1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/swapops.h> 23 #include <linux/interrupt.h> 24 #include <linux/pagemap.h> 25 #include <linux/jiffies.h> 26 #include <linux/memblock.h> 27 #include <linux/compiler.h> 28 #include <linux/kernel.h> 29 #include <linux/kasan.h> 30 #include <linux/module.h> 31 #include <linux/suspend.h> 32 #include <linux/pagevec.h> 33 #include <linux/blkdev.h> 34 #include <linux/slab.h> 35 #include <linux/ratelimit.h> 36 #include <linux/oom.h> 37 #include <linux/topology.h> 38 #include <linux/sysctl.h> 39 #include <linux/cpu.h> 40 #include <linux/cpuset.h> 41 #include <linux/memory_hotplug.h> 42 #include <linux/nodemask.h> 43 #include <linux/vmalloc.h> 44 #include <linux/vmstat.h> 45 #include <linux/mempolicy.h> 46 #include <linux/memremap.h> 47 #include <linux/stop_machine.h> 48 #include <linux/random.h> 49 #include <linux/sort.h> 50 #include <linux/pfn.h> 51 #include <linux/backing-dev.h> 52 #include <linux/fault-inject.h> 53 #include <linux/page-isolation.h> 54 #include <linux/debugobjects.h> 55 #include <linux/kmemleak.h> 56 #include <linux/compaction.h> 57 #include <trace/events/kmem.h> 58 #include <trace/events/oom.h> 59 #include <linux/prefetch.h> 60 #include <linux/mm_inline.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/migrate.h> 63 #include <linux/hugetlb.h> 64 #include <linux/sched/rt.h> 65 #include <linux/sched/mm.h> 66 #include <linux/page_owner.h> 67 #include <linux/page_table_check.h> 68 #include <linux/kthread.h> 69 #include <linux/memcontrol.h> 70 #include <linux/ftrace.h> 71 #include <linux/lockdep.h> 72 #include <linux/nmi.h> 73 #include <linux/psi.h> 74 #include <linux/padata.h> 75 #include <linux/khugepaged.h> 76 #include <linux/buffer_head.h> 77 #include <linux/delayacct.h> 78 #include <asm/sections.h> 79 #include <asm/tlbflush.h> 80 #include <asm/div64.h> 81 #include "internal.h" 82 #include "shuffle.h" 83 #include "page_reporting.h" 84 #include "swap.h" 85 86 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 87 typedef int __bitwise fpi_t; 88 89 /* No special request */ 90 #define FPI_NONE ((__force fpi_t)0) 91 92 /* 93 * Skip free page reporting notification for the (possibly merged) page. 94 * This does not hinder free page reporting from grabbing the page, 95 * reporting it and marking it "reported" - it only skips notifying 96 * the free page reporting infrastructure about a newly freed page. For 97 * example, used when temporarily pulling a page from a freelist and 98 * putting it back unmodified. 99 */ 100 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 101 102 /* 103 * Place the (possibly merged) page to the tail of the freelist. Will ignore 104 * page shuffling (relevant code - e.g., memory onlining - is expected to 105 * shuffle the whole zone). 106 * 107 * Note: No code should rely on this flag for correctness - it's purely 108 * to allow for optimizations when handing back either fresh pages 109 * (memory onlining) or untouched pages (page isolation, free page 110 * reporting). 111 */ 112 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 113 114 /* 115 * Don't poison memory with KASAN (only for the tag-based modes). 116 * During boot, all non-reserved memblock memory is exposed to page_alloc. 117 * Poisoning all that memory lengthens boot time, especially on systems with 118 * large amount of RAM. This flag is used to skip that poisoning. 119 * This is only done for the tag-based KASAN modes, as those are able to 120 * detect memory corruptions with the memory tags assigned by default. 121 * All memory allocated normally after boot gets poisoned as usual. 122 */ 123 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 124 125 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 126 static DEFINE_MUTEX(pcp_batch_high_lock); 127 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 128 129 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 130 /* 131 * On SMP, spin_trylock is sufficient protection. 132 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 133 */ 134 #define pcp_trylock_prepare(flags) do { } while (0) 135 #define pcp_trylock_finish(flag) do { } while (0) 136 #else 137 138 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 139 #define pcp_trylock_prepare(flags) local_irq_save(flags) 140 #define pcp_trylock_finish(flags) local_irq_restore(flags) 141 #endif 142 143 /* 144 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 145 * a migration causing the wrong PCP to be locked and remote memory being 146 * potentially allocated, pin the task to the CPU for the lookup+lock. 147 * preempt_disable is used on !RT because it is faster than migrate_disable. 148 * migrate_disable is used on RT because otherwise RT spinlock usage is 149 * interfered with and a high priority task cannot preempt the allocator. 150 */ 151 #ifndef CONFIG_PREEMPT_RT 152 #define pcpu_task_pin() preempt_disable() 153 #define pcpu_task_unpin() preempt_enable() 154 #else 155 #define pcpu_task_pin() migrate_disable() 156 #define pcpu_task_unpin() migrate_enable() 157 #endif 158 159 /* 160 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 161 * Return value should be used with equivalent unlock helper. 162 */ 163 #define pcpu_spin_lock(type, member, ptr) \ 164 ({ \ 165 type *_ret; \ 166 pcpu_task_pin(); \ 167 _ret = this_cpu_ptr(ptr); \ 168 spin_lock(&_ret->member); \ 169 _ret; \ 170 }) 171 172 #define pcpu_spin_lock_irqsave(type, member, ptr, flags) \ 173 ({ \ 174 type *_ret; \ 175 pcpu_task_pin(); \ 176 _ret = this_cpu_ptr(ptr); \ 177 spin_lock_irqsave(&_ret->member, flags); \ 178 _ret; \ 179 }) 180 181 #define pcpu_spin_trylock_irqsave(type, member, ptr, flags) \ 182 ({ \ 183 type *_ret; \ 184 pcpu_task_pin(); \ 185 _ret = this_cpu_ptr(ptr); \ 186 if (!spin_trylock_irqsave(&_ret->member, flags)) { \ 187 pcpu_task_unpin(); \ 188 _ret = NULL; \ 189 } \ 190 _ret; \ 191 }) 192 193 #define pcpu_spin_unlock(member, ptr) \ 194 ({ \ 195 spin_unlock(&ptr->member); \ 196 pcpu_task_unpin(); \ 197 }) 198 199 #define pcpu_spin_unlock_irqrestore(member, ptr, flags) \ 200 ({ \ 201 spin_unlock_irqrestore(&ptr->member, flags); \ 202 pcpu_task_unpin(); \ 203 }) 204 205 /* struct per_cpu_pages specific helpers. */ 206 #define pcp_spin_lock(ptr) \ 207 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 208 209 #define pcp_spin_lock_irqsave(ptr, flags) \ 210 pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags) 211 212 #define pcp_spin_trylock_irqsave(ptr, flags) \ 213 pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags) 214 215 #define pcp_spin_unlock(ptr) \ 216 pcpu_spin_unlock(lock, ptr) 217 218 #define pcp_spin_unlock_irqrestore(ptr, flags) \ 219 pcpu_spin_unlock_irqrestore(lock, ptr, flags) 220 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 221 DEFINE_PER_CPU(int, numa_node); 222 EXPORT_PER_CPU_SYMBOL(numa_node); 223 #endif 224 225 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 226 227 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 228 /* 229 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 230 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 231 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 232 * defined in <linux/topology.h>. 233 */ 234 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 235 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 236 #endif 237 238 static DEFINE_MUTEX(pcpu_drain_mutex); 239 240 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 241 volatile unsigned long latent_entropy __latent_entropy; 242 EXPORT_SYMBOL(latent_entropy); 243 #endif 244 245 /* 246 * Array of node states. 247 */ 248 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 249 [N_POSSIBLE] = NODE_MASK_ALL, 250 [N_ONLINE] = { { [0] = 1UL } }, 251 #ifndef CONFIG_NUMA 252 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 253 #ifdef CONFIG_HIGHMEM 254 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 255 #endif 256 [N_MEMORY] = { { [0] = 1UL } }, 257 [N_CPU] = { { [0] = 1UL } }, 258 #endif /* NUMA */ 259 }; 260 EXPORT_SYMBOL(node_states); 261 262 atomic_long_t _totalram_pages __read_mostly; 263 EXPORT_SYMBOL(_totalram_pages); 264 unsigned long totalreserve_pages __read_mostly; 265 unsigned long totalcma_pages __read_mostly; 266 267 int percpu_pagelist_high_fraction; 268 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 269 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 270 EXPORT_SYMBOL(init_on_alloc); 271 272 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 273 EXPORT_SYMBOL(init_on_free); 274 275 static bool _init_on_alloc_enabled_early __read_mostly 276 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 277 static int __init early_init_on_alloc(char *buf) 278 { 279 280 return kstrtobool(buf, &_init_on_alloc_enabled_early); 281 } 282 early_param("init_on_alloc", early_init_on_alloc); 283 284 static bool _init_on_free_enabled_early __read_mostly 285 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 286 static int __init early_init_on_free(char *buf) 287 { 288 return kstrtobool(buf, &_init_on_free_enabled_early); 289 } 290 early_param("init_on_free", early_init_on_free); 291 292 /* 293 * A cached value of the page's pageblock's migratetype, used when the page is 294 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 295 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 296 * Also the migratetype set in the page does not necessarily match the pcplist 297 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 298 * other index - this ensures that it will be put on the correct CMA freelist. 299 */ 300 static inline int get_pcppage_migratetype(struct page *page) 301 { 302 return page->index; 303 } 304 305 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 306 { 307 page->index = migratetype; 308 } 309 310 #ifdef CONFIG_PM_SLEEP 311 /* 312 * The following functions are used by the suspend/hibernate code to temporarily 313 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 314 * while devices are suspended. To avoid races with the suspend/hibernate code, 315 * they should always be called with system_transition_mutex held 316 * (gfp_allowed_mask also should only be modified with system_transition_mutex 317 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 318 * with that modification). 319 */ 320 321 static gfp_t saved_gfp_mask; 322 323 void pm_restore_gfp_mask(void) 324 { 325 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 326 if (saved_gfp_mask) { 327 gfp_allowed_mask = saved_gfp_mask; 328 saved_gfp_mask = 0; 329 } 330 } 331 332 void pm_restrict_gfp_mask(void) 333 { 334 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 335 WARN_ON(saved_gfp_mask); 336 saved_gfp_mask = gfp_allowed_mask; 337 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 338 } 339 340 bool pm_suspended_storage(void) 341 { 342 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 343 return false; 344 return true; 345 } 346 #endif /* CONFIG_PM_SLEEP */ 347 348 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 349 unsigned int pageblock_order __read_mostly; 350 #endif 351 352 static void __free_pages_ok(struct page *page, unsigned int order, 353 fpi_t fpi_flags); 354 355 /* 356 * results with 256, 32 in the lowmem_reserve sysctl: 357 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 358 * 1G machine -> (16M dma, 784M normal, 224M high) 359 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 360 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 361 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 362 * 363 * TBD: should special case ZONE_DMA32 machines here - in those we normally 364 * don't need any ZONE_NORMAL reservation 365 */ 366 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 367 #ifdef CONFIG_ZONE_DMA 368 [ZONE_DMA] = 256, 369 #endif 370 #ifdef CONFIG_ZONE_DMA32 371 [ZONE_DMA32] = 256, 372 #endif 373 [ZONE_NORMAL] = 32, 374 #ifdef CONFIG_HIGHMEM 375 [ZONE_HIGHMEM] = 0, 376 #endif 377 [ZONE_MOVABLE] = 0, 378 }; 379 380 static char * const zone_names[MAX_NR_ZONES] = { 381 #ifdef CONFIG_ZONE_DMA 382 "DMA", 383 #endif 384 #ifdef CONFIG_ZONE_DMA32 385 "DMA32", 386 #endif 387 "Normal", 388 #ifdef CONFIG_HIGHMEM 389 "HighMem", 390 #endif 391 "Movable", 392 #ifdef CONFIG_ZONE_DEVICE 393 "Device", 394 #endif 395 }; 396 397 const char * const migratetype_names[MIGRATE_TYPES] = { 398 "Unmovable", 399 "Movable", 400 "Reclaimable", 401 "HighAtomic", 402 #ifdef CONFIG_CMA 403 "CMA", 404 #endif 405 #ifdef CONFIG_MEMORY_ISOLATION 406 "Isolate", 407 #endif 408 }; 409 410 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 411 [NULL_COMPOUND_DTOR] = NULL, 412 [COMPOUND_PAGE_DTOR] = free_compound_page, 413 #ifdef CONFIG_HUGETLB_PAGE 414 [HUGETLB_PAGE_DTOR] = free_huge_page, 415 #endif 416 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 417 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 418 #endif 419 }; 420 421 int min_free_kbytes = 1024; 422 int user_min_free_kbytes = -1; 423 int watermark_boost_factor __read_mostly = 15000; 424 int watermark_scale_factor = 10; 425 426 static unsigned long nr_kernel_pages __initdata; 427 static unsigned long nr_all_pages __initdata; 428 static unsigned long dma_reserve __initdata; 429 430 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 431 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 432 static unsigned long required_kernelcore __initdata; 433 static unsigned long required_kernelcore_percent __initdata; 434 static unsigned long required_movablecore __initdata; 435 static unsigned long required_movablecore_percent __initdata; 436 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 437 bool mirrored_kernelcore __initdata_memblock; 438 439 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 440 int movable_zone; 441 EXPORT_SYMBOL(movable_zone); 442 443 #if MAX_NUMNODES > 1 444 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 445 unsigned int nr_online_nodes __read_mostly = 1; 446 EXPORT_SYMBOL(nr_node_ids); 447 EXPORT_SYMBOL(nr_online_nodes); 448 #endif 449 450 int page_group_by_mobility_disabled __read_mostly; 451 452 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 453 /* 454 * During boot we initialize deferred pages on-demand, as needed, but once 455 * page_alloc_init_late() has finished, the deferred pages are all initialized, 456 * and we can permanently disable that path. 457 */ 458 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 459 460 static inline bool deferred_pages_enabled(void) 461 { 462 return static_branch_unlikely(&deferred_pages); 463 } 464 465 /* Returns true if the struct page for the pfn is uninitialised */ 466 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 467 { 468 int nid = early_pfn_to_nid(pfn); 469 470 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 471 return true; 472 473 return false; 474 } 475 476 /* 477 * Returns true when the remaining initialisation should be deferred until 478 * later in the boot cycle when it can be parallelised. 479 */ 480 static bool __meminit 481 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 482 { 483 static unsigned long prev_end_pfn, nr_initialised; 484 485 /* 486 * prev_end_pfn static that contains the end of previous zone 487 * No need to protect because called very early in boot before smp_init. 488 */ 489 if (prev_end_pfn != end_pfn) { 490 prev_end_pfn = end_pfn; 491 nr_initialised = 0; 492 } 493 494 /* Always populate low zones for address-constrained allocations */ 495 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 496 return false; 497 498 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 499 return true; 500 /* 501 * We start only with one section of pages, more pages are added as 502 * needed until the rest of deferred pages are initialized. 503 */ 504 nr_initialised++; 505 if ((nr_initialised > PAGES_PER_SECTION) && 506 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 507 NODE_DATA(nid)->first_deferred_pfn = pfn; 508 return true; 509 } 510 return false; 511 } 512 #else 513 static inline bool deferred_pages_enabled(void) 514 { 515 return false; 516 } 517 518 static inline bool early_page_uninitialised(unsigned long pfn) 519 { 520 return false; 521 } 522 523 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 524 { 525 return false; 526 } 527 #endif 528 529 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 530 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 531 unsigned long pfn) 532 { 533 #ifdef CONFIG_SPARSEMEM 534 return section_to_usemap(__pfn_to_section(pfn)); 535 #else 536 return page_zone(page)->pageblock_flags; 537 #endif /* CONFIG_SPARSEMEM */ 538 } 539 540 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 541 { 542 #ifdef CONFIG_SPARSEMEM 543 pfn &= (PAGES_PER_SECTION-1); 544 #else 545 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 546 #endif /* CONFIG_SPARSEMEM */ 547 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 548 } 549 550 static __always_inline 551 unsigned long __get_pfnblock_flags_mask(const struct page *page, 552 unsigned long pfn, 553 unsigned long mask) 554 { 555 unsigned long *bitmap; 556 unsigned long bitidx, word_bitidx; 557 unsigned long word; 558 559 bitmap = get_pageblock_bitmap(page, pfn); 560 bitidx = pfn_to_bitidx(page, pfn); 561 word_bitidx = bitidx / BITS_PER_LONG; 562 bitidx &= (BITS_PER_LONG-1); 563 /* 564 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 565 * a consistent read of the memory array, so that results, even though 566 * racy, are not corrupted. 567 */ 568 word = READ_ONCE(bitmap[word_bitidx]); 569 return (word >> bitidx) & mask; 570 } 571 572 /** 573 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 574 * @page: The page within the block of interest 575 * @pfn: The target page frame number 576 * @mask: mask of bits that the caller is interested in 577 * 578 * Return: pageblock_bits flags 579 */ 580 unsigned long get_pfnblock_flags_mask(const struct page *page, 581 unsigned long pfn, unsigned long mask) 582 { 583 return __get_pfnblock_flags_mask(page, pfn, mask); 584 } 585 586 static __always_inline int get_pfnblock_migratetype(const struct page *page, 587 unsigned long pfn) 588 { 589 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 590 } 591 592 /** 593 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 594 * @page: The page within the block of interest 595 * @flags: The flags to set 596 * @pfn: The target page frame number 597 * @mask: mask of bits that the caller is interested in 598 */ 599 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 600 unsigned long pfn, 601 unsigned long mask) 602 { 603 unsigned long *bitmap; 604 unsigned long bitidx, word_bitidx; 605 unsigned long word; 606 607 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 608 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 609 610 bitmap = get_pageblock_bitmap(page, pfn); 611 bitidx = pfn_to_bitidx(page, pfn); 612 word_bitidx = bitidx / BITS_PER_LONG; 613 bitidx &= (BITS_PER_LONG-1); 614 615 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 616 617 mask <<= bitidx; 618 flags <<= bitidx; 619 620 word = READ_ONCE(bitmap[word_bitidx]); 621 do { 622 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 623 } 624 625 void set_pageblock_migratetype(struct page *page, int migratetype) 626 { 627 if (unlikely(page_group_by_mobility_disabled && 628 migratetype < MIGRATE_PCPTYPES)) 629 migratetype = MIGRATE_UNMOVABLE; 630 631 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 632 page_to_pfn(page), MIGRATETYPE_MASK); 633 } 634 635 #ifdef CONFIG_DEBUG_VM 636 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 637 { 638 int ret = 0; 639 unsigned seq; 640 unsigned long pfn = page_to_pfn(page); 641 unsigned long sp, start_pfn; 642 643 do { 644 seq = zone_span_seqbegin(zone); 645 start_pfn = zone->zone_start_pfn; 646 sp = zone->spanned_pages; 647 if (!zone_spans_pfn(zone, pfn)) 648 ret = 1; 649 } while (zone_span_seqretry(zone, seq)); 650 651 if (ret) 652 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 653 pfn, zone_to_nid(zone), zone->name, 654 start_pfn, start_pfn + sp); 655 656 return ret; 657 } 658 659 static int page_is_consistent(struct zone *zone, struct page *page) 660 { 661 if (zone != page_zone(page)) 662 return 0; 663 664 return 1; 665 } 666 /* 667 * Temporary debugging check for pages not lying within a given zone. 668 */ 669 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 670 { 671 if (page_outside_zone_boundaries(zone, page)) 672 return 1; 673 if (!page_is_consistent(zone, page)) 674 return 1; 675 676 return 0; 677 } 678 #else 679 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 680 { 681 return 0; 682 } 683 #endif 684 685 static void bad_page(struct page *page, const char *reason) 686 { 687 static unsigned long resume; 688 static unsigned long nr_shown; 689 static unsigned long nr_unshown; 690 691 /* 692 * Allow a burst of 60 reports, then keep quiet for that minute; 693 * or allow a steady drip of one report per second. 694 */ 695 if (nr_shown == 60) { 696 if (time_before(jiffies, resume)) { 697 nr_unshown++; 698 goto out; 699 } 700 if (nr_unshown) { 701 pr_alert( 702 "BUG: Bad page state: %lu messages suppressed\n", 703 nr_unshown); 704 nr_unshown = 0; 705 } 706 nr_shown = 0; 707 } 708 if (nr_shown++ == 0) 709 resume = jiffies + 60 * HZ; 710 711 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 712 current->comm, page_to_pfn(page)); 713 dump_page(page, reason); 714 715 print_modules(); 716 dump_stack(); 717 out: 718 /* Leave bad fields for debug, except PageBuddy could make trouble */ 719 page_mapcount_reset(page); /* remove PageBuddy */ 720 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 721 } 722 723 static inline unsigned int order_to_pindex(int migratetype, int order) 724 { 725 int base = order; 726 727 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 728 if (order > PAGE_ALLOC_COSTLY_ORDER) { 729 VM_BUG_ON(order != pageblock_order); 730 return NR_LOWORDER_PCP_LISTS; 731 } 732 #else 733 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 734 #endif 735 736 return (MIGRATE_PCPTYPES * base) + migratetype; 737 } 738 739 static inline int pindex_to_order(unsigned int pindex) 740 { 741 int order = pindex / MIGRATE_PCPTYPES; 742 743 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 744 if (pindex == NR_LOWORDER_PCP_LISTS) 745 order = pageblock_order; 746 #else 747 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 748 #endif 749 750 return order; 751 } 752 753 static inline bool pcp_allowed_order(unsigned int order) 754 { 755 if (order <= PAGE_ALLOC_COSTLY_ORDER) 756 return true; 757 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 758 if (order == pageblock_order) 759 return true; 760 #endif 761 return false; 762 } 763 764 static inline void free_the_page(struct page *page, unsigned int order) 765 { 766 if (pcp_allowed_order(order)) /* Via pcp? */ 767 free_unref_page(page, order); 768 else 769 __free_pages_ok(page, order, FPI_NONE); 770 } 771 772 /* 773 * Higher-order pages are called "compound pages". They are structured thusly: 774 * 775 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 776 * 777 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 778 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 779 * 780 * The first tail page's ->compound_dtor holds the offset in array of compound 781 * page destructors. See compound_page_dtors. 782 * 783 * The first tail page's ->compound_order holds the order of allocation. 784 * This usage means that zero-order pages may not be compound. 785 */ 786 787 void free_compound_page(struct page *page) 788 { 789 mem_cgroup_uncharge(page_folio(page)); 790 free_the_page(page, compound_order(page)); 791 } 792 793 static void prep_compound_head(struct page *page, unsigned int order) 794 { 795 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 796 set_compound_order(page, order); 797 atomic_set(compound_mapcount_ptr(page), -1); 798 atomic_set(compound_pincount_ptr(page), 0); 799 } 800 801 static void prep_compound_tail(struct page *head, int tail_idx) 802 { 803 struct page *p = head + tail_idx; 804 805 p->mapping = TAIL_MAPPING; 806 set_compound_head(p, head); 807 } 808 809 void prep_compound_page(struct page *page, unsigned int order) 810 { 811 int i; 812 int nr_pages = 1 << order; 813 814 __SetPageHead(page); 815 for (i = 1; i < nr_pages; i++) 816 prep_compound_tail(page, i); 817 818 prep_compound_head(page, order); 819 } 820 821 void destroy_large_folio(struct folio *folio) 822 { 823 enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor; 824 825 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio); 826 compound_page_dtors[dtor](&folio->page); 827 } 828 829 #ifdef CONFIG_DEBUG_PAGEALLOC 830 unsigned int _debug_guardpage_minorder; 831 832 bool _debug_pagealloc_enabled_early __read_mostly 833 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 834 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 835 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 836 EXPORT_SYMBOL(_debug_pagealloc_enabled); 837 838 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 839 840 static int __init early_debug_pagealloc(char *buf) 841 { 842 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 843 } 844 early_param("debug_pagealloc", early_debug_pagealloc); 845 846 static int __init debug_guardpage_minorder_setup(char *buf) 847 { 848 unsigned long res; 849 850 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 851 pr_err("Bad debug_guardpage_minorder value\n"); 852 return 0; 853 } 854 _debug_guardpage_minorder = res; 855 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 856 return 0; 857 } 858 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 859 860 static inline bool set_page_guard(struct zone *zone, struct page *page, 861 unsigned int order, int migratetype) 862 { 863 if (!debug_guardpage_enabled()) 864 return false; 865 866 if (order >= debug_guardpage_minorder()) 867 return false; 868 869 __SetPageGuard(page); 870 INIT_LIST_HEAD(&page->buddy_list); 871 set_page_private(page, order); 872 /* Guard pages are not available for any usage */ 873 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 874 875 return true; 876 } 877 878 static inline void clear_page_guard(struct zone *zone, struct page *page, 879 unsigned int order, int migratetype) 880 { 881 if (!debug_guardpage_enabled()) 882 return; 883 884 __ClearPageGuard(page); 885 886 set_page_private(page, 0); 887 if (!is_migrate_isolate(migratetype)) 888 __mod_zone_freepage_state(zone, (1 << order), migratetype); 889 } 890 #else 891 static inline bool set_page_guard(struct zone *zone, struct page *page, 892 unsigned int order, int migratetype) { return false; } 893 static inline void clear_page_guard(struct zone *zone, struct page *page, 894 unsigned int order, int migratetype) {} 895 #endif 896 897 /* 898 * Enable static keys related to various memory debugging and hardening options. 899 * Some override others, and depend on early params that are evaluated in the 900 * order of appearance. So we need to first gather the full picture of what was 901 * enabled, and then make decisions. 902 */ 903 void init_mem_debugging_and_hardening(void) 904 { 905 bool page_poisoning_requested = false; 906 907 #ifdef CONFIG_PAGE_POISONING 908 /* 909 * Page poisoning is debug page alloc for some arches. If 910 * either of those options are enabled, enable poisoning. 911 */ 912 if (page_poisoning_enabled() || 913 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 914 debug_pagealloc_enabled())) { 915 static_branch_enable(&_page_poisoning_enabled); 916 page_poisoning_requested = true; 917 } 918 #endif 919 920 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 921 page_poisoning_requested) { 922 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 923 "will take precedence over init_on_alloc and init_on_free\n"); 924 _init_on_alloc_enabled_early = false; 925 _init_on_free_enabled_early = false; 926 } 927 928 if (_init_on_alloc_enabled_early) 929 static_branch_enable(&init_on_alloc); 930 else 931 static_branch_disable(&init_on_alloc); 932 933 if (_init_on_free_enabled_early) 934 static_branch_enable(&init_on_free); 935 else 936 static_branch_disable(&init_on_free); 937 938 #ifdef CONFIG_DEBUG_PAGEALLOC 939 if (!debug_pagealloc_enabled()) 940 return; 941 942 static_branch_enable(&_debug_pagealloc_enabled); 943 944 if (!debug_guardpage_minorder()) 945 return; 946 947 static_branch_enable(&_debug_guardpage_enabled); 948 #endif 949 } 950 951 static inline void set_buddy_order(struct page *page, unsigned int order) 952 { 953 set_page_private(page, order); 954 __SetPageBuddy(page); 955 } 956 957 #ifdef CONFIG_COMPACTION 958 static inline struct capture_control *task_capc(struct zone *zone) 959 { 960 struct capture_control *capc = current->capture_control; 961 962 return unlikely(capc) && 963 !(current->flags & PF_KTHREAD) && 964 !capc->page && 965 capc->cc->zone == zone ? capc : NULL; 966 } 967 968 static inline bool 969 compaction_capture(struct capture_control *capc, struct page *page, 970 int order, int migratetype) 971 { 972 if (!capc || order != capc->cc->order) 973 return false; 974 975 /* Do not accidentally pollute CMA or isolated regions*/ 976 if (is_migrate_cma(migratetype) || 977 is_migrate_isolate(migratetype)) 978 return false; 979 980 /* 981 * Do not let lower order allocations pollute a movable pageblock. 982 * This might let an unmovable request use a reclaimable pageblock 983 * and vice-versa but no more than normal fallback logic which can 984 * have trouble finding a high-order free page. 985 */ 986 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 987 return false; 988 989 capc->page = page; 990 return true; 991 } 992 993 #else 994 static inline struct capture_control *task_capc(struct zone *zone) 995 { 996 return NULL; 997 } 998 999 static inline bool 1000 compaction_capture(struct capture_control *capc, struct page *page, 1001 int order, int migratetype) 1002 { 1003 return false; 1004 } 1005 #endif /* CONFIG_COMPACTION */ 1006 1007 /* Used for pages not on another list */ 1008 static inline void add_to_free_list(struct page *page, struct zone *zone, 1009 unsigned int order, int migratetype) 1010 { 1011 struct free_area *area = &zone->free_area[order]; 1012 1013 list_add(&page->buddy_list, &area->free_list[migratetype]); 1014 area->nr_free++; 1015 } 1016 1017 /* Used for pages not on another list */ 1018 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 1019 unsigned int order, int migratetype) 1020 { 1021 struct free_area *area = &zone->free_area[order]; 1022 1023 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 1024 area->nr_free++; 1025 } 1026 1027 /* 1028 * Used for pages which are on another list. Move the pages to the tail 1029 * of the list - so the moved pages won't immediately be considered for 1030 * allocation again (e.g., optimization for memory onlining). 1031 */ 1032 static inline void move_to_free_list(struct page *page, struct zone *zone, 1033 unsigned int order, int migratetype) 1034 { 1035 struct free_area *area = &zone->free_area[order]; 1036 1037 list_move_tail(&page->buddy_list, &area->free_list[migratetype]); 1038 } 1039 1040 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 1041 unsigned int order) 1042 { 1043 /* clear reported state and update reported page count */ 1044 if (page_reported(page)) 1045 __ClearPageReported(page); 1046 1047 list_del(&page->buddy_list); 1048 __ClearPageBuddy(page); 1049 set_page_private(page, 0); 1050 zone->free_area[order].nr_free--; 1051 } 1052 1053 /* 1054 * If this is not the largest possible page, check if the buddy 1055 * of the next-highest order is free. If it is, it's possible 1056 * that pages are being freed that will coalesce soon. In case, 1057 * that is happening, add the free page to the tail of the list 1058 * so it's less likely to be used soon and more likely to be merged 1059 * as a higher order page 1060 */ 1061 static inline bool 1062 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 1063 struct page *page, unsigned int order) 1064 { 1065 unsigned long higher_page_pfn; 1066 struct page *higher_page; 1067 1068 if (order >= MAX_ORDER - 2) 1069 return false; 1070 1071 higher_page_pfn = buddy_pfn & pfn; 1072 higher_page = page + (higher_page_pfn - pfn); 1073 1074 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 1075 NULL) != NULL; 1076 } 1077 1078 /* 1079 * Freeing function for a buddy system allocator. 1080 * 1081 * The concept of a buddy system is to maintain direct-mapped table 1082 * (containing bit values) for memory blocks of various "orders". 1083 * The bottom level table contains the map for the smallest allocatable 1084 * units of memory (here, pages), and each level above it describes 1085 * pairs of units from the levels below, hence, "buddies". 1086 * At a high level, all that happens here is marking the table entry 1087 * at the bottom level available, and propagating the changes upward 1088 * as necessary, plus some accounting needed to play nicely with other 1089 * parts of the VM system. 1090 * At each level, we keep a list of pages, which are heads of continuous 1091 * free pages of length of (1 << order) and marked with PageBuddy. 1092 * Page's order is recorded in page_private(page) field. 1093 * So when we are allocating or freeing one, we can derive the state of the 1094 * other. That is, if we allocate a small block, and both were 1095 * free, the remainder of the region must be split into blocks. 1096 * If a block is freed, and its buddy is also free, then this 1097 * triggers coalescing into a block of larger size. 1098 * 1099 * -- nyc 1100 */ 1101 1102 static inline void __free_one_page(struct page *page, 1103 unsigned long pfn, 1104 struct zone *zone, unsigned int order, 1105 int migratetype, fpi_t fpi_flags) 1106 { 1107 struct capture_control *capc = task_capc(zone); 1108 unsigned long buddy_pfn; 1109 unsigned long combined_pfn; 1110 struct page *buddy; 1111 bool to_tail; 1112 1113 VM_BUG_ON(!zone_is_initialized(zone)); 1114 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1115 1116 VM_BUG_ON(migratetype == -1); 1117 if (likely(!is_migrate_isolate(migratetype))) 1118 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1119 1120 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1121 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1122 1123 while (order < MAX_ORDER - 1) { 1124 if (compaction_capture(capc, page, order, migratetype)) { 1125 __mod_zone_freepage_state(zone, -(1 << order), 1126 migratetype); 1127 return; 1128 } 1129 1130 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 1131 if (!buddy) 1132 goto done_merging; 1133 1134 if (unlikely(order >= pageblock_order)) { 1135 /* 1136 * We want to prevent merge between freepages on pageblock 1137 * without fallbacks and normal pageblock. Without this, 1138 * pageblock isolation could cause incorrect freepage or CMA 1139 * accounting or HIGHATOMIC accounting. 1140 */ 1141 int buddy_mt = get_pageblock_migratetype(buddy); 1142 1143 if (migratetype != buddy_mt 1144 && (!migratetype_is_mergeable(migratetype) || 1145 !migratetype_is_mergeable(buddy_mt))) 1146 goto done_merging; 1147 } 1148 1149 /* 1150 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1151 * merge with it and move up one order. 1152 */ 1153 if (page_is_guard(buddy)) 1154 clear_page_guard(zone, buddy, order, migratetype); 1155 else 1156 del_page_from_free_list(buddy, zone, order); 1157 combined_pfn = buddy_pfn & pfn; 1158 page = page + (combined_pfn - pfn); 1159 pfn = combined_pfn; 1160 order++; 1161 } 1162 1163 done_merging: 1164 set_buddy_order(page, order); 1165 1166 if (fpi_flags & FPI_TO_TAIL) 1167 to_tail = true; 1168 else if (is_shuffle_order(order)) 1169 to_tail = shuffle_pick_tail(); 1170 else 1171 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1172 1173 if (to_tail) 1174 add_to_free_list_tail(page, zone, order, migratetype); 1175 else 1176 add_to_free_list(page, zone, order, migratetype); 1177 1178 /* Notify page reporting subsystem of freed page */ 1179 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1180 page_reporting_notify_free(order); 1181 } 1182 1183 /** 1184 * split_free_page() -- split a free page at split_pfn_offset 1185 * @free_page: the original free page 1186 * @order: the order of the page 1187 * @split_pfn_offset: split offset within the page 1188 * 1189 * Return -ENOENT if the free page is changed, otherwise 0 1190 * 1191 * It is used when the free page crosses two pageblocks with different migratetypes 1192 * at split_pfn_offset within the page. The split free page will be put into 1193 * separate migratetype lists afterwards. Otherwise, the function achieves 1194 * nothing. 1195 */ 1196 int split_free_page(struct page *free_page, 1197 unsigned int order, unsigned long split_pfn_offset) 1198 { 1199 struct zone *zone = page_zone(free_page); 1200 unsigned long free_page_pfn = page_to_pfn(free_page); 1201 unsigned long pfn; 1202 unsigned long flags; 1203 int free_page_order; 1204 int mt; 1205 int ret = 0; 1206 1207 if (split_pfn_offset == 0) 1208 return ret; 1209 1210 spin_lock_irqsave(&zone->lock, flags); 1211 1212 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { 1213 ret = -ENOENT; 1214 goto out; 1215 } 1216 1217 mt = get_pageblock_migratetype(free_page); 1218 if (likely(!is_migrate_isolate(mt))) 1219 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1220 1221 del_page_from_free_list(free_page, zone, order); 1222 for (pfn = free_page_pfn; 1223 pfn < free_page_pfn + (1UL << order);) { 1224 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); 1225 1226 free_page_order = min_t(unsigned int, 1227 pfn ? __ffs(pfn) : order, 1228 __fls(split_pfn_offset)); 1229 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, 1230 mt, FPI_NONE); 1231 pfn += 1UL << free_page_order; 1232 split_pfn_offset -= (1UL << free_page_order); 1233 /* we have done the first part, now switch to second part */ 1234 if (split_pfn_offset == 0) 1235 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); 1236 } 1237 out: 1238 spin_unlock_irqrestore(&zone->lock, flags); 1239 return ret; 1240 } 1241 /* 1242 * A bad page could be due to a number of fields. Instead of multiple branches, 1243 * try and check multiple fields with one check. The caller must do a detailed 1244 * check if necessary. 1245 */ 1246 static inline bool page_expected_state(struct page *page, 1247 unsigned long check_flags) 1248 { 1249 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1250 return false; 1251 1252 if (unlikely((unsigned long)page->mapping | 1253 page_ref_count(page) | 1254 #ifdef CONFIG_MEMCG 1255 page->memcg_data | 1256 #endif 1257 (page->flags & check_flags))) 1258 return false; 1259 1260 return true; 1261 } 1262 1263 static const char *page_bad_reason(struct page *page, unsigned long flags) 1264 { 1265 const char *bad_reason = NULL; 1266 1267 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1268 bad_reason = "nonzero mapcount"; 1269 if (unlikely(page->mapping != NULL)) 1270 bad_reason = "non-NULL mapping"; 1271 if (unlikely(page_ref_count(page) != 0)) 1272 bad_reason = "nonzero _refcount"; 1273 if (unlikely(page->flags & flags)) { 1274 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1275 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1276 else 1277 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1278 } 1279 #ifdef CONFIG_MEMCG 1280 if (unlikely(page->memcg_data)) 1281 bad_reason = "page still charged to cgroup"; 1282 #endif 1283 return bad_reason; 1284 } 1285 1286 static void check_free_page_bad(struct page *page) 1287 { 1288 bad_page(page, 1289 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1290 } 1291 1292 static inline int check_free_page(struct page *page) 1293 { 1294 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1295 return 0; 1296 1297 /* Something has gone sideways, find it */ 1298 check_free_page_bad(page); 1299 return 1; 1300 } 1301 1302 static int free_tail_pages_check(struct page *head_page, struct page *page) 1303 { 1304 int ret = 1; 1305 1306 /* 1307 * We rely page->lru.next never has bit 0 set, unless the page 1308 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1309 */ 1310 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1311 1312 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1313 ret = 0; 1314 goto out; 1315 } 1316 switch (page - head_page) { 1317 case 1: 1318 /* the first tail page: ->mapping may be compound_mapcount() */ 1319 if (unlikely(compound_mapcount(page))) { 1320 bad_page(page, "nonzero compound_mapcount"); 1321 goto out; 1322 } 1323 break; 1324 case 2: 1325 /* 1326 * the second tail page: ->mapping is 1327 * deferred_list.next -- ignore value. 1328 */ 1329 break; 1330 default: 1331 if (page->mapping != TAIL_MAPPING) { 1332 bad_page(page, "corrupted mapping in tail page"); 1333 goto out; 1334 } 1335 break; 1336 } 1337 if (unlikely(!PageTail(page))) { 1338 bad_page(page, "PageTail not set"); 1339 goto out; 1340 } 1341 if (unlikely(compound_head(page) != head_page)) { 1342 bad_page(page, "compound_head not consistent"); 1343 goto out; 1344 } 1345 ret = 0; 1346 out: 1347 page->mapping = NULL; 1348 clear_compound_head(page); 1349 return ret; 1350 } 1351 1352 /* 1353 * Skip KASAN memory poisoning when either: 1354 * 1355 * 1. Deferred memory initialization has not yet completed, 1356 * see the explanation below. 1357 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON, 1358 * see the comment next to it. 1359 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON, 1360 * see the comment next to it. 1361 * 1362 * Poisoning pages during deferred memory init will greatly lengthen the 1363 * process and cause problem in large memory systems as the deferred pages 1364 * initialization is done with interrupt disabled. 1365 * 1366 * Assuming that there will be no reference to those newly initialized 1367 * pages before they are ever allocated, this should have no effect on 1368 * KASAN memory tracking as the poison will be properly inserted at page 1369 * allocation time. The only corner case is when pages are allocated by 1370 * on-demand allocation and then freed again before the deferred pages 1371 * initialization is done, but this is not likely to happen. 1372 */ 1373 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 1374 { 1375 return deferred_pages_enabled() || 1376 (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 1377 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 1378 PageSkipKASanPoison(page); 1379 } 1380 1381 static void kernel_init_pages(struct page *page, int numpages) 1382 { 1383 int i; 1384 1385 /* s390's use of memset() could override KASAN redzones. */ 1386 kasan_disable_current(); 1387 for (i = 0; i < numpages; i++) 1388 clear_highpage_kasan_tagged(page + i); 1389 kasan_enable_current(); 1390 } 1391 1392 static __always_inline bool free_pages_prepare(struct page *page, 1393 unsigned int order, bool check_free, fpi_t fpi_flags) 1394 { 1395 int bad = 0; 1396 bool init = want_init_on_free(); 1397 1398 VM_BUG_ON_PAGE(PageTail(page), page); 1399 1400 trace_mm_page_free(page, order); 1401 1402 if (unlikely(PageHWPoison(page)) && !order) { 1403 /* 1404 * Do not let hwpoison pages hit pcplists/buddy 1405 * Untie memcg state and reset page's owner 1406 */ 1407 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1408 __memcg_kmem_uncharge_page(page, order); 1409 reset_page_owner(page, order); 1410 page_table_check_free(page, order); 1411 return false; 1412 } 1413 1414 /* 1415 * Check tail pages before head page information is cleared to 1416 * avoid checking PageCompound for order-0 pages. 1417 */ 1418 if (unlikely(order)) { 1419 bool compound = PageCompound(page); 1420 int i; 1421 1422 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1423 1424 if (compound) { 1425 ClearPageDoubleMap(page); 1426 ClearPageHasHWPoisoned(page); 1427 } 1428 for (i = 1; i < (1 << order); i++) { 1429 if (compound) 1430 bad += free_tail_pages_check(page, page + i); 1431 if (unlikely(check_free_page(page + i))) { 1432 bad++; 1433 continue; 1434 } 1435 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1436 } 1437 } 1438 if (PageMappingFlags(page)) 1439 page->mapping = NULL; 1440 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1441 __memcg_kmem_uncharge_page(page, order); 1442 if (check_free) 1443 bad += check_free_page(page); 1444 if (bad) 1445 return false; 1446 1447 page_cpupid_reset_last(page); 1448 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1449 reset_page_owner(page, order); 1450 page_table_check_free(page, order); 1451 1452 if (!PageHighMem(page)) { 1453 debug_check_no_locks_freed(page_address(page), 1454 PAGE_SIZE << order); 1455 debug_check_no_obj_freed(page_address(page), 1456 PAGE_SIZE << order); 1457 } 1458 1459 kernel_poison_pages(page, 1 << order); 1460 1461 /* 1462 * As memory initialization might be integrated into KASAN, 1463 * KASAN poisoning and memory initialization code must be 1464 * kept together to avoid discrepancies in behavior. 1465 * 1466 * With hardware tag-based KASAN, memory tags must be set before the 1467 * page becomes unavailable via debug_pagealloc or arch_free_page. 1468 */ 1469 if (!should_skip_kasan_poison(page, fpi_flags)) { 1470 kasan_poison_pages(page, order, init); 1471 1472 /* Memory is already initialized if KASAN did it internally. */ 1473 if (kasan_has_integrated_init()) 1474 init = false; 1475 } 1476 if (init) 1477 kernel_init_pages(page, 1 << order); 1478 1479 /* 1480 * arch_free_page() can make the page's contents inaccessible. s390 1481 * does this. So nothing which can access the page's contents should 1482 * happen after this. 1483 */ 1484 arch_free_page(page, order); 1485 1486 debug_pagealloc_unmap_pages(page, 1 << order); 1487 1488 return true; 1489 } 1490 1491 #ifdef CONFIG_DEBUG_VM 1492 /* 1493 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1494 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1495 * moved from pcp lists to free lists. 1496 */ 1497 static bool free_pcp_prepare(struct page *page, unsigned int order) 1498 { 1499 return free_pages_prepare(page, order, true, FPI_NONE); 1500 } 1501 1502 static bool bulkfree_pcp_prepare(struct page *page) 1503 { 1504 if (debug_pagealloc_enabled_static()) 1505 return check_free_page(page); 1506 else 1507 return false; 1508 } 1509 #else 1510 /* 1511 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1512 * moving from pcp lists to free list in order to reduce overhead. With 1513 * debug_pagealloc enabled, they are checked also immediately when being freed 1514 * to the pcp lists. 1515 */ 1516 static bool free_pcp_prepare(struct page *page, unsigned int order) 1517 { 1518 if (debug_pagealloc_enabled_static()) 1519 return free_pages_prepare(page, order, true, FPI_NONE); 1520 else 1521 return free_pages_prepare(page, order, false, FPI_NONE); 1522 } 1523 1524 static bool bulkfree_pcp_prepare(struct page *page) 1525 { 1526 return check_free_page(page); 1527 } 1528 #endif /* CONFIG_DEBUG_VM */ 1529 1530 /* 1531 * Frees a number of pages from the PCP lists 1532 * Assumes all pages on list are in same zone. 1533 * count is the number of pages to free. 1534 */ 1535 static void free_pcppages_bulk(struct zone *zone, int count, 1536 struct per_cpu_pages *pcp, 1537 int pindex) 1538 { 1539 int min_pindex = 0; 1540 int max_pindex = NR_PCP_LISTS - 1; 1541 unsigned int order; 1542 bool isolated_pageblocks; 1543 struct page *page; 1544 1545 /* 1546 * Ensure proper count is passed which otherwise would stuck in the 1547 * below while (list_empty(list)) loop. 1548 */ 1549 count = min(pcp->count, count); 1550 1551 /* Ensure requested pindex is drained first. */ 1552 pindex = pindex - 1; 1553 1554 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */ 1555 spin_lock(&zone->lock); 1556 isolated_pageblocks = has_isolate_pageblock(zone); 1557 1558 while (count > 0) { 1559 struct list_head *list; 1560 int nr_pages; 1561 1562 /* Remove pages from lists in a round-robin fashion. */ 1563 do { 1564 if (++pindex > max_pindex) 1565 pindex = min_pindex; 1566 list = &pcp->lists[pindex]; 1567 if (!list_empty(list)) 1568 break; 1569 1570 if (pindex == max_pindex) 1571 max_pindex--; 1572 if (pindex == min_pindex) 1573 min_pindex++; 1574 } while (1); 1575 1576 order = pindex_to_order(pindex); 1577 nr_pages = 1 << order; 1578 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH)); 1579 do { 1580 int mt; 1581 1582 page = list_last_entry(list, struct page, pcp_list); 1583 mt = get_pcppage_migratetype(page); 1584 1585 /* must delete to avoid corrupting pcp list */ 1586 list_del(&page->pcp_list); 1587 count -= nr_pages; 1588 pcp->count -= nr_pages; 1589 1590 if (bulkfree_pcp_prepare(page)) 1591 continue; 1592 1593 /* MIGRATE_ISOLATE page should not go to pcplists */ 1594 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1595 /* Pageblock could have been isolated meanwhile */ 1596 if (unlikely(isolated_pageblocks)) 1597 mt = get_pageblock_migratetype(page); 1598 1599 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1600 trace_mm_page_pcpu_drain(page, order, mt); 1601 } while (count > 0 && !list_empty(list)); 1602 } 1603 1604 spin_unlock(&zone->lock); 1605 } 1606 1607 static void free_one_page(struct zone *zone, 1608 struct page *page, unsigned long pfn, 1609 unsigned int order, 1610 int migratetype, fpi_t fpi_flags) 1611 { 1612 unsigned long flags; 1613 1614 spin_lock_irqsave(&zone->lock, flags); 1615 if (unlikely(has_isolate_pageblock(zone) || 1616 is_migrate_isolate(migratetype))) { 1617 migratetype = get_pfnblock_migratetype(page, pfn); 1618 } 1619 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1620 spin_unlock_irqrestore(&zone->lock, flags); 1621 } 1622 1623 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1624 unsigned long zone, int nid) 1625 { 1626 mm_zero_struct_page(page); 1627 set_page_links(page, zone, nid, pfn); 1628 init_page_count(page); 1629 page_mapcount_reset(page); 1630 page_cpupid_reset_last(page); 1631 page_kasan_tag_reset(page); 1632 1633 INIT_LIST_HEAD(&page->lru); 1634 #ifdef WANT_PAGE_VIRTUAL 1635 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1636 if (!is_highmem_idx(zone)) 1637 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1638 #endif 1639 } 1640 1641 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1642 static void __meminit init_reserved_page(unsigned long pfn) 1643 { 1644 pg_data_t *pgdat; 1645 int nid, zid; 1646 1647 if (!early_page_uninitialised(pfn)) 1648 return; 1649 1650 nid = early_pfn_to_nid(pfn); 1651 pgdat = NODE_DATA(nid); 1652 1653 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1654 struct zone *zone = &pgdat->node_zones[zid]; 1655 1656 if (zone_spans_pfn(zone, pfn)) 1657 break; 1658 } 1659 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1660 } 1661 #else 1662 static inline void init_reserved_page(unsigned long pfn) 1663 { 1664 } 1665 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1666 1667 /* 1668 * Initialised pages do not have PageReserved set. This function is 1669 * called for each range allocated by the bootmem allocator and 1670 * marks the pages PageReserved. The remaining valid pages are later 1671 * sent to the buddy page allocator. 1672 */ 1673 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1674 { 1675 unsigned long start_pfn = PFN_DOWN(start); 1676 unsigned long end_pfn = PFN_UP(end); 1677 1678 for (; start_pfn < end_pfn; start_pfn++) { 1679 if (pfn_valid(start_pfn)) { 1680 struct page *page = pfn_to_page(start_pfn); 1681 1682 init_reserved_page(start_pfn); 1683 1684 /* Avoid false-positive PageTail() */ 1685 INIT_LIST_HEAD(&page->lru); 1686 1687 /* 1688 * no need for atomic set_bit because the struct 1689 * page is not visible yet so nobody should 1690 * access it yet. 1691 */ 1692 __SetPageReserved(page); 1693 } 1694 } 1695 } 1696 1697 static void __free_pages_ok(struct page *page, unsigned int order, 1698 fpi_t fpi_flags) 1699 { 1700 unsigned long flags; 1701 int migratetype; 1702 unsigned long pfn = page_to_pfn(page); 1703 struct zone *zone = page_zone(page); 1704 1705 if (!free_pages_prepare(page, order, true, fpi_flags)) 1706 return; 1707 1708 migratetype = get_pfnblock_migratetype(page, pfn); 1709 1710 spin_lock_irqsave(&zone->lock, flags); 1711 if (unlikely(has_isolate_pageblock(zone) || 1712 is_migrate_isolate(migratetype))) { 1713 migratetype = get_pfnblock_migratetype(page, pfn); 1714 } 1715 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1716 spin_unlock_irqrestore(&zone->lock, flags); 1717 1718 __count_vm_events(PGFREE, 1 << order); 1719 } 1720 1721 void __free_pages_core(struct page *page, unsigned int order) 1722 { 1723 unsigned int nr_pages = 1 << order; 1724 struct page *p = page; 1725 unsigned int loop; 1726 1727 /* 1728 * When initializing the memmap, __init_single_page() sets the refcount 1729 * of all pages to 1 ("allocated"/"not free"). We have to set the 1730 * refcount of all involved pages to 0. 1731 */ 1732 prefetchw(p); 1733 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1734 prefetchw(p + 1); 1735 __ClearPageReserved(p); 1736 set_page_count(p, 0); 1737 } 1738 __ClearPageReserved(p); 1739 set_page_count(p, 0); 1740 1741 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1742 1743 /* 1744 * Bypass PCP and place fresh pages right to the tail, primarily 1745 * relevant for memory onlining. 1746 */ 1747 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1748 } 1749 1750 #ifdef CONFIG_NUMA 1751 1752 /* 1753 * During memory init memblocks map pfns to nids. The search is expensive and 1754 * this caches recent lookups. The implementation of __early_pfn_to_nid 1755 * treats start/end as pfns. 1756 */ 1757 struct mminit_pfnnid_cache { 1758 unsigned long last_start; 1759 unsigned long last_end; 1760 int last_nid; 1761 }; 1762 1763 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1764 1765 /* 1766 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1767 */ 1768 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1769 struct mminit_pfnnid_cache *state) 1770 { 1771 unsigned long start_pfn, end_pfn; 1772 int nid; 1773 1774 if (state->last_start <= pfn && pfn < state->last_end) 1775 return state->last_nid; 1776 1777 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1778 if (nid != NUMA_NO_NODE) { 1779 state->last_start = start_pfn; 1780 state->last_end = end_pfn; 1781 state->last_nid = nid; 1782 } 1783 1784 return nid; 1785 } 1786 1787 int __meminit early_pfn_to_nid(unsigned long pfn) 1788 { 1789 static DEFINE_SPINLOCK(early_pfn_lock); 1790 int nid; 1791 1792 spin_lock(&early_pfn_lock); 1793 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1794 if (nid < 0) 1795 nid = first_online_node; 1796 spin_unlock(&early_pfn_lock); 1797 1798 return nid; 1799 } 1800 #endif /* CONFIG_NUMA */ 1801 1802 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1803 unsigned int order) 1804 { 1805 if (early_page_uninitialised(pfn)) 1806 return; 1807 __free_pages_core(page, order); 1808 } 1809 1810 /* 1811 * Check that the whole (or subset of) a pageblock given by the interval of 1812 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1813 * with the migration of free compaction scanner. 1814 * 1815 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1816 * 1817 * It's possible on some configurations to have a setup like node0 node1 node0 1818 * i.e. it's possible that all pages within a zones range of pages do not 1819 * belong to a single zone. We assume that a border between node0 and node1 1820 * can occur within a single pageblock, but not a node0 node1 node0 1821 * interleaving within a single pageblock. It is therefore sufficient to check 1822 * the first and last page of a pageblock and avoid checking each individual 1823 * page in a pageblock. 1824 */ 1825 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1826 unsigned long end_pfn, struct zone *zone) 1827 { 1828 struct page *start_page; 1829 struct page *end_page; 1830 1831 /* end_pfn is one past the range we are checking */ 1832 end_pfn--; 1833 1834 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1835 return NULL; 1836 1837 start_page = pfn_to_online_page(start_pfn); 1838 if (!start_page) 1839 return NULL; 1840 1841 if (page_zone(start_page) != zone) 1842 return NULL; 1843 1844 end_page = pfn_to_page(end_pfn); 1845 1846 /* This gives a shorter code than deriving page_zone(end_page) */ 1847 if (page_zone_id(start_page) != page_zone_id(end_page)) 1848 return NULL; 1849 1850 return start_page; 1851 } 1852 1853 void set_zone_contiguous(struct zone *zone) 1854 { 1855 unsigned long block_start_pfn = zone->zone_start_pfn; 1856 unsigned long block_end_pfn; 1857 1858 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1859 for (; block_start_pfn < zone_end_pfn(zone); 1860 block_start_pfn = block_end_pfn, 1861 block_end_pfn += pageblock_nr_pages) { 1862 1863 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1864 1865 if (!__pageblock_pfn_to_page(block_start_pfn, 1866 block_end_pfn, zone)) 1867 return; 1868 cond_resched(); 1869 } 1870 1871 /* We confirm that there is no hole */ 1872 zone->contiguous = true; 1873 } 1874 1875 void clear_zone_contiguous(struct zone *zone) 1876 { 1877 zone->contiguous = false; 1878 } 1879 1880 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1881 static void __init deferred_free_range(unsigned long pfn, 1882 unsigned long nr_pages) 1883 { 1884 struct page *page; 1885 unsigned long i; 1886 1887 if (!nr_pages) 1888 return; 1889 1890 page = pfn_to_page(pfn); 1891 1892 /* Free a large naturally-aligned chunk if possible */ 1893 if (nr_pages == pageblock_nr_pages && 1894 (pfn & (pageblock_nr_pages - 1)) == 0) { 1895 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1896 __free_pages_core(page, pageblock_order); 1897 return; 1898 } 1899 1900 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1901 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1902 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1903 __free_pages_core(page, 0); 1904 } 1905 } 1906 1907 /* Completion tracking for deferred_init_memmap() threads */ 1908 static atomic_t pgdat_init_n_undone __initdata; 1909 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1910 1911 static inline void __init pgdat_init_report_one_done(void) 1912 { 1913 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1914 complete(&pgdat_init_all_done_comp); 1915 } 1916 1917 /* 1918 * Returns true if page needs to be initialized or freed to buddy allocator. 1919 * 1920 * First we check if pfn is valid on architectures where it is possible to have 1921 * holes within pageblock_nr_pages. On systems where it is not possible, this 1922 * function is optimized out. 1923 * 1924 * Then, we check if a current large page is valid by only checking the validity 1925 * of the head pfn. 1926 */ 1927 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1928 { 1929 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1930 return false; 1931 return true; 1932 } 1933 1934 /* 1935 * Free pages to buddy allocator. Try to free aligned pages in 1936 * pageblock_nr_pages sizes. 1937 */ 1938 static void __init deferred_free_pages(unsigned long pfn, 1939 unsigned long end_pfn) 1940 { 1941 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1942 unsigned long nr_free = 0; 1943 1944 for (; pfn < end_pfn; pfn++) { 1945 if (!deferred_pfn_valid(pfn)) { 1946 deferred_free_range(pfn - nr_free, nr_free); 1947 nr_free = 0; 1948 } else if (!(pfn & nr_pgmask)) { 1949 deferred_free_range(pfn - nr_free, nr_free); 1950 nr_free = 1; 1951 } else { 1952 nr_free++; 1953 } 1954 } 1955 /* Free the last block of pages to allocator */ 1956 deferred_free_range(pfn - nr_free, nr_free); 1957 } 1958 1959 /* 1960 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1961 * by performing it only once every pageblock_nr_pages. 1962 * Return number of pages initialized. 1963 */ 1964 static unsigned long __init deferred_init_pages(struct zone *zone, 1965 unsigned long pfn, 1966 unsigned long end_pfn) 1967 { 1968 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1969 int nid = zone_to_nid(zone); 1970 unsigned long nr_pages = 0; 1971 int zid = zone_idx(zone); 1972 struct page *page = NULL; 1973 1974 for (; pfn < end_pfn; pfn++) { 1975 if (!deferred_pfn_valid(pfn)) { 1976 page = NULL; 1977 continue; 1978 } else if (!page || !(pfn & nr_pgmask)) { 1979 page = pfn_to_page(pfn); 1980 } else { 1981 page++; 1982 } 1983 __init_single_page(page, pfn, zid, nid); 1984 nr_pages++; 1985 } 1986 return (nr_pages); 1987 } 1988 1989 /* 1990 * This function is meant to pre-load the iterator for the zone init. 1991 * Specifically it walks through the ranges until we are caught up to the 1992 * first_init_pfn value and exits there. If we never encounter the value we 1993 * return false indicating there are no valid ranges left. 1994 */ 1995 static bool __init 1996 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1997 unsigned long *spfn, unsigned long *epfn, 1998 unsigned long first_init_pfn) 1999 { 2000 u64 j; 2001 2002 /* 2003 * Start out by walking through the ranges in this zone that have 2004 * already been initialized. We don't need to do anything with them 2005 * so we just need to flush them out of the system. 2006 */ 2007 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 2008 if (*epfn <= first_init_pfn) 2009 continue; 2010 if (*spfn < first_init_pfn) 2011 *spfn = first_init_pfn; 2012 *i = j; 2013 return true; 2014 } 2015 2016 return false; 2017 } 2018 2019 /* 2020 * Initialize and free pages. We do it in two loops: first we initialize 2021 * struct page, then free to buddy allocator, because while we are 2022 * freeing pages we can access pages that are ahead (computing buddy 2023 * page in __free_one_page()). 2024 * 2025 * In order to try and keep some memory in the cache we have the loop 2026 * broken along max page order boundaries. This way we will not cause 2027 * any issues with the buddy page computation. 2028 */ 2029 static unsigned long __init 2030 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 2031 unsigned long *end_pfn) 2032 { 2033 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 2034 unsigned long spfn = *start_pfn, epfn = *end_pfn; 2035 unsigned long nr_pages = 0; 2036 u64 j = *i; 2037 2038 /* First we loop through and initialize the page values */ 2039 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 2040 unsigned long t; 2041 2042 if (mo_pfn <= *start_pfn) 2043 break; 2044 2045 t = min(mo_pfn, *end_pfn); 2046 nr_pages += deferred_init_pages(zone, *start_pfn, t); 2047 2048 if (mo_pfn < *end_pfn) { 2049 *start_pfn = mo_pfn; 2050 break; 2051 } 2052 } 2053 2054 /* Reset values and now loop through freeing pages as needed */ 2055 swap(j, *i); 2056 2057 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 2058 unsigned long t; 2059 2060 if (mo_pfn <= spfn) 2061 break; 2062 2063 t = min(mo_pfn, epfn); 2064 deferred_free_pages(spfn, t); 2065 2066 if (mo_pfn <= epfn) 2067 break; 2068 } 2069 2070 return nr_pages; 2071 } 2072 2073 static void __init 2074 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2075 void *arg) 2076 { 2077 unsigned long spfn, epfn; 2078 struct zone *zone = arg; 2079 u64 i; 2080 2081 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2082 2083 /* 2084 * Initialize and free pages in MAX_ORDER sized increments so that we 2085 * can avoid introducing any issues with the buddy allocator. 2086 */ 2087 while (spfn < end_pfn) { 2088 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2089 cond_resched(); 2090 } 2091 } 2092 2093 /* An arch may override for more concurrency. */ 2094 __weak int __init 2095 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2096 { 2097 return 1; 2098 } 2099 2100 /* Initialise remaining memory on a node */ 2101 static int __init deferred_init_memmap(void *data) 2102 { 2103 pg_data_t *pgdat = data; 2104 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2105 unsigned long spfn = 0, epfn = 0; 2106 unsigned long first_init_pfn, flags; 2107 unsigned long start = jiffies; 2108 struct zone *zone; 2109 int zid, max_threads; 2110 u64 i; 2111 2112 /* Bind memory initialisation thread to a local node if possible */ 2113 if (!cpumask_empty(cpumask)) 2114 set_cpus_allowed_ptr(current, cpumask); 2115 2116 pgdat_resize_lock(pgdat, &flags); 2117 first_init_pfn = pgdat->first_deferred_pfn; 2118 if (first_init_pfn == ULONG_MAX) { 2119 pgdat_resize_unlock(pgdat, &flags); 2120 pgdat_init_report_one_done(); 2121 return 0; 2122 } 2123 2124 /* Sanity check boundaries */ 2125 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2126 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2127 pgdat->first_deferred_pfn = ULONG_MAX; 2128 2129 /* 2130 * Once we unlock here, the zone cannot be grown anymore, thus if an 2131 * interrupt thread must allocate this early in boot, zone must be 2132 * pre-grown prior to start of deferred page initialization. 2133 */ 2134 pgdat_resize_unlock(pgdat, &flags); 2135 2136 /* Only the highest zone is deferred so find it */ 2137 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2138 zone = pgdat->node_zones + zid; 2139 if (first_init_pfn < zone_end_pfn(zone)) 2140 break; 2141 } 2142 2143 /* If the zone is empty somebody else may have cleared out the zone */ 2144 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2145 first_init_pfn)) 2146 goto zone_empty; 2147 2148 max_threads = deferred_page_init_max_threads(cpumask); 2149 2150 while (spfn < epfn) { 2151 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2152 struct padata_mt_job job = { 2153 .thread_fn = deferred_init_memmap_chunk, 2154 .fn_arg = zone, 2155 .start = spfn, 2156 .size = epfn_align - spfn, 2157 .align = PAGES_PER_SECTION, 2158 .min_chunk = PAGES_PER_SECTION, 2159 .max_threads = max_threads, 2160 }; 2161 2162 padata_do_multithreaded(&job); 2163 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2164 epfn_align); 2165 } 2166 zone_empty: 2167 /* Sanity check that the next zone really is unpopulated */ 2168 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2169 2170 pr_info("node %d deferred pages initialised in %ums\n", 2171 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2172 2173 pgdat_init_report_one_done(); 2174 return 0; 2175 } 2176 2177 /* 2178 * If this zone has deferred pages, try to grow it by initializing enough 2179 * deferred pages to satisfy the allocation specified by order, rounded up to 2180 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2181 * of SECTION_SIZE bytes by initializing struct pages in increments of 2182 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2183 * 2184 * Return true when zone was grown, otherwise return false. We return true even 2185 * when we grow less than requested, to let the caller decide if there are 2186 * enough pages to satisfy the allocation. 2187 * 2188 * Note: We use noinline because this function is needed only during boot, and 2189 * it is called from a __ref function _deferred_grow_zone. This way we are 2190 * making sure that it is not inlined into permanent text section. 2191 */ 2192 static noinline bool __init 2193 deferred_grow_zone(struct zone *zone, unsigned int order) 2194 { 2195 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2196 pg_data_t *pgdat = zone->zone_pgdat; 2197 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2198 unsigned long spfn, epfn, flags; 2199 unsigned long nr_pages = 0; 2200 u64 i; 2201 2202 /* Only the last zone may have deferred pages */ 2203 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2204 return false; 2205 2206 pgdat_resize_lock(pgdat, &flags); 2207 2208 /* 2209 * If someone grew this zone while we were waiting for spinlock, return 2210 * true, as there might be enough pages already. 2211 */ 2212 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2213 pgdat_resize_unlock(pgdat, &flags); 2214 return true; 2215 } 2216 2217 /* If the zone is empty somebody else may have cleared out the zone */ 2218 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2219 first_deferred_pfn)) { 2220 pgdat->first_deferred_pfn = ULONG_MAX; 2221 pgdat_resize_unlock(pgdat, &flags); 2222 /* Retry only once. */ 2223 return first_deferred_pfn != ULONG_MAX; 2224 } 2225 2226 /* 2227 * Initialize and free pages in MAX_ORDER sized increments so 2228 * that we can avoid introducing any issues with the buddy 2229 * allocator. 2230 */ 2231 while (spfn < epfn) { 2232 /* update our first deferred PFN for this section */ 2233 first_deferred_pfn = spfn; 2234 2235 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2236 touch_nmi_watchdog(); 2237 2238 /* We should only stop along section boundaries */ 2239 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2240 continue; 2241 2242 /* If our quota has been met we can stop here */ 2243 if (nr_pages >= nr_pages_needed) 2244 break; 2245 } 2246 2247 pgdat->first_deferred_pfn = spfn; 2248 pgdat_resize_unlock(pgdat, &flags); 2249 2250 return nr_pages > 0; 2251 } 2252 2253 /* 2254 * deferred_grow_zone() is __init, but it is called from 2255 * get_page_from_freelist() during early boot until deferred_pages permanently 2256 * disables this call. This is why we have refdata wrapper to avoid warning, 2257 * and to ensure that the function body gets unloaded. 2258 */ 2259 static bool __ref 2260 _deferred_grow_zone(struct zone *zone, unsigned int order) 2261 { 2262 return deferred_grow_zone(zone, order); 2263 } 2264 2265 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2266 2267 void __init page_alloc_init_late(void) 2268 { 2269 struct zone *zone; 2270 int nid; 2271 2272 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2273 2274 /* There will be num_node_state(N_MEMORY) threads */ 2275 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2276 for_each_node_state(nid, N_MEMORY) { 2277 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2278 } 2279 2280 /* Block until all are initialised */ 2281 wait_for_completion(&pgdat_init_all_done_comp); 2282 2283 /* 2284 * We initialized the rest of the deferred pages. Permanently disable 2285 * on-demand struct page initialization. 2286 */ 2287 static_branch_disable(&deferred_pages); 2288 2289 /* Reinit limits that are based on free pages after the kernel is up */ 2290 files_maxfiles_init(); 2291 #endif 2292 2293 buffer_init(); 2294 2295 /* Discard memblock private memory */ 2296 memblock_discard(); 2297 2298 for_each_node_state(nid, N_MEMORY) 2299 shuffle_free_memory(NODE_DATA(nid)); 2300 2301 for_each_populated_zone(zone) 2302 set_zone_contiguous(zone); 2303 } 2304 2305 #ifdef CONFIG_CMA 2306 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2307 void __init init_cma_reserved_pageblock(struct page *page) 2308 { 2309 unsigned i = pageblock_nr_pages; 2310 struct page *p = page; 2311 2312 do { 2313 __ClearPageReserved(p); 2314 set_page_count(p, 0); 2315 } while (++p, --i); 2316 2317 set_pageblock_migratetype(page, MIGRATE_CMA); 2318 set_page_refcounted(page); 2319 __free_pages(page, pageblock_order); 2320 2321 adjust_managed_page_count(page, pageblock_nr_pages); 2322 page_zone(page)->cma_pages += pageblock_nr_pages; 2323 } 2324 #endif 2325 2326 /* 2327 * The order of subdivision here is critical for the IO subsystem. 2328 * Please do not alter this order without good reasons and regression 2329 * testing. Specifically, as large blocks of memory are subdivided, 2330 * the order in which smaller blocks are delivered depends on the order 2331 * they're subdivided in this function. This is the primary factor 2332 * influencing the order in which pages are delivered to the IO 2333 * subsystem according to empirical testing, and this is also justified 2334 * by considering the behavior of a buddy system containing a single 2335 * large block of memory acted on by a series of small allocations. 2336 * This behavior is a critical factor in sglist merging's success. 2337 * 2338 * -- nyc 2339 */ 2340 static inline void expand(struct zone *zone, struct page *page, 2341 int low, int high, int migratetype) 2342 { 2343 unsigned long size = 1 << high; 2344 2345 while (high > low) { 2346 high--; 2347 size >>= 1; 2348 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2349 2350 /* 2351 * Mark as guard pages (or page), that will allow to 2352 * merge back to allocator when buddy will be freed. 2353 * Corresponding page table entries will not be touched, 2354 * pages will stay not present in virtual address space 2355 */ 2356 if (set_page_guard(zone, &page[size], high, migratetype)) 2357 continue; 2358 2359 add_to_free_list(&page[size], zone, high, migratetype); 2360 set_buddy_order(&page[size], high); 2361 } 2362 } 2363 2364 static void check_new_page_bad(struct page *page) 2365 { 2366 if (unlikely(page->flags & __PG_HWPOISON)) { 2367 /* Don't complain about hwpoisoned pages */ 2368 page_mapcount_reset(page); /* remove PageBuddy */ 2369 return; 2370 } 2371 2372 bad_page(page, 2373 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2374 } 2375 2376 /* 2377 * This page is about to be returned from the page allocator 2378 */ 2379 static inline int check_new_page(struct page *page) 2380 { 2381 if (likely(page_expected_state(page, 2382 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2383 return 0; 2384 2385 check_new_page_bad(page); 2386 return 1; 2387 } 2388 2389 static bool check_new_pages(struct page *page, unsigned int order) 2390 { 2391 int i; 2392 for (i = 0; i < (1 << order); i++) { 2393 struct page *p = page + i; 2394 2395 if (unlikely(check_new_page(p))) 2396 return true; 2397 } 2398 2399 return false; 2400 } 2401 2402 #ifdef CONFIG_DEBUG_VM 2403 /* 2404 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2405 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2406 * also checked when pcp lists are refilled from the free lists. 2407 */ 2408 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2409 { 2410 if (debug_pagealloc_enabled_static()) 2411 return check_new_pages(page, order); 2412 else 2413 return false; 2414 } 2415 2416 static inline bool check_new_pcp(struct page *page, unsigned int order) 2417 { 2418 return check_new_pages(page, order); 2419 } 2420 #else 2421 /* 2422 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2423 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2424 * enabled, they are also checked when being allocated from the pcp lists. 2425 */ 2426 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2427 { 2428 return check_new_pages(page, order); 2429 } 2430 static inline bool check_new_pcp(struct page *page, unsigned int order) 2431 { 2432 if (debug_pagealloc_enabled_static()) 2433 return check_new_pages(page, order); 2434 else 2435 return false; 2436 } 2437 #endif /* CONFIG_DEBUG_VM */ 2438 2439 static inline bool should_skip_kasan_unpoison(gfp_t flags) 2440 { 2441 /* Don't skip if a software KASAN mode is enabled. */ 2442 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 2443 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 2444 return false; 2445 2446 /* Skip, if hardware tag-based KASAN is not enabled. */ 2447 if (!kasan_hw_tags_enabled()) 2448 return true; 2449 2450 /* 2451 * With hardware tag-based KASAN enabled, skip if this has been 2452 * requested via __GFP_SKIP_KASAN_UNPOISON. 2453 */ 2454 return flags & __GFP_SKIP_KASAN_UNPOISON; 2455 } 2456 2457 static inline bool should_skip_init(gfp_t flags) 2458 { 2459 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 2460 if (!kasan_hw_tags_enabled()) 2461 return false; 2462 2463 /* For hardware tag-based KASAN, skip if requested. */ 2464 return (flags & __GFP_SKIP_ZERO); 2465 } 2466 2467 inline void post_alloc_hook(struct page *page, unsigned int order, 2468 gfp_t gfp_flags) 2469 { 2470 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 2471 !should_skip_init(gfp_flags); 2472 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS); 2473 int i; 2474 2475 set_page_private(page, 0); 2476 set_page_refcounted(page); 2477 2478 arch_alloc_page(page, order); 2479 debug_pagealloc_map_pages(page, 1 << order); 2480 2481 /* 2482 * Page unpoisoning must happen before memory initialization. 2483 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2484 * allocations and the page unpoisoning code will complain. 2485 */ 2486 kernel_unpoison_pages(page, 1 << order); 2487 2488 /* 2489 * As memory initialization might be integrated into KASAN, 2490 * KASAN unpoisoning and memory initializion code must be 2491 * kept together to avoid discrepancies in behavior. 2492 */ 2493 2494 /* 2495 * If memory tags should be zeroed (which happens only when memory 2496 * should be initialized as well). 2497 */ 2498 if (init_tags) { 2499 /* Initialize both memory and tags. */ 2500 for (i = 0; i != 1 << order; ++i) 2501 tag_clear_highpage(page + i); 2502 2503 /* Note that memory is already initialized by the loop above. */ 2504 init = false; 2505 } 2506 if (!should_skip_kasan_unpoison(gfp_flags)) { 2507 /* Unpoison shadow memory or set memory tags. */ 2508 kasan_unpoison_pages(page, order, init); 2509 2510 /* Note that memory is already initialized by KASAN. */ 2511 if (kasan_has_integrated_init()) 2512 init = false; 2513 } else { 2514 /* Ensure page_address() dereferencing does not fault. */ 2515 for (i = 0; i != 1 << order; ++i) 2516 page_kasan_tag_reset(page + i); 2517 } 2518 /* If memory is still not initialized, do it now. */ 2519 if (init) 2520 kernel_init_pages(page, 1 << order); 2521 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */ 2522 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON)) 2523 SetPageSkipKASanPoison(page); 2524 2525 set_page_owner(page, order, gfp_flags); 2526 page_table_check_alloc(page, order); 2527 } 2528 2529 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2530 unsigned int alloc_flags) 2531 { 2532 post_alloc_hook(page, order, gfp_flags); 2533 2534 if (order && (gfp_flags & __GFP_COMP)) 2535 prep_compound_page(page, order); 2536 2537 /* 2538 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2539 * allocate the page. The expectation is that the caller is taking 2540 * steps that will free more memory. The caller should avoid the page 2541 * being used for !PFMEMALLOC purposes. 2542 */ 2543 if (alloc_flags & ALLOC_NO_WATERMARKS) 2544 set_page_pfmemalloc(page); 2545 else 2546 clear_page_pfmemalloc(page); 2547 } 2548 2549 /* 2550 * Go through the free lists for the given migratetype and remove 2551 * the smallest available page from the freelists 2552 */ 2553 static __always_inline 2554 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2555 int migratetype) 2556 { 2557 unsigned int current_order; 2558 struct free_area *area; 2559 struct page *page; 2560 2561 /* Find a page of the appropriate size in the preferred list */ 2562 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2563 area = &(zone->free_area[current_order]); 2564 page = get_page_from_free_area(area, migratetype); 2565 if (!page) 2566 continue; 2567 del_page_from_free_list(page, zone, current_order); 2568 expand(zone, page, order, current_order, migratetype); 2569 set_pcppage_migratetype(page, migratetype); 2570 trace_mm_page_alloc_zone_locked(page, order, migratetype, 2571 pcp_allowed_order(order) && 2572 migratetype < MIGRATE_PCPTYPES); 2573 return page; 2574 } 2575 2576 return NULL; 2577 } 2578 2579 2580 /* 2581 * This array describes the order lists are fallen back to when 2582 * the free lists for the desirable migrate type are depleted 2583 * 2584 * The other migratetypes do not have fallbacks. 2585 */ 2586 static int fallbacks[MIGRATE_TYPES][3] = { 2587 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2588 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2589 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2590 }; 2591 2592 #ifdef CONFIG_CMA 2593 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2594 unsigned int order) 2595 { 2596 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2597 } 2598 #else 2599 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2600 unsigned int order) { return NULL; } 2601 #endif 2602 2603 /* 2604 * Move the free pages in a range to the freelist tail of the requested type. 2605 * Note that start_page and end_pages are not aligned on a pageblock 2606 * boundary. If alignment is required, use move_freepages_block() 2607 */ 2608 static int move_freepages(struct zone *zone, 2609 unsigned long start_pfn, unsigned long end_pfn, 2610 int migratetype, int *num_movable) 2611 { 2612 struct page *page; 2613 unsigned long pfn; 2614 unsigned int order; 2615 int pages_moved = 0; 2616 2617 for (pfn = start_pfn; pfn <= end_pfn;) { 2618 page = pfn_to_page(pfn); 2619 if (!PageBuddy(page)) { 2620 /* 2621 * We assume that pages that could be isolated for 2622 * migration are movable. But we don't actually try 2623 * isolating, as that would be expensive. 2624 */ 2625 if (num_movable && 2626 (PageLRU(page) || __PageMovable(page))) 2627 (*num_movable)++; 2628 pfn++; 2629 continue; 2630 } 2631 2632 /* Make sure we are not inadvertently changing nodes */ 2633 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2634 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2635 2636 order = buddy_order(page); 2637 move_to_free_list(page, zone, order, migratetype); 2638 pfn += 1 << order; 2639 pages_moved += 1 << order; 2640 } 2641 2642 return pages_moved; 2643 } 2644 2645 int move_freepages_block(struct zone *zone, struct page *page, 2646 int migratetype, int *num_movable) 2647 { 2648 unsigned long start_pfn, end_pfn, pfn; 2649 2650 if (num_movable) 2651 *num_movable = 0; 2652 2653 pfn = page_to_pfn(page); 2654 start_pfn = pfn & ~(pageblock_nr_pages - 1); 2655 end_pfn = start_pfn + pageblock_nr_pages - 1; 2656 2657 /* Do not cross zone boundaries */ 2658 if (!zone_spans_pfn(zone, start_pfn)) 2659 start_pfn = pfn; 2660 if (!zone_spans_pfn(zone, end_pfn)) 2661 return 0; 2662 2663 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2664 num_movable); 2665 } 2666 2667 static void change_pageblock_range(struct page *pageblock_page, 2668 int start_order, int migratetype) 2669 { 2670 int nr_pageblocks = 1 << (start_order - pageblock_order); 2671 2672 while (nr_pageblocks--) { 2673 set_pageblock_migratetype(pageblock_page, migratetype); 2674 pageblock_page += pageblock_nr_pages; 2675 } 2676 } 2677 2678 /* 2679 * When we are falling back to another migratetype during allocation, try to 2680 * steal extra free pages from the same pageblocks to satisfy further 2681 * allocations, instead of polluting multiple pageblocks. 2682 * 2683 * If we are stealing a relatively large buddy page, it is likely there will 2684 * be more free pages in the pageblock, so try to steal them all. For 2685 * reclaimable and unmovable allocations, we steal regardless of page size, 2686 * as fragmentation caused by those allocations polluting movable pageblocks 2687 * is worse than movable allocations stealing from unmovable and reclaimable 2688 * pageblocks. 2689 */ 2690 static bool can_steal_fallback(unsigned int order, int start_mt) 2691 { 2692 /* 2693 * Leaving this order check is intended, although there is 2694 * relaxed order check in next check. The reason is that 2695 * we can actually steal whole pageblock if this condition met, 2696 * but, below check doesn't guarantee it and that is just heuristic 2697 * so could be changed anytime. 2698 */ 2699 if (order >= pageblock_order) 2700 return true; 2701 2702 if (order >= pageblock_order / 2 || 2703 start_mt == MIGRATE_RECLAIMABLE || 2704 start_mt == MIGRATE_UNMOVABLE || 2705 page_group_by_mobility_disabled) 2706 return true; 2707 2708 return false; 2709 } 2710 2711 static inline bool boost_watermark(struct zone *zone) 2712 { 2713 unsigned long max_boost; 2714 2715 if (!watermark_boost_factor) 2716 return false; 2717 /* 2718 * Don't bother in zones that are unlikely to produce results. 2719 * On small machines, including kdump capture kernels running 2720 * in a small area, boosting the watermark can cause an out of 2721 * memory situation immediately. 2722 */ 2723 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2724 return false; 2725 2726 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2727 watermark_boost_factor, 10000); 2728 2729 /* 2730 * high watermark may be uninitialised if fragmentation occurs 2731 * very early in boot so do not boost. We do not fall 2732 * through and boost by pageblock_nr_pages as failing 2733 * allocations that early means that reclaim is not going 2734 * to help and it may even be impossible to reclaim the 2735 * boosted watermark resulting in a hang. 2736 */ 2737 if (!max_boost) 2738 return false; 2739 2740 max_boost = max(pageblock_nr_pages, max_boost); 2741 2742 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2743 max_boost); 2744 2745 return true; 2746 } 2747 2748 /* 2749 * This function implements actual steal behaviour. If order is large enough, 2750 * we can steal whole pageblock. If not, we first move freepages in this 2751 * pageblock to our migratetype and determine how many already-allocated pages 2752 * are there in the pageblock with a compatible migratetype. If at least half 2753 * of pages are free or compatible, we can change migratetype of the pageblock 2754 * itself, so pages freed in the future will be put on the correct free list. 2755 */ 2756 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2757 unsigned int alloc_flags, int start_type, bool whole_block) 2758 { 2759 unsigned int current_order = buddy_order(page); 2760 int free_pages, movable_pages, alike_pages; 2761 int old_block_type; 2762 2763 old_block_type = get_pageblock_migratetype(page); 2764 2765 /* 2766 * This can happen due to races and we want to prevent broken 2767 * highatomic accounting. 2768 */ 2769 if (is_migrate_highatomic(old_block_type)) 2770 goto single_page; 2771 2772 /* Take ownership for orders >= pageblock_order */ 2773 if (current_order >= pageblock_order) { 2774 change_pageblock_range(page, current_order, start_type); 2775 goto single_page; 2776 } 2777 2778 /* 2779 * Boost watermarks to increase reclaim pressure to reduce the 2780 * likelihood of future fallbacks. Wake kswapd now as the node 2781 * may be balanced overall and kswapd will not wake naturally. 2782 */ 2783 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2784 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2785 2786 /* We are not allowed to try stealing from the whole block */ 2787 if (!whole_block) 2788 goto single_page; 2789 2790 free_pages = move_freepages_block(zone, page, start_type, 2791 &movable_pages); 2792 /* 2793 * Determine how many pages are compatible with our allocation. 2794 * For movable allocation, it's the number of movable pages which 2795 * we just obtained. For other types it's a bit more tricky. 2796 */ 2797 if (start_type == MIGRATE_MOVABLE) { 2798 alike_pages = movable_pages; 2799 } else { 2800 /* 2801 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2802 * to MOVABLE pageblock, consider all non-movable pages as 2803 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2804 * vice versa, be conservative since we can't distinguish the 2805 * exact migratetype of non-movable pages. 2806 */ 2807 if (old_block_type == MIGRATE_MOVABLE) 2808 alike_pages = pageblock_nr_pages 2809 - (free_pages + movable_pages); 2810 else 2811 alike_pages = 0; 2812 } 2813 2814 /* moving whole block can fail due to zone boundary conditions */ 2815 if (!free_pages) 2816 goto single_page; 2817 2818 /* 2819 * If a sufficient number of pages in the block are either free or of 2820 * comparable migratability as our allocation, claim the whole block. 2821 */ 2822 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2823 page_group_by_mobility_disabled) 2824 set_pageblock_migratetype(page, start_type); 2825 2826 return; 2827 2828 single_page: 2829 move_to_free_list(page, zone, current_order, start_type); 2830 } 2831 2832 /* 2833 * Check whether there is a suitable fallback freepage with requested order. 2834 * If only_stealable is true, this function returns fallback_mt only if 2835 * we can steal other freepages all together. This would help to reduce 2836 * fragmentation due to mixed migratetype pages in one pageblock. 2837 */ 2838 int find_suitable_fallback(struct free_area *area, unsigned int order, 2839 int migratetype, bool only_stealable, bool *can_steal) 2840 { 2841 int i; 2842 int fallback_mt; 2843 2844 if (area->nr_free == 0) 2845 return -1; 2846 2847 *can_steal = false; 2848 for (i = 0;; i++) { 2849 fallback_mt = fallbacks[migratetype][i]; 2850 if (fallback_mt == MIGRATE_TYPES) 2851 break; 2852 2853 if (free_area_empty(area, fallback_mt)) 2854 continue; 2855 2856 if (can_steal_fallback(order, migratetype)) 2857 *can_steal = true; 2858 2859 if (!only_stealable) 2860 return fallback_mt; 2861 2862 if (*can_steal) 2863 return fallback_mt; 2864 } 2865 2866 return -1; 2867 } 2868 2869 /* 2870 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2871 * there are no empty page blocks that contain a page with a suitable order 2872 */ 2873 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2874 unsigned int alloc_order) 2875 { 2876 int mt; 2877 unsigned long max_managed, flags; 2878 2879 /* 2880 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2881 * Check is race-prone but harmless. 2882 */ 2883 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2884 if (zone->nr_reserved_highatomic >= max_managed) 2885 return; 2886 2887 spin_lock_irqsave(&zone->lock, flags); 2888 2889 /* Recheck the nr_reserved_highatomic limit under the lock */ 2890 if (zone->nr_reserved_highatomic >= max_managed) 2891 goto out_unlock; 2892 2893 /* Yoink! */ 2894 mt = get_pageblock_migratetype(page); 2895 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 2896 if (migratetype_is_mergeable(mt)) { 2897 zone->nr_reserved_highatomic += pageblock_nr_pages; 2898 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2899 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2900 } 2901 2902 out_unlock: 2903 spin_unlock_irqrestore(&zone->lock, flags); 2904 } 2905 2906 /* 2907 * Used when an allocation is about to fail under memory pressure. This 2908 * potentially hurts the reliability of high-order allocations when under 2909 * intense memory pressure but failed atomic allocations should be easier 2910 * to recover from than an OOM. 2911 * 2912 * If @force is true, try to unreserve a pageblock even though highatomic 2913 * pageblock is exhausted. 2914 */ 2915 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2916 bool force) 2917 { 2918 struct zonelist *zonelist = ac->zonelist; 2919 unsigned long flags; 2920 struct zoneref *z; 2921 struct zone *zone; 2922 struct page *page; 2923 int order; 2924 bool ret; 2925 2926 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2927 ac->nodemask) { 2928 /* 2929 * Preserve at least one pageblock unless memory pressure 2930 * is really high. 2931 */ 2932 if (!force && zone->nr_reserved_highatomic <= 2933 pageblock_nr_pages) 2934 continue; 2935 2936 spin_lock_irqsave(&zone->lock, flags); 2937 for (order = 0; order < MAX_ORDER; order++) { 2938 struct free_area *area = &(zone->free_area[order]); 2939 2940 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2941 if (!page) 2942 continue; 2943 2944 /* 2945 * In page freeing path, migratetype change is racy so 2946 * we can counter several free pages in a pageblock 2947 * in this loop although we changed the pageblock type 2948 * from highatomic to ac->migratetype. So we should 2949 * adjust the count once. 2950 */ 2951 if (is_migrate_highatomic_page(page)) { 2952 /* 2953 * It should never happen but changes to 2954 * locking could inadvertently allow a per-cpu 2955 * drain to add pages to MIGRATE_HIGHATOMIC 2956 * while unreserving so be safe and watch for 2957 * underflows. 2958 */ 2959 zone->nr_reserved_highatomic -= min( 2960 pageblock_nr_pages, 2961 zone->nr_reserved_highatomic); 2962 } 2963 2964 /* 2965 * Convert to ac->migratetype and avoid the normal 2966 * pageblock stealing heuristics. Minimally, the caller 2967 * is doing the work and needs the pages. More 2968 * importantly, if the block was always converted to 2969 * MIGRATE_UNMOVABLE or another type then the number 2970 * of pageblocks that cannot be completely freed 2971 * may increase. 2972 */ 2973 set_pageblock_migratetype(page, ac->migratetype); 2974 ret = move_freepages_block(zone, page, ac->migratetype, 2975 NULL); 2976 if (ret) { 2977 spin_unlock_irqrestore(&zone->lock, flags); 2978 return ret; 2979 } 2980 } 2981 spin_unlock_irqrestore(&zone->lock, flags); 2982 } 2983 2984 return false; 2985 } 2986 2987 /* 2988 * Try finding a free buddy page on the fallback list and put it on the free 2989 * list of requested migratetype, possibly along with other pages from the same 2990 * block, depending on fragmentation avoidance heuristics. Returns true if 2991 * fallback was found so that __rmqueue_smallest() can grab it. 2992 * 2993 * The use of signed ints for order and current_order is a deliberate 2994 * deviation from the rest of this file, to make the for loop 2995 * condition simpler. 2996 */ 2997 static __always_inline bool 2998 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2999 unsigned int alloc_flags) 3000 { 3001 struct free_area *area; 3002 int current_order; 3003 int min_order = order; 3004 struct page *page; 3005 int fallback_mt; 3006 bool can_steal; 3007 3008 /* 3009 * Do not steal pages from freelists belonging to other pageblocks 3010 * i.e. orders < pageblock_order. If there are no local zones free, 3011 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 3012 */ 3013 if (alloc_flags & ALLOC_NOFRAGMENT) 3014 min_order = pageblock_order; 3015 3016 /* 3017 * Find the largest available free page in the other list. This roughly 3018 * approximates finding the pageblock with the most free pages, which 3019 * would be too costly to do exactly. 3020 */ 3021 for (current_order = MAX_ORDER - 1; current_order >= min_order; 3022 --current_order) { 3023 area = &(zone->free_area[current_order]); 3024 fallback_mt = find_suitable_fallback(area, current_order, 3025 start_migratetype, false, &can_steal); 3026 if (fallback_mt == -1) 3027 continue; 3028 3029 /* 3030 * We cannot steal all free pages from the pageblock and the 3031 * requested migratetype is movable. In that case it's better to 3032 * steal and split the smallest available page instead of the 3033 * largest available page, because even if the next movable 3034 * allocation falls back into a different pageblock than this 3035 * one, it won't cause permanent fragmentation. 3036 */ 3037 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 3038 && current_order > order) 3039 goto find_smallest; 3040 3041 goto do_steal; 3042 } 3043 3044 return false; 3045 3046 find_smallest: 3047 for (current_order = order; current_order < MAX_ORDER; 3048 current_order++) { 3049 area = &(zone->free_area[current_order]); 3050 fallback_mt = find_suitable_fallback(area, current_order, 3051 start_migratetype, false, &can_steal); 3052 if (fallback_mt != -1) 3053 break; 3054 } 3055 3056 /* 3057 * This should not happen - we already found a suitable fallback 3058 * when looking for the largest page. 3059 */ 3060 VM_BUG_ON(current_order == MAX_ORDER); 3061 3062 do_steal: 3063 page = get_page_from_free_area(area, fallback_mt); 3064 3065 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 3066 can_steal); 3067 3068 trace_mm_page_alloc_extfrag(page, order, current_order, 3069 start_migratetype, fallback_mt); 3070 3071 return true; 3072 3073 } 3074 3075 /* 3076 * Do the hard work of removing an element from the buddy allocator. 3077 * Call me with the zone->lock already held. 3078 */ 3079 static __always_inline struct page * 3080 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 3081 unsigned int alloc_flags) 3082 { 3083 struct page *page; 3084 3085 if (IS_ENABLED(CONFIG_CMA)) { 3086 /* 3087 * Balance movable allocations between regular and CMA areas by 3088 * allocating from CMA when over half of the zone's free memory 3089 * is in the CMA area. 3090 */ 3091 if (alloc_flags & ALLOC_CMA && 3092 zone_page_state(zone, NR_FREE_CMA_PAGES) > 3093 zone_page_state(zone, NR_FREE_PAGES) / 2) { 3094 page = __rmqueue_cma_fallback(zone, order); 3095 if (page) 3096 return page; 3097 } 3098 } 3099 retry: 3100 page = __rmqueue_smallest(zone, order, migratetype); 3101 if (unlikely(!page)) { 3102 if (alloc_flags & ALLOC_CMA) 3103 page = __rmqueue_cma_fallback(zone, order); 3104 3105 if (!page && __rmqueue_fallback(zone, order, migratetype, 3106 alloc_flags)) 3107 goto retry; 3108 } 3109 return page; 3110 } 3111 3112 /* 3113 * Obtain a specified number of elements from the buddy allocator, all under 3114 * a single hold of the lock, for efficiency. Add them to the supplied list. 3115 * Returns the number of new pages which were placed at *list. 3116 */ 3117 static int rmqueue_bulk(struct zone *zone, unsigned int order, 3118 unsigned long count, struct list_head *list, 3119 int migratetype, unsigned int alloc_flags) 3120 { 3121 int i, allocated = 0; 3122 3123 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */ 3124 spin_lock(&zone->lock); 3125 for (i = 0; i < count; ++i) { 3126 struct page *page = __rmqueue(zone, order, migratetype, 3127 alloc_flags); 3128 if (unlikely(page == NULL)) 3129 break; 3130 3131 if (unlikely(check_pcp_refill(page, order))) 3132 continue; 3133 3134 /* 3135 * Split buddy pages returned by expand() are received here in 3136 * physical page order. The page is added to the tail of 3137 * caller's list. From the callers perspective, the linked list 3138 * is ordered by page number under some conditions. This is 3139 * useful for IO devices that can forward direction from the 3140 * head, thus also in the physical page order. This is useful 3141 * for IO devices that can merge IO requests if the physical 3142 * pages are ordered properly. 3143 */ 3144 list_add_tail(&page->pcp_list, list); 3145 allocated++; 3146 if (is_migrate_cma(get_pcppage_migratetype(page))) 3147 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 3148 -(1 << order)); 3149 } 3150 3151 /* 3152 * i pages were removed from the buddy list even if some leak due 3153 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 3154 * on i. Do not confuse with 'allocated' which is the number of 3155 * pages added to the pcp list. 3156 */ 3157 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 3158 spin_unlock(&zone->lock); 3159 return allocated; 3160 } 3161 3162 #ifdef CONFIG_NUMA 3163 /* 3164 * Called from the vmstat counter updater to drain pagesets of this 3165 * currently executing processor on remote nodes after they have 3166 * expired. 3167 */ 3168 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3169 { 3170 int to_drain, batch; 3171 3172 batch = READ_ONCE(pcp->batch); 3173 to_drain = min(pcp->count, batch); 3174 if (to_drain > 0) { 3175 unsigned long flags; 3176 3177 /* 3178 * free_pcppages_bulk expects IRQs disabled for zone->lock 3179 * so even though pcp->lock is not intended to be IRQ-safe, 3180 * it's needed in this context. 3181 */ 3182 spin_lock_irqsave(&pcp->lock, flags); 3183 free_pcppages_bulk(zone, to_drain, pcp, 0); 3184 spin_unlock_irqrestore(&pcp->lock, flags); 3185 } 3186 } 3187 #endif 3188 3189 /* 3190 * Drain pcplists of the indicated processor and zone. 3191 */ 3192 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3193 { 3194 struct per_cpu_pages *pcp; 3195 3196 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3197 if (pcp->count) { 3198 unsigned long flags; 3199 3200 /* See drain_zone_pages on why this is disabling IRQs */ 3201 spin_lock_irqsave(&pcp->lock, flags); 3202 free_pcppages_bulk(zone, pcp->count, pcp, 0); 3203 spin_unlock_irqrestore(&pcp->lock, flags); 3204 } 3205 } 3206 3207 /* 3208 * Drain pcplists of all zones on the indicated processor. 3209 */ 3210 static void drain_pages(unsigned int cpu) 3211 { 3212 struct zone *zone; 3213 3214 for_each_populated_zone(zone) { 3215 drain_pages_zone(cpu, zone); 3216 } 3217 } 3218 3219 /* 3220 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3221 */ 3222 void drain_local_pages(struct zone *zone) 3223 { 3224 int cpu = smp_processor_id(); 3225 3226 if (zone) 3227 drain_pages_zone(cpu, zone); 3228 else 3229 drain_pages(cpu); 3230 } 3231 3232 /* 3233 * The implementation of drain_all_pages(), exposing an extra parameter to 3234 * drain on all cpus. 3235 * 3236 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3237 * not empty. The check for non-emptiness can however race with a free to 3238 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3239 * that need the guarantee that every CPU has drained can disable the 3240 * optimizing racy check. 3241 */ 3242 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3243 { 3244 int cpu; 3245 3246 /* 3247 * Allocate in the BSS so we won't require allocation in 3248 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3249 */ 3250 static cpumask_t cpus_with_pcps; 3251 3252 /* 3253 * Do not drain if one is already in progress unless it's specific to 3254 * a zone. Such callers are primarily CMA and memory hotplug and need 3255 * the drain to be complete when the call returns. 3256 */ 3257 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3258 if (!zone) 3259 return; 3260 mutex_lock(&pcpu_drain_mutex); 3261 } 3262 3263 /* 3264 * We don't care about racing with CPU hotplug event 3265 * as offline notification will cause the notified 3266 * cpu to drain that CPU pcps and on_each_cpu_mask 3267 * disables preemption as part of its processing 3268 */ 3269 for_each_online_cpu(cpu) { 3270 struct per_cpu_pages *pcp; 3271 struct zone *z; 3272 bool has_pcps = false; 3273 3274 if (force_all_cpus) { 3275 /* 3276 * The pcp.count check is racy, some callers need a 3277 * guarantee that no cpu is missed. 3278 */ 3279 has_pcps = true; 3280 } else if (zone) { 3281 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3282 if (pcp->count) 3283 has_pcps = true; 3284 } else { 3285 for_each_populated_zone(z) { 3286 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 3287 if (pcp->count) { 3288 has_pcps = true; 3289 break; 3290 } 3291 } 3292 } 3293 3294 if (has_pcps) 3295 cpumask_set_cpu(cpu, &cpus_with_pcps); 3296 else 3297 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3298 } 3299 3300 for_each_cpu(cpu, &cpus_with_pcps) { 3301 if (zone) 3302 drain_pages_zone(cpu, zone); 3303 else 3304 drain_pages(cpu); 3305 } 3306 3307 mutex_unlock(&pcpu_drain_mutex); 3308 } 3309 3310 /* 3311 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3312 * 3313 * When zone parameter is non-NULL, spill just the single zone's pages. 3314 */ 3315 void drain_all_pages(struct zone *zone) 3316 { 3317 __drain_all_pages(zone, false); 3318 } 3319 3320 #ifdef CONFIG_HIBERNATION 3321 3322 /* 3323 * Touch the watchdog for every WD_PAGE_COUNT pages. 3324 */ 3325 #define WD_PAGE_COUNT (128*1024) 3326 3327 void mark_free_pages(struct zone *zone) 3328 { 3329 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3330 unsigned long flags; 3331 unsigned int order, t; 3332 struct page *page; 3333 3334 if (zone_is_empty(zone)) 3335 return; 3336 3337 spin_lock_irqsave(&zone->lock, flags); 3338 3339 max_zone_pfn = zone_end_pfn(zone); 3340 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3341 if (pfn_valid(pfn)) { 3342 page = pfn_to_page(pfn); 3343 3344 if (!--page_count) { 3345 touch_nmi_watchdog(); 3346 page_count = WD_PAGE_COUNT; 3347 } 3348 3349 if (page_zone(page) != zone) 3350 continue; 3351 3352 if (!swsusp_page_is_forbidden(page)) 3353 swsusp_unset_page_free(page); 3354 } 3355 3356 for_each_migratetype_order(order, t) { 3357 list_for_each_entry(page, 3358 &zone->free_area[order].free_list[t], buddy_list) { 3359 unsigned long i; 3360 3361 pfn = page_to_pfn(page); 3362 for (i = 0; i < (1UL << order); i++) { 3363 if (!--page_count) { 3364 touch_nmi_watchdog(); 3365 page_count = WD_PAGE_COUNT; 3366 } 3367 swsusp_set_page_free(pfn_to_page(pfn + i)); 3368 } 3369 } 3370 } 3371 spin_unlock_irqrestore(&zone->lock, flags); 3372 } 3373 #endif /* CONFIG_PM */ 3374 3375 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 3376 unsigned int order) 3377 { 3378 int migratetype; 3379 3380 if (!free_pcp_prepare(page, order)) 3381 return false; 3382 3383 migratetype = get_pfnblock_migratetype(page, pfn); 3384 set_pcppage_migratetype(page, migratetype); 3385 return true; 3386 } 3387 3388 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch, 3389 bool free_high) 3390 { 3391 int min_nr_free, max_nr_free; 3392 3393 /* Free everything if batch freeing high-order pages. */ 3394 if (unlikely(free_high)) 3395 return pcp->count; 3396 3397 /* Check for PCP disabled or boot pageset */ 3398 if (unlikely(high < batch)) 3399 return 1; 3400 3401 /* Leave at least pcp->batch pages on the list */ 3402 min_nr_free = batch; 3403 max_nr_free = high - batch; 3404 3405 /* 3406 * Double the number of pages freed each time there is subsequent 3407 * freeing of pages without any allocation. 3408 */ 3409 batch <<= pcp->free_factor; 3410 if (batch < max_nr_free) 3411 pcp->free_factor++; 3412 batch = clamp(batch, min_nr_free, max_nr_free); 3413 3414 return batch; 3415 } 3416 3417 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 3418 bool free_high) 3419 { 3420 int high = READ_ONCE(pcp->high); 3421 3422 if (unlikely(!high || free_high)) 3423 return 0; 3424 3425 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 3426 return high; 3427 3428 /* 3429 * If reclaim is active, limit the number of pages that can be 3430 * stored on pcp lists 3431 */ 3432 return min(READ_ONCE(pcp->batch) << 2, high); 3433 } 3434 3435 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 3436 struct page *page, int migratetype, 3437 unsigned int order) 3438 { 3439 int high; 3440 int pindex; 3441 bool free_high; 3442 3443 __count_vm_event(PGFREE); 3444 pindex = order_to_pindex(migratetype, order); 3445 list_add(&page->pcp_list, &pcp->lists[pindex]); 3446 pcp->count += 1 << order; 3447 3448 /* 3449 * As high-order pages other than THP's stored on PCP can contribute 3450 * to fragmentation, limit the number stored when PCP is heavily 3451 * freeing without allocation. The remainder after bulk freeing 3452 * stops will be drained from vmstat refresh context. 3453 */ 3454 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); 3455 3456 high = nr_pcp_high(pcp, zone, free_high); 3457 if (pcp->count >= high) { 3458 int batch = READ_ONCE(pcp->batch); 3459 3460 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex); 3461 } 3462 } 3463 3464 /* 3465 * Free a pcp page 3466 */ 3467 void free_unref_page(struct page *page, unsigned int order) 3468 { 3469 unsigned long flags; 3470 unsigned long __maybe_unused UP_flags; 3471 struct per_cpu_pages *pcp; 3472 struct zone *zone; 3473 unsigned long pfn = page_to_pfn(page); 3474 int migratetype; 3475 3476 if (!free_unref_page_prepare(page, pfn, order)) 3477 return; 3478 3479 /* 3480 * We only track unmovable, reclaimable and movable on pcp lists. 3481 * Place ISOLATE pages on the isolated list because they are being 3482 * offlined but treat HIGHATOMIC as movable pages so we can get those 3483 * areas back if necessary. Otherwise, we may have to free 3484 * excessively into the page allocator 3485 */ 3486 migratetype = get_pcppage_migratetype(page); 3487 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3488 if (unlikely(is_migrate_isolate(migratetype))) { 3489 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 3490 return; 3491 } 3492 migratetype = MIGRATE_MOVABLE; 3493 } 3494 3495 zone = page_zone(page); 3496 pcp_trylock_prepare(UP_flags); 3497 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags); 3498 if (pcp) { 3499 free_unref_page_commit(zone, pcp, page, migratetype, order); 3500 pcp_spin_unlock_irqrestore(pcp, flags); 3501 } else { 3502 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE); 3503 } 3504 pcp_trylock_finish(UP_flags); 3505 } 3506 3507 /* 3508 * Free a list of 0-order pages 3509 */ 3510 void free_unref_page_list(struct list_head *list) 3511 { 3512 struct page *page, *next; 3513 struct per_cpu_pages *pcp = NULL; 3514 struct zone *locked_zone = NULL; 3515 unsigned long flags; 3516 int batch_count = 0; 3517 int migratetype; 3518 3519 /* Prepare pages for freeing */ 3520 list_for_each_entry_safe(page, next, list, lru) { 3521 unsigned long pfn = page_to_pfn(page); 3522 if (!free_unref_page_prepare(page, pfn, 0)) { 3523 list_del(&page->lru); 3524 continue; 3525 } 3526 3527 /* 3528 * Free isolated pages directly to the allocator, see 3529 * comment in free_unref_page. 3530 */ 3531 migratetype = get_pcppage_migratetype(page); 3532 if (unlikely(is_migrate_isolate(migratetype))) { 3533 list_del(&page->lru); 3534 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 3535 continue; 3536 } 3537 } 3538 3539 list_for_each_entry_safe(page, next, list, lru) { 3540 struct zone *zone = page_zone(page); 3541 3542 /* Different zone, different pcp lock. */ 3543 if (zone != locked_zone) { 3544 if (pcp) 3545 pcp_spin_unlock_irqrestore(pcp, flags); 3546 3547 locked_zone = zone; 3548 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags); 3549 } 3550 3551 /* 3552 * Non-isolated types over MIGRATE_PCPTYPES get added 3553 * to the MIGRATE_MOVABLE pcp list. 3554 */ 3555 migratetype = get_pcppage_migratetype(page); 3556 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3557 migratetype = MIGRATE_MOVABLE; 3558 3559 trace_mm_page_free_batched(page); 3560 free_unref_page_commit(zone, pcp, page, migratetype, 0); 3561 3562 /* 3563 * Guard against excessive IRQ disabled times when we get 3564 * a large list of pages to free. 3565 */ 3566 if (++batch_count == SWAP_CLUSTER_MAX) { 3567 pcp_spin_unlock_irqrestore(pcp, flags); 3568 batch_count = 0; 3569 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags); 3570 } 3571 } 3572 3573 if (pcp) 3574 pcp_spin_unlock_irqrestore(pcp, flags); 3575 } 3576 3577 /* 3578 * split_page takes a non-compound higher-order page, and splits it into 3579 * n (1<<order) sub-pages: page[0..n] 3580 * Each sub-page must be freed individually. 3581 * 3582 * Note: this is probably too low level an operation for use in drivers. 3583 * Please consult with lkml before using this in your driver. 3584 */ 3585 void split_page(struct page *page, unsigned int order) 3586 { 3587 int i; 3588 3589 VM_BUG_ON_PAGE(PageCompound(page), page); 3590 VM_BUG_ON_PAGE(!page_count(page), page); 3591 3592 for (i = 1; i < (1 << order); i++) 3593 set_page_refcounted(page + i); 3594 split_page_owner(page, 1 << order); 3595 split_page_memcg(page, 1 << order); 3596 } 3597 EXPORT_SYMBOL_GPL(split_page); 3598 3599 int __isolate_free_page(struct page *page, unsigned int order) 3600 { 3601 unsigned long watermark; 3602 struct zone *zone; 3603 int mt; 3604 3605 BUG_ON(!PageBuddy(page)); 3606 3607 zone = page_zone(page); 3608 mt = get_pageblock_migratetype(page); 3609 3610 if (!is_migrate_isolate(mt)) { 3611 /* 3612 * Obey watermarks as if the page was being allocated. We can 3613 * emulate a high-order watermark check with a raised order-0 3614 * watermark, because we already know our high-order page 3615 * exists. 3616 */ 3617 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3618 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3619 return 0; 3620 3621 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3622 } 3623 3624 /* Remove page from free list */ 3625 3626 del_page_from_free_list(page, zone, order); 3627 3628 /* 3629 * Set the pageblock if the isolated page is at least half of a 3630 * pageblock 3631 */ 3632 if (order >= pageblock_order - 1) { 3633 struct page *endpage = page + (1 << order) - 1; 3634 for (; page < endpage; page += pageblock_nr_pages) { 3635 int mt = get_pageblock_migratetype(page); 3636 /* 3637 * Only change normal pageblocks (i.e., they can merge 3638 * with others) 3639 */ 3640 if (migratetype_is_mergeable(mt)) 3641 set_pageblock_migratetype(page, 3642 MIGRATE_MOVABLE); 3643 } 3644 } 3645 3646 3647 return 1UL << order; 3648 } 3649 3650 /** 3651 * __putback_isolated_page - Return a now-isolated page back where we got it 3652 * @page: Page that was isolated 3653 * @order: Order of the isolated page 3654 * @mt: The page's pageblock's migratetype 3655 * 3656 * This function is meant to return a page pulled from the free lists via 3657 * __isolate_free_page back to the free lists they were pulled from. 3658 */ 3659 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3660 { 3661 struct zone *zone = page_zone(page); 3662 3663 /* zone lock should be held when this function is called */ 3664 lockdep_assert_held(&zone->lock); 3665 3666 /* Return isolated page to tail of freelist. */ 3667 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3668 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3669 } 3670 3671 /* 3672 * Update NUMA hit/miss statistics 3673 * 3674 * Must be called with interrupts disabled. 3675 */ 3676 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3677 long nr_account) 3678 { 3679 #ifdef CONFIG_NUMA 3680 enum numa_stat_item local_stat = NUMA_LOCAL; 3681 3682 /* skip numa counters update if numa stats is disabled */ 3683 if (!static_branch_likely(&vm_numa_stat_key)) 3684 return; 3685 3686 if (zone_to_nid(z) != numa_node_id()) 3687 local_stat = NUMA_OTHER; 3688 3689 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3690 __count_numa_events(z, NUMA_HIT, nr_account); 3691 else { 3692 __count_numa_events(z, NUMA_MISS, nr_account); 3693 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3694 } 3695 __count_numa_events(z, local_stat, nr_account); 3696 #endif 3697 } 3698 3699 static __always_inline 3700 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 3701 unsigned int order, unsigned int alloc_flags, 3702 int migratetype) 3703 { 3704 struct page *page; 3705 unsigned long flags; 3706 3707 do { 3708 page = NULL; 3709 spin_lock_irqsave(&zone->lock, flags); 3710 /* 3711 * order-0 request can reach here when the pcplist is skipped 3712 * due to non-CMA allocation context. HIGHATOMIC area is 3713 * reserved for high-order atomic allocation, so order-0 3714 * request should skip it. 3715 */ 3716 if (order > 0 && alloc_flags & ALLOC_HARDER) 3717 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3718 if (!page) { 3719 page = __rmqueue(zone, order, migratetype, alloc_flags); 3720 if (!page) { 3721 spin_unlock_irqrestore(&zone->lock, flags); 3722 return NULL; 3723 } 3724 } 3725 __mod_zone_freepage_state(zone, -(1 << order), 3726 get_pcppage_migratetype(page)); 3727 spin_unlock_irqrestore(&zone->lock, flags); 3728 } while (check_new_pages(page, order)); 3729 3730 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3731 zone_statistics(preferred_zone, zone, 1); 3732 3733 return page; 3734 } 3735 3736 /* Remove page from the per-cpu list, caller must protect the list */ 3737 static inline 3738 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3739 int migratetype, 3740 unsigned int alloc_flags, 3741 struct per_cpu_pages *pcp, 3742 struct list_head *list) 3743 { 3744 struct page *page; 3745 3746 do { 3747 if (list_empty(list)) { 3748 int batch = READ_ONCE(pcp->batch); 3749 int alloced; 3750 3751 /* 3752 * Scale batch relative to order if batch implies 3753 * free pages can be stored on the PCP. Batch can 3754 * be 1 for small zones or for boot pagesets which 3755 * should never store free pages as the pages may 3756 * belong to arbitrary zones. 3757 */ 3758 if (batch > 1) 3759 batch = max(batch >> order, 2); 3760 alloced = rmqueue_bulk(zone, order, 3761 batch, list, 3762 migratetype, alloc_flags); 3763 3764 pcp->count += alloced << order; 3765 if (unlikely(list_empty(list))) 3766 return NULL; 3767 } 3768 3769 page = list_first_entry(list, struct page, pcp_list); 3770 list_del(&page->pcp_list); 3771 pcp->count -= 1 << order; 3772 } while (check_new_pcp(page, order)); 3773 3774 return page; 3775 } 3776 3777 /* Lock and remove page from the per-cpu list */ 3778 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3779 struct zone *zone, unsigned int order, 3780 gfp_t gfp_flags, int migratetype, 3781 unsigned int alloc_flags) 3782 { 3783 struct per_cpu_pages *pcp; 3784 struct list_head *list; 3785 struct page *page; 3786 unsigned long flags; 3787 unsigned long __maybe_unused UP_flags; 3788 3789 /* 3790 * spin_trylock may fail due to a parallel drain. In the future, the 3791 * trylock will also protect against IRQ reentrancy. 3792 */ 3793 pcp_trylock_prepare(UP_flags); 3794 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags); 3795 if (!pcp) { 3796 pcp_trylock_finish(UP_flags); 3797 return NULL; 3798 } 3799 3800 /* 3801 * On allocation, reduce the number of pages that are batch freed. 3802 * See nr_pcp_free() where free_factor is increased for subsequent 3803 * frees. 3804 */ 3805 pcp->free_factor >>= 1; 3806 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3807 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3808 pcp_spin_unlock_irqrestore(pcp, flags); 3809 pcp_trylock_finish(UP_flags); 3810 if (page) { 3811 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3812 zone_statistics(preferred_zone, zone, 1); 3813 } 3814 return page; 3815 } 3816 3817 /* 3818 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3819 */ 3820 static inline 3821 struct page *rmqueue(struct zone *preferred_zone, 3822 struct zone *zone, unsigned int order, 3823 gfp_t gfp_flags, unsigned int alloc_flags, 3824 int migratetype) 3825 { 3826 struct page *page; 3827 3828 /* 3829 * We most definitely don't want callers attempting to 3830 * allocate greater than order-1 page units with __GFP_NOFAIL. 3831 */ 3832 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3833 3834 if (likely(pcp_allowed_order(order))) { 3835 /* 3836 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3837 * we need to skip it when CMA area isn't allowed. 3838 */ 3839 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3840 migratetype != MIGRATE_MOVABLE) { 3841 page = rmqueue_pcplist(preferred_zone, zone, order, 3842 gfp_flags, migratetype, alloc_flags); 3843 if (likely(page)) 3844 goto out; 3845 } 3846 } 3847 3848 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3849 migratetype); 3850 3851 out: 3852 /* Separate test+clear to avoid unnecessary atomics */ 3853 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3854 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3855 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3856 } 3857 3858 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3859 return page; 3860 } 3861 3862 #ifdef CONFIG_FAIL_PAGE_ALLOC 3863 3864 static struct { 3865 struct fault_attr attr; 3866 3867 bool ignore_gfp_highmem; 3868 bool ignore_gfp_reclaim; 3869 u32 min_order; 3870 } fail_page_alloc = { 3871 .attr = FAULT_ATTR_INITIALIZER, 3872 .ignore_gfp_reclaim = true, 3873 .ignore_gfp_highmem = true, 3874 .min_order = 1, 3875 }; 3876 3877 static int __init setup_fail_page_alloc(char *str) 3878 { 3879 return setup_fault_attr(&fail_page_alloc.attr, str); 3880 } 3881 __setup("fail_page_alloc=", setup_fail_page_alloc); 3882 3883 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3884 { 3885 if (order < fail_page_alloc.min_order) 3886 return false; 3887 if (gfp_mask & __GFP_NOFAIL) 3888 return false; 3889 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3890 return false; 3891 if (fail_page_alloc.ignore_gfp_reclaim && 3892 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3893 return false; 3894 3895 if (gfp_mask & __GFP_NOWARN) 3896 fail_page_alloc.attr.no_warn = true; 3897 3898 return should_fail(&fail_page_alloc.attr, 1 << order); 3899 } 3900 3901 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3902 3903 static int __init fail_page_alloc_debugfs(void) 3904 { 3905 umode_t mode = S_IFREG | 0600; 3906 struct dentry *dir; 3907 3908 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3909 &fail_page_alloc.attr); 3910 3911 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3912 &fail_page_alloc.ignore_gfp_reclaim); 3913 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3914 &fail_page_alloc.ignore_gfp_highmem); 3915 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3916 3917 return 0; 3918 } 3919 3920 late_initcall(fail_page_alloc_debugfs); 3921 3922 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3923 3924 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3925 3926 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3927 { 3928 return false; 3929 } 3930 3931 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3932 3933 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3934 { 3935 return __should_fail_alloc_page(gfp_mask, order); 3936 } 3937 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3938 3939 static inline long __zone_watermark_unusable_free(struct zone *z, 3940 unsigned int order, unsigned int alloc_flags) 3941 { 3942 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3943 long unusable_free = (1 << order) - 1; 3944 3945 /* 3946 * If the caller does not have rights to ALLOC_HARDER then subtract 3947 * the high-atomic reserves. This will over-estimate the size of the 3948 * atomic reserve but it avoids a search. 3949 */ 3950 if (likely(!alloc_harder)) 3951 unusable_free += z->nr_reserved_highatomic; 3952 3953 #ifdef CONFIG_CMA 3954 /* If allocation can't use CMA areas don't use free CMA pages */ 3955 if (!(alloc_flags & ALLOC_CMA)) 3956 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3957 #endif 3958 3959 return unusable_free; 3960 } 3961 3962 /* 3963 * Return true if free base pages are above 'mark'. For high-order checks it 3964 * will return true of the order-0 watermark is reached and there is at least 3965 * one free page of a suitable size. Checking now avoids taking the zone lock 3966 * to check in the allocation paths if no pages are free. 3967 */ 3968 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3969 int highest_zoneidx, unsigned int alloc_flags, 3970 long free_pages) 3971 { 3972 long min = mark; 3973 int o; 3974 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3975 3976 /* free_pages may go negative - that's OK */ 3977 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3978 3979 if (alloc_flags & ALLOC_HIGH) 3980 min -= min / 2; 3981 3982 if (unlikely(alloc_harder)) { 3983 /* 3984 * OOM victims can try even harder than normal ALLOC_HARDER 3985 * users on the grounds that it's definitely going to be in 3986 * the exit path shortly and free memory. Any allocation it 3987 * makes during the free path will be small and short-lived. 3988 */ 3989 if (alloc_flags & ALLOC_OOM) 3990 min -= min / 2; 3991 else 3992 min -= min / 4; 3993 } 3994 3995 /* 3996 * Check watermarks for an order-0 allocation request. If these 3997 * are not met, then a high-order request also cannot go ahead 3998 * even if a suitable page happened to be free. 3999 */ 4000 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 4001 return false; 4002 4003 /* If this is an order-0 request then the watermark is fine */ 4004 if (!order) 4005 return true; 4006 4007 /* For a high-order request, check at least one suitable page is free */ 4008 for (o = order; o < MAX_ORDER; o++) { 4009 struct free_area *area = &z->free_area[o]; 4010 int mt; 4011 4012 if (!area->nr_free) 4013 continue; 4014 4015 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 4016 if (!free_area_empty(area, mt)) 4017 return true; 4018 } 4019 4020 #ifdef CONFIG_CMA 4021 if ((alloc_flags & ALLOC_CMA) && 4022 !free_area_empty(area, MIGRATE_CMA)) { 4023 return true; 4024 } 4025 #endif 4026 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 4027 return true; 4028 } 4029 return false; 4030 } 4031 4032 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 4033 int highest_zoneidx, unsigned int alloc_flags) 4034 { 4035 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 4036 zone_page_state(z, NR_FREE_PAGES)); 4037 } 4038 4039 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 4040 unsigned long mark, int highest_zoneidx, 4041 unsigned int alloc_flags, gfp_t gfp_mask) 4042 { 4043 long free_pages; 4044 4045 free_pages = zone_page_state(z, NR_FREE_PAGES); 4046 4047 /* 4048 * Fast check for order-0 only. If this fails then the reserves 4049 * need to be calculated. 4050 */ 4051 if (!order) { 4052 long usable_free; 4053 long reserved; 4054 4055 usable_free = free_pages; 4056 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 4057 4058 /* reserved may over estimate high-atomic reserves. */ 4059 usable_free -= min(usable_free, reserved); 4060 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 4061 return true; 4062 } 4063 4064 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 4065 free_pages)) 4066 return true; 4067 /* 4068 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 4069 * when checking the min watermark. The min watermark is the 4070 * point where boosting is ignored so that kswapd is woken up 4071 * when below the low watermark. 4072 */ 4073 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 4074 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 4075 mark = z->_watermark[WMARK_MIN]; 4076 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 4077 alloc_flags, free_pages); 4078 } 4079 4080 return false; 4081 } 4082 4083 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 4084 unsigned long mark, int highest_zoneidx) 4085 { 4086 long free_pages = zone_page_state(z, NR_FREE_PAGES); 4087 4088 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 4089 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 4090 4091 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 4092 free_pages); 4093 } 4094 4095 #ifdef CONFIG_NUMA 4096 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 4097 4098 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4099 { 4100 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 4101 node_reclaim_distance; 4102 } 4103 #else /* CONFIG_NUMA */ 4104 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4105 { 4106 return true; 4107 } 4108 #endif /* CONFIG_NUMA */ 4109 4110 /* 4111 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 4112 * fragmentation is subtle. If the preferred zone was HIGHMEM then 4113 * premature use of a lower zone may cause lowmem pressure problems that 4114 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 4115 * probably too small. It only makes sense to spread allocations to avoid 4116 * fragmentation between the Normal and DMA32 zones. 4117 */ 4118 static inline unsigned int 4119 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 4120 { 4121 unsigned int alloc_flags; 4122 4123 /* 4124 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4125 * to save a branch. 4126 */ 4127 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 4128 4129 #ifdef CONFIG_ZONE_DMA32 4130 if (!zone) 4131 return alloc_flags; 4132 4133 if (zone_idx(zone) != ZONE_NORMAL) 4134 return alloc_flags; 4135 4136 /* 4137 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 4138 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 4139 * on UMA that if Normal is populated then so is DMA32. 4140 */ 4141 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 4142 if (nr_online_nodes > 1 && !populated_zone(--zone)) 4143 return alloc_flags; 4144 4145 alloc_flags |= ALLOC_NOFRAGMENT; 4146 #endif /* CONFIG_ZONE_DMA32 */ 4147 return alloc_flags; 4148 } 4149 4150 /* Must be called after current_gfp_context() which can change gfp_mask */ 4151 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 4152 unsigned int alloc_flags) 4153 { 4154 #ifdef CONFIG_CMA 4155 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4156 alloc_flags |= ALLOC_CMA; 4157 #endif 4158 return alloc_flags; 4159 } 4160 4161 /* 4162 * get_page_from_freelist goes through the zonelist trying to allocate 4163 * a page. 4164 */ 4165 static struct page * 4166 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 4167 const struct alloc_context *ac) 4168 { 4169 struct zoneref *z; 4170 struct zone *zone; 4171 struct pglist_data *last_pgdat = NULL; 4172 bool last_pgdat_dirty_ok = false; 4173 bool no_fallback; 4174 4175 retry: 4176 /* 4177 * Scan zonelist, looking for a zone with enough free. 4178 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 4179 */ 4180 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 4181 z = ac->preferred_zoneref; 4182 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 4183 ac->nodemask) { 4184 struct page *page; 4185 unsigned long mark; 4186 4187 if (cpusets_enabled() && 4188 (alloc_flags & ALLOC_CPUSET) && 4189 !__cpuset_zone_allowed(zone, gfp_mask)) 4190 continue; 4191 /* 4192 * When allocating a page cache page for writing, we 4193 * want to get it from a node that is within its dirty 4194 * limit, such that no single node holds more than its 4195 * proportional share of globally allowed dirty pages. 4196 * The dirty limits take into account the node's 4197 * lowmem reserves and high watermark so that kswapd 4198 * should be able to balance it without having to 4199 * write pages from its LRU list. 4200 * 4201 * XXX: For now, allow allocations to potentially 4202 * exceed the per-node dirty limit in the slowpath 4203 * (spread_dirty_pages unset) before going into reclaim, 4204 * which is important when on a NUMA setup the allowed 4205 * nodes are together not big enough to reach the 4206 * global limit. The proper fix for these situations 4207 * will require awareness of nodes in the 4208 * dirty-throttling and the flusher threads. 4209 */ 4210 if (ac->spread_dirty_pages) { 4211 if (last_pgdat != zone->zone_pgdat) { 4212 last_pgdat = zone->zone_pgdat; 4213 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 4214 } 4215 4216 if (!last_pgdat_dirty_ok) 4217 continue; 4218 } 4219 4220 if (no_fallback && nr_online_nodes > 1 && 4221 zone != ac->preferred_zoneref->zone) { 4222 int local_nid; 4223 4224 /* 4225 * If moving to a remote node, retry but allow 4226 * fragmenting fallbacks. Locality is more important 4227 * than fragmentation avoidance. 4228 */ 4229 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 4230 if (zone_to_nid(zone) != local_nid) { 4231 alloc_flags &= ~ALLOC_NOFRAGMENT; 4232 goto retry; 4233 } 4234 } 4235 4236 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 4237 if (!zone_watermark_fast(zone, order, mark, 4238 ac->highest_zoneidx, alloc_flags, 4239 gfp_mask)) { 4240 int ret; 4241 4242 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4243 /* 4244 * Watermark failed for this zone, but see if we can 4245 * grow this zone if it contains deferred pages. 4246 */ 4247 if (static_branch_unlikely(&deferred_pages)) { 4248 if (_deferred_grow_zone(zone, order)) 4249 goto try_this_zone; 4250 } 4251 #endif 4252 /* Checked here to keep the fast path fast */ 4253 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 4254 if (alloc_flags & ALLOC_NO_WATERMARKS) 4255 goto try_this_zone; 4256 4257 if (!node_reclaim_enabled() || 4258 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 4259 continue; 4260 4261 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 4262 switch (ret) { 4263 case NODE_RECLAIM_NOSCAN: 4264 /* did not scan */ 4265 continue; 4266 case NODE_RECLAIM_FULL: 4267 /* scanned but unreclaimable */ 4268 continue; 4269 default: 4270 /* did we reclaim enough */ 4271 if (zone_watermark_ok(zone, order, mark, 4272 ac->highest_zoneidx, alloc_flags)) 4273 goto try_this_zone; 4274 4275 continue; 4276 } 4277 } 4278 4279 try_this_zone: 4280 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 4281 gfp_mask, alloc_flags, ac->migratetype); 4282 if (page) { 4283 prep_new_page(page, order, gfp_mask, alloc_flags); 4284 4285 /* 4286 * If this is a high-order atomic allocation then check 4287 * if the pageblock should be reserved for the future 4288 */ 4289 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 4290 reserve_highatomic_pageblock(page, zone, order); 4291 4292 return page; 4293 } else { 4294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4295 /* Try again if zone has deferred pages */ 4296 if (static_branch_unlikely(&deferred_pages)) { 4297 if (_deferred_grow_zone(zone, order)) 4298 goto try_this_zone; 4299 } 4300 #endif 4301 } 4302 } 4303 4304 /* 4305 * It's possible on a UMA machine to get through all zones that are 4306 * fragmented. If avoiding fragmentation, reset and try again. 4307 */ 4308 if (no_fallback) { 4309 alloc_flags &= ~ALLOC_NOFRAGMENT; 4310 goto retry; 4311 } 4312 4313 return NULL; 4314 } 4315 4316 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4317 { 4318 unsigned int filter = SHOW_MEM_FILTER_NODES; 4319 4320 /* 4321 * This documents exceptions given to allocations in certain 4322 * contexts that are allowed to allocate outside current's set 4323 * of allowed nodes. 4324 */ 4325 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4326 if (tsk_is_oom_victim(current) || 4327 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4328 filter &= ~SHOW_MEM_FILTER_NODES; 4329 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4330 filter &= ~SHOW_MEM_FILTER_NODES; 4331 4332 show_mem(filter, nodemask); 4333 } 4334 4335 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4336 { 4337 struct va_format vaf; 4338 va_list args; 4339 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4340 4341 if ((gfp_mask & __GFP_NOWARN) || 4342 !__ratelimit(&nopage_rs) || 4343 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 4344 return; 4345 4346 va_start(args, fmt); 4347 vaf.fmt = fmt; 4348 vaf.va = &args; 4349 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4350 current->comm, &vaf, gfp_mask, &gfp_mask, 4351 nodemask_pr_args(nodemask)); 4352 va_end(args); 4353 4354 cpuset_print_current_mems_allowed(); 4355 pr_cont("\n"); 4356 dump_stack(); 4357 warn_alloc_show_mem(gfp_mask, nodemask); 4358 } 4359 4360 static inline struct page * 4361 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4362 unsigned int alloc_flags, 4363 const struct alloc_context *ac) 4364 { 4365 struct page *page; 4366 4367 page = get_page_from_freelist(gfp_mask, order, 4368 alloc_flags|ALLOC_CPUSET, ac); 4369 /* 4370 * fallback to ignore cpuset restriction if our nodes 4371 * are depleted 4372 */ 4373 if (!page) 4374 page = get_page_from_freelist(gfp_mask, order, 4375 alloc_flags, ac); 4376 4377 return page; 4378 } 4379 4380 static inline struct page * 4381 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4382 const struct alloc_context *ac, unsigned long *did_some_progress) 4383 { 4384 struct oom_control oc = { 4385 .zonelist = ac->zonelist, 4386 .nodemask = ac->nodemask, 4387 .memcg = NULL, 4388 .gfp_mask = gfp_mask, 4389 .order = order, 4390 }; 4391 struct page *page; 4392 4393 *did_some_progress = 0; 4394 4395 /* 4396 * Acquire the oom lock. If that fails, somebody else is 4397 * making progress for us. 4398 */ 4399 if (!mutex_trylock(&oom_lock)) { 4400 *did_some_progress = 1; 4401 schedule_timeout_uninterruptible(1); 4402 return NULL; 4403 } 4404 4405 /* 4406 * Go through the zonelist yet one more time, keep very high watermark 4407 * here, this is only to catch a parallel oom killing, we must fail if 4408 * we're still under heavy pressure. But make sure that this reclaim 4409 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4410 * allocation which will never fail due to oom_lock already held. 4411 */ 4412 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4413 ~__GFP_DIRECT_RECLAIM, order, 4414 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4415 if (page) 4416 goto out; 4417 4418 /* Coredumps can quickly deplete all memory reserves */ 4419 if (current->flags & PF_DUMPCORE) 4420 goto out; 4421 /* The OOM killer will not help higher order allocs */ 4422 if (order > PAGE_ALLOC_COSTLY_ORDER) 4423 goto out; 4424 /* 4425 * We have already exhausted all our reclaim opportunities without any 4426 * success so it is time to admit defeat. We will skip the OOM killer 4427 * because it is very likely that the caller has a more reasonable 4428 * fallback than shooting a random task. 4429 * 4430 * The OOM killer may not free memory on a specific node. 4431 */ 4432 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4433 goto out; 4434 /* The OOM killer does not needlessly kill tasks for lowmem */ 4435 if (ac->highest_zoneidx < ZONE_NORMAL) 4436 goto out; 4437 if (pm_suspended_storage()) 4438 goto out; 4439 /* 4440 * XXX: GFP_NOFS allocations should rather fail than rely on 4441 * other request to make a forward progress. 4442 * We are in an unfortunate situation where out_of_memory cannot 4443 * do much for this context but let's try it to at least get 4444 * access to memory reserved if the current task is killed (see 4445 * out_of_memory). Once filesystems are ready to handle allocation 4446 * failures more gracefully we should just bail out here. 4447 */ 4448 4449 /* Exhausted what can be done so it's blame time */ 4450 if (out_of_memory(&oc) || 4451 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 4452 *did_some_progress = 1; 4453 4454 /* 4455 * Help non-failing allocations by giving them access to memory 4456 * reserves 4457 */ 4458 if (gfp_mask & __GFP_NOFAIL) 4459 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4460 ALLOC_NO_WATERMARKS, ac); 4461 } 4462 out: 4463 mutex_unlock(&oom_lock); 4464 return page; 4465 } 4466 4467 /* 4468 * Maximum number of compaction retries with a progress before OOM 4469 * killer is consider as the only way to move forward. 4470 */ 4471 #define MAX_COMPACT_RETRIES 16 4472 4473 #ifdef CONFIG_COMPACTION 4474 /* Try memory compaction for high-order allocations before reclaim */ 4475 static struct page * 4476 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4477 unsigned int alloc_flags, const struct alloc_context *ac, 4478 enum compact_priority prio, enum compact_result *compact_result) 4479 { 4480 struct page *page = NULL; 4481 unsigned long pflags; 4482 unsigned int noreclaim_flag; 4483 4484 if (!order) 4485 return NULL; 4486 4487 psi_memstall_enter(&pflags); 4488 delayacct_compact_start(); 4489 noreclaim_flag = memalloc_noreclaim_save(); 4490 4491 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4492 prio, &page); 4493 4494 memalloc_noreclaim_restore(noreclaim_flag); 4495 psi_memstall_leave(&pflags); 4496 delayacct_compact_end(); 4497 4498 if (*compact_result == COMPACT_SKIPPED) 4499 return NULL; 4500 /* 4501 * At least in one zone compaction wasn't deferred or skipped, so let's 4502 * count a compaction stall 4503 */ 4504 count_vm_event(COMPACTSTALL); 4505 4506 /* Prep a captured page if available */ 4507 if (page) 4508 prep_new_page(page, order, gfp_mask, alloc_flags); 4509 4510 /* Try get a page from the freelist if available */ 4511 if (!page) 4512 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4513 4514 if (page) { 4515 struct zone *zone = page_zone(page); 4516 4517 zone->compact_blockskip_flush = false; 4518 compaction_defer_reset(zone, order, true); 4519 count_vm_event(COMPACTSUCCESS); 4520 return page; 4521 } 4522 4523 /* 4524 * It's bad if compaction run occurs and fails. The most likely reason 4525 * is that pages exist, but not enough to satisfy watermarks. 4526 */ 4527 count_vm_event(COMPACTFAIL); 4528 4529 cond_resched(); 4530 4531 return NULL; 4532 } 4533 4534 static inline bool 4535 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4536 enum compact_result compact_result, 4537 enum compact_priority *compact_priority, 4538 int *compaction_retries) 4539 { 4540 int max_retries = MAX_COMPACT_RETRIES; 4541 int min_priority; 4542 bool ret = false; 4543 int retries = *compaction_retries; 4544 enum compact_priority priority = *compact_priority; 4545 4546 if (!order) 4547 return false; 4548 4549 if (fatal_signal_pending(current)) 4550 return false; 4551 4552 if (compaction_made_progress(compact_result)) 4553 (*compaction_retries)++; 4554 4555 /* 4556 * compaction considers all the zone as desperately out of memory 4557 * so it doesn't really make much sense to retry except when the 4558 * failure could be caused by insufficient priority 4559 */ 4560 if (compaction_failed(compact_result)) 4561 goto check_priority; 4562 4563 /* 4564 * compaction was skipped because there are not enough order-0 pages 4565 * to work with, so we retry only if it looks like reclaim can help. 4566 */ 4567 if (compaction_needs_reclaim(compact_result)) { 4568 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4569 goto out; 4570 } 4571 4572 /* 4573 * make sure the compaction wasn't deferred or didn't bail out early 4574 * due to locks contention before we declare that we should give up. 4575 * But the next retry should use a higher priority if allowed, so 4576 * we don't just keep bailing out endlessly. 4577 */ 4578 if (compaction_withdrawn(compact_result)) { 4579 goto check_priority; 4580 } 4581 4582 /* 4583 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4584 * costly ones because they are de facto nofail and invoke OOM 4585 * killer to move on while costly can fail and users are ready 4586 * to cope with that. 1/4 retries is rather arbitrary but we 4587 * would need much more detailed feedback from compaction to 4588 * make a better decision. 4589 */ 4590 if (order > PAGE_ALLOC_COSTLY_ORDER) 4591 max_retries /= 4; 4592 if (*compaction_retries <= max_retries) { 4593 ret = true; 4594 goto out; 4595 } 4596 4597 /* 4598 * Make sure there are attempts at the highest priority if we exhausted 4599 * all retries or failed at the lower priorities. 4600 */ 4601 check_priority: 4602 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4603 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4604 4605 if (*compact_priority > min_priority) { 4606 (*compact_priority)--; 4607 *compaction_retries = 0; 4608 ret = true; 4609 } 4610 out: 4611 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4612 return ret; 4613 } 4614 #else 4615 static inline struct page * 4616 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4617 unsigned int alloc_flags, const struct alloc_context *ac, 4618 enum compact_priority prio, enum compact_result *compact_result) 4619 { 4620 *compact_result = COMPACT_SKIPPED; 4621 return NULL; 4622 } 4623 4624 static inline bool 4625 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4626 enum compact_result compact_result, 4627 enum compact_priority *compact_priority, 4628 int *compaction_retries) 4629 { 4630 struct zone *zone; 4631 struct zoneref *z; 4632 4633 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4634 return false; 4635 4636 /* 4637 * There are setups with compaction disabled which would prefer to loop 4638 * inside the allocator rather than hit the oom killer prematurely. 4639 * Let's give them a good hope and keep retrying while the order-0 4640 * watermarks are OK. 4641 */ 4642 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4643 ac->highest_zoneidx, ac->nodemask) { 4644 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4645 ac->highest_zoneidx, alloc_flags)) 4646 return true; 4647 } 4648 return false; 4649 } 4650 #endif /* CONFIG_COMPACTION */ 4651 4652 #ifdef CONFIG_LOCKDEP 4653 static struct lockdep_map __fs_reclaim_map = 4654 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4655 4656 static bool __need_reclaim(gfp_t gfp_mask) 4657 { 4658 /* no reclaim without waiting on it */ 4659 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4660 return false; 4661 4662 /* this guy won't enter reclaim */ 4663 if (current->flags & PF_MEMALLOC) 4664 return false; 4665 4666 if (gfp_mask & __GFP_NOLOCKDEP) 4667 return false; 4668 4669 return true; 4670 } 4671 4672 void __fs_reclaim_acquire(unsigned long ip) 4673 { 4674 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4675 } 4676 4677 void __fs_reclaim_release(unsigned long ip) 4678 { 4679 lock_release(&__fs_reclaim_map, ip); 4680 } 4681 4682 void fs_reclaim_acquire(gfp_t gfp_mask) 4683 { 4684 gfp_mask = current_gfp_context(gfp_mask); 4685 4686 if (__need_reclaim(gfp_mask)) { 4687 if (gfp_mask & __GFP_FS) 4688 __fs_reclaim_acquire(_RET_IP_); 4689 4690 #ifdef CONFIG_MMU_NOTIFIER 4691 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4692 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4693 #endif 4694 4695 } 4696 } 4697 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4698 4699 void fs_reclaim_release(gfp_t gfp_mask) 4700 { 4701 gfp_mask = current_gfp_context(gfp_mask); 4702 4703 if (__need_reclaim(gfp_mask)) { 4704 if (gfp_mask & __GFP_FS) 4705 __fs_reclaim_release(_RET_IP_); 4706 } 4707 } 4708 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4709 #endif 4710 4711 /* 4712 * Zonelists may change due to hotplug during allocation. Detect when zonelists 4713 * have been rebuilt so allocation retries. Reader side does not lock and 4714 * retries the allocation if zonelist changes. Writer side is protected by the 4715 * embedded spin_lock. 4716 */ 4717 static DEFINE_SEQLOCK(zonelist_update_seq); 4718 4719 static unsigned int zonelist_iter_begin(void) 4720 { 4721 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4722 return read_seqbegin(&zonelist_update_seq); 4723 4724 return 0; 4725 } 4726 4727 static unsigned int check_retry_zonelist(unsigned int seq) 4728 { 4729 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4730 return read_seqretry(&zonelist_update_seq, seq); 4731 4732 return seq; 4733 } 4734 4735 /* Perform direct synchronous page reclaim */ 4736 static unsigned long 4737 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4738 const struct alloc_context *ac) 4739 { 4740 unsigned int noreclaim_flag; 4741 unsigned long progress; 4742 4743 cond_resched(); 4744 4745 /* We now go into synchronous reclaim */ 4746 cpuset_memory_pressure_bump(); 4747 fs_reclaim_acquire(gfp_mask); 4748 noreclaim_flag = memalloc_noreclaim_save(); 4749 4750 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4751 ac->nodemask); 4752 4753 memalloc_noreclaim_restore(noreclaim_flag); 4754 fs_reclaim_release(gfp_mask); 4755 4756 cond_resched(); 4757 4758 return progress; 4759 } 4760 4761 /* The really slow allocator path where we enter direct reclaim */ 4762 static inline struct page * 4763 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4764 unsigned int alloc_flags, const struct alloc_context *ac, 4765 unsigned long *did_some_progress) 4766 { 4767 struct page *page = NULL; 4768 unsigned long pflags; 4769 bool drained = false; 4770 4771 psi_memstall_enter(&pflags); 4772 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4773 if (unlikely(!(*did_some_progress))) 4774 goto out; 4775 4776 retry: 4777 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4778 4779 /* 4780 * If an allocation failed after direct reclaim, it could be because 4781 * pages are pinned on the per-cpu lists or in high alloc reserves. 4782 * Shrink them and try again 4783 */ 4784 if (!page && !drained) { 4785 unreserve_highatomic_pageblock(ac, false); 4786 drain_all_pages(NULL); 4787 drained = true; 4788 goto retry; 4789 } 4790 out: 4791 psi_memstall_leave(&pflags); 4792 4793 return page; 4794 } 4795 4796 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4797 const struct alloc_context *ac) 4798 { 4799 struct zoneref *z; 4800 struct zone *zone; 4801 pg_data_t *last_pgdat = NULL; 4802 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4803 4804 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4805 ac->nodemask) { 4806 if (!managed_zone(zone)) 4807 continue; 4808 if (last_pgdat != zone->zone_pgdat) { 4809 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4810 last_pgdat = zone->zone_pgdat; 4811 } 4812 } 4813 } 4814 4815 static inline unsigned int 4816 gfp_to_alloc_flags(gfp_t gfp_mask) 4817 { 4818 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4819 4820 /* 4821 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4822 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4823 * to save two branches. 4824 */ 4825 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4826 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4827 4828 /* 4829 * The caller may dip into page reserves a bit more if the caller 4830 * cannot run direct reclaim, or if the caller has realtime scheduling 4831 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4832 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4833 */ 4834 alloc_flags |= (__force int) 4835 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4836 4837 if (gfp_mask & __GFP_ATOMIC) { 4838 /* 4839 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4840 * if it can't schedule. 4841 */ 4842 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4843 alloc_flags |= ALLOC_HARDER; 4844 /* 4845 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4846 * comment for __cpuset_node_allowed(). 4847 */ 4848 alloc_flags &= ~ALLOC_CPUSET; 4849 } else if (unlikely(rt_task(current)) && in_task()) 4850 alloc_flags |= ALLOC_HARDER; 4851 4852 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4853 4854 return alloc_flags; 4855 } 4856 4857 static bool oom_reserves_allowed(struct task_struct *tsk) 4858 { 4859 if (!tsk_is_oom_victim(tsk)) 4860 return false; 4861 4862 /* 4863 * !MMU doesn't have oom reaper so give access to memory reserves 4864 * only to the thread with TIF_MEMDIE set 4865 */ 4866 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4867 return false; 4868 4869 return true; 4870 } 4871 4872 /* 4873 * Distinguish requests which really need access to full memory 4874 * reserves from oom victims which can live with a portion of it 4875 */ 4876 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4877 { 4878 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4879 return 0; 4880 if (gfp_mask & __GFP_MEMALLOC) 4881 return ALLOC_NO_WATERMARKS; 4882 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4883 return ALLOC_NO_WATERMARKS; 4884 if (!in_interrupt()) { 4885 if (current->flags & PF_MEMALLOC) 4886 return ALLOC_NO_WATERMARKS; 4887 else if (oom_reserves_allowed(current)) 4888 return ALLOC_OOM; 4889 } 4890 4891 return 0; 4892 } 4893 4894 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4895 { 4896 return !!__gfp_pfmemalloc_flags(gfp_mask); 4897 } 4898 4899 /* 4900 * Checks whether it makes sense to retry the reclaim to make a forward progress 4901 * for the given allocation request. 4902 * 4903 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4904 * without success, or when we couldn't even meet the watermark if we 4905 * reclaimed all remaining pages on the LRU lists. 4906 * 4907 * Returns true if a retry is viable or false to enter the oom path. 4908 */ 4909 static inline bool 4910 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4911 struct alloc_context *ac, int alloc_flags, 4912 bool did_some_progress, int *no_progress_loops) 4913 { 4914 struct zone *zone; 4915 struct zoneref *z; 4916 bool ret = false; 4917 4918 /* 4919 * Costly allocations might have made a progress but this doesn't mean 4920 * their order will become available due to high fragmentation so 4921 * always increment the no progress counter for them 4922 */ 4923 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4924 *no_progress_loops = 0; 4925 else 4926 (*no_progress_loops)++; 4927 4928 /* 4929 * Make sure we converge to OOM if we cannot make any progress 4930 * several times in the row. 4931 */ 4932 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4933 /* Before OOM, exhaust highatomic_reserve */ 4934 return unreserve_highatomic_pageblock(ac, true); 4935 } 4936 4937 /* 4938 * Keep reclaiming pages while there is a chance this will lead 4939 * somewhere. If none of the target zones can satisfy our allocation 4940 * request even if all reclaimable pages are considered then we are 4941 * screwed and have to go OOM. 4942 */ 4943 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4944 ac->highest_zoneidx, ac->nodemask) { 4945 unsigned long available; 4946 unsigned long reclaimable; 4947 unsigned long min_wmark = min_wmark_pages(zone); 4948 bool wmark; 4949 4950 available = reclaimable = zone_reclaimable_pages(zone); 4951 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4952 4953 /* 4954 * Would the allocation succeed if we reclaimed all 4955 * reclaimable pages? 4956 */ 4957 wmark = __zone_watermark_ok(zone, order, min_wmark, 4958 ac->highest_zoneidx, alloc_flags, available); 4959 trace_reclaim_retry_zone(z, order, reclaimable, 4960 available, min_wmark, *no_progress_loops, wmark); 4961 if (wmark) { 4962 ret = true; 4963 break; 4964 } 4965 } 4966 4967 /* 4968 * Memory allocation/reclaim might be called from a WQ context and the 4969 * current implementation of the WQ concurrency control doesn't 4970 * recognize that a particular WQ is congested if the worker thread is 4971 * looping without ever sleeping. Therefore we have to do a short sleep 4972 * here rather than calling cond_resched(). 4973 */ 4974 if (current->flags & PF_WQ_WORKER) 4975 schedule_timeout_uninterruptible(1); 4976 else 4977 cond_resched(); 4978 return ret; 4979 } 4980 4981 static inline bool 4982 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4983 { 4984 /* 4985 * It's possible that cpuset's mems_allowed and the nodemask from 4986 * mempolicy don't intersect. This should be normally dealt with by 4987 * policy_nodemask(), but it's possible to race with cpuset update in 4988 * such a way the check therein was true, and then it became false 4989 * before we got our cpuset_mems_cookie here. 4990 * This assumes that for all allocations, ac->nodemask can come only 4991 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4992 * when it does not intersect with the cpuset restrictions) or the 4993 * caller can deal with a violated nodemask. 4994 */ 4995 if (cpusets_enabled() && ac->nodemask && 4996 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4997 ac->nodemask = NULL; 4998 return true; 4999 } 5000 5001 /* 5002 * When updating a task's mems_allowed or mempolicy nodemask, it is 5003 * possible to race with parallel threads in such a way that our 5004 * allocation can fail while the mask is being updated. If we are about 5005 * to fail, check if the cpuset changed during allocation and if so, 5006 * retry. 5007 */ 5008 if (read_mems_allowed_retry(cpuset_mems_cookie)) 5009 return true; 5010 5011 return false; 5012 } 5013 5014 static inline struct page * 5015 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 5016 struct alloc_context *ac) 5017 { 5018 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 5019 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 5020 struct page *page = NULL; 5021 unsigned int alloc_flags; 5022 unsigned long did_some_progress; 5023 enum compact_priority compact_priority; 5024 enum compact_result compact_result; 5025 int compaction_retries; 5026 int no_progress_loops; 5027 unsigned int cpuset_mems_cookie; 5028 unsigned int zonelist_iter_cookie; 5029 int reserve_flags; 5030 5031 /* 5032 * We also sanity check to catch abuse of atomic reserves being used by 5033 * callers that are not in atomic context. 5034 */ 5035 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 5036 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 5037 gfp_mask &= ~__GFP_ATOMIC; 5038 5039 restart: 5040 compaction_retries = 0; 5041 no_progress_loops = 0; 5042 compact_priority = DEF_COMPACT_PRIORITY; 5043 cpuset_mems_cookie = read_mems_allowed_begin(); 5044 zonelist_iter_cookie = zonelist_iter_begin(); 5045 5046 /* 5047 * The fast path uses conservative alloc_flags to succeed only until 5048 * kswapd needs to be woken up, and to avoid the cost of setting up 5049 * alloc_flags precisely. So we do that now. 5050 */ 5051 alloc_flags = gfp_to_alloc_flags(gfp_mask); 5052 5053 /* 5054 * We need to recalculate the starting point for the zonelist iterator 5055 * because we might have used different nodemask in the fast path, or 5056 * there was a cpuset modification and we are retrying - otherwise we 5057 * could end up iterating over non-eligible zones endlessly. 5058 */ 5059 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5060 ac->highest_zoneidx, ac->nodemask); 5061 if (!ac->preferred_zoneref->zone) 5062 goto nopage; 5063 5064 /* 5065 * Check for insane configurations where the cpuset doesn't contain 5066 * any suitable zone to satisfy the request - e.g. non-movable 5067 * GFP_HIGHUSER allocations from MOVABLE nodes only. 5068 */ 5069 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 5070 struct zoneref *z = first_zones_zonelist(ac->zonelist, 5071 ac->highest_zoneidx, 5072 &cpuset_current_mems_allowed); 5073 if (!z->zone) 5074 goto nopage; 5075 } 5076 5077 if (alloc_flags & ALLOC_KSWAPD) 5078 wake_all_kswapds(order, gfp_mask, ac); 5079 5080 /* 5081 * The adjusted alloc_flags might result in immediate success, so try 5082 * that first 5083 */ 5084 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5085 if (page) 5086 goto got_pg; 5087 5088 /* 5089 * For costly allocations, try direct compaction first, as it's likely 5090 * that we have enough base pages and don't need to reclaim. For non- 5091 * movable high-order allocations, do that as well, as compaction will 5092 * try prevent permanent fragmentation by migrating from blocks of the 5093 * same migratetype. 5094 * Don't try this for allocations that are allowed to ignore 5095 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 5096 */ 5097 if (can_direct_reclaim && 5098 (costly_order || 5099 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 5100 && !gfp_pfmemalloc_allowed(gfp_mask)) { 5101 page = __alloc_pages_direct_compact(gfp_mask, order, 5102 alloc_flags, ac, 5103 INIT_COMPACT_PRIORITY, 5104 &compact_result); 5105 if (page) 5106 goto got_pg; 5107 5108 /* 5109 * Checks for costly allocations with __GFP_NORETRY, which 5110 * includes some THP page fault allocations 5111 */ 5112 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 5113 /* 5114 * If allocating entire pageblock(s) and compaction 5115 * failed because all zones are below low watermarks 5116 * or is prohibited because it recently failed at this 5117 * order, fail immediately unless the allocator has 5118 * requested compaction and reclaim retry. 5119 * 5120 * Reclaim is 5121 * - potentially very expensive because zones are far 5122 * below their low watermarks or this is part of very 5123 * bursty high order allocations, 5124 * - not guaranteed to help because isolate_freepages() 5125 * may not iterate over freed pages as part of its 5126 * linear scan, and 5127 * - unlikely to make entire pageblocks free on its 5128 * own. 5129 */ 5130 if (compact_result == COMPACT_SKIPPED || 5131 compact_result == COMPACT_DEFERRED) 5132 goto nopage; 5133 5134 /* 5135 * Looks like reclaim/compaction is worth trying, but 5136 * sync compaction could be very expensive, so keep 5137 * using async compaction. 5138 */ 5139 compact_priority = INIT_COMPACT_PRIORITY; 5140 } 5141 } 5142 5143 retry: 5144 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 5145 if (alloc_flags & ALLOC_KSWAPD) 5146 wake_all_kswapds(order, gfp_mask, ac); 5147 5148 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 5149 if (reserve_flags) 5150 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags); 5151 5152 /* 5153 * Reset the nodemask and zonelist iterators if memory policies can be 5154 * ignored. These allocations are high priority and system rather than 5155 * user oriented. 5156 */ 5157 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 5158 ac->nodemask = NULL; 5159 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5160 ac->highest_zoneidx, ac->nodemask); 5161 } 5162 5163 /* Attempt with potentially adjusted zonelist and alloc_flags */ 5164 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5165 if (page) 5166 goto got_pg; 5167 5168 /* Caller is not willing to reclaim, we can't balance anything */ 5169 if (!can_direct_reclaim) 5170 goto nopage; 5171 5172 /* Avoid recursion of direct reclaim */ 5173 if (current->flags & PF_MEMALLOC) 5174 goto nopage; 5175 5176 /* Try direct reclaim and then allocating */ 5177 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 5178 &did_some_progress); 5179 if (page) 5180 goto got_pg; 5181 5182 /* Try direct compaction and then allocating */ 5183 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 5184 compact_priority, &compact_result); 5185 if (page) 5186 goto got_pg; 5187 5188 /* Do not loop if specifically requested */ 5189 if (gfp_mask & __GFP_NORETRY) 5190 goto nopage; 5191 5192 /* 5193 * Do not retry costly high order allocations unless they are 5194 * __GFP_RETRY_MAYFAIL 5195 */ 5196 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 5197 goto nopage; 5198 5199 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 5200 did_some_progress > 0, &no_progress_loops)) 5201 goto retry; 5202 5203 /* 5204 * It doesn't make any sense to retry for the compaction if the order-0 5205 * reclaim is not able to make any progress because the current 5206 * implementation of the compaction depends on the sufficient amount 5207 * of free memory (see __compaction_suitable) 5208 */ 5209 if (did_some_progress > 0 && 5210 should_compact_retry(ac, order, alloc_flags, 5211 compact_result, &compact_priority, 5212 &compaction_retries)) 5213 goto retry; 5214 5215 5216 /* 5217 * Deal with possible cpuset update races or zonelist updates to avoid 5218 * a unnecessary OOM kill. 5219 */ 5220 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 5221 check_retry_zonelist(zonelist_iter_cookie)) 5222 goto restart; 5223 5224 /* Reclaim has failed us, start killing things */ 5225 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 5226 if (page) 5227 goto got_pg; 5228 5229 /* Avoid allocations with no watermarks from looping endlessly */ 5230 if (tsk_is_oom_victim(current) && 5231 (alloc_flags & ALLOC_OOM || 5232 (gfp_mask & __GFP_NOMEMALLOC))) 5233 goto nopage; 5234 5235 /* Retry as long as the OOM killer is making progress */ 5236 if (did_some_progress) { 5237 no_progress_loops = 0; 5238 goto retry; 5239 } 5240 5241 nopage: 5242 /* 5243 * Deal with possible cpuset update races or zonelist updates to avoid 5244 * a unnecessary OOM kill. 5245 */ 5246 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 5247 check_retry_zonelist(zonelist_iter_cookie)) 5248 goto restart; 5249 5250 /* 5251 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 5252 * we always retry 5253 */ 5254 if (gfp_mask & __GFP_NOFAIL) { 5255 /* 5256 * All existing users of the __GFP_NOFAIL are blockable, so warn 5257 * of any new users that actually require GFP_NOWAIT 5258 */ 5259 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 5260 goto fail; 5261 5262 /* 5263 * PF_MEMALLOC request from this context is rather bizarre 5264 * because we cannot reclaim anything and only can loop waiting 5265 * for somebody to do a work for us 5266 */ 5267 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 5268 5269 /* 5270 * non failing costly orders are a hard requirement which we 5271 * are not prepared for much so let's warn about these users 5272 * so that we can identify them and convert them to something 5273 * else. 5274 */ 5275 WARN_ON_ONCE_GFP(order > PAGE_ALLOC_COSTLY_ORDER, gfp_mask); 5276 5277 /* 5278 * Help non-failing allocations by giving them access to memory 5279 * reserves but do not use ALLOC_NO_WATERMARKS because this 5280 * could deplete whole memory reserves which would just make 5281 * the situation worse 5282 */ 5283 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 5284 if (page) 5285 goto got_pg; 5286 5287 cond_resched(); 5288 goto retry; 5289 } 5290 fail: 5291 warn_alloc(gfp_mask, ac->nodemask, 5292 "page allocation failure: order:%u", order); 5293 got_pg: 5294 return page; 5295 } 5296 5297 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 5298 int preferred_nid, nodemask_t *nodemask, 5299 struct alloc_context *ac, gfp_t *alloc_gfp, 5300 unsigned int *alloc_flags) 5301 { 5302 ac->highest_zoneidx = gfp_zone(gfp_mask); 5303 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 5304 ac->nodemask = nodemask; 5305 ac->migratetype = gfp_migratetype(gfp_mask); 5306 5307 if (cpusets_enabled()) { 5308 *alloc_gfp |= __GFP_HARDWALL; 5309 /* 5310 * When we are in the interrupt context, it is irrelevant 5311 * to the current task context. It means that any node ok. 5312 */ 5313 if (in_task() && !ac->nodemask) 5314 ac->nodemask = &cpuset_current_mems_allowed; 5315 else 5316 *alloc_flags |= ALLOC_CPUSET; 5317 } 5318 5319 might_alloc(gfp_mask); 5320 5321 if (should_fail_alloc_page(gfp_mask, order)) 5322 return false; 5323 5324 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5325 5326 /* Dirty zone balancing only done in the fast path */ 5327 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5328 5329 /* 5330 * The preferred zone is used for statistics but crucially it is 5331 * also used as the starting point for the zonelist iterator. It 5332 * may get reset for allocations that ignore memory policies. 5333 */ 5334 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5335 ac->highest_zoneidx, ac->nodemask); 5336 5337 return true; 5338 } 5339 5340 /* 5341 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5342 * @gfp: GFP flags for the allocation 5343 * @preferred_nid: The preferred NUMA node ID to allocate from 5344 * @nodemask: Set of nodes to allocate from, may be NULL 5345 * @nr_pages: The number of pages desired on the list or array 5346 * @page_list: Optional list to store the allocated pages 5347 * @page_array: Optional array to store the pages 5348 * 5349 * This is a batched version of the page allocator that attempts to 5350 * allocate nr_pages quickly. Pages are added to page_list if page_list 5351 * is not NULL, otherwise it is assumed that the page_array is valid. 5352 * 5353 * For lists, nr_pages is the number of pages that should be allocated. 5354 * 5355 * For arrays, only NULL elements are populated with pages and nr_pages 5356 * is the maximum number of pages that will be stored in the array. 5357 * 5358 * Returns the number of pages on the list or array. 5359 */ 5360 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5361 nodemask_t *nodemask, int nr_pages, 5362 struct list_head *page_list, 5363 struct page **page_array) 5364 { 5365 struct page *page; 5366 unsigned long flags; 5367 unsigned long __maybe_unused UP_flags; 5368 struct zone *zone; 5369 struct zoneref *z; 5370 struct per_cpu_pages *pcp; 5371 struct list_head *pcp_list; 5372 struct alloc_context ac; 5373 gfp_t alloc_gfp; 5374 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5375 int nr_populated = 0, nr_account = 0; 5376 5377 /* 5378 * Skip populated array elements to determine if any pages need 5379 * to be allocated before disabling IRQs. 5380 */ 5381 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5382 nr_populated++; 5383 5384 /* No pages requested? */ 5385 if (unlikely(nr_pages <= 0)) 5386 goto out; 5387 5388 /* Already populated array? */ 5389 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5390 goto out; 5391 5392 /* Bulk allocator does not support memcg accounting. */ 5393 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT)) 5394 goto failed; 5395 5396 /* Use the single page allocator for one page. */ 5397 if (nr_pages - nr_populated == 1) 5398 goto failed; 5399 5400 #ifdef CONFIG_PAGE_OWNER 5401 /* 5402 * PAGE_OWNER may recurse into the allocator to allocate space to 5403 * save the stack with pagesets.lock held. Releasing/reacquiring 5404 * removes much of the performance benefit of bulk allocation so 5405 * force the caller to allocate one page at a time as it'll have 5406 * similar performance to added complexity to the bulk allocator. 5407 */ 5408 if (static_branch_unlikely(&page_owner_inited)) 5409 goto failed; 5410 #endif 5411 5412 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5413 gfp &= gfp_allowed_mask; 5414 alloc_gfp = gfp; 5415 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5416 goto out; 5417 gfp = alloc_gfp; 5418 5419 /* Find an allowed local zone that meets the low watermark. */ 5420 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5421 unsigned long mark; 5422 5423 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5424 !__cpuset_zone_allowed(zone, gfp)) { 5425 continue; 5426 } 5427 5428 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5429 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5430 goto failed; 5431 } 5432 5433 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5434 if (zone_watermark_fast(zone, 0, mark, 5435 zonelist_zone_idx(ac.preferred_zoneref), 5436 alloc_flags, gfp)) { 5437 break; 5438 } 5439 } 5440 5441 /* 5442 * If there are no allowed local zones that meets the watermarks then 5443 * try to allocate a single page and reclaim if necessary. 5444 */ 5445 if (unlikely(!zone)) 5446 goto failed; 5447 5448 /* Is a parallel drain in progress? */ 5449 pcp_trylock_prepare(UP_flags); 5450 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags); 5451 if (!pcp) 5452 goto failed_irq; 5453 5454 /* Attempt the batch allocation */ 5455 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5456 while (nr_populated < nr_pages) { 5457 5458 /* Skip existing pages */ 5459 if (page_array && page_array[nr_populated]) { 5460 nr_populated++; 5461 continue; 5462 } 5463 5464 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5465 pcp, pcp_list); 5466 if (unlikely(!page)) { 5467 /* Try and allocate at least one page */ 5468 if (!nr_account) { 5469 pcp_spin_unlock_irqrestore(pcp, flags); 5470 goto failed_irq; 5471 } 5472 break; 5473 } 5474 nr_account++; 5475 5476 prep_new_page(page, 0, gfp, 0); 5477 if (page_list) 5478 list_add(&page->lru, page_list); 5479 else 5480 page_array[nr_populated] = page; 5481 nr_populated++; 5482 } 5483 5484 pcp_spin_unlock_irqrestore(pcp, flags); 5485 pcp_trylock_finish(UP_flags); 5486 5487 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5488 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 5489 5490 out: 5491 return nr_populated; 5492 5493 failed_irq: 5494 pcp_trylock_finish(UP_flags); 5495 5496 failed: 5497 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5498 if (page) { 5499 if (page_list) 5500 list_add(&page->lru, page_list); 5501 else 5502 page_array[nr_populated] = page; 5503 nr_populated++; 5504 } 5505 5506 goto out; 5507 } 5508 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5509 5510 /* 5511 * This is the 'heart' of the zoned buddy allocator. 5512 */ 5513 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5514 nodemask_t *nodemask) 5515 { 5516 struct page *page; 5517 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5518 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5519 struct alloc_context ac = { }; 5520 5521 /* 5522 * There are several places where we assume that the order value is sane 5523 * so bail out early if the request is out of bound. 5524 */ 5525 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp)) 5526 return NULL; 5527 5528 gfp &= gfp_allowed_mask; 5529 /* 5530 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5531 * resp. GFP_NOIO which has to be inherited for all allocation requests 5532 * from a particular context which has been marked by 5533 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5534 * movable zones are not used during allocation. 5535 */ 5536 gfp = current_gfp_context(gfp); 5537 alloc_gfp = gfp; 5538 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5539 &alloc_gfp, &alloc_flags)) 5540 return NULL; 5541 5542 /* 5543 * Forbid the first pass from falling back to types that fragment 5544 * memory until all local zones are considered. 5545 */ 5546 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5547 5548 /* First allocation attempt */ 5549 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5550 if (likely(page)) 5551 goto out; 5552 5553 alloc_gfp = gfp; 5554 ac.spread_dirty_pages = false; 5555 5556 /* 5557 * Restore the original nodemask if it was potentially replaced with 5558 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5559 */ 5560 ac.nodemask = nodemask; 5561 5562 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5563 5564 out: 5565 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && 5566 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5567 __free_pages(page, order); 5568 page = NULL; 5569 } 5570 5571 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5572 5573 return page; 5574 } 5575 EXPORT_SYMBOL(__alloc_pages); 5576 5577 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 5578 nodemask_t *nodemask) 5579 { 5580 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 5581 preferred_nid, nodemask); 5582 5583 if (page && order > 1) 5584 prep_transhuge_page(page); 5585 return (struct folio *)page; 5586 } 5587 EXPORT_SYMBOL(__folio_alloc); 5588 5589 /* 5590 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5591 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5592 * you need to access high mem. 5593 */ 5594 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5595 { 5596 struct page *page; 5597 5598 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5599 if (!page) 5600 return 0; 5601 return (unsigned long) page_address(page); 5602 } 5603 EXPORT_SYMBOL(__get_free_pages); 5604 5605 unsigned long get_zeroed_page(gfp_t gfp_mask) 5606 { 5607 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5608 } 5609 EXPORT_SYMBOL(get_zeroed_page); 5610 5611 /** 5612 * __free_pages - Free pages allocated with alloc_pages(). 5613 * @page: The page pointer returned from alloc_pages(). 5614 * @order: The order of the allocation. 5615 * 5616 * This function can free multi-page allocations that are not compound 5617 * pages. It does not check that the @order passed in matches that of 5618 * the allocation, so it is easy to leak memory. Freeing more memory 5619 * than was allocated will probably emit a warning. 5620 * 5621 * If the last reference to this page is speculative, it will be released 5622 * by put_page() which only frees the first page of a non-compound 5623 * allocation. To prevent the remaining pages from being leaked, we free 5624 * the subsequent pages here. If you want to use the page's reference 5625 * count to decide when to free the allocation, you should allocate a 5626 * compound page, and use put_page() instead of __free_pages(). 5627 * 5628 * Context: May be called in interrupt context or while holding a normal 5629 * spinlock, but not in NMI context or while holding a raw spinlock. 5630 */ 5631 void __free_pages(struct page *page, unsigned int order) 5632 { 5633 if (put_page_testzero(page)) 5634 free_the_page(page, order); 5635 else if (!PageHead(page)) 5636 while (order-- > 0) 5637 free_the_page(page + (1 << order), order); 5638 } 5639 EXPORT_SYMBOL(__free_pages); 5640 5641 void free_pages(unsigned long addr, unsigned int order) 5642 { 5643 if (addr != 0) { 5644 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5645 __free_pages(virt_to_page((void *)addr), order); 5646 } 5647 } 5648 5649 EXPORT_SYMBOL(free_pages); 5650 5651 /* 5652 * Page Fragment: 5653 * An arbitrary-length arbitrary-offset area of memory which resides 5654 * within a 0 or higher order page. Multiple fragments within that page 5655 * are individually refcounted, in the page's reference counter. 5656 * 5657 * The page_frag functions below provide a simple allocation framework for 5658 * page fragments. This is used by the network stack and network device 5659 * drivers to provide a backing region of memory for use as either an 5660 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5661 */ 5662 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5663 gfp_t gfp_mask) 5664 { 5665 struct page *page = NULL; 5666 gfp_t gfp = gfp_mask; 5667 5668 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5669 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5670 __GFP_NOMEMALLOC; 5671 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5672 PAGE_FRAG_CACHE_MAX_ORDER); 5673 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5674 #endif 5675 if (unlikely(!page)) 5676 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5677 5678 nc->va = page ? page_address(page) : NULL; 5679 5680 return page; 5681 } 5682 5683 void __page_frag_cache_drain(struct page *page, unsigned int count) 5684 { 5685 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5686 5687 if (page_ref_sub_and_test(page, count)) 5688 free_the_page(page, compound_order(page)); 5689 } 5690 EXPORT_SYMBOL(__page_frag_cache_drain); 5691 5692 void *page_frag_alloc_align(struct page_frag_cache *nc, 5693 unsigned int fragsz, gfp_t gfp_mask, 5694 unsigned int align_mask) 5695 { 5696 unsigned int size = PAGE_SIZE; 5697 struct page *page; 5698 int offset; 5699 5700 if (unlikely(!nc->va)) { 5701 refill: 5702 page = __page_frag_cache_refill(nc, gfp_mask); 5703 if (!page) 5704 return NULL; 5705 5706 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5707 /* if size can vary use size else just use PAGE_SIZE */ 5708 size = nc->size; 5709 #endif 5710 /* Even if we own the page, we do not use atomic_set(). 5711 * This would break get_page_unless_zero() users. 5712 */ 5713 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5714 5715 /* reset page count bias and offset to start of new frag */ 5716 nc->pfmemalloc = page_is_pfmemalloc(page); 5717 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5718 nc->offset = size; 5719 } 5720 5721 offset = nc->offset - fragsz; 5722 if (unlikely(offset < 0)) { 5723 page = virt_to_page(nc->va); 5724 5725 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5726 goto refill; 5727 5728 if (unlikely(nc->pfmemalloc)) { 5729 free_the_page(page, compound_order(page)); 5730 goto refill; 5731 } 5732 5733 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5734 /* if size can vary use size else just use PAGE_SIZE */ 5735 size = nc->size; 5736 #endif 5737 /* OK, page count is 0, we can safely set it */ 5738 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5739 5740 /* reset page count bias and offset to start of new frag */ 5741 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5742 offset = size - fragsz; 5743 if (unlikely(offset < 0)) { 5744 /* 5745 * The caller is trying to allocate a fragment 5746 * with fragsz > PAGE_SIZE but the cache isn't big 5747 * enough to satisfy the request, this may 5748 * happen in low memory conditions. 5749 * We don't release the cache page because 5750 * it could make memory pressure worse 5751 * so we simply return NULL here. 5752 */ 5753 return NULL; 5754 } 5755 } 5756 5757 nc->pagecnt_bias--; 5758 offset &= align_mask; 5759 nc->offset = offset; 5760 5761 return nc->va + offset; 5762 } 5763 EXPORT_SYMBOL(page_frag_alloc_align); 5764 5765 /* 5766 * Frees a page fragment allocated out of either a compound or order 0 page. 5767 */ 5768 void page_frag_free(void *addr) 5769 { 5770 struct page *page = virt_to_head_page(addr); 5771 5772 if (unlikely(put_page_testzero(page))) 5773 free_the_page(page, compound_order(page)); 5774 } 5775 EXPORT_SYMBOL(page_frag_free); 5776 5777 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5778 size_t size) 5779 { 5780 if (addr) { 5781 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5782 unsigned long used = addr + PAGE_ALIGN(size); 5783 5784 split_page(virt_to_page((void *)addr), order); 5785 while (used < alloc_end) { 5786 free_page(used); 5787 used += PAGE_SIZE; 5788 } 5789 } 5790 return (void *)addr; 5791 } 5792 5793 /** 5794 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5795 * @size: the number of bytes to allocate 5796 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5797 * 5798 * This function is similar to alloc_pages(), except that it allocates the 5799 * minimum number of pages to satisfy the request. alloc_pages() can only 5800 * allocate memory in power-of-two pages. 5801 * 5802 * This function is also limited by MAX_ORDER. 5803 * 5804 * Memory allocated by this function must be released by free_pages_exact(). 5805 * 5806 * Return: pointer to the allocated area or %NULL in case of error. 5807 */ 5808 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5809 { 5810 unsigned int order = get_order(size); 5811 unsigned long addr; 5812 5813 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5814 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5815 5816 addr = __get_free_pages(gfp_mask, order); 5817 return make_alloc_exact(addr, order, size); 5818 } 5819 EXPORT_SYMBOL(alloc_pages_exact); 5820 5821 /** 5822 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5823 * pages on a node. 5824 * @nid: the preferred node ID where memory should be allocated 5825 * @size: the number of bytes to allocate 5826 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5827 * 5828 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5829 * back. 5830 * 5831 * Return: pointer to the allocated area or %NULL in case of error. 5832 */ 5833 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5834 { 5835 unsigned int order = get_order(size); 5836 struct page *p; 5837 5838 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5839 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5840 5841 p = alloc_pages_node(nid, gfp_mask, order); 5842 if (!p) 5843 return NULL; 5844 return make_alloc_exact((unsigned long)page_address(p), order, size); 5845 } 5846 5847 /** 5848 * free_pages_exact - release memory allocated via alloc_pages_exact() 5849 * @virt: the value returned by alloc_pages_exact. 5850 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5851 * 5852 * Release the memory allocated by a previous call to alloc_pages_exact. 5853 */ 5854 void free_pages_exact(void *virt, size_t size) 5855 { 5856 unsigned long addr = (unsigned long)virt; 5857 unsigned long end = addr + PAGE_ALIGN(size); 5858 5859 while (addr < end) { 5860 free_page(addr); 5861 addr += PAGE_SIZE; 5862 } 5863 } 5864 EXPORT_SYMBOL(free_pages_exact); 5865 5866 /** 5867 * nr_free_zone_pages - count number of pages beyond high watermark 5868 * @offset: The zone index of the highest zone 5869 * 5870 * nr_free_zone_pages() counts the number of pages which are beyond the 5871 * high watermark within all zones at or below a given zone index. For each 5872 * zone, the number of pages is calculated as: 5873 * 5874 * nr_free_zone_pages = managed_pages - high_pages 5875 * 5876 * Return: number of pages beyond high watermark. 5877 */ 5878 static unsigned long nr_free_zone_pages(int offset) 5879 { 5880 struct zoneref *z; 5881 struct zone *zone; 5882 5883 /* Just pick one node, since fallback list is circular */ 5884 unsigned long sum = 0; 5885 5886 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5887 5888 for_each_zone_zonelist(zone, z, zonelist, offset) { 5889 unsigned long size = zone_managed_pages(zone); 5890 unsigned long high = high_wmark_pages(zone); 5891 if (size > high) 5892 sum += size - high; 5893 } 5894 5895 return sum; 5896 } 5897 5898 /** 5899 * nr_free_buffer_pages - count number of pages beyond high watermark 5900 * 5901 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5902 * watermark within ZONE_DMA and ZONE_NORMAL. 5903 * 5904 * Return: number of pages beyond high watermark within ZONE_DMA and 5905 * ZONE_NORMAL. 5906 */ 5907 unsigned long nr_free_buffer_pages(void) 5908 { 5909 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5910 } 5911 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5912 5913 static inline void show_node(struct zone *zone) 5914 { 5915 if (IS_ENABLED(CONFIG_NUMA)) 5916 printk("Node %d ", zone_to_nid(zone)); 5917 } 5918 5919 long si_mem_available(void) 5920 { 5921 long available; 5922 unsigned long pagecache; 5923 unsigned long wmark_low = 0; 5924 unsigned long pages[NR_LRU_LISTS]; 5925 unsigned long reclaimable; 5926 struct zone *zone; 5927 int lru; 5928 5929 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5930 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5931 5932 for_each_zone(zone) 5933 wmark_low += low_wmark_pages(zone); 5934 5935 /* 5936 * Estimate the amount of memory available for userspace allocations, 5937 * without causing swapping or OOM. 5938 */ 5939 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5940 5941 /* 5942 * Not all the page cache can be freed, otherwise the system will 5943 * start swapping or thrashing. Assume at least half of the page 5944 * cache, or the low watermark worth of cache, needs to stay. 5945 */ 5946 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5947 pagecache -= min(pagecache / 2, wmark_low); 5948 available += pagecache; 5949 5950 /* 5951 * Part of the reclaimable slab and other kernel memory consists of 5952 * items that are in use, and cannot be freed. Cap this estimate at the 5953 * low watermark. 5954 */ 5955 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5956 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5957 available += reclaimable - min(reclaimable / 2, wmark_low); 5958 5959 if (available < 0) 5960 available = 0; 5961 return available; 5962 } 5963 EXPORT_SYMBOL_GPL(si_mem_available); 5964 5965 void si_meminfo(struct sysinfo *val) 5966 { 5967 val->totalram = totalram_pages(); 5968 val->sharedram = global_node_page_state(NR_SHMEM); 5969 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5970 val->bufferram = nr_blockdev_pages(); 5971 val->totalhigh = totalhigh_pages(); 5972 val->freehigh = nr_free_highpages(); 5973 val->mem_unit = PAGE_SIZE; 5974 } 5975 5976 EXPORT_SYMBOL(si_meminfo); 5977 5978 #ifdef CONFIG_NUMA 5979 void si_meminfo_node(struct sysinfo *val, int nid) 5980 { 5981 int zone_type; /* needs to be signed */ 5982 unsigned long managed_pages = 0; 5983 unsigned long managed_highpages = 0; 5984 unsigned long free_highpages = 0; 5985 pg_data_t *pgdat = NODE_DATA(nid); 5986 5987 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5988 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5989 val->totalram = managed_pages; 5990 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5991 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5992 #ifdef CONFIG_HIGHMEM 5993 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5994 struct zone *zone = &pgdat->node_zones[zone_type]; 5995 5996 if (is_highmem(zone)) { 5997 managed_highpages += zone_managed_pages(zone); 5998 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5999 } 6000 } 6001 val->totalhigh = managed_highpages; 6002 val->freehigh = free_highpages; 6003 #else 6004 val->totalhigh = managed_highpages; 6005 val->freehigh = free_highpages; 6006 #endif 6007 val->mem_unit = PAGE_SIZE; 6008 } 6009 #endif 6010 6011 /* 6012 * Determine whether the node should be displayed or not, depending on whether 6013 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 6014 */ 6015 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 6016 { 6017 if (!(flags & SHOW_MEM_FILTER_NODES)) 6018 return false; 6019 6020 /* 6021 * no node mask - aka implicit memory numa policy. Do not bother with 6022 * the synchronization - read_mems_allowed_begin - because we do not 6023 * have to be precise here. 6024 */ 6025 if (!nodemask) 6026 nodemask = &cpuset_current_mems_allowed; 6027 6028 return !node_isset(nid, *nodemask); 6029 } 6030 6031 #define K(x) ((x) << (PAGE_SHIFT-10)) 6032 6033 static void show_migration_types(unsigned char type) 6034 { 6035 static const char types[MIGRATE_TYPES] = { 6036 [MIGRATE_UNMOVABLE] = 'U', 6037 [MIGRATE_MOVABLE] = 'M', 6038 [MIGRATE_RECLAIMABLE] = 'E', 6039 [MIGRATE_HIGHATOMIC] = 'H', 6040 #ifdef CONFIG_CMA 6041 [MIGRATE_CMA] = 'C', 6042 #endif 6043 #ifdef CONFIG_MEMORY_ISOLATION 6044 [MIGRATE_ISOLATE] = 'I', 6045 #endif 6046 }; 6047 char tmp[MIGRATE_TYPES + 1]; 6048 char *p = tmp; 6049 int i; 6050 6051 for (i = 0; i < MIGRATE_TYPES; i++) { 6052 if (type & (1 << i)) 6053 *p++ = types[i]; 6054 } 6055 6056 *p = '\0'; 6057 printk(KERN_CONT "(%s) ", tmp); 6058 } 6059 6060 /* 6061 * Show free area list (used inside shift_scroll-lock stuff) 6062 * We also calculate the percentage fragmentation. We do this by counting the 6063 * memory on each free list with the exception of the first item on the list. 6064 * 6065 * Bits in @filter: 6066 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 6067 * cpuset. 6068 */ 6069 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 6070 { 6071 unsigned long free_pcp = 0; 6072 int cpu, nid; 6073 struct zone *zone; 6074 pg_data_t *pgdat; 6075 6076 for_each_populated_zone(zone) { 6077 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6078 continue; 6079 6080 for_each_online_cpu(cpu) 6081 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6082 } 6083 6084 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 6085 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 6086 " unevictable:%lu dirty:%lu writeback:%lu\n" 6087 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 6088 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 6089 " kernel_misc_reclaimable:%lu\n" 6090 " free:%lu free_pcp:%lu free_cma:%lu\n", 6091 global_node_page_state(NR_ACTIVE_ANON), 6092 global_node_page_state(NR_INACTIVE_ANON), 6093 global_node_page_state(NR_ISOLATED_ANON), 6094 global_node_page_state(NR_ACTIVE_FILE), 6095 global_node_page_state(NR_INACTIVE_FILE), 6096 global_node_page_state(NR_ISOLATED_FILE), 6097 global_node_page_state(NR_UNEVICTABLE), 6098 global_node_page_state(NR_FILE_DIRTY), 6099 global_node_page_state(NR_WRITEBACK), 6100 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 6101 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 6102 global_node_page_state(NR_FILE_MAPPED), 6103 global_node_page_state(NR_SHMEM), 6104 global_node_page_state(NR_PAGETABLE), 6105 global_zone_page_state(NR_BOUNCE), 6106 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), 6107 global_zone_page_state(NR_FREE_PAGES), 6108 free_pcp, 6109 global_zone_page_state(NR_FREE_CMA_PAGES)); 6110 6111 for_each_online_pgdat(pgdat) { 6112 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 6113 continue; 6114 6115 printk("Node %d" 6116 " active_anon:%lukB" 6117 " inactive_anon:%lukB" 6118 " active_file:%lukB" 6119 " inactive_file:%lukB" 6120 " unevictable:%lukB" 6121 " isolated(anon):%lukB" 6122 " isolated(file):%lukB" 6123 " mapped:%lukB" 6124 " dirty:%lukB" 6125 " writeback:%lukB" 6126 " shmem:%lukB" 6127 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6128 " shmem_thp: %lukB" 6129 " shmem_pmdmapped: %lukB" 6130 " anon_thp: %lukB" 6131 #endif 6132 " writeback_tmp:%lukB" 6133 " kernel_stack:%lukB" 6134 #ifdef CONFIG_SHADOW_CALL_STACK 6135 " shadow_call_stack:%lukB" 6136 #endif 6137 " pagetables:%lukB" 6138 " all_unreclaimable? %s" 6139 "\n", 6140 pgdat->node_id, 6141 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 6142 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 6143 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 6144 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 6145 K(node_page_state(pgdat, NR_UNEVICTABLE)), 6146 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 6147 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 6148 K(node_page_state(pgdat, NR_FILE_MAPPED)), 6149 K(node_page_state(pgdat, NR_FILE_DIRTY)), 6150 K(node_page_state(pgdat, NR_WRITEBACK)), 6151 K(node_page_state(pgdat, NR_SHMEM)), 6152 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6153 K(node_page_state(pgdat, NR_SHMEM_THPS)), 6154 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 6155 K(node_page_state(pgdat, NR_ANON_THPS)), 6156 #endif 6157 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 6158 node_page_state(pgdat, NR_KERNEL_STACK_KB), 6159 #ifdef CONFIG_SHADOW_CALL_STACK 6160 node_page_state(pgdat, NR_KERNEL_SCS_KB), 6161 #endif 6162 K(node_page_state(pgdat, NR_PAGETABLE)), 6163 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 6164 "yes" : "no"); 6165 } 6166 6167 for_each_populated_zone(zone) { 6168 int i; 6169 6170 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6171 continue; 6172 6173 free_pcp = 0; 6174 for_each_online_cpu(cpu) 6175 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6176 6177 show_node(zone); 6178 printk(KERN_CONT 6179 "%s" 6180 " free:%lukB" 6181 " boost:%lukB" 6182 " min:%lukB" 6183 " low:%lukB" 6184 " high:%lukB" 6185 " reserved_highatomic:%luKB" 6186 " active_anon:%lukB" 6187 " inactive_anon:%lukB" 6188 " active_file:%lukB" 6189 " inactive_file:%lukB" 6190 " unevictable:%lukB" 6191 " writepending:%lukB" 6192 " present:%lukB" 6193 " managed:%lukB" 6194 " mlocked:%lukB" 6195 " bounce:%lukB" 6196 " free_pcp:%lukB" 6197 " local_pcp:%ukB" 6198 " free_cma:%lukB" 6199 "\n", 6200 zone->name, 6201 K(zone_page_state(zone, NR_FREE_PAGES)), 6202 K(zone->watermark_boost), 6203 K(min_wmark_pages(zone)), 6204 K(low_wmark_pages(zone)), 6205 K(high_wmark_pages(zone)), 6206 K(zone->nr_reserved_highatomic), 6207 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 6208 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 6209 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 6210 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 6211 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 6212 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 6213 K(zone->present_pages), 6214 K(zone_managed_pages(zone)), 6215 K(zone_page_state(zone, NR_MLOCK)), 6216 K(zone_page_state(zone, NR_BOUNCE)), 6217 K(free_pcp), 6218 K(this_cpu_read(zone->per_cpu_pageset->count)), 6219 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 6220 printk("lowmem_reserve[]:"); 6221 for (i = 0; i < MAX_NR_ZONES; i++) 6222 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 6223 printk(KERN_CONT "\n"); 6224 } 6225 6226 for_each_populated_zone(zone) { 6227 unsigned int order; 6228 unsigned long nr[MAX_ORDER], flags, total = 0; 6229 unsigned char types[MAX_ORDER]; 6230 6231 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6232 continue; 6233 show_node(zone); 6234 printk(KERN_CONT "%s: ", zone->name); 6235 6236 spin_lock_irqsave(&zone->lock, flags); 6237 for (order = 0; order < MAX_ORDER; order++) { 6238 struct free_area *area = &zone->free_area[order]; 6239 int type; 6240 6241 nr[order] = area->nr_free; 6242 total += nr[order] << order; 6243 6244 types[order] = 0; 6245 for (type = 0; type < MIGRATE_TYPES; type++) { 6246 if (!free_area_empty(area, type)) 6247 types[order] |= 1 << type; 6248 } 6249 } 6250 spin_unlock_irqrestore(&zone->lock, flags); 6251 for (order = 0; order < MAX_ORDER; order++) { 6252 printk(KERN_CONT "%lu*%lukB ", 6253 nr[order], K(1UL) << order); 6254 if (nr[order]) 6255 show_migration_types(types[order]); 6256 } 6257 printk(KERN_CONT "= %lukB\n", K(total)); 6258 } 6259 6260 for_each_online_node(nid) { 6261 if (show_mem_node_skip(filter, nid, nodemask)) 6262 continue; 6263 hugetlb_show_meminfo_node(nid); 6264 } 6265 6266 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 6267 6268 show_swap_cache_info(); 6269 } 6270 6271 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 6272 { 6273 zoneref->zone = zone; 6274 zoneref->zone_idx = zone_idx(zone); 6275 } 6276 6277 /* 6278 * Builds allocation fallback zone lists. 6279 * 6280 * Add all populated zones of a node to the zonelist. 6281 */ 6282 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 6283 { 6284 struct zone *zone; 6285 enum zone_type zone_type = MAX_NR_ZONES; 6286 int nr_zones = 0; 6287 6288 do { 6289 zone_type--; 6290 zone = pgdat->node_zones + zone_type; 6291 if (populated_zone(zone)) { 6292 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 6293 check_highest_zone(zone_type); 6294 } 6295 } while (zone_type); 6296 6297 return nr_zones; 6298 } 6299 6300 #ifdef CONFIG_NUMA 6301 6302 static int __parse_numa_zonelist_order(char *s) 6303 { 6304 /* 6305 * We used to support different zonelists modes but they turned 6306 * out to be just not useful. Let's keep the warning in place 6307 * if somebody still use the cmd line parameter so that we do 6308 * not fail it silently 6309 */ 6310 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 6311 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 6312 return -EINVAL; 6313 } 6314 return 0; 6315 } 6316 6317 char numa_zonelist_order[] = "Node"; 6318 6319 /* 6320 * sysctl handler for numa_zonelist_order 6321 */ 6322 int numa_zonelist_order_handler(struct ctl_table *table, int write, 6323 void *buffer, size_t *length, loff_t *ppos) 6324 { 6325 if (write) 6326 return __parse_numa_zonelist_order(buffer); 6327 return proc_dostring(table, write, buffer, length, ppos); 6328 } 6329 6330 6331 static int node_load[MAX_NUMNODES]; 6332 6333 /** 6334 * find_next_best_node - find the next node that should appear in a given node's fallback list 6335 * @node: node whose fallback list we're appending 6336 * @used_node_mask: nodemask_t of already used nodes 6337 * 6338 * We use a number of factors to determine which is the next node that should 6339 * appear on a given node's fallback list. The node should not have appeared 6340 * already in @node's fallback list, and it should be the next closest node 6341 * according to the distance array (which contains arbitrary distance values 6342 * from each node to each node in the system), and should also prefer nodes 6343 * with no CPUs, since presumably they'll have very little allocation pressure 6344 * on them otherwise. 6345 * 6346 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 6347 */ 6348 int find_next_best_node(int node, nodemask_t *used_node_mask) 6349 { 6350 int n, val; 6351 int min_val = INT_MAX; 6352 int best_node = NUMA_NO_NODE; 6353 6354 /* Use the local node if we haven't already */ 6355 if (!node_isset(node, *used_node_mask)) { 6356 node_set(node, *used_node_mask); 6357 return node; 6358 } 6359 6360 for_each_node_state(n, N_MEMORY) { 6361 6362 /* Don't want a node to appear more than once */ 6363 if (node_isset(n, *used_node_mask)) 6364 continue; 6365 6366 /* Use the distance array to find the distance */ 6367 val = node_distance(node, n); 6368 6369 /* Penalize nodes under us ("prefer the next node") */ 6370 val += (n < node); 6371 6372 /* Give preference to headless and unused nodes */ 6373 if (!cpumask_empty(cpumask_of_node(n))) 6374 val += PENALTY_FOR_NODE_WITH_CPUS; 6375 6376 /* Slight preference for less loaded node */ 6377 val *= MAX_NUMNODES; 6378 val += node_load[n]; 6379 6380 if (val < min_val) { 6381 min_val = val; 6382 best_node = n; 6383 } 6384 } 6385 6386 if (best_node >= 0) 6387 node_set(best_node, *used_node_mask); 6388 6389 return best_node; 6390 } 6391 6392 6393 /* 6394 * Build zonelists ordered by node and zones within node. 6395 * This results in maximum locality--normal zone overflows into local 6396 * DMA zone, if any--but risks exhausting DMA zone. 6397 */ 6398 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6399 unsigned nr_nodes) 6400 { 6401 struct zoneref *zonerefs; 6402 int i; 6403 6404 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6405 6406 for (i = 0; i < nr_nodes; i++) { 6407 int nr_zones; 6408 6409 pg_data_t *node = NODE_DATA(node_order[i]); 6410 6411 nr_zones = build_zonerefs_node(node, zonerefs); 6412 zonerefs += nr_zones; 6413 } 6414 zonerefs->zone = NULL; 6415 zonerefs->zone_idx = 0; 6416 } 6417 6418 /* 6419 * Build gfp_thisnode zonelists 6420 */ 6421 static void build_thisnode_zonelists(pg_data_t *pgdat) 6422 { 6423 struct zoneref *zonerefs; 6424 int nr_zones; 6425 6426 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6427 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6428 zonerefs += nr_zones; 6429 zonerefs->zone = NULL; 6430 zonerefs->zone_idx = 0; 6431 } 6432 6433 /* 6434 * Build zonelists ordered by zone and nodes within zones. 6435 * This results in conserving DMA zone[s] until all Normal memory is 6436 * exhausted, but results in overflowing to remote node while memory 6437 * may still exist in local DMA zone. 6438 */ 6439 6440 static void build_zonelists(pg_data_t *pgdat) 6441 { 6442 static int node_order[MAX_NUMNODES]; 6443 int node, nr_nodes = 0; 6444 nodemask_t used_mask = NODE_MASK_NONE; 6445 int local_node, prev_node; 6446 6447 /* NUMA-aware ordering of nodes */ 6448 local_node = pgdat->node_id; 6449 prev_node = local_node; 6450 6451 memset(node_order, 0, sizeof(node_order)); 6452 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6453 /* 6454 * We don't want to pressure a particular node. 6455 * So adding penalty to the first node in same 6456 * distance group to make it round-robin. 6457 */ 6458 if (node_distance(local_node, node) != 6459 node_distance(local_node, prev_node)) 6460 node_load[node] += 1; 6461 6462 node_order[nr_nodes++] = node; 6463 prev_node = node; 6464 } 6465 6466 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6467 build_thisnode_zonelists(pgdat); 6468 pr_info("Fallback order for Node %d: ", local_node); 6469 for (node = 0; node < nr_nodes; node++) 6470 pr_cont("%d ", node_order[node]); 6471 pr_cont("\n"); 6472 } 6473 6474 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6475 /* 6476 * Return node id of node used for "local" allocations. 6477 * I.e., first node id of first zone in arg node's generic zonelist. 6478 * Used for initializing percpu 'numa_mem', which is used primarily 6479 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6480 */ 6481 int local_memory_node(int node) 6482 { 6483 struct zoneref *z; 6484 6485 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6486 gfp_zone(GFP_KERNEL), 6487 NULL); 6488 return zone_to_nid(z->zone); 6489 } 6490 #endif 6491 6492 static void setup_min_unmapped_ratio(void); 6493 static void setup_min_slab_ratio(void); 6494 #else /* CONFIG_NUMA */ 6495 6496 static void build_zonelists(pg_data_t *pgdat) 6497 { 6498 int node, local_node; 6499 struct zoneref *zonerefs; 6500 int nr_zones; 6501 6502 local_node = pgdat->node_id; 6503 6504 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6505 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6506 zonerefs += nr_zones; 6507 6508 /* 6509 * Now we build the zonelist so that it contains the zones 6510 * of all the other nodes. 6511 * We don't want to pressure a particular node, so when 6512 * building the zones for node N, we make sure that the 6513 * zones coming right after the local ones are those from 6514 * node N+1 (modulo N) 6515 */ 6516 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6517 if (!node_online(node)) 6518 continue; 6519 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6520 zonerefs += nr_zones; 6521 } 6522 for (node = 0; node < local_node; node++) { 6523 if (!node_online(node)) 6524 continue; 6525 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6526 zonerefs += nr_zones; 6527 } 6528 6529 zonerefs->zone = NULL; 6530 zonerefs->zone_idx = 0; 6531 } 6532 6533 #endif /* CONFIG_NUMA */ 6534 6535 /* 6536 * Boot pageset table. One per cpu which is going to be used for all 6537 * zones and all nodes. The parameters will be set in such a way 6538 * that an item put on a list will immediately be handed over to 6539 * the buddy list. This is safe since pageset manipulation is done 6540 * with interrupts disabled. 6541 * 6542 * The boot_pagesets must be kept even after bootup is complete for 6543 * unused processors and/or zones. They do play a role for bootstrapping 6544 * hotplugged processors. 6545 * 6546 * zoneinfo_show() and maybe other functions do 6547 * not check if the processor is online before following the pageset pointer. 6548 * Other parts of the kernel may not check if the zone is available. 6549 */ 6550 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 6551 /* These effectively disable the pcplists in the boot pageset completely */ 6552 #define BOOT_PAGESET_HIGH 0 6553 #define BOOT_PAGESET_BATCH 1 6554 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 6555 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 6556 DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6557 6558 static void __build_all_zonelists(void *data) 6559 { 6560 int nid; 6561 int __maybe_unused cpu; 6562 pg_data_t *self = data; 6563 6564 write_seqlock(&zonelist_update_seq); 6565 6566 #ifdef CONFIG_NUMA 6567 memset(node_load, 0, sizeof(node_load)); 6568 #endif 6569 6570 /* 6571 * This node is hotadded and no memory is yet present. So just 6572 * building zonelists is fine - no need to touch other nodes. 6573 */ 6574 if (self && !node_online(self->node_id)) { 6575 build_zonelists(self); 6576 } else { 6577 /* 6578 * All possible nodes have pgdat preallocated 6579 * in free_area_init 6580 */ 6581 for_each_node(nid) { 6582 pg_data_t *pgdat = NODE_DATA(nid); 6583 6584 build_zonelists(pgdat); 6585 } 6586 6587 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6588 /* 6589 * We now know the "local memory node" for each node-- 6590 * i.e., the node of the first zone in the generic zonelist. 6591 * Set up numa_mem percpu variable for on-line cpus. During 6592 * boot, only the boot cpu should be on-line; we'll init the 6593 * secondary cpus' numa_mem as they come on-line. During 6594 * node/memory hotplug, we'll fixup all on-line cpus. 6595 */ 6596 for_each_online_cpu(cpu) 6597 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6598 #endif 6599 } 6600 6601 write_sequnlock(&zonelist_update_seq); 6602 } 6603 6604 static noinline void __init 6605 build_all_zonelists_init(void) 6606 { 6607 int cpu; 6608 6609 __build_all_zonelists(NULL); 6610 6611 /* 6612 * Initialize the boot_pagesets that are going to be used 6613 * for bootstrapping processors. The real pagesets for 6614 * each zone will be allocated later when the per cpu 6615 * allocator is available. 6616 * 6617 * boot_pagesets are used also for bootstrapping offline 6618 * cpus if the system is already booted because the pagesets 6619 * are needed to initialize allocators on a specific cpu too. 6620 * F.e. the percpu allocator needs the page allocator which 6621 * needs the percpu allocator in order to allocate its pagesets 6622 * (a chicken-egg dilemma). 6623 */ 6624 for_each_possible_cpu(cpu) 6625 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 6626 6627 mminit_verify_zonelist(); 6628 cpuset_init_current_mems_allowed(); 6629 } 6630 6631 /* 6632 * unless system_state == SYSTEM_BOOTING. 6633 * 6634 * __ref due to call of __init annotated helper build_all_zonelists_init 6635 * [protected by SYSTEM_BOOTING]. 6636 */ 6637 void __ref build_all_zonelists(pg_data_t *pgdat) 6638 { 6639 unsigned long vm_total_pages; 6640 6641 if (system_state == SYSTEM_BOOTING) { 6642 build_all_zonelists_init(); 6643 } else { 6644 __build_all_zonelists(pgdat); 6645 /* cpuset refresh routine should be here */ 6646 } 6647 /* Get the number of free pages beyond high watermark in all zones. */ 6648 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6649 /* 6650 * Disable grouping by mobility if the number of pages in the 6651 * system is too low to allow the mechanism to work. It would be 6652 * more accurate, but expensive to check per-zone. This check is 6653 * made on memory-hotadd so a system can start with mobility 6654 * disabled and enable it later 6655 */ 6656 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6657 page_group_by_mobility_disabled = 1; 6658 else 6659 page_group_by_mobility_disabled = 0; 6660 6661 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6662 nr_online_nodes, 6663 page_group_by_mobility_disabled ? "off" : "on", 6664 vm_total_pages); 6665 #ifdef CONFIG_NUMA 6666 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6667 #endif 6668 } 6669 6670 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6671 static bool __meminit 6672 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6673 { 6674 static struct memblock_region *r; 6675 6676 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6677 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6678 for_each_mem_region(r) { 6679 if (*pfn < memblock_region_memory_end_pfn(r)) 6680 break; 6681 } 6682 } 6683 if (*pfn >= memblock_region_memory_base_pfn(r) && 6684 memblock_is_mirror(r)) { 6685 *pfn = memblock_region_memory_end_pfn(r); 6686 return true; 6687 } 6688 } 6689 return false; 6690 } 6691 6692 /* 6693 * Initially all pages are reserved - free ones are freed 6694 * up by memblock_free_all() once the early boot process is 6695 * done. Non-atomic initialization, single-pass. 6696 * 6697 * All aligned pageblocks are initialized to the specified migratetype 6698 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6699 * zone stats (e.g., nr_isolate_pageblock) are touched. 6700 */ 6701 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6702 unsigned long start_pfn, unsigned long zone_end_pfn, 6703 enum meminit_context context, 6704 struct vmem_altmap *altmap, int migratetype) 6705 { 6706 unsigned long pfn, end_pfn = start_pfn + size; 6707 struct page *page; 6708 6709 if (highest_memmap_pfn < end_pfn - 1) 6710 highest_memmap_pfn = end_pfn - 1; 6711 6712 #ifdef CONFIG_ZONE_DEVICE 6713 /* 6714 * Honor reservation requested by the driver for this ZONE_DEVICE 6715 * memory. We limit the total number of pages to initialize to just 6716 * those that might contain the memory mapping. We will defer the 6717 * ZONE_DEVICE page initialization until after we have released 6718 * the hotplug lock. 6719 */ 6720 if (zone == ZONE_DEVICE) { 6721 if (!altmap) 6722 return; 6723 6724 if (start_pfn == altmap->base_pfn) 6725 start_pfn += altmap->reserve; 6726 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6727 } 6728 #endif 6729 6730 for (pfn = start_pfn; pfn < end_pfn; ) { 6731 /* 6732 * There can be holes in boot-time mem_map[]s handed to this 6733 * function. They do not exist on hotplugged memory. 6734 */ 6735 if (context == MEMINIT_EARLY) { 6736 if (overlap_memmap_init(zone, &pfn)) 6737 continue; 6738 if (defer_init(nid, pfn, zone_end_pfn)) 6739 break; 6740 } 6741 6742 page = pfn_to_page(pfn); 6743 __init_single_page(page, pfn, zone, nid); 6744 if (context == MEMINIT_HOTPLUG) 6745 __SetPageReserved(page); 6746 6747 /* 6748 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6749 * such that unmovable allocations won't be scattered all 6750 * over the place during system boot. 6751 */ 6752 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6753 set_pageblock_migratetype(page, migratetype); 6754 cond_resched(); 6755 } 6756 pfn++; 6757 } 6758 } 6759 6760 #ifdef CONFIG_ZONE_DEVICE 6761 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, 6762 unsigned long zone_idx, int nid, 6763 struct dev_pagemap *pgmap) 6764 { 6765 6766 __init_single_page(page, pfn, zone_idx, nid); 6767 6768 /* 6769 * Mark page reserved as it will need to wait for onlining 6770 * phase for it to be fully associated with a zone. 6771 * 6772 * We can use the non-atomic __set_bit operation for setting 6773 * the flag as we are still initializing the pages. 6774 */ 6775 __SetPageReserved(page); 6776 6777 /* 6778 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6779 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6780 * ever freed or placed on a driver-private list. 6781 */ 6782 page->pgmap = pgmap; 6783 page->zone_device_data = NULL; 6784 6785 /* 6786 * Mark the block movable so that blocks are reserved for 6787 * movable at startup. This will force kernel allocations 6788 * to reserve their blocks rather than leaking throughout 6789 * the address space during boot when many long-lived 6790 * kernel allocations are made. 6791 * 6792 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6793 * because this is done early in section_activate() 6794 */ 6795 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6796 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6797 cond_resched(); 6798 } 6799 } 6800 6801 /* 6802 * With compound page geometry and when struct pages are stored in ram most 6803 * tail pages are reused. Consequently, the amount of unique struct pages to 6804 * initialize is a lot smaller that the total amount of struct pages being 6805 * mapped. This is a paired / mild layering violation with explicit knowledge 6806 * of how the sparse_vmemmap internals handle compound pages in the lack 6807 * of an altmap. See vmemmap_populate_compound_pages(). 6808 */ 6809 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, 6810 unsigned long nr_pages) 6811 { 6812 return is_power_of_2(sizeof(struct page)) && 6813 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages; 6814 } 6815 6816 static void __ref memmap_init_compound(struct page *head, 6817 unsigned long head_pfn, 6818 unsigned long zone_idx, int nid, 6819 struct dev_pagemap *pgmap, 6820 unsigned long nr_pages) 6821 { 6822 unsigned long pfn, end_pfn = head_pfn + nr_pages; 6823 unsigned int order = pgmap->vmemmap_shift; 6824 6825 __SetPageHead(head); 6826 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { 6827 struct page *page = pfn_to_page(pfn); 6828 6829 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6830 prep_compound_tail(head, pfn - head_pfn); 6831 set_page_count(page, 0); 6832 6833 /* 6834 * The first tail page stores compound_mapcount_ptr() and 6835 * compound_order() and the second tail page stores 6836 * compound_pincount_ptr(). Call prep_compound_head() after 6837 * the first and second tail pages have been initialized to 6838 * not have the data overwritten. 6839 */ 6840 if (pfn == head_pfn + 2) 6841 prep_compound_head(head, order); 6842 } 6843 } 6844 6845 void __ref memmap_init_zone_device(struct zone *zone, 6846 unsigned long start_pfn, 6847 unsigned long nr_pages, 6848 struct dev_pagemap *pgmap) 6849 { 6850 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6851 struct pglist_data *pgdat = zone->zone_pgdat; 6852 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6853 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); 6854 unsigned long zone_idx = zone_idx(zone); 6855 unsigned long start = jiffies; 6856 int nid = pgdat->node_id; 6857 6858 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6859 return; 6860 6861 /* 6862 * The call to memmap_init should have already taken care 6863 * of the pages reserved for the memmap, so we can just jump to 6864 * the end of that region and start processing the device pages. 6865 */ 6866 if (altmap) { 6867 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6868 nr_pages = end_pfn - start_pfn; 6869 } 6870 6871 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { 6872 struct page *page = pfn_to_page(pfn); 6873 6874 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6875 6876 if (pfns_per_compound == 1) 6877 continue; 6878 6879 memmap_init_compound(page, pfn, zone_idx, nid, pgmap, 6880 compound_nr_pages(altmap, pfns_per_compound)); 6881 } 6882 6883 pr_info("%s initialised %lu pages in %ums\n", __func__, 6884 nr_pages, jiffies_to_msecs(jiffies - start)); 6885 } 6886 6887 #endif 6888 static void __meminit zone_init_free_lists(struct zone *zone) 6889 { 6890 unsigned int order, t; 6891 for_each_migratetype_order(order, t) { 6892 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6893 zone->free_area[order].nr_free = 0; 6894 } 6895 } 6896 6897 /* 6898 * Only struct pages that correspond to ranges defined by memblock.memory 6899 * are zeroed and initialized by going through __init_single_page() during 6900 * memmap_init_zone_range(). 6901 * 6902 * But, there could be struct pages that correspond to holes in 6903 * memblock.memory. This can happen because of the following reasons: 6904 * - physical memory bank size is not necessarily the exact multiple of the 6905 * arbitrary section size 6906 * - early reserved memory may not be listed in memblock.memory 6907 * - memory layouts defined with memmap= kernel parameter may not align 6908 * nicely with memmap sections 6909 * 6910 * Explicitly initialize those struct pages so that: 6911 * - PG_Reserved is set 6912 * - zone and node links point to zone and node that span the page if the 6913 * hole is in the middle of a zone 6914 * - zone and node links point to adjacent zone/node if the hole falls on 6915 * the zone boundary; the pages in such holes will be prepended to the 6916 * zone/node above the hole except for the trailing pages in the last 6917 * section that will be appended to the zone/node below. 6918 */ 6919 static void __init init_unavailable_range(unsigned long spfn, 6920 unsigned long epfn, 6921 int zone, int node) 6922 { 6923 unsigned long pfn; 6924 u64 pgcnt = 0; 6925 6926 for (pfn = spfn; pfn < epfn; pfn++) { 6927 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6928 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6929 + pageblock_nr_pages - 1; 6930 continue; 6931 } 6932 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 6933 __SetPageReserved(pfn_to_page(pfn)); 6934 pgcnt++; 6935 } 6936 6937 if (pgcnt) 6938 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 6939 node, zone_names[zone], pgcnt); 6940 } 6941 6942 static void __init memmap_init_zone_range(struct zone *zone, 6943 unsigned long start_pfn, 6944 unsigned long end_pfn, 6945 unsigned long *hole_pfn) 6946 { 6947 unsigned long zone_start_pfn = zone->zone_start_pfn; 6948 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6949 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6950 6951 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 6952 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 6953 6954 if (start_pfn >= end_pfn) 6955 return; 6956 6957 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 6958 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6959 6960 if (*hole_pfn < start_pfn) 6961 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 6962 6963 *hole_pfn = end_pfn; 6964 } 6965 6966 static void __init memmap_init(void) 6967 { 6968 unsigned long start_pfn, end_pfn; 6969 unsigned long hole_pfn = 0; 6970 int i, j, zone_id = 0, nid; 6971 6972 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6973 struct pglist_data *node = NODE_DATA(nid); 6974 6975 for (j = 0; j < MAX_NR_ZONES; j++) { 6976 struct zone *zone = node->node_zones + j; 6977 6978 if (!populated_zone(zone)) 6979 continue; 6980 6981 memmap_init_zone_range(zone, start_pfn, end_pfn, 6982 &hole_pfn); 6983 zone_id = j; 6984 } 6985 } 6986 6987 #ifdef CONFIG_SPARSEMEM 6988 /* 6989 * Initialize the memory map for hole in the range [memory_end, 6990 * section_end]. 6991 * Append the pages in this hole to the highest zone in the last 6992 * node. 6993 * The call to init_unavailable_range() is outside the ifdef to 6994 * silence the compiler warining about zone_id set but not used; 6995 * for FLATMEM it is a nop anyway 6996 */ 6997 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 6998 if (hole_pfn < end_pfn) 6999 #endif 7000 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 7001 } 7002 7003 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 7004 phys_addr_t min_addr, int nid, bool exact_nid) 7005 { 7006 void *ptr; 7007 7008 if (exact_nid) 7009 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 7010 MEMBLOCK_ALLOC_ACCESSIBLE, 7011 nid); 7012 else 7013 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 7014 MEMBLOCK_ALLOC_ACCESSIBLE, 7015 nid); 7016 7017 if (ptr && size > 0) 7018 page_init_poison(ptr, size); 7019 7020 return ptr; 7021 } 7022 7023 static int zone_batchsize(struct zone *zone) 7024 { 7025 #ifdef CONFIG_MMU 7026 int batch; 7027 7028 /* 7029 * The number of pages to batch allocate is either ~0.1% 7030 * of the zone or 1MB, whichever is smaller. The batch 7031 * size is striking a balance between allocation latency 7032 * and zone lock contention. 7033 */ 7034 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE); 7035 batch /= 4; /* We effectively *= 4 below */ 7036 if (batch < 1) 7037 batch = 1; 7038 7039 /* 7040 * Clamp the batch to a 2^n - 1 value. Having a power 7041 * of 2 value was found to be more likely to have 7042 * suboptimal cache aliasing properties in some cases. 7043 * 7044 * For example if 2 tasks are alternately allocating 7045 * batches of pages, one task can end up with a lot 7046 * of pages of one half of the possible page colors 7047 * and the other with pages of the other colors. 7048 */ 7049 batch = rounddown_pow_of_two(batch + batch/2) - 1; 7050 7051 return batch; 7052 7053 #else 7054 /* The deferral and batching of frees should be suppressed under NOMMU 7055 * conditions. 7056 * 7057 * The problem is that NOMMU needs to be able to allocate large chunks 7058 * of contiguous memory as there's no hardware page translation to 7059 * assemble apparent contiguous memory from discontiguous pages. 7060 * 7061 * Queueing large contiguous runs of pages for batching, however, 7062 * causes the pages to actually be freed in smaller chunks. As there 7063 * can be a significant delay between the individual batches being 7064 * recycled, this leads to the once large chunks of space being 7065 * fragmented and becoming unavailable for high-order allocations. 7066 */ 7067 return 0; 7068 #endif 7069 } 7070 7071 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 7072 { 7073 #ifdef CONFIG_MMU 7074 int high; 7075 int nr_split_cpus; 7076 unsigned long total_pages; 7077 7078 if (!percpu_pagelist_high_fraction) { 7079 /* 7080 * By default, the high value of the pcp is based on the zone 7081 * low watermark so that if they are full then background 7082 * reclaim will not be started prematurely. 7083 */ 7084 total_pages = low_wmark_pages(zone); 7085 } else { 7086 /* 7087 * If percpu_pagelist_high_fraction is configured, the high 7088 * value is based on a fraction of the managed pages in the 7089 * zone. 7090 */ 7091 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 7092 } 7093 7094 /* 7095 * Split the high value across all online CPUs local to the zone. Note 7096 * that early in boot that CPUs may not be online yet and that during 7097 * CPU hotplug that the cpumask is not yet updated when a CPU is being 7098 * onlined. For memory nodes that have no CPUs, split pcp->high across 7099 * all online CPUs to mitigate the risk that reclaim is triggered 7100 * prematurely due to pages stored on pcp lists. 7101 */ 7102 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 7103 if (!nr_split_cpus) 7104 nr_split_cpus = num_online_cpus(); 7105 high = total_pages / nr_split_cpus; 7106 7107 /* 7108 * Ensure high is at least batch*4. The multiple is based on the 7109 * historical relationship between high and batch. 7110 */ 7111 high = max(high, batch << 2); 7112 7113 return high; 7114 #else 7115 return 0; 7116 #endif 7117 } 7118 7119 /* 7120 * pcp->high and pcp->batch values are related and generally batch is lower 7121 * than high. They are also related to pcp->count such that count is lower 7122 * than high, and as soon as it reaches high, the pcplist is flushed. 7123 * 7124 * However, guaranteeing these relations at all times would require e.g. write 7125 * barriers here but also careful usage of read barriers at the read side, and 7126 * thus be prone to error and bad for performance. Thus the update only prevents 7127 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 7128 * can cope with those fields changing asynchronously, and fully trust only the 7129 * pcp->count field on the local CPU with interrupts disabled. 7130 * 7131 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 7132 * outside of boot time (or some other assurance that no concurrent updaters 7133 * exist). 7134 */ 7135 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 7136 unsigned long batch) 7137 { 7138 WRITE_ONCE(pcp->batch, batch); 7139 WRITE_ONCE(pcp->high, high); 7140 } 7141 7142 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 7143 { 7144 int pindex; 7145 7146 memset(pcp, 0, sizeof(*pcp)); 7147 memset(pzstats, 0, sizeof(*pzstats)); 7148 7149 spin_lock_init(&pcp->lock); 7150 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 7151 INIT_LIST_HEAD(&pcp->lists[pindex]); 7152 7153 /* 7154 * Set batch and high values safe for a boot pageset. A true percpu 7155 * pageset's initialization will update them subsequently. Here we don't 7156 * need to be as careful as pageset_update() as nobody can access the 7157 * pageset yet. 7158 */ 7159 pcp->high = BOOT_PAGESET_HIGH; 7160 pcp->batch = BOOT_PAGESET_BATCH; 7161 pcp->free_factor = 0; 7162 } 7163 7164 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 7165 unsigned long batch) 7166 { 7167 struct per_cpu_pages *pcp; 7168 int cpu; 7169 7170 for_each_possible_cpu(cpu) { 7171 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7172 pageset_update(pcp, high, batch); 7173 } 7174 } 7175 7176 /* 7177 * Calculate and set new high and batch values for all per-cpu pagesets of a 7178 * zone based on the zone's size. 7179 */ 7180 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 7181 { 7182 int new_high, new_batch; 7183 7184 new_batch = max(1, zone_batchsize(zone)); 7185 new_high = zone_highsize(zone, new_batch, cpu_online); 7186 7187 if (zone->pageset_high == new_high && 7188 zone->pageset_batch == new_batch) 7189 return; 7190 7191 zone->pageset_high = new_high; 7192 zone->pageset_batch = new_batch; 7193 7194 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 7195 } 7196 7197 void __meminit setup_zone_pageset(struct zone *zone) 7198 { 7199 int cpu; 7200 7201 /* Size may be 0 on !SMP && !NUMA */ 7202 if (sizeof(struct per_cpu_zonestat) > 0) 7203 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 7204 7205 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 7206 for_each_possible_cpu(cpu) { 7207 struct per_cpu_pages *pcp; 7208 struct per_cpu_zonestat *pzstats; 7209 7210 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7211 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 7212 per_cpu_pages_init(pcp, pzstats); 7213 } 7214 7215 zone_set_pageset_high_and_batch(zone, 0); 7216 } 7217 7218 /* 7219 * Allocate per cpu pagesets and initialize them. 7220 * Before this call only boot pagesets were available. 7221 */ 7222 void __init setup_per_cpu_pageset(void) 7223 { 7224 struct pglist_data *pgdat; 7225 struct zone *zone; 7226 int __maybe_unused cpu; 7227 7228 for_each_populated_zone(zone) 7229 setup_zone_pageset(zone); 7230 7231 #ifdef CONFIG_NUMA 7232 /* 7233 * Unpopulated zones continue using the boot pagesets. 7234 * The numa stats for these pagesets need to be reset. 7235 * Otherwise, they will end up skewing the stats of 7236 * the nodes these zones are associated with. 7237 */ 7238 for_each_possible_cpu(cpu) { 7239 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 7240 memset(pzstats->vm_numa_event, 0, 7241 sizeof(pzstats->vm_numa_event)); 7242 } 7243 #endif 7244 7245 for_each_online_pgdat(pgdat) 7246 pgdat->per_cpu_nodestats = 7247 alloc_percpu(struct per_cpu_nodestat); 7248 } 7249 7250 static __meminit void zone_pcp_init(struct zone *zone) 7251 { 7252 /* 7253 * per cpu subsystem is not up at this point. The following code 7254 * relies on the ability of the linker to provide the 7255 * offset of a (static) per cpu variable into the per cpu area. 7256 */ 7257 zone->per_cpu_pageset = &boot_pageset; 7258 zone->per_cpu_zonestats = &boot_zonestats; 7259 zone->pageset_high = BOOT_PAGESET_HIGH; 7260 zone->pageset_batch = BOOT_PAGESET_BATCH; 7261 7262 if (populated_zone(zone)) 7263 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 7264 zone->present_pages, zone_batchsize(zone)); 7265 } 7266 7267 void __meminit init_currently_empty_zone(struct zone *zone, 7268 unsigned long zone_start_pfn, 7269 unsigned long size) 7270 { 7271 struct pglist_data *pgdat = zone->zone_pgdat; 7272 int zone_idx = zone_idx(zone) + 1; 7273 7274 if (zone_idx > pgdat->nr_zones) 7275 pgdat->nr_zones = zone_idx; 7276 7277 zone->zone_start_pfn = zone_start_pfn; 7278 7279 mminit_dprintk(MMINIT_TRACE, "memmap_init", 7280 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 7281 pgdat->node_id, 7282 (unsigned long)zone_idx(zone), 7283 zone_start_pfn, (zone_start_pfn + size)); 7284 7285 zone_init_free_lists(zone); 7286 zone->initialized = 1; 7287 } 7288 7289 /** 7290 * get_pfn_range_for_nid - Return the start and end page frames for a node 7291 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 7292 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 7293 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 7294 * 7295 * It returns the start and end page frame of a node based on information 7296 * provided by memblock_set_node(). If called for a node 7297 * with no available memory, a warning is printed and the start and end 7298 * PFNs will be 0. 7299 */ 7300 void __init get_pfn_range_for_nid(unsigned int nid, 7301 unsigned long *start_pfn, unsigned long *end_pfn) 7302 { 7303 unsigned long this_start_pfn, this_end_pfn; 7304 int i; 7305 7306 *start_pfn = -1UL; 7307 *end_pfn = 0; 7308 7309 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 7310 *start_pfn = min(*start_pfn, this_start_pfn); 7311 *end_pfn = max(*end_pfn, this_end_pfn); 7312 } 7313 7314 if (*start_pfn == -1UL) 7315 *start_pfn = 0; 7316 } 7317 7318 /* 7319 * This finds a zone that can be used for ZONE_MOVABLE pages. The 7320 * assumption is made that zones within a node are ordered in monotonic 7321 * increasing memory addresses so that the "highest" populated zone is used 7322 */ 7323 static void __init find_usable_zone_for_movable(void) 7324 { 7325 int zone_index; 7326 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 7327 if (zone_index == ZONE_MOVABLE) 7328 continue; 7329 7330 if (arch_zone_highest_possible_pfn[zone_index] > 7331 arch_zone_lowest_possible_pfn[zone_index]) 7332 break; 7333 } 7334 7335 VM_BUG_ON(zone_index == -1); 7336 movable_zone = zone_index; 7337 } 7338 7339 /* 7340 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 7341 * because it is sized independent of architecture. Unlike the other zones, 7342 * the starting point for ZONE_MOVABLE is not fixed. It may be different 7343 * in each node depending on the size of each node and how evenly kernelcore 7344 * is distributed. This helper function adjusts the zone ranges 7345 * provided by the architecture for a given node by using the end of the 7346 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 7347 * zones within a node are in order of monotonic increases memory addresses 7348 */ 7349 static void __init adjust_zone_range_for_zone_movable(int nid, 7350 unsigned long zone_type, 7351 unsigned long node_start_pfn, 7352 unsigned long node_end_pfn, 7353 unsigned long *zone_start_pfn, 7354 unsigned long *zone_end_pfn) 7355 { 7356 /* Only adjust if ZONE_MOVABLE is on this node */ 7357 if (zone_movable_pfn[nid]) { 7358 /* Size ZONE_MOVABLE */ 7359 if (zone_type == ZONE_MOVABLE) { 7360 *zone_start_pfn = zone_movable_pfn[nid]; 7361 *zone_end_pfn = min(node_end_pfn, 7362 arch_zone_highest_possible_pfn[movable_zone]); 7363 7364 /* Adjust for ZONE_MOVABLE starting within this range */ 7365 } else if (!mirrored_kernelcore && 7366 *zone_start_pfn < zone_movable_pfn[nid] && 7367 *zone_end_pfn > zone_movable_pfn[nid]) { 7368 *zone_end_pfn = zone_movable_pfn[nid]; 7369 7370 /* Check if this whole range is within ZONE_MOVABLE */ 7371 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 7372 *zone_start_pfn = *zone_end_pfn; 7373 } 7374 } 7375 7376 /* 7377 * Return the number of pages a zone spans in a node, including holes 7378 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 7379 */ 7380 static unsigned long __init zone_spanned_pages_in_node(int nid, 7381 unsigned long zone_type, 7382 unsigned long node_start_pfn, 7383 unsigned long node_end_pfn, 7384 unsigned long *zone_start_pfn, 7385 unsigned long *zone_end_pfn) 7386 { 7387 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7388 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7389 /* When hotadd a new node from cpu_up(), the node should be empty */ 7390 if (!node_start_pfn && !node_end_pfn) 7391 return 0; 7392 7393 /* Get the start and end of the zone */ 7394 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7395 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7396 adjust_zone_range_for_zone_movable(nid, zone_type, 7397 node_start_pfn, node_end_pfn, 7398 zone_start_pfn, zone_end_pfn); 7399 7400 /* Check that this node has pages within the zone's required range */ 7401 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 7402 return 0; 7403 7404 /* Move the zone boundaries inside the node if necessary */ 7405 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 7406 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 7407 7408 /* Return the spanned pages */ 7409 return *zone_end_pfn - *zone_start_pfn; 7410 } 7411 7412 /* 7413 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 7414 * then all holes in the requested range will be accounted for. 7415 */ 7416 unsigned long __init __absent_pages_in_range(int nid, 7417 unsigned long range_start_pfn, 7418 unsigned long range_end_pfn) 7419 { 7420 unsigned long nr_absent = range_end_pfn - range_start_pfn; 7421 unsigned long start_pfn, end_pfn; 7422 int i; 7423 7424 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7425 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 7426 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 7427 nr_absent -= end_pfn - start_pfn; 7428 } 7429 return nr_absent; 7430 } 7431 7432 /** 7433 * absent_pages_in_range - Return number of page frames in holes within a range 7434 * @start_pfn: The start PFN to start searching for holes 7435 * @end_pfn: The end PFN to stop searching for holes 7436 * 7437 * Return: the number of pages frames in memory holes within a range. 7438 */ 7439 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 7440 unsigned long end_pfn) 7441 { 7442 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 7443 } 7444 7445 /* Return the number of page frames in holes in a zone on a node */ 7446 static unsigned long __init zone_absent_pages_in_node(int nid, 7447 unsigned long zone_type, 7448 unsigned long node_start_pfn, 7449 unsigned long node_end_pfn) 7450 { 7451 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7452 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7453 unsigned long zone_start_pfn, zone_end_pfn; 7454 unsigned long nr_absent; 7455 7456 /* When hotadd a new node from cpu_up(), the node should be empty */ 7457 if (!node_start_pfn && !node_end_pfn) 7458 return 0; 7459 7460 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7461 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7462 7463 adjust_zone_range_for_zone_movable(nid, zone_type, 7464 node_start_pfn, node_end_pfn, 7465 &zone_start_pfn, &zone_end_pfn); 7466 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 7467 7468 /* 7469 * ZONE_MOVABLE handling. 7470 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 7471 * and vice versa. 7472 */ 7473 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 7474 unsigned long start_pfn, end_pfn; 7475 struct memblock_region *r; 7476 7477 for_each_mem_region(r) { 7478 start_pfn = clamp(memblock_region_memory_base_pfn(r), 7479 zone_start_pfn, zone_end_pfn); 7480 end_pfn = clamp(memblock_region_memory_end_pfn(r), 7481 zone_start_pfn, zone_end_pfn); 7482 7483 if (zone_type == ZONE_MOVABLE && 7484 memblock_is_mirror(r)) 7485 nr_absent += end_pfn - start_pfn; 7486 7487 if (zone_type == ZONE_NORMAL && 7488 !memblock_is_mirror(r)) 7489 nr_absent += end_pfn - start_pfn; 7490 } 7491 } 7492 7493 return nr_absent; 7494 } 7495 7496 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 7497 unsigned long node_start_pfn, 7498 unsigned long node_end_pfn) 7499 { 7500 unsigned long realtotalpages = 0, totalpages = 0; 7501 enum zone_type i; 7502 7503 for (i = 0; i < MAX_NR_ZONES; i++) { 7504 struct zone *zone = pgdat->node_zones + i; 7505 unsigned long zone_start_pfn, zone_end_pfn; 7506 unsigned long spanned, absent; 7507 unsigned long size, real_size; 7508 7509 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 7510 node_start_pfn, 7511 node_end_pfn, 7512 &zone_start_pfn, 7513 &zone_end_pfn); 7514 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7515 node_start_pfn, 7516 node_end_pfn); 7517 7518 size = spanned; 7519 real_size = size - absent; 7520 7521 if (size) 7522 zone->zone_start_pfn = zone_start_pfn; 7523 else 7524 zone->zone_start_pfn = 0; 7525 zone->spanned_pages = size; 7526 zone->present_pages = real_size; 7527 #if defined(CONFIG_MEMORY_HOTPLUG) 7528 zone->present_early_pages = real_size; 7529 #endif 7530 7531 totalpages += size; 7532 realtotalpages += real_size; 7533 } 7534 7535 pgdat->node_spanned_pages = totalpages; 7536 pgdat->node_present_pages = realtotalpages; 7537 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 7538 } 7539 7540 #ifndef CONFIG_SPARSEMEM 7541 /* 7542 * Calculate the size of the zone->blockflags rounded to an unsigned long 7543 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7544 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7545 * round what is now in bits to nearest long in bits, then return it in 7546 * bytes. 7547 */ 7548 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7549 { 7550 unsigned long usemapsize; 7551 7552 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7553 usemapsize = roundup(zonesize, pageblock_nr_pages); 7554 usemapsize = usemapsize >> pageblock_order; 7555 usemapsize *= NR_PAGEBLOCK_BITS; 7556 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7557 7558 return usemapsize / 8; 7559 } 7560 7561 static void __ref setup_usemap(struct zone *zone) 7562 { 7563 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7564 zone->spanned_pages); 7565 zone->pageblock_flags = NULL; 7566 if (usemapsize) { 7567 zone->pageblock_flags = 7568 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7569 zone_to_nid(zone)); 7570 if (!zone->pageblock_flags) 7571 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7572 usemapsize, zone->name, zone_to_nid(zone)); 7573 } 7574 } 7575 #else 7576 static inline void setup_usemap(struct zone *zone) {} 7577 #endif /* CONFIG_SPARSEMEM */ 7578 7579 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7580 7581 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7582 void __init set_pageblock_order(void) 7583 { 7584 unsigned int order = MAX_ORDER - 1; 7585 7586 /* Check that pageblock_nr_pages has not already been setup */ 7587 if (pageblock_order) 7588 return; 7589 7590 /* Don't let pageblocks exceed the maximum allocation granularity. */ 7591 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) 7592 order = HUGETLB_PAGE_ORDER; 7593 7594 /* 7595 * Assume the largest contiguous order of interest is a huge page. 7596 * This value may be variable depending on boot parameters on IA64 and 7597 * powerpc. 7598 */ 7599 pageblock_order = order; 7600 } 7601 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7602 7603 /* 7604 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7605 * is unused as pageblock_order is set at compile-time. See 7606 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7607 * the kernel config 7608 */ 7609 void __init set_pageblock_order(void) 7610 { 7611 } 7612 7613 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7614 7615 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7616 unsigned long present_pages) 7617 { 7618 unsigned long pages = spanned_pages; 7619 7620 /* 7621 * Provide a more accurate estimation if there are holes within 7622 * the zone and SPARSEMEM is in use. If there are holes within the 7623 * zone, each populated memory region may cost us one or two extra 7624 * memmap pages due to alignment because memmap pages for each 7625 * populated regions may not be naturally aligned on page boundary. 7626 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7627 */ 7628 if (spanned_pages > present_pages + (present_pages >> 4) && 7629 IS_ENABLED(CONFIG_SPARSEMEM)) 7630 pages = present_pages; 7631 7632 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7633 } 7634 7635 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 7636 static void pgdat_init_split_queue(struct pglist_data *pgdat) 7637 { 7638 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7639 7640 spin_lock_init(&ds_queue->split_queue_lock); 7641 INIT_LIST_HEAD(&ds_queue->split_queue); 7642 ds_queue->split_queue_len = 0; 7643 } 7644 #else 7645 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7646 #endif 7647 7648 #ifdef CONFIG_COMPACTION 7649 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7650 { 7651 init_waitqueue_head(&pgdat->kcompactd_wait); 7652 } 7653 #else 7654 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7655 #endif 7656 7657 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7658 { 7659 int i; 7660 7661 pgdat_resize_init(pgdat); 7662 7663 pgdat_init_split_queue(pgdat); 7664 pgdat_init_kcompactd(pgdat); 7665 7666 init_waitqueue_head(&pgdat->kswapd_wait); 7667 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7668 7669 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 7670 init_waitqueue_head(&pgdat->reclaim_wait[i]); 7671 7672 pgdat_page_ext_init(pgdat); 7673 lruvec_init(&pgdat->__lruvec); 7674 } 7675 7676 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7677 unsigned long remaining_pages) 7678 { 7679 atomic_long_set(&zone->managed_pages, remaining_pages); 7680 zone_set_nid(zone, nid); 7681 zone->name = zone_names[idx]; 7682 zone->zone_pgdat = NODE_DATA(nid); 7683 spin_lock_init(&zone->lock); 7684 zone_seqlock_init(zone); 7685 zone_pcp_init(zone); 7686 } 7687 7688 /* 7689 * Set up the zone data structures 7690 * - init pgdat internals 7691 * - init all zones belonging to this node 7692 * 7693 * NOTE: this function is only called during memory hotplug 7694 */ 7695 #ifdef CONFIG_MEMORY_HOTPLUG 7696 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) 7697 { 7698 int nid = pgdat->node_id; 7699 enum zone_type z; 7700 int cpu; 7701 7702 pgdat_init_internals(pgdat); 7703 7704 if (pgdat->per_cpu_nodestats == &boot_nodestats) 7705 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 7706 7707 /* 7708 * Reset the nr_zones, order and highest_zoneidx before reuse. 7709 * Note that kswapd will init kswapd_highest_zoneidx properly 7710 * when it starts in the near future. 7711 */ 7712 pgdat->nr_zones = 0; 7713 pgdat->kswapd_order = 0; 7714 pgdat->kswapd_highest_zoneidx = 0; 7715 pgdat->node_start_pfn = 0; 7716 for_each_online_cpu(cpu) { 7717 struct per_cpu_nodestat *p; 7718 7719 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 7720 memset(p, 0, sizeof(*p)); 7721 } 7722 7723 for (z = 0; z < MAX_NR_ZONES; z++) 7724 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7725 } 7726 #endif 7727 7728 /* 7729 * Set up the zone data structures: 7730 * - mark all pages reserved 7731 * - mark all memory queues empty 7732 * - clear the memory bitmaps 7733 * 7734 * NOTE: pgdat should get zeroed by caller. 7735 * NOTE: this function is only called during early init. 7736 */ 7737 static void __init free_area_init_core(struct pglist_data *pgdat) 7738 { 7739 enum zone_type j; 7740 int nid = pgdat->node_id; 7741 7742 pgdat_init_internals(pgdat); 7743 pgdat->per_cpu_nodestats = &boot_nodestats; 7744 7745 for (j = 0; j < MAX_NR_ZONES; j++) { 7746 struct zone *zone = pgdat->node_zones + j; 7747 unsigned long size, freesize, memmap_pages; 7748 7749 size = zone->spanned_pages; 7750 freesize = zone->present_pages; 7751 7752 /* 7753 * Adjust freesize so that it accounts for how much memory 7754 * is used by this zone for memmap. This affects the watermark 7755 * and per-cpu initialisations 7756 */ 7757 memmap_pages = calc_memmap_size(size, freesize); 7758 if (!is_highmem_idx(j)) { 7759 if (freesize >= memmap_pages) { 7760 freesize -= memmap_pages; 7761 if (memmap_pages) 7762 pr_debug(" %s zone: %lu pages used for memmap\n", 7763 zone_names[j], memmap_pages); 7764 } else 7765 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 7766 zone_names[j], memmap_pages, freesize); 7767 } 7768 7769 /* Account for reserved pages */ 7770 if (j == 0 && freesize > dma_reserve) { 7771 freesize -= dma_reserve; 7772 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 7773 } 7774 7775 if (!is_highmem_idx(j)) 7776 nr_kernel_pages += freesize; 7777 /* Charge for highmem memmap if there are enough kernel pages */ 7778 else if (nr_kernel_pages > memmap_pages * 2) 7779 nr_kernel_pages -= memmap_pages; 7780 nr_all_pages += freesize; 7781 7782 /* 7783 * Set an approximate value for lowmem here, it will be adjusted 7784 * when the bootmem allocator frees pages into the buddy system. 7785 * And all highmem pages will be managed by the buddy system. 7786 */ 7787 zone_init_internals(zone, j, nid, freesize); 7788 7789 if (!size) 7790 continue; 7791 7792 set_pageblock_order(); 7793 setup_usemap(zone); 7794 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7795 } 7796 } 7797 7798 #ifdef CONFIG_FLATMEM 7799 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 7800 { 7801 unsigned long __maybe_unused start = 0; 7802 unsigned long __maybe_unused offset = 0; 7803 7804 /* Skip empty nodes */ 7805 if (!pgdat->node_spanned_pages) 7806 return; 7807 7808 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7809 offset = pgdat->node_start_pfn - start; 7810 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7811 if (!pgdat->node_mem_map) { 7812 unsigned long size, end; 7813 struct page *map; 7814 7815 /* 7816 * The zone's endpoints aren't required to be MAX_ORDER 7817 * aligned but the node_mem_map endpoints must be in order 7818 * for the buddy allocator to function correctly. 7819 */ 7820 end = pgdat_end_pfn(pgdat); 7821 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7822 size = (end - start) * sizeof(struct page); 7823 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 7824 pgdat->node_id, false); 7825 if (!map) 7826 panic("Failed to allocate %ld bytes for node %d memory map\n", 7827 size, pgdat->node_id); 7828 pgdat->node_mem_map = map + offset; 7829 } 7830 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7831 __func__, pgdat->node_id, (unsigned long)pgdat, 7832 (unsigned long)pgdat->node_mem_map); 7833 #ifndef CONFIG_NUMA 7834 /* 7835 * With no DISCONTIG, the global mem_map is just set as node 0's 7836 */ 7837 if (pgdat == NODE_DATA(0)) { 7838 mem_map = NODE_DATA(0)->node_mem_map; 7839 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7840 mem_map -= offset; 7841 } 7842 #endif 7843 } 7844 #else 7845 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 7846 #endif /* CONFIG_FLATMEM */ 7847 7848 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7849 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7850 { 7851 pgdat->first_deferred_pfn = ULONG_MAX; 7852 } 7853 #else 7854 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7855 #endif 7856 7857 static void __init free_area_init_node(int nid) 7858 { 7859 pg_data_t *pgdat = NODE_DATA(nid); 7860 unsigned long start_pfn = 0; 7861 unsigned long end_pfn = 0; 7862 7863 /* pg_data_t should be reset to zero when it's allocated */ 7864 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7865 7866 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7867 7868 pgdat->node_id = nid; 7869 pgdat->node_start_pfn = start_pfn; 7870 pgdat->per_cpu_nodestats = NULL; 7871 7872 if (start_pfn != end_pfn) { 7873 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7874 (u64)start_pfn << PAGE_SHIFT, 7875 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7876 } else { 7877 pr_info("Initmem setup node %d as memoryless\n", nid); 7878 } 7879 7880 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7881 7882 alloc_node_mem_map(pgdat); 7883 pgdat_set_deferred_range(pgdat); 7884 7885 free_area_init_core(pgdat); 7886 } 7887 7888 static void __init free_area_init_memoryless_node(int nid) 7889 { 7890 free_area_init_node(nid); 7891 } 7892 7893 #if MAX_NUMNODES > 1 7894 /* 7895 * Figure out the number of possible node ids. 7896 */ 7897 void __init setup_nr_node_ids(void) 7898 { 7899 unsigned int highest; 7900 7901 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7902 nr_node_ids = highest + 1; 7903 } 7904 #endif 7905 7906 /** 7907 * node_map_pfn_alignment - determine the maximum internode alignment 7908 * 7909 * This function should be called after node map is populated and sorted. 7910 * It calculates the maximum power of two alignment which can distinguish 7911 * all the nodes. 7912 * 7913 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7914 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7915 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7916 * shifted, 1GiB is enough and this function will indicate so. 7917 * 7918 * This is used to test whether pfn -> nid mapping of the chosen memory 7919 * model has fine enough granularity to avoid incorrect mapping for the 7920 * populated node map. 7921 * 7922 * Return: the determined alignment in pfn's. 0 if there is no alignment 7923 * requirement (single node). 7924 */ 7925 unsigned long __init node_map_pfn_alignment(void) 7926 { 7927 unsigned long accl_mask = 0, last_end = 0; 7928 unsigned long start, end, mask; 7929 int last_nid = NUMA_NO_NODE; 7930 int i, nid; 7931 7932 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7933 if (!start || last_nid < 0 || last_nid == nid) { 7934 last_nid = nid; 7935 last_end = end; 7936 continue; 7937 } 7938 7939 /* 7940 * Start with a mask granular enough to pin-point to the 7941 * start pfn and tick off bits one-by-one until it becomes 7942 * too coarse to separate the current node from the last. 7943 */ 7944 mask = ~((1 << __ffs(start)) - 1); 7945 while (mask && last_end <= (start & (mask << 1))) 7946 mask <<= 1; 7947 7948 /* accumulate all internode masks */ 7949 accl_mask |= mask; 7950 } 7951 7952 /* convert mask to number of pages */ 7953 return ~accl_mask + 1; 7954 } 7955 7956 /** 7957 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7958 * 7959 * Return: the minimum PFN based on information provided via 7960 * memblock_set_node(). 7961 */ 7962 unsigned long __init find_min_pfn_with_active_regions(void) 7963 { 7964 return PHYS_PFN(memblock_start_of_DRAM()); 7965 } 7966 7967 /* 7968 * early_calculate_totalpages() 7969 * Sum pages in active regions for movable zone. 7970 * Populate N_MEMORY for calculating usable_nodes. 7971 */ 7972 static unsigned long __init early_calculate_totalpages(void) 7973 { 7974 unsigned long totalpages = 0; 7975 unsigned long start_pfn, end_pfn; 7976 int i, nid; 7977 7978 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7979 unsigned long pages = end_pfn - start_pfn; 7980 7981 totalpages += pages; 7982 if (pages) 7983 node_set_state(nid, N_MEMORY); 7984 } 7985 return totalpages; 7986 } 7987 7988 /* 7989 * Find the PFN the Movable zone begins in each node. Kernel memory 7990 * is spread evenly between nodes as long as the nodes have enough 7991 * memory. When they don't, some nodes will have more kernelcore than 7992 * others 7993 */ 7994 static void __init find_zone_movable_pfns_for_nodes(void) 7995 { 7996 int i, nid; 7997 unsigned long usable_startpfn; 7998 unsigned long kernelcore_node, kernelcore_remaining; 7999 /* save the state before borrow the nodemask */ 8000 nodemask_t saved_node_state = node_states[N_MEMORY]; 8001 unsigned long totalpages = early_calculate_totalpages(); 8002 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 8003 struct memblock_region *r; 8004 8005 /* Need to find movable_zone earlier when movable_node is specified. */ 8006 find_usable_zone_for_movable(); 8007 8008 /* 8009 * If movable_node is specified, ignore kernelcore and movablecore 8010 * options. 8011 */ 8012 if (movable_node_is_enabled()) { 8013 for_each_mem_region(r) { 8014 if (!memblock_is_hotpluggable(r)) 8015 continue; 8016 8017 nid = memblock_get_region_node(r); 8018 8019 usable_startpfn = PFN_DOWN(r->base); 8020 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 8021 min(usable_startpfn, zone_movable_pfn[nid]) : 8022 usable_startpfn; 8023 } 8024 8025 goto out2; 8026 } 8027 8028 /* 8029 * If kernelcore=mirror is specified, ignore movablecore option 8030 */ 8031 if (mirrored_kernelcore) { 8032 bool mem_below_4gb_not_mirrored = false; 8033 8034 for_each_mem_region(r) { 8035 if (memblock_is_mirror(r)) 8036 continue; 8037 8038 nid = memblock_get_region_node(r); 8039 8040 usable_startpfn = memblock_region_memory_base_pfn(r); 8041 8042 if (usable_startpfn < PHYS_PFN(SZ_4G)) { 8043 mem_below_4gb_not_mirrored = true; 8044 continue; 8045 } 8046 8047 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 8048 min(usable_startpfn, zone_movable_pfn[nid]) : 8049 usable_startpfn; 8050 } 8051 8052 if (mem_below_4gb_not_mirrored) 8053 pr_warn("This configuration results in unmirrored kernel memory.\n"); 8054 8055 goto out2; 8056 } 8057 8058 /* 8059 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 8060 * amount of necessary memory. 8061 */ 8062 if (required_kernelcore_percent) 8063 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 8064 10000UL; 8065 if (required_movablecore_percent) 8066 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 8067 10000UL; 8068 8069 /* 8070 * If movablecore= was specified, calculate what size of 8071 * kernelcore that corresponds so that memory usable for 8072 * any allocation type is evenly spread. If both kernelcore 8073 * and movablecore are specified, then the value of kernelcore 8074 * will be used for required_kernelcore if it's greater than 8075 * what movablecore would have allowed. 8076 */ 8077 if (required_movablecore) { 8078 unsigned long corepages; 8079 8080 /* 8081 * Round-up so that ZONE_MOVABLE is at least as large as what 8082 * was requested by the user 8083 */ 8084 required_movablecore = 8085 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 8086 required_movablecore = min(totalpages, required_movablecore); 8087 corepages = totalpages - required_movablecore; 8088 8089 required_kernelcore = max(required_kernelcore, corepages); 8090 } 8091 8092 /* 8093 * If kernelcore was not specified or kernelcore size is larger 8094 * than totalpages, there is no ZONE_MOVABLE. 8095 */ 8096 if (!required_kernelcore || required_kernelcore >= totalpages) 8097 goto out; 8098 8099 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 8100 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 8101 8102 restart: 8103 /* Spread kernelcore memory as evenly as possible throughout nodes */ 8104 kernelcore_node = required_kernelcore / usable_nodes; 8105 for_each_node_state(nid, N_MEMORY) { 8106 unsigned long start_pfn, end_pfn; 8107 8108 /* 8109 * Recalculate kernelcore_node if the division per node 8110 * now exceeds what is necessary to satisfy the requested 8111 * amount of memory for the kernel 8112 */ 8113 if (required_kernelcore < kernelcore_node) 8114 kernelcore_node = required_kernelcore / usable_nodes; 8115 8116 /* 8117 * As the map is walked, we track how much memory is usable 8118 * by the kernel using kernelcore_remaining. When it is 8119 * 0, the rest of the node is usable by ZONE_MOVABLE 8120 */ 8121 kernelcore_remaining = kernelcore_node; 8122 8123 /* Go through each range of PFNs within this node */ 8124 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 8125 unsigned long size_pages; 8126 8127 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 8128 if (start_pfn >= end_pfn) 8129 continue; 8130 8131 /* Account for what is only usable for kernelcore */ 8132 if (start_pfn < usable_startpfn) { 8133 unsigned long kernel_pages; 8134 kernel_pages = min(end_pfn, usable_startpfn) 8135 - start_pfn; 8136 8137 kernelcore_remaining -= min(kernel_pages, 8138 kernelcore_remaining); 8139 required_kernelcore -= min(kernel_pages, 8140 required_kernelcore); 8141 8142 /* Continue if range is now fully accounted */ 8143 if (end_pfn <= usable_startpfn) { 8144 8145 /* 8146 * Push zone_movable_pfn to the end so 8147 * that if we have to rebalance 8148 * kernelcore across nodes, we will 8149 * not double account here 8150 */ 8151 zone_movable_pfn[nid] = end_pfn; 8152 continue; 8153 } 8154 start_pfn = usable_startpfn; 8155 } 8156 8157 /* 8158 * The usable PFN range for ZONE_MOVABLE is from 8159 * start_pfn->end_pfn. Calculate size_pages as the 8160 * number of pages used as kernelcore 8161 */ 8162 size_pages = end_pfn - start_pfn; 8163 if (size_pages > kernelcore_remaining) 8164 size_pages = kernelcore_remaining; 8165 zone_movable_pfn[nid] = start_pfn + size_pages; 8166 8167 /* 8168 * Some kernelcore has been met, update counts and 8169 * break if the kernelcore for this node has been 8170 * satisfied 8171 */ 8172 required_kernelcore -= min(required_kernelcore, 8173 size_pages); 8174 kernelcore_remaining -= size_pages; 8175 if (!kernelcore_remaining) 8176 break; 8177 } 8178 } 8179 8180 /* 8181 * If there is still required_kernelcore, we do another pass with one 8182 * less node in the count. This will push zone_movable_pfn[nid] further 8183 * along on the nodes that still have memory until kernelcore is 8184 * satisfied 8185 */ 8186 usable_nodes--; 8187 if (usable_nodes && required_kernelcore > usable_nodes) 8188 goto restart; 8189 8190 out2: 8191 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 8192 for (nid = 0; nid < MAX_NUMNODES; nid++) { 8193 unsigned long start_pfn, end_pfn; 8194 8195 zone_movable_pfn[nid] = 8196 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 8197 8198 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 8199 if (zone_movable_pfn[nid] >= end_pfn) 8200 zone_movable_pfn[nid] = 0; 8201 } 8202 8203 out: 8204 /* restore the node_state */ 8205 node_states[N_MEMORY] = saved_node_state; 8206 } 8207 8208 /* Any regular or high memory on that node ? */ 8209 static void check_for_memory(pg_data_t *pgdat, int nid) 8210 { 8211 enum zone_type zone_type; 8212 8213 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 8214 struct zone *zone = &pgdat->node_zones[zone_type]; 8215 if (populated_zone(zone)) { 8216 if (IS_ENABLED(CONFIG_HIGHMEM)) 8217 node_set_state(nid, N_HIGH_MEMORY); 8218 if (zone_type <= ZONE_NORMAL) 8219 node_set_state(nid, N_NORMAL_MEMORY); 8220 break; 8221 } 8222 } 8223 } 8224 8225 /* 8226 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 8227 * such cases we allow max_zone_pfn sorted in the descending order 8228 */ 8229 bool __weak arch_has_descending_max_zone_pfns(void) 8230 { 8231 return false; 8232 } 8233 8234 /** 8235 * free_area_init - Initialise all pg_data_t and zone data 8236 * @max_zone_pfn: an array of max PFNs for each zone 8237 * 8238 * This will call free_area_init_node() for each active node in the system. 8239 * Using the page ranges provided by memblock_set_node(), the size of each 8240 * zone in each node and their holes is calculated. If the maximum PFN 8241 * between two adjacent zones match, it is assumed that the zone is empty. 8242 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 8243 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 8244 * starts where the previous one ended. For example, ZONE_DMA32 starts 8245 * at arch_max_dma_pfn. 8246 */ 8247 void __init free_area_init(unsigned long *max_zone_pfn) 8248 { 8249 unsigned long start_pfn, end_pfn; 8250 int i, nid, zone; 8251 bool descending; 8252 8253 /* Record where the zone boundaries are */ 8254 memset(arch_zone_lowest_possible_pfn, 0, 8255 sizeof(arch_zone_lowest_possible_pfn)); 8256 memset(arch_zone_highest_possible_pfn, 0, 8257 sizeof(arch_zone_highest_possible_pfn)); 8258 8259 start_pfn = find_min_pfn_with_active_regions(); 8260 descending = arch_has_descending_max_zone_pfns(); 8261 8262 for (i = 0; i < MAX_NR_ZONES; i++) { 8263 if (descending) 8264 zone = MAX_NR_ZONES - i - 1; 8265 else 8266 zone = i; 8267 8268 if (zone == ZONE_MOVABLE) 8269 continue; 8270 8271 end_pfn = max(max_zone_pfn[zone], start_pfn); 8272 arch_zone_lowest_possible_pfn[zone] = start_pfn; 8273 arch_zone_highest_possible_pfn[zone] = end_pfn; 8274 8275 start_pfn = end_pfn; 8276 } 8277 8278 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 8279 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 8280 find_zone_movable_pfns_for_nodes(); 8281 8282 /* Print out the zone ranges */ 8283 pr_info("Zone ranges:\n"); 8284 for (i = 0; i < MAX_NR_ZONES; i++) { 8285 if (i == ZONE_MOVABLE) 8286 continue; 8287 pr_info(" %-8s ", zone_names[i]); 8288 if (arch_zone_lowest_possible_pfn[i] == 8289 arch_zone_highest_possible_pfn[i]) 8290 pr_cont("empty\n"); 8291 else 8292 pr_cont("[mem %#018Lx-%#018Lx]\n", 8293 (u64)arch_zone_lowest_possible_pfn[i] 8294 << PAGE_SHIFT, 8295 ((u64)arch_zone_highest_possible_pfn[i] 8296 << PAGE_SHIFT) - 1); 8297 } 8298 8299 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 8300 pr_info("Movable zone start for each node\n"); 8301 for (i = 0; i < MAX_NUMNODES; i++) { 8302 if (zone_movable_pfn[i]) 8303 pr_info(" Node %d: %#018Lx\n", i, 8304 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 8305 } 8306 8307 /* 8308 * Print out the early node map, and initialize the 8309 * subsection-map relative to active online memory ranges to 8310 * enable future "sub-section" extensions of the memory map. 8311 */ 8312 pr_info("Early memory node ranges\n"); 8313 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8314 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 8315 (u64)start_pfn << PAGE_SHIFT, 8316 ((u64)end_pfn << PAGE_SHIFT) - 1); 8317 subsection_map_init(start_pfn, end_pfn - start_pfn); 8318 } 8319 8320 /* Initialise every node */ 8321 mminit_verify_pageflags_layout(); 8322 setup_nr_node_ids(); 8323 for_each_node(nid) { 8324 pg_data_t *pgdat; 8325 8326 if (!node_online(nid)) { 8327 pr_info("Initializing node %d as memoryless\n", nid); 8328 8329 /* Allocator not initialized yet */ 8330 pgdat = arch_alloc_nodedata(nid); 8331 if (!pgdat) { 8332 pr_err("Cannot allocate %zuB for node %d.\n", 8333 sizeof(*pgdat), nid); 8334 continue; 8335 } 8336 arch_refresh_nodedata(nid, pgdat); 8337 free_area_init_memoryless_node(nid); 8338 8339 /* 8340 * We do not want to confuse userspace by sysfs 8341 * files/directories for node without any memory 8342 * attached to it, so this node is not marked as 8343 * N_MEMORY and not marked online so that no sysfs 8344 * hierarchy will be created via register_one_node for 8345 * it. The pgdat will get fully initialized by 8346 * hotadd_init_pgdat() when memory is hotplugged into 8347 * this node. 8348 */ 8349 continue; 8350 } 8351 8352 pgdat = NODE_DATA(nid); 8353 free_area_init_node(nid); 8354 8355 /* Any memory on that node */ 8356 if (pgdat->node_present_pages) 8357 node_set_state(nid, N_MEMORY); 8358 check_for_memory(pgdat, nid); 8359 } 8360 8361 memmap_init(); 8362 } 8363 8364 static int __init cmdline_parse_core(char *p, unsigned long *core, 8365 unsigned long *percent) 8366 { 8367 unsigned long long coremem; 8368 char *endptr; 8369 8370 if (!p) 8371 return -EINVAL; 8372 8373 /* Value may be a percentage of total memory, otherwise bytes */ 8374 coremem = simple_strtoull(p, &endptr, 0); 8375 if (*endptr == '%') { 8376 /* Paranoid check for percent values greater than 100 */ 8377 WARN_ON(coremem > 100); 8378 8379 *percent = coremem; 8380 } else { 8381 coremem = memparse(p, &p); 8382 /* Paranoid check that UL is enough for the coremem value */ 8383 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 8384 8385 *core = coremem >> PAGE_SHIFT; 8386 *percent = 0UL; 8387 } 8388 return 0; 8389 } 8390 8391 /* 8392 * kernelcore=size sets the amount of memory for use for allocations that 8393 * cannot be reclaimed or migrated. 8394 */ 8395 static int __init cmdline_parse_kernelcore(char *p) 8396 { 8397 /* parse kernelcore=mirror */ 8398 if (parse_option_str(p, "mirror")) { 8399 mirrored_kernelcore = true; 8400 return 0; 8401 } 8402 8403 return cmdline_parse_core(p, &required_kernelcore, 8404 &required_kernelcore_percent); 8405 } 8406 8407 /* 8408 * movablecore=size sets the amount of memory for use for allocations that 8409 * can be reclaimed or migrated. 8410 */ 8411 static int __init cmdline_parse_movablecore(char *p) 8412 { 8413 return cmdline_parse_core(p, &required_movablecore, 8414 &required_movablecore_percent); 8415 } 8416 8417 early_param("kernelcore", cmdline_parse_kernelcore); 8418 early_param("movablecore", cmdline_parse_movablecore); 8419 8420 void adjust_managed_page_count(struct page *page, long count) 8421 { 8422 atomic_long_add(count, &page_zone(page)->managed_pages); 8423 totalram_pages_add(count); 8424 #ifdef CONFIG_HIGHMEM 8425 if (PageHighMem(page)) 8426 totalhigh_pages_add(count); 8427 #endif 8428 } 8429 EXPORT_SYMBOL(adjust_managed_page_count); 8430 8431 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 8432 { 8433 void *pos; 8434 unsigned long pages = 0; 8435 8436 start = (void *)PAGE_ALIGN((unsigned long)start); 8437 end = (void *)((unsigned long)end & PAGE_MASK); 8438 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 8439 struct page *page = virt_to_page(pos); 8440 void *direct_map_addr; 8441 8442 /* 8443 * 'direct_map_addr' might be different from 'pos' 8444 * because some architectures' virt_to_page() 8445 * work with aliases. Getting the direct map 8446 * address ensures that we get a _writeable_ 8447 * alias for the memset(). 8448 */ 8449 direct_map_addr = page_address(page); 8450 /* 8451 * Perform a kasan-unchecked memset() since this memory 8452 * has not been initialized. 8453 */ 8454 direct_map_addr = kasan_reset_tag(direct_map_addr); 8455 if ((unsigned int)poison <= 0xFF) 8456 memset(direct_map_addr, poison, PAGE_SIZE); 8457 8458 free_reserved_page(page); 8459 } 8460 8461 if (pages && s) 8462 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 8463 8464 return pages; 8465 } 8466 8467 void __init mem_init_print_info(void) 8468 { 8469 unsigned long physpages, codesize, datasize, rosize, bss_size; 8470 unsigned long init_code_size, init_data_size; 8471 8472 physpages = get_num_physpages(); 8473 codesize = _etext - _stext; 8474 datasize = _edata - _sdata; 8475 rosize = __end_rodata - __start_rodata; 8476 bss_size = __bss_stop - __bss_start; 8477 init_data_size = __init_end - __init_begin; 8478 init_code_size = _einittext - _sinittext; 8479 8480 /* 8481 * Detect special cases and adjust section sizes accordingly: 8482 * 1) .init.* may be embedded into .data sections 8483 * 2) .init.text.* may be out of [__init_begin, __init_end], 8484 * please refer to arch/tile/kernel/vmlinux.lds.S. 8485 * 3) .rodata.* may be embedded into .text or .data sections. 8486 */ 8487 #define adj_init_size(start, end, size, pos, adj) \ 8488 do { \ 8489 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ 8490 size -= adj; \ 8491 } while (0) 8492 8493 adj_init_size(__init_begin, __init_end, init_data_size, 8494 _sinittext, init_code_size); 8495 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 8496 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 8497 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 8498 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 8499 8500 #undef adj_init_size 8501 8502 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 8503 #ifdef CONFIG_HIGHMEM 8504 ", %luK highmem" 8505 #endif 8506 ")\n", 8507 K(nr_free_pages()), K(physpages), 8508 codesize >> 10, datasize >> 10, rosize >> 10, 8509 (init_data_size + init_code_size) >> 10, bss_size >> 10, 8510 K(physpages - totalram_pages() - totalcma_pages), 8511 K(totalcma_pages) 8512 #ifdef CONFIG_HIGHMEM 8513 , K(totalhigh_pages()) 8514 #endif 8515 ); 8516 } 8517 8518 /** 8519 * set_dma_reserve - set the specified number of pages reserved in the first zone 8520 * @new_dma_reserve: The number of pages to mark reserved 8521 * 8522 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 8523 * In the DMA zone, a significant percentage may be consumed by kernel image 8524 * and other unfreeable allocations which can skew the watermarks badly. This 8525 * function may optionally be used to account for unfreeable pages in the 8526 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 8527 * smaller per-cpu batchsize. 8528 */ 8529 void __init set_dma_reserve(unsigned long new_dma_reserve) 8530 { 8531 dma_reserve = new_dma_reserve; 8532 } 8533 8534 static int page_alloc_cpu_dead(unsigned int cpu) 8535 { 8536 struct zone *zone; 8537 8538 lru_add_drain_cpu(cpu); 8539 mlock_page_drain_remote(cpu); 8540 drain_pages(cpu); 8541 8542 /* 8543 * Spill the event counters of the dead processor 8544 * into the current processors event counters. 8545 * This artificially elevates the count of the current 8546 * processor. 8547 */ 8548 vm_events_fold_cpu(cpu); 8549 8550 /* 8551 * Zero the differential counters of the dead processor 8552 * so that the vm statistics are consistent. 8553 * 8554 * This is only okay since the processor is dead and cannot 8555 * race with what we are doing. 8556 */ 8557 cpu_vm_stats_fold(cpu); 8558 8559 for_each_populated_zone(zone) 8560 zone_pcp_update(zone, 0); 8561 8562 return 0; 8563 } 8564 8565 static int page_alloc_cpu_online(unsigned int cpu) 8566 { 8567 struct zone *zone; 8568 8569 for_each_populated_zone(zone) 8570 zone_pcp_update(zone, 1); 8571 return 0; 8572 } 8573 8574 #ifdef CONFIG_NUMA 8575 int hashdist = HASHDIST_DEFAULT; 8576 8577 static int __init set_hashdist(char *str) 8578 { 8579 if (!str) 8580 return 0; 8581 hashdist = simple_strtoul(str, &str, 0); 8582 return 1; 8583 } 8584 __setup("hashdist=", set_hashdist); 8585 #endif 8586 8587 void __init page_alloc_init(void) 8588 { 8589 int ret; 8590 8591 #ifdef CONFIG_NUMA 8592 if (num_node_state(N_MEMORY) == 1) 8593 hashdist = 0; 8594 #endif 8595 8596 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 8597 "mm/page_alloc:pcp", 8598 page_alloc_cpu_online, 8599 page_alloc_cpu_dead); 8600 WARN_ON(ret < 0); 8601 } 8602 8603 /* 8604 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8605 * or min_free_kbytes changes. 8606 */ 8607 static void calculate_totalreserve_pages(void) 8608 { 8609 struct pglist_data *pgdat; 8610 unsigned long reserve_pages = 0; 8611 enum zone_type i, j; 8612 8613 for_each_online_pgdat(pgdat) { 8614 8615 pgdat->totalreserve_pages = 0; 8616 8617 for (i = 0; i < MAX_NR_ZONES; i++) { 8618 struct zone *zone = pgdat->node_zones + i; 8619 long max = 0; 8620 unsigned long managed_pages = zone_managed_pages(zone); 8621 8622 /* Find valid and maximum lowmem_reserve in the zone */ 8623 for (j = i; j < MAX_NR_ZONES; j++) { 8624 if (zone->lowmem_reserve[j] > max) 8625 max = zone->lowmem_reserve[j]; 8626 } 8627 8628 /* we treat the high watermark as reserved pages. */ 8629 max += high_wmark_pages(zone); 8630 8631 if (max > managed_pages) 8632 max = managed_pages; 8633 8634 pgdat->totalreserve_pages += max; 8635 8636 reserve_pages += max; 8637 } 8638 } 8639 totalreserve_pages = reserve_pages; 8640 } 8641 8642 /* 8643 * setup_per_zone_lowmem_reserve - called whenever 8644 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8645 * has a correct pages reserved value, so an adequate number of 8646 * pages are left in the zone after a successful __alloc_pages(). 8647 */ 8648 static void setup_per_zone_lowmem_reserve(void) 8649 { 8650 struct pglist_data *pgdat; 8651 enum zone_type i, j; 8652 8653 for_each_online_pgdat(pgdat) { 8654 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8655 struct zone *zone = &pgdat->node_zones[i]; 8656 int ratio = sysctl_lowmem_reserve_ratio[i]; 8657 bool clear = !ratio || !zone_managed_pages(zone); 8658 unsigned long managed_pages = 0; 8659 8660 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8661 struct zone *upper_zone = &pgdat->node_zones[j]; 8662 8663 managed_pages += zone_managed_pages(upper_zone); 8664 8665 if (clear) 8666 zone->lowmem_reserve[j] = 0; 8667 else 8668 zone->lowmem_reserve[j] = managed_pages / ratio; 8669 } 8670 } 8671 } 8672 8673 /* update totalreserve_pages */ 8674 calculate_totalreserve_pages(); 8675 } 8676 8677 static void __setup_per_zone_wmarks(void) 8678 { 8679 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8680 unsigned long lowmem_pages = 0; 8681 struct zone *zone; 8682 unsigned long flags; 8683 8684 /* Calculate total number of !ZONE_HIGHMEM pages */ 8685 for_each_zone(zone) { 8686 if (!is_highmem(zone)) 8687 lowmem_pages += zone_managed_pages(zone); 8688 } 8689 8690 for_each_zone(zone) { 8691 u64 tmp; 8692 8693 spin_lock_irqsave(&zone->lock, flags); 8694 tmp = (u64)pages_min * zone_managed_pages(zone); 8695 do_div(tmp, lowmem_pages); 8696 if (is_highmem(zone)) { 8697 /* 8698 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8699 * need highmem pages, so cap pages_min to a small 8700 * value here. 8701 * 8702 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8703 * deltas control async page reclaim, and so should 8704 * not be capped for highmem. 8705 */ 8706 unsigned long min_pages; 8707 8708 min_pages = zone_managed_pages(zone) / 1024; 8709 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8710 zone->_watermark[WMARK_MIN] = min_pages; 8711 } else { 8712 /* 8713 * If it's a lowmem zone, reserve a number of pages 8714 * proportionate to the zone's size. 8715 */ 8716 zone->_watermark[WMARK_MIN] = tmp; 8717 } 8718 8719 /* 8720 * Set the kswapd watermarks distance according to the 8721 * scale factor in proportion to available memory, but 8722 * ensure a minimum size on small systems. 8723 */ 8724 tmp = max_t(u64, tmp >> 2, 8725 mult_frac(zone_managed_pages(zone), 8726 watermark_scale_factor, 10000)); 8727 8728 zone->watermark_boost = 0; 8729 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8730 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 8731 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 8732 8733 spin_unlock_irqrestore(&zone->lock, flags); 8734 } 8735 8736 /* update totalreserve_pages */ 8737 calculate_totalreserve_pages(); 8738 } 8739 8740 /** 8741 * setup_per_zone_wmarks - called when min_free_kbytes changes 8742 * or when memory is hot-{added|removed} 8743 * 8744 * Ensures that the watermark[min,low,high] values for each zone are set 8745 * correctly with respect to min_free_kbytes. 8746 */ 8747 void setup_per_zone_wmarks(void) 8748 { 8749 struct zone *zone; 8750 static DEFINE_SPINLOCK(lock); 8751 8752 spin_lock(&lock); 8753 __setup_per_zone_wmarks(); 8754 spin_unlock(&lock); 8755 8756 /* 8757 * The watermark size have changed so update the pcpu batch 8758 * and high limits or the limits may be inappropriate. 8759 */ 8760 for_each_zone(zone) 8761 zone_pcp_update(zone, 0); 8762 } 8763 8764 /* 8765 * Initialise min_free_kbytes. 8766 * 8767 * For small machines we want it small (128k min). For large machines 8768 * we want it large (256MB max). But it is not linear, because network 8769 * bandwidth does not increase linearly with machine size. We use 8770 * 8771 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8772 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8773 * 8774 * which yields 8775 * 8776 * 16MB: 512k 8777 * 32MB: 724k 8778 * 64MB: 1024k 8779 * 128MB: 1448k 8780 * 256MB: 2048k 8781 * 512MB: 2896k 8782 * 1024MB: 4096k 8783 * 2048MB: 5792k 8784 * 4096MB: 8192k 8785 * 8192MB: 11584k 8786 * 16384MB: 16384k 8787 */ 8788 void calculate_min_free_kbytes(void) 8789 { 8790 unsigned long lowmem_kbytes; 8791 int new_min_free_kbytes; 8792 8793 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8794 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8795 8796 if (new_min_free_kbytes > user_min_free_kbytes) 8797 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 8798 else 8799 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8800 new_min_free_kbytes, user_min_free_kbytes); 8801 8802 } 8803 8804 int __meminit init_per_zone_wmark_min(void) 8805 { 8806 calculate_min_free_kbytes(); 8807 setup_per_zone_wmarks(); 8808 refresh_zone_stat_thresholds(); 8809 setup_per_zone_lowmem_reserve(); 8810 8811 #ifdef CONFIG_NUMA 8812 setup_min_unmapped_ratio(); 8813 setup_min_slab_ratio(); 8814 #endif 8815 8816 khugepaged_min_free_kbytes_update(); 8817 8818 return 0; 8819 } 8820 postcore_initcall(init_per_zone_wmark_min) 8821 8822 /* 8823 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8824 * that we can call two helper functions whenever min_free_kbytes 8825 * changes. 8826 */ 8827 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8828 void *buffer, size_t *length, loff_t *ppos) 8829 { 8830 int rc; 8831 8832 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8833 if (rc) 8834 return rc; 8835 8836 if (write) { 8837 user_min_free_kbytes = min_free_kbytes; 8838 setup_per_zone_wmarks(); 8839 } 8840 return 0; 8841 } 8842 8843 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8844 void *buffer, size_t *length, loff_t *ppos) 8845 { 8846 int rc; 8847 8848 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8849 if (rc) 8850 return rc; 8851 8852 if (write) 8853 setup_per_zone_wmarks(); 8854 8855 return 0; 8856 } 8857 8858 #ifdef CONFIG_NUMA 8859 static void setup_min_unmapped_ratio(void) 8860 { 8861 pg_data_t *pgdat; 8862 struct zone *zone; 8863 8864 for_each_online_pgdat(pgdat) 8865 pgdat->min_unmapped_pages = 0; 8866 8867 for_each_zone(zone) 8868 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8869 sysctl_min_unmapped_ratio) / 100; 8870 } 8871 8872 8873 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8874 void *buffer, size_t *length, loff_t *ppos) 8875 { 8876 int rc; 8877 8878 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8879 if (rc) 8880 return rc; 8881 8882 setup_min_unmapped_ratio(); 8883 8884 return 0; 8885 } 8886 8887 static void setup_min_slab_ratio(void) 8888 { 8889 pg_data_t *pgdat; 8890 struct zone *zone; 8891 8892 for_each_online_pgdat(pgdat) 8893 pgdat->min_slab_pages = 0; 8894 8895 for_each_zone(zone) 8896 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8897 sysctl_min_slab_ratio) / 100; 8898 } 8899 8900 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8901 void *buffer, size_t *length, loff_t *ppos) 8902 { 8903 int rc; 8904 8905 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8906 if (rc) 8907 return rc; 8908 8909 setup_min_slab_ratio(); 8910 8911 return 0; 8912 } 8913 #endif 8914 8915 /* 8916 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8917 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8918 * whenever sysctl_lowmem_reserve_ratio changes. 8919 * 8920 * The reserve ratio obviously has absolutely no relation with the 8921 * minimum watermarks. The lowmem reserve ratio can only make sense 8922 * if in function of the boot time zone sizes. 8923 */ 8924 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8925 void *buffer, size_t *length, loff_t *ppos) 8926 { 8927 int i; 8928 8929 proc_dointvec_minmax(table, write, buffer, length, ppos); 8930 8931 for (i = 0; i < MAX_NR_ZONES; i++) { 8932 if (sysctl_lowmem_reserve_ratio[i] < 1) 8933 sysctl_lowmem_reserve_ratio[i] = 0; 8934 } 8935 8936 setup_per_zone_lowmem_reserve(); 8937 return 0; 8938 } 8939 8940 /* 8941 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 8942 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8943 * pagelist can have before it gets flushed back to buddy allocator. 8944 */ 8945 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 8946 int write, void *buffer, size_t *length, loff_t *ppos) 8947 { 8948 struct zone *zone; 8949 int old_percpu_pagelist_high_fraction; 8950 int ret; 8951 8952 mutex_lock(&pcp_batch_high_lock); 8953 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 8954 8955 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8956 if (!write || ret < 0) 8957 goto out; 8958 8959 /* Sanity checking to avoid pcp imbalance */ 8960 if (percpu_pagelist_high_fraction && 8961 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 8962 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 8963 ret = -EINVAL; 8964 goto out; 8965 } 8966 8967 /* No change? */ 8968 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 8969 goto out; 8970 8971 for_each_populated_zone(zone) 8972 zone_set_pageset_high_and_batch(zone, 0); 8973 out: 8974 mutex_unlock(&pcp_batch_high_lock); 8975 return ret; 8976 } 8977 8978 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8979 /* 8980 * Returns the number of pages that arch has reserved but 8981 * is not known to alloc_large_system_hash(). 8982 */ 8983 static unsigned long __init arch_reserved_kernel_pages(void) 8984 { 8985 return 0; 8986 } 8987 #endif 8988 8989 /* 8990 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8991 * machines. As memory size is increased the scale is also increased but at 8992 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8993 * quadruples the scale is increased by one, which means the size of hash table 8994 * only doubles, instead of quadrupling as well. 8995 * Because 32-bit systems cannot have large physical memory, where this scaling 8996 * makes sense, it is disabled on such platforms. 8997 */ 8998 #if __BITS_PER_LONG > 32 8999 #define ADAPT_SCALE_BASE (64ul << 30) 9000 #define ADAPT_SCALE_SHIFT 2 9001 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 9002 #endif 9003 9004 /* 9005 * allocate a large system hash table from bootmem 9006 * - it is assumed that the hash table must contain an exact power-of-2 9007 * quantity of entries 9008 * - limit is the number of hash buckets, not the total allocation size 9009 */ 9010 void *__init alloc_large_system_hash(const char *tablename, 9011 unsigned long bucketsize, 9012 unsigned long numentries, 9013 int scale, 9014 int flags, 9015 unsigned int *_hash_shift, 9016 unsigned int *_hash_mask, 9017 unsigned long low_limit, 9018 unsigned long high_limit) 9019 { 9020 unsigned long long max = high_limit; 9021 unsigned long log2qty, size; 9022 void *table = NULL; 9023 gfp_t gfp_flags; 9024 bool virt; 9025 bool huge; 9026 9027 /* allow the kernel cmdline to have a say */ 9028 if (!numentries) { 9029 /* round applicable memory size up to nearest megabyte */ 9030 numentries = nr_kernel_pages; 9031 numentries -= arch_reserved_kernel_pages(); 9032 9033 /* It isn't necessary when PAGE_SIZE >= 1MB */ 9034 if (PAGE_SHIFT < 20) 9035 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 9036 9037 #if __BITS_PER_LONG > 32 9038 if (!high_limit) { 9039 unsigned long adapt; 9040 9041 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 9042 adapt <<= ADAPT_SCALE_SHIFT) 9043 scale++; 9044 } 9045 #endif 9046 9047 /* limit to 1 bucket per 2^scale bytes of low memory */ 9048 if (scale > PAGE_SHIFT) 9049 numentries >>= (scale - PAGE_SHIFT); 9050 else 9051 numentries <<= (PAGE_SHIFT - scale); 9052 9053 /* Make sure we've got at least a 0-order allocation.. */ 9054 if (unlikely(flags & HASH_SMALL)) { 9055 /* Makes no sense without HASH_EARLY */ 9056 WARN_ON(!(flags & HASH_EARLY)); 9057 if (!(numentries >> *_hash_shift)) { 9058 numentries = 1UL << *_hash_shift; 9059 BUG_ON(!numentries); 9060 } 9061 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 9062 numentries = PAGE_SIZE / bucketsize; 9063 } 9064 numentries = roundup_pow_of_two(numentries); 9065 9066 /* limit allocation size to 1/16 total memory by default */ 9067 if (max == 0) { 9068 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 9069 do_div(max, bucketsize); 9070 } 9071 max = min(max, 0x80000000ULL); 9072 9073 if (numentries < low_limit) 9074 numentries = low_limit; 9075 if (numentries > max) 9076 numentries = max; 9077 9078 log2qty = ilog2(numentries); 9079 9080 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 9081 do { 9082 virt = false; 9083 size = bucketsize << log2qty; 9084 if (flags & HASH_EARLY) { 9085 if (flags & HASH_ZERO) 9086 table = memblock_alloc(size, SMP_CACHE_BYTES); 9087 else 9088 table = memblock_alloc_raw(size, 9089 SMP_CACHE_BYTES); 9090 } else if (get_order(size) >= MAX_ORDER || hashdist) { 9091 table = vmalloc_huge(size, gfp_flags); 9092 virt = true; 9093 if (table) 9094 huge = is_vm_area_hugepages(table); 9095 } else { 9096 /* 9097 * If bucketsize is not a power-of-two, we may free 9098 * some pages at the end of hash table which 9099 * alloc_pages_exact() automatically does 9100 */ 9101 table = alloc_pages_exact(size, gfp_flags); 9102 kmemleak_alloc(table, size, 1, gfp_flags); 9103 } 9104 } while (!table && size > PAGE_SIZE && --log2qty); 9105 9106 if (!table) 9107 panic("Failed to allocate %s hash table\n", tablename); 9108 9109 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 9110 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 9111 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 9112 9113 if (_hash_shift) 9114 *_hash_shift = log2qty; 9115 if (_hash_mask) 9116 *_hash_mask = (1 << log2qty) - 1; 9117 9118 return table; 9119 } 9120 9121 #ifdef CONFIG_CONTIG_ALLOC 9122 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 9123 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 9124 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 9125 static void alloc_contig_dump_pages(struct list_head *page_list) 9126 { 9127 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 9128 9129 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 9130 struct page *page; 9131 9132 dump_stack(); 9133 list_for_each_entry(page, page_list, lru) 9134 dump_page(page, "migration failure"); 9135 } 9136 } 9137 #else 9138 static inline void alloc_contig_dump_pages(struct list_head *page_list) 9139 { 9140 } 9141 #endif 9142 9143 /* [start, end) must belong to a single zone. */ 9144 int __alloc_contig_migrate_range(struct compact_control *cc, 9145 unsigned long start, unsigned long end) 9146 { 9147 /* This function is based on compact_zone() from compaction.c. */ 9148 unsigned int nr_reclaimed; 9149 unsigned long pfn = start; 9150 unsigned int tries = 0; 9151 int ret = 0; 9152 struct migration_target_control mtc = { 9153 .nid = zone_to_nid(cc->zone), 9154 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 9155 }; 9156 9157 lru_cache_disable(); 9158 9159 while (pfn < end || !list_empty(&cc->migratepages)) { 9160 if (fatal_signal_pending(current)) { 9161 ret = -EINTR; 9162 break; 9163 } 9164 9165 if (list_empty(&cc->migratepages)) { 9166 cc->nr_migratepages = 0; 9167 ret = isolate_migratepages_range(cc, pfn, end); 9168 if (ret && ret != -EAGAIN) 9169 break; 9170 pfn = cc->migrate_pfn; 9171 tries = 0; 9172 } else if (++tries == 5) { 9173 ret = -EBUSY; 9174 break; 9175 } 9176 9177 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 9178 &cc->migratepages); 9179 cc->nr_migratepages -= nr_reclaimed; 9180 9181 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 9182 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 9183 9184 /* 9185 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 9186 * to retry again over this error, so do the same here. 9187 */ 9188 if (ret == -ENOMEM) 9189 break; 9190 } 9191 9192 lru_cache_enable(); 9193 if (ret < 0) { 9194 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 9195 alloc_contig_dump_pages(&cc->migratepages); 9196 putback_movable_pages(&cc->migratepages); 9197 return ret; 9198 } 9199 return 0; 9200 } 9201 9202 /** 9203 * alloc_contig_range() -- tries to allocate given range of pages 9204 * @start: start PFN to allocate 9205 * @end: one-past-the-last PFN to allocate 9206 * @migratetype: migratetype of the underlying pageblocks (either 9207 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 9208 * in range must have the same migratetype and it must 9209 * be either of the two. 9210 * @gfp_mask: GFP mask to use during compaction 9211 * 9212 * The PFN range does not have to be pageblock aligned. The PFN range must 9213 * belong to a single zone. 9214 * 9215 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 9216 * pageblocks in the range. Once isolated, the pageblocks should not 9217 * be modified by others. 9218 * 9219 * Return: zero on success or negative error code. On success all 9220 * pages which PFN is in [start, end) are allocated for the caller and 9221 * need to be freed with free_contig_range(). 9222 */ 9223 int alloc_contig_range(unsigned long start, unsigned long end, 9224 unsigned migratetype, gfp_t gfp_mask) 9225 { 9226 unsigned long outer_start, outer_end; 9227 int order; 9228 int ret = 0; 9229 9230 struct compact_control cc = { 9231 .nr_migratepages = 0, 9232 .order = -1, 9233 .zone = page_zone(pfn_to_page(start)), 9234 .mode = MIGRATE_SYNC, 9235 .ignore_skip_hint = true, 9236 .no_set_skip_hint = true, 9237 .gfp_mask = current_gfp_context(gfp_mask), 9238 .alloc_contig = true, 9239 }; 9240 INIT_LIST_HEAD(&cc.migratepages); 9241 9242 /* 9243 * What we do here is we mark all pageblocks in range as 9244 * MIGRATE_ISOLATE. Because pageblock and max order pages may 9245 * have different sizes, and due to the way page allocator 9246 * work, start_isolate_page_range() has special handlings for this. 9247 * 9248 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 9249 * migrate the pages from an unaligned range (ie. pages that 9250 * we are interested in). This will put all the pages in 9251 * range back to page allocator as MIGRATE_ISOLATE. 9252 * 9253 * When this is done, we take the pages in range from page 9254 * allocator removing them from the buddy system. This way 9255 * page allocator will never consider using them. 9256 * 9257 * This lets us mark the pageblocks back as 9258 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 9259 * aligned range but not in the unaligned, original range are 9260 * put back to page allocator so that buddy can use them. 9261 */ 9262 9263 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 9264 if (ret) 9265 goto done; 9266 9267 drain_all_pages(cc.zone); 9268 9269 /* 9270 * In case of -EBUSY, we'd like to know which page causes problem. 9271 * So, just fall through. test_pages_isolated() has a tracepoint 9272 * which will report the busy page. 9273 * 9274 * It is possible that busy pages could become available before 9275 * the call to test_pages_isolated, and the range will actually be 9276 * allocated. So, if we fall through be sure to clear ret so that 9277 * -EBUSY is not accidentally used or returned to caller. 9278 */ 9279 ret = __alloc_contig_migrate_range(&cc, start, end); 9280 if (ret && ret != -EBUSY) 9281 goto done; 9282 ret = 0; 9283 9284 /* 9285 * Pages from [start, end) are within a pageblock_nr_pages 9286 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 9287 * more, all pages in [start, end) are free in page allocator. 9288 * What we are going to do is to allocate all pages from 9289 * [start, end) (that is remove them from page allocator). 9290 * 9291 * The only problem is that pages at the beginning and at the 9292 * end of interesting range may be not aligned with pages that 9293 * page allocator holds, ie. they can be part of higher order 9294 * pages. Because of this, we reserve the bigger range and 9295 * once this is done free the pages we are not interested in. 9296 * 9297 * We don't have to hold zone->lock here because the pages are 9298 * isolated thus they won't get removed from buddy. 9299 */ 9300 9301 order = 0; 9302 outer_start = start; 9303 while (!PageBuddy(pfn_to_page(outer_start))) { 9304 if (++order >= MAX_ORDER) { 9305 outer_start = start; 9306 break; 9307 } 9308 outer_start &= ~0UL << order; 9309 } 9310 9311 if (outer_start != start) { 9312 order = buddy_order(pfn_to_page(outer_start)); 9313 9314 /* 9315 * outer_start page could be small order buddy page and 9316 * it doesn't include start page. Adjust outer_start 9317 * in this case to report failed page properly 9318 * on tracepoint in test_pages_isolated() 9319 */ 9320 if (outer_start + (1UL << order) <= start) 9321 outer_start = start; 9322 } 9323 9324 /* Make sure the range is really isolated. */ 9325 if (test_pages_isolated(outer_start, end, 0)) { 9326 ret = -EBUSY; 9327 goto done; 9328 } 9329 9330 /* Grab isolated pages from freelists. */ 9331 outer_end = isolate_freepages_range(&cc, outer_start, end); 9332 if (!outer_end) { 9333 ret = -EBUSY; 9334 goto done; 9335 } 9336 9337 /* Free head and tail (if any) */ 9338 if (start != outer_start) 9339 free_contig_range(outer_start, start - outer_start); 9340 if (end != outer_end) 9341 free_contig_range(end, outer_end - end); 9342 9343 done: 9344 undo_isolate_page_range(start, end, migratetype); 9345 return ret; 9346 } 9347 EXPORT_SYMBOL(alloc_contig_range); 9348 9349 static int __alloc_contig_pages(unsigned long start_pfn, 9350 unsigned long nr_pages, gfp_t gfp_mask) 9351 { 9352 unsigned long end_pfn = start_pfn + nr_pages; 9353 9354 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 9355 gfp_mask); 9356 } 9357 9358 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 9359 unsigned long nr_pages) 9360 { 9361 unsigned long i, end_pfn = start_pfn + nr_pages; 9362 struct page *page; 9363 9364 for (i = start_pfn; i < end_pfn; i++) { 9365 page = pfn_to_online_page(i); 9366 if (!page) 9367 return false; 9368 9369 if (page_zone(page) != z) 9370 return false; 9371 9372 if (PageReserved(page)) 9373 return false; 9374 } 9375 return true; 9376 } 9377 9378 static bool zone_spans_last_pfn(const struct zone *zone, 9379 unsigned long start_pfn, unsigned long nr_pages) 9380 { 9381 unsigned long last_pfn = start_pfn + nr_pages - 1; 9382 9383 return zone_spans_pfn(zone, last_pfn); 9384 } 9385 9386 /** 9387 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 9388 * @nr_pages: Number of contiguous pages to allocate 9389 * @gfp_mask: GFP mask to limit search and used during compaction 9390 * @nid: Target node 9391 * @nodemask: Mask for other possible nodes 9392 * 9393 * This routine is a wrapper around alloc_contig_range(). It scans over zones 9394 * on an applicable zonelist to find a contiguous pfn range which can then be 9395 * tried for allocation with alloc_contig_range(). This routine is intended 9396 * for allocation requests which can not be fulfilled with the buddy allocator. 9397 * 9398 * The allocated memory is always aligned to a page boundary. If nr_pages is a 9399 * power of two, then allocated range is also guaranteed to be aligned to same 9400 * nr_pages (e.g. 1GB request would be aligned to 1GB). 9401 * 9402 * Allocated pages can be freed with free_contig_range() or by manually calling 9403 * __free_page() on each allocated page. 9404 * 9405 * Return: pointer to contiguous pages on success, or NULL if not successful. 9406 */ 9407 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 9408 int nid, nodemask_t *nodemask) 9409 { 9410 unsigned long ret, pfn, flags; 9411 struct zonelist *zonelist; 9412 struct zone *zone; 9413 struct zoneref *z; 9414 9415 zonelist = node_zonelist(nid, gfp_mask); 9416 for_each_zone_zonelist_nodemask(zone, z, zonelist, 9417 gfp_zone(gfp_mask), nodemask) { 9418 spin_lock_irqsave(&zone->lock, flags); 9419 9420 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 9421 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 9422 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 9423 /* 9424 * We release the zone lock here because 9425 * alloc_contig_range() will also lock the zone 9426 * at some point. If there's an allocation 9427 * spinning on this lock, it may win the race 9428 * and cause alloc_contig_range() to fail... 9429 */ 9430 spin_unlock_irqrestore(&zone->lock, flags); 9431 ret = __alloc_contig_pages(pfn, nr_pages, 9432 gfp_mask); 9433 if (!ret) 9434 return pfn_to_page(pfn); 9435 spin_lock_irqsave(&zone->lock, flags); 9436 } 9437 pfn += nr_pages; 9438 } 9439 spin_unlock_irqrestore(&zone->lock, flags); 9440 } 9441 return NULL; 9442 } 9443 #endif /* CONFIG_CONTIG_ALLOC */ 9444 9445 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 9446 { 9447 unsigned long count = 0; 9448 9449 for (; nr_pages--; pfn++) { 9450 struct page *page = pfn_to_page(pfn); 9451 9452 count += page_count(page) != 1; 9453 __free_page(page); 9454 } 9455 WARN(count != 0, "%lu pages are still in use!\n", count); 9456 } 9457 EXPORT_SYMBOL(free_contig_range); 9458 9459 /* 9460 * The zone indicated has a new number of managed_pages; batch sizes and percpu 9461 * page high values need to be recalculated. 9462 */ 9463 void zone_pcp_update(struct zone *zone, int cpu_online) 9464 { 9465 mutex_lock(&pcp_batch_high_lock); 9466 zone_set_pageset_high_and_batch(zone, cpu_online); 9467 mutex_unlock(&pcp_batch_high_lock); 9468 } 9469 9470 /* 9471 * Effectively disable pcplists for the zone by setting the high limit to 0 9472 * and draining all cpus. A concurrent page freeing on another CPU that's about 9473 * to put the page on pcplist will either finish before the drain and the page 9474 * will be drained, or observe the new high limit and skip the pcplist. 9475 * 9476 * Must be paired with a call to zone_pcp_enable(). 9477 */ 9478 void zone_pcp_disable(struct zone *zone) 9479 { 9480 mutex_lock(&pcp_batch_high_lock); 9481 __zone_set_pageset_high_and_batch(zone, 0, 1); 9482 __drain_all_pages(zone, true); 9483 } 9484 9485 void zone_pcp_enable(struct zone *zone) 9486 { 9487 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9488 mutex_unlock(&pcp_batch_high_lock); 9489 } 9490 9491 void zone_pcp_reset(struct zone *zone) 9492 { 9493 int cpu; 9494 struct per_cpu_zonestat *pzstats; 9495 9496 if (zone->per_cpu_pageset != &boot_pageset) { 9497 for_each_online_cpu(cpu) { 9498 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 9499 drain_zonestat(zone, pzstats); 9500 } 9501 free_percpu(zone->per_cpu_pageset); 9502 free_percpu(zone->per_cpu_zonestats); 9503 zone->per_cpu_pageset = &boot_pageset; 9504 zone->per_cpu_zonestats = &boot_zonestats; 9505 } 9506 } 9507 9508 #ifdef CONFIG_MEMORY_HOTREMOVE 9509 /* 9510 * All pages in the range must be in a single zone, must not contain holes, 9511 * must span full sections, and must be isolated before calling this function. 9512 */ 9513 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9514 { 9515 unsigned long pfn = start_pfn; 9516 struct page *page; 9517 struct zone *zone; 9518 unsigned int order; 9519 unsigned long flags; 9520 9521 offline_mem_sections(pfn, end_pfn); 9522 zone = page_zone(pfn_to_page(pfn)); 9523 spin_lock_irqsave(&zone->lock, flags); 9524 while (pfn < end_pfn) { 9525 page = pfn_to_page(pfn); 9526 /* 9527 * The HWPoisoned page may be not in buddy system, and 9528 * page_count() is not 0. 9529 */ 9530 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9531 pfn++; 9532 continue; 9533 } 9534 /* 9535 * At this point all remaining PageOffline() pages have a 9536 * reference count of 0 and can simply be skipped. 9537 */ 9538 if (PageOffline(page)) { 9539 BUG_ON(page_count(page)); 9540 BUG_ON(PageBuddy(page)); 9541 pfn++; 9542 continue; 9543 } 9544 9545 BUG_ON(page_count(page)); 9546 BUG_ON(!PageBuddy(page)); 9547 order = buddy_order(page); 9548 del_page_from_free_list(page, zone, order); 9549 pfn += (1 << order); 9550 } 9551 spin_unlock_irqrestore(&zone->lock, flags); 9552 } 9553 #endif 9554 9555 /* 9556 * This function returns a stable result only if called under zone lock. 9557 */ 9558 bool is_free_buddy_page(struct page *page) 9559 { 9560 unsigned long pfn = page_to_pfn(page); 9561 unsigned int order; 9562 9563 for (order = 0; order < MAX_ORDER; order++) { 9564 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9565 9566 if (PageBuddy(page_head) && 9567 buddy_order_unsafe(page_head) >= order) 9568 break; 9569 } 9570 9571 return order < MAX_ORDER; 9572 } 9573 EXPORT_SYMBOL(is_free_buddy_page); 9574 9575 #ifdef CONFIG_MEMORY_FAILURE 9576 /* 9577 * Break down a higher-order page in sub-pages, and keep our target out of 9578 * buddy allocator. 9579 */ 9580 static void break_down_buddy_pages(struct zone *zone, struct page *page, 9581 struct page *target, int low, int high, 9582 int migratetype) 9583 { 9584 unsigned long size = 1 << high; 9585 struct page *current_buddy, *next_page; 9586 9587 while (high > low) { 9588 high--; 9589 size >>= 1; 9590 9591 if (target >= &page[size]) { 9592 next_page = page + size; 9593 current_buddy = page; 9594 } else { 9595 next_page = page; 9596 current_buddy = page + size; 9597 } 9598 9599 if (set_page_guard(zone, current_buddy, high, migratetype)) 9600 continue; 9601 9602 if (current_buddy != target) { 9603 add_to_free_list(current_buddy, zone, high, migratetype); 9604 set_buddy_order(current_buddy, high); 9605 page = next_page; 9606 } 9607 } 9608 } 9609 9610 /* 9611 * Take a page that will be marked as poisoned off the buddy allocator. 9612 */ 9613 bool take_page_off_buddy(struct page *page) 9614 { 9615 struct zone *zone = page_zone(page); 9616 unsigned long pfn = page_to_pfn(page); 9617 unsigned long flags; 9618 unsigned int order; 9619 bool ret = false; 9620 9621 spin_lock_irqsave(&zone->lock, flags); 9622 for (order = 0; order < MAX_ORDER; order++) { 9623 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9624 int page_order = buddy_order(page_head); 9625 9626 if (PageBuddy(page_head) && page_order >= order) { 9627 unsigned long pfn_head = page_to_pfn(page_head); 9628 int migratetype = get_pfnblock_migratetype(page_head, 9629 pfn_head); 9630 9631 del_page_from_free_list(page_head, zone, page_order); 9632 break_down_buddy_pages(zone, page_head, page, 0, 9633 page_order, migratetype); 9634 SetPageHWPoisonTakenOff(page); 9635 if (!is_migrate_isolate(migratetype)) 9636 __mod_zone_freepage_state(zone, -1, migratetype); 9637 ret = true; 9638 break; 9639 } 9640 if (page_count(page_head) > 0) 9641 break; 9642 } 9643 spin_unlock_irqrestore(&zone->lock, flags); 9644 return ret; 9645 } 9646 9647 /* 9648 * Cancel takeoff done by take_page_off_buddy(). 9649 */ 9650 bool put_page_back_buddy(struct page *page) 9651 { 9652 struct zone *zone = page_zone(page); 9653 unsigned long pfn = page_to_pfn(page); 9654 unsigned long flags; 9655 int migratetype = get_pfnblock_migratetype(page, pfn); 9656 bool ret = false; 9657 9658 spin_lock_irqsave(&zone->lock, flags); 9659 if (put_page_testzero(page)) { 9660 ClearPageHWPoisonTakenOff(page); 9661 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 9662 if (TestClearPageHWPoison(page)) { 9663 ret = true; 9664 } 9665 } 9666 spin_unlock_irqrestore(&zone->lock, flags); 9667 9668 return ret; 9669 } 9670 #endif 9671 9672 #ifdef CONFIG_ZONE_DMA 9673 bool has_managed_dma(void) 9674 { 9675 struct pglist_data *pgdat; 9676 9677 for_each_online_pgdat(pgdat) { 9678 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 9679 9680 if (managed_zone(zone)) 9681 return true; 9682 } 9683 return false; 9684 } 9685 #endif /* CONFIG_ZONE_DMA */ 9686