1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/mmu_notifier.h> 61 #include <linux/migrate.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/sched/mm.h> 65 #include <linux/page_owner.h> 66 #include <linux/kthread.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/lockdep.h> 70 #include <linux/nmi.h> 71 #include <linux/psi.h> 72 #include <linux/padata.h> 73 #include <linux/khugepaged.h> 74 #include <linux/buffer_head.h> 75 76 #include <asm/sections.h> 77 #include <asm/tlbflush.h> 78 #include <asm/div64.h> 79 #include "internal.h" 80 #include "shuffle.h" 81 #include "page_reporting.h" 82 83 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 84 typedef int __bitwise fpi_t; 85 86 /* No special request */ 87 #define FPI_NONE ((__force fpi_t)0) 88 89 /* 90 * Skip free page reporting notification for the (possibly merged) page. 91 * This does not hinder free page reporting from grabbing the page, 92 * reporting it and marking it "reported" - it only skips notifying 93 * the free page reporting infrastructure about a newly freed page. For 94 * example, used when temporarily pulling a page from a freelist and 95 * putting it back unmodified. 96 */ 97 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 98 99 /* 100 * Place the (possibly merged) page to the tail of the freelist. Will ignore 101 * page shuffling (relevant code - e.g., memory onlining - is expected to 102 * shuffle the whole zone). 103 * 104 * Note: No code should rely on this flag for correctness - it's purely 105 * to allow for optimizations when handing back either fresh pages 106 * (memory onlining) or untouched pages (page isolation, free page 107 * reporting). 108 */ 109 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 110 111 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 112 static DEFINE_MUTEX(pcp_batch_high_lock); 113 #define MIN_PERCPU_PAGELIST_FRACTION (8) 114 115 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 116 DEFINE_PER_CPU(int, numa_node); 117 EXPORT_PER_CPU_SYMBOL(numa_node); 118 #endif 119 120 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 121 122 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 123 /* 124 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 125 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 126 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 127 * defined in <linux/topology.h>. 128 */ 129 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 130 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 131 #endif 132 133 /* work_structs for global per-cpu drains */ 134 struct pcpu_drain { 135 struct zone *zone; 136 struct work_struct work; 137 }; 138 static DEFINE_MUTEX(pcpu_drain_mutex); 139 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 140 141 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 142 volatile unsigned long latent_entropy __latent_entropy; 143 EXPORT_SYMBOL(latent_entropy); 144 #endif 145 146 /* 147 * Array of node states. 148 */ 149 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 150 [N_POSSIBLE] = NODE_MASK_ALL, 151 [N_ONLINE] = { { [0] = 1UL } }, 152 #ifndef CONFIG_NUMA 153 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 154 #ifdef CONFIG_HIGHMEM 155 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 156 #endif 157 [N_MEMORY] = { { [0] = 1UL } }, 158 [N_CPU] = { { [0] = 1UL } }, 159 #endif /* NUMA */ 160 }; 161 EXPORT_SYMBOL(node_states); 162 163 atomic_long_t _totalram_pages __read_mostly; 164 EXPORT_SYMBOL(_totalram_pages); 165 unsigned long totalreserve_pages __read_mostly; 166 unsigned long totalcma_pages __read_mostly; 167 168 int percpu_pagelist_fraction; 169 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 170 DEFINE_STATIC_KEY_FALSE(init_on_alloc); 171 EXPORT_SYMBOL(init_on_alloc); 172 173 DEFINE_STATIC_KEY_FALSE(init_on_free); 174 EXPORT_SYMBOL(init_on_free); 175 176 static bool _init_on_alloc_enabled_early __read_mostly 177 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 178 static int __init early_init_on_alloc(char *buf) 179 { 180 181 return kstrtobool(buf, &_init_on_alloc_enabled_early); 182 } 183 early_param("init_on_alloc", early_init_on_alloc); 184 185 static bool _init_on_free_enabled_early __read_mostly 186 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 187 static int __init early_init_on_free(char *buf) 188 { 189 return kstrtobool(buf, &_init_on_free_enabled_early); 190 } 191 early_param("init_on_free", early_init_on_free); 192 193 /* 194 * A cached value of the page's pageblock's migratetype, used when the page is 195 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 196 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 197 * Also the migratetype set in the page does not necessarily match the pcplist 198 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 199 * other index - this ensures that it will be put on the correct CMA freelist. 200 */ 201 static inline int get_pcppage_migratetype(struct page *page) 202 { 203 return page->index; 204 } 205 206 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 207 { 208 page->index = migratetype; 209 } 210 211 #ifdef CONFIG_PM_SLEEP 212 /* 213 * The following functions are used by the suspend/hibernate code to temporarily 214 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 215 * while devices are suspended. To avoid races with the suspend/hibernate code, 216 * they should always be called with system_transition_mutex held 217 * (gfp_allowed_mask also should only be modified with system_transition_mutex 218 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 219 * with that modification). 220 */ 221 222 static gfp_t saved_gfp_mask; 223 224 void pm_restore_gfp_mask(void) 225 { 226 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 227 if (saved_gfp_mask) { 228 gfp_allowed_mask = saved_gfp_mask; 229 saved_gfp_mask = 0; 230 } 231 } 232 233 void pm_restrict_gfp_mask(void) 234 { 235 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 236 WARN_ON(saved_gfp_mask); 237 saved_gfp_mask = gfp_allowed_mask; 238 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 239 } 240 241 bool pm_suspended_storage(void) 242 { 243 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 244 return false; 245 return true; 246 } 247 #endif /* CONFIG_PM_SLEEP */ 248 249 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 250 unsigned int pageblock_order __read_mostly; 251 #endif 252 253 static void __free_pages_ok(struct page *page, unsigned int order, 254 fpi_t fpi_flags); 255 256 /* 257 * results with 256, 32 in the lowmem_reserve sysctl: 258 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 259 * 1G machine -> (16M dma, 784M normal, 224M high) 260 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 261 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 262 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 263 * 264 * TBD: should special case ZONE_DMA32 machines here - in those we normally 265 * don't need any ZONE_NORMAL reservation 266 */ 267 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 268 #ifdef CONFIG_ZONE_DMA 269 [ZONE_DMA] = 256, 270 #endif 271 #ifdef CONFIG_ZONE_DMA32 272 [ZONE_DMA32] = 256, 273 #endif 274 [ZONE_NORMAL] = 32, 275 #ifdef CONFIG_HIGHMEM 276 [ZONE_HIGHMEM] = 0, 277 #endif 278 [ZONE_MOVABLE] = 0, 279 }; 280 281 static char * const zone_names[MAX_NR_ZONES] = { 282 #ifdef CONFIG_ZONE_DMA 283 "DMA", 284 #endif 285 #ifdef CONFIG_ZONE_DMA32 286 "DMA32", 287 #endif 288 "Normal", 289 #ifdef CONFIG_HIGHMEM 290 "HighMem", 291 #endif 292 "Movable", 293 #ifdef CONFIG_ZONE_DEVICE 294 "Device", 295 #endif 296 }; 297 298 const char * const migratetype_names[MIGRATE_TYPES] = { 299 "Unmovable", 300 "Movable", 301 "Reclaimable", 302 "HighAtomic", 303 #ifdef CONFIG_CMA 304 "CMA", 305 #endif 306 #ifdef CONFIG_MEMORY_ISOLATION 307 "Isolate", 308 #endif 309 }; 310 311 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 312 [NULL_COMPOUND_DTOR] = NULL, 313 [COMPOUND_PAGE_DTOR] = free_compound_page, 314 #ifdef CONFIG_HUGETLB_PAGE 315 [HUGETLB_PAGE_DTOR] = free_huge_page, 316 #endif 317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 318 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 319 #endif 320 }; 321 322 int min_free_kbytes = 1024; 323 int user_min_free_kbytes = -1; 324 #ifdef CONFIG_DISCONTIGMEM 325 /* 326 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges 327 * are not on separate NUMA nodes. Functionally this works but with 328 * watermark_boost_factor, it can reclaim prematurely as the ranges can be 329 * quite small. By default, do not boost watermarks on discontigmem as in 330 * many cases very high-order allocations like THP are likely to be 331 * unsupported and the premature reclaim offsets the advantage of long-term 332 * fragmentation avoidance. 333 */ 334 int watermark_boost_factor __read_mostly; 335 #else 336 int watermark_boost_factor __read_mostly = 15000; 337 #endif 338 int watermark_scale_factor = 10; 339 340 static unsigned long nr_kernel_pages __initdata; 341 static unsigned long nr_all_pages __initdata; 342 static unsigned long dma_reserve __initdata; 343 344 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 345 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 346 static unsigned long required_kernelcore __initdata; 347 static unsigned long required_kernelcore_percent __initdata; 348 static unsigned long required_movablecore __initdata; 349 static unsigned long required_movablecore_percent __initdata; 350 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 351 static bool mirrored_kernelcore __meminitdata; 352 353 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 354 int movable_zone; 355 EXPORT_SYMBOL(movable_zone); 356 357 #if MAX_NUMNODES > 1 358 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 359 unsigned int nr_online_nodes __read_mostly = 1; 360 EXPORT_SYMBOL(nr_node_ids); 361 EXPORT_SYMBOL(nr_online_nodes); 362 #endif 363 364 int page_group_by_mobility_disabled __read_mostly; 365 366 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 367 /* 368 * During boot we initialize deferred pages on-demand, as needed, but once 369 * page_alloc_init_late() has finished, the deferred pages are all initialized, 370 * and we can permanently disable that path. 371 */ 372 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 373 374 /* 375 * Calling kasan_free_pages() only after deferred memory initialization 376 * has completed. Poisoning pages during deferred memory init will greatly 377 * lengthen the process and cause problem in large memory systems as the 378 * deferred pages initialization is done with interrupt disabled. 379 * 380 * Assuming that there will be no reference to those newly initialized 381 * pages before they are ever allocated, this should have no effect on 382 * KASAN memory tracking as the poison will be properly inserted at page 383 * allocation time. The only corner case is when pages are allocated by 384 * on-demand allocation and then freed again before the deferred pages 385 * initialization is done, but this is not likely to happen. 386 */ 387 static inline void kasan_free_nondeferred_pages(struct page *page, int order) 388 { 389 if (!static_branch_unlikely(&deferred_pages)) 390 kasan_free_pages(page, order); 391 } 392 393 /* Returns true if the struct page for the pfn is uninitialised */ 394 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 395 { 396 int nid = early_pfn_to_nid(pfn); 397 398 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 399 return true; 400 401 return false; 402 } 403 404 /* 405 * Returns true when the remaining initialisation should be deferred until 406 * later in the boot cycle when it can be parallelised. 407 */ 408 static bool __meminit 409 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 410 { 411 static unsigned long prev_end_pfn, nr_initialised; 412 413 /* 414 * prev_end_pfn static that contains the end of previous zone 415 * No need to protect because called very early in boot before smp_init. 416 */ 417 if (prev_end_pfn != end_pfn) { 418 prev_end_pfn = end_pfn; 419 nr_initialised = 0; 420 } 421 422 /* Always populate low zones for address-constrained allocations */ 423 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 424 return false; 425 426 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 427 return true; 428 /* 429 * We start only with one section of pages, more pages are added as 430 * needed until the rest of deferred pages are initialized. 431 */ 432 nr_initialised++; 433 if ((nr_initialised > PAGES_PER_SECTION) && 434 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 435 NODE_DATA(nid)->first_deferred_pfn = pfn; 436 return true; 437 } 438 return false; 439 } 440 #else 441 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 442 443 static inline bool early_page_uninitialised(unsigned long pfn) 444 { 445 return false; 446 } 447 448 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 449 { 450 return false; 451 } 452 #endif 453 454 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 455 static inline unsigned long *get_pageblock_bitmap(struct page *page, 456 unsigned long pfn) 457 { 458 #ifdef CONFIG_SPARSEMEM 459 return section_to_usemap(__pfn_to_section(pfn)); 460 #else 461 return page_zone(page)->pageblock_flags; 462 #endif /* CONFIG_SPARSEMEM */ 463 } 464 465 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 466 { 467 #ifdef CONFIG_SPARSEMEM 468 pfn &= (PAGES_PER_SECTION-1); 469 #else 470 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 471 #endif /* CONFIG_SPARSEMEM */ 472 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 473 } 474 475 static __always_inline 476 unsigned long __get_pfnblock_flags_mask(struct page *page, 477 unsigned long pfn, 478 unsigned long mask) 479 { 480 unsigned long *bitmap; 481 unsigned long bitidx, word_bitidx; 482 unsigned long word; 483 484 bitmap = get_pageblock_bitmap(page, pfn); 485 bitidx = pfn_to_bitidx(page, pfn); 486 word_bitidx = bitidx / BITS_PER_LONG; 487 bitidx &= (BITS_PER_LONG-1); 488 489 word = bitmap[word_bitidx]; 490 return (word >> bitidx) & mask; 491 } 492 493 /** 494 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 495 * @page: The page within the block of interest 496 * @pfn: The target page frame number 497 * @mask: mask of bits that the caller is interested in 498 * 499 * Return: pageblock_bits flags 500 */ 501 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 502 unsigned long mask) 503 { 504 return __get_pfnblock_flags_mask(page, pfn, mask); 505 } 506 507 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 508 { 509 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 510 } 511 512 /** 513 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 514 * @page: The page within the block of interest 515 * @flags: The flags to set 516 * @pfn: The target page frame number 517 * @mask: mask of bits that the caller is interested in 518 */ 519 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 520 unsigned long pfn, 521 unsigned long mask) 522 { 523 unsigned long *bitmap; 524 unsigned long bitidx, word_bitidx; 525 unsigned long old_word, word; 526 527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 529 530 bitmap = get_pageblock_bitmap(page, pfn); 531 bitidx = pfn_to_bitidx(page, pfn); 532 word_bitidx = bitidx / BITS_PER_LONG; 533 bitidx &= (BITS_PER_LONG-1); 534 535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 536 537 mask <<= bitidx; 538 flags <<= bitidx; 539 540 word = READ_ONCE(bitmap[word_bitidx]); 541 for (;;) { 542 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 543 if (word == old_word) 544 break; 545 word = old_word; 546 } 547 } 548 549 void set_pageblock_migratetype(struct page *page, int migratetype) 550 { 551 if (unlikely(page_group_by_mobility_disabled && 552 migratetype < MIGRATE_PCPTYPES)) 553 migratetype = MIGRATE_UNMOVABLE; 554 555 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 556 page_to_pfn(page), MIGRATETYPE_MASK); 557 } 558 559 #ifdef CONFIG_DEBUG_VM 560 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 561 { 562 int ret = 0; 563 unsigned seq; 564 unsigned long pfn = page_to_pfn(page); 565 unsigned long sp, start_pfn; 566 567 do { 568 seq = zone_span_seqbegin(zone); 569 start_pfn = zone->zone_start_pfn; 570 sp = zone->spanned_pages; 571 if (!zone_spans_pfn(zone, pfn)) 572 ret = 1; 573 } while (zone_span_seqretry(zone, seq)); 574 575 if (ret) 576 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 577 pfn, zone_to_nid(zone), zone->name, 578 start_pfn, start_pfn + sp); 579 580 return ret; 581 } 582 583 static int page_is_consistent(struct zone *zone, struct page *page) 584 { 585 if (!pfn_valid_within(page_to_pfn(page))) 586 return 0; 587 if (zone != page_zone(page)) 588 return 0; 589 590 return 1; 591 } 592 /* 593 * Temporary debugging check for pages not lying within a given zone. 594 */ 595 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 596 { 597 if (page_outside_zone_boundaries(zone, page)) 598 return 1; 599 if (!page_is_consistent(zone, page)) 600 return 1; 601 602 return 0; 603 } 604 #else 605 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 606 { 607 return 0; 608 } 609 #endif 610 611 static void bad_page(struct page *page, const char *reason) 612 { 613 static unsigned long resume; 614 static unsigned long nr_shown; 615 static unsigned long nr_unshown; 616 617 /* 618 * Allow a burst of 60 reports, then keep quiet for that minute; 619 * or allow a steady drip of one report per second. 620 */ 621 if (nr_shown == 60) { 622 if (time_before(jiffies, resume)) { 623 nr_unshown++; 624 goto out; 625 } 626 if (nr_unshown) { 627 pr_alert( 628 "BUG: Bad page state: %lu messages suppressed\n", 629 nr_unshown); 630 nr_unshown = 0; 631 } 632 nr_shown = 0; 633 } 634 if (nr_shown++ == 0) 635 resume = jiffies + 60 * HZ; 636 637 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 638 current->comm, page_to_pfn(page)); 639 __dump_page(page, reason); 640 dump_page_owner(page); 641 642 print_modules(); 643 dump_stack(); 644 out: 645 /* Leave bad fields for debug, except PageBuddy could make trouble */ 646 page_mapcount_reset(page); /* remove PageBuddy */ 647 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 648 } 649 650 /* 651 * Higher-order pages are called "compound pages". They are structured thusly: 652 * 653 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 654 * 655 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 656 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 657 * 658 * The first tail page's ->compound_dtor holds the offset in array of compound 659 * page destructors. See compound_page_dtors. 660 * 661 * The first tail page's ->compound_order holds the order of allocation. 662 * This usage means that zero-order pages may not be compound. 663 */ 664 665 void free_compound_page(struct page *page) 666 { 667 mem_cgroup_uncharge(page); 668 __free_pages_ok(page, compound_order(page), FPI_NONE); 669 } 670 671 void prep_compound_page(struct page *page, unsigned int order) 672 { 673 int i; 674 int nr_pages = 1 << order; 675 676 __SetPageHead(page); 677 for (i = 1; i < nr_pages; i++) { 678 struct page *p = page + i; 679 set_page_count(p, 0); 680 p->mapping = TAIL_MAPPING; 681 set_compound_head(p, page); 682 } 683 684 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 685 set_compound_order(page, order); 686 atomic_set(compound_mapcount_ptr(page), -1); 687 if (hpage_pincount_available(page)) 688 atomic_set(compound_pincount_ptr(page), 0); 689 } 690 691 #ifdef CONFIG_DEBUG_PAGEALLOC 692 unsigned int _debug_guardpage_minorder; 693 694 bool _debug_pagealloc_enabled_early __read_mostly 695 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 696 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 697 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 698 EXPORT_SYMBOL(_debug_pagealloc_enabled); 699 700 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 701 702 static int __init early_debug_pagealloc(char *buf) 703 { 704 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 705 } 706 early_param("debug_pagealloc", early_debug_pagealloc); 707 708 static int __init debug_guardpage_minorder_setup(char *buf) 709 { 710 unsigned long res; 711 712 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 713 pr_err("Bad debug_guardpage_minorder value\n"); 714 return 0; 715 } 716 _debug_guardpage_minorder = res; 717 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 718 return 0; 719 } 720 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 721 722 static inline bool set_page_guard(struct zone *zone, struct page *page, 723 unsigned int order, int migratetype) 724 { 725 if (!debug_guardpage_enabled()) 726 return false; 727 728 if (order >= debug_guardpage_minorder()) 729 return false; 730 731 __SetPageGuard(page); 732 INIT_LIST_HEAD(&page->lru); 733 set_page_private(page, order); 734 /* Guard pages are not available for any usage */ 735 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 736 737 return true; 738 } 739 740 static inline void clear_page_guard(struct zone *zone, struct page *page, 741 unsigned int order, int migratetype) 742 { 743 if (!debug_guardpage_enabled()) 744 return; 745 746 __ClearPageGuard(page); 747 748 set_page_private(page, 0); 749 if (!is_migrate_isolate(migratetype)) 750 __mod_zone_freepage_state(zone, (1 << order), migratetype); 751 } 752 #else 753 static inline bool set_page_guard(struct zone *zone, struct page *page, 754 unsigned int order, int migratetype) { return false; } 755 static inline void clear_page_guard(struct zone *zone, struct page *page, 756 unsigned int order, int migratetype) {} 757 #endif 758 759 /* 760 * Enable static keys related to various memory debugging and hardening options. 761 * Some override others, and depend on early params that are evaluated in the 762 * order of appearance. So we need to first gather the full picture of what was 763 * enabled, and then make decisions. 764 */ 765 void init_mem_debugging_and_hardening(void) 766 { 767 if (_init_on_alloc_enabled_early) { 768 if (page_poisoning_enabled()) 769 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 770 "will take precedence over init_on_alloc\n"); 771 else 772 static_branch_enable(&init_on_alloc); 773 } 774 if (_init_on_free_enabled_early) { 775 if (page_poisoning_enabled()) 776 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 777 "will take precedence over init_on_free\n"); 778 else 779 static_branch_enable(&init_on_free); 780 } 781 782 #ifdef CONFIG_PAGE_POISONING 783 /* 784 * Page poisoning is debug page alloc for some arches. If 785 * either of those options are enabled, enable poisoning. 786 */ 787 if (page_poisoning_enabled() || 788 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 789 debug_pagealloc_enabled())) 790 static_branch_enable(&_page_poisoning_enabled); 791 #endif 792 793 #ifdef CONFIG_DEBUG_PAGEALLOC 794 if (!debug_pagealloc_enabled()) 795 return; 796 797 static_branch_enable(&_debug_pagealloc_enabled); 798 799 if (!debug_guardpage_minorder()) 800 return; 801 802 static_branch_enable(&_debug_guardpage_enabled); 803 #endif 804 } 805 806 static inline void set_buddy_order(struct page *page, unsigned int order) 807 { 808 set_page_private(page, order); 809 __SetPageBuddy(page); 810 } 811 812 /* 813 * This function checks whether a page is free && is the buddy 814 * we can coalesce a page and its buddy if 815 * (a) the buddy is not in a hole (check before calling!) && 816 * (b) the buddy is in the buddy system && 817 * (c) a page and its buddy have the same order && 818 * (d) a page and its buddy are in the same zone. 819 * 820 * For recording whether a page is in the buddy system, we set PageBuddy. 821 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 822 * 823 * For recording page's order, we use page_private(page). 824 */ 825 static inline bool page_is_buddy(struct page *page, struct page *buddy, 826 unsigned int order) 827 { 828 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 829 return false; 830 831 if (buddy_order(buddy) != order) 832 return false; 833 834 /* 835 * zone check is done late to avoid uselessly calculating 836 * zone/node ids for pages that could never merge. 837 */ 838 if (page_zone_id(page) != page_zone_id(buddy)) 839 return false; 840 841 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 842 843 return true; 844 } 845 846 #ifdef CONFIG_COMPACTION 847 static inline struct capture_control *task_capc(struct zone *zone) 848 { 849 struct capture_control *capc = current->capture_control; 850 851 return unlikely(capc) && 852 !(current->flags & PF_KTHREAD) && 853 !capc->page && 854 capc->cc->zone == zone ? capc : NULL; 855 } 856 857 static inline bool 858 compaction_capture(struct capture_control *capc, struct page *page, 859 int order, int migratetype) 860 { 861 if (!capc || order != capc->cc->order) 862 return false; 863 864 /* Do not accidentally pollute CMA or isolated regions*/ 865 if (is_migrate_cma(migratetype) || 866 is_migrate_isolate(migratetype)) 867 return false; 868 869 /* 870 * Do not let lower order allocations polluate a movable pageblock. 871 * This might let an unmovable request use a reclaimable pageblock 872 * and vice-versa but no more than normal fallback logic which can 873 * have trouble finding a high-order free page. 874 */ 875 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 876 return false; 877 878 capc->page = page; 879 return true; 880 } 881 882 #else 883 static inline struct capture_control *task_capc(struct zone *zone) 884 { 885 return NULL; 886 } 887 888 static inline bool 889 compaction_capture(struct capture_control *capc, struct page *page, 890 int order, int migratetype) 891 { 892 return false; 893 } 894 #endif /* CONFIG_COMPACTION */ 895 896 /* Used for pages not on another list */ 897 static inline void add_to_free_list(struct page *page, struct zone *zone, 898 unsigned int order, int migratetype) 899 { 900 struct free_area *area = &zone->free_area[order]; 901 902 list_add(&page->lru, &area->free_list[migratetype]); 903 area->nr_free++; 904 } 905 906 /* Used for pages not on another list */ 907 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 908 unsigned int order, int migratetype) 909 { 910 struct free_area *area = &zone->free_area[order]; 911 912 list_add_tail(&page->lru, &area->free_list[migratetype]); 913 area->nr_free++; 914 } 915 916 /* 917 * Used for pages which are on another list. Move the pages to the tail 918 * of the list - so the moved pages won't immediately be considered for 919 * allocation again (e.g., optimization for memory onlining). 920 */ 921 static inline void move_to_free_list(struct page *page, struct zone *zone, 922 unsigned int order, int migratetype) 923 { 924 struct free_area *area = &zone->free_area[order]; 925 926 list_move_tail(&page->lru, &area->free_list[migratetype]); 927 } 928 929 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 930 unsigned int order) 931 { 932 /* clear reported state and update reported page count */ 933 if (page_reported(page)) 934 __ClearPageReported(page); 935 936 list_del(&page->lru); 937 __ClearPageBuddy(page); 938 set_page_private(page, 0); 939 zone->free_area[order].nr_free--; 940 } 941 942 /* 943 * If this is not the largest possible page, check if the buddy 944 * of the next-highest order is free. If it is, it's possible 945 * that pages are being freed that will coalesce soon. In case, 946 * that is happening, add the free page to the tail of the list 947 * so it's less likely to be used soon and more likely to be merged 948 * as a higher order page 949 */ 950 static inline bool 951 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 952 struct page *page, unsigned int order) 953 { 954 struct page *higher_page, *higher_buddy; 955 unsigned long combined_pfn; 956 957 if (order >= MAX_ORDER - 2) 958 return false; 959 960 if (!pfn_valid_within(buddy_pfn)) 961 return false; 962 963 combined_pfn = buddy_pfn & pfn; 964 higher_page = page + (combined_pfn - pfn); 965 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 966 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 967 968 return pfn_valid_within(buddy_pfn) && 969 page_is_buddy(higher_page, higher_buddy, order + 1); 970 } 971 972 /* 973 * Freeing function for a buddy system allocator. 974 * 975 * The concept of a buddy system is to maintain direct-mapped table 976 * (containing bit values) for memory blocks of various "orders". 977 * The bottom level table contains the map for the smallest allocatable 978 * units of memory (here, pages), and each level above it describes 979 * pairs of units from the levels below, hence, "buddies". 980 * At a high level, all that happens here is marking the table entry 981 * at the bottom level available, and propagating the changes upward 982 * as necessary, plus some accounting needed to play nicely with other 983 * parts of the VM system. 984 * At each level, we keep a list of pages, which are heads of continuous 985 * free pages of length of (1 << order) and marked with PageBuddy. 986 * Page's order is recorded in page_private(page) field. 987 * So when we are allocating or freeing one, we can derive the state of the 988 * other. That is, if we allocate a small block, and both were 989 * free, the remainder of the region must be split into blocks. 990 * If a block is freed, and its buddy is also free, then this 991 * triggers coalescing into a block of larger size. 992 * 993 * -- nyc 994 */ 995 996 static inline void __free_one_page(struct page *page, 997 unsigned long pfn, 998 struct zone *zone, unsigned int order, 999 int migratetype, fpi_t fpi_flags) 1000 { 1001 struct capture_control *capc = task_capc(zone); 1002 unsigned long buddy_pfn; 1003 unsigned long combined_pfn; 1004 unsigned int max_order; 1005 struct page *buddy; 1006 bool to_tail; 1007 1008 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order); 1009 1010 VM_BUG_ON(!zone_is_initialized(zone)); 1011 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1012 1013 VM_BUG_ON(migratetype == -1); 1014 if (likely(!is_migrate_isolate(migratetype))) 1015 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1016 1017 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1018 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1019 1020 continue_merging: 1021 while (order < max_order) { 1022 if (compaction_capture(capc, page, order, migratetype)) { 1023 __mod_zone_freepage_state(zone, -(1 << order), 1024 migratetype); 1025 return; 1026 } 1027 buddy_pfn = __find_buddy_pfn(pfn, order); 1028 buddy = page + (buddy_pfn - pfn); 1029 1030 if (!pfn_valid_within(buddy_pfn)) 1031 goto done_merging; 1032 if (!page_is_buddy(page, buddy, order)) 1033 goto done_merging; 1034 /* 1035 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1036 * merge with it and move up one order. 1037 */ 1038 if (page_is_guard(buddy)) 1039 clear_page_guard(zone, buddy, order, migratetype); 1040 else 1041 del_page_from_free_list(buddy, zone, order); 1042 combined_pfn = buddy_pfn & pfn; 1043 page = page + (combined_pfn - pfn); 1044 pfn = combined_pfn; 1045 order++; 1046 } 1047 if (order < MAX_ORDER - 1) { 1048 /* If we are here, it means order is >= pageblock_order. 1049 * We want to prevent merge between freepages on isolate 1050 * pageblock and normal pageblock. Without this, pageblock 1051 * isolation could cause incorrect freepage or CMA accounting. 1052 * 1053 * We don't want to hit this code for the more frequent 1054 * low-order merging. 1055 */ 1056 if (unlikely(has_isolate_pageblock(zone))) { 1057 int buddy_mt; 1058 1059 buddy_pfn = __find_buddy_pfn(pfn, order); 1060 buddy = page + (buddy_pfn - pfn); 1061 buddy_mt = get_pageblock_migratetype(buddy); 1062 1063 if (migratetype != buddy_mt 1064 && (is_migrate_isolate(migratetype) || 1065 is_migrate_isolate(buddy_mt))) 1066 goto done_merging; 1067 } 1068 max_order = order + 1; 1069 goto continue_merging; 1070 } 1071 1072 done_merging: 1073 set_buddy_order(page, order); 1074 1075 if (fpi_flags & FPI_TO_TAIL) 1076 to_tail = true; 1077 else if (is_shuffle_order(order)) 1078 to_tail = shuffle_pick_tail(); 1079 else 1080 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1081 1082 if (to_tail) 1083 add_to_free_list_tail(page, zone, order, migratetype); 1084 else 1085 add_to_free_list(page, zone, order, migratetype); 1086 1087 /* Notify page reporting subsystem of freed page */ 1088 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1089 page_reporting_notify_free(order); 1090 } 1091 1092 /* 1093 * A bad page could be due to a number of fields. Instead of multiple branches, 1094 * try and check multiple fields with one check. The caller must do a detailed 1095 * check if necessary. 1096 */ 1097 static inline bool page_expected_state(struct page *page, 1098 unsigned long check_flags) 1099 { 1100 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1101 return false; 1102 1103 if (unlikely((unsigned long)page->mapping | 1104 page_ref_count(page) | 1105 #ifdef CONFIG_MEMCG 1106 (unsigned long)page_memcg(page) | 1107 #endif 1108 (page->flags & check_flags))) 1109 return false; 1110 1111 return true; 1112 } 1113 1114 static const char *page_bad_reason(struct page *page, unsigned long flags) 1115 { 1116 const char *bad_reason = NULL; 1117 1118 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1119 bad_reason = "nonzero mapcount"; 1120 if (unlikely(page->mapping != NULL)) 1121 bad_reason = "non-NULL mapping"; 1122 if (unlikely(page_ref_count(page) != 0)) 1123 bad_reason = "nonzero _refcount"; 1124 if (unlikely(page->flags & flags)) { 1125 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1126 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1127 else 1128 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1129 } 1130 #ifdef CONFIG_MEMCG 1131 if (unlikely(page_memcg(page))) 1132 bad_reason = "page still charged to cgroup"; 1133 #endif 1134 return bad_reason; 1135 } 1136 1137 static void check_free_page_bad(struct page *page) 1138 { 1139 bad_page(page, 1140 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1141 } 1142 1143 static inline int check_free_page(struct page *page) 1144 { 1145 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1146 return 0; 1147 1148 /* Something has gone sideways, find it */ 1149 check_free_page_bad(page); 1150 return 1; 1151 } 1152 1153 static int free_tail_pages_check(struct page *head_page, struct page *page) 1154 { 1155 int ret = 1; 1156 1157 /* 1158 * We rely page->lru.next never has bit 0 set, unless the page 1159 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1160 */ 1161 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1162 1163 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1164 ret = 0; 1165 goto out; 1166 } 1167 switch (page - head_page) { 1168 case 1: 1169 /* the first tail page: ->mapping may be compound_mapcount() */ 1170 if (unlikely(compound_mapcount(page))) { 1171 bad_page(page, "nonzero compound_mapcount"); 1172 goto out; 1173 } 1174 break; 1175 case 2: 1176 /* 1177 * the second tail page: ->mapping is 1178 * deferred_list.next -- ignore value. 1179 */ 1180 break; 1181 default: 1182 if (page->mapping != TAIL_MAPPING) { 1183 bad_page(page, "corrupted mapping in tail page"); 1184 goto out; 1185 } 1186 break; 1187 } 1188 if (unlikely(!PageTail(page))) { 1189 bad_page(page, "PageTail not set"); 1190 goto out; 1191 } 1192 if (unlikely(compound_head(page) != head_page)) { 1193 bad_page(page, "compound_head not consistent"); 1194 goto out; 1195 } 1196 ret = 0; 1197 out: 1198 page->mapping = NULL; 1199 clear_compound_head(page); 1200 return ret; 1201 } 1202 1203 static void kernel_init_free_pages(struct page *page, int numpages) 1204 { 1205 int i; 1206 1207 /* s390's use of memset() could override KASAN redzones. */ 1208 kasan_disable_current(); 1209 for (i = 0; i < numpages; i++) { 1210 u8 tag = page_kasan_tag(page + i); 1211 page_kasan_tag_reset(page + i); 1212 clear_highpage(page + i); 1213 page_kasan_tag_set(page + i, tag); 1214 } 1215 kasan_enable_current(); 1216 } 1217 1218 static __always_inline bool free_pages_prepare(struct page *page, 1219 unsigned int order, bool check_free) 1220 { 1221 int bad = 0; 1222 1223 VM_BUG_ON_PAGE(PageTail(page), page); 1224 1225 trace_mm_page_free(page, order); 1226 1227 if (unlikely(PageHWPoison(page)) && !order) { 1228 /* 1229 * Do not let hwpoison pages hit pcplists/buddy 1230 * Untie memcg state and reset page's owner 1231 */ 1232 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1233 __memcg_kmem_uncharge_page(page, order); 1234 reset_page_owner(page, order); 1235 return false; 1236 } 1237 1238 /* 1239 * Check tail pages before head page information is cleared to 1240 * avoid checking PageCompound for order-0 pages. 1241 */ 1242 if (unlikely(order)) { 1243 bool compound = PageCompound(page); 1244 int i; 1245 1246 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1247 1248 if (compound) 1249 ClearPageDoubleMap(page); 1250 for (i = 1; i < (1 << order); i++) { 1251 if (compound) 1252 bad += free_tail_pages_check(page, page + i); 1253 if (unlikely(check_free_page(page + i))) { 1254 bad++; 1255 continue; 1256 } 1257 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1258 } 1259 } 1260 if (PageMappingFlags(page)) 1261 page->mapping = NULL; 1262 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1263 __memcg_kmem_uncharge_page(page, order); 1264 if (check_free) 1265 bad += check_free_page(page); 1266 if (bad) 1267 return false; 1268 1269 page_cpupid_reset_last(page); 1270 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1271 reset_page_owner(page, order); 1272 1273 if (!PageHighMem(page)) { 1274 debug_check_no_locks_freed(page_address(page), 1275 PAGE_SIZE << order); 1276 debug_check_no_obj_freed(page_address(page), 1277 PAGE_SIZE << order); 1278 } 1279 if (want_init_on_free()) 1280 kernel_init_free_pages(page, 1 << order); 1281 1282 kernel_poison_pages(page, 1 << order); 1283 1284 /* 1285 * arch_free_page() can make the page's contents inaccessible. s390 1286 * does this. So nothing which can access the page's contents should 1287 * happen after this. 1288 */ 1289 arch_free_page(page, order); 1290 1291 debug_pagealloc_unmap_pages(page, 1 << order); 1292 1293 kasan_free_nondeferred_pages(page, order); 1294 1295 return true; 1296 } 1297 1298 #ifdef CONFIG_DEBUG_VM 1299 /* 1300 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1301 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1302 * moved from pcp lists to free lists. 1303 */ 1304 static bool free_pcp_prepare(struct page *page) 1305 { 1306 return free_pages_prepare(page, 0, true); 1307 } 1308 1309 static bool bulkfree_pcp_prepare(struct page *page) 1310 { 1311 if (debug_pagealloc_enabled_static()) 1312 return check_free_page(page); 1313 else 1314 return false; 1315 } 1316 #else 1317 /* 1318 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1319 * moving from pcp lists to free list in order to reduce overhead. With 1320 * debug_pagealloc enabled, they are checked also immediately when being freed 1321 * to the pcp lists. 1322 */ 1323 static bool free_pcp_prepare(struct page *page) 1324 { 1325 if (debug_pagealloc_enabled_static()) 1326 return free_pages_prepare(page, 0, true); 1327 else 1328 return free_pages_prepare(page, 0, false); 1329 } 1330 1331 static bool bulkfree_pcp_prepare(struct page *page) 1332 { 1333 return check_free_page(page); 1334 } 1335 #endif /* CONFIG_DEBUG_VM */ 1336 1337 static inline void prefetch_buddy(struct page *page) 1338 { 1339 unsigned long pfn = page_to_pfn(page); 1340 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1341 struct page *buddy = page + (buddy_pfn - pfn); 1342 1343 prefetch(buddy); 1344 } 1345 1346 /* 1347 * Frees a number of pages from the PCP lists 1348 * Assumes all pages on list are in same zone, and of same order. 1349 * count is the number of pages to free. 1350 * 1351 * If the zone was previously in an "all pages pinned" state then look to 1352 * see if this freeing clears that state. 1353 * 1354 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1355 * pinned" detection logic. 1356 */ 1357 static void free_pcppages_bulk(struct zone *zone, int count, 1358 struct per_cpu_pages *pcp) 1359 { 1360 int migratetype = 0; 1361 int batch_free = 0; 1362 int prefetch_nr = READ_ONCE(pcp->batch); 1363 bool isolated_pageblocks; 1364 struct page *page, *tmp; 1365 LIST_HEAD(head); 1366 1367 /* 1368 * Ensure proper count is passed which otherwise would stuck in the 1369 * below while (list_empty(list)) loop. 1370 */ 1371 count = min(pcp->count, count); 1372 while (count) { 1373 struct list_head *list; 1374 1375 /* 1376 * Remove pages from lists in a round-robin fashion. A 1377 * batch_free count is maintained that is incremented when an 1378 * empty list is encountered. This is so more pages are freed 1379 * off fuller lists instead of spinning excessively around empty 1380 * lists 1381 */ 1382 do { 1383 batch_free++; 1384 if (++migratetype == MIGRATE_PCPTYPES) 1385 migratetype = 0; 1386 list = &pcp->lists[migratetype]; 1387 } while (list_empty(list)); 1388 1389 /* This is the only non-empty list. Free them all. */ 1390 if (batch_free == MIGRATE_PCPTYPES) 1391 batch_free = count; 1392 1393 do { 1394 page = list_last_entry(list, struct page, lru); 1395 /* must delete to avoid corrupting pcp list */ 1396 list_del(&page->lru); 1397 pcp->count--; 1398 1399 if (bulkfree_pcp_prepare(page)) 1400 continue; 1401 1402 list_add_tail(&page->lru, &head); 1403 1404 /* 1405 * We are going to put the page back to the global 1406 * pool, prefetch its buddy to speed up later access 1407 * under zone->lock. It is believed the overhead of 1408 * an additional test and calculating buddy_pfn here 1409 * can be offset by reduced memory latency later. To 1410 * avoid excessive prefetching due to large count, only 1411 * prefetch buddy for the first pcp->batch nr of pages. 1412 */ 1413 if (prefetch_nr) { 1414 prefetch_buddy(page); 1415 prefetch_nr--; 1416 } 1417 } while (--count && --batch_free && !list_empty(list)); 1418 } 1419 1420 spin_lock(&zone->lock); 1421 isolated_pageblocks = has_isolate_pageblock(zone); 1422 1423 /* 1424 * Use safe version since after __free_one_page(), 1425 * page->lru.next will not point to original list. 1426 */ 1427 list_for_each_entry_safe(page, tmp, &head, lru) { 1428 int mt = get_pcppage_migratetype(page); 1429 /* MIGRATE_ISOLATE page should not go to pcplists */ 1430 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1431 /* Pageblock could have been isolated meanwhile */ 1432 if (unlikely(isolated_pageblocks)) 1433 mt = get_pageblock_migratetype(page); 1434 1435 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE); 1436 trace_mm_page_pcpu_drain(page, 0, mt); 1437 } 1438 spin_unlock(&zone->lock); 1439 } 1440 1441 static void free_one_page(struct zone *zone, 1442 struct page *page, unsigned long pfn, 1443 unsigned int order, 1444 int migratetype, fpi_t fpi_flags) 1445 { 1446 spin_lock(&zone->lock); 1447 if (unlikely(has_isolate_pageblock(zone) || 1448 is_migrate_isolate(migratetype))) { 1449 migratetype = get_pfnblock_migratetype(page, pfn); 1450 } 1451 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1452 spin_unlock(&zone->lock); 1453 } 1454 1455 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1456 unsigned long zone, int nid) 1457 { 1458 mm_zero_struct_page(page); 1459 set_page_links(page, zone, nid, pfn); 1460 init_page_count(page); 1461 page_mapcount_reset(page); 1462 page_cpupid_reset_last(page); 1463 page_kasan_tag_reset(page); 1464 1465 INIT_LIST_HEAD(&page->lru); 1466 #ifdef WANT_PAGE_VIRTUAL 1467 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1468 if (!is_highmem_idx(zone)) 1469 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1470 #endif 1471 } 1472 1473 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1474 static void __meminit init_reserved_page(unsigned long pfn) 1475 { 1476 pg_data_t *pgdat; 1477 int nid, zid; 1478 1479 if (!early_page_uninitialised(pfn)) 1480 return; 1481 1482 nid = early_pfn_to_nid(pfn); 1483 pgdat = NODE_DATA(nid); 1484 1485 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1486 struct zone *zone = &pgdat->node_zones[zid]; 1487 1488 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1489 break; 1490 } 1491 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1492 } 1493 #else 1494 static inline void init_reserved_page(unsigned long pfn) 1495 { 1496 } 1497 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1498 1499 /* 1500 * Initialised pages do not have PageReserved set. This function is 1501 * called for each range allocated by the bootmem allocator and 1502 * marks the pages PageReserved. The remaining valid pages are later 1503 * sent to the buddy page allocator. 1504 */ 1505 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1506 { 1507 unsigned long start_pfn = PFN_DOWN(start); 1508 unsigned long end_pfn = PFN_UP(end); 1509 1510 for (; start_pfn < end_pfn; start_pfn++) { 1511 if (pfn_valid(start_pfn)) { 1512 struct page *page = pfn_to_page(start_pfn); 1513 1514 init_reserved_page(start_pfn); 1515 1516 /* Avoid false-positive PageTail() */ 1517 INIT_LIST_HEAD(&page->lru); 1518 1519 /* 1520 * no need for atomic set_bit because the struct 1521 * page is not visible yet so nobody should 1522 * access it yet. 1523 */ 1524 __SetPageReserved(page); 1525 } 1526 } 1527 } 1528 1529 static void __free_pages_ok(struct page *page, unsigned int order, 1530 fpi_t fpi_flags) 1531 { 1532 unsigned long flags; 1533 int migratetype; 1534 unsigned long pfn = page_to_pfn(page); 1535 1536 if (!free_pages_prepare(page, order, true)) 1537 return; 1538 1539 migratetype = get_pfnblock_migratetype(page, pfn); 1540 local_irq_save(flags); 1541 __count_vm_events(PGFREE, 1 << order); 1542 free_one_page(page_zone(page), page, pfn, order, migratetype, 1543 fpi_flags); 1544 local_irq_restore(flags); 1545 } 1546 1547 void __free_pages_core(struct page *page, unsigned int order) 1548 { 1549 unsigned int nr_pages = 1 << order; 1550 struct page *p = page; 1551 unsigned int loop; 1552 1553 /* 1554 * When initializing the memmap, __init_single_page() sets the refcount 1555 * of all pages to 1 ("allocated"/"not free"). We have to set the 1556 * refcount of all involved pages to 0. 1557 */ 1558 prefetchw(p); 1559 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1560 prefetchw(p + 1); 1561 __ClearPageReserved(p); 1562 set_page_count(p, 0); 1563 } 1564 __ClearPageReserved(p); 1565 set_page_count(p, 0); 1566 1567 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1568 1569 /* 1570 * Bypass PCP and place fresh pages right to the tail, primarily 1571 * relevant for memory onlining. 1572 */ 1573 __free_pages_ok(page, order, FPI_TO_TAIL); 1574 } 1575 1576 #ifdef CONFIG_NEED_MULTIPLE_NODES 1577 1578 /* 1579 * During memory init memblocks map pfns to nids. The search is expensive and 1580 * this caches recent lookups. The implementation of __early_pfn_to_nid 1581 * treats start/end as pfns. 1582 */ 1583 struct mminit_pfnnid_cache { 1584 unsigned long last_start; 1585 unsigned long last_end; 1586 int last_nid; 1587 }; 1588 1589 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1590 1591 /* 1592 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1593 */ 1594 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1595 struct mminit_pfnnid_cache *state) 1596 { 1597 unsigned long start_pfn, end_pfn; 1598 int nid; 1599 1600 if (state->last_start <= pfn && pfn < state->last_end) 1601 return state->last_nid; 1602 1603 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1604 if (nid != NUMA_NO_NODE) { 1605 state->last_start = start_pfn; 1606 state->last_end = end_pfn; 1607 state->last_nid = nid; 1608 } 1609 1610 return nid; 1611 } 1612 1613 int __meminit early_pfn_to_nid(unsigned long pfn) 1614 { 1615 static DEFINE_SPINLOCK(early_pfn_lock); 1616 int nid; 1617 1618 spin_lock(&early_pfn_lock); 1619 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1620 if (nid < 0) 1621 nid = first_online_node; 1622 spin_unlock(&early_pfn_lock); 1623 1624 return nid; 1625 } 1626 #endif /* CONFIG_NEED_MULTIPLE_NODES */ 1627 1628 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1629 unsigned int order) 1630 { 1631 if (early_page_uninitialised(pfn)) 1632 return; 1633 __free_pages_core(page, order); 1634 } 1635 1636 /* 1637 * Check that the whole (or subset of) a pageblock given by the interval of 1638 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1639 * with the migration of free compaction scanner. The scanners then need to 1640 * use only pfn_valid_within() check for arches that allow holes within 1641 * pageblocks. 1642 * 1643 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1644 * 1645 * It's possible on some configurations to have a setup like node0 node1 node0 1646 * i.e. it's possible that all pages within a zones range of pages do not 1647 * belong to a single zone. We assume that a border between node0 and node1 1648 * can occur within a single pageblock, but not a node0 node1 node0 1649 * interleaving within a single pageblock. It is therefore sufficient to check 1650 * the first and last page of a pageblock and avoid checking each individual 1651 * page in a pageblock. 1652 */ 1653 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1654 unsigned long end_pfn, struct zone *zone) 1655 { 1656 struct page *start_page; 1657 struct page *end_page; 1658 1659 /* end_pfn is one past the range we are checking */ 1660 end_pfn--; 1661 1662 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1663 return NULL; 1664 1665 start_page = pfn_to_online_page(start_pfn); 1666 if (!start_page) 1667 return NULL; 1668 1669 if (page_zone(start_page) != zone) 1670 return NULL; 1671 1672 end_page = pfn_to_page(end_pfn); 1673 1674 /* This gives a shorter code than deriving page_zone(end_page) */ 1675 if (page_zone_id(start_page) != page_zone_id(end_page)) 1676 return NULL; 1677 1678 return start_page; 1679 } 1680 1681 void set_zone_contiguous(struct zone *zone) 1682 { 1683 unsigned long block_start_pfn = zone->zone_start_pfn; 1684 unsigned long block_end_pfn; 1685 1686 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1687 for (; block_start_pfn < zone_end_pfn(zone); 1688 block_start_pfn = block_end_pfn, 1689 block_end_pfn += pageblock_nr_pages) { 1690 1691 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1692 1693 if (!__pageblock_pfn_to_page(block_start_pfn, 1694 block_end_pfn, zone)) 1695 return; 1696 cond_resched(); 1697 } 1698 1699 /* We confirm that there is no hole */ 1700 zone->contiguous = true; 1701 } 1702 1703 void clear_zone_contiguous(struct zone *zone) 1704 { 1705 zone->contiguous = false; 1706 } 1707 1708 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1709 static void __init deferred_free_range(unsigned long pfn, 1710 unsigned long nr_pages) 1711 { 1712 struct page *page; 1713 unsigned long i; 1714 1715 if (!nr_pages) 1716 return; 1717 1718 page = pfn_to_page(pfn); 1719 1720 /* Free a large naturally-aligned chunk if possible */ 1721 if (nr_pages == pageblock_nr_pages && 1722 (pfn & (pageblock_nr_pages - 1)) == 0) { 1723 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1724 __free_pages_core(page, pageblock_order); 1725 return; 1726 } 1727 1728 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1729 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1730 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1731 __free_pages_core(page, 0); 1732 } 1733 } 1734 1735 /* Completion tracking for deferred_init_memmap() threads */ 1736 static atomic_t pgdat_init_n_undone __initdata; 1737 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1738 1739 static inline void __init pgdat_init_report_one_done(void) 1740 { 1741 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1742 complete(&pgdat_init_all_done_comp); 1743 } 1744 1745 /* 1746 * Returns true if page needs to be initialized or freed to buddy allocator. 1747 * 1748 * First we check if pfn is valid on architectures where it is possible to have 1749 * holes within pageblock_nr_pages. On systems where it is not possible, this 1750 * function is optimized out. 1751 * 1752 * Then, we check if a current large page is valid by only checking the validity 1753 * of the head pfn. 1754 */ 1755 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1756 { 1757 if (!pfn_valid_within(pfn)) 1758 return false; 1759 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1760 return false; 1761 return true; 1762 } 1763 1764 /* 1765 * Free pages to buddy allocator. Try to free aligned pages in 1766 * pageblock_nr_pages sizes. 1767 */ 1768 static void __init deferred_free_pages(unsigned long pfn, 1769 unsigned long end_pfn) 1770 { 1771 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1772 unsigned long nr_free = 0; 1773 1774 for (; pfn < end_pfn; pfn++) { 1775 if (!deferred_pfn_valid(pfn)) { 1776 deferred_free_range(pfn - nr_free, nr_free); 1777 nr_free = 0; 1778 } else if (!(pfn & nr_pgmask)) { 1779 deferred_free_range(pfn - nr_free, nr_free); 1780 nr_free = 1; 1781 } else { 1782 nr_free++; 1783 } 1784 } 1785 /* Free the last block of pages to allocator */ 1786 deferred_free_range(pfn - nr_free, nr_free); 1787 } 1788 1789 /* 1790 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1791 * by performing it only once every pageblock_nr_pages. 1792 * Return number of pages initialized. 1793 */ 1794 static unsigned long __init deferred_init_pages(struct zone *zone, 1795 unsigned long pfn, 1796 unsigned long end_pfn) 1797 { 1798 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1799 int nid = zone_to_nid(zone); 1800 unsigned long nr_pages = 0; 1801 int zid = zone_idx(zone); 1802 struct page *page = NULL; 1803 1804 for (; pfn < end_pfn; pfn++) { 1805 if (!deferred_pfn_valid(pfn)) { 1806 page = NULL; 1807 continue; 1808 } else if (!page || !(pfn & nr_pgmask)) { 1809 page = pfn_to_page(pfn); 1810 } else { 1811 page++; 1812 } 1813 __init_single_page(page, pfn, zid, nid); 1814 nr_pages++; 1815 } 1816 return (nr_pages); 1817 } 1818 1819 /* 1820 * This function is meant to pre-load the iterator for the zone init. 1821 * Specifically it walks through the ranges until we are caught up to the 1822 * first_init_pfn value and exits there. If we never encounter the value we 1823 * return false indicating there are no valid ranges left. 1824 */ 1825 static bool __init 1826 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1827 unsigned long *spfn, unsigned long *epfn, 1828 unsigned long first_init_pfn) 1829 { 1830 u64 j; 1831 1832 /* 1833 * Start out by walking through the ranges in this zone that have 1834 * already been initialized. We don't need to do anything with them 1835 * so we just need to flush them out of the system. 1836 */ 1837 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1838 if (*epfn <= first_init_pfn) 1839 continue; 1840 if (*spfn < first_init_pfn) 1841 *spfn = first_init_pfn; 1842 *i = j; 1843 return true; 1844 } 1845 1846 return false; 1847 } 1848 1849 /* 1850 * Initialize and free pages. We do it in two loops: first we initialize 1851 * struct page, then free to buddy allocator, because while we are 1852 * freeing pages we can access pages that are ahead (computing buddy 1853 * page in __free_one_page()). 1854 * 1855 * In order to try and keep some memory in the cache we have the loop 1856 * broken along max page order boundaries. This way we will not cause 1857 * any issues with the buddy page computation. 1858 */ 1859 static unsigned long __init 1860 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1861 unsigned long *end_pfn) 1862 { 1863 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1864 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1865 unsigned long nr_pages = 0; 1866 u64 j = *i; 1867 1868 /* First we loop through and initialize the page values */ 1869 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1870 unsigned long t; 1871 1872 if (mo_pfn <= *start_pfn) 1873 break; 1874 1875 t = min(mo_pfn, *end_pfn); 1876 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1877 1878 if (mo_pfn < *end_pfn) { 1879 *start_pfn = mo_pfn; 1880 break; 1881 } 1882 } 1883 1884 /* Reset values and now loop through freeing pages as needed */ 1885 swap(j, *i); 1886 1887 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1888 unsigned long t; 1889 1890 if (mo_pfn <= spfn) 1891 break; 1892 1893 t = min(mo_pfn, epfn); 1894 deferred_free_pages(spfn, t); 1895 1896 if (mo_pfn <= epfn) 1897 break; 1898 } 1899 1900 return nr_pages; 1901 } 1902 1903 static void __init 1904 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 1905 void *arg) 1906 { 1907 unsigned long spfn, epfn; 1908 struct zone *zone = arg; 1909 u64 i; 1910 1911 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 1912 1913 /* 1914 * Initialize and free pages in MAX_ORDER sized increments so that we 1915 * can avoid introducing any issues with the buddy allocator. 1916 */ 1917 while (spfn < end_pfn) { 1918 deferred_init_maxorder(&i, zone, &spfn, &epfn); 1919 cond_resched(); 1920 } 1921 } 1922 1923 /* An arch may override for more concurrency. */ 1924 __weak int __init 1925 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 1926 { 1927 return 1; 1928 } 1929 1930 /* Initialise remaining memory on a node */ 1931 static int __init deferred_init_memmap(void *data) 1932 { 1933 pg_data_t *pgdat = data; 1934 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1935 unsigned long spfn = 0, epfn = 0; 1936 unsigned long first_init_pfn, flags; 1937 unsigned long start = jiffies; 1938 struct zone *zone; 1939 int zid, max_threads; 1940 u64 i; 1941 1942 /* Bind memory initialisation thread to a local node if possible */ 1943 if (!cpumask_empty(cpumask)) 1944 set_cpus_allowed_ptr(current, cpumask); 1945 1946 pgdat_resize_lock(pgdat, &flags); 1947 first_init_pfn = pgdat->first_deferred_pfn; 1948 if (first_init_pfn == ULONG_MAX) { 1949 pgdat_resize_unlock(pgdat, &flags); 1950 pgdat_init_report_one_done(); 1951 return 0; 1952 } 1953 1954 /* Sanity check boundaries */ 1955 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1956 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1957 pgdat->first_deferred_pfn = ULONG_MAX; 1958 1959 /* 1960 * Once we unlock here, the zone cannot be grown anymore, thus if an 1961 * interrupt thread must allocate this early in boot, zone must be 1962 * pre-grown prior to start of deferred page initialization. 1963 */ 1964 pgdat_resize_unlock(pgdat, &flags); 1965 1966 /* Only the highest zone is deferred so find it */ 1967 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1968 zone = pgdat->node_zones + zid; 1969 if (first_init_pfn < zone_end_pfn(zone)) 1970 break; 1971 } 1972 1973 /* If the zone is empty somebody else may have cleared out the zone */ 1974 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1975 first_init_pfn)) 1976 goto zone_empty; 1977 1978 max_threads = deferred_page_init_max_threads(cpumask); 1979 1980 while (spfn < epfn) { 1981 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 1982 struct padata_mt_job job = { 1983 .thread_fn = deferred_init_memmap_chunk, 1984 .fn_arg = zone, 1985 .start = spfn, 1986 .size = epfn_align - spfn, 1987 .align = PAGES_PER_SECTION, 1988 .min_chunk = PAGES_PER_SECTION, 1989 .max_threads = max_threads, 1990 }; 1991 1992 padata_do_multithreaded(&job); 1993 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1994 epfn_align); 1995 } 1996 zone_empty: 1997 /* Sanity check that the next zone really is unpopulated */ 1998 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1999 2000 pr_info("node %d deferred pages initialised in %ums\n", 2001 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2002 2003 pgdat_init_report_one_done(); 2004 return 0; 2005 } 2006 2007 /* 2008 * If this zone has deferred pages, try to grow it by initializing enough 2009 * deferred pages to satisfy the allocation specified by order, rounded up to 2010 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2011 * of SECTION_SIZE bytes by initializing struct pages in increments of 2012 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2013 * 2014 * Return true when zone was grown, otherwise return false. We return true even 2015 * when we grow less than requested, to let the caller decide if there are 2016 * enough pages to satisfy the allocation. 2017 * 2018 * Note: We use noinline because this function is needed only during boot, and 2019 * it is called from a __ref function _deferred_grow_zone. This way we are 2020 * making sure that it is not inlined into permanent text section. 2021 */ 2022 static noinline bool __init 2023 deferred_grow_zone(struct zone *zone, unsigned int order) 2024 { 2025 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2026 pg_data_t *pgdat = zone->zone_pgdat; 2027 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2028 unsigned long spfn, epfn, flags; 2029 unsigned long nr_pages = 0; 2030 u64 i; 2031 2032 /* Only the last zone may have deferred pages */ 2033 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2034 return false; 2035 2036 pgdat_resize_lock(pgdat, &flags); 2037 2038 /* 2039 * If someone grew this zone while we were waiting for spinlock, return 2040 * true, as there might be enough pages already. 2041 */ 2042 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2043 pgdat_resize_unlock(pgdat, &flags); 2044 return true; 2045 } 2046 2047 /* If the zone is empty somebody else may have cleared out the zone */ 2048 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2049 first_deferred_pfn)) { 2050 pgdat->first_deferred_pfn = ULONG_MAX; 2051 pgdat_resize_unlock(pgdat, &flags); 2052 /* Retry only once. */ 2053 return first_deferred_pfn != ULONG_MAX; 2054 } 2055 2056 /* 2057 * Initialize and free pages in MAX_ORDER sized increments so 2058 * that we can avoid introducing any issues with the buddy 2059 * allocator. 2060 */ 2061 while (spfn < epfn) { 2062 /* update our first deferred PFN for this section */ 2063 first_deferred_pfn = spfn; 2064 2065 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2066 touch_nmi_watchdog(); 2067 2068 /* We should only stop along section boundaries */ 2069 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2070 continue; 2071 2072 /* If our quota has been met we can stop here */ 2073 if (nr_pages >= nr_pages_needed) 2074 break; 2075 } 2076 2077 pgdat->first_deferred_pfn = spfn; 2078 pgdat_resize_unlock(pgdat, &flags); 2079 2080 return nr_pages > 0; 2081 } 2082 2083 /* 2084 * deferred_grow_zone() is __init, but it is called from 2085 * get_page_from_freelist() during early boot until deferred_pages permanently 2086 * disables this call. This is why we have refdata wrapper to avoid warning, 2087 * and to ensure that the function body gets unloaded. 2088 */ 2089 static bool __ref 2090 _deferred_grow_zone(struct zone *zone, unsigned int order) 2091 { 2092 return deferred_grow_zone(zone, order); 2093 } 2094 2095 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2096 2097 void __init page_alloc_init_late(void) 2098 { 2099 struct zone *zone; 2100 int nid; 2101 2102 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2103 2104 /* There will be num_node_state(N_MEMORY) threads */ 2105 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2106 for_each_node_state(nid, N_MEMORY) { 2107 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2108 } 2109 2110 /* Block until all are initialised */ 2111 wait_for_completion(&pgdat_init_all_done_comp); 2112 2113 /* 2114 * The number of managed pages has changed due to the initialisation 2115 * so the pcpu batch and high limits needs to be updated or the limits 2116 * will be artificially small. 2117 */ 2118 for_each_populated_zone(zone) 2119 zone_pcp_update(zone); 2120 2121 /* 2122 * We initialized the rest of the deferred pages. Permanently disable 2123 * on-demand struct page initialization. 2124 */ 2125 static_branch_disable(&deferred_pages); 2126 2127 /* Reinit limits that are based on free pages after the kernel is up */ 2128 files_maxfiles_init(); 2129 #endif 2130 2131 buffer_init(); 2132 2133 /* Discard memblock private memory */ 2134 memblock_discard(); 2135 2136 for_each_node_state(nid, N_MEMORY) 2137 shuffle_free_memory(NODE_DATA(nid)); 2138 2139 for_each_populated_zone(zone) 2140 set_zone_contiguous(zone); 2141 } 2142 2143 #ifdef CONFIG_CMA 2144 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2145 void __init init_cma_reserved_pageblock(struct page *page) 2146 { 2147 unsigned i = pageblock_nr_pages; 2148 struct page *p = page; 2149 2150 do { 2151 __ClearPageReserved(p); 2152 set_page_count(p, 0); 2153 } while (++p, --i); 2154 2155 set_pageblock_migratetype(page, MIGRATE_CMA); 2156 2157 if (pageblock_order >= MAX_ORDER) { 2158 i = pageblock_nr_pages; 2159 p = page; 2160 do { 2161 set_page_refcounted(p); 2162 __free_pages(p, MAX_ORDER - 1); 2163 p += MAX_ORDER_NR_PAGES; 2164 } while (i -= MAX_ORDER_NR_PAGES); 2165 } else { 2166 set_page_refcounted(page); 2167 __free_pages(page, pageblock_order); 2168 } 2169 2170 adjust_managed_page_count(page, pageblock_nr_pages); 2171 } 2172 #endif 2173 2174 /* 2175 * The order of subdivision here is critical for the IO subsystem. 2176 * Please do not alter this order without good reasons and regression 2177 * testing. Specifically, as large blocks of memory are subdivided, 2178 * the order in which smaller blocks are delivered depends on the order 2179 * they're subdivided in this function. This is the primary factor 2180 * influencing the order in which pages are delivered to the IO 2181 * subsystem according to empirical testing, and this is also justified 2182 * by considering the behavior of a buddy system containing a single 2183 * large block of memory acted on by a series of small allocations. 2184 * This behavior is a critical factor in sglist merging's success. 2185 * 2186 * -- nyc 2187 */ 2188 static inline void expand(struct zone *zone, struct page *page, 2189 int low, int high, int migratetype) 2190 { 2191 unsigned long size = 1 << high; 2192 2193 while (high > low) { 2194 high--; 2195 size >>= 1; 2196 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2197 2198 /* 2199 * Mark as guard pages (or page), that will allow to 2200 * merge back to allocator when buddy will be freed. 2201 * Corresponding page table entries will not be touched, 2202 * pages will stay not present in virtual address space 2203 */ 2204 if (set_page_guard(zone, &page[size], high, migratetype)) 2205 continue; 2206 2207 add_to_free_list(&page[size], zone, high, migratetype); 2208 set_buddy_order(&page[size], high); 2209 } 2210 } 2211 2212 static void check_new_page_bad(struct page *page) 2213 { 2214 if (unlikely(page->flags & __PG_HWPOISON)) { 2215 /* Don't complain about hwpoisoned pages */ 2216 page_mapcount_reset(page); /* remove PageBuddy */ 2217 return; 2218 } 2219 2220 bad_page(page, 2221 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2222 } 2223 2224 /* 2225 * This page is about to be returned from the page allocator 2226 */ 2227 static inline int check_new_page(struct page *page) 2228 { 2229 if (likely(page_expected_state(page, 2230 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2231 return 0; 2232 2233 check_new_page_bad(page); 2234 return 1; 2235 } 2236 2237 #ifdef CONFIG_DEBUG_VM 2238 /* 2239 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2240 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2241 * also checked when pcp lists are refilled from the free lists. 2242 */ 2243 static inline bool check_pcp_refill(struct page *page) 2244 { 2245 if (debug_pagealloc_enabled_static()) 2246 return check_new_page(page); 2247 else 2248 return false; 2249 } 2250 2251 static inline bool check_new_pcp(struct page *page) 2252 { 2253 return check_new_page(page); 2254 } 2255 #else 2256 /* 2257 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2258 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2259 * enabled, they are also checked when being allocated from the pcp lists. 2260 */ 2261 static inline bool check_pcp_refill(struct page *page) 2262 { 2263 return check_new_page(page); 2264 } 2265 static inline bool check_new_pcp(struct page *page) 2266 { 2267 if (debug_pagealloc_enabled_static()) 2268 return check_new_page(page); 2269 else 2270 return false; 2271 } 2272 #endif /* CONFIG_DEBUG_VM */ 2273 2274 static bool check_new_pages(struct page *page, unsigned int order) 2275 { 2276 int i; 2277 for (i = 0; i < (1 << order); i++) { 2278 struct page *p = page + i; 2279 2280 if (unlikely(check_new_page(p))) 2281 return true; 2282 } 2283 2284 return false; 2285 } 2286 2287 inline void post_alloc_hook(struct page *page, unsigned int order, 2288 gfp_t gfp_flags) 2289 { 2290 set_page_private(page, 0); 2291 set_page_refcounted(page); 2292 2293 arch_alloc_page(page, order); 2294 debug_pagealloc_map_pages(page, 1 << order); 2295 kasan_alloc_pages(page, order); 2296 kernel_unpoison_pages(page, 1 << order); 2297 set_page_owner(page, order, gfp_flags); 2298 2299 if (!want_init_on_free() && want_init_on_alloc(gfp_flags)) 2300 kernel_init_free_pages(page, 1 << order); 2301 } 2302 2303 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2304 unsigned int alloc_flags) 2305 { 2306 post_alloc_hook(page, order, gfp_flags); 2307 2308 if (order && (gfp_flags & __GFP_COMP)) 2309 prep_compound_page(page, order); 2310 2311 /* 2312 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2313 * allocate the page. The expectation is that the caller is taking 2314 * steps that will free more memory. The caller should avoid the page 2315 * being used for !PFMEMALLOC purposes. 2316 */ 2317 if (alloc_flags & ALLOC_NO_WATERMARKS) 2318 set_page_pfmemalloc(page); 2319 else 2320 clear_page_pfmemalloc(page); 2321 } 2322 2323 /* 2324 * Go through the free lists for the given migratetype and remove 2325 * the smallest available page from the freelists 2326 */ 2327 static __always_inline 2328 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2329 int migratetype) 2330 { 2331 unsigned int current_order; 2332 struct free_area *area; 2333 struct page *page; 2334 2335 /* Find a page of the appropriate size in the preferred list */ 2336 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2337 area = &(zone->free_area[current_order]); 2338 page = get_page_from_free_area(area, migratetype); 2339 if (!page) 2340 continue; 2341 del_page_from_free_list(page, zone, current_order); 2342 expand(zone, page, order, current_order, migratetype); 2343 set_pcppage_migratetype(page, migratetype); 2344 return page; 2345 } 2346 2347 return NULL; 2348 } 2349 2350 2351 /* 2352 * This array describes the order lists are fallen back to when 2353 * the free lists for the desirable migrate type are depleted 2354 */ 2355 static int fallbacks[MIGRATE_TYPES][3] = { 2356 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2357 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2358 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2359 #ifdef CONFIG_CMA 2360 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2361 #endif 2362 #ifdef CONFIG_MEMORY_ISOLATION 2363 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2364 #endif 2365 }; 2366 2367 #ifdef CONFIG_CMA 2368 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2369 unsigned int order) 2370 { 2371 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2372 } 2373 #else 2374 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2375 unsigned int order) { return NULL; } 2376 #endif 2377 2378 /* 2379 * Move the free pages in a range to the freelist tail of the requested type. 2380 * Note that start_page and end_pages are not aligned on a pageblock 2381 * boundary. If alignment is required, use move_freepages_block() 2382 */ 2383 static int move_freepages(struct zone *zone, 2384 struct page *start_page, struct page *end_page, 2385 int migratetype, int *num_movable) 2386 { 2387 struct page *page; 2388 unsigned int order; 2389 int pages_moved = 0; 2390 2391 for (page = start_page; page <= end_page;) { 2392 if (!pfn_valid_within(page_to_pfn(page))) { 2393 page++; 2394 continue; 2395 } 2396 2397 if (!PageBuddy(page)) { 2398 /* 2399 * We assume that pages that could be isolated for 2400 * migration are movable. But we don't actually try 2401 * isolating, as that would be expensive. 2402 */ 2403 if (num_movable && 2404 (PageLRU(page) || __PageMovable(page))) 2405 (*num_movable)++; 2406 2407 page++; 2408 continue; 2409 } 2410 2411 /* Make sure we are not inadvertently changing nodes */ 2412 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2413 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2414 2415 order = buddy_order(page); 2416 move_to_free_list(page, zone, order, migratetype); 2417 page += 1 << order; 2418 pages_moved += 1 << order; 2419 } 2420 2421 return pages_moved; 2422 } 2423 2424 int move_freepages_block(struct zone *zone, struct page *page, 2425 int migratetype, int *num_movable) 2426 { 2427 unsigned long start_pfn, end_pfn; 2428 struct page *start_page, *end_page; 2429 2430 if (num_movable) 2431 *num_movable = 0; 2432 2433 start_pfn = page_to_pfn(page); 2434 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2435 start_page = pfn_to_page(start_pfn); 2436 end_page = start_page + pageblock_nr_pages - 1; 2437 end_pfn = start_pfn + pageblock_nr_pages - 1; 2438 2439 /* Do not cross zone boundaries */ 2440 if (!zone_spans_pfn(zone, start_pfn)) 2441 start_page = page; 2442 if (!zone_spans_pfn(zone, end_pfn)) 2443 return 0; 2444 2445 return move_freepages(zone, start_page, end_page, migratetype, 2446 num_movable); 2447 } 2448 2449 static void change_pageblock_range(struct page *pageblock_page, 2450 int start_order, int migratetype) 2451 { 2452 int nr_pageblocks = 1 << (start_order - pageblock_order); 2453 2454 while (nr_pageblocks--) { 2455 set_pageblock_migratetype(pageblock_page, migratetype); 2456 pageblock_page += pageblock_nr_pages; 2457 } 2458 } 2459 2460 /* 2461 * When we are falling back to another migratetype during allocation, try to 2462 * steal extra free pages from the same pageblocks to satisfy further 2463 * allocations, instead of polluting multiple pageblocks. 2464 * 2465 * If we are stealing a relatively large buddy page, it is likely there will 2466 * be more free pages in the pageblock, so try to steal them all. For 2467 * reclaimable and unmovable allocations, we steal regardless of page size, 2468 * as fragmentation caused by those allocations polluting movable pageblocks 2469 * is worse than movable allocations stealing from unmovable and reclaimable 2470 * pageblocks. 2471 */ 2472 static bool can_steal_fallback(unsigned int order, int start_mt) 2473 { 2474 /* 2475 * Leaving this order check is intended, although there is 2476 * relaxed order check in next check. The reason is that 2477 * we can actually steal whole pageblock if this condition met, 2478 * but, below check doesn't guarantee it and that is just heuristic 2479 * so could be changed anytime. 2480 */ 2481 if (order >= pageblock_order) 2482 return true; 2483 2484 if (order >= pageblock_order / 2 || 2485 start_mt == MIGRATE_RECLAIMABLE || 2486 start_mt == MIGRATE_UNMOVABLE || 2487 page_group_by_mobility_disabled) 2488 return true; 2489 2490 return false; 2491 } 2492 2493 static inline bool boost_watermark(struct zone *zone) 2494 { 2495 unsigned long max_boost; 2496 2497 if (!watermark_boost_factor) 2498 return false; 2499 /* 2500 * Don't bother in zones that are unlikely to produce results. 2501 * On small machines, including kdump capture kernels running 2502 * in a small area, boosting the watermark can cause an out of 2503 * memory situation immediately. 2504 */ 2505 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2506 return false; 2507 2508 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2509 watermark_boost_factor, 10000); 2510 2511 /* 2512 * high watermark may be uninitialised if fragmentation occurs 2513 * very early in boot so do not boost. We do not fall 2514 * through and boost by pageblock_nr_pages as failing 2515 * allocations that early means that reclaim is not going 2516 * to help and it may even be impossible to reclaim the 2517 * boosted watermark resulting in a hang. 2518 */ 2519 if (!max_boost) 2520 return false; 2521 2522 max_boost = max(pageblock_nr_pages, max_boost); 2523 2524 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2525 max_boost); 2526 2527 return true; 2528 } 2529 2530 /* 2531 * This function implements actual steal behaviour. If order is large enough, 2532 * we can steal whole pageblock. If not, we first move freepages in this 2533 * pageblock to our migratetype and determine how many already-allocated pages 2534 * are there in the pageblock with a compatible migratetype. If at least half 2535 * of pages are free or compatible, we can change migratetype of the pageblock 2536 * itself, so pages freed in the future will be put on the correct free list. 2537 */ 2538 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2539 unsigned int alloc_flags, int start_type, bool whole_block) 2540 { 2541 unsigned int current_order = buddy_order(page); 2542 int free_pages, movable_pages, alike_pages; 2543 int old_block_type; 2544 2545 old_block_type = get_pageblock_migratetype(page); 2546 2547 /* 2548 * This can happen due to races and we want to prevent broken 2549 * highatomic accounting. 2550 */ 2551 if (is_migrate_highatomic(old_block_type)) 2552 goto single_page; 2553 2554 /* Take ownership for orders >= pageblock_order */ 2555 if (current_order >= pageblock_order) { 2556 change_pageblock_range(page, current_order, start_type); 2557 goto single_page; 2558 } 2559 2560 /* 2561 * Boost watermarks to increase reclaim pressure to reduce the 2562 * likelihood of future fallbacks. Wake kswapd now as the node 2563 * may be balanced overall and kswapd will not wake naturally. 2564 */ 2565 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2566 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2567 2568 /* We are not allowed to try stealing from the whole block */ 2569 if (!whole_block) 2570 goto single_page; 2571 2572 free_pages = move_freepages_block(zone, page, start_type, 2573 &movable_pages); 2574 /* 2575 * Determine how many pages are compatible with our allocation. 2576 * For movable allocation, it's the number of movable pages which 2577 * we just obtained. For other types it's a bit more tricky. 2578 */ 2579 if (start_type == MIGRATE_MOVABLE) { 2580 alike_pages = movable_pages; 2581 } else { 2582 /* 2583 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2584 * to MOVABLE pageblock, consider all non-movable pages as 2585 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2586 * vice versa, be conservative since we can't distinguish the 2587 * exact migratetype of non-movable pages. 2588 */ 2589 if (old_block_type == MIGRATE_MOVABLE) 2590 alike_pages = pageblock_nr_pages 2591 - (free_pages + movable_pages); 2592 else 2593 alike_pages = 0; 2594 } 2595 2596 /* moving whole block can fail due to zone boundary conditions */ 2597 if (!free_pages) 2598 goto single_page; 2599 2600 /* 2601 * If a sufficient number of pages in the block are either free or of 2602 * comparable migratability as our allocation, claim the whole block. 2603 */ 2604 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2605 page_group_by_mobility_disabled) 2606 set_pageblock_migratetype(page, start_type); 2607 2608 return; 2609 2610 single_page: 2611 move_to_free_list(page, zone, current_order, start_type); 2612 } 2613 2614 /* 2615 * Check whether there is a suitable fallback freepage with requested order. 2616 * If only_stealable is true, this function returns fallback_mt only if 2617 * we can steal other freepages all together. This would help to reduce 2618 * fragmentation due to mixed migratetype pages in one pageblock. 2619 */ 2620 int find_suitable_fallback(struct free_area *area, unsigned int order, 2621 int migratetype, bool only_stealable, bool *can_steal) 2622 { 2623 int i; 2624 int fallback_mt; 2625 2626 if (area->nr_free == 0) 2627 return -1; 2628 2629 *can_steal = false; 2630 for (i = 0;; i++) { 2631 fallback_mt = fallbacks[migratetype][i]; 2632 if (fallback_mt == MIGRATE_TYPES) 2633 break; 2634 2635 if (free_area_empty(area, fallback_mt)) 2636 continue; 2637 2638 if (can_steal_fallback(order, migratetype)) 2639 *can_steal = true; 2640 2641 if (!only_stealable) 2642 return fallback_mt; 2643 2644 if (*can_steal) 2645 return fallback_mt; 2646 } 2647 2648 return -1; 2649 } 2650 2651 /* 2652 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2653 * there are no empty page blocks that contain a page with a suitable order 2654 */ 2655 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2656 unsigned int alloc_order) 2657 { 2658 int mt; 2659 unsigned long max_managed, flags; 2660 2661 /* 2662 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2663 * Check is race-prone but harmless. 2664 */ 2665 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2666 if (zone->nr_reserved_highatomic >= max_managed) 2667 return; 2668 2669 spin_lock_irqsave(&zone->lock, flags); 2670 2671 /* Recheck the nr_reserved_highatomic limit under the lock */ 2672 if (zone->nr_reserved_highatomic >= max_managed) 2673 goto out_unlock; 2674 2675 /* Yoink! */ 2676 mt = get_pageblock_migratetype(page); 2677 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2678 && !is_migrate_cma(mt)) { 2679 zone->nr_reserved_highatomic += pageblock_nr_pages; 2680 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2681 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2682 } 2683 2684 out_unlock: 2685 spin_unlock_irqrestore(&zone->lock, flags); 2686 } 2687 2688 /* 2689 * Used when an allocation is about to fail under memory pressure. This 2690 * potentially hurts the reliability of high-order allocations when under 2691 * intense memory pressure but failed atomic allocations should be easier 2692 * to recover from than an OOM. 2693 * 2694 * If @force is true, try to unreserve a pageblock even though highatomic 2695 * pageblock is exhausted. 2696 */ 2697 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2698 bool force) 2699 { 2700 struct zonelist *zonelist = ac->zonelist; 2701 unsigned long flags; 2702 struct zoneref *z; 2703 struct zone *zone; 2704 struct page *page; 2705 int order; 2706 bool ret; 2707 2708 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2709 ac->nodemask) { 2710 /* 2711 * Preserve at least one pageblock unless memory pressure 2712 * is really high. 2713 */ 2714 if (!force && zone->nr_reserved_highatomic <= 2715 pageblock_nr_pages) 2716 continue; 2717 2718 spin_lock_irqsave(&zone->lock, flags); 2719 for (order = 0; order < MAX_ORDER; order++) { 2720 struct free_area *area = &(zone->free_area[order]); 2721 2722 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2723 if (!page) 2724 continue; 2725 2726 /* 2727 * In page freeing path, migratetype change is racy so 2728 * we can counter several free pages in a pageblock 2729 * in this loop althoug we changed the pageblock type 2730 * from highatomic to ac->migratetype. So we should 2731 * adjust the count once. 2732 */ 2733 if (is_migrate_highatomic_page(page)) { 2734 /* 2735 * It should never happen but changes to 2736 * locking could inadvertently allow a per-cpu 2737 * drain to add pages to MIGRATE_HIGHATOMIC 2738 * while unreserving so be safe and watch for 2739 * underflows. 2740 */ 2741 zone->nr_reserved_highatomic -= min( 2742 pageblock_nr_pages, 2743 zone->nr_reserved_highatomic); 2744 } 2745 2746 /* 2747 * Convert to ac->migratetype and avoid the normal 2748 * pageblock stealing heuristics. Minimally, the caller 2749 * is doing the work and needs the pages. More 2750 * importantly, if the block was always converted to 2751 * MIGRATE_UNMOVABLE or another type then the number 2752 * of pageblocks that cannot be completely freed 2753 * may increase. 2754 */ 2755 set_pageblock_migratetype(page, ac->migratetype); 2756 ret = move_freepages_block(zone, page, ac->migratetype, 2757 NULL); 2758 if (ret) { 2759 spin_unlock_irqrestore(&zone->lock, flags); 2760 return ret; 2761 } 2762 } 2763 spin_unlock_irqrestore(&zone->lock, flags); 2764 } 2765 2766 return false; 2767 } 2768 2769 /* 2770 * Try finding a free buddy page on the fallback list and put it on the free 2771 * list of requested migratetype, possibly along with other pages from the same 2772 * block, depending on fragmentation avoidance heuristics. Returns true if 2773 * fallback was found so that __rmqueue_smallest() can grab it. 2774 * 2775 * The use of signed ints for order and current_order is a deliberate 2776 * deviation from the rest of this file, to make the for loop 2777 * condition simpler. 2778 */ 2779 static __always_inline bool 2780 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2781 unsigned int alloc_flags) 2782 { 2783 struct free_area *area; 2784 int current_order; 2785 int min_order = order; 2786 struct page *page; 2787 int fallback_mt; 2788 bool can_steal; 2789 2790 /* 2791 * Do not steal pages from freelists belonging to other pageblocks 2792 * i.e. orders < pageblock_order. If there are no local zones free, 2793 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2794 */ 2795 if (alloc_flags & ALLOC_NOFRAGMENT) 2796 min_order = pageblock_order; 2797 2798 /* 2799 * Find the largest available free page in the other list. This roughly 2800 * approximates finding the pageblock with the most free pages, which 2801 * would be too costly to do exactly. 2802 */ 2803 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2804 --current_order) { 2805 area = &(zone->free_area[current_order]); 2806 fallback_mt = find_suitable_fallback(area, current_order, 2807 start_migratetype, false, &can_steal); 2808 if (fallback_mt == -1) 2809 continue; 2810 2811 /* 2812 * We cannot steal all free pages from the pageblock and the 2813 * requested migratetype is movable. In that case it's better to 2814 * steal and split the smallest available page instead of the 2815 * largest available page, because even if the next movable 2816 * allocation falls back into a different pageblock than this 2817 * one, it won't cause permanent fragmentation. 2818 */ 2819 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2820 && current_order > order) 2821 goto find_smallest; 2822 2823 goto do_steal; 2824 } 2825 2826 return false; 2827 2828 find_smallest: 2829 for (current_order = order; current_order < MAX_ORDER; 2830 current_order++) { 2831 area = &(zone->free_area[current_order]); 2832 fallback_mt = find_suitable_fallback(area, current_order, 2833 start_migratetype, false, &can_steal); 2834 if (fallback_mt != -1) 2835 break; 2836 } 2837 2838 /* 2839 * This should not happen - we already found a suitable fallback 2840 * when looking for the largest page. 2841 */ 2842 VM_BUG_ON(current_order == MAX_ORDER); 2843 2844 do_steal: 2845 page = get_page_from_free_area(area, fallback_mt); 2846 2847 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2848 can_steal); 2849 2850 trace_mm_page_alloc_extfrag(page, order, current_order, 2851 start_migratetype, fallback_mt); 2852 2853 return true; 2854 2855 } 2856 2857 /* 2858 * Do the hard work of removing an element from the buddy allocator. 2859 * Call me with the zone->lock already held. 2860 */ 2861 static __always_inline struct page * 2862 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2863 unsigned int alloc_flags) 2864 { 2865 struct page *page; 2866 2867 if (IS_ENABLED(CONFIG_CMA)) { 2868 /* 2869 * Balance movable allocations between regular and CMA areas by 2870 * allocating from CMA when over half of the zone's free memory 2871 * is in the CMA area. 2872 */ 2873 if (alloc_flags & ALLOC_CMA && 2874 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2875 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2876 page = __rmqueue_cma_fallback(zone, order); 2877 if (page) 2878 goto out; 2879 } 2880 } 2881 retry: 2882 page = __rmqueue_smallest(zone, order, migratetype); 2883 if (unlikely(!page)) { 2884 if (alloc_flags & ALLOC_CMA) 2885 page = __rmqueue_cma_fallback(zone, order); 2886 2887 if (!page && __rmqueue_fallback(zone, order, migratetype, 2888 alloc_flags)) 2889 goto retry; 2890 } 2891 out: 2892 if (page) 2893 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2894 return page; 2895 } 2896 2897 /* 2898 * Obtain a specified number of elements from the buddy allocator, all under 2899 * a single hold of the lock, for efficiency. Add them to the supplied list. 2900 * Returns the number of new pages which were placed at *list. 2901 */ 2902 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2903 unsigned long count, struct list_head *list, 2904 int migratetype, unsigned int alloc_flags) 2905 { 2906 int i, alloced = 0; 2907 2908 spin_lock(&zone->lock); 2909 for (i = 0; i < count; ++i) { 2910 struct page *page = __rmqueue(zone, order, migratetype, 2911 alloc_flags); 2912 if (unlikely(page == NULL)) 2913 break; 2914 2915 if (unlikely(check_pcp_refill(page))) 2916 continue; 2917 2918 /* 2919 * Split buddy pages returned by expand() are received here in 2920 * physical page order. The page is added to the tail of 2921 * caller's list. From the callers perspective, the linked list 2922 * is ordered by page number under some conditions. This is 2923 * useful for IO devices that can forward direction from the 2924 * head, thus also in the physical page order. This is useful 2925 * for IO devices that can merge IO requests if the physical 2926 * pages are ordered properly. 2927 */ 2928 list_add_tail(&page->lru, list); 2929 alloced++; 2930 if (is_migrate_cma(get_pcppage_migratetype(page))) 2931 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2932 -(1 << order)); 2933 } 2934 2935 /* 2936 * i pages were removed from the buddy list even if some leak due 2937 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2938 * on i. Do not confuse with 'alloced' which is the number of 2939 * pages added to the pcp list. 2940 */ 2941 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2942 spin_unlock(&zone->lock); 2943 return alloced; 2944 } 2945 2946 #ifdef CONFIG_NUMA 2947 /* 2948 * Called from the vmstat counter updater to drain pagesets of this 2949 * currently executing processor on remote nodes after they have 2950 * expired. 2951 * 2952 * Note that this function must be called with the thread pinned to 2953 * a single processor. 2954 */ 2955 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2956 { 2957 unsigned long flags; 2958 int to_drain, batch; 2959 2960 local_irq_save(flags); 2961 batch = READ_ONCE(pcp->batch); 2962 to_drain = min(pcp->count, batch); 2963 if (to_drain > 0) 2964 free_pcppages_bulk(zone, to_drain, pcp); 2965 local_irq_restore(flags); 2966 } 2967 #endif 2968 2969 /* 2970 * Drain pcplists of the indicated processor and zone. 2971 * 2972 * The processor must either be the current processor and the 2973 * thread pinned to the current processor or a processor that 2974 * is not online. 2975 */ 2976 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2977 { 2978 unsigned long flags; 2979 struct per_cpu_pageset *pset; 2980 struct per_cpu_pages *pcp; 2981 2982 local_irq_save(flags); 2983 pset = per_cpu_ptr(zone->pageset, cpu); 2984 2985 pcp = &pset->pcp; 2986 if (pcp->count) 2987 free_pcppages_bulk(zone, pcp->count, pcp); 2988 local_irq_restore(flags); 2989 } 2990 2991 /* 2992 * Drain pcplists of all zones on the indicated processor. 2993 * 2994 * The processor must either be the current processor and the 2995 * thread pinned to the current processor or a processor that 2996 * is not online. 2997 */ 2998 static void drain_pages(unsigned int cpu) 2999 { 3000 struct zone *zone; 3001 3002 for_each_populated_zone(zone) { 3003 drain_pages_zone(cpu, zone); 3004 } 3005 } 3006 3007 /* 3008 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3009 * 3010 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 3011 * the single zone's pages. 3012 */ 3013 void drain_local_pages(struct zone *zone) 3014 { 3015 int cpu = smp_processor_id(); 3016 3017 if (zone) 3018 drain_pages_zone(cpu, zone); 3019 else 3020 drain_pages(cpu); 3021 } 3022 3023 static void drain_local_pages_wq(struct work_struct *work) 3024 { 3025 struct pcpu_drain *drain; 3026 3027 drain = container_of(work, struct pcpu_drain, work); 3028 3029 /* 3030 * drain_all_pages doesn't use proper cpu hotplug protection so 3031 * we can race with cpu offline when the WQ can move this from 3032 * a cpu pinned worker to an unbound one. We can operate on a different 3033 * cpu which is allright but we also have to make sure to not move to 3034 * a different one. 3035 */ 3036 preempt_disable(); 3037 drain_local_pages(drain->zone); 3038 preempt_enable(); 3039 } 3040 3041 /* 3042 * The implementation of drain_all_pages(), exposing an extra parameter to 3043 * drain on all cpus. 3044 * 3045 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3046 * not empty. The check for non-emptiness can however race with a free to 3047 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3048 * that need the guarantee that every CPU has drained can disable the 3049 * optimizing racy check. 3050 */ 3051 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3052 { 3053 int cpu; 3054 3055 /* 3056 * Allocate in the BSS so we wont require allocation in 3057 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3058 */ 3059 static cpumask_t cpus_with_pcps; 3060 3061 /* 3062 * Make sure nobody triggers this path before mm_percpu_wq is fully 3063 * initialized. 3064 */ 3065 if (WARN_ON_ONCE(!mm_percpu_wq)) 3066 return; 3067 3068 /* 3069 * Do not drain if one is already in progress unless it's specific to 3070 * a zone. Such callers are primarily CMA and memory hotplug and need 3071 * the drain to be complete when the call returns. 3072 */ 3073 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3074 if (!zone) 3075 return; 3076 mutex_lock(&pcpu_drain_mutex); 3077 } 3078 3079 /* 3080 * We don't care about racing with CPU hotplug event 3081 * as offline notification will cause the notified 3082 * cpu to drain that CPU pcps and on_each_cpu_mask 3083 * disables preemption as part of its processing 3084 */ 3085 for_each_online_cpu(cpu) { 3086 struct per_cpu_pageset *pcp; 3087 struct zone *z; 3088 bool has_pcps = false; 3089 3090 if (force_all_cpus) { 3091 /* 3092 * The pcp.count check is racy, some callers need a 3093 * guarantee that no cpu is missed. 3094 */ 3095 has_pcps = true; 3096 } else if (zone) { 3097 pcp = per_cpu_ptr(zone->pageset, cpu); 3098 if (pcp->pcp.count) 3099 has_pcps = true; 3100 } else { 3101 for_each_populated_zone(z) { 3102 pcp = per_cpu_ptr(z->pageset, cpu); 3103 if (pcp->pcp.count) { 3104 has_pcps = true; 3105 break; 3106 } 3107 } 3108 } 3109 3110 if (has_pcps) 3111 cpumask_set_cpu(cpu, &cpus_with_pcps); 3112 else 3113 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3114 } 3115 3116 for_each_cpu(cpu, &cpus_with_pcps) { 3117 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3118 3119 drain->zone = zone; 3120 INIT_WORK(&drain->work, drain_local_pages_wq); 3121 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3122 } 3123 for_each_cpu(cpu, &cpus_with_pcps) 3124 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3125 3126 mutex_unlock(&pcpu_drain_mutex); 3127 } 3128 3129 /* 3130 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3131 * 3132 * When zone parameter is non-NULL, spill just the single zone's pages. 3133 * 3134 * Note that this can be extremely slow as the draining happens in a workqueue. 3135 */ 3136 void drain_all_pages(struct zone *zone) 3137 { 3138 __drain_all_pages(zone, false); 3139 } 3140 3141 #ifdef CONFIG_HIBERNATION 3142 3143 /* 3144 * Touch the watchdog for every WD_PAGE_COUNT pages. 3145 */ 3146 #define WD_PAGE_COUNT (128*1024) 3147 3148 void mark_free_pages(struct zone *zone) 3149 { 3150 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3151 unsigned long flags; 3152 unsigned int order, t; 3153 struct page *page; 3154 3155 if (zone_is_empty(zone)) 3156 return; 3157 3158 spin_lock_irqsave(&zone->lock, flags); 3159 3160 max_zone_pfn = zone_end_pfn(zone); 3161 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3162 if (pfn_valid(pfn)) { 3163 page = pfn_to_page(pfn); 3164 3165 if (!--page_count) { 3166 touch_nmi_watchdog(); 3167 page_count = WD_PAGE_COUNT; 3168 } 3169 3170 if (page_zone(page) != zone) 3171 continue; 3172 3173 if (!swsusp_page_is_forbidden(page)) 3174 swsusp_unset_page_free(page); 3175 } 3176 3177 for_each_migratetype_order(order, t) { 3178 list_for_each_entry(page, 3179 &zone->free_area[order].free_list[t], lru) { 3180 unsigned long i; 3181 3182 pfn = page_to_pfn(page); 3183 for (i = 0; i < (1UL << order); i++) { 3184 if (!--page_count) { 3185 touch_nmi_watchdog(); 3186 page_count = WD_PAGE_COUNT; 3187 } 3188 swsusp_set_page_free(pfn_to_page(pfn + i)); 3189 } 3190 } 3191 } 3192 spin_unlock_irqrestore(&zone->lock, flags); 3193 } 3194 #endif /* CONFIG_PM */ 3195 3196 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 3197 { 3198 int migratetype; 3199 3200 if (!free_pcp_prepare(page)) 3201 return false; 3202 3203 migratetype = get_pfnblock_migratetype(page, pfn); 3204 set_pcppage_migratetype(page, migratetype); 3205 return true; 3206 } 3207 3208 static void free_unref_page_commit(struct page *page, unsigned long pfn) 3209 { 3210 struct zone *zone = page_zone(page); 3211 struct per_cpu_pages *pcp; 3212 int migratetype; 3213 3214 migratetype = get_pcppage_migratetype(page); 3215 __count_vm_event(PGFREE); 3216 3217 /* 3218 * We only track unmovable, reclaimable and movable on pcp lists. 3219 * Free ISOLATE pages back to the allocator because they are being 3220 * offlined but treat HIGHATOMIC as movable pages so we can get those 3221 * areas back if necessary. Otherwise, we may have to free 3222 * excessively into the page allocator 3223 */ 3224 if (migratetype >= MIGRATE_PCPTYPES) { 3225 if (unlikely(is_migrate_isolate(migratetype))) { 3226 free_one_page(zone, page, pfn, 0, migratetype, 3227 FPI_NONE); 3228 return; 3229 } 3230 migratetype = MIGRATE_MOVABLE; 3231 } 3232 3233 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3234 list_add(&page->lru, &pcp->lists[migratetype]); 3235 pcp->count++; 3236 if (pcp->count >= READ_ONCE(pcp->high)) 3237 free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp); 3238 } 3239 3240 /* 3241 * Free a 0-order page 3242 */ 3243 void free_unref_page(struct page *page) 3244 { 3245 unsigned long flags; 3246 unsigned long pfn = page_to_pfn(page); 3247 3248 if (!free_unref_page_prepare(page, pfn)) 3249 return; 3250 3251 local_irq_save(flags); 3252 free_unref_page_commit(page, pfn); 3253 local_irq_restore(flags); 3254 } 3255 3256 /* 3257 * Free a list of 0-order pages 3258 */ 3259 void free_unref_page_list(struct list_head *list) 3260 { 3261 struct page *page, *next; 3262 unsigned long flags, pfn; 3263 int batch_count = 0; 3264 3265 /* Prepare pages for freeing */ 3266 list_for_each_entry_safe(page, next, list, lru) { 3267 pfn = page_to_pfn(page); 3268 if (!free_unref_page_prepare(page, pfn)) 3269 list_del(&page->lru); 3270 set_page_private(page, pfn); 3271 } 3272 3273 local_irq_save(flags); 3274 list_for_each_entry_safe(page, next, list, lru) { 3275 unsigned long pfn = page_private(page); 3276 3277 set_page_private(page, 0); 3278 trace_mm_page_free_batched(page); 3279 free_unref_page_commit(page, pfn); 3280 3281 /* 3282 * Guard against excessive IRQ disabled times when we get 3283 * a large list of pages to free. 3284 */ 3285 if (++batch_count == SWAP_CLUSTER_MAX) { 3286 local_irq_restore(flags); 3287 batch_count = 0; 3288 local_irq_save(flags); 3289 } 3290 } 3291 local_irq_restore(flags); 3292 } 3293 3294 /* 3295 * split_page takes a non-compound higher-order page, and splits it into 3296 * n (1<<order) sub-pages: page[0..n] 3297 * Each sub-page must be freed individually. 3298 * 3299 * Note: this is probably too low level an operation for use in drivers. 3300 * Please consult with lkml before using this in your driver. 3301 */ 3302 void split_page(struct page *page, unsigned int order) 3303 { 3304 int i; 3305 3306 VM_BUG_ON_PAGE(PageCompound(page), page); 3307 VM_BUG_ON_PAGE(!page_count(page), page); 3308 3309 for (i = 1; i < (1 << order); i++) 3310 set_page_refcounted(page + i); 3311 split_page_owner(page, 1 << order); 3312 } 3313 EXPORT_SYMBOL_GPL(split_page); 3314 3315 int __isolate_free_page(struct page *page, unsigned int order) 3316 { 3317 unsigned long watermark; 3318 struct zone *zone; 3319 int mt; 3320 3321 BUG_ON(!PageBuddy(page)); 3322 3323 zone = page_zone(page); 3324 mt = get_pageblock_migratetype(page); 3325 3326 if (!is_migrate_isolate(mt)) { 3327 /* 3328 * Obey watermarks as if the page was being allocated. We can 3329 * emulate a high-order watermark check with a raised order-0 3330 * watermark, because we already know our high-order page 3331 * exists. 3332 */ 3333 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3334 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3335 return 0; 3336 3337 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3338 } 3339 3340 /* Remove page from free list */ 3341 3342 del_page_from_free_list(page, zone, order); 3343 3344 /* 3345 * Set the pageblock if the isolated page is at least half of a 3346 * pageblock 3347 */ 3348 if (order >= pageblock_order - 1) { 3349 struct page *endpage = page + (1 << order) - 1; 3350 for (; page < endpage; page += pageblock_nr_pages) { 3351 int mt = get_pageblock_migratetype(page); 3352 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3353 && !is_migrate_highatomic(mt)) 3354 set_pageblock_migratetype(page, 3355 MIGRATE_MOVABLE); 3356 } 3357 } 3358 3359 3360 return 1UL << order; 3361 } 3362 3363 /** 3364 * __putback_isolated_page - Return a now-isolated page back where we got it 3365 * @page: Page that was isolated 3366 * @order: Order of the isolated page 3367 * @mt: The page's pageblock's migratetype 3368 * 3369 * This function is meant to return a page pulled from the free lists via 3370 * __isolate_free_page back to the free lists they were pulled from. 3371 */ 3372 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3373 { 3374 struct zone *zone = page_zone(page); 3375 3376 /* zone lock should be held when this function is called */ 3377 lockdep_assert_held(&zone->lock); 3378 3379 /* Return isolated page to tail of freelist. */ 3380 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3381 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3382 } 3383 3384 /* 3385 * Update NUMA hit/miss statistics 3386 * 3387 * Must be called with interrupts disabled. 3388 */ 3389 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3390 { 3391 #ifdef CONFIG_NUMA 3392 enum numa_stat_item local_stat = NUMA_LOCAL; 3393 3394 /* skip numa counters update if numa stats is disabled */ 3395 if (!static_branch_likely(&vm_numa_stat_key)) 3396 return; 3397 3398 if (zone_to_nid(z) != numa_node_id()) 3399 local_stat = NUMA_OTHER; 3400 3401 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3402 __inc_numa_state(z, NUMA_HIT); 3403 else { 3404 __inc_numa_state(z, NUMA_MISS); 3405 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3406 } 3407 __inc_numa_state(z, local_stat); 3408 #endif 3409 } 3410 3411 /* Remove page from the per-cpu list, caller must protect the list */ 3412 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3413 unsigned int alloc_flags, 3414 struct per_cpu_pages *pcp, 3415 struct list_head *list) 3416 { 3417 struct page *page; 3418 3419 do { 3420 if (list_empty(list)) { 3421 pcp->count += rmqueue_bulk(zone, 0, 3422 READ_ONCE(pcp->batch), list, 3423 migratetype, alloc_flags); 3424 if (unlikely(list_empty(list))) 3425 return NULL; 3426 } 3427 3428 page = list_first_entry(list, struct page, lru); 3429 list_del(&page->lru); 3430 pcp->count--; 3431 } while (check_new_pcp(page)); 3432 3433 return page; 3434 } 3435 3436 /* Lock and remove page from the per-cpu list */ 3437 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3438 struct zone *zone, gfp_t gfp_flags, 3439 int migratetype, unsigned int alloc_flags) 3440 { 3441 struct per_cpu_pages *pcp; 3442 struct list_head *list; 3443 struct page *page; 3444 unsigned long flags; 3445 3446 local_irq_save(flags); 3447 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3448 list = &pcp->lists[migratetype]; 3449 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3450 if (page) { 3451 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3452 zone_statistics(preferred_zone, zone); 3453 } 3454 local_irq_restore(flags); 3455 return page; 3456 } 3457 3458 /* 3459 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3460 */ 3461 static inline 3462 struct page *rmqueue(struct zone *preferred_zone, 3463 struct zone *zone, unsigned int order, 3464 gfp_t gfp_flags, unsigned int alloc_flags, 3465 int migratetype) 3466 { 3467 unsigned long flags; 3468 struct page *page; 3469 3470 if (likely(order == 0)) { 3471 /* 3472 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3473 * we need to skip it when CMA area isn't allowed. 3474 */ 3475 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3476 migratetype != MIGRATE_MOVABLE) { 3477 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, 3478 migratetype, alloc_flags); 3479 goto out; 3480 } 3481 } 3482 3483 /* 3484 * We most definitely don't want callers attempting to 3485 * allocate greater than order-1 page units with __GFP_NOFAIL. 3486 */ 3487 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3488 spin_lock_irqsave(&zone->lock, flags); 3489 3490 do { 3491 page = NULL; 3492 /* 3493 * order-0 request can reach here when the pcplist is skipped 3494 * due to non-CMA allocation context. HIGHATOMIC area is 3495 * reserved for high-order atomic allocation, so order-0 3496 * request should skip it. 3497 */ 3498 if (order > 0 && alloc_flags & ALLOC_HARDER) { 3499 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3500 if (page) 3501 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3502 } 3503 if (!page) 3504 page = __rmqueue(zone, order, migratetype, alloc_flags); 3505 } while (page && check_new_pages(page, order)); 3506 spin_unlock(&zone->lock); 3507 if (!page) 3508 goto failed; 3509 __mod_zone_freepage_state(zone, -(1 << order), 3510 get_pcppage_migratetype(page)); 3511 3512 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3513 zone_statistics(preferred_zone, zone); 3514 local_irq_restore(flags); 3515 3516 out: 3517 /* Separate test+clear to avoid unnecessary atomics */ 3518 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3519 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3520 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3521 } 3522 3523 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3524 return page; 3525 3526 failed: 3527 local_irq_restore(flags); 3528 return NULL; 3529 } 3530 3531 #ifdef CONFIG_FAIL_PAGE_ALLOC 3532 3533 static struct { 3534 struct fault_attr attr; 3535 3536 bool ignore_gfp_highmem; 3537 bool ignore_gfp_reclaim; 3538 u32 min_order; 3539 } fail_page_alloc = { 3540 .attr = FAULT_ATTR_INITIALIZER, 3541 .ignore_gfp_reclaim = true, 3542 .ignore_gfp_highmem = true, 3543 .min_order = 1, 3544 }; 3545 3546 static int __init setup_fail_page_alloc(char *str) 3547 { 3548 return setup_fault_attr(&fail_page_alloc.attr, str); 3549 } 3550 __setup("fail_page_alloc=", setup_fail_page_alloc); 3551 3552 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3553 { 3554 if (order < fail_page_alloc.min_order) 3555 return false; 3556 if (gfp_mask & __GFP_NOFAIL) 3557 return false; 3558 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3559 return false; 3560 if (fail_page_alloc.ignore_gfp_reclaim && 3561 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3562 return false; 3563 3564 return should_fail(&fail_page_alloc.attr, 1 << order); 3565 } 3566 3567 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3568 3569 static int __init fail_page_alloc_debugfs(void) 3570 { 3571 umode_t mode = S_IFREG | 0600; 3572 struct dentry *dir; 3573 3574 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3575 &fail_page_alloc.attr); 3576 3577 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3578 &fail_page_alloc.ignore_gfp_reclaim); 3579 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3580 &fail_page_alloc.ignore_gfp_highmem); 3581 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3582 3583 return 0; 3584 } 3585 3586 late_initcall(fail_page_alloc_debugfs); 3587 3588 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3589 3590 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3591 3592 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3593 { 3594 return false; 3595 } 3596 3597 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3598 3599 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3600 { 3601 return __should_fail_alloc_page(gfp_mask, order); 3602 } 3603 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3604 3605 static inline long __zone_watermark_unusable_free(struct zone *z, 3606 unsigned int order, unsigned int alloc_flags) 3607 { 3608 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3609 long unusable_free = (1 << order) - 1; 3610 3611 /* 3612 * If the caller does not have rights to ALLOC_HARDER then subtract 3613 * the high-atomic reserves. This will over-estimate the size of the 3614 * atomic reserve but it avoids a search. 3615 */ 3616 if (likely(!alloc_harder)) 3617 unusable_free += z->nr_reserved_highatomic; 3618 3619 #ifdef CONFIG_CMA 3620 /* If allocation can't use CMA areas don't use free CMA pages */ 3621 if (!(alloc_flags & ALLOC_CMA)) 3622 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3623 #endif 3624 3625 return unusable_free; 3626 } 3627 3628 /* 3629 * Return true if free base pages are above 'mark'. For high-order checks it 3630 * will return true of the order-0 watermark is reached and there is at least 3631 * one free page of a suitable size. Checking now avoids taking the zone lock 3632 * to check in the allocation paths if no pages are free. 3633 */ 3634 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3635 int highest_zoneidx, unsigned int alloc_flags, 3636 long free_pages) 3637 { 3638 long min = mark; 3639 int o; 3640 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3641 3642 /* free_pages may go negative - that's OK */ 3643 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3644 3645 if (alloc_flags & ALLOC_HIGH) 3646 min -= min / 2; 3647 3648 if (unlikely(alloc_harder)) { 3649 /* 3650 * OOM victims can try even harder than normal ALLOC_HARDER 3651 * users on the grounds that it's definitely going to be in 3652 * the exit path shortly and free memory. Any allocation it 3653 * makes during the free path will be small and short-lived. 3654 */ 3655 if (alloc_flags & ALLOC_OOM) 3656 min -= min / 2; 3657 else 3658 min -= min / 4; 3659 } 3660 3661 /* 3662 * Check watermarks for an order-0 allocation request. If these 3663 * are not met, then a high-order request also cannot go ahead 3664 * even if a suitable page happened to be free. 3665 */ 3666 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3667 return false; 3668 3669 /* If this is an order-0 request then the watermark is fine */ 3670 if (!order) 3671 return true; 3672 3673 /* For a high-order request, check at least one suitable page is free */ 3674 for (o = order; o < MAX_ORDER; o++) { 3675 struct free_area *area = &z->free_area[o]; 3676 int mt; 3677 3678 if (!area->nr_free) 3679 continue; 3680 3681 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3682 if (!free_area_empty(area, mt)) 3683 return true; 3684 } 3685 3686 #ifdef CONFIG_CMA 3687 if ((alloc_flags & ALLOC_CMA) && 3688 !free_area_empty(area, MIGRATE_CMA)) { 3689 return true; 3690 } 3691 #endif 3692 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3693 return true; 3694 } 3695 return false; 3696 } 3697 3698 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3699 int highest_zoneidx, unsigned int alloc_flags) 3700 { 3701 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3702 zone_page_state(z, NR_FREE_PAGES)); 3703 } 3704 3705 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3706 unsigned long mark, int highest_zoneidx, 3707 unsigned int alloc_flags, gfp_t gfp_mask) 3708 { 3709 long free_pages; 3710 3711 free_pages = zone_page_state(z, NR_FREE_PAGES); 3712 3713 /* 3714 * Fast check for order-0 only. If this fails then the reserves 3715 * need to be calculated. 3716 */ 3717 if (!order) { 3718 long fast_free; 3719 3720 fast_free = free_pages; 3721 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); 3722 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) 3723 return true; 3724 } 3725 3726 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3727 free_pages)) 3728 return true; 3729 /* 3730 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3731 * when checking the min watermark. The min watermark is the 3732 * point where boosting is ignored so that kswapd is woken up 3733 * when below the low watermark. 3734 */ 3735 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3736 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3737 mark = z->_watermark[WMARK_MIN]; 3738 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3739 alloc_flags, free_pages); 3740 } 3741 3742 return false; 3743 } 3744 3745 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3746 unsigned long mark, int highest_zoneidx) 3747 { 3748 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3749 3750 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3751 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3752 3753 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3754 free_pages); 3755 } 3756 3757 #ifdef CONFIG_NUMA 3758 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3759 { 3760 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3761 node_reclaim_distance; 3762 } 3763 #else /* CONFIG_NUMA */ 3764 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3765 { 3766 return true; 3767 } 3768 #endif /* CONFIG_NUMA */ 3769 3770 /* 3771 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3772 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3773 * premature use of a lower zone may cause lowmem pressure problems that 3774 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3775 * probably too small. It only makes sense to spread allocations to avoid 3776 * fragmentation between the Normal and DMA32 zones. 3777 */ 3778 static inline unsigned int 3779 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3780 { 3781 unsigned int alloc_flags; 3782 3783 /* 3784 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3785 * to save a branch. 3786 */ 3787 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3788 3789 #ifdef CONFIG_ZONE_DMA32 3790 if (!zone) 3791 return alloc_flags; 3792 3793 if (zone_idx(zone) != ZONE_NORMAL) 3794 return alloc_flags; 3795 3796 /* 3797 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3798 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3799 * on UMA that if Normal is populated then so is DMA32. 3800 */ 3801 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3802 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3803 return alloc_flags; 3804 3805 alloc_flags |= ALLOC_NOFRAGMENT; 3806 #endif /* CONFIG_ZONE_DMA32 */ 3807 return alloc_flags; 3808 } 3809 3810 static inline unsigned int current_alloc_flags(gfp_t gfp_mask, 3811 unsigned int alloc_flags) 3812 { 3813 #ifdef CONFIG_CMA 3814 unsigned int pflags = current->flags; 3815 3816 if (!(pflags & PF_MEMALLOC_NOCMA) && 3817 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3818 alloc_flags |= ALLOC_CMA; 3819 3820 #endif 3821 return alloc_flags; 3822 } 3823 3824 /* 3825 * get_page_from_freelist goes through the zonelist trying to allocate 3826 * a page. 3827 */ 3828 static struct page * 3829 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3830 const struct alloc_context *ac) 3831 { 3832 struct zoneref *z; 3833 struct zone *zone; 3834 struct pglist_data *last_pgdat_dirty_limit = NULL; 3835 bool no_fallback; 3836 3837 retry: 3838 /* 3839 * Scan zonelist, looking for a zone with enough free. 3840 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3841 */ 3842 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3843 z = ac->preferred_zoneref; 3844 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3845 ac->nodemask) { 3846 struct page *page; 3847 unsigned long mark; 3848 3849 if (cpusets_enabled() && 3850 (alloc_flags & ALLOC_CPUSET) && 3851 !__cpuset_zone_allowed(zone, gfp_mask)) 3852 continue; 3853 /* 3854 * When allocating a page cache page for writing, we 3855 * want to get it from a node that is within its dirty 3856 * limit, such that no single node holds more than its 3857 * proportional share of globally allowed dirty pages. 3858 * The dirty limits take into account the node's 3859 * lowmem reserves and high watermark so that kswapd 3860 * should be able to balance it without having to 3861 * write pages from its LRU list. 3862 * 3863 * XXX: For now, allow allocations to potentially 3864 * exceed the per-node dirty limit in the slowpath 3865 * (spread_dirty_pages unset) before going into reclaim, 3866 * which is important when on a NUMA setup the allowed 3867 * nodes are together not big enough to reach the 3868 * global limit. The proper fix for these situations 3869 * will require awareness of nodes in the 3870 * dirty-throttling and the flusher threads. 3871 */ 3872 if (ac->spread_dirty_pages) { 3873 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3874 continue; 3875 3876 if (!node_dirty_ok(zone->zone_pgdat)) { 3877 last_pgdat_dirty_limit = zone->zone_pgdat; 3878 continue; 3879 } 3880 } 3881 3882 if (no_fallback && nr_online_nodes > 1 && 3883 zone != ac->preferred_zoneref->zone) { 3884 int local_nid; 3885 3886 /* 3887 * If moving to a remote node, retry but allow 3888 * fragmenting fallbacks. Locality is more important 3889 * than fragmentation avoidance. 3890 */ 3891 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3892 if (zone_to_nid(zone) != local_nid) { 3893 alloc_flags &= ~ALLOC_NOFRAGMENT; 3894 goto retry; 3895 } 3896 } 3897 3898 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3899 if (!zone_watermark_fast(zone, order, mark, 3900 ac->highest_zoneidx, alloc_flags, 3901 gfp_mask)) { 3902 int ret; 3903 3904 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3905 /* 3906 * Watermark failed for this zone, but see if we can 3907 * grow this zone if it contains deferred pages. 3908 */ 3909 if (static_branch_unlikely(&deferred_pages)) { 3910 if (_deferred_grow_zone(zone, order)) 3911 goto try_this_zone; 3912 } 3913 #endif 3914 /* Checked here to keep the fast path fast */ 3915 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3916 if (alloc_flags & ALLOC_NO_WATERMARKS) 3917 goto try_this_zone; 3918 3919 if (node_reclaim_mode == 0 || 3920 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3921 continue; 3922 3923 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3924 switch (ret) { 3925 case NODE_RECLAIM_NOSCAN: 3926 /* did not scan */ 3927 continue; 3928 case NODE_RECLAIM_FULL: 3929 /* scanned but unreclaimable */ 3930 continue; 3931 default: 3932 /* did we reclaim enough */ 3933 if (zone_watermark_ok(zone, order, mark, 3934 ac->highest_zoneidx, alloc_flags)) 3935 goto try_this_zone; 3936 3937 continue; 3938 } 3939 } 3940 3941 try_this_zone: 3942 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3943 gfp_mask, alloc_flags, ac->migratetype); 3944 if (page) { 3945 prep_new_page(page, order, gfp_mask, alloc_flags); 3946 3947 /* 3948 * If this is a high-order atomic allocation then check 3949 * if the pageblock should be reserved for the future 3950 */ 3951 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3952 reserve_highatomic_pageblock(page, zone, order); 3953 3954 return page; 3955 } else { 3956 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3957 /* Try again if zone has deferred pages */ 3958 if (static_branch_unlikely(&deferred_pages)) { 3959 if (_deferred_grow_zone(zone, order)) 3960 goto try_this_zone; 3961 } 3962 #endif 3963 } 3964 } 3965 3966 /* 3967 * It's possible on a UMA machine to get through all zones that are 3968 * fragmented. If avoiding fragmentation, reset and try again. 3969 */ 3970 if (no_fallback) { 3971 alloc_flags &= ~ALLOC_NOFRAGMENT; 3972 goto retry; 3973 } 3974 3975 return NULL; 3976 } 3977 3978 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3979 { 3980 unsigned int filter = SHOW_MEM_FILTER_NODES; 3981 3982 /* 3983 * This documents exceptions given to allocations in certain 3984 * contexts that are allowed to allocate outside current's set 3985 * of allowed nodes. 3986 */ 3987 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3988 if (tsk_is_oom_victim(current) || 3989 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3990 filter &= ~SHOW_MEM_FILTER_NODES; 3991 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3992 filter &= ~SHOW_MEM_FILTER_NODES; 3993 3994 show_mem(filter, nodemask); 3995 } 3996 3997 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3998 { 3999 struct va_format vaf; 4000 va_list args; 4001 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4002 4003 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 4004 return; 4005 4006 va_start(args, fmt); 4007 vaf.fmt = fmt; 4008 vaf.va = &args; 4009 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4010 current->comm, &vaf, gfp_mask, &gfp_mask, 4011 nodemask_pr_args(nodemask)); 4012 va_end(args); 4013 4014 cpuset_print_current_mems_allowed(); 4015 pr_cont("\n"); 4016 dump_stack(); 4017 warn_alloc_show_mem(gfp_mask, nodemask); 4018 } 4019 4020 static inline struct page * 4021 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4022 unsigned int alloc_flags, 4023 const struct alloc_context *ac) 4024 { 4025 struct page *page; 4026 4027 page = get_page_from_freelist(gfp_mask, order, 4028 alloc_flags|ALLOC_CPUSET, ac); 4029 /* 4030 * fallback to ignore cpuset restriction if our nodes 4031 * are depleted 4032 */ 4033 if (!page) 4034 page = get_page_from_freelist(gfp_mask, order, 4035 alloc_flags, ac); 4036 4037 return page; 4038 } 4039 4040 static inline struct page * 4041 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4042 const struct alloc_context *ac, unsigned long *did_some_progress) 4043 { 4044 struct oom_control oc = { 4045 .zonelist = ac->zonelist, 4046 .nodemask = ac->nodemask, 4047 .memcg = NULL, 4048 .gfp_mask = gfp_mask, 4049 .order = order, 4050 }; 4051 struct page *page; 4052 4053 *did_some_progress = 0; 4054 4055 /* 4056 * Acquire the oom lock. If that fails, somebody else is 4057 * making progress for us. 4058 */ 4059 if (!mutex_trylock(&oom_lock)) { 4060 *did_some_progress = 1; 4061 schedule_timeout_uninterruptible(1); 4062 return NULL; 4063 } 4064 4065 /* 4066 * Go through the zonelist yet one more time, keep very high watermark 4067 * here, this is only to catch a parallel oom killing, we must fail if 4068 * we're still under heavy pressure. But make sure that this reclaim 4069 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4070 * allocation which will never fail due to oom_lock already held. 4071 */ 4072 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4073 ~__GFP_DIRECT_RECLAIM, order, 4074 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4075 if (page) 4076 goto out; 4077 4078 /* Coredumps can quickly deplete all memory reserves */ 4079 if (current->flags & PF_DUMPCORE) 4080 goto out; 4081 /* The OOM killer will not help higher order allocs */ 4082 if (order > PAGE_ALLOC_COSTLY_ORDER) 4083 goto out; 4084 /* 4085 * We have already exhausted all our reclaim opportunities without any 4086 * success so it is time to admit defeat. We will skip the OOM killer 4087 * because it is very likely that the caller has a more reasonable 4088 * fallback than shooting a random task. 4089 * 4090 * The OOM killer may not free memory on a specific node. 4091 */ 4092 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4093 goto out; 4094 /* The OOM killer does not needlessly kill tasks for lowmem */ 4095 if (ac->highest_zoneidx < ZONE_NORMAL) 4096 goto out; 4097 if (pm_suspended_storage()) 4098 goto out; 4099 /* 4100 * XXX: GFP_NOFS allocations should rather fail than rely on 4101 * other request to make a forward progress. 4102 * We are in an unfortunate situation where out_of_memory cannot 4103 * do much for this context but let's try it to at least get 4104 * access to memory reserved if the current task is killed (see 4105 * out_of_memory). Once filesystems are ready to handle allocation 4106 * failures more gracefully we should just bail out here. 4107 */ 4108 4109 /* Exhausted what can be done so it's blame time */ 4110 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 4111 *did_some_progress = 1; 4112 4113 /* 4114 * Help non-failing allocations by giving them access to memory 4115 * reserves 4116 */ 4117 if (gfp_mask & __GFP_NOFAIL) 4118 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4119 ALLOC_NO_WATERMARKS, ac); 4120 } 4121 out: 4122 mutex_unlock(&oom_lock); 4123 return page; 4124 } 4125 4126 /* 4127 * Maximum number of compaction retries wit a progress before OOM 4128 * killer is consider as the only way to move forward. 4129 */ 4130 #define MAX_COMPACT_RETRIES 16 4131 4132 #ifdef CONFIG_COMPACTION 4133 /* Try memory compaction for high-order allocations before reclaim */ 4134 static struct page * 4135 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4136 unsigned int alloc_flags, const struct alloc_context *ac, 4137 enum compact_priority prio, enum compact_result *compact_result) 4138 { 4139 struct page *page = NULL; 4140 unsigned long pflags; 4141 unsigned int noreclaim_flag; 4142 4143 if (!order) 4144 return NULL; 4145 4146 psi_memstall_enter(&pflags); 4147 noreclaim_flag = memalloc_noreclaim_save(); 4148 4149 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4150 prio, &page); 4151 4152 memalloc_noreclaim_restore(noreclaim_flag); 4153 psi_memstall_leave(&pflags); 4154 4155 /* 4156 * At least in one zone compaction wasn't deferred or skipped, so let's 4157 * count a compaction stall 4158 */ 4159 count_vm_event(COMPACTSTALL); 4160 4161 /* Prep a captured page if available */ 4162 if (page) 4163 prep_new_page(page, order, gfp_mask, alloc_flags); 4164 4165 /* Try get a page from the freelist if available */ 4166 if (!page) 4167 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4168 4169 if (page) { 4170 struct zone *zone = page_zone(page); 4171 4172 zone->compact_blockskip_flush = false; 4173 compaction_defer_reset(zone, order, true); 4174 count_vm_event(COMPACTSUCCESS); 4175 return page; 4176 } 4177 4178 /* 4179 * It's bad if compaction run occurs and fails. The most likely reason 4180 * is that pages exist, but not enough to satisfy watermarks. 4181 */ 4182 count_vm_event(COMPACTFAIL); 4183 4184 cond_resched(); 4185 4186 return NULL; 4187 } 4188 4189 static inline bool 4190 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4191 enum compact_result compact_result, 4192 enum compact_priority *compact_priority, 4193 int *compaction_retries) 4194 { 4195 int max_retries = MAX_COMPACT_RETRIES; 4196 int min_priority; 4197 bool ret = false; 4198 int retries = *compaction_retries; 4199 enum compact_priority priority = *compact_priority; 4200 4201 if (!order) 4202 return false; 4203 4204 if (compaction_made_progress(compact_result)) 4205 (*compaction_retries)++; 4206 4207 /* 4208 * compaction considers all the zone as desperately out of memory 4209 * so it doesn't really make much sense to retry except when the 4210 * failure could be caused by insufficient priority 4211 */ 4212 if (compaction_failed(compact_result)) 4213 goto check_priority; 4214 4215 /* 4216 * compaction was skipped because there are not enough order-0 pages 4217 * to work with, so we retry only if it looks like reclaim can help. 4218 */ 4219 if (compaction_needs_reclaim(compact_result)) { 4220 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4221 goto out; 4222 } 4223 4224 /* 4225 * make sure the compaction wasn't deferred or didn't bail out early 4226 * due to locks contention before we declare that we should give up. 4227 * But the next retry should use a higher priority if allowed, so 4228 * we don't just keep bailing out endlessly. 4229 */ 4230 if (compaction_withdrawn(compact_result)) { 4231 goto check_priority; 4232 } 4233 4234 /* 4235 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4236 * costly ones because they are de facto nofail and invoke OOM 4237 * killer to move on while costly can fail and users are ready 4238 * to cope with that. 1/4 retries is rather arbitrary but we 4239 * would need much more detailed feedback from compaction to 4240 * make a better decision. 4241 */ 4242 if (order > PAGE_ALLOC_COSTLY_ORDER) 4243 max_retries /= 4; 4244 if (*compaction_retries <= max_retries) { 4245 ret = true; 4246 goto out; 4247 } 4248 4249 /* 4250 * Make sure there are attempts at the highest priority if we exhausted 4251 * all retries or failed at the lower priorities. 4252 */ 4253 check_priority: 4254 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4255 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4256 4257 if (*compact_priority > min_priority) { 4258 (*compact_priority)--; 4259 *compaction_retries = 0; 4260 ret = true; 4261 } 4262 out: 4263 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4264 return ret; 4265 } 4266 #else 4267 static inline struct page * 4268 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4269 unsigned int alloc_flags, const struct alloc_context *ac, 4270 enum compact_priority prio, enum compact_result *compact_result) 4271 { 4272 *compact_result = COMPACT_SKIPPED; 4273 return NULL; 4274 } 4275 4276 static inline bool 4277 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4278 enum compact_result compact_result, 4279 enum compact_priority *compact_priority, 4280 int *compaction_retries) 4281 { 4282 struct zone *zone; 4283 struct zoneref *z; 4284 4285 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4286 return false; 4287 4288 /* 4289 * There are setups with compaction disabled which would prefer to loop 4290 * inside the allocator rather than hit the oom killer prematurely. 4291 * Let's give them a good hope and keep retrying while the order-0 4292 * watermarks are OK. 4293 */ 4294 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4295 ac->highest_zoneidx, ac->nodemask) { 4296 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4297 ac->highest_zoneidx, alloc_flags)) 4298 return true; 4299 } 4300 return false; 4301 } 4302 #endif /* CONFIG_COMPACTION */ 4303 4304 #ifdef CONFIG_LOCKDEP 4305 static struct lockdep_map __fs_reclaim_map = 4306 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4307 4308 static bool __need_reclaim(gfp_t gfp_mask) 4309 { 4310 /* no reclaim without waiting on it */ 4311 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4312 return false; 4313 4314 /* this guy won't enter reclaim */ 4315 if (current->flags & PF_MEMALLOC) 4316 return false; 4317 4318 if (gfp_mask & __GFP_NOLOCKDEP) 4319 return false; 4320 4321 return true; 4322 } 4323 4324 void __fs_reclaim_acquire(void) 4325 { 4326 lock_map_acquire(&__fs_reclaim_map); 4327 } 4328 4329 void __fs_reclaim_release(void) 4330 { 4331 lock_map_release(&__fs_reclaim_map); 4332 } 4333 4334 void fs_reclaim_acquire(gfp_t gfp_mask) 4335 { 4336 gfp_mask = current_gfp_context(gfp_mask); 4337 4338 if (__need_reclaim(gfp_mask)) { 4339 if (gfp_mask & __GFP_FS) 4340 __fs_reclaim_acquire(); 4341 4342 #ifdef CONFIG_MMU_NOTIFIER 4343 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4344 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4345 #endif 4346 4347 } 4348 } 4349 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4350 4351 void fs_reclaim_release(gfp_t gfp_mask) 4352 { 4353 gfp_mask = current_gfp_context(gfp_mask); 4354 4355 if (__need_reclaim(gfp_mask)) { 4356 if (gfp_mask & __GFP_FS) 4357 __fs_reclaim_release(); 4358 } 4359 } 4360 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4361 #endif 4362 4363 /* Perform direct synchronous page reclaim */ 4364 static unsigned long 4365 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4366 const struct alloc_context *ac) 4367 { 4368 unsigned int noreclaim_flag; 4369 unsigned long pflags, progress; 4370 4371 cond_resched(); 4372 4373 /* We now go into synchronous reclaim */ 4374 cpuset_memory_pressure_bump(); 4375 psi_memstall_enter(&pflags); 4376 fs_reclaim_acquire(gfp_mask); 4377 noreclaim_flag = memalloc_noreclaim_save(); 4378 4379 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4380 ac->nodemask); 4381 4382 memalloc_noreclaim_restore(noreclaim_flag); 4383 fs_reclaim_release(gfp_mask); 4384 psi_memstall_leave(&pflags); 4385 4386 cond_resched(); 4387 4388 return progress; 4389 } 4390 4391 /* The really slow allocator path where we enter direct reclaim */ 4392 static inline struct page * 4393 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4394 unsigned int alloc_flags, const struct alloc_context *ac, 4395 unsigned long *did_some_progress) 4396 { 4397 struct page *page = NULL; 4398 bool drained = false; 4399 4400 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4401 if (unlikely(!(*did_some_progress))) 4402 return NULL; 4403 4404 retry: 4405 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4406 4407 /* 4408 * If an allocation failed after direct reclaim, it could be because 4409 * pages are pinned on the per-cpu lists or in high alloc reserves. 4410 * Shrink them and try again 4411 */ 4412 if (!page && !drained) { 4413 unreserve_highatomic_pageblock(ac, false); 4414 drain_all_pages(NULL); 4415 drained = true; 4416 goto retry; 4417 } 4418 4419 return page; 4420 } 4421 4422 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4423 const struct alloc_context *ac) 4424 { 4425 struct zoneref *z; 4426 struct zone *zone; 4427 pg_data_t *last_pgdat = NULL; 4428 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4429 4430 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4431 ac->nodemask) { 4432 if (last_pgdat != zone->zone_pgdat) 4433 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4434 last_pgdat = zone->zone_pgdat; 4435 } 4436 } 4437 4438 static inline unsigned int 4439 gfp_to_alloc_flags(gfp_t gfp_mask) 4440 { 4441 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4442 4443 /* 4444 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4445 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4446 * to save two branches. 4447 */ 4448 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4449 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4450 4451 /* 4452 * The caller may dip into page reserves a bit more if the caller 4453 * cannot run direct reclaim, or if the caller has realtime scheduling 4454 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4455 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4456 */ 4457 alloc_flags |= (__force int) 4458 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4459 4460 if (gfp_mask & __GFP_ATOMIC) { 4461 /* 4462 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4463 * if it can't schedule. 4464 */ 4465 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4466 alloc_flags |= ALLOC_HARDER; 4467 /* 4468 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4469 * comment for __cpuset_node_allowed(). 4470 */ 4471 alloc_flags &= ~ALLOC_CPUSET; 4472 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4473 alloc_flags |= ALLOC_HARDER; 4474 4475 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags); 4476 4477 return alloc_flags; 4478 } 4479 4480 static bool oom_reserves_allowed(struct task_struct *tsk) 4481 { 4482 if (!tsk_is_oom_victim(tsk)) 4483 return false; 4484 4485 /* 4486 * !MMU doesn't have oom reaper so give access to memory reserves 4487 * only to the thread with TIF_MEMDIE set 4488 */ 4489 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4490 return false; 4491 4492 return true; 4493 } 4494 4495 /* 4496 * Distinguish requests which really need access to full memory 4497 * reserves from oom victims which can live with a portion of it 4498 */ 4499 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4500 { 4501 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4502 return 0; 4503 if (gfp_mask & __GFP_MEMALLOC) 4504 return ALLOC_NO_WATERMARKS; 4505 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4506 return ALLOC_NO_WATERMARKS; 4507 if (!in_interrupt()) { 4508 if (current->flags & PF_MEMALLOC) 4509 return ALLOC_NO_WATERMARKS; 4510 else if (oom_reserves_allowed(current)) 4511 return ALLOC_OOM; 4512 } 4513 4514 return 0; 4515 } 4516 4517 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4518 { 4519 return !!__gfp_pfmemalloc_flags(gfp_mask); 4520 } 4521 4522 /* 4523 * Checks whether it makes sense to retry the reclaim to make a forward progress 4524 * for the given allocation request. 4525 * 4526 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4527 * without success, or when we couldn't even meet the watermark if we 4528 * reclaimed all remaining pages on the LRU lists. 4529 * 4530 * Returns true if a retry is viable or false to enter the oom path. 4531 */ 4532 static inline bool 4533 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4534 struct alloc_context *ac, int alloc_flags, 4535 bool did_some_progress, int *no_progress_loops) 4536 { 4537 struct zone *zone; 4538 struct zoneref *z; 4539 bool ret = false; 4540 4541 /* 4542 * Costly allocations might have made a progress but this doesn't mean 4543 * their order will become available due to high fragmentation so 4544 * always increment the no progress counter for them 4545 */ 4546 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4547 *no_progress_loops = 0; 4548 else 4549 (*no_progress_loops)++; 4550 4551 /* 4552 * Make sure we converge to OOM if we cannot make any progress 4553 * several times in the row. 4554 */ 4555 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4556 /* Before OOM, exhaust highatomic_reserve */ 4557 return unreserve_highatomic_pageblock(ac, true); 4558 } 4559 4560 /* 4561 * Keep reclaiming pages while there is a chance this will lead 4562 * somewhere. If none of the target zones can satisfy our allocation 4563 * request even if all reclaimable pages are considered then we are 4564 * screwed and have to go OOM. 4565 */ 4566 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4567 ac->highest_zoneidx, ac->nodemask) { 4568 unsigned long available; 4569 unsigned long reclaimable; 4570 unsigned long min_wmark = min_wmark_pages(zone); 4571 bool wmark; 4572 4573 available = reclaimable = zone_reclaimable_pages(zone); 4574 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4575 4576 /* 4577 * Would the allocation succeed if we reclaimed all 4578 * reclaimable pages? 4579 */ 4580 wmark = __zone_watermark_ok(zone, order, min_wmark, 4581 ac->highest_zoneidx, alloc_flags, available); 4582 trace_reclaim_retry_zone(z, order, reclaimable, 4583 available, min_wmark, *no_progress_loops, wmark); 4584 if (wmark) { 4585 /* 4586 * If we didn't make any progress and have a lot of 4587 * dirty + writeback pages then we should wait for 4588 * an IO to complete to slow down the reclaim and 4589 * prevent from pre mature OOM 4590 */ 4591 if (!did_some_progress) { 4592 unsigned long write_pending; 4593 4594 write_pending = zone_page_state_snapshot(zone, 4595 NR_ZONE_WRITE_PENDING); 4596 4597 if (2 * write_pending > reclaimable) { 4598 congestion_wait(BLK_RW_ASYNC, HZ/10); 4599 return true; 4600 } 4601 } 4602 4603 ret = true; 4604 goto out; 4605 } 4606 } 4607 4608 out: 4609 /* 4610 * Memory allocation/reclaim might be called from a WQ context and the 4611 * current implementation of the WQ concurrency control doesn't 4612 * recognize that a particular WQ is congested if the worker thread is 4613 * looping without ever sleeping. Therefore we have to do a short sleep 4614 * here rather than calling cond_resched(). 4615 */ 4616 if (current->flags & PF_WQ_WORKER) 4617 schedule_timeout_uninterruptible(1); 4618 else 4619 cond_resched(); 4620 return ret; 4621 } 4622 4623 static inline bool 4624 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4625 { 4626 /* 4627 * It's possible that cpuset's mems_allowed and the nodemask from 4628 * mempolicy don't intersect. This should be normally dealt with by 4629 * policy_nodemask(), but it's possible to race with cpuset update in 4630 * such a way the check therein was true, and then it became false 4631 * before we got our cpuset_mems_cookie here. 4632 * This assumes that for all allocations, ac->nodemask can come only 4633 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4634 * when it does not intersect with the cpuset restrictions) or the 4635 * caller can deal with a violated nodemask. 4636 */ 4637 if (cpusets_enabled() && ac->nodemask && 4638 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4639 ac->nodemask = NULL; 4640 return true; 4641 } 4642 4643 /* 4644 * When updating a task's mems_allowed or mempolicy nodemask, it is 4645 * possible to race with parallel threads in such a way that our 4646 * allocation can fail while the mask is being updated. If we are about 4647 * to fail, check if the cpuset changed during allocation and if so, 4648 * retry. 4649 */ 4650 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4651 return true; 4652 4653 return false; 4654 } 4655 4656 static inline struct page * 4657 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4658 struct alloc_context *ac) 4659 { 4660 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4661 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4662 struct page *page = NULL; 4663 unsigned int alloc_flags; 4664 unsigned long did_some_progress; 4665 enum compact_priority compact_priority; 4666 enum compact_result compact_result; 4667 int compaction_retries; 4668 int no_progress_loops; 4669 unsigned int cpuset_mems_cookie; 4670 int reserve_flags; 4671 4672 /* 4673 * We also sanity check to catch abuse of atomic reserves being used by 4674 * callers that are not in atomic context. 4675 */ 4676 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4677 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4678 gfp_mask &= ~__GFP_ATOMIC; 4679 4680 retry_cpuset: 4681 compaction_retries = 0; 4682 no_progress_loops = 0; 4683 compact_priority = DEF_COMPACT_PRIORITY; 4684 cpuset_mems_cookie = read_mems_allowed_begin(); 4685 4686 /* 4687 * The fast path uses conservative alloc_flags to succeed only until 4688 * kswapd needs to be woken up, and to avoid the cost of setting up 4689 * alloc_flags precisely. So we do that now. 4690 */ 4691 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4692 4693 /* 4694 * We need to recalculate the starting point for the zonelist iterator 4695 * because we might have used different nodemask in the fast path, or 4696 * there was a cpuset modification and we are retrying - otherwise we 4697 * could end up iterating over non-eligible zones endlessly. 4698 */ 4699 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4700 ac->highest_zoneidx, ac->nodemask); 4701 if (!ac->preferred_zoneref->zone) 4702 goto nopage; 4703 4704 if (alloc_flags & ALLOC_KSWAPD) 4705 wake_all_kswapds(order, gfp_mask, ac); 4706 4707 /* 4708 * The adjusted alloc_flags might result in immediate success, so try 4709 * that first 4710 */ 4711 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4712 if (page) 4713 goto got_pg; 4714 4715 /* 4716 * For costly allocations, try direct compaction first, as it's likely 4717 * that we have enough base pages and don't need to reclaim. For non- 4718 * movable high-order allocations, do that as well, as compaction will 4719 * try prevent permanent fragmentation by migrating from blocks of the 4720 * same migratetype. 4721 * Don't try this for allocations that are allowed to ignore 4722 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4723 */ 4724 if (can_direct_reclaim && 4725 (costly_order || 4726 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4727 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4728 page = __alloc_pages_direct_compact(gfp_mask, order, 4729 alloc_flags, ac, 4730 INIT_COMPACT_PRIORITY, 4731 &compact_result); 4732 if (page) 4733 goto got_pg; 4734 4735 /* 4736 * Checks for costly allocations with __GFP_NORETRY, which 4737 * includes some THP page fault allocations 4738 */ 4739 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4740 /* 4741 * If allocating entire pageblock(s) and compaction 4742 * failed because all zones are below low watermarks 4743 * or is prohibited because it recently failed at this 4744 * order, fail immediately unless the allocator has 4745 * requested compaction and reclaim retry. 4746 * 4747 * Reclaim is 4748 * - potentially very expensive because zones are far 4749 * below their low watermarks or this is part of very 4750 * bursty high order allocations, 4751 * - not guaranteed to help because isolate_freepages() 4752 * may not iterate over freed pages as part of its 4753 * linear scan, and 4754 * - unlikely to make entire pageblocks free on its 4755 * own. 4756 */ 4757 if (compact_result == COMPACT_SKIPPED || 4758 compact_result == COMPACT_DEFERRED) 4759 goto nopage; 4760 4761 /* 4762 * Looks like reclaim/compaction is worth trying, but 4763 * sync compaction could be very expensive, so keep 4764 * using async compaction. 4765 */ 4766 compact_priority = INIT_COMPACT_PRIORITY; 4767 } 4768 } 4769 4770 retry: 4771 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4772 if (alloc_flags & ALLOC_KSWAPD) 4773 wake_all_kswapds(order, gfp_mask, ac); 4774 4775 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4776 if (reserve_flags) 4777 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags); 4778 4779 /* 4780 * Reset the nodemask and zonelist iterators if memory policies can be 4781 * ignored. These allocations are high priority and system rather than 4782 * user oriented. 4783 */ 4784 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4785 ac->nodemask = NULL; 4786 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4787 ac->highest_zoneidx, ac->nodemask); 4788 } 4789 4790 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4791 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4792 if (page) 4793 goto got_pg; 4794 4795 /* Caller is not willing to reclaim, we can't balance anything */ 4796 if (!can_direct_reclaim) 4797 goto nopage; 4798 4799 /* Avoid recursion of direct reclaim */ 4800 if (current->flags & PF_MEMALLOC) 4801 goto nopage; 4802 4803 /* Try direct reclaim and then allocating */ 4804 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4805 &did_some_progress); 4806 if (page) 4807 goto got_pg; 4808 4809 /* Try direct compaction and then allocating */ 4810 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4811 compact_priority, &compact_result); 4812 if (page) 4813 goto got_pg; 4814 4815 /* Do not loop if specifically requested */ 4816 if (gfp_mask & __GFP_NORETRY) 4817 goto nopage; 4818 4819 /* 4820 * Do not retry costly high order allocations unless they are 4821 * __GFP_RETRY_MAYFAIL 4822 */ 4823 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4824 goto nopage; 4825 4826 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4827 did_some_progress > 0, &no_progress_loops)) 4828 goto retry; 4829 4830 /* 4831 * It doesn't make any sense to retry for the compaction if the order-0 4832 * reclaim is not able to make any progress because the current 4833 * implementation of the compaction depends on the sufficient amount 4834 * of free memory (see __compaction_suitable) 4835 */ 4836 if (did_some_progress > 0 && 4837 should_compact_retry(ac, order, alloc_flags, 4838 compact_result, &compact_priority, 4839 &compaction_retries)) 4840 goto retry; 4841 4842 4843 /* Deal with possible cpuset update races before we start OOM killing */ 4844 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4845 goto retry_cpuset; 4846 4847 /* Reclaim has failed us, start killing things */ 4848 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4849 if (page) 4850 goto got_pg; 4851 4852 /* Avoid allocations with no watermarks from looping endlessly */ 4853 if (tsk_is_oom_victim(current) && 4854 (alloc_flags & ALLOC_OOM || 4855 (gfp_mask & __GFP_NOMEMALLOC))) 4856 goto nopage; 4857 4858 /* Retry as long as the OOM killer is making progress */ 4859 if (did_some_progress) { 4860 no_progress_loops = 0; 4861 goto retry; 4862 } 4863 4864 nopage: 4865 /* Deal with possible cpuset update races before we fail */ 4866 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4867 goto retry_cpuset; 4868 4869 /* 4870 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4871 * we always retry 4872 */ 4873 if (gfp_mask & __GFP_NOFAIL) { 4874 /* 4875 * All existing users of the __GFP_NOFAIL are blockable, so warn 4876 * of any new users that actually require GFP_NOWAIT 4877 */ 4878 if (WARN_ON_ONCE(!can_direct_reclaim)) 4879 goto fail; 4880 4881 /* 4882 * PF_MEMALLOC request from this context is rather bizarre 4883 * because we cannot reclaim anything and only can loop waiting 4884 * for somebody to do a work for us 4885 */ 4886 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4887 4888 /* 4889 * non failing costly orders are a hard requirement which we 4890 * are not prepared for much so let's warn about these users 4891 * so that we can identify them and convert them to something 4892 * else. 4893 */ 4894 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4895 4896 /* 4897 * Help non-failing allocations by giving them access to memory 4898 * reserves but do not use ALLOC_NO_WATERMARKS because this 4899 * could deplete whole memory reserves which would just make 4900 * the situation worse 4901 */ 4902 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4903 if (page) 4904 goto got_pg; 4905 4906 cond_resched(); 4907 goto retry; 4908 } 4909 fail: 4910 warn_alloc(gfp_mask, ac->nodemask, 4911 "page allocation failure: order:%u", order); 4912 got_pg: 4913 return page; 4914 } 4915 4916 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4917 int preferred_nid, nodemask_t *nodemask, 4918 struct alloc_context *ac, gfp_t *alloc_mask, 4919 unsigned int *alloc_flags) 4920 { 4921 ac->highest_zoneidx = gfp_zone(gfp_mask); 4922 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4923 ac->nodemask = nodemask; 4924 ac->migratetype = gfp_migratetype(gfp_mask); 4925 4926 if (cpusets_enabled()) { 4927 *alloc_mask |= __GFP_HARDWALL; 4928 /* 4929 * When we are in the interrupt context, it is irrelevant 4930 * to the current task context. It means that any node ok. 4931 */ 4932 if (!in_interrupt() && !ac->nodemask) 4933 ac->nodemask = &cpuset_current_mems_allowed; 4934 else 4935 *alloc_flags |= ALLOC_CPUSET; 4936 } 4937 4938 fs_reclaim_acquire(gfp_mask); 4939 fs_reclaim_release(gfp_mask); 4940 4941 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4942 4943 if (should_fail_alloc_page(gfp_mask, order)) 4944 return false; 4945 4946 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags); 4947 4948 /* Dirty zone balancing only done in the fast path */ 4949 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4950 4951 /* 4952 * The preferred zone is used for statistics but crucially it is 4953 * also used as the starting point for the zonelist iterator. It 4954 * may get reset for allocations that ignore memory policies. 4955 */ 4956 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4957 ac->highest_zoneidx, ac->nodemask); 4958 4959 return true; 4960 } 4961 4962 /* 4963 * This is the 'heart' of the zoned buddy allocator. 4964 */ 4965 struct page * 4966 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4967 nodemask_t *nodemask) 4968 { 4969 struct page *page; 4970 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4971 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4972 struct alloc_context ac = { }; 4973 4974 /* 4975 * There are several places where we assume that the order value is sane 4976 * so bail out early if the request is out of bound. 4977 */ 4978 if (unlikely(order >= MAX_ORDER)) { 4979 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4980 return NULL; 4981 } 4982 4983 gfp_mask &= gfp_allowed_mask; 4984 alloc_mask = gfp_mask; 4985 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4986 return NULL; 4987 4988 /* 4989 * Forbid the first pass from falling back to types that fragment 4990 * memory until all local zones are considered. 4991 */ 4992 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4993 4994 /* First allocation attempt */ 4995 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4996 if (likely(page)) 4997 goto out; 4998 4999 /* 5000 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5001 * resp. GFP_NOIO which has to be inherited for all allocation requests 5002 * from a particular context which has been marked by 5003 * memalloc_no{fs,io}_{save,restore}. 5004 */ 5005 alloc_mask = current_gfp_context(gfp_mask); 5006 ac.spread_dirty_pages = false; 5007 5008 /* 5009 * Restore the original nodemask if it was potentially replaced with 5010 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5011 */ 5012 ac.nodemask = nodemask; 5013 5014 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 5015 5016 out: 5017 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 5018 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) { 5019 __free_pages(page, order); 5020 page = NULL; 5021 } 5022 5023 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 5024 5025 return page; 5026 } 5027 EXPORT_SYMBOL(__alloc_pages_nodemask); 5028 5029 /* 5030 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5031 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5032 * you need to access high mem. 5033 */ 5034 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5035 { 5036 struct page *page; 5037 5038 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5039 if (!page) 5040 return 0; 5041 return (unsigned long) page_address(page); 5042 } 5043 EXPORT_SYMBOL(__get_free_pages); 5044 5045 unsigned long get_zeroed_page(gfp_t gfp_mask) 5046 { 5047 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5048 } 5049 EXPORT_SYMBOL(get_zeroed_page); 5050 5051 static inline void free_the_page(struct page *page, unsigned int order) 5052 { 5053 if (order == 0) /* Via pcp? */ 5054 free_unref_page(page); 5055 else 5056 __free_pages_ok(page, order, FPI_NONE); 5057 } 5058 5059 /** 5060 * __free_pages - Free pages allocated with alloc_pages(). 5061 * @page: The page pointer returned from alloc_pages(). 5062 * @order: The order of the allocation. 5063 * 5064 * This function can free multi-page allocations that are not compound 5065 * pages. It does not check that the @order passed in matches that of 5066 * the allocation, so it is easy to leak memory. Freeing more memory 5067 * than was allocated will probably emit a warning. 5068 * 5069 * If the last reference to this page is speculative, it will be released 5070 * by put_page() which only frees the first page of a non-compound 5071 * allocation. To prevent the remaining pages from being leaked, we free 5072 * the subsequent pages here. If you want to use the page's reference 5073 * count to decide when to free the allocation, you should allocate a 5074 * compound page, and use put_page() instead of __free_pages(). 5075 * 5076 * Context: May be called in interrupt context or while holding a normal 5077 * spinlock, but not in NMI context or while holding a raw spinlock. 5078 */ 5079 void __free_pages(struct page *page, unsigned int order) 5080 { 5081 if (put_page_testzero(page)) 5082 free_the_page(page, order); 5083 else if (!PageHead(page)) 5084 while (order-- > 0) 5085 free_the_page(page + (1 << order), order); 5086 } 5087 EXPORT_SYMBOL(__free_pages); 5088 5089 void free_pages(unsigned long addr, unsigned int order) 5090 { 5091 if (addr != 0) { 5092 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5093 __free_pages(virt_to_page((void *)addr), order); 5094 } 5095 } 5096 5097 EXPORT_SYMBOL(free_pages); 5098 5099 /* 5100 * Page Fragment: 5101 * An arbitrary-length arbitrary-offset area of memory which resides 5102 * within a 0 or higher order page. Multiple fragments within that page 5103 * are individually refcounted, in the page's reference counter. 5104 * 5105 * The page_frag functions below provide a simple allocation framework for 5106 * page fragments. This is used by the network stack and network device 5107 * drivers to provide a backing region of memory for use as either an 5108 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5109 */ 5110 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5111 gfp_t gfp_mask) 5112 { 5113 struct page *page = NULL; 5114 gfp_t gfp = gfp_mask; 5115 5116 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5117 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5118 __GFP_NOMEMALLOC; 5119 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5120 PAGE_FRAG_CACHE_MAX_ORDER); 5121 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5122 #endif 5123 if (unlikely(!page)) 5124 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5125 5126 nc->va = page ? page_address(page) : NULL; 5127 5128 return page; 5129 } 5130 5131 void __page_frag_cache_drain(struct page *page, unsigned int count) 5132 { 5133 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5134 5135 if (page_ref_sub_and_test(page, count)) 5136 free_the_page(page, compound_order(page)); 5137 } 5138 EXPORT_SYMBOL(__page_frag_cache_drain); 5139 5140 void *page_frag_alloc(struct page_frag_cache *nc, 5141 unsigned int fragsz, gfp_t gfp_mask) 5142 { 5143 unsigned int size = PAGE_SIZE; 5144 struct page *page; 5145 int offset; 5146 5147 if (unlikely(!nc->va)) { 5148 refill: 5149 page = __page_frag_cache_refill(nc, gfp_mask); 5150 if (!page) 5151 return NULL; 5152 5153 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5154 /* if size can vary use size else just use PAGE_SIZE */ 5155 size = nc->size; 5156 #endif 5157 /* Even if we own the page, we do not use atomic_set(). 5158 * This would break get_page_unless_zero() users. 5159 */ 5160 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5161 5162 /* reset page count bias and offset to start of new frag */ 5163 nc->pfmemalloc = page_is_pfmemalloc(page); 5164 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5165 nc->offset = size; 5166 } 5167 5168 offset = nc->offset - fragsz; 5169 if (unlikely(offset < 0)) { 5170 page = virt_to_page(nc->va); 5171 5172 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5173 goto refill; 5174 5175 if (unlikely(nc->pfmemalloc)) { 5176 free_the_page(page, compound_order(page)); 5177 goto refill; 5178 } 5179 5180 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5181 /* if size can vary use size else just use PAGE_SIZE */ 5182 size = nc->size; 5183 #endif 5184 /* OK, page count is 0, we can safely set it */ 5185 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5186 5187 /* reset page count bias and offset to start of new frag */ 5188 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5189 offset = size - fragsz; 5190 } 5191 5192 nc->pagecnt_bias--; 5193 nc->offset = offset; 5194 5195 return nc->va + offset; 5196 } 5197 EXPORT_SYMBOL(page_frag_alloc); 5198 5199 /* 5200 * Frees a page fragment allocated out of either a compound or order 0 page. 5201 */ 5202 void page_frag_free(void *addr) 5203 { 5204 struct page *page = virt_to_head_page(addr); 5205 5206 if (unlikely(put_page_testzero(page))) 5207 free_the_page(page, compound_order(page)); 5208 } 5209 EXPORT_SYMBOL(page_frag_free); 5210 5211 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5212 size_t size) 5213 { 5214 if (addr) { 5215 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5216 unsigned long used = addr + PAGE_ALIGN(size); 5217 5218 split_page(virt_to_page((void *)addr), order); 5219 while (used < alloc_end) { 5220 free_page(used); 5221 used += PAGE_SIZE; 5222 } 5223 } 5224 return (void *)addr; 5225 } 5226 5227 /** 5228 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5229 * @size: the number of bytes to allocate 5230 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5231 * 5232 * This function is similar to alloc_pages(), except that it allocates the 5233 * minimum number of pages to satisfy the request. alloc_pages() can only 5234 * allocate memory in power-of-two pages. 5235 * 5236 * This function is also limited by MAX_ORDER. 5237 * 5238 * Memory allocated by this function must be released by free_pages_exact(). 5239 * 5240 * Return: pointer to the allocated area or %NULL in case of error. 5241 */ 5242 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5243 { 5244 unsigned int order = get_order(size); 5245 unsigned long addr; 5246 5247 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5248 gfp_mask &= ~__GFP_COMP; 5249 5250 addr = __get_free_pages(gfp_mask, order); 5251 return make_alloc_exact(addr, order, size); 5252 } 5253 EXPORT_SYMBOL(alloc_pages_exact); 5254 5255 /** 5256 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5257 * pages on a node. 5258 * @nid: the preferred node ID where memory should be allocated 5259 * @size: the number of bytes to allocate 5260 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5261 * 5262 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5263 * back. 5264 * 5265 * Return: pointer to the allocated area or %NULL in case of error. 5266 */ 5267 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5268 { 5269 unsigned int order = get_order(size); 5270 struct page *p; 5271 5272 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5273 gfp_mask &= ~__GFP_COMP; 5274 5275 p = alloc_pages_node(nid, gfp_mask, order); 5276 if (!p) 5277 return NULL; 5278 return make_alloc_exact((unsigned long)page_address(p), order, size); 5279 } 5280 5281 /** 5282 * free_pages_exact - release memory allocated via alloc_pages_exact() 5283 * @virt: the value returned by alloc_pages_exact. 5284 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5285 * 5286 * Release the memory allocated by a previous call to alloc_pages_exact. 5287 */ 5288 void free_pages_exact(void *virt, size_t size) 5289 { 5290 unsigned long addr = (unsigned long)virt; 5291 unsigned long end = addr + PAGE_ALIGN(size); 5292 5293 while (addr < end) { 5294 free_page(addr); 5295 addr += PAGE_SIZE; 5296 } 5297 } 5298 EXPORT_SYMBOL(free_pages_exact); 5299 5300 /** 5301 * nr_free_zone_pages - count number of pages beyond high watermark 5302 * @offset: The zone index of the highest zone 5303 * 5304 * nr_free_zone_pages() counts the number of pages which are beyond the 5305 * high watermark within all zones at or below a given zone index. For each 5306 * zone, the number of pages is calculated as: 5307 * 5308 * nr_free_zone_pages = managed_pages - high_pages 5309 * 5310 * Return: number of pages beyond high watermark. 5311 */ 5312 static unsigned long nr_free_zone_pages(int offset) 5313 { 5314 struct zoneref *z; 5315 struct zone *zone; 5316 5317 /* Just pick one node, since fallback list is circular */ 5318 unsigned long sum = 0; 5319 5320 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5321 5322 for_each_zone_zonelist(zone, z, zonelist, offset) { 5323 unsigned long size = zone_managed_pages(zone); 5324 unsigned long high = high_wmark_pages(zone); 5325 if (size > high) 5326 sum += size - high; 5327 } 5328 5329 return sum; 5330 } 5331 5332 /** 5333 * nr_free_buffer_pages - count number of pages beyond high watermark 5334 * 5335 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5336 * watermark within ZONE_DMA and ZONE_NORMAL. 5337 * 5338 * Return: number of pages beyond high watermark within ZONE_DMA and 5339 * ZONE_NORMAL. 5340 */ 5341 unsigned long nr_free_buffer_pages(void) 5342 { 5343 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5344 } 5345 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5346 5347 static inline void show_node(struct zone *zone) 5348 { 5349 if (IS_ENABLED(CONFIG_NUMA)) 5350 printk("Node %d ", zone_to_nid(zone)); 5351 } 5352 5353 long si_mem_available(void) 5354 { 5355 long available; 5356 unsigned long pagecache; 5357 unsigned long wmark_low = 0; 5358 unsigned long pages[NR_LRU_LISTS]; 5359 unsigned long reclaimable; 5360 struct zone *zone; 5361 int lru; 5362 5363 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5364 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5365 5366 for_each_zone(zone) 5367 wmark_low += low_wmark_pages(zone); 5368 5369 /* 5370 * Estimate the amount of memory available for userspace allocations, 5371 * without causing swapping. 5372 */ 5373 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5374 5375 /* 5376 * Not all the page cache can be freed, otherwise the system will 5377 * start swapping. Assume at least half of the page cache, or the 5378 * low watermark worth of cache, needs to stay. 5379 */ 5380 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5381 pagecache -= min(pagecache / 2, wmark_low); 5382 available += pagecache; 5383 5384 /* 5385 * Part of the reclaimable slab and other kernel memory consists of 5386 * items that are in use, and cannot be freed. Cap this estimate at the 5387 * low watermark. 5388 */ 5389 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5390 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5391 available += reclaimable - min(reclaimable / 2, wmark_low); 5392 5393 if (available < 0) 5394 available = 0; 5395 return available; 5396 } 5397 EXPORT_SYMBOL_GPL(si_mem_available); 5398 5399 void si_meminfo(struct sysinfo *val) 5400 { 5401 val->totalram = totalram_pages(); 5402 val->sharedram = global_node_page_state(NR_SHMEM); 5403 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5404 val->bufferram = nr_blockdev_pages(); 5405 val->totalhigh = totalhigh_pages(); 5406 val->freehigh = nr_free_highpages(); 5407 val->mem_unit = PAGE_SIZE; 5408 } 5409 5410 EXPORT_SYMBOL(si_meminfo); 5411 5412 #ifdef CONFIG_NUMA 5413 void si_meminfo_node(struct sysinfo *val, int nid) 5414 { 5415 int zone_type; /* needs to be signed */ 5416 unsigned long managed_pages = 0; 5417 unsigned long managed_highpages = 0; 5418 unsigned long free_highpages = 0; 5419 pg_data_t *pgdat = NODE_DATA(nid); 5420 5421 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5422 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5423 val->totalram = managed_pages; 5424 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5425 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5426 #ifdef CONFIG_HIGHMEM 5427 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5428 struct zone *zone = &pgdat->node_zones[zone_type]; 5429 5430 if (is_highmem(zone)) { 5431 managed_highpages += zone_managed_pages(zone); 5432 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5433 } 5434 } 5435 val->totalhigh = managed_highpages; 5436 val->freehigh = free_highpages; 5437 #else 5438 val->totalhigh = managed_highpages; 5439 val->freehigh = free_highpages; 5440 #endif 5441 val->mem_unit = PAGE_SIZE; 5442 } 5443 #endif 5444 5445 /* 5446 * Determine whether the node should be displayed or not, depending on whether 5447 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5448 */ 5449 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5450 { 5451 if (!(flags & SHOW_MEM_FILTER_NODES)) 5452 return false; 5453 5454 /* 5455 * no node mask - aka implicit memory numa policy. Do not bother with 5456 * the synchronization - read_mems_allowed_begin - because we do not 5457 * have to be precise here. 5458 */ 5459 if (!nodemask) 5460 nodemask = &cpuset_current_mems_allowed; 5461 5462 return !node_isset(nid, *nodemask); 5463 } 5464 5465 #define K(x) ((x) << (PAGE_SHIFT-10)) 5466 5467 static void show_migration_types(unsigned char type) 5468 { 5469 static const char types[MIGRATE_TYPES] = { 5470 [MIGRATE_UNMOVABLE] = 'U', 5471 [MIGRATE_MOVABLE] = 'M', 5472 [MIGRATE_RECLAIMABLE] = 'E', 5473 [MIGRATE_HIGHATOMIC] = 'H', 5474 #ifdef CONFIG_CMA 5475 [MIGRATE_CMA] = 'C', 5476 #endif 5477 #ifdef CONFIG_MEMORY_ISOLATION 5478 [MIGRATE_ISOLATE] = 'I', 5479 #endif 5480 }; 5481 char tmp[MIGRATE_TYPES + 1]; 5482 char *p = tmp; 5483 int i; 5484 5485 for (i = 0; i < MIGRATE_TYPES; i++) { 5486 if (type & (1 << i)) 5487 *p++ = types[i]; 5488 } 5489 5490 *p = '\0'; 5491 printk(KERN_CONT "(%s) ", tmp); 5492 } 5493 5494 /* 5495 * Show free area list (used inside shift_scroll-lock stuff) 5496 * We also calculate the percentage fragmentation. We do this by counting the 5497 * memory on each free list with the exception of the first item on the list. 5498 * 5499 * Bits in @filter: 5500 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5501 * cpuset. 5502 */ 5503 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5504 { 5505 unsigned long free_pcp = 0; 5506 int cpu; 5507 struct zone *zone; 5508 pg_data_t *pgdat; 5509 5510 for_each_populated_zone(zone) { 5511 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5512 continue; 5513 5514 for_each_online_cpu(cpu) 5515 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5516 } 5517 5518 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5519 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5520 " unevictable:%lu dirty:%lu writeback:%lu\n" 5521 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5522 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5523 " free:%lu free_pcp:%lu free_cma:%lu\n", 5524 global_node_page_state(NR_ACTIVE_ANON), 5525 global_node_page_state(NR_INACTIVE_ANON), 5526 global_node_page_state(NR_ISOLATED_ANON), 5527 global_node_page_state(NR_ACTIVE_FILE), 5528 global_node_page_state(NR_INACTIVE_FILE), 5529 global_node_page_state(NR_ISOLATED_FILE), 5530 global_node_page_state(NR_UNEVICTABLE), 5531 global_node_page_state(NR_FILE_DIRTY), 5532 global_node_page_state(NR_WRITEBACK), 5533 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5534 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5535 global_node_page_state(NR_FILE_MAPPED), 5536 global_node_page_state(NR_SHMEM), 5537 global_node_page_state(NR_PAGETABLE), 5538 global_zone_page_state(NR_BOUNCE), 5539 global_zone_page_state(NR_FREE_PAGES), 5540 free_pcp, 5541 global_zone_page_state(NR_FREE_CMA_PAGES)); 5542 5543 for_each_online_pgdat(pgdat) { 5544 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5545 continue; 5546 5547 printk("Node %d" 5548 " active_anon:%lukB" 5549 " inactive_anon:%lukB" 5550 " active_file:%lukB" 5551 " inactive_file:%lukB" 5552 " unevictable:%lukB" 5553 " isolated(anon):%lukB" 5554 " isolated(file):%lukB" 5555 " mapped:%lukB" 5556 " dirty:%lukB" 5557 " writeback:%lukB" 5558 " shmem:%lukB" 5559 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5560 " shmem_thp: %lukB" 5561 " shmem_pmdmapped: %lukB" 5562 " anon_thp: %lukB" 5563 #endif 5564 " writeback_tmp:%lukB" 5565 " kernel_stack:%lukB" 5566 #ifdef CONFIG_SHADOW_CALL_STACK 5567 " shadow_call_stack:%lukB" 5568 #endif 5569 " pagetables:%lukB" 5570 " all_unreclaimable? %s" 5571 "\n", 5572 pgdat->node_id, 5573 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5574 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5575 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5576 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5577 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5578 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5579 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5580 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5581 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5582 K(node_page_state(pgdat, NR_WRITEBACK)), 5583 K(node_page_state(pgdat, NR_SHMEM)), 5584 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5585 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5586 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5587 * HPAGE_PMD_NR), 5588 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5589 #endif 5590 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5591 node_page_state(pgdat, NR_KERNEL_STACK_KB), 5592 #ifdef CONFIG_SHADOW_CALL_STACK 5593 node_page_state(pgdat, NR_KERNEL_SCS_KB), 5594 #endif 5595 K(node_page_state(pgdat, NR_PAGETABLE)), 5596 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5597 "yes" : "no"); 5598 } 5599 5600 for_each_populated_zone(zone) { 5601 int i; 5602 5603 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5604 continue; 5605 5606 free_pcp = 0; 5607 for_each_online_cpu(cpu) 5608 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5609 5610 show_node(zone); 5611 printk(KERN_CONT 5612 "%s" 5613 " free:%lukB" 5614 " min:%lukB" 5615 " low:%lukB" 5616 " high:%lukB" 5617 " reserved_highatomic:%luKB" 5618 " active_anon:%lukB" 5619 " inactive_anon:%lukB" 5620 " active_file:%lukB" 5621 " inactive_file:%lukB" 5622 " unevictable:%lukB" 5623 " writepending:%lukB" 5624 " present:%lukB" 5625 " managed:%lukB" 5626 " mlocked:%lukB" 5627 " bounce:%lukB" 5628 " free_pcp:%lukB" 5629 " local_pcp:%ukB" 5630 " free_cma:%lukB" 5631 "\n", 5632 zone->name, 5633 K(zone_page_state(zone, NR_FREE_PAGES)), 5634 K(min_wmark_pages(zone)), 5635 K(low_wmark_pages(zone)), 5636 K(high_wmark_pages(zone)), 5637 K(zone->nr_reserved_highatomic), 5638 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5639 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5640 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5641 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5642 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5643 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5644 K(zone->present_pages), 5645 K(zone_managed_pages(zone)), 5646 K(zone_page_state(zone, NR_MLOCK)), 5647 K(zone_page_state(zone, NR_BOUNCE)), 5648 K(free_pcp), 5649 K(this_cpu_read(zone->pageset->pcp.count)), 5650 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5651 printk("lowmem_reserve[]:"); 5652 for (i = 0; i < MAX_NR_ZONES; i++) 5653 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5654 printk(KERN_CONT "\n"); 5655 } 5656 5657 for_each_populated_zone(zone) { 5658 unsigned int order; 5659 unsigned long nr[MAX_ORDER], flags, total = 0; 5660 unsigned char types[MAX_ORDER]; 5661 5662 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5663 continue; 5664 show_node(zone); 5665 printk(KERN_CONT "%s: ", zone->name); 5666 5667 spin_lock_irqsave(&zone->lock, flags); 5668 for (order = 0; order < MAX_ORDER; order++) { 5669 struct free_area *area = &zone->free_area[order]; 5670 int type; 5671 5672 nr[order] = area->nr_free; 5673 total += nr[order] << order; 5674 5675 types[order] = 0; 5676 for (type = 0; type < MIGRATE_TYPES; type++) { 5677 if (!free_area_empty(area, type)) 5678 types[order] |= 1 << type; 5679 } 5680 } 5681 spin_unlock_irqrestore(&zone->lock, flags); 5682 for (order = 0; order < MAX_ORDER; order++) { 5683 printk(KERN_CONT "%lu*%lukB ", 5684 nr[order], K(1UL) << order); 5685 if (nr[order]) 5686 show_migration_types(types[order]); 5687 } 5688 printk(KERN_CONT "= %lukB\n", K(total)); 5689 } 5690 5691 hugetlb_show_meminfo(); 5692 5693 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5694 5695 show_swap_cache_info(); 5696 } 5697 5698 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5699 { 5700 zoneref->zone = zone; 5701 zoneref->zone_idx = zone_idx(zone); 5702 } 5703 5704 /* 5705 * Builds allocation fallback zone lists. 5706 * 5707 * Add all populated zones of a node to the zonelist. 5708 */ 5709 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5710 { 5711 struct zone *zone; 5712 enum zone_type zone_type = MAX_NR_ZONES; 5713 int nr_zones = 0; 5714 5715 do { 5716 zone_type--; 5717 zone = pgdat->node_zones + zone_type; 5718 if (managed_zone(zone)) { 5719 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5720 check_highest_zone(zone_type); 5721 } 5722 } while (zone_type); 5723 5724 return nr_zones; 5725 } 5726 5727 #ifdef CONFIG_NUMA 5728 5729 static int __parse_numa_zonelist_order(char *s) 5730 { 5731 /* 5732 * We used to support different zonlists modes but they turned 5733 * out to be just not useful. Let's keep the warning in place 5734 * if somebody still use the cmd line parameter so that we do 5735 * not fail it silently 5736 */ 5737 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5738 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5739 return -EINVAL; 5740 } 5741 return 0; 5742 } 5743 5744 char numa_zonelist_order[] = "Node"; 5745 5746 /* 5747 * sysctl handler for numa_zonelist_order 5748 */ 5749 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5750 void *buffer, size_t *length, loff_t *ppos) 5751 { 5752 if (write) 5753 return __parse_numa_zonelist_order(buffer); 5754 return proc_dostring(table, write, buffer, length, ppos); 5755 } 5756 5757 5758 #define MAX_NODE_LOAD (nr_online_nodes) 5759 static int node_load[MAX_NUMNODES]; 5760 5761 /** 5762 * find_next_best_node - find the next node that should appear in a given node's fallback list 5763 * @node: node whose fallback list we're appending 5764 * @used_node_mask: nodemask_t of already used nodes 5765 * 5766 * We use a number of factors to determine which is the next node that should 5767 * appear on a given node's fallback list. The node should not have appeared 5768 * already in @node's fallback list, and it should be the next closest node 5769 * according to the distance array (which contains arbitrary distance values 5770 * from each node to each node in the system), and should also prefer nodes 5771 * with no CPUs, since presumably they'll have very little allocation pressure 5772 * on them otherwise. 5773 * 5774 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5775 */ 5776 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5777 { 5778 int n, val; 5779 int min_val = INT_MAX; 5780 int best_node = NUMA_NO_NODE; 5781 5782 /* Use the local node if we haven't already */ 5783 if (!node_isset(node, *used_node_mask)) { 5784 node_set(node, *used_node_mask); 5785 return node; 5786 } 5787 5788 for_each_node_state(n, N_MEMORY) { 5789 5790 /* Don't want a node to appear more than once */ 5791 if (node_isset(n, *used_node_mask)) 5792 continue; 5793 5794 /* Use the distance array to find the distance */ 5795 val = node_distance(node, n); 5796 5797 /* Penalize nodes under us ("prefer the next node") */ 5798 val += (n < node); 5799 5800 /* Give preference to headless and unused nodes */ 5801 if (!cpumask_empty(cpumask_of_node(n))) 5802 val += PENALTY_FOR_NODE_WITH_CPUS; 5803 5804 /* Slight preference for less loaded node */ 5805 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5806 val += node_load[n]; 5807 5808 if (val < min_val) { 5809 min_val = val; 5810 best_node = n; 5811 } 5812 } 5813 5814 if (best_node >= 0) 5815 node_set(best_node, *used_node_mask); 5816 5817 return best_node; 5818 } 5819 5820 5821 /* 5822 * Build zonelists ordered by node and zones within node. 5823 * This results in maximum locality--normal zone overflows into local 5824 * DMA zone, if any--but risks exhausting DMA zone. 5825 */ 5826 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5827 unsigned nr_nodes) 5828 { 5829 struct zoneref *zonerefs; 5830 int i; 5831 5832 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5833 5834 for (i = 0; i < nr_nodes; i++) { 5835 int nr_zones; 5836 5837 pg_data_t *node = NODE_DATA(node_order[i]); 5838 5839 nr_zones = build_zonerefs_node(node, zonerefs); 5840 zonerefs += nr_zones; 5841 } 5842 zonerefs->zone = NULL; 5843 zonerefs->zone_idx = 0; 5844 } 5845 5846 /* 5847 * Build gfp_thisnode zonelists 5848 */ 5849 static void build_thisnode_zonelists(pg_data_t *pgdat) 5850 { 5851 struct zoneref *zonerefs; 5852 int nr_zones; 5853 5854 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5855 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5856 zonerefs += nr_zones; 5857 zonerefs->zone = NULL; 5858 zonerefs->zone_idx = 0; 5859 } 5860 5861 /* 5862 * Build zonelists ordered by zone and nodes within zones. 5863 * This results in conserving DMA zone[s] until all Normal memory is 5864 * exhausted, but results in overflowing to remote node while memory 5865 * may still exist in local DMA zone. 5866 */ 5867 5868 static void build_zonelists(pg_data_t *pgdat) 5869 { 5870 static int node_order[MAX_NUMNODES]; 5871 int node, load, nr_nodes = 0; 5872 nodemask_t used_mask = NODE_MASK_NONE; 5873 int local_node, prev_node; 5874 5875 /* NUMA-aware ordering of nodes */ 5876 local_node = pgdat->node_id; 5877 load = nr_online_nodes; 5878 prev_node = local_node; 5879 5880 memset(node_order, 0, sizeof(node_order)); 5881 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5882 /* 5883 * We don't want to pressure a particular node. 5884 * So adding penalty to the first node in same 5885 * distance group to make it round-robin. 5886 */ 5887 if (node_distance(local_node, node) != 5888 node_distance(local_node, prev_node)) 5889 node_load[node] = load; 5890 5891 node_order[nr_nodes++] = node; 5892 prev_node = node; 5893 load--; 5894 } 5895 5896 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5897 build_thisnode_zonelists(pgdat); 5898 } 5899 5900 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5901 /* 5902 * Return node id of node used for "local" allocations. 5903 * I.e., first node id of first zone in arg node's generic zonelist. 5904 * Used for initializing percpu 'numa_mem', which is used primarily 5905 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5906 */ 5907 int local_memory_node(int node) 5908 { 5909 struct zoneref *z; 5910 5911 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5912 gfp_zone(GFP_KERNEL), 5913 NULL); 5914 return zone_to_nid(z->zone); 5915 } 5916 #endif 5917 5918 static void setup_min_unmapped_ratio(void); 5919 static void setup_min_slab_ratio(void); 5920 #else /* CONFIG_NUMA */ 5921 5922 static void build_zonelists(pg_data_t *pgdat) 5923 { 5924 int node, local_node; 5925 struct zoneref *zonerefs; 5926 int nr_zones; 5927 5928 local_node = pgdat->node_id; 5929 5930 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5931 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5932 zonerefs += nr_zones; 5933 5934 /* 5935 * Now we build the zonelist so that it contains the zones 5936 * of all the other nodes. 5937 * We don't want to pressure a particular node, so when 5938 * building the zones for node N, we make sure that the 5939 * zones coming right after the local ones are those from 5940 * node N+1 (modulo N) 5941 */ 5942 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5943 if (!node_online(node)) 5944 continue; 5945 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5946 zonerefs += nr_zones; 5947 } 5948 for (node = 0; node < local_node; node++) { 5949 if (!node_online(node)) 5950 continue; 5951 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5952 zonerefs += nr_zones; 5953 } 5954 5955 zonerefs->zone = NULL; 5956 zonerefs->zone_idx = 0; 5957 } 5958 5959 #endif /* CONFIG_NUMA */ 5960 5961 /* 5962 * Boot pageset table. One per cpu which is going to be used for all 5963 * zones and all nodes. The parameters will be set in such a way 5964 * that an item put on a list will immediately be handed over to 5965 * the buddy list. This is safe since pageset manipulation is done 5966 * with interrupts disabled. 5967 * 5968 * The boot_pagesets must be kept even after bootup is complete for 5969 * unused processors and/or zones. They do play a role for bootstrapping 5970 * hotplugged processors. 5971 * 5972 * zoneinfo_show() and maybe other functions do 5973 * not check if the processor is online before following the pageset pointer. 5974 * Other parts of the kernel may not check if the zone is available. 5975 */ 5976 static void pageset_init(struct per_cpu_pageset *p); 5977 /* These effectively disable the pcplists in the boot pageset completely */ 5978 #define BOOT_PAGESET_HIGH 0 5979 #define BOOT_PAGESET_BATCH 1 5980 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5981 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5982 5983 static void __build_all_zonelists(void *data) 5984 { 5985 int nid; 5986 int __maybe_unused cpu; 5987 pg_data_t *self = data; 5988 static DEFINE_SPINLOCK(lock); 5989 5990 spin_lock(&lock); 5991 5992 #ifdef CONFIG_NUMA 5993 memset(node_load, 0, sizeof(node_load)); 5994 #endif 5995 5996 /* 5997 * This node is hotadded and no memory is yet present. So just 5998 * building zonelists is fine - no need to touch other nodes. 5999 */ 6000 if (self && !node_online(self->node_id)) { 6001 build_zonelists(self); 6002 } else { 6003 for_each_online_node(nid) { 6004 pg_data_t *pgdat = NODE_DATA(nid); 6005 6006 build_zonelists(pgdat); 6007 } 6008 6009 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6010 /* 6011 * We now know the "local memory node" for each node-- 6012 * i.e., the node of the first zone in the generic zonelist. 6013 * Set up numa_mem percpu variable for on-line cpus. During 6014 * boot, only the boot cpu should be on-line; we'll init the 6015 * secondary cpus' numa_mem as they come on-line. During 6016 * node/memory hotplug, we'll fixup all on-line cpus. 6017 */ 6018 for_each_online_cpu(cpu) 6019 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6020 #endif 6021 } 6022 6023 spin_unlock(&lock); 6024 } 6025 6026 static noinline void __init 6027 build_all_zonelists_init(void) 6028 { 6029 int cpu; 6030 6031 __build_all_zonelists(NULL); 6032 6033 /* 6034 * Initialize the boot_pagesets that are going to be used 6035 * for bootstrapping processors. The real pagesets for 6036 * each zone will be allocated later when the per cpu 6037 * allocator is available. 6038 * 6039 * boot_pagesets are used also for bootstrapping offline 6040 * cpus if the system is already booted because the pagesets 6041 * are needed to initialize allocators on a specific cpu too. 6042 * F.e. the percpu allocator needs the page allocator which 6043 * needs the percpu allocator in order to allocate its pagesets 6044 * (a chicken-egg dilemma). 6045 */ 6046 for_each_possible_cpu(cpu) 6047 pageset_init(&per_cpu(boot_pageset, cpu)); 6048 6049 mminit_verify_zonelist(); 6050 cpuset_init_current_mems_allowed(); 6051 } 6052 6053 /* 6054 * unless system_state == SYSTEM_BOOTING. 6055 * 6056 * __ref due to call of __init annotated helper build_all_zonelists_init 6057 * [protected by SYSTEM_BOOTING]. 6058 */ 6059 void __ref build_all_zonelists(pg_data_t *pgdat) 6060 { 6061 unsigned long vm_total_pages; 6062 6063 if (system_state == SYSTEM_BOOTING) { 6064 build_all_zonelists_init(); 6065 } else { 6066 __build_all_zonelists(pgdat); 6067 /* cpuset refresh routine should be here */ 6068 } 6069 /* Get the number of free pages beyond high watermark in all zones. */ 6070 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6071 /* 6072 * Disable grouping by mobility if the number of pages in the 6073 * system is too low to allow the mechanism to work. It would be 6074 * more accurate, but expensive to check per-zone. This check is 6075 * made on memory-hotadd so a system can start with mobility 6076 * disabled and enable it later 6077 */ 6078 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6079 page_group_by_mobility_disabled = 1; 6080 else 6081 page_group_by_mobility_disabled = 0; 6082 6083 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6084 nr_online_nodes, 6085 page_group_by_mobility_disabled ? "off" : "on", 6086 vm_total_pages); 6087 #ifdef CONFIG_NUMA 6088 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6089 #endif 6090 } 6091 6092 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6093 static bool __meminit 6094 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6095 { 6096 static struct memblock_region *r; 6097 6098 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6099 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6100 for_each_mem_region(r) { 6101 if (*pfn < memblock_region_memory_end_pfn(r)) 6102 break; 6103 } 6104 } 6105 if (*pfn >= memblock_region_memory_base_pfn(r) && 6106 memblock_is_mirror(r)) { 6107 *pfn = memblock_region_memory_end_pfn(r); 6108 return true; 6109 } 6110 } 6111 return false; 6112 } 6113 6114 /* 6115 * Initially all pages are reserved - free ones are freed 6116 * up by memblock_free_all() once the early boot process is 6117 * done. Non-atomic initialization, single-pass. 6118 * 6119 * All aligned pageblocks are initialized to the specified migratetype 6120 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6121 * zone stats (e.g., nr_isolate_pageblock) are touched. 6122 */ 6123 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 6124 unsigned long start_pfn, unsigned long zone_end_pfn, 6125 enum meminit_context context, 6126 struct vmem_altmap *altmap, int migratetype) 6127 { 6128 unsigned long pfn, end_pfn = start_pfn + size; 6129 struct page *page; 6130 6131 if (highest_memmap_pfn < end_pfn - 1) 6132 highest_memmap_pfn = end_pfn - 1; 6133 6134 #ifdef CONFIG_ZONE_DEVICE 6135 /* 6136 * Honor reservation requested by the driver for this ZONE_DEVICE 6137 * memory. We limit the total number of pages to initialize to just 6138 * those that might contain the memory mapping. We will defer the 6139 * ZONE_DEVICE page initialization until after we have released 6140 * the hotplug lock. 6141 */ 6142 if (zone == ZONE_DEVICE) { 6143 if (!altmap) 6144 return; 6145 6146 if (start_pfn == altmap->base_pfn) 6147 start_pfn += altmap->reserve; 6148 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6149 } 6150 #endif 6151 6152 for (pfn = start_pfn; pfn < end_pfn; ) { 6153 /* 6154 * There can be holes in boot-time mem_map[]s handed to this 6155 * function. They do not exist on hotplugged memory. 6156 */ 6157 if (context == MEMINIT_EARLY) { 6158 if (overlap_memmap_init(zone, &pfn)) 6159 continue; 6160 if (defer_init(nid, pfn, zone_end_pfn)) 6161 break; 6162 } 6163 6164 page = pfn_to_page(pfn); 6165 __init_single_page(page, pfn, zone, nid); 6166 if (context == MEMINIT_HOTPLUG) 6167 __SetPageReserved(page); 6168 6169 /* 6170 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6171 * such that unmovable allocations won't be scattered all 6172 * over the place during system boot. 6173 */ 6174 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6175 set_pageblock_migratetype(page, migratetype); 6176 cond_resched(); 6177 } 6178 pfn++; 6179 } 6180 } 6181 6182 #ifdef CONFIG_ZONE_DEVICE 6183 void __ref memmap_init_zone_device(struct zone *zone, 6184 unsigned long start_pfn, 6185 unsigned long nr_pages, 6186 struct dev_pagemap *pgmap) 6187 { 6188 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6189 struct pglist_data *pgdat = zone->zone_pgdat; 6190 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6191 unsigned long zone_idx = zone_idx(zone); 6192 unsigned long start = jiffies; 6193 int nid = pgdat->node_id; 6194 6195 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6196 return; 6197 6198 /* 6199 * The call to memmap_init_zone should have already taken care 6200 * of the pages reserved for the memmap, so we can just jump to 6201 * the end of that region and start processing the device pages. 6202 */ 6203 if (altmap) { 6204 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6205 nr_pages = end_pfn - start_pfn; 6206 } 6207 6208 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 6209 struct page *page = pfn_to_page(pfn); 6210 6211 __init_single_page(page, pfn, zone_idx, nid); 6212 6213 /* 6214 * Mark page reserved as it will need to wait for onlining 6215 * phase for it to be fully associated with a zone. 6216 * 6217 * We can use the non-atomic __set_bit operation for setting 6218 * the flag as we are still initializing the pages. 6219 */ 6220 __SetPageReserved(page); 6221 6222 /* 6223 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6224 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6225 * ever freed or placed on a driver-private list. 6226 */ 6227 page->pgmap = pgmap; 6228 page->zone_device_data = NULL; 6229 6230 /* 6231 * Mark the block movable so that blocks are reserved for 6232 * movable at startup. This will force kernel allocations 6233 * to reserve their blocks rather than leaking throughout 6234 * the address space during boot when many long-lived 6235 * kernel allocations are made. 6236 * 6237 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6238 * because this is done early in section_activate() 6239 */ 6240 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6241 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6242 cond_resched(); 6243 } 6244 } 6245 6246 pr_info("%s initialised %lu pages in %ums\n", __func__, 6247 nr_pages, jiffies_to_msecs(jiffies - start)); 6248 } 6249 6250 #endif 6251 static void __meminit zone_init_free_lists(struct zone *zone) 6252 { 6253 unsigned int order, t; 6254 for_each_migratetype_order(order, t) { 6255 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6256 zone->free_area[order].nr_free = 0; 6257 } 6258 } 6259 6260 void __meminit __weak memmap_init(unsigned long size, int nid, 6261 unsigned long zone, 6262 unsigned long range_start_pfn) 6263 { 6264 unsigned long start_pfn, end_pfn; 6265 unsigned long range_end_pfn = range_start_pfn + size; 6266 int i; 6267 6268 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6269 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6270 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6271 6272 if (end_pfn > start_pfn) { 6273 size = end_pfn - start_pfn; 6274 memmap_init_zone(size, nid, zone, start_pfn, range_end_pfn, 6275 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6276 } 6277 } 6278 } 6279 6280 static int zone_batchsize(struct zone *zone) 6281 { 6282 #ifdef CONFIG_MMU 6283 int batch; 6284 6285 /* 6286 * The per-cpu-pages pools are set to around 1000th of the 6287 * size of the zone. 6288 */ 6289 batch = zone_managed_pages(zone) / 1024; 6290 /* But no more than a meg. */ 6291 if (batch * PAGE_SIZE > 1024 * 1024) 6292 batch = (1024 * 1024) / PAGE_SIZE; 6293 batch /= 4; /* We effectively *= 4 below */ 6294 if (batch < 1) 6295 batch = 1; 6296 6297 /* 6298 * Clamp the batch to a 2^n - 1 value. Having a power 6299 * of 2 value was found to be more likely to have 6300 * suboptimal cache aliasing properties in some cases. 6301 * 6302 * For example if 2 tasks are alternately allocating 6303 * batches of pages, one task can end up with a lot 6304 * of pages of one half of the possible page colors 6305 * and the other with pages of the other colors. 6306 */ 6307 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6308 6309 return batch; 6310 6311 #else 6312 /* The deferral and batching of frees should be suppressed under NOMMU 6313 * conditions. 6314 * 6315 * The problem is that NOMMU needs to be able to allocate large chunks 6316 * of contiguous memory as there's no hardware page translation to 6317 * assemble apparent contiguous memory from discontiguous pages. 6318 * 6319 * Queueing large contiguous runs of pages for batching, however, 6320 * causes the pages to actually be freed in smaller chunks. As there 6321 * can be a significant delay between the individual batches being 6322 * recycled, this leads to the once large chunks of space being 6323 * fragmented and becoming unavailable for high-order allocations. 6324 */ 6325 return 0; 6326 #endif 6327 } 6328 6329 /* 6330 * pcp->high and pcp->batch values are related and generally batch is lower 6331 * than high. They are also related to pcp->count such that count is lower 6332 * than high, and as soon as it reaches high, the pcplist is flushed. 6333 * 6334 * However, guaranteeing these relations at all times would require e.g. write 6335 * barriers here but also careful usage of read barriers at the read side, and 6336 * thus be prone to error and bad for performance. Thus the update only prevents 6337 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 6338 * can cope with those fields changing asynchronously, and fully trust only the 6339 * pcp->count field on the local CPU with interrupts disabled. 6340 * 6341 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6342 * outside of boot time (or some other assurance that no concurrent updaters 6343 * exist). 6344 */ 6345 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6346 unsigned long batch) 6347 { 6348 WRITE_ONCE(pcp->batch, batch); 6349 WRITE_ONCE(pcp->high, high); 6350 } 6351 6352 static void pageset_init(struct per_cpu_pageset *p) 6353 { 6354 struct per_cpu_pages *pcp; 6355 int migratetype; 6356 6357 memset(p, 0, sizeof(*p)); 6358 6359 pcp = &p->pcp; 6360 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 6361 INIT_LIST_HEAD(&pcp->lists[migratetype]); 6362 6363 /* 6364 * Set batch and high values safe for a boot pageset. A true percpu 6365 * pageset's initialization will update them subsequently. Here we don't 6366 * need to be as careful as pageset_update() as nobody can access the 6367 * pageset yet. 6368 */ 6369 pcp->high = BOOT_PAGESET_HIGH; 6370 pcp->batch = BOOT_PAGESET_BATCH; 6371 } 6372 6373 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 6374 unsigned long batch) 6375 { 6376 struct per_cpu_pageset *p; 6377 int cpu; 6378 6379 for_each_possible_cpu(cpu) { 6380 p = per_cpu_ptr(zone->pageset, cpu); 6381 pageset_update(&p->pcp, high, batch); 6382 } 6383 } 6384 6385 /* 6386 * Calculate and set new high and batch values for all per-cpu pagesets of a 6387 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl. 6388 */ 6389 static void zone_set_pageset_high_and_batch(struct zone *zone) 6390 { 6391 unsigned long new_high, new_batch; 6392 6393 if (percpu_pagelist_fraction) { 6394 new_high = zone_managed_pages(zone) / percpu_pagelist_fraction; 6395 new_batch = max(1UL, new_high / 4); 6396 if ((new_high / 4) > (PAGE_SHIFT * 8)) 6397 new_batch = PAGE_SHIFT * 8; 6398 } else { 6399 new_batch = zone_batchsize(zone); 6400 new_high = 6 * new_batch; 6401 new_batch = max(1UL, 1 * new_batch); 6402 } 6403 6404 if (zone->pageset_high == new_high && 6405 zone->pageset_batch == new_batch) 6406 return; 6407 6408 zone->pageset_high = new_high; 6409 zone->pageset_batch = new_batch; 6410 6411 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 6412 } 6413 6414 void __meminit setup_zone_pageset(struct zone *zone) 6415 { 6416 struct per_cpu_pageset *p; 6417 int cpu; 6418 6419 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6420 for_each_possible_cpu(cpu) { 6421 p = per_cpu_ptr(zone->pageset, cpu); 6422 pageset_init(p); 6423 } 6424 6425 zone_set_pageset_high_and_batch(zone); 6426 } 6427 6428 /* 6429 * Allocate per cpu pagesets and initialize them. 6430 * Before this call only boot pagesets were available. 6431 */ 6432 void __init setup_per_cpu_pageset(void) 6433 { 6434 struct pglist_data *pgdat; 6435 struct zone *zone; 6436 int __maybe_unused cpu; 6437 6438 for_each_populated_zone(zone) 6439 setup_zone_pageset(zone); 6440 6441 #ifdef CONFIG_NUMA 6442 /* 6443 * Unpopulated zones continue using the boot pagesets. 6444 * The numa stats for these pagesets need to be reset. 6445 * Otherwise, they will end up skewing the stats of 6446 * the nodes these zones are associated with. 6447 */ 6448 for_each_possible_cpu(cpu) { 6449 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu); 6450 memset(pcp->vm_numa_stat_diff, 0, 6451 sizeof(pcp->vm_numa_stat_diff)); 6452 } 6453 #endif 6454 6455 for_each_online_pgdat(pgdat) 6456 pgdat->per_cpu_nodestats = 6457 alloc_percpu(struct per_cpu_nodestat); 6458 } 6459 6460 static __meminit void zone_pcp_init(struct zone *zone) 6461 { 6462 /* 6463 * per cpu subsystem is not up at this point. The following code 6464 * relies on the ability of the linker to provide the 6465 * offset of a (static) per cpu variable into the per cpu area. 6466 */ 6467 zone->pageset = &boot_pageset; 6468 zone->pageset_high = BOOT_PAGESET_HIGH; 6469 zone->pageset_batch = BOOT_PAGESET_BATCH; 6470 6471 if (populated_zone(zone)) 6472 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6473 zone->name, zone->present_pages, 6474 zone_batchsize(zone)); 6475 } 6476 6477 void __meminit init_currently_empty_zone(struct zone *zone, 6478 unsigned long zone_start_pfn, 6479 unsigned long size) 6480 { 6481 struct pglist_data *pgdat = zone->zone_pgdat; 6482 int zone_idx = zone_idx(zone) + 1; 6483 6484 if (zone_idx > pgdat->nr_zones) 6485 pgdat->nr_zones = zone_idx; 6486 6487 zone->zone_start_pfn = zone_start_pfn; 6488 6489 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6490 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6491 pgdat->node_id, 6492 (unsigned long)zone_idx(zone), 6493 zone_start_pfn, (zone_start_pfn + size)); 6494 6495 zone_init_free_lists(zone); 6496 zone->initialized = 1; 6497 } 6498 6499 /** 6500 * get_pfn_range_for_nid - Return the start and end page frames for a node 6501 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6502 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6503 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6504 * 6505 * It returns the start and end page frame of a node based on information 6506 * provided by memblock_set_node(). If called for a node 6507 * with no available memory, a warning is printed and the start and end 6508 * PFNs will be 0. 6509 */ 6510 void __init get_pfn_range_for_nid(unsigned int nid, 6511 unsigned long *start_pfn, unsigned long *end_pfn) 6512 { 6513 unsigned long this_start_pfn, this_end_pfn; 6514 int i; 6515 6516 *start_pfn = -1UL; 6517 *end_pfn = 0; 6518 6519 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6520 *start_pfn = min(*start_pfn, this_start_pfn); 6521 *end_pfn = max(*end_pfn, this_end_pfn); 6522 } 6523 6524 if (*start_pfn == -1UL) 6525 *start_pfn = 0; 6526 } 6527 6528 /* 6529 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6530 * assumption is made that zones within a node are ordered in monotonic 6531 * increasing memory addresses so that the "highest" populated zone is used 6532 */ 6533 static void __init find_usable_zone_for_movable(void) 6534 { 6535 int zone_index; 6536 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6537 if (zone_index == ZONE_MOVABLE) 6538 continue; 6539 6540 if (arch_zone_highest_possible_pfn[zone_index] > 6541 arch_zone_lowest_possible_pfn[zone_index]) 6542 break; 6543 } 6544 6545 VM_BUG_ON(zone_index == -1); 6546 movable_zone = zone_index; 6547 } 6548 6549 /* 6550 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6551 * because it is sized independent of architecture. Unlike the other zones, 6552 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6553 * in each node depending on the size of each node and how evenly kernelcore 6554 * is distributed. This helper function adjusts the zone ranges 6555 * provided by the architecture for a given node by using the end of the 6556 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6557 * zones within a node are in order of monotonic increases memory addresses 6558 */ 6559 static void __init adjust_zone_range_for_zone_movable(int nid, 6560 unsigned long zone_type, 6561 unsigned long node_start_pfn, 6562 unsigned long node_end_pfn, 6563 unsigned long *zone_start_pfn, 6564 unsigned long *zone_end_pfn) 6565 { 6566 /* Only adjust if ZONE_MOVABLE is on this node */ 6567 if (zone_movable_pfn[nid]) { 6568 /* Size ZONE_MOVABLE */ 6569 if (zone_type == ZONE_MOVABLE) { 6570 *zone_start_pfn = zone_movable_pfn[nid]; 6571 *zone_end_pfn = min(node_end_pfn, 6572 arch_zone_highest_possible_pfn[movable_zone]); 6573 6574 /* Adjust for ZONE_MOVABLE starting within this range */ 6575 } else if (!mirrored_kernelcore && 6576 *zone_start_pfn < zone_movable_pfn[nid] && 6577 *zone_end_pfn > zone_movable_pfn[nid]) { 6578 *zone_end_pfn = zone_movable_pfn[nid]; 6579 6580 /* Check if this whole range is within ZONE_MOVABLE */ 6581 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6582 *zone_start_pfn = *zone_end_pfn; 6583 } 6584 } 6585 6586 /* 6587 * Return the number of pages a zone spans in a node, including holes 6588 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6589 */ 6590 static unsigned long __init zone_spanned_pages_in_node(int nid, 6591 unsigned long zone_type, 6592 unsigned long node_start_pfn, 6593 unsigned long node_end_pfn, 6594 unsigned long *zone_start_pfn, 6595 unsigned long *zone_end_pfn) 6596 { 6597 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6598 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6599 /* When hotadd a new node from cpu_up(), the node should be empty */ 6600 if (!node_start_pfn && !node_end_pfn) 6601 return 0; 6602 6603 /* Get the start and end of the zone */ 6604 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6605 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6606 adjust_zone_range_for_zone_movable(nid, zone_type, 6607 node_start_pfn, node_end_pfn, 6608 zone_start_pfn, zone_end_pfn); 6609 6610 /* Check that this node has pages within the zone's required range */ 6611 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6612 return 0; 6613 6614 /* Move the zone boundaries inside the node if necessary */ 6615 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6616 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6617 6618 /* Return the spanned pages */ 6619 return *zone_end_pfn - *zone_start_pfn; 6620 } 6621 6622 /* 6623 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6624 * then all holes in the requested range will be accounted for. 6625 */ 6626 unsigned long __init __absent_pages_in_range(int nid, 6627 unsigned long range_start_pfn, 6628 unsigned long range_end_pfn) 6629 { 6630 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6631 unsigned long start_pfn, end_pfn; 6632 int i; 6633 6634 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6635 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6636 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6637 nr_absent -= end_pfn - start_pfn; 6638 } 6639 return nr_absent; 6640 } 6641 6642 /** 6643 * absent_pages_in_range - Return number of page frames in holes within a range 6644 * @start_pfn: The start PFN to start searching for holes 6645 * @end_pfn: The end PFN to stop searching for holes 6646 * 6647 * Return: the number of pages frames in memory holes within a range. 6648 */ 6649 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6650 unsigned long end_pfn) 6651 { 6652 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6653 } 6654 6655 /* Return the number of page frames in holes in a zone on a node */ 6656 static unsigned long __init zone_absent_pages_in_node(int nid, 6657 unsigned long zone_type, 6658 unsigned long node_start_pfn, 6659 unsigned long node_end_pfn) 6660 { 6661 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6662 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6663 unsigned long zone_start_pfn, zone_end_pfn; 6664 unsigned long nr_absent; 6665 6666 /* When hotadd a new node from cpu_up(), the node should be empty */ 6667 if (!node_start_pfn && !node_end_pfn) 6668 return 0; 6669 6670 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6671 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6672 6673 adjust_zone_range_for_zone_movable(nid, zone_type, 6674 node_start_pfn, node_end_pfn, 6675 &zone_start_pfn, &zone_end_pfn); 6676 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6677 6678 /* 6679 * ZONE_MOVABLE handling. 6680 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6681 * and vice versa. 6682 */ 6683 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6684 unsigned long start_pfn, end_pfn; 6685 struct memblock_region *r; 6686 6687 for_each_mem_region(r) { 6688 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6689 zone_start_pfn, zone_end_pfn); 6690 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6691 zone_start_pfn, zone_end_pfn); 6692 6693 if (zone_type == ZONE_MOVABLE && 6694 memblock_is_mirror(r)) 6695 nr_absent += end_pfn - start_pfn; 6696 6697 if (zone_type == ZONE_NORMAL && 6698 !memblock_is_mirror(r)) 6699 nr_absent += end_pfn - start_pfn; 6700 } 6701 } 6702 6703 return nr_absent; 6704 } 6705 6706 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6707 unsigned long node_start_pfn, 6708 unsigned long node_end_pfn) 6709 { 6710 unsigned long realtotalpages = 0, totalpages = 0; 6711 enum zone_type i; 6712 6713 for (i = 0; i < MAX_NR_ZONES; i++) { 6714 struct zone *zone = pgdat->node_zones + i; 6715 unsigned long zone_start_pfn, zone_end_pfn; 6716 unsigned long spanned, absent; 6717 unsigned long size, real_size; 6718 6719 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 6720 node_start_pfn, 6721 node_end_pfn, 6722 &zone_start_pfn, 6723 &zone_end_pfn); 6724 absent = zone_absent_pages_in_node(pgdat->node_id, i, 6725 node_start_pfn, 6726 node_end_pfn); 6727 6728 size = spanned; 6729 real_size = size - absent; 6730 6731 if (size) 6732 zone->zone_start_pfn = zone_start_pfn; 6733 else 6734 zone->zone_start_pfn = 0; 6735 zone->spanned_pages = size; 6736 zone->present_pages = real_size; 6737 6738 totalpages += size; 6739 realtotalpages += real_size; 6740 } 6741 6742 pgdat->node_spanned_pages = totalpages; 6743 pgdat->node_present_pages = realtotalpages; 6744 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6745 realtotalpages); 6746 } 6747 6748 #ifndef CONFIG_SPARSEMEM 6749 /* 6750 * Calculate the size of the zone->blockflags rounded to an unsigned long 6751 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6752 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6753 * round what is now in bits to nearest long in bits, then return it in 6754 * bytes. 6755 */ 6756 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6757 { 6758 unsigned long usemapsize; 6759 6760 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6761 usemapsize = roundup(zonesize, pageblock_nr_pages); 6762 usemapsize = usemapsize >> pageblock_order; 6763 usemapsize *= NR_PAGEBLOCK_BITS; 6764 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6765 6766 return usemapsize / 8; 6767 } 6768 6769 static void __ref setup_usemap(struct pglist_data *pgdat, 6770 struct zone *zone, 6771 unsigned long zone_start_pfn, 6772 unsigned long zonesize) 6773 { 6774 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6775 zone->pageblock_flags = NULL; 6776 if (usemapsize) { 6777 zone->pageblock_flags = 6778 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 6779 pgdat->node_id); 6780 if (!zone->pageblock_flags) 6781 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 6782 usemapsize, zone->name, pgdat->node_id); 6783 } 6784 } 6785 #else 6786 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6787 unsigned long zone_start_pfn, unsigned long zonesize) {} 6788 #endif /* CONFIG_SPARSEMEM */ 6789 6790 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6791 6792 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6793 void __init set_pageblock_order(void) 6794 { 6795 unsigned int order; 6796 6797 /* Check that pageblock_nr_pages has not already been setup */ 6798 if (pageblock_order) 6799 return; 6800 6801 if (HPAGE_SHIFT > PAGE_SHIFT) 6802 order = HUGETLB_PAGE_ORDER; 6803 else 6804 order = MAX_ORDER - 1; 6805 6806 /* 6807 * Assume the largest contiguous order of interest is a huge page. 6808 * This value may be variable depending on boot parameters on IA64 and 6809 * powerpc. 6810 */ 6811 pageblock_order = order; 6812 } 6813 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6814 6815 /* 6816 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6817 * is unused as pageblock_order is set at compile-time. See 6818 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6819 * the kernel config 6820 */ 6821 void __init set_pageblock_order(void) 6822 { 6823 } 6824 6825 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6826 6827 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6828 unsigned long present_pages) 6829 { 6830 unsigned long pages = spanned_pages; 6831 6832 /* 6833 * Provide a more accurate estimation if there are holes within 6834 * the zone and SPARSEMEM is in use. If there are holes within the 6835 * zone, each populated memory region may cost us one or two extra 6836 * memmap pages due to alignment because memmap pages for each 6837 * populated regions may not be naturally aligned on page boundary. 6838 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6839 */ 6840 if (spanned_pages > present_pages + (present_pages >> 4) && 6841 IS_ENABLED(CONFIG_SPARSEMEM)) 6842 pages = present_pages; 6843 6844 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6845 } 6846 6847 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6848 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6849 { 6850 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 6851 6852 spin_lock_init(&ds_queue->split_queue_lock); 6853 INIT_LIST_HEAD(&ds_queue->split_queue); 6854 ds_queue->split_queue_len = 0; 6855 } 6856 #else 6857 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6858 #endif 6859 6860 #ifdef CONFIG_COMPACTION 6861 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6862 { 6863 init_waitqueue_head(&pgdat->kcompactd_wait); 6864 } 6865 #else 6866 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6867 #endif 6868 6869 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6870 { 6871 pgdat_resize_init(pgdat); 6872 6873 pgdat_init_split_queue(pgdat); 6874 pgdat_init_kcompactd(pgdat); 6875 6876 init_waitqueue_head(&pgdat->kswapd_wait); 6877 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6878 6879 pgdat_page_ext_init(pgdat); 6880 lruvec_init(&pgdat->__lruvec); 6881 } 6882 6883 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6884 unsigned long remaining_pages) 6885 { 6886 atomic_long_set(&zone->managed_pages, remaining_pages); 6887 zone_set_nid(zone, nid); 6888 zone->name = zone_names[idx]; 6889 zone->zone_pgdat = NODE_DATA(nid); 6890 spin_lock_init(&zone->lock); 6891 zone_seqlock_init(zone); 6892 zone_pcp_init(zone); 6893 } 6894 6895 /* 6896 * Set up the zone data structures 6897 * - init pgdat internals 6898 * - init all zones belonging to this node 6899 * 6900 * NOTE: this function is only called during memory hotplug 6901 */ 6902 #ifdef CONFIG_MEMORY_HOTPLUG 6903 void __ref free_area_init_core_hotplug(int nid) 6904 { 6905 enum zone_type z; 6906 pg_data_t *pgdat = NODE_DATA(nid); 6907 6908 pgdat_init_internals(pgdat); 6909 for (z = 0; z < MAX_NR_ZONES; z++) 6910 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6911 } 6912 #endif 6913 6914 /* 6915 * Set up the zone data structures: 6916 * - mark all pages reserved 6917 * - mark all memory queues empty 6918 * - clear the memory bitmaps 6919 * 6920 * NOTE: pgdat should get zeroed by caller. 6921 * NOTE: this function is only called during early init. 6922 */ 6923 static void __init free_area_init_core(struct pglist_data *pgdat) 6924 { 6925 enum zone_type j; 6926 int nid = pgdat->node_id; 6927 6928 pgdat_init_internals(pgdat); 6929 pgdat->per_cpu_nodestats = &boot_nodestats; 6930 6931 for (j = 0; j < MAX_NR_ZONES; j++) { 6932 struct zone *zone = pgdat->node_zones + j; 6933 unsigned long size, freesize, memmap_pages; 6934 unsigned long zone_start_pfn = zone->zone_start_pfn; 6935 6936 size = zone->spanned_pages; 6937 freesize = zone->present_pages; 6938 6939 /* 6940 * Adjust freesize so that it accounts for how much memory 6941 * is used by this zone for memmap. This affects the watermark 6942 * and per-cpu initialisations 6943 */ 6944 memmap_pages = calc_memmap_size(size, freesize); 6945 if (!is_highmem_idx(j)) { 6946 if (freesize >= memmap_pages) { 6947 freesize -= memmap_pages; 6948 if (memmap_pages) 6949 printk(KERN_DEBUG 6950 " %s zone: %lu pages used for memmap\n", 6951 zone_names[j], memmap_pages); 6952 } else 6953 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6954 zone_names[j], memmap_pages, freesize); 6955 } 6956 6957 /* Account for reserved pages */ 6958 if (j == 0 && freesize > dma_reserve) { 6959 freesize -= dma_reserve; 6960 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6961 zone_names[0], dma_reserve); 6962 } 6963 6964 if (!is_highmem_idx(j)) 6965 nr_kernel_pages += freesize; 6966 /* Charge for highmem memmap if there are enough kernel pages */ 6967 else if (nr_kernel_pages > memmap_pages * 2) 6968 nr_kernel_pages -= memmap_pages; 6969 nr_all_pages += freesize; 6970 6971 /* 6972 * Set an approximate value for lowmem here, it will be adjusted 6973 * when the bootmem allocator frees pages into the buddy system. 6974 * And all highmem pages will be managed by the buddy system. 6975 */ 6976 zone_init_internals(zone, j, nid, freesize); 6977 6978 if (!size) 6979 continue; 6980 6981 set_pageblock_order(); 6982 setup_usemap(pgdat, zone, zone_start_pfn, size); 6983 init_currently_empty_zone(zone, zone_start_pfn, size); 6984 memmap_init(size, nid, j, zone_start_pfn); 6985 } 6986 } 6987 6988 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6989 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6990 { 6991 unsigned long __maybe_unused start = 0; 6992 unsigned long __maybe_unused offset = 0; 6993 6994 /* Skip empty nodes */ 6995 if (!pgdat->node_spanned_pages) 6996 return; 6997 6998 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6999 offset = pgdat->node_start_pfn - start; 7000 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7001 if (!pgdat->node_mem_map) { 7002 unsigned long size, end; 7003 struct page *map; 7004 7005 /* 7006 * The zone's endpoints aren't required to be MAX_ORDER 7007 * aligned but the node_mem_map endpoints must be in order 7008 * for the buddy allocator to function correctly. 7009 */ 7010 end = pgdat_end_pfn(pgdat); 7011 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7012 size = (end - start) * sizeof(struct page); 7013 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 7014 pgdat->node_id); 7015 if (!map) 7016 panic("Failed to allocate %ld bytes for node %d memory map\n", 7017 size, pgdat->node_id); 7018 pgdat->node_mem_map = map + offset; 7019 } 7020 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7021 __func__, pgdat->node_id, (unsigned long)pgdat, 7022 (unsigned long)pgdat->node_mem_map); 7023 #ifndef CONFIG_NEED_MULTIPLE_NODES 7024 /* 7025 * With no DISCONTIG, the global mem_map is just set as node 0's 7026 */ 7027 if (pgdat == NODE_DATA(0)) { 7028 mem_map = NODE_DATA(0)->node_mem_map; 7029 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7030 mem_map -= offset; 7031 } 7032 #endif 7033 } 7034 #else 7035 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 7036 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 7037 7038 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7039 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7040 { 7041 pgdat->first_deferred_pfn = ULONG_MAX; 7042 } 7043 #else 7044 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7045 #endif 7046 7047 static void __init free_area_init_node(int nid) 7048 { 7049 pg_data_t *pgdat = NODE_DATA(nid); 7050 unsigned long start_pfn = 0; 7051 unsigned long end_pfn = 0; 7052 7053 /* pg_data_t should be reset to zero when it's allocated */ 7054 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7055 7056 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7057 7058 pgdat->node_id = nid; 7059 pgdat->node_start_pfn = start_pfn; 7060 pgdat->per_cpu_nodestats = NULL; 7061 7062 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7063 (u64)start_pfn << PAGE_SHIFT, 7064 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7065 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7066 7067 alloc_node_mem_map(pgdat); 7068 pgdat_set_deferred_range(pgdat); 7069 7070 free_area_init_core(pgdat); 7071 } 7072 7073 void __init free_area_init_memoryless_node(int nid) 7074 { 7075 free_area_init_node(nid); 7076 } 7077 7078 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 7079 /* 7080 * Initialize all valid struct pages in the range [spfn, epfn) and mark them 7081 * PageReserved(). Return the number of struct pages that were initialized. 7082 */ 7083 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn, 7084 int zone, int nid) 7085 { 7086 unsigned long pfn, zone_spfn, zone_epfn; 7087 u64 pgcnt = 0; 7088 7089 zone_spfn = arch_zone_lowest_possible_pfn[zone]; 7090 zone_epfn = arch_zone_highest_possible_pfn[zone]; 7091 7092 spfn = clamp(spfn, zone_spfn, zone_epfn); 7093 epfn = clamp(epfn, zone_spfn, zone_epfn); 7094 7095 for (pfn = spfn; pfn < epfn; pfn++) { 7096 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 7097 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 7098 + pageblock_nr_pages - 1; 7099 continue; 7100 } 7101 7102 __init_single_page(pfn_to_page(pfn), pfn, zone, nid); 7103 __SetPageReserved(pfn_to_page(pfn)); 7104 pgcnt++; 7105 } 7106 7107 return pgcnt; 7108 } 7109 7110 /* 7111 * Only struct pages that correspond to ranges defined by memblock.memory 7112 * are zeroed and initialized by going through __init_single_page() during 7113 * memmap_init(). 7114 * 7115 * But, there could be struct pages that correspond to holes in 7116 * memblock.memory. This can happen because of the following reasons: 7117 * - phyiscal memory bank size is not necessarily the exact multiple of the 7118 * arbitrary section size 7119 * - early reserved memory may not be listed in memblock.memory 7120 * - memory layouts defined with memmap= kernel parameter may not align 7121 * nicely with memmap sections 7122 * 7123 * Explicitly initialize those struct pages so that: 7124 * - PG_Reserved is set 7125 * - zone link is set accorging to the architecture constrains 7126 * - node is set to node id of the next populated region except for the 7127 * trailing hole where last node id is used 7128 */ 7129 static void __init init_zone_unavailable_mem(int zone) 7130 { 7131 unsigned long start, end; 7132 int i, nid; 7133 u64 pgcnt; 7134 unsigned long next = 0; 7135 7136 /* 7137 * Loop through holes in memblock.memory and initialize struct 7138 * pages corresponding to these holes 7139 */ 7140 pgcnt = 0; 7141 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7142 if (next < start) 7143 pgcnt += init_unavailable_range(next, start, zone, nid); 7144 next = end; 7145 } 7146 7147 /* 7148 * Last section may surpass the actual end of memory (e.g. we can 7149 * have 1Gb section and 512Mb of RAM pouplated). 7150 * Make sure that memmap has a well defined state in this case. 7151 */ 7152 end = round_up(max_pfn, PAGES_PER_SECTION); 7153 pgcnt += init_unavailable_range(next, end, zone, nid); 7154 7155 /* 7156 * Struct pages that do not have backing memory. This could be because 7157 * firmware is using some of this memory, or for some other reasons. 7158 */ 7159 if (pgcnt) 7160 pr_info("Zone %s: zeroed struct page in unavailable ranges: %lld pages", zone_names[zone], pgcnt); 7161 } 7162 7163 static void __init init_unavailable_mem(void) 7164 { 7165 int zone; 7166 7167 for (zone = 0; zone < ZONE_MOVABLE; zone++) 7168 init_zone_unavailable_mem(zone); 7169 } 7170 #else 7171 static inline void __init init_unavailable_mem(void) 7172 { 7173 } 7174 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 7175 7176 #if MAX_NUMNODES > 1 7177 /* 7178 * Figure out the number of possible node ids. 7179 */ 7180 void __init setup_nr_node_ids(void) 7181 { 7182 unsigned int highest; 7183 7184 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7185 nr_node_ids = highest + 1; 7186 } 7187 #endif 7188 7189 /** 7190 * node_map_pfn_alignment - determine the maximum internode alignment 7191 * 7192 * This function should be called after node map is populated and sorted. 7193 * It calculates the maximum power of two alignment which can distinguish 7194 * all the nodes. 7195 * 7196 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7197 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7198 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7199 * shifted, 1GiB is enough and this function will indicate so. 7200 * 7201 * This is used to test whether pfn -> nid mapping of the chosen memory 7202 * model has fine enough granularity to avoid incorrect mapping for the 7203 * populated node map. 7204 * 7205 * Return: the determined alignment in pfn's. 0 if there is no alignment 7206 * requirement (single node). 7207 */ 7208 unsigned long __init node_map_pfn_alignment(void) 7209 { 7210 unsigned long accl_mask = 0, last_end = 0; 7211 unsigned long start, end, mask; 7212 int last_nid = NUMA_NO_NODE; 7213 int i, nid; 7214 7215 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7216 if (!start || last_nid < 0 || last_nid == nid) { 7217 last_nid = nid; 7218 last_end = end; 7219 continue; 7220 } 7221 7222 /* 7223 * Start with a mask granular enough to pin-point to the 7224 * start pfn and tick off bits one-by-one until it becomes 7225 * too coarse to separate the current node from the last. 7226 */ 7227 mask = ~((1 << __ffs(start)) - 1); 7228 while (mask && last_end <= (start & (mask << 1))) 7229 mask <<= 1; 7230 7231 /* accumulate all internode masks */ 7232 accl_mask |= mask; 7233 } 7234 7235 /* convert mask to number of pages */ 7236 return ~accl_mask + 1; 7237 } 7238 7239 /** 7240 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7241 * 7242 * Return: the minimum PFN based on information provided via 7243 * memblock_set_node(). 7244 */ 7245 unsigned long __init find_min_pfn_with_active_regions(void) 7246 { 7247 return PHYS_PFN(memblock_start_of_DRAM()); 7248 } 7249 7250 /* 7251 * early_calculate_totalpages() 7252 * Sum pages in active regions for movable zone. 7253 * Populate N_MEMORY for calculating usable_nodes. 7254 */ 7255 static unsigned long __init early_calculate_totalpages(void) 7256 { 7257 unsigned long totalpages = 0; 7258 unsigned long start_pfn, end_pfn; 7259 int i, nid; 7260 7261 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7262 unsigned long pages = end_pfn - start_pfn; 7263 7264 totalpages += pages; 7265 if (pages) 7266 node_set_state(nid, N_MEMORY); 7267 } 7268 return totalpages; 7269 } 7270 7271 /* 7272 * Find the PFN the Movable zone begins in each node. Kernel memory 7273 * is spread evenly between nodes as long as the nodes have enough 7274 * memory. When they don't, some nodes will have more kernelcore than 7275 * others 7276 */ 7277 static void __init find_zone_movable_pfns_for_nodes(void) 7278 { 7279 int i, nid; 7280 unsigned long usable_startpfn; 7281 unsigned long kernelcore_node, kernelcore_remaining; 7282 /* save the state before borrow the nodemask */ 7283 nodemask_t saved_node_state = node_states[N_MEMORY]; 7284 unsigned long totalpages = early_calculate_totalpages(); 7285 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7286 struct memblock_region *r; 7287 7288 /* Need to find movable_zone earlier when movable_node is specified. */ 7289 find_usable_zone_for_movable(); 7290 7291 /* 7292 * If movable_node is specified, ignore kernelcore and movablecore 7293 * options. 7294 */ 7295 if (movable_node_is_enabled()) { 7296 for_each_mem_region(r) { 7297 if (!memblock_is_hotpluggable(r)) 7298 continue; 7299 7300 nid = memblock_get_region_node(r); 7301 7302 usable_startpfn = PFN_DOWN(r->base); 7303 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7304 min(usable_startpfn, zone_movable_pfn[nid]) : 7305 usable_startpfn; 7306 } 7307 7308 goto out2; 7309 } 7310 7311 /* 7312 * If kernelcore=mirror is specified, ignore movablecore option 7313 */ 7314 if (mirrored_kernelcore) { 7315 bool mem_below_4gb_not_mirrored = false; 7316 7317 for_each_mem_region(r) { 7318 if (memblock_is_mirror(r)) 7319 continue; 7320 7321 nid = memblock_get_region_node(r); 7322 7323 usable_startpfn = memblock_region_memory_base_pfn(r); 7324 7325 if (usable_startpfn < 0x100000) { 7326 mem_below_4gb_not_mirrored = true; 7327 continue; 7328 } 7329 7330 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7331 min(usable_startpfn, zone_movable_pfn[nid]) : 7332 usable_startpfn; 7333 } 7334 7335 if (mem_below_4gb_not_mirrored) 7336 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7337 7338 goto out2; 7339 } 7340 7341 /* 7342 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7343 * amount of necessary memory. 7344 */ 7345 if (required_kernelcore_percent) 7346 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7347 10000UL; 7348 if (required_movablecore_percent) 7349 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7350 10000UL; 7351 7352 /* 7353 * If movablecore= was specified, calculate what size of 7354 * kernelcore that corresponds so that memory usable for 7355 * any allocation type is evenly spread. If both kernelcore 7356 * and movablecore are specified, then the value of kernelcore 7357 * will be used for required_kernelcore if it's greater than 7358 * what movablecore would have allowed. 7359 */ 7360 if (required_movablecore) { 7361 unsigned long corepages; 7362 7363 /* 7364 * Round-up so that ZONE_MOVABLE is at least as large as what 7365 * was requested by the user 7366 */ 7367 required_movablecore = 7368 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7369 required_movablecore = min(totalpages, required_movablecore); 7370 corepages = totalpages - required_movablecore; 7371 7372 required_kernelcore = max(required_kernelcore, corepages); 7373 } 7374 7375 /* 7376 * If kernelcore was not specified or kernelcore size is larger 7377 * than totalpages, there is no ZONE_MOVABLE. 7378 */ 7379 if (!required_kernelcore || required_kernelcore >= totalpages) 7380 goto out; 7381 7382 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7383 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7384 7385 restart: 7386 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7387 kernelcore_node = required_kernelcore / usable_nodes; 7388 for_each_node_state(nid, N_MEMORY) { 7389 unsigned long start_pfn, end_pfn; 7390 7391 /* 7392 * Recalculate kernelcore_node if the division per node 7393 * now exceeds what is necessary to satisfy the requested 7394 * amount of memory for the kernel 7395 */ 7396 if (required_kernelcore < kernelcore_node) 7397 kernelcore_node = required_kernelcore / usable_nodes; 7398 7399 /* 7400 * As the map is walked, we track how much memory is usable 7401 * by the kernel using kernelcore_remaining. When it is 7402 * 0, the rest of the node is usable by ZONE_MOVABLE 7403 */ 7404 kernelcore_remaining = kernelcore_node; 7405 7406 /* Go through each range of PFNs within this node */ 7407 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7408 unsigned long size_pages; 7409 7410 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7411 if (start_pfn >= end_pfn) 7412 continue; 7413 7414 /* Account for what is only usable for kernelcore */ 7415 if (start_pfn < usable_startpfn) { 7416 unsigned long kernel_pages; 7417 kernel_pages = min(end_pfn, usable_startpfn) 7418 - start_pfn; 7419 7420 kernelcore_remaining -= min(kernel_pages, 7421 kernelcore_remaining); 7422 required_kernelcore -= min(kernel_pages, 7423 required_kernelcore); 7424 7425 /* Continue if range is now fully accounted */ 7426 if (end_pfn <= usable_startpfn) { 7427 7428 /* 7429 * Push zone_movable_pfn to the end so 7430 * that if we have to rebalance 7431 * kernelcore across nodes, we will 7432 * not double account here 7433 */ 7434 zone_movable_pfn[nid] = end_pfn; 7435 continue; 7436 } 7437 start_pfn = usable_startpfn; 7438 } 7439 7440 /* 7441 * The usable PFN range for ZONE_MOVABLE is from 7442 * start_pfn->end_pfn. Calculate size_pages as the 7443 * number of pages used as kernelcore 7444 */ 7445 size_pages = end_pfn - start_pfn; 7446 if (size_pages > kernelcore_remaining) 7447 size_pages = kernelcore_remaining; 7448 zone_movable_pfn[nid] = start_pfn + size_pages; 7449 7450 /* 7451 * Some kernelcore has been met, update counts and 7452 * break if the kernelcore for this node has been 7453 * satisfied 7454 */ 7455 required_kernelcore -= min(required_kernelcore, 7456 size_pages); 7457 kernelcore_remaining -= size_pages; 7458 if (!kernelcore_remaining) 7459 break; 7460 } 7461 } 7462 7463 /* 7464 * If there is still required_kernelcore, we do another pass with one 7465 * less node in the count. This will push zone_movable_pfn[nid] further 7466 * along on the nodes that still have memory until kernelcore is 7467 * satisfied 7468 */ 7469 usable_nodes--; 7470 if (usable_nodes && required_kernelcore > usable_nodes) 7471 goto restart; 7472 7473 out2: 7474 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7475 for (nid = 0; nid < MAX_NUMNODES; nid++) 7476 zone_movable_pfn[nid] = 7477 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7478 7479 out: 7480 /* restore the node_state */ 7481 node_states[N_MEMORY] = saved_node_state; 7482 } 7483 7484 /* Any regular or high memory on that node ? */ 7485 static void check_for_memory(pg_data_t *pgdat, int nid) 7486 { 7487 enum zone_type zone_type; 7488 7489 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7490 struct zone *zone = &pgdat->node_zones[zone_type]; 7491 if (populated_zone(zone)) { 7492 if (IS_ENABLED(CONFIG_HIGHMEM)) 7493 node_set_state(nid, N_HIGH_MEMORY); 7494 if (zone_type <= ZONE_NORMAL) 7495 node_set_state(nid, N_NORMAL_MEMORY); 7496 break; 7497 } 7498 } 7499 } 7500 7501 /* 7502 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 7503 * such cases we allow max_zone_pfn sorted in the descending order 7504 */ 7505 bool __weak arch_has_descending_max_zone_pfns(void) 7506 { 7507 return false; 7508 } 7509 7510 /** 7511 * free_area_init - Initialise all pg_data_t and zone data 7512 * @max_zone_pfn: an array of max PFNs for each zone 7513 * 7514 * This will call free_area_init_node() for each active node in the system. 7515 * Using the page ranges provided by memblock_set_node(), the size of each 7516 * zone in each node and their holes is calculated. If the maximum PFN 7517 * between two adjacent zones match, it is assumed that the zone is empty. 7518 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7519 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7520 * starts where the previous one ended. For example, ZONE_DMA32 starts 7521 * at arch_max_dma_pfn. 7522 */ 7523 void __init free_area_init(unsigned long *max_zone_pfn) 7524 { 7525 unsigned long start_pfn, end_pfn; 7526 int i, nid, zone; 7527 bool descending; 7528 7529 /* Record where the zone boundaries are */ 7530 memset(arch_zone_lowest_possible_pfn, 0, 7531 sizeof(arch_zone_lowest_possible_pfn)); 7532 memset(arch_zone_highest_possible_pfn, 0, 7533 sizeof(arch_zone_highest_possible_pfn)); 7534 7535 start_pfn = find_min_pfn_with_active_regions(); 7536 descending = arch_has_descending_max_zone_pfns(); 7537 7538 for (i = 0; i < MAX_NR_ZONES; i++) { 7539 if (descending) 7540 zone = MAX_NR_ZONES - i - 1; 7541 else 7542 zone = i; 7543 7544 if (zone == ZONE_MOVABLE) 7545 continue; 7546 7547 end_pfn = max(max_zone_pfn[zone], start_pfn); 7548 arch_zone_lowest_possible_pfn[zone] = start_pfn; 7549 arch_zone_highest_possible_pfn[zone] = end_pfn; 7550 7551 start_pfn = end_pfn; 7552 } 7553 7554 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7555 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7556 find_zone_movable_pfns_for_nodes(); 7557 7558 /* Print out the zone ranges */ 7559 pr_info("Zone ranges:\n"); 7560 for (i = 0; i < MAX_NR_ZONES; i++) { 7561 if (i == ZONE_MOVABLE) 7562 continue; 7563 pr_info(" %-8s ", zone_names[i]); 7564 if (arch_zone_lowest_possible_pfn[i] == 7565 arch_zone_highest_possible_pfn[i]) 7566 pr_cont("empty\n"); 7567 else 7568 pr_cont("[mem %#018Lx-%#018Lx]\n", 7569 (u64)arch_zone_lowest_possible_pfn[i] 7570 << PAGE_SHIFT, 7571 ((u64)arch_zone_highest_possible_pfn[i] 7572 << PAGE_SHIFT) - 1); 7573 } 7574 7575 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7576 pr_info("Movable zone start for each node\n"); 7577 for (i = 0; i < MAX_NUMNODES; i++) { 7578 if (zone_movable_pfn[i]) 7579 pr_info(" Node %d: %#018Lx\n", i, 7580 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7581 } 7582 7583 /* 7584 * Print out the early node map, and initialize the 7585 * subsection-map relative to active online memory ranges to 7586 * enable future "sub-section" extensions of the memory map. 7587 */ 7588 pr_info("Early memory node ranges\n"); 7589 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7590 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7591 (u64)start_pfn << PAGE_SHIFT, 7592 ((u64)end_pfn << PAGE_SHIFT) - 1); 7593 subsection_map_init(start_pfn, end_pfn - start_pfn); 7594 } 7595 7596 /* Initialise every node */ 7597 mminit_verify_pageflags_layout(); 7598 setup_nr_node_ids(); 7599 init_unavailable_mem(); 7600 for_each_online_node(nid) { 7601 pg_data_t *pgdat = NODE_DATA(nid); 7602 free_area_init_node(nid); 7603 7604 /* Any memory on that node */ 7605 if (pgdat->node_present_pages) 7606 node_set_state(nid, N_MEMORY); 7607 check_for_memory(pgdat, nid); 7608 } 7609 } 7610 7611 static int __init cmdline_parse_core(char *p, unsigned long *core, 7612 unsigned long *percent) 7613 { 7614 unsigned long long coremem; 7615 char *endptr; 7616 7617 if (!p) 7618 return -EINVAL; 7619 7620 /* Value may be a percentage of total memory, otherwise bytes */ 7621 coremem = simple_strtoull(p, &endptr, 0); 7622 if (*endptr == '%') { 7623 /* Paranoid check for percent values greater than 100 */ 7624 WARN_ON(coremem > 100); 7625 7626 *percent = coremem; 7627 } else { 7628 coremem = memparse(p, &p); 7629 /* Paranoid check that UL is enough for the coremem value */ 7630 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7631 7632 *core = coremem >> PAGE_SHIFT; 7633 *percent = 0UL; 7634 } 7635 return 0; 7636 } 7637 7638 /* 7639 * kernelcore=size sets the amount of memory for use for allocations that 7640 * cannot be reclaimed or migrated. 7641 */ 7642 static int __init cmdline_parse_kernelcore(char *p) 7643 { 7644 /* parse kernelcore=mirror */ 7645 if (parse_option_str(p, "mirror")) { 7646 mirrored_kernelcore = true; 7647 return 0; 7648 } 7649 7650 return cmdline_parse_core(p, &required_kernelcore, 7651 &required_kernelcore_percent); 7652 } 7653 7654 /* 7655 * movablecore=size sets the amount of memory for use for allocations that 7656 * can be reclaimed or migrated. 7657 */ 7658 static int __init cmdline_parse_movablecore(char *p) 7659 { 7660 return cmdline_parse_core(p, &required_movablecore, 7661 &required_movablecore_percent); 7662 } 7663 7664 early_param("kernelcore", cmdline_parse_kernelcore); 7665 early_param("movablecore", cmdline_parse_movablecore); 7666 7667 void adjust_managed_page_count(struct page *page, long count) 7668 { 7669 atomic_long_add(count, &page_zone(page)->managed_pages); 7670 totalram_pages_add(count); 7671 #ifdef CONFIG_HIGHMEM 7672 if (PageHighMem(page)) 7673 totalhigh_pages_add(count); 7674 #endif 7675 } 7676 EXPORT_SYMBOL(adjust_managed_page_count); 7677 7678 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7679 { 7680 void *pos; 7681 unsigned long pages = 0; 7682 7683 start = (void *)PAGE_ALIGN((unsigned long)start); 7684 end = (void *)((unsigned long)end & PAGE_MASK); 7685 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7686 struct page *page = virt_to_page(pos); 7687 void *direct_map_addr; 7688 7689 /* 7690 * 'direct_map_addr' might be different from 'pos' 7691 * because some architectures' virt_to_page() 7692 * work with aliases. Getting the direct map 7693 * address ensures that we get a _writeable_ 7694 * alias for the memset(). 7695 */ 7696 direct_map_addr = page_address(page); 7697 /* 7698 * Perform a kasan-unchecked memset() since this memory 7699 * has not been initialized. 7700 */ 7701 direct_map_addr = kasan_reset_tag(direct_map_addr); 7702 if ((unsigned int)poison <= 0xFF) 7703 memset(direct_map_addr, poison, PAGE_SIZE); 7704 7705 free_reserved_page(page); 7706 } 7707 7708 if (pages && s) 7709 pr_info("Freeing %s memory: %ldK\n", 7710 s, pages << (PAGE_SHIFT - 10)); 7711 7712 return pages; 7713 } 7714 7715 #ifdef CONFIG_HIGHMEM 7716 void free_highmem_page(struct page *page) 7717 { 7718 __free_reserved_page(page); 7719 totalram_pages_inc(); 7720 atomic_long_inc(&page_zone(page)->managed_pages); 7721 totalhigh_pages_inc(); 7722 } 7723 #endif 7724 7725 7726 void __init mem_init_print_info(const char *str) 7727 { 7728 unsigned long physpages, codesize, datasize, rosize, bss_size; 7729 unsigned long init_code_size, init_data_size; 7730 7731 physpages = get_num_physpages(); 7732 codesize = _etext - _stext; 7733 datasize = _edata - _sdata; 7734 rosize = __end_rodata - __start_rodata; 7735 bss_size = __bss_stop - __bss_start; 7736 init_data_size = __init_end - __init_begin; 7737 init_code_size = _einittext - _sinittext; 7738 7739 /* 7740 * Detect special cases and adjust section sizes accordingly: 7741 * 1) .init.* may be embedded into .data sections 7742 * 2) .init.text.* may be out of [__init_begin, __init_end], 7743 * please refer to arch/tile/kernel/vmlinux.lds.S. 7744 * 3) .rodata.* may be embedded into .text or .data sections. 7745 */ 7746 #define adj_init_size(start, end, size, pos, adj) \ 7747 do { \ 7748 if (start <= pos && pos < end && size > adj) \ 7749 size -= adj; \ 7750 } while (0) 7751 7752 adj_init_size(__init_begin, __init_end, init_data_size, 7753 _sinittext, init_code_size); 7754 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7755 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7756 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7757 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7758 7759 #undef adj_init_size 7760 7761 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7762 #ifdef CONFIG_HIGHMEM 7763 ", %luK highmem" 7764 #endif 7765 "%s%s)\n", 7766 nr_free_pages() << (PAGE_SHIFT - 10), 7767 physpages << (PAGE_SHIFT - 10), 7768 codesize >> 10, datasize >> 10, rosize >> 10, 7769 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7770 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7771 totalcma_pages << (PAGE_SHIFT - 10), 7772 #ifdef CONFIG_HIGHMEM 7773 totalhigh_pages() << (PAGE_SHIFT - 10), 7774 #endif 7775 str ? ", " : "", str ? str : ""); 7776 } 7777 7778 /** 7779 * set_dma_reserve - set the specified number of pages reserved in the first zone 7780 * @new_dma_reserve: The number of pages to mark reserved 7781 * 7782 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7783 * In the DMA zone, a significant percentage may be consumed by kernel image 7784 * and other unfreeable allocations which can skew the watermarks badly. This 7785 * function may optionally be used to account for unfreeable pages in the 7786 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7787 * smaller per-cpu batchsize. 7788 */ 7789 void __init set_dma_reserve(unsigned long new_dma_reserve) 7790 { 7791 dma_reserve = new_dma_reserve; 7792 } 7793 7794 static int page_alloc_cpu_dead(unsigned int cpu) 7795 { 7796 7797 lru_add_drain_cpu(cpu); 7798 drain_pages(cpu); 7799 7800 /* 7801 * Spill the event counters of the dead processor 7802 * into the current processors event counters. 7803 * This artificially elevates the count of the current 7804 * processor. 7805 */ 7806 vm_events_fold_cpu(cpu); 7807 7808 /* 7809 * Zero the differential counters of the dead processor 7810 * so that the vm statistics are consistent. 7811 * 7812 * This is only okay since the processor is dead and cannot 7813 * race with what we are doing. 7814 */ 7815 cpu_vm_stats_fold(cpu); 7816 return 0; 7817 } 7818 7819 #ifdef CONFIG_NUMA 7820 int hashdist = HASHDIST_DEFAULT; 7821 7822 static int __init set_hashdist(char *str) 7823 { 7824 if (!str) 7825 return 0; 7826 hashdist = simple_strtoul(str, &str, 0); 7827 return 1; 7828 } 7829 __setup("hashdist=", set_hashdist); 7830 #endif 7831 7832 void __init page_alloc_init(void) 7833 { 7834 int ret; 7835 7836 #ifdef CONFIG_NUMA 7837 if (num_node_state(N_MEMORY) == 1) 7838 hashdist = 0; 7839 #endif 7840 7841 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7842 "mm/page_alloc:dead", NULL, 7843 page_alloc_cpu_dead); 7844 WARN_ON(ret < 0); 7845 } 7846 7847 /* 7848 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7849 * or min_free_kbytes changes. 7850 */ 7851 static void calculate_totalreserve_pages(void) 7852 { 7853 struct pglist_data *pgdat; 7854 unsigned long reserve_pages = 0; 7855 enum zone_type i, j; 7856 7857 for_each_online_pgdat(pgdat) { 7858 7859 pgdat->totalreserve_pages = 0; 7860 7861 for (i = 0; i < MAX_NR_ZONES; i++) { 7862 struct zone *zone = pgdat->node_zones + i; 7863 long max = 0; 7864 unsigned long managed_pages = zone_managed_pages(zone); 7865 7866 /* Find valid and maximum lowmem_reserve in the zone */ 7867 for (j = i; j < MAX_NR_ZONES; j++) { 7868 if (zone->lowmem_reserve[j] > max) 7869 max = zone->lowmem_reserve[j]; 7870 } 7871 7872 /* we treat the high watermark as reserved pages. */ 7873 max += high_wmark_pages(zone); 7874 7875 if (max > managed_pages) 7876 max = managed_pages; 7877 7878 pgdat->totalreserve_pages += max; 7879 7880 reserve_pages += max; 7881 } 7882 } 7883 totalreserve_pages = reserve_pages; 7884 } 7885 7886 /* 7887 * setup_per_zone_lowmem_reserve - called whenever 7888 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7889 * has a correct pages reserved value, so an adequate number of 7890 * pages are left in the zone after a successful __alloc_pages(). 7891 */ 7892 static void setup_per_zone_lowmem_reserve(void) 7893 { 7894 struct pglist_data *pgdat; 7895 enum zone_type i, j; 7896 7897 for_each_online_pgdat(pgdat) { 7898 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 7899 struct zone *zone = &pgdat->node_zones[i]; 7900 int ratio = sysctl_lowmem_reserve_ratio[i]; 7901 bool clear = !ratio || !zone_managed_pages(zone); 7902 unsigned long managed_pages = 0; 7903 7904 for (j = i + 1; j < MAX_NR_ZONES; j++) { 7905 if (clear) { 7906 zone->lowmem_reserve[j] = 0; 7907 } else { 7908 struct zone *upper_zone = &pgdat->node_zones[j]; 7909 7910 managed_pages += zone_managed_pages(upper_zone); 7911 zone->lowmem_reserve[j] = managed_pages / ratio; 7912 } 7913 } 7914 } 7915 } 7916 7917 /* update totalreserve_pages */ 7918 calculate_totalreserve_pages(); 7919 } 7920 7921 static void __setup_per_zone_wmarks(void) 7922 { 7923 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7924 unsigned long lowmem_pages = 0; 7925 struct zone *zone; 7926 unsigned long flags; 7927 7928 /* Calculate total number of !ZONE_HIGHMEM pages */ 7929 for_each_zone(zone) { 7930 if (!is_highmem(zone)) 7931 lowmem_pages += zone_managed_pages(zone); 7932 } 7933 7934 for_each_zone(zone) { 7935 u64 tmp; 7936 7937 spin_lock_irqsave(&zone->lock, flags); 7938 tmp = (u64)pages_min * zone_managed_pages(zone); 7939 do_div(tmp, lowmem_pages); 7940 if (is_highmem(zone)) { 7941 /* 7942 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7943 * need highmem pages, so cap pages_min to a small 7944 * value here. 7945 * 7946 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7947 * deltas control async page reclaim, and so should 7948 * not be capped for highmem. 7949 */ 7950 unsigned long min_pages; 7951 7952 min_pages = zone_managed_pages(zone) / 1024; 7953 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7954 zone->_watermark[WMARK_MIN] = min_pages; 7955 } else { 7956 /* 7957 * If it's a lowmem zone, reserve a number of pages 7958 * proportionate to the zone's size. 7959 */ 7960 zone->_watermark[WMARK_MIN] = tmp; 7961 } 7962 7963 /* 7964 * Set the kswapd watermarks distance according to the 7965 * scale factor in proportion to available memory, but 7966 * ensure a minimum size on small systems. 7967 */ 7968 tmp = max_t(u64, tmp >> 2, 7969 mult_frac(zone_managed_pages(zone), 7970 watermark_scale_factor, 10000)); 7971 7972 zone->watermark_boost = 0; 7973 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7974 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7975 7976 spin_unlock_irqrestore(&zone->lock, flags); 7977 } 7978 7979 /* update totalreserve_pages */ 7980 calculate_totalreserve_pages(); 7981 } 7982 7983 /** 7984 * setup_per_zone_wmarks - called when min_free_kbytes changes 7985 * or when memory is hot-{added|removed} 7986 * 7987 * Ensures that the watermark[min,low,high] values for each zone are set 7988 * correctly with respect to min_free_kbytes. 7989 */ 7990 void setup_per_zone_wmarks(void) 7991 { 7992 static DEFINE_SPINLOCK(lock); 7993 7994 spin_lock(&lock); 7995 __setup_per_zone_wmarks(); 7996 spin_unlock(&lock); 7997 } 7998 7999 /* 8000 * Initialise min_free_kbytes. 8001 * 8002 * For small machines we want it small (128k min). For large machines 8003 * we want it large (256MB max). But it is not linear, because network 8004 * bandwidth does not increase linearly with machine size. We use 8005 * 8006 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8007 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8008 * 8009 * which yields 8010 * 8011 * 16MB: 512k 8012 * 32MB: 724k 8013 * 64MB: 1024k 8014 * 128MB: 1448k 8015 * 256MB: 2048k 8016 * 512MB: 2896k 8017 * 1024MB: 4096k 8018 * 2048MB: 5792k 8019 * 4096MB: 8192k 8020 * 8192MB: 11584k 8021 * 16384MB: 16384k 8022 */ 8023 int __meminit init_per_zone_wmark_min(void) 8024 { 8025 unsigned long lowmem_kbytes; 8026 int new_min_free_kbytes; 8027 8028 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8029 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8030 8031 if (new_min_free_kbytes > user_min_free_kbytes) { 8032 min_free_kbytes = new_min_free_kbytes; 8033 if (min_free_kbytes < 128) 8034 min_free_kbytes = 128; 8035 if (min_free_kbytes > 262144) 8036 min_free_kbytes = 262144; 8037 } else { 8038 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8039 new_min_free_kbytes, user_min_free_kbytes); 8040 } 8041 setup_per_zone_wmarks(); 8042 refresh_zone_stat_thresholds(); 8043 setup_per_zone_lowmem_reserve(); 8044 8045 #ifdef CONFIG_NUMA 8046 setup_min_unmapped_ratio(); 8047 setup_min_slab_ratio(); 8048 #endif 8049 8050 khugepaged_min_free_kbytes_update(); 8051 8052 return 0; 8053 } 8054 postcore_initcall(init_per_zone_wmark_min) 8055 8056 /* 8057 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8058 * that we can call two helper functions whenever min_free_kbytes 8059 * changes. 8060 */ 8061 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8062 void *buffer, size_t *length, loff_t *ppos) 8063 { 8064 int rc; 8065 8066 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8067 if (rc) 8068 return rc; 8069 8070 if (write) { 8071 user_min_free_kbytes = min_free_kbytes; 8072 setup_per_zone_wmarks(); 8073 } 8074 return 0; 8075 } 8076 8077 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8078 void *buffer, size_t *length, loff_t *ppos) 8079 { 8080 int rc; 8081 8082 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8083 if (rc) 8084 return rc; 8085 8086 if (write) 8087 setup_per_zone_wmarks(); 8088 8089 return 0; 8090 } 8091 8092 #ifdef CONFIG_NUMA 8093 static void setup_min_unmapped_ratio(void) 8094 { 8095 pg_data_t *pgdat; 8096 struct zone *zone; 8097 8098 for_each_online_pgdat(pgdat) 8099 pgdat->min_unmapped_pages = 0; 8100 8101 for_each_zone(zone) 8102 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8103 sysctl_min_unmapped_ratio) / 100; 8104 } 8105 8106 8107 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8108 void *buffer, size_t *length, loff_t *ppos) 8109 { 8110 int rc; 8111 8112 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8113 if (rc) 8114 return rc; 8115 8116 setup_min_unmapped_ratio(); 8117 8118 return 0; 8119 } 8120 8121 static void setup_min_slab_ratio(void) 8122 { 8123 pg_data_t *pgdat; 8124 struct zone *zone; 8125 8126 for_each_online_pgdat(pgdat) 8127 pgdat->min_slab_pages = 0; 8128 8129 for_each_zone(zone) 8130 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8131 sysctl_min_slab_ratio) / 100; 8132 } 8133 8134 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8135 void *buffer, size_t *length, loff_t *ppos) 8136 { 8137 int rc; 8138 8139 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8140 if (rc) 8141 return rc; 8142 8143 setup_min_slab_ratio(); 8144 8145 return 0; 8146 } 8147 #endif 8148 8149 /* 8150 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8151 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8152 * whenever sysctl_lowmem_reserve_ratio changes. 8153 * 8154 * The reserve ratio obviously has absolutely no relation with the 8155 * minimum watermarks. The lowmem reserve ratio can only make sense 8156 * if in function of the boot time zone sizes. 8157 */ 8158 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8159 void *buffer, size_t *length, loff_t *ppos) 8160 { 8161 int i; 8162 8163 proc_dointvec_minmax(table, write, buffer, length, ppos); 8164 8165 for (i = 0; i < MAX_NR_ZONES; i++) { 8166 if (sysctl_lowmem_reserve_ratio[i] < 1) 8167 sysctl_lowmem_reserve_ratio[i] = 0; 8168 } 8169 8170 setup_per_zone_lowmem_reserve(); 8171 return 0; 8172 } 8173 8174 /* 8175 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 8176 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8177 * pagelist can have before it gets flushed back to buddy allocator. 8178 */ 8179 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 8180 void *buffer, size_t *length, loff_t *ppos) 8181 { 8182 struct zone *zone; 8183 int old_percpu_pagelist_fraction; 8184 int ret; 8185 8186 mutex_lock(&pcp_batch_high_lock); 8187 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 8188 8189 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8190 if (!write || ret < 0) 8191 goto out; 8192 8193 /* Sanity checking to avoid pcp imbalance */ 8194 if (percpu_pagelist_fraction && 8195 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 8196 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 8197 ret = -EINVAL; 8198 goto out; 8199 } 8200 8201 /* No change? */ 8202 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 8203 goto out; 8204 8205 for_each_populated_zone(zone) 8206 zone_set_pageset_high_and_batch(zone); 8207 out: 8208 mutex_unlock(&pcp_batch_high_lock); 8209 return ret; 8210 } 8211 8212 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8213 /* 8214 * Returns the number of pages that arch has reserved but 8215 * is not known to alloc_large_system_hash(). 8216 */ 8217 static unsigned long __init arch_reserved_kernel_pages(void) 8218 { 8219 return 0; 8220 } 8221 #endif 8222 8223 /* 8224 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8225 * machines. As memory size is increased the scale is also increased but at 8226 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8227 * quadruples the scale is increased by one, which means the size of hash table 8228 * only doubles, instead of quadrupling as well. 8229 * Because 32-bit systems cannot have large physical memory, where this scaling 8230 * makes sense, it is disabled on such platforms. 8231 */ 8232 #if __BITS_PER_LONG > 32 8233 #define ADAPT_SCALE_BASE (64ul << 30) 8234 #define ADAPT_SCALE_SHIFT 2 8235 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8236 #endif 8237 8238 /* 8239 * allocate a large system hash table from bootmem 8240 * - it is assumed that the hash table must contain an exact power-of-2 8241 * quantity of entries 8242 * - limit is the number of hash buckets, not the total allocation size 8243 */ 8244 void *__init alloc_large_system_hash(const char *tablename, 8245 unsigned long bucketsize, 8246 unsigned long numentries, 8247 int scale, 8248 int flags, 8249 unsigned int *_hash_shift, 8250 unsigned int *_hash_mask, 8251 unsigned long low_limit, 8252 unsigned long high_limit) 8253 { 8254 unsigned long long max = high_limit; 8255 unsigned long log2qty, size; 8256 void *table = NULL; 8257 gfp_t gfp_flags; 8258 bool virt; 8259 8260 /* allow the kernel cmdline to have a say */ 8261 if (!numentries) { 8262 /* round applicable memory size up to nearest megabyte */ 8263 numentries = nr_kernel_pages; 8264 numentries -= arch_reserved_kernel_pages(); 8265 8266 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8267 if (PAGE_SHIFT < 20) 8268 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8269 8270 #if __BITS_PER_LONG > 32 8271 if (!high_limit) { 8272 unsigned long adapt; 8273 8274 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8275 adapt <<= ADAPT_SCALE_SHIFT) 8276 scale++; 8277 } 8278 #endif 8279 8280 /* limit to 1 bucket per 2^scale bytes of low memory */ 8281 if (scale > PAGE_SHIFT) 8282 numentries >>= (scale - PAGE_SHIFT); 8283 else 8284 numentries <<= (PAGE_SHIFT - scale); 8285 8286 /* Make sure we've got at least a 0-order allocation.. */ 8287 if (unlikely(flags & HASH_SMALL)) { 8288 /* Makes no sense without HASH_EARLY */ 8289 WARN_ON(!(flags & HASH_EARLY)); 8290 if (!(numentries >> *_hash_shift)) { 8291 numentries = 1UL << *_hash_shift; 8292 BUG_ON(!numentries); 8293 } 8294 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8295 numentries = PAGE_SIZE / bucketsize; 8296 } 8297 numentries = roundup_pow_of_two(numentries); 8298 8299 /* limit allocation size to 1/16 total memory by default */ 8300 if (max == 0) { 8301 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8302 do_div(max, bucketsize); 8303 } 8304 max = min(max, 0x80000000ULL); 8305 8306 if (numentries < low_limit) 8307 numentries = low_limit; 8308 if (numentries > max) 8309 numentries = max; 8310 8311 log2qty = ilog2(numentries); 8312 8313 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8314 do { 8315 virt = false; 8316 size = bucketsize << log2qty; 8317 if (flags & HASH_EARLY) { 8318 if (flags & HASH_ZERO) 8319 table = memblock_alloc(size, SMP_CACHE_BYTES); 8320 else 8321 table = memblock_alloc_raw(size, 8322 SMP_CACHE_BYTES); 8323 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8324 table = __vmalloc(size, gfp_flags); 8325 virt = true; 8326 } else { 8327 /* 8328 * If bucketsize is not a power-of-two, we may free 8329 * some pages at the end of hash table which 8330 * alloc_pages_exact() automatically does 8331 */ 8332 table = alloc_pages_exact(size, gfp_flags); 8333 kmemleak_alloc(table, size, 1, gfp_flags); 8334 } 8335 } while (!table && size > PAGE_SIZE && --log2qty); 8336 8337 if (!table) 8338 panic("Failed to allocate %s hash table\n", tablename); 8339 8340 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8341 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8342 virt ? "vmalloc" : "linear"); 8343 8344 if (_hash_shift) 8345 *_hash_shift = log2qty; 8346 if (_hash_mask) 8347 *_hash_mask = (1 << log2qty) - 1; 8348 8349 return table; 8350 } 8351 8352 /* 8353 * This function checks whether pageblock includes unmovable pages or not. 8354 * 8355 * PageLRU check without isolation or lru_lock could race so that 8356 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8357 * check without lock_page also may miss some movable non-lru pages at 8358 * race condition. So you can't expect this function should be exact. 8359 * 8360 * Returns a page without holding a reference. If the caller wants to 8361 * dereference that page (e.g., dumping), it has to make sure that it 8362 * cannot get removed (e.g., via memory unplug) concurrently. 8363 * 8364 */ 8365 struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8366 int migratetype, int flags) 8367 { 8368 unsigned long iter = 0; 8369 unsigned long pfn = page_to_pfn(page); 8370 unsigned long offset = pfn % pageblock_nr_pages; 8371 8372 if (is_migrate_cma_page(page)) { 8373 /* 8374 * CMA allocations (alloc_contig_range) really need to mark 8375 * isolate CMA pageblocks even when they are not movable in fact 8376 * so consider them movable here. 8377 */ 8378 if (is_migrate_cma(migratetype)) 8379 return NULL; 8380 8381 return page; 8382 } 8383 8384 for (; iter < pageblock_nr_pages - offset; iter++) { 8385 if (!pfn_valid_within(pfn + iter)) 8386 continue; 8387 8388 page = pfn_to_page(pfn + iter); 8389 8390 /* 8391 * Both, bootmem allocations and memory holes are marked 8392 * PG_reserved and are unmovable. We can even have unmovable 8393 * allocations inside ZONE_MOVABLE, for example when 8394 * specifying "movablecore". 8395 */ 8396 if (PageReserved(page)) 8397 return page; 8398 8399 /* 8400 * If the zone is movable and we have ruled out all reserved 8401 * pages then it should be reasonably safe to assume the rest 8402 * is movable. 8403 */ 8404 if (zone_idx(zone) == ZONE_MOVABLE) 8405 continue; 8406 8407 /* 8408 * Hugepages are not in LRU lists, but they're movable. 8409 * THPs are on the LRU, but need to be counted as #small pages. 8410 * We need not scan over tail pages because we don't 8411 * handle each tail page individually in migration. 8412 */ 8413 if (PageHuge(page) || PageTransCompound(page)) { 8414 struct page *head = compound_head(page); 8415 unsigned int skip_pages; 8416 8417 if (PageHuge(page)) { 8418 if (!hugepage_migration_supported(page_hstate(head))) 8419 return page; 8420 } else if (!PageLRU(head) && !__PageMovable(head)) { 8421 return page; 8422 } 8423 8424 skip_pages = compound_nr(head) - (page - head); 8425 iter += skip_pages - 1; 8426 continue; 8427 } 8428 8429 /* 8430 * We can't use page_count without pin a page 8431 * because another CPU can free compound page. 8432 * This check already skips compound tails of THP 8433 * because their page->_refcount is zero at all time. 8434 */ 8435 if (!page_ref_count(page)) { 8436 if (PageBuddy(page)) 8437 iter += (1 << buddy_order(page)) - 1; 8438 continue; 8439 } 8440 8441 /* 8442 * The HWPoisoned page may be not in buddy system, and 8443 * page_count() is not 0. 8444 */ 8445 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8446 continue; 8447 8448 /* 8449 * We treat all PageOffline() pages as movable when offlining 8450 * to give drivers a chance to decrement their reference count 8451 * in MEM_GOING_OFFLINE in order to indicate that these pages 8452 * can be offlined as there are no direct references anymore. 8453 * For actually unmovable PageOffline() where the driver does 8454 * not support this, we will fail later when trying to actually 8455 * move these pages that still have a reference count > 0. 8456 * (false negatives in this function only) 8457 */ 8458 if ((flags & MEMORY_OFFLINE) && PageOffline(page)) 8459 continue; 8460 8461 if (__PageMovable(page) || PageLRU(page)) 8462 continue; 8463 8464 /* 8465 * If there are RECLAIMABLE pages, we need to check 8466 * it. But now, memory offline itself doesn't call 8467 * shrink_node_slabs() and it still to be fixed. 8468 */ 8469 return page; 8470 } 8471 return NULL; 8472 } 8473 8474 #ifdef CONFIG_CONTIG_ALLOC 8475 static unsigned long pfn_max_align_down(unsigned long pfn) 8476 { 8477 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8478 pageblock_nr_pages) - 1); 8479 } 8480 8481 static unsigned long pfn_max_align_up(unsigned long pfn) 8482 { 8483 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8484 pageblock_nr_pages)); 8485 } 8486 8487 /* [start, end) must belong to a single zone. */ 8488 static int __alloc_contig_migrate_range(struct compact_control *cc, 8489 unsigned long start, unsigned long end) 8490 { 8491 /* This function is based on compact_zone() from compaction.c. */ 8492 unsigned int nr_reclaimed; 8493 unsigned long pfn = start; 8494 unsigned int tries = 0; 8495 int ret = 0; 8496 struct migration_target_control mtc = { 8497 .nid = zone_to_nid(cc->zone), 8498 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 8499 }; 8500 8501 migrate_prep(); 8502 8503 while (pfn < end || !list_empty(&cc->migratepages)) { 8504 if (fatal_signal_pending(current)) { 8505 ret = -EINTR; 8506 break; 8507 } 8508 8509 if (list_empty(&cc->migratepages)) { 8510 cc->nr_migratepages = 0; 8511 pfn = isolate_migratepages_range(cc, pfn, end); 8512 if (!pfn) { 8513 ret = -EINTR; 8514 break; 8515 } 8516 tries = 0; 8517 } else if (++tries == 5) { 8518 ret = ret < 0 ? ret : -EBUSY; 8519 break; 8520 } 8521 8522 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8523 &cc->migratepages); 8524 cc->nr_migratepages -= nr_reclaimed; 8525 8526 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 8527 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE); 8528 } 8529 if (ret < 0) { 8530 putback_movable_pages(&cc->migratepages); 8531 return ret; 8532 } 8533 return 0; 8534 } 8535 8536 /** 8537 * alloc_contig_range() -- tries to allocate given range of pages 8538 * @start: start PFN to allocate 8539 * @end: one-past-the-last PFN to allocate 8540 * @migratetype: migratetype of the underlaying pageblocks (either 8541 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8542 * in range must have the same migratetype and it must 8543 * be either of the two. 8544 * @gfp_mask: GFP mask to use during compaction 8545 * 8546 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8547 * aligned. The PFN range must belong to a single zone. 8548 * 8549 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8550 * pageblocks in the range. Once isolated, the pageblocks should not 8551 * be modified by others. 8552 * 8553 * Return: zero on success or negative error code. On success all 8554 * pages which PFN is in [start, end) are allocated for the caller and 8555 * need to be freed with free_contig_range(). 8556 */ 8557 int alloc_contig_range(unsigned long start, unsigned long end, 8558 unsigned migratetype, gfp_t gfp_mask) 8559 { 8560 unsigned long outer_start, outer_end; 8561 unsigned int order; 8562 int ret = 0; 8563 8564 struct compact_control cc = { 8565 .nr_migratepages = 0, 8566 .order = -1, 8567 .zone = page_zone(pfn_to_page(start)), 8568 .mode = MIGRATE_SYNC, 8569 .ignore_skip_hint = true, 8570 .no_set_skip_hint = true, 8571 .gfp_mask = current_gfp_context(gfp_mask), 8572 .alloc_contig = true, 8573 }; 8574 INIT_LIST_HEAD(&cc.migratepages); 8575 8576 /* 8577 * What we do here is we mark all pageblocks in range as 8578 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8579 * have different sizes, and due to the way page allocator 8580 * work, we align the range to biggest of the two pages so 8581 * that page allocator won't try to merge buddies from 8582 * different pageblocks and change MIGRATE_ISOLATE to some 8583 * other migration type. 8584 * 8585 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8586 * migrate the pages from an unaligned range (ie. pages that 8587 * we are interested in). This will put all the pages in 8588 * range back to page allocator as MIGRATE_ISOLATE. 8589 * 8590 * When this is done, we take the pages in range from page 8591 * allocator removing them from the buddy system. This way 8592 * page allocator will never consider using them. 8593 * 8594 * This lets us mark the pageblocks back as 8595 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8596 * aligned range but not in the unaligned, original range are 8597 * put back to page allocator so that buddy can use them. 8598 */ 8599 8600 ret = start_isolate_page_range(pfn_max_align_down(start), 8601 pfn_max_align_up(end), migratetype, 0); 8602 if (ret) 8603 return ret; 8604 8605 drain_all_pages(cc.zone); 8606 8607 /* 8608 * In case of -EBUSY, we'd like to know which page causes problem. 8609 * So, just fall through. test_pages_isolated() has a tracepoint 8610 * which will report the busy page. 8611 * 8612 * It is possible that busy pages could become available before 8613 * the call to test_pages_isolated, and the range will actually be 8614 * allocated. So, if we fall through be sure to clear ret so that 8615 * -EBUSY is not accidentally used or returned to caller. 8616 */ 8617 ret = __alloc_contig_migrate_range(&cc, start, end); 8618 if (ret && ret != -EBUSY) 8619 goto done; 8620 ret =0; 8621 8622 /* 8623 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8624 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8625 * more, all pages in [start, end) are free in page allocator. 8626 * What we are going to do is to allocate all pages from 8627 * [start, end) (that is remove them from page allocator). 8628 * 8629 * The only problem is that pages at the beginning and at the 8630 * end of interesting range may be not aligned with pages that 8631 * page allocator holds, ie. they can be part of higher order 8632 * pages. Because of this, we reserve the bigger range and 8633 * once this is done free the pages we are not interested in. 8634 * 8635 * We don't have to hold zone->lock here because the pages are 8636 * isolated thus they won't get removed from buddy. 8637 */ 8638 8639 lru_add_drain_all(); 8640 8641 order = 0; 8642 outer_start = start; 8643 while (!PageBuddy(pfn_to_page(outer_start))) { 8644 if (++order >= MAX_ORDER) { 8645 outer_start = start; 8646 break; 8647 } 8648 outer_start &= ~0UL << order; 8649 } 8650 8651 if (outer_start != start) { 8652 order = buddy_order(pfn_to_page(outer_start)); 8653 8654 /* 8655 * outer_start page could be small order buddy page and 8656 * it doesn't include start page. Adjust outer_start 8657 * in this case to report failed page properly 8658 * on tracepoint in test_pages_isolated() 8659 */ 8660 if (outer_start + (1UL << order) <= start) 8661 outer_start = start; 8662 } 8663 8664 /* Make sure the range is really isolated. */ 8665 if (test_pages_isolated(outer_start, end, 0)) { 8666 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8667 __func__, outer_start, end); 8668 ret = -EBUSY; 8669 goto done; 8670 } 8671 8672 /* Grab isolated pages from freelists. */ 8673 outer_end = isolate_freepages_range(&cc, outer_start, end); 8674 if (!outer_end) { 8675 ret = -EBUSY; 8676 goto done; 8677 } 8678 8679 /* Free head and tail (if any) */ 8680 if (start != outer_start) 8681 free_contig_range(outer_start, start - outer_start); 8682 if (end != outer_end) 8683 free_contig_range(end, outer_end - end); 8684 8685 done: 8686 undo_isolate_page_range(pfn_max_align_down(start), 8687 pfn_max_align_up(end), migratetype); 8688 return ret; 8689 } 8690 EXPORT_SYMBOL(alloc_contig_range); 8691 8692 static int __alloc_contig_pages(unsigned long start_pfn, 8693 unsigned long nr_pages, gfp_t gfp_mask) 8694 { 8695 unsigned long end_pfn = start_pfn + nr_pages; 8696 8697 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 8698 gfp_mask); 8699 } 8700 8701 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 8702 unsigned long nr_pages) 8703 { 8704 unsigned long i, end_pfn = start_pfn + nr_pages; 8705 struct page *page; 8706 8707 for (i = start_pfn; i < end_pfn; i++) { 8708 page = pfn_to_online_page(i); 8709 if (!page) 8710 return false; 8711 8712 if (page_zone(page) != z) 8713 return false; 8714 8715 if (PageReserved(page)) 8716 return false; 8717 8718 if (page_count(page) > 0) 8719 return false; 8720 8721 if (PageHuge(page)) 8722 return false; 8723 } 8724 return true; 8725 } 8726 8727 static bool zone_spans_last_pfn(const struct zone *zone, 8728 unsigned long start_pfn, unsigned long nr_pages) 8729 { 8730 unsigned long last_pfn = start_pfn + nr_pages - 1; 8731 8732 return zone_spans_pfn(zone, last_pfn); 8733 } 8734 8735 /** 8736 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 8737 * @nr_pages: Number of contiguous pages to allocate 8738 * @gfp_mask: GFP mask to limit search and used during compaction 8739 * @nid: Target node 8740 * @nodemask: Mask for other possible nodes 8741 * 8742 * This routine is a wrapper around alloc_contig_range(). It scans over zones 8743 * on an applicable zonelist to find a contiguous pfn range which can then be 8744 * tried for allocation with alloc_contig_range(). This routine is intended 8745 * for allocation requests which can not be fulfilled with the buddy allocator. 8746 * 8747 * The allocated memory is always aligned to a page boundary. If nr_pages is a 8748 * power of two then the alignment is guaranteed to be to the given nr_pages 8749 * (e.g. 1GB request would be aligned to 1GB). 8750 * 8751 * Allocated pages can be freed with free_contig_range() or by manually calling 8752 * __free_page() on each allocated page. 8753 * 8754 * Return: pointer to contiguous pages on success, or NULL if not successful. 8755 */ 8756 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 8757 int nid, nodemask_t *nodemask) 8758 { 8759 unsigned long ret, pfn, flags; 8760 struct zonelist *zonelist; 8761 struct zone *zone; 8762 struct zoneref *z; 8763 8764 zonelist = node_zonelist(nid, gfp_mask); 8765 for_each_zone_zonelist_nodemask(zone, z, zonelist, 8766 gfp_zone(gfp_mask), nodemask) { 8767 spin_lock_irqsave(&zone->lock, flags); 8768 8769 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 8770 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 8771 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 8772 /* 8773 * We release the zone lock here because 8774 * alloc_contig_range() will also lock the zone 8775 * at some point. If there's an allocation 8776 * spinning on this lock, it may win the race 8777 * and cause alloc_contig_range() to fail... 8778 */ 8779 spin_unlock_irqrestore(&zone->lock, flags); 8780 ret = __alloc_contig_pages(pfn, nr_pages, 8781 gfp_mask); 8782 if (!ret) 8783 return pfn_to_page(pfn); 8784 spin_lock_irqsave(&zone->lock, flags); 8785 } 8786 pfn += nr_pages; 8787 } 8788 spin_unlock_irqrestore(&zone->lock, flags); 8789 } 8790 return NULL; 8791 } 8792 #endif /* CONFIG_CONTIG_ALLOC */ 8793 8794 void free_contig_range(unsigned long pfn, unsigned int nr_pages) 8795 { 8796 unsigned int count = 0; 8797 8798 for (; nr_pages--; pfn++) { 8799 struct page *page = pfn_to_page(pfn); 8800 8801 count += page_count(page) != 1; 8802 __free_page(page); 8803 } 8804 WARN(count != 0, "%d pages are still in use!\n", count); 8805 } 8806 EXPORT_SYMBOL(free_contig_range); 8807 8808 /* 8809 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8810 * page high values need to be recalulated. 8811 */ 8812 void __meminit zone_pcp_update(struct zone *zone) 8813 { 8814 mutex_lock(&pcp_batch_high_lock); 8815 zone_set_pageset_high_and_batch(zone); 8816 mutex_unlock(&pcp_batch_high_lock); 8817 } 8818 8819 /* 8820 * Effectively disable pcplists for the zone by setting the high limit to 0 8821 * and draining all cpus. A concurrent page freeing on another CPU that's about 8822 * to put the page on pcplist will either finish before the drain and the page 8823 * will be drained, or observe the new high limit and skip the pcplist. 8824 * 8825 * Must be paired with a call to zone_pcp_enable(). 8826 */ 8827 void zone_pcp_disable(struct zone *zone) 8828 { 8829 mutex_lock(&pcp_batch_high_lock); 8830 __zone_set_pageset_high_and_batch(zone, 0, 1); 8831 __drain_all_pages(zone, true); 8832 } 8833 8834 void zone_pcp_enable(struct zone *zone) 8835 { 8836 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 8837 mutex_unlock(&pcp_batch_high_lock); 8838 } 8839 8840 void zone_pcp_reset(struct zone *zone) 8841 { 8842 unsigned long flags; 8843 int cpu; 8844 struct per_cpu_pageset *pset; 8845 8846 /* avoid races with drain_pages() */ 8847 local_irq_save(flags); 8848 if (zone->pageset != &boot_pageset) { 8849 for_each_online_cpu(cpu) { 8850 pset = per_cpu_ptr(zone->pageset, cpu); 8851 drain_zonestat(zone, pset); 8852 } 8853 free_percpu(zone->pageset); 8854 zone->pageset = &boot_pageset; 8855 } 8856 local_irq_restore(flags); 8857 } 8858 8859 #ifdef CONFIG_MEMORY_HOTREMOVE 8860 /* 8861 * All pages in the range must be in a single zone, must not contain holes, 8862 * must span full sections, and must be isolated before calling this function. 8863 */ 8864 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8865 { 8866 unsigned long pfn = start_pfn; 8867 struct page *page; 8868 struct zone *zone; 8869 unsigned int order; 8870 unsigned long flags; 8871 8872 offline_mem_sections(pfn, end_pfn); 8873 zone = page_zone(pfn_to_page(pfn)); 8874 spin_lock_irqsave(&zone->lock, flags); 8875 while (pfn < end_pfn) { 8876 page = pfn_to_page(pfn); 8877 /* 8878 * The HWPoisoned page may be not in buddy system, and 8879 * page_count() is not 0. 8880 */ 8881 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8882 pfn++; 8883 continue; 8884 } 8885 /* 8886 * At this point all remaining PageOffline() pages have a 8887 * reference count of 0 and can simply be skipped. 8888 */ 8889 if (PageOffline(page)) { 8890 BUG_ON(page_count(page)); 8891 BUG_ON(PageBuddy(page)); 8892 pfn++; 8893 continue; 8894 } 8895 8896 BUG_ON(page_count(page)); 8897 BUG_ON(!PageBuddy(page)); 8898 order = buddy_order(page); 8899 del_page_from_free_list(page, zone, order); 8900 pfn += (1 << order); 8901 } 8902 spin_unlock_irqrestore(&zone->lock, flags); 8903 } 8904 #endif 8905 8906 bool is_free_buddy_page(struct page *page) 8907 { 8908 struct zone *zone = page_zone(page); 8909 unsigned long pfn = page_to_pfn(page); 8910 unsigned long flags; 8911 unsigned int order; 8912 8913 spin_lock_irqsave(&zone->lock, flags); 8914 for (order = 0; order < MAX_ORDER; order++) { 8915 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8916 8917 if (PageBuddy(page_head) && buddy_order(page_head) >= order) 8918 break; 8919 } 8920 spin_unlock_irqrestore(&zone->lock, flags); 8921 8922 return order < MAX_ORDER; 8923 } 8924 8925 #ifdef CONFIG_MEMORY_FAILURE 8926 /* 8927 * Break down a higher-order page in sub-pages, and keep our target out of 8928 * buddy allocator. 8929 */ 8930 static void break_down_buddy_pages(struct zone *zone, struct page *page, 8931 struct page *target, int low, int high, 8932 int migratetype) 8933 { 8934 unsigned long size = 1 << high; 8935 struct page *current_buddy, *next_page; 8936 8937 while (high > low) { 8938 high--; 8939 size >>= 1; 8940 8941 if (target >= &page[size]) { 8942 next_page = page + size; 8943 current_buddy = page; 8944 } else { 8945 next_page = page; 8946 current_buddy = page + size; 8947 } 8948 8949 if (set_page_guard(zone, current_buddy, high, migratetype)) 8950 continue; 8951 8952 if (current_buddy != target) { 8953 add_to_free_list(current_buddy, zone, high, migratetype); 8954 set_buddy_order(current_buddy, high); 8955 page = next_page; 8956 } 8957 } 8958 } 8959 8960 /* 8961 * Take a page that will be marked as poisoned off the buddy allocator. 8962 */ 8963 bool take_page_off_buddy(struct page *page) 8964 { 8965 struct zone *zone = page_zone(page); 8966 unsigned long pfn = page_to_pfn(page); 8967 unsigned long flags; 8968 unsigned int order; 8969 bool ret = false; 8970 8971 spin_lock_irqsave(&zone->lock, flags); 8972 for (order = 0; order < MAX_ORDER; order++) { 8973 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8974 int page_order = buddy_order(page_head); 8975 8976 if (PageBuddy(page_head) && page_order >= order) { 8977 unsigned long pfn_head = page_to_pfn(page_head); 8978 int migratetype = get_pfnblock_migratetype(page_head, 8979 pfn_head); 8980 8981 del_page_from_free_list(page_head, zone, page_order); 8982 break_down_buddy_pages(zone, page_head, page, 0, 8983 page_order, migratetype); 8984 ret = true; 8985 break; 8986 } 8987 if (page_count(page_head) > 0) 8988 break; 8989 } 8990 spin_unlock_irqrestore(&zone->lock, flags); 8991 return ret; 8992 } 8993 #endif 8994