1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/highmem.h> 20 #include <linux/swap.h> 21 #include <linux/interrupt.h> 22 #include <linux/pagemap.h> 23 #include <linux/jiffies.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kasan.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/topology.h> 36 #include <linux/sysctl.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/memory_hotplug.h> 40 #include <linux/nodemask.h> 41 #include <linux/vmalloc.h> 42 #include <linux/vmstat.h> 43 #include <linux/mempolicy.h> 44 #include <linux/memremap.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_ext.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <trace/events/oom.h> 57 #include <linux/prefetch.h> 58 #include <linux/mm_inline.h> 59 #include <linux/migrate.h> 60 #include <linux/hugetlb.h> 61 #include <linux/sched/rt.h> 62 #include <linux/sched/mm.h> 63 #include <linux/page_owner.h> 64 #include <linux/kthread.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/lockdep.h> 68 #include <linux/nmi.h> 69 #include <linux/psi.h> 70 71 #include <asm/sections.h> 72 #include <asm/tlbflush.h> 73 #include <asm/div64.h> 74 #include "internal.h" 75 76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 77 static DEFINE_MUTEX(pcp_batch_high_lock); 78 #define MIN_PERCPU_PAGELIST_FRACTION (8) 79 80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 81 DEFINE_PER_CPU(int, numa_node); 82 EXPORT_PER_CPU_SYMBOL(numa_node); 83 #endif 84 85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 86 87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 88 /* 89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 92 * defined in <linux/topology.h>. 93 */ 94 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 95 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 96 int _node_numa_mem_[MAX_NUMNODES]; 97 #endif 98 99 /* work_structs for global per-cpu drains */ 100 struct pcpu_drain { 101 struct zone *zone; 102 struct work_struct work; 103 }; 104 DEFINE_MUTEX(pcpu_drain_mutex); 105 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 106 107 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 108 volatile unsigned long latent_entropy __latent_entropy; 109 EXPORT_SYMBOL(latent_entropy); 110 #endif 111 112 /* 113 * Array of node states. 114 */ 115 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 116 [N_POSSIBLE] = NODE_MASK_ALL, 117 [N_ONLINE] = { { [0] = 1UL } }, 118 #ifndef CONFIG_NUMA 119 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 120 #ifdef CONFIG_HIGHMEM 121 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 122 #endif 123 [N_MEMORY] = { { [0] = 1UL } }, 124 [N_CPU] = { { [0] = 1UL } }, 125 #endif /* NUMA */ 126 }; 127 EXPORT_SYMBOL(node_states); 128 129 atomic_long_t _totalram_pages __read_mostly; 130 EXPORT_SYMBOL(_totalram_pages); 131 unsigned long totalreserve_pages __read_mostly; 132 unsigned long totalcma_pages __read_mostly; 133 134 int percpu_pagelist_fraction; 135 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 136 137 /* 138 * A cached value of the page's pageblock's migratetype, used when the page is 139 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 140 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 141 * Also the migratetype set in the page does not necessarily match the pcplist 142 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 143 * other index - this ensures that it will be put on the correct CMA freelist. 144 */ 145 static inline int get_pcppage_migratetype(struct page *page) 146 { 147 return page->index; 148 } 149 150 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 151 { 152 page->index = migratetype; 153 } 154 155 #ifdef CONFIG_PM_SLEEP 156 /* 157 * The following functions are used by the suspend/hibernate code to temporarily 158 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 159 * while devices are suspended. To avoid races with the suspend/hibernate code, 160 * they should always be called with system_transition_mutex held 161 * (gfp_allowed_mask also should only be modified with system_transition_mutex 162 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 163 * with that modification). 164 */ 165 166 static gfp_t saved_gfp_mask; 167 168 void pm_restore_gfp_mask(void) 169 { 170 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 171 if (saved_gfp_mask) { 172 gfp_allowed_mask = saved_gfp_mask; 173 saved_gfp_mask = 0; 174 } 175 } 176 177 void pm_restrict_gfp_mask(void) 178 { 179 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 180 WARN_ON(saved_gfp_mask); 181 saved_gfp_mask = gfp_allowed_mask; 182 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 183 } 184 185 bool pm_suspended_storage(void) 186 { 187 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 188 return false; 189 return true; 190 } 191 #endif /* CONFIG_PM_SLEEP */ 192 193 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 194 unsigned int pageblock_order __read_mostly; 195 #endif 196 197 static void __free_pages_ok(struct page *page, unsigned int order); 198 199 /* 200 * results with 256, 32 in the lowmem_reserve sysctl: 201 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 202 * 1G machine -> (16M dma, 784M normal, 224M high) 203 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 204 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 205 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 206 * 207 * TBD: should special case ZONE_DMA32 machines here - in those we normally 208 * don't need any ZONE_NORMAL reservation 209 */ 210 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 211 #ifdef CONFIG_ZONE_DMA 212 [ZONE_DMA] = 256, 213 #endif 214 #ifdef CONFIG_ZONE_DMA32 215 [ZONE_DMA32] = 256, 216 #endif 217 [ZONE_NORMAL] = 32, 218 #ifdef CONFIG_HIGHMEM 219 [ZONE_HIGHMEM] = 0, 220 #endif 221 [ZONE_MOVABLE] = 0, 222 }; 223 224 EXPORT_SYMBOL(totalram_pages); 225 226 static char * const zone_names[MAX_NR_ZONES] = { 227 #ifdef CONFIG_ZONE_DMA 228 "DMA", 229 #endif 230 #ifdef CONFIG_ZONE_DMA32 231 "DMA32", 232 #endif 233 "Normal", 234 #ifdef CONFIG_HIGHMEM 235 "HighMem", 236 #endif 237 "Movable", 238 #ifdef CONFIG_ZONE_DEVICE 239 "Device", 240 #endif 241 }; 242 243 const char * const migratetype_names[MIGRATE_TYPES] = { 244 "Unmovable", 245 "Movable", 246 "Reclaimable", 247 "HighAtomic", 248 #ifdef CONFIG_CMA 249 "CMA", 250 #endif 251 #ifdef CONFIG_MEMORY_ISOLATION 252 "Isolate", 253 #endif 254 }; 255 256 compound_page_dtor * const compound_page_dtors[] = { 257 NULL, 258 free_compound_page, 259 #ifdef CONFIG_HUGETLB_PAGE 260 free_huge_page, 261 #endif 262 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 263 free_transhuge_page, 264 #endif 265 }; 266 267 int min_free_kbytes = 1024; 268 int user_min_free_kbytes = -1; 269 int watermark_boost_factor __read_mostly = 15000; 270 int watermark_scale_factor = 10; 271 272 static unsigned long nr_kernel_pages __initdata; 273 static unsigned long nr_all_pages __initdata; 274 static unsigned long dma_reserve __initdata; 275 276 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 277 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 278 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 279 static unsigned long required_kernelcore __initdata; 280 static unsigned long required_kernelcore_percent __initdata; 281 static unsigned long required_movablecore __initdata; 282 static unsigned long required_movablecore_percent __initdata; 283 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 284 static bool mirrored_kernelcore __meminitdata; 285 286 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 287 int movable_zone; 288 EXPORT_SYMBOL(movable_zone); 289 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 290 291 #if MAX_NUMNODES > 1 292 int nr_node_ids __read_mostly = MAX_NUMNODES; 293 int nr_online_nodes __read_mostly = 1; 294 EXPORT_SYMBOL(nr_node_ids); 295 EXPORT_SYMBOL(nr_online_nodes); 296 #endif 297 298 int page_group_by_mobility_disabled __read_mostly; 299 300 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 301 /* 302 * During boot we initialize deferred pages on-demand, as needed, but once 303 * page_alloc_init_late() has finished, the deferred pages are all initialized, 304 * and we can permanently disable that path. 305 */ 306 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 307 308 /* 309 * Calling kasan_free_pages() only after deferred memory initialization 310 * has completed. Poisoning pages during deferred memory init will greatly 311 * lengthen the process and cause problem in large memory systems as the 312 * deferred pages initialization is done with interrupt disabled. 313 * 314 * Assuming that there will be no reference to those newly initialized 315 * pages before they are ever allocated, this should have no effect on 316 * KASAN memory tracking as the poison will be properly inserted at page 317 * allocation time. The only corner case is when pages are allocated by 318 * on-demand allocation and then freed again before the deferred pages 319 * initialization is done, but this is not likely to happen. 320 */ 321 static inline void kasan_free_nondeferred_pages(struct page *page, int order) 322 { 323 if (!static_branch_unlikely(&deferred_pages)) 324 kasan_free_pages(page, order); 325 } 326 327 /* Returns true if the struct page for the pfn is uninitialised */ 328 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 329 { 330 int nid = early_pfn_to_nid(pfn); 331 332 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 333 return true; 334 335 return false; 336 } 337 338 /* 339 * Returns true when the remaining initialisation should be deferred until 340 * later in the boot cycle when it can be parallelised. 341 */ 342 static bool __meminit 343 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 344 { 345 static unsigned long prev_end_pfn, nr_initialised; 346 347 /* 348 * prev_end_pfn static that contains the end of previous zone 349 * No need to protect because called very early in boot before smp_init. 350 */ 351 if (prev_end_pfn != end_pfn) { 352 prev_end_pfn = end_pfn; 353 nr_initialised = 0; 354 } 355 356 /* Always populate low zones for address-constrained allocations */ 357 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 358 return false; 359 360 /* 361 * We start only with one section of pages, more pages are added as 362 * needed until the rest of deferred pages are initialized. 363 */ 364 nr_initialised++; 365 if ((nr_initialised > PAGES_PER_SECTION) && 366 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 367 NODE_DATA(nid)->first_deferred_pfn = pfn; 368 return true; 369 } 370 return false; 371 } 372 #else 373 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 374 375 static inline bool early_page_uninitialised(unsigned long pfn) 376 { 377 return false; 378 } 379 380 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 381 { 382 return false; 383 } 384 #endif 385 386 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 387 static inline unsigned long *get_pageblock_bitmap(struct page *page, 388 unsigned long pfn) 389 { 390 #ifdef CONFIG_SPARSEMEM 391 return __pfn_to_section(pfn)->pageblock_flags; 392 #else 393 return page_zone(page)->pageblock_flags; 394 #endif /* CONFIG_SPARSEMEM */ 395 } 396 397 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 398 { 399 #ifdef CONFIG_SPARSEMEM 400 pfn &= (PAGES_PER_SECTION-1); 401 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 402 #else 403 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 404 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 405 #endif /* CONFIG_SPARSEMEM */ 406 } 407 408 /** 409 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 410 * @page: The page within the block of interest 411 * @pfn: The target page frame number 412 * @end_bitidx: The last bit of interest to retrieve 413 * @mask: mask of bits that the caller is interested in 414 * 415 * Return: pageblock_bits flags 416 */ 417 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 418 unsigned long pfn, 419 unsigned long end_bitidx, 420 unsigned long mask) 421 { 422 unsigned long *bitmap; 423 unsigned long bitidx, word_bitidx; 424 unsigned long word; 425 426 bitmap = get_pageblock_bitmap(page, pfn); 427 bitidx = pfn_to_bitidx(page, pfn); 428 word_bitidx = bitidx / BITS_PER_LONG; 429 bitidx &= (BITS_PER_LONG-1); 430 431 word = bitmap[word_bitidx]; 432 bitidx += end_bitidx; 433 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 434 } 435 436 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 437 unsigned long end_bitidx, 438 unsigned long mask) 439 { 440 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 441 } 442 443 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 444 { 445 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 446 } 447 448 /** 449 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 450 * @page: The page within the block of interest 451 * @flags: The flags to set 452 * @pfn: The target page frame number 453 * @end_bitidx: The last bit of interest 454 * @mask: mask of bits that the caller is interested in 455 */ 456 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 457 unsigned long pfn, 458 unsigned long end_bitidx, 459 unsigned long mask) 460 { 461 unsigned long *bitmap; 462 unsigned long bitidx, word_bitidx; 463 unsigned long old_word, word; 464 465 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 466 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 467 468 bitmap = get_pageblock_bitmap(page, pfn); 469 bitidx = pfn_to_bitidx(page, pfn); 470 word_bitidx = bitidx / BITS_PER_LONG; 471 bitidx &= (BITS_PER_LONG-1); 472 473 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 474 475 bitidx += end_bitidx; 476 mask <<= (BITS_PER_LONG - bitidx - 1); 477 flags <<= (BITS_PER_LONG - bitidx - 1); 478 479 word = READ_ONCE(bitmap[word_bitidx]); 480 for (;;) { 481 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 482 if (word == old_word) 483 break; 484 word = old_word; 485 } 486 } 487 488 void set_pageblock_migratetype(struct page *page, int migratetype) 489 { 490 if (unlikely(page_group_by_mobility_disabled && 491 migratetype < MIGRATE_PCPTYPES)) 492 migratetype = MIGRATE_UNMOVABLE; 493 494 set_pageblock_flags_group(page, (unsigned long)migratetype, 495 PB_migrate, PB_migrate_end); 496 } 497 498 #ifdef CONFIG_DEBUG_VM 499 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 500 { 501 int ret = 0; 502 unsigned seq; 503 unsigned long pfn = page_to_pfn(page); 504 unsigned long sp, start_pfn; 505 506 do { 507 seq = zone_span_seqbegin(zone); 508 start_pfn = zone->zone_start_pfn; 509 sp = zone->spanned_pages; 510 if (!zone_spans_pfn(zone, pfn)) 511 ret = 1; 512 } while (zone_span_seqretry(zone, seq)); 513 514 if (ret) 515 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 516 pfn, zone_to_nid(zone), zone->name, 517 start_pfn, start_pfn + sp); 518 519 return ret; 520 } 521 522 static int page_is_consistent(struct zone *zone, struct page *page) 523 { 524 if (!pfn_valid_within(page_to_pfn(page))) 525 return 0; 526 if (zone != page_zone(page)) 527 return 0; 528 529 return 1; 530 } 531 /* 532 * Temporary debugging check for pages not lying within a given zone. 533 */ 534 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 535 { 536 if (page_outside_zone_boundaries(zone, page)) 537 return 1; 538 if (!page_is_consistent(zone, page)) 539 return 1; 540 541 return 0; 542 } 543 #else 544 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 545 { 546 return 0; 547 } 548 #endif 549 550 static void bad_page(struct page *page, const char *reason, 551 unsigned long bad_flags) 552 { 553 static unsigned long resume; 554 static unsigned long nr_shown; 555 static unsigned long nr_unshown; 556 557 /* 558 * Allow a burst of 60 reports, then keep quiet for that minute; 559 * or allow a steady drip of one report per second. 560 */ 561 if (nr_shown == 60) { 562 if (time_before(jiffies, resume)) { 563 nr_unshown++; 564 goto out; 565 } 566 if (nr_unshown) { 567 pr_alert( 568 "BUG: Bad page state: %lu messages suppressed\n", 569 nr_unshown); 570 nr_unshown = 0; 571 } 572 nr_shown = 0; 573 } 574 if (nr_shown++ == 0) 575 resume = jiffies + 60 * HZ; 576 577 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 578 current->comm, page_to_pfn(page)); 579 __dump_page(page, reason); 580 bad_flags &= page->flags; 581 if (bad_flags) 582 pr_alert("bad because of flags: %#lx(%pGp)\n", 583 bad_flags, &bad_flags); 584 dump_page_owner(page); 585 586 print_modules(); 587 dump_stack(); 588 out: 589 /* Leave bad fields for debug, except PageBuddy could make trouble */ 590 page_mapcount_reset(page); /* remove PageBuddy */ 591 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 592 } 593 594 /* 595 * Higher-order pages are called "compound pages". They are structured thusly: 596 * 597 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 598 * 599 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 600 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 601 * 602 * The first tail page's ->compound_dtor holds the offset in array of compound 603 * page destructors. See compound_page_dtors. 604 * 605 * The first tail page's ->compound_order holds the order of allocation. 606 * This usage means that zero-order pages may not be compound. 607 */ 608 609 void free_compound_page(struct page *page) 610 { 611 __free_pages_ok(page, compound_order(page)); 612 } 613 614 void prep_compound_page(struct page *page, unsigned int order) 615 { 616 int i; 617 int nr_pages = 1 << order; 618 619 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 620 set_compound_order(page, order); 621 __SetPageHead(page); 622 for (i = 1; i < nr_pages; i++) { 623 struct page *p = page + i; 624 set_page_count(p, 0); 625 p->mapping = TAIL_MAPPING; 626 set_compound_head(p, page); 627 } 628 atomic_set(compound_mapcount_ptr(page), -1); 629 } 630 631 #ifdef CONFIG_DEBUG_PAGEALLOC 632 unsigned int _debug_guardpage_minorder; 633 bool _debug_pagealloc_enabled __read_mostly 634 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 635 EXPORT_SYMBOL(_debug_pagealloc_enabled); 636 bool _debug_guardpage_enabled __read_mostly; 637 638 static int __init early_debug_pagealloc(char *buf) 639 { 640 if (!buf) 641 return -EINVAL; 642 return kstrtobool(buf, &_debug_pagealloc_enabled); 643 } 644 early_param("debug_pagealloc", early_debug_pagealloc); 645 646 static bool need_debug_guardpage(void) 647 { 648 /* If we don't use debug_pagealloc, we don't need guard page */ 649 if (!debug_pagealloc_enabled()) 650 return false; 651 652 if (!debug_guardpage_minorder()) 653 return false; 654 655 return true; 656 } 657 658 static void init_debug_guardpage(void) 659 { 660 if (!debug_pagealloc_enabled()) 661 return; 662 663 if (!debug_guardpage_minorder()) 664 return; 665 666 _debug_guardpage_enabled = true; 667 } 668 669 struct page_ext_operations debug_guardpage_ops = { 670 .need = need_debug_guardpage, 671 .init = init_debug_guardpage, 672 }; 673 674 static int __init debug_guardpage_minorder_setup(char *buf) 675 { 676 unsigned long res; 677 678 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 679 pr_err("Bad debug_guardpage_minorder value\n"); 680 return 0; 681 } 682 _debug_guardpage_minorder = res; 683 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 684 return 0; 685 } 686 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 687 688 static inline bool set_page_guard(struct zone *zone, struct page *page, 689 unsigned int order, int migratetype) 690 { 691 struct page_ext *page_ext; 692 693 if (!debug_guardpage_enabled()) 694 return false; 695 696 if (order >= debug_guardpage_minorder()) 697 return false; 698 699 page_ext = lookup_page_ext(page); 700 if (unlikely(!page_ext)) 701 return false; 702 703 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 704 705 INIT_LIST_HEAD(&page->lru); 706 set_page_private(page, order); 707 /* Guard pages are not available for any usage */ 708 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 709 710 return true; 711 } 712 713 static inline void clear_page_guard(struct zone *zone, struct page *page, 714 unsigned int order, int migratetype) 715 { 716 struct page_ext *page_ext; 717 718 if (!debug_guardpage_enabled()) 719 return; 720 721 page_ext = lookup_page_ext(page); 722 if (unlikely(!page_ext)) 723 return; 724 725 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 726 727 set_page_private(page, 0); 728 if (!is_migrate_isolate(migratetype)) 729 __mod_zone_freepage_state(zone, (1 << order), migratetype); 730 } 731 #else 732 struct page_ext_operations debug_guardpage_ops; 733 static inline bool set_page_guard(struct zone *zone, struct page *page, 734 unsigned int order, int migratetype) { return false; } 735 static inline void clear_page_guard(struct zone *zone, struct page *page, 736 unsigned int order, int migratetype) {} 737 #endif 738 739 static inline void set_page_order(struct page *page, unsigned int order) 740 { 741 set_page_private(page, order); 742 __SetPageBuddy(page); 743 } 744 745 static inline void rmv_page_order(struct page *page) 746 { 747 __ClearPageBuddy(page); 748 set_page_private(page, 0); 749 } 750 751 /* 752 * This function checks whether a page is free && is the buddy 753 * we can coalesce a page and its buddy if 754 * (a) the buddy is not in a hole (check before calling!) && 755 * (b) the buddy is in the buddy system && 756 * (c) a page and its buddy have the same order && 757 * (d) a page and its buddy are in the same zone. 758 * 759 * For recording whether a page is in the buddy system, we set PageBuddy. 760 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 761 * 762 * For recording page's order, we use page_private(page). 763 */ 764 static inline int page_is_buddy(struct page *page, struct page *buddy, 765 unsigned int order) 766 { 767 if (page_is_guard(buddy) && page_order(buddy) == order) { 768 if (page_zone_id(page) != page_zone_id(buddy)) 769 return 0; 770 771 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 772 773 return 1; 774 } 775 776 if (PageBuddy(buddy) && page_order(buddy) == order) { 777 /* 778 * zone check is done late to avoid uselessly 779 * calculating zone/node ids for pages that could 780 * never merge. 781 */ 782 if (page_zone_id(page) != page_zone_id(buddy)) 783 return 0; 784 785 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 786 787 return 1; 788 } 789 return 0; 790 } 791 792 /* 793 * Freeing function for a buddy system allocator. 794 * 795 * The concept of a buddy system is to maintain direct-mapped table 796 * (containing bit values) for memory blocks of various "orders". 797 * The bottom level table contains the map for the smallest allocatable 798 * units of memory (here, pages), and each level above it describes 799 * pairs of units from the levels below, hence, "buddies". 800 * At a high level, all that happens here is marking the table entry 801 * at the bottom level available, and propagating the changes upward 802 * as necessary, plus some accounting needed to play nicely with other 803 * parts of the VM system. 804 * At each level, we keep a list of pages, which are heads of continuous 805 * free pages of length of (1 << order) and marked with PageBuddy. 806 * Page's order is recorded in page_private(page) field. 807 * So when we are allocating or freeing one, we can derive the state of the 808 * other. That is, if we allocate a small block, and both were 809 * free, the remainder of the region must be split into blocks. 810 * If a block is freed, and its buddy is also free, then this 811 * triggers coalescing into a block of larger size. 812 * 813 * -- nyc 814 */ 815 816 static inline void __free_one_page(struct page *page, 817 unsigned long pfn, 818 struct zone *zone, unsigned int order, 819 int migratetype) 820 { 821 unsigned long combined_pfn; 822 unsigned long uninitialized_var(buddy_pfn); 823 struct page *buddy; 824 unsigned int max_order; 825 826 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 827 828 VM_BUG_ON(!zone_is_initialized(zone)); 829 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 830 831 VM_BUG_ON(migratetype == -1); 832 if (likely(!is_migrate_isolate(migratetype))) 833 __mod_zone_freepage_state(zone, 1 << order, migratetype); 834 835 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 836 VM_BUG_ON_PAGE(bad_range(zone, page), page); 837 838 continue_merging: 839 while (order < max_order - 1) { 840 buddy_pfn = __find_buddy_pfn(pfn, order); 841 buddy = page + (buddy_pfn - pfn); 842 843 if (!pfn_valid_within(buddy_pfn)) 844 goto done_merging; 845 if (!page_is_buddy(page, buddy, order)) 846 goto done_merging; 847 /* 848 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 849 * merge with it and move up one order. 850 */ 851 if (page_is_guard(buddy)) { 852 clear_page_guard(zone, buddy, order, migratetype); 853 } else { 854 list_del(&buddy->lru); 855 zone->free_area[order].nr_free--; 856 rmv_page_order(buddy); 857 } 858 combined_pfn = buddy_pfn & pfn; 859 page = page + (combined_pfn - pfn); 860 pfn = combined_pfn; 861 order++; 862 } 863 if (max_order < MAX_ORDER) { 864 /* If we are here, it means order is >= pageblock_order. 865 * We want to prevent merge between freepages on isolate 866 * pageblock and normal pageblock. Without this, pageblock 867 * isolation could cause incorrect freepage or CMA accounting. 868 * 869 * We don't want to hit this code for the more frequent 870 * low-order merging. 871 */ 872 if (unlikely(has_isolate_pageblock(zone))) { 873 int buddy_mt; 874 875 buddy_pfn = __find_buddy_pfn(pfn, order); 876 buddy = page + (buddy_pfn - pfn); 877 buddy_mt = get_pageblock_migratetype(buddy); 878 879 if (migratetype != buddy_mt 880 && (is_migrate_isolate(migratetype) || 881 is_migrate_isolate(buddy_mt))) 882 goto done_merging; 883 } 884 max_order++; 885 goto continue_merging; 886 } 887 888 done_merging: 889 set_page_order(page, order); 890 891 /* 892 * If this is not the largest possible page, check if the buddy 893 * of the next-highest order is free. If it is, it's possible 894 * that pages are being freed that will coalesce soon. In case, 895 * that is happening, add the free page to the tail of the list 896 * so it's less likely to be used soon and more likely to be merged 897 * as a higher order page 898 */ 899 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) { 900 struct page *higher_page, *higher_buddy; 901 combined_pfn = buddy_pfn & pfn; 902 higher_page = page + (combined_pfn - pfn); 903 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 904 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 905 if (pfn_valid_within(buddy_pfn) && 906 page_is_buddy(higher_page, higher_buddy, order + 1)) { 907 list_add_tail(&page->lru, 908 &zone->free_area[order].free_list[migratetype]); 909 goto out; 910 } 911 } 912 913 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 914 out: 915 zone->free_area[order].nr_free++; 916 } 917 918 /* 919 * A bad page could be due to a number of fields. Instead of multiple branches, 920 * try and check multiple fields with one check. The caller must do a detailed 921 * check if necessary. 922 */ 923 static inline bool page_expected_state(struct page *page, 924 unsigned long check_flags) 925 { 926 if (unlikely(atomic_read(&page->_mapcount) != -1)) 927 return false; 928 929 if (unlikely((unsigned long)page->mapping | 930 page_ref_count(page) | 931 #ifdef CONFIG_MEMCG 932 (unsigned long)page->mem_cgroup | 933 #endif 934 (page->flags & check_flags))) 935 return false; 936 937 return true; 938 } 939 940 static void free_pages_check_bad(struct page *page) 941 { 942 const char *bad_reason; 943 unsigned long bad_flags; 944 945 bad_reason = NULL; 946 bad_flags = 0; 947 948 if (unlikely(atomic_read(&page->_mapcount) != -1)) 949 bad_reason = "nonzero mapcount"; 950 if (unlikely(page->mapping != NULL)) 951 bad_reason = "non-NULL mapping"; 952 if (unlikely(page_ref_count(page) != 0)) 953 bad_reason = "nonzero _refcount"; 954 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 955 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 956 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 957 } 958 #ifdef CONFIG_MEMCG 959 if (unlikely(page->mem_cgroup)) 960 bad_reason = "page still charged to cgroup"; 961 #endif 962 bad_page(page, bad_reason, bad_flags); 963 } 964 965 static inline int free_pages_check(struct page *page) 966 { 967 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 968 return 0; 969 970 /* Something has gone sideways, find it */ 971 free_pages_check_bad(page); 972 return 1; 973 } 974 975 static int free_tail_pages_check(struct page *head_page, struct page *page) 976 { 977 int ret = 1; 978 979 /* 980 * We rely page->lru.next never has bit 0 set, unless the page 981 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 982 */ 983 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 984 985 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 986 ret = 0; 987 goto out; 988 } 989 switch (page - head_page) { 990 case 1: 991 /* the first tail page: ->mapping may be compound_mapcount() */ 992 if (unlikely(compound_mapcount(page))) { 993 bad_page(page, "nonzero compound_mapcount", 0); 994 goto out; 995 } 996 break; 997 case 2: 998 /* 999 * the second tail page: ->mapping is 1000 * deferred_list.next -- ignore value. 1001 */ 1002 break; 1003 default: 1004 if (page->mapping != TAIL_MAPPING) { 1005 bad_page(page, "corrupted mapping in tail page", 0); 1006 goto out; 1007 } 1008 break; 1009 } 1010 if (unlikely(!PageTail(page))) { 1011 bad_page(page, "PageTail not set", 0); 1012 goto out; 1013 } 1014 if (unlikely(compound_head(page) != head_page)) { 1015 bad_page(page, "compound_head not consistent", 0); 1016 goto out; 1017 } 1018 ret = 0; 1019 out: 1020 page->mapping = NULL; 1021 clear_compound_head(page); 1022 return ret; 1023 } 1024 1025 static __always_inline bool free_pages_prepare(struct page *page, 1026 unsigned int order, bool check_free) 1027 { 1028 int bad = 0; 1029 1030 VM_BUG_ON_PAGE(PageTail(page), page); 1031 1032 trace_mm_page_free(page, order); 1033 1034 /* 1035 * Check tail pages before head page information is cleared to 1036 * avoid checking PageCompound for order-0 pages. 1037 */ 1038 if (unlikely(order)) { 1039 bool compound = PageCompound(page); 1040 int i; 1041 1042 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1043 1044 if (compound) 1045 ClearPageDoubleMap(page); 1046 for (i = 1; i < (1 << order); i++) { 1047 if (compound) 1048 bad += free_tail_pages_check(page, page + i); 1049 if (unlikely(free_pages_check(page + i))) { 1050 bad++; 1051 continue; 1052 } 1053 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1054 } 1055 } 1056 if (PageMappingFlags(page)) 1057 page->mapping = NULL; 1058 if (memcg_kmem_enabled() && PageKmemcg(page)) 1059 memcg_kmem_uncharge(page, order); 1060 if (check_free) 1061 bad += free_pages_check(page); 1062 if (bad) 1063 return false; 1064 1065 page_cpupid_reset_last(page); 1066 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1067 reset_page_owner(page, order); 1068 1069 if (!PageHighMem(page)) { 1070 debug_check_no_locks_freed(page_address(page), 1071 PAGE_SIZE << order); 1072 debug_check_no_obj_freed(page_address(page), 1073 PAGE_SIZE << order); 1074 } 1075 arch_free_page(page, order); 1076 kernel_poison_pages(page, 1 << order, 0); 1077 kernel_map_pages(page, 1 << order, 0); 1078 kasan_free_nondeferred_pages(page, order); 1079 1080 return true; 1081 } 1082 1083 #ifdef CONFIG_DEBUG_VM 1084 static inline bool free_pcp_prepare(struct page *page) 1085 { 1086 return free_pages_prepare(page, 0, true); 1087 } 1088 1089 static inline bool bulkfree_pcp_prepare(struct page *page) 1090 { 1091 return false; 1092 } 1093 #else 1094 static bool free_pcp_prepare(struct page *page) 1095 { 1096 return free_pages_prepare(page, 0, false); 1097 } 1098 1099 static bool bulkfree_pcp_prepare(struct page *page) 1100 { 1101 return free_pages_check(page); 1102 } 1103 #endif /* CONFIG_DEBUG_VM */ 1104 1105 static inline void prefetch_buddy(struct page *page) 1106 { 1107 unsigned long pfn = page_to_pfn(page); 1108 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1109 struct page *buddy = page + (buddy_pfn - pfn); 1110 1111 prefetch(buddy); 1112 } 1113 1114 /* 1115 * Frees a number of pages from the PCP lists 1116 * Assumes all pages on list are in same zone, and of same order. 1117 * count is the number of pages to free. 1118 * 1119 * If the zone was previously in an "all pages pinned" state then look to 1120 * see if this freeing clears that state. 1121 * 1122 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1123 * pinned" detection logic. 1124 */ 1125 static void free_pcppages_bulk(struct zone *zone, int count, 1126 struct per_cpu_pages *pcp) 1127 { 1128 int migratetype = 0; 1129 int batch_free = 0; 1130 int prefetch_nr = 0; 1131 bool isolated_pageblocks; 1132 struct page *page, *tmp; 1133 LIST_HEAD(head); 1134 1135 while (count) { 1136 struct list_head *list; 1137 1138 /* 1139 * Remove pages from lists in a round-robin fashion. A 1140 * batch_free count is maintained that is incremented when an 1141 * empty list is encountered. This is so more pages are freed 1142 * off fuller lists instead of spinning excessively around empty 1143 * lists 1144 */ 1145 do { 1146 batch_free++; 1147 if (++migratetype == MIGRATE_PCPTYPES) 1148 migratetype = 0; 1149 list = &pcp->lists[migratetype]; 1150 } while (list_empty(list)); 1151 1152 /* This is the only non-empty list. Free them all. */ 1153 if (batch_free == MIGRATE_PCPTYPES) 1154 batch_free = count; 1155 1156 do { 1157 page = list_last_entry(list, struct page, lru); 1158 /* must delete to avoid corrupting pcp list */ 1159 list_del(&page->lru); 1160 pcp->count--; 1161 1162 if (bulkfree_pcp_prepare(page)) 1163 continue; 1164 1165 list_add_tail(&page->lru, &head); 1166 1167 /* 1168 * We are going to put the page back to the global 1169 * pool, prefetch its buddy to speed up later access 1170 * under zone->lock. It is believed the overhead of 1171 * an additional test and calculating buddy_pfn here 1172 * can be offset by reduced memory latency later. To 1173 * avoid excessive prefetching due to large count, only 1174 * prefetch buddy for the first pcp->batch nr of pages. 1175 */ 1176 if (prefetch_nr++ < pcp->batch) 1177 prefetch_buddy(page); 1178 } while (--count && --batch_free && !list_empty(list)); 1179 } 1180 1181 spin_lock(&zone->lock); 1182 isolated_pageblocks = has_isolate_pageblock(zone); 1183 1184 /* 1185 * Use safe version since after __free_one_page(), 1186 * page->lru.next will not point to original list. 1187 */ 1188 list_for_each_entry_safe(page, tmp, &head, lru) { 1189 int mt = get_pcppage_migratetype(page); 1190 /* MIGRATE_ISOLATE page should not go to pcplists */ 1191 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1192 /* Pageblock could have been isolated meanwhile */ 1193 if (unlikely(isolated_pageblocks)) 1194 mt = get_pageblock_migratetype(page); 1195 1196 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1197 trace_mm_page_pcpu_drain(page, 0, mt); 1198 } 1199 spin_unlock(&zone->lock); 1200 } 1201 1202 static void free_one_page(struct zone *zone, 1203 struct page *page, unsigned long pfn, 1204 unsigned int order, 1205 int migratetype) 1206 { 1207 spin_lock(&zone->lock); 1208 if (unlikely(has_isolate_pageblock(zone) || 1209 is_migrate_isolate(migratetype))) { 1210 migratetype = get_pfnblock_migratetype(page, pfn); 1211 } 1212 __free_one_page(page, pfn, zone, order, migratetype); 1213 spin_unlock(&zone->lock); 1214 } 1215 1216 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1217 unsigned long zone, int nid) 1218 { 1219 mm_zero_struct_page(page); 1220 set_page_links(page, zone, nid, pfn); 1221 init_page_count(page); 1222 page_mapcount_reset(page); 1223 page_cpupid_reset_last(page); 1224 page_kasan_tag_reset(page); 1225 1226 INIT_LIST_HEAD(&page->lru); 1227 #ifdef WANT_PAGE_VIRTUAL 1228 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1229 if (!is_highmem_idx(zone)) 1230 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1231 #endif 1232 } 1233 1234 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1235 static void __meminit init_reserved_page(unsigned long pfn) 1236 { 1237 pg_data_t *pgdat; 1238 int nid, zid; 1239 1240 if (!early_page_uninitialised(pfn)) 1241 return; 1242 1243 nid = early_pfn_to_nid(pfn); 1244 pgdat = NODE_DATA(nid); 1245 1246 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1247 struct zone *zone = &pgdat->node_zones[zid]; 1248 1249 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1250 break; 1251 } 1252 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1253 } 1254 #else 1255 static inline void init_reserved_page(unsigned long pfn) 1256 { 1257 } 1258 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1259 1260 /* 1261 * Initialised pages do not have PageReserved set. This function is 1262 * called for each range allocated by the bootmem allocator and 1263 * marks the pages PageReserved. The remaining valid pages are later 1264 * sent to the buddy page allocator. 1265 */ 1266 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1267 { 1268 unsigned long start_pfn = PFN_DOWN(start); 1269 unsigned long end_pfn = PFN_UP(end); 1270 1271 for (; start_pfn < end_pfn; start_pfn++) { 1272 if (pfn_valid(start_pfn)) { 1273 struct page *page = pfn_to_page(start_pfn); 1274 1275 init_reserved_page(start_pfn); 1276 1277 /* Avoid false-positive PageTail() */ 1278 INIT_LIST_HEAD(&page->lru); 1279 1280 /* 1281 * no need for atomic set_bit because the struct 1282 * page is not visible yet so nobody should 1283 * access it yet. 1284 */ 1285 __SetPageReserved(page); 1286 } 1287 } 1288 } 1289 1290 static void __free_pages_ok(struct page *page, unsigned int order) 1291 { 1292 unsigned long flags; 1293 int migratetype; 1294 unsigned long pfn = page_to_pfn(page); 1295 1296 if (!free_pages_prepare(page, order, true)) 1297 return; 1298 1299 migratetype = get_pfnblock_migratetype(page, pfn); 1300 local_irq_save(flags); 1301 __count_vm_events(PGFREE, 1 << order); 1302 free_one_page(page_zone(page), page, pfn, order, migratetype); 1303 local_irq_restore(flags); 1304 } 1305 1306 static void __init __free_pages_boot_core(struct page *page, unsigned int order) 1307 { 1308 unsigned int nr_pages = 1 << order; 1309 struct page *p = page; 1310 unsigned int loop; 1311 1312 prefetchw(p); 1313 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1314 prefetchw(p + 1); 1315 __ClearPageReserved(p); 1316 set_page_count(p, 0); 1317 } 1318 __ClearPageReserved(p); 1319 set_page_count(p, 0); 1320 1321 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1322 set_page_refcounted(page); 1323 __free_pages(page, order); 1324 } 1325 1326 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1327 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1328 1329 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1330 1331 int __meminit early_pfn_to_nid(unsigned long pfn) 1332 { 1333 static DEFINE_SPINLOCK(early_pfn_lock); 1334 int nid; 1335 1336 spin_lock(&early_pfn_lock); 1337 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1338 if (nid < 0) 1339 nid = first_online_node; 1340 spin_unlock(&early_pfn_lock); 1341 1342 return nid; 1343 } 1344 #endif 1345 1346 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1347 static inline bool __meminit __maybe_unused 1348 meminit_pfn_in_nid(unsigned long pfn, int node, 1349 struct mminit_pfnnid_cache *state) 1350 { 1351 int nid; 1352 1353 nid = __early_pfn_to_nid(pfn, state); 1354 if (nid >= 0 && nid != node) 1355 return false; 1356 return true; 1357 } 1358 1359 /* Only safe to use early in boot when initialisation is single-threaded */ 1360 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1361 { 1362 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1363 } 1364 1365 #else 1366 1367 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1368 { 1369 return true; 1370 } 1371 static inline bool __meminit __maybe_unused 1372 meminit_pfn_in_nid(unsigned long pfn, int node, 1373 struct mminit_pfnnid_cache *state) 1374 { 1375 return true; 1376 } 1377 #endif 1378 1379 1380 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1381 unsigned int order) 1382 { 1383 if (early_page_uninitialised(pfn)) 1384 return; 1385 return __free_pages_boot_core(page, order); 1386 } 1387 1388 /* 1389 * Check that the whole (or subset of) a pageblock given by the interval of 1390 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1391 * with the migration of free compaction scanner. The scanners then need to 1392 * use only pfn_valid_within() check for arches that allow holes within 1393 * pageblocks. 1394 * 1395 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1396 * 1397 * It's possible on some configurations to have a setup like node0 node1 node0 1398 * i.e. it's possible that all pages within a zones range of pages do not 1399 * belong to a single zone. We assume that a border between node0 and node1 1400 * can occur within a single pageblock, but not a node0 node1 node0 1401 * interleaving within a single pageblock. It is therefore sufficient to check 1402 * the first and last page of a pageblock and avoid checking each individual 1403 * page in a pageblock. 1404 */ 1405 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1406 unsigned long end_pfn, struct zone *zone) 1407 { 1408 struct page *start_page; 1409 struct page *end_page; 1410 1411 /* end_pfn is one past the range we are checking */ 1412 end_pfn--; 1413 1414 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1415 return NULL; 1416 1417 start_page = pfn_to_online_page(start_pfn); 1418 if (!start_page) 1419 return NULL; 1420 1421 if (page_zone(start_page) != zone) 1422 return NULL; 1423 1424 end_page = pfn_to_page(end_pfn); 1425 1426 /* This gives a shorter code than deriving page_zone(end_page) */ 1427 if (page_zone_id(start_page) != page_zone_id(end_page)) 1428 return NULL; 1429 1430 return start_page; 1431 } 1432 1433 void set_zone_contiguous(struct zone *zone) 1434 { 1435 unsigned long block_start_pfn = zone->zone_start_pfn; 1436 unsigned long block_end_pfn; 1437 1438 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1439 for (; block_start_pfn < zone_end_pfn(zone); 1440 block_start_pfn = block_end_pfn, 1441 block_end_pfn += pageblock_nr_pages) { 1442 1443 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1444 1445 if (!__pageblock_pfn_to_page(block_start_pfn, 1446 block_end_pfn, zone)) 1447 return; 1448 } 1449 1450 /* We confirm that there is no hole */ 1451 zone->contiguous = true; 1452 } 1453 1454 void clear_zone_contiguous(struct zone *zone) 1455 { 1456 zone->contiguous = false; 1457 } 1458 1459 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1460 static void __init deferred_free_range(unsigned long pfn, 1461 unsigned long nr_pages) 1462 { 1463 struct page *page; 1464 unsigned long i; 1465 1466 if (!nr_pages) 1467 return; 1468 1469 page = pfn_to_page(pfn); 1470 1471 /* Free a large naturally-aligned chunk if possible */ 1472 if (nr_pages == pageblock_nr_pages && 1473 (pfn & (pageblock_nr_pages - 1)) == 0) { 1474 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1475 __free_pages_boot_core(page, pageblock_order); 1476 return; 1477 } 1478 1479 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1480 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1481 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1482 __free_pages_boot_core(page, 0); 1483 } 1484 } 1485 1486 /* Completion tracking for deferred_init_memmap() threads */ 1487 static atomic_t pgdat_init_n_undone __initdata; 1488 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1489 1490 static inline void __init pgdat_init_report_one_done(void) 1491 { 1492 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1493 complete(&pgdat_init_all_done_comp); 1494 } 1495 1496 /* 1497 * Returns true if page needs to be initialized or freed to buddy allocator. 1498 * 1499 * First we check if pfn is valid on architectures where it is possible to have 1500 * holes within pageblock_nr_pages. On systems where it is not possible, this 1501 * function is optimized out. 1502 * 1503 * Then, we check if a current large page is valid by only checking the validity 1504 * of the head pfn. 1505 * 1506 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave 1507 * within a node: a pfn is between start and end of a node, but does not belong 1508 * to this memory node. 1509 */ 1510 static inline bool __init 1511 deferred_pfn_valid(int nid, unsigned long pfn, 1512 struct mminit_pfnnid_cache *nid_init_state) 1513 { 1514 if (!pfn_valid_within(pfn)) 1515 return false; 1516 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1517 return false; 1518 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state)) 1519 return false; 1520 return true; 1521 } 1522 1523 /* 1524 * Free pages to buddy allocator. Try to free aligned pages in 1525 * pageblock_nr_pages sizes. 1526 */ 1527 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn, 1528 unsigned long end_pfn) 1529 { 1530 struct mminit_pfnnid_cache nid_init_state = { }; 1531 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1532 unsigned long nr_free = 0; 1533 1534 for (; pfn < end_pfn; pfn++) { 1535 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { 1536 deferred_free_range(pfn - nr_free, nr_free); 1537 nr_free = 0; 1538 } else if (!(pfn & nr_pgmask)) { 1539 deferred_free_range(pfn - nr_free, nr_free); 1540 nr_free = 1; 1541 touch_nmi_watchdog(); 1542 } else { 1543 nr_free++; 1544 } 1545 } 1546 /* Free the last block of pages to allocator */ 1547 deferred_free_range(pfn - nr_free, nr_free); 1548 } 1549 1550 /* 1551 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1552 * by performing it only once every pageblock_nr_pages. 1553 * Return number of pages initialized. 1554 */ 1555 static unsigned long __init deferred_init_pages(int nid, int zid, 1556 unsigned long pfn, 1557 unsigned long end_pfn) 1558 { 1559 struct mminit_pfnnid_cache nid_init_state = { }; 1560 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1561 unsigned long nr_pages = 0; 1562 struct page *page = NULL; 1563 1564 for (; pfn < end_pfn; pfn++) { 1565 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { 1566 page = NULL; 1567 continue; 1568 } else if (!page || !(pfn & nr_pgmask)) { 1569 page = pfn_to_page(pfn); 1570 touch_nmi_watchdog(); 1571 } else { 1572 page++; 1573 } 1574 __init_single_page(page, pfn, zid, nid); 1575 nr_pages++; 1576 } 1577 return (nr_pages); 1578 } 1579 1580 /* Initialise remaining memory on a node */ 1581 static int __init deferred_init_memmap(void *data) 1582 { 1583 pg_data_t *pgdat = data; 1584 int nid = pgdat->node_id; 1585 unsigned long start = jiffies; 1586 unsigned long nr_pages = 0; 1587 unsigned long spfn, epfn, first_init_pfn, flags; 1588 phys_addr_t spa, epa; 1589 int zid; 1590 struct zone *zone; 1591 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1592 u64 i; 1593 1594 /* Bind memory initialisation thread to a local node if possible */ 1595 if (!cpumask_empty(cpumask)) 1596 set_cpus_allowed_ptr(current, cpumask); 1597 1598 pgdat_resize_lock(pgdat, &flags); 1599 first_init_pfn = pgdat->first_deferred_pfn; 1600 if (first_init_pfn == ULONG_MAX) { 1601 pgdat_resize_unlock(pgdat, &flags); 1602 pgdat_init_report_one_done(); 1603 return 0; 1604 } 1605 1606 /* Sanity check boundaries */ 1607 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1608 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1609 pgdat->first_deferred_pfn = ULONG_MAX; 1610 1611 /* Only the highest zone is deferred so find it */ 1612 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1613 zone = pgdat->node_zones + zid; 1614 if (first_init_pfn < zone_end_pfn(zone)) 1615 break; 1616 } 1617 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn); 1618 1619 /* 1620 * Initialize and free pages. We do it in two loops: first we initialize 1621 * struct page, than free to buddy allocator, because while we are 1622 * freeing pages we can access pages that are ahead (computing buddy 1623 * page in __free_one_page()). 1624 */ 1625 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1626 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1627 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1628 nr_pages += deferred_init_pages(nid, zid, spfn, epfn); 1629 } 1630 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1631 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1632 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1633 deferred_free_pages(nid, zid, spfn, epfn); 1634 } 1635 pgdat_resize_unlock(pgdat, &flags); 1636 1637 /* Sanity check that the next zone really is unpopulated */ 1638 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1639 1640 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1641 jiffies_to_msecs(jiffies - start)); 1642 1643 pgdat_init_report_one_done(); 1644 return 0; 1645 } 1646 1647 /* 1648 * If this zone has deferred pages, try to grow it by initializing enough 1649 * deferred pages to satisfy the allocation specified by order, rounded up to 1650 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1651 * of SECTION_SIZE bytes by initializing struct pages in increments of 1652 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1653 * 1654 * Return true when zone was grown, otherwise return false. We return true even 1655 * when we grow less than requested, to let the caller decide if there are 1656 * enough pages to satisfy the allocation. 1657 * 1658 * Note: We use noinline because this function is needed only during boot, and 1659 * it is called from a __ref function _deferred_grow_zone. This way we are 1660 * making sure that it is not inlined into permanent text section. 1661 */ 1662 static noinline bool __init 1663 deferred_grow_zone(struct zone *zone, unsigned int order) 1664 { 1665 int zid = zone_idx(zone); 1666 int nid = zone_to_nid(zone); 1667 pg_data_t *pgdat = NODE_DATA(nid); 1668 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 1669 unsigned long nr_pages = 0; 1670 unsigned long first_init_pfn, spfn, epfn, t, flags; 1671 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 1672 phys_addr_t spa, epa; 1673 u64 i; 1674 1675 /* Only the last zone may have deferred pages */ 1676 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 1677 return false; 1678 1679 pgdat_resize_lock(pgdat, &flags); 1680 1681 /* 1682 * If deferred pages have been initialized while we were waiting for 1683 * the lock, return true, as the zone was grown. The caller will retry 1684 * this zone. We won't return to this function since the caller also 1685 * has this static branch. 1686 */ 1687 if (!static_branch_unlikely(&deferred_pages)) { 1688 pgdat_resize_unlock(pgdat, &flags); 1689 return true; 1690 } 1691 1692 /* 1693 * If someone grew this zone while we were waiting for spinlock, return 1694 * true, as there might be enough pages already. 1695 */ 1696 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 1697 pgdat_resize_unlock(pgdat, &flags); 1698 return true; 1699 } 1700 1701 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn); 1702 1703 if (first_init_pfn >= pgdat_end_pfn(pgdat)) { 1704 pgdat_resize_unlock(pgdat, &flags); 1705 return false; 1706 } 1707 1708 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1709 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1710 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1711 1712 while (spfn < epfn && nr_pages < nr_pages_needed) { 1713 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION); 1714 first_deferred_pfn = min(t, epfn); 1715 nr_pages += deferred_init_pages(nid, zid, spfn, 1716 first_deferred_pfn); 1717 spfn = first_deferred_pfn; 1718 } 1719 1720 if (nr_pages >= nr_pages_needed) 1721 break; 1722 } 1723 1724 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1725 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1726 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa)); 1727 deferred_free_pages(nid, zid, spfn, epfn); 1728 1729 if (first_deferred_pfn == epfn) 1730 break; 1731 } 1732 pgdat->first_deferred_pfn = first_deferred_pfn; 1733 pgdat_resize_unlock(pgdat, &flags); 1734 1735 return nr_pages > 0; 1736 } 1737 1738 /* 1739 * deferred_grow_zone() is __init, but it is called from 1740 * get_page_from_freelist() during early boot until deferred_pages permanently 1741 * disables this call. This is why we have refdata wrapper to avoid warning, 1742 * and to ensure that the function body gets unloaded. 1743 */ 1744 static bool __ref 1745 _deferred_grow_zone(struct zone *zone, unsigned int order) 1746 { 1747 return deferred_grow_zone(zone, order); 1748 } 1749 1750 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1751 1752 void __init page_alloc_init_late(void) 1753 { 1754 struct zone *zone; 1755 1756 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1757 int nid; 1758 1759 /* There will be num_node_state(N_MEMORY) threads */ 1760 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1761 for_each_node_state(nid, N_MEMORY) { 1762 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1763 } 1764 1765 /* Block until all are initialised */ 1766 wait_for_completion(&pgdat_init_all_done_comp); 1767 1768 /* 1769 * We initialized the rest of the deferred pages. Permanently disable 1770 * on-demand struct page initialization. 1771 */ 1772 static_branch_disable(&deferred_pages); 1773 1774 /* Reinit limits that are based on free pages after the kernel is up */ 1775 files_maxfiles_init(); 1776 #endif 1777 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 1778 /* Discard memblock private memory */ 1779 memblock_discard(); 1780 #endif 1781 1782 for_each_populated_zone(zone) 1783 set_zone_contiguous(zone); 1784 } 1785 1786 #ifdef CONFIG_CMA 1787 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1788 void __init init_cma_reserved_pageblock(struct page *page) 1789 { 1790 unsigned i = pageblock_nr_pages; 1791 struct page *p = page; 1792 1793 do { 1794 __ClearPageReserved(p); 1795 set_page_count(p, 0); 1796 } while (++p, --i); 1797 1798 set_pageblock_migratetype(page, MIGRATE_CMA); 1799 1800 if (pageblock_order >= MAX_ORDER) { 1801 i = pageblock_nr_pages; 1802 p = page; 1803 do { 1804 set_page_refcounted(p); 1805 __free_pages(p, MAX_ORDER - 1); 1806 p += MAX_ORDER_NR_PAGES; 1807 } while (i -= MAX_ORDER_NR_PAGES); 1808 } else { 1809 set_page_refcounted(page); 1810 __free_pages(page, pageblock_order); 1811 } 1812 1813 adjust_managed_page_count(page, pageblock_nr_pages); 1814 } 1815 #endif 1816 1817 /* 1818 * The order of subdivision here is critical for the IO subsystem. 1819 * Please do not alter this order without good reasons and regression 1820 * testing. Specifically, as large blocks of memory are subdivided, 1821 * the order in which smaller blocks are delivered depends on the order 1822 * they're subdivided in this function. This is the primary factor 1823 * influencing the order in which pages are delivered to the IO 1824 * subsystem according to empirical testing, and this is also justified 1825 * by considering the behavior of a buddy system containing a single 1826 * large block of memory acted on by a series of small allocations. 1827 * This behavior is a critical factor in sglist merging's success. 1828 * 1829 * -- nyc 1830 */ 1831 static inline void expand(struct zone *zone, struct page *page, 1832 int low, int high, struct free_area *area, 1833 int migratetype) 1834 { 1835 unsigned long size = 1 << high; 1836 1837 while (high > low) { 1838 area--; 1839 high--; 1840 size >>= 1; 1841 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1842 1843 /* 1844 * Mark as guard pages (or page), that will allow to 1845 * merge back to allocator when buddy will be freed. 1846 * Corresponding page table entries will not be touched, 1847 * pages will stay not present in virtual address space 1848 */ 1849 if (set_page_guard(zone, &page[size], high, migratetype)) 1850 continue; 1851 1852 list_add(&page[size].lru, &area->free_list[migratetype]); 1853 area->nr_free++; 1854 set_page_order(&page[size], high); 1855 } 1856 } 1857 1858 static void check_new_page_bad(struct page *page) 1859 { 1860 const char *bad_reason = NULL; 1861 unsigned long bad_flags = 0; 1862 1863 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1864 bad_reason = "nonzero mapcount"; 1865 if (unlikely(page->mapping != NULL)) 1866 bad_reason = "non-NULL mapping"; 1867 if (unlikely(page_ref_count(page) != 0)) 1868 bad_reason = "nonzero _count"; 1869 if (unlikely(page->flags & __PG_HWPOISON)) { 1870 bad_reason = "HWPoisoned (hardware-corrupted)"; 1871 bad_flags = __PG_HWPOISON; 1872 /* Don't complain about hwpoisoned pages */ 1873 page_mapcount_reset(page); /* remove PageBuddy */ 1874 return; 1875 } 1876 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1877 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1878 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1879 } 1880 #ifdef CONFIG_MEMCG 1881 if (unlikely(page->mem_cgroup)) 1882 bad_reason = "page still charged to cgroup"; 1883 #endif 1884 bad_page(page, bad_reason, bad_flags); 1885 } 1886 1887 /* 1888 * This page is about to be returned from the page allocator 1889 */ 1890 static inline int check_new_page(struct page *page) 1891 { 1892 if (likely(page_expected_state(page, 1893 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1894 return 0; 1895 1896 check_new_page_bad(page); 1897 return 1; 1898 } 1899 1900 static inline bool free_pages_prezeroed(void) 1901 { 1902 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1903 page_poisoning_enabled(); 1904 } 1905 1906 #ifdef CONFIG_DEBUG_VM 1907 static bool check_pcp_refill(struct page *page) 1908 { 1909 return false; 1910 } 1911 1912 static bool check_new_pcp(struct page *page) 1913 { 1914 return check_new_page(page); 1915 } 1916 #else 1917 static bool check_pcp_refill(struct page *page) 1918 { 1919 return check_new_page(page); 1920 } 1921 static bool check_new_pcp(struct page *page) 1922 { 1923 return false; 1924 } 1925 #endif /* CONFIG_DEBUG_VM */ 1926 1927 static bool check_new_pages(struct page *page, unsigned int order) 1928 { 1929 int i; 1930 for (i = 0; i < (1 << order); i++) { 1931 struct page *p = page + i; 1932 1933 if (unlikely(check_new_page(p))) 1934 return true; 1935 } 1936 1937 return false; 1938 } 1939 1940 inline void post_alloc_hook(struct page *page, unsigned int order, 1941 gfp_t gfp_flags) 1942 { 1943 set_page_private(page, 0); 1944 set_page_refcounted(page); 1945 1946 arch_alloc_page(page, order); 1947 kernel_map_pages(page, 1 << order, 1); 1948 kernel_poison_pages(page, 1 << order, 1); 1949 kasan_alloc_pages(page, order); 1950 set_page_owner(page, order, gfp_flags); 1951 } 1952 1953 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1954 unsigned int alloc_flags) 1955 { 1956 int i; 1957 1958 post_alloc_hook(page, order, gfp_flags); 1959 1960 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO)) 1961 for (i = 0; i < (1 << order); i++) 1962 clear_highpage(page + i); 1963 1964 if (order && (gfp_flags & __GFP_COMP)) 1965 prep_compound_page(page, order); 1966 1967 /* 1968 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1969 * allocate the page. The expectation is that the caller is taking 1970 * steps that will free more memory. The caller should avoid the page 1971 * being used for !PFMEMALLOC purposes. 1972 */ 1973 if (alloc_flags & ALLOC_NO_WATERMARKS) 1974 set_page_pfmemalloc(page); 1975 else 1976 clear_page_pfmemalloc(page); 1977 } 1978 1979 /* 1980 * Go through the free lists for the given migratetype and remove 1981 * the smallest available page from the freelists 1982 */ 1983 static __always_inline 1984 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1985 int migratetype) 1986 { 1987 unsigned int current_order; 1988 struct free_area *area; 1989 struct page *page; 1990 1991 /* Find a page of the appropriate size in the preferred list */ 1992 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1993 area = &(zone->free_area[current_order]); 1994 page = list_first_entry_or_null(&area->free_list[migratetype], 1995 struct page, lru); 1996 if (!page) 1997 continue; 1998 list_del(&page->lru); 1999 rmv_page_order(page); 2000 area->nr_free--; 2001 expand(zone, page, order, current_order, area, migratetype); 2002 set_pcppage_migratetype(page, migratetype); 2003 return page; 2004 } 2005 2006 return NULL; 2007 } 2008 2009 2010 /* 2011 * This array describes the order lists are fallen back to when 2012 * the free lists for the desirable migrate type are depleted 2013 */ 2014 static int fallbacks[MIGRATE_TYPES][4] = { 2015 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2016 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2017 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2018 #ifdef CONFIG_CMA 2019 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2020 #endif 2021 #ifdef CONFIG_MEMORY_ISOLATION 2022 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2023 #endif 2024 }; 2025 2026 #ifdef CONFIG_CMA 2027 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2028 unsigned int order) 2029 { 2030 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2031 } 2032 #else 2033 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2034 unsigned int order) { return NULL; } 2035 #endif 2036 2037 /* 2038 * Move the free pages in a range to the free lists of the requested type. 2039 * Note that start_page and end_pages are not aligned on a pageblock 2040 * boundary. If alignment is required, use move_freepages_block() 2041 */ 2042 static int move_freepages(struct zone *zone, 2043 struct page *start_page, struct page *end_page, 2044 int migratetype, int *num_movable) 2045 { 2046 struct page *page; 2047 unsigned int order; 2048 int pages_moved = 0; 2049 2050 #ifndef CONFIG_HOLES_IN_ZONE 2051 /* 2052 * page_zone is not safe to call in this context when 2053 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 2054 * anyway as we check zone boundaries in move_freepages_block(). 2055 * Remove at a later date when no bug reports exist related to 2056 * grouping pages by mobility 2057 */ 2058 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) && 2059 pfn_valid(page_to_pfn(end_page)) && 2060 page_zone(start_page) != page_zone(end_page)); 2061 #endif 2062 for (page = start_page; page <= end_page;) { 2063 if (!pfn_valid_within(page_to_pfn(page))) { 2064 page++; 2065 continue; 2066 } 2067 2068 /* Make sure we are not inadvertently changing nodes */ 2069 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2070 2071 if (!PageBuddy(page)) { 2072 /* 2073 * We assume that pages that could be isolated for 2074 * migration are movable. But we don't actually try 2075 * isolating, as that would be expensive. 2076 */ 2077 if (num_movable && 2078 (PageLRU(page) || __PageMovable(page))) 2079 (*num_movable)++; 2080 2081 page++; 2082 continue; 2083 } 2084 2085 order = page_order(page); 2086 list_move(&page->lru, 2087 &zone->free_area[order].free_list[migratetype]); 2088 page += 1 << order; 2089 pages_moved += 1 << order; 2090 } 2091 2092 return pages_moved; 2093 } 2094 2095 int move_freepages_block(struct zone *zone, struct page *page, 2096 int migratetype, int *num_movable) 2097 { 2098 unsigned long start_pfn, end_pfn; 2099 struct page *start_page, *end_page; 2100 2101 if (num_movable) 2102 *num_movable = 0; 2103 2104 start_pfn = page_to_pfn(page); 2105 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2106 start_page = pfn_to_page(start_pfn); 2107 end_page = start_page + pageblock_nr_pages - 1; 2108 end_pfn = start_pfn + pageblock_nr_pages - 1; 2109 2110 /* Do not cross zone boundaries */ 2111 if (!zone_spans_pfn(zone, start_pfn)) 2112 start_page = page; 2113 if (!zone_spans_pfn(zone, end_pfn)) 2114 return 0; 2115 2116 return move_freepages(zone, start_page, end_page, migratetype, 2117 num_movable); 2118 } 2119 2120 static void change_pageblock_range(struct page *pageblock_page, 2121 int start_order, int migratetype) 2122 { 2123 int nr_pageblocks = 1 << (start_order - pageblock_order); 2124 2125 while (nr_pageblocks--) { 2126 set_pageblock_migratetype(pageblock_page, migratetype); 2127 pageblock_page += pageblock_nr_pages; 2128 } 2129 } 2130 2131 /* 2132 * When we are falling back to another migratetype during allocation, try to 2133 * steal extra free pages from the same pageblocks to satisfy further 2134 * allocations, instead of polluting multiple pageblocks. 2135 * 2136 * If we are stealing a relatively large buddy page, it is likely there will 2137 * be more free pages in the pageblock, so try to steal them all. For 2138 * reclaimable and unmovable allocations, we steal regardless of page size, 2139 * as fragmentation caused by those allocations polluting movable pageblocks 2140 * is worse than movable allocations stealing from unmovable and reclaimable 2141 * pageblocks. 2142 */ 2143 static bool can_steal_fallback(unsigned int order, int start_mt) 2144 { 2145 /* 2146 * Leaving this order check is intended, although there is 2147 * relaxed order check in next check. The reason is that 2148 * we can actually steal whole pageblock if this condition met, 2149 * but, below check doesn't guarantee it and that is just heuristic 2150 * so could be changed anytime. 2151 */ 2152 if (order >= pageblock_order) 2153 return true; 2154 2155 if (order >= pageblock_order / 2 || 2156 start_mt == MIGRATE_RECLAIMABLE || 2157 start_mt == MIGRATE_UNMOVABLE || 2158 page_group_by_mobility_disabled) 2159 return true; 2160 2161 return false; 2162 } 2163 2164 static inline void boost_watermark(struct zone *zone) 2165 { 2166 unsigned long max_boost; 2167 2168 if (!watermark_boost_factor) 2169 return; 2170 2171 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2172 watermark_boost_factor, 10000); 2173 max_boost = max(pageblock_nr_pages, max_boost); 2174 2175 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2176 max_boost); 2177 } 2178 2179 /* 2180 * This function implements actual steal behaviour. If order is large enough, 2181 * we can steal whole pageblock. If not, we first move freepages in this 2182 * pageblock to our migratetype and determine how many already-allocated pages 2183 * are there in the pageblock with a compatible migratetype. If at least half 2184 * of pages are free or compatible, we can change migratetype of the pageblock 2185 * itself, so pages freed in the future will be put on the correct free list. 2186 */ 2187 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2188 unsigned int alloc_flags, int start_type, bool whole_block) 2189 { 2190 unsigned int current_order = page_order(page); 2191 struct free_area *area; 2192 int free_pages, movable_pages, alike_pages; 2193 int old_block_type; 2194 2195 old_block_type = get_pageblock_migratetype(page); 2196 2197 /* 2198 * This can happen due to races and we want to prevent broken 2199 * highatomic accounting. 2200 */ 2201 if (is_migrate_highatomic(old_block_type)) 2202 goto single_page; 2203 2204 /* Take ownership for orders >= pageblock_order */ 2205 if (current_order >= pageblock_order) { 2206 change_pageblock_range(page, current_order, start_type); 2207 goto single_page; 2208 } 2209 2210 /* 2211 * Boost watermarks to increase reclaim pressure to reduce the 2212 * likelihood of future fallbacks. Wake kswapd now as the node 2213 * may be balanced overall and kswapd will not wake naturally. 2214 */ 2215 boost_watermark(zone); 2216 if (alloc_flags & ALLOC_KSWAPD) 2217 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 2218 2219 /* We are not allowed to try stealing from the whole block */ 2220 if (!whole_block) 2221 goto single_page; 2222 2223 free_pages = move_freepages_block(zone, page, start_type, 2224 &movable_pages); 2225 /* 2226 * Determine how many pages are compatible with our allocation. 2227 * For movable allocation, it's the number of movable pages which 2228 * we just obtained. For other types it's a bit more tricky. 2229 */ 2230 if (start_type == MIGRATE_MOVABLE) { 2231 alike_pages = movable_pages; 2232 } else { 2233 /* 2234 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2235 * to MOVABLE pageblock, consider all non-movable pages as 2236 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2237 * vice versa, be conservative since we can't distinguish the 2238 * exact migratetype of non-movable pages. 2239 */ 2240 if (old_block_type == MIGRATE_MOVABLE) 2241 alike_pages = pageblock_nr_pages 2242 - (free_pages + movable_pages); 2243 else 2244 alike_pages = 0; 2245 } 2246 2247 /* moving whole block can fail due to zone boundary conditions */ 2248 if (!free_pages) 2249 goto single_page; 2250 2251 /* 2252 * If a sufficient number of pages in the block are either free or of 2253 * comparable migratability as our allocation, claim the whole block. 2254 */ 2255 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2256 page_group_by_mobility_disabled) 2257 set_pageblock_migratetype(page, start_type); 2258 2259 return; 2260 2261 single_page: 2262 area = &zone->free_area[current_order]; 2263 list_move(&page->lru, &area->free_list[start_type]); 2264 } 2265 2266 /* 2267 * Check whether there is a suitable fallback freepage with requested order. 2268 * If only_stealable is true, this function returns fallback_mt only if 2269 * we can steal other freepages all together. This would help to reduce 2270 * fragmentation due to mixed migratetype pages in one pageblock. 2271 */ 2272 int find_suitable_fallback(struct free_area *area, unsigned int order, 2273 int migratetype, bool only_stealable, bool *can_steal) 2274 { 2275 int i; 2276 int fallback_mt; 2277 2278 if (area->nr_free == 0) 2279 return -1; 2280 2281 *can_steal = false; 2282 for (i = 0;; i++) { 2283 fallback_mt = fallbacks[migratetype][i]; 2284 if (fallback_mt == MIGRATE_TYPES) 2285 break; 2286 2287 if (list_empty(&area->free_list[fallback_mt])) 2288 continue; 2289 2290 if (can_steal_fallback(order, migratetype)) 2291 *can_steal = true; 2292 2293 if (!only_stealable) 2294 return fallback_mt; 2295 2296 if (*can_steal) 2297 return fallback_mt; 2298 } 2299 2300 return -1; 2301 } 2302 2303 /* 2304 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2305 * there are no empty page blocks that contain a page with a suitable order 2306 */ 2307 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2308 unsigned int alloc_order) 2309 { 2310 int mt; 2311 unsigned long max_managed, flags; 2312 2313 /* 2314 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2315 * Check is race-prone but harmless. 2316 */ 2317 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2318 if (zone->nr_reserved_highatomic >= max_managed) 2319 return; 2320 2321 spin_lock_irqsave(&zone->lock, flags); 2322 2323 /* Recheck the nr_reserved_highatomic limit under the lock */ 2324 if (zone->nr_reserved_highatomic >= max_managed) 2325 goto out_unlock; 2326 2327 /* Yoink! */ 2328 mt = get_pageblock_migratetype(page); 2329 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2330 && !is_migrate_cma(mt)) { 2331 zone->nr_reserved_highatomic += pageblock_nr_pages; 2332 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2333 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2334 } 2335 2336 out_unlock: 2337 spin_unlock_irqrestore(&zone->lock, flags); 2338 } 2339 2340 /* 2341 * Used when an allocation is about to fail under memory pressure. This 2342 * potentially hurts the reliability of high-order allocations when under 2343 * intense memory pressure but failed atomic allocations should be easier 2344 * to recover from than an OOM. 2345 * 2346 * If @force is true, try to unreserve a pageblock even though highatomic 2347 * pageblock is exhausted. 2348 */ 2349 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2350 bool force) 2351 { 2352 struct zonelist *zonelist = ac->zonelist; 2353 unsigned long flags; 2354 struct zoneref *z; 2355 struct zone *zone; 2356 struct page *page; 2357 int order; 2358 bool ret; 2359 2360 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2361 ac->nodemask) { 2362 /* 2363 * Preserve at least one pageblock unless memory pressure 2364 * is really high. 2365 */ 2366 if (!force && zone->nr_reserved_highatomic <= 2367 pageblock_nr_pages) 2368 continue; 2369 2370 spin_lock_irqsave(&zone->lock, flags); 2371 for (order = 0; order < MAX_ORDER; order++) { 2372 struct free_area *area = &(zone->free_area[order]); 2373 2374 page = list_first_entry_or_null( 2375 &area->free_list[MIGRATE_HIGHATOMIC], 2376 struct page, lru); 2377 if (!page) 2378 continue; 2379 2380 /* 2381 * In page freeing path, migratetype change is racy so 2382 * we can counter several free pages in a pageblock 2383 * in this loop althoug we changed the pageblock type 2384 * from highatomic to ac->migratetype. So we should 2385 * adjust the count once. 2386 */ 2387 if (is_migrate_highatomic_page(page)) { 2388 /* 2389 * It should never happen but changes to 2390 * locking could inadvertently allow a per-cpu 2391 * drain to add pages to MIGRATE_HIGHATOMIC 2392 * while unreserving so be safe and watch for 2393 * underflows. 2394 */ 2395 zone->nr_reserved_highatomic -= min( 2396 pageblock_nr_pages, 2397 zone->nr_reserved_highatomic); 2398 } 2399 2400 /* 2401 * Convert to ac->migratetype and avoid the normal 2402 * pageblock stealing heuristics. Minimally, the caller 2403 * is doing the work and needs the pages. More 2404 * importantly, if the block was always converted to 2405 * MIGRATE_UNMOVABLE or another type then the number 2406 * of pageblocks that cannot be completely freed 2407 * may increase. 2408 */ 2409 set_pageblock_migratetype(page, ac->migratetype); 2410 ret = move_freepages_block(zone, page, ac->migratetype, 2411 NULL); 2412 if (ret) { 2413 spin_unlock_irqrestore(&zone->lock, flags); 2414 return ret; 2415 } 2416 } 2417 spin_unlock_irqrestore(&zone->lock, flags); 2418 } 2419 2420 return false; 2421 } 2422 2423 /* 2424 * Try finding a free buddy page on the fallback list and put it on the free 2425 * list of requested migratetype, possibly along with other pages from the same 2426 * block, depending on fragmentation avoidance heuristics. Returns true if 2427 * fallback was found so that __rmqueue_smallest() can grab it. 2428 * 2429 * The use of signed ints for order and current_order is a deliberate 2430 * deviation from the rest of this file, to make the for loop 2431 * condition simpler. 2432 */ 2433 static __always_inline bool 2434 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2435 unsigned int alloc_flags) 2436 { 2437 struct free_area *area; 2438 int current_order; 2439 int min_order = order; 2440 struct page *page; 2441 int fallback_mt; 2442 bool can_steal; 2443 2444 /* 2445 * Do not steal pages from freelists belonging to other pageblocks 2446 * i.e. orders < pageblock_order. If there are no local zones free, 2447 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2448 */ 2449 if (alloc_flags & ALLOC_NOFRAGMENT) 2450 min_order = pageblock_order; 2451 2452 /* 2453 * Find the largest available free page in the other list. This roughly 2454 * approximates finding the pageblock with the most free pages, which 2455 * would be too costly to do exactly. 2456 */ 2457 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2458 --current_order) { 2459 area = &(zone->free_area[current_order]); 2460 fallback_mt = find_suitable_fallback(area, current_order, 2461 start_migratetype, false, &can_steal); 2462 if (fallback_mt == -1) 2463 continue; 2464 2465 /* 2466 * We cannot steal all free pages from the pageblock and the 2467 * requested migratetype is movable. In that case it's better to 2468 * steal and split the smallest available page instead of the 2469 * largest available page, because even if the next movable 2470 * allocation falls back into a different pageblock than this 2471 * one, it won't cause permanent fragmentation. 2472 */ 2473 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2474 && current_order > order) 2475 goto find_smallest; 2476 2477 goto do_steal; 2478 } 2479 2480 return false; 2481 2482 find_smallest: 2483 for (current_order = order; current_order < MAX_ORDER; 2484 current_order++) { 2485 area = &(zone->free_area[current_order]); 2486 fallback_mt = find_suitable_fallback(area, current_order, 2487 start_migratetype, false, &can_steal); 2488 if (fallback_mt != -1) 2489 break; 2490 } 2491 2492 /* 2493 * This should not happen - we already found a suitable fallback 2494 * when looking for the largest page. 2495 */ 2496 VM_BUG_ON(current_order == MAX_ORDER); 2497 2498 do_steal: 2499 page = list_first_entry(&area->free_list[fallback_mt], 2500 struct page, lru); 2501 2502 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2503 can_steal); 2504 2505 trace_mm_page_alloc_extfrag(page, order, current_order, 2506 start_migratetype, fallback_mt); 2507 2508 return true; 2509 2510 } 2511 2512 /* 2513 * Do the hard work of removing an element from the buddy allocator. 2514 * Call me with the zone->lock already held. 2515 */ 2516 static __always_inline struct page * 2517 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2518 unsigned int alloc_flags) 2519 { 2520 struct page *page; 2521 2522 retry: 2523 page = __rmqueue_smallest(zone, order, migratetype); 2524 if (unlikely(!page)) { 2525 if (migratetype == MIGRATE_MOVABLE) 2526 page = __rmqueue_cma_fallback(zone, order); 2527 2528 if (!page && __rmqueue_fallback(zone, order, migratetype, 2529 alloc_flags)) 2530 goto retry; 2531 } 2532 2533 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2534 return page; 2535 } 2536 2537 /* 2538 * Obtain a specified number of elements from the buddy allocator, all under 2539 * a single hold of the lock, for efficiency. Add them to the supplied list. 2540 * Returns the number of new pages which were placed at *list. 2541 */ 2542 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2543 unsigned long count, struct list_head *list, 2544 int migratetype, unsigned int alloc_flags) 2545 { 2546 int i, alloced = 0; 2547 2548 spin_lock(&zone->lock); 2549 for (i = 0; i < count; ++i) { 2550 struct page *page = __rmqueue(zone, order, migratetype, 2551 alloc_flags); 2552 if (unlikely(page == NULL)) 2553 break; 2554 2555 if (unlikely(check_pcp_refill(page))) 2556 continue; 2557 2558 /* 2559 * Split buddy pages returned by expand() are received here in 2560 * physical page order. The page is added to the tail of 2561 * caller's list. From the callers perspective, the linked list 2562 * is ordered by page number under some conditions. This is 2563 * useful for IO devices that can forward direction from the 2564 * head, thus also in the physical page order. This is useful 2565 * for IO devices that can merge IO requests if the physical 2566 * pages are ordered properly. 2567 */ 2568 list_add_tail(&page->lru, list); 2569 alloced++; 2570 if (is_migrate_cma(get_pcppage_migratetype(page))) 2571 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2572 -(1 << order)); 2573 } 2574 2575 /* 2576 * i pages were removed from the buddy list even if some leak due 2577 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2578 * on i. Do not confuse with 'alloced' which is the number of 2579 * pages added to the pcp list. 2580 */ 2581 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2582 spin_unlock(&zone->lock); 2583 return alloced; 2584 } 2585 2586 #ifdef CONFIG_NUMA 2587 /* 2588 * Called from the vmstat counter updater to drain pagesets of this 2589 * currently executing processor on remote nodes after they have 2590 * expired. 2591 * 2592 * Note that this function must be called with the thread pinned to 2593 * a single processor. 2594 */ 2595 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2596 { 2597 unsigned long flags; 2598 int to_drain, batch; 2599 2600 local_irq_save(flags); 2601 batch = READ_ONCE(pcp->batch); 2602 to_drain = min(pcp->count, batch); 2603 if (to_drain > 0) 2604 free_pcppages_bulk(zone, to_drain, pcp); 2605 local_irq_restore(flags); 2606 } 2607 #endif 2608 2609 /* 2610 * Drain pcplists of the indicated processor and zone. 2611 * 2612 * The processor must either be the current processor and the 2613 * thread pinned to the current processor or a processor that 2614 * is not online. 2615 */ 2616 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2617 { 2618 unsigned long flags; 2619 struct per_cpu_pageset *pset; 2620 struct per_cpu_pages *pcp; 2621 2622 local_irq_save(flags); 2623 pset = per_cpu_ptr(zone->pageset, cpu); 2624 2625 pcp = &pset->pcp; 2626 if (pcp->count) 2627 free_pcppages_bulk(zone, pcp->count, pcp); 2628 local_irq_restore(flags); 2629 } 2630 2631 /* 2632 * Drain pcplists of all zones on the indicated processor. 2633 * 2634 * The processor must either be the current processor and the 2635 * thread pinned to the current processor or a processor that 2636 * is not online. 2637 */ 2638 static void drain_pages(unsigned int cpu) 2639 { 2640 struct zone *zone; 2641 2642 for_each_populated_zone(zone) { 2643 drain_pages_zone(cpu, zone); 2644 } 2645 } 2646 2647 /* 2648 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2649 * 2650 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2651 * the single zone's pages. 2652 */ 2653 void drain_local_pages(struct zone *zone) 2654 { 2655 int cpu = smp_processor_id(); 2656 2657 if (zone) 2658 drain_pages_zone(cpu, zone); 2659 else 2660 drain_pages(cpu); 2661 } 2662 2663 static void drain_local_pages_wq(struct work_struct *work) 2664 { 2665 struct pcpu_drain *drain; 2666 2667 drain = container_of(work, struct pcpu_drain, work); 2668 2669 /* 2670 * drain_all_pages doesn't use proper cpu hotplug protection so 2671 * we can race with cpu offline when the WQ can move this from 2672 * a cpu pinned worker to an unbound one. We can operate on a different 2673 * cpu which is allright but we also have to make sure to not move to 2674 * a different one. 2675 */ 2676 preempt_disable(); 2677 drain_local_pages(drain->zone); 2678 preempt_enable(); 2679 } 2680 2681 /* 2682 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2683 * 2684 * When zone parameter is non-NULL, spill just the single zone's pages. 2685 * 2686 * Note that this can be extremely slow as the draining happens in a workqueue. 2687 */ 2688 void drain_all_pages(struct zone *zone) 2689 { 2690 int cpu; 2691 2692 /* 2693 * Allocate in the BSS so we wont require allocation in 2694 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2695 */ 2696 static cpumask_t cpus_with_pcps; 2697 2698 /* 2699 * Make sure nobody triggers this path before mm_percpu_wq is fully 2700 * initialized. 2701 */ 2702 if (WARN_ON_ONCE(!mm_percpu_wq)) 2703 return; 2704 2705 /* 2706 * Do not drain if one is already in progress unless it's specific to 2707 * a zone. Such callers are primarily CMA and memory hotplug and need 2708 * the drain to be complete when the call returns. 2709 */ 2710 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2711 if (!zone) 2712 return; 2713 mutex_lock(&pcpu_drain_mutex); 2714 } 2715 2716 /* 2717 * We don't care about racing with CPU hotplug event 2718 * as offline notification will cause the notified 2719 * cpu to drain that CPU pcps and on_each_cpu_mask 2720 * disables preemption as part of its processing 2721 */ 2722 for_each_online_cpu(cpu) { 2723 struct per_cpu_pageset *pcp; 2724 struct zone *z; 2725 bool has_pcps = false; 2726 2727 if (zone) { 2728 pcp = per_cpu_ptr(zone->pageset, cpu); 2729 if (pcp->pcp.count) 2730 has_pcps = true; 2731 } else { 2732 for_each_populated_zone(z) { 2733 pcp = per_cpu_ptr(z->pageset, cpu); 2734 if (pcp->pcp.count) { 2735 has_pcps = true; 2736 break; 2737 } 2738 } 2739 } 2740 2741 if (has_pcps) 2742 cpumask_set_cpu(cpu, &cpus_with_pcps); 2743 else 2744 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2745 } 2746 2747 for_each_cpu(cpu, &cpus_with_pcps) { 2748 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 2749 2750 drain->zone = zone; 2751 INIT_WORK(&drain->work, drain_local_pages_wq); 2752 queue_work_on(cpu, mm_percpu_wq, &drain->work); 2753 } 2754 for_each_cpu(cpu, &cpus_with_pcps) 2755 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 2756 2757 mutex_unlock(&pcpu_drain_mutex); 2758 } 2759 2760 #ifdef CONFIG_HIBERNATION 2761 2762 /* 2763 * Touch the watchdog for every WD_PAGE_COUNT pages. 2764 */ 2765 #define WD_PAGE_COUNT (128*1024) 2766 2767 void mark_free_pages(struct zone *zone) 2768 { 2769 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2770 unsigned long flags; 2771 unsigned int order, t; 2772 struct page *page; 2773 2774 if (zone_is_empty(zone)) 2775 return; 2776 2777 spin_lock_irqsave(&zone->lock, flags); 2778 2779 max_zone_pfn = zone_end_pfn(zone); 2780 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2781 if (pfn_valid(pfn)) { 2782 page = pfn_to_page(pfn); 2783 2784 if (!--page_count) { 2785 touch_nmi_watchdog(); 2786 page_count = WD_PAGE_COUNT; 2787 } 2788 2789 if (page_zone(page) != zone) 2790 continue; 2791 2792 if (!swsusp_page_is_forbidden(page)) 2793 swsusp_unset_page_free(page); 2794 } 2795 2796 for_each_migratetype_order(order, t) { 2797 list_for_each_entry(page, 2798 &zone->free_area[order].free_list[t], lru) { 2799 unsigned long i; 2800 2801 pfn = page_to_pfn(page); 2802 for (i = 0; i < (1UL << order); i++) { 2803 if (!--page_count) { 2804 touch_nmi_watchdog(); 2805 page_count = WD_PAGE_COUNT; 2806 } 2807 swsusp_set_page_free(pfn_to_page(pfn + i)); 2808 } 2809 } 2810 } 2811 spin_unlock_irqrestore(&zone->lock, flags); 2812 } 2813 #endif /* CONFIG_PM */ 2814 2815 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 2816 { 2817 int migratetype; 2818 2819 if (!free_pcp_prepare(page)) 2820 return false; 2821 2822 migratetype = get_pfnblock_migratetype(page, pfn); 2823 set_pcppage_migratetype(page, migratetype); 2824 return true; 2825 } 2826 2827 static void free_unref_page_commit(struct page *page, unsigned long pfn) 2828 { 2829 struct zone *zone = page_zone(page); 2830 struct per_cpu_pages *pcp; 2831 int migratetype; 2832 2833 migratetype = get_pcppage_migratetype(page); 2834 __count_vm_event(PGFREE); 2835 2836 /* 2837 * We only track unmovable, reclaimable and movable on pcp lists. 2838 * Free ISOLATE pages back to the allocator because they are being 2839 * offlined but treat HIGHATOMIC as movable pages so we can get those 2840 * areas back if necessary. Otherwise, we may have to free 2841 * excessively into the page allocator 2842 */ 2843 if (migratetype >= MIGRATE_PCPTYPES) { 2844 if (unlikely(is_migrate_isolate(migratetype))) { 2845 free_one_page(zone, page, pfn, 0, migratetype); 2846 return; 2847 } 2848 migratetype = MIGRATE_MOVABLE; 2849 } 2850 2851 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2852 list_add(&page->lru, &pcp->lists[migratetype]); 2853 pcp->count++; 2854 if (pcp->count >= pcp->high) { 2855 unsigned long batch = READ_ONCE(pcp->batch); 2856 free_pcppages_bulk(zone, batch, pcp); 2857 } 2858 } 2859 2860 /* 2861 * Free a 0-order page 2862 */ 2863 void free_unref_page(struct page *page) 2864 { 2865 unsigned long flags; 2866 unsigned long pfn = page_to_pfn(page); 2867 2868 if (!free_unref_page_prepare(page, pfn)) 2869 return; 2870 2871 local_irq_save(flags); 2872 free_unref_page_commit(page, pfn); 2873 local_irq_restore(flags); 2874 } 2875 2876 /* 2877 * Free a list of 0-order pages 2878 */ 2879 void free_unref_page_list(struct list_head *list) 2880 { 2881 struct page *page, *next; 2882 unsigned long flags, pfn; 2883 int batch_count = 0; 2884 2885 /* Prepare pages for freeing */ 2886 list_for_each_entry_safe(page, next, list, lru) { 2887 pfn = page_to_pfn(page); 2888 if (!free_unref_page_prepare(page, pfn)) 2889 list_del(&page->lru); 2890 set_page_private(page, pfn); 2891 } 2892 2893 local_irq_save(flags); 2894 list_for_each_entry_safe(page, next, list, lru) { 2895 unsigned long pfn = page_private(page); 2896 2897 set_page_private(page, 0); 2898 trace_mm_page_free_batched(page); 2899 free_unref_page_commit(page, pfn); 2900 2901 /* 2902 * Guard against excessive IRQ disabled times when we get 2903 * a large list of pages to free. 2904 */ 2905 if (++batch_count == SWAP_CLUSTER_MAX) { 2906 local_irq_restore(flags); 2907 batch_count = 0; 2908 local_irq_save(flags); 2909 } 2910 } 2911 local_irq_restore(flags); 2912 } 2913 2914 /* 2915 * split_page takes a non-compound higher-order page, and splits it into 2916 * n (1<<order) sub-pages: page[0..n] 2917 * Each sub-page must be freed individually. 2918 * 2919 * Note: this is probably too low level an operation for use in drivers. 2920 * Please consult with lkml before using this in your driver. 2921 */ 2922 void split_page(struct page *page, unsigned int order) 2923 { 2924 int i; 2925 2926 VM_BUG_ON_PAGE(PageCompound(page), page); 2927 VM_BUG_ON_PAGE(!page_count(page), page); 2928 2929 for (i = 1; i < (1 << order); i++) 2930 set_page_refcounted(page + i); 2931 split_page_owner(page, order); 2932 } 2933 EXPORT_SYMBOL_GPL(split_page); 2934 2935 int __isolate_free_page(struct page *page, unsigned int order) 2936 { 2937 unsigned long watermark; 2938 struct zone *zone; 2939 int mt; 2940 2941 BUG_ON(!PageBuddy(page)); 2942 2943 zone = page_zone(page); 2944 mt = get_pageblock_migratetype(page); 2945 2946 if (!is_migrate_isolate(mt)) { 2947 /* 2948 * Obey watermarks as if the page was being allocated. We can 2949 * emulate a high-order watermark check with a raised order-0 2950 * watermark, because we already know our high-order page 2951 * exists. 2952 */ 2953 watermark = min_wmark_pages(zone) + (1UL << order); 2954 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2955 return 0; 2956 2957 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2958 } 2959 2960 /* Remove page from free list */ 2961 list_del(&page->lru); 2962 zone->free_area[order].nr_free--; 2963 rmv_page_order(page); 2964 2965 /* 2966 * Set the pageblock if the isolated page is at least half of a 2967 * pageblock 2968 */ 2969 if (order >= pageblock_order - 1) { 2970 struct page *endpage = page + (1 << order) - 1; 2971 for (; page < endpage; page += pageblock_nr_pages) { 2972 int mt = get_pageblock_migratetype(page); 2973 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 2974 && !is_migrate_highatomic(mt)) 2975 set_pageblock_migratetype(page, 2976 MIGRATE_MOVABLE); 2977 } 2978 } 2979 2980 2981 return 1UL << order; 2982 } 2983 2984 /* 2985 * Update NUMA hit/miss statistics 2986 * 2987 * Must be called with interrupts disabled. 2988 */ 2989 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 2990 { 2991 #ifdef CONFIG_NUMA 2992 enum numa_stat_item local_stat = NUMA_LOCAL; 2993 2994 /* skip numa counters update if numa stats is disabled */ 2995 if (!static_branch_likely(&vm_numa_stat_key)) 2996 return; 2997 2998 if (zone_to_nid(z) != numa_node_id()) 2999 local_stat = NUMA_OTHER; 3000 3001 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3002 __inc_numa_state(z, NUMA_HIT); 3003 else { 3004 __inc_numa_state(z, NUMA_MISS); 3005 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3006 } 3007 __inc_numa_state(z, local_stat); 3008 #endif 3009 } 3010 3011 /* Remove page from the per-cpu list, caller must protect the list */ 3012 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3013 unsigned int alloc_flags, 3014 struct per_cpu_pages *pcp, 3015 struct list_head *list) 3016 { 3017 struct page *page; 3018 3019 do { 3020 if (list_empty(list)) { 3021 pcp->count += rmqueue_bulk(zone, 0, 3022 pcp->batch, list, 3023 migratetype, alloc_flags); 3024 if (unlikely(list_empty(list))) 3025 return NULL; 3026 } 3027 3028 page = list_first_entry(list, struct page, lru); 3029 list_del(&page->lru); 3030 pcp->count--; 3031 } while (check_new_pcp(page)); 3032 3033 return page; 3034 } 3035 3036 /* Lock and remove page from the per-cpu list */ 3037 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3038 struct zone *zone, unsigned int order, 3039 gfp_t gfp_flags, int migratetype, 3040 unsigned int alloc_flags) 3041 { 3042 struct per_cpu_pages *pcp; 3043 struct list_head *list; 3044 struct page *page; 3045 unsigned long flags; 3046 3047 local_irq_save(flags); 3048 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3049 list = &pcp->lists[migratetype]; 3050 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3051 if (page) { 3052 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3053 zone_statistics(preferred_zone, zone); 3054 } 3055 local_irq_restore(flags); 3056 return page; 3057 } 3058 3059 /* 3060 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3061 */ 3062 static inline 3063 struct page *rmqueue(struct zone *preferred_zone, 3064 struct zone *zone, unsigned int order, 3065 gfp_t gfp_flags, unsigned int alloc_flags, 3066 int migratetype) 3067 { 3068 unsigned long flags; 3069 struct page *page; 3070 3071 if (likely(order == 0)) { 3072 page = rmqueue_pcplist(preferred_zone, zone, order, 3073 gfp_flags, migratetype, alloc_flags); 3074 goto out; 3075 } 3076 3077 /* 3078 * We most definitely don't want callers attempting to 3079 * allocate greater than order-1 page units with __GFP_NOFAIL. 3080 */ 3081 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3082 spin_lock_irqsave(&zone->lock, flags); 3083 3084 do { 3085 page = NULL; 3086 if (alloc_flags & ALLOC_HARDER) { 3087 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3088 if (page) 3089 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3090 } 3091 if (!page) 3092 page = __rmqueue(zone, order, migratetype, alloc_flags); 3093 } while (page && check_new_pages(page, order)); 3094 spin_unlock(&zone->lock); 3095 if (!page) 3096 goto failed; 3097 __mod_zone_freepage_state(zone, -(1 << order), 3098 get_pcppage_migratetype(page)); 3099 3100 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3101 zone_statistics(preferred_zone, zone); 3102 local_irq_restore(flags); 3103 3104 out: 3105 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3106 return page; 3107 3108 failed: 3109 local_irq_restore(flags); 3110 return NULL; 3111 } 3112 3113 #ifdef CONFIG_FAIL_PAGE_ALLOC 3114 3115 static struct { 3116 struct fault_attr attr; 3117 3118 bool ignore_gfp_highmem; 3119 bool ignore_gfp_reclaim; 3120 u32 min_order; 3121 } fail_page_alloc = { 3122 .attr = FAULT_ATTR_INITIALIZER, 3123 .ignore_gfp_reclaim = true, 3124 .ignore_gfp_highmem = true, 3125 .min_order = 1, 3126 }; 3127 3128 static int __init setup_fail_page_alloc(char *str) 3129 { 3130 return setup_fault_attr(&fail_page_alloc.attr, str); 3131 } 3132 __setup("fail_page_alloc=", setup_fail_page_alloc); 3133 3134 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3135 { 3136 if (order < fail_page_alloc.min_order) 3137 return false; 3138 if (gfp_mask & __GFP_NOFAIL) 3139 return false; 3140 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3141 return false; 3142 if (fail_page_alloc.ignore_gfp_reclaim && 3143 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3144 return false; 3145 3146 return should_fail(&fail_page_alloc.attr, 1 << order); 3147 } 3148 3149 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3150 3151 static int __init fail_page_alloc_debugfs(void) 3152 { 3153 umode_t mode = S_IFREG | 0600; 3154 struct dentry *dir; 3155 3156 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3157 &fail_page_alloc.attr); 3158 if (IS_ERR(dir)) 3159 return PTR_ERR(dir); 3160 3161 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 3162 &fail_page_alloc.ignore_gfp_reclaim)) 3163 goto fail; 3164 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3165 &fail_page_alloc.ignore_gfp_highmem)) 3166 goto fail; 3167 if (!debugfs_create_u32("min-order", mode, dir, 3168 &fail_page_alloc.min_order)) 3169 goto fail; 3170 3171 return 0; 3172 fail: 3173 debugfs_remove_recursive(dir); 3174 3175 return -ENOMEM; 3176 } 3177 3178 late_initcall(fail_page_alloc_debugfs); 3179 3180 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3181 3182 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3183 3184 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3185 { 3186 return false; 3187 } 3188 3189 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3190 3191 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3192 { 3193 return __should_fail_alloc_page(gfp_mask, order); 3194 } 3195 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3196 3197 /* 3198 * Return true if free base pages are above 'mark'. For high-order checks it 3199 * will return true of the order-0 watermark is reached and there is at least 3200 * one free page of a suitable size. Checking now avoids taking the zone lock 3201 * to check in the allocation paths if no pages are free. 3202 */ 3203 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3204 int classzone_idx, unsigned int alloc_flags, 3205 long free_pages) 3206 { 3207 long min = mark; 3208 int o; 3209 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3210 3211 /* free_pages may go negative - that's OK */ 3212 free_pages -= (1 << order) - 1; 3213 3214 if (alloc_flags & ALLOC_HIGH) 3215 min -= min / 2; 3216 3217 /* 3218 * If the caller does not have rights to ALLOC_HARDER then subtract 3219 * the high-atomic reserves. This will over-estimate the size of the 3220 * atomic reserve but it avoids a search. 3221 */ 3222 if (likely(!alloc_harder)) { 3223 free_pages -= z->nr_reserved_highatomic; 3224 } else { 3225 /* 3226 * OOM victims can try even harder than normal ALLOC_HARDER 3227 * users on the grounds that it's definitely going to be in 3228 * the exit path shortly and free memory. Any allocation it 3229 * makes during the free path will be small and short-lived. 3230 */ 3231 if (alloc_flags & ALLOC_OOM) 3232 min -= min / 2; 3233 else 3234 min -= min / 4; 3235 } 3236 3237 3238 #ifdef CONFIG_CMA 3239 /* If allocation can't use CMA areas don't use free CMA pages */ 3240 if (!(alloc_flags & ALLOC_CMA)) 3241 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3242 #endif 3243 3244 /* 3245 * Check watermarks for an order-0 allocation request. If these 3246 * are not met, then a high-order request also cannot go ahead 3247 * even if a suitable page happened to be free. 3248 */ 3249 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3250 return false; 3251 3252 /* If this is an order-0 request then the watermark is fine */ 3253 if (!order) 3254 return true; 3255 3256 /* For a high-order request, check at least one suitable page is free */ 3257 for (o = order; o < MAX_ORDER; o++) { 3258 struct free_area *area = &z->free_area[o]; 3259 int mt; 3260 3261 if (!area->nr_free) 3262 continue; 3263 3264 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3265 if (!list_empty(&area->free_list[mt])) 3266 return true; 3267 } 3268 3269 #ifdef CONFIG_CMA 3270 if ((alloc_flags & ALLOC_CMA) && 3271 !list_empty(&area->free_list[MIGRATE_CMA])) { 3272 return true; 3273 } 3274 #endif 3275 if (alloc_harder && 3276 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) 3277 return true; 3278 } 3279 return false; 3280 } 3281 3282 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3283 int classzone_idx, unsigned int alloc_flags) 3284 { 3285 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3286 zone_page_state(z, NR_FREE_PAGES)); 3287 } 3288 3289 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3290 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3291 { 3292 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3293 long cma_pages = 0; 3294 3295 #ifdef CONFIG_CMA 3296 /* If allocation can't use CMA areas don't use free CMA pages */ 3297 if (!(alloc_flags & ALLOC_CMA)) 3298 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3299 #endif 3300 3301 /* 3302 * Fast check for order-0 only. If this fails then the reserves 3303 * need to be calculated. There is a corner case where the check 3304 * passes but only the high-order atomic reserve are free. If 3305 * the caller is !atomic then it'll uselessly search the free 3306 * list. That corner case is then slower but it is harmless. 3307 */ 3308 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3309 return true; 3310 3311 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3312 free_pages); 3313 } 3314 3315 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3316 unsigned long mark, int classzone_idx) 3317 { 3318 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3319 3320 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3321 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3322 3323 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3324 free_pages); 3325 } 3326 3327 #ifdef CONFIG_NUMA 3328 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3329 { 3330 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3331 RECLAIM_DISTANCE; 3332 } 3333 #else /* CONFIG_NUMA */ 3334 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3335 { 3336 return true; 3337 } 3338 #endif /* CONFIG_NUMA */ 3339 3340 /* 3341 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3342 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3343 * premature use of a lower zone may cause lowmem pressure problems that 3344 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3345 * probably too small. It only makes sense to spread allocations to avoid 3346 * fragmentation between the Normal and DMA32 zones. 3347 */ 3348 static inline unsigned int 3349 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3350 { 3351 unsigned int alloc_flags = 0; 3352 3353 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3354 alloc_flags |= ALLOC_KSWAPD; 3355 3356 #ifdef CONFIG_ZONE_DMA32 3357 if (zone_idx(zone) != ZONE_NORMAL) 3358 goto out; 3359 3360 /* 3361 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3362 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3363 * on UMA that if Normal is populated then so is DMA32. 3364 */ 3365 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3366 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3367 goto out; 3368 3369 out: 3370 #endif /* CONFIG_ZONE_DMA32 */ 3371 return alloc_flags; 3372 } 3373 3374 /* 3375 * get_page_from_freelist goes through the zonelist trying to allocate 3376 * a page. 3377 */ 3378 static struct page * 3379 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3380 const struct alloc_context *ac) 3381 { 3382 struct zoneref *z; 3383 struct zone *zone; 3384 struct pglist_data *last_pgdat_dirty_limit = NULL; 3385 bool no_fallback; 3386 3387 retry: 3388 /* 3389 * Scan zonelist, looking for a zone with enough free. 3390 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3391 */ 3392 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3393 z = ac->preferred_zoneref; 3394 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3395 ac->nodemask) { 3396 struct page *page; 3397 unsigned long mark; 3398 3399 if (cpusets_enabled() && 3400 (alloc_flags & ALLOC_CPUSET) && 3401 !__cpuset_zone_allowed(zone, gfp_mask)) 3402 continue; 3403 /* 3404 * When allocating a page cache page for writing, we 3405 * want to get it from a node that is within its dirty 3406 * limit, such that no single node holds more than its 3407 * proportional share of globally allowed dirty pages. 3408 * The dirty limits take into account the node's 3409 * lowmem reserves and high watermark so that kswapd 3410 * should be able to balance it without having to 3411 * write pages from its LRU list. 3412 * 3413 * XXX: For now, allow allocations to potentially 3414 * exceed the per-node dirty limit in the slowpath 3415 * (spread_dirty_pages unset) before going into reclaim, 3416 * which is important when on a NUMA setup the allowed 3417 * nodes are together not big enough to reach the 3418 * global limit. The proper fix for these situations 3419 * will require awareness of nodes in the 3420 * dirty-throttling and the flusher threads. 3421 */ 3422 if (ac->spread_dirty_pages) { 3423 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3424 continue; 3425 3426 if (!node_dirty_ok(zone->zone_pgdat)) { 3427 last_pgdat_dirty_limit = zone->zone_pgdat; 3428 continue; 3429 } 3430 } 3431 3432 if (no_fallback && nr_online_nodes > 1 && 3433 zone != ac->preferred_zoneref->zone) { 3434 int local_nid; 3435 3436 /* 3437 * If moving to a remote node, retry but allow 3438 * fragmenting fallbacks. Locality is more important 3439 * than fragmentation avoidance. 3440 */ 3441 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3442 if (zone_to_nid(zone) != local_nid) { 3443 alloc_flags &= ~ALLOC_NOFRAGMENT; 3444 goto retry; 3445 } 3446 } 3447 3448 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3449 if (!zone_watermark_fast(zone, order, mark, 3450 ac_classzone_idx(ac), alloc_flags)) { 3451 int ret; 3452 3453 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3454 /* 3455 * Watermark failed for this zone, but see if we can 3456 * grow this zone if it contains deferred pages. 3457 */ 3458 if (static_branch_unlikely(&deferred_pages)) { 3459 if (_deferred_grow_zone(zone, order)) 3460 goto try_this_zone; 3461 } 3462 #endif 3463 /* Checked here to keep the fast path fast */ 3464 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3465 if (alloc_flags & ALLOC_NO_WATERMARKS) 3466 goto try_this_zone; 3467 3468 if (node_reclaim_mode == 0 || 3469 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3470 continue; 3471 3472 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3473 switch (ret) { 3474 case NODE_RECLAIM_NOSCAN: 3475 /* did not scan */ 3476 continue; 3477 case NODE_RECLAIM_FULL: 3478 /* scanned but unreclaimable */ 3479 continue; 3480 default: 3481 /* did we reclaim enough */ 3482 if (zone_watermark_ok(zone, order, mark, 3483 ac_classzone_idx(ac), alloc_flags)) 3484 goto try_this_zone; 3485 3486 continue; 3487 } 3488 } 3489 3490 try_this_zone: 3491 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3492 gfp_mask, alloc_flags, ac->migratetype); 3493 if (page) { 3494 prep_new_page(page, order, gfp_mask, alloc_flags); 3495 3496 /* 3497 * If this is a high-order atomic allocation then check 3498 * if the pageblock should be reserved for the future 3499 */ 3500 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3501 reserve_highatomic_pageblock(page, zone, order); 3502 3503 return page; 3504 } else { 3505 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3506 /* Try again if zone has deferred pages */ 3507 if (static_branch_unlikely(&deferred_pages)) { 3508 if (_deferred_grow_zone(zone, order)) 3509 goto try_this_zone; 3510 } 3511 #endif 3512 } 3513 } 3514 3515 /* 3516 * It's possible on a UMA machine to get through all zones that are 3517 * fragmented. If avoiding fragmentation, reset and try again. 3518 */ 3519 if (no_fallback) { 3520 alloc_flags &= ~ALLOC_NOFRAGMENT; 3521 goto retry; 3522 } 3523 3524 return NULL; 3525 } 3526 3527 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3528 { 3529 unsigned int filter = SHOW_MEM_FILTER_NODES; 3530 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3531 3532 if (!__ratelimit(&show_mem_rs)) 3533 return; 3534 3535 /* 3536 * This documents exceptions given to allocations in certain 3537 * contexts that are allowed to allocate outside current's set 3538 * of allowed nodes. 3539 */ 3540 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3541 if (tsk_is_oom_victim(current) || 3542 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3543 filter &= ~SHOW_MEM_FILTER_NODES; 3544 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3545 filter &= ~SHOW_MEM_FILTER_NODES; 3546 3547 show_mem(filter, nodemask); 3548 } 3549 3550 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3551 { 3552 struct va_format vaf; 3553 va_list args; 3554 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3555 DEFAULT_RATELIMIT_BURST); 3556 3557 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3558 return; 3559 3560 va_start(args, fmt); 3561 vaf.fmt = fmt; 3562 vaf.va = &args; 3563 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3564 current->comm, &vaf, gfp_mask, &gfp_mask, 3565 nodemask_pr_args(nodemask)); 3566 va_end(args); 3567 3568 cpuset_print_current_mems_allowed(); 3569 pr_cont("\n"); 3570 dump_stack(); 3571 warn_alloc_show_mem(gfp_mask, nodemask); 3572 } 3573 3574 static inline struct page * 3575 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3576 unsigned int alloc_flags, 3577 const struct alloc_context *ac) 3578 { 3579 struct page *page; 3580 3581 page = get_page_from_freelist(gfp_mask, order, 3582 alloc_flags|ALLOC_CPUSET, ac); 3583 /* 3584 * fallback to ignore cpuset restriction if our nodes 3585 * are depleted 3586 */ 3587 if (!page) 3588 page = get_page_from_freelist(gfp_mask, order, 3589 alloc_flags, ac); 3590 3591 return page; 3592 } 3593 3594 static inline struct page * 3595 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3596 const struct alloc_context *ac, unsigned long *did_some_progress) 3597 { 3598 struct oom_control oc = { 3599 .zonelist = ac->zonelist, 3600 .nodemask = ac->nodemask, 3601 .memcg = NULL, 3602 .gfp_mask = gfp_mask, 3603 .order = order, 3604 }; 3605 struct page *page; 3606 3607 *did_some_progress = 0; 3608 3609 /* 3610 * Acquire the oom lock. If that fails, somebody else is 3611 * making progress for us. 3612 */ 3613 if (!mutex_trylock(&oom_lock)) { 3614 *did_some_progress = 1; 3615 schedule_timeout_uninterruptible(1); 3616 return NULL; 3617 } 3618 3619 /* 3620 * Go through the zonelist yet one more time, keep very high watermark 3621 * here, this is only to catch a parallel oom killing, we must fail if 3622 * we're still under heavy pressure. But make sure that this reclaim 3623 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3624 * allocation which will never fail due to oom_lock already held. 3625 */ 3626 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3627 ~__GFP_DIRECT_RECLAIM, order, 3628 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3629 if (page) 3630 goto out; 3631 3632 /* Coredumps can quickly deplete all memory reserves */ 3633 if (current->flags & PF_DUMPCORE) 3634 goto out; 3635 /* The OOM killer will not help higher order allocs */ 3636 if (order > PAGE_ALLOC_COSTLY_ORDER) 3637 goto out; 3638 /* 3639 * We have already exhausted all our reclaim opportunities without any 3640 * success so it is time to admit defeat. We will skip the OOM killer 3641 * because it is very likely that the caller has a more reasonable 3642 * fallback than shooting a random task. 3643 */ 3644 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3645 goto out; 3646 /* The OOM killer does not needlessly kill tasks for lowmem */ 3647 if (ac->high_zoneidx < ZONE_NORMAL) 3648 goto out; 3649 if (pm_suspended_storage()) 3650 goto out; 3651 /* 3652 * XXX: GFP_NOFS allocations should rather fail than rely on 3653 * other request to make a forward progress. 3654 * We are in an unfortunate situation where out_of_memory cannot 3655 * do much for this context but let's try it to at least get 3656 * access to memory reserved if the current task is killed (see 3657 * out_of_memory). Once filesystems are ready to handle allocation 3658 * failures more gracefully we should just bail out here. 3659 */ 3660 3661 /* The OOM killer may not free memory on a specific node */ 3662 if (gfp_mask & __GFP_THISNODE) 3663 goto out; 3664 3665 /* Exhausted what can be done so it's blame time */ 3666 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3667 *did_some_progress = 1; 3668 3669 /* 3670 * Help non-failing allocations by giving them access to memory 3671 * reserves 3672 */ 3673 if (gfp_mask & __GFP_NOFAIL) 3674 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3675 ALLOC_NO_WATERMARKS, ac); 3676 } 3677 out: 3678 mutex_unlock(&oom_lock); 3679 return page; 3680 } 3681 3682 /* 3683 * Maximum number of compaction retries wit a progress before OOM 3684 * killer is consider as the only way to move forward. 3685 */ 3686 #define MAX_COMPACT_RETRIES 16 3687 3688 #ifdef CONFIG_COMPACTION 3689 /* Try memory compaction for high-order allocations before reclaim */ 3690 static struct page * 3691 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3692 unsigned int alloc_flags, const struct alloc_context *ac, 3693 enum compact_priority prio, enum compact_result *compact_result) 3694 { 3695 struct page *page; 3696 unsigned long pflags; 3697 unsigned int noreclaim_flag; 3698 3699 if (!order) 3700 return NULL; 3701 3702 psi_memstall_enter(&pflags); 3703 noreclaim_flag = memalloc_noreclaim_save(); 3704 3705 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3706 prio); 3707 3708 memalloc_noreclaim_restore(noreclaim_flag); 3709 psi_memstall_leave(&pflags); 3710 3711 if (*compact_result <= COMPACT_INACTIVE) 3712 return NULL; 3713 3714 /* 3715 * At least in one zone compaction wasn't deferred or skipped, so let's 3716 * count a compaction stall 3717 */ 3718 count_vm_event(COMPACTSTALL); 3719 3720 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3721 3722 if (page) { 3723 struct zone *zone = page_zone(page); 3724 3725 zone->compact_blockskip_flush = false; 3726 compaction_defer_reset(zone, order, true); 3727 count_vm_event(COMPACTSUCCESS); 3728 return page; 3729 } 3730 3731 /* 3732 * It's bad if compaction run occurs and fails. The most likely reason 3733 * is that pages exist, but not enough to satisfy watermarks. 3734 */ 3735 count_vm_event(COMPACTFAIL); 3736 3737 cond_resched(); 3738 3739 return NULL; 3740 } 3741 3742 static inline bool 3743 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3744 enum compact_result compact_result, 3745 enum compact_priority *compact_priority, 3746 int *compaction_retries) 3747 { 3748 int max_retries = MAX_COMPACT_RETRIES; 3749 int min_priority; 3750 bool ret = false; 3751 int retries = *compaction_retries; 3752 enum compact_priority priority = *compact_priority; 3753 3754 if (!order) 3755 return false; 3756 3757 if (compaction_made_progress(compact_result)) 3758 (*compaction_retries)++; 3759 3760 /* 3761 * compaction considers all the zone as desperately out of memory 3762 * so it doesn't really make much sense to retry except when the 3763 * failure could be caused by insufficient priority 3764 */ 3765 if (compaction_failed(compact_result)) 3766 goto check_priority; 3767 3768 /* 3769 * make sure the compaction wasn't deferred or didn't bail out early 3770 * due to locks contention before we declare that we should give up. 3771 * But do not retry if the given zonelist is not suitable for 3772 * compaction. 3773 */ 3774 if (compaction_withdrawn(compact_result)) { 3775 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3776 goto out; 3777 } 3778 3779 /* 3780 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3781 * costly ones because they are de facto nofail and invoke OOM 3782 * killer to move on while costly can fail and users are ready 3783 * to cope with that. 1/4 retries is rather arbitrary but we 3784 * would need much more detailed feedback from compaction to 3785 * make a better decision. 3786 */ 3787 if (order > PAGE_ALLOC_COSTLY_ORDER) 3788 max_retries /= 4; 3789 if (*compaction_retries <= max_retries) { 3790 ret = true; 3791 goto out; 3792 } 3793 3794 /* 3795 * Make sure there are attempts at the highest priority if we exhausted 3796 * all retries or failed at the lower priorities. 3797 */ 3798 check_priority: 3799 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3800 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3801 3802 if (*compact_priority > min_priority) { 3803 (*compact_priority)--; 3804 *compaction_retries = 0; 3805 ret = true; 3806 } 3807 out: 3808 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3809 return ret; 3810 } 3811 #else 3812 static inline struct page * 3813 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3814 unsigned int alloc_flags, const struct alloc_context *ac, 3815 enum compact_priority prio, enum compact_result *compact_result) 3816 { 3817 *compact_result = COMPACT_SKIPPED; 3818 return NULL; 3819 } 3820 3821 static inline bool 3822 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3823 enum compact_result compact_result, 3824 enum compact_priority *compact_priority, 3825 int *compaction_retries) 3826 { 3827 struct zone *zone; 3828 struct zoneref *z; 3829 3830 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3831 return false; 3832 3833 /* 3834 * There are setups with compaction disabled which would prefer to loop 3835 * inside the allocator rather than hit the oom killer prematurely. 3836 * Let's give them a good hope and keep retrying while the order-0 3837 * watermarks are OK. 3838 */ 3839 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3840 ac->nodemask) { 3841 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3842 ac_classzone_idx(ac), alloc_flags)) 3843 return true; 3844 } 3845 return false; 3846 } 3847 #endif /* CONFIG_COMPACTION */ 3848 3849 #ifdef CONFIG_LOCKDEP 3850 static struct lockdep_map __fs_reclaim_map = 3851 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3852 3853 static bool __need_fs_reclaim(gfp_t gfp_mask) 3854 { 3855 gfp_mask = current_gfp_context(gfp_mask); 3856 3857 /* no reclaim without waiting on it */ 3858 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3859 return false; 3860 3861 /* this guy won't enter reclaim */ 3862 if (current->flags & PF_MEMALLOC) 3863 return false; 3864 3865 /* We're only interested __GFP_FS allocations for now */ 3866 if (!(gfp_mask & __GFP_FS)) 3867 return false; 3868 3869 if (gfp_mask & __GFP_NOLOCKDEP) 3870 return false; 3871 3872 return true; 3873 } 3874 3875 void __fs_reclaim_acquire(void) 3876 { 3877 lock_map_acquire(&__fs_reclaim_map); 3878 } 3879 3880 void __fs_reclaim_release(void) 3881 { 3882 lock_map_release(&__fs_reclaim_map); 3883 } 3884 3885 void fs_reclaim_acquire(gfp_t gfp_mask) 3886 { 3887 if (__need_fs_reclaim(gfp_mask)) 3888 __fs_reclaim_acquire(); 3889 } 3890 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3891 3892 void fs_reclaim_release(gfp_t gfp_mask) 3893 { 3894 if (__need_fs_reclaim(gfp_mask)) 3895 __fs_reclaim_release(); 3896 } 3897 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3898 #endif 3899 3900 /* Perform direct synchronous page reclaim */ 3901 static int 3902 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3903 const struct alloc_context *ac) 3904 { 3905 struct reclaim_state reclaim_state; 3906 int progress; 3907 unsigned int noreclaim_flag; 3908 unsigned long pflags; 3909 3910 cond_resched(); 3911 3912 /* We now go into synchronous reclaim */ 3913 cpuset_memory_pressure_bump(); 3914 psi_memstall_enter(&pflags); 3915 fs_reclaim_acquire(gfp_mask); 3916 noreclaim_flag = memalloc_noreclaim_save(); 3917 reclaim_state.reclaimed_slab = 0; 3918 current->reclaim_state = &reclaim_state; 3919 3920 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3921 ac->nodemask); 3922 3923 current->reclaim_state = NULL; 3924 memalloc_noreclaim_restore(noreclaim_flag); 3925 fs_reclaim_release(gfp_mask); 3926 psi_memstall_leave(&pflags); 3927 3928 cond_resched(); 3929 3930 return progress; 3931 } 3932 3933 /* The really slow allocator path where we enter direct reclaim */ 3934 static inline struct page * 3935 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3936 unsigned int alloc_flags, const struct alloc_context *ac, 3937 unsigned long *did_some_progress) 3938 { 3939 struct page *page = NULL; 3940 bool drained = false; 3941 3942 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3943 if (unlikely(!(*did_some_progress))) 3944 return NULL; 3945 3946 retry: 3947 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3948 3949 /* 3950 * If an allocation failed after direct reclaim, it could be because 3951 * pages are pinned on the per-cpu lists or in high alloc reserves. 3952 * Shrink them them and try again 3953 */ 3954 if (!page && !drained) { 3955 unreserve_highatomic_pageblock(ac, false); 3956 drain_all_pages(NULL); 3957 drained = true; 3958 goto retry; 3959 } 3960 3961 return page; 3962 } 3963 3964 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3965 const struct alloc_context *ac) 3966 { 3967 struct zoneref *z; 3968 struct zone *zone; 3969 pg_data_t *last_pgdat = NULL; 3970 enum zone_type high_zoneidx = ac->high_zoneidx; 3971 3972 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx, 3973 ac->nodemask) { 3974 if (last_pgdat != zone->zone_pgdat) 3975 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx); 3976 last_pgdat = zone->zone_pgdat; 3977 } 3978 } 3979 3980 static inline unsigned int 3981 gfp_to_alloc_flags(gfp_t gfp_mask) 3982 { 3983 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3984 3985 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 3986 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 3987 3988 /* 3989 * The caller may dip into page reserves a bit more if the caller 3990 * cannot run direct reclaim, or if the caller has realtime scheduling 3991 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3992 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 3993 */ 3994 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 3995 3996 if (gfp_mask & __GFP_ATOMIC) { 3997 /* 3998 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3999 * if it can't schedule. 4000 */ 4001 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4002 alloc_flags |= ALLOC_HARDER; 4003 /* 4004 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4005 * comment for __cpuset_node_allowed(). 4006 */ 4007 alloc_flags &= ~ALLOC_CPUSET; 4008 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4009 alloc_flags |= ALLOC_HARDER; 4010 4011 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4012 alloc_flags |= ALLOC_KSWAPD; 4013 4014 #ifdef CONFIG_CMA 4015 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4016 alloc_flags |= ALLOC_CMA; 4017 #endif 4018 return alloc_flags; 4019 } 4020 4021 static bool oom_reserves_allowed(struct task_struct *tsk) 4022 { 4023 if (!tsk_is_oom_victim(tsk)) 4024 return false; 4025 4026 /* 4027 * !MMU doesn't have oom reaper so give access to memory reserves 4028 * only to the thread with TIF_MEMDIE set 4029 */ 4030 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4031 return false; 4032 4033 return true; 4034 } 4035 4036 /* 4037 * Distinguish requests which really need access to full memory 4038 * reserves from oom victims which can live with a portion of it 4039 */ 4040 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4041 { 4042 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4043 return 0; 4044 if (gfp_mask & __GFP_MEMALLOC) 4045 return ALLOC_NO_WATERMARKS; 4046 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4047 return ALLOC_NO_WATERMARKS; 4048 if (!in_interrupt()) { 4049 if (current->flags & PF_MEMALLOC) 4050 return ALLOC_NO_WATERMARKS; 4051 else if (oom_reserves_allowed(current)) 4052 return ALLOC_OOM; 4053 } 4054 4055 return 0; 4056 } 4057 4058 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4059 { 4060 return !!__gfp_pfmemalloc_flags(gfp_mask); 4061 } 4062 4063 /* 4064 * Checks whether it makes sense to retry the reclaim to make a forward progress 4065 * for the given allocation request. 4066 * 4067 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4068 * without success, or when we couldn't even meet the watermark if we 4069 * reclaimed all remaining pages on the LRU lists. 4070 * 4071 * Returns true if a retry is viable or false to enter the oom path. 4072 */ 4073 static inline bool 4074 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4075 struct alloc_context *ac, int alloc_flags, 4076 bool did_some_progress, int *no_progress_loops) 4077 { 4078 struct zone *zone; 4079 struct zoneref *z; 4080 bool ret = false; 4081 4082 /* 4083 * Costly allocations might have made a progress but this doesn't mean 4084 * their order will become available due to high fragmentation so 4085 * always increment the no progress counter for them 4086 */ 4087 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4088 *no_progress_loops = 0; 4089 else 4090 (*no_progress_loops)++; 4091 4092 /* 4093 * Make sure we converge to OOM if we cannot make any progress 4094 * several times in the row. 4095 */ 4096 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4097 /* Before OOM, exhaust highatomic_reserve */ 4098 return unreserve_highatomic_pageblock(ac, true); 4099 } 4100 4101 /* 4102 * Keep reclaiming pages while there is a chance this will lead 4103 * somewhere. If none of the target zones can satisfy our allocation 4104 * request even if all reclaimable pages are considered then we are 4105 * screwed and have to go OOM. 4106 */ 4107 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4108 ac->nodemask) { 4109 unsigned long available; 4110 unsigned long reclaimable; 4111 unsigned long min_wmark = min_wmark_pages(zone); 4112 bool wmark; 4113 4114 available = reclaimable = zone_reclaimable_pages(zone); 4115 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4116 4117 /* 4118 * Would the allocation succeed if we reclaimed all 4119 * reclaimable pages? 4120 */ 4121 wmark = __zone_watermark_ok(zone, order, min_wmark, 4122 ac_classzone_idx(ac), alloc_flags, available); 4123 trace_reclaim_retry_zone(z, order, reclaimable, 4124 available, min_wmark, *no_progress_loops, wmark); 4125 if (wmark) { 4126 /* 4127 * If we didn't make any progress and have a lot of 4128 * dirty + writeback pages then we should wait for 4129 * an IO to complete to slow down the reclaim and 4130 * prevent from pre mature OOM 4131 */ 4132 if (!did_some_progress) { 4133 unsigned long write_pending; 4134 4135 write_pending = zone_page_state_snapshot(zone, 4136 NR_ZONE_WRITE_PENDING); 4137 4138 if (2 * write_pending > reclaimable) { 4139 congestion_wait(BLK_RW_ASYNC, HZ/10); 4140 return true; 4141 } 4142 } 4143 4144 ret = true; 4145 goto out; 4146 } 4147 } 4148 4149 out: 4150 /* 4151 * Memory allocation/reclaim might be called from a WQ context and the 4152 * current implementation of the WQ concurrency control doesn't 4153 * recognize that a particular WQ is congested if the worker thread is 4154 * looping without ever sleeping. Therefore we have to do a short sleep 4155 * here rather than calling cond_resched(). 4156 */ 4157 if (current->flags & PF_WQ_WORKER) 4158 schedule_timeout_uninterruptible(1); 4159 else 4160 cond_resched(); 4161 return ret; 4162 } 4163 4164 static inline bool 4165 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4166 { 4167 /* 4168 * It's possible that cpuset's mems_allowed and the nodemask from 4169 * mempolicy don't intersect. This should be normally dealt with by 4170 * policy_nodemask(), but it's possible to race with cpuset update in 4171 * such a way the check therein was true, and then it became false 4172 * before we got our cpuset_mems_cookie here. 4173 * This assumes that for all allocations, ac->nodemask can come only 4174 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4175 * when it does not intersect with the cpuset restrictions) or the 4176 * caller can deal with a violated nodemask. 4177 */ 4178 if (cpusets_enabled() && ac->nodemask && 4179 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4180 ac->nodemask = NULL; 4181 return true; 4182 } 4183 4184 /* 4185 * When updating a task's mems_allowed or mempolicy nodemask, it is 4186 * possible to race with parallel threads in such a way that our 4187 * allocation can fail while the mask is being updated. If we are about 4188 * to fail, check if the cpuset changed during allocation and if so, 4189 * retry. 4190 */ 4191 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4192 return true; 4193 4194 return false; 4195 } 4196 4197 static inline struct page * 4198 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4199 struct alloc_context *ac) 4200 { 4201 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4202 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4203 struct page *page = NULL; 4204 unsigned int alloc_flags; 4205 unsigned long did_some_progress; 4206 enum compact_priority compact_priority; 4207 enum compact_result compact_result; 4208 int compaction_retries; 4209 int no_progress_loops; 4210 unsigned int cpuset_mems_cookie; 4211 int reserve_flags; 4212 4213 /* 4214 * We also sanity check to catch abuse of atomic reserves being used by 4215 * callers that are not in atomic context. 4216 */ 4217 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4218 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4219 gfp_mask &= ~__GFP_ATOMIC; 4220 4221 retry_cpuset: 4222 compaction_retries = 0; 4223 no_progress_loops = 0; 4224 compact_priority = DEF_COMPACT_PRIORITY; 4225 cpuset_mems_cookie = read_mems_allowed_begin(); 4226 4227 /* 4228 * The fast path uses conservative alloc_flags to succeed only until 4229 * kswapd needs to be woken up, and to avoid the cost of setting up 4230 * alloc_flags precisely. So we do that now. 4231 */ 4232 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4233 4234 /* 4235 * We need to recalculate the starting point for the zonelist iterator 4236 * because we might have used different nodemask in the fast path, or 4237 * there was a cpuset modification and we are retrying - otherwise we 4238 * could end up iterating over non-eligible zones endlessly. 4239 */ 4240 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4241 ac->high_zoneidx, ac->nodemask); 4242 if (!ac->preferred_zoneref->zone) 4243 goto nopage; 4244 4245 if (alloc_flags & ALLOC_KSWAPD) 4246 wake_all_kswapds(order, gfp_mask, ac); 4247 4248 /* 4249 * The adjusted alloc_flags might result in immediate success, so try 4250 * that first 4251 */ 4252 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4253 if (page) 4254 goto got_pg; 4255 4256 /* 4257 * For costly allocations, try direct compaction first, as it's likely 4258 * that we have enough base pages and don't need to reclaim. For non- 4259 * movable high-order allocations, do that as well, as compaction will 4260 * try prevent permanent fragmentation by migrating from blocks of the 4261 * same migratetype. 4262 * Don't try this for allocations that are allowed to ignore 4263 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4264 */ 4265 if (can_direct_reclaim && 4266 (costly_order || 4267 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4268 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4269 page = __alloc_pages_direct_compact(gfp_mask, order, 4270 alloc_flags, ac, 4271 INIT_COMPACT_PRIORITY, 4272 &compact_result); 4273 if (page) 4274 goto got_pg; 4275 4276 /* 4277 * Checks for costly allocations with __GFP_NORETRY, which 4278 * includes THP page fault allocations 4279 */ 4280 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4281 /* 4282 * If compaction is deferred for high-order allocations, 4283 * it is because sync compaction recently failed. If 4284 * this is the case and the caller requested a THP 4285 * allocation, we do not want to heavily disrupt the 4286 * system, so we fail the allocation instead of entering 4287 * direct reclaim. 4288 */ 4289 if (compact_result == COMPACT_DEFERRED) 4290 goto nopage; 4291 4292 /* 4293 * Looks like reclaim/compaction is worth trying, but 4294 * sync compaction could be very expensive, so keep 4295 * using async compaction. 4296 */ 4297 compact_priority = INIT_COMPACT_PRIORITY; 4298 } 4299 } 4300 4301 retry: 4302 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4303 if (alloc_flags & ALLOC_KSWAPD) 4304 wake_all_kswapds(order, gfp_mask, ac); 4305 4306 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4307 if (reserve_flags) 4308 alloc_flags = reserve_flags; 4309 4310 /* 4311 * Reset the nodemask and zonelist iterators if memory policies can be 4312 * ignored. These allocations are high priority and system rather than 4313 * user oriented. 4314 */ 4315 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4316 ac->nodemask = NULL; 4317 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4318 ac->high_zoneidx, ac->nodemask); 4319 } 4320 4321 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4322 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4323 if (page) 4324 goto got_pg; 4325 4326 /* Caller is not willing to reclaim, we can't balance anything */ 4327 if (!can_direct_reclaim) 4328 goto nopage; 4329 4330 /* Avoid recursion of direct reclaim */ 4331 if (current->flags & PF_MEMALLOC) 4332 goto nopage; 4333 4334 /* Try direct reclaim and then allocating */ 4335 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4336 &did_some_progress); 4337 if (page) 4338 goto got_pg; 4339 4340 /* Try direct compaction and then allocating */ 4341 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4342 compact_priority, &compact_result); 4343 if (page) 4344 goto got_pg; 4345 4346 /* Do not loop if specifically requested */ 4347 if (gfp_mask & __GFP_NORETRY) 4348 goto nopage; 4349 4350 /* 4351 * Do not retry costly high order allocations unless they are 4352 * __GFP_RETRY_MAYFAIL 4353 */ 4354 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4355 goto nopage; 4356 4357 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4358 did_some_progress > 0, &no_progress_loops)) 4359 goto retry; 4360 4361 /* 4362 * It doesn't make any sense to retry for the compaction if the order-0 4363 * reclaim is not able to make any progress because the current 4364 * implementation of the compaction depends on the sufficient amount 4365 * of free memory (see __compaction_suitable) 4366 */ 4367 if (did_some_progress > 0 && 4368 should_compact_retry(ac, order, alloc_flags, 4369 compact_result, &compact_priority, 4370 &compaction_retries)) 4371 goto retry; 4372 4373 4374 /* Deal with possible cpuset update races before we start OOM killing */ 4375 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4376 goto retry_cpuset; 4377 4378 /* Reclaim has failed us, start killing things */ 4379 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4380 if (page) 4381 goto got_pg; 4382 4383 /* Avoid allocations with no watermarks from looping endlessly */ 4384 if (tsk_is_oom_victim(current) && 4385 (alloc_flags == ALLOC_OOM || 4386 (gfp_mask & __GFP_NOMEMALLOC))) 4387 goto nopage; 4388 4389 /* Retry as long as the OOM killer is making progress */ 4390 if (did_some_progress) { 4391 no_progress_loops = 0; 4392 goto retry; 4393 } 4394 4395 nopage: 4396 /* Deal with possible cpuset update races before we fail */ 4397 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4398 goto retry_cpuset; 4399 4400 /* 4401 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4402 * we always retry 4403 */ 4404 if (gfp_mask & __GFP_NOFAIL) { 4405 /* 4406 * All existing users of the __GFP_NOFAIL are blockable, so warn 4407 * of any new users that actually require GFP_NOWAIT 4408 */ 4409 if (WARN_ON_ONCE(!can_direct_reclaim)) 4410 goto fail; 4411 4412 /* 4413 * PF_MEMALLOC request from this context is rather bizarre 4414 * because we cannot reclaim anything and only can loop waiting 4415 * for somebody to do a work for us 4416 */ 4417 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4418 4419 /* 4420 * non failing costly orders are a hard requirement which we 4421 * are not prepared for much so let's warn about these users 4422 * so that we can identify them and convert them to something 4423 * else. 4424 */ 4425 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4426 4427 /* 4428 * Help non-failing allocations by giving them access to memory 4429 * reserves but do not use ALLOC_NO_WATERMARKS because this 4430 * could deplete whole memory reserves which would just make 4431 * the situation worse 4432 */ 4433 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4434 if (page) 4435 goto got_pg; 4436 4437 cond_resched(); 4438 goto retry; 4439 } 4440 fail: 4441 warn_alloc(gfp_mask, ac->nodemask, 4442 "page allocation failure: order:%u", order); 4443 got_pg: 4444 return page; 4445 } 4446 4447 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4448 int preferred_nid, nodemask_t *nodemask, 4449 struct alloc_context *ac, gfp_t *alloc_mask, 4450 unsigned int *alloc_flags) 4451 { 4452 ac->high_zoneidx = gfp_zone(gfp_mask); 4453 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4454 ac->nodemask = nodemask; 4455 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4456 4457 if (cpusets_enabled()) { 4458 *alloc_mask |= __GFP_HARDWALL; 4459 if (!ac->nodemask) 4460 ac->nodemask = &cpuset_current_mems_allowed; 4461 else 4462 *alloc_flags |= ALLOC_CPUSET; 4463 } 4464 4465 fs_reclaim_acquire(gfp_mask); 4466 fs_reclaim_release(gfp_mask); 4467 4468 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4469 4470 if (should_fail_alloc_page(gfp_mask, order)) 4471 return false; 4472 4473 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4474 *alloc_flags |= ALLOC_CMA; 4475 4476 return true; 4477 } 4478 4479 /* Determine whether to spread dirty pages and what the first usable zone */ 4480 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac) 4481 { 4482 /* Dirty zone balancing only done in the fast path */ 4483 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4484 4485 /* 4486 * The preferred zone is used for statistics but crucially it is 4487 * also used as the starting point for the zonelist iterator. It 4488 * may get reset for allocations that ignore memory policies. 4489 */ 4490 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4491 ac->high_zoneidx, ac->nodemask); 4492 } 4493 4494 /* 4495 * This is the 'heart' of the zoned buddy allocator. 4496 */ 4497 struct page * 4498 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4499 nodemask_t *nodemask) 4500 { 4501 struct page *page; 4502 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4503 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4504 struct alloc_context ac = { }; 4505 4506 /* 4507 * There are several places where we assume that the order value is sane 4508 * so bail out early if the request is out of bound. 4509 */ 4510 if (unlikely(order >= MAX_ORDER)) { 4511 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4512 return NULL; 4513 } 4514 4515 gfp_mask &= gfp_allowed_mask; 4516 alloc_mask = gfp_mask; 4517 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4518 return NULL; 4519 4520 finalise_ac(gfp_mask, &ac); 4521 4522 /* 4523 * Forbid the first pass from falling back to types that fragment 4524 * memory until all local zones are considered. 4525 */ 4526 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4527 4528 /* First allocation attempt */ 4529 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4530 if (likely(page)) 4531 goto out; 4532 4533 /* 4534 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4535 * resp. GFP_NOIO which has to be inherited for all allocation requests 4536 * from a particular context which has been marked by 4537 * memalloc_no{fs,io}_{save,restore}. 4538 */ 4539 alloc_mask = current_gfp_context(gfp_mask); 4540 ac.spread_dirty_pages = false; 4541 4542 /* 4543 * Restore the original nodemask if it was potentially replaced with 4544 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4545 */ 4546 if (unlikely(ac.nodemask != nodemask)) 4547 ac.nodemask = nodemask; 4548 4549 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4550 4551 out: 4552 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4553 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4554 __free_pages(page, order); 4555 page = NULL; 4556 } 4557 4558 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4559 4560 return page; 4561 } 4562 EXPORT_SYMBOL(__alloc_pages_nodemask); 4563 4564 /* 4565 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4566 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4567 * you need to access high mem. 4568 */ 4569 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4570 { 4571 struct page *page; 4572 4573 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4574 if (!page) 4575 return 0; 4576 return (unsigned long) page_address(page); 4577 } 4578 EXPORT_SYMBOL(__get_free_pages); 4579 4580 unsigned long get_zeroed_page(gfp_t gfp_mask) 4581 { 4582 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4583 } 4584 EXPORT_SYMBOL(get_zeroed_page); 4585 4586 static inline void free_the_page(struct page *page, unsigned int order) 4587 { 4588 if (order == 0) /* Via pcp? */ 4589 free_unref_page(page); 4590 else 4591 __free_pages_ok(page, order); 4592 } 4593 4594 void __free_pages(struct page *page, unsigned int order) 4595 { 4596 if (put_page_testzero(page)) 4597 free_the_page(page, order); 4598 } 4599 EXPORT_SYMBOL(__free_pages); 4600 4601 void free_pages(unsigned long addr, unsigned int order) 4602 { 4603 if (addr != 0) { 4604 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4605 __free_pages(virt_to_page((void *)addr), order); 4606 } 4607 } 4608 4609 EXPORT_SYMBOL(free_pages); 4610 4611 /* 4612 * Page Fragment: 4613 * An arbitrary-length arbitrary-offset area of memory which resides 4614 * within a 0 or higher order page. Multiple fragments within that page 4615 * are individually refcounted, in the page's reference counter. 4616 * 4617 * The page_frag functions below provide a simple allocation framework for 4618 * page fragments. This is used by the network stack and network device 4619 * drivers to provide a backing region of memory for use as either an 4620 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4621 */ 4622 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4623 gfp_t gfp_mask) 4624 { 4625 struct page *page = NULL; 4626 gfp_t gfp = gfp_mask; 4627 4628 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4629 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4630 __GFP_NOMEMALLOC; 4631 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4632 PAGE_FRAG_CACHE_MAX_ORDER); 4633 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4634 #endif 4635 if (unlikely(!page)) 4636 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4637 4638 nc->va = page ? page_address(page) : NULL; 4639 4640 return page; 4641 } 4642 4643 void __page_frag_cache_drain(struct page *page, unsigned int count) 4644 { 4645 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4646 4647 if (page_ref_sub_and_test(page, count)) 4648 free_the_page(page, compound_order(page)); 4649 } 4650 EXPORT_SYMBOL(__page_frag_cache_drain); 4651 4652 void *page_frag_alloc(struct page_frag_cache *nc, 4653 unsigned int fragsz, gfp_t gfp_mask) 4654 { 4655 unsigned int size = PAGE_SIZE; 4656 struct page *page; 4657 int offset; 4658 4659 if (unlikely(!nc->va)) { 4660 refill: 4661 page = __page_frag_cache_refill(nc, gfp_mask); 4662 if (!page) 4663 return NULL; 4664 4665 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4666 /* if size can vary use size else just use PAGE_SIZE */ 4667 size = nc->size; 4668 #endif 4669 /* Even if we own the page, we do not use atomic_set(). 4670 * This would break get_page_unless_zero() users. 4671 */ 4672 page_ref_add(page, size - 1); 4673 4674 /* reset page count bias and offset to start of new frag */ 4675 nc->pfmemalloc = page_is_pfmemalloc(page); 4676 nc->pagecnt_bias = size; 4677 nc->offset = size; 4678 } 4679 4680 offset = nc->offset - fragsz; 4681 if (unlikely(offset < 0)) { 4682 page = virt_to_page(nc->va); 4683 4684 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4685 goto refill; 4686 4687 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4688 /* if size can vary use size else just use PAGE_SIZE */ 4689 size = nc->size; 4690 #endif 4691 /* OK, page count is 0, we can safely set it */ 4692 set_page_count(page, size); 4693 4694 /* reset page count bias and offset to start of new frag */ 4695 nc->pagecnt_bias = size; 4696 offset = size - fragsz; 4697 } 4698 4699 nc->pagecnt_bias--; 4700 nc->offset = offset; 4701 4702 return nc->va + offset; 4703 } 4704 EXPORT_SYMBOL(page_frag_alloc); 4705 4706 /* 4707 * Frees a page fragment allocated out of either a compound or order 0 page. 4708 */ 4709 void page_frag_free(void *addr) 4710 { 4711 struct page *page = virt_to_head_page(addr); 4712 4713 if (unlikely(put_page_testzero(page))) 4714 free_the_page(page, compound_order(page)); 4715 } 4716 EXPORT_SYMBOL(page_frag_free); 4717 4718 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4719 size_t size) 4720 { 4721 if (addr) { 4722 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4723 unsigned long used = addr + PAGE_ALIGN(size); 4724 4725 split_page(virt_to_page((void *)addr), order); 4726 while (used < alloc_end) { 4727 free_page(used); 4728 used += PAGE_SIZE; 4729 } 4730 } 4731 return (void *)addr; 4732 } 4733 4734 /** 4735 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4736 * @size: the number of bytes to allocate 4737 * @gfp_mask: GFP flags for the allocation 4738 * 4739 * This function is similar to alloc_pages(), except that it allocates the 4740 * minimum number of pages to satisfy the request. alloc_pages() can only 4741 * allocate memory in power-of-two pages. 4742 * 4743 * This function is also limited by MAX_ORDER. 4744 * 4745 * Memory allocated by this function must be released by free_pages_exact(). 4746 */ 4747 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4748 { 4749 unsigned int order = get_order(size); 4750 unsigned long addr; 4751 4752 addr = __get_free_pages(gfp_mask, order); 4753 return make_alloc_exact(addr, order, size); 4754 } 4755 EXPORT_SYMBOL(alloc_pages_exact); 4756 4757 /** 4758 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4759 * pages on a node. 4760 * @nid: the preferred node ID where memory should be allocated 4761 * @size: the number of bytes to allocate 4762 * @gfp_mask: GFP flags for the allocation 4763 * 4764 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4765 * back. 4766 */ 4767 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4768 { 4769 unsigned int order = get_order(size); 4770 struct page *p = alloc_pages_node(nid, gfp_mask, order); 4771 if (!p) 4772 return NULL; 4773 return make_alloc_exact((unsigned long)page_address(p), order, size); 4774 } 4775 4776 /** 4777 * free_pages_exact - release memory allocated via alloc_pages_exact() 4778 * @virt: the value returned by alloc_pages_exact. 4779 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4780 * 4781 * Release the memory allocated by a previous call to alloc_pages_exact. 4782 */ 4783 void free_pages_exact(void *virt, size_t size) 4784 { 4785 unsigned long addr = (unsigned long)virt; 4786 unsigned long end = addr + PAGE_ALIGN(size); 4787 4788 while (addr < end) { 4789 free_page(addr); 4790 addr += PAGE_SIZE; 4791 } 4792 } 4793 EXPORT_SYMBOL(free_pages_exact); 4794 4795 /** 4796 * nr_free_zone_pages - count number of pages beyond high watermark 4797 * @offset: The zone index of the highest zone 4798 * 4799 * nr_free_zone_pages() counts the number of counts pages which are beyond the 4800 * high watermark within all zones at or below a given zone index. For each 4801 * zone, the number of pages is calculated as: 4802 * 4803 * nr_free_zone_pages = managed_pages - high_pages 4804 */ 4805 static unsigned long nr_free_zone_pages(int offset) 4806 { 4807 struct zoneref *z; 4808 struct zone *zone; 4809 4810 /* Just pick one node, since fallback list is circular */ 4811 unsigned long sum = 0; 4812 4813 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4814 4815 for_each_zone_zonelist(zone, z, zonelist, offset) { 4816 unsigned long size = zone_managed_pages(zone); 4817 unsigned long high = high_wmark_pages(zone); 4818 if (size > high) 4819 sum += size - high; 4820 } 4821 4822 return sum; 4823 } 4824 4825 /** 4826 * nr_free_buffer_pages - count number of pages beyond high watermark 4827 * 4828 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4829 * watermark within ZONE_DMA and ZONE_NORMAL. 4830 */ 4831 unsigned long nr_free_buffer_pages(void) 4832 { 4833 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4834 } 4835 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4836 4837 /** 4838 * nr_free_pagecache_pages - count number of pages beyond high watermark 4839 * 4840 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4841 * high watermark within all zones. 4842 */ 4843 unsigned long nr_free_pagecache_pages(void) 4844 { 4845 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4846 } 4847 4848 static inline void show_node(struct zone *zone) 4849 { 4850 if (IS_ENABLED(CONFIG_NUMA)) 4851 printk("Node %d ", zone_to_nid(zone)); 4852 } 4853 4854 long si_mem_available(void) 4855 { 4856 long available; 4857 unsigned long pagecache; 4858 unsigned long wmark_low = 0; 4859 unsigned long pages[NR_LRU_LISTS]; 4860 unsigned long reclaimable; 4861 struct zone *zone; 4862 int lru; 4863 4864 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 4865 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 4866 4867 for_each_zone(zone) 4868 wmark_low += low_wmark_pages(zone); 4869 4870 /* 4871 * Estimate the amount of memory available for userspace allocations, 4872 * without causing swapping. 4873 */ 4874 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 4875 4876 /* 4877 * Not all the page cache can be freed, otherwise the system will 4878 * start swapping. Assume at least half of the page cache, or the 4879 * low watermark worth of cache, needs to stay. 4880 */ 4881 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 4882 pagecache -= min(pagecache / 2, wmark_low); 4883 available += pagecache; 4884 4885 /* 4886 * Part of the reclaimable slab and other kernel memory consists of 4887 * items that are in use, and cannot be freed. Cap this estimate at the 4888 * low watermark. 4889 */ 4890 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) + 4891 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 4892 available += reclaimable - min(reclaimable / 2, wmark_low); 4893 4894 if (available < 0) 4895 available = 0; 4896 return available; 4897 } 4898 EXPORT_SYMBOL_GPL(si_mem_available); 4899 4900 void si_meminfo(struct sysinfo *val) 4901 { 4902 val->totalram = totalram_pages(); 4903 val->sharedram = global_node_page_state(NR_SHMEM); 4904 val->freeram = global_zone_page_state(NR_FREE_PAGES); 4905 val->bufferram = nr_blockdev_pages(); 4906 val->totalhigh = totalhigh_pages(); 4907 val->freehigh = nr_free_highpages(); 4908 val->mem_unit = PAGE_SIZE; 4909 } 4910 4911 EXPORT_SYMBOL(si_meminfo); 4912 4913 #ifdef CONFIG_NUMA 4914 void si_meminfo_node(struct sysinfo *val, int nid) 4915 { 4916 int zone_type; /* needs to be signed */ 4917 unsigned long managed_pages = 0; 4918 unsigned long managed_highpages = 0; 4919 unsigned long free_highpages = 0; 4920 pg_data_t *pgdat = NODE_DATA(nid); 4921 4922 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 4923 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 4924 val->totalram = managed_pages; 4925 val->sharedram = node_page_state(pgdat, NR_SHMEM); 4926 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 4927 #ifdef CONFIG_HIGHMEM 4928 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 4929 struct zone *zone = &pgdat->node_zones[zone_type]; 4930 4931 if (is_highmem(zone)) { 4932 managed_highpages += zone_managed_pages(zone); 4933 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 4934 } 4935 } 4936 val->totalhigh = managed_highpages; 4937 val->freehigh = free_highpages; 4938 #else 4939 val->totalhigh = managed_highpages; 4940 val->freehigh = free_highpages; 4941 #endif 4942 val->mem_unit = PAGE_SIZE; 4943 } 4944 #endif 4945 4946 /* 4947 * Determine whether the node should be displayed or not, depending on whether 4948 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 4949 */ 4950 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 4951 { 4952 if (!(flags & SHOW_MEM_FILTER_NODES)) 4953 return false; 4954 4955 /* 4956 * no node mask - aka implicit memory numa policy. Do not bother with 4957 * the synchronization - read_mems_allowed_begin - because we do not 4958 * have to be precise here. 4959 */ 4960 if (!nodemask) 4961 nodemask = &cpuset_current_mems_allowed; 4962 4963 return !node_isset(nid, *nodemask); 4964 } 4965 4966 #define K(x) ((x) << (PAGE_SHIFT-10)) 4967 4968 static void show_migration_types(unsigned char type) 4969 { 4970 static const char types[MIGRATE_TYPES] = { 4971 [MIGRATE_UNMOVABLE] = 'U', 4972 [MIGRATE_MOVABLE] = 'M', 4973 [MIGRATE_RECLAIMABLE] = 'E', 4974 [MIGRATE_HIGHATOMIC] = 'H', 4975 #ifdef CONFIG_CMA 4976 [MIGRATE_CMA] = 'C', 4977 #endif 4978 #ifdef CONFIG_MEMORY_ISOLATION 4979 [MIGRATE_ISOLATE] = 'I', 4980 #endif 4981 }; 4982 char tmp[MIGRATE_TYPES + 1]; 4983 char *p = tmp; 4984 int i; 4985 4986 for (i = 0; i < MIGRATE_TYPES; i++) { 4987 if (type & (1 << i)) 4988 *p++ = types[i]; 4989 } 4990 4991 *p = '\0'; 4992 printk(KERN_CONT "(%s) ", tmp); 4993 } 4994 4995 /* 4996 * Show free area list (used inside shift_scroll-lock stuff) 4997 * We also calculate the percentage fragmentation. We do this by counting the 4998 * memory on each free list with the exception of the first item on the list. 4999 * 5000 * Bits in @filter: 5001 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5002 * cpuset. 5003 */ 5004 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5005 { 5006 unsigned long free_pcp = 0; 5007 int cpu; 5008 struct zone *zone; 5009 pg_data_t *pgdat; 5010 5011 for_each_populated_zone(zone) { 5012 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5013 continue; 5014 5015 for_each_online_cpu(cpu) 5016 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5017 } 5018 5019 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5020 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5021 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 5022 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5023 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5024 " free:%lu free_pcp:%lu free_cma:%lu\n", 5025 global_node_page_state(NR_ACTIVE_ANON), 5026 global_node_page_state(NR_INACTIVE_ANON), 5027 global_node_page_state(NR_ISOLATED_ANON), 5028 global_node_page_state(NR_ACTIVE_FILE), 5029 global_node_page_state(NR_INACTIVE_FILE), 5030 global_node_page_state(NR_ISOLATED_FILE), 5031 global_node_page_state(NR_UNEVICTABLE), 5032 global_node_page_state(NR_FILE_DIRTY), 5033 global_node_page_state(NR_WRITEBACK), 5034 global_node_page_state(NR_UNSTABLE_NFS), 5035 global_node_page_state(NR_SLAB_RECLAIMABLE), 5036 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 5037 global_node_page_state(NR_FILE_MAPPED), 5038 global_node_page_state(NR_SHMEM), 5039 global_zone_page_state(NR_PAGETABLE), 5040 global_zone_page_state(NR_BOUNCE), 5041 global_zone_page_state(NR_FREE_PAGES), 5042 free_pcp, 5043 global_zone_page_state(NR_FREE_CMA_PAGES)); 5044 5045 for_each_online_pgdat(pgdat) { 5046 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5047 continue; 5048 5049 printk("Node %d" 5050 " active_anon:%lukB" 5051 " inactive_anon:%lukB" 5052 " active_file:%lukB" 5053 " inactive_file:%lukB" 5054 " unevictable:%lukB" 5055 " isolated(anon):%lukB" 5056 " isolated(file):%lukB" 5057 " mapped:%lukB" 5058 " dirty:%lukB" 5059 " writeback:%lukB" 5060 " shmem:%lukB" 5061 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5062 " shmem_thp: %lukB" 5063 " shmem_pmdmapped: %lukB" 5064 " anon_thp: %lukB" 5065 #endif 5066 " writeback_tmp:%lukB" 5067 " unstable:%lukB" 5068 " all_unreclaimable? %s" 5069 "\n", 5070 pgdat->node_id, 5071 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5072 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5073 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5074 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5075 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5076 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5077 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5078 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5079 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5080 K(node_page_state(pgdat, NR_WRITEBACK)), 5081 K(node_page_state(pgdat, NR_SHMEM)), 5082 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5083 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5084 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5085 * HPAGE_PMD_NR), 5086 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5087 #endif 5088 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5089 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 5090 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5091 "yes" : "no"); 5092 } 5093 5094 for_each_populated_zone(zone) { 5095 int i; 5096 5097 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5098 continue; 5099 5100 free_pcp = 0; 5101 for_each_online_cpu(cpu) 5102 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5103 5104 show_node(zone); 5105 printk(KERN_CONT 5106 "%s" 5107 " free:%lukB" 5108 " min:%lukB" 5109 " low:%lukB" 5110 " high:%lukB" 5111 " active_anon:%lukB" 5112 " inactive_anon:%lukB" 5113 " active_file:%lukB" 5114 " inactive_file:%lukB" 5115 " unevictable:%lukB" 5116 " writepending:%lukB" 5117 " present:%lukB" 5118 " managed:%lukB" 5119 " mlocked:%lukB" 5120 " kernel_stack:%lukB" 5121 " pagetables:%lukB" 5122 " bounce:%lukB" 5123 " free_pcp:%lukB" 5124 " local_pcp:%ukB" 5125 " free_cma:%lukB" 5126 "\n", 5127 zone->name, 5128 K(zone_page_state(zone, NR_FREE_PAGES)), 5129 K(min_wmark_pages(zone)), 5130 K(low_wmark_pages(zone)), 5131 K(high_wmark_pages(zone)), 5132 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5133 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5134 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5135 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5136 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5137 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5138 K(zone->present_pages), 5139 K(zone_managed_pages(zone)), 5140 K(zone_page_state(zone, NR_MLOCK)), 5141 zone_page_state(zone, NR_KERNEL_STACK_KB), 5142 K(zone_page_state(zone, NR_PAGETABLE)), 5143 K(zone_page_state(zone, NR_BOUNCE)), 5144 K(free_pcp), 5145 K(this_cpu_read(zone->pageset->pcp.count)), 5146 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5147 printk("lowmem_reserve[]:"); 5148 for (i = 0; i < MAX_NR_ZONES; i++) 5149 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5150 printk(KERN_CONT "\n"); 5151 } 5152 5153 for_each_populated_zone(zone) { 5154 unsigned int order; 5155 unsigned long nr[MAX_ORDER], flags, total = 0; 5156 unsigned char types[MAX_ORDER]; 5157 5158 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5159 continue; 5160 show_node(zone); 5161 printk(KERN_CONT "%s: ", zone->name); 5162 5163 spin_lock_irqsave(&zone->lock, flags); 5164 for (order = 0; order < MAX_ORDER; order++) { 5165 struct free_area *area = &zone->free_area[order]; 5166 int type; 5167 5168 nr[order] = area->nr_free; 5169 total += nr[order] << order; 5170 5171 types[order] = 0; 5172 for (type = 0; type < MIGRATE_TYPES; type++) { 5173 if (!list_empty(&area->free_list[type])) 5174 types[order] |= 1 << type; 5175 } 5176 } 5177 spin_unlock_irqrestore(&zone->lock, flags); 5178 for (order = 0; order < MAX_ORDER; order++) { 5179 printk(KERN_CONT "%lu*%lukB ", 5180 nr[order], K(1UL) << order); 5181 if (nr[order]) 5182 show_migration_types(types[order]); 5183 } 5184 printk(KERN_CONT "= %lukB\n", K(total)); 5185 } 5186 5187 hugetlb_show_meminfo(); 5188 5189 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5190 5191 show_swap_cache_info(); 5192 } 5193 5194 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5195 { 5196 zoneref->zone = zone; 5197 zoneref->zone_idx = zone_idx(zone); 5198 } 5199 5200 /* 5201 * Builds allocation fallback zone lists. 5202 * 5203 * Add all populated zones of a node to the zonelist. 5204 */ 5205 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5206 { 5207 struct zone *zone; 5208 enum zone_type zone_type = MAX_NR_ZONES; 5209 int nr_zones = 0; 5210 5211 do { 5212 zone_type--; 5213 zone = pgdat->node_zones + zone_type; 5214 if (managed_zone(zone)) { 5215 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5216 check_highest_zone(zone_type); 5217 } 5218 } while (zone_type); 5219 5220 return nr_zones; 5221 } 5222 5223 #ifdef CONFIG_NUMA 5224 5225 static int __parse_numa_zonelist_order(char *s) 5226 { 5227 /* 5228 * We used to support different zonlists modes but they turned 5229 * out to be just not useful. Let's keep the warning in place 5230 * if somebody still use the cmd line parameter so that we do 5231 * not fail it silently 5232 */ 5233 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5234 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5235 return -EINVAL; 5236 } 5237 return 0; 5238 } 5239 5240 static __init int setup_numa_zonelist_order(char *s) 5241 { 5242 if (!s) 5243 return 0; 5244 5245 return __parse_numa_zonelist_order(s); 5246 } 5247 early_param("numa_zonelist_order", setup_numa_zonelist_order); 5248 5249 char numa_zonelist_order[] = "Node"; 5250 5251 /* 5252 * sysctl handler for numa_zonelist_order 5253 */ 5254 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5255 void __user *buffer, size_t *length, 5256 loff_t *ppos) 5257 { 5258 char *str; 5259 int ret; 5260 5261 if (!write) 5262 return proc_dostring(table, write, buffer, length, ppos); 5263 str = memdup_user_nul(buffer, 16); 5264 if (IS_ERR(str)) 5265 return PTR_ERR(str); 5266 5267 ret = __parse_numa_zonelist_order(str); 5268 kfree(str); 5269 return ret; 5270 } 5271 5272 5273 #define MAX_NODE_LOAD (nr_online_nodes) 5274 static int node_load[MAX_NUMNODES]; 5275 5276 /** 5277 * find_next_best_node - find the next node that should appear in a given node's fallback list 5278 * @node: node whose fallback list we're appending 5279 * @used_node_mask: nodemask_t of already used nodes 5280 * 5281 * We use a number of factors to determine which is the next node that should 5282 * appear on a given node's fallback list. The node should not have appeared 5283 * already in @node's fallback list, and it should be the next closest node 5284 * according to the distance array (which contains arbitrary distance values 5285 * from each node to each node in the system), and should also prefer nodes 5286 * with no CPUs, since presumably they'll have very little allocation pressure 5287 * on them otherwise. 5288 * It returns -1 if no node is found. 5289 */ 5290 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5291 { 5292 int n, val; 5293 int min_val = INT_MAX; 5294 int best_node = NUMA_NO_NODE; 5295 const struct cpumask *tmp = cpumask_of_node(0); 5296 5297 /* Use the local node if we haven't already */ 5298 if (!node_isset(node, *used_node_mask)) { 5299 node_set(node, *used_node_mask); 5300 return node; 5301 } 5302 5303 for_each_node_state(n, N_MEMORY) { 5304 5305 /* Don't want a node to appear more than once */ 5306 if (node_isset(n, *used_node_mask)) 5307 continue; 5308 5309 /* Use the distance array to find the distance */ 5310 val = node_distance(node, n); 5311 5312 /* Penalize nodes under us ("prefer the next node") */ 5313 val += (n < node); 5314 5315 /* Give preference to headless and unused nodes */ 5316 tmp = cpumask_of_node(n); 5317 if (!cpumask_empty(tmp)) 5318 val += PENALTY_FOR_NODE_WITH_CPUS; 5319 5320 /* Slight preference for less loaded node */ 5321 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5322 val += node_load[n]; 5323 5324 if (val < min_val) { 5325 min_val = val; 5326 best_node = n; 5327 } 5328 } 5329 5330 if (best_node >= 0) 5331 node_set(best_node, *used_node_mask); 5332 5333 return best_node; 5334 } 5335 5336 5337 /* 5338 * Build zonelists ordered by node and zones within node. 5339 * This results in maximum locality--normal zone overflows into local 5340 * DMA zone, if any--but risks exhausting DMA zone. 5341 */ 5342 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5343 unsigned nr_nodes) 5344 { 5345 struct zoneref *zonerefs; 5346 int i; 5347 5348 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5349 5350 for (i = 0; i < nr_nodes; i++) { 5351 int nr_zones; 5352 5353 pg_data_t *node = NODE_DATA(node_order[i]); 5354 5355 nr_zones = build_zonerefs_node(node, zonerefs); 5356 zonerefs += nr_zones; 5357 } 5358 zonerefs->zone = NULL; 5359 zonerefs->zone_idx = 0; 5360 } 5361 5362 /* 5363 * Build gfp_thisnode zonelists 5364 */ 5365 static void build_thisnode_zonelists(pg_data_t *pgdat) 5366 { 5367 struct zoneref *zonerefs; 5368 int nr_zones; 5369 5370 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5371 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5372 zonerefs += nr_zones; 5373 zonerefs->zone = NULL; 5374 zonerefs->zone_idx = 0; 5375 } 5376 5377 /* 5378 * Build zonelists ordered by zone and nodes within zones. 5379 * This results in conserving DMA zone[s] until all Normal memory is 5380 * exhausted, but results in overflowing to remote node while memory 5381 * may still exist in local DMA zone. 5382 */ 5383 5384 static void build_zonelists(pg_data_t *pgdat) 5385 { 5386 static int node_order[MAX_NUMNODES]; 5387 int node, load, nr_nodes = 0; 5388 nodemask_t used_mask; 5389 int local_node, prev_node; 5390 5391 /* NUMA-aware ordering of nodes */ 5392 local_node = pgdat->node_id; 5393 load = nr_online_nodes; 5394 prev_node = local_node; 5395 nodes_clear(used_mask); 5396 5397 memset(node_order, 0, sizeof(node_order)); 5398 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5399 /* 5400 * We don't want to pressure a particular node. 5401 * So adding penalty to the first node in same 5402 * distance group to make it round-robin. 5403 */ 5404 if (node_distance(local_node, node) != 5405 node_distance(local_node, prev_node)) 5406 node_load[node] = load; 5407 5408 node_order[nr_nodes++] = node; 5409 prev_node = node; 5410 load--; 5411 } 5412 5413 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5414 build_thisnode_zonelists(pgdat); 5415 } 5416 5417 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5418 /* 5419 * Return node id of node used for "local" allocations. 5420 * I.e., first node id of first zone in arg node's generic zonelist. 5421 * Used for initializing percpu 'numa_mem', which is used primarily 5422 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5423 */ 5424 int local_memory_node(int node) 5425 { 5426 struct zoneref *z; 5427 5428 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5429 gfp_zone(GFP_KERNEL), 5430 NULL); 5431 return zone_to_nid(z->zone); 5432 } 5433 #endif 5434 5435 static void setup_min_unmapped_ratio(void); 5436 static void setup_min_slab_ratio(void); 5437 #else /* CONFIG_NUMA */ 5438 5439 static void build_zonelists(pg_data_t *pgdat) 5440 { 5441 int node, local_node; 5442 struct zoneref *zonerefs; 5443 int nr_zones; 5444 5445 local_node = pgdat->node_id; 5446 5447 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5448 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5449 zonerefs += nr_zones; 5450 5451 /* 5452 * Now we build the zonelist so that it contains the zones 5453 * of all the other nodes. 5454 * We don't want to pressure a particular node, so when 5455 * building the zones for node N, we make sure that the 5456 * zones coming right after the local ones are those from 5457 * node N+1 (modulo N) 5458 */ 5459 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5460 if (!node_online(node)) 5461 continue; 5462 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5463 zonerefs += nr_zones; 5464 } 5465 for (node = 0; node < local_node; node++) { 5466 if (!node_online(node)) 5467 continue; 5468 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5469 zonerefs += nr_zones; 5470 } 5471 5472 zonerefs->zone = NULL; 5473 zonerefs->zone_idx = 0; 5474 } 5475 5476 #endif /* CONFIG_NUMA */ 5477 5478 /* 5479 * Boot pageset table. One per cpu which is going to be used for all 5480 * zones and all nodes. The parameters will be set in such a way 5481 * that an item put on a list will immediately be handed over to 5482 * the buddy list. This is safe since pageset manipulation is done 5483 * with interrupts disabled. 5484 * 5485 * The boot_pagesets must be kept even after bootup is complete for 5486 * unused processors and/or zones. They do play a role for bootstrapping 5487 * hotplugged processors. 5488 * 5489 * zoneinfo_show() and maybe other functions do 5490 * not check if the processor is online before following the pageset pointer. 5491 * Other parts of the kernel may not check if the zone is available. 5492 */ 5493 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5494 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5495 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5496 5497 static void __build_all_zonelists(void *data) 5498 { 5499 int nid; 5500 int __maybe_unused cpu; 5501 pg_data_t *self = data; 5502 static DEFINE_SPINLOCK(lock); 5503 5504 spin_lock(&lock); 5505 5506 #ifdef CONFIG_NUMA 5507 memset(node_load, 0, sizeof(node_load)); 5508 #endif 5509 5510 /* 5511 * This node is hotadded and no memory is yet present. So just 5512 * building zonelists is fine - no need to touch other nodes. 5513 */ 5514 if (self && !node_online(self->node_id)) { 5515 build_zonelists(self); 5516 } else { 5517 for_each_online_node(nid) { 5518 pg_data_t *pgdat = NODE_DATA(nid); 5519 5520 build_zonelists(pgdat); 5521 } 5522 5523 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5524 /* 5525 * We now know the "local memory node" for each node-- 5526 * i.e., the node of the first zone in the generic zonelist. 5527 * Set up numa_mem percpu variable for on-line cpus. During 5528 * boot, only the boot cpu should be on-line; we'll init the 5529 * secondary cpus' numa_mem as they come on-line. During 5530 * node/memory hotplug, we'll fixup all on-line cpus. 5531 */ 5532 for_each_online_cpu(cpu) 5533 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5534 #endif 5535 } 5536 5537 spin_unlock(&lock); 5538 } 5539 5540 static noinline void __init 5541 build_all_zonelists_init(void) 5542 { 5543 int cpu; 5544 5545 __build_all_zonelists(NULL); 5546 5547 /* 5548 * Initialize the boot_pagesets that are going to be used 5549 * for bootstrapping processors. The real pagesets for 5550 * each zone will be allocated later when the per cpu 5551 * allocator is available. 5552 * 5553 * boot_pagesets are used also for bootstrapping offline 5554 * cpus if the system is already booted because the pagesets 5555 * are needed to initialize allocators on a specific cpu too. 5556 * F.e. the percpu allocator needs the page allocator which 5557 * needs the percpu allocator in order to allocate its pagesets 5558 * (a chicken-egg dilemma). 5559 */ 5560 for_each_possible_cpu(cpu) 5561 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5562 5563 mminit_verify_zonelist(); 5564 cpuset_init_current_mems_allowed(); 5565 } 5566 5567 /* 5568 * unless system_state == SYSTEM_BOOTING. 5569 * 5570 * __ref due to call of __init annotated helper build_all_zonelists_init 5571 * [protected by SYSTEM_BOOTING]. 5572 */ 5573 void __ref build_all_zonelists(pg_data_t *pgdat) 5574 { 5575 if (system_state == SYSTEM_BOOTING) { 5576 build_all_zonelists_init(); 5577 } else { 5578 __build_all_zonelists(pgdat); 5579 /* cpuset refresh routine should be here */ 5580 } 5581 vm_total_pages = nr_free_pagecache_pages(); 5582 /* 5583 * Disable grouping by mobility if the number of pages in the 5584 * system is too low to allow the mechanism to work. It would be 5585 * more accurate, but expensive to check per-zone. This check is 5586 * made on memory-hotadd so a system can start with mobility 5587 * disabled and enable it later 5588 */ 5589 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5590 page_group_by_mobility_disabled = 1; 5591 else 5592 page_group_by_mobility_disabled = 0; 5593 5594 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n", 5595 nr_online_nodes, 5596 page_group_by_mobility_disabled ? "off" : "on", 5597 vm_total_pages); 5598 #ifdef CONFIG_NUMA 5599 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5600 #endif 5601 } 5602 5603 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 5604 static bool __meminit 5605 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 5606 { 5607 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5608 static struct memblock_region *r; 5609 5610 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5611 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 5612 for_each_memblock(memory, r) { 5613 if (*pfn < memblock_region_memory_end_pfn(r)) 5614 break; 5615 } 5616 } 5617 if (*pfn >= memblock_region_memory_base_pfn(r) && 5618 memblock_is_mirror(r)) { 5619 *pfn = memblock_region_memory_end_pfn(r); 5620 return true; 5621 } 5622 } 5623 #endif 5624 return false; 5625 } 5626 5627 /* 5628 * Initially all pages are reserved - free ones are freed 5629 * up by memblock_free_all() once the early boot process is 5630 * done. Non-atomic initialization, single-pass. 5631 */ 5632 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5633 unsigned long start_pfn, enum memmap_context context, 5634 struct vmem_altmap *altmap) 5635 { 5636 unsigned long pfn, end_pfn = start_pfn + size; 5637 struct page *page; 5638 5639 if (highest_memmap_pfn < end_pfn - 1) 5640 highest_memmap_pfn = end_pfn - 1; 5641 5642 #ifdef CONFIG_ZONE_DEVICE 5643 /* 5644 * Honor reservation requested by the driver for this ZONE_DEVICE 5645 * memory. We limit the total number of pages to initialize to just 5646 * those that might contain the memory mapping. We will defer the 5647 * ZONE_DEVICE page initialization until after we have released 5648 * the hotplug lock. 5649 */ 5650 if (zone == ZONE_DEVICE) { 5651 if (!altmap) 5652 return; 5653 5654 if (start_pfn == altmap->base_pfn) 5655 start_pfn += altmap->reserve; 5656 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5657 } 5658 #endif 5659 5660 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5661 /* 5662 * There can be holes in boot-time mem_map[]s handed to this 5663 * function. They do not exist on hotplugged memory. 5664 */ 5665 if (context == MEMMAP_EARLY) { 5666 if (!early_pfn_valid(pfn)) 5667 continue; 5668 if (!early_pfn_in_nid(pfn, nid)) 5669 continue; 5670 if (overlap_memmap_init(zone, &pfn)) 5671 continue; 5672 if (defer_init(nid, pfn, end_pfn)) 5673 break; 5674 } 5675 5676 page = pfn_to_page(pfn); 5677 __init_single_page(page, pfn, zone, nid); 5678 if (context == MEMMAP_HOTPLUG) 5679 __SetPageReserved(page); 5680 5681 /* 5682 * Mark the block movable so that blocks are reserved for 5683 * movable at startup. This will force kernel allocations 5684 * to reserve their blocks rather than leaking throughout 5685 * the address space during boot when many long-lived 5686 * kernel allocations are made. 5687 * 5688 * bitmap is created for zone's valid pfn range. but memmap 5689 * can be created for invalid pages (for alignment) 5690 * check here not to call set_pageblock_migratetype() against 5691 * pfn out of zone. 5692 */ 5693 if (!(pfn & (pageblock_nr_pages - 1))) { 5694 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5695 cond_resched(); 5696 } 5697 } 5698 #ifdef CONFIG_SPARSEMEM 5699 /* 5700 * If the zone does not span the rest of the section then 5701 * we should at least initialize those pages. Otherwise we 5702 * could blow up on a poisoned page in some paths which depend 5703 * on full sections being initialized (e.g. memory hotplug). 5704 */ 5705 while (end_pfn % PAGES_PER_SECTION) { 5706 __init_single_page(pfn_to_page(end_pfn), end_pfn, zone, nid); 5707 end_pfn++; 5708 } 5709 #endif 5710 } 5711 5712 #ifdef CONFIG_ZONE_DEVICE 5713 void __ref memmap_init_zone_device(struct zone *zone, 5714 unsigned long start_pfn, 5715 unsigned long size, 5716 struct dev_pagemap *pgmap) 5717 { 5718 unsigned long pfn, end_pfn = start_pfn + size; 5719 struct pglist_data *pgdat = zone->zone_pgdat; 5720 unsigned long zone_idx = zone_idx(zone); 5721 unsigned long start = jiffies; 5722 int nid = pgdat->node_id; 5723 5724 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone))) 5725 return; 5726 5727 /* 5728 * The call to memmap_init_zone should have already taken care 5729 * of the pages reserved for the memmap, so we can just jump to 5730 * the end of that region and start processing the device pages. 5731 */ 5732 if (pgmap->altmap_valid) { 5733 struct vmem_altmap *altmap = &pgmap->altmap; 5734 5735 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5736 size = end_pfn - start_pfn; 5737 } 5738 5739 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5740 struct page *page = pfn_to_page(pfn); 5741 5742 __init_single_page(page, pfn, zone_idx, nid); 5743 5744 /* 5745 * Mark page reserved as it will need to wait for onlining 5746 * phase for it to be fully associated with a zone. 5747 * 5748 * We can use the non-atomic __set_bit operation for setting 5749 * the flag as we are still initializing the pages. 5750 */ 5751 __SetPageReserved(page); 5752 5753 /* 5754 * ZONE_DEVICE pages union ->lru with a ->pgmap back 5755 * pointer and hmm_data. It is a bug if a ZONE_DEVICE 5756 * page is ever freed or placed on a driver-private list. 5757 */ 5758 page->pgmap = pgmap; 5759 page->hmm_data = 0; 5760 5761 /* 5762 * Mark the block movable so that blocks are reserved for 5763 * movable at startup. This will force kernel allocations 5764 * to reserve their blocks rather than leaking throughout 5765 * the address space during boot when many long-lived 5766 * kernel allocations are made. 5767 * 5768 * bitmap is created for zone's valid pfn range. but memmap 5769 * can be created for invalid pages (for alignment) 5770 * check here not to call set_pageblock_migratetype() against 5771 * pfn out of zone. 5772 * 5773 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 5774 * because this is done early in sparse_add_one_section 5775 */ 5776 if (!(pfn & (pageblock_nr_pages - 1))) { 5777 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5778 cond_resched(); 5779 } 5780 } 5781 5782 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev), 5783 size, jiffies_to_msecs(jiffies - start)); 5784 } 5785 5786 #endif 5787 static void __meminit zone_init_free_lists(struct zone *zone) 5788 { 5789 unsigned int order, t; 5790 for_each_migratetype_order(order, t) { 5791 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5792 zone->free_area[order].nr_free = 0; 5793 } 5794 } 5795 5796 void __meminit __weak memmap_init(unsigned long size, int nid, 5797 unsigned long zone, unsigned long start_pfn) 5798 { 5799 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL); 5800 } 5801 5802 static int zone_batchsize(struct zone *zone) 5803 { 5804 #ifdef CONFIG_MMU 5805 int batch; 5806 5807 /* 5808 * The per-cpu-pages pools are set to around 1000th of the 5809 * size of the zone. 5810 */ 5811 batch = zone_managed_pages(zone) / 1024; 5812 /* But no more than a meg. */ 5813 if (batch * PAGE_SIZE > 1024 * 1024) 5814 batch = (1024 * 1024) / PAGE_SIZE; 5815 batch /= 4; /* We effectively *= 4 below */ 5816 if (batch < 1) 5817 batch = 1; 5818 5819 /* 5820 * Clamp the batch to a 2^n - 1 value. Having a power 5821 * of 2 value was found to be more likely to have 5822 * suboptimal cache aliasing properties in some cases. 5823 * 5824 * For example if 2 tasks are alternately allocating 5825 * batches of pages, one task can end up with a lot 5826 * of pages of one half of the possible page colors 5827 * and the other with pages of the other colors. 5828 */ 5829 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5830 5831 return batch; 5832 5833 #else 5834 /* The deferral and batching of frees should be suppressed under NOMMU 5835 * conditions. 5836 * 5837 * The problem is that NOMMU needs to be able to allocate large chunks 5838 * of contiguous memory as there's no hardware page translation to 5839 * assemble apparent contiguous memory from discontiguous pages. 5840 * 5841 * Queueing large contiguous runs of pages for batching, however, 5842 * causes the pages to actually be freed in smaller chunks. As there 5843 * can be a significant delay between the individual batches being 5844 * recycled, this leads to the once large chunks of space being 5845 * fragmented and becoming unavailable for high-order allocations. 5846 */ 5847 return 0; 5848 #endif 5849 } 5850 5851 /* 5852 * pcp->high and pcp->batch values are related and dependent on one another: 5853 * ->batch must never be higher then ->high. 5854 * The following function updates them in a safe manner without read side 5855 * locking. 5856 * 5857 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5858 * those fields changing asynchronously (acording the the above rule). 5859 * 5860 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5861 * outside of boot time (or some other assurance that no concurrent updaters 5862 * exist). 5863 */ 5864 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5865 unsigned long batch) 5866 { 5867 /* start with a fail safe value for batch */ 5868 pcp->batch = 1; 5869 smp_wmb(); 5870 5871 /* Update high, then batch, in order */ 5872 pcp->high = high; 5873 smp_wmb(); 5874 5875 pcp->batch = batch; 5876 } 5877 5878 /* a companion to pageset_set_high() */ 5879 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 5880 { 5881 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 5882 } 5883 5884 static void pageset_init(struct per_cpu_pageset *p) 5885 { 5886 struct per_cpu_pages *pcp; 5887 int migratetype; 5888 5889 memset(p, 0, sizeof(*p)); 5890 5891 pcp = &p->pcp; 5892 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 5893 INIT_LIST_HEAD(&pcp->lists[migratetype]); 5894 } 5895 5896 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 5897 { 5898 pageset_init(p); 5899 pageset_set_batch(p, batch); 5900 } 5901 5902 /* 5903 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 5904 * to the value high for the pageset p. 5905 */ 5906 static void pageset_set_high(struct per_cpu_pageset *p, 5907 unsigned long high) 5908 { 5909 unsigned long batch = max(1UL, high / 4); 5910 if ((high / 4) > (PAGE_SHIFT * 8)) 5911 batch = PAGE_SHIFT * 8; 5912 5913 pageset_update(&p->pcp, high, batch); 5914 } 5915 5916 static void pageset_set_high_and_batch(struct zone *zone, 5917 struct per_cpu_pageset *pcp) 5918 { 5919 if (percpu_pagelist_fraction) 5920 pageset_set_high(pcp, 5921 (zone_managed_pages(zone) / 5922 percpu_pagelist_fraction)); 5923 else 5924 pageset_set_batch(pcp, zone_batchsize(zone)); 5925 } 5926 5927 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 5928 { 5929 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 5930 5931 pageset_init(pcp); 5932 pageset_set_high_and_batch(zone, pcp); 5933 } 5934 5935 void __meminit setup_zone_pageset(struct zone *zone) 5936 { 5937 int cpu; 5938 zone->pageset = alloc_percpu(struct per_cpu_pageset); 5939 for_each_possible_cpu(cpu) 5940 zone_pageset_init(zone, cpu); 5941 } 5942 5943 /* 5944 * Allocate per cpu pagesets and initialize them. 5945 * Before this call only boot pagesets were available. 5946 */ 5947 void __init setup_per_cpu_pageset(void) 5948 { 5949 struct pglist_data *pgdat; 5950 struct zone *zone; 5951 5952 for_each_populated_zone(zone) 5953 setup_zone_pageset(zone); 5954 5955 for_each_online_pgdat(pgdat) 5956 pgdat->per_cpu_nodestats = 5957 alloc_percpu(struct per_cpu_nodestat); 5958 } 5959 5960 static __meminit void zone_pcp_init(struct zone *zone) 5961 { 5962 /* 5963 * per cpu subsystem is not up at this point. The following code 5964 * relies on the ability of the linker to provide the 5965 * offset of a (static) per cpu variable into the per cpu area. 5966 */ 5967 zone->pageset = &boot_pageset; 5968 5969 if (populated_zone(zone)) 5970 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 5971 zone->name, zone->present_pages, 5972 zone_batchsize(zone)); 5973 } 5974 5975 void __meminit init_currently_empty_zone(struct zone *zone, 5976 unsigned long zone_start_pfn, 5977 unsigned long size) 5978 { 5979 struct pglist_data *pgdat = zone->zone_pgdat; 5980 int zone_idx = zone_idx(zone) + 1; 5981 5982 if (zone_idx > pgdat->nr_zones) 5983 pgdat->nr_zones = zone_idx; 5984 5985 zone->zone_start_pfn = zone_start_pfn; 5986 5987 mminit_dprintk(MMINIT_TRACE, "memmap_init", 5988 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 5989 pgdat->node_id, 5990 (unsigned long)zone_idx(zone), 5991 zone_start_pfn, (zone_start_pfn + size)); 5992 5993 zone_init_free_lists(zone); 5994 zone->initialized = 1; 5995 } 5996 5997 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5998 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 5999 6000 /* 6001 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 6002 */ 6003 int __meminit __early_pfn_to_nid(unsigned long pfn, 6004 struct mminit_pfnnid_cache *state) 6005 { 6006 unsigned long start_pfn, end_pfn; 6007 int nid; 6008 6009 if (state->last_start <= pfn && pfn < state->last_end) 6010 return state->last_nid; 6011 6012 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 6013 if (nid != -1) { 6014 state->last_start = start_pfn; 6015 state->last_end = end_pfn; 6016 state->last_nid = nid; 6017 } 6018 6019 return nid; 6020 } 6021 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 6022 6023 /** 6024 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 6025 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 6026 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 6027 * 6028 * If an architecture guarantees that all ranges registered contain no holes 6029 * and may be freed, this this function may be used instead of calling 6030 * memblock_free_early_nid() manually. 6031 */ 6032 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 6033 { 6034 unsigned long start_pfn, end_pfn; 6035 int i, this_nid; 6036 6037 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 6038 start_pfn = min(start_pfn, max_low_pfn); 6039 end_pfn = min(end_pfn, max_low_pfn); 6040 6041 if (start_pfn < end_pfn) 6042 memblock_free_early_nid(PFN_PHYS(start_pfn), 6043 (end_pfn - start_pfn) << PAGE_SHIFT, 6044 this_nid); 6045 } 6046 } 6047 6048 /** 6049 * sparse_memory_present_with_active_regions - Call memory_present for each active range 6050 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 6051 * 6052 * If an architecture guarantees that all ranges registered contain no holes and may 6053 * be freed, this function may be used instead of calling memory_present() manually. 6054 */ 6055 void __init sparse_memory_present_with_active_regions(int nid) 6056 { 6057 unsigned long start_pfn, end_pfn; 6058 int i, this_nid; 6059 6060 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 6061 memory_present(this_nid, start_pfn, end_pfn); 6062 } 6063 6064 /** 6065 * get_pfn_range_for_nid - Return the start and end page frames for a node 6066 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6067 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6068 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6069 * 6070 * It returns the start and end page frame of a node based on information 6071 * provided by memblock_set_node(). If called for a node 6072 * with no available memory, a warning is printed and the start and end 6073 * PFNs will be 0. 6074 */ 6075 void __init get_pfn_range_for_nid(unsigned int nid, 6076 unsigned long *start_pfn, unsigned long *end_pfn) 6077 { 6078 unsigned long this_start_pfn, this_end_pfn; 6079 int i; 6080 6081 *start_pfn = -1UL; 6082 *end_pfn = 0; 6083 6084 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6085 *start_pfn = min(*start_pfn, this_start_pfn); 6086 *end_pfn = max(*end_pfn, this_end_pfn); 6087 } 6088 6089 if (*start_pfn == -1UL) 6090 *start_pfn = 0; 6091 } 6092 6093 /* 6094 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6095 * assumption is made that zones within a node are ordered in monotonic 6096 * increasing memory addresses so that the "highest" populated zone is used 6097 */ 6098 static void __init find_usable_zone_for_movable(void) 6099 { 6100 int zone_index; 6101 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6102 if (zone_index == ZONE_MOVABLE) 6103 continue; 6104 6105 if (arch_zone_highest_possible_pfn[zone_index] > 6106 arch_zone_lowest_possible_pfn[zone_index]) 6107 break; 6108 } 6109 6110 VM_BUG_ON(zone_index == -1); 6111 movable_zone = zone_index; 6112 } 6113 6114 /* 6115 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6116 * because it is sized independent of architecture. Unlike the other zones, 6117 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6118 * in each node depending on the size of each node and how evenly kernelcore 6119 * is distributed. This helper function adjusts the zone ranges 6120 * provided by the architecture for a given node by using the end of the 6121 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6122 * zones within a node are in order of monotonic increases memory addresses 6123 */ 6124 static void __init adjust_zone_range_for_zone_movable(int nid, 6125 unsigned long zone_type, 6126 unsigned long node_start_pfn, 6127 unsigned long node_end_pfn, 6128 unsigned long *zone_start_pfn, 6129 unsigned long *zone_end_pfn) 6130 { 6131 /* Only adjust if ZONE_MOVABLE is on this node */ 6132 if (zone_movable_pfn[nid]) { 6133 /* Size ZONE_MOVABLE */ 6134 if (zone_type == ZONE_MOVABLE) { 6135 *zone_start_pfn = zone_movable_pfn[nid]; 6136 *zone_end_pfn = min(node_end_pfn, 6137 arch_zone_highest_possible_pfn[movable_zone]); 6138 6139 /* Adjust for ZONE_MOVABLE starting within this range */ 6140 } else if (!mirrored_kernelcore && 6141 *zone_start_pfn < zone_movable_pfn[nid] && 6142 *zone_end_pfn > zone_movable_pfn[nid]) { 6143 *zone_end_pfn = zone_movable_pfn[nid]; 6144 6145 /* Check if this whole range is within ZONE_MOVABLE */ 6146 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6147 *zone_start_pfn = *zone_end_pfn; 6148 } 6149 } 6150 6151 /* 6152 * Return the number of pages a zone spans in a node, including holes 6153 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6154 */ 6155 static unsigned long __init zone_spanned_pages_in_node(int nid, 6156 unsigned long zone_type, 6157 unsigned long node_start_pfn, 6158 unsigned long node_end_pfn, 6159 unsigned long *zone_start_pfn, 6160 unsigned long *zone_end_pfn, 6161 unsigned long *ignored) 6162 { 6163 /* When hotadd a new node from cpu_up(), the node should be empty */ 6164 if (!node_start_pfn && !node_end_pfn) 6165 return 0; 6166 6167 /* Get the start and end of the zone */ 6168 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 6169 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 6170 adjust_zone_range_for_zone_movable(nid, zone_type, 6171 node_start_pfn, node_end_pfn, 6172 zone_start_pfn, zone_end_pfn); 6173 6174 /* Check that this node has pages within the zone's required range */ 6175 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6176 return 0; 6177 6178 /* Move the zone boundaries inside the node if necessary */ 6179 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6180 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6181 6182 /* Return the spanned pages */ 6183 return *zone_end_pfn - *zone_start_pfn; 6184 } 6185 6186 /* 6187 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6188 * then all holes in the requested range will be accounted for. 6189 */ 6190 unsigned long __init __absent_pages_in_range(int nid, 6191 unsigned long range_start_pfn, 6192 unsigned long range_end_pfn) 6193 { 6194 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6195 unsigned long start_pfn, end_pfn; 6196 int i; 6197 6198 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6199 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6200 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6201 nr_absent -= end_pfn - start_pfn; 6202 } 6203 return nr_absent; 6204 } 6205 6206 /** 6207 * absent_pages_in_range - Return number of page frames in holes within a range 6208 * @start_pfn: The start PFN to start searching for holes 6209 * @end_pfn: The end PFN to stop searching for holes 6210 * 6211 * It returns the number of pages frames in memory holes within a range. 6212 */ 6213 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6214 unsigned long end_pfn) 6215 { 6216 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6217 } 6218 6219 /* Return the number of page frames in holes in a zone on a node */ 6220 static unsigned long __init zone_absent_pages_in_node(int nid, 6221 unsigned long zone_type, 6222 unsigned long node_start_pfn, 6223 unsigned long node_end_pfn, 6224 unsigned long *ignored) 6225 { 6226 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6227 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6228 unsigned long zone_start_pfn, zone_end_pfn; 6229 unsigned long nr_absent; 6230 6231 /* When hotadd a new node from cpu_up(), the node should be empty */ 6232 if (!node_start_pfn && !node_end_pfn) 6233 return 0; 6234 6235 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6236 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6237 6238 adjust_zone_range_for_zone_movable(nid, zone_type, 6239 node_start_pfn, node_end_pfn, 6240 &zone_start_pfn, &zone_end_pfn); 6241 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6242 6243 /* 6244 * ZONE_MOVABLE handling. 6245 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6246 * and vice versa. 6247 */ 6248 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6249 unsigned long start_pfn, end_pfn; 6250 struct memblock_region *r; 6251 6252 for_each_memblock(memory, r) { 6253 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6254 zone_start_pfn, zone_end_pfn); 6255 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6256 zone_start_pfn, zone_end_pfn); 6257 6258 if (zone_type == ZONE_MOVABLE && 6259 memblock_is_mirror(r)) 6260 nr_absent += end_pfn - start_pfn; 6261 6262 if (zone_type == ZONE_NORMAL && 6263 !memblock_is_mirror(r)) 6264 nr_absent += end_pfn - start_pfn; 6265 } 6266 } 6267 6268 return nr_absent; 6269 } 6270 6271 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6272 static inline unsigned long __init zone_spanned_pages_in_node(int nid, 6273 unsigned long zone_type, 6274 unsigned long node_start_pfn, 6275 unsigned long node_end_pfn, 6276 unsigned long *zone_start_pfn, 6277 unsigned long *zone_end_pfn, 6278 unsigned long *zones_size) 6279 { 6280 unsigned int zone; 6281 6282 *zone_start_pfn = node_start_pfn; 6283 for (zone = 0; zone < zone_type; zone++) 6284 *zone_start_pfn += zones_size[zone]; 6285 6286 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 6287 6288 return zones_size[zone_type]; 6289 } 6290 6291 static inline unsigned long __init zone_absent_pages_in_node(int nid, 6292 unsigned long zone_type, 6293 unsigned long node_start_pfn, 6294 unsigned long node_end_pfn, 6295 unsigned long *zholes_size) 6296 { 6297 if (!zholes_size) 6298 return 0; 6299 6300 return zholes_size[zone_type]; 6301 } 6302 6303 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6304 6305 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6306 unsigned long node_start_pfn, 6307 unsigned long node_end_pfn, 6308 unsigned long *zones_size, 6309 unsigned long *zholes_size) 6310 { 6311 unsigned long realtotalpages = 0, totalpages = 0; 6312 enum zone_type i; 6313 6314 for (i = 0; i < MAX_NR_ZONES; i++) { 6315 struct zone *zone = pgdat->node_zones + i; 6316 unsigned long zone_start_pfn, zone_end_pfn; 6317 unsigned long size, real_size; 6318 6319 size = zone_spanned_pages_in_node(pgdat->node_id, i, 6320 node_start_pfn, 6321 node_end_pfn, 6322 &zone_start_pfn, 6323 &zone_end_pfn, 6324 zones_size); 6325 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 6326 node_start_pfn, node_end_pfn, 6327 zholes_size); 6328 if (size) 6329 zone->zone_start_pfn = zone_start_pfn; 6330 else 6331 zone->zone_start_pfn = 0; 6332 zone->spanned_pages = size; 6333 zone->present_pages = real_size; 6334 6335 totalpages += size; 6336 realtotalpages += real_size; 6337 } 6338 6339 pgdat->node_spanned_pages = totalpages; 6340 pgdat->node_present_pages = realtotalpages; 6341 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6342 realtotalpages); 6343 } 6344 6345 #ifndef CONFIG_SPARSEMEM 6346 /* 6347 * Calculate the size of the zone->blockflags rounded to an unsigned long 6348 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6349 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6350 * round what is now in bits to nearest long in bits, then return it in 6351 * bytes. 6352 */ 6353 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6354 { 6355 unsigned long usemapsize; 6356 6357 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6358 usemapsize = roundup(zonesize, pageblock_nr_pages); 6359 usemapsize = usemapsize >> pageblock_order; 6360 usemapsize *= NR_PAGEBLOCK_BITS; 6361 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6362 6363 return usemapsize / 8; 6364 } 6365 6366 static void __ref setup_usemap(struct pglist_data *pgdat, 6367 struct zone *zone, 6368 unsigned long zone_start_pfn, 6369 unsigned long zonesize) 6370 { 6371 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6372 zone->pageblock_flags = NULL; 6373 if (usemapsize) 6374 zone->pageblock_flags = 6375 memblock_alloc_node_nopanic(usemapsize, 6376 pgdat->node_id); 6377 } 6378 #else 6379 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6380 unsigned long zone_start_pfn, unsigned long zonesize) {} 6381 #endif /* CONFIG_SPARSEMEM */ 6382 6383 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6384 6385 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6386 void __init set_pageblock_order(void) 6387 { 6388 unsigned int order; 6389 6390 /* Check that pageblock_nr_pages has not already been setup */ 6391 if (pageblock_order) 6392 return; 6393 6394 if (HPAGE_SHIFT > PAGE_SHIFT) 6395 order = HUGETLB_PAGE_ORDER; 6396 else 6397 order = MAX_ORDER - 1; 6398 6399 /* 6400 * Assume the largest contiguous order of interest is a huge page. 6401 * This value may be variable depending on boot parameters on IA64 and 6402 * powerpc. 6403 */ 6404 pageblock_order = order; 6405 } 6406 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6407 6408 /* 6409 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6410 * is unused as pageblock_order is set at compile-time. See 6411 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6412 * the kernel config 6413 */ 6414 void __init set_pageblock_order(void) 6415 { 6416 } 6417 6418 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6419 6420 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6421 unsigned long present_pages) 6422 { 6423 unsigned long pages = spanned_pages; 6424 6425 /* 6426 * Provide a more accurate estimation if there are holes within 6427 * the zone and SPARSEMEM is in use. If there are holes within the 6428 * zone, each populated memory region may cost us one or two extra 6429 * memmap pages due to alignment because memmap pages for each 6430 * populated regions may not be naturally aligned on page boundary. 6431 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6432 */ 6433 if (spanned_pages > present_pages + (present_pages >> 4) && 6434 IS_ENABLED(CONFIG_SPARSEMEM)) 6435 pages = present_pages; 6436 6437 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6438 } 6439 6440 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6441 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6442 { 6443 spin_lock_init(&pgdat->split_queue_lock); 6444 INIT_LIST_HEAD(&pgdat->split_queue); 6445 pgdat->split_queue_len = 0; 6446 } 6447 #else 6448 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6449 #endif 6450 6451 #ifdef CONFIG_COMPACTION 6452 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6453 { 6454 init_waitqueue_head(&pgdat->kcompactd_wait); 6455 } 6456 #else 6457 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6458 #endif 6459 6460 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6461 { 6462 pgdat_resize_init(pgdat); 6463 6464 pgdat_init_split_queue(pgdat); 6465 pgdat_init_kcompactd(pgdat); 6466 6467 init_waitqueue_head(&pgdat->kswapd_wait); 6468 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6469 6470 pgdat_page_ext_init(pgdat); 6471 spin_lock_init(&pgdat->lru_lock); 6472 lruvec_init(node_lruvec(pgdat)); 6473 } 6474 6475 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6476 unsigned long remaining_pages) 6477 { 6478 atomic_long_set(&zone->managed_pages, remaining_pages); 6479 zone_set_nid(zone, nid); 6480 zone->name = zone_names[idx]; 6481 zone->zone_pgdat = NODE_DATA(nid); 6482 spin_lock_init(&zone->lock); 6483 zone_seqlock_init(zone); 6484 zone_pcp_init(zone); 6485 } 6486 6487 /* 6488 * Set up the zone data structures 6489 * - init pgdat internals 6490 * - init all zones belonging to this node 6491 * 6492 * NOTE: this function is only called during memory hotplug 6493 */ 6494 #ifdef CONFIG_MEMORY_HOTPLUG 6495 void __ref free_area_init_core_hotplug(int nid) 6496 { 6497 enum zone_type z; 6498 pg_data_t *pgdat = NODE_DATA(nid); 6499 6500 pgdat_init_internals(pgdat); 6501 for (z = 0; z < MAX_NR_ZONES; z++) 6502 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6503 } 6504 #endif 6505 6506 /* 6507 * Set up the zone data structures: 6508 * - mark all pages reserved 6509 * - mark all memory queues empty 6510 * - clear the memory bitmaps 6511 * 6512 * NOTE: pgdat should get zeroed by caller. 6513 * NOTE: this function is only called during early init. 6514 */ 6515 static void __init free_area_init_core(struct pglist_data *pgdat) 6516 { 6517 enum zone_type j; 6518 int nid = pgdat->node_id; 6519 6520 pgdat_init_internals(pgdat); 6521 pgdat->per_cpu_nodestats = &boot_nodestats; 6522 6523 for (j = 0; j < MAX_NR_ZONES; j++) { 6524 struct zone *zone = pgdat->node_zones + j; 6525 unsigned long size, freesize, memmap_pages; 6526 unsigned long zone_start_pfn = zone->zone_start_pfn; 6527 6528 size = zone->spanned_pages; 6529 freesize = zone->present_pages; 6530 6531 /* 6532 * Adjust freesize so that it accounts for how much memory 6533 * is used by this zone for memmap. This affects the watermark 6534 * and per-cpu initialisations 6535 */ 6536 memmap_pages = calc_memmap_size(size, freesize); 6537 if (!is_highmem_idx(j)) { 6538 if (freesize >= memmap_pages) { 6539 freesize -= memmap_pages; 6540 if (memmap_pages) 6541 printk(KERN_DEBUG 6542 " %s zone: %lu pages used for memmap\n", 6543 zone_names[j], memmap_pages); 6544 } else 6545 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6546 zone_names[j], memmap_pages, freesize); 6547 } 6548 6549 /* Account for reserved pages */ 6550 if (j == 0 && freesize > dma_reserve) { 6551 freesize -= dma_reserve; 6552 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6553 zone_names[0], dma_reserve); 6554 } 6555 6556 if (!is_highmem_idx(j)) 6557 nr_kernel_pages += freesize; 6558 /* Charge for highmem memmap if there are enough kernel pages */ 6559 else if (nr_kernel_pages > memmap_pages * 2) 6560 nr_kernel_pages -= memmap_pages; 6561 nr_all_pages += freesize; 6562 6563 /* 6564 * Set an approximate value for lowmem here, it will be adjusted 6565 * when the bootmem allocator frees pages into the buddy system. 6566 * And all highmem pages will be managed by the buddy system. 6567 */ 6568 zone_init_internals(zone, j, nid, freesize); 6569 6570 if (!size) 6571 continue; 6572 6573 set_pageblock_order(); 6574 setup_usemap(pgdat, zone, zone_start_pfn, size); 6575 init_currently_empty_zone(zone, zone_start_pfn, size); 6576 memmap_init(size, nid, j, zone_start_pfn); 6577 } 6578 } 6579 6580 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6581 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6582 { 6583 unsigned long __maybe_unused start = 0; 6584 unsigned long __maybe_unused offset = 0; 6585 6586 /* Skip empty nodes */ 6587 if (!pgdat->node_spanned_pages) 6588 return; 6589 6590 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6591 offset = pgdat->node_start_pfn - start; 6592 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6593 if (!pgdat->node_mem_map) { 6594 unsigned long size, end; 6595 struct page *map; 6596 6597 /* 6598 * The zone's endpoints aren't required to be MAX_ORDER 6599 * aligned but the node_mem_map endpoints must be in order 6600 * for the buddy allocator to function correctly. 6601 */ 6602 end = pgdat_end_pfn(pgdat); 6603 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6604 size = (end - start) * sizeof(struct page); 6605 map = memblock_alloc_node_nopanic(size, pgdat->node_id); 6606 pgdat->node_mem_map = map + offset; 6607 } 6608 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6609 __func__, pgdat->node_id, (unsigned long)pgdat, 6610 (unsigned long)pgdat->node_mem_map); 6611 #ifndef CONFIG_NEED_MULTIPLE_NODES 6612 /* 6613 * With no DISCONTIG, the global mem_map is just set as node 0's 6614 */ 6615 if (pgdat == NODE_DATA(0)) { 6616 mem_map = NODE_DATA(0)->node_mem_map; 6617 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6618 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6619 mem_map -= offset; 6620 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6621 } 6622 #endif 6623 } 6624 #else 6625 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6626 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6627 6628 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6629 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 6630 { 6631 pgdat->first_deferred_pfn = ULONG_MAX; 6632 } 6633 #else 6634 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 6635 #endif 6636 6637 void __init free_area_init_node(int nid, unsigned long *zones_size, 6638 unsigned long node_start_pfn, 6639 unsigned long *zholes_size) 6640 { 6641 pg_data_t *pgdat = NODE_DATA(nid); 6642 unsigned long start_pfn = 0; 6643 unsigned long end_pfn = 0; 6644 6645 /* pg_data_t should be reset to zero when it's allocated */ 6646 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6647 6648 pgdat->node_id = nid; 6649 pgdat->node_start_pfn = node_start_pfn; 6650 pgdat->per_cpu_nodestats = NULL; 6651 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6652 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6653 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6654 (u64)start_pfn << PAGE_SHIFT, 6655 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6656 #else 6657 start_pfn = node_start_pfn; 6658 #endif 6659 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6660 zones_size, zholes_size); 6661 6662 alloc_node_mem_map(pgdat); 6663 pgdat_set_deferred_range(pgdat); 6664 6665 free_area_init_core(pgdat); 6666 } 6667 6668 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 6669 /* 6670 * Zero all valid struct pages in range [spfn, epfn), return number of struct 6671 * pages zeroed 6672 */ 6673 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn) 6674 { 6675 unsigned long pfn; 6676 u64 pgcnt = 0; 6677 6678 for (pfn = spfn; pfn < epfn; pfn++) { 6679 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6680 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6681 + pageblock_nr_pages - 1; 6682 continue; 6683 } 6684 mm_zero_struct_page(pfn_to_page(pfn)); 6685 pgcnt++; 6686 } 6687 6688 return pgcnt; 6689 } 6690 6691 /* 6692 * Only struct pages that are backed by physical memory are zeroed and 6693 * initialized by going through __init_single_page(). But, there are some 6694 * struct pages which are reserved in memblock allocator and their fields 6695 * may be accessed (for example page_to_pfn() on some configuration accesses 6696 * flags). We must explicitly zero those struct pages. 6697 * 6698 * This function also addresses a similar issue where struct pages are left 6699 * uninitialized because the physical address range is not covered by 6700 * memblock.memory or memblock.reserved. That could happen when memblock 6701 * layout is manually configured via memmap=. 6702 */ 6703 void __init zero_resv_unavail(void) 6704 { 6705 phys_addr_t start, end; 6706 u64 i, pgcnt; 6707 phys_addr_t next = 0; 6708 6709 /* 6710 * Loop through unavailable ranges not covered by memblock.memory. 6711 */ 6712 pgcnt = 0; 6713 for_each_mem_range(i, &memblock.memory, NULL, 6714 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) { 6715 if (next < start) 6716 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start)); 6717 next = end; 6718 } 6719 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn); 6720 6721 /* 6722 * Struct pages that do not have backing memory. This could be because 6723 * firmware is using some of this memory, or for some other reasons. 6724 */ 6725 if (pgcnt) 6726 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 6727 } 6728 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 6729 6730 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6731 6732 #if MAX_NUMNODES > 1 6733 /* 6734 * Figure out the number of possible node ids. 6735 */ 6736 void __init setup_nr_node_ids(void) 6737 { 6738 unsigned int highest; 6739 6740 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6741 nr_node_ids = highest + 1; 6742 } 6743 #endif 6744 6745 /** 6746 * node_map_pfn_alignment - determine the maximum internode alignment 6747 * 6748 * This function should be called after node map is populated and sorted. 6749 * It calculates the maximum power of two alignment which can distinguish 6750 * all the nodes. 6751 * 6752 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6753 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6754 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6755 * shifted, 1GiB is enough and this function will indicate so. 6756 * 6757 * This is used to test whether pfn -> nid mapping of the chosen memory 6758 * model has fine enough granularity to avoid incorrect mapping for the 6759 * populated node map. 6760 * 6761 * Returns the determined alignment in pfn's. 0 if there is no alignment 6762 * requirement (single node). 6763 */ 6764 unsigned long __init node_map_pfn_alignment(void) 6765 { 6766 unsigned long accl_mask = 0, last_end = 0; 6767 unsigned long start, end, mask; 6768 int last_nid = -1; 6769 int i, nid; 6770 6771 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6772 if (!start || last_nid < 0 || last_nid == nid) { 6773 last_nid = nid; 6774 last_end = end; 6775 continue; 6776 } 6777 6778 /* 6779 * Start with a mask granular enough to pin-point to the 6780 * start pfn and tick off bits one-by-one until it becomes 6781 * too coarse to separate the current node from the last. 6782 */ 6783 mask = ~((1 << __ffs(start)) - 1); 6784 while (mask && last_end <= (start & (mask << 1))) 6785 mask <<= 1; 6786 6787 /* accumulate all internode masks */ 6788 accl_mask |= mask; 6789 } 6790 6791 /* convert mask to number of pages */ 6792 return ~accl_mask + 1; 6793 } 6794 6795 /* Find the lowest pfn for a node */ 6796 static unsigned long __init find_min_pfn_for_node(int nid) 6797 { 6798 unsigned long min_pfn = ULONG_MAX; 6799 unsigned long start_pfn; 6800 int i; 6801 6802 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6803 min_pfn = min(min_pfn, start_pfn); 6804 6805 if (min_pfn == ULONG_MAX) { 6806 pr_warn("Could not find start_pfn for node %d\n", nid); 6807 return 0; 6808 } 6809 6810 return min_pfn; 6811 } 6812 6813 /** 6814 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6815 * 6816 * It returns the minimum PFN based on information provided via 6817 * memblock_set_node(). 6818 */ 6819 unsigned long __init find_min_pfn_with_active_regions(void) 6820 { 6821 return find_min_pfn_for_node(MAX_NUMNODES); 6822 } 6823 6824 /* 6825 * early_calculate_totalpages() 6826 * Sum pages in active regions for movable zone. 6827 * Populate N_MEMORY for calculating usable_nodes. 6828 */ 6829 static unsigned long __init early_calculate_totalpages(void) 6830 { 6831 unsigned long totalpages = 0; 6832 unsigned long start_pfn, end_pfn; 6833 int i, nid; 6834 6835 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6836 unsigned long pages = end_pfn - start_pfn; 6837 6838 totalpages += pages; 6839 if (pages) 6840 node_set_state(nid, N_MEMORY); 6841 } 6842 return totalpages; 6843 } 6844 6845 /* 6846 * Find the PFN the Movable zone begins in each node. Kernel memory 6847 * is spread evenly between nodes as long as the nodes have enough 6848 * memory. When they don't, some nodes will have more kernelcore than 6849 * others 6850 */ 6851 static void __init find_zone_movable_pfns_for_nodes(void) 6852 { 6853 int i, nid; 6854 unsigned long usable_startpfn; 6855 unsigned long kernelcore_node, kernelcore_remaining; 6856 /* save the state before borrow the nodemask */ 6857 nodemask_t saved_node_state = node_states[N_MEMORY]; 6858 unsigned long totalpages = early_calculate_totalpages(); 6859 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 6860 struct memblock_region *r; 6861 6862 /* Need to find movable_zone earlier when movable_node is specified. */ 6863 find_usable_zone_for_movable(); 6864 6865 /* 6866 * If movable_node is specified, ignore kernelcore and movablecore 6867 * options. 6868 */ 6869 if (movable_node_is_enabled()) { 6870 for_each_memblock(memory, r) { 6871 if (!memblock_is_hotpluggable(r)) 6872 continue; 6873 6874 nid = r->nid; 6875 6876 usable_startpfn = PFN_DOWN(r->base); 6877 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6878 min(usable_startpfn, zone_movable_pfn[nid]) : 6879 usable_startpfn; 6880 } 6881 6882 goto out2; 6883 } 6884 6885 /* 6886 * If kernelcore=mirror is specified, ignore movablecore option 6887 */ 6888 if (mirrored_kernelcore) { 6889 bool mem_below_4gb_not_mirrored = false; 6890 6891 for_each_memblock(memory, r) { 6892 if (memblock_is_mirror(r)) 6893 continue; 6894 6895 nid = r->nid; 6896 6897 usable_startpfn = memblock_region_memory_base_pfn(r); 6898 6899 if (usable_startpfn < 0x100000) { 6900 mem_below_4gb_not_mirrored = true; 6901 continue; 6902 } 6903 6904 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6905 min(usable_startpfn, zone_movable_pfn[nid]) : 6906 usable_startpfn; 6907 } 6908 6909 if (mem_below_4gb_not_mirrored) 6910 pr_warn("This configuration results in unmirrored kernel memory."); 6911 6912 goto out2; 6913 } 6914 6915 /* 6916 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 6917 * amount of necessary memory. 6918 */ 6919 if (required_kernelcore_percent) 6920 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 6921 10000UL; 6922 if (required_movablecore_percent) 6923 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 6924 10000UL; 6925 6926 /* 6927 * If movablecore= was specified, calculate what size of 6928 * kernelcore that corresponds so that memory usable for 6929 * any allocation type is evenly spread. If both kernelcore 6930 * and movablecore are specified, then the value of kernelcore 6931 * will be used for required_kernelcore if it's greater than 6932 * what movablecore would have allowed. 6933 */ 6934 if (required_movablecore) { 6935 unsigned long corepages; 6936 6937 /* 6938 * Round-up so that ZONE_MOVABLE is at least as large as what 6939 * was requested by the user 6940 */ 6941 required_movablecore = 6942 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 6943 required_movablecore = min(totalpages, required_movablecore); 6944 corepages = totalpages - required_movablecore; 6945 6946 required_kernelcore = max(required_kernelcore, corepages); 6947 } 6948 6949 /* 6950 * If kernelcore was not specified or kernelcore size is larger 6951 * than totalpages, there is no ZONE_MOVABLE. 6952 */ 6953 if (!required_kernelcore || required_kernelcore >= totalpages) 6954 goto out; 6955 6956 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 6957 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 6958 6959 restart: 6960 /* Spread kernelcore memory as evenly as possible throughout nodes */ 6961 kernelcore_node = required_kernelcore / usable_nodes; 6962 for_each_node_state(nid, N_MEMORY) { 6963 unsigned long start_pfn, end_pfn; 6964 6965 /* 6966 * Recalculate kernelcore_node if the division per node 6967 * now exceeds what is necessary to satisfy the requested 6968 * amount of memory for the kernel 6969 */ 6970 if (required_kernelcore < kernelcore_node) 6971 kernelcore_node = required_kernelcore / usable_nodes; 6972 6973 /* 6974 * As the map is walked, we track how much memory is usable 6975 * by the kernel using kernelcore_remaining. When it is 6976 * 0, the rest of the node is usable by ZONE_MOVABLE 6977 */ 6978 kernelcore_remaining = kernelcore_node; 6979 6980 /* Go through each range of PFNs within this node */ 6981 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6982 unsigned long size_pages; 6983 6984 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 6985 if (start_pfn >= end_pfn) 6986 continue; 6987 6988 /* Account for what is only usable for kernelcore */ 6989 if (start_pfn < usable_startpfn) { 6990 unsigned long kernel_pages; 6991 kernel_pages = min(end_pfn, usable_startpfn) 6992 - start_pfn; 6993 6994 kernelcore_remaining -= min(kernel_pages, 6995 kernelcore_remaining); 6996 required_kernelcore -= min(kernel_pages, 6997 required_kernelcore); 6998 6999 /* Continue if range is now fully accounted */ 7000 if (end_pfn <= usable_startpfn) { 7001 7002 /* 7003 * Push zone_movable_pfn to the end so 7004 * that if we have to rebalance 7005 * kernelcore across nodes, we will 7006 * not double account here 7007 */ 7008 zone_movable_pfn[nid] = end_pfn; 7009 continue; 7010 } 7011 start_pfn = usable_startpfn; 7012 } 7013 7014 /* 7015 * The usable PFN range for ZONE_MOVABLE is from 7016 * start_pfn->end_pfn. Calculate size_pages as the 7017 * number of pages used as kernelcore 7018 */ 7019 size_pages = end_pfn - start_pfn; 7020 if (size_pages > kernelcore_remaining) 7021 size_pages = kernelcore_remaining; 7022 zone_movable_pfn[nid] = start_pfn + size_pages; 7023 7024 /* 7025 * Some kernelcore has been met, update counts and 7026 * break if the kernelcore for this node has been 7027 * satisfied 7028 */ 7029 required_kernelcore -= min(required_kernelcore, 7030 size_pages); 7031 kernelcore_remaining -= size_pages; 7032 if (!kernelcore_remaining) 7033 break; 7034 } 7035 } 7036 7037 /* 7038 * If there is still required_kernelcore, we do another pass with one 7039 * less node in the count. This will push zone_movable_pfn[nid] further 7040 * along on the nodes that still have memory until kernelcore is 7041 * satisfied 7042 */ 7043 usable_nodes--; 7044 if (usable_nodes && required_kernelcore > usable_nodes) 7045 goto restart; 7046 7047 out2: 7048 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7049 for (nid = 0; nid < MAX_NUMNODES; nid++) 7050 zone_movable_pfn[nid] = 7051 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7052 7053 out: 7054 /* restore the node_state */ 7055 node_states[N_MEMORY] = saved_node_state; 7056 } 7057 7058 /* Any regular or high memory on that node ? */ 7059 static void check_for_memory(pg_data_t *pgdat, int nid) 7060 { 7061 enum zone_type zone_type; 7062 7063 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7064 struct zone *zone = &pgdat->node_zones[zone_type]; 7065 if (populated_zone(zone)) { 7066 if (IS_ENABLED(CONFIG_HIGHMEM)) 7067 node_set_state(nid, N_HIGH_MEMORY); 7068 if (zone_type <= ZONE_NORMAL) 7069 node_set_state(nid, N_NORMAL_MEMORY); 7070 break; 7071 } 7072 } 7073 } 7074 7075 /** 7076 * free_area_init_nodes - Initialise all pg_data_t and zone data 7077 * @max_zone_pfn: an array of max PFNs for each zone 7078 * 7079 * This will call free_area_init_node() for each active node in the system. 7080 * Using the page ranges provided by memblock_set_node(), the size of each 7081 * zone in each node and their holes is calculated. If the maximum PFN 7082 * between two adjacent zones match, it is assumed that the zone is empty. 7083 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7084 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7085 * starts where the previous one ended. For example, ZONE_DMA32 starts 7086 * at arch_max_dma_pfn. 7087 */ 7088 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 7089 { 7090 unsigned long start_pfn, end_pfn; 7091 int i, nid; 7092 7093 /* Record where the zone boundaries are */ 7094 memset(arch_zone_lowest_possible_pfn, 0, 7095 sizeof(arch_zone_lowest_possible_pfn)); 7096 memset(arch_zone_highest_possible_pfn, 0, 7097 sizeof(arch_zone_highest_possible_pfn)); 7098 7099 start_pfn = find_min_pfn_with_active_regions(); 7100 7101 for (i = 0; i < MAX_NR_ZONES; i++) { 7102 if (i == ZONE_MOVABLE) 7103 continue; 7104 7105 end_pfn = max(max_zone_pfn[i], start_pfn); 7106 arch_zone_lowest_possible_pfn[i] = start_pfn; 7107 arch_zone_highest_possible_pfn[i] = end_pfn; 7108 7109 start_pfn = end_pfn; 7110 } 7111 7112 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7113 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7114 find_zone_movable_pfns_for_nodes(); 7115 7116 /* Print out the zone ranges */ 7117 pr_info("Zone ranges:\n"); 7118 for (i = 0; i < MAX_NR_ZONES; i++) { 7119 if (i == ZONE_MOVABLE) 7120 continue; 7121 pr_info(" %-8s ", zone_names[i]); 7122 if (arch_zone_lowest_possible_pfn[i] == 7123 arch_zone_highest_possible_pfn[i]) 7124 pr_cont("empty\n"); 7125 else 7126 pr_cont("[mem %#018Lx-%#018Lx]\n", 7127 (u64)arch_zone_lowest_possible_pfn[i] 7128 << PAGE_SHIFT, 7129 ((u64)arch_zone_highest_possible_pfn[i] 7130 << PAGE_SHIFT) - 1); 7131 } 7132 7133 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7134 pr_info("Movable zone start for each node\n"); 7135 for (i = 0; i < MAX_NUMNODES; i++) { 7136 if (zone_movable_pfn[i]) 7137 pr_info(" Node %d: %#018Lx\n", i, 7138 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7139 } 7140 7141 /* Print out the early node map */ 7142 pr_info("Early memory node ranges\n"); 7143 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 7144 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7145 (u64)start_pfn << PAGE_SHIFT, 7146 ((u64)end_pfn << PAGE_SHIFT) - 1); 7147 7148 /* Initialise every node */ 7149 mminit_verify_pageflags_layout(); 7150 setup_nr_node_ids(); 7151 zero_resv_unavail(); 7152 for_each_online_node(nid) { 7153 pg_data_t *pgdat = NODE_DATA(nid); 7154 free_area_init_node(nid, NULL, 7155 find_min_pfn_for_node(nid), NULL); 7156 7157 /* Any memory on that node */ 7158 if (pgdat->node_present_pages) 7159 node_set_state(nid, N_MEMORY); 7160 check_for_memory(pgdat, nid); 7161 } 7162 } 7163 7164 static int __init cmdline_parse_core(char *p, unsigned long *core, 7165 unsigned long *percent) 7166 { 7167 unsigned long long coremem; 7168 char *endptr; 7169 7170 if (!p) 7171 return -EINVAL; 7172 7173 /* Value may be a percentage of total memory, otherwise bytes */ 7174 coremem = simple_strtoull(p, &endptr, 0); 7175 if (*endptr == '%') { 7176 /* Paranoid check for percent values greater than 100 */ 7177 WARN_ON(coremem > 100); 7178 7179 *percent = coremem; 7180 } else { 7181 coremem = memparse(p, &p); 7182 /* Paranoid check that UL is enough for the coremem value */ 7183 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7184 7185 *core = coremem >> PAGE_SHIFT; 7186 *percent = 0UL; 7187 } 7188 return 0; 7189 } 7190 7191 /* 7192 * kernelcore=size sets the amount of memory for use for allocations that 7193 * cannot be reclaimed or migrated. 7194 */ 7195 static int __init cmdline_parse_kernelcore(char *p) 7196 { 7197 /* parse kernelcore=mirror */ 7198 if (parse_option_str(p, "mirror")) { 7199 mirrored_kernelcore = true; 7200 return 0; 7201 } 7202 7203 return cmdline_parse_core(p, &required_kernelcore, 7204 &required_kernelcore_percent); 7205 } 7206 7207 /* 7208 * movablecore=size sets the amount of memory for use for allocations that 7209 * can be reclaimed or migrated. 7210 */ 7211 static int __init cmdline_parse_movablecore(char *p) 7212 { 7213 return cmdline_parse_core(p, &required_movablecore, 7214 &required_movablecore_percent); 7215 } 7216 7217 early_param("kernelcore", cmdline_parse_kernelcore); 7218 early_param("movablecore", cmdline_parse_movablecore); 7219 7220 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 7221 7222 void adjust_managed_page_count(struct page *page, long count) 7223 { 7224 atomic_long_add(count, &page_zone(page)->managed_pages); 7225 totalram_pages_add(count); 7226 #ifdef CONFIG_HIGHMEM 7227 if (PageHighMem(page)) 7228 totalhigh_pages_add(count); 7229 #endif 7230 } 7231 EXPORT_SYMBOL(adjust_managed_page_count); 7232 7233 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7234 { 7235 void *pos; 7236 unsigned long pages = 0; 7237 7238 start = (void *)PAGE_ALIGN((unsigned long)start); 7239 end = (void *)((unsigned long)end & PAGE_MASK); 7240 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7241 struct page *page = virt_to_page(pos); 7242 void *direct_map_addr; 7243 7244 /* 7245 * 'direct_map_addr' might be different from 'pos' 7246 * because some architectures' virt_to_page() 7247 * work with aliases. Getting the direct map 7248 * address ensures that we get a _writeable_ 7249 * alias for the memset(). 7250 */ 7251 direct_map_addr = page_address(page); 7252 if ((unsigned int)poison <= 0xFF) 7253 memset(direct_map_addr, poison, PAGE_SIZE); 7254 7255 free_reserved_page(page); 7256 } 7257 7258 if (pages && s) 7259 pr_info("Freeing %s memory: %ldK\n", 7260 s, pages << (PAGE_SHIFT - 10)); 7261 7262 return pages; 7263 } 7264 EXPORT_SYMBOL(free_reserved_area); 7265 7266 #ifdef CONFIG_HIGHMEM 7267 void free_highmem_page(struct page *page) 7268 { 7269 __free_reserved_page(page); 7270 totalram_pages_inc(); 7271 atomic_long_inc(&page_zone(page)->managed_pages); 7272 totalhigh_pages_inc(); 7273 } 7274 #endif 7275 7276 7277 void __init mem_init_print_info(const char *str) 7278 { 7279 unsigned long physpages, codesize, datasize, rosize, bss_size; 7280 unsigned long init_code_size, init_data_size; 7281 7282 physpages = get_num_physpages(); 7283 codesize = _etext - _stext; 7284 datasize = _edata - _sdata; 7285 rosize = __end_rodata - __start_rodata; 7286 bss_size = __bss_stop - __bss_start; 7287 init_data_size = __init_end - __init_begin; 7288 init_code_size = _einittext - _sinittext; 7289 7290 /* 7291 * Detect special cases and adjust section sizes accordingly: 7292 * 1) .init.* may be embedded into .data sections 7293 * 2) .init.text.* may be out of [__init_begin, __init_end], 7294 * please refer to arch/tile/kernel/vmlinux.lds.S. 7295 * 3) .rodata.* may be embedded into .text or .data sections. 7296 */ 7297 #define adj_init_size(start, end, size, pos, adj) \ 7298 do { \ 7299 if (start <= pos && pos < end && size > adj) \ 7300 size -= adj; \ 7301 } while (0) 7302 7303 adj_init_size(__init_begin, __init_end, init_data_size, 7304 _sinittext, init_code_size); 7305 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7306 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7307 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7308 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7309 7310 #undef adj_init_size 7311 7312 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7313 #ifdef CONFIG_HIGHMEM 7314 ", %luK highmem" 7315 #endif 7316 "%s%s)\n", 7317 nr_free_pages() << (PAGE_SHIFT - 10), 7318 physpages << (PAGE_SHIFT - 10), 7319 codesize >> 10, datasize >> 10, rosize >> 10, 7320 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7321 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7322 totalcma_pages << (PAGE_SHIFT - 10), 7323 #ifdef CONFIG_HIGHMEM 7324 totalhigh_pages() << (PAGE_SHIFT - 10), 7325 #endif 7326 str ? ", " : "", str ? str : ""); 7327 } 7328 7329 /** 7330 * set_dma_reserve - set the specified number of pages reserved in the first zone 7331 * @new_dma_reserve: The number of pages to mark reserved 7332 * 7333 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7334 * In the DMA zone, a significant percentage may be consumed by kernel image 7335 * and other unfreeable allocations which can skew the watermarks badly. This 7336 * function may optionally be used to account for unfreeable pages in the 7337 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7338 * smaller per-cpu batchsize. 7339 */ 7340 void __init set_dma_reserve(unsigned long new_dma_reserve) 7341 { 7342 dma_reserve = new_dma_reserve; 7343 } 7344 7345 void __init free_area_init(unsigned long *zones_size) 7346 { 7347 zero_resv_unavail(); 7348 free_area_init_node(0, zones_size, 7349 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 7350 } 7351 7352 static int page_alloc_cpu_dead(unsigned int cpu) 7353 { 7354 7355 lru_add_drain_cpu(cpu); 7356 drain_pages(cpu); 7357 7358 /* 7359 * Spill the event counters of the dead processor 7360 * into the current processors event counters. 7361 * This artificially elevates the count of the current 7362 * processor. 7363 */ 7364 vm_events_fold_cpu(cpu); 7365 7366 /* 7367 * Zero the differential counters of the dead processor 7368 * so that the vm statistics are consistent. 7369 * 7370 * This is only okay since the processor is dead and cannot 7371 * race with what we are doing. 7372 */ 7373 cpu_vm_stats_fold(cpu); 7374 return 0; 7375 } 7376 7377 void __init page_alloc_init(void) 7378 { 7379 int ret; 7380 7381 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7382 "mm/page_alloc:dead", NULL, 7383 page_alloc_cpu_dead); 7384 WARN_ON(ret < 0); 7385 } 7386 7387 /* 7388 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7389 * or min_free_kbytes changes. 7390 */ 7391 static void calculate_totalreserve_pages(void) 7392 { 7393 struct pglist_data *pgdat; 7394 unsigned long reserve_pages = 0; 7395 enum zone_type i, j; 7396 7397 for_each_online_pgdat(pgdat) { 7398 7399 pgdat->totalreserve_pages = 0; 7400 7401 for (i = 0; i < MAX_NR_ZONES; i++) { 7402 struct zone *zone = pgdat->node_zones + i; 7403 long max = 0; 7404 unsigned long managed_pages = zone_managed_pages(zone); 7405 7406 /* Find valid and maximum lowmem_reserve in the zone */ 7407 for (j = i; j < MAX_NR_ZONES; j++) { 7408 if (zone->lowmem_reserve[j] > max) 7409 max = zone->lowmem_reserve[j]; 7410 } 7411 7412 /* we treat the high watermark as reserved pages. */ 7413 max += high_wmark_pages(zone); 7414 7415 if (max > managed_pages) 7416 max = managed_pages; 7417 7418 pgdat->totalreserve_pages += max; 7419 7420 reserve_pages += max; 7421 } 7422 } 7423 totalreserve_pages = reserve_pages; 7424 } 7425 7426 /* 7427 * setup_per_zone_lowmem_reserve - called whenever 7428 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7429 * has a correct pages reserved value, so an adequate number of 7430 * pages are left in the zone after a successful __alloc_pages(). 7431 */ 7432 static void setup_per_zone_lowmem_reserve(void) 7433 { 7434 struct pglist_data *pgdat; 7435 enum zone_type j, idx; 7436 7437 for_each_online_pgdat(pgdat) { 7438 for (j = 0; j < MAX_NR_ZONES; j++) { 7439 struct zone *zone = pgdat->node_zones + j; 7440 unsigned long managed_pages = zone_managed_pages(zone); 7441 7442 zone->lowmem_reserve[j] = 0; 7443 7444 idx = j; 7445 while (idx) { 7446 struct zone *lower_zone; 7447 7448 idx--; 7449 lower_zone = pgdat->node_zones + idx; 7450 7451 if (sysctl_lowmem_reserve_ratio[idx] < 1) { 7452 sysctl_lowmem_reserve_ratio[idx] = 0; 7453 lower_zone->lowmem_reserve[j] = 0; 7454 } else { 7455 lower_zone->lowmem_reserve[j] = 7456 managed_pages / sysctl_lowmem_reserve_ratio[idx]; 7457 } 7458 managed_pages += zone_managed_pages(lower_zone); 7459 } 7460 } 7461 } 7462 7463 /* update totalreserve_pages */ 7464 calculate_totalreserve_pages(); 7465 } 7466 7467 static void __setup_per_zone_wmarks(void) 7468 { 7469 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7470 unsigned long lowmem_pages = 0; 7471 struct zone *zone; 7472 unsigned long flags; 7473 7474 /* Calculate total number of !ZONE_HIGHMEM pages */ 7475 for_each_zone(zone) { 7476 if (!is_highmem(zone)) 7477 lowmem_pages += zone_managed_pages(zone); 7478 } 7479 7480 for_each_zone(zone) { 7481 u64 tmp; 7482 7483 spin_lock_irqsave(&zone->lock, flags); 7484 tmp = (u64)pages_min * zone_managed_pages(zone); 7485 do_div(tmp, lowmem_pages); 7486 if (is_highmem(zone)) { 7487 /* 7488 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7489 * need highmem pages, so cap pages_min to a small 7490 * value here. 7491 * 7492 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7493 * deltas control asynch page reclaim, and so should 7494 * not be capped for highmem. 7495 */ 7496 unsigned long min_pages; 7497 7498 min_pages = zone_managed_pages(zone) / 1024; 7499 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7500 zone->_watermark[WMARK_MIN] = min_pages; 7501 } else { 7502 /* 7503 * If it's a lowmem zone, reserve a number of pages 7504 * proportionate to the zone's size. 7505 */ 7506 zone->_watermark[WMARK_MIN] = tmp; 7507 } 7508 7509 /* 7510 * Set the kswapd watermarks distance according to the 7511 * scale factor in proportion to available memory, but 7512 * ensure a minimum size on small systems. 7513 */ 7514 tmp = max_t(u64, tmp >> 2, 7515 mult_frac(zone_managed_pages(zone), 7516 watermark_scale_factor, 10000)); 7517 7518 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7519 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7520 zone->watermark_boost = 0; 7521 7522 spin_unlock_irqrestore(&zone->lock, flags); 7523 } 7524 7525 /* update totalreserve_pages */ 7526 calculate_totalreserve_pages(); 7527 } 7528 7529 /** 7530 * setup_per_zone_wmarks - called when min_free_kbytes changes 7531 * or when memory is hot-{added|removed} 7532 * 7533 * Ensures that the watermark[min,low,high] values for each zone are set 7534 * correctly with respect to min_free_kbytes. 7535 */ 7536 void setup_per_zone_wmarks(void) 7537 { 7538 static DEFINE_SPINLOCK(lock); 7539 7540 spin_lock(&lock); 7541 __setup_per_zone_wmarks(); 7542 spin_unlock(&lock); 7543 } 7544 7545 /* 7546 * Initialise min_free_kbytes. 7547 * 7548 * For small machines we want it small (128k min). For large machines 7549 * we want it large (64MB max). But it is not linear, because network 7550 * bandwidth does not increase linearly with machine size. We use 7551 * 7552 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7553 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7554 * 7555 * which yields 7556 * 7557 * 16MB: 512k 7558 * 32MB: 724k 7559 * 64MB: 1024k 7560 * 128MB: 1448k 7561 * 256MB: 2048k 7562 * 512MB: 2896k 7563 * 1024MB: 4096k 7564 * 2048MB: 5792k 7565 * 4096MB: 8192k 7566 * 8192MB: 11584k 7567 * 16384MB: 16384k 7568 */ 7569 int __meminit init_per_zone_wmark_min(void) 7570 { 7571 unsigned long lowmem_kbytes; 7572 int new_min_free_kbytes; 7573 7574 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7575 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7576 7577 if (new_min_free_kbytes > user_min_free_kbytes) { 7578 min_free_kbytes = new_min_free_kbytes; 7579 if (min_free_kbytes < 128) 7580 min_free_kbytes = 128; 7581 if (min_free_kbytes > 65536) 7582 min_free_kbytes = 65536; 7583 } else { 7584 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7585 new_min_free_kbytes, user_min_free_kbytes); 7586 } 7587 setup_per_zone_wmarks(); 7588 refresh_zone_stat_thresholds(); 7589 setup_per_zone_lowmem_reserve(); 7590 7591 #ifdef CONFIG_NUMA 7592 setup_min_unmapped_ratio(); 7593 setup_min_slab_ratio(); 7594 #endif 7595 7596 return 0; 7597 } 7598 core_initcall(init_per_zone_wmark_min) 7599 7600 /* 7601 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7602 * that we can call two helper functions whenever min_free_kbytes 7603 * changes. 7604 */ 7605 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7606 void __user *buffer, size_t *length, loff_t *ppos) 7607 { 7608 int rc; 7609 7610 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7611 if (rc) 7612 return rc; 7613 7614 if (write) { 7615 user_min_free_kbytes = min_free_kbytes; 7616 setup_per_zone_wmarks(); 7617 } 7618 return 0; 7619 } 7620 7621 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write, 7622 void __user *buffer, size_t *length, loff_t *ppos) 7623 { 7624 int rc; 7625 7626 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7627 if (rc) 7628 return rc; 7629 7630 return 0; 7631 } 7632 7633 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7634 void __user *buffer, size_t *length, loff_t *ppos) 7635 { 7636 int rc; 7637 7638 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7639 if (rc) 7640 return rc; 7641 7642 if (write) 7643 setup_per_zone_wmarks(); 7644 7645 return 0; 7646 } 7647 7648 #ifdef CONFIG_NUMA 7649 static void setup_min_unmapped_ratio(void) 7650 { 7651 pg_data_t *pgdat; 7652 struct zone *zone; 7653 7654 for_each_online_pgdat(pgdat) 7655 pgdat->min_unmapped_pages = 0; 7656 7657 for_each_zone(zone) 7658 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 7659 sysctl_min_unmapped_ratio) / 100; 7660 } 7661 7662 7663 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7664 void __user *buffer, size_t *length, loff_t *ppos) 7665 { 7666 int rc; 7667 7668 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7669 if (rc) 7670 return rc; 7671 7672 setup_min_unmapped_ratio(); 7673 7674 return 0; 7675 } 7676 7677 static void setup_min_slab_ratio(void) 7678 { 7679 pg_data_t *pgdat; 7680 struct zone *zone; 7681 7682 for_each_online_pgdat(pgdat) 7683 pgdat->min_slab_pages = 0; 7684 7685 for_each_zone(zone) 7686 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 7687 sysctl_min_slab_ratio) / 100; 7688 } 7689 7690 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7691 void __user *buffer, size_t *length, loff_t *ppos) 7692 { 7693 int rc; 7694 7695 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7696 if (rc) 7697 return rc; 7698 7699 setup_min_slab_ratio(); 7700 7701 return 0; 7702 } 7703 #endif 7704 7705 /* 7706 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7707 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7708 * whenever sysctl_lowmem_reserve_ratio changes. 7709 * 7710 * The reserve ratio obviously has absolutely no relation with the 7711 * minimum watermarks. The lowmem reserve ratio can only make sense 7712 * if in function of the boot time zone sizes. 7713 */ 7714 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7715 void __user *buffer, size_t *length, loff_t *ppos) 7716 { 7717 proc_dointvec_minmax(table, write, buffer, length, ppos); 7718 setup_per_zone_lowmem_reserve(); 7719 return 0; 7720 } 7721 7722 /* 7723 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7724 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7725 * pagelist can have before it gets flushed back to buddy allocator. 7726 */ 7727 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7728 void __user *buffer, size_t *length, loff_t *ppos) 7729 { 7730 struct zone *zone; 7731 int old_percpu_pagelist_fraction; 7732 int ret; 7733 7734 mutex_lock(&pcp_batch_high_lock); 7735 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7736 7737 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7738 if (!write || ret < 0) 7739 goto out; 7740 7741 /* Sanity checking to avoid pcp imbalance */ 7742 if (percpu_pagelist_fraction && 7743 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7744 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7745 ret = -EINVAL; 7746 goto out; 7747 } 7748 7749 /* No change? */ 7750 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7751 goto out; 7752 7753 for_each_populated_zone(zone) { 7754 unsigned int cpu; 7755 7756 for_each_possible_cpu(cpu) 7757 pageset_set_high_and_batch(zone, 7758 per_cpu_ptr(zone->pageset, cpu)); 7759 } 7760 out: 7761 mutex_unlock(&pcp_batch_high_lock); 7762 return ret; 7763 } 7764 7765 #ifdef CONFIG_NUMA 7766 int hashdist = HASHDIST_DEFAULT; 7767 7768 static int __init set_hashdist(char *str) 7769 { 7770 if (!str) 7771 return 0; 7772 hashdist = simple_strtoul(str, &str, 0); 7773 return 1; 7774 } 7775 __setup("hashdist=", set_hashdist); 7776 #endif 7777 7778 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 7779 /* 7780 * Returns the number of pages that arch has reserved but 7781 * is not known to alloc_large_system_hash(). 7782 */ 7783 static unsigned long __init arch_reserved_kernel_pages(void) 7784 { 7785 return 0; 7786 } 7787 #endif 7788 7789 /* 7790 * Adaptive scale is meant to reduce sizes of hash tables on large memory 7791 * machines. As memory size is increased the scale is also increased but at 7792 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 7793 * quadruples the scale is increased by one, which means the size of hash table 7794 * only doubles, instead of quadrupling as well. 7795 * Because 32-bit systems cannot have large physical memory, where this scaling 7796 * makes sense, it is disabled on such platforms. 7797 */ 7798 #if __BITS_PER_LONG > 32 7799 #define ADAPT_SCALE_BASE (64ul << 30) 7800 #define ADAPT_SCALE_SHIFT 2 7801 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 7802 #endif 7803 7804 /* 7805 * allocate a large system hash table from bootmem 7806 * - it is assumed that the hash table must contain an exact power-of-2 7807 * quantity of entries 7808 * - limit is the number of hash buckets, not the total allocation size 7809 */ 7810 void *__init alloc_large_system_hash(const char *tablename, 7811 unsigned long bucketsize, 7812 unsigned long numentries, 7813 int scale, 7814 int flags, 7815 unsigned int *_hash_shift, 7816 unsigned int *_hash_mask, 7817 unsigned long low_limit, 7818 unsigned long high_limit) 7819 { 7820 unsigned long long max = high_limit; 7821 unsigned long log2qty, size; 7822 void *table = NULL; 7823 gfp_t gfp_flags; 7824 7825 /* allow the kernel cmdline to have a say */ 7826 if (!numentries) { 7827 /* round applicable memory size up to nearest megabyte */ 7828 numentries = nr_kernel_pages; 7829 numentries -= arch_reserved_kernel_pages(); 7830 7831 /* It isn't necessary when PAGE_SIZE >= 1MB */ 7832 if (PAGE_SHIFT < 20) 7833 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 7834 7835 #if __BITS_PER_LONG > 32 7836 if (!high_limit) { 7837 unsigned long adapt; 7838 7839 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 7840 adapt <<= ADAPT_SCALE_SHIFT) 7841 scale++; 7842 } 7843 #endif 7844 7845 /* limit to 1 bucket per 2^scale bytes of low memory */ 7846 if (scale > PAGE_SHIFT) 7847 numentries >>= (scale - PAGE_SHIFT); 7848 else 7849 numentries <<= (PAGE_SHIFT - scale); 7850 7851 /* Make sure we've got at least a 0-order allocation.. */ 7852 if (unlikely(flags & HASH_SMALL)) { 7853 /* Makes no sense without HASH_EARLY */ 7854 WARN_ON(!(flags & HASH_EARLY)); 7855 if (!(numentries >> *_hash_shift)) { 7856 numentries = 1UL << *_hash_shift; 7857 BUG_ON(!numentries); 7858 } 7859 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 7860 numentries = PAGE_SIZE / bucketsize; 7861 } 7862 numentries = roundup_pow_of_two(numentries); 7863 7864 /* limit allocation size to 1/16 total memory by default */ 7865 if (max == 0) { 7866 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 7867 do_div(max, bucketsize); 7868 } 7869 max = min(max, 0x80000000ULL); 7870 7871 if (numentries < low_limit) 7872 numentries = low_limit; 7873 if (numentries > max) 7874 numentries = max; 7875 7876 log2qty = ilog2(numentries); 7877 7878 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 7879 do { 7880 size = bucketsize << log2qty; 7881 if (flags & HASH_EARLY) { 7882 if (flags & HASH_ZERO) 7883 table = memblock_alloc_nopanic(size, 7884 SMP_CACHE_BYTES); 7885 else 7886 table = memblock_alloc_raw(size, 7887 SMP_CACHE_BYTES); 7888 } else if (hashdist) { 7889 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 7890 } else { 7891 /* 7892 * If bucketsize is not a power-of-two, we may free 7893 * some pages at the end of hash table which 7894 * alloc_pages_exact() automatically does 7895 */ 7896 if (get_order(size) < MAX_ORDER) { 7897 table = alloc_pages_exact(size, gfp_flags); 7898 kmemleak_alloc(table, size, 1, gfp_flags); 7899 } 7900 } 7901 } while (!table && size > PAGE_SIZE && --log2qty); 7902 7903 if (!table) 7904 panic("Failed to allocate %s hash table\n", tablename); 7905 7906 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 7907 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 7908 7909 if (_hash_shift) 7910 *_hash_shift = log2qty; 7911 if (_hash_mask) 7912 *_hash_mask = (1 << log2qty) - 1; 7913 7914 return table; 7915 } 7916 7917 /* 7918 * This function checks whether pageblock includes unmovable pages or not. 7919 * If @count is not zero, it is okay to include less @count unmovable pages 7920 * 7921 * PageLRU check without isolation or lru_lock could race so that 7922 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 7923 * check without lock_page also may miss some movable non-lru pages at 7924 * race condition. So you can't expect this function should be exact. 7925 */ 7926 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 7927 int migratetype, int flags) 7928 { 7929 unsigned long pfn, iter, found; 7930 7931 /* 7932 * TODO we could make this much more efficient by not checking every 7933 * page in the range if we know all of them are in MOVABLE_ZONE and 7934 * that the movable zone guarantees that pages are migratable but 7935 * the later is not the case right now unfortunatelly. E.g. movablecore 7936 * can still lead to having bootmem allocations in zone_movable. 7937 */ 7938 7939 /* 7940 * CMA allocations (alloc_contig_range) really need to mark isolate 7941 * CMA pageblocks even when they are not movable in fact so consider 7942 * them movable here. 7943 */ 7944 if (is_migrate_cma(migratetype) && 7945 is_migrate_cma(get_pageblock_migratetype(page))) 7946 return false; 7947 7948 pfn = page_to_pfn(page); 7949 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 7950 unsigned long check = pfn + iter; 7951 7952 if (!pfn_valid_within(check)) 7953 continue; 7954 7955 page = pfn_to_page(check); 7956 7957 if (PageReserved(page)) 7958 goto unmovable; 7959 7960 /* 7961 * If the zone is movable and we have ruled out all reserved 7962 * pages then it should be reasonably safe to assume the rest 7963 * is movable. 7964 */ 7965 if (zone_idx(zone) == ZONE_MOVABLE) 7966 continue; 7967 7968 /* 7969 * Hugepages are not in LRU lists, but they're movable. 7970 * We need not scan over tail pages bacause we don't 7971 * handle each tail page individually in migration. 7972 */ 7973 if (PageHuge(page)) { 7974 struct page *head = compound_head(page); 7975 unsigned int skip_pages; 7976 7977 if (!hugepage_migration_supported(page_hstate(head))) 7978 goto unmovable; 7979 7980 skip_pages = (1 << compound_order(head)) - (page - head); 7981 iter += skip_pages - 1; 7982 continue; 7983 } 7984 7985 /* 7986 * We can't use page_count without pin a page 7987 * because another CPU can free compound page. 7988 * This check already skips compound tails of THP 7989 * because their page->_refcount is zero at all time. 7990 */ 7991 if (!page_ref_count(page)) { 7992 if (PageBuddy(page)) 7993 iter += (1 << page_order(page)) - 1; 7994 continue; 7995 } 7996 7997 /* 7998 * The HWPoisoned page may be not in buddy system, and 7999 * page_count() is not 0. 8000 */ 8001 if ((flags & SKIP_HWPOISON) && PageHWPoison(page)) 8002 continue; 8003 8004 if (__PageMovable(page)) 8005 continue; 8006 8007 if (!PageLRU(page)) 8008 found++; 8009 /* 8010 * If there are RECLAIMABLE pages, we need to check 8011 * it. But now, memory offline itself doesn't call 8012 * shrink_node_slabs() and it still to be fixed. 8013 */ 8014 /* 8015 * If the page is not RAM, page_count()should be 0. 8016 * we don't need more check. This is an _used_ not-movable page. 8017 * 8018 * The problematic thing here is PG_reserved pages. PG_reserved 8019 * is set to both of a memory hole page and a _used_ kernel 8020 * page at boot. 8021 */ 8022 if (found > count) 8023 goto unmovable; 8024 } 8025 return false; 8026 unmovable: 8027 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE); 8028 if (flags & REPORT_FAILURE) 8029 dump_page(pfn_to_page(pfn+iter), "unmovable page"); 8030 return true; 8031 } 8032 8033 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 8034 8035 static unsigned long pfn_max_align_down(unsigned long pfn) 8036 { 8037 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8038 pageblock_nr_pages) - 1); 8039 } 8040 8041 static unsigned long pfn_max_align_up(unsigned long pfn) 8042 { 8043 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8044 pageblock_nr_pages)); 8045 } 8046 8047 /* [start, end) must belong to a single zone. */ 8048 static int __alloc_contig_migrate_range(struct compact_control *cc, 8049 unsigned long start, unsigned long end) 8050 { 8051 /* This function is based on compact_zone() from compaction.c. */ 8052 unsigned long nr_reclaimed; 8053 unsigned long pfn = start; 8054 unsigned int tries = 0; 8055 int ret = 0; 8056 8057 migrate_prep(); 8058 8059 while (pfn < end || !list_empty(&cc->migratepages)) { 8060 if (fatal_signal_pending(current)) { 8061 ret = -EINTR; 8062 break; 8063 } 8064 8065 if (list_empty(&cc->migratepages)) { 8066 cc->nr_migratepages = 0; 8067 pfn = isolate_migratepages_range(cc, pfn, end); 8068 if (!pfn) { 8069 ret = -EINTR; 8070 break; 8071 } 8072 tries = 0; 8073 } else if (++tries == 5) { 8074 ret = ret < 0 ? ret : -EBUSY; 8075 break; 8076 } 8077 8078 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8079 &cc->migratepages); 8080 cc->nr_migratepages -= nr_reclaimed; 8081 8082 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 8083 NULL, 0, cc->mode, MR_CONTIG_RANGE); 8084 } 8085 if (ret < 0) { 8086 putback_movable_pages(&cc->migratepages); 8087 return ret; 8088 } 8089 return 0; 8090 } 8091 8092 /** 8093 * alloc_contig_range() -- tries to allocate given range of pages 8094 * @start: start PFN to allocate 8095 * @end: one-past-the-last PFN to allocate 8096 * @migratetype: migratetype of the underlaying pageblocks (either 8097 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8098 * in range must have the same migratetype and it must 8099 * be either of the two. 8100 * @gfp_mask: GFP mask to use during compaction 8101 * 8102 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8103 * aligned. The PFN range must belong to a single zone. 8104 * 8105 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8106 * pageblocks in the range. Once isolated, the pageblocks should not 8107 * be modified by others. 8108 * 8109 * Returns zero on success or negative error code. On success all 8110 * pages which PFN is in [start, end) are allocated for the caller and 8111 * need to be freed with free_contig_range(). 8112 */ 8113 int alloc_contig_range(unsigned long start, unsigned long end, 8114 unsigned migratetype, gfp_t gfp_mask) 8115 { 8116 unsigned long outer_start, outer_end; 8117 unsigned int order; 8118 int ret = 0; 8119 8120 struct compact_control cc = { 8121 .nr_migratepages = 0, 8122 .order = -1, 8123 .zone = page_zone(pfn_to_page(start)), 8124 .mode = MIGRATE_SYNC, 8125 .ignore_skip_hint = true, 8126 .no_set_skip_hint = true, 8127 .gfp_mask = current_gfp_context(gfp_mask), 8128 }; 8129 INIT_LIST_HEAD(&cc.migratepages); 8130 8131 /* 8132 * What we do here is we mark all pageblocks in range as 8133 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8134 * have different sizes, and due to the way page allocator 8135 * work, we align the range to biggest of the two pages so 8136 * that page allocator won't try to merge buddies from 8137 * different pageblocks and change MIGRATE_ISOLATE to some 8138 * other migration type. 8139 * 8140 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8141 * migrate the pages from an unaligned range (ie. pages that 8142 * we are interested in). This will put all the pages in 8143 * range back to page allocator as MIGRATE_ISOLATE. 8144 * 8145 * When this is done, we take the pages in range from page 8146 * allocator removing them from the buddy system. This way 8147 * page allocator will never consider using them. 8148 * 8149 * This lets us mark the pageblocks back as 8150 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8151 * aligned range but not in the unaligned, original range are 8152 * put back to page allocator so that buddy can use them. 8153 */ 8154 8155 ret = start_isolate_page_range(pfn_max_align_down(start), 8156 pfn_max_align_up(end), migratetype, 0); 8157 if (ret) 8158 return ret; 8159 8160 /* 8161 * In case of -EBUSY, we'd like to know which page causes problem. 8162 * So, just fall through. test_pages_isolated() has a tracepoint 8163 * which will report the busy page. 8164 * 8165 * It is possible that busy pages could become available before 8166 * the call to test_pages_isolated, and the range will actually be 8167 * allocated. So, if we fall through be sure to clear ret so that 8168 * -EBUSY is not accidentally used or returned to caller. 8169 */ 8170 ret = __alloc_contig_migrate_range(&cc, start, end); 8171 if (ret && ret != -EBUSY) 8172 goto done; 8173 ret =0; 8174 8175 /* 8176 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8177 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8178 * more, all pages in [start, end) are free in page allocator. 8179 * What we are going to do is to allocate all pages from 8180 * [start, end) (that is remove them from page allocator). 8181 * 8182 * The only problem is that pages at the beginning and at the 8183 * end of interesting range may be not aligned with pages that 8184 * page allocator holds, ie. they can be part of higher order 8185 * pages. Because of this, we reserve the bigger range and 8186 * once this is done free the pages we are not interested in. 8187 * 8188 * We don't have to hold zone->lock here because the pages are 8189 * isolated thus they won't get removed from buddy. 8190 */ 8191 8192 lru_add_drain_all(); 8193 drain_all_pages(cc.zone); 8194 8195 order = 0; 8196 outer_start = start; 8197 while (!PageBuddy(pfn_to_page(outer_start))) { 8198 if (++order >= MAX_ORDER) { 8199 outer_start = start; 8200 break; 8201 } 8202 outer_start &= ~0UL << order; 8203 } 8204 8205 if (outer_start != start) { 8206 order = page_order(pfn_to_page(outer_start)); 8207 8208 /* 8209 * outer_start page could be small order buddy page and 8210 * it doesn't include start page. Adjust outer_start 8211 * in this case to report failed page properly 8212 * on tracepoint in test_pages_isolated() 8213 */ 8214 if (outer_start + (1UL << order) <= start) 8215 outer_start = start; 8216 } 8217 8218 /* Make sure the range is really isolated. */ 8219 if (test_pages_isolated(outer_start, end, false)) { 8220 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8221 __func__, outer_start, end); 8222 ret = -EBUSY; 8223 goto done; 8224 } 8225 8226 /* Grab isolated pages from freelists. */ 8227 outer_end = isolate_freepages_range(&cc, outer_start, end); 8228 if (!outer_end) { 8229 ret = -EBUSY; 8230 goto done; 8231 } 8232 8233 /* Free head and tail (if any) */ 8234 if (start != outer_start) 8235 free_contig_range(outer_start, start - outer_start); 8236 if (end != outer_end) 8237 free_contig_range(end, outer_end - end); 8238 8239 done: 8240 undo_isolate_page_range(pfn_max_align_down(start), 8241 pfn_max_align_up(end), migratetype); 8242 return ret; 8243 } 8244 8245 void free_contig_range(unsigned long pfn, unsigned nr_pages) 8246 { 8247 unsigned int count = 0; 8248 8249 for (; nr_pages--; pfn++) { 8250 struct page *page = pfn_to_page(pfn); 8251 8252 count += page_count(page) != 1; 8253 __free_page(page); 8254 } 8255 WARN(count != 0, "%d pages are still in use!\n", count); 8256 } 8257 #endif 8258 8259 #ifdef CONFIG_MEMORY_HOTPLUG 8260 /* 8261 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8262 * page high values need to be recalulated. 8263 */ 8264 void __meminit zone_pcp_update(struct zone *zone) 8265 { 8266 unsigned cpu; 8267 mutex_lock(&pcp_batch_high_lock); 8268 for_each_possible_cpu(cpu) 8269 pageset_set_high_and_batch(zone, 8270 per_cpu_ptr(zone->pageset, cpu)); 8271 mutex_unlock(&pcp_batch_high_lock); 8272 } 8273 #endif 8274 8275 void zone_pcp_reset(struct zone *zone) 8276 { 8277 unsigned long flags; 8278 int cpu; 8279 struct per_cpu_pageset *pset; 8280 8281 /* avoid races with drain_pages() */ 8282 local_irq_save(flags); 8283 if (zone->pageset != &boot_pageset) { 8284 for_each_online_cpu(cpu) { 8285 pset = per_cpu_ptr(zone->pageset, cpu); 8286 drain_zonestat(zone, pset); 8287 } 8288 free_percpu(zone->pageset); 8289 zone->pageset = &boot_pageset; 8290 } 8291 local_irq_restore(flags); 8292 } 8293 8294 #ifdef CONFIG_MEMORY_HOTREMOVE 8295 /* 8296 * All pages in the range must be in a single zone and isolated 8297 * before calling this. 8298 */ 8299 void 8300 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8301 { 8302 struct page *page; 8303 struct zone *zone; 8304 unsigned int order, i; 8305 unsigned long pfn; 8306 unsigned long flags; 8307 /* find the first valid pfn */ 8308 for (pfn = start_pfn; pfn < end_pfn; pfn++) 8309 if (pfn_valid(pfn)) 8310 break; 8311 if (pfn == end_pfn) 8312 return; 8313 offline_mem_sections(pfn, end_pfn); 8314 zone = page_zone(pfn_to_page(pfn)); 8315 spin_lock_irqsave(&zone->lock, flags); 8316 pfn = start_pfn; 8317 while (pfn < end_pfn) { 8318 if (!pfn_valid(pfn)) { 8319 pfn++; 8320 continue; 8321 } 8322 page = pfn_to_page(pfn); 8323 /* 8324 * The HWPoisoned page may be not in buddy system, and 8325 * page_count() is not 0. 8326 */ 8327 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8328 pfn++; 8329 SetPageReserved(page); 8330 continue; 8331 } 8332 8333 BUG_ON(page_count(page)); 8334 BUG_ON(!PageBuddy(page)); 8335 order = page_order(page); 8336 #ifdef CONFIG_DEBUG_VM 8337 pr_info("remove from free list %lx %d %lx\n", 8338 pfn, 1 << order, end_pfn); 8339 #endif 8340 list_del(&page->lru); 8341 rmv_page_order(page); 8342 zone->free_area[order].nr_free--; 8343 for (i = 0; i < (1 << order); i++) 8344 SetPageReserved((page+i)); 8345 pfn += (1 << order); 8346 } 8347 spin_unlock_irqrestore(&zone->lock, flags); 8348 } 8349 #endif 8350 8351 bool is_free_buddy_page(struct page *page) 8352 { 8353 struct zone *zone = page_zone(page); 8354 unsigned long pfn = page_to_pfn(page); 8355 unsigned long flags; 8356 unsigned int order; 8357 8358 spin_lock_irqsave(&zone->lock, flags); 8359 for (order = 0; order < MAX_ORDER; order++) { 8360 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8361 8362 if (PageBuddy(page_head) && page_order(page_head) >= order) 8363 break; 8364 } 8365 spin_unlock_irqrestore(&zone->lock, flags); 8366 8367 return order < MAX_ORDER; 8368 } 8369 8370 #ifdef CONFIG_MEMORY_FAILURE 8371 /* 8372 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This 8373 * test is performed under the zone lock to prevent a race against page 8374 * allocation. 8375 */ 8376 bool set_hwpoison_free_buddy_page(struct page *page) 8377 { 8378 struct zone *zone = page_zone(page); 8379 unsigned long pfn = page_to_pfn(page); 8380 unsigned long flags; 8381 unsigned int order; 8382 bool hwpoisoned = false; 8383 8384 spin_lock_irqsave(&zone->lock, flags); 8385 for (order = 0; order < MAX_ORDER; order++) { 8386 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8387 8388 if (PageBuddy(page_head) && page_order(page_head) >= order) { 8389 if (!TestSetPageHWPoison(page)) 8390 hwpoisoned = true; 8391 break; 8392 } 8393 } 8394 spin_unlock_irqrestore(&zone->lock, flags); 8395 8396 return hwpoisoned; 8397 } 8398 #endif 8399