xref: /openbmc/linux/mm/page_alloc.c (revision a48c7709)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
74 #include "internal.h"
75 
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
79 
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
83 #endif
84 
85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86 
87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
88 /*
89  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92  * defined in <linux/topology.h>.
93  */
94 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
95 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96 int _node_numa_mem_[MAX_NUMNODES];
97 #endif
98 
99 /* work_structs for global per-cpu drains */
100 DEFINE_MUTEX(pcpu_drain_mutex);
101 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
102 
103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104 volatile unsigned long latent_entropy __latent_entropy;
105 EXPORT_SYMBOL(latent_entropy);
106 #endif
107 
108 /*
109  * Array of node states.
110  */
111 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
112 	[N_POSSIBLE] = NODE_MASK_ALL,
113 	[N_ONLINE] = { { [0] = 1UL } },
114 #ifndef CONFIG_NUMA
115 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
116 #ifdef CONFIG_HIGHMEM
117 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
118 #endif
119 	[N_MEMORY] = { { [0] = 1UL } },
120 	[N_CPU] = { { [0] = 1UL } },
121 #endif	/* NUMA */
122 };
123 EXPORT_SYMBOL(node_states);
124 
125 /* Protect totalram_pages and zone->managed_pages */
126 static DEFINE_SPINLOCK(managed_page_count_lock);
127 
128 unsigned long totalram_pages __read_mostly;
129 unsigned long totalreserve_pages __read_mostly;
130 unsigned long totalcma_pages __read_mostly;
131 
132 int percpu_pagelist_fraction;
133 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
134 
135 /*
136  * A cached value of the page's pageblock's migratetype, used when the page is
137  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
138  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
139  * Also the migratetype set in the page does not necessarily match the pcplist
140  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
141  * other index - this ensures that it will be put on the correct CMA freelist.
142  */
143 static inline int get_pcppage_migratetype(struct page *page)
144 {
145 	return page->index;
146 }
147 
148 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
149 {
150 	page->index = migratetype;
151 }
152 
153 #ifdef CONFIG_PM_SLEEP
154 /*
155  * The following functions are used by the suspend/hibernate code to temporarily
156  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
157  * while devices are suspended.  To avoid races with the suspend/hibernate code,
158  * they should always be called with pm_mutex held (gfp_allowed_mask also should
159  * only be modified with pm_mutex held, unless the suspend/hibernate code is
160  * guaranteed not to run in parallel with that modification).
161  */
162 
163 static gfp_t saved_gfp_mask;
164 
165 void pm_restore_gfp_mask(void)
166 {
167 	WARN_ON(!mutex_is_locked(&pm_mutex));
168 	if (saved_gfp_mask) {
169 		gfp_allowed_mask = saved_gfp_mask;
170 		saved_gfp_mask = 0;
171 	}
172 }
173 
174 void pm_restrict_gfp_mask(void)
175 {
176 	WARN_ON(!mutex_is_locked(&pm_mutex));
177 	WARN_ON(saved_gfp_mask);
178 	saved_gfp_mask = gfp_allowed_mask;
179 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
180 }
181 
182 bool pm_suspended_storage(void)
183 {
184 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
185 		return false;
186 	return true;
187 }
188 #endif /* CONFIG_PM_SLEEP */
189 
190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191 unsigned int pageblock_order __read_mostly;
192 #endif
193 
194 static void __free_pages_ok(struct page *page, unsigned int order);
195 
196 /*
197  * results with 256, 32 in the lowmem_reserve sysctl:
198  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199  *	1G machine -> (16M dma, 784M normal, 224M high)
200  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
202  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
203  *
204  * TBD: should special case ZONE_DMA32 machines here - in those we normally
205  * don't need any ZONE_NORMAL reservation
206  */
207 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
208 #ifdef CONFIG_ZONE_DMA
209 	[ZONE_DMA] = 256,
210 #endif
211 #ifdef CONFIG_ZONE_DMA32
212 	[ZONE_DMA32] = 256,
213 #endif
214 	[ZONE_NORMAL] = 32,
215 #ifdef CONFIG_HIGHMEM
216 	[ZONE_HIGHMEM] = 0,
217 #endif
218 	[ZONE_MOVABLE] = 0,
219 };
220 
221 EXPORT_SYMBOL(totalram_pages);
222 
223 static char * const zone_names[MAX_NR_ZONES] = {
224 #ifdef CONFIG_ZONE_DMA
225 	 "DMA",
226 #endif
227 #ifdef CONFIG_ZONE_DMA32
228 	 "DMA32",
229 #endif
230 	 "Normal",
231 #ifdef CONFIG_HIGHMEM
232 	 "HighMem",
233 #endif
234 	 "Movable",
235 #ifdef CONFIG_ZONE_DEVICE
236 	 "Device",
237 #endif
238 };
239 
240 char * const migratetype_names[MIGRATE_TYPES] = {
241 	"Unmovable",
242 	"Movable",
243 	"Reclaimable",
244 	"HighAtomic",
245 #ifdef CONFIG_CMA
246 	"CMA",
247 #endif
248 #ifdef CONFIG_MEMORY_ISOLATION
249 	"Isolate",
250 #endif
251 };
252 
253 compound_page_dtor * const compound_page_dtors[] = {
254 	NULL,
255 	free_compound_page,
256 #ifdef CONFIG_HUGETLB_PAGE
257 	free_huge_page,
258 #endif
259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 	free_transhuge_page,
261 #endif
262 };
263 
264 int min_free_kbytes = 1024;
265 int user_min_free_kbytes = -1;
266 int watermark_scale_factor = 10;
267 
268 static unsigned long nr_kernel_pages __meminitdata;
269 static unsigned long nr_all_pages __meminitdata;
270 static unsigned long dma_reserve __meminitdata;
271 
272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
274 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
275 static unsigned long required_kernelcore __initdata;
276 static unsigned long required_kernelcore_percent __initdata;
277 static unsigned long required_movablecore __initdata;
278 static unsigned long required_movablecore_percent __initdata;
279 static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
280 static bool mirrored_kernelcore __meminitdata;
281 
282 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
283 int movable_zone;
284 EXPORT_SYMBOL(movable_zone);
285 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
286 
287 #if MAX_NUMNODES > 1
288 int nr_node_ids __read_mostly = MAX_NUMNODES;
289 int nr_online_nodes __read_mostly = 1;
290 EXPORT_SYMBOL(nr_node_ids);
291 EXPORT_SYMBOL(nr_online_nodes);
292 #endif
293 
294 int page_group_by_mobility_disabled __read_mostly;
295 
296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297 /* Returns true if the struct page for the pfn is uninitialised */
298 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
299 {
300 	int nid = early_pfn_to_nid(pfn);
301 
302 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
303 		return true;
304 
305 	return false;
306 }
307 
308 /*
309  * Returns false when the remaining initialisation should be deferred until
310  * later in the boot cycle when it can be parallelised.
311  */
312 static inline bool update_defer_init(pg_data_t *pgdat,
313 				unsigned long pfn, unsigned long zone_end,
314 				unsigned long *nr_initialised)
315 {
316 	/* Always populate low zones for address-constrained allocations */
317 	if (zone_end < pgdat_end_pfn(pgdat))
318 		return true;
319 	(*nr_initialised)++;
320 	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
321 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
322 		pgdat->first_deferred_pfn = pfn;
323 		return false;
324 	}
325 
326 	return true;
327 }
328 #else
329 static inline bool early_page_uninitialised(unsigned long pfn)
330 {
331 	return false;
332 }
333 
334 static inline bool update_defer_init(pg_data_t *pgdat,
335 				unsigned long pfn, unsigned long zone_end,
336 				unsigned long *nr_initialised)
337 {
338 	return true;
339 }
340 #endif
341 
342 /* Return a pointer to the bitmap storing bits affecting a block of pages */
343 static inline unsigned long *get_pageblock_bitmap(struct page *page,
344 							unsigned long pfn)
345 {
346 #ifdef CONFIG_SPARSEMEM
347 	return __pfn_to_section(pfn)->pageblock_flags;
348 #else
349 	return page_zone(page)->pageblock_flags;
350 #endif /* CONFIG_SPARSEMEM */
351 }
352 
353 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
354 {
355 #ifdef CONFIG_SPARSEMEM
356 	pfn &= (PAGES_PER_SECTION-1);
357 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
358 #else
359 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
360 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361 #endif /* CONFIG_SPARSEMEM */
362 }
363 
364 /**
365  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
366  * @page: The page within the block of interest
367  * @pfn: The target page frame number
368  * @end_bitidx: The last bit of interest to retrieve
369  * @mask: mask of bits that the caller is interested in
370  *
371  * Return: pageblock_bits flags
372  */
373 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
374 					unsigned long pfn,
375 					unsigned long end_bitidx,
376 					unsigned long mask)
377 {
378 	unsigned long *bitmap;
379 	unsigned long bitidx, word_bitidx;
380 	unsigned long word;
381 
382 	bitmap = get_pageblock_bitmap(page, pfn);
383 	bitidx = pfn_to_bitidx(page, pfn);
384 	word_bitidx = bitidx / BITS_PER_LONG;
385 	bitidx &= (BITS_PER_LONG-1);
386 
387 	word = bitmap[word_bitidx];
388 	bitidx += end_bitidx;
389 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
390 }
391 
392 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
393 					unsigned long end_bitidx,
394 					unsigned long mask)
395 {
396 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
397 }
398 
399 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
400 {
401 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
402 }
403 
404 /**
405  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
406  * @page: The page within the block of interest
407  * @flags: The flags to set
408  * @pfn: The target page frame number
409  * @end_bitidx: The last bit of interest
410  * @mask: mask of bits that the caller is interested in
411  */
412 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
413 					unsigned long pfn,
414 					unsigned long end_bitidx,
415 					unsigned long mask)
416 {
417 	unsigned long *bitmap;
418 	unsigned long bitidx, word_bitidx;
419 	unsigned long old_word, word;
420 
421 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
422 
423 	bitmap = get_pageblock_bitmap(page, pfn);
424 	bitidx = pfn_to_bitidx(page, pfn);
425 	word_bitidx = bitidx / BITS_PER_LONG;
426 	bitidx &= (BITS_PER_LONG-1);
427 
428 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
429 
430 	bitidx += end_bitidx;
431 	mask <<= (BITS_PER_LONG - bitidx - 1);
432 	flags <<= (BITS_PER_LONG - bitidx - 1);
433 
434 	word = READ_ONCE(bitmap[word_bitidx]);
435 	for (;;) {
436 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
437 		if (word == old_word)
438 			break;
439 		word = old_word;
440 	}
441 }
442 
443 void set_pageblock_migratetype(struct page *page, int migratetype)
444 {
445 	if (unlikely(page_group_by_mobility_disabled &&
446 		     migratetype < MIGRATE_PCPTYPES))
447 		migratetype = MIGRATE_UNMOVABLE;
448 
449 	set_pageblock_flags_group(page, (unsigned long)migratetype,
450 					PB_migrate, PB_migrate_end);
451 }
452 
453 #ifdef CONFIG_DEBUG_VM
454 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
455 {
456 	int ret = 0;
457 	unsigned seq;
458 	unsigned long pfn = page_to_pfn(page);
459 	unsigned long sp, start_pfn;
460 
461 	do {
462 		seq = zone_span_seqbegin(zone);
463 		start_pfn = zone->zone_start_pfn;
464 		sp = zone->spanned_pages;
465 		if (!zone_spans_pfn(zone, pfn))
466 			ret = 1;
467 	} while (zone_span_seqretry(zone, seq));
468 
469 	if (ret)
470 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
471 			pfn, zone_to_nid(zone), zone->name,
472 			start_pfn, start_pfn + sp);
473 
474 	return ret;
475 }
476 
477 static int page_is_consistent(struct zone *zone, struct page *page)
478 {
479 	if (!pfn_valid_within(page_to_pfn(page)))
480 		return 0;
481 	if (zone != page_zone(page))
482 		return 0;
483 
484 	return 1;
485 }
486 /*
487  * Temporary debugging check for pages not lying within a given zone.
488  */
489 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
490 {
491 	if (page_outside_zone_boundaries(zone, page))
492 		return 1;
493 	if (!page_is_consistent(zone, page))
494 		return 1;
495 
496 	return 0;
497 }
498 #else
499 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
500 {
501 	return 0;
502 }
503 #endif
504 
505 static void bad_page(struct page *page, const char *reason,
506 		unsigned long bad_flags)
507 {
508 	static unsigned long resume;
509 	static unsigned long nr_shown;
510 	static unsigned long nr_unshown;
511 
512 	/*
513 	 * Allow a burst of 60 reports, then keep quiet for that minute;
514 	 * or allow a steady drip of one report per second.
515 	 */
516 	if (nr_shown == 60) {
517 		if (time_before(jiffies, resume)) {
518 			nr_unshown++;
519 			goto out;
520 		}
521 		if (nr_unshown) {
522 			pr_alert(
523 			      "BUG: Bad page state: %lu messages suppressed\n",
524 				nr_unshown);
525 			nr_unshown = 0;
526 		}
527 		nr_shown = 0;
528 	}
529 	if (nr_shown++ == 0)
530 		resume = jiffies + 60 * HZ;
531 
532 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
533 		current->comm, page_to_pfn(page));
534 	__dump_page(page, reason);
535 	bad_flags &= page->flags;
536 	if (bad_flags)
537 		pr_alert("bad because of flags: %#lx(%pGp)\n",
538 						bad_flags, &bad_flags);
539 	dump_page_owner(page);
540 
541 	print_modules();
542 	dump_stack();
543 out:
544 	/* Leave bad fields for debug, except PageBuddy could make trouble */
545 	page_mapcount_reset(page); /* remove PageBuddy */
546 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
547 }
548 
549 /*
550  * Higher-order pages are called "compound pages".  They are structured thusly:
551  *
552  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
553  *
554  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
555  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
556  *
557  * The first tail page's ->compound_dtor holds the offset in array of compound
558  * page destructors. See compound_page_dtors.
559  *
560  * The first tail page's ->compound_order holds the order of allocation.
561  * This usage means that zero-order pages may not be compound.
562  */
563 
564 void free_compound_page(struct page *page)
565 {
566 	__free_pages_ok(page, compound_order(page));
567 }
568 
569 void prep_compound_page(struct page *page, unsigned int order)
570 {
571 	int i;
572 	int nr_pages = 1 << order;
573 
574 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
575 	set_compound_order(page, order);
576 	__SetPageHead(page);
577 	for (i = 1; i < nr_pages; i++) {
578 		struct page *p = page + i;
579 		set_page_count(p, 0);
580 		p->mapping = TAIL_MAPPING;
581 		set_compound_head(p, page);
582 	}
583 	atomic_set(compound_mapcount_ptr(page), -1);
584 }
585 
586 #ifdef CONFIG_DEBUG_PAGEALLOC
587 unsigned int _debug_guardpage_minorder;
588 bool _debug_pagealloc_enabled __read_mostly
589 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
590 EXPORT_SYMBOL(_debug_pagealloc_enabled);
591 bool _debug_guardpage_enabled __read_mostly;
592 
593 static int __init early_debug_pagealloc(char *buf)
594 {
595 	if (!buf)
596 		return -EINVAL;
597 	return kstrtobool(buf, &_debug_pagealloc_enabled);
598 }
599 early_param("debug_pagealloc", early_debug_pagealloc);
600 
601 static bool need_debug_guardpage(void)
602 {
603 	/* If we don't use debug_pagealloc, we don't need guard page */
604 	if (!debug_pagealloc_enabled())
605 		return false;
606 
607 	if (!debug_guardpage_minorder())
608 		return false;
609 
610 	return true;
611 }
612 
613 static void init_debug_guardpage(void)
614 {
615 	if (!debug_pagealloc_enabled())
616 		return;
617 
618 	if (!debug_guardpage_minorder())
619 		return;
620 
621 	_debug_guardpage_enabled = true;
622 }
623 
624 struct page_ext_operations debug_guardpage_ops = {
625 	.need = need_debug_guardpage,
626 	.init = init_debug_guardpage,
627 };
628 
629 static int __init debug_guardpage_minorder_setup(char *buf)
630 {
631 	unsigned long res;
632 
633 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
634 		pr_err("Bad debug_guardpage_minorder value\n");
635 		return 0;
636 	}
637 	_debug_guardpage_minorder = res;
638 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
639 	return 0;
640 }
641 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
642 
643 static inline bool set_page_guard(struct zone *zone, struct page *page,
644 				unsigned int order, int migratetype)
645 {
646 	struct page_ext *page_ext;
647 
648 	if (!debug_guardpage_enabled())
649 		return false;
650 
651 	if (order >= debug_guardpage_minorder())
652 		return false;
653 
654 	page_ext = lookup_page_ext(page);
655 	if (unlikely(!page_ext))
656 		return false;
657 
658 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
659 
660 	INIT_LIST_HEAD(&page->lru);
661 	set_page_private(page, order);
662 	/* Guard pages are not available for any usage */
663 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
664 
665 	return true;
666 }
667 
668 static inline void clear_page_guard(struct zone *zone, struct page *page,
669 				unsigned int order, int migratetype)
670 {
671 	struct page_ext *page_ext;
672 
673 	if (!debug_guardpage_enabled())
674 		return;
675 
676 	page_ext = lookup_page_ext(page);
677 	if (unlikely(!page_ext))
678 		return;
679 
680 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
681 
682 	set_page_private(page, 0);
683 	if (!is_migrate_isolate(migratetype))
684 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
685 }
686 #else
687 struct page_ext_operations debug_guardpage_ops;
688 static inline bool set_page_guard(struct zone *zone, struct page *page,
689 			unsigned int order, int migratetype) { return false; }
690 static inline void clear_page_guard(struct zone *zone, struct page *page,
691 				unsigned int order, int migratetype) {}
692 #endif
693 
694 static inline void set_page_order(struct page *page, unsigned int order)
695 {
696 	set_page_private(page, order);
697 	__SetPageBuddy(page);
698 }
699 
700 static inline void rmv_page_order(struct page *page)
701 {
702 	__ClearPageBuddy(page);
703 	set_page_private(page, 0);
704 }
705 
706 /*
707  * This function checks whether a page is free && is the buddy
708  * we can do coalesce a page and its buddy if
709  * (a) the buddy is not in a hole (check before calling!) &&
710  * (b) the buddy is in the buddy system &&
711  * (c) a page and its buddy have the same order &&
712  * (d) a page and its buddy are in the same zone.
713  *
714  * For recording whether a page is in the buddy system, we set ->_mapcount
715  * PAGE_BUDDY_MAPCOUNT_VALUE.
716  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
717  * serialized by zone->lock.
718  *
719  * For recording page's order, we use page_private(page).
720  */
721 static inline int page_is_buddy(struct page *page, struct page *buddy,
722 							unsigned int order)
723 {
724 	if (page_is_guard(buddy) && page_order(buddy) == order) {
725 		if (page_zone_id(page) != page_zone_id(buddy))
726 			return 0;
727 
728 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
729 
730 		return 1;
731 	}
732 
733 	if (PageBuddy(buddy) && page_order(buddy) == order) {
734 		/*
735 		 * zone check is done late to avoid uselessly
736 		 * calculating zone/node ids for pages that could
737 		 * never merge.
738 		 */
739 		if (page_zone_id(page) != page_zone_id(buddy))
740 			return 0;
741 
742 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
743 
744 		return 1;
745 	}
746 	return 0;
747 }
748 
749 /*
750  * Freeing function for a buddy system allocator.
751  *
752  * The concept of a buddy system is to maintain direct-mapped table
753  * (containing bit values) for memory blocks of various "orders".
754  * The bottom level table contains the map for the smallest allocatable
755  * units of memory (here, pages), and each level above it describes
756  * pairs of units from the levels below, hence, "buddies".
757  * At a high level, all that happens here is marking the table entry
758  * at the bottom level available, and propagating the changes upward
759  * as necessary, plus some accounting needed to play nicely with other
760  * parts of the VM system.
761  * At each level, we keep a list of pages, which are heads of continuous
762  * free pages of length of (1 << order) and marked with _mapcount
763  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
764  * field.
765  * So when we are allocating or freeing one, we can derive the state of the
766  * other.  That is, if we allocate a small block, and both were
767  * free, the remainder of the region must be split into blocks.
768  * If a block is freed, and its buddy is also free, then this
769  * triggers coalescing into a block of larger size.
770  *
771  * -- nyc
772  */
773 
774 static inline void __free_one_page(struct page *page,
775 		unsigned long pfn,
776 		struct zone *zone, unsigned int order,
777 		int migratetype)
778 {
779 	unsigned long combined_pfn;
780 	unsigned long uninitialized_var(buddy_pfn);
781 	struct page *buddy;
782 	unsigned int max_order;
783 
784 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
785 
786 	VM_BUG_ON(!zone_is_initialized(zone));
787 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
788 
789 	VM_BUG_ON(migratetype == -1);
790 	if (likely(!is_migrate_isolate(migratetype)))
791 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
792 
793 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
794 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
795 
796 continue_merging:
797 	while (order < max_order - 1) {
798 		buddy_pfn = __find_buddy_pfn(pfn, order);
799 		buddy = page + (buddy_pfn - pfn);
800 
801 		if (!pfn_valid_within(buddy_pfn))
802 			goto done_merging;
803 		if (!page_is_buddy(page, buddy, order))
804 			goto done_merging;
805 		/*
806 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
807 		 * merge with it and move up one order.
808 		 */
809 		if (page_is_guard(buddy)) {
810 			clear_page_guard(zone, buddy, order, migratetype);
811 		} else {
812 			list_del(&buddy->lru);
813 			zone->free_area[order].nr_free--;
814 			rmv_page_order(buddy);
815 		}
816 		combined_pfn = buddy_pfn & pfn;
817 		page = page + (combined_pfn - pfn);
818 		pfn = combined_pfn;
819 		order++;
820 	}
821 	if (max_order < MAX_ORDER) {
822 		/* If we are here, it means order is >= pageblock_order.
823 		 * We want to prevent merge between freepages on isolate
824 		 * pageblock and normal pageblock. Without this, pageblock
825 		 * isolation could cause incorrect freepage or CMA accounting.
826 		 *
827 		 * We don't want to hit this code for the more frequent
828 		 * low-order merging.
829 		 */
830 		if (unlikely(has_isolate_pageblock(zone))) {
831 			int buddy_mt;
832 
833 			buddy_pfn = __find_buddy_pfn(pfn, order);
834 			buddy = page + (buddy_pfn - pfn);
835 			buddy_mt = get_pageblock_migratetype(buddy);
836 
837 			if (migratetype != buddy_mt
838 					&& (is_migrate_isolate(migratetype) ||
839 						is_migrate_isolate(buddy_mt)))
840 				goto done_merging;
841 		}
842 		max_order++;
843 		goto continue_merging;
844 	}
845 
846 done_merging:
847 	set_page_order(page, order);
848 
849 	/*
850 	 * If this is not the largest possible page, check if the buddy
851 	 * of the next-highest order is free. If it is, it's possible
852 	 * that pages are being freed that will coalesce soon. In case,
853 	 * that is happening, add the free page to the tail of the list
854 	 * so it's less likely to be used soon and more likely to be merged
855 	 * as a higher order page
856 	 */
857 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
858 		struct page *higher_page, *higher_buddy;
859 		combined_pfn = buddy_pfn & pfn;
860 		higher_page = page + (combined_pfn - pfn);
861 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
862 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
863 		if (pfn_valid_within(buddy_pfn) &&
864 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
865 			list_add_tail(&page->lru,
866 				&zone->free_area[order].free_list[migratetype]);
867 			goto out;
868 		}
869 	}
870 
871 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
872 out:
873 	zone->free_area[order].nr_free++;
874 }
875 
876 /*
877  * A bad page could be due to a number of fields. Instead of multiple branches,
878  * try and check multiple fields with one check. The caller must do a detailed
879  * check if necessary.
880  */
881 static inline bool page_expected_state(struct page *page,
882 					unsigned long check_flags)
883 {
884 	if (unlikely(atomic_read(&page->_mapcount) != -1))
885 		return false;
886 
887 	if (unlikely((unsigned long)page->mapping |
888 			page_ref_count(page) |
889 #ifdef CONFIG_MEMCG
890 			(unsigned long)page->mem_cgroup |
891 #endif
892 			(page->flags & check_flags)))
893 		return false;
894 
895 	return true;
896 }
897 
898 static void free_pages_check_bad(struct page *page)
899 {
900 	const char *bad_reason;
901 	unsigned long bad_flags;
902 
903 	bad_reason = NULL;
904 	bad_flags = 0;
905 
906 	if (unlikely(atomic_read(&page->_mapcount) != -1))
907 		bad_reason = "nonzero mapcount";
908 	if (unlikely(page->mapping != NULL))
909 		bad_reason = "non-NULL mapping";
910 	if (unlikely(page_ref_count(page) != 0))
911 		bad_reason = "nonzero _refcount";
912 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
913 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
914 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
915 	}
916 #ifdef CONFIG_MEMCG
917 	if (unlikely(page->mem_cgroup))
918 		bad_reason = "page still charged to cgroup";
919 #endif
920 	bad_page(page, bad_reason, bad_flags);
921 }
922 
923 static inline int free_pages_check(struct page *page)
924 {
925 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
926 		return 0;
927 
928 	/* Something has gone sideways, find it */
929 	free_pages_check_bad(page);
930 	return 1;
931 }
932 
933 static int free_tail_pages_check(struct page *head_page, struct page *page)
934 {
935 	int ret = 1;
936 
937 	/*
938 	 * We rely page->lru.next never has bit 0 set, unless the page
939 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
940 	 */
941 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
942 
943 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
944 		ret = 0;
945 		goto out;
946 	}
947 	switch (page - head_page) {
948 	case 1:
949 		/* the first tail page: ->mapping is compound_mapcount() */
950 		if (unlikely(compound_mapcount(page))) {
951 			bad_page(page, "nonzero compound_mapcount", 0);
952 			goto out;
953 		}
954 		break;
955 	case 2:
956 		/*
957 		 * the second tail page: ->mapping is
958 		 * page_deferred_list().next -- ignore value.
959 		 */
960 		break;
961 	default:
962 		if (page->mapping != TAIL_MAPPING) {
963 			bad_page(page, "corrupted mapping in tail page", 0);
964 			goto out;
965 		}
966 		break;
967 	}
968 	if (unlikely(!PageTail(page))) {
969 		bad_page(page, "PageTail not set", 0);
970 		goto out;
971 	}
972 	if (unlikely(compound_head(page) != head_page)) {
973 		bad_page(page, "compound_head not consistent", 0);
974 		goto out;
975 	}
976 	ret = 0;
977 out:
978 	page->mapping = NULL;
979 	clear_compound_head(page);
980 	return ret;
981 }
982 
983 static __always_inline bool free_pages_prepare(struct page *page,
984 					unsigned int order, bool check_free)
985 {
986 	int bad = 0;
987 
988 	VM_BUG_ON_PAGE(PageTail(page), page);
989 
990 	trace_mm_page_free(page, order);
991 
992 	/*
993 	 * Check tail pages before head page information is cleared to
994 	 * avoid checking PageCompound for order-0 pages.
995 	 */
996 	if (unlikely(order)) {
997 		bool compound = PageCompound(page);
998 		int i;
999 
1000 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1001 
1002 		if (compound)
1003 			ClearPageDoubleMap(page);
1004 		for (i = 1; i < (1 << order); i++) {
1005 			if (compound)
1006 				bad += free_tail_pages_check(page, page + i);
1007 			if (unlikely(free_pages_check(page + i))) {
1008 				bad++;
1009 				continue;
1010 			}
1011 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1012 		}
1013 	}
1014 	if (PageMappingFlags(page))
1015 		page->mapping = NULL;
1016 	if (memcg_kmem_enabled() && PageKmemcg(page))
1017 		memcg_kmem_uncharge(page, order);
1018 	if (check_free)
1019 		bad += free_pages_check(page);
1020 	if (bad)
1021 		return false;
1022 
1023 	page_cpupid_reset_last(page);
1024 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1025 	reset_page_owner(page, order);
1026 
1027 	if (!PageHighMem(page)) {
1028 		debug_check_no_locks_freed(page_address(page),
1029 					   PAGE_SIZE << order);
1030 		debug_check_no_obj_freed(page_address(page),
1031 					   PAGE_SIZE << order);
1032 	}
1033 	arch_free_page(page, order);
1034 	kernel_poison_pages(page, 1 << order, 0);
1035 	kernel_map_pages(page, 1 << order, 0);
1036 	kasan_free_pages(page, order);
1037 
1038 	return true;
1039 }
1040 
1041 #ifdef CONFIG_DEBUG_VM
1042 static inline bool free_pcp_prepare(struct page *page)
1043 {
1044 	return free_pages_prepare(page, 0, true);
1045 }
1046 
1047 static inline bool bulkfree_pcp_prepare(struct page *page)
1048 {
1049 	return false;
1050 }
1051 #else
1052 static bool free_pcp_prepare(struct page *page)
1053 {
1054 	return free_pages_prepare(page, 0, false);
1055 }
1056 
1057 static bool bulkfree_pcp_prepare(struct page *page)
1058 {
1059 	return free_pages_check(page);
1060 }
1061 #endif /* CONFIG_DEBUG_VM */
1062 
1063 static inline void prefetch_buddy(struct page *page)
1064 {
1065 	unsigned long pfn = page_to_pfn(page);
1066 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1067 	struct page *buddy = page + (buddy_pfn - pfn);
1068 
1069 	prefetch(buddy);
1070 }
1071 
1072 /*
1073  * Frees a number of pages from the PCP lists
1074  * Assumes all pages on list are in same zone, and of same order.
1075  * count is the number of pages to free.
1076  *
1077  * If the zone was previously in an "all pages pinned" state then look to
1078  * see if this freeing clears that state.
1079  *
1080  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1081  * pinned" detection logic.
1082  */
1083 static void free_pcppages_bulk(struct zone *zone, int count,
1084 					struct per_cpu_pages *pcp)
1085 {
1086 	int migratetype = 0;
1087 	int batch_free = 0;
1088 	int prefetch_nr = 0;
1089 	bool isolated_pageblocks;
1090 	struct page *page, *tmp;
1091 	LIST_HEAD(head);
1092 
1093 	while (count) {
1094 		struct list_head *list;
1095 
1096 		/*
1097 		 * Remove pages from lists in a round-robin fashion. A
1098 		 * batch_free count is maintained that is incremented when an
1099 		 * empty list is encountered.  This is so more pages are freed
1100 		 * off fuller lists instead of spinning excessively around empty
1101 		 * lists
1102 		 */
1103 		do {
1104 			batch_free++;
1105 			if (++migratetype == MIGRATE_PCPTYPES)
1106 				migratetype = 0;
1107 			list = &pcp->lists[migratetype];
1108 		} while (list_empty(list));
1109 
1110 		/* This is the only non-empty list. Free them all. */
1111 		if (batch_free == MIGRATE_PCPTYPES)
1112 			batch_free = count;
1113 
1114 		do {
1115 			page = list_last_entry(list, struct page, lru);
1116 			/* must delete to avoid corrupting pcp list */
1117 			list_del(&page->lru);
1118 			pcp->count--;
1119 
1120 			if (bulkfree_pcp_prepare(page))
1121 				continue;
1122 
1123 			list_add_tail(&page->lru, &head);
1124 
1125 			/*
1126 			 * We are going to put the page back to the global
1127 			 * pool, prefetch its buddy to speed up later access
1128 			 * under zone->lock. It is believed the overhead of
1129 			 * an additional test and calculating buddy_pfn here
1130 			 * can be offset by reduced memory latency later. To
1131 			 * avoid excessive prefetching due to large count, only
1132 			 * prefetch buddy for the first pcp->batch nr of pages.
1133 			 */
1134 			if (prefetch_nr++ < pcp->batch)
1135 				prefetch_buddy(page);
1136 		} while (--count && --batch_free && !list_empty(list));
1137 	}
1138 
1139 	spin_lock(&zone->lock);
1140 	isolated_pageblocks = has_isolate_pageblock(zone);
1141 
1142 	/*
1143 	 * Use safe version since after __free_one_page(),
1144 	 * page->lru.next will not point to original list.
1145 	 */
1146 	list_for_each_entry_safe(page, tmp, &head, lru) {
1147 		int mt = get_pcppage_migratetype(page);
1148 		/* MIGRATE_ISOLATE page should not go to pcplists */
1149 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1150 		/* Pageblock could have been isolated meanwhile */
1151 		if (unlikely(isolated_pageblocks))
1152 			mt = get_pageblock_migratetype(page);
1153 
1154 		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1155 		trace_mm_page_pcpu_drain(page, 0, mt);
1156 	}
1157 	spin_unlock(&zone->lock);
1158 }
1159 
1160 static void free_one_page(struct zone *zone,
1161 				struct page *page, unsigned long pfn,
1162 				unsigned int order,
1163 				int migratetype)
1164 {
1165 	spin_lock(&zone->lock);
1166 	if (unlikely(has_isolate_pageblock(zone) ||
1167 		is_migrate_isolate(migratetype))) {
1168 		migratetype = get_pfnblock_migratetype(page, pfn);
1169 	}
1170 	__free_one_page(page, pfn, zone, order, migratetype);
1171 	spin_unlock(&zone->lock);
1172 }
1173 
1174 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1175 				unsigned long zone, int nid)
1176 {
1177 	mm_zero_struct_page(page);
1178 	set_page_links(page, zone, nid, pfn);
1179 	init_page_count(page);
1180 	page_mapcount_reset(page);
1181 	page_cpupid_reset_last(page);
1182 
1183 	INIT_LIST_HEAD(&page->lru);
1184 #ifdef WANT_PAGE_VIRTUAL
1185 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1186 	if (!is_highmem_idx(zone))
1187 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1188 #endif
1189 }
1190 
1191 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1192 static void __meminit init_reserved_page(unsigned long pfn)
1193 {
1194 	pg_data_t *pgdat;
1195 	int nid, zid;
1196 
1197 	if (!early_page_uninitialised(pfn))
1198 		return;
1199 
1200 	nid = early_pfn_to_nid(pfn);
1201 	pgdat = NODE_DATA(nid);
1202 
1203 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1204 		struct zone *zone = &pgdat->node_zones[zid];
1205 
1206 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1207 			break;
1208 	}
1209 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1210 }
1211 #else
1212 static inline void init_reserved_page(unsigned long pfn)
1213 {
1214 }
1215 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1216 
1217 /*
1218  * Initialised pages do not have PageReserved set. This function is
1219  * called for each range allocated by the bootmem allocator and
1220  * marks the pages PageReserved. The remaining valid pages are later
1221  * sent to the buddy page allocator.
1222  */
1223 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1224 {
1225 	unsigned long start_pfn = PFN_DOWN(start);
1226 	unsigned long end_pfn = PFN_UP(end);
1227 
1228 	for (; start_pfn < end_pfn; start_pfn++) {
1229 		if (pfn_valid(start_pfn)) {
1230 			struct page *page = pfn_to_page(start_pfn);
1231 
1232 			init_reserved_page(start_pfn);
1233 
1234 			/* Avoid false-positive PageTail() */
1235 			INIT_LIST_HEAD(&page->lru);
1236 
1237 			SetPageReserved(page);
1238 		}
1239 	}
1240 }
1241 
1242 static void __free_pages_ok(struct page *page, unsigned int order)
1243 {
1244 	unsigned long flags;
1245 	int migratetype;
1246 	unsigned long pfn = page_to_pfn(page);
1247 
1248 	if (!free_pages_prepare(page, order, true))
1249 		return;
1250 
1251 	migratetype = get_pfnblock_migratetype(page, pfn);
1252 	local_irq_save(flags);
1253 	__count_vm_events(PGFREE, 1 << order);
1254 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1255 	local_irq_restore(flags);
1256 }
1257 
1258 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1259 {
1260 	unsigned int nr_pages = 1 << order;
1261 	struct page *p = page;
1262 	unsigned int loop;
1263 
1264 	prefetchw(p);
1265 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1266 		prefetchw(p + 1);
1267 		__ClearPageReserved(p);
1268 		set_page_count(p, 0);
1269 	}
1270 	__ClearPageReserved(p);
1271 	set_page_count(p, 0);
1272 
1273 	page_zone(page)->managed_pages += nr_pages;
1274 	set_page_refcounted(page);
1275 	__free_pages(page, order);
1276 }
1277 
1278 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1279 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1280 
1281 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1282 
1283 int __meminit early_pfn_to_nid(unsigned long pfn)
1284 {
1285 	static DEFINE_SPINLOCK(early_pfn_lock);
1286 	int nid;
1287 
1288 	spin_lock(&early_pfn_lock);
1289 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1290 	if (nid < 0)
1291 		nid = first_online_node;
1292 	spin_unlock(&early_pfn_lock);
1293 
1294 	return nid;
1295 }
1296 #endif
1297 
1298 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1299 static inline bool __meminit __maybe_unused
1300 meminit_pfn_in_nid(unsigned long pfn, int node,
1301 		   struct mminit_pfnnid_cache *state)
1302 {
1303 	int nid;
1304 
1305 	nid = __early_pfn_to_nid(pfn, state);
1306 	if (nid >= 0 && nid != node)
1307 		return false;
1308 	return true;
1309 }
1310 
1311 /* Only safe to use early in boot when initialisation is single-threaded */
1312 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1313 {
1314 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1315 }
1316 
1317 #else
1318 
1319 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1320 {
1321 	return true;
1322 }
1323 static inline bool __meminit  __maybe_unused
1324 meminit_pfn_in_nid(unsigned long pfn, int node,
1325 		   struct mminit_pfnnid_cache *state)
1326 {
1327 	return true;
1328 }
1329 #endif
1330 
1331 
1332 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1333 							unsigned int order)
1334 {
1335 	if (early_page_uninitialised(pfn))
1336 		return;
1337 	return __free_pages_boot_core(page, order);
1338 }
1339 
1340 /*
1341  * Check that the whole (or subset of) a pageblock given by the interval of
1342  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1343  * with the migration of free compaction scanner. The scanners then need to
1344  * use only pfn_valid_within() check for arches that allow holes within
1345  * pageblocks.
1346  *
1347  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1348  *
1349  * It's possible on some configurations to have a setup like node0 node1 node0
1350  * i.e. it's possible that all pages within a zones range of pages do not
1351  * belong to a single zone. We assume that a border between node0 and node1
1352  * can occur within a single pageblock, but not a node0 node1 node0
1353  * interleaving within a single pageblock. It is therefore sufficient to check
1354  * the first and last page of a pageblock and avoid checking each individual
1355  * page in a pageblock.
1356  */
1357 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1358 				     unsigned long end_pfn, struct zone *zone)
1359 {
1360 	struct page *start_page;
1361 	struct page *end_page;
1362 
1363 	/* end_pfn is one past the range we are checking */
1364 	end_pfn--;
1365 
1366 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1367 		return NULL;
1368 
1369 	start_page = pfn_to_online_page(start_pfn);
1370 	if (!start_page)
1371 		return NULL;
1372 
1373 	if (page_zone(start_page) != zone)
1374 		return NULL;
1375 
1376 	end_page = pfn_to_page(end_pfn);
1377 
1378 	/* This gives a shorter code than deriving page_zone(end_page) */
1379 	if (page_zone_id(start_page) != page_zone_id(end_page))
1380 		return NULL;
1381 
1382 	return start_page;
1383 }
1384 
1385 void set_zone_contiguous(struct zone *zone)
1386 {
1387 	unsigned long block_start_pfn = zone->zone_start_pfn;
1388 	unsigned long block_end_pfn;
1389 
1390 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1391 	for (; block_start_pfn < zone_end_pfn(zone);
1392 			block_start_pfn = block_end_pfn,
1393 			 block_end_pfn += pageblock_nr_pages) {
1394 
1395 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1396 
1397 		if (!__pageblock_pfn_to_page(block_start_pfn,
1398 					     block_end_pfn, zone))
1399 			return;
1400 	}
1401 
1402 	/* We confirm that there is no hole */
1403 	zone->contiguous = true;
1404 }
1405 
1406 void clear_zone_contiguous(struct zone *zone)
1407 {
1408 	zone->contiguous = false;
1409 }
1410 
1411 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1412 static void __init deferred_free_range(unsigned long pfn,
1413 				       unsigned long nr_pages)
1414 {
1415 	struct page *page;
1416 	unsigned long i;
1417 
1418 	if (!nr_pages)
1419 		return;
1420 
1421 	page = pfn_to_page(pfn);
1422 
1423 	/* Free a large naturally-aligned chunk if possible */
1424 	if (nr_pages == pageblock_nr_pages &&
1425 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1426 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1427 		__free_pages_boot_core(page, pageblock_order);
1428 		return;
1429 	}
1430 
1431 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1432 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1433 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1434 		__free_pages_boot_core(page, 0);
1435 	}
1436 }
1437 
1438 /* Completion tracking for deferred_init_memmap() threads */
1439 static atomic_t pgdat_init_n_undone __initdata;
1440 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1441 
1442 static inline void __init pgdat_init_report_one_done(void)
1443 {
1444 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1445 		complete(&pgdat_init_all_done_comp);
1446 }
1447 
1448 /*
1449  * Returns true if page needs to be initialized or freed to buddy allocator.
1450  *
1451  * First we check if pfn is valid on architectures where it is possible to have
1452  * holes within pageblock_nr_pages. On systems where it is not possible, this
1453  * function is optimized out.
1454  *
1455  * Then, we check if a current large page is valid by only checking the validity
1456  * of the head pfn.
1457  *
1458  * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1459  * within a node: a pfn is between start and end of a node, but does not belong
1460  * to this memory node.
1461  */
1462 static inline bool __init
1463 deferred_pfn_valid(int nid, unsigned long pfn,
1464 		   struct mminit_pfnnid_cache *nid_init_state)
1465 {
1466 	if (!pfn_valid_within(pfn))
1467 		return false;
1468 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1469 		return false;
1470 	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1471 		return false;
1472 	return true;
1473 }
1474 
1475 /*
1476  * Free pages to buddy allocator. Try to free aligned pages in
1477  * pageblock_nr_pages sizes.
1478  */
1479 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1480 				       unsigned long end_pfn)
1481 {
1482 	struct mminit_pfnnid_cache nid_init_state = { };
1483 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1484 	unsigned long nr_free = 0;
1485 
1486 	for (; pfn < end_pfn; pfn++) {
1487 		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1488 			deferred_free_range(pfn - nr_free, nr_free);
1489 			nr_free = 0;
1490 		} else if (!(pfn & nr_pgmask)) {
1491 			deferred_free_range(pfn - nr_free, nr_free);
1492 			nr_free = 1;
1493 			touch_nmi_watchdog();
1494 		} else {
1495 			nr_free++;
1496 		}
1497 	}
1498 	/* Free the last block of pages to allocator */
1499 	deferred_free_range(pfn - nr_free, nr_free);
1500 }
1501 
1502 /*
1503  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1504  * by performing it only once every pageblock_nr_pages.
1505  * Return number of pages initialized.
1506  */
1507 static unsigned long  __init deferred_init_pages(int nid, int zid,
1508 						 unsigned long pfn,
1509 						 unsigned long end_pfn)
1510 {
1511 	struct mminit_pfnnid_cache nid_init_state = { };
1512 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1513 	unsigned long nr_pages = 0;
1514 	struct page *page = NULL;
1515 
1516 	for (; pfn < end_pfn; pfn++) {
1517 		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1518 			page = NULL;
1519 			continue;
1520 		} else if (!page || !(pfn & nr_pgmask)) {
1521 			page = pfn_to_page(pfn);
1522 			touch_nmi_watchdog();
1523 		} else {
1524 			page++;
1525 		}
1526 		__init_single_page(page, pfn, zid, nid);
1527 		nr_pages++;
1528 	}
1529 	return (nr_pages);
1530 }
1531 
1532 /* Initialise remaining memory on a node */
1533 static int __init deferred_init_memmap(void *data)
1534 {
1535 	pg_data_t *pgdat = data;
1536 	int nid = pgdat->node_id;
1537 	unsigned long start = jiffies;
1538 	unsigned long nr_pages = 0;
1539 	unsigned long spfn, epfn, first_init_pfn, flags;
1540 	phys_addr_t spa, epa;
1541 	int zid;
1542 	struct zone *zone;
1543 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1544 	u64 i;
1545 
1546 	/* Bind memory initialisation thread to a local node if possible */
1547 	if (!cpumask_empty(cpumask))
1548 		set_cpus_allowed_ptr(current, cpumask);
1549 
1550 	pgdat_resize_lock(pgdat, &flags);
1551 	first_init_pfn = pgdat->first_deferred_pfn;
1552 	if (first_init_pfn == ULONG_MAX) {
1553 		pgdat_resize_unlock(pgdat, &flags);
1554 		pgdat_init_report_one_done();
1555 		return 0;
1556 	}
1557 
1558 	/* Sanity check boundaries */
1559 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1560 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1561 	pgdat->first_deferred_pfn = ULONG_MAX;
1562 
1563 	/* Only the highest zone is deferred so find it */
1564 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1565 		zone = pgdat->node_zones + zid;
1566 		if (first_init_pfn < zone_end_pfn(zone))
1567 			break;
1568 	}
1569 	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1570 
1571 	/*
1572 	 * Initialize and free pages. We do it in two loops: first we initialize
1573 	 * struct page, than free to buddy allocator, because while we are
1574 	 * freeing pages we can access pages that are ahead (computing buddy
1575 	 * page in __free_one_page()).
1576 	 */
1577 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1578 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1579 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1580 		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1581 	}
1582 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1583 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1584 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1585 		deferred_free_pages(nid, zid, spfn, epfn);
1586 	}
1587 	pgdat_resize_unlock(pgdat, &flags);
1588 
1589 	/* Sanity check that the next zone really is unpopulated */
1590 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1591 
1592 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1593 					jiffies_to_msecs(jiffies - start));
1594 
1595 	pgdat_init_report_one_done();
1596 	return 0;
1597 }
1598 
1599 /*
1600  * During boot we initialize deferred pages on-demand, as needed, but once
1601  * page_alloc_init_late() has finished, the deferred pages are all initialized,
1602  * and we can permanently disable that path.
1603  */
1604 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1605 
1606 /*
1607  * If this zone has deferred pages, try to grow it by initializing enough
1608  * deferred pages to satisfy the allocation specified by order, rounded up to
1609  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1610  * of SECTION_SIZE bytes by initializing struct pages in increments of
1611  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1612  *
1613  * Return true when zone was grown, otherwise return false. We return true even
1614  * when we grow less than requested, to let the caller decide if there are
1615  * enough pages to satisfy the allocation.
1616  *
1617  * Note: We use noinline because this function is needed only during boot, and
1618  * it is called from a __ref function _deferred_grow_zone. This way we are
1619  * making sure that it is not inlined into permanent text section.
1620  */
1621 static noinline bool __init
1622 deferred_grow_zone(struct zone *zone, unsigned int order)
1623 {
1624 	int zid = zone_idx(zone);
1625 	int nid = zone_to_nid(zone);
1626 	pg_data_t *pgdat = NODE_DATA(nid);
1627 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1628 	unsigned long nr_pages = 0;
1629 	unsigned long first_init_pfn, spfn, epfn, t, flags;
1630 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1631 	phys_addr_t spa, epa;
1632 	u64 i;
1633 
1634 	/* Only the last zone may have deferred pages */
1635 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1636 		return false;
1637 
1638 	pgdat_resize_lock(pgdat, &flags);
1639 
1640 	/*
1641 	 * If deferred pages have been initialized while we were waiting for
1642 	 * the lock, return true, as the zone was grown.  The caller will retry
1643 	 * this zone.  We won't return to this function since the caller also
1644 	 * has this static branch.
1645 	 */
1646 	if (!static_branch_unlikely(&deferred_pages)) {
1647 		pgdat_resize_unlock(pgdat, &flags);
1648 		return true;
1649 	}
1650 
1651 	/*
1652 	 * If someone grew this zone while we were waiting for spinlock, return
1653 	 * true, as there might be enough pages already.
1654 	 */
1655 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1656 		pgdat_resize_unlock(pgdat, &flags);
1657 		return true;
1658 	}
1659 
1660 	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1661 
1662 	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1663 		pgdat_resize_unlock(pgdat, &flags);
1664 		return false;
1665 	}
1666 
1667 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1668 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1669 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1670 
1671 		while (spfn < epfn && nr_pages < nr_pages_needed) {
1672 			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1673 			first_deferred_pfn = min(t, epfn);
1674 			nr_pages += deferred_init_pages(nid, zid, spfn,
1675 							first_deferred_pfn);
1676 			spfn = first_deferred_pfn;
1677 		}
1678 
1679 		if (nr_pages >= nr_pages_needed)
1680 			break;
1681 	}
1682 
1683 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1684 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1685 		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1686 		deferred_free_pages(nid, zid, spfn, epfn);
1687 
1688 		if (first_deferred_pfn == epfn)
1689 			break;
1690 	}
1691 	pgdat->first_deferred_pfn = first_deferred_pfn;
1692 	pgdat_resize_unlock(pgdat, &flags);
1693 
1694 	return nr_pages > 0;
1695 }
1696 
1697 /*
1698  * deferred_grow_zone() is __init, but it is called from
1699  * get_page_from_freelist() during early boot until deferred_pages permanently
1700  * disables this call. This is why we have refdata wrapper to avoid warning,
1701  * and to ensure that the function body gets unloaded.
1702  */
1703 static bool __ref
1704 _deferred_grow_zone(struct zone *zone, unsigned int order)
1705 {
1706 	return deferred_grow_zone(zone, order);
1707 }
1708 
1709 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1710 
1711 void __init page_alloc_init_late(void)
1712 {
1713 	struct zone *zone;
1714 
1715 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1716 	int nid;
1717 
1718 	/* There will be num_node_state(N_MEMORY) threads */
1719 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1720 	for_each_node_state(nid, N_MEMORY) {
1721 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1722 	}
1723 
1724 	/* Block until all are initialised */
1725 	wait_for_completion(&pgdat_init_all_done_comp);
1726 
1727 	/*
1728 	 * We initialized the rest of the deferred pages.  Permanently disable
1729 	 * on-demand struct page initialization.
1730 	 */
1731 	static_branch_disable(&deferred_pages);
1732 
1733 	/* Reinit limits that are based on free pages after the kernel is up */
1734 	files_maxfiles_init();
1735 #endif
1736 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1737 	/* Discard memblock private memory */
1738 	memblock_discard();
1739 #endif
1740 
1741 	for_each_populated_zone(zone)
1742 		set_zone_contiguous(zone);
1743 }
1744 
1745 #ifdef CONFIG_CMA
1746 static void __init adjust_present_page_count(struct page *page, long count)
1747 {
1748 	struct zone *zone = page_zone(page);
1749 
1750 	/* We don't need to hold a lock since it is boot-up process */
1751 	zone->present_pages += count;
1752 }
1753 
1754 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1755 void __init init_cma_reserved_pageblock(struct page *page)
1756 {
1757 	unsigned i = pageblock_nr_pages;
1758 	unsigned long pfn = page_to_pfn(page);
1759 	struct page *p = page;
1760 	int nid = page_to_nid(page);
1761 
1762 	/*
1763 	 * ZONE_MOVABLE will steal present pages from other zones by
1764 	 * changing page links so page_zone() is changed. Before that,
1765 	 * we need to adjust previous zone's page count first.
1766 	 */
1767 	adjust_present_page_count(page, -pageblock_nr_pages);
1768 
1769 	do {
1770 		__ClearPageReserved(p);
1771 		set_page_count(p, 0);
1772 
1773 		/* Steal pages from other zones */
1774 		set_page_links(p, ZONE_MOVABLE, nid, pfn);
1775 	} while (++p, ++pfn, --i);
1776 
1777 	adjust_present_page_count(page, pageblock_nr_pages);
1778 
1779 	set_pageblock_migratetype(page, MIGRATE_CMA);
1780 
1781 	if (pageblock_order >= MAX_ORDER) {
1782 		i = pageblock_nr_pages;
1783 		p = page;
1784 		do {
1785 			set_page_refcounted(p);
1786 			__free_pages(p, MAX_ORDER - 1);
1787 			p += MAX_ORDER_NR_PAGES;
1788 		} while (i -= MAX_ORDER_NR_PAGES);
1789 	} else {
1790 		set_page_refcounted(page);
1791 		__free_pages(page, pageblock_order);
1792 	}
1793 
1794 	adjust_managed_page_count(page, pageblock_nr_pages);
1795 }
1796 #endif
1797 
1798 /*
1799  * The order of subdivision here is critical for the IO subsystem.
1800  * Please do not alter this order without good reasons and regression
1801  * testing. Specifically, as large blocks of memory are subdivided,
1802  * the order in which smaller blocks are delivered depends on the order
1803  * they're subdivided in this function. This is the primary factor
1804  * influencing the order in which pages are delivered to the IO
1805  * subsystem according to empirical testing, and this is also justified
1806  * by considering the behavior of a buddy system containing a single
1807  * large block of memory acted on by a series of small allocations.
1808  * This behavior is a critical factor in sglist merging's success.
1809  *
1810  * -- nyc
1811  */
1812 static inline void expand(struct zone *zone, struct page *page,
1813 	int low, int high, struct free_area *area,
1814 	int migratetype)
1815 {
1816 	unsigned long size = 1 << high;
1817 
1818 	while (high > low) {
1819 		area--;
1820 		high--;
1821 		size >>= 1;
1822 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1823 
1824 		/*
1825 		 * Mark as guard pages (or page), that will allow to
1826 		 * merge back to allocator when buddy will be freed.
1827 		 * Corresponding page table entries will not be touched,
1828 		 * pages will stay not present in virtual address space
1829 		 */
1830 		if (set_page_guard(zone, &page[size], high, migratetype))
1831 			continue;
1832 
1833 		list_add(&page[size].lru, &area->free_list[migratetype]);
1834 		area->nr_free++;
1835 		set_page_order(&page[size], high);
1836 	}
1837 }
1838 
1839 static void check_new_page_bad(struct page *page)
1840 {
1841 	const char *bad_reason = NULL;
1842 	unsigned long bad_flags = 0;
1843 
1844 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1845 		bad_reason = "nonzero mapcount";
1846 	if (unlikely(page->mapping != NULL))
1847 		bad_reason = "non-NULL mapping";
1848 	if (unlikely(page_ref_count(page) != 0))
1849 		bad_reason = "nonzero _count";
1850 	if (unlikely(page->flags & __PG_HWPOISON)) {
1851 		bad_reason = "HWPoisoned (hardware-corrupted)";
1852 		bad_flags = __PG_HWPOISON;
1853 		/* Don't complain about hwpoisoned pages */
1854 		page_mapcount_reset(page); /* remove PageBuddy */
1855 		return;
1856 	}
1857 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1858 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1859 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1860 	}
1861 #ifdef CONFIG_MEMCG
1862 	if (unlikely(page->mem_cgroup))
1863 		bad_reason = "page still charged to cgroup";
1864 #endif
1865 	bad_page(page, bad_reason, bad_flags);
1866 }
1867 
1868 /*
1869  * This page is about to be returned from the page allocator
1870  */
1871 static inline int check_new_page(struct page *page)
1872 {
1873 	if (likely(page_expected_state(page,
1874 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1875 		return 0;
1876 
1877 	check_new_page_bad(page);
1878 	return 1;
1879 }
1880 
1881 static inline bool free_pages_prezeroed(void)
1882 {
1883 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1884 		page_poisoning_enabled();
1885 }
1886 
1887 #ifdef CONFIG_DEBUG_VM
1888 static bool check_pcp_refill(struct page *page)
1889 {
1890 	return false;
1891 }
1892 
1893 static bool check_new_pcp(struct page *page)
1894 {
1895 	return check_new_page(page);
1896 }
1897 #else
1898 static bool check_pcp_refill(struct page *page)
1899 {
1900 	return check_new_page(page);
1901 }
1902 static bool check_new_pcp(struct page *page)
1903 {
1904 	return false;
1905 }
1906 #endif /* CONFIG_DEBUG_VM */
1907 
1908 static bool check_new_pages(struct page *page, unsigned int order)
1909 {
1910 	int i;
1911 	for (i = 0; i < (1 << order); i++) {
1912 		struct page *p = page + i;
1913 
1914 		if (unlikely(check_new_page(p)))
1915 			return true;
1916 	}
1917 
1918 	return false;
1919 }
1920 
1921 inline void post_alloc_hook(struct page *page, unsigned int order,
1922 				gfp_t gfp_flags)
1923 {
1924 	set_page_private(page, 0);
1925 	set_page_refcounted(page);
1926 
1927 	arch_alloc_page(page, order);
1928 	kernel_map_pages(page, 1 << order, 1);
1929 	kernel_poison_pages(page, 1 << order, 1);
1930 	kasan_alloc_pages(page, order);
1931 	set_page_owner(page, order, gfp_flags);
1932 }
1933 
1934 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1935 							unsigned int alloc_flags)
1936 {
1937 	int i;
1938 
1939 	post_alloc_hook(page, order, gfp_flags);
1940 
1941 	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1942 		for (i = 0; i < (1 << order); i++)
1943 			clear_highpage(page + i);
1944 
1945 	if (order && (gfp_flags & __GFP_COMP))
1946 		prep_compound_page(page, order);
1947 
1948 	/*
1949 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1950 	 * allocate the page. The expectation is that the caller is taking
1951 	 * steps that will free more memory. The caller should avoid the page
1952 	 * being used for !PFMEMALLOC purposes.
1953 	 */
1954 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1955 		set_page_pfmemalloc(page);
1956 	else
1957 		clear_page_pfmemalloc(page);
1958 }
1959 
1960 /*
1961  * Go through the free lists for the given migratetype and remove
1962  * the smallest available page from the freelists
1963  */
1964 static __always_inline
1965 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1966 						int migratetype)
1967 {
1968 	unsigned int current_order;
1969 	struct free_area *area;
1970 	struct page *page;
1971 
1972 	/* Find a page of the appropriate size in the preferred list */
1973 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1974 		area = &(zone->free_area[current_order]);
1975 		page = list_first_entry_or_null(&area->free_list[migratetype],
1976 							struct page, lru);
1977 		if (!page)
1978 			continue;
1979 		list_del(&page->lru);
1980 		rmv_page_order(page);
1981 		area->nr_free--;
1982 		expand(zone, page, order, current_order, area, migratetype);
1983 		set_pcppage_migratetype(page, migratetype);
1984 		return page;
1985 	}
1986 
1987 	return NULL;
1988 }
1989 
1990 
1991 /*
1992  * This array describes the order lists are fallen back to when
1993  * the free lists for the desirable migrate type are depleted
1994  */
1995 static int fallbacks[MIGRATE_TYPES][4] = {
1996 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1997 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1998 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1999 #ifdef CONFIG_CMA
2000 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2001 #endif
2002 #ifdef CONFIG_MEMORY_ISOLATION
2003 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2004 #endif
2005 };
2006 
2007 #ifdef CONFIG_CMA
2008 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2009 					unsigned int order)
2010 {
2011 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2012 }
2013 #else
2014 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2015 					unsigned int order) { return NULL; }
2016 #endif
2017 
2018 /*
2019  * Move the free pages in a range to the free lists of the requested type.
2020  * Note that start_page and end_pages are not aligned on a pageblock
2021  * boundary. If alignment is required, use move_freepages_block()
2022  */
2023 static int move_freepages(struct zone *zone,
2024 			  struct page *start_page, struct page *end_page,
2025 			  int migratetype, int *num_movable)
2026 {
2027 	struct page *page;
2028 	unsigned int order;
2029 	int pages_moved = 0;
2030 
2031 #ifndef CONFIG_HOLES_IN_ZONE
2032 	/*
2033 	 * page_zone is not safe to call in this context when
2034 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2035 	 * anyway as we check zone boundaries in move_freepages_block().
2036 	 * Remove at a later date when no bug reports exist related to
2037 	 * grouping pages by mobility
2038 	 */
2039 	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2040 	          pfn_valid(page_to_pfn(end_page)) &&
2041 	          page_zone(start_page) != page_zone(end_page));
2042 #endif
2043 
2044 	if (num_movable)
2045 		*num_movable = 0;
2046 
2047 	for (page = start_page; page <= end_page;) {
2048 		if (!pfn_valid_within(page_to_pfn(page))) {
2049 			page++;
2050 			continue;
2051 		}
2052 
2053 		/* Make sure we are not inadvertently changing nodes */
2054 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2055 
2056 		if (!PageBuddy(page)) {
2057 			/*
2058 			 * We assume that pages that could be isolated for
2059 			 * migration are movable. But we don't actually try
2060 			 * isolating, as that would be expensive.
2061 			 */
2062 			if (num_movable &&
2063 					(PageLRU(page) || __PageMovable(page)))
2064 				(*num_movable)++;
2065 
2066 			page++;
2067 			continue;
2068 		}
2069 
2070 		order = page_order(page);
2071 		list_move(&page->lru,
2072 			  &zone->free_area[order].free_list[migratetype]);
2073 		page += 1 << order;
2074 		pages_moved += 1 << order;
2075 	}
2076 
2077 	return pages_moved;
2078 }
2079 
2080 int move_freepages_block(struct zone *zone, struct page *page,
2081 				int migratetype, int *num_movable)
2082 {
2083 	unsigned long start_pfn, end_pfn;
2084 	struct page *start_page, *end_page;
2085 
2086 	start_pfn = page_to_pfn(page);
2087 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2088 	start_page = pfn_to_page(start_pfn);
2089 	end_page = start_page + pageblock_nr_pages - 1;
2090 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2091 
2092 	/* Do not cross zone boundaries */
2093 	if (!zone_spans_pfn(zone, start_pfn))
2094 		start_page = page;
2095 	if (!zone_spans_pfn(zone, end_pfn))
2096 		return 0;
2097 
2098 	return move_freepages(zone, start_page, end_page, migratetype,
2099 								num_movable);
2100 }
2101 
2102 static void change_pageblock_range(struct page *pageblock_page,
2103 					int start_order, int migratetype)
2104 {
2105 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2106 
2107 	while (nr_pageblocks--) {
2108 		set_pageblock_migratetype(pageblock_page, migratetype);
2109 		pageblock_page += pageblock_nr_pages;
2110 	}
2111 }
2112 
2113 /*
2114  * When we are falling back to another migratetype during allocation, try to
2115  * steal extra free pages from the same pageblocks to satisfy further
2116  * allocations, instead of polluting multiple pageblocks.
2117  *
2118  * If we are stealing a relatively large buddy page, it is likely there will
2119  * be more free pages in the pageblock, so try to steal them all. For
2120  * reclaimable and unmovable allocations, we steal regardless of page size,
2121  * as fragmentation caused by those allocations polluting movable pageblocks
2122  * is worse than movable allocations stealing from unmovable and reclaimable
2123  * pageblocks.
2124  */
2125 static bool can_steal_fallback(unsigned int order, int start_mt)
2126 {
2127 	/*
2128 	 * Leaving this order check is intended, although there is
2129 	 * relaxed order check in next check. The reason is that
2130 	 * we can actually steal whole pageblock if this condition met,
2131 	 * but, below check doesn't guarantee it and that is just heuristic
2132 	 * so could be changed anytime.
2133 	 */
2134 	if (order >= pageblock_order)
2135 		return true;
2136 
2137 	if (order >= pageblock_order / 2 ||
2138 		start_mt == MIGRATE_RECLAIMABLE ||
2139 		start_mt == MIGRATE_UNMOVABLE ||
2140 		page_group_by_mobility_disabled)
2141 		return true;
2142 
2143 	return false;
2144 }
2145 
2146 /*
2147  * This function implements actual steal behaviour. If order is large enough,
2148  * we can steal whole pageblock. If not, we first move freepages in this
2149  * pageblock to our migratetype and determine how many already-allocated pages
2150  * are there in the pageblock with a compatible migratetype. If at least half
2151  * of pages are free or compatible, we can change migratetype of the pageblock
2152  * itself, so pages freed in the future will be put on the correct free list.
2153  */
2154 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2155 					int start_type, bool whole_block)
2156 {
2157 	unsigned int current_order = page_order(page);
2158 	struct free_area *area;
2159 	int free_pages, movable_pages, alike_pages;
2160 	int old_block_type;
2161 
2162 	old_block_type = get_pageblock_migratetype(page);
2163 
2164 	/*
2165 	 * This can happen due to races and we want to prevent broken
2166 	 * highatomic accounting.
2167 	 */
2168 	if (is_migrate_highatomic(old_block_type))
2169 		goto single_page;
2170 
2171 	/* Take ownership for orders >= pageblock_order */
2172 	if (current_order >= pageblock_order) {
2173 		change_pageblock_range(page, current_order, start_type);
2174 		goto single_page;
2175 	}
2176 
2177 	/* We are not allowed to try stealing from the whole block */
2178 	if (!whole_block)
2179 		goto single_page;
2180 
2181 	free_pages = move_freepages_block(zone, page, start_type,
2182 						&movable_pages);
2183 	/*
2184 	 * Determine how many pages are compatible with our allocation.
2185 	 * For movable allocation, it's the number of movable pages which
2186 	 * we just obtained. For other types it's a bit more tricky.
2187 	 */
2188 	if (start_type == MIGRATE_MOVABLE) {
2189 		alike_pages = movable_pages;
2190 	} else {
2191 		/*
2192 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2193 		 * to MOVABLE pageblock, consider all non-movable pages as
2194 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2195 		 * vice versa, be conservative since we can't distinguish the
2196 		 * exact migratetype of non-movable pages.
2197 		 */
2198 		if (old_block_type == MIGRATE_MOVABLE)
2199 			alike_pages = pageblock_nr_pages
2200 						- (free_pages + movable_pages);
2201 		else
2202 			alike_pages = 0;
2203 	}
2204 
2205 	/* moving whole block can fail due to zone boundary conditions */
2206 	if (!free_pages)
2207 		goto single_page;
2208 
2209 	/*
2210 	 * If a sufficient number of pages in the block are either free or of
2211 	 * comparable migratability as our allocation, claim the whole block.
2212 	 */
2213 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2214 			page_group_by_mobility_disabled)
2215 		set_pageblock_migratetype(page, start_type);
2216 
2217 	return;
2218 
2219 single_page:
2220 	area = &zone->free_area[current_order];
2221 	list_move(&page->lru, &area->free_list[start_type]);
2222 }
2223 
2224 /*
2225  * Check whether there is a suitable fallback freepage with requested order.
2226  * If only_stealable is true, this function returns fallback_mt only if
2227  * we can steal other freepages all together. This would help to reduce
2228  * fragmentation due to mixed migratetype pages in one pageblock.
2229  */
2230 int find_suitable_fallback(struct free_area *area, unsigned int order,
2231 			int migratetype, bool only_stealable, bool *can_steal)
2232 {
2233 	int i;
2234 	int fallback_mt;
2235 
2236 	if (area->nr_free == 0)
2237 		return -1;
2238 
2239 	*can_steal = false;
2240 	for (i = 0;; i++) {
2241 		fallback_mt = fallbacks[migratetype][i];
2242 		if (fallback_mt == MIGRATE_TYPES)
2243 			break;
2244 
2245 		if (list_empty(&area->free_list[fallback_mt]))
2246 			continue;
2247 
2248 		if (can_steal_fallback(order, migratetype))
2249 			*can_steal = true;
2250 
2251 		if (!only_stealable)
2252 			return fallback_mt;
2253 
2254 		if (*can_steal)
2255 			return fallback_mt;
2256 	}
2257 
2258 	return -1;
2259 }
2260 
2261 /*
2262  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2263  * there are no empty page blocks that contain a page with a suitable order
2264  */
2265 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2266 				unsigned int alloc_order)
2267 {
2268 	int mt;
2269 	unsigned long max_managed, flags;
2270 
2271 	/*
2272 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2273 	 * Check is race-prone but harmless.
2274 	 */
2275 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2276 	if (zone->nr_reserved_highatomic >= max_managed)
2277 		return;
2278 
2279 	spin_lock_irqsave(&zone->lock, flags);
2280 
2281 	/* Recheck the nr_reserved_highatomic limit under the lock */
2282 	if (zone->nr_reserved_highatomic >= max_managed)
2283 		goto out_unlock;
2284 
2285 	/* Yoink! */
2286 	mt = get_pageblock_migratetype(page);
2287 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2288 	    && !is_migrate_cma(mt)) {
2289 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2290 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2291 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2292 	}
2293 
2294 out_unlock:
2295 	spin_unlock_irqrestore(&zone->lock, flags);
2296 }
2297 
2298 /*
2299  * Used when an allocation is about to fail under memory pressure. This
2300  * potentially hurts the reliability of high-order allocations when under
2301  * intense memory pressure but failed atomic allocations should be easier
2302  * to recover from than an OOM.
2303  *
2304  * If @force is true, try to unreserve a pageblock even though highatomic
2305  * pageblock is exhausted.
2306  */
2307 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2308 						bool force)
2309 {
2310 	struct zonelist *zonelist = ac->zonelist;
2311 	unsigned long flags;
2312 	struct zoneref *z;
2313 	struct zone *zone;
2314 	struct page *page;
2315 	int order;
2316 	bool ret;
2317 
2318 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2319 								ac->nodemask) {
2320 		/*
2321 		 * Preserve at least one pageblock unless memory pressure
2322 		 * is really high.
2323 		 */
2324 		if (!force && zone->nr_reserved_highatomic <=
2325 					pageblock_nr_pages)
2326 			continue;
2327 
2328 		spin_lock_irqsave(&zone->lock, flags);
2329 		for (order = 0; order < MAX_ORDER; order++) {
2330 			struct free_area *area = &(zone->free_area[order]);
2331 
2332 			page = list_first_entry_or_null(
2333 					&area->free_list[MIGRATE_HIGHATOMIC],
2334 					struct page, lru);
2335 			if (!page)
2336 				continue;
2337 
2338 			/*
2339 			 * In page freeing path, migratetype change is racy so
2340 			 * we can counter several free pages in a pageblock
2341 			 * in this loop althoug we changed the pageblock type
2342 			 * from highatomic to ac->migratetype. So we should
2343 			 * adjust the count once.
2344 			 */
2345 			if (is_migrate_highatomic_page(page)) {
2346 				/*
2347 				 * It should never happen but changes to
2348 				 * locking could inadvertently allow a per-cpu
2349 				 * drain to add pages to MIGRATE_HIGHATOMIC
2350 				 * while unreserving so be safe and watch for
2351 				 * underflows.
2352 				 */
2353 				zone->nr_reserved_highatomic -= min(
2354 						pageblock_nr_pages,
2355 						zone->nr_reserved_highatomic);
2356 			}
2357 
2358 			/*
2359 			 * Convert to ac->migratetype and avoid the normal
2360 			 * pageblock stealing heuristics. Minimally, the caller
2361 			 * is doing the work and needs the pages. More
2362 			 * importantly, if the block was always converted to
2363 			 * MIGRATE_UNMOVABLE or another type then the number
2364 			 * of pageblocks that cannot be completely freed
2365 			 * may increase.
2366 			 */
2367 			set_pageblock_migratetype(page, ac->migratetype);
2368 			ret = move_freepages_block(zone, page, ac->migratetype,
2369 									NULL);
2370 			if (ret) {
2371 				spin_unlock_irqrestore(&zone->lock, flags);
2372 				return ret;
2373 			}
2374 		}
2375 		spin_unlock_irqrestore(&zone->lock, flags);
2376 	}
2377 
2378 	return false;
2379 }
2380 
2381 /*
2382  * Try finding a free buddy page on the fallback list and put it on the free
2383  * list of requested migratetype, possibly along with other pages from the same
2384  * block, depending on fragmentation avoidance heuristics. Returns true if
2385  * fallback was found so that __rmqueue_smallest() can grab it.
2386  *
2387  * The use of signed ints for order and current_order is a deliberate
2388  * deviation from the rest of this file, to make the for loop
2389  * condition simpler.
2390  */
2391 static __always_inline bool
2392 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2393 {
2394 	struct free_area *area;
2395 	int current_order;
2396 	struct page *page;
2397 	int fallback_mt;
2398 	bool can_steal;
2399 
2400 	/*
2401 	 * Find the largest available free page in the other list. This roughly
2402 	 * approximates finding the pageblock with the most free pages, which
2403 	 * would be too costly to do exactly.
2404 	 */
2405 	for (current_order = MAX_ORDER - 1; current_order >= order;
2406 				--current_order) {
2407 		area = &(zone->free_area[current_order]);
2408 		fallback_mt = find_suitable_fallback(area, current_order,
2409 				start_migratetype, false, &can_steal);
2410 		if (fallback_mt == -1)
2411 			continue;
2412 
2413 		/*
2414 		 * We cannot steal all free pages from the pageblock and the
2415 		 * requested migratetype is movable. In that case it's better to
2416 		 * steal and split the smallest available page instead of the
2417 		 * largest available page, because even if the next movable
2418 		 * allocation falls back into a different pageblock than this
2419 		 * one, it won't cause permanent fragmentation.
2420 		 */
2421 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2422 					&& current_order > order)
2423 			goto find_smallest;
2424 
2425 		goto do_steal;
2426 	}
2427 
2428 	return false;
2429 
2430 find_smallest:
2431 	for (current_order = order; current_order < MAX_ORDER;
2432 							current_order++) {
2433 		area = &(zone->free_area[current_order]);
2434 		fallback_mt = find_suitable_fallback(area, current_order,
2435 				start_migratetype, false, &can_steal);
2436 		if (fallback_mt != -1)
2437 			break;
2438 	}
2439 
2440 	/*
2441 	 * This should not happen - we already found a suitable fallback
2442 	 * when looking for the largest page.
2443 	 */
2444 	VM_BUG_ON(current_order == MAX_ORDER);
2445 
2446 do_steal:
2447 	page = list_first_entry(&area->free_list[fallback_mt],
2448 							struct page, lru);
2449 
2450 	steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2451 
2452 	trace_mm_page_alloc_extfrag(page, order, current_order,
2453 		start_migratetype, fallback_mt);
2454 
2455 	return true;
2456 
2457 }
2458 
2459 /*
2460  * Do the hard work of removing an element from the buddy allocator.
2461  * Call me with the zone->lock already held.
2462  */
2463 static __always_inline struct page *
2464 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2465 {
2466 	struct page *page;
2467 
2468 retry:
2469 	page = __rmqueue_smallest(zone, order, migratetype);
2470 	if (unlikely(!page)) {
2471 		if (migratetype == MIGRATE_MOVABLE)
2472 			page = __rmqueue_cma_fallback(zone, order);
2473 
2474 		if (!page && __rmqueue_fallback(zone, order, migratetype))
2475 			goto retry;
2476 	}
2477 
2478 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2479 	return page;
2480 }
2481 
2482 /*
2483  * Obtain a specified number of elements from the buddy allocator, all under
2484  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2485  * Returns the number of new pages which were placed at *list.
2486  */
2487 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2488 			unsigned long count, struct list_head *list,
2489 			int migratetype)
2490 {
2491 	int i, alloced = 0;
2492 
2493 	spin_lock(&zone->lock);
2494 	for (i = 0; i < count; ++i) {
2495 		struct page *page = __rmqueue(zone, order, migratetype);
2496 		if (unlikely(page == NULL))
2497 			break;
2498 
2499 		if (unlikely(check_pcp_refill(page)))
2500 			continue;
2501 
2502 		/*
2503 		 * Split buddy pages returned by expand() are received here in
2504 		 * physical page order. The page is added to the tail of
2505 		 * caller's list. From the callers perspective, the linked list
2506 		 * is ordered by page number under some conditions. This is
2507 		 * useful for IO devices that can forward direction from the
2508 		 * head, thus also in the physical page order. This is useful
2509 		 * for IO devices that can merge IO requests if the physical
2510 		 * pages are ordered properly.
2511 		 */
2512 		list_add_tail(&page->lru, list);
2513 		alloced++;
2514 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2515 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2516 					      -(1 << order));
2517 	}
2518 
2519 	/*
2520 	 * i pages were removed from the buddy list even if some leak due
2521 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2522 	 * on i. Do not confuse with 'alloced' which is the number of
2523 	 * pages added to the pcp list.
2524 	 */
2525 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2526 	spin_unlock(&zone->lock);
2527 	return alloced;
2528 }
2529 
2530 #ifdef CONFIG_NUMA
2531 /*
2532  * Called from the vmstat counter updater to drain pagesets of this
2533  * currently executing processor on remote nodes after they have
2534  * expired.
2535  *
2536  * Note that this function must be called with the thread pinned to
2537  * a single processor.
2538  */
2539 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2540 {
2541 	unsigned long flags;
2542 	int to_drain, batch;
2543 
2544 	local_irq_save(flags);
2545 	batch = READ_ONCE(pcp->batch);
2546 	to_drain = min(pcp->count, batch);
2547 	if (to_drain > 0)
2548 		free_pcppages_bulk(zone, to_drain, pcp);
2549 	local_irq_restore(flags);
2550 }
2551 #endif
2552 
2553 /*
2554  * Drain pcplists of the indicated processor and zone.
2555  *
2556  * The processor must either be the current processor and the
2557  * thread pinned to the current processor or a processor that
2558  * is not online.
2559  */
2560 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2561 {
2562 	unsigned long flags;
2563 	struct per_cpu_pageset *pset;
2564 	struct per_cpu_pages *pcp;
2565 
2566 	local_irq_save(flags);
2567 	pset = per_cpu_ptr(zone->pageset, cpu);
2568 
2569 	pcp = &pset->pcp;
2570 	if (pcp->count)
2571 		free_pcppages_bulk(zone, pcp->count, pcp);
2572 	local_irq_restore(flags);
2573 }
2574 
2575 /*
2576  * Drain pcplists of all zones on the indicated processor.
2577  *
2578  * The processor must either be the current processor and the
2579  * thread pinned to the current processor or a processor that
2580  * is not online.
2581  */
2582 static void drain_pages(unsigned int cpu)
2583 {
2584 	struct zone *zone;
2585 
2586 	for_each_populated_zone(zone) {
2587 		drain_pages_zone(cpu, zone);
2588 	}
2589 }
2590 
2591 /*
2592  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2593  *
2594  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2595  * the single zone's pages.
2596  */
2597 void drain_local_pages(struct zone *zone)
2598 {
2599 	int cpu = smp_processor_id();
2600 
2601 	if (zone)
2602 		drain_pages_zone(cpu, zone);
2603 	else
2604 		drain_pages(cpu);
2605 }
2606 
2607 static void drain_local_pages_wq(struct work_struct *work)
2608 {
2609 	/*
2610 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2611 	 * we can race with cpu offline when the WQ can move this from
2612 	 * a cpu pinned worker to an unbound one. We can operate on a different
2613 	 * cpu which is allright but we also have to make sure to not move to
2614 	 * a different one.
2615 	 */
2616 	preempt_disable();
2617 	drain_local_pages(NULL);
2618 	preempt_enable();
2619 }
2620 
2621 /*
2622  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2623  *
2624  * When zone parameter is non-NULL, spill just the single zone's pages.
2625  *
2626  * Note that this can be extremely slow as the draining happens in a workqueue.
2627  */
2628 void drain_all_pages(struct zone *zone)
2629 {
2630 	int cpu;
2631 
2632 	/*
2633 	 * Allocate in the BSS so we wont require allocation in
2634 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2635 	 */
2636 	static cpumask_t cpus_with_pcps;
2637 
2638 	/*
2639 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2640 	 * initialized.
2641 	 */
2642 	if (WARN_ON_ONCE(!mm_percpu_wq))
2643 		return;
2644 
2645 	/*
2646 	 * Do not drain if one is already in progress unless it's specific to
2647 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2648 	 * the drain to be complete when the call returns.
2649 	 */
2650 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2651 		if (!zone)
2652 			return;
2653 		mutex_lock(&pcpu_drain_mutex);
2654 	}
2655 
2656 	/*
2657 	 * We don't care about racing with CPU hotplug event
2658 	 * as offline notification will cause the notified
2659 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2660 	 * disables preemption as part of its processing
2661 	 */
2662 	for_each_online_cpu(cpu) {
2663 		struct per_cpu_pageset *pcp;
2664 		struct zone *z;
2665 		bool has_pcps = false;
2666 
2667 		if (zone) {
2668 			pcp = per_cpu_ptr(zone->pageset, cpu);
2669 			if (pcp->pcp.count)
2670 				has_pcps = true;
2671 		} else {
2672 			for_each_populated_zone(z) {
2673 				pcp = per_cpu_ptr(z->pageset, cpu);
2674 				if (pcp->pcp.count) {
2675 					has_pcps = true;
2676 					break;
2677 				}
2678 			}
2679 		}
2680 
2681 		if (has_pcps)
2682 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2683 		else
2684 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2685 	}
2686 
2687 	for_each_cpu(cpu, &cpus_with_pcps) {
2688 		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2689 		INIT_WORK(work, drain_local_pages_wq);
2690 		queue_work_on(cpu, mm_percpu_wq, work);
2691 	}
2692 	for_each_cpu(cpu, &cpus_with_pcps)
2693 		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2694 
2695 	mutex_unlock(&pcpu_drain_mutex);
2696 }
2697 
2698 #ifdef CONFIG_HIBERNATION
2699 
2700 /*
2701  * Touch the watchdog for every WD_PAGE_COUNT pages.
2702  */
2703 #define WD_PAGE_COUNT	(128*1024)
2704 
2705 void mark_free_pages(struct zone *zone)
2706 {
2707 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2708 	unsigned long flags;
2709 	unsigned int order, t;
2710 	struct page *page;
2711 
2712 	if (zone_is_empty(zone))
2713 		return;
2714 
2715 	spin_lock_irqsave(&zone->lock, flags);
2716 
2717 	max_zone_pfn = zone_end_pfn(zone);
2718 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2719 		if (pfn_valid(pfn)) {
2720 			page = pfn_to_page(pfn);
2721 
2722 			if (!--page_count) {
2723 				touch_nmi_watchdog();
2724 				page_count = WD_PAGE_COUNT;
2725 			}
2726 
2727 			if (page_zone(page) != zone)
2728 				continue;
2729 
2730 			if (!swsusp_page_is_forbidden(page))
2731 				swsusp_unset_page_free(page);
2732 		}
2733 
2734 	for_each_migratetype_order(order, t) {
2735 		list_for_each_entry(page,
2736 				&zone->free_area[order].free_list[t], lru) {
2737 			unsigned long i;
2738 
2739 			pfn = page_to_pfn(page);
2740 			for (i = 0; i < (1UL << order); i++) {
2741 				if (!--page_count) {
2742 					touch_nmi_watchdog();
2743 					page_count = WD_PAGE_COUNT;
2744 				}
2745 				swsusp_set_page_free(pfn_to_page(pfn + i));
2746 			}
2747 		}
2748 	}
2749 	spin_unlock_irqrestore(&zone->lock, flags);
2750 }
2751 #endif /* CONFIG_PM */
2752 
2753 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2754 {
2755 	int migratetype;
2756 
2757 	if (!free_pcp_prepare(page))
2758 		return false;
2759 
2760 	migratetype = get_pfnblock_migratetype(page, pfn);
2761 	set_pcppage_migratetype(page, migratetype);
2762 	return true;
2763 }
2764 
2765 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2766 {
2767 	struct zone *zone = page_zone(page);
2768 	struct per_cpu_pages *pcp;
2769 	int migratetype;
2770 
2771 	migratetype = get_pcppage_migratetype(page);
2772 	__count_vm_event(PGFREE);
2773 
2774 	/*
2775 	 * We only track unmovable, reclaimable and movable on pcp lists.
2776 	 * Free ISOLATE pages back to the allocator because they are being
2777 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2778 	 * areas back if necessary. Otherwise, we may have to free
2779 	 * excessively into the page allocator
2780 	 */
2781 	if (migratetype >= MIGRATE_PCPTYPES) {
2782 		if (unlikely(is_migrate_isolate(migratetype))) {
2783 			free_one_page(zone, page, pfn, 0, migratetype);
2784 			return;
2785 		}
2786 		migratetype = MIGRATE_MOVABLE;
2787 	}
2788 
2789 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2790 	list_add(&page->lru, &pcp->lists[migratetype]);
2791 	pcp->count++;
2792 	if (pcp->count >= pcp->high) {
2793 		unsigned long batch = READ_ONCE(pcp->batch);
2794 		free_pcppages_bulk(zone, batch, pcp);
2795 	}
2796 }
2797 
2798 /*
2799  * Free a 0-order page
2800  */
2801 void free_unref_page(struct page *page)
2802 {
2803 	unsigned long flags;
2804 	unsigned long pfn = page_to_pfn(page);
2805 
2806 	if (!free_unref_page_prepare(page, pfn))
2807 		return;
2808 
2809 	local_irq_save(flags);
2810 	free_unref_page_commit(page, pfn);
2811 	local_irq_restore(flags);
2812 }
2813 
2814 /*
2815  * Free a list of 0-order pages
2816  */
2817 void free_unref_page_list(struct list_head *list)
2818 {
2819 	struct page *page, *next;
2820 	unsigned long flags, pfn;
2821 	int batch_count = 0;
2822 
2823 	/* Prepare pages for freeing */
2824 	list_for_each_entry_safe(page, next, list, lru) {
2825 		pfn = page_to_pfn(page);
2826 		if (!free_unref_page_prepare(page, pfn))
2827 			list_del(&page->lru);
2828 		set_page_private(page, pfn);
2829 	}
2830 
2831 	local_irq_save(flags);
2832 	list_for_each_entry_safe(page, next, list, lru) {
2833 		unsigned long pfn = page_private(page);
2834 
2835 		set_page_private(page, 0);
2836 		trace_mm_page_free_batched(page);
2837 		free_unref_page_commit(page, pfn);
2838 
2839 		/*
2840 		 * Guard against excessive IRQ disabled times when we get
2841 		 * a large list of pages to free.
2842 		 */
2843 		if (++batch_count == SWAP_CLUSTER_MAX) {
2844 			local_irq_restore(flags);
2845 			batch_count = 0;
2846 			local_irq_save(flags);
2847 		}
2848 	}
2849 	local_irq_restore(flags);
2850 }
2851 
2852 /*
2853  * split_page takes a non-compound higher-order page, and splits it into
2854  * n (1<<order) sub-pages: page[0..n]
2855  * Each sub-page must be freed individually.
2856  *
2857  * Note: this is probably too low level an operation for use in drivers.
2858  * Please consult with lkml before using this in your driver.
2859  */
2860 void split_page(struct page *page, unsigned int order)
2861 {
2862 	int i;
2863 
2864 	VM_BUG_ON_PAGE(PageCompound(page), page);
2865 	VM_BUG_ON_PAGE(!page_count(page), page);
2866 
2867 	for (i = 1; i < (1 << order); i++)
2868 		set_page_refcounted(page + i);
2869 	split_page_owner(page, order);
2870 }
2871 EXPORT_SYMBOL_GPL(split_page);
2872 
2873 int __isolate_free_page(struct page *page, unsigned int order)
2874 {
2875 	unsigned long watermark;
2876 	struct zone *zone;
2877 	int mt;
2878 
2879 	BUG_ON(!PageBuddy(page));
2880 
2881 	zone = page_zone(page);
2882 	mt = get_pageblock_migratetype(page);
2883 
2884 	if (!is_migrate_isolate(mt)) {
2885 		/*
2886 		 * Obey watermarks as if the page was being allocated. We can
2887 		 * emulate a high-order watermark check with a raised order-0
2888 		 * watermark, because we already know our high-order page
2889 		 * exists.
2890 		 */
2891 		watermark = min_wmark_pages(zone) + (1UL << order);
2892 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2893 			return 0;
2894 
2895 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2896 	}
2897 
2898 	/* Remove page from free list */
2899 	list_del(&page->lru);
2900 	zone->free_area[order].nr_free--;
2901 	rmv_page_order(page);
2902 
2903 	/*
2904 	 * Set the pageblock if the isolated page is at least half of a
2905 	 * pageblock
2906 	 */
2907 	if (order >= pageblock_order - 1) {
2908 		struct page *endpage = page + (1 << order) - 1;
2909 		for (; page < endpage; page += pageblock_nr_pages) {
2910 			int mt = get_pageblock_migratetype(page);
2911 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2912 			    && !is_migrate_highatomic(mt))
2913 				set_pageblock_migratetype(page,
2914 							  MIGRATE_MOVABLE);
2915 		}
2916 	}
2917 
2918 
2919 	return 1UL << order;
2920 }
2921 
2922 /*
2923  * Update NUMA hit/miss statistics
2924  *
2925  * Must be called with interrupts disabled.
2926  */
2927 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2928 {
2929 #ifdef CONFIG_NUMA
2930 	enum numa_stat_item local_stat = NUMA_LOCAL;
2931 
2932 	/* skip numa counters update if numa stats is disabled */
2933 	if (!static_branch_likely(&vm_numa_stat_key))
2934 		return;
2935 
2936 	if (z->node != numa_node_id())
2937 		local_stat = NUMA_OTHER;
2938 
2939 	if (z->node == preferred_zone->node)
2940 		__inc_numa_state(z, NUMA_HIT);
2941 	else {
2942 		__inc_numa_state(z, NUMA_MISS);
2943 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2944 	}
2945 	__inc_numa_state(z, local_stat);
2946 #endif
2947 }
2948 
2949 /* Remove page from the per-cpu list, caller must protect the list */
2950 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2951 			struct per_cpu_pages *pcp,
2952 			struct list_head *list)
2953 {
2954 	struct page *page;
2955 
2956 	do {
2957 		if (list_empty(list)) {
2958 			pcp->count += rmqueue_bulk(zone, 0,
2959 					pcp->batch, list,
2960 					migratetype);
2961 			if (unlikely(list_empty(list)))
2962 				return NULL;
2963 		}
2964 
2965 		page = list_first_entry(list, struct page, lru);
2966 		list_del(&page->lru);
2967 		pcp->count--;
2968 	} while (check_new_pcp(page));
2969 
2970 	return page;
2971 }
2972 
2973 /* Lock and remove page from the per-cpu list */
2974 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2975 			struct zone *zone, unsigned int order,
2976 			gfp_t gfp_flags, int migratetype)
2977 {
2978 	struct per_cpu_pages *pcp;
2979 	struct list_head *list;
2980 	struct page *page;
2981 	unsigned long flags;
2982 
2983 	local_irq_save(flags);
2984 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2985 	list = &pcp->lists[migratetype];
2986 	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2987 	if (page) {
2988 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2989 		zone_statistics(preferred_zone, zone);
2990 	}
2991 	local_irq_restore(flags);
2992 	return page;
2993 }
2994 
2995 /*
2996  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2997  */
2998 static inline
2999 struct page *rmqueue(struct zone *preferred_zone,
3000 			struct zone *zone, unsigned int order,
3001 			gfp_t gfp_flags, unsigned int alloc_flags,
3002 			int migratetype)
3003 {
3004 	unsigned long flags;
3005 	struct page *page;
3006 
3007 	if (likely(order == 0)) {
3008 		page = rmqueue_pcplist(preferred_zone, zone, order,
3009 				gfp_flags, migratetype);
3010 		goto out;
3011 	}
3012 
3013 	/*
3014 	 * We most definitely don't want callers attempting to
3015 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3016 	 */
3017 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3018 	spin_lock_irqsave(&zone->lock, flags);
3019 
3020 	do {
3021 		page = NULL;
3022 		if (alloc_flags & ALLOC_HARDER) {
3023 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3024 			if (page)
3025 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3026 		}
3027 		if (!page)
3028 			page = __rmqueue(zone, order, migratetype);
3029 	} while (page && check_new_pages(page, order));
3030 	spin_unlock(&zone->lock);
3031 	if (!page)
3032 		goto failed;
3033 	__mod_zone_freepage_state(zone, -(1 << order),
3034 				  get_pcppage_migratetype(page));
3035 
3036 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3037 	zone_statistics(preferred_zone, zone);
3038 	local_irq_restore(flags);
3039 
3040 out:
3041 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3042 	return page;
3043 
3044 failed:
3045 	local_irq_restore(flags);
3046 	return NULL;
3047 }
3048 
3049 #ifdef CONFIG_FAIL_PAGE_ALLOC
3050 
3051 static struct {
3052 	struct fault_attr attr;
3053 
3054 	bool ignore_gfp_highmem;
3055 	bool ignore_gfp_reclaim;
3056 	u32 min_order;
3057 } fail_page_alloc = {
3058 	.attr = FAULT_ATTR_INITIALIZER,
3059 	.ignore_gfp_reclaim = true,
3060 	.ignore_gfp_highmem = true,
3061 	.min_order = 1,
3062 };
3063 
3064 static int __init setup_fail_page_alloc(char *str)
3065 {
3066 	return setup_fault_attr(&fail_page_alloc.attr, str);
3067 }
3068 __setup("fail_page_alloc=", setup_fail_page_alloc);
3069 
3070 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3071 {
3072 	if (order < fail_page_alloc.min_order)
3073 		return false;
3074 	if (gfp_mask & __GFP_NOFAIL)
3075 		return false;
3076 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3077 		return false;
3078 	if (fail_page_alloc.ignore_gfp_reclaim &&
3079 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3080 		return false;
3081 
3082 	return should_fail(&fail_page_alloc.attr, 1 << order);
3083 }
3084 
3085 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3086 
3087 static int __init fail_page_alloc_debugfs(void)
3088 {
3089 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3090 	struct dentry *dir;
3091 
3092 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3093 					&fail_page_alloc.attr);
3094 	if (IS_ERR(dir))
3095 		return PTR_ERR(dir);
3096 
3097 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3098 				&fail_page_alloc.ignore_gfp_reclaim))
3099 		goto fail;
3100 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3101 				&fail_page_alloc.ignore_gfp_highmem))
3102 		goto fail;
3103 	if (!debugfs_create_u32("min-order", mode, dir,
3104 				&fail_page_alloc.min_order))
3105 		goto fail;
3106 
3107 	return 0;
3108 fail:
3109 	debugfs_remove_recursive(dir);
3110 
3111 	return -ENOMEM;
3112 }
3113 
3114 late_initcall(fail_page_alloc_debugfs);
3115 
3116 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3117 
3118 #else /* CONFIG_FAIL_PAGE_ALLOC */
3119 
3120 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3121 {
3122 	return false;
3123 }
3124 
3125 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3126 
3127 /*
3128  * Return true if free base pages are above 'mark'. For high-order checks it
3129  * will return true of the order-0 watermark is reached and there is at least
3130  * one free page of a suitable size. Checking now avoids taking the zone lock
3131  * to check in the allocation paths if no pages are free.
3132  */
3133 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3134 			 int classzone_idx, unsigned int alloc_flags,
3135 			 long free_pages)
3136 {
3137 	long min = mark;
3138 	int o;
3139 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3140 
3141 	/* free_pages may go negative - that's OK */
3142 	free_pages -= (1 << order) - 1;
3143 
3144 	if (alloc_flags & ALLOC_HIGH)
3145 		min -= min / 2;
3146 
3147 	/*
3148 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3149 	 * the high-atomic reserves. This will over-estimate the size of the
3150 	 * atomic reserve but it avoids a search.
3151 	 */
3152 	if (likely(!alloc_harder)) {
3153 		free_pages -= z->nr_reserved_highatomic;
3154 	} else {
3155 		/*
3156 		 * OOM victims can try even harder than normal ALLOC_HARDER
3157 		 * users on the grounds that it's definitely going to be in
3158 		 * the exit path shortly and free memory. Any allocation it
3159 		 * makes during the free path will be small and short-lived.
3160 		 */
3161 		if (alloc_flags & ALLOC_OOM)
3162 			min -= min / 2;
3163 		else
3164 			min -= min / 4;
3165 	}
3166 
3167 
3168 	/*
3169 	 * Check watermarks for an order-0 allocation request. If these
3170 	 * are not met, then a high-order request also cannot go ahead
3171 	 * even if a suitable page happened to be free.
3172 	 */
3173 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3174 		return false;
3175 
3176 	/* If this is an order-0 request then the watermark is fine */
3177 	if (!order)
3178 		return true;
3179 
3180 	/* For a high-order request, check at least one suitable page is free */
3181 	for (o = order; o < MAX_ORDER; o++) {
3182 		struct free_area *area = &z->free_area[o];
3183 		int mt;
3184 
3185 		if (!area->nr_free)
3186 			continue;
3187 
3188 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3189 			if (!list_empty(&area->free_list[mt]))
3190 				return true;
3191 		}
3192 
3193 #ifdef CONFIG_CMA
3194 		if (!list_empty(&area->free_list[MIGRATE_CMA]))
3195 			return true;
3196 #endif
3197 		if (alloc_harder &&
3198 			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3199 			return true;
3200 	}
3201 	return false;
3202 }
3203 
3204 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3205 		      int classzone_idx, unsigned int alloc_flags)
3206 {
3207 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3208 					zone_page_state(z, NR_FREE_PAGES));
3209 }
3210 
3211 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3212 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3213 {
3214 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3215 
3216 	/*
3217 	 * Fast check for order-0 only. If this fails then the reserves
3218 	 * need to be calculated. There is a corner case where the check
3219 	 * passes but only the high-order atomic reserve are free. If
3220 	 * the caller is !atomic then it'll uselessly search the free
3221 	 * list. That corner case is then slower but it is harmless.
3222 	 */
3223 	if (!order && free_pages > mark + z->lowmem_reserve[classzone_idx])
3224 		return true;
3225 
3226 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3227 					free_pages);
3228 }
3229 
3230 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3231 			unsigned long mark, int classzone_idx)
3232 {
3233 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3234 
3235 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3236 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3237 
3238 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3239 								free_pages);
3240 }
3241 
3242 #ifdef CONFIG_NUMA
3243 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3244 {
3245 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3246 				RECLAIM_DISTANCE;
3247 }
3248 #else	/* CONFIG_NUMA */
3249 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3250 {
3251 	return true;
3252 }
3253 #endif	/* CONFIG_NUMA */
3254 
3255 /*
3256  * get_page_from_freelist goes through the zonelist trying to allocate
3257  * a page.
3258  */
3259 static struct page *
3260 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3261 						const struct alloc_context *ac)
3262 {
3263 	struct zoneref *z = ac->preferred_zoneref;
3264 	struct zone *zone;
3265 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3266 
3267 	/*
3268 	 * Scan zonelist, looking for a zone with enough free.
3269 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3270 	 */
3271 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3272 								ac->nodemask) {
3273 		struct page *page;
3274 		unsigned long mark;
3275 
3276 		if (cpusets_enabled() &&
3277 			(alloc_flags & ALLOC_CPUSET) &&
3278 			!__cpuset_zone_allowed(zone, gfp_mask))
3279 				continue;
3280 		/*
3281 		 * When allocating a page cache page for writing, we
3282 		 * want to get it from a node that is within its dirty
3283 		 * limit, such that no single node holds more than its
3284 		 * proportional share of globally allowed dirty pages.
3285 		 * The dirty limits take into account the node's
3286 		 * lowmem reserves and high watermark so that kswapd
3287 		 * should be able to balance it without having to
3288 		 * write pages from its LRU list.
3289 		 *
3290 		 * XXX: For now, allow allocations to potentially
3291 		 * exceed the per-node dirty limit in the slowpath
3292 		 * (spread_dirty_pages unset) before going into reclaim,
3293 		 * which is important when on a NUMA setup the allowed
3294 		 * nodes are together not big enough to reach the
3295 		 * global limit.  The proper fix for these situations
3296 		 * will require awareness of nodes in the
3297 		 * dirty-throttling and the flusher threads.
3298 		 */
3299 		if (ac->spread_dirty_pages) {
3300 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3301 				continue;
3302 
3303 			if (!node_dirty_ok(zone->zone_pgdat)) {
3304 				last_pgdat_dirty_limit = zone->zone_pgdat;
3305 				continue;
3306 			}
3307 		}
3308 
3309 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3310 		if (!zone_watermark_fast(zone, order, mark,
3311 				       ac_classzone_idx(ac), alloc_flags)) {
3312 			int ret;
3313 
3314 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3315 			/*
3316 			 * Watermark failed for this zone, but see if we can
3317 			 * grow this zone if it contains deferred pages.
3318 			 */
3319 			if (static_branch_unlikely(&deferred_pages)) {
3320 				if (_deferred_grow_zone(zone, order))
3321 					goto try_this_zone;
3322 			}
3323 #endif
3324 			/* Checked here to keep the fast path fast */
3325 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3326 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3327 				goto try_this_zone;
3328 
3329 			if (node_reclaim_mode == 0 ||
3330 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3331 				continue;
3332 
3333 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3334 			switch (ret) {
3335 			case NODE_RECLAIM_NOSCAN:
3336 				/* did not scan */
3337 				continue;
3338 			case NODE_RECLAIM_FULL:
3339 				/* scanned but unreclaimable */
3340 				continue;
3341 			default:
3342 				/* did we reclaim enough */
3343 				if (zone_watermark_ok(zone, order, mark,
3344 						ac_classzone_idx(ac), alloc_flags))
3345 					goto try_this_zone;
3346 
3347 				continue;
3348 			}
3349 		}
3350 
3351 try_this_zone:
3352 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3353 				gfp_mask, alloc_flags, ac->migratetype);
3354 		if (page) {
3355 			prep_new_page(page, order, gfp_mask, alloc_flags);
3356 
3357 			/*
3358 			 * If this is a high-order atomic allocation then check
3359 			 * if the pageblock should be reserved for the future
3360 			 */
3361 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3362 				reserve_highatomic_pageblock(page, zone, order);
3363 
3364 			return page;
3365 		} else {
3366 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3367 			/* Try again if zone has deferred pages */
3368 			if (static_branch_unlikely(&deferred_pages)) {
3369 				if (_deferred_grow_zone(zone, order))
3370 					goto try_this_zone;
3371 			}
3372 #endif
3373 		}
3374 	}
3375 
3376 	return NULL;
3377 }
3378 
3379 /*
3380  * Large machines with many possible nodes should not always dump per-node
3381  * meminfo in irq context.
3382  */
3383 static inline bool should_suppress_show_mem(void)
3384 {
3385 	bool ret = false;
3386 
3387 #if NODES_SHIFT > 8
3388 	ret = in_interrupt();
3389 #endif
3390 	return ret;
3391 }
3392 
3393 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3394 {
3395 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3396 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3397 
3398 	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3399 		return;
3400 
3401 	/*
3402 	 * This documents exceptions given to allocations in certain
3403 	 * contexts that are allowed to allocate outside current's set
3404 	 * of allowed nodes.
3405 	 */
3406 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3407 		if (tsk_is_oom_victim(current) ||
3408 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3409 			filter &= ~SHOW_MEM_FILTER_NODES;
3410 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3411 		filter &= ~SHOW_MEM_FILTER_NODES;
3412 
3413 	show_mem(filter, nodemask);
3414 }
3415 
3416 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3417 {
3418 	struct va_format vaf;
3419 	va_list args;
3420 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3421 				      DEFAULT_RATELIMIT_BURST);
3422 
3423 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3424 		return;
3425 
3426 	va_start(args, fmt);
3427 	vaf.fmt = fmt;
3428 	vaf.va = &args;
3429 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3430 			current->comm, &vaf, gfp_mask, &gfp_mask,
3431 			nodemask_pr_args(nodemask));
3432 	va_end(args);
3433 
3434 	cpuset_print_current_mems_allowed();
3435 
3436 	dump_stack();
3437 	warn_alloc_show_mem(gfp_mask, nodemask);
3438 }
3439 
3440 static inline struct page *
3441 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3442 			      unsigned int alloc_flags,
3443 			      const struct alloc_context *ac)
3444 {
3445 	struct page *page;
3446 
3447 	page = get_page_from_freelist(gfp_mask, order,
3448 			alloc_flags|ALLOC_CPUSET, ac);
3449 	/*
3450 	 * fallback to ignore cpuset restriction if our nodes
3451 	 * are depleted
3452 	 */
3453 	if (!page)
3454 		page = get_page_from_freelist(gfp_mask, order,
3455 				alloc_flags, ac);
3456 
3457 	return page;
3458 }
3459 
3460 static inline struct page *
3461 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3462 	const struct alloc_context *ac, unsigned long *did_some_progress)
3463 {
3464 	struct oom_control oc = {
3465 		.zonelist = ac->zonelist,
3466 		.nodemask = ac->nodemask,
3467 		.memcg = NULL,
3468 		.gfp_mask = gfp_mask,
3469 		.order = order,
3470 	};
3471 	struct page *page;
3472 
3473 	*did_some_progress = 0;
3474 
3475 	/*
3476 	 * Acquire the oom lock.  If that fails, somebody else is
3477 	 * making progress for us.
3478 	 */
3479 	if (!mutex_trylock(&oom_lock)) {
3480 		*did_some_progress = 1;
3481 		schedule_timeout_uninterruptible(1);
3482 		return NULL;
3483 	}
3484 
3485 	/*
3486 	 * Go through the zonelist yet one more time, keep very high watermark
3487 	 * here, this is only to catch a parallel oom killing, we must fail if
3488 	 * we're still under heavy pressure. But make sure that this reclaim
3489 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3490 	 * allocation which will never fail due to oom_lock already held.
3491 	 */
3492 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3493 				      ~__GFP_DIRECT_RECLAIM, order,
3494 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3495 	if (page)
3496 		goto out;
3497 
3498 	/* Coredumps can quickly deplete all memory reserves */
3499 	if (current->flags & PF_DUMPCORE)
3500 		goto out;
3501 	/* The OOM killer will not help higher order allocs */
3502 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3503 		goto out;
3504 	/*
3505 	 * We have already exhausted all our reclaim opportunities without any
3506 	 * success so it is time to admit defeat. We will skip the OOM killer
3507 	 * because it is very likely that the caller has a more reasonable
3508 	 * fallback than shooting a random task.
3509 	 */
3510 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3511 		goto out;
3512 	/* The OOM killer does not needlessly kill tasks for lowmem */
3513 	if (ac->high_zoneidx < ZONE_NORMAL)
3514 		goto out;
3515 	if (pm_suspended_storage())
3516 		goto out;
3517 	/*
3518 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3519 	 * other request to make a forward progress.
3520 	 * We are in an unfortunate situation where out_of_memory cannot
3521 	 * do much for this context but let's try it to at least get
3522 	 * access to memory reserved if the current task is killed (see
3523 	 * out_of_memory). Once filesystems are ready to handle allocation
3524 	 * failures more gracefully we should just bail out here.
3525 	 */
3526 
3527 	/* The OOM killer may not free memory on a specific node */
3528 	if (gfp_mask & __GFP_THISNODE)
3529 		goto out;
3530 
3531 	/* Exhausted what can be done so it's blame time */
3532 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3533 		*did_some_progress = 1;
3534 
3535 		/*
3536 		 * Help non-failing allocations by giving them access to memory
3537 		 * reserves
3538 		 */
3539 		if (gfp_mask & __GFP_NOFAIL)
3540 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3541 					ALLOC_NO_WATERMARKS, ac);
3542 	}
3543 out:
3544 	mutex_unlock(&oom_lock);
3545 	return page;
3546 }
3547 
3548 /*
3549  * Maximum number of compaction retries wit a progress before OOM
3550  * killer is consider as the only way to move forward.
3551  */
3552 #define MAX_COMPACT_RETRIES 16
3553 
3554 #ifdef CONFIG_COMPACTION
3555 /* Try memory compaction for high-order allocations before reclaim */
3556 static struct page *
3557 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3558 		unsigned int alloc_flags, const struct alloc_context *ac,
3559 		enum compact_priority prio, enum compact_result *compact_result)
3560 {
3561 	struct page *page;
3562 	unsigned int noreclaim_flag;
3563 
3564 	if (!order)
3565 		return NULL;
3566 
3567 	noreclaim_flag = memalloc_noreclaim_save();
3568 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3569 									prio);
3570 	memalloc_noreclaim_restore(noreclaim_flag);
3571 
3572 	if (*compact_result <= COMPACT_INACTIVE)
3573 		return NULL;
3574 
3575 	/*
3576 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3577 	 * count a compaction stall
3578 	 */
3579 	count_vm_event(COMPACTSTALL);
3580 
3581 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3582 
3583 	if (page) {
3584 		struct zone *zone = page_zone(page);
3585 
3586 		zone->compact_blockskip_flush = false;
3587 		compaction_defer_reset(zone, order, true);
3588 		count_vm_event(COMPACTSUCCESS);
3589 		return page;
3590 	}
3591 
3592 	/*
3593 	 * It's bad if compaction run occurs and fails. The most likely reason
3594 	 * is that pages exist, but not enough to satisfy watermarks.
3595 	 */
3596 	count_vm_event(COMPACTFAIL);
3597 
3598 	cond_resched();
3599 
3600 	return NULL;
3601 }
3602 
3603 static inline bool
3604 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3605 		     enum compact_result compact_result,
3606 		     enum compact_priority *compact_priority,
3607 		     int *compaction_retries)
3608 {
3609 	int max_retries = MAX_COMPACT_RETRIES;
3610 	int min_priority;
3611 	bool ret = false;
3612 	int retries = *compaction_retries;
3613 	enum compact_priority priority = *compact_priority;
3614 
3615 	if (!order)
3616 		return false;
3617 
3618 	if (compaction_made_progress(compact_result))
3619 		(*compaction_retries)++;
3620 
3621 	/*
3622 	 * compaction considers all the zone as desperately out of memory
3623 	 * so it doesn't really make much sense to retry except when the
3624 	 * failure could be caused by insufficient priority
3625 	 */
3626 	if (compaction_failed(compact_result))
3627 		goto check_priority;
3628 
3629 	/*
3630 	 * make sure the compaction wasn't deferred or didn't bail out early
3631 	 * due to locks contention before we declare that we should give up.
3632 	 * But do not retry if the given zonelist is not suitable for
3633 	 * compaction.
3634 	 */
3635 	if (compaction_withdrawn(compact_result)) {
3636 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3637 		goto out;
3638 	}
3639 
3640 	/*
3641 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3642 	 * costly ones because they are de facto nofail and invoke OOM
3643 	 * killer to move on while costly can fail and users are ready
3644 	 * to cope with that. 1/4 retries is rather arbitrary but we
3645 	 * would need much more detailed feedback from compaction to
3646 	 * make a better decision.
3647 	 */
3648 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3649 		max_retries /= 4;
3650 	if (*compaction_retries <= max_retries) {
3651 		ret = true;
3652 		goto out;
3653 	}
3654 
3655 	/*
3656 	 * Make sure there are attempts at the highest priority if we exhausted
3657 	 * all retries or failed at the lower priorities.
3658 	 */
3659 check_priority:
3660 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3661 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3662 
3663 	if (*compact_priority > min_priority) {
3664 		(*compact_priority)--;
3665 		*compaction_retries = 0;
3666 		ret = true;
3667 	}
3668 out:
3669 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3670 	return ret;
3671 }
3672 #else
3673 static inline struct page *
3674 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3675 		unsigned int alloc_flags, const struct alloc_context *ac,
3676 		enum compact_priority prio, enum compact_result *compact_result)
3677 {
3678 	*compact_result = COMPACT_SKIPPED;
3679 	return NULL;
3680 }
3681 
3682 static inline bool
3683 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3684 		     enum compact_result compact_result,
3685 		     enum compact_priority *compact_priority,
3686 		     int *compaction_retries)
3687 {
3688 	struct zone *zone;
3689 	struct zoneref *z;
3690 
3691 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3692 		return false;
3693 
3694 	/*
3695 	 * There are setups with compaction disabled which would prefer to loop
3696 	 * inside the allocator rather than hit the oom killer prematurely.
3697 	 * Let's give them a good hope and keep retrying while the order-0
3698 	 * watermarks are OK.
3699 	 */
3700 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3701 					ac->nodemask) {
3702 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3703 					ac_classzone_idx(ac), alloc_flags))
3704 			return true;
3705 	}
3706 	return false;
3707 }
3708 #endif /* CONFIG_COMPACTION */
3709 
3710 #ifdef CONFIG_LOCKDEP
3711 struct lockdep_map __fs_reclaim_map =
3712 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3713 
3714 static bool __need_fs_reclaim(gfp_t gfp_mask)
3715 {
3716 	gfp_mask = current_gfp_context(gfp_mask);
3717 
3718 	/* no reclaim without waiting on it */
3719 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3720 		return false;
3721 
3722 	/* this guy won't enter reclaim */
3723 	if (current->flags & PF_MEMALLOC)
3724 		return false;
3725 
3726 	/* We're only interested __GFP_FS allocations for now */
3727 	if (!(gfp_mask & __GFP_FS))
3728 		return false;
3729 
3730 	if (gfp_mask & __GFP_NOLOCKDEP)
3731 		return false;
3732 
3733 	return true;
3734 }
3735 
3736 void fs_reclaim_acquire(gfp_t gfp_mask)
3737 {
3738 	if (__need_fs_reclaim(gfp_mask))
3739 		lock_map_acquire(&__fs_reclaim_map);
3740 }
3741 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3742 
3743 void fs_reclaim_release(gfp_t gfp_mask)
3744 {
3745 	if (__need_fs_reclaim(gfp_mask))
3746 		lock_map_release(&__fs_reclaim_map);
3747 }
3748 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3749 #endif
3750 
3751 /* Perform direct synchronous page reclaim */
3752 static int
3753 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3754 					const struct alloc_context *ac)
3755 {
3756 	struct reclaim_state reclaim_state;
3757 	int progress;
3758 	unsigned int noreclaim_flag;
3759 
3760 	cond_resched();
3761 
3762 	/* We now go into synchronous reclaim */
3763 	cpuset_memory_pressure_bump();
3764 	noreclaim_flag = memalloc_noreclaim_save();
3765 	fs_reclaim_acquire(gfp_mask);
3766 	reclaim_state.reclaimed_slab = 0;
3767 	current->reclaim_state = &reclaim_state;
3768 
3769 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3770 								ac->nodemask);
3771 
3772 	current->reclaim_state = NULL;
3773 	fs_reclaim_release(gfp_mask);
3774 	memalloc_noreclaim_restore(noreclaim_flag);
3775 
3776 	cond_resched();
3777 
3778 	return progress;
3779 }
3780 
3781 /* The really slow allocator path where we enter direct reclaim */
3782 static inline struct page *
3783 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3784 		unsigned int alloc_flags, const struct alloc_context *ac,
3785 		unsigned long *did_some_progress)
3786 {
3787 	struct page *page = NULL;
3788 	bool drained = false;
3789 
3790 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3791 	if (unlikely(!(*did_some_progress)))
3792 		return NULL;
3793 
3794 retry:
3795 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3796 
3797 	/*
3798 	 * If an allocation failed after direct reclaim, it could be because
3799 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3800 	 * Shrink them them and try again
3801 	 */
3802 	if (!page && !drained) {
3803 		unreserve_highatomic_pageblock(ac, false);
3804 		drain_all_pages(NULL);
3805 		drained = true;
3806 		goto retry;
3807 	}
3808 
3809 	return page;
3810 }
3811 
3812 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3813 			     const struct alloc_context *ac)
3814 {
3815 	struct zoneref *z;
3816 	struct zone *zone;
3817 	pg_data_t *last_pgdat = NULL;
3818 	enum zone_type high_zoneidx = ac->high_zoneidx;
3819 
3820 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3821 					ac->nodemask) {
3822 		if (last_pgdat != zone->zone_pgdat)
3823 			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3824 		last_pgdat = zone->zone_pgdat;
3825 	}
3826 }
3827 
3828 static inline unsigned int
3829 gfp_to_alloc_flags(gfp_t gfp_mask)
3830 {
3831 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3832 
3833 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3834 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3835 
3836 	/*
3837 	 * The caller may dip into page reserves a bit more if the caller
3838 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3839 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3840 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3841 	 */
3842 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3843 
3844 	if (gfp_mask & __GFP_ATOMIC) {
3845 		/*
3846 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3847 		 * if it can't schedule.
3848 		 */
3849 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3850 			alloc_flags |= ALLOC_HARDER;
3851 		/*
3852 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3853 		 * comment for __cpuset_node_allowed().
3854 		 */
3855 		alloc_flags &= ~ALLOC_CPUSET;
3856 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3857 		alloc_flags |= ALLOC_HARDER;
3858 
3859 	return alloc_flags;
3860 }
3861 
3862 static bool oom_reserves_allowed(struct task_struct *tsk)
3863 {
3864 	if (!tsk_is_oom_victim(tsk))
3865 		return false;
3866 
3867 	/*
3868 	 * !MMU doesn't have oom reaper so give access to memory reserves
3869 	 * only to the thread with TIF_MEMDIE set
3870 	 */
3871 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3872 		return false;
3873 
3874 	return true;
3875 }
3876 
3877 /*
3878  * Distinguish requests which really need access to full memory
3879  * reserves from oom victims which can live with a portion of it
3880  */
3881 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3882 {
3883 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3884 		return 0;
3885 	if (gfp_mask & __GFP_MEMALLOC)
3886 		return ALLOC_NO_WATERMARKS;
3887 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3888 		return ALLOC_NO_WATERMARKS;
3889 	if (!in_interrupt()) {
3890 		if (current->flags & PF_MEMALLOC)
3891 			return ALLOC_NO_WATERMARKS;
3892 		else if (oom_reserves_allowed(current))
3893 			return ALLOC_OOM;
3894 	}
3895 
3896 	return 0;
3897 }
3898 
3899 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3900 {
3901 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3902 }
3903 
3904 /*
3905  * Checks whether it makes sense to retry the reclaim to make a forward progress
3906  * for the given allocation request.
3907  *
3908  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3909  * without success, or when we couldn't even meet the watermark if we
3910  * reclaimed all remaining pages on the LRU lists.
3911  *
3912  * Returns true if a retry is viable or false to enter the oom path.
3913  */
3914 static inline bool
3915 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3916 		     struct alloc_context *ac, int alloc_flags,
3917 		     bool did_some_progress, int *no_progress_loops)
3918 {
3919 	struct zone *zone;
3920 	struct zoneref *z;
3921 
3922 	/*
3923 	 * Costly allocations might have made a progress but this doesn't mean
3924 	 * their order will become available due to high fragmentation so
3925 	 * always increment the no progress counter for them
3926 	 */
3927 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3928 		*no_progress_loops = 0;
3929 	else
3930 		(*no_progress_loops)++;
3931 
3932 	/*
3933 	 * Make sure we converge to OOM if we cannot make any progress
3934 	 * several times in the row.
3935 	 */
3936 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3937 		/* Before OOM, exhaust highatomic_reserve */
3938 		return unreserve_highatomic_pageblock(ac, true);
3939 	}
3940 
3941 	/*
3942 	 * Keep reclaiming pages while there is a chance this will lead
3943 	 * somewhere.  If none of the target zones can satisfy our allocation
3944 	 * request even if all reclaimable pages are considered then we are
3945 	 * screwed and have to go OOM.
3946 	 */
3947 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3948 					ac->nodemask) {
3949 		unsigned long available;
3950 		unsigned long reclaimable;
3951 		unsigned long min_wmark = min_wmark_pages(zone);
3952 		bool wmark;
3953 
3954 		available = reclaimable = zone_reclaimable_pages(zone);
3955 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3956 
3957 		/*
3958 		 * Would the allocation succeed if we reclaimed all
3959 		 * reclaimable pages?
3960 		 */
3961 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3962 				ac_classzone_idx(ac), alloc_flags, available);
3963 		trace_reclaim_retry_zone(z, order, reclaimable,
3964 				available, min_wmark, *no_progress_loops, wmark);
3965 		if (wmark) {
3966 			/*
3967 			 * If we didn't make any progress and have a lot of
3968 			 * dirty + writeback pages then we should wait for
3969 			 * an IO to complete to slow down the reclaim and
3970 			 * prevent from pre mature OOM
3971 			 */
3972 			if (!did_some_progress) {
3973 				unsigned long write_pending;
3974 
3975 				write_pending = zone_page_state_snapshot(zone,
3976 							NR_ZONE_WRITE_PENDING);
3977 
3978 				if (2 * write_pending > reclaimable) {
3979 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3980 					return true;
3981 				}
3982 			}
3983 
3984 			/*
3985 			 * Memory allocation/reclaim might be called from a WQ
3986 			 * context and the current implementation of the WQ
3987 			 * concurrency control doesn't recognize that
3988 			 * a particular WQ is congested if the worker thread is
3989 			 * looping without ever sleeping. Therefore we have to
3990 			 * do a short sleep here rather than calling
3991 			 * cond_resched().
3992 			 */
3993 			if (current->flags & PF_WQ_WORKER)
3994 				schedule_timeout_uninterruptible(1);
3995 			else
3996 				cond_resched();
3997 
3998 			return true;
3999 		}
4000 	}
4001 
4002 	return false;
4003 }
4004 
4005 static inline bool
4006 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4007 {
4008 	/*
4009 	 * It's possible that cpuset's mems_allowed and the nodemask from
4010 	 * mempolicy don't intersect. This should be normally dealt with by
4011 	 * policy_nodemask(), but it's possible to race with cpuset update in
4012 	 * such a way the check therein was true, and then it became false
4013 	 * before we got our cpuset_mems_cookie here.
4014 	 * This assumes that for all allocations, ac->nodemask can come only
4015 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4016 	 * when it does not intersect with the cpuset restrictions) or the
4017 	 * caller can deal with a violated nodemask.
4018 	 */
4019 	if (cpusets_enabled() && ac->nodemask &&
4020 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4021 		ac->nodemask = NULL;
4022 		return true;
4023 	}
4024 
4025 	/*
4026 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4027 	 * possible to race with parallel threads in such a way that our
4028 	 * allocation can fail while the mask is being updated. If we are about
4029 	 * to fail, check if the cpuset changed during allocation and if so,
4030 	 * retry.
4031 	 */
4032 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4033 		return true;
4034 
4035 	return false;
4036 }
4037 
4038 static inline struct page *
4039 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4040 						struct alloc_context *ac)
4041 {
4042 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4043 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4044 	struct page *page = NULL;
4045 	unsigned int alloc_flags;
4046 	unsigned long did_some_progress;
4047 	enum compact_priority compact_priority;
4048 	enum compact_result compact_result;
4049 	int compaction_retries;
4050 	int no_progress_loops;
4051 	unsigned int cpuset_mems_cookie;
4052 	int reserve_flags;
4053 
4054 	/*
4055 	 * In the slowpath, we sanity check order to avoid ever trying to
4056 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4057 	 * be using allocators in order of preference for an area that is
4058 	 * too large.
4059 	 */
4060 	if (order >= MAX_ORDER) {
4061 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4062 		return NULL;
4063 	}
4064 
4065 	/*
4066 	 * We also sanity check to catch abuse of atomic reserves being used by
4067 	 * callers that are not in atomic context.
4068 	 */
4069 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4070 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4071 		gfp_mask &= ~__GFP_ATOMIC;
4072 
4073 retry_cpuset:
4074 	compaction_retries = 0;
4075 	no_progress_loops = 0;
4076 	compact_priority = DEF_COMPACT_PRIORITY;
4077 	cpuset_mems_cookie = read_mems_allowed_begin();
4078 
4079 	/*
4080 	 * The fast path uses conservative alloc_flags to succeed only until
4081 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4082 	 * alloc_flags precisely. So we do that now.
4083 	 */
4084 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4085 
4086 	/*
4087 	 * We need to recalculate the starting point for the zonelist iterator
4088 	 * because we might have used different nodemask in the fast path, or
4089 	 * there was a cpuset modification and we are retrying - otherwise we
4090 	 * could end up iterating over non-eligible zones endlessly.
4091 	 */
4092 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4093 					ac->high_zoneidx, ac->nodemask);
4094 	if (!ac->preferred_zoneref->zone)
4095 		goto nopage;
4096 
4097 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4098 		wake_all_kswapds(order, gfp_mask, ac);
4099 
4100 	/*
4101 	 * The adjusted alloc_flags might result in immediate success, so try
4102 	 * that first
4103 	 */
4104 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4105 	if (page)
4106 		goto got_pg;
4107 
4108 	/*
4109 	 * For costly allocations, try direct compaction first, as it's likely
4110 	 * that we have enough base pages and don't need to reclaim. For non-
4111 	 * movable high-order allocations, do that as well, as compaction will
4112 	 * try prevent permanent fragmentation by migrating from blocks of the
4113 	 * same migratetype.
4114 	 * Don't try this for allocations that are allowed to ignore
4115 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4116 	 */
4117 	if (can_direct_reclaim &&
4118 			(costly_order ||
4119 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4120 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4121 		page = __alloc_pages_direct_compact(gfp_mask, order,
4122 						alloc_flags, ac,
4123 						INIT_COMPACT_PRIORITY,
4124 						&compact_result);
4125 		if (page)
4126 			goto got_pg;
4127 
4128 		/*
4129 		 * Checks for costly allocations with __GFP_NORETRY, which
4130 		 * includes THP page fault allocations
4131 		 */
4132 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4133 			/*
4134 			 * If compaction is deferred for high-order allocations,
4135 			 * it is because sync compaction recently failed. If
4136 			 * this is the case and the caller requested a THP
4137 			 * allocation, we do not want to heavily disrupt the
4138 			 * system, so we fail the allocation instead of entering
4139 			 * direct reclaim.
4140 			 */
4141 			if (compact_result == COMPACT_DEFERRED)
4142 				goto nopage;
4143 
4144 			/*
4145 			 * Looks like reclaim/compaction is worth trying, but
4146 			 * sync compaction could be very expensive, so keep
4147 			 * using async compaction.
4148 			 */
4149 			compact_priority = INIT_COMPACT_PRIORITY;
4150 		}
4151 	}
4152 
4153 retry:
4154 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4155 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4156 		wake_all_kswapds(order, gfp_mask, ac);
4157 
4158 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4159 	if (reserve_flags)
4160 		alloc_flags = reserve_flags;
4161 
4162 	/*
4163 	 * Reset the zonelist iterators if memory policies can be ignored.
4164 	 * These allocations are high priority and system rather than user
4165 	 * orientated.
4166 	 */
4167 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4168 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4169 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4170 					ac->high_zoneidx, ac->nodemask);
4171 	}
4172 
4173 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4174 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4175 	if (page)
4176 		goto got_pg;
4177 
4178 	/* Caller is not willing to reclaim, we can't balance anything */
4179 	if (!can_direct_reclaim)
4180 		goto nopage;
4181 
4182 	/* Avoid recursion of direct reclaim */
4183 	if (current->flags & PF_MEMALLOC)
4184 		goto nopage;
4185 
4186 	/* Try direct reclaim and then allocating */
4187 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4188 							&did_some_progress);
4189 	if (page)
4190 		goto got_pg;
4191 
4192 	/* Try direct compaction and then allocating */
4193 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4194 					compact_priority, &compact_result);
4195 	if (page)
4196 		goto got_pg;
4197 
4198 	/* Do not loop if specifically requested */
4199 	if (gfp_mask & __GFP_NORETRY)
4200 		goto nopage;
4201 
4202 	/*
4203 	 * Do not retry costly high order allocations unless they are
4204 	 * __GFP_RETRY_MAYFAIL
4205 	 */
4206 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4207 		goto nopage;
4208 
4209 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4210 				 did_some_progress > 0, &no_progress_loops))
4211 		goto retry;
4212 
4213 	/*
4214 	 * It doesn't make any sense to retry for the compaction if the order-0
4215 	 * reclaim is not able to make any progress because the current
4216 	 * implementation of the compaction depends on the sufficient amount
4217 	 * of free memory (see __compaction_suitable)
4218 	 */
4219 	if (did_some_progress > 0 &&
4220 			should_compact_retry(ac, order, alloc_flags,
4221 				compact_result, &compact_priority,
4222 				&compaction_retries))
4223 		goto retry;
4224 
4225 
4226 	/* Deal with possible cpuset update races before we start OOM killing */
4227 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4228 		goto retry_cpuset;
4229 
4230 	/* Reclaim has failed us, start killing things */
4231 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4232 	if (page)
4233 		goto got_pg;
4234 
4235 	/* Avoid allocations with no watermarks from looping endlessly */
4236 	if (tsk_is_oom_victim(current) &&
4237 	    (alloc_flags == ALLOC_OOM ||
4238 	     (gfp_mask & __GFP_NOMEMALLOC)))
4239 		goto nopage;
4240 
4241 	/* Retry as long as the OOM killer is making progress */
4242 	if (did_some_progress) {
4243 		no_progress_loops = 0;
4244 		goto retry;
4245 	}
4246 
4247 nopage:
4248 	/* Deal with possible cpuset update races before we fail */
4249 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4250 		goto retry_cpuset;
4251 
4252 	/*
4253 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4254 	 * we always retry
4255 	 */
4256 	if (gfp_mask & __GFP_NOFAIL) {
4257 		/*
4258 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4259 		 * of any new users that actually require GFP_NOWAIT
4260 		 */
4261 		if (WARN_ON_ONCE(!can_direct_reclaim))
4262 			goto fail;
4263 
4264 		/*
4265 		 * PF_MEMALLOC request from this context is rather bizarre
4266 		 * because we cannot reclaim anything and only can loop waiting
4267 		 * for somebody to do a work for us
4268 		 */
4269 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4270 
4271 		/*
4272 		 * non failing costly orders are a hard requirement which we
4273 		 * are not prepared for much so let's warn about these users
4274 		 * so that we can identify them and convert them to something
4275 		 * else.
4276 		 */
4277 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4278 
4279 		/*
4280 		 * Help non-failing allocations by giving them access to memory
4281 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4282 		 * could deplete whole memory reserves which would just make
4283 		 * the situation worse
4284 		 */
4285 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4286 		if (page)
4287 			goto got_pg;
4288 
4289 		cond_resched();
4290 		goto retry;
4291 	}
4292 fail:
4293 	warn_alloc(gfp_mask, ac->nodemask,
4294 			"page allocation failure: order:%u", order);
4295 got_pg:
4296 	return page;
4297 }
4298 
4299 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4300 		int preferred_nid, nodemask_t *nodemask,
4301 		struct alloc_context *ac, gfp_t *alloc_mask,
4302 		unsigned int *alloc_flags)
4303 {
4304 	ac->high_zoneidx = gfp_zone(gfp_mask);
4305 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4306 	ac->nodemask = nodemask;
4307 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4308 
4309 	if (cpusets_enabled()) {
4310 		*alloc_mask |= __GFP_HARDWALL;
4311 		if (!ac->nodemask)
4312 			ac->nodemask = &cpuset_current_mems_allowed;
4313 		else
4314 			*alloc_flags |= ALLOC_CPUSET;
4315 	}
4316 
4317 	fs_reclaim_acquire(gfp_mask);
4318 	fs_reclaim_release(gfp_mask);
4319 
4320 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4321 
4322 	if (should_fail_alloc_page(gfp_mask, order))
4323 		return false;
4324 
4325 	return true;
4326 }
4327 
4328 /* Determine whether to spread dirty pages and what the first usable zone */
4329 static inline void finalise_ac(gfp_t gfp_mask,
4330 		unsigned int order, struct alloc_context *ac)
4331 {
4332 	/* Dirty zone balancing only done in the fast path */
4333 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4334 
4335 	/*
4336 	 * The preferred zone is used for statistics but crucially it is
4337 	 * also used as the starting point for the zonelist iterator. It
4338 	 * may get reset for allocations that ignore memory policies.
4339 	 */
4340 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4341 					ac->high_zoneidx, ac->nodemask);
4342 }
4343 
4344 /*
4345  * This is the 'heart' of the zoned buddy allocator.
4346  */
4347 struct page *
4348 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4349 							nodemask_t *nodemask)
4350 {
4351 	struct page *page;
4352 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4353 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4354 	struct alloc_context ac = { };
4355 
4356 	gfp_mask &= gfp_allowed_mask;
4357 	alloc_mask = gfp_mask;
4358 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4359 		return NULL;
4360 
4361 	finalise_ac(gfp_mask, order, &ac);
4362 
4363 	/* First allocation attempt */
4364 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4365 	if (likely(page))
4366 		goto out;
4367 
4368 	/*
4369 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4370 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4371 	 * from a particular context which has been marked by
4372 	 * memalloc_no{fs,io}_{save,restore}.
4373 	 */
4374 	alloc_mask = current_gfp_context(gfp_mask);
4375 	ac.spread_dirty_pages = false;
4376 
4377 	/*
4378 	 * Restore the original nodemask if it was potentially replaced with
4379 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4380 	 */
4381 	if (unlikely(ac.nodemask != nodemask))
4382 		ac.nodemask = nodemask;
4383 
4384 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4385 
4386 out:
4387 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4388 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4389 		__free_pages(page, order);
4390 		page = NULL;
4391 	}
4392 
4393 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4394 
4395 	return page;
4396 }
4397 EXPORT_SYMBOL(__alloc_pages_nodemask);
4398 
4399 /*
4400  * Common helper functions.
4401  */
4402 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4403 {
4404 	struct page *page;
4405 
4406 	/*
4407 	 * __get_free_pages() returns a virtual address, which cannot represent
4408 	 * a highmem page
4409 	 */
4410 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4411 
4412 	page = alloc_pages(gfp_mask, order);
4413 	if (!page)
4414 		return 0;
4415 	return (unsigned long) page_address(page);
4416 }
4417 EXPORT_SYMBOL(__get_free_pages);
4418 
4419 unsigned long get_zeroed_page(gfp_t gfp_mask)
4420 {
4421 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4422 }
4423 EXPORT_SYMBOL(get_zeroed_page);
4424 
4425 void __free_pages(struct page *page, unsigned int order)
4426 {
4427 	if (put_page_testzero(page)) {
4428 		if (order == 0)
4429 			free_unref_page(page);
4430 		else
4431 			__free_pages_ok(page, order);
4432 	}
4433 }
4434 
4435 EXPORT_SYMBOL(__free_pages);
4436 
4437 void free_pages(unsigned long addr, unsigned int order)
4438 {
4439 	if (addr != 0) {
4440 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4441 		__free_pages(virt_to_page((void *)addr), order);
4442 	}
4443 }
4444 
4445 EXPORT_SYMBOL(free_pages);
4446 
4447 /*
4448  * Page Fragment:
4449  *  An arbitrary-length arbitrary-offset area of memory which resides
4450  *  within a 0 or higher order page.  Multiple fragments within that page
4451  *  are individually refcounted, in the page's reference counter.
4452  *
4453  * The page_frag functions below provide a simple allocation framework for
4454  * page fragments.  This is used by the network stack and network device
4455  * drivers to provide a backing region of memory for use as either an
4456  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4457  */
4458 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4459 					     gfp_t gfp_mask)
4460 {
4461 	struct page *page = NULL;
4462 	gfp_t gfp = gfp_mask;
4463 
4464 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4465 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4466 		    __GFP_NOMEMALLOC;
4467 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4468 				PAGE_FRAG_CACHE_MAX_ORDER);
4469 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4470 #endif
4471 	if (unlikely(!page))
4472 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4473 
4474 	nc->va = page ? page_address(page) : NULL;
4475 
4476 	return page;
4477 }
4478 
4479 void __page_frag_cache_drain(struct page *page, unsigned int count)
4480 {
4481 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4482 
4483 	if (page_ref_sub_and_test(page, count)) {
4484 		unsigned int order = compound_order(page);
4485 
4486 		if (order == 0)
4487 			free_unref_page(page);
4488 		else
4489 			__free_pages_ok(page, order);
4490 	}
4491 }
4492 EXPORT_SYMBOL(__page_frag_cache_drain);
4493 
4494 void *page_frag_alloc(struct page_frag_cache *nc,
4495 		      unsigned int fragsz, gfp_t gfp_mask)
4496 {
4497 	unsigned int size = PAGE_SIZE;
4498 	struct page *page;
4499 	int offset;
4500 
4501 	if (unlikely(!nc->va)) {
4502 refill:
4503 		page = __page_frag_cache_refill(nc, gfp_mask);
4504 		if (!page)
4505 			return NULL;
4506 
4507 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4508 		/* if size can vary use size else just use PAGE_SIZE */
4509 		size = nc->size;
4510 #endif
4511 		/* Even if we own the page, we do not use atomic_set().
4512 		 * This would break get_page_unless_zero() users.
4513 		 */
4514 		page_ref_add(page, size - 1);
4515 
4516 		/* reset page count bias and offset to start of new frag */
4517 		nc->pfmemalloc = page_is_pfmemalloc(page);
4518 		nc->pagecnt_bias = size;
4519 		nc->offset = size;
4520 	}
4521 
4522 	offset = nc->offset - fragsz;
4523 	if (unlikely(offset < 0)) {
4524 		page = virt_to_page(nc->va);
4525 
4526 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4527 			goto refill;
4528 
4529 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4530 		/* if size can vary use size else just use PAGE_SIZE */
4531 		size = nc->size;
4532 #endif
4533 		/* OK, page count is 0, we can safely set it */
4534 		set_page_count(page, size);
4535 
4536 		/* reset page count bias and offset to start of new frag */
4537 		nc->pagecnt_bias = size;
4538 		offset = size - fragsz;
4539 	}
4540 
4541 	nc->pagecnt_bias--;
4542 	nc->offset = offset;
4543 
4544 	return nc->va + offset;
4545 }
4546 EXPORT_SYMBOL(page_frag_alloc);
4547 
4548 /*
4549  * Frees a page fragment allocated out of either a compound or order 0 page.
4550  */
4551 void page_frag_free(void *addr)
4552 {
4553 	struct page *page = virt_to_head_page(addr);
4554 
4555 	if (unlikely(put_page_testzero(page)))
4556 		__free_pages_ok(page, compound_order(page));
4557 }
4558 EXPORT_SYMBOL(page_frag_free);
4559 
4560 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4561 		size_t size)
4562 {
4563 	if (addr) {
4564 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4565 		unsigned long used = addr + PAGE_ALIGN(size);
4566 
4567 		split_page(virt_to_page((void *)addr), order);
4568 		while (used < alloc_end) {
4569 			free_page(used);
4570 			used += PAGE_SIZE;
4571 		}
4572 	}
4573 	return (void *)addr;
4574 }
4575 
4576 /**
4577  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4578  * @size: the number of bytes to allocate
4579  * @gfp_mask: GFP flags for the allocation
4580  *
4581  * This function is similar to alloc_pages(), except that it allocates the
4582  * minimum number of pages to satisfy the request.  alloc_pages() can only
4583  * allocate memory in power-of-two pages.
4584  *
4585  * This function is also limited by MAX_ORDER.
4586  *
4587  * Memory allocated by this function must be released by free_pages_exact().
4588  */
4589 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4590 {
4591 	unsigned int order = get_order(size);
4592 	unsigned long addr;
4593 
4594 	addr = __get_free_pages(gfp_mask, order);
4595 	return make_alloc_exact(addr, order, size);
4596 }
4597 EXPORT_SYMBOL(alloc_pages_exact);
4598 
4599 /**
4600  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4601  *			   pages on a node.
4602  * @nid: the preferred node ID where memory should be allocated
4603  * @size: the number of bytes to allocate
4604  * @gfp_mask: GFP flags for the allocation
4605  *
4606  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4607  * back.
4608  */
4609 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4610 {
4611 	unsigned int order = get_order(size);
4612 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4613 	if (!p)
4614 		return NULL;
4615 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4616 }
4617 
4618 /**
4619  * free_pages_exact - release memory allocated via alloc_pages_exact()
4620  * @virt: the value returned by alloc_pages_exact.
4621  * @size: size of allocation, same value as passed to alloc_pages_exact().
4622  *
4623  * Release the memory allocated by a previous call to alloc_pages_exact.
4624  */
4625 void free_pages_exact(void *virt, size_t size)
4626 {
4627 	unsigned long addr = (unsigned long)virt;
4628 	unsigned long end = addr + PAGE_ALIGN(size);
4629 
4630 	while (addr < end) {
4631 		free_page(addr);
4632 		addr += PAGE_SIZE;
4633 	}
4634 }
4635 EXPORT_SYMBOL(free_pages_exact);
4636 
4637 /**
4638  * nr_free_zone_pages - count number of pages beyond high watermark
4639  * @offset: The zone index of the highest zone
4640  *
4641  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4642  * high watermark within all zones at or below a given zone index.  For each
4643  * zone, the number of pages is calculated as:
4644  *
4645  *     nr_free_zone_pages = managed_pages - high_pages
4646  */
4647 static unsigned long nr_free_zone_pages(int offset)
4648 {
4649 	struct zoneref *z;
4650 	struct zone *zone;
4651 
4652 	/* Just pick one node, since fallback list is circular */
4653 	unsigned long sum = 0;
4654 
4655 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4656 
4657 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4658 		unsigned long size = zone->managed_pages;
4659 		unsigned long high = high_wmark_pages(zone);
4660 		if (size > high)
4661 			sum += size - high;
4662 	}
4663 
4664 	return sum;
4665 }
4666 
4667 /**
4668  * nr_free_buffer_pages - count number of pages beyond high watermark
4669  *
4670  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4671  * watermark within ZONE_DMA and ZONE_NORMAL.
4672  */
4673 unsigned long nr_free_buffer_pages(void)
4674 {
4675 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4676 }
4677 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4678 
4679 /**
4680  * nr_free_pagecache_pages - count number of pages beyond high watermark
4681  *
4682  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4683  * high watermark within all zones.
4684  */
4685 unsigned long nr_free_pagecache_pages(void)
4686 {
4687 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4688 }
4689 
4690 static inline void show_node(struct zone *zone)
4691 {
4692 	if (IS_ENABLED(CONFIG_NUMA))
4693 		printk("Node %d ", zone_to_nid(zone));
4694 }
4695 
4696 long si_mem_available(void)
4697 {
4698 	long available;
4699 	unsigned long pagecache;
4700 	unsigned long wmark_low = 0;
4701 	unsigned long pages[NR_LRU_LISTS];
4702 	struct zone *zone;
4703 	int lru;
4704 
4705 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4706 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4707 
4708 	for_each_zone(zone)
4709 		wmark_low += zone->watermark[WMARK_LOW];
4710 
4711 	/*
4712 	 * Estimate the amount of memory available for userspace allocations,
4713 	 * without causing swapping.
4714 	 */
4715 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4716 
4717 	/*
4718 	 * Not all the page cache can be freed, otherwise the system will
4719 	 * start swapping. Assume at least half of the page cache, or the
4720 	 * low watermark worth of cache, needs to stay.
4721 	 */
4722 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4723 	pagecache -= min(pagecache / 2, wmark_low);
4724 	available += pagecache;
4725 
4726 	/*
4727 	 * Part of the reclaimable slab consists of items that are in use,
4728 	 * and cannot be freed. Cap this estimate at the low watermark.
4729 	 */
4730 	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4731 		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4732 			 wmark_low);
4733 
4734 	/*
4735 	 * Part of the kernel memory, which can be released under memory
4736 	 * pressure.
4737 	 */
4738 	available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4739 		PAGE_SHIFT;
4740 
4741 	if (available < 0)
4742 		available = 0;
4743 	return available;
4744 }
4745 EXPORT_SYMBOL_GPL(si_mem_available);
4746 
4747 void si_meminfo(struct sysinfo *val)
4748 {
4749 	val->totalram = totalram_pages;
4750 	val->sharedram = global_node_page_state(NR_SHMEM);
4751 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
4752 	val->bufferram = nr_blockdev_pages();
4753 	val->totalhigh = totalhigh_pages;
4754 	val->freehigh = nr_free_highpages();
4755 	val->mem_unit = PAGE_SIZE;
4756 }
4757 
4758 EXPORT_SYMBOL(si_meminfo);
4759 
4760 #ifdef CONFIG_NUMA
4761 void si_meminfo_node(struct sysinfo *val, int nid)
4762 {
4763 	int zone_type;		/* needs to be signed */
4764 	unsigned long managed_pages = 0;
4765 	unsigned long managed_highpages = 0;
4766 	unsigned long free_highpages = 0;
4767 	pg_data_t *pgdat = NODE_DATA(nid);
4768 
4769 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4770 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4771 	val->totalram = managed_pages;
4772 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4773 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4774 #ifdef CONFIG_HIGHMEM
4775 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4776 		struct zone *zone = &pgdat->node_zones[zone_type];
4777 
4778 		if (is_highmem(zone)) {
4779 			managed_highpages += zone->managed_pages;
4780 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4781 		}
4782 	}
4783 	val->totalhigh = managed_highpages;
4784 	val->freehigh = free_highpages;
4785 #else
4786 	val->totalhigh = managed_highpages;
4787 	val->freehigh = free_highpages;
4788 #endif
4789 	val->mem_unit = PAGE_SIZE;
4790 }
4791 #endif
4792 
4793 /*
4794  * Determine whether the node should be displayed or not, depending on whether
4795  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4796  */
4797 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4798 {
4799 	if (!(flags & SHOW_MEM_FILTER_NODES))
4800 		return false;
4801 
4802 	/*
4803 	 * no node mask - aka implicit memory numa policy. Do not bother with
4804 	 * the synchronization - read_mems_allowed_begin - because we do not
4805 	 * have to be precise here.
4806 	 */
4807 	if (!nodemask)
4808 		nodemask = &cpuset_current_mems_allowed;
4809 
4810 	return !node_isset(nid, *nodemask);
4811 }
4812 
4813 #define K(x) ((x) << (PAGE_SHIFT-10))
4814 
4815 static void show_migration_types(unsigned char type)
4816 {
4817 	static const char types[MIGRATE_TYPES] = {
4818 		[MIGRATE_UNMOVABLE]	= 'U',
4819 		[MIGRATE_MOVABLE]	= 'M',
4820 		[MIGRATE_RECLAIMABLE]	= 'E',
4821 		[MIGRATE_HIGHATOMIC]	= 'H',
4822 #ifdef CONFIG_CMA
4823 		[MIGRATE_CMA]		= 'C',
4824 #endif
4825 #ifdef CONFIG_MEMORY_ISOLATION
4826 		[MIGRATE_ISOLATE]	= 'I',
4827 #endif
4828 	};
4829 	char tmp[MIGRATE_TYPES + 1];
4830 	char *p = tmp;
4831 	int i;
4832 
4833 	for (i = 0; i < MIGRATE_TYPES; i++) {
4834 		if (type & (1 << i))
4835 			*p++ = types[i];
4836 	}
4837 
4838 	*p = '\0';
4839 	printk(KERN_CONT "(%s) ", tmp);
4840 }
4841 
4842 /*
4843  * Show free area list (used inside shift_scroll-lock stuff)
4844  * We also calculate the percentage fragmentation. We do this by counting the
4845  * memory on each free list with the exception of the first item on the list.
4846  *
4847  * Bits in @filter:
4848  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4849  *   cpuset.
4850  */
4851 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4852 {
4853 	unsigned long free_pcp = 0;
4854 	int cpu;
4855 	struct zone *zone;
4856 	pg_data_t *pgdat;
4857 
4858 	for_each_populated_zone(zone) {
4859 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4860 			continue;
4861 
4862 		for_each_online_cpu(cpu)
4863 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4864 	}
4865 
4866 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4867 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4868 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4869 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4870 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4871 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4872 		global_node_page_state(NR_ACTIVE_ANON),
4873 		global_node_page_state(NR_INACTIVE_ANON),
4874 		global_node_page_state(NR_ISOLATED_ANON),
4875 		global_node_page_state(NR_ACTIVE_FILE),
4876 		global_node_page_state(NR_INACTIVE_FILE),
4877 		global_node_page_state(NR_ISOLATED_FILE),
4878 		global_node_page_state(NR_UNEVICTABLE),
4879 		global_node_page_state(NR_FILE_DIRTY),
4880 		global_node_page_state(NR_WRITEBACK),
4881 		global_node_page_state(NR_UNSTABLE_NFS),
4882 		global_node_page_state(NR_SLAB_RECLAIMABLE),
4883 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4884 		global_node_page_state(NR_FILE_MAPPED),
4885 		global_node_page_state(NR_SHMEM),
4886 		global_zone_page_state(NR_PAGETABLE),
4887 		global_zone_page_state(NR_BOUNCE),
4888 		global_zone_page_state(NR_FREE_PAGES),
4889 		free_pcp,
4890 		global_zone_page_state(NR_FREE_CMA_PAGES));
4891 
4892 	for_each_online_pgdat(pgdat) {
4893 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4894 			continue;
4895 
4896 		printk("Node %d"
4897 			" active_anon:%lukB"
4898 			" inactive_anon:%lukB"
4899 			" active_file:%lukB"
4900 			" inactive_file:%lukB"
4901 			" unevictable:%lukB"
4902 			" isolated(anon):%lukB"
4903 			" isolated(file):%lukB"
4904 			" mapped:%lukB"
4905 			" dirty:%lukB"
4906 			" writeback:%lukB"
4907 			" shmem:%lukB"
4908 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4909 			" shmem_thp: %lukB"
4910 			" shmem_pmdmapped: %lukB"
4911 			" anon_thp: %lukB"
4912 #endif
4913 			" writeback_tmp:%lukB"
4914 			" unstable:%lukB"
4915 			" all_unreclaimable? %s"
4916 			"\n",
4917 			pgdat->node_id,
4918 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4919 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4920 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4921 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4922 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4923 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4924 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4925 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4926 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4927 			K(node_page_state(pgdat, NR_WRITEBACK)),
4928 			K(node_page_state(pgdat, NR_SHMEM)),
4929 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4930 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4931 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4932 					* HPAGE_PMD_NR),
4933 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4934 #endif
4935 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4936 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4937 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4938 				"yes" : "no");
4939 	}
4940 
4941 	for_each_populated_zone(zone) {
4942 		int i;
4943 
4944 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4945 			continue;
4946 
4947 		free_pcp = 0;
4948 		for_each_online_cpu(cpu)
4949 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4950 
4951 		show_node(zone);
4952 		printk(KERN_CONT
4953 			"%s"
4954 			" free:%lukB"
4955 			" min:%lukB"
4956 			" low:%lukB"
4957 			" high:%lukB"
4958 			" active_anon:%lukB"
4959 			" inactive_anon:%lukB"
4960 			" active_file:%lukB"
4961 			" inactive_file:%lukB"
4962 			" unevictable:%lukB"
4963 			" writepending:%lukB"
4964 			" present:%lukB"
4965 			" managed:%lukB"
4966 			" mlocked:%lukB"
4967 			" kernel_stack:%lukB"
4968 			" pagetables:%lukB"
4969 			" bounce:%lukB"
4970 			" free_pcp:%lukB"
4971 			" local_pcp:%ukB"
4972 			" free_cma:%lukB"
4973 			"\n",
4974 			zone->name,
4975 			K(zone_page_state(zone, NR_FREE_PAGES)),
4976 			K(min_wmark_pages(zone)),
4977 			K(low_wmark_pages(zone)),
4978 			K(high_wmark_pages(zone)),
4979 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4980 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4981 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4982 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4983 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4984 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4985 			K(zone->present_pages),
4986 			K(zone->managed_pages),
4987 			K(zone_page_state(zone, NR_MLOCK)),
4988 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4989 			K(zone_page_state(zone, NR_PAGETABLE)),
4990 			K(zone_page_state(zone, NR_BOUNCE)),
4991 			K(free_pcp),
4992 			K(this_cpu_read(zone->pageset->pcp.count)),
4993 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4994 		printk("lowmem_reserve[]:");
4995 		for (i = 0; i < MAX_NR_ZONES; i++)
4996 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4997 		printk(KERN_CONT "\n");
4998 	}
4999 
5000 	for_each_populated_zone(zone) {
5001 		unsigned int order;
5002 		unsigned long nr[MAX_ORDER], flags, total = 0;
5003 		unsigned char types[MAX_ORDER];
5004 
5005 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5006 			continue;
5007 		show_node(zone);
5008 		printk(KERN_CONT "%s: ", zone->name);
5009 
5010 		spin_lock_irqsave(&zone->lock, flags);
5011 		for (order = 0; order < MAX_ORDER; order++) {
5012 			struct free_area *area = &zone->free_area[order];
5013 			int type;
5014 
5015 			nr[order] = area->nr_free;
5016 			total += nr[order] << order;
5017 
5018 			types[order] = 0;
5019 			for (type = 0; type < MIGRATE_TYPES; type++) {
5020 				if (!list_empty(&area->free_list[type]))
5021 					types[order] |= 1 << type;
5022 			}
5023 		}
5024 		spin_unlock_irqrestore(&zone->lock, flags);
5025 		for (order = 0; order < MAX_ORDER; order++) {
5026 			printk(KERN_CONT "%lu*%lukB ",
5027 			       nr[order], K(1UL) << order);
5028 			if (nr[order])
5029 				show_migration_types(types[order]);
5030 		}
5031 		printk(KERN_CONT "= %lukB\n", K(total));
5032 	}
5033 
5034 	hugetlb_show_meminfo();
5035 
5036 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5037 
5038 	show_swap_cache_info();
5039 }
5040 
5041 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5042 {
5043 	zoneref->zone = zone;
5044 	zoneref->zone_idx = zone_idx(zone);
5045 }
5046 
5047 /*
5048  * Builds allocation fallback zone lists.
5049  *
5050  * Add all populated zones of a node to the zonelist.
5051  */
5052 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5053 {
5054 	struct zone *zone;
5055 	enum zone_type zone_type = MAX_NR_ZONES;
5056 	int nr_zones = 0;
5057 
5058 	do {
5059 		zone_type--;
5060 		zone = pgdat->node_zones + zone_type;
5061 		if (managed_zone(zone)) {
5062 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5063 			check_highest_zone(zone_type);
5064 		}
5065 	} while (zone_type);
5066 
5067 	return nr_zones;
5068 }
5069 
5070 #ifdef CONFIG_NUMA
5071 
5072 static int __parse_numa_zonelist_order(char *s)
5073 {
5074 	/*
5075 	 * We used to support different zonlists modes but they turned
5076 	 * out to be just not useful. Let's keep the warning in place
5077 	 * if somebody still use the cmd line parameter so that we do
5078 	 * not fail it silently
5079 	 */
5080 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5081 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5082 		return -EINVAL;
5083 	}
5084 	return 0;
5085 }
5086 
5087 static __init int setup_numa_zonelist_order(char *s)
5088 {
5089 	if (!s)
5090 		return 0;
5091 
5092 	return __parse_numa_zonelist_order(s);
5093 }
5094 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5095 
5096 char numa_zonelist_order[] = "Node";
5097 
5098 /*
5099  * sysctl handler for numa_zonelist_order
5100  */
5101 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5102 		void __user *buffer, size_t *length,
5103 		loff_t *ppos)
5104 {
5105 	char *str;
5106 	int ret;
5107 
5108 	if (!write)
5109 		return proc_dostring(table, write, buffer, length, ppos);
5110 	str = memdup_user_nul(buffer, 16);
5111 	if (IS_ERR(str))
5112 		return PTR_ERR(str);
5113 
5114 	ret = __parse_numa_zonelist_order(str);
5115 	kfree(str);
5116 	return ret;
5117 }
5118 
5119 
5120 #define MAX_NODE_LOAD (nr_online_nodes)
5121 static int node_load[MAX_NUMNODES];
5122 
5123 /**
5124  * find_next_best_node - find the next node that should appear in a given node's fallback list
5125  * @node: node whose fallback list we're appending
5126  * @used_node_mask: nodemask_t of already used nodes
5127  *
5128  * We use a number of factors to determine which is the next node that should
5129  * appear on a given node's fallback list.  The node should not have appeared
5130  * already in @node's fallback list, and it should be the next closest node
5131  * according to the distance array (which contains arbitrary distance values
5132  * from each node to each node in the system), and should also prefer nodes
5133  * with no CPUs, since presumably they'll have very little allocation pressure
5134  * on them otherwise.
5135  * It returns -1 if no node is found.
5136  */
5137 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5138 {
5139 	int n, val;
5140 	int min_val = INT_MAX;
5141 	int best_node = NUMA_NO_NODE;
5142 	const struct cpumask *tmp = cpumask_of_node(0);
5143 
5144 	/* Use the local node if we haven't already */
5145 	if (!node_isset(node, *used_node_mask)) {
5146 		node_set(node, *used_node_mask);
5147 		return node;
5148 	}
5149 
5150 	for_each_node_state(n, N_MEMORY) {
5151 
5152 		/* Don't want a node to appear more than once */
5153 		if (node_isset(n, *used_node_mask))
5154 			continue;
5155 
5156 		/* Use the distance array to find the distance */
5157 		val = node_distance(node, n);
5158 
5159 		/* Penalize nodes under us ("prefer the next node") */
5160 		val += (n < node);
5161 
5162 		/* Give preference to headless and unused nodes */
5163 		tmp = cpumask_of_node(n);
5164 		if (!cpumask_empty(tmp))
5165 			val += PENALTY_FOR_NODE_WITH_CPUS;
5166 
5167 		/* Slight preference for less loaded node */
5168 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5169 		val += node_load[n];
5170 
5171 		if (val < min_val) {
5172 			min_val = val;
5173 			best_node = n;
5174 		}
5175 	}
5176 
5177 	if (best_node >= 0)
5178 		node_set(best_node, *used_node_mask);
5179 
5180 	return best_node;
5181 }
5182 
5183 
5184 /*
5185  * Build zonelists ordered by node and zones within node.
5186  * This results in maximum locality--normal zone overflows into local
5187  * DMA zone, if any--but risks exhausting DMA zone.
5188  */
5189 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5190 		unsigned nr_nodes)
5191 {
5192 	struct zoneref *zonerefs;
5193 	int i;
5194 
5195 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5196 
5197 	for (i = 0; i < nr_nodes; i++) {
5198 		int nr_zones;
5199 
5200 		pg_data_t *node = NODE_DATA(node_order[i]);
5201 
5202 		nr_zones = build_zonerefs_node(node, zonerefs);
5203 		zonerefs += nr_zones;
5204 	}
5205 	zonerefs->zone = NULL;
5206 	zonerefs->zone_idx = 0;
5207 }
5208 
5209 /*
5210  * Build gfp_thisnode zonelists
5211  */
5212 static void build_thisnode_zonelists(pg_data_t *pgdat)
5213 {
5214 	struct zoneref *zonerefs;
5215 	int nr_zones;
5216 
5217 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5218 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5219 	zonerefs += nr_zones;
5220 	zonerefs->zone = NULL;
5221 	zonerefs->zone_idx = 0;
5222 }
5223 
5224 /*
5225  * Build zonelists ordered by zone and nodes within zones.
5226  * This results in conserving DMA zone[s] until all Normal memory is
5227  * exhausted, but results in overflowing to remote node while memory
5228  * may still exist in local DMA zone.
5229  */
5230 
5231 static void build_zonelists(pg_data_t *pgdat)
5232 {
5233 	static int node_order[MAX_NUMNODES];
5234 	int node, load, nr_nodes = 0;
5235 	nodemask_t used_mask;
5236 	int local_node, prev_node;
5237 
5238 	/* NUMA-aware ordering of nodes */
5239 	local_node = pgdat->node_id;
5240 	load = nr_online_nodes;
5241 	prev_node = local_node;
5242 	nodes_clear(used_mask);
5243 
5244 	memset(node_order, 0, sizeof(node_order));
5245 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5246 		/*
5247 		 * We don't want to pressure a particular node.
5248 		 * So adding penalty to the first node in same
5249 		 * distance group to make it round-robin.
5250 		 */
5251 		if (node_distance(local_node, node) !=
5252 		    node_distance(local_node, prev_node))
5253 			node_load[node] = load;
5254 
5255 		node_order[nr_nodes++] = node;
5256 		prev_node = node;
5257 		load--;
5258 	}
5259 
5260 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5261 	build_thisnode_zonelists(pgdat);
5262 }
5263 
5264 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5265 /*
5266  * Return node id of node used for "local" allocations.
5267  * I.e., first node id of first zone in arg node's generic zonelist.
5268  * Used for initializing percpu 'numa_mem', which is used primarily
5269  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5270  */
5271 int local_memory_node(int node)
5272 {
5273 	struct zoneref *z;
5274 
5275 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5276 				   gfp_zone(GFP_KERNEL),
5277 				   NULL);
5278 	return z->zone->node;
5279 }
5280 #endif
5281 
5282 static void setup_min_unmapped_ratio(void);
5283 static void setup_min_slab_ratio(void);
5284 #else	/* CONFIG_NUMA */
5285 
5286 static void build_zonelists(pg_data_t *pgdat)
5287 {
5288 	int node, local_node;
5289 	struct zoneref *zonerefs;
5290 	int nr_zones;
5291 
5292 	local_node = pgdat->node_id;
5293 
5294 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5295 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5296 	zonerefs += nr_zones;
5297 
5298 	/*
5299 	 * Now we build the zonelist so that it contains the zones
5300 	 * of all the other nodes.
5301 	 * We don't want to pressure a particular node, so when
5302 	 * building the zones for node N, we make sure that the
5303 	 * zones coming right after the local ones are those from
5304 	 * node N+1 (modulo N)
5305 	 */
5306 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5307 		if (!node_online(node))
5308 			continue;
5309 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5310 		zonerefs += nr_zones;
5311 	}
5312 	for (node = 0; node < local_node; node++) {
5313 		if (!node_online(node))
5314 			continue;
5315 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5316 		zonerefs += nr_zones;
5317 	}
5318 
5319 	zonerefs->zone = NULL;
5320 	zonerefs->zone_idx = 0;
5321 }
5322 
5323 #endif	/* CONFIG_NUMA */
5324 
5325 /*
5326  * Boot pageset table. One per cpu which is going to be used for all
5327  * zones and all nodes. The parameters will be set in such a way
5328  * that an item put on a list will immediately be handed over to
5329  * the buddy list. This is safe since pageset manipulation is done
5330  * with interrupts disabled.
5331  *
5332  * The boot_pagesets must be kept even after bootup is complete for
5333  * unused processors and/or zones. They do play a role for bootstrapping
5334  * hotplugged processors.
5335  *
5336  * zoneinfo_show() and maybe other functions do
5337  * not check if the processor is online before following the pageset pointer.
5338  * Other parts of the kernel may not check if the zone is available.
5339  */
5340 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5341 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5342 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5343 
5344 static void __build_all_zonelists(void *data)
5345 {
5346 	int nid;
5347 	int __maybe_unused cpu;
5348 	pg_data_t *self = data;
5349 	static DEFINE_SPINLOCK(lock);
5350 
5351 	spin_lock(&lock);
5352 
5353 #ifdef CONFIG_NUMA
5354 	memset(node_load, 0, sizeof(node_load));
5355 #endif
5356 
5357 	/*
5358 	 * This node is hotadded and no memory is yet present.   So just
5359 	 * building zonelists is fine - no need to touch other nodes.
5360 	 */
5361 	if (self && !node_online(self->node_id)) {
5362 		build_zonelists(self);
5363 	} else {
5364 		for_each_online_node(nid) {
5365 			pg_data_t *pgdat = NODE_DATA(nid);
5366 
5367 			build_zonelists(pgdat);
5368 		}
5369 
5370 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5371 		/*
5372 		 * We now know the "local memory node" for each node--
5373 		 * i.e., the node of the first zone in the generic zonelist.
5374 		 * Set up numa_mem percpu variable for on-line cpus.  During
5375 		 * boot, only the boot cpu should be on-line;  we'll init the
5376 		 * secondary cpus' numa_mem as they come on-line.  During
5377 		 * node/memory hotplug, we'll fixup all on-line cpus.
5378 		 */
5379 		for_each_online_cpu(cpu)
5380 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5381 #endif
5382 	}
5383 
5384 	spin_unlock(&lock);
5385 }
5386 
5387 static noinline void __init
5388 build_all_zonelists_init(void)
5389 {
5390 	int cpu;
5391 
5392 	__build_all_zonelists(NULL);
5393 
5394 	/*
5395 	 * Initialize the boot_pagesets that are going to be used
5396 	 * for bootstrapping processors. The real pagesets for
5397 	 * each zone will be allocated later when the per cpu
5398 	 * allocator is available.
5399 	 *
5400 	 * boot_pagesets are used also for bootstrapping offline
5401 	 * cpus if the system is already booted because the pagesets
5402 	 * are needed to initialize allocators on a specific cpu too.
5403 	 * F.e. the percpu allocator needs the page allocator which
5404 	 * needs the percpu allocator in order to allocate its pagesets
5405 	 * (a chicken-egg dilemma).
5406 	 */
5407 	for_each_possible_cpu(cpu)
5408 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5409 
5410 	mminit_verify_zonelist();
5411 	cpuset_init_current_mems_allowed();
5412 }
5413 
5414 /*
5415  * unless system_state == SYSTEM_BOOTING.
5416  *
5417  * __ref due to call of __init annotated helper build_all_zonelists_init
5418  * [protected by SYSTEM_BOOTING].
5419  */
5420 void __ref build_all_zonelists(pg_data_t *pgdat)
5421 {
5422 	if (system_state == SYSTEM_BOOTING) {
5423 		build_all_zonelists_init();
5424 	} else {
5425 		__build_all_zonelists(pgdat);
5426 		/* cpuset refresh routine should be here */
5427 	}
5428 	vm_total_pages = nr_free_pagecache_pages();
5429 	/*
5430 	 * Disable grouping by mobility if the number of pages in the
5431 	 * system is too low to allow the mechanism to work. It would be
5432 	 * more accurate, but expensive to check per-zone. This check is
5433 	 * made on memory-hotadd so a system can start with mobility
5434 	 * disabled and enable it later
5435 	 */
5436 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5437 		page_group_by_mobility_disabled = 1;
5438 	else
5439 		page_group_by_mobility_disabled = 0;
5440 
5441 	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
5442 		nr_online_nodes,
5443 		page_group_by_mobility_disabled ? "off" : "on",
5444 		vm_total_pages);
5445 #ifdef CONFIG_NUMA
5446 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5447 #endif
5448 }
5449 
5450 /*
5451  * Initially all pages are reserved - free ones are freed
5452  * up by free_all_bootmem() once the early boot process is
5453  * done. Non-atomic initialization, single-pass.
5454  */
5455 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5456 		unsigned long start_pfn, enum memmap_context context,
5457 		struct vmem_altmap *altmap)
5458 {
5459 	unsigned long end_pfn = start_pfn + size;
5460 	pg_data_t *pgdat = NODE_DATA(nid);
5461 	unsigned long pfn;
5462 	unsigned long nr_initialised = 0;
5463 	struct page *page;
5464 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5465 	struct memblock_region *r = NULL, *tmp;
5466 #endif
5467 
5468 	if (highest_memmap_pfn < end_pfn - 1)
5469 		highest_memmap_pfn = end_pfn - 1;
5470 
5471 	/*
5472 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5473 	 * memory
5474 	 */
5475 	if (altmap && start_pfn == altmap->base_pfn)
5476 		start_pfn += altmap->reserve;
5477 
5478 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5479 		/*
5480 		 * There can be holes in boot-time mem_map[]s handed to this
5481 		 * function.  They do not exist on hotplugged memory.
5482 		 */
5483 		if (context != MEMMAP_EARLY)
5484 			goto not_early;
5485 
5486 		if (!early_pfn_valid(pfn))
5487 			continue;
5488 		if (!early_pfn_in_nid(pfn, nid))
5489 			continue;
5490 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5491 			break;
5492 
5493 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5494 		/*
5495 		 * Check given memblock attribute by firmware which can affect
5496 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5497 		 * mirrored, it's an overlapped memmap init. skip it.
5498 		 */
5499 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5500 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5501 				for_each_memblock(memory, tmp)
5502 					if (pfn < memblock_region_memory_end_pfn(tmp))
5503 						break;
5504 				r = tmp;
5505 			}
5506 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5507 			    memblock_is_mirror(r)) {
5508 				/* already initialized as NORMAL */
5509 				pfn = memblock_region_memory_end_pfn(r);
5510 				continue;
5511 			}
5512 		}
5513 #endif
5514 
5515 not_early:
5516 		page = pfn_to_page(pfn);
5517 		__init_single_page(page, pfn, zone, nid);
5518 		if (context == MEMMAP_HOTPLUG)
5519 			SetPageReserved(page);
5520 
5521 		/*
5522 		 * Mark the block movable so that blocks are reserved for
5523 		 * movable at startup. This will force kernel allocations
5524 		 * to reserve their blocks rather than leaking throughout
5525 		 * the address space during boot when many long-lived
5526 		 * kernel allocations are made.
5527 		 *
5528 		 * bitmap is created for zone's valid pfn range. but memmap
5529 		 * can be created for invalid pages (for alignment)
5530 		 * check here not to call set_pageblock_migratetype() against
5531 		 * pfn out of zone.
5532 		 *
5533 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5534 		 * because this is done early in sparse_add_one_section
5535 		 */
5536 		if (!(pfn & (pageblock_nr_pages - 1))) {
5537 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5538 			cond_resched();
5539 		}
5540 	}
5541 }
5542 
5543 static void __meminit zone_init_free_lists(struct zone *zone)
5544 {
5545 	unsigned int order, t;
5546 	for_each_migratetype_order(order, t) {
5547 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5548 		zone->free_area[order].nr_free = 0;
5549 	}
5550 }
5551 
5552 #ifndef __HAVE_ARCH_MEMMAP_INIT
5553 #define memmap_init(size, nid, zone, start_pfn) \
5554 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
5555 #endif
5556 
5557 static int zone_batchsize(struct zone *zone)
5558 {
5559 #ifdef CONFIG_MMU
5560 	int batch;
5561 
5562 	/*
5563 	 * The per-cpu-pages pools are set to around 1000th of the
5564 	 * size of the zone.  But no more than 1/2 of a meg.
5565 	 *
5566 	 * OK, so we don't know how big the cache is.  So guess.
5567 	 */
5568 	batch = zone->managed_pages / 1024;
5569 	if (batch * PAGE_SIZE > 512 * 1024)
5570 		batch = (512 * 1024) / PAGE_SIZE;
5571 	batch /= 4;		/* We effectively *= 4 below */
5572 	if (batch < 1)
5573 		batch = 1;
5574 
5575 	/*
5576 	 * Clamp the batch to a 2^n - 1 value. Having a power
5577 	 * of 2 value was found to be more likely to have
5578 	 * suboptimal cache aliasing properties in some cases.
5579 	 *
5580 	 * For example if 2 tasks are alternately allocating
5581 	 * batches of pages, one task can end up with a lot
5582 	 * of pages of one half of the possible page colors
5583 	 * and the other with pages of the other colors.
5584 	 */
5585 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5586 
5587 	return batch;
5588 
5589 #else
5590 	/* The deferral and batching of frees should be suppressed under NOMMU
5591 	 * conditions.
5592 	 *
5593 	 * The problem is that NOMMU needs to be able to allocate large chunks
5594 	 * of contiguous memory as there's no hardware page translation to
5595 	 * assemble apparent contiguous memory from discontiguous pages.
5596 	 *
5597 	 * Queueing large contiguous runs of pages for batching, however,
5598 	 * causes the pages to actually be freed in smaller chunks.  As there
5599 	 * can be a significant delay between the individual batches being
5600 	 * recycled, this leads to the once large chunks of space being
5601 	 * fragmented and becoming unavailable for high-order allocations.
5602 	 */
5603 	return 0;
5604 #endif
5605 }
5606 
5607 /*
5608  * pcp->high and pcp->batch values are related and dependent on one another:
5609  * ->batch must never be higher then ->high.
5610  * The following function updates them in a safe manner without read side
5611  * locking.
5612  *
5613  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5614  * those fields changing asynchronously (acording the the above rule).
5615  *
5616  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5617  * outside of boot time (or some other assurance that no concurrent updaters
5618  * exist).
5619  */
5620 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5621 		unsigned long batch)
5622 {
5623        /* start with a fail safe value for batch */
5624 	pcp->batch = 1;
5625 	smp_wmb();
5626 
5627        /* Update high, then batch, in order */
5628 	pcp->high = high;
5629 	smp_wmb();
5630 
5631 	pcp->batch = batch;
5632 }
5633 
5634 /* a companion to pageset_set_high() */
5635 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5636 {
5637 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5638 }
5639 
5640 static void pageset_init(struct per_cpu_pageset *p)
5641 {
5642 	struct per_cpu_pages *pcp;
5643 	int migratetype;
5644 
5645 	memset(p, 0, sizeof(*p));
5646 
5647 	pcp = &p->pcp;
5648 	pcp->count = 0;
5649 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5650 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5651 }
5652 
5653 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5654 {
5655 	pageset_init(p);
5656 	pageset_set_batch(p, batch);
5657 }
5658 
5659 /*
5660  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5661  * to the value high for the pageset p.
5662  */
5663 static void pageset_set_high(struct per_cpu_pageset *p,
5664 				unsigned long high)
5665 {
5666 	unsigned long batch = max(1UL, high / 4);
5667 	if ((high / 4) > (PAGE_SHIFT * 8))
5668 		batch = PAGE_SHIFT * 8;
5669 
5670 	pageset_update(&p->pcp, high, batch);
5671 }
5672 
5673 static void pageset_set_high_and_batch(struct zone *zone,
5674 				       struct per_cpu_pageset *pcp)
5675 {
5676 	if (percpu_pagelist_fraction)
5677 		pageset_set_high(pcp,
5678 			(zone->managed_pages /
5679 				percpu_pagelist_fraction));
5680 	else
5681 		pageset_set_batch(pcp, zone_batchsize(zone));
5682 }
5683 
5684 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5685 {
5686 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5687 
5688 	pageset_init(pcp);
5689 	pageset_set_high_and_batch(zone, pcp);
5690 }
5691 
5692 void __meminit setup_zone_pageset(struct zone *zone)
5693 {
5694 	int cpu;
5695 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5696 	for_each_possible_cpu(cpu)
5697 		zone_pageset_init(zone, cpu);
5698 }
5699 
5700 /*
5701  * Allocate per cpu pagesets and initialize them.
5702  * Before this call only boot pagesets were available.
5703  */
5704 void __init setup_per_cpu_pageset(void)
5705 {
5706 	struct pglist_data *pgdat;
5707 	struct zone *zone;
5708 
5709 	for_each_populated_zone(zone)
5710 		setup_zone_pageset(zone);
5711 
5712 	for_each_online_pgdat(pgdat)
5713 		pgdat->per_cpu_nodestats =
5714 			alloc_percpu(struct per_cpu_nodestat);
5715 }
5716 
5717 static __meminit void zone_pcp_init(struct zone *zone)
5718 {
5719 	/*
5720 	 * per cpu subsystem is not up at this point. The following code
5721 	 * relies on the ability of the linker to provide the
5722 	 * offset of a (static) per cpu variable into the per cpu area.
5723 	 */
5724 	zone->pageset = &boot_pageset;
5725 
5726 	if (populated_zone(zone))
5727 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5728 			zone->name, zone->present_pages,
5729 					 zone_batchsize(zone));
5730 }
5731 
5732 void __meminit init_currently_empty_zone(struct zone *zone,
5733 					unsigned long zone_start_pfn,
5734 					unsigned long size)
5735 {
5736 	struct pglist_data *pgdat = zone->zone_pgdat;
5737 
5738 	pgdat->nr_zones = zone_idx(zone) + 1;
5739 
5740 	zone->zone_start_pfn = zone_start_pfn;
5741 
5742 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5743 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5744 			pgdat->node_id,
5745 			(unsigned long)zone_idx(zone),
5746 			zone_start_pfn, (zone_start_pfn + size));
5747 
5748 	zone_init_free_lists(zone);
5749 	zone->initialized = 1;
5750 }
5751 
5752 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5753 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5754 
5755 /*
5756  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5757  */
5758 int __meminit __early_pfn_to_nid(unsigned long pfn,
5759 					struct mminit_pfnnid_cache *state)
5760 {
5761 	unsigned long start_pfn, end_pfn;
5762 	int nid;
5763 
5764 	if (state->last_start <= pfn && pfn < state->last_end)
5765 		return state->last_nid;
5766 
5767 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5768 	if (nid != -1) {
5769 		state->last_start = start_pfn;
5770 		state->last_end = end_pfn;
5771 		state->last_nid = nid;
5772 	}
5773 
5774 	return nid;
5775 }
5776 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5777 
5778 /**
5779  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5780  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5781  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5782  *
5783  * If an architecture guarantees that all ranges registered contain no holes
5784  * and may be freed, this this function may be used instead of calling
5785  * memblock_free_early_nid() manually.
5786  */
5787 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5788 {
5789 	unsigned long start_pfn, end_pfn;
5790 	int i, this_nid;
5791 
5792 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5793 		start_pfn = min(start_pfn, max_low_pfn);
5794 		end_pfn = min(end_pfn, max_low_pfn);
5795 
5796 		if (start_pfn < end_pfn)
5797 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5798 					(end_pfn - start_pfn) << PAGE_SHIFT,
5799 					this_nid);
5800 	}
5801 }
5802 
5803 /**
5804  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5805  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5806  *
5807  * If an architecture guarantees that all ranges registered contain no holes and may
5808  * be freed, this function may be used instead of calling memory_present() manually.
5809  */
5810 void __init sparse_memory_present_with_active_regions(int nid)
5811 {
5812 	unsigned long start_pfn, end_pfn;
5813 	int i, this_nid;
5814 
5815 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5816 		memory_present(this_nid, start_pfn, end_pfn);
5817 }
5818 
5819 /**
5820  * get_pfn_range_for_nid - Return the start and end page frames for a node
5821  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5822  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5823  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5824  *
5825  * It returns the start and end page frame of a node based on information
5826  * provided by memblock_set_node(). If called for a node
5827  * with no available memory, a warning is printed and the start and end
5828  * PFNs will be 0.
5829  */
5830 void __meminit get_pfn_range_for_nid(unsigned int nid,
5831 			unsigned long *start_pfn, unsigned long *end_pfn)
5832 {
5833 	unsigned long this_start_pfn, this_end_pfn;
5834 	int i;
5835 
5836 	*start_pfn = -1UL;
5837 	*end_pfn = 0;
5838 
5839 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5840 		*start_pfn = min(*start_pfn, this_start_pfn);
5841 		*end_pfn = max(*end_pfn, this_end_pfn);
5842 	}
5843 
5844 	if (*start_pfn == -1UL)
5845 		*start_pfn = 0;
5846 }
5847 
5848 /*
5849  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5850  * assumption is made that zones within a node are ordered in monotonic
5851  * increasing memory addresses so that the "highest" populated zone is used
5852  */
5853 static void __init find_usable_zone_for_movable(void)
5854 {
5855 	int zone_index;
5856 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5857 		if (zone_index == ZONE_MOVABLE)
5858 			continue;
5859 
5860 		if (arch_zone_highest_possible_pfn[zone_index] >
5861 				arch_zone_lowest_possible_pfn[zone_index])
5862 			break;
5863 	}
5864 
5865 	VM_BUG_ON(zone_index == -1);
5866 	movable_zone = zone_index;
5867 }
5868 
5869 /*
5870  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5871  * because it is sized independent of architecture. Unlike the other zones,
5872  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5873  * in each node depending on the size of each node and how evenly kernelcore
5874  * is distributed. This helper function adjusts the zone ranges
5875  * provided by the architecture for a given node by using the end of the
5876  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5877  * zones within a node are in order of monotonic increases memory addresses
5878  */
5879 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5880 					unsigned long zone_type,
5881 					unsigned long node_start_pfn,
5882 					unsigned long node_end_pfn,
5883 					unsigned long *zone_start_pfn,
5884 					unsigned long *zone_end_pfn)
5885 {
5886 	/* Only adjust if ZONE_MOVABLE is on this node */
5887 	if (zone_movable_pfn[nid]) {
5888 		/* Size ZONE_MOVABLE */
5889 		if (zone_type == ZONE_MOVABLE) {
5890 			*zone_start_pfn = zone_movable_pfn[nid];
5891 			*zone_end_pfn = min(node_end_pfn,
5892 				arch_zone_highest_possible_pfn[movable_zone]);
5893 
5894 		/* Adjust for ZONE_MOVABLE starting within this range */
5895 		} else if (!mirrored_kernelcore &&
5896 			*zone_start_pfn < zone_movable_pfn[nid] &&
5897 			*zone_end_pfn > zone_movable_pfn[nid]) {
5898 			*zone_end_pfn = zone_movable_pfn[nid];
5899 
5900 		/* Check if this whole range is within ZONE_MOVABLE */
5901 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5902 			*zone_start_pfn = *zone_end_pfn;
5903 	}
5904 }
5905 
5906 /*
5907  * Return the number of pages a zone spans in a node, including holes
5908  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5909  */
5910 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5911 					unsigned long zone_type,
5912 					unsigned long node_start_pfn,
5913 					unsigned long node_end_pfn,
5914 					unsigned long *zone_start_pfn,
5915 					unsigned long *zone_end_pfn,
5916 					unsigned long *ignored)
5917 {
5918 	/* When hotadd a new node from cpu_up(), the node should be empty */
5919 	if (!node_start_pfn && !node_end_pfn)
5920 		return 0;
5921 
5922 	/* Get the start and end of the zone */
5923 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5924 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5925 	adjust_zone_range_for_zone_movable(nid, zone_type,
5926 				node_start_pfn, node_end_pfn,
5927 				zone_start_pfn, zone_end_pfn);
5928 
5929 	/* Check that this node has pages within the zone's required range */
5930 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5931 		return 0;
5932 
5933 	/* Move the zone boundaries inside the node if necessary */
5934 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5935 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5936 
5937 	/* Return the spanned pages */
5938 	return *zone_end_pfn - *zone_start_pfn;
5939 }
5940 
5941 /*
5942  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5943  * then all holes in the requested range will be accounted for.
5944  */
5945 unsigned long __meminit __absent_pages_in_range(int nid,
5946 				unsigned long range_start_pfn,
5947 				unsigned long range_end_pfn)
5948 {
5949 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5950 	unsigned long start_pfn, end_pfn;
5951 	int i;
5952 
5953 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5954 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5955 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5956 		nr_absent -= end_pfn - start_pfn;
5957 	}
5958 	return nr_absent;
5959 }
5960 
5961 /**
5962  * absent_pages_in_range - Return number of page frames in holes within a range
5963  * @start_pfn: The start PFN to start searching for holes
5964  * @end_pfn: The end PFN to stop searching for holes
5965  *
5966  * It returns the number of pages frames in memory holes within a range.
5967  */
5968 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5969 							unsigned long end_pfn)
5970 {
5971 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5972 }
5973 
5974 /* Return the number of page frames in holes in a zone on a node */
5975 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5976 					unsigned long zone_type,
5977 					unsigned long node_start_pfn,
5978 					unsigned long node_end_pfn,
5979 					unsigned long *ignored)
5980 {
5981 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5982 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5983 	unsigned long zone_start_pfn, zone_end_pfn;
5984 	unsigned long nr_absent;
5985 
5986 	/* When hotadd a new node from cpu_up(), the node should be empty */
5987 	if (!node_start_pfn && !node_end_pfn)
5988 		return 0;
5989 
5990 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5991 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5992 
5993 	adjust_zone_range_for_zone_movable(nid, zone_type,
5994 			node_start_pfn, node_end_pfn,
5995 			&zone_start_pfn, &zone_end_pfn);
5996 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5997 
5998 	/*
5999 	 * ZONE_MOVABLE handling.
6000 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6001 	 * and vice versa.
6002 	 */
6003 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6004 		unsigned long start_pfn, end_pfn;
6005 		struct memblock_region *r;
6006 
6007 		for_each_memblock(memory, r) {
6008 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6009 					  zone_start_pfn, zone_end_pfn);
6010 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6011 					zone_start_pfn, zone_end_pfn);
6012 
6013 			if (zone_type == ZONE_MOVABLE &&
6014 			    memblock_is_mirror(r))
6015 				nr_absent += end_pfn - start_pfn;
6016 
6017 			if (zone_type == ZONE_NORMAL &&
6018 			    !memblock_is_mirror(r))
6019 				nr_absent += end_pfn - start_pfn;
6020 		}
6021 	}
6022 
6023 	return nr_absent;
6024 }
6025 
6026 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6027 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6028 					unsigned long zone_type,
6029 					unsigned long node_start_pfn,
6030 					unsigned long node_end_pfn,
6031 					unsigned long *zone_start_pfn,
6032 					unsigned long *zone_end_pfn,
6033 					unsigned long *zones_size)
6034 {
6035 	unsigned int zone;
6036 
6037 	*zone_start_pfn = node_start_pfn;
6038 	for (zone = 0; zone < zone_type; zone++)
6039 		*zone_start_pfn += zones_size[zone];
6040 
6041 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6042 
6043 	return zones_size[zone_type];
6044 }
6045 
6046 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6047 						unsigned long zone_type,
6048 						unsigned long node_start_pfn,
6049 						unsigned long node_end_pfn,
6050 						unsigned long *zholes_size)
6051 {
6052 	if (!zholes_size)
6053 		return 0;
6054 
6055 	return zholes_size[zone_type];
6056 }
6057 
6058 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6059 
6060 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6061 						unsigned long node_start_pfn,
6062 						unsigned long node_end_pfn,
6063 						unsigned long *zones_size,
6064 						unsigned long *zholes_size)
6065 {
6066 	unsigned long realtotalpages = 0, totalpages = 0;
6067 	enum zone_type i;
6068 
6069 	for (i = 0; i < MAX_NR_ZONES; i++) {
6070 		struct zone *zone = pgdat->node_zones + i;
6071 		unsigned long zone_start_pfn, zone_end_pfn;
6072 		unsigned long size, real_size;
6073 
6074 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6075 						  node_start_pfn,
6076 						  node_end_pfn,
6077 						  &zone_start_pfn,
6078 						  &zone_end_pfn,
6079 						  zones_size);
6080 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6081 						  node_start_pfn, node_end_pfn,
6082 						  zholes_size);
6083 		if (size)
6084 			zone->zone_start_pfn = zone_start_pfn;
6085 		else
6086 			zone->zone_start_pfn = 0;
6087 		zone->spanned_pages = size;
6088 		zone->present_pages = real_size;
6089 
6090 		totalpages += size;
6091 		realtotalpages += real_size;
6092 	}
6093 
6094 	pgdat->node_spanned_pages = totalpages;
6095 	pgdat->node_present_pages = realtotalpages;
6096 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6097 							realtotalpages);
6098 }
6099 
6100 #ifndef CONFIG_SPARSEMEM
6101 /*
6102  * Calculate the size of the zone->blockflags rounded to an unsigned long
6103  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6104  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6105  * round what is now in bits to nearest long in bits, then return it in
6106  * bytes.
6107  */
6108 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6109 {
6110 	unsigned long usemapsize;
6111 
6112 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6113 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6114 	usemapsize = usemapsize >> pageblock_order;
6115 	usemapsize *= NR_PAGEBLOCK_BITS;
6116 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6117 
6118 	return usemapsize / 8;
6119 }
6120 
6121 static void __init setup_usemap(struct pglist_data *pgdat,
6122 				struct zone *zone,
6123 				unsigned long zone_start_pfn,
6124 				unsigned long zonesize)
6125 {
6126 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6127 	zone->pageblock_flags = NULL;
6128 	if (usemapsize)
6129 		zone->pageblock_flags =
6130 			memblock_virt_alloc_node_nopanic(usemapsize,
6131 							 pgdat->node_id);
6132 }
6133 #else
6134 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6135 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6136 #endif /* CONFIG_SPARSEMEM */
6137 
6138 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6139 
6140 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6141 void __paginginit set_pageblock_order(void)
6142 {
6143 	unsigned int order;
6144 
6145 	/* Check that pageblock_nr_pages has not already been setup */
6146 	if (pageblock_order)
6147 		return;
6148 
6149 	if (HPAGE_SHIFT > PAGE_SHIFT)
6150 		order = HUGETLB_PAGE_ORDER;
6151 	else
6152 		order = MAX_ORDER - 1;
6153 
6154 	/*
6155 	 * Assume the largest contiguous order of interest is a huge page.
6156 	 * This value may be variable depending on boot parameters on IA64 and
6157 	 * powerpc.
6158 	 */
6159 	pageblock_order = order;
6160 }
6161 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6162 
6163 /*
6164  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6165  * is unused as pageblock_order is set at compile-time. See
6166  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6167  * the kernel config
6168  */
6169 void __paginginit set_pageblock_order(void)
6170 {
6171 }
6172 
6173 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6174 
6175 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6176 						   unsigned long present_pages)
6177 {
6178 	unsigned long pages = spanned_pages;
6179 
6180 	/*
6181 	 * Provide a more accurate estimation if there are holes within
6182 	 * the zone and SPARSEMEM is in use. If there are holes within the
6183 	 * zone, each populated memory region may cost us one or two extra
6184 	 * memmap pages due to alignment because memmap pages for each
6185 	 * populated regions may not be naturally aligned on page boundary.
6186 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6187 	 */
6188 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6189 	    IS_ENABLED(CONFIG_SPARSEMEM))
6190 		pages = present_pages;
6191 
6192 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6193 }
6194 
6195 /*
6196  * Set up the zone data structures:
6197  *   - mark all pages reserved
6198  *   - mark all memory queues empty
6199  *   - clear the memory bitmaps
6200  *
6201  * NOTE: pgdat should get zeroed by caller.
6202  */
6203 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6204 {
6205 	enum zone_type j;
6206 	int nid = pgdat->node_id;
6207 	unsigned long node_end_pfn = 0;
6208 
6209 	pgdat_resize_init(pgdat);
6210 #ifdef CONFIG_NUMA_BALANCING
6211 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
6212 	pgdat->numabalancing_migrate_nr_pages = 0;
6213 	pgdat->numabalancing_migrate_next_window = jiffies;
6214 #endif
6215 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6216 	spin_lock_init(&pgdat->split_queue_lock);
6217 	INIT_LIST_HEAD(&pgdat->split_queue);
6218 	pgdat->split_queue_len = 0;
6219 #endif
6220 	init_waitqueue_head(&pgdat->kswapd_wait);
6221 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6222 #ifdef CONFIG_COMPACTION
6223 	init_waitqueue_head(&pgdat->kcompactd_wait);
6224 #endif
6225 	pgdat_page_ext_init(pgdat);
6226 	spin_lock_init(&pgdat->lru_lock);
6227 	lruvec_init(node_lruvec(pgdat));
6228 
6229 	pgdat->per_cpu_nodestats = &boot_nodestats;
6230 
6231 	for (j = 0; j < MAX_NR_ZONES; j++) {
6232 		struct zone *zone = pgdat->node_zones + j;
6233 		unsigned long size, realsize, freesize, memmap_pages;
6234 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6235 		unsigned long movable_size = 0;
6236 
6237 		size = zone->spanned_pages;
6238 		realsize = freesize = zone->present_pages;
6239 		if (zone_end_pfn(zone) > node_end_pfn)
6240 			node_end_pfn = zone_end_pfn(zone);
6241 
6242 
6243 		/*
6244 		 * Adjust freesize so that it accounts for how much memory
6245 		 * is used by this zone for memmap. This affects the watermark
6246 		 * and per-cpu initialisations
6247 		 */
6248 		memmap_pages = calc_memmap_size(size, realsize);
6249 		if (!is_highmem_idx(j)) {
6250 			if (freesize >= memmap_pages) {
6251 				freesize -= memmap_pages;
6252 				if (memmap_pages)
6253 					printk(KERN_DEBUG
6254 					       "  %s zone: %lu pages used for memmap\n",
6255 					       zone_names[j], memmap_pages);
6256 			} else
6257 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6258 					zone_names[j], memmap_pages, freesize);
6259 		}
6260 
6261 		/* Account for reserved pages */
6262 		if (j == 0 && freesize > dma_reserve) {
6263 			freesize -= dma_reserve;
6264 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6265 					zone_names[0], dma_reserve);
6266 		}
6267 
6268 		if (!is_highmem_idx(j))
6269 			nr_kernel_pages += freesize;
6270 		/* Charge for highmem memmap if there are enough kernel pages */
6271 		else if (nr_kernel_pages > memmap_pages * 2)
6272 			nr_kernel_pages -= memmap_pages;
6273 		nr_all_pages += freesize;
6274 
6275 		/*
6276 		 * Set an approximate value for lowmem here, it will be adjusted
6277 		 * when the bootmem allocator frees pages into the buddy system.
6278 		 * And all highmem pages will be managed by the buddy system.
6279 		 */
6280 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6281 #ifdef CONFIG_NUMA
6282 		zone->node = nid;
6283 #endif
6284 		zone->name = zone_names[j];
6285 		zone->zone_pgdat = pgdat;
6286 		spin_lock_init(&zone->lock);
6287 		zone_seqlock_init(zone);
6288 		zone_pcp_init(zone);
6289 
6290 		/*
6291 		 * The size of the CMA area is unknown now so we need to
6292 		 * prepare the memory for the usemap at maximum.
6293 		 */
6294 		if (IS_ENABLED(CONFIG_CMA) && j == ZONE_MOVABLE &&
6295 			pgdat->node_spanned_pages) {
6296 			movable_size = node_end_pfn - pgdat->node_start_pfn;
6297 		}
6298 
6299 		if (!size && !movable_size)
6300 			continue;
6301 
6302 		set_pageblock_order();
6303 		if (movable_size) {
6304 			zone->zone_start_pfn = pgdat->node_start_pfn;
6305 			zone->spanned_pages = movable_size;
6306 			setup_usemap(pgdat, zone,
6307 				pgdat->node_start_pfn, movable_size);
6308 			init_currently_empty_zone(zone,
6309 				pgdat->node_start_pfn, movable_size);
6310 		} else {
6311 			setup_usemap(pgdat, zone, zone_start_pfn, size);
6312 			init_currently_empty_zone(zone, zone_start_pfn, size);
6313 		}
6314 		memmap_init(size, nid, j, zone_start_pfn);
6315 	}
6316 }
6317 
6318 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6319 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6320 {
6321 	unsigned long __maybe_unused start = 0;
6322 	unsigned long __maybe_unused offset = 0;
6323 
6324 	/* Skip empty nodes */
6325 	if (!pgdat->node_spanned_pages)
6326 		return;
6327 
6328 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6329 	offset = pgdat->node_start_pfn - start;
6330 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6331 	if (!pgdat->node_mem_map) {
6332 		unsigned long size, end;
6333 		struct page *map;
6334 
6335 		/*
6336 		 * The zone's endpoints aren't required to be MAX_ORDER
6337 		 * aligned but the node_mem_map endpoints must be in order
6338 		 * for the buddy allocator to function correctly.
6339 		 */
6340 		end = pgdat_end_pfn(pgdat);
6341 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6342 		size =  (end - start) * sizeof(struct page);
6343 		map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
6344 		pgdat->node_mem_map = map + offset;
6345 	}
6346 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6347 				__func__, pgdat->node_id, (unsigned long)pgdat,
6348 				(unsigned long)pgdat->node_mem_map);
6349 #ifndef CONFIG_NEED_MULTIPLE_NODES
6350 	/*
6351 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6352 	 */
6353 	if (pgdat == NODE_DATA(0)) {
6354 		mem_map = NODE_DATA(0)->node_mem_map;
6355 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6356 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6357 			mem_map -= offset;
6358 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6359 	}
6360 #endif
6361 }
6362 #else
6363 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6364 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6365 
6366 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6367 		unsigned long node_start_pfn, unsigned long *zholes_size)
6368 {
6369 	pg_data_t *pgdat = NODE_DATA(nid);
6370 	unsigned long start_pfn = 0;
6371 	unsigned long end_pfn = 0;
6372 
6373 	/* pg_data_t should be reset to zero when it's allocated */
6374 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6375 
6376 	pgdat->node_id = nid;
6377 	pgdat->node_start_pfn = node_start_pfn;
6378 	pgdat->per_cpu_nodestats = NULL;
6379 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6380 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6381 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6382 		(u64)start_pfn << PAGE_SHIFT,
6383 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6384 #else
6385 	start_pfn = node_start_pfn;
6386 #endif
6387 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6388 				  zones_size, zholes_size);
6389 
6390 	alloc_node_mem_map(pgdat);
6391 
6392 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6393 	/*
6394 	 * We start only with one section of pages, more pages are added as
6395 	 * needed until the rest of deferred pages are initialized.
6396 	 */
6397 	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6398 					 pgdat->node_spanned_pages);
6399 	pgdat->first_deferred_pfn = ULONG_MAX;
6400 #endif
6401 	free_area_init_core(pgdat);
6402 }
6403 
6404 #ifdef CONFIG_HAVE_MEMBLOCK
6405 /*
6406  * Only struct pages that are backed by physical memory are zeroed and
6407  * initialized by going through __init_single_page(). But, there are some
6408  * struct pages which are reserved in memblock allocator and their fields
6409  * may be accessed (for example page_to_pfn() on some configuration accesses
6410  * flags). We must explicitly zero those struct pages.
6411  */
6412 void __paginginit zero_resv_unavail(void)
6413 {
6414 	phys_addr_t start, end;
6415 	unsigned long pfn;
6416 	u64 i, pgcnt;
6417 
6418 	/*
6419 	 * Loop through ranges that are reserved, but do not have reported
6420 	 * physical memory backing.
6421 	 */
6422 	pgcnt = 0;
6423 	for_each_resv_unavail_range(i, &start, &end) {
6424 		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6425 			if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
6426 				continue;
6427 			mm_zero_struct_page(pfn_to_page(pfn));
6428 			pgcnt++;
6429 		}
6430 	}
6431 
6432 	/*
6433 	 * Struct pages that do not have backing memory. This could be because
6434 	 * firmware is using some of this memory, or for some other reasons.
6435 	 * Once memblock is changed so such behaviour is not allowed: i.e.
6436 	 * list of "reserved" memory must be a subset of list of "memory", then
6437 	 * this code can be removed.
6438 	 */
6439 	if (pgcnt)
6440 		pr_info("Reserved but unavailable: %lld pages", pgcnt);
6441 }
6442 #endif /* CONFIG_HAVE_MEMBLOCK */
6443 
6444 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6445 
6446 #if MAX_NUMNODES > 1
6447 /*
6448  * Figure out the number of possible node ids.
6449  */
6450 void __init setup_nr_node_ids(void)
6451 {
6452 	unsigned int highest;
6453 
6454 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6455 	nr_node_ids = highest + 1;
6456 }
6457 #endif
6458 
6459 /**
6460  * node_map_pfn_alignment - determine the maximum internode alignment
6461  *
6462  * This function should be called after node map is populated and sorted.
6463  * It calculates the maximum power of two alignment which can distinguish
6464  * all the nodes.
6465  *
6466  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6467  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6468  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6469  * shifted, 1GiB is enough and this function will indicate so.
6470  *
6471  * This is used to test whether pfn -> nid mapping of the chosen memory
6472  * model has fine enough granularity to avoid incorrect mapping for the
6473  * populated node map.
6474  *
6475  * Returns the determined alignment in pfn's.  0 if there is no alignment
6476  * requirement (single node).
6477  */
6478 unsigned long __init node_map_pfn_alignment(void)
6479 {
6480 	unsigned long accl_mask = 0, last_end = 0;
6481 	unsigned long start, end, mask;
6482 	int last_nid = -1;
6483 	int i, nid;
6484 
6485 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6486 		if (!start || last_nid < 0 || last_nid == nid) {
6487 			last_nid = nid;
6488 			last_end = end;
6489 			continue;
6490 		}
6491 
6492 		/*
6493 		 * Start with a mask granular enough to pin-point to the
6494 		 * start pfn and tick off bits one-by-one until it becomes
6495 		 * too coarse to separate the current node from the last.
6496 		 */
6497 		mask = ~((1 << __ffs(start)) - 1);
6498 		while (mask && last_end <= (start & (mask << 1)))
6499 			mask <<= 1;
6500 
6501 		/* accumulate all internode masks */
6502 		accl_mask |= mask;
6503 	}
6504 
6505 	/* convert mask to number of pages */
6506 	return ~accl_mask + 1;
6507 }
6508 
6509 /* Find the lowest pfn for a node */
6510 static unsigned long __init find_min_pfn_for_node(int nid)
6511 {
6512 	unsigned long min_pfn = ULONG_MAX;
6513 	unsigned long start_pfn;
6514 	int i;
6515 
6516 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6517 		min_pfn = min(min_pfn, start_pfn);
6518 
6519 	if (min_pfn == ULONG_MAX) {
6520 		pr_warn("Could not find start_pfn for node %d\n", nid);
6521 		return 0;
6522 	}
6523 
6524 	return min_pfn;
6525 }
6526 
6527 /**
6528  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6529  *
6530  * It returns the minimum PFN based on information provided via
6531  * memblock_set_node().
6532  */
6533 unsigned long __init find_min_pfn_with_active_regions(void)
6534 {
6535 	return find_min_pfn_for_node(MAX_NUMNODES);
6536 }
6537 
6538 /*
6539  * early_calculate_totalpages()
6540  * Sum pages in active regions for movable zone.
6541  * Populate N_MEMORY for calculating usable_nodes.
6542  */
6543 static unsigned long __init early_calculate_totalpages(void)
6544 {
6545 	unsigned long totalpages = 0;
6546 	unsigned long start_pfn, end_pfn;
6547 	int i, nid;
6548 
6549 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6550 		unsigned long pages = end_pfn - start_pfn;
6551 
6552 		totalpages += pages;
6553 		if (pages)
6554 			node_set_state(nid, N_MEMORY);
6555 	}
6556 	return totalpages;
6557 }
6558 
6559 /*
6560  * Find the PFN the Movable zone begins in each node. Kernel memory
6561  * is spread evenly between nodes as long as the nodes have enough
6562  * memory. When they don't, some nodes will have more kernelcore than
6563  * others
6564  */
6565 static void __init find_zone_movable_pfns_for_nodes(void)
6566 {
6567 	int i, nid;
6568 	unsigned long usable_startpfn;
6569 	unsigned long kernelcore_node, kernelcore_remaining;
6570 	/* save the state before borrow the nodemask */
6571 	nodemask_t saved_node_state = node_states[N_MEMORY];
6572 	unsigned long totalpages = early_calculate_totalpages();
6573 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6574 	struct memblock_region *r;
6575 
6576 	/* Need to find movable_zone earlier when movable_node is specified. */
6577 	find_usable_zone_for_movable();
6578 
6579 	/*
6580 	 * If movable_node is specified, ignore kernelcore and movablecore
6581 	 * options.
6582 	 */
6583 	if (movable_node_is_enabled()) {
6584 		for_each_memblock(memory, r) {
6585 			if (!memblock_is_hotpluggable(r))
6586 				continue;
6587 
6588 			nid = r->nid;
6589 
6590 			usable_startpfn = PFN_DOWN(r->base);
6591 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6592 				min(usable_startpfn, zone_movable_pfn[nid]) :
6593 				usable_startpfn;
6594 		}
6595 
6596 		goto out2;
6597 	}
6598 
6599 	/*
6600 	 * If kernelcore=mirror is specified, ignore movablecore option
6601 	 */
6602 	if (mirrored_kernelcore) {
6603 		bool mem_below_4gb_not_mirrored = false;
6604 
6605 		for_each_memblock(memory, r) {
6606 			if (memblock_is_mirror(r))
6607 				continue;
6608 
6609 			nid = r->nid;
6610 
6611 			usable_startpfn = memblock_region_memory_base_pfn(r);
6612 
6613 			if (usable_startpfn < 0x100000) {
6614 				mem_below_4gb_not_mirrored = true;
6615 				continue;
6616 			}
6617 
6618 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6619 				min(usable_startpfn, zone_movable_pfn[nid]) :
6620 				usable_startpfn;
6621 		}
6622 
6623 		if (mem_below_4gb_not_mirrored)
6624 			pr_warn("This configuration results in unmirrored kernel memory.");
6625 
6626 		goto out2;
6627 	}
6628 
6629 	/*
6630 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6631 	 * amount of necessary memory.
6632 	 */
6633 	if (required_kernelcore_percent)
6634 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6635 				       10000UL;
6636 	if (required_movablecore_percent)
6637 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6638 					10000UL;
6639 
6640 	/*
6641 	 * If movablecore= was specified, calculate what size of
6642 	 * kernelcore that corresponds so that memory usable for
6643 	 * any allocation type is evenly spread. If both kernelcore
6644 	 * and movablecore are specified, then the value of kernelcore
6645 	 * will be used for required_kernelcore if it's greater than
6646 	 * what movablecore would have allowed.
6647 	 */
6648 	if (required_movablecore) {
6649 		unsigned long corepages;
6650 
6651 		/*
6652 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6653 		 * was requested by the user
6654 		 */
6655 		required_movablecore =
6656 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6657 		required_movablecore = min(totalpages, required_movablecore);
6658 		corepages = totalpages - required_movablecore;
6659 
6660 		required_kernelcore = max(required_kernelcore, corepages);
6661 	}
6662 
6663 	/*
6664 	 * If kernelcore was not specified or kernelcore size is larger
6665 	 * than totalpages, there is no ZONE_MOVABLE.
6666 	 */
6667 	if (!required_kernelcore || required_kernelcore >= totalpages)
6668 		goto out;
6669 
6670 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6671 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6672 
6673 restart:
6674 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6675 	kernelcore_node = required_kernelcore / usable_nodes;
6676 	for_each_node_state(nid, N_MEMORY) {
6677 		unsigned long start_pfn, end_pfn;
6678 
6679 		/*
6680 		 * Recalculate kernelcore_node if the division per node
6681 		 * now exceeds what is necessary to satisfy the requested
6682 		 * amount of memory for the kernel
6683 		 */
6684 		if (required_kernelcore < kernelcore_node)
6685 			kernelcore_node = required_kernelcore / usable_nodes;
6686 
6687 		/*
6688 		 * As the map is walked, we track how much memory is usable
6689 		 * by the kernel using kernelcore_remaining. When it is
6690 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6691 		 */
6692 		kernelcore_remaining = kernelcore_node;
6693 
6694 		/* Go through each range of PFNs within this node */
6695 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6696 			unsigned long size_pages;
6697 
6698 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6699 			if (start_pfn >= end_pfn)
6700 				continue;
6701 
6702 			/* Account for what is only usable for kernelcore */
6703 			if (start_pfn < usable_startpfn) {
6704 				unsigned long kernel_pages;
6705 				kernel_pages = min(end_pfn, usable_startpfn)
6706 								- start_pfn;
6707 
6708 				kernelcore_remaining -= min(kernel_pages,
6709 							kernelcore_remaining);
6710 				required_kernelcore -= min(kernel_pages,
6711 							required_kernelcore);
6712 
6713 				/* Continue if range is now fully accounted */
6714 				if (end_pfn <= usable_startpfn) {
6715 
6716 					/*
6717 					 * Push zone_movable_pfn to the end so
6718 					 * that if we have to rebalance
6719 					 * kernelcore across nodes, we will
6720 					 * not double account here
6721 					 */
6722 					zone_movable_pfn[nid] = end_pfn;
6723 					continue;
6724 				}
6725 				start_pfn = usable_startpfn;
6726 			}
6727 
6728 			/*
6729 			 * The usable PFN range for ZONE_MOVABLE is from
6730 			 * start_pfn->end_pfn. Calculate size_pages as the
6731 			 * number of pages used as kernelcore
6732 			 */
6733 			size_pages = end_pfn - start_pfn;
6734 			if (size_pages > kernelcore_remaining)
6735 				size_pages = kernelcore_remaining;
6736 			zone_movable_pfn[nid] = start_pfn + size_pages;
6737 
6738 			/*
6739 			 * Some kernelcore has been met, update counts and
6740 			 * break if the kernelcore for this node has been
6741 			 * satisfied
6742 			 */
6743 			required_kernelcore -= min(required_kernelcore,
6744 								size_pages);
6745 			kernelcore_remaining -= size_pages;
6746 			if (!kernelcore_remaining)
6747 				break;
6748 		}
6749 	}
6750 
6751 	/*
6752 	 * If there is still required_kernelcore, we do another pass with one
6753 	 * less node in the count. This will push zone_movable_pfn[nid] further
6754 	 * along on the nodes that still have memory until kernelcore is
6755 	 * satisfied
6756 	 */
6757 	usable_nodes--;
6758 	if (usable_nodes && required_kernelcore > usable_nodes)
6759 		goto restart;
6760 
6761 out2:
6762 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6763 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6764 		zone_movable_pfn[nid] =
6765 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6766 
6767 out:
6768 	/* restore the node_state */
6769 	node_states[N_MEMORY] = saved_node_state;
6770 }
6771 
6772 /* Any regular or high memory on that node ? */
6773 static void check_for_memory(pg_data_t *pgdat, int nid)
6774 {
6775 	enum zone_type zone_type;
6776 
6777 	if (N_MEMORY == N_NORMAL_MEMORY)
6778 		return;
6779 
6780 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6781 		struct zone *zone = &pgdat->node_zones[zone_type];
6782 		if (populated_zone(zone)) {
6783 			node_set_state(nid, N_HIGH_MEMORY);
6784 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6785 			    zone_type <= ZONE_NORMAL)
6786 				node_set_state(nid, N_NORMAL_MEMORY);
6787 			break;
6788 		}
6789 	}
6790 }
6791 
6792 /**
6793  * free_area_init_nodes - Initialise all pg_data_t and zone data
6794  * @max_zone_pfn: an array of max PFNs for each zone
6795  *
6796  * This will call free_area_init_node() for each active node in the system.
6797  * Using the page ranges provided by memblock_set_node(), the size of each
6798  * zone in each node and their holes is calculated. If the maximum PFN
6799  * between two adjacent zones match, it is assumed that the zone is empty.
6800  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6801  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6802  * starts where the previous one ended. For example, ZONE_DMA32 starts
6803  * at arch_max_dma_pfn.
6804  */
6805 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6806 {
6807 	unsigned long start_pfn, end_pfn;
6808 	int i, nid;
6809 
6810 	/* Record where the zone boundaries are */
6811 	memset(arch_zone_lowest_possible_pfn, 0,
6812 				sizeof(arch_zone_lowest_possible_pfn));
6813 	memset(arch_zone_highest_possible_pfn, 0,
6814 				sizeof(arch_zone_highest_possible_pfn));
6815 
6816 	start_pfn = find_min_pfn_with_active_regions();
6817 
6818 	for (i = 0; i < MAX_NR_ZONES; i++) {
6819 		if (i == ZONE_MOVABLE)
6820 			continue;
6821 
6822 		end_pfn = max(max_zone_pfn[i], start_pfn);
6823 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6824 		arch_zone_highest_possible_pfn[i] = end_pfn;
6825 
6826 		start_pfn = end_pfn;
6827 	}
6828 
6829 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6830 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6831 	find_zone_movable_pfns_for_nodes();
6832 
6833 	/* Print out the zone ranges */
6834 	pr_info("Zone ranges:\n");
6835 	for (i = 0; i < MAX_NR_ZONES; i++) {
6836 		if (i == ZONE_MOVABLE)
6837 			continue;
6838 		pr_info("  %-8s ", zone_names[i]);
6839 		if (arch_zone_lowest_possible_pfn[i] ==
6840 				arch_zone_highest_possible_pfn[i])
6841 			pr_cont("empty\n");
6842 		else
6843 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6844 				(u64)arch_zone_lowest_possible_pfn[i]
6845 					<< PAGE_SHIFT,
6846 				((u64)arch_zone_highest_possible_pfn[i]
6847 					<< PAGE_SHIFT) - 1);
6848 	}
6849 
6850 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6851 	pr_info("Movable zone start for each node\n");
6852 	for (i = 0; i < MAX_NUMNODES; i++) {
6853 		if (zone_movable_pfn[i])
6854 			pr_info("  Node %d: %#018Lx\n", i,
6855 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6856 	}
6857 
6858 	/* Print out the early node map */
6859 	pr_info("Early memory node ranges\n");
6860 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6861 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6862 			(u64)start_pfn << PAGE_SHIFT,
6863 			((u64)end_pfn << PAGE_SHIFT) - 1);
6864 
6865 	/* Initialise every node */
6866 	mminit_verify_pageflags_layout();
6867 	setup_nr_node_ids();
6868 	for_each_online_node(nid) {
6869 		pg_data_t *pgdat = NODE_DATA(nid);
6870 		free_area_init_node(nid, NULL,
6871 				find_min_pfn_for_node(nid), NULL);
6872 
6873 		/* Any memory on that node */
6874 		if (pgdat->node_present_pages)
6875 			node_set_state(nid, N_MEMORY);
6876 		check_for_memory(pgdat, nid);
6877 	}
6878 	zero_resv_unavail();
6879 }
6880 
6881 static int __init cmdline_parse_core(char *p, unsigned long *core,
6882 				     unsigned long *percent)
6883 {
6884 	unsigned long long coremem;
6885 	char *endptr;
6886 
6887 	if (!p)
6888 		return -EINVAL;
6889 
6890 	/* Value may be a percentage of total memory, otherwise bytes */
6891 	coremem = simple_strtoull(p, &endptr, 0);
6892 	if (*endptr == '%') {
6893 		/* Paranoid check for percent values greater than 100 */
6894 		WARN_ON(coremem > 100);
6895 
6896 		*percent = coremem;
6897 	} else {
6898 		coremem = memparse(p, &p);
6899 		/* Paranoid check that UL is enough for the coremem value */
6900 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6901 
6902 		*core = coremem >> PAGE_SHIFT;
6903 		*percent = 0UL;
6904 	}
6905 	return 0;
6906 }
6907 
6908 /*
6909  * kernelcore=size sets the amount of memory for use for allocations that
6910  * cannot be reclaimed or migrated.
6911  */
6912 static int __init cmdline_parse_kernelcore(char *p)
6913 {
6914 	/* parse kernelcore=mirror */
6915 	if (parse_option_str(p, "mirror")) {
6916 		mirrored_kernelcore = true;
6917 		return 0;
6918 	}
6919 
6920 	return cmdline_parse_core(p, &required_kernelcore,
6921 				  &required_kernelcore_percent);
6922 }
6923 
6924 /*
6925  * movablecore=size sets the amount of memory for use for allocations that
6926  * can be reclaimed or migrated.
6927  */
6928 static int __init cmdline_parse_movablecore(char *p)
6929 {
6930 	return cmdline_parse_core(p, &required_movablecore,
6931 				  &required_movablecore_percent);
6932 }
6933 
6934 early_param("kernelcore", cmdline_parse_kernelcore);
6935 early_param("movablecore", cmdline_parse_movablecore);
6936 
6937 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6938 
6939 void adjust_managed_page_count(struct page *page, long count)
6940 {
6941 	spin_lock(&managed_page_count_lock);
6942 	page_zone(page)->managed_pages += count;
6943 	totalram_pages += count;
6944 #ifdef CONFIG_HIGHMEM
6945 	if (PageHighMem(page))
6946 		totalhigh_pages += count;
6947 #endif
6948 	spin_unlock(&managed_page_count_lock);
6949 }
6950 EXPORT_SYMBOL(adjust_managed_page_count);
6951 
6952 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6953 {
6954 	void *pos;
6955 	unsigned long pages = 0;
6956 
6957 	start = (void *)PAGE_ALIGN((unsigned long)start);
6958 	end = (void *)((unsigned long)end & PAGE_MASK);
6959 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6960 		if ((unsigned int)poison <= 0xFF)
6961 			memset(pos, poison, PAGE_SIZE);
6962 		free_reserved_page(virt_to_page(pos));
6963 	}
6964 
6965 	if (pages && s)
6966 		pr_info("Freeing %s memory: %ldK\n",
6967 			s, pages << (PAGE_SHIFT - 10));
6968 
6969 	return pages;
6970 }
6971 EXPORT_SYMBOL(free_reserved_area);
6972 
6973 #ifdef	CONFIG_HIGHMEM
6974 void free_highmem_page(struct page *page)
6975 {
6976 	__free_reserved_page(page);
6977 	totalram_pages++;
6978 	page_zone(page)->managed_pages++;
6979 	totalhigh_pages++;
6980 }
6981 #endif
6982 
6983 
6984 void __init mem_init_print_info(const char *str)
6985 {
6986 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6987 	unsigned long init_code_size, init_data_size;
6988 
6989 	physpages = get_num_physpages();
6990 	codesize = _etext - _stext;
6991 	datasize = _edata - _sdata;
6992 	rosize = __end_rodata - __start_rodata;
6993 	bss_size = __bss_stop - __bss_start;
6994 	init_data_size = __init_end - __init_begin;
6995 	init_code_size = _einittext - _sinittext;
6996 
6997 	/*
6998 	 * Detect special cases and adjust section sizes accordingly:
6999 	 * 1) .init.* may be embedded into .data sections
7000 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7001 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7002 	 * 3) .rodata.* may be embedded into .text or .data sections.
7003 	 */
7004 #define adj_init_size(start, end, size, pos, adj) \
7005 	do { \
7006 		if (start <= pos && pos < end && size > adj) \
7007 			size -= adj; \
7008 	} while (0)
7009 
7010 	adj_init_size(__init_begin, __init_end, init_data_size,
7011 		     _sinittext, init_code_size);
7012 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7013 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7014 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7015 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7016 
7017 #undef	adj_init_size
7018 
7019 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7020 #ifdef	CONFIG_HIGHMEM
7021 		", %luK highmem"
7022 #endif
7023 		"%s%s)\n",
7024 		nr_free_pages() << (PAGE_SHIFT - 10),
7025 		physpages << (PAGE_SHIFT - 10),
7026 		codesize >> 10, datasize >> 10, rosize >> 10,
7027 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7028 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7029 		totalcma_pages << (PAGE_SHIFT - 10),
7030 #ifdef	CONFIG_HIGHMEM
7031 		totalhigh_pages << (PAGE_SHIFT - 10),
7032 #endif
7033 		str ? ", " : "", str ? str : "");
7034 }
7035 
7036 /**
7037  * set_dma_reserve - set the specified number of pages reserved in the first zone
7038  * @new_dma_reserve: The number of pages to mark reserved
7039  *
7040  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7041  * In the DMA zone, a significant percentage may be consumed by kernel image
7042  * and other unfreeable allocations which can skew the watermarks badly. This
7043  * function may optionally be used to account for unfreeable pages in the
7044  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7045  * smaller per-cpu batchsize.
7046  */
7047 void __init set_dma_reserve(unsigned long new_dma_reserve)
7048 {
7049 	dma_reserve = new_dma_reserve;
7050 }
7051 
7052 void __init free_area_init(unsigned long *zones_size)
7053 {
7054 	free_area_init_node(0, zones_size,
7055 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7056 	zero_resv_unavail();
7057 }
7058 
7059 static int page_alloc_cpu_dead(unsigned int cpu)
7060 {
7061 
7062 	lru_add_drain_cpu(cpu);
7063 	drain_pages(cpu);
7064 
7065 	/*
7066 	 * Spill the event counters of the dead processor
7067 	 * into the current processors event counters.
7068 	 * This artificially elevates the count of the current
7069 	 * processor.
7070 	 */
7071 	vm_events_fold_cpu(cpu);
7072 
7073 	/*
7074 	 * Zero the differential counters of the dead processor
7075 	 * so that the vm statistics are consistent.
7076 	 *
7077 	 * This is only okay since the processor is dead and cannot
7078 	 * race with what we are doing.
7079 	 */
7080 	cpu_vm_stats_fold(cpu);
7081 	return 0;
7082 }
7083 
7084 void __init page_alloc_init(void)
7085 {
7086 	int ret;
7087 
7088 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7089 					"mm/page_alloc:dead", NULL,
7090 					page_alloc_cpu_dead);
7091 	WARN_ON(ret < 0);
7092 }
7093 
7094 /*
7095  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7096  *	or min_free_kbytes changes.
7097  */
7098 static void calculate_totalreserve_pages(void)
7099 {
7100 	struct pglist_data *pgdat;
7101 	unsigned long reserve_pages = 0;
7102 	enum zone_type i, j;
7103 
7104 	for_each_online_pgdat(pgdat) {
7105 
7106 		pgdat->totalreserve_pages = 0;
7107 
7108 		for (i = 0; i < MAX_NR_ZONES; i++) {
7109 			struct zone *zone = pgdat->node_zones + i;
7110 			long max = 0;
7111 
7112 			/* Find valid and maximum lowmem_reserve in the zone */
7113 			for (j = i; j < MAX_NR_ZONES; j++) {
7114 				if (zone->lowmem_reserve[j] > max)
7115 					max = zone->lowmem_reserve[j];
7116 			}
7117 
7118 			/* we treat the high watermark as reserved pages. */
7119 			max += high_wmark_pages(zone);
7120 
7121 			if (max > zone->managed_pages)
7122 				max = zone->managed_pages;
7123 
7124 			pgdat->totalreserve_pages += max;
7125 
7126 			reserve_pages += max;
7127 		}
7128 	}
7129 	totalreserve_pages = reserve_pages;
7130 }
7131 
7132 /*
7133  * setup_per_zone_lowmem_reserve - called whenever
7134  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7135  *	has a correct pages reserved value, so an adequate number of
7136  *	pages are left in the zone after a successful __alloc_pages().
7137  */
7138 static void setup_per_zone_lowmem_reserve(void)
7139 {
7140 	struct pglist_data *pgdat;
7141 	enum zone_type j, idx;
7142 
7143 	for_each_online_pgdat(pgdat) {
7144 		for (j = 0; j < MAX_NR_ZONES; j++) {
7145 			struct zone *zone = pgdat->node_zones + j;
7146 			unsigned long managed_pages = zone->managed_pages;
7147 
7148 			zone->lowmem_reserve[j] = 0;
7149 
7150 			idx = j;
7151 			while (idx) {
7152 				struct zone *lower_zone;
7153 
7154 				idx--;
7155 				lower_zone = pgdat->node_zones + idx;
7156 
7157 				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7158 					sysctl_lowmem_reserve_ratio[idx] = 0;
7159 					lower_zone->lowmem_reserve[j] = 0;
7160 				} else {
7161 					lower_zone->lowmem_reserve[j] =
7162 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7163 				}
7164 				managed_pages += lower_zone->managed_pages;
7165 			}
7166 		}
7167 	}
7168 
7169 	/* update totalreserve_pages */
7170 	calculate_totalreserve_pages();
7171 }
7172 
7173 static void __setup_per_zone_wmarks(void)
7174 {
7175 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7176 	unsigned long lowmem_pages = 0;
7177 	struct zone *zone;
7178 	unsigned long flags;
7179 
7180 	/* Calculate total number of !ZONE_HIGHMEM pages */
7181 	for_each_zone(zone) {
7182 		if (!is_highmem(zone))
7183 			lowmem_pages += zone->managed_pages;
7184 	}
7185 
7186 	for_each_zone(zone) {
7187 		u64 tmp;
7188 
7189 		spin_lock_irqsave(&zone->lock, flags);
7190 		tmp = (u64)pages_min * zone->managed_pages;
7191 		do_div(tmp, lowmem_pages);
7192 		if (is_highmem(zone)) {
7193 			/*
7194 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7195 			 * need highmem pages, so cap pages_min to a small
7196 			 * value here.
7197 			 *
7198 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7199 			 * deltas control asynch page reclaim, and so should
7200 			 * not be capped for highmem.
7201 			 */
7202 			unsigned long min_pages;
7203 
7204 			min_pages = zone->managed_pages / 1024;
7205 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7206 			zone->watermark[WMARK_MIN] = min_pages;
7207 		} else {
7208 			/*
7209 			 * If it's a lowmem zone, reserve a number of pages
7210 			 * proportionate to the zone's size.
7211 			 */
7212 			zone->watermark[WMARK_MIN] = tmp;
7213 		}
7214 
7215 		/*
7216 		 * Set the kswapd watermarks distance according to the
7217 		 * scale factor in proportion to available memory, but
7218 		 * ensure a minimum size on small systems.
7219 		 */
7220 		tmp = max_t(u64, tmp >> 2,
7221 			    mult_frac(zone->managed_pages,
7222 				      watermark_scale_factor, 10000));
7223 
7224 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7225 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7226 
7227 		spin_unlock_irqrestore(&zone->lock, flags);
7228 	}
7229 
7230 	/* update totalreserve_pages */
7231 	calculate_totalreserve_pages();
7232 }
7233 
7234 /**
7235  * setup_per_zone_wmarks - called when min_free_kbytes changes
7236  * or when memory is hot-{added|removed}
7237  *
7238  * Ensures that the watermark[min,low,high] values for each zone are set
7239  * correctly with respect to min_free_kbytes.
7240  */
7241 void setup_per_zone_wmarks(void)
7242 {
7243 	static DEFINE_SPINLOCK(lock);
7244 
7245 	spin_lock(&lock);
7246 	__setup_per_zone_wmarks();
7247 	spin_unlock(&lock);
7248 }
7249 
7250 /*
7251  * Initialise min_free_kbytes.
7252  *
7253  * For small machines we want it small (128k min).  For large machines
7254  * we want it large (64MB max).  But it is not linear, because network
7255  * bandwidth does not increase linearly with machine size.  We use
7256  *
7257  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7258  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7259  *
7260  * which yields
7261  *
7262  * 16MB:	512k
7263  * 32MB:	724k
7264  * 64MB:	1024k
7265  * 128MB:	1448k
7266  * 256MB:	2048k
7267  * 512MB:	2896k
7268  * 1024MB:	4096k
7269  * 2048MB:	5792k
7270  * 4096MB:	8192k
7271  * 8192MB:	11584k
7272  * 16384MB:	16384k
7273  */
7274 int __meminit init_per_zone_wmark_min(void)
7275 {
7276 	unsigned long lowmem_kbytes;
7277 	int new_min_free_kbytes;
7278 
7279 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7280 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7281 
7282 	if (new_min_free_kbytes > user_min_free_kbytes) {
7283 		min_free_kbytes = new_min_free_kbytes;
7284 		if (min_free_kbytes < 128)
7285 			min_free_kbytes = 128;
7286 		if (min_free_kbytes > 65536)
7287 			min_free_kbytes = 65536;
7288 	} else {
7289 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7290 				new_min_free_kbytes, user_min_free_kbytes);
7291 	}
7292 	setup_per_zone_wmarks();
7293 	refresh_zone_stat_thresholds();
7294 	setup_per_zone_lowmem_reserve();
7295 
7296 #ifdef CONFIG_NUMA
7297 	setup_min_unmapped_ratio();
7298 	setup_min_slab_ratio();
7299 #endif
7300 
7301 	return 0;
7302 }
7303 core_initcall(init_per_zone_wmark_min)
7304 
7305 /*
7306  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7307  *	that we can call two helper functions whenever min_free_kbytes
7308  *	changes.
7309  */
7310 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7311 	void __user *buffer, size_t *length, loff_t *ppos)
7312 {
7313 	int rc;
7314 
7315 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7316 	if (rc)
7317 		return rc;
7318 
7319 	if (write) {
7320 		user_min_free_kbytes = min_free_kbytes;
7321 		setup_per_zone_wmarks();
7322 	}
7323 	return 0;
7324 }
7325 
7326 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7327 	void __user *buffer, size_t *length, loff_t *ppos)
7328 {
7329 	int rc;
7330 
7331 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7332 	if (rc)
7333 		return rc;
7334 
7335 	if (write)
7336 		setup_per_zone_wmarks();
7337 
7338 	return 0;
7339 }
7340 
7341 #ifdef CONFIG_NUMA
7342 static void setup_min_unmapped_ratio(void)
7343 {
7344 	pg_data_t *pgdat;
7345 	struct zone *zone;
7346 
7347 	for_each_online_pgdat(pgdat)
7348 		pgdat->min_unmapped_pages = 0;
7349 
7350 	for_each_zone(zone)
7351 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7352 				sysctl_min_unmapped_ratio) / 100;
7353 }
7354 
7355 
7356 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7357 	void __user *buffer, size_t *length, loff_t *ppos)
7358 {
7359 	int rc;
7360 
7361 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7362 	if (rc)
7363 		return rc;
7364 
7365 	setup_min_unmapped_ratio();
7366 
7367 	return 0;
7368 }
7369 
7370 static void setup_min_slab_ratio(void)
7371 {
7372 	pg_data_t *pgdat;
7373 	struct zone *zone;
7374 
7375 	for_each_online_pgdat(pgdat)
7376 		pgdat->min_slab_pages = 0;
7377 
7378 	for_each_zone(zone)
7379 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7380 				sysctl_min_slab_ratio) / 100;
7381 }
7382 
7383 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7384 	void __user *buffer, size_t *length, loff_t *ppos)
7385 {
7386 	int rc;
7387 
7388 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7389 	if (rc)
7390 		return rc;
7391 
7392 	setup_min_slab_ratio();
7393 
7394 	return 0;
7395 }
7396 #endif
7397 
7398 /*
7399  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7400  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7401  *	whenever sysctl_lowmem_reserve_ratio changes.
7402  *
7403  * The reserve ratio obviously has absolutely no relation with the
7404  * minimum watermarks. The lowmem reserve ratio can only make sense
7405  * if in function of the boot time zone sizes.
7406  */
7407 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7408 	void __user *buffer, size_t *length, loff_t *ppos)
7409 {
7410 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7411 	setup_per_zone_lowmem_reserve();
7412 	return 0;
7413 }
7414 
7415 /*
7416  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7417  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7418  * pagelist can have before it gets flushed back to buddy allocator.
7419  */
7420 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7421 	void __user *buffer, size_t *length, loff_t *ppos)
7422 {
7423 	struct zone *zone;
7424 	int old_percpu_pagelist_fraction;
7425 	int ret;
7426 
7427 	mutex_lock(&pcp_batch_high_lock);
7428 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7429 
7430 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7431 	if (!write || ret < 0)
7432 		goto out;
7433 
7434 	/* Sanity checking to avoid pcp imbalance */
7435 	if (percpu_pagelist_fraction &&
7436 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7437 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7438 		ret = -EINVAL;
7439 		goto out;
7440 	}
7441 
7442 	/* No change? */
7443 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7444 		goto out;
7445 
7446 	for_each_populated_zone(zone) {
7447 		unsigned int cpu;
7448 
7449 		for_each_possible_cpu(cpu)
7450 			pageset_set_high_and_batch(zone,
7451 					per_cpu_ptr(zone->pageset, cpu));
7452 	}
7453 out:
7454 	mutex_unlock(&pcp_batch_high_lock);
7455 	return ret;
7456 }
7457 
7458 #ifdef CONFIG_NUMA
7459 int hashdist = HASHDIST_DEFAULT;
7460 
7461 static int __init set_hashdist(char *str)
7462 {
7463 	if (!str)
7464 		return 0;
7465 	hashdist = simple_strtoul(str, &str, 0);
7466 	return 1;
7467 }
7468 __setup("hashdist=", set_hashdist);
7469 #endif
7470 
7471 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7472 /*
7473  * Returns the number of pages that arch has reserved but
7474  * is not known to alloc_large_system_hash().
7475  */
7476 static unsigned long __init arch_reserved_kernel_pages(void)
7477 {
7478 	return 0;
7479 }
7480 #endif
7481 
7482 /*
7483  * Adaptive scale is meant to reduce sizes of hash tables on large memory
7484  * machines. As memory size is increased the scale is also increased but at
7485  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7486  * quadruples the scale is increased by one, which means the size of hash table
7487  * only doubles, instead of quadrupling as well.
7488  * Because 32-bit systems cannot have large physical memory, where this scaling
7489  * makes sense, it is disabled on such platforms.
7490  */
7491 #if __BITS_PER_LONG > 32
7492 #define ADAPT_SCALE_BASE	(64ul << 30)
7493 #define ADAPT_SCALE_SHIFT	2
7494 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7495 #endif
7496 
7497 /*
7498  * allocate a large system hash table from bootmem
7499  * - it is assumed that the hash table must contain an exact power-of-2
7500  *   quantity of entries
7501  * - limit is the number of hash buckets, not the total allocation size
7502  */
7503 void *__init alloc_large_system_hash(const char *tablename,
7504 				     unsigned long bucketsize,
7505 				     unsigned long numentries,
7506 				     int scale,
7507 				     int flags,
7508 				     unsigned int *_hash_shift,
7509 				     unsigned int *_hash_mask,
7510 				     unsigned long low_limit,
7511 				     unsigned long high_limit)
7512 {
7513 	unsigned long long max = high_limit;
7514 	unsigned long log2qty, size;
7515 	void *table = NULL;
7516 	gfp_t gfp_flags;
7517 
7518 	/* allow the kernel cmdline to have a say */
7519 	if (!numentries) {
7520 		/* round applicable memory size up to nearest megabyte */
7521 		numentries = nr_kernel_pages;
7522 		numentries -= arch_reserved_kernel_pages();
7523 
7524 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7525 		if (PAGE_SHIFT < 20)
7526 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7527 
7528 #if __BITS_PER_LONG > 32
7529 		if (!high_limit) {
7530 			unsigned long adapt;
7531 
7532 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7533 			     adapt <<= ADAPT_SCALE_SHIFT)
7534 				scale++;
7535 		}
7536 #endif
7537 
7538 		/* limit to 1 bucket per 2^scale bytes of low memory */
7539 		if (scale > PAGE_SHIFT)
7540 			numentries >>= (scale - PAGE_SHIFT);
7541 		else
7542 			numentries <<= (PAGE_SHIFT - scale);
7543 
7544 		/* Make sure we've got at least a 0-order allocation.. */
7545 		if (unlikely(flags & HASH_SMALL)) {
7546 			/* Makes no sense without HASH_EARLY */
7547 			WARN_ON(!(flags & HASH_EARLY));
7548 			if (!(numentries >> *_hash_shift)) {
7549 				numentries = 1UL << *_hash_shift;
7550 				BUG_ON(!numentries);
7551 			}
7552 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7553 			numentries = PAGE_SIZE / bucketsize;
7554 	}
7555 	numentries = roundup_pow_of_two(numentries);
7556 
7557 	/* limit allocation size to 1/16 total memory by default */
7558 	if (max == 0) {
7559 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7560 		do_div(max, bucketsize);
7561 	}
7562 	max = min(max, 0x80000000ULL);
7563 
7564 	if (numentries < low_limit)
7565 		numentries = low_limit;
7566 	if (numentries > max)
7567 		numentries = max;
7568 
7569 	log2qty = ilog2(numentries);
7570 
7571 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7572 	do {
7573 		size = bucketsize << log2qty;
7574 		if (flags & HASH_EARLY) {
7575 			if (flags & HASH_ZERO)
7576 				table = memblock_virt_alloc_nopanic(size, 0);
7577 			else
7578 				table = memblock_virt_alloc_raw(size, 0);
7579 		} else if (hashdist) {
7580 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7581 		} else {
7582 			/*
7583 			 * If bucketsize is not a power-of-two, we may free
7584 			 * some pages at the end of hash table which
7585 			 * alloc_pages_exact() automatically does
7586 			 */
7587 			if (get_order(size) < MAX_ORDER) {
7588 				table = alloc_pages_exact(size, gfp_flags);
7589 				kmemleak_alloc(table, size, 1, gfp_flags);
7590 			}
7591 		}
7592 	} while (!table && size > PAGE_SIZE && --log2qty);
7593 
7594 	if (!table)
7595 		panic("Failed to allocate %s hash table\n", tablename);
7596 
7597 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7598 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7599 
7600 	if (_hash_shift)
7601 		*_hash_shift = log2qty;
7602 	if (_hash_mask)
7603 		*_hash_mask = (1 << log2qty) - 1;
7604 
7605 	return table;
7606 }
7607 
7608 /*
7609  * This function checks whether pageblock includes unmovable pages or not.
7610  * If @count is not zero, it is okay to include less @count unmovable pages
7611  *
7612  * PageLRU check without isolation or lru_lock could race so that
7613  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7614  * check without lock_page also may miss some movable non-lru pages at
7615  * race condition. So you can't expect this function should be exact.
7616  */
7617 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7618 			 int migratetype,
7619 			 bool skip_hwpoisoned_pages)
7620 {
7621 	unsigned long pfn, iter, found;
7622 
7623 	/*
7624 	 * For avoiding noise data, lru_add_drain_all() should be called
7625 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7626 	 */
7627 	if (zone_idx(zone) == ZONE_MOVABLE)
7628 		return false;
7629 
7630 	/*
7631 	 * CMA allocations (alloc_contig_range) really need to mark isolate
7632 	 * CMA pageblocks even when they are not movable in fact so consider
7633 	 * them movable here.
7634 	 */
7635 	if (is_migrate_cma(migratetype) &&
7636 			is_migrate_cma(get_pageblock_migratetype(page)))
7637 		return false;
7638 
7639 	pfn = page_to_pfn(page);
7640 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7641 		unsigned long check = pfn + iter;
7642 
7643 		if (!pfn_valid_within(check))
7644 			continue;
7645 
7646 		page = pfn_to_page(check);
7647 
7648 		if (PageReserved(page))
7649 			return true;
7650 
7651 		/*
7652 		 * Hugepages are not in LRU lists, but they're movable.
7653 		 * We need not scan over tail pages bacause we don't
7654 		 * handle each tail page individually in migration.
7655 		 */
7656 		if (PageHuge(page)) {
7657 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7658 			continue;
7659 		}
7660 
7661 		/*
7662 		 * We can't use page_count without pin a page
7663 		 * because another CPU can free compound page.
7664 		 * This check already skips compound tails of THP
7665 		 * because their page->_refcount is zero at all time.
7666 		 */
7667 		if (!page_ref_count(page)) {
7668 			if (PageBuddy(page))
7669 				iter += (1 << page_order(page)) - 1;
7670 			continue;
7671 		}
7672 
7673 		/*
7674 		 * The HWPoisoned page may be not in buddy system, and
7675 		 * page_count() is not 0.
7676 		 */
7677 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7678 			continue;
7679 
7680 		if (__PageMovable(page))
7681 			continue;
7682 
7683 		if (!PageLRU(page))
7684 			found++;
7685 		/*
7686 		 * If there are RECLAIMABLE pages, we need to check
7687 		 * it.  But now, memory offline itself doesn't call
7688 		 * shrink_node_slabs() and it still to be fixed.
7689 		 */
7690 		/*
7691 		 * If the page is not RAM, page_count()should be 0.
7692 		 * we don't need more check. This is an _used_ not-movable page.
7693 		 *
7694 		 * The problematic thing here is PG_reserved pages. PG_reserved
7695 		 * is set to both of a memory hole page and a _used_ kernel
7696 		 * page at boot.
7697 		 */
7698 		if (found > count)
7699 			return true;
7700 	}
7701 	return false;
7702 }
7703 
7704 bool is_pageblock_removable_nolock(struct page *page)
7705 {
7706 	struct zone *zone;
7707 	unsigned long pfn;
7708 
7709 	/*
7710 	 * We have to be careful here because we are iterating over memory
7711 	 * sections which are not zone aware so we might end up outside of
7712 	 * the zone but still within the section.
7713 	 * We have to take care about the node as well. If the node is offline
7714 	 * its NODE_DATA will be NULL - see page_zone.
7715 	 */
7716 	if (!node_online(page_to_nid(page)))
7717 		return false;
7718 
7719 	zone = page_zone(page);
7720 	pfn = page_to_pfn(page);
7721 	if (!zone_spans_pfn(zone, pfn))
7722 		return false;
7723 
7724 	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
7725 }
7726 
7727 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7728 
7729 static unsigned long pfn_max_align_down(unsigned long pfn)
7730 {
7731 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7732 			     pageblock_nr_pages) - 1);
7733 }
7734 
7735 static unsigned long pfn_max_align_up(unsigned long pfn)
7736 {
7737 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7738 				pageblock_nr_pages));
7739 }
7740 
7741 /* [start, end) must belong to a single zone. */
7742 static int __alloc_contig_migrate_range(struct compact_control *cc,
7743 					unsigned long start, unsigned long end)
7744 {
7745 	/* This function is based on compact_zone() from compaction.c. */
7746 	unsigned long nr_reclaimed;
7747 	unsigned long pfn = start;
7748 	unsigned int tries = 0;
7749 	int ret = 0;
7750 
7751 	migrate_prep();
7752 
7753 	while (pfn < end || !list_empty(&cc->migratepages)) {
7754 		if (fatal_signal_pending(current)) {
7755 			ret = -EINTR;
7756 			break;
7757 		}
7758 
7759 		if (list_empty(&cc->migratepages)) {
7760 			cc->nr_migratepages = 0;
7761 			pfn = isolate_migratepages_range(cc, pfn, end);
7762 			if (!pfn) {
7763 				ret = -EINTR;
7764 				break;
7765 			}
7766 			tries = 0;
7767 		} else if (++tries == 5) {
7768 			ret = ret < 0 ? ret : -EBUSY;
7769 			break;
7770 		}
7771 
7772 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7773 							&cc->migratepages);
7774 		cc->nr_migratepages -= nr_reclaimed;
7775 
7776 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7777 				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
7778 	}
7779 	if (ret < 0) {
7780 		putback_movable_pages(&cc->migratepages);
7781 		return ret;
7782 	}
7783 	return 0;
7784 }
7785 
7786 /**
7787  * alloc_contig_range() -- tries to allocate given range of pages
7788  * @start:	start PFN to allocate
7789  * @end:	one-past-the-last PFN to allocate
7790  * @migratetype:	migratetype of the underlaying pageblocks (either
7791  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7792  *			in range must have the same migratetype and it must
7793  *			be either of the two.
7794  * @gfp_mask:	GFP mask to use during compaction
7795  *
7796  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7797  * aligned.  The PFN range must belong to a single zone.
7798  *
7799  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7800  * pageblocks in the range.  Once isolated, the pageblocks should not
7801  * be modified by others.
7802  *
7803  * Returns zero on success or negative error code.  On success all
7804  * pages which PFN is in [start, end) are allocated for the caller and
7805  * need to be freed with free_contig_range().
7806  */
7807 int alloc_contig_range(unsigned long start, unsigned long end,
7808 		       unsigned migratetype, gfp_t gfp_mask)
7809 {
7810 	unsigned long outer_start, outer_end;
7811 	unsigned int order;
7812 	int ret = 0;
7813 
7814 	struct compact_control cc = {
7815 		.nr_migratepages = 0,
7816 		.order = -1,
7817 		.zone = page_zone(pfn_to_page(start)),
7818 		.mode = MIGRATE_SYNC,
7819 		.ignore_skip_hint = true,
7820 		.no_set_skip_hint = true,
7821 		.gfp_mask = current_gfp_context(gfp_mask),
7822 	};
7823 	INIT_LIST_HEAD(&cc.migratepages);
7824 
7825 	/*
7826 	 * What we do here is we mark all pageblocks in range as
7827 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7828 	 * have different sizes, and due to the way page allocator
7829 	 * work, we align the range to biggest of the two pages so
7830 	 * that page allocator won't try to merge buddies from
7831 	 * different pageblocks and change MIGRATE_ISOLATE to some
7832 	 * other migration type.
7833 	 *
7834 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7835 	 * migrate the pages from an unaligned range (ie. pages that
7836 	 * we are interested in).  This will put all the pages in
7837 	 * range back to page allocator as MIGRATE_ISOLATE.
7838 	 *
7839 	 * When this is done, we take the pages in range from page
7840 	 * allocator removing them from the buddy system.  This way
7841 	 * page allocator will never consider using them.
7842 	 *
7843 	 * This lets us mark the pageblocks back as
7844 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7845 	 * aligned range but not in the unaligned, original range are
7846 	 * put back to page allocator so that buddy can use them.
7847 	 */
7848 
7849 	ret = start_isolate_page_range(pfn_max_align_down(start),
7850 				       pfn_max_align_up(end), migratetype,
7851 				       false);
7852 	if (ret)
7853 		return ret;
7854 
7855 	/*
7856 	 * In case of -EBUSY, we'd like to know which page causes problem.
7857 	 * So, just fall through. test_pages_isolated() has a tracepoint
7858 	 * which will report the busy page.
7859 	 *
7860 	 * It is possible that busy pages could become available before
7861 	 * the call to test_pages_isolated, and the range will actually be
7862 	 * allocated.  So, if we fall through be sure to clear ret so that
7863 	 * -EBUSY is not accidentally used or returned to caller.
7864 	 */
7865 	ret = __alloc_contig_migrate_range(&cc, start, end);
7866 	if (ret && ret != -EBUSY)
7867 		goto done;
7868 	ret =0;
7869 
7870 	/*
7871 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7872 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7873 	 * more, all pages in [start, end) are free in page allocator.
7874 	 * What we are going to do is to allocate all pages from
7875 	 * [start, end) (that is remove them from page allocator).
7876 	 *
7877 	 * The only problem is that pages at the beginning and at the
7878 	 * end of interesting range may be not aligned with pages that
7879 	 * page allocator holds, ie. they can be part of higher order
7880 	 * pages.  Because of this, we reserve the bigger range and
7881 	 * once this is done free the pages we are not interested in.
7882 	 *
7883 	 * We don't have to hold zone->lock here because the pages are
7884 	 * isolated thus they won't get removed from buddy.
7885 	 */
7886 
7887 	lru_add_drain_all();
7888 	drain_all_pages(cc.zone);
7889 
7890 	order = 0;
7891 	outer_start = start;
7892 	while (!PageBuddy(pfn_to_page(outer_start))) {
7893 		if (++order >= MAX_ORDER) {
7894 			outer_start = start;
7895 			break;
7896 		}
7897 		outer_start &= ~0UL << order;
7898 	}
7899 
7900 	if (outer_start != start) {
7901 		order = page_order(pfn_to_page(outer_start));
7902 
7903 		/*
7904 		 * outer_start page could be small order buddy page and
7905 		 * it doesn't include start page. Adjust outer_start
7906 		 * in this case to report failed page properly
7907 		 * on tracepoint in test_pages_isolated()
7908 		 */
7909 		if (outer_start + (1UL << order) <= start)
7910 			outer_start = start;
7911 	}
7912 
7913 	/* Make sure the range is really isolated. */
7914 	if (test_pages_isolated(outer_start, end, false)) {
7915 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7916 			__func__, outer_start, end);
7917 		ret = -EBUSY;
7918 		goto done;
7919 	}
7920 
7921 	/* Grab isolated pages from freelists. */
7922 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7923 	if (!outer_end) {
7924 		ret = -EBUSY;
7925 		goto done;
7926 	}
7927 
7928 	/* Free head and tail (if any) */
7929 	if (start != outer_start)
7930 		free_contig_range(outer_start, start - outer_start);
7931 	if (end != outer_end)
7932 		free_contig_range(end, outer_end - end);
7933 
7934 done:
7935 	undo_isolate_page_range(pfn_max_align_down(start),
7936 				pfn_max_align_up(end), migratetype);
7937 	return ret;
7938 }
7939 
7940 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7941 {
7942 	unsigned int count = 0;
7943 
7944 	for (; nr_pages--; pfn++) {
7945 		struct page *page = pfn_to_page(pfn);
7946 
7947 		count += page_count(page) != 1;
7948 		__free_page(page);
7949 	}
7950 	WARN(count != 0, "%d pages are still in use!\n", count);
7951 }
7952 #endif
7953 
7954 #if defined CONFIG_MEMORY_HOTPLUG || defined CONFIG_CMA
7955 /*
7956  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7957  * page high values need to be recalulated.
7958  */
7959 void __meminit zone_pcp_update(struct zone *zone)
7960 {
7961 	unsigned cpu;
7962 	mutex_lock(&pcp_batch_high_lock);
7963 	for_each_possible_cpu(cpu)
7964 		pageset_set_high_and_batch(zone,
7965 				per_cpu_ptr(zone->pageset, cpu));
7966 	mutex_unlock(&pcp_batch_high_lock);
7967 }
7968 #endif
7969 
7970 void zone_pcp_reset(struct zone *zone)
7971 {
7972 	unsigned long flags;
7973 	int cpu;
7974 	struct per_cpu_pageset *pset;
7975 
7976 	/* avoid races with drain_pages()  */
7977 	local_irq_save(flags);
7978 	if (zone->pageset != &boot_pageset) {
7979 		for_each_online_cpu(cpu) {
7980 			pset = per_cpu_ptr(zone->pageset, cpu);
7981 			drain_zonestat(zone, pset);
7982 		}
7983 		free_percpu(zone->pageset);
7984 		zone->pageset = &boot_pageset;
7985 	}
7986 	local_irq_restore(flags);
7987 }
7988 
7989 #ifdef CONFIG_MEMORY_HOTREMOVE
7990 /*
7991  * All pages in the range must be in a single zone and isolated
7992  * before calling this.
7993  */
7994 void
7995 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7996 {
7997 	struct page *page;
7998 	struct zone *zone;
7999 	unsigned int order, i;
8000 	unsigned long pfn;
8001 	unsigned long flags;
8002 	/* find the first valid pfn */
8003 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
8004 		if (pfn_valid(pfn))
8005 			break;
8006 	if (pfn == end_pfn)
8007 		return;
8008 	offline_mem_sections(pfn, end_pfn);
8009 	zone = page_zone(pfn_to_page(pfn));
8010 	spin_lock_irqsave(&zone->lock, flags);
8011 	pfn = start_pfn;
8012 	while (pfn < end_pfn) {
8013 		if (!pfn_valid(pfn)) {
8014 			pfn++;
8015 			continue;
8016 		}
8017 		page = pfn_to_page(pfn);
8018 		/*
8019 		 * The HWPoisoned page may be not in buddy system, and
8020 		 * page_count() is not 0.
8021 		 */
8022 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8023 			pfn++;
8024 			SetPageReserved(page);
8025 			continue;
8026 		}
8027 
8028 		BUG_ON(page_count(page));
8029 		BUG_ON(!PageBuddy(page));
8030 		order = page_order(page);
8031 #ifdef CONFIG_DEBUG_VM
8032 		pr_info("remove from free list %lx %d %lx\n",
8033 			pfn, 1 << order, end_pfn);
8034 #endif
8035 		list_del(&page->lru);
8036 		rmv_page_order(page);
8037 		zone->free_area[order].nr_free--;
8038 		for (i = 0; i < (1 << order); i++)
8039 			SetPageReserved((page+i));
8040 		pfn += (1 << order);
8041 	}
8042 	spin_unlock_irqrestore(&zone->lock, flags);
8043 }
8044 #endif
8045 
8046 bool is_free_buddy_page(struct page *page)
8047 {
8048 	struct zone *zone = page_zone(page);
8049 	unsigned long pfn = page_to_pfn(page);
8050 	unsigned long flags;
8051 	unsigned int order;
8052 
8053 	spin_lock_irqsave(&zone->lock, flags);
8054 	for (order = 0; order < MAX_ORDER; order++) {
8055 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8056 
8057 		if (PageBuddy(page_head) && page_order(page_head) >= order)
8058 			break;
8059 	}
8060 	spin_unlock_irqrestore(&zone->lock, flags);
8061 
8062 	return order < MAX_ORDER;
8063 }
8064