xref: /openbmc/linux/mm/page_alloc.c (revision 9d749629)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/sched/rt.h>
62 
63 #include <asm/tlbflush.h>
64 #include <asm/div64.h>
65 #include "internal.h"
66 
67 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
68 DEFINE_PER_CPU(int, numa_node);
69 EXPORT_PER_CPU_SYMBOL(numa_node);
70 #endif
71 
72 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
73 /*
74  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
75  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
76  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
77  * defined in <linux/topology.h>.
78  */
79 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
80 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
81 #endif
82 
83 /*
84  * Array of node states.
85  */
86 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
87 	[N_POSSIBLE] = NODE_MASK_ALL,
88 	[N_ONLINE] = { { [0] = 1UL } },
89 #ifndef CONFIG_NUMA
90 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
91 #ifdef CONFIG_HIGHMEM
92 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
93 #endif
94 #ifdef CONFIG_MOVABLE_NODE
95 	[N_MEMORY] = { { [0] = 1UL } },
96 #endif
97 	[N_CPU] = { { [0] = 1UL } },
98 #endif	/* NUMA */
99 };
100 EXPORT_SYMBOL(node_states);
101 
102 unsigned long totalram_pages __read_mostly;
103 unsigned long totalreserve_pages __read_mostly;
104 /*
105  * When calculating the number of globally allowed dirty pages, there
106  * is a certain number of per-zone reserves that should not be
107  * considered dirtyable memory.  This is the sum of those reserves
108  * over all existing zones that contribute dirtyable memory.
109  */
110 unsigned long dirty_balance_reserve __read_mostly;
111 
112 int percpu_pagelist_fraction;
113 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
114 
115 #ifdef CONFIG_PM_SLEEP
116 /*
117  * The following functions are used by the suspend/hibernate code to temporarily
118  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
119  * while devices are suspended.  To avoid races with the suspend/hibernate code,
120  * they should always be called with pm_mutex held (gfp_allowed_mask also should
121  * only be modified with pm_mutex held, unless the suspend/hibernate code is
122  * guaranteed not to run in parallel with that modification).
123  */
124 
125 static gfp_t saved_gfp_mask;
126 
127 void pm_restore_gfp_mask(void)
128 {
129 	WARN_ON(!mutex_is_locked(&pm_mutex));
130 	if (saved_gfp_mask) {
131 		gfp_allowed_mask = saved_gfp_mask;
132 		saved_gfp_mask = 0;
133 	}
134 }
135 
136 void pm_restrict_gfp_mask(void)
137 {
138 	WARN_ON(!mutex_is_locked(&pm_mutex));
139 	WARN_ON(saved_gfp_mask);
140 	saved_gfp_mask = gfp_allowed_mask;
141 	gfp_allowed_mask &= ~GFP_IOFS;
142 }
143 
144 bool pm_suspended_storage(void)
145 {
146 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
147 		return false;
148 	return true;
149 }
150 #endif /* CONFIG_PM_SLEEP */
151 
152 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
153 int pageblock_order __read_mostly;
154 #endif
155 
156 static void __free_pages_ok(struct page *page, unsigned int order);
157 
158 /*
159  * results with 256, 32 in the lowmem_reserve sysctl:
160  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
161  *	1G machine -> (16M dma, 784M normal, 224M high)
162  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
163  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
164  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
165  *
166  * TBD: should special case ZONE_DMA32 machines here - in those we normally
167  * don't need any ZONE_NORMAL reservation
168  */
169 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
170 #ifdef CONFIG_ZONE_DMA
171 	 256,
172 #endif
173 #ifdef CONFIG_ZONE_DMA32
174 	 256,
175 #endif
176 #ifdef CONFIG_HIGHMEM
177 	 32,
178 #endif
179 	 32,
180 };
181 
182 EXPORT_SYMBOL(totalram_pages);
183 
184 static char * const zone_names[MAX_NR_ZONES] = {
185 #ifdef CONFIG_ZONE_DMA
186 	 "DMA",
187 #endif
188 #ifdef CONFIG_ZONE_DMA32
189 	 "DMA32",
190 #endif
191 	 "Normal",
192 #ifdef CONFIG_HIGHMEM
193 	 "HighMem",
194 #endif
195 	 "Movable",
196 };
197 
198 int min_free_kbytes = 1024;
199 
200 static unsigned long __meminitdata nr_kernel_pages;
201 static unsigned long __meminitdata nr_all_pages;
202 static unsigned long __meminitdata dma_reserve;
203 
204 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
205 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
206 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
207 static unsigned long __initdata required_kernelcore;
208 static unsigned long __initdata required_movablecore;
209 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
210 
211 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
212 int movable_zone;
213 EXPORT_SYMBOL(movable_zone);
214 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
215 
216 #if MAX_NUMNODES > 1
217 int nr_node_ids __read_mostly = MAX_NUMNODES;
218 int nr_online_nodes __read_mostly = 1;
219 EXPORT_SYMBOL(nr_node_ids);
220 EXPORT_SYMBOL(nr_online_nodes);
221 #endif
222 
223 int page_group_by_mobility_disabled __read_mostly;
224 
225 void set_pageblock_migratetype(struct page *page, int migratetype)
226 {
227 
228 	if (unlikely(page_group_by_mobility_disabled))
229 		migratetype = MIGRATE_UNMOVABLE;
230 
231 	set_pageblock_flags_group(page, (unsigned long)migratetype,
232 					PB_migrate, PB_migrate_end);
233 }
234 
235 bool oom_killer_disabled __read_mostly;
236 
237 #ifdef CONFIG_DEBUG_VM
238 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
239 {
240 	int ret = 0;
241 	unsigned seq;
242 	unsigned long pfn = page_to_pfn(page);
243 
244 	do {
245 		seq = zone_span_seqbegin(zone);
246 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
247 			ret = 1;
248 		else if (pfn < zone->zone_start_pfn)
249 			ret = 1;
250 	} while (zone_span_seqretry(zone, seq));
251 
252 	return ret;
253 }
254 
255 static int page_is_consistent(struct zone *zone, struct page *page)
256 {
257 	if (!pfn_valid_within(page_to_pfn(page)))
258 		return 0;
259 	if (zone != page_zone(page))
260 		return 0;
261 
262 	return 1;
263 }
264 /*
265  * Temporary debugging check for pages not lying within a given zone.
266  */
267 static int bad_range(struct zone *zone, struct page *page)
268 {
269 	if (page_outside_zone_boundaries(zone, page))
270 		return 1;
271 	if (!page_is_consistent(zone, page))
272 		return 1;
273 
274 	return 0;
275 }
276 #else
277 static inline int bad_range(struct zone *zone, struct page *page)
278 {
279 	return 0;
280 }
281 #endif
282 
283 static void bad_page(struct page *page)
284 {
285 	static unsigned long resume;
286 	static unsigned long nr_shown;
287 	static unsigned long nr_unshown;
288 
289 	/* Don't complain about poisoned pages */
290 	if (PageHWPoison(page)) {
291 		reset_page_mapcount(page); /* remove PageBuddy */
292 		return;
293 	}
294 
295 	/*
296 	 * Allow a burst of 60 reports, then keep quiet for that minute;
297 	 * or allow a steady drip of one report per second.
298 	 */
299 	if (nr_shown == 60) {
300 		if (time_before(jiffies, resume)) {
301 			nr_unshown++;
302 			goto out;
303 		}
304 		if (nr_unshown) {
305 			printk(KERN_ALERT
306 			      "BUG: Bad page state: %lu messages suppressed\n",
307 				nr_unshown);
308 			nr_unshown = 0;
309 		}
310 		nr_shown = 0;
311 	}
312 	if (nr_shown++ == 0)
313 		resume = jiffies + 60 * HZ;
314 
315 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
316 		current->comm, page_to_pfn(page));
317 	dump_page(page);
318 
319 	print_modules();
320 	dump_stack();
321 out:
322 	/* Leave bad fields for debug, except PageBuddy could make trouble */
323 	reset_page_mapcount(page); /* remove PageBuddy */
324 	add_taint(TAINT_BAD_PAGE);
325 }
326 
327 /*
328  * Higher-order pages are called "compound pages".  They are structured thusly:
329  *
330  * The first PAGE_SIZE page is called the "head page".
331  *
332  * The remaining PAGE_SIZE pages are called "tail pages".
333  *
334  * All pages have PG_compound set.  All tail pages have their ->first_page
335  * pointing at the head page.
336  *
337  * The first tail page's ->lru.next holds the address of the compound page's
338  * put_page() function.  Its ->lru.prev holds the order of allocation.
339  * This usage means that zero-order pages may not be compound.
340  */
341 
342 static void free_compound_page(struct page *page)
343 {
344 	__free_pages_ok(page, compound_order(page));
345 }
346 
347 void prep_compound_page(struct page *page, unsigned long order)
348 {
349 	int i;
350 	int nr_pages = 1 << order;
351 
352 	set_compound_page_dtor(page, free_compound_page);
353 	set_compound_order(page, order);
354 	__SetPageHead(page);
355 	for (i = 1; i < nr_pages; i++) {
356 		struct page *p = page + i;
357 		__SetPageTail(p);
358 		set_page_count(p, 0);
359 		p->first_page = page;
360 	}
361 }
362 
363 /* update __split_huge_page_refcount if you change this function */
364 static int destroy_compound_page(struct page *page, unsigned long order)
365 {
366 	int i;
367 	int nr_pages = 1 << order;
368 	int bad = 0;
369 
370 	if (unlikely(compound_order(page) != order)) {
371 		bad_page(page);
372 		bad++;
373 	}
374 
375 	__ClearPageHead(page);
376 
377 	for (i = 1; i < nr_pages; i++) {
378 		struct page *p = page + i;
379 
380 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
381 			bad_page(page);
382 			bad++;
383 		}
384 		__ClearPageTail(p);
385 	}
386 
387 	return bad;
388 }
389 
390 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
391 {
392 	int i;
393 
394 	/*
395 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
396 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
397 	 */
398 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
399 	for (i = 0; i < (1 << order); i++)
400 		clear_highpage(page + i);
401 }
402 
403 #ifdef CONFIG_DEBUG_PAGEALLOC
404 unsigned int _debug_guardpage_minorder;
405 
406 static int __init debug_guardpage_minorder_setup(char *buf)
407 {
408 	unsigned long res;
409 
410 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
411 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
412 		return 0;
413 	}
414 	_debug_guardpage_minorder = res;
415 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
416 	return 0;
417 }
418 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
419 
420 static inline void set_page_guard_flag(struct page *page)
421 {
422 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
423 }
424 
425 static inline void clear_page_guard_flag(struct page *page)
426 {
427 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
428 }
429 #else
430 static inline void set_page_guard_flag(struct page *page) { }
431 static inline void clear_page_guard_flag(struct page *page) { }
432 #endif
433 
434 static inline void set_page_order(struct page *page, int order)
435 {
436 	set_page_private(page, order);
437 	__SetPageBuddy(page);
438 }
439 
440 static inline void rmv_page_order(struct page *page)
441 {
442 	__ClearPageBuddy(page);
443 	set_page_private(page, 0);
444 }
445 
446 /*
447  * Locate the struct page for both the matching buddy in our
448  * pair (buddy1) and the combined O(n+1) page they form (page).
449  *
450  * 1) Any buddy B1 will have an order O twin B2 which satisfies
451  * the following equation:
452  *     B2 = B1 ^ (1 << O)
453  * For example, if the starting buddy (buddy2) is #8 its order
454  * 1 buddy is #10:
455  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
456  *
457  * 2) Any buddy B will have an order O+1 parent P which
458  * satisfies the following equation:
459  *     P = B & ~(1 << O)
460  *
461  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
462  */
463 static inline unsigned long
464 __find_buddy_index(unsigned long page_idx, unsigned int order)
465 {
466 	return page_idx ^ (1 << order);
467 }
468 
469 /*
470  * This function checks whether a page is free && is the buddy
471  * we can do coalesce a page and its buddy if
472  * (a) the buddy is not in a hole &&
473  * (b) the buddy is in the buddy system &&
474  * (c) a page and its buddy have the same order &&
475  * (d) a page and its buddy are in the same zone.
476  *
477  * For recording whether a page is in the buddy system, we set ->_mapcount -2.
478  * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
479  *
480  * For recording page's order, we use page_private(page).
481  */
482 static inline int page_is_buddy(struct page *page, struct page *buddy,
483 								int order)
484 {
485 	if (!pfn_valid_within(page_to_pfn(buddy)))
486 		return 0;
487 
488 	if (page_zone_id(page) != page_zone_id(buddy))
489 		return 0;
490 
491 	if (page_is_guard(buddy) && page_order(buddy) == order) {
492 		VM_BUG_ON(page_count(buddy) != 0);
493 		return 1;
494 	}
495 
496 	if (PageBuddy(buddy) && page_order(buddy) == order) {
497 		VM_BUG_ON(page_count(buddy) != 0);
498 		return 1;
499 	}
500 	return 0;
501 }
502 
503 /*
504  * Freeing function for a buddy system allocator.
505  *
506  * The concept of a buddy system is to maintain direct-mapped table
507  * (containing bit values) for memory blocks of various "orders".
508  * The bottom level table contains the map for the smallest allocatable
509  * units of memory (here, pages), and each level above it describes
510  * pairs of units from the levels below, hence, "buddies".
511  * At a high level, all that happens here is marking the table entry
512  * at the bottom level available, and propagating the changes upward
513  * as necessary, plus some accounting needed to play nicely with other
514  * parts of the VM system.
515  * At each level, we keep a list of pages, which are heads of continuous
516  * free pages of length of (1 << order) and marked with _mapcount -2. Page's
517  * order is recorded in page_private(page) field.
518  * So when we are allocating or freeing one, we can derive the state of the
519  * other.  That is, if we allocate a small block, and both were
520  * free, the remainder of the region must be split into blocks.
521  * If a block is freed, and its buddy is also free, then this
522  * triggers coalescing into a block of larger size.
523  *
524  * -- nyc
525  */
526 
527 static inline void __free_one_page(struct page *page,
528 		struct zone *zone, unsigned int order,
529 		int migratetype)
530 {
531 	unsigned long page_idx;
532 	unsigned long combined_idx;
533 	unsigned long uninitialized_var(buddy_idx);
534 	struct page *buddy;
535 
536 	if (unlikely(PageCompound(page)))
537 		if (unlikely(destroy_compound_page(page, order)))
538 			return;
539 
540 	VM_BUG_ON(migratetype == -1);
541 
542 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
543 
544 	VM_BUG_ON(page_idx & ((1 << order) - 1));
545 	VM_BUG_ON(bad_range(zone, page));
546 
547 	while (order < MAX_ORDER-1) {
548 		buddy_idx = __find_buddy_index(page_idx, order);
549 		buddy = page + (buddy_idx - page_idx);
550 		if (!page_is_buddy(page, buddy, order))
551 			break;
552 		/*
553 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
554 		 * merge with it and move up one order.
555 		 */
556 		if (page_is_guard(buddy)) {
557 			clear_page_guard_flag(buddy);
558 			set_page_private(page, 0);
559 			__mod_zone_freepage_state(zone, 1 << order,
560 						  migratetype);
561 		} else {
562 			list_del(&buddy->lru);
563 			zone->free_area[order].nr_free--;
564 			rmv_page_order(buddy);
565 		}
566 		combined_idx = buddy_idx & page_idx;
567 		page = page + (combined_idx - page_idx);
568 		page_idx = combined_idx;
569 		order++;
570 	}
571 	set_page_order(page, order);
572 
573 	/*
574 	 * If this is not the largest possible page, check if the buddy
575 	 * of the next-highest order is free. If it is, it's possible
576 	 * that pages are being freed that will coalesce soon. In case,
577 	 * that is happening, add the free page to the tail of the list
578 	 * so it's less likely to be used soon and more likely to be merged
579 	 * as a higher order page
580 	 */
581 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
582 		struct page *higher_page, *higher_buddy;
583 		combined_idx = buddy_idx & page_idx;
584 		higher_page = page + (combined_idx - page_idx);
585 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
586 		higher_buddy = higher_page + (buddy_idx - combined_idx);
587 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
588 			list_add_tail(&page->lru,
589 				&zone->free_area[order].free_list[migratetype]);
590 			goto out;
591 		}
592 	}
593 
594 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
595 out:
596 	zone->free_area[order].nr_free++;
597 }
598 
599 static inline int free_pages_check(struct page *page)
600 {
601 	if (unlikely(page_mapcount(page) |
602 		(page->mapping != NULL)  |
603 		(atomic_read(&page->_count) != 0) |
604 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
605 		(mem_cgroup_bad_page_check(page)))) {
606 		bad_page(page);
607 		return 1;
608 	}
609 	reset_page_last_nid(page);
610 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
611 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
612 	return 0;
613 }
614 
615 /*
616  * Frees a number of pages from the PCP lists
617  * Assumes all pages on list are in same zone, and of same order.
618  * count is the number of pages to free.
619  *
620  * If the zone was previously in an "all pages pinned" state then look to
621  * see if this freeing clears that state.
622  *
623  * And clear the zone's pages_scanned counter, to hold off the "all pages are
624  * pinned" detection logic.
625  */
626 static void free_pcppages_bulk(struct zone *zone, int count,
627 					struct per_cpu_pages *pcp)
628 {
629 	int migratetype = 0;
630 	int batch_free = 0;
631 	int to_free = count;
632 
633 	spin_lock(&zone->lock);
634 	zone->all_unreclaimable = 0;
635 	zone->pages_scanned = 0;
636 
637 	while (to_free) {
638 		struct page *page;
639 		struct list_head *list;
640 
641 		/*
642 		 * Remove pages from lists in a round-robin fashion. A
643 		 * batch_free count is maintained that is incremented when an
644 		 * empty list is encountered.  This is so more pages are freed
645 		 * off fuller lists instead of spinning excessively around empty
646 		 * lists
647 		 */
648 		do {
649 			batch_free++;
650 			if (++migratetype == MIGRATE_PCPTYPES)
651 				migratetype = 0;
652 			list = &pcp->lists[migratetype];
653 		} while (list_empty(list));
654 
655 		/* This is the only non-empty list. Free them all. */
656 		if (batch_free == MIGRATE_PCPTYPES)
657 			batch_free = to_free;
658 
659 		do {
660 			int mt;	/* migratetype of the to-be-freed page */
661 
662 			page = list_entry(list->prev, struct page, lru);
663 			/* must delete as __free_one_page list manipulates */
664 			list_del(&page->lru);
665 			mt = get_freepage_migratetype(page);
666 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
667 			__free_one_page(page, zone, 0, mt);
668 			trace_mm_page_pcpu_drain(page, 0, mt);
669 			if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
670 				__mod_zone_page_state(zone, NR_FREE_PAGES, 1);
671 				if (is_migrate_cma(mt))
672 					__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
673 			}
674 		} while (--to_free && --batch_free && !list_empty(list));
675 	}
676 	spin_unlock(&zone->lock);
677 }
678 
679 static void free_one_page(struct zone *zone, struct page *page, int order,
680 				int migratetype)
681 {
682 	spin_lock(&zone->lock);
683 	zone->all_unreclaimable = 0;
684 	zone->pages_scanned = 0;
685 
686 	__free_one_page(page, zone, order, migratetype);
687 	if (unlikely(migratetype != MIGRATE_ISOLATE))
688 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
689 	spin_unlock(&zone->lock);
690 }
691 
692 static bool free_pages_prepare(struct page *page, unsigned int order)
693 {
694 	int i;
695 	int bad = 0;
696 
697 	trace_mm_page_free(page, order);
698 	kmemcheck_free_shadow(page, order);
699 
700 	if (PageAnon(page))
701 		page->mapping = NULL;
702 	for (i = 0; i < (1 << order); i++)
703 		bad += free_pages_check(page + i);
704 	if (bad)
705 		return false;
706 
707 	if (!PageHighMem(page)) {
708 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
709 		debug_check_no_obj_freed(page_address(page),
710 					   PAGE_SIZE << order);
711 	}
712 	arch_free_page(page, order);
713 	kernel_map_pages(page, 1 << order, 0);
714 
715 	return true;
716 }
717 
718 static void __free_pages_ok(struct page *page, unsigned int order)
719 {
720 	unsigned long flags;
721 	int migratetype;
722 
723 	if (!free_pages_prepare(page, order))
724 		return;
725 
726 	local_irq_save(flags);
727 	__count_vm_events(PGFREE, 1 << order);
728 	migratetype = get_pageblock_migratetype(page);
729 	set_freepage_migratetype(page, migratetype);
730 	free_one_page(page_zone(page), page, order, migratetype);
731 	local_irq_restore(flags);
732 }
733 
734 /*
735  * Read access to zone->managed_pages is safe because it's unsigned long,
736  * but we still need to serialize writers. Currently all callers of
737  * __free_pages_bootmem() except put_page_bootmem() should only be used
738  * at boot time. So for shorter boot time, we shift the burden to
739  * put_page_bootmem() to serialize writers.
740  */
741 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
742 {
743 	unsigned int nr_pages = 1 << order;
744 	unsigned int loop;
745 
746 	prefetchw(page);
747 	for (loop = 0; loop < nr_pages; loop++) {
748 		struct page *p = &page[loop];
749 
750 		if (loop + 1 < nr_pages)
751 			prefetchw(p + 1);
752 		__ClearPageReserved(p);
753 		set_page_count(p, 0);
754 	}
755 
756 	page_zone(page)->managed_pages += 1 << order;
757 	set_page_refcounted(page);
758 	__free_pages(page, order);
759 }
760 
761 #ifdef CONFIG_CMA
762 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
763 void __init init_cma_reserved_pageblock(struct page *page)
764 {
765 	unsigned i = pageblock_nr_pages;
766 	struct page *p = page;
767 
768 	do {
769 		__ClearPageReserved(p);
770 		set_page_count(p, 0);
771 	} while (++p, --i);
772 
773 	set_page_refcounted(page);
774 	set_pageblock_migratetype(page, MIGRATE_CMA);
775 	__free_pages(page, pageblock_order);
776 	totalram_pages += pageblock_nr_pages;
777 #ifdef CONFIG_HIGHMEM
778 	if (PageHighMem(page))
779 		totalhigh_pages += pageblock_nr_pages;
780 #endif
781 }
782 #endif
783 
784 /*
785  * The order of subdivision here is critical for the IO subsystem.
786  * Please do not alter this order without good reasons and regression
787  * testing. Specifically, as large blocks of memory are subdivided,
788  * the order in which smaller blocks are delivered depends on the order
789  * they're subdivided in this function. This is the primary factor
790  * influencing the order in which pages are delivered to the IO
791  * subsystem according to empirical testing, and this is also justified
792  * by considering the behavior of a buddy system containing a single
793  * large block of memory acted on by a series of small allocations.
794  * This behavior is a critical factor in sglist merging's success.
795  *
796  * -- nyc
797  */
798 static inline void expand(struct zone *zone, struct page *page,
799 	int low, int high, struct free_area *area,
800 	int migratetype)
801 {
802 	unsigned long size = 1 << high;
803 
804 	while (high > low) {
805 		area--;
806 		high--;
807 		size >>= 1;
808 		VM_BUG_ON(bad_range(zone, &page[size]));
809 
810 #ifdef CONFIG_DEBUG_PAGEALLOC
811 		if (high < debug_guardpage_minorder()) {
812 			/*
813 			 * Mark as guard pages (or page), that will allow to
814 			 * merge back to allocator when buddy will be freed.
815 			 * Corresponding page table entries will not be touched,
816 			 * pages will stay not present in virtual address space
817 			 */
818 			INIT_LIST_HEAD(&page[size].lru);
819 			set_page_guard_flag(&page[size]);
820 			set_page_private(&page[size], high);
821 			/* Guard pages are not available for any usage */
822 			__mod_zone_freepage_state(zone, -(1 << high),
823 						  migratetype);
824 			continue;
825 		}
826 #endif
827 		list_add(&page[size].lru, &area->free_list[migratetype]);
828 		area->nr_free++;
829 		set_page_order(&page[size], high);
830 	}
831 }
832 
833 /*
834  * This page is about to be returned from the page allocator
835  */
836 static inline int check_new_page(struct page *page)
837 {
838 	if (unlikely(page_mapcount(page) |
839 		(page->mapping != NULL)  |
840 		(atomic_read(&page->_count) != 0)  |
841 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
842 		(mem_cgroup_bad_page_check(page)))) {
843 		bad_page(page);
844 		return 1;
845 	}
846 	return 0;
847 }
848 
849 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
850 {
851 	int i;
852 
853 	for (i = 0; i < (1 << order); i++) {
854 		struct page *p = page + i;
855 		if (unlikely(check_new_page(p)))
856 			return 1;
857 	}
858 
859 	set_page_private(page, 0);
860 	set_page_refcounted(page);
861 
862 	arch_alloc_page(page, order);
863 	kernel_map_pages(page, 1 << order, 1);
864 
865 	if (gfp_flags & __GFP_ZERO)
866 		prep_zero_page(page, order, gfp_flags);
867 
868 	if (order && (gfp_flags & __GFP_COMP))
869 		prep_compound_page(page, order);
870 
871 	return 0;
872 }
873 
874 /*
875  * Go through the free lists for the given migratetype and remove
876  * the smallest available page from the freelists
877  */
878 static inline
879 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
880 						int migratetype)
881 {
882 	unsigned int current_order;
883 	struct free_area * area;
884 	struct page *page;
885 
886 	/* Find a page of the appropriate size in the preferred list */
887 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
888 		area = &(zone->free_area[current_order]);
889 		if (list_empty(&area->free_list[migratetype]))
890 			continue;
891 
892 		page = list_entry(area->free_list[migratetype].next,
893 							struct page, lru);
894 		list_del(&page->lru);
895 		rmv_page_order(page);
896 		area->nr_free--;
897 		expand(zone, page, order, current_order, area, migratetype);
898 		return page;
899 	}
900 
901 	return NULL;
902 }
903 
904 
905 /*
906  * This array describes the order lists are fallen back to when
907  * the free lists for the desirable migrate type are depleted
908  */
909 static int fallbacks[MIGRATE_TYPES][4] = {
910 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
911 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
912 #ifdef CONFIG_CMA
913 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
914 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
915 #else
916 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
917 #endif
918 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
919 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
920 };
921 
922 /*
923  * Move the free pages in a range to the free lists of the requested type.
924  * Note that start_page and end_pages are not aligned on a pageblock
925  * boundary. If alignment is required, use move_freepages_block()
926  */
927 int move_freepages(struct zone *zone,
928 			  struct page *start_page, struct page *end_page,
929 			  int migratetype)
930 {
931 	struct page *page;
932 	unsigned long order;
933 	int pages_moved = 0;
934 
935 #ifndef CONFIG_HOLES_IN_ZONE
936 	/*
937 	 * page_zone is not safe to call in this context when
938 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
939 	 * anyway as we check zone boundaries in move_freepages_block().
940 	 * Remove at a later date when no bug reports exist related to
941 	 * grouping pages by mobility
942 	 */
943 	BUG_ON(page_zone(start_page) != page_zone(end_page));
944 #endif
945 
946 	for (page = start_page; page <= end_page;) {
947 		/* Make sure we are not inadvertently changing nodes */
948 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
949 
950 		if (!pfn_valid_within(page_to_pfn(page))) {
951 			page++;
952 			continue;
953 		}
954 
955 		if (!PageBuddy(page)) {
956 			page++;
957 			continue;
958 		}
959 
960 		order = page_order(page);
961 		list_move(&page->lru,
962 			  &zone->free_area[order].free_list[migratetype]);
963 		set_freepage_migratetype(page, migratetype);
964 		page += 1 << order;
965 		pages_moved += 1 << order;
966 	}
967 
968 	return pages_moved;
969 }
970 
971 int move_freepages_block(struct zone *zone, struct page *page,
972 				int migratetype)
973 {
974 	unsigned long start_pfn, end_pfn;
975 	struct page *start_page, *end_page;
976 
977 	start_pfn = page_to_pfn(page);
978 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
979 	start_page = pfn_to_page(start_pfn);
980 	end_page = start_page + pageblock_nr_pages - 1;
981 	end_pfn = start_pfn + pageblock_nr_pages - 1;
982 
983 	/* Do not cross zone boundaries */
984 	if (start_pfn < zone->zone_start_pfn)
985 		start_page = page;
986 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
987 		return 0;
988 
989 	return move_freepages(zone, start_page, end_page, migratetype);
990 }
991 
992 static void change_pageblock_range(struct page *pageblock_page,
993 					int start_order, int migratetype)
994 {
995 	int nr_pageblocks = 1 << (start_order - pageblock_order);
996 
997 	while (nr_pageblocks--) {
998 		set_pageblock_migratetype(pageblock_page, migratetype);
999 		pageblock_page += pageblock_nr_pages;
1000 	}
1001 }
1002 
1003 /* Remove an element from the buddy allocator from the fallback list */
1004 static inline struct page *
1005 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1006 {
1007 	struct free_area * area;
1008 	int current_order;
1009 	struct page *page;
1010 	int migratetype, i;
1011 
1012 	/* Find the largest possible block of pages in the other list */
1013 	for (current_order = MAX_ORDER-1; current_order >= order;
1014 						--current_order) {
1015 		for (i = 0;; i++) {
1016 			migratetype = fallbacks[start_migratetype][i];
1017 
1018 			/* MIGRATE_RESERVE handled later if necessary */
1019 			if (migratetype == MIGRATE_RESERVE)
1020 				break;
1021 
1022 			area = &(zone->free_area[current_order]);
1023 			if (list_empty(&area->free_list[migratetype]))
1024 				continue;
1025 
1026 			page = list_entry(area->free_list[migratetype].next,
1027 					struct page, lru);
1028 			area->nr_free--;
1029 
1030 			/*
1031 			 * If breaking a large block of pages, move all free
1032 			 * pages to the preferred allocation list. If falling
1033 			 * back for a reclaimable kernel allocation, be more
1034 			 * aggressive about taking ownership of free pages
1035 			 *
1036 			 * On the other hand, never change migration
1037 			 * type of MIGRATE_CMA pageblocks nor move CMA
1038 			 * pages on different free lists. We don't
1039 			 * want unmovable pages to be allocated from
1040 			 * MIGRATE_CMA areas.
1041 			 */
1042 			if (!is_migrate_cma(migratetype) &&
1043 			    (unlikely(current_order >= pageblock_order / 2) ||
1044 			     start_migratetype == MIGRATE_RECLAIMABLE ||
1045 			     page_group_by_mobility_disabled)) {
1046 				int pages;
1047 				pages = move_freepages_block(zone, page,
1048 								start_migratetype);
1049 
1050 				/* Claim the whole block if over half of it is free */
1051 				if (pages >= (1 << (pageblock_order-1)) ||
1052 						page_group_by_mobility_disabled)
1053 					set_pageblock_migratetype(page,
1054 								start_migratetype);
1055 
1056 				migratetype = start_migratetype;
1057 			}
1058 
1059 			/* Remove the page from the freelists */
1060 			list_del(&page->lru);
1061 			rmv_page_order(page);
1062 
1063 			/* Take ownership for orders >= pageblock_order */
1064 			if (current_order >= pageblock_order &&
1065 			    !is_migrate_cma(migratetype))
1066 				change_pageblock_range(page, current_order,
1067 							start_migratetype);
1068 
1069 			expand(zone, page, order, current_order, area,
1070 			       is_migrate_cma(migratetype)
1071 			     ? migratetype : start_migratetype);
1072 
1073 			trace_mm_page_alloc_extfrag(page, order, current_order,
1074 				start_migratetype, migratetype);
1075 
1076 			return page;
1077 		}
1078 	}
1079 
1080 	return NULL;
1081 }
1082 
1083 /*
1084  * Do the hard work of removing an element from the buddy allocator.
1085  * Call me with the zone->lock already held.
1086  */
1087 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1088 						int migratetype)
1089 {
1090 	struct page *page;
1091 
1092 retry_reserve:
1093 	page = __rmqueue_smallest(zone, order, migratetype);
1094 
1095 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1096 		page = __rmqueue_fallback(zone, order, migratetype);
1097 
1098 		/*
1099 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1100 		 * is used because __rmqueue_smallest is an inline function
1101 		 * and we want just one call site
1102 		 */
1103 		if (!page) {
1104 			migratetype = MIGRATE_RESERVE;
1105 			goto retry_reserve;
1106 		}
1107 	}
1108 
1109 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1110 	return page;
1111 }
1112 
1113 /*
1114  * Obtain a specified number of elements from the buddy allocator, all under
1115  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1116  * Returns the number of new pages which were placed at *list.
1117  */
1118 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1119 			unsigned long count, struct list_head *list,
1120 			int migratetype, int cold)
1121 {
1122 	int mt = migratetype, i;
1123 
1124 	spin_lock(&zone->lock);
1125 	for (i = 0; i < count; ++i) {
1126 		struct page *page = __rmqueue(zone, order, migratetype);
1127 		if (unlikely(page == NULL))
1128 			break;
1129 
1130 		/*
1131 		 * Split buddy pages returned by expand() are received here
1132 		 * in physical page order. The page is added to the callers and
1133 		 * list and the list head then moves forward. From the callers
1134 		 * perspective, the linked list is ordered by page number in
1135 		 * some conditions. This is useful for IO devices that can
1136 		 * merge IO requests if the physical pages are ordered
1137 		 * properly.
1138 		 */
1139 		if (likely(cold == 0))
1140 			list_add(&page->lru, list);
1141 		else
1142 			list_add_tail(&page->lru, list);
1143 		if (IS_ENABLED(CONFIG_CMA)) {
1144 			mt = get_pageblock_migratetype(page);
1145 			if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1146 				mt = migratetype;
1147 		}
1148 		set_freepage_migratetype(page, mt);
1149 		list = &page->lru;
1150 		if (is_migrate_cma(mt))
1151 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1152 					      -(1 << order));
1153 	}
1154 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1155 	spin_unlock(&zone->lock);
1156 	return i;
1157 }
1158 
1159 #ifdef CONFIG_NUMA
1160 /*
1161  * Called from the vmstat counter updater to drain pagesets of this
1162  * currently executing processor on remote nodes after they have
1163  * expired.
1164  *
1165  * Note that this function must be called with the thread pinned to
1166  * a single processor.
1167  */
1168 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1169 {
1170 	unsigned long flags;
1171 	int to_drain;
1172 
1173 	local_irq_save(flags);
1174 	if (pcp->count >= pcp->batch)
1175 		to_drain = pcp->batch;
1176 	else
1177 		to_drain = pcp->count;
1178 	if (to_drain > 0) {
1179 		free_pcppages_bulk(zone, to_drain, pcp);
1180 		pcp->count -= to_drain;
1181 	}
1182 	local_irq_restore(flags);
1183 }
1184 #endif
1185 
1186 /*
1187  * Drain pages of the indicated processor.
1188  *
1189  * The processor must either be the current processor and the
1190  * thread pinned to the current processor or a processor that
1191  * is not online.
1192  */
1193 static void drain_pages(unsigned int cpu)
1194 {
1195 	unsigned long flags;
1196 	struct zone *zone;
1197 
1198 	for_each_populated_zone(zone) {
1199 		struct per_cpu_pageset *pset;
1200 		struct per_cpu_pages *pcp;
1201 
1202 		local_irq_save(flags);
1203 		pset = per_cpu_ptr(zone->pageset, cpu);
1204 
1205 		pcp = &pset->pcp;
1206 		if (pcp->count) {
1207 			free_pcppages_bulk(zone, pcp->count, pcp);
1208 			pcp->count = 0;
1209 		}
1210 		local_irq_restore(flags);
1211 	}
1212 }
1213 
1214 /*
1215  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1216  */
1217 void drain_local_pages(void *arg)
1218 {
1219 	drain_pages(smp_processor_id());
1220 }
1221 
1222 /*
1223  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1224  *
1225  * Note that this code is protected against sending an IPI to an offline
1226  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1227  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1228  * nothing keeps CPUs from showing up after we populated the cpumask and
1229  * before the call to on_each_cpu_mask().
1230  */
1231 void drain_all_pages(void)
1232 {
1233 	int cpu;
1234 	struct per_cpu_pageset *pcp;
1235 	struct zone *zone;
1236 
1237 	/*
1238 	 * Allocate in the BSS so we wont require allocation in
1239 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1240 	 */
1241 	static cpumask_t cpus_with_pcps;
1242 
1243 	/*
1244 	 * We don't care about racing with CPU hotplug event
1245 	 * as offline notification will cause the notified
1246 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1247 	 * disables preemption as part of its processing
1248 	 */
1249 	for_each_online_cpu(cpu) {
1250 		bool has_pcps = false;
1251 		for_each_populated_zone(zone) {
1252 			pcp = per_cpu_ptr(zone->pageset, cpu);
1253 			if (pcp->pcp.count) {
1254 				has_pcps = true;
1255 				break;
1256 			}
1257 		}
1258 		if (has_pcps)
1259 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1260 		else
1261 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1262 	}
1263 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1264 }
1265 
1266 #ifdef CONFIG_HIBERNATION
1267 
1268 void mark_free_pages(struct zone *zone)
1269 {
1270 	unsigned long pfn, max_zone_pfn;
1271 	unsigned long flags;
1272 	int order, t;
1273 	struct list_head *curr;
1274 
1275 	if (!zone->spanned_pages)
1276 		return;
1277 
1278 	spin_lock_irqsave(&zone->lock, flags);
1279 
1280 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1281 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1282 		if (pfn_valid(pfn)) {
1283 			struct page *page = pfn_to_page(pfn);
1284 
1285 			if (!swsusp_page_is_forbidden(page))
1286 				swsusp_unset_page_free(page);
1287 		}
1288 
1289 	for_each_migratetype_order(order, t) {
1290 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1291 			unsigned long i;
1292 
1293 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1294 			for (i = 0; i < (1UL << order); i++)
1295 				swsusp_set_page_free(pfn_to_page(pfn + i));
1296 		}
1297 	}
1298 	spin_unlock_irqrestore(&zone->lock, flags);
1299 }
1300 #endif /* CONFIG_PM */
1301 
1302 /*
1303  * Free a 0-order page
1304  * cold == 1 ? free a cold page : free a hot page
1305  */
1306 void free_hot_cold_page(struct page *page, int cold)
1307 {
1308 	struct zone *zone = page_zone(page);
1309 	struct per_cpu_pages *pcp;
1310 	unsigned long flags;
1311 	int migratetype;
1312 
1313 	if (!free_pages_prepare(page, 0))
1314 		return;
1315 
1316 	migratetype = get_pageblock_migratetype(page);
1317 	set_freepage_migratetype(page, migratetype);
1318 	local_irq_save(flags);
1319 	__count_vm_event(PGFREE);
1320 
1321 	/*
1322 	 * We only track unmovable, reclaimable and movable on pcp lists.
1323 	 * Free ISOLATE pages back to the allocator because they are being
1324 	 * offlined but treat RESERVE as movable pages so we can get those
1325 	 * areas back if necessary. Otherwise, we may have to free
1326 	 * excessively into the page allocator
1327 	 */
1328 	if (migratetype >= MIGRATE_PCPTYPES) {
1329 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1330 			free_one_page(zone, page, 0, migratetype);
1331 			goto out;
1332 		}
1333 		migratetype = MIGRATE_MOVABLE;
1334 	}
1335 
1336 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1337 	if (cold)
1338 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1339 	else
1340 		list_add(&page->lru, &pcp->lists[migratetype]);
1341 	pcp->count++;
1342 	if (pcp->count >= pcp->high) {
1343 		free_pcppages_bulk(zone, pcp->batch, pcp);
1344 		pcp->count -= pcp->batch;
1345 	}
1346 
1347 out:
1348 	local_irq_restore(flags);
1349 }
1350 
1351 /*
1352  * Free a list of 0-order pages
1353  */
1354 void free_hot_cold_page_list(struct list_head *list, int cold)
1355 {
1356 	struct page *page, *next;
1357 
1358 	list_for_each_entry_safe(page, next, list, lru) {
1359 		trace_mm_page_free_batched(page, cold);
1360 		free_hot_cold_page(page, cold);
1361 	}
1362 }
1363 
1364 /*
1365  * split_page takes a non-compound higher-order page, and splits it into
1366  * n (1<<order) sub-pages: page[0..n]
1367  * Each sub-page must be freed individually.
1368  *
1369  * Note: this is probably too low level an operation for use in drivers.
1370  * Please consult with lkml before using this in your driver.
1371  */
1372 void split_page(struct page *page, unsigned int order)
1373 {
1374 	int i;
1375 
1376 	VM_BUG_ON(PageCompound(page));
1377 	VM_BUG_ON(!page_count(page));
1378 
1379 #ifdef CONFIG_KMEMCHECK
1380 	/*
1381 	 * Split shadow pages too, because free(page[0]) would
1382 	 * otherwise free the whole shadow.
1383 	 */
1384 	if (kmemcheck_page_is_tracked(page))
1385 		split_page(virt_to_page(page[0].shadow), order);
1386 #endif
1387 
1388 	for (i = 1; i < (1 << order); i++)
1389 		set_page_refcounted(page + i);
1390 }
1391 
1392 static int __isolate_free_page(struct page *page, unsigned int order)
1393 {
1394 	unsigned long watermark;
1395 	struct zone *zone;
1396 	int mt;
1397 
1398 	BUG_ON(!PageBuddy(page));
1399 
1400 	zone = page_zone(page);
1401 	mt = get_pageblock_migratetype(page);
1402 
1403 	if (mt != MIGRATE_ISOLATE) {
1404 		/* Obey watermarks as if the page was being allocated */
1405 		watermark = low_wmark_pages(zone) + (1 << order);
1406 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1407 			return 0;
1408 
1409 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1410 	}
1411 
1412 	/* Remove page from free list */
1413 	list_del(&page->lru);
1414 	zone->free_area[order].nr_free--;
1415 	rmv_page_order(page);
1416 
1417 	/* Set the pageblock if the isolated page is at least a pageblock */
1418 	if (order >= pageblock_order - 1) {
1419 		struct page *endpage = page + (1 << order) - 1;
1420 		for (; page < endpage; page += pageblock_nr_pages) {
1421 			int mt = get_pageblock_migratetype(page);
1422 			if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1423 				set_pageblock_migratetype(page,
1424 							  MIGRATE_MOVABLE);
1425 		}
1426 	}
1427 
1428 	return 1UL << order;
1429 }
1430 
1431 /*
1432  * Similar to split_page except the page is already free. As this is only
1433  * being used for migration, the migratetype of the block also changes.
1434  * As this is called with interrupts disabled, the caller is responsible
1435  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1436  * are enabled.
1437  *
1438  * Note: this is probably too low level an operation for use in drivers.
1439  * Please consult with lkml before using this in your driver.
1440  */
1441 int split_free_page(struct page *page)
1442 {
1443 	unsigned int order;
1444 	int nr_pages;
1445 
1446 	order = page_order(page);
1447 
1448 	nr_pages = __isolate_free_page(page, order);
1449 	if (!nr_pages)
1450 		return 0;
1451 
1452 	/* Split into individual pages */
1453 	set_page_refcounted(page);
1454 	split_page(page, order);
1455 	return nr_pages;
1456 }
1457 
1458 /*
1459  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1460  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1461  * or two.
1462  */
1463 static inline
1464 struct page *buffered_rmqueue(struct zone *preferred_zone,
1465 			struct zone *zone, int order, gfp_t gfp_flags,
1466 			int migratetype)
1467 {
1468 	unsigned long flags;
1469 	struct page *page;
1470 	int cold = !!(gfp_flags & __GFP_COLD);
1471 
1472 again:
1473 	if (likely(order == 0)) {
1474 		struct per_cpu_pages *pcp;
1475 		struct list_head *list;
1476 
1477 		local_irq_save(flags);
1478 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1479 		list = &pcp->lists[migratetype];
1480 		if (list_empty(list)) {
1481 			pcp->count += rmqueue_bulk(zone, 0,
1482 					pcp->batch, list,
1483 					migratetype, cold);
1484 			if (unlikely(list_empty(list)))
1485 				goto failed;
1486 		}
1487 
1488 		if (cold)
1489 			page = list_entry(list->prev, struct page, lru);
1490 		else
1491 			page = list_entry(list->next, struct page, lru);
1492 
1493 		list_del(&page->lru);
1494 		pcp->count--;
1495 	} else {
1496 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1497 			/*
1498 			 * __GFP_NOFAIL is not to be used in new code.
1499 			 *
1500 			 * All __GFP_NOFAIL callers should be fixed so that they
1501 			 * properly detect and handle allocation failures.
1502 			 *
1503 			 * We most definitely don't want callers attempting to
1504 			 * allocate greater than order-1 page units with
1505 			 * __GFP_NOFAIL.
1506 			 */
1507 			WARN_ON_ONCE(order > 1);
1508 		}
1509 		spin_lock_irqsave(&zone->lock, flags);
1510 		page = __rmqueue(zone, order, migratetype);
1511 		spin_unlock(&zone->lock);
1512 		if (!page)
1513 			goto failed;
1514 		__mod_zone_freepage_state(zone, -(1 << order),
1515 					  get_pageblock_migratetype(page));
1516 	}
1517 
1518 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1519 	zone_statistics(preferred_zone, zone, gfp_flags);
1520 	local_irq_restore(flags);
1521 
1522 	VM_BUG_ON(bad_range(zone, page));
1523 	if (prep_new_page(page, order, gfp_flags))
1524 		goto again;
1525 	return page;
1526 
1527 failed:
1528 	local_irq_restore(flags);
1529 	return NULL;
1530 }
1531 
1532 #ifdef CONFIG_FAIL_PAGE_ALLOC
1533 
1534 static struct {
1535 	struct fault_attr attr;
1536 
1537 	u32 ignore_gfp_highmem;
1538 	u32 ignore_gfp_wait;
1539 	u32 min_order;
1540 } fail_page_alloc = {
1541 	.attr = FAULT_ATTR_INITIALIZER,
1542 	.ignore_gfp_wait = 1,
1543 	.ignore_gfp_highmem = 1,
1544 	.min_order = 1,
1545 };
1546 
1547 static int __init setup_fail_page_alloc(char *str)
1548 {
1549 	return setup_fault_attr(&fail_page_alloc.attr, str);
1550 }
1551 __setup("fail_page_alloc=", setup_fail_page_alloc);
1552 
1553 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1554 {
1555 	if (order < fail_page_alloc.min_order)
1556 		return false;
1557 	if (gfp_mask & __GFP_NOFAIL)
1558 		return false;
1559 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1560 		return false;
1561 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1562 		return false;
1563 
1564 	return should_fail(&fail_page_alloc.attr, 1 << order);
1565 }
1566 
1567 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1568 
1569 static int __init fail_page_alloc_debugfs(void)
1570 {
1571 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1572 	struct dentry *dir;
1573 
1574 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1575 					&fail_page_alloc.attr);
1576 	if (IS_ERR(dir))
1577 		return PTR_ERR(dir);
1578 
1579 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1580 				&fail_page_alloc.ignore_gfp_wait))
1581 		goto fail;
1582 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1583 				&fail_page_alloc.ignore_gfp_highmem))
1584 		goto fail;
1585 	if (!debugfs_create_u32("min-order", mode, dir,
1586 				&fail_page_alloc.min_order))
1587 		goto fail;
1588 
1589 	return 0;
1590 fail:
1591 	debugfs_remove_recursive(dir);
1592 
1593 	return -ENOMEM;
1594 }
1595 
1596 late_initcall(fail_page_alloc_debugfs);
1597 
1598 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1599 
1600 #else /* CONFIG_FAIL_PAGE_ALLOC */
1601 
1602 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1603 {
1604 	return false;
1605 }
1606 
1607 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1608 
1609 /*
1610  * Return true if free pages are above 'mark'. This takes into account the order
1611  * of the allocation.
1612  */
1613 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1614 		      int classzone_idx, int alloc_flags, long free_pages)
1615 {
1616 	/* free_pages my go negative - that's OK */
1617 	long min = mark;
1618 	long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1619 	int o;
1620 
1621 	free_pages -= (1 << order) - 1;
1622 	if (alloc_flags & ALLOC_HIGH)
1623 		min -= min / 2;
1624 	if (alloc_flags & ALLOC_HARDER)
1625 		min -= min / 4;
1626 #ifdef CONFIG_CMA
1627 	/* If allocation can't use CMA areas don't use free CMA pages */
1628 	if (!(alloc_flags & ALLOC_CMA))
1629 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1630 #endif
1631 	if (free_pages <= min + lowmem_reserve)
1632 		return false;
1633 	for (o = 0; o < order; o++) {
1634 		/* At the next order, this order's pages become unavailable */
1635 		free_pages -= z->free_area[o].nr_free << o;
1636 
1637 		/* Require fewer higher order pages to be free */
1638 		min >>= 1;
1639 
1640 		if (free_pages <= min)
1641 			return false;
1642 	}
1643 	return true;
1644 }
1645 
1646 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1647 		      int classzone_idx, int alloc_flags)
1648 {
1649 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1650 					zone_page_state(z, NR_FREE_PAGES));
1651 }
1652 
1653 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1654 		      int classzone_idx, int alloc_flags)
1655 {
1656 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1657 
1658 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1659 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1660 
1661 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1662 								free_pages);
1663 }
1664 
1665 #ifdef CONFIG_NUMA
1666 /*
1667  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1668  * skip over zones that are not allowed by the cpuset, or that have
1669  * been recently (in last second) found to be nearly full.  See further
1670  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1671  * that have to skip over a lot of full or unallowed zones.
1672  *
1673  * If the zonelist cache is present in the passed in zonelist, then
1674  * returns a pointer to the allowed node mask (either the current
1675  * tasks mems_allowed, or node_states[N_MEMORY].)
1676  *
1677  * If the zonelist cache is not available for this zonelist, does
1678  * nothing and returns NULL.
1679  *
1680  * If the fullzones BITMAP in the zonelist cache is stale (more than
1681  * a second since last zap'd) then we zap it out (clear its bits.)
1682  *
1683  * We hold off even calling zlc_setup, until after we've checked the
1684  * first zone in the zonelist, on the theory that most allocations will
1685  * be satisfied from that first zone, so best to examine that zone as
1686  * quickly as we can.
1687  */
1688 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1689 {
1690 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1691 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1692 
1693 	zlc = zonelist->zlcache_ptr;
1694 	if (!zlc)
1695 		return NULL;
1696 
1697 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1698 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1699 		zlc->last_full_zap = jiffies;
1700 	}
1701 
1702 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1703 					&cpuset_current_mems_allowed :
1704 					&node_states[N_MEMORY];
1705 	return allowednodes;
1706 }
1707 
1708 /*
1709  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1710  * if it is worth looking at further for free memory:
1711  *  1) Check that the zone isn't thought to be full (doesn't have its
1712  *     bit set in the zonelist_cache fullzones BITMAP).
1713  *  2) Check that the zones node (obtained from the zonelist_cache
1714  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1715  * Return true (non-zero) if zone is worth looking at further, or
1716  * else return false (zero) if it is not.
1717  *
1718  * This check -ignores- the distinction between various watermarks,
1719  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1720  * found to be full for any variation of these watermarks, it will
1721  * be considered full for up to one second by all requests, unless
1722  * we are so low on memory on all allowed nodes that we are forced
1723  * into the second scan of the zonelist.
1724  *
1725  * In the second scan we ignore this zonelist cache and exactly
1726  * apply the watermarks to all zones, even it is slower to do so.
1727  * We are low on memory in the second scan, and should leave no stone
1728  * unturned looking for a free page.
1729  */
1730 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1731 						nodemask_t *allowednodes)
1732 {
1733 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1734 	int i;				/* index of *z in zonelist zones */
1735 	int n;				/* node that zone *z is on */
1736 
1737 	zlc = zonelist->zlcache_ptr;
1738 	if (!zlc)
1739 		return 1;
1740 
1741 	i = z - zonelist->_zonerefs;
1742 	n = zlc->z_to_n[i];
1743 
1744 	/* This zone is worth trying if it is allowed but not full */
1745 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1746 }
1747 
1748 /*
1749  * Given 'z' scanning a zonelist, set the corresponding bit in
1750  * zlc->fullzones, so that subsequent attempts to allocate a page
1751  * from that zone don't waste time re-examining it.
1752  */
1753 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1754 {
1755 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1756 	int i;				/* index of *z in zonelist zones */
1757 
1758 	zlc = zonelist->zlcache_ptr;
1759 	if (!zlc)
1760 		return;
1761 
1762 	i = z - zonelist->_zonerefs;
1763 
1764 	set_bit(i, zlc->fullzones);
1765 }
1766 
1767 /*
1768  * clear all zones full, called after direct reclaim makes progress so that
1769  * a zone that was recently full is not skipped over for up to a second
1770  */
1771 static void zlc_clear_zones_full(struct zonelist *zonelist)
1772 {
1773 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1774 
1775 	zlc = zonelist->zlcache_ptr;
1776 	if (!zlc)
1777 		return;
1778 
1779 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1780 }
1781 
1782 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1783 {
1784 	return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1785 }
1786 
1787 static void __paginginit init_zone_allows_reclaim(int nid)
1788 {
1789 	int i;
1790 
1791 	for_each_online_node(i)
1792 		if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1793 			node_set(i, NODE_DATA(nid)->reclaim_nodes);
1794 		else
1795 			zone_reclaim_mode = 1;
1796 }
1797 
1798 #else	/* CONFIG_NUMA */
1799 
1800 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1801 {
1802 	return NULL;
1803 }
1804 
1805 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1806 				nodemask_t *allowednodes)
1807 {
1808 	return 1;
1809 }
1810 
1811 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1812 {
1813 }
1814 
1815 static void zlc_clear_zones_full(struct zonelist *zonelist)
1816 {
1817 }
1818 
1819 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1820 {
1821 	return true;
1822 }
1823 
1824 static inline void init_zone_allows_reclaim(int nid)
1825 {
1826 }
1827 #endif	/* CONFIG_NUMA */
1828 
1829 /*
1830  * get_page_from_freelist goes through the zonelist trying to allocate
1831  * a page.
1832  */
1833 static struct page *
1834 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1835 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1836 		struct zone *preferred_zone, int migratetype)
1837 {
1838 	struct zoneref *z;
1839 	struct page *page = NULL;
1840 	int classzone_idx;
1841 	struct zone *zone;
1842 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1843 	int zlc_active = 0;		/* set if using zonelist_cache */
1844 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1845 
1846 	classzone_idx = zone_idx(preferred_zone);
1847 zonelist_scan:
1848 	/*
1849 	 * Scan zonelist, looking for a zone with enough free.
1850 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1851 	 */
1852 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1853 						high_zoneidx, nodemask) {
1854 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1855 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1856 				continue;
1857 		if ((alloc_flags & ALLOC_CPUSET) &&
1858 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1859 				continue;
1860 		/*
1861 		 * When allocating a page cache page for writing, we
1862 		 * want to get it from a zone that is within its dirty
1863 		 * limit, such that no single zone holds more than its
1864 		 * proportional share of globally allowed dirty pages.
1865 		 * The dirty limits take into account the zone's
1866 		 * lowmem reserves and high watermark so that kswapd
1867 		 * should be able to balance it without having to
1868 		 * write pages from its LRU list.
1869 		 *
1870 		 * This may look like it could increase pressure on
1871 		 * lower zones by failing allocations in higher zones
1872 		 * before they are full.  But the pages that do spill
1873 		 * over are limited as the lower zones are protected
1874 		 * by this very same mechanism.  It should not become
1875 		 * a practical burden to them.
1876 		 *
1877 		 * XXX: For now, allow allocations to potentially
1878 		 * exceed the per-zone dirty limit in the slowpath
1879 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1880 		 * which is important when on a NUMA setup the allowed
1881 		 * zones are together not big enough to reach the
1882 		 * global limit.  The proper fix for these situations
1883 		 * will require awareness of zones in the
1884 		 * dirty-throttling and the flusher threads.
1885 		 */
1886 		if ((alloc_flags & ALLOC_WMARK_LOW) &&
1887 		    (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1888 			goto this_zone_full;
1889 
1890 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1891 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1892 			unsigned long mark;
1893 			int ret;
1894 
1895 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1896 			if (zone_watermark_ok(zone, order, mark,
1897 				    classzone_idx, alloc_flags))
1898 				goto try_this_zone;
1899 
1900 			if (IS_ENABLED(CONFIG_NUMA) &&
1901 					!did_zlc_setup && nr_online_nodes > 1) {
1902 				/*
1903 				 * we do zlc_setup if there are multiple nodes
1904 				 * and before considering the first zone allowed
1905 				 * by the cpuset.
1906 				 */
1907 				allowednodes = zlc_setup(zonelist, alloc_flags);
1908 				zlc_active = 1;
1909 				did_zlc_setup = 1;
1910 			}
1911 
1912 			if (zone_reclaim_mode == 0 ||
1913 			    !zone_allows_reclaim(preferred_zone, zone))
1914 				goto this_zone_full;
1915 
1916 			/*
1917 			 * As we may have just activated ZLC, check if the first
1918 			 * eligible zone has failed zone_reclaim recently.
1919 			 */
1920 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1921 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
1922 				continue;
1923 
1924 			ret = zone_reclaim(zone, gfp_mask, order);
1925 			switch (ret) {
1926 			case ZONE_RECLAIM_NOSCAN:
1927 				/* did not scan */
1928 				continue;
1929 			case ZONE_RECLAIM_FULL:
1930 				/* scanned but unreclaimable */
1931 				continue;
1932 			default:
1933 				/* did we reclaim enough */
1934 				if (!zone_watermark_ok(zone, order, mark,
1935 						classzone_idx, alloc_flags))
1936 					goto this_zone_full;
1937 			}
1938 		}
1939 
1940 try_this_zone:
1941 		page = buffered_rmqueue(preferred_zone, zone, order,
1942 						gfp_mask, migratetype);
1943 		if (page)
1944 			break;
1945 this_zone_full:
1946 		if (IS_ENABLED(CONFIG_NUMA))
1947 			zlc_mark_zone_full(zonelist, z);
1948 	}
1949 
1950 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1951 		/* Disable zlc cache for second zonelist scan */
1952 		zlc_active = 0;
1953 		goto zonelist_scan;
1954 	}
1955 
1956 	if (page)
1957 		/*
1958 		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1959 		 * necessary to allocate the page. The expectation is
1960 		 * that the caller is taking steps that will free more
1961 		 * memory. The caller should avoid the page being used
1962 		 * for !PFMEMALLOC purposes.
1963 		 */
1964 		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1965 
1966 	return page;
1967 }
1968 
1969 /*
1970  * Large machines with many possible nodes should not always dump per-node
1971  * meminfo in irq context.
1972  */
1973 static inline bool should_suppress_show_mem(void)
1974 {
1975 	bool ret = false;
1976 
1977 #if NODES_SHIFT > 8
1978 	ret = in_interrupt();
1979 #endif
1980 	return ret;
1981 }
1982 
1983 static DEFINE_RATELIMIT_STATE(nopage_rs,
1984 		DEFAULT_RATELIMIT_INTERVAL,
1985 		DEFAULT_RATELIMIT_BURST);
1986 
1987 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1988 {
1989 	unsigned int filter = SHOW_MEM_FILTER_NODES;
1990 
1991 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1992 	    debug_guardpage_minorder() > 0)
1993 		return;
1994 
1995 	/*
1996 	 * This documents exceptions given to allocations in certain
1997 	 * contexts that are allowed to allocate outside current's set
1998 	 * of allowed nodes.
1999 	 */
2000 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2001 		if (test_thread_flag(TIF_MEMDIE) ||
2002 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2003 			filter &= ~SHOW_MEM_FILTER_NODES;
2004 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2005 		filter &= ~SHOW_MEM_FILTER_NODES;
2006 
2007 	if (fmt) {
2008 		struct va_format vaf;
2009 		va_list args;
2010 
2011 		va_start(args, fmt);
2012 
2013 		vaf.fmt = fmt;
2014 		vaf.va = &args;
2015 
2016 		pr_warn("%pV", &vaf);
2017 
2018 		va_end(args);
2019 	}
2020 
2021 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2022 		current->comm, order, gfp_mask);
2023 
2024 	dump_stack();
2025 	if (!should_suppress_show_mem())
2026 		show_mem(filter);
2027 }
2028 
2029 static inline int
2030 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2031 				unsigned long did_some_progress,
2032 				unsigned long pages_reclaimed)
2033 {
2034 	/* Do not loop if specifically requested */
2035 	if (gfp_mask & __GFP_NORETRY)
2036 		return 0;
2037 
2038 	/* Always retry if specifically requested */
2039 	if (gfp_mask & __GFP_NOFAIL)
2040 		return 1;
2041 
2042 	/*
2043 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2044 	 * making forward progress without invoking OOM. Suspend also disables
2045 	 * storage devices so kswapd will not help. Bail if we are suspending.
2046 	 */
2047 	if (!did_some_progress && pm_suspended_storage())
2048 		return 0;
2049 
2050 	/*
2051 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2052 	 * means __GFP_NOFAIL, but that may not be true in other
2053 	 * implementations.
2054 	 */
2055 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2056 		return 1;
2057 
2058 	/*
2059 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2060 	 * specified, then we retry until we no longer reclaim any pages
2061 	 * (above), or we've reclaimed an order of pages at least as
2062 	 * large as the allocation's order. In both cases, if the
2063 	 * allocation still fails, we stop retrying.
2064 	 */
2065 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2066 		return 1;
2067 
2068 	return 0;
2069 }
2070 
2071 static inline struct page *
2072 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2073 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2074 	nodemask_t *nodemask, struct zone *preferred_zone,
2075 	int migratetype)
2076 {
2077 	struct page *page;
2078 
2079 	/* Acquire the OOM killer lock for the zones in zonelist */
2080 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2081 		schedule_timeout_uninterruptible(1);
2082 		return NULL;
2083 	}
2084 
2085 	/*
2086 	 * Go through the zonelist yet one more time, keep very high watermark
2087 	 * here, this is only to catch a parallel oom killing, we must fail if
2088 	 * we're still under heavy pressure.
2089 	 */
2090 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2091 		order, zonelist, high_zoneidx,
2092 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2093 		preferred_zone, migratetype);
2094 	if (page)
2095 		goto out;
2096 
2097 	if (!(gfp_mask & __GFP_NOFAIL)) {
2098 		/* The OOM killer will not help higher order allocs */
2099 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2100 			goto out;
2101 		/* The OOM killer does not needlessly kill tasks for lowmem */
2102 		if (high_zoneidx < ZONE_NORMAL)
2103 			goto out;
2104 		/*
2105 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2106 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2107 		 * The caller should handle page allocation failure by itself if
2108 		 * it specifies __GFP_THISNODE.
2109 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2110 		 */
2111 		if (gfp_mask & __GFP_THISNODE)
2112 			goto out;
2113 	}
2114 	/* Exhausted what can be done so it's blamo time */
2115 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2116 
2117 out:
2118 	clear_zonelist_oom(zonelist, gfp_mask);
2119 	return page;
2120 }
2121 
2122 #ifdef CONFIG_COMPACTION
2123 /* Try memory compaction for high-order allocations before reclaim */
2124 static struct page *
2125 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2126 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2127 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2128 	int migratetype, bool sync_migration,
2129 	bool *contended_compaction, bool *deferred_compaction,
2130 	unsigned long *did_some_progress)
2131 {
2132 	if (!order)
2133 		return NULL;
2134 
2135 	if (compaction_deferred(preferred_zone, order)) {
2136 		*deferred_compaction = true;
2137 		return NULL;
2138 	}
2139 
2140 	current->flags |= PF_MEMALLOC;
2141 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2142 						nodemask, sync_migration,
2143 						contended_compaction);
2144 	current->flags &= ~PF_MEMALLOC;
2145 
2146 	if (*did_some_progress != COMPACT_SKIPPED) {
2147 		struct page *page;
2148 
2149 		/* Page migration frees to the PCP lists but we want merging */
2150 		drain_pages(get_cpu());
2151 		put_cpu();
2152 
2153 		page = get_page_from_freelist(gfp_mask, nodemask,
2154 				order, zonelist, high_zoneidx,
2155 				alloc_flags & ~ALLOC_NO_WATERMARKS,
2156 				preferred_zone, migratetype);
2157 		if (page) {
2158 			preferred_zone->compact_blockskip_flush = false;
2159 			preferred_zone->compact_considered = 0;
2160 			preferred_zone->compact_defer_shift = 0;
2161 			if (order >= preferred_zone->compact_order_failed)
2162 				preferred_zone->compact_order_failed = order + 1;
2163 			count_vm_event(COMPACTSUCCESS);
2164 			return page;
2165 		}
2166 
2167 		/*
2168 		 * It's bad if compaction run occurs and fails.
2169 		 * The most likely reason is that pages exist,
2170 		 * but not enough to satisfy watermarks.
2171 		 */
2172 		count_vm_event(COMPACTFAIL);
2173 
2174 		/*
2175 		 * As async compaction considers a subset of pageblocks, only
2176 		 * defer if the failure was a sync compaction failure.
2177 		 */
2178 		if (sync_migration)
2179 			defer_compaction(preferred_zone, order);
2180 
2181 		cond_resched();
2182 	}
2183 
2184 	return NULL;
2185 }
2186 #else
2187 static inline struct page *
2188 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2189 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2190 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2191 	int migratetype, bool sync_migration,
2192 	bool *contended_compaction, bool *deferred_compaction,
2193 	unsigned long *did_some_progress)
2194 {
2195 	return NULL;
2196 }
2197 #endif /* CONFIG_COMPACTION */
2198 
2199 /* Perform direct synchronous page reclaim */
2200 static int
2201 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2202 		  nodemask_t *nodemask)
2203 {
2204 	struct reclaim_state reclaim_state;
2205 	int progress;
2206 
2207 	cond_resched();
2208 
2209 	/* We now go into synchronous reclaim */
2210 	cpuset_memory_pressure_bump();
2211 	current->flags |= PF_MEMALLOC;
2212 	lockdep_set_current_reclaim_state(gfp_mask);
2213 	reclaim_state.reclaimed_slab = 0;
2214 	current->reclaim_state = &reclaim_state;
2215 
2216 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2217 
2218 	current->reclaim_state = NULL;
2219 	lockdep_clear_current_reclaim_state();
2220 	current->flags &= ~PF_MEMALLOC;
2221 
2222 	cond_resched();
2223 
2224 	return progress;
2225 }
2226 
2227 /* The really slow allocator path where we enter direct reclaim */
2228 static inline struct page *
2229 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2230 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2231 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2232 	int migratetype, unsigned long *did_some_progress)
2233 {
2234 	struct page *page = NULL;
2235 	bool drained = false;
2236 
2237 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2238 					       nodemask);
2239 	if (unlikely(!(*did_some_progress)))
2240 		return NULL;
2241 
2242 	/* After successful reclaim, reconsider all zones for allocation */
2243 	if (IS_ENABLED(CONFIG_NUMA))
2244 		zlc_clear_zones_full(zonelist);
2245 
2246 retry:
2247 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2248 					zonelist, high_zoneidx,
2249 					alloc_flags & ~ALLOC_NO_WATERMARKS,
2250 					preferred_zone, migratetype);
2251 
2252 	/*
2253 	 * If an allocation failed after direct reclaim, it could be because
2254 	 * pages are pinned on the per-cpu lists. Drain them and try again
2255 	 */
2256 	if (!page && !drained) {
2257 		drain_all_pages();
2258 		drained = true;
2259 		goto retry;
2260 	}
2261 
2262 	return page;
2263 }
2264 
2265 /*
2266  * This is called in the allocator slow-path if the allocation request is of
2267  * sufficient urgency to ignore watermarks and take other desperate measures
2268  */
2269 static inline struct page *
2270 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2271 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2272 	nodemask_t *nodemask, struct zone *preferred_zone,
2273 	int migratetype)
2274 {
2275 	struct page *page;
2276 
2277 	do {
2278 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2279 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2280 			preferred_zone, migratetype);
2281 
2282 		if (!page && gfp_mask & __GFP_NOFAIL)
2283 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2284 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2285 
2286 	return page;
2287 }
2288 
2289 static inline
2290 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2291 						enum zone_type high_zoneidx,
2292 						enum zone_type classzone_idx)
2293 {
2294 	struct zoneref *z;
2295 	struct zone *zone;
2296 
2297 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2298 		wakeup_kswapd(zone, order, classzone_idx);
2299 }
2300 
2301 static inline int
2302 gfp_to_alloc_flags(gfp_t gfp_mask)
2303 {
2304 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2305 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2306 
2307 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2308 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2309 
2310 	/*
2311 	 * The caller may dip into page reserves a bit more if the caller
2312 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2313 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2314 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2315 	 */
2316 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2317 
2318 	if (!wait) {
2319 		/*
2320 		 * Not worth trying to allocate harder for
2321 		 * __GFP_NOMEMALLOC even if it can't schedule.
2322 		 */
2323 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2324 			alloc_flags |= ALLOC_HARDER;
2325 		/*
2326 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2327 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2328 		 */
2329 		alloc_flags &= ~ALLOC_CPUSET;
2330 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2331 		alloc_flags |= ALLOC_HARDER;
2332 
2333 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2334 		if (gfp_mask & __GFP_MEMALLOC)
2335 			alloc_flags |= ALLOC_NO_WATERMARKS;
2336 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2337 			alloc_flags |= ALLOC_NO_WATERMARKS;
2338 		else if (!in_interrupt() &&
2339 				((current->flags & PF_MEMALLOC) ||
2340 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2341 			alloc_flags |= ALLOC_NO_WATERMARKS;
2342 	}
2343 #ifdef CONFIG_CMA
2344 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2345 		alloc_flags |= ALLOC_CMA;
2346 #endif
2347 	return alloc_flags;
2348 }
2349 
2350 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2351 {
2352 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2353 }
2354 
2355 static inline struct page *
2356 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2357 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2358 	nodemask_t *nodemask, struct zone *preferred_zone,
2359 	int migratetype)
2360 {
2361 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2362 	struct page *page = NULL;
2363 	int alloc_flags;
2364 	unsigned long pages_reclaimed = 0;
2365 	unsigned long did_some_progress;
2366 	bool sync_migration = false;
2367 	bool deferred_compaction = false;
2368 	bool contended_compaction = false;
2369 
2370 	/*
2371 	 * In the slowpath, we sanity check order to avoid ever trying to
2372 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2373 	 * be using allocators in order of preference for an area that is
2374 	 * too large.
2375 	 */
2376 	if (order >= MAX_ORDER) {
2377 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2378 		return NULL;
2379 	}
2380 
2381 	/*
2382 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2383 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2384 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2385 	 * using a larger set of nodes after it has established that the
2386 	 * allowed per node queues are empty and that nodes are
2387 	 * over allocated.
2388 	 */
2389 	if (IS_ENABLED(CONFIG_NUMA) &&
2390 			(gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2391 		goto nopage;
2392 
2393 restart:
2394 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2395 		wake_all_kswapd(order, zonelist, high_zoneidx,
2396 						zone_idx(preferred_zone));
2397 
2398 	/*
2399 	 * OK, we're below the kswapd watermark and have kicked background
2400 	 * reclaim. Now things get more complex, so set up alloc_flags according
2401 	 * to how we want to proceed.
2402 	 */
2403 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2404 
2405 	/*
2406 	 * Find the true preferred zone if the allocation is unconstrained by
2407 	 * cpusets.
2408 	 */
2409 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2410 		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2411 					&preferred_zone);
2412 
2413 rebalance:
2414 	/* This is the last chance, in general, before the goto nopage. */
2415 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2416 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2417 			preferred_zone, migratetype);
2418 	if (page)
2419 		goto got_pg;
2420 
2421 	/* Allocate without watermarks if the context allows */
2422 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2423 		/*
2424 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2425 		 * the allocation is high priority and these type of
2426 		 * allocations are system rather than user orientated
2427 		 */
2428 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2429 
2430 		page = __alloc_pages_high_priority(gfp_mask, order,
2431 				zonelist, high_zoneidx, nodemask,
2432 				preferred_zone, migratetype);
2433 		if (page) {
2434 			goto got_pg;
2435 		}
2436 	}
2437 
2438 	/* Atomic allocations - we can't balance anything */
2439 	if (!wait)
2440 		goto nopage;
2441 
2442 	/* Avoid recursion of direct reclaim */
2443 	if (current->flags & PF_MEMALLOC)
2444 		goto nopage;
2445 
2446 	/* Avoid allocations with no watermarks from looping endlessly */
2447 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2448 		goto nopage;
2449 
2450 	/*
2451 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2452 	 * attempts after direct reclaim are synchronous
2453 	 */
2454 	page = __alloc_pages_direct_compact(gfp_mask, order,
2455 					zonelist, high_zoneidx,
2456 					nodemask,
2457 					alloc_flags, preferred_zone,
2458 					migratetype, sync_migration,
2459 					&contended_compaction,
2460 					&deferred_compaction,
2461 					&did_some_progress);
2462 	if (page)
2463 		goto got_pg;
2464 	sync_migration = true;
2465 
2466 	/*
2467 	 * If compaction is deferred for high-order allocations, it is because
2468 	 * sync compaction recently failed. In this is the case and the caller
2469 	 * requested a movable allocation that does not heavily disrupt the
2470 	 * system then fail the allocation instead of entering direct reclaim.
2471 	 */
2472 	if ((deferred_compaction || contended_compaction) &&
2473 						(gfp_mask & __GFP_NO_KSWAPD))
2474 		goto nopage;
2475 
2476 	/* Try direct reclaim and then allocating */
2477 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2478 					zonelist, high_zoneidx,
2479 					nodemask,
2480 					alloc_flags, preferred_zone,
2481 					migratetype, &did_some_progress);
2482 	if (page)
2483 		goto got_pg;
2484 
2485 	/*
2486 	 * If we failed to make any progress reclaiming, then we are
2487 	 * running out of options and have to consider going OOM
2488 	 */
2489 	if (!did_some_progress) {
2490 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2491 			if (oom_killer_disabled)
2492 				goto nopage;
2493 			/* Coredumps can quickly deplete all memory reserves */
2494 			if ((current->flags & PF_DUMPCORE) &&
2495 			    !(gfp_mask & __GFP_NOFAIL))
2496 				goto nopage;
2497 			page = __alloc_pages_may_oom(gfp_mask, order,
2498 					zonelist, high_zoneidx,
2499 					nodemask, preferred_zone,
2500 					migratetype);
2501 			if (page)
2502 				goto got_pg;
2503 
2504 			if (!(gfp_mask & __GFP_NOFAIL)) {
2505 				/*
2506 				 * The oom killer is not called for high-order
2507 				 * allocations that may fail, so if no progress
2508 				 * is being made, there are no other options and
2509 				 * retrying is unlikely to help.
2510 				 */
2511 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2512 					goto nopage;
2513 				/*
2514 				 * The oom killer is not called for lowmem
2515 				 * allocations to prevent needlessly killing
2516 				 * innocent tasks.
2517 				 */
2518 				if (high_zoneidx < ZONE_NORMAL)
2519 					goto nopage;
2520 			}
2521 
2522 			goto restart;
2523 		}
2524 	}
2525 
2526 	/* Check if we should retry the allocation */
2527 	pages_reclaimed += did_some_progress;
2528 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2529 						pages_reclaimed)) {
2530 		/* Wait for some write requests to complete then retry */
2531 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2532 		goto rebalance;
2533 	} else {
2534 		/*
2535 		 * High-order allocations do not necessarily loop after
2536 		 * direct reclaim and reclaim/compaction depends on compaction
2537 		 * being called after reclaim so call directly if necessary
2538 		 */
2539 		page = __alloc_pages_direct_compact(gfp_mask, order,
2540 					zonelist, high_zoneidx,
2541 					nodemask,
2542 					alloc_flags, preferred_zone,
2543 					migratetype, sync_migration,
2544 					&contended_compaction,
2545 					&deferred_compaction,
2546 					&did_some_progress);
2547 		if (page)
2548 			goto got_pg;
2549 	}
2550 
2551 nopage:
2552 	warn_alloc_failed(gfp_mask, order, NULL);
2553 	return page;
2554 got_pg:
2555 	if (kmemcheck_enabled)
2556 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2557 
2558 	return page;
2559 }
2560 
2561 /*
2562  * This is the 'heart' of the zoned buddy allocator.
2563  */
2564 struct page *
2565 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2566 			struct zonelist *zonelist, nodemask_t *nodemask)
2567 {
2568 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2569 	struct zone *preferred_zone;
2570 	struct page *page = NULL;
2571 	int migratetype = allocflags_to_migratetype(gfp_mask);
2572 	unsigned int cpuset_mems_cookie;
2573 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2574 	struct mem_cgroup *memcg = NULL;
2575 
2576 	gfp_mask &= gfp_allowed_mask;
2577 
2578 	lockdep_trace_alloc(gfp_mask);
2579 
2580 	might_sleep_if(gfp_mask & __GFP_WAIT);
2581 
2582 	if (should_fail_alloc_page(gfp_mask, order))
2583 		return NULL;
2584 
2585 	/*
2586 	 * Check the zones suitable for the gfp_mask contain at least one
2587 	 * valid zone. It's possible to have an empty zonelist as a result
2588 	 * of GFP_THISNODE and a memoryless node
2589 	 */
2590 	if (unlikely(!zonelist->_zonerefs->zone))
2591 		return NULL;
2592 
2593 	/*
2594 	 * Will only have any effect when __GFP_KMEMCG is set.  This is
2595 	 * verified in the (always inline) callee
2596 	 */
2597 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2598 		return NULL;
2599 
2600 retry_cpuset:
2601 	cpuset_mems_cookie = get_mems_allowed();
2602 
2603 	/* The preferred zone is used for statistics later */
2604 	first_zones_zonelist(zonelist, high_zoneidx,
2605 				nodemask ? : &cpuset_current_mems_allowed,
2606 				&preferred_zone);
2607 	if (!preferred_zone)
2608 		goto out;
2609 
2610 #ifdef CONFIG_CMA
2611 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2612 		alloc_flags |= ALLOC_CMA;
2613 #endif
2614 	/* First allocation attempt */
2615 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2616 			zonelist, high_zoneidx, alloc_flags,
2617 			preferred_zone, migratetype);
2618 	if (unlikely(!page))
2619 		page = __alloc_pages_slowpath(gfp_mask, order,
2620 				zonelist, high_zoneidx, nodemask,
2621 				preferred_zone, migratetype);
2622 
2623 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2624 
2625 out:
2626 	/*
2627 	 * When updating a task's mems_allowed, it is possible to race with
2628 	 * parallel threads in such a way that an allocation can fail while
2629 	 * the mask is being updated. If a page allocation is about to fail,
2630 	 * check if the cpuset changed during allocation and if so, retry.
2631 	 */
2632 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2633 		goto retry_cpuset;
2634 
2635 	memcg_kmem_commit_charge(page, memcg, order);
2636 
2637 	return page;
2638 }
2639 EXPORT_SYMBOL(__alloc_pages_nodemask);
2640 
2641 /*
2642  * Common helper functions.
2643  */
2644 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2645 {
2646 	struct page *page;
2647 
2648 	/*
2649 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2650 	 * a highmem page
2651 	 */
2652 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2653 
2654 	page = alloc_pages(gfp_mask, order);
2655 	if (!page)
2656 		return 0;
2657 	return (unsigned long) page_address(page);
2658 }
2659 EXPORT_SYMBOL(__get_free_pages);
2660 
2661 unsigned long get_zeroed_page(gfp_t gfp_mask)
2662 {
2663 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2664 }
2665 EXPORT_SYMBOL(get_zeroed_page);
2666 
2667 void __free_pages(struct page *page, unsigned int order)
2668 {
2669 	if (put_page_testzero(page)) {
2670 		if (order == 0)
2671 			free_hot_cold_page(page, 0);
2672 		else
2673 			__free_pages_ok(page, order);
2674 	}
2675 }
2676 
2677 EXPORT_SYMBOL(__free_pages);
2678 
2679 void free_pages(unsigned long addr, unsigned int order)
2680 {
2681 	if (addr != 0) {
2682 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2683 		__free_pages(virt_to_page((void *)addr), order);
2684 	}
2685 }
2686 
2687 EXPORT_SYMBOL(free_pages);
2688 
2689 /*
2690  * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2691  * pages allocated with __GFP_KMEMCG.
2692  *
2693  * Those pages are accounted to a particular memcg, embedded in the
2694  * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2695  * for that information only to find out that it is NULL for users who have no
2696  * interest in that whatsoever, we provide these functions.
2697  *
2698  * The caller knows better which flags it relies on.
2699  */
2700 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2701 {
2702 	memcg_kmem_uncharge_pages(page, order);
2703 	__free_pages(page, order);
2704 }
2705 
2706 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2707 {
2708 	if (addr != 0) {
2709 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2710 		__free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2711 	}
2712 }
2713 
2714 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2715 {
2716 	if (addr) {
2717 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2718 		unsigned long used = addr + PAGE_ALIGN(size);
2719 
2720 		split_page(virt_to_page((void *)addr), order);
2721 		while (used < alloc_end) {
2722 			free_page(used);
2723 			used += PAGE_SIZE;
2724 		}
2725 	}
2726 	return (void *)addr;
2727 }
2728 
2729 /**
2730  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2731  * @size: the number of bytes to allocate
2732  * @gfp_mask: GFP flags for the allocation
2733  *
2734  * This function is similar to alloc_pages(), except that it allocates the
2735  * minimum number of pages to satisfy the request.  alloc_pages() can only
2736  * allocate memory in power-of-two pages.
2737  *
2738  * This function is also limited by MAX_ORDER.
2739  *
2740  * Memory allocated by this function must be released by free_pages_exact().
2741  */
2742 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2743 {
2744 	unsigned int order = get_order(size);
2745 	unsigned long addr;
2746 
2747 	addr = __get_free_pages(gfp_mask, order);
2748 	return make_alloc_exact(addr, order, size);
2749 }
2750 EXPORT_SYMBOL(alloc_pages_exact);
2751 
2752 /**
2753  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2754  *			   pages on a node.
2755  * @nid: the preferred node ID where memory should be allocated
2756  * @size: the number of bytes to allocate
2757  * @gfp_mask: GFP flags for the allocation
2758  *
2759  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2760  * back.
2761  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2762  * but is not exact.
2763  */
2764 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2765 {
2766 	unsigned order = get_order(size);
2767 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2768 	if (!p)
2769 		return NULL;
2770 	return make_alloc_exact((unsigned long)page_address(p), order, size);
2771 }
2772 EXPORT_SYMBOL(alloc_pages_exact_nid);
2773 
2774 /**
2775  * free_pages_exact - release memory allocated via alloc_pages_exact()
2776  * @virt: the value returned by alloc_pages_exact.
2777  * @size: size of allocation, same value as passed to alloc_pages_exact().
2778  *
2779  * Release the memory allocated by a previous call to alloc_pages_exact.
2780  */
2781 void free_pages_exact(void *virt, size_t size)
2782 {
2783 	unsigned long addr = (unsigned long)virt;
2784 	unsigned long end = addr + PAGE_ALIGN(size);
2785 
2786 	while (addr < end) {
2787 		free_page(addr);
2788 		addr += PAGE_SIZE;
2789 	}
2790 }
2791 EXPORT_SYMBOL(free_pages_exact);
2792 
2793 static unsigned int nr_free_zone_pages(int offset)
2794 {
2795 	struct zoneref *z;
2796 	struct zone *zone;
2797 
2798 	/* Just pick one node, since fallback list is circular */
2799 	unsigned int sum = 0;
2800 
2801 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2802 
2803 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2804 		unsigned long size = zone->present_pages;
2805 		unsigned long high = high_wmark_pages(zone);
2806 		if (size > high)
2807 			sum += size - high;
2808 	}
2809 
2810 	return sum;
2811 }
2812 
2813 /*
2814  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2815  */
2816 unsigned int nr_free_buffer_pages(void)
2817 {
2818 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2819 }
2820 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2821 
2822 /*
2823  * Amount of free RAM allocatable within all zones
2824  */
2825 unsigned int nr_free_pagecache_pages(void)
2826 {
2827 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2828 }
2829 
2830 static inline void show_node(struct zone *zone)
2831 {
2832 	if (IS_ENABLED(CONFIG_NUMA))
2833 		printk("Node %d ", zone_to_nid(zone));
2834 }
2835 
2836 void si_meminfo(struct sysinfo *val)
2837 {
2838 	val->totalram = totalram_pages;
2839 	val->sharedram = 0;
2840 	val->freeram = global_page_state(NR_FREE_PAGES);
2841 	val->bufferram = nr_blockdev_pages();
2842 	val->totalhigh = totalhigh_pages;
2843 	val->freehigh = nr_free_highpages();
2844 	val->mem_unit = PAGE_SIZE;
2845 }
2846 
2847 EXPORT_SYMBOL(si_meminfo);
2848 
2849 #ifdef CONFIG_NUMA
2850 void si_meminfo_node(struct sysinfo *val, int nid)
2851 {
2852 	pg_data_t *pgdat = NODE_DATA(nid);
2853 
2854 	val->totalram = pgdat->node_present_pages;
2855 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2856 #ifdef CONFIG_HIGHMEM
2857 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2858 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2859 			NR_FREE_PAGES);
2860 #else
2861 	val->totalhigh = 0;
2862 	val->freehigh = 0;
2863 #endif
2864 	val->mem_unit = PAGE_SIZE;
2865 }
2866 #endif
2867 
2868 /*
2869  * Determine whether the node should be displayed or not, depending on whether
2870  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2871  */
2872 bool skip_free_areas_node(unsigned int flags, int nid)
2873 {
2874 	bool ret = false;
2875 	unsigned int cpuset_mems_cookie;
2876 
2877 	if (!(flags & SHOW_MEM_FILTER_NODES))
2878 		goto out;
2879 
2880 	do {
2881 		cpuset_mems_cookie = get_mems_allowed();
2882 		ret = !node_isset(nid, cpuset_current_mems_allowed);
2883 	} while (!put_mems_allowed(cpuset_mems_cookie));
2884 out:
2885 	return ret;
2886 }
2887 
2888 #define K(x) ((x) << (PAGE_SHIFT-10))
2889 
2890 static void show_migration_types(unsigned char type)
2891 {
2892 	static const char types[MIGRATE_TYPES] = {
2893 		[MIGRATE_UNMOVABLE]	= 'U',
2894 		[MIGRATE_RECLAIMABLE]	= 'E',
2895 		[MIGRATE_MOVABLE]	= 'M',
2896 		[MIGRATE_RESERVE]	= 'R',
2897 #ifdef CONFIG_CMA
2898 		[MIGRATE_CMA]		= 'C',
2899 #endif
2900 		[MIGRATE_ISOLATE]	= 'I',
2901 	};
2902 	char tmp[MIGRATE_TYPES + 1];
2903 	char *p = tmp;
2904 	int i;
2905 
2906 	for (i = 0; i < MIGRATE_TYPES; i++) {
2907 		if (type & (1 << i))
2908 			*p++ = types[i];
2909 	}
2910 
2911 	*p = '\0';
2912 	printk("(%s) ", tmp);
2913 }
2914 
2915 /*
2916  * Show free area list (used inside shift_scroll-lock stuff)
2917  * We also calculate the percentage fragmentation. We do this by counting the
2918  * memory on each free list with the exception of the first item on the list.
2919  * Suppresses nodes that are not allowed by current's cpuset if
2920  * SHOW_MEM_FILTER_NODES is passed.
2921  */
2922 void show_free_areas(unsigned int filter)
2923 {
2924 	int cpu;
2925 	struct zone *zone;
2926 
2927 	for_each_populated_zone(zone) {
2928 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2929 			continue;
2930 		show_node(zone);
2931 		printk("%s per-cpu:\n", zone->name);
2932 
2933 		for_each_online_cpu(cpu) {
2934 			struct per_cpu_pageset *pageset;
2935 
2936 			pageset = per_cpu_ptr(zone->pageset, cpu);
2937 
2938 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2939 			       cpu, pageset->pcp.high,
2940 			       pageset->pcp.batch, pageset->pcp.count);
2941 		}
2942 	}
2943 
2944 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2945 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2946 		" unevictable:%lu"
2947 		" dirty:%lu writeback:%lu unstable:%lu\n"
2948 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2949 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2950 		" free_cma:%lu\n",
2951 		global_page_state(NR_ACTIVE_ANON),
2952 		global_page_state(NR_INACTIVE_ANON),
2953 		global_page_state(NR_ISOLATED_ANON),
2954 		global_page_state(NR_ACTIVE_FILE),
2955 		global_page_state(NR_INACTIVE_FILE),
2956 		global_page_state(NR_ISOLATED_FILE),
2957 		global_page_state(NR_UNEVICTABLE),
2958 		global_page_state(NR_FILE_DIRTY),
2959 		global_page_state(NR_WRITEBACK),
2960 		global_page_state(NR_UNSTABLE_NFS),
2961 		global_page_state(NR_FREE_PAGES),
2962 		global_page_state(NR_SLAB_RECLAIMABLE),
2963 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2964 		global_page_state(NR_FILE_MAPPED),
2965 		global_page_state(NR_SHMEM),
2966 		global_page_state(NR_PAGETABLE),
2967 		global_page_state(NR_BOUNCE),
2968 		global_page_state(NR_FREE_CMA_PAGES));
2969 
2970 	for_each_populated_zone(zone) {
2971 		int i;
2972 
2973 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2974 			continue;
2975 		show_node(zone);
2976 		printk("%s"
2977 			" free:%lukB"
2978 			" min:%lukB"
2979 			" low:%lukB"
2980 			" high:%lukB"
2981 			" active_anon:%lukB"
2982 			" inactive_anon:%lukB"
2983 			" active_file:%lukB"
2984 			" inactive_file:%lukB"
2985 			" unevictable:%lukB"
2986 			" isolated(anon):%lukB"
2987 			" isolated(file):%lukB"
2988 			" present:%lukB"
2989 			" managed:%lukB"
2990 			" mlocked:%lukB"
2991 			" dirty:%lukB"
2992 			" writeback:%lukB"
2993 			" mapped:%lukB"
2994 			" shmem:%lukB"
2995 			" slab_reclaimable:%lukB"
2996 			" slab_unreclaimable:%lukB"
2997 			" kernel_stack:%lukB"
2998 			" pagetables:%lukB"
2999 			" unstable:%lukB"
3000 			" bounce:%lukB"
3001 			" free_cma:%lukB"
3002 			" writeback_tmp:%lukB"
3003 			" pages_scanned:%lu"
3004 			" all_unreclaimable? %s"
3005 			"\n",
3006 			zone->name,
3007 			K(zone_page_state(zone, NR_FREE_PAGES)),
3008 			K(min_wmark_pages(zone)),
3009 			K(low_wmark_pages(zone)),
3010 			K(high_wmark_pages(zone)),
3011 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3012 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3013 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3014 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3015 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3016 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3017 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3018 			K(zone->present_pages),
3019 			K(zone->managed_pages),
3020 			K(zone_page_state(zone, NR_MLOCK)),
3021 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3022 			K(zone_page_state(zone, NR_WRITEBACK)),
3023 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3024 			K(zone_page_state(zone, NR_SHMEM)),
3025 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3026 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3027 			zone_page_state(zone, NR_KERNEL_STACK) *
3028 				THREAD_SIZE / 1024,
3029 			K(zone_page_state(zone, NR_PAGETABLE)),
3030 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3031 			K(zone_page_state(zone, NR_BOUNCE)),
3032 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3033 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3034 			zone->pages_scanned,
3035 			(zone->all_unreclaimable ? "yes" : "no")
3036 			);
3037 		printk("lowmem_reserve[]:");
3038 		for (i = 0; i < MAX_NR_ZONES; i++)
3039 			printk(" %lu", zone->lowmem_reserve[i]);
3040 		printk("\n");
3041 	}
3042 
3043 	for_each_populated_zone(zone) {
3044  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3045 		unsigned char types[MAX_ORDER];
3046 
3047 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3048 			continue;
3049 		show_node(zone);
3050 		printk("%s: ", zone->name);
3051 
3052 		spin_lock_irqsave(&zone->lock, flags);
3053 		for (order = 0; order < MAX_ORDER; order++) {
3054 			struct free_area *area = &zone->free_area[order];
3055 			int type;
3056 
3057 			nr[order] = area->nr_free;
3058 			total += nr[order] << order;
3059 
3060 			types[order] = 0;
3061 			for (type = 0; type < MIGRATE_TYPES; type++) {
3062 				if (!list_empty(&area->free_list[type]))
3063 					types[order] |= 1 << type;
3064 			}
3065 		}
3066 		spin_unlock_irqrestore(&zone->lock, flags);
3067 		for (order = 0; order < MAX_ORDER; order++) {
3068 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3069 			if (nr[order])
3070 				show_migration_types(types[order]);
3071 		}
3072 		printk("= %lukB\n", K(total));
3073 	}
3074 
3075 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3076 
3077 	show_swap_cache_info();
3078 }
3079 
3080 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3081 {
3082 	zoneref->zone = zone;
3083 	zoneref->zone_idx = zone_idx(zone);
3084 }
3085 
3086 /*
3087  * Builds allocation fallback zone lists.
3088  *
3089  * Add all populated zones of a node to the zonelist.
3090  */
3091 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3092 				int nr_zones, enum zone_type zone_type)
3093 {
3094 	struct zone *zone;
3095 
3096 	BUG_ON(zone_type >= MAX_NR_ZONES);
3097 	zone_type++;
3098 
3099 	do {
3100 		zone_type--;
3101 		zone = pgdat->node_zones + zone_type;
3102 		if (populated_zone(zone)) {
3103 			zoneref_set_zone(zone,
3104 				&zonelist->_zonerefs[nr_zones++]);
3105 			check_highest_zone(zone_type);
3106 		}
3107 
3108 	} while (zone_type);
3109 	return nr_zones;
3110 }
3111 
3112 
3113 /*
3114  *  zonelist_order:
3115  *  0 = automatic detection of better ordering.
3116  *  1 = order by ([node] distance, -zonetype)
3117  *  2 = order by (-zonetype, [node] distance)
3118  *
3119  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3120  *  the same zonelist. So only NUMA can configure this param.
3121  */
3122 #define ZONELIST_ORDER_DEFAULT  0
3123 #define ZONELIST_ORDER_NODE     1
3124 #define ZONELIST_ORDER_ZONE     2
3125 
3126 /* zonelist order in the kernel.
3127  * set_zonelist_order() will set this to NODE or ZONE.
3128  */
3129 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3130 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3131 
3132 
3133 #ifdef CONFIG_NUMA
3134 /* The value user specified ....changed by config */
3135 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3136 /* string for sysctl */
3137 #define NUMA_ZONELIST_ORDER_LEN	16
3138 char numa_zonelist_order[16] = "default";
3139 
3140 /*
3141  * interface for configure zonelist ordering.
3142  * command line option "numa_zonelist_order"
3143  *	= "[dD]efault	- default, automatic configuration.
3144  *	= "[nN]ode 	- order by node locality, then by zone within node
3145  *	= "[zZ]one      - order by zone, then by locality within zone
3146  */
3147 
3148 static int __parse_numa_zonelist_order(char *s)
3149 {
3150 	if (*s == 'd' || *s == 'D') {
3151 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3152 	} else if (*s == 'n' || *s == 'N') {
3153 		user_zonelist_order = ZONELIST_ORDER_NODE;
3154 	} else if (*s == 'z' || *s == 'Z') {
3155 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3156 	} else {
3157 		printk(KERN_WARNING
3158 			"Ignoring invalid numa_zonelist_order value:  "
3159 			"%s\n", s);
3160 		return -EINVAL;
3161 	}
3162 	return 0;
3163 }
3164 
3165 static __init int setup_numa_zonelist_order(char *s)
3166 {
3167 	int ret;
3168 
3169 	if (!s)
3170 		return 0;
3171 
3172 	ret = __parse_numa_zonelist_order(s);
3173 	if (ret == 0)
3174 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3175 
3176 	return ret;
3177 }
3178 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3179 
3180 /*
3181  * sysctl handler for numa_zonelist_order
3182  */
3183 int numa_zonelist_order_handler(ctl_table *table, int write,
3184 		void __user *buffer, size_t *length,
3185 		loff_t *ppos)
3186 {
3187 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3188 	int ret;
3189 	static DEFINE_MUTEX(zl_order_mutex);
3190 
3191 	mutex_lock(&zl_order_mutex);
3192 	if (write)
3193 		strcpy(saved_string, (char*)table->data);
3194 	ret = proc_dostring(table, write, buffer, length, ppos);
3195 	if (ret)
3196 		goto out;
3197 	if (write) {
3198 		int oldval = user_zonelist_order;
3199 		if (__parse_numa_zonelist_order((char*)table->data)) {
3200 			/*
3201 			 * bogus value.  restore saved string
3202 			 */
3203 			strncpy((char*)table->data, saved_string,
3204 				NUMA_ZONELIST_ORDER_LEN);
3205 			user_zonelist_order = oldval;
3206 		} else if (oldval != user_zonelist_order) {
3207 			mutex_lock(&zonelists_mutex);
3208 			build_all_zonelists(NULL, NULL);
3209 			mutex_unlock(&zonelists_mutex);
3210 		}
3211 	}
3212 out:
3213 	mutex_unlock(&zl_order_mutex);
3214 	return ret;
3215 }
3216 
3217 
3218 #define MAX_NODE_LOAD (nr_online_nodes)
3219 static int node_load[MAX_NUMNODES];
3220 
3221 /**
3222  * find_next_best_node - find the next node that should appear in a given node's fallback list
3223  * @node: node whose fallback list we're appending
3224  * @used_node_mask: nodemask_t of already used nodes
3225  *
3226  * We use a number of factors to determine which is the next node that should
3227  * appear on a given node's fallback list.  The node should not have appeared
3228  * already in @node's fallback list, and it should be the next closest node
3229  * according to the distance array (which contains arbitrary distance values
3230  * from each node to each node in the system), and should also prefer nodes
3231  * with no CPUs, since presumably they'll have very little allocation pressure
3232  * on them otherwise.
3233  * It returns -1 if no node is found.
3234  */
3235 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3236 {
3237 	int n, val;
3238 	int min_val = INT_MAX;
3239 	int best_node = -1;
3240 	const struct cpumask *tmp = cpumask_of_node(0);
3241 
3242 	/* Use the local node if we haven't already */
3243 	if (!node_isset(node, *used_node_mask)) {
3244 		node_set(node, *used_node_mask);
3245 		return node;
3246 	}
3247 
3248 	for_each_node_state(n, N_MEMORY) {
3249 
3250 		/* Don't want a node to appear more than once */
3251 		if (node_isset(n, *used_node_mask))
3252 			continue;
3253 
3254 		/* Use the distance array to find the distance */
3255 		val = node_distance(node, n);
3256 
3257 		/* Penalize nodes under us ("prefer the next node") */
3258 		val += (n < node);
3259 
3260 		/* Give preference to headless and unused nodes */
3261 		tmp = cpumask_of_node(n);
3262 		if (!cpumask_empty(tmp))
3263 			val += PENALTY_FOR_NODE_WITH_CPUS;
3264 
3265 		/* Slight preference for less loaded node */
3266 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3267 		val += node_load[n];
3268 
3269 		if (val < min_val) {
3270 			min_val = val;
3271 			best_node = n;
3272 		}
3273 	}
3274 
3275 	if (best_node >= 0)
3276 		node_set(best_node, *used_node_mask);
3277 
3278 	return best_node;
3279 }
3280 
3281 
3282 /*
3283  * Build zonelists ordered by node and zones within node.
3284  * This results in maximum locality--normal zone overflows into local
3285  * DMA zone, if any--but risks exhausting DMA zone.
3286  */
3287 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3288 {
3289 	int j;
3290 	struct zonelist *zonelist;
3291 
3292 	zonelist = &pgdat->node_zonelists[0];
3293 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3294 		;
3295 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3296 							MAX_NR_ZONES - 1);
3297 	zonelist->_zonerefs[j].zone = NULL;
3298 	zonelist->_zonerefs[j].zone_idx = 0;
3299 }
3300 
3301 /*
3302  * Build gfp_thisnode zonelists
3303  */
3304 static void build_thisnode_zonelists(pg_data_t *pgdat)
3305 {
3306 	int j;
3307 	struct zonelist *zonelist;
3308 
3309 	zonelist = &pgdat->node_zonelists[1];
3310 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3311 	zonelist->_zonerefs[j].zone = NULL;
3312 	zonelist->_zonerefs[j].zone_idx = 0;
3313 }
3314 
3315 /*
3316  * Build zonelists ordered by zone and nodes within zones.
3317  * This results in conserving DMA zone[s] until all Normal memory is
3318  * exhausted, but results in overflowing to remote node while memory
3319  * may still exist in local DMA zone.
3320  */
3321 static int node_order[MAX_NUMNODES];
3322 
3323 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3324 {
3325 	int pos, j, node;
3326 	int zone_type;		/* needs to be signed */
3327 	struct zone *z;
3328 	struct zonelist *zonelist;
3329 
3330 	zonelist = &pgdat->node_zonelists[0];
3331 	pos = 0;
3332 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3333 		for (j = 0; j < nr_nodes; j++) {
3334 			node = node_order[j];
3335 			z = &NODE_DATA(node)->node_zones[zone_type];
3336 			if (populated_zone(z)) {
3337 				zoneref_set_zone(z,
3338 					&zonelist->_zonerefs[pos++]);
3339 				check_highest_zone(zone_type);
3340 			}
3341 		}
3342 	}
3343 	zonelist->_zonerefs[pos].zone = NULL;
3344 	zonelist->_zonerefs[pos].zone_idx = 0;
3345 }
3346 
3347 static int default_zonelist_order(void)
3348 {
3349 	int nid, zone_type;
3350 	unsigned long low_kmem_size,total_size;
3351 	struct zone *z;
3352 	int average_size;
3353 	/*
3354          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3355 	 * If they are really small and used heavily, the system can fall
3356 	 * into OOM very easily.
3357 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3358 	 */
3359 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3360 	low_kmem_size = 0;
3361 	total_size = 0;
3362 	for_each_online_node(nid) {
3363 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3364 			z = &NODE_DATA(nid)->node_zones[zone_type];
3365 			if (populated_zone(z)) {
3366 				if (zone_type < ZONE_NORMAL)
3367 					low_kmem_size += z->present_pages;
3368 				total_size += z->present_pages;
3369 			} else if (zone_type == ZONE_NORMAL) {
3370 				/*
3371 				 * If any node has only lowmem, then node order
3372 				 * is preferred to allow kernel allocations
3373 				 * locally; otherwise, they can easily infringe
3374 				 * on other nodes when there is an abundance of
3375 				 * lowmem available to allocate from.
3376 				 */
3377 				return ZONELIST_ORDER_NODE;
3378 			}
3379 		}
3380 	}
3381 	if (!low_kmem_size ||  /* there are no DMA area. */
3382 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3383 		return ZONELIST_ORDER_NODE;
3384 	/*
3385 	 * look into each node's config.
3386   	 * If there is a node whose DMA/DMA32 memory is very big area on
3387  	 * local memory, NODE_ORDER may be suitable.
3388          */
3389 	average_size = total_size /
3390 				(nodes_weight(node_states[N_MEMORY]) + 1);
3391 	for_each_online_node(nid) {
3392 		low_kmem_size = 0;
3393 		total_size = 0;
3394 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3395 			z = &NODE_DATA(nid)->node_zones[zone_type];
3396 			if (populated_zone(z)) {
3397 				if (zone_type < ZONE_NORMAL)
3398 					low_kmem_size += z->present_pages;
3399 				total_size += z->present_pages;
3400 			}
3401 		}
3402 		if (low_kmem_size &&
3403 		    total_size > average_size && /* ignore small node */
3404 		    low_kmem_size > total_size * 70/100)
3405 			return ZONELIST_ORDER_NODE;
3406 	}
3407 	return ZONELIST_ORDER_ZONE;
3408 }
3409 
3410 static void set_zonelist_order(void)
3411 {
3412 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3413 		current_zonelist_order = default_zonelist_order();
3414 	else
3415 		current_zonelist_order = user_zonelist_order;
3416 }
3417 
3418 static void build_zonelists(pg_data_t *pgdat)
3419 {
3420 	int j, node, load;
3421 	enum zone_type i;
3422 	nodemask_t used_mask;
3423 	int local_node, prev_node;
3424 	struct zonelist *zonelist;
3425 	int order = current_zonelist_order;
3426 
3427 	/* initialize zonelists */
3428 	for (i = 0; i < MAX_ZONELISTS; i++) {
3429 		zonelist = pgdat->node_zonelists + i;
3430 		zonelist->_zonerefs[0].zone = NULL;
3431 		zonelist->_zonerefs[0].zone_idx = 0;
3432 	}
3433 
3434 	/* NUMA-aware ordering of nodes */
3435 	local_node = pgdat->node_id;
3436 	load = nr_online_nodes;
3437 	prev_node = local_node;
3438 	nodes_clear(used_mask);
3439 
3440 	memset(node_order, 0, sizeof(node_order));
3441 	j = 0;
3442 
3443 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3444 		/*
3445 		 * We don't want to pressure a particular node.
3446 		 * So adding penalty to the first node in same
3447 		 * distance group to make it round-robin.
3448 		 */
3449 		if (node_distance(local_node, node) !=
3450 		    node_distance(local_node, prev_node))
3451 			node_load[node] = load;
3452 
3453 		prev_node = node;
3454 		load--;
3455 		if (order == ZONELIST_ORDER_NODE)
3456 			build_zonelists_in_node_order(pgdat, node);
3457 		else
3458 			node_order[j++] = node;	/* remember order */
3459 	}
3460 
3461 	if (order == ZONELIST_ORDER_ZONE) {
3462 		/* calculate node order -- i.e., DMA last! */
3463 		build_zonelists_in_zone_order(pgdat, j);
3464 	}
3465 
3466 	build_thisnode_zonelists(pgdat);
3467 }
3468 
3469 /* Construct the zonelist performance cache - see further mmzone.h */
3470 static void build_zonelist_cache(pg_data_t *pgdat)
3471 {
3472 	struct zonelist *zonelist;
3473 	struct zonelist_cache *zlc;
3474 	struct zoneref *z;
3475 
3476 	zonelist = &pgdat->node_zonelists[0];
3477 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3478 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3479 	for (z = zonelist->_zonerefs; z->zone; z++)
3480 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3481 }
3482 
3483 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3484 /*
3485  * Return node id of node used for "local" allocations.
3486  * I.e., first node id of first zone in arg node's generic zonelist.
3487  * Used for initializing percpu 'numa_mem', which is used primarily
3488  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3489  */
3490 int local_memory_node(int node)
3491 {
3492 	struct zone *zone;
3493 
3494 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3495 				   gfp_zone(GFP_KERNEL),
3496 				   NULL,
3497 				   &zone);
3498 	return zone->node;
3499 }
3500 #endif
3501 
3502 #else	/* CONFIG_NUMA */
3503 
3504 static void set_zonelist_order(void)
3505 {
3506 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3507 }
3508 
3509 static void build_zonelists(pg_data_t *pgdat)
3510 {
3511 	int node, local_node;
3512 	enum zone_type j;
3513 	struct zonelist *zonelist;
3514 
3515 	local_node = pgdat->node_id;
3516 
3517 	zonelist = &pgdat->node_zonelists[0];
3518 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3519 
3520 	/*
3521 	 * Now we build the zonelist so that it contains the zones
3522 	 * of all the other nodes.
3523 	 * We don't want to pressure a particular node, so when
3524 	 * building the zones for node N, we make sure that the
3525 	 * zones coming right after the local ones are those from
3526 	 * node N+1 (modulo N)
3527 	 */
3528 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3529 		if (!node_online(node))
3530 			continue;
3531 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3532 							MAX_NR_ZONES - 1);
3533 	}
3534 	for (node = 0; node < local_node; node++) {
3535 		if (!node_online(node))
3536 			continue;
3537 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3538 							MAX_NR_ZONES - 1);
3539 	}
3540 
3541 	zonelist->_zonerefs[j].zone = NULL;
3542 	zonelist->_zonerefs[j].zone_idx = 0;
3543 }
3544 
3545 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3546 static void build_zonelist_cache(pg_data_t *pgdat)
3547 {
3548 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3549 }
3550 
3551 #endif	/* CONFIG_NUMA */
3552 
3553 /*
3554  * Boot pageset table. One per cpu which is going to be used for all
3555  * zones and all nodes. The parameters will be set in such a way
3556  * that an item put on a list will immediately be handed over to
3557  * the buddy list. This is safe since pageset manipulation is done
3558  * with interrupts disabled.
3559  *
3560  * The boot_pagesets must be kept even after bootup is complete for
3561  * unused processors and/or zones. They do play a role for bootstrapping
3562  * hotplugged processors.
3563  *
3564  * zoneinfo_show() and maybe other functions do
3565  * not check if the processor is online before following the pageset pointer.
3566  * Other parts of the kernel may not check if the zone is available.
3567  */
3568 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3569 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3570 static void setup_zone_pageset(struct zone *zone);
3571 
3572 /*
3573  * Global mutex to protect against size modification of zonelists
3574  * as well as to serialize pageset setup for the new populated zone.
3575  */
3576 DEFINE_MUTEX(zonelists_mutex);
3577 
3578 /* return values int ....just for stop_machine() */
3579 static int __build_all_zonelists(void *data)
3580 {
3581 	int nid;
3582 	int cpu;
3583 	pg_data_t *self = data;
3584 
3585 #ifdef CONFIG_NUMA
3586 	memset(node_load, 0, sizeof(node_load));
3587 #endif
3588 
3589 	if (self && !node_online(self->node_id)) {
3590 		build_zonelists(self);
3591 		build_zonelist_cache(self);
3592 	}
3593 
3594 	for_each_online_node(nid) {
3595 		pg_data_t *pgdat = NODE_DATA(nid);
3596 
3597 		build_zonelists(pgdat);
3598 		build_zonelist_cache(pgdat);
3599 	}
3600 
3601 	/*
3602 	 * Initialize the boot_pagesets that are going to be used
3603 	 * for bootstrapping processors. The real pagesets for
3604 	 * each zone will be allocated later when the per cpu
3605 	 * allocator is available.
3606 	 *
3607 	 * boot_pagesets are used also for bootstrapping offline
3608 	 * cpus if the system is already booted because the pagesets
3609 	 * are needed to initialize allocators on a specific cpu too.
3610 	 * F.e. the percpu allocator needs the page allocator which
3611 	 * needs the percpu allocator in order to allocate its pagesets
3612 	 * (a chicken-egg dilemma).
3613 	 */
3614 	for_each_possible_cpu(cpu) {
3615 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3616 
3617 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3618 		/*
3619 		 * We now know the "local memory node" for each node--
3620 		 * i.e., the node of the first zone in the generic zonelist.
3621 		 * Set up numa_mem percpu variable for on-line cpus.  During
3622 		 * boot, only the boot cpu should be on-line;  we'll init the
3623 		 * secondary cpus' numa_mem as they come on-line.  During
3624 		 * node/memory hotplug, we'll fixup all on-line cpus.
3625 		 */
3626 		if (cpu_online(cpu))
3627 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3628 #endif
3629 	}
3630 
3631 	return 0;
3632 }
3633 
3634 /*
3635  * Called with zonelists_mutex held always
3636  * unless system_state == SYSTEM_BOOTING.
3637  */
3638 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3639 {
3640 	set_zonelist_order();
3641 
3642 	if (system_state == SYSTEM_BOOTING) {
3643 		__build_all_zonelists(NULL);
3644 		mminit_verify_zonelist();
3645 		cpuset_init_current_mems_allowed();
3646 	} else {
3647 		/* we have to stop all cpus to guarantee there is no user
3648 		   of zonelist */
3649 #ifdef CONFIG_MEMORY_HOTPLUG
3650 		if (zone)
3651 			setup_zone_pageset(zone);
3652 #endif
3653 		stop_machine(__build_all_zonelists, pgdat, NULL);
3654 		/* cpuset refresh routine should be here */
3655 	}
3656 	vm_total_pages = nr_free_pagecache_pages();
3657 	/*
3658 	 * Disable grouping by mobility if the number of pages in the
3659 	 * system is too low to allow the mechanism to work. It would be
3660 	 * more accurate, but expensive to check per-zone. This check is
3661 	 * made on memory-hotadd so a system can start with mobility
3662 	 * disabled and enable it later
3663 	 */
3664 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3665 		page_group_by_mobility_disabled = 1;
3666 	else
3667 		page_group_by_mobility_disabled = 0;
3668 
3669 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3670 		"Total pages: %ld\n",
3671 			nr_online_nodes,
3672 			zonelist_order_name[current_zonelist_order],
3673 			page_group_by_mobility_disabled ? "off" : "on",
3674 			vm_total_pages);
3675 #ifdef CONFIG_NUMA
3676 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3677 #endif
3678 }
3679 
3680 /*
3681  * Helper functions to size the waitqueue hash table.
3682  * Essentially these want to choose hash table sizes sufficiently
3683  * large so that collisions trying to wait on pages are rare.
3684  * But in fact, the number of active page waitqueues on typical
3685  * systems is ridiculously low, less than 200. So this is even
3686  * conservative, even though it seems large.
3687  *
3688  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3689  * waitqueues, i.e. the size of the waitq table given the number of pages.
3690  */
3691 #define PAGES_PER_WAITQUEUE	256
3692 
3693 #ifndef CONFIG_MEMORY_HOTPLUG
3694 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3695 {
3696 	unsigned long size = 1;
3697 
3698 	pages /= PAGES_PER_WAITQUEUE;
3699 
3700 	while (size < pages)
3701 		size <<= 1;
3702 
3703 	/*
3704 	 * Once we have dozens or even hundreds of threads sleeping
3705 	 * on IO we've got bigger problems than wait queue collision.
3706 	 * Limit the size of the wait table to a reasonable size.
3707 	 */
3708 	size = min(size, 4096UL);
3709 
3710 	return max(size, 4UL);
3711 }
3712 #else
3713 /*
3714  * A zone's size might be changed by hot-add, so it is not possible to determine
3715  * a suitable size for its wait_table.  So we use the maximum size now.
3716  *
3717  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3718  *
3719  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3720  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3721  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3722  *
3723  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3724  * or more by the traditional way. (See above).  It equals:
3725  *
3726  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3727  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3728  *    powerpc (64K page size)             : =  (32G +16M)byte.
3729  */
3730 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3731 {
3732 	return 4096UL;
3733 }
3734 #endif
3735 
3736 /*
3737  * This is an integer logarithm so that shifts can be used later
3738  * to extract the more random high bits from the multiplicative
3739  * hash function before the remainder is taken.
3740  */
3741 static inline unsigned long wait_table_bits(unsigned long size)
3742 {
3743 	return ffz(~size);
3744 }
3745 
3746 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3747 
3748 /*
3749  * Check if a pageblock contains reserved pages
3750  */
3751 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3752 {
3753 	unsigned long pfn;
3754 
3755 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3756 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3757 			return 1;
3758 	}
3759 	return 0;
3760 }
3761 
3762 /*
3763  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3764  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3765  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3766  * higher will lead to a bigger reserve which will get freed as contiguous
3767  * blocks as reclaim kicks in
3768  */
3769 static void setup_zone_migrate_reserve(struct zone *zone)
3770 {
3771 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3772 	struct page *page;
3773 	unsigned long block_migratetype;
3774 	int reserve;
3775 
3776 	/*
3777 	 * Get the start pfn, end pfn and the number of blocks to reserve
3778 	 * We have to be careful to be aligned to pageblock_nr_pages to
3779 	 * make sure that we always check pfn_valid for the first page in
3780 	 * the block.
3781 	 */
3782 	start_pfn = zone->zone_start_pfn;
3783 	end_pfn = start_pfn + zone->spanned_pages;
3784 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3785 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3786 							pageblock_order;
3787 
3788 	/*
3789 	 * Reserve blocks are generally in place to help high-order atomic
3790 	 * allocations that are short-lived. A min_free_kbytes value that
3791 	 * would result in more than 2 reserve blocks for atomic allocations
3792 	 * is assumed to be in place to help anti-fragmentation for the
3793 	 * future allocation of hugepages at runtime.
3794 	 */
3795 	reserve = min(2, reserve);
3796 
3797 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3798 		if (!pfn_valid(pfn))
3799 			continue;
3800 		page = pfn_to_page(pfn);
3801 
3802 		/* Watch out for overlapping nodes */
3803 		if (page_to_nid(page) != zone_to_nid(zone))
3804 			continue;
3805 
3806 		block_migratetype = get_pageblock_migratetype(page);
3807 
3808 		/* Only test what is necessary when the reserves are not met */
3809 		if (reserve > 0) {
3810 			/*
3811 			 * Blocks with reserved pages will never free, skip
3812 			 * them.
3813 			 */
3814 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3815 			if (pageblock_is_reserved(pfn, block_end_pfn))
3816 				continue;
3817 
3818 			/* If this block is reserved, account for it */
3819 			if (block_migratetype == MIGRATE_RESERVE) {
3820 				reserve--;
3821 				continue;
3822 			}
3823 
3824 			/* Suitable for reserving if this block is movable */
3825 			if (block_migratetype == MIGRATE_MOVABLE) {
3826 				set_pageblock_migratetype(page,
3827 							MIGRATE_RESERVE);
3828 				move_freepages_block(zone, page,
3829 							MIGRATE_RESERVE);
3830 				reserve--;
3831 				continue;
3832 			}
3833 		}
3834 
3835 		/*
3836 		 * If the reserve is met and this is a previous reserved block,
3837 		 * take it back
3838 		 */
3839 		if (block_migratetype == MIGRATE_RESERVE) {
3840 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3841 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3842 		}
3843 	}
3844 }
3845 
3846 /*
3847  * Initially all pages are reserved - free ones are freed
3848  * up by free_all_bootmem() once the early boot process is
3849  * done. Non-atomic initialization, single-pass.
3850  */
3851 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3852 		unsigned long start_pfn, enum memmap_context context)
3853 {
3854 	struct page *page;
3855 	unsigned long end_pfn = start_pfn + size;
3856 	unsigned long pfn;
3857 	struct zone *z;
3858 
3859 	if (highest_memmap_pfn < end_pfn - 1)
3860 		highest_memmap_pfn = end_pfn - 1;
3861 
3862 	z = &NODE_DATA(nid)->node_zones[zone];
3863 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3864 		/*
3865 		 * There can be holes in boot-time mem_map[]s
3866 		 * handed to this function.  They do not
3867 		 * exist on hotplugged memory.
3868 		 */
3869 		if (context == MEMMAP_EARLY) {
3870 			if (!early_pfn_valid(pfn))
3871 				continue;
3872 			if (!early_pfn_in_nid(pfn, nid))
3873 				continue;
3874 		}
3875 		page = pfn_to_page(pfn);
3876 		set_page_links(page, zone, nid, pfn);
3877 		mminit_verify_page_links(page, zone, nid, pfn);
3878 		init_page_count(page);
3879 		reset_page_mapcount(page);
3880 		reset_page_last_nid(page);
3881 		SetPageReserved(page);
3882 		/*
3883 		 * Mark the block movable so that blocks are reserved for
3884 		 * movable at startup. This will force kernel allocations
3885 		 * to reserve their blocks rather than leaking throughout
3886 		 * the address space during boot when many long-lived
3887 		 * kernel allocations are made. Later some blocks near
3888 		 * the start are marked MIGRATE_RESERVE by
3889 		 * setup_zone_migrate_reserve()
3890 		 *
3891 		 * bitmap is created for zone's valid pfn range. but memmap
3892 		 * can be created for invalid pages (for alignment)
3893 		 * check here not to call set_pageblock_migratetype() against
3894 		 * pfn out of zone.
3895 		 */
3896 		if ((z->zone_start_pfn <= pfn)
3897 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3898 		    && !(pfn & (pageblock_nr_pages - 1)))
3899 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3900 
3901 		INIT_LIST_HEAD(&page->lru);
3902 #ifdef WANT_PAGE_VIRTUAL
3903 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3904 		if (!is_highmem_idx(zone))
3905 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3906 #endif
3907 	}
3908 }
3909 
3910 static void __meminit zone_init_free_lists(struct zone *zone)
3911 {
3912 	int order, t;
3913 	for_each_migratetype_order(order, t) {
3914 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3915 		zone->free_area[order].nr_free = 0;
3916 	}
3917 }
3918 
3919 #ifndef __HAVE_ARCH_MEMMAP_INIT
3920 #define memmap_init(size, nid, zone, start_pfn) \
3921 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3922 #endif
3923 
3924 static int __meminit zone_batchsize(struct zone *zone)
3925 {
3926 #ifdef CONFIG_MMU
3927 	int batch;
3928 
3929 	/*
3930 	 * The per-cpu-pages pools are set to around 1000th of the
3931 	 * size of the zone.  But no more than 1/2 of a meg.
3932 	 *
3933 	 * OK, so we don't know how big the cache is.  So guess.
3934 	 */
3935 	batch = zone->present_pages / 1024;
3936 	if (batch * PAGE_SIZE > 512 * 1024)
3937 		batch = (512 * 1024) / PAGE_SIZE;
3938 	batch /= 4;		/* We effectively *= 4 below */
3939 	if (batch < 1)
3940 		batch = 1;
3941 
3942 	/*
3943 	 * Clamp the batch to a 2^n - 1 value. Having a power
3944 	 * of 2 value was found to be more likely to have
3945 	 * suboptimal cache aliasing properties in some cases.
3946 	 *
3947 	 * For example if 2 tasks are alternately allocating
3948 	 * batches of pages, one task can end up with a lot
3949 	 * of pages of one half of the possible page colors
3950 	 * and the other with pages of the other colors.
3951 	 */
3952 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3953 
3954 	return batch;
3955 
3956 #else
3957 	/* The deferral and batching of frees should be suppressed under NOMMU
3958 	 * conditions.
3959 	 *
3960 	 * The problem is that NOMMU needs to be able to allocate large chunks
3961 	 * of contiguous memory as there's no hardware page translation to
3962 	 * assemble apparent contiguous memory from discontiguous pages.
3963 	 *
3964 	 * Queueing large contiguous runs of pages for batching, however,
3965 	 * causes the pages to actually be freed in smaller chunks.  As there
3966 	 * can be a significant delay between the individual batches being
3967 	 * recycled, this leads to the once large chunks of space being
3968 	 * fragmented and becoming unavailable for high-order allocations.
3969 	 */
3970 	return 0;
3971 #endif
3972 }
3973 
3974 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3975 {
3976 	struct per_cpu_pages *pcp;
3977 	int migratetype;
3978 
3979 	memset(p, 0, sizeof(*p));
3980 
3981 	pcp = &p->pcp;
3982 	pcp->count = 0;
3983 	pcp->high = 6 * batch;
3984 	pcp->batch = max(1UL, 1 * batch);
3985 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3986 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3987 }
3988 
3989 /*
3990  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3991  * to the value high for the pageset p.
3992  */
3993 
3994 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3995 				unsigned long high)
3996 {
3997 	struct per_cpu_pages *pcp;
3998 
3999 	pcp = &p->pcp;
4000 	pcp->high = high;
4001 	pcp->batch = max(1UL, high/4);
4002 	if ((high/4) > (PAGE_SHIFT * 8))
4003 		pcp->batch = PAGE_SHIFT * 8;
4004 }
4005 
4006 static void __meminit setup_zone_pageset(struct zone *zone)
4007 {
4008 	int cpu;
4009 
4010 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4011 
4012 	for_each_possible_cpu(cpu) {
4013 		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4014 
4015 		setup_pageset(pcp, zone_batchsize(zone));
4016 
4017 		if (percpu_pagelist_fraction)
4018 			setup_pagelist_highmark(pcp,
4019 				(zone->present_pages /
4020 					percpu_pagelist_fraction));
4021 	}
4022 }
4023 
4024 /*
4025  * Allocate per cpu pagesets and initialize them.
4026  * Before this call only boot pagesets were available.
4027  */
4028 void __init setup_per_cpu_pageset(void)
4029 {
4030 	struct zone *zone;
4031 
4032 	for_each_populated_zone(zone)
4033 		setup_zone_pageset(zone);
4034 }
4035 
4036 static noinline __init_refok
4037 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4038 {
4039 	int i;
4040 	struct pglist_data *pgdat = zone->zone_pgdat;
4041 	size_t alloc_size;
4042 
4043 	/*
4044 	 * The per-page waitqueue mechanism uses hashed waitqueues
4045 	 * per zone.
4046 	 */
4047 	zone->wait_table_hash_nr_entries =
4048 		 wait_table_hash_nr_entries(zone_size_pages);
4049 	zone->wait_table_bits =
4050 		wait_table_bits(zone->wait_table_hash_nr_entries);
4051 	alloc_size = zone->wait_table_hash_nr_entries
4052 					* sizeof(wait_queue_head_t);
4053 
4054 	if (!slab_is_available()) {
4055 		zone->wait_table = (wait_queue_head_t *)
4056 			alloc_bootmem_node_nopanic(pgdat, alloc_size);
4057 	} else {
4058 		/*
4059 		 * This case means that a zone whose size was 0 gets new memory
4060 		 * via memory hot-add.
4061 		 * But it may be the case that a new node was hot-added.  In
4062 		 * this case vmalloc() will not be able to use this new node's
4063 		 * memory - this wait_table must be initialized to use this new
4064 		 * node itself as well.
4065 		 * To use this new node's memory, further consideration will be
4066 		 * necessary.
4067 		 */
4068 		zone->wait_table = vmalloc(alloc_size);
4069 	}
4070 	if (!zone->wait_table)
4071 		return -ENOMEM;
4072 
4073 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4074 		init_waitqueue_head(zone->wait_table + i);
4075 
4076 	return 0;
4077 }
4078 
4079 static __meminit void zone_pcp_init(struct zone *zone)
4080 {
4081 	/*
4082 	 * per cpu subsystem is not up at this point. The following code
4083 	 * relies on the ability of the linker to provide the
4084 	 * offset of a (static) per cpu variable into the per cpu area.
4085 	 */
4086 	zone->pageset = &boot_pageset;
4087 
4088 	if (zone->present_pages)
4089 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4090 			zone->name, zone->present_pages,
4091 					 zone_batchsize(zone));
4092 }
4093 
4094 int __meminit init_currently_empty_zone(struct zone *zone,
4095 					unsigned long zone_start_pfn,
4096 					unsigned long size,
4097 					enum memmap_context context)
4098 {
4099 	struct pglist_data *pgdat = zone->zone_pgdat;
4100 	int ret;
4101 	ret = zone_wait_table_init(zone, size);
4102 	if (ret)
4103 		return ret;
4104 	pgdat->nr_zones = zone_idx(zone) + 1;
4105 
4106 	zone->zone_start_pfn = zone_start_pfn;
4107 
4108 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4109 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4110 			pgdat->node_id,
4111 			(unsigned long)zone_idx(zone),
4112 			zone_start_pfn, (zone_start_pfn + size));
4113 
4114 	zone_init_free_lists(zone);
4115 
4116 	return 0;
4117 }
4118 
4119 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4120 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4121 /*
4122  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4123  * Architectures may implement their own version but if add_active_range()
4124  * was used and there are no special requirements, this is a convenient
4125  * alternative
4126  */
4127 int __meminit __early_pfn_to_nid(unsigned long pfn)
4128 {
4129 	unsigned long start_pfn, end_pfn;
4130 	int i, nid;
4131 
4132 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4133 		if (start_pfn <= pfn && pfn < end_pfn)
4134 			return nid;
4135 	/* This is a memory hole */
4136 	return -1;
4137 }
4138 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4139 
4140 int __meminit early_pfn_to_nid(unsigned long pfn)
4141 {
4142 	int nid;
4143 
4144 	nid = __early_pfn_to_nid(pfn);
4145 	if (nid >= 0)
4146 		return nid;
4147 	/* just returns 0 */
4148 	return 0;
4149 }
4150 
4151 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4152 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4153 {
4154 	int nid;
4155 
4156 	nid = __early_pfn_to_nid(pfn);
4157 	if (nid >= 0 && nid != node)
4158 		return false;
4159 	return true;
4160 }
4161 #endif
4162 
4163 /**
4164  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4165  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4166  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4167  *
4168  * If an architecture guarantees that all ranges registered with
4169  * add_active_ranges() contain no holes and may be freed, this
4170  * this function may be used instead of calling free_bootmem() manually.
4171  */
4172 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4173 {
4174 	unsigned long start_pfn, end_pfn;
4175 	int i, this_nid;
4176 
4177 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4178 		start_pfn = min(start_pfn, max_low_pfn);
4179 		end_pfn = min(end_pfn, max_low_pfn);
4180 
4181 		if (start_pfn < end_pfn)
4182 			free_bootmem_node(NODE_DATA(this_nid),
4183 					  PFN_PHYS(start_pfn),
4184 					  (end_pfn - start_pfn) << PAGE_SHIFT);
4185 	}
4186 }
4187 
4188 /**
4189  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4190  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4191  *
4192  * If an architecture guarantees that all ranges registered with
4193  * add_active_ranges() contain no holes and may be freed, this
4194  * function may be used instead of calling memory_present() manually.
4195  */
4196 void __init sparse_memory_present_with_active_regions(int nid)
4197 {
4198 	unsigned long start_pfn, end_pfn;
4199 	int i, this_nid;
4200 
4201 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4202 		memory_present(this_nid, start_pfn, end_pfn);
4203 }
4204 
4205 /**
4206  * get_pfn_range_for_nid - Return the start and end page frames for a node
4207  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4208  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4209  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4210  *
4211  * It returns the start and end page frame of a node based on information
4212  * provided by an arch calling add_active_range(). If called for a node
4213  * with no available memory, a warning is printed and the start and end
4214  * PFNs will be 0.
4215  */
4216 void __meminit get_pfn_range_for_nid(unsigned int nid,
4217 			unsigned long *start_pfn, unsigned long *end_pfn)
4218 {
4219 	unsigned long this_start_pfn, this_end_pfn;
4220 	int i;
4221 
4222 	*start_pfn = -1UL;
4223 	*end_pfn = 0;
4224 
4225 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4226 		*start_pfn = min(*start_pfn, this_start_pfn);
4227 		*end_pfn = max(*end_pfn, this_end_pfn);
4228 	}
4229 
4230 	if (*start_pfn == -1UL)
4231 		*start_pfn = 0;
4232 }
4233 
4234 /*
4235  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4236  * assumption is made that zones within a node are ordered in monotonic
4237  * increasing memory addresses so that the "highest" populated zone is used
4238  */
4239 static void __init find_usable_zone_for_movable(void)
4240 {
4241 	int zone_index;
4242 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4243 		if (zone_index == ZONE_MOVABLE)
4244 			continue;
4245 
4246 		if (arch_zone_highest_possible_pfn[zone_index] >
4247 				arch_zone_lowest_possible_pfn[zone_index])
4248 			break;
4249 	}
4250 
4251 	VM_BUG_ON(zone_index == -1);
4252 	movable_zone = zone_index;
4253 }
4254 
4255 /*
4256  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4257  * because it is sized independent of architecture. Unlike the other zones,
4258  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4259  * in each node depending on the size of each node and how evenly kernelcore
4260  * is distributed. This helper function adjusts the zone ranges
4261  * provided by the architecture for a given node by using the end of the
4262  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4263  * zones within a node are in order of monotonic increases memory addresses
4264  */
4265 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4266 					unsigned long zone_type,
4267 					unsigned long node_start_pfn,
4268 					unsigned long node_end_pfn,
4269 					unsigned long *zone_start_pfn,
4270 					unsigned long *zone_end_pfn)
4271 {
4272 	/* Only adjust if ZONE_MOVABLE is on this node */
4273 	if (zone_movable_pfn[nid]) {
4274 		/* Size ZONE_MOVABLE */
4275 		if (zone_type == ZONE_MOVABLE) {
4276 			*zone_start_pfn = zone_movable_pfn[nid];
4277 			*zone_end_pfn = min(node_end_pfn,
4278 				arch_zone_highest_possible_pfn[movable_zone]);
4279 
4280 		/* Adjust for ZONE_MOVABLE starting within this range */
4281 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4282 				*zone_end_pfn > zone_movable_pfn[nid]) {
4283 			*zone_end_pfn = zone_movable_pfn[nid];
4284 
4285 		/* Check if this whole range is within ZONE_MOVABLE */
4286 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4287 			*zone_start_pfn = *zone_end_pfn;
4288 	}
4289 }
4290 
4291 /*
4292  * Return the number of pages a zone spans in a node, including holes
4293  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4294  */
4295 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4296 					unsigned long zone_type,
4297 					unsigned long *ignored)
4298 {
4299 	unsigned long node_start_pfn, node_end_pfn;
4300 	unsigned long zone_start_pfn, zone_end_pfn;
4301 
4302 	/* Get the start and end of the node and zone */
4303 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4304 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4305 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4306 	adjust_zone_range_for_zone_movable(nid, zone_type,
4307 				node_start_pfn, node_end_pfn,
4308 				&zone_start_pfn, &zone_end_pfn);
4309 
4310 	/* Check that this node has pages within the zone's required range */
4311 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4312 		return 0;
4313 
4314 	/* Move the zone boundaries inside the node if necessary */
4315 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4316 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4317 
4318 	/* Return the spanned pages */
4319 	return zone_end_pfn - zone_start_pfn;
4320 }
4321 
4322 /*
4323  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4324  * then all holes in the requested range will be accounted for.
4325  */
4326 unsigned long __meminit __absent_pages_in_range(int nid,
4327 				unsigned long range_start_pfn,
4328 				unsigned long range_end_pfn)
4329 {
4330 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4331 	unsigned long start_pfn, end_pfn;
4332 	int i;
4333 
4334 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4335 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4336 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4337 		nr_absent -= end_pfn - start_pfn;
4338 	}
4339 	return nr_absent;
4340 }
4341 
4342 /**
4343  * absent_pages_in_range - Return number of page frames in holes within a range
4344  * @start_pfn: The start PFN to start searching for holes
4345  * @end_pfn: The end PFN to stop searching for holes
4346  *
4347  * It returns the number of pages frames in memory holes within a range.
4348  */
4349 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4350 							unsigned long end_pfn)
4351 {
4352 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4353 }
4354 
4355 /* Return the number of page frames in holes in a zone on a node */
4356 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4357 					unsigned long zone_type,
4358 					unsigned long *ignored)
4359 {
4360 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4361 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4362 	unsigned long node_start_pfn, node_end_pfn;
4363 	unsigned long zone_start_pfn, zone_end_pfn;
4364 
4365 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4366 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4367 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4368 
4369 	adjust_zone_range_for_zone_movable(nid, zone_type,
4370 			node_start_pfn, node_end_pfn,
4371 			&zone_start_pfn, &zone_end_pfn);
4372 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4373 }
4374 
4375 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4376 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4377 					unsigned long zone_type,
4378 					unsigned long *zones_size)
4379 {
4380 	return zones_size[zone_type];
4381 }
4382 
4383 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4384 						unsigned long zone_type,
4385 						unsigned long *zholes_size)
4386 {
4387 	if (!zholes_size)
4388 		return 0;
4389 
4390 	return zholes_size[zone_type];
4391 }
4392 
4393 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4394 
4395 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4396 		unsigned long *zones_size, unsigned long *zholes_size)
4397 {
4398 	unsigned long realtotalpages, totalpages = 0;
4399 	enum zone_type i;
4400 
4401 	for (i = 0; i < MAX_NR_ZONES; i++)
4402 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4403 								zones_size);
4404 	pgdat->node_spanned_pages = totalpages;
4405 
4406 	realtotalpages = totalpages;
4407 	for (i = 0; i < MAX_NR_ZONES; i++)
4408 		realtotalpages -=
4409 			zone_absent_pages_in_node(pgdat->node_id, i,
4410 								zholes_size);
4411 	pgdat->node_present_pages = realtotalpages;
4412 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4413 							realtotalpages);
4414 }
4415 
4416 #ifndef CONFIG_SPARSEMEM
4417 /*
4418  * Calculate the size of the zone->blockflags rounded to an unsigned long
4419  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4420  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4421  * round what is now in bits to nearest long in bits, then return it in
4422  * bytes.
4423  */
4424 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4425 {
4426 	unsigned long usemapsize;
4427 
4428 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4429 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4430 	usemapsize = usemapsize >> pageblock_order;
4431 	usemapsize *= NR_PAGEBLOCK_BITS;
4432 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4433 
4434 	return usemapsize / 8;
4435 }
4436 
4437 static void __init setup_usemap(struct pglist_data *pgdat,
4438 				struct zone *zone,
4439 				unsigned long zone_start_pfn,
4440 				unsigned long zonesize)
4441 {
4442 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4443 	zone->pageblock_flags = NULL;
4444 	if (usemapsize)
4445 		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4446 								   usemapsize);
4447 }
4448 #else
4449 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4450 				unsigned long zone_start_pfn, unsigned long zonesize) {}
4451 #endif /* CONFIG_SPARSEMEM */
4452 
4453 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4454 
4455 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4456 void __init set_pageblock_order(void)
4457 {
4458 	unsigned int order;
4459 
4460 	/* Check that pageblock_nr_pages has not already been setup */
4461 	if (pageblock_order)
4462 		return;
4463 
4464 	if (HPAGE_SHIFT > PAGE_SHIFT)
4465 		order = HUGETLB_PAGE_ORDER;
4466 	else
4467 		order = MAX_ORDER - 1;
4468 
4469 	/*
4470 	 * Assume the largest contiguous order of interest is a huge page.
4471 	 * This value may be variable depending on boot parameters on IA64 and
4472 	 * powerpc.
4473 	 */
4474 	pageblock_order = order;
4475 }
4476 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4477 
4478 /*
4479  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4480  * is unused as pageblock_order is set at compile-time. See
4481  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4482  * the kernel config
4483  */
4484 void __init set_pageblock_order(void)
4485 {
4486 }
4487 
4488 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4489 
4490 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4491 						   unsigned long present_pages)
4492 {
4493 	unsigned long pages = spanned_pages;
4494 
4495 	/*
4496 	 * Provide a more accurate estimation if there are holes within
4497 	 * the zone and SPARSEMEM is in use. If there are holes within the
4498 	 * zone, each populated memory region may cost us one or two extra
4499 	 * memmap pages due to alignment because memmap pages for each
4500 	 * populated regions may not naturally algined on page boundary.
4501 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4502 	 */
4503 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4504 	    IS_ENABLED(CONFIG_SPARSEMEM))
4505 		pages = present_pages;
4506 
4507 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4508 }
4509 
4510 /*
4511  * Set up the zone data structures:
4512  *   - mark all pages reserved
4513  *   - mark all memory queues empty
4514  *   - clear the memory bitmaps
4515  *
4516  * NOTE: pgdat should get zeroed by caller.
4517  */
4518 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4519 		unsigned long *zones_size, unsigned long *zholes_size)
4520 {
4521 	enum zone_type j;
4522 	int nid = pgdat->node_id;
4523 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4524 	int ret;
4525 
4526 	pgdat_resize_init(pgdat);
4527 #ifdef CONFIG_NUMA_BALANCING
4528 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4529 	pgdat->numabalancing_migrate_nr_pages = 0;
4530 	pgdat->numabalancing_migrate_next_window = jiffies;
4531 #endif
4532 	init_waitqueue_head(&pgdat->kswapd_wait);
4533 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4534 	pgdat_page_cgroup_init(pgdat);
4535 
4536 	for (j = 0; j < MAX_NR_ZONES; j++) {
4537 		struct zone *zone = pgdat->node_zones + j;
4538 		unsigned long size, realsize, freesize, memmap_pages;
4539 
4540 		size = zone_spanned_pages_in_node(nid, j, zones_size);
4541 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4542 								zholes_size);
4543 
4544 		/*
4545 		 * Adjust freesize so that it accounts for how much memory
4546 		 * is used by this zone for memmap. This affects the watermark
4547 		 * and per-cpu initialisations
4548 		 */
4549 		memmap_pages = calc_memmap_size(size, realsize);
4550 		if (freesize >= memmap_pages) {
4551 			freesize -= memmap_pages;
4552 			if (memmap_pages)
4553 				printk(KERN_DEBUG
4554 				       "  %s zone: %lu pages used for memmap\n",
4555 				       zone_names[j], memmap_pages);
4556 		} else
4557 			printk(KERN_WARNING
4558 				"  %s zone: %lu pages exceeds freesize %lu\n",
4559 				zone_names[j], memmap_pages, freesize);
4560 
4561 		/* Account for reserved pages */
4562 		if (j == 0 && freesize > dma_reserve) {
4563 			freesize -= dma_reserve;
4564 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4565 					zone_names[0], dma_reserve);
4566 		}
4567 
4568 		if (!is_highmem_idx(j))
4569 			nr_kernel_pages += freesize;
4570 		/* Charge for highmem memmap if there are enough kernel pages */
4571 		else if (nr_kernel_pages > memmap_pages * 2)
4572 			nr_kernel_pages -= memmap_pages;
4573 		nr_all_pages += freesize;
4574 
4575 		zone->spanned_pages = size;
4576 		zone->present_pages = freesize;
4577 		/*
4578 		 * Set an approximate value for lowmem here, it will be adjusted
4579 		 * when the bootmem allocator frees pages into the buddy system.
4580 		 * And all highmem pages will be managed by the buddy system.
4581 		 */
4582 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4583 #ifdef CONFIG_NUMA
4584 		zone->node = nid;
4585 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4586 						/ 100;
4587 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4588 #endif
4589 		zone->name = zone_names[j];
4590 		spin_lock_init(&zone->lock);
4591 		spin_lock_init(&zone->lru_lock);
4592 		zone_seqlock_init(zone);
4593 		zone->zone_pgdat = pgdat;
4594 
4595 		zone_pcp_init(zone);
4596 		lruvec_init(&zone->lruvec);
4597 		if (!size)
4598 			continue;
4599 
4600 		set_pageblock_order();
4601 		setup_usemap(pgdat, zone, zone_start_pfn, size);
4602 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4603 						size, MEMMAP_EARLY);
4604 		BUG_ON(ret);
4605 		memmap_init(size, nid, j, zone_start_pfn);
4606 		zone_start_pfn += size;
4607 	}
4608 }
4609 
4610 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4611 {
4612 	/* Skip empty nodes */
4613 	if (!pgdat->node_spanned_pages)
4614 		return;
4615 
4616 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4617 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4618 	if (!pgdat->node_mem_map) {
4619 		unsigned long size, start, end;
4620 		struct page *map;
4621 
4622 		/*
4623 		 * The zone's endpoints aren't required to be MAX_ORDER
4624 		 * aligned but the node_mem_map endpoints must be in order
4625 		 * for the buddy allocator to function correctly.
4626 		 */
4627 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4628 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4629 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4630 		size =  (end - start) * sizeof(struct page);
4631 		map = alloc_remap(pgdat->node_id, size);
4632 		if (!map)
4633 			map = alloc_bootmem_node_nopanic(pgdat, size);
4634 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4635 	}
4636 #ifndef CONFIG_NEED_MULTIPLE_NODES
4637 	/*
4638 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4639 	 */
4640 	if (pgdat == NODE_DATA(0)) {
4641 		mem_map = NODE_DATA(0)->node_mem_map;
4642 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4643 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4644 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4645 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4646 	}
4647 #endif
4648 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4649 }
4650 
4651 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4652 		unsigned long node_start_pfn, unsigned long *zholes_size)
4653 {
4654 	pg_data_t *pgdat = NODE_DATA(nid);
4655 
4656 	/* pg_data_t should be reset to zero when it's allocated */
4657 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4658 
4659 	pgdat->node_id = nid;
4660 	pgdat->node_start_pfn = node_start_pfn;
4661 	init_zone_allows_reclaim(nid);
4662 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4663 
4664 	alloc_node_mem_map(pgdat);
4665 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4666 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4667 		nid, (unsigned long)pgdat,
4668 		(unsigned long)pgdat->node_mem_map);
4669 #endif
4670 
4671 	free_area_init_core(pgdat, zones_size, zholes_size);
4672 }
4673 
4674 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4675 
4676 #if MAX_NUMNODES > 1
4677 /*
4678  * Figure out the number of possible node ids.
4679  */
4680 static void __init setup_nr_node_ids(void)
4681 {
4682 	unsigned int node;
4683 	unsigned int highest = 0;
4684 
4685 	for_each_node_mask(node, node_possible_map)
4686 		highest = node;
4687 	nr_node_ids = highest + 1;
4688 }
4689 #else
4690 static inline void setup_nr_node_ids(void)
4691 {
4692 }
4693 #endif
4694 
4695 /**
4696  * node_map_pfn_alignment - determine the maximum internode alignment
4697  *
4698  * This function should be called after node map is populated and sorted.
4699  * It calculates the maximum power of two alignment which can distinguish
4700  * all the nodes.
4701  *
4702  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4703  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4704  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4705  * shifted, 1GiB is enough and this function will indicate so.
4706  *
4707  * This is used to test whether pfn -> nid mapping of the chosen memory
4708  * model has fine enough granularity to avoid incorrect mapping for the
4709  * populated node map.
4710  *
4711  * Returns the determined alignment in pfn's.  0 if there is no alignment
4712  * requirement (single node).
4713  */
4714 unsigned long __init node_map_pfn_alignment(void)
4715 {
4716 	unsigned long accl_mask = 0, last_end = 0;
4717 	unsigned long start, end, mask;
4718 	int last_nid = -1;
4719 	int i, nid;
4720 
4721 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4722 		if (!start || last_nid < 0 || last_nid == nid) {
4723 			last_nid = nid;
4724 			last_end = end;
4725 			continue;
4726 		}
4727 
4728 		/*
4729 		 * Start with a mask granular enough to pin-point to the
4730 		 * start pfn and tick off bits one-by-one until it becomes
4731 		 * too coarse to separate the current node from the last.
4732 		 */
4733 		mask = ~((1 << __ffs(start)) - 1);
4734 		while (mask && last_end <= (start & (mask << 1)))
4735 			mask <<= 1;
4736 
4737 		/* accumulate all internode masks */
4738 		accl_mask |= mask;
4739 	}
4740 
4741 	/* convert mask to number of pages */
4742 	return ~accl_mask + 1;
4743 }
4744 
4745 /* Find the lowest pfn for a node */
4746 static unsigned long __init find_min_pfn_for_node(int nid)
4747 {
4748 	unsigned long min_pfn = ULONG_MAX;
4749 	unsigned long start_pfn;
4750 	int i;
4751 
4752 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4753 		min_pfn = min(min_pfn, start_pfn);
4754 
4755 	if (min_pfn == ULONG_MAX) {
4756 		printk(KERN_WARNING
4757 			"Could not find start_pfn for node %d\n", nid);
4758 		return 0;
4759 	}
4760 
4761 	return min_pfn;
4762 }
4763 
4764 /**
4765  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4766  *
4767  * It returns the minimum PFN based on information provided via
4768  * add_active_range().
4769  */
4770 unsigned long __init find_min_pfn_with_active_regions(void)
4771 {
4772 	return find_min_pfn_for_node(MAX_NUMNODES);
4773 }
4774 
4775 /*
4776  * early_calculate_totalpages()
4777  * Sum pages in active regions for movable zone.
4778  * Populate N_MEMORY for calculating usable_nodes.
4779  */
4780 static unsigned long __init early_calculate_totalpages(void)
4781 {
4782 	unsigned long totalpages = 0;
4783 	unsigned long start_pfn, end_pfn;
4784 	int i, nid;
4785 
4786 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4787 		unsigned long pages = end_pfn - start_pfn;
4788 
4789 		totalpages += pages;
4790 		if (pages)
4791 			node_set_state(nid, N_MEMORY);
4792 	}
4793   	return totalpages;
4794 }
4795 
4796 /*
4797  * Find the PFN the Movable zone begins in each node. Kernel memory
4798  * is spread evenly between nodes as long as the nodes have enough
4799  * memory. When they don't, some nodes will have more kernelcore than
4800  * others
4801  */
4802 static void __init find_zone_movable_pfns_for_nodes(void)
4803 {
4804 	int i, nid;
4805 	unsigned long usable_startpfn;
4806 	unsigned long kernelcore_node, kernelcore_remaining;
4807 	/* save the state before borrow the nodemask */
4808 	nodemask_t saved_node_state = node_states[N_MEMORY];
4809 	unsigned long totalpages = early_calculate_totalpages();
4810 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4811 
4812 	/*
4813 	 * If movablecore was specified, calculate what size of
4814 	 * kernelcore that corresponds so that memory usable for
4815 	 * any allocation type is evenly spread. If both kernelcore
4816 	 * and movablecore are specified, then the value of kernelcore
4817 	 * will be used for required_kernelcore if it's greater than
4818 	 * what movablecore would have allowed.
4819 	 */
4820 	if (required_movablecore) {
4821 		unsigned long corepages;
4822 
4823 		/*
4824 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4825 		 * was requested by the user
4826 		 */
4827 		required_movablecore =
4828 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4829 		corepages = totalpages - required_movablecore;
4830 
4831 		required_kernelcore = max(required_kernelcore, corepages);
4832 	}
4833 
4834 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4835 	if (!required_kernelcore)
4836 		goto out;
4837 
4838 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4839 	find_usable_zone_for_movable();
4840 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4841 
4842 restart:
4843 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4844 	kernelcore_node = required_kernelcore / usable_nodes;
4845 	for_each_node_state(nid, N_MEMORY) {
4846 		unsigned long start_pfn, end_pfn;
4847 
4848 		/*
4849 		 * Recalculate kernelcore_node if the division per node
4850 		 * now exceeds what is necessary to satisfy the requested
4851 		 * amount of memory for the kernel
4852 		 */
4853 		if (required_kernelcore < kernelcore_node)
4854 			kernelcore_node = required_kernelcore / usable_nodes;
4855 
4856 		/*
4857 		 * As the map is walked, we track how much memory is usable
4858 		 * by the kernel using kernelcore_remaining. When it is
4859 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4860 		 */
4861 		kernelcore_remaining = kernelcore_node;
4862 
4863 		/* Go through each range of PFNs within this node */
4864 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4865 			unsigned long size_pages;
4866 
4867 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4868 			if (start_pfn >= end_pfn)
4869 				continue;
4870 
4871 			/* Account for what is only usable for kernelcore */
4872 			if (start_pfn < usable_startpfn) {
4873 				unsigned long kernel_pages;
4874 				kernel_pages = min(end_pfn, usable_startpfn)
4875 								- start_pfn;
4876 
4877 				kernelcore_remaining -= min(kernel_pages,
4878 							kernelcore_remaining);
4879 				required_kernelcore -= min(kernel_pages,
4880 							required_kernelcore);
4881 
4882 				/* Continue if range is now fully accounted */
4883 				if (end_pfn <= usable_startpfn) {
4884 
4885 					/*
4886 					 * Push zone_movable_pfn to the end so
4887 					 * that if we have to rebalance
4888 					 * kernelcore across nodes, we will
4889 					 * not double account here
4890 					 */
4891 					zone_movable_pfn[nid] = end_pfn;
4892 					continue;
4893 				}
4894 				start_pfn = usable_startpfn;
4895 			}
4896 
4897 			/*
4898 			 * The usable PFN range for ZONE_MOVABLE is from
4899 			 * start_pfn->end_pfn. Calculate size_pages as the
4900 			 * number of pages used as kernelcore
4901 			 */
4902 			size_pages = end_pfn - start_pfn;
4903 			if (size_pages > kernelcore_remaining)
4904 				size_pages = kernelcore_remaining;
4905 			zone_movable_pfn[nid] = start_pfn + size_pages;
4906 
4907 			/*
4908 			 * Some kernelcore has been met, update counts and
4909 			 * break if the kernelcore for this node has been
4910 			 * satisified
4911 			 */
4912 			required_kernelcore -= min(required_kernelcore,
4913 								size_pages);
4914 			kernelcore_remaining -= size_pages;
4915 			if (!kernelcore_remaining)
4916 				break;
4917 		}
4918 	}
4919 
4920 	/*
4921 	 * If there is still required_kernelcore, we do another pass with one
4922 	 * less node in the count. This will push zone_movable_pfn[nid] further
4923 	 * along on the nodes that still have memory until kernelcore is
4924 	 * satisified
4925 	 */
4926 	usable_nodes--;
4927 	if (usable_nodes && required_kernelcore > usable_nodes)
4928 		goto restart;
4929 
4930 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4931 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4932 		zone_movable_pfn[nid] =
4933 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4934 
4935 out:
4936 	/* restore the node_state */
4937 	node_states[N_MEMORY] = saved_node_state;
4938 }
4939 
4940 /* Any regular or high memory on that node ? */
4941 static void check_for_memory(pg_data_t *pgdat, int nid)
4942 {
4943 	enum zone_type zone_type;
4944 
4945 	if (N_MEMORY == N_NORMAL_MEMORY)
4946 		return;
4947 
4948 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
4949 		struct zone *zone = &pgdat->node_zones[zone_type];
4950 		if (zone->present_pages) {
4951 			node_set_state(nid, N_HIGH_MEMORY);
4952 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
4953 			    zone_type <= ZONE_NORMAL)
4954 				node_set_state(nid, N_NORMAL_MEMORY);
4955 			break;
4956 		}
4957 	}
4958 }
4959 
4960 /**
4961  * free_area_init_nodes - Initialise all pg_data_t and zone data
4962  * @max_zone_pfn: an array of max PFNs for each zone
4963  *
4964  * This will call free_area_init_node() for each active node in the system.
4965  * Using the page ranges provided by add_active_range(), the size of each
4966  * zone in each node and their holes is calculated. If the maximum PFN
4967  * between two adjacent zones match, it is assumed that the zone is empty.
4968  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4969  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4970  * starts where the previous one ended. For example, ZONE_DMA32 starts
4971  * at arch_max_dma_pfn.
4972  */
4973 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4974 {
4975 	unsigned long start_pfn, end_pfn;
4976 	int i, nid;
4977 
4978 	/* Record where the zone boundaries are */
4979 	memset(arch_zone_lowest_possible_pfn, 0,
4980 				sizeof(arch_zone_lowest_possible_pfn));
4981 	memset(arch_zone_highest_possible_pfn, 0,
4982 				sizeof(arch_zone_highest_possible_pfn));
4983 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4984 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4985 	for (i = 1; i < MAX_NR_ZONES; i++) {
4986 		if (i == ZONE_MOVABLE)
4987 			continue;
4988 		arch_zone_lowest_possible_pfn[i] =
4989 			arch_zone_highest_possible_pfn[i-1];
4990 		arch_zone_highest_possible_pfn[i] =
4991 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4992 	}
4993 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4994 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4995 
4996 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4997 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4998 	find_zone_movable_pfns_for_nodes();
4999 
5000 	/* Print out the zone ranges */
5001 	printk("Zone ranges:\n");
5002 	for (i = 0; i < MAX_NR_ZONES; i++) {
5003 		if (i == ZONE_MOVABLE)
5004 			continue;
5005 		printk(KERN_CONT "  %-8s ", zone_names[i]);
5006 		if (arch_zone_lowest_possible_pfn[i] ==
5007 				arch_zone_highest_possible_pfn[i])
5008 			printk(KERN_CONT "empty\n");
5009 		else
5010 			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5011 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5012 				(arch_zone_highest_possible_pfn[i]
5013 					<< PAGE_SHIFT) - 1);
5014 	}
5015 
5016 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5017 	printk("Movable zone start for each node\n");
5018 	for (i = 0; i < MAX_NUMNODES; i++) {
5019 		if (zone_movable_pfn[i])
5020 			printk("  Node %d: %#010lx\n", i,
5021 			       zone_movable_pfn[i] << PAGE_SHIFT);
5022 	}
5023 
5024 	/* Print out the early node map */
5025 	printk("Early memory node ranges\n");
5026 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5027 		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
5028 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5029 
5030 	/* Initialise every node */
5031 	mminit_verify_pageflags_layout();
5032 	setup_nr_node_ids();
5033 	for_each_online_node(nid) {
5034 		pg_data_t *pgdat = NODE_DATA(nid);
5035 		free_area_init_node(nid, NULL,
5036 				find_min_pfn_for_node(nid), NULL);
5037 
5038 		/* Any memory on that node */
5039 		if (pgdat->node_present_pages)
5040 			node_set_state(nid, N_MEMORY);
5041 		check_for_memory(pgdat, nid);
5042 	}
5043 }
5044 
5045 static int __init cmdline_parse_core(char *p, unsigned long *core)
5046 {
5047 	unsigned long long coremem;
5048 	if (!p)
5049 		return -EINVAL;
5050 
5051 	coremem = memparse(p, &p);
5052 	*core = coremem >> PAGE_SHIFT;
5053 
5054 	/* Paranoid check that UL is enough for the coremem value */
5055 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5056 
5057 	return 0;
5058 }
5059 
5060 /*
5061  * kernelcore=size sets the amount of memory for use for allocations that
5062  * cannot be reclaimed or migrated.
5063  */
5064 static int __init cmdline_parse_kernelcore(char *p)
5065 {
5066 	return cmdline_parse_core(p, &required_kernelcore);
5067 }
5068 
5069 /*
5070  * movablecore=size sets the amount of memory for use for allocations that
5071  * can be reclaimed or migrated.
5072  */
5073 static int __init cmdline_parse_movablecore(char *p)
5074 {
5075 	return cmdline_parse_core(p, &required_movablecore);
5076 }
5077 
5078 early_param("kernelcore", cmdline_parse_kernelcore);
5079 early_param("movablecore", cmdline_parse_movablecore);
5080 
5081 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5082 
5083 /**
5084  * set_dma_reserve - set the specified number of pages reserved in the first zone
5085  * @new_dma_reserve: The number of pages to mark reserved
5086  *
5087  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5088  * In the DMA zone, a significant percentage may be consumed by kernel image
5089  * and other unfreeable allocations which can skew the watermarks badly. This
5090  * function may optionally be used to account for unfreeable pages in the
5091  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5092  * smaller per-cpu batchsize.
5093  */
5094 void __init set_dma_reserve(unsigned long new_dma_reserve)
5095 {
5096 	dma_reserve = new_dma_reserve;
5097 }
5098 
5099 void __init free_area_init(unsigned long *zones_size)
5100 {
5101 	free_area_init_node(0, zones_size,
5102 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5103 }
5104 
5105 static int page_alloc_cpu_notify(struct notifier_block *self,
5106 				 unsigned long action, void *hcpu)
5107 {
5108 	int cpu = (unsigned long)hcpu;
5109 
5110 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5111 		lru_add_drain_cpu(cpu);
5112 		drain_pages(cpu);
5113 
5114 		/*
5115 		 * Spill the event counters of the dead processor
5116 		 * into the current processors event counters.
5117 		 * This artificially elevates the count of the current
5118 		 * processor.
5119 		 */
5120 		vm_events_fold_cpu(cpu);
5121 
5122 		/*
5123 		 * Zero the differential counters of the dead processor
5124 		 * so that the vm statistics are consistent.
5125 		 *
5126 		 * This is only okay since the processor is dead and cannot
5127 		 * race with what we are doing.
5128 		 */
5129 		refresh_cpu_vm_stats(cpu);
5130 	}
5131 	return NOTIFY_OK;
5132 }
5133 
5134 void __init page_alloc_init(void)
5135 {
5136 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5137 }
5138 
5139 /*
5140  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5141  *	or min_free_kbytes changes.
5142  */
5143 static void calculate_totalreserve_pages(void)
5144 {
5145 	struct pglist_data *pgdat;
5146 	unsigned long reserve_pages = 0;
5147 	enum zone_type i, j;
5148 
5149 	for_each_online_pgdat(pgdat) {
5150 		for (i = 0; i < MAX_NR_ZONES; i++) {
5151 			struct zone *zone = pgdat->node_zones + i;
5152 			unsigned long max = 0;
5153 
5154 			/* Find valid and maximum lowmem_reserve in the zone */
5155 			for (j = i; j < MAX_NR_ZONES; j++) {
5156 				if (zone->lowmem_reserve[j] > max)
5157 					max = zone->lowmem_reserve[j];
5158 			}
5159 
5160 			/* we treat the high watermark as reserved pages. */
5161 			max += high_wmark_pages(zone);
5162 
5163 			if (max > zone->present_pages)
5164 				max = zone->present_pages;
5165 			reserve_pages += max;
5166 			/*
5167 			 * Lowmem reserves are not available to
5168 			 * GFP_HIGHUSER page cache allocations and
5169 			 * kswapd tries to balance zones to their high
5170 			 * watermark.  As a result, neither should be
5171 			 * regarded as dirtyable memory, to prevent a
5172 			 * situation where reclaim has to clean pages
5173 			 * in order to balance the zones.
5174 			 */
5175 			zone->dirty_balance_reserve = max;
5176 		}
5177 	}
5178 	dirty_balance_reserve = reserve_pages;
5179 	totalreserve_pages = reserve_pages;
5180 }
5181 
5182 /*
5183  * setup_per_zone_lowmem_reserve - called whenever
5184  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5185  *	has a correct pages reserved value, so an adequate number of
5186  *	pages are left in the zone after a successful __alloc_pages().
5187  */
5188 static void setup_per_zone_lowmem_reserve(void)
5189 {
5190 	struct pglist_data *pgdat;
5191 	enum zone_type j, idx;
5192 
5193 	for_each_online_pgdat(pgdat) {
5194 		for (j = 0; j < MAX_NR_ZONES; j++) {
5195 			struct zone *zone = pgdat->node_zones + j;
5196 			unsigned long present_pages = zone->present_pages;
5197 
5198 			zone->lowmem_reserve[j] = 0;
5199 
5200 			idx = j;
5201 			while (idx) {
5202 				struct zone *lower_zone;
5203 
5204 				idx--;
5205 
5206 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5207 					sysctl_lowmem_reserve_ratio[idx] = 1;
5208 
5209 				lower_zone = pgdat->node_zones + idx;
5210 				lower_zone->lowmem_reserve[j] = present_pages /
5211 					sysctl_lowmem_reserve_ratio[idx];
5212 				present_pages += lower_zone->present_pages;
5213 			}
5214 		}
5215 	}
5216 
5217 	/* update totalreserve_pages */
5218 	calculate_totalreserve_pages();
5219 }
5220 
5221 static void __setup_per_zone_wmarks(void)
5222 {
5223 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5224 	unsigned long lowmem_pages = 0;
5225 	struct zone *zone;
5226 	unsigned long flags;
5227 
5228 	/* Calculate total number of !ZONE_HIGHMEM pages */
5229 	for_each_zone(zone) {
5230 		if (!is_highmem(zone))
5231 			lowmem_pages += zone->present_pages;
5232 	}
5233 
5234 	for_each_zone(zone) {
5235 		u64 tmp;
5236 
5237 		spin_lock_irqsave(&zone->lock, flags);
5238 		tmp = (u64)pages_min * zone->present_pages;
5239 		do_div(tmp, lowmem_pages);
5240 		if (is_highmem(zone)) {
5241 			/*
5242 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5243 			 * need highmem pages, so cap pages_min to a small
5244 			 * value here.
5245 			 *
5246 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5247 			 * deltas controls asynch page reclaim, and so should
5248 			 * not be capped for highmem.
5249 			 */
5250 			int min_pages;
5251 
5252 			min_pages = zone->present_pages / 1024;
5253 			if (min_pages < SWAP_CLUSTER_MAX)
5254 				min_pages = SWAP_CLUSTER_MAX;
5255 			if (min_pages > 128)
5256 				min_pages = 128;
5257 			zone->watermark[WMARK_MIN] = min_pages;
5258 		} else {
5259 			/*
5260 			 * If it's a lowmem zone, reserve a number of pages
5261 			 * proportionate to the zone's size.
5262 			 */
5263 			zone->watermark[WMARK_MIN] = tmp;
5264 		}
5265 
5266 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5267 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5268 
5269 		setup_zone_migrate_reserve(zone);
5270 		spin_unlock_irqrestore(&zone->lock, flags);
5271 	}
5272 
5273 	/* update totalreserve_pages */
5274 	calculate_totalreserve_pages();
5275 }
5276 
5277 /**
5278  * setup_per_zone_wmarks - called when min_free_kbytes changes
5279  * or when memory is hot-{added|removed}
5280  *
5281  * Ensures that the watermark[min,low,high] values for each zone are set
5282  * correctly with respect to min_free_kbytes.
5283  */
5284 void setup_per_zone_wmarks(void)
5285 {
5286 	mutex_lock(&zonelists_mutex);
5287 	__setup_per_zone_wmarks();
5288 	mutex_unlock(&zonelists_mutex);
5289 }
5290 
5291 /*
5292  * The inactive anon list should be small enough that the VM never has to
5293  * do too much work, but large enough that each inactive page has a chance
5294  * to be referenced again before it is swapped out.
5295  *
5296  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5297  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5298  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5299  * the anonymous pages are kept on the inactive list.
5300  *
5301  * total     target    max
5302  * memory    ratio     inactive anon
5303  * -------------------------------------
5304  *   10MB       1         5MB
5305  *  100MB       1        50MB
5306  *    1GB       3       250MB
5307  *   10GB      10       0.9GB
5308  *  100GB      31         3GB
5309  *    1TB     101        10GB
5310  *   10TB     320        32GB
5311  */
5312 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5313 {
5314 	unsigned int gb, ratio;
5315 
5316 	/* Zone size in gigabytes */
5317 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
5318 	if (gb)
5319 		ratio = int_sqrt(10 * gb);
5320 	else
5321 		ratio = 1;
5322 
5323 	zone->inactive_ratio = ratio;
5324 }
5325 
5326 static void __meminit setup_per_zone_inactive_ratio(void)
5327 {
5328 	struct zone *zone;
5329 
5330 	for_each_zone(zone)
5331 		calculate_zone_inactive_ratio(zone);
5332 }
5333 
5334 /*
5335  * Initialise min_free_kbytes.
5336  *
5337  * For small machines we want it small (128k min).  For large machines
5338  * we want it large (64MB max).  But it is not linear, because network
5339  * bandwidth does not increase linearly with machine size.  We use
5340  *
5341  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5342  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5343  *
5344  * which yields
5345  *
5346  * 16MB:	512k
5347  * 32MB:	724k
5348  * 64MB:	1024k
5349  * 128MB:	1448k
5350  * 256MB:	2048k
5351  * 512MB:	2896k
5352  * 1024MB:	4096k
5353  * 2048MB:	5792k
5354  * 4096MB:	8192k
5355  * 8192MB:	11584k
5356  * 16384MB:	16384k
5357  */
5358 int __meminit init_per_zone_wmark_min(void)
5359 {
5360 	unsigned long lowmem_kbytes;
5361 
5362 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5363 
5364 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5365 	if (min_free_kbytes < 128)
5366 		min_free_kbytes = 128;
5367 	if (min_free_kbytes > 65536)
5368 		min_free_kbytes = 65536;
5369 	setup_per_zone_wmarks();
5370 	refresh_zone_stat_thresholds();
5371 	setup_per_zone_lowmem_reserve();
5372 	setup_per_zone_inactive_ratio();
5373 	return 0;
5374 }
5375 module_init(init_per_zone_wmark_min)
5376 
5377 /*
5378  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5379  *	that we can call two helper functions whenever min_free_kbytes
5380  *	changes.
5381  */
5382 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5383 	void __user *buffer, size_t *length, loff_t *ppos)
5384 {
5385 	proc_dointvec(table, write, buffer, length, ppos);
5386 	if (write)
5387 		setup_per_zone_wmarks();
5388 	return 0;
5389 }
5390 
5391 #ifdef CONFIG_NUMA
5392 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5393 	void __user *buffer, size_t *length, loff_t *ppos)
5394 {
5395 	struct zone *zone;
5396 	int rc;
5397 
5398 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5399 	if (rc)
5400 		return rc;
5401 
5402 	for_each_zone(zone)
5403 		zone->min_unmapped_pages = (zone->present_pages *
5404 				sysctl_min_unmapped_ratio) / 100;
5405 	return 0;
5406 }
5407 
5408 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5409 	void __user *buffer, size_t *length, loff_t *ppos)
5410 {
5411 	struct zone *zone;
5412 	int rc;
5413 
5414 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5415 	if (rc)
5416 		return rc;
5417 
5418 	for_each_zone(zone)
5419 		zone->min_slab_pages = (zone->present_pages *
5420 				sysctl_min_slab_ratio) / 100;
5421 	return 0;
5422 }
5423 #endif
5424 
5425 /*
5426  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5427  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5428  *	whenever sysctl_lowmem_reserve_ratio changes.
5429  *
5430  * The reserve ratio obviously has absolutely no relation with the
5431  * minimum watermarks. The lowmem reserve ratio can only make sense
5432  * if in function of the boot time zone sizes.
5433  */
5434 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5435 	void __user *buffer, size_t *length, loff_t *ppos)
5436 {
5437 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5438 	setup_per_zone_lowmem_reserve();
5439 	return 0;
5440 }
5441 
5442 /*
5443  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5444  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5445  * can have before it gets flushed back to buddy allocator.
5446  */
5447 
5448 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5449 	void __user *buffer, size_t *length, loff_t *ppos)
5450 {
5451 	struct zone *zone;
5452 	unsigned int cpu;
5453 	int ret;
5454 
5455 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5456 	if (!write || (ret < 0))
5457 		return ret;
5458 	for_each_populated_zone(zone) {
5459 		for_each_possible_cpu(cpu) {
5460 			unsigned long  high;
5461 			high = zone->present_pages / percpu_pagelist_fraction;
5462 			setup_pagelist_highmark(
5463 				per_cpu_ptr(zone->pageset, cpu), high);
5464 		}
5465 	}
5466 	return 0;
5467 }
5468 
5469 int hashdist = HASHDIST_DEFAULT;
5470 
5471 #ifdef CONFIG_NUMA
5472 static int __init set_hashdist(char *str)
5473 {
5474 	if (!str)
5475 		return 0;
5476 	hashdist = simple_strtoul(str, &str, 0);
5477 	return 1;
5478 }
5479 __setup("hashdist=", set_hashdist);
5480 #endif
5481 
5482 /*
5483  * allocate a large system hash table from bootmem
5484  * - it is assumed that the hash table must contain an exact power-of-2
5485  *   quantity of entries
5486  * - limit is the number of hash buckets, not the total allocation size
5487  */
5488 void *__init alloc_large_system_hash(const char *tablename,
5489 				     unsigned long bucketsize,
5490 				     unsigned long numentries,
5491 				     int scale,
5492 				     int flags,
5493 				     unsigned int *_hash_shift,
5494 				     unsigned int *_hash_mask,
5495 				     unsigned long low_limit,
5496 				     unsigned long high_limit)
5497 {
5498 	unsigned long long max = high_limit;
5499 	unsigned long log2qty, size;
5500 	void *table = NULL;
5501 
5502 	/* allow the kernel cmdline to have a say */
5503 	if (!numentries) {
5504 		/* round applicable memory size up to nearest megabyte */
5505 		numentries = nr_kernel_pages;
5506 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5507 		numentries >>= 20 - PAGE_SHIFT;
5508 		numentries <<= 20 - PAGE_SHIFT;
5509 
5510 		/* limit to 1 bucket per 2^scale bytes of low memory */
5511 		if (scale > PAGE_SHIFT)
5512 			numentries >>= (scale - PAGE_SHIFT);
5513 		else
5514 			numentries <<= (PAGE_SHIFT - scale);
5515 
5516 		/* Make sure we've got at least a 0-order allocation.. */
5517 		if (unlikely(flags & HASH_SMALL)) {
5518 			/* Makes no sense without HASH_EARLY */
5519 			WARN_ON(!(flags & HASH_EARLY));
5520 			if (!(numentries >> *_hash_shift)) {
5521 				numentries = 1UL << *_hash_shift;
5522 				BUG_ON(!numentries);
5523 			}
5524 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5525 			numentries = PAGE_SIZE / bucketsize;
5526 	}
5527 	numentries = roundup_pow_of_two(numentries);
5528 
5529 	/* limit allocation size to 1/16 total memory by default */
5530 	if (max == 0) {
5531 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5532 		do_div(max, bucketsize);
5533 	}
5534 	max = min(max, 0x80000000ULL);
5535 
5536 	if (numentries < low_limit)
5537 		numentries = low_limit;
5538 	if (numentries > max)
5539 		numentries = max;
5540 
5541 	log2qty = ilog2(numentries);
5542 
5543 	do {
5544 		size = bucketsize << log2qty;
5545 		if (flags & HASH_EARLY)
5546 			table = alloc_bootmem_nopanic(size);
5547 		else if (hashdist)
5548 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5549 		else {
5550 			/*
5551 			 * If bucketsize is not a power-of-two, we may free
5552 			 * some pages at the end of hash table which
5553 			 * alloc_pages_exact() automatically does
5554 			 */
5555 			if (get_order(size) < MAX_ORDER) {
5556 				table = alloc_pages_exact(size, GFP_ATOMIC);
5557 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5558 			}
5559 		}
5560 	} while (!table && size > PAGE_SIZE && --log2qty);
5561 
5562 	if (!table)
5563 		panic("Failed to allocate %s hash table\n", tablename);
5564 
5565 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5566 	       tablename,
5567 	       (1UL << log2qty),
5568 	       ilog2(size) - PAGE_SHIFT,
5569 	       size);
5570 
5571 	if (_hash_shift)
5572 		*_hash_shift = log2qty;
5573 	if (_hash_mask)
5574 		*_hash_mask = (1 << log2qty) - 1;
5575 
5576 	return table;
5577 }
5578 
5579 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5580 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5581 							unsigned long pfn)
5582 {
5583 #ifdef CONFIG_SPARSEMEM
5584 	return __pfn_to_section(pfn)->pageblock_flags;
5585 #else
5586 	return zone->pageblock_flags;
5587 #endif /* CONFIG_SPARSEMEM */
5588 }
5589 
5590 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5591 {
5592 #ifdef CONFIG_SPARSEMEM
5593 	pfn &= (PAGES_PER_SECTION-1);
5594 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5595 #else
5596 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5597 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5598 #endif /* CONFIG_SPARSEMEM */
5599 }
5600 
5601 /**
5602  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5603  * @page: The page within the block of interest
5604  * @start_bitidx: The first bit of interest to retrieve
5605  * @end_bitidx: The last bit of interest
5606  * returns pageblock_bits flags
5607  */
5608 unsigned long get_pageblock_flags_group(struct page *page,
5609 					int start_bitidx, int end_bitidx)
5610 {
5611 	struct zone *zone;
5612 	unsigned long *bitmap;
5613 	unsigned long pfn, bitidx;
5614 	unsigned long flags = 0;
5615 	unsigned long value = 1;
5616 
5617 	zone = page_zone(page);
5618 	pfn = page_to_pfn(page);
5619 	bitmap = get_pageblock_bitmap(zone, pfn);
5620 	bitidx = pfn_to_bitidx(zone, pfn);
5621 
5622 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5623 		if (test_bit(bitidx + start_bitidx, bitmap))
5624 			flags |= value;
5625 
5626 	return flags;
5627 }
5628 
5629 /**
5630  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5631  * @page: The page within the block of interest
5632  * @start_bitidx: The first bit of interest
5633  * @end_bitidx: The last bit of interest
5634  * @flags: The flags to set
5635  */
5636 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5637 					int start_bitidx, int end_bitidx)
5638 {
5639 	struct zone *zone;
5640 	unsigned long *bitmap;
5641 	unsigned long pfn, bitidx;
5642 	unsigned long value = 1;
5643 
5644 	zone = page_zone(page);
5645 	pfn = page_to_pfn(page);
5646 	bitmap = get_pageblock_bitmap(zone, pfn);
5647 	bitidx = pfn_to_bitidx(zone, pfn);
5648 	VM_BUG_ON(pfn < zone->zone_start_pfn);
5649 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5650 
5651 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5652 		if (flags & value)
5653 			__set_bit(bitidx + start_bitidx, bitmap);
5654 		else
5655 			__clear_bit(bitidx + start_bitidx, bitmap);
5656 }
5657 
5658 /*
5659  * This function checks whether pageblock includes unmovable pages or not.
5660  * If @count is not zero, it is okay to include less @count unmovable pages
5661  *
5662  * PageLRU check wihtout isolation or lru_lock could race so that
5663  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5664  * expect this function should be exact.
5665  */
5666 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5667 			 bool skip_hwpoisoned_pages)
5668 {
5669 	unsigned long pfn, iter, found;
5670 	int mt;
5671 
5672 	/*
5673 	 * For avoiding noise data, lru_add_drain_all() should be called
5674 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
5675 	 */
5676 	if (zone_idx(zone) == ZONE_MOVABLE)
5677 		return false;
5678 	mt = get_pageblock_migratetype(page);
5679 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5680 		return false;
5681 
5682 	pfn = page_to_pfn(page);
5683 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5684 		unsigned long check = pfn + iter;
5685 
5686 		if (!pfn_valid_within(check))
5687 			continue;
5688 
5689 		page = pfn_to_page(check);
5690 		/*
5691 		 * We can't use page_count without pin a page
5692 		 * because another CPU can free compound page.
5693 		 * This check already skips compound tails of THP
5694 		 * because their page->_count is zero at all time.
5695 		 */
5696 		if (!atomic_read(&page->_count)) {
5697 			if (PageBuddy(page))
5698 				iter += (1 << page_order(page)) - 1;
5699 			continue;
5700 		}
5701 
5702 		/*
5703 		 * The HWPoisoned page may be not in buddy system, and
5704 		 * page_count() is not 0.
5705 		 */
5706 		if (skip_hwpoisoned_pages && PageHWPoison(page))
5707 			continue;
5708 
5709 		if (!PageLRU(page))
5710 			found++;
5711 		/*
5712 		 * If there are RECLAIMABLE pages, we need to check it.
5713 		 * But now, memory offline itself doesn't call shrink_slab()
5714 		 * and it still to be fixed.
5715 		 */
5716 		/*
5717 		 * If the page is not RAM, page_count()should be 0.
5718 		 * we don't need more check. This is an _used_ not-movable page.
5719 		 *
5720 		 * The problematic thing here is PG_reserved pages. PG_reserved
5721 		 * is set to both of a memory hole page and a _used_ kernel
5722 		 * page at boot.
5723 		 */
5724 		if (found > count)
5725 			return true;
5726 	}
5727 	return false;
5728 }
5729 
5730 bool is_pageblock_removable_nolock(struct page *page)
5731 {
5732 	struct zone *zone;
5733 	unsigned long pfn;
5734 
5735 	/*
5736 	 * We have to be careful here because we are iterating over memory
5737 	 * sections which are not zone aware so we might end up outside of
5738 	 * the zone but still within the section.
5739 	 * We have to take care about the node as well. If the node is offline
5740 	 * its NODE_DATA will be NULL - see page_zone.
5741 	 */
5742 	if (!node_online(page_to_nid(page)))
5743 		return false;
5744 
5745 	zone = page_zone(page);
5746 	pfn = page_to_pfn(page);
5747 	if (zone->zone_start_pfn > pfn ||
5748 			zone->zone_start_pfn + zone->spanned_pages <= pfn)
5749 		return false;
5750 
5751 	return !has_unmovable_pages(zone, page, 0, true);
5752 }
5753 
5754 #ifdef CONFIG_CMA
5755 
5756 static unsigned long pfn_max_align_down(unsigned long pfn)
5757 {
5758 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5759 			     pageblock_nr_pages) - 1);
5760 }
5761 
5762 static unsigned long pfn_max_align_up(unsigned long pfn)
5763 {
5764 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5765 				pageblock_nr_pages));
5766 }
5767 
5768 /* [start, end) must belong to a single zone. */
5769 static int __alloc_contig_migrate_range(struct compact_control *cc,
5770 					unsigned long start, unsigned long end)
5771 {
5772 	/* This function is based on compact_zone() from compaction.c. */
5773 	unsigned long nr_reclaimed;
5774 	unsigned long pfn = start;
5775 	unsigned int tries = 0;
5776 	int ret = 0;
5777 
5778 	migrate_prep();
5779 
5780 	while (pfn < end || !list_empty(&cc->migratepages)) {
5781 		if (fatal_signal_pending(current)) {
5782 			ret = -EINTR;
5783 			break;
5784 		}
5785 
5786 		if (list_empty(&cc->migratepages)) {
5787 			cc->nr_migratepages = 0;
5788 			pfn = isolate_migratepages_range(cc->zone, cc,
5789 							 pfn, end, true);
5790 			if (!pfn) {
5791 				ret = -EINTR;
5792 				break;
5793 			}
5794 			tries = 0;
5795 		} else if (++tries == 5) {
5796 			ret = ret < 0 ? ret : -EBUSY;
5797 			break;
5798 		}
5799 
5800 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5801 							&cc->migratepages);
5802 		cc->nr_migratepages -= nr_reclaimed;
5803 
5804 		ret = migrate_pages(&cc->migratepages,
5805 				    alloc_migrate_target,
5806 				    0, false, MIGRATE_SYNC,
5807 				    MR_CMA);
5808 	}
5809 
5810 	putback_movable_pages(&cc->migratepages);
5811 	return ret > 0 ? 0 : ret;
5812 }
5813 
5814 /**
5815  * alloc_contig_range() -- tries to allocate given range of pages
5816  * @start:	start PFN to allocate
5817  * @end:	one-past-the-last PFN to allocate
5818  * @migratetype:	migratetype of the underlaying pageblocks (either
5819  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
5820  *			in range must have the same migratetype and it must
5821  *			be either of the two.
5822  *
5823  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5824  * aligned, however it's the caller's responsibility to guarantee that
5825  * we are the only thread that changes migrate type of pageblocks the
5826  * pages fall in.
5827  *
5828  * The PFN range must belong to a single zone.
5829  *
5830  * Returns zero on success or negative error code.  On success all
5831  * pages which PFN is in [start, end) are allocated for the caller and
5832  * need to be freed with free_contig_range().
5833  */
5834 int alloc_contig_range(unsigned long start, unsigned long end,
5835 		       unsigned migratetype)
5836 {
5837 	unsigned long outer_start, outer_end;
5838 	int ret = 0, order;
5839 
5840 	struct compact_control cc = {
5841 		.nr_migratepages = 0,
5842 		.order = -1,
5843 		.zone = page_zone(pfn_to_page(start)),
5844 		.sync = true,
5845 		.ignore_skip_hint = true,
5846 	};
5847 	INIT_LIST_HEAD(&cc.migratepages);
5848 
5849 	/*
5850 	 * What we do here is we mark all pageblocks in range as
5851 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
5852 	 * have different sizes, and due to the way page allocator
5853 	 * work, we align the range to biggest of the two pages so
5854 	 * that page allocator won't try to merge buddies from
5855 	 * different pageblocks and change MIGRATE_ISOLATE to some
5856 	 * other migration type.
5857 	 *
5858 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5859 	 * migrate the pages from an unaligned range (ie. pages that
5860 	 * we are interested in).  This will put all the pages in
5861 	 * range back to page allocator as MIGRATE_ISOLATE.
5862 	 *
5863 	 * When this is done, we take the pages in range from page
5864 	 * allocator removing them from the buddy system.  This way
5865 	 * page allocator will never consider using them.
5866 	 *
5867 	 * This lets us mark the pageblocks back as
5868 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5869 	 * aligned range but not in the unaligned, original range are
5870 	 * put back to page allocator so that buddy can use them.
5871 	 */
5872 
5873 	ret = start_isolate_page_range(pfn_max_align_down(start),
5874 				       pfn_max_align_up(end), migratetype,
5875 				       false);
5876 	if (ret)
5877 		return ret;
5878 
5879 	ret = __alloc_contig_migrate_range(&cc, start, end);
5880 	if (ret)
5881 		goto done;
5882 
5883 	/*
5884 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5885 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
5886 	 * more, all pages in [start, end) are free in page allocator.
5887 	 * What we are going to do is to allocate all pages from
5888 	 * [start, end) (that is remove them from page allocator).
5889 	 *
5890 	 * The only problem is that pages at the beginning and at the
5891 	 * end of interesting range may be not aligned with pages that
5892 	 * page allocator holds, ie. they can be part of higher order
5893 	 * pages.  Because of this, we reserve the bigger range and
5894 	 * once this is done free the pages we are not interested in.
5895 	 *
5896 	 * We don't have to hold zone->lock here because the pages are
5897 	 * isolated thus they won't get removed from buddy.
5898 	 */
5899 
5900 	lru_add_drain_all();
5901 	drain_all_pages();
5902 
5903 	order = 0;
5904 	outer_start = start;
5905 	while (!PageBuddy(pfn_to_page(outer_start))) {
5906 		if (++order >= MAX_ORDER) {
5907 			ret = -EBUSY;
5908 			goto done;
5909 		}
5910 		outer_start &= ~0UL << order;
5911 	}
5912 
5913 	/* Make sure the range is really isolated. */
5914 	if (test_pages_isolated(outer_start, end, false)) {
5915 		pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5916 		       outer_start, end);
5917 		ret = -EBUSY;
5918 		goto done;
5919 	}
5920 
5921 
5922 	/* Grab isolated pages from freelists. */
5923 	outer_end = isolate_freepages_range(&cc, outer_start, end);
5924 	if (!outer_end) {
5925 		ret = -EBUSY;
5926 		goto done;
5927 	}
5928 
5929 	/* Free head and tail (if any) */
5930 	if (start != outer_start)
5931 		free_contig_range(outer_start, start - outer_start);
5932 	if (end != outer_end)
5933 		free_contig_range(end, outer_end - end);
5934 
5935 done:
5936 	undo_isolate_page_range(pfn_max_align_down(start),
5937 				pfn_max_align_up(end), migratetype);
5938 	return ret;
5939 }
5940 
5941 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5942 {
5943 	unsigned int count = 0;
5944 
5945 	for (; nr_pages--; pfn++) {
5946 		struct page *page = pfn_to_page(pfn);
5947 
5948 		count += page_count(page) != 1;
5949 		__free_page(page);
5950 	}
5951 	WARN(count != 0, "%d pages are still in use!\n", count);
5952 }
5953 #endif
5954 
5955 #ifdef CONFIG_MEMORY_HOTPLUG
5956 static int __meminit __zone_pcp_update(void *data)
5957 {
5958 	struct zone *zone = data;
5959 	int cpu;
5960 	unsigned long batch = zone_batchsize(zone), flags;
5961 
5962 	for_each_possible_cpu(cpu) {
5963 		struct per_cpu_pageset *pset;
5964 		struct per_cpu_pages *pcp;
5965 
5966 		pset = per_cpu_ptr(zone->pageset, cpu);
5967 		pcp = &pset->pcp;
5968 
5969 		local_irq_save(flags);
5970 		if (pcp->count > 0)
5971 			free_pcppages_bulk(zone, pcp->count, pcp);
5972 		drain_zonestat(zone, pset);
5973 		setup_pageset(pset, batch);
5974 		local_irq_restore(flags);
5975 	}
5976 	return 0;
5977 }
5978 
5979 void __meminit zone_pcp_update(struct zone *zone)
5980 {
5981 	stop_machine(__zone_pcp_update, zone, NULL);
5982 }
5983 #endif
5984 
5985 void zone_pcp_reset(struct zone *zone)
5986 {
5987 	unsigned long flags;
5988 	int cpu;
5989 	struct per_cpu_pageset *pset;
5990 
5991 	/* avoid races with drain_pages()  */
5992 	local_irq_save(flags);
5993 	if (zone->pageset != &boot_pageset) {
5994 		for_each_online_cpu(cpu) {
5995 			pset = per_cpu_ptr(zone->pageset, cpu);
5996 			drain_zonestat(zone, pset);
5997 		}
5998 		free_percpu(zone->pageset);
5999 		zone->pageset = &boot_pageset;
6000 	}
6001 	local_irq_restore(flags);
6002 }
6003 
6004 #ifdef CONFIG_MEMORY_HOTREMOVE
6005 /*
6006  * All pages in the range must be isolated before calling this.
6007  */
6008 void
6009 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6010 {
6011 	struct page *page;
6012 	struct zone *zone;
6013 	int order, i;
6014 	unsigned long pfn;
6015 	unsigned long flags;
6016 	/* find the first valid pfn */
6017 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6018 		if (pfn_valid(pfn))
6019 			break;
6020 	if (pfn == end_pfn)
6021 		return;
6022 	zone = page_zone(pfn_to_page(pfn));
6023 	spin_lock_irqsave(&zone->lock, flags);
6024 	pfn = start_pfn;
6025 	while (pfn < end_pfn) {
6026 		if (!pfn_valid(pfn)) {
6027 			pfn++;
6028 			continue;
6029 		}
6030 		page = pfn_to_page(pfn);
6031 		/*
6032 		 * The HWPoisoned page may be not in buddy system, and
6033 		 * page_count() is not 0.
6034 		 */
6035 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6036 			pfn++;
6037 			SetPageReserved(page);
6038 			continue;
6039 		}
6040 
6041 		BUG_ON(page_count(page));
6042 		BUG_ON(!PageBuddy(page));
6043 		order = page_order(page);
6044 #ifdef CONFIG_DEBUG_VM
6045 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6046 		       pfn, 1 << order, end_pfn);
6047 #endif
6048 		list_del(&page->lru);
6049 		rmv_page_order(page);
6050 		zone->free_area[order].nr_free--;
6051 		for (i = 0; i < (1 << order); i++)
6052 			SetPageReserved((page+i));
6053 		pfn += (1 << order);
6054 	}
6055 	spin_unlock_irqrestore(&zone->lock, flags);
6056 }
6057 #endif
6058 
6059 #ifdef CONFIG_MEMORY_FAILURE
6060 bool is_free_buddy_page(struct page *page)
6061 {
6062 	struct zone *zone = page_zone(page);
6063 	unsigned long pfn = page_to_pfn(page);
6064 	unsigned long flags;
6065 	int order;
6066 
6067 	spin_lock_irqsave(&zone->lock, flags);
6068 	for (order = 0; order < MAX_ORDER; order++) {
6069 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6070 
6071 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6072 			break;
6073 	}
6074 	spin_unlock_irqrestore(&zone->lock, flags);
6075 
6076 	return order < MAX_ORDER;
6077 }
6078 #endif
6079 
6080 static const struct trace_print_flags pageflag_names[] = {
6081 	{1UL << PG_locked,		"locked"	},
6082 	{1UL << PG_error,		"error"		},
6083 	{1UL << PG_referenced,		"referenced"	},
6084 	{1UL << PG_uptodate,		"uptodate"	},
6085 	{1UL << PG_dirty,		"dirty"		},
6086 	{1UL << PG_lru,			"lru"		},
6087 	{1UL << PG_active,		"active"	},
6088 	{1UL << PG_slab,		"slab"		},
6089 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
6090 	{1UL << PG_arch_1,		"arch_1"	},
6091 	{1UL << PG_reserved,		"reserved"	},
6092 	{1UL << PG_private,		"private"	},
6093 	{1UL << PG_private_2,		"private_2"	},
6094 	{1UL << PG_writeback,		"writeback"	},
6095 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6096 	{1UL << PG_head,		"head"		},
6097 	{1UL << PG_tail,		"tail"		},
6098 #else
6099 	{1UL << PG_compound,		"compound"	},
6100 #endif
6101 	{1UL << PG_swapcache,		"swapcache"	},
6102 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
6103 	{1UL << PG_reclaim,		"reclaim"	},
6104 	{1UL << PG_swapbacked,		"swapbacked"	},
6105 	{1UL << PG_unevictable,		"unevictable"	},
6106 #ifdef CONFIG_MMU
6107 	{1UL << PG_mlocked,		"mlocked"	},
6108 #endif
6109 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6110 	{1UL << PG_uncached,		"uncached"	},
6111 #endif
6112 #ifdef CONFIG_MEMORY_FAILURE
6113 	{1UL << PG_hwpoison,		"hwpoison"	},
6114 #endif
6115 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6116 	{1UL << PG_compound_lock,	"compound_lock"	},
6117 #endif
6118 };
6119 
6120 static void dump_page_flags(unsigned long flags)
6121 {
6122 	const char *delim = "";
6123 	unsigned long mask;
6124 	int i;
6125 
6126 	BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6127 
6128 	printk(KERN_ALERT "page flags: %#lx(", flags);
6129 
6130 	/* remove zone id */
6131 	flags &= (1UL << NR_PAGEFLAGS) - 1;
6132 
6133 	for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6134 
6135 		mask = pageflag_names[i].mask;
6136 		if ((flags & mask) != mask)
6137 			continue;
6138 
6139 		flags &= ~mask;
6140 		printk("%s%s", delim, pageflag_names[i].name);
6141 		delim = "|";
6142 	}
6143 
6144 	/* check for left over flags */
6145 	if (flags)
6146 		printk("%s%#lx", delim, flags);
6147 
6148 	printk(")\n");
6149 }
6150 
6151 void dump_page(struct page *page)
6152 {
6153 	printk(KERN_ALERT
6154 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6155 		page, atomic_read(&page->_count), page_mapcount(page),
6156 		page->mapping, page->index);
6157 	dump_page_flags(page->flags);
6158 	mem_cgroup_print_bad_page(page);
6159 }
6160