1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/kmemcheck.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/slab.h> 32 #include <linux/oom.h> 33 #include <linux/notifier.h> 34 #include <linux/topology.h> 35 #include <linux/sysctl.h> 36 #include <linux/cpu.h> 37 #include <linux/cpuset.h> 38 #include <linux/memory_hotplug.h> 39 #include <linux/nodemask.h> 40 #include <linux/vmalloc.h> 41 #include <linux/mempolicy.h> 42 #include <linux/stop_machine.h> 43 #include <linux/sort.h> 44 #include <linux/pfn.h> 45 #include <linux/backing-dev.h> 46 #include <linux/fault-inject.h> 47 #include <linux/page-isolation.h> 48 #include <linux/page_cgroup.h> 49 #include <linux/debugobjects.h> 50 #include <linux/kmemleak.h> 51 #include <linux/memory.h> 52 #include <trace/events/kmem.h> 53 54 #include <asm/tlbflush.h> 55 #include <asm/div64.h> 56 #include "internal.h" 57 58 /* 59 * Array of node states. 60 */ 61 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 62 [N_POSSIBLE] = NODE_MASK_ALL, 63 [N_ONLINE] = { { [0] = 1UL } }, 64 #ifndef CONFIG_NUMA 65 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 66 #ifdef CONFIG_HIGHMEM 67 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 68 #endif 69 [N_CPU] = { { [0] = 1UL } }, 70 #endif /* NUMA */ 71 }; 72 EXPORT_SYMBOL(node_states); 73 74 unsigned long totalram_pages __read_mostly; 75 unsigned long totalreserve_pages __read_mostly; 76 int percpu_pagelist_fraction; 77 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 78 79 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 80 int pageblock_order __read_mostly; 81 #endif 82 83 static void __free_pages_ok(struct page *page, unsigned int order); 84 85 /* 86 * results with 256, 32 in the lowmem_reserve sysctl: 87 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 88 * 1G machine -> (16M dma, 784M normal, 224M high) 89 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 90 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 91 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 92 * 93 * TBD: should special case ZONE_DMA32 machines here - in those we normally 94 * don't need any ZONE_NORMAL reservation 95 */ 96 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 97 #ifdef CONFIG_ZONE_DMA 98 256, 99 #endif 100 #ifdef CONFIG_ZONE_DMA32 101 256, 102 #endif 103 #ifdef CONFIG_HIGHMEM 104 32, 105 #endif 106 32, 107 }; 108 109 EXPORT_SYMBOL(totalram_pages); 110 111 static char * const zone_names[MAX_NR_ZONES] = { 112 #ifdef CONFIG_ZONE_DMA 113 "DMA", 114 #endif 115 #ifdef CONFIG_ZONE_DMA32 116 "DMA32", 117 #endif 118 "Normal", 119 #ifdef CONFIG_HIGHMEM 120 "HighMem", 121 #endif 122 "Movable", 123 }; 124 125 int min_free_kbytes = 1024; 126 127 static unsigned long __meminitdata nr_kernel_pages; 128 static unsigned long __meminitdata nr_all_pages; 129 static unsigned long __meminitdata dma_reserve; 130 131 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 132 /* 133 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 134 * ranges of memory (RAM) that may be registered with add_active_range(). 135 * Ranges passed to add_active_range() will be merged if possible 136 * so the number of times add_active_range() can be called is 137 * related to the number of nodes and the number of holes 138 */ 139 #ifdef CONFIG_MAX_ACTIVE_REGIONS 140 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 141 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 142 #else 143 #if MAX_NUMNODES >= 32 144 /* If there can be many nodes, allow up to 50 holes per node */ 145 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 146 #else 147 /* By default, allow up to 256 distinct regions */ 148 #define MAX_ACTIVE_REGIONS 256 149 #endif 150 #endif 151 152 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 153 static int __meminitdata nr_nodemap_entries; 154 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 155 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 156 static unsigned long __initdata required_kernelcore; 157 static unsigned long __initdata required_movablecore; 158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 159 160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 161 int movable_zone; 162 EXPORT_SYMBOL(movable_zone); 163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 164 165 #if MAX_NUMNODES > 1 166 int nr_node_ids __read_mostly = MAX_NUMNODES; 167 int nr_online_nodes __read_mostly = 1; 168 EXPORT_SYMBOL(nr_node_ids); 169 EXPORT_SYMBOL(nr_online_nodes); 170 #endif 171 172 int page_group_by_mobility_disabled __read_mostly; 173 174 static void set_pageblock_migratetype(struct page *page, int migratetype) 175 { 176 177 if (unlikely(page_group_by_mobility_disabled)) 178 migratetype = MIGRATE_UNMOVABLE; 179 180 set_pageblock_flags_group(page, (unsigned long)migratetype, 181 PB_migrate, PB_migrate_end); 182 } 183 184 bool oom_killer_disabled __read_mostly; 185 186 #ifdef CONFIG_DEBUG_VM 187 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 188 { 189 int ret = 0; 190 unsigned seq; 191 unsigned long pfn = page_to_pfn(page); 192 193 do { 194 seq = zone_span_seqbegin(zone); 195 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 196 ret = 1; 197 else if (pfn < zone->zone_start_pfn) 198 ret = 1; 199 } while (zone_span_seqretry(zone, seq)); 200 201 return ret; 202 } 203 204 static int page_is_consistent(struct zone *zone, struct page *page) 205 { 206 if (!pfn_valid_within(page_to_pfn(page))) 207 return 0; 208 if (zone != page_zone(page)) 209 return 0; 210 211 return 1; 212 } 213 /* 214 * Temporary debugging check for pages not lying within a given zone. 215 */ 216 static int bad_range(struct zone *zone, struct page *page) 217 { 218 if (page_outside_zone_boundaries(zone, page)) 219 return 1; 220 if (!page_is_consistent(zone, page)) 221 return 1; 222 223 return 0; 224 } 225 #else 226 static inline int bad_range(struct zone *zone, struct page *page) 227 { 228 return 0; 229 } 230 #endif 231 232 static void bad_page(struct page *page) 233 { 234 static unsigned long resume; 235 static unsigned long nr_shown; 236 static unsigned long nr_unshown; 237 238 /* Don't complain about poisoned pages */ 239 if (PageHWPoison(page)) { 240 __ClearPageBuddy(page); 241 return; 242 } 243 244 /* 245 * Allow a burst of 60 reports, then keep quiet for that minute; 246 * or allow a steady drip of one report per second. 247 */ 248 if (nr_shown == 60) { 249 if (time_before(jiffies, resume)) { 250 nr_unshown++; 251 goto out; 252 } 253 if (nr_unshown) { 254 printk(KERN_ALERT 255 "BUG: Bad page state: %lu messages suppressed\n", 256 nr_unshown); 257 nr_unshown = 0; 258 } 259 nr_shown = 0; 260 } 261 if (nr_shown++ == 0) 262 resume = jiffies + 60 * HZ; 263 264 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 265 current->comm, page_to_pfn(page)); 266 printk(KERN_ALERT 267 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n", 268 page, (void *)page->flags, page_count(page), 269 page_mapcount(page), page->mapping, page->index); 270 271 dump_stack(); 272 out: 273 /* Leave bad fields for debug, except PageBuddy could make trouble */ 274 __ClearPageBuddy(page); 275 add_taint(TAINT_BAD_PAGE); 276 } 277 278 /* 279 * Higher-order pages are called "compound pages". They are structured thusly: 280 * 281 * The first PAGE_SIZE page is called the "head page". 282 * 283 * The remaining PAGE_SIZE pages are called "tail pages". 284 * 285 * All pages have PG_compound set. All pages have their ->private pointing at 286 * the head page (even the head page has this). 287 * 288 * The first tail page's ->lru.next holds the address of the compound page's 289 * put_page() function. Its ->lru.prev holds the order of allocation. 290 * This usage means that zero-order pages may not be compound. 291 */ 292 293 static void free_compound_page(struct page *page) 294 { 295 __free_pages_ok(page, compound_order(page)); 296 } 297 298 void prep_compound_page(struct page *page, unsigned long order) 299 { 300 int i; 301 int nr_pages = 1 << order; 302 303 set_compound_page_dtor(page, free_compound_page); 304 set_compound_order(page, order); 305 __SetPageHead(page); 306 for (i = 1; i < nr_pages; i++) { 307 struct page *p = page + i; 308 309 __SetPageTail(p); 310 p->first_page = page; 311 } 312 } 313 314 static int destroy_compound_page(struct page *page, unsigned long order) 315 { 316 int i; 317 int nr_pages = 1 << order; 318 int bad = 0; 319 320 if (unlikely(compound_order(page) != order) || 321 unlikely(!PageHead(page))) { 322 bad_page(page); 323 bad++; 324 } 325 326 __ClearPageHead(page); 327 328 for (i = 1; i < nr_pages; i++) { 329 struct page *p = page + i; 330 331 if (unlikely(!PageTail(p) || (p->first_page != page))) { 332 bad_page(page); 333 bad++; 334 } 335 __ClearPageTail(p); 336 } 337 338 return bad; 339 } 340 341 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 342 { 343 int i; 344 345 /* 346 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 347 * and __GFP_HIGHMEM from hard or soft interrupt context. 348 */ 349 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 350 for (i = 0; i < (1 << order); i++) 351 clear_highpage(page + i); 352 } 353 354 static inline void set_page_order(struct page *page, int order) 355 { 356 set_page_private(page, order); 357 __SetPageBuddy(page); 358 } 359 360 static inline void rmv_page_order(struct page *page) 361 { 362 __ClearPageBuddy(page); 363 set_page_private(page, 0); 364 } 365 366 /* 367 * Locate the struct page for both the matching buddy in our 368 * pair (buddy1) and the combined O(n+1) page they form (page). 369 * 370 * 1) Any buddy B1 will have an order O twin B2 which satisfies 371 * the following equation: 372 * B2 = B1 ^ (1 << O) 373 * For example, if the starting buddy (buddy2) is #8 its order 374 * 1 buddy is #10: 375 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 376 * 377 * 2) Any buddy B will have an order O+1 parent P which 378 * satisfies the following equation: 379 * P = B & ~(1 << O) 380 * 381 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 382 */ 383 static inline struct page * 384 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 385 { 386 unsigned long buddy_idx = page_idx ^ (1 << order); 387 388 return page + (buddy_idx - page_idx); 389 } 390 391 static inline unsigned long 392 __find_combined_index(unsigned long page_idx, unsigned int order) 393 { 394 return (page_idx & ~(1 << order)); 395 } 396 397 /* 398 * This function checks whether a page is free && is the buddy 399 * we can do coalesce a page and its buddy if 400 * (a) the buddy is not in a hole && 401 * (b) the buddy is in the buddy system && 402 * (c) a page and its buddy have the same order && 403 * (d) a page and its buddy are in the same zone. 404 * 405 * For recording whether a page is in the buddy system, we use PG_buddy. 406 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 407 * 408 * For recording page's order, we use page_private(page). 409 */ 410 static inline int page_is_buddy(struct page *page, struct page *buddy, 411 int order) 412 { 413 if (!pfn_valid_within(page_to_pfn(buddy))) 414 return 0; 415 416 if (page_zone_id(page) != page_zone_id(buddy)) 417 return 0; 418 419 if (PageBuddy(buddy) && page_order(buddy) == order) { 420 VM_BUG_ON(page_count(buddy) != 0); 421 return 1; 422 } 423 return 0; 424 } 425 426 /* 427 * Freeing function for a buddy system allocator. 428 * 429 * The concept of a buddy system is to maintain direct-mapped table 430 * (containing bit values) for memory blocks of various "orders". 431 * The bottom level table contains the map for the smallest allocatable 432 * units of memory (here, pages), and each level above it describes 433 * pairs of units from the levels below, hence, "buddies". 434 * At a high level, all that happens here is marking the table entry 435 * at the bottom level available, and propagating the changes upward 436 * as necessary, plus some accounting needed to play nicely with other 437 * parts of the VM system. 438 * At each level, we keep a list of pages, which are heads of continuous 439 * free pages of length of (1 << order) and marked with PG_buddy. Page's 440 * order is recorded in page_private(page) field. 441 * So when we are allocating or freeing one, we can derive the state of the 442 * other. That is, if we allocate a small block, and both were 443 * free, the remainder of the region must be split into blocks. 444 * If a block is freed, and its buddy is also free, then this 445 * triggers coalescing into a block of larger size. 446 * 447 * -- wli 448 */ 449 450 static inline void __free_one_page(struct page *page, 451 struct zone *zone, unsigned int order, 452 int migratetype) 453 { 454 unsigned long page_idx; 455 456 if (unlikely(PageCompound(page))) 457 if (unlikely(destroy_compound_page(page, order))) 458 return; 459 460 VM_BUG_ON(migratetype == -1); 461 462 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 463 464 VM_BUG_ON(page_idx & ((1 << order) - 1)); 465 VM_BUG_ON(bad_range(zone, page)); 466 467 while (order < MAX_ORDER-1) { 468 unsigned long combined_idx; 469 struct page *buddy; 470 471 buddy = __page_find_buddy(page, page_idx, order); 472 if (!page_is_buddy(page, buddy, order)) 473 break; 474 475 /* Our buddy is free, merge with it and move up one order. */ 476 list_del(&buddy->lru); 477 zone->free_area[order].nr_free--; 478 rmv_page_order(buddy); 479 combined_idx = __find_combined_index(page_idx, order); 480 page = page + (combined_idx - page_idx); 481 page_idx = combined_idx; 482 order++; 483 } 484 set_page_order(page, order); 485 list_add(&page->lru, 486 &zone->free_area[order].free_list[migratetype]); 487 zone->free_area[order].nr_free++; 488 } 489 490 /* 491 * free_page_mlock() -- clean up attempts to free and mlocked() page. 492 * Page should not be on lru, so no need to fix that up. 493 * free_pages_check() will verify... 494 */ 495 static inline void free_page_mlock(struct page *page) 496 { 497 __dec_zone_page_state(page, NR_MLOCK); 498 __count_vm_event(UNEVICTABLE_MLOCKFREED); 499 } 500 501 static inline int free_pages_check(struct page *page) 502 { 503 if (unlikely(page_mapcount(page) | 504 (page->mapping != NULL) | 505 (atomic_read(&page->_count) != 0) | 506 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) { 507 bad_page(page); 508 return 1; 509 } 510 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 511 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 512 return 0; 513 } 514 515 /* 516 * Frees a number of pages from the PCP lists 517 * Assumes all pages on list are in same zone, and of same order. 518 * count is the number of pages to free. 519 * 520 * If the zone was previously in an "all pages pinned" state then look to 521 * see if this freeing clears that state. 522 * 523 * And clear the zone's pages_scanned counter, to hold off the "all pages are 524 * pinned" detection logic. 525 */ 526 static void free_pcppages_bulk(struct zone *zone, int count, 527 struct per_cpu_pages *pcp) 528 { 529 int migratetype = 0; 530 int batch_free = 0; 531 532 spin_lock(&zone->lock); 533 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 534 zone->pages_scanned = 0; 535 536 __mod_zone_page_state(zone, NR_FREE_PAGES, count); 537 while (count) { 538 struct page *page; 539 struct list_head *list; 540 541 /* 542 * Remove pages from lists in a round-robin fashion. A 543 * batch_free count is maintained that is incremented when an 544 * empty list is encountered. This is so more pages are freed 545 * off fuller lists instead of spinning excessively around empty 546 * lists 547 */ 548 do { 549 batch_free++; 550 if (++migratetype == MIGRATE_PCPTYPES) 551 migratetype = 0; 552 list = &pcp->lists[migratetype]; 553 } while (list_empty(list)); 554 555 do { 556 page = list_entry(list->prev, struct page, lru); 557 /* must delete as __free_one_page list manipulates */ 558 list_del(&page->lru); 559 __free_one_page(page, zone, 0, migratetype); 560 trace_mm_page_pcpu_drain(page, 0, migratetype); 561 } while (--count && --batch_free && !list_empty(list)); 562 } 563 spin_unlock(&zone->lock); 564 } 565 566 static void free_one_page(struct zone *zone, struct page *page, int order, 567 int migratetype) 568 { 569 spin_lock(&zone->lock); 570 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 571 zone->pages_scanned = 0; 572 573 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 574 __free_one_page(page, zone, order, migratetype); 575 spin_unlock(&zone->lock); 576 } 577 578 static void __free_pages_ok(struct page *page, unsigned int order) 579 { 580 unsigned long flags; 581 int i; 582 int bad = 0; 583 int wasMlocked = __TestClearPageMlocked(page); 584 585 kmemcheck_free_shadow(page, order); 586 587 for (i = 0 ; i < (1 << order) ; ++i) 588 bad += free_pages_check(page + i); 589 if (bad) 590 return; 591 592 if (!PageHighMem(page)) { 593 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 594 debug_check_no_obj_freed(page_address(page), 595 PAGE_SIZE << order); 596 } 597 arch_free_page(page, order); 598 kernel_map_pages(page, 1 << order, 0); 599 600 local_irq_save(flags); 601 if (unlikely(wasMlocked)) 602 free_page_mlock(page); 603 __count_vm_events(PGFREE, 1 << order); 604 free_one_page(page_zone(page), page, order, 605 get_pageblock_migratetype(page)); 606 local_irq_restore(flags); 607 } 608 609 /* 610 * permit the bootmem allocator to evade page validation on high-order frees 611 */ 612 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 613 { 614 if (order == 0) { 615 __ClearPageReserved(page); 616 set_page_count(page, 0); 617 set_page_refcounted(page); 618 __free_page(page); 619 } else { 620 int loop; 621 622 prefetchw(page); 623 for (loop = 0; loop < BITS_PER_LONG; loop++) { 624 struct page *p = &page[loop]; 625 626 if (loop + 1 < BITS_PER_LONG) 627 prefetchw(p + 1); 628 __ClearPageReserved(p); 629 set_page_count(p, 0); 630 } 631 632 set_page_refcounted(page); 633 __free_pages(page, order); 634 } 635 } 636 637 638 /* 639 * The order of subdivision here is critical for the IO subsystem. 640 * Please do not alter this order without good reasons and regression 641 * testing. Specifically, as large blocks of memory are subdivided, 642 * the order in which smaller blocks are delivered depends on the order 643 * they're subdivided in this function. This is the primary factor 644 * influencing the order in which pages are delivered to the IO 645 * subsystem according to empirical testing, and this is also justified 646 * by considering the behavior of a buddy system containing a single 647 * large block of memory acted on by a series of small allocations. 648 * This behavior is a critical factor in sglist merging's success. 649 * 650 * -- wli 651 */ 652 static inline void expand(struct zone *zone, struct page *page, 653 int low, int high, struct free_area *area, 654 int migratetype) 655 { 656 unsigned long size = 1 << high; 657 658 while (high > low) { 659 area--; 660 high--; 661 size >>= 1; 662 VM_BUG_ON(bad_range(zone, &page[size])); 663 list_add(&page[size].lru, &area->free_list[migratetype]); 664 area->nr_free++; 665 set_page_order(&page[size], high); 666 } 667 } 668 669 /* 670 * This page is about to be returned from the page allocator 671 */ 672 static inline int check_new_page(struct page *page) 673 { 674 if (unlikely(page_mapcount(page) | 675 (page->mapping != NULL) | 676 (atomic_read(&page->_count) != 0) | 677 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) { 678 bad_page(page); 679 return 1; 680 } 681 return 0; 682 } 683 684 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 685 { 686 int i; 687 688 for (i = 0; i < (1 << order); i++) { 689 struct page *p = page + i; 690 if (unlikely(check_new_page(p))) 691 return 1; 692 } 693 694 set_page_private(page, 0); 695 set_page_refcounted(page); 696 697 arch_alloc_page(page, order); 698 kernel_map_pages(page, 1 << order, 1); 699 700 if (gfp_flags & __GFP_ZERO) 701 prep_zero_page(page, order, gfp_flags); 702 703 if (order && (gfp_flags & __GFP_COMP)) 704 prep_compound_page(page, order); 705 706 return 0; 707 } 708 709 /* 710 * Go through the free lists for the given migratetype and remove 711 * the smallest available page from the freelists 712 */ 713 static inline 714 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 715 int migratetype) 716 { 717 unsigned int current_order; 718 struct free_area * area; 719 struct page *page; 720 721 /* Find a page of the appropriate size in the preferred list */ 722 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 723 area = &(zone->free_area[current_order]); 724 if (list_empty(&area->free_list[migratetype])) 725 continue; 726 727 page = list_entry(area->free_list[migratetype].next, 728 struct page, lru); 729 list_del(&page->lru); 730 rmv_page_order(page); 731 area->nr_free--; 732 expand(zone, page, order, current_order, area, migratetype); 733 return page; 734 } 735 736 return NULL; 737 } 738 739 740 /* 741 * This array describes the order lists are fallen back to when 742 * the free lists for the desirable migrate type are depleted 743 */ 744 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 745 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 746 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 747 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 748 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 749 }; 750 751 /* 752 * Move the free pages in a range to the free lists of the requested type. 753 * Note that start_page and end_pages are not aligned on a pageblock 754 * boundary. If alignment is required, use move_freepages_block() 755 */ 756 static int move_freepages(struct zone *zone, 757 struct page *start_page, struct page *end_page, 758 int migratetype) 759 { 760 struct page *page; 761 unsigned long order; 762 int pages_moved = 0; 763 764 #ifndef CONFIG_HOLES_IN_ZONE 765 /* 766 * page_zone is not safe to call in this context when 767 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 768 * anyway as we check zone boundaries in move_freepages_block(). 769 * Remove at a later date when no bug reports exist related to 770 * grouping pages by mobility 771 */ 772 BUG_ON(page_zone(start_page) != page_zone(end_page)); 773 #endif 774 775 for (page = start_page; page <= end_page;) { 776 /* Make sure we are not inadvertently changing nodes */ 777 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 778 779 if (!pfn_valid_within(page_to_pfn(page))) { 780 page++; 781 continue; 782 } 783 784 if (!PageBuddy(page)) { 785 page++; 786 continue; 787 } 788 789 order = page_order(page); 790 list_del(&page->lru); 791 list_add(&page->lru, 792 &zone->free_area[order].free_list[migratetype]); 793 page += 1 << order; 794 pages_moved += 1 << order; 795 } 796 797 return pages_moved; 798 } 799 800 static int move_freepages_block(struct zone *zone, struct page *page, 801 int migratetype) 802 { 803 unsigned long start_pfn, end_pfn; 804 struct page *start_page, *end_page; 805 806 start_pfn = page_to_pfn(page); 807 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 808 start_page = pfn_to_page(start_pfn); 809 end_page = start_page + pageblock_nr_pages - 1; 810 end_pfn = start_pfn + pageblock_nr_pages - 1; 811 812 /* Do not cross zone boundaries */ 813 if (start_pfn < zone->zone_start_pfn) 814 start_page = page; 815 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 816 return 0; 817 818 return move_freepages(zone, start_page, end_page, migratetype); 819 } 820 821 static void change_pageblock_range(struct page *pageblock_page, 822 int start_order, int migratetype) 823 { 824 int nr_pageblocks = 1 << (start_order - pageblock_order); 825 826 while (nr_pageblocks--) { 827 set_pageblock_migratetype(pageblock_page, migratetype); 828 pageblock_page += pageblock_nr_pages; 829 } 830 } 831 832 /* Remove an element from the buddy allocator from the fallback list */ 833 static inline struct page * 834 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 835 { 836 struct free_area * area; 837 int current_order; 838 struct page *page; 839 int migratetype, i; 840 841 /* Find the largest possible block of pages in the other list */ 842 for (current_order = MAX_ORDER-1; current_order >= order; 843 --current_order) { 844 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 845 migratetype = fallbacks[start_migratetype][i]; 846 847 /* MIGRATE_RESERVE handled later if necessary */ 848 if (migratetype == MIGRATE_RESERVE) 849 continue; 850 851 area = &(zone->free_area[current_order]); 852 if (list_empty(&area->free_list[migratetype])) 853 continue; 854 855 page = list_entry(area->free_list[migratetype].next, 856 struct page, lru); 857 area->nr_free--; 858 859 /* 860 * If breaking a large block of pages, move all free 861 * pages to the preferred allocation list. If falling 862 * back for a reclaimable kernel allocation, be more 863 * agressive about taking ownership of free pages 864 */ 865 if (unlikely(current_order >= (pageblock_order >> 1)) || 866 start_migratetype == MIGRATE_RECLAIMABLE || 867 page_group_by_mobility_disabled) { 868 unsigned long pages; 869 pages = move_freepages_block(zone, page, 870 start_migratetype); 871 872 /* Claim the whole block if over half of it is free */ 873 if (pages >= (1 << (pageblock_order-1)) || 874 page_group_by_mobility_disabled) 875 set_pageblock_migratetype(page, 876 start_migratetype); 877 878 migratetype = start_migratetype; 879 } 880 881 /* Remove the page from the freelists */ 882 list_del(&page->lru); 883 rmv_page_order(page); 884 885 /* Take ownership for orders >= pageblock_order */ 886 if (current_order >= pageblock_order) 887 change_pageblock_range(page, current_order, 888 start_migratetype); 889 890 expand(zone, page, order, current_order, area, migratetype); 891 892 trace_mm_page_alloc_extfrag(page, order, current_order, 893 start_migratetype, migratetype); 894 895 return page; 896 } 897 } 898 899 return NULL; 900 } 901 902 /* 903 * Do the hard work of removing an element from the buddy allocator. 904 * Call me with the zone->lock already held. 905 */ 906 static struct page *__rmqueue(struct zone *zone, unsigned int order, 907 int migratetype) 908 { 909 struct page *page; 910 911 retry_reserve: 912 page = __rmqueue_smallest(zone, order, migratetype); 913 914 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 915 page = __rmqueue_fallback(zone, order, migratetype); 916 917 /* 918 * Use MIGRATE_RESERVE rather than fail an allocation. goto 919 * is used because __rmqueue_smallest is an inline function 920 * and we want just one call site 921 */ 922 if (!page) { 923 migratetype = MIGRATE_RESERVE; 924 goto retry_reserve; 925 } 926 } 927 928 trace_mm_page_alloc_zone_locked(page, order, migratetype); 929 return page; 930 } 931 932 /* 933 * Obtain a specified number of elements from the buddy allocator, all under 934 * a single hold of the lock, for efficiency. Add them to the supplied list. 935 * Returns the number of new pages which were placed at *list. 936 */ 937 static int rmqueue_bulk(struct zone *zone, unsigned int order, 938 unsigned long count, struct list_head *list, 939 int migratetype, int cold) 940 { 941 int i; 942 943 spin_lock(&zone->lock); 944 for (i = 0; i < count; ++i) { 945 struct page *page = __rmqueue(zone, order, migratetype); 946 if (unlikely(page == NULL)) 947 break; 948 949 /* 950 * Split buddy pages returned by expand() are received here 951 * in physical page order. The page is added to the callers and 952 * list and the list head then moves forward. From the callers 953 * perspective, the linked list is ordered by page number in 954 * some conditions. This is useful for IO devices that can 955 * merge IO requests if the physical pages are ordered 956 * properly. 957 */ 958 if (likely(cold == 0)) 959 list_add(&page->lru, list); 960 else 961 list_add_tail(&page->lru, list); 962 set_page_private(page, migratetype); 963 list = &page->lru; 964 } 965 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 966 spin_unlock(&zone->lock); 967 return i; 968 } 969 970 #ifdef CONFIG_NUMA 971 /* 972 * Called from the vmstat counter updater to drain pagesets of this 973 * currently executing processor on remote nodes after they have 974 * expired. 975 * 976 * Note that this function must be called with the thread pinned to 977 * a single processor. 978 */ 979 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 980 { 981 unsigned long flags; 982 int to_drain; 983 984 local_irq_save(flags); 985 if (pcp->count >= pcp->batch) 986 to_drain = pcp->batch; 987 else 988 to_drain = pcp->count; 989 free_pcppages_bulk(zone, to_drain, pcp); 990 pcp->count -= to_drain; 991 local_irq_restore(flags); 992 } 993 #endif 994 995 /* 996 * Drain pages of the indicated processor. 997 * 998 * The processor must either be the current processor and the 999 * thread pinned to the current processor or a processor that 1000 * is not online. 1001 */ 1002 static void drain_pages(unsigned int cpu) 1003 { 1004 unsigned long flags; 1005 struct zone *zone; 1006 1007 for_each_populated_zone(zone) { 1008 struct per_cpu_pageset *pset; 1009 struct per_cpu_pages *pcp; 1010 1011 pset = zone_pcp(zone, cpu); 1012 1013 pcp = &pset->pcp; 1014 local_irq_save(flags); 1015 free_pcppages_bulk(zone, pcp->count, pcp); 1016 pcp->count = 0; 1017 local_irq_restore(flags); 1018 } 1019 } 1020 1021 /* 1022 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1023 */ 1024 void drain_local_pages(void *arg) 1025 { 1026 drain_pages(smp_processor_id()); 1027 } 1028 1029 /* 1030 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 1031 */ 1032 void drain_all_pages(void) 1033 { 1034 on_each_cpu(drain_local_pages, NULL, 1); 1035 } 1036 1037 #ifdef CONFIG_HIBERNATION 1038 1039 void mark_free_pages(struct zone *zone) 1040 { 1041 unsigned long pfn, max_zone_pfn; 1042 unsigned long flags; 1043 int order, t; 1044 struct list_head *curr; 1045 1046 if (!zone->spanned_pages) 1047 return; 1048 1049 spin_lock_irqsave(&zone->lock, flags); 1050 1051 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1052 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1053 if (pfn_valid(pfn)) { 1054 struct page *page = pfn_to_page(pfn); 1055 1056 if (!swsusp_page_is_forbidden(page)) 1057 swsusp_unset_page_free(page); 1058 } 1059 1060 for_each_migratetype_order(order, t) { 1061 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1062 unsigned long i; 1063 1064 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1065 for (i = 0; i < (1UL << order); i++) 1066 swsusp_set_page_free(pfn_to_page(pfn + i)); 1067 } 1068 } 1069 spin_unlock_irqrestore(&zone->lock, flags); 1070 } 1071 #endif /* CONFIG_PM */ 1072 1073 /* 1074 * Free a 0-order page 1075 */ 1076 static void free_hot_cold_page(struct page *page, int cold) 1077 { 1078 struct zone *zone = page_zone(page); 1079 struct per_cpu_pages *pcp; 1080 unsigned long flags; 1081 int migratetype; 1082 int wasMlocked = __TestClearPageMlocked(page); 1083 1084 kmemcheck_free_shadow(page, 0); 1085 1086 if (PageAnon(page)) 1087 page->mapping = NULL; 1088 if (free_pages_check(page)) 1089 return; 1090 1091 if (!PageHighMem(page)) { 1092 debug_check_no_locks_freed(page_address(page), PAGE_SIZE); 1093 debug_check_no_obj_freed(page_address(page), PAGE_SIZE); 1094 } 1095 arch_free_page(page, 0); 1096 kernel_map_pages(page, 1, 0); 1097 1098 pcp = &zone_pcp(zone, get_cpu())->pcp; 1099 migratetype = get_pageblock_migratetype(page); 1100 set_page_private(page, migratetype); 1101 local_irq_save(flags); 1102 if (unlikely(wasMlocked)) 1103 free_page_mlock(page); 1104 __count_vm_event(PGFREE); 1105 1106 /* 1107 * We only track unmovable, reclaimable and movable on pcp lists. 1108 * Free ISOLATE pages back to the allocator because they are being 1109 * offlined but treat RESERVE as movable pages so we can get those 1110 * areas back if necessary. Otherwise, we may have to free 1111 * excessively into the page allocator 1112 */ 1113 if (migratetype >= MIGRATE_PCPTYPES) { 1114 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1115 free_one_page(zone, page, 0, migratetype); 1116 goto out; 1117 } 1118 migratetype = MIGRATE_MOVABLE; 1119 } 1120 1121 if (cold) 1122 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1123 else 1124 list_add(&page->lru, &pcp->lists[migratetype]); 1125 pcp->count++; 1126 if (pcp->count >= pcp->high) { 1127 free_pcppages_bulk(zone, pcp->batch, pcp); 1128 pcp->count -= pcp->batch; 1129 } 1130 1131 out: 1132 local_irq_restore(flags); 1133 put_cpu(); 1134 } 1135 1136 void free_hot_page(struct page *page) 1137 { 1138 trace_mm_page_free_direct(page, 0); 1139 free_hot_cold_page(page, 0); 1140 } 1141 1142 /* 1143 * split_page takes a non-compound higher-order page, and splits it into 1144 * n (1<<order) sub-pages: page[0..n] 1145 * Each sub-page must be freed individually. 1146 * 1147 * Note: this is probably too low level an operation for use in drivers. 1148 * Please consult with lkml before using this in your driver. 1149 */ 1150 void split_page(struct page *page, unsigned int order) 1151 { 1152 int i; 1153 1154 VM_BUG_ON(PageCompound(page)); 1155 VM_BUG_ON(!page_count(page)); 1156 1157 #ifdef CONFIG_KMEMCHECK 1158 /* 1159 * Split shadow pages too, because free(page[0]) would 1160 * otherwise free the whole shadow. 1161 */ 1162 if (kmemcheck_page_is_tracked(page)) 1163 split_page(virt_to_page(page[0].shadow), order); 1164 #endif 1165 1166 for (i = 1; i < (1 << order); i++) 1167 set_page_refcounted(page + i); 1168 } 1169 1170 /* 1171 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1172 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1173 * or two. 1174 */ 1175 static inline 1176 struct page *buffered_rmqueue(struct zone *preferred_zone, 1177 struct zone *zone, int order, gfp_t gfp_flags, 1178 int migratetype) 1179 { 1180 unsigned long flags; 1181 struct page *page; 1182 int cold = !!(gfp_flags & __GFP_COLD); 1183 int cpu; 1184 1185 again: 1186 cpu = get_cpu(); 1187 if (likely(order == 0)) { 1188 struct per_cpu_pages *pcp; 1189 struct list_head *list; 1190 1191 pcp = &zone_pcp(zone, cpu)->pcp; 1192 list = &pcp->lists[migratetype]; 1193 local_irq_save(flags); 1194 if (list_empty(list)) { 1195 pcp->count += rmqueue_bulk(zone, 0, 1196 pcp->batch, list, 1197 migratetype, cold); 1198 if (unlikely(list_empty(list))) 1199 goto failed; 1200 } 1201 1202 if (cold) 1203 page = list_entry(list->prev, struct page, lru); 1204 else 1205 page = list_entry(list->next, struct page, lru); 1206 1207 list_del(&page->lru); 1208 pcp->count--; 1209 } else { 1210 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1211 /* 1212 * __GFP_NOFAIL is not to be used in new code. 1213 * 1214 * All __GFP_NOFAIL callers should be fixed so that they 1215 * properly detect and handle allocation failures. 1216 * 1217 * We most definitely don't want callers attempting to 1218 * allocate greater than order-1 page units with 1219 * __GFP_NOFAIL. 1220 */ 1221 WARN_ON_ONCE(order > 1); 1222 } 1223 spin_lock_irqsave(&zone->lock, flags); 1224 page = __rmqueue(zone, order, migratetype); 1225 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1226 spin_unlock(&zone->lock); 1227 if (!page) 1228 goto failed; 1229 } 1230 1231 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1232 zone_statistics(preferred_zone, zone); 1233 local_irq_restore(flags); 1234 put_cpu(); 1235 1236 VM_BUG_ON(bad_range(zone, page)); 1237 if (prep_new_page(page, order, gfp_flags)) 1238 goto again; 1239 return page; 1240 1241 failed: 1242 local_irq_restore(flags); 1243 put_cpu(); 1244 return NULL; 1245 } 1246 1247 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1248 #define ALLOC_WMARK_MIN WMARK_MIN 1249 #define ALLOC_WMARK_LOW WMARK_LOW 1250 #define ALLOC_WMARK_HIGH WMARK_HIGH 1251 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1252 1253 /* Mask to get the watermark bits */ 1254 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1255 1256 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1257 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1258 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1259 1260 #ifdef CONFIG_FAIL_PAGE_ALLOC 1261 1262 static struct fail_page_alloc_attr { 1263 struct fault_attr attr; 1264 1265 u32 ignore_gfp_highmem; 1266 u32 ignore_gfp_wait; 1267 u32 min_order; 1268 1269 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1270 1271 struct dentry *ignore_gfp_highmem_file; 1272 struct dentry *ignore_gfp_wait_file; 1273 struct dentry *min_order_file; 1274 1275 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1276 1277 } fail_page_alloc = { 1278 .attr = FAULT_ATTR_INITIALIZER, 1279 .ignore_gfp_wait = 1, 1280 .ignore_gfp_highmem = 1, 1281 .min_order = 1, 1282 }; 1283 1284 static int __init setup_fail_page_alloc(char *str) 1285 { 1286 return setup_fault_attr(&fail_page_alloc.attr, str); 1287 } 1288 __setup("fail_page_alloc=", setup_fail_page_alloc); 1289 1290 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1291 { 1292 if (order < fail_page_alloc.min_order) 1293 return 0; 1294 if (gfp_mask & __GFP_NOFAIL) 1295 return 0; 1296 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1297 return 0; 1298 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1299 return 0; 1300 1301 return should_fail(&fail_page_alloc.attr, 1 << order); 1302 } 1303 1304 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1305 1306 static int __init fail_page_alloc_debugfs(void) 1307 { 1308 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1309 struct dentry *dir; 1310 int err; 1311 1312 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1313 "fail_page_alloc"); 1314 if (err) 1315 return err; 1316 dir = fail_page_alloc.attr.dentries.dir; 1317 1318 fail_page_alloc.ignore_gfp_wait_file = 1319 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1320 &fail_page_alloc.ignore_gfp_wait); 1321 1322 fail_page_alloc.ignore_gfp_highmem_file = 1323 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1324 &fail_page_alloc.ignore_gfp_highmem); 1325 fail_page_alloc.min_order_file = 1326 debugfs_create_u32("min-order", mode, dir, 1327 &fail_page_alloc.min_order); 1328 1329 if (!fail_page_alloc.ignore_gfp_wait_file || 1330 !fail_page_alloc.ignore_gfp_highmem_file || 1331 !fail_page_alloc.min_order_file) { 1332 err = -ENOMEM; 1333 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1334 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1335 debugfs_remove(fail_page_alloc.min_order_file); 1336 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1337 } 1338 1339 return err; 1340 } 1341 1342 late_initcall(fail_page_alloc_debugfs); 1343 1344 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1345 1346 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1347 1348 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1349 { 1350 return 0; 1351 } 1352 1353 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1354 1355 /* 1356 * Return 1 if free pages are above 'mark'. This takes into account the order 1357 * of the allocation. 1358 */ 1359 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1360 int classzone_idx, int alloc_flags) 1361 { 1362 /* free_pages my go negative - that's OK */ 1363 long min = mark; 1364 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1; 1365 int o; 1366 1367 if (alloc_flags & ALLOC_HIGH) 1368 min -= min / 2; 1369 if (alloc_flags & ALLOC_HARDER) 1370 min -= min / 4; 1371 1372 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1373 return 0; 1374 for (o = 0; o < order; o++) { 1375 /* At the next order, this order's pages become unavailable */ 1376 free_pages -= z->free_area[o].nr_free << o; 1377 1378 /* Require fewer higher order pages to be free */ 1379 min >>= 1; 1380 1381 if (free_pages <= min) 1382 return 0; 1383 } 1384 return 1; 1385 } 1386 1387 #ifdef CONFIG_NUMA 1388 /* 1389 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1390 * skip over zones that are not allowed by the cpuset, or that have 1391 * been recently (in last second) found to be nearly full. See further 1392 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1393 * that have to skip over a lot of full or unallowed zones. 1394 * 1395 * If the zonelist cache is present in the passed in zonelist, then 1396 * returns a pointer to the allowed node mask (either the current 1397 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1398 * 1399 * If the zonelist cache is not available for this zonelist, does 1400 * nothing and returns NULL. 1401 * 1402 * If the fullzones BITMAP in the zonelist cache is stale (more than 1403 * a second since last zap'd) then we zap it out (clear its bits.) 1404 * 1405 * We hold off even calling zlc_setup, until after we've checked the 1406 * first zone in the zonelist, on the theory that most allocations will 1407 * be satisfied from that first zone, so best to examine that zone as 1408 * quickly as we can. 1409 */ 1410 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1411 { 1412 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1413 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1414 1415 zlc = zonelist->zlcache_ptr; 1416 if (!zlc) 1417 return NULL; 1418 1419 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1420 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1421 zlc->last_full_zap = jiffies; 1422 } 1423 1424 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1425 &cpuset_current_mems_allowed : 1426 &node_states[N_HIGH_MEMORY]; 1427 return allowednodes; 1428 } 1429 1430 /* 1431 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1432 * if it is worth looking at further for free memory: 1433 * 1) Check that the zone isn't thought to be full (doesn't have its 1434 * bit set in the zonelist_cache fullzones BITMAP). 1435 * 2) Check that the zones node (obtained from the zonelist_cache 1436 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1437 * Return true (non-zero) if zone is worth looking at further, or 1438 * else return false (zero) if it is not. 1439 * 1440 * This check -ignores- the distinction between various watermarks, 1441 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1442 * found to be full for any variation of these watermarks, it will 1443 * be considered full for up to one second by all requests, unless 1444 * we are so low on memory on all allowed nodes that we are forced 1445 * into the second scan of the zonelist. 1446 * 1447 * In the second scan we ignore this zonelist cache and exactly 1448 * apply the watermarks to all zones, even it is slower to do so. 1449 * We are low on memory in the second scan, and should leave no stone 1450 * unturned looking for a free page. 1451 */ 1452 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1453 nodemask_t *allowednodes) 1454 { 1455 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1456 int i; /* index of *z in zonelist zones */ 1457 int n; /* node that zone *z is on */ 1458 1459 zlc = zonelist->zlcache_ptr; 1460 if (!zlc) 1461 return 1; 1462 1463 i = z - zonelist->_zonerefs; 1464 n = zlc->z_to_n[i]; 1465 1466 /* This zone is worth trying if it is allowed but not full */ 1467 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1468 } 1469 1470 /* 1471 * Given 'z' scanning a zonelist, set the corresponding bit in 1472 * zlc->fullzones, so that subsequent attempts to allocate a page 1473 * from that zone don't waste time re-examining it. 1474 */ 1475 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1476 { 1477 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1478 int i; /* index of *z in zonelist zones */ 1479 1480 zlc = zonelist->zlcache_ptr; 1481 if (!zlc) 1482 return; 1483 1484 i = z - zonelist->_zonerefs; 1485 1486 set_bit(i, zlc->fullzones); 1487 } 1488 1489 #else /* CONFIG_NUMA */ 1490 1491 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1492 { 1493 return NULL; 1494 } 1495 1496 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1497 nodemask_t *allowednodes) 1498 { 1499 return 1; 1500 } 1501 1502 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1503 { 1504 } 1505 #endif /* CONFIG_NUMA */ 1506 1507 /* 1508 * get_page_from_freelist goes through the zonelist trying to allocate 1509 * a page. 1510 */ 1511 static struct page * 1512 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1513 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1514 struct zone *preferred_zone, int migratetype) 1515 { 1516 struct zoneref *z; 1517 struct page *page = NULL; 1518 int classzone_idx; 1519 struct zone *zone; 1520 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1521 int zlc_active = 0; /* set if using zonelist_cache */ 1522 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1523 1524 classzone_idx = zone_idx(preferred_zone); 1525 zonelist_scan: 1526 /* 1527 * Scan zonelist, looking for a zone with enough free. 1528 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1529 */ 1530 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1531 high_zoneidx, nodemask) { 1532 if (NUMA_BUILD && zlc_active && 1533 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1534 continue; 1535 if ((alloc_flags & ALLOC_CPUSET) && 1536 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1537 goto try_next_zone; 1538 1539 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1540 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1541 unsigned long mark; 1542 int ret; 1543 1544 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1545 if (zone_watermark_ok(zone, order, mark, 1546 classzone_idx, alloc_flags)) 1547 goto try_this_zone; 1548 1549 if (zone_reclaim_mode == 0) 1550 goto this_zone_full; 1551 1552 ret = zone_reclaim(zone, gfp_mask, order); 1553 switch (ret) { 1554 case ZONE_RECLAIM_NOSCAN: 1555 /* did not scan */ 1556 goto try_next_zone; 1557 case ZONE_RECLAIM_FULL: 1558 /* scanned but unreclaimable */ 1559 goto this_zone_full; 1560 default: 1561 /* did we reclaim enough */ 1562 if (!zone_watermark_ok(zone, order, mark, 1563 classzone_idx, alloc_flags)) 1564 goto this_zone_full; 1565 } 1566 } 1567 1568 try_this_zone: 1569 page = buffered_rmqueue(preferred_zone, zone, order, 1570 gfp_mask, migratetype); 1571 if (page) 1572 break; 1573 this_zone_full: 1574 if (NUMA_BUILD) 1575 zlc_mark_zone_full(zonelist, z); 1576 try_next_zone: 1577 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1578 /* 1579 * we do zlc_setup after the first zone is tried but only 1580 * if there are multiple nodes make it worthwhile 1581 */ 1582 allowednodes = zlc_setup(zonelist, alloc_flags); 1583 zlc_active = 1; 1584 did_zlc_setup = 1; 1585 } 1586 } 1587 1588 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1589 /* Disable zlc cache for second zonelist scan */ 1590 zlc_active = 0; 1591 goto zonelist_scan; 1592 } 1593 return page; 1594 } 1595 1596 static inline int 1597 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 1598 unsigned long pages_reclaimed) 1599 { 1600 /* Do not loop if specifically requested */ 1601 if (gfp_mask & __GFP_NORETRY) 1602 return 0; 1603 1604 /* 1605 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1606 * means __GFP_NOFAIL, but that may not be true in other 1607 * implementations. 1608 */ 1609 if (order <= PAGE_ALLOC_COSTLY_ORDER) 1610 return 1; 1611 1612 /* 1613 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1614 * specified, then we retry until we no longer reclaim any pages 1615 * (above), or we've reclaimed an order of pages at least as 1616 * large as the allocation's order. In both cases, if the 1617 * allocation still fails, we stop retrying. 1618 */ 1619 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 1620 return 1; 1621 1622 /* 1623 * Don't let big-order allocations loop unless the caller 1624 * explicitly requests that. 1625 */ 1626 if (gfp_mask & __GFP_NOFAIL) 1627 return 1; 1628 1629 return 0; 1630 } 1631 1632 static inline struct page * 1633 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 1634 struct zonelist *zonelist, enum zone_type high_zoneidx, 1635 nodemask_t *nodemask, struct zone *preferred_zone, 1636 int migratetype) 1637 { 1638 struct page *page; 1639 1640 /* Acquire the OOM killer lock for the zones in zonelist */ 1641 if (!try_set_zone_oom(zonelist, gfp_mask)) { 1642 schedule_timeout_uninterruptible(1); 1643 return NULL; 1644 } 1645 1646 /* 1647 * Go through the zonelist yet one more time, keep very high watermark 1648 * here, this is only to catch a parallel oom killing, we must fail if 1649 * we're still under heavy pressure. 1650 */ 1651 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1652 order, zonelist, high_zoneidx, 1653 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 1654 preferred_zone, migratetype); 1655 if (page) 1656 goto out; 1657 1658 if (!(gfp_mask & __GFP_NOFAIL)) { 1659 /* The OOM killer will not help higher order allocs */ 1660 if (order > PAGE_ALLOC_COSTLY_ORDER) 1661 goto out; 1662 /* 1663 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 1664 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 1665 * The caller should handle page allocation failure by itself if 1666 * it specifies __GFP_THISNODE. 1667 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 1668 */ 1669 if (gfp_mask & __GFP_THISNODE) 1670 goto out; 1671 } 1672 /* Exhausted what can be done so it's blamo time */ 1673 out_of_memory(zonelist, gfp_mask, order, nodemask); 1674 1675 out: 1676 clear_zonelist_oom(zonelist, gfp_mask); 1677 return page; 1678 } 1679 1680 /* The really slow allocator path where we enter direct reclaim */ 1681 static inline struct page * 1682 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 1683 struct zonelist *zonelist, enum zone_type high_zoneidx, 1684 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1685 int migratetype, unsigned long *did_some_progress) 1686 { 1687 struct page *page = NULL; 1688 struct reclaim_state reclaim_state; 1689 struct task_struct *p = current; 1690 1691 cond_resched(); 1692 1693 /* We now go into synchronous reclaim */ 1694 cpuset_memory_pressure_bump(); 1695 p->flags |= PF_MEMALLOC; 1696 lockdep_set_current_reclaim_state(gfp_mask); 1697 reclaim_state.reclaimed_slab = 0; 1698 p->reclaim_state = &reclaim_state; 1699 1700 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 1701 1702 p->reclaim_state = NULL; 1703 lockdep_clear_current_reclaim_state(); 1704 p->flags &= ~PF_MEMALLOC; 1705 1706 cond_resched(); 1707 1708 if (order != 0) 1709 drain_all_pages(); 1710 1711 if (likely(*did_some_progress)) 1712 page = get_page_from_freelist(gfp_mask, nodemask, order, 1713 zonelist, high_zoneidx, 1714 alloc_flags, preferred_zone, 1715 migratetype); 1716 return page; 1717 } 1718 1719 /* 1720 * This is called in the allocator slow-path if the allocation request is of 1721 * sufficient urgency to ignore watermarks and take other desperate measures 1722 */ 1723 static inline struct page * 1724 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 1725 struct zonelist *zonelist, enum zone_type high_zoneidx, 1726 nodemask_t *nodemask, struct zone *preferred_zone, 1727 int migratetype) 1728 { 1729 struct page *page; 1730 1731 do { 1732 page = get_page_from_freelist(gfp_mask, nodemask, order, 1733 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 1734 preferred_zone, migratetype); 1735 1736 if (!page && gfp_mask & __GFP_NOFAIL) 1737 congestion_wait(BLK_RW_ASYNC, HZ/50); 1738 } while (!page && (gfp_mask & __GFP_NOFAIL)); 1739 1740 return page; 1741 } 1742 1743 static inline 1744 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 1745 enum zone_type high_zoneidx) 1746 { 1747 struct zoneref *z; 1748 struct zone *zone; 1749 1750 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 1751 wakeup_kswapd(zone, order); 1752 } 1753 1754 static inline int 1755 gfp_to_alloc_flags(gfp_t gfp_mask) 1756 { 1757 struct task_struct *p = current; 1758 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 1759 const gfp_t wait = gfp_mask & __GFP_WAIT; 1760 1761 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 1762 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH); 1763 1764 /* 1765 * The caller may dip into page reserves a bit more if the caller 1766 * cannot run direct reclaim, or if the caller has realtime scheduling 1767 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1768 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1769 */ 1770 alloc_flags |= (gfp_mask & __GFP_HIGH); 1771 1772 if (!wait) { 1773 alloc_flags |= ALLOC_HARDER; 1774 /* 1775 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1776 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1777 */ 1778 alloc_flags &= ~ALLOC_CPUSET; 1779 } else if (unlikely(rt_task(p)) && !in_interrupt()) 1780 alloc_flags |= ALLOC_HARDER; 1781 1782 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 1783 if (!in_interrupt() && 1784 ((p->flags & PF_MEMALLOC) || 1785 unlikely(test_thread_flag(TIF_MEMDIE)))) 1786 alloc_flags |= ALLOC_NO_WATERMARKS; 1787 } 1788 1789 return alloc_flags; 1790 } 1791 1792 static inline struct page * 1793 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 1794 struct zonelist *zonelist, enum zone_type high_zoneidx, 1795 nodemask_t *nodemask, struct zone *preferred_zone, 1796 int migratetype) 1797 { 1798 const gfp_t wait = gfp_mask & __GFP_WAIT; 1799 struct page *page = NULL; 1800 int alloc_flags; 1801 unsigned long pages_reclaimed = 0; 1802 unsigned long did_some_progress; 1803 struct task_struct *p = current; 1804 1805 /* 1806 * In the slowpath, we sanity check order to avoid ever trying to 1807 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 1808 * be using allocators in order of preference for an area that is 1809 * too large. 1810 */ 1811 if (order >= MAX_ORDER) { 1812 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 1813 return NULL; 1814 } 1815 1816 /* 1817 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1818 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1819 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1820 * using a larger set of nodes after it has established that the 1821 * allowed per node queues are empty and that nodes are 1822 * over allocated. 1823 */ 1824 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1825 goto nopage; 1826 1827 restart: 1828 wake_all_kswapd(order, zonelist, high_zoneidx); 1829 1830 /* 1831 * OK, we're below the kswapd watermark and have kicked background 1832 * reclaim. Now things get more complex, so set up alloc_flags according 1833 * to how we want to proceed. 1834 */ 1835 alloc_flags = gfp_to_alloc_flags(gfp_mask); 1836 1837 /* This is the last chance, in general, before the goto nopage. */ 1838 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 1839 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 1840 preferred_zone, migratetype); 1841 if (page) 1842 goto got_pg; 1843 1844 rebalance: 1845 /* Allocate without watermarks if the context allows */ 1846 if (alloc_flags & ALLOC_NO_WATERMARKS) { 1847 page = __alloc_pages_high_priority(gfp_mask, order, 1848 zonelist, high_zoneidx, nodemask, 1849 preferred_zone, migratetype); 1850 if (page) 1851 goto got_pg; 1852 } 1853 1854 /* Atomic allocations - we can't balance anything */ 1855 if (!wait) 1856 goto nopage; 1857 1858 /* Avoid recursion of direct reclaim */ 1859 if (p->flags & PF_MEMALLOC) 1860 goto nopage; 1861 1862 /* Avoid allocations with no watermarks from looping endlessly */ 1863 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 1864 goto nopage; 1865 1866 /* Try direct reclaim and then allocating */ 1867 page = __alloc_pages_direct_reclaim(gfp_mask, order, 1868 zonelist, high_zoneidx, 1869 nodemask, 1870 alloc_flags, preferred_zone, 1871 migratetype, &did_some_progress); 1872 if (page) 1873 goto got_pg; 1874 1875 /* 1876 * If we failed to make any progress reclaiming, then we are 1877 * running out of options and have to consider going OOM 1878 */ 1879 if (!did_some_progress) { 1880 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1881 if (oom_killer_disabled) 1882 goto nopage; 1883 page = __alloc_pages_may_oom(gfp_mask, order, 1884 zonelist, high_zoneidx, 1885 nodemask, preferred_zone, 1886 migratetype); 1887 if (page) 1888 goto got_pg; 1889 1890 /* 1891 * The OOM killer does not trigger for high-order 1892 * ~__GFP_NOFAIL allocations so if no progress is being 1893 * made, there are no other options and retrying is 1894 * unlikely to help. 1895 */ 1896 if (order > PAGE_ALLOC_COSTLY_ORDER && 1897 !(gfp_mask & __GFP_NOFAIL)) 1898 goto nopage; 1899 1900 goto restart; 1901 } 1902 } 1903 1904 /* Check if we should retry the allocation */ 1905 pages_reclaimed += did_some_progress; 1906 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) { 1907 /* Wait for some write requests to complete then retry */ 1908 congestion_wait(BLK_RW_ASYNC, HZ/50); 1909 goto rebalance; 1910 } 1911 1912 nopage: 1913 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1914 printk(KERN_WARNING "%s: page allocation failure." 1915 " order:%d, mode:0x%x\n", 1916 p->comm, order, gfp_mask); 1917 dump_stack(); 1918 show_mem(); 1919 } 1920 return page; 1921 got_pg: 1922 if (kmemcheck_enabled) 1923 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 1924 return page; 1925 1926 } 1927 1928 /* 1929 * This is the 'heart' of the zoned buddy allocator. 1930 */ 1931 struct page * 1932 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 1933 struct zonelist *zonelist, nodemask_t *nodemask) 1934 { 1935 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 1936 struct zone *preferred_zone; 1937 struct page *page; 1938 int migratetype = allocflags_to_migratetype(gfp_mask); 1939 1940 gfp_mask &= gfp_allowed_mask; 1941 1942 lockdep_trace_alloc(gfp_mask); 1943 1944 might_sleep_if(gfp_mask & __GFP_WAIT); 1945 1946 if (should_fail_alloc_page(gfp_mask, order)) 1947 return NULL; 1948 1949 /* 1950 * Check the zones suitable for the gfp_mask contain at least one 1951 * valid zone. It's possible to have an empty zonelist as a result 1952 * of GFP_THISNODE and a memoryless node 1953 */ 1954 if (unlikely(!zonelist->_zonerefs->zone)) 1955 return NULL; 1956 1957 /* The preferred zone is used for statistics later */ 1958 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone); 1959 if (!preferred_zone) 1960 return NULL; 1961 1962 /* First allocation attempt */ 1963 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 1964 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 1965 preferred_zone, migratetype); 1966 if (unlikely(!page)) 1967 page = __alloc_pages_slowpath(gfp_mask, order, 1968 zonelist, high_zoneidx, nodemask, 1969 preferred_zone, migratetype); 1970 1971 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 1972 return page; 1973 } 1974 EXPORT_SYMBOL(__alloc_pages_nodemask); 1975 1976 /* 1977 * Common helper functions. 1978 */ 1979 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1980 { 1981 struct page *page; 1982 1983 /* 1984 * __get_free_pages() returns a 32-bit address, which cannot represent 1985 * a highmem page 1986 */ 1987 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1988 1989 page = alloc_pages(gfp_mask, order); 1990 if (!page) 1991 return 0; 1992 return (unsigned long) page_address(page); 1993 } 1994 EXPORT_SYMBOL(__get_free_pages); 1995 1996 unsigned long get_zeroed_page(gfp_t gfp_mask) 1997 { 1998 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 1999 } 2000 EXPORT_SYMBOL(get_zeroed_page); 2001 2002 void __pagevec_free(struct pagevec *pvec) 2003 { 2004 int i = pagevec_count(pvec); 2005 2006 while (--i >= 0) { 2007 trace_mm_pagevec_free(pvec->pages[i], pvec->cold); 2008 free_hot_cold_page(pvec->pages[i], pvec->cold); 2009 } 2010 } 2011 2012 void __free_pages(struct page *page, unsigned int order) 2013 { 2014 if (put_page_testzero(page)) { 2015 trace_mm_page_free_direct(page, order); 2016 if (order == 0) 2017 free_hot_page(page); 2018 else 2019 __free_pages_ok(page, order); 2020 } 2021 } 2022 2023 EXPORT_SYMBOL(__free_pages); 2024 2025 void free_pages(unsigned long addr, unsigned int order) 2026 { 2027 if (addr != 0) { 2028 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2029 __free_pages(virt_to_page((void *)addr), order); 2030 } 2031 } 2032 2033 EXPORT_SYMBOL(free_pages); 2034 2035 /** 2036 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2037 * @size: the number of bytes to allocate 2038 * @gfp_mask: GFP flags for the allocation 2039 * 2040 * This function is similar to alloc_pages(), except that it allocates the 2041 * minimum number of pages to satisfy the request. alloc_pages() can only 2042 * allocate memory in power-of-two pages. 2043 * 2044 * This function is also limited by MAX_ORDER. 2045 * 2046 * Memory allocated by this function must be released by free_pages_exact(). 2047 */ 2048 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2049 { 2050 unsigned int order = get_order(size); 2051 unsigned long addr; 2052 2053 addr = __get_free_pages(gfp_mask, order); 2054 if (addr) { 2055 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2056 unsigned long used = addr + PAGE_ALIGN(size); 2057 2058 split_page(virt_to_page((void *)addr), order); 2059 while (used < alloc_end) { 2060 free_page(used); 2061 used += PAGE_SIZE; 2062 } 2063 } 2064 2065 return (void *)addr; 2066 } 2067 EXPORT_SYMBOL(alloc_pages_exact); 2068 2069 /** 2070 * free_pages_exact - release memory allocated via alloc_pages_exact() 2071 * @virt: the value returned by alloc_pages_exact. 2072 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2073 * 2074 * Release the memory allocated by a previous call to alloc_pages_exact. 2075 */ 2076 void free_pages_exact(void *virt, size_t size) 2077 { 2078 unsigned long addr = (unsigned long)virt; 2079 unsigned long end = addr + PAGE_ALIGN(size); 2080 2081 while (addr < end) { 2082 free_page(addr); 2083 addr += PAGE_SIZE; 2084 } 2085 } 2086 EXPORT_SYMBOL(free_pages_exact); 2087 2088 static unsigned int nr_free_zone_pages(int offset) 2089 { 2090 struct zoneref *z; 2091 struct zone *zone; 2092 2093 /* Just pick one node, since fallback list is circular */ 2094 unsigned int sum = 0; 2095 2096 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2097 2098 for_each_zone_zonelist(zone, z, zonelist, offset) { 2099 unsigned long size = zone->present_pages; 2100 unsigned long high = high_wmark_pages(zone); 2101 if (size > high) 2102 sum += size - high; 2103 } 2104 2105 return sum; 2106 } 2107 2108 /* 2109 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2110 */ 2111 unsigned int nr_free_buffer_pages(void) 2112 { 2113 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2114 } 2115 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2116 2117 /* 2118 * Amount of free RAM allocatable within all zones 2119 */ 2120 unsigned int nr_free_pagecache_pages(void) 2121 { 2122 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2123 } 2124 2125 static inline void show_node(struct zone *zone) 2126 { 2127 if (NUMA_BUILD) 2128 printk("Node %d ", zone_to_nid(zone)); 2129 } 2130 2131 void si_meminfo(struct sysinfo *val) 2132 { 2133 val->totalram = totalram_pages; 2134 val->sharedram = 0; 2135 val->freeram = global_page_state(NR_FREE_PAGES); 2136 val->bufferram = nr_blockdev_pages(); 2137 val->totalhigh = totalhigh_pages; 2138 val->freehigh = nr_free_highpages(); 2139 val->mem_unit = PAGE_SIZE; 2140 } 2141 2142 EXPORT_SYMBOL(si_meminfo); 2143 2144 #ifdef CONFIG_NUMA 2145 void si_meminfo_node(struct sysinfo *val, int nid) 2146 { 2147 pg_data_t *pgdat = NODE_DATA(nid); 2148 2149 val->totalram = pgdat->node_present_pages; 2150 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2151 #ifdef CONFIG_HIGHMEM 2152 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2153 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2154 NR_FREE_PAGES); 2155 #else 2156 val->totalhigh = 0; 2157 val->freehigh = 0; 2158 #endif 2159 val->mem_unit = PAGE_SIZE; 2160 } 2161 #endif 2162 2163 #define K(x) ((x) << (PAGE_SHIFT-10)) 2164 2165 /* 2166 * Show free area list (used inside shift_scroll-lock stuff) 2167 * We also calculate the percentage fragmentation. We do this by counting the 2168 * memory on each free list with the exception of the first item on the list. 2169 */ 2170 void show_free_areas(void) 2171 { 2172 int cpu; 2173 struct zone *zone; 2174 2175 for_each_populated_zone(zone) { 2176 show_node(zone); 2177 printk("%s per-cpu:\n", zone->name); 2178 2179 for_each_online_cpu(cpu) { 2180 struct per_cpu_pageset *pageset; 2181 2182 pageset = zone_pcp(zone, cpu); 2183 2184 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2185 cpu, pageset->pcp.high, 2186 pageset->pcp.batch, pageset->pcp.count); 2187 } 2188 } 2189 2190 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2191 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2192 " unevictable:%lu" 2193 " dirty:%lu writeback:%lu unstable:%lu\n" 2194 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2195 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", 2196 global_page_state(NR_ACTIVE_ANON), 2197 global_page_state(NR_INACTIVE_ANON), 2198 global_page_state(NR_ISOLATED_ANON), 2199 global_page_state(NR_ACTIVE_FILE), 2200 global_page_state(NR_INACTIVE_FILE), 2201 global_page_state(NR_ISOLATED_FILE), 2202 global_page_state(NR_UNEVICTABLE), 2203 global_page_state(NR_FILE_DIRTY), 2204 global_page_state(NR_WRITEBACK), 2205 global_page_state(NR_UNSTABLE_NFS), 2206 global_page_state(NR_FREE_PAGES), 2207 global_page_state(NR_SLAB_RECLAIMABLE), 2208 global_page_state(NR_SLAB_UNRECLAIMABLE), 2209 global_page_state(NR_FILE_MAPPED), 2210 global_page_state(NR_SHMEM), 2211 global_page_state(NR_PAGETABLE), 2212 global_page_state(NR_BOUNCE)); 2213 2214 for_each_populated_zone(zone) { 2215 int i; 2216 2217 show_node(zone); 2218 printk("%s" 2219 " free:%lukB" 2220 " min:%lukB" 2221 " low:%lukB" 2222 " high:%lukB" 2223 " active_anon:%lukB" 2224 " inactive_anon:%lukB" 2225 " active_file:%lukB" 2226 " inactive_file:%lukB" 2227 " unevictable:%lukB" 2228 " isolated(anon):%lukB" 2229 " isolated(file):%lukB" 2230 " present:%lukB" 2231 " mlocked:%lukB" 2232 " dirty:%lukB" 2233 " writeback:%lukB" 2234 " mapped:%lukB" 2235 " shmem:%lukB" 2236 " slab_reclaimable:%lukB" 2237 " slab_unreclaimable:%lukB" 2238 " kernel_stack:%lukB" 2239 " pagetables:%lukB" 2240 " unstable:%lukB" 2241 " bounce:%lukB" 2242 " writeback_tmp:%lukB" 2243 " pages_scanned:%lu" 2244 " all_unreclaimable? %s" 2245 "\n", 2246 zone->name, 2247 K(zone_page_state(zone, NR_FREE_PAGES)), 2248 K(min_wmark_pages(zone)), 2249 K(low_wmark_pages(zone)), 2250 K(high_wmark_pages(zone)), 2251 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2252 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2253 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2254 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2255 K(zone_page_state(zone, NR_UNEVICTABLE)), 2256 K(zone_page_state(zone, NR_ISOLATED_ANON)), 2257 K(zone_page_state(zone, NR_ISOLATED_FILE)), 2258 K(zone->present_pages), 2259 K(zone_page_state(zone, NR_MLOCK)), 2260 K(zone_page_state(zone, NR_FILE_DIRTY)), 2261 K(zone_page_state(zone, NR_WRITEBACK)), 2262 K(zone_page_state(zone, NR_FILE_MAPPED)), 2263 K(zone_page_state(zone, NR_SHMEM)), 2264 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 2265 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 2266 zone_page_state(zone, NR_KERNEL_STACK) * 2267 THREAD_SIZE / 1024, 2268 K(zone_page_state(zone, NR_PAGETABLE)), 2269 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 2270 K(zone_page_state(zone, NR_BOUNCE)), 2271 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 2272 zone->pages_scanned, 2273 (zone_is_all_unreclaimable(zone) ? "yes" : "no") 2274 ); 2275 printk("lowmem_reserve[]:"); 2276 for (i = 0; i < MAX_NR_ZONES; i++) 2277 printk(" %lu", zone->lowmem_reserve[i]); 2278 printk("\n"); 2279 } 2280 2281 for_each_populated_zone(zone) { 2282 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2283 2284 show_node(zone); 2285 printk("%s: ", zone->name); 2286 2287 spin_lock_irqsave(&zone->lock, flags); 2288 for (order = 0; order < MAX_ORDER; order++) { 2289 nr[order] = zone->free_area[order].nr_free; 2290 total += nr[order] << order; 2291 } 2292 spin_unlock_irqrestore(&zone->lock, flags); 2293 for (order = 0; order < MAX_ORDER; order++) 2294 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2295 printk("= %lukB\n", K(total)); 2296 } 2297 2298 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2299 2300 show_swap_cache_info(); 2301 } 2302 2303 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2304 { 2305 zoneref->zone = zone; 2306 zoneref->zone_idx = zone_idx(zone); 2307 } 2308 2309 /* 2310 * Builds allocation fallback zone lists. 2311 * 2312 * Add all populated zones of a node to the zonelist. 2313 */ 2314 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2315 int nr_zones, enum zone_type zone_type) 2316 { 2317 struct zone *zone; 2318 2319 BUG_ON(zone_type >= MAX_NR_ZONES); 2320 zone_type++; 2321 2322 do { 2323 zone_type--; 2324 zone = pgdat->node_zones + zone_type; 2325 if (populated_zone(zone)) { 2326 zoneref_set_zone(zone, 2327 &zonelist->_zonerefs[nr_zones++]); 2328 check_highest_zone(zone_type); 2329 } 2330 2331 } while (zone_type); 2332 return nr_zones; 2333 } 2334 2335 2336 /* 2337 * zonelist_order: 2338 * 0 = automatic detection of better ordering. 2339 * 1 = order by ([node] distance, -zonetype) 2340 * 2 = order by (-zonetype, [node] distance) 2341 * 2342 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2343 * the same zonelist. So only NUMA can configure this param. 2344 */ 2345 #define ZONELIST_ORDER_DEFAULT 0 2346 #define ZONELIST_ORDER_NODE 1 2347 #define ZONELIST_ORDER_ZONE 2 2348 2349 /* zonelist order in the kernel. 2350 * set_zonelist_order() will set this to NODE or ZONE. 2351 */ 2352 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2353 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2354 2355 2356 #ifdef CONFIG_NUMA 2357 /* The value user specified ....changed by config */ 2358 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2359 /* string for sysctl */ 2360 #define NUMA_ZONELIST_ORDER_LEN 16 2361 char numa_zonelist_order[16] = "default"; 2362 2363 /* 2364 * interface for configure zonelist ordering. 2365 * command line option "numa_zonelist_order" 2366 * = "[dD]efault - default, automatic configuration. 2367 * = "[nN]ode - order by node locality, then by zone within node 2368 * = "[zZ]one - order by zone, then by locality within zone 2369 */ 2370 2371 static int __parse_numa_zonelist_order(char *s) 2372 { 2373 if (*s == 'd' || *s == 'D') { 2374 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2375 } else if (*s == 'n' || *s == 'N') { 2376 user_zonelist_order = ZONELIST_ORDER_NODE; 2377 } else if (*s == 'z' || *s == 'Z') { 2378 user_zonelist_order = ZONELIST_ORDER_ZONE; 2379 } else { 2380 printk(KERN_WARNING 2381 "Ignoring invalid numa_zonelist_order value: " 2382 "%s\n", s); 2383 return -EINVAL; 2384 } 2385 return 0; 2386 } 2387 2388 static __init int setup_numa_zonelist_order(char *s) 2389 { 2390 if (s) 2391 return __parse_numa_zonelist_order(s); 2392 return 0; 2393 } 2394 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2395 2396 /* 2397 * sysctl handler for numa_zonelist_order 2398 */ 2399 int numa_zonelist_order_handler(ctl_table *table, int write, 2400 void __user *buffer, size_t *length, 2401 loff_t *ppos) 2402 { 2403 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2404 int ret; 2405 static DEFINE_MUTEX(zl_order_mutex); 2406 2407 mutex_lock(&zl_order_mutex); 2408 if (write) 2409 strcpy(saved_string, (char*)table->data); 2410 ret = proc_dostring(table, write, buffer, length, ppos); 2411 if (ret) 2412 goto out; 2413 if (write) { 2414 int oldval = user_zonelist_order; 2415 if (__parse_numa_zonelist_order((char*)table->data)) { 2416 /* 2417 * bogus value. restore saved string 2418 */ 2419 strncpy((char*)table->data, saved_string, 2420 NUMA_ZONELIST_ORDER_LEN); 2421 user_zonelist_order = oldval; 2422 } else if (oldval != user_zonelist_order) 2423 build_all_zonelists(); 2424 } 2425 out: 2426 mutex_unlock(&zl_order_mutex); 2427 return ret; 2428 } 2429 2430 2431 #define MAX_NODE_LOAD (nr_online_nodes) 2432 static int node_load[MAX_NUMNODES]; 2433 2434 /** 2435 * find_next_best_node - find the next node that should appear in a given node's fallback list 2436 * @node: node whose fallback list we're appending 2437 * @used_node_mask: nodemask_t of already used nodes 2438 * 2439 * We use a number of factors to determine which is the next node that should 2440 * appear on a given node's fallback list. The node should not have appeared 2441 * already in @node's fallback list, and it should be the next closest node 2442 * according to the distance array (which contains arbitrary distance values 2443 * from each node to each node in the system), and should also prefer nodes 2444 * with no CPUs, since presumably they'll have very little allocation pressure 2445 * on them otherwise. 2446 * It returns -1 if no node is found. 2447 */ 2448 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2449 { 2450 int n, val; 2451 int min_val = INT_MAX; 2452 int best_node = -1; 2453 const struct cpumask *tmp = cpumask_of_node(0); 2454 2455 /* Use the local node if we haven't already */ 2456 if (!node_isset(node, *used_node_mask)) { 2457 node_set(node, *used_node_mask); 2458 return node; 2459 } 2460 2461 for_each_node_state(n, N_HIGH_MEMORY) { 2462 2463 /* Don't want a node to appear more than once */ 2464 if (node_isset(n, *used_node_mask)) 2465 continue; 2466 2467 /* Use the distance array to find the distance */ 2468 val = node_distance(node, n); 2469 2470 /* Penalize nodes under us ("prefer the next node") */ 2471 val += (n < node); 2472 2473 /* Give preference to headless and unused nodes */ 2474 tmp = cpumask_of_node(n); 2475 if (!cpumask_empty(tmp)) 2476 val += PENALTY_FOR_NODE_WITH_CPUS; 2477 2478 /* Slight preference for less loaded node */ 2479 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2480 val += node_load[n]; 2481 2482 if (val < min_val) { 2483 min_val = val; 2484 best_node = n; 2485 } 2486 } 2487 2488 if (best_node >= 0) 2489 node_set(best_node, *used_node_mask); 2490 2491 return best_node; 2492 } 2493 2494 2495 /* 2496 * Build zonelists ordered by node and zones within node. 2497 * This results in maximum locality--normal zone overflows into local 2498 * DMA zone, if any--but risks exhausting DMA zone. 2499 */ 2500 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2501 { 2502 int j; 2503 struct zonelist *zonelist; 2504 2505 zonelist = &pgdat->node_zonelists[0]; 2506 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2507 ; 2508 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2509 MAX_NR_ZONES - 1); 2510 zonelist->_zonerefs[j].zone = NULL; 2511 zonelist->_zonerefs[j].zone_idx = 0; 2512 } 2513 2514 /* 2515 * Build gfp_thisnode zonelists 2516 */ 2517 static void build_thisnode_zonelists(pg_data_t *pgdat) 2518 { 2519 int j; 2520 struct zonelist *zonelist; 2521 2522 zonelist = &pgdat->node_zonelists[1]; 2523 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2524 zonelist->_zonerefs[j].zone = NULL; 2525 zonelist->_zonerefs[j].zone_idx = 0; 2526 } 2527 2528 /* 2529 * Build zonelists ordered by zone and nodes within zones. 2530 * This results in conserving DMA zone[s] until all Normal memory is 2531 * exhausted, but results in overflowing to remote node while memory 2532 * may still exist in local DMA zone. 2533 */ 2534 static int node_order[MAX_NUMNODES]; 2535 2536 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2537 { 2538 int pos, j, node; 2539 int zone_type; /* needs to be signed */ 2540 struct zone *z; 2541 struct zonelist *zonelist; 2542 2543 zonelist = &pgdat->node_zonelists[0]; 2544 pos = 0; 2545 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2546 for (j = 0; j < nr_nodes; j++) { 2547 node = node_order[j]; 2548 z = &NODE_DATA(node)->node_zones[zone_type]; 2549 if (populated_zone(z)) { 2550 zoneref_set_zone(z, 2551 &zonelist->_zonerefs[pos++]); 2552 check_highest_zone(zone_type); 2553 } 2554 } 2555 } 2556 zonelist->_zonerefs[pos].zone = NULL; 2557 zonelist->_zonerefs[pos].zone_idx = 0; 2558 } 2559 2560 static int default_zonelist_order(void) 2561 { 2562 int nid, zone_type; 2563 unsigned long low_kmem_size,total_size; 2564 struct zone *z; 2565 int average_size; 2566 /* 2567 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem. 2568 * If they are really small and used heavily, the system can fall 2569 * into OOM very easily. 2570 * This function detect ZONE_DMA/DMA32 size and confgigures zone order. 2571 */ 2572 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2573 low_kmem_size = 0; 2574 total_size = 0; 2575 for_each_online_node(nid) { 2576 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2577 z = &NODE_DATA(nid)->node_zones[zone_type]; 2578 if (populated_zone(z)) { 2579 if (zone_type < ZONE_NORMAL) 2580 low_kmem_size += z->present_pages; 2581 total_size += z->present_pages; 2582 } 2583 } 2584 } 2585 if (!low_kmem_size || /* there are no DMA area. */ 2586 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2587 return ZONELIST_ORDER_NODE; 2588 /* 2589 * look into each node's config. 2590 * If there is a node whose DMA/DMA32 memory is very big area on 2591 * local memory, NODE_ORDER may be suitable. 2592 */ 2593 average_size = total_size / 2594 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2595 for_each_online_node(nid) { 2596 low_kmem_size = 0; 2597 total_size = 0; 2598 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2599 z = &NODE_DATA(nid)->node_zones[zone_type]; 2600 if (populated_zone(z)) { 2601 if (zone_type < ZONE_NORMAL) 2602 low_kmem_size += z->present_pages; 2603 total_size += z->present_pages; 2604 } 2605 } 2606 if (low_kmem_size && 2607 total_size > average_size && /* ignore small node */ 2608 low_kmem_size > total_size * 70/100) 2609 return ZONELIST_ORDER_NODE; 2610 } 2611 return ZONELIST_ORDER_ZONE; 2612 } 2613 2614 static void set_zonelist_order(void) 2615 { 2616 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2617 current_zonelist_order = default_zonelist_order(); 2618 else 2619 current_zonelist_order = user_zonelist_order; 2620 } 2621 2622 static void build_zonelists(pg_data_t *pgdat) 2623 { 2624 int j, node, load; 2625 enum zone_type i; 2626 nodemask_t used_mask; 2627 int local_node, prev_node; 2628 struct zonelist *zonelist; 2629 int order = current_zonelist_order; 2630 2631 /* initialize zonelists */ 2632 for (i = 0; i < MAX_ZONELISTS; i++) { 2633 zonelist = pgdat->node_zonelists + i; 2634 zonelist->_zonerefs[0].zone = NULL; 2635 zonelist->_zonerefs[0].zone_idx = 0; 2636 } 2637 2638 /* NUMA-aware ordering of nodes */ 2639 local_node = pgdat->node_id; 2640 load = nr_online_nodes; 2641 prev_node = local_node; 2642 nodes_clear(used_mask); 2643 2644 memset(node_order, 0, sizeof(node_order)); 2645 j = 0; 2646 2647 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 2648 int distance = node_distance(local_node, node); 2649 2650 /* 2651 * If another node is sufficiently far away then it is better 2652 * to reclaim pages in a zone before going off node. 2653 */ 2654 if (distance > RECLAIM_DISTANCE) 2655 zone_reclaim_mode = 1; 2656 2657 /* 2658 * We don't want to pressure a particular node. 2659 * So adding penalty to the first node in same 2660 * distance group to make it round-robin. 2661 */ 2662 if (distance != node_distance(local_node, prev_node)) 2663 node_load[node] = load; 2664 2665 prev_node = node; 2666 load--; 2667 if (order == ZONELIST_ORDER_NODE) 2668 build_zonelists_in_node_order(pgdat, node); 2669 else 2670 node_order[j++] = node; /* remember order */ 2671 } 2672 2673 if (order == ZONELIST_ORDER_ZONE) { 2674 /* calculate node order -- i.e., DMA last! */ 2675 build_zonelists_in_zone_order(pgdat, j); 2676 } 2677 2678 build_thisnode_zonelists(pgdat); 2679 } 2680 2681 /* Construct the zonelist performance cache - see further mmzone.h */ 2682 static void build_zonelist_cache(pg_data_t *pgdat) 2683 { 2684 struct zonelist *zonelist; 2685 struct zonelist_cache *zlc; 2686 struct zoneref *z; 2687 2688 zonelist = &pgdat->node_zonelists[0]; 2689 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 2690 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2691 for (z = zonelist->_zonerefs; z->zone; z++) 2692 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 2693 } 2694 2695 2696 #else /* CONFIG_NUMA */ 2697 2698 static void set_zonelist_order(void) 2699 { 2700 current_zonelist_order = ZONELIST_ORDER_ZONE; 2701 } 2702 2703 static void build_zonelists(pg_data_t *pgdat) 2704 { 2705 int node, local_node; 2706 enum zone_type j; 2707 struct zonelist *zonelist; 2708 2709 local_node = pgdat->node_id; 2710 2711 zonelist = &pgdat->node_zonelists[0]; 2712 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2713 2714 /* 2715 * Now we build the zonelist so that it contains the zones 2716 * of all the other nodes. 2717 * We don't want to pressure a particular node, so when 2718 * building the zones for node N, we make sure that the 2719 * zones coming right after the local ones are those from 2720 * node N+1 (modulo N) 2721 */ 2722 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 2723 if (!node_online(node)) 2724 continue; 2725 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2726 MAX_NR_ZONES - 1); 2727 } 2728 for (node = 0; node < local_node; node++) { 2729 if (!node_online(node)) 2730 continue; 2731 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2732 MAX_NR_ZONES - 1); 2733 } 2734 2735 zonelist->_zonerefs[j].zone = NULL; 2736 zonelist->_zonerefs[j].zone_idx = 0; 2737 } 2738 2739 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 2740 static void build_zonelist_cache(pg_data_t *pgdat) 2741 { 2742 pgdat->node_zonelists[0].zlcache_ptr = NULL; 2743 } 2744 2745 #endif /* CONFIG_NUMA */ 2746 2747 /* return values int ....just for stop_machine() */ 2748 static int __build_all_zonelists(void *dummy) 2749 { 2750 int nid; 2751 2752 #ifdef CONFIG_NUMA 2753 memset(node_load, 0, sizeof(node_load)); 2754 #endif 2755 for_each_online_node(nid) { 2756 pg_data_t *pgdat = NODE_DATA(nid); 2757 2758 build_zonelists(pgdat); 2759 build_zonelist_cache(pgdat); 2760 } 2761 return 0; 2762 } 2763 2764 void build_all_zonelists(void) 2765 { 2766 set_zonelist_order(); 2767 2768 if (system_state == SYSTEM_BOOTING) { 2769 __build_all_zonelists(NULL); 2770 mminit_verify_zonelist(); 2771 cpuset_init_current_mems_allowed(); 2772 } else { 2773 /* we have to stop all cpus to guarantee there is no user 2774 of zonelist */ 2775 stop_machine(__build_all_zonelists, NULL, NULL); 2776 /* cpuset refresh routine should be here */ 2777 } 2778 vm_total_pages = nr_free_pagecache_pages(); 2779 /* 2780 * Disable grouping by mobility if the number of pages in the 2781 * system is too low to allow the mechanism to work. It would be 2782 * more accurate, but expensive to check per-zone. This check is 2783 * made on memory-hotadd so a system can start with mobility 2784 * disabled and enable it later 2785 */ 2786 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 2787 page_group_by_mobility_disabled = 1; 2788 else 2789 page_group_by_mobility_disabled = 0; 2790 2791 printk("Built %i zonelists in %s order, mobility grouping %s. " 2792 "Total pages: %ld\n", 2793 nr_online_nodes, 2794 zonelist_order_name[current_zonelist_order], 2795 page_group_by_mobility_disabled ? "off" : "on", 2796 vm_total_pages); 2797 #ifdef CONFIG_NUMA 2798 printk("Policy zone: %s\n", zone_names[policy_zone]); 2799 #endif 2800 } 2801 2802 /* 2803 * Helper functions to size the waitqueue hash table. 2804 * Essentially these want to choose hash table sizes sufficiently 2805 * large so that collisions trying to wait on pages are rare. 2806 * But in fact, the number of active page waitqueues on typical 2807 * systems is ridiculously low, less than 200. So this is even 2808 * conservative, even though it seems large. 2809 * 2810 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 2811 * waitqueues, i.e. the size of the waitq table given the number of pages. 2812 */ 2813 #define PAGES_PER_WAITQUEUE 256 2814 2815 #ifndef CONFIG_MEMORY_HOTPLUG 2816 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2817 { 2818 unsigned long size = 1; 2819 2820 pages /= PAGES_PER_WAITQUEUE; 2821 2822 while (size < pages) 2823 size <<= 1; 2824 2825 /* 2826 * Once we have dozens or even hundreds of threads sleeping 2827 * on IO we've got bigger problems than wait queue collision. 2828 * Limit the size of the wait table to a reasonable size. 2829 */ 2830 size = min(size, 4096UL); 2831 2832 return max(size, 4UL); 2833 } 2834 #else 2835 /* 2836 * A zone's size might be changed by hot-add, so it is not possible to determine 2837 * a suitable size for its wait_table. So we use the maximum size now. 2838 * 2839 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 2840 * 2841 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 2842 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 2843 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 2844 * 2845 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 2846 * or more by the traditional way. (See above). It equals: 2847 * 2848 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 2849 * ia64(16K page size) : = ( 8G + 4M)byte. 2850 * powerpc (64K page size) : = (32G +16M)byte. 2851 */ 2852 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2853 { 2854 return 4096UL; 2855 } 2856 #endif 2857 2858 /* 2859 * This is an integer logarithm so that shifts can be used later 2860 * to extract the more random high bits from the multiplicative 2861 * hash function before the remainder is taken. 2862 */ 2863 static inline unsigned long wait_table_bits(unsigned long size) 2864 { 2865 return ffz(~size); 2866 } 2867 2868 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 2869 2870 /* 2871 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 2872 * of blocks reserved is based on min_wmark_pages(zone). The memory within 2873 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 2874 * higher will lead to a bigger reserve which will get freed as contiguous 2875 * blocks as reclaim kicks in 2876 */ 2877 static void setup_zone_migrate_reserve(struct zone *zone) 2878 { 2879 unsigned long start_pfn, pfn, end_pfn; 2880 struct page *page; 2881 unsigned long block_migratetype; 2882 int reserve; 2883 2884 /* Get the start pfn, end pfn and the number of blocks to reserve */ 2885 start_pfn = zone->zone_start_pfn; 2886 end_pfn = start_pfn + zone->spanned_pages; 2887 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 2888 pageblock_order; 2889 2890 /* 2891 * Reserve blocks are generally in place to help high-order atomic 2892 * allocations that are short-lived. A min_free_kbytes value that 2893 * would result in more than 2 reserve blocks for atomic allocations 2894 * is assumed to be in place to help anti-fragmentation for the 2895 * future allocation of hugepages at runtime. 2896 */ 2897 reserve = min(2, reserve); 2898 2899 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 2900 if (!pfn_valid(pfn)) 2901 continue; 2902 page = pfn_to_page(pfn); 2903 2904 /* Watch out for overlapping nodes */ 2905 if (page_to_nid(page) != zone_to_nid(zone)) 2906 continue; 2907 2908 /* Blocks with reserved pages will never free, skip them. */ 2909 if (PageReserved(page)) 2910 continue; 2911 2912 block_migratetype = get_pageblock_migratetype(page); 2913 2914 /* If this block is reserved, account for it */ 2915 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 2916 reserve--; 2917 continue; 2918 } 2919 2920 /* Suitable for reserving if this block is movable */ 2921 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 2922 set_pageblock_migratetype(page, MIGRATE_RESERVE); 2923 move_freepages_block(zone, page, MIGRATE_RESERVE); 2924 reserve--; 2925 continue; 2926 } 2927 2928 /* 2929 * If the reserve is met and this is a previous reserved block, 2930 * take it back 2931 */ 2932 if (block_migratetype == MIGRATE_RESERVE) { 2933 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2934 move_freepages_block(zone, page, MIGRATE_MOVABLE); 2935 } 2936 } 2937 } 2938 2939 /* 2940 * Initially all pages are reserved - free ones are freed 2941 * up by free_all_bootmem() once the early boot process is 2942 * done. Non-atomic initialization, single-pass. 2943 */ 2944 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 2945 unsigned long start_pfn, enum memmap_context context) 2946 { 2947 struct page *page; 2948 unsigned long end_pfn = start_pfn + size; 2949 unsigned long pfn; 2950 struct zone *z; 2951 2952 if (highest_memmap_pfn < end_pfn - 1) 2953 highest_memmap_pfn = end_pfn - 1; 2954 2955 z = &NODE_DATA(nid)->node_zones[zone]; 2956 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 2957 /* 2958 * There can be holes in boot-time mem_map[]s 2959 * handed to this function. They do not 2960 * exist on hotplugged memory. 2961 */ 2962 if (context == MEMMAP_EARLY) { 2963 if (!early_pfn_valid(pfn)) 2964 continue; 2965 if (!early_pfn_in_nid(pfn, nid)) 2966 continue; 2967 } 2968 page = pfn_to_page(pfn); 2969 set_page_links(page, zone, nid, pfn); 2970 mminit_verify_page_links(page, zone, nid, pfn); 2971 init_page_count(page); 2972 reset_page_mapcount(page); 2973 SetPageReserved(page); 2974 /* 2975 * Mark the block movable so that blocks are reserved for 2976 * movable at startup. This will force kernel allocations 2977 * to reserve their blocks rather than leaking throughout 2978 * the address space during boot when many long-lived 2979 * kernel allocations are made. Later some blocks near 2980 * the start are marked MIGRATE_RESERVE by 2981 * setup_zone_migrate_reserve() 2982 * 2983 * bitmap is created for zone's valid pfn range. but memmap 2984 * can be created for invalid pages (for alignment) 2985 * check here not to call set_pageblock_migratetype() against 2986 * pfn out of zone. 2987 */ 2988 if ((z->zone_start_pfn <= pfn) 2989 && (pfn < z->zone_start_pfn + z->spanned_pages) 2990 && !(pfn & (pageblock_nr_pages - 1))) 2991 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2992 2993 INIT_LIST_HEAD(&page->lru); 2994 #ifdef WANT_PAGE_VIRTUAL 2995 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 2996 if (!is_highmem_idx(zone)) 2997 set_page_address(page, __va(pfn << PAGE_SHIFT)); 2998 #endif 2999 } 3000 } 3001 3002 static void __meminit zone_init_free_lists(struct zone *zone) 3003 { 3004 int order, t; 3005 for_each_migratetype_order(order, t) { 3006 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3007 zone->free_area[order].nr_free = 0; 3008 } 3009 } 3010 3011 #ifndef __HAVE_ARCH_MEMMAP_INIT 3012 #define memmap_init(size, nid, zone, start_pfn) \ 3013 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3014 #endif 3015 3016 static int zone_batchsize(struct zone *zone) 3017 { 3018 #ifdef CONFIG_MMU 3019 int batch; 3020 3021 /* 3022 * The per-cpu-pages pools are set to around 1000th of the 3023 * size of the zone. But no more than 1/2 of a meg. 3024 * 3025 * OK, so we don't know how big the cache is. So guess. 3026 */ 3027 batch = zone->present_pages / 1024; 3028 if (batch * PAGE_SIZE > 512 * 1024) 3029 batch = (512 * 1024) / PAGE_SIZE; 3030 batch /= 4; /* We effectively *= 4 below */ 3031 if (batch < 1) 3032 batch = 1; 3033 3034 /* 3035 * Clamp the batch to a 2^n - 1 value. Having a power 3036 * of 2 value was found to be more likely to have 3037 * suboptimal cache aliasing properties in some cases. 3038 * 3039 * For example if 2 tasks are alternately allocating 3040 * batches of pages, one task can end up with a lot 3041 * of pages of one half of the possible page colors 3042 * and the other with pages of the other colors. 3043 */ 3044 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3045 3046 return batch; 3047 3048 #else 3049 /* The deferral and batching of frees should be suppressed under NOMMU 3050 * conditions. 3051 * 3052 * The problem is that NOMMU needs to be able to allocate large chunks 3053 * of contiguous memory as there's no hardware page translation to 3054 * assemble apparent contiguous memory from discontiguous pages. 3055 * 3056 * Queueing large contiguous runs of pages for batching, however, 3057 * causes the pages to actually be freed in smaller chunks. As there 3058 * can be a significant delay between the individual batches being 3059 * recycled, this leads to the once large chunks of space being 3060 * fragmented and becoming unavailable for high-order allocations. 3061 */ 3062 return 0; 3063 #endif 3064 } 3065 3066 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3067 { 3068 struct per_cpu_pages *pcp; 3069 int migratetype; 3070 3071 memset(p, 0, sizeof(*p)); 3072 3073 pcp = &p->pcp; 3074 pcp->count = 0; 3075 pcp->high = 6 * batch; 3076 pcp->batch = max(1UL, 1 * batch); 3077 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3078 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3079 } 3080 3081 /* 3082 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3083 * to the value high for the pageset p. 3084 */ 3085 3086 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3087 unsigned long high) 3088 { 3089 struct per_cpu_pages *pcp; 3090 3091 pcp = &p->pcp; 3092 pcp->high = high; 3093 pcp->batch = max(1UL, high/4); 3094 if ((high/4) > (PAGE_SHIFT * 8)) 3095 pcp->batch = PAGE_SHIFT * 8; 3096 } 3097 3098 3099 #ifdef CONFIG_NUMA 3100 /* 3101 * Boot pageset table. One per cpu which is going to be used for all 3102 * zones and all nodes. The parameters will be set in such a way 3103 * that an item put on a list will immediately be handed over to 3104 * the buddy list. This is safe since pageset manipulation is done 3105 * with interrupts disabled. 3106 * 3107 * Some NUMA counter updates may also be caught by the boot pagesets. 3108 * 3109 * The boot_pagesets must be kept even after bootup is complete for 3110 * unused processors and/or zones. They do play a role for bootstrapping 3111 * hotplugged processors. 3112 * 3113 * zoneinfo_show() and maybe other functions do 3114 * not check if the processor is online before following the pageset pointer. 3115 * Other parts of the kernel may not check if the zone is available. 3116 */ 3117 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 3118 3119 /* 3120 * Dynamically allocate memory for the 3121 * per cpu pageset array in struct zone. 3122 */ 3123 static int __cpuinit process_zones(int cpu) 3124 { 3125 struct zone *zone, *dzone; 3126 int node = cpu_to_node(cpu); 3127 3128 node_set_state(node, N_CPU); /* this node has a cpu */ 3129 3130 for_each_populated_zone(zone) { 3131 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 3132 GFP_KERNEL, node); 3133 if (!zone_pcp(zone, cpu)) 3134 goto bad; 3135 3136 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 3137 3138 if (percpu_pagelist_fraction) 3139 setup_pagelist_highmark(zone_pcp(zone, cpu), 3140 (zone->present_pages / percpu_pagelist_fraction)); 3141 } 3142 3143 return 0; 3144 bad: 3145 for_each_zone(dzone) { 3146 if (!populated_zone(dzone)) 3147 continue; 3148 if (dzone == zone) 3149 break; 3150 kfree(zone_pcp(dzone, cpu)); 3151 zone_pcp(dzone, cpu) = &boot_pageset[cpu]; 3152 } 3153 return -ENOMEM; 3154 } 3155 3156 static inline void free_zone_pagesets(int cpu) 3157 { 3158 struct zone *zone; 3159 3160 for_each_zone(zone) { 3161 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 3162 3163 /* Free per_cpu_pageset if it is slab allocated */ 3164 if (pset != &boot_pageset[cpu]) 3165 kfree(pset); 3166 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 3167 } 3168 } 3169 3170 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 3171 unsigned long action, 3172 void *hcpu) 3173 { 3174 int cpu = (long)hcpu; 3175 int ret = NOTIFY_OK; 3176 3177 switch (action) { 3178 case CPU_UP_PREPARE: 3179 case CPU_UP_PREPARE_FROZEN: 3180 if (process_zones(cpu)) 3181 ret = NOTIFY_BAD; 3182 break; 3183 case CPU_UP_CANCELED: 3184 case CPU_UP_CANCELED_FROZEN: 3185 case CPU_DEAD: 3186 case CPU_DEAD_FROZEN: 3187 free_zone_pagesets(cpu); 3188 break; 3189 default: 3190 break; 3191 } 3192 return ret; 3193 } 3194 3195 static struct notifier_block __cpuinitdata pageset_notifier = 3196 { &pageset_cpuup_callback, NULL, 0 }; 3197 3198 void __init setup_per_cpu_pageset(void) 3199 { 3200 int err; 3201 3202 /* Initialize per_cpu_pageset for cpu 0. 3203 * A cpuup callback will do this for every cpu 3204 * as it comes online 3205 */ 3206 err = process_zones(smp_processor_id()); 3207 BUG_ON(err); 3208 register_cpu_notifier(&pageset_notifier); 3209 } 3210 3211 #endif 3212 3213 static noinline __init_refok 3214 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3215 { 3216 int i; 3217 struct pglist_data *pgdat = zone->zone_pgdat; 3218 size_t alloc_size; 3219 3220 /* 3221 * The per-page waitqueue mechanism uses hashed waitqueues 3222 * per zone. 3223 */ 3224 zone->wait_table_hash_nr_entries = 3225 wait_table_hash_nr_entries(zone_size_pages); 3226 zone->wait_table_bits = 3227 wait_table_bits(zone->wait_table_hash_nr_entries); 3228 alloc_size = zone->wait_table_hash_nr_entries 3229 * sizeof(wait_queue_head_t); 3230 3231 if (!slab_is_available()) { 3232 zone->wait_table = (wait_queue_head_t *) 3233 alloc_bootmem_node(pgdat, alloc_size); 3234 } else { 3235 /* 3236 * This case means that a zone whose size was 0 gets new memory 3237 * via memory hot-add. 3238 * But it may be the case that a new node was hot-added. In 3239 * this case vmalloc() will not be able to use this new node's 3240 * memory - this wait_table must be initialized to use this new 3241 * node itself as well. 3242 * To use this new node's memory, further consideration will be 3243 * necessary. 3244 */ 3245 zone->wait_table = vmalloc(alloc_size); 3246 } 3247 if (!zone->wait_table) 3248 return -ENOMEM; 3249 3250 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3251 init_waitqueue_head(zone->wait_table + i); 3252 3253 return 0; 3254 } 3255 3256 static int __zone_pcp_update(void *data) 3257 { 3258 struct zone *zone = data; 3259 int cpu; 3260 unsigned long batch = zone_batchsize(zone), flags; 3261 3262 for (cpu = 0; cpu < NR_CPUS; cpu++) { 3263 struct per_cpu_pageset *pset; 3264 struct per_cpu_pages *pcp; 3265 3266 pset = zone_pcp(zone, cpu); 3267 pcp = &pset->pcp; 3268 3269 local_irq_save(flags); 3270 free_pcppages_bulk(zone, pcp->count, pcp); 3271 setup_pageset(pset, batch); 3272 local_irq_restore(flags); 3273 } 3274 return 0; 3275 } 3276 3277 void zone_pcp_update(struct zone *zone) 3278 { 3279 stop_machine(__zone_pcp_update, zone, NULL); 3280 } 3281 3282 static __meminit void zone_pcp_init(struct zone *zone) 3283 { 3284 int cpu; 3285 unsigned long batch = zone_batchsize(zone); 3286 3287 for (cpu = 0; cpu < NR_CPUS; cpu++) { 3288 #ifdef CONFIG_NUMA 3289 /* Early boot. Slab allocator not functional yet */ 3290 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 3291 setup_pageset(&boot_pageset[cpu],0); 3292 #else 3293 setup_pageset(zone_pcp(zone,cpu), batch); 3294 #endif 3295 } 3296 if (zone->present_pages) 3297 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 3298 zone->name, zone->present_pages, batch); 3299 } 3300 3301 __meminit int init_currently_empty_zone(struct zone *zone, 3302 unsigned long zone_start_pfn, 3303 unsigned long size, 3304 enum memmap_context context) 3305 { 3306 struct pglist_data *pgdat = zone->zone_pgdat; 3307 int ret; 3308 ret = zone_wait_table_init(zone, size); 3309 if (ret) 3310 return ret; 3311 pgdat->nr_zones = zone_idx(zone) + 1; 3312 3313 zone->zone_start_pfn = zone_start_pfn; 3314 3315 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3316 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 3317 pgdat->node_id, 3318 (unsigned long)zone_idx(zone), 3319 zone_start_pfn, (zone_start_pfn + size)); 3320 3321 zone_init_free_lists(zone); 3322 3323 return 0; 3324 } 3325 3326 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3327 /* 3328 * Basic iterator support. Return the first range of PFNs for a node 3329 * Note: nid == MAX_NUMNODES returns first region regardless of node 3330 */ 3331 static int __meminit first_active_region_index_in_nid(int nid) 3332 { 3333 int i; 3334 3335 for (i = 0; i < nr_nodemap_entries; i++) 3336 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 3337 return i; 3338 3339 return -1; 3340 } 3341 3342 /* 3343 * Basic iterator support. Return the next active range of PFNs for a node 3344 * Note: nid == MAX_NUMNODES returns next region regardless of node 3345 */ 3346 static int __meminit next_active_region_index_in_nid(int index, int nid) 3347 { 3348 for (index = index + 1; index < nr_nodemap_entries; index++) 3349 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 3350 return index; 3351 3352 return -1; 3353 } 3354 3355 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 3356 /* 3357 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 3358 * Architectures may implement their own version but if add_active_range() 3359 * was used and there are no special requirements, this is a convenient 3360 * alternative 3361 */ 3362 int __meminit __early_pfn_to_nid(unsigned long pfn) 3363 { 3364 int i; 3365 3366 for (i = 0; i < nr_nodemap_entries; i++) { 3367 unsigned long start_pfn = early_node_map[i].start_pfn; 3368 unsigned long end_pfn = early_node_map[i].end_pfn; 3369 3370 if (start_pfn <= pfn && pfn < end_pfn) 3371 return early_node_map[i].nid; 3372 } 3373 /* This is a memory hole */ 3374 return -1; 3375 } 3376 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3377 3378 int __meminit early_pfn_to_nid(unsigned long pfn) 3379 { 3380 int nid; 3381 3382 nid = __early_pfn_to_nid(pfn); 3383 if (nid >= 0) 3384 return nid; 3385 /* just returns 0 */ 3386 return 0; 3387 } 3388 3389 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3390 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3391 { 3392 int nid; 3393 3394 nid = __early_pfn_to_nid(pfn); 3395 if (nid >= 0 && nid != node) 3396 return false; 3397 return true; 3398 } 3399 #endif 3400 3401 /* Basic iterator support to walk early_node_map[] */ 3402 #define for_each_active_range_index_in_nid(i, nid) \ 3403 for (i = first_active_region_index_in_nid(nid); i != -1; \ 3404 i = next_active_region_index_in_nid(i, nid)) 3405 3406 /** 3407 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3408 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3409 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3410 * 3411 * If an architecture guarantees that all ranges registered with 3412 * add_active_ranges() contain no holes and may be freed, this 3413 * this function may be used instead of calling free_bootmem() manually. 3414 */ 3415 void __init free_bootmem_with_active_regions(int nid, 3416 unsigned long max_low_pfn) 3417 { 3418 int i; 3419 3420 for_each_active_range_index_in_nid(i, nid) { 3421 unsigned long size_pages = 0; 3422 unsigned long end_pfn = early_node_map[i].end_pfn; 3423 3424 if (early_node_map[i].start_pfn >= max_low_pfn) 3425 continue; 3426 3427 if (end_pfn > max_low_pfn) 3428 end_pfn = max_low_pfn; 3429 3430 size_pages = end_pfn - early_node_map[i].start_pfn; 3431 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 3432 PFN_PHYS(early_node_map[i].start_pfn), 3433 size_pages << PAGE_SHIFT); 3434 } 3435 } 3436 3437 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 3438 { 3439 int i; 3440 int ret; 3441 3442 for_each_active_range_index_in_nid(i, nid) { 3443 ret = work_fn(early_node_map[i].start_pfn, 3444 early_node_map[i].end_pfn, data); 3445 if (ret) 3446 break; 3447 } 3448 } 3449 /** 3450 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3451 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3452 * 3453 * If an architecture guarantees that all ranges registered with 3454 * add_active_ranges() contain no holes and may be freed, this 3455 * function may be used instead of calling memory_present() manually. 3456 */ 3457 void __init sparse_memory_present_with_active_regions(int nid) 3458 { 3459 int i; 3460 3461 for_each_active_range_index_in_nid(i, nid) 3462 memory_present(early_node_map[i].nid, 3463 early_node_map[i].start_pfn, 3464 early_node_map[i].end_pfn); 3465 } 3466 3467 /** 3468 * get_pfn_range_for_nid - Return the start and end page frames for a node 3469 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3470 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3471 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3472 * 3473 * It returns the start and end page frame of a node based on information 3474 * provided by an arch calling add_active_range(). If called for a node 3475 * with no available memory, a warning is printed and the start and end 3476 * PFNs will be 0. 3477 */ 3478 void __meminit get_pfn_range_for_nid(unsigned int nid, 3479 unsigned long *start_pfn, unsigned long *end_pfn) 3480 { 3481 int i; 3482 *start_pfn = -1UL; 3483 *end_pfn = 0; 3484 3485 for_each_active_range_index_in_nid(i, nid) { 3486 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3487 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3488 } 3489 3490 if (*start_pfn == -1UL) 3491 *start_pfn = 0; 3492 } 3493 3494 /* 3495 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3496 * assumption is made that zones within a node are ordered in monotonic 3497 * increasing memory addresses so that the "highest" populated zone is used 3498 */ 3499 static void __init find_usable_zone_for_movable(void) 3500 { 3501 int zone_index; 3502 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3503 if (zone_index == ZONE_MOVABLE) 3504 continue; 3505 3506 if (arch_zone_highest_possible_pfn[zone_index] > 3507 arch_zone_lowest_possible_pfn[zone_index]) 3508 break; 3509 } 3510 3511 VM_BUG_ON(zone_index == -1); 3512 movable_zone = zone_index; 3513 } 3514 3515 /* 3516 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3517 * because it is sized independant of architecture. Unlike the other zones, 3518 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3519 * in each node depending on the size of each node and how evenly kernelcore 3520 * is distributed. This helper function adjusts the zone ranges 3521 * provided by the architecture for a given node by using the end of the 3522 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3523 * zones within a node are in order of monotonic increases memory addresses 3524 */ 3525 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3526 unsigned long zone_type, 3527 unsigned long node_start_pfn, 3528 unsigned long node_end_pfn, 3529 unsigned long *zone_start_pfn, 3530 unsigned long *zone_end_pfn) 3531 { 3532 /* Only adjust if ZONE_MOVABLE is on this node */ 3533 if (zone_movable_pfn[nid]) { 3534 /* Size ZONE_MOVABLE */ 3535 if (zone_type == ZONE_MOVABLE) { 3536 *zone_start_pfn = zone_movable_pfn[nid]; 3537 *zone_end_pfn = min(node_end_pfn, 3538 arch_zone_highest_possible_pfn[movable_zone]); 3539 3540 /* Adjust for ZONE_MOVABLE starting within this range */ 3541 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3542 *zone_end_pfn > zone_movable_pfn[nid]) { 3543 *zone_end_pfn = zone_movable_pfn[nid]; 3544 3545 /* Check if this whole range is within ZONE_MOVABLE */ 3546 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3547 *zone_start_pfn = *zone_end_pfn; 3548 } 3549 } 3550 3551 /* 3552 * Return the number of pages a zone spans in a node, including holes 3553 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3554 */ 3555 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3556 unsigned long zone_type, 3557 unsigned long *ignored) 3558 { 3559 unsigned long node_start_pfn, node_end_pfn; 3560 unsigned long zone_start_pfn, zone_end_pfn; 3561 3562 /* Get the start and end of the node and zone */ 3563 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3564 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3565 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3566 adjust_zone_range_for_zone_movable(nid, zone_type, 3567 node_start_pfn, node_end_pfn, 3568 &zone_start_pfn, &zone_end_pfn); 3569 3570 /* Check that this node has pages within the zone's required range */ 3571 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3572 return 0; 3573 3574 /* Move the zone boundaries inside the node if necessary */ 3575 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3576 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3577 3578 /* Return the spanned pages */ 3579 return zone_end_pfn - zone_start_pfn; 3580 } 3581 3582 /* 3583 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3584 * then all holes in the requested range will be accounted for. 3585 */ 3586 unsigned long __meminit __absent_pages_in_range(int nid, 3587 unsigned long range_start_pfn, 3588 unsigned long range_end_pfn) 3589 { 3590 int i = 0; 3591 unsigned long prev_end_pfn = 0, hole_pages = 0; 3592 unsigned long start_pfn; 3593 3594 /* Find the end_pfn of the first active range of pfns in the node */ 3595 i = first_active_region_index_in_nid(nid); 3596 if (i == -1) 3597 return 0; 3598 3599 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3600 3601 /* Account for ranges before physical memory on this node */ 3602 if (early_node_map[i].start_pfn > range_start_pfn) 3603 hole_pages = prev_end_pfn - range_start_pfn; 3604 3605 /* Find all holes for the zone within the node */ 3606 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 3607 3608 /* No need to continue if prev_end_pfn is outside the zone */ 3609 if (prev_end_pfn >= range_end_pfn) 3610 break; 3611 3612 /* Make sure the end of the zone is not within the hole */ 3613 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3614 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 3615 3616 /* Update the hole size cound and move on */ 3617 if (start_pfn > range_start_pfn) { 3618 BUG_ON(prev_end_pfn > start_pfn); 3619 hole_pages += start_pfn - prev_end_pfn; 3620 } 3621 prev_end_pfn = early_node_map[i].end_pfn; 3622 } 3623 3624 /* Account for ranges past physical memory on this node */ 3625 if (range_end_pfn > prev_end_pfn) 3626 hole_pages += range_end_pfn - 3627 max(range_start_pfn, prev_end_pfn); 3628 3629 return hole_pages; 3630 } 3631 3632 /** 3633 * absent_pages_in_range - Return number of page frames in holes within a range 3634 * @start_pfn: The start PFN to start searching for holes 3635 * @end_pfn: The end PFN to stop searching for holes 3636 * 3637 * It returns the number of pages frames in memory holes within a range. 3638 */ 3639 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 3640 unsigned long end_pfn) 3641 { 3642 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 3643 } 3644 3645 /* Return the number of page frames in holes in a zone on a node */ 3646 static unsigned long __meminit zone_absent_pages_in_node(int nid, 3647 unsigned long zone_type, 3648 unsigned long *ignored) 3649 { 3650 unsigned long node_start_pfn, node_end_pfn; 3651 unsigned long zone_start_pfn, zone_end_pfn; 3652 3653 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3654 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 3655 node_start_pfn); 3656 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 3657 node_end_pfn); 3658 3659 adjust_zone_range_for_zone_movable(nid, zone_type, 3660 node_start_pfn, node_end_pfn, 3661 &zone_start_pfn, &zone_end_pfn); 3662 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 3663 } 3664 3665 #else 3666 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 3667 unsigned long zone_type, 3668 unsigned long *zones_size) 3669 { 3670 return zones_size[zone_type]; 3671 } 3672 3673 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 3674 unsigned long zone_type, 3675 unsigned long *zholes_size) 3676 { 3677 if (!zholes_size) 3678 return 0; 3679 3680 return zholes_size[zone_type]; 3681 } 3682 3683 #endif 3684 3685 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 3686 unsigned long *zones_size, unsigned long *zholes_size) 3687 { 3688 unsigned long realtotalpages, totalpages = 0; 3689 enum zone_type i; 3690 3691 for (i = 0; i < MAX_NR_ZONES; i++) 3692 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 3693 zones_size); 3694 pgdat->node_spanned_pages = totalpages; 3695 3696 realtotalpages = totalpages; 3697 for (i = 0; i < MAX_NR_ZONES; i++) 3698 realtotalpages -= 3699 zone_absent_pages_in_node(pgdat->node_id, i, 3700 zholes_size); 3701 pgdat->node_present_pages = realtotalpages; 3702 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 3703 realtotalpages); 3704 } 3705 3706 #ifndef CONFIG_SPARSEMEM 3707 /* 3708 * Calculate the size of the zone->blockflags rounded to an unsigned long 3709 * Start by making sure zonesize is a multiple of pageblock_order by rounding 3710 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 3711 * round what is now in bits to nearest long in bits, then return it in 3712 * bytes. 3713 */ 3714 static unsigned long __init usemap_size(unsigned long zonesize) 3715 { 3716 unsigned long usemapsize; 3717 3718 usemapsize = roundup(zonesize, pageblock_nr_pages); 3719 usemapsize = usemapsize >> pageblock_order; 3720 usemapsize *= NR_PAGEBLOCK_BITS; 3721 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 3722 3723 return usemapsize / 8; 3724 } 3725 3726 static void __init setup_usemap(struct pglist_data *pgdat, 3727 struct zone *zone, unsigned long zonesize) 3728 { 3729 unsigned long usemapsize = usemap_size(zonesize); 3730 zone->pageblock_flags = NULL; 3731 if (usemapsize) 3732 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); 3733 } 3734 #else 3735 static void inline setup_usemap(struct pglist_data *pgdat, 3736 struct zone *zone, unsigned long zonesize) {} 3737 #endif /* CONFIG_SPARSEMEM */ 3738 3739 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 3740 3741 /* Return a sensible default order for the pageblock size. */ 3742 static inline int pageblock_default_order(void) 3743 { 3744 if (HPAGE_SHIFT > PAGE_SHIFT) 3745 return HUGETLB_PAGE_ORDER; 3746 3747 return MAX_ORDER-1; 3748 } 3749 3750 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 3751 static inline void __init set_pageblock_order(unsigned int order) 3752 { 3753 /* Check that pageblock_nr_pages has not already been setup */ 3754 if (pageblock_order) 3755 return; 3756 3757 /* 3758 * Assume the largest contiguous order of interest is a huge page. 3759 * This value may be variable depending on boot parameters on IA64 3760 */ 3761 pageblock_order = order; 3762 } 3763 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3764 3765 /* 3766 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 3767 * and pageblock_default_order() are unused as pageblock_order is set 3768 * at compile-time. See include/linux/pageblock-flags.h for the values of 3769 * pageblock_order based on the kernel config 3770 */ 3771 static inline int pageblock_default_order(unsigned int order) 3772 { 3773 return MAX_ORDER-1; 3774 } 3775 #define set_pageblock_order(x) do {} while (0) 3776 3777 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3778 3779 /* 3780 * Set up the zone data structures: 3781 * - mark all pages reserved 3782 * - mark all memory queues empty 3783 * - clear the memory bitmaps 3784 */ 3785 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 3786 unsigned long *zones_size, unsigned long *zholes_size) 3787 { 3788 enum zone_type j; 3789 int nid = pgdat->node_id; 3790 unsigned long zone_start_pfn = pgdat->node_start_pfn; 3791 int ret; 3792 3793 pgdat_resize_init(pgdat); 3794 pgdat->nr_zones = 0; 3795 init_waitqueue_head(&pgdat->kswapd_wait); 3796 pgdat->kswapd_max_order = 0; 3797 pgdat_page_cgroup_init(pgdat); 3798 3799 for (j = 0; j < MAX_NR_ZONES; j++) { 3800 struct zone *zone = pgdat->node_zones + j; 3801 unsigned long size, realsize, memmap_pages; 3802 enum lru_list l; 3803 3804 size = zone_spanned_pages_in_node(nid, j, zones_size); 3805 realsize = size - zone_absent_pages_in_node(nid, j, 3806 zholes_size); 3807 3808 /* 3809 * Adjust realsize so that it accounts for how much memory 3810 * is used by this zone for memmap. This affects the watermark 3811 * and per-cpu initialisations 3812 */ 3813 memmap_pages = 3814 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 3815 if (realsize >= memmap_pages) { 3816 realsize -= memmap_pages; 3817 if (memmap_pages) 3818 printk(KERN_DEBUG 3819 " %s zone: %lu pages used for memmap\n", 3820 zone_names[j], memmap_pages); 3821 } else 3822 printk(KERN_WARNING 3823 " %s zone: %lu pages exceeds realsize %lu\n", 3824 zone_names[j], memmap_pages, realsize); 3825 3826 /* Account for reserved pages */ 3827 if (j == 0 && realsize > dma_reserve) { 3828 realsize -= dma_reserve; 3829 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 3830 zone_names[0], dma_reserve); 3831 } 3832 3833 if (!is_highmem_idx(j)) 3834 nr_kernel_pages += realsize; 3835 nr_all_pages += realsize; 3836 3837 zone->spanned_pages = size; 3838 zone->present_pages = realsize; 3839 #ifdef CONFIG_NUMA 3840 zone->node = nid; 3841 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 3842 / 100; 3843 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 3844 #endif 3845 zone->name = zone_names[j]; 3846 spin_lock_init(&zone->lock); 3847 spin_lock_init(&zone->lru_lock); 3848 zone_seqlock_init(zone); 3849 zone->zone_pgdat = pgdat; 3850 3851 zone->prev_priority = DEF_PRIORITY; 3852 3853 zone_pcp_init(zone); 3854 for_each_lru(l) { 3855 INIT_LIST_HEAD(&zone->lru[l].list); 3856 zone->reclaim_stat.nr_saved_scan[l] = 0; 3857 } 3858 zone->reclaim_stat.recent_rotated[0] = 0; 3859 zone->reclaim_stat.recent_rotated[1] = 0; 3860 zone->reclaim_stat.recent_scanned[0] = 0; 3861 zone->reclaim_stat.recent_scanned[1] = 0; 3862 zap_zone_vm_stats(zone); 3863 zone->flags = 0; 3864 if (!size) 3865 continue; 3866 3867 set_pageblock_order(pageblock_default_order()); 3868 setup_usemap(pgdat, zone, size); 3869 ret = init_currently_empty_zone(zone, zone_start_pfn, 3870 size, MEMMAP_EARLY); 3871 BUG_ON(ret); 3872 memmap_init(size, nid, j, zone_start_pfn); 3873 zone_start_pfn += size; 3874 } 3875 } 3876 3877 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 3878 { 3879 /* Skip empty nodes */ 3880 if (!pgdat->node_spanned_pages) 3881 return; 3882 3883 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3884 /* ia64 gets its own node_mem_map, before this, without bootmem */ 3885 if (!pgdat->node_mem_map) { 3886 unsigned long size, start, end; 3887 struct page *map; 3888 3889 /* 3890 * The zone's endpoints aren't required to be MAX_ORDER 3891 * aligned but the node_mem_map endpoints must be in order 3892 * for the buddy allocator to function correctly. 3893 */ 3894 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 3895 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 3896 end = ALIGN(end, MAX_ORDER_NR_PAGES); 3897 size = (end - start) * sizeof(struct page); 3898 map = alloc_remap(pgdat->node_id, size); 3899 if (!map) 3900 map = alloc_bootmem_node(pgdat, size); 3901 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 3902 } 3903 #ifndef CONFIG_NEED_MULTIPLE_NODES 3904 /* 3905 * With no DISCONTIG, the global mem_map is just set as node 0's 3906 */ 3907 if (pgdat == NODE_DATA(0)) { 3908 mem_map = NODE_DATA(0)->node_mem_map; 3909 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3910 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 3911 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 3912 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 3913 } 3914 #endif 3915 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 3916 } 3917 3918 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 3919 unsigned long node_start_pfn, unsigned long *zholes_size) 3920 { 3921 pg_data_t *pgdat = NODE_DATA(nid); 3922 3923 pgdat->node_id = nid; 3924 pgdat->node_start_pfn = node_start_pfn; 3925 calculate_node_totalpages(pgdat, zones_size, zholes_size); 3926 3927 alloc_node_mem_map(pgdat); 3928 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3929 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 3930 nid, (unsigned long)pgdat, 3931 (unsigned long)pgdat->node_mem_map); 3932 #endif 3933 3934 free_area_init_core(pgdat, zones_size, zholes_size); 3935 } 3936 3937 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3938 3939 #if MAX_NUMNODES > 1 3940 /* 3941 * Figure out the number of possible node ids. 3942 */ 3943 static void __init setup_nr_node_ids(void) 3944 { 3945 unsigned int node; 3946 unsigned int highest = 0; 3947 3948 for_each_node_mask(node, node_possible_map) 3949 highest = node; 3950 nr_node_ids = highest + 1; 3951 } 3952 #else 3953 static inline void setup_nr_node_ids(void) 3954 { 3955 } 3956 #endif 3957 3958 /** 3959 * add_active_range - Register a range of PFNs backed by physical memory 3960 * @nid: The node ID the range resides on 3961 * @start_pfn: The start PFN of the available physical memory 3962 * @end_pfn: The end PFN of the available physical memory 3963 * 3964 * These ranges are stored in an early_node_map[] and later used by 3965 * free_area_init_nodes() to calculate zone sizes and holes. If the 3966 * range spans a memory hole, it is up to the architecture to ensure 3967 * the memory is not freed by the bootmem allocator. If possible 3968 * the range being registered will be merged with existing ranges. 3969 */ 3970 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 3971 unsigned long end_pfn) 3972 { 3973 int i; 3974 3975 mminit_dprintk(MMINIT_TRACE, "memory_register", 3976 "Entering add_active_range(%d, %#lx, %#lx) " 3977 "%d entries of %d used\n", 3978 nid, start_pfn, end_pfn, 3979 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 3980 3981 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 3982 3983 /* Merge with existing active regions if possible */ 3984 for (i = 0; i < nr_nodemap_entries; i++) { 3985 if (early_node_map[i].nid != nid) 3986 continue; 3987 3988 /* Skip if an existing region covers this new one */ 3989 if (start_pfn >= early_node_map[i].start_pfn && 3990 end_pfn <= early_node_map[i].end_pfn) 3991 return; 3992 3993 /* Merge forward if suitable */ 3994 if (start_pfn <= early_node_map[i].end_pfn && 3995 end_pfn > early_node_map[i].end_pfn) { 3996 early_node_map[i].end_pfn = end_pfn; 3997 return; 3998 } 3999 4000 /* Merge backward if suitable */ 4001 if (start_pfn < early_node_map[i].end_pfn && 4002 end_pfn >= early_node_map[i].start_pfn) { 4003 early_node_map[i].start_pfn = start_pfn; 4004 return; 4005 } 4006 } 4007 4008 /* Check that early_node_map is large enough */ 4009 if (i >= MAX_ACTIVE_REGIONS) { 4010 printk(KERN_CRIT "More than %d memory regions, truncating\n", 4011 MAX_ACTIVE_REGIONS); 4012 return; 4013 } 4014 4015 early_node_map[i].nid = nid; 4016 early_node_map[i].start_pfn = start_pfn; 4017 early_node_map[i].end_pfn = end_pfn; 4018 nr_nodemap_entries = i + 1; 4019 } 4020 4021 /** 4022 * remove_active_range - Shrink an existing registered range of PFNs 4023 * @nid: The node id the range is on that should be shrunk 4024 * @start_pfn: The new PFN of the range 4025 * @end_pfn: The new PFN of the range 4026 * 4027 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 4028 * The map is kept near the end physical page range that has already been 4029 * registered. This function allows an arch to shrink an existing registered 4030 * range. 4031 */ 4032 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 4033 unsigned long end_pfn) 4034 { 4035 int i, j; 4036 int removed = 0; 4037 4038 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 4039 nid, start_pfn, end_pfn); 4040 4041 /* Find the old active region end and shrink */ 4042 for_each_active_range_index_in_nid(i, nid) { 4043 if (early_node_map[i].start_pfn >= start_pfn && 4044 early_node_map[i].end_pfn <= end_pfn) { 4045 /* clear it */ 4046 early_node_map[i].start_pfn = 0; 4047 early_node_map[i].end_pfn = 0; 4048 removed = 1; 4049 continue; 4050 } 4051 if (early_node_map[i].start_pfn < start_pfn && 4052 early_node_map[i].end_pfn > start_pfn) { 4053 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 4054 early_node_map[i].end_pfn = start_pfn; 4055 if (temp_end_pfn > end_pfn) 4056 add_active_range(nid, end_pfn, temp_end_pfn); 4057 continue; 4058 } 4059 if (early_node_map[i].start_pfn >= start_pfn && 4060 early_node_map[i].end_pfn > end_pfn && 4061 early_node_map[i].start_pfn < end_pfn) { 4062 early_node_map[i].start_pfn = end_pfn; 4063 continue; 4064 } 4065 } 4066 4067 if (!removed) 4068 return; 4069 4070 /* remove the blank ones */ 4071 for (i = nr_nodemap_entries - 1; i > 0; i--) { 4072 if (early_node_map[i].nid != nid) 4073 continue; 4074 if (early_node_map[i].end_pfn) 4075 continue; 4076 /* we found it, get rid of it */ 4077 for (j = i; j < nr_nodemap_entries - 1; j++) 4078 memcpy(&early_node_map[j], &early_node_map[j+1], 4079 sizeof(early_node_map[j])); 4080 j = nr_nodemap_entries - 1; 4081 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 4082 nr_nodemap_entries--; 4083 } 4084 } 4085 4086 /** 4087 * remove_all_active_ranges - Remove all currently registered regions 4088 * 4089 * During discovery, it may be found that a table like SRAT is invalid 4090 * and an alternative discovery method must be used. This function removes 4091 * all currently registered regions. 4092 */ 4093 void __init remove_all_active_ranges(void) 4094 { 4095 memset(early_node_map, 0, sizeof(early_node_map)); 4096 nr_nodemap_entries = 0; 4097 } 4098 4099 /* Compare two active node_active_regions */ 4100 static int __init cmp_node_active_region(const void *a, const void *b) 4101 { 4102 struct node_active_region *arange = (struct node_active_region *)a; 4103 struct node_active_region *brange = (struct node_active_region *)b; 4104 4105 /* Done this way to avoid overflows */ 4106 if (arange->start_pfn > brange->start_pfn) 4107 return 1; 4108 if (arange->start_pfn < brange->start_pfn) 4109 return -1; 4110 4111 return 0; 4112 } 4113 4114 /* sort the node_map by start_pfn */ 4115 void __init sort_node_map(void) 4116 { 4117 sort(early_node_map, (size_t)nr_nodemap_entries, 4118 sizeof(struct node_active_region), 4119 cmp_node_active_region, NULL); 4120 } 4121 4122 /* Find the lowest pfn for a node */ 4123 static unsigned long __init find_min_pfn_for_node(int nid) 4124 { 4125 int i; 4126 unsigned long min_pfn = ULONG_MAX; 4127 4128 /* Assuming a sorted map, the first range found has the starting pfn */ 4129 for_each_active_range_index_in_nid(i, nid) 4130 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 4131 4132 if (min_pfn == ULONG_MAX) { 4133 printk(KERN_WARNING 4134 "Could not find start_pfn for node %d\n", nid); 4135 return 0; 4136 } 4137 4138 return min_pfn; 4139 } 4140 4141 /** 4142 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4143 * 4144 * It returns the minimum PFN based on information provided via 4145 * add_active_range(). 4146 */ 4147 unsigned long __init find_min_pfn_with_active_regions(void) 4148 { 4149 return find_min_pfn_for_node(MAX_NUMNODES); 4150 } 4151 4152 /* 4153 * early_calculate_totalpages() 4154 * Sum pages in active regions for movable zone. 4155 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4156 */ 4157 static unsigned long __init early_calculate_totalpages(void) 4158 { 4159 int i; 4160 unsigned long totalpages = 0; 4161 4162 for (i = 0; i < nr_nodemap_entries; i++) { 4163 unsigned long pages = early_node_map[i].end_pfn - 4164 early_node_map[i].start_pfn; 4165 totalpages += pages; 4166 if (pages) 4167 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 4168 } 4169 return totalpages; 4170 } 4171 4172 /* 4173 * Find the PFN the Movable zone begins in each node. Kernel memory 4174 * is spread evenly between nodes as long as the nodes have enough 4175 * memory. When they don't, some nodes will have more kernelcore than 4176 * others 4177 */ 4178 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 4179 { 4180 int i, nid; 4181 unsigned long usable_startpfn; 4182 unsigned long kernelcore_node, kernelcore_remaining; 4183 /* save the state before borrow the nodemask */ 4184 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4185 unsigned long totalpages = early_calculate_totalpages(); 4186 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4187 4188 /* 4189 * If movablecore was specified, calculate what size of 4190 * kernelcore that corresponds so that memory usable for 4191 * any allocation type is evenly spread. If both kernelcore 4192 * and movablecore are specified, then the value of kernelcore 4193 * will be used for required_kernelcore if it's greater than 4194 * what movablecore would have allowed. 4195 */ 4196 if (required_movablecore) { 4197 unsigned long corepages; 4198 4199 /* 4200 * Round-up so that ZONE_MOVABLE is at least as large as what 4201 * was requested by the user 4202 */ 4203 required_movablecore = 4204 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4205 corepages = totalpages - required_movablecore; 4206 4207 required_kernelcore = max(required_kernelcore, corepages); 4208 } 4209 4210 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4211 if (!required_kernelcore) 4212 goto out; 4213 4214 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4215 find_usable_zone_for_movable(); 4216 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4217 4218 restart: 4219 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4220 kernelcore_node = required_kernelcore / usable_nodes; 4221 for_each_node_state(nid, N_HIGH_MEMORY) { 4222 /* 4223 * Recalculate kernelcore_node if the division per node 4224 * now exceeds what is necessary to satisfy the requested 4225 * amount of memory for the kernel 4226 */ 4227 if (required_kernelcore < kernelcore_node) 4228 kernelcore_node = required_kernelcore / usable_nodes; 4229 4230 /* 4231 * As the map is walked, we track how much memory is usable 4232 * by the kernel using kernelcore_remaining. When it is 4233 * 0, the rest of the node is usable by ZONE_MOVABLE 4234 */ 4235 kernelcore_remaining = kernelcore_node; 4236 4237 /* Go through each range of PFNs within this node */ 4238 for_each_active_range_index_in_nid(i, nid) { 4239 unsigned long start_pfn, end_pfn; 4240 unsigned long size_pages; 4241 4242 start_pfn = max(early_node_map[i].start_pfn, 4243 zone_movable_pfn[nid]); 4244 end_pfn = early_node_map[i].end_pfn; 4245 if (start_pfn >= end_pfn) 4246 continue; 4247 4248 /* Account for what is only usable for kernelcore */ 4249 if (start_pfn < usable_startpfn) { 4250 unsigned long kernel_pages; 4251 kernel_pages = min(end_pfn, usable_startpfn) 4252 - start_pfn; 4253 4254 kernelcore_remaining -= min(kernel_pages, 4255 kernelcore_remaining); 4256 required_kernelcore -= min(kernel_pages, 4257 required_kernelcore); 4258 4259 /* Continue if range is now fully accounted */ 4260 if (end_pfn <= usable_startpfn) { 4261 4262 /* 4263 * Push zone_movable_pfn to the end so 4264 * that if we have to rebalance 4265 * kernelcore across nodes, we will 4266 * not double account here 4267 */ 4268 zone_movable_pfn[nid] = end_pfn; 4269 continue; 4270 } 4271 start_pfn = usable_startpfn; 4272 } 4273 4274 /* 4275 * The usable PFN range for ZONE_MOVABLE is from 4276 * start_pfn->end_pfn. Calculate size_pages as the 4277 * number of pages used as kernelcore 4278 */ 4279 size_pages = end_pfn - start_pfn; 4280 if (size_pages > kernelcore_remaining) 4281 size_pages = kernelcore_remaining; 4282 zone_movable_pfn[nid] = start_pfn + size_pages; 4283 4284 /* 4285 * Some kernelcore has been met, update counts and 4286 * break if the kernelcore for this node has been 4287 * satisified 4288 */ 4289 required_kernelcore -= min(required_kernelcore, 4290 size_pages); 4291 kernelcore_remaining -= size_pages; 4292 if (!kernelcore_remaining) 4293 break; 4294 } 4295 } 4296 4297 /* 4298 * If there is still required_kernelcore, we do another pass with one 4299 * less node in the count. This will push zone_movable_pfn[nid] further 4300 * along on the nodes that still have memory until kernelcore is 4301 * satisified 4302 */ 4303 usable_nodes--; 4304 if (usable_nodes && required_kernelcore > usable_nodes) 4305 goto restart; 4306 4307 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4308 for (nid = 0; nid < MAX_NUMNODES; nid++) 4309 zone_movable_pfn[nid] = 4310 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4311 4312 out: 4313 /* restore the node_state */ 4314 node_states[N_HIGH_MEMORY] = saved_node_state; 4315 } 4316 4317 /* Any regular memory on that node ? */ 4318 static void check_for_regular_memory(pg_data_t *pgdat) 4319 { 4320 #ifdef CONFIG_HIGHMEM 4321 enum zone_type zone_type; 4322 4323 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4324 struct zone *zone = &pgdat->node_zones[zone_type]; 4325 if (zone->present_pages) 4326 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4327 } 4328 #endif 4329 } 4330 4331 /** 4332 * free_area_init_nodes - Initialise all pg_data_t and zone data 4333 * @max_zone_pfn: an array of max PFNs for each zone 4334 * 4335 * This will call free_area_init_node() for each active node in the system. 4336 * Using the page ranges provided by add_active_range(), the size of each 4337 * zone in each node and their holes is calculated. If the maximum PFN 4338 * between two adjacent zones match, it is assumed that the zone is empty. 4339 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4340 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4341 * starts where the previous one ended. For example, ZONE_DMA32 starts 4342 * at arch_max_dma_pfn. 4343 */ 4344 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4345 { 4346 unsigned long nid; 4347 int i; 4348 4349 /* Sort early_node_map as initialisation assumes it is sorted */ 4350 sort_node_map(); 4351 4352 /* Record where the zone boundaries are */ 4353 memset(arch_zone_lowest_possible_pfn, 0, 4354 sizeof(arch_zone_lowest_possible_pfn)); 4355 memset(arch_zone_highest_possible_pfn, 0, 4356 sizeof(arch_zone_highest_possible_pfn)); 4357 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4358 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4359 for (i = 1; i < MAX_NR_ZONES; i++) { 4360 if (i == ZONE_MOVABLE) 4361 continue; 4362 arch_zone_lowest_possible_pfn[i] = 4363 arch_zone_highest_possible_pfn[i-1]; 4364 arch_zone_highest_possible_pfn[i] = 4365 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4366 } 4367 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4368 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4369 4370 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4371 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4372 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4373 4374 /* Print out the zone ranges */ 4375 printk("Zone PFN ranges:\n"); 4376 for (i = 0; i < MAX_NR_ZONES; i++) { 4377 if (i == ZONE_MOVABLE) 4378 continue; 4379 printk(" %-8s %0#10lx -> %0#10lx\n", 4380 zone_names[i], 4381 arch_zone_lowest_possible_pfn[i], 4382 arch_zone_highest_possible_pfn[i]); 4383 } 4384 4385 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4386 printk("Movable zone start PFN for each node\n"); 4387 for (i = 0; i < MAX_NUMNODES; i++) { 4388 if (zone_movable_pfn[i]) 4389 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4390 } 4391 4392 /* Print out the early_node_map[] */ 4393 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 4394 for (i = 0; i < nr_nodemap_entries; i++) 4395 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4396 early_node_map[i].start_pfn, 4397 early_node_map[i].end_pfn); 4398 4399 /* Initialise every node */ 4400 mminit_verify_pageflags_layout(); 4401 setup_nr_node_ids(); 4402 for_each_online_node(nid) { 4403 pg_data_t *pgdat = NODE_DATA(nid); 4404 free_area_init_node(nid, NULL, 4405 find_min_pfn_for_node(nid), NULL); 4406 4407 /* Any memory on that node */ 4408 if (pgdat->node_present_pages) 4409 node_set_state(nid, N_HIGH_MEMORY); 4410 check_for_regular_memory(pgdat); 4411 } 4412 } 4413 4414 static int __init cmdline_parse_core(char *p, unsigned long *core) 4415 { 4416 unsigned long long coremem; 4417 if (!p) 4418 return -EINVAL; 4419 4420 coremem = memparse(p, &p); 4421 *core = coremem >> PAGE_SHIFT; 4422 4423 /* Paranoid check that UL is enough for the coremem value */ 4424 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4425 4426 return 0; 4427 } 4428 4429 /* 4430 * kernelcore=size sets the amount of memory for use for allocations that 4431 * cannot be reclaimed or migrated. 4432 */ 4433 static int __init cmdline_parse_kernelcore(char *p) 4434 { 4435 return cmdline_parse_core(p, &required_kernelcore); 4436 } 4437 4438 /* 4439 * movablecore=size sets the amount of memory for use for allocations that 4440 * can be reclaimed or migrated. 4441 */ 4442 static int __init cmdline_parse_movablecore(char *p) 4443 { 4444 return cmdline_parse_core(p, &required_movablecore); 4445 } 4446 4447 early_param("kernelcore", cmdline_parse_kernelcore); 4448 early_param("movablecore", cmdline_parse_movablecore); 4449 4450 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4451 4452 /** 4453 * set_dma_reserve - set the specified number of pages reserved in the first zone 4454 * @new_dma_reserve: The number of pages to mark reserved 4455 * 4456 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4457 * In the DMA zone, a significant percentage may be consumed by kernel image 4458 * and other unfreeable allocations which can skew the watermarks badly. This 4459 * function may optionally be used to account for unfreeable pages in the 4460 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4461 * smaller per-cpu batchsize. 4462 */ 4463 void __init set_dma_reserve(unsigned long new_dma_reserve) 4464 { 4465 dma_reserve = new_dma_reserve; 4466 } 4467 4468 #ifndef CONFIG_NEED_MULTIPLE_NODES 4469 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] }; 4470 EXPORT_SYMBOL(contig_page_data); 4471 #endif 4472 4473 void __init free_area_init(unsigned long *zones_size) 4474 { 4475 free_area_init_node(0, zones_size, 4476 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4477 } 4478 4479 static int page_alloc_cpu_notify(struct notifier_block *self, 4480 unsigned long action, void *hcpu) 4481 { 4482 int cpu = (unsigned long)hcpu; 4483 4484 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4485 drain_pages(cpu); 4486 4487 /* 4488 * Spill the event counters of the dead processor 4489 * into the current processors event counters. 4490 * This artificially elevates the count of the current 4491 * processor. 4492 */ 4493 vm_events_fold_cpu(cpu); 4494 4495 /* 4496 * Zero the differential counters of the dead processor 4497 * so that the vm statistics are consistent. 4498 * 4499 * This is only okay since the processor is dead and cannot 4500 * race with what we are doing. 4501 */ 4502 refresh_cpu_vm_stats(cpu); 4503 } 4504 return NOTIFY_OK; 4505 } 4506 4507 void __init page_alloc_init(void) 4508 { 4509 hotcpu_notifier(page_alloc_cpu_notify, 0); 4510 } 4511 4512 /* 4513 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4514 * or min_free_kbytes changes. 4515 */ 4516 static void calculate_totalreserve_pages(void) 4517 { 4518 struct pglist_data *pgdat; 4519 unsigned long reserve_pages = 0; 4520 enum zone_type i, j; 4521 4522 for_each_online_pgdat(pgdat) { 4523 for (i = 0; i < MAX_NR_ZONES; i++) { 4524 struct zone *zone = pgdat->node_zones + i; 4525 unsigned long max = 0; 4526 4527 /* Find valid and maximum lowmem_reserve in the zone */ 4528 for (j = i; j < MAX_NR_ZONES; j++) { 4529 if (zone->lowmem_reserve[j] > max) 4530 max = zone->lowmem_reserve[j]; 4531 } 4532 4533 /* we treat the high watermark as reserved pages. */ 4534 max += high_wmark_pages(zone); 4535 4536 if (max > zone->present_pages) 4537 max = zone->present_pages; 4538 reserve_pages += max; 4539 } 4540 } 4541 totalreserve_pages = reserve_pages; 4542 } 4543 4544 /* 4545 * setup_per_zone_lowmem_reserve - called whenever 4546 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4547 * has a correct pages reserved value, so an adequate number of 4548 * pages are left in the zone after a successful __alloc_pages(). 4549 */ 4550 static void setup_per_zone_lowmem_reserve(void) 4551 { 4552 struct pglist_data *pgdat; 4553 enum zone_type j, idx; 4554 4555 for_each_online_pgdat(pgdat) { 4556 for (j = 0; j < MAX_NR_ZONES; j++) { 4557 struct zone *zone = pgdat->node_zones + j; 4558 unsigned long present_pages = zone->present_pages; 4559 4560 zone->lowmem_reserve[j] = 0; 4561 4562 idx = j; 4563 while (idx) { 4564 struct zone *lower_zone; 4565 4566 idx--; 4567 4568 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4569 sysctl_lowmem_reserve_ratio[idx] = 1; 4570 4571 lower_zone = pgdat->node_zones + idx; 4572 lower_zone->lowmem_reserve[j] = present_pages / 4573 sysctl_lowmem_reserve_ratio[idx]; 4574 present_pages += lower_zone->present_pages; 4575 } 4576 } 4577 } 4578 4579 /* update totalreserve_pages */ 4580 calculate_totalreserve_pages(); 4581 } 4582 4583 /** 4584 * setup_per_zone_wmarks - called when min_free_kbytes changes 4585 * or when memory is hot-{added|removed} 4586 * 4587 * Ensures that the watermark[min,low,high] values for each zone are set 4588 * correctly with respect to min_free_kbytes. 4589 */ 4590 void setup_per_zone_wmarks(void) 4591 { 4592 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4593 unsigned long lowmem_pages = 0; 4594 struct zone *zone; 4595 unsigned long flags; 4596 4597 /* Calculate total number of !ZONE_HIGHMEM pages */ 4598 for_each_zone(zone) { 4599 if (!is_highmem(zone)) 4600 lowmem_pages += zone->present_pages; 4601 } 4602 4603 for_each_zone(zone) { 4604 u64 tmp; 4605 4606 spin_lock_irqsave(&zone->lock, flags); 4607 tmp = (u64)pages_min * zone->present_pages; 4608 do_div(tmp, lowmem_pages); 4609 if (is_highmem(zone)) { 4610 /* 4611 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4612 * need highmem pages, so cap pages_min to a small 4613 * value here. 4614 * 4615 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 4616 * deltas controls asynch page reclaim, and so should 4617 * not be capped for highmem. 4618 */ 4619 int min_pages; 4620 4621 min_pages = zone->present_pages / 1024; 4622 if (min_pages < SWAP_CLUSTER_MAX) 4623 min_pages = SWAP_CLUSTER_MAX; 4624 if (min_pages > 128) 4625 min_pages = 128; 4626 zone->watermark[WMARK_MIN] = min_pages; 4627 } else { 4628 /* 4629 * If it's a lowmem zone, reserve a number of pages 4630 * proportionate to the zone's size. 4631 */ 4632 zone->watermark[WMARK_MIN] = tmp; 4633 } 4634 4635 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 4636 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 4637 setup_zone_migrate_reserve(zone); 4638 spin_unlock_irqrestore(&zone->lock, flags); 4639 } 4640 4641 /* update totalreserve_pages */ 4642 calculate_totalreserve_pages(); 4643 } 4644 4645 /* 4646 * The inactive anon list should be small enough that the VM never has to 4647 * do too much work, but large enough that each inactive page has a chance 4648 * to be referenced again before it is swapped out. 4649 * 4650 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 4651 * INACTIVE_ANON pages on this zone's LRU, maintained by the 4652 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 4653 * the anonymous pages are kept on the inactive list. 4654 * 4655 * total target max 4656 * memory ratio inactive anon 4657 * ------------------------------------- 4658 * 10MB 1 5MB 4659 * 100MB 1 50MB 4660 * 1GB 3 250MB 4661 * 10GB 10 0.9GB 4662 * 100GB 31 3GB 4663 * 1TB 101 10GB 4664 * 10TB 320 32GB 4665 */ 4666 void calculate_zone_inactive_ratio(struct zone *zone) 4667 { 4668 unsigned int gb, ratio; 4669 4670 /* Zone size in gigabytes */ 4671 gb = zone->present_pages >> (30 - PAGE_SHIFT); 4672 if (gb) 4673 ratio = int_sqrt(10 * gb); 4674 else 4675 ratio = 1; 4676 4677 zone->inactive_ratio = ratio; 4678 } 4679 4680 static void __init setup_per_zone_inactive_ratio(void) 4681 { 4682 struct zone *zone; 4683 4684 for_each_zone(zone) 4685 calculate_zone_inactive_ratio(zone); 4686 } 4687 4688 /* 4689 * Initialise min_free_kbytes. 4690 * 4691 * For small machines we want it small (128k min). For large machines 4692 * we want it large (64MB max). But it is not linear, because network 4693 * bandwidth does not increase linearly with machine size. We use 4694 * 4695 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 4696 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 4697 * 4698 * which yields 4699 * 4700 * 16MB: 512k 4701 * 32MB: 724k 4702 * 64MB: 1024k 4703 * 128MB: 1448k 4704 * 256MB: 2048k 4705 * 512MB: 2896k 4706 * 1024MB: 4096k 4707 * 2048MB: 5792k 4708 * 4096MB: 8192k 4709 * 8192MB: 11584k 4710 * 16384MB: 16384k 4711 */ 4712 static int __init init_per_zone_wmark_min(void) 4713 { 4714 unsigned long lowmem_kbytes; 4715 4716 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 4717 4718 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 4719 if (min_free_kbytes < 128) 4720 min_free_kbytes = 128; 4721 if (min_free_kbytes > 65536) 4722 min_free_kbytes = 65536; 4723 setup_per_zone_wmarks(); 4724 setup_per_zone_lowmem_reserve(); 4725 setup_per_zone_inactive_ratio(); 4726 return 0; 4727 } 4728 module_init(init_per_zone_wmark_min) 4729 4730 /* 4731 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 4732 * that we can call two helper functions whenever min_free_kbytes 4733 * changes. 4734 */ 4735 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 4736 void __user *buffer, size_t *length, loff_t *ppos) 4737 { 4738 proc_dointvec(table, write, buffer, length, ppos); 4739 if (write) 4740 setup_per_zone_wmarks(); 4741 return 0; 4742 } 4743 4744 #ifdef CONFIG_NUMA 4745 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 4746 void __user *buffer, size_t *length, loff_t *ppos) 4747 { 4748 struct zone *zone; 4749 int rc; 4750 4751 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 4752 if (rc) 4753 return rc; 4754 4755 for_each_zone(zone) 4756 zone->min_unmapped_pages = (zone->present_pages * 4757 sysctl_min_unmapped_ratio) / 100; 4758 return 0; 4759 } 4760 4761 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 4762 void __user *buffer, size_t *length, loff_t *ppos) 4763 { 4764 struct zone *zone; 4765 int rc; 4766 4767 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 4768 if (rc) 4769 return rc; 4770 4771 for_each_zone(zone) 4772 zone->min_slab_pages = (zone->present_pages * 4773 sysctl_min_slab_ratio) / 100; 4774 return 0; 4775 } 4776 #endif 4777 4778 /* 4779 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 4780 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 4781 * whenever sysctl_lowmem_reserve_ratio changes. 4782 * 4783 * The reserve ratio obviously has absolutely no relation with the 4784 * minimum watermarks. The lowmem reserve ratio can only make sense 4785 * if in function of the boot time zone sizes. 4786 */ 4787 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 4788 void __user *buffer, size_t *length, loff_t *ppos) 4789 { 4790 proc_dointvec_minmax(table, write, buffer, length, ppos); 4791 setup_per_zone_lowmem_reserve(); 4792 return 0; 4793 } 4794 4795 /* 4796 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 4797 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 4798 * can have before it gets flushed back to buddy allocator. 4799 */ 4800 4801 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 4802 void __user *buffer, size_t *length, loff_t *ppos) 4803 { 4804 struct zone *zone; 4805 unsigned int cpu; 4806 int ret; 4807 4808 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 4809 if (!write || (ret == -EINVAL)) 4810 return ret; 4811 for_each_populated_zone(zone) { 4812 for_each_online_cpu(cpu) { 4813 unsigned long high; 4814 high = zone->present_pages / percpu_pagelist_fraction; 4815 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 4816 } 4817 } 4818 return 0; 4819 } 4820 4821 int hashdist = HASHDIST_DEFAULT; 4822 4823 #ifdef CONFIG_NUMA 4824 static int __init set_hashdist(char *str) 4825 { 4826 if (!str) 4827 return 0; 4828 hashdist = simple_strtoul(str, &str, 0); 4829 return 1; 4830 } 4831 __setup("hashdist=", set_hashdist); 4832 #endif 4833 4834 /* 4835 * allocate a large system hash table from bootmem 4836 * - it is assumed that the hash table must contain an exact power-of-2 4837 * quantity of entries 4838 * - limit is the number of hash buckets, not the total allocation size 4839 */ 4840 void *__init alloc_large_system_hash(const char *tablename, 4841 unsigned long bucketsize, 4842 unsigned long numentries, 4843 int scale, 4844 int flags, 4845 unsigned int *_hash_shift, 4846 unsigned int *_hash_mask, 4847 unsigned long limit) 4848 { 4849 unsigned long long max = limit; 4850 unsigned long log2qty, size; 4851 void *table = NULL; 4852 4853 /* allow the kernel cmdline to have a say */ 4854 if (!numentries) { 4855 /* round applicable memory size up to nearest megabyte */ 4856 numentries = nr_kernel_pages; 4857 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 4858 numentries >>= 20 - PAGE_SHIFT; 4859 numentries <<= 20 - PAGE_SHIFT; 4860 4861 /* limit to 1 bucket per 2^scale bytes of low memory */ 4862 if (scale > PAGE_SHIFT) 4863 numentries >>= (scale - PAGE_SHIFT); 4864 else 4865 numentries <<= (PAGE_SHIFT - scale); 4866 4867 /* Make sure we've got at least a 0-order allocation.. */ 4868 if (unlikely(flags & HASH_SMALL)) { 4869 /* Makes no sense without HASH_EARLY */ 4870 WARN_ON(!(flags & HASH_EARLY)); 4871 if (!(numentries >> *_hash_shift)) { 4872 numentries = 1UL << *_hash_shift; 4873 BUG_ON(!numentries); 4874 } 4875 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 4876 numentries = PAGE_SIZE / bucketsize; 4877 } 4878 numentries = roundup_pow_of_two(numentries); 4879 4880 /* limit allocation size to 1/16 total memory by default */ 4881 if (max == 0) { 4882 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 4883 do_div(max, bucketsize); 4884 } 4885 4886 if (numentries > max) 4887 numentries = max; 4888 4889 log2qty = ilog2(numentries); 4890 4891 do { 4892 size = bucketsize << log2qty; 4893 if (flags & HASH_EARLY) 4894 table = alloc_bootmem_nopanic(size); 4895 else if (hashdist) 4896 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 4897 else { 4898 /* 4899 * If bucketsize is not a power-of-two, we may free 4900 * some pages at the end of hash table which 4901 * alloc_pages_exact() automatically does 4902 */ 4903 if (get_order(size) < MAX_ORDER) { 4904 table = alloc_pages_exact(size, GFP_ATOMIC); 4905 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 4906 } 4907 } 4908 } while (!table && size > PAGE_SIZE && --log2qty); 4909 4910 if (!table) 4911 panic("Failed to allocate %s hash table\n", tablename); 4912 4913 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n", 4914 tablename, 4915 (1U << log2qty), 4916 ilog2(size) - PAGE_SHIFT, 4917 size); 4918 4919 if (_hash_shift) 4920 *_hash_shift = log2qty; 4921 if (_hash_mask) 4922 *_hash_mask = (1 << log2qty) - 1; 4923 4924 return table; 4925 } 4926 4927 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 4928 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 4929 unsigned long pfn) 4930 { 4931 #ifdef CONFIG_SPARSEMEM 4932 return __pfn_to_section(pfn)->pageblock_flags; 4933 #else 4934 return zone->pageblock_flags; 4935 #endif /* CONFIG_SPARSEMEM */ 4936 } 4937 4938 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 4939 { 4940 #ifdef CONFIG_SPARSEMEM 4941 pfn &= (PAGES_PER_SECTION-1); 4942 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4943 #else 4944 pfn = pfn - zone->zone_start_pfn; 4945 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4946 #endif /* CONFIG_SPARSEMEM */ 4947 } 4948 4949 /** 4950 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 4951 * @page: The page within the block of interest 4952 * @start_bitidx: The first bit of interest to retrieve 4953 * @end_bitidx: The last bit of interest 4954 * returns pageblock_bits flags 4955 */ 4956 unsigned long get_pageblock_flags_group(struct page *page, 4957 int start_bitidx, int end_bitidx) 4958 { 4959 struct zone *zone; 4960 unsigned long *bitmap; 4961 unsigned long pfn, bitidx; 4962 unsigned long flags = 0; 4963 unsigned long value = 1; 4964 4965 zone = page_zone(page); 4966 pfn = page_to_pfn(page); 4967 bitmap = get_pageblock_bitmap(zone, pfn); 4968 bitidx = pfn_to_bitidx(zone, pfn); 4969 4970 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4971 if (test_bit(bitidx + start_bitidx, bitmap)) 4972 flags |= value; 4973 4974 return flags; 4975 } 4976 4977 /** 4978 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 4979 * @page: The page within the block of interest 4980 * @start_bitidx: The first bit of interest 4981 * @end_bitidx: The last bit of interest 4982 * @flags: The flags to set 4983 */ 4984 void set_pageblock_flags_group(struct page *page, unsigned long flags, 4985 int start_bitidx, int end_bitidx) 4986 { 4987 struct zone *zone; 4988 unsigned long *bitmap; 4989 unsigned long pfn, bitidx; 4990 unsigned long value = 1; 4991 4992 zone = page_zone(page); 4993 pfn = page_to_pfn(page); 4994 bitmap = get_pageblock_bitmap(zone, pfn); 4995 bitidx = pfn_to_bitidx(zone, pfn); 4996 VM_BUG_ON(pfn < zone->zone_start_pfn); 4997 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 4998 4999 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5000 if (flags & value) 5001 __set_bit(bitidx + start_bitidx, bitmap); 5002 else 5003 __clear_bit(bitidx + start_bitidx, bitmap); 5004 } 5005 5006 /* 5007 * This is designed as sub function...plz see page_isolation.c also. 5008 * set/clear page block's type to be ISOLATE. 5009 * page allocater never alloc memory from ISOLATE block. 5010 */ 5011 5012 int set_migratetype_isolate(struct page *page) 5013 { 5014 struct zone *zone; 5015 struct page *curr_page; 5016 unsigned long flags, pfn, iter; 5017 unsigned long immobile = 0; 5018 struct memory_isolate_notify arg; 5019 int notifier_ret; 5020 int ret = -EBUSY; 5021 int zone_idx; 5022 5023 zone = page_zone(page); 5024 zone_idx = zone_idx(zone); 5025 5026 spin_lock_irqsave(&zone->lock, flags); 5027 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE || 5028 zone_idx == ZONE_MOVABLE) { 5029 ret = 0; 5030 goto out; 5031 } 5032 5033 pfn = page_to_pfn(page); 5034 arg.start_pfn = pfn; 5035 arg.nr_pages = pageblock_nr_pages; 5036 arg.pages_found = 0; 5037 5038 /* 5039 * It may be possible to isolate a pageblock even if the 5040 * migratetype is not MIGRATE_MOVABLE. The memory isolation 5041 * notifier chain is used by balloon drivers to return the 5042 * number of pages in a range that are held by the balloon 5043 * driver to shrink memory. If all the pages are accounted for 5044 * by balloons, are free, or on the LRU, isolation can continue. 5045 * Later, for example, when memory hotplug notifier runs, these 5046 * pages reported as "can be isolated" should be isolated(freed) 5047 * by the balloon driver through the memory notifier chain. 5048 */ 5049 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg); 5050 notifier_ret = notifier_to_errno(notifier_ret); 5051 if (notifier_ret || !arg.pages_found) 5052 goto out; 5053 5054 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) { 5055 if (!pfn_valid_within(pfn)) 5056 continue; 5057 5058 curr_page = pfn_to_page(iter); 5059 if (!page_count(curr_page) || PageLRU(curr_page)) 5060 continue; 5061 5062 immobile++; 5063 } 5064 5065 if (arg.pages_found == immobile) 5066 ret = 0; 5067 5068 out: 5069 if (!ret) { 5070 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 5071 move_freepages_block(zone, page, MIGRATE_ISOLATE); 5072 } 5073 5074 spin_unlock_irqrestore(&zone->lock, flags); 5075 if (!ret) 5076 drain_all_pages(); 5077 return ret; 5078 } 5079 5080 void unset_migratetype_isolate(struct page *page) 5081 { 5082 struct zone *zone; 5083 unsigned long flags; 5084 zone = page_zone(page); 5085 spin_lock_irqsave(&zone->lock, flags); 5086 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 5087 goto out; 5088 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5089 move_freepages_block(zone, page, MIGRATE_MOVABLE); 5090 out: 5091 spin_unlock_irqrestore(&zone->lock, flags); 5092 } 5093 5094 #ifdef CONFIG_MEMORY_HOTREMOVE 5095 /* 5096 * All pages in the range must be isolated before calling this. 5097 */ 5098 void 5099 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 5100 { 5101 struct page *page; 5102 struct zone *zone; 5103 int order, i; 5104 unsigned long pfn; 5105 unsigned long flags; 5106 /* find the first valid pfn */ 5107 for (pfn = start_pfn; pfn < end_pfn; pfn++) 5108 if (pfn_valid(pfn)) 5109 break; 5110 if (pfn == end_pfn) 5111 return; 5112 zone = page_zone(pfn_to_page(pfn)); 5113 spin_lock_irqsave(&zone->lock, flags); 5114 pfn = start_pfn; 5115 while (pfn < end_pfn) { 5116 if (!pfn_valid(pfn)) { 5117 pfn++; 5118 continue; 5119 } 5120 page = pfn_to_page(pfn); 5121 BUG_ON(page_count(page)); 5122 BUG_ON(!PageBuddy(page)); 5123 order = page_order(page); 5124 #ifdef CONFIG_DEBUG_VM 5125 printk(KERN_INFO "remove from free list %lx %d %lx\n", 5126 pfn, 1 << order, end_pfn); 5127 #endif 5128 list_del(&page->lru); 5129 rmv_page_order(page); 5130 zone->free_area[order].nr_free--; 5131 __mod_zone_page_state(zone, NR_FREE_PAGES, 5132 - (1UL << order)); 5133 for (i = 0; i < (1 << order); i++) 5134 SetPageReserved((page+i)); 5135 pfn += (1 << order); 5136 } 5137 spin_unlock_irqrestore(&zone->lock, flags); 5138 } 5139 #endif 5140 5141 #ifdef CONFIG_MEMORY_FAILURE 5142 bool is_free_buddy_page(struct page *page) 5143 { 5144 struct zone *zone = page_zone(page); 5145 unsigned long pfn = page_to_pfn(page); 5146 unsigned long flags; 5147 int order; 5148 5149 spin_lock_irqsave(&zone->lock, flags); 5150 for (order = 0; order < MAX_ORDER; order++) { 5151 struct page *page_head = page - (pfn & ((1 << order) - 1)); 5152 5153 if (PageBuddy(page_head) && page_order(page_head) >= order) 5154 break; 5155 } 5156 spin_unlock_irqrestore(&zone->lock, flags); 5157 5158 return order < MAX_ORDER; 5159 } 5160 #endif 5161