xref: /openbmc/linux/mm/page_alloc.c (revision aa6159ab)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75 
76 #include <asm/sections.h>
77 #include <asm/tlbflush.h>
78 #include <asm/div64.h>
79 #include "internal.h"
80 #include "shuffle.h"
81 #include "page_reporting.h"
82 
83 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
84 typedef int __bitwise fpi_t;
85 
86 /* No special request */
87 #define FPI_NONE		((__force fpi_t)0)
88 
89 /*
90  * Skip free page reporting notification for the (possibly merged) page.
91  * This does not hinder free page reporting from grabbing the page,
92  * reporting it and marking it "reported" -  it only skips notifying
93  * the free page reporting infrastructure about a newly freed page. For
94  * example, used when temporarily pulling a page from a freelist and
95  * putting it back unmodified.
96  */
97 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
98 
99 /*
100  * Place the (possibly merged) page to the tail of the freelist. Will ignore
101  * page shuffling (relevant code - e.g., memory onlining - is expected to
102  * shuffle the whole zone).
103  *
104  * Note: No code should rely on this flag for correctness - it's purely
105  *       to allow for optimizations when handing back either fresh pages
106  *       (memory onlining) or untouched pages (page isolation, free page
107  *       reporting).
108  */
109 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
110 
111 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
112 static DEFINE_MUTEX(pcp_batch_high_lock);
113 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
114 
115 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
116 DEFINE_PER_CPU(int, numa_node);
117 EXPORT_PER_CPU_SYMBOL(numa_node);
118 #endif
119 
120 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
121 
122 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
123 /*
124  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
125  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
126  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
127  * defined in <linux/topology.h>.
128  */
129 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
130 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
131 #endif
132 
133 /* work_structs for global per-cpu drains */
134 struct pcpu_drain {
135 	struct zone *zone;
136 	struct work_struct work;
137 };
138 static DEFINE_MUTEX(pcpu_drain_mutex);
139 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
140 
141 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
142 volatile unsigned long latent_entropy __latent_entropy;
143 EXPORT_SYMBOL(latent_entropy);
144 #endif
145 
146 /*
147  * Array of node states.
148  */
149 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
150 	[N_POSSIBLE] = NODE_MASK_ALL,
151 	[N_ONLINE] = { { [0] = 1UL } },
152 #ifndef CONFIG_NUMA
153 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
154 #ifdef CONFIG_HIGHMEM
155 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
156 #endif
157 	[N_MEMORY] = { { [0] = 1UL } },
158 	[N_CPU] = { { [0] = 1UL } },
159 #endif	/* NUMA */
160 };
161 EXPORT_SYMBOL(node_states);
162 
163 atomic_long_t _totalram_pages __read_mostly;
164 EXPORT_SYMBOL(_totalram_pages);
165 unsigned long totalreserve_pages __read_mostly;
166 unsigned long totalcma_pages __read_mostly;
167 
168 int percpu_pagelist_fraction;
169 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
170 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
171 EXPORT_SYMBOL(init_on_alloc);
172 
173 DEFINE_STATIC_KEY_FALSE(init_on_free);
174 EXPORT_SYMBOL(init_on_free);
175 
176 static bool _init_on_alloc_enabled_early __read_mostly
177 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
178 static int __init early_init_on_alloc(char *buf)
179 {
180 
181 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
182 }
183 early_param("init_on_alloc", early_init_on_alloc);
184 
185 static bool _init_on_free_enabled_early __read_mostly
186 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
187 static int __init early_init_on_free(char *buf)
188 {
189 	return kstrtobool(buf, &_init_on_free_enabled_early);
190 }
191 early_param("init_on_free", early_init_on_free);
192 
193 /*
194  * A cached value of the page's pageblock's migratetype, used when the page is
195  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
196  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
197  * Also the migratetype set in the page does not necessarily match the pcplist
198  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
199  * other index - this ensures that it will be put on the correct CMA freelist.
200  */
201 static inline int get_pcppage_migratetype(struct page *page)
202 {
203 	return page->index;
204 }
205 
206 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
207 {
208 	page->index = migratetype;
209 }
210 
211 #ifdef CONFIG_PM_SLEEP
212 /*
213  * The following functions are used by the suspend/hibernate code to temporarily
214  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
215  * while devices are suspended.  To avoid races with the suspend/hibernate code,
216  * they should always be called with system_transition_mutex held
217  * (gfp_allowed_mask also should only be modified with system_transition_mutex
218  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
219  * with that modification).
220  */
221 
222 static gfp_t saved_gfp_mask;
223 
224 void pm_restore_gfp_mask(void)
225 {
226 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
227 	if (saved_gfp_mask) {
228 		gfp_allowed_mask = saved_gfp_mask;
229 		saved_gfp_mask = 0;
230 	}
231 }
232 
233 void pm_restrict_gfp_mask(void)
234 {
235 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
236 	WARN_ON(saved_gfp_mask);
237 	saved_gfp_mask = gfp_allowed_mask;
238 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
239 }
240 
241 bool pm_suspended_storage(void)
242 {
243 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
244 		return false;
245 	return true;
246 }
247 #endif /* CONFIG_PM_SLEEP */
248 
249 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
250 unsigned int pageblock_order __read_mostly;
251 #endif
252 
253 static void __free_pages_ok(struct page *page, unsigned int order,
254 			    fpi_t fpi_flags);
255 
256 /*
257  * results with 256, 32 in the lowmem_reserve sysctl:
258  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
259  *	1G machine -> (16M dma, 784M normal, 224M high)
260  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
261  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
262  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
263  *
264  * TBD: should special case ZONE_DMA32 machines here - in those we normally
265  * don't need any ZONE_NORMAL reservation
266  */
267 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
268 #ifdef CONFIG_ZONE_DMA
269 	[ZONE_DMA] = 256,
270 #endif
271 #ifdef CONFIG_ZONE_DMA32
272 	[ZONE_DMA32] = 256,
273 #endif
274 	[ZONE_NORMAL] = 32,
275 #ifdef CONFIG_HIGHMEM
276 	[ZONE_HIGHMEM] = 0,
277 #endif
278 	[ZONE_MOVABLE] = 0,
279 };
280 
281 static char * const zone_names[MAX_NR_ZONES] = {
282 #ifdef CONFIG_ZONE_DMA
283 	 "DMA",
284 #endif
285 #ifdef CONFIG_ZONE_DMA32
286 	 "DMA32",
287 #endif
288 	 "Normal",
289 #ifdef CONFIG_HIGHMEM
290 	 "HighMem",
291 #endif
292 	 "Movable",
293 #ifdef CONFIG_ZONE_DEVICE
294 	 "Device",
295 #endif
296 };
297 
298 const char * const migratetype_names[MIGRATE_TYPES] = {
299 	"Unmovable",
300 	"Movable",
301 	"Reclaimable",
302 	"HighAtomic",
303 #ifdef CONFIG_CMA
304 	"CMA",
305 #endif
306 #ifdef CONFIG_MEMORY_ISOLATION
307 	"Isolate",
308 #endif
309 };
310 
311 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
312 	[NULL_COMPOUND_DTOR] = NULL,
313 	[COMPOUND_PAGE_DTOR] = free_compound_page,
314 #ifdef CONFIG_HUGETLB_PAGE
315 	[HUGETLB_PAGE_DTOR] = free_huge_page,
316 #endif
317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
318 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
319 #endif
320 };
321 
322 int min_free_kbytes = 1024;
323 int user_min_free_kbytes = -1;
324 #ifdef CONFIG_DISCONTIGMEM
325 /*
326  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
327  * are not on separate NUMA nodes. Functionally this works but with
328  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
329  * quite small. By default, do not boost watermarks on discontigmem as in
330  * many cases very high-order allocations like THP are likely to be
331  * unsupported and the premature reclaim offsets the advantage of long-term
332  * fragmentation avoidance.
333  */
334 int watermark_boost_factor __read_mostly;
335 #else
336 int watermark_boost_factor __read_mostly = 15000;
337 #endif
338 int watermark_scale_factor = 10;
339 
340 static unsigned long nr_kernel_pages __initdata;
341 static unsigned long nr_all_pages __initdata;
342 static unsigned long dma_reserve __initdata;
343 
344 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
345 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
346 static unsigned long required_kernelcore __initdata;
347 static unsigned long required_kernelcore_percent __initdata;
348 static unsigned long required_movablecore __initdata;
349 static unsigned long required_movablecore_percent __initdata;
350 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
351 static bool mirrored_kernelcore __meminitdata;
352 
353 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
354 int movable_zone;
355 EXPORT_SYMBOL(movable_zone);
356 
357 #if MAX_NUMNODES > 1
358 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
359 unsigned int nr_online_nodes __read_mostly = 1;
360 EXPORT_SYMBOL(nr_node_ids);
361 EXPORT_SYMBOL(nr_online_nodes);
362 #endif
363 
364 int page_group_by_mobility_disabled __read_mostly;
365 
366 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
367 /*
368  * During boot we initialize deferred pages on-demand, as needed, but once
369  * page_alloc_init_late() has finished, the deferred pages are all initialized,
370  * and we can permanently disable that path.
371  */
372 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
373 
374 /*
375  * Calling kasan_free_pages() only after deferred memory initialization
376  * has completed. Poisoning pages during deferred memory init will greatly
377  * lengthen the process and cause problem in large memory systems as the
378  * deferred pages initialization is done with interrupt disabled.
379  *
380  * Assuming that there will be no reference to those newly initialized
381  * pages before they are ever allocated, this should have no effect on
382  * KASAN memory tracking as the poison will be properly inserted at page
383  * allocation time. The only corner case is when pages are allocated by
384  * on-demand allocation and then freed again before the deferred pages
385  * initialization is done, but this is not likely to happen.
386  */
387 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
388 {
389 	if (!static_branch_unlikely(&deferred_pages))
390 		kasan_free_pages(page, order);
391 }
392 
393 /* Returns true if the struct page for the pfn is uninitialised */
394 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
395 {
396 	int nid = early_pfn_to_nid(pfn);
397 
398 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
399 		return true;
400 
401 	return false;
402 }
403 
404 /*
405  * Returns true when the remaining initialisation should be deferred until
406  * later in the boot cycle when it can be parallelised.
407  */
408 static bool __meminit
409 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
410 {
411 	static unsigned long prev_end_pfn, nr_initialised;
412 
413 	/*
414 	 * prev_end_pfn static that contains the end of previous zone
415 	 * No need to protect because called very early in boot before smp_init.
416 	 */
417 	if (prev_end_pfn != end_pfn) {
418 		prev_end_pfn = end_pfn;
419 		nr_initialised = 0;
420 	}
421 
422 	/* Always populate low zones for address-constrained allocations */
423 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
424 		return false;
425 
426 	/*
427 	 * We start only with one section of pages, more pages are added as
428 	 * needed until the rest of deferred pages are initialized.
429 	 */
430 	nr_initialised++;
431 	if ((nr_initialised > PAGES_PER_SECTION) &&
432 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
433 		NODE_DATA(nid)->first_deferred_pfn = pfn;
434 		return true;
435 	}
436 	return false;
437 }
438 #else
439 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
440 
441 static inline bool early_page_uninitialised(unsigned long pfn)
442 {
443 	return false;
444 }
445 
446 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
447 {
448 	return false;
449 }
450 #endif
451 
452 /* Return a pointer to the bitmap storing bits affecting a block of pages */
453 static inline unsigned long *get_pageblock_bitmap(struct page *page,
454 							unsigned long pfn)
455 {
456 #ifdef CONFIG_SPARSEMEM
457 	return section_to_usemap(__pfn_to_section(pfn));
458 #else
459 	return page_zone(page)->pageblock_flags;
460 #endif /* CONFIG_SPARSEMEM */
461 }
462 
463 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
464 {
465 #ifdef CONFIG_SPARSEMEM
466 	pfn &= (PAGES_PER_SECTION-1);
467 #else
468 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
469 #endif /* CONFIG_SPARSEMEM */
470 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
471 }
472 
473 static __always_inline
474 unsigned long __get_pfnblock_flags_mask(struct page *page,
475 					unsigned long pfn,
476 					unsigned long mask)
477 {
478 	unsigned long *bitmap;
479 	unsigned long bitidx, word_bitidx;
480 	unsigned long word;
481 
482 	bitmap = get_pageblock_bitmap(page, pfn);
483 	bitidx = pfn_to_bitidx(page, pfn);
484 	word_bitidx = bitidx / BITS_PER_LONG;
485 	bitidx &= (BITS_PER_LONG-1);
486 
487 	word = bitmap[word_bitidx];
488 	return (word >> bitidx) & mask;
489 }
490 
491 /**
492  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
493  * @page: The page within the block of interest
494  * @pfn: The target page frame number
495  * @mask: mask of bits that the caller is interested in
496  *
497  * Return: pageblock_bits flags
498  */
499 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
500 					unsigned long mask)
501 {
502 	return __get_pfnblock_flags_mask(page, pfn, mask);
503 }
504 
505 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
506 {
507 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
508 }
509 
510 /**
511  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512  * @page: The page within the block of interest
513  * @flags: The flags to set
514  * @pfn: The target page frame number
515  * @mask: mask of bits that the caller is interested in
516  */
517 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
518 					unsigned long pfn,
519 					unsigned long mask)
520 {
521 	unsigned long *bitmap;
522 	unsigned long bitidx, word_bitidx;
523 	unsigned long old_word, word;
524 
525 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
526 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
527 
528 	bitmap = get_pageblock_bitmap(page, pfn);
529 	bitidx = pfn_to_bitidx(page, pfn);
530 	word_bitidx = bitidx / BITS_PER_LONG;
531 	bitidx &= (BITS_PER_LONG-1);
532 
533 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
534 
535 	mask <<= bitidx;
536 	flags <<= bitidx;
537 
538 	word = READ_ONCE(bitmap[word_bitidx]);
539 	for (;;) {
540 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
541 		if (word == old_word)
542 			break;
543 		word = old_word;
544 	}
545 }
546 
547 void set_pageblock_migratetype(struct page *page, int migratetype)
548 {
549 	if (unlikely(page_group_by_mobility_disabled &&
550 		     migratetype < MIGRATE_PCPTYPES))
551 		migratetype = MIGRATE_UNMOVABLE;
552 
553 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
554 				page_to_pfn(page), MIGRATETYPE_MASK);
555 }
556 
557 #ifdef CONFIG_DEBUG_VM
558 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
559 {
560 	int ret = 0;
561 	unsigned seq;
562 	unsigned long pfn = page_to_pfn(page);
563 	unsigned long sp, start_pfn;
564 
565 	do {
566 		seq = zone_span_seqbegin(zone);
567 		start_pfn = zone->zone_start_pfn;
568 		sp = zone->spanned_pages;
569 		if (!zone_spans_pfn(zone, pfn))
570 			ret = 1;
571 	} while (zone_span_seqretry(zone, seq));
572 
573 	if (ret)
574 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
575 			pfn, zone_to_nid(zone), zone->name,
576 			start_pfn, start_pfn + sp);
577 
578 	return ret;
579 }
580 
581 static int page_is_consistent(struct zone *zone, struct page *page)
582 {
583 	if (!pfn_valid_within(page_to_pfn(page)))
584 		return 0;
585 	if (zone != page_zone(page))
586 		return 0;
587 
588 	return 1;
589 }
590 /*
591  * Temporary debugging check for pages not lying within a given zone.
592  */
593 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
594 {
595 	if (page_outside_zone_boundaries(zone, page))
596 		return 1;
597 	if (!page_is_consistent(zone, page))
598 		return 1;
599 
600 	return 0;
601 }
602 #else
603 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
604 {
605 	return 0;
606 }
607 #endif
608 
609 static void bad_page(struct page *page, const char *reason)
610 {
611 	static unsigned long resume;
612 	static unsigned long nr_shown;
613 	static unsigned long nr_unshown;
614 
615 	/*
616 	 * Allow a burst of 60 reports, then keep quiet for that minute;
617 	 * or allow a steady drip of one report per second.
618 	 */
619 	if (nr_shown == 60) {
620 		if (time_before(jiffies, resume)) {
621 			nr_unshown++;
622 			goto out;
623 		}
624 		if (nr_unshown) {
625 			pr_alert(
626 			      "BUG: Bad page state: %lu messages suppressed\n",
627 				nr_unshown);
628 			nr_unshown = 0;
629 		}
630 		nr_shown = 0;
631 	}
632 	if (nr_shown++ == 0)
633 		resume = jiffies + 60 * HZ;
634 
635 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
636 		current->comm, page_to_pfn(page));
637 	__dump_page(page, reason);
638 	dump_page_owner(page);
639 
640 	print_modules();
641 	dump_stack();
642 out:
643 	/* Leave bad fields for debug, except PageBuddy could make trouble */
644 	page_mapcount_reset(page); /* remove PageBuddy */
645 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
646 }
647 
648 /*
649  * Higher-order pages are called "compound pages".  They are structured thusly:
650  *
651  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
652  *
653  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
654  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
655  *
656  * The first tail page's ->compound_dtor holds the offset in array of compound
657  * page destructors. See compound_page_dtors.
658  *
659  * The first tail page's ->compound_order holds the order of allocation.
660  * This usage means that zero-order pages may not be compound.
661  */
662 
663 void free_compound_page(struct page *page)
664 {
665 	mem_cgroup_uncharge(page);
666 	__free_pages_ok(page, compound_order(page), FPI_NONE);
667 }
668 
669 void prep_compound_page(struct page *page, unsigned int order)
670 {
671 	int i;
672 	int nr_pages = 1 << order;
673 
674 	__SetPageHead(page);
675 	for (i = 1; i < nr_pages; i++) {
676 		struct page *p = page + i;
677 		set_page_count(p, 0);
678 		p->mapping = TAIL_MAPPING;
679 		set_compound_head(p, page);
680 	}
681 
682 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
683 	set_compound_order(page, order);
684 	atomic_set(compound_mapcount_ptr(page), -1);
685 	if (hpage_pincount_available(page))
686 		atomic_set(compound_pincount_ptr(page), 0);
687 }
688 
689 #ifdef CONFIG_DEBUG_PAGEALLOC
690 unsigned int _debug_guardpage_minorder;
691 
692 bool _debug_pagealloc_enabled_early __read_mostly
693 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
694 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
695 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
696 EXPORT_SYMBOL(_debug_pagealloc_enabled);
697 
698 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
699 
700 static int __init early_debug_pagealloc(char *buf)
701 {
702 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
703 }
704 early_param("debug_pagealloc", early_debug_pagealloc);
705 
706 static int __init debug_guardpage_minorder_setup(char *buf)
707 {
708 	unsigned long res;
709 
710 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
711 		pr_err("Bad debug_guardpage_minorder value\n");
712 		return 0;
713 	}
714 	_debug_guardpage_minorder = res;
715 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
716 	return 0;
717 }
718 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
719 
720 static inline bool set_page_guard(struct zone *zone, struct page *page,
721 				unsigned int order, int migratetype)
722 {
723 	if (!debug_guardpage_enabled())
724 		return false;
725 
726 	if (order >= debug_guardpage_minorder())
727 		return false;
728 
729 	__SetPageGuard(page);
730 	INIT_LIST_HEAD(&page->lru);
731 	set_page_private(page, order);
732 	/* Guard pages are not available for any usage */
733 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
734 
735 	return true;
736 }
737 
738 static inline void clear_page_guard(struct zone *zone, struct page *page,
739 				unsigned int order, int migratetype)
740 {
741 	if (!debug_guardpage_enabled())
742 		return;
743 
744 	__ClearPageGuard(page);
745 
746 	set_page_private(page, 0);
747 	if (!is_migrate_isolate(migratetype))
748 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
749 }
750 #else
751 static inline bool set_page_guard(struct zone *zone, struct page *page,
752 			unsigned int order, int migratetype) { return false; }
753 static inline void clear_page_guard(struct zone *zone, struct page *page,
754 				unsigned int order, int migratetype) {}
755 #endif
756 
757 /*
758  * Enable static keys related to various memory debugging and hardening options.
759  * Some override others, and depend on early params that are evaluated in the
760  * order of appearance. So we need to first gather the full picture of what was
761  * enabled, and then make decisions.
762  */
763 void init_mem_debugging_and_hardening(void)
764 {
765 	if (_init_on_alloc_enabled_early) {
766 		if (page_poisoning_enabled())
767 			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
768 				"will take precedence over init_on_alloc\n");
769 		else
770 			static_branch_enable(&init_on_alloc);
771 	}
772 	if (_init_on_free_enabled_early) {
773 		if (page_poisoning_enabled())
774 			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
775 				"will take precedence over init_on_free\n");
776 		else
777 			static_branch_enable(&init_on_free);
778 	}
779 
780 #ifdef CONFIG_PAGE_POISONING
781 	/*
782 	 * Page poisoning is debug page alloc for some arches. If
783 	 * either of those options are enabled, enable poisoning.
784 	 */
785 	if (page_poisoning_enabled() ||
786 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
787 	      debug_pagealloc_enabled()))
788 		static_branch_enable(&_page_poisoning_enabled);
789 #endif
790 
791 #ifdef CONFIG_DEBUG_PAGEALLOC
792 	if (!debug_pagealloc_enabled())
793 		return;
794 
795 	static_branch_enable(&_debug_pagealloc_enabled);
796 
797 	if (!debug_guardpage_minorder())
798 		return;
799 
800 	static_branch_enable(&_debug_guardpage_enabled);
801 #endif
802 }
803 
804 static inline void set_buddy_order(struct page *page, unsigned int order)
805 {
806 	set_page_private(page, order);
807 	__SetPageBuddy(page);
808 }
809 
810 /*
811  * This function checks whether a page is free && is the buddy
812  * we can coalesce a page and its buddy if
813  * (a) the buddy is not in a hole (check before calling!) &&
814  * (b) the buddy is in the buddy system &&
815  * (c) a page and its buddy have the same order &&
816  * (d) a page and its buddy are in the same zone.
817  *
818  * For recording whether a page is in the buddy system, we set PageBuddy.
819  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
820  *
821  * For recording page's order, we use page_private(page).
822  */
823 static inline bool page_is_buddy(struct page *page, struct page *buddy,
824 							unsigned int order)
825 {
826 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
827 		return false;
828 
829 	if (buddy_order(buddy) != order)
830 		return false;
831 
832 	/*
833 	 * zone check is done late to avoid uselessly calculating
834 	 * zone/node ids for pages that could never merge.
835 	 */
836 	if (page_zone_id(page) != page_zone_id(buddy))
837 		return false;
838 
839 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
840 
841 	return true;
842 }
843 
844 #ifdef CONFIG_COMPACTION
845 static inline struct capture_control *task_capc(struct zone *zone)
846 {
847 	struct capture_control *capc = current->capture_control;
848 
849 	return unlikely(capc) &&
850 		!(current->flags & PF_KTHREAD) &&
851 		!capc->page &&
852 		capc->cc->zone == zone ? capc : NULL;
853 }
854 
855 static inline bool
856 compaction_capture(struct capture_control *capc, struct page *page,
857 		   int order, int migratetype)
858 {
859 	if (!capc || order != capc->cc->order)
860 		return false;
861 
862 	/* Do not accidentally pollute CMA or isolated regions*/
863 	if (is_migrate_cma(migratetype) ||
864 	    is_migrate_isolate(migratetype))
865 		return false;
866 
867 	/*
868 	 * Do not let lower order allocations polluate a movable pageblock.
869 	 * This might let an unmovable request use a reclaimable pageblock
870 	 * and vice-versa but no more than normal fallback logic which can
871 	 * have trouble finding a high-order free page.
872 	 */
873 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
874 		return false;
875 
876 	capc->page = page;
877 	return true;
878 }
879 
880 #else
881 static inline struct capture_control *task_capc(struct zone *zone)
882 {
883 	return NULL;
884 }
885 
886 static inline bool
887 compaction_capture(struct capture_control *capc, struct page *page,
888 		   int order, int migratetype)
889 {
890 	return false;
891 }
892 #endif /* CONFIG_COMPACTION */
893 
894 /* Used for pages not on another list */
895 static inline void add_to_free_list(struct page *page, struct zone *zone,
896 				    unsigned int order, int migratetype)
897 {
898 	struct free_area *area = &zone->free_area[order];
899 
900 	list_add(&page->lru, &area->free_list[migratetype]);
901 	area->nr_free++;
902 }
903 
904 /* Used for pages not on another list */
905 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
906 					 unsigned int order, int migratetype)
907 {
908 	struct free_area *area = &zone->free_area[order];
909 
910 	list_add_tail(&page->lru, &area->free_list[migratetype]);
911 	area->nr_free++;
912 }
913 
914 /*
915  * Used for pages which are on another list. Move the pages to the tail
916  * of the list - so the moved pages won't immediately be considered for
917  * allocation again (e.g., optimization for memory onlining).
918  */
919 static inline void move_to_free_list(struct page *page, struct zone *zone,
920 				     unsigned int order, int migratetype)
921 {
922 	struct free_area *area = &zone->free_area[order];
923 
924 	list_move_tail(&page->lru, &area->free_list[migratetype]);
925 }
926 
927 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
928 					   unsigned int order)
929 {
930 	/* clear reported state and update reported page count */
931 	if (page_reported(page))
932 		__ClearPageReported(page);
933 
934 	list_del(&page->lru);
935 	__ClearPageBuddy(page);
936 	set_page_private(page, 0);
937 	zone->free_area[order].nr_free--;
938 }
939 
940 /*
941  * If this is not the largest possible page, check if the buddy
942  * of the next-highest order is free. If it is, it's possible
943  * that pages are being freed that will coalesce soon. In case,
944  * that is happening, add the free page to the tail of the list
945  * so it's less likely to be used soon and more likely to be merged
946  * as a higher order page
947  */
948 static inline bool
949 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
950 		   struct page *page, unsigned int order)
951 {
952 	struct page *higher_page, *higher_buddy;
953 	unsigned long combined_pfn;
954 
955 	if (order >= MAX_ORDER - 2)
956 		return false;
957 
958 	if (!pfn_valid_within(buddy_pfn))
959 		return false;
960 
961 	combined_pfn = buddy_pfn & pfn;
962 	higher_page = page + (combined_pfn - pfn);
963 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
964 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
965 
966 	return pfn_valid_within(buddy_pfn) &&
967 	       page_is_buddy(higher_page, higher_buddy, order + 1);
968 }
969 
970 /*
971  * Freeing function for a buddy system allocator.
972  *
973  * The concept of a buddy system is to maintain direct-mapped table
974  * (containing bit values) for memory blocks of various "orders".
975  * The bottom level table contains the map for the smallest allocatable
976  * units of memory (here, pages), and each level above it describes
977  * pairs of units from the levels below, hence, "buddies".
978  * At a high level, all that happens here is marking the table entry
979  * at the bottom level available, and propagating the changes upward
980  * as necessary, plus some accounting needed to play nicely with other
981  * parts of the VM system.
982  * At each level, we keep a list of pages, which are heads of continuous
983  * free pages of length of (1 << order) and marked with PageBuddy.
984  * Page's order is recorded in page_private(page) field.
985  * So when we are allocating or freeing one, we can derive the state of the
986  * other.  That is, if we allocate a small block, and both were
987  * free, the remainder of the region must be split into blocks.
988  * If a block is freed, and its buddy is also free, then this
989  * triggers coalescing into a block of larger size.
990  *
991  * -- nyc
992  */
993 
994 static inline void __free_one_page(struct page *page,
995 		unsigned long pfn,
996 		struct zone *zone, unsigned int order,
997 		int migratetype, fpi_t fpi_flags)
998 {
999 	struct capture_control *capc = task_capc(zone);
1000 	unsigned long buddy_pfn;
1001 	unsigned long combined_pfn;
1002 	unsigned int max_order;
1003 	struct page *buddy;
1004 	bool to_tail;
1005 
1006 	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1007 
1008 	VM_BUG_ON(!zone_is_initialized(zone));
1009 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1010 
1011 	VM_BUG_ON(migratetype == -1);
1012 	if (likely(!is_migrate_isolate(migratetype)))
1013 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1014 
1015 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1016 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1017 
1018 continue_merging:
1019 	while (order < max_order) {
1020 		if (compaction_capture(capc, page, order, migratetype)) {
1021 			__mod_zone_freepage_state(zone, -(1 << order),
1022 								migratetype);
1023 			return;
1024 		}
1025 		buddy_pfn = __find_buddy_pfn(pfn, order);
1026 		buddy = page + (buddy_pfn - pfn);
1027 
1028 		if (!pfn_valid_within(buddy_pfn))
1029 			goto done_merging;
1030 		if (!page_is_buddy(page, buddy, order))
1031 			goto done_merging;
1032 		/*
1033 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1034 		 * merge with it and move up one order.
1035 		 */
1036 		if (page_is_guard(buddy))
1037 			clear_page_guard(zone, buddy, order, migratetype);
1038 		else
1039 			del_page_from_free_list(buddy, zone, order);
1040 		combined_pfn = buddy_pfn & pfn;
1041 		page = page + (combined_pfn - pfn);
1042 		pfn = combined_pfn;
1043 		order++;
1044 	}
1045 	if (order < MAX_ORDER - 1) {
1046 		/* If we are here, it means order is >= pageblock_order.
1047 		 * We want to prevent merge between freepages on isolate
1048 		 * pageblock and normal pageblock. Without this, pageblock
1049 		 * isolation could cause incorrect freepage or CMA accounting.
1050 		 *
1051 		 * We don't want to hit this code for the more frequent
1052 		 * low-order merging.
1053 		 */
1054 		if (unlikely(has_isolate_pageblock(zone))) {
1055 			int buddy_mt;
1056 
1057 			buddy_pfn = __find_buddy_pfn(pfn, order);
1058 			buddy = page + (buddy_pfn - pfn);
1059 			buddy_mt = get_pageblock_migratetype(buddy);
1060 
1061 			if (migratetype != buddy_mt
1062 					&& (is_migrate_isolate(migratetype) ||
1063 						is_migrate_isolate(buddy_mt)))
1064 				goto done_merging;
1065 		}
1066 		max_order = order + 1;
1067 		goto continue_merging;
1068 	}
1069 
1070 done_merging:
1071 	set_buddy_order(page, order);
1072 
1073 	if (fpi_flags & FPI_TO_TAIL)
1074 		to_tail = true;
1075 	else if (is_shuffle_order(order))
1076 		to_tail = shuffle_pick_tail();
1077 	else
1078 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1079 
1080 	if (to_tail)
1081 		add_to_free_list_tail(page, zone, order, migratetype);
1082 	else
1083 		add_to_free_list(page, zone, order, migratetype);
1084 
1085 	/* Notify page reporting subsystem of freed page */
1086 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1087 		page_reporting_notify_free(order);
1088 }
1089 
1090 /*
1091  * A bad page could be due to a number of fields. Instead of multiple branches,
1092  * try and check multiple fields with one check. The caller must do a detailed
1093  * check if necessary.
1094  */
1095 static inline bool page_expected_state(struct page *page,
1096 					unsigned long check_flags)
1097 {
1098 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1099 		return false;
1100 
1101 	if (unlikely((unsigned long)page->mapping |
1102 			page_ref_count(page) |
1103 #ifdef CONFIG_MEMCG
1104 			(unsigned long)page_memcg(page) |
1105 #endif
1106 			(page->flags & check_flags)))
1107 		return false;
1108 
1109 	return true;
1110 }
1111 
1112 static const char *page_bad_reason(struct page *page, unsigned long flags)
1113 {
1114 	const char *bad_reason = NULL;
1115 
1116 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1117 		bad_reason = "nonzero mapcount";
1118 	if (unlikely(page->mapping != NULL))
1119 		bad_reason = "non-NULL mapping";
1120 	if (unlikely(page_ref_count(page) != 0))
1121 		bad_reason = "nonzero _refcount";
1122 	if (unlikely(page->flags & flags)) {
1123 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1124 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1125 		else
1126 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1127 	}
1128 #ifdef CONFIG_MEMCG
1129 	if (unlikely(page_memcg(page)))
1130 		bad_reason = "page still charged to cgroup";
1131 #endif
1132 	return bad_reason;
1133 }
1134 
1135 static void check_free_page_bad(struct page *page)
1136 {
1137 	bad_page(page,
1138 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1139 }
1140 
1141 static inline int check_free_page(struct page *page)
1142 {
1143 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1144 		return 0;
1145 
1146 	/* Something has gone sideways, find it */
1147 	check_free_page_bad(page);
1148 	return 1;
1149 }
1150 
1151 static int free_tail_pages_check(struct page *head_page, struct page *page)
1152 {
1153 	int ret = 1;
1154 
1155 	/*
1156 	 * We rely page->lru.next never has bit 0 set, unless the page
1157 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1158 	 */
1159 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1160 
1161 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1162 		ret = 0;
1163 		goto out;
1164 	}
1165 	switch (page - head_page) {
1166 	case 1:
1167 		/* the first tail page: ->mapping may be compound_mapcount() */
1168 		if (unlikely(compound_mapcount(page))) {
1169 			bad_page(page, "nonzero compound_mapcount");
1170 			goto out;
1171 		}
1172 		break;
1173 	case 2:
1174 		/*
1175 		 * the second tail page: ->mapping is
1176 		 * deferred_list.next -- ignore value.
1177 		 */
1178 		break;
1179 	default:
1180 		if (page->mapping != TAIL_MAPPING) {
1181 			bad_page(page, "corrupted mapping in tail page");
1182 			goto out;
1183 		}
1184 		break;
1185 	}
1186 	if (unlikely(!PageTail(page))) {
1187 		bad_page(page, "PageTail not set");
1188 		goto out;
1189 	}
1190 	if (unlikely(compound_head(page) != head_page)) {
1191 		bad_page(page, "compound_head not consistent");
1192 		goto out;
1193 	}
1194 	ret = 0;
1195 out:
1196 	page->mapping = NULL;
1197 	clear_compound_head(page);
1198 	return ret;
1199 }
1200 
1201 static void kernel_init_free_pages(struct page *page, int numpages)
1202 {
1203 	int i;
1204 
1205 	/* s390's use of memset() could override KASAN redzones. */
1206 	kasan_disable_current();
1207 	for (i = 0; i < numpages; i++)
1208 		clear_highpage(page + i);
1209 	kasan_enable_current();
1210 }
1211 
1212 static __always_inline bool free_pages_prepare(struct page *page,
1213 					unsigned int order, bool check_free)
1214 {
1215 	int bad = 0;
1216 
1217 	VM_BUG_ON_PAGE(PageTail(page), page);
1218 
1219 	trace_mm_page_free(page, order);
1220 
1221 	if (unlikely(PageHWPoison(page)) && !order) {
1222 		/*
1223 		 * Do not let hwpoison pages hit pcplists/buddy
1224 		 * Untie memcg state and reset page's owner
1225 		 */
1226 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1227 			__memcg_kmem_uncharge_page(page, order);
1228 		reset_page_owner(page, order);
1229 		return false;
1230 	}
1231 
1232 	/*
1233 	 * Check tail pages before head page information is cleared to
1234 	 * avoid checking PageCompound for order-0 pages.
1235 	 */
1236 	if (unlikely(order)) {
1237 		bool compound = PageCompound(page);
1238 		int i;
1239 
1240 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1241 
1242 		if (compound)
1243 			ClearPageDoubleMap(page);
1244 		for (i = 1; i < (1 << order); i++) {
1245 			if (compound)
1246 				bad += free_tail_pages_check(page, page + i);
1247 			if (unlikely(check_free_page(page + i))) {
1248 				bad++;
1249 				continue;
1250 			}
1251 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1252 		}
1253 	}
1254 	if (PageMappingFlags(page))
1255 		page->mapping = NULL;
1256 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1257 		__memcg_kmem_uncharge_page(page, order);
1258 	if (check_free)
1259 		bad += check_free_page(page);
1260 	if (bad)
1261 		return false;
1262 
1263 	page_cpupid_reset_last(page);
1264 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1265 	reset_page_owner(page, order);
1266 
1267 	if (!PageHighMem(page)) {
1268 		debug_check_no_locks_freed(page_address(page),
1269 					   PAGE_SIZE << order);
1270 		debug_check_no_obj_freed(page_address(page),
1271 					   PAGE_SIZE << order);
1272 	}
1273 	if (want_init_on_free())
1274 		kernel_init_free_pages(page, 1 << order);
1275 
1276 	kernel_poison_pages(page, 1 << order);
1277 
1278 	/*
1279 	 * arch_free_page() can make the page's contents inaccessible.  s390
1280 	 * does this.  So nothing which can access the page's contents should
1281 	 * happen after this.
1282 	 */
1283 	arch_free_page(page, order);
1284 
1285 	debug_pagealloc_unmap_pages(page, 1 << order);
1286 
1287 	kasan_free_nondeferred_pages(page, order);
1288 
1289 	return true;
1290 }
1291 
1292 #ifdef CONFIG_DEBUG_VM
1293 /*
1294  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1295  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1296  * moved from pcp lists to free lists.
1297  */
1298 static bool free_pcp_prepare(struct page *page)
1299 {
1300 	return free_pages_prepare(page, 0, true);
1301 }
1302 
1303 static bool bulkfree_pcp_prepare(struct page *page)
1304 {
1305 	if (debug_pagealloc_enabled_static())
1306 		return check_free_page(page);
1307 	else
1308 		return false;
1309 }
1310 #else
1311 /*
1312  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1313  * moving from pcp lists to free list in order to reduce overhead. With
1314  * debug_pagealloc enabled, they are checked also immediately when being freed
1315  * to the pcp lists.
1316  */
1317 static bool free_pcp_prepare(struct page *page)
1318 {
1319 	if (debug_pagealloc_enabled_static())
1320 		return free_pages_prepare(page, 0, true);
1321 	else
1322 		return free_pages_prepare(page, 0, false);
1323 }
1324 
1325 static bool bulkfree_pcp_prepare(struct page *page)
1326 {
1327 	return check_free_page(page);
1328 }
1329 #endif /* CONFIG_DEBUG_VM */
1330 
1331 static inline void prefetch_buddy(struct page *page)
1332 {
1333 	unsigned long pfn = page_to_pfn(page);
1334 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1335 	struct page *buddy = page + (buddy_pfn - pfn);
1336 
1337 	prefetch(buddy);
1338 }
1339 
1340 /*
1341  * Frees a number of pages from the PCP lists
1342  * Assumes all pages on list are in same zone, and of same order.
1343  * count is the number of pages to free.
1344  *
1345  * If the zone was previously in an "all pages pinned" state then look to
1346  * see if this freeing clears that state.
1347  *
1348  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1349  * pinned" detection logic.
1350  */
1351 static void free_pcppages_bulk(struct zone *zone, int count,
1352 					struct per_cpu_pages *pcp)
1353 {
1354 	int migratetype = 0;
1355 	int batch_free = 0;
1356 	int prefetch_nr = READ_ONCE(pcp->batch);
1357 	bool isolated_pageblocks;
1358 	struct page *page, *tmp;
1359 	LIST_HEAD(head);
1360 
1361 	/*
1362 	 * Ensure proper count is passed which otherwise would stuck in the
1363 	 * below while (list_empty(list)) loop.
1364 	 */
1365 	count = min(pcp->count, count);
1366 	while (count) {
1367 		struct list_head *list;
1368 
1369 		/*
1370 		 * Remove pages from lists in a round-robin fashion. A
1371 		 * batch_free count is maintained that is incremented when an
1372 		 * empty list is encountered.  This is so more pages are freed
1373 		 * off fuller lists instead of spinning excessively around empty
1374 		 * lists
1375 		 */
1376 		do {
1377 			batch_free++;
1378 			if (++migratetype == MIGRATE_PCPTYPES)
1379 				migratetype = 0;
1380 			list = &pcp->lists[migratetype];
1381 		} while (list_empty(list));
1382 
1383 		/* This is the only non-empty list. Free them all. */
1384 		if (batch_free == MIGRATE_PCPTYPES)
1385 			batch_free = count;
1386 
1387 		do {
1388 			page = list_last_entry(list, struct page, lru);
1389 			/* must delete to avoid corrupting pcp list */
1390 			list_del(&page->lru);
1391 			pcp->count--;
1392 
1393 			if (bulkfree_pcp_prepare(page))
1394 				continue;
1395 
1396 			list_add_tail(&page->lru, &head);
1397 
1398 			/*
1399 			 * We are going to put the page back to the global
1400 			 * pool, prefetch its buddy to speed up later access
1401 			 * under zone->lock. It is believed the overhead of
1402 			 * an additional test and calculating buddy_pfn here
1403 			 * can be offset by reduced memory latency later. To
1404 			 * avoid excessive prefetching due to large count, only
1405 			 * prefetch buddy for the first pcp->batch nr of pages.
1406 			 */
1407 			if (prefetch_nr) {
1408 				prefetch_buddy(page);
1409 				prefetch_nr--;
1410 			}
1411 		} while (--count && --batch_free && !list_empty(list));
1412 	}
1413 
1414 	spin_lock(&zone->lock);
1415 	isolated_pageblocks = has_isolate_pageblock(zone);
1416 
1417 	/*
1418 	 * Use safe version since after __free_one_page(),
1419 	 * page->lru.next will not point to original list.
1420 	 */
1421 	list_for_each_entry_safe(page, tmp, &head, lru) {
1422 		int mt = get_pcppage_migratetype(page);
1423 		/* MIGRATE_ISOLATE page should not go to pcplists */
1424 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1425 		/* Pageblock could have been isolated meanwhile */
1426 		if (unlikely(isolated_pageblocks))
1427 			mt = get_pageblock_migratetype(page);
1428 
1429 		__free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1430 		trace_mm_page_pcpu_drain(page, 0, mt);
1431 	}
1432 	spin_unlock(&zone->lock);
1433 }
1434 
1435 static void free_one_page(struct zone *zone,
1436 				struct page *page, unsigned long pfn,
1437 				unsigned int order,
1438 				int migratetype, fpi_t fpi_flags)
1439 {
1440 	spin_lock(&zone->lock);
1441 	if (unlikely(has_isolate_pageblock(zone) ||
1442 		is_migrate_isolate(migratetype))) {
1443 		migratetype = get_pfnblock_migratetype(page, pfn);
1444 	}
1445 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1446 	spin_unlock(&zone->lock);
1447 }
1448 
1449 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1450 				unsigned long zone, int nid)
1451 {
1452 	mm_zero_struct_page(page);
1453 	set_page_links(page, zone, nid, pfn);
1454 	init_page_count(page);
1455 	page_mapcount_reset(page);
1456 	page_cpupid_reset_last(page);
1457 	page_kasan_tag_reset(page);
1458 
1459 	INIT_LIST_HEAD(&page->lru);
1460 #ifdef WANT_PAGE_VIRTUAL
1461 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1462 	if (!is_highmem_idx(zone))
1463 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1464 #endif
1465 }
1466 
1467 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1468 static void __meminit init_reserved_page(unsigned long pfn)
1469 {
1470 	pg_data_t *pgdat;
1471 	int nid, zid;
1472 
1473 	if (!early_page_uninitialised(pfn))
1474 		return;
1475 
1476 	nid = early_pfn_to_nid(pfn);
1477 	pgdat = NODE_DATA(nid);
1478 
1479 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1480 		struct zone *zone = &pgdat->node_zones[zid];
1481 
1482 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1483 			break;
1484 	}
1485 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1486 }
1487 #else
1488 static inline void init_reserved_page(unsigned long pfn)
1489 {
1490 }
1491 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1492 
1493 /*
1494  * Initialised pages do not have PageReserved set. This function is
1495  * called for each range allocated by the bootmem allocator and
1496  * marks the pages PageReserved. The remaining valid pages are later
1497  * sent to the buddy page allocator.
1498  */
1499 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1500 {
1501 	unsigned long start_pfn = PFN_DOWN(start);
1502 	unsigned long end_pfn = PFN_UP(end);
1503 
1504 	for (; start_pfn < end_pfn; start_pfn++) {
1505 		if (pfn_valid(start_pfn)) {
1506 			struct page *page = pfn_to_page(start_pfn);
1507 
1508 			init_reserved_page(start_pfn);
1509 
1510 			/* Avoid false-positive PageTail() */
1511 			INIT_LIST_HEAD(&page->lru);
1512 
1513 			/*
1514 			 * no need for atomic set_bit because the struct
1515 			 * page is not visible yet so nobody should
1516 			 * access it yet.
1517 			 */
1518 			__SetPageReserved(page);
1519 		}
1520 	}
1521 }
1522 
1523 static void __free_pages_ok(struct page *page, unsigned int order,
1524 			    fpi_t fpi_flags)
1525 {
1526 	unsigned long flags;
1527 	int migratetype;
1528 	unsigned long pfn = page_to_pfn(page);
1529 
1530 	if (!free_pages_prepare(page, order, true))
1531 		return;
1532 
1533 	migratetype = get_pfnblock_migratetype(page, pfn);
1534 	local_irq_save(flags);
1535 	__count_vm_events(PGFREE, 1 << order);
1536 	free_one_page(page_zone(page), page, pfn, order, migratetype,
1537 		      fpi_flags);
1538 	local_irq_restore(flags);
1539 }
1540 
1541 void __free_pages_core(struct page *page, unsigned int order)
1542 {
1543 	unsigned int nr_pages = 1 << order;
1544 	struct page *p = page;
1545 	unsigned int loop;
1546 
1547 	/*
1548 	 * When initializing the memmap, __init_single_page() sets the refcount
1549 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1550 	 * refcount of all involved pages to 0.
1551 	 */
1552 	prefetchw(p);
1553 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1554 		prefetchw(p + 1);
1555 		__ClearPageReserved(p);
1556 		set_page_count(p, 0);
1557 	}
1558 	__ClearPageReserved(p);
1559 	set_page_count(p, 0);
1560 
1561 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1562 
1563 	/*
1564 	 * Bypass PCP and place fresh pages right to the tail, primarily
1565 	 * relevant for memory onlining.
1566 	 */
1567 	__free_pages_ok(page, order, FPI_TO_TAIL);
1568 }
1569 
1570 #ifdef CONFIG_NEED_MULTIPLE_NODES
1571 
1572 /*
1573  * During memory init memblocks map pfns to nids. The search is expensive and
1574  * this caches recent lookups. The implementation of __early_pfn_to_nid
1575  * treats start/end as pfns.
1576  */
1577 struct mminit_pfnnid_cache {
1578 	unsigned long last_start;
1579 	unsigned long last_end;
1580 	int last_nid;
1581 };
1582 
1583 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1584 
1585 /*
1586  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1587  */
1588 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1589 					struct mminit_pfnnid_cache *state)
1590 {
1591 	unsigned long start_pfn, end_pfn;
1592 	int nid;
1593 
1594 	if (state->last_start <= pfn && pfn < state->last_end)
1595 		return state->last_nid;
1596 
1597 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1598 	if (nid != NUMA_NO_NODE) {
1599 		state->last_start = start_pfn;
1600 		state->last_end = end_pfn;
1601 		state->last_nid = nid;
1602 	}
1603 
1604 	return nid;
1605 }
1606 
1607 int __meminit early_pfn_to_nid(unsigned long pfn)
1608 {
1609 	static DEFINE_SPINLOCK(early_pfn_lock);
1610 	int nid;
1611 
1612 	spin_lock(&early_pfn_lock);
1613 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1614 	if (nid < 0)
1615 		nid = first_online_node;
1616 	spin_unlock(&early_pfn_lock);
1617 
1618 	return nid;
1619 }
1620 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1621 
1622 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1623 							unsigned int order)
1624 {
1625 	if (early_page_uninitialised(pfn))
1626 		return;
1627 	__free_pages_core(page, order);
1628 }
1629 
1630 /*
1631  * Check that the whole (or subset of) a pageblock given by the interval of
1632  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1633  * with the migration of free compaction scanner. The scanners then need to
1634  * use only pfn_valid_within() check for arches that allow holes within
1635  * pageblocks.
1636  *
1637  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1638  *
1639  * It's possible on some configurations to have a setup like node0 node1 node0
1640  * i.e. it's possible that all pages within a zones range of pages do not
1641  * belong to a single zone. We assume that a border between node0 and node1
1642  * can occur within a single pageblock, but not a node0 node1 node0
1643  * interleaving within a single pageblock. It is therefore sufficient to check
1644  * the first and last page of a pageblock and avoid checking each individual
1645  * page in a pageblock.
1646  */
1647 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1648 				     unsigned long end_pfn, struct zone *zone)
1649 {
1650 	struct page *start_page;
1651 	struct page *end_page;
1652 
1653 	/* end_pfn is one past the range we are checking */
1654 	end_pfn--;
1655 
1656 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1657 		return NULL;
1658 
1659 	start_page = pfn_to_online_page(start_pfn);
1660 	if (!start_page)
1661 		return NULL;
1662 
1663 	if (page_zone(start_page) != zone)
1664 		return NULL;
1665 
1666 	end_page = pfn_to_page(end_pfn);
1667 
1668 	/* This gives a shorter code than deriving page_zone(end_page) */
1669 	if (page_zone_id(start_page) != page_zone_id(end_page))
1670 		return NULL;
1671 
1672 	return start_page;
1673 }
1674 
1675 void set_zone_contiguous(struct zone *zone)
1676 {
1677 	unsigned long block_start_pfn = zone->zone_start_pfn;
1678 	unsigned long block_end_pfn;
1679 
1680 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1681 	for (; block_start_pfn < zone_end_pfn(zone);
1682 			block_start_pfn = block_end_pfn,
1683 			 block_end_pfn += pageblock_nr_pages) {
1684 
1685 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1686 
1687 		if (!__pageblock_pfn_to_page(block_start_pfn,
1688 					     block_end_pfn, zone))
1689 			return;
1690 		cond_resched();
1691 	}
1692 
1693 	/* We confirm that there is no hole */
1694 	zone->contiguous = true;
1695 }
1696 
1697 void clear_zone_contiguous(struct zone *zone)
1698 {
1699 	zone->contiguous = false;
1700 }
1701 
1702 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1703 static void __init deferred_free_range(unsigned long pfn,
1704 				       unsigned long nr_pages)
1705 {
1706 	struct page *page;
1707 	unsigned long i;
1708 
1709 	if (!nr_pages)
1710 		return;
1711 
1712 	page = pfn_to_page(pfn);
1713 
1714 	/* Free a large naturally-aligned chunk if possible */
1715 	if (nr_pages == pageblock_nr_pages &&
1716 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1717 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1718 		__free_pages_core(page, pageblock_order);
1719 		return;
1720 	}
1721 
1722 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1723 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1724 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1725 		__free_pages_core(page, 0);
1726 	}
1727 }
1728 
1729 /* Completion tracking for deferred_init_memmap() threads */
1730 static atomic_t pgdat_init_n_undone __initdata;
1731 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1732 
1733 static inline void __init pgdat_init_report_one_done(void)
1734 {
1735 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1736 		complete(&pgdat_init_all_done_comp);
1737 }
1738 
1739 /*
1740  * Returns true if page needs to be initialized or freed to buddy allocator.
1741  *
1742  * First we check if pfn is valid on architectures where it is possible to have
1743  * holes within pageblock_nr_pages. On systems where it is not possible, this
1744  * function is optimized out.
1745  *
1746  * Then, we check if a current large page is valid by only checking the validity
1747  * of the head pfn.
1748  */
1749 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1750 {
1751 	if (!pfn_valid_within(pfn))
1752 		return false;
1753 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1754 		return false;
1755 	return true;
1756 }
1757 
1758 /*
1759  * Free pages to buddy allocator. Try to free aligned pages in
1760  * pageblock_nr_pages sizes.
1761  */
1762 static void __init deferred_free_pages(unsigned long pfn,
1763 				       unsigned long end_pfn)
1764 {
1765 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1766 	unsigned long nr_free = 0;
1767 
1768 	for (; pfn < end_pfn; pfn++) {
1769 		if (!deferred_pfn_valid(pfn)) {
1770 			deferred_free_range(pfn - nr_free, nr_free);
1771 			nr_free = 0;
1772 		} else if (!(pfn & nr_pgmask)) {
1773 			deferred_free_range(pfn - nr_free, nr_free);
1774 			nr_free = 1;
1775 		} else {
1776 			nr_free++;
1777 		}
1778 	}
1779 	/* Free the last block of pages to allocator */
1780 	deferred_free_range(pfn - nr_free, nr_free);
1781 }
1782 
1783 /*
1784  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1785  * by performing it only once every pageblock_nr_pages.
1786  * Return number of pages initialized.
1787  */
1788 static unsigned long  __init deferred_init_pages(struct zone *zone,
1789 						 unsigned long pfn,
1790 						 unsigned long end_pfn)
1791 {
1792 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1793 	int nid = zone_to_nid(zone);
1794 	unsigned long nr_pages = 0;
1795 	int zid = zone_idx(zone);
1796 	struct page *page = NULL;
1797 
1798 	for (; pfn < end_pfn; pfn++) {
1799 		if (!deferred_pfn_valid(pfn)) {
1800 			page = NULL;
1801 			continue;
1802 		} else if (!page || !(pfn & nr_pgmask)) {
1803 			page = pfn_to_page(pfn);
1804 		} else {
1805 			page++;
1806 		}
1807 		__init_single_page(page, pfn, zid, nid);
1808 		nr_pages++;
1809 	}
1810 	return (nr_pages);
1811 }
1812 
1813 /*
1814  * This function is meant to pre-load the iterator for the zone init.
1815  * Specifically it walks through the ranges until we are caught up to the
1816  * first_init_pfn value and exits there. If we never encounter the value we
1817  * return false indicating there are no valid ranges left.
1818  */
1819 static bool __init
1820 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1821 				    unsigned long *spfn, unsigned long *epfn,
1822 				    unsigned long first_init_pfn)
1823 {
1824 	u64 j;
1825 
1826 	/*
1827 	 * Start out by walking through the ranges in this zone that have
1828 	 * already been initialized. We don't need to do anything with them
1829 	 * so we just need to flush them out of the system.
1830 	 */
1831 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1832 		if (*epfn <= first_init_pfn)
1833 			continue;
1834 		if (*spfn < first_init_pfn)
1835 			*spfn = first_init_pfn;
1836 		*i = j;
1837 		return true;
1838 	}
1839 
1840 	return false;
1841 }
1842 
1843 /*
1844  * Initialize and free pages. We do it in two loops: first we initialize
1845  * struct page, then free to buddy allocator, because while we are
1846  * freeing pages we can access pages that are ahead (computing buddy
1847  * page in __free_one_page()).
1848  *
1849  * In order to try and keep some memory in the cache we have the loop
1850  * broken along max page order boundaries. This way we will not cause
1851  * any issues with the buddy page computation.
1852  */
1853 static unsigned long __init
1854 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1855 		       unsigned long *end_pfn)
1856 {
1857 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1858 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1859 	unsigned long nr_pages = 0;
1860 	u64 j = *i;
1861 
1862 	/* First we loop through and initialize the page values */
1863 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1864 		unsigned long t;
1865 
1866 		if (mo_pfn <= *start_pfn)
1867 			break;
1868 
1869 		t = min(mo_pfn, *end_pfn);
1870 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1871 
1872 		if (mo_pfn < *end_pfn) {
1873 			*start_pfn = mo_pfn;
1874 			break;
1875 		}
1876 	}
1877 
1878 	/* Reset values and now loop through freeing pages as needed */
1879 	swap(j, *i);
1880 
1881 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1882 		unsigned long t;
1883 
1884 		if (mo_pfn <= spfn)
1885 			break;
1886 
1887 		t = min(mo_pfn, epfn);
1888 		deferred_free_pages(spfn, t);
1889 
1890 		if (mo_pfn <= epfn)
1891 			break;
1892 	}
1893 
1894 	return nr_pages;
1895 }
1896 
1897 static void __init
1898 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1899 			   void *arg)
1900 {
1901 	unsigned long spfn, epfn;
1902 	struct zone *zone = arg;
1903 	u64 i;
1904 
1905 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1906 
1907 	/*
1908 	 * Initialize and free pages in MAX_ORDER sized increments so that we
1909 	 * can avoid introducing any issues with the buddy allocator.
1910 	 */
1911 	while (spfn < end_pfn) {
1912 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
1913 		cond_resched();
1914 	}
1915 }
1916 
1917 /* An arch may override for more concurrency. */
1918 __weak int __init
1919 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1920 {
1921 	return 1;
1922 }
1923 
1924 /* Initialise remaining memory on a node */
1925 static int __init deferred_init_memmap(void *data)
1926 {
1927 	pg_data_t *pgdat = data;
1928 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1929 	unsigned long spfn = 0, epfn = 0;
1930 	unsigned long first_init_pfn, flags;
1931 	unsigned long start = jiffies;
1932 	struct zone *zone;
1933 	int zid, max_threads;
1934 	u64 i;
1935 
1936 	/* Bind memory initialisation thread to a local node if possible */
1937 	if (!cpumask_empty(cpumask))
1938 		set_cpus_allowed_ptr(current, cpumask);
1939 
1940 	pgdat_resize_lock(pgdat, &flags);
1941 	first_init_pfn = pgdat->first_deferred_pfn;
1942 	if (first_init_pfn == ULONG_MAX) {
1943 		pgdat_resize_unlock(pgdat, &flags);
1944 		pgdat_init_report_one_done();
1945 		return 0;
1946 	}
1947 
1948 	/* Sanity check boundaries */
1949 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1950 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1951 	pgdat->first_deferred_pfn = ULONG_MAX;
1952 
1953 	/*
1954 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
1955 	 * interrupt thread must allocate this early in boot, zone must be
1956 	 * pre-grown prior to start of deferred page initialization.
1957 	 */
1958 	pgdat_resize_unlock(pgdat, &flags);
1959 
1960 	/* Only the highest zone is deferred so find it */
1961 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1962 		zone = pgdat->node_zones + zid;
1963 		if (first_init_pfn < zone_end_pfn(zone))
1964 			break;
1965 	}
1966 
1967 	/* If the zone is empty somebody else may have cleared out the zone */
1968 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1969 						 first_init_pfn))
1970 		goto zone_empty;
1971 
1972 	max_threads = deferred_page_init_max_threads(cpumask);
1973 
1974 	while (spfn < epfn) {
1975 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1976 		struct padata_mt_job job = {
1977 			.thread_fn   = deferred_init_memmap_chunk,
1978 			.fn_arg      = zone,
1979 			.start       = spfn,
1980 			.size        = epfn_align - spfn,
1981 			.align       = PAGES_PER_SECTION,
1982 			.min_chunk   = PAGES_PER_SECTION,
1983 			.max_threads = max_threads,
1984 		};
1985 
1986 		padata_do_multithreaded(&job);
1987 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1988 						    epfn_align);
1989 	}
1990 zone_empty:
1991 	/* Sanity check that the next zone really is unpopulated */
1992 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1993 
1994 	pr_info("node %d deferred pages initialised in %ums\n",
1995 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
1996 
1997 	pgdat_init_report_one_done();
1998 	return 0;
1999 }
2000 
2001 /*
2002  * If this zone has deferred pages, try to grow it by initializing enough
2003  * deferred pages to satisfy the allocation specified by order, rounded up to
2004  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2005  * of SECTION_SIZE bytes by initializing struct pages in increments of
2006  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2007  *
2008  * Return true when zone was grown, otherwise return false. We return true even
2009  * when we grow less than requested, to let the caller decide if there are
2010  * enough pages to satisfy the allocation.
2011  *
2012  * Note: We use noinline because this function is needed only during boot, and
2013  * it is called from a __ref function _deferred_grow_zone. This way we are
2014  * making sure that it is not inlined into permanent text section.
2015  */
2016 static noinline bool __init
2017 deferred_grow_zone(struct zone *zone, unsigned int order)
2018 {
2019 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2020 	pg_data_t *pgdat = zone->zone_pgdat;
2021 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2022 	unsigned long spfn, epfn, flags;
2023 	unsigned long nr_pages = 0;
2024 	u64 i;
2025 
2026 	/* Only the last zone may have deferred pages */
2027 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2028 		return false;
2029 
2030 	pgdat_resize_lock(pgdat, &flags);
2031 
2032 	/*
2033 	 * If someone grew this zone while we were waiting for spinlock, return
2034 	 * true, as there might be enough pages already.
2035 	 */
2036 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2037 		pgdat_resize_unlock(pgdat, &flags);
2038 		return true;
2039 	}
2040 
2041 	/* If the zone is empty somebody else may have cleared out the zone */
2042 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2043 						 first_deferred_pfn)) {
2044 		pgdat->first_deferred_pfn = ULONG_MAX;
2045 		pgdat_resize_unlock(pgdat, &flags);
2046 		/* Retry only once. */
2047 		return first_deferred_pfn != ULONG_MAX;
2048 	}
2049 
2050 	/*
2051 	 * Initialize and free pages in MAX_ORDER sized increments so
2052 	 * that we can avoid introducing any issues with the buddy
2053 	 * allocator.
2054 	 */
2055 	while (spfn < epfn) {
2056 		/* update our first deferred PFN for this section */
2057 		first_deferred_pfn = spfn;
2058 
2059 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2060 		touch_nmi_watchdog();
2061 
2062 		/* We should only stop along section boundaries */
2063 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2064 			continue;
2065 
2066 		/* If our quota has been met we can stop here */
2067 		if (nr_pages >= nr_pages_needed)
2068 			break;
2069 	}
2070 
2071 	pgdat->first_deferred_pfn = spfn;
2072 	pgdat_resize_unlock(pgdat, &flags);
2073 
2074 	return nr_pages > 0;
2075 }
2076 
2077 /*
2078  * deferred_grow_zone() is __init, but it is called from
2079  * get_page_from_freelist() during early boot until deferred_pages permanently
2080  * disables this call. This is why we have refdata wrapper to avoid warning,
2081  * and to ensure that the function body gets unloaded.
2082  */
2083 static bool __ref
2084 _deferred_grow_zone(struct zone *zone, unsigned int order)
2085 {
2086 	return deferred_grow_zone(zone, order);
2087 }
2088 
2089 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2090 
2091 void __init page_alloc_init_late(void)
2092 {
2093 	struct zone *zone;
2094 	int nid;
2095 
2096 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2097 
2098 	/* There will be num_node_state(N_MEMORY) threads */
2099 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2100 	for_each_node_state(nid, N_MEMORY) {
2101 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2102 	}
2103 
2104 	/* Block until all are initialised */
2105 	wait_for_completion(&pgdat_init_all_done_comp);
2106 
2107 	/*
2108 	 * The number of managed pages has changed due to the initialisation
2109 	 * so the pcpu batch and high limits needs to be updated or the limits
2110 	 * will be artificially small.
2111 	 */
2112 	for_each_populated_zone(zone)
2113 		zone_pcp_update(zone);
2114 
2115 	/*
2116 	 * We initialized the rest of the deferred pages.  Permanently disable
2117 	 * on-demand struct page initialization.
2118 	 */
2119 	static_branch_disable(&deferred_pages);
2120 
2121 	/* Reinit limits that are based on free pages after the kernel is up */
2122 	files_maxfiles_init();
2123 #endif
2124 
2125 	buffer_init();
2126 
2127 	/* Discard memblock private memory */
2128 	memblock_discard();
2129 
2130 	for_each_node_state(nid, N_MEMORY)
2131 		shuffle_free_memory(NODE_DATA(nid));
2132 
2133 	for_each_populated_zone(zone)
2134 		set_zone_contiguous(zone);
2135 }
2136 
2137 #ifdef CONFIG_CMA
2138 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2139 void __init init_cma_reserved_pageblock(struct page *page)
2140 {
2141 	unsigned i = pageblock_nr_pages;
2142 	struct page *p = page;
2143 
2144 	do {
2145 		__ClearPageReserved(p);
2146 		set_page_count(p, 0);
2147 	} while (++p, --i);
2148 
2149 	set_pageblock_migratetype(page, MIGRATE_CMA);
2150 
2151 	if (pageblock_order >= MAX_ORDER) {
2152 		i = pageblock_nr_pages;
2153 		p = page;
2154 		do {
2155 			set_page_refcounted(p);
2156 			__free_pages(p, MAX_ORDER - 1);
2157 			p += MAX_ORDER_NR_PAGES;
2158 		} while (i -= MAX_ORDER_NR_PAGES);
2159 	} else {
2160 		set_page_refcounted(page);
2161 		__free_pages(page, pageblock_order);
2162 	}
2163 
2164 	adjust_managed_page_count(page, pageblock_nr_pages);
2165 }
2166 #endif
2167 
2168 /*
2169  * The order of subdivision here is critical for the IO subsystem.
2170  * Please do not alter this order without good reasons and regression
2171  * testing. Specifically, as large blocks of memory are subdivided,
2172  * the order in which smaller blocks are delivered depends on the order
2173  * they're subdivided in this function. This is the primary factor
2174  * influencing the order in which pages are delivered to the IO
2175  * subsystem according to empirical testing, and this is also justified
2176  * by considering the behavior of a buddy system containing a single
2177  * large block of memory acted on by a series of small allocations.
2178  * This behavior is a critical factor in sglist merging's success.
2179  *
2180  * -- nyc
2181  */
2182 static inline void expand(struct zone *zone, struct page *page,
2183 	int low, int high, int migratetype)
2184 {
2185 	unsigned long size = 1 << high;
2186 
2187 	while (high > low) {
2188 		high--;
2189 		size >>= 1;
2190 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2191 
2192 		/*
2193 		 * Mark as guard pages (or page), that will allow to
2194 		 * merge back to allocator when buddy will be freed.
2195 		 * Corresponding page table entries will not be touched,
2196 		 * pages will stay not present in virtual address space
2197 		 */
2198 		if (set_page_guard(zone, &page[size], high, migratetype))
2199 			continue;
2200 
2201 		add_to_free_list(&page[size], zone, high, migratetype);
2202 		set_buddy_order(&page[size], high);
2203 	}
2204 }
2205 
2206 static void check_new_page_bad(struct page *page)
2207 {
2208 	if (unlikely(page->flags & __PG_HWPOISON)) {
2209 		/* Don't complain about hwpoisoned pages */
2210 		page_mapcount_reset(page); /* remove PageBuddy */
2211 		return;
2212 	}
2213 
2214 	bad_page(page,
2215 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2216 }
2217 
2218 /*
2219  * This page is about to be returned from the page allocator
2220  */
2221 static inline int check_new_page(struct page *page)
2222 {
2223 	if (likely(page_expected_state(page,
2224 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2225 		return 0;
2226 
2227 	check_new_page_bad(page);
2228 	return 1;
2229 }
2230 
2231 #ifdef CONFIG_DEBUG_VM
2232 /*
2233  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2234  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2235  * also checked when pcp lists are refilled from the free lists.
2236  */
2237 static inline bool check_pcp_refill(struct page *page)
2238 {
2239 	if (debug_pagealloc_enabled_static())
2240 		return check_new_page(page);
2241 	else
2242 		return false;
2243 }
2244 
2245 static inline bool check_new_pcp(struct page *page)
2246 {
2247 	return check_new_page(page);
2248 }
2249 #else
2250 /*
2251  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2252  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2253  * enabled, they are also checked when being allocated from the pcp lists.
2254  */
2255 static inline bool check_pcp_refill(struct page *page)
2256 {
2257 	return check_new_page(page);
2258 }
2259 static inline bool check_new_pcp(struct page *page)
2260 {
2261 	if (debug_pagealloc_enabled_static())
2262 		return check_new_page(page);
2263 	else
2264 		return false;
2265 }
2266 #endif /* CONFIG_DEBUG_VM */
2267 
2268 static bool check_new_pages(struct page *page, unsigned int order)
2269 {
2270 	int i;
2271 	for (i = 0; i < (1 << order); i++) {
2272 		struct page *p = page + i;
2273 
2274 		if (unlikely(check_new_page(p)))
2275 			return true;
2276 	}
2277 
2278 	return false;
2279 }
2280 
2281 inline void post_alloc_hook(struct page *page, unsigned int order,
2282 				gfp_t gfp_flags)
2283 {
2284 	set_page_private(page, 0);
2285 	set_page_refcounted(page);
2286 
2287 	arch_alloc_page(page, order);
2288 	debug_pagealloc_map_pages(page, 1 << order);
2289 	kasan_alloc_pages(page, order);
2290 	kernel_unpoison_pages(page, 1 << order);
2291 	set_page_owner(page, order, gfp_flags);
2292 
2293 	if (!want_init_on_free() && want_init_on_alloc(gfp_flags))
2294 		kernel_init_free_pages(page, 1 << order);
2295 }
2296 
2297 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2298 							unsigned int alloc_flags)
2299 {
2300 	post_alloc_hook(page, order, gfp_flags);
2301 
2302 	if (order && (gfp_flags & __GFP_COMP))
2303 		prep_compound_page(page, order);
2304 
2305 	/*
2306 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2307 	 * allocate the page. The expectation is that the caller is taking
2308 	 * steps that will free more memory. The caller should avoid the page
2309 	 * being used for !PFMEMALLOC purposes.
2310 	 */
2311 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2312 		set_page_pfmemalloc(page);
2313 	else
2314 		clear_page_pfmemalloc(page);
2315 }
2316 
2317 /*
2318  * Go through the free lists for the given migratetype and remove
2319  * the smallest available page from the freelists
2320  */
2321 static __always_inline
2322 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2323 						int migratetype)
2324 {
2325 	unsigned int current_order;
2326 	struct free_area *area;
2327 	struct page *page;
2328 
2329 	/* Find a page of the appropriate size in the preferred list */
2330 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2331 		area = &(zone->free_area[current_order]);
2332 		page = get_page_from_free_area(area, migratetype);
2333 		if (!page)
2334 			continue;
2335 		del_page_from_free_list(page, zone, current_order);
2336 		expand(zone, page, order, current_order, migratetype);
2337 		set_pcppage_migratetype(page, migratetype);
2338 		return page;
2339 	}
2340 
2341 	return NULL;
2342 }
2343 
2344 
2345 /*
2346  * This array describes the order lists are fallen back to when
2347  * the free lists for the desirable migrate type are depleted
2348  */
2349 static int fallbacks[MIGRATE_TYPES][3] = {
2350 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2351 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2352 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2353 #ifdef CONFIG_CMA
2354 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2355 #endif
2356 #ifdef CONFIG_MEMORY_ISOLATION
2357 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2358 #endif
2359 };
2360 
2361 #ifdef CONFIG_CMA
2362 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2363 					unsigned int order)
2364 {
2365 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2366 }
2367 #else
2368 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2369 					unsigned int order) { return NULL; }
2370 #endif
2371 
2372 /*
2373  * Move the free pages in a range to the freelist tail of the requested type.
2374  * Note that start_page and end_pages are not aligned on a pageblock
2375  * boundary. If alignment is required, use move_freepages_block()
2376  */
2377 static int move_freepages(struct zone *zone,
2378 			  struct page *start_page, struct page *end_page,
2379 			  int migratetype, int *num_movable)
2380 {
2381 	struct page *page;
2382 	unsigned int order;
2383 	int pages_moved = 0;
2384 
2385 	for (page = start_page; page <= end_page;) {
2386 		if (!pfn_valid_within(page_to_pfn(page))) {
2387 			page++;
2388 			continue;
2389 		}
2390 
2391 		if (!PageBuddy(page)) {
2392 			/*
2393 			 * We assume that pages that could be isolated for
2394 			 * migration are movable. But we don't actually try
2395 			 * isolating, as that would be expensive.
2396 			 */
2397 			if (num_movable &&
2398 					(PageLRU(page) || __PageMovable(page)))
2399 				(*num_movable)++;
2400 
2401 			page++;
2402 			continue;
2403 		}
2404 
2405 		/* Make sure we are not inadvertently changing nodes */
2406 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2407 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2408 
2409 		order = buddy_order(page);
2410 		move_to_free_list(page, zone, order, migratetype);
2411 		page += 1 << order;
2412 		pages_moved += 1 << order;
2413 	}
2414 
2415 	return pages_moved;
2416 }
2417 
2418 int move_freepages_block(struct zone *zone, struct page *page,
2419 				int migratetype, int *num_movable)
2420 {
2421 	unsigned long start_pfn, end_pfn;
2422 	struct page *start_page, *end_page;
2423 
2424 	if (num_movable)
2425 		*num_movable = 0;
2426 
2427 	start_pfn = page_to_pfn(page);
2428 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2429 	start_page = pfn_to_page(start_pfn);
2430 	end_page = start_page + pageblock_nr_pages - 1;
2431 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2432 
2433 	/* Do not cross zone boundaries */
2434 	if (!zone_spans_pfn(zone, start_pfn))
2435 		start_page = page;
2436 	if (!zone_spans_pfn(zone, end_pfn))
2437 		return 0;
2438 
2439 	return move_freepages(zone, start_page, end_page, migratetype,
2440 								num_movable);
2441 }
2442 
2443 static void change_pageblock_range(struct page *pageblock_page,
2444 					int start_order, int migratetype)
2445 {
2446 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2447 
2448 	while (nr_pageblocks--) {
2449 		set_pageblock_migratetype(pageblock_page, migratetype);
2450 		pageblock_page += pageblock_nr_pages;
2451 	}
2452 }
2453 
2454 /*
2455  * When we are falling back to another migratetype during allocation, try to
2456  * steal extra free pages from the same pageblocks to satisfy further
2457  * allocations, instead of polluting multiple pageblocks.
2458  *
2459  * If we are stealing a relatively large buddy page, it is likely there will
2460  * be more free pages in the pageblock, so try to steal them all. For
2461  * reclaimable and unmovable allocations, we steal regardless of page size,
2462  * as fragmentation caused by those allocations polluting movable pageblocks
2463  * is worse than movable allocations stealing from unmovable and reclaimable
2464  * pageblocks.
2465  */
2466 static bool can_steal_fallback(unsigned int order, int start_mt)
2467 {
2468 	/*
2469 	 * Leaving this order check is intended, although there is
2470 	 * relaxed order check in next check. The reason is that
2471 	 * we can actually steal whole pageblock if this condition met,
2472 	 * but, below check doesn't guarantee it and that is just heuristic
2473 	 * so could be changed anytime.
2474 	 */
2475 	if (order >= pageblock_order)
2476 		return true;
2477 
2478 	if (order >= pageblock_order / 2 ||
2479 		start_mt == MIGRATE_RECLAIMABLE ||
2480 		start_mt == MIGRATE_UNMOVABLE ||
2481 		page_group_by_mobility_disabled)
2482 		return true;
2483 
2484 	return false;
2485 }
2486 
2487 static inline bool boost_watermark(struct zone *zone)
2488 {
2489 	unsigned long max_boost;
2490 
2491 	if (!watermark_boost_factor)
2492 		return false;
2493 	/*
2494 	 * Don't bother in zones that are unlikely to produce results.
2495 	 * On small machines, including kdump capture kernels running
2496 	 * in a small area, boosting the watermark can cause an out of
2497 	 * memory situation immediately.
2498 	 */
2499 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2500 		return false;
2501 
2502 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2503 			watermark_boost_factor, 10000);
2504 
2505 	/*
2506 	 * high watermark may be uninitialised if fragmentation occurs
2507 	 * very early in boot so do not boost. We do not fall
2508 	 * through and boost by pageblock_nr_pages as failing
2509 	 * allocations that early means that reclaim is not going
2510 	 * to help and it may even be impossible to reclaim the
2511 	 * boosted watermark resulting in a hang.
2512 	 */
2513 	if (!max_boost)
2514 		return false;
2515 
2516 	max_boost = max(pageblock_nr_pages, max_boost);
2517 
2518 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2519 		max_boost);
2520 
2521 	return true;
2522 }
2523 
2524 /*
2525  * This function implements actual steal behaviour. If order is large enough,
2526  * we can steal whole pageblock. If not, we first move freepages in this
2527  * pageblock to our migratetype and determine how many already-allocated pages
2528  * are there in the pageblock with a compatible migratetype. If at least half
2529  * of pages are free or compatible, we can change migratetype of the pageblock
2530  * itself, so pages freed in the future will be put on the correct free list.
2531  */
2532 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2533 		unsigned int alloc_flags, int start_type, bool whole_block)
2534 {
2535 	unsigned int current_order = buddy_order(page);
2536 	int free_pages, movable_pages, alike_pages;
2537 	int old_block_type;
2538 
2539 	old_block_type = get_pageblock_migratetype(page);
2540 
2541 	/*
2542 	 * This can happen due to races and we want to prevent broken
2543 	 * highatomic accounting.
2544 	 */
2545 	if (is_migrate_highatomic(old_block_type))
2546 		goto single_page;
2547 
2548 	/* Take ownership for orders >= pageblock_order */
2549 	if (current_order >= pageblock_order) {
2550 		change_pageblock_range(page, current_order, start_type);
2551 		goto single_page;
2552 	}
2553 
2554 	/*
2555 	 * Boost watermarks to increase reclaim pressure to reduce the
2556 	 * likelihood of future fallbacks. Wake kswapd now as the node
2557 	 * may be balanced overall and kswapd will not wake naturally.
2558 	 */
2559 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2560 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2561 
2562 	/* We are not allowed to try stealing from the whole block */
2563 	if (!whole_block)
2564 		goto single_page;
2565 
2566 	free_pages = move_freepages_block(zone, page, start_type,
2567 						&movable_pages);
2568 	/*
2569 	 * Determine how many pages are compatible with our allocation.
2570 	 * For movable allocation, it's the number of movable pages which
2571 	 * we just obtained. For other types it's a bit more tricky.
2572 	 */
2573 	if (start_type == MIGRATE_MOVABLE) {
2574 		alike_pages = movable_pages;
2575 	} else {
2576 		/*
2577 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2578 		 * to MOVABLE pageblock, consider all non-movable pages as
2579 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2580 		 * vice versa, be conservative since we can't distinguish the
2581 		 * exact migratetype of non-movable pages.
2582 		 */
2583 		if (old_block_type == MIGRATE_MOVABLE)
2584 			alike_pages = pageblock_nr_pages
2585 						- (free_pages + movable_pages);
2586 		else
2587 			alike_pages = 0;
2588 	}
2589 
2590 	/* moving whole block can fail due to zone boundary conditions */
2591 	if (!free_pages)
2592 		goto single_page;
2593 
2594 	/*
2595 	 * If a sufficient number of pages in the block are either free or of
2596 	 * comparable migratability as our allocation, claim the whole block.
2597 	 */
2598 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2599 			page_group_by_mobility_disabled)
2600 		set_pageblock_migratetype(page, start_type);
2601 
2602 	return;
2603 
2604 single_page:
2605 	move_to_free_list(page, zone, current_order, start_type);
2606 }
2607 
2608 /*
2609  * Check whether there is a suitable fallback freepage with requested order.
2610  * If only_stealable is true, this function returns fallback_mt only if
2611  * we can steal other freepages all together. This would help to reduce
2612  * fragmentation due to mixed migratetype pages in one pageblock.
2613  */
2614 int find_suitable_fallback(struct free_area *area, unsigned int order,
2615 			int migratetype, bool only_stealable, bool *can_steal)
2616 {
2617 	int i;
2618 	int fallback_mt;
2619 
2620 	if (area->nr_free == 0)
2621 		return -1;
2622 
2623 	*can_steal = false;
2624 	for (i = 0;; i++) {
2625 		fallback_mt = fallbacks[migratetype][i];
2626 		if (fallback_mt == MIGRATE_TYPES)
2627 			break;
2628 
2629 		if (free_area_empty(area, fallback_mt))
2630 			continue;
2631 
2632 		if (can_steal_fallback(order, migratetype))
2633 			*can_steal = true;
2634 
2635 		if (!only_stealable)
2636 			return fallback_mt;
2637 
2638 		if (*can_steal)
2639 			return fallback_mt;
2640 	}
2641 
2642 	return -1;
2643 }
2644 
2645 /*
2646  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2647  * there are no empty page blocks that contain a page with a suitable order
2648  */
2649 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2650 				unsigned int alloc_order)
2651 {
2652 	int mt;
2653 	unsigned long max_managed, flags;
2654 
2655 	/*
2656 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2657 	 * Check is race-prone but harmless.
2658 	 */
2659 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2660 	if (zone->nr_reserved_highatomic >= max_managed)
2661 		return;
2662 
2663 	spin_lock_irqsave(&zone->lock, flags);
2664 
2665 	/* Recheck the nr_reserved_highatomic limit under the lock */
2666 	if (zone->nr_reserved_highatomic >= max_managed)
2667 		goto out_unlock;
2668 
2669 	/* Yoink! */
2670 	mt = get_pageblock_migratetype(page);
2671 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2672 	    && !is_migrate_cma(mt)) {
2673 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2674 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2675 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2676 	}
2677 
2678 out_unlock:
2679 	spin_unlock_irqrestore(&zone->lock, flags);
2680 }
2681 
2682 /*
2683  * Used when an allocation is about to fail under memory pressure. This
2684  * potentially hurts the reliability of high-order allocations when under
2685  * intense memory pressure but failed atomic allocations should be easier
2686  * to recover from than an OOM.
2687  *
2688  * If @force is true, try to unreserve a pageblock even though highatomic
2689  * pageblock is exhausted.
2690  */
2691 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2692 						bool force)
2693 {
2694 	struct zonelist *zonelist = ac->zonelist;
2695 	unsigned long flags;
2696 	struct zoneref *z;
2697 	struct zone *zone;
2698 	struct page *page;
2699 	int order;
2700 	bool ret;
2701 
2702 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2703 								ac->nodemask) {
2704 		/*
2705 		 * Preserve at least one pageblock unless memory pressure
2706 		 * is really high.
2707 		 */
2708 		if (!force && zone->nr_reserved_highatomic <=
2709 					pageblock_nr_pages)
2710 			continue;
2711 
2712 		spin_lock_irqsave(&zone->lock, flags);
2713 		for (order = 0; order < MAX_ORDER; order++) {
2714 			struct free_area *area = &(zone->free_area[order]);
2715 
2716 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2717 			if (!page)
2718 				continue;
2719 
2720 			/*
2721 			 * In page freeing path, migratetype change is racy so
2722 			 * we can counter several free pages in a pageblock
2723 			 * in this loop althoug we changed the pageblock type
2724 			 * from highatomic to ac->migratetype. So we should
2725 			 * adjust the count once.
2726 			 */
2727 			if (is_migrate_highatomic_page(page)) {
2728 				/*
2729 				 * It should never happen but changes to
2730 				 * locking could inadvertently allow a per-cpu
2731 				 * drain to add pages to MIGRATE_HIGHATOMIC
2732 				 * while unreserving so be safe and watch for
2733 				 * underflows.
2734 				 */
2735 				zone->nr_reserved_highatomic -= min(
2736 						pageblock_nr_pages,
2737 						zone->nr_reserved_highatomic);
2738 			}
2739 
2740 			/*
2741 			 * Convert to ac->migratetype and avoid the normal
2742 			 * pageblock stealing heuristics. Minimally, the caller
2743 			 * is doing the work and needs the pages. More
2744 			 * importantly, if the block was always converted to
2745 			 * MIGRATE_UNMOVABLE or another type then the number
2746 			 * of pageblocks that cannot be completely freed
2747 			 * may increase.
2748 			 */
2749 			set_pageblock_migratetype(page, ac->migratetype);
2750 			ret = move_freepages_block(zone, page, ac->migratetype,
2751 									NULL);
2752 			if (ret) {
2753 				spin_unlock_irqrestore(&zone->lock, flags);
2754 				return ret;
2755 			}
2756 		}
2757 		spin_unlock_irqrestore(&zone->lock, flags);
2758 	}
2759 
2760 	return false;
2761 }
2762 
2763 /*
2764  * Try finding a free buddy page on the fallback list and put it on the free
2765  * list of requested migratetype, possibly along with other pages from the same
2766  * block, depending on fragmentation avoidance heuristics. Returns true if
2767  * fallback was found so that __rmqueue_smallest() can grab it.
2768  *
2769  * The use of signed ints for order and current_order is a deliberate
2770  * deviation from the rest of this file, to make the for loop
2771  * condition simpler.
2772  */
2773 static __always_inline bool
2774 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2775 						unsigned int alloc_flags)
2776 {
2777 	struct free_area *area;
2778 	int current_order;
2779 	int min_order = order;
2780 	struct page *page;
2781 	int fallback_mt;
2782 	bool can_steal;
2783 
2784 	/*
2785 	 * Do not steal pages from freelists belonging to other pageblocks
2786 	 * i.e. orders < pageblock_order. If there are no local zones free,
2787 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2788 	 */
2789 	if (alloc_flags & ALLOC_NOFRAGMENT)
2790 		min_order = pageblock_order;
2791 
2792 	/*
2793 	 * Find the largest available free page in the other list. This roughly
2794 	 * approximates finding the pageblock with the most free pages, which
2795 	 * would be too costly to do exactly.
2796 	 */
2797 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2798 				--current_order) {
2799 		area = &(zone->free_area[current_order]);
2800 		fallback_mt = find_suitable_fallback(area, current_order,
2801 				start_migratetype, false, &can_steal);
2802 		if (fallback_mt == -1)
2803 			continue;
2804 
2805 		/*
2806 		 * We cannot steal all free pages from the pageblock and the
2807 		 * requested migratetype is movable. In that case it's better to
2808 		 * steal and split the smallest available page instead of the
2809 		 * largest available page, because even if the next movable
2810 		 * allocation falls back into a different pageblock than this
2811 		 * one, it won't cause permanent fragmentation.
2812 		 */
2813 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2814 					&& current_order > order)
2815 			goto find_smallest;
2816 
2817 		goto do_steal;
2818 	}
2819 
2820 	return false;
2821 
2822 find_smallest:
2823 	for (current_order = order; current_order < MAX_ORDER;
2824 							current_order++) {
2825 		area = &(zone->free_area[current_order]);
2826 		fallback_mt = find_suitable_fallback(area, current_order,
2827 				start_migratetype, false, &can_steal);
2828 		if (fallback_mt != -1)
2829 			break;
2830 	}
2831 
2832 	/*
2833 	 * This should not happen - we already found a suitable fallback
2834 	 * when looking for the largest page.
2835 	 */
2836 	VM_BUG_ON(current_order == MAX_ORDER);
2837 
2838 do_steal:
2839 	page = get_page_from_free_area(area, fallback_mt);
2840 
2841 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2842 								can_steal);
2843 
2844 	trace_mm_page_alloc_extfrag(page, order, current_order,
2845 		start_migratetype, fallback_mt);
2846 
2847 	return true;
2848 
2849 }
2850 
2851 /*
2852  * Do the hard work of removing an element from the buddy allocator.
2853  * Call me with the zone->lock already held.
2854  */
2855 static __always_inline struct page *
2856 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2857 						unsigned int alloc_flags)
2858 {
2859 	struct page *page;
2860 
2861 #ifdef CONFIG_CMA
2862 	/*
2863 	 * Balance movable allocations between regular and CMA areas by
2864 	 * allocating from CMA when over half of the zone's free memory
2865 	 * is in the CMA area.
2866 	 */
2867 	if (alloc_flags & ALLOC_CMA &&
2868 	    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2869 	    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2870 		page = __rmqueue_cma_fallback(zone, order);
2871 		if (page)
2872 			return page;
2873 	}
2874 #endif
2875 retry:
2876 	page = __rmqueue_smallest(zone, order, migratetype);
2877 	if (unlikely(!page)) {
2878 		if (alloc_flags & ALLOC_CMA)
2879 			page = __rmqueue_cma_fallback(zone, order);
2880 
2881 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2882 								alloc_flags))
2883 			goto retry;
2884 	}
2885 
2886 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2887 	return page;
2888 }
2889 
2890 /*
2891  * Obtain a specified number of elements from the buddy allocator, all under
2892  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2893  * Returns the number of new pages which were placed at *list.
2894  */
2895 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2896 			unsigned long count, struct list_head *list,
2897 			int migratetype, unsigned int alloc_flags)
2898 {
2899 	int i, alloced = 0;
2900 
2901 	spin_lock(&zone->lock);
2902 	for (i = 0; i < count; ++i) {
2903 		struct page *page = __rmqueue(zone, order, migratetype,
2904 								alloc_flags);
2905 		if (unlikely(page == NULL))
2906 			break;
2907 
2908 		if (unlikely(check_pcp_refill(page)))
2909 			continue;
2910 
2911 		/*
2912 		 * Split buddy pages returned by expand() are received here in
2913 		 * physical page order. The page is added to the tail of
2914 		 * caller's list. From the callers perspective, the linked list
2915 		 * is ordered by page number under some conditions. This is
2916 		 * useful for IO devices that can forward direction from the
2917 		 * head, thus also in the physical page order. This is useful
2918 		 * for IO devices that can merge IO requests if the physical
2919 		 * pages are ordered properly.
2920 		 */
2921 		list_add_tail(&page->lru, list);
2922 		alloced++;
2923 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2924 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2925 					      -(1 << order));
2926 	}
2927 
2928 	/*
2929 	 * i pages were removed from the buddy list even if some leak due
2930 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2931 	 * on i. Do not confuse with 'alloced' which is the number of
2932 	 * pages added to the pcp list.
2933 	 */
2934 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2935 	spin_unlock(&zone->lock);
2936 	return alloced;
2937 }
2938 
2939 #ifdef CONFIG_NUMA
2940 /*
2941  * Called from the vmstat counter updater to drain pagesets of this
2942  * currently executing processor on remote nodes after they have
2943  * expired.
2944  *
2945  * Note that this function must be called with the thread pinned to
2946  * a single processor.
2947  */
2948 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2949 {
2950 	unsigned long flags;
2951 	int to_drain, batch;
2952 
2953 	local_irq_save(flags);
2954 	batch = READ_ONCE(pcp->batch);
2955 	to_drain = min(pcp->count, batch);
2956 	if (to_drain > 0)
2957 		free_pcppages_bulk(zone, to_drain, pcp);
2958 	local_irq_restore(flags);
2959 }
2960 #endif
2961 
2962 /*
2963  * Drain pcplists of the indicated processor and zone.
2964  *
2965  * The processor must either be the current processor and the
2966  * thread pinned to the current processor or a processor that
2967  * is not online.
2968  */
2969 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2970 {
2971 	unsigned long flags;
2972 	struct per_cpu_pageset *pset;
2973 	struct per_cpu_pages *pcp;
2974 
2975 	local_irq_save(flags);
2976 	pset = per_cpu_ptr(zone->pageset, cpu);
2977 
2978 	pcp = &pset->pcp;
2979 	if (pcp->count)
2980 		free_pcppages_bulk(zone, pcp->count, pcp);
2981 	local_irq_restore(flags);
2982 }
2983 
2984 /*
2985  * Drain pcplists of all zones on the indicated processor.
2986  *
2987  * The processor must either be the current processor and the
2988  * thread pinned to the current processor or a processor that
2989  * is not online.
2990  */
2991 static void drain_pages(unsigned int cpu)
2992 {
2993 	struct zone *zone;
2994 
2995 	for_each_populated_zone(zone) {
2996 		drain_pages_zone(cpu, zone);
2997 	}
2998 }
2999 
3000 /*
3001  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3002  *
3003  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3004  * the single zone's pages.
3005  */
3006 void drain_local_pages(struct zone *zone)
3007 {
3008 	int cpu = smp_processor_id();
3009 
3010 	if (zone)
3011 		drain_pages_zone(cpu, zone);
3012 	else
3013 		drain_pages(cpu);
3014 }
3015 
3016 static void drain_local_pages_wq(struct work_struct *work)
3017 {
3018 	struct pcpu_drain *drain;
3019 
3020 	drain = container_of(work, struct pcpu_drain, work);
3021 
3022 	/*
3023 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3024 	 * we can race with cpu offline when the WQ can move this from
3025 	 * a cpu pinned worker to an unbound one. We can operate on a different
3026 	 * cpu which is allright but we also have to make sure to not move to
3027 	 * a different one.
3028 	 */
3029 	preempt_disable();
3030 	drain_local_pages(drain->zone);
3031 	preempt_enable();
3032 }
3033 
3034 /*
3035  * The implementation of drain_all_pages(), exposing an extra parameter to
3036  * drain on all cpus.
3037  *
3038  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3039  * not empty. The check for non-emptiness can however race with a free to
3040  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3041  * that need the guarantee that every CPU has drained can disable the
3042  * optimizing racy check.
3043  */
3044 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3045 {
3046 	int cpu;
3047 
3048 	/*
3049 	 * Allocate in the BSS so we wont require allocation in
3050 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3051 	 */
3052 	static cpumask_t cpus_with_pcps;
3053 
3054 	/*
3055 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3056 	 * initialized.
3057 	 */
3058 	if (WARN_ON_ONCE(!mm_percpu_wq))
3059 		return;
3060 
3061 	/*
3062 	 * Do not drain if one is already in progress unless it's specific to
3063 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3064 	 * the drain to be complete when the call returns.
3065 	 */
3066 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3067 		if (!zone)
3068 			return;
3069 		mutex_lock(&pcpu_drain_mutex);
3070 	}
3071 
3072 	/*
3073 	 * We don't care about racing with CPU hotplug event
3074 	 * as offline notification will cause the notified
3075 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3076 	 * disables preemption as part of its processing
3077 	 */
3078 	for_each_online_cpu(cpu) {
3079 		struct per_cpu_pageset *pcp;
3080 		struct zone *z;
3081 		bool has_pcps = false;
3082 
3083 		if (force_all_cpus) {
3084 			/*
3085 			 * The pcp.count check is racy, some callers need a
3086 			 * guarantee that no cpu is missed.
3087 			 */
3088 			has_pcps = true;
3089 		} else if (zone) {
3090 			pcp = per_cpu_ptr(zone->pageset, cpu);
3091 			if (pcp->pcp.count)
3092 				has_pcps = true;
3093 		} else {
3094 			for_each_populated_zone(z) {
3095 				pcp = per_cpu_ptr(z->pageset, cpu);
3096 				if (pcp->pcp.count) {
3097 					has_pcps = true;
3098 					break;
3099 				}
3100 			}
3101 		}
3102 
3103 		if (has_pcps)
3104 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3105 		else
3106 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3107 	}
3108 
3109 	for_each_cpu(cpu, &cpus_with_pcps) {
3110 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3111 
3112 		drain->zone = zone;
3113 		INIT_WORK(&drain->work, drain_local_pages_wq);
3114 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3115 	}
3116 	for_each_cpu(cpu, &cpus_with_pcps)
3117 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3118 
3119 	mutex_unlock(&pcpu_drain_mutex);
3120 }
3121 
3122 /*
3123  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3124  *
3125  * When zone parameter is non-NULL, spill just the single zone's pages.
3126  *
3127  * Note that this can be extremely slow as the draining happens in a workqueue.
3128  */
3129 void drain_all_pages(struct zone *zone)
3130 {
3131 	__drain_all_pages(zone, false);
3132 }
3133 
3134 #ifdef CONFIG_HIBERNATION
3135 
3136 /*
3137  * Touch the watchdog for every WD_PAGE_COUNT pages.
3138  */
3139 #define WD_PAGE_COUNT	(128*1024)
3140 
3141 void mark_free_pages(struct zone *zone)
3142 {
3143 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3144 	unsigned long flags;
3145 	unsigned int order, t;
3146 	struct page *page;
3147 
3148 	if (zone_is_empty(zone))
3149 		return;
3150 
3151 	spin_lock_irqsave(&zone->lock, flags);
3152 
3153 	max_zone_pfn = zone_end_pfn(zone);
3154 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3155 		if (pfn_valid(pfn)) {
3156 			page = pfn_to_page(pfn);
3157 
3158 			if (!--page_count) {
3159 				touch_nmi_watchdog();
3160 				page_count = WD_PAGE_COUNT;
3161 			}
3162 
3163 			if (page_zone(page) != zone)
3164 				continue;
3165 
3166 			if (!swsusp_page_is_forbidden(page))
3167 				swsusp_unset_page_free(page);
3168 		}
3169 
3170 	for_each_migratetype_order(order, t) {
3171 		list_for_each_entry(page,
3172 				&zone->free_area[order].free_list[t], lru) {
3173 			unsigned long i;
3174 
3175 			pfn = page_to_pfn(page);
3176 			for (i = 0; i < (1UL << order); i++) {
3177 				if (!--page_count) {
3178 					touch_nmi_watchdog();
3179 					page_count = WD_PAGE_COUNT;
3180 				}
3181 				swsusp_set_page_free(pfn_to_page(pfn + i));
3182 			}
3183 		}
3184 	}
3185 	spin_unlock_irqrestore(&zone->lock, flags);
3186 }
3187 #endif /* CONFIG_PM */
3188 
3189 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3190 {
3191 	int migratetype;
3192 
3193 	if (!free_pcp_prepare(page))
3194 		return false;
3195 
3196 	migratetype = get_pfnblock_migratetype(page, pfn);
3197 	set_pcppage_migratetype(page, migratetype);
3198 	return true;
3199 }
3200 
3201 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3202 {
3203 	struct zone *zone = page_zone(page);
3204 	struct per_cpu_pages *pcp;
3205 	int migratetype;
3206 
3207 	migratetype = get_pcppage_migratetype(page);
3208 	__count_vm_event(PGFREE);
3209 
3210 	/*
3211 	 * We only track unmovable, reclaimable and movable on pcp lists.
3212 	 * Free ISOLATE pages back to the allocator because they are being
3213 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3214 	 * areas back if necessary. Otherwise, we may have to free
3215 	 * excessively into the page allocator
3216 	 */
3217 	if (migratetype >= MIGRATE_PCPTYPES) {
3218 		if (unlikely(is_migrate_isolate(migratetype))) {
3219 			free_one_page(zone, page, pfn, 0, migratetype,
3220 				      FPI_NONE);
3221 			return;
3222 		}
3223 		migratetype = MIGRATE_MOVABLE;
3224 	}
3225 
3226 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3227 	list_add(&page->lru, &pcp->lists[migratetype]);
3228 	pcp->count++;
3229 	if (pcp->count >= READ_ONCE(pcp->high))
3230 		free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
3231 }
3232 
3233 /*
3234  * Free a 0-order page
3235  */
3236 void free_unref_page(struct page *page)
3237 {
3238 	unsigned long flags;
3239 	unsigned long pfn = page_to_pfn(page);
3240 
3241 	if (!free_unref_page_prepare(page, pfn))
3242 		return;
3243 
3244 	local_irq_save(flags);
3245 	free_unref_page_commit(page, pfn);
3246 	local_irq_restore(flags);
3247 }
3248 
3249 /*
3250  * Free a list of 0-order pages
3251  */
3252 void free_unref_page_list(struct list_head *list)
3253 {
3254 	struct page *page, *next;
3255 	unsigned long flags, pfn;
3256 	int batch_count = 0;
3257 
3258 	/* Prepare pages for freeing */
3259 	list_for_each_entry_safe(page, next, list, lru) {
3260 		pfn = page_to_pfn(page);
3261 		if (!free_unref_page_prepare(page, pfn))
3262 			list_del(&page->lru);
3263 		set_page_private(page, pfn);
3264 	}
3265 
3266 	local_irq_save(flags);
3267 	list_for_each_entry_safe(page, next, list, lru) {
3268 		unsigned long pfn = page_private(page);
3269 
3270 		set_page_private(page, 0);
3271 		trace_mm_page_free_batched(page);
3272 		free_unref_page_commit(page, pfn);
3273 
3274 		/*
3275 		 * Guard against excessive IRQ disabled times when we get
3276 		 * a large list of pages to free.
3277 		 */
3278 		if (++batch_count == SWAP_CLUSTER_MAX) {
3279 			local_irq_restore(flags);
3280 			batch_count = 0;
3281 			local_irq_save(flags);
3282 		}
3283 	}
3284 	local_irq_restore(flags);
3285 }
3286 
3287 /*
3288  * split_page takes a non-compound higher-order page, and splits it into
3289  * n (1<<order) sub-pages: page[0..n]
3290  * Each sub-page must be freed individually.
3291  *
3292  * Note: this is probably too low level an operation for use in drivers.
3293  * Please consult with lkml before using this in your driver.
3294  */
3295 void split_page(struct page *page, unsigned int order)
3296 {
3297 	int i;
3298 
3299 	VM_BUG_ON_PAGE(PageCompound(page), page);
3300 	VM_BUG_ON_PAGE(!page_count(page), page);
3301 
3302 	for (i = 1; i < (1 << order); i++)
3303 		set_page_refcounted(page + i);
3304 	split_page_owner(page, 1 << order);
3305 }
3306 EXPORT_SYMBOL_GPL(split_page);
3307 
3308 int __isolate_free_page(struct page *page, unsigned int order)
3309 {
3310 	unsigned long watermark;
3311 	struct zone *zone;
3312 	int mt;
3313 
3314 	BUG_ON(!PageBuddy(page));
3315 
3316 	zone = page_zone(page);
3317 	mt = get_pageblock_migratetype(page);
3318 
3319 	if (!is_migrate_isolate(mt)) {
3320 		/*
3321 		 * Obey watermarks as if the page was being allocated. We can
3322 		 * emulate a high-order watermark check with a raised order-0
3323 		 * watermark, because we already know our high-order page
3324 		 * exists.
3325 		 */
3326 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3327 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3328 			return 0;
3329 
3330 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3331 	}
3332 
3333 	/* Remove page from free list */
3334 
3335 	del_page_from_free_list(page, zone, order);
3336 
3337 	/*
3338 	 * Set the pageblock if the isolated page is at least half of a
3339 	 * pageblock
3340 	 */
3341 	if (order >= pageblock_order - 1) {
3342 		struct page *endpage = page + (1 << order) - 1;
3343 		for (; page < endpage; page += pageblock_nr_pages) {
3344 			int mt = get_pageblock_migratetype(page);
3345 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3346 			    && !is_migrate_highatomic(mt))
3347 				set_pageblock_migratetype(page,
3348 							  MIGRATE_MOVABLE);
3349 		}
3350 	}
3351 
3352 
3353 	return 1UL << order;
3354 }
3355 
3356 /**
3357  * __putback_isolated_page - Return a now-isolated page back where we got it
3358  * @page: Page that was isolated
3359  * @order: Order of the isolated page
3360  * @mt: The page's pageblock's migratetype
3361  *
3362  * This function is meant to return a page pulled from the free lists via
3363  * __isolate_free_page back to the free lists they were pulled from.
3364  */
3365 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3366 {
3367 	struct zone *zone = page_zone(page);
3368 
3369 	/* zone lock should be held when this function is called */
3370 	lockdep_assert_held(&zone->lock);
3371 
3372 	/* Return isolated page to tail of freelist. */
3373 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3374 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3375 }
3376 
3377 /*
3378  * Update NUMA hit/miss statistics
3379  *
3380  * Must be called with interrupts disabled.
3381  */
3382 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3383 {
3384 #ifdef CONFIG_NUMA
3385 	enum numa_stat_item local_stat = NUMA_LOCAL;
3386 
3387 	/* skip numa counters update if numa stats is disabled */
3388 	if (!static_branch_likely(&vm_numa_stat_key))
3389 		return;
3390 
3391 	if (zone_to_nid(z) != numa_node_id())
3392 		local_stat = NUMA_OTHER;
3393 
3394 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3395 		__inc_numa_state(z, NUMA_HIT);
3396 	else {
3397 		__inc_numa_state(z, NUMA_MISS);
3398 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3399 	}
3400 	__inc_numa_state(z, local_stat);
3401 #endif
3402 }
3403 
3404 /* Remove page from the per-cpu list, caller must protect the list */
3405 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3406 			unsigned int alloc_flags,
3407 			struct per_cpu_pages *pcp,
3408 			struct list_head *list)
3409 {
3410 	struct page *page;
3411 
3412 	do {
3413 		if (list_empty(list)) {
3414 			pcp->count += rmqueue_bulk(zone, 0,
3415 					READ_ONCE(pcp->batch), list,
3416 					migratetype, alloc_flags);
3417 			if (unlikely(list_empty(list)))
3418 				return NULL;
3419 		}
3420 
3421 		page = list_first_entry(list, struct page, lru);
3422 		list_del(&page->lru);
3423 		pcp->count--;
3424 	} while (check_new_pcp(page));
3425 
3426 	return page;
3427 }
3428 
3429 /* Lock and remove page from the per-cpu list */
3430 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3431 			struct zone *zone, gfp_t gfp_flags,
3432 			int migratetype, unsigned int alloc_flags)
3433 {
3434 	struct per_cpu_pages *pcp;
3435 	struct list_head *list;
3436 	struct page *page;
3437 	unsigned long flags;
3438 
3439 	local_irq_save(flags);
3440 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3441 	list = &pcp->lists[migratetype];
3442 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3443 	if (page) {
3444 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3445 		zone_statistics(preferred_zone, zone);
3446 	}
3447 	local_irq_restore(flags);
3448 	return page;
3449 }
3450 
3451 /*
3452  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3453  */
3454 static inline
3455 struct page *rmqueue(struct zone *preferred_zone,
3456 			struct zone *zone, unsigned int order,
3457 			gfp_t gfp_flags, unsigned int alloc_flags,
3458 			int migratetype)
3459 {
3460 	unsigned long flags;
3461 	struct page *page;
3462 
3463 	if (likely(order == 0)) {
3464 		/*
3465 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3466 		 * we need to skip it when CMA area isn't allowed.
3467 		 */
3468 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3469 				migratetype != MIGRATE_MOVABLE) {
3470 			page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3471 					migratetype, alloc_flags);
3472 			goto out;
3473 		}
3474 	}
3475 
3476 	/*
3477 	 * We most definitely don't want callers attempting to
3478 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3479 	 */
3480 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3481 	spin_lock_irqsave(&zone->lock, flags);
3482 
3483 	do {
3484 		page = NULL;
3485 		/*
3486 		 * order-0 request can reach here when the pcplist is skipped
3487 		 * due to non-CMA allocation context. HIGHATOMIC area is
3488 		 * reserved for high-order atomic allocation, so order-0
3489 		 * request should skip it.
3490 		 */
3491 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3492 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3493 			if (page)
3494 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3495 		}
3496 		if (!page)
3497 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3498 	} while (page && check_new_pages(page, order));
3499 	spin_unlock(&zone->lock);
3500 	if (!page)
3501 		goto failed;
3502 	__mod_zone_freepage_state(zone, -(1 << order),
3503 				  get_pcppage_migratetype(page));
3504 
3505 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3506 	zone_statistics(preferred_zone, zone);
3507 	local_irq_restore(flags);
3508 
3509 out:
3510 	/* Separate test+clear to avoid unnecessary atomics */
3511 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3512 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3513 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3514 	}
3515 
3516 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3517 	return page;
3518 
3519 failed:
3520 	local_irq_restore(flags);
3521 	return NULL;
3522 }
3523 
3524 #ifdef CONFIG_FAIL_PAGE_ALLOC
3525 
3526 static struct {
3527 	struct fault_attr attr;
3528 
3529 	bool ignore_gfp_highmem;
3530 	bool ignore_gfp_reclaim;
3531 	u32 min_order;
3532 } fail_page_alloc = {
3533 	.attr = FAULT_ATTR_INITIALIZER,
3534 	.ignore_gfp_reclaim = true,
3535 	.ignore_gfp_highmem = true,
3536 	.min_order = 1,
3537 };
3538 
3539 static int __init setup_fail_page_alloc(char *str)
3540 {
3541 	return setup_fault_attr(&fail_page_alloc.attr, str);
3542 }
3543 __setup("fail_page_alloc=", setup_fail_page_alloc);
3544 
3545 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3546 {
3547 	if (order < fail_page_alloc.min_order)
3548 		return false;
3549 	if (gfp_mask & __GFP_NOFAIL)
3550 		return false;
3551 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3552 		return false;
3553 	if (fail_page_alloc.ignore_gfp_reclaim &&
3554 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3555 		return false;
3556 
3557 	return should_fail(&fail_page_alloc.attr, 1 << order);
3558 }
3559 
3560 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3561 
3562 static int __init fail_page_alloc_debugfs(void)
3563 {
3564 	umode_t mode = S_IFREG | 0600;
3565 	struct dentry *dir;
3566 
3567 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3568 					&fail_page_alloc.attr);
3569 
3570 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3571 			    &fail_page_alloc.ignore_gfp_reclaim);
3572 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3573 			    &fail_page_alloc.ignore_gfp_highmem);
3574 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3575 
3576 	return 0;
3577 }
3578 
3579 late_initcall(fail_page_alloc_debugfs);
3580 
3581 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3582 
3583 #else /* CONFIG_FAIL_PAGE_ALLOC */
3584 
3585 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3586 {
3587 	return false;
3588 }
3589 
3590 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3591 
3592 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3593 {
3594 	return __should_fail_alloc_page(gfp_mask, order);
3595 }
3596 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3597 
3598 static inline long __zone_watermark_unusable_free(struct zone *z,
3599 				unsigned int order, unsigned int alloc_flags)
3600 {
3601 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3602 	long unusable_free = (1 << order) - 1;
3603 
3604 	/*
3605 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3606 	 * the high-atomic reserves. This will over-estimate the size of the
3607 	 * atomic reserve but it avoids a search.
3608 	 */
3609 	if (likely(!alloc_harder))
3610 		unusable_free += z->nr_reserved_highatomic;
3611 
3612 #ifdef CONFIG_CMA
3613 	/* If allocation can't use CMA areas don't use free CMA pages */
3614 	if (!(alloc_flags & ALLOC_CMA))
3615 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3616 #endif
3617 
3618 	return unusable_free;
3619 }
3620 
3621 /*
3622  * Return true if free base pages are above 'mark'. For high-order checks it
3623  * will return true of the order-0 watermark is reached and there is at least
3624  * one free page of a suitable size. Checking now avoids taking the zone lock
3625  * to check in the allocation paths if no pages are free.
3626  */
3627 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3628 			 int highest_zoneidx, unsigned int alloc_flags,
3629 			 long free_pages)
3630 {
3631 	long min = mark;
3632 	int o;
3633 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3634 
3635 	/* free_pages may go negative - that's OK */
3636 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3637 
3638 	if (alloc_flags & ALLOC_HIGH)
3639 		min -= min / 2;
3640 
3641 	if (unlikely(alloc_harder)) {
3642 		/*
3643 		 * OOM victims can try even harder than normal ALLOC_HARDER
3644 		 * users on the grounds that it's definitely going to be in
3645 		 * the exit path shortly and free memory. Any allocation it
3646 		 * makes during the free path will be small and short-lived.
3647 		 */
3648 		if (alloc_flags & ALLOC_OOM)
3649 			min -= min / 2;
3650 		else
3651 			min -= min / 4;
3652 	}
3653 
3654 	/*
3655 	 * Check watermarks for an order-0 allocation request. If these
3656 	 * are not met, then a high-order request also cannot go ahead
3657 	 * even if a suitable page happened to be free.
3658 	 */
3659 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3660 		return false;
3661 
3662 	/* If this is an order-0 request then the watermark is fine */
3663 	if (!order)
3664 		return true;
3665 
3666 	/* For a high-order request, check at least one suitable page is free */
3667 	for (o = order; o < MAX_ORDER; o++) {
3668 		struct free_area *area = &z->free_area[o];
3669 		int mt;
3670 
3671 		if (!area->nr_free)
3672 			continue;
3673 
3674 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3675 			if (!free_area_empty(area, mt))
3676 				return true;
3677 		}
3678 
3679 #ifdef CONFIG_CMA
3680 		if ((alloc_flags & ALLOC_CMA) &&
3681 		    !free_area_empty(area, MIGRATE_CMA)) {
3682 			return true;
3683 		}
3684 #endif
3685 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3686 			return true;
3687 	}
3688 	return false;
3689 }
3690 
3691 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3692 		      int highest_zoneidx, unsigned int alloc_flags)
3693 {
3694 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3695 					zone_page_state(z, NR_FREE_PAGES));
3696 }
3697 
3698 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3699 				unsigned long mark, int highest_zoneidx,
3700 				unsigned int alloc_flags, gfp_t gfp_mask)
3701 {
3702 	long free_pages;
3703 
3704 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3705 
3706 	/*
3707 	 * Fast check for order-0 only. If this fails then the reserves
3708 	 * need to be calculated.
3709 	 */
3710 	if (!order) {
3711 		long fast_free;
3712 
3713 		fast_free = free_pages;
3714 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3715 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3716 			return true;
3717 	}
3718 
3719 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3720 					free_pages))
3721 		return true;
3722 	/*
3723 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3724 	 * when checking the min watermark. The min watermark is the
3725 	 * point where boosting is ignored so that kswapd is woken up
3726 	 * when below the low watermark.
3727 	 */
3728 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3729 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3730 		mark = z->_watermark[WMARK_MIN];
3731 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3732 					alloc_flags, free_pages);
3733 	}
3734 
3735 	return false;
3736 }
3737 
3738 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3739 			unsigned long mark, int highest_zoneidx)
3740 {
3741 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3742 
3743 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3744 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3745 
3746 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3747 								free_pages);
3748 }
3749 
3750 #ifdef CONFIG_NUMA
3751 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3752 {
3753 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3754 				node_reclaim_distance;
3755 }
3756 #else	/* CONFIG_NUMA */
3757 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3758 {
3759 	return true;
3760 }
3761 #endif	/* CONFIG_NUMA */
3762 
3763 /*
3764  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3765  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3766  * premature use of a lower zone may cause lowmem pressure problems that
3767  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3768  * probably too small. It only makes sense to spread allocations to avoid
3769  * fragmentation between the Normal and DMA32 zones.
3770  */
3771 static inline unsigned int
3772 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3773 {
3774 	unsigned int alloc_flags;
3775 
3776 	/*
3777 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3778 	 * to save a branch.
3779 	 */
3780 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3781 
3782 #ifdef CONFIG_ZONE_DMA32
3783 	if (!zone)
3784 		return alloc_flags;
3785 
3786 	if (zone_idx(zone) != ZONE_NORMAL)
3787 		return alloc_flags;
3788 
3789 	/*
3790 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3791 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3792 	 * on UMA that if Normal is populated then so is DMA32.
3793 	 */
3794 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3795 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3796 		return alloc_flags;
3797 
3798 	alloc_flags |= ALLOC_NOFRAGMENT;
3799 #endif /* CONFIG_ZONE_DMA32 */
3800 	return alloc_flags;
3801 }
3802 
3803 static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3804 					unsigned int alloc_flags)
3805 {
3806 #ifdef CONFIG_CMA
3807 	unsigned int pflags = current->flags;
3808 
3809 	if (!(pflags & PF_MEMALLOC_NOCMA) &&
3810 			gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3811 		alloc_flags |= ALLOC_CMA;
3812 
3813 #endif
3814 	return alloc_flags;
3815 }
3816 
3817 /*
3818  * get_page_from_freelist goes through the zonelist trying to allocate
3819  * a page.
3820  */
3821 static struct page *
3822 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3823 						const struct alloc_context *ac)
3824 {
3825 	struct zoneref *z;
3826 	struct zone *zone;
3827 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3828 	bool no_fallback;
3829 
3830 retry:
3831 	/*
3832 	 * Scan zonelist, looking for a zone with enough free.
3833 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3834 	 */
3835 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3836 	z = ac->preferred_zoneref;
3837 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3838 					ac->nodemask) {
3839 		struct page *page;
3840 		unsigned long mark;
3841 
3842 		if (cpusets_enabled() &&
3843 			(alloc_flags & ALLOC_CPUSET) &&
3844 			!__cpuset_zone_allowed(zone, gfp_mask))
3845 				continue;
3846 		/*
3847 		 * When allocating a page cache page for writing, we
3848 		 * want to get it from a node that is within its dirty
3849 		 * limit, such that no single node holds more than its
3850 		 * proportional share of globally allowed dirty pages.
3851 		 * The dirty limits take into account the node's
3852 		 * lowmem reserves and high watermark so that kswapd
3853 		 * should be able to balance it without having to
3854 		 * write pages from its LRU list.
3855 		 *
3856 		 * XXX: For now, allow allocations to potentially
3857 		 * exceed the per-node dirty limit in the slowpath
3858 		 * (spread_dirty_pages unset) before going into reclaim,
3859 		 * which is important when on a NUMA setup the allowed
3860 		 * nodes are together not big enough to reach the
3861 		 * global limit.  The proper fix for these situations
3862 		 * will require awareness of nodes in the
3863 		 * dirty-throttling and the flusher threads.
3864 		 */
3865 		if (ac->spread_dirty_pages) {
3866 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3867 				continue;
3868 
3869 			if (!node_dirty_ok(zone->zone_pgdat)) {
3870 				last_pgdat_dirty_limit = zone->zone_pgdat;
3871 				continue;
3872 			}
3873 		}
3874 
3875 		if (no_fallback && nr_online_nodes > 1 &&
3876 		    zone != ac->preferred_zoneref->zone) {
3877 			int local_nid;
3878 
3879 			/*
3880 			 * If moving to a remote node, retry but allow
3881 			 * fragmenting fallbacks. Locality is more important
3882 			 * than fragmentation avoidance.
3883 			 */
3884 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3885 			if (zone_to_nid(zone) != local_nid) {
3886 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3887 				goto retry;
3888 			}
3889 		}
3890 
3891 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3892 		if (!zone_watermark_fast(zone, order, mark,
3893 				       ac->highest_zoneidx, alloc_flags,
3894 				       gfp_mask)) {
3895 			int ret;
3896 
3897 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3898 			/*
3899 			 * Watermark failed for this zone, but see if we can
3900 			 * grow this zone if it contains deferred pages.
3901 			 */
3902 			if (static_branch_unlikely(&deferred_pages)) {
3903 				if (_deferred_grow_zone(zone, order))
3904 					goto try_this_zone;
3905 			}
3906 #endif
3907 			/* Checked here to keep the fast path fast */
3908 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3909 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3910 				goto try_this_zone;
3911 
3912 			if (node_reclaim_mode == 0 ||
3913 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3914 				continue;
3915 
3916 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3917 			switch (ret) {
3918 			case NODE_RECLAIM_NOSCAN:
3919 				/* did not scan */
3920 				continue;
3921 			case NODE_RECLAIM_FULL:
3922 				/* scanned but unreclaimable */
3923 				continue;
3924 			default:
3925 				/* did we reclaim enough */
3926 				if (zone_watermark_ok(zone, order, mark,
3927 					ac->highest_zoneidx, alloc_flags))
3928 					goto try_this_zone;
3929 
3930 				continue;
3931 			}
3932 		}
3933 
3934 try_this_zone:
3935 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3936 				gfp_mask, alloc_flags, ac->migratetype);
3937 		if (page) {
3938 			prep_new_page(page, order, gfp_mask, alloc_flags);
3939 
3940 			/*
3941 			 * If this is a high-order atomic allocation then check
3942 			 * if the pageblock should be reserved for the future
3943 			 */
3944 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3945 				reserve_highatomic_pageblock(page, zone, order);
3946 
3947 			return page;
3948 		} else {
3949 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3950 			/* Try again if zone has deferred pages */
3951 			if (static_branch_unlikely(&deferred_pages)) {
3952 				if (_deferred_grow_zone(zone, order))
3953 					goto try_this_zone;
3954 			}
3955 #endif
3956 		}
3957 	}
3958 
3959 	/*
3960 	 * It's possible on a UMA machine to get through all zones that are
3961 	 * fragmented. If avoiding fragmentation, reset and try again.
3962 	 */
3963 	if (no_fallback) {
3964 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3965 		goto retry;
3966 	}
3967 
3968 	return NULL;
3969 }
3970 
3971 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3972 {
3973 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3974 
3975 	/*
3976 	 * This documents exceptions given to allocations in certain
3977 	 * contexts that are allowed to allocate outside current's set
3978 	 * of allowed nodes.
3979 	 */
3980 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3981 		if (tsk_is_oom_victim(current) ||
3982 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3983 			filter &= ~SHOW_MEM_FILTER_NODES;
3984 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3985 		filter &= ~SHOW_MEM_FILTER_NODES;
3986 
3987 	show_mem(filter, nodemask);
3988 }
3989 
3990 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3991 {
3992 	struct va_format vaf;
3993 	va_list args;
3994 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3995 
3996 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3997 		return;
3998 
3999 	va_start(args, fmt);
4000 	vaf.fmt = fmt;
4001 	vaf.va = &args;
4002 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4003 			current->comm, &vaf, gfp_mask, &gfp_mask,
4004 			nodemask_pr_args(nodemask));
4005 	va_end(args);
4006 
4007 	cpuset_print_current_mems_allowed();
4008 	pr_cont("\n");
4009 	dump_stack();
4010 	warn_alloc_show_mem(gfp_mask, nodemask);
4011 }
4012 
4013 static inline struct page *
4014 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4015 			      unsigned int alloc_flags,
4016 			      const struct alloc_context *ac)
4017 {
4018 	struct page *page;
4019 
4020 	page = get_page_from_freelist(gfp_mask, order,
4021 			alloc_flags|ALLOC_CPUSET, ac);
4022 	/*
4023 	 * fallback to ignore cpuset restriction if our nodes
4024 	 * are depleted
4025 	 */
4026 	if (!page)
4027 		page = get_page_from_freelist(gfp_mask, order,
4028 				alloc_flags, ac);
4029 
4030 	return page;
4031 }
4032 
4033 static inline struct page *
4034 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4035 	const struct alloc_context *ac, unsigned long *did_some_progress)
4036 {
4037 	struct oom_control oc = {
4038 		.zonelist = ac->zonelist,
4039 		.nodemask = ac->nodemask,
4040 		.memcg = NULL,
4041 		.gfp_mask = gfp_mask,
4042 		.order = order,
4043 	};
4044 	struct page *page;
4045 
4046 	*did_some_progress = 0;
4047 
4048 	/*
4049 	 * Acquire the oom lock.  If that fails, somebody else is
4050 	 * making progress for us.
4051 	 */
4052 	if (!mutex_trylock(&oom_lock)) {
4053 		*did_some_progress = 1;
4054 		schedule_timeout_uninterruptible(1);
4055 		return NULL;
4056 	}
4057 
4058 	/*
4059 	 * Go through the zonelist yet one more time, keep very high watermark
4060 	 * here, this is only to catch a parallel oom killing, we must fail if
4061 	 * we're still under heavy pressure. But make sure that this reclaim
4062 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4063 	 * allocation which will never fail due to oom_lock already held.
4064 	 */
4065 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4066 				      ~__GFP_DIRECT_RECLAIM, order,
4067 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4068 	if (page)
4069 		goto out;
4070 
4071 	/* Coredumps can quickly deplete all memory reserves */
4072 	if (current->flags & PF_DUMPCORE)
4073 		goto out;
4074 	/* The OOM killer will not help higher order allocs */
4075 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4076 		goto out;
4077 	/*
4078 	 * We have already exhausted all our reclaim opportunities without any
4079 	 * success so it is time to admit defeat. We will skip the OOM killer
4080 	 * because it is very likely that the caller has a more reasonable
4081 	 * fallback than shooting a random task.
4082 	 *
4083 	 * The OOM killer may not free memory on a specific node.
4084 	 */
4085 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4086 		goto out;
4087 	/* The OOM killer does not needlessly kill tasks for lowmem */
4088 	if (ac->highest_zoneidx < ZONE_NORMAL)
4089 		goto out;
4090 	if (pm_suspended_storage())
4091 		goto out;
4092 	/*
4093 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4094 	 * other request to make a forward progress.
4095 	 * We are in an unfortunate situation where out_of_memory cannot
4096 	 * do much for this context but let's try it to at least get
4097 	 * access to memory reserved if the current task is killed (see
4098 	 * out_of_memory). Once filesystems are ready to handle allocation
4099 	 * failures more gracefully we should just bail out here.
4100 	 */
4101 
4102 	/* Exhausted what can be done so it's blame time */
4103 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4104 		*did_some_progress = 1;
4105 
4106 		/*
4107 		 * Help non-failing allocations by giving them access to memory
4108 		 * reserves
4109 		 */
4110 		if (gfp_mask & __GFP_NOFAIL)
4111 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4112 					ALLOC_NO_WATERMARKS, ac);
4113 	}
4114 out:
4115 	mutex_unlock(&oom_lock);
4116 	return page;
4117 }
4118 
4119 /*
4120  * Maximum number of compaction retries wit a progress before OOM
4121  * killer is consider as the only way to move forward.
4122  */
4123 #define MAX_COMPACT_RETRIES 16
4124 
4125 #ifdef CONFIG_COMPACTION
4126 /* Try memory compaction for high-order allocations before reclaim */
4127 static struct page *
4128 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4129 		unsigned int alloc_flags, const struct alloc_context *ac,
4130 		enum compact_priority prio, enum compact_result *compact_result)
4131 {
4132 	struct page *page = NULL;
4133 	unsigned long pflags;
4134 	unsigned int noreclaim_flag;
4135 
4136 	if (!order)
4137 		return NULL;
4138 
4139 	psi_memstall_enter(&pflags);
4140 	noreclaim_flag = memalloc_noreclaim_save();
4141 
4142 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4143 								prio, &page);
4144 
4145 	memalloc_noreclaim_restore(noreclaim_flag);
4146 	psi_memstall_leave(&pflags);
4147 
4148 	/*
4149 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4150 	 * count a compaction stall
4151 	 */
4152 	count_vm_event(COMPACTSTALL);
4153 
4154 	/* Prep a captured page if available */
4155 	if (page)
4156 		prep_new_page(page, order, gfp_mask, alloc_flags);
4157 
4158 	/* Try get a page from the freelist if available */
4159 	if (!page)
4160 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4161 
4162 	if (page) {
4163 		struct zone *zone = page_zone(page);
4164 
4165 		zone->compact_blockskip_flush = false;
4166 		compaction_defer_reset(zone, order, true);
4167 		count_vm_event(COMPACTSUCCESS);
4168 		return page;
4169 	}
4170 
4171 	/*
4172 	 * It's bad if compaction run occurs and fails. The most likely reason
4173 	 * is that pages exist, but not enough to satisfy watermarks.
4174 	 */
4175 	count_vm_event(COMPACTFAIL);
4176 
4177 	cond_resched();
4178 
4179 	return NULL;
4180 }
4181 
4182 static inline bool
4183 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4184 		     enum compact_result compact_result,
4185 		     enum compact_priority *compact_priority,
4186 		     int *compaction_retries)
4187 {
4188 	int max_retries = MAX_COMPACT_RETRIES;
4189 	int min_priority;
4190 	bool ret = false;
4191 	int retries = *compaction_retries;
4192 	enum compact_priority priority = *compact_priority;
4193 
4194 	if (!order)
4195 		return false;
4196 
4197 	if (compaction_made_progress(compact_result))
4198 		(*compaction_retries)++;
4199 
4200 	/*
4201 	 * compaction considers all the zone as desperately out of memory
4202 	 * so it doesn't really make much sense to retry except when the
4203 	 * failure could be caused by insufficient priority
4204 	 */
4205 	if (compaction_failed(compact_result))
4206 		goto check_priority;
4207 
4208 	/*
4209 	 * compaction was skipped because there are not enough order-0 pages
4210 	 * to work with, so we retry only if it looks like reclaim can help.
4211 	 */
4212 	if (compaction_needs_reclaim(compact_result)) {
4213 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4214 		goto out;
4215 	}
4216 
4217 	/*
4218 	 * make sure the compaction wasn't deferred or didn't bail out early
4219 	 * due to locks contention before we declare that we should give up.
4220 	 * But the next retry should use a higher priority if allowed, so
4221 	 * we don't just keep bailing out endlessly.
4222 	 */
4223 	if (compaction_withdrawn(compact_result)) {
4224 		goto check_priority;
4225 	}
4226 
4227 	/*
4228 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4229 	 * costly ones because they are de facto nofail and invoke OOM
4230 	 * killer to move on while costly can fail and users are ready
4231 	 * to cope with that. 1/4 retries is rather arbitrary but we
4232 	 * would need much more detailed feedback from compaction to
4233 	 * make a better decision.
4234 	 */
4235 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4236 		max_retries /= 4;
4237 	if (*compaction_retries <= max_retries) {
4238 		ret = true;
4239 		goto out;
4240 	}
4241 
4242 	/*
4243 	 * Make sure there are attempts at the highest priority if we exhausted
4244 	 * all retries or failed at the lower priorities.
4245 	 */
4246 check_priority:
4247 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4248 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4249 
4250 	if (*compact_priority > min_priority) {
4251 		(*compact_priority)--;
4252 		*compaction_retries = 0;
4253 		ret = true;
4254 	}
4255 out:
4256 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4257 	return ret;
4258 }
4259 #else
4260 static inline struct page *
4261 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4262 		unsigned int alloc_flags, const struct alloc_context *ac,
4263 		enum compact_priority prio, enum compact_result *compact_result)
4264 {
4265 	*compact_result = COMPACT_SKIPPED;
4266 	return NULL;
4267 }
4268 
4269 static inline bool
4270 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4271 		     enum compact_result compact_result,
4272 		     enum compact_priority *compact_priority,
4273 		     int *compaction_retries)
4274 {
4275 	struct zone *zone;
4276 	struct zoneref *z;
4277 
4278 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4279 		return false;
4280 
4281 	/*
4282 	 * There are setups with compaction disabled which would prefer to loop
4283 	 * inside the allocator rather than hit the oom killer prematurely.
4284 	 * Let's give them a good hope and keep retrying while the order-0
4285 	 * watermarks are OK.
4286 	 */
4287 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4288 				ac->highest_zoneidx, ac->nodemask) {
4289 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4290 					ac->highest_zoneidx, alloc_flags))
4291 			return true;
4292 	}
4293 	return false;
4294 }
4295 #endif /* CONFIG_COMPACTION */
4296 
4297 #ifdef CONFIG_LOCKDEP
4298 static struct lockdep_map __fs_reclaim_map =
4299 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4300 
4301 static bool __need_reclaim(gfp_t gfp_mask)
4302 {
4303 	/* no reclaim without waiting on it */
4304 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4305 		return false;
4306 
4307 	/* this guy won't enter reclaim */
4308 	if (current->flags & PF_MEMALLOC)
4309 		return false;
4310 
4311 	if (gfp_mask & __GFP_NOLOCKDEP)
4312 		return false;
4313 
4314 	return true;
4315 }
4316 
4317 void __fs_reclaim_acquire(void)
4318 {
4319 	lock_map_acquire(&__fs_reclaim_map);
4320 }
4321 
4322 void __fs_reclaim_release(void)
4323 {
4324 	lock_map_release(&__fs_reclaim_map);
4325 }
4326 
4327 void fs_reclaim_acquire(gfp_t gfp_mask)
4328 {
4329 	gfp_mask = current_gfp_context(gfp_mask);
4330 
4331 	if (__need_reclaim(gfp_mask)) {
4332 		if (gfp_mask & __GFP_FS)
4333 			__fs_reclaim_acquire();
4334 
4335 #ifdef CONFIG_MMU_NOTIFIER
4336 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4337 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4338 #endif
4339 
4340 	}
4341 }
4342 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4343 
4344 void fs_reclaim_release(gfp_t gfp_mask)
4345 {
4346 	gfp_mask = current_gfp_context(gfp_mask);
4347 
4348 	if (__need_reclaim(gfp_mask)) {
4349 		if (gfp_mask & __GFP_FS)
4350 			__fs_reclaim_release();
4351 	}
4352 }
4353 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4354 #endif
4355 
4356 /* Perform direct synchronous page reclaim */
4357 static unsigned long
4358 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4359 					const struct alloc_context *ac)
4360 {
4361 	unsigned int noreclaim_flag;
4362 	unsigned long pflags, progress;
4363 
4364 	cond_resched();
4365 
4366 	/* We now go into synchronous reclaim */
4367 	cpuset_memory_pressure_bump();
4368 	psi_memstall_enter(&pflags);
4369 	fs_reclaim_acquire(gfp_mask);
4370 	noreclaim_flag = memalloc_noreclaim_save();
4371 
4372 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4373 								ac->nodemask);
4374 
4375 	memalloc_noreclaim_restore(noreclaim_flag);
4376 	fs_reclaim_release(gfp_mask);
4377 	psi_memstall_leave(&pflags);
4378 
4379 	cond_resched();
4380 
4381 	return progress;
4382 }
4383 
4384 /* The really slow allocator path where we enter direct reclaim */
4385 static inline struct page *
4386 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4387 		unsigned int alloc_flags, const struct alloc_context *ac,
4388 		unsigned long *did_some_progress)
4389 {
4390 	struct page *page = NULL;
4391 	bool drained = false;
4392 
4393 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4394 	if (unlikely(!(*did_some_progress)))
4395 		return NULL;
4396 
4397 retry:
4398 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4399 
4400 	/*
4401 	 * If an allocation failed after direct reclaim, it could be because
4402 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4403 	 * Shrink them and try again
4404 	 */
4405 	if (!page && !drained) {
4406 		unreserve_highatomic_pageblock(ac, false);
4407 		drain_all_pages(NULL);
4408 		drained = true;
4409 		goto retry;
4410 	}
4411 
4412 	return page;
4413 }
4414 
4415 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4416 			     const struct alloc_context *ac)
4417 {
4418 	struct zoneref *z;
4419 	struct zone *zone;
4420 	pg_data_t *last_pgdat = NULL;
4421 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4422 
4423 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4424 					ac->nodemask) {
4425 		if (last_pgdat != zone->zone_pgdat)
4426 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4427 		last_pgdat = zone->zone_pgdat;
4428 	}
4429 }
4430 
4431 static inline unsigned int
4432 gfp_to_alloc_flags(gfp_t gfp_mask)
4433 {
4434 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4435 
4436 	/*
4437 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4438 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4439 	 * to save two branches.
4440 	 */
4441 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4442 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4443 
4444 	/*
4445 	 * The caller may dip into page reserves a bit more if the caller
4446 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4447 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4448 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4449 	 */
4450 	alloc_flags |= (__force int)
4451 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4452 
4453 	if (gfp_mask & __GFP_ATOMIC) {
4454 		/*
4455 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4456 		 * if it can't schedule.
4457 		 */
4458 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4459 			alloc_flags |= ALLOC_HARDER;
4460 		/*
4461 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4462 		 * comment for __cpuset_node_allowed().
4463 		 */
4464 		alloc_flags &= ~ALLOC_CPUSET;
4465 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4466 		alloc_flags |= ALLOC_HARDER;
4467 
4468 	alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4469 
4470 	return alloc_flags;
4471 }
4472 
4473 static bool oom_reserves_allowed(struct task_struct *tsk)
4474 {
4475 	if (!tsk_is_oom_victim(tsk))
4476 		return false;
4477 
4478 	/*
4479 	 * !MMU doesn't have oom reaper so give access to memory reserves
4480 	 * only to the thread with TIF_MEMDIE set
4481 	 */
4482 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4483 		return false;
4484 
4485 	return true;
4486 }
4487 
4488 /*
4489  * Distinguish requests which really need access to full memory
4490  * reserves from oom victims which can live with a portion of it
4491  */
4492 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4493 {
4494 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4495 		return 0;
4496 	if (gfp_mask & __GFP_MEMALLOC)
4497 		return ALLOC_NO_WATERMARKS;
4498 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4499 		return ALLOC_NO_WATERMARKS;
4500 	if (!in_interrupt()) {
4501 		if (current->flags & PF_MEMALLOC)
4502 			return ALLOC_NO_WATERMARKS;
4503 		else if (oom_reserves_allowed(current))
4504 			return ALLOC_OOM;
4505 	}
4506 
4507 	return 0;
4508 }
4509 
4510 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4511 {
4512 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4513 }
4514 
4515 /*
4516  * Checks whether it makes sense to retry the reclaim to make a forward progress
4517  * for the given allocation request.
4518  *
4519  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4520  * without success, or when we couldn't even meet the watermark if we
4521  * reclaimed all remaining pages on the LRU lists.
4522  *
4523  * Returns true if a retry is viable or false to enter the oom path.
4524  */
4525 static inline bool
4526 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4527 		     struct alloc_context *ac, int alloc_flags,
4528 		     bool did_some_progress, int *no_progress_loops)
4529 {
4530 	struct zone *zone;
4531 	struct zoneref *z;
4532 	bool ret = false;
4533 
4534 	/*
4535 	 * Costly allocations might have made a progress but this doesn't mean
4536 	 * their order will become available due to high fragmentation so
4537 	 * always increment the no progress counter for them
4538 	 */
4539 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4540 		*no_progress_loops = 0;
4541 	else
4542 		(*no_progress_loops)++;
4543 
4544 	/*
4545 	 * Make sure we converge to OOM if we cannot make any progress
4546 	 * several times in the row.
4547 	 */
4548 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4549 		/* Before OOM, exhaust highatomic_reserve */
4550 		return unreserve_highatomic_pageblock(ac, true);
4551 	}
4552 
4553 	/*
4554 	 * Keep reclaiming pages while there is a chance this will lead
4555 	 * somewhere.  If none of the target zones can satisfy our allocation
4556 	 * request even if all reclaimable pages are considered then we are
4557 	 * screwed and have to go OOM.
4558 	 */
4559 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4560 				ac->highest_zoneidx, ac->nodemask) {
4561 		unsigned long available;
4562 		unsigned long reclaimable;
4563 		unsigned long min_wmark = min_wmark_pages(zone);
4564 		bool wmark;
4565 
4566 		available = reclaimable = zone_reclaimable_pages(zone);
4567 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4568 
4569 		/*
4570 		 * Would the allocation succeed if we reclaimed all
4571 		 * reclaimable pages?
4572 		 */
4573 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4574 				ac->highest_zoneidx, alloc_flags, available);
4575 		trace_reclaim_retry_zone(z, order, reclaimable,
4576 				available, min_wmark, *no_progress_loops, wmark);
4577 		if (wmark) {
4578 			/*
4579 			 * If we didn't make any progress and have a lot of
4580 			 * dirty + writeback pages then we should wait for
4581 			 * an IO to complete to slow down the reclaim and
4582 			 * prevent from pre mature OOM
4583 			 */
4584 			if (!did_some_progress) {
4585 				unsigned long write_pending;
4586 
4587 				write_pending = zone_page_state_snapshot(zone,
4588 							NR_ZONE_WRITE_PENDING);
4589 
4590 				if (2 * write_pending > reclaimable) {
4591 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4592 					return true;
4593 				}
4594 			}
4595 
4596 			ret = true;
4597 			goto out;
4598 		}
4599 	}
4600 
4601 out:
4602 	/*
4603 	 * Memory allocation/reclaim might be called from a WQ context and the
4604 	 * current implementation of the WQ concurrency control doesn't
4605 	 * recognize that a particular WQ is congested if the worker thread is
4606 	 * looping without ever sleeping. Therefore we have to do a short sleep
4607 	 * here rather than calling cond_resched().
4608 	 */
4609 	if (current->flags & PF_WQ_WORKER)
4610 		schedule_timeout_uninterruptible(1);
4611 	else
4612 		cond_resched();
4613 	return ret;
4614 }
4615 
4616 static inline bool
4617 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4618 {
4619 	/*
4620 	 * It's possible that cpuset's mems_allowed and the nodemask from
4621 	 * mempolicy don't intersect. This should be normally dealt with by
4622 	 * policy_nodemask(), but it's possible to race with cpuset update in
4623 	 * such a way the check therein was true, and then it became false
4624 	 * before we got our cpuset_mems_cookie here.
4625 	 * This assumes that for all allocations, ac->nodemask can come only
4626 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4627 	 * when it does not intersect with the cpuset restrictions) or the
4628 	 * caller can deal with a violated nodemask.
4629 	 */
4630 	if (cpusets_enabled() && ac->nodemask &&
4631 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4632 		ac->nodemask = NULL;
4633 		return true;
4634 	}
4635 
4636 	/*
4637 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4638 	 * possible to race with parallel threads in such a way that our
4639 	 * allocation can fail while the mask is being updated. If we are about
4640 	 * to fail, check if the cpuset changed during allocation and if so,
4641 	 * retry.
4642 	 */
4643 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4644 		return true;
4645 
4646 	return false;
4647 }
4648 
4649 static inline struct page *
4650 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4651 						struct alloc_context *ac)
4652 {
4653 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4654 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4655 	struct page *page = NULL;
4656 	unsigned int alloc_flags;
4657 	unsigned long did_some_progress;
4658 	enum compact_priority compact_priority;
4659 	enum compact_result compact_result;
4660 	int compaction_retries;
4661 	int no_progress_loops;
4662 	unsigned int cpuset_mems_cookie;
4663 	int reserve_flags;
4664 
4665 	/*
4666 	 * We also sanity check to catch abuse of atomic reserves being used by
4667 	 * callers that are not in atomic context.
4668 	 */
4669 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4670 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4671 		gfp_mask &= ~__GFP_ATOMIC;
4672 
4673 retry_cpuset:
4674 	compaction_retries = 0;
4675 	no_progress_loops = 0;
4676 	compact_priority = DEF_COMPACT_PRIORITY;
4677 	cpuset_mems_cookie = read_mems_allowed_begin();
4678 
4679 	/*
4680 	 * The fast path uses conservative alloc_flags to succeed only until
4681 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4682 	 * alloc_flags precisely. So we do that now.
4683 	 */
4684 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4685 
4686 	/*
4687 	 * We need to recalculate the starting point for the zonelist iterator
4688 	 * because we might have used different nodemask in the fast path, or
4689 	 * there was a cpuset modification and we are retrying - otherwise we
4690 	 * could end up iterating over non-eligible zones endlessly.
4691 	 */
4692 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4693 					ac->highest_zoneidx, ac->nodemask);
4694 	if (!ac->preferred_zoneref->zone)
4695 		goto nopage;
4696 
4697 	if (alloc_flags & ALLOC_KSWAPD)
4698 		wake_all_kswapds(order, gfp_mask, ac);
4699 
4700 	/*
4701 	 * The adjusted alloc_flags might result in immediate success, so try
4702 	 * that first
4703 	 */
4704 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4705 	if (page)
4706 		goto got_pg;
4707 
4708 	/*
4709 	 * For costly allocations, try direct compaction first, as it's likely
4710 	 * that we have enough base pages and don't need to reclaim. For non-
4711 	 * movable high-order allocations, do that as well, as compaction will
4712 	 * try prevent permanent fragmentation by migrating from blocks of the
4713 	 * same migratetype.
4714 	 * Don't try this for allocations that are allowed to ignore
4715 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4716 	 */
4717 	if (can_direct_reclaim &&
4718 			(costly_order ||
4719 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4720 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4721 		page = __alloc_pages_direct_compact(gfp_mask, order,
4722 						alloc_flags, ac,
4723 						INIT_COMPACT_PRIORITY,
4724 						&compact_result);
4725 		if (page)
4726 			goto got_pg;
4727 
4728 		/*
4729 		 * Checks for costly allocations with __GFP_NORETRY, which
4730 		 * includes some THP page fault allocations
4731 		 */
4732 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4733 			/*
4734 			 * If allocating entire pageblock(s) and compaction
4735 			 * failed because all zones are below low watermarks
4736 			 * or is prohibited because it recently failed at this
4737 			 * order, fail immediately unless the allocator has
4738 			 * requested compaction and reclaim retry.
4739 			 *
4740 			 * Reclaim is
4741 			 *  - potentially very expensive because zones are far
4742 			 *    below their low watermarks or this is part of very
4743 			 *    bursty high order allocations,
4744 			 *  - not guaranteed to help because isolate_freepages()
4745 			 *    may not iterate over freed pages as part of its
4746 			 *    linear scan, and
4747 			 *  - unlikely to make entire pageblocks free on its
4748 			 *    own.
4749 			 */
4750 			if (compact_result == COMPACT_SKIPPED ||
4751 			    compact_result == COMPACT_DEFERRED)
4752 				goto nopage;
4753 
4754 			/*
4755 			 * Looks like reclaim/compaction is worth trying, but
4756 			 * sync compaction could be very expensive, so keep
4757 			 * using async compaction.
4758 			 */
4759 			compact_priority = INIT_COMPACT_PRIORITY;
4760 		}
4761 	}
4762 
4763 retry:
4764 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4765 	if (alloc_flags & ALLOC_KSWAPD)
4766 		wake_all_kswapds(order, gfp_mask, ac);
4767 
4768 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4769 	if (reserve_flags)
4770 		alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4771 
4772 	/*
4773 	 * Reset the nodemask and zonelist iterators if memory policies can be
4774 	 * ignored. These allocations are high priority and system rather than
4775 	 * user oriented.
4776 	 */
4777 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4778 		ac->nodemask = NULL;
4779 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4780 					ac->highest_zoneidx, ac->nodemask);
4781 	}
4782 
4783 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4784 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4785 	if (page)
4786 		goto got_pg;
4787 
4788 	/* Caller is not willing to reclaim, we can't balance anything */
4789 	if (!can_direct_reclaim)
4790 		goto nopage;
4791 
4792 	/* Avoid recursion of direct reclaim */
4793 	if (current->flags & PF_MEMALLOC)
4794 		goto nopage;
4795 
4796 	/* Try direct reclaim and then allocating */
4797 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4798 							&did_some_progress);
4799 	if (page)
4800 		goto got_pg;
4801 
4802 	/* Try direct compaction and then allocating */
4803 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4804 					compact_priority, &compact_result);
4805 	if (page)
4806 		goto got_pg;
4807 
4808 	/* Do not loop if specifically requested */
4809 	if (gfp_mask & __GFP_NORETRY)
4810 		goto nopage;
4811 
4812 	/*
4813 	 * Do not retry costly high order allocations unless they are
4814 	 * __GFP_RETRY_MAYFAIL
4815 	 */
4816 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4817 		goto nopage;
4818 
4819 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4820 				 did_some_progress > 0, &no_progress_loops))
4821 		goto retry;
4822 
4823 	/*
4824 	 * It doesn't make any sense to retry for the compaction if the order-0
4825 	 * reclaim is not able to make any progress because the current
4826 	 * implementation of the compaction depends on the sufficient amount
4827 	 * of free memory (see __compaction_suitable)
4828 	 */
4829 	if (did_some_progress > 0 &&
4830 			should_compact_retry(ac, order, alloc_flags,
4831 				compact_result, &compact_priority,
4832 				&compaction_retries))
4833 		goto retry;
4834 
4835 
4836 	/* Deal with possible cpuset update races before we start OOM killing */
4837 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4838 		goto retry_cpuset;
4839 
4840 	/* Reclaim has failed us, start killing things */
4841 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4842 	if (page)
4843 		goto got_pg;
4844 
4845 	/* Avoid allocations with no watermarks from looping endlessly */
4846 	if (tsk_is_oom_victim(current) &&
4847 	    (alloc_flags & ALLOC_OOM ||
4848 	     (gfp_mask & __GFP_NOMEMALLOC)))
4849 		goto nopage;
4850 
4851 	/* Retry as long as the OOM killer is making progress */
4852 	if (did_some_progress) {
4853 		no_progress_loops = 0;
4854 		goto retry;
4855 	}
4856 
4857 nopage:
4858 	/* Deal with possible cpuset update races before we fail */
4859 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4860 		goto retry_cpuset;
4861 
4862 	/*
4863 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4864 	 * we always retry
4865 	 */
4866 	if (gfp_mask & __GFP_NOFAIL) {
4867 		/*
4868 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4869 		 * of any new users that actually require GFP_NOWAIT
4870 		 */
4871 		if (WARN_ON_ONCE(!can_direct_reclaim))
4872 			goto fail;
4873 
4874 		/*
4875 		 * PF_MEMALLOC request from this context is rather bizarre
4876 		 * because we cannot reclaim anything and only can loop waiting
4877 		 * for somebody to do a work for us
4878 		 */
4879 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4880 
4881 		/*
4882 		 * non failing costly orders are a hard requirement which we
4883 		 * are not prepared for much so let's warn about these users
4884 		 * so that we can identify them and convert them to something
4885 		 * else.
4886 		 */
4887 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4888 
4889 		/*
4890 		 * Help non-failing allocations by giving them access to memory
4891 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4892 		 * could deplete whole memory reserves which would just make
4893 		 * the situation worse
4894 		 */
4895 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4896 		if (page)
4897 			goto got_pg;
4898 
4899 		cond_resched();
4900 		goto retry;
4901 	}
4902 fail:
4903 	warn_alloc(gfp_mask, ac->nodemask,
4904 			"page allocation failure: order:%u", order);
4905 got_pg:
4906 	return page;
4907 }
4908 
4909 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4910 		int preferred_nid, nodemask_t *nodemask,
4911 		struct alloc_context *ac, gfp_t *alloc_mask,
4912 		unsigned int *alloc_flags)
4913 {
4914 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4915 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4916 	ac->nodemask = nodemask;
4917 	ac->migratetype = gfp_migratetype(gfp_mask);
4918 
4919 	if (cpusets_enabled()) {
4920 		*alloc_mask |= __GFP_HARDWALL;
4921 		/*
4922 		 * When we are in the interrupt context, it is irrelevant
4923 		 * to the current task context. It means that any node ok.
4924 		 */
4925 		if (!in_interrupt() && !ac->nodemask)
4926 			ac->nodemask = &cpuset_current_mems_allowed;
4927 		else
4928 			*alloc_flags |= ALLOC_CPUSET;
4929 	}
4930 
4931 	fs_reclaim_acquire(gfp_mask);
4932 	fs_reclaim_release(gfp_mask);
4933 
4934 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4935 
4936 	if (should_fail_alloc_page(gfp_mask, order))
4937 		return false;
4938 
4939 	*alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4940 
4941 	/* Dirty zone balancing only done in the fast path */
4942 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4943 
4944 	/*
4945 	 * The preferred zone is used for statistics but crucially it is
4946 	 * also used as the starting point for the zonelist iterator. It
4947 	 * may get reset for allocations that ignore memory policies.
4948 	 */
4949 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4950 					ac->highest_zoneidx, ac->nodemask);
4951 
4952 	return true;
4953 }
4954 
4955 /*
4956  * This is the 'heart' of the zoned buddy allocator.
4957  */
4958 struct page *
4959 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4960 							nodemask_t *nodemask)
4961 {
4962 	struct page *page;
4963 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4964 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4965 	struct alloc_context ac = { };
4966 
4967 	/*
4968 	 * There are several places where we assume that the order value is sane
4969 	 * so bail out early if the request is out of bound.
4970 	 */
4971 	if (unlikely(order >= MAX_ORDER)) {
4972 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4973 		return NULL;
4974 	}
4975 
4976 	gfp_mask &= gfp_allowed_mask;
4977 	alloc_mask = gfp_mask;
4978 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4979 		return NULL;
4980 
4981 	/*
4982 	 * Forbid the first pass from falling back to types that fragment
4983 	 * memory until all local zones are considered.
4984 	 */
4985 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4986 
4987 	/* First allocation attempt */
4988 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4989 	if (likely(page))
4990 		goto out;
4991 
4992 	/*
4993 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4994 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4995 	 * from a particular context which has been marked by
4996 	 * memalloc_no{fs,io}_{save,restore}.
4997 	 */
4998 	alloc_mask = current_gfp_context(gfp_mask);
4999 	ac.spread_dirty_pages = false;
5000 
5001 	/*
5002 	 * Restore the original nodemask if it was potentially replaced with
5003 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5004 	 */
5005 	ac.nodemask = nodemask;
5006 
5007 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
5008 
5009 out:
5010 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
5011 	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
5012 		__free_pages(page, order);
5013 		page = NULL;
5014 	}
5015 
5016 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
5017 
5018 	return page;
5019 }
5020 EXPORT_SYMBOL(__alloc_pages_nodemask);
5021 
5022 /*
5023  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5024  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5025  * you need to access high mem.
5026  */
5027 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5028 {
5029 	struct page *page;
5030 
5031 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5032 	if (!page)
5033 		return 0;
5034 	return (unsigned long) page_address(page);
5035 }
5036 EXPORT_SYMBOL(__get_free_pages);
5037 
5038 unsigned long get_zeroed_page(gfp_t gfp_mask)
5039 {
5040 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5041 }
5042 EXPORT_SYMBOL(get_zeroed_page);
5043 
5044 static inline void free_the_page(struct page *page, unsigned int order)
5045 {
5046 	if (order == 0)		/* Via pcp? */
5047 		free_unref_page(page);
5048 	else
5049 		__free_pages_ok(page, order, FPI_NONE);
5050 }
5051 
5052 /**
5053  * __free_pages - Free pages allocated with alloc_pages().
5054  * @page: The page pointer returned from alloc_pages().
5055  * @order: The order of the allocation.
5056  *
5057  * This function can free multi-page allocations that are not compound
5058  * pages.  It does not check that the @order passed in matches that of
5059  * the allocation, so it is easy to leak memory.  Freeing more memory
5060  * than was allocated will probably emit a warning.
5061  *
5062  * If the last reference to this page is speculative, it will be released
5063  * by put_page() which only frees the first page of a non-compound
5064  * allocation.  To prevent the remaining pages from being leaked, we free
5065  * the subsequent pages here.  If you want to use the page's reference
5066  * count to decide when to free the allocation, you should allocate a
5067  * compound page, and use put_page() instead of __free_pages().
5068  *
5069  * Context: May be called in interrupt context or while holding a normal
5070  * spinlock, but not in NMI context or while holding a raw spinlock.
5071  */
5072 void __free_pages(struct page *page, unsigned int order)
5073 {
5074 	if (put_page_testzero(page))
5075 		free_the_page(page, order);
5076 	else if (!PageHead(page))
5077 		while (order-- > 0)
5078 			free_the_page(page + (1 << order), order);
5079 }
5080 EXPORT_SYMBOL(__free_pages);
5081 
5082 void free_pages(unsigned long addr, unsigned int order)
5083 {
5084 	if (addr != 0) {
5085 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5086 		__free_pages(virt_to_page((void *)addr), order);
5087 	}
5088 }
5089 
5090 EXPORT_SYMBOL(free_pages);
5091 
5092 /*
5093  * Page Fragment:
5094  *  An arbitrary-length arbitrary-offset area of memory which resides
5095  *  within a 0 or higher order page.  Multiple fragments within that page
5096  *  are individually refcounted, in the page's reference counter.
5097  *
5098  * The page_frag functions below provide a simple allocation framework for
5099  * page fragments.  This is used by the network stack and network device
5100  * drivers to provide a backing region of memory for use as either an
5101  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5102  */
5103 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5104 					     gfp_t gfp_mask)
5105 {
5106 	struct page *page = NULL;
5107 	gfp_t gfp = gfp_mask;
5108 
5109 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5110 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5111 		    __GFP_NOMEMALLOC;
5112 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5113 				PAGE_FRAG_CACHE_MAX_ORDER);
5114 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5115 #endif
5116 	if (unlikely(!page))
5117 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5118 
5119 	nc->va = page ? page_address(page) : NULL;
5120 
5121 	return page;
5122 }
5123 
5124 void __page_frag_cache_drain(struct page *page, unsigned int count)
5125 {
5126 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5127 
5128 	if (page_ref_sub_and_test(page, count))
5129 		free_the_page(page, compound_order(page));
5130 }
5131 EXPORT_SYMBOL(__page_frag_cache_drain);
5132 
5133 void *page_frag_alloc(struct page_frag_cache *nc,
5134 		      unsigned int fragsz, gfp_t gfp_mask)
5135 {
5136 	unsigned int size = PAGE_SIZE;
5137 	struct page *page;
5138 	int offset;
5139 
5140 	if (unlikely(!nc->va)) {
5141 refill:
5142 		page = __page_frag_cache_refill(nc, gfp_mask);
5143 		if (!page)
5144 			return NULL;
5145 
5146 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5147 		/* if size can vary use size else just use PAGE_SIZE */
5148 		size = nc->size;
5149 #endif
5150 		/* Even if we own the page, we do not use atomic_set().
5151 		 * This would break get_page_unless_zero() users.
5152 		 */
5153 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5154 
5155 		/* reset page count bias and offset to start of new frag */
5156 		nc->pfmemalloc = page_is_pfmemalloc(page);
5157 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5158 		nc->offset = size;
5159 	}
5160 
5161 	offset = nc->offset - fragsz;
5162 	if (unlikely(offset < 0)) {
5163 		page = virt_to_page(nc->va);
5164 
5165 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5166 			goto refill;
5167 
5168 		if (unlikely(nc->pfmemalloc)) {
5169 			free_the_page(page, compound_order(page));
5170 			goto refill;
5171 		}
5172 
5173 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5174 		/* if size can vary use size else just use PAGE_SIZE */
5175 		size = nc->size;
5176 #endif
5177 		/* OK, page count is 0, we can safely set it */
5178 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5179 
5180 		/* reset page count bias and offset to start of new frag */
5181 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5182 		offset = size - fragsz;
5183 	}
5184 
5185 	nc->pagecnt_bias--;
5186 	nc->offset = offset;
5187 
5188 	return nc->va + offset;
5189 }
5190 EXPORT_SYMBOL(page_frag_alloc);
5191 
5192 /*
5193  * Frees a page fragment allocated out of either a compound or order 0 page.
5194  */
5195 void page_frag_free(void *addr)
5196 {
5197 	struct page *page = virt_to_head_page(addr);
5198 
5199 	if (unlikely(put_page_testzero(page)))
5200 		free_the_page(page, compound_order(page));
5201 }
5202 EXPORT_SYMBOL(page_frag_free);
5203 
5204 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5205 		size_t size)
5206 {
5207 	if (addr) {
5208 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5209 		unsigned long used = addr + PAGE_ALIGN(size);
5210 
5211 		split_page(virt_to_page((void *)addr), order);
5212 		while (used < alloc_end) {
5213 			free_page(used);
5214 			used += PAGE_SIZE;
5215 		}
5216 	}
5217 	return (void *)addr;
5218 }
5219 
5220 /**
5221  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5222  * @size: the number of bytes to allocate
5223  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5224  *
5225  * This function is similar to alloc_pages(), except that it allocates the
5226  * minimum number of pages to satisfy the request.  alloc_pages() can only
5227  * allocate memory in power-of-two pages.
5228  *
5229  * This function is also limited by MAX_ORDER.
5230  *
5231  * Memory allocated by this function must be released by free_pages_exact().
5232  *
5233  * Return: pointer to the allocated area or %NULL in case of error.
5234  */
5235 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5236 {
5237 	unsigned int order = get_order(size);
5238 	unsigned long addr;
5239 
5240 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5241 		gfp_mask &= ~__GFP_COMP;
5242 
5243 	addr = __get_free_pages(gfp_mask, order);
5244 	return make_alloc_exact(addr, order, size);
5245 }
5246 EXPORT_SYMBOL(alloc_pages_exact);
5247 
5248 /**
5249  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5250  *			   pages on a node.
5251  * @nid: the preferred node ID where memory should be allocated
5252  * @size: the number of bytes to allocate
5253  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5254  *
5255  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5256  * back.
5257  *
5258  * Return: pointer to the allocated area or %NULL in case of error.
5259  */
5260 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5261 {
5262 	unsigned int order = get_order(size);
5263 	struct page *p;
5264 
5265 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5266 		gfp_mask &= ~__GFP_COMP;
5267 
5268 	p = alloc_pages_node(nid, gfp_mask, order);
5269 	if (!p)
5270 		return NULL;
5271 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5272 }
5273 
5274 /**
5275  * free_pages_exact - release memory allocated via alloc_pages_exact()
5276  * @virt: the value returned by alloc_pages_exact.
5277  * @size: size of allocation, same value as passed to alloc_pages_exact().
5278  *
5279  * Release the memory allocated by a previous call to alloc_pages_exact.
5280  */
5281 void free_pages_exact(void *virt, size_t size)
5282 {
5283 	unsigned long addr = (unsigned long)virt;
5284 	unsigned long end = addr + PAGE_ALIGN(size);
5285 
5286 	while (addr < end) {
5287 		free_page(addr);
5288 		addr += PAGE_SIZE;
5289 	}
5290 }
5291 EXPORT_SYMBOL(free_pages_exact);
5292 
5293 /**
5294  * nr_free_zone_pages - count number of pages beyond high watermark
5295  * @offset: The zone index of the highest zone
5296  *
5297  * nr_free_zone_pages() counts the number of pages which are beyond the
5298  * high watermark within all zones at or below a given zone index.  For each
5299  * zone, the number of pages is calculated as:
5300  *
5301  *     nr_free_zone_pages = managed_pages - high_pages
5302  *
5303  * Return: number of pages beyond high watermark.
5304  */
5305 static unsigned long nr_free_zone_pages(int offset)
5306 {
5307 	struct zoneref *z;
5308 	struct zone *zone;
5309 
5310 	/* Just pick one node, since fallback list is circular */
5311 	unsigned long sum = 0;
5312 
5313 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5314 
5315 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5316 		unsigned long size = zone_managed_pages(zone);
5317 		unsigned long high = high_wmark_pages(zone);
5318 		if (size > high)
5319 			sum += size - high;
5320 	}
5321 
5322 	return sum;
5323 }
5324 
5325 /**
5326  * nr_free_buffer_pages - count number of pages beyond high watermark
5327  *
5328  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5329  * watermark within ZONE_DMA and ZONE_NORMAL.
5330  *
5331  * Return: number of pages beyond high watermark within ZONE_DMA and
5332  * ZONE_NORMAL.
5333  */
5334 unsigned long nr_free_buffer_pages(void)
5335 {
5336 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5337 }
5338 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5339 
5340 static inline void show_node(struct zone *zone)
5341 {
5342 	if (IS_ENABLED(CONFIG_NUMA))
5343 		printk("Node %d ", zone_to_nid(zone));
5344 }
5345 
5346 long si_mem_available(void)
5347 {
5348 	long available;
5349 	unsigned long pagecache;
5350 	unsigned long wmark_low = 0;
5351 	unsigned long pages[NR_LRU_LISTS];
5352 	unsigned long reclaimable;
5353 	struct zone *zone;
5354 	int lru;
5355 
5356 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5357 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5358 
5359 	for_each_zone(zone)
5360 		wmark_low += low_wmark_pages(zone);
5361 
5362 	/*
5363 	 * Estimate the amount of memory available for userspace allocations,
5364 	 * without causing swapping.
5365 	 */
5366 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5367 
5368 	/*
5369 	 * Not all the page cache can be freed, otherwise the system will
5370 	 * start swapping. Assume at least half of the page cache, or the
5371 	 * low watermark worth of cache, needs to stay.
5372 	 */
5373 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5374 	pagecache -= min(pagecache / 2, wmark_low);
5375 	available += pagecache;
5376 
5377 	/*
5378 	 * Part of the reclaimable slab and other kernel memory consists of
5379 	 * items that are in use, and cannot be freed. Cap this estimate at the
5380 	 * low watermark.
5381 	 */
5382 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5383 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5384 	available += reclaimable - min(reclaimable / 2, wmark_low);
5385 
5386 	if (available < 0)
5387 		available = 0;
5388 	return available;
5389 }
5390 EXPORT_SYMBOL_GPL(si_mem_available);
5391 
5392 void si_meminfo(struct sysinfo *val)
5393 {
5394 	val->totalram = totalram_pages();
5395 	val->sharedram = global_node_page_state(NR_SHMEM);
5396 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5397 	val->bufferram = nr_blockdev_pages();
5398 	val->totalhigh = totalhigh_pages();
5399 	val->freehigh = nr_free_highpages();
5400 	val->mem_unit = PAGE_SIZE;
5401 }
5402 
5403 EXPORT_SYMBOL(si_meminfo);
5404 
5405 #ifdef CONFIG_NUMA
5406 void si_meminfo_node(struct sysinfo *val, int nid)
5407 {
5408 	int zone_type;		/* needs to be signed */
5409 	unsigned long managed_pages = 0;
5410 	unsigned long managed_highpages = 0;
5411 	unsigned long free_highpages = 0;
5412 	pg_data_t *pgdat = NODE_DATA(nid);
5413 
5414 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5415 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5416 	val->totalram = managed_pages;
5417 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5418 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5419 #ifdef CONFIG_HIGHMEM
5420 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5421 		struct zone *zone = &pgdat->node_zones[zone_type];
5422 
5423 		if (is_highmem(zone)) {
5424 			managed_highpages += zone_managed_pages(zone);
5425 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5426 		}
5427 	}
5428 	val->totalhigh = managed_highpages;
5429 	val->freehigh = free_highpages;
5430 #else
5431 	val->totalhigh = managed_highpages;
5432 	val->freehigh = free_highpages;
5433 #endif
5434 	val->mem_unit = PAGE_SIZE;
5435 }
5436 #endif
5437 
5438 /*
5439  * Determine whether the node should be displayed or not, depending on whether
5440  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5441  */
5442 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5443 {
5444 	if (!(flags & SHOW_MEM_FILTER_NODES))
5445 		return false;
5446 
5447 	/*
5448 	 * no node mask - aka implicit memory numa policy. Do not bother with
5449 	 * the synchronization - read_mems_allowed_begin - because we do not
5450 	 * have to be precise here.
5451 	 */
5452 	if (!nodemask)
5453 		nodemask = &cpuset_current_mems_allowed;
5454 
5455 	return !node_isset(nid, *nodemask);
5456 }
5457 
5458 #define K(x) ((x) << (PAGE_SHIFT-10))
5459 
5460 static void show_migration_types(unsigned char type)
5461 {
5462 	static const char types[MIGRATE_TYPES] = {
5463 		[MIGRATE_UNMOVABLE]	= 'U',
5464 		[MIGRATE_MOVABLE]	= 'M',
5465 		[MIGRATE_RECLAIMABLE]	= 'E',
5466 		[MIGRATE_HIGHATOMIC]	= 'H',
5467 #ifdef CONFIG_CMA
5468 		[MIGRATE_CMA]		= 'C',
5469 #endif
5470 #ifdef CONFIG_MEMORY_ISOLATION
5471 		[MIGRATE_ISOLATE]	= 'I',
5472 #endif
5473 	};
5474 	char tmp[MIGRATE_TYPES + 1];
5475 	char *p = tmp;
5476 	int i;
5477 
5478 	for (i = 0; i < MIGRATE_TYPES; i++) {
5479 		if (type & (1 << i))
5480 			*p++ = types[i];
5481 	}
5482 
5483 	*p = '\0';
5484 	printk(KERN_CONT "(%s) ", tmp);
5485 }
5486 
5487 /*
5488  * Show free area list (used inside shift_scroll-lock stuff)
5489  * We also calculate the percentage fragmentation. We do this by counting the
5490  * memory on each free list with the exception of the first item on the list.
5491  *
5492  * Bits in @filter:
5493  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5494  *   cpuset.
5495  */
5496 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5497 {
5498 	unsigned long free_pcp = 0;
5499 	int cpu;
5500 	struct zone *zone;
5501 	pg_data_t *pgdat;
5502 
5503 	for_each_populated_zone(zone) {
5504 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5505 			continue;
5506 
5507 		for_each_online_cpu(cpu)
5508 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5509 	}
5510 
5511 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5512 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5513 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5514 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5515 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5516 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5517 		global_node_page_state(NR_ACTIVE_ANON),
5518 		global_node_page_state(NR_INACTIVE_ANON),
5519 		global_node_page_state(NR_ISOLATED_ANON),
5520 		global_node_page_state(NR_ACTIVE_FILE),
5521 		global_node_page_state(NR_INACTIVE_FILE),
5522 		global_node_page_state(NR_ISOLATED_FILE),
5523 		global_node_page_state(NR_UNEVICTABLE),
5524 		global_node_page_state(NR_FILE_DIRTY),
5525 		global_node_page_state(NR_WRITEBACK),
5526 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5527 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5528 		global_node_page_state(NR_FILE_MAPPED),
5529 		global_node_page_state(NR_SHMEM),
5530 		global_node_page_state(NR_PAGETABLE),
5531 		global_zone_page_state(NR_BOUNCE),
5532 		global_zone_page_state(NR_FREE_PAGES),
5533 		free_pcp,
5534 		global_zone_page_state(NR_FREE_CMA_PAGES));
5535 
5536 	for_each_online_pgdat(pgdat) {
5537 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5538 			continue;
5539 
5540 		printk("Node %d"
5541 			" active_anon:%lukB"
5542 			" inactive_anon:%lukB"
5543 			" active_file:%lukB"
5544 			" inactive_file:%lukB"
5545 			" unevictable:%lukB"
5546 			" isolated(anon):%lukB"
5547 			" isolated(file):%lukB"
5548 			" mapped:%lukB"
5549 			" dirty:%lukB"
5550 			" writeback:%lukB"
5551 			" shmem:%lukB"
5552 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5553 			" shmem_thp: %lukB"
5554 			" shmem_pmdmapped: %lukB"
5555 			" anon_thp: %lukB"
5556 #endif
5557 			" writeback_tmp:%lukB"
5558 			" kernel_stack:%lukB"
5559 #ifdef CONFIG_SHADOW_CALL_STACK
5560 			" shadow_call_stack:%lukB"
5561 #endif
5562 			" pagetables:%lukB"
5563 			" all_unreclaimable? %s"
5564 			"\n",
5565 			pgdat->node_id,
5566 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5567 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5568 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5569 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5570 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5571 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5572 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5573 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5574 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5575 			K(node_page_state(pgdat, NR_WRITEBACK)),
5576 			K(node_page_state(pgdat, NR_SHMEM)),
5577 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5578 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5579 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5580 					* HPAGE_PMD_NR),
5581 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5582 #endif
5583 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5584 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5585 #ifdef CONFIG_SHADOW_CALL_STACK
5586 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5587 #endif
5588 			K(node_page_state(pgdat, NR_PAGETABLE)),
5589 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5590 				"yes" : "no");
5591 	}
5592 
5593 	for_each_populated_zone(zone) {
5594 		int i;
5595 
5596 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5597 			continue;
5598 
5599 		free_pcp = 0;
5600 		for_each_online_cpu(cpu)
5601 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5602 
5603 		show_node(zone);
5604 		printk(KERN_CONT
5605 			"%s"
5606 			" free:%lukB"
5607 			" min:%lukB"
5608 			" low:%lukB"
5609 			" high:%lukB"
5610 			" reserved_highatomic:%luKB"
5611 			" active_anon:%lukB"
5612 			" inactive_anon:%lukB"
5613 			" active_file:%lukB"
5614 			" inactive_file:%lukB"
5615 			" unevictable:%lukB"
5616 			" writepending:%lukB"
5617 			" present:%lukB"
5618 			" managed:%lukB"
5619 			" mlocked:%lukB"
5620 			" bounce:%lukB"
5621 			" free_pcp:%lukB"
5622 			" local_pcp:%ukB"
5623 			" free_cma:%lukB"
5624 			"\n",
5625 			zone->name,
5626 			K(zone_page_state(zone, NR_FREE_PAGES)),
5627 			K(min_wmark_pages(zone)),
5628 			K(low_wmark_pages(zone)),
5629 			K(high_wmark_pages(zone)),
5630 			K(zone->nr_reserved_highatomic),
5631 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5632 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5633 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5634 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5635 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5636 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5637 			K(zone->present_pages),
5638 			K(zone_managed_pages(zone)),
5639 			K(zone_page_state(zone, NR_MLOCK)),
5640 			K(zone_page_state(zone, NR_BOUNCE)),
5641 			K(free_pcp),
5642 			K(this_cpu_read(zone->pageset->pcp.count)),
5643 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5644 		printk("lowmem_reserve[]:");
5645 		for (i = 0; i < MAX_NR_ZONES; i++)
5646 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5647 		printk(KERN_CONT "\n");
5648 	}
5649 
5650 	for_each_populated_zone(zone) {
5651 		unsigned int order;
5652 		unsigned long nr[MAX_ORDER], flags, total = 0;
5653 		unsigned char types[MAX_ORDER];
5654 
5655 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5656 			continue;
5657 		show_node(zone);
5658 		printk(KERN_CONT "%s: ", zone->name);
5659 
5660 		spin_lock_irqsave(&zone->lock, flags);
5661 		for (order = 0; order < MAX_ORDER; order++) {
5662 			struct free_area *area = &zone->free_area[order];
5663 			int type;
5664 
5665 			nr[order] = area->nr_free;
5666 			total += nr[order] << order;
5667 
5668 			types[order] = 0;
5669 			for (type = 0; type < MIGRATE_TYPES; type++) {
5670 				if (!free_area_empty(area, type))
5671 					types[order] |= 1 << type;
5672 			}
5673 		}
5674 		spin_unlock_irqrestore(&zone->lock, flags);
5675 		for (order = 0; order < MAX_ORDER; order++) {
5676 			printk(KERN_CONT "%lu*%lukB ",
5677 			       nr[order], K(1UL) << order);
5678 			if (nr[order])
5679 				show_migration_types(types[order]);
5680 		}
5681 		printk(KERN_CONT "= %lukB\n", K(total));
5682 	}
5683 
5684 	hugetlb_show_meminfo();
5685 
5686 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5687 
5688 	show_swap_cache_info();
5689 }
5690 
5691 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5692 {
5693 	zoneref->zone = zone;
5694 	zoneref->zone_idx = zone_idx(zone);
5695 }
5696 
5697 /*
5698  * Builds allocation fallback zone lists.
5699  *
5700  * Add all populated zones of a node to the zonelist.
5701  */
5702 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5703 {
5704 	struct zone *zone;
5705 	enum zone_type zone_type = MAX_NR_ZONES;
5706 	int nr_zones = 0;
5707 
5708 	do {
5709 		zone_type--;
5710 		zone = pgdat->node_zones + zone_type;
5711 		if (managed_zone(zone)) {
5712 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5713 			check_highest_zone(zone_type);
5714 		}
5715 	} while (zone_type);
5716 
5717 	return nr_zones;
5718 }
5719 
5720 #ifdef CONFIG_NUMA
5721 
5722 static int __parse_numa_zonelist_order(char *s)
5723 {
5724 	/*
5725 	 * We used to support different zonlists modes but they turned
5726 	 * out to be just not useful. Let's keep the warning in place
5727 	 * if somebody still use the cmd line parameter so that we do
5728 	 * not fail it silently
5729 	 */
5730 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5731 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5732 		return -EINVAL;
5733 	}
5734 	return 0;
5735 }
5736 
5737 char numa_zonelist_order[] = "Node";
5738 
5739 /*
5740  * sysctl handler for numa_zonelist_order
5741  */
5742 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5743 		void *buffer, size_t *length, loff_t *ppos)
5744 {
5745 	if (write)
5746 		return __parse_numa_zonelist_order(buffer);
5747 	return proc_dostring(table, write, buffer, length, ppos);
5748 }
5749 
5750 
5751 #define MAX_NODE_LOAD (nr_online_nodes)
5752 static int node_load[MAX_NUMNODES];
5753 
5754 /**
5755  * find_next_best_node - find the next node that should appear in a given node's fallback list
5756  * @node: node whose fallback list we're appending
5757  * @used_node_mask: nodemask_t of already used nodes
5758  *
5759  * We use a number of factors to determine which is the next node that should
5760  * appear on a given node's fallback list.  The node should not have appeared
5761  * already in @node's fallback list, and it should be the next closest node
5762  * according to the distance array (which contains arbitrary distance values
5763  * from each node to each node in the system), and should also prefer nodes
5764  * with no CPUs, since presumably they'll have very little allocation pressure
5765  * on them otherwise.
5766  *
5767  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5768  */
5769 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5770 {
5771 	int n, val;
5772 	int min_val = INT_MAX;
5773 	int best_node = NUMA_NO_NODE;
5774 
5775 	/* Use the local node if we haven't already */
5776 	if (!node_isset(node, *used_node_mask)) {
5777 		node_set(node, *used_node_mask);
5778 		return node;
5779 	}
5780 
5781 	for_each_node_state(n, N_MEMORY) {
5782 
5783 		/* Don't want a node to appear more than once */
5784 		if (node_isset(n, *used_node_mask))
5785 			continue;
5786 
5787 		/* Use the distance array to find the distance */
5788 		val = node_distance(node, n);
5789 
5790 		/* Penalize nodes under us ("prefer the next node") */
5791 		val += (n < node);
5792 
5793 		/* Give preference to headless and unused nodes */
5794 		if (!cpumask_empty(cpumask_of_node(n)))
5795 			val += PENALTY_FOR_NODE_WITH_CPUS;
5796 
5797 		/* Slight preference for less loaded node */
5798 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5799 		val += node_load[n];
5800 
5801 		if (val < min_val) {
5802 			min_val = val;
5803 			best_node = n;
5804 		}
5805 	}
5806 
5807 	if (best_node >= 0)
5808 		node_set(best_node, *used_node_mask);
5809 
5810 	return best_node;
5811 }
5812 
5813 
5814 /*
5815  * Build zonelists ordered by node and zones within node.
5816  * This results in maximum locality--normal zone overflows into local
5817  * DMA zone, if any--but risks exhausting DMA zone.
5818  */
5819 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5820 		unsigned nr_nodes)
5821 {
5822 	struct zoneref *zonerefs;
5823 	int i;
5824 
5825 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5826 
5827 	for (i = 0; i < nr_nodes; i++) {
5828 		int nr_zones;
5829 
5830 		pg_data_t *node = NODE_DATA(node_order[i]);
5831 
5832 		nr_zones = build_zonerefs_node(node, zonerefs);
5833 		zonerefs += nr_zones;
5834 	}
5835 	zonerefs->zone = NULL;
5836 	zonerefs->zone_idx = 0;
5837 }
5838 
5839 /*
5840  * Build gfp_thisnode zonelists
5841  */
5842 static void build_thisnode_zonelists(pg_data_t *pgdat)
5843 {
5844 	struct zoneref *zonerefs;
5845 	int nr_zones;
5846 
5847 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5848 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5849 	zonerefs += nr_zones;
5850 	zonerefs->zone = NULL;
5851 	zonerefs->zone_idx = 0;
5852 }
5853 
5854 /*
5855  * Build zonelists ordered by zone and nodes within zones.
5856  * This results in conserving DMA zone[s] until all Normal memory is
5857  * exhausted, but results in overflowing to remote node while memory
5858  * may still exist in local DMA zone.
5859  */
5860 
5861 static void build_zonelists(pg_data_t *pgdat)
5862 {
5863 	static int node_order[MAX_NUMNODES];
5864 	int node, load, nr_nodes = 0;
5865 	nodemask_t used_mask = NODE_MASK_NONE;
5866 	int local_node, prev_node;
5867 
5868 	/* NUMA-aware ordering of nodes */
5869 	local_node = pgdat->node_id;
5870 	load = nr_online_nodes;
5871 	prev_node = local_node;
5872 
5873 	memset(node_order, 0, sizeof(node_order));
5874 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5875 		/*
5876 		 * We don't want to pressure a particular node.
5877 		 * So adding penalty to the first node in same
5878 		 * distance group to make it round-robin.
5879 		 */
5880 		if (node_distance(local_node, node) !=
5881 		    node_distance(local_node, prev_node))
5882 			node_load[node] = load;
5883 
5884 		node_order[nr_nodes++] = node;
5885 		prev_node = node;
5886 		load--;
5887 	}
5888 
5889 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5890 	build_thisnode_zonelists(pgdat);
5891 }
5892 
5893 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5894 /*
5895  * Return node id of node used for "local" allocations.
5896  * I.e., first node id of first zone in arg node's generic zonelist.
5897  * Used for initializing percpu 'numa_mem', which is used primarily
5898  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5899  */
5900 int local_memory_node(int node)
5901 {
5902 	struct zoneref *z;
5903 
5904 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5905 				   gfp_zone(GFP_KERNEL),
5906 				   NULL);
5907 	return zone_to_nid(z->zone);
5908 }
5909 #endif
5910 
5911 static void setup_min_unmapped_ratio(void);
5912 static void setup_min_slab_ratio(void);
5913 #else	/* CONFIG_NUMA */
5914 
5915 static void build_zonelists(pg_data_t *pgdat)
5916 {
5917 	int node, local_node;
5918 	struct zoneref *zonerefs;
5919 	int nr_zones;
5920 
5921 	local_node = pgdat->node_id;
5922 
5923 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5924 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5925 	zonerefs += nr_zones;
5926 
5927 	/*
5928 	 * Now we build the zonelist so that it contains the zones
5929 	 * of all the other nodes.
5930 	 * We don't want to pressure a particular node, so when
5931 	 * building the zones for node N, we make sure that the
5932 	 * zones coming right after the local ones are those from
5933 	 * node N+1 (modulo N)
5934 	 */
5935 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5936 		if (!node_online(node))
5937 			continue;
5938 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5939 		zonerefs += nr_zones;
5940 	}
5941 	for (node = 0; node < local_node; node++) {
5942 		if (!node_online(node))
5943 			continue;
5944 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5945 		zonerefs += nr_zones;
5946 	}
5947 
5948 	zonerefs->zone = NULL;
5949 	zonerefs->zone_idx = 0;
5950 }
5951 
5952 #endif	/* CONFIG_NUMA */
5953 
5954 /*
5955  * Boot pageset table. One per cpu which is going to be used for all
5956  * zones and all nodes. The parameters will be set in such a way
5957  * that an item put on a list will immediately be handed over to
5958  * the buddy list. This is safe since pageset manipulation is done
5959  * with interrupts disabled.
5960  *
5961  * The boot_pagesets must be kept even after bootup is complete for
5962  * unused processors and/or zones. They do play a role for bootstrapping
5963  * hotplugged processors.
5964  *
5965  * zoneinfo_show() and maybe other functions do
5966  * not check if the processor is online before following the pageset pointer.
5967  * Other parts of the kernel may not check if the zone is available.
5968  */
5969 static void pageset_init(struct per_cpu_pageset *p);
5970 /* These effectively disable the pcplists in the boot pageset completely */
5971 #define BOOT_PAGESET_HIGH	0
5972 #define BOOT_PAGESET_BATCH	1
5973 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5974 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5975 
5976 static void __build_all_zonelists(void *data)
5977 {
5978 	int nid;
5979 	int __maybe_unused cpu;
5980 	pg_data_t *self = data;
5981 	static DEFINE_SPINLOCK(lock);
5982 
5983 	spin_lock(&lock);
5984 
5985 #ifdef CONFIG_NUMA
5986 	memset(node_load, 0, sizeof(node_load));
5987 #endif
5988 
5989 	/*
5990 	 * This node is hotadded and no memory is yet present.   So just
5991 	 * building zonelists is fine - no need to touch other nodes.
5992 	 */
5993 	if (self && !node_online(self->node_id)) {
5994 		build_zonelists(self);
5995 	} else {
5996 		for_each_online_node(nid) {
5997 			pg_data_t *pgdat = NODE_DATA(nid);
5998 
5999 			build_zonelists(pgdat);
6000 		}
6001 
6002 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6003 		/*
6004 		 * We now know the "local memory node" for each node--
6005 		 * i.e., the node of the first zone in the generic zonelist.
6006 		 * Set up numa_mem percpu variable for on-line cpus.  During
6007 		 * boot, only the boot cpu should be on-line;  we'll init the
6008 		 * secondary cpus' numa_mem as they come on-line.  During
6009 		 * node/memory hotplug, we'll fixup all on-line cpus.
6010 		 */
6011 		for_each_online_cpu(cpu)
6012 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6013 #endif
6014 	}
6015 
6016 	spin_unlock(&lock);
6017 }
6018 
6019 static noinline void __init
6020 build_all_zonelists_init(void)
6021 {
6022 	int cpu;
6023 
6024 	__build_all_zonelists(NULL);
6025 
6026 	/*
6027 	 * Initialize the boot_pagesets that are going to be used
6028 	 * for bootstrapping processors. The real pagesets for
6029 	 * each zone will be allocated later when the per cpu
6030 	 * allocator is available.
6031 	 *
6032 	 * boot_pagesets are used also for bootstrapping offline
6033 	 * cpus if the system is already booted because the pagesets
6034 	 * are needed to initialize allocators on a specific cpu too.
6035 	 * F.e. the percpu allocator needs the page allocator which
6036 	 * needs the percpu allocator in order to allocate its pagesets
6037 	 * (a chicken-egg dilemma).
6038 	 */
6039 	for_each_possible_cpu(cpu)
6040 		pageset_init(&per_cpu(boot_pageset, cpu));
6041 
6042 	mminit_verify_zonelist();
6043 	cpuset_init_current_mems_allowed();
6044 }
6045 
6046 /*
6047  * unless system_state == SYSTEM_BOOTING.
6048  *
6049  * __ref due to call of __init annotated helper build_all_zonelists_init
6050  * [protected by SYSTEM_BOOTING].
6051  */
6052 void __ref build_all_zonelists(pg_data_t *pgdat)
6053 {
6054 	unsigned long vm_total_pages;
6055 
6056 	if (system_state == SYSTEM_BOOTING) {
6057 		build_all_zonelists_init();
6058 	} else {
6059 		__build_all_zonelists(pgdat);
6060 		/* cpuset refresh routine should be here */
6061 	}
6062 	/* Get the number of free pages beyond high watermark in all zones. */
6063 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6064 	/*
6065 	 * Disable grouping by mobility if the number of pages in the
6066 	 * system is too low to allow the mechanism to work. It would be
6067 	 * more accurate, but expensive to check per-zone. This check is
6068 	 * made on memory-hotadd so a system can start with mobility
6069 	 * disabled and enable it later
6070 	 */
6071 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6072 		page_group_by_mobility_disabled = 1;
6073 	else
6074 		page_group_by_mobility_disabled = 0;
6075 
6076 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6077 		nr_online_nodes,
6078 		page_group_by_mobility_disabled ? "off" : "on",
6079 		vm_total_pages);
6080 #ifdef CONFIG_NUMA
6081 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6082 #endif
6083 }
6084 
6085 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6086 static bool __meminit
6087 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6088 {
6089 	static struct memblock_region *r;
6090 
6091 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6092 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6093 			for_each_mem_region(r) {
6094 				if (*pfn < memblock_region_memory_end_pfn(r))
6095 					break;
6096 			}
6097 		}
6098 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6099 		    memblock_is_mirror(r)) {
6100 			*pfn = memblock_region_memory_end_pfn(r);
6101 			return true;
6102 		}
6103 	}
6104 	return false;
6105 }
6106 
6107 /*
6108  * Initially all pages are reserved - free ones are freed
6109  * up by memblock_free_all() once the early boot process is
6110  * done. Non-atomic initialization, single-pass.
6111  *
6112  * All aligned pageblocks are initialized to the specified migratetype
6113  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6114  * zone stats (e.g., nr_isolate_pageblock) are touched.
6115  */
6116 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
6117 		unsigned long start_pfn,
6118 		enum meminit_context context,
6119 		struct vmem_altmap *altmap, int migratetype)
6120 {
6121 	unsigned long pfn, end_pfn = start_pfn + size;
6122 	struct page *page;
6123 
6124 	if (highest_memmap_pfn < end_pfn - 1)
6125 		highest_memmap_pfn = end_pfn - 1;
6126 
6127 #ifdef CONFIG_ZONE_DEVICE
6128 	/*
6129 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6130 	 * memory. We limit the total number of pages to initialize to just
6131 	 * those that might contain the memory mapping. We will defer the
6132 	 * ZONE_DEVICE page initialization until after we have released
6133 	 * the hotplug lock.
6134 	 */
6135 	if (zone == ZONE_DEVICE) {
6136 		if (!altmap)
6137 			return;
6138 
6139 		if (start_pfn == altmap->base_pfn)
6140 			start_pfn += altmap->reserve;
6141 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6142 	}
6143 #endif
6144 
6145 	for (pfn = start_pfn; pfn < end_pfn; ) {
6146 		/*
6147 		 * There can be holes in boot-time mem_map[]s handed to this
6148 		 * function.  They do not exist on hotplugged memory.
6149 		 */
6150 		if (context == MEMINIT_EARLY) {
6151 			if (overlap_memmap_init(zone, &pfn))
6152 				continue;
6153 			if (defer_init(nid, pfn, end_pfn))
6154 				break;
6155 		}
6156 
6157 		page = pfn_to_page(pfn);
6158 		__init_single_page(page, pfn, zone, nid);
6159 		if (context == MEMINIT_HOTPLUG)
6160 			__SetPageReserved(page);
6161 
6162 		/*
6163 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6164 		 * such that unmovable allocations won't be scattered all
6165 		 * over the place during system boot.
6166 		 */
6167 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6168 			set_pageblock_migratetype(page, migratetype);
6169 			cond_resched();
6170 		}
6171 		pfn++;
6172 	}
6173 }
6174 
6175 #ifdef CONFIG_ZONE_DEVICE
6176 void __ref memmap_init_zone_device(struct zone *zone,
6177 				   unsigned long start_pfn,
6178 				   unsigned long nr_pages,
6179 				   struct dev_pagemap *pgmap)
6180 {
6181 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6182 	struct pglist_data *pgdat = zone->zone_pgdat;
6183 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6184 	unsigned long zone_idx = zone_idx(zone);
6185 	unsigned long start = jiffies;
6186 	int nid = pgdat->node_id;
6187 
6188 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6189 		return;
6190 
6191 	/*
6192 	 * The call to memmap_init_zone should have already taken care
6193 	 * of the pages reserved for the memmap, so we can just jump to
6194 	 * the end of that region and start processing the device pages.
6195 	 */
6196 	if (altmap) {
6197 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6198 		nr_pages = end_pfn - start_pfn;
6199 	}
6200 
6201 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6202 		struct page *page = pfn_to_page(pfn);
6203 
6204 		__init_single_page(page, pfn, zone_idx, nid);
6205 
6206 		/*
6207 		 * Mark page reserved as it will need to wait for onlining
6208 		 * phase for it to be fully associated with a zone.
6209 		 *
6210 		 * We can use the non-atomic __set_bit operation for setting
6211 		 * the flag as we are still initializing the pages.
6212 		 */
6213 		__SetPageReserved(page);
6214 
6215 		/*
6216 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6217 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6218 		 * ever freed or placed on a driver-private list.
6219 		 */
6220 		page->pgmap = pgmap;
6221 		page->zone_device_data = NULL;
6222 
6223 		/*
6224 		 * Mark the block movable so that blocks are reserved for
6225 		 * movable at startup. This will force kernel allocations
6226 		 * to reserve their blocks rather than leaking throughout
6227 		 * the address space during boot when many long-lived
6228 		 * kernel allocations are made.
6229 		 *
6230 		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6231 		 * because this is done early in section_activate()
6232 		 */
6233 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6234 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6235 			cond_resched();
6236 		}
6237 	}
6238 
6239 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6240 		nr_pages, jiffies_to_msecs(jiffies - start));
6241 }
6242 
6243 #endif
6244 static void __meminit zone_init_free_lists(struct zone *zone)
6245 {
6246 	unsigned int order, t;
6247 	for_each_migratetype_order(order, t) {
6248 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6249 		zone->free_area[order].nr_free = 0;
6250 	}
6251 }
6252 
6253 void __meminit __weak memmap_init(unsigned long size, int nid,
6254 				  unsigned long zone,
6255 				  unsigned long range_start_pfn)
6256 {
6257 	unsigned long start_pfn, end_pfn;
6258 	unsigned long range_end_pfn = range_start_pfn + size;
6259 	int i;
6260 
6261 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6262 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6263 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6264 
6265 		if (end_pfn > start_pfn) {
6266 			size = end_pfn - start_pfn;
6267 			memmap_init_zone(size, nid, zone, start_pfn,
6268 					 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6269 		}
6270 	}
6271 }
6272 
6273 static int zone_batchsize(struct zone *zone)
6274 {
6275 #ifdef CONFIG_MMU
6276 	int batch;
6277 
6278 	/*
6279 	 * The per-cpu-pages pools are set to around 1000th of the
6280 	 * size of the zone.
6281 	 */
6282 	batch = zone_managed_pages(zone) / 1024;
6283 	/* But no more than a meg. */
6284 	if (batch * PAGE_SIZE > 1024 * 1024)
6285 		batch = (1024 * 1024) / PAGE_SIZE;
6286 	batch /= 4;		/* We effectively *= 4 below */
6287 	if (batch < 1)
6288 		batch = 1;
6289 
6290 	/*
6291 	 * Clamp the batch to a 2^n - 1 value. Having a power
6292 	 * of 2 value was found to be more likely to have
6293 	 * suboptimal cache aliasing properties in some cases.
6294 	 *
6295 	 * For example if 2 tasks are alternately allocating
6296 	 * batches of pages, one task can end up with a lot
6297 	 * of pages of one half of the possible page colors
6298 	 * and the other with pages of the other colors.
6299 	 */
6300 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6301 
6302 	return batch;
6303 
6304 #else
6305 	/* The deferral and batching of frees should be suppressed under NOMMU
6306 	 * conditions.
6307 	 *
6308 	 * The problem is that NOMMU needs to be able to allocate large chunks
6309 	 * of contiguous memory as there's no hardware page translation to
6310 	 * assemble apparent contiguous memory from discontiguous pages.
6311 	 *
6312 	 * Queueing large contiguous runs of pages for batching, however,
6313 	 * causes the pages to actually be freed in smaller chunks.  As there
6314 	 * can be a significant delay between the individual batches being
6315 	 * recycled, this leads to the once large chunks of space being
6316 	 * fragmented and becoming unavailable for high-order allocations.
6317 	 */
6318 	return 0;
6319 #endif
6320 }
6321 
6322 /*
6323  * pcp->high and pcp->batch values are related and generally batch is lower
6324  * than high. They are also related to pcp->count such that count is lower
6325  * than high, and as soon as it reaches high, the pcplist is flushed.
6326  *
6327  * However, guaranteeing these relations at all times would require e.g. write
6328  * barriers here but also careful usage of read barriers at the read side, and
6329  * thus be prone to error and bad for performance. Thus the update only prevents
6330  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6331  * can cope with those fields changing asynchronously, and fully trust only the
6332  * pcp->count field on the local CPU with interrupts disabled.
6333  *
6334  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6335  * outside of boot time (or some other assurance that no concurrent updaters
6336  * exist).
6337  */
6338 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6339 		unsigned long batch)
6340 {
6341 	WRITE_ONCE(pcp->batch, batch);
6342 	WRITE_ONCE(pcp->high, high);
6343 }
6344 
6345 static void pageset_init(struct per_cpu_pageset *p)
6346 {
6347 	struct per_cpu_pages *pcp;
6348 	int migratetype;
6349 
6350 	memset(p, 0, sizeof(*p));
6351 
6352 	pcp = &p->pcp;
6353 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6354 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6355 
6356 	/*
6357 	 * Set batch and high values safe for a boot pageset. A true percpu
6358 	 * pageset's initialization will update them subsequently. Here we don't
6359 	 * need to be as careful as pageset_update() as nobody can access the
6360 	 * pageset yet.
6361 	 */
6362 	pcp->high = BOOT_PAGESET_HIGH;
6363 	pcp->batch = BOOT_PAGESET_BATCH;
6364 }
6365 
6366 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6367 		unsigned long batch)
6368 {
6369 	struct per_cpu_pageset *p;
6370 	int cpu;
6371 
6372 	for_each_possible_cpu(cpu) {
6373 		p = per_cpu_ptr(zone->pageset, cpu);
6374 		pageset_update(&p->pcp, high, batch);
6375 	}
6376 }
6377 
6378 /*
6379  * Calculate and set new high and batch values for all per-cpu pagesets of a
6380  * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
6381  */
6382 static void zone_set_pageset_high_and_batch(struct zone *zone)
6383 {
6384 	unsigned long new_high, new_batch;
6385 
6386 	if (percpu_pagelist_fraction) {
6387 		new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6388 		new_batch = max(1UL, new_high / 4);
6389 		if ((new_high / 4) > (PAGE_SHIFT * 8))
6390 			new_batch = PAGE_SHIFT * 8;
6391 	} else {
6392 		new_batch = zone_batchsize(zone);
6393 		new_high = 6 * new_batch;
6394 		new_batch = max(1UL, 1 * new_batch);
6395 	}
6396 
6397 	if (zone->pageset_high == new_high &&
6398 	    zone->pageset_batch == new_batch)
6399 		return;
6400 
6401 	zone->pageset_high = new_high;
6402 	zone->pageset_batch = new_batch;
6403 
6404 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6405 }
6406 
6407 void __meminit setup_zone_pageset(struct zone *zone)
6408 {
6409 	struct per_cpu_pageset *p;
6410 	int cpu;
6411 
6412 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6413 	for_each_possible_cpu(cpu) {
6414 		p = per_cpu_ptr(zone->pageset, cpu);
6415 		pageset_init(p);
6416 	}
6417 
6418 	zone_set_pageset_high_and_batch(zone);
6419 }
6420 
6421 /*
6422  * Allocate per cpu pagesets and initialize them.
6423  * Before this call only boot pagesets were available.
6424  */
6425 void __init setup_per_cpu_pageset(void)
6426 {
6427 	struct pglist_data *pgdat;
6428 	struct zone *zone;
6429 	int __maybe_unused cpu;
6430 
6431 	for_each_populated_zone(zone)
6432 		setup_zone_pageset(zone);
6433 
6434 #ifdef CONFIG_NUMA
6435 	/*
6436 	 * Unpopulated zones continue using the boot pagesets.
6437 	 * The numa stats for these pagesets need to be reset.
6438 	 * Otherwise, they will end up skewing the stats of
6439 	 * the nodes these zones are associated with.
6440 	 */
6441 	for_each_possible_cpu(cpu) {
6442 		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6443 		memset(pcp->vm_numa_stat_diff, 0,
6444 		       sizeof(pcp->vm_numa_stat_diff));
6445 	}
6446 #endif
6447 
6448 	for_each_online_pgdat(pgdat)
6449 		pgdat->per_cpu_nodestats =
6450 			alloc_percpu(struct per_cpu_nodestat);
6451 }
6452 
6453 static __meminit void zone_pcp_init(struct zone *zone)
6454 {
6455 	/*
6456 	 * per cpu subsystem is not up at this point. The following code
6457 	 * relies on the ability of the linker to provide the
6458 	 * offset of a (static) per cpu variable into the per cpu area.
6459 	 */
6460 	zone->pageset = &boot_pageset;
6461 	zone->pageset_high = BOOT_PAGESET_HIGH;
6462 	zone->pageset_batch = BOOT_PAGESET_BATCH;
6463 
6464 	if (populated_zone(zone))
6465 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6466 			zone->name, zone->present_pages,
6467 					 zone_batchsize(zone));
6468 }
6469 
6470 void __meminit init_currently_empty_zone(struct zone *zone,
6471 					unsigned long zone_start_pfn,
6472 					unsigned long size)
6473 {
6474 	struct pglist_data *pgdat = zone->zone_pgdat;
6475 	int zone_idx = zone_idx(zone) + 1;
6476 
6477 	if (zone_idx > pgdat->nr_zones)
6478 		pgdat->nr_zones = zone_idx;
6479 
6480 	zone->zone_start_pfn = zone_start_pfn;
6481 
6482 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6483 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6484 			pgdat->node_id,
6485 			(unsigned long)zone_idx(zone),
6486 			zone_start_pfn, (zone_start_pfn + size));
6487 
6488 	zone_init_free_lists(zone);
6489 	zone->initialized = 1;
6490 }
6491 
6492 /**
6493  * get_pfn_range_for_nid - Return the start and end page frames for a node
6494  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6495  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6496  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6497  *
6498  * It returns the start and end page frame of a node based on information
6499  * provided by memblock_set_node(). If called for a node
6500  * with no available memory, a warning is printed and the start and end
6501  * PFNs will be 0.
6502  */
6503 void __init get_pfn_range_for_nid(unsigned int nid,
6504 			unsigned long *start_pfn, unsigned long *end_pfn)
6505 {
6506 	unsigned long this_start_pfn, this_end_pfn;
6507 	int i;
6508 
6509 	*start_pfn = -1UL;
6510 	*end_pfn = 0;
6511 
6512 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6513 		*start_pfn = min(*start_pfn, this_start_pfn);
6514 		*end_pfn = max(*end_pfn, this_end_pfn);
6515 	}
6516 
6517 	if (*start_pfn == -1UL)
6518 		*start_pfn = 0;
6519 }
6520 
6521 /*
6522  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6523  * assumption is made that zones within a node are ordered in monotonic
6524  * increasing memory addresses so that the "highest" populated zone is used
6525  */
6526 static void __init find_usable_zone_for_movable(void)
6527 {
6528 	int zone_index;
6529 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6530 		if (zone_index == ZONE_MOVABLE)
6531 			continue;
6532 
6533 		if (arch_zone_highest_possible_pfn[zone_index] >
6534 				arch_zone_lowest_possible_pfn[zone_index])
6535 			break;
6536 	}
6537 
6538 	VM_BUG_ON(zone_index == -1);
6539 	movable_zone = zone_index;
6540 }
6541 
6542 /*
6543  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6544  * because it is sized independent of architecture. Unlike the other zones,
6545  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6546  * in each node depending on the size of each node and how evenly kernelcore
6547  * is distributed. This helper function adjusts the zone ranges
6548  * provided by the architecture for a given node by using the end of the
6549  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6550  * zones within a node are in order of monotonic increases memory addresses
6551  */
6552 static void __init adjust_zone_range_for_zone_movable(int nid,
6553 					unsigned long zone_type,
6554 					unsigned long node_start_pfn,
6555 					unsigned long node_end_pfn,
6556 					unsigned long *zone_start_pfn,
6557 					unsigned long *zone_end_pfn)
6558 {
6559 	/* Only adjust if ZONE_MOVABLE is on this node */
6560 	if (zone_movable_pfn[nid]) {
6561 		/* Size ZONE_MOVABLE */
6562 		if (zone_type == ZONE_MOVABLE) {
6563 			*zone_start_pfn = zone_movable_pfn[nid];
6564 			*zone_end_pfn = min(node_end_pfn,
6565 				arch_zone_highest_possible_pfn[movable_zone]);
6566 
6567 		/* Adjust for ZONE_MOVABLE starting within this range */
6568 		} else if (!mirrored_kernelcore &&
6569 			*zone_start_pfn < zone_movable_pfn[nid] &&
6570 			*zone_end_pfn > zone_movable_pfn[nid]) {
6571 			*zone_end_pfn = zone_movable_pfn[nid];
6572 
6573 		/* Check if this whole range is within ZONE_MOVABLE */
6574 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6575 			*zone_start_pfn = *zone_end_pfn;
6576 	}
6577 }
6578 
6579 /*
6580  * Return the number of pages a zone spans in a node, including holes
6581  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6582  */
6583 static unsigned long __init zone_spanned_pages_in_node(int nid,
6584 					unsigned long zone_type,
6585 					unsigned long node_start_pfn,
6586 					unsigned long node_end_pfn,
6587 					unsigned long *zone_start_pfn,
6588 					unsigned long *zone_end_pfn)
6589 {
6590 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6591 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6592 	/* When hotadd a new node from cpu_up(), the node should be empty */
6593 	if (!node_start_pfn && !node_end_pfn)
6594 		return 0;
6595 
6596 	/* Get the start and end of the zone */
6597 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6598 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6599 	adjust_zone_range_for_zone_movable(nid, zone_type,
6600 				node_start_pfn, node_end_pfn,
6601 				zone_start_pfn, zone_end_pfn);
6602 
6603 	/* Check that this node has pages within the zone's required range */
6604 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6605 		return 0;
6606 
6607 	/* Move the zone boundaries inside the node if necessary */
6608 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6609 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6610 
6611 	/* Return the spanned pages */
6612 	return *zone_end_pfn - *zone_start_pfn;
6613 }
6614 
6615 /*
6616  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6617  * then all holes in the requested range will be accounted for.
6618  */
6619 unsigned long __init __absent_pages_in_range(int nid,
6620 				unsigned long range_start_pfn,
6621 				unsigned long range_end_pfn)
6622 {
6623 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6624 	unsigned long start_pfn, end_pfn;
6625 	int i;
6626 
6627 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6628 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6629 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6630 		nr_absent -= end_pfn - start_pfn;
6631 	}
6632 	return nr_absent;
6633 }
6634 
6635 /**
6636  * absent_pages_in_range - Return number of page frames in holes within a range
6637  * @start_pfn: The start PFN to start searching for holes
6638  * @end_pfn: The end PFN to stop searching for holes
6639  *
6640  * Return: the number of pages frames in memory holes within a range.
6641  */
6642 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6643 							unsigned long end_pfn)
6644 {
6645 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6646 }
6647 
6648 /* Return the number of page frames in holes in a zone on a node */
6649 static unsigned long __init zone_absent_pages_in_node(int nid,
6650 					unsigned long zone_type,
6651 					unsigned long node_start_pfn,
6652 					unsigned long node_end_pfn)
6653 {
6654 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6655 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6656 	unsigned long zone_start_pfn, zone_end_pfn;
6657 	unsigned long nr_absent;
6658 
6659 	/* When hotadd a new node from cpu_up(), the node should be empty */
6660 	if (!node_start_pfn && !node_end_pfn)
6661 		return 0;
6662 
6663 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6664 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6665 
6666 	adjust_zone_range_for_zone_movable(nid, zone_type,
6667 			node_start_pfn, node_end_pfn,
6668 			&zone_start_pfn, &zone_end_pfn);
6669 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6670 
6671 	/*
6672 	 * ZONE_MOVABLE handling.
6673 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6674 	 * and vice versa.
6675 	 */
6676 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6677 		unsigned long start_pfn, end_pfn;
6678 		struct memblock_region *r;
6679 
6680 		for_each_mem_region(r) {
6681 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6682 					  zone_start_pfn, zone_end_pfn);
6683 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6684 					zone_start_pfn, zone_end_pfn);
6685 
6686 			if (zone_type == ZONE_MOVABLE &&
6687 			    memblock_is_mirror(r))
6688 				nr_absent += end_pfn - start_pfn;
6689 
6690 			if (zone_type == ZONE_NORMAL &&
6691 			    !memblock_is_mirror(r))
6692 				nr_absent += end_pfn - start_pfn;
6693 		}
6694 	}
6695 
6696 	return nr_absent;
6697 }
6698 
6699 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6700 						unsigned long node_start_pfn,
6701 						unsigned long node_end_pfn)
6702 {
6703 	unsigned long realtotalpages = 0, totalpages = 0;
6704 	enum zone_type i;
6705 
6706 	for (i = 0; i < MAX_NR_ZONES; i++) {
6707 		struct zone *zone = pgdat->node_zones + i;
6708 		unsigned long zone_start_pfn, zone_end_pfn;
6709 		unsigned long spanned, absent;
6710 		unsigned long size, real_size;
6711 
6712 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6713 						     node_start_pfn,
6714 						     node_end_pfn,
6715 						     &zone_start_pfn,
6716 						     &zone_end_pfn);
6717 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
6718 						   node_start_pfn,
6719 						   node_end_pfn);
6720 
6721 		size = spanned;
6722 		real_size = size - absent;
6723 
6724 		if (size)
6725 			zone->zone_start_pfn = zone_start_pfn;
6726 		else
6727 			zone->zone_start_pfn = 0;
6728 		zone->spanned_pages = size;
6729 		zone->present_pages = real_size;
6730 
6731 		totalpages += size;
6732 		realtotalpages += real_size;
6733 	}
6734 
6735 	pgdat->node_spanned_pages = totalpages;
6736 	pgdat->node_present_pages = realtotalpages;
6737 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6738 							realtotalpages);
6739 }
6740 
6741 #ifndef CONFIG_SPARSEMEM
6742 /*
6743  * Calculate the size of the zone->blockflags rounded to an unsigned long
6744  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6745  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6746  * round what is now in bits to nearest long in bits, then return it in
6747  * bytes.
6748  */
6749 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6750 {
6751 	unsigned long usemapsize;
6752 
6753 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6754 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6755 	usemapsize = usemapsize >> pageblock_order;
6756 	usemapsize *= NR_PAGEBLOCK_BITS;
6757 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6758 
6759 	return usemapsize / 8;
6760 }
6761 
6762 static void __ref setup_usemap(struct pglist_data *pgdat,
6763 				struct zone *zone,
6764 				unsigned long zone_start_pfn,
6765 				unsigned long zonesize)
6766 {
6767 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6768 	zone->pageblock_flags = NULL;
6769 	if (usemapsize) {
6770 		zone->pageblock_flags =
6771 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6772 					    pgdat->node_id);
6773 		if (!zone->pageblock_flags)
6774 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6775 			      usemapsize, zone->name, pgdat->node_id);
6776 	}
6777 }
6778 #else
6779 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6780 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6781 #endif /* CONFIG_SPARSEMEM */
6782 
6783 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6784 
6785 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6786 void __init set_pageblock_order(void)
6787 {
6788 	unsigned int order;
6789 
6790 	/* Check that pageblock_nr_pages has not already been setup */
6791 	if (pageblock_order)
6792 		return;
6793 
6794 	if (HPAGE_SHIFT > PAGE_SHIFT)
6795 		order = HUGETLB_PAGE_ORDER;
6796 	else
6797 		order = MAX_ORDER - 1;
6798 
6799 	/*
6800 	 * Assume the largest contiguous order of interest is a huge page.
6801 	 * This value may be variable depending on boot parameters on IA64 and
6802 	 * powerpc.
6803 	 */
6804 	pageblock_order = order;
6805 }
6806 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6807 
6808 /*
6809  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6810  * is unused as pageblock_order is set at compile-time. See
6811  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6812  * the kernel config
6813  */
6814 void __init set_pageblock_order(void)
6815 {
6816 }
6817 
6818 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6819 
6820 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6821 						unsigned long present_pages)
6822 {
6823 	unsigned long pages = spanned_pages;
6824 
6825 	/*
6826 	 * Provide a more accurate estimation if there are holes within
6827 	 * the zone and SPARSEMEM is in use. If there are holes within the
6828 	 * zone, each populated memory region may cost us one or two extra
6829 	 * memmap pages due to alignment because memmap pages for each
6830 	 * populated regions may not be naturally aligned on page boundary.
6831 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6832 	 */
6833 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6834 	    IS_ENABLED(CONFIG_SPARSEMEM))
6835 		pages = present_pages;
6836 
6837 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6838 }
6839 
6840 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6841 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6842 {
6843 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6844 
6845 	spin_lock_init(&ds_queue->split_queue_lock);
6846 	INIT_LIST_HEAD(&ds_queue->split_queue);
6847 	ds_queue->split_queue_len = 0;
6848 }
6849 #else
6850 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6851 #endif
6852 
6853 #ifdef CONFIG_COMPACTION
6854 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6855 {
6856 	init_waitqueue_head(&pgdat->kcompactd_wait);
6857 }
6858 #else
6859 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6860 #endif
6861 
6862 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6863 {
6864 	pgdat_resize_init(pgdat);
6865 
6866 	pgdat_init_split_queue(pgdat);
6867 	pgdat_init_kcompactd(pgdat);
6868 
6869 	init_waitqueue_head(&pgdat->kswapd_wait);
6870 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6871 
6872 	pgdat_page_ext_init(pgdat);
6873 	lruvec_init(&pgdat->__lruvec);
6874 }
6875 
6876 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6877 							unsigned long remaining_pages)
6878 {
6879 	atomic_long_set(&zone->managed_pages, remaining_pages);
6880 	zone_set_nid(zone, nid);
6881 	zone->name = zone_names[idx];
6882 	zone->zone_pgdat = NODE_DATA(nid);
6883 	spin_lock_init(&zone->lock);
6884 	zone_seqlock_init(zone);
6885 	zone_pcp_init(zone);
6886 }
6887 
6888 /*
6889  * Set up the zone data structures
6890  * - init pgdat internals
6891  * - init all zones belonging to this node
6892  *
6893  * NOTE: this function is only called during memory hotplug
6894  */
6895 #ifdef CONFIG_MEMORY_HOTPLUG
6896 void __ref free_area_init_core_hotplug(int nid)
6897 {
6898 	enum zone_type z;
6899 	pg_data_t *pgdat = NODE_DATA(nid);
6900 
6901 	pgdat_init_internals(pgdat);
6902 	for (z = 0; z < MAX_NR_ZONES; z++)
6903 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6904 }
6905 #endif
6906 
6907 /*
6908  * Set up the zone data structures:
6909  *   - mark all pages reserved
6910  *   - mark all memory queues empty
6911  *   - clear the memory bitmaps
6912  *
6913  * NOTE: pgdat should get zeroed by caller.
6914  * NOTE: this function is only called during early init.
6915  */
6916 static void __init free_area_init_core(struct pglist_data *pgdat)
6917 {
6918 	enum zone_type j;
6919 	int nid = pgdat->node_id;
6920 
6921 	pgdat_init_internals(pgdat);
6922 	pgdat->per_cpu_nodestats = &boot_nodestats;
6923 
6924 	for (j = 0; j < MAX_NR_ZONES; j++) {
6925 		struct zone *zone = pgdat->node_zones + j;
6926 		unsigned long size, freesize, memmap_pages;
6927 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6928 
6929 		size = zone->spanned_pages;
6930 		freesize = zone->present_pages;
6931 
6932 		/*
6933 		 * Adjust freesize so that it accounts for how much memory
6934 		 * is used by this zone for memmap. This affects the watermark
6935 		 * and per-cpu initialisations
6936 		 */
6937 		memmap_pages = calc_memmap_size(size, freesize);
6938 		if (!is_highmem_idx(j)) {
6939 			if (freesize >= memmap_pages) {
6940 				freesize -= memmap_pages;
6941 				if (memmap_pages)
6942 					printk(KERN_DEBUG
6943 					       "  %s zone: %lu pages used for memmap\n",
6944 					       zone_names[j], memmap_pages);
6945 			} else
6946 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6947 					zone_names[j], memmap_pages, freesize);
6948 		}
6949 
6950 		/* Account for reserved pages */
6951 		if (j == 0 && freesize > dma_reserve) {
6952 			freesize -= dma_reserve;
6953 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6954 					zone_names[0], dma_reserve);
6955 		}
6956 
6957 		if (!is_highmem_idx(j))
6958 			nr_kernel_pages += freesize;
6959 		/* Charge for highmem memmap if there are enough kernel pages */
6960 		else if (nr_kernel_pages > memmap_pages * 2)
6961 			nr_kernel_pages -= memmap_pages;
6962 		nr_all_pages += freesize;
6963 
6964 		/*
6965 		 * Set an approximate value for lowmem here, it will be adjusted
6966 		 * when the bootmem allocator frees pages into the buddy system.
6967 		 * And all highmem pages will be managed by the buddy system.
6968 		 */
6969 		zone_init_internals(zone, j, nid, freesize);
6970 
6971 		if (!size)
6972 			continue;
6973 
6974 		set_pageblock_order();
6975 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6976 		init_currently_empty_zone(zone, zone_start_pfn, size);
6977 		memmap_init(size, nid, j, zone_start_pfn);
6978 	}
6979 }
6980 
6981 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6982 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6983 {
6984 	unsigned long __maybe_unused start = 0;
6985 	unsigned long __maybe_unused offset = 0;
6986 
6987 	/* Skip empty nodes */
6988 	if (!pgdat->node_spanned_pages)
6989 		return;
6990 
6991 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6992 	offset = pgdat->node_start_pfn - start;
6993 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6994 	if (!pgdat->node_mem_map) {
6995 		unsigned long size, end;
6996 		struct page *map;
6997 
6998 		/*
6999 		 * The zone's endpoints aren't required to be MAX_ORDER
7000 		 * aligned but the node_mem_map endpoints must be in order
7001 		 * for the buddy allocator to function correctly.
7002 		 */
7003 		end = pgdat_end_pfn(pgdat);
7004 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7005 		size =  (end - start) * sizeof(struct page);
7006 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7007 					  pgdat->node_id);
7008 		if (!map)
7009 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7010 			      size, pgdat->node_id);
7011 		pgdat->node_mem_map = map + offset;
7012 	}
7013 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7014 				__func__, pgdat->node_id, (unsigned long)pgdat,
7015 				(unsigned long)pgdat->node_mem_map);
7016 #ifndef CONFIG_NEED_MULTIPLE_NODES
7017 	/*
7018 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7019 	 */
7020 	if (pgdat == NODE_DATA(0)) {
7021 		mem_map = NODE_DATA(0)->node_mem_map;
7022 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7023 			mem_map -= offset;
7024 	}
7025 #endif
7026 }
7027 #else
7028 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7029 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
7030 
7031 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7032 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7033 {
7034 	pgdat->first_deferred_pfn = ULONG_MAX;
7035 }
7036 #else
7037 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7038 #endif
7039 
7040 static void __init free_area_init_node(int nid)
7041 {
7042 	pg_data_t *pgdat = NODE_DATA(nid);
7043 	unsigned long start_pfn = 0;
7044 	unsigned long end_pfn = 0;
7045 
7046 	/* pg_data_t should be reset to zero when it's allocated */
7047 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7048 
7049 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7050 
7051 	pgdat->node_id = nid;
7052 	pgdat->node_start_pfn = start_pfn;
7053 	pgdat->per_cpu_nodestats = NULL;
7054 
7055 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7056 		(u64)start_pfn << PAGE_SHIFT,
7057 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7058 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7059 
7060 	alloc_node_mem_map(pgdat);
7061 	pgdat_set_deferred_range(pgdat);
7062 
7063 	free_area_init_core(pgdat);
7064 }
7065 
7066 void __init free_area_init_memoryless_node(int nid)
7067 {
7068 	free_area_init_node(nid);
7069 }
7070 
7071 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
7072 /*
7073  * Initialize all valid struct pages in the range [spfn, epfn) and mark them
7074  * PageReserved(). Return the number of struct pages that were initialized.
7075  */
7076 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
7077 {
7078 	unsigned long pfn;
7079 	u64 pgcnt = 0;
7080 
7081 	for (pfn = spfn; pfn < epfn; pfn++) {
7082 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
7083 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
7084 				+ pageblock_nr_pages - 1;
7085 			continue;
7086 		}
7087 		/*
7088 		 * Use a fake node/zone (0) for now. Some of these pages
7089 		 * (in memblock.reserved but not in memblock.memory) will
7090 		 * get re-initialized via reserve_bootmem_region() later.
7091 		 */
7092 		__init_single_page(pfn_to_page(pfn), pfn, 0, 0);
7093 		__SetPageReserved(pfn_to_page(pfn));
7094 		pgcnt++;
7095 	}
7096 
7097 	return pgcnt;
7098 }
7099 
7100 /*
7101  * Only struct pages that are backed by physical memory are zeroed and
7102  * initialized by going through __init_single_page(). But, there are some
7103  * struct pages which are reserved in memblock allocator and their fields
7104  * may be accessed (for example page_to_pfn() on some configuration accesses
7105  * flags). We must explicitly initialize those struct pages.
7106  *
7107  * This function also addresses a similar issue where struct pages are left
7108  * uninitialized because the physical address range is not covered by
7109  * memblock.memory or memblock.reserved. That could happen when memblock
7110  * layout is manually configured via memmap=, or when the highest physical
7111  * address (max_pfn) does not end on a section boundary.
7112  */
7113 static void __init init_unavailable_mem(void)
7114 {
7115 	phys_addr_t start, end;
7116 	u64 i, pgcnt;
7117 	phys_addr_t next = 0;
7118 
7119 	/*
7120 	 * Loop through unavailable ranges not covered by memblock.memory.
7121 	 */
7122 	pgcnt = 0;
7123 	for_each_mem_range(i, &start, &end) {
7124 		if (next < start)
7125 			pgcnt += init_unavailable_range(PFN_DOWN(next),
7126 							PFN_UP(start));
7127 		next = end;
7128 	}
7129 
7130 	/*
7131 	 * Early sections always have a fully populated memmap for the whole
7132 	 * section - see pfn_valid(). If the last section has holes at the
7133 	 * end and that section is marked "online", the memmap will be
7134 	 * considered initialized. Make sure that memmap has a well defined
7135 	 * state.
7136 	 */
7137 	pgcnt += init_unavailable_range(PFN_DOWN(next),
7138 					round_up(max_pfn, PAGES_PER_SECTION));
7139 
7140 	/*
7141 	 * Struct pages that do not have backing memory. This could be because
7142 	 * firmware is using some of this memory, or for some other reasons.
7143 	 */
7144 	if (pgcnt)
7145 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7146 }
7147 #else
7148 static inline void __init init_unavailable_mem(void)
7149 {
7150 }
7151 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7152 
7153 #if MAX_NUMNODES > 1
7154 /*
7155  * Figure out the number of possible node ids.
7156  */
7157 void __init setup_nr_node_ids(void)
7158 {
7159 	unsigned int highest;
7160 
7161 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7162 	nr_node_ids = highest + 1;
7163 }
7164 #endif
7165 
7166 /**
7167  * node_map_pfn_alignment - determine the maximum internode alignment
7168  *
7169  * This function should be called after node map is populated and sorted.
7170  * It calculates the maximum power of two alignment which can distinguish
7171  * all the nodes.
7172  *
7173  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7174  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7175  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7176  * shifted, 1GiB is enough and this function will indicate so.
7177  *
7178  * This is used to test whether pfn -> nid mapping of the chosen memory
7179  * model has fine enough granularity to avoid incorrect mapping for the
7180  * populated node map.
7181  *
7182  * Return: the determined alignment in pfn's.  0 if there is no alignment
7183  * requirement (single node).
7184  */
7185 unsigned long __init node_map_pfn_alignment(void)
7186 {
7187 	unsigned long accl_mask = 0, last_end = 0;
7188 	unsigned long start, end, mask;
7189 	int last_nid = NUMA_NO_NODE;
7190 	int i, nid;
7191 
7192 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7193 		if (!start || last_nid < 0 || last_nid == nid) {
7194 			last_nid = nid;
7195 			last_end = end;
7196 			continue;
7197 		}
7198 
7199 		/*
7200 		 * Start with a mask granular enough to pin-point to the
7201 		 * start pfn and tick off bits one-by-one until it becomes
7202 		 * too coarse to separate the current node from the last.
7203 		 */
7204 		mask = ~((1 << __ffs(start)) - 1);
7205 		while (mask && last_end <= (start & (mask << 1)))
7206 			mask <<= 1;
7207 
7208 		/* accumulate all internode masks */
7209 		accl_mask |= mask;
7210 	}
7211 
7212 	/* convert mask to number of pages */
7213 	return ~accl_mask + 1;
7214 }
7215 
7216 /**
7217  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7218  *
7219  * Return: the minimum PFN based on information provided via
7220  * memblock_set_node().
7221  */
7222 unsigned long __init find_min_pfn_with_active_regions(void)
7223 {
7224 	return PHYS_PFN(memblock_start_of_DRAM());
7225 }
7226 
7227 /*
7228  * early_calculate_totalpages()
7229  * Sum pages in active regions for movable zone.
7230  * Populate N_MEMORY for calculating usable_nodes.
7231  */
7232 static unsigned long __init early_calculate_totalpages(void)
7233 {
7234 	unsigned long totalpages = 0;
7235 	unsigned long start_pfn, end_pfn;
7236 	int i, nid;
7237 
7238 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7239 		unsigned long pages = end_pfn - start_pfn;
7240 
7241 		totalpages += pages;
7242 		if (pages)
7243 			node_set_state(nid, N_MEMORY);
7244 	}
7245 	return totalpages;
7246 }
7247 
7248 /*
7249  * Find the PFN the Movable zone begins in each node. Kernel memory
7250  * is spread evenly between nodes as long as the nodes have enough
7251  * memory. When they don't, some nodes will have more kernelcore than
7252  * others
7253  */
7254 static void __init find_zone_movable_pfns_for_nodes(void)
7255 {
7256 	int i, nid;
7257 	unsigned long usable_startpfn;
7258 	unsigned long kernelcore_node, kernelcore_remaining;
7259 	/* save the state before borrow the nodemask */
7260 	nodemask_t saved_node_state = node_states[N_MEMORY];
7261 	unsigned long totalpages = early_calculate_totalpages();
7262 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7263 	struct memblock_region *r;
7264 
7265 	/* Need to find movable_zone earlier when movable_node is specified. */
7266 	find_usable_zone_for_movable();
7267 
7268 	/*
7269 	 * If movable_node is specified, ignore kernelcore and movablecore
7270 	 * options.
7271 	 */
7272 	if (movable_node_is_enabled()) {
7273 		for_each_mem_region(r) {
7274 			if (!memblock_is_hotpluggable(r))
7275 				continue;
7276 
7277 			nid = memblock_get_region_node(r);
7278 
7279 			usable_startpfn = PFN_DOWN(r->base);
7280 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7281 				min(usable_startpfn, zone_movable_pfn[nid]) :
7282 				usable_startpfn;
7283 		}
7284 
7285 		goto out2;
7286 	}
7287 
7288 	/*
7289 	 * If kernelcore=mirror is specified, ignore movablecore option
7290 	 */
7291 	if (mirrored_kernelcore) {
7292 		bool mem_below_4gb_not_mirrored = false;
7293 
7294 		for_each_mem_region(r) {
7295 			if (memblock_is_mirror(r))
7296 				continue;
7297 
7298 			nid = memblock_get_region_node(r);
7299 
7300 			usable_startpfn = memblock_region_memory_base_pfn(r);
7301 
7302 			if (usable_startpfn < 0x100000) {
7303 				mem_below_4gb_not_mirrored = true;
7304 				continue;
7305 			}
7306 
7307 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7308 				min(usable_startpfn, zone_movable_pfn[nid]) :
7309 				usable_startpfn;
7310 		}
7311 
7312 		if (mem_below_4gb_not_mirrored)
7313 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7314 
7315 		goto out2;
7316 	}
7317 
7318 	/*
7319 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7320 	 * amount of necessary memory.
7321 	 */
7322 	if (required_kernelcore_percent)
7323 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7324 				       10000UL;
7325 	if (required_movablecore_percent)
7326 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7327 					10000UL;
7328 
7329 	/*
7330 	 * If movablecore= was specified, calculate what size of
7331 	 * kernelcore that corresponds so that memory usable for
7332 	 * any allocation type is evenly spread. If both kernelcore
7333 	 * and movablecore are specified, then the value of kernelcore
7334 	 * will be used for required_kernelcore if it's greater than
7335 	 * what movablecore would have allowed.
7336 	 */
7337 	if (required_movablecore) {
7338 		unsigned long corepages;
7339 
7340 		/*
7341 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7342 		 * was requested by the user
7343 		 */
7344 		required_movablecore =
7345 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7346 		required_movablecore = min(totalpages, required_movablecore);
7347 		corepages = totalpages - required_movablecore;
7348 
7349 		required_kernelcore = max(required_kernelcore, corepages);
7350 	}
7351 
7352 	/*
7353 	 * If kernelcore was not specified or kernelcore size is larger
7354 	 * than totalpages, there is no ZONE_MOVABLE.
7355 	 */
7356 	if (!required_kernelcore || required_kernelcore >= totalpages)
7357 		goto out;
7358 
7359 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7360 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7361 
7362 restart:
7363 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7364 	kernelcore_node = required_kernelcore / usable_nodes;
7365 	for_each_node_state(nid, N_MEMORY) {
7366 		unsigned long start_pfn, end_pfn;
7367 
7368 		/*
7369 		 * Recalculate kernelcore_node if the division per node
7370 		 * now exceeds what is necessary to satisfy the requested
7371 		 * amount of memory for the kernel
7372 		 */
7373 		if (required_kernelcore < kernelcore_node)
7374 			kernelcore_node = required_kernelcore / usable_nodes;
7375 
7376 		/*
7377 		 * As the map is walked, we track how much memory is usable
7378 		 * by the kernel using kernelcore_remaining. When it is
7379 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7380 		 */
7381 		kernelcore_remaining = kernelcore_node;
7382 
7383 		/* Go through each range of PFNs within this node */
7384 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7385 			unsigned long size_pages;
7386 
7387 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7388 			if (start_pfn >= end_pfn)
7389 				continue;
7390 
7391 			/* Account for what is only usable for kernelcore */
7392 			if (start_pfn < usable_startpfn) {
7393 				unsigned long kernel_pages;
7394 				kernel_pages = min(end_pfn, usable_startpfn)
7395 								- start_pfn;
7396 
7397 				kernelcore_remaining -= min(kernel_pages,
7398 							kernelcore_remaining);
7399 				required_kernelcore -= min(kernel_pages,
7400 							required_kernelcore);
7401 
7402 				/* Continue if range is now fully accounted */
7403 				if (end_pfn <= usable_startpfn) {
7404 
7405 					/*
7406 					 * Push zone_movable_pfn to the end so
7407 					 * that if we have to rebalance
7408 					 * kernelcore across nodes, we will
7409 					 * not double account here
7410 					 */
7411 					zone_movable_pfn[nid] = end_pfn;
7412 					continue;
7413 				}
7414 				start_pfn = usable_startpfn;
7415 			}
7416 
7417 			/*
7418 			 * The usable PFN range for ZONE_MOVABLE is from
7419 			 * start_pfn->end_pfn. Calculate size_pages as the
7420 			 * number of pages used as kernelcore
7421 			 */
7422 			size_pages = end_pfn - start_pfn;
7423 			if (size_pages > kernelcore_remaining)
7424 				size_pages = kernelcore_remaining;
7425 			zone_movable_pfn[nid] = start_pfn + size_pages;
7426 
7427 			/*
7428 			 * Some kernelcore has been met, update counts and
7429 			 * break if the kernelcore for this node has been
7430 			 * satisfied
7431 			 */
7432 			required_kernelcore -= min(required_kernelcore,
7433 								size_pages);
7434 			kernelcore_remaining -= size_pages;
7435 			if (!kernelcore_remaining)
7436 				break;
7437 		}
7438 	}
7439 
7440 	/*
7441 	 * If there is still required_kernelcore, we do another pass with one
7442 	 * less node in the count. This will push zone_movable_pfn[nid] further
7443 	 * along on the nodes that still have memory until kernelcore is
7444 	 * satisfied
7445 	 */
7446 	usable_nodes--;
7447 	if (usable_nodes && required_kernelcore > usable_nodes)
7448 		goto restart;
7449 
7450 out2:
7451 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7452 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7453 		zone_movable_pfn[nid] =
7454 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7455 
7456 out:
7457 	/* restore the node_state */
7458 	node_states[N_MEMORY] = saved_node_state;
7459 }
7460 
7461 /* Any regular or high memory on that node ? */
7462 static void check_for_memory(pg_data_t *pgdat, int nid)
7463 {
7464 	enum zone_type zone_type;
7465 
7466 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7467 		struct zone *zone = &pgdat->node_zones[zone_type];
7468 		if (populated_zone(zone)) {
7469 			if (IS_ENABLED(CONFIG_HIGHMEM))
7470 				node_set_state(nid, N_HIGH_MEMORY);
7471 			if (zone_type <= ZONE_NORMAL)
7472 				node_set_state(nid, N_NORMAL_MEMORY);
7473 			break;
7474 		}
7475 	}
7476 }
7477 
7478 /*
7479  * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7480  * such cases we allow max_zone_pfn sorted in the descending order
7481  */
7482 bool __weak arch_has_descending_max_zone_pfns(void)
7483 {
7484 	return false;
7485 }
7486 
7487 /**
7488  * free_area_init - Initialise all pg_data_t and zone data
7489  * @max_zone_pfn: an array of max PFNs for each zone
7490  *
7491  * This will call free_area_init_node() for each active node in the system.
7492  * Using the page ranges provided by memblock_set_node(), the size of each
7493  * zone in each node and their holes is calculated. If the maximum PFN
7494  * between two adjacent zones match, it is assumed that the zone is empty.
7495  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7496  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7497  * starts where the previous one ended. For example, ZONE_DMA32 starts
7498  * at arch_max_dma_pfn.
7499  */
7500 void __init free_area_init(unsigned long *max_zone_pfn)
7501 {
7502 	unsigned long start_pfn, end_pfn;
7503 	int i, nid, zone;
7504 	bool descending;
7505 
7506 	/* Record where the zone boundaries are */
7507 	memset(arch_zone_lowest_possible_pfn, 0,
7508 				sizeof(arch_zone_lowest_possible_pfn));
7509 	memset(arch_zone_highest_possible_pfn, 0,
7510 				sizeof(arch_zone_highest_possible_pfn));
7511 
7512 	start_pfn = find_min_pfn_with_active_regions();
7513 	descending = arch_has_descending_max_zone_pfns();
7514 
7515 	for (i = 0; i < MAX_NR_ZONES; i++) {
7516 		if (descending)
7517 			zone = MAX_NR_ZONES - i - 1;
7518 		else
7519 			zone = i;
7520 
7521 		if (zone == ZONE_MOVABLE)
7522 			continue;
7523 
7524 		end_pfn = max(max_zone_pfn[zone], start_pfn);
7525 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7526 		arch_zone_highest_possible_pfn[zone] = end_pfn;
7527 
7528 		start_pfn = end_pfn;
7529 	}
7530 
7531 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7532 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7533 	find_zone_movable_pfns_for_nodes();
7534 
7535 	/* Print out the zone ranges */
7536 	pr_info("Zone ranges:\n");
7537 	for (i = 0; i < MAX_NR_ZONES; i++) {
7538 		if (i == ZONE_MOVABLE)
7539 			continue;
7540 		pr_info("  %-8s ", zone_names[i]);
7541 		if (arch_zone_lowest_possible_pfn[i] ==
7542 				arch_zone_highest_possible_pfn[i])
7543 			pr_cont("empty\n");
7544 		else
7545 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7546 				(u64)arch_zone_lowest_possible_pfn[i]
7547 					<< PAGE_SHIFT,
7548 				((u64)arch_zone_highest_possible_pfn[i]
7549 					<< PAGE_SHIFT) - 1);
7550 	}
7551 
7552 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7553 	pr_info("Movable zone start for each node\n");
7554 	for (i = 0; i < MAX_NUMNODES; i++) {
7555 		if (zone_movable_pfn[i])
7556 			pr_info("  Node %d: %#018Lx\n", i,
7557 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7558 	}
7559 
7560 	/*
7561 	 * Print out the early node map, and initialize the
7562 	 * subsection-map relative to active online memory ranges to
7563 	 * enable future "sub-section" extensions of the memory map.
7564 	 */
7565 	pr_info("Early memory node ranges\n");
7566 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7567 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7568 			(u64)start_pfn << PAGE_SHIFT,
7569 			((u64)end_pfn << PAGE_SHIFT) - 1);
7570 		subsection_map_init(start_pfn, end_pfn - start_pfn);
7571 	}
7572 
7573 	/* Initialise every node */
7574 	mminit_verify_pageflags_layout();
7575 	setup_nr_node_ids();
7576 	init_unavailable_mem();
7577 	for_each_online_node(nid) {
7578 		pg_data_t *pgdat = NODE_DATA(nid);
7579 		free_area_init_node(nid);
7580 
7581 		/* Any memory on that node */
7582 		if (pgdat->node_present_pages)
7583 			node_set_state(nid, N_MEMORY);
7584 		check_for_memory(pgdat, nid);
7585 	}
7586 }
7587 
7588 static int __init cmdline_parse_core(char *p, unsigned long *core,
7589 				     unsigned long *percent)
7590 {
7591 	unsigned long long coremem;
7592 	char *endptr;
7593 
7594 	if (!p)
7595 		return -EINVAL;
7596 
7597 	/* Value may be a percentage of total memory, otherwise bytes */
7598 	coremem = simple_strtoull(p, &endptr, 0);
7599 	if (*endptr == '%') {
7600 		/* Paranoid check for percent values greater than 100 */
7601 		WARN_ON(coremem > 100);
7602 
7603 		*percent = coremem;
7604 	} else {
7605 		coremem = memparse(p, &p);
7606 		/* Paranoid check that UL is enough for the coremem value */
7607 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7608 
7609 		*core = coremem >> PAGE_SHIFT;
7610 		*percent = 0UL;
7611 	}
7612 	return 0;
7613 }
7614 
7615 /*
7616  * kernelcore=size sets the amount of memory for use for allocations that
7617  * cannot be reclaimed or migrated.
7618  */
7619 static int __init cmdline_parse_kernelcore(char *p)
7620 {
7621 	/* parse kernelcore=mirror */
7622 	if (parse_option_str(p, "mirror")) {
7623 		mirrored_kernelcore = true;
7624 		return 0;
7625 	}
7626 
7627 	return cmdline_parse_core(p, &required_kernelcore,
7628 				  &required_kernelcore_percent);
7629 }
7630 
7631 /*
7632  * movablecore=size sets the amount of memory for use for allocations that
7633  * can be reclaimed or migrated.
7634  */
7635 static int __init cmdline_parse_movablecore(char *p)
7636 {
7637 	return cmdline_parse_core(p, &required_movablecore,
7638 				  &required_movablecore_percent);
7639 }
7640 
7641 early_param("kernelcore", cmdline_parse_kernelcore);
7642 early_param("movablecore", cmdline_parse_movablecore);
7643 
7644 void adjust_managed_page_count(struct page *page, long count)
7645 {
7646 	atomic_long_add(count, &page_zone(page)->managed_pages);
7647 	totalram_pages_add(count);
7648 #ifdef CONFIG_HIGHMEM
7649 	if (PageHighMem(page))
7650 		totalhigh_pages_add(count);
7651 #endif
7652 }
7653 EXPORT_SYMBOL(adjust_managed_page_count);
7654 
7655 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7656 {
7657 	void *pos;
7658 	unsigned long pages = 0;
7659 
7660 	start = (void *)PAGE_ALIGN((unsigned long)start);
7661 	end = (void *)((unsigned long)end & PAGE_MASK);
7662 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7663 		struct page *page = virt_to_page(pos);
7664 		void *direct_map_addr;
7665 
7666 		/*
7667 		 * 'direct_map_addr' might be different from 'pos'
7668 		 * because some architectures' virt_to_page()
7669 		 * work with aliases.  Getting the direct map
7670 		 * address ensures that we get a _writeable_
7671 		 * alias for the memset().
7672 		 */
7673 		direct_map_addr = page_address(page);
7674 		if ((unsigned int)poison <= 0xFF)
7675 			memset(direct_map_addr, poison, PAGE_SIZE);
7676 
7677 		free_reserved_page(page);
7678 	}
7679 
7680 	if (pages && s)
7681 		pr_info("Freeing %s memory: %ldK\n",
7682 			s, pages << (PAGE_SHIFT - 10));
7683 
7684 	return pages;
7685 }
7686 
7687 #ifdef	CONFIG_HIGHMEM
7688 void free_highmem_page(struct page *page)
7689 {
7690 	__free_reserved_page(page);
7691 	totalram_pages_inc();
7692 	atomic_long_inc(&page_zone(page)->managed_pages);
7693 	totalhigh_pages_inc();
7694 }
7695 #endif
7696 
7697 
7698 void __init mem_init_print_info(const char *str)
7699 {
7700 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7701 	unsigned long init_code_size, init_data_size;
7702 
7703 	physpages = get_num_physpages();
7704 	codesize = _etext - _stext;
7705 	datasize = _edata - _sdata;
7706 	rosize = __end_rodata - __start_rodata;
7707 	bss_size = __bss_stop - __bss_start;
7708 	init_data_size = __init_end - __init_begin;
7709 	init_code_size = _einittext - _sinittext;
7710 
7711 	/*
7712 	 * Detect special cases and adjust section sizes accordingly:
7713 	 * 1) .init.* may be embedded into .data sections
7714 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7715 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7716 	 * 3) .rodata.* may be embedded into .text or .data sections.
7717 	 */
7718 #define adj_init_size(start, end, size, pos, adj) \
7719 	do { \
7720 		if (start <= pos && pos < end && size > adj) \
7721 			size -= adj; \
7722 	} while (0)
7723 
7724 	adj_init_size(__init_begin, __init_end, init_data_size,
7725 		     _sinittext, init_code_size);
7726 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7727 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7728 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7729 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7730 
7731 #undef	adj_init_size
7732 
7733 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7734 #ifdef	CONFIG_HIGHMEM
7735 		", %luK highmem"
7736 #endif
7737 		"%s%s)\n",
7738 		nr_free_pages() << (PAGE_SHIFT - 10),
7739 		physpages << (PAGE_SHIFT - 10),
7740 		codesize >> 10, datasize >> 10, rosize >> 10,
7741 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7742 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7743 		totalcma_pages << (PAGE_SHIFT - 10),
7744 #ifdef	CONFIG_HIGHMEM
7745 		totalhigh_pages() << (PAGE_SHIFT - 10),
7746 #endif
7747 		str ? ", " : "", str ? str : "");
7748 }
7749 
7750 /**
7751  * set_dma_reserve - set the specified number of pages reserved in the first zone
7752  * @new_dma_reserve: The number of pages to mark reserved
7753  *
7754  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7755  * In the DMA zone, a significant percentage may be consumed by kernel image
7756  * and other unfreeable allocations which can skew the watermarks badly. This
7757  * function may optionally be used to account for unfreeable pages in the
7758  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7759  * smaller per-cpu batchsize.
7760  */
7761 void __init set_dma_reserve(unsigned long new_dma_reserve)
7762 {
7763 	dma_reserve = new_dma_reserve;
7764 }
7765 
7766 static int page_alloc_cpu_dead(unsigned int cpu)
7767 {
7768 
7769 	lru_add_drain_cpu(cpu);
7770 	drain_pages(cpu);
7771 
7772 	/*
7773 	 * Spill the event counters of the dead processor
7774 	 * into the current processors event counters.
7775 	 * This artificially elevates the count of the current
7776 	 * processor.
7777 	 */
7778 	vm_events_fold_cpu(cpu);
7779 
7780 	/*
7781 	 * Zero the differential counters of the dead processor
7782 	 * so that the vm statistics are consistent.
7783 	 *
7784 	 * This is only okay since the processor is dead and cannot
7785 	 * race with what we are doing.
7786 	 */
7787 	cpu_vm_stats_fold(cpu);
7788 	return 0;
7789 }
7790 
7791 #ifdef CONFIG_NUMA
7792 int hashdist = HASHDIST_DEFAULT;
7793 
7794 static int __init set_hashdist(char *str)
7795 {
7796 	if (!str)
7797 		return 0;
7798 	hashdist = simple_strtoul(str, &str, 0);
7799 	return 1;
7800 }
7801 __setup("hashdist=", set_hashdist);
7802 #endif
7803 
7804 void __init page_alloc_init(void)
7805 {
7806 	int ret;
7807 
7808 #ifdef CONFIG_NUMA
7809 	if (num_node_state(N_MEMORY) == 1)
7810 		hashdist = 0;
7811 #endif
7812 
7813 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7814 					"mm/page_alloc:dead", NULL,
7815 					page_alloc_cpu_dead);
7816 	WARN_ON(ret < 0);
7817 }
7818 
7819 /*
7820  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7821  *	or min_free_kbytes changes.
7822  */
7823 static void calculate_totalreserve_pages(void)
7824 {
7825 	struct pglist_data *pgdat;
7826 	unsigned long reserve_pages = 0;
7827 	enum zone_type i, j;
7828 
7829 	for_each_online_pgdat(pgdat) {
7830 
7831 		pgdat->totalreserve_pages = 0;
7832 
7833 		for (i = 0; i < MAX_NR_ZONES; i++) {
7834 			struct zone *zone = pgdat->node_zones + i;
7835 			long max = 0;
7836 			unsigned long managed_pages = zone_managed_pages(zone);
7837 
7838 			/* Find valid and maximum lowmem_reserve in the zone */
7839 			for (j = i; j < MAX_NR_ZONES; j++) {
7840 				if (zone->lowmem_reserve[j] > max)
7841 					max = zone->lowmem_reserve[j];
7842 			}
7843 
7844 			/* we treat the high watermark as reserved pages. */
7845 			max += high_wmark_pages(zone);
7846 
7847 			if (max > managed_pages)
7848 				max = managed_pages;
7849 
7850 			pgdat->totalreserve_pages += max;
7851 
7852 			reserve_pages += max;
7853 		}
7854 	}
7855 	totalreserve_pages = reserve_pages;
7856 }
7857 
7858 /*
7859  * setup_per_zone_lowmem_reserve - called whenever
7860  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7861  *	has a correct pages reserved value, so an adequate number of
7862  *	pages are left in the zone after a successful __alloc_pages().
7863  */
7864 static void setup_per_zone_lowmem_reserve(void)
7865 {
7866 	struct pglist_data *pgdat;
7867 	enum zone_type i, j;
7868 
7869 	for_each_online_pgdat(pgdat) {
7870 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
7871 			struct zone *zone = &pgdat->node_zones[i];
7872 			int ratio = sysctl_lowmem_reserve_ratio[i];
7873 			bool clear = !ratio || !zone_managed_pages(zone);
7874 			unsigned long managed_pages = 0;
7875 
7876 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
7877 				if (clear) {
7878 					zone->lowmem_reserve[j] = 0;
7879 				} else {
7880 					struct zone *upper_zone = &pgdat->node_zones[j];
7881 
7882 					managed_pages += zone_managed_pages(upper_zone);
7883 					zone->lowmem_reserve[j] = managed_pages / ratio;
7884 				}
7885 			}
7886 		}
7887 	}
7888 
7889 	/* update totalreserve_pages */
7890 	calculate_totalreserve_pages();
7891 }
7892 
7893 static void __setup_per_zone_wmarks(void)
7894 {
7895 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7896 	unsigned long lowmem_pages = 0;
7897 	struct zone *zone;
7898 	unsigned long flags;
7899 
7900 	/* Calculate total number of !ZONE_HIGHMEM pages */
7901 	for_each_zone(zone) {
7902 		if (!is_highmem(zone))
7903 			lowmem_pages += zone_managed_pages(zone);
7904 	}
7905 
7906 	for_each_zone(zone) {
7907 		u64 tmp;
7908 
7909 		spin_lock_irqsave(&zone->lock, flags);
7910 		tmp = (u64)pages_min * zone_managed_pages(zone);
7911 		do_div(tmp, lowmem_pages);
7912 		if (is_highmem(zone)) {
7913 			/*
7914 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7915 			 * need highmem pages, so cap pages_min to a small
7916 			 * value here.
7917 			 *
7918 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7919 			 * deltas control async page reclaim, and so should
7920 			 * not be capped for highmem.
7921 			 */
7922 			unsigned long min_pages;
7923 
7924 			min_pages = zone_managed_pages(zone) / 1024;
7925 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7926 			zone->_watermark[WMARK_MIN] = min_pages;
7927 		} else {
7928 			/*
7929 			 * If it's a lowmem zone, reserve a number of pages
7930 			 * proportionate to the zone's size.
7931 			 */
7932 			zone->_watermark[WMARK_MIN] = tmp;
7933 		}
7934 
7935 		/*
7936 		 * Set the kswapd watermarks distance according to the
7937 		 * scale factor in proportion to available memory, but
7938 		 * ensure a minimum size on small systems.
7939 		 */
7940 		tmp = max_t(u64, tmp >> 2,
7941 			    mult_frac(zone_managed_pages(zone),
7942 				      watermark_scale_factor, 10000));
7943 
7944 		zone->watermark_boost = 0;
7945 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7946 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7947 
7948 		spin_unlock_irqrestore(&zone->lock, flags);
7949 	}
7950 
7951 	/* update totalreserve_pages */
7952 	calculate_totalreserve_pages();
7953 }
7954 
7955 /**
7956  * setup_per_zone_wmarks - called when min_free_kbytes changes
7957  * or when memory is hot-{added|removed}
7958  *
7959  * Ensures that the watermark[min,low,high] values for each zone are set
7960  * correctly with respect to min_free_kbytes.
7961  */
7962 void setup_per_zone_wmarks(void)
7963 {
7964 	static DEFINE_SPINLOCK(lock);
7965 
7966 	spin_lock(&lock);
7967 	__setup_per_zone_wmarks();
7968 	spin_unlock(&lock);
7969 }
7970 
7971 /*
7972  * Initialise min_free_kbytes.
7973  *
7974  * For small machines we want it small (128k min).  For large machines
7975  * we want it large (256MB max).  But it is not linear, because network
7976  * bandwidth does not increase linearly with machine size.  We use
7977  *
7978  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7979  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7980  *
7981  * which yields
7982  *
7983  * 16MB:	512k
7984  * 32MB:	724k
7985  * 64MB:	1024k
7986  * 128MB:	1448k
7987  * 256MB:	2048k
7988  * 512MB:	2896k
7989  * 1024MB:	4096k
7990  * 2048MB:	5792k
7991  * 4096MB:	8192k
7992  * 8192MB:	11584k
7993  * 16384MB:	16384k
7994  */
7995 int __meminit init_per_zone_wmark_min(void)
7996 {
7997 	unsigned long lowmem_kbytes;
7998 	int new_min_free_kbytes;
7999 
8000 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8001 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8002 
8003 	if (new_min_free_kbytes > user_min_free_kbytes) {
8004 		min_free_kbytes = new_min_free_kbytes;
8005 		if (min_free_kbytes < 128)
8006 			min_free_kbytes = 128;
8007 		if (min_free_kbytes > 262144)
8008 			min_free_kbytes = 262144;
8009 	} else {
8010 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8011 				new_min_free_kbytes, user_min_free_kbytes);
8012 	}
8013 	setup_per_zone_wmarks();
8014 	refresh_zone_stat_thresholds();
8015 	setup_per_zone_lowmem_reserve();
8016 
8017 #ifdef CONFIG_NUMA
8018 	setup_min_unmapped_ratio();
8019 	setup_min_slab_ratio();
8020 #endif
8021 
8022 	khugepaged_min_free_kbytes_update();
8023 
8024 	return 0;
8025 }
8026 postcore_initcall(init_per_zone_wmark_min)
8027 
8028 /*
8029  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8030  *	that we can call two helper functions whenever min_free_kbytes
8031  *	changes.
8032  */
8033 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8034 		void *buffer, size_t *length, loff_t *ppos)
8035 {
8036 	int rc;
8037 
8038 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8039 	if (rc)
8040 		return rc;
8041 
8042 	if (write) {
8043 		user_min_free_kbytes = min_free_kbytes;
8044 		setup_per_zone_wmarks();
8045 	}
8046 	return 0;
8047 }
8048 
8049 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8050 		void *buffer, size_t *length, loff_t *ppos)
8051 {
8052 	int rc;
8053 
8054 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8055 	if (rc)
8056 		return rc;
8057 
8058 	if (write)
8059 		setup_per_zone_wmarks();
8060 
8061 	return 0;
8062 }
8063 
8064 #ifdef CONFIG_NUMA
8065 static void setup_min_unmapped_ratio(void)
8066 {
8067 	pg_data_t *pgdat;
8068 	struct zone *zone;
8069 
8070 	for_each_online_pgdat(pgdat)
8071 		pgdat->min_unmapped_pages = 0;
8072 
8073 	for_each_zone(zone)
8074 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8075 						         sysctl_min_unmapped_ratio) / 100;
8076 }
8077 
8078 
8079 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8080 		void *buffer, size_t *length, loff_t *ppos)
8081 {
8082 	int rc;
8083 
8084 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8085 	if (rc)
8086 		return rc;
8087 
8088 	setup_min_unmapped_ratio();
8089 
8090 	return 0;
8091 }
8092 
8093 static void setup_min_slab_ratio(void)
8094 {
8095 	pg_data_t *pgdat;
8096 	struct zone *zone;
8097 
8098 	for_each_online_pgdat(pgdat)
8099 		pgdat->min_slab_pages = 0;
8100 
8101 	for_each_zone(zone)
8102 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8103 						     sysctl_min_slab_ratio) / 100;
8104 }
8105 
8106 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8107 		void *buffer, size_t *length, loff_t *ppos)
8108 {
8109 	int rc;
8110 
8111 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8112 	if (rc)
8113 		return rc;
8114 
8115 	setup_min_slab_ratio();
8116 
8117 	return 0;
8118 }
8119 #endif
8120 
8121 /*
8122  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8123  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8124  *	whenever sysctl_lowmem_reserve_ratio changes.
8125  *
8126  * The reserve ratio obviously has absolutely no relation with the
8127  * minimum watermarks. The lowmem reserve ratio can only make sense
8128  * if in function of the boot time zone sizes.
8129  */
8130 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8131 		void *buffer, size_t *length, loff_t *ppos)
8132 {
8133 	int i;
8134 
8135 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8136 
8137 	for (i = 0; i < MAX_NR_ZONES; i++) {
8138 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8139 			sysctl_lowmem_reserve_ratio[i] = 0;
8140 	}
8141 
8142 	setup_per_zone_lowmem_reserve();
8143 	return 0;
8144 }
8145 
8146 /*
8147  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8148  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8149  * pagelist can have before it gets flushed back to buddy allocator.
8150  */
8151 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8152 		void *buffer, size_t *length, loff_t *ppos)
8153 {
8154 	struct zone *zone;
8155 	int old_percpu_pagelist_fraction;
8156 	int ret;
8157 
8158 	mutex_lock(&pcp_batch_high_lock);
8159 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8160 
8161 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8162 	if (!write || ret < 0)
8163 		goto out;
8164 
8165 	/* Sanity checking to avoid pcp imbalance */
8166 	if (percpu_pagelist_fraction &&
8167 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8168 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8169 		ret = -EINVAL;
8170 		goto out;
8171 	}
8172 
8173 	/* No change? */
8174 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8175 		goto out;
8176 
8177 	for_each_populated_zone(zone)
8178 		zone_set_pageset_high_and_batch(zone);
8179 out:
8180 	mutex_unlock(&pcp_batch_high_lock);
8181 	return ret;
8182 }
8183 
8184 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8185 /*
8186  * Returns the number of pages that arch has reserved but
8187  * is not known to alloc_large_system_hash().
8188  */
8189 static unsigned long __init arch_reserved_kernel_pages(void)
8190 {
8191 	return 0;
8192 }
8193 #endif
8194 
8195 /*
8196  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8197  * machines. As memory size is increased the scale is also increased but at
8198  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8199  * quadruples the scale is increased by one, which means the size of hash table
8200  * only doubles, instead of quadrupling as well.
8201  * Because 32-bit systems cannot have large physical memory, where this scaling
8202  * makes sense, it is disabled on such platforms.
8203  */
8204 #if __BITS_PER_LONG > 32
8205 #define ADAPT_SCALE_BASE	(64ul << 30)
8206 #define ADAPT_SCALE_SHIFT	2
8207 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8208 #endif
8209 
8210 /*
8211  * allocate a large system hash table from bootmem
8212  * - it is assumed that the hash table must contain an exact power-of-2
8213  *   quantity of entries
8214  * - limit is the number of hash buckets, not the total allocation size
8215  */
8216 void *__init alloc_large_system_hash(const char *tablename,
8217 				     unsigned long bucketsize,
8218 				     unsigned long numentries,
8219 				     int scale,
8220 				     int flags,
8221 				     unsigned int *_hash_shift,
8222 				     unsigned int *_hash_mask,
8223 				     unsigned long low_limit,
8224 				     unsigned long high_limit)
8225 {
8226 	unsigned long long max = high_limit;
8227 	unsigned long log2qty, size;
8228 	void *table = NULL;
8229 	gfp_t gfp_flags;
8230 	bool virt;
8231 
8232 	/* allow the kernel cmdline to have a say */
8233 	if (!numentries) {
8234 		/* round applicable memory size up to nearest megabyte */
8235 		numentries = nr_kernel_pages;
8236 		numentries -= arch_reserved_kernel_pages();
8237 
8238 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8239 		if (PAGE_SHIFT < 20)
8240 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8241 
8242 #if __BITS_PER_LONG > 32
8243 		if (!high_limit) {
8244 			unsigned long adapt;
8245 
8246 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8247 			     adapt <<= ADAPT_SCALE_SHIFT)
8248 				scale++;
8249 		}
8250 #endif
8251 
8252 		/* limit to 1 bucket per 2^scale bytes of low memory */
8253 		if (scale > PAGE_SHIFT)
8254 			numentries >>= (scale - PAGE_SHIFT);
8255 		else
8256 			numentries <<= (PAGE_SHIFT - scale);
8257 
8258 		/* Make sure we've got at least a 0-order allocation.. */
8259 		if (unlikely(flags & HASH_SMALL)) {
8260 			/* Makes no sense without HASH_EARLY */
8261 			WARN_ON(!(flags & HASH_EARLY));
8262 			if (!(numentries >> *_hash_shift)) {
8263 				numentries = 1UL << *_hash_shift;
8264 				BUG_ON(!numentries);
8265 			}
8266 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8267 			numentries = PAGE_SIZE / bucketsize;
8268 	}
8269 	numentries = roundup_pow_of_two(numentries);
8270 
8271 	/* limit allocation size to 1/16 total memory by default */
8272 	if (max == 0) {
8273 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8274 		do_div(max, bucketsize);
8275 	}
8276 	max = min(max, 0x80000000ULL);
8277 
8278 	if (numentries < low_limit)
8279 		numentries = low_limit;
8280 	if (numentries > max)
8281 		numentries = max;
8282 
8283 	log2qty = ilog2(numentries);
8284 
8285 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8286 	do {
8287 		virt = false;
8288 		size = bucketsize << log2qty;
8289 		if (flags & HASH_EARLY) {
8290 			if (flags & HASH_ZERO)
8291 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8292 			else
8293 				table = memblock_alloc_raw(size,
8294 							   SMP_CACHE_BYTES);
8295 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8296 			table = __vmalloc(size, gfp_flags);
8297 			virt = true;
8298 		} else {
8299 			/*
8300 			 * If bucketsize is not a power-of-two, we may free
8301 			 * some pages at the end of hash table which
8302 			 * alloc_pages_exact() automatically does
8303 			 */
8304 			table = alloc_pages_exact(size, gfp_flags);
8305 			kmemleak_alloc(table, size, 1, gfp_flags);
8306 		}
8307 	} while (!table && size > PAGE_SIZE && --log2qty);
8308 
8309 	if (!table)
8310 		panic("Failed to allocate %s hash table\n", tablename);
8311 
8312 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8313 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8314 		virt ? "vmalloc" : "linear");
8315 
8316 	if (_hash_shift)
8317 		*_hash_shift = log2qty;
8318 	if (_hash_mask)
8319 		*_hash_mask = (1 << log2qty) - 1;
8320 
8321 	return table;
8322 }
8323 
8324 /*
8325  * This function checks whether pageblock includes unmovable pages or not.
8326  *
8327  * PageLRU check without isolation or lru_lock could race so that
8328  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8329  * check without lock_page also may miss some movable non-lru pages at
8330  * race condition. So you can't expect this function should be exact.
8331  *
8332  * Returns a page without holding a reference. If the caller wants to
8333  * dereference that page (e.g., dumping), it has to make sure that it
8334  * cannot get removed (e.g., via memory unplug) concurrently.
8335  *
8336  */
8337 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8338 				 int migratetype, int flags)
8339 {
8340 	unsigned long iter = 0;
8341 	unsigned long pfn = page_to_pfn(page);
8342 	unsigned long offset = pfn % pageblock_nr_pages;
8343 
8344 	if (is_migrate_cma_page(page)) {
8345 		/*
8346 		 * CMA allocations (alloc_contig_range) really need to mark
8347 		 * isolate CMA pageblocks even when they are not movable in fact
8348 		 * so consider them movable here.
8349 		 */
8350 		if (is_migrate_cma(migratetype))
8351 			return NULL;
8352 
8353 		return page;
8354 	}
8355 
8356 	for (; iter < pageblock_nr_pages - offset; iter++) {
8357 		if (!pfn_valid_within(pfn + iter))
8358 			continue;
8359 
8360 		page = pfn_to_page(pfn + iter);
8361 
8362 		/*
8363 		 * Both, bootmem allocations and memory holes are marked
8364 		 * PG_reserved and are unmovable. We can even have unmovable
8365 		 * allocations inside ZONE_MOVABLE, for example when
8366 		 * specifying "movablecore".
8367 		 */
8368 		if (PageReserved(page))
8369 			return page;
8370 
8371 		/*
8372 		 * If the zone is movable and we have ruled out all reserved
8373 		 * pages then it should be reasonably safe to assume the rest
8374 		 * is movable.
8375 		 */
8376 		if (zone_idx(zone) == ZONE_MOVABLE)
8377 			continue;
8378 
8379 		/*
8380 		 * Hugepages are not in LRU lists, but they're movable.
8381 		 * THPs are on the LRU, but need to be counted as #small pages.
8382 		 * We need not scan over tail pages because we don't
8383 		 * handle each tail page individually in migration.
8384 		 */
8385 		if (PageHuge(page) || PageTransCompound(page)) {
8386 			struct page *head = compound_head(page);
8387 			unsigned int skip_pages;
8388 
8389 			if (PageHuge(page)) {
8390 				if (!hugepage_migration_supported(page_hstate(head)))
8391 					return page;
8392 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8393 				return page;
8394 			}
8395 
8396 			skip_pages = compound_nr(head) - (page - head);
8397 			iter += skip_pages - 1;
8398 			continue;
8399 		}
8400 
8401 		/*
8402 		 * We can't use page_count without pin a page
8403 		 * because another CPU can free compound page.
8404 		 * This check already skips compound tails of THP
8405 		 * because their page->_refcount is zero at all time.
8406 		 */
8407 		if (!page_ref_count(page)) {
8408 			if (PageBuddy(page))
8409 				iter += (1 << buddy_order(page)) - 1;
8410 			continue;
8411 		}
8412 
8413 		/*
8414 		 * The HWPoisoned page may be not in buddy system, and
8415 		 * page_count() is not 0.
8416 		 */
8417 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8418 			continue;
8419 
8420 		/*
8421 		 * We treat all PageOffline() pages as movable when offlining
8422 		 * to give drivers a chance to decrement their reference count
8423 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8424 		 * can be offlined as there are no direct references anymore.
8425 		 * For actually unmovable PageOffline() where the driver does
8426 		 * not support this, we will fail later when trying to actually
8427 		 * move these pages that still have a reference count > 0.
8428 		 * (false negatives in this function only)
8429 		 */
8430 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8431 			continue;
8432 
8433 		if (__PageMovable(page) || PageLRU(page))
8434 			continue;
8435 
8436 		/*
8437 		 * If there are RECLAIMABLE pages, we need to check
8438 		 * it.  But now, memory offline itself doesn't call
8439 		 * shrink_node_slabs() and it still to be fixed.
8440 		 */
8441 		return page;
8442 	}
8443 	return NULL;
8444 }
8445 
8446 #ifdef CONFIG_CONTIG_ALLOC
8447 static unsigned long pfn_max_align_down(unsigned long pfn)
8448 {
8449 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8450 			     pageblock_nr_pages) - 1);
8451 }
8452 
8453 static unsigned long pfn_max_align_up(unsigned long pfn)
8454 {
8455 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8456 				pageblock_nr_pages));
8457 }
8458 
8459 /* [start, end) must belong to a single zone. */
8460 static int __alloc_contig_migrate_range(struct compact_control *cc,
8461 					unsigned long start, unsigned long end)
8462 {
8463 	/* This function is based on compact_zone() from compaction.c. */
8464 	unsigned int nr_reclaimed;
8465 	unsigned long pfn = start;
8466 	unsigned int tries = 0;
8467 	int ret = 0;
8468 	struct migration_target_control mtc = {
8469 		.nid = zone_to_nid(cc->zone),
8470 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8471 	};
8472 
8473 	migrate_prep();
8474 
8475 	while (pfn < end || !list_empty(&cc->migratepages)) {
8476 		if (fatal_signal_pending(current)) {
8477 			ret = -EINTR;
8478 			break;
8479 		}
8480 
8481 		if (list_empty(&cc->migratepages)) {
8482 			cc->nr_migratepages = 0;
8483 			pfn = isolate_migratepages_range(cc, pfn, end);
8484 			if (!pfn) {
8485 				ret = -EINTR;
8486 				break;
8487 			}
8488 			tries = 0;
8489 		} else if (++tries == 5) {
8490 			ret = ret < 0 ? ret : -EBUSY;
8491 			break;
8492 		}
8493 
8494 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8495 							&cc->migratepages);
8496 		cc->nr_migratepages -= nr_reclaimed;
8497 
8498 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8499 				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8500 	}
8501 	if (ret < 0) {
8502 		putback_movable_pages(&cc->migratepages);
8503 		return ret;
8504 	}
8505 	return 0;
8506 }
8507 
8508 /**
8509  * alloc_contig_range() -- tries to allocate given range of pages
8510  * @start:	start PFN to allocate
8511  * @end:	one-past-the-last PFN to allocate
8512  * @migratetype:	migratetype of the underlaying pageblocks (either
8513  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8514  *			in range must have the same migratetype and it must
8515  *			be either of the two.
8516  * @gfp_mask:	GFP mask to use during compaction
8517  *
8518  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8519  * aligned.  The PFN range must belong to a single zone.
8520  *
8521  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8522  * pageblocks in the range.  Once isolated, the pageblocks should not
8523  * be modified by others.
8524  *
8525  * Return: zero on success or negative error code.  On success all
8526  * pages which PFN is in [start, end) are allocated for the caller and
8527  * need to be freed with free_contig_range().
8528  */
8529 int alloc_contig_range(unsigned long start, unsigned long end,
8530 		       unsigned migratetype, gfp_t gfp_mask)
8531 {
8532 	unsigned long outer_start, outer_end;
8533 	unsigned int order;
8534 	int ret = 0;
8535 
8536 	struct compact_control cc = {
8537 		.nr_migratepages = 0,
8538 		.order = -1,
8539 		.zone = page_zone(pfn_to_page(start)),
8540 		.mode = MIGRATE_SYNC,
8541 		.ignore_skip_hint = true,
8542 		.no_set_skip_hint = true,
8543 		.gfp_mask = current_gfp_context(gfp_mask),
8544 		.alloc_contig = true,
8545 	};
8546 	INIT_LIST_HEAD(&cc.migratepages);
8547 
8548 	/*
8549 	 * What we do here is we mark all pageblocks in range as
8550 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8551 	 * have different sizes, and due to the way page allocator
8552 	 * work, we align the range to biggest of the two pages so
8553 	 * that page allocator won't try to merge buddies from
8554 	 * different pageblocks and change MIGRATE_ISOLATE to some
8555 	 * other migration type.
8556 	 *
8557 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8558 	 * migrate the pages from an unaligned range (ie. pages that
8559 	 * we are interested in).  This will put all the pages in
8560 	 * range back to page allocator as MIGRATE_ISOLATE.
8561 	 *
8562 	 * When this is done, we take the pages in range from page
8563 	 * allocator removing them from the buddy system.  This way
8564 	 * page allocator will never consider using them.
8565 	 *
8566 	 * This lets us mark the pageblocks back as
8567 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8568 	 * aligned range but not in the unaligned, original range are
8569 	 * put back to page allocator so that buddy can use them.
8570 	 */
8571 
8572 	ret = start_isolate_page_range(pfn_max_align_down(start),
8573 				       pfn_max_align_up(end), migratetype, 0);
8574 	if (ret)
8575 		return ret;
8576 
8577 	drain_all_pages(cc.zone);
8578 
8579 	/*
8580 	 * In case of -EBUSY, we'd like to know which page causes problem.
8581 	 * So, just fall through. test_pages_isolated() has a tracepoint
8582 	 * which will report the busy page.
8583 	 *
8584 	 * It is possible that busy pages could become available before
8585 	 * the call to test_pages_isolated, and the range will actually be
8586 	 * allocated.  So, if we fall through be sure to clear ret so that
8587 	 * -EBUSY is not accidentally used or returned to caller.
8588 	 */
8589 	ret = __alloc_contig_migrate_range(&cc, start, end);
8590 	if (ret && ret != -EBUSY)
8591 		goto done;
8592 	ret =0;
8593 
8594 	/*
8595 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8596 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8597 	 * more, all pages in [start, end) are free in page allocator.
8598 	 * What we are going to do is to allocate all pages from
8599 	 * [start, end) (that is remove them from page allocator).
8600 	 *
8601 	 * The only problem is that pages at the beginning and at the
8602 	 * end of interesting range may be not aligned with pages that
8603 	 * page allocator holds, ie. they can be part of higher order
8604 	 * pages.  Because of this, we reserve the bigger range and
8605 	 * once this is done free the pages we are not interested in.
8606 	 *
8607 	 * We don't have to hold zone->lock here because the pages are
8608 	 * isolated thus they won't get removed from buddy.
8609 	 */
8610 
8611 	lru_add_drain_all();
8612 
8613 	order = 0;
8614 	outer_start = start;
8615 	while (!PageBuddy(pfn_to_page(outer_start))) {
8616 		if (++order >= MAX_ORDER) {
8617 			outer_start = start;
8618 			break;
8619 		}
8620 		outer_start &= ~0UL << order;
8621 	}
8622 
8623 	if (outer_start != start) {
8624 		order = buddy_order(pfn_to_page(outer_start));
8625 
8626 		/*
8627 		 * outer_start page could be small order buddy page and
8628 		 * it doesn't include start page. Adjust outer_start
8629 		 * in this case to report failed page properly
8630 		 * on tracepoint in test_pages_isolated()
8631 		 */
8632 		if (outer_start + (1UL << order) <= start)
8633 			outer_start = start;
8634 	}
8635 
8636 	/* Make sure the range is really isolated. */
8637 	if (test_pages_isolated(outer_start, end, 0)) {
8638 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8639 			__func__, outer_start, end);
8640 		ret = -EBUSY;
8641 		goto done;
8642 	}
8643 
8644 	/* Grab isolated pages from freelists. */
8645 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8646 	if (!outer_end) {
8647 		ret = -EBUSY;
8648 		goto done;
8649 	}
8650 
8651 	/* Free head and tail (if any) */
8652 	if (start != outer_start)
8653 		free_contig_range(outer_start, start - outer_start);
8654 	if (end != outer_end)
8655 		free_contig_range(end, outer_end - end);
8656 
8657 done:
8658 	undo_isolate_page_range(pfn_max_align_down(start),
8659 				pfn_max_align_up(end), migratetype);
8660 	return ret;
8661 }
8662 EXPORT_SYMBOL(alloc_contig_range);
8663 
8664 static int __alloc_contig_pages(unsigned long start_pfn,
8665 				unsigned long nr_pages, gfp_t gfp_mask)
8666 {
8667 	unsigned long end_pfn = start_pfn + nr_pages;
8668 
8669 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8670 				  gfp_mask);
8671 }
8672 
8673 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8674 				   unsigned long nr_pages)
8675 {
8676 	unsigned long i, end_pfn = start_pfn + nr_pages;
8677 	struct page *page;
8678 
8679 	for (i = start_pfn; i < end_pfn; i++) {
8680 		page = pfn_to_online_page(i);
8681 		if (!page)
8682 			return false;
8683 
8684 		if (page_zone(page) != z)
8685 			return false;
8686 
8687 		if (PageReserved(page))
8688 			return false;
8689 
8690 		if (page_count(page) > 0)
8691 			return false;
8692 
8693 		if (PageHuge(page))
8694 			return false;
8695 	}
8696 	return true;
8697 }
8698 
8699 static bool zone_spans_last_pfn(const struct zone *zone,
8700 				unsigned long start_pfn, unsigned long nr_pages)
8701 {
8702 	unsigned long last_pfn = start_pfn + nr_pages - 1;
8703 
8704 	return zone_spans_pfn(zone, last_pfn);
8705 }
8706 
8707 /**
8708  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8709  * @nr_pages:	Number of contiguous pages to allocate
8710  * @gfp_mask:	GFP mask to limit search and used during compaction
8711  * @nid:	Target node
8712  * @nodemask:	Mask for other possible nodes
8713  *
8714  * This routine is a wrapper around alloc_contig_range(). It scans over zones
8715  * on an applicable zonelist to find a contiguous pfn range which can then be
8716  * tried for allocation with alloc_contig_range(). This routine is intended
8717  * for allocation requests which can not be fulfilled with the buddy allocator.
8718  *
8719  * The allocated memory is always aligned to a page boundary. If nr_pages is a
8720  * power of two then the alignment is guaranteed to be to the given nr_pages
8721  * (e.g. 1GB request would be aligned to 1GB).
8722  *
8723  * Allocated pages can be freed with free_contig_range() or by manually calling
8724  * __free_page() on each allocated page.
8725  *
8726  * Return: pointer to contiguous pages on success, or NULL if not successful.
8727  */
8728 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8729 				int nid, nodemask_t *nodemask)
8730 {
8731 	unsigned long ret, pfn, flags;
8732 	struct zonelist *zonelist;
8733 	struct zone *zone;
8734 	struct zoneref *z;
8735 
8736 	zonelist = node_zonelist(nid, gfp_mask);
8737 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
8738 					gfp_zone(gfp_mask), nodemask) {
8739 		spin_lock_irqsave(&zone->lock, flags);
8740 
8741 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8742 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8743 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8744 				/*
8745 				 * We release the zone lock here because
8746 				 * alloc_contig_range() will also lock the zone
8747 				 * at some point. If there's an allocation
8748 				 * spinning on this lock, it may win the race
8749 				 * and cause alloc_contig_range() to fail...
8750 				 */
8751 				spin_unlock_irqrestore(&zone->lock, flags);
8752 				ret = __alloc_contig_pages(pfn, nr_pages,
8753 							gfp_mask);
8754 				if (!ret)
8755 					return pfn_to_page(pfn);
8756 				spin_lock_irqsave(&zone->lock, flags);
8757 			}
8758 			pfn += nr_pages;
8759 		}
8760 		spin_unlock_irqrestore(&zone->lock, flags);
8761 	}
8762 	return NULL;
8763 }
8764 #endif /* CONFIG_CONTIG_ALLOC */
8765 
8766 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8767 {
8768 	unsigned int count = 0;
8769 
8770 	for (; nr_pages--; pfn++) {
8771 		struct page *page = pfn_to_page(pfn);
8772 
8773 		count += page_count(page) != 1;
8774 		__free_page(page);
8775 	}
8776 	WARN(count != 0, "%d pages are still in use!\n", count);
8777 }
8778 EXPORT_SYMBOL(free_contig_range);
8779 
8780 /*
8781  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8782  * page high values need to be recalulated.
8783  */
8784 void __meminit zone_pcp_update(struct zone *zone)
8785 {
8786 	mutex_lock(&pcp_batch_high_lock);
8787 	zone_set_pageset_high_and_batch(zone);
8788 	mutex_unlock(&pcp_batch_high_lock);
8789 }
8790 
8791 /*
8792  * Effectively disable pcplists for the zone by setting the high limit to 0
8793  * and draining all cpus. A concurrent page freeing on another CPU that's about
8794  * to put the page on pcplist will either finish before the drain and the page
8795  * will be drained, or observe the new high limit and skip the pcplist.
8796  *
8797  * Must be paired with a call to zone_pcp_enable().
8798  */
8799 void zone_pcp_disable(struct zone *zone)
8800 {
8801 	mutex_lock(&pcp_batch_high_lock);
8802 	__zone_set_pageset_high_and_batch(zone, 0, 1);
8803 	__drain_all_pages(zone, true);
8804 }
8805 
8806 void zone_pcp_enable(struct zone *zone)
8807 {
8808 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
8809 	mutex_unlock(&pcp_batch_high_lock);
8810 }
8811 
8812 void zone_pcp_reset(struct zone *zone)
8813 {
8814 	unsigned long flags;
8815 	int cpu;
8816 	struct per_cpu_pageset *pset;
8817 
8818 	/* avoid races with drain_pages()  */
8819 	local_irq_save(flags);
8820 	if (zone->pageset != &boot_pageset) {
8821 		for_each_online_cpu(cpu) {
8822 			pset = per_cpu_ptr(zone->pageset, cpu);
8823 			drain_zonestat(zone, pset);
8824 		}
8825 		free_percpu(zone->pageset);
8826 		zone->pageset = &boot_pageset;
8827 	}
8828 	local_irq_restore(flags);
8829 }
8830 
8831 #ifdef CONFIG_MEMORY_HOTREMOVE
8832 /*
8833  * All pages in the range must be in a single zone, must not contain holes,
8834  * must span full sections, and must be isolated before calling this function.
8835  */
8836 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8837 {
8838 	unsigned long pfn = start_pfn;
8839 	struct page *page;
8840 	struct zone *zone;
8841 	unsigned int order;
8842 	unsigned long flags;
8843 
8844 	offline_mem_sections(pfn, end_pfn);
8845 	zone = page_zone(pfn_to_page(pfn));
8846 	spin_lock_irqsave(&zone->lock, flags);
8847 	while (pfn < end_pfn) {
8848 		page = pfn_to_page(pfn);
8849 		/*
8850 		 * The HWPoisoned page may be not in buddy system, and
8851 		 * page_count() is not 0.
8852 		 */
8853 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8854 			pfn++;
8855 			continue;
8856 		}
8857 		/*
8858 		 * At this point all remaining PageOffline() pages have a
8859 		 * reference count of 0 and can simply be skipped.
8860 		 */
8861 		if (PageOffline(page)) {
8862 			BUG_ON(page_count(page));
8863 			BUG_ON(PageBuddy(page));
8864 			pfn++;
8865 			continue;
8866 		}
8867 
8868 		BUG_ON(page_count(page));
8869 		BUG_ON(!PageBuddy(page));
8870 		order = buddy_order(page);
8871 		del_page_from_free_list(page, zone, order);
8872 		pfn += (1 << order);
8873 	}
8874 	spin_unlock_irqrestore(&zone->lock, flags);
8875 }
8876 #endif
8877 
8878 bool is_free_buddy_page(struct page *page)
8879 {
8880 	struct zone *zone = page_zone(page);
8881 	unsigned long pfn = page_to_pfn(page);
8882 	unsigned long flags;
8883 	unsigned int order;
8884 
8885 	spin_lock_irqsave(&zone->lock, flags);
8886 	for (order = 0; order < MAX_ORDER; order++) {
8887 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8888 
8889 		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8890 			break;
8891 	}
8892 	spin_unlock_irqrestore(&zone->lock, flags);
8893 
8894 	return order < MAX_ORDER;
8895 }
8896 
8897 #ifdef CONFIG_MEMORY_FAILURE
8898 /*
8899  * Break down a higher-order page in sub-pages, and keep our target out of
8900  * buddy allocator.
8901  */
8902 static void break_down_buddy_pages(struct zone *zone, struct page *page,
8903 				   struct page *target, int low, int high,
8904 				   int migratetype)
8905 {
8906 	unsigned long size = 1 << high;
8907 	struct page *current_buddy, *next_page;
8908 
8909 	while (high > low) {
8910 		high--;
8911 		size >>= 1;
8912 
8913 		if (target >= &page[size]) {
8914 			next_page = page + size;
8915 			current_buddy = page;
8916 		} else {
8917 			next_page = page;
8918 			current_buddy = page + size;
8919 		}
8920 
8921 		if (set_page_guard(zone, current_buddy, high, migratetype))
8922 			continue;
8923 
8924 		if (current_buddy != target) {
8925 			add_to_free_list(current_buddy, zone, high, migratetype);
8926 			set_buddy_order(current_buddy, high);
8927 			page = next_page;
8928 		}
8929 	}
8930 }
8931 
8932 /*
8933  * Take a page that will be marked as poisoned off the buddy allocator.
8934  */
8935 bool take_page_off_buddy(struct page *page)
8936 {
8937 	struct zone *zone = page_zone(page);
8938 	unsigned long pfn = page_to_pfn(page);
8939 	unsigned long flags;
8940 	unsigned int order;
8941 	bool ret = false;
8942 
8943 	spin_lock_irqsave(&zone->lock, flags);
8944 	for (order = 0; order < MAX_ORDER; order++) {
8945 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8946 		int page_order = buddy_order(page_head);
8947 
8948 		if (PageBuddy(page_head) && page_order >= order) {
8949 			unsigned long pfn_head = page_to_pfn(page_head);
8950 			int migratetype = get_pfnblock_migratetype(page_head,
8951 								   pfn_head);
8952 
8953 			del_page_from_free_list(page_head, zone, page_order);
8954 			break_down_buddy_pages(zone, page_head, page, 0,
8955 						page_order, migratetype);
8956 			ret = true;
8957 			break;
8958 		}
8959 		if (page_count(page_head) > 0)
8960 			break;
8961 	}
8962 	spin_unlock_irqrestore(&zone->lock, flags);
8963 	return ret;
8964 }
8965 #endif
8966