xref: /openbmc/linux/mm/page_alloc.c (revision a44e4f3a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76 #include "shuffle.h"
77 
78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
79 static DEFINE_MUTEX(pcp_batch_high_lock);
80 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
81 
82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
83 DEFINE_PER_CPU(int, numa_node);
84 EXPORT_PER_CPU_SYMBOL(numa_node);
85 #endif
86 
87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
88 
89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
90 /*
91  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
92  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
93  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
94  * defined in <linux/topology.h>.
95  */
96 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
97 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
98 int _node_numa_mem_[MAX_NUMNODES];
99 #endif
100 
101 /* work_structs for global per-cpu drains */
102 struct pcpu_drain {
103 	struct zone *zone;
104 	struct work_struct work;
105 };
106 DEFINE_MUTEX(pcpu_drain_mutex);
107 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
108 
109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110 volatile unsigned long latent_entropy __latent_entropy;
111 EXPORT_SYMBOL(latent_entropy);
112 #endif
113 
114 /*
115  * Array of node states.
116  */
117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 	[N_POSSIBLE] = NODE_MASK_ALL,
119 	[N_ONLINE] = { { [0] = 1UL } },
120 #ifndef CONFIG_NUMA
121 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
122 #ifdef CONFIG_HIGHMEM
123 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
124 #endif
125 	[N_MEMORY] = { { [0] = 1UL } },
126 	[N_CPU] = { { [0] = 1UL } },
127 #endif	/* NUMA */
128 };
129 EXPORT_SYMBOL(node_states);
130 
131 atomic_long_t _totalram_pages __read_mostly;
132 EXPORT_SYMBOL(_totalram_pages);
133 unsigned long totalreserve_pages __read_mostly;
134 unsigned long totalcma_pages __read_mostly;
135 
136 int percpu_pagelist_fraction;
137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140 #else
141 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142 #endif
143 EXPORT_SYMBOL(init_on_alloc);
144 
145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146 DEFINE_STATIC_KEY_TRUE(init_on_free);
147 #else
148 DEFINE_STATIC_KEY_FALSE(init_on_free);
149 #endif
150 EXPORT_SYMBOL(init_on_free);
151 
152 static int __init early_init_on_alloc(char *buf)
153 {
154 	int ret;
155 	bool bool_result;
156 
157 	if (!buf)
158 		return -EINVAL;
159 	ret = kstrtobool(buf, &bool_result);
160 	if (bool_result && page_poisoning_enabled())
161 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 	if (bool_result)
163 		static_branch_enable(&init_on_alloc);
164 	else
165 		static_branch_disable(&init_on_alloc);
166 	return ret;
167 }
168 early_param("init_on_alloc", early_init_on_alloc);
169 
170 static int __init early_init_on_free(char *buf)
171 {
172 	int ret;
173 	bool bool_result;
174 
175 	if (!buf)
176 		return -EINVAL;
177 	ret = kstrtobool(buf, &bool_result);
178 	if (bool_result && page_poisoning_enabled())
179 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 	if (bool_result)
181 		static_branch_enable(&init_on_free);
182 	else
183 		static_branch_disable(&init_on_free);
184 	return ret;
185 }
186 early_param("init_on_free", early_init_on_free);
187 
188 /*
189  * A cached value of the page's pageblock's migratetype, used when the page is
190  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192  * Also the migratetype set in the page does not necessarily match the pcplist
193  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194  * other index - this ensures that it will be put on the correct CMA freelist.
195  */
196 static inline int get_pcppage_migratetype(struct page *page)
197 {
198 	return page->index;
199 }
200 
201 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
202 {
203 	page->index = migratetype;
204 }
205 
206 #ifdef CONFIG_PM_SLEEP
207 /*
208  * The following functions are used by the suspend/hibernate code to temporarily
209  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210  * while devices are suspended.  To avoid races with the suspend/hibernate code,
211  * they should always be called with system_transition_mutex held
212  * (gfp_allowed_mask also should only be modified with system_transition_mutex
213  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214  * with that modification).
215  */
216 
217 static gfp_t saved_gfp_mask;
218 
219 void pm_restore_gfp_mask(void)
220 {
221 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
222 	if (saved_gfp_mask) {
223 		gfp_allowed_mask = saved_gfp_mask;
224 		saved_gfp_mask = 0;
225 	}
226 }
227 
228 void pm_restrict_gfp_mask(void)
229 {
230 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
231 	WARN_ON(saved_gfp_mask);
232 	saved_gfp_mask = gfp_allowed_mask;
233 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
234 }
235 
236 bool pm_suspended_storage(void)
237 {
238 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
239 		return false;
240 	return true;
241 }
242 #endif /* CONFIG_PM_SLEEP */
243 
244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
245 unsigned int pageblock_order __read_mostly;
246 #endif
247 
248 static void __free_pages_ok(struct page *page, unsigned int order);
249 
250 /*
251  * results with 256, 32 in the lowmem_reserve sysctl:
252  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253  *	1G machine -> (16M dma, 784M normal, 224M high)
254  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
256  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
257  *
258  * TBD: should special case ZONE_DMA32 machines here - in those we normally
259  * don't need any ZONE_NORMAL reservation
260  */
261 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
262 #ifdef CONFIG_ZONE_DMA
263 	[ZONE_DMA] = 256,
264 #endif
265 #ifdef CONFIG_ZONE_DMA32
266 	[ZONE_DMA32] = 256,
267 #endif
268 	[ZONE_NORMAL] = 32,
269 #ifdef CONFIG_HIGHMEM
270 	[ZONE_HIGHMEM] = 0,
271 #endif
272 	[ZONE_MOVABLE] = 0,
273 };
274 
275 static char * const zone_names[MAX_NR_ZONES] = {
276 #ifdef CONFIG_ZONE_DMA
277 	 "DMA",
278 #endif
279 #ifdef CONFIG_ZONE_DMA32
280 	 "DMA32",
281 #endif
282 	 "Normal",
283 #ifdef CONFIG_HIGHMEM
284 	 "HighMem",
285 #endif
286 	 "Movable",
287 #ifdef CONFIG_ZONE_DEVICE
288 	 "Device",
289 #endif
290 };
291 
292 const char * const migratetype_names[MIGRATE_TYPES] = {
293 	"Unmovable",
294 	"Movable",
295 	"Reclaimable",
296 	"HighAtomic",
297 #ifdef CONFIG_CMA
298 	"CMA",
299 #endif
300 #ifdef CONFIG_MEMORY_ISOLATION
301 	"Isolate",
302 #endif
303 };
304 
305 compound_page_dtor * const compound_page_dtors[] = {
306 	NULL,
307 	free_compound_page,
308 #ifdef CONFIG_HUGETLB_PAGE
309 	free_huge_page,
310 #endif
311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 	free_transhuge_page,
313 #endif
314 };
315 
316 int min_free_kbytes = 1024;
317 int user_min_free_kbytes = -1;
318 #ifdef CONFIG_DISCONTIGMEM
319 /*
320  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321  * are not on separate NUMA nodes. Functionally this works but with
322  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323  * quite small. By default, do not boost watermarks on discontigmem as in
324  * many cases very high-order allocations like THP are likely to be
325  * unsupported and the premature reclaim offsets the advantage of long-term
326  * fragmentation avoidance.
327  */
328 int watermark_boost_factor __read_mostly;
329 #else
330 int watermark_boost_factor __read_mostly = 15000;
331 #endif
332 int watermark_scale_factor = 10;
333 
334 static unsigned long nr_kernel_pages __initdata;
335 static unsigned long nr_all_pages __initdata;
336 static unsigned long dma_reserve __initdata;
337 
338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341 static unsigned long required_kernelcore __initdata;
342 static unsigned long required_kernelcore_percent __initdata;
343 static unsigned long required_movablecore __initdata;
344 static unsigned long required_movablecore_percent __initdata;
345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346 static bool mirrored_kernelcore __meminitdata;
347 
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349 int movable_zone;
350 EXPORT_SYMBOL(movable_zone);
351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
352 
353 #if MAX_NUMNODES > 1
354 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
355 unsigned int nr_online_nodes __read_mostly = 1;
356 EXPORT_SYMBOL(nr_node_ids);
357 EXPORT_SYMBOL(nr_online_nodes);
358 #endif
359 
360 int page_group_by_mobility_disabled __read_mostly;
361 
362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
363 /*
364  * During boot we initialize deferred pages on-demand, as needed, but once
365  * page_alloc_init_late() has finished, the deferred pages are all initialized,
366  * and we can permanently disable that path.
367  */
368 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
369 
370 /*
371  * Calling kasan_free_pages() only after deferred memory initialization
372  * has completed. Poisoning pages during deferred memory init will greatly
373  * lengthen the process and cause problem in large memory systems as the
374  * deferred pages initialization is done with interrupt disabled.
375  *
376  * Assuming that there will be no reference to those newly initialized
377  * pages before they are ever allocated, this should have no effect on
378  * KASAN memory tracking as the poison will be properly inserted at page
379  * allocation time. The only corner case is when pages are allocated by
380  * on-demand allocation and then freed again before the deferred pages
381  * initialization is done, but this is not likely to happen.
382  */
383 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384 {
385 	if (!static_branch_unlikely(&deferred_pages))
386 		kasan_free_pages(page, order);
387 }
388 
389 /* Returns true if the struct page for the pfn is uninitialised */
390 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
391 {
392 	int nid = early_pfn_to_nid(pfn);
393 
394 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
395 		return true;
396 
397 	return false;
398 }
399 
400 /*
401  * Returns true when the remaining initialisation should be deferred until
402  * later in the boot cycle when it can be parallelised.
403  */
404 static bool __meminit
405 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
406 {
407 	static unsigned long prev_end_pfn, nr_initialised;
408 
409 	/*
410 	 * prev_end_pfn static that contains the end of previous zone
411 	 * No need to protect because called very early in boot before smp_init.
412 	 */
413 	if (prev_end_pfn != end_pfn) {
414 		prev_end_pfn = end_pfn;
415 		nr_initialised = 0;
416 	}
417 
418 	/* Always populate low zones for address-constrained allocations */
419 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
420 		return false;
421 
422 	/*
423 	 * We start only with one section of pages, more pages are added as
424 	 * needed until the rest of deferred pages are initialized.
425 	 */
426 	nr_initialised++;
427 	if ((nr_initialised > PAGES_PER_SECTION) &&
428 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 		NODE_DATA(nid)->first_deferred_pfn = pfn;
430 		return true;
431 	}
432 	return false;
433 }
434 #else
435 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
436 
437 static inline bool early_page_uninitialised(unsigned long pfn)
438 {
439 	return false;
440 }
441 
442 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
443 {
444 	return false;
445 }
446 #endif
447 
448 /* Return a pointer to the bitmap storing bits affecting a block of pages */
449 static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 							unsigned long pfn)
451 {
452 #ifdef CONFIG_SPARSEMEM
453 	return section_to_usemap(__pfn_to_section(pfn));
454 #else
455 	return page_zone(page)->pageblock_flags;
456 #endif /* CONFIG_SPARSEMEM */
457 }
458 
459 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460 {
461 #ifdef CONFIG_SPARSEMEM
462 	pfn &= (PAGES_PER_SECTION-1);
463 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
464 #else
465 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
466 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467 #endif /* CONFIG_SPARSEMEM */
468 }
469 
470 /**
471  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472  * @page: The page within the block of interest
473  * @pfn: The target page frame number
474  * @end_bitidx: The last bit of interest to retrieve
475  * @mask: mask of bits that the caller is interested in
476  *
477  * Return: pageblock_bits flags
478  */
479 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
480 					unsigned long pfn,
481 					unsigned long end_bitidx,
482 					unsigned long mask)
483 {
484 	unsigned long *bitmap;
485 	unsigned long bitidx, word_bitidx;
486 	unsigned long word;
487 
488 	bitmap = get_pageblock_bitmap(page, pfn);
489 	bitidx = pfn_to_bitidx(page, pfn);
490 	word_bitidx = bitidx / BITS_PER_LONG;
491 	bitidx &= (BITS_PER_LONG-1);
492 
493 	word = bitmap[word_bitidx];
494 	bitidx += end_bitidx;
495 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
496 }
497 
498 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
499 					unsigned long end_bitidx,
500 					unsigned long mask)
501 {
502 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
503 }
504 
505 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
506 {
507 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
508 }
509 
510 /**
511  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512  * @page: The page within the block of interest
513  * @flags: The flags to set
514  * @pfn: The target page frame number
515  * @end_bitidx: The last bit of interest
516  * @mask: mask of bits that the caller is interested in
517  */
518 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
519 					unsigned long pfn,
520 					unsigned long end_bitidx,
521 					unsigned long mask)
522 {
523 	unsigned long *bitmap;
524 	unsigned long bitidx, word_bitidx;
525 	unsigned long old_word, word;
526 
527 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
528 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
529 
530 	bitmap = get_pageblock_bitmap(page, pfn);
531 	bitidx = pfn_to_bitidx(page, pfn);
532 	word_bitidx = bitidx / BITS_PER_LONG;
533 	bitidx &= (BITS_PER_LONG-1);
534 
535 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536 
537 	bitidx += end_bitidx;
538 	mask <<= (BITS_PER_LONG - bitidx - 1);
539 	flags <<= (BITS_PER_LONG - bitidx - 1);
540 
541 	word = READ_ONCE(bitmap[word_bitidx]);
542 	for (;;) {
543 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
544 		if (word == old_word)
545 			break;
546 		word = old_word;
547 	}
548 }
549 
550 void set_pageblock_migratetype(struct page *page, int migratetype)
551 {
552 	if (unlikely(page_group_by_mobility_disabled &&
553 		     migratetype < MIGRATE_PCPTYPES))
554 		migratetype = MIGRATE_UNMOVABLE;
555 
556 	set_pageblock_flags_group(page, (unsigned long)migratetype,
557 					PB_migrate, PB_migrate_end);
558 }
559 
560 #ifdef CONFIG_DEBUG_VM
561 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
562 {
563 	int ret = 0;
564 	unsigned seq;
565 	unsigned long pfn = page_to_pfn(page);
566 	unsigned long sp, start_pfn;
567 
568 	do {
569 		seq = zone_span_seqbegin(zone);
570 		start_pfn = zone->zone_start_pfn;
571 		sp = zone->spanned_pages;
572 		if (!zone_spans_pfn(zone, pfn))
573 			ret = 1;
574 	} while (zone_span_seqretry(zone, seq));
575 
576 	if (ret)
577 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 			pfn, zone_to_nid(zone), zone->name,
579 			start_pfn, start_pfn + sp);
580 
581 	return ret;
582 }
583 
584 static int page_is_consistent(struct zone *zone, struct page *page)
585 {
586 	if (!pfn_valid_within(page_to_pfn(page)))
587 		return 0;
588 	if (zone != page_zone(page))
589 		return 0;
590 
591 	return 1;
592 }
593 /*
594  * Temporary debugging check for pages not lying within a given zone.
595  */
596 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
597 {
598 	if (page_outside_zone_boundaries(zone, page))
599 		return 1;
600 	if (!page_is_consistent(zone, page))
601 		return 1;
602 
603 	return 0;
604 }
605 #else
606 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
607 {
608 	return 0;
609 }
610 #endif
611 
612 static void bad_page(struct page *page, const char *reason,
613 		unsigned long bad_flags)
614 {
615 	static unsigned long resume;
616 	static unsigned long nr_shown;
617 	static unsigned long nr_unshown;
618 
619 	/*
620 	 * Allow a burst of 60 reports, then keep quiet for that minute;
621 	 * or allow a steady drip of one report per second.
622 	 */
623 	if (nr_shown == 60) {
624 		if (time_before(jiffies, resume)) {
625 			nr_unshown++;
626 			goto out;
627 		}
628 		if (nr_unshown) {
629 			pr_alert(
630 			      "BUG: Bad page state: %lu messages suppressed\n",
631 				nr_unshown);
632 			nr_unshown = 0;
633 		}
634 		nr_shown = 0;
635 	}
636 	if (nr_shown++ == 0)
637 		resume = jiffies + 60 * HZ;
638 
639 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
640 		current->comm, page_to_pfn(page));
641 	__dump_page(page, reason);
642 	bad_flags &= page->flags;
643 	if (bad_flags)
644 		pr_alert("bad because of flags: %#lx(%pGp)\n",
645 						bad_flags, &bad_flags);
646 	dump_page_owner(page);
647 
648 	print_modules();
649 	dump_stack();
650 out:
651 	/* Leave bad fields for debug, except PageBuddy could make trouble */
652 	page_mapcount_reset(page); /* remove PageBuddy */
653 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
654 }
655 
656 /*
657  * Higher-order pages are called "compound pages".  They are structured thusly:
658  *
659  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
660  *
661  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
663  *
664  * The first tail page's ->compound_dtor holds the offset in array of compound
665  * page destructors. See compound_page_dtors.
666  *
667  * The first tail page's ->compound_order holds the order of allocation.
668  * This usage means that zero-order pages may not be compound.
669  */
670 
671 void free_compound_page(struct page *page)
672 {
673 	mem_cgroup_uncharge(page);
674 	__free_pages_ok(page, compound_order(page));
675 }
676 
677 void prep_compound_page(struct page *page, unsigned int order)
678 {
679 	int i;
680 	int nr_pages = 1 << order;
681 
682 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
683 	set_compound_order(page, order);
684 	__SetPageHead(page);
685 	for (i = 1; i < nr_pages; i++) {
686 		struct page *p = page + i;
687 		set_page_count(p, 0);
688 		p->mapping = TAIL_MAPPING;
689 		set_compound_head(p, page);
690 	}
691 	atomic_set(compound_mapcount_ptr(page), -1);
692 }
693 
694 #ifdef CONFIG_DEBUG_PAGEALLOC
695 unsigned int _debug_guardpage_minorder;
696 
697 #ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
698 DEFINE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
699 #else
700 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
701 #endif
702 EXPORT_SYMBOL(_debug_pagealloc_enabled);
703 
704 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
705 
706 static int __init early_debug_pagealloc(char *buf)
707 {
708 	bool enable = false;
709 
710 	if (kstrtobool(buf, &enable))
711 		return -EINVAL;
712 
713 	if (enable)
714 		static_branch_enable(&_debug_pagealloc_enabled);
715 
716 	return 0;
717 }
718 early_param("debug_pagealloc", early_debug_pagealloc);
719 
720 static void init_debug_guardpage(void)
721 {
722 	if (!debug_pagealloc_enabled())
723 		return;
724 
725 	if (!debug_guardpage_minorder())
726 		return;
727 
728 	static_branch_enable(&_debug_guardpage_enabled);
729 }
730 
731 static int __init debug_guardpage_minorder_setup(char *buf)
732 {
733 	unsigned long res;
734 
735 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
736 		pr_err("Bad debug_guardpage_minorder value\n");
737 		return 0;
738 	}
739 	_debug_guardpage_minorder = res;
740 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
741 	return 0;
742 }
743 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
744 
745 static inline bool set_page_guard(struct zone *zone, struct page *page,
746 				unsigned int order, int migratetype)
747 {
748 	if (!debug_guardpage_enabled())
749 		return false;
750 
751 	if (order >= debug_guardpage_minorder())
752 		return false;
753 
754 	__SetPageGuard(page);
755 	INIT_LIST_HEAD(&page->lru);
756 	set_page_private(page, order);
757 	/* Guard pages are not available for any usage */
758 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
759 
760 	return true;
761 }
762 
763 static inline void clear_page_guard(struct zone *zone, struct page *page,
764 				unsigned int order, int migratetype)
765 {
766 	if (!debug_guardpage_enabled())
767 		return;
768 
769 	__ClearPageGuard(page);
770 
771 	set_page_private(page, 0);
772 	if (!is_migrate_isolate(migratetype))
773 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
774 }
775 #else
776 static inline bool set_page_guard(struct zone *zone, struct page *page,
777 			unsigned int order, int migratetype) { return false; }
778 static inline void clear_page_guard(struct zone *zone, struct page *page,
779 				unsigned int order, int migratetype) {}
780 #endif
781 
782 static inline void set_page_order(struct page *page, unsigned int order)
783 {
784 	set_page_private(page, order);
785 	__SetPageBuddy(page);
786 }
787 
788 /*
789  * This function checks whether a page is free && is the buddy
790  * we can coalesce a page and its buddy if
791  * (a) the buddy is not in a hole (check before calling!) &&
792  * (b) the buddy is in the buddy system &&
793  * (c) a page and its buddy have the same order &&
794  * (d) a page and its buddy are in the same zone.
795  *
796  * For recording whether a page is in the buddy system, we set PageBuddy.
797  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
798  *
799  * For recording page's order, we use page_private(page).
800  */
801 static inline int page_is_buddy(struct page *page, struct page *buddy,
802 							unsigned int order)
803 {
804 	if (page_is_guard(buddy) && page_order(buddy) == order) {
805 		if (page_zone_id(page) != page_zone_id(buddy))
806 			return 0;
807 
808 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
809 
810 		return 1;
811 	}
812 
813 	if (PageBuddy(buddy) && page_order(buddy) == order) {
814 		/*
815 		 * zone check is done late to avoid uselessly
816 		 * calculating zone/node ids for pages that could
817 		 * never merge.
818 		 */
819 		if (page_zone_id(page) != page_zone_id(buddy))
820 			return 0;
821 
822 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
823 
824 		return 1;
825 	}
826 	return 0;
827 }
828 
829 #ifdef CONFIG_COMPACTION
830 static inline struct capture_control *task_capc(struct zone *zone)
831 {
832 	struct capture_control *capc = current->capture_control;
833 
834 	return capc &&
835 		!(current->flags & PF_KTHREAD) &&
836 		!capc->page &&
837 		capc->cc->zone == zone &&
838 		capc->cc->direct_compaction ? capc : NULL;
839 }
840 
841 static inline bool
842 compaction_capture(struct capture_control *capc, struct page *page,
843 		   int order, int migratetype)
844 {
845 	if (!capc || order != capc->cc->order)
846 		return false;
847 
848 	/* Do not accidentally pollute CMA or isolated regions*/
849 	if (is_migrate_cma(migratetype) ||
850 	    is_migrate_isolate(migratetype))
851 		return false;
852 
853 	/*
854 	 * Do not let lower order allocations polluate a movable pageblock.
855 	 * This might let an unmovable request use a reclaimable pageblock
856 	 * and vice-versa but no more than normal fallback logic which can
857 	 * have trouble finding a high-order free page.
858 	 */
859 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
860 		return false;
861 
862 	capc->page = page;
863 	return true;
864 }
865 
866 #else
867 static inline struct capture_control *task_capc(struct zone *zone)
868 {
869 	return NULL;
870 }
871 
872 static inline bool
873 compaction_capture(struct capture_control *capc, struct page *page,
874 		   int order, int migratetype)
875 {
876 	return false;
877 }
878 #endif /* CONFIG_COMPACTION */
879 
880 /*
881  * Freeing function for a buddy system allocator.
882  *
883  * The concept of a buddy system is to maintain direct-mapped table
884  * (containing bit values) for memory blocks of various "orders".
885  * The bottom level table contains the map for the smallest allocatable
886  * units of memory (here, pages), and each level above it describes
887  * pairs of units from the levels below, hence, "buddies".
888  * At a high level, all that happens here is marking the table entry
889  * at the bottom level available, and propagating the changes upward
890  * as necessary, plus some accounting needed to play nicely with other
891  * parts of the VM system.
892  * At each level, we keep a list of pages, which are heads of continuous
893  * free pages of length of (1 << order) and marked with PageBuddy.
894  * Page's order is recorded in page_private(page) field.
895  * So when we are allocating or freeing one, we can derive the state of the
896  * other.  That is, if we allocate a small block, and both were
897  * free, the remainder of the region must be split into blocks.
898  * If a block is freed, and its buddy is also free, then this
899  * triggers coalescing into a block of larger size.
900  *
901  * -- nyc
902  */
903 
904 static inline void __free_one_page(struct page *page,
905 		unsigned long pfn,
906 		struct zone *zone, unsigned int order,
907 		int migratetype)
908 {
909 	unsigned long combined_pfn;
910 	unsigned long uninitialized_var(buddy_pfn);
911 	struct page *buddy;
912 	unsigned int max_order;
913 	struct capture_control *capc = task_capc(zone);
914 
915 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
916 
917 	VM_BUG_ON(!zone_is_initialized(zone));
918 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
919 
920 	VM_BUG_ON(migratetype == -1);
921 	if (likely(!is_migrate_isolate(migratetype)))
922 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
923 
924 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
925 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
926 
927 continue_merging:
928 	while (order < max_order - 1) {
929 		if (compaction_capture(capc, page, order, migratetype)) {
930 			__mod_zone_freepage_state(zone, -(1 << order),
931 								migratetype);
932 			return;
933 		}
934 		buddy_pfn = __find_buddy_pfn(pfn, order);
935 		buddy = page + (buddy_pfn - pfn);
936 
937 		if (!pfn_valid_within(buddy_pfn))
938 			goto done_merging;
939 		if (!page_is_buddy(page, buddy, order))
940 			goto done_merging;
941 		/*
942 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
943 		 * merge with it and move up one order.
944 		 */
945 		if (page_is_guard(buddy))
946 			clear_page_guard(zone, buddy, order, migratetype);
947 		else
948 			del_page_from_free_area(buddy, &zone->free_area[order]);
949 		combined_pfn = buddy_pfn & pfn;
950 		page = page + (combined_pfn - pfn);
951 		pfn = combined_pfn;
952 		order++;
953 	}
954 	if (max_order < MAX_ORDER) {
955 		/* If we are here, it means order is >= pageblock_order.
956 		 * We want to prevent merge between freepages on isolate
957 		 * pageblock and normal pageblock. Without this, pageblock
958 		 * isolation could cause incorrect freepage or CMA accounting.
959 		 *
960 		 * We don't want to hit this code for the more frequent
961 		 * low-order merging.
962 		 */
963 		if (unlikely(has_isolate_pageblock(zone))) {
964 			int buddy_mt;
965 
966 			buddy_pfn = __find_buddy_pfn(pfn, order);
967 			buddy = page + (buddy_pfn - pfn);
968 			buddy_mt = get_pageblock_migratetype(buddy);
969 
970 			if (migratetype != buddy_mt
971 					&& (is_migrate_isolate(migratetype) ||
972 						is_migrate_isolate(buddy_mt)))
973 				goto done_merging;
974 		}
975 		max_order++;
976 		goto continue_merging;
977 	}
978 
979 done_merging:
980 	set_page_order(page, order);
981 
982 	/*
983 	 * If this is not the largest possible page, check if the buddy
984 	 * of the next-highest order is free. If it is, it's possible
985 	 * that pages are being freed that will coalesce soon. In case,
986 	 * that is happening, add the free page to the tail of the list
987 	 * so it's less likely to be used soon and more likely to be merged
988 	 * as a higher order page
989 	 */
990 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
991 			&& !is_shuffle_order(order)) {
992 		struct page *higher_page, *higher_buddy;
993 		combined_pfn = buddy_pfn & pfn;
994 		higher_page = page + (combined_pfn - pfn);
995 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
996 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
997 		if (pfn_valid_within(buddy_pfn) &&
998 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
999 			add_to_free_area_tail(page, &zone->free_area[order],
1000 					      migratetype);
1001 			return;
1002 		}
1003 	}
1004 
1005 	if (is_shuffle_order(order))
1006 		add_to_free_area_random(page, &zone->free_area[order],
1007 				migratetype);
1008 	else
1009 		add_to_free_area(page, &zone->free_area[order], migratetype);
1010 
1011 }
1012 
1013 /*
1014  * A bad page could be due to a number of fields. Instead of multiple branches,
1015  * try and check multiple fields with one check. The caller must do a detailed
1016  * check if necessary.
1017  */
1018 static inline bool page_expected_state(struct page *page,
1019 					unsigned long check_flags)
1020 {
1021 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1022 		return false;
1023 
1024 	if (unlikely((unsigned long)page->mapping |
1025 			page_ref_count(page) |
1026 #ifdef CONFIG_MEMCG
1027 			(unsigned long)page->mem_cgroup |
1028 #endif
1029 			(page->flags & check_flags)))
1030 		return false;
1031 
1032 	return true;
1033 }
1034 
1035 static void free_pages_check_bad(struct page *page)
1036 {
1037 	const char *bad_reason;
1038 	unsigned long bad_flags;
1039 
1040 	bad_reason = NULL;
1041 	bad_flags = 0;
1042 
1043 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1044 		bad_reason = "nonzero mapcount";
1045 	if (unlikely(page->mapping != NULL))
1046 		bad_reason = "non-NULL mapping";
1047 	if (unlikely(page_ref_count(page) != 0))
1048 		bad_reason = "nonzero _refcount";
1049 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1050 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1051 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1052 	}
1053 #ifdef CONFIG_MEMCG
1054 	if (unlikely(page->mem_cgroup))
1055 		bad_reason = "page still charged to cgroup";
1056 #endif
1057 	bad_page(page, bad_reason, bad_flags);
1058 }
1059 
1060 static inline int free_pages_check(struct page *page)
1061 {
1062 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1063 		return 0;
1064 
1065 	/* Something has gone sideways, find it */
1066 	free_pages_check_bad(page);
1067 	return 1;
1068 }
1069 
1070 static int free_tail_pages_check(struct page *head_page, struct page *page)
1071 {
1072 	int ret = 1;
1073 
1074 	/*
1075 	 * We rely page->lru.next never has bit 0 set, unless the page
1076 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1077 	 */
1078 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1079 
1080 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1081 		ret = 0;
1082 		goto out;
1083 	}
1084 	switch (page - head_page) {
1085 	case 1:
1086 		/* the first tail page: ->mapping may be compound_mapcount() */
1087 		if (unlikely(compound_mapcount(page))) {
1088 			bad_page(page, "nonzero compound_mapcount", 0);
1089 			goto out;
1090 		}
1091 		break;
1092 	case 2:
1093 		/*
1094 		 * the second tail page: ->mapping is
1095 		 * deferred_list.next -- ignore value.
1096 		 */
1097 		break;
1098 	default:
1099 		if (page->mapping != TAIL_MAPPING) {
1100 			bad_page(page, "corrupted mapping in tail page", 0);
1101 			goto out;
1102 		}
1103 		break;
1104 	}
1105 	if (unlikely(!PageTail(page))) {
1106 		bad_page(page, "PageTail not set", 0);
1107 		goto out;
1108 	}
1109 	if (unlikely(compound_head(page) != head_page)) {
1110 		bad_page(page, "compound_head not consistent", 0);
1111 		goto out;
1112 	}
1113 	ret = 0;
1114 out:
1115 	page->mapping = NULL;
1116 	clear_compound_head(page);
1117 	return ret;
1118 }
1119 
1120 static void kernel_init_free_pages(struct page *page, int numpages)
1121 {
1122 	int i;
1123 
1124 	for (i = 0; i < numpages; i++)
1125 		clear_highpage(page + i);
1126 }
1127 
1128 static __always_inline bool free_pages_prepare(struct page *page,
1129 					unsigned int order, bool check_free)
1130 {
1131 	int bad = 0;
1132 
1133 	VM_BUG_ON_PAGE(PageTail(page), page);
1134 
1135 	trace_mm_page_free(page, order);
1136 
1137 	/*
1138 	 * Check tail pages before head page information is cleared to
1139 	 * avoid checking PageCompound for order-0 pages.
1140 	 */
1141 	if (unlikely(order)) {
1142 		bool compound = PageCompound(page);
1143 		int i;
1144 
1145 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1146 
1147 		if (compound)
1148 			ClearPageDoubleMap(page);
1149 		for (i = 1; i < (1 << order); i++) {
1150 			if (compound)
1151 				bad += free_tail_pages_check(page, page + i);
1152 			if (unlikely(free_pages_check(page + i))) {
1153 				bad++;
1154 				continue;
1155 			}
1156 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1157 		}
1158 	}
1159 	if (PageMappingFlags(page))
1160 		page->mapping = NULL;
1161 	if (memcg_kmem_enabled() && PageKmemcg(page))
1162 		__memcg_kmem_uncharge(page, order);
1163 	if (check_free)
1164 		bad += free_pages_check(page);
1165 	if (bad)
1166 		return false;
1167 
1168 	page_cpupid_reset_last(page);
1169 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1170 	reset_page_owner(page, order);
1171 
1172 	if (!PageHighMem(page)) {
1173 		debug_check_no_locks_freed(page_address(page),
1174 					   PAGE_SIZE << order);
1175 		debug_check_no_obj_freed(page_address(page),
1176 					   PAGE_SIZE << order);
1177 	}
1178 	if (want_init_on_free())
1179 		kernel_init_free_pages(page, 1 << order);
1180 
1181 	kernel_poison_pages(page, 1 << order, 0);
1182 	/*
1183 	 * arch_free_page() can make the page's contents inaccessible.  s390
1184 	 * does this.  So nothing which can access the page's contents should
1185 	 * happen after this.
1186 	 */
1187 	arch_free_page(page, order);
1188 
1189 	if (debug_pagealloc_enabled())
1190 		kernel_map_pages(page, 1 << order, 0);
1191 
1192 	kasan_free_nondeferred_pages(page, order);
1193 
1194 	return true;
1195 }
1196 
1197 #ifdef CONFIG_DEBUG_VM
1198 /*
1199  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1200  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1201  * moved from pcp lists to free lists.
1202  */
1203 static bool free_pcp_prepare(struct page *page)
1204 {
1205 	return free_pages_prepare(page, 0, true);
1206 }
1207 
1208 static bool bulkfree_pcp_prepare(struct page *page)
1209 {
1210 	if (debug_pagealloc_enabled())
1211 		return free_pages_check(page);
1212 	else
1213 		return false;
1214 }
1215 #else
1216 /*
1217  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1218  * moving from pcp lists to free list in order to reduce overhead. With
1219  * debug_pagealloc enabled, they are checked also immediately when being freed
1220  * to the pcp lists.
1221  */
1222 static bool free_pcp_prepare(struct page *page)
1223 {
1224 	if (debug_pagealloc_enabled())
1225 		return free_pages_prepare(page, 0, true);
1226 	else
1227 		return free_pages_prepare(page, 0, false);
1228 }
1229 
1230 static bool bulkfree_pcp_prepare(struct page *page)
1231 {
1232 	return free_pages_check(page);
1233 }
1234 #endif /* CONFIG_DEBUG_VM */
1235 
1236 static inline void prefetch_buddy(struct page *page)
1237 {
1238 	unsigned long pfn = page_to_pfn(page);
1239 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1240 	struct page *buddy = page + (buddy_pfn - pfn);
1241 
1242 	prefetch(buddy);
1243 }
1244 
1245 /*
1246  * Frees a number of pages from the PCP lists
1247  * Assumes all pages on list are in same zone, and of same order.
1248  * count is the number of pages to free.
1249  *
1250  * If the zone was previously in an "all pages pinned" state then look to
1251  * see if this freeing clears that state.
1252  *
1253  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1254  * pinned" detection logic.
1255  */
1256 static void free_pcppages_bulk(struct zone *zone, int count,
1257 					struct per_cpu_pages *pcp)
1258 {
1259 	int migratetype = 0;
1260 	int batch_free = 0;
1261 	int prefetch_nr = 0;
1262 	bool isolated_pageblocks;
1263 	struct page *page, *tmp;
1264 	LIST_HEAD(head);
1265 
1266 	while (count) {
1267 		struct list_head *list;
1268 
1269 		/*
1270 		 * Remove pages from lists in a round-robin fashion. A
1271 		 * batch_free count is maintained that is incremented when an
1272 		 * empty list is encountered.  This is so more pages are freed
1273 		 * off fuller lists instead of spinning excessively around empty
1274 		 * lists
1275 		 */
1276 		do {
1277 			batch_free++;
1278 			if (++migratetype == MIGRATE_PCPTYPES)
1279 				migratetype = 0;
1280 			list = &pcp->lists[migratetype];
1281 		} while (list_empty(list));
1282 
1283 		/* This is the only non-empty list. Free them all. */
1284 		if (batch_free == MIGRATE_PCPTYPES)
1285 			batch_free = count;
1286 
1287 		do {
1288 			page = list_last_entry(list, struct page, lru);
1289 			/* must delete to avoid corrupting pcp list */
1290 			list_del(&page->lru);
1291 			pcp->count--;
1292 
1293 			if (bulkfree_pcp_prepare(page))
1294 				continue;
1295 
1296 			list_add_tail(&page->lru, &head);
1297 
1298 			/*
1299 			 * We are going to put the page back to the global
1300 			 * pool, prefetch its buddy to speed up later access
1301 			 * under zone->lock. It is believed the overhead of
1302 			 * an additional test and calculating buddy_pfn here
1303 			 * can be offset by reduced memory latency later. To
1304 			 * avoid excessive prefetching due to large count, only
1305 			 * prefetch buddy for the first pcp->batch nr of pages.
1306 			 */
1307 			if (prefetch_nr++ < pcp->batch)
1308 				prefetch_buddy(page);
1309 		} while (--count && --batch_free && !list_empty(list));
1310 	}
1311 
1312 	spin_lock(&zone->lock);
1313 	isolated_pageblocks = has_isolate_pageblock(zone);
1314 
1315 	/*
1316 	 * Use safe version since after __free_one_page(),
1317 	 * page->lru.next will not point to original list.
1318 	 */
1319 	list_for_each_entry_safe(page, tmp, &head, lru) {
1320 		int mt = get_pcppage_migratetype(page);
1321 		/* MIGRATE_ISOLATE page should not go to pcplists */
1322 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1323 		/* Pageblock could have been isolated meanwhile */
1324 		if (unlikely(isolated_pageblocks))
1325 			mt = get_pageblock_migratetype(page);
1326 
1327 		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1328 		trace_mm_page_pcpu_drain(page, 0, mt);
1329 	}
1330 	spin_unlock(&zone->lock);
1331 }
1332 
1333 static void free_one_page(struct zone *zone,
1334 				struct page *page, unsigned long pfn,
1335 				unsigned int order,
1336 				int migratetype)
1337 {
1338 	spin_lock(&zone->lock);
1339 	if (unlikely(has_isolate_pageblock(zone) ||
1340 		is_migrate_isolate(migratetype))) {
1341 		migratetype = get_pfnblock_migratetype(page, pfn);
1342 	}
1343 	__free_one_page(page, pfn, zone, order, migratetype);
1344 	spin_unlock(&zone->lock);
1345 }
1346 
1347 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1348 				unsigned long zone, int nid)
1349 {
1350 	mm_zero_struct_page(page);
1351 	set_page_links(page, zone, nid, pfn);
1352 	init_page_count(page);
1353 	page_mapcount_reset(page);
1354 	page_cpupid_reset_last(page);
1355 	page_kasan_tag_reset(page);
1356 
1357 	INIT_LIST_HEAD(&page->lru);
1358 #ifdef WANT_PAGE_VIRTUAL
1359 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1360 	if (!is_highmem_idx(zone))
1361 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1362 #endif
1363 }
1364 
1365 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1366 static void __meminit init_reserved_page(unsigned long pfn)
1367 {
1368 	pg_data_t *pgdat;
1369 	int nid, zid;
1370 
1371 	if (!early_page_uninitialised(pfn))
1372 		return;
1373 
1374 	nid = early_pfn_to_nid(pfn);
1375 	pgdat = NODE_DATA(nid);
1376 
1377 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1378 		struct zone *zone = &pgdat->node_zones[zid];
1379 
1380 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1381 			break;
1382 	}
1383 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1384 }
1385 #else
1386 static inline void init_reserved_page(unsigned long pfn)
1387 {
1388 }
1389 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1390 
1391 /*
1392  * Initialised pages do not have PageReserved set. This function is
1393  * called for each range allocated by the bootmem allocator and
1394  * marks the pages PageReserved. The remaining valid pages are later
1395  * sent to the buddy page allocator.
1396  */
1397 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1398 {
1399 	unsigned long start_pfn = PFN_DOWN(start);
1400 	unsigned long end_pfn = PFN_UP(end);
1401 
1402 	for (; start_pfn < end_pfn; start_pfn++) {
1403 		if (pfn_valid(start_pfn)) {
1404 			struct page *page = pfn_to_page(start_pfn);
1405 
1406 			init_reserved_page(start_pfn);
1407 
1408 			/* Avoid false-positive PageTail() */
1409 			INIT_LIST_HEAD(&page->lru);
1410 
1411 			/*
1412 			 * no need for atomic set_bit because the struct
1413 			 * page is not visible yet so nobody should
1414 			 * access it yet.
1415 			 */
1416 			__SetPageReserved(page);
1417 		}
1418 	}
1419 }
1420 
1421 static void __free_pages_ok(struct page *page, unsigned int order)
1422 {
1423 	unsigned long flags;
1424 	int migratetype;
1425 	unsigned long pfn = page_to_pfn(page);
1426 
1427 	if (!free_pages_prepare(page, order, true))
1428 		return;
1429 
1430 	migratetype = get_pfnblock_migratetype(page, pfn);
1431 	local_irq_save(flags);
1432 	__count_vm_events(PGFREE, 1 << order);
1433 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1434 	local_irq_restore(flags);
1435 }
1436 
1437 void __free_pages_core(struct page *page, unsigned int order)
1438 {
1439 	unsigned int nr_pages = 1 << order;
1440 	struct page *p = page;
1441 	unsigned int loop;
1442 
1443 	prefetchw(p);
1444 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1445 		prefetchw(p + 1);
1446 		__ClearPageReserved(p);
1447 		set_page_count(p, 0);
1448 	}
1449 	__ClearPageReserved(p);
1450 	set_page_count(p, 0);
1451 
1452 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1453 	set_page_refcounted(page);
1454 	__free_pages(page, order);
1455 }
1456 
1457 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1458 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1459 
1460 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1461 
1462 int __meminit early_pfn_to_nid(unsigned long pfn)
1463 {
1464 	static DEFINE_SPINLOCK(early_pfn_lock);
1465 	int nid;
1466 
1467 	spin_lock(&early_pfn_lock);
1468 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1469 	if (nid < 0)
1470 		nid = first_online_node;
1471 	spin_unlock(&early_pfn_lock);
1472 
1473 	return nid;
1474 }
1475 #endif
1476 
1477 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1478 /* Only safe to use early in boot when initialisation is single-threaded */
1479 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1480 {
1481 	int nid;
1482 
1483 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1484 	if (nid >= 0 && nid != node)
1485 		return false;
1486 	return true;
1487 }
1488 
1489 #else
1490 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1491 {
1492 	return true;
1493 }
1494 #endif
1495 
1496 
1497 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1498 							unsigned int order)
1499 {
1500 	if (early_page_uninitialised(pfn))
1501 		return;
1502 	__free_pages_core(page, order);
1503 }
1504 
1505 /*
1506  * Check that the whole (or subset of) a pageblock given by the interval of
1507  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1508  * with the migration of free compaction scanner. The scanners then need to
1509  * use only pfn_valid_within() check for arches that allow holes within
1510  * pageblocks.
1511  *
1512  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1513  *
1514  * It's possible on some configurations to have a setup like node0 node1 node0
1515  * i.e. it's possible that all pages within a zones range of pages do not
1516  * belong to a single zone. We assume that a border between node0 and node1
1517  * can occur within a single pageblock, but not a node0 node1 node0
1518  * interleaving within a single pageblock. It is therefore sufficient to check
1519  * the first and last page of a pageblock and avoid checking each individual
1520  * page in a pageblock.
1521  */
1522 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1523 				     unsigned long end_pfn, struct zone *zone)
1524 {
1525 	struct page *start_page;
1526 	struct page *end_page;
1527 
1528 	/* end_pfn is one past the range we are checking */
1529 	end_pfn--;
1530 
1531 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1532 		return NULL;
1533 
1534 	start_page = pfn_to_online_page(start_pfn);
1535 	if (!start_page)
1536 		return NULL;
1537 
1538 	if (page_zone(start_page) != zone)
1539 		return NULL;
1540 
1541 	end_page = pfn_to_page(end_pfn);
1542 
1543 	/* This gives a shorter code than deriving page_zone(end_page) */
1544 	if (page_zone_id(start_page) != page_zone_id(end_page))
1545 		return NULL;
1546 
1547 	return start_page;
1548 }
1549 
1550 void set_zone_contiguous(struct zone *zone)
1551 {
1552 	unsigned long block_start_pfn = zone->zone_start_pfn;
1553 	unsigned long block_end_pfn;
1554 
1555 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1556 	for (; block_start_pfn < zone_end_pfn(zone);
1557 			block_start_pfn = block_end_pfn,
1558 			 block_end_pfn += pageblock_nr_pages) {
1559 
1560 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1561 
1562 		if (!__pageblock_pfn_to_page(block_start_pfn,
1563 					     block_end_pfn, zone))
1564 			return;
1565 	}
1566 
1567 	/* We confirm that there is no hole */
1568 	zone->contiguous = true;
1569 }
1570 
1571 void clear_zone_contiguous(struct zone *zone)
1572 {
1573 	zone->contiguous = false;
1574 }
1575 
1576 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1577 static void __init deferred_free_range(unsigned long pfn,
1578 				       unsigned long nr_pages)
1579 {
1580 	struct page *page;
1581 	unsigned long i;
1582 
1583 	if (!nr_pages)
1584 		return;
1585 
1586 	page = pfn_to_page(pfn);
1587 
1588 	/* Free a large naturally-aligned chunk if possible */
1589 	if (nr_pages == pageblock_nr_pages &&
1590 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1591 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1592 		__free_pages_core(page, pageblock_order);
1593 		return;
1594 	}
1595 
1596 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1597 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1598 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1599 		__free_pages_core(page, 0);
1600 	}
1601 }
1602 
1603 /* Completion tracking for deferred_init_memmap() threads */
1604 static atomic_t pgdat_init_n_undone __initdata;
1605 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1606 
1607 static inline void __init pgdat_init_report_one_done(void)
1608 {
1609 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1610 		complete(&pgdat_init_all_done_comp);
1611 }
1612 
1613 /*
1614  * Returns true if page needs to be initialized or freed to buddy allocator.
1615  *
1616  * First we check if pfn is valid on architectures where it is possible to have
1617  * holes within pageblock_nr_pages. On systems where it is not possible, this
1618  * function is optimized out.
1619  *
1620  * Then, we check if a current large page is valid by only checking the validity
1621  * of the head pfn.
1622  */
1623 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1624 {
1625 	if (!pfn_valid_within(pfn))
1626 		return false;
1627 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1628 		return false;
1629 	return true;
1630 }
1631 
1632 /*
1633  * Free pages to buddy allocator. Try to free aligned pages in
1634  * pageblock_nr_pages sizes.
1635  */
1636 static void __init deferred_free_pages(unsigned long pfn,
1637 				       unsigned long end_pfn)
1638 {
1639 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1640 	unsigned long nr_free = 0;
1641 
1642 	for (; pfn < end_pfn; pfn++) {
1643 		if (!deferred_pfn_valid(pfn)) {
1644 			deferred_free_range(pfn - nr_free, nr_free);
1645 			nr_free = 0;
1646 		} else if (!(pfn & nr_pgmask)) {
1647 			deferred_free_range(pfn - nr_free, nr_free);
1648 			nr_free = 1;
1649 			touch_nmi_watchdog();
1650 		} else {
1651 			nr_free++;
1652 		}
1653 	}
1654 	/* Free the last block of pages to allocator */
1655 	deferred_free_range(pfn - nr_free, nr_free);
1656 }
1657 
1658 /*
1659  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1660  * by performing it only once every pageblock_nr_pages.
1661  * Return number of pages initialized.
1662  */
1663 static unsigned long  __init deferred_init_pages(struct zone *zone,
1664 						 unsigned long pfn,
1665 						 unsigned long end_pfn)
1666 {
1667 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1668 	int nid = zone_to_nid(zone);
1669 	unsigned long nr_pages = 0;
1670 	int zid = zone_idx(zone);
1671 	struct page *page = NULL;
1672 
1673 	for (; pfn < end_pfn; pfn++) {
1674 		if (!deferred_pfn_valid(pfn)) {
1675 			page = NULL;
1676 			continue;
1677 		} else if (!page || !(pfn & nr_pgmask)) {
1678 			page = pfn_to_page(pfn);
1679 			touch_nmi_watchdog();
1680 		} else {
1681 			page++;
1682 		}
1683 		__init_single_page(page, pfn, zid, nid);
1684 		nr_pages++;
1685 	}
1686 	return (nr_pages);
1687 }
1688 
1689 /*
1690  * This function is meant to pre-load the iterator for the zone init.
1691  * Specifically it walks through the ranges until we are caught up to the
1692  * first_init_pfn value and exits there. If we never encounter the value we
1693  * return false indicating there are no valid ranges left.
1694  */
1695 static bool __init
1696 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1697 				    unsigned long *spfn, unsigned long *epfn,
1698 				    unsigned long first_init_pfn)
1699 {
1700 	u64 j;
1701 
1702 	/*
1703 	 * Start out by walking through the ranges in this zone that have
1704 	 * already been initialized. We don't need to do anything with them
1705 	 * so we just need to flush them out of the system.
1706 	 */
1707 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1708 		if (*epfn <= first_init_pfn)
1709 			continue;
1710 		if (*spfn < first_init_pfn)
1711 			*spfn = first_init_pfn;
1712 		*i = j;
1713 		return true;
1714 	}
1715 
1716 	return false;
1717 }
1718 
1719 /*
1720  * Initialize and free pages. We do it in two loops: first we initialize
1721  * struct page, then free to buddy allocator, because while we are
1722  * freeing pages we can access pages that are ahead (computing buddy
1723  * page in __free_one_page()).
1724  *
1725  * In order to try and keep some memory in the cache we have the loop
1726  * broken along max page order boundaries. This way we will not cause
1727  * any issues with the buddy page computation.
1728  */
1729 static unsigned long __init
1730 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1731 		       unsigned long *end_pfn)
1732 {
1733 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1734 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1735 	unsigned long nr_pages = 0;
1736 	u64 j = *i;
1737 
1738 	/* First we loop through and initialize the page values */
1739 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1740 		unsigned long t;
1741 
1742 		if (mo_pfn <= *start_pfn)
1743 			break;
1744 
1745 		t = min(mo_pfn, *end_pfn);
1746 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1747 
1748 		if (mo_pfn < *end_pfn) {
1749 			*start_pfn = mo_pfn;
1750 			break;
1751 		}
1752 	}
1753 
1754 	/* Reset values and now loop through freeing pages as needed */
1755 	swap(j, *i);
1756 
1757 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1758 		unsigned long t;
1759 
1760 		if (mo_pfn <= spfn)
1761 			break;
1762 
1763 		t = min(mo_pfn, epfn);
1764 		deferred_free_pages(spfn, t);
1765 
1766 		if (mo_pfn <= epfn)
1767 			break;
1768 	}
1769 
1770 	return nr_pages;
1771 }
1772 
1773 /* Initialise remaining memory on a node */
1774 static int __init deferred_init_memmap(void *data)
1775 {
1776 	pg_data_t *pgdat = data;
1777 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1778 	unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1779 	unsigned long first_init_pfn, flags;
1780 	unsigned long start = jiffies;
1781 	struct zone *zone;
1782 	int zid;
1783 	u64 i;
1784 
1785 	/* Bind memory initialisation thread to a local node if possible */
1786 	if (!cpumask_empty(cpumask))
1787 		set_cpus_allowed_ptr(current, cpumask);
1788 
1789 	pgdat_resize_lock(pgdat, &flags);
1790 	first_init_pfn = pgdat->first_deferred_pfn;
1791 	if (first_init_pfn == ULONG_MAX) {
1792 		pgdat_resize_unlock(pgdat, &flags);
1793 		pgdat_init_report_one_done();
1794 		return 0;
1795 	}
1796 
1797 	/* Sanity check boundaries */
1798 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1799 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1800 	pgdat->first_deferred_pfn = ULONG_MAX;
1801 
1802 	/* Only the highest zone is deferred so find it */
1803 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1804 		zone = pgdat->node_zones + zid;
1805 		if (first_init_pfn < zone_end_pfn(zone))
1806 			break;
1807 	}
1808 
1809 	/* If the zone is empty somebody else may have cleared out the zone */
1810 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1811 						 first_init_pfn))
1812 		goto zone_empty;
1813 
1814 	/*
1815 	 * Initialize and free pages in MAX_ORDER sized increments so
1816 	 * that we can avoid introducing any issues with the buddy
1817 	 * allocator.
1818 	 */
1819 	while (spfn < epfn)
1820 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1821 zone_empty:
1822 	pgdat_resize_unlock(pgdat, &flags);
1823 
1824 	/* Sanity check that the next zone really is unpopulated */
1825 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1826 
1827 	pr_info("node %d initialised, %lu pages in %ums\n",
1828 		pgdat->node_id,	nr_pages, jiffies_to_msecs(jiffies - start));
1829 
1830 	pgdat_init_report_one_done();
1831 	return 0;
1832 }
1833 
1834 /*
1835  * If this zone has deferred pages, try to grow it by initializing enough
1836  * deferred pages to satisfy the allocation specified by order, rounded up to
1837  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1838  * of SECTION_SIZE bytes by initializing struct pages in increments of
1839  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1840  *
1841  * Return true when zone was grown, otherwise return false. We return true even
1842  * when we grow less than requested, to let the caller decide if there are
1843  * enough pages to satisfy the allocation.
1844  *
1845  * Note: We use noinline because this function is needed only during boot, and
1846  * it is called from a __ref function _deferred_grow_zone. This way we are
1847  * making sure that it is not inlined into permanent text section.
1848  */
1849 static noinline bool __init
1850 deferred_grow_zone(struct zone *zone, unsigned int order)
1851 {
1852 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1853 	pg_data_t *pgdat = zone->zone_pgdat;
1854 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1855 	unsigned long spfn, epfn, flags;
1856 	unsigned long nr_pages = 0;
1857 	u64 i;
1858 
1859 	/* Only the last zone may have deferred pages */
1860 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1861 		return false;
1862 
1863 	pgdat_resize_lock(pgdat, &flags);
1864 
1865 	/*
1866 	 * If deferred pages have been initialized while we were waiting for
1867 	 * the lock, return true, as the zone was grown.  The caller will retry
1868 	 * this zone.  We won't return to this function since the caller also
1869 	 * has this static branch.
1870 	 */
1871 	if (!static_branch_unlikely(&deferred_pages)) {
1872 		pgdat_resize_unlock(pgdat, &flags);
1873 		return true;
1874 	}
1875 
1876 	/*
1877 	 * If someone grew this zone while we were waiting for spinlock, return
1878 	 * true, as there might be enough pages already.
1879 	 */
1880 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1881 		pgdat_resize_unlock(pgdat, &flags);
1882 		return true;
1883 	}
1884 
1885 	/* If the zone is empty somebody else may have cleared out the zone */
1886 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1887 						 first_deferred_pfn)) {
1888 		pgdat->first_deferred_pfn = ULONG_MAX;
1889 		pgdat_resize_unlock(pgdat, &flags);
1890 		/* Retry only once. */
1891 		return first_deferred_pfn != ULONG_MAX;
1892 	}
1893 
1894 	/*
1895 	 * Initialize and free pages in MAX_ORDER sized increments so
1896 	 * that we can avoid introducing any issues with the buddy
1897 	 * allocator.
1898 	 */
1899 	while (spfn < epfn) {
1900 		/* update our first deferred PFN for this section */
1901 		first_deferred_pfn = spfn;
1902 
1903 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1904 
1905 		/* We should only stop along section boundaries */
1906 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1907 			continue;
1908 
1909 		/* If our quota has been met we can stop here */
1910 		if (nr_pages >= nr_pages_needed)
1911 			break;
1912 	}
1913 
1914 	pgdat->first_deferred_pfn = spfn;
1915 	pgdat_resize_unlock(pgdat, &flags);
1916 
1917 	return nr_pages > 0;
1918 }
1919 
1920 /*
1921  * deferred_grow_zone() is __init, but it is called from
1922  * get_page_from_freelist() during early boot until deferred_pages permanently
1923  * disables this call. This is why we have refdata wrapper to avoid warning,
1924  * and to ensure that the function body gets unloaded.
1925  */
1926 static bool __ref
1927 _deferred_grow_zone(struct zone *zone, unsigned int order)
1928 {
1929 	return deferred_grow_zone(zone, order);
1930 }
1931 
1932 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1933 
1934 void __init page_alloc_init_late(void)
1935 {
1936 	struct zone *zone;
1937 	int nid;
1938 
1939 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1940 
1941 	/* There will be num_node_state(N_MEMORY) threads */
1942 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1943 	for_each_node_state(nid, N_MEMORY) {
1944 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1945 	}
1946 
1947 	/* Block until all are initialised */
1948 	wait_for_completion(&pgdat_init_all_done_comp);
1949 
1950 	/*
1951 	 * The number of managed pages has changed due to the initialisation
1952 	 * so the pcpu batch and high limits needs to be updated or the limits
1953 	 * will be artificially small.
1954 	 */
1955 	for_each_populated_zone(zone)
1956 		zone_pcp_update(zone);
1957 
1958 	/*
1959 	 * We initialized the rest of the deferred pages.  Permanently disable
1960 	 * on-demand struct page initialization.
1961 	 */
1962 	static_branch_disable(&deferred_pages);
1963 
1964 	/* Reinit limits that are based on free pages after the kernel is up */
1965 	files_maxfiles_init();
1966 #endif
1967 
1968 	/* Discard memblock private memory */
1969 	memblock_discard();
1970 
1971 	for_each_node_state(nid, N_MEMORY)
1972 		shuffle_free_memory(NODE_DATA(nid));
1973 
1974 	for_each_populated_zone(zone)
1975 		set_zone_contiguous(zone);
1976 
1977 #ifdef CONFIG_DEBUG_PAGEALLOC
1978 	init_debug_guardpage();
1979 #endif
1980 }
1981 
1982 #ifdef CONFIG_CMA
1983 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1984 void __init init_cma_reserved_pageblock(struct page *page)
1985 {
1986 	unsigned i = pageblock_nr_pages;
1987 	struct page *p = page;
1988 
1989 	do {
1990 		__ClearPageReserved(p);
1991 		set_page_count(p, 0);
1992 	} while (++p, --i);
1993 
1994 	set_pageblock_migratetype(page, MIGRATE_CMA);
1995 
1996 	if (pageblock_order >= MAX_ORDER) {
1997 		i = pageblock_nr_pages;
1998 		p = page;
1999 		do {
2000 			set_page_refcounted(p);
2001 			__free_pages(p, MAX_ORDER - 1);
2002 			p += MAX_ORDER_NR_PAGES;
2003 		} while (i -= MAX_ORDER_NR_PAGES);
2004 	} else {
2005 		set_page_refcounted(page);
2006 		__free_pages(page, pageblock_order);
2007 	}
2008 
2009 	adjust_managed_page_count(page, pageblock_nr_pages);
2010 }
2011 #endif
2012 
2013 /*
2014  * The order of subdivision here is critical for the IO subsystem.
2015  * Please do not alter this order without good reasons and regression
2016  * testing. Specifically, as large blocks of memory are subdivided,
2017  * the order in which smaller blocks are delivered depends on the order
2018  * they're subdivided in this function. This is the primary factor
2019  * influencing the order in which pages are delivered to the IO
2020  * subsystem according to empirical testing, and this is also justified
2021  * by considering the behavior of a buddy system containing a single
2022  * large block of memory acted on by a series of small allocations.
2023  * This behavior is a critical factor in sglist merging's success.
2024  *
2025  * -- nyc
2026  */
2027 static inline void expand(struct zone *zone, struct page *page,
2028 	int low, int high, struct free_area *area,
2029 	int migratetype)
2030 {
2031 	unsigned long size = 1 << high;
2032 
2033 	while (high > low) {
2034 		area--;
2035 		high--;
2036 		size >>= 1;
2037 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2038 
2039 		/*
2040 		 * Mark as guard pages (or page), that will allow to
2041 		 * merge back to allocator when buddy will be freed.
2042 		 * Corresponding page table entries will not be touched,
2043 		 * pages will stay not present in virtual address space
2044 		 */
2045 		if (set_page_guard(zone, &page[size], high, migratetype))
2046 			continue;
2047 
2048 		add_to_free_area(&page[size], area, migratetype);
2049 		set_page_order(&page[size], high);
2050 	}
2051 }
2052 
2053 static void check_new_page_bad(struct page *page)
2054 {
2055 	const char *bad_reason = NULL;
2056 	unsigned long bad_flags = 0;
2057 
2058 	if (unlikely(atomic_read(&page->_mapcount) != -1))
2059 		bad_reason = "nonzero mapcount";
2060 	if (unlikely(page->mapping != NULL))
2061 		bad_reason = "non-NULL mapping";
2062 	if (unlikely(page_ref_count(page) != 0))
2063 		bad_reason = "nonzero _refcount";
2064 	if (unlikely(page->flags & __PG_HWPOISON)) {
2065 		bad_reason = "HWPoisoned (hardware-corrupted)";
2066 		bad_flags = __PG_HWPOISON;
2067 		/* Don't complain about hwpoisoned pages */
2068 		page_mapcount_reset(page); /* remove PageBuddy */
2069 		return;
2070 	}
2071 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2072 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2073 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2074 	}
2075 #ifdef CONFIG_MEMCG
2076 	if (unlikely(page->mem_cgroup))
2077 		bad_reason = "page still charged to cgroup";
2078 #endif
2079 	bad_page(page, bad_reason, bad_flags);
2080 }
2081 
2082 /*
2083  * This page is about to be returned from the page allocator
2084  */
2085 static inline int check_new_page(struct page *page)
2086 {
2087 	if (likely(page_expected_state(page,
2088 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2089 		return 0;
2090 
2091 	check_new_page_bad(page);
2092 	return 1;
2093 }
2094 
2095 static inline bool free_pages_prezeroed(void)
2096 {
2097 	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2098 		page_poisoning_enabled()) || want_init_on_free();
2099 }
2100 
2101 #ifdef CONFIG_DEBUG_VM
2102 /*
2103  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2104  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2105  * also checked when pcp lists are refilled from the free lists.
2106  */
2107 static inline bool check_pcp_refill(struct page *page)
2108 {
2109 	if (debug_pagealloc_enabled())
2110 		return check_new_page(page);
2111 	else
2112 		return false;
2113 }
2114 
2115 static inline bool check_new_pcp(struct page *page)
2116 {
2117 	return check_new_page(page);
2118 }
2119 #else
2120 /*
2121  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2122  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2123  * enabled, they are also checked when being allocated from the pcp lists.
2124  */
2125 static inline bool check_pcp_refill(struct page *page)
2126 {
2127 	return check_new_page(page);
2128 }
2129 static inline bool check_new_pcp(struct page *page)
2130 {
2131 	if (debug_pagealloc_enabled())
2132 		return check_new_page(page);
2133 	else
2134 		return false;
2135 }
2136 #endif /* CONFIG_DEBUG_VM */
2137 
2138 static bool check_new_pages(struct page *page, unsigned int order)
2139 {
2140 	int i;
2141 	for (i = 0; i < (1 << order); i++) {
2142 		struct page *p = page + i;
2143 
2144 		if (unlikely(check_new_page(p)))
2145 			return true;
2146 	}
2147 
2148 	return false;
2149 }
2150 
2151 inline void post_alloc_hook(struct page *page, unsigned int order,
2152 				gfp_t gfp_flags)
2153 {
2154 	set_page_private(page, 0);
2155 	set_page_refcounted(page);
2156 
2157 	arch_alloc_page(page, order);
2158 	if (debug_pagealloc_enabled())
2159 		kernel_map_pages(page, 1 << order, 1);
2160 	kasan_alloc_pages(page, order);
2161 	kernel_poison_pages(page, 1 << order, 1);
2162 	set_page_owner(page, order, gfp_flags);
2163 }
2164 
2165 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2166 							unsigned int alloc_flags)
2167 {
2168 	post_alloc_hook(page, order, gfp_flags);
2169 
2170 	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2171 		kernel_init_free_pages(page, 1 << order);
2172 
2173 	if (order && (gfp_flags & __GFP_COMP))
2174 		prep_compound_page(page, order);
2175 
2176 	/*
2177 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2178 	 * allocate the page. The expectation is that the caller is taking
2179 	 * steps that will free more memory. The caller should avoid the page
2180 	 * being used for !PFMEMALLOC purposes.
2181 	 */
2182 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2183 		set_page_pfmemalloc(page);
2184 	else
2185 		clear_page_pfmemalloc(page);
2186 }
2187 
2188 /*
2189  * Go through the free lists for the given migratetype and remove
2190  * the smallest available page from the freelists
2191  */
2192 static __always_inline
2193 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2194 						int migratetype)
2195 {
2196 	unsigned int current_order;
2197 	struct free_area *area;
2198 	struct page *page;
2199 
2200 	/* Find a page of the appropriate size in the preferred list */
2201 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2202 		area = &(zone->free_area[current_order]);
2203 		page = get_page_from_free_area(area, migratetype);
2204 		if (!page)
2205 			continue;
2206 		del_page_from_free_area(page, area);
2207 		expand(zone, page, order, current_order, area, migratetype);
2208 		set_pcppage_migratetype(page, migratetype);
2209 		return page;
2210 	}
2211 
2212 	return NULL;
2213 }
2214 
2215 
2216 /*
2217  * This array describes the order lists are fallen back to when
2218  * the free lists for the desirable migrate type are depleted
2219  */
2220 static int fallbacks[MIGRATE_TYPES][4] = {
2221 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2222 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2223 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2224 #ifdef CONFIG_CMA
2225 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2226 #endif
2227 #ifdef CONFIG_MEMORY_ISOLATION
2228 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2229 #endif
2230 };
2231 
2232 #ifdef CONFIG_CMA
2233 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2234 					unsigned int order)
2235 {
2236 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2237 }
2238 #else
2239 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2240 					unsigned int order) { return NULL; }
2241 #endif
2242 
2243 /*
2244  * Move the free pages in a range to the free lists of the requested type.
2245  * Note that start_page and end_pages are not aligned on a pageblock
2246  * boundary. If alignment is required, use move_freepages_block()
2247  */
2248 static int move_freepages(struct zone *zone,
2249 			  struct page *start_page, struct page *end_page,
2250 			  int migratetype, int *num_movable)
2251 {
2252 	struct page *page;
2253 	unsigned int order;
2254 	int pages_moved = 0;
2255 
2256 	for (page = start_page; page <= end_page;) {
2257 		if (!pfn_valid_within(page_to_pfn(page))) {
2258 			page++;
2259 			continue;
2260 		}
2261 
2262 		if (!PageBuddy(page)) {
2263 			/*
2264 			 * We assume that pages that could be isolated for
2265 			 * migration are movable. But we don't actually try
2266 			 * isolating, as that would be expensive.
2267 			 */
2268 			if (num_movable &&
2269 					(PageLRU(page) || __PageMovable(page)))
2270 				(*num_movable)++;
2271 
2272 			page++;
2273 			continue;
2274 		}
2275 
2276 		/* Make sure we are not inadvertently changing nodes */
2277 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2278 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2279 
2280 		order = page_order(page);
2281 		move_to_free_area(page, &zone->free_area[order], migratetype);
2282 		page += 1 << order;
2283 		pages_moved += 1 << order;
2284 	}
2285 
2286 	return pages_moved;
2287 }
2288 
2289 int move_freepages_block(struct zone *zone, struct page *page,
2290 				int migratetype, int *num_movable)
2291 {
2292 	unsigned long start_pfn, end_pfn;
2293 	struct page *start_page, *end_page;
2294 
2295 	if (num_movable)
2296 		*num_movable = 0;
2297 
2298 	start_pfn = page_to_pfn(page);
2299 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2300 	start_page = pfn_to_page(start_pfn);
2301 	end_page = start_page + pageblock_nr_pages - 1;
2302 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2303 
2304 	/* Do not cross zone boundaries */
2305 	if (!zone_spans_pfn(zone, start_pfn))
2306 		start_page = page;
2307 	if (!zone_spans_pfn(zone, end_pfn))
2308 		return 0;
2309 
2310 	return move_freepages(zone, start_page, end_page, migratetype,
2311 								num_movable);
2312 }
2313 
2314 static void change_pageblock_range(struct page *pageblock_page,
2315 					int start_order, int migratetype)
2316 {
2317 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2318 
2319 	while (nr_pageblocks--) {
2320 		set_pageblock_migratetype(pageblock_page, migratetype);
2321 		pageblock_page += pageblock_nr_pages;
2322 	}
2323 }
2324 
2325 /*
2326  * When we are falling back to another migratetype during allocation, try to
2327  * steal extra free pages from the same pageblocks to satisfy further
2328  * allocations, instead of polluting multiple pageblocks.
2329  *
2330  * If we are stealing a relatively large buddy page, it is likely there will
2331  * be more free pages in the pageblock, so try to steal them all. For
2332  * reclaimable and unmovable allocations, we steal regardless of page size,
2333  * as fragmentation caused by those allocations polluting movable pageblocks
2334  * is worse than movable allocations stealing from unmovable and reclaimable
2335  * pageblocks.
2336  */
2337 static bool can_steal_fallback(unsigned int order, int start_mt)
2338 {
2339 	/*
2340 	 * Leaving this order check is intended, although there is
2341 	 * relaxed order check in next check. The reason is that
2342 	 * we can actually steal whole pageblock if this condition met,
2343 	 * but, below check doesn't guarantee it and that is just heuristic
2344 	 * so could be changed anytime.
2345 	 */
2346 	if (order >= pageblock_order)
2347 		return true;
2348 
2349 	if (order >= pageblock_order / 2 ||
2350 		start_mt == MIGRATE_RECLAIMABLE ||
2351 		start_mt == MIGRATE_UNMOVABLE ||
2352 		page_group_by_mobility_disabled)
2353 		return true;
2354 
2355 	return false;
2356 }
2357 
2358 static inline void boost_watermark(struct zone *zone)
2359 {
2360 	unsigned long max_boost;
2361 
2362 	if (!watermark_boost_factor)
2363 		return;
2364 
2365 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2366 			watermark_boost_factor, 10000);
2367 
2368 	/*
2369 	 * high watermark may be uninitialised if fragmentation occurs
2370 	 * very early in boot so do not boost. We do not fall
2371 	 * through and boost by pageblock_nr_pages as failing
2372 	 * allocations that early means that reclaim is not going
2373 	 * to help and it may even be impossible to reclaim the
2374 	 * boosted watermark resulting in a hang.
2375 	 */
2376 	if (!max_boost)
2377 		return;
2378 
2379 	max_boost = max(pageblock_nr_pages, max_boost);
2380 
2381 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2382 		max_boost);
2383 }
2384 
2385 /*
2386  * This function implements actual steal behaviour. If order is large enough,
2387  * we can steal whole pageblock. If not, we first move freepages in this
2388  * pageblock to our migratetype and determine how many already-allocated pages
2389  * are there in the pageblock with a compatible migratetype. If at least half
2390  * of pages are free or compatible, we can change migratetype of the pageblock
2391  * itself, so pages freed in the future will be put on the correct free list.
2392  */
2393 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2394 		unsigned int alloc_flags, int start_type, bool whole_block)
2395 {
2396 	unsigned int current_order = page_order(page);
2397 	struct free_area *area;
2398 	int free_pages, movable_pages, alike_pages;
2399 	int old_block_type;
2400 
2401 	old_block_type = get_pageblock_migratetype(page);
2402 
2403 	/*
2404 	 * This can happen due to races and we want to prevent broken
2405 	 * highatomic accounting.
2406 	 */
2407 	if (is_migrate_highatomic(old_block_type))
2408 		goto single_page;
2409 
2410 	/* Take ownership for orders >= pageblock_order */
2411 	if (current_order >= pageblock_order) {
2412 		change_pageblock_range(page, current_order, start_type);
2413 		goto single_page;
2414 	}
2415 
2416 	/*
2417 	 * Boost watermarks to increase reclaim pressure to reduce the
2418 	 * likelihood of future fallbacks. Wake kswapd now as the node
2419 	 * may be balanced overall and kswapd will not wake naturally.
2420 	 */
2421 	boost_watermark(zone);
2422 	if (alloc_flags & ALLOC_KSWAPD)
2423 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2424 
2425 	/* We are not allowed to try stealing from the whole block */
2426 	if (!whole_block)
2427 		goto single_page;
2428 
2429 	free_pages = move_freepages_block(zone, page, start_type,
2430 						&movable_pages);
2431 	/*
2432 	 * Determine how many pages are compatible with our allocation.
2433 	 * For movable allocation, it's the number of movable pages which
2434 	 * we just obtained. For other types it's a bit more tricky.
2435 	 */
2436 	if (start_type == MIGRATE_MOVABLE) {
2437 		alike_pages = movable_pages;
2438 	} else {
2439 		/*
2440 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2441 		 * to MOVABLE pageblock, consider all non-movable pages as
2442 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2443 		 * vice versa, be conservative since we can't distinguish the
2444 		 * exact migratetype of non-movable pages.
2445 		 */
2446 		if (old_block_type == MIGRATE_MOVABLE)
2447 			alike_pages = pageblock_nr_pages
2448 						- (free_pages + movable_pages);
2449 		else
2450 			alike_pages = 0;
2451 	}
2452 
2453 	/* moving whole block can fail due to zone boundary conditions */
2454 	if (!free_pages)
2455 		goto single_page;
2456 
2457 	/*
2458 	 * If a sufficient number of pages in the block are either free or of
2459 	 * comparable migratability as our allocation, claim the whole block.
2460 	 */
2461 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2462 			page_group_by_mobility_disabled)
2463 		set_pageblock_migratetype(page, start_type);
2464 
2465 	return;
2466 
2467 single_page:
2468 	area = &zone->free_area[current_order];
2469 	move_to_free_area(page, area, start_type);
2470 }
2471 
2472 /*
2473  * Check whether there is a suitable fallback freepage with requested order.
2474  * If only_stealable is true, this function returns fallback_mt only if
2475  * we can steal other freepages all together. This would help to reduce
2476  * fragmentation due to mixed migratetype pages in one pageblock.
2477  */
2478 int find_suitable_fallback(struct free_area *area, unsigned int order,
2479 			int migratetype, bool only_stealable, bool *can_steal)
2480 {
2481 	int i;
2482 	int fallback_mt;
2483 
2484 	if (area->nr_free == 0)
2485 		return -1;
2486 
2487 	*can_steal = false;
2488 	for (i = 0;; i++) {
2489 		fallback_mt = fallbacks[migratetype][i];
2490 		if (fallback_mt == MIGRATE_TYPES)
2491 			break;
2492 
2493 		if (free_area_empty(area, fallback_mt))
2494 			continue;
2495 
2496 		if (can_steal_fallback(order, migratetype))
2497 			*can_steal = true;
2498 
2499 		if (!only_stealable)
2500 			return fallback_mt;
2501 
2502 		if (*can_steal)
2503 			return fallback_mt;
2504 	}
2505 
2506 	return -1;
2507 }
2508 
2509 /*
2510  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2511  * there are no empty page blocks that contain a page with a suitable order
2512  */
2513 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2514 				unsigned int alloc_order)
2515 {
2516 	int mt;
2517 	unsigned long max_managed, flags;
2518 
2519 	/*
2520 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2521 	 * Check is race-prone but harmless.
2522 	 */
2523 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2524 	if (zone->nr_reserved_highatomic >= max_managed)
2525 		return;
2526 
2527 	spin_lock_irqsave(&zone->lock, flags);
2528 
2529 	/* Recheck the nr_reserved_highatomic limit under the lock */
2530 	if (zone->nr_reserved_highatomic >= max_managed)
2531 		goto out_unlock;
2532 
2533 	/* Yoink! */
2534 	mt = get_pageblock_migratetype(page);
2535 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2536 	    && !is_migrate_cma(mt)) {
2537 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2538 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2539 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2540 	}
2541 
2542 out_unlock:
2543 	spin_unlock_irqrestore(&zone->lock, flags);
2544 }
2545 
2546 /*
2547  * Used when an allocation is about to fail under memory pressure. This
2548  * potentially hurts the reliability of high-order allocations when under
2549  * intense memory pressure but failed atomic allocations should be easier
2550  * to recover from than an OOM.
2551  *
2552  * If @force is true, try to unreserve a pageblock even though highatomic
2553  * pageblock is exhausted.
2554  */
2555 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2556 						bool force)
2557 {
2558 	struct zonelist *zonelist = ac->zonelist;
2559 	unsigned long flags;
2560 	struct zoneref *z;
2561 	struct zone *zone;
2562 	struct page *page;
2563 	int order;
2564 	bool ret;
2565 
2566 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2567 								ac->nodemask) {
2568 		/*
2569 		 * Preserve at least one pageblock unless memory pressure
2570 		 * is really high.
2571 		 */
2572 		if (!force && zone->nr_reserved_highatomic <=
2573 					pageblock_nr_pages)
2574 			continue;
2575 
2576 		spin_lock_irqsave(&zone->lock, flags);
2577 		for (order = 0; order < MAX_ORDER; order++) {
2578 			struct free_area *area = &(zone->free_area[order]);
2579 
2580 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2581 			if (!page)
2582 				continue;
2583 
2584 			/*
2585 			 * In page freeing path, migratetype change is racy so
2586 			 * we can counter several free pages in a pageblock
2587 			 * in this loop althoug we changed the pageblock type
2588 			 * from highatomic to ac->migratetype. So we should
2589 			 * adjust the count once.
2590 			 */
2591 			if (is_migrate_highatomic_page(page)) {
2592 				/*
2593 				 * It should never happen but changes to
2594 				 * locking could inadvertently allow a per-cpu
2595 				 * drain to add pages to MIGRATE_HIGHATOMIC
2596 				 * while unreserving so be safe and watch for
2597 				 * underflows.
2598 				 */
2599 				zone->nr_reserved_highatomic -= min(
2600 						pageblock_nr_pages,
2601 						zone->nr_reserved_highatomic);
2602 			}
2603 
2604 			/*
2605 			 * Convert to ac->migratetype and avoid the normal
2606 			 * pageblock stealing heuristics. Minimally, the caller
2607 			 * is doing the work and needs the pages. More
2608 			 * importantly, if the block was always converted to
2609 			 * MIGRATE_UNMOVABLE or another type then the number
2610 			 * of pageblocks that cannot be completely freed
2611 			 * may increase.
2612 			 */
2613 			set_pageblock_migratetype(page, ac->migratetype);
2614 			ret = move_freepages_block(zone, page, ac->migratetype,
2615 									NULL);
2616 			if (ret) {
2617 				spin_unlock_irqrestore(&zone->lock, flags);
2618 				return ret;
2619 			}
2620 		}
2621 		spin_unlock_irqrestore(&zone->lock, flags);
2622 	}
2623 
2624 	return false;
2625 }
2626 
2627 /*
2628  * Try finding a free buddy page on the fallback list and put it on the free
2629  * list of requested migratetype, possibly along with other pages from the same
2630  * block, depending on fragmentation avoidance heuristics. Returns true if
2631  * fallback was found so that __rmqueue_smallest() can grab it.
2632  *
2633  * The use of signed ints for order and current_order is a deliberate
2634  * deviation from the rest of this file, to make the for loop
2635  * condition simpler.
2636  */
2637 static __always_inline bool
2638 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2639 						unsigned int alloc_flags)
2640 {
2641 	struct free_area *area;
2642 	int current_order;
2643 	int min_order = order;
2644 	struct page *page;
2645 	int fallback_mt;
2646 	bool can_steal;
2647 
2648 	/*
2649 	 * Do not steal pages from freelists belonging to other pageblocks
2650 	 * i.e. orders < pageblock_order. If there are no local zones free,
2651 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2652 	 */
2653 	if (alloc_flags & ALLOC_NOFRAGMENT)
2654 		min_order = pageblock_order;
2655 
2656 	/*
2657 	 * Find the largest available free page in the other list. This roughly
2658 	 * approximates finding the pageblock with the most free pages, which
2659 	 * would be too costly to do exactly.
2660 	 */
2661 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2662 				--current_order) {
2663 		area = &(zone->free_area[current_order]);
2664 		fallback_mt = find_suitable_fallback(area, current_order,
2665 				start_migratetype, false, &can_steal);
2666 		if (fallback_mt == -1)
2667 			continue;
2668 
2669 		/*
2670 		 * We cannot steal all free pages from the pageblock and the
2671 		 * requested migratetype is movable. In that case it's better to
2672 		 * steal and split the smallest available page instead of the
2673 		 * largest available page, because even if the next movable
2674 		 * allocation falls back into a different pageblock than this
2675 		 * one, it won't cause permanent fragmentation.
2676 		 */
2677 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2678 					&& current_order > order)
2679 			goto find_smallest;
2680 
2681 		goto do_steal;
2682 	}
2683 
2684 	return false;
2685 
2686 find_smallest:
2687 	for (current_order = order; current_order < MAX_ORDER;
2688 							current_order++) {
2689 		area = &(zone->free_area[current_order]);
2690 		fallback_mt = find_suitable_fallback(area, current_order,
2691 				start_migratetype, false, &can_steal);
2692 		if (fallback_mt != -1)
2693 			break;
2694 	}
2695 
2696 	/*
2697 	 * This should not happen - we already found a suitable fallback
2698 	 * when looking for the largest page.
2699 	 */
2700 	VM_BUG_ON(current_order == MAX_ORDER);
2701 
2702 do_steal:
2703 	page = get_page_from_free_area(area, fallback_mt);
2704 
2705 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2706 								can_steal);
2707 
2708 	trace_mm_page_alloc_extfrag(page, order, current_order,
2709 		start_migratetype, fallback_mt);
2710 
2711 	return true;
2712 
2713 }
2714 
2715 /*
2716  * Do the hard work of removing an element from the buddy allocator.
2717  * Call me with the zone->lock already held.
2718  */
2719 static __always_inline struct page *
2720 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2721 						unsigned int alloc_flags)
2722 {
2723 	struct page *page;
2724 
2725 retry:
2726 	page = __rmqueue_smallest(zone, order, migratetype);
2727 	if (unlikely(!page)) {
2728 		if (migratetype == MIGRATE_MOVABLE)
2729 			page = __rmqueue_cma_fallback(zone, order);
2730 
2731 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2732 								alloc_flags))
2733 			goto retry;
2734 	}
2735 
2736 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2737 	return page;
2738 }
2739 
2740 /*
2741  * Obtain a specified number of elements from the buddy allocator, all under
2742  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2743  * Returns the number of new pages which were placed at *list.
2744  */
2745 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2746 			unsigned long count, struct list_head *list,
2747 			int migratetype, unsigned int alloc_flags)
2748 {
2749 	int i, alloced = 0;
2750 
2751 	spin_lock(&zone->lock);
2752 	for (i = 0; i < count; ++i) {
2753 		struct page *page = __rmqueue(zone, order, migratetype,
2754 								alloc_flags);
2755 		if (unlikely(page == NULL))
2756 			break;
2757 
2758 		if (unlikely(check_pcp_refill(page)))
2759 			continue;
2760 
2761 		/*
2762 		 * Split buddy pages returned by expand() are received here in
2763 		 * physical page order. The page is added to the tail of
2764 		 * caller's list. From the callers perspective, the linked list
2765 		 * is ordered by page number under some conditions. This is
2766 		 * useful for IO devices that can forward direction from the
2767 		 * head, thus also in the physical page order. This is useful
2768 		 * for IO devices that can merge IO requests if the physical
2769 		 * pages are ordered properly.
2770 		 */
2771 		list_add_tail(&page->lru, list);
2772 		alloced++;
2773 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2774 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2775 					      -(1 << order));
2776 	}
2777 
2778 	/*
2779 	 * i pages were removed from the buddy list even if some leak due
2780 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2781 	 * on i. Do not confuse with 'alloced' which is the number of
2782 	 * pages added to the pcp list.
2783 	 */
2784 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2785 	spin_unlock(&zone->lock);
2786 	return alloced;
2787 }
2788 
2789 #ifdef CONFIG_NUMA
2790 /*
2791  * Called from the vmstat counter updater to drain pagesets of this
2792  * currently executing processor on remote nodes after they have
2793  * expired.
2794  *
2795  * Note that this function must be called with the thread pinned to
2796  * a single processor.
2797  */
2798 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2799 {
2800 	unsigned long flags;
2801 	int to_drain, batch;
2802 
2803 	local_irq_save(flags);
2804 	batch = READ_ONCE(pcp->batch);
2805 	to_drain = min(pcp->count, batch);
2806 	if (to_drain > 0)
2807 		free_pcppages_bulk(zone, to_drain, pcp);
2808 	local_irq_restore(flags);
2809 }
2810 #endif
2811 
2812 /*
2813  * Drain pcplists of the indicated processor and zone.
2814  *
2815  * The processor must either be the current processor and the
2816  * thread pinned to the current processor or a processor that
2817  * is not online.
2818  */
2819 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2820 {
2821 	unsigned long flags;
2822 	struct per_cpu_pageset *pset;
2823 	struct per_cpu_pages *pcp;
2824 
2825 	local_irq_save(flags);
2826 	pset = per_cpu_ptr(zone->pageset, cpu);
2827 
2828 	pcp = &pset->pcp;
2829 	if (pcp->count)
2830 		free_pcppages_bulk(zone, pcp->count, pcp);
2831 	local_irq_restore(flags);
2832 }
2833 
2834 /*
2835  * Drain pcplists of all zones on the indicated processor.
2836  *
2837  * The processor must either be the current processor and the
2838  * thread pinned to the current processor or a processor that
2839  * is not online.
2840  */
2841 static void drain_pages(unsigned int cpu)
2842 {
2843 	struct zone *zone;
2844 
2845 	for_each_populated_zone(zone) {
2846 		drain_pages_zone(cpu, zone);
2847 	}
2848 }
2849 
2850 /*
2851  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2852  *
2853  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2854  * the single zone's pages.
2855  */
2856 void drain_local_pages(struct zone *zone)
2857 {
2858 	int cpu = smp_processor_id();
2859 
2860 	if (zone)
2861 		drain_pages_zone(cpu, zone);
2862 	else
2863 		drain_pages(cpu);
2864 }
2865 
2866 static void drain_local_pages_wq(struct work_struct *work)
2867 {
2868 	struct pcpu_drain *drain;
2869 
2870 	drain = container_of(work, struct pcpu_drain, work);
2871 
2872 	/*
2873 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2874 	 * we can race with cpu offline when the WQ can move this from
2875 	 * a cpu pinned worker to an unbound one. We can operate on a different
2876 	 * cpu which is allright but we also have to make sure to not move to
2877 	 * a different one.
2878 	 */
2879 	preempt_disable();
2880 	drain_local_pages(drain->zone);
2881 	preempt_enable();
2882 }
2883 
2884 /*
2885  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2886  *
2887  * When zone parameter is non-NULL, spill just the single zone's pages.
2888  *
2889  * Note that this can be extremely slow as the draining happens in a workqueue.
2890  */
2891 void drain_all_pages(struct zone *zone)
2892 {
2893 	int cpu;
2894 
2895 	/*
2896 	 * Allocate in the BSS so we wont require allocation in
2897 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2898 	 */
2899 	static cpumask_t cpus_with_pcps;
2900 
2901 	/*
2902 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2903 	 * initialized.
2904 	 */
2905 	if (WARN_ON_ONCE(!mm_percpu_wq))
2906 		return;
2907 
2908 	/*
2909 	 * Do not drain if one is already in progress unless it's specific to
2910 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2911 	 * the drain to be complete when the call returns.
2912 	 */
2913 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2914 		if (!zone)
2915 			return;
2916 		mutex_lock(&pcpu_drain_mutex);
2917 	}
2918 
2919 	/*
2920 	 * We don't care about racing with CPU hotplug event
2921 	 * as offline notification will cause the notified
2922 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2923 	 * disables preemption as part of its processing
2924 	 */
2925 	for_each_online_cpu(cpu) {
2926 		struct per_cpu_pageset *pcp;
2927 		struct zone *z;
2928 		bool has_pcps = false;
2929 
2930 		if (zone) {
2931 			pcp = per_cpu_ptr(zone->pageset, cpu);
2932 			if (pcp->pcp.count)
2933 				has_pcps = true;
2934 		} else {
2935 			for_each_populated_zone(z) {
2936 				pcp = per_cpu_ptr(z->pageset, cpu);
2937 				if (pcp->pcp.count) {
2938 					has_pcps = true;
2939 					break;
2940 				}
2941 			}
2942 		}
2943 
2944 		if (has_pcps)
2945 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2946 		else
2947 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2948 	}
2949 
2950 	for_each_cpu(cpu, &cpus_with_pcps) {
2951 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2952 
2953 		drain->zone = zone;
2954 		INIT_WORK(&drain->work, drain_local_pages_wq);
2955 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
2956 	}
2957 	for_each_cpu(cpu, &cpus_with_pcps)
2958 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2959 
2960 	mutex_unlock(&pcpu_drain_mutex);
2961 }
2962 
2963 #ifdef CONFIG_HIBERNATION
2964 
2965 /*
2966  * Touch the watchdog for every WD_PAGE_COUNT pages.
2967  */
2968 #define WD_PAGE_COUNT	(128*1024)
2969 
2970 void mark_free_pages(struct zone *zone)
2971 {
2972 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2973 	unsigned long flags;
2974 	unsigned int order, t;
2975 	struct page *page;
2976 
2977 	if (zone_is_empty(zone))
2978 		return;
2979 
2980 	spin_lock_irqsave(&zone->lock, flags);
2981 
2982 	max_zone_pfn = zone_end_pfn(zone);
2983 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2984 		if (pfn_valid(pfn)) {
2985 			page = pfn_to_page(pfn);
2986 
2987 			if (!--page_count) {
2988 				touch_nmi_watchdog();
2989 				page_count = WD_PAGE_COUNT;
2990 			}
2991 
2992 			if (page_zone(page) != zone)
2993 				continue;
2994 
2995 			if (!swsusp_page_is_forbidden(page))
2996 				swsusp_unset_page_free(page);
2997 		}
2998 
2999 	for_each_migratetype_order(order, t) {
3000 		list_for_each_entry(page,
3001 				&zone->free_area[order].free_list[t], lru) {
3002 			unsigned long i;
3003 
3004 			pfn = page_to_pfn(page);
3005 			for (i = 0; i < (1UL << order); i++) {
3006 				if (!--page_count) {
3007 					touch_nmi_watchdog();
3008 					page_count = WD_PAGE_COUNT;
3009 				}
3010 				swsusp_set_page_free(pfn_to_page(pfn + i));
3011 			}
3012 		}
3013 	}
3014 	spin_unlock_irqrestore(&zone->lock, flags);
3015 }
3016 #endif /* CONFIG_PM */
3017 
3018 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3019 {
3020 	int migratetype;
3021 
3022 	if (!free_pcp_prepare(page))
3023 		return false;
3024 
3025 	migratetype = get_pfnblock_migratetype(page, pfn);
3026 	set_pcppage_migratetype(page, migratetype);
3027 	return true;
3028 }
3029 
3030 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3031 {
3032 	struct zone *zone = page_zone(page);
3033 	struct per_cpu_pages *pcp;
3034 	int migratetype;
3035 
3036 	migratetype = get_pcppage_migratetype(page);
3037 	__count_vm_event(PGFREE);
3038 
3039 	/*
3040 	 * We only track unmovable, reclaimable and movable on pcp lists.
3041 	 * Free ISOLATE pages back to the allocator because they are being
3042 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3043 	 * areas back if necessary. Otherwise, we may have to free
3044 	 * excessively into the page allocator
3045 	 */
3046 	if (migratetype >= MIGRATE_PCPTYPES) {
3047 		if (unlikely(is_migrate_isolate(migratetype))) {
3048 			free_one_page(zone, page, pfn, 0, migratetype);
3049 			return;
3050 		}
3051 		migratetype = MIGRATE_MOVABLE;
3052 	}
3053 
3054 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3055 	list_add(&page->lru, &pcp->lists[migratetype]);
3056 	pcp->count++;
3057 	if (pcp->count >= pcp->high) {
3058 		unsigned long batch = READ_ONCE(pcp->batch);
3059 		free_pcppages_bulk(zone, batch, pcp);
3060 	}
3061 }
3062 
3063 /*
3064  * Free a 0-order page
3065  */
3066 void free_unref_page(struct page *page)
3067 {
3068 	unsigned long flags;
3069 	unsigned long pfn = page_to_pfn(page);
3070 
3071 	if (!free_unref_page_prepare(page, pfn))
3072 		return;
3073 
3074 	local_irq_save(flags);
3075 	free_unref_page_commit(page, pfn);
3076 	local_irq_restore(flags);
3077 }
3078 
3079 /*
3080  * Free a list of 0-order pages
3081  */
3082 void free_unref_page_list(struct list_head *list)
3083 {
3084 	struct page *page, *next;
3085 	unsigned long flags, pfn;
3086 	int batch_count = 0;
3087 
3088 	/* Prepare pages for freeing */
3089 	list_for_each_entry_safe(page, next, list, lru) {
3090 		pfn = page_to_pfn(page);
3091 		if (!free_unref_page_prepare(page, pfn))
3092 			list_del(&page->lru);
3093 		set_page_private(page, pfn);
3094 	}
3095 
3096 	local_irq_save(flags);
3097 	list_for_each_entry_safe(page, next, list, lru) {
3098 		unsigned long pfn = page_private(page);
3099 
3100 		set_page_private(page, 0);
3101 		trace_mm_page_free_batched(page);
3102 		free_unref_page_commit(page, pfn);
3103 
3104 		/*
3105 		 * Guard against excessive IRQ disabled times when we get
3106 		 * a large list of pages to free.
3107 		 */
3108 		if (++batch_count == SWAP_CLUSTER_MAX) {
3109 			local_irq_restore(flags);
3110 			batch_count = 0;
3111 			local_irq_save(flags);
3112 		}
3113 	}
3114 	local_irq_restore(flags);
3115 }
3116 
3117 /*
3118  * split_page takes a non-compound higher-order page, and splits it into
3119  * n (1<<order) sub-pages: page[0..n]
3120  * Each sub-page must be freed individually.
3121  *
3122  * Note: this is probably too low level an operation for use in drivers.
3123  * Please consult with lkml before using this in your driver.
3124  */
3125 void split_page(struct page *page, unsigned int order)
3126 {
3127 	int i;
3128 
3129 	VM_BUG_ON_PAGE(PageCompound(page), page);
3130 	VM_BUG_ON_PAGE(!page_count(page), page);
3131 
3132 	for (i = 1; i < (1 << order); i++)
3133 		set_page_refcounted(page + i);
3134 	split_page_owner(page, order);
3135 }
3136 EXPORT_SYMBOL_GPL(split_page);
3137 
3138 int __isolate_free_page(struct page *page, unsigned int order)
3139 {
3140 	struct free_area *area = &page_zone(page)->free_area[order];
3141 	unsigned long watermark;
3142 	struct zone *zone;
3143 	int mt;
3144 
3145 	BUG_ON(!PageBuddy(page));
3146 
3147 	zone = page_zone(page);
3148 	mt = get_pageblock_migratetype(page);
3149 
3150 	if (!is_migrate_isolate(mt)) {
3151 		/*
3152 		 * Obey watermarks as if the page was being allocated. We can
3153 		 * emulate a high-order watermark check with a raised order-0
3154 		 * watermark, because we already know our high-order page
3155 		 * exists.
3156 		 */
3157 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3158 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3159 			return 0;
3160 
3161 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3162 	}
3163 
3164 	/* Remove page from free list */
3165 
3166 	del_page_from_free_area(page, area);
3167 
3168 	/*
3169 	 * Set the pageblock if the isolated page is at least half of a
3170 	 * pageblock
3171 	 */
3172 	if (order >= pageblock_order - 1) {
3173 		struct page *endpage = page + (1 << order) - 1;
3174 		for (; page < endpage; page += pageblock_nr_pages) {
3175 			int mt = get_pageblock_migratetype(page);
3176 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3177 			    && !is_migrate_highatomic(mt))
3178 				set_pageblock_migratetype(page,
3179 							  MIGRATE_MOVABLE);
3180 		}
3181 	}
3182 
3183 
3184 	return 1UL << order;
3185 }
3186 
3187 /*
3188  * Update NUMA hit/miss statistics
3189  *
3190  * Must be called with interrupts disabled.
3191  */
3192 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3193 {
3194 #ifdef CONFIG_NUMA
3195 	enum numa_stat_item local_stat = NUMA_LOCAL;
3196 
3197 	/* skip numa counters update if numa stats is disabled */
3198 	if (!static_branch_likely(&vm_numa_stat_key))
3199 		return;
3200 
3201 	if (zone_to_nid(z) != numa_node_id())
3202 		local_stat = NUMA_OTHER;
3203 
3204 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3205 		__inc_numa_state(z, NUMA_HIT);
3206 	else {
3207 		__inc_numa_state(z, NUMA_MISS);
3208 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3209 	}
3210 	__inc_numa_state(z, local_stat);
3211 #endif
3212 }
3213 
3214 /* Remove page from the per-cpu list, caller must protect the list */
3215 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3216 			unsigned int alloc_flags,
3217 			struct per_cpu_pages *pcp,
3218 			struct list_head *list)
3219 {
3220 	struct page *page;
3221 
3222 	do {
3223 		if (list_empty(list)) {
3224 			pcp->count += rmqueue_bulk(zone, 0,
3225 					pcp->batch, list,
3226 					migratetype, alloc_flags);
3227 			if (unlikely(list_empty(list)))
3228 				return NULL;
3229 		}
3230 
3231 		page = list_first_entry(list, struct page, lru);
3232 		list_del(&page->lru);
3233 		pcp->count--;
3234 	} while (check_new_pcp(page));
3235 
3236 	return page;
3237 }
3238 
3239 /* Lock and remove page from the per-cpu list */
3240 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3241 			struct zone *zone, gfp_t gfp_flags,
3242 			int migratetype, unsigned int alloc_flags)
3243 {
3244 	struct per_cpu_pages *pcp;
3245 	struct list_head *list;
3246 	struct page *page;
3247 	unsigned long flags;
3248 
3249 	local_irq_save(flags);
3250 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3251 	list = &pcp->lists[migratetype];
3252 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3253 	if (page) {
3254 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3255 		zone_statistics(preferred_zone, zone);
3256 	}
3257 	local_irq_restore(flags);
3258 	return page;
3259 }
3260 
3261 /*
3262  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3263  */
3264 static inline
3265 struct page *rmqueue(struct zone *preferred_zone,
3266 			struct zone *zone, unsigned int order,
3267 			gfp_t gfp_flags, unsigned int alloc_flags,
3268 			int migratetype)
3269 {
3270 	unsigned long flags;
3271 	struct page *page;
3272 
3273 	if (likely(order == 0)) {
3274 		page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3275 					migratetype, alloc_flags);
3276 		goto out;
3277 	}
3278 
3279 	/*
3280 	 * We most definitely don't want callers attempting to
3281 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3282 	 */
3283 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3284 	spin_lock_irqsave(&zone->lock, flags);
3285 
3286 	do {
3287 		page = NULL;
3288 		if (alloc_flags & ALLOC_HARDER) {
3289 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3290 			if (page)
3291 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3292 		}
3293 		if (!page)
3294 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3295 	} while (page && check_new_pages(page, order));
3296 	spin_unlock(&zone->lock);
3297 	if (!page)
3298 		goto failed;
3299 	__mod_zone_freepage_state(zone, -(1 << order),
3300 				  get_pcppage_migratetype(page));
3301 
3302 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3303 	zone_statistics(preferred_zone, zone);
3304 	local_irq_restore(flags);
3305 
3306 out:
3307 	/* Separate test+clear to avoid unnecessary atomics */
3308 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3309 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3310 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3311 	}
3312 
3313 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3314 	return page;
3315 
3316 failed:
3317 	local_irq_restore(flags);
3318 	return NULL;
3319 }
3320 
3321 #ifdef CONFIG_FAIL_PAGE_ALLOC
3322 
3323 static struct {
3324 	struct fault_attr attr;
3325 
3326 	bool ignore_gfp_highmem;
3327 	bool ignore_gfp_reclaim;
3328 	u32 min_order;
3329 } fail_page_alloc = {
3330 	.attr = FAULT_ATTR_INITIALIZER,
3331 	.ignore_gfp_reclaim = true,
3332 	.ignore_gfp_highmem = true,
3333 	.min_order = 1,
3334 };
3335 
3336 static int __init setup_fail_page_alloc(char *str)
3337 {
3338 	return setup_fault_attr(&fail_page_alloc.attr, str);
3339 }
3340 __setup("fail_page_alloc=", setup_fail_page_alloc);
3341 
3342 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3343 {
3344 	if (order < fail_page_alloc.min_order)
3345 		return false;
3346 	if (gfp_mask & __GFP_NOFAIL)
3347 		return false;
3348 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3349 		return false;
3350 	if (fail_page_alloc.ignore_gfp_reclaim &&
3351 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3352 		return false;
3353 
3354 	return should_fail(&fail_page_alloc.attr, 1 << order);
3355 }
3356 
3357 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3358 
3359 static int __init fail_page_alloc_debugfs(void)
3360 {
3361 	umode_t mode = S_IFREG | 0600;
3362 	struct dentry *dir;
3363 
3364 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3365 					&fail_page_alloc.attr);
3366 
3367 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3368 			    &fail_page_alloc.ignore_gfp_reclaim);
3369 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3370 			    &fail_page_alloc.ignore_gfp_highmem);
3371 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3372 
3373 	return 0;
3374 }
3375 
3376 late_initcall(fail_page_alloc_debugfs);
3377 
3378 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3379 
3380 #else /* CONFIG_FAIL_PAGE_ALLOC */
3381 
3382 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3383 {
3384 	return false;
3385 }
3386 
3387 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3388 
3389 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3390 {
3391 	return __should_fail_alloc_page(gfp_mask, order);
3392 }
3393 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3394 
3395 /*
3396  * Return true if free base pages are above 'mark'. For high-order checks it
3397  * will return true of the order-0 watermark is reached and there is at least
3398  * one free page of a suitable size. Checking now avoids taking the zone lock
3399  * to check in the allocation paths if no pages are free.
3400  */
3401 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3402 			 int classzone_idx, unsigned int alloc_flags,
3403 			 long free_pages)
3404 {
3405 	long min = mark;
3406 	int o;
3407 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3408 
3409 	/* free_pages may go negative - that's OK */
3410 	free_pages -= (1 << order) - 1;
3411 
3412 	if (alloc_flags & ALLOC_HIGH)
3413 		min -= min / 2;
3414 
3415 	/*
3416 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3417 	 * the high-atomic reserves. This will over-estimate the size of the
3418 	 * atomic reserve but it avoids a search.
3419 	 */
3420 	if (likely(!alloc_harder)) {
3421 		free_pages -= z->nr_reserved_highatomic;
3422 	} else {
3423 		/*
3424 		 * OOM victims can try even harder than normal ALLOC_HARDER
3425 		 * users on the grounds that it's definitely going to be in
3426 		 * the exit path shortly and free memory. Any allocation it
3427 		 * makes during the free path will be small and short-lived.
3428 		 */
3429 		if (alloc_flags & ALLOC_OOM)
3430 			min -= min / 2;
3431 		else
3432 			min -= min / 4;
3433 	}
3434 
3435 
3436 #ifdef CONFIG_CMA
3437 	/* If allocation can't use CMA areas don't use free CMA pages */
3438 	if (!(alloc_flags & ALLOC_CMA))
3439 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3440 #endif
3441 
3442 	/*
3443 	 * Check watermarks for an order-0 allocation request. If these
3444 	 * are not met, then a high-order request also cannot go ahead
3445 	 * even if a suitable page happened to be free.
3446 	 */
3447 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3448 		return false;
3449 
3450 	/* If this is an order-0 request then the watermark is fine */
3451 	if (!order)
3452 		return true;
3453 
3454 	/* For a high-order request, check at least one suitable page is free */
3455 	for (o = order; o < MAX_ORDER; o++) {
3456 		struct free_area *area = &z->free_area[o];
3457 		int mt;
3458 
3459 		if (!area->nr_free)
3460 			continue;
3461 
3462 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3463 			if (!free_area_empty(area, mt))
3464 				return true;
3465 		}
3466 
3467 #ifdef CONFIG_CMA
3468 		if ((alloc_flags & ALLOC_CMA) &&
3469 		    !free_area_empty(area, MIGRATE_CMA)) {
3470 			return true;
3471 		}
3472 #endif
3473 		if (alloc_harder &&
3474 			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3475 			return true;
3476 	}
3477 	return false;
3478 }
3479 
3480 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3481 		      int classzone_idx, unsigned int alloc_flags)
3482 {
3483 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3484 					zone_page_state(z, NR_FREE_PAGES));
3485 }
3486 
3487 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3488 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3489 {
3490 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3491 	long cma_pages = 0;
3492 
3493 #ifdef CONFIG_CMA
3494 	/* If allocation can't use CMA areas don't use free CMA pages */
3495 	if (!(alloc_flags & ALLOC_CMA))
3496 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3497 #endif
3498 
3499 	/*
3500 	 * Fast check for order-0 only. If this fails then the reserves
3501 	 * need to be calculated. There is a corner case where the check
3502 	 * passes but only the high-order atomic reserve are free. If
3503 	 * the caller is !atomic then it'll uselessly search the free
3504 	 * list. That corner case is then slower but it is harmless.
3505 	 */
3506 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3507 		return true;
3508 
3509 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3510 					free_pages);
3511 }
3512 
3513 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3514 			unsigned long mark, int classzone_idx)
3515 {
3516 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3517 
3518 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3519 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3520 
3521 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3522 								free_pages);
3523 }
3524 
3525 #ifdef CONFIG_NUMA
3526 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3527 {
3528 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3529 				node_reclaim_distance;
3530 }
3531 #else	/* CONFIG_NUMA */
3532 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3533 {
3534 	return true;
3535 }
3536 #endif	/* CONFIG_NUMA */
3537 
3538 /*
3539  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3540  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3541  * premature use of a lower zone may cause lowmem pressure problems that
3542  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3543  * probably too small. It only makes sense to spread allocations to avoid
3544  * fragmentation between the Normal and DMA32 zones.
3545  */
3546 static inline unsigned int
3547 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3548 {
3549 	unsigned int alloc_flags = 0;
3550 
3551 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3552 		alloc_flags |= ALLOC_KSWAPD;
3553 
3554 #ifdef CONFIG_ZONE_DMA32
3555 	if (!zone)
3556 		return alloc_flags;
3557 
3558 	if (zone_idx(zone) != ZONE_NORMAL)
3559 		return alloc_flags;
3560 
3561 	/*
3562 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3563 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3564 	 * on UMA that if Normal is populated then so is DMA32.
3565 	 */
3566 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3567 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3568 		return alloc_flags;
3569 
3570 	alloc_flags |= ALLOC_NOFRAGMENT;
3571 #endif /* CONFIG_ZONE_DMA32 */
3572 	return alloc_flags;
3573 }
3574 
3575 /*
3576  * get_page_from_freelist goes through the zonelist trying to allocate
3577  * a page.
3578  */
3579 static struct page *
3580 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3581 						const struct alloc_context *ac)
3582 {
3583 	struct zoneref *z;
3584 	struct zone *zone;
3585 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3586 	bool no_fallback;
3587 
3588 retry:
3589 	/*
3590 	 * Scan zonelist, looking for a zone with enough free.
3591 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3592 	 */
3593 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3594 	z = ac->preferred_zoneref;
3595 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3596 								ac->nodemask) {
3597 		struct page *page;
3598 		unsigned long mark;
3599 
3600 		if (cpusets_enabled() &&
3601 			(alloc_flags & ALLOC_CPUSET) &&
3602 			!__cpuset_zone_allowed(zone, gfp_mask))
3603 				continue;
3604 		/*
3605 		 * When allocating a page cache page for writing, we
3606 		 * want to get it from a node that is within its dirty
3607 		 * limit, such that no single node holds more than its
3608 		 * proportional share of globally allowed dirty pages.
3609 		 * The dirty limits take into account the node's
3610 		 * lowmem reserves and high watermark so that kswapd
3611 		 * should be able to balance it without having to
3612 		 * write pages from its LRU list.
3613 		 *
3614 		 * XXX: For now, allow allocations to potentially
3615 		 * exceed the per-node dirty limit in the slowpath
3616 		 * (spread_dirty_pages unset) before going into reclaim,
3617 		 * which is important when on a NUMA setup the allowed
3618 		 * nodes are together not big enough to reach the
3619 		 * global limit.  The proper fix for these situations
3620 		 * will require awareness of nodes in the
3621 		 * dirty-throttling and the flusher threads.
3622 		 */
3623 		if (ac->spread_dirty_pages) {
3624 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3625 				continue;
3626 
3627 			if (!node_dirty_ok(zone->zone_pgdat)) {
3628 				last_pgdat_dirty_limit = zone->zone_pgdat;
3629 				continue;
3630 			}
3631 		}
3632 
3633 		if (no_fallback && nr_online_nodes > 1 &&
3634 		    zone != ac->preferred_zoneref->zone) {
3635 			int local_nid;
3636 
3637 			/*
3638 			 * If moving to a remote node, retry but allow
3639 			 * fragmenting fallbacks. Locality is more important
3640 			 * than fragmentation avoidance.
3641 			 */
3642 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3643 			if (zone_to_nid(zone) != local_nid) {
3644 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3645 				goto retry;
3646 			}
3647 		}
3648 
3649 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3650 		if (!zone_watermark_fast(zone, order, mark,
3651 				       ac_classzone_idx(ac), alloc_flags)) {
3652 			int ret;
3653 
3654 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3655 			/*
3656 			 * Watermark failed for this zone, but see if we can
3657 			 * grow this zone if it contains deferred pages.
3658 			 */
3659 			if (static_branch_unlikely(&deferred_pages)) {
3660 				if (_deferred_grow_zone(zone, order))
3661 					goto try_this_zone;
3662 			}
3663 #endif
3664 			/* Checked here to keep the fast path fast */
3665 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3666 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3667 				goto try_this_zone;
3668 
3669 			if (node_reclaim_mode == 0 ||
3670 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3671 				continue;
3672 
3673 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3674 			switch (ret) {
3675 			case NODE_RECLAIM_NOSCAN:
3676 				/* did not scan */
3677 				continue;
3678 			case NODE_RECLAIM_FULL:
3679 				/* scanned but unreclaimable */
3680 				continue;
3681 			default:
3682 				/* did we reclaim enough */
3683 				if (zone_watermark_ok(zone, order, mark,
3684 						ac_classzone_idx(ac), alloc_flags))
3685 					goto try_this_zone;
3686 
3687 				continue;
3688 			}
3689 		}
3690 
3691 try_this_zone:
3692 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3693 				gfp_mask, alloc_flags, ac->migratetype);
3694 		if (page) {
3695 			prep_new_page(page, order, gfp_mask, alloc_flags);
3696 
3697 			/*
3698 			 * If this is a high-order atomic allocation then check
3699 			 * if the pageblock should be reserved for the future
3700 			 */
3701 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3702 				reserve_highatomic_pageblock(page, zone, order);
3703 
3704 			return page;
3705 		} else {
3706 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3707 			/* Try again if zone has deferred pages */
3708 			if (static_branch_unlikely(&deferred_pages)) {
3709 				if (_deferred_grow_zone(zone, order))
3710 					goto try_this_zone;
3711 			}
3712 #endif
3713 		}
3714 	}
3715 
3716 	/*
3717 	 * It's possible on a UMA machine to get through all zones that are
3718 	 * fragmented. If avoiding fragmentation, reset and try again.
3719 	 */
3720 	if (no_fallback) {
3721 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3722 		goto retry;
3723 	}
3724 
3725 	return NULL;
3726 }
3727 
3728 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3729 {
3730 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3731 
3732 	/*
3733 	 * This documents exceptions given to allocations in certain
3734 	 * contexts that are allowed to allocate outside current's set
3735 	 * of allowed nodes.
3736 	 */
3737 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3738 		if (tsk_is_oom_victim(current) ||
3739 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3740 			filter &= ~SHOW_MEM_FILTER_NODES;
3741 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3742 		filter &= ~SHOW_MEM_FILTER_NODES;
3743 
3744 	show_mem(filter, nodemask);
3745 }
3746 
3747 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3748 {
3749 	struct va_format vaf;
3750 	va_list args;
3751 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3752 
3753 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3754 		return;
3755 
3756 	va_start(args, fmt);
3757 	vaf.fmt = fmt;
3758 	vaf.va = &args;
3759 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3760 			current->comm, &vaf, gfp_mask, &gfp_mask,
3761 			nodemask_pr_args(nodemask));
3762 	va_end(args);
3763 
3764 	cpuset_print_current_mems_allowed();
3765 	pr_cont("\n");
3766 	dump_stack();
3767 	warn_alloc_show_mem(gfp_mask, nodemask);
3768 }
3769 
3770 static inline struct page *
3771 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3772 			      unsigned int alloc_flags,
3773 			      const struct alloc_context *ac)
3774 {
3775 	struct page *page;
3776 
3777 	page = get_page_from_freelist(gfp_mask, order,
3778 			alloc_flags|ALLOC_CPUSET, ac);
3779 	/*
3780 	 * fallback to ignore cpuset restriction if our nodes
3781 	 * are depleted
3782 	 */
3783 	if (!page)
3784 		page = get_page_from_freelist(gfp_mask, order,
3785 				alloc_flags, ac);
3786 
3787 	return page;
3788 }
3789 
3790 static inline struct page *
3791 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3792 	const struct alloc_context *ac, unsigned long *did_some_progress)
3793 {
3794 	struct oom_control oc = {
3795 		.zonelist = ac->zonelist,
3796 		.nodemask = ac->nodemask,
3797 		.memcg = NULL,
3798 		.gfp_mask = gfp_mask,
3799 		.order = order,
3800 	};
3801 	struct page *page;
3802 
3803 	*did_some_progress = 0;
3804 
3805 	/*
3806 	 * Acquire the oom lock.  If that fails, somebody else is
3807 	 * making progress for us.
3808 	 */
3809 	if (!mutex_trylock(&oom_lock)) {
3810 		*did_some_progress = 1;
3811 		schedule_timeout_uninterruptible(1);
3812 		return NULL;
3813 	}
3814 
3815 	/*
3816 	 * Go through the zonelist yet one more time, keep very high watermark
3817 	 * here, this is only to catch a parallel oom killing, we must fail if
3818 	 * we're still under heavy pressure. But make sure that this reclaim
3819 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3820 	 * allocation which will never fail due to oom_lock already held.
3821 	 */
3822 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3823 				      ~__GFP_DIRECT_RECLAIM, order,
3824 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3825 	if (page)
3826 		goto out;
3827 
3828 	/* Coredumps can quickly deplete all memory reserves */
3829 	if (current->flags & PF_DUMPCORE)
3830 		goto out;
3831 	/* The OOM killer will not help higher order allocs */
3832 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3833 		goto out;
3834 	/*
3835 	 * We have already exhausted all our reclaim opportunities without any
3836 	 * success so it is time to admit defeat. We will skip the OOM killer
3837 	 * because it is very likely that the caller has a more reasonable
3838 	 * fallback than shooting a random task.
3839 	 */
3840 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3841 		goto out;
3842 	/* The OOM killer does not needlessly kill tasks for lowmem */
3843 	if (ac->high_zoneidx < ZONE_NORMAL)
3844 		goto out;
3845 	if (pm_suspended_storage())
3846 		goto out;
3847 	/*
3848 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3849 	 * other request to make a forward progress.
3850 	 * We are in an unfortunate situation where out_of_memory cannot
3851 	 * do much for this context but let's try it to at least get
3852 	 * access to memory reserved if the current task is killed (see
3853 	 * out_of_memory). Once filesystems are ready to handle allocation
3854 	 * failures more gracefully we should just bail out here.
3855 	 */
3856 
3857 	/* The OOM killer may not free memory on a specific node */
3858 	if (gfp_mask & __GFP_THISNODE)
3859 		goto out;
3860 
3861 	/* Exhausted what can be done so it's blame time */
3862 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3863 		*did_some_progress = 1;
3864 
3865 		/*
3866 		 * Help non-failing allocations by giving them access to memory
3867 		 * reserves
3868 		 */
3869 		if (gfp_mask & __GFP_NOFAIL)
3870 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3871 					ALLOC_NO_WATERMARKS, ac);
3872 	}
3873 out:
3874 	mutex_unlock(&oom_lock);
3875 	return page;
3876 }
3877 
3878 /*
3879  * Maximum number of compaction retries wit a progress before OOM
3880  * killer is consider as the only way to move forward.
3881  */
3882 #define MAX_COMPACT_RETRIES 16
3883 
3884 #ifdef CONFIG_COMPACTION
3885 /* Try memory compaction for high-order allocations before reclaim */
3886 static struct page *
3887 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3888 		unsigned int alloc_flags, const struct alloc_context *ac,
3889 		enum compact_priority prio, enum compact_result *compact_result)
3890 {
3891 	struct page *page = NULL;
3892 	unsigned long pflags;
3893 	unsigned int noreclaim_flag;
3894 
3895 	if (!order)
3896 		return NULL;
3897 
3898 	psi_memstall_enter(&pflags);
3899 	noreclaim_flag = memalloc_noreclaim_save();
3900 
3901 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3902 								prio, &page);
3903 
3904 	memalloc_noreclaim_restore(noreclaim_flag);
3905 	psi_memstall_leave(&pflags);
3906 
3907 	/*
3908 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3909 	 * count a compaction stall
3910 	 */
3911 	count_vm_event(COMPACTSTALL);
3912 
3913 	/* Prep a captured page if available */
3914 	if (page)
3915 		prep_new_page(page, order, gfp_mask, alloc_flags);
3916 
3917 	/* Try get a page from the freelist if available */
3918 	if (!page)
3919 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3920 
3921 	if (page) {
3922 		struct zone *zone = page_zone(page);
3923 
3924 		zone->compact_blockskip_flush = false;
3925 		compaction_defer_reset(zone, order, true);
3926 		count_vm_event(COMPACTSUCCESS);
3927 		return page;
3928 	}
3929 
3930 	/*
3931 	 * It's bad if compaction run occurs and fails. The most likely reason
3932 	 * is that pages exist, but not enough to satisfy watermarks.
3933 	 */
3934 	count_vm_event(COMPACTFAIL);
3935 
3936 	cond_resched();
3937 
3938 	return NULL;
3939 }
3940 
3941 static inline bool
3942 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3943 		     enum compact_result compact_result,
3944 		     enum compact_priority *compact_priority,
3945 		     int *compaction_retries)
3946 {
3947 	int max_retries = MAX_COMPACT_RETRIES;
3948 	int min_priority;
3949 	bool ret = false;
3950 	int retries = *compaction_retries;
3951 	enum compact_priority priority = *compact_priority;
3952 
3953 	if (!order)
3954 		return false;
3955 
3956 	if (compaction_made_progress(compact_result))
3957 		(*compaction_retries)++;
3958 
3959 	/*
3960 	 * compaction considers all the zone as desperately out of memory
3961 	 * so it doesn't really make much sense to retry except when the
3962 	 * failure could be caused by insufficient priority
3963 	 */
3964 	if (compaction_failed(compact_result))
3965 		goto check_priority;
3966 
3967 	/*
3968 	 * compaction was skipped because there are not enough order-0 pages
3969 	 * to work with, so we retry only if it looks like reclaim can help.
3970 	 */
3971 	if (compaction_needs_reclaim(compact_result)) {
3972 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3973 		goto out;
3974 	}
3975 
3976 	/*
3977 	 * make sure the compaction wasn't deferred or didn't bail out early
3978 	 * due to locks contention before we declare that we should give up.
3979 	 * But the next retry should use a higher priority if allowed, so
3980 	 * we don't just keep bailing out endlessly.
3981 	 */
3982 	if (compaction_withdrawn(compact_result)) {
3983 		goto check_priority;
3984 	}
3985 
3986 	/*
3987 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3988 	 * costly ones because they are de facto nofail and invoke OOM
3989 	 * killer to move on while costly can fail and users are ready
3990 	 * to cope with that. 1/4 retries is rather arbitrary but we
3991 	 * would need much more detailed feedback from compaction to
3992 	 * make a better decision.
3993 	 */
3994 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3995 		max_retries /= 4;
3996 	if (*compaction_retries <= max_retries) {
3997 		ret = true;
3998 		goto out;
3999 	}
4000 
4001 	/*
4002 	 * Make sure there are attempts at the highest priority if we exhausted
4003 	 * all retries or failed at the lower priorities.
4004 	 */
4005 check_priority:
4006 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4007 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4008 
4009 	if (*compact_priority > min_priority) {
4010 		(*compact_priority)--;
4011 		*compaction_retries = 0;
4012 		ret = true;
4013 	}
4014 out:
4015 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4016 	return ret;
4017 }
4018 #else
4019 static inline struct page *
4020 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4021 		unsigned int alloc_flags, const struct alloc_context *ac,
4022 		enum compact_priority prio, enum compact_result *compact_result)
4023 {
4024 	*compact_result = COMPACT_SKIPPED;
4025 	return NULL;
4026 }
4027 
4028 static inline bool
4029 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4030 		     enum compact_result compact_result,
4031 		     enum compact_priority *compact_priority,
4032 		     int *compaction_retries)
4033 {
4034 	struct zone *zone;
4035 	struct zoneref *z;
4036 
4037 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4038 		return false;
4039 
4040 	/*
4041 	 * There are setups with compaction disabled which would prefer to loop
4042 	 * inside the allocator rather than hit the oom killer prematurely.
4043 	 * Let's give them a good hope and keep retrying while the order-0
4044 	 * watermarks are OK.
4045 	 */
4046 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4047 					ac->nodemask) {
4048 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4049 					ac_classzone_idx(ac), alloc_flags))
4050 			return true;
4051 	}
4052 	return false;
4053 }
4054 #endif /* CONFIG_COMPACTION */
4055 
4056 #ifdef CONFIG_LOCKDEP
4057 static struct lockdep_map __fs_reclaim_map =
4058 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4059 
4060 static bool __need_fs_reclaim(gfp_t gfp_mask)
4061 {
4062 	gfp_mask = current_gfp_context(gfp_mask);
4063 
4064 	/* no reclaim without waiting on it */
4065 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4066 		return false;
4067 
4068 	/* this guy won't enter reclaim */
4069 	if (current->flags & PF_MEMALLOC)
4070 		return false;
4071 
4072 	/* We're only interested __GFP_FS allocations for now */
4073 	if (!(gfp_mask & __GFP_FS))
4074 		return false;
4075 
4076 	if (gfp_mask & __GFP_NOLOCKDEP)
4077 		return false;
4078 
4079 	return true;
4080 }
4081 
4082 void __fs_reclaim_acquire(void)
4083 {
4084 	lock_map_acquire(&__fs_reclaim_map);
4085 }
4086 
4087 void __fs_reclaim_release(void)
4088 {
4089 	lock_map_release(&__fs_reclaim_map);
4090 }
4091 
4092 void fs_reclaim_acquire(gfp_t gfp_mask)
4093 {
4094 	if (__need_fs_reclaim(gfp_mask))
4095 		__fs_reclaim_acquire();
4096 }
4097 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4098 
4099 void fs_reclaim_release(gfp_t gfp_mask)
4100 {
4101 	if (__need_fs_reclaim(gfp_mask))
4102 		__fs_reclaim_release();
4103 }
4104 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4105 #endif
4106 
4107 /* Perform direct synchronous page reclaim */
4108 static int
4109 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4110 					const struct alloc_context *ac)
4111 {
4112 	int progress;
4113 	unsigned int noreclaim_flag;
4114 	unsigned long pflags;
4115 
4116 	cond_resched();
4117 
4118 	/* We now go into synchronous reclaim */
4119 	cpuset_memory_pressure_bump();
4120 	psi_memstall_enter(&pflags);
4121 	fs_reclaim_acquire(gfp_mask);
4122 	noreclaim_flag = memalloc_noreclaim_save();
4123 
4124 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4125 								ac->nodemask);
4126 
4127 	memalloc_noreclaim_restore(noreclaim_flag);
4128 	fs_reclaim_release(gfp_mask);
4129 	psi_memstall_leave(&pflags);
4130 
4131 	cond_resched();
4132 
4133 	return progress;
4134 }
4135 
4136 /* The really slow allocator path where we enter direct reclaim */
4137 static inline struct page *
4138 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4139 		unsigned int alloc_flags, const struct alloc_context *ac,
4140 		unsigned long *did_some_progress)
4141 {
4142 	struct page *page = NULL;
4143 	bool drained = false;
4144 
4145 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4146 	if (unlikely(!(*did_some_progress)))
4147 		return NULL;
4148 
4149 retry:
4150 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4151 
4152 	/*
4153 	 * If an allocation failed after direct reclaim, it could be because
4154 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4155 	 * Shrink them them and try again
4156 	 */
4157 	if (!page && !drained) {
4158 		unreserve_highatomic_pageblock(ac, false);
4159 		drain_all_pages(NULL);
4160 		drained = true;
4161 		goto retry;
4162 	}
4163 
4164 	return page;
4165 }
4166 
4167 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4168 			     const struct alloc_context *ac)
4169 {
4170 	struct zoneref *z;
4171 	struct zone *zone;
4172 	pg_data_t *last_pgdat = NULL;
4173 	enum zone_type high_zoneidx = ac->high_zoneidx;
4174 
4175 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4176 					ac->nodemask) {
4177 		if (last_pgdat != zone->zone_pgdat)
4178 			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4179 		last_pgdat = zone->zone_pgdat;
4180 	}
4181 }
4182 
4183 static inline unsigned int
4184 gfp_to_alloc_flags(gfp_t gfp_mask)
4185 {
4186 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4187 
4188 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4189 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4190 
4191 	/*
4192 	 * The caller may dip into page reserves a bit more if the caller
4193 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4194 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4195 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4196 	 */
4197 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4198 
4199 	if (gfp_mask & __GFP_ATOMIC) {
4200 		/*
4201 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4202 		 * if it can't schedule.
4203 		 */
4204 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4205 			alloc_flags |= ALLOC_HARDER;
4206 		/*
4207 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4208 		 * comment for __cpuset_node_allowed().
4209 		 */
4210 		alloc_flags &= ~ALLOC_CPUSET;
4211 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4212 		alloc_flags |= ALLOC_HARDER;
4213 
4214 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4215 		alloc_flags |= ALLOC_KSWAPD;
4216 
4217 #ifdef CONFIG_CMA
4218 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4219 		alloc_flags |= ALLOC_CMA;
4220 #endif
4221 	return alloc_flags;
4222 }
4223 
4224 static bool oom_reserves_allowed(struct task_struct *tsk)
4225 {
4226 	if (!tsk_is_oom_victim(tsk))
4227 		return false;
4228 
4229 	/*
4230 	 * !MMU doesn't have oom reaper so give access to memory reserves
4231 	 * only to the thread with TIF_MEMDIE set
4232 	 */
4233 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4234 		return false;
4235 
4236 	return true;
4237 }
4238 
4239 /*
4240  * Distinguish requests which really need access to full memory
4241  * reserves from oom victims which can live with a portion of it
4242  */
4243 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4244 {
4245 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4246 		return 0;
4247 	if (gfp_mask & __GFP_MEMALLOC)
4248 		return ALLOC_NO_WATERMARKS;
4249 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4250 		return ALLOC_NO_WATERMARKS;
4251 	if (!in_interrupt()) {
4252 		if (current->flags & PF_MEMALLOC)
4253 			return ALLOC_NO_WATERMARKS;
4254 		else if (oom_reserves_allowed(current))
4255 			return ALLOC_OOM;
4256 	}
4257 
4258 	return 0;
4259 }
4260 
4261 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4262 {
4263 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4264 }
4265 
4266 /*
4267  * Checks whether it makes sense to retry the reclaim to make a forward progress
4268  * for the given allocation request.
4269  *
4270  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4271  * without success, or when we couldn't even meet the watermark if we
4272  * reclaimed all remaining pages on the LRU lists.
4273  *
4274  * Returns true if a retry is viable or false to enter the oom path.
4275  */
4276 static inline bool
4277 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4278 		     struct alloc_context *ac, int alloc_flags,
4279 		     bool did_some_progress, int *no_progress_loops)
4280 {
4281 	struct zone *zone;
4282 	struct zoneref *z;
4283 	bool ret = false;
4284 
4285 	/*
4286 	 * Costly allocations might have made a progress but this doesn't mean
4287 	 * their order will become available due to high fragmentation so
4288 	 * always increment the no progress counter for them
4289 	 */
4290 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4291 		*no_progress_loops = 0;
4292 	else
4293 		(*no_progress_loops)++;
4294 
4295 	/*
4296 	 * Make sure we converge to OOM if we cannot make any progress
4297 	 * several times in the row.
4298 	 */
4299 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4300 		/* Before OOM, exhaust highatomic_reserve */
4301 		return unreserve_highatomic_pageblock(ac, true);
4302 	}
4303 
4304 	/*
4305 	 * Keep reclaiming pages while there is a chance this will lead
4306 	 * somewhere.  If none of the target zones can satisfy our allocation
4307 	 * request even if all reclaimable pages are considered then we are
4308 	 * screwed and have to go OOM.
4309 	 */
4310 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4311 					ac->nodemask) {
4312 		unsigned long available;
4313 		unsigned long reclaimable;
4314 		unsigned long min_wmark = min_wmark_pages(zone);
4315 		bool wmark;
4316 
4317 		available = reclaimable = zone_reclaimable_pages(zone);
4318 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4319 
4320 		/*
4321 		 * Would the allocation succeed if we reclaimed all
4322 		 * reclaimable pages?
4323 		 */
4324 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4325 				ac_classzone_idx(ac), alloc_flags, available);
4326 		trace_reclaim_retry_zone(z, order, reclaimable,
4327 				available, min_wmark, *no_progress_loops, wmark);
4328 		if (wmark) {
4329 			/*
4330 			 * If we didn't make any progress and have a lot of
4331 			 * dirty + writeback pages then we should wait for
4332 			 * an IO to complete to slow down the reclaim and
4333 			 * prevent from pre mature OOM
4334 			 */
4335 			if (!did_some_progress) {
4336 				unsigned long write_pending;
4337 
4338 				write_pending = zone_page_state_snapshot(zone,
4339 							NR_ZONE_WRITE_PENDING);
4340 
4341 				if (2 * write_pending > reclaimable) {
4342 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4343 					return true;
4344 				}
4345 			}
4346 
4347 			ret = true;
4348 			goto out;
4349 		}
4350 	}
4351 
4352 out:
4353 	/*
4354 	 * Memory allocation/reclaim might be called from a WQ context and the
4355 	 * current implementation of the WQ concurrency control doesn't
4356 	 * recognize that a particular WQ is congested if the worker thread is
4357 	 * looping without ever sleeping. Therefore we have to do a short sleep
4358 	 * here rather than calling cond_resched().
4359 	 */
4360 	if (current->flags & PF_WQ_WORKER)
4361 		schedule_timeout_uninterruptible(1);
4362 	else
4363 		cond_resched();
4364 	return ret;
4365 }
4366 
4367 static inline bool
4368 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4369 {
4370 	/*
4371 	 * It's possible that cpuset's mems_allowed and the nodemask from
4372 	 * mempolicy don't intersect. This should be normally dealt with by
4373 	 * policy_nodemask(), but it's possible to race with cpuset update in
4374 	 * such a way the check therein was true, and then it became false
4375 	 * before we got our cpuset_mems_cookie here.
4376 	 * This assumes that for all allocations, ac->nodemask can come only
4377 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4378 	 * when it does not intersect with the cpuset restrictions) or the
4379 	 * caller can deal with a violated nodemask.
4380 	 */
4381 	if (cpusets_enabled() && ac->nodemask &&
4382 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4383 		ac->nodemask = NULL;
4384 		return true;
4385 	}
4386 
4387 	/*
4388 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4389 	 * possible to race with parallel threads in such a way that our
4390 	 * allocation can fail while the mask is being updated. If we are about
4391 	 * to fail, check if the cpuset changed during allocation and if so,
4392 	 * retry.
4393 	 */
4394 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4395 		return true;
4396 
4397 	return false;
4398 }
4399 
4400 static inline struct page *
4401 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4402 						struct alloc_context *ac)
4403 {
4404 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4405 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4406 	struct page *page = NULL;
4407 	unsigned int alloc_flags;
4408 	unsigned long did_some_progress;
4409 	enum compact_priority compact_priority;
4410 	enum compact_result compact_result;
4411 	int compaction_retries;
4412 	int no_progress_loops;
4413 	unsigned int cpuset_mems_cookie;
4414 	int reserve_flags;
4415 
4416 	/*
4417 	 * We also sanity check to catch abuse of atomic reserves being used by
4418 	 * callers that are not in atomic context.
4419 	 */
4420 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4421 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4422 		gfp_mask &= ~__GFP_ATOMIC;
4423 
4424 retry_cpuset:
4425 	compaction_retries = 0;
4426 	no_progress_loops = 0;
4427 	compact_priority = DEF_COMPACT_PRIORITY;
4428 	cpuset_mems_cookie = read_mems_allowed_begin();
4429 
4430 	/*
4431 	 * The fast path uses conservative alloc_flags to succeed only until
4432 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4433 	 * alloc_flags precisely. So we do that now.
4434 	 */
4435 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4436 
4437 	/*
4438 	 * We need to recalculate the starting point for the zonelist iterator
4439 	 * because we might have used different nodemask in the fast path, or
4440 	 * there was a cpuset modification and we are retrying - otherwise we
4441 	 * could end up iterating over non-eligible zones endlessly.
4442 	 */
4443 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4444 					ac->high_zoneidx, ac->nodemask);
4445 	if (!ac->preferred_zoneref->zone)
4446 		goto nopage;
4447 
4448 	if (alloc_flags & ALLOC_KSWAPD)
4449 		wake_all_kswapds(order, gfp_mask, ac);
4450 
4451 	/*
4452 	 * The adjusted alloc_flags might result in immediate success, so try
4453 	 * that first
4454 	 */
4455 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4456 	if (page)
4457 		goto got_pg;
4458 
4459 	/*
4460 	 * For costly allocations, try direct compaction first, as it's likely
4461 	 * that we have enough base pages and don't need to reclaim. For non-
4462 	 * movable high-order allocations, do that as well, as compaction will
4463 	 * try prevent permanent fragmentation by migrating from blocks of the
4464 	 * same migratetype.
4465 	 * Don't try this for allocations that are allowed to ignore
4466 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4467 	 */
4468 	if (can_direct_reclaim &&
4469 			(costly_order ||
4470 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4471 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4472 		page = __alloc_pages_direct_compact(gfp_mask, order,
4473 						alloc_flags, ac,
4474 						INIT_COMPACT_PRIORITY,
4475 						&compact_result);
4476 		if (page)
4477 			goto got_pg;
4478 
4479 		 if (order >= pageblock_order && (gfp_mask & __GFP_IO) &&
4480 		     !(gfp_mask & __GFP_RETRY_MAYFAIL)) {
4481 			/*
4482 			 * If allocating entire pageblock(s) and compaction
4483 			 * failed because all zones are below low watermarks
4484 			 * or is prohibited because it recently failed at this
4485 			 * order, fail immediately unless the allocator has
4486 			 * requested compaction and reclaim retry.
4487 			 *
4488 			 * Reclaim is
4489 			 *  - potentially very expensive because zones are far
4490 			 *    below their low watermarks or this is part of very
4491 			 *    bursty high order allocations,
4492 			 *  - not guaranteed to help because isolate_freepages()
4493 			 *    may not iterate over freed pages as part of its
4494 			 *    linear scan, and
4495 			 *  - unlikely to make entire pageblocks free on its
4496 			 *    own.
4497 			 */
4498 			if (compact_result == COMPACT_SKIPPED ||
4499 			    compact_result == COMPACT_DEFERRED)
4500 				goto nopage;
4501 		}
4502 
4503 		/*
4504 		 * Checks for costly allocations with __GFP_NORETRY, which
4505 		 * includes THP page fault allocations
4506 		 */
4507 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4508 			/*
4509 			 * If compaction is deferred for high-order allocations,
4510 			 * it is because sync compaction recently failed. If
4511 			 * this is the case and the caller requested a THP
4512 			 * allocation, we do not want to heavily disrupt the
4513 			 * system, so we fail the allocation instead of entering
4514 			 * direct reclaim.
4515 			 */
4516 			if (compact_result == COMPACT_DEFERRED)
4517 				goto nopage;
4518 
4519 			/*
4520 			 * Looks like reclaim/compaction is worth trying, but
4521 			 * sync compaction could be very expensive, so keep
4522 			 * using async compaction.
4523 			 */
4524 			compact_priority = INIT_COMPACT_PRIORITY;
4525 		}
4526 	}
4527 
4528 retry:
4529 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4530 	if (alloc_flags & ALLOC_KSWAPD)
4531 		wake_all_kswapds(order, gfp_mask, ac);
4532 
4533 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4534 	if (reserve_flags)
4535 		alloc_flags = reserve_flags;
4536 
4537 	/*
4538 	 * Reset the nodemask and zonelist iterators if memory policies can be
4539 	 * ignored. These allocations are high priority and system rather than
4540 	 * user oriented.
4541 	 */
4542 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4543 		ac->nodemask = NULL;
4544 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4545 					ac->high_zoneidx, ac->nodemask);
4546 	}
4547 
4548 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4549 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4550 	if (page)
4551 		goto got_pg;
4552 
4553 	/* Caller is not willing to reclaim, we can't balance anything */
4554 	if (!can_direct_reclaim)
4555 		goto nopage;
4556 
4557 	/* Avoid recursion of direct reclaim */
4558 	if (current->flags & PF_MEMALLOC)
4559 		goto nopage;
4560 
4561 	/* Try direct reclaim and then allocating */
4562 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4563 							&did_some_progress);
4564 	if (page)
4565 		goto got_pg;
4566 
4567 	/* Try direct compaction and then allocating */
4568 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4569 					compact_priority, &compact_result);
4570 	if (page)
4571 		goto got_pg;
4572 
4573 	/* Do not loop if specifically requested */
4574 	if (gfp_mask & __GFP_NORETRY)
4575 		goto nopage;
4576 
4577 	/*
4578 	 * Do not retry costly high order allocations unless they are
4579 	 * __GFP_RETRY_MAYFAIL
4580 	 */
4581 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4582 		goto nopage;
4583 
4584 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4585 				 did_some_progress > 0, &no_progress_loops))
4586 		goto retry;
4587 
4588 	/*
4589 	 * It doesn't make any sense to retry for the compaction if the order-0
4590 	 * reclaim is not able to make any progress because the current
4591 	 * implementation of the compaction depends on the sufficient amount
4592 	 * of free memory (see __compaction_suitable)
4593 	 */
4594 	if (did_some_progress > 0 &&
4595 			should_compact_retry(ac, order, alloc_flags,
4596 				compact_result, &compact_priority,
4597 				&compaction_retries))
4598 		goto retry;
4599 
4600 
4601 	/* Deal with possible cpuset update races before we start OOM killing */
4602 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4603 		goto retry_cpuset;
4604 
4605 	/* Reclaim has failed us, start killing things */
4606 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4607 	if (page)
4608 		goto got_pg;
4609 
4610 	/* Avoid allocations with no watermarks from looping endlessly */
4611 	if (tsk_is_oom_victim(current) &&
4612 	    (alloc_flags == ALLOC_OOM ||
4613 	     (gfp_mask & __GFP_NOMEMALLOC)))
4614 		goto nopage;
4615 
4616 	/* Retry as long as the OOM killer is making progress */
4617 	if (did_some_progress) {
4618 		no_progress_loops = 0;
4619 		goto retry;
4620 	}
4621 
4622 nopage:
4623 	/* Deal with possible cpuset update races before we fail */
4624 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4625 		goto retry_cpuset;
4626 
4627 	/*
4628 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4629 	 * we always retry
4630 	 */
4631 	if (gfp_mask & __GFP_NOFAIL) {
4632 		/*
4633 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4634 		 * of any new users that actually require GFP_NOWAIT
4635 		 */
4636 		if (WARN_ON_ONCE(!can_direct_reclaim))
4637 			goto fail;
4638 
4639 		/*
4640 		 * PF_MEMALLOC request from this context is rather bizarre
4641 		 * because we cannot reclaim anything and only can loop waiting
4642 		 * for somebody to do a work for us
4643 		 */
4644 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4645 
4646 		/*
4647 		 * non failing costly orders are a hard requirement which we
4648 		 * are not prepared for much so let's warn about these users
4649 		 * so that we can identify them and convert them to something
4650 		 * else.
4651 		 */
4652 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4653 
4654 		/*
4655 		 * Help non-failing allocations by giving them access to memory
4656 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4657 		 * could deplete whole memory reserves which would just make
4658 		 * the situation worse
4659 		 */
4660 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4661 		if (page)
4662 			goto got_pg;
4663 
4664 		cond_resched();
4665 		goto retry;
4666 	}
4667 fail:
4668 	warn_alloc(gfp_mask, ac->nodemask,
4669 			"page allocation failure: order:%u", order);
4670 got_pg:
4671 	return page;
4672 }
4673 
4674 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4675 		int preferred_nid, nodemask_t *nodemask,
4676 		struct alloc_context *ac, gfp_t *alloc_mask,
4677 		unsigned int *alloc_flags)
4678 {
4679 	ac->high_zoneidx = gfp_zone(gfp_mask);
4680 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4681 	ac->nodemask = nodemask;
4682 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4683 
4684 	if (cpusets_enabled()) {
4685 		*alloc_mask |= __GFP_HARDWALL;
4686 		if (!ac->nodemask)
4687 			ac->nodemask = &cpuset_current_mems_allowed;
4688 		else
4689 			*alloc_flags |= ALLOC_CPUSET;
4690 	}
4691 
4692 	fs_reclaim_acquire(gfp_mask);
4693 	fs_reclaim_release(gfp_mask);
4694 
4695 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4696 
4697 	if (should_fail_alloc_page(gfp_mask, order))
4698 		return false;
4699 
4700 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4701 		*alloc_flags |= ALLOC_CMA;
4702 
4703 	return true;
4704 }
4705 
4706 /* Determine whether to spread dirty pages and what the first usable zone */
4707 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4708 {
4709 	/* Dirty zone balancing only done in the fast path */
4710 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4711 
4712 	/*
4713 	 * The preferred zone is used for statistics but crucially it is
4714 	 * also used as the starting point for the zonelist iterator. It
4715 	 * may get reset for allocations that ignore memory policies.
4716 	 */
4717 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4718 					ac->high_zoneidx, ac->nodemask);
4719 }
4720 
4721 /*
4722  * This is the 'heart' of the zoned buddy allocator.
4723  */
4724 struct page *
4725 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4726 							nodemask_t *nodemask)
4727 {
4728 	struct page *page;
4729 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4730 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4731 	struct alloc_context ac = { };
4732 
4733 	/*
4734 	 * There are several places where we assume that the order value is sane
4735 	 * so bail out early if the request is out of bound.
4736 	 */
4737 	if (unlikely(order >= MAX_ORDER)) {
4738 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4739 		return NULL;
4740 	}
4741 
4742 	gfp_mask &= gfp_allowed_mask;
4743 	alloc_mask = gfp_mask;
4744 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4745 		return NULL;
4746 
4747 	finalise_ac(gfp_mask, &ac);
4748 
4749 	/*
4750 	 * Forbid the first pass from falling back to types that fragment
4751 	 * memory until all local zones are considered.
4752 	 */
4753 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4754 
4755 	/* First allocation attempt */
4756 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4757 	if (likely(page))
4758 		goto out;
4759 
4760 	/*
4761 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4762 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4763 	 * from a particular context which has been marked by
4764 	 * memalloc_no{fs,io}_{save,restore}.
4765 	 */
4766 	alloc_mask = current_gfp_context(gfp_mask);
4767 	ac.spread_dirty_pages = false;
4768 
4769 	/*
4770 	 * Restore the original nodemask if it was potentially replaced with
4771 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4772 	 */
4773 	if (unlikely(ac.nodemask != nodemask))
4774 		ac.nodemask = nodemask;
4775 
4776 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4777 
4778 out:
4779 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4780 	    unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4781 		__free_pages(page, order);
4782 		page = NULL;
4783 	}
4784 
4785 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4786 
4787 	return page;
4788 }
4789 EXPORT_SYMBOL(__alloc_pages_nodemask);
4790 
4791 /*
4792  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4793  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4794  * you need to access high mem.
4795  */
4796 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4797 {
4798 	struct page *page;
4799 
4800 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4801 	if (!page)
4802 		return 0;
4803 	return (unsigned long) page_address(page);
4804 }
4805 EXPORT_SYMBOL(__get_free_pages);
4806 
4807 unsigned long get_zeroed_page(gfp_t gfp_mask)
4808 {
4809 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4810 }
4811 EXPORT_SYMBOL(get_zeroed_page);
4812 
4813 static inline void free_the_page(struct page *page, unsigned int order)
4814 {
4815 	if (order == 0)		/* Via pcp? */
4816 		free_unref_page(page);
4817 	else
4818 		__free_pages_ok(page, order);
4819 }
4820 
4821 void __free_pages(struct page *page, unsigned int order)
4822 {
4823 	if (put_page_testzero(page))
4824 		free_the_page(page, order);
4825 }
4826 EXPORT_SYMBOL(__free_pages);
4827 
4828 void free_pages(unsigned long addr, unsigned int order)
4829 {
4830 	if (addr != 0) {
4831 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4832 		__free_pages(virt_to_page((void *)addr), order);
4833 	}
4834 }
4835 
4836 EXPORT_SYMBOL(free_pages);
4837 
4838 /*
4839  * Page Fragment:
4840  *  An arbitrary-length arbitrary-offset area of memory which resides
4841  *  within a 0 or higher order page.  Multiple fragments within that page
4842  *  are individually refcounted, in the page's reference counter.
4843  *
4844  * The page_frag functions below provide a simple allocation framework for
4845  * page fragments.  This is used by the network stack and network device
4846  * drivers to provide a backing region of memory for use as either an
4847  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4848  */
4849 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4850 					     gfp_t gfp_mask)
4851 {
4852 	struct page *page = NULL;
4853 	gfp_t gfp = gfp_mask;
4854 
4855 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4856 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4857 		    __GFP_NOMEMALLOC;
4858 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4859 				PAGE_FRAG_CACHE_MAX_ORDER);
4860 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4861 #endif
4862 	if (unlikely(!page))
4863 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4864 
4865 	nc->va = page ? page_address(page) : NULL;
4866 
4867 	return page;
4868 }
4869 
4870 void __page_frag_cache_drain(struct page *page, unsigned int count)
4871 {
4872 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4873 
4874 	if (page_ref_sub_and_test(page, count))
4875 		free_the_page(page, compound_order(page));
4876 }
4877 EXPORT_SYMBOL(__page_frag_cache_drain);
4878 
4879 void *page_frag_alloc(struct page_frag_cache *nc,
4880 		      unsigned int fragsz, gfp_t gfp_mask)
4881 {
4882 	unsigned int size = PAGE_SIZE;
4883 	struct page *page;
4884 	int offset;
4885 
4886 	if (unlikely(!nc->va)) {
4887 refill:
4888 		page = __page_frag_cache_refill(nc, gfp_mask);
4889 		if (!page)
4890 			return NULL;
4891 
4892 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4893 		/* if size can vary use size else just use PAGE_SIZE */
4894 		size = nc->size;
4895 #endif
4896 		/* Even if we own the page, we do not use atomic_set().
4897 		 * This would break get_page_unless_zero() users.
4898 		 */
4899 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4900 
4901 		/* reset page count bias and offset to start of new frag */
4902 		nc->pfmemalloc = page_is_pfmemalloc(page);
4903 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4904 		nc->offset = size;
4905 	}
4906 
4907 	offset = nc->offset - fragsz;
4908 	if (unlikely(offset < 0)) {
4909 		page = virt_to_page(nc->va);
4910 
4911 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4912 			goto refill;
4913 
4914 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4915 		/* if size can vary use size else just use PAGE_SIZE */
4916 		size = nc->size;
4917 #endif
4918 		/* OK, page count is 0, we can safely set it */
4919 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4920 
4921 		/* reset page count bias and offset to start of new frag */
4922 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4923 		offset = size - fragsz;
4924 	}
4925 
4926 	nc->pagecnt_bias--;
4927 	nc->offset = offset;
4928 
4929 	return nc->va + offset;
4930 }
4931 EXPORT_SYMBOL(page_frag_alloc);
4932 
4933 /*
4934  * Frees a page fragment allocated out of either a compound or order 0 page.
4935  */
4936 void page_frag_free(void *addr)
4937 {
4938 	struct page *page = virt_to_head_page(addr);
4939 
4940 	if (unlikely(put_page_testzero(page)))
4941 		free_the_page(page, compound_order(page));
4942 }
4943 EXPORT_SYMBOL(page_frag_free);
4944 
4945 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4946 		size_t size)
4947 {
4948 	if (addr) {
4949 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4950 		unsigned long used = addr + PAGE_ALIGN(size);
4951 
4952 		split_page(virt_to_page((void *)addr), order);
4953 		while (used < alloc_end) {
4954 			free_page(used);
4955 			used += PAGE_SIZE;
4956 		}
4957 	}
4958 	return (void *)addr;
4959 }
4960 
4961 /**
4962  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4963  * @size: the number of bytes to allocate
4964  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4965  *
4966  * This function is similar to alloc_pages(), except that it allocates the
4967  * minimum number of pages to satisfy the request.  alloc_pages() can only
4968  * allocate memory in power-of-two pages.
4969  *
4970  * This function is also limited by MAX_ORDER.
4971  *
4972  * Memory allocated by this function must be released by free_pages_exact().
4973  *
4974  * Return: pointer to the allocated area or %NULL in case of error.
4975  */
4976 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4977 {
4978 	unsigned int order = get_order(size);
4979 	unsigned long addr;
4980 
4981 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4982 		gfp_mask &= ~__GFP_COMP;
4983 
4984 	addr = __get_free_pages(gfp_mask, order);
4985 	return make_alloc_exact(addr, order, size);
4986 }
4987 EXPORT_SYMBOL(alloc_pages_exact);
4988 
4989 /**
4990  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4991  *			   pages on a node.
4992  * @nid: the preferred node ID where memory should be allocated
4993  * @size: the number of bytes to allocate
4994  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4995  *
4996  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4997  * back.
4998  *
4999  * Return: pointer to the allocated area or %NULL in case of error.
5000  */
5001 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5002 {
5003 	unsigned int order = get_order(size);
5004 	struct page *p;
5005 
5006 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5007 		gfp_mask &= ~__GFP_COMP;
5008 
5009 	p = alloc_pages_node(nid, gfp_mask, order);
5010 	if (!p)
5011 		return NULL;
5012 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5013 }
5014 
5015 /**
5016  * free_pages_exact - release memory allocated via alloc_pages_exact()
5017  * @virt: the value returned by alloc_pages_exact.
5018  * @size: size of allocation, same value as passed to alloc_pages_exact().
5019  *
5020  * Release the memory allocated by a previous call to alloc_pages_exact.
5021  */
5022 void free_pages_exact(void *virt, size_t size)
5023 {
5024 	unsigned long addr = (unsigned long)virt;
5025 	unsigned long end = addr + PAGE_ALIGN(size);
5026 
5027 	while (addr < end) {
5028 		free_page(addr);
5029 		addr += PAGE_SIZE;
5030 	}
5031 }
5032 EXPORT_SYMBOL(free_pages_exact);
5033 
5034 /**
5035  * nr_free_zone_pages - count number of pages beyond high watermark
5036  * @offset: The zone index of the highest zone
5037  *
5038  * nr_free_zone_pages() counts the number of pages which are beyond the
5039  * high watermark within all zones at or below a given zone index.  For each
5040  * zone, the number of pages is calculated as:
5041  *
5042  *     nr_free_zone_pages = managed_pages - high_pages
5043  *
5044  * Return: number of pages beyond high watermark.
5045  */
5046 static unsigned long nr_free_zone_pages(int offset)
5047 {
5048 	struct zoneref *z;
5049 	struct zone *zone;
5050 
5051 	/* Just pick one node, since fallback list is circular */
5052 	unsigned long sum = 0;
5053 
5054 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5055 
5056 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5057 		unsigned long size = zone_managed_pages(zone);
5058 		unsigned long high = high_wmark_pages(zone);
5059 		if (size > high)
5060 			sum += size - high;
5061 	}
5062 
5063 	return sum;
5064 }
5065 
5066 /**
5067  * nr_free_buffer_pages - count number of pages beyond high watermark
5068  *
5069  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5070  * watermark within ZONE_DMA and ZONE_NORMAL.
5071  *
5072  * Return: number of pages beyond high watermark within ZONE_DMA and
5073  * ZONE_NORMAL.
5074  */
5075 unsigned long nr_free_buffer_pages(void)
5076 {
5077 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5078 }
5079 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5080 
5081 /**
5082  * nr_free_pagecache_pages - count number of pages beyond high watermark
5083  *
5084  * nr_free_pagecache_pages() counts the number of pages which are beyond the
5085  * high watermark within all zones.
5086  *
5087  * Return: number of pages beyond high watermark within all zones.
5088  */
5089 unsigned long nr_free_pagecache_pages(void)
5090 {
5091 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5092 }
5093 
5094 static inline void show_node(struct zone *zone)
5095 {
5096 	if (IS_ENABLED(CONFIG_NUMA))
5097 		printk("Node %d ", zone_to_nid(zone));
5098 }
5099 
5100 long si_mem_available(void)
5101 {
5102 	long available;
5103 	unsigned long pagecache;
5104 	unsigned long wmark_low = 0;
5105 	unsigned long pages[NR_LRU_LISTS];
5106 	unsigned long reclaimable;
5107 	struct zone *zone;
5108 	int lru;
5109 
5110 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5111 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5112 
5113 	for_each_zone(zone)
5114 		wmark_low += low_wmark_pages(zone);
5115 
5116 	/*
5117 	 * Estimate the amount of memory available for userspace allocations,
5118 	 * without causing swapping.
5119 	 */
5120 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5121 
5122 	/*
5123 	 * Not all the page cache can be freed, otherwise the system will
5124 	 * start swapping. Assume at least half of the page cache, or the
5125 	 * low watermark worth of cache, needs to stay.
5126 	 */
5127 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5128 	pagecache -= min(pagecache / 2, wmark_low);
5129 	available += pagecache;
5130 
5131 	/*
5132 	 * Part of the reclaimable slab and other kernel memory consists of
5133 	 * items that are in use, and cannot be freed. Cap this estimate at the
5134 	 * low watermark.
5135 	 */
5136 	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5137 			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5138 	available += reclaimable - min(reclaimable / 2, wmark_low);
5139 
5140 	if (available < 0)
5141 		available = 0;
5142 	return available;
5143 }
5144 EXPORT_SYMBOL_GPL(si_mem_available);
5145 
5146 void si_meminfo(struct sysinfo *val)
5147 {
5148 	val->totalram = totalram_pages();
5149 	val->sharedram = global_node_page_state(NR_SHMEM);
5150 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5151 	val->bufferram = nr_blockdev_pages();
5152 	val->totalhigh = totalhigh_pages();
5153 	val->freehigh = nr_free_highpages();
5154 	val->mem_unit = PAGE_SIZE;
5155 }
5156 
5157 EXPORT_SYMBOL(si_meminfo);
5158 
5159 #ifdef CONFIG_NUMA
5160 void si_meminfo_node(struct sysinfo *val, int nid)
5161 {
5162 	int zone_type;		/* needs to be signed */
5163 	unsigned long managed_pages = 0;
5164 	unsigned long managed_highpages = 0;
5165 	unsigned long free_highpages = 0;
5166 	pg_data_t *pgdat = NODE_DATA(nid);
5167 
5168 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5169 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5170 	val->totalram = managed_pages;
5171 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5172 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5173 #ifdef CONFIG_HIGHMEM
5174 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5175 		struct zone *zone = &pgdat->node_zones[zone_type];
5176 
5177 		if (is_highmem(zone)) {
5178 			managed_highpages += zone_managed_pages(zone);
5179 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5180 		}
5181 	}
5182 	val->totalhigh = managed_highpages;
5183 	val->freehigh = free_highpages;
5184 #else
5185 	val->totalhigh = managed_highpages;
5186 	val->freehigh = free_highpages;
5187 #endif
5188 	val->mem_unit = PAGE_SIZE;
5189 }
5190 #endif
5191 
5192 /*
5193  * Determine whether the node should be displayed or not, depending on whether
5194  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5195  */
5196 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5197 {
5198 	if (!(flags & SHOW_MEM_FILTER_NODES))
5199 		return false;
5200 
5201 	/*
5202 	 * no node mask - aka implicit memory numa policy. Do not bother with
5203 	 * the synchronization - read_mems_allowed_begin - because we do not
5204 	 * have to be precise here.
5205 	 */
5206 	if (!nodemask)
5207 		nodemask = &cpuset_current_mems_allowed;
5208 
5209 	return !node_isset(nid, *nodemask);
5210 }
5211 
5212 #define K(x) ((x) << (PAGE_SHIFT-10))
5213 
5214 static void show_migration_types(unsigned char type)
5215 {
5216 	static const char types[MIGRATE_TYPES] = {
5217 		[MIGRATE_UNMOVABLE]	= 'U',
5218 		[MIGRATE_MOVABLE]	= 'M',
5219 		[MIGRATE_RECLAIMABLE]	= 'E',
5220 		[MIGRATE_HIGHATOMIC]	= 'H',
5221 #ifdef CONFIG_CMA
5222 		[MIGRATE_CMA]		= 'C',
5223 #endif
5224 #ifdef CONFIG_MEMORY_ISOLATION
5225 		[MIGRATE_ISOLATE]	= 'I',
5226 #endif
5227 	};
5228 	char tmp[MIGRATE_TYPES + 1];
5229 	char *p = tmp;
5230 	int i;
5231 
5232 	for (i = 0; i < MIGRATE_TYPES; i++) {
5233 		if (type & (1 << i))
5234 			*p++ = types[i];
5235 	}
5236 
5237 	*p = '\0';
5238 	printk(KERN_CONT "(%s) ", tmp);
5239 }
5240 
5241 /*
5242  * Show free area list (used inside shift_scroll-lock stuff)
5243  * We also calculate the percentage fragmentation. We do this by counting the
5244  * memory on each free list with the exception of the first item on the list.
5245  *
5246  * Bits in @filter:
5247  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5248  *   cpuset.
5249  */
5250 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5251 {
5252 	unsigned long free_pcp = 0;
5253 	int cpu;
5254 	struct zone *zone;
5255 	pg_data_t *pgdat;
5256 
5257 	for_each_populated_zone(zone) {
5258 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5259 			continue;
5260 
5261 		for_each_online_cpu(cpu)
5262 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5263 	}
5264 
5265 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5266 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5267 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5268 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5269 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5270 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5271 		global_node_page_state(NR_ACTIVE_ANON),
5272 		global_node_page_state(NR_INACTIVE_ANON),
5273 		global_node_page_state(NR_ISOLATED_ANON),
5274 		global_node_page_state(NR_ACTIVE_FILE),
5275 		global_node_page_state(NR_INACTIVE_FILE),
5276 		global_node_page_state(NR_ISOLATED_FILE),
5277 		global_node_page_state(NR_UNEVICTABLE),
5278 		global_node_page_state(NR_FILE_DIRTY),
5279 		global_node_page_state(NR_WRITEBACK),
5280 		global_node_page_state(NR_UNSTABLE_NFS),
5281 		global_node_page_state(NR_SLAB_RECLAIMABLE),
5282 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5283 		global_node_page_state(NR_FILE_MAPPED),
5284 		global_node_page_state(NR_SHMEM),
5285 		global_zone_page_state(NR_PAGETABLE),
5286 		global_zone_page_state(NR_BOUNCE),
5287 		global_zone_page_state(NR_FREE_PAGES),
5288 		free_pcp,
5289 		global_zone_page_state(NR_FREE_CMA_PAGES));
5290 
5291 	for_each_online_pgdat(pgdat) {
5292 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5293 			continue;
5294 
5295 		printk("Node %d"
5296 			" active_anon:%lukB"
5297 			" inactive_anon:%lukB"
5298 			" active_file:%lukB"
5299 			" inactive_file:%lukB"
5300 			" unevictable:%lukB"
5301 			" isolated(anon):%lukB"
5302 			" isolated(file):%lukB"
5303 			" mapped:%lukB"
5304 			" dirty:%lukB"
5305 			" writeback:%lukB"
5306 			" shmem:%lukB"
5307 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5308 			" shmem_thp: %lukB"
5309 			" shmem_pmdmapped: %lukB"
5310 			" anon_thp: %lukB"
5311 #endif
5312 			" writeback_tmp:%lukB"
5313 			" unstable:%lukB"
5314 			" all_unreclaimable? %s"
5315 			"\n",
5316 			pgdat->node_id,
5317 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5318 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5319 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5320 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5321 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5322 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5323 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5324 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5325 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5326 			K(node_page_state(pgdat, NR_WRITEBACK)),
5327 			K(node_page_state(pgdat, NR_SHMEM)),
5328 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5329 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5330 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5331 					* HPAGE_PMD_NR),
5332 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5333 #endif
5334 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5335 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5336 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5337 				"yes" : "no");
5338 	}
5339 
5340 	for_each_populated_zone(zone) {
5341 		int i;
5342 
5343 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5344 			continue;
5345 
5346 		free_pcp = 0;
5347 		for_each_online_cpu(cpu)
5348 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5349 
5350 		show_node(zone);
5351 		printk(KERN_CONT
5352 			"%s"
5353 			" free:%lukB"
5354 			" min:%lukB"
5355 			" low:%lukB"
5356 			" high:%lukB"
5357 			" active_anon:%lukB"
5358 			" inactive_anon:%lukB"
5359 			" active_file:%lukB"
5360 			" inactive_file:%lukB"
5361 			" unevictable:%lukB"
5362 			" writepending:%lukB"
5363 			" present:%lukB"
5364 			" managed:%lukB"
5365 			" mlocked:%lukB"
5366 			" kernel_stack:%lukB"
5367 			" pagetables:%lukB"
5368 			" bounce:%lukB"
5369 			" free_pcp:%lukB"
5370 			" local_pcp:%ukB"
5371 			" free_cma:%lukB"
5372 			"\n",
5373 			zone->name,
5374 			K(zone_page_state(zone, NR_FREE_PAGES)),
5375 			K(min_wmark_pages(zone)),
5376 			K(low_wmark_pages(zone)),
5377 			K(high_wmark_pages(zone)),
5378 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5379 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5380 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5381 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5382 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5383 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5384 			K(zone->present_pages),
5385 			K(zone_managed_pages(zone)),
5386 			K(zone_page_state(zone, NR_MLOCK)),
5387 			zone_page_state(zone, NR_KERNEL_STACK_KB),
5388 			K(zone_page_state(zone, NR_PAGETABLE)),
5389 			K(zone_page_state(zone, NR_BOUNCE)),
5390 			K(free_pcp),
5391 			K(this_cpu_read(zone->pageset->pcp.count)),
5392 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5393 		printk("lowmem_reserve[]:");
5394 		for (i = 0; i < MAX_NR_ZONES; i++)
5395 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5396 		printk(KERN_CONT "\n");
5397 	}
5398 
5399 	for_each_populated_zone(zone) {
5400 		unsigned int order;
5401 		unsigned long nr[MAX_ORDER], flags, total = 0;
5402 		unsigned char types[MAX_ORDER];
5403 
5404 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5405 			continue;
5406 		show_node(zone);
5407 		printk(KERN_CONT "%s: ", zone->name);
5408 
5409 		spin_lock_irqsave(&zone->lock, flags);
5410 		for (order = 0; order < MAX_ORDER; order++) {
5411 			struct free_area *area = &zone->free_area[order];
5412 			int type;
5413 
5414 			nr[order] = area->nr_free;
5415 			total += nr[order] << order;
5416 
5417 			types[order] = 0;
5418 			for (type = 0; type < MIGRATE_TYPES; type++) {
5419 				if (!free_area_empty(area, type))
5420 					types[order] |= 1 << type;
5421 			}
5422 		}
5423 		spin_unlock_irqrestore(&zone->lock, flags);
5424 		for (order = 0; order < MAX_ORDER; order++) {
5425 			printk(KERN_CONT "%lu*%lukB ",
5426 			       nr[order], K(1UL) << order);
5427 			if (nr[order])
5428 				show_migration_types(types[order]);
5429 		}
5430 		printk(KERN_CONT "= %lukB\n", K(total));
5431 	}
5432 
5433 	hugetlb_show_meminfo();
5434 
5435 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5436 
5437 	show_swap_cache_info();
5438 }
5439 
5440 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5441 {
5442 	zoneref->zone = zone;
5443 	zoneref->zone_idx = zone_idx(zone);
5444 }
5445 
5446 /*
5447  * Builds allocation fallback zone lists.
5448  *
5449  * Add all populated zones of a node to the zonelist.
5450  */
5451 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5452 {
5453 	struct zone *zone;
5454 	enum zone_type zone_type = MAX_NR_ZONES;
5455 	int nr_zones = 0;
5456 
5457 	do {
5458 		zone_type--;
5459 		zone = pgdat->node_zones + zone_type;
5460 		if (managed_zone(zone)) {
5461 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5462 			check_highest_zone(zone_type);
5463 		}
5464 	} while (zone_type);
5465 
5466 	return nr_zones;
5467 }
5468 
5469 #ifdef CONFIG_NUMA
5470 
5471 static int __parse_numa_zonelist_order(char *s)
5472 {
5473 	/*
5474 	 * We used to support different zonlists modes but they turned
5475 	 * out to be just not useful. Let's keep the warning in place
5476 	 * if somebody still use the cmd line parameter so that we do
5477 	 * not fail it silently
5478 	 */
5479 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5480 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5481 		return -EINVAL;
5482 	}
5483 	return 0;
5484 }
5485 
5486 static __init int setup_numa_zonelist_order(char *s)
5487 {
5488 	if (!s)
5489 		return 0;
5490 
5491 	return __parse_numa_zonelist_order(s);
5492 }
5493 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5494 
5495 char numa_zonelist_order[] = "Node";
5496 
5497 /*
5498  * sysctl handler for numa_zonelist_order
5499  */
5500 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5501 		void __user *buffer, size_t *length,
5502 		loff_t *ppos)
5503 {
5504 	char *str;
5505 	int ret;
5506 
5507 	if (!write)
5508 		return proc_dostring(table, write, buffer, length, ppos);
5509 	str = memdup_user_nul(buffer, 16);
5510 	if (IS_ERR(str))
5511 		return PTR_ERR(str);
5512 
5513 	ret = __parse_numa_zonelist_order(str);
5514 	kfree(str);
5515 	return ret;
5516 }
5517 
5518 
5519 #define MAX_NODE_LOAD (nr_online_nodes)
5520 static int node_load[MAX_NUMNODES];
5521 
5522 /**
5523  * find_next_best_node - find the next node that should appear in a given node's fallback list
5524  * @node: node whose fallback list we're appending
5525  * @used_node_mask: nodemask_t of already used nodes
5526  *
5527  * We use a number of factors to determine which is the next node that should
5528  * appear on a given node's fallback list.  The node should not have appeared
5529  * already in @node's fallback list, and it should be the next closest node
5530  * according to the distance array (which contains arbitrary distance values
5531  * from each node to each node in the system), and should also prefer nodes
5532  * with no CPUs, since presumably they'll have very little allocation pressure
5533  * on them otherwise.
5534  *
5535  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5536  */
5537 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5538 {
5539 	int n, val;
5540 	int min_val = INT_MAX;
5541 	int best_node = NUMA_NO_NODE;
5542 	const struct cpumask *tmp = cpumask_of_node(0);
5543 
5544 	/* Use the local node if we haven't already */
5545 	if (!node_isset(node, *used_node_mask)) {
5546 		node_set(node, *used_node_mask);
5547 		return node;
5548 	}
5549 
5550 	for_each_node_state(n, N_MEMORY) {
5551 
5552 		/* Don't want a node to appear more than once */
5553 		if (node_isset(n, *used_node_mask))
5554 			continue;
5555 
5556 		/* Use the distance array to find the distance */
5557 		val = node_distance(node, n);
5558 
5559 		/* Penalize nodes under us ("prefer the next node") */
5560 		val += (n < node);
5561 
5562 		/* Give preference to headless and unused nodes */
5563 		tmp = cpumask_of_node(n);
5564 		if (!cpumask_empty(tmp))
5565 			val += PENALTY_FOR_NODE_WITH_CPUS;
5566 
5567 		/* Slight preference for less loaded node */
5568 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5569 		val += node_load[n];
5570 
5571 		if (val < min_val) {
5572 			min_val = val;
5573 			best_node = n;
5574 		}
5575 	}
5576 
5577 	if (best_node >= 0)
5578 		node_set(best_node, *used_node_mask);
5579 
5580 	return best_node;
5581 }
5582 
5583 
5584 /*
5585  * Build zonelists ordered by node and zones within node.
5586  * This results in maximum locality--normal zone overflows into local
5587  * DMA zone, if any--but risks exhausting DMA zone.
5588  */
5589 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5590 		unsigned nr_nodes)
5591 {
5592 	struct zoneref *zonerefs;
5593 	int i;
5594 
5595 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5596 
5597 	for (i = 0; i < nr_nodes; i++) {
5598 		int nr_zones;
5599 
5600 		pg_data_t *node = NODE_DATA(node_order[i]);
5601 
5602 		nr_zones = build_zonerefs_node(node, zonerefs);
5603 		zonerefs += nr_zones;
5604 	}
5605 	zonerefs->zone = NULL;
5606 	zonerefs->zone_idx = 0;
5607 }
5608 
5609 /*
5610  * Build gfp_thisnode zonelists
5611  */
5612 static void build_thisnode_zonelists(pg_data_t *pgdat)
5613 {
5614 	struct zoneref *zonerefs;
5615 	int nr_zones;
5616 
5617 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5618 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5619 	zonerefs += nr_zones;
5620 	zonerefs->zone = NULL;
5621 	zonerefs->zone_idx = 0;
5622 }
5623 
5624 /*
5625  * Build zonelists ordered by zone and nodes within zones.
5626  * This results in conserving DMA zone[s] until all Normal memory is
5627  * exhausted, but results in overflowing to remote node while memory
5628  * may still exist in local DMA zone.
5629  */
5630 
5631 static void build_zonelists(pg_data_t *pgdat)
5632 {
5633 	static int node_order[MAX_NUMNODES];
5634 	int node, load, nr_nodes = 0;
5635 	nodemask_t used_mask;
5636 	int local_node, prev_node;
5637 
5638 	/* NUMA-aware ordering of nodes */
5639 	local_node = pgdat->node_id;
5640 	load = nr_online_nodes;
5641 	prev_node = local_node;
5642 	nodes_clear(used_mask);
5643 
5644 	memset(node_order, 0, sizeof(node_order));
5645 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5646 		/*
5647 		 * We don't want to pressure a particular node.
5648 		 * So adding penalty to the first node in same
5649 		 * distance group to make it round-robin.
5650 		 */
5651 		if (node_distance(local_node, node) !=
5652 		    node_distance(local_node, prev_node))
5653 			node_load[node] = load;
5654 
5655 		node_order[nr_nodes++] = node;
5656 		prev_node = node;
5657 		load--;
5658 	}
5659 
5660 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5661 	build_thisnode_zonelists(pgdat);
5662 }
5663 
5664 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5665 /*
5666  * Return node id of node used for "local" allocations.
5667  * I.e., first node id of first zone in arg node's generic zonelist.
5668  * Used for initializing percpu 'numa_mem', which is used primarily
5669  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5670  */
5671 int local_memory_node(int node)
5672 {
5673 	struct zoneref *z;
5674 
5675 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5676 				   gfp_zone(GFP_KERNEL),
5677 				   NULL);
5678 	return zone_to_nid(z->zone);
5679 }
5680 #endif
5681 
5682 static void setup_min_unmapped_ratio(void);
5683 static void setup_min_slab_ratio(void);
5684 #else	/* CONFIG_NUMA */
5685 
5686 static void build_zonelists(pg_data_t *pgdat)
5687 {
5688 	int node, local_node;
5689 	struct zoneref *zonerefs;
5690 	int nr_zones;
5691 
5692 	local_node = pgdat->node_id;
5693 
5694 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5695 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5696 	zonerefs += nr_zones;
5697 
5698 	/*
5699 	 * Now we build the zonelist so that it contains the zones
5700 	 * of all the other nodes.
5701 	 * We don't want to pressure a particular node, so when
5702 	 * building the zones for node N, we make sure that the
5703 	 * zones coming right after the local ones are those from
5704 	 * node N+1 (modulo N)
5705 	 */
5706 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5707 		if (!node_online(node))
5708 			continue;
5709 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5710 		zonerefs += nr_zones;
5711 	}
5712 	for (node = 0; node < local_node; node++) {
5713 		if (!node_online(node))
5714 			continue;
5715 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5716 		zonerefs += nr_zones;
5717 	}
5718 
5719 	zonerefs->zone = NULL;
5720 	zonerefs->zone_idx = 0;
5721 }
5722 
5723 #endif	/* CONFIG_NUMA */
5724 
5725 /*
5726  * Boot pageset table. One per cpu which is going to be used for all
5727  * zones and all nodes. The parameters will be set in such a way
5728  * that an item put on a list will immediately be handed over to
5729  * the buddy list. This is safe since pageset manipulation is done
5730  * with interrupts disabled.
5731  *
5732  * The boot_pagesets must be kept even after bootup is complete for
5733  * unused processors and/or zones. They do play a role for bootstrapping
5734  * hotplugged processors.
5735  *
5736  * zoneinfo_show() and maybe other functions do
5737  * not check if the processor is online before following the pageset pointer.
5738  * Other parts of the kernel may not check if the zone is available.
5739  */
5740 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5741 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5742 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5743 
5744 static void __build_all_zonelists(void *data)
5745 {
5746 	int nid;
5747 	int __maybe_unused cpu;
5748 	pg_data_t *self = data;
5749 	static DEFINE_SPINLOCK(lock);
5750 
5751 	spin_lock(&lock);
5752 
5753 #ifdef CONFIG_NUMA
5754 	memset(node_load, 0, sizeof(node_load));
5755 #endif
5756 
5757 	/*
5758 	 * This node is hotadded and no memory is yet present.   So just
5759 	 * building zonelists is fine - no need to touch other nodes.
5760 	 */
5761 	if (self && !node_online(self->node_id)) {
5762 		build_zonelists(self);
5763 	} else {
5764 		for_each_online_node(nid) {
5765 			pg_data_t *pgdat = NODE_DATA(nid);
5766 
5767 			build_zonelists(pgdat);
5768 		}
5769 
5770 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5771 		/*
5772 		 * We now know the "local memory node" for each node--
5773 		 * i.e., the node of the first zone in the generic zonelist.
5774 		 * Set up numa_mem percpu variable for on-line cpus.  During
5775 		 * boot, only the boot cpu should be on-line;  we'll init the
5776 		 * secondary cpus' numa_mem as they come on-line.  During
5777 		 * node/memory hotplug, we'll fixup all on-line cpus.
5778 		 */
5779 		for_each_online_cpu(cpu)
5780 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5781 #endif
5782 	}
5783 
5784 	spin_unlock(&lock);
5785 }
5786 
5787 static noinline void __init
5788 build_all_zonelists_init(void)
5789 {
5790 	int cpu;
5791 
5792 	__build_all_zonelists(NULL);
5793 
5794 	/*
5795 	 * Initialize the boot_pagesets that are going to be used
5796 	 * for bootstrapping processors. The real pagesets for
5797 	 * each zone will be allocated later when the per cpu
5798 	 * allocator is available.
5799 	 *
5800 	 * boot_pagesets are used also for bootstrapping offline
5801 	 * cpus if the system is already booted because the pagesets
5802 	 * are needed to initialize allocators on a specific cpu too.
5803 	 * F.e. the percpu allocator needs the page allocator which
5804 	 * needs the percpu allocator in order to allocate its pagesets
5805 	 * (a chicken-egg dilemma).
5806 	 */
5807 	for_each_possible_cpu(cpu)
5808 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5809 
5810 	mminit_verify_zonelist();
5811 	cpuset_init_current_mems_allowed();
5812 }
5813 
5814 /*
5815  * unless system_state == SYSTEM_BOOTING.
5816  *
5817  * __ref due to call of __init annotated helper build_all_zonelists_init
5818  * [protected by SYSTEM_BOOTING].
5819  */
5820 void __ref build_all_zonelists(pg_data_t *pgdat)
5821 {
5822 	if (system_state == SYSTEM_BOOTING) {
5823 		build_all_zonelists_init();
5824 	} else {
5825 		__build_all_zonelists(pgdat);
5826 		/* cpuset refresh routine should be here */
5827 	}
5828 	vm_total_pages = nr_free_pagecache_pages();
5829 	/*
5830 	 * Disable grouping by mobility if the number of pages in the
5831 	 * system is too low to allow the mechanism to work. It would be
5832 	 * more accurate, but expensive to check per-zone. This check is
5833 	 * made on memory-hotadd so a system can start with mobility
5834 	 * disabled and enable it later
5835 	 */
5836 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5837 		page_group_by_mobility_disabled = 1;
5838 	else
5839 		page_group_by_mobility_disabled = 0;
5840 
5841 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5842 		nr_online_nodes,
5843 		page_group_by_mobility_disabled ? "off" : "on",
5844 		vm_total_pages);
5845 #ifdef CONFIG_NUMA
5846 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5847 #endif
5848 }
5849 
5850 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5851 static bool __meminit
5852 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5853 {
5854 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5855 	static struct memblock_region *r;
5856 
5857 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5858 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5859 			for_each_memblock(memory, r) {
5860 				if (*pfn < memblock_region_memory_end_pfn(r))
5861 					break;
5862 			}
5863 		}
5864 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
5865 		    memblock_is_mirror(r)) {
5866 			*pfn = memblock_region_memory_end_pfn(r);
5867 			return true;
5868 		}
5869 	}
5870 #endif
5871 	return false;
5872 }
5873 
5874 /*
5875  * Initially all pages are reserved - free ones are freed
5876  * up by memblock_free_all() once the early boot process is
5877  * done. Non-atomic initialization, single-pass.
5878  */
5879 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5880 		unsigned long start_pfn, enum memmap_context context,
5881 		struct vmem_altmap *altmap)
5882 {
5883 	unsigned long pfn, end_pfn = start_pfn + size;
5884 	struct page *page;
5885 
5886 	if (highest_memmap_pfn < end_pfn - 1)
5887 		highest_memmap_pfn = end_pfn - 1;
5888 
5889 #ifdef CONFIG_ZONE_DEVICE
5890 	/*
5891 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5892 	 * memory. We limit the total number of pages to initialize to just
5893 	 * those that might contain the memory mapping. We will defer the
5894 	 * ZONE_DEVICE page initialization until after we have released
5895 	 * the hotplug lock.
5896 	 */
5897 	if (zone == ZONE_DEVICE) {
5898 		if (!altmap)
5899 			return;
5900 
5901 		if (start_pfn == altmap->base_pfn)
5902 			start_pfn += altmap->reserve;
5903 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5904 	}
5905 #endif
5906 
5907 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5908 		/*
5909 		 * There can be holes in boot-time mem_map[]s handed to this
5910 		 * function.  They do not exist on hotplugged memory.
5911 		 */
5912 		if (context == MEMMAP_EARLY) {
5913 			if (!early_pfn_valid(pfn))
5914 				continue;
5915 			if (!early_pfn_in_nid(pfn, nid))
5916 				continue;
5917 			if (overlap_memmap_init(zone, &pfn))
5918 				continue;
5919 			if (defer_init(nid, pfn, end_pfn))
5920 				break;
5921 		}
5922 
5923 		page = pfn_to_page(pfn);
5924 		__init_single_page(page, pfn, zone, nid);
5925 		if (context == MEMMAP_HOTPLUG)
5926 			__SetPageReserved(page);
5927 
5928 		/*
5929 		 * Mark the block movable so that blocks are reserved for
5930 		 * movable at startup. This will force kernel allocations
5931 		 * to reserve their blocks rather than leaking throughout
5932 		 * the address space during boot when many long-lived
5933 		 * kernel allocations are made.
5934 		 *
5935 		 * bitmap is created for zone's valid pfn range. but memmap
5936 		 * can be created for invalid pages (for alignment)
5937 		 * check here not to call set_pageblock_migratetype() against
5938 		 * pfn out of zone.
5939 		 */
5940 		if (!(pfn & (pageblock_nr_pages - 1))) {
5941 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5942 			cond_resched();
5943 		}
5944 	}
5945 }
5946 
5947 #ifdef CONFIG_ZONE_DEVICE
5948 void __ref memmap_init_zone_device(struct zone *zone,
5949 				   unsigned long start_pfn,
5950 				   unsigned long size,
5951 				   struct dev_pagemap *pgmap)
5952 {
5953 	unsigned long pfn, end_pfn = start_pfn + size;
5954 	struct pglist_data *pgdat = zone->zone_pgdat;
5955 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
5956 	unsigned long zone_idx = zone_idx(zone);
5957 	unsigned long start = jiffies;
5958 	int nid = pgdat->node_id;
5959 
5960 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
5961 		return;
5962 
5963 	/*
5964 	 * The call to memmap_init_zone should have already taken care
5965 	 * of the pages reserved for the memmap, so we can just jump to
5966 	 * the end of that region and start processing the device pages.
5967 	 */
5968 	if (altmap) {
5969 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5970 		size = end_pfn - start_pfn;
5971 	}
5972 
5973 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5974 		struct page *page = pfn_to_page(pfn);
5975 
5976 		__init_single_page(page, pfn, zone_idx, nid);
5977 
5978 		/*
5979 		 * Mark page reserved as it will need to wait for onlining
5980 		 * phase for it to be fully associated with a zone.
5981 		 *
5982 		 * We can use the non-atomic __set_bit operation for setting
5983 		 * the flag as we are still initializing the pages.
5984 		 */
5985 		__SetPageReserved(page);
5986 
5987 		/*
5988 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
5989 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
5990 		 * ever freed or placed on a driver-private list.
5991 		 */
5992 		page->pgmap = pgmap;
5993 		page->zone_device_data = NULL;
5994 
5995 		/*
5996 		 * Mark the block movable so that blocks are reserved for
5997 		 * movable at startup. This will force kernel allocations
5998 		 * to reserve their blocks rather than leaking throughout
5999 		 * the address space during boot when many long-lived
6000 		 * kernel allocations are made.
6001 		 *
6002 		 * bitmap is created for zone's valid pfn range. but memmap
6003 		 * can be created for invalid pages (for alignment)
6004 		 * check here not to call set_pageblock_migratetype() against
6005 		 * pfn out of zone.
6006 		 *
6007 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6008 		 * because this is done early in section_activate()
6009 		 */
6010 		if (!(pfn & (pageblock_nr_pages - 1))) {
6011 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6012 			cond_resched();
6013 		}
6014 	}
6015 
6016 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6017 		size, jiffies_to_msecs(jiffies - start));
6018 }
6019 
6020 #endif
6021 static void __meminit zone_init_free_lists(struct zone *zone)
6022 {
6023 	unsigned int order, t;
6024 	for_each_migratetype_order(order, t) {
6025 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6026 		zone->free_area[order].nr_free = 0;
6027 	}
6028 }
6029 
6030 void __meminit __weak memmap_init(unsigned long size, int nid,
6031 				  unsigned long zone, unsigned long start_pfn)
6032 {
6033 	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6034 }
6035 
6036 static int zone_batchsize(struct zone *zone)
6037 {
6038 #ifdef CONFIG_MMU
6039 	int batch;
6040 
6041 	/*
6042 	 * The per-cpu-pages pools are set to around 1000th of the
6043 	 * size of the zone.
6044 	 */
6045 	batch = zone_managed_pages(zone) / 1024;
6046 	/* But no more than a meg. */
6047 	if (batch * PAGE_SIZE > 1024 * 1024)
6048 		batch = (1024 * 1024) / PAGE_SIZE;
6049 	batch /= 4;		/* We effectively *= 4 below */
6050 	if (batch < 1)
6051 		batch = 1;
6052 
6053 	/*
6054 	 * Clamp the batch to a 2^n - 1 value. Having a power
6055 	 * of 2 value was found to be more likely to have
6056 	 * suboptimal cache aliasing properties in some cases.
6057 	 *
6058 	 * For example if 2 tasks are alternately allocating
6059 	 * batches of pages, one task can end up with a lot
6060 	 * of pages of one half of the possible page colors
6061 	 * and the other with pages of the other colors.
6062 	 */
6063 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6064 
6065 	return batch;
6066 
6067 #else
6068 	/* The deferral and batching of frees should be suppressed under NOMMU
6069 	 * conditions.
6070 	 *
6071 	 * The problem is that NOMMU needs to be able to allocate large chunks
6072 	 * of contiguous memory as there's no hardware page translation to
6073 	 * assemble apparent contiguous memory from discontiguous pages.
6074 	 *
6075 	 * Queueing large contiguous runs of pages for batching, however,
6076 	 * causes the pages to actually be freed in smaller chunks.  As there
6077 	 * can be a significant delay between the individual batches being
6078 	 * recycled, this leads to the once large chunks of space being
6079 	 * fragmented and becoming unavailable for high-order allocations.
6080 	 */
6081 	return 0;
6082 #endif
6083 }
6084 
6085 /*
6086  * pcp->high and pcp->batch values are related and dependent on one another:
6087  * ->batch must never be higher then ->high.
6088  * The following function updates them in a safe manner without read side
6089  * locking.
6090  *
6091  * Any new users of pcp->batch and pcp->high should ensure they can cope with
6092  * those fields changing asynchronously (acording the the above rule).
6093  *
6094  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6095  * outside of boot time (or some other assurance that no concurrent updaters
6096  * exist).
6097  */
6098 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6099 		unsigned long batch)
6100 {
6101        /* start with a fail safe value for batch */
6102 	pcp->batch = 1;
6103 	smp_wmb();
6104 
6105        /* Update high, then batch, in order */
6106 	pcp->high = high;
6107 	smp_wmb();
6108 
6109 	pcp->batch = batch;
6110 }
6111 
6112 /* a companion to pageset_set_high() */
6113 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6114 {
6115 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6116 }
6117 
6118 static void pageset_init(struct per_cpu_pageset *p)
6119 {
6120 	struct per_cpu_pages *pcp;
6121 	int migratetype;
6122 
6123 	memset(p, 0, sizeof(*p));
6124 
6125 	pcp = &p->pcp;
6126 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6127 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6128 }
6129 
6130 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6131 {
6132 	pageset_init(p);
6133 	pageset_set_batch(p, batch);
6134 }
6135 
6136 /*
6137  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6138  * to the value high for the pageset p.
6139  */
6140 static void pageset_set_high(struct per_cpu_pageset *p,
6141 				unsigned long high)
6142 {
6143 	unsigned long batch = max(1UL, high / 4);
6144 	if ((high / 4) > (PAGE_SHIFT * 8))
6145 		batch = PAGE_SHIFT * 8;
6146 
6147 	pageset_update(&p->pcp, high, batch);
6148 }
6149 
6150 static void pageset_set_high_and_batch(struct zone *zone,
6151 				       struct per_cpu_pageset *pcp)
6152 {
6153 	if (percpu_pagelist_fraction)
6154 		pageset_set_high(pcp,
6155 			(zone_managed_pages(zone) /
6156 				percpu_pagelist_fraction));
6157 	else
6158 		pageset_set_batch(pcp, zone_batchsize(zone));
6159 }
6160 
6161 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6162 {
6163 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6164 
6165 	pageset_init(pcp);
6166 	pageset_set_high_and_batch(zone, pcp);
6167 }
6168 
6169 void __meminit setup_zone_pageset(struct zone *zone)
6170 {
6171 	int cpu;
6172 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6173 	for_each_possible_cpu(cpu)
6174 		zone_pageset_init(zone, cpu);
6175 }
6176 
6177 /*
6178  * Allocate per cpu pagesets and initialize them.
6179  * Before this call only boot pagesets were available.
6180  */
6181 void __init setup_per_cpu_pageset(void)
6182 {
6183 	struct pglist_data *pgdat;
6184 	struct zone *zone;
6185 
6186 	for_each_populated_zone(zone)
6187 		setup_zone_pageset(zone);
6188 
6189 	for_each_online_pgdat(pgdat)
6190 		pgdat->per_cpu_nodestats =
6191 			alloc_percpu(struct per_cpu_nodestat);
6192 }
6193 
6194 static __meminit void zone_pcp_init(struct zone *zone)
6195 {
6196 	/*
6197 	 * per cpu subsystem is not up at this point. The following code
6198 	 * relies on the ability of the linker to provide the
6199 	 * offset of a (static) per cpu variable into the per cpu area.
6200 	 */
6201 	zone->pageset = &boot_pageset;
6202 
6203 	if (populated_zone(zone))
6204 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6205 			zone->name, zone->present_pages,
6206 					 zone_batchsize(zone));
6207 }
6208 
6209 void __meminit init_currently_empty_zone(struct zone *zone,
6210 					unsigned long zone_start_pfn,
6211 					unsigned long size)
6212 {
6213 	struct pglist_data *pgdat = zone->zone_pgdat;
6214 	int zone_idx = zone_idx(zone) + 1;
6215 
6216 	if (zone_idx > pgdat->nr_zones)
6217 		pgdat->nr_zones = zone_idx;
6218 
6219 	zone->zone_start_pfn = zone_start_pfn;
6220 
6221 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6222 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6223 			pgdat->node_id,
6224 			(unsigned long)zone_idx(zone),
6225 			zone_start_pfn, (zone_start_pfn + size));
6226 
6227 	zone_init_free_lists(zone);
6228 	zone->initialized = 1;
6229 }
6230 
6231 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6232 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6233 
6234 /*
6235  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6236  */
6237 int __meminit __early_pfn_to_nid(unsigned long pfn,
6238 					struct mminit_pfnnid_cache *state)
6239 {
6240 	unsigned long start_pfn, end_pfn;
6241 	int nid;
6242 
6243 	if (state->last_start <= pfn && pfn < state->last_end)
6244 		return state->last_nid;
6245 
6246 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6247 	if (nid != NUMA_NO_NODE) {
6248 		state->last_start = start_pfn;
6249 		state->last_end = end_pfn;
6250 		state->last_nid = nid;
6251 	}
6252 
6253 	return nid;
6254 }
6255 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6256 
6257 /**
6258  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6259  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6260  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6261  *
6262  * If an architecture guarantees that all ranges registered contain no holes
6263  * and may be freed, this this function may be used instead of calling
6264  * memblock_free_early_nid() manually.
6265  */
6266 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6267 {
6268 	unsigned long start_pfn, end_pfn;
6269 	int i, this_nid;
6270 
6271 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6272 		start_pfn = min(start_pfn, max_low_pfn);
6273 		end_pfn = min(end_pfn, max_low_pfn);
6274 
6275 		if (start_pfn < end_pfn)
6276 			memblock_free_early_nid(PFN_PHYS(start_pfn),
6277 					(end_pfn - start_pfn) << PAGE_SHIFT,
6278 					this_nid);
6279 	}
6280 }
6281 
6282 /**
6283  * sparse_memory_present_with_active_regions - Call memory_present for each active range
6284  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6285  *
6286  * If an architecture guarantees that all ranges registered contain no holes and may
6287  * be freed, this function may be used instead of calling memory_present() manually.
6288  */
6289 void __init sparse_memory_present_with_active_regions(int nid)
6290 {
6291 	unsigned long start_pfn, end_pfn;
6292 	int i, this_nid;
6293 
6294 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6295 		memory_present(this_nid, start_pfn, end_pfn);
6296 }
6297 
6298 /**
6299  * get_pfn_range_for_nid - Return the start and end page frames for a node
6300  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6301  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6302  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6303  *
6304  * It returns the start and end page frame of a node based on information
6305  * provided by memblock_set_node(). If called for a node
6306  * with no available memory, a warning is printed and the start and end
6307  * PFNs will be 0.
6308  */
6309 void __init get_pfn_range_for_nid(unsigned int nid,
6310 			unsigned long *start_pfn, unsigned long *end_pfn)
6311 {
6312 	unsigned long this_start_pfn, this_end_pfn;
6313 	int i;
6314 
6315 	*start_pfn = -1UL;
6316 	*end_pfn = 0;
6317 
6318 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6319 		*start_pfn = min(*start_pfn, this_start_pfn);
6320 		*end_pfn = max(*end_pfn, this_end_pfn);
6321 	}
6322 
6323 	if (*start_pfn == -1UL)
6324 		*start_pfn = 0;
6325 }
6326 
6327 /*
6328  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6329  * assumption is made that zones within a node are ordered in monotonic
6330  * increasing memory addresses so that the "highest" populated zone is used
6331  */
6332 static void __init find_usable_zone_for_movable(void)
6333 {
6334 	int zone_index;
6335 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6336 		if (zone_index == ZONE_MOVABLE)
6337 			continue;
6338 
6339 		if (arch_zone_highest_possible_pfn[zone_index] >
6340 				arch_zone_lowest_possible_pfn[zone_index])
6341 			break;
6342 	}
6343 
6344 	VM_BUG_ON(zone_index == -1);
6345 	movable_zone = zone_index;
6346 }
6347 
6348 /*
6349  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6350  * because it is sized independent of architecture. Unlike the other zones,
6351  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6352  * in each node depending on the size of each node and how evenly kernelcore
6353  * is distributed. This helper function adjusts the zone ranges
6354  * provided by the architecture for a given node by using the end of the
6355  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6356  * zones within a node are in order of monotonic increases memory addresses
6357  */
6358 static void __init adjust_zone_range_for_zone_movable(int nid,
6359 					unsigned long zone_type,
6360 					unsigned long node_start_pfn,
6361 					unsigned long node_end_pfn,
6362 					unsigned long *zone_start_pfn,
6363 					unsigned long *zone_end_pfn)
6364 {
6365 	/* Only adjust if ZONE_MOVABLE is on this node */
6366 	if (zone_movable_pfn[nid]) {
6367 		/* Size ZONE_MOVABLE */
6368 		if (zone_type == ZONE_MOVABLE) {
6369 			*zone_start_pfn = zone_movable_pfn[nid];
6370 			*zone_end_pfn = min(node_end_pfn,
6371 				arch_zone_highest_possible_pfn[movable_zone]);
6372 
6373 		/* Adjust for ZONE_MOVABLE starting within this range */
6374 		} else if (!mirrored_kernelcore &&
6375 			*zone_start_pfn < zone_movable_pfn[nid] &&
6376 			*zone_end_pfn > zone_movable_pfn[nid]) {
6377 			*zone_end_pfn = zone_movable_pfn[nid];
6378 
6379 		/* Check if this whole range is within ZONE_MOVABLE */
6380 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6381 			*zone_start_pfn = *zone_end_pfn;
6382 	}
6383 }
6384 
6385 /*
6386  * Return the number of pages a zone spans in a node, including holes
6387  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6388  */
6389 static unsigned long __init zone_spanned_pages_in_node(int nid,
6390 					unsigned long zone_type,
6391 					unsigned long node_start_pfn,
6392 					unsigned long node_end_pfn,
6393 					unsigned long *zone_start_pfn,
6394 					unsigned long *zone_end_pfn,
6395 					unsigned long *ignored)
6396 {
6397 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6398 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6399 	/* When hotadd a new node from cpu_up(), the node should be empty */
6400 	if (!node_start_pfn && !node_end_pfn)
6401 		return 0;
6402 
6403 	/* Get the start and end of the zone */
6404 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6405 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6406 	adjust_zone_range_for_zone_movable(nid, zone_type,
6407 				node_start_pfn, node_end_pfn,
6408 				zone_start_pfn, zone_end_pfn);
6409 
6410 	/* Check that this node has pages within the zone's required range */
6411 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6412 		return 0;
6413 
6414 	/* Move the zone boundaries inside the node if necessary */
6415 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6416 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6417 
6418 	/* Return the spanned pages */
6419 	return *zone_end_pfn - *zone_start_pfn;
6420 }
6421 
6422 /*
6423  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6424  * then all holes in the requested range will be accounted for.
6425  */
6426 unsigned long __init __absent_pages_in_range(int nid,
6427 				unsigned long range_start_pfn,
6428 				unsigned long range_end_pfn)
6429 {
6430 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6431 	unsigned long start_pfn, end_pfn;
6432 	int i;
6433 
6434 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6435 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6436 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6437 		nr_absent -= end_pfn - start_pfn;
6438 	}
6439 	return nr_absent;
6440 }
6441 
6442 /**
6443  * absent_pages_in_range - Return number of page frames in holes within a range
6444  * @start_pfn: The start PFN to start searching for holes
6445  * @end_pfn: The end PFN to stop searching for holes
6446  *
6447  * Return: the number of pages frames in memory holes within a range.
6448  */
6449 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6450 							unsigned long end_pfn)
6451 {
6452 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6453 }
6454 
6455 /* Return the number of page frames in holes in a zone on a node */
6456 static unsigned long __init zone_absent_pages_in_node(int nid,
6457 					unsigned long zone_type,
6458 					unsigned long node_start_pfn,
6459 					unsigned long node_end_pfn,
6460 					unsigned long *ignored)
6461 {
6462 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6463 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6464 	unsigned long zone_start_pfn, zone_end_pfn;
6465 	unsigned long nr_absent;
6466 
6467 	/* When hotadd a new node from cpu_up(), the node should be empty */
6468 	if (!node_start_pfn && !node_end_pfn)
6469 		return 0;
6470 
6471 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6472 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6473 
6474 	adjust_zone_range_for_zone_movable(nid, zone_type,
6475 			node_start_pfn, node_end_pfn,
6476 			&zone_start_pfn, &zone_end_pfn);
6477 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6478 
6479 	/*
6480 	 * ZONE_MOVABLE handling.
6481 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6482 	 * and vice versa.
6483 	 */
6484 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6485 		unsigned long start_pfn, end_pfn;
6486 		struct memblock_region *r;
6487 
6488 		for_each_memblock(memory, r) {
6489 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6490 					  zone_start_pfn, zone_end_pfn);
6491 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6492 					zone_start_pfn, zone_end_pfn);
6493 
6494 			if (zone_type == ZONE_MOVABLE &&
6495 			    memblock_is_mirror(r))
6496 				nr_absent += end_pfn - start_pfn;
6497 
6498 			if (zone_type == ZONE_NORMAL &&
6499 			    !memblock_is_mirror(r))
6500 				nr_absent += end_pfn - start_pfn;
6501 		}
6502 	}
6503 
6504 	return nr_absent;
6505 }
6506 
6507 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6508 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6509 					unsigned long zone_type,
6510 					unsigned long node_start_pfn,
6511 					unsigned long node_end_pfn,
6512 					unsigned long *zone_start_pfn,
6513 					unsigned long *zone_end_pfn,
6514 					unsigned long *zones_size)
6515 {
6516 	unsigned int zone;
6517 
6518 	*zone_start_pfn = node_start_pfn;
6519 	for (zone = 0; zone < zone_type; zone++)
6520 		*zone_start_pfn += zones_size[zone];
6521 
6522 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6523 
6524 	return zones_size[zone_type];
6525 }
6526 
6527 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6528 						unsigned long zone_type,
6529 						unsigned long node_start_pfn,
6530 						unsigned long node_end_pfn,
6531 						unsigned long *zholes_size)
6532 {
6533 	if (!zholes_size)
6534 		return 0;
6535 
6536 	return zholes_size[zone_type];
6537 }
6538 
6539 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6540 
6541 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6542 						unsigned long node_start_pfn,
6543 						unsigned long node_end_pfn,
6544 						unsigned long *zones_size,
6545 						unsigned long *zholes_size)
6546 {
6547 	unsigned long realtotalpages = 0, totalpages = 0;
6548 	enum zone_type i;
6549 
6550 	for (i = 0; i < MAX_NR_ZONES; i++) {
6551 		struct zone *zone = pgdat->node_zones + i;
6552 		unsigned long zone_start_pfn, zone_end_pfn;
6553 		unsigned long size, real_size;
6554 
6555 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6556 						  node_start_pfn,
6557 						  node_end_pfn,
6558 						  &zone_start_pfn,
6559 						  &zone_end_pfn,
6560 						  zones_size);
6561 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6562 						  node_start_pfn, node_end_pfn,
6563 						  zholes_size);
6564 		if (size)
6565 			zone->zone_start_pfn = zone_start_pfn;
6566 		else
6567 			zone->zone_start_pfn = 0;
6568 		zone->spanned_pages = size;
6569 		zone->present_pages = real_size;
6570 
6571 		totalpages += size;
6572 		realtotalpages += real_size;
6573 	}
6574 
6575 	pgdat->node_spanned_pages = totalpages;
6576 	pgdat->node_present_pages = realtotalpages;
6577 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6578 							realtotalpages);
6579 }
6580 
6581 #ifndef CONFIG_SPARSEMEM
6582 /*
6583  * Calculate the size of the zone->blockflags rounded to an unsigned long
6584  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6585  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6586  * round what is now in bits to nearest long in bits, then return it in
6587  * bytes.
6588  */
6589 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6590 {
6591 	unsigned long usemapsize;
6592 
6593 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6594 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6595 	usemapsize = usemapsize >> pageblock_order;
6596 	usemapsize *= NR_PAGEBLOCK_BITS;
6597 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6598 
6599 	return usemapsize / 8;
6600 }
6601 
6602 static void __ref setup_usemap(struct pglist_data *pgdat,
6603 				struct zone *zone,
6604 				unsigned long zone_start_pfn,
6605 				unsigned long zonesize)
6606 {
6607 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6608 	zone->pageblock_flags = NULL;
6609 	if (usemapsize) {
6610 		zone->pageblock_flags =
6611 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6612 					    pgdat->node_id);
6613 		if (!zone->pageblock_flags)
6614 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6615 			      usemapsize, zone->name, pgdat->node_id);
6616 	}
6617 }
6618 #else
6619 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6620 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6621 #endif /* CONFIG_SPARSEMEM */
6622 
6623 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6624 
6625 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6626 void __init set_pageblock_order(void)
6627 {
6628 	unsigned int order;
6629 
6630 	/* Check that pageblock_nr_pages has not already been setup */
6631 	if (pageblock_order)
6632 		return;
6633 
6634 	if (HPAGE_SHIFT > PAGE_SHIFT)
6635 		order = HUGETLB_PAGE_ORDER;
6636 	else
6637 		order = MAX_ORDER - 1;
6638 
6639 	/*
6640 	 * Assume the largest contiguous order of interest is a huge page.
6641 	 * This value may be variable depending on boot parameters on IA64 and
6642 	 * powerpc.
6643 	 */
6644 	pageblock_order = order;
6645 }
6646 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6647 
6648 /*
6649  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6650  * is unused as pageblock_order is set at compile-time. See
6651  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6652  * the kernel config
6653  */
6654 void __init set_pageblock_order(void)
6655 {
6656 }
6657 
6658 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6659 
6660 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6661 						unsigned long present_pages)
6662 {
6663 	unsigned long pages = spanned_pages;
6664 
6665 	/*
6666 	 * Provide a more accurate estimation if there are holes within
6667 	 * the zone and SPARSEMEM is in use. If there are holes within the
6668 	 * zone, each populated memory region may cost us one or two extra
6669 	 * memmap pages due to alignment because memmap pages for each
6670 	 * populated regions may not be naturally aligned on page boundary.
6671 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6672 	 */
6673 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6674 	    IS_ENABLED(CONFIG_SPARSEMEM))
6675 		pages = present_pages;
6676 
6677 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6678 }
6679 
6680 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6681 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6682 {
6683 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6684 
6685 	spin_lock_init(&ds_queue->split_queue_lock);
6686 	INIT_LIST_HEAD(&ds_queue->split_queue);
6687 	ds_queue->split_queue_len = 0;
6688 }
6689 #else
6690 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6691 #endif
6692 
6693 #ifdef CONFIG_COMPACTION
6694 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6695 {
6696 	init_waitqueue_head(&pgdat->kcompactd_wait);
6697 }
6698 #else
6699 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6700 #endif
6701 
6702 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6703 {
6704 	pgdat_resize_init(pgdat);
6705 
6706 	pgdat_init_split_queue(pgdat);
6707 	pgdat_init_kcompactd(pgdat);
6708 
6709 	init_waitqueue_head(&pgdat->kswapd_wait);
6710 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6711 
6712 	pgdat_page_ext_init(pgdat);
6713 	spin_lock_init(&pgdat->lru_lock);
6714 	lruvec_init(node_lruvec(pgdat));
6715 }
6716 
6717 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6718 							unsigned long remaining_pages)
6719 {
6720 	atomic_long_set(&zone->managed_pages, remaining_pages);
6721 	zone_set_nid(zone, nid);
6722 	zone->name = zone_names[idx];
6723 	zone->zone_pgdat = NODE_DATA(nid);
6724 	spin_lock_init(&zone->lock);
6725 	zone_seqlock_init(zone);
6726 	zone_pcp_init(zone);
6727 }
6728 
6729 /*
6730  * Set up the zone data structures
6731  * - init pgdat internals
6732  * - init all zones belonging to this node
6733  *
6734  * NOTE: this function is only called during memory hotplug
6735  */
6736 #ifdef CONFIG_MEMORY_HOTPLUG
6737 void __ref free_area_init_core_hotplug(int nid)
6738 {
6739 	enum zone_type z;
6740 	pg_data_t *pgdat = NODE_DATA(nid);
6741 
6742 	pgdat_init_internals(pgdat);
6743 	for (z = 0; z < MAX_NR_ZONES; z++)
6744 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6745 }
6746 #endif
6747 
6748 /*
6749  * Set up the zone data structures:
6750  *   - mark all pages reserved
6751  *   - mark all memory queues empty
6752  *   - clear the memory bitmaps
6753  *
6754  * NOTE: pgdat should get zeroed by caller.
6755  * NOTE: this function is only called during early init.
6756  */
6757 static void __init free_area_init_core(struct pglist_data *pgdat)
6758 {
6759 	enum zone_type j;
6760 	int nid = pgdat->node_id;
6761 
6762 	pgdat_init_internals(pgdat);
6763 	pgdat->per_cpu_nodestats = &boot_nodestats;
6764 
6765 	for (j = 0; j < MAX_NR_ZONES; j++) {
6766 		struct zone *zone = pgdat->node_zones + j;
6767 		unsigned long size, freesize, memmap_pages;
6768 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6769 
6770 		size = zone->spanned_pages;
6771 		freesize = zone->present_pages;
6772 
6773 		/*
6774 		 * Adjust freesize so that it accounts for how much memory
6775 		 * is used by this zone for memmap. This affects the watermark
6776 		 * and per-cpu initialisations
6777 		 */
6778 		memmap_pages = calc_memmap_size(size, freesize);
6779 		if (!is_highmem_idx(j)) {
6780 			if (freesize >= memmap_pages) {
6781 				freesize -= memmap_pages;
6782 				if (memmap_pages)
6783 					printk(KERN_DEBUG
6784 					       "  %s zone: %lu pages used for memmap\n",
6785 					       zone_names[j], memmap_pages);
6786 			} else
6787 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6788 					zone_names[j], memmap_pages, freesize);
6789 		}
6790 
6791 		/* Account for reserved pages */
6792 		if (j == 0 && freesize > dma_reserve) {
6793 			freesize -= dma_reserve;
6794 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6795 					zone_names[0], dma_reserve);
6796 		}
6797 
6798 		if (!is_highmem_idx(j))
6799 			nr_kernel_pages += freesize;
6800 		/* Charge for highmem memmap if there are enough kernel pages */
6801 		else if (nr_kernel_pages > memmap_pages * 2)
6802 			nr_kernel_pages -= memmap_pages;
6803 		nr_all_pages += freesize;
6804 
6805 		/*
6806 		 * Set an approximate value for lowmem here, it will be adjusted
6807 		 * when the bootmem allocator frees pages into the buddy system.
6808 		 * And all highmem pages will be managed by the buddy system.
6809 		 */
6810 		zone_init_internals(zone, j, nid, freesize);
6811 
6812 		if (!size)
6813 			continue;
6814 
6815 		set_pageblock_order();
6816 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6817 		init_currently_empty_zone(zone, zone_start_pfn, size);
6818 		memmap_init(size, nid, j, zone_start_pfn);
6819 	}
6820 }
6821 
6822 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6823 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6824 {
6825 	unsigned long __maybe_unused start = 0;
6826 	unsigned long __maybe_unused offset = 0;
6827 
6828 	/* Skip empty nodes */
6829 	if (!pgdat->node_spanned_pages)
6830 		return;
6831 
6832 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6833 	offset = pgdat->node_start_pfn - start;
6834 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6835 	if (!pgdat->node_mem_map) {
6836 		unsigned long size, end;
6837 		struct page *map;
6838 
6839 		/*
6840 		 * The zone's endpoints aren't required to be MAX_ORDER
6841 		 * aligned but the node_mem_map endpoints must be in order
6842 		 * for the buddy allocator to function correctly.
6843 		 */
6844 		end = pgdat_end_pfn(pgdat);
6845 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6846 		size =  (end - start) * sizeof(struct page);
6847 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6848 					  pgdat->node_id);
6849 		if (!map)
6850 			panic("Failed to allocate %ld bytes for node %d memory map\n",
6851 			      size, pgdat->node_id);
6852 		pgdat->node_mem_map = map + offset;
6853 	}
6854 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6855 				__func__, pgdat->node_id, (unsigned long)pgdat,
6856 				(unsigned long)pgdat->node_mem_map);
6857 #ifndef CONFIG_NEED_MULTIPLE_NODES
6858 	/*
6859 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6860 	 */
6861 	if (pgdat == NODE_DATA(0)) {
6862 		mem_map = NODE_DATA(0)->node_mem_map;
6863 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6864 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6865 			mem_map -= offset;
6866 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6867 	}
6868 #endif
6869 }
6870 #else
6871 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6872 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6873 
6874 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6875 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6876 {
6877 	pgdat->first_deferred_pfn = ULONG_MAX;
6878 }
6879 #else
6880 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6881 #endif
6882 
6883 void __init free_area_init_node(int nid, unsigned long *zones_size,
6884 				   unsigned long node_start_pfn,
6885 				   unsigned long *zholes_size)
6886 {
6887 	pg_data_t *pgdat = NODE_DATA(nid);
6888 	unsigned long start_pfn = 0;
6889 	unsigned long end_pfn = 0;
6890 
6891 	/* pg_data_t should be reset to zero when it's allocated */
6892 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6893 
6894 	pgdat->node_id = nid;
6895 	pgdat->node_start_pfn = node_start_pfn;
6896 	pgdat->per_cpu_nodestats = NULL;
6897 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6898 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6899 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6900 		(u64)start_pfn << PAGE_SHIFT,
6901 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6902 #else
6903 	start_pfn = node_start_pfn;
6904 #endif
6905 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6906 				  zones_size, zholes_size);
6907 
6908 	alloc_node_mem_map(pgdat);
6909 	pgdat_set_deferred_range(pgdat);
6910 
6911 	free_area_init_core(pgdat);
6912 }
6913 
6914 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6915 /*
6916  * Zero all valid struct pages in range [spfn, epfn), return number of struct
6917  * pages zeroed
6918  */
6919 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6920 {
6921 	unsigned long pfn;
6922 	u64 pgcnt = 0;
6923 
6924 	for (pfn = spfn; pfn < epfn; pfn++) {
6925 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6926 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6927 				+ pageblock_nr_pages - 1;
6928 			continue;
6929 		}
6930 		mm_zero_struct_page(pfn_to_page(pfn));
6931 		pgcnt++;
6932 	}
6933 
6934 	return pgcnt;
6935 }
6936 
6937 /*
6938  * Only struct pages that are backed by physical memory are zeroed and
6939  * initialized by going through __init_single_page(). But, there are some
6940  * struct pages which are reserved in memblock allocator and their fields
6941  * may be accessed (for example page_to_pfn() on some configuration accesses
6942  * flags). We must explicitly zero those struct pages.
6943  *
6944  * This function also addresses a similar issue where struct pages are left
6945  * uninitialized because the physical address range is not covered by
6946  * memblock.memory or memblock.reserved. That could happen when memblock
6947  * layout is manually configured via memmap=.
6948  */
6949 void __init zero_resv_unavail(void)
6950 {
6951 	phys_addr_t start, end;
6952 	u64 i, pgcnt;
6953 	phys_addr_t next = 0;
6954 
6955 	/*
6956 	 * Loop through unavailable ranges not covered by memblock.memory.
6957 	 */
6958 	pgcnt = 0;
6959 	for_each_mem_range(i, &memblock.memory, NULL,
6960 			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6961 		if (next < start)
6962 			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6963 		next = end;
6964 	}
6965 	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6966 
6967 	/*
6968 	 * Struct pages that do not have backing memory. This could be because
6969 	 * firmware is using some of this memory, or for some other reasons.
6970 	 */
6971 	if (pgcnt)
6972 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6973 }
6974 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6975 
6976 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6977 
6978 #if MAX_NUMNODES > 1
6979 /*
6980  * Figure out the number of possible node ids.
6981  */
6982 void __init setup_nr_node_ids(void)
6983 {
6984 	unsigned int highest;
6985 
6986 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6987 	nr_node_ids = highest + 1;
6988 }
6989 #endif
6990 
6991 /**
6992  * node_map_pfn_alignment - determine the maximum internode alignment
6993  *
6994  * This function should be called after node map is populated and sorted.
6995  * It calculates the maximum power of two alignment which can distinguish
6996  * all the nodes.
6997  *
6998  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6999  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7000  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7001  * shifted, 1GiB is enough and this function will indicate so.
7002  *
7003  * This is used to test whether pfn -> nid mapping of the chosen memory
7004  * model has fine enough granularity to avoid incorrect mapping for the
7005  * populated node map.
7006  *
7007  * Return: the determined alignment in pfn's.  0 if there is no alignment
7008  * requirement (single node).
7009  */
7010 unsigned long __init node_map_pfn_alignment(void)
7011 {
7012 	unsigned long accl_mask = 0, last_end = 0;
7013 	unsigned long start, end, mask;
7014 	int last_nid = NUMA_NO_NODE;
7015 	int i, nid;
7016 
7017 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7018 		if (!start || last_nid < 0 || last_nid == nid) {
7019 			last_nid = nid;
7020 			last_end = end;
7021 			continue;
7022 		}
7023 
7024 		/*
7025 		 * Start with a mask granular enough to pin-point to the
7026 		 * start pfn and tick off bits one-by-one until it becomes
7027 		 * too coarse to separate the current node from the last.
7028 		 */
7029 		mask = ~((1 << __ffs(start)) - 1);
7030 		while (mask && last_end <= (start & (mask << 1)))
7031 			mask <<= 1;
7032 
7033 		/* accumulate all internode masks */
7034 		accl_mask |= mask;
7035 	}
7036 
7037 	/* convert mask to number of pages */
7038 	return ~accl_mask + 1;
7039 }
7040 
7041 /* Find the lowest pfn for a node */
7042 static unsigned long __init find_min_pfn_for_node(int nid)
7043 {
7044 	unsigned long min_pfn = ULONG_MAX;
7045 	unsigned long start_pfn;
7046 	int i;
7047 
7048 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7049 		min_pfn = min(min_pfn, start_pfn);
7050 
7051 	if (min_pfn == ULONG_MAX) {
7052 		pr_warn("Could not find start_pfn for node %d\n", nid);
7053 		return 0;
7054 	}
7055 
7056 	return min_pfn;
7057 }
7058 
7059 /**
7060  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7061  *
7062  * Return: the minimum PFN based on information provided via
7063  * memblock_set_node().
7064  */
7065 unsigned long __init find_min_pfn_with_active_regions(void)
7066 {
7067 	return find_min_pfn_for_node(MAX_NUMNODES);
7068 }
7069 
7070 /*
7071  * early_calculate_totalpages()
7072  * Sum pages in active regions for movable zone.
7073  * Populate N_MEMORY for calculating usable_nodes.
7074  */
7075 static unsigned long __init early_calculate_totalpages(void)
7076 {
7077 	unsigned long totalpages = 0;
7078 	unsigned long start_pfn, end_pfn;
7079 	int i, nid;
7080 
7081 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7082 		unsigned long pages = end_pfn - start_pfn;
7083 
7084 		totalpages += pages;
7085 		if (pages)
7086 			node_set_state(nid, N_MEMORY);
7087 	}
7088 	return totalpages;
7089 }
7090 
7091 /*
7092  * Find the PFN the Movable zone begins in each node. Kernel memory
7093  * is spread evenly between nodes as long as the nodes have enough
7094  * memory. When they don't, some nodes will have more kernelcore than
7095  * others
7096  */
7097 static void __init find_zone_movable_pfns_for_nodes(void)
7098 {
7099 	int i, nid;
7100 	unsigned long usable_startpfn;
7101 	unsigned long kernelcore_node, kernelcore_remaining;
7102 	/* save the state before borrow the nodemask */
7103 	nodemask_t saved_node_state = node_states[N_MEMORY];
7104 	unsigned long totalpages = early_calculate_totalpages();
7105 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7106 	struct memblock_region *r;
7107 
7108 	/* Need to find movable_zone earlier when movable_node is specified. */
7109 	find_usable_zone_for_movable();
7110 
7111 	/*
7112 	 * If movable_node is specified, ignore kernelcore and movablecore
7113 	 * options.
7114 	 */
7115 	if (movable_node_is_enabled()) {
7116 		for_each_memblock(memory, r) {
7117 			if (!memblock_is_hotpluggable(r))
7118 				continue;
7119 
7120 			nid = r->nid;
7121 
7122 			usable_startpfn = PFN_DOWN(r->base);
7123 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7124 				min(usable_startpfn, zone_movable_pfn[nid]) :
7125 				usable_startpfn;
7126 		}
7127 
7128 		goto out2;
7129 	}
7130 
7131 	/*
7132 	 * If kernelcore=mirror is specified, ignore movablecore option
7133 	 */
7134 	if (mirrored_kernelcore) {
7135 		bool mem_below_4gb_not_mirrored = false;
7136 
7137 		for_each_memblock(memory, r) {
7138 			if (memblock_is_mirror(r))
7139 				continue;
7140 
7141 			nid = r->nid;
7142 
7143 			usable_startpfn = memblock_region_memory_base_pfn(r);
7144 
7145 			if (usable_startpfn < 0x100000) {
7146 				mem_below_4gb_not_mirrored = true;
7147 				continue;
7148 			}
7149 
7150 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7151 				min(usable_startpfn, zone_movable_pfn[nid]) :
7152 				usable_startpfn;
7153 		}
7154 
7155 		if (mem_below_4gb_not_mirrored)
7156 			pr_warn("This configuration results in unmirrored kernel memory.");
7157 
7158 		goto out2;
7159 	}
7160 
7161 	/*
7162 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7163 	 * amount of necessary memory.
7164 	 */
7165 	if (required_kernelcore_percent)
7166 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7167 				       10000UL;
7168 	if (required_movablecore_percent)
7169 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7170 					10000UL;
7171 
7172 	/*
7173 	 * If movablecore= was specified, calculate what size of
7174 	 * kernelcore that corresponds so that memory usable for
7175 	 * any allocation type is evenly spread. If both kernelcore
7176 	 * and movablecore are specified, then the value of kernelcore
7177 	 * will be used for required_kernelcore if it's greater than
7178 	 * what movablecore would have allowed.
7179 	 */
7180 	if (required_movablecore) {
7181 		unsigned long corepages;
7182 
7183 		/*
7184 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7185 		 * was requested by the user
7186 		 */
7187 		required_movablecore =
7188 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7189 		required_movablecore = min(totalpages, required_movablecore);
7190 		corepages = totalpages - required_movablecore;
7191 
7192 		required_kernelcore = max(required_kernelcore, corepages);
7193 	}
7194 
7195 	/*
7196 	 * If kernelcore was not specified or kernelcore size is larger
7197 	 * than totalpages, there is no ZONE_MOVABLE.
7198 	 */
7199 	if (!required_kernelcore || required_kernelcore >= totalpages)
7200 		goto out;
7201 
7202 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7203 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7204 
7205 restart:
7206 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7207 	kernelcore_node = required_kernelcore / usable_nodes;
7208 	for_each_node_state(nid, N_MEMORY) {
7209 		unsigned long start_pfn, end_pfn;
7210 
7211 		/*
7212 		 * Recalculate kernelcore_node if the division per node
7213 		 * now exceeds what is necessary to satisfy the requested
7214 		 * amount of memory for the kernel
7215 		 */
7216 		if (required_kernelcore < kernelcore_node)
7217 			kernelcore_node = required_kernelcore / usable_nodes;
7218 
7219 		/*
7220 		 * As the map is walked, we track how much memory is usable
7221 		 * by the kernel using kernelcore_remaining. When it is
7222 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7223 		 */
7224 		kernelcore_remaining = kernelcore_node;
7225 
7226 		/* Go through each range of PFNs within this node */
7227 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7228 			unsigned long size_pages;
7229 
7230 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7231 			if (start_pfn >= end_pfn)
7232 				continue;
7233 
7234 			/* Account for what is only usable for kernelcore */
7235 			if (start_pfn < usable_startpfn) {
7236 				unsigned long kernel_pages;
7237 				kernel_pages = min(end_pfn, usable_startpfn)
7238 								- start_pfn;
7239 
7240 				kernelcore_remaining -= min(kernel_pages,
7241 							kernelcore_remaining);
7242 				required_kernelcore -= min(kernel_pages,
7243 							required_kernelcore);
7244 
7245 				/* Continue if range is now fully accounted */
7246 				if (end_pfn <= usable_startpfn) {
7247 
7248 					/*
7249 					 * Push zone_movable_pfn to the end so
7250 					 * that if we have to rebalance
7251 					 * kernelcore across nodes, we will
7252 					 * not double account here
7253 					 */
7254 					zone_movable_pfn[nid] = end_pfn;
7255 					continue;
7256 				}
7257 				start_pfn = usable_startpfn;
7258 			}
7259 
7260 			/*
7261 			 * The usable PFN range for ZONE_MOVABLE is from
7262 			 * start_pfn->end_pfn. Calculate size_pages as the
7263 			 * number of pages used as kernelcore
7264 			 */
7265 			size_pages = end_pfn - start_pfn;
7266 			if (size_pages > kernelcore_remaining)
7267 				size_pages = kernelcore_remaining;
7268 			zone_movable_pfn[nid] = start_pfn + size_pages;
7269 
7270 			/*
7271 			 * Some kernelcore has been met, update counts and
7272 			 * break if the kernelcore for this node has been
7273 			 * satisfied
7274 			 */
7275 			required_kernelcore -= min(required_kernelcore,
7276 								size_pages);
7277 			kernelcore_remaining -= size_pages;
7278 			if (!kernelcore_remaining)
7279 				break;
7280 		}
7281 	}
7282 
7283 	/*
7284 	 * If there is still required_kernelcore, we do another pass with one
7285 	 * less node in the count. This will push zone_movable_pfn[nid] further
7286 	 * along on the nodes that still have memory until kernelcore is
7287 	 * satisfied
7288 	 */
7289 	usable_nodes--;
7290 	if (usable_nodes && required_kernelcore > usable_nodes)
7291 		goto restart;
7292 
7293 out2:
7294 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7295 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7296 		zone_movable_pfn[nid] =
7297 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7298 
7299 out:
7300 	/* restore the node_state */
7301 	node_states[N_MEMORY] = saved_node_state;
7302 }
7303 
7304 /* Any regular or high memory on that node ? */
7305 static void check_for_memory(pg_data_t *pgdat, int nid)
7306 {
7307 	enum zone_type zone_type;
7308 
7309 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7310 		struct zone *zone = &pgdat->node_zones[zone_type];
7311 		if (populated_zone(zone)) {
7312 			if (IS_ENABLED(CONFIG_HIGHMEM))
7313 				node_set_state(nid, N_HIGH_MEMORY);
7314 			if (zone_type <= ZONE_NORMAL)
7315 				node_set_state(nid, N_NORMAL_MEMORY);
7316 			break;
7317 		}
7318 	}
7319 }
7320 
7321 /**
7322  * free_area_init_nodes - Initialise all pg_data_t and zone data
7323  * @max_zone_pfn: an array of max PFNs for each zone
7324  *
7325  * This will call free_area_init_node() for each active node in the system.
7326  * Using the page ranges provided by memblock_set_node(), the size of each
7327  * zone in each node and their holes is calculated. If the maximum PFN
7328  * between two adjacent zones match, it is assumed that the zone is empty.
7329  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7330  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7331  * starts where the previous one ended. For example, ZONE_DMA32 starts
7332  * at arch_max_dma_pfn.
7333  */
7334 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7335 {
7336 	unsigned long start_pfn, end_pfn;
7337 	int i, nid;
7338 
7339 	/* Record where the zone boundaries are */
7340 	memset(arch_zone_lowest_possible_pfn, 0,
7341 				sizeof(arch_zone_lowest_possible_pfn));
7342 	memset(arch_zone_highest_possible_pfn, 0,
7343 				sizeof(arch_zone_highest_possible_pfn));
7344 
7345 	start_pfn = find_min_pfn_with_active_regions();
7346 
7347 	for (i = 0; i < MAX_NR_ZONES; i++) {
7348 		if (i == ZONE_MOVABLE)
7349 			continue;
7350 
7351 		end_pfn = max(max_zone_pfn[i], start_pfn);
7352 		arch_zone_lowest_possible_pfn[i] = start_pfn;
7353 		arch_zone_highest_possible_pfn[i] = end_pfn;
7354 
7355 		start_pfn = end_pfn;
7356 	}
7357 
7358 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7359 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7360 	find_zone_movable_pfns_for_nodes();
7361 
7362 	/* Print out the zone ranges */
7363 	pr_info("Zone ranges:\n");
7364 	for (i = 0; i < MAX_NR_ZONES; i++) {
7365 		if (i == ZONE_MOVABLE)
7366 			continue;
7367 		pr_info("  %-8s ", zone_names[i]);
7368 		if (arch_zone_lowest_possible_pfn[i] ==
7369 				arch_zone_highest_possible_pfn[i])
7370 			pr_cont("empty\n");
7371 		else
7372 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7373 				(u64)arch_zone_lowest_possible_pfn[i]
7374 					<< PAGE_SHIFT,
7375 				((u64)arch_zone_highest_possible_pfn[i]
7376 					<< PAGE_SHIFT) - 1);
7377 	}
7378 
7379 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7380 	pr_info("Movable zone start for each node\n");
7381 	for (i = 0; i < MAX_NUMNODES; i++) {
7382 		if (zone_movable_pfn[i])
7383 			pr_info("  Node %d: %#018Lx\n", i,
7384 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7385 	}
7386 
7387 	/*
7388 	 * Print out the early node map, and initialize the
7389 	 * subsection-map relative to active online memory ranges to
7390 	 * enable future "sub-section" extensions of the memory map.
7391 	 */
7392 	pr_info("Early memory node ranges\n");
7393 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7394 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7395 			(u64)start_pfn << PAGE_SHIFT,
7396 			((u64)end_pfn << PAGE_SHIFT) - 1);
7397 		subsection_map_init(start_pfn, end_pfn - start_pfn);
7398 	}
7399 
7400 	/* Initialise every node */
7401 	mminit_verify_pageflags_layout();
7402 	setup_nr_node_ids();
7403 	zero_resv_unavail();
7404 	for_each_online_node(nid) {
7405 		pg_data_t *pgdat = NODE_DATA(nid);
7406 		free_area_init_node(nid, NULL,
7407 				find_min_pfn_for_node(nid), NULL);
7408 
7409 		/* Any memory on that node */
7410 		if (pgdat->node_present_pages)
7411 			node_set_state(nid, N_MEMORY);
7412 		check_for_memory(pgdat, nid);
7413 	}
7414 }
7415 
7416 static int __init cmdline_parse_core(char *p, unsigned long *core,
7417 				     unsigned long *percent)
7418 {
7419 	unsigned long long coremem;
7420 	char *endptr;
7421 
7422 	if (!p)
7423 		return -EINVAL;
7424 
7425 	/* Value may be a percentage of total memory, otherwise bytes */
7426 	coremem = simple_strtoull(p, &endptr, 0);
7427 	if (*endptr == '%') {
7428 		/* Paranoid check for percent values greater than 100 */
7429 		WARN_ON(coremem > 100);
7430 
7431 		*percent = coremem;
7432 	} else {
7433 		coremem = memparse(p, &p);
7434 		/* Paranoid check that UL is enough for the coremem value */
7435 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7436 
7437 		*core = coremem >> PAGE_SHIFT;
7438 		*percent = 0UL;
7439 	}
7440 	return 0;
7441 }
7442 
7443 /*
7444  * kernelcore=size sets the amount of memory for use for allocations that
7445  * cannot be reclaimed or migrated.
7446  */
7447 static int __init cmdline_parse_kernelcore(char *p)
7448 {
7449 	/* parse kernelcore=mirror */
7450 	if (parse_option_str(p, "mirror")) {
7451 		mirrored_kernelcore = true;
7452 		return 0;
7453 	}
7454 
7455 	return cmdline_parse_core(p, &required_kernelcore,
7456 				  &required_kernelcore_percent);
7457 }
7458 
7459 /*
7460  * movablecore=size sets the amount of memory for use for allocations that
7461  * can be reclaimed or migrated.
7462  */
7463 static int __init cmdline_parse_movablecore(char *p)
7464 {
7465 	return cmdline_parse_core(p, &required_movablecore,
7466 				  &required_movablecore_percent);
7467 }
7468 
7469 early_param("kernelcore", cmdline_parse_kernelcore);
7470 early_param("movablecore", cmdline_parse_movablecore);
7471 
7472 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7473 
7474 void adjust_managed_page_count(struct page *page, long count)
7475 {
7476 	atomic_long_add(count, &page_zone(page)->managed_pages);
7477 	totalram_pages_add(count);
7478 #ifdef CONFIG_HIGHMEM
7479 	if (PageHighMem(page))
7480 		totalhigh_pages_add(count);
7481 #endif
7482 }
7483 EXPORT_SYMBOL(adjust_managed_page_count);
7484 
7485 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7486 {
7487 	void *pos;
7488 	unsigned long pages = 0;
7489 
7490 	start = (void *)PAGE_ALIGN((unsigned long)start);
7491 	end = (void *)((unsigned long)end & PAGE_MASK);
7492 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7493 		struct page *page = virt_to_page(pos);
7494 		void *direct_map_addr;
7495 
7496 		/*
7497 		 * 'direct_map_addr' might be different from 'pos'
7498 		 * because some architectures' virt_to_page()
7499 		 * work with aliases.  Getting the direct map
7500 		 * address ensures that we get a _writeable_
7501 		 * alias for the memset().
7502 		 */
7503 		direct_map_addr = page_address(page);
7504 		if ((unsigned int)poison <= 0xFF)
7505 			memset(direct_map_addr, poison, PAGE_SIZE);
7506 
7507 		free_reserved_page(page);
7508 	}
7509 
7510 	if (pages && s)
7511 		pr_info("Freeing %s memory: %ldK\n",
7512 			s, pages << (PAGE_SHIFT - 10));
7513 
7514 	return pages;
7515 }
7516 
7517 #ifdef	CONFIG_HIGHMEM
7518 void free_highmem_page(struct page *page)
7519 {
7520 	__free_reserved_page(page);
7521 	totalram_pages_inc();
7522 	atomic_long_inc(&page_zone(page)->managed_pages);
7523 	totalhigh_pages_inc();
7524 }
7525 #endif
7526 
7527 
7528 void __init mem_init_print_info(const char *str)
7529 {
7530 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7531 	unsigned long init_code_size, init_data_size;
7532 
7533 	physpages = get_num_physpages();
7534 	codesize = _etext - _stext;
7535 	datasize = _edata - _sdata;
7536 	rosize = __end_rodata - __start_rodata;
7537 	bss_size = __bss_stop - __bss_start;
7538 	init_data_size = __init_end - __init_begin;
7539 	init_code_size = _einittext - _sinittext;
7540 
7541 	/*
7542 	 * Detect special cases and adjust section sizes accordingly:
7543 	 * 1) .init.* may be embedded into .data sections
7544 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7545 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7546 	 * 3) .rodata.* may be embedded into .text or .data sections.
7547 	 */
7548 #define adj_init_size(start, end, size, pos, adj) \
7549 	do { \
7550 		if (start <= pos && pos < end && size > adj) \
7551 			size -= adj; \
7552 	} while (0)
7553 
7554 	adj_init_size(__init_begin, __init_end, init_data_size,
7555 		     _sinittext, init_code_size);
7556 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7557 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7558 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7559 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7560 
7561 #undef	adj_init_size
7562 
7563 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7564 #ifdef	CONFIG_HIGHMEM
7565 		", %luK highmem"
7566 #endif
7567 		"%s%s)\n",
7568 		nr_free_pages() << (PAGE_SHIFT - 10),
7569 		physpages << (PAGE_SHIFT - 10),
7570 		codesize >> 10, datasize >> 10, rosize >> 10,
7571 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7572 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7573 		totalcma_pages << (PAGE_SHIFT - 10),
7574 #ifdef	CONFIG_HIGHMEM
7575 		totalhigh_pages() << (PAGE_SHIFT - 10),
7576 #endif
7577 		str ? ", " : "", str ? str : "");
7578 }
7579 
7580 /**
7581  * set_dma_reserve - set the specified number of pages reserved in the first zone
7582  * @new_dma_reserve: The number of pages to mark reserved
7583  *
7584  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7585  * In the DMA zone, a significant percentage may be consumed by kernel image
7586  * and other unfreeable allocations which can skew the watermarks badly. This
7587  * function may optionally be used to account for unfreeable pages in the
7588  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7589  * smaller per-cpu batchsize.
7590  */
7591 void __init set_dma_reserve(unsigned long new_dma_reserve)
7592 {
7593 	dma_reserve = new_dma_reserve;
7594 }
7595 
7596 void __init free_area_init(unsigned long *zones_size)
7597 {
7598 	zero_resv_unavail();
7599 	free_area_init_node(0, zones_size,
7600 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7601 }
7602 
7603 static int page_alloc_cpu_dead(unsigned int cpu)
7604 {
7605 
7606 	lru_add_drain_cpu(cpu);
7607 	drain_pages(cpu);
7608 
7609 	/*
7610 	 * Spill the event counters of the dead processor
7611 	 * into the current processors event counters.
7612 	 * This artificially elevates the count of the current
7613 	 * processor.
7614 	 */
7615 	vm_events_fold_cpu(cpu);
7616 
7617 	/*
7618 	 * Zero the differential counters of the dead processor
7619 	 * so that the vm statistics are consistent.
7620 	 *
7621 	 * This is only okay since the processor is dead and cannot
7622 	 * race with what we are doing.
7623 	 */
7624 	cpu_vm_stats_fold(cpu);
7625 	return 0;
7626 }
7627 
7628 #ifdef CONFIG_NUMA
7629 int hashdist = HASHDIST_DEFAULT;
7630 
7631 static int __init set_hashdist(char *str)
7632 {
7633 	if (!str)
7634 		return 0;
7635 	hashdist = simple_strtoul(str, &str, 0);
7636 	return 1;
7637 }
7638 __setup("hashdist=", set_hashdist);
7639 #endif
7640 
7641 void __init page_alloc_init(void)
7642 {
7643 	int ret;
7644 
7645 #ifdef CONFIG_NUMA
7646 	if (num_node_state(N_MEMORY) == 1)
7647 		hashdist = 0;
7648 #endif
7649 
7650 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7651 					"mm/page_alloc:dead", NULL,
7652 					page_alloc_cpu_dead);
7653 	WARN_ON(ret < 0);
7654 }
7655 
7656 /*
7657  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7658  *	or min_free_kbytes changes.
7659  */
7660 static void calculate_totalreserve_pages(void)
7661 {
7662 	struct pglist_data *pgdat;
7663 	unsigned long reserve_pages = 0;
7664 	enum zone_type i, j;
7665 
7666 	for_each_online_pgdat(pgdat) {
7667 
7668 		pgdat->totalreserve_pages = 0;
7669 
7670 		for (i = 0; i < MAX_NR_ZONES; i++) {
7671 			struct zone *zone = pgdat->node_zones + i;
7672 			long max = 0;
7673 			unsigned long managed_pages = zone_managed_pages(zone);
7674 
7675 			/* Find valid and maximum lowmem_reserve in the zone */
7676 			for (j = i; j < MAX_NR_ZONES; j++) {
7677 				if (zone->lowmem_reserve[j] > max)
7678 					max = zone->lowmem_reserve[j];
7679 			}
7680 
7681 			/* we treat the high watermark as reserved pages. */
7682 			max += high_wmark_pages(zone);
7683 
7684 			if (max > managed_pages)
7685 				max = managed_pages;
7686 
7687 			pgdat->totalreserve_pages += max;
7688 
7689 			reserve_pages += max;
7690 		}
7691 	}
7692 	totalreserve_pages = reserve_pages;
7693 }
7694 
7695 /*
7696  * setup_per_zone_lowmem_reserve - called whenever
7697  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7698  *	has a correct pages reserved value, so an adequate number of
7699  *	pages are left in the zone after a successful __alloc_pages().
7700  */
7701 static void setup_per_zone_lowmem_reserve(void)
7702 {
7703 	struct pglist_data *pgdat;
7704 	enum zone_type j, idx;
7705 
7706 	for_each_online_pgdat(pgdat) {
7707 		for (j = 0; j < MAX_NR_ZONES; j++) {
7708 			struct zone *zone = pgdat->node_zones + j;
7709 			unsigned long managed_pages = zone_managed_pages(zone);
7710 
7711 			zone->lowmem_reserve[j] = 0;
7712 
7713 			idx = j;
7714 			while (idx) {
7715 				struct zone *lower_zone;
7716 
7717 				idx--;
7718 				lower_zone = pgdat->node_zones + idx;
7719 
7720 				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7721 					sysctl_lowmem_reserve_ratio[idx] = 0;
7722 					lower_zone->lowmem_reserve[j] = 0;
7723 				} else {
7724 					lower_zone->lowmem_reserve[j] =
7725 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7726 				}
7727 				managed_pages += zone_managed_pages(lower_zone);
7728 			}
7729 		}
7730 	}
7731 
7732 	/* update totalreserve_pages */
7733 	calculate_totalreserve_pages();
7734 }
7735 
7736 static void __setup_per_zone_wmarks(void)
7737 {
7738 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7739 	unsigned long lowmem_pages = 0;
7740 	struct zone *zone;
7741 	unsigned long flags;
7742 
7743 	/* Calculate total number of !ZONE_HIGHMEM pages */
7744 	for_each_zone(zone) {
7745 		if (!is_highmem(zone))
7746 			lowmem_pages += zone_managed_pages(zone);
7747 	}
7748 
7749 	for_each_zone(zone) {
7750 		u64 tmp;
7751 
7752 		spin_lock_irqsave(&zone->lock, flags);
7753 		tmp = (u64)pages_min * zone_managed_pages(zone);
7754 		do_div(tmp, lowmem_pages);
7755 		if (is_highmem(zone)) {
7756 			/*
7757 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7758 			 * need highmem pages, so cap pages_min to a small
7759 			 * value here.
7760 			 *
7761 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7762 			 * deltas control async page reclaim, and so should
7763 			 * not be capped for highmem.
7764 			 */
7765 			unsigned long min_pages;
7766 
7767 			min_pages = zone_managed_pages(zone) / 1024;
7768 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7769 			zone->_watermark[WMARK_MIN] = min_pages;
7770 		} else {
7771 			/*
7772 			 * If it's a lowmem zone, reserve a number of pages
7773 			 * proportionate to the zone's size.
7774 			 */
7775 			zone->_watermark[WMARK_MIN] = tmp;
7776 		}
7777 
7778 		/*
7779 		 * Set the kswapd watermarks distance according to the
7780 		 * scale factor in proportion to available memory, but
7781 		 * ensure a minimum size on small systems.
7782 		 */
7783 		tmp = max_t(u64, tmp >> 2,
7784 			    mult_frac(zone_managed_pages(zone),
7785 				      watermark_scale_factor, 10000));
7786 
7787 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7788 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7789 		zone->watermark_boost = 0;
7790 
7791 		spin_unlock_irqrestore(&zone->lock, flags);
7792 	}
7793 
7794 	/* update totalreserve_pages */
7795 	calculate_totalreserve_pages();
7796 }
7797 
7798 /**
7799  * setup_per_zone_wmarks - called when min_free_kbytes changes
7800  * or when memory is hot-{added|removed}
7801  *
7802  * Ensures that the watermark[min,low,high] values for each zone are set
7803  * correctly with respect to min_free_kbytes.
7804  */
7805 void setup_per_zone_wmarks(void)
7806 {
7807 	static DEFINE_SPINLOCK(lock);
7808 
7809 	spin_lock(&lock);
7810 	__setup_per_zone_wmarks();
7811 	spin_unlock(&lock);
7812 }
7813 
7814 /*
7815  * Initialise min_free_kbytes.
7816  *
7817  * For small machines we want it small (128k min).  For large machines
7818  * we want it large (64MB max).  But it is not linear, because network
7819  * bandwidth does not increase linearly with machine size.  We use
7820  *
7821  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7822  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7823  *
7824  * which yields
7825  *
7826  * 16MB:	512k
7827  * 32MB:	724k
7828  * 64MB:	1024k
7829  * 128MB:	1448k
7830  * 256MB:	2048k
7831  * 512MB:	2896k
7832  * 1024MB:	4096k
7833  * 2048MB:	5792k
7834  * 4096MB:	8192k
7835  * 8192MB:	11584k
7836  * 16384MB:	16384k
7837  */
7838 int __meminit init_per_zone_wmark_min(void)
7839 {
7840 	unsigned long lowmem_kbytes;
7841 	int new_min_free_kbytes;
7842 
7843 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7844 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7845 
7846 	if (new_min_free_kbytes > user_min_free_kbytes) {
7847 		min_free_kbytes = new_min_free_kbytes;
7848 		if (min_free_kbytes < 128)
7849 			min_free_kbytes = 128;
7850 		if (min_free_kbytes > 65536)
7851 			min_free_kbytes = 65536;
7852 	} else {
7853 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7854 				new_min_free_kbytes, user_min_free_kbytes);
7855 	}
7856 	setup_per_zone_wmarks();
7857 	refresh_zone_stat_thresholds();
7858 	setup_per_zone_lowmem_reserve();
7859 
7860 #ifdef CONFIG_NUMA
7861 	setup_min_unmapped_ratio();
7862 	setup_min_slab_ratio();
7863 #endif
7864 
7865 	return 0;
7866 }
7867 core_initcall(init_per_zone_wmark_min)
7868 
7869 /*
7870  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7871  *	that we can call two helper functions whenever min_free_kbytes
7872  *	changes.
7873  */
7874 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7875 	void __user *buffer, size_t *length, loff_t *ppos)
7876 {
7877 	int rc;
7878 
7879 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7880 	if (rc)
7881 		return rc;
7882 
7883 	if (write) {
7884 		user_min_free_kbytes = min_free_kbytes;
7885 		setup_per_zone_wmarks();
7886 	}
7887 	return 0;
7888 }
7889 
7890 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7891 	void __user *buffer, size_t *length, loff_t *ppos)
7892 {
7893 	int rc;
7894 
7895 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7896 	if (rc)
7897 		return rc;
7898 
7899 	return 0;
7900 }
7901 
7902 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7903 	void __user *buffer, size_t *length, loff_t *ppos)
7904 {
7905 	int rc;
7906 
7907 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7908 	if (rc)
7909 		return rc;
7910 
7911 	if (write)
7912 		setup_per_zone_wmarks();
7913 
7914 	return 0;
7915 }
7916 
7917 #ifdef CONFIG_NUMA
7918 static void setup_min_unmapped_ratio(void)
7919 {
7920 	pg_data_t *pgdat;
7921 	struct zone *zone;
7922 
7923 	for_each_online_pgdat(pgdat)
7924 		pgdat->min_unmapped_pages = 0;
7925 
7926 	for_each_zone(zone)
7927 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7928 						         sysctl_min_unmapped_ratio) / 100;
7929 }
7930 
7931 
7932 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7933 	void __user *buffer, size_t *length, loff_t *ppos)
7934 {
7935 	int rc;
7936 
7937 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7938 	if (rc)
7939 		return rc;
7940 
7941 	setup_min_unmapped_ratio();
7942 
7943 	return 0;
7944 }
7945 
7946 static void setup_min_slab_ratio(void)
7947 {
7948 	pg_data_t *pgdat;
7949 	struct zone *zone;
7950 
7951 	for_each_online_pgdat(pgdat)
7952 		pgdat->min_slab_pages = 0;
7953 
7954 	for_each_zone(zone)
7955 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7956 						     sysctl_min_slab_ratio) / 100;
7957 }
7958 
7959 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7960 	void __user *buffer, size_t *length, loff_t *ppos)
7961 {
7962 	int rc;
7963 
7964 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7965 	if (rc)
7966 		return rc;
7967 
7968 	setup_min_slab_ratio();
7969 
7970 	return 0;
7971 }
7972 #endif
7973 
7974 /*
7975  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7976  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7977  *	whenever sysctl_lowmem_reserve_ratio changes.
7978  *
7979  * The reserve ratio obviously has absolutely no relation with the
7980  * minimum watermarks. The lowmem reserve ratio can only make sense
7981  * if in function of the boot time zone sizes.
7982  */
7983 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7984 	void __user *buffer, size_t *length, loff_t *ppos)
7985 {
7986 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7987 	setup_per_zone_lowmem_reserve();
7988 	return 0;
7989 }
7990 
7991 /*
7992  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7993  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7994  * pagelist can have before it gets flushed back to buddy allocator.
7995  */
7996 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7997 	void __user *buffer, size_t *length, loff_t *ppos)
7998 {
7999 	struct zone *zone;
8000 	int old_percpu_pagelist_fraction;
8001 	int ret;
8002 
8003 	mutex_lock(&pcp_batch_high_lock);
8004 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8005 
8006 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8007 	if (!write || ret < 0)
8008 		goto out;
8009 
8010 	/* Sanity checking to avoid pcp imbalance */
8011 	if (percpu_pagelist_fraction &&
8012 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8013 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8014 		ret = -EINVAL;
8015 		goto out;
8016 	}
8017 
8018 	/* No change? */
8019 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8020 		goto out;
8021 
8022 	for_each_populated_zone(zone) {
8023 		unsigned int cpu;
8024 
8025 		for_each_possible_cpu(cpu)
8026 			pageset_set_high_and_batch(zone,
8027 					per_cpu_ptr(zone->pageset, cpu));
8028 	}
8029 out:
8030 	mutex_unlock(&pcp_batch_high_lock);
8031 	return ret;
8032 }
8033 
8034 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8035 /*
8036  * Returns the number of pages that arch has reserved but
8037  * is not known to alloc_large_system_hash().
8038  */
8039 static unsigned long __init arch_reserved_kernel_pages(void)
8040 {
8041 	return 0;
8042 }
8043 #endif
8044 
8045 /*
8046  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8047  * machines. As memory size is increased the scale is also increased but at
8048  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8049  * quadruples the scale is increased by one, which means the size of hash table
8050  * only doubles, instead of quadrupling as well.
8051  * Because 32-bit systems cannot have large physical memory, where this scaling
8052  * makes sense, it is disabled on such platforms.
8053  */
8054 #if __BITS_PER_LONG > 32
8055 #define ADAPT_SCALE_BASE	(64ul << 30)
8056 #define ADAPT_SCALE_SHIFT	2
8057 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8058 #endif
8059 
8060 /*
8061  * allocate a large system hash table from bootmem
8062  * - it is assumed that the hash table must contain an exact power-of-2
8063  *   quantity of entries
8064  * - limit is the number of hash buckets, not the total allocation size
8065  */
8066 void *__init alloc_large_system_hash(const char *tablename,
8067 				     unsigned long bucketsize,
8068 				     unsigned long numentries,
8069 				     int scale,
8070 				     int flags,
8071 				     unsigned int *_hash_shift,
8072 				     unsigned int *_hash_mask,
8073 				     unsigned long low_limit,
8074 				     unsigned long high_limit)
8075 {
8076 	unsigned long long max = high_limit;
8077 	unsigned long log2qty, size;
8078 	void *table = NULL;
8079 	gfp_t gfp_flags;
8080 	bool virt;
8081 
8082 	/* allow the kernel cmdline to have a say */
8083 	if (!numentries) {
8084 		/* round applicable memory size up to nearest megabyte */
8085 		numentries = nr_kernel_pages;
8086 		numentries -= arch_reserved_kernel_pages();
8087 
8088 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8089 		if (PAGE_SHIFT < 20)
8090 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8091 
8092 #if __BITS_PER_LONG > 32
8093 		if (!high_limit) {
8094 			unsigned long adapt;
8095 
8096 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8097 			     adapt <<= ADAPT_SCALE_SHIFT)
8098 				scale++;
8099 		}
8100 #endif
8101 
8102 		/* limit to 1 bucket per 2^scale bytes of low memory */
8103 		if (scale > PAGE_SHIFT)
8104 			numentries >>= (scale - PAGE_SHIFT);
8105 		else
8106 			numentries <<= (PAGE_SHIFT - scale);
8107 
8108 		/* Make sure we've got at least a 0-order allocation.. */
8109 		if (unlikely(flags & HASH_SMALL)) {
8110 			/* Makes no sense without HASH_EARLY */
8111 			WARN_ON(!(flags & HASH_EARLY));
8112 			if (!(numentries >> *_hash_shift)) {
8113 				numentries = 1UL << *_hash_shift;
8114 				BUG_ON(!numentries);
8115 			}
8116 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8117 			numentries = PAGE_SIZE / bucketsize;
8118 	}
8119 	numentries = roundup_pow_of_two(numentries);
8120 
8121 	/* limit allocation size to 1/16 total memory by default */
8122 	if (max == 0) {
8123 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8124 		do_div(max, bucketsize);
8125 	}
8126 	max = min(max, 0x80000000ULL);
8127 
8128 	if (numentries < low_limit)
8129 		numentries = low_limit;
8130 	if (numentries > max)
8131 		numentries = max;
8132 
8133 	log2qty = ilog2(numentries);
8134 
8135 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8136 	do {
8137 		virt = false;
8138 		size = bucketsize << log2qty;
8139 		if (flags & HASH_EARLY) {
8140 			if (flags & HASH_ZERO)
8141 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8142 			else
8143 				table = memblock_alloc_raw(size,
8144 							   SMP_CACHE_BYTES);
8145 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8146 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8147 			virt = true;
8148 		} else {
8149 			/*
8150 			 * If bucketsize is not a power-of-two, we may free
8151 			 * some pages at the end of hash table which
8152 			 * alloc_pages_exact() automatically does
8153 			 */
8154 			table = alloc_pages_exact(size, gfp_flags);
8155 			kmemleak_alloc(table, size, 1, gfp_flags);
8156 		}
8157 	} while (!table && size > PAGE_SIZE && --log2qty);
8158 
8159 	if (!table)
8160 		panic("Failed to allocate %s hash table\n", tablename);
8161 
8162 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8163 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8164 		virt ? "vmalloc" : "linear");
8165 
8166 	if (_hash_shift)
8167 		*_hash_shift = log2qty;
8168 	if (_hash_mask)
8169 		*_hash_mask = (1 << log2qty) - 1;
8170 
8171 	return table;
8172 }
8173 
8174 /*
8175  * This function checks whether pageblock includes unmovable pages or not.
8176  * If @count is not zero, it is okay to include less @count unmovable pages
8177  *
8178  * PageLRU check without isolation or lru_lock could race so that
8179  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8180  * check without lock_page also may miss some movable non-lru pages at
8181  * race condition. So you can't expect this function should be exact.
8182  */
8183 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8184 			 int migratetype, int flags)
8185 {
8186 	unsigned long found;
8187 	unsigned long iter = 0;
8188 	unsigned long pfn = page_to_pfn(page);
8189 	const char *reason = "unmovable page";
8190 
8191 	/*
8192 	 * TODO we could make this much more efficient by not checking every
8193 	 * page in the range if we know all of them are in MOVABLE_ZONE and
8194 	 * that the movable zone guarantees that pages are migratable but
8195 	 * the later is not the case right now unfortunatelly. E.g. movablecore
8196 	 * can still lead to having bootmem allocations in zone_movable.
8197 	 */
8198 
8199 	if (is_migrate_cma_page(page)) {
8200 		/*
8201 		 * CMA allocations (alloc_contig_range) really need to mark
8202 		 * isolate CMA pageblocks even when they are not movable in fact
8203 		 * so consider them movable here.
8204 		 */
8205 		if (is_migrate_cma(migratetype))
8206 			return false;
8207 
8208 		reason = "CMA page";
8209 		goto unmovable;
8210 	}
8211 
8212 	for (found = 0; iter < pageblock_nr_pages; iter++) {
8213 		unsigned long check = pfn + iter;
8214 
8215 		if (!pfn_valid_within(check))
8216 			continue;
8217 
8218 		page = pfn_to_page(check);
8219 
8220 		if (PageReserved(page))
8221 			goto unmovable;
8222 
8223 		/*
8224 		 * If the zone is movable and we have ruled out all reserved
8225 		 * pages then it should be reasonably safe to assume the rest
8226 		 * is movable.
8227 		 */
8228 		if (zone_idx(zone) == ZONE_MOVABLE)
8229 			continue;
8230 
8231 		/*
8232 		 * Hugepages are not in LRU lists, but they're movable.
8233 		 * We need not scan over tail pages because we don't
8234 		 * handle each tail page individually in migration.
8235 		 */
8236 		if (PageHuge(page)) {
8237 			struct page *head = compound_head(page);
8238 			unsigned int skip_pages;
8239 
8240 			if (!hugepage_migration_supported(page_hstate(head)))
8241 				goto unmovable;
8242 
8243 			skip_pages = compound_nr(head) - (page - head);
8244 			iter += skip_pages - 1;
8245 			continue;
8246 		}
8247 
8248 		/*
8249 		 * We can't use page_count without pin a page
8250 		 * because another CPU can free compound page.
8251 		 * This check already skips compound tails of THP
8252 		 * because their page->_refcount is zero at all time.
8253 		 */
8254 		if (!page_ref_count(page)) {
8255 			if (PageBuddy(page))
8256 				iter += (1 << page_order(page)) - 1;
8257 			continue;
8258 		}
8259 
8260 		/*
8261 		 * The HWPoisoned page may be not in buddy system, and
8262 		 * page_count() is not 0.
8263 		 */
8264 		if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8265 			continue;
8266 
8267 		if (__PageMovable(page))
8268 			continue;
8269 
8270 		if (!PageLRU(page))
8271 			found++;
8272 		/*
8273 		 * If there are RECLAIMABLE pages, we need to check
8274 		 * it.  But now, memory offline itself doesn't call
8275 		 * shrink_node_slabs() and it still to be fixed.
8276 		 */
8277 		/*
8278 		 * If the page is not RAM, page_count()should be 0.
8279 		 * we don't need more check. This is an _used_ not-movable page.
8280 		 *
8281 		 * The problematic thing here is PG_reserved pages. PG_reserved
8282 		 * is set to both of a memory hole page and a _used_ kernel
8283 		 * page at boot.
8284 		 */
8285 		if (found > count)
8286 			goto unmovable;
8287 	}
8288 	return false;
8289 unmovable:
8290 	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8291 	if (flags & REPORT_FAILURE)
8292 		dump_page(pfn_to_page(pfn + iter), reason);
8293 	return true;
8294 }
8295 
8296 #ifdef CONFIG_CONTIG_ALLOC
8297 static unsigned long pfn_max_align_down(unsigned long pfn)
8298 {
8299 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8300 			     pageblock_nr_pages) - 1);
8301 }
8302 
8303 static unsigned long pfn_max_align_up(unsigned long pfn)
8304 {
8305 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8306 				pageblock_nr_pages));
8307 }
8308 
8309 /* [start, end) must belong to a single zone. */
8310 static int __alloc_contig_migrate_range(struct compact_control *cc,
8311 					unsigned long start, unsigned long end)
8312 {
8313 	/* This function is based on compact_zone() from compaction.c. */
8314 	unsigned long nr_reclaimed;
8315 	unsigned long pfn = start;
8316 	unsigned int tries = 0;
8317 	int ret = 0;
8318 
8319 	migrate_prep();
8320 
8321 	while (pfn < end || !list_empty(&cc->migratepages)) {
8322 		if (fatal_signal_pending(current)) {
8323 			ret = -EINTR;
8324 			break;
8325 		}
8326 
8327 		if (list_empty(&cc->migratepages)) {
8328 			cc->nr_migratepages = 0;
8329 			pfn = isolate_migratepages_range(cc, pfn, end);
8330 			if (!pfn) {
8331 				ret = -EINTR;
8332 				break;
8333 			}
8334 			tries = 0;
8335 		} else if (++tries == 5) {
8336 			ret = ret < 0 ? ret : -EBUSY;
8337 			break;
8338 		}
8339 
8340 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8341 							&cc->migratepages);
8342 		cc->nr_migratepages -= nr_reclaimed;
8343 
8344 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8345 				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8346 	}
8347 	if (ret < 0) {
8348 		putback_movable_pages(&cc->migratepages);
8349 		return ret;
8350 	}
8351 	return 0;
8352 }
8353 
8354 /**
8355  * alloc_contig_range() -- tries to allocate given range of pages
8356  * @start:	start PFN to allocate
8357  * @end:	one-past-the-last PFN to allocate
8358  * @migratetype:	migratetype of the underlaying pageblocks (either
8359  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8360  *			in range must have the same migratetype and it must
8361  *			be either of the two.
8362  * @gfp_mask:	GFP mask to use during compaction
8363  *
8364  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8365  * aligned.  The PFN range must belong to a single zone.
8366  *
8367  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8368  * pageblocks in the range.  Once isolated, the pageblocks should not
8369  * be modified by others.
8370  *
8371  * Return: zero on success or negative error code.  On success all
8372  * pages which PFN is in [start, end) are allocated for the caller and
8373  * need to be freed with free_contig_range().
8374  */
8375 int alloc_contig_range(unsigned long start, unsigned long end,
8376 		       unsigned migratetype, gfp_t gfp_mask)
8377 {
8378 	unsigned long outer_start, outer_end;
8379 	unsigned int order;
8380 	int ret = 0;
8381 
8382 	struct compact_control cc = {
8383 		.nr_migratepages = 0,
8384 		.order = -1,
8385 		.zone = page_zone(pfn_to_page(start)),
8386 		.mode = MIGRATE_SYNC,
8387 		.ignore_skip_hint = true,
8388 		.no_set_skip_hint = true,
8389 		.gfp_mask = current_gfp_context(gfp_mask),
8390 	};
8391 	INIT_LIST_HEAD(&cc.migratepages);
8392 
8393 	/*
8394 	 * What we do here is we mark all pageblocks in range as
8395 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8396 	 * have different sizes, and due to the way page allocator
8397 	 * work, we align the range to biggest of the two pages so
8398 	 * that page allocator won't try to merge buddies from
8399 	 * different pageblocks and change MIGRATE_ISOLATE to some
8400 	 * other migration type.
8401 	 *
8402 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8403 	 * migrate the pages from an unaligned range (ie. pages that
8404 	 * we are interested in).  This will put all the pages in
8405 	 * range back to page allocator as MIGRATE_ISOLATE.
8406 	 *
8407 	 * When this is done, we take the pages in range from page
8408 	 * allocator removing them from the buddy system.  This way
8409 	 * page allocator will never consider using them.
8410 	 *
8411 	 * This lets us mark the pageblocks back as
8412 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8413 	 * aligned range but not in the unaligned, original range are
8414 	 * put back to page allocator so that buddy can use them.
8415 	 */
8416 
8417 	ret = start_isolate_page_range(pfn_max_align_down(start),
8418 				       pfn_max_align_up(end), migratetype, 0);
8419 	if (ret < 0)
8420 		return ret;
8421 
8422 	/*
8423 	 * In case of -EBUSY, we'd like to know which page causes problem.
8424 	 * So, just fall through. test_pages_isolated() has a tracepoint
8425 	 * which will report the busy page.
8426 	 *
8427 	 * It is possible that busy pages could become available before
8428 	 * the call to test_pages_isolated, and the range will actually be
8429 	 * allocated.  So, if we fall through be sure to clear ret so that
8430 	 * -EBUSY is not accidentally used or returned to caller.
8431 	 */
8432 	ret = __alloc_contig_migrate_range(&cc, start, end);
8433 	if (ret && ret != -EBUSY)
8434 		goto done;
8435 	ret =0;
8436 
8437 	/*
8438 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8439 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8440 	 * more, all pages in [start, end) are free in page allocator.
8441 	 * What we are going to do is to allocate all pages from
8442 	 * [start, end) (that is remove them from page allocator).
8443 	 *
8444 	 * The only problem is that pages at the beginning and at the
8445 	 * end of interesting range may be not aligned with pages that
8446 	 * page allocator holds, ie. they can be part of higher order
8447 	 * pages.  Because of this, we reserve the bigger range and
8448 	 * once this is done free the pages we are not interested in.
8449 	 *
8450 	 * We don't have to hold zone->lock here because the pages are
8451 	 * isolated thus they won't get removed from buddy.
8452 	 */
8453 
8454 	lru_add_drain_all();
8455 
8456 	order = 0;
8457 	outer_start = start;
8458 	while (!PageBuddy(pfn_to_page(outer_start))) {
8459 		if (++order >= MAX_ORDER) {
8460 			outer_start = start;
8461 			break;
8462 		}
8463 		outer_start &= ~0UL << order;
8464 	}
8465 
8466 	if (outer_start != start) {
8467 		order = page_order(pfn_to_page(outer_start));
8468 
8469 		/*
8470 		 * outer_start page could be small order buddy page and
8471 		 * it doesn't include start page. Adjust outer_start
8472 		 * in this case to report failed page properly
8473 		 * on tracepoint in test_pages_isolated()
8474 		 */
8475 		if (outer_start + (1UL << order) <= start)
8476 			outer_start = start;
8477 	}
8478 
8479 	/* Make sure the range is really isolated. */
8480 	if (test_pages_isolated(outer_start, end, false)) {
8481 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8482 			__func__, outer_start, end);
8483 		ret = -EBUSY;
8484 		goto done;
8485 	}
8486 
8487 	/* Grab isolated pages from freelists. */
8488 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8489 	if (!outer_end) {
8490 		ret = -EBUSY;
8491 		goto done;
8492 	}
8493 
8494 	/* Free head and tail (if any) */
8495 	if (start != outer_start)
8496 		free_contig_range(outer_start, start - outer_start);
8497 	if (end != outer_end)
8498 		free_contig_range(end, outer_end - end);
8499 
8500 done:
8501 	undo_isolate_page_range(pfn_max_align_down(start),
8502 				pfn_max_align_up(end), migratetype);
8503 	return ret;
8504 }
8505 #endif /* CONFIG_CONTIG_ALLOC */
8506 
8507 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8508 {
8509 	unsigned int count = 0;
8510 
8511 	for (; nr_pages--; pfn++) {
8512 		struct page *page = pfn_to_page(pfn);
8513 
8514 		count += page_count(page) != 1;
8515 		__free_page(page);
8516 	}
8517 	WARN(count != 0, "%d pages are still in use!\n", count);
8518 }
8519 
8520 /*
8521  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8522  * page high values need to be recalulated.
8523  */
8524 void __meminit zone_pcp_update(struct zone *zone)
8525 {
8526 	unsigned cpu;
8527 	mutex_lock(&pcp_batch_high_lock);
8528 	for_each_possible_cpu(cpu)
8529 		pageset_set_high_and_batch(zone,
8530 				per_cpu_ptr(zone->pageset, cpu));
8531 	mutex_unlock(&pcp_batch_high_lock);
8532 }
8533 
8534 void zone_pcp_reset(struct zone *zone)
8535 {
8536 	unsigned long flags;
8537 	int cpu;
8538 	struct per_cpu_pageset *pset;
8539 
8540 	/* avoid races with drain_pages()  */
8541 	local_irq_save(flags);
8542 	if (zone->pageset != &boot_pageset) {
8543 		for_each_online_cpu(cpu) {
8544 			pset = per_cpu_ptr(zone->pageset, cpu);
8545 			drain_zonestat(zone, pset);
8546 		}
8547 		free_percpu(zone->pageset);
8548 		zone->pageset = &boot_pageset;
8549 	}
8550 	local_irq_restore(flags);
8551 }
8552 
8553 #ifdef CONFIG_MEMORY_HOTREMOVE
8554 /*
8555  * All pages in the range must be in a single zone and isolated
8556  * before calling this.
8557  */
8558 unsigned long
8559 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8560 {
8561 	struct page *page;
8562 	struct zone *zone;
8563 	unsigned int order, i;
8564 	unsigned long pfn;
8565 	unsigned long flags;
8566 	unsigned long offlined_pages = 0;
8567 
8568 	/* find the first valid pfn */
8569 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
8570 		if (pfn_valid(pfn))
8571 			break;
8572 	if (pfn == end_pfn)
8573 		return offlined_pages;
8574 
8575 	offline_mem_sections(pfn, end_pfn);
8576 	zone = page_zone(pfn_to_page(pfn));
8577 	spin_lock_irqsave(&zone->lock, flags);
8578 	pfn = start_pfn;
8579 	while (pfn < end_pfn) {
8580 		if (!pfn_valid(pfn)) {
8581 			pfn++;
8582 			continue;
8583 		}
8584 		page = pfn_to_page(pfn);
8585 		/*
8586 		 * The HWPoisoned page may be not in buddy system, and
8587 		 * page_count() is not 0.
8588 		 */
8589 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8590 			pfn++;
8591 			SetPageReserved(page);
8592 			offlined_pages++;
8593 			continue;
8594 		}
8595 
8596 		BUG_ON(page_count(page));
8597 		BUG_ON(!PageBuddy(page));
8598 		order = page_order(page);
8599 		offlined_pages += 1 << order;
8600 #ifdef CONFIG_DEBUG_VM
8601 		pr_info("remove from free list %lx %d %lx\n",
8602 			pfn, 1 << order, end_pfn);
8603 #endif
8604 		del_page_from_free_area(page, &zone->free_area[order]);
8605 		for (i = 0; i < (1 << order); i++)
8606 			SetPageReserved((page+i));
8607 		pfn += (1 << order);
8608 	}
8609 	spin_unlock_irqrestore(&zone->lock, flags);
8610 
8611 	return offlined_pages;
8612 }
8613 #endif
8614 
8615 bool is_free_buddy_page(struct page *page)
8616 {
8617 	struct zone *zone = page_zone(page);
8618 	unsigned long pfn = page_to_pfn(page);
8619 	unsigned long flags;
8620 	unsigned int order;
8621 
8622 	spin_lock_irqsave(&zone->lock, flags);
8623 	for (order = 0; order < MAX_ORDER; order++) {
8624 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8625 
8626 		if (PageBuddy(page_head) && page_order(page_head) >= order)
8627 			break;
8628 	}
8629 	spin_unlock_irqrestore(&zone->lock, flags);
8630 
8631 	return order < MAX_ORDER;
8632 }
8633 
8634 #ifdef CONFIG_MEMORY_FAILURE
8635 /*
8636  * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8637  * test is performed under the zone lock to prevent a race against page
8638  * allocation.
8639  */
8640 bool set_hwpoison_free_buddy_page(struct page *page)
8641 {
8642 	struct zone *zone = page_zone(page);
8643 	unsigned long pfn = page_to_pfn(page);
8644 	unsigned long flags;
8645 	unsigned int order;
8646 	bool hwpoisoned = false;
8647 
8648 	spin_lock_irqsave(&zone->lock, flags);
8649 	for (order = 0; order < MAX_ORDER; order++) {
8650 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8651 
8652 		if (PageBuddy(page_head) && page_order(page_head) >= order) {
8653 			if (!TestSetPageHWPoison(page))
8654 				hwpoisoned = true;
8655 			break;
8656 		}
8657 	}
8658 	spin_unlock_irqrestore(&zone->lock, flags);
8659 
8660 	return hwpoisoned;
8661 }
8662 #endif
8663