xref: /openbmc/linux/mm/page_alloc.c (revision a8da474e)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65 
66 #include <asm/sections.h>
67 #include <asm/tlbflush.h>
68 #include <asm/div64.h>
69 #include "internal.h"
70 
71 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72 static DEFINE_MUTEX(pcp_batch_high_lock);
73 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
74 
75 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76 DEFINE_PER_CPU(int, numa_node);
77 EXPORT_PER_CPU_SYMBOL(numa_node);
78 #endif
79 
80 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
81 /*
82  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85  * defined in <linux/topology.h>.
86  */
87 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
88 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
89 int _node_numa_mem_[MAX_NUMNODES];
90 #endif
91 
92 /*
93  * Array of node states.
94  */
95 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
96 	[N_POSSIBLE] = NODE_MASK_ALL,
97 	[N_ONLINE] = { { [0] = 1UL } },
98 #ifndef CONFIG_NUMA
99 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
100 #ifdef CONFIG_HIGHMEM
101 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
102 #endif
103 #ifdef CONFIG_MOVABLE_NODE
104 	[N_MEMORY] = { { [0] = 1UL } },
105 #endif
106 	[N_CPU] = { { [0] = 1UL } },
107 #endif	/* NUMA */
108 };
109 EXPORT_SYMBOL(node_states);
110 
111 /* Protect totalram_pages and zone->managed_pages */
112 static DEFINE_SPINLOCK(managed_page_count_lock);
113 
114 unsigned long totalram_pages __read_mostly;
115 unsigned long totalreserve_pages __read_mostly;
116 unsigned long totalcma_pages __read_mostly;
117 /*
118  * When calculating the number of globally allowed dirty pages, there
119  * is a certain number of per-zone reserves that should not be
120  * considered dirtyable memory.  This is the sum of those reserves
121  * over all existing zones that contribute dirtyable memory.
122  */
123 unsigned long dirty_balance_reserve __read_mostly;
124 
125 int percpu_pagelist_fraction;
126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
127 
128 /*
129  * A cached value of the page's pageblock's migratetype, used when the page is
130  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132  * Also the migratetype set in the page does not necessarily match the pcplist
133  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134  * other index - this ensures that it will be put on the correct CMA freelist.
135  */
136 static inline int get_pcppage_migratetype(struct page *page)
137 {
138 	return page->index;
139 }
140 
141 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
142 {
143 	page->index = migratetype;
144 }
145 
146 #ifdef CONFIG_PM_SLEEP
147 /*
148  * The following functions are used by the suspend/hibernate code to temporarily
149  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150  * while devices are suspended.  To avoid races with the suspend/hibernate code,
151  * they should always be called with pm_mutex held (gfp_allowed_mask also should
152  * only be modified with pm_mutex held, unless the suspend/hibernate code is
153  * guaranteed not to run in parallel with that modification).
154  */
155 
156 static gfp_t saved_gfp_mask;
157 
158 void pm_restore_gfp_mask(void)
159 {
160 	WARN_ON(!mutex_is_locked(&pm_mutex));
161 	if (saved_gfp_mask) {
162 		gfp_allowed_mask = saved_gfp_mask;
163 		saved_gfp_mask = 0;
164 	}
165 }
166 
167 void pm_restrict_gfp_mask(void)
168 {
169 	WARN_ON(!mutex_is_locked(&pm_mutex));
170 	WARN_ON(saved_gfp_mask);
171 	saved_gfp_mask = gfp_allowed_mask;
172 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
173 }
174 
175 bool pm_suspended_storage(void)
176 {
177 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
178 		return false;
179 	return true;
180 }
181 #endif /* CONFIG_PM_SLEEP */
182 
183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184 unsigned int pageblock_order __read_mostly;
185 #endif
186 
187 static void __free_pages_ok(struct page *page, unsigned int order);
188 
189 /*
190  * results with 256, 32 in the lowmem_reserve sysctl:
191  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192  *	1G machine -> (16M dma, 784M normal, 224M high)
193  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
195  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
196  *
197  * TBD: should special case ZONE_DMA32 machines here - in those we normally
198  * don't need any ZONE_NORMAL reservation
199  */
200 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
201 #ifdef CONFIG_ZONE_DMA
202 	 256,
203 #endif
204 #ifdef CONFIG_ZONE_DMA32
205 	 256,
206 #endif
207 #ifdef CONFIG_HIGHMEM
208 	 32,
209 #endif
210 	 32,
211 };
212 
213 EXPORT_SYMBOL(totalram_pages);
214 
215 static char * const zone_names[MAX_NR_ZONES] = {
216 #ifdef CONFIG_ZONE_DMA
217 	 "DMA",
218 #endif
219 #ifdef CONFIG_ZONE_DMA32
220 	 "DMA32",
221 #endif
222 	 "Normal",
223 #ifdef CONFIG_HIGHMEM
224 	 "HighMem",
225 #endif
226 	 "Movable",
227 #ifdef CONFIG_ZONE_DEVICE
228 	 "Device",
229 #endif
230 };
231 
232 static void free_compound_page(struct page *page);
233 compound_page_dtor * const compound_page_dtors[] = {
234 	NULL,
235 	free_compound_page,
236 #ifdef CONFIG_HUGETLB_PAGE
237 	free_huge_page,
238 #endif
239 };
240 
241 int min_free_kbytes = 1024;
242 int user_min_free_kbytes = -1;
243 
244 static unsigned long __meminitdata nr_kernel_pages;
245 static unsigned long __meminitdata nr_all_pages;
246 static unsigned long __meminitdata dma_reserve;
247 
248 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
249 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
250 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
251 static unsigned long __initdata required_kernelcore;
252 static unsigned long __initdata required_movablecore;
253 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
254 
255 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
256 int movable_zone;
257 EXPORT_SYMBOL(movable_zone);
258 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
259 
260 #if MAX_NUMNODES > 1
261 int nr_node_ids __read_mostly = MAX_NUMNODES;
262 int nr_online_nodes __read_mostly = 1;
263 EXPORT_SYMBOL(nr_node_ids);
264 EXPORT_SYMBOL(nr_online_nodes);
265 #endif
266 
267 int page_group_by_mobility_disabled __read_mostly;
268 
269 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
270 static inline void reset_deferred_meminit(pg_data_t *pgdat)
271 {
272 	pgdat->first_deferred_pfn = ULONG_MAX;
273 }
274 
275 /* Returns true if the struct page for the pfn is uninitialised */
276 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
277 {
278 	if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
279 		return true;
280 
281 	return false;
282 }
283 
284 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
285 {
286 	if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
287 		return true;
288 
289 	return false;
290 }
291 
292 /*
293  * Returns false when the remaining initialisation should be deferred until
294  * later in the boot cycle when it can be parallelised.
295  */
296 static inline bool update_defer_init(pg_data_t *pgdat,
297 				unsigned long pfn, unsigned long zone_end,
298 				unsigned long *nr_initialised)
299 {
300 	/* Always populate low zones for address-contrained allocations */
301 	if (zone_end < pgdat_end_pfn(pgdat))
302 		return true;
303 
304 	/* Initialise at least 2G of the highest zone */
305 	(*nr_initialised)++;
306 	if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
307 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
308 		pgdat->first_deferred_pfn = pfn;
309 		return false;
310 	}
311 
312 	return true;
313 }
314 #else
315 static inline void reset_deferred_meminit(pg_data_t *pgdat)
316 {
317 }
318 
319 static inline bool early_page_uninitialised(unsigned long pfn)
320 {
321 	return false;
322 }
323 
324 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
325 {
326 	return false;
327 }
328 
329 static inline bool update_defer_init(pg_data_t *pgdat,
330 				unsigned long pfn, unsigned long zone_end,
331 				unsigned long *nr_initialised)
332 {
333 	return true;
334 }
335 #endif
336 
337 
338 void set_pageblock_migratetype(struct page *page, int migratetype)
339 {
340 	if (unlikely(page_group_by_mobility_disabled &&
341 		     migratetype < MIGRATE_PCPTYPES))
342 		migratetype = MIGRATE_UNMOVABLE;
343 
344 	set_pageblock_flags_group(page, (unsigned long)migratetype,
345 					PB_migrate, PB_migrate_end);
346 }
347 
348 #ifdef CONFIG_DEBUG_VM
349 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
350 {
351 	int ret = 0;
352 	unsigned seq;
353 	unsigned long pfn = page_to_pfn(page);
354 	unsigned long sp, start_pfn;
355 
356 	do {
357 		seq = zone_span_seqbegin(zone);
358 		start_pfn = zone->zone_start_pfn;
359 		sp = zone->spanned_pages;
360 		if (!zone_spans_pfn(zone, pfn))
361 			ret = 1;
362 	} while (zone_span_seqretry(zone, seq));
363 
364 	if (ret)
365 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
366 			pfn, zone_to_nid(zone), zone->name,
367 			start_pfn, start_pfn + sp);
368 
369 	return ret;
370 }
371 
372 static int page_is_consistent(struct zone *zone, struct page *page)
373 {
374 	if (!pfn_valid_within(page_to_pfn(page)))
375 		return 0;
376 	if (zone != page_zone(page))
377 		return 0;
378 
379 	return 1;
380 }
381 /*
382  * Temporary debugging check for pages not lying within a given zone.
383  */
384 static int bad_range(struct zone *zone, struct page *page)
385 {
386 	if (page_outside_zone_boundaries(zone, page))
387 		return 1;
388 	if (!page_is_consistent(zone, page))
389 		return 1;
390 
391 	return 0;
392 }
393 #else
394 static inline int bad_range(struct zone *zone, struct page *page)
395 {
396 	return 0;
397 }
398 #endif
399 
400 static void bad_page(struct page *page, const char *reason,
401 		unsigned long bad_flags)
402 {
403 	static unsigned long resume;
404 	static unsigned long nr_shown;
405 	static unsigned long nr_unshown;
406 
407 	/* Don't complain about poisoned pages */
408 	if (PageHWPoison(page)) {
409 		page_mapcount_reset(page); /* remove PageBuddy */
410 		return;
411 	}
412 
413 	/*
414 	 * Allow a burst of 60 reports, then keep quiet for that minute;
415 	 * or allow a steady drip of one report per second.
416 	 */
417 	if (nr_shown == 60) {
418 		if (time_before(jiffies, resume)) {
419 			nr_unshown++;
420 			goto out;
421 		}
422 		if (nr_unshown) {
423 			printk(KERN_ALERT
424 			      "BUG: Bad page state: %lu messages suppressed\n",
425 				nr_unshown);
426 			nr_unshown = 0;
427 		}
428 		nr_shown = 0;
429 	}
430 	if (nr_shown++ == 0)
431 		resume = jiffies + 60 * HZ;
432 
433 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
434 		current->comm, page_to_pfn(page));
435 	dump_page_badflags(page, reason, bad_flags);
436 
437 	print_modules();
438 	dump_stack();
439 out:
440 	/* Leave bad fields for debug, except PageBuddy could make trouble */
441 	page_mapcount_reset(page); /* remove PageBuddy */
442 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
443 }
444 
445 /*
446  * Higher-order pages are called "compound pages".  They are structured thusly:
447  *
448  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
449  *
450  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
451  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
452  *
453  * The first tail page's ->compound_dtor holds the offset in array of compound
454  * page destructors. See compound_page_dtors.
455  *
456  * The first tail page's ->compound_order holds the order of allocation.
457  * This usage means that zero-order pages may not be compound.
458  */
459 
460 static void free_compound_page(struct page *page)
461 {
462 	__free_pages_ok(page, compound_order(page));
463 }
464 
465 void prep_compound_page(struct page *page, unsigned int order)
466 {
467 	int i;
468 	int nr_pages = 1 << order;
469 
470 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
471 	set_compound_order(page, order);
472 	__SetPageHead(page);
473 	for (i = 1; i < nr_pages; i++) {
474 		struct page *p = page + i;
475 		set_page_count(p, 0);
476 		set_compound_head(p, page);
477 	}
478 }
479 
480 #ifdef CONFIG_DEBUG_PAGEALLOC
481 unsigned int _debug_guardpage_minorder;
482 bool _debug_pagealloc_enabled __read_mostly;
483 bool _debug_guardpage_enabled __read_mostly;
484 
485 static int __init early_debug_pagealloc(char *buf)
486 {
487 	if (!buf)
488 		return -EINVAL;
489 
490 	if (strcmp(buf, "on") == 0)
491 		_debug_pagealloc_enabled = true;
492 
493 	return 0;
494 }
495 early_param("debug_pagealloc", early_debug_pagealloc);
496 
497 static bool need_debug_guardpage(void)
498 {
499 	/* If we don't use debug_pagealloc, we don't need guard page */
500 	if (!debug_pagealloc_enabled())
501 		return false;
502 
503 	return true;
504 }
505 
506 static void init_debug_guardpage(void)
507 {
508 	if (!debug_pagealloc_enabled())
509 		return;
510 
511 	_debug_guardpage_enabled = true;
512 }
513 
514 struct page_ext_operations debug_guardpage_ops = {
515 	.need = need_debug_guardpage,
516 	.init = init_debug_guardpage,
517 };
518 
519 static int __init debug_guardpage_minorder_setup(char *buf)
520 {
521 	unsigned long res;
522 
523 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
524 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
525 		return 0;
526 	}
527 	_debug_guardpage_minorder = res;
528 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
529 	return 0;
530 }
531 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
532 
533 static inline void set_page_guard(struct zone *zone, struct page *page,
534 				unsigned int order, int migratetype)
535 {
536 	struct page_ext *page_ext;
537 
538 	if (!debug_guardpage_enabled())
539 		return;
540 
541 	page_ext = lookup_page_ext(page);
542 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
543 
544 	INIT_LIST_HEAD(&page->lru);
545 	set_page_private(page, order);
546 	/* Guard pages are not available for any usage */
547 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
548 }
549 
550 static inline void clear_page_guard(struct zone *zone, struct page *page,
551 				unsigned int order, int migratetype)
552 {
553 	struct page_ext *page_ext;
554 
555 	if (!debug_guardpage_enabled())
556 		return;
557 
558 	page_ext = lookup_page_ext(page);
559 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
560 
561 	set_page_private(page, 0);
562 	if (!is_migrate_isolate(migratetype))
563 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
564 }
565 #else
566 struct page_ext_operations debug_guardpage_ops = { NULL, };
567 static inline void set_page_guard(struct zone *zone, struct page *page,
568 				unsigned int order, int migratetype) {}
569 static inline void clear_page_guard(struct zone *zone, struct page *page,
570 				unsigned int order, int migratetype) {}
571 #endif
572 
573 static inline void set_page_order(struct page *page, unsigned int order)
574 {
575 	set_page_private(page, order);
576 	__SetPageBuddy(page);
577 }
578 
579 static inline void rmv_page_order(struct page *page)
580 {
581 	__ClearPageBuddy(page);
582 	set_page_private(page, 0);
583 }
584 
585 /*
586  * This function checks whether a page is free && is the buddy
587  * we can do coalesce a page and its buddy if
588  * (a) the buddy is not in a hole &&
589  * (b) the buddy is in the buddy system &&
590  * (c) a page and its buddy have the same order &&
591  * (d) a page and its buddy are in the same zone.
592  *
593  * For recording whether a page is in the buddy system, we set ->_mapcount
594  * PAGE_BUDDY_MAPCOUNT_VALUE.
595  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
596  * serialized by zone->lock.
597  *
598  * For recording page's order, we use page_private(page).
599  */
600 static inline int page_is_buddy(struct page *page, struct page *buddy,
601 							unsigned int order)
602 {
603 	if (!pfn_valid_within(page_to_pfn(buddy)))
604 		return 0;
605 
606 	if (page_is_guard(buddy) && page_order(buddy) == order) {
607 		if (page_zone_id(page) != page_zone_id(buddy))
608 			return 0;
609 
610 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
611 
612 		return 1;
613 	}
614 
615 	if (PageBuddy(buddy) && page_order(buddy) == order) {
616 		/*
617 		 * zone check is done late to avoid uselessly
618 		 * calculating zone/node ids for pages that could
619 		 * never merge.
620 		 */
621 		if (page_zone_id(page) != page_zone_id(buddy))
622 			return 0;
623 
624 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
625 
626 		return 1;
627 	}
628 	return 0;
629 }
630 
631 /*
632  * Freeing function for a buddy system allocator.
633  *
634  * The concept of a buddy system is to maintain direct-mapped table
635  * (containing bit values) for memory blocks of various "orders".
636  * The bottom level table contains the map for the smallest allocatable
637  * units of memory (here, pages), and each level above it describes
638  * pairs of units from the levels below, hence, "buddies".
639  * At a high level, all that happens here is marking the table entry
640  * at the bottom level available, and propagating the changes upward
641  * as necessary, plus some accounting needed to play nicely with other
642  * parts of the VM system.
643  * At each level, we keep a list of pages, which are heads of continuous
644  * free pages of length of (1 << order) and marked with _mapcount
645  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
646  * field.
647  * So when we are allocating or freeing one, we can derive the state of the
648  * other.  That is, if we allocate a small block, and both were
649  * free, the remainder of the region must be split into blocks.
650  * If a block is freed, and its buddy is also free, then this
651  * triggers coalescing into a block of larger size.
652  *
653  * -- nyc
654  */
655 
656 static inline void __free_one_page(struct page *page,
657 		unsigned long pfn,
658 		struct zone *zone, unsigned int order,
659 		int migratetype)
660 {
661 	unsigned long page_idx;
662 	unsigned long combined_idx;
663 	unsigned long uninitialized_var(buddy_idx);
664 	struct page *buddy;
665 	unsigned int max_order = MAX_ORDER;
666 
667 	VM_BUG_ON(!zone_is_initialized(zone));
668 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
669 
670 	VM_BUG_ON(migratetype == -1);
671 	if (is_migrate_isolate(migratetype)) {
672 		/*
673 		 * We restrict max order of merging to prevent merge
674 		 * between freepages on isolate pageblock and normal
675 		 * pageblock. Without this, pageblock isolation
676 		 * could cause incorrect freepage accounting.
677 		 */
678 		max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
679 	} else {
680 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
681 	}
682 
683 	page_idx = pfn & ((1 << max_order) - 1);
684 
685 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
686 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
687 
688 	while (order < max_order - 1) {
689 		buddy_idx = __find_buddy_index(page_idx, order);
690 		buddy = page + (buddy_idx - page_idx);
691 		if (!page_is_buddy(page, buddy, order))
692 			break;
693 		/*
694 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
695 		 * merge with it and move up one order.
696 		 */
697 		if (page_is_guard(buddy)) {
698 			clear_page_guard(zone, buddy, order, migratetype);
699 		} else {
700 			list_del(&buddy->lru);
701 			zone->free_area[order].nr_free--;
702 			rmv_page_order(buddy);
703 		}
704 		combined_idx = buddy_idx & page_idx;
705 		page = page + (combined_idx - page_idx);
706 		page_idx = combined_idx;
707 		order++;
708 	}
709 	set_page_order(page, order);
710 
711 	/*
712 	 * If this is not the largest possible page, check if the buddy
713 	 * of the next-highest order is free. If it is, it's possible
714 	 * that pages are being freed that will coalesce soon. In case,
715 	 * that is happening, add the free page to the tail of the list
716 	 * so it's less likely to be used soon and more likely to be merged
717 	 * as a higher order page
718 	 */
719 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
720 		struct page *higher_page, *higher_buddy;
721 		combined_idx = buddy_idx & page_idx;
722 		higher_page = page + (combined_idx - page_idx);
723 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
724 		higher_buddy = higher_page + (buddy_idx - combined_idx);
725 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
726 			list_add_tail(&page->lru,
727 				&zone->free_area[order].free_list[migratetype]);
728 			goto out;
729 		}
730 	}
731 
732 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
733 out:
734 	zone->free_area[order].nr_free++;
735 }
736 
737 static inline int free_pages_check(struct page *page)
738 {
739 	const char *bad_reason = NULL;
740 	unsigned long bad_flags = 0;
741 
742 	if (unlikely(page_mapcount(page)))
743 		bad_reason = "nonzero mapcount";
744 	if (unlikely(page->mapping != NULL))
745 		bad_reason = "non-NULL mapping";
746 	if (unlikely(atomic_read(&page->_count) != 0))
747 		bad_reason = "nonzero _count";
748 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
749 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
750 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
751 	}
752 #ifdef CONFIG_MEMCG
753 	if (unlikely(page->mem_cgroup))
754 		bad_reason = "page still charged to cgroup";
755 #endif
756 	if (unlikely(bad_reason)) {
757 		bad_page(page, bad_reason, bad_flags);
758 		return 1;
759 	}
760 	page_cpupid_reset_last(page);
761 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
762 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
763 	return 0;
764 }
765 
766 /*
767  * Frees a number of pages from the PCP lists
768  * Assumes all pages on list are in same zone, and of same order.
769  * count is the number of pages to free.
770  *
771  * If the zone was previously in an "all pages pinned" state then look to
772  * see if this freeing clears that state.
773  *
774  * And clear the zone's pages_scanned counter, to hold off the "all pages are
775  * pinned" detection logic.
776  */
777 static void free_pcppages_bulk(struct zone *zone, int count,
778 					struct per_cpu_pages *pcp)
779 {
780 	int migratetype = 0;
781 	int batch_free = 0;
782 	int to_free = count;
783 	unsigned long nr_scanned;
784 
785 	spin_lock(&zone->lock);
786 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
787 	if (nr_scanned)
788 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
789 
790 	while (to_free) {
791 		struct page *page;
792 		struct list_head *list;
793 
794 		/*
795 		 * Remove pages from lists in a round-robin fashion. A
796 		 * batch_free count is maintained that is incremented when an
797 		 * empty list is encountered.  This is so more pages are freed
798 		 * off fuller lists instead of spinning excessively around empty
799 		 * lists
800 		 */
801 		do {
802 			batch_free++;
803 			if (++migratetype == MIGRATE_PCPTYPES)
804 				migratetype = 0;
805 			list = &pcp->lists[migratetype];
806 		} while (list_empty(list));
807 
808 		/* This is the only non-empty list. Free them all. */
809 		if (batch_free == MIGRATE_PCPTYPES)
810 			batch_free = to_free;
811 
812 		do {
813 			int mt;	/* migratetype of the to-be-freed page */
814 
815 			page = list_entry(list->prev, struct page, lru);
816 			/* must delete as __free_one_page list manipulates */
817 			list_del(&page->lru);
818 
819 			mt = get_pcppage_migratetype(page);
820 			/* MIGRATE_ISOLATE page should not go to pcplists */
821 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
822 			/* Pageblock could have been isolated meanwhile */
823 			if (unlikely(has_isolate_pageblock(zone)))
824 				mt = get_pageblock_migratetype(page);
825 
826 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
827 			trace_mm_page_pcpu_drain(page, 0, mt);
828 		} while (--to_free && --batch_free && !list_empty(list));
829 	}
830 	spin_unlock(&zone->lock);
831 }
832 
833 static void free_one_page(struct zone *zone,
834 				struct page *page, unsigned long pfn,
835 				unsigned int order,
836 				int migratetype)
837 {
838 	unsigned long nr_scanned;
839 	spin_lock(&zone->lock);
840 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
841 	if (nr_scanned)
842 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
843 
844 	if (unlikely(has_isolate_pageblock(zone) ||
845 		is_migrate_isolate(migratetype))) {
846 		migratetype = get_pfnblock_migratetype(page, pfn);
847 	}
848 	__free_one_page(page, pfn, zone, order, migratetype);
849 	spin_unlock(&zone->lock);
850 }
851 
852 static int free_tail_pages_check(struct page *head_page, struct page *page)
853 {
854 	int ret = 1;
855 
856 	/*
857 	 * We rely page->lru.next never has bit 0 set, unless the page
858 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
859 	 */
860 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
861 
862 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
863 		ret = 0;
864 		goto out;
865 	}
866 	if (unlikely(!PageTail(page))) {
867 		bad_page(page, "PageTail not set", 0);
868 		goto out;
869 	}
870 	if (unlikely(compound_head(page) != head_page)) {
871 		bad_page(page, "compound_head not consistent", 0);
872 		goto out;
873 	}
874 	ret = 0;
875 out:
876 	clear_compound_head(page);
877 	return ret;
878 }
879 
880 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
881 				unsigned long zone, int nid)
882 {
883 	set_page_links(page, zone, nid, pfn);
884 	init_page_count(page);
885 	page_mapcount_reset(page);
886 	page_cpupid_reset_last(page);
887 
888 	INIT_LIST_HEAD(&page->lru);
889 #ifdef WANT_PAGE_VIRTUAL
890 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
891 	if (!is_highmem_idx(zone))
892 		set_page_address(page, __va(pfn << PAGE_SHIFT));
893 #endif
894 }
895 
896 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
897 					int nid)
898 {
899 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
900 }
901 
902 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
903 static void init_reserved_page(unsigned long pfn)
904 {
905 	pg_data_t *pgdat;
906 	int nid, zid;
907 
908 	if (!early_page_uninitialised(pfn))
909 		return;
910 
911 	nid = early_pfn_to_nid(pfn);
912 	pgdat = NODE_DATA(nid);
913 
914 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
915 		struct zone *zone = &pgdat->node_zones[zid];
916 
917 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
918 			break;
919 	}
920 	__init_single_pfn(pfn, zid, nid);
921 }
922 #else
923 static inline void init_reserved_page(unsigned long pfn)
924 {
925 }
926 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
927 
928 /*
929  * Initialised pages do not have PageReserved set. This function is
930  * called for each range allocated by the bootmem allocator and
931  * marks the pages PageReserved. The remaining valid pages are later
932  * sent to the buddy page allocator.
933  */
934 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
935 {
936 	unsigned long start_pfn = PFN_DOWN(start);
937 	unsigned long end_pfn = PFN_UP(end);
938 
939 	for (; start_pfn < end_pfn; start_pfn++) {
940 		if (pfn_valid(start_pfn)) {
941 			struct page *page = pfn_to_page(start_pfn);
942 
943 			init_reserved_page(start_pfn);
944 
945 			/* Avoid false-positive PageTail() */
946 			INIT_LIST_HEAD(&page->lru);
947 
948 			SetPageReserved(page);
949 		}
950 	}
951 }
952 
953 static bool free_pages_prepare(struct page *page, unsigned int order)
954 {
955 	bool compound = PageCompound(page);
956 	int i, bad = 0;
957 
958 	VM_BUG_ON_PAGE(PageTail(page), page);
959 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
960 
961 	trace_mm_page_free(page, order);
962 	kmemcheck_free_shadow(page, order);
963 	kasan_free_pages(page, order);
964 
965 	if (PageAnon(page))
966 		page->mapping = NULL;
967 	bad += free_pages_check(page);
968 	for (i = 1; i < (1 << order); i++) {
969 		if (compound)
970 			bad += free_tail_pages_check(page, page + i);
971 		bad += free_pages_check(page + i);
972 	}
973 	if (bad)
974 		return false;
975 
976 	reset_page_owner(page, order);
977 
978 	if (!PageHighMem(page)) {
979 		debug_check_no_locks_freed(page_address(page),
980 					   PAGE_SIZE << order);
981 		debug_check_no_obj_freed(page_address(page),
982 					   PAGE_SIZE << order);
983 	}
984 	arch_free_page(page, order);
985 	kernel_map_pages(page, 1 << order, 0);
986 
987 	return true;
988 }
989 
990 static void __free_pages_ok(struct page *page, unsigned int order)
991 {
992 	unsigned long flags;
993 	int migratetype;
994 	unsigned long pfn = page_to_pfn(page);
995 
996 	if (!free_pages_prepare(page, order))
997 		return;
998 
999 	migratetype = get_pfnblock_migratetype(page, pfn);
1000 	local_irq_save(flags);
1001 	__count_vm_events(PGFREE, 1 << order);
1002 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1003 	local_irq_restore(flags);
1004 }
1005 
1006 static void __init __free_pages_boot_core(struct page *page,
1007 					unsigned long pfn, unsigned int order)
1008 {
1009 	unsigned int nr_pages = 1 << order;
1010 	struct page *p = page;
1011 	unsigned int loop;
1012 
1013 	prefetchw(p);
1014 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1015 		prefetchw(p + 1);
1016 		__ClearPageReserved(p);
1017 		set_page_count(p, 0);
1018 	}
1019 	__ClearPageReserved(p);
1020 	set_page_count(p, 0);
1021 
1022 	page_zone(page)->managed_pages += nr_pages;
1023 	set_page_refcounted(page);
1024 	__free_pages(page, order);
1025 }
1026 
1027 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1028 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1029 
1030 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1031 
1032 int __meminit early_pfn_to_nid(unsigned long pfn)
1033 {
1034 	static DEFINE_SPINLOCK(early_pfn_lock);
1035 	int nid;
1036 
1037 	spin_lock(&early_pfn_lock);
1038 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1039 	if (nid < 0)
1040 		nid = 0;
1041 	spin_unlock(&early_pfn_lock);
1042 
1043 	return nid;
1044 }
1045 #endif
1046 
1047 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1048 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1049 					struct mminit_pfnnid_cache *state)
1050 {
1051 	int nid;
1052 
1053 	nid = __early_pfn_to_nid(pfn, state);
1054 	if (nid >= 0 && nid != node)
1055 		return false;
1056 	return true;
1057 }
1058 
1059 /* Only safe to use early in boot when initialisation is single-threaded */
1060 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1061 {
1062 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1063 }
1064 
1065 #else
1066 
1067 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1068 {
1069 	return true;
1070 }
1071 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1072 					struct mminit_pfnnid_cache *state)
1073 {
1074 	return true;
1075 }
1076 #endif
1077 
1078 
1079 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1080 							unsigned int order)
1081 {
1082 	if (early_page_uninitialised(pfn))
1083 		return;
1084 	return __free_pages_boot_core(page, pfn, order);
1085 }
1086 
1087 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1088 static void __init deferred_free_range(struct page *page,
1089 					unsigned long pfn, int nr_pages)
1090 {
1091 	int i;
1092 
1093 	if (!page)
1094 		return;
1095 
1096 	/* Free a large naturally-aligned chunk if possible */
1097 	if (nr_pages == MAX_ORDER_NR_PAGES &&
1098 	    (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1099 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1100 		__free_pages_boot_core(page, pfn, MAX_ORDER-1);
1101 		return;
1102 	}
1103 
1104 	for (i = 0; i < nr_pages; i++, page++, pfn++)
1105 		__free_pages_boot_core(page, pfn, 0);
1106 }
1107 
1108 /* Completion tracking for deferred_init_memmap() threads */
1109 static atomic_t pgdat_init_n_undone __initdata;
1110 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1111 
1112 static inline void __init pgdat_init_report_one_done(void)
1113 {
1114 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1115 		complete(&pgdat_init_all_done_comp);
1116 }
1117 
1118 /* Initialise remaining memory on a node */
1119 static int __init deferred_init_memmap(void *data)
1120 {
1121 	pg_data_t *pgdat = data;
1122 	int nid = pgdat->node_id;
1123 	struct mminit_pfnnid_cache nid_init_state = { };
1124 	unsigned long start = jiffies;
1125 	unsigned long nr_pages = 0;
1126 	unsigned long walk_start, walk_end;
1127 	int i, zid;
1128 	struct zone *zone;
1129 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1130 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1131 
1132 	if (first_init_pfn == ULONG_MAX) {
1133 		pgdat_init_report_one_done();
1134 		return 0;
1135 	}
1136 
1137 	/* Bind memory initialisation thread to a local node if possible */
1138 	if (!cpumask_empty(cpumask))
1139 		set_cpus_allowed_ptr(current, cpumask);
1140 
1141 	/* Sanity check boundaries */
1142 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1143 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1144 	pgdat->first_deferred_pfn = ULONG_MAX;
1145 
1146 	/* Only the highest zone is deferred so find it */
1147 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1148 		zone = pgdat->node_zones + zid;
1149 		if (first_init_pfn < zone_end_pfn(zone))
1150 			break;
1151 	}
1152 
1153 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1154 		unsigned long pfn, end_pfn;
1155 		struct page *page = NULL;
1156 		struct page *free_base_page = NULL;
1157 		unsigned long free_base_pfn = 0;
1158 		int nr_to_free = 0;
1159 
1160 		end_pfn = min(walk_end, zone_end_pfn(zone));
1161 		pfn = first_init_pfn;
1162 		if (pfn < walk_start)
1163 			pfn = walk_start;
1164 		if (pfn < zone->zone_start_pfn)
1165 			pfn = zone->zone_start_pfn;
1166 
1167 		for (; pfn < end_pfn; pfn++) {
1168 			if (!pfn_valid_within(pfn))
1169 				goto free_range;
1170 
1171 			/*
1172 			 * Ensure pfn_valid is checked every
1173 			 * MAX_ORDER_NR_PAGES for memory holes
1174 			 */
1175 			if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1176 				if (!pfn_valid(pfn)) {
1177 					page = NULL;
1178 					goto free_range;
1179 				}
1180 			}
1181 
1182 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1183 				page = NULL;
1184 				goto free_range;
1185 			}
1186 
1187 			/* Minimise pfn page lookups and scheduler checks */
1188 			if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1189 				page++;
1190 			} else {
1191 				nr_pages += nr_to_free;
1192 				deferred_free_range(free_base_page,
1193 						free_base_pfn, nr_to_free);
1194 				free_base_page = NULL;
1195 				free_base_pfn = nr_to_free = 0;
1196 
1197 				page = pfn_to_page(pfn);
1198 				cond_resched();
1199 			}
1200 
1201 			if (page->flags) {
1202 				VM_BUG_ON(page_zone(page) != zone);
1203 				goto free_range;
1204 			}
1205 
1206 			__init_single_page(page, pfn, zid, nid);
1207 			if (!free_base_page) {
1208 				free_base_page = page;
1209 				free_base_pfn = pfn;
1210 				nr_to_free = 0;
1211 			}
1212 			nr_to_free++;
1213 
1214 			/* Where possible, batch up pages for a single free */
1215 			continue;
1216 free_range:
1217 			/* Free the current block of pages to allocator */
1218 			nr_pages += nr_to_free;
1219 			deferred_free_range(free_base_page, free_base_pfn,
1220 								nr_to_free);
1221 			free_base_page = NULL;
1222 			free_base_pfn = nr_to_free = 0;
1223 		}
1224 
1225 		first_init_pfn = max(end_pfn, first_init_pfn);
1226 	}
1227 
1228 	/* Sanity check that the next zone really is unpopulated */
1229 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1230 
1231 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1232 					jiffies_to_msecs(jiffies - start));
1233 
1234 	pgdat_init_report_one_done();
1235 	return 0;
1236 }
1237 
1238 void __init page_alloc_init_late(void)
1239 {
1240 	int nid;
1241 
1242 	/* There will be num_node_state(N_MEMORY) threads */
1243 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1244 	for_each_node_state(nid, N_MEMORY) {
1245 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1246 	}
1247 
1248 	/* Block until all are initialised */
1249 	wait_for_completion(&pgdat_init_all_done_comp);
1250 
1251 	/* Reinit limits that are based on free pages after the kernel is up */
1252 	files_maxfiles_init();
1253 }
1254 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1255 
1256 #ifdef CONFIG_CMA
1257 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1258 void __init init_cma_reserved_pageblock(struct page *page)
1259 {
1260 	unsigned i = pageblock_nr_pages;
1261 	struct page *p = page;
1262 
1263 	do {
1264 		__ClearPageReserved(p);
1265 		set_page_count(p, 0);
1266 	} while (++p, --i);
1267 
1268 	set_pageblock_migratetype(page, MIGRATE_CMA);
1269 
1270 	if (pageblock_order >= MAX_ORDER) {
1271 		i = pageblock_nr_pages;
1272 		p = page;
1273 		do {
1274 			set_page_refcounted(p);
1275 			__free_pages(p, MAX_ORDER - 1);
1276 			p += MAX_ORDER_NR_PAGES;
1277 		} while (i -= MAX_ORDER_NR_PAGES);
1278 	} else {
1279 		set_page_refcounted(page);
1280 		__free_pages(page, pageblock_order);
1281 	}
1282 
1283 	adjust_managed_page_count(page, pageblock_nr_pages);
1284 }
1285 #endif
1286 
1287 /*
1288  * The order of subdivision here is critical for the IO subsystem.
1289  * Please do not alter this order without good reasons and regression
1290  * testing. Specifically, as large blocks of memory are subdivided,
1291  * the order in which smaller blocks are delivered depends on the order
1292  * they're subdivided in this function. This is the primary factor
1293  * influencing the order in which pages are delivered to the IO
1294  * subsystem according to empirical testing, and this is also justified
1295  * by considering the behavior of a buddy system containing a single
1296  * large block of memory acted on by a series of small allocations.
1297  * This behavior is a critical factor in sglist merging's success.
1298  *
1299  * -- nyc
1300  */
1301 static inline void expand(struct zone *zone, struct page *page,
1302 	int low, int high, struct free_area *area,
1303 	int migratetype)
1304 {
1305 	unsigned long size = 1 << high;
1306 
1307 	while (high > low) {
1308 		area--;
1309 		high--;
1310 		size >>= 1;
1311 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1312 
1313 		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1314 			debug_guardpage_enabled() &&
1315 			high < debug_guardpage_minorder()) {
1316 			/*
1317 			 * Mark as guard pages (or page), that will allow to
1318 			 * merge back to allocator when buddy will be freed.
1319 			 * Corresponding page table entries will not be touched,
1320 			 * pages will stay not present in virtual address space
1321 			 */
1322 			set_page_guard(zone, &page[size], high, migratetype);
1323 			continue;
1324 		}
1325 		list_add(&page[size].lru, &area->free_list[migratetype]);
1326 		area->nr_free++;
1327 		set_page_order(&page[size], high);
1328 	}
1329 }
1330 
1331 /*
1332  * This page is about to be returned from the page allocator
1333  */
1334 static inline int check_new_page(struct page *page)
1335 {
1336 	const char *bad_reason = NULL;
1337 	unsigned long bad_flags = 0;
1338 
1339 	if (unlikely(page_mapcount(page)))
1340 		bad_reason = "nonzero mapcount";
1341 	if (unlikely(page->mapping != NULL))
1342 		bad_reason = "non-NULL mapping";
1343 	if (unlikely(atomic_read(&page->_count) != 0))
1344 		bad_reason = "nonzero _count";
1345 	if (unlikely(page->flags & __PG_HWPOISON)) {
1346 		bad_reason = "HWPoisoned (hardware-corrupted)";
1347 		bad_flags = __PG_HWPOISON;
1348 	}
1349 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1350 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1351 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1352 	}
1353 #ifdef CONFIG_MEMCG
1354 	if (unlikely(page->mem_cgroup))
1355 		bad_reason = "page still charged to cgroup";
1356 #endif
1357 	if (unlikely(bad_reason)) {
1358 		bad_page(page, bad_reason, bad_flags);
1359 		return 1;
1360 	}
1361 	return 0;
1362 }
1363 
1364 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1365 								int alloc_flags)
1366 {
1367 	int i;
1368 
1369 	for (i = 0; i < (1 << order); i++) {
1370 		struct page *p = page + i;
1371 		if (unlikely(check_new_page(p)))
1372 			return 1;
1373 	}
1374 
1375 	set_page_private(page, 0);
1376 	set_page_refcounted(page);
1377 
1378 	arch_alloc_page(page, order);
1379 	kernel_map_pages(page, 1 << order, 1);
1380 	kasan_alloc_pages(page, order);
1381 
1382 	if (gfp_flags & __GFP_ZERO)
1383 		for (i = 0; i < (1 << order); i++)
1384 			clear_highpage(page + i);
1385 
1386 	if (order && (gfp_flags & __GFP_COMP))
1387 		prep_compound_page(page, order);
1388 
1389 	set_page_owner(page, order, gfp_flags);
1390 
1391 	/*
1392 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1393 	 * allocate the page. The expectation is that the caller is taking
1394 	 * steps that will free more memory. The caller should avoid the page
1395 	 * being used for !PFMEMALLOC purposes.
1396 	 */
1397 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1398 		set_page_pfmemalloc(page);
1399 	else
1400 		clear_page_pfmemalloc(page);
1401 
1402 	return 0;
1403 }
1404 
1405 /*
1406  * Go through the free lists for the given migratetype and remove
1407  * the smallest available page from the freelists
1408  */
1409 static inline
1410 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1411 						int migratetype)
1412 {
1413 	unsigned int current_order;
1414 	struct free_area *area;
1415 	struct page *page;
1416 
1417 	/* Find a page of the appropriate size in the preferred list */
1418 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1419 		area = &(zone->free_area[current_order]);
1420 		if (list_empty(&area->free_list[migratetype]))
1421 			continue;
1422 
1423 		page = list_entry(area->free_list[migratetype].next,
1424 							struct page, lru);
1425 		list_del(&page->lru);
1426 		rmv_page_order(page);
1427 		area->nr_free--;
1428 		expand(zone, page, order, current_order, area, migratetype);
1429 		set_pcppage_migratetype(page, migratetype);
1430 		return page;
1431 	}
1432 
1433 	return NULL;
1434 }
1435 
1436 
1437 /*
1438  * This array describes the order lists are fallen back to when
1439  * the free lists for the desirable migrate type are depleted
1440  */
1441 static int fallbacks[MIGRATE_TYPES][4] = {
1442 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1443 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1444 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1445 #ifdef CONFIG_CMA
1446 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1447 #endif
1448 #ifdef CONFIG_MEMORY_ISOLATION
1449 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1450 #endif
1451 };
1452 
1453 #ifdef CONFIG_CMA
1454 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1455 					unsigned int order)
1456 {
1457 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1458 }
1459 #else
1460 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1461 					unsigned int order) { return NULL; }
1462 #endif
1463 
1464 /*
1465  * Move the free pages in a range to the free lists of the requested type.
1466  * Note that start_page and end_pages are not aligned on a pageblock
1467  * boundary. If alignment is required, use move_freepages_block()
1468  */
1469 int move_freepages(struct zone *zone,
1470 			  struct page *start_page, struct page *end_page,
1471 			  int migratetype)
1472 {
1473 	struct page *page;
1474 	unsigned int order;
1475 	int pages_moved = 0;
1476 
1477 #ifndef CONFIG_HOLES_IN_ZONE
1478 	/*
1479 	 * page_zone is not safe to call in this context when
1480 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1481 	 * anyway as we check zone boundaries in move_freepages_block().
1482 	 * Remove at a later date when no bug reports exist related to
1483 	 * grouping pages by mobility
1484 	 */
1485 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1486 #endif
1487 
1488 	for (page = start_page; page <= end_page;) {
1489 		/* Make sure we are not inadvertently changing nodes */
1490 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1491 
1492 		if (!pfn_valid_within(page_to_pfn(page))) {
1493 			page++;
1494 			continue;
1495 		}
1496 
1497 		if (!PageBuddy(page)) {
1498 			page++;
1499 			continue;
1500 		}
1501 
1502 		order = page_order(page);
1503 		list_move(&page->lru,
1504 			  &zone->free_area[order].free_list[migratetype]);
1505 		page += 1 << order;
1506 		pages_moved += 1 << order;
1507 	}
1508 
1509 	return pages_moved;
1510 }
1511 
1512 int move_freepages_block(struct zone *zone, struct page *page,
1513 				int migratetype)
1514 {
1515 	unsigned long start_pfn, end_pfn;
1516 	struct page *start_page, *end_page;
1517 
1518 	start_pfn = page_to_pfn(page);
1519 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1520 	start_page = pfn_to_page(start_pfn);
1521 	end_page = start_page + pageblock_nr_pages - 1;
1522 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1523 
1524 	/* Do not cross zone boundaries */
1525 	if (!zone_spans_pfn(zone, start_pfn))
1526 		start_page = page;
1527 	if (!zone_spans_pfn(zone, end_pfn))
1528 		return 0;
1529 
1530 	return move_freepages(zone, start_page, end_page, migratetype);
1531 }
1532 
1533 static void change_pageblock_range(struct page *pageblock_page,
1534 					int start_order, int migratetype)
1535 {
1536 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1537 
1538 	while (nr_pageblocks--) {
1539 		set_pageblock_migratetype(pageblock_page, migratetype);
1540 		pageblock_page += pageblock_nr_pages;
1541 	}
1542 }
1543 
1544 /*
1545  * When we are falling back to another migratetype during allocation, try to
1546  * steal extra free pages from the same pageblocks to satisfy further
1547  * allocations, instead of polluting multiple pageblocks.
1548  *
1549  * If we are stealing a relatively large buddy page, it is likely there will
1550  * be more free pages in the pageblock, so try to steal them all. For
1551  * reclaimable and unmovable allocations, we steal regardless of page size,
1552  * as fragmentation caused by those allocations polluting movable pageblocks
1553  * is worse than movable allocations stealing from unmovable and reclaimable
1554  * pageblocks.
1555  */
1556 static bool can_steal_fallback(unsigned int order, int start_mt)
1557 {
1558 	/*
1559 	 * Leaving this order check is intended, although there is
1560 	 * relaxed order check in next check. The reason is that
1561 	 * we can actually steal whole pageblock if this condition met,
1562 	 * but, below check doesn't guarantee it and that is just heuristic
1563 	 * so could be changed anytime.
1564 	 */
1565 	if (order >= pageblock_order)
1566 		return true;
1567 
1568 	if (order >= pageblock_order / 2 ||
1569 		start_mt == MIGRATE_RECLAIMABLE ||
1570 		start_mt == MIGRATE_UNMOVABLE ||
1571 		page_group_by_mobility_disabled)
1572 		return true;
1573 
1574 	return false;
1575 }
1576 
1577 /*
1578  * This function implements actual steal behaviour. If order is large enough,
1579  * we can steal whole pageblock. If not, we first move freepages in this
1580  * pageblock and check whether half of pages are moved or not. If half of
1581  * pages are moved, we can change migratetype of pageblock and permanently
1582  * use it's pages as requested migratetype in the future.
1583  */
1584 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1585 							  int start_type)
1586 {
1587 	unsigned int current_order = page_order(page);
1588 	int pages;
1589 
1590 	/* Take ownership for orders >= pageblock_order */
1591 	if (current_order >= pageblock_order) {
1592 		change_pageblock_range(page, current_order, start_type);
1593 		return;
1594 	}
1595 
1596 	pages = move_freepages_block(zone, page, start_type);
1597 
1598 	/* Claim the whole block if over half of it is free */
1599 	if (pages >= (1 << (pageblock_order-1)) ||
1600 			page_group_by_mobility_disabled)
1601 		set_pageblock_migratetype(page, start_type);
1602 }
1603 
1604 /*
1605  * Check whether there is a suitable fallback freepage with requested order.
1606  * If only_stealable is true, this function returns fallback_mt only if
1607  * we can steal other freepages all together. This would help to reduce
1608  * fragmentation due to mixed migratetype pages in one pageblock.
1609  */
1610 int find_suitable_fallback(struct free_area *area, unsigned int order,
1611 			int migratetype, bool only_stealable, bool *can_steal)
1612 {
1613 	int i;
1614 	int fallback_mt;
1615 
1616 	if (area->nr_free == 0)
1617 		return -1;
1618 
1619 	*can_steal = false;
1620 	for (i = 0;; i++) {
1621 		fallback_mt = fallbacks[migratetype][i];
1622 		if (fallback_mt == MIGRATE_TYPES)
1623 			break;
1624 
1625 		if (list_empty(&area->free_list[fallback_mt]))
1626 			continue;
1627 
1628 		if (can_steal_fallback(order, migratetype))
1629 			*can_steal = true;
1630 
1631 		if (!only_stealable)
1632 			return fallback_mt;
1633 
1634 		if (*can_steal)
1635 			return fallback_mt;
1636 	}
1637 
1638 	return -1;
1639 }
1640 
1641 /*
1642  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1643  * there are no empty page blocks that contain a page with a suitable order
1644  */
1645 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1646 				unsigned int alloc_order)
1647 {
1648 	int mt;
1649 	unsigned long max_managed, flags;
1650 
1651 	/*
1652 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1653 	 * Check is race-prone but harmless.
1654 	 */
1655 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1656 	if (zone->nr_reserved_highatomic >= max_managed)
1657 		return;
1658 
1659 	spin_lock_irqsave(&zone->lock, flags);
1660 
1661 	/* Recheck the nr_reserved_highatomic limit under the lock */
1662 	if (zone->nr_reserved_highatomic >= max_managed)
1663 		goto out_unlock;
1664 
1665 	/* Yoink! */
1666 	mt = get_pageblock_migratetype(page);
1667 	if (mt != MIGRATE_HIGHATOMIC &&
1668 			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1669 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1670 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1671 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1672 	}
1673 
1674 out_unlock:
1675 	spin_unlock_irqrestore(&zone->lock, flags);
1676 }
1677 
1678 /*
1679  * Used when an allocation is about to fail under memory pressure. This
1680  * potentially hurts the reliability of high-order allocations when under
1681  * intense memory pressure but failed atomic allocations should be easier
1682  * to recover from than an OOM.
1683  */
1684 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1685 {
1686 	struct zonelist *zonelist = ac->zonelist;
1687 	unsigned long flags;
1688 	struct zoneref *z;
1689 	struct zone *zone;
1690 	struct page *page;
1691 	int order;
1692 
1693 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1694 								ac->nodemask) {
1695 		/* Preserve at least one pageblock */
1696 		if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1697 			continue;
1698 
1699 		spin_lock_irqsave(&zone->lock, flags);
1700 		for (order = 0; order < MAX_ORDER; order++) {
1701 			struct free_area *area = &(zone->free_area[order]);
1702 
1703 			if (list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
1704 				continue;
1705 
1706 			page = list_entry(area->free_list[MIGRATE_HIGHATOMIC].next,
1707 						struct page, lru);
1708 
1709 			/*
1710 			 * It should never happen but changes to locking could
1711 			 * inadvertently allow a per-cpu drain to add pages
1712 			 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1713 			 * and watch for underflows.
1714 			 */
1715 			zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1716 				zone->nr_reserved_highatomic);
1717 
1718 			/*
1719 			 * Convert to ac->migratetype and avoid the normal
1720 			 * pageblock stealing heuristics. Minimally, the caller
1721 			 * is doing the work and needs the pages. More
1722 			 * importantly, if the block was always converted to
1723 			 * MIGRATE_UNMOVABLE or another type then the number
1724 			 * of pageblocks that cannot be completely freed
1725 			 * may increase.
1726 			 */
1727 			set_pageblock_migratetype(page, ac->migratetype);
1728 			move_freepages_block(zone, page, ac->migratetype);
1729 			spin_unlock_irqrestore(&zone->lock, flags);
1730 			return;
1731 		}
1732 		spin_unlock_irqrestore(&zone->lock, flags);
1733 	}
1734 }
1735 
1736 /* Remove an element from the buddy allocator from the fallback list */
1737 static inline struct page *
1738 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1739 {
1740 	struct free_area *area;
1741 	unsigned int current_order;
1742 	struct page *page;
1743 	int fallback_mt;
1744 	bool can_steal;
1745 
1746 	/* Find the largest possible block of pages in the other list */
1747 	for (current_order = MAX_ORDER-1;
1748 				current_order >= order && current_order <= MAX_ORDER-1;
1749 				--current_order) {
1750 		area = &(zone->free_area[current_order]);
1751 		fallback_mt = find_suitable_fallback(area, current_order,
1752 				start_migratetype, false, &can_steal);
1753 		if (fallback_mt == -1)
1754 			continue;
1755 
1756 		page = list_entry(area->free_list[fallback_mt].next,
1757 						struct page, lru);
1758 		if (can_steal)
1759 			steal_suitable_fallback(zone, page, start_migratetype);
1760 
1761 		/* Remove the page from the freelists */
1762 		area->nr_free--;
1763 		list_del(&page->lru);
1764 		rmv_page_order(page);
1765 
1766 		expand(zone, page, order, current_order, area,
1767 					start_migratetype);
1768 		/*
1769 		 * The pcppage_migratetype may differ from pageblock's
1770 		 * migratetype depending on the decisions in
1771 		 * find_suitable_fallback(). This is OK as long as it does not
1772 		 * differ for MIGRATE_CMA pageblocks. Those can be used as
1773 		 * fallback only via special __rmqueue_cma_fallback() function
1774 		 */
1775 		set_pcppage_migratetype(page, start_migratetype);
1776 
1777 		trace_mm_page_alloc_extfrag(page, order, current_order,
1778 			start_migratetype, fallback_mt);
1779 
1780 		return page;
1781 	}
1782 
1783 	return NULL;
1784 }
1785 
1786 /*
1787  * Do the hard work of removing an element from the buddy allocator.
1788  * Call me with the zone->lock already held.
1789  */
1790 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1791 				int migratetype, gfp_t gfp_flags)
1792 {
1793 	struct page *page;
1794 
1795 	page = __rmqueue_smallest(zone, order, migratetype);
1796 	if (unlikely(!page)) {
1797 		if (migratetype == MIGRATE_MOVABLE)
1798 			page = __rmqueue_cma_fallback(zone, order);
1799 
1800 		if (!page)
1801 			page = __rmqueue_fallback(zone, order, migratetype);
1802 	}
1803 
1804 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1805 	return page;
1806 }
1807 
1808 /*
1809  * Obtain a specified number of elements from the buddy allocator, all under
1810  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1811  * Returns the number of new pages which were placed at *list.
1812  */
1813 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1814 			unsigned long count, struct list_head *list,
1815 			int migratetype, bool cold)
1816 {
1817 	int i;
1818 
1819 	spin_lock(&zone->lock);
1820 	for (i = 0; i < count; ++i) {
1821 		struct page *page = __rmqueue(zone, order, migratetype, 0);
1822 		if (unlikely(page == NULL))
1823 			break;
1824 
1825 		/*
1826 		 * Split buddy pages returned by expand() are received here
1827 		 * in physical page order. The page is added to the callers and
1828 		 * list and the list head then moves forward. From the callers
1829 		 * perspective, the linked list is ordered by page number in
1830 		 * some conditions. This is useful for IO devices that can
1831 		 * merge IO requests if the physical pages are ordered
1832 		 * properly.
1833 		 */
1834 		if (likely(!cold))
1835 			list_add(&page->lru, list);
1836 		else
1837 			list_add_tail(&page->lru, list);
1838 		list = &page->lru;
1839 		if (is_migrate_cma(get_pcppage_migratetype(page)))
1840 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1841 					      -(1 << order));
1842 	}
1843 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1844 	spin_unlock(&zone->lock);
1845 	return i;
1846 }
1847 
1848 #ifdef CONFIG_NUMA
1849 /*
1850  * Called from the vmstat counter updater to drain pagesets of this
1851  * currently executing processor on remote nodes after they have
1852  * expired.
1853  *
1854  * Note that this function must be called with the thread pinned to
1855  * a single processor.
1856  */
1857 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1858 {
1859 	unsigned long flags;
1860 	int to_drain, batch;
1861 
1862 	local_irq_save(flags);
1863 	batch = READ_ONCE(pcp->batch);
1864 	to_drain = min(pcp->count, batch);
1865 	if (to_drain > 0) {
1866 		free_pcppages_bulk(zone, to_drain, pcp);
1867 		pcp->count -= to_drain;
1868 	}
1869 	local_irq_restore(flags);
1870 }
1871 #endif
1872 
1873 /*
1874  * Drain pcplists of the indicated processor and zone.
1875  *
1876  * The processor must either be the current processor and the
1877  * thread pinned to the current processor or a processor that
1878  * is not online.
1879  */
1880 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1881 {
1882 	unsigned long flags;
1883 	struct per_cpu_pageset *pset;
1884 	struct per_cpu_pages *pcp;
1885 
1886 	local_irq_save(flags);
1887 	pset = per_cpu_ptr(zone->pageset, cpu);
1888 
1889 	pcp = &pset->pcp;
1890 	if (pcp->count) {
1891 		free_pcppages_bulk(zone, pcp->count, pcp);
1892 		pcp->count = 0;
1893 	}
1894 	local_irq_restore(flags);
1895 }
1896 
1897 /*
1898  * Drain pcplists of all zones on the indicated processor.
1899  *
1900  * The processor must either be the current processor and the
1901  * thread pinned to the current processor or a processor that
1902  * is not online.
1903  */
1904 static void drain_pages(unsigned int cpu)
1905 {
1906 	struct zone *zone;
1907 
1908 	for_each_populated_zone(zone) {
1909 		drain_pages_zone(cpu, zone);
1910 	}
1911 }
1912 
1913 /*
1914  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1915  *
1916  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1917  * the single zone's pages.
1918  */
1919 void drain_local_pages(struct zone *zone)
1920 {
1921 	int cpu = smp_processor_id();
1922 
1923 	if (zone)
1924 		drain_pages_zone(cpu, zone);
1925 	else
1926 		drain_pages(cpu);
1927 }
1928 
1929 /*
1930  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1931  *
1932  * When zone parameter is non-NULL, spill just the single zone's pages.
1933  *
1934  * Note that this code is protected against sending an IPI to an offline
1935  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1936  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1937  * nothing keeps CPUs from showing up after we populated the cpumask and
1938  * before the call to on_each_cpu_mask().
1939  */
1940 void drain_all_pages(struct zone *zone)
1941 {
1942 	int cpu;
1943 
1944 	/*
1945 	 * Allocate in the BSS so we wont require allocation in
1946 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1947 	 */
1948 	static cpumask_t cpus_with_pcps;
1949 
1950 	/*
1951 	 * We don't care about racing with CPU hotplug event
1952 	 * as offline notification will cause the notified
1953 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1954 	 * disables preemption as part of its processing
1955 	 */
1956 	for_each_online_cpu(cpu) {
1957 		struct per_cpu_pageset *pcp;
1958 		struct zone *z;
1959 		bool has_pcps = false;
1960 
1961 		if (zone) {
1962 			pcp = per_cpu_ptr(zone->pageset, cpu);
1963 			if (pcp->pcp.count)
1964 				has_pcps = true;
1965 		} else {
1966 			for_each_populated_zone(z) {
1967 				pcp = per_cpu_ptr(z->pageset, cpu);
1968 				if (pcp->pcp.count) {
1969 					has_pcps = true;
1970 					break;
1971 				}
1972 			}
1973 		}
1974 
1975 		if (has_pcps)
1976 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1977 		else
1978 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1979 	}
1980 	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1981 								zone, 1);
1982 }
1983 
1984 #ifdef CONFIG_HIBERNATION
1985 
1986 void mark_free_pages(struct zone *zone)
1987 {
1988 	unsigned long pfn, max_zone_pfn;
1989 	unsigned long flags;
1990 	unsigned int order, t;
1991 	struct list_head *curr;
1992 
1993 	if (zone_is_empty(zone))
1994 		return;
1995 
1996 	spin_lock_irqsave(&zone->lock, flags);
1997 
1998 	max_zone_pfn = zone_end_pfn(zone);
1999 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2000 		if (pfn_valid(pfn)) {
2001 			struct page *page = pfn_to_page(pfn);
2002 
2003 			if (!swsusp_page_is_forbidden(page))
2004 				swsusp_unset_page_free(page);
2005 		}
2006 
2007 	for_each_migratetype_order(order, t) {
2008 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
2009 			unsigned long i;
2010 
2011 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
2012 			for (i = 0; i < (1UL << order); i++)
2013 				swsusp_set_page_free(pfn_to_page(pfn + i));
2014 		}
2015 	}
2016 	spin_unlock_irqrestore(&zone->lock, flags);
2017 }
2018 #endif /* CONFIG_PM */
2019 
2020 /*
2021  * Free a 0-order page
2022  * cold == true ? free a cold page : free a hot page
2023  */
2024 void free_hot_cold_page(struct page *page, bool cold)
2025 {
2026 	struct zone *zone = page_zone(page);
2027 	struct per_cpu_pages *pcp;
2028 	unsigned long flags;
2029 	unsigned long pfn = page_to_pfn(page);
2030 	int migratetype;
2031 
2032 	if (!free_pages_prepare(page, 0))
2033 		return;
2034 
2035 	migratetype = get_pfnblock_migratetype(page, pfn);
2036 	set_pcppage_migratetype(page, migratetype);
2037 	local_irq_save(flags);
2038 	__count_vm_event(PGFREE);
2039 
2040 	/*
2041 	 * We only track unmovable, reclaimable and movable on pcp lists.
2042 	 * Free ISOLATE pages back to the allocator because they are being
2043 	 * offlined but treat RESERVE as movable pages so we can get those
2044 	 * areas back if necessary. Otherwise, we may have to free
2045 	 * excessively into the page allocator
2046 	 */
2047 	if (migratetype >= MIGRATE_PCPTYPES) {
2048 		if (unlikely(is_migrate_isolate(migratetype))) {
2049 			free_one_page(zone, page, pfn, 0, migratetype);
2050 			goto out;
2051 		}
2052 		migratetype = MIGRATE_MOVABLE;
2053 	}
2054 
2055 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2056 	if (!cold)
2057 		list_add(&page->lru, &pcp->lists[migratetype]);
2058 	else
2059 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2060 	pcp->count++;
2061 	if (pcp->count >= pcp->high) {
2062 		unsigned long batch = READ_ONCE(pcp->batch);
2063 		free_pcppages_bulk(zone, batch, pcp);
2064 		pcp->count -= batch;
2065 	}
2066 
2067 out:
2068 	local_irq_restore(flags);
2069 }
2070 
2071 /*
2072  * Free a list of 0-order pages
2073  */
2074 void free_hot_cold_page_list(struct list_head *list, bool cold)
2075 {
2076 	struct page *page, *next;
2077 
2078 	list_for_each_entry_safe(page, next, list, lru) {
2079 		trace_mm_page_free_batched(page, cold);
2080 		free_hot_cold_page(page, cold);
2081 	}
2082 }
2083 
2084 /*
2085  * split_page takes a non-compound higher-order page, and splits it into
2086  * n (1<<order) sub-pages: page[0..n]
2087  * Each sub-page must be freed individually.
2088  *
2089  * Note: this is probably too low level an operation for use in drivers.
2090  * Please consult with lkml before using this in your driver.
2091  */
2092 void split_page(struct page *page, unsigned int order)
2093 {
2094 	int i;
2095 	gfp_t gfp_mask;
2096 
2097 	VM_BUG_ON_PAGE(PageCompound(page), page);
2098 	VM_BUG_ON_PAGE(!page_count(page), page);
2099 
2100 #ifdef CONFIG_KMEMCHECK
2101 	/*
2102 	 * Split shadow pages too, because free(page[0]) would
2103 	 * otherwise free the whole shadow.
2104 	 */
2105 	if (kmemcheck_page_is_tracked(page))
2106 		split_page(virt_to_page(page[0].shadow), order);
2107 #endif
2108 
2109 	gfp_mask = get_page_owner_gfp(page);
2110 	set_page_owner(page, 0, gfp_mask);
2111 	for (i = 1; i < (1 << order); i++) {
2112 		set_page_refcounted(page + i);
2113 		set_page_owner(page + i, 0, gfp_mask);
2114 	}
2115 }
2116 EXPORT_SYMBOL_GPL(split_page);
2117 
2118 int __isolate_free_page(struct page *page, unsigned int order)
2119 {
2120 	unsigned long watermark;
2121 	struct zone *zone;
2122 	int mt;
2123 
2124 	BUG_ON(!PageBuddy(page));
2125 
2126 	zone = page_zone(page);
2127 	mt = get_pageblock_migratetype(page);
2128 
2129 	if (!is_migrate_isolate(mt)) {
2130 		/* Obey watermarks as if the page was being allocated */
2131 		watermark = low_wmark_pages(zone) + (1 << order);
2132 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2133 			return 0;
2134 
2135 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2136 	}
2137 
2138 	/* Remove page from free list */
2139 	list_del(&page->lru);
2140 	zone->free_area[order].nr_free--;
2141 	rmv_page_order(page);
2142 
2143 	set_page_owner(page, order, __GFP_MOVABLE);
2144 
2145 	/* Set the pageblock if the isolated page is at least a pageblock */
2146 	if (order >= pageblock_order - 1) {
2147 		struct page *endpage = page + (1 << order) - 1;
2148 		for (; page < endpage; page += pageblock_nr_pages) {
2149 			int mt = get_pageblock_migratetype(page);
2150 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2151 				set_pageblock_migratetype(page,
2152 							  MIGRATE_MOVABLE);
2153 		}
2154 	}
2155 
2156 
2157 	return 1UL << order;
2158 }
2159 
2160 /*
2161  * Similar to split_page except the page is already free. As this is only
2162  * being used for migration, the migratetype of the block also changes.
2163  * As this is called with interrupts disabled, the caller is responsible
2164  * for calling arch_alloc_page() and kernel_map_page() after interrupts
2165  * are enabled.
2166  *
2167  * Note: this is probably too low level an operation for use in drivers.
2168  * Please consult with lkml before using this in your driver.
2169  */
2170 int split_free_page(struct page *page)
2171 {
2172 	unsigned int order;
2173 	int nr_pages;
2174 
2175 	order = page_order(page);
2176 
2177 	nr_pages = __isolate_free_page(page, order);
2178 	if (!nr_pages)
2179 		return 0;
2180 
2181 	/* Split into individual pages */
2182 	set_page_refcounted(page);
2183 	split_page(page, order);
2184 	return nr_pages;
2185 }
2186 
2187 /*
2188  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2189  */
2190 static inline
2191 struct page *buffered_rmqueue(struct zone *preferred_zone,
2192 			struct zone *zone, unsigned int order,
2193 			gfp_t gfp_flags, int alloc_flags, int migratetype)
2194 {
2195 	unsigned long flags;
2196 	struct page *page;
2197 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2198 
2199 	if (likely(order == 0)) {
2200 		struct per_cpu_pages *pcp;
2201 		struct list_head *list;
2202 
2203 		local_irq_save(flags);
2204 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
2205 		list = &pcp->lists[migratetype];
2206 		if (list_empty(list)) {
2207 			pcp->count += rmqueue_bulk(zone, 0,
2208 					pcp->batch, list,
2209 					migratetype, cold);
2210 			if (unlikely(list_empty(list)))
2211 				goto failed;
2212 		}
2213 
2214 		if (cold)
2215 			page = list_entry(list->prev, struct page, lru);
2216 		else
2217 			page = list_entry(list->next, struct page, lru);
2218 
2219 		list_del(&page->lru);
2220 		pcp->count--;
2221 	} else {
2222 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2223 			/*
2224 			 * __GFP_NOFAIL is not to be used in new code.
2225 			 *
2226 			 * All __GFP_NOFAIL callers should be fixed so that they
2227 			 * properly detect and handle allocation failures.
2228 			 *
2229 			 * We most definitely don't want callers attempting to
2230 			 * allocate greater than order-1 page units with
2231 			 * __GFP_NOFAIL.
2232 			 */
2233 			WARN_ON_ONCE(order > 1);
2234 		}
2235 		spin_lock_irqsave(&zone->lock, flags);
2236 
2237 		page = NULL;
2238 		if (alloc_flags & ALLOC_HARDER) {
2239 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2240 			if (page)
2241 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
2242 		}
2243 		if (!page)
2244 			page = __rmqueue(zone, order, migratetype, gfp_flags);
2245 		spin_unlock(&zone->lock);
2246 		if (!page)
2247 			goto failed;
2248 		__mod_zone_freepage_state(zone, -(1 << order),
2249 					  get_pcppage_migratetype(page));
2250 	}
2251 
2252 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2253 	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2254 	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2255 		set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2256 
2257 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
2258 	zone_statistics(preferred_zone, zone, gfp_flags);
2259 	local_irq_restore(flags);
2260 
2261 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
2262 	return page;
2263 
2264 failed:
2265 	local_irq_restore(flags);
2266 	return NULL;
2267 }
2268 
2269 #ifdef CONFIG_FAIL_PAGE_ALLOC
2270 
2271 static struct {
2272 	struct fault_attr attr;
2273 
2274 	bool ignore_gfp_highmem;
2275 	bool ignore_gfp_reclaim;
2276 	u32 min_order;
2277 } fail_page_alloc = {
2278 	.attr = FAULT_ATTR_INITIALIZER,
2279 	.ignore_gfp_reclaim = true,
2280 	.ignore_gfp_highmem = true,
2281 	.min_order = 1,
2282 };
2283 
2284 static int __init setup_fail_page_alloc(char *str)
2285 {
2286 	return setup_fault_attr(&fail_page_alloc.attr, str);
2287 }
2288 __setup("fail_page_alloc=", setup_fail_page_alloc);
2289 
2290 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2291 {
2292 	if (order < fail_page_alloc.min_order)
2293 		return false;
2294 	if (gfp_mask & __GFP_NOFAIL)
2295 		return false;
2296 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2297 		return false;
2298 	if (fail_page_alloc.ignore_gfp_reclaim &&
2299 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2300 		return false;
2301 
2302 	return should_fail(&fail_page_alloc.attr, 1 << order);
2303 }
2304 
2305 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2306 
2307 static int __init fail_page_alloc_debugfs(void)
2308 {
2309 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2310 	struct dentry *dir;
2311 
2312 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2313 					&fail_page_alloc.attr);
2314 	if (IS_ERR(dir))
2315 		return PTR_ERR(dir);
2316 
2317 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2318 				&fail_page_alloc.ignore_gfp_reclaim))
2319 		goto fail;
2320 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2321 				&fail_page_alloc.ignore_gfp_highmem))
2322 		goto fail;
2323 	if (!debugfs_create_u32("min-order", mode, dir,
2324 				&fail_page_alloc.min_order))
2325 		goto fail;
2326 
2327 	return 0;
2328 fail:
2329 	debugfs_remove_recursive(dir);
2330 
2331 	return -ENOMEM;
2332 }
2333 
2334 late_initcall(fail_page_alloc_debugfs);
2335 
2336 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2337 
2338 #else /* CONFIG_FAIL_PAGE_ALLOC */
2339 
2340 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2341 {
2342 	return false;
2343 }
2344 
2345 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2346 
2347 /*
2348  * Return true if free base pages are above 'mark'. For high-order checks it
2349  * will return true of the order-0 watermark is reached and there is at least
2350  * one free page of a suitable size. Checking now avoids taking the zone lock
2351  * to check in the allocation paths if no pages are free.
2352  */
2353 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2354 			unsigned long mark, int classzone_idx, int alloc_flags,
2355 			long free_pages)
2356 {
2357 	long min = mark;
2358 	int o;
2359 	const int alloc_harder = (alloc_flags & ALLOC_HARDER);
2360 
2361 	/* free_pages may go negative - that's OK */
2362 	free_pages -= (1 << order) - 1;
2363 
2364 	if (alloc_flags & ALLOC_HIGH)
2365 		min -= min / 2;
2366 
2367 	/*
2368 	 * If the caller does not have rights to ALLOC_HARDER then subtract
2369 	 * the high-atomic reserves. This will over-estimate the size of the
2370 	 * atomic reserve but it avoids a search.
2371 	 */
2372 	if (likely(!alloc_harder))
2373 		free_pages -= z->nr_reserved_highatomic;
2374 	else
2375 		min -= min / 4;
2376 
2377 #ifdef CONFIG_CMA
2378 	/* If allocation can't use CMA areas don't use free CMA pages */
2379 	if (!(alloc_flags & ALLOC_CMA))
2380 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2381 #endif
2382 
2383 	/*
2384 	 * Check watermarks for an order-0 allocation request. If these
2385 	 * are not met, then a high-order request also cannot go ahead
2386 	 * even if a suitable page happened to be free.
2387 	 */
2388 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2389 		return false;
2390 
2391 	/* If this is an order-0 request then the watermark is fine */
2392 	if (!order)
2393 		return true;
2394 
2395 	/* For a high-order request, check at least one suitable page is free */
2396 	for (o = order; o < MAX_ORDER; o++) {
2397 		struct free_area *area = &z->free_area[o];
2398 		int mt;
2399 
2400 		if (!area->nr_free)
2401 			continue;
2402 
2403 		if (alloc_harder)
2404 			return true;
2405 
2406 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2407 			if (!list_empty(&area->free_list[mt]))
2408 				return true;
2409 		}
2410 
2411 #ifdef CONFIG_CMA
2412 		if ((alloc_flags & ALLOC_CMA) &&
2413 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2414 			return true;
2415 		}
2416 #endif
2417 	}
2418 	return false;
2419 }
2420 
2421 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2422 		      int classzone_idx, int alloc_flags)
2423 {
2424 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2425 					zone_page_state(z, NR_FREE_PAGES));
2426 }
2427 
2428 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2429 			unsigned long mark, int classzone_idx)
2430 {
2431 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2432 
2433 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2434 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2435 
2436 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2437 								free_pages);
2438 }
2439 
2440 #ifdef CONFIG_NUMA
2441 static bool zone_local(struct zone *local_zone, struct zone *zone)
2442 {
2443 	return local_zone->node == zone->node;
2444 }
2445 
2446 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2447 {
2448 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2449 				RECLAIM_DISTANCE;
2450 }
2451 #else	/* CONFIG_NUMA */
2452 static bool zone_local(struct zone *local_zone, struct zone *zone)
2453 {
2454 	return true;
2455 }
2456 
2457 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2458 {
2459 	return true;
2460 }
2461 #endif	/* CONFIG_NUMA */
2462 
2463 static void reset_alloc_batches(struct zone *preferred_zone)
2464 {
2465 	struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2466 
2467 	do {
2468 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2469 			high_wmark_pages(zone) - low_wmark_pages(zone) -
2470 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2471 		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2472 	} while (zone++ != preferred_zone);
2473 }
2474 
2475 /*
2476  * get_page_from_freelist goes through the zonelist trying to allocate
2477  * a page.
2478  */
2479 static struct page *
2480 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2481 						const struct alloc_context *ac)
2482 {
2483 	struct zonelist *zonelist = ac->zonelist;
2484 	struct zoneref *z;
2485 	struct page *page = NULL;
2486 	struct zone *zone;
2487 	int nr_fair_skipped = 0;
2488 	bool zonelist_rescan;
2489 
2490 zonelist_scan:
2491 	zonelist_rescan = false;
2492 
2493 	/*
2494 	 * Scan zonelist, looking for a zone with enough free.
2495 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2496 	 */
2497 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2498 								ac->nodemask) {
2499 		unsigned long mark;
2500 
2501 		if (cpusets_enabled() &&
2502 			(alloc_flags & ALLOC_CPUSET) &&
2503 			!cpuset_zone_allowed(zone, gfp_mask))
2504 				continue;
2505 		/*
2506 		 * Distribute pages in proportion to the individual
2507 		 * zone size to ensure fair page aging.  The zone a
2508 		 * page was allocated in should have no effect on the
2509 		 * time the page has in memory before being reclaimed.
2510 		 */
2511 		if (alloc_flags & ALLOC_FAIR) {
2512 			if (!zone_local(ac->preferred_zone, zone))
2513 				break;
2514 			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2515 				nr_fair_skipped++;
2516 				continue;
2517 			}
2518 		}
2519 		/*
2520 		 * When allocating a page cache page for writing, we
2521 		 * want to get it from a zone that is within its dirty
2522 		 * limit, such that no single zone holds more than its
2523 		 * proportional share of globally allowed dirty pages.
2524 		 * The dirty limits take into account the zone's
2525 		 * lowmem reserves and high watermark so that kswapd
2526 		 * should be able to balance it without having to
2527 		 * write pages from its LRU list.
2528 		 *
2529 		 * This may look like it could increase pressure on
2530 		 * lower zones by failing allocations in higher zones
2531 		 * before they are full.  But the pages that do spill
2532 		 * over are limited as the lower zones are protected
2533 		 * by this very same mechanism.  It should not become
2534 		 * a practical burden to them.
2535 		 *
2536 		 * XXX: For now, allow allocations to potentially
2537 		 * exceed the per-zone dirty limit in the slowpath
2538 		 * (spread_dirty_pages unset) before going into reclaim,
2539 		 * which is important when on a NUMA setup the allowed
2540 		 * zones are together not big enough to reach the
2541 		 * global limit.  The proper fix for these situations
2542 		 * will require awareness of zones in the
2543 		 * dirty-throttling and the flusher threads.
2544 		 */
2545 		if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2546 			continue;
2547 
2548 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2549 		if (!zone_watermark_ok(zone, order, mark,
2550 				       ac->classzone_idx, alloc_flags)) {
2551 			int ret;
2552 
2553 			/* Checked here to keep the fast path fast */
2554 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2555 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2556 				goto try_this_zone;
2557 
2558 			if (zone_reclaim_mode == 0 ||
2559 			    !zone_allows_reclaim(ac->preferred_zone, zone))
2560 				continue;
2561 
2562 			ret = zone_reclaim(zone, gfp_mask, order);
2563 			switch (ret) {
2564 			case ZONE_RECLAIM_NOSCAN:
2565 				/* did not scan */
2566 				continue;
2567 			case ZONE_RECLAIM_FULL:
2568 				/* scanned but unreclaimable */
2569 				continue;
2570 			default:
2571 				/* did we reclaim enough */
2572 				if (zone_watermark_ok(zone, order, mark,
2573 						ac->classzone_idx, alloc_flags))
2574 					goto try_this_zone;
2575 
2576 				continue;
2577 			}
2578 		}
2579 
2580 try_this_zone:
2581 		page = buffered_rmqueue(ac->preferred_zone, zone, order,
2582 				gfp_mask, alloc_flags, ac->migratetype);
2583 		if (page) {
2584 			if (prep_new_page(page, order, gfp_mask, alloc_flags))
2585 				goto try_this_zone;
2586 
2587 			/*
2588 			 * If this is a high-order atomic allocation then check
2589 			 * if the pageblock should be reserved for the future
2590 			 */
2591 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2592 				reserve_highatomic_pageblock(page, zone, order);
2593 
2594 			return page;
2595 		}
2596 	}
2597 
2598 	/*
2599 	 * The first pass makes sure allocations are spread fairly within the
2600 	 * local node.  However, the local node might have free pages left
2601 	 * after the fairness batches are exhausted, and remote zones haven't
2602 	 * even been considered yet.  Try once more without fairness, and
2603 	 * include remote zones now, before entering the slowpath and waking
2604 	 * kswapd: prefer spilling to a remote zone over swapping locally.
2605 	 */
2606 	if (alloc_flags & ALLOC_FAIR) {
2607 		alloc_flags &= ~ALLOC_FAIR;
2608 		if (nr_fair_skipped) {
2609 			zonelist_rescan = true;
2610 			reset_alloc_batches(ac->preferred_zone);
2611 		}
2612 		if (nr_online_nodes > 1)
2613 			zonelist_rescan = true;
2614 	}
2615 
2616 	if (zonelist_rescan)
2617 		goto zonelist_scan;
2618 
2619 	return NULL;
2620 }
2621 
2622 /*
2623  * Large machines with many possible nodes should not always dump per-node
2624  * meminfo in irq context.
2625  */
2626 static inline bool should_suppress_show_mem(void)
2627 {
2628 	bool ret = false;
2629 
2630 #if NODES_SHIFT > 8
2631 	ret = in_interrupt();
2632 #endif
2633 	return ret;
2634 }
2635 
2636 static DEFINE_RATELIMIT_STATE(nopage_rs,
2637 		DEFAULT_RATELIMIT_INTERVAL,
2638 		DEFAULT_RATELIMIT_BURST);
2639 
2640 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2641 {
2642 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2643 
2644 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2645 	    debug_guardpage_minorder() > 0)
2646 		return;
2647 
2648 	/*
2649 	 * This documents exceptions given to allocations in certain
2650 	 * contexts that are allowed to allocate outside current's set
2651 	 * of allowed nodes.
2652 	 */
2653 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2654 		if (test_thread_flag(TIF_MEMDIE) ||
2655 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2656 			filter &= ~SHOW_MEM_FILTER_NODES;
2657 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2658 		filter &= ~SHOW_MEM_FILTER_NODES;
2659 
2660 	if (fmt) {
2661 		struct va_format vaf;
2662 		va_list args;
2663 
2664 		va_start(args, fmt);
2665 
2666 		vaf.fmt = fmt;
2667 		vaf.va = &args;
2668 
2669 		pr_warn("%pV", &vaf);
2670 
2671 		va_end(args);
2672 	}
2673 
2674 	pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
2675 		current->comm, order, gfp_mask);
2676 
2677 	dump_stack();
2678 	if (!should_suppress_show_mem())
2679 		show_mem(filter);
2680 }
2681 
2682 static inline struct page *
2683 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2684 	const struct alloc_context *ac, unsigned long *did_some_progress)
2685 {
2686 	struct oom_control oc = {
2687 		.zonelist = ac->zonelist,
2688 		.nodemask = ac->nodemask,
2689 		.gfp_mask = gfp_mask,
2690 		.order = order,
2691 	};
2692 	struct page *page;
2693 
2694 	*did_some_progress = 0;
2695 
2696 	/*
2697 	 * Acquire the oom lock.  If that fails, somebody else is
2698 	 * making progress for us.
2699 	 */
2700 	if (!mutex_trylock(&oom_lock)) {
2701 		*did_some_progress = 1;
2702 		schedule_timeout_uninterruptible(1);
2703 		return NULL;
2704 	}
2705 
2706 	/*
2707 	 * Go through the zonelist yet one more time, keep very high watermark
2708 	 * here, this is only to catch a parallel oom killing, we must fail if
2709 	 * we're still under heavy pressure.
2710 	 */
2711 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2712 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2713 	if (page)
2714 		goto out;
2715 
2716 	if (!(gfp_mask & __GFP_NOFAIL)) {
2717 		/* Coredumps can quickly deplete all memory reserves */
2718 		if (current->flags & PF_DUMPCORE)
2719 			goto out;
2720 		/* The OOM killer will not help higher order allocs */
2721 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2722 			goto out;
2723 		/* The OOM killer does not needlessly kill tasks for lowmem */
2724 		if (ac->high_zoneidx < ZONE_NORMAL)
2725 			goto out;
2726 		/* The OOM killer does not compensate for IO-less reclaim */
2727 		if (!(gfp_mask & __GFP_FS)) {
2728 			/*
2729 			 * XXX: Page reclaim didn't yield anything,
2730 			 * and the OOM killer can't be invoked, but
2731 			 * keep looping as per tradition.
2732 			 */
2733 			*did_some_progress = 1;
2734 			goto out;
2735 		}
2736 		if (pm_suspended_storage())
2737 			goto out;
2738 		/* The OOM killer may not free memory on a specific node */
2739 		if (gfp_mask & __GFP_THISNODE)
2740 			goto out;
2741 	}
2742 	/* Exhausted what can be done so it's blamo time */
2743 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2744 		*did_some_progress = 1;
2745 out:
2746 	mutex_unlock(&oom_lock);
2747 	return page;
2748 }
2749 
2750 #ifdef CONFIG_COMPACTION
2751 /* Try memory compaction for high-order allocations before reclaim */
2752 static struct page *
2753 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2754 		int alloc_flags, const struct alloc_context *ac,
2755 		enum migrate_mode mode, int *contended_compaction,
2756 		bool *deferred_compaction)
2757 {
2758 	unsigned long compact_result;
2759 	struct page *page;
2760 
2761 	if (!order)
2762 		return NULL;
2763 
2764 	current->flags |= PF_MEMALLOC;
2765 	compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2766 						mode, contended_compaction);
2767 	current->flags &= ~PF_MEMALLOC;
2768 
2769 	switch (compact_result) {
2770 	case COMPACT_DEFERRED:
2771 		*deferred_compaction = true;
2772 		/* fall-through */
2773 	case COMPACT_SKIPPED:
2774 		return NULL;
2775 	default:
2776 		break;
2777 	}
2778 
2779 	/*
2780 	 * At least in one zone compaction wasn't deferred or skipped, so let's
2781 	 * count a compaction stall
2782 	 */
2783 	count_vm_event(COMPACTSTALL);
2784 
2785 	page = get_page_from_freelist(gfp_mask, order,
2786 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2787 
2788 	if (page) {
2789 		struct zone *zone = page_zone(page);
2790 
2791 		zone->compact_blockskip_flush = false;
2792 		compaction_defer_reset(zone, order, true);
2793 		count_vm_event(COMPACTSUCCESS);
2794 		return page;
2795 	}
2796 
2797 	/*
2798 	 * It's bad if compaction run occurs and fails. The most likely reason
2799 	 * is that pages exist, but not enough to satisfy watermarks.
2800 	 */
2801 	count_vm_event(COMPACTFAIL);
2802 
2803 	cond_resched();
2804 
2805 	return NULL;
2806 }
2807 #else
2808 static inline struct page *
2809 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2810 		int alloc_flags, const struct alloc_context *ac,
2811 		enum migrate_mode mode, int *contended_compaction,
2812 		bool *deferred_compaction)
2813 {
2814 	return NULL;
2815 }
2816 #endif /* CONFIG_COMPACTION */
2817 
2818 /* Perform direct synchronous page reclaim */
2819 static int
2820 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2821 					const struct alloc_context *ac)
2822 {
2823 	struct reclaim_state reclaim_state;
2824 	int progress;
2825 
2826 	cond_resched();
2827 
2828 	/* We now go into synchronous reclaim */
2829 	cpuset_memory_pressure_bump();
2830 	current->flags |= PF_MEMALLOC;
2831 	lockdep_set_current_reclaim_state(gfp_mask);
2832 	reclaim_state.reclaimed_slab = 0;
2833 	current->reclaim_state = &reclaim_state;
2834 
2835 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2836 								ac->nodemask);
2837 
2838 	current->reclaim_state = NULL;
2839 	lockdep_clear_current_reclaim_state();
2840 	current->flags &= ~PF_MEMALLOC;
2841 
2842 	cond_resched();
2843 
2844 	return progress;
2845 }
2846 
2847 /* The really slow allocator path where we enter direct reclaim */
2848 static inline struct page *
2849 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2850 		int alloc_flags, const struct alloc_context *ac,
2851 		unsigned long *did_some_progress)
2852 {
2853 	struct page *page = NULL;
2854 	bool drained = false;
2855 
2856 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2857 	if (unlikely(!(*did_some_progress)))
2858 		return NULL;
2859 
2860 retry:
2861 	page = get_page_from_freelist(gfp_mask, order,
2862 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2863 
2864 	/*
2865 	 * If an allocation failed after direct reclaim, it could be because
2866 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
2867 	 * Shrink them them and try again
2868 	 */
2869 	if (!page && !drained) {
2870 		unreserve_highatomic_pageblock(ac);
2871 		drain_all_pages(NULL);
2872 		drained = true;
2873 		goto retry;
2874 	}
2875 
2876 	return page;
2877 }
2878 
2879 /*
2880  * This is called in the allocator slow-path if the allocation request is of
2881  * sufficient urgency to ignore watermarks and take other desperate measures
2882  */
2883 static inline struct page *
2884 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2885 				const struct alloc_context *ac)
2886 {
2887 	struct page *page;
2888 
2889 	do {
2890 		page = get_page_from_freelist(gfp_mask, order,
2891 						ALLOC_NO_WATERMARKS, ac);
2892 
2893 		if (!page && gfp_mask & __GFP_NOFAIL)
2894 			wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2895 									HZ/50);
2896 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2897 
2898 	return page;
2899 }
2900 
2901 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2902 {
2903 	struct zoneref *z;
2904 	struct zone *zone;
2905 
2906 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2907 						ac->high_zoneidx, ac->nodemask)
2908 		wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2909 }
2910 
2911 static inline int
2912 gfp_to_alloc_flags(gfp_t gfp_mask)
2913 {
2914 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2915 
2916 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2917 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2918 
2919 	/*
2920 	 * The caller may dip into page reserves a bit more if the caller
2921 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2922 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2923 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
2924 	 */
2925 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2926 
2927 	if (gfp_mask & __GFP_ATOMIC) {
2928 		/*
2929 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2930 		 * if it can't schedule.
2931 		 */
2932 		if (!(gfp_mask & __GFP_NOMEMALLOC))
2933 			alloc_flags |= ALLOC_HARDER;
2934 		/*
2935 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2936 		 * comment for __cpuset_node_allowed().
2937 		 */
2938 		alloc_flags &= ~ALLOC_CPUSET;
2939 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2940 		alloc_flags |= ALLOC_HARDER;
2941 
2942 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2943 		if (gfp_mask & __GFP_MEMALLOC)
2944 			alloc_flags |= ALLOC_NO_WATERMARKS;
2945 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2946 			alloc_flags |= ALLOC_NO_WATERMARKS;
2947 		else if (!in_interrupt() &&
2948 				((current->flags & PF_MEMALLOC) ||
2949 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2950 			alloc_flags |= ALLOC_NO_WATERMARKS;
2951 	}
2952 #ifdef CONFIG_CMA
2953 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2954 		alloc_flags |= ALLOC_CMA;
2955 #endif
2956 	return alloc_flags;
2957 }
2958 
2959 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2960 {
2961 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2962 }
2963 
2964 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
2965 {
2966 	return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
2967 }
2968 
2969 static inline struct page *
2970 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2971 						struct alloc_context *ac)
2972 {
2973 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
2974 	struct page *page = NULL;
2975 	int alloc_flags;
2976 	unsigned long pages_reclaimed = 0;
2977 	unsigned long did_some_progress;
2978 	enum migrate_mode migration_mode = MIGRATE_ASYNC;
2979 	bool deferred_compaction = false;
2980 	int contended_compaction = COMPACT_CONTENDED_NONE;
2981 
2982 	/*
2983 	 * In the slowpath, we sanity check order to avoid ever trying to
2984 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2985 	 * be using allocators in order of preference for an area that is
2986 	 * too large.
2987 	 */
2988 	if (order >= MAX_ORDER) {
2989 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2990 		return NULL;
2991 	}
2992 
2993 	/*
2994 	 * We also sanity check to catch abuse of atomic reserves being used by
2995 	 * callers that are not in atomic context.
2996 	 */
2997 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
2998 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
2999 		gfp_mask &= ~__GFP_ATOMIC;
3000 
3001 	/*
3002 	 * If this allocation cannot block and it is for a specific node, then
3003 	 * fail early.  There's no need to wakeup kswapd or retry for a
3004 	 * speculative node-specific allocation.
3005 	 */
3006 	if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
3007 		goto nopage;
3008 
3009 retry:
3010 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3011 		wake_all_kswapds(order, ac);
3012 
3013 	/*
3014 	 * OK, we're below the kswapd watermark and have kicked background
3015 	 * reclaim. Now things get more complex, so set up alloc_flags according
3016 	 * to how we want to proceed.
3017 	 */
3018 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3019 
3020 	/*
3021 	 * Find the true preferred zone if the allocation is unconstrained by
3022 	 * cpusets.
3023 	 */
3024 	if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3025 		struct zoneref *preferred_zoneref;
3026 		preferred_zoneref = first_zones_zonelist(ac->zonelist,
3027 				ac->high_zoneidx, NULL, &ac->preferred_zone);
3028 		ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3029 	}
3030 
3031 	/* This is the last chance, in general, before the goto nopage. */
3032 	page = get_page_from_freelist(gfp_mask, order,
3033 				alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3034 	if (page)
3035 		goto got_pg;
3036 
3037 	/* Allocate without watermarks if the context allows */
3038 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
3039 		/*
3040 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3041 		 * the allocation is high priority and these type of
3042 		 * allocations are system rather than user orientated
3043 		 */
3044 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3045 
3046 		page = __alloc_pages_high_priority(gfp_mask, order, ac);
3047 
3048 		if (page) {
3049 			goto got_pg;
3050 		}
3051 	}
3052 
3053 	/* Caller is not willing to reclaim, we can't balance anything */
3054 	if (!can_direct_reclaim) {
3055 		/*
3056 		 * All existing users of the deprecated __GFP_NOFAIL are
3057 		 * blockable, so warn of any new users that actually allow this
3058 		 * type of allocation to fail.
3059 		 */
3060 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3061 		goto nopage;
3062 	}
3063 
3064 	/* Avoid recursion of direct reclaim */
3065 	if (current->flags & PF_MEMALLOC)
3066 		goto nopage;
3067 
3068 	/* Avoid allocations with no watermarks from looping endlessly */
3069 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3070 		goto nopage;
3071 
3072 	/*
3073 	 * Try direct compaction. The first pass is asynchronous. Subsequent
3074 	 * attempts after direct reclaim are synchronous
3075 	 */
3076 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3077 					migration_mode,
3078 					&contended_compaction,
3079 					&deferred_compaction);
3080 	if (page)
3081 		goto got_pg;
3082 
3083 	/* Checks for THP-specific high-order allocations */
3084 	if (is_thp_gfp_mask(gfp_mask)) {
3085 		/*
3086 		 * If compaction is deferred for high-order allocations, it is
3087 		 * because sync compaction recently failed. If this is the case
3088 		 * and the caller requested a THP allocation, we do not want
3089 		 * to heavily disrupt the system, so we fail the allocation
3090 		 * instead of entering direct reclaim.
3091 		 */
3092 		if (deferred_compaction)
3093 			goto nopage;
3094 
3095 		/*
3096 		 * In all zones where compaction was attempted (and not
3097 		 * deferred or skipped), lock contention has been detected.
3098 		 * For THP allocation we do not want to disrupt the others
3099 		 * so we fallback to base pages instead.
3100 		 */
3101 		if (contended_compaction == COMPACT_CONTENDED_LOCK)
3102 			goto nopage;
3103 
3104 		/*
3105 		 * If compaction was aborted due to need_resched(), we do not
3106 		 * want to further increase allocation latency, unless it is
3107 		 * khugepaged trying to collapse.
3108 		 */
3109 		if (contended_compaction == COMPACT_CONTENDED_SCHED
3110 			&& !(current->flags & PF_KTHREAD))
3111 			goto nopage;
3112 	}
3113 
3114 	/*
3115 	 * It can become very expensive to allocate transparent hugepages at
3116 	 * fault, so use asynchronous memory compaction for THP unless it is
3117 	 * khugepaged trying to collapse.
3118 	 */
3119 	if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3120 		migration_mode = MIGRATE_SYNC_LIGHT;
3121 
3122 	/* Try direct reclaim and then allocating */
3123 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3124 							&did_some_progress);
3125 	if (page)
3126 		goto got_pg;
3127 
3128 	/* Do not loop if specifically requested */
3129 	if (gfp_mask & __GFP_NORETRY)
3130 		goto noretry;
3131 
3132 	/* Keep reclaiming pages as long as there is reasonable progress */
3133 	pages_reclaimed += did_some_progress;
3134 	if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3135 	    ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3136 		/* Wait for some write requests to complete then retry */
3137 		wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3138 		goto retry;
3139 	}
3140 
3141 	/* Reclaim has failed us, start killing things */
3142 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3143 	if (page)
3144 		goto got_pg;
3145 
3146 	/* Retry as long as the OOM killer is making progress */
3147 	if (did_some_progress)
3148 		goto retry;
3149 
3150 noretry:
3151 	/*
3152 	 * High-order allocations do not necessarily loop after
3153 	 * direct reclaim and reclaim/compaction depends on compaction
3154 	 * being called after reclaim so call directly if necessary
3155 	 */
3156 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3157 					    ac, migration_mode,
3158 					    &contended_compaction,
3159 					    &deferred_compaction);
3160 	if (page)
3161 		goto got_pg;
3162 nopage:
3163 	warn_alloc_failed(gfp_mask, order, NULL);
3164 got_pg:
3165 	return page;
3166 }
3167 
3168 /*
3169  * This is the 'heart' of the zoned buddy allocator.
3170  */
3171 struct page *
3172 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3173 			struct zonelist *zonelist, nodemask_t *nodemask)
3174 {
3175 	struct zoneref *preferred_zoneref;
3176 	struct page *page = NULL;
3177 	unsigned int cpuset_mems_cookie;
3178 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3179 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3180 	struct alloc_context ac = {
3181 		.high_zoneidx = gfp_zone(gfp_mask),
3182 		.nodemask = nodemask,
3183 		.migratetype = gfpflags_to_migratetype(gfp_mask),
3184 	};
3185 
3186 	gfp_mask &= gfp_allowed_mask;
3187 
3188 	lockdep_trace_alloc(gfp_mask);
3189 
3190 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3191 
3192 	if (should_fail_alloc_page(gfp_mask, order))
3193 		return NULL;
3194 
3195 	/*
3196 	 * Check the zones suitable for the gfp_mask contain at least one
3197 	 * valid zone. It's possible to have an empty zonelist as a result
3198 	 * of __GFP_THISNODE and a memoryless node
3199 	 */
3200 	if (unlikely(!zonelist->_zonerefs->zone))
3201 		return NULL;
3202 
3203 	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3204 		alloc_flags |= ALLOC_CMA;
3205 
3206 retry_cpuset:
3207 	cpuset_mems_cookie = read_mems_allowed_begin();
3208 
3209 	/* We set it here, as __alloc_pages_slowpath might have changed it */
3210 	ac.zonelist = zonelist;
3211 
3212 	/* Dirty zone balancing only done in the fast path */
3213 	ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3214 
3215 	/* The preferred zone is used for statistics later */
3216 	preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3217 				ac.nodemask ? : &cpuset_current_mems_allowed,
3218 				&ac.preferred_zone);
3219 	if (!ac.preferred_zone)
3220 		goto out;
3221 	ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3222 
3223 	/* First allocation attempt */
3224 	alloc_mask = gfp_mask|__GFP_HARDWALL;
3225 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3226 	if (unlikely(!page)) {
3227 		/*
3228 		 * Runtime PM, block IO and its error handling path
3229 		 * can deadlock because I/O on the device might not
3230 		 * complete.
3231 		 */
3232 		alloc_mask = memalloc_noio_flags(gfp_mask);
3233 		ac.spread_dirty_pages = false;
3234 
3235 		page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3236 	}
3237 
3238 	if (kmemcheck_enabled && page)
3239 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3240 
3241 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3242 
3243 out:
3244 	/*
3245 	 * When updating a task's mems_allowed, it is possible to race with
3246 	 * parallel threads in such a way that an allocation can fail while
3247 	 * the mask is being updated. If a page allocation is about to fail,
3248 	 * check if the cpuset changed during allocation and if so, retry.
3249 	 */
3250 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3251 		goto retry_cpuset;
3252 
3253 	return page;
3254 }
3255 EXPORT_SYMBOL(__alloc_pages_nodemask);
3256 
3257 /*
3258  * Common helper functions.
3259  */
3260 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3261 {
3262 	struct page *page;
3263 
3264 	/*
3265 	 * __get_free_pages() returns a 32-bit address, which cannot represent
3266 	 * a highmem page
3267 	 */
3268 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3269 
3270 	page = alloc_pages(gfp_mask, order);
3271 	if (!page)
3272 		return 0;
3273 	return (unsigned long) page_address(page);
3274 }
3275 EXPORT_SYMBOL(__get_free_pages);
3276 
3277 unsigned long get_zeroed_page(gfp_t gfp_mask)
3278 {
3279 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3280 }
3281 EXPORT_SYMBOL(get_zeroed_page);
3282 
3283 void __free_pages(struct page *page, unsigned int order)
3284 {
3285 	if (put_page_testzero(page)) {
3286 		if (order == 0)
3287 			free_hot_cold_page(page, false);
3288 		else
3289 			__free_pages_ok(page, order);
3290 	}
3291 }
3292 
3293 EXPORT_SYMBOL(__free_pages);
3294 
3295 void free_pages(unsigned long addr, unsigned int order)
3296 {
3297 	if (addr != 0) {
3298 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3299 		__free_pages(virt_to_page((void *)addr), order);
3300 	}
3301 }
3302 
3303 EXPORT_SYMBOL(free_pages);
3304 
3305 /*
3306  * Page Fragment:
3307  *  An arbitrary-length arbitrary-offset area of memory which resides
3308  *  within a 0 or higher order page.  Multiple fragments within that page
3309  *  are individually refcounted, in the page's reference counter.
3310  *
3311  * The page_frag functions below provide a simple allocation framework for
3312  * page fragments.  This is used by the network stack and network device
3313  * drivers to provide a backing region of memory for use as either an
3314  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3315  */
3316 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3317 				       gfp_t gfp_mask)
3318 {
3319 	struct page *page = NULL;
3320 	gfp_t gfp = gfp_mask;
3321 
3322 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3323 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3324 		    __GFP_NOMEMALLOC;
3325 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3326 				PAGE_FRAG_CACHE_MAX_ORDER);
3327 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3328 #endif
3329 	if (unlikely(!page))
3330 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3331 
3332 	nc->va = page ? page_address(page) : NULL;
3333 
3334 	return page;
3335 }
3336 
3337 void *__alloc_page_frag(struct page_frag_cache *nc,
3338 			unsigned int fragsz, gfp_t gfp_mask)
3339 {
3340 	unsigned int size = PAGE_SIZE;
3341 	struct page *page;
3342 	int offset;
3343 
3344 	if (unlikely(!nc->va)) {
3345 refill:
3346 		page = __page_frag_refill(nc, gfp_mask);
3347 		if (!page)
3348 			return NULL;
3349 
3350 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3351 		/* if size can vary use size else just use PAGE_SIZE */
3352 		size = nc->size;
3353 #endif
3354 		/* Even if we own the page, we do not use atomic_set().
3355 		 * This would break get_page_unless_zero() users.
3356 		 */
3357 		atomic_add(size - 1, &page->_count);
3358 
3359 		/* reset page count bias and offset to start of new frag */
3360 		nc->pfmemalloc = page_is_pfmemalloc(page);
3361 		nc->pagecnt_bias = size;
3362 		nc->offset = size;
3363 	}
3364 
3365 	offset = nc->offset - fragsz;
3366 	if (unlikely(offset < 0)) {
3367 		page = virt_to_page(nc->va);
3368 
3369 		if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3370 			goto refill;
3371 
3372 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3373 		/* if size can vary use size else just use PAGE_SIZE */
3374 		size = nc->size;
3375 #endif
3376 		/* OK, page count is 0, we can safely set it */
3377 		atomic_set(&page->_count, size);
3378 
3379 		/* reset page count bias and offset to start of new frag */
3380 		nc->pagecnt_bias = size;
3381 		offset = size - fragsz;
3382 	}
3383 
3384 	nc->pagecnt_bias--;
3385 	nc->offset = offset;
3386 
3387 	return nc->va + offset;
3388 }
3389 EXPORT_SYMBOL(__alloc_page_frag);
3390 
3391 /*
3392  * Frees a page fragment allocated out of either a compound or order 0 page.
3393  */
3394 void __free_page_frag(void *addr)
3395 {
3396 	struct page *page = virt_to_head_page(addr);
3397 
3398 	if (unlikely(put_page_testzero(page)))
3399 		__free_pages_ok(page, compound_order(page));
3400 }
3401 EXPORT_SYMBOL(__free_page_frag);
3402 
3403 /*
3404  * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3405  * of the current memory cgroup.
3406  *
3407  * It should be used when the caller would like to use kmalloc, but since the
3408  * allocation is large, it has to fall back to the page allocator.
3409  */
3410 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3411 {
3412 	struct page *page;
3413 
3414 	page = alloc_pages(gfp_mask, order);
3415 	if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3416 		__free_pages(page, order);
3417 		page = NULL;
3418 	}
3419 	return page;
3420 }
3421 
3422 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3423 {
3424 	struct page *page;
3425 
3426 	page = alloc_pages_node(nid, gfp_mask, order);
3427 	if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3428 		__free_pages(page, order);
3429 		page = NULL;
3430 	}
3431 	return page;
3432 }
3433 
3434 /*
3435  * __free_kmem_pages and free_kmem_pages will free pages allocated with
3436  * alloc_kmem_pages.
3437  */
3438 void __free_kmem_pages(struct page *page, unsigned int order)
3439 {
3440 	memcg_kmem_uncharge(page, order);
3441 	__free_pages(page, order);
3442 }
3443 
3444 void free_kmem_pages(unsigned long addr, unsigned int order)
3445 {
3446 	if (addr != 0) {
3447 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3448 		__free_kmem_pages(virt_to_page((void *)addr), order);
3449 	}
3450 }
3451 
3452 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3453 		size_t size)
3454 {
3455 	if (addr) {
3456 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
3457 		unsigned long used = addr + PAGE_ALIGN(size);
3458 
3459 		split_page(virt_to_page((void *)addr), order);
3460 		while (used < alloc_end) {
3461 			free_page(used);
3462 			used += PAGE_SIZE;
3463 		}
3464 	}
3465 	return (void *)addr;
3466 }
3467 
3468 /**
3469  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3470  * @size: the number of bytes to allocate
3471  * @gfp_mask: GFP flags for the allocation
3472  *
3473  * This function is similar to alloc_pages(), except that it allocates the
3474  * minimum number of pages to satisfy the request.  alloc_pages() can only
3475  * allocate memory in power-of-two pages.
3476  *
3477  * This function is also limited by MAX_ORDER.
3478  *
3479  * Memory allocated by this function must be released by free_pages_exact().
3480  */
3481 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3482 {
3483 	unsigned int order = get_order(size);
3484 	unsigned long addr;
3485 
3486 	addr = __get_free_pages(gfp_mask, order);
3487 	return make_alloc_exact(addr, order, size);
3488 }
3489 EXPORT_SYMBOL(alloc_pages_exact);
3490 
3491 /**
3492  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3493  *			   pages on a node.
3494  * @nid: the preferred node ID where memory should be allocated
3495  * @size: the number of bytes to allocate
3496  * @gfp_mask: GFP flags for the allocation
3497  *
3498  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3499  * back.
3500  */
3501 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3502 {
3503 	unsigned int order = get_order(size);
3504 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
3505 	if (!p)
3506 		return NULL;
3507 	return make_alloc_exact((unsigned long)page_address(p), order, size);
3508 }
3509 
3510 /**
3511  * free_pages_exact - release memory allocated via alloc_pages_exact()
3512  * @virt: the value returned by alloc_pages_exact.
3513  * @size: size of allocation, same value as passed to alloc_pages_exact().
3514  *
3515  * Release the memory allocated by a previous call to alloc_pages_exact.
3516  */
3517 void free_pages_exact(void *virt, size_t size)
3518 {
3519 	unsigned long addr = (unsigned long)virt;
3520 	unsigned long end = addr + PAGE_ALIGN(size);
3521 
3522 	while (addr < end) {
3523 		free_page(addr);
3524 		addr += PAGE_SIZE;
3525 	}
3526 }
3527 EXPORT_SYMBOL(free_pages_exact);
3528 
3529 /**
3530  * nr_free_zone_pages - count number of pages beyond high watermark
3531  * @offset: The zone index of the highest zone
3532  *
3533  * nr_free_zone_pages() counts the number of counts pages which are beyond the
3534  * high watermark within all zones at or below a given zone index.  For each
3535  * zone, the number of pages is calculated as:
3536  *     managed_pages - high_pages
3537  */
3538 static unsigned long nr_free_zone_pages(int offset)
3539 {
3540 	struct zoneref *z;
3541 	struct zone *zone;
3542 
3543 	/* Just pick one node, since fallback list is circular */
3544 	unsigned long sum = 0;
3545 
3546 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3547 
3548 	for_each_zone_zonelist(zone, z, zonelist, offset) {
3549 		unsigned long size = zone->managed_pages;
3550 		unsigned long high = high_wmark_pages(zone);
3551 		if (size > high)
3552 			sum += size - high;
3553 	}
3554 
3555 	return sum;
3556 }
3557 
3558 /**
3559  * nr_free_buffer_pages - count number of pages beyond high watermark
3560  *
3561  * nr_free_buffer_pages() counts the number of pages which are beyond the high
3562  * watermark within ZONE_DMA and ZONE_NORMAL.
3563  */
3564 unsigned long nr_free_buffer_pages(void)
3565 {
3566 	return nr_free_zone_pages(gfp_zone(GFP_USER));
3567 }
3568 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3569 
3570 /**
3571  * nr_free_pagecache_pages - count number of pages beyond high watermark
3572  *
3573  * nr_free_pagecache_pages() counts the number of pages which are beyond the
3574  * high watermark within all zones.
3575  */
3576 unsigned long nr_free_pagecache_pages(void)
3577 {
3578 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3579 }
3580 
3581 static inline void show_node(struct zone *zone)
3582 {
3583 	if (IS_ENABLED(CONFIG_NUMA))
3584 		printk("Node %d ", zone_to_nid(zone));
3585 }
3586 
3587 void si_meminfo(struct sysinfo *val)
3588 {
3589 	val->totalram = totalram_pages;
3590 	val->sharedram = global_page_state(NR_SHMEM);
3591 	val->freeram = global_page_state(NR_FREE_PAGES);
3592 	val->bufferram = nr_blockdev_pages();
3593 	val->totalhigh = totalhigh_pages;
3594 	val->freehigh = nr_free_highpages();
3595 	val->mem_unit = PAGE_SIZE;
3596 }
3597 
3598 EXPORT_SYMBOL(si_meminfo);
3599 
3600 #ifdef CONFIG_NUMA
3601 void si_meminfo_node(struct sysinfo *val, int nid)
3602 {
3603 	int zone_type;		/* needs to be signed */
3604 	unsigned long managed_pages = 0;
3605 	pg_data_t *pgdat = NODE_DATA(nid);
3606 
3607 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3608 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3609 	val->totalram = managed_pages;
3610 	val->sharedram = node_page_state(nid, NR_SHMEM);
3611 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3612 #ifdef CONFIG_HIGHMEM
3613 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3614 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3615 			NR_FREE_PAGES);
3616 #else
3617 	val->totalhigh = 0;
3618 	val->freehigh = 0;
3619 #endif
3620 	val->mem_unit = PAGE_SIZE;
3621 }
3622 #endif
3623 
3624 /*
3625  * Determine whether the node should be displayed or not, depending on whether
3626  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3627  */
3628 bool skip_free_areas_node(unsigned int flags, int nid)
3629 {
3630 	bool ret = false;
3631 	unsigned int cpuset_mems_cookie;
3632 
3633 	if (!(flags & SHOW_MEM_FILTER_NODES))
3634 		goto out;
3635 
3636 	do {
3637 		cpuset_mems_cookie = read_mems_allowed_begin();
3638 		ret = !node_isset(nid, cpuset_current_mems_allowed);
3639 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3640 out:
3641 	return ret;
3642 }
3643 
3644 #define K(x) ((x) << (PAGE_SHIFT-10))
3645 
3646 static void show_migration_types(unsigned char type)
3647 {
3648 	static const char types[MIGRATE_TYPES] = {
3649 		[MIGRATE_UNMOVABLE]	= 'U',
3650 		[MIGRATE_RECLAIMABLE]	= 'E',
3651 		[MIGRATE_MOVABLE]	= 'M',
3652 #ifdef CONFIG_CMA
3653 		[MIGRATE_CMA]		= 'C',
3654 #endif
3655 #ifdef CONFIG_MEMORY_ISOLATION
3656 		[MIGRATE_ISOLATE]	= 'I',
3657 #endif
3658 	};
3659 	char tmp[MIGRATE_TYPES + 1];
3660 	char *p = tmp;
3661 	int i;
3662 
3663 	for (i = 0; i < MIGRATE_TYPES; i++) {
3664 		if (type & (1 << i))
3665 			*p++ = types[i];
3666 	}
3667 
3668 	*p = '\0';
3669 	printk("(%s) ", tmp);
3670 }
3671 
3672 /*
3673  * Show free area list (used inside shift_scroll-lock stuff)
3674  * We also calculate the percentage fragmentation. We do this by counting the
3675  * memory on each free list with the exception of the first item on the list.
3676  *
3677  * Bits in @filter:
3678  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3679  *   cpuset.
3680  */
3681 void show_free_areas(unsigned int filter)
3682 {
3683 	unsigned long free_pcp = 0;
3684 	int cpu;
3685 	struct zone *zone;
3686 
3687 	for_each_populated_zone(zone) {
3688 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3689 			continue;
3690 
3691 		for_each_online_cpu(cpu)
3692 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3693 	}
3694 
3695 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3696 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3697 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3698 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3699 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3700 		" free:%lu free_pcp:%lu free_cma:%lu\n",
3701 		global_page_state(NR_ACTIVE_ANON),
3702 		global_page_state(NR_INACTIVE_ANON),
3703 		global_page_state(NR_ISOLATED_ANON),
3704 		global_page_state(NR_ACTIVE_FILE),
3705 		global_page_state(NR_INACTIVE_FILE),
3706 		global_page_state(NR_ISOLATED_FILE),
3707 		global_page_state(NR_UNEVICTABLE),
3708 		global_page_state(NR_FILE_DIRTY),
3709 		global_page_state(NR_WRITEBACK),
3710 		global_page_state(NR_UNSTABLE_NFS),
3711 		global_page_state(NR_SLAB_RECLAIMABLE),
3712 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3713 		global_page_state(NR_FILE_MAPPED),
3714 		global_page_state(NR_SHMEM),
3715 		global_page_state(NR_PAGETABLE),
3716 		global_page_state(NR_BOUNCE),
3717 		global_page_state(NR_FREE_PAGES),
3718 		free_pcp,
3719 		global_page_state(NR_FREE_CMA_PAGES));
3720 
3721 	for_each_populated_zone(zone) {
3722 		int i;
3723 
3724 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3725 			continue;
3726 
3727 		free_pcp = 0;
3728 		for_each_online_cpu(cpu)
3729 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3730 
3731 		show_node(zone);
3732 		printk("%s"
3733 			" free:%lukB"
3734 			" min:%lukB"
3735 			" low:%lukB"
3736 			" high:%lukB"
3737 			" active_anon:%lukB"
3738 			" inactive_anon:%lukB"
3739 			" active_file:%lukB"
3740 			" inactive_file:%lukB"
3741 			" unevictable:%lukB"
3742 			" isolated(anon):%lukB"
3743 			" isolated(file):%lukB"
3744 			" present:%lukB"
3745 			" managed:%lukB"
3746 			" mlocked:%lukB"
3747 			" dirty:%lukB"
3748 			" writeback:%lukB"
3749 			" mapped:%lukB"
3750 			" shmem:%lukB"
3751 			" slab_reclaimable:%lukB"
3752 			" slab_unreclaimable:%lukB"
3753 			" kernel_stack:%lukB"
3754 			" pagetables:%lukB"
3755 			" unstable:%lukB"
3756 			" bounce:%lukB"
3757 			" free_pcp:%lukB"
3758 			" local_pcp:%ukB"
3759 			" free_cma:%lukB"
3760 			" writeback_tmp:%lukB"
3761 			" pages_scanned:%lu"
3762 			" all_unreclaimable? %s"
3763 			"\n",
3764 			zone->name,
3765 			K(zone_page_state(zone, NR_FREE_PAGES)),
3766 			K(min_wmark_pages(zone)),
3767 			K(low_wmark_pages(zone)),
3768 			K(high_wmark_pages(zone)),
3769 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3770 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3771 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3772 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3773 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3774 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3775 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3776 			K(zone->present_pages),
3777 			K(zone->managed_pages),
3778 			K(zone_page_state(zone, NR_MLOCK)),
3779 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3780 			K(zone_page_state(zone, NR_WRITEBACK)),
3781 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3782 			K(zone_page_state(zone, NR_SHMEM)),
3783 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3784 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3785 			zone_page_state(zone, NR_KERNEL_STACK) *
3786 				THREAD_SIZE / 1024,
3787 			K(zone_page_state(zone, NR_PAGETABLE)),
3788 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3789 			K(zone_page_state(zone, NR_BOUNCE)),
3790 			K(free_pcp),
3791 			K(this_cpu_read(zone->pageset->pcp.count)),
3792 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3793 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3794 			K(zone_page_state(zone, NR_PAGES_SCANNED)),
3795 			(!zone_reclaimable(zone) ? "yes" : "no")
3796 			);
3797 		printk("lowmem_reserve[]:");
3798 		for (i = 0; i < MAX_NR_ZONES; i++)
3799 			printk(" %ld", zone->lowmem_reserve[i]);
3800 		printk("\n");
3801 	}
3802 
3803 	for_each_populated_zone(zone) {
3804 		unsigned int order;
3805 		unsigned long nr[MAX_ORDER], flags, total = 0;
3806 		unsigned char types[MAX_ORDER];
3807 
3808 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3809 			continue;
3810 		show_node(zone);
3811 		printk("%s: ", zone->name);
3812 
3813 		spin_lock_irqsave(&zone->lock, flags);
3814 		for (order = 0; order < MAX_ORDER; order++) {
3815 			struct free_area *area = &zone->free_area[order];
3816 			int type;
3817 
3818 			nr[order] = area->nr_free;
3819 			total += nr[order] << order;
3820 
3821 			types[order] = 0;
3822 			for (type = 0; type < MIGRATE_TYPES; type++) {
3823 				if (!list_empty(&area->free_list[type]))
3824 					types[order] |= 1 << type;
3825 			}
3826 		}
3827 		spin_unlock_irqrestore(&zone->lock, flags);
3828 		for (order = 0; order < MAX_ORDER; order++) {
3829 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3830 			if (nr[order])
3831 				show_migration_types(types[order]);
3832 		}
3833 		printk("= %lukB\n", K(total));
3834 	}
3835 
3836 	hugetlb_show_meminfo();
3837 
3838 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3839 
3840 	show_swap_cache_info();
3841 }
3842 
3843 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3844 {
3845 	zoneref->zone = zone;
3846 	zoneref->zone_idx = zone_idx(zone);
3847 }
3848 
3849 /*
3850  * Builds allocation fallback zone lists.
3851  *
3852  * Add all populated zones of a node to the zonelist.
3853  */
3854 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3855 				int nr_zones)
3856 {
3857 	struct zone *zone;
3858 	enum zone_type zone_type = MAX_NR_ZONES;
3859 
3860 	do {
3861 		zone_type--;
3862 		zone = pgdat->node_zones + zone_type;
3863 		if (populated_zone(zone)) {
3864 			zoneref_set_zone(zone,
3865 				&zonelist->_zonerefs[nr_zones++]);
3866 			check_highest_zone(zone_type);
3867 		}
3868 	} while (zone_type);
3869 
3870 	return nr_zones;
3871 }
3872 
3873 
3874 /*
3875  *  zonelist_order:
3876  *  0 = automatic detection of better ordering.
3877  *  1 = order by ([node] distance, -zonetype)
3878  *  2 = order by (-zonetype, [node] distance)
3879  *
3880  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3881  *  the same zonelist. So only NUMA can configure this param.
3882  */
3883 #define ZONELIST_ORDER_DEFAULT  0
3884 #define ZONELIST_ORDER_NODE     1
3885 #define ZONELIST_ORDER_ZONE     2
3886 
3887 /* zonelist order in the kernel.
3888  * set_zonelist_order() will set this to NODE or ZONE.
3889  */
3890 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3891 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3892 
3893 
3894 #ifdef CONFIG_NUMA
3895 /* The value user specified ....changed by config */
3896 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3897 /* string for sysctl */
3898 #define NUMA_ZONELIST_ORDER_LEN	16
3899 char numa_zonelist_order[16] = "default";
3900 
3901 /*
3902  * interface for configure zonelist ordering.
3903  * command line option "numa_zonelist_order"
3904  *	= "[dD]efault	- default, automatic configuration.
3905  *	= "[nN]ode 	- order by node locality, then by zone within node
3906  *	= "[zZ]one      - order by zone, then by locality within zone
3907  */
3908 
3909 static int __parse_numa_zonelist_order(char *s)
3910 {
3911 	if (*s == 'd' || *s == 'D') {
3912 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3913 	} else if (*s == 'n' || *s == 'N') {
3914 		user_zonelist_order = ZONELIST_ORDER_NODE;
3915 	} else if (*s == 'z' || *s == 'Z') {
3916 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3917 	} else {
3918 		printk(KERN_WARNING
3919 			"Ignoring invalid numa_zonelist_order value:  "
3920 			"%s\n", s);
3921 		return -EINVAL;
3922 	}
3923 	return 0;
3924 }
3925 
3926 static __init int setup_numa_zonelist_order(char *s)
3927 {
3928 	int ret;
3929 
3930 	if (!s)
3931 		return 0;
3932 
3933 	ret = __parse_numa_zonelist_order(s);
3934 	if (ret == 0)
3935 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3936 
3937 	return ret;
3938 }
3939 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3940 
3941 /*
3942  * sysctl handler for numa_zonelist_order
3943  */
3944 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3945 		void __user *buffer, size_t *length,
3946 		loff_t *ppos)
3947 {
3948 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3949 	int ret;
3950 	static DEFINE_MUTEX(zl_order_mutex);
3951 
3952 	mutex_lock(&zl_order_mutex);
3953 	if (write) {
3954 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3955 			ret = -EINVAL;
3956 			goto out;
3957 		}
3958 		strcpy(saved_string, (char *)table->data);
3959 	}
3960 	ret = proc_dostring(table, write, buffer, length, ppos);
3961 	if (ret)
3962 		goto out;
3963 	if (write) {
3964 		int oldval = user_zonelist_order;
3965 
3966 		ret = __parse_numa_zonelist_order((char *)table->data);
3967 		if (ret) {
3968 			/*
3969 			 * bogus value.  restore saved string
3970 			 */
3971 			strncpy((char *)table->data, saved_string,
3972 				NUMA_ZONELIST_ORDER_LEN);
3973 			user_zonelist_order = oldval;
3974 		} else if (oldval != user_zonelist_order) {
3975 			mutex_lock(&zonelists_mutex);
3976 			build_all_zonelists(NULL, NULL);
3977 			mutex_unlock(&zonelists_mutex);
3978 		}
3979 	}
3980 out:
3981 	mutex_unlock(&zl_order_mutex);
3982 	return ret;
3983 }
3984 
3985 
3986 #define MAX_NODE_LOAD (nr_online_nodes)
3987 static int node_load[MAX_NUMNODES];
3988 
3989 /**
3990  * find_next_best_node - find the next node that should appear in a given node's fallback list
3991  * @node: node whose fallback list we're appending
3992  * @used_node_mask: nodemask_t of already used nodes
3993  *
3994  * We use a number of factors to determine which is the next node that should
3995  * appear on a given node's fallback list.  The node should not have appeared
3996  * already in @node's fallback list, and it should be the next closest node
3997  * according to the distance array (which contains arbitrary distance values
3998  * from each node to each node in the system), and should also prefer nodes
3999  * with no CPUs, since presumably they'll have very little allocation pressure
4000  * on them otherwise.
4001  * It returns -1 if no node is found.
4002  */
4003 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4004 {
4005 	int n, val;
4006 	int min_val = INT_MAX;
4007 	int best_node = NUMA_NO_NODE;
4008 	const struct cpumask *tmp = cpumask_of_node(0);
4009 
4010 	/* Use the local node if we haven't already */
4011 	if (!node_isset(node, *used_node_mask)) {
4012 		node_set(node, *used_node_mask);
4013 		return node;
4014 	}
4015 
4016 	for_each_node_state(n, N_MEMORY) {
4017 
4018 		/* Don't want a node to appear more than once */
4019 		if (node_isset(n, *used_node_mask))
4020 			continue;
4021 
4022 		/* Use the distance array to find the distance */
4023 		val = node_distance(node, n);
4024 
4025 		/* Penalize nodes under us ("prefer the next node") */
4026 		val += (n < node);
4027 
4028 		/* Give preference to headless and unused nodes */
4029 		tmp = cpumask_of_node(n);
4030 		if (!cpumask_empty(tmp))
4031 			val += PENALTY_FOR_NODE_WITH_CPUS;
4032 
4033 		/* Slight preference for less loaded node */
4034 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4035 		val += node_load[n];
4036 
4037 		if (val < min_val) {
4038 			min_val = val;
4039 			best_node = n;
4040 		}
4041 	}
4042 
4043 	if (best_node >= 0)
4044 		node_set(best_node, *used_node_mask);
4045 
4046 	return best_node;
4047 }
4048 
4049 
4050 /*
4051  * Build zonelists ordered by node and zones within node.
4052  * This results in maximum locality--normal zone overflows into local
4053  * DMA zone, if any--but risks exhausting DMA zone.
4054  */
4055 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4056 {
4057 	int j;
4058 	struct zonelist *zonelist;
4059 
4060 	zonelist = &pgdat->node_zonelists[0];
4061 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4062 		;
4063 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4064 	zonelist->_zonerefs[j].zone = NULL;
4065 	zonelist->_zonerefs[j].zone_idx = 0;
4066 }
4067 
4068 /*
4069  * Build gfp_thisnode zonelists
4070  */
4071 static void build_thisnode_zonelists(pg_data_t *pgdat)
4072 {
4073 	int j;
4074 	struct zonelist *zonelist;
4075 
4076 	zonelist = &pgdat->node_zonelists[1];
4077 	j = build_zonelists_node(pgdat, zonelist, 0);
4078 	zonelist->_zonerefs[j].zone = NULL;
4079 	zonelist->_zonerefs[j].zone_idx = 0;
4080 }
4081 
4082 /*
4083  * Build zonelists ordered by zone and nodes within zones.
4084  * This results in conserving DMA zone[s] until all Normal memory is
4085  * exhausted, but results in overflowing to remote node while memory
4086  * may still exist in local DMA zone.
4087  */
4088 static int node_order[MAX_NUMNODES];
4089 
4090 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4091 {
4092 	int pos, j, node;
4093 	int zone_type;		/* needs to be signed */
4094 	struct zone *z;
4095 	struct zonelist *zonelist;
4096 
4097 	zonelist = &pgdat->node_zonelists[0];
4098 	pos = 0;
4099 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4100 		for (j = 0; j < nr_nodes; j++) {
4101 			node = node_order[j];
4102 			z = &NODE_DATA(node)->node_zones[zone_type];
4103 			if (populated_zone(z)) {
4104 				zoneref_set_zone(z,
4105 					&zonelist->_zonerefs[pos++]);
4106 				check_highest_zone(zone_type);
4107 			}
4108 		}
4109 	}
4110 	zonelist->_zonerefs[pos].zone = NULL;
4111 	zonelist->_zonerefs[pos].zone_idx = 0;
4112 }
4113 
4114 #if defined(CONFIG_64BIT)
4115 /*
4116  * Devices that require DMA32/DMA are relatively rare and do not justify a
4117  * penalty to every machine in case the specialised case applies. Default
4118  * to Node-ordering on 64-bit NUMA machines
4119  */
4120 static int default_zonelist_order(void)
4121 {
4122 	return ZONELIST_ORDER_NODE;
4123 }
4124 #else
4125 /*
4126  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4127  * by the kernel. If processes running on node 0 deplete the low memory zone
4128  * then reclaim will occur more frequency increasing stalls and potentially
4129  * be easier to OOM if a large percentage of the zone is under writeback or
4130  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4131  * Hence, default to zone ordering on 32-bit.
4132  */
4133 static int default_zonelist_order(void)
4134 {
4135 	return ZONELIST_ORDER_ZONE;
4136 }
4137 #endif /* CONFIG_64BIT */
4138 
4139 static void set_zonelist_order(void)
4140 {
4141 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4142 		current_zonelist_order = default_zonelist_order();
4143 	else
4144 		current_zonelist_order = user_zonelist_order;
4145 }
4146 
4147 static void build_zonelists(pg_data_t *pgdat)
4148 {
4149 	int j, node, load;
4150 	enum zone_type i;
4151 	nodemask_t used_mask;
4152 	int local_node, prev_node;
4153 	struct zonelist *zonelist;
4154 	unsigned int order = current_zonelist_order;
4155 
4156 	/* initialize zonelists */
4157 	for (i = 0; i < MAX_ZONELISTS; i++) {
4158 		zonelist = pgdat->node_zonelists + i;
4159 		zonelist->_zonerefs[0].zone = NULL;
4160 		zonelist->_zonerefs[0].zone_idx = 0;
4161 	}
4162 
4163 	/* NUMA-aware ordering of nodes */
4164 	local_node = pgdat->node_id;
4165 	load = nr_online_nodes;
4166 	prev_node = local_node;
4167 	nodes_clear(used_mask);
4168 
4169 	memset(node_order, 0, sizeof(node_order));
4170 	j = 0;
4171 
4172 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4173 		/*
4174 		 * We don't want to pressure a particular node.
4175 		 * So adding penalty to the first node in same
4176 		 * distance group to make it round-robin.
4177 		 */
4178 		if (node_distance(local_node, node) !=
4179 		    node_distance(local_node, prev_node))
4180 			node_load[node] = load;
4181 
4182 		prev_node = node;
4183 		load--;
4184 		if (order == ZONELIST_ORDER_NODE)
4185 			build_zonelists_in_node_order(pgdat, node);
4186 		else
4187 			node_order[j++] = node;	/* remember order */
4188 	}
4189 
4190 	if (order == ZONELIST_ORDER_ZONE) {
4191 		/* calculate node order -- i.e., DMA last! */
4192 		build_zonelists_in_zone_order(pgdat, j);
4193 	}
4194 
4195 	build_thisnode_zonelists(pgdat);
4196 }
4197 
4198 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4199 /*
4200  * Return node id of node used for "local" allocations.
4201  * I.e., first node id of first zone in arg node's generic zonelist.
4202  * Used for initializing percpu 'numa_mem', which is used primarily
4203  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4204  */
4205 int local_memory_node(int node)
4206 {
4207 	struct zone *zone;
4208 
4209 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4210 				   gfp_zone(GFP_KERNEL),
4211 				   NULL,
4212 				   &zone);
4213 	return zone->node;
4214 }
4215 #endif
4216 
4217 #else	/* CONFIG_NUMA */
4218 
4219 static void set_zonelist_order(void)
4220 {
4221 	current_zonelist_order = ZONELIST_ORDER_ZONE;
4222 }
4223 
4224 static void build_zonelists(pg_data_t *pgdat)
4225 {
4226 	int node, local_node;
4227 	enum zone_type j;
4228 	struct zonelist *zonelist;
4229 
4230 	local_node = pgdat->node_id;
4231 
4232 	zonelist = &pgdat->node_zonelists[0];
4233 	j = build_zonelists_node(pgdat, zonelist, 0);
4234 
4235 	/*
4236 	 * Now we build the zonelist so that it contains the zones
4237 	 * of all the other nodes.
4238 	 * We don't want to pressure a particular node, so when
4239 	 * building the zones for node N, we make sure that the
4240 	 * zones coming right after the local ones are those from
4241 	 * node N+1 (modulo N)
4242 	 */
4243 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4244 		if (!node_online(node))
4245 			continue;
4246 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4247 	}
4248 	for (node = 0; node < local_node; node++) {
4249 		if (!node_online(node))
4250 			continue;
4251 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4252 	}
4253 
4254 	zonelist->_zonerefs[j].zone = NULL;
4255 	zonelist->_zonerefs[j].zone_idx = 0;
4256 }
4257 
4258 #endif	/* CONFIG_NUMA */
4259 
4260 /*
4261  * Boot pageset table. One per cpu which is going to be used for all
4262  * zones and all nodes. The parameters will be set in such a way
4263  * that an item put on a list will immediately be handed over to
4264  * the buddy list. This is safe since pageset manipulation is done
4265  * with interrupts disabled.
4266  *
4267  * The boot_pagesets must be kept even after bootup is complete for
4268  * unused processors and/or zones. They do play a role for bootstrapping
4269  * hotplugged processors.
4270  *
4271  * zoneinfo_show() and maybe other functions do
4272  * not check if the processor is online before following the pageset pointer.
4273  * Other parts of the kernel may not check if the zone is available.
4274  */
4275 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4276 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4277 static void setup_zone_pageset(struct zone *zone);
4278 
4279 /*
4280  * Global mutex to protect against size modification of zonelists
4281  * as well as to serialize pageset setup for the new populated zone.
4282  */
4283 DEFINE_MUTEX(zonelists_mutex);
4284 
4285 /* return values int ....just for stop_machine() */
4286 static int __build_all_zonelists(void *data)
4287 {
4288 	int nid;
4289 	int cpu;
4290 	pg_data_t *self = data;
4291 
4292 #ifdef CONFIG_NUMA
4293 	memset(node_load, 0, sizeof(node_load));
4294 #endif
4295 
4296 	if (self && !node_online(self->node_id)) {
4297 		build_zonelists(self);
4298 	}
4299 
4300 	for_each_online_node(nid) {
4301 		pg_data_t *pgdat = NODE_DATA(nid);
4302 
4303 		build_zonelists(pgdat);
4304 	}
4305 
4306 	/*
4307 	 * Initialize the boot_pagesets that are going to be used
4308 	 * for bootstrapping processors. The real pagesets for
4309 	 * each zone will be allocated later when the per cpu
4310 	 * allocator is available.
4311 	 *
4312 	 * boot_pagesets are used also for bootstrapping offline
4313 	 * cpus if the system is already booted because the pagesets
4314 	 * are needed to initialize allocators on a specific cpu too.
4315 	 * F.e. the percpu allocator needs the page allocator which
4316 	 * needs the percpu allocator in order to allocate its pagesets
4317 	 * (a chicken-egg dilemma).
4318 	 */
4319 	for_each_possible_cpu(cpu) {
4320 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4321 
4322 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4323 		/*
4324 		 * We now know the "local memory node" for each node--
4325 		 * i.e., the node of the first zone in the generic zonelist.
4326 		 * Set up numa_mem percpu variable for on-line cpus.  During
4327 		 * boot, only the boot cpu should be on-line;  we'll init the
4328 		 * secondary cpus' numa_mem as they come on-line.  During
4329 		 * node/memory hotplug, we'll fixup all on-line cpus.
4330 		 */
4331 		if (cpu_online(cpu))
4332 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4333 #endif
4334 	}
4335 
4336 	return 0;
4337 }
4338 
4339 static noinline void __init
4340 build_all_zonelists_init(void)
4341 {
4342 	__build_all_zonelists(NULL);
4343 	mminit_verify_zonelist();
4344 	cpuset_init_current_mems_allowed();
4345 }
4346 
4347 /*
4348  * Called with zonelists_mutex held always
4349  * unless system_state == SYSTEM_BOOTING.
4350  *
4351  * __ref due to (1) call of __meminit annotated setup_zone_pageset
4352  * [we're only called with non-NULL zone through __meminit paths] and
4353  * (2) call of __init annotated helper build_all_zonelists_init
4354  * [protected by SYSTEM_BOOTING].
4355  */
4356 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4357 {
4358 	set_zonelist_order();
4359 
4360 	if (system_state == SYSTEM_BOOTING) {
4361 		build_all_zonelists_init();
4362 	} else {
4363 #ifdef CONFIG_MEMORY_HOTPLUG
4364 		if (zone)
4365 			setup_zone_pageset(zone);
4366 #endif
4367 		/* we have to stop all cpus to guarantee there is no user
4368 		   of zonelist */
4369 		stop_machine(__build_all_zonelists, pgdat, NULL);
4370 		/* cpuset refresh routine should be here */
4371 	}
4372 	vm_total_pages = nr_free_pagecache_pages();
4373 	/*
4374 	 * Disable grouping by mobility if the number of pages in the
4375 	 * system is too low to allow the mechanism to work. It would be
4376 	 * more accurate, but expensive to check per-zone. This check is
4377 	 * made on memory-hotadd so a system can start with mobility
4378 	 * disabled and enable it later
4379 	 */
4380 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4381 		page_group_by_mobility_disabled = 1;
4382 	else
4383 		page_group_by_mobility_disabled = 0;
4384 
4385 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  "
4386 		"Total pages: %ld\n",
4387 			nr_online_nodes,
4388 			zonelist_order_name[current_zonelist_order],
4389 			page_group_by_mobility_disabled ? "off" : "on",
4390 			vm_total_pages);
4391 #ifdef CONFIG_NUMA
4392 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4393 #endif
4394 }
4395 
4396 /*
4397  * Helper functions to size the waitqueue hash table.
4398  * Essentially these want to choose hash table sizes sufficiently
4399  * large so that collisions trying to wait on pages are rare.
4400  * But in fact, the number of active page waitqueues on typical
4401  * systems is ridiculously low, less than 200. So this is even
4402  * conservative, even though it seems large.
4403  *
4404  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4405  * waitqueues, i.e. the size of the waitq table given the number of pages.
4406  */
4407 #define PAGES_PER_WAITQUEUE	256
4408 
4409 #ifndef CONFIG_MEMORY_HOTPLUG
4410 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4411 {
4412 	unsigned long size = 1;
4413 
4414 	pages /= PAGES_PER_WAITQUEUE;
4415 
4416 	while (size < pages)
4417 		size <<= 1;
4418 
4419 	/*
4420 	 * Once we have dozens or even hundreds of threads sleeping
4421 	 * on IO we've got bigger problems than wait queue collision.
4422 	 * Limit the size of the wait table to a reasonable size.
4423 	 */
4424 	size = min(size, 4096UL);
4425 
4426 	return max(size, 4UL);
4427 }
4428 #else
4429 /*
4430  * A zone's size might be changed by hot-add, so it is not possible to determine
4431  * a suitable size for its wait_table.  So we use the maximum size now.
4432  *
4433  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
4434  *
4435  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
4436  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4437  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
4438  *
4439  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4440  * or more by the traditional way. (See above).  It equals:
4441  *
4442  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
4443  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
4444  *    powerpc (64K page size)             : =  (32G +16M)byte.
4445  */
4446 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4447 {
4448 	return 4096UL;
4449 }
4450 #endif
4451 
4452 /*
4453  * This is an integer logarithm so that shifts can be used later
4454  * to extract the more random high bits from the multiplicative
4455  * hash function before the remainder is taken.
4456  */
4457 static inline unsigned long wait_table_bits(unsigned long size)
4458 {
4459 	return ffz(~size);
4460 }
4461 
4462 /*
4463  * Initially all pages are reserved - free ones are freed
4464  * up by free_all_bootmem() once the early boot process is
4465  * done. Non-atomic initialization, single-pass.
4466  */
4467 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4468 		unsigned long start_pfn, enum memmap_context context)
4469 {
4470 	pg_data_t *pgdat = NODE_DATA(nid);
4471 	unsigned long end_pfn = start_pfn + size;
4472 	unsigned long pfn;
4473 	struct zone *z;
4474 	unsigned long nr_initialised = 0;
4475 
4476 	if (highest_memmap_pfn < end_pfn - 1)
4477 		highest_memmap_pfn = end_pfn - 1;
4478 
4479 	z = &pgdat->node_zones[zone];
4480 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4481 		/*
4482 		 * There can be holes in boot-time mem_map[]s
4483 		 * handed to this function.  They do not
4484 		 * exist on hotplugged memory.
4485 		 */
4486 		if (context == MEMMAP_EARLY) {
4487 			if (!early_pfn_valid(pfn))
4488 				continue;
4489 			if (!early_pfn_in_nid(pfn, nid))
4490 				continue;
4491 			if (!update_defer_init(pgdat, pfn, end_pfn,
4492 						&nr_initialised))
4493 				break;
4494 		}
4495 
4496 		/*
4497 		 * Mark the block movable so that blocks are reserved for
4498 		 * movable at startup. This will force kernel allocations
4499 		 * to reserve their blocks rather than leaking throughout
4500 		 * the address space during boot when many long-lived
4501 		 * kernel allocations are made.
4502 		 *
4503 		 * bitmap is created for zone's valid pfn range. but memmap
4504 		 * can be created for invalid pages (for alignment)
4505 		 * check here not to call set_pageblock_migratetype() against
4506 		 * pfn out of zone.
4507 		 */
4508 		if (!(pfn & (pageblock_nr_pages - 1))) {
4509 			struct page *page = pfn_to_page(pfn);
4510 
4511 			__init_single_page(page, pfn, zone, nid);
4512 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4513 		} else {
4514 			__init_single_pfn(pfn, zone, nid);
4515 		}
4516 	}
4517 }
4518 
4519 static void __meminit zone_init_free_lists(struct zone *zone)
4520 {
4521 	unsigned int order, t;
4522 	for_each_migratetype_order(order, t) {
4523 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4524 		zone->free_area[order].nr_free = 0;
4525 	}
4526 }
4527 
4528 #ifndef __HAVE_ARCH_MEMMAP_INIT
4529 #define memmap_init(size, nid, zone, start_pfn) \
4530 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4531 #endif
4532 
4533 static int zone_batchsize(struct zone *zone)
4534 {
4535 #ifdef CONFIG_MMU
4536 	int batch;
4537 
4538 	/*
4539 	 * The per-cpu-pages pools are set to around 1000th of the
4540 	 * size of the zone.  But no more than 1/2 of a meg.
4541 	 *
4542 	 * OK, so we don't know how big the cache is.  So guess.
4543 	 */
4544 	batch = zone->managed_pages / 1024;
4545 	if (batch * PAGE_SIZE > 512 * 1024)
4546 		batch = (512 * 1024) / PAGE_SIZE;
4547 	batch /= 4;		/* We effectively *= 4 below */
4548 	if (batch < 1)
4549 		batch = 1;
4550 
4551 	/*
4552 	 * Clamp the batch to a 2^n - 1 value. Having a power
4553 	 * of 2 value was found to be more likely to have
4554 	 * suboptimal cache aliasing properties in some cases.
4555 	 *
4556 	 * For example if 2 tasks are alternately allocating
4557 	 * batches of pages, one task can end up with a lot
4558 	 * of pages of one half of the possible page colors
4559 	 * and the other with pages of the other colors.
4560 	 */
4561 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4562 
4563 	return batch;
4564 
4565 #else
4566 	/* The deferral and batching of frees should be suppressed under NOMMU
4567 	 * conditions.
4568 	 *
4569 	 * The problem is that NOMMU needs to be able to allocate large chunks
4570 	 * of contiguous memory as there's no hardware page translation to
4571 	 * assemble apparent contiguous memory from discontiguous pages.
4572 	 *
4573 	 * Queueing large contiguous runs of pages for batching, however,
4574 	 * causes the pages to actually be freed in smaller chunks.  As there
4575 	 * can be a significant delay between the individual batches being
4576 	 * recycled, this leads to the once large chunks of space being
4577 	 * fragmented and becoming unavailable for high-order allocations.
4578 	 */
4579 	return 0;
4580 #endif
4581 }
4582 
4583 /*
4584  * pcp->high and pcp->batch values are related and dependent on one another:
4585  * ->batch must never be higher then ->high.
4586  * The following function updates them in a safe manner without read side
4587  * locking.
4588  *
4589  * Any new users of pcp->batch and pcp->high should ensure they can cope with
4590  * those fields changing asynchronously (acording the the above rule).
4591  *
4592  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4593  * outside of boot time (or some other assurance that no concurrent updaters
4594  * exist).
4595  */
4596 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4597 		unsigned long batch)
4598 {
4599        /* start with a fail safe value for batch */
4600 	pcp->batch = 1;
4601 	smp_wmb();
4602 
4603        /* Update high, then batch, in order */
4604 	pcp->high = high;
4605 	smp_wmb();
4606 
4607 	pcp->batch = batch;
4608 }
4609 
4610 /* a companion to pageset_set_high() */
4611 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4612 {
4613 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4614 }
4615 
4616 static void pageset_init(struct per_cpu_pageset *p)
4617 {
4618 	struct per_cpu_pages *pcp;
4619 	int migratetype;
4620 
4621 	memset(p, 0, sizeof(*p));
4622 
4623 	pcp = &p->pcp;
4624 	pcp->count = 0;
4625 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4626 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4627 }
4628 
4629 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4630 {
4631 	pageset_init(p);
4632 	pageset_set_batch(p, batch);
4633 }
4634 
4635 /*
4636  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4637  * to the value high for the pageset p.
4638  */
4639 static void pageset_set_high(struct per_cpu_pageset *p,
4640 				unsigned long high)
4641 {
4642 	unsigned long batch = max(1UL, high / 4);
4643 	if ((high / 4) > (PAGE_SHIFT * 8))
4644 		batch = PAGE_SHIFT * 8;
4645 
4646 	pageset_update(&p->pcp, high, batch);
4647 }
4648 
4649 static void pageset_set_high_and_batch(struct zone *zone,
4650 				       struct per_cpu_pageset *pcp)
4651 {
4652 	if (percpu_pagelist_fraction)
4653 		pageset_set_high(pcp,
4654 			(zone->managed_pages /
4655 				percpu_pagelist_fraction));
4656 	else
4657 		pageset_set_batch(pcp, zone_batchsize(zone));
4658 }
4659 
4660 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4661 {
4662 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4663 
4664 	pageset_init(pcp);
4665 	pageset_set_high_and_batch(zone, pcp);
4666 }
4667 
4668 static void __meminit setup_zone_pageset(struct zone *zone)
4669 {
4670 	int cpu;
4671 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4672 	for_each_possible_cpu(cpu)
4673 		zone_pageset_init(zone, cpu);
4674 }
4675 
4676 /*
4677  * Allocate per cpu pagesets and initialize them.
4678  * Before this call only boot pagesets were available.
4679  */
4680 void __init setup_per_cpu_pageset(void)
4681 {
4682 	struct zone *zone;
4683 
4684 	for_each_populated_zone(zone)
4685 		setup_zone_pageset(zone);
4686 }
4687 
4688 static noinline __init_refok
4689 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4690 {
4691 	int i;
4692 	size_t alloc_size;
4693 
4694 	/*
4695 	 * The per-page waitqueue mechanism uses hashed waitqueues
4696 	 * per zone.
4697 	 */
4698 	zone->wait_table_hash_nr_entries =
4699 		 wait_table_hash_nr_entries(zone_size_pages);
4700 	zone->wait_table_bits =
4701 		wait_table_bits(zone->wait_table_hash_nr_entries);
4702 	alloc_size = zone->wait_table_hash_nr_entries
4703 					* sizeof(wait_queue_head_t);
4704 
4705 	if (!slab_is_available()) {
4706 		zone->wait_table = (wait_queue_head_t *)
4707 			memblock_virt_alloc_node_nopanic(
4708 				alloc_size, zone->zone_pgdat->node_id);
4709 	} else {
4710 		/*
4711 		 * This case means that a zone whose size was 0 gets new memory
4712 		 * via memory hot-add.
4713 		 * But it may be the case that a new node was hot-added.  In
4714 		 * this case vmalloc() will not be able to use this new node's
4715 		 * memory - this wait_table must be initialized to use this new
4716 		 * node itself as well.
4717 		 * To use this new node's memory, further consideration will be
4718 		 * necessary.
4719 		 */
4720 		zone->wait_table = vmalloc(alloc_size);
4721 	}
4722 	if (!zone->wait_table)
4723 		return -ENOMEM;
4724 
4725 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4726 		init_waitqueue_head(zone->wait_table + i);
4727 
4728 	return 0;
4729 }
4730 
4731 static __meminit void zone_pcp_init(struct zone *zone)
4732 {
4733 	/*
4734 	 * per cpu subsystem is not up at this point. The following code
4735 	 * relies on the ability of the linker to provide the
4736 	 * offset of a (static) per cpu variable into the per cpu area.
4737 	 */
4738 	zone->pageset = &boot_pageset;
4739 
4740 	if (populated_zone(zone))
4741 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4742 			zone->name, zone->present_pages,
4743 					 zone_batchsize(zone));
4744 }
4745 
4746 int __meminit init_currently_empty_zone(struct zone *zone,
4747 					unsigned long zone_start_pfn,
4748 					unsigned long size)
4749 {
4750 	struct pglist_data *pgdat = zone->zone_pgdat;
4751 	int ret;
4752 	ret = zone_wait_table_init(zone, size);
4753 	if (ret)
4754 		return ret;
4755 	pgdat->nr_zones = zone_idx(zone) + 1;
4756 
4757 	zone->zone_start_pfn = zone_start_pfn;
4758 
4759 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4760 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4761 			pgdat->node_id,
4762 			(unsigned long)zone_idx(zone),
4763 			zone_start_pfn, (zone_start_pfn + size));
4764 
4765 	zone_init_free_lists(zone);
4766 
4767 	return 0;
4768 }
4769 
4770 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4771 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4772 
4773 /*
4774  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4775  */
4776 int __meminit __early_pfn_to_nid(unsigned long pfn,
4777 					struct mminit_pfnnid_cache *state)
4778 {
4779 	unsigned long start_pfn, end_pfn;
4780 	int nid;
4781 
4782 	if (state->last_start <= pfn && pfn < state->last_end)
4783 		return state->last_nid;
4784 
4785 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4786 	if (nid != -1) {
4787 		state->last_start = start_pfn;
4788 		state->last_end = end_pfn;
4789 		state->last_nid = nid;
4790 	}
4791 
4792 	return nid;
4793 }
4794 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4795 
4796 /**
4797  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4798  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4799  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4800  *
4801  * If an architecture guarantees that all ranges registered contain no holes
4802  * and may be freed, this this function may be used instead of calling
4803  * memblock_free_early_nid() manually.
4804  */
4805 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4806 {
4807 	unsigned long start_pfn, end_pfn;
4808 	int i, this_nid;
4809 
4810 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4811 		start_pfn = min(start_pfn, max_low_pfn);
4812 		end_pfn = min(end_pfn, max_low_pfn);
4813 
4814 		if (start_pfn < end_pfn)
4815 			memblock_free_early_nid(PFN_PHYS(start_pfn),
4816 					(end_pfn - start_pfn) << PAGE_SHIFT,
4817 					this_nid);
4818 	}
4819 }
4820 
4821 /**
4822  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4823  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4824  *
4825  * If an architecture guarantees that all ranges registered contain no holes and may
4826  * be freed, this function may be used instead of calling memory_present() manually.
4827  */
4828 void __init sparse_memory_present_with_active_regions(int nid)
4829 {
4830 	unsigned long start_pfn, end_pfn;
4831 	int i, this_nid;
4832 
4833 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4834 		memory_present(this_nid, start_pfn, end_pfn);
4835 }
4836 
4837 /**
4838  * get_pfn_range_for_nid - Return the start and end page frames for a node
4839  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4840  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4841  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4842  *
4843  * It returns the start and end page frame of a node based on information
4844  * provided by memblock_set_node(). If called for a node
4845  * with no available memory, a warning is printed and the start and end
4846  * PFNs will be 0.
4847  */
4848 void __meminit get_pfn_range_for_nid(unsigned int nid,
4849 			unsigned long *start_pfn, unsigned long *end_pfn)
4850 {
4851 	unsigned long this_start_pfn, this_end_pfn;
4852 	int i;
4853 
4854 	*start_pfn = -1UL;
4855 	*end_pfn = 0;
4856 
4857 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4858 		*start_pfn = min(*start_pfn, this_start_pfn);
4859 		*end_pfn = max(*end_pfn, this_end_pfn);
4860 	}
4861 
4862 	if (*start_pfn == -1UL)
4863 		*start_pfn = 0;
4864 }
4865 
4866 /*
4867  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4868  * assumption is made that zones within a node are ordered in monotonic
4869  * increasing memory addresses so that the "highest" populated zone is used
4870  */
4871 static void __init find_usable_zone_for_movable(void)
4872 {
4873 	int zone_index;
4874 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4875 		if (zone_index == ZONE_MOVABLE)
4876 			continue;
4877 
4878 		if (arch_zone_highest_possible_pfn[zone_index] >
4879 				arch_zone_lowest_possible_pfn[zone_index])
4880 			break;
4881 	}
4882 
4883 	VM_BUG_ON(zone_index == -1);
4884 	movable_zone = zone_index;
4885 }
4886 
4887 /*
4888  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4889  * because it is sized independent of architecture. Unlike the other zones,
4890  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4891  * in each node depending on the size of each node and how evenly kernelcore
4892  * is distributed. This helper function adjusts the zone ranges
4893  * provided by the architecture for a given node by using the end of the
4894  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4895  * zones within a node are in order of monotonic increases memory addresses
4896  */
4897 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4898 					unsigned long zone_type,
4899 					unsigned long node_start_pfn,
4900 					unsigned long node_end_pfn,
4901 					unsigned long *zone_start_pfn,
4902 					unsigned long *zone_end_pfn)
4903 {
4904 	/* Only adjust if ZONE_MOVABLE is on this node */
4905 	if (zone_movable_pfn[nid]) {
4906 		/* Size ZONE_MOVABLE */
4907 		if (zone_type == ZONE_MOVABLE) {
4908 			*zone_start_pfn = zone_movable_pfn[nid];
4909 			*zone_end_pfn = min(node_end_pfn,
4910 				arch_zone_highest_possible_pfn[movable_zone]);
4911 
4912 		/* Adjust for ZONE_MOVABLE starting within this range */
4913 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4914 				*zone_end_pfn > zone_movable_pfn[nid]) {
4915 			*zone_end_pfn = zone_movable_pfn[nid];
4916 
4917 		/* Check if this whole range is within ZONE_MOVABLE */
4918 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4919 			*zone_start_pfn = *zone_end_pfn;
4920 	}
4921 }
4922 
4923 /*
4924  * Return the number of pages a zone spans in a node, including holes
4925  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4926  */
4927 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4928 					unsigned long zone_type,
4929 					unsigned long node_start_pfn,
4930 					unsigned long node_end_pfn,
4931 					unsigned long *ignored)
4932 {
4933 	unsigned long zone_start_pfn, zone_end_pfn;
4934 
4935 	/* When hotadd a new node from cpu_up(), the node should be empty */
4936 	if (!node_start_pfn && !node_end_pfn)
4937 		return 0;
4938 
4939 	/* Get the start and end of the zone */
4940 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4941 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4942 	adjust_zone_range_for_zone_movable(nid, zone_type,
4943 				node_start_pfn, node_end_pfn,
4944 				&zone_start_pfn, &zone_end_pfn);
4945 
4946 	/* Check that this node has pages within the zone's required range */
4947 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4948 		return 0;
4949 
4950 	/* Move the zone boundaries inside the node if necessary */
4951 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4952 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4953 
4954 	/* Return the spanned pages */
4955 	return zone_end_pfn - zone_start_pfn;
4956 }
4957 
4958 /*
4959  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4960  * then all holes in the requested range will be accounted for.
4961  */
4962 unsigned long __meminit __absent_pages_in_range(int nid,
4963 				unsigned long range_start_pfn,
4964 				unsigned long range_end_pfn)
4965 {
4966 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4967 	unsigned long start_pfn, end_pfn;
4968 	int i;
4969 
4970 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4971 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4972 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4973 		nr_absent -= end_pfn - start_pfn;
4974 	}
4975 	return nr_absent;
4976 }
4977 
4978 /**
4979  * absent_pages_in_range - Return number of page frames in holes within a range
4980  * @start_pfn: The start PFN to start searching for holes
4981  * @end_pfn: The end PFN to stop searching for holes
4982  *
4983  * It returns the number of pages frames in memory holes within a range.
4984  */
4985 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4986 							unsigned long end_pfn)
4987 {
4988 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4989 }
4990 
4991 /* Return the number of page frames in holes in a zone on a node */
4992 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4993 					unsigned long zone_type,
4994 					unsigned long node_start_pfn,
4995 					unsigned long node_end_pfn,
4996 					unsigned long *ignored)
4997 {
4998 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4999 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5000 	unsigned long zone_start_pfn, zone_end_pfn;
5001 
5002 	/* When hotadd a new node from cpu_up(), the node should be empty */
5003 	if (!node_start_pfn && !node_end_pfn)
5004 		return 0;
5005 
5006 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5007 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5008 
5009 	adjust_zone_range_for_zone_movable(nid, zone_type,
5010 			node_start_pfn, node_end_pfn,
5011 			&zone_start_pfn, &zone_end_pfn);
5012 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5013 }
5014 
5015 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5016 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5017 					unsigned long zone_type,
5018 					unsigned long node_start_pfn,
5019 					unsigned long node_end_pfn,
5020 					unsigned long *zones_size)
5021 {
5022 	return zones_size[zone_type];
5023 }
5024 
5025 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5026 						unsigned long zone_type,
5027 						unsigned long node_start_pfn,
5028 						unsigned long node_end_pfn,
5029 						unsigned long *zholes_size)
5030 {
5031 	if (!zholes_size)
5032 		return 0;
5033 
5034 	return zholes_size[zone_type];
5035 }
5036 
5037 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5038 
5039 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5040 						unsigned long node_start_pfn,
5041 						unsigned long node_end_pfn,
5042 						unsigned long *zones_size,
5043 						unsigned long *zholes_size)
5044 {
5045 	unsigned long realtotalpages = 0, totalpages = 0;
5046 	enum zone_type i;
5047 
5048 	for (i = 0; i < MAX_NR_ZONES; i++) {
5049 		struct zone *zone = pgdat->node_zones + i;
5050 		unsigned long size, real_size;
5051 
5052 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5053 						  node_start_pfn,
5054 						  node_end_pfn,
5055 						  zones_size);
5056 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5057 						  node_start_pfn, node_end_pfn,
5058 						  zholes_size);
5059 		zone->spanned_pages = size;
5060 		zone->present_pages = real_size;
5061 
5062 		totalpages += size;
5063 		realtotalpages += real_size;
5064 	}
5065 
5066 	pgdat->node_spanned_pages = totalpages;
5067 	pgdat->node_present_pages = realtotalpages;
5068 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5069 							realtotalpages);
5070 }
5071 
5072 #ifndef CONFIG_SPARSEMEM
5073 /*
5074  * Calculate the size of the zone->blockflags rounded to an unsigned long
5075  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5076  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5077  * round what is now in bits to nearest long in bits, then return it in
5078  * bytes.
5079  */
5080 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5081 {
5082 	unsigned long usemapsize;
5083 
5084 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5085 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5086 	usemapsize = usemapsize >> pageblock_order;
5087 	usemapsize *= NR_PAGEBLOCK_BITS;
5088 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5089 
5090 	return usemapsize / 8;
5091 }
5092 
5093 static void __init setup_usemap(struct pglist_data *pgdat,
5094 				struct zone *zone,
5095 				unsigned long zone_start_pfn,
5096 				unsigned long zonesize)
5097 {
5098 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5099 	zone->pageblock_flags = NULL;
5100 	if (usemapsize)
5101 		zone->pageblock_flags =
5102 			memblock_virt_alloc_node_nopanic(usemapsize,
5103 							 pgdat->node_id);
5104 }
5105 #else
5106 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5107 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5108 #endif /* CONFIG_SPARSEMEM */
5109 
5110 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5111 
5112 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5113 void __paginginit set_pageblock_order(void)
5114 {
5115 	unsigned int order;
5116 
5117 	/* Check that pageblock_nr_pages has not already been setup */
5118 	if (pageblock_order)
5119 		return;
5120 
5121 	if (HPAGE_SHIFT > PAGE_SHIFT)
5122 		order = HUGETLB_PAGE_ORDER;
5123 	else
5124 		order = MAX_ORDER - 1;
5125 
5126 	/*
5127 	 * Assume the largest contiguous order of interest is a huge page.
5128 	 * This value may be variable depending on boot parameters on IA64 and
5129 	 * powerpc.
5130 	 */
5131 	pageblock_order = order;
5132 }
5133 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5134 
5135 /*
5136  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5137  * is unused as pageblock_order is set at compile-time. See
5138  * include/linux/pageblock-flags.h for the values of pageblock_order based on
5139  * the kernel config
5140  */
5141 void __paginginit set_pageblock_order(void)
5142 {
5143 }
5144 
5145 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5146 
5147 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5148 						   unsigned long present_pages)
5149 {
5150 	unsigned long pages = spanned_pages;
5151 
5152 	/*
5153 	 * Provide a more accurate estimation if there are holes within
5154 	 * the zone and SPARSEMEM is in use. If there are holes within the
5155 	 * zone, each populated memory region may cost us one or two extra
5156 	 * memmap pages due to alignment because memmap pages for each
5157 	 * populated regions may not naturally algined on page boundary.
5158 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5159 	 */
5160 	if (spanned_pages > present_pages + (present_pages >> 4) &&
5161 	    IS_ENABLED(CONFIG_SPARSEMEM))
5162 		pages = present_pages;
5163 
5164 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5165 }
5166 
5167 /*
5168  * Set up the zone data structures:
5169  *   - mark all pages reserved
5170  *   - mark all memory queues empty
5171  *   - clear the memory bitmaps
5172  *
5173  * NOTE: pgdat should get zeroed by caller.
5174  */
5175 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5176 {
5177 	enum zone_type j;
5178 	int nid = pgdat->node_id;
5179 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
5180 	int ret;
5181 
5182 	pgdat_resize_init(pgdat);
5183 #ifdef CONFIG_NUMA_BALANCING
5184 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5185 	pgdat->numabalancing_migrate_nr_pages = 0;
5186 	pgdat->numabalancing_migrate_next_window = jiffies;
5187 #endif
5188 	init_waitqueue_head(&pgdat->kswapd_wait);
5189 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5190 	pgdat_page_ext_init(pgdat);
5191 
5192 	for (j = 0; j < MAX_NR_ZONES; j++) {
5193 		struct zone *zone = pgdat->node_zones + j;
5194 		unsigned long size, realsize, freesize, memmap_pages;
5195 
5196 		size = zone->spanned_pages;
5197 		realsize = freesize = zone->present_pages;
5198 
5199 		/*
5200 		 * Adjust freesize so that it accounts for how much memory
5201 		 * is used by this zone for memmap. This affects the watermark
5202 		 * and per-cpu initialisations
5203 		 */
5204 		memmap_pages = calc_memmap_size(size, realsize);
5205 		if (!is_highmem_idx(j)) {
5206 			if (freesize >= memmap_pages) {
5207 				freesize -= memmap_pages;
5208 				if (memmap_pages)
5209 					printk(KERN_DEBUG
5210 					       "  %s zone: %lu pages used for memmap\n",
5211 					       zone_names[j], memmap_pages);
5212 			} else
5213 				printk(KERN_WARNING
5214 					"  %s zone: %lu pages exceeds freesize %lu\n",
5215 					zone_names[j], memmap_pages, freesize);
5216 		}
5217 
5218 		/* Account for reserved pages */
5219 		if (j == 0 && freesize > dma_reserve) {
5220 			freesize -= dma_reserve;
5221 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
5222 					zone_names[0], dma_reserve);
5223 		}
5224 
5225 		if (!is_highmem_idx(j))
5226 			nr_kernel_pages += freesize;
5227 		/* Charge for highmem memmap if there are enough kernel pages */
5228 		else if (nr_kernel_pages > memmap_pages * 2)
5229 			nr_kernel_pages -= memmap_pages;
5230 		nr_all_pages += freesize;
5231 
5232 		/*
5233 		 * Set an approximate value for lowmem here, it will be adjusted
5234 		 * when the bootmem allocator frees pages into the buddy system.
5235 		 * And all highmem pages will be managed by the buddy system.
5236 		 */
5237 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5238 #ifdef CONFIG_NUMA
5239 		zone->node = nid;
5240 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5241 						/ 100;
5242 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5243 #endif
5244 		zone->name = zone_names[j];
5245 		spin_lock_init(&zone->lock);
5246 		spin_lock_init(&zone->lru_lock);
5247 		zone_seqlock_init(zone);
5248 		zone->zone_pgdat = pgdat;
5249 		zone_pcp_init(zone);
5250 
5251 		/* For bootup, initialized properly in watermark setup */
5252 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5253 
5254 		lruvec_init(&zone->lruvec);
5255 		if (!size)
5256 			continue;
5257 
5258 		set_pageblock_order();
5259 		setup_usemap(pgdat, zone, zone_start_pfn, size);
5260 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5261 		BUG_ON(ret);
5262 		memmap_init(size, nid, j, zone_start_pfn);
5263 		zone_start_pfn += size;
5264 	}
5265 }
5266 
5267 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5268 {
5269 	unsigned long __maybe_unused start = 0;
5270 	unsigned long __maybe_unused offset = 0;
5271 
5272 	/* Skip empty nodes */
5273 	if (!pgdat->node_spanned_pages)
5274 		return;
5275 
5276 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5277 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5278 	offset = pgdat->node_start_pfn - start;
5279 	/* ia64 gets its own node_mem_map, before this, without bootmem */
5280 	if (!pgdat->node_mem_map) {
5281 		unsigned long size, end;
5282 		struct page *map;
5283 
5284 		/*
5285 		 * The zone's endpoints aren't required to be MAX_ORDER
5286 		 * aligned but the node_mem_map endpoints must be in order
5287 		 * for the buddy allocator to function correctly.
5288 		 */
5289 		end = pgdat_end_pfn(pgdat);
5290 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
5291 		size =  (end - start) * sizeof(struct page);
5292 		map = alloc_remap(pgdat->node_id, size);
5293 		if (!map)
5294 			map = memblock_virt_alloc_node_nopanic(size,
5295 							       pgdat->node_id);
5296 		pgdat->node_mem_map = map + offset;
5297 	}
5298 #ifndef CONFIG_NEED_MULTIPLE_NODES
5299 	/*
5300 	 * With no DISCONTIG, the global mem_map is just set as node 0's
5301 	 */
5302 	if (pgdat == NODE_DATA(0)) {
5303 		mem_map = NODE_DATA(0)->node_mem_map;
5304 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5305 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5306 			mem_map -= offset;
5307 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5308 	}
5309 #endif
5310 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5311 }
5312 
5313 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5314 		unsigned long node_start_pfn, unsigned long *zholes_size)
5315 {
5316 	pg_data_t *pgdat = NODE_DATA(nid);
5317 	unsigned long start_pfn = 0;
5318 	unsigned long end_pfn = 0;
5319 
5320 	/* pg_data_t should be reset to zero when it's allocated */
5321 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5322 
5323 	reset_deferred_meminit(pgdat);
5324 	pgdat->node_id = nid;
5325 	pgdat->node_start_pfn = node_start_pfn;
5326 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5327 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5328 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5329 		(u64)start_pfn << PAGE_SHIFT,
5330 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5331 #endif
5332 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5333 				  zones_size, zholes_size);
5334 
5335 	alloc_node_mem_map(pgdat);
5336 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5337 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5338 		nid, (unsigned long)pgdat,
5339 		(unsigned long)pgdat->node_mem_map);
5340 #endif
5341 
5342 	free_area_init_core(pgdat);
5343 }
5344 
5345 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5346 
5347 #if MAX_NUMNODES > 1
5348 /*
5349  * Figure out the number of possible node ids.
5350  */
5351 void __init setup_nr_node_ids(void)
5352 {
5353 	unsigned int highest;
5354 
5355 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5356 	nr_node_ids = highest + 1;
5357 }
5358 #endif
5359 
5360 /**
5361  * node_map_pfn_alignment - determine the maximum internode alignment
5362  *
5363  * This function should be called after node map is populated and sorted.
5364  * It calculates the maximum power of two alignment which can distinguish
5365  * all the nodes.
5366  *
5367  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5368  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5369  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5370  * shifted, 1GiB is enough and this function will indicate so.
5371  *
5372  * This is used to test whether pfn -> nid mapping of the chosen memory
5373  * model has fine enough granularity to avoid incorrect mapping for the
5374  * populated node map.
5375  *
5376  * Returns the determined alignment in pfn's.  0 if there is no alignment
5377  * requirement (single node).
5378  */
5379 unsigned long __init node_map_pfn_alignment(void)
5380 {
5381 	unsigned long accl_mask = 0, last_end = 0;
5382 	unsigned long start, end, mask;
5383 	int last_nid = -1;
5384 	int i, nid;
5385 
5386 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5387 		if (!start || last_nid < 0 || last_nid == nid) {
5388 			last_nid = nid;
5389 			last_end = end;
5390 			continue;
5391 		}
5392 
5393 		/*
5394 		 * Start with a mask granular enough to pin-point to the
5395 		 * start pfn and tick off bits one-by-one until it becomes
5396 		 * too coarse to separate the current node from the last.
5397 		 */
5398 		mask = ~((1 << __ffs(start)) - 1);
5399 		while (mask && last_end <= (start & (mask << 1)))
5400 			mask <<= 1;
5401 
5402 		/* accumulate all internode masks */
5403 		accl_mask |= mask;
5404 	}
5405 
5406 	/* convert mask to number of pages */
5407 	return ~accl_mask + 1;
5408 }
5409 
5410 /* Find the lowest pfn for a node */
5411 static unsigned long __init find_min_pfn_for_node(int nid)
5412 {
5413 	unsigned long min_pfn = ULONG_MAX;
5414 	unsigned long start_pfn;
5415 	int i;
5416 
5417 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5418 		min_pfn = min(min_pfn, start_pfn);
5419 
5420 	if (min_pfn == ULONG_MAX) {
5421 		printk(KERN_WARNING
5422 			"Could not find start_pfn for node %d\n", nid);
5423 		return 0;
5424 	}
5425 
5426 	return min_pfn;
5427 }
5428 
5429 /**
5430  * find_min_pfn_with_active_regions - Find the minimum PFN registered
5431  *
5432  * It returns the minimum PFN based on information provided via
5433  * memblock_set_node().
5434  */
5435 unsigned long __init find_min_pfn_with_active_regions(void)
5436 {
5437 	return find_min_pfn_for_node(MAX_NUMNODES);
5438 }
5439 
5440 /*
5441  * early_calculate_totalpages()
5442  * Sum pages in active regions for movable zone.
5443  * Populate N_MEMORY for calculating usable_nodes.
5444  */
5445 static unsigned long __init early_calculate_totalpages(void)
5446 {
5447 	unsigned long totalpages = 0;
5448 	unsigned long start_pfn, end_pfn;
5449 	int i, nid;
5450 
5451 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5452 		unsigned long pages = end_pfn - start_pfn;
5453 
5454 		totalpages += pages;
5455 		if (pages)
5456 			node_set_state(nid, N_MEMORY);
5457 	}
5458 	return totalpages;
5459 }
5460 
5461 /*
5462  * Find the PFN the Movable zone begins in each node. Kernel memory
5463  * is spread evenly between nodes as long as the nodes have enough
5464  * memory. When they don't, some nodes will have more kernelcore than
5465  * others
5466  */
5467 static void __init find_zone_movable_pfns_for_nodes(void)
5468 {
5469 	int i, nid;
5470 	unsigned long usable_startpfn;
5471 	unsigned long kernelcore_node, kernelcore_remaining;
5472 	/* save the state before borrow the nodemask */
5473 	nodemask_t saved_node_state = node_states[N_MEMORY];
5474 	unsigned long totalpages = early_calculate_totalpages();
5475 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5476 	struct memblock_region *r;
5477 
5478 	/* Need to find movable_zone earlier when movable_node is specified. */
5479 	find_usable_zone_for_movable();
5480 
5481 	/*
5482 	 * If movable_node is specified, ignore kernelcore and movablecore
5483 	 * options.
5484 	 */
5485 	if (movable_node_is_enabled()) {
5486 		for_each_memblock(memory, r) {
5487 			if (!memblock_is_hotpluggable(r))
5488 				continue;
5489 
5490 			nid = r->nid;
5491 
5492 			usable_startpfn = PFN_DOWN(r->base);
5493 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5494 				min(usable_startpfn, zone_movable_pfn[nid]) :
5495 				usable_startpfn;
5496 		}
5497 
5498 		goto out2;
5499 	}
5500 
5501 	/*
5502 	 * If movablecore=nn[KMG] was specified, calculate what size of
5503 	 * kernelcore that corresponds so that memory usable for
5504 	 * any allocation type is evenly spread. If both kernelcore
5505 	 * and movablecore are specified, then the value of kernelcore
5506 	 * will be used for required_kernelcore if it's greater than
5507 	 * what movablecore would have allowed.
5508 	 */
5509 	if (required_movablecore) {
5510 		unsigned long corepages;
5511 
5512 		/*
5513 		 * Round-up so that ZONE_MOVABLE is at least as large as what
5514 		 * was requested by the user
5515 		 */
5516 		required_movablecore =
5517 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5518 		required_movablecore = min(totalpages, required_movablecore);
5519 		corepages = totalpages - required_movablecore;
5520 
5521 		required_kernelcore = max(required_kernelcore, corepages);
5522 	}
5523 
5524 	/*
5525 	 * If kernelcore was not specified or kernelcore size is larger
5526 	 * than totalpages, there is no ZONE_MOVABLE.
5527 	 */
5528 	if (!required_kernelcore || required_kernelcore >= totalpages)
5529 		goto out;
5530 
5531 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5532 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5533 
5534 restart:
5535 	/* Spread kernelcore memory as evenly as possible throughout nodes */
5536 	kernelcore_node = required_kernelcore / usable_nodes;
5537 	for_each_node_state(nid, N_MEMORY) {
5538 		unsigned long start_pfn, end_pfn;
5539 
5540 		/*
5541 		 * Recalculate kernelcore_node if the division per node
5542 		 * now exceeds what is necessary to satisfy the requested
5543 		 * amount of memory for the kernel
5544 		 */
5545 		if (required_kernelcore < kernelcore_node)
5546 			kernelcore_node = required_kernelcore / usable_nodes;
5547 
5548 		/*
5549 		 * As the map is walked, we track how much memory is usable
5550 		 * by the kernel using kernelcore_remaining. When it is
5551 		 * 0, the rest of the node is usable by ZONE_MOVABLE
5552 		 */
5553 		kernelcore_remaining = kernelcore_node;
5554 
5555 		/* Go through each range of PFNs within this node */
5556 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5557 			unsigned long size_pages;
5558 
5559 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5560 			if (start_pfn >= end_pfn)
5561 				continue;
5562 
5563 			/* Account for what is only usable for kernelcore */
5564 			if (start_pfn < usable_startpfn) {
5565 				unsigned long kernel_pages;
5566 				kernel_pages = min(end_pfn, usable_startpfn)
5567 								- start_pfn;
5568 
5569 				kernelcore_remaining -= min(kernel_pages,
5570 							kernelcore_remaining);
5571 				required_kernelcore -= min(kernel_pages,
5572 							required_kernelcore);
5573 
5574 				/* Continue if range is now fully accounted */
5575 				if (end_pfn <= usable_startpfn) {
5576 
5577 					/*
5578 					 * Push zone_movable_pfn to the end so
5579 					 * that if we have to rebalance
5580 					 * kernelcore across nodes, we will
5581 					 * not double account here
5582 					 */
5583 					zone_movable_pfn[nid] = end_pfn;
5584 					continue;
5585 				}
5586 				start_pfn = usable_startpfn;
5587 			}
5588 
5589 			/*
5590 			 * The usable PFN range for ZONE_MOVABLE is from
5591 			 * start_pfn->end_pfn. Calculate size_pages as the
5592 			 * number of pages used as kernelcore
5593 			 */
5594 			size_pages = end_pfn - start_pfn;
5595 			if (size_pages > kernelcore_remaining)
5596 				size_pages = kernelcore_remaining;
5597 			zone_movable_pfn[nid] = start_pfn + size_pages;
5598 
5599 			/*
5600 			 * Some kernelcore has been met, update counts and
5601 			 * break if the kernelcore for this node has been
5602 			 * satisfied
5603 			 */
5604 			required_kernelcore -= min(required_kernelcore,
5605 								size_pages);
5606 			kernelcore_remaining -= size_pages;
5607 			if (!kernelcore_remaining)
5608 				break;
5609 		}
5610 	}
5611 
5612 	/*
5613 	 * If there is still required_kernelcore, we do another pass with one
5614 	 * less node in the count. This will push zone_movable_pfn[nid] further
5615 	 * along on the nodes that still have memory until kernelcore is
5616 	 * satisfied
5617 	 */
5618 	usable_nodes--;
5619 	if (usable_nodes && required_kernelcore > usable_nodes)
5620 		goto restart;
5621 
5622 out2:
5623 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5624 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5625 		zone_movable_pfn[nid] =
5626 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5627 
5628 out:
5629 	/* restore the node_state */
5630 	node_states[N_MEMORY] = saved_node_state;
5631 }
5632 
5633 /* Any regular or high memory on that node ? */
5634 static void check_for_memory(pg_data_t *pgdat, int nid)
5635 {
5636 	enum zone_type zone_type;
5637 
5638 	if (N_MEMORY == N_NORMAL_MEMORY)
5639 		return;
5640 
5641 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5642 		struct zone *zone = &pgdat->node_zones[zone_type];
5643 		if (populated_zone(zone)) {
5644 			node_set_state(nid, N_HIGH_MEMORY);
5645 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5646 			    zone_type <= ZONE_NORMAL)
5647 				node_set_state(nid, N_NORMAL_MEMORY);
5648 			break;
5649 		}
5650 	}
5651 }
5652 
5653 /**
5654  * free_area_init_nodes - Initialise all pg_data_t and zone data
5655  * @max_zone_pfn: an array of max PFNs for each zone
5656  *
5657  * This will call free_area_init_node() for each active node in the system.
5658  * Using the page ranges provided by memblock_set_node(), the size of each
5659  * zone in each node and their holes is calculated. If the maximum PFN
5660  * between two adjacent zones match, it is assumed that the zone is empty.
5661  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5662  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5663  * starts where the previous one ended. For example, ZONE_DMA32 starts
5664  * at arch_max_dma_pfn.
5665  */
5666 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5667 {
5668 	unsigned long start_pfn, end_pfn;
5669 	int i, nid;
5670 
5671 	/* Record where the zone boundaries are */
5672 	memset(arch_zone_lowest_possible_pfn, 0,
5673 				sizeof(arch_zone_lowest_possible_pfn));
5674 	memset(arch_zone_highest_possible_pfn, 0,
5675 				sizeof(arch_zone_highest_possible_pfn));
5676 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5677 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5678 	for (i = 1; i < MAX_NR_ZONES; i++) {
5679 		if (i == ZONE_MOVABLE)
5680 			continue;
5681 		arch_zone_lowest_possible_pfn[i] =
5682 			arch_zone_highest_possible_pfn[i-1];
5683 		arch_zone_highest_possible_pfn[i] =
5684 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5685 	}
5686 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5687 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5688 
5689 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5690 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5691 	find_zone_movable_pfns_for_nodes();
5692 
5693 	/* Print out the zone ranges */
5694 	pr_info("Zone ranges:\n");
5695 	for (i = 0; i < MAX_NR_ZONES; i++) {
5696 		if (i == ZONE_MOVABLE)
5697 			continue;
5698 		pr_info("  %-8s ", zone_names[i]);
5699 		if (arch_zone_lowest_possible_pfn[i] ==
5700 				arch_zone_highest_possible_pfn[i])
5701 			pr_cont("empty\n");
5702 		else
5703 			pr_cont("[mem %#018Lx-%#018Lx]\n",
5704 				(u64)arch_zone_lowest_possible_pfn[i]
5705 					<< PAGE_SHIFT,
5706 				((u64)arch_zone_highest_possible_pfn[i]
5707 					<< PAGE_SHIFT) - 1);
5708 	}
5709 
5710 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5711 	pr_info("Movable zone start for each node\n");
5712 	for (i = 0; i < MAX_NUMNODES; i++) {
5713 		if (zone_movable_pfn[i])
5714 			pr_info("  Node %d: %#018Lx\n", i,
5715 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5716 	}
5717 
5718 	/* Print out the early node map */
5719 	pr_info("Early memory node ranges\n");
5720 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5721 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5722 			(u64)start_pfn << PAGE_SHIFT,
5723 			((u64)end_pfn << PAGE_SHIFT) - 1);
5724 
5725 	/* Initialise every node */
5726 	mminit_verify_pageflags_layout();
5727 	setup_nr_node_ids();
5728 	for_each_online_node(nid) {
5729 		pg_data_t *pgdat = NODE_DATA(nid);
5730 		free_area_init_node(nid, NULL,
5731 				find_min_pfn_for_node(nid), NULL);
5732 
5733 		/* Any memory on that node */
5734 		if (pgdat->node_present_pages)
5735 			node_set_state(nid, N_MEMORY);
5736 		check_for_memory(pgdat, nid);
5737 	}
5738 }
5739 
5740 static int __init cmdline_parse_core(char *p, unsigned long *core)
5741 {
5742 	unsigned long long coremem;
5743 	if (!p)
5744 		return -EINVAL;
5745 
5746 	coremem = memparse(p, &p);
5747 	*core = coremem >> PAGE_SHIFT;
5748 
5749 	/* Paranoid check that UL is enough for the coremem value */
5750 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5751 
5752 	return 0;
5753 }
5754 
5755 /*
5756  * kernelcore=size sets the amount of memory for use for allocations that
5757  * cannot be reclaimed or migrated.
5758  */
5759 static int __init cmdline_parse_kernelcore(char *p)
5760 {
5761 	return cmdline_parse_core(p, &required_kernelcore);
5762 }
5763 
5764 /*
5765  * movablecore=size sets the amount of memory for use for allocations that
5766  * can be reclaimed or migrated.
5767  */
5768 static int __init cmdline_parse_movablecore(char *p)
5769 {
5770 	return cmdline_parse_core(p, &required_movablecore);
5771 }
5772 
5773 early_param("kernelcore", cmdline_parse_kernelcore);
5774 early_param("movablecore", cmdline_parse_movablecore);
5775 
5776 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5777 
5778 void adjust_managed_page_count(struct page *page, long count)
5779 {
5780 	spin_lock(&managed_page_count_lock);
5781 	page_zone(page)->managed_pages += count;
5782 	totalram_pages += count;
5783 #ifdef CONFIG_HIGHMEM
5784 	if (PageHighMem(page))
5785 		totalhigh_pages += count;
5786 #endif
5787 	spin_unlock(&managed_page_count_lock);
5788 }
5789 EXPORT_SYMBOL(adjust_managed_page_count);
5790 
5791 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5792 {
5793 	void *pos;
5794 	unsigned long pages = 0;
5795 
5796 	start = (void *)PAGE_ALIGN((unsigned long)start);
5797 	end = (void *)((unsigned long)end & PAGE_MASK);
5798 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5799 		if ((unsigned int)poison <= 0xFF)
5800 			memset(pos, poison, PAGE_SIZE);
5801 		free_reserved_page(virt_to_page(pos));
5802 	}
5803 
5804 	if (pages && s)
5805 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5806 			s, pages << (PAGE_SHIFT - 10), start, end);
5807 
5808 	return pages;
5809 }
5810 EXPORT_SYMBOL(free_reserved_area);
5811 
5812 #ifdef	CONFIG_HIGHMEM
5813 void free_highmem_page(struct page *page)
5814 {
5815 	__free_reserved_page(page);
5816 	totalram_pages++;
5817 	page_zone(page)->managed_pages++;
5818 	totalhigh_pages++;
5819 }
5820 #endif
5821 
5822 
5823 void __init mem_init_print_info(const char *str)
5824 {
5825 	unsigned long physpages, codesize, datasize, rosize, bss_size;
5826 	unsigned long init_code_size, init_data_size;
5827 
5828 	physpages = get_num_physpages();
5829 	codesize = _etext - _stext;
5830 	datasize = _edata - _sdata;
5831 	rosize = __end_rodata - __start_rodata;
5832 	bss_size = __bss_stop - __bss_start;
5833 	init_data_size = __init_end - __init_begin;
5834 	init_code_size = _einittext - _sinittext;
5835 
5836 	/*
5837 	 * Detect special cases and adjust section sizes accordingly:
5838 	 * 1) .init.* may be embedded into .data sections
5839 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
5840 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
5841 	 * 3) .rodata.* may be embedded into .text or .data sections.
5842 	 */
5843 #define adj_init_size(start, end, size, pos, adj) \
5844 	do { \
5845 		if (start <= pos && pos < end && size > adj) \
5846 			size -= adj; \
5847 	} while (0)
5848 
5849 	adj_init_size(__init_begin, __init_end, init_data_size,
5850 		     _sinittext, init_code_size);
5851 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5852 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5853 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5854 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5855 
5856 #undef	adj_init_size
5857 
5858 	pr_info("Memory: %luK/%luK available "
5859 	       "(%luK kernel code, %luK rwdata, %luK rodata, "
5860 	       "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5861 #ifdef	CONFIG_HIGHMEM
5862 	       ", %luK highmem"
5863 #endif
5864 	       "%s%s)\n",
5865 	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5866 	       codesize >> 10, datasize >> 10, rosize >> 10,
5867 	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
5868 	       (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5869 	       totalcma_pages << (PAGE_SHIFT-10),
5870 #ifdef	CONFIG_HIGHMEM
5871 	       totalhigh_pages << (PAGE_SHIFT-10),
5872 #endif
5873 	       str ? ", " : "", str ? str : "");
5874 }
5875 
5876 /**
5877  * set_dma_reserve - set the specified number of pages reserved in the first zone
5878  * @new_dma_reserve: The number of pages to mark reserved
5879  *
5880  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
5881  * In the DMA zone, a significant percentage may be consumed by kernel image
5882  * and other unfreeable allocations which can skew the watermarks badly. This
5883  * function may optionally be used to account for unfreeable pages in the
5884  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5885  * smaller per-cpu batchsize.
5886  */
5887 void __init set_dma_reserve(unsigned long new_dma_reserve)
5888 {
5889 	dma_reserve = new_dma_reserve;
5890 }
5891 
5892 void __init free_area_init(unsigned long *zones_size)
5893 {
5894 	free_area_init_node(0, zones_size,
5895 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5896 }
5897 
5898 static int page_alloc_cpu_notify(struct notifier_block *self,
5899 				 unsigned long action, void *hcpu)
5900 {
5901 	int cpu = (unsigned long)hcpu;
5902 
5903 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5904 		lru_add_drain_cpu(cpu);
5905 		drain_pages(cpu);
5906 
5907 		/*
5908 		 * Spill the event counters of the dead processor
5909 		 * into the current processors event counters.
5910 		 * This artificially elevates the count of the current
5911 		 * processor.
5912 		 */
5913 		vm_events_fold_cpu(cpu);
5914 
5915 		/*
5916 		 * Zero the differential counters of the dead processor
5917 		 * so that the vm statistics are consistent.
5918 		 *
5919 		 * This is only okay since the processor is dead and cannot
5920 		 * race with what we are doing.
5921 		 */
5922 		cpu_vm_stats_fold(cpu);
5923 	}
5924 	return NOTIFY_OK;
5925 }
5926 
5927 void __init page_alloc_init(void)
5928 {
5929 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5930 }
5931 
5932 /*
5933  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5934  *	or min_free_kbytes changes.
5935  */
5936 static void calculate_totalreserve_pages(void)
5937 {
5938 	struct pglist_data *pgdat;
5939 	unsigned long reserve_pages = 0;
5940 	enum zone_type i, j;
5941 
5942 	for_each_online_pgdat(pgdat) {
5943 		for (i = 0; i < MAX_NR_ZONES; i++) {
5944 			struct zone *zone = pgdat->node_zones + i;
5945 			long max = 0;
5946 
5947 			/* Find valid and maximum lowmem_reserve in the zone */
5948 			for (j = i; j < MAX_NR_ZONES; j++) {
5949 				if (zone->lowmem_reserve[j] > max)
5950 					max = zone->lowmem_reserve[j];
5951 			}
5952 
5953 			/* we treat the high watermark as reserved pages. */
5954 			max += high_wmark_pages(zone);
5955 
5956 			if (max > zone->managed_pages)
5957 				max = zone->managed_pages;
5958 			reserve_pages += max;
5959 			/*
5960 			 * Lowmem reserves are not available to
5961 			 * GFP_HIGHUSER page cache allocations and
5962 			 * kswapd tries to balance zones to their high
5963 			 * watermark.  As a result, neither should be
5964 			 * regarded as dirtyable memory, to prevent a
5965 			 * situation where reclaim has to clean pages
5966 			 * in order to balance the zones.
5967 			 */
5968 			zone->dirty_balance_reserve = max;
5969 		}
5970 	}
5971 	dirty_balance_reserve = reserve_pages;
5972 	totalreserve_pages = reserve_pages;
5973 }
5974 
5975 /*
5976  * setup_per_zone_lowmem_reserve - called whenever
5977  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5978  *	has a correct pages reserved value, so an adequate number of
5979  *	pages are left in the zone after a successful __alloc_pages().
5980  */
5981 static void setup_per_zone_lowmem_reserve(void)
5982 {
5983 	struct pglist_data *pgdat;
5984 	enum zone_type j, idx;
5985 
5986 	for_each_online_pgdat(pgdat) {
5987 		for (j = 0; j < MAX_NR_ZONES; j++) {
5988 			struct zone *zone = pgdat->node_zones + j;
5989 			unsigned long managed_pages = zone->managed_pages;
5990 
5991 			zone->lowmem_reserve[j] = 0;
5992 
5993 			idx = j;
5994 			while (idx) {
5995 				struct zone *lower_zone;
5996 
5997 				idx--;
5998 
5999 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6000 					sysctl_lowmem_reserve_ratio[idx] = 1;
6001 
6002 				lower_zone = pgdat->node_zones + idx;
6003 				lower_zone->lowmem_reserve[j] = managed_pages /
6004 					sysctl_lowmem_reserve_ratio[idx];
6005 				managed_pages += lower_zone->managed_pages;
6006 			}
6007 		}
6008 	}
6009 
6010 	/* update totalreserve_pages */
6011 	calculate_totalreserve_pages();
6012 }
6013 
6014 static void __setup_per_zone_wmarks(void)
6015 {
6016 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6017 	unsigned long lowmem_pages = 0;
6018 	struct zone *zone;
6019 	unsigned long flags;
6020 
6021 	/* Calculate total number of !ZONE_HIGHMEM pages */
6022 	for_each_zone(zone) {
6023 		if (!is_highmem(zone))
6024 			lowmem_pages += zone->managed_pages;
6025 	}
6026 
6027 	for_each_zone(zone) {
6028 		u64 tmp;
6029 
6030 		spin_lock_irqsave(&zone->lock, flags);
6031 		tmp = (u64)pages_min * zone->managed_pages;
6032 		do_div(tmp, lowmem_pages);
6033 		if (is_highmem(zone)) {
6034 			/*
6035 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6036 			 * need highmem pages, so cap pages_min to a small
6037 			 * value here.
6038 			 *
6039 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6040 			 * deltas control asynch page reclaim, and so should
6041 			 * not be capped for highmem.
6042 			 */
6043 			unsigned long min_pages;
6044 
6045 			min_pages = zone->managed_pages / 1024;
6046 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6047 			zone->watermark[WMARK_MIN] = min_pages;
6048 		} else {
6049 			/*
6050 			 * If it's a lowmem zone, reserve a number of pages
6051 			 * proportionate to the zone's size.
6052 			 */
6053 			zone->watermark[WMARK_MIN] = tmp;
6054 		}
6055 
6056 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
6057 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
6058 
6059 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
6060 			high_wmark_pages(zone) - low_wmark_pages(zone) -
6061 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6062 
6063 		spin_unlock_irqrestore(&zone->lock, flags);
6064 	}
6065 
6066 	/* update totalreserve_pages */
6067 	calculate_totalreserve_pages();
6068 }
6069 
6070 /**
6071  * setup_per_zone_wmarks - called when min_free_kbytes changes
6072  * or when memory is hot-{added|removed}
6073  *
6074  * Ensures that the watermark[min,low,high] values for each zone are set
6075  * correctly with respect to min_free_kbytes.
6076  */
6077 void setup_per_zone_wmarks(void)
6078 {
6079 	mutex_lock(&zonelists_mutex);
6080 	__setup_per_zone_wmarks();
6081 	mutex_unlock(&zonelists_mutex);
6082 }
6083 
6084 /*
6085  * The inactive anon list should be small enough that the VM never has to
6086  * do too much work, but large enough that each inactive page has a chance
6087  * to be referenced again before it is swapped out.
6088  *
6089  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6090  * INACTIVE_ANON pages on this zone's LRU, maintained by the
6091  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6092  * the anonymous pages are kept on the inactive list.
6093  *
6094  * total     target    max
6095  * memory    ratio     inactive anon
6096  * -------------------------------------
6097  *   10MB       1         5MB
6098  *  100MB       1        50MB
6099  *    1GB       3       250MB
6100  *   10GB      10       0.9GB
6101  *  100GB      31         3GB
6102  *    1TB     101        10GB
6103  *   10TB     320        32GB
6104  */
6105 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6106 {
6107 	unsigned int gb, ratio;
6108 
6109 	/* Zone size in gigabytes */
6110 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6111 	if (gb)
6112 		ratio = int_sqrt(10 * gb);
6113 	else
6114 		ratio = 1;
6115 
6116 	zone->inactive_ratio = ratio;
6117 }
6118 
6119 static void __meminit setup_per_zone_inactive_ratio(void)
6120 {
6121 	struct zone *zone;
6122 
6123 	for_each_zone(zone)
6124 		calculate_zone_inactive_ratio(zone);
6125 }
6126 
6127 /*
6128  * Initialise min_free_kbytes.
6129  *
6130  * For small machines we want it small (128k min).  For large machines
6131  * we want it large (64MB max).  But it is not linear, because network
6132  * bandwidth does not increase linearly with machine size.  We use
6133  *
6134  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6135  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6136  *
6137  * which yields
6138  *
6139  * 16MB:	512k
6140  * 32MB:	724k
6141  * 64MB:	1024k
6142  * 128MB:	1448k
6143  * 256MB:	2048k
6144  * 512MB:	2896k
6145  * 1024MB:	4096k
6146  * 2048MB:	5792k
6147  * 4096MB:	8192k
6148  * 8192MB:	11584k
6149  * 16384MB:	16384k
6150  */
6151 int __meminit init_per_zone_wmark_min(void)
6152 {
6153 	unsigned long lowmem_kbytes;
6154 	int new_min_free_kbytes;
6155 
6156 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6157 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6158 
6159 	if (new_min_free_kbytes > user_min_free_kbytes) {
6160 		min_free_kbytes = new_min_free_kbytes;
6161 		if (min_free_kbytes < 128)
6162 			min_free_kbytes = 128;
6163 		if (min_free_kbytes > 65536)
6164 			min_free_kbytes = 65536;
6165 	} else {
6166 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6167 				new_min_free_kbytes, user_min_free_kbytes);
6168 	}
6169 	setup_per_zone_wmarks();
6170 	refresh_zone_stat_thresholds();
6171 	setup_per_zone_lowmem_reserve();
6172 	setup_per_zone_inactive_ratio();
6173 	return 0;
6174 }
6175 module_init(init_per_zone_wmark_min)
6176 
6177 /*
6178  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6179  *	that we can call two helper functions whenever min_free_kbytes
6180  *	changes.
6181  */
6182 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6183 	void __user *buffer, size_t *length, loff_t *ppos)
6184 {
6185 	int rc;
6186 
6187 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6188 	if (rc)
6189 		return rc;
6190 
6191 	if (write) {
6192 		user_min_free_kbytes = min_free_kbytes;
6193 		setup_per_zone_wmarks();
6194 	}
6195 	return 0;
6196 }
6197 
6198 #ifdef CONFIG_NUMA
6199 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6200 	void __user *buffer, size_t *length, loff_t *ppos)
6201 {
6202 	struct zone *zone;
6203 	int rc;
6204 
6205 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6206 	if (rc)
6207 		return rc;
6208 
6209 	for_each_zone(zone)
6210 		zone->min_unmapped_pages = (zone->managed_pages *
6211 				sysctl_min_unmapped_ratio) / 100;
6212 	return 0;
6213 }
6214 
6215 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6216 	void __user *buffer, size_t *length, loff_t *ppos)
6217 {
6218 	struct zone *zone;
6219 	int rc;
6220 
6221 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6222 	if (rc)
6223 		return rc;
6224 
6225 	for_each_zone(zone)
6226 		zone->min_slab_pages = (zone->managed_pages *
6227 				sysctl_min_slab_ratio) / 100;
6228 	return 0;
6229 }
6230 #endif
6231 
6232 /*
6233  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6234  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6235  *	whenever sysctl_lowmem_reserve_ratio changes.
6236  *
6237  * The reserve ratio obviously has absolutely no relation with the
6238  * minimum watermarks. The lowmem reserve ratio can only make sense
6239  * if in function of the boot time zone sizes.
6240  */
6241 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6242 	void __user *buffer, size_t *length, loff_t *ppos)
6243 {
6244 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6245 	setup_per_zone_lowmem_reserve();
6246 	return 0;
6247 }
6248 
6249 /*
6250  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6251  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
6252  * pagelist can have before it gets flushed back to buddy allocator.
6253  */
6254 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6255 	void __user *buffer, size_t *length, loff_t *ppos)
6256 {
6257 	struct zone *zone;
6258 	int old_percpu_pagelist_fraction;
6259 	int ret;
6260 
6261 	mutex_lock(&pcp_batch_high_lock);
6262 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6263 
6264 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6265 	if (!write || ret < 0)
6266 		goto out;
6267 
6268 	/* Sanity checking to avoid pcp imbalance */
6269 	if (percpu_pagelist_fraction &&
6270 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6271 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6272 		ret = -EINVAL;
6273 		goto out;
6274 	}
6275 
6276 	/* No change? */
6277 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6278 		goto out;
6279 
6280 	for_each_populated_zone(zone) {
6281 		unsigned int cpu;
6282 
6283 		for_each_possible_cpu(cpu)
6284 			pageset_set_high_and_batch(zone,
6285 					per_cpu_ptr(zone->pageset, cpu));
6286 	}
6287 out:
6288 	mutex_unlock(&pcp_batch_high_lock);
6289 	return ret;
6290 }
6291 
6292 #ifdef CONFIG_NUMA
6293 int hashdist = HASHDIST_DEFAULT;
6294 
6295 static int __init set_hashdist(char *str)
6296 {
6297 	if (!str)
6298 		return 0;
6299 	hashdist = simple_strtoul(str, &str, 0);
6300 	return 1;
6301 }
6302 __setup("hashdist=", set_hashdist);
6303 #endif
6304 
6305 /*
6306  * allocate a large system hash table from bootmem
6307  * - it is assumed that the hash table must contain an exact power-of-2
6308  *   quantity of entries
6309  * - limit is the number of hash buckets, not the total allocation size
6310  */
6311 void *__init alloc_large_system_hash(const char *tablename,
6312 				     unsigned long bucketsize,
6313 				     unsigned long numentries,
6314 				     int scale,
6315 				     int flags,
6316 				     unsigned int *_hash_shift,
6317 				     unsigned int *_hash_mask,
6318 				     unsigned long low_limit,
6319 				     unsigned long high_limit)
6320 {
6321 	unsigned long long max = high_limit;
6322 	unsigned long log2qty, size;
6323 	void *table = NULL;
6324 
6325 	/* allow the kernel cmdline to have a say */
6326 	if (!numentries) {
6327 		/* round applicable memory size up to nearest megabyte */
6328 		numentries = nr_kernel_pages;
6329 
6330 		/* It isn't necessary when PAGE_SIZE >= 1MB */
6331 		if (PAGE_SHIFT < 20)
6332 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6333 
6334 		/* limit to 1 bucket per 2^scale bytes of low memory */
6335 		if (scale > PAGE_SHIFT)
6336 			numentries >>= (scale - PAGE_SHIFT);
6337 		else
6338 			numentries <<= (PAGE_SHIFT - scale);
6339 
6340 		/* Make sure we've got at least a 0-order allocation.. */
6341 		if (unlikely(flags & HASH_SMALL)) {
6342 			/* Makes no sense without HASH_EARLY */
6343 			WARN_ON(!(flags & HASH_EARLY));
6344 			if (!(numentries >> *_hash_shift)) {
6345 				numentries = 1UL << *_hash_shift;
6346 				BUG_ON(!numentries);
6347 			}
6348 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6349 			numentries = PAGE_SIZE / bucketsize;
6350 	}
6351 	numentries = roundup_pow_of_two(numentries);
6352 
6353 	/* limit allocation size to 1/16 total memory by default */
6354 	if (max == 0) {
6355 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6356 		do_div(max, bucketsize);
6357 	}
6358 	max = min(max, 0x80000000ULL);
6359 
6360 	if (numentries < low_limit)
6361 		numentries = low_limit;
6362 	if (numentries > max)
6363 		numentries = max;
6364 
6365 	log2qty = ilog2(numentries);
6366 
6367 	do {
6368 		size = bucketsize << log2qty;
6369 		if (flags & HASH_EARLY)
6370 			table = memblock_virt_alloc_nopanic(size, 0);
6371 		else if (hashdist)
6372 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6373 		else {
6374 			/*
6375 			 * If bucketsize is not a power-of-two, we may free
6376 			 * some pages at the end of hash table which
6377 			 * alloc_pages_exact() automatically does
6378 			 */
6379 			if (get_order(size) < MAX_ORDER) {
6380 				table = alloc_pages_exact(size, GFP_ATOMIC);
6381 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6382 			}
6383 		}
6384 	} while (!table && size > PAGE_SIZE && --log2qty);
6385 
6386 	if (!table)
6387 		panic("Failed to allocate %s hash table\n", tablename);
6388 
6389 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6390 	       tablename,
6391 	       (1UL << log2qty),
6392 	       ilog2(size) - PAGE_SHIFT,
6393 	       size);
6394 
6395 	if (_hash_shift)
6396 		*_hash_shift = log2qty;
6397 	if (_hash_mask)
6398 		*_hash_mask = (1 << log2qty) - 1;
6399 
6400 	return table;
6401 }
6402 
6403 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6404 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6405 							unsigned long pfn)
6406 {
6407 #ifdef CONFIG_SPARSEMEM
6408 	return __pfn_to_section(pfn)->pageblock_flags;
6409 #else
6410 	return zone->pageblock_flags;
6411 #endif /* CONFIG_SPARSEMEM */
6412 }
6413 
6414 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6415 {
6416 #ifdef CONFIG_SPARSEMEM
6417 	pfn &= (PAGES_PER_SECTION-1);
6418 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6419 #else
6420 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6421 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6422 #endif /* CONFIG_SPARSEMEM */
6423 }
6424 
6425 /**
6426  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6427  * @page: The page within the block of interest
6428  * @pfn: The target page frame number
6429  * @end_bitidx: The last bit of interest to retrieve
6430  * @mask: mask of bits that the caller is interested in
6431  *
6432  * Return: pageblock_bits flags
6433  */
6434 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6435 					unsigned long end_bitidx,
6436 					unsigned long mask)
6437 {
6438 	struct zone *zone;
6439 	unsigned long *bitmap;
6440 	unsigned long bitidx, word_bitidx;
6441 	unsigned long word;
6442 
6443 	zone = page_zone(page);
6444 	bitmap = get_pageblock_bitmap(zone, pfn);
6445 	bitidx = pfn_to_bitidx(zone, pfn);
6446 	word_bitidx = bitidx / BITS_PER_LONG;
6447 	bitidx &= (BITS_PER_LONG-1);
6448 
6449 	word = bitmap[word_bitidx];
6450 	bitidx += end_bitidx;
6451 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6452 }
6453 
6454 /**
6455  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6456  * @page: The page within the block of interest
6457  * @flags: The flags to set
6458  * @pfn: The target page frame number
6459  * @end_bitidx: The last bit of interest
6460  * @mask: mask of bits that the caller is interested in
6461  */
6462 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6463 					unsigned long pfn,
6464 					unsigned long end_bitidx,
6465 					unsigned long mask)
6466 {
6467 	struct zone *zone;
6468 	unsigned long *bitmap;
6469 	unsigned long bitidx, word_bitidx;
6470 	unsigned long old_word, word;
6471 
6472 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6473 
6474 	zone = page_zone(page);
6475 	bitmap = get_pageblock_bitmap(zone, pfn);
6476 	bitidx = pfn_to_bitidx(zone, pfn);
6477 	word_bitidx = bitidx / BITS_PER_LONG;
6478 	bitidx &= (BITS_PER_LONG-1);
6479 
6480 	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6481 
6482 	bitidx += end_bitidx;
6483 	mask <<= (BITS_PER_LONG - bitidx - 1);
6484 	flags <<= (BITS_PER_LONG - bitidx - 1);
6485 
6486 	word = READ_ONCE(bitmap[word_bitidx]);
6487 	for (;;) {
6488 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6489 		if (word == old_word)
6490 			break;
6491 		word = old_word;
6492 	}
6493 }
6494 
6495 /*
6496  * This function checks whether pageblock includes unmovable pages or not.
6497  * If @count is not zero, it is okay to include less @count unmovable pages
6498  *
6499  * PageLRU check without isolation or lru_lock could race so that
6500  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6501  * expect this function should be exact.
6502  */
6503 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6504 			 bool skip_hwpoisoned_pages)
6505 {
6506 	unsigned long pfn, iter, found;
6507 	int mt;
6508 
6509 	/*
6510 	 * For avoiding noise data, lru_add_drain_all() should be called
6511 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6512 	 */
6513 	if (zone_idx(zone) == ZONE_MOVABLE)
6514 		return false;
6515 	mt = get_pageblock_migratetype(page);
6516 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6517 		return false;
6518 
6519 	pfn = page_to_pfn(page);
6520 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6521 		unsigned long check = pfn + iter;
6522 
6523 		if (!pfn_valid_within(check))
6524 			continue;
6525 
6526 		page = pfn_to_page(check);
6527 
6528 		/*
6529 		 * Hugepages are not in LRU lists, but they're movable.
6530 		 * We need not scan over tail pages bacause we don't
6531 		 * handle each tail page individually in migration.
6532 		 */
6533 		if (PageHuge(page)) {
6534 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6535 			continue;
6536 		}
6537 
6538 		/*
6539 		 * We can't use page_count without pin a page
6540 		 * because another CPU can free compound page.
6541 		 * This check already skips compound tails of THP
6542 		 * because their page->_count is zero at all time.
6543 		 */
6544 		if (!atomic_read(&page->_count)) {
6545 			if (PageBuddy(page))
6546 				iter += (1 << page_order(page)) - 1;
6547 			continue;
6548 		}
6549 
6550 		/*
6551 		 * The HWPoisoned page may be not in buddy system, and
6552 		 * page_count() is not 0.
6553 		 */
6554 		if (skip_hwpoisoned_pages && PageHWPoison(page))
6555 			continue;
6556 
6557 		if (!PageLRU(page))
6558 			found++;
6559 		/*
6560 		 * If there are RECLAIMABLE pages, we need to check
6561 		 * it.  But now, memory offline itself doesn't call
6562 		 * shrink_node_slabs() and it still to be fixed.
6563 		 */
6564 		/*
6565 		 * If the page is not RAM, page_count()should be 0.
6566 		 * we don't need more check. This is an _used_ not-movable page.
6567 		 *
6568 		 * The problematic thing here is PG_reserved pages. PG_reserved
6569 		 * is set to both of a memory hole page and a _used_ kernel
6570 		 * page at boot.
6571 		 */
6572 		if (found > count)
6573 			return true;
6574 	}
6575 	return false;
6576 }
6577 
6578 bool is_pageblock_removable_nolock(struct page *page)
6579 {
6580 	struct zone *zone;
6581 	unsigned long pfn;
6582 
6583 	/*
6584 	 * We have to be careful here because we are iterating over memory
6585 	 * sections which are not zone aware so we might end up outside of
6586 	 * the zone but still within the section.
6587 	 * We have to take care about the node as well. If the node is offline
6588 	 * its NODE_DATA will be NULL - see page_zone.
6589 	 */
6590 	if (!node_online(page_to_nid(page)))
6591 		return false;
6592 
6593 	zone = page_zone(page);
6594 	pfn = page_to_pfn(page);
6595 	if (!zone_spans_pfn(zone, pfn))
6596 		return false;
6597 
6598 	return !has_unmovable_pages(zone, page, 0, true);
6599 }
6600 
6601 #ifdef CONFIG_CMA
6602 
6603 static unsigned long pfn_max_align_down(unsigned long pfn)
6604 {
6605 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6606 			     pageblock_nr_pages) - 1);
6607 }
6608 
6609 static unsigned long pfn_max_align_up(unsigned long pfn)
6610 {
6611 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6612 				pageblock_nr_pages));
6613 }
6614 
6615 /* [start, end) must belong to a single zone. */
6616 static int __alloc_contig_migrate_range(struct compact_control *cc,
6617 					unsigned long start, unsigned long end)
6618 {
6619 	/* This function is based on compact_zone() from compaction.c. */
6620 	unsigned long nr_reclaimed;
6621 	unsigned long pfn = start;
6622 	unsigned int tries = 0;
6623 	int ret = 0;
6624 
6625 	migrate_prep();
6626 
6627 	while (pfn < end || !list_empty(&cc->migratepages)) {
6628 		if (fatal_signal_pending(current)) {
6629 			ret = -EINTR;
6630 			break;
6631 		}
6632 
6633 		if (list_empty(&cc->migratepages)) {
6634 			cc->nr_migratepages = 0;
6635 			pfn = isolate_migratepages_range(cc, pfn, end);
6636 			if (!pfn) {
6637 				ret = -EINTR;
6638 				break;
6639 			}
6640 			tries = 0;
6641 		} else if (++tries == 5) {
6642 			ret = ret < 0 ? ret : -EBUSY;
6643 			break;
6644 		}
6645 
6646 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6647 							&cc->migratepages);
6648 		cc->nr_migratepages -= nr_reclaimed;
6649 
6650 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6651 				    NULL, 0, cc->mode, MR_CMA);
6652 	}
6653 	if (ret < 0) {
6654 		putback_movable_pages(&cc->migratepages);
6655 		return ret;
6656 	}
6657 	return 0;
6658 }
6659 
6660 /**
6661  * alloc_contig_range() -- tries to allocate given range of pages
6662  * @start:	start PFN to allocate
6663  * @end:	one-past-the-last PFN to allocate
6664  * @migratetype:	migratetype of the underlaying pageblocks (either
6665  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6666  *			in range must have the same migratetype and it must
6667  *			be either of the two.
6668  *
6669  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6670  * aligned, however it's the caller's responsibility to guarantee that
6671  * we are the only thread that changes migrate type of pageblocks the
6672  * pages fall in.
6673  *
6674  * The PFN range must belong to a single zone.
6675  *
6676  * Returns zero on success or negative error code.  On success all
6677  * pages which PFN is in [start, end) are allocated for the caller and
6678  * need to be freed with free_contig_range().
6679  */
6680 int alloc_contig_range(unsigned long start, unsigned long end,
6681 		       unsigned migratetype)
6682 {
6683 	unsigned long outer_start, outer_end;
6684 	unsigned int order;
6685 	int ret = 0;
6686 
6687 	struct compact_control cc = {
6688 		.nr_migratepages = 0,
6689 		.order = -1,
6690 		.zone = page_zone(pfn_to_page(start)),
6691 		.mode = MIGRATE_SYNC,
6692 		.ignore_skip_hint = true,
6693 	};
6694 	INIT_LIST_HEAD(&cc.migratepages);
6695 
6696 	/*
6697 	 * What we do here is we mark all pageblocks in range as
6698 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6699 	 * have different sizes, and due to the way page allocator
6700 	 * work, we align the range to biggest of the two pages so
6701 	 * that page allocator won't try to merge buddies from
6702 	 * different pageblocks and change MIGRATE_ISOLATE to some
6703 	 * other migration type.
6704 	 *
6705 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6706 	 * migrate the pages from an unaligned range (ie. pages that
6707 	 * we are interested in).  This will put all the pages in
6708 	 * range back to page allocator as MIGRATE_ISOLATE.
6709 	 *
6710 	 * When this is done, we take the pages in range from page
6711 	 * allocator removing them from the buddy system.  This way
6712 	 * page allocator will never consider using them.
6713 	 *
6714 	 * This lets us mark the pageblocks back as
6715 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6716 	 * aligned range but not in the unaligned, original range are
6717 	 * put back to page allocator so that buddy can use them.
6718 	 */
6719 
6720 	ret = start_isolate_page_range(pfn_max_align_down(start),
6721 				       pfn_max_align_up(end), migratetype,
6722 				       false);
6723 	if (ret)
6724 		return ret;
6725 
6726 	ret = __alloc_contig_migrate_range(&cc, start, end);
6727 	if (ret)
6728 		goto done;
6729 
6730 	/*
6731 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6732 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6733 	 * more, all pages in [start, end) are free in page allocator.
6734 	 * What we are going to do is to allocate all pages from
6735 	 * [start, end) (that is remove them from page allocator).
6736 	 *
6737 	 * The only problem is that pages at the beginning and at the
6738 	 * end of interesting range may be not aligned with pages that
6739 	 * page allocator holds, ie. they can be part of higher order
6740 	 * pages.  Because of this, we reserve the bigger range and
6741 	 * once this is done free the pages we are not interested in.
6742 	 *
6743 	 * We don't have to hold zone->lock here because the pages are
6744 	 * isolated thus they won't get removed from buddy.
6745 	 */
6746 
6747 	lru_add_drain_all();
6748 	drain_all_pages(cc.zone);
6749 
6750 	order = 0;
6751 	outer_start = start;
6752 	while (!PageBuddy(pfn_to_page(outer_start))) {
6753 		if (++order >= MAX_ORDER) {
6754 			ret = -EBUSY;
6755 			goto done;
6756 		}
6757 		outer_start &= ~0UL << order;
6758 	}
6759 
6760 	/* Make sure the range is really isolated. */
6761 	if (test_pages_isolated(outer_start, end, false)) {
6762 		pr_info("%s: [%lx, %lx) PFNs busy\n",
6763 			__func__, outer_start, end);
6764 		ret = -EBUSY;
6765 		goto done;
6766 	}
6767 
6768 	/* Grab isolated pages from freelists. */
6769 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6770 	if (!outer_end) {
6771 		ret = -EBUSY;
6772 		goto done;
6773 	}
6774 
6775 	/* Free head and tail (if any) */
6776 	if (start != outer_start)
6777 		free_contig_range(outer_start, start - outer_start);
6778 	if (end != outer_end)
6779 		free_contig_range(end, outer_end - end);
6780 
6781 done:
6782 	undo_isolate_page_range(pfn_max_align_down(start),
6783 				pfn_max_align_up(end), migratetype);
6784 	return ret;
6785 }
6786 
6787 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6788 {
6789 	unsigned int count = 0;
6790 
6791 	for (; nr_pages--; pfn++) {
6792 		struct page *page = pfn_to_page(pfn);
6793 
6794 		count += page_count(page) != 1;
6795 		__free_page(page);
6796 	}
6797 	WARN(count != 0, "%d pages are still in use!\n", count);
6798 }
6799 #endif
6800 
6801 #ifdef CONFIG_MEMORY_HOTPLUG
6802 /*
6803  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6804  * page high values need to be recalulated.
6805  */
6806 void __meminit zone_pcp_update(struct zone *zone)
6807 {
6808 	unsigned cpu;
6809 	mutex_lock(&pcp_batch_high_lock);
6810 	for_each_possible_cpu(cpu)
6811 		pageset_set_high_and_batch(zone,
6812 				per_cpu_ptr(zone->pageset, cpu));
6813 	mutex_unlock(&pcp_batch_high_lock);
6814 }
6815 #endif
6816 
6817 void zone_pcp_reset(struct zone *zone)
6818 {
6819 	unsigned long flags;
6820 	int cpu;
6821 	struct per_cpu_pageset *pset;
6822 
6823 	/* avoid races with drain_pages()  */
6824 	local_irq_save(flags);
6825 	if (zone->pageset != &boot_pageset) {
6826 		for_each_online_cpu(cpu) {
6827 			pset = per_cpu_ptr(zone->pageset, cpu);
6828 			drain_zonestat(zone, pset);
6829 		}
6830 		free_percpu(zone->pageset);
6831 		zone->pageset = &boot_pageset;
6832 	}
6833 	local_irq_restore(flags);
6834 }
6835 
6836 #ifdef CONFIG_MEMORY_HOTREMOVE
6837 /*
6838  * All pages in the range must be isolated before calling this.
6839  */
6840 void
6841 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6842 {
6843 	struct page *page;
6844 	struct zone *zone;
6845 	unsigned int order, i;
6846 	unsigned long pfn;
6847 	unsigned long flags;
6848 	/* find the first valid pfn */
6849 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6850 		if (pfn_valid(pfn))
6851 			break;
6852 	if (pfn == end_pfn)
6853 		return;
6854 	zone = page_zone(pfn_to_page(pfn));
6855 	spin_lock_irqsave(&zone->lock, flags);
6856 	pfn = start_pfn;
6857 	while (pfn < end_pfn) {
6858 		if (!pfn_valid(pfn)) {
6859 			pfn++;
6860 			continue;
6861 		}
6862 		page = pfn_to_page(pfn);
6863 		/*
6864 		 * The HWPoisoned page may be not in buddy system, and
6865 		 * page_count() is not 0.
6866 		 */
6867 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6868 			pfn++;
6869 			SetPageReserved(page);
6870 			continue;
6871 		}
6872 
6873 		BUG_ON(page_count(page));
6874 		BUG_ON(!PageBuddy(page));
6875 		order = page_order(page);
6876 #ifdef CONFIG_DEBUG_VM
6877 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6878 		       pfn, 1 << order, end_pfn);
6879 #endif
6880 		list_del(&page->lru);
6881 		rmv_page_order(page);
6882 		zone->free_area[order].nr_free--;
6883 		for (i = 0; i < (1 << order); i++)
6884 			SetPageReserved((page+i));
6885 		pfn += (1 << order);
6886 	}
6887 	spin_unlock_irqrestore(&zone->lock, flags);
6888 }
6889 #endif
6890 
6891 #ifdef CONFIG_MEMORY_FAILURE
6892 bool is_free_buddy_page(struct page *page)
6893 {
6894 	struct zone *zone = page_zone(page);
6895 	unsigned long pfn = page_to_pfn(page);
6896 	unsigned long flags;
6897 	unsigned int order;
6898 
6899 	spin_lock_irqsave(&zone->lock, flags);
6900 	for (order = 0; order < MAX_ORDER; order++) {
6901 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6902 
6903 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6904 			break;
6905 	}
6906 	spin_unlock_irqrestore(&zone->lock, flags);
6907 
6908 	return order < MAX_ORDER;
6909 }
6910 #endif
6911