 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3787 					compact_priority, &compact_result);
3788 	if (page)
3789 		goto got_pg;
3790 
3791 	/* Do not loop if specifically requested */
3792 	if (gfp_mask & __GFP_NORETRY)
3793 		goto nopage;
3794 
3795 	/*
3796 	 * Do not retry costly high order allocations unless they are
3797 	 * __GFP_REPEAT
3798 	 */
3799 	if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3800 		goto nopage;
3801 
3802 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3803 				 did_some_progress > 0, &no_progress_loops))
3804 		goto retry;
3805 
3806 	/*
3807 	 * It doesn't make any sense to retry for the compaction if the order-0
3808 	 * reclaim is not able to make any progress because the current
3809 	 * implementation of the compaction depends on the sufficient amount
3810 	 * of free memory (see __compaction_suitable)
3811 	 */
3812 	if (did_some_progress > 0 &&
3813 			should_compact_retry(ac, order, alloc_flags,
3814 				compact_result, &compact_priority,
3815 				&compaction_retries))
3816 		goto retry;
3817 
3818 	/*
3819 	 * It's possible we raced with cpuset update so the OOM would be
3820 	 * premature (see below the nopage: label for full explanation).
3821 	 */
3822 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3823 		goto retry_cpuset;
3824 
3825 	/* Reclaim has failed us, start killing things */
3826 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3827 	if (page)
3828 		goto got_pg;
3829 
3830 	/* Avoid allocations with no watermarks from looping endlessly */
3831 	if (test_thread_flag(TIF_MEMDIE))
3832 		goto nopage;
3833 
3834 	/* Retry as long as the OOM killer is making progress */
3835 	if (did_some_progress) {
3836 		no_progress_loops = 0;
3837 		goto retry;
3838 	}
3839 
3840 nopage:
3841 	/*
3842 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3843 	 * possible to race with parallel threads in such a way that our
3844 	 * allocation can fail while the mask is being updated. If we are about
3845 	 * to fail, check if the cpuset changed during allocation and if so,
3846 	 * retry.
3847 	 */
3848 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3849 		goto retry_cpuset;
3850 
3851 	/*
3852 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3853 	 * we always retry
3854 	 */
3855 	if (gfp_mask & __GFP_NOFAIL) {
3856 		/*
3857 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
3858 		 * of any new users that actually require GFP_NOWAIT
3859 		 */
3860 		if (WARN_ON_ONCE(!can_direct_reclaim))
3861 			goto fail;
3862 
3863 		/*
3864 		 * PF_MEMALLOC request from this context is rather bizarre
3865 		 * because we cannot reclaim anything and only can loop waiting
3866 		 * for somebody to do a work for us
3867 		 */
3868 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3869 
3870 		/*
3871 		 * non failing costly orders are a hard requirement which we
3872 		 * are not prepared for much so let's warn about these users
3873 		 * so that we can identify them and convert them to something
3874 		 * else.
3875 		 */
3876 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3877 
3878 		/*
3879 		 * Help non-failing allocations by giving them access to memory
3880 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
3881 		 * could deplete whole memory reserves which would just make
3882 		 * the situation worse
3883 		 */
3884 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3885 		if (page)
3886 			goto got_pg;
3887 
3888 		cond_resched();
3889 		goto retry;
3890 	}
3891 fail:
3892 	warn_alloc(gfp_mask, ac->nodemask,
3893 			"page allocation failure: order:%u", order);
3894 got_pg:
3895 	return page;
3896 }
3897 
3898 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3899 		struct zonelist *zonelist, nodemask_t *nodemask,
3900 		struct alloc_context *ac, gfp_t *alloc_mask,
3901 		unsigned int *alloc_flags)
3902 {
3903 	ac->high_zoneidx = gfp_zone(gfp_mask);
3904 	ac->zonelist = zonelist;
3905 	ac->nodemask = nodemask;
3906 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
3907 
3908 	if (cpusets_enabled()) {
3909 		*alloc_mask |= __GFP_HARDWALL;
3910 		if (!ac->nodemask)
3911 			ac->nodemask = &cpuset_current_mems_allowed;
3912 		else
3913 			*alloc_flags |= ALLOC_CPUSET;
3914 	}
3915 
3916 	lockdep_trace_alloc(gfp_mask);
3917 
3918 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3919 
3920 	if (should_fail_alloc_page(gfp_mask, order))
3921 		return false;
3922 
3923 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
3924 		*alloc_flags |= ALLOC_CMA;
3925 
3926 	return true;
3927 }
3928 
3929 /* Determine whether to spread dirty pages and what the first usable zone */
3930 static inline void finalise_ac(gfp_t gfp_mask,
3931 		unsigned int order, struct alloc_context *ac)
3932 {
3933 	/* Dirty zone balancing only done in the fast path */
3934 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3935 
3936 	/*
3937 	 * The preferred zone is used for statistics but crucially it is
3938 	 * also used as the starting point for the zonelist iterator. It
3939 	 * may get reset for allocations that ignore memory policies.
3940 	 */
3941 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3942 					ac->high_zoneidx, ac->nodemask);
3943 }
3944 
3945 /*
3946  * This is the 'heart' of the zoned buddy allocator.
3947  */
3948 struct page *
3949 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3950 			struct zonelist *zonelist, nodemask_t *nodemask)
3951 {
3952 	struct page *page;
3953 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
3954 	gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3955 	struct alloc_context ac = { };
3956 
3957 	gfp_mask &= gfp_allowed_mask;
3958 	if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
3959 		return NULL;
3960 
3961 	finalise_ac(gfp_mask, order, &ac);
3962 
3963 	/* First allocation attempt */
3964 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3965 	if (likely(page))
3966 		goto out;
3967 
3968 	/*
3969 	 * Runtime PM, block IO and its error handling path can deadlock
3970 	 * because I/O on the device might not complete.
3971 	 */
3972 	alloc_mask = memalloc_noio_flags(gfp_mask);
3973 	ac.spread_dirty_pages = false;
3974 
3975 	/*
3976 	 * Restore the original nodemask if it was potentially replaced with
3977 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3978 	 */
3979 	if (unlikely(ac.nodemask != nodemask))
3980 		ac.nodemask = nodemask;
3981 
3982 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3983 
3984 out:
3985 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3986 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3987 		__free_pages(page, order);
3988 		page = NULL;
3989 	}
3990 
3991 	if (kmemcheck_enabled && page)
3992 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3993 
3994 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3995 
3996 	return page;
3997 }
3998 EXPORT_SYMBOL(__alloc_pages_nodemask);
3999 
4000 /*
4001  * Common helper functions.
4002  */
4003 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4004 {
4005 	struct page *page;
4006 
4007 	/*
4008 	 * __get_free_pages() returns a 32-bit address, which cannot represent
4009 	 * a highmem page
4010 	 */
4011 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4012 
4013 	page = alloc_pages(gfp_mask, order);
4014 	if (!page)
4015 		return 0;
4016 	return (unsigned long) page_address(page);
4017 }
4018 EXPORT_SYMBOL(__get_free_pages);
4019 
4020 unsigned long get_zeroed_page(gfp_t gfp_mask)
4021 {
4022 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4023 }
4024 EXPORT_SYMBOL(get_zeroed_page);
4025 
4026 void __free_pages(struct page *page, unsigned int order)
4027 {
4028 	if (put_page_testzero(page)) {
4029 		if (order == 0)
4030 			free_hot_cold_page(page, false);
4031 		else
4032 			__free_pages_ok(page, order);
4033 	}
4034 }
4035 
4036 EXPORT_SYMBOL(__free_pages);
4037 
4038 void free_pages(unsigned long addr, unsigned int order)
4039 {
4040 	if (addr != 0) {
4041 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4042 		__free_pages(virt_to_page((void *)addr), order);
4043 	}
4044 }
4045 
4046 EXPORT_SYMBOL(free_pages);
4047 
4048 /*
4049  * Page Fragment:
4050  *  An arbitrary-length arbitrary-offset area of memory which resides
4051  *  within a 0 or higher order page.  Multiple fragments within that page
4052  *  are individually refcounted, in the page's reference counter.
4053  *
4054  * The page_frag functions below provide a simple allocation framework for
4055  * page fragments.  This is used by the network stack and network device
4056  * drivers to provide a backing region of memory for use as either an
4057  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4058  */
4059 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4060 					     gfp_t gfp_mask)
4061 {
4062 	struct page *page = NULL;
4063 	gfp_t gfp = gfp_mask;
4064 
4065 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4066 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4067 		    __GFP_NOMEMALLOC;
4068 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4069 				PAGE_FRAG_CACHE_MAX_ORDER);
4070 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4071 #endif
4072 	if (unlikely(!page))
4073 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4074 
4075 	nc->va = page ? page_address(page) : NULL;
4076 
4077 	return page;
4078 }
4079 
4080 void __page_frag_cache_drain(struct page *page, unsigned int count)
4081 {
4082 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4083 
4084 	if (page_ref_sub_and_test(page, count)) {
4085 		unsigned int order = compound_order(page);
4086 
4087 		if (order == 0)
4088 			free_hot_cold_page(page, false);
4089 		else
4090 			__free_pages_ok(page, order);
4091 	}
4092 }
4093 EXPORT_SYMBOL(__page_frag_cache_drain);
4094 
4095 void *page_frag_alloc(struct page_frag_cache *nc,
4096 		      unsigned int fragsz, gfp_t gfp_mask)
4097 {
4098 	unsigned int size = PAGE_SIZE;
4099 	struct page *page;
4100 	int offset;
4101 
4102 	if (unlikely(!nc->va)) {
4103 refill:
4104 		page = __page_frag_cache_refill(nc, gfp_mask);
4105 		if (!page)
4106 			return NULL;
4107 
4108 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4109 		/* if size can vary use size else just use PAGE_SIZE */
4110 		size = nc->size;
4111 #endif
4112 		/* Even if we own the page, we do not use atomic_set().
4113 		 * This would break get_page_unless_zero() users.
4114 		 */
4115 		page_ref_add(page, size - 1);
4116 
4117 		/* reset page count bias and offset to start of new frag */
4118 		nc->pfmemalloc = page_is_pfmemalloc(page);
4119 		nc->pagecnt_bias = size;
4120 		nc->offset = size;
4121 	}
4122 
4123 	offset = nc->offset - fragsz;
4124 	if (unlikely(offset < 0)) {
4125 		page = virt_to_page(nc->va);
4126 
4127 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4128 			goto refill;
4129 
4130 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4131 		/* if size can vary use size else just use PAGE_SIZE */
4132 		size = nc->size;
4133 #endif
4134 		/* OK, page count is 0, we can safely set it */
4135 		set_page_count(page, size);
4136 
4137 		/* reset page count bias and offset to start of new frag */
4138 		nc->pagecnt_bias = size;
4139 		offset = size - fragsz;
4140 	}
4141 
4142 	nc->pagecnt_bias--;
4143 	nc->offset = offset;
4144 
4145 	return nc->va + offset;
4146 }
4147 EXPORT_SYMBOL(page_frag_alloc);
4148 
4149 /*
4150  * Frees a page fragment allocated out of either a compound or order 0 page.
4151  */
4152 void page_frag_free(void *addr)
4153 {
4154 	struct page *page = virt_to_head_page(addr);
4155 
4156 	if (unlikely(put_page_testzero(page)))
4157 		__free_pages_ok(page, compound_order(page));
4158 }
4159 EXPORT_SYMBOL(page_frag_free);
4160 
4161 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4162 		size_t size)
4163 {
4164 	if (addr) {
4165 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4166 		unsigned long used = addr + PAGE_ALIGN(size);
4167 
4168 		split_page(virt_to_page((void *)addr), order);
4169 		while (used < alloc_end) {
4170 			free_page(used);
4171 			used += PAGE_SIZE;
4172 		}
4173 	}
4174 	return (void *)addr;
4175 }
4176 
4177 /**
4178  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4179  * @size: the number of bytes to allocate
4180  * @gfp_mask: GFP flags for the allocation
4181  *
4182  * This function is similar to alloc_pages(), except that it allocates the
4183  * minimum number of pages to satisfy the request.  alloc_pages() can only
4184  * allocate memory in power-of-two pages.
4185  *
4186  * This function is also limited by MAX_ORDER.
4187  *
4188  * Memory allocated by this function must be released by free_pages_exact().
4189  */
4190 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4191 {
4192 	unsigned int order = get_order(size);
4193 	unsigned long addr;
4194 
4195 	addr = __get_free_pages(gfp_mask, order);
4196 	return make_alloc_exact(addr, order, size);
4197 }
4198 EXPORT_SYMBOL(alloc_pages_exact);
4199 
4200 /**
4201  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4202  *			   pages on a node.
4203  * @nid: the preferred node ID where memory should be allocated
4204  * @size: the number of bytes to allocate
4205  * @gfp_mask: GFP flags for the allocation
4206  *
4207  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4208  * back.
4209  */
4210 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4211 {
4212 	unsigned int order = get_order(size);
4213 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4214 	if (!p)
4215 		return NULL;
4216 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4217 }
4218 
4219 /**
4220  * free_pages_exact - release memory allocated via alloc_pages_exact()
4221  * @virt: the value returned by alloc_pages_exact.
4222  * @size: size of allocation, same value as passed to alloc_pages_exact().
4223  *
4224  * Release the memory allocated by a previous call to alloc_pages_exact.
4225  */
4226 void free_pages_exact(void *virt, size_t size)
4227 {
4228 	unsigned long addr = (unsigned long)virt;
4229 	unsigned long end = addr + PAGE_ALIGN(size);
4230 
4231 	while (addr < end) {
4232 		free_page(addr);
4233 		addr += PAGE_SIZE;
4234 	}
4235 }
4236 EXPORT_SYMBOL(free_pages_exact);
4237 
4238 /**
4239  * nr_free_zone_pages - count number of pages beyond high watermark
4240  * @offset: The zone index of the highest zone
4241  *
4242  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4243  * high watermark within all zones at or below a given zone index.  For each
4244  * zone, the number of pages is calculated as:
4245  *     managed_pages - high_pages
4246  */
4247 static unsigned long nr_free_zone_pages(int offset)
4248 {
4249 	struct zoneref *z;
4250 	struct zone *zone;
4251 
4252 	/* Just pick one node, since fallback list is circular */
4253 	unsigned long sum = 0;
4254 
4255 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4256 
4257 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4258 		unsigned long size = zone->managed_pages;
4259 		unsigned long high = high_wmark_pages(zone);
4260 		if (size > high)
4261 			sum += size - high;
4262 	}
4263 
4264 	return sum;
4265 }
4266 
4267 /**
4268  * nr_free_buffer_pages - count number of pages beyond high watermark
4269  *
4270  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4271  * watermark within ZONE_DMA and ZONE_NORMAL.
4272  */
4273 unsigned long nr_free_buffer_pages(void)
4274 {
4275 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4276 }
4277 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4278 
4279 /**
4280  * nr_free_pagecache_pages - count number of pages beyond high watermark
4281  *
4282  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4283  * high watermark within all zones.
4284  */
4285 unsigned long nr_free_pagecache_pages(void)
4286 {
4287 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4288 }
4289 
4290 static inline void show_node(struct zone *zone)
4291 {
4292 	if (IS_ENABLED(CONFIG_NUMA))
4293 		printk("Node %d ", zone_to_nid(zone));
4294 }
4295 
4296 long si_mem_available(void)
4297 {
4298 	long available;
4299 	unsigned long pagecache;
4300 	unsigned long wmark_low = 0;
4301 	unsigned long pages[NR_LRU_LISTS];
4302 	struct zone *zone;
4303 	int lru;
4304 
4305 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4306 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4307 
4308 	for_each_zone(zone)
4309 		wmark_low += zone->watermark[WMARK_LOW];
4310 
4311 	/*
4312 	 * Estimate the amount of memory available for userspace allocations,
4313 	 * without causing swapping.
4314 	 */
4315 	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4316 
4317 	/*
4318 	 * Not all the page cache can be freed, otherwise the system will
4319 	 * start swapping. Assume at least half of the page cache, or the
4320 	 * low watermark worth of cache, needs to stay.
4321 	 */
4322 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4323 	pagecache -= min(pagecache / 2, wmark_low);
4324 	available += pagecache;
4325 
4326 	/*
4327 	 * Part of the reclaimable slab consists of items that are in use,
4328 	 * and cannot be freed. Cap this estimate at the low watermark.
4329 	 */
4330 	available += global_page_state(NR_SLAB_RECLAIMABLE) -
4331 		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4332 
4333 	if (available < 0)
4334 		available = 0;
4335 	return available;
4336 }
4337 EXPORT_SYMBOL_GPL(si_mem_available);
4338 
4339 void si_meminfo(struct sysinfo *val)
4340 {
4341 	val->totalram = totalram_pages;
4342 	val->sharedram = global_node_page_state(NR_SHMEM);
4343 	val->freeram = global_page_state(NR_FREE_PAGES);
4344 	val->bufferram = nr_blockdev_pages();
4345 	val->totalhigh = totalhigh_pages;
4346 	val->freehigh = nr_free_highpages();
4347 	val->mem_unit = PAGE_SIZE;
4348 }
4349 
4350 EXPORT_SYMBOL(si_meminfo);
4351 
4352 #ifdef CONFIG_NUMA
4353 void si_meminfo_node(struct sysinfo *val, int nid)
4354 {
4355 	int zone_type;		/* needs to be signed */
4356 	unsigned long managed_pages = 0;
4357 	unsigned long managed_highpages = 0;
4358 	unsigned long free_highpages = 0;
4359 	pg_data_t *pgdat = NODE_DATA(nid);
4360 
4361 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4362 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4363 	val->totalram = managed_pages;
4364 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4365 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4366 #ifdef CONFIG_HIGHMEM
4367 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4368 		struct zone *zone = &pgdat->node_zones[zone_type];
4369 
4370 		if (is_highmem(zone)) {
4371 			managed_highpages += zone->managed_pages;
4372 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4373 		}
4374 	}
4375 	val->totalhigh = managed_highpages;
4376 	val->freehigh = free_highpages;
4377 #else
4378 	val->totalhigh = managed_highpages;
4379 	val->freehigh = free_highpages;
4380 #endif
4381 	val->mem_unit = PAGE_SIZE;
4382 }
4383 #endif
4384 
4385 /*
4386  * Determine whether the node should be displayed or not, depending on whether
4387  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4388  */
4389 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4390 {
4391 	if (!(flags & SHOW_MEM_FILTER_NODES))
4392 		return false;
4393 
4394 	/*
4395 	 * no node mask - aka implicit memory numa policy. Do not bother with
4396 	 * the synchronization - read_mems_allowed_begin - because we do not
4397 	 * have to be precise here.
4398 	 */
4399 	if (!nodemask)
4400 		nodemask = &cpuset_current_mems_allowed;
4401 
4402 	return !node_isset(nid, *nodemask);
4403 }
4404 
4405 #define K(x) ((x) << (PAGE_SHIFT-10))
4406 
4407 static void show_migration_types(unsigned char type)
4408 {
4409 	static const char types[MIGRATE_TYPES] = {
4410 		[MIGRATE_UNMOVABLE]	= 'U',
4411 		[MIGRATE_MOVABLE]	= 'M',
4412 		[MIGRATE_RECLAIMABLE]	= 'E',
4413 		[MIGRATE_HIGHATOMIC]	= 'H',
4414 #ifdef CONFIG_CMA
4415 		[MIGRATE_CMA]		= 'C',
4416 #endif
4417 #ifdef CONFIG_MEMORY_ISOLATION
4418 		[MIGRATE_ISOLATE]	= 'I',
4419 #endif
4420 	};
4421 	char tmp[MIGRATE_TYPES + 1];
4422 	char *p = tmp;
4423 	int i;
4424 
4425 	for (i = 0; i < MIGRATE_TYPES; i++) {
4426 		if (type & (1 << i))
4427 			*p++ = types[i];
4428 	}
4429 
4430 	*p = '\0';
4431 	printk(KERN_CONT "(%s) ", tmp);
4432 }
4433 
4434 /*
4435  * Show free area list (used inside shift_scroll-lock stuff)
4436  * We also calculate the percentage fragmentation. We do this by counting the
4437  * memory on each free list with the exception of the first item on the list.
4438  *
4439  * Bits in @filter:
4440  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4441  *   cpuset.
4442  */
4443 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4444 {
4445 	unsigned long free_pcp = 0;
4446 	int cpu;
4447 	struct zone *zone;
4448 	pg_data_t *pgdat;
4449 
4450 	for_each_populated_zone(zone) {
4451 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4452 			continue;
4453 
4454 		for_each_online_cpu(cpu)
4455 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4456 	}
4457 
4458 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4459 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4460 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4461 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4462 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4463 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4464 		global_node_page_state(NR_ACTIVE_ANON),
4465 		global_node_page_state(NR_INACTIVE_ANON),
4466 		global_node_page_state(NR_ISOLATED_ANON),
4467 		global_node_page_state(NR_ACTIVE_FILE),
4468 		global_node_page_state(NR_INACTIVE_FILE),
4469 		global_node_page_state(NR_ISOLATED_FILE),
4470 		global_node_page_state(NR_UNEVICTABLE),
4471 		global_node_page_state(NR_FILE_DIRTY),
4472 		global_node_page_state(NR_WRITEBACK),
4473 		global_node_page_state(NR_UNSTABLE_NFS),
4474 		global_page_state(NR_SLAB_RECLAIMABLE),
4475 		global_page_state(NR_SLAB_UNRECLAIMABLE),
4476 		global_node_page_state(NR_FILE_MAPPED),
4477 		global_node_page_state(NR_SHMEM),
4478 		global_page_state(NR_PAGETABLE),
4479 		global_page_state(NR_BOUNCE),
4480 		global_page_state(NR_FREE_PAGES),
4481 		free_pcp,
4482 		global_page_state(NR_FREE_CMA_PAGES));
4483 
4484 	for_each_online_pgdat(pgdat) {
4485 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4486 			continue;
4487 
4488 		printk("Node %d"
4489 			" active_anon:%lukB"
4490 			" inactive_anon:%lukB"
4491 			" active_file:%lukB"
4492 			" inactive_file:%lukB"
4493 			" unevictable:%lukB"
4494 			" isolated(anon):%lukB"
4495 			" isolated(file):%lukB"
4496 			" mapped:%lukB"
4497 			" dirty:%lukB"
4498 			" writeback:%lukB"
4499 			" shmem:%lukB"
4500 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4501 			" shmem_thp: %lukB"
4502 			" shmem_pmdmapped: %lukB"
4503 			" anon_thp: %lukB"
4504 #endif
4505 			" writeback_tmp:%lukB"
4506 			" unstable:%lukB"
4507 			" pages_scanned:%lu"
4508 			" all_unreclaimable? %s"
4509 			"\n",
4510 			pgdat->node_id,
4511 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4512 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4513 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4514 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4515 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4516 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4517 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4518 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4519 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4520 			K(node_page_state(pgdat, NR_WRITEBACK)),
4521 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4522 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4523 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4524 					* HPAGE_PMD_NR),
4525 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4526 #endif
4527 			K(node_page_state(pgdat, NR_SHMEM)),
4528 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4529 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4530 			node_page_state(pgdat, NR_PAGES_SCANNED),
4531 			!pgdat_reclaimable(pgdat) ? "yes" : "no");
4532 	}
4533 
4534 	for_each_populated_zone(zone) {
4535 		int i;
4536 
4537 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4538 			continue;
4539 
4540 		free_pcp = 0;
4541 		for_each_online_cpu(cpu)
4542 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4543 
4544 		show_node(zone);
4545 		printk(KERN_CONT
4546 			"%s"
4547 			" free:%lukB"
4548 			" min:%lukB"
4549 			" low:%lukB"
4550 			" high:%lukB"
4551 			" active_anon:%lukB"
4552 			" inactive_anon:%lukB"
4553 			" active_file:%lukB"
4554 			" inactive_file:%lukB"
4555 			" unevictable:%lukB"
4556 			" writepending:%lukB"
4557 			" present:%lukB"
4558 			" managed:%lukB"
4559 			" mlocked:%lukB"
4560 			" slab_reclaimable:%lukB"
4561 			" slab_unreclaimable:%lukB"
4562 			" kernel_stack:%lukB"
4563 			" pagetables:%lukB"
4564 			" bounce:%lukB"
4565 			" free_pcp:%lukB"
4566 			" local_pcp:%ukB"
4567 			" free_cma:%lukB"
4568 			"\n",
4569 			zone->name,
4570 			K(zone_page_state(zone, NR_FREE_PAGES)),
4571 			K(min_wmark_pages(zone)),
4572 			K(low_wmark_pages(zone)),
4573 			K(high_wmark_pages(zone)),
4574 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4575 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4576 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4577 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4578 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4579 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4580 			K(zone->present_pages),
4581 			K(zone->managed_pages),
4582 			K(zone_page_state(zone, NR_MLOCK)),
4583 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4584 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4585 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4586 			K(zone_page_state(zone, NR_PAGETABLE)),
4587 			K(zone_page_state(zone, NR_BOUNCE)),
4588 			K(free_pcp),
4589 			K(this_cpu_read(zone->pageset->pcp.count)),
4590 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4591 		printk("lowmem_reserve[]:");
4592 		for (i = 0; i < MAX_NR_ZONES; i++)
4593 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4594 		printk(KERN_CONT "\n");
4595 	}
4596 
4597 	for_each_populated_zone(zone) {
4598 		unsigned int order;
4599 		unsigned long nr[MAX_ORDER], flags, total = 0;
4600 		unsigned char types[MAX_ORDER];
4601 
4602 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4603 			continue;
4604 		show_node(zone);
4605 		printk(KERN_CONT "%s: ", zone->name);
4606 
4607 		spin_lock_irqsave(&zone->lock, flags);
4608 		for (order = 0; order < MAX_ORDER; order++) {
4609 			struct free_area *area = &zone->free_area[order];
4610 			int type;
4611 
4612 			nr[order] = area->nr_free;
4613 			total += nr[order] << order;
4614 
4615 			types[order] = 0;
4616 			for (type = 0; type < MIGRATE_TYPES; type++) {
4617 				if (!list_empty(&area->free_list[type]))
4618 					types[order] |= 1 << type;
4619 			}
4620 		}
4621 		spin_unlock_irqrestore(&zone->lock, flags);
4622 		for (order = 0; order < MAX_ORDER; order++) {
4623 			printk(KERN_CONT "%lu*%lukB ",
4624 			       nr[order], K(1UL) << order);
4625 			if (nr[order])
4626 				show_migration_types(types[order]);
4627 		}
4628 		printk(KERN_CONT "= %lukB\n", K(total));
4629 	}
4630 
4631 	hugetlb_show_meminfo();
4632 
4633 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4634 
4635 	show_swap_cache_info();
4636 }
4637 
4638 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4639 {
4640 	zoneref->zone = zone;
4641 	zoneref->zone_idx = zone_idx(zone);
4642 }
4643 
4644 /*
4645  * Builds allocation fallback zone lists.
4646  *
4647  * Add all populated zones of a node to the zonelist.
4648  */
4649 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4650 				int nr_zones)
4651 {
4652 	struct zone *zone;
4653 	enum zone_type zone_type = MAX_NR_ZONES;
4654 
4655 	do {
4656 		zone_type--;
4657 		zone = pgdat->node_zones + zone_type;
4658 		if (managed_zone(zone)) {
4659 			zoneref_set_zone(zone,
4660 				&zonelist->_zonerefs[nr_zones++]);
4661 			check_highest_zone(zone_type);
4662 		}
4663 	} while (zone_type);
4664 
4665 	return nr_zones;
4666 }
4667 
4668 
4669 /*
4670  *  zonelist_order:
4671  *  0 = automatic detection of better ordering.
4672  *  1 = order by ([node] distance, -zonetype)
4673  *  2 = order by (-zonetype, [node] distance)
4674  *
4675  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4676  *  the same zonelist. So only NUMA can configure this param.
4677  */
4678 #define ZONELIST_ORDER_DEFAULT  0
4679 #define ZONELIST_ORDER_NODE     1
4680 #define ZONELIST_ORDER_ZONE     2
4681 
4682 /* zonelist order in the kernel.
4683  * set_zonelist_order() will set this to NODE or ZONE.
4684  */
4685 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4686 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4687 
4688 
4689 #ifdef CONFIG_NUMA
4690 /* The value user specified ....changed by config */
4691 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4692 /* string for sysctl */
4693 #define NUMA_ZONELIST_ORDER_LEN	16
4694 char numa_zonelist_order[16] = "default";
4695 
4696 /*
4697  * interface for configure zonelist ordering.
4698  * command line option "numa_zonelist_order"
4699  *	= "[dD]efault	- default, automatic configuration.
4700  *	= "[nN]ode 	- order by node locality, then by zone within node
4701  *	= "[zZ]one      - order by zone, then by locality within zone
4702  */
4703 
4704 static int __parse_numa_zonelist_order(char *s)
4705 {
4706 	if (*s == 'd' || *s == 'D') {
4707 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4708 	} else if (*s == 'n' || *s == 'N') {
4709 		user_zonelist_order = ZONELIST_ORDER_NODE;
4710 	} else if (*s == 'z' || *s == 'Z') {
4711 		user_zonelist_order = ZONELIST_ORDER_ZONE;
4712 	} else {
4713 		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4714 		return -EINVAL;
4715 	}
4716 	return 0;
4717 }
4718 
4719 static __init int setup_numa_zonelist_order(char *s)
4720 {
4721 	int ret;
4722 
4723 	if (!s)
4724 		return 0;
4725 
4726 	ret = __parse_numa_zonelist_order(s);
4727 	if (ret == 0)
4728 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4729 
4730 	return ret;
4731 }
4732 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4733 
4734 /*
4735  * sysctl handler for numa_zonelist_order
4736  */
4737 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4738 		void __user *buffer, size_t *length,
4739 		loff_t *ppos)
4740 {
4741 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
4742 	int ret;
4743 	static DEFINE_MUTEX(zl_order_mutex);
4744 
4745 	mutex_lock(&zl_order_mutex);
4746 	if (write) {
4747 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4748 			ret = -EINVAL;
4749 			goto out;
4750 		}
4751 		strcpy(saved_string, (char *)table->data);
4752 	}
4753 	ret = proc_dostring(table, write, buffer, length, ppos);
4754 	if (ret)
4755 		goto out;
4756 	if (write) {
4757 		int oldval = user_zonelist_order;
4758 
4759 		ret = __parse_numa_zonelist_order((char *)table->data);
4760 		if (ret) {
4761 			/*
4762 			 * bogus value.  restore saved string
4763 			 */
4764 			strncpy((char *)table->data, saved_string,
4765 				NUMA_ZONELIST_ORDER_LEN);
4766 			user_zonelist_order = oldval;
4767 		} else if (oldval != user_zonelist_order) {
4768 			mutex_lock(&zonelists_mutex);
4769 			build_all_zonelists(NULL, NULL);
4770 			mutex_unlock(&zonelists_mutex);
4771 		}
4772 	}
4773 out:
4774 	mutex_unlock(&zl_order_mutex);
4775 	return ret;
4776 }
4777 
4778 
4779 #define MAX_NODE_LOAD (nr_online_nodes)
4780 static int node_load[MAX_NUMNODES];
4781 
4782 /**
4783  * find_next_best_node - find the next node that should appear in a given node's fallback list
4784  * @node: node whose fallback list we're appending
4785  * @used_node_mask: nodemask_t of already used nodes
4786  *
4787  * We use a number of factors to determine which is the next node that should
4788  * appear on a given node's fallback list.  The node should not have appeared
4789  * already in @node's fallback list, and it should be the next closest node
4790  * according to the distance array (which contains arbitrary distance values
4791  * from each node to each node in the system), and should also prefer nodes
4792  * with no CPUs, since presumably they'll have very little allocation pressure
4793  * on them otherwise.
4794  * It returns -1 if no node is found.
4795  */
4796 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4797 {
4798 	int n, val;
4799 	int min_val = INT_MAX;
4800 	int best_node = NUMA_NO_NODE;
4801 	const struct cpumask *tmp = cpumask_of_node(0);
4802 
4803 	/* Use the local node if we haven't already */
4804 	if (!node_isset(node, *used_node_mask)) {
4805 		node_set(node, *used_node_mask);
4806 		return node;
4807 	}
4808 
4809 	for_each_node_state(n, N_MEMORY) {
4810 
4811 		/* Don't want a node to appear more than once */
4812 		if (node_isset(n, *used_node_mask))
4813 			continue;
4814 
4815 		/* Use the distance array to find the distance */
4816 		val = node_distance(node, n);
4817 
4818 		/* Penalize nodes under us ("prefer the next node") */
4819 		val += (n < node);
4820 
4821 		/* Give preference to headless and unused nodes */
4822 		tmp = cpumask_of_node(n);
4823 		if (!cpumask_empty(tmp))
4824 			val += PENALTY_FOR_NODE_WITH_CPUS;
4825 
4826 		/* Slight preference for less loaded node */
4827 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4828 		val += node_load[n];
4829 
4830 		if (val < min_val) {
4831 			min_val = val;
4832 			best_node = n;
4833 		}
4834 	}
4835 
4836 	if (best_node >= 0)
4837 		node_set(best_node, *used_node_mask);
4838 
4839 	return best_node;
4840 }
4841 
4842 
4843 /*
4844  * Build zonelists ordered by node and zones within node.
4845  * This results in maximum locality--normal zone overflows into local
4846  * DMA zone, if any--but risks exhausting DMA zone.
4847  */
4848 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4849 {
4850 	int j;
4851 	struct zonelist *zonelist;
4852 
4853 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4854 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4855 		;
4856 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4857 	zonelist->_zonerefs[j].zone = NULL;
4858 	zonelist->_zonerefs[j].zone_idx = 0;
4859 }
4860 
4861 /*
4862  * Build gfp_thisnode zonelists
4863  */
4864 static void build_thisnode_zonelists(pg_data_t *pgdat)
4865 {
4866 	int j;
4867 	struct zonelist *zonelist;
4868 
4869 	zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4870 	j = build_zonelists_node(pgdat, zonelist, 0);
4871 	zonelist->_zonerefs[j].zone = NULL;
4872 	zonelist->_zonerefs[j].zone_idx = 0;
4873 }
4874 
4875 /*
4876  * Build zonelists ordered by zone and nodes within zones.
4877  * This results in conserving DMA zone[s] until all Normal memory is
4878  * exhausted, but results in overflowing to remote node while memory
4879  * may still exist in local DMA zone.
4880  */
4881 static int node_order[MAX_NUMNODES];
4882 
4883 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4884 {
4885 	int pos, j, node;
4886 	int zone_type;		/* needs to be signed */
4887 	struct zone *z;
4888 	struct zonelist *zonelist;
4889 
4890 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4891 	pos = 0;
4892 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4893 		for (j = 0; j < nr_nodes; j++) {
4894 			node = node_order[j];
4895 			z = &NODE_DATA(node)->node_zones[zone_type];
4896 			if (managed_zone(z)) {
4897 				zoneref_set_zone(z,
4898 					&zonelist->_zonerefs[pos++]);
4899 				check_highest_zone(zone_type);
4900 			}
4901 		}
4902 	}
4903 	zonelist->_zonerefs[pos].zone = NULL;
4904 	zonelist->_zonerefs[pos].zone_idx = 0;
4905 }
4906 
4907 #if defined(CONFIG_64BIT)
4908 /*
4909  * Devices that require DMA32/DMA are relatively rare and do not justify a
4910  * penalty to every machine in case the specialised case applies. Default
4911  * to Node-ordering on 64-bit NUMA machines
4912  */
4913 static int default_zonelist_order(void)
4914 {
4915 	return ZONELIST_ORDER_NODE;
4916 }
4917 #else
4918 /*
4919  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4920  * by the kernel. If processes running on node 0 deplete the low memory zone
4921  * then reclaim will occur more frequency increasing stalls and potentially
4922  * be easier to OOM if a large percentage of the zone is under writeback or
4923  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4924  * Hence, default to zone ordering on 32-bit.
4925  */
4926 static int default_zonelist_order(void)
4927 {
4928 	return ZONELIST_ORDER_ZONE;
4929 }
4930 #endif /* CONFIG_64BIT */
4931 
4932 static void set_zonelist_order(void)
4933 {
4934 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4935 		current_zonelist_order = default_zonelist_order();
4936 	else
4937 		current_zonelist_order = user_zonelist_order;
4938 }
4939 
4940 static void build_zonelists(pg_data_t *pgdat)
4941 {
4942 	int i, node, load;
4943 	nodemask_t used_mask;
4944 	int local_node, prev_node;
4945 	struct zonelist *zonelist;
4946 	unsigned int order = current_zonelist_order;
4947 
4948 	/* initialize zonelists */
4949 	for (i = 0; i < MAX_ZONELISTS; i++) {
4950 		zonelist = pgdat->node_zonelists + i;
4951 		zonelist->_zonerefs[0].zone = NULL;
4952 		zonelist->_zonerefs[0].zone_idx = 0;
4953 	}
4954 
4955 	/* NUMA-aware ordering of nodes */
4956 	local_node = pgdat->node_id;
4957 	load = nr_online_nodes;
4958 	prev_node = local_node;
4959 	nodes_clear(used_mask);
4960 
4961 	memset(node_order, 0, sizeof(node_order));
4962 	i = 0;
4963 
4964 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4965 		/*
4966 		 * We don't want to pressure a particular node.
4967 		 * So adding penalty to the first node in same
4968 		 * distance group to make it round-robin.
4969 		 */
4970 		if (node_distance(local_node, node) !=
4971 		    node_distance(local_node, prev_node))
4972 			node_load[node] = load;
4973 
4974 		prev_node = node;
4975 		load--;
4976 		if (order == ZONELIST_ORDER_NODE)
4977 			build_zonelists_in_node_order(pgdat, node);
4978 		else
4979 			node_order[i++] = node;	/* remember order */
4980 	}
4981 
4982 	if (order == ZONELIST_ORDER_ZONE) {
4983 		/* calculate node order -- i.e., DMA last! */
4984 		build_zonelists_in_zone_order(pgdat, i);
4985 	}
4986 
4987 	build_thisnode_zonelists(pgdat);
4988 }
4989 
4990 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4991 /*
4992  * Return node id of node used for "local" allocations.
4993  * I.e., first node id of first zone in arg node's generic zonelist.
4994  * Used for initializing percpu 'numa_mem', which is used primarily
4995  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4996  */
4997 int local_memory_node(int node)
4998 {
4999 	struct zoneref *z;
5000 
5001 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5002 				   gfp_zone(GFP_KERNEL),
5003 				   NULL);
5004 	return z->zone->node;
5005 }
5006 #endif
5007 
5008 static void setup_min_unmapped_ratio(void);
5009 static void setup_min_slab_ratio(void);
5010 #else	/* CONFIG_NUMA */
5011 
5012 static void set_zonelist_order(void)
5013 {
5014 	current_zonelist_order = ZONELIST_ORDER_ZONE;
5015 }
5016 
5017 static void build_zonelists(pg_data_t *pgdat)
5018 {
5019 	int node, local_node;
5020 	enum zone_type j;
5021 	struct zonelist *zonelist;
5022 
5023 	local_node = pgdat->node_id;
5024 
5025 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5026 	j = build_zonelists_node(pgdat, zonelist, 0);
5027 
5028 	/*
5029 	 * Now we build the zonelist so that it contains the zones
5030 	 * of all the other nodes.
5031 	 * We don't want to pressure a particular node, so when
5032 	 * building the zones for node N, we make sure that the
5033 	 * zones coming right after the local ones are those from
5034 	 * node N+1 (modulo N)
5035 	 */
5036 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5037 		if (!node_online(node))
5038 			continue;
5039 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5040 	}
5041 	for (node = 0; node < local_node; node++) {
5042 		if (!node_online(node))
5043 			continue;
5044 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5045 	}
5046 
5047 	zonelist->_zonerefs[j].zone = NULL;
5048 	zonelist->_zonerefs[j].zone_idx = 0;
5049 }
5050 
5051 #endif	/* CONFIG_NUMA */
5052 
5053 /*
5054  * Boot pageset table. One per cpu which is going to be used for all
5055  * zones and all nodes. The parameters will be set in such a way
5056  * that an item put on a list will immediately be handed over to
5057  * the buddy list. This is safe since pageset manipulation is done
5058  * with interrupts disabled.
5059  *
5060  * The boot_pagesets must be kept even after bootup is complete for
5061  * unused processors and/or zones. They do play a role for bootstrapping
5062  * hotplugged processors.
5063  *
5064  * zoneinfo_show() and maybe other functions do
5065  * not check if the processor is online before following the pageset pointer.
5066  * Other parts of the kernel may not check if the zone is available.
5067  */
5068 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5069 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5070 static void setup_zone_pageset(struct zone *zone);
5071 
5072 /*
5073  * Global mutex to protect against size modification of zonelists
5074  * as well as to serialize pageset setup for the new populated zone.
5075  */
5076 DEFINE_MUTEX(zonelists_mutex);
5077 
5078 /* return values int ....just for stop_machine() */
5079 static int __build_all_zonelists(void *data)
5080 {
5081 	int nid;
5082 	int cpu;
5083 	pg_data_t *self = data;
5084 
5085 #ifdef CONFIG_NUMA
5086 	memset(node_load, 0, sizeof(node_load));
5087 #endif
5088 
5089 	if (self && !node_online(self->node_id)) {
5090 		build_zonelists(self);
5091 	}
5092 
5093 	for_each_online_node(nid) {
5094 		pg_data_t *pgdat = NODE_DATA(nid);
5095 
5096 		build_zonelists(pgdat);
5097 	}
5098 
5099 	/*
5100 	 * Initialize the boot_pagesets that are going to be used
5101 	 * for bootstrapping processors. The real pagesets for
5102 	 * each zone will be allocated later when the per cpu
5103 	 * allocator is available.
5104 	 *
5105 	 * boot_pagesets are used also for bootstrapping offline
5106 	 * cpus if the system is already booted because the pagesets
5107 	 * are needed to initialize allocators on a specific cpu too.
5108 	 * F.e. the percpu allocator needs the page allocator which
5109 	 * needs the percpu allocator in order to allocate its pagesets
5110 	 * (a chicken-egg dilemma).
5111 	 */
5112 	for_each_possible_cpu(cpu) {
5113 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5114 
5115 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5116 		/*
5117 		 * We now know the "local memory node" for each node--
5118 		 * i.e., the node of the first zone in the generic zonelist.
5119 		 * Set up numa_mem percpu variable for on-line cpus.  During
5120 		 * boot, only the boot cpu should be on-line;  we'll init the
5121 		 * secondary cpus' numa_mem as they come on-line.  During
5122 		 * node/memory hotplug, we'll fixup all on-line cpus.
5123 		 */
5124 		if (cpu_online(cpu))
5125 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5126 #endif
5127 	}
5128 
5129 	return 0;
5130 }
5131 
5132 static noinline void __init
5133 build_all_zonelists_init(void)
5134 {
5135 	__build_all_zonelists(NULL);
5136 	mminit_verify_zonelist();
5137 	cpuset_init_current_mems_allowed();
5138 }
5139 
5140 /*
5141  * Called with zonelists_mutex held always
5142  * unless system_state == SYSTEM_BOOTING.
5143  *
5144  * __ref due to (1) call of __meminit annotated setup_zone_pageset
5145  * [we're only called with non-NULL zone through __meminit paths] and
5146  * (2) call of __init annotated helper build_all_zonelists_init
5147  * [protected by SYSTEM_BOOTING].
5148  */
5149 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5150 {
5151 	set_zonelist_order();
5152 
5153 	if (system_state == SYSTEM_BOOTING) {
5154 		build_all_zonelists_init();
5155 	} else {
5156 #ifdef CONFIG_MEMORY_HOTPLUG
5157 		if (zone)
5158 			setup_zone_pageset(zone);
5159 #endif
5160 		/* we have to stop all cpus to guarantee there is no user
5161 		   of zonelist */
5162 		stop_machine(__build_all_zonelists, pgdat, NULL);
5163 		/* cpuset refresh routine should be here */
5164 	}
5165 	vm_total_pages = nr_free_pagecache_pages();
5166 	/*
5167 	 * Disable grouping by mobility if the number of pages in the
5168 	 * system is too low to allow the mechanism to work. It would be
5169 	 * more accurate, but expensive to check per-zone. This check is
5170 	 * made on memory-hotadd so a system can start with mobility
5171 	 * disabled and enable it later
5172 	 */
5173 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5174 		page_group_by_mobility_disabled = 1;
5175 	else
5176 		page_group_by_mobility_disabled = 0;
5177 
5178 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
5179 		nr_online_nodes,
5180 		zonelist_order_name[current_zonelist_order],
5181 		page_group_by_mobility_disabled ? "off" : "on",
5182 		vm_total_pages);
5183 #ifdef CONFIG_NUMA
5184 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5185 #endif
5186 }
5187 
5188 /*
5189  * Initially all pages are reserved - free ones are freed
5190  * up by free_all_bootmem() once the early boot process is
5191  * done. Non-atomic initialization, single-pass.
5192  */
5193 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5194 		unsigned long start_pfn, enum memmap_context context)
5195 {
5196 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5197 	unsigned long end_pfn = start_pfn + size;
5198 	pg_data_t *pgdat = NODE_DATA(nid);
5199 	unsigned long pfn;
5200 	unsigned long nr_initialised = 0;
5201 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5202 	struct memblock_region *r = NULL, *tmp;
5203 #endif
5204 
5205 	if (highest_memmap_pfn < end_pfn - 1)
5206 		highest_memmap_pfn = end_pfn - 1;
5207 
5208 	/*
5209 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5210 	 * memory
5211 	 */
5212 	if (altmap && start_pfn == altmap->base_pfn)
5213 		start_pfn += altmap->reserve;
5214 
5215 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5216 		/*
5217 		 * There can be holes in boot-time mem_map[]s handed to this
5218 		 * function.  They do not exist on hotplugged memory.
5219 		 */
5220 		if (context != MEMMAP_EARLY)
5221 			goto not_early;
5222 
5223 		if (!early_pfn_valid(pfn)) {
5224 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5225 			/*
5226 			 * Skip to the pfn preceding the next valid one (or
5227 			 * end_pfn), such that we hit a valid pfn (or end_pfn)
5228 			 * on our next iteration of the loop.
5229 			 */
5230 			pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5231 #endif
5232 			continue;
5233 		}
5234 		if (!early_pfn_in_nid(pfn, nid))
5235 			continue;
5236 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5237 			break;
5238 
5239 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5240 		/*
5241 		 * Check given memblock attribute by firmware which can affect
5242 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5243 		 * mirrored, it's an overlapped memmap init. skip it.
5244 		 */
5245 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5246 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5247 				for_each_memblock(memory, tmp)
5248 					if (pfn < memblock_region_memory_end_pfn(tmp))
5249 						break;
5250 				r = tmp;
5251 			}
5252 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5253 			    memblock_is_mirror(r)) {
5254 				/* already initialized as NORMAL */
5255 				pfn = memblock_region_memory_end_pfn(r);
5256 				continue;
5257 			}
5258 		}
5259 #endif
5260 
5261 not_early:
5262 		/*
5263 		 * Mark the block movable so that blocks are reserved for
5264 		 * movable at startup. This will force kernel allocations
5265 		 * to reserve their blocks rather than leaking throughout
5266 		 * the address space during boot when many long-lived
5267 		 * kernel allocations are made.
5268 		 *
5269 		 * bitmap is created for zone's valid pfn range. but memmap
5270 		 * can be created for invalid pages (for alignment)
5271 		 * check here not to call set_pageblock_migratetype() against
5272 		 * pfn out of zone.
5273 		 */
5274 		if (!(pfn & (pageblock_nr_pages - 1))) {
5275 			struct page *page = pfn_to_page(pfn);
5276 
5277 			__init_single_page(page, pfn, zone, nid);
5278 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5279 		} else {
5280 			__init_single_pfn(pfn, zone, nid);
5281 		}
5282 	}
5283 }
5284 
5285 static void __meminit zone_init_free_lists(struct zone *zone)
5286 {
5287 	unsigned int order, t;
5288 	for_each_migratetype_order(order, t) {
5289 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5290 		zone->free_area[order].nr_free = 0;
5291 	}
5292 }
5293 
5294 #ifndef __HAVE_ARCH_MEMMAP_INIT
5295 #define memmap_init(size, nid, zone, start_pfn) \
5296 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5297 #endif
5298 
5299 static int zone_batchsize(struct zone *zone)
5300 {
5301 #ifdef CONFIG_MMU
5302 	int batch;
5303 
5304 	/*
5305 	 * The per-cpu-pages pools are set to around 1000th of the
5306 	 * size of the zone.  But no more than 1/2 of a meg.
5307 	 *
5308 	 * OK, so we don't know how big the cache is.  So guess.
5309 	 */
5310 	batch = zone->managed_pages / 1024;
5311 	if (batch * PAGE_SIZE > 512 * 1024)
5312 		batch = (512 * 1024) / PAGE_SIZE;
5313 	batch /= 4;		/* We effectively *= 4 below */
5314 	if (batch < 1)
5315 		batch = 1;
5316 
5317 	/*
5318 	 * Clamp the batch to a 2^n - 1 value. Having a power
5319 	 * of 2 value was found to be more likely to have
5320 	 * suboptimal cache aliasing properties in some cases.
5321 	 *
5322 	 * For example if 2 tasks are alternately allocating
5323 	 * batches of pages, one task can end up with a lot
5324 	 * of pages of one half of the possible page colors
5325 	 * and the other with pages of the other colors.
5326 	 */
5327 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5328 
5329 	return batch;
5330 
5331 #else
5332 	/* The deferral and batching of frees should be suppressed under NOMMU
5333 	 * conditions.
5334 	 *
5335 	 * The problem is that NOMMU needs to be able to allocate large chunks
5336 	 * of contiguous memory as there's no hardware page translation to
5337 	 * assemble apparent contiguous memory from discontiguous pages.
5338 	 *
5339 	 * Queueing large contiguous runs of pages for batching, however,
5340 	 * causes the pages to actually be freed in smaller chunks.  As there
5341 	 * can be a significant delay between the individual batches being
5342 	 * recycled, this leads to the once large chunks of space being
5343 	 * fragmented and becoming unavailable for high-order allocations.
5344 	 */
5345 	return 0;
5346 #endif
5347 }
5348 
5349 /*
5350  * pcp->high and pcp->batch values are related and dependent on one another:
5351  * ->batch must never be higher then ->high.
5352  * The following function updates them in a safe manner without read side
5353  * locking.
5354  *
5355  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5356  * those fields changing asynchronously (acording the the above rule).
5357  *
5358  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5359  * outside of boot time (or some other assurance that no concurrent updaters
5360  * exist).
5361  */
5362 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5363 		unsigned long batch)
5364 {
5365        /* start with a fail safe value for batch */
5366 	pcp->batch = 1;
5367 	smp_wmb();
5368 
5369        /* Update high, then batch, in order */
5370 	pcp->high = high;
5371 	smp_wmb();
5372 
5373 	pcp->batch = batch;
5374 }
5375 
5376 /* a companion to pageset_set_high() */
5377 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5378 {
5379 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5380 }
5381 
5382 static void pageset_init(struct per_cpu_pageset *p)
5383 {
5384 	struct per_cpu_pages *pcp;
5385 	int migratetype;
5386 
5387 	memset(p, 0, sizeof(*p));
5388 
5389 	pcp = &p->pcp;
5390 	pcp->count = 0;
5391 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5392 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5393 }
5394 
5395 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5396 {
5397 	pageset_init(p);
5398 	pageset_set_batch(p, batch);
5399 }
5400 
5401 /*
5402  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5403  * to the value high for the pageset p.
5404  */
5405 static void pageset_set_high(struct per_cpu_pageset *p,
5406 				unsigned long high)
5407 {
5408 	unsigned long batch = max(1UL, high / 4);
5409 	if ((high / 4) > (PAGE_SHIFT * 8))
5410 		batch = PAGE_SHIFT * 8;
5411 
5412 	pageset_update(&p->pcp, high, batch);
5413 }
5414 
5415 static void pageset_set_high_and_batch(struct zone *zone,
5416 				       struct per_cpu_pageset *pcp)
5417 {
5418 	if (percpu_pagelist_fraction)
5419 		pageset_set_high(pcp,
5420 			(zone->managed_pages /
5421 				percpu_pagelist_fraction));
5422 	else
5423 		pageset_set_batch(pcp, zone_batchsize(zone));
5424 }
5425 
5426 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5427 {
5428 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5429 
5430 	pageset_init(pcp);
5431 	pageset_set_high_and_batch(zone, pcp);
5432 }
5433 
5434 static void __meminit setup_zone_pageset(struct zone *zone)
5435 {
5436 	int cpu;
5437 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5438 	for_each_possible_cpu(cpu)
5439 		zone_pageset_init(zone, cpu);
5440 }
5441 
5442 /*
5443  * Allocate per cpu pagesets and initialize them.
5444  * Before this call only boot pagesets were available.
5445  */
5446 void __init setup_per_cpu_pageset(void)
5447 {
5448 	struct pglist_data *pgdat;
5449 	struct zone *zone;
5450 
5451 	for_each_populated_zone(zone)
5452 		setup_zone_pageset(zone);
5453 
5454 	for_each_online_pgdat(pgdat)
5455 		pgdat->per_cpu_nodestats =
5456 			alloc_percpu(struct per_cpu_nodestat);
5457 }
5458 
5459 static __meminit void zone_pcp_init(struct zone *zone)
5460 {
5461 	/*
5462 	 * per cpu subsystem is not up at this point. The following code
5463 	 * relies on the ability of the linker to provide the
5464 	 * offset of a (static) per cpu variable into the per cpu area.
5465 	 */
5466 	zone->pageset = &boot_pageset;
5467 
5468 	if (populated_zone(zone))
5469 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5470 			zone->name, zone->present_pages,
5471 					 zone_batchsize(zone));
5472 }
5473 
5474 int __meminit init_currently_empty_zone(struct zone *zone,
5475 					unsigned long zone_start_pfn,
5476 					unsigned long size)
5477 {
5478 	struct pglist_data *pgdat = zone->zone_pgdat;
5479 
5480 	pgdat->nr_zones = zone_idx(zone) + 1;
5481 
5482 	zone->zone_start_pfn = zone_start_pfn;
5483 
5484 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5485 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5486 			pgdat->node_id,
5487 			(unsigned long)zone_idx(zone),
5488 			zone_start_pfn, (zone_start_pfn + size));
5489 
5490 	zone_init_free_lists(zone);
5491 	zone->initialized = 1;
5492 
5493 	return 0;
5494 }
5495 
5496 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5497 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5498 
5499 /*
5500  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5501  */
5502 int __meminit __early_pfn_to_nid(unsigned long pfn,
5503 					struct mminit_pfnnid_cache *state)
5504 {
5505 	unsigned long start_pfn, end_pfn;
5506 	int nid;
5507 
5508 	if (state->last_start <= pfn && pfn < state->last_end)
5509 		return state->last_nid;
5510 
5511 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5512 	if (nid != -1) {
5513 		state->last_start = start_pfn;
5514 		state->last_end = end_pfn;
5515 		state->last_nid = nid;
5516 	}
5517 
5518 	return nid;
5519 }
5520 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5521 
5522 /**
5523  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5524  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5525  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5526  *
5527  * If an architecture guarantees that all ranges registered contain no holes
5528  * and may be freed, this this function may be used instead of calling
5529  * memblock_free_early_nid() manually.
5530  */
5531 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5532 {
5533 	unsigned long start_pfn, end_pfn;
5534 	int i, this_nid;
5535 
5536 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5537 		start_pfn = min(start_pfn, max_low_pfn);
5538 		end_pfn = min(end_pfn, max_low_pfn);
5539 
5540 		if (start_pfn < end_pfn)
5541 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5542 					(end_pfn - start_pfn) << PAGE_SHIFT,
5543 					this_nid);
5544 	}
5545 }
5546 
5547 /**
5548  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5549  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5550  *
5551  * If an architecture guarantees that all ranges registered contain no holes and may
5552  * be freed, this function may be used instead of calling memory_present() manually.
5553  */
5554 void __init sparse_memory_present_with_active_regions(int nid)
5555 {
5556 	unsigned long start_pfn, end_pfn;
5557 	int i, this_nid;
5558 
5559 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5560 		memory_present(this_nid, start_pfn, end_pfn);
5561 }
5562 
5563 /**
5564  * get_pfn_range_for_nid - Return the start and end page frames for a node
5565  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5566  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5567  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5568  *
5569  * It returns the start and end page frame of a node based on information
5570  * provided by memblock_set_node(). If called for a node
5571  * with no available memory, a warning is printed and the start and end
5572  * PFNs will be 0.
5573  */
5574 void __meminit get_pfn_range_for_nid(unsigned int nid,
5575 			unsigned long *start_pfn, unsigned long *end_pfn)
5576 {
5577 	unsigned long this_start_pfn, this_end_pfn;
5578 	int i;
5579 
5580 	*start_pfn = -1UL;
5581 	*end_pfn = 0;
5582 
5583 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5584 		*start_pfn = min(*start_pfn, this_start_pfn);
5585 		*end_pfn = max(*end_pfn, this_end_pfn);
5586 	}
5587 
5588 	if (*start_pfn == -1UL)
5589 		*start_pfn = 0;
5590 }
5591 
5592 /*
5593  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5594  * assumption is made that zones within a node are ordered in monotonic
5595  * increasing memory addresses so that the "highest" populated zone is used
5596  */
5597 static void __init find_usable_zone_for_movable(void)
5598 {
5599 	int zone_index;
5600 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5601 		if (zone_index == ZONE_MOVABLE)
5602 			continue;
5603 
5604 		if (arch_zone_highest_possible_pfn[zone_index] >
5605 				arch_zone_lowest_possible_pfn[zone_index])
5606 			break;
5607 	}
5608 
5609 	VM_BUG_ON(zone_index == -1);
5610 	movable_zone = zone_index;
5611 }
5612 
5613 /*
5614  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5615  * because it is sized independent of architecture. Unlike the other zones,
5616  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5617  * in each node depending on the size of each node and how evenly kernelcore
5618  * is distributed. This helper function adjusts the zone ranges
5619  * provided by the architecture for a given node by using the end of the
5620  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5621  * zones within a node are in order of monotonic increases memory addresses
5622  */
5623 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5624 					unsigned long zone_type,
5625 					unsigned long node_start_pfn,
5626 					unsigned long node_end_pfn,
5627 					unsigned long *zone_start_pfn,
5628 					unsigned long *zone_end_pfn)
5629 {
5630 	/* Only adjust if ZONE_MOVABLE is on this node */
5631 	if (zone_movable_pfn[nid]) {
5632 		/* Size ZONE_MOVABLE */
5633 		if (zone_type == ZONE_MOVABLE) {
5634 			*zone_start_pfn = zone_movable_pfn[nid];
5635 			*zone_end_pfn = min(node_end_pfn,
5636 				arch_zone_highest_possible_pfn[movable_zone]);
5637 
5638 		/* Adjust for ZONE_MOVABLE starting within this range */
5639 		} else if (!mirrored_kernelcore &&
5640 			*zone_start_pfn < zone_movable_pfn[nid] &&
5641 			*zone_end_pfn > zone_movable_pfn[nid]) {
5642 			*zone_end_pfn = zone_movable_pfn[nid];
5643 
5644 		/* Check if this whole range is within ZONE_MOVABLE */
5645 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5646 			*zone_start_pfn = *zone_end_pfn;
5647 	}
5648 }
5649 
5650 /*
5651  * Return the number of pages a zone spans in a node, including holes
5652  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5653  */
5654 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5655 					unsigned long zone_type,
5656 					unsigned long node_start_pfn,
5657 					unsigned long node_end_pfn,
5658 					unsigned long *zone_start_pfn,
5659 					unsigned long *zone_end_pfn,
5660 					unsigned long *ignored)
5661 {
5662 	/* When hotadd a new node from cpu_up(), the node should be empty */
5663 	if (!node_start_pfn && !node_end_pfn)
5664 		return 0;
5665 
5666 	/* Get the start and end of the zone */
5667 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5668 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5669 	adjust_zone_range_for_zone_movable(nid, zone_type,
5670 				node_start_pfn, node_end_pfn,
5671 				zone_start_pfn, zone_end_pfn);
5672 
5673 	/* Check that this node has pages within the zone's required range */
5674 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5675 		return 0;
5676 
5677 	/* Move the zone boundaries inside the node if necessary */
5678 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5679 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5680 
5681 	/* Return the spanned pages */
5682 	return *zone_end_pfn - *zone_start_pfn;
5683 }
5684 
5685 /*
5686  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5687  * then all holes in the requested range will be accounted for.
5688  */
5689 unsigned long __meminit __absent_pages_in_range(int nid,
5690 				unsigned long range_start_pfn,
5691 				unsigned long range_end_pfn)
5692 {
5693 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5694 	unsigned long start_pfn, end_pfn;
5695 	int i;
5696 
5697 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5698 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5699 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5700 		nr_absent -= end_pfn - start_pfn;
5701 	}
5702 	return nr_absent;
5703 }
5704 
5705 /**
5706  * absent_pages_in_range - Return number of page frames in holes within a range
5707  * @start_pfn: The start PFN to start searching for holes
5708  * @end_pfn: The end PFN to stop searching for holes
5709  *
5710  * It returns the number of pages frames in memory holes within a range.
5711  */
5712 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5713 							unsigned long end_pfn)
5714 {
5715 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5716 }
5717 
5718 /* Return the number of page frames in holes in a zone on a node */
5719 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5720 					unsigned long zone_type,
5721 					unsigned long node_start_pfn,
5722 					unsigned long node_end_pfn,
5723 					unsigned long *ignored)
5724 {
5725 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5726 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5727 	unsigned long zone_start_pfn, zone_end_pfn;
5728 	unsigned long nr_absent;
5729 
5730 	/* When hotadd a new node from cpu_up(), the node should be empty */
5731 	if (!node_start_pfn && !node_end_pfn)
5732 		return 0;
5733 
5734 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5735 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5736 
5737 	adjust_zone_range_for_zone_movable(nid, zone_type,
5738 			node_start_pfn, node_end_pfn,
5739 			&zone_start_pfn, &zone_end_pfn);
5740 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5741 
5742 	/*
5743 	 * ZONE_MOVABLE handling.
5744 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5745 	 * and vice versa.
5746 	 */
5747 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5748 		unsigned long start_pfn, end_pfn;
5749 		struct memblock_region *r;
5750 
5751 		for_each_memblock(memory, r) {
5752 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
5753 					  zone_start_pfn, zone_end_pfn);
5754 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
5755 					zone_start_pfn, zone_end_pfn);
5756 
5757 			if (zone_type == ZONE_MOVABLE &&
5758 			    memblock_is_mirror(r))
5759 				nr_absent += end_pfn - start_pfn;
5760 
5761 			if (zone_type == ZONE_NORMAL &&
5762 			    !memblock_is_mirror(r))
5763 				nr_absent += end_pfn - start_pfn;
5764 		}
5765 	}
5766 
5767 	return nr_absent;
5768 }
5769 
5770 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5771 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5772 					unsigned long zone_type,
5773 					unsigned long node_start_pfn,
5774 					unsigned long node_end_pfn,
5775 					unsigned long *zone_start_pfn,
5776 					unsigned long *zone_end_pfn,
5777 					unsigned long *zones_size)
5778 {
5779 	unsigned int zone;
5780 
5781 	*zone_start_pfn = node_start_pfn;
5782 	for (zone = 0; zone < zone_type; zone++)
5783 		*zone_start_pfn += zones_size[zone];
5784 
5785 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5786 
5787 	return zones_size[zone_type];
5788 }
5789 
5790 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5791 						unsigned long zone_type,
5792 						unsigned long node_start_pfn,
5793 						unsigned long node_end_pfn,
5794 						unsigned long *zholes_size)
5795 {
5796 	if (!zholes_size)
5797 		return 0;
5798 
5799 	return zholes_size[zone_type];
5800 }
5801 
5802 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5803 
5804 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5805 						unsigned long node_start_pfn,
5806 						unsigned long node_end_pfn,
5807 						unsigned long *zones_size,
5808 						unsigned long *zholes_size)
5809 {
5810 	unsigned long realtotalpages = 0, totalpages = 0;
5811 	enum zone_type i;
5812 
5813 	for (i = 0; i < MAX_NR_ZONES; i++) {
5814 		struct zone *zone = pgdat->node_zones + i;
5815 		unsigned long zone_start_pfn, zone_end_pfn;
5816 		unsigned long size, real_size;
5817 
5818 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5819 						  node_start_pfn,
5820 						  node_end_pfn,
5821 						  &zone_start_pfn,
5822 						  &zone_end_pfn,
5823 						  zones_size);
5824 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5825 						  node_start_pfn, node_end_pfn,
5826 						  zholes_size);
5827 		if (size)
5828 			zone->zone_start_pfn = zone_start_pfn;
5829 		else
5830 			zone->zone_start_pfn = 0;
5831 		zone->spanned_pages = size;
5832 		zone->present_pages = real_size;
5833 
5834 		totalpages += size;
5835 		realtotalpages += real_size;
5836 	}
5837 
5838 	pgdat->node_spanned_pages = totalpages;
5839 	pgdat->node_present_pages = realtotalpages;
5840 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5841 							realtotalpages);
5842 }
5843 
5844 #ifndef CONFIG_SPARSEMEM
5845 /*
5846  * Calculate the size of the zone->blockflags rounded to an unsigned long
5847  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5848  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5849  * round what is now in bits to nearest long in bits, then return it in
5850  * bytes.
5851  */
5852 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5853 {
5854 	unsigned long usemapsize;
5855 
5856 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5857 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5858 	usemapsize = usemapsize >> pageblock_order;
5859 	usemapsize *= NR_PAGEBLOCK_BITS;
5860 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5861 
5862 	return usemapsize / 8;
5863 }
5864 
5865 static void __init setup_usemap(struct pglist_data *pgdat,
5866 				struct zone *zone,
5867 				unsigned long zone_start_pfn,
5868 				unsigned long zonesize)
5869 {
5870 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5871 	zone->pageblock_flags = NULL;
5872 	if (usemapsize)
5873 		zone->pageblock_flags =
5874 			memblock_virt_alloc_node_nopanic(usemapsize,
5875 							 pgdat->node_id);
5876 }
5877 #else
5878 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5879 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5880 #endif /* CONFIG_SPARSEMEM */
5881 
5882 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5883 
5884 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5885 void __paginginit set_pageblock_order(void)
5886 {
5887 	unsigned int order;
5888 
5889 	/* Check that pageblock_nr_pages has not already been setup */
5890 	if (pageblock_order)
5891 		return;
5892 
5893 	if (HPAGE_SHIFT > PAGE_SHIFT)
5894 		order = HUGETLB_PAGE_ORDER;
5895 	else
5896 		order = MAX_ORDER - 1;
5897 
5898 	/*
5899 	 * Assume the largest contiguous order of interest is a huge page.
5900 	 * This value may be variable depending on boot parameters on IA64 and
5901 	 * powerpc.
5902 	 */
5903 	pageblock_order = order;
5904 }
5905 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5906 
5907 /*
5908  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5909  * is unused as pageblock_order is set at compile-time. See
5910  * include/linux/pageblock-flags.h for the values of pageblock_order based on
5911  * the kernel config
5912  */
5913 void __paginginit set_pageblock_order(void)
5914 {
5915 }
5916 
5917 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5918 
5919 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5920 						   unsigned long present_pages)
5921 {
5922 	unsigned long pages = spanned_pages;
5923 
5924 	/*
5925 	 * Provide a more accurate estimation if there are holes within
5926 	 * the zone and SPARSEMEM is in use. If there are holes within the
5927 	 * zone, each populated memory region may cost us one or two extra
5928 	 * memmap pages due to alignment because memmap pages for each
5929 	 * populated regions may not be naturally aligned on page boundary.
5930 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5931 	 */
5932 	if (spanned_pages > present_pages + (present_pages >> 4) &&
5933 	    IS_ENABLED(CONFIG_SPARSEMEM))
5934 		pages = present_pages;
5935 
5936 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5937 }
5938 
5939 /*
5940  * Set up the zone data structures:
5941  *   - mark all pages reserved
5942  *   - mark all memory queues empty
5943  *   - clear the memory bitmaps
5944  *
5945  * NOTE: pgdat should get zeroed by caller.
5946  */
5947 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5948 {
5949 	enum zone_type j;
5950 	int nid = pgdat->node_id;
5951 	int ret;
5952 
5953 	pgdat_resize_init(pgdat);
5954 #ifdef CONFIG_NUMA_BALANCING
5955 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5956 	pgdat->numabalancing_migrate_nr_pages = 0;
5957 	pgdat->numabalancing_migrate_next_window = jiffies;
5958 #endif
5959 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5960 	spin_lock_init(&pgdat->split_queue_lock);
5961 	INIT_LIST_HEAD(&pgdat->split_queue);
5962 	pgdat->split_queue_len = 0;
5963 #endif
5964 	init_waitqueue_head(&pgdat->kswapd_wait);
5965 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5966 #ifdef CONFIG_COMPACTION
5967 	init_waitqueue_head(&pgdat->kcompactd_wait);
5968 #endif
5969 	pgdat_page_ext_init(pgdat);
5970 	spin_lock_init(&pgdat->lru_lock);
5971 	lruvec_init(node_lruvec(pgdat));
5972 
5973 	for (j = 0; j < MAX_NR_ZONES; j++) {
5974 		struct zone *zone = pgdat->node_zones + j;
5975 		unsigned long size, realsize, freesize, memmap_pages;
5976 		unsigned long zone_start_pfn = zone->zone_start_pfn;
5977 
5978 		size = zone->spanned_pages;
5979 		realsize = freesize = zone->present_pages;
5980 
5981 		/*
5982 		 * Adjust freesize so that it accounts for how much memory
5983 		 * is used by this zone for memmap. This affects the watermark
5984 		 * and per-cpu initialisations
5985 		 */
5986 		memmap_pages = calc_memmap_size(size, realsize);
5987 		if (!is_highmem_idx(j)) {
5988 			if (freesize >= memmap_pages) {
5989 				freesize -= memmap_pages;
5990 				if (memmap_pages)
5991 					printk(KERN_DEBUG
5992 					       "  %s zone: %lu pages used for memmap\n",
5993 					       zone_names[j], memmap_pages);
5994 			} else
5995 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
5996 					zone_names[j], memmap_pages, freesize);
5997 		}
5998 
5999 		/* Account for reserved pages */
6000 		if (j == 0 && freesize > dma_reserve) {
6001 			freesize -= dma_reserve;
6002 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6003 					zone_names[0], dma_reserve);
6004 		}
6005 
6006 		if (!is_highmem_idx(j))
6007 			nr_kernel_pages += freesize;
6008 		/* Charge for highmem memmap if there are enough kernel pages */
6009 		else if (nr_kernel_pages > memmap_pages * 2)
6010 			nr_kernel_pages -= memmap_pages;
6011 		nr_all_pages += freesize;
6012 
6013 		/*
6014 		 * Set an approximate value for lowmem here, it will be adjusted
6015 		 * when the bootmem allocator frees pages into the buddy system.
6016 		 * And all highmem pages will be managed by the buddy system.
6017 		 */
6018 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6019 #ifdef CONFIG_NUMA
6020 		zone->node = nid;
6021 #endif
6022 		zone->name = zone_names[j];
6023 		zone->zone_pgdat = pgdat;
6024 		spin_lock_init(&zone->lock);
6025 		zone_seqlock_init(zone);
6026 		zone_pcp_init(zone);
6027 
6028 		if (!size)
6029 			continue;
6030 
6031 		set_pageblock_order();
6032 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6033 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6034 		BUG_ON(ret);
6035 		memmap_init(size, nid, j, zone_start_pfn);
6036 	}
6037 }
6038 
6039 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6040 {
6041 	unsigned long __maybe_unused start = 0;
6042 	unsigned long __maybe_unused offset = 0;
6043 
6044 	/* Skip empty nodes */
6045 	if (!pgdat->node_spanned_pages)
6046 		return;
6047 
6048 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6049 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6050 	offset = pgdat->node_start_pfn - start;
6051 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6052 	if (!pgdat->node_mem_map) {
6053 		unsigned long size, end;
6054 		struct page *map;
6055 
6056 		/*
6057 		 * The zone's endpoints aren't required to be MAX_ORDER
6058 		 * aligned but the node_mem_map endpoints must be in order
6059 		 * for the buddy allocator to function correctly.
6060 		 */
6061 		end = pgdat_end_pfn(pgdat);
6062 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6063 		size =  (end - start) * sizeof(struct page);
6064 		map = alloc_remap(pgdat->node_id, size);
6065 		if (!map)
6066 			map = memblock_virt_alloc_node_nopanic(size,
6067 							       pgdat->node_id);
6068 		pgdat->node_mem_map = map + offset;
6069 	}
6070 #ifndef CONFIG_NEED_MULTIPLE_NODES
6071 	/*
6072 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6073 	 */
6074 	if (pgdat == NODE_DATA(0)) {
6075 		mem_map = NODE_DATA(0)->node_mem_map;
6076 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6077 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6078 			mem_map -= offset;
6079 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6080 	}
6081 #endif
6082 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6083 }
6084 
6085 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6086 		unsigned long node_start_pfn, unsigned long *zholes_size)
6087 {
6088 	pg_data_t *pgdat = NODE_DATA(nid);
6089 	unsigned long start_pfn = 0;
6090 	unsigned long end_pfn = 0;
6091 
6092 	/* pg_data_t should be reset to zero when it's allocated */
6093 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6094 
6095 	reset_deferred_meminit(pgdat);
6096 	pgdat->node_id = nid;
6097 	pgdat->node_start_pfn = node_start_pfn;
6098 	pgdat->per_cpu_nodestats = NULL;
6099 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6100 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6101 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6102 		(u64)start_pfn << PAGE_SHIFT,
6103 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6104 #else
6105 	start_pfn = node_start_pfn;
6106 #endif
6107 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6108 				  zones_size, zholes_size);
6109 
6110 	alloc_node_mem_map(pgdat);
6111 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6112 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6113 		nid, (unsigned long)pgdat,
6114 		(unsigned long)pgdat->node_mem_map);
6115 #endif
6116 
6117 	free_area_init_core(pgdat);
6118 }
6119 
6120 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6121 
6122 #if MAX_NUMNODES > 1
6123 /*
6124  * Figure out the number of possible node ids.
6125  */
6126 void __init setup_nr_node_ids(void)
6127 {
6128 	unsigned int highest;
6129 
6130 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6131 	nr_node_ids = highest + 1;
6132 }
6133 #endif
6134 
6135 /**
6136  * node_map_pfn_alignment - determine the maximum internode alignment
6137  *
6138  * This function should be called after node map is populated and sorted.
6139  * It calculates the maximum power of two alignment which can distinguish
6140  * all the nodes.
6141  *
6142  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6143  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6144  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6145  * shifted, 1GiB is enough and this function will indicate so.
6146  *
6147  * This is used to test whether pfn -> nid mapping of the chosen memory
6148  * model has fine enough granularity to avoid incorrect mapping for the
6149  * populated node map.
6150  *
6151  * Returns the determined alignment in pfn's.  0 if there is no alignment
6152  * requirement (single node).
6153  */
6154 unsigned long __init node_map_pfn_alignment(void)
6155 {
6156 	unsigned long accl_mask = 0, last_end = 0;
6157 	unsigned long start, end, mask;
6158 	int last_nid = -1;
6159 	int i, nid;
6160 
6161 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6162 		if (!start || last_nid < 0 || last_nid == nid) {
6163 			last_nid = nid;
6164 			last_end = end;
6165 			continue;
6166 		}
6167 
6168 		/*
6169 		 * Start with a mask granular enough to pin-point to the
6170 		 * start pfn and tick off bits one-by-one until it becomes
6171 		 * too coarse to separate the current node from the last.
6172 		 */
6173 		mask = ~((1 << __ffs(start)) - 1);
6174 		while (mask && last_end <= (start & (mask << 1)))
6175 			mask <<= 1;
6176 
6177 		/* accumulate all internode masks */
6178 		accl_mask |= mask;
6179 	}
6180 
6181 	/* convert mask to number of pages */
6182 	return ~accl_mask + 1;
6183 }
6184 
6185 /* Find the lowest pfn for a node */
6186 static unsigned long __init find_min_pfn_for_node(int nid)
6187 {
6188 	unsigned long min_pfn = ULONG_MAX;
6189 	unsigned long start_pfn;
6190 	int i;
6191 
6192 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6193 		min_pfn = min(min_pfn, start_pfn);
6194 
6195 	if (min_pfn == ULONG_MAX) {
6196 		pr_warn("Could not find start_pfn for node %d\n", nid);
6197 		return 0;
6198 	}
6199 
6200 	return min_pfn;
6201 }
6202 
6203 /**
6204  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6205  *
6206  * It returns the minimum PFN based on information provided via
6207  * memblock_set_node().
6208  */
6209 unsigned long __init find_min_pfn_with_active_regions(void)
6210 {
6211 	return find_min_pfn_for_node(MAX_NUMNODES);
6212 }
6213 
6214 /*
6215  * early_calculate_totalpages()
6216  * Sum pages in active regions for movable zone.
6217  * Populate N_MEMORY for calculating usable_nodes.
6218  */
6219 static unsigned long __init early_calculate_totalpages(void)
6220 {
6221 	unsigned long totalpages = 0;
6222 	unsigned long start_pfn, end_pfn;
6223 	int i, nid;
6224 
6225 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6226 		unsigned long pages = end_pfn - start_pfn;
6227 
6228 		totalpages += pages;
6229 		if (pages)
6230 			node_set_state(nid, N_MEMORY);
6231 	}
6232 	return totalpages;
6233 }
6234 
6235 /*
6236  * Find the PFN the Movable zone begins in each node. Kernel memory
6237  * is spread evenly between nodes as long as the nodes have enough
6238  * memory. When they don't, some nodes will have more kernelcore than
6239  * others
6240  */
6241 static void __init find_zone_movable_pfns_for_nodes(void)
6242 {
6243 	int i, nid;
6244 	unsigned long usable_startpfn;
6245 	unsigned long kernelcore_node, kernelcore_remaining;
6246 	/* save the state before borrow the nodemask */
6247 	nodemask_t saved_node_state = node_states[N_MEMORY];
6248 	unsigned long totalpages = early_calculate_totalpages();
6249 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6250 	struct memblock_region *r;
6251 
6252 	/* Need to find movable_zone earlier when movable_node is specified. */
6253 	find_usable_zone_for_movable();
6254 
6255 	/*
6256 	 * If movable_node is specified, ignore kernelcore and movablecore
6257 	 * options.
6258 	 */
6259 	if (movable_node_is_enabled()) {
6260 		for_each_memblock(memory, r) {
6261 			if (!memblock_is_hotpluggable(r))
6262 				continue;
6263 
6264 			nid = r->nid;
6265 
6266 			usable_startpfn = PFN_DOWN(r->base);
6267 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6268 				min(usable_startpfn, zone_movable_pfn[nid]) :
6269 				usable_startpfn;
6270 		}
6271 
6272 		goto out2;
6273 	}
6274 
6275 	/*
6276 	 * If kernelcore=mirror is specified, ignore movablecore option
6277 	 */
6278 	if (mirrored_kernelcore) {
6279 		bool mem_below_4gb_not_mirrored = false;
6280 
6281 		for_each_memblock(memory, r) {
6282 			if (memblock_is_mirror(r))
6283 				continue;
6284 
6285 			nid = r->nid;
6286 
6287 			usable_startpfn = memblock_region_memory_base_pfn(r);
6288 
6289 			if (usable_startpfn < 0x100000) {
6290 				mem_below_4gb_not_mirrored = true;
6291 				continue;
6292 			}
6293 
6294 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6295 				min(usable_startpfn, zone_movable_pfn[nid]) :
6296 				usable_startpfn;
6297 		}
6298 
6299 		if (mem_below_4gb_not_mirrored)
6300 			pr_warn("This configuration results in unmirrored kernel memory.");
6301 
6302 		goto out2;
6303 	}
6304 
6305 	/*
6306 	 * If movablecore=nn[KMG] was specified, calculate what size of
6307 	 * kernelcore that corresponds so that memory usable for
6308 	 * any allocation type is evenly spread. If both kernelcore
6309 	 * and movablecore are specified, then the value of kernelcore
6310 	 * will be used for required_kernelcore if it's greater than
6311 	 * what movablecore would have allowed.
6312 	 */
6313 	if (required_movablecore) {
6314 		unsigned long corepages;
6315 
6316 		/*
6317 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6318 		 * was requested by the user
6319 		 */
6320 		required_movablecore =
6321 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6322 		required_movablecore = min(totalpages, required_movablecore);
6323 		corepages = totalpages - required_movablecore;
6324 
6325 		required_kernelcore = max(required_kernelcore, corepages);
6326 	}
6327 
6328 	/*
6329 	 * If kernelcore was not specified or kernelcore size is larger
6330 	 * than totalpages, there is no ZONE_MOVABLE.
6331 	 */
6332 	if (!required_kernelcore || required_kernelcore >= totalpages)
6333 		goto out;
6334 
6335 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6336 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6337 
6338 restart:
6339 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6340 	kernelcore_node = required_kernelcore / usable_nodes;
6341 	for_each_node_state(nid, N_MEMORY) {
6342 		unsigned long start_pfn, end_pfn;
6343 
6344 		/*
6345 		 * Recalculate kernelcore_node if the division per node
6346 		 * now exceeds what is necessary to satisfy the requested
6347 		 * amount of memory for the kernel
6348 		 */
6349 		if (required_kernelcore < kernelcore_node)
6350 			kernelcore_node = required_kernelcore / usable_nodes;
6351 
6352 		/*
6353 		 * As the map is walked, we track how much memory is usable
6354 		 * by the kernel using kernelcore_remaining. When it is
6355 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6356 		 */
6357 		kernelcore_remaining = kernelcore_node;
6358 
6359 		/* Go through each range of PFNs within this node */
6360 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6361 			unsigned long size_pages;
6362 
6363 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6364 			if (start_pfn >= end_pfn)
6365 				continue;
6366 
6367 			/* Account for what is only usable for kernelcore */
6368 			if (start_pfn < usable_startpfn) {
6369 				unsigned long kernel_pages;
6370 				kernel_pages = min(end_pfn, usable_startpfn)
6371 								- start_pfn;
6372 
6373 				kernelcore_remaining -= min(kernel_pages,
6374 							kernelcore_remaining);
6375 				required_kernelcore -= min(kernel_pages,
6376 							required_kernelcore);
6377 
6378 				/* Continue if range is now fully accounted */
6379 				if (end_pfn <= usable_startpfn) {
6380 
6381 					/*
6382 					 * Push zone_movable_pfn to the end so
6383 					 * that if we have to rebalance
6384 					 * kernelcore across nodes, we will
6385 					 * not double account here
6386 					 */
6387 					zone_movable_pfn[nid] = end_pfn;
6388 					continue;
6389 				}
6390 				start_pfn = usable_startpfn;
6391 			}
6392 
6393 			/*
6394 			 * The usable PFN range for ZONE_MOVABLE is from
6395 			 * start_pfn->end_pfn. Calculate size_pages as the
6396 			 * number of pages used as kernelcore
6397 			 */
6398 			size_pages = end_pfn - start_pfn;
6399 			if (size_pages > kernelcore_remaining)
6400 				size_pages = kernelcore_remaining;
6401 			zone_movable_pfn[nid] = start_pfn + size_pages;
6402 
6403 			/*
6404 			 * Some kernelcore has been met, update counts and
6405 			 * break if the kernelcore for this node has been
6406 			 * satisfied
6407 			 */
6408 			required_kernelcore -= min(required_kernelcore,
6409 								size_pages);
6410 			kernelcore_remaining -= size_pages;
6411 			if (!kernelcore_remaining)
6412 				break;
6413 		}
6414 	}
6415 
6416 	/*
6417 	 * If there is still required_kernelcore, we do another pass with one
6418 	 * less node in the count. This will push zone_movable_pfn[nid] further
6419 	 * along on the nodes that still have memory until kernelcore is
6420 	 * satisfied
6421 	 */
6422 	usable_nodes--;
6423 	if (usable_nodes && required_kernelcore > usable_nodes)
6424 		goto restart;
6425 
6426 out2:
6427 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6428 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6429 		zone_movable_pfn[nid] =
6430 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6431 
6432 out:
6433 	/* restore the node_state */
6434 	node_states[N_MEMORY] = saved_node_state;
6435 }
6436 
6437 /* Any regular or high memory on that node ? */
6438 static void check_for_memory(pg_data_t *pgdat, int nid)
6439 {
6440 	enum zone_type zone_type;
6441 
6442 	if (N_MEMORY == N_NORMAL_MEMORY)
6443 		return;
6444 
6445 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6446 		struct zone *zone = &pgdat->node_zones[zone_type];
6447 		if (populated_zone(zone)) {
6448 			node_set_state(nid, N_HIGH_MEMORY);
6449 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6450 			    zone_type <= ZONE_NORMAL)
6451 				node_set_state(nid, N_NORMAL_MEMORY);
6452 			break;
6453 		}
6454 	}
6455 }
6456 
6457 /**
6458  * free_area_init_nodes - Initialise all pg_data_t and zone data
6459  * @max_zone_pfn: an array of max PFNs for each zone
6460  *
6461  * This will call free_area_init_node() for each active node in the system.
6462  * Using the page ranges provided by memblock_set_node(), the size of each
6463  * zone in each node and their holes is calculated. If the maximum PFN
6464  * between two adjacent zones match, it is assumed that the zone is empty.
6465  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6466  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6467  * starts where the previous one ended. For example, ZONE_DMA32 starts
6468  * at arch_max_dma_pfn.
6469  */
6470 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6471 {
6472 	unsigned long start_pfn, end_pfn;
6473 	int i, nid;
6474 
6475 	/* Record where the zone boundaries are */
6476 	memset(arch_zone_lowest_possible_pfn, 0,
6477 				sizeof(arch_zone_lowest_possible_pfn));
6478 	memset(arch_zone_highest_possible_pfn, 0,
6479 				sizeof(arch_zone_highest_possible_pfn));
6480 
6481 	start_pfn = find_min_pfn_with_active_regions();
6482 
6483 	for (i = 0; i < MAX_NR_ZONES; i++) {
6484 		if (i == ZONE_MOVABLE)
6485 			continue;
6486 
6487 		end_pfn = max(max_zone_pfn[i], start_pfn);
6488 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6489 		arch_zone_highest_possible_pfn[i] = end_pfn;
6490 
6491 		start_pfn = end_pfn;
6492 	}
6493 
6494 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6495 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6496 	find_zone_movable_pfns_for_nodes();
6497 
6498 	/* Print out the zone ranges */
6499 	pr_info("Zone ranges:\n");
6500 	for (i = 0; i < MAX_NR_ZONES; i++) {
6501 		if (i == ZONE_MOVABLE)
6502 			continue;
6503 		pr_info("  %-8s ", zone_names[i]);
6504 		if (arch_zone_lowest_possible_pfn[i] ==
6505 				arch_zone_highest_possible_pfn[i])
6506 			pr_cont("empty\n");
6507 		else
6508 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6509 				(u64)arch_zone_lowest_possible_pfn[i]
6510 					<< PAGE_SHIFT,
6511 				((u64)arch_zone_highest_possible_pfn[i]
6512 					<< PAGE_SHIFT) - 1);
6513 	}
6514 
6515 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6516 	pr_info("Movable zone start for each node\n");
6517 	for (i = 0; i < MAX_NUMNODES; i++) {
6518 		if (zone_movable_pfn[i])
6519 			pr_info("  Node %d: %#018Lx\n", i,
6520 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6521 	}
6522 
6523 	/* Print out the early node map */
6524 	pr_info("Early memory node ranges\n");
6525 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6526 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6527 			(u64)start_pfn << PAGE_SHIFT,
6528 			((u64)end_pfn << PAGE_SHIFT) - 1);
6529 
6530 	/* Initialise every node */
6531 	mminit_verify_pageflags_layout();
6532 	setup_nr_node_ids();
6533 	for_each_online_node(nid) {
6534 		pg_data_t *pgdat = NODE_DATA(nid);
6535 		free_area_init_node(nid, NULL,
6536 				find_min_pfn_for_node(nid), NULL);
6537 
6538 		/* Any memory on that node */
6539 		if (pgdat->node_present_pages)
6540 			node_set_state(nid, N_MEMORY);
6541 		check_for_memory(pgdat, nid);
6542 	}
6543 }
6544 
6545 static int __init cmdline_parse_core(char *p, unsigned long *core)
6546 {
6547 	unsigned long long coremem;
6548 	if (!p)
6549 		return -EINVAL;
6550 
6551 	coremem = memparse(p, &p);
6552 	*core = coremem >> PAGE_SHIFT;
6553 
6554 	/* Paranoid check that UL is enough for the coremem value */
6555 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6556 
6557 	return 0;
6558 }
6559 
6560 /*
6561  * kernelcore=size sets the amount of memory for use for allocations that
6562  * cannot be reclaimed or migrated.
6563  */
6564 static int __init cmdline_parse_kernelcore(char *p)
6565 {
6566 	/* parse kernelcore=mirror */
6567 	if (parse_option_str(p, "mirror")) {
6568 		mirrored_kernelcore = true;
6569 		return 0;
6570 	}
6571 
6572 	return cmdline_parse_core(p, &required_kernelcore);
6573 }
6574 
6575 /*
6576  * movablecore=size sets the amount of memory for use for allocations that
6577  * can be reclaimed or migrated.
6578  */
6579 static int __init cmdline_parse_movablecore(char *p)
6580 {
6581 	return cmdline_parse_core(p, &required_movablecore);
6582 }
6583 
6584 early_param("kernelcore", cmdline_parse_kernelcore);
6585 early_param("movablecore", cmdline_parse_movablecore);
6586 
6587 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6588 
6589 void adjust_managed_page_count(struct page *page, long count)
6590 {
6591 	spin_lock(&managed_page_count_lock);
6592 	page_zone(page)->managed_pages += count;
6593 	totalram_pages += count;
6594 #ifdef CONFIG_HIGHMEM
6595 	if (PageHighMem(page))
6596 		totalhigh_pages += count;
6597 #endif
6598 	spin_unlock(&managed_page_count_lock);
6599 }
6600 EXPORT_SYMBOL(adjust_managed_page_count);
6601 
6602 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6603 {
6604 	void *pos;
6605 	unsigned long pages = 0;
6606 
6607 	start = (void *)PAGE_ALIGN((unsigned long)start);
6608 	end = (void *)((unsigned long)end & PAGE_MASK);
6609 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6610 		if ((unsigned int)poison <= 0xFF)
6611 			memset(pos, poison, PAGE_SIZE);
6612 		free_reserved_page(virt_to_page(pos));
6613 	}
6614 
6615 	if (pages && s)
6616 		pr_info("Freeing %s memory: %ldK\n",
6617 			s, pages << (PAGE_SHIFT - 10));
6618 
6619 	return pages;
6620 }
6621 EXPORT_SYMBOL(free_reserved_area);
6622 
6623 #ifdef	CONFIG_HIGHMEM
6624 void free_highmem_page(struct page *page)
6625 {
6626 	__free_reserved_page(page);
6627 	totalram_pages++;
6628 	page_zone(page)->managed_pages++;
6629 	totalhigh_pages++;
6630 }
6631 #endif
6632 
6633 
6634 void __init mem_init_print_info(const char *str)
6635 {
6636 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6637 	unsigned long init_code_size, init_data_size;
6638 
6639 	physpages = get_num_physpages();
6640 	codesize = _etext - _stext;
6641 	datasize = _edata - _sdata;
6642 	rosize = __end_rodata - __start_rodata;
6643 	bss_size = __bss_stop - __bss_start;
6644 	init_data_size = __init_end - __init_begin;
6645 	init_code_size = _einittext - _sinittext;
6646 
6647 	/*
6648 	 * Detect special cases and adjust section sizes accordingly:
6649 	 * 1) .init.* may be embedded into .data sections
6650 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6651 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6652 	 * 3) .rodata.* may be embedded into .text or .data sections.
6653 	 */
6654 #define adj_init_size(start, end, size, pos, adj) \
6655 	do { \
6656 		if (start <= pos && pos < end && size > adj) \
6657 			size -= adj; \
6658 	} while (0)
6659 
6660 	adj_init_size(__init_begin, __init_end, init_data_size,
6661 		     _sinittext, init_code_size);
6662 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6663 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6664 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6665 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6666 
6667 #undef	adj_init_size
6668 
6669 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6670 #ifdef	CONFIG_HIGHMEM
6671 		", %luK highmem"
6672 #endif
6673 		"%s%s)\n",
6674 		nr_free_pages() << (PAGE_SHIFT - 10),
6675 		physpages << (PAGE_SHIFT - 10),
6676 		codesize >> 10, datasize >> 10, rosize >> 10,
6677 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6678 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6679 		totalcma_pages << (PAGE_SHIFT - 10),
6680 #ifdef	CONFIG_HIGHMEM
6681 		totalhigh_pages << (PAGE_SHIFT - 10),
6682 #endif
6683 		str ? ", " : "", str ? str : "");
6684 }
6685 
6686 /**
6687  * set_dma_reserve - set the specified number of pages reserved in the first zone
6688  * @new_dma_reserve: The number of pages to mark reserved
6689  *
6690  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6691  * In the DMA zone, a significant percentage may be consumed by kernel image
6692  * and other unfreeable allocations which can skew the watermarks badly. This
6693  * function may optionally be used to account for unfreeable pages in the
6694  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6695  * smaller per-cpu batchsize.
6696  */
6697 void __init set_dma_reserve(unsigned long new_dma_reserve)
6698 {
6699 	dma_reserve = new_dma_reserve;
6700 }
6701 
6702 void __init free_area_init(unsigned long *zones_size)
6703 {
6704 	free_area_init_node(0, zones_size,
6705 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6706 }
6707 
6708 static int page_alloc_cpu_dead(unsigned int cpu)
6709 {
6710 
6711 	lru_add_drain_cpu(cpu);
6712 	drain_pages(cpu);
6713 
6714 	/*
6715 	 * Spill the event counters of the dead processor
6716 	 * into the current processors event counters.
6717 	 * This artificially elevates the count of the current
6718 	 * processor.
6719 	 */
6720 	vm_events_fold_cpu(cpu);
6721 
6722 	/*
6723 	 * Zero the differential counters of the dead processor
6724 	 * so that the vm statistics are consistent.
6725 	 *
6726 	 * This is only okay since the processor is dead and cannot
6727 	 * race with what we are doing.
6728 	 */
6729 	cpu_vm_stats_fold(cpu);
6730 	return 0;
6731 }
6732 
6733 void __init page_alloc_init(void)
6734 {
6735 	int ret;
6736 
6737 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6738 					"mm/page_alloc:dead", NULL,
6739 					page_alloc_cpu_dead);
6740 	WARN_ON(ret < 0);
6741 }
6742 
6743 /*
6744  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6745  *	or min_free_kbytes changes.
6746  */
6747 static void calculate_totalreserve_pages(void)
6748 {
6749 	struct pglist_data *pgdat;
6750 	unsigned long reserve_pages = 0;
6751 	enum zone_type i, j;
6752 
6753 	for_each_online_pgdat(pgdat) {
6754 
6755 		pgdat->totalreserve_pages = 0;
6756 
6757 		for (i = 0; i < MAX_NR_ZONES; i++) {
6758 			struct zone *zone = pgdat->node_zones + i;
6759 			long max = 0;
6760 
6761 			/* Find valid and maximum lowmem_reserve in the zone */
6762 			for (j = i; j < MAX_NR_ZONES; j++) {
6763 				if (zone->lowmem_reserve[j] > max)
6764 					max = zone->lowmem_reserve[j];
6765 			}
6766 
6767 			/* we treat the high watermark as reserved pages. */
6768 			max += high_wmark_pages(zone);
6769 
6770 			if (max > zone->managed_pages)
6771 				max = zone->managed_pages;
6772 
6773 			pgdat->totalreserve_pages += max;
6774 
6775 			reserve_pages += max;
6776 		}
6777 	}
6778 	totalreserve_pages = reserve_pages;
6779 }
6780 
6781 /*
6782  * setup_per_zone_lowmem_reserve - called whenever
6783  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6784  *	has a correct pages reserved value, so an adequate number of
6785  *	pages are left in the zone after a successful __alloc_pages().
6786  */
6787 static void setup_per_zone_lowmem_reserve(void)
6788 {
6789 	struct pglist_data *pgdat;
6790 	enum zone_type j, idx;
6791 
6792 	for_each_online_pgdat(pgdat) {
6793 		for (j = 0; j < MAX_NR_ZONES; j++) {
6794 			struct zone *zone = pgdat->node_zones + j;
6795 			unsigned long managed_pages = zone->managed_pages;
6796 
6797 			zone->lowmem_reserve[j] = 0;
6798 
6799 			idx = j;
6800 			while (idx) {
6801 				struct zone *lower_zone;
6802 
6803 				idx--;
6804 
6805 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6806 					sysctl_lowmem_reserve_ratio[idx] = 1;
6807 
6808 				lower_zone = pgdat->node_zones + idx;
6809 				lower_zone->lowmem_reserve[j] = managed_pages /
6810 					sysctl_lowmem_reserve_ratio[idx];
6811 				managed_pages += lower_zone->managed_pages;
6812 			}
6813 		}
6814 	}
6815 
6816 	/* update totalreserve_pages */
6817 	calculate_totalreserve_pages();
6818 }
6819 
6820 static void __setup_per_zone_wmarks(void)
6821 {
6822 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6823 	unsigned long lowmem_pages = 0;
6824 	struct zone *zone;
6825 	unsigned long flags;
6826 
6827 	/* Calculate total number of !ZONE_HIGHMEM pages */
6828 	for_each_zone(zone) {
6829 		if (!is_highmem(zone))
6830 			lowmem_pages += zone->managed_pages;
6831 	}
6832 
6833 	for_each_zone(zone) {
6834 		u64 tmp;
6835 
6836 		spin_lock_irqsave(&zone->lock, flags);
6837 		tmp = (u64)pages_min * zone->managed_pages;
6838 		do_div(tmp, lowmem_pages);
6839 		if (is_highmem(zone)) {
6840 			/*
6841 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6842 			 * need highmem pages, so cap pages_min to a small
6843 			 * value here.
6844 			 *
6845 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6846 			 * deltas control asynch page reclaim, and so should
6847 			 * not be capped for highmem.
6848 			 */
6849 			unsigned long min_pages;
6850 
6851 			min_pages = zone->managed_pages / 1024;
6852 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6853 			zone->watermark[WMARK_MIN] = min_pages;
6854 		} else {
6855 			/*
6856 			 * If it's a lowmem zone, reserve a number of pages
6857 			 * proportionate to the zone's size.
6858 			 */
6859 			zone->watermark[WMARK_MIN] = tmp;
6860 		}
6861 
6862 		/*
6863 		 * Set the kswapd watermarks distance according to the
6864 		 * scale factor in proportion to available memory, but
6865 		 * ensure a minimum size on small systems.
6866 		 */
6867 		tmp = max_t(u64, tmp >> 2,
6868 			    mult_frac(zone->managed_pages,
6869 				      watermark_scale_factor, 10000));
6870 
6871 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6872 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6873 
6874 		spin_unlock_irqrestore(&zone->lock, flags);
6875 	}
6876 
6877 	/* update totalreserve_pages */
6878 	calculate_totalreserve_pages();
6879 }
6880 
6881 /**
6882  * setup_per_zone_wmarks - called when min_free_kbytes changes
6883  * or when memory is hot-{added|removed}
6884  *
6885  * Ensures that the watermark[min,low,high] values for each zone are set
6886  * correctly with respect to min_free_kbytes.
6887  */
6888 void setup_per_zone_wmarks(void)
6889 {
6890 	mutex_lock(&zonelists_mutex);
6891 	__setup_per_zone_wmarks();
6892 	mutex_unlock(&zonelists_mutex);
6893 }
6894 
6895 /*
6896  * Initialise min_free_kbytes.
6897  *
6898  * For small machines we want it small (128k min).  For large machines
6899  * we want it large (64MB max).  But it is not linear, because network
6900  * bandwidth does not increase linearly with machine size.  We use
6901  *
6902  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6903  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6904  *
6905  * which yields
6906  *
6907  * 16MB:	512k
6908  * 32MB:	724k
6909  * 64MB:	1024k
6910  * 128MB:	1448k
6911  * 256MB:	2048k
6912  * 512MB:	2896k
6913  * 1024MB:	4096k
6914  * 2048MB:	5792k
6915  * 4096MB:	8192k
6916  * 8192MB:	11584k
6917  * 16384MB:	16384k
6918  */
6919 int __meminit init_per_zone_wmark_min(void)
6920 {
6921 	unsigned long lowmem_kbytes;
6922 	int new_min_free_kbytes;
6923 
6924 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6925 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6926 
6927 	if (new_min_free_kbytes > user_min_free_kbytes) {
6928 		min_free_kbytes = new_min_free_kbytes;
6929 		if (min_free_kbytes < 128)
6930 			min_free_kbytes = 128;
6931 		if (min_free_kbytes > 65536)
6932 			min_free_kbytes = 65536;
6933 	} else {
6934 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6935 				new_min_free_kbytes, user_min_free_kbytes);
6936 	}
6937 	setup_per_zone_wmarks();
6938 	refresh_zone_stat_thresholds();
6939 	setup_per_zone_lowmem_reserve();
6940 
6941 #ifdef CONFIG_NUMA
6942 	setup_min_unmapped_ratio();
6943 	setup_min_slab_ratio();
6944 #endif
6945 
6946 	return 0;
6947 }
6948 core_initcall(init_per_zone_wmark_min)
6949 
6950 /*
6951  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6952  *	that we can call two helper functions whenever min_free_kbytes
6953  *	changes.
6954  */
6955 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6956 	void __user *buffer, size_t *length, loff_t *ppos)
6957 {
6958 	int rc;
6959 
6960 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6961 	if (rc)
6962 		return rc;
6963 
6964 	if (write) {
6965 		user_min_free_kbytes = min_free_kbytes;
6966 		setup_per_zone_wmarks();
6967 	}
6968 	return 0;
6969 }
6970 
6971 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6972 	void __user *buffer, size_t *length, loff_t *ppos)
6973 {
6974 	int rc;
6975 
6976 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6977 	if (rc)
6978 		return rc;
6979 
6980 	if (write)
6981 		setup_per_zone_wmarks();
6982 
6983 	return 0;
6984 }
6985 
6986 #ifdef CONFIG_NUMA
6987 static void setup_min_unmapped_ratio(void)
6988 {
6989 	pg_data_t *pgdat;
6990 	struct zone *zone;
6991 
6992 	for_each_online_pgdat(pgdat)
6993 		pgdat->min_unmapped_pages = 0;
6994 
6995 	for_each_zone(zone)
6996 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6997 				sysctl_min_unmapped_ratio) / 100;
6998 }
6999 
7000 
7001 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7002 	void __user *buffer, size_t *length, loff_t *ppos)
7003 {
7004 	int rc;
7005 
7006 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7007 	if (rc)
7008 		return rc;
7009 
7010 	setup_min_unmapped_ratio();
7011 
7012 	return 0;
7013 }
7014 
7015 static void setup_min_slab_ratio(void)
7016 {
7017 	pg_data_t *pgdat;
7018 	struct zone *zone;
7019 
7020 	for_each_online_pgdat(pgdat)
7021 		pgdat->min_slab_pages = 0;
7022 
7023 	for_each_zone(zone)
7024 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7025 				sysctl_min_slab_ratio) / 100;
7026 }
7027 
7028 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7029 	void __user *buffer, size_t *length, loff_t *ppos)
7030 {
7031 	int rc;
7032 
7033 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7034 	if (rc)
7035 		return rc;
7036 
7037 	setup_min_slab_ratio();
7038 
7039 	return 0;
7040 }
7041 #endif
7042 
7043 /*
7044  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7045  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7046  *	whenever sysctl_lowmem_reserve_ratio changes.
7047  *
7048  * The reserve ratio obviously has absolutely no relation with the
7049  * minimum watermarks. The lowmem reserve ratio can only make sense
7050  * if in function of the boot time zone sizes.
7051  */
7052 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7053 	void __user *buffer, size_t *length, loff_t *ppos)
7054 {
7055 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7056 	setup_per_zone_lowmem_reserve();
7057 	return 0;
7058 }
7059 
7060 /*
7061  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7062  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7063  * pagelist can have before it gets flushed back to buddy allocator.
7064  */
7065 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7066 	void __user *buffer, size_t *length, loff_t *ppos)
7067 {
7068 	struct zone *zone;
7069 	int old_percpu_pagelist_fraction;
7070 	int ret;
7071 
7072 	mutex_lock(&pcp_batch_high_lock);
7073 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7074 
7075 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7076 	if (!write || ret < 0)
7077 		goto out;
7078 
7079 	/* Sanity checking to avoid pcp imbalance */
7080 	if (percpu_pagelist_fraction &&
7081 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7082 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7083 		ret = -EINVAL;
7084 		goto out;
7085 	}
7086 
7087 	/* No change? */
7088 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7089 		goto out;
7090 
7091 	for_each_populated_zone(zone) {
7092 		unsigned int cpu;
7093 
7094 		for_each_possible_cpu(cpu)
7095 			pageset_set_high_and_batch(zone,
7096 					per_cpu_ptr(zone->pageset, cpu));
7097 	}
7098 out:
7099 	mutex_unlock(&pcp_batch_high_lock);
7100 	return ret;
7101 }
7102 
7103 #ifdef CONFIG_NUMA
7104 int hashdist = HASHDIST_DEFAULT;
7105 
7106 static int __init set_hashdist(char *str)
7107 {
7108 	if (!str)
7109 		return 0;
7110 	hashdist = simple_strtoul(str, &str, 0);
7111 	return 1;
7112 }
7113 __setup("hashdist=", set_hashdist);
7114 #endif
7115 
7116 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7117 /*
7118  * Returns the number of pages that arch has reserved but
7119  * is not known to alloc_large_system_hash().
7120  */
7121 static unsigned long __init arch_reserved_kernel_pages(void)
7122 {
7123 	return 0;
7124 }
7125 #endif
7126 
7127 /*
7128  * allocate a large system hash table from bootmem
7129  * - it is assumed that the hash table must contain an exact power-of-2
7130  *   quantity of entries
7131  * - limit is the number of hash buckets, not the total allocation size
7132  */
7133 void *__init alloc_large_system_hash(const char *tablename,
7134 				     unsigned long bucketsize,
7135 				     unsigned long numentries,
7136 				     int scale,
7137 				     int flags,
7138 				     unsigned int *_hash_shift,
7139 				     unsigned int *_hash_mask,
7140 				     unsigned long low_limit,
7141 				     unsigned long high_limit)
7142 {
7143 	unsigned long long max = high_limit;
7144 	unsigned long log2qty, size;
7145 	void *table = NULL;
7146 
7147 	/* allow the kernel cmdline to have a say */
7148 	if (!numentries) {
7149 		/* round applicable memory size up to nearest megabyte */
7150 		numentries = nr_kernel_pages;
7151 		numentries -= arch_reserved_kernel_pages();
7152 
7153 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7154 		if (PAGE_SHIFT < 20)
7155 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7156 
7157 		/* limit to 1 bucket per 2^scale bytes of low memory */
7158 		if (scale > PAGE_SHIFT)
7159 			numentries >>= (scale - PAGE_SHIFT);
7160 		else
7161 			numentries <<= (PAGE_SHIFT - scale);
7162 
7163 		/* Make sure we've got at least a 0-order allocation.. */
7164 		if (unlikely(flags & HASH_SMALL)) {
7165 			/* Makes no sense without HASH_EARLY */
7166 			WARN_ON(!(flags & HASH_EARLY));
7167 			if (!(numentries >> *_hash_shift)) {
7168 				numentries = 1UL << *_hash_shift;
7169 				BUG_ON(!numentries);
7170 			}
7171 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7172 			numentries = PAGE_SIZE / bucketsize;
7173 	}
7174 	numentries = roundup_pow_of_two(numentries);
7175 
7176 	/* limit allocation size to 1/16 total memory by default */
7177 	if (max == 0) {
7178 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7179 		do_div(max, bucketsize);
7180 	}
7181 	max = min(max, 0x80000000ULL);
7182 
7183 	if (numentries < low_limit)
7184 		numentries = low_limit;
7185 	if (numentries > max)
7186 		numentries = max;
7187 
7188 	log2qty = ilog2(numentries);
7189 
7190 	do {
7191 		size = bucketsize << log2qty;
7192 		if (flags & HASH_EARLY)
7193 			table = memblock_virt_alloc_nopanic(size, 0);
7194 		else if (hashdist)
7195 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7196 		else {
7197 			/*
7198 			 * If bucketsize is not a power-of-two, we may free
7199 			 * some pages at the end of hash table which
7200 			 * alloc_pages_exact() automatically does
7201 			 */
7202 			if (get_order(size) < MAX_ORDER) {
7203 				table = alloc_pages_exact(size, GFP_ATOMIC);
7204 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7205 			}
7206 		}
7207 	} while (!table && size > PAGE_SIZE && --log2qty);
7208 
7209 	if (!table)
7210 		panic("Failed to allocate %s hash table\n", tablename);
7211 
7212 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7213 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7214 
7215 	if (_hash_shift)
7216 		*_hash_shift = log2qty;
7217 	if (_hash_mask)
7218 		*_hash_mask = (1 << log2qty) - 1;
7219 
7220 	return table;
7221 }
7222 
7223 /*
7224  * This function checks whether pageblock includes unmovable pages or not.
7225  * If @count is not zero, it is okay to include less @count unmovable pages
7226  *
7227  * PageLRU check without isolation or lru_lock could race so that
7228  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7229  * check without lock_page also may miss some movable non-lru pages at
7230  * race condition. So you can't expect this function should be exact.
7231  */
7232 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7233 			 bool skip_hwpoisoned_pages)
7234 {
7235 	unsigned long pfn, iter, found;
7236 	int mt;
7237 
7238 	/*
7239 	 * For avoiding noise data, lru_add_drain_all() should be called
7240 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7241 	 */
7242 	if (zone_idx(zone) == ZONE_MOVABLE)
7243 		return false;
7244 	mt = get_pageblock_migratetype(page);
7245 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7246 		return false;
7247 
7248 	pfn = page_to_pfn(page);
7249 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7250 		unsigned long check = pfn + iter;
7251 
7252 		if (!pfn_valid_within(check))
7253 			continue;
7254 
7255 		page = pfn_to_page(check);
7256 
7257 		/*
7258 		 * Hugepages are not in LRU lists, but they're movable.
7259 		 * We need not scan over tail pages bacause we don't
7260 		 * handle each tail page individually in migration.
7261 		 */
7262 		if (PageHuge(page)) {
7263 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7264 			continue;
7265 		}
7266 
7267 		/*
7268 		 * We can't use page_count without pin a page
7269 		 * because another CPU can free compound page.
7270 		 * This check already skips compound tails of THP
7271 		 * because their page->_refcount is zero at all time.
7272 		 */
7273 		if (!page_ref_count(page)) {
7274 			if (PageBuddy(page))
7275 				iter += (1 << page_order(page)) - 1;
7276 			continue;
7277 		}
7278 
7279 		/*
7280 		 * The HWPoisoned page may be not in buddy system, and
7281 		 * page_count() is not 0.
7282 		 */
7283 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7284 			continue;
7285 
7286 		if (__PageMovable(page))
7287 			continue;
7288 
7289 		if (!PageLRU(page))
7290 			found++;
7291 		/*
7292 		 * If there are RECLAIMABLE pages, we need to check
7293 		 * it.  But now, memory offline itself doesn't call
7294 		 * shrink_node_slabs() and it still to be fixed.
7295 		 */
7296 		/*
7297 		 * If the page is not RAM, page_count()should be 0.
7298 		 * we don't need more check. This is an _used_ not-movable page.
7299 		 *
7300 		 * The problematic thing here is PG_reserved pages. PG_reserved
7301 		 * is set to both of a memory hole page and a _used_ kernel
7302 		 * page at boot.
7303 		 */
7304 		if (found > count)
7305 			return true;
7306 	}
7307 	return false;
7308 }
7309 
7310 bool is_pageblock_removable_nolock(struct page *page)
7311 {
7312 	struct zone *zone;
7313 	unsigned long pfn;
7314 
7315 	/*
7316 	 * We have to be careful here because we are iterating over memory
7317 	 * sections which are not zone aware so we might end up outside of
7318 	 * the zone but still within the section.
7319 	 * We have to take care about the node as well. If the node is offline
7320 	 * its NODE_DATA will be NULL - see page_zone.
7321 	 */
7322 	if (!node_online(page_to_nid(page)))
7323 		return false;
7324 
7325 	zone = page_zone(page);
7326 	pfn = page_to_pfn(page);
7327 	if (!zone_spans_pfn(zone, pfn))
7328 		return false;
7329 
7330 	return !has_unmovable_pages(zone, page, 0, true);
7331 }
7332 
7333 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7334 
7335 static unsigned long pfn_max_align_down(unsigned long pfn)
7336 {
7337 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7338 			     pageblock_nr_pages) - 1);
7339 }
7340 
7341 static unsigned long pfn_max_align_up(unsigned long pfn)
7342 {
7343 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7344 				pageblock_nr_pages));
7345 }
7346 
7347 /* [start, end) must belong to a single zone. */
7348 static int __alloc_contig_migrate_range(struct compact_control *cc,
7349 					unsigned long start, unsigned long end)
7350 {
7351 	/* This function is based on compact_zone() from compaction.c. */
7352 	unsigned long nr_reclaimed;
7353 	unsigned long pfn = start;
7354 	unsigned int tries = 0;
7355 	int ret = 0;
7356 
7357 	migrate_prep();
7358 
7359 	while (pfn < end || !list_empty(&cc->migratepages)) {
7360 		if (fatal_signal_pending(current)) {
7361 			ret = -EINTR;
7362 			break;
7363 		}
7364 
7365 		if (list_empty(&cc->migratepages)) {
7366 			cc->nr_migratepages = 0;
7367 			pfn = isolate_migratepages_range(cc, pfn, end);
7368 			if (!pfn) {
7369 				ret = -EINTR;
7370 				break;
7371 			}
7372 			tries = 0;
7373 		} else if (++tries == 5) {
7374 			ret = ret < 0 ? ret : -EBUSY;
7375 			break;
7376 		}
7377 
7378 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7379 							&cc->migratepages);
7380 		cc->nr_migratepages -= nr_reclaimed;
7381 
7382 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7383 				    NULL, 0, cc->mode, MR_CMA);
7384 	}
7385 	if (ret < 0) {
7386 		putback_movable_pages(&cc->migratepages);
7387 		return ret;
7388 	}
7389 	return 0;
7390 }
7391 
7392 /**
7393  * alloc_contig_range() -- tries to allocate given range of pages
7394  * @start:	start PFN to allocate
7395  * @end:	one-past-the-last PFN to allocate
7396  * @migratetype:	migratetype of the underlaying pageblocks (either
7397  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7398  *			in range must have the same migratetype and it must
7399  *			be either of the two.
7400  * @gfp_mask:	GFP mask to use during compaction
7401  *
7402  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7403  * aligned, however it's the caller's responsibility to guarantee that
7404  * we are the only thread that changes migrate type of pageblocks the
7405  * pages fall in.
7406  *
7407  * The PFN range must belong to a single zone.
7408  *
7409  * Returns zero on success or negative error code.  On success all
7410  * pages which PFN is in [start, end) are allocated for the caller and
7411  * need to be freed with free_contig_range().
7412  */
7413 int alloc_contig_range(unsigned long start, unsigned long end,
7414 		       unsigned migratetype, gfp_t gfp_mask)
7415 {
7416 	unsigned long outer_start, outer_end;
7417 	unsigned int order;
7418 	int ret = 0;
7419 
7420 	struct compact_control cc = {
7421 		.nr_migratepages = 0,
7422 		.order = -1,
7423 		.zone = page_zone(pfn_to_page(start)),
7424 		.mode = MIGRATE_SYNC,
7425 		.ignore_skip_hint = true,
7426 		.gfp_mask = memalloc_noio_flags(gfp_mask),
7427 	};
7428 	INIT_LIST_HEAD(&cc.migratepages);
7429 
7430 	/*
7431 	 * What we do here is we mark all pageblocks in range as
7432 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7433 	 * have different sizes, and due to the way page allocator
7434 	 * work, we align the range to biggest of the two pages so
7435 	 * that page allocator won't try to merge buddies from
7436 	 * different pageblocks and change MIGRATE_ISOLATE to some
7437 	 * other migration type.
7438 	 *
7439 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7440 	 * migrate the pages from an unaligned range (ie. pages that
7441 	 * we are interested in).  This will put all the pages in
7442 	 * range back to page allocator as MIGRATE_ISOLATE.
7443 	 *
7444 	 * When this is done, we take the pages in range from page
7445 	 * allocator removing them from the buddy system.  This way
7446 	 * page allocator will never consider using them.
7447 	 *
7448 	 * This lets us mark the pageblocks back as
7449 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7450 	 * aligned range but not in the unaligned, original range are
7451 	 * put back to page allocator so that buddy can use them.
7452 	 */
7453 
7454 	ret = start_isolate_page_range(pfn_max_align_down(start),
7455 				       pfn_max_align_up(end), migratetype,
7456 				       false);
7457 	if (ret)
7458 		return ret;
7459 
7460 	/*
7461 	 * In case of -EBUSY, we'd like to know which page causes problem.
7462 	 * So, just fall through. We will check it in test_pages_isolated().
7463 	 */
7464 	ret = __alloc_contig_migrate_range(&cc, start, end);
7465 	if (ret && ret != -EBUSY)
7466 		goto done;
7467 
7468 	/*
7469 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7470 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7471 	 * more, all pages in [start, end) are free in page allocator.
7472 	 * What we are going to do is to allocate all pages from
7473 	 * [start, end) (that is remove them from page allocator).
7474 	 *
7475 	 * The only problem is that pages at the beginning and at the
7476 	 * end of interesting range may be not aligned with pages that
7477 	 * page allocator holds, ie. they can be part of higher order
7478 	 * pages.  Because of this, we reserve the bigger range and
7479 	 * once this is done free the pages we are not interested in.
7480 	 *
7481 	 * We don't have to hold zone->lock here because the pages are
7482 	 * isolated thus they won't get removed from buddy.
7483 	 */
7484 
7485 	lru_add_drain_all();
7486 	drain_all_pages(cc.zone);
7487 
7488 	order = 0;
7489 	outer_start = start;
7490 	while (!PageBuddy(pfn_to_page(outer_start))) {
7491 		if (++order >= MAX_ORDER) {
7492 			outer_start = start;
7493 			break;
7494 		}
7495 		outer_start &= ~0UL << order;
7496 	}
7497 
7498 	if (outer_start != start) {
7499 		order = page_order(pfn_to_page(outer_start));
7500 
7501 		/*
7502 		 * outer_start page could be small order buddy page and
7503 		 * it doesn't include start page. Adjust outer_start
7504 		 * in this case to report failed page properly
7505 		 * on tracepoint in test_pages_isolated()
7506 		 */
7507 		if (outer_start + (1UL << order) <= start)
7508 			outer_start = start;
7509 	}
7510 
7511 	/* Make sure the range is really isolated. */
7512 	if (test_pages_isolated(outer_start, end, false)) {
7513 		pr_info("%s: [%lx, %lx) PFNs busy\n",
7514 			__func__, outer_start, end);
7515 		ret = -EBUSY;
7516 		goto done;
7517 	}
7518 
7519 	/* Grab isolated pages from freelists. */
7520 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7521 	if (!outer_end) {
7522 		ret = -EBUSY;
7523 		goto done;
7524 	}
7525 
7526 	/* Free head and tail (if any) */
7527 	if (start != outer_start)
7528 		free_contig_range(outer_start, start - outer_start);
7529 	if (end != outer_end)
7530 		free_contig_range(end, outer_end - end);
7531 
7532 done:
7533 	undo_isolate_page_range(pfn_max_align_down(start),
7534 				pfn_max_align_up(end), migratetype);
7535 	return ret;
7536 }
7537 
7538 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7539 {
7540 	unsigned int count = 0;
7541 
7542 	for (; nr_pages--; pfn++) {
7543 		struct page *page = pfn_to_page(pfn);
7544 
7545 		count += page_count(page) != 1;
7546 		__free_page(page);
7547 	}
7548 	WARN(count != 0, "%d pages are still in use!\n", count);
7549 }
7550 #endif
7551 
7552 #ifdef CONFIG_MEMORY_HOTPLUG
7553 /*
7554  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7555  * page high values need to be recalulated.
7556  */
7557 void __meminit zone_pcp_update(struct zone *zone)
7558 {
7559 	unsigned cpu;
7560 	mutex_lock(&pcp_batch_high_lock);
7561 	for_each_possible_cpu(cpu)
7562 		pageset_set_high_and_batch(zone,
7563 				per_cpu_ptr(zone->pageset, cpu));
7564 	mutex_unlock(&pcp_batch_high_lock);
7565 }
7566 #endif
7567 
7568 void zone_pcp_reset(struct zone *zone)
7569 {
7570 	unsigned long flags;
7571 	int cpu;
7572 	struct per_cpu_pageset *pset;
7573 
7574 	/* avoid races with drain_pages()  */
7575 	local_irq_save(flags);
7576 	if (zone->pageset != &boot_pageset) {
7577 		for_each_online_cpu(cpu) {
7578 			pset = per_cpu_ptr(zone->pageset, cpu);
7579 			drain_zonestat(zone, pset);
7580 		}
7581 		free_percpu(zone->pageset);
7582 		zone->pageset = &boot_pageset;
7583 	}
7584 	local_irq_restore(flags);
7585 }
7586 
7587 #ifdef CONFIG_MEMORY_HOTREMOVE
7588 /*
7589  * All pages in the range must be in a single zone and isolated
7590  * before calling this.
7591  */
7592 void
7593 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7594 {
7595 	struct page *page;
7596 	struct zone *zone;
7597 	unsigned int order, i;
7598 	unsigned long pfn;
7599 	unsigned long flags;
7600 	/* find the first valid pfn */
7601 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7602 		if (pfn_valid(pfn))
7603 			break;
7604 	if (pfn == end_pfn)
7605 		return;
7606 	zone = page_zone(pfn_to_page(pfn));
7607 	spin_lock_irqsave(&zone->lock, flags);
7608 	pfn = start_pfn;
7609 	while (pfn < end_pfn) {
7610 		if (!pfn_valid(pfn)) {
7611 			pfn++;
7612 			continue;
7613 		}
7614 		page = pfn_to_page(pfn);
7615 		/*
7616 		 * The HWPoisoned page may be not in buddy system, and
7617 		 * page_count() is not 0.
7618 		 */
7619 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7620 			pfn++;
7621 			SetPageReserved(page);
7622 			continue;
7623 		}
7624 
7625 		BUG_ON(page_count(page));
7626 		BUG_ON(!PageBuddy(page));
7627 		order = page_order(page);
7628 #ifdef CONFIG_DEBUG_VM
7629 		pr_info("remove from free list %lx %d %lx\n",
7630 			pfn, 1 << order, end_pfn);
7631 #endif
7632 		list_del(&page->lru);
7633 		rmv_page_order(page);
7634 		zone->free_area[order].nr_free--;
7635 		for (i = 0; i < (1 << order); i++)
7636 			SetPageReserved((page+i));
7637 		pfn += (1 << order);
7638 	}
7639 	spin_unlock_irqrestore(&zone->lock, flags);
7640 }
7641 #endif
7642 
7643 bool is_free_buddy_page(struct page *page)
7644 {
7645 	struct zone *zone = page_zone(page);
7646 	unsigned long pfn = page_to_pfn(page);
7647 	unsigned long flags;
7648 	unsigned int order;
7649 
7650 	spin_lock_irqsave(&zone->lock, flags);
7651 	for (order = 0; order < MAX_ORDER; order++) {
7652 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7653 
7654 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7655 			break;
7656 	}
7657 	spin_unlock_irqrestore(&zone->lock, flags);
7658 
7659 	return order < MAX_ORDER;
7660 }
7661