1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <linux/ftrace_event.h> 57 #include <linux/memcontrol.h> 58 #include <linux/prefetch.h> 59 #include <linux/migrate.h> 60 #include <linux/page-debug-flags.h> 61 #include <linux/sched/rt.h> 62 63 #include <asm/tlbflush.h> 64 #include <asm/div64.h> 65 #include "internal.h" 66 67 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 68 DEFINE_PER_CPU(int, numa_node); 69 EXPORT_PER_CPU_SYMBOL(numa_node); 70 #endif 71 72 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 73 /* 74 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 75 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 76 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 77 * defined in <linux/topology.h>. 78 */ 79 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 80 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 81 #endif 82 83 /* 84 * Array of node states. 85 */ 86 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 87 [N_POSSIBLE] = NODE_MASK_ALL, 88 [N_ONLINE] = { { [0] = 1UL } }, 89 #ifndef CONFIG_NUMA 90 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 91 #ifdef CONFIG_HIGHMEM 92 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 93 #endif 94 #ifdef CONFIG_MOVABLE_NODE 95 [N_MEMORY] = { { [0] = 1UL } }, 96 #endif 97 [N_CPU] = { { [0] = 1UL } }, 98 #endif /* NUMA */ 99 }; 100 EXPORT_SYMBOL(node_states); 101 102 unsigned long totalram_pages __read_mostly; 103 unsigned long totalreserve_pages __read_mostly; 104 /* 105 * When calculating the number of globally allowed dirty pages, there 106 * is a certain number of per-zone reserves that should not be 107 * considered dirtyable memory. This is the sum of those reserves 108 * over all existing zones that contribute dirtyable memory. 109 */ 110 unsigned long dirty_balance_reserve __read_mostly; 111 112 int percpu_pagelist_fraction; 113 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 114 115 #ifdef CONFIG_PM_SLEEP 116 /* 117 * The following functions are used by the suspend/hibernate code to temporarily 118 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 119 * while devices are suspended. To avoid races with the suspend/hibernate code, 120 * they should always be called with pm_mutex held (gfp_allowed_mask also should 121 * only be modified with pm_mutex held, unless the suspend/hibernate code is 122 * guaranteed not to run in parallel with that modification). 123 */ 124 125 static gfp_t saved_gfp_mask; 126 127 void pm_restore_gfp_mask(void) 128 { 129 WARN_ON(!mutex_is_locked(&pm_mutex)); 130 if (saved_gfp_mask) { 131 gfp_allowed_mask = saved_gfp_mask; 132 saved_gfp_mask = 0; 133 } 134 } 135 136 void pm_restrict_gfp_mask(void) 137 { 138 WARN_ON(!mutex_is_locked(&pm_mutex)); 139 WARN_ON(saved_gfp_mask); 140 saved_gfp_mask = gfp_allowed_mask; 141 gfp_allowed_mask &= ~GFP_IOFS; 142 } 143 144 bool pm_suspended_storage(void) 145 { 146 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 147 return false; 148 return true; 149 } 150 #endif /* CONFIG_PM_SLEEP */ 151 152 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 153 int pageblock_order __read_mostly; 154 #endif 155 156 static void __free_pages_ok(struct page *page, unsigned int order); 157 158 /* 159 * results with 256, 32 in the lowmem_reserve sysctl: 160 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 161 * 1G machine -> (16M dma, 784M normal, 224M high) 162 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 163 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 164 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 165 * 166 * TBD: should special case ZONE_DMA32 machines here - in those we normally 167 * don't need any ZONE_NORMAL reservation 168 */ 169 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 170 #ifdef CONFIG_ZONE_DMA 171 256, 172 #endif 173 #ifdef CONFIG_ZONE_DMA32 174 256, 175 #endif 176 #ifdef CONFIG_HIGHMEM 177 32, 178 #endif 179 32, 180 }; 181 182 EXPORT_SYMBOL(totalram_pages); 183 184 static char * const zone_names[MAX_NR_ZONES] = { 185 #ifdef CONFIG_ZONE_DMA 186 "DMA", 187 #endif 188 #ifdef CONFIG_ZONE_DMA32 189 "DMA32", 190 #endif 191 "Normal", 192 #ifdef CONFIG_HIGHMEM 193 "HighMem", 194 #endif 195 "Movable", 196 }; 197 198 int min_free_kbytes = 1024; 199 200 static unsigned long __meminitdata nr_kernel_pages; 201 static unsigned long __meminitdata nr_all_pages; 202 static unsigned long __meminitdata dma_reserve; 203 204 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 205 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 206 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 207 static unsigned long __initdata required_kernelcore; 208 static unsigned long __initdata required_movablecore; 209 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 210 211 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 212 int movable_zone; 213 EXPORT_SYMBOL(movable_zone); 214 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 215 216 #if MAX_NUMNODES > 1 217 int nr_node_ids __read_mostly = MAX_NUMNODES; 218 int nr_online_nodes __read_mostly = 1; 219 EXPORT_SYMBOL(nr_node_ids); 220 EXPORT_SYMBOL(nr_online_nodes); 221 #endif 222 223 int page_group_by_mobility_disabled __read_mostly; 224 225 void set_pageblock_migratetype(struct page *page, int migratetype) 226 { 227 228 if (unlikely(page_group_by_mobility_disabled)) 229 migratetype = MIGRATE_UNMOVABLE; 230 231 set_pageblock_flags_group(page, (unsigned long)migratetype, 232 PB_migrate, PB_migrate_end); 233 } 234 235 bool oom_killer_disabled __read_mostly; 236 237 #ifdef CONFIG_DEBUG_VM 238 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 239 { 240 int ret = 0; 241 unsigned seq; 242 unsigned long pfn = page_to_pfn(page); 243 244 do { 245 seq = zone_span_seqbegin(zone); 246 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 247 ret = 1; 248 else if (pfn < zone->zone_start_pfn) 249 ret = 1; 250 } while (zone_span_seqretry(zone, seq)); 251 252 return ret; 253 } 254 255 static int page_is_consistent(struct zone *zone, struct page *page) 256 { 257 if (!pfn_valid_within(page_to_pfn(page))) 258 return 0; 259 if (zone != page_zone(page)) 260 return 0; 261 262 return 1; 263 } 264 /* 265 * Temporary debugging check for pages not lying within a given zone. 266 */ 267 static int bad_range(struct zone *zone, struct page *page) 268 { 269 if (page_outside_zone_boundaries(zone, page)) 270 return 1; 271 if (!page_is_consistent(zone, page)) 272 return 1; 273 274 return 0; 275 } 276 #else 277 static inline int bad_range(struct zone *zone, struct page *page) 278 { 279 return 0; 280 } 281 #endif 282 283 static void bad_page(struct page *page) 284 { 285 static unsigned long resume; 286 static unsigned long nr_shown; 287 static unsigned long nr_unshown; 288 289 /* Don't complain about poisoned pages */ 290 if (PageHWPoison(page)) { 291 reset_page_mapcount(page); /* remove PageBuddy */ 292 return; 293 } 294 295 /* 296 * Allow a burst of 60 reports, then keep quiet for that minute; 297 * or allow a steady drip of one report per second. 298 */ 299 if (nr_shown == 60) { 300 if (time_before(jiffies, resume)) { 301 nr_unshown++; 302 goto out; 303 } 304 if (nr_unshown) { 305 printk(KERN_ALERT 306 "BUG: Bad page state: %lu messages suppressed\n", 307 nr_unshown); 308 nr_unshown = 0; 309 } 310 nr_shown = 0; 311 } 312 if (nr_shown++ == 0) 313 resume = jiffies + 60 * HZ; 314 315 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 316 current->comm, page_to_pfn(page)); 317 dump_page(page); 318 319 print_modules(); 320 dump_stack(); 321 out: 322 /* Leave bad fields for debug, except PageBuddy could make trouble */ 323 reset_page_mapcount(page); /* remove PageBuddy */ 324 add_taint(TAINT_BAD_PAGE); 325 } 326 327 /* 328 * Higher-order pages are called "compound pages". They are structured thusly: 329 * 330 * The first PAGE_SIZE page is called the "head page". 331 * 332 * The remaining PAGE_SIZE pages are called "tail pages". 333 * 334 * All pages have PG_compound set. All tail pages have their ->first_page 335 * pointing at the head page. 336 * 337 * The first tail page's ->lru.next holds the address of the compound page's 338 * put_page() function. Its ->lru.prev holds the order of allocation. 339 * This usage means that zero-order pages may not be compound. 340 */ 341 342 static void free_compound_page(struct page *page) 343 { 344 __free_pages_ok(page, compound_order(page)); 345 } 346 347 void prep_compound_page(struct page *page, unsigned long order) 348 { 349 int i; 350 int nr_pages = 1 << order; 351 352 set_compound_page_dtor(page, free_compound_page); 353 set_compound_order(page, order); 354 __SetPageHead(page); 355 for (i = 1; i < nr_pages; i++) { 356 struct page *p = page + i; 357 __SetPageTail(p); 358 set_page_count(p, 0); 359 p->first_page = page; 360 } 361 } 362 363 /* update __split_huge_page_refcount if you change this function */ 364 static int destroy_compound_page(struct page *page, unsigned long order) 365 { 366 int i; 367 int nr_pages = 1 << order; 368 int bad = 0; 369 370 if (unlikely(compound_order(page) != order)) { 371 bad_page(page); 372 bad++; 373 } 374 375 __ClearPageHead(page); 376 377 for (i = 1; i < nr_pages; i++) { 378 struct page *p = page + i; 379 380 if (unlikely(!PageTail(p) || (p->first_page != page))) { 381 bad_page(page); 382 bad++; 383 } 384 __ClearPageTail(p); 385 } 386 387 return bad; 388 } 389 390 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 391 { 392 int i; 393 394 /* 395 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 396 * and __GFP_HIGHMEM from hard or soft interrupt context. 397 */ 398 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 399 for (i = 0; i < (1 << order); i++) 400 clear_highpage(page + i); 401 } 402 403 #ifdef CONFIG_DEBUG_PAGEALLOC 404 unsigned int _debug_guardpage_minorder; 405 406 static int __init debug_guardpage_minorder_setup(char *buf) 407 { 408 unsigned long res; 409 410 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 411 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 412 return 0; 413 } 414 _debug_guardpage_minorder = res; 415 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 416 return 0; 417 } 418 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 419 420 static inline void set_page_guard_flag(struct page *page) 421 { 422 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 423 } 424 425 static inline void clear_page_guard_flag(struct page *page) 426 { 427 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 428 } 429 #else 430 static inline void set_page_guard_flag(struct page *page) { } 431 static inline void clear_page_guard_flag(struct page *page) { } 432 #endif 433 434 static inline void set_page_order(struct page *page, int order) 435 { 436 set_page_private(page, order); 437 __SetPageBuddy(page); 438 } 439 440 static inline void rmv_page_order(struct page *page) 441 { 442 __ClearPageBuddy(page); 443 set_page_private(page, 0); 444 } 445 446 /* 447 * Locate the struct page for both the matching buddy in our 448 * pair (buddy1) and the combined O(n+1) page they form (page). 449 * 450 * 1) Any buddy B1 will have an order O twin B2 which satisfies 451 * the following equation: 452 * B2 = B1 ^ (1 << O) 453 * For example, if the starting buddy (buddy2) is #8 its order 454 * 1 buddy is #10: 455 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 456 * 457 * 2) Any buddy B will have an order O+1 parent P which 458 * satisfies the following equation: 459 * P = B & ~(1 << O) 460 * 461 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 462 */ 463 static inline unsigned long 464 __find_buddy_index(unsigned long page_idx, unsigned int order) 465 { 466 return page_idx ^ (1 << order); 467 } 468 469 /* 470 * This function checks whether a page is free && is the buddy 471 * we can do coalesce a page and its buddy if 472 * (a) the buddy is not in a hole && 473 * (b) the buddy is in the buddy system && 474 * (c) a page and its buddy have the same order && 475 * (d) a page and its buddy are in the same zone. 476 * 477 * For recording whether a page is in the buddy system, we set ->_mapcount -2. 478 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. 479 * 480 * For recording page's order, we use page_private(page). 481 */ 482 static inline int page_is_buddy(struct page *page, struct page *buddy, 483 int order) 484 { 485 if (!pfn_valid_within(page_to_pfn(buddy))) 486 return 0; 487 488 if (page_zone_id(page) != page_zone_id(buddy)) 489 return 0; 490 491 if (page_is_guard(buddy) && page_order(buddy) == order) { 492 VM_BUG_ON(page_count(buddy) != 0); 493 return 1; 494 } 495 496 if (PageBuddy(buddy) && page_order(buddy) == order) { 497 VM_BUG_ON(page_count(buddy) != 0); 498 return 1; 499 } 500 return 0; 501 } 502 503 /* 504 * Freeing function for a buddy system allocator. 505 * 506 * The concept of a buddy system is to maintain direct-mapped table 507 * (containing bit values) for memory blocks of various "orders". 508 * The bottom level table contains the map for the smallest allocatable 509 * units of memory (here, pages), and each level above it describes 510 * pairs of units from the levels below, hence, "buddies". 511 * At a high level, all that happens here is marking the table entry 512 * at the bottom level available, and propagating the changes upward 513 * as necessary, plus some accounting needed to play nicely with other 514 * parts of the VM system. 515 * At each level, we keep a list of pages, which are heads of continuous 516 * free pages of length of (1 << order) and marked with _mapcount -2. Page's 517 * order is recorded in page_private(page) field. 518 * So when we are allocating or freeing one, we can derive the state of the 519 * other. That is, if we allocate a small block, and both were 520 * free, the remainder of the region must be split into blocks. 521 * If a block is freed, and its buddy is also free, then this 522 * triggers coalescing into a block of larger size. 523 * 524 * -- nyc 525 */ 526 527 static inline void __free_one_page(struct page *page, 528 struct zone *zone, unsigned int order, 529 int migratetype) 530 { 531 unsigned long page_idx; 532 unsigned long combined_idx; 533 unsigned long uninitialized_var(buddy_idx); 534 struct page *buddy; 535 536 if (unlikely(PageCompound(page))) 537 if (unlikely(destroy_compound_page(page, order))) 538 return; 539 540 VM_BUG_ON(migratetype == -1); 541 542 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 543 544 VM_BUG_ON(page_idx & ((1 << order) - 1)); 545 VM_BUG_ON(bad_range(zone, page)); 546 547 while (order < MAX_ORDER-1) { 548 buddy_idx = __find_buddy_index(page_idx, order); 549 buddy = page + (buddy_idx - page_idx); 550 if (!page_is_buddy(page, buddy, order)) 551 break; 552 /* 553 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 554 * merge with it and move up one order. 555 */ 556 if (page_is_guard(buddy)) { 557 clear_page_guard_flag(buddy); 558 set_page_private(page, 0); 559 __mod_zone_freepage_state(zone, 1 << order, 560 migratetype); 561 } else { 562 list_del(&buddy->lru); 563 zone->free_area[order].nr_free--; 564 rmv_page_order(buddy); 565 } 566 combined_idx = buddy_idx & page_idx; 567 page = page + (combined_idx - page_idx); 568 page_idx = combined_idx; 569 order++; 570 } 571 set_page_order(page, order); 572 573 /* 574 * If this is not the largest possible page, check if the buddy 575 * of the next-highest order is free. If it is, it's possible 576 * that pages are being freed that will coalesce soon. In case, 577 * that is happening, add the free page to the tail of the list 578 * so it's less likely to be used soon and more likely to be merged 579 * as a higher order page 580 */ 581 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 582 struct page *higher_page, *higher_buddy; 583 combined_idx = buddy_idx & page_idx; 584 higher_page = page + (combined_idx - page_idx); 585 buddy_idx = __find_buddy_index(combined_idx, order + 1); 586 higher_buddy = higher_page + (buddy_idx - combined_idx); 587 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 588 list_add_tail(&page->lru, 589 &zone->free_area[order].free_list[migratetype]); 590 goto out; 591 } 592 } 593 594 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 595 out: 596 zone->free_area[order].nr_free++; 597 } 598 599 static inline int free_pages_check(struct page *page) 600 { 601 if (unlikely(page_mapcount(page) | 602 (page->mapping != NULL) | 603 (atomic_read(&page->_count) != 0) | 604 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 605 (mem_cgroup_bad_page_check(page)))) { 606 bad_page(page); 607 return 1; 608 } 609 reset_page_last_nid(page); 610 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 611 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 612 return 0; 613 } 614 615 /* 616 * Frees a number of pages from the PCP lists 617 * Assumes all pages on list are in same zone, and of same order. 618 * count is the number of pages to free. 619 * 620 * If the zone was previously in an "all pages pinned" state then look to 621 * see if this freeing clears that state. 622 * 623 * And clear the zone's pages_scanned counter, to hold off the "all pages are 624 * pinned" detection logic. 625 */ 626 static void free_pcppages_bulk(struct zone *zone, int count, 627 struct per_cpu_pages *pcp) 628 { 629 int migratetype = 0; 630 int batch_free = 0; 631 int to_free = count; 632 633 spin_lock(&zone->lock); 634 zone->all_unreclaimable = 0; 635 zone->pages_scanned = 0; 636 637 while (to_free) { 638 struct page *page; 639 struct list_head *list; 640 641 /* 642 * Remove pages from lists in a round-robin fashion. A 643 * batch_free count is maintained that is incremented when an 644 * empty list is encountered. This is so more pages are freed 645 * off fuller lists instead of spinning excessively around empty 646 * lists 647 */ 648 do { 649 batch_free++; 650 if (++migratetype == MIGRATE_PCPTYPES) 651 migratetype = 0; 652 list = &pcp->lists[migratetype]; 653 } while (list_empty(list)); 654 655 /* This is the only non-empty list. Free them all. */ 656 if (batch_free == MIGRATE_PCPTYPES) 657 batch_free = to_free; 658 659 do { 660 int mt; /* migratetype of the to-be-freed page */ 661 662 page = list_entry(list->prev, struct page, lru); 663 /* must delete as __free_one_page list manipulates */ 664 list_del(&page->lru); 665 mt = get_freepage_migratetype(page); 666 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 667 __free_one_page(page, zone, 0, mt); 668 trace_mm_page_pcpu_drain(page, 0, mt); 669 if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) { 670 __mod_zone_page_state(zone, NR_FREE_PAGES, 1); 671 if (is_migrate_cma(mt)) 672 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); 673 } 674 } while (--to_free && --batch_free && !list_empty(list)); 675 } 676 spin_unlock(&zone->lock); 677 } 678 679 static void free_one_page(struct zone *zone, struct page *page, int order, 680 int migratetype) 681 { 682 spin_lock(&zone->lock); 683 zone->all_unreclaimable = 0; 684 zone->pages_scanned = 0; 685 686 __free_one_page(page, zone, order, migratetype); 687 if (unlikely(migratetype != MIGRATE_ISOLATE)) 688 __mod_zone_freepage_state(zone, 1 << order, migratetype); 689 spin_unlock(&zone->lock); 690 } 691 692 static bool free_pages_prepare(struct page *page, unsigned int order) 693 { 694 int i; 695 int bad = 0; 696 697 trace_mm_page_free(page, order); 698 kmemcheck_free_shadow(page, order); 699 700 if (PageAnon(page)) 701 page->mapping = NULL; 702 for (i = 0; i < (1 << order); i++) 703 bad += free_pages_check(page + i); 704 if (bad) 705 return false; 706 707 if (!PageHighMem(page)) { 708 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 709 debug_check_no_obj_freed(page_address(page), 710 PAGE_SIZE << order); 711 } 712 arch_free_page(page, order); 713 kernel_map_pages(page, 1 << order, 0); 714 715 return true; 716 } 717 718 static void __free_pages_ok(struct page *page, unsigned int order) 719 { 720 unsigned long flags; 721 int migratetype; 722 723 if (!free_pages_prepare(page, order)) 724 return; 725 726 local_irq_save(flags); 727 __count_vm_events(PGFREE, 1 << order); 728 migratetype = get_pageblock_migratetype(page); 729 set_freepage_migratetype(page, migratetype); 730 free_one_page(page_zone(page), page, order, migratetype); 731 local_irq_restore(flags); 732 } 733 734 /* 735 * Read access to zone->managed_pages is safe because it's unsigned long, 736 * but we still need to serialize writers. Currently all callers of 737 * __free_pages_bootmem() except put_page_bootmem() should only be used 738 * at boot time. So for shorter boot time, we shift the burden to 739 * put_page_bootmem() to serialize writers. 740 */ 741 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 742 { 743 unsigned int nr_pages = 1 << order; 744 unsigned int loop; 745 746 prefetchw(page); 747 for (loop = 0; loop < nr_pages; loop++) { 748 struct page *p = &page[loop]; 749 750 if (loop + 1 < nr_pages) 751 prefetchw(p + 1); 752 __ClearPageReserved(p); 753 set_page_count(p, 0); 754 } 755 756 page_zone(page)->managed_pages += 1 << order; 757 set_page_refcounted(page); 758 __free_pages(page, order); 759 } 760 761 #ifdef CONFIG_CMA 762 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */ 763 void __init init_cma_reserved_pageblock(struct page *page) 764 { 765 unsigned i = pageblock_nr_pages; 766 struct page *p = page; 767 768 do { 769 __ClearPageReserved(p); 770 set_page_count(p, 0); 771 } while (++p, --i); 772 773 set_page_refcounted(page); 774 set_pageblock_migratetype(page, MIGRATE_CMA); 775 __free_pages(page, pageblock_order); 776 totalram_pages += pageblock_nr_pages; 777 #ifdef CONFIG_HIGHMEM 778 if (PageHighMem(page)) 779 totalhigh_pages += pageblock_nr_pages; 780 #endif 781 } 782 #endif 783 784 /* 785 * The order of subdivision here is critical for the IO subsystem. 786 * Please do not alter this order without good reasons and regression 787 * testing. Specifically, as large blocks of memory are subdivided, 788 * the order in which smaller blocks are delivered depends on the order 789 * they're subdivided in this function. This is the primary factor 790 * influencing the order in which pages are delivered to the IO 791 * subsystem according to empirical testing, and this is also justified 792 * by considering the behavior of a buddy system containing a single 793 * large block of memory acted on by a series of small allocations. 794 * This behavior is a critical factor in sglist merging's success. 795 * 796 * -- nyc 797 */ 798 static inline void expand(struct zone *zone, struct page *page, 799 int low, int high, struct free_area *area, 800 int migratetype) 801 { 802 unsigned long size = 1 << high; 803 804 while (high > low) { 805 area--; 806 high--; 807 size >>= 1; 808 VM_BUG_ON(bad_range(zone, &page[size])); 809 810 #ifdef CONFIG_DEBUG_PAGEALLOC 811 if (high < debug_guardpage_minorder()) { 812 /* 813 * Mark as guard pages (or page), that will allow to 814 * merge back to allocator when buddy will be freed. 815 * Corresponding page table entries will not be touched, 816 * pages will stay not present in virtual address space 817 */ 818 INIT_LIST_HEAD(&page[size].lru); 819 set_page_guard_flag(&page[size]); 820 set_page_private(&page[size], high); 821 /* Guard pages are not available for any usage */ 822 __mod_zone_freepage_state(zone, -(1 << high), 823 migratetype); 824 continue; 825 } 826 #endif 827 list_add(&page[size].lru, &area->free_list[migratetype]); 828 area->nr_free++; 829 set_page_order(&page[size], high); 830 } 831 } 832 833 /* 834 * This page is about to be returned from the page allocator 835 */ 836 static inline int check_new_page(struct page *page) 837 { 838 if (unlikely(page_mapcount(page) | 839 (page->mapping != NULL) | 840 (atomic_read(&page->_count) != 0) | 841 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 842 (mem_cgroup_bad_page_check(page)))) { 843 bad_page(page); 844 return 1; 845 } 846 return 0; 847 } 848 849 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 850 { 851 int i; 852 853 for (i = 0; i < (1 << order); i++) { 854 struct page *p = page + i; 855 if (unlikely(check_new_page(p))) 856 return 1; 857 } 858 859 set_page_private(page, 0); 860 set_page_refcounted(page); 861 862 arch_alloc_page(page, order); 863 kernel_map_pages(page, 1 << order, 1); 864 865 if (gfp_flags & __GFP_ZERO) 866 prep_zero_page(page, order, gfp_flags); 867 868 if (order && (gfp_flags & __GFP_COMP)) 869 prep_compound_page(page, order); 870 871 return 0; 872 } 873 874 /* 875 * Go through the free lists for the given migratetype and remove 876 * the smallest available page from the freelists 877 */ 878 static inline 879 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 880 int migratetype) 881 { 882 unsigned int current_order; 883 struct free_area * area; 884 struct page *page; 885 886 /* Find a page of the appropriate size in the preferred list */ 887 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 888 area = &(zone->free_area[current_order]); 889 if (list_empty(&area->free_list[migratetype])) 890 continue; 891 892 page = list_entry(area->free_list[migratetype].next, 893 struct page, lru); 894 list_del(&page->lru); 895 rmv_page_order(page); 896 area->nr_free--; 897 expand(zone, page, order, current_order, area, migratetype); 898 return page; 899 } 900 901 return NULL; 902 } 903 904 905 /* 906 * This array describes the order lists are fallen back to when 907 * the free lists for the desirable migrate type are depleted 908 */ 909 static int fallbacks[MIGRATE_TYPES][4] = { 910 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 911 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 912 #ifdef CONFIG_CMA 913 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 914 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 915 #else 916 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 917 #endif 918 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 919 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 920 }; 921 922 /* 923 * Move the free pages in a range to the free lists of the requested type. 924 * Note that start_page and end_pages are not aligned on a pageblock 925 * boundary. If alignment is required, use move_freepages_block() 926 */ 927 int move_freepages(struct zone *zone, 928 struct page *start_page, struct page *end_page, 929 int migratetype) 930 { 931 struct page *page; 932 unsigned long order; 933 int pages_moved = 0; 934 935 #ifndef CONFIG_HOLES_IN_ZONE 936 /* 937 * page_zone is not safe to call in this context when 938 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 939 * anyway as we check zone boundaries in move_freepages_block(). 940 * Remove at a later date when no bug reports exist related to 941 * grouping pages by mobility 942 */ 943 BUG_ON(page_zone(start_page) != page_zone(end_page)); 944 #endif 945 946 for (page = start_page; page <= end_page;) { 947 /* Make sure we are not inadvertently changing nodes */ 948 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 949 950 if (!pfn_valid_within(page_to_pfn(page))) { 951 page++; 952 continue; 953 } 954 955 if (!PageBuddy(page)) { 956 page++; 957 continue; 958 } 959 960 order = page_order(page); 961 list_move(&page->lru, 962 &zone->free_area[order].free_list[migratetype]); 963 set_freepage_migratetype(page, migratetype); 964 page += 1 << order; 965 pages_moved += 1 << order; 966 } 967 968 return pages_moved; 969 } 970 971 int move_freepages_block(struct zone *zone, struct page *page, 972 int migratetype) 973 { 974 unsigned long start_pfn, end_pfn; 975 struct page *start_page, *end_page; 976 977 start_pfn = page_to_pfn(page); 978 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 979 start_page = pfn_to_page(start_pfn); 980 end_page = start_page + pageblock_nr_pages - 1; 981 end_pfn = start_pfn + pageblock_nr_pages - 1; 982 983 /* Do not cross zone boundaries */ 984 if (start_pfn < zone->zone_start_pfn) 985 start_page = page; 986 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 987 return 0; 988 989 return move_freepages(zone, start_page, end_page, migratetype); 990 } 991 992 static void change_pageblock_range(struct page *pageblock_page, 993 int start_order, int migratetype) 994 { 995 int nr_pageblocks = 1 << (start_order - pageblock_order); 996 997 while (nr_pageblocks--) { 998 set_pageblock_migratetype(pageblock_page, migratetype); 999 pageblock_page += pageblock_nr_pages; 1000 } 1001 } 1002 1003 /* Remove an element from the buddy allocator from the fallback list */ 1004 static inline struct page * 1005 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 1006 { 1007 struct free_area * area; 1008 int current_order; 1009 struct page *page; 1010 int migratetype, i; 1011 1012 /* Find the largest possible block of pages in the other list */ 1013 for (current_order = MAX_ORDER-1; current_order >= order; 1014 --current_order) { 1015 for (i = 0;; i++) { 1016 migratetype = fallbacks[start_migratetype][i]; 1017 1018 /* MIGRATE_RESERVE handled later if necessary */ 1019 if (migratetype == MIGRATE_RESERVE) 1020 break; 1021 1022 area = &(zone->free_area[current_order]); 1023 if (list_empty(&area->free_list[migratetype])) 1024 continue; 1025 1026 page = list_entry(area->free_list[migratetype].next, 1027 struct page, lru); 1028 area->nr_free--; 1029 1030 /* 1031 * If breaking a large block of pages, move all free 1032 * pages to the preferred allocation list. If falling 1033 * back for a reclaimable kernel allocation, be more 1034 * aggressive about taking ownership of free pages 1035 * 1036 * On the other hand, never change migration 1037 * type of MIGRATE_CMA pageblocks nor move CMA 1038 * pages on different free lists. We don't 1039 * want unmovable pages to be allocated from 1040 * MIGRATE_CMA areas. 1041 */ 1042 if (!is_migrate_cma(migratetype) && 1043 (unlikely(current_order >= pageblock_order / 2) || 1044 start_migratetype == MIGRATE_RECLAIMABLE || 1045 page_group_by_mobility_disabled)) { 1046 int pages; 1047 pages = move_freepages_block(zone, page, 1048 start_migratetype); 1049 1050 /* Claim the whole block if over half of it is free */ 1051 if (pages >= (1 << (pageblock_order-1)) || 1052 page_group_by_mobility_disabled) 1053 set_pageblock_migratetype(page, 1054 start_migratetype); 1055 1056 migratetype = start_migratetype; 1057 } 1058 1059 /* Remove the page from the freelists */ 1060 list_del(&page->lru); 1061 rmv_page_order(page); 1062 1063 /* Take ownership for orders >= pageblock_order */ 1064 if (current_order >= pageblock_order && 1065 !is_migrate_cma(migratetype)) 1066 change_pageblock_range(page, current_order, 1067 start_migratetype); 1068 1069 expand(zone, page, order, current_order, area, 1070 is_migrate_cma(migratetype) 1071 ? migratetype : start_migratetype); 1072 1073 trace_mm_page_alloc_extfrag(page, order, current_order, 1074 start_migratetype, migratetype); 1075 1076 return page; 1077 } 1078 } 1079 1080 return NULL; 1081 } 1082 1083 /* 1084 * Do the hard work of removing an element from the buddy allocator. 1085 * Call me with the zone->lock already held. 1086 */ 1087 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1088 int migratetype) 1089 { 1090 struct page *page; 1091 1092 retry_reserve: 1093 page = __rmqueue_smallest(zone, order, migratetype); 1094 1095 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1096 page = __rmqueue_fallback(zone, order, migratetype); 1097 1098 /* 1099 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1100 * is used because __rmqueue_smallest is an inline function 1101 * and we want just one call site 1102 */ 1103 if (!page) { 1104 migratetype = MIGRATE_RESERVE; 1105 goto retry_reserve; 1106 } 1107 } 1108 1109 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1110 return page; 1111 } 1112 1113 /* 1114 * Obtain a specified number of elements from the buddy allocator, all under 1115 * a single hold of the lock, for efficiency. Add them to the supplied list. 1116 * Returns the number of new pages which were placed at *list. 1117 */ 1118 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1119 unsigned long count, struct list_head *list, 1120 int migratetype, int cold) 1121 { 1122 int mt = migratetype, i; 1123 1124 spin_lock(&zone->lock); 1125 for (i = 0; i < count; ++i) { 1126 struct page *page = __rmqueue(zone, order, migratetype); 1127 if (unlikely(page == NULL)) 1128 break; 1129 1130 /* 1131 * Split buddy pages returned by expand() are received here 1132 * in physical page order. The page is added to the callers and 1133 * list and the list head then moves forward. From the callers 1134 * perspective, the linked list is ordered by page number in 1135 * some conditions. This is useful for IO devices that can 1136 * merge IO requests if the physical pages are ordered 1137 * properly. 1138 */ 1139 if (likely(cold == 0)) 1140 list_add(&page->lru, list); 1141 else 1142 list_add_tail(&page->lru, list); 1143 if (IS_ENABLED(CONFIG_CMA)) { 1144 mt = get_pageblock_migratetype(page); 1145 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE) 1146 mt = migratetype; 1147 } 1148 set_freepage_migratetype(page, mt); 1149 list = &page->lru; 1150 if (is_migrate_cma(mt)) 1151 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1152 -(1 << order)); 1153 } 1154 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1155 spin_unlock(&zone->lock); 1156 return i; 1157 } 1158 1159 #ifdef CONFIG_NUMA 1160 /* 1161 * Called from the vmstat counter updater to drain pagesets of this 1162 * currently executing processor on remote nodes after they have 1163 * expired. 1164 * 1165 * Note that this function must be called with the thread pinned to 1166 * a single processor. 1167 */ 1168 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1169 { 1170 unsigned long flags; 1171 int to_drain; 1172 1173 local_irq_save(flags); 1174 if (pcp->count >= pcp->batch) 1175 to_drain = pcp->batch; 1176 else 1177 to_drain = pcp->count; 1178 if (to_drain > 0) { 1179 free_pcppages_bulk(zone, to_drain, pcp); 1180 pcp->count -= to_drain; 1181 } 1182 local_irq_restore(flags); 1183 } 1184 #endif 1185 1186 /* 1187 * Drain pages of the indicated processor. 1188 * 1189 * The processor must either be the current processor and the 1190 * thread pinned to the current processor or a processor that 1191 * is not online. 1192 */ 1193 static void drain_pages(unsigned int cpu) 1194 { 1195 unsigned long flags; 1196 struct zone *zone; 1197 1198 for_each_populated_zone(zone) { 1199 struct per_cpu_pageset *pset; 1200 struct per_cpu_pages *pcp; 1201 1202 local_irq_save(flags); 1203 pset = per_cpu_ptr(zone->pageset, cpu); 1204 1205 pcp = &pset->pcp; 1206 if (pcp->count) { 1207 free_pcppages_bulk(zone, pcp->count, pcp); 1208 pcp->count = 0; 1209 } 1210 local_irq_restore(flags); 1211 } 1212 } 1213 1214 /* 1215 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1216 */ 1217 void drain_local_pages(void *arg) 1218 { 1219 drain_pages(smp_processor_id()); 1220 } 1221 1222 /* 1223 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1224 * 1225 * Note that this code is protected against sending an IPI to an offline 1226 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1227 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1228 * nothing keeps CPUs from showing up after we populated the cpumask and 1229 * before the call to on_each_cpu_mask(). 1230 */ 1231 void drain_all_pages(void) 1232 { 1233 int cpu; 1234 struct per_cpu_pageset *pcp; 1235 struct zone *zone; 1236 1237 /* 1238 * Allocate in the BSS so we wont require allocation in 1239 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1240 */ 1241 static cpumask_t cpus_with_pcps; 1242 1243 /* 1244 * We don't care about racing with CPU hotplug event 1245 * as offline notification will cause the notified 1246 * cpu to drain that CPU pcps and on_each_cpu_mask 1247 * disables preemption as part of its processing 1248 */ 1249 for_each_online_cpu(cpu) { 1250 bool has_pcps = false; 1251 for_each_populated_zone(zone) { 1252 pcp = per_cpu_ptr(zone->pageset, cpu); 1253 if (pcp->pcp.count) { 1254 has_pcps = true; 1255 break; 1256 } 1257 } 1258 if (has_pcps) 1259 cpumask_set_cpu(cpu, &cpus_with_pcps); 1260 else 1261 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1262 } 1263 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); 1264 } 1265 1266 #ifdef CONFIG_HIBERNATION 1267 1268 void mark_free_pages(struct zone *zone) 1269 { 1270 unsigned long pfn, max_zone_pfn; 1271 unsigned long flags; 1272 int order, t; 1273 struct list_head *curr; 1274 1275 if (!zone->spanned_pages) 1276 return; 1277 1278 spin_lock_irqsave(&zone->lock, flags); 1279 1280 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1281 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1282 if (pfn_valid(pfn)) { 1283 struct page *page = pfn_to_page(pfn); 1284 1285 if (!swsusp_page_is_forbidden(page)) 1286 swsusp_unset_page_free(page); 1287 } 1288 1289 for_each_migratetype_order(order, t) { 1290 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1291 unsigned long i; 1292 1293 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1294 for (i = 0; i < (1UL << order); i++) 1295 swsusp_set_page_free(pfn_to_page(pfn + i)); 1296 } 1297 } 1298 spin_unlock_irqrestore(&zone->lock, flags); 1299 } 1300 #endif /* CONFIG_PM */ 1301 1302 /* 1303 * Free a 0-order page 1304 * cold == 1 ? free a cold page : free a hot page 1305 */ 1306 void free_hot_cold_page(struct page *page, int cold) 1307 { 1308 struct zone *zone = page_zone(page); 1309 struct per_cpu_pages *pcp; 1310 unsigned long flags; 1311 int migratetype; 1312 1313 if (!free_pages_prepare(page, 0)) 1314 return; 1315 1316 migratetype = get_pageblock_migratetype(page); 1317 set_freepage_migratetype(page, migratetype); 1318 local_irq_save(flags); 1319 __count_vm_event(PGFREE); 1320 1321 /* 1322 * We only track unmovable, reclaimable and movable on pcp lists. 1323 * Free ISOLATE pages back to the allocator because they are being 1324 * offlined but treat RESERVE as movable pages so we can get those 1325 * areas back if necessary. Otherwise, we may have to free 1326 * excessively into the page allocator 1327 */ 1328 if (migratetype >= MIGRATE_PCPTYPES) { 1329 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1330 free_one_page(zone, page, 0, migratetype); 1331 goto out; 1332 } 1333 migratetype = MIGRATE_MOVABLE; 1334 } 1335 1336 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1337 if (cold) 1338 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1339 else 1340 list_add(&page->lru, &pcp->lists[migratetype]); 1341 pcp->count++; 1342 if (pcp->count >= pcp->high) { 1343 free_pcppages_bulk(zone, pcp->batch, pcp); 1344 pcp->count -= pcp->batch; 1345 } 1346 1347 out: 1348 local_irq_restore(flags); 1349 } 1350 1351 /* 1352 * Free a list of 0-order pages 1353 */ 1354 void free_hot_cold_page_list(struct list_head *list, int cold) 1355 { 1356 struct page *page, *next; 1357 1358 list_for_each_entry_safe(page, next, list, lru) { 1359 trace_mm_page_free_batched(page, cold); 1360 free_hot_cold_page(page, cold); 1361 } 1362 } 1363 1364 /* 1365 * split_page takes a non-compound higher-order page, and splits it into 1366 * n (1<<order) sub-pages: page[0..n] 1367 * Each sub-page must be freed individually. 1368 * 1369 * Note: this is probably too low level an operation for use in drivers. 1370 * Please consult with lkml before using this in your driver. 1371 */ 1372 void split_page(struct page *page, unsigned int order) 1373 { 1374 int i; 1375 1376 VM_BUG_ON(PageCompound(page)); 1377 VM_BUG_ON(!page_count(page)); 1378 1379 #ifdef CONFIG_KMEMCHECK 1380 /* 1381 * Split shadow pages too, because free(page[0]) would 1382 * otherwise free the whole shadow. 1383 */ 1384 if (kmemcheck_page_is_tracked(page)) 1385 split_page(virt_to_page(page[0].shadow), order); 1386 #endif 1387 1388 for (i = 1; i < (1 << order); i++) 1389 set_page_refcounted(page + i); 1390 } 1391 1392 static int __isolate_free_page(struct page *page, unsigned int order) 1393 { 1394 unsigned long watermark; 1395 struct zone *zone; 1396 int mt; 1397 1398 BUG_ON(!PageBuddy(page)); 1399 1400 zone = page_zone(page); 1401 mt = get_pageblock_migratetype(page); 1402 1403 if (mt != MIGRATE_ISOLATE) { 1404 /* Obey watermarks as if the page was being allocated */ 1405 watermark = low_wmark_pages(zone) + (1 << order); 1406 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1407 return 0; 1408 1409 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1410 } 1411 1412 /* Remove page from free list */ 1413 list_del(&page->lru); 1414 zone->free_area[order].nr_free--; 1415 rmv_page_order(page); 1416 1417 /* Set the pageblock if the isolated page is at least a pageblock */ 1418 if (order >= pageblock_order - 1) { 1419 struct page *endpage = page + (1 << order) - 1; 1420 for (; page < endpage; page += pageblock_nr_pages) { 1421 int mt = get_pageblock_migratetype(page); 1422 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt)) 1423 set_pageblock_migratetype(page, 1424 MIGRATE_MOVABLE); 1425 } 1426 } 1427 1428 return 1UL << order; 1429 } 1430 1431 /* 1432 * Similar to split_page except the page is already free. As this is only 1433 * being used for migration, the migratetype of the block also changes. 1434 * As this is called with interrupts disabled, the caller is responsible 1435 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1436 * are enabled. 1437 * 1438 * Note: this is probably too low level an operation for use in drivers. 1439 * Please consult with lkml before using this in your driver. 1440 */ 1441 int split_free_page(struct page *page) 1442 { 1443 unsigned int order; 1444 int nr_pages; 1445 1446 order = page_order(page); 1447 1448 nr_pages = __isolate_free_page(page, order); 1449 if (!nr_pages) 1450 return 0; 1451 1452 /* Split into individual pages */ 1453 set_page_refcounted(page); 1454 split_page(page, order); 1455 return nr_pages; 1456 } 1457 1458 /* 1459 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1460 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1461 * or two. 1462 */ 1463 static inline 1464 struct page *buffered_rmqueue(struct zone *preferred_zone, 1465 struct zone *zone, int order, gfp_t gfp_flags, 1466 int migratetype) 1467 { 1468 unsigned long flags; 1469 struct page *page; 1470 int cold = !!(gfp_flags & __GFP_COLD); 1471 1472 again: 1473 if (likely(order == 0)) { 1474 struct per_cpu_pages *pcp; 1475 struct list_head *list; 1476 1477 local_irq_save(flags); 1478 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1479 list = &pcp->lists[migratetype]; 1480 if (list_empty(list)) { 1481 pcp->count += rmqueue_bulk(zone, 0, 1482 pcp->batch, list, 1483 migratetype, cold); 1484 if (unlikely(list_empty(list))) 1485 goto failed; 1486 } 1487 1488 if (cold) 1489 page = list_entry(list->prev, struct page, lru); 1490 else 1491 page = list_entry(list->next, struct page, lru); 1492 1493 list_del(&page->lru); 1494 pcp->count--; 1495 } else { 1496 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1497 /* 1498 * __GFP_NOFAIL is not to be used in new code. 1499 * 1500 * All __GFP_NOFAIL callers should be fixed so that they 1501 * properly detect and handle allocation failures. 1502 * 1503 * We most definitely don't want callers attempting to 1504 * allocate greater than order-1 page units with 1505 * __GFP_NOFAIL. 1506 */ 1507 WARN_ON_ONCE(order > 1); 1508 } 1509 spin_lock_irqsave(&zone->lock, flags); 1510 page = __rmqueue(zone, order, migratetype); 1511 spin_unlock(&zone->lock); 1512 if (!page) 1513 goto failed; 1514 __mod_zone_freepage_state(zone, -(1 << order), 1515 get_pageblock_migratetype(page)); 1516 } 1517 1518 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1519 zone_statistics(preferred_zone, zone, gfp_flags); 1520 local_irq_restore(flags); 1521 1522 VM_BUG_ON(bad_range(zone, page)); 1523 if (prep_new_page(page, order, gfp_flags)) 1524 goto again; 1525 return page; 1526 1527 failed: 1528 local_irq_restore(flags); 1529 return NULL; 1530 } 1531 1532 #ifdef CONFIG_FAIL_PAGE_ALLOC 1533 1534 static struct { 1535 struct fault_attr attr; 1536 1537 u32 ignore_gfp_highmem; 1538 u32 ignore_gfp_wait; 1539 u32 min_order; 1540 } fail_page_alloc = { 1541 .attr = FAULT_ATTR_INITIALIZER, 1542 .ignore_gfp_wait = 1, 1543 .ignore_gfp_highmem = 1, 1544 .min_order = 1, 1545 }; 1546 1547 static int __init setup_fail_page_alloc(char *str) 1548 { 1549 return setup_fault_attr(&fail_page_alloc.attr, str); 1550 } 1551 __setup("fail_page_alloc=", setup_fail_page_alloc); 1552 1553 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1554 { 1555 if (order < fail_page_alloc.min_order) 1556 return false; 1557 if (gfp_mask & __GFP_NOFAIL) 1558 return false; 1559 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1560 return false; 1561 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1562 return false; 1563 1564 return should_fail(&fail_page_alloc.attr, 1 << order); 1565 } 1566 1567 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1568 1569 static int __init fail_page_alloc_debugfs(void) 1570 { 1571 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1572 struct dentry *dir; 1573 1574 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1575 &fail_page_alloc.attr); 1576 if (IS_ERR(dir)) 1577 return PTR_ERR(dir); 1578 1579 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1580 &fail_page_alloc.ignore_gfp_wait)) 1581 goto fail; 1582 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1583 &fail_page_alloc.ignore_gfp_highmem)) 1584 goto fail; 1585 if (!debugfs_create_u32("min-order", mode, dir, 1586 &fail_page_alloc.min_order)) 1587 goto fail; 1588 1589 return 0; 1590 fail: 1591 debugfs_remove_recursive(dir); 1592 1593 return -ENOMEM; 1594 } 1595 1596 late_initcall(fail_page_alloc_debugfs); 1597 1598 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1599 1600 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1601 1602 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1603 { 1604 return false; 1605 } 1606 1607 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1608 1609 /* 1610 * Return true if free pages are above 'mark'. This takes into account the order 1611 * of the allocation. 1612 */ 1613 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1614 int classzone_idx, int alloc_flags, long free_pages) 1615 { 1616 /* free_pages my go negative - that's OK */ 1617 long min = mark; 1618 long lowmem_reserve = z->lowmem_reserve[classzone_idx]; 1619 int o; 1620 1621 free_pages -= (1 << order) - 1; 1622 if (alloc_flags & ALLOC_HIGH) 1623 min -= min / 2; 1624 if (alloc_flags & ALLOC_HARDER) 1625 min -= min / 4; 1626 #ifdef CONFIG_CMA 1627 /* If allocation can't use CMA areas don't use free CMA pages */ 1628 if (!(alloc_flags & ALLOC_CMA)) 1629 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 1630 #endif 1631 if (free_pages <= min + lowmem_reserve) 1632 return false; 1633 for (o = 0; o < order; o++) { 1634 /* At the next order, this order's pages become unavailable */ 1635 free_pages -= z->free_area[o].nr_free << o; 1636 1637 /* Require fewer higher order pages to be free */ 1638 min >>= 1; 1639 1640 if (free_pages <= min) 1641 return false; 1642 } 1643 return true; 1644 } 1645 1646 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1647 int classzone_idx, int alloc_flags) 1648 { 1649 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1650 zone_page_state(z, NR_FREE_PAGES)); 1651 } 1652 1653 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1654 int classzone_idx, int alloc_flags) 1655 { 1656 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1657 1658 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1659 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1660 1661 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1662 free_pages); 1663 } 1664 1665 #ifdef CONFIG_NUMA 1666 /* 1667 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1668 * skip over zones that are not allowed by the cpuset, or that have 1669 * been recently (in last second) found to be nearly full. See further 1670 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1671 * that have to skip over a lot of full or unallowed zones. 1672 * 1673 * If the zonelist cache is present in the passed in zonelist, then 1674 * returns a pointer to the allowed node mask (either the current 1675 * tasks mems_allowed, or node_states[N_MEMORY].) 1676 * 1677 * If the zonelist cache is not available for this zonelist, does 1678 * nothing and returns NULL. 1679 * 1680 * If the fullzones BITMAP in the zonelist cache is stale (more than 1681 * a second since last zap'd) then we zap it out (clear its bits.) 1682 * 1683 * We hold off even calling zlc_setup, until after we've checked the 1684 * first zone in the zonelist, on the theory that most allocations will 1685 * be satisfied from that first zone, so best to examine that zone as 1686 * quickly as we can. 1687 */ 1688 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1689 { 1690 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1691 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1692 1693 zlc = zonelist->zlcache_ptr; 1694 if (!zlc) 1695 return NULL; 1696 1697 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1698 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1699 zlc->last_full_zap = jiffies; 1700 } 1701 1702 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1703 &cpuset_current_mems_allowed : 1704 &node_states[N_MEMORY]; 1705 return allowednodes; 1706 } 1707 1708 /* 1709 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1710 * if it is worth looking at further for free memory: 1711 * 1) Check that the zone isn't thought to be full (doesn't have its 1712 * bit set in the zonelist_cache fullzones BITMAP). 1713 * 2) Check that the zones node (obtained from the zonelist_cache 1714 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1715 * Return true (non-zero) if zone is worth looking at further, or 1716 * else return false (zero) if it is not. 1717 * 1718 * This check -ignores- the distinction between various watermarks, 1719 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1720 * found to be full for any variation of these watermarks, it will 1721 * be considered full for up to one second by all requests, unless 1722 * we are so low on memory on all allowed nodes that we are forced 1723 * into the second scan of the zonelist. 1724 * 1725 * In the second scan we ignore this zonelist cache and exactly 1726 * apply the watermarks to all zones, even it is slower to do so. 1727 * We are low on memory in the second scan, and should leave no stone 1728 * unturned looking for a free page. 1729 */ 1730 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1731 nodemask_t *allowednodes) 1732 { 1733 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1734 int i; /* index of *z in zonelist zones */ 1735 int n; /* node that zone *z is on */ 1736 1737 zlc = zonelist->zlcache_ptr; 1738 if (!zlc) 1739 return 1; 1740 1741 i = z - zonelist->_zonerefs; 1742 n = zlc->z_to_n[i]; 1743 1744 /* This zone is worth trying if it is allowed but not full */ 1745 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1746 } 1747 1748 /* 1749 * Given 'z' scanning a zonelist, set the corresponding bit in 1750 * zlc->fullzones, so that subsequent attempts to allocate a page 1751 * from that zone don't waste time re-examining it. 1752 */ 1753 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1754 { 1755 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1756 int i; /* index of *z in zonelist zones */ 1757 1758 zlc = zonelist->zlcache_ptr; 1759 if (!zlc) 1760 return; 1761 1762 i = z - zonelist->_zonerefs; 1763 1764 set_bit(i, zlc->fullzones); 1765 } 1766 1767 /* 1768 * clear all zones full, called after direct reclaim makes progress so that 1769 * a zone that was recently full is not skipped over for up to a second 1770 */ 1771 static void zlc_clear_zones_full(struct zonelist *zonelist) 1772 { 1773 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1774 1775 zlc = zonelist->zlcache_ptr; 1776 if (!zlc) 1777 return; 1778 1779 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1780 } 1781 1782 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1783 { 1784 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes); 1785 } 1786 1787 static void __paginginit init_zone_allows_reclaim(int nid) 1788 { 1789 int i; 1790 1791 for_each_online_node(i) 1792 if (node_distance(nid, i) <= RECLAIM_DISTANCE) 1793 node_set(i, NODE_DATA(nid)->reclaim_nodes); 1794 else 1795 zone_reclaim_mode = 1; 1796 } 1797 1798 #else /* CONFIG_NUMA */ 1799 1800 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1801 { 1802 return NULL; 1803 } 1804 1805 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1806 nodemask_t *allowednodes) 1807 { 1808 return 1; 1809 } 1810 1811 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1812 { 1813 } 1814 1815 static void zlc_clear_zones_full(struct zonelist *zonelist) 1816 { 1817 } 1818 1819 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1820 { 1821 return true; 1822 } 1823 1824 static inline void init_zone_allows_reclaim(int nid) 1825 { 1826 } 1827 #endif /* CONFIG_NUMA */ 1828 1829 /* 1830 * get_page_from_freelist goes through the zonelist trying to allocate 1831 * a page. 1832 */ 1833 static struct page * 1834 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1835 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1836 struct zone *preferred_zone, int migratetype) 1837 { 1838 struct zoneref *z; 1839 struct page *page = NULL; 1840 int classzone_idx; 1841 struct zone *zone; 1842 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1843 int zlc_active = 0; /* set if using zonelist_cache */ 1844 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1845 1846 classzone_idx = zone_idx(preferred_zone); 1847 zonelist_scan: 1848 /* 1849 * Scan zonelist, looking for a zone with enough free. 1850 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1851 */ 1852 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1853 high_zoneidx, nodemask) { 1854 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1855 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1856 continue; 1857 if ((alloc_flags & ALLOC_CPUSET) && 1858 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1859 continue; 1860 /* 1861 * When allocating a page cache page for writing, we 1862 * want to get it from a zone that is within its dirty 1863 * limit, such that no single zone holds more than its 1864 * proportional share of globally allowed dirty pages. 1865 * The dirty limits take into account the zone's 1866 * lowmem reserves and high watermark so that kswapd 1867 * should be able to balance it without having to 1868 * write pages from its LRU list. 1869 * 1870 * This may look like it could increase pressure on 1871 * lower zones by failing allocations in higher zones 1872 * before they are full. But the pages that do spill 1873 * over are limited as the lower zones are protected 1874 * by this very same mechanism. It should not become 1875 * a practical burden to them. 1876 * 1877 * XXX: For now, allow allocations to potentially 1878 * exceed the per-zone dirty limit in the slowpath 1879 * (ALLOC_WMARK_LOW unset) before going into reclaim, 1880 * which is important when on a NUMA setup the allowed 1881 * zones are together not big enough to reach the 1882 * global limit. The proper fix for these situations 1883 * will require awareness of zones in the 1884 * dirty-throttling and the flusher threads. 1885 */ 1886 if ((alloc_flags & ALLOC_WMARK_LOW) && 1887 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) 1888 goto this_zone_full; 1889 1890 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1891 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1892 unsigned long mark; 1893 int ret; 1894 1895 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1896 if (zone_watermark_ok(zone, order, mark, 1897 classzone_idx, alloc_flags)) 1898 goto try_this_zone; 1899 1900 if (IS_ENABLED(CONFIG_NUMA) && 1901 !did_zlc_setup && nr_online_nodes > 1) { 1902 /* 1903 * we do zlc_setup if there are multiple nodes 1904 * and before considering the first zone allowed 1905 * by the cpuset. 1906 */ 1907 allowednodes = zlc_setup(zonelist, alloc_flags); 1908 zlc_active = 1; 1909 did_zlc_setup = 1; 1910 } 1911 1912 if (zone_reclaim_mode == 0 || 1913 !zone_allows_reclaim(preferred_zone, zone)) 1914 goto this_zone_full; 1915 1916 /* 1917 * As we may have just activated ZLC, check if the first 1918 * eligible zone has failed zone_reclaim recently. 1919 */ 1920 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1921 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1922 continue; 1923 1924 ret = zone_reclaim(zone, gfp_mask, order); 1925 switch (ret) { 1926 case ZONE_RECLAIM_NOSCAN: 1927 /* did not scan */ 1928 continue; 1929 case ZONE_RECLAIM_FULL: 1930 /* scanned but unreclaimable */ 1931 continue; 1932 default: 1933 /* did we reclaim enough */ 1934 if (!zone_watermark_ok(zone, order, mark, 1935 classzone_idx, alloc_flags)) 1936 goto this_zone_full; 1937 } 1938 } 1939 1940 try_this_zone: 1941 page = buffered_rmqueue(preferred_zone, zone, order, 1942 gfp_mask, migratetype); 1943 if (page) 1944 break; 1945 this_zone_full: 1946 if (IS_ENABLED(CONFIG_NUMA)) 1947 zlc_mark_zone_full(zonelist, z); 1948 } 1949 1950 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) { 1951 /* Disable zlc cache for second zonelist scan */ 1952 zlc_active = 0; 1953 goto zonelist_scan; 1954 } 1955 1956 if (page) 1957 /* 1958 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was 1959 * necessary to allocate the page. The expectation is 1960 * that the caller is taking steps that will free more 1961 * memory. The caller should avoid the page being used 1962 * for !PFMEMALLOC purposes. 1963 */ 1964 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 1965 1966 return page; 1967 } 1968 1969 /* 1970 * Large machines with many possible nodes should not always dump per-node 1971 * meminfo in irq context. 1972 */ 1973 static inline bool should_suppress_show_mem(void) 1974 { 1975 bool ret = false; 1976 1977 #if NODES_SHIFT > 8 1978 ret = in_interrupt(); 1979 #endif 1980 return ret; 1981 } 1982 1983 static DEFINE_RATELIMIT_STATE(nopage_rs, 1984 DEFAULT_RATELIMIT_INTERVAL, 1985 DEFAULT_RATELIMIT_BURST); 1986 1987 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 1988 { 1989 unsigned int filter = SHOW_MEM_FILTER_NODES; 1990 1991 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 1992 debug_guardpage_minorder() > 0) 1993 return; 1994 1995 /* 1996 * This documents exceptions given to allocations in certain 1997 * contexts that are allowed to allocate outside current's set 1998 * of allowed nodes. 1999 */ 2000 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2001 if (test_thread_flag(TIF_MEMDIE) || 2002 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2003 filter &= ~SHOW_MEM_FILTER_NODES; 2004 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2005 filter &= ~SHOW_MEM_FILTER_NODES; 2006 2007 if (fmt) { 2008 struct va_format vaf; 2009 va_list args; 2010 2011 va_start(args, fmt); 2012 2013 vaf.fmt = fmt; 2014 vaf.va = &args; 2015 2016 pr_warn("%pV", &vaf); 2017 2018 va_end(args); 2019 } 2020 2021 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2022 current->comm, order, gfp_mask); 2023 2024 dump_stack(); 2025 if (!should_suppress_show_mem()) 2026 show_mem(filter); 2027 } 2028 2029 static inline int 2030 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2031 unsigned long did_some_progress, 2032 unsigned long pages_reclaimed) 2033 { 2034 /* Do not loop if specifically requested */ 2035 if (gfp_mask & __GFP_NORETRY) 2036 return 0; 2037 2038 /* Always retry if specifically requested */ 2039 if (gfp_mask & __GFP_NOFAIL) 2040 return 1; 2041 2042 /* 2043 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2044 * making forward progress without invoking OOM. Suspend also disables 2045 * storage devices so kswapd will not help. Bail if we are suspending. 2046 */ 2047 if (!did_some_progress && pm_suspended_storage()) 2048 return 0; 2049 2050 /* 2051 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2052 * means __GFP_NOFAIL, but that may not be true in other 2053 * implementations. 2054 */ 2055 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2056 return 1; 2057 2058 /* 2059 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2060 * specified, then we retry until we no longer reclaim any pages 2061 * (above), or we've reclaimed an order of pages at least as 2062 * large as the allocation's order. In both cases, if the 2063 * allocation still fails, we stop retrying. 2064 */ 2065 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2066 return 1; 2067 2068 return 0; 2069 } 2070 2071 static inline struct page * 2072 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2073 struct zonelist *zonelist, enum zone_type high_zoneidx, 2074 nodemask_t *nodemask, struct zone *preferred_zone, 2075 int migratetype) 2076 { 2077 struct page *page; 2078 2079 /* Acquire the OOM killer lock for the zones in zonelist */ 2080 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 2081 schedule_timeout_uninterruptible(1); 2082 return NULL; 2083 } 2084 2085 /* 2086 * Go through the zonelist yet one more time, keep very high watermark 2087 * here, this is only to catch a parallel oom killing, we must fail if 2088 * we're still under heavy pressure. 2089 */ 2090 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 2091 order, zonelist, high_zoneidx, 2092 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 2093 preferred_zone, migratetype); 2094 if (page) 2095 goto out; 2096 2097 if (!(gfp_mask & __GFP_NOFAIL)) { 2098 /* The OOM killer will not help higher order allocs */ 2099 if (order > PAGE_ALLOC_COSTLY_ORDER) 2100 goto out; 2101 /* The OOM killer does not needlessly kill tasks for lowmem */ 2102 if (high_zoneidx < ZONE_NORMAL) 2103 goto out; 2104 /* 2105 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2106 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2107 * The caller should handle page allocation failure by itself if 2108 * it specifies __GFP_THISNODE. 2109 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2110 */ 2111 if (gfp_mask & __GFP_THISNODE) 2112 goto out; 2113 } 2114 /* Exhausted what can be done so it's blamo time */ 2115 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2116 2117 out: 2118 clear_zonelist_oom(zonelist, gfp_mask); 2119 return page; 2120 } 2121 2122 #ifdef CONFIG_COMPACTION 2123 /* Try memory compaction for high-order allocations before reclaim */ 2124 static struct page * 2125 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2126 struct zonelist *zonelist, enum zone_type high_zoneidx, 2127 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2128 int migratetype, bool sync_migration, 2129 bool *contended_compaction, bool *deferred_compaction, 2130 unsigned long *did_some_progress) 2131 { 2132 if (!order) 2133 return NULL; 2134 2135 if (compaction_deferred(preferred_zone, order)) { 2136 *deferred_compaction = true; 2137 return NULL; 2138 } 2139 2140 current->flags |= PF_MEMALLOC; 2141 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 2142 nodemask, sync_migration, 2143 contended_compaction); 2144 current->flags &= ~PF_MEMALLOC; 2145 2146 if (*did_some_progress != COMPACT_SKIPPED) { 2147 struct page *page; 2148 2149 /* Page migration frees to the PCP lists but we want merging */ 2150 drain_pages(get_cpu()); 2151 put_cpu(); 2152 2153 page = get_page_from_freelist(gfp_mask, nodemask, 2154 order, zonelist, high_zoneidx, 2155 alloc_flags & ~ALLOC_NO_WATERMARKS, 2156 preferred_zone, migratetype); 2157 if (page) { 2158 preferred_zone->compact_blockskip_flush = false; 2159 preferred_zone->compact_considered = 0; 2160 preferred_zone->compact_defer_shift = 0; 2161 if (order >= preferred_zone->compact_order_failed) 2162 preferred_zone->compact_order_failed = order + 1; 2163 count_vm_event(COMPACTSUCCESS); 2164 return page; 2165 } 2166 2167 /* 2168 * It's bad if compaction run occurs and fails. 2169 * The most likely reason is that pages exist, 2170 * but not enough to satisfy watermarks. 2171 */ 2172 count_vm_event(COMPACTFAIL); 2173 2174 /* 2175 * As async compaction considers a subset of pageblocks, only 2176 * defer if the failure was a sync compaction failure. 2177 */ 2178 if (sync_migration) 2179 defer_compaction(preferred_zone, order); 2180 2181 cond_resched(); 2182 } 2183 2184 return NULL; 2185 } 2186 #else 2187 static inline struct page * 2188 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2189 struct zonelist *zonelist, enum zone_type high_zoneidx, 2190 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2191 int migratetype, bool sync_migration, 2192 bool *contended_compaction, bool *deferred_compaction, 2193 unsigned long *did_some_progress) 2194 { 2195 return NULL; 2196 } 2197 #endif /* CONFIG_COMPACTION */ 2198 2199 /* Perform direct synchronous page reclaim */ 2200 static int 2201 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, 2202 nodemask_t *nodemask) 2203 { 2204 struct reclaim_state reclaim_state; 2205 int progress; 2206 2207 cond_resched(); 2208 2209 /* We now go into synchronous reclaim */ 2210 cpuset_memory_pressure_bump(); 2211 current->flags |= PF_MEMALLOC; 2212 lockdep_set_current_reclaim_state(gfp_mask); 2213 reclaim_state.reclaimed_slab = 0; 2214 current->reclaim_state = &reclaim_state; 2215 2216 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2217 2218 current->reclaim_state = NULL; 2219 lockdep_clear_current_reclaim_state(); 2220 current->flags &= ~PF_MEMALLOC; 2221 2222 cond_resched(); 2223 2224 return progress; 2225 } 2226 2227 /* The really slow allocator path where we enter direct reclaim */ 2228 static inline struct page * 2229 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2230 struct zonelist *zonelist, enum zone_type high_zoneidx, 2231 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2232 int migratetype, unsigned long *did_some_progress) 2233 { 2234 struct page *page = NULL; 2235 bool drained = false; 2236 2237 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 2238 nodemask); 2239 if (unlikely(!(*did_some_progress))) 2240 return NULL; 2241 2242 /* After successful reclaim, reconsider all zones for allocation */ 2243 if (IS_ENABLED(CONFIG_NUMA)) 2244 zlc_clear_zones_full(zonelist); 2245 2246 retry: 2247 page = get_page_from_freelist(gfp_mask, nodemask, order, 2248 zonelist, high_zoneidx, 2249 alloc_flags & ~ALLOC_NO_WATERMARKS, 2250 preferred_zone, migratetype); 2251 2252 /* 2253 * If an allocation failed after direct reclaim, it could be because 2254 * pages are pinned on the per-cpu lists. Drain them and try again 2255 */ 2256 if (!page && !drained) { 2257 drain_all_pages(); 2258 drained = true; 2259 goto retry; 2260 } 2261 2262 return page; 2263 } 2264 2265 /* 2266 * This is called in the allocator slow-path if the allocation request is of 2267 * sufficient urgency to ignore watermarks and take other desperate measures 2268 */ 2269 static inline struct page * 2270 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2271 struct zonelist *zonelist, enum zone_type high_zoneidx, 2272 nodemask_t *nodemask, struct zone *preferred_zone, 2273 int migratetype) 2274 { 2275 struct page *page; 2276 2277 do { 2278 page = get_page_from_freelist(gfp_mask, nodemask, order, 2279 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2280 preferred_zone, migratetype); 2281 2282 if (!page && gfp_mask & __GFP_NOFAIL) 2283 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2284 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2285 2286 return page; 2287 } 2288 2289 static inline 2290 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 2291 enum zone_type high_zoneidx, 2292 enum zone_type classzone_idx) 2293 { 2294 struct zoneref *z; 2295 struct zone *zone; 2296 2297 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 2298 wakeup_kswapd(zone, order, classzone_idx); 2299 } 2300 2301 static inline int 2302 gfp_to_alloc_flags(gfp_t gfp_mask) 2303 { 2304 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2305 const gfp_t wait = gfp_mask & __GFP_WAIT; 2306 2307 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2308 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2309 2310 /* 2311 * The caller may dip into page reserves a bit more if the caller 2312 * cannot run direct reclaim, or if the caller has realtime scheduling 2313 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2314 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2315 */ 2316 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2317 2318 if (!wait) { 2319 /* 2320 * Not worth trying to allocate harder for 2321 * __GFP_NOMEMALLOC even if it can't schedule. 2322 */ 2323 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2324 alloc_flags |= ALLOC_HARDER; 2325 /* 2326 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2327 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2328 */ 2329 alloc_flags &= ~ALLOC_CPUSET; 2330 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2331 alloc_flags |= ALLOC_HARDER; 2332 2333 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2334 if (gfp_mask & __GFP_MEMALLOC) 2335 alloc_flags |= ALLOC_NO_WATERMARKS; 2336 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2337 alloc_flags |= ALLOC_NO_WATERMARKS; 2338 else if (!in_interrupt() && 2339 ((current->flags & PF_MEMALLOC) || 2340 unlikely(test_thread_flag(TIF_MEMDIE)))) 2341 alloc_flags |= ALLOC_NO_WATERMARKS; 2342 } 2343 #ifdef CONFIG_CMA 2344 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2345 alloc_flags |= ALLOC_CMA; 2346 #endif 2347 return alloc_flags; 2348 } 2349 2350 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2351 { 2352 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2353 } 2354 2355 static inline struct page * 2356 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2357 struct zonelist *zonelist, enum zone_type high_zoneidx, 2358 nodemask_t *nodemask, struct zone *preferred_zone, 2359 int migratetype) 2360 { 2361 const gfp_t wait = gfp_mask & __GFP_WAIT; 2362 struct page *page = NULL; 2363 int alloc_flags; 2364 unsigned long pages_reclaimed = 0; 2365 unsigned long did_some_progress; 2366 bool sync_migration = false; 2367 bool deferred_compaction = false; 2368 bool contended_compaction = false; 2369 2370 /* 2371 * In the slowpath, we sanity check order to avoid ever trying to 2372 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2373 * be using allocators in order of preference for an area that is 2374 * too large. 2375 */ 2376 if (order >= MAX_ORDER) { 2377 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2378 return NULL; 2379 } 2380 2381 /* 2382 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2383 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2384 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2385 * using a larger set of nodes after it has established that the 2386 * allowed per node queues are empty and that nodes are 2387 * over allocated. 2388 */ 2389 if (IS_ENABLED(CONFIG_NUMA) && 2390 (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2391 goto nopage; 2392 2393 restart: 2394 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2395 wake_all_kswapd(order, zonelist, high_zoneidx, 2396 zone_idx(preferred_zone)); 2397 2398 /* 2399 * OK, we're below the kswapd watermark and have kicked background 2400 * reclaim. Now things get more complex, so set up alloc_flags according 2401 * to how we want to proceed. 2402 */ 2403 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2404 2405 /* 2406 * Find the true preferred zone if the allocation is unconstrained by 2407 * cpusets. 2408 */ 2409 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2410 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2411 &preferred_zone); 2412 2413 rebalance: 2414 /* This is the last chance, in general, before the goto nopage. */ 2415 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2416 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2417 preferred_zone, migratetype); 2418 if (page) 2419 goto got_pg; 2420 2421 /* Allocate without watermarks if the context allows */ 2422 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2423 /* 2424 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2425 * the allocation is high priority and these type of 2426 * allocations are system rather than user orientated 2427 */ 2428 zonelist = node_zonelist(numa_node_id(), gfp_mask); 2429 2430 page = __alloc_pages_high_priority(gfp_mask, order, 2431 zonelist, high_zoneidx, nodemask, 2432 preferred_zone, migratetype); 2433 if (page) { 2434 goto got_pg; 2435 } 2436 } 2437 2438 /* Atomic allocations - we can't balance anything */ 2439 if (!wait) 2440 goto nopage; 2441 2442 /* Avoid recursion of direct reclaim */ 2443 if (current->flags & PF_MEMALLOC) 2444 goto nopage; 2445 2446 /* Avoid allocations with no watermarks from looping endlessly */ 2447 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2448 goto nopage; 2449 2450 /* 2451 * Try direct compaction. The first pass is asynchronous. Subsequent 2452 * attempts after direct reclaim are synchronous 2453 */ 2454 page = __alloc_pages_direct_compact(gfp_mask, order, 2455 zonelist, high_zoneidx, 2456 nodemask, 2457 alloc_flags, preferred_zone, 2458 migratetype, sync_migration, 2459 &contended_compaction, 2460 &deferred_compaction, 2461 &did_some_progress); 2462 if (page) 2463 goto got_pg; 2464 sync_migration = true; 2465 2466 /* 2467 * If compaction is deferred for high-order allocations, it is because 2468 * sync compaction recently failed. In this is the case and the caller 2469 * requested a movable allocation that does not heavily disrupt the 2470 * system then fail the allocation instead of entering direct reclaim. 2471 */ 2472 if ((deferred_compaction || contended_compaction) && 2473 (gfp_mask & __GFP_NO_KSWAPD)) 2474 goto nopage; 2475 2476 /* Try direct reclaim and then allocating */ 2477 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2478 zonelist, high_zoneidx, 2479 nodemask, 2480 alloc_flags, preferred_zone, 2481 migratetype, &did_some_progress); 2482 if (page) 2483 goto got_pg; 2484 2485 /* 2486 * If we failed to make any progress reclaiming, then we are 2487 * running out of options and have to consider going OOM 2488 */ 2489 if (!did_some_progress) { 2490 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2491 if (oom_killer_disabled) 2492 goto nopage; 2493 /* Coredumps can quickly deplete all memory reserves */ 2494 if ((current->flags & PF_DUMPCORE) && 2495 !(gfp_mask & __GFP_NOFAIL)) 2496 goto nopage; 2497 page = __alloc_pages_may_oom(gfp_mask, order, 2498 zonelist, high_zoneidx, 2499 nodemask, preferred_zone, 2500 migratetype); 2501 if (page) 2502 goto got_pg; 2503 2504 if (!(gfp_mask & __GFP_NOFAIL)) { 2505 /* 2506 * The oom killer is not called for high-order 2507 * allocations that may fail, so if no progress 2508 * is being made, there are no other options and 2509 * retrying is unlikely to help. 2510 */ 2511 if (order > PAGE_ALLOC_COSTLY_ORDER) 2512 goto nopage; 2513 /* 2514 * The oom killer is not called for lowmem 2515 * allocations to prevent needlessly killing 2516 * innocent tasks. 2517 */ 2518 if (high_zoneidx < ZONE_NORMAL) 2519 goto nopage; 2520 } 2521 2522 goto restart; 2523 } 2524 } 2525 2526 /* Check if we should retry the allocation */ 2527 pages_reclaimed += did_some_progress; 2528 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2529 pages_reclaimed)) { 2530 /* Wait for some write requests to complete then retry */ 2531 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2532 goto rebalance; 2533 } else { 2534 /* 2535 * High-order allocations do not necessarily loop after 2536 * direct reclaim and reclaim/compaction depends on compaction 2537 * being called after reclaim so call directly if necessary 2538 */ 2539 page = __alloc_pages_direct_compact(gfp_mask, order, 2540 zonelist, high_zoneidx, 2541 nodemask, 2542 alloc_flags, preferred_zone, 2543 migratetype, sync_migration, 2544 &contended_compaction, 2545 &deferred_compaction, 2546 &did_some_progress); 2547 if (page) 2548 goto got_pg; 2549 } 2550 2551 nopage: 2552 warn_alloc_failed(gfp_mask, order, NULL); 2553 return page; 2554 got_pg: 2555 if (kmemcheck_enabled) 2556 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2557 2558 return page; 2559 } 2560 2561 /* 2562 * This is the 'heart' of the zoned buddy allocator. 2563 */ 2564 struct page * 2565 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2566 struct zonelist *zonelist, nodemask_t *nodemask) 2567 { 2568 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2569 struct zone *preferred_zone; 2570 struct page *page = NULL; 2571 int migratetype = allocflags_to_migratetype(gfp_mask); 2572 unsigned int cpuset_mems_cookie; 2573 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET; 2574 struct mem_cgroup *memcg = NULL; 2575 2576 gfp_mask &= gfp_allowed_mask; 2577 2578 lockdep_trace_alloc(gfp_mask); 2579 2580 might_sleep_if(gfp_mask & __GFP_WAIT); 2581 2582 if (should_fail_alloc_page(gfp_mask, order)) 2583 return NULL; 2584 2585 /* 2586 * Check the zones suitable for the gfp_mask contain at least one 2587 * valid zone. It's possible to have an empty zonelist as a result 2588 * of GFP_THISNODE and a memoryless node 2589 */ 2590 if (unlikely(!zonelist->_zonerefs->zone)) 2591 return NULL; 2592 2593 /* 2594 * Will only have any effect when __GFP_KMEMCG is set. This is 2595 * verified in the (always inline) callee 2596 */ 2597 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2598 return NULL; 2599 2600 retry_cpuset: 2601 cpuset_mems_cookie = get_mems_allowed(); 2602 2603 /* The preferred zone is used for statistics later */ 2604 first_zones_zonelist(zonelist, high_zoneidx, 2605 nodemask ? : &cpuset_current_mems_allowed, 2606 &preferred_zone); 2607 if (!preferred_zone) 2608 goto out; 2609 2610 #ifdef CONFIG_CMA 2611 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2612 alloc_flags |= ALLOC_CMA; 2613 #endif 2614 /* First allocation attempt */ 2615 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2616 zonelist, high_zoneidx, alloc_flags, 2617 preferred_zone, migratetype); 2618 if (unlikely(!page)) 2619 page = __alloc_pages_slowpath(gfp_mask, order, 2620 zonelist, high_zoneidx, nodemask, 2621 preferred_zone, migratetype); 2622 2623 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2624 2625 out: 2626 /* 2627 * When updating a task's mems_allowed, it is possible to race with 2628 * parallel threads in such a way that an allocation can fail while 2629 * the mask is being updated. If a page allocation is about to fail, 2630 * check if the cpuset changed during allocation and if so, retry. 2631 */ 2632 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 2633 goto retry_cpuset; 2634 2635 memcg_kmem_commit_charge(page, memcg, order); 2636 2637 return page; 2638 } 2639 EXPORT_SYMBOL(__alloc_pages_nodemask); 2640 2641 /* 2642 * Common helper functions. 2643 */ 2644 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2645 { 2646 struct page *page; 2647 2648 /* 2649 * __get_free_pages() returns a 32-bit address, which cannot represent 2650 * a highmem page 2651 */ 2652 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2653 2654 page = alloc_pages(gfp_mask, order); 2655 if (!page) 2656 return 0; 2657 return (unsigned long) page_address(page); 2658 } 2659 EXPORT_SYMBOL(__get_free_pages); 2660 2661 unsigned long get_zeroed_page(gfp_t gfp_mask) 2662 { 2663 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2664 } 2665 EXPORT_SYMBOL(get_zeroed_page); 2666 2667 void __free_pages(struct page *page, unsigned int order) 2668 { 2669 if (put_page_testzero(page)) { 2670 if (order == 0) 2671 free_hot_cold_page(page, 0); 2672 else 2673 __free_pages_ok(page, order); 2674 } 2675 } 2676 2677 EXPORT_SYMBOL(__free_pages); 2678 2679 void free_pages(unsigned long addr, unsigned int order) 2680 { 2681 if (addr != 0) { 2682 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2683 __free_pages(virt_to_page((void *)addr), order); 2684 } 2685 } 2686 2687 EXPORT_SYMBOL(free_pages); 2688 2689 /* 2690 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free 2691 * pages allocated with __GFP_KMEMCG. 2692 * 2693 * Those pages are accounted to a particular memcg, embedded in the 2694 * corresponding page_cgroup. To avoid adding a hit in the allocator to search 2695 * for that information only to find out that it is NULL for users who have no 2696 * interest in that whatsoever, we provide these functions. 2697 * 2698 * The caller knows better which flags it relies on. 2699 */ 2700 void __free_memcg_kmem_pages(struct page *page, unsigned int order) 2701 { 2702 memcg_kmem_uncharge_pages(page, order); 2703 __free_pages(page, order); 2704 } 2705 2706 void free_memcg_kmem_pages(unsigned long addr, unsigned int order) 2707 { 2708 if (addr != 0) { 2709 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2710 __free_memcg_kmem_pages(virt_to_page((void *)addr), order); 2711 } 2712 } 2713 2714 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2715 { 2716 if (addr) { 2717 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2718 unsigned long used = addr + PAGE_ALIGN(size); 2719 2720 split_page(virt_to_page((void *)addr), order); 2721 while (used < alloc_end) { 2722 free_page(used); 2723 used += PAGE_SIZE; 2724 } 2725 } 2726 return (void *)addr; 2727 } 2728 2729 /** 2730 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2731 * @size: the number of bytes to allocate 2732 * @gfp_mask: GFP flags for the allocation 2733 * 2734 * This function is similar to alloc_pages(), except that it allocates the 2735 * minimum number of pages to satisfy the request. alloc_pages() can only 2736 * allocate memory in power-of-two pages. 2737 * 2738 * This function is also limited by MAX_ORDER. 2739 * 2740 * Memory allocated by this function must be released by free_pages_exact(). 2741 */ 2742 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2743 { 2744 unsigned int order = get_order(size); 2745 unsigned long addr; 2746 2747 addr = __get_free_pages(gfp_mask, order); 2748 return make_alloc_exact(addr, order, size); 2749 } 2750 EXPORT_SYMBOL(alloc_pages_exact); 2751 2752 /** 2753 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2754 * pages on a node. 2755 * @nid: the preferred node ID where memory should be allocated 2756 * @size: the number of bytes to allocate 2757 * @gfp_mask: GFP flags for the allocation 2758 * 2759 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2760 * back. 2761 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2762 * but is not exact. 2763 */ 2764 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2765 { 2766 unsigned order = get_order(size); 2767 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2768 if (!p) 2769 return NULL; 2770 return make_alloc_exact((unsigned long)page_address(p), order, size); 2771 } 2772 EXPORT_SYMBOL(alloc_pages_exact_nid); 2773 2774 /** 2775 * free_pages_exact - release memory allocated via alloc_pages_exact() 2776 * @virt: the value returned by alloc_pages_exact. 2777 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2778 * 2779 * Release the memory allocated by a previous call to alloc_pages_exact. 2780 */ 2781 void free_pages_exact(void *virt, size_t size) 2782 { 2783 unsigned long addr = (unsigned long)virt; 2784 unsigned long end = addr + PAGE_ALIGN(size); 2785 2786 while (addr < end) { 2787 free_page(addr); 2788 addr += PAGE_SIZE; 2789 } 2790 } 2791 EXPORT_SYMBOL(free_pages_exact); 2792 2793 static unsigned int nr_free_zone_pages(int offset) 2794 { 2795 struct zoneref *z; 2796 struct zone *zone; 2797 2798 /* Just pick one node, since fallback list is circular */ 2799 unsigned int sum = 0; 2800 2801 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2802 2803 for_each_zone_zonelist(zone, z, zonelist, offset) { 2804 unsigned long size = zone->present_pages; 2805 unsigned long high = high_wmark_pages(zone); 2806 if (size > high) 2807 sum += size - high; 2808 } 2809 2810 return sum; 2811 } 2812 2813 /* 2814 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2815 */ 2816 unsigned int nr_free_buffer_pages(void) 2817 { 2818 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2819 } 2820 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2821 2822 /* 2823 * Amount of free RAM allocatable within all zones 2824 */ 2825 unsigned int nr_free_pagecache_pages(void) 2826 { 2827 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2828 } 2829 2830 static inline void show_node(struct zone *zone) 2831 { 2832 if (IS_ENABLED(CONFIG_NUMA)) 2833 printk("Node %d ", zone_to_nid(zone)); 2834 } 2835 2836 void si_meminfo(struct sysinfo *val) 2837 { 2838 val->totalram = totalram_pages; 2839 val->sharedram = 0; 2840 val->freeram = global_page_state(NR_FREE_PAGES); 2841 val->bufferram = nr_blockdev_pages(); 2842 val->totalhigh = totalhigh_pages; 2843 val->freehigh = nr_free_highpages(); 2844 val->mem_unit = PAGE_SIZE; 2845 } 2846 2847 EXPORT_SYMBOL(si_meminfo); 2848 2849 #ifdef CONFIG_NUMA 2850 void si_meminfo_node(struct sysinfo *val, int nid) 2851 { 2852 pg_data_t *pgdat = NODE_DATA(nid); 2853 2854 val->totalram = pgdat->node_present_pages; 2855 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2856 #ifdef CONFIG_HIGHMEM 2857 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2858 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2859 NR_FREE_PAGES); 2860 #else 2861 val->totalhigh = 0; 2862 val->freehigh = 0; 2863 #endif 2864 val->mem_unit = PAGE_SIZE; 2865 } 2866 #endif 2867 2868 /* 2869 * Determine whether the node should be displayed or not, depending on whether 2870 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 2871 */ 2872 bool skip_free_areas_node(unsigned int flags, int nid) 2873 { 2874 bool ret = false; 2875 unsigned int cpuset_mems_cookie; 2876 2877 if (!(flags & SHOW_MEM_FILTER_NODES)) 2878 goto out; 2879 2880 do { 2881 cpuset_mems_cookie = get_mems_allowed(); 2882 ret = !node_isset(nid, cpuset_current_mems_allowed); 2883 } while (!put_mems_allowed(cpuset_mems_cookie)); 2884 out: 2885 return ret; 2886 } 2887 2888 #define K(x) ((x) << (PAGE_SHIFT-10)) 2889 2890 static void show_migration_types(unsigned char type) 2891 { 2892 static const char types[MIGRATE_TYPES] = { 2893 [MIGRATE_UNMOVABLE] = 'U', 2894 [MIGRATE_RECLAIMABLE] = 'E', 2895 [MIGRATE_MOVABLE] = 'M', 2896 [MIGRATE_RESERVE] = 'R', 2897 #ifdef CONFIG_CMA 2898 [MIGRATE_CMA] = 'C', 2899 #endif 2900 [MIGRATE_ISOLATE] = 'I', 2901 }; 2902 char tmp[MIGRATE_TYPES + 1]; 2903 char *p = tmp; 2904 int i; 2905 2906 for (i = 0; i < MIGRATE_TYPES; i++) { 2907 if (type & (1 << i)) 2908 *p++ = types[i]; 2909 } 2910 2911 *p = '\0'; 2912 printk("(%s) ", tmp); 2913 } 2914 2915 /* 2916 * Show free area list (used inside shift_scroll-lock stuff) 2917 * We also calculate the percentage fragmentation. We do this by counting the 2918 * memory on each free list with the exception of the first item on the list. 2919 * Suppresses nodes that are not allowed by current's cpuset if 2920 * SHOW_MEM_FILTER_NODES is passed. 2921 */ 2922 void show_free_areas(unsigned int filter) 2923 { 2924 int cpu; 2925 struct zone *zone; 2926 2927 for_each_populated_zone(zone) { 2928 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2929 continue; 2930 show_node(zone); 2931 printk("%s per-cpu:\n", zone->name); 2932 2933 for_each_online_cpu(cpu) { 2934 struct per_cpu_pageset *pageset; 2935 2936 pageset = per_cpu_ptr(zone->pageset, cpu); 2937 2938 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2939 cpu, pageset->pcp.high, 2940 pageset->pcp.batch, pageset->pcp.count); 2941 } 2942 } 2943 2944 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2945 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2946 " unevictable:%lu" 2947 " dirty:%lu writeback:%lu unstable:%lu\n" 2948 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2949 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 2950 " free_cma:%lu\n", 2951 global_page_state(NR_ACTIVE_ANON), 2952 global_page_state(NR_INACTIVE_ANON), 2953 global_page_state(NR_ISOLATED_ANON), 2954 global_page_state(NR_ACTIVE_FILE), 2955 global_page_state(NR_INACTIVE_FILE), 2956 global_page_state(NR_ISOLATED_FILE), 2957 global_page_state(NR_UNEVICTABLE), 2958 global_page_state(NR_FILE_DIRTY), 2959 global_page_state(NR_WRITEBACK), 2960 global_page_state(NR_UNSTABLE_NFS), 2961 global_page_state(NR_FREE_PAGES), 2962 global_page_state(NR_SLAB_RECLAIMABLE), 2963 global_page_state(NR_SLAB_UNRECLAIMABLE), 2964 global_page_state(NR_FILE_MAPPED), 2965 global_page_state(NR_SHMEM), 2966 global_page_state(NR_PAGETABLE), 2967 global_page_state(NR_BOUNCE), 2968 global_page_state(NR_FREE_CMA_PAGES)); 2969 2970 for_each_populated_zone(zone) { 2971 int i; 2972 2973 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2974 continue; 2975 show_node(zone); 2976 printk("%s" 2977 " free:%lukB" 2978 " min:%lukB" 2979 " low:%lukB" 2980 " high:%lukB" 2981 " active_anon:%lukB" 2982 " inactive_anon:%lukB" 2983 " active_file:%lukB" 2984 " inactive_file:%lukB" 2985 " unevictable:%lukB" 2986 " isolated(anon):%lukB" 2987 " isolated(file):%lukB" 2988 " present:%lukB" 2989 " managed:%lukB" 2990 " mlocked:%lukB" 2991 " dirty:%lukB" 2992 " writeback:%lukB" 2993 " mapped:%lukB" 2994 " shmem:%lukB" 2995 " slab_reclaimable:%lukB" 2996 " slab_unreclaimable:%lukB" 2997 " kernel_stack:%lukB" 2998 " pagetables:%lukB" 2999 " unstable:%lukB" 3000 " bounce:%lukB" 3001 " free_cma:%lukB" 3002 " writeback_tmp:%lukB" 3003 " pages_scanned:%lu" 3004 " all_unreclaimable? %s" 3005 "\n", 3006 zone->name, 3007 K(zone_page_state(zone, NR_FREE_PAGES)), 3008 K(min_wmark_pages(zone)), 3009 K(low_wmark_pages(zone)), 3010 K(high_wmark_pages(zone)), 3011 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3012 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3013 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3014 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3015 K(zone_page_state(zone, NR_UNEVICTABLE)), 3016 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3017 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3018 K(zone->present_pages), 3019 K(zone->managed_pages), 3020 K(zone_page_state(zone, NR_MLOCK)), 3021 K(zone_page_state(zone, NR_FILE_DIRTY)), 3022 K(zone_page_state(zone, NR_WRITEBACK)), 3023 K(zone_page_state(zone, NR_FILE_MAPPED)), 3024 K(zone_page_state(zone, NR_SHMEM)), 3025 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3026 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3027 zone_page_state(zone, NR_KERNEL_STACK) * 3028 THREAD_SIZE / 1024, 3029 K(zone_page_state(zone, NR_PAGETABLE)), 3030 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3031 K(zone_page_state(zone, NR_BOUNCE)), 3032 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3033 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3034 zone->pages_scanned, 3035 (zone->all_unreclaimable ? "yes" : "no") 3036 ); 3037 printk("lowmem_reserve[]:"); 3038 for (i = 0; i < MAX_NR_ZONES; i++) 3039 printk(" %lu", zone->lowmem_reserve[i]); 3040 printk("\n"); 3041 } 3042 3043 for_each_populated_zone(zone) { 3044 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3045 unsigned char types[MAX_ORDER]; 3046 3047 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3048 continue; 3049 show_node(zone); 3050 printk("%s: ", zone->name); 3051 3052 spin_lock_irqsave(&zone->lock, flags); 3053 for (order = 0; order < MAX_ORDER; order++) { 3054 struct free_area *area = &zone->free_area[order]; 3055 int type; 3056 3057 nr[order] = area->nr_free; 3058 total += nr[order] << order; 3059 3060 types[order] = 0; 3061 for (type = 0; type < MIGRATE_TYPES; type++) { 3062 if (!list_empty(&area->free_list[type])) 3063 types[order] |= 1 << type; 3064 } 3065 } 3066 spin_unlock_irqrestore(&zone->lock, flags); 3067 for (order = 0; order < MAX_ORDER; order++) { 3068 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3069 if (nr[order]) 3070 show_migration_types(types[order]); 3071 } 3072 printk("= %lukB\n", K(total)); 3073 } 3074 3075 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3076 3077 show_swap_cache_info(); 3078 } 3079 3080 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3081 { 3082 zoneref->zone = zone; 3083 zoneref->zone_idx = zone_idx(zone); 3084 } 3085 3086 /* 3087 * Builds allocation fallback zone lists. 3088 * 3089 * Add all populated zones of a node to the zonelist. 3090 */ 3091 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3092 int nr_zones, enum zone_type zone_type) 3093 { 3094 struct zone *zone; 3095 3096 BUG_ON(zone_type >= MAX_NR_ZONES); 3097 zone_type++; 3098 3099 do { 3100 zone_type--; 3101 zone = pgdat->node_zones + zone_type; 3102 if (populated_zone(zone)) { 3103 zoneref_set_zone(zone, 3104 &zonelist->_zonerefs[nr_zones++]); 3105 check_highest_zone(zone_type); 3106 } 3107 3108 } while (zone_type); 3109 return nr_zones; 3110 } 3111 3112 3113 /* 3114 * zonelist_order: 3115 * 0 = automatic detection of better ordering. 3116 * 1 = order by ([node] distance, -zonetype) 3117 * 2 = order by (-zonetype, [node] distance) 3118 * 3119 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3120 * the same zonelist. So only NUMA can configure this param. 3121 */ 3122 #define ZONELIST_ORDER_DEFAULT 0 3123 #define ZONELIST_ORDER_NODE 1 3124 #define ZONELIST_ORDER_ZONE 2 3125 3126 /* zonelist order in the kernel. 3127 * set_zonelist_order() will set this to NODE or ZONE. 3128 */ 3129 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3130 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3131 3132 3133 #ifdef CONFIG_NUMA 3134 /* The value user specified ....changed by config */ 3135 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3136 /* string for sysctl */ 3137 #define NUMA_ZONELIST_ORDER_LEN 16 3138 char numa_zonelist_order[16] = "default"; 3139 3140 /* 3141 * interface for configure zonelist ordering. 3142 * command line option "numa_zonelist_order" 3143 * = "[dD]efault - default, automatic configuration. 3144 * = "[nN]ode - order by node locality, then by zone within node 3145 * = "[zZ]one - order by zone, then by locality within zone 3146 */ 3147 3148 static int __parse_numa_zonelist_order(char *s) 3149 { 3150 if (*s == 'd' || *s == 'D') { 3151 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3152 } else if (*s == 'n' || *s == 'N') { 3153 user_zonelist_order = ZONELIST_ORDER_NODE; 3154 } else if (*s == 'z' || *s == 'Z') { 3155 user_zonelist_order = ZONELIST_ORDER_ZONE; 3156 } else { 3157 printk(KERN_WARNING 3158 "Ignoring invalid numa_zonelist_order value: " 3159 "%s\n", s); 3160 return -EINVAL; 3161 } 3162 return 0; 3163 } 3164 3165 static __init int setup_numa_zonelist_order(char *s) 3166 { 3167 int ret; 3168 3169 if (!s) 3170 return 0; 3171 3172 ret = __parse_numa_zonelist_order(s); 3173 if (ret == 0) 3174 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3175 3176 return ret; 3177 } 3178 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3179 3180 /* 3181 * sysctl handler for numa_zonelist_order 3182 */ 3183 int numa_zonelist_order_handler(ctl_table *table, int write, 3184 void __user *buffer, size_t *length, 3185 loff_t *ppos) 3186 { 3187 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3188 int ret; 3189 static DEFINE_MUTEX(zl_order_mutex); 3190 3191 mutex_lock(&zl_order_mutex); 3192 if (write) 3193 strcpy(saved_string, (char*)table->data); 3194 ret = proc_dostring(table, write, buffer, length, ppos); 3195 if (ret) 3196 goto out; 3197 if (write) { 3198 int oldval = user_zonelist_order; 3199 if (__parse_numa_zonelist_order((char*)table->data)) { 3200 /* 3201 * bogus value. restore saved string 3202 */ 3203 strncpy((char*)table->data, saved_string, 3204 NUMA_ZONELIST_ORDER_LEN); 3205 user_zonelist_order = oldval; 3206 } else if (oldval != user_zonelist_order) { 3207 mutex_lock(&zonelists_mutex); 3208 build_all_zonelists(NULL, NULL); 3209 mutex_unlock(&zonelists_mutex); 3210 } 3211 } 3212 out: 3213 mutex_unlock(&zl_order_mutex); 3214 return ret; 3215 } 3216 3217 3218 #define MAX_NODE_LOAD (nr_online_nodes) 3219 static int node_load[MAX_NUMNODES]; 3220 3221 /** 3222 * find_next_best_node - find the next node that should appear in a given node's fallback list 3223 * @node: node whose fallback list we're appending 3224 * @used_node_mask: nodemask_t of already used nodes 3225 * 3226 * We use a number of factors to determine which is the next node that should 3227 * appear on a given node's fallback list. The node should not have appeared 3228 * already in @node's fallback list, and it should be the next closest node 3229 * according to the distance array (which contains arbitrary distance values 3230 * from each node to each node in the system), and should also prefer nodes 3231 * with no CPUs, since presumably they'll have very little allocation pressure 3232 * on them otherwise. 3233 * It returns -1 if no node is found. 3234 */ 3235 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3236 { 3237 int n, val; 3238 int min_val = INT_MAX; 3239 int best_node = -1; 3240 const struct cpumask *tmp = cpumask_of_node(0); 3241 3242 /* Use the local node if we haven't already */ 3243 if (!node_isset(node, *used_node_mask)) { 3244 node_set(node, *used_node_mask); 3245 return node; 3246 } 3247 3248 for_each_node_state(n, N_MEMORY) { 3249 3250 /* Don't want a node to appear more than once */ 3251 if (node_isset(n, *used_node_mask)) 3252 continue; 3253 3254 /* Use the distance array to find the distance */ 3255 val = node_distance(node, n); 3256 3257 /* Penalize nodes under us ("prefer the next node") */ 3258 val += (n < node); 3259 3260 /* Give preference to headless and unused nodes */ 3261 tmp = cpumask_of_node(n); 3262 if (!cpumask_empty(tmp)) 3263 val += PENALTY_FOR_NODE_WITH_CPUS; 3264 3265 /* Slight preference for less loaded node */ 3266 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3267 val += node_load[n]; 3268 3269 if (val < min_val) { 3270 min_val = val; 3271 best_node = n; 3272 } 3273 } 3274 3275 if (best_node >= 0) 3276 node_set(best_node, *used_node_mask); 3277 3278 return best_node; 3279 } 3280 3281 3282 /* 3283 * Build zonelists ordered by node and zones within node. 3284 * This results in maximum locality--normal zone overflows into local 3285 * DMA zone, if any--but risks exhausting DMA zone. 3286 */ 3287 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3288 { 3289 int j; 3290 struct zonelist *zonelist; 3291 3292 zonelist = &pgdat->node_zonelists[0]; 3293 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3294 ; 3295 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3296 MAX_NR_ZONES - 1); 3297 zonelist->_zonerefs[j].zone = NULL; 3298 zonelist->_zonerefs[j].zone_idx = 0; 3299 } 3300 3301 /* 3302 * Build gfp_thisnode zonelists 3303 */ 3304 static void build_thisnode_zonelists(pg_data_t *pgdat) 3305 { 3306 int j; 3307 struct zonelist *zonelist; 3308 3309 zonelist = &pgdat->node_zonelists[1]; 3310 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3311 zonelist->_zonerefs[j].zone = NULL; 3312 zonelist->_zonerefs[j].zone_idx = 0; 3313 } 3314 3315 /* 3316 * Build zonelists ordered by zone and nodes within zones. 3317 * This results in conserving DMA zone[s] until all Normal memory is 3318 * exhausted, but results in overflowing to remote node while memory 3319 * may still exist in local DMA zone. 3320 */ 3321 static int node_order[MAX_NUMNODES]; 3322 3323 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3324 { 3325 int pos, j, node; 3326 int zone_type; /* needs to be signed */ 3327 struct zone *z; 3328 struct zonelist *zonelist; 3329 3330 zonelist = &pgdat->node_zonelists[0]; 3331 pos = 0; 3332 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3333 for (j = 0; j < nr_nodes; j++) { 3334 node = node_order[j]; 3335 z = &NODE_DATA(node)->node_zones[zone_type]; 3336 if (populated_zone(z)) { 3337 zoneref_set_zone(z, 3338 &zonelist->_zonerefs[pos++]); 3339 check_highest_zone(zone_type); 3340 } 3341 } 3342 } 3343 zonelist->_zonerefs[pos].zone = NULL; 3344 zonelist->_zonerefs[pos].zone_idx = 0; 3345 } 3346 3347 static int default_zonelist_order(void) 3348 { 3349 int nid, zone_type; 3350 unsigned long low_kmem_size,total_size; 3351 struct zone *z; 3352 int average_size; 3353 /* 3354 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 3355 * If they are really small and used heavily, the system can fall 3356 * into OOM very easily. 3357 * This function detect ZONE_DMA/DMA32 size and configures zone order. 3358 */ 3359 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 3360 low_kmem_size = 0; 3361 total_size = 0; 3362 for_each_online_node(nid) { 3363 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3364 z = &NODE_DATA(nid)->node_zones[zone_type]; 3365 if (populated_zone(z)) { 3366 if (zone_type < ZONE_NORMAL) 3367 low_kmem_size += z->present_pages; 3368 total_size += z->present_pages; 3369 } else if (zone_type == ZONE_NORMAL) { 3370 /* 3371 * If any node has only lowmem, then node order 3372 * is preferred to allow kernel allocations 3373 * locally; otherwise, they can easily infringe 3374 * on other nodes when there is an abundance of 3375 * lowmem available to allocate from. 3376 */ 3377 return ZONELIST_ORDER_NODE; 3378 } 3379 } 3380 } 3381 if (!low_kmem_size || /* there are no DMA area. */ 3382 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 3383 return ZONELIST_ORDER_NODE; 3384 /* 3385 * look into each node's config. 3386 * If there is a node whose DMA/DMA32 memory is very big area on 3387 * local memory, NODE_ORDER may be suitable. 3388 */ 3389 average_size = total_size / 3390 (nodes_weight(node_states[N_MEMORY]) + 1); 3391 for_each_online_node(nid) { 3392 low_kmem_size = 0; 3393 total_size = 0; 3394 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3395 z = &NODE_DATA(nid)->node_zones[zone_type]; 3396 if (populated_zone(z)) { 3397 if (zone_type < ZONE_NORMAL) 3398 low_kmem_size += z->present_pages; 3399 total_size += z->present_pages; 3400 } 3401 } 3402 if (low_kmem_size && 3403 total_size > average_size && /* ignore small node */ 3404 low_kmem_size > total_size * 70/100) 3405 return ZONELIST_ORDER_NODE; 3406 } 3407 return ZONELIST_ORDER_ZONE; 3408 } 3409 3410 static void set_zonelist_order(void) 3411 { 3412 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3413 current_zonelist_order = default_zonelist_order(); 3414 else 3415 current_zonelist_order = user_zonelist_order; 3416 } 3417 3418 static void build_zonelists(pg_data_t *pgdat) 3419 { 3420 int j, node, load; 3421 enum zone_type i; 3422 nodemask_t used_mask; 3423 int local_node, prev_node; 3424 struct zonelist *zonelist; 3425 int order = current_zonelist_order; 3426 3427 /* initialize zonelists */ 3428 for (i = 0; i < MAX_ZONELISTS; i++) { 3429 zonelist = pgdat->node_zonelists + i; 3430 zonelist->_zonerefs[0].zone = NULL; 3431 zonelist->_zonerefs[0].zone_idx = 0; 3432 } 3433 3434 /* NUMA-aware ordering of nodes */ 3435 local_node = pgdat->node_id; 3436 load = nr_online_nodes; 3437 prev_node = local_node; 3438 nodes_clear(used_mask); 3439 3440 memset(node_order, 0, sizeof(node_order)); 3441 j = 0; 3442 3443 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3444 /* 3445 * We don't want to pressure a particular node. 3446 * So adding penalty to the first node in same 3447 * distance group to make it round-robin. 3448 */ 3449 if (node_distance(local_node, node) != 3450 node_distance(local_node, prev_node)) 3451 node_load[node] = load; 3452 3453 prev_node = node; 3454 load--; 3455 if (order == ZONELIST_ORDER_NODE) 3456 build_zonelists_in_node_order(pgdat, node); 3457 else 3458 node_order[j++] = node; /* remember order */ 3459 } 3460 3461 if (order == ZONELIST_ORDER_ZONE) { 3462 /* calculate node order -- i.e., DMA last! */ 3463 build_zonelists_in_zone_order(pgdat, j); 3464 } 3465 3466 build_thisnode_zonelists(pgdat); 3467 } 3468 3469 /* Construct the zonelist performance cache - see further mmzone.h */ 3470 static void build_zonelist_cache(pg_data_t *pgdat) 3471 { 3472 struct zonelist *zonelist; 3473 struct zonelist_cache *zlc; 3474 struct zoneref *z; 3475 3476 zonelist = &pgdat->node_zonelists[0]; 3477 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3478 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3479 for (z = zonelist->_zonerefs; z->zone; z++) 3480 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3481 } 3482 3483 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3484 /* 3485 * Return node id of node used for "local" allocations. 3486 * I.e., first node id of first zone in arg node's generic zonelist. 3487 * Used for initializing percpu 'numa_mem', which is used primarily 3488 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3489 */ 3490 int local_memory_node(int node) 3491 { 3492 struct zone *zone; 3493 3494 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3495 gfp_zone(GFP_KERNEL), 3496 NULL, 3497 &zone); 3498 return zone->node; 3499 } 3500 #endif 3501 3502 #else /* CONFIG_NUMA */ 3503 3504 static void set_zonelist_order(void) 3505 { 3506 current_zonelist_order = ZONELIST_ORDER_ZONE; 3507 } 3508 3509 static void build_zonelists(pg_data_t *pgdat) 3510 { 3511 int node, local_node; 3512 enum zone_type j; 3513 struct zonelist *zonelist; 3514 3515 local_node = pgdat->node_id; 3516 3517 zonelist = &pgdat->node_zonelists[0]; 3518 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3519 3520 /* 3521 * Now we build the zonelist so that it contains the zones 3522 * of all the other nodes. 3523 * We don't want to pressure a particular node, so when 3524 * building the zones for node N, we make sure that the 3525 * zones coming right after the local ones are those from 3526 * node N+1 (modulo N) 3527 */ 3528 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3529 if (!node_online(node)) 3530 continue; 3531 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3532 MAX_NR_ZONES - 1); 3533 } 3534 for (node = 0; node < local_node; node++) { 3535 if (!node_online(node)) 3536 continue; 3537 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3538 MAX_NR_ZONES - 1); 3539 } 3540 3541 zonelist->_zonerefs[j].zone = NULL; 3542 zonelist->_zonerefs[j].zone_idx = 0; 3543 } 3544 3545 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3546 static void build_zonelist_cache(pg_data_t *pgdat) 3547 { 3548 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3549 } 3550 3551 #endif /* CONFIG_NUMA */ 3552 3553 /* 3554 * Boot pageset table. One per cpu which is going to be used for all 3555 * zones and all nodes. The parameters will be set in such a way 3556 * that an item put on a list will immediately be handed over to 3557 * the buddy list. This is safe since pageset manipulation is done 3558 * with interrupts disabled. 3559 * 3560 * The boot_pagesets must be kept even after bootup is complete for 3561 * unused processors and/or zones. They do play a role for bootstrapping 3562 * hotplugged processors. 3563 * 3564 * zoneinfo_show() and maybe other functions do 3565 * not check if the processor is online before following the pageset pointer. 3566 * Other parts of the kernel may not check if the zone is available. 3567 */ 3568 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3569 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3570 static void setup_zone_pageset(struct zone *zone); 3571 3572 /* 3573 * Global mutex to protect against size modification of zonelists 3574 * as well as to serialize pageset setup for the new populated zone. 3575 */ 3576 DEFINE_MUTEX(zonelists_mutex); 3577 3578 /* return values int ....just for stop_machine() */ 3579 static int __build_all_zonelists(void *data) 3580 { 3581 int nid; 3582 int cpu; 3583 pg_data_t *self = data; 3584 3585 #ifdef CONFIG_NUMA 3586 memset(node_load, 0, sizeof(node_load)); 3587 #endif 3588 3589 if (self && !node_online(self->node_id)) { 3590 build_zonelists(self); 3591 build_zonelist_cache(self); 3592 } 3593 3594 for_each_online_node(nid) { 3595 pg_data_t *pgdat = NODE_DATA(nid); 3596 3597 build_zonelists(pgdat); 3598 build_zonelist_cache(pgdat); 3599 } 3600 3601 /* 3602 * Initialize the boot_pagesets that are going to be used 3603 * for bootstrapping processors. The real pagesets for 3604 * each zone will be allocated later when the per cpu 3605 * allocator is available. 3606 * 3607 * boot_pagesets are used also for bootstrapping offline 3608 * cpus if the system is already booted because the pagesets 3609 * are needed to initialize allocators on a specific cpu too. 3610 * F.e. the percpu allocator needs the page allocator which 3611 * needs the percpu allocator in order to allocate its pagesets 3612 * (a chicken-egg dilemma). 3613 */ 3614 for_each_possible_cpu(cpu) { 3615 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3616 3617 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3618 /* 3619 * We now know the "local memory node" for each node-- 3620 * i.e., the node of the first zone in the generic zonelist. 3621 * Set up numa_mem percpu variable for on-line cpus. During 3622 * boot, only the boot cpu should be on-line; we'll init the 3623 * secondary cpus' numa_mem as they come on-line. During 3624 * node/memory hotplug, we'll fixup all on-line cpus. 3625 */ 3626 if (cpu_online(cpu)) 3627 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3628 #endif 3629 } 3630 3631 return 0; 3632 } 3633 3634 /* 3635 * Called with zonelists_mutex held always 3636 * unless system_state == SYSTEM_BOOTING. 3637 */ 3638 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3639 { 3640 set_zonelist_order(); 3641 3642 if (system_state == SYSTEM_BOOTING) { 3643 __build_all_zonelists(NULL); 3644 mminit_verify_zonelist(); 3645 cpuset_init_current_mems_allowed(); 3646 } else { 3647 /* we have to stop all cpus to guarantee there is no user 3648 of zonelist */ 3649 #ifdef CONFIG_MEMORY_HOTPLUG 3650 if (zone) 3651 setup_zone_pageset(zone); 3652 #endif 3653 stop_machine(__build_all_zonelists, pgdat, NULL); 3654 /* cpuset refresh routine should be here */ 3655 } 3656 vm_total_pages = nr_free_pagecache_pages(); 3657 /* 3658 * Disable grouping by mobility if the number of pages in the 3659 * system is too low to allow the mechanism to work. It would be 3660 * more accurate, but expensive to check per-zone. This check is 3661 * made on memory-hotadd so a system can start with mobility 3662 * disabled and enable it later 3663 */ 3664 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3665 page_group_by_mobility_disabled = 1; 3666 else 3667 page_group_by_mobility_disabled = 0; 3668 3669 printk("Built %i zonelists in %s order, mobility grouping %s. " 3670 "Total pages: %ld\n", 3671 nr_online_nodes, 3672 zonelist_order_name[current_zonelist_order], 3673 page_group_by_mobility_disabled ? "off" : "on", 3674 vm_total_pages); 3675 #ifdef CONFIG_NUMA 3676 printk("Policy zone: %s\n", zone_names[policy_zone]); 3677 #endif 3678 } 3679 3680 /* 3681 * Helper functions to size the waitqueue hash table. 3682 * Essentially these want to choose hash table sizes sufficiently 3683 * large so that collisions trying to wait on pages are rare. 3684 * But in fact, the number of active page waitqueues on typical 3685 * systems is ridiculously low, less than 200. So this is even 3686 * conservative, even though it seems large. 3687 * 3688 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3689 * waitqueues, i.e. the size of the waitq table given the number of pages. 3690 */ 3691 #define PAGES_PER_WAITQUEUE 256 3692 3693 #ifndef CONFIG_MEMORY_HOTPLUG 3694 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3695 { 3696 unsigned long size = 1; 3697 3698 pages /= PAGES_PER_WAITQUEUE; 3699 3700 while (size < pages) 3701 size <<= 1; 3702 3703 /* 3704 * Once we have dozens or even hundreds of threads sleeping 3705 * on IO we've got bigger problems than wait queue collision. 3706 * Limit the size of the wait table to a reasonable size. 3707 */ 3708 size = min(size, 4096UL); 3709 3710 return max(size, 4UL); 3711 } 3712 #else 3713 /* 3714 * A zone's size might be changed by hot-add, so it is not possible to determine 3715 * a suitable size for its wait_table. So we use the maximum size now. 3716 * 3717 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3718 * 3719 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3720 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3721 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3722 * 3723 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3724 * or more by the traditional way. (See above). It equals: 3725 * 3726 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3727 * ia64(16K page size) : = ( 8G + 4M)byte. 3728 * powerpc (64K page size) : = (32G +16M)byte. 3729 */ 3730 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3731 { 3732 return 4096UL; 3733 } 3734 #endif 3735 3736 /* 3737 * This is an integer logarithm so that shifts can be used later 3738 * to extract the more random high bits from the multiplicative 3739 * hash function before the remainder is taken. 3740 */ 3741 static inline unsigned long wait_table_bits(unsigned long size) 3742 { 3743 return ffz(~size); 3744 } 3745 3746 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3747 3748 /* 3749 * Check if a pageblock contains reserved pages 3750 */ 3751 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3752 { 3753 unsigned long pfn; 3754 3755 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3756 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3757 return 1; 3758 } 3759 return 0; 3760 } 3761 3762 /* 3763 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3764 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3765 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3766 * higher will lead to a bigger reserve which will get freed as contiguous 3767 * blocks as reclaim kicks in 3768 */ 3769 static void setup_zone_migrate_reserve(struct zone *zone) 3770 { 3771 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3772 struct page *page; 3773 unsigned long block_migratetype; 3774 int reserve; 3775 3776 /* 3777 * Get the start pfn, end pfn and the number of blocks to reserve 3778 * We have to be careful to be aligned to pageblock_nr_pages to 3779 * make sure that we always check pfn_valid for the first page in 3780 * the block. 3781 */ 3782 start_pfn = zone->zone_start_pfn; 3783 end_pfn = start_pfn + zone->spanned_pages; 3784 start_pfn = roundup(start_pfn, pageblock_nr_pages); 3785 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3786 pageblock_order; 3787 3788 /* 3789 * Reserve blocks are generally in place to help high-order atomic 3790 * allocations that are short-lived. A min_free_kbytes value that 3791 * would result in more than 2 reserve blocks for atomic allocations 3792 * is assumed to be in place to help anti-fragmentation for the 3793 * future allocation of hugepages at runtime. 3794 */ 3795 reserve = min(2, reserve); 3796 3797 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3798 if (!pfn_valid(pfn)) 3799 continue; 3800 page = pfn_to_page(pfn); 3801 3802 /* Watch out for overlapping nodes */ 3803 if (page_to_nid(page) != zone_to_nid(zone)) 3804 continue; 3805 3806 block_migratetype = get_pageblock_migratetype(page); 3807 3808 /* Only test what is necessary when the reserves are not met */ 3809 if (reserve > 0) { 3810 /* 3811 * Blocks with reserved pages will never free, skip 3812 * them. 3813 */ 3814 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 3815 if (pageblock_is_reserved(pfn, block_end_pfn)) 3816 continue; 3817 3818 /* If this block is reserved, account for it */ 3819 if (block_migratetype == MIGRATE_RESERVE) { 3820 reserve--; 3821 continue; 3822 } 3823 3824 /* Suitable for reserving if this block is movable */ 3825 if (block_migratetype == MIGRATE_MOVABLE) { 3826 set_pageblock_migratetype(page, 3827 MIGRATE_RESERVE); 3828 move_freepages_block(zone, page, 3829 MIGRATE_RESERVE); 3830 reserve--; 3831 continue; 3832 } 3833 } 3834 3835 /* 3836 * If the reserve is met and this is a previous reserved block, 3837 * take it back 3838 */ 3839 if (block_migratetype == MIGRATE_RESERVE) { 3840 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3841 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3842 } 3843 } 3844 } 3845 3846 /* 3847 * Initially all pages are reserved - free ones are freed 3848 * up by free_all_bootmem() once the early boot process is 3849 * done. Non-atomic initialization, single-pass. 3850 */ 3851 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3852 unsigned long start_pfn, enum memmap_context context) 3853 { 3854 struct page *page; 3855 unsigned long end_pfn = start_pfn + size; 3856 unsigned long pfn; 3857 struct zone *z; 3858 3859 if (highest_memmap_pfn < end_pfn - 1) 3860 highest_memmap_pfn = end_pfn - 1; 3861 3862 z = &NODE_DATA(nid)->node_zones[zone]; 3863 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3864 /* 3865 * There can be holes in boot-time mem_map[]s 3866 * handed to this function. They do not 3867 * exist on hotplugged memory. 3868 */ 3869 if (context == MEMMAP_EARLY) { 3870 if (!early_pfn_valid(pfn)) 3871 continue; 3872 if (!early_pfn_in_nid(pfn, nid)) 3873 continue; 3874 } 3875 page = pfn_to_page(pfn); 3876 set_page_links(page, zone, nid, pfn); 3877 mminit_verify_page_links(page, zone, nid, pfn); 3878 init_page_count(page); 3879 reset_page_mapcount(page); 3880 reset_page_last_nid(page); 3881 SetPageReserved(page); 3882 /* 3883 * Mark the block movable so that blocks are reserved for 3884 * movable at startup. This will force kernel allocations 3885 * to reserve their blocks rather than leaking throughout 3886 * the address space during boot when many long-lived 3887 * kernel allocations are made. Later some blocks near 3888 * the start are marked MIGRATE_RESERVE by 3889 * setup_zone_migrate_reserve() 3890 * 3891 * bitmap is created for zone's valid pfn range. but memmap 3892 * can be created for invalid pages (for alignment) 3893 * check here not to call set_pageblock_migratetype() against 3894 * pfn out of zone. 3895 */ 3896 if ((z->zone_start_pfn <= pfn) 3897 && (pfn < z->zone_start_pfn + z->spanned_pages) 3898 && !(pfn & (pageblock_nr_pages - 1))) 3899 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3900 3901 INIT_LIST_HEAD(&page->lru); 3902 #ifdef WANT_PAGE_VIRTUAL 3903 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3904 if (!is_highmem_idx(zone)) 3905 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3906 #endif 3907 } 3908 } 3909 3910 static void __meminit zone_init_free_lists(struct zone *zone) 3911 { 3912 int order, t; 3913 for_each_migratetype_order(order, t) { 3914 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3915 zone->free_area[order].nr_free = 0; 3916 } 3917 } 3918 3919 #ifndef __HAVE_ARCH_MEMMAP_INIT 3920 #define memmap_init(size, nid, zone, start_pfn) \ 3921 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3922 #endif 3923 3924 static int __meminit zone_batchsize(struct zone *zone) 3925 { 3926 #ifdef CONFIG_MMU 3927 int batch; 3928 3929 /* 3930 * The per-cpu-pages pools are set to around 1000th of the 3931 * size of the zone. But no more than 1/2 of a meg. 3932 * 3933 * OK, so we don't know how big the cache is. So guess. 3934 */ 3935 batch = zone->present_pages / 1024; 3936 if (batch * PAGE_SIZE > 512 * 1024) 3937 batch = (512 * 1024) / PAGE_SIZE; 3938 batch /= 4; /* We effectively *= 4 below */ 3939 if (batch < 1) 3940 batch = 1; 3941 3942 /* 3943 * Clamp the batch to a 2^n - 1 value. Having a power 3944 * of 2 value was found to be more likely to have 3945 * suboptimal cache aliasing properties in some cases. 3946 * 3947 * For example if 2 tasks are alternately allocating 3948 * batches of pages, one task can end up with a lot 3949 * of pages of one half of the possible page colors 3950 * and the other with pages of the other colors. 3951 */ 3952 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3953 3954 return batch; 3955 3956 #else 3957 /* The deferral and batching of frees should be suppressed under NOMMU 3958 * conditions. 3959 * 3960 * The problem is that NOMMU needs to be able to allocate large chunks 3961 * of contiguous memory as there's no hardware page translation to 3962 * assemble apparent contiguous memory from discontiguous pages. 3963 * 3964 * Queueing large contiguous runs of pages for batching, however, 3965 * causes the pages to actually be freed in smaller chunks. As there 3966 * can be a significant delay between the individual batches being 3967 * recycled, this leads to the once large chunks of space being 3968 * fragmented and becoming unavailable for high-order allocations. 3969 */ 3970 return 0; 3971 #endif 3972 } 3973 3974 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3975 { 3976 struct per_cpu_pages *pcp; 3977 int migratetype; 3978 3979 memset(p, 0, sizeof(*p)); 3980 3981 pcp = &p->pcp; 3982 pcp->count = 0; 3983 pcp->high = 6 * batch; 3984 pcp->batch = max(1UL, 1 * batch); 3985 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3986 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3987 } 3988 3989 /* 3990 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3991 * to the value high for the pageset p. 3992 */ 3993 3994 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3995 unsigned long high) 3996 { 3997 struct per_cpu_pages *pcp; 3998 3999 pcp = &p->pcp; 4000 pcp->high = high; 4001 pcp->batch = max(1UL, high/4); 4002 if ((high/4) > (PAGE_SHIFT * 8)) 4003 pcp->batch = PAGE_SHIFT * 8; 4004 } 4005 4006 static void __meminit setup_zone_pageset(struct zone *zone) 4007 { 4008 int cpu; 4009 4010 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4011 4012 for_each_possible_cpu(cpu) { 4013 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4014 4015 setup_pageset(pcp, zone_batchsize(zone)); 4016 4017 if (percpu_pagelist_fraction) 4018 setup_pagelist_highmark(pcp, 4019 (zone->present_pages / 4020 percpu_pagelist_fraction)); 4021 } 4022 } 4023 4024 /* 4025 * Allocate per cpu pagesets and initialize them. 4026 * Before this call only boot pagesets were available. 4027 */ 4028 void __init setup_per_cpu_pageset(void) 4029 { 4030 struct zone *zone; 4031 4032 for_each_populated_zone(zone) 4033 setup_zone_pageset(zone); 4034 } 4035 4036 static noinline __init_refok 4037 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4038 { 4039 int i; 4040 struct pglist_data *pgdat = zone->zone_pgdat; 4041 size_t alloc_size; 4042 4043 /* 4044 * The per-page waitqueue mechanism uses hashed waitqueues 4045 * per zone. 4046 */ 4047 zone->wait_table_hash_nr_entries = 4048 wait_table_hash_nr_entries(zone_size_pages); 4049 zone->wait_table_bits = 4050 wait_table_bits(zone->wait_table_hash_nr_entries); 4051 alloc_size = zone->wait_table_hash_nr_entries 4052 * sizeof(wait_queue_head_t); 4053 4054 if (!slab_is_available()) { 4055 zone->wait_table = (wait_queue_head_t *) 4056 alloc_bootmem_node_nopanic(pgdat, alloc_size); 4057 } else { 4058 /* 4059 * This case means that a zone whose size was 0 gets new memory 4060 * via memory hot-add. 4061 * But it may be the case that a new node was hot-added. In 4062 * this case vmalloc() will not be able to use this new node's 4063 * memory - this wait_table must be initialized to use this new 4064 * node itself as well. 4065 * To use this new node's memory, further consideration will be 4066 * necessary. 4067 */ 4068 zone->wait_table = vmalloc(alloc_size); 4069 } 4070 if (!zone->wait_table) 4071 return -ENOMEM; 4072 4073 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4074 init_waitqueue_head(zone->wait_table + i); 4075 4076 return 0; 4077 } 4078 4079 static __meminit void zone_pcp_init(struct zone *zone) 4080 { 4081 /* 4082 * per cpu subsystem is not up at this point. The following code 4083 * relies on the ability of the linker to provide the 4084 * offset of a (static) per cpu variable into the per cpu area. 4085 */ 4086 zone->pageset = &boot_pageset; 4087 4088 if (zone->present_pages) 4089 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4090 zone->name, zone->present_pages, 4091 zone_batchsize(zone)); 4092 } 4093 4094 int __meminit init_currently_empty_zone(struct zone *zone, 4095 unsigned long zone_start_pfn, 4096 unsigned long size, 4097 enum memmap_context context) 4098 { 4099 struct pglist_data *pgdat = zone->zone_pgdat; 4100 int ret; 4101 ret = zone_wait_table_init(zone, size); 4102 if (ret) 4103 return ret; 4104 pgdat->nr_zones = zone_idx(zone) + 1; 4105 4106 zone->zone_start_pfn = zone_start_pfn; 4107 4108 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4109 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4110 pgdat->node_id, 4111 (unsigned long)zone_idx(zone), 4112 zone_start_pfn, (zone_start_pfn + size)); 4113 4114 zone_init_free_lists(zone); 4115 4116 return 0; 4117 } 4118 4119 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4120 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4121 /* 4122 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4123 * Architectures may implement their own version but if add_active_range() 4124 * was used and there are no special requirements, this is a convenient 4125 * alternative 4126 */ 4127 int __meminit __early_pfn_to_nid(unsigned long pfn) 4128 { 4129 unsigned long start_pfn, end_pfn; 4130 int i, nid; 4131 4132 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 4133 if (start_pfn <= pfn && pfn < end_pfn) 4134 return nid; 4135 /* This is a memory hole */ 4136 return -1; 4137 } 4138 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4139 4140 int __meminit early_pfn_to_nid(unsigned long pfn) 4141 { 4142 int nid; 4143 4144 nid = __early_pfn_to_nid(pfn); 4145 if (nid >= 0) 4146 return nid; 4147 /* just returns 0 */ 4148 return 0; 4149 } 4150 4151 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4152 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4153 { 4154 int nid; 4155 4156 nid = __early_pfn_to_nid(pfn); 4157 if (nid >= 0 && nid != node) 4158 return false; 4159 return true; 4160 } 4161 #endif 4162 4163 /** 4164 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 4165 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4166 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 4167 * 4168 * If an architecture guarantees that all ranges registered with 4169 * add_active_ranges() contain no holes and may be freed, this 4170 * this function may be used instead of calling free_bootmem() manually. 4171 */ 4172 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4173 { 4174 unsigned long start_pfn, end_pfn; 4175 int i, this_nid; 4176 4177 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4178 start_pfn = min(start_pfn, max_low_pfn); 4179 end_pfn = min(end_pfn, max_low_pfn); 4180 4181 if (start_pfn < end_pfn) 4182 free_bootmem_node(NODE_DATA(this_nid), 4183 PFN_PHYS(start_pfn), 4184 (end_pfn - start_pfn) << PAGE_SHIFT); 4185 } 4186 } 4187 4188 /** 4189 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4190 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4191 * 4192 * If an architecture guarantees that all ranges registered with 4193 * add_active_ranges() contain no holes and may be freed, this 4194 * function may be used instead of calling memory_present() manually. 4195 */ 4196 void __init sparse_memory_present_with_active_regions(int nid) 4197 { 4198 unsigned long start_pfn, end_pfn; 4199 int i, this_nid; 4200 4201 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4202 memory_present(this_nid, start_pfn, end_pfn); 4203 } 4204 4205 /** 4206 * get_pfn_range_for_nid - Return the start and end page frames for a node 4207 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4208 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4209 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4210 * 4211 * It returns the start and end page frame of a node based on information 4212 * provided by an arch calling add_active_range(). If called for a node 4213 * with no available memory, a warning is printed and the start and end 4214 * PFNs will be 0. 4215 */ 4216 void __meminit get_pfn_range_for_nid(unsigned int nid, 4217 unsigned long *start_pfn, unsigned long *end_pfn) 4218 { 4219 unsigned long this_start_pfn, this_end_pfn; 4220 int i; 4221 4222 *start_pfn = -1UL; 4223 *end_pfn = 0; 4224 4225 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4226 *start_pfn = min(*start_pfn, this_start_pfn); 4227 *end_pfn = max(*end_pfn, this_end_pfn); 4228 } 4229 4230 if (*start_pfn == -1UL) 4231 *start_pfn = 0; 4232 } 4233 4234 /* 4235 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4236 * assumption is made that zones within a node are ordered in monotonic 4237 * increasing memory addresses so that the "highest" populated zone is used 4238 */ 4239 static void __init find_usable_zone_for_movable(void) 4240 { 4241 int zone_index; 4242 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4243 if (zone_index == ZONE_MOVABLE) 4244 continue; 4245 4246 if (arch_zone_highest_possible_pfn[zone_index] > 4247 arch_zone_lowest_possible_pfn[zone_index]) 4248 break; 4249 } 4250 4251 VM_BUG_ON(zone_index == -1); 4252 movable_zone = zone_index; 4253 } 4254 4255 /* 4256 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4257 * because it is sized independent of architecture. Unlike the other zones, 4258 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4259 * in each node depending on the size of each node and how evenly kernelcore 4260 * is distributed. This helper function adjusts the zone ranges 4261 * provided by the architecture for a given node by using the end of the 4262 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4263 * zones within a node are in order of monotonic increases memory addresses 4264 */ 4265 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4266 unsigned long zone_type, 4267 unsigned long node_start_pfn, 4268 unsigned long node_end_pfn, 4269 unsigned long *zone_start_pfn, 4270 unsigned long *zone_end_pfn) 4271 { 4272 /* Only adjust if ZONE_MOVABLE is on this node */ 4273 if (zone_movable_pfn[nid]) { 4274 /* Size ZONE_MOVABLE */ 4275 if (zone_type == ZONE_MOVABLE) { 4276 *zone_start_pfn = zone_movable_pfn[nid]; 4277 *zone_end_pfn = min(node_end_pfn, 4278 arch_zone_highest_possible_pfn[movable_zone]); 4279 4280 /* Adjust for ZONE_MOVABLE starting within this range */ 4281 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4282 *zone_end_pfn > zone_movable_pfn[nid]) { 4283 *zone_end_pfn = zone_movable_pfn[nid]; 4284 4285 /* Check if this whole range is within ZONE_MOVABLE */ 4286 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4287 *zone_start_pfn = *zone_end_pfn; 4288 } 4289 } 4290 4291 /* 4292 * Return the number of pages a zone spans in a node, including holes 4293 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4294 */ 4295 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4296 unsigned long zone_type, 4297 unsigned long *ignored) 4298 { 4299 unsigned long node_start_pfn, node_end_pfn; 4300 unsigned long zone_start_pfn, zone_end_pfn; 4301 4302 /* Get the start and end of the node and zone */ 4303 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4304 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4305 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4306 adjust_zone_range_for_zone_movable(nid, zone_type, 4307 node_start_pfn, node_end_pfn, 4308 &zone_start_pfn, &zone_end_pfn); 4309 4310 /* Check that this node has pages within the zone's required range */ 4311 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4312 return 0; 4313 4314 /* Move the zone boundaries inside the node if necessary */ 4315 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4316 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4317 4318 /* Return the spanned pages */ 4319 return zone_end_pfn - zone_start_pfn; 4320 } 4321 4322 /* 4323 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4324 * then all holes in the requested range will be accounted for. 4325 */ 4326 unsigned long __meminit __absent_pages_in_range(int nid, 4327 unsigned long range_start_pfn, 4328 unsigned long range_end_pfn) 4329 { 4330 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4331 unsigned long start_pfn, end_pfn; 4332 int i; 4333 4334 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4335 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4336 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4337 nr_absent -= end_pfn - start_pfn; 4338 } 4339 return nr_absent; 4340 } 4341 4342 /** 4343 * absent_pages_in_range - Return number of page frames in holes within a range 4344 * @start_pfn: The start PFN to start searching for holes 4345 * @end_pfn: The end PFN to stop searching for holes 4346 * 4347 * It returns the number of pages frames in memory holes within a range. 4348 */ 4349 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4350 unsigned long end_pfn) 4351 { 4352 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4353 } 4354 4355 /* Return the number of page frames in holes in a zone on a node */ 4356 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4357 unsigned long zone_type, 4358 unsigned long *ignored) 4359 { 4360 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4361 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4362 unsigned long node_start_pfn, node_end_pfn; 4363 unsigned long zone_start_pfn, zone_end_pfn; 4364 4365 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4366 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4367 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4368 4369 adjust_zone_range_for_zone_movable(nid, zone_type, 4370 node_start_pfn, node_end_pfn, 4371 &zone_start_pfn, &zone_end_pfn); 4372 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4373 } 4374 4375 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4376 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4377 unsigned long zone_type, 4378 unsigned long *zones_size) 4379 { 4380 return zones_size[zone_type]; 4381 } 4382 4383 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4384 unsigned long zone_type, 4385 unsigned long *zholes_size) 4386 { 4387 if (!zholes_size) 4388 return 0; 4389 4390 return zholes_size[zone_type]; 4391 } 4392 4393 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4394 4395 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4396 unsigned long *zones_size, unsigned long *zholes_size) 4397 { 4398 unsigned long realtotalpages, totalpages = 0; 4399 enum zone_type i; 4400 4401 for (i = 0; i < MAX_NR_ZONES; i++) 4402 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4403 zones_size); 4404 pgdat->node_spanned_pages = totalpages; 4405 4406 realtotalpages = totalpages; 4407 for (i = 0; i < MAX_NR_ZONES; i++) 4408 realtotalpages -= 4409 zone_absent_pages_in_node(pgdat->node_id, i, 4410 zholes_size); 4411 pgdat->node_present_pages = realtotalpages; 4412 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4413 realtotalpages); 4414 } 4415 4416 #ifndef CONFIG_SPARSEMEM 4417 /* 4418 * Calculate the size of the zone->blockflags rounded to an unsigned long 4419 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4420 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4421 * round what is now in bits to nearest long in bits, then return it in 4422 * bytes. 4423 */ 4424 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 4425 { 4426 unsigned long usemapsize; 4427 4428 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 4429 usemapsize = roundup(zonesize, pageblock_nr_pages); 4430 usemapsize = usemapsize >> pageblock_order; 4431 usemapsize *= NR_PAGEBLOCK_BITS; 4432 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4433 4434 return usemapsize / 8; 4435 } 4436 4437 static void __init setup_usemap(struct pglist_data *pgdat, 4438 struct zone *zone, 4439 unsigned long zone_start_pfn, 4440 unsigned long zonesize) 4441 { 4442 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 4443 zone->pageblock_flags = NULL; 4444 if (usemapsize) 4445 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, 4446 usemapsize); 4447 } 4448 #else 4449 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 4450 unsigned long zone_start_pfn, unsigned long zonesize) {} 4451 #endif /* CONFIG_SPARSEMEM */ 4452 4453 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4454 4455 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4456 void __init set_pageblock_order(void) 4457 { 4458 unsigned int order; 4459 4460 /* Check that pageblock_nr_pages has not already been setup */ 4461 if (pageblock_order) 4462 return; 4463 4464 if (HPAGE_SHIFT > PAGE_SHIFT) 4465 order = HUGETLB_PAGE_ORDER; 4466 else 4467 order = MAX_ORDER - 1; 4468 4469 /* 4470 * Assume the largest contiguous order of interest is a huge page. 4471 * This value may be variable depending on boot parameters on IA64 and 4472 * powerpc. 4473 */ 4474 pageblock_order = order; 4475 } 4476 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4477 4478 /* 4479 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4480 * is unused as pageblock_order is set at compile-time. See 4481 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4482 * the kernel config 4483 */ 4484 void __init set_pageblock_order(void) 4485 { 4486 } 4487 4488 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4489 4490 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 4491 unsigned long present_pages) 4492 { 4493 unsigned long pages = spanned_pages; 4494 4495 /* 4496 * Provide a more accurate estimation if there are holes within 4497 * the zone and SPARSEMEM is in use. If there are holes within the 4498 * zone, each populated memory region may cost us one or two extra 4499 * memmap pages due to alignment because memmap pages for each 4500 * populated regions may not naturally algined on page boundary. 4501 * So the (present_pages >> 4) heuristic is a tradeoff for that. 4502 */ 4503 if (spanned_pages > present_pages + (present_pages >> 4) && 4504 IS_ENABLED(CONFIG_SPARSEMEM)) 4505 pages = present_pages; 4506 4507 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 4508 } 4509 4510 /* 4511 * Set up the zone data structures: 4512 * - mark all pages reserved 4513 * - mark all memory queues empty 4514 * - clear the memory bitmaps 4515 * 4516 * NOTE: pgdat should get zeroed by caller. 4517 */ 4518 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4519 unsigned long *zones_size, unsigned long *zholes_size) 4520 { 4521 enum zone_type j; 4522 int nid = pgdat->node_id; 4523 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4524 int ret; 4525 4526 pgdat_resize_init(pgdat); 4527 #ifdef CONFIG_NUMA_BALANCING 4528 spin_lock_init(&pgdat->numabalancing_migrate_lock); 4529 pgdat->numabalancing_migrate_nr_pages = 0; 4530 pgdat->numabalancing_migrate_next_window = jiffies; 4531 #endif 4532 init_waitqueue_head(&pgdat->kswapd_wait); 4533 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4534 pgdat_page_cgroup_init(pgdat); 4535 4536 for (j = 0; j < MAX_NR_ZONES; j++) { 4537 struct zone *zone = pgdat->node_zones + j; 4538 unsigned long size, realsize, freesize, memmap_pages; 4539 4540 size = zone_spanned_pages_in_node(nid, j, zones_size); 4541 realsize = freesize = size - zone_absent_pages_in_node(nid, j, 4542 zholes_size); 4543 4544 /* 4545 * Adjust freesize so that it accounts for how much memory 4546 * is used by this zone for memmap. This affects the watermark 4547 * and per-cpu initialisations 4548 */ 4549 memmap_pages = calc_memmap_size(size, realsize); 4550 if (freesize >= memmap_pages) { 4551 freesize -= memmap_pages; 4552 if (memmap_pages) 4553 printk(KERN_DEBUG 4554 " %s zone: %lu pages used for memmap\n", 4555 zone_names[j], memmap_pages); 4556 } else 4557 printk(KERN_WARNING 4558 " %s zone: %lu pages exceeds freesize %lu\n", 4559 zone_names[j], memmap_pages, freesize); 4560 4561 /* Account for reserved pages */ 4562 if (j == 0 && freesize > dma_reserve) { 4563 freesize -= dma_reserve; 4564 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4565 zone_names[0], dma_reserve); 4566 } 4567 4568 if (!is_highmem_idx(j)) 4569 nr_kernel_pages += freesize; 4570 /* Charge for highmem memmap if there are enough kernel pages */ 4571 else if (nr_kernel_pages > memmap_pages * 2) 4572 nr_kernel_pages -= memmap_pages; 4573 nr_all_pages += freesize; 4574 4575 zone->spanned_pages = size; 4576 zone->present_pages = freesize; 4577 /* 4578 * Set an approximate value for lowmem here, it will be adjusted 4579 * when the bootmem allocator frees pages into the buddy system. 4580 * And all highmem pages will be managed by the buddy system. 4581 */ 4582 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 4583 #ifdef CONFIG_NUMA 4584 zone->node = nid; 4585 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 4586 / 100; 4587 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 4588 #endif 4589 zone->name = zone_names[j]; 4590 spin_lock_init(&zone->lock); 4591 spin_lock_init(&zone->lru_lock); 4592 zone_seqlock_init(zone); 4593 zone->zone_pgdat = pgdat; 4594 4595 zone_pcp_init(zone); 4596 lruvec_init(&zone->lruvec); 4597 if (!size) 4598 continue; 4599 4600 set_pageblock_order(); 4601 setup_usemap(pgdat, zone, zone_start_pfn, size); 4602 ret = init_currently_empty_zone(zone, zone_start_pfn, 4603 size, MEMMAP_EARLY); 4604 BUG_ON(ret); 4605 memmap_init(size, nid, j, zone_start_pfn); 4606 zone_start_pfn += size; 4607 } 4608 } 4609 4610 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4611 { 4612 /* Skip empty nodes */ 4613 if (!pgdat->node_spanned_pages) 4614 return; 4615 4616 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4617 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4618 if (!pgdat->node_mem_map) { 4619 unsigned long size, start, end; 4620 struct page *map; 4621 4622 /* 4623 * The zone's endpoints aren't required to be MAX_ORDER 4624 * aligned but the node_mem_map endpoints must be in order 4625 * for the buddy allocator to function correctly. 4626 */ 4627 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4628 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 4629 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4630 size = (end - start) * sizeof(struct page); 4631 map = alloc_remap(pgdat->node_id, size); 4632 if (!map) 4633 map = alloc_bootmem_node_nopanic(pgdat, size); 4634 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4635 } 4636 #ifndef CONFIG_NEED_MULTIPLE_NODES 4637 /* 4638 * With no DISCONTIG, the global mem_map is just set as node 0's 4639 */ 4640 if (pgdat == NODE_DATA(0)) { 4641 mem_map = NODE_DATA(0)->node_mem_map; 4642 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4643 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4644 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4645 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4646 } 4647 #endif 4648 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4649 } 4650 4651 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4652 unsigned long node_start_pfn, unsigned long *zholes_size) 4653 { 4654 pg_data_t *pgdat = NODE_DATA(nid); 4655 4656 /* pg_data_t should be reset to zero when it's allocated */ 4657 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 4658 4659 pgdat->node_id = nid; 4660 pgdat->node_start_pfn = node_start_pfn; 4661 init_zone_allows_reclaim(nid); 4662 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4663 4664 alloc_node_mem_map(pgdat); 4665 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4666 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4667 nid, (unsigned long)pgdat, 4668 (unsigned long)pgdat->node_mem_map); 4669 #endif 4670 4671 free_area_init_core(pgdat, zones_size, zholes_size); 4672 } 4673 4674 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4675 4676 #if MAX_NUMNODES > 1 4677 /* 4678 * Figure out the number of possible node ids. 4679 */ 4680 static void __init setup_nr_node_ids(void) 4681 { 4682 unsigned int node; 4683 unsigned int highest = 0; 4684 4685 for_each_node_mask(node, node_possible_map) 4686 highest = node; 4687 nr_node_ids = highest + 1; 4688 } 4689 #else 4690 static inline void setup_nr_node_ids(void) 4691 { 4692 } 4693 #endif 4694 4695 /** 4696 * node_map_pfn_alignment - determine the maximum internode alignment 4697 * 4698 * This function should be called after node map is populated and sorted. 4699 * It calculates the maximum power of two alignment which can distinguish 4700 * all the nodes. 4701 * 4702 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 4703 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 4704 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 4705 * shifted, 1GiB is enough and this function will indicate so. 4706 * 4707 * This is used to test whether pfn -> nid mapping of the chosen memory 4708 * model has fine enough granularity to avoid incorrect mapping for the 4709 * populated node map. 4710 * 4711 * Returns the determined alignment in pfn's. 0 if there is no alignment 4712 * requirement (single node). 4713 */ 4714 unsigned long __init node_map_pfn_alignment(void) 4715 { 4716 unsigned long accl_mask = 0, last_end = 0; 4717 unsigned long start, end, mask; 4718 int last_nid = -1; 4719 int i, nid; 4720 4721 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 4722 if (!start || last_nid < 0 || last_nid == nid) { 4723 last_nid = nid; 4724 last_end = end; 4725 continue; 4726 } 4727 4728 /* 4729 * Start with a mask granular enough to pin-point to the 4730 * start pfn and tick off bits one-by-one until it becomes 4731 * too coarse to separate the current node from the last. 4732 */ 4733 mask = ~((1 << __ffs(start)) - 1); 4734 while (mask && last_end <= (start & (mask << 1))) 4735 mask <<= 1; 4736 4737 /* accumulate all internode masks */ 4738 accl_mask |= mask; 4739 } 4740 4741 /* convert mask to number of pages */ 4742 return ~accl_mask + 1; 4743 } 4744 4745 /* Find the lowest pfn for a node */ 4746 static unsigned long __init find_min_pfn_for_node(int nid) 4747 { 4748 unsigned long min_pfn = ULONG_MAX; 4749 unsigned long start_pfn; 4750 int i; 4751 4752 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 4753 min_pfn = min(min_pfn, start_pfn); 4754 4755 if (min_pfn == ULONG_MAX) { 4756 printk(KERN_WARNING 4757 "Could not find start_pfn for node %d\n", nid); 4758 return 0; 4759 } 4760 4761 return min_pfn; 4762 } 4763 4764 /** 4765 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4766 * 4767 * It returns the minimum PFN based on information provided via 4768 * add_active_range(). 4769 */ 4770 unsigned long __init find_min_pfn_with_active_regions(void) 4771 { 4772 return find_min_pfn_for_node(MAX_NUMNODES); 4773 } 4774 4775 /* 4776 * early_calculate_totalpages() 4777 * Sum pages in active regions for movable zone. 4778 * Populate N_MEMORY for calculating usable_nodes. 4779 */ 4780 static unsigned long __init early_calculate_totalpages(void) 4781 { 4782 unsigned long totalpages = 0; 4783 unsigned long start_pfn, end_pfn; 4784 int i, nid; 4785 4786 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 4787 unsigned long pages = end_pfn - start_pfn; 4788 4789 totalpages += pages; 4790 if (pages) 4791 node_set_state(nid, N_MEMORY); 4792 } 4793 return totalpages; 4794 } 4795 4796 /* 4797 * Find the PFN the Movable zone begins in each node. Kernel memory 4798 * is spread evenly between nodes as long as the nodes have enough 4799 * memory. When they don't, some nodes will have more kernelcore than 4800 * others 4801 */ 4802 static void __init find_zone_movable_pfns_for_nodes(void) 4803 { 4804 int i, nid; 4805 unsigned long usable_startpfn; 4806 unsigned long kernelcore_node, kernelcore_remaining; 4807 /* save the state before borrow the nodemask */ 4808 nodemask_t saved_node_state = node_states[N_MEMORY]; 4809 unsigned long totalpages = early_calculate_totalpages(); 4810 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 4811 4812 /* 4813 * If movablecore was specified, calculate what size of 4814 * kernelcore that corresponds so that memory usable for 4815 * any allocation type is evenly spread. If both kernelcore 4816 * and movablecore are specified, then the value of kernelcore 4817 * will be used for required_kernelcore if it's greater than 4818 * what movablecore would have allowed. 4819 */ 4820 if (required_movablecore) { 4821 unsigned long corepages; 4822 4823 /* 4824 * Round-up so that ZONE_MOVABLE is at least as large as what 4825 * was requested by the user 4826 */ 4827 required_movablecore = 4828 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4829 corepages = totalpages - required_movablecore; 4830 4831 required_kernelcore = max(required_kernelcore, corepages); 4832 } 4833 4834 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4835 if (!required_kernelcore) 4836 goto out; 4837 4838 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4839 find_usable_zone_for_movable(); 4840 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4841 4842 restart: 4843 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4844 kernelcore_node = required_kernelcore / usable_nodes; 4845 for_each_node_state(nid, N_MEMORY) { 4846 unsigned long start_pfn, end_pfn; 4847 4848 /* 4849 * Recalculate kernelcore_node if the division per node 4850 * now exceeds what is necessary to satisfy the requested 4851 * amount of memory for the kernel 4852 */ 4853 if (required_kernelcore < kernelcore_node) 4854 kernelcore_node = required_kernelcore / usable_nodes; 4855 4856 /* 4857 * As the map is walked, we track how much memory is usable 4858 * by the kernel using kernelcore_remaining. When it is 4859 * 0, the rest of the node is usable by ZONE_MOVABLE 4860 */ 4861 kernelcore_remaining = kernelcore_node; 4862 4863 /* Go through each range of PFNs within this node */ 4864 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4865 unsigned long size_pages; 4866 4867 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 4868 if (start_pfn >= end_pfn) 4869 continue; 4870 4871 /* Account for what is only usable for kernelcore */ 4872 if (start_pfn < usable_startpfn) { 4873 unsigned long kernel_pages; 4874 kernel_pages = min(end_pfn, usable_startpfn) 4875 - start_pfn; 4876 4877 kernelcore_remaining -= min(kernel_pages, 4878 kernelcore_remaining); 4879 required_kernelcore -= min(kernel_pages, 4880 required_kernelcore); 4881 4882 /* Continue if range is now fully accounted */ 4883 if (end_pfn <= usable_startpfn) { 4884 4885 /* 4886 * Push zone_movable_pfn to the end so 4887 * that if we have to rebalance 4888 * kernelcore across nodes, we will 4889 * not double account here 4890 */ 4891 zone_movable_pfn[nid] = end_pfn; 4892 continue; 4893 } 4894 start_pfn = usable_startpfn; 4895 } 4896 4897 /* 4898 * The usable PFN range for ZONE_MOVABLE is from 4899 * start_pfn->end_pfn. Calculate size_pages as the 4900 * number of pages used as kernelcore 4901 */ 4902 size_pages = end_pfn - start_pfn; 4903 if (size_pages > kernelcore_remaining) 4904 size_pages = kernelcore_remaining; 4905 zone_movable_pfn[nid] = start_pfn + size_pages; 4906 4907 /* 4908 * Some kernelcore has been met, update counts and 4909 * break if the kernelcore for this node has been 4910 * satisified 4911 */ 4912 required_kernelcore -= min(required_kernelcore, 4913 size_pages); 4914 kernelcore_remaining -= size_pages; 4915 if (!kernelcore_remaining) 4916 break; 4917 } 4918 } 4919 4920 /* 4921 * If there is still required_kernelcore, we do another pass with one 4922 * less node in the count. This will push zone_movable_pfn[nid] further 4923 * along on the nodes that still have memory until kernelcore is 4924 * satisified 4925 */ 4926 usable_nodes--; 4927 if (usable_nodes && required_kernelcore > usable_nodes) 4928 goto restart; 4929 4930 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4931 for (nid = 0; nid < MAX_NUMNODES; nid++) 4932 zone_movable_pfn[nid] = 4933 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4934 4935 out: 4936 /* restore the node_state */ 4937 node_states[N_MEMORY] = saved_node_state; 4938 } 4939 4940 /* Any regular or high memory on that node ? */ 4941 static void check_for_memory(pg_data_t *pgdat, int nid) 4942 { 4943 enum zone_type zone_type; 4944 4945 if (N_MEMORY == N_NORMAL_MEMORY) 4946 return; 4947 4948 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 4949 struct zone *zone = &pgdat->node_zones[zone_type]; 4950 if (zone->present_pages) { 4951 node_set_state(nid, N_HIGH_MEMORY); 4952 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 4953 zone_type <= ZONE_NORMAL) 4954 node_set_state(nid, N_NORMAL_MEMORY); 4955 break; 4956 } 4957 } 4958 } 4959 4960 /** 4961 * free_area_init_nodes - Initialise all pg_data_t and zone data 4962 * @max_zone_pfn: an array of max PFNs for each zone 4963 * 4964 * This will call free_area_init_node() for each active node in the system. 4965 * Using the page ranges provided by add_active_range(), the size of each 4966 * zone in each node and their holes is calculated. If the maximum PFN 4967 * between two adjacent zones match, it is assumed that the zone is empty. 4968 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4969 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4970 * starts where the previous one ended. For example, ZONE_DMA32 starts 4971 * at arch_max_dma_pfn. 4972 */ 4973 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4974 { 4975 unsigned long start_pfn, end_pfn; 4976 int i, nid; 4977 4978 /* Record where the zone boundaries are */ 4979 memset(arch_zone_lowest_possible_pfn, 0, 4980 sizeof(arch_zone_lowest_possible_pfn)); 4981 memset(arch_zone_highest_possible_pfn, 0, 4982 sizeof(arch_zone_highest_possible_pfn)); 4983 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4984 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4985 for (i = 1; i < MAX_NR_ZONES; i++) { 4986 if (i == ZONE_MOVABLE) 4987 continue; 4988 arch_zone_lowest_possible_pfn[i] = 4989 arch_zone_highest_possible_pfn[i-1]; 4990 arch_zone_highest_possible_pfn[i] = 4991 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4992 } 4993 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4994 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4995 4996 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4997 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4998 find_zone_movable_pfns_for_nodes(); 4999 5000 /* Print out the zone ranges */ 5001 printk("Zone ranges:\n"); 5002 for (i = 0; i < MAX_NR_ZONES; i++) { 5003 if (i == ZONE_MOVABLE) 5004 continue; 5005 printk(KERN_CONT " %-8s ", zone_names[i]); 5006 if (arch_zone_lowest_possible_pfn[i] == 5007 arch_zone_highest_possible_pfn[i]) 5008 printk(KERN_CONT "empty\n"); 5009 else 5010 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", 5011 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, 5012 (arch_zone_highest_possible_pfn[i] 5013 << PAGE_SHIFT) - 1); 5014 } 5015 5016 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5017 printk("Movable zone start for each node\n"); 5018 for (i = 0; i < MAX_NUMNODES; i++) { 5019 if (zone_movable_pfn[i]) 5020 printk(" Node %d: %#010lx\n", i, 5021 zone_movable_pfn[i] << PAGE_SHIFT); 5022 } 5023 5024 /* Print out the early node map */ 5025 printk("Early memory node ranges\n"); 5026 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5027 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, 5028 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); 5029 5030 /* Initialise every node */ 5031 mminit_verify_pageflags_layout(); 5032 setup_nr_node_ids(); 5033 for_each_online_node(nid) { 5034 pg_data_t *pgdat = NODE_DATA(nid); 5035 free_area_init_node(nid, NULL, 5036 find_min_pfn_for_node(nid), NULL); 5037 5038 /* Any memory on that node */ 5039 if (pgdat->node_present_pages) 5040 node_set_state(nid, N_MEMORY); 5041 check_for_memory(pgdat, nid); 5042 } 5043 } 5044 5045 static int __init cmdline_parse_core(char *p, unsigned long *core) 5046 { 5047 unsigned long long coremem; 5048 if (!p) 5049 return -EINVAL; 5050 5051 coremem = memparse(p, &p); 5052 *core = coremem >> PAGE_SHIFT; 5053 5054 /* Paranoid check that UL is enough for the coremem value */ 5055 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5056 5057 return 0; 5058 } 5059 5060 /* 5061 * kernelcore=size sets the amount of memory for use for allocations that 5062 * cannot be reclaimed or migrated. 5063 */ 5064 static int __init cmdline_parse_kernelcore(char *p) 5065 { 5066 return cmdline_parse_core(p, &required_kernelcore); 5067 } 5068 5069 /* 5070 * movablecore=size sets the amount of memory for use for allocations that 5071 * can be reclaimed or migrated. 5072 */ 5073 static int __init cmdline_parse_movablecore(char *p) 5074 { 5075 return cmdline_parse_core(p, &required_movablecore); 5076 } 5077 5078 early_param("kernelcore", cmdline_parse_kernelcore); 5079 early_param("movablecore", cmdline_parse_movablecore); 5080 5081 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5082 5083 /** 5084 * set_dma_reserve - set the specified number of pages reserved in the first zone 5085 * @new_dma_reserve: The number of pages to mark reserved 5086 * 5087 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5088 * In the DMA zone, a significant percentage may be consumed by kernel image 5089 * and other unfreeable allocations which can skew the watermarks badly. This 5090 * function may optionally be used to account for unfreeable pages in the 5091 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5092 * smaller per-cpu batchsize. 5093 */ 5094 void __init set_dma_reserve(unsigned long new_dma_reserve) 5095 { 5096 dma_reserve = new_dma_reserve; 5097 } 5098 5099 void __init free_area_init(unsigned long *zones_size) 5100 { 5101 free_area_init_node(0, zones_size, 5102 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5103 } 5104 5105 static int page_alloc_cpu_notify(struct notifier_block *self, 5106 unsigned long action, void *hcpu) 5107 { 5108 int cpu = (unsigned long)hcpu; 5109 5110 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5111 lru_add_drain_cpu(cpu); 5112 drain_pages(cpu); 5113 5114 /* 5115 * Spill the event counters of the dead processor 5116 * into the current processors event counters. 5117 * This artificially elevates the count of the current 5118 * processor. 5119 */ 5120 vm_events_fold_cpu(cpu); 5121 5122 /* 5123 * Zero the differential counters of the dead processor 5124 * so that the vm statistics are consistent. 5125 * 5126 * This is only okay since the processor is dead and cannot 5127 * race with what we are doing. 5128 */ 5129 refresh_cpu_vm_stats(cpu); 5130 } 5131 return NOTIFY_OK; 5132 } 5133 5134 void __init page_alloc_init(void) 5135 { 5136 hotcpu_notifier(page_alloc_cpu_notify, 0); 5137 } 5138 5139 /* 5140 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5141 * or min_free_kbytes changes. 5142 */ 5143 static void calculate_totalreserve_pages(void) 5144 { 5145 struct pglist_data *pgdat; 5146 unsigned long reserve_pages = 0; 5147 enum zone_type i, j; 5148 5149 for_each_online_pgdat(pgdat) { 5150 for (i = 0; i < MAX_NR_ZONES; i++) { 5151 struct zone *zone = pgdat->node_zones + i; 5152 unsigned long max = 0; 5153 5154 /* Find valid and maximum lowmem_reserve in the zone */ 5155 for (j = i; j < MAX_NR_ZONES; j++) { 5156 if (zone->lowmem_reserve[j] > max) 5157 max = zone->lowmem_reserve[j]; 5158 } 5159 5160 /* we treat the high watermark as reserved pages. */ 5161 max += high_wmark_pages(zone); 5162 5163 if (max > zone->present_pages) 5164 max = zone->present_pages; 5165 reserve_pages += max; 5166 /* 5167 * Lowmem reserves are not available to 5168 * GFP_HIGHUSER page cache allocations and 5169 * kswapd tries to balance zones to their high 5170 * watermark. As a result, neither should be 5171 * regarded as dirtyable memory, to prevent a 5172 * situation where reclaim has to clean pages 5173 * in order to balance the zones. 5174 */ 5175 zone->dirty_balance_reserve = max; 5176 } 5177 } 5178 dirty_balance_reserve = reserve_pages; 5179 totalreserve_pages = reserve_pages; 5180 } 5181 5182 /* 5183 * setup_per_zone_lowmem_reserve - called whenever 5184 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5185 * has a correct pages reserved value, so an adequate number of 5186 * pages are left in the zone after a successful __alloc_pages(). 5187 */ 5188 static void setup_per_zone_lowmem_reserve(void) 5189 { 5190 struct pglist_data *pgdat; 5191 enum zone_type j, idx; 5192 5193 for_each_online_pgdat(pgdat) { 5194 for (j = 0; j < MAX_NR_ZONES; j++) { 5195 struct zone *zone = pgdat->node_zones + j; 5196 unsigned long present_pages = zone->present_pages; 5197 5198 zone->lowmem_reserve[j] = 0; 5199 5200 idx = j; 5201 while (idx) { 5202 struct zone *lower_zone; 5203 5204 idx--; 5205 5206 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5207 sysctl_lowmem_reserve_ratio[idx] = 1; 5208 5209 lower_zone = pgdat->node_zones + idx; 5210 lower_zone->lowmem_reserve[j] = present_pages / 5211 sysctl_lowmem_reserve_ratio[idx]; 5212 present_pages += lower_zone->present_pages; 5213 } 5214 } 5215 } 5216 5217 /* update totalreserve_pages */ 5218 calculate_totalreserve_pages(); 5219 } 5220 5221 static void __setup_per_zone_wmarks(void) 5222 { 5223 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5224 unsigned long lowmem_pages = 0; 5225 struct zone *zone; 5226 unsigned long flags; 5227 5228 /* Calculate total number of !ZONE_HIGHMEM pages */ 5229 for_each_zone(zone) { 5230 if (!is_highmem(zone)) 5231 lowmem_pages += zone->present_pages; 5232 } 5233 5234 for_each_zone(zone) { 5235 u64 tmp; 5236 5237 spin_lock_irqsave(&zone->lock, flags); 5238 tmp = (u64)pages_min * zone->present_pages; 5239 do_div(tmp, lowmem_pages); 5240 if (is_highmem(zone)) { 5241 /* 5242 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5243 * need highmem pages, so cap pages_min to a small 5244 * value here. 5245 * 5246 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5247 * deltas controls asynch page reclaim, and so should 5248 * not be capped for highmem. 5249 */ 5250 int min_pages; 5251 5252 min_pages = zone->present_pages / 1024; 5253 if (min_pages < SWAP_CLUSTER_MAX) 5254 min_pages = SWAP_CLUSTER_MAX; 5255 if (min_pages > 128) 5256 min_pages = 128; 5257 zone->watermark[WMARK_MIN] = min_pages; 5258 } else { 5259 /* 5260 * If it's a lowmem zone, reserve a number of pages 5261 * proportionate to the zone's size. 5262 */ 5263 zone->watermark[WMARK_MIN] = tmp; 5264 } 5265 5266 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5267 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5268 5269 setup_zone_migrate_reserve(zone); 5270 spin_unlock_irqrestore(&zone->lock, flags); 5271 } 5272 5273 /* update totalreserve_pages */ 5274 calculate_totalreserve_pages(); 5275 } 5276 5277 /** 5278 * setup_per_zone_wmarks - called when min_free_kbytes changes 5279 * or when memory is hot-{added|removed} 5280 * 5281 * Ensures that the watermark[min,low,high] values for each zone are set 5282 * correctly with respect to min_free_kbytes. 5283 */ 5284 void setup_per_zone_wmarks(void) 5285 { 5286 mutex_lock(&zonelists_mutex); 5287 __setup_per_zone_wmarks(); 5288 mutex_unlock(&zonelists_mutex); 5289 } 5290 5291 /* 5292 * The inactive anon list should be small enough that the VM never has to 5293 * do too much work, but large enough that each inactive page has a chance 5294 * to be referenced again before it is swapped out. 5295 * 5296 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5297 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5298 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5299 * the anonymous pages are kept on the inactive list. 5300 * 5301 * total target max 5302 * memory ratio inactive anon 5303 * ------------------------------------- 5304 * 10MB 1 5MB 5305 * 100MB 1 50MB 5306 * 1GB 3 250MB 5307 * 10GB 10 0.9GB 5308 * 100GB 31 3GB 5309 * 1TB 101 10GB 5310 * 10TB 320 32GB 5311 */ 5312 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5313 { 5314 unsigned int gb, ratio; 5315 5316 /* Zone size in gigabytes */ 5317 gb = zone->present_pages >> (30 - PAGE_SHIFT); 5318 if (gb) 5319 ratio = int_sqrt(10 * gb); 5320 else 5321 ratio = 1; 5322 5323 zone->inactive_ratio = ratio; 5324 } 5325 5326 static void __meminit setup_per_zone_inactive_ratio(void) 5327 { 5328 struct zone *zone; 5329 5330 for_each_zone(zone) 5331 calculate_zone_inactive_ratio(zone); 5332 } 5333 5334 /* 5335 * Initialise min_free_kbytes. 5336 * 5337 * For small machines we want it small (128k min). For large machines 5338 * we want it large (64MB max). But it is not linear, because network 5339 * bandwidth does not increase linearly with machine size. We use 5340 * 5341 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5342 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5343 * 5344 * which yields 5345 * 5346 * 16MB: 512k 5347 * 32MB: 724k 5348 * 64MB: 1024k 5349 * 128MB: 1448k 5350 * 256MB: 2048k 5351 * 512MB: 2896k 5352 * 1024MB: 4096k 5353 * 2048MB: 5792k 5354 * 4096MB: 8192k 5355 * 8192MB: 11584k 5356 * 16384MB: 16384k 5357 */ 5358 int __meminit init_per_zone_wmark_min(void) 5359 { 5360 unsigned long lowmem_kbytes; 5361 5362 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5363 5364 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5365 if (min_free_kbytes < 128) 5366 min_free_kbytes = 128; 5367 if (min_free_kbytes > 65536) 5368 min_free_kbytes = 65536; 5369 setup_per_zone_wmarks(); 5370 refresh_zone_stat_thresholds(); 5371 setup_per_zone_lowmem_reserve(); 5372 setup_per_zone_inactive_ratio(); 5373 return 0; 5374 } 5375 module_init(init_per_zone_wmark_min) 5376 5377 /* 5378 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5379 * that we can call two helper functions whenever min_free_kbytes 5380 * changes. 5381 */ 5382 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5383 void __user *buffer, size_t *length, loff_t *ppos) 5384 { 5385 proc_dointvec(table, write, buffer, length, ppos); 5386 if (write) 5387 setup_per_zone_wmarks(); 5388 return 0; 5389 } 5390 5391 #ifdef CONFIG_NUMA 5392 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5393 void __user *buffer, size_t *length, loff_t *ppos) 5394 { 5395 struct zone *zone; 5396 int rc; 5397 5398 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5399 if (rc) 5400 return rc; 5401 5402 for_each_zone(zone) 5403 zone->min_unmapped_pages = (zone->present_pages * 5404 sysctl_min_unmapped_ratio) / 100; 5405 return 0; 5406 } 5407 5408 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5409 void __user *buffer, size_t *length, loff_t *ppos) 5410 { 5411 struct zone *zone; 5412 int rc; 5413 5414 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5415 if (rc) 5416 return rc; 5417 5418 for_each_zone(zone) 5419 zone->min_slab_pages = (zone->present_pages * 5420 sysctl_min_slab_ratio) / 100; 5421 return 0; 5422 } 5423 #endif 5424 5425 /* 5426 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5427 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5428 * whenever sysctl_lowmem_reserve_ratio changes. 5429 * 5430 * The reserve ratio obviously has absolutely no relation with the 5431 * minimum watermarks. The lowmem reserve ratio can only make sense 5432 * if in function of the boot time zone sizes. 5433 */ 5434 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5435 void __user *buffer, size_t *length, loff_t *ppos) 5436 { 5437 proc_dointvec_minmax(table, write, buffer, length, ppos); 5438 setup_per_zone_lowmem_reserve(); 5439 return 0; 5440 } 5441 5442 /* 5443 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5444 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5445 * can have before it gets flushed back to buddy allocator. 5446 */ 5447 5448 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5449 void __user *buffer, size_t *length, loff_t *ppos) 5450 { 5451 struct zone *zone; 5452 unsigned int cpu; 5453 int ret; 5454 5455 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5456 if (!write || (ret < 0)) 5457 return ret; 5458 for_each_populated_zone(zone) { 5459 for_each_possible_cpu(cpu) { 5460 unsigned long high; 5461 high = zone->present_pages / percpu_pagelist_fraction; 5462 setup_pagelist_highmark( 5463 per_cpu_ptr(zone->pageset, cpu), high); 5464 } 5465 } 5466 return 0; 5467 } 5468 5469 int hashdist = HASHDIST_DEFAULT; 5470 5471 #ifdef CONFIG_NUMA 5472 static int __init set_hashdist(char *str) 5473 { 5474 if (!str) 5475 return 0; 5476 hashdist = simple_strtoul(str, &str, 0); 5477 return 1; 5478 } 5479 __setup("hashdist=", set_hashdist); 5480 #endif 5481 5482 /* 5483 * allocate a large system hash table from bootmem 5484 * - it is assumed that the hash table must contain an exact power-of-2 5485 * quantity of entries 5486 * - limit is the number of hash buckets, not the total allocation size 5487 */ 5488 void *__init alloc_large_system_hash(const char *tablename, 5489 unsigned long bucketsize, 5490 unsigned long numentries, 5491 int scale, 5492 int flags, 5493 unsigned int *_hash_shift, 5494 unsigned int *_hash_mask, 5495 unsigned long low_limit, 5496 unsigned long high_limit) 5497 { 5498 unsigned long long max = high_limit; 5499 unsigned long log2qty, size; 5500 void *table = NULL; 5501 5502 /* allow the kernel cmdline to have a say */ 5503 if (!numentries) { 5504 /* round applicable memory size up to nearest megabyte */ 5505 numentries = nr_kernel_pages; 5506 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5507 numentries >>= 20 - PAGE_SHIFT; 5508 numentries <<= 20 - PAGE_SHIFT; 5509 5510 /* limit to 1 bucket per 2^scale bytes of low memory */ 5511 if (scale > PAGE_SHIFT) 5512 numentries >>= (scale - PAGE_SHIFT); 5513 else 5514 numentries <<= (PAGE_SHIFT - scale); 5515 5516 /* Make sure we've got at least a 0-order allocation.. */ 5517 if (unlikely(flags & HASH_SMALL)) { 5518 /* Makes no sense without HASH_EARLY */ 5519 WARN_ON(!(flags & HASH_EARLY)); 5520 if (!(numentries >> *_hash_shift)) { 5521 numentries = 1UL << *_hash_shift; 5522 BUG_ON(!numentries); 5523 } 5524 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5525 numentries = PAGE_SIZE / bucketsize; 5526 } 5527 numentries = roundup_pow_of_two(numentries); 5528 5529 /* limit allocation size to 1/16 total memory by default */ 5530 if (max == 0) { 5531 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5532 do_div(max, bucketsize); 5533 } 5534 max = min(max, 0x80000000ULL); 5535 5536 if (numentries < low_limit) 5537 numentries = low_limit; 5538 if (numentries > max) 5539 numentries = max; 5540 5541 log2qty = ilog2(numentries); 5542 5543 do { 5544 size = bucketsize << log2qty; 5545 if (flags & HASH_EARLY) 5546 table = alloc_bootmem_nopanic(size); 5547 else if (hashdist) 5548 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5549 else { 5550 /* 5551 * If bucketsize is not a power-of-two, we may free 5552 * some pages at the end of hash table which 5553 * alloc_pages_exact() automatically does 5554 */ 5555 if (get_order(size) < MAX_ORDER) { 5556 table = alloc_pages_exact(size, GFP_ATOMIC); 5557 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5558 } 5559 } 5560 } while (!table && size > PAGE_SIZE && --log2qty); 5561 5562 if (!table) 5563 panic("Failed to allocate %s hash table\n", tablename); 5564 5565 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5566 tablename, 5567 (1UL << log2qty), 5568 ilog2(size) - PAGE_SHIFT, 5569 size); 5570 5571 if (_hash_shift) 5572 *_hash_shift = log2qty; 5573 if (_hash_mask) 5574 *_hash_mask = (1 << log2qty) - 1; 5575 5576 return table; 5577 } 5578 5579 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5580 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5581 unsigned long pfn) 5582 { 5583 #ifdef CONFIG_SPARSEMEM 5584 return __pfn_to_section(pfn)->pageblock_flags; 5585 #else 5586 return zone->pageblock_flags; 5587 #endif /* CONFIG_SPARSEMEM */ 5588 } 5589 5590 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5591 { 5592 #ifdef CONFIG_SPARSEMEM 5593 pfn &= (PAGES_PER_SECTION-1); 5594 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5595 #else 5596 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 5597 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5598 #endif /* CONFIG_SPARSEMEM */ 5599 } 5600 5601 /** 5602 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5603 * @page: The page within the block of interest 5604 * @start_bitidx: The first bit of interest to retrieve 5605 * @end_bitidx: The last bit of interest 5606 * returns pageblock_bits flags 5607 */ 5608 unsigned long get_pageblock_flags_group(struct page *page, 5609 int start_bitidx, int end_bitidx) 5610 { 5611 struct zone *zone; 5612 unsigned long *bitmap; 5613 unsigned long pfn, bitidx; 5614 unsigned long flags = 0; 5615 unsigned long value = 1; 5616 5617 zone = page_zone(page); 5618 pfn = page_to_pfn(page); 5619 bitmap = get_pageblock_bitmap(zone, pfn); 5620 bitidx = pfn_to_bitidx(zone, pfn); 5621 5622 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5623 if (test_bit(bitidx + start_bitidx, bitmap)) 5624 flags |= value; 5625 5626 return flags; 5627 } 5628 5629 /** 5630 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5631 * @page: The page within the block of interest 5632 * @start_bitidx: The first bit of interest 5633 * @end_bitidx: The last bit of interest 5634 * @flags: The flags to set 5635 */ 5636 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5637 int start_bitidx, int end_bitidx) 5638 { 5639 struct zone *zone; 5640 unsigned long *bitmap; 5641 unsigned long pfn, bitidx; 5642 unsigned long value = 1; 5643 5644 zone = page_zone(page); 5645 pfn = page_to_pfn(page); 5646 bitmap = get_pageblock_bitmap(zone, pfn); 5647 bitidx = pfn_to_bitidx(zone, pfn); 5648 VM_BUG_ON(pfn < zone->zone_start_pfn); 5649 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5650 5651 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5652 if (flags & value) 5653 __set_bit(bitidx + start_bitidx, bitmap); 5654 else 5655 __clear_bit(bitidx + start_bitidx, bitmap); 5656 } 5657 5658 /* 5659 * This function checks whether pageblock includes unmovable pages or not. 5660 * If @count is not zero, it is okay to include less @count unmovable pages 5661 * 5662 * PageLRU check wihtout isolation or lru_lock could race so that 5663 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 5664 * expect this function should be exact. 5665 */ 5666 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 5667 bool skip_hwpoisoned_pages) 5668 { 5669 unsigned long pfn, iter, found; 5670 int mt; 5671 5672 /* 5673 * For avoiding noise data, lru_add_drain_all() should be called 5674 * If ZONE_MOVABLE, the zone never contains unmovable pages 5675 */ 5676 if (zone_idx(zone) == ZONE_MOVABLE) 5677 return false; 5678 mt = get_pageblock_migratetype(page); 5679 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 5680 return false; 5681 5682 pfn = page_to_pfn(page); 5683 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5684 unsigned long check = pfn + iter; 5685 5686 if (!pfn_valid_within(check)) 5687 continue; 5688 5689 page = pfn_to_page(check); 5690 /* 5691 * We can't use page_count without pin a page 5692 * because another CPU can free compound page. 5693 * This check already skips compound tails of THP 5694 * because their page->_count is zero at all time. 5695 */ 5696 if (!atomic_read(&page->_count)) { 5697 if (PageBuddy(page)) 5698 iter += (1 << page_order(page)) - 1; 5699 continue; 5700 } 5701 5702 /* 5703 * The HWPoisoned page may be not in buddy system, and 5704 * page_count() is not 0. 5705 */ 5706 if (skip_hwpoisoned_pages && PageHWPoison(page)) 5707 continue; 5708 5709 if (!PageLRU(page)) 5710 found++; 5711 /* 5712 * If there are RECLAIMABLE pages, we need to check it. 5713 * But now, memory offline itself doesn't call shrink_slab() 5714 * and it still to be fixed. 5715 */ 5716 /* 5717 * If the page is not RAM, page_count()should be 0. 5718 * we don't need more check. This is an _used_ not-movable page. 5719 * 5720 * The problematic thing here is PG_reserved pages. PG_reserved 5721 * is set to both of a memory hole page and a _used_ kernel 5722 * page at boot. 5723 */ 5724 if (found > count) 5725 return true; 5726 } 5727 return false; 5728 } 5729 5730 bool is_pageblock_removable_nolock(struct page *page) 5731 { 5732 struct zone *zone; 5733 unsigned long pfn; 5734 5735 /* 5736 * We have to be careful here because we are iterating over memory 5737 * sections which are not zone aware so we might end up outside of 5738 * the zone but still within the section. 5739 * We have to take care about the node as well. If the node is offline 5740 * its NODE_DATA will be NULL - see page_zone. 5741 */ 5742 if (!node_online(page_to_nid(page))) 5743 return false; 5744 5745 zone = page_zone(page); 5746 pfn = page_to_pfn(page); 5747 if (zone->zone_start_pfn > pfn || 5748 zone->zone_start_pfn + zone->spanned_pages <= pfn) 5749 return false; 5750 5751 return !has_unmovable_pages(zone, page, 0, true); 5752 } 5753 5754 #ifdef CONFIG_CMA 5755 5756 static unsigned long pfn_max_align_down(unsigned long pfn) 5757 { 5758 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 5759 pageblock_nr_pages) - 1); 5760 } 5761 5762 static unsigned long pfn_max_align_up(unsigned long pfn) 5763 { 5764 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 5765 pageblock_nr_pages)); 5766 } 5767 5768 /* [start, end) must belong to a single zone. */ 5769 static int __alloc_contig_migrate_range(struct compact_control *cc, 5770 unsigned long start, unsigned long end) 5771 { 5772 /* This function is based on compact_zone() from compaction.c. */ 5773 unsigned long nr_reclaimed; 5774 unsigned long pfn = start; 5775 unsigned int tries = 0; 5776 int ret = 0; 5777 5778 migrate_prep(); 5779 5780 while (pfn < end || !list_empty(&cc->migratepages)) { 5781 if (fatal_signal_pending(current)) { 5782 ret = -EINTR; 5783 break; 5784 } 5785 5786 if (list_empty(&cc->migratepages)) { 5787 cc->nr_migratepages = 0; 5788 pfn = isolate_migratepages_range(cc->zone, cc, 5789 pfn, end, true); 5790 if (!pfn) { 5791 ret = -EINTR; 5792 break; 5793 } 5794 tries = 0; 5795 } else if (++tries == 5) { 5796 ret = ret < 0 ? ret : -EBUSY; 5797 break; 5798 } 5799 5800 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 5801 &cc->migratepages); 5802 cc->nr_migratepages -= nr_reclaimed; 5803 5804 ret = migrate_pages(&cc->migratepages, 5805 alloc_migrate_target, 5806 0, false, MIGRATE_SYNC, 5807 MR_CMA); 5808 } 5809 5810 putback_movable_pages(&cc->migratepages); 5811 return ret > 0 ? 0 : ret; 5812 } 5813 5814 /** 5815 * alloc_contig_range() -- tries to allocate given range of pages 5816 * @start: start PFN to allocate 5817 * @end: one-past-the-last PFN to allocate 5818 * @migratetype: migratetype of the underlaying pageblocks (either 5819 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 5820 * in range must have the same migratetype and it must 5821 * be either of the two. 5822 * 5823 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 5824 * aligned, however it's the caller's responsibility to guarantee that 5825 * we are the only thread that changes migrate type of pageblocks the 5826 * pages fall in. 5827 * 5828 * The PFN range must belong to a single zone. 5829 * 5830 * Returns zero on success or negative error code. On success all 5831 * pages which PFN is in [start, end) are allocated for the caller and 5832 * need to be freed with free_contig_range(). 5833 */ 5834 int alloc_contig_range(unsigned long start, unsigned long end, 5835 unsigned migratetype) 5836 { 5837 unsigned long outer_start, outer_end; 5838 int ret = 0, order; 5839 5840 struct compact_control cc = { 5841 .nr_migratepages = 0, 5842 .order = -1, 5843 .zone = page_zone(pfn_to_page(start)), 5844 .sync = true, 5845 .ignore_skip_hint = true, 5846 }; 5847 INIT_LIST_HEAD(&cc.migratepages); 5848 5849 /* 5850 * What we do here is we mark all pageblocks in range as 5851 * MIGRATE_ISOLATE. Because pageblock and max order pages may 5852 * have different sizes, and due to the way page allocator 5853 * work, we align the range to biggest of the two pages so 5854 * that page allocator won't try to merge buddies from 5855 * different pageblocks and change MIGRATE_ISOLATE to some 5856 * other migration type. 5857 * 5858 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 5859 * migrate the pages from an unaligned range (ie. pages that 5860 * we are interested in). This will put all the pages in 5861 * range back to page allocator as MIGRATE_ISOLATE. 5862 * 5863 * When this is done, we take the pages in range from page 5864 * allocator removing them from the buddy system. This way 5865 * page allocator will never consider using them. 5866 * 5867 * This lets us mark the pageblocks back as 5868 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 5869 * aligned range but not in the unaligned, original range are 5870 * put back to page allocator so that buddy can use them. 5871 */ 5872 5873 ret = start_isolate_page_range(pfn_max_align_down(start), 5874 pfn_max_align_up(end), migratetype, 5875 false); 5876 if (ret) 5877 return ret; 5878 5879 ret = __alloc_contig_migrate_range(&cc, start, end); 5880 if (ret) 5881 goto done; 5882 5883 /* 5884 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 5885 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 5886 * more, all pages in [start, end) are free in page allocator. 5887 * What we are going to do is to allocate all pages from 5888 * [start, end) (that is remove them from page allocator). 5889 * 5890 * The only problem is that pages at the beginning and at the 5891 * end of interesting range may be not aligned with pages that 5892 * page allocator holds, ie. they can be part of higher order 5893 * pages. Because of this, we reserve the bigger range and 5894 * once this is done free the pages we are not interested in. 5895 * 5896 * We don't have to hold zone->lock here because the pages are 5897 * isolated thus they won't get removed from buddy. 5898 */ 5899 5900 lru_add_drain_all(); 5901 drain_all_pages(); 5902 5903 order = 0; 5904 outer_start = start; 5905 while (!PageBuddy(pfn_to_page(outer_start))) { 5906 if (++order >= MAX_ORDER) { 5907 ret = -EBUSY; 5908 goto done; 5909 } 5910 outer_start &= ~0UL << order; 5911 } 5912 5913 /* Make sure the range is really isolated. */ 5914 if (test_pages_isolated(outer_start, end, false)) { 5915 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", 5916 outer_start, end); 5917 ret = -EBUSY; 5918 goto done; 5919 } 5920 5921 5922 /* Grab isolated pages from freelists. */ 5923 outer_end = isolate_freepages_range(&cc, outer_start, end); 5924 if (!outer_end) { 5925 ret = -EBUSY; 5926 goto done; 5927 } 5928 5929 /* Free head and tail (if any) */ 5930 if (start != outer_start) 5931 free_contig_range(outer_start, start - outer_start); 5932 if (end != outer_end) 5933 free_contig_range(end, outer_end - end); 5934 5935 done: 5936 undo_isolate_page_range(pfn_max_align_down(start), 5937 pfn_max_align_up(end), migratetype); 5938 return ret; 5939 } 5940 5941 void free_contig_range(unsigned long pfn, unsigned nr_pages) 5942 { 5943 unsigned int count = 0; 5944 5945 for (; nr_pages--; pfn++) { 5946 struct page *page = pfn_to_page(pfn); 5947 5948 count += page_count(page) != 1; 5949 __free_page(page); 5950 } 5951 WARN(count != 0, "%d pages are still in use!\n", count); 5952 } 5953 #endif 5954 5955 #ifdef CONFIG_MEMORY_HOTPLUG 5956 static int __meminit __zone_pcp_update(void *data) 5957 { 5958 struct zone *zone = data; 5959 int cpu; 5960 unsigned long batch = zone_batchsize(zone), flags; 5961 5962 for_each_possible_cpu(cpu) { 5963 struct per_cpu_pageset *pset; 5964 struct per_cpu_pages *pcp; 5965 5966 pset = per_cpu_ptr(zone->pageset, cpu); 5967 pcp = &pset->pcp; 5968 5969 local_irq_save(flags); 5970 if (pcp->count > 0) 5971 free_pcppages_bulk(zone, pcp->count, pcp); 5972 drain_zonestat(zone, pset); 5973 setup_pageset(pset, batch); 5974 local_irq_restore(flags); 5975 } 5976 return 0; 5977 } 5978 5979 void __meminit zone_pcp_update(struct zone *zone) 5980 { 5981 stop_machine(__zone_pcp_update, zone, NULL); 5982 } 5983 #endif 5984 5985 void zone_pcp_reset(struct zone *zone) 5986 { 5987 unsigned long flags; 5988 int cpu; 5989 struct per_cpu_pageset *pset; 5990 5991 /* avoid races with drain_pages() */ 5992 local_irq_save(flags); 5993 if (zone->pageset != &boot_pageset) { 5994 for_each_online_cpu(cpu) { 5995 pset = per_cpu_ptr(zone->pageset, cpu); 5996 drain_zonestat(zone, pset); 5997 } 5998 free_percpu(zone->pageset); 5999 zone->pageset = &boot_pageset; 6000 } 6001 local_irq_restore(flags); 6002 } 6003 6004 #ifdef CONFIG_MEMORY_HOTREMOVE 6005 /* 6006 * All pages in the range must be isolated before calling this. 6007 */ 6008 void 6009 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6010 { 6011 struct page *page; 6012 struct zone *zone; 6013 int order, i; 6014 unsigned long pfn; 6015 unsigned long flags; 6016 /* find the first valid pfn */ 6017 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6018 if (pfn_valid(pfn)) 6019 break; 6020 if (pfn == end_pfn) 6021 return; 6022 zone = page_zone(pfn_to_page(pfn)); 6023 spin_lock_irqsave(&zone->lock, flags); 6024 pfn = start_pfn; 6025 while (pfn < end_pfn) { 6026 if (!pfn_valid(pfn)) { 6027 pfn++; 6028 continue; 6029 } 6030 page = pfn_to_page(pfn); 6031 /* 6032 * The HWPoisoned page may be not in buddy system, and 6033 * page_count() is not 0. 6034 */ 6035 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6036 pfn++; 6037 SetPageReserved(page); 6038 continue; 6039 } 6040 6041 BUG_ON(page_count(page)); 6042 BUG_ON(!PageBuddy(page)); 6043 order = page_order(page); 6044 #ifdef CONFIG_DEBUG_VM 6045 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6046 pfn, 1 << order, end_pfn); 6047 #endif 6048 list_del(&page->lru); 6049 rmv_page_order(page); 6050 zone->free_area[order].nr_free--; 6051 for (i = 0; i < (1 << order); i++) 6052 SetPageReserved((page+i)); 6053 pfn += (1 << order); 6054 } 6055 spin_unlock_irqrestore(&zone->lock, flags); 6056 } 6057 #endif 6058 6059 #ifdef CONFIG_MEMORY_FAILURE 6060 bool is_free_buddy_page(struct page *page) 6061 { 6062 struct zone *zone = page_zone(page); 6063 unsigned long pfn = page_to_pfn(page); 6064 unsigned long flags; 6065 int order; 6066 6067 spin_lock_irqsave(&zone->lock, flags); 6068 for (order = 0; order < MAX_ORDER; order++) { 6069 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6070 6071 if (PageBuddy(page_head) && page_order(page_head) >= order) 6072 break; 6073 } 6074 spin_unlock_irqrestore(&zone->lock, flags); 6075 6076 return order < MAX_ORDER; 6077 } 6078 #endif 6079 6080 static const struct trace_print_flags pageflag_names[] = { 6081 {1UL << PG_locked, "locked" }, 6082 {1UL << PG_error, "error" }, 6083 {1UL << PG_referenced, "referenced" }, 6084 {1UL << PG_uptodate, "uptodate" }, 6085 {1UL << PG_dirty, "dirty" }, 6086 {1UL << PG_lru, "lru" }, 6087 {1UL << PG_active, "active" }, 6088 {1UL << PG_slab, "slab" }, 6089 {1UL << PG_owner_priv_1, "owner_priv_1" }, 6090 {1UL << PG_arch_1, "arch_1" }, 6091 {1UL << PG_reserved, "reserved" }, 6092 {1UL << PG_private, "private" }, 6093 {1UL << PG_private_2, "private_2" }, 6094 {1UL << PG_writeback, "writeback" }, 6095 #ifdef CONFIG_PAGEFLAGS_EXTENDED 6096 {1UL << PG_head, "head" }, 6097 {1UL << PG_tail, "tail" }, 6098 #else 6099 {1UL << PG_compound, "compound" }, 6100 #endif 6101 {1UL << PG_swapcache, "swapcache" }, 6102 {1UL << PG_mappedtodisk, "mappedtodisk" }, 6103 {1UL << PG_reclaim, "reclaim" }, 6104 {1UL << PG_swapbacked, "swapbacked" }, 6105 {1UL << PG_unevictable, "unevictable" }, 6106 #ifdef CONFIG_MMU 6107 {1UL << PG_mlocked, "mlocked" }, 6108 #endif 6109 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 6110 {1UL << PG_uncached, "uncached" }, 6111 #endif 6112 #ifdef CONFIG_MEMORY_FAILURE 6113 {1UL << PG_hwpoison, "hwpoison" }, 6114 #endif 6115 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6116 {1UL << PG_compound_lock, "compound_lock" }, 6117 #endif 6118 }; 6119 6120 static void dump_page_flags(unsigned long flags) 6121 { 6122 const char *delim = ""; 6123 unsigned long mask; 6124 int i; 6125 6126 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); 6127 6128 printk(KERN_ALERT "page flags: %#lx(", flags); 6129 6130 /* remove zone id */ 6131 flags &= (1UL << NR_PAGEFLAGS) - 1; 6132 6133 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { 6134 6135 mask = pageflag_names[i].mask; 6136 if ((flags & mask) != mask) 6137 continue; 6138 6139 flags &= ~mask; 6140 printk("%s%s", delim, pageflag_names[i].name); 6141 delim = "|"; 6142 } 6143 6144 /* check for left over flags */ 6145 if (flags) 6146 printk("%s%#lx", delim, flags); 6147 6148 printk(")\n"); 6149 } 6150 6151 void dump_page(struct page *page) 6152 { 6153 printk(KERN_ALERT 6154 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 6155 page, atomic_read(&page->_count), page_mapcount(page), 6156 page->mapping, page->index); 6157 dump_page_flags(page->flags); 6158 mem_cgroup_print_bad_page(page); 6159 } 6160