xref: /openbmc/linux/mm/page_alloc.c (revision 96ac6d43)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
75 #include <asm/div64.h>
76 #include "internal.h"
77 #include "shuffle.h"
78 
79 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
80 static DEFINE_MUTEX(pcp_batch_high_lock);
81 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
82 
83 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
84 DEFINE_PER_CPU(int, numa_node);
85 EXPORT_PER_CPU_SYMBOL(numa_node);
86 #endif
87 
88 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
89 
90 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
91 /*
92  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
93  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
94  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
95  * defined in <linux/topology.h>.
96  */
97 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
98 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
99 int _node_numa_mem_[MAX_NUMNODES];
100 #endif
101 
102 /* work_structs for global per-cpu drains */
103 struct pcpu_drain {
104 	struct zone *zone;
105 	struct work_struct work;
106 };
107 DEFINE_MUTEX(pcpu_drain_mutex);
108 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
109 
110 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
111 volatile unsigned long latent_entropy __latent_entropy;
112 EXPORT_SYMBOL(latent_entropy);
113 #endif
114 
115 /*
116  * Array of node states.
117  */
118 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
119 	[N_POSSIBLE] = NODE_MASK_ALL,
120 	[N_ONLINE] = { { [0] = 1UL } },
121 #ifndef CONFIG_NUMA
122 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
123 #ifdef CONFIG_HIGHMEM
124 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
125 #endif
126 	[N_MEMORY] = { { [0] = 1UL } },
127 	[N_CPU] = { { [0] = 1UL } },
128 #endif	/* NUMA */
129 };
130 EXPORT_SYMBOL(node_states);
131 
132 atomic_long_t _totalram_pages __read_mostly;
133 EXPORT_SYMBOL(_totalram_pages);
134 unsigned long totalreserve_pages __read_mostly;
135 unsigned long totalcma_pages __read_mostly;
136 
137 int percpu_pagelist_fraction;
138 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
139 
140 /*
141  * A cached value of the page's pageblock's migratetype, used when the page is
142  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
143  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
144  * Also the migratetype set in the page does not necessarily match the pcplist
145  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
146  * other index - this ensures that it will be put on the correct CMA freelist.
147  */
148 static inline int get_pcppage_migratetype(struct page *page)
149 {
150 	return page->index;
151 }
152 
153 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
154 {
155 	page->index = migratetype;
156 }
157 
158 #ifdef CONFIG_PM_SLEEP
159 /*
160  * The following functions are used by the suspend/hibernate code to temporarily
161  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
162  * while devices are suspended.  To avoid races with the suspend/hibernate code,
163  * they should always be called with system_transition_mutex held
164  * (gfp_allowed_mask also should only be modified with system_transition_mutex
165  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
166  * with that modification).
167  */
168 
169 static gfp_t saved_gfp_mask;
170 
171 void pm_restore_gfp_mask(void)
172 {
173 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
174 	if (saved_gfp_mask) {
175 		gfp_allowed_mask = saved_gfp_mask;
176 		saved_gfp_mask = 0;
177 	}
178 }
179 
180 void pm_restrict_gfp_mask(void)
181 {
182 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
183 	WARN_ON(saved_gfp_mask);
184 	saved_gfp_mask = gfp_allowed_mask;
185 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
186 }
187 
188 bool pm_suspended_storage(void)
189 {
190 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
191 		return false;
192 	return true;
193 }
194 #endif /* CONFIG_PM_SLEEP */
195 
196 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
197 unsigned int pageblock_order __read_mostly;
198 #endif
199 
200 static void __free_pages_ok(struct page *page, unsigned int order);
201 
202 /*
203  * results with 256, 32 in the lowmem_reserve sysctl:
204  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
205  *	1G machine -> (16M dma, 784M normal, 224M high)
206  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
207  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
208  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
209  *
210  * TBD: should special case ZONE_DMA32 machines here - in those we normally
211  * don't need any ZONE_NORMAL reservation
212  */
213 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
214 #ifdef CONFIG_ZONE_DMA
215 	[ZONE_DMA] = 256,
216 #endif
217 #ifdef CONFIG_ZONE_DMA32
218 	[ZONE_DMA32] = 256,
219 #endif
220 	[ZONE_NORMAL] = 32,
221 #ifdef CONFIG_HIGHMEM
222 	[ZONE_HIGHMEM] = 0,
223 #endif
224 	[ZONE_MOVABLE] = 0,
225 };
226 
227 EXPORT_SYMBOL(totalram_pages);
228 
229 static char * const zone_names[MAX_NR_ZONES] = {
230 #ifdef CONFIG_ZONE_DMA
231 	 "DMA",
232 #endif
233 #ifdef CONFIG_ZONE_DMA32
234 	 "DMA32",
235 #endif
236 	 "Normal",
237 #ifdef CONFIG_HIGHMEM
238 	 "HighMem",
239 #endif
240 	 "Movable",
241 #ifdef CONFIG_ZONE_DEVICE
242 	 "Device",
243 #endif
244 };
245 
246 const char * const migratetype_names[MIGRATE_TYPES] = {
247 	"Unmovable",
248 	"Movable",
249 	"Reclaimable",
250 	"HighAtomic",
251 #ifdef CONFIG_CMA
252 	"CMA",
253 #endif
254 #ifdef CONFIG_MEMORY_ISOLATION
255 	"Isolate",
256 #endif
257 };
258 
259 compound_page_dtor * const compound_page_dtors[] = {
260 	NULL,
261 	free_compound_page,
262 #ifdef CONFIG_HUGETLB_PAGE
263 	free_huge_page,
264 #endif
265 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
266 	free_transhuge_page,
267 #endif
268 };
269 
270 int min_free_kbytes = 1024;
271 int user_min_free_kbytes = -1;
272 #ifdef CONFIG_DISCONTIGMEM
273 /*
274  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
275  * are not on separate NUMA nodes. Functionally this works but with
276  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
277  * quite small. By default, do not boost watermarks on discontigmem as in
278  * many cases very high-order allocations like THP are likely to be
279  * unsupported and the premature reclaim offsets the advantage of long-term
280  * fragmentation avoidance.
281  */
282 int watermark_boost_factor __read_mostly;
283 #else
284 int watermark_boost_factor __read_mostly = 15000;
285 #endif
286 int watermark_scale_factor = 10;
287 
288 static unsigned long nr_kernel_pages __initdata;
289 static unsigned long nr_all_pages __initdata;
290 static unsigned long dma_reserve __initdata;
291 
292 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
293 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
294 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
295 static unsigned long required_kernelcore __initdata;
296 static unsigned long required_kernelcore_percent __initdata;
297 static unsigned long required_movablecore __initdata;
298 static unsigned long required_movablecore_percent __initdata;
299 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
300 static bool mirrored_kernelcore __meminitdata;
301 
302 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
303 int movable_zone;
304 EXPORT_SYMBOL(movable_zone);
305 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
306 
307 #if MAX_NUMNODES > 1
308 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
309 unsigned int nr_online_nodes __read_mostly = 1;
310 EXPORT_SYMBOL(nr_node_ids);
311 EXPORT_SYMBOL(nr_online_nodes);
312 #endif
313 
314 int page_group_by_mobility_disabled __read_mostly;
315 
316 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
317 /*
318  * During boot we initialize deferred pages on-demand, as needed, but once
319  * page_alloc_init_late() has finished, the deferred pages are all initialized,
320  * and we can permanently disable that path.
321  */
322 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
323 
324 /*
325  * Calling kasan_free_pages() only after deferred memory initialization
326  * has completed. Poisoning pages during deferred memory init will greatly
327  * lengthen the process and cause problem in large memory systems as the
328  * deferred pages initialization is done with interrupt disabled.
329  *
330  * Assuming that there will be no reference to those newly initialized
331  * pages before they are ever allocated, this should have no effect on
332  * KASAN memory tracking as the poison will be properly inserted at page
333  * allocation time. The only corner case is when pages are allocated by
334  * on-demand allocation and then freed again before the deferred pages
335  * initialization is done, but this is not likely to happen.
336  */
337 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
338 {
339 	if (!static_branch_unlikely(&deferred_pages))
340 		kasan_free_pages(page, order);
341 }
342 
343 /* Returns true if the struct page for the pfn is uninitialised */
344 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
345 {
346 	int nid = early_pfn_to_nid(pfn);
347 
348 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
349 		return true;
350 
351 	return false;
352 }
353 
354 /*
355  * Returns true when the remaining initialisation should be deferred until
356  * later in the boot cycle when it can be parallelised.
357  */
358 static bool __meminit
359 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
360 {
361 	static unsigned long prev_end_pfn, nr_initialised;
362 
363 	/*
364 	 * prev_end_pfn static that contains the end of previous zone
365 	 * No need to protect because called very early in boot before smp_init.
366 	 */
367 	if (prev_end_pfn != end_pfn) {
368 		prev_end_pfn = end_pfn;
369 		nr_initialised = 0;
370 	}
371 
372 	/* Always populate low zones for address-constrained allocations */
373 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
374 		return false;
375 
376 	/*
377 	 * We start only with one section of pages, more pages are added as
378 	 * needed until the rest of deferred pages are initialized.
379 	 */
380 	nr_initialised++;
381 	if ((nr_initialised > PAGES_PER_SECTION) &&
382 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
383 		NODE_DATA(nid)->first_deferred_pfn = pfn;
384 		return true;
385 	}
386 	return false;
387 }
388 #else
389 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
390 
391 static inline bool early_page_uninitialised(unsigned long pfn)
392 {
393 	return false;
394 }
395 
396 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
397 {
398 	return false;
399 }
400 #endif
401 
402 /* Return a pointer to the bitmap storing bits affecting a block of pages */
403 static inline unsigned long *get_pageblock_bitmap(struct page *page,
404 							unsigned long pfn)
405 {
406 #ifdef CONFIG_SPARSEMEM
407 	return __pfn_to_section(pfn)->pageblock_flags;
408 #else
409 	return page_zone(page)->pageblock_flags;
410 #endif /* CONFIG_SPARSEMEM */
411 }
412 
413 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
414 {
415 #ifdef CONFIG_SPARSEMEM
416 	pfn &= (PAGES_PER_SECTION-1);
417 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
418 #else
419 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
420 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
421 #endif /* CONFIG_SPARSEMEM */
422 }
423 
424 /**
425  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
426  * @page: The page within the block of interest
427  * @pfn: The target page frame number
428  * @end_bitidx: The last bit of interest to retrieve
429  * @mask: mask of bits that the caller is interested in
430  *
431  * Return: pageblock_bits flags
432  */
433 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
434 					unsigned long pfn,
435 					unsigned long end_bitidx,
436 					unsigned long mask)
437 {
438 	unsigned long *bitmap;
439 	unsigned long bitidx, word_bitidx;
440 	unsigned long word;
441 
442 	bitmap = get_pageblock_bitmap(page, pfn);
443 	bitidx = pfn_to_bitidx(page, pfn);
444 	word_bitidx = bitidx / BITS_PER_LONG;
445 	bitidx &= (BITS_PER_LONG-1);
446 
447 	word = bitmap[word_bitidx];
448 	bitidx += end_bitidx;
449 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
450 }
451 
452 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
453 					unsigned long end_bitidx,
454 					unsigned long mask)
455 {
456 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
457 }
458 
459 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
460 {
461 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
462 }
463 
464 /**
465  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
466  * @page: The page within the block of interest
467  * @flags: The flags to set
468  * @pfn: The target page frame number
469  * @end_bitidx: The last bit of interest
470  * @mask: mask of bits that the caller is interested in
471  */
472 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
473 					unsigned long pfn,
474 					unsigned long end_bitidx,
475 					unsigned long mask)
476 {
477 	unsigned long *bitmap;
478 	unsigned long bitidx, word_bitidx;
479 	unsigned long old_word, word;
480 
481 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
482 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
483 
484 	bitmap = get_pageblock_bitmap(page, pfn);
485 	bitidx = pfn_to_bitidx(page, pfn);
486 	word_bitidx = bitidx / BITS_PER_LONG;
487 	bitidx &= (BITS_PER_LONG-1);
488 
489 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
490 
491 	bitidx += end_bitidx;
492 	mask <<= (BITS_PER_LONG - bitidx - 1);
493 	flags <<= (BITS_PER_LONG - bitidx - 1);
494 
495 	word = READ_ONCE(bitmap[word_bitidx]);
496 	for (;;) {
497 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
498 		if (word == old_word)
499 			break;
500 		word = old_word;
501 	}
502 }
503 
504 void set_pageblock_migratetype(struct page *page, int migratetype)
505 {
506 	if (unlikely(page_group_by_mobility_disabled &&
507 		     migratetype < MIGRATE_PCPTYPES))
508 		migratetype = MIGRATE_UNMOVABLE;
509 
510 	set_pageblock_flags_group(page, (unsigned long)migratetype,
511 					PB_migrate, PB_migrate_end);
512 }
513 
514 #ifdef CONFIG_DEBUG_VM
515 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
516 {
517 	int ret = 0;
518 	unsigned seq;
519 	unsigned long pfn = page_to_pfn(page);
520 	unsigned long sp, start_pfn;
521 
522 	do {
523 		seq = zone_span_seqbegin(zone);
524 		start_pfn = zone->zone_start_pfn;
525 		sp = zone->spanned_pages;
526 		if (!zone_spans_pfn(zone, pfn))
527 			ret = 1;
528 	} while (zone_span_seqretry(zone, seq));
529 
530 	if (ret)
531 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
532 			pfn, zone_to_nid(zone), zone->name,
533 			start_pfn, start_pfn + sp);
534 
535 	return ret;
536 }
537 
538 static int page_is_consistent(struct zone *zone, struct page *page)
539 {
540 	if (!pfn_valid_within(page_to_pfn(page)))
541 		return 0;
542 	if (zone != page_zone(page))
543 		return 0;
544 
545 	return 1;
546 }
547 /*
548  * Temporary debugging check for pages not lying within a given zone.
549  */
550 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
551 {
552 	if (page_outside_zone_boundaries(zone, page))
553 		return 1;
554 	if (!page_is_consistent(zone, page))
555 		return 1;
556 
557 	return 0;
558 }
559 #else
560 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
561 {
562 	return 0;
563 }
564 #endif
565 
566 static void bad_page(struct page *page, const char *reason,
567 		unsigned long bad_flags)
568 {
569 	static unsigned long resume;
570 	static unsigned long nr_shown;
571 	static unsigned long nr_unshown;
572 
573 	/*
574 	 * Allow a burst of 60 reports, then keep quiet for that minute;
575 	 * or allow a steady drip of one report per second.
576 	 */
577 	if (nr_shown == 60) {
578 		if (time_before(jiffies, resume)) {
579 			nr_unshown++;
580 			goto out;
581 		}
582 		if (nr_unshown) {
583 			pr_alert(
584 			      "BUG: Bad page state: %lu messages suppressed\n",
585 				nr_unshown);
586 			nr_unshown = 0;
587 		}
588 		nr_shown = 0;
589 	}
590 	if (nr_shown++ == 0)
591 		resume = jiffies + 60 * HZ;
592 
593 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
594 		current->comm, page_to_pfn(page));
595 	__dump_page(page, reason);
596 	bad_flags &= page->flags;
597 	if (bad_flags)
598 		pr_alert("bad because of flags: %#lx(%pGp)\n",
599 						bad_flags, &bad_flags);
600 	dump_page_owner(page);
601 
602 	print_modules();
603 	dump_stack();
604 out:
605 	/* Leave bad fields for debug, except PageBuddy could make trouble */
606 	page_mapcount_reset(page); /* remove PageBuddy */
607 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
608 }
609 
610 /*
611  * Higher-order pages are called "compound pages".  They are structured thusly:
612  *
613  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
614  *
615  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
616  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
617  *
618  * The first tail page's ->compound_dtor holds the offset in array of compound
619  * page destructors. See compound_page_dtors.
620  *
621  * The first tail page's ->compound_order holds the order of allocation.
622  * This usage means that zero-order pages may not be compound.
623  */
624 
625 void free_compound_page(struct page *page)
626 {
627 	__free_pages_ok(page, compound_order(page));
628 }
629 
630 void prep_compound_page(struct page *page, unsigned int order)
631 {
632 	int i;
633 	int nr_pages = 1 << order;
634 
635 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
636 	set_compound_order(page, order);
637 	__SetPageHead(page);
638 	for (i = 1; i < nr_pages; i++) {
639 		struct page *p = page + i;
640 		set_page_count(p, 0);
641 		p->mapping = TAIL_MAPPING;
642 		set_compound_head(p, page);
643 	}
644 	atomic_set(compound_mapcount_ptr(page), -1);
645 }
646 
647 #ifdef CONFIG_DEBUG_PAGEALLOC
648 unsigned int _debug_guardpage_minorder;
649 bool _debug_pagealloc_enabled __read_mostly
650 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
651 EXPORT_SYMBOL(_debug_pagealloc_enabled);
652 bool _debug_guardpage_enabled __read_mostly;
653 
654 static int __init early_debug_pagealloc(char *buf)
655 {
656 	if (!buf)
657 		return -EINVAL;
658 	return kstrtobool(buf, &_debug_pagealloc_enabled);
659 }
660 early_param("debug_pagealloc", early_debug_pagealloc);
661 
662 static bool need_debug_guardpage(void)
663 {
664 	/* If we don't use debug_pagealloc, we don't need guard page */
665 	if (!debug_pagealloc_enabled())
666 		return false;
667 
668 	if (!debug_guardpage_minorder())
669 		return false;
670 
671 	return true;
672 }
673 
674 static void init_debug_guardpage(void)
675 {
676 	if (!debug_pagealloc_enabled())
677 		return;
678 
679 	if (!debug_guardpage_minorder())
680 		return;
681 
682 	_debug_guardpage_enabled = true;
683 }
684 
685 struct page_ext_operations debug_guardpage_ops = {
686 	.need = need_debug_guardpage,
687 	.init = init_debug_guardpage,
688 };
689 
690 static int __init debug_guardpage_minorder_setup(char *buf)
691 {
692 	unsigned long res;
693 
694 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
695 		pr_err("Bad debug_guardpage_minorder value\n");
696 		return 0;
697 	}
698 	_debug_guardpage_minorder = res;
699 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
700 	return 0;
701 }
702 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
703 
704 static inline bool set_page_guard(struct zone *zone, struct page *page,
705 				unsigned int order, int migratetype)
706 {
707 	struct page_ext *page_ext;
708 
709 	if (!debug_guardpage_enabled())
710 		return false;
711 
712 	if (order >= debug_guardpage_minorder())
713 		return false;
714 
715 	page_ext = lookup_page_ext(page);
716 	if (unlikely(!page_ext))
717 		return false;
718 
719 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
720 
721 	INIT_LIST_HEAD(&page->lru);
722 	set_page_private(page, order);
723 	/* Guard pages are not available for any usage */
724 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
725 
726 	return true;
727 }
728 
729 static inline void clear_page_guard(struct zone *zone, struct page *page,
730 				unsigned int order, int migratetype)
731 {
732 	struct page_ext *page_ext;
733 
734 	if (!debug_guardpage_enabled())
735 		return;
736 
737 	page_ext = lookup_page_ext(page);
738 	if (unlikely(!page_ext))
739 		return;
740 
741 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
742 
743 	set_page_private(page, 0);
744 	if (!is_migrate_isolate(migratetype))
745 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
746 }
747 #else
748 struct page_ext_operations debug_guardpage_ops;
749 static inline bool set_page_guard(struct zone *zone, struct page *page,
750 			unsigned int order, int migratetype) { return false; }
751 static inline void clear_page_guard(struct zone *zone, struct page *page,
752 				unsigned int order, int migratetype) {}
753 #endif
754 
755 static inline void set_page_order(struct page *page, unsigned int order)
756 {
757 	set_page_private(page, order);
758 	__SetPageBuddy(page);
759 }
760 
761 /*
762  * This function checks whether a page is free && is the buddy
763  * we can coalesce a page and its buddy if
764  * (a) the buddy is not in a hole (check before calling!) &&
765  * (b) the buddy is in the buddy system &&
766  * (c) a page and its buddy have the same order &&
767  * (d) a page and its buddy are in the same zone.
768  *
769  * For recording whether a page is in the buddy system, we set PageBuddy.
770  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
771  *
772  * For recording page's order, we use page_private(page).
773  */
774 static inline int page_is_buddy(struct page *page, struct page *buddy,
775 							unsigned int order)
776 {
777 	if (page_is_guard(buddy) && page_order(buddy) == order) {
778 		if (page_zone_id(page) != page_zone_id(buddy))
779 			return 0;
780 
781 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
782 
783 		return 1;
784 	}
785 
786 	if (PageBuddy(buddy) && page_order(buddy) == order) {
787 		/*
788 		 * zone check is done late to avoid uselessly
789 		 * calculating zone/node ids for pages that could
790 		 * never merge.
791 		 */
792 		if (page_zone_id(page) != page_zone_id(buddy))
793 			return 0;
794 
795 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
796 
797 		return 1;
798 	}
799 	return 0;
800 }
801 
802 #ifdef CONFIG_COMPACTION
803 static inline struct capture_control *task_capc(struct zone *zone)
804 {
805 	struct capture_control *capc = current->capture_control;
806 
807 	return capc &&
808 		!(current->flags & PF_KTHREAD) &&
809 		!capc->page &&
810 		capc->cc->zone == zone &&
811 		capc->cc->direct_compaction ? capc : NULL;
812 }
813 
814 static inline bool
815 compaction_capture(struct capture_control *capc, struct page *page,
816 		   int order, int migratetype)
817 {
818 	if (!capc || order != capc->cc->order)
819 		return false;
820 
821 	/* Do not accidentally pollute CMA or isolated regions*/
822 	if (is_migrate_cma(migratetype) ||
823 	    is_migrate_isolate(migratetype))
824 		return false;
825 
826 	/*
827 	 * Do not let lower order allocations polluate a movable pageblock.
828 	 * This might let an unmovable request use a reclaimable pageblock
829 	 * and vice-versa but no more than normal fallback logic which can
830 	 * have trouble finding a high-order free page.
831 	 */
832 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
833 		return false;
834 
835 	capc->page = page;
836 	return true;
837 }
838 
839 #else
840 static inline struct capture_control *task_capc(struct zone *zone)
841 {
842 	return NULL;
843 }
844 
845 static inline bool
846 compaction_capture(struct capture_control *capc, struct page *page,
847 		   int order, int migratetype)
848 {
849 	return false;
850 }
851 #endif /* CONFIG_COMPACTION */
852 
853 /*
854  * Freeing function for a buddy system allocator.
855  *
856  * The concept of a buddy system is to maintain direct-mapped table
857  * (containing bit values) for memory blocks of various "orders".
858  * The bottom level table contains the map for the smallest allocatable
859  * units of memory (here, pages), and each level above it describes
860  * pairs of units from the levels below, hence, "buddies".
861  * At a high level, all that happens here is marking the table entry
862  * at the bottom level available, and propagating the changes upward
863  * as necessary, plus some accounting needed to play nicely with other
864  * parts of the VM system.
865  * At each level, we keep a list of pages, which are heads of continuous
866  * free pages of length of (1 << order) and marked with PageBuddy.
867  * Page's order is recorded in page_private(page) field.
868  * So when we are allocating or freeing one, we can derive the state of the
869  * other.  That is, if we allocate a small block, and both were
870  * free, the remainder of the region must be split into blocks.
871  * If a block is freed, and its buddy is also free, then this
872  * triggers coalescing into a block of larger size.
873  *
874  * -- nyc
875  */
876 
877 static inline void __free_one_page(struct page *page,
878 		unsigned long pfn,
879 		struct zone *zone, unsigned int order,
880 		int migratetype)
881 {
882 	unsigned long combined_pfn;
883 	unsigned long uninitialized_var(buddy_pfn);
884 	struct page *buddy;
885 	unsigned int max_order;
886 	struct capture_control *capc = task_capc(zone);
887 
888 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
889 
890 	VM_BUG_ON(!zone_is_initialized(zone));
891 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
892 
893 	VM_BUG_ON(migratetype == -1);
894 	if (likely(!is_migrate_isolate(migratetype)))
895 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
896 
897 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
898 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
899 
900 continue_merging:
901 	while (order < max_order - 1) {
902 		if (compaction_capture(capc, page, order, migratetype)) {
903 			__mod_zone_freepage_state(zone, -(1 << order),
904 								migratetype);
905 			return;
906 		}
907 		buddy_pfn = __find_buddy_pfn(pfn, order);
908 		buddy = page + (buddy_pfn - pfn);
909 
910 		if (!pfn_valid_within(buddy_pfn))
911 			goto done_merging;
912 		if (!page_is_buddy(page, buddy, order))
913 			goto done_merging;
914 		/*
915 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
916 		 * merge with it and move up one order.
917 		 */
918 		if (page_is_guard(buddy))
919 			clear_page_guard(zone, buddy, order, migratetype);
920 		else
921 			del_page_from_free_area(buddy, &zone->free_area[order]);
922 		combined_pfn = buddy_pfn & pfn;
923 		page = page + (combined_pfn - pfn);
924 		pfn = combined_pfn;
925 		order++;
926 	}
927 	if (max_order < MAX_ORDER) {
928 		/* If we are here, it means order is >= pageblock_order.
929 		 * We want to prevent merge between freepages on isolate
930 		 * pageblock and normal pageblock. Without this, pageblock
931 		 * isolation could cause incorrect freepage or CMA accounting.
932 		 *
933 		 * We don't want to hit this code for the more frequent
934 		 * low-order merging.
935 		 */
936 		if (unlikely(has_isolate_pageblock(zone))) {
937 			int buddy_mt;
938 
939 			buddy_pfn = __find_buddy_pfn(pfn, order);
940 			buddy = page + (buddy_pfn - pfn);
941 			buddy_mt = get_pageblock_migratetype(buddy);
942 
943 			if (migratetype != buddy_mt
944 					&& (is_migrate_isolate(migratetype) ||
945 						is_migrate_isolate(buddy_mt)))
946 				goto done_merging;
947 		}
948 		max_order++;
949 		goto continue_merging;
950 	}
951 
952 done_merging:
953 	set_page_order(page, order);
954 
955 	/*
956 	 * If this is not the largest possible page, check if the buddy
957 	 * of the next-highest order is free. If it is, it's possible
958 	 * that pages are being freed that will coalesce soon. In case,
959 	 * that is happening, add the free page to the tail of the list
960 	 * so it's less likely to be used soon and more likely to be merged
961 	 * as a higher order page
962 	 */
963 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
964 			&& !is_shuffle_order(order)) {
965 		struct page *higher_page, *higher_buddy;
966 		combined_pfn = buddy_pfn & pfn;
967 		higher_page = page + (combined_pfn - pfn);
968 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
969 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
970 		if (pfn_valid_within(buddy_pfn) &&
971 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
972 			add_to_free_area_tail(page, &zone->free_area[order],
973 					      migratetype);
974 			return;
975 		}
976 	}
977 
978 	if (is_shuffle_order(order))
979 		add_to_free_area_random(page, &zone->free_area[order],
980 				migratetype);
981 	else
982 		add_to_free_area(page, &zone->free_area[order], migratetype);
983 
984 }
985 
986 /*
987  * A bad page could be due to a number of fields. Instead of multiple branches,
988  * try and check multiple fields with one check. The caller must do a detailed
989  * check if necessary.
990  */
991 static inline bool page_expected_state(struct page *page,
992 					unsigned long check_flags)
993 {
994 	if (unlikely(atomic_read(&page->_mapcount) != -1))
995 		return false;
996 
997 	if (unlikely((unsigned long)page->mapping |
998 			page_ref_count(page) |
999 #ifdef CONFIG_MEMCG
1000 			(unsigned long)page->mem_cgroup |
1001 #endif
1002 			(page->flags & check_flags)))
1003 		return false;
1004 
1005 	return true;
1006 }
1007 
1008 static void free_pages_check_bad(struct page *page)
1009 {
1010 	const char *bad_reason;
1011 	unsigned long bad_flags;
1012 
1013 	bad_reason = NULL;
1014 	bad_flags = 0;
1015 
1016 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1017 		bad_reason = "nonzero mapcount";
1018 	if (unlikely(page->mapping != NULL))
1019 		bad_reason = "non-NULL mapping";
1020 	if (unlikely(page_ref_count(page) != 0))
1021 		bad_reason = "nonzero _refcount";
1022 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1023 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1024 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1025 	}
1026 #ifdef CONFIG_MEMCG
1027 	if (unlikely(page->mem_cgroup))
1028 		bad_reason = "page still charged to cgroup";
1029 #endif
1030 	bad_page(page, bad_reason, bad_flags);
1031 }
1032 
1033 static inline int free_pages_check(struct page *page)
1034 {
1035 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1036 		return 0;
1037 
1038 	/* Something has gone sideways, find it */
1039 	free_pages_check_bad(page);
1040 	return 1;
1041 }
1042 
1043 static int free_tail_pages_check(struct page *head_page, struct page *page)
1044 {
1045 	int ret = 1;
1046 
1047 	/*
1048 	 * We rely page->lru.next never has bit 0 set, unless the page
1049 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1050 	 */
1051 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1052 
1053 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1054 		ret = 0;
1055 		goto out;
1056 	}
1057 	switch (page - head_page) {
1058 	case 1:
1059 		/* the first tail page: ->mapping may be compound_mapcount() */
1060 		if (unlikely(compound_mapcount(page))) {
1061 			bad_page(page, "nonzero compound_mapcount", 0);
1062 			goto out;
1063 		}
1064 		break;
1065 	case 2:
1066 		/*
1067 		 * the second tail page: ->mapping is
1068 		 * deferred_list.next -- ignore value.
1069 		 */
1070 		break;
1071 	default:
1072 		if (page->mapping != TAIL_MAPPING) {
1073 			bad_page(page, "corrupted mapping in tail page", 0);
1074 			goto out;
1075 		}
1076 		break;
1077 	}
1078 	if (unlikely(!PageTail(page))) {
1079 		bad_page(page, "PageTail not set", 0);
1080 		goto out;
1081 	}
1082 	if (unlikely(compound_head(page) != head_page)) {
1083 		bad_page(page, "compound_head not consistent", 0);
1084 		goto out;
1085 	}
1086 	ret = 0;
1087 out:
1088 	page->mapping = NULL;
1089 	clear_compound_head(page);
1090 	return ret;
1091 }
1092 
1093 static __always_inline bool free_pages_prepare(struct page *page,
1094 					unsigned int order, bool check_free)
1095 {
1096 	int bad = 0;
1097 
1098 	VM_BUG_ON_PAGE(PageTail(page), page);
1099 
1100 	trace_mm_page_free(page, order);
1101 
1102 	/*
1103 	 * Check tail pages before head page information is cleared to
1104 	 * avoid checking PageCompound for order-0 pages.
1105 	 */
1106 	if (unlikely(order)) {
1107 		bool compound = PageCompound(page);
1108 		int i;
1109 
1110 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1111 
1112 		if (compound)
1113 			ClearPageDoubleMap(page);
1114 		for (i = 1; i < (1 << order); i++) {
1115 			if (compound)
1116 				bad += free_tail_pages_check(page, page + i);
1117 			if (unlikely(free_pages_check(page + i))) {
1118 				bad++;
1119 				continue;
1120 			}
1121 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1122 		}
1123 	}
1124 	if (PageMappingFlags(page))
1125 		page->mapping = NULL;
1126 	if (memcg_kmem_enabled() && PageKmemcg(page))
1127 		__memcg_kmem_uncharge(page, order);
1128 	if (check_free)
1129 		bad += free_pages_check(page);
1130 	if (bad)
1131 		return false;
1132 
1133 	page_cpupid_reset_last(page);
1134 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1135 	reset_page_owner(page, order);
1136 
1137 	if (!PageHighMem(page)) {
1138 		debug_check_no_locks_freed(page_address(page),
1139 					   PAGE_SIZE << order);
1140 		debug_check_no_obj_freed(page_address(page),
1141 					   PAGE_SIZE << order);
1142 	}
1143 	arch_free_page(page, order);
1144 	kernel_poison_pages(page, 1 << order, 0);
1145 	if (debug_pagealloc_enabled())
1146 		kernel_map_pages(page, 1 << order, 0);
1147 
1148 	kasan_free_nondeferred_pages(page, order);
1149 
1150 	return true;
1151 }
1152 
1153 #ifdef CONFIG_DEBUG_VM
1154 static inline bool free_pcp_prepare(struct page *page)
1155 {
1156 	return free_pages_prepare(page, 0, true);
1157 }
1158 
1159 static inline bool bulkfree_pcp_prepare(struct page *page)
1160 {
1161 	return false;
1162 }
1163 #else
1164 static bool free_pcp_prepare(struct page *page)
1165 {
1166 	return free_pages_prepare(page, 0, false);
1167 }
1168 
1169 static bool bulkfree_pcp_prepare(struct page *page)
1170 {
1171 	return free_pages_check(page);
1172 }
1173 #endif /* CONFIG_DEBUG_VM */
1174 
1175 static inline void prefetch_buddy(struct page *page)
1176 {
1177 	unsigned long pfn = page_to_pfn(page);
1178 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1179 	struct page *buddy = page + (buddy_pfn - pfn);
1180 
1181 	prefetch(buddy);
1182 }
1183 
1184 /*
1185  * Frees a number of pages from the PCP lists
1186  * Assumes all pages on list are in same zone, and of same order.
1187  * count is the number of pages to free.
1188  *
1189  * If the zone was previously in an "all pages pinned" state then look to
1190  * see if this freeing clears that state.
1191  *
1192  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1193  * pinned" detection logic.
1194  */
1195 static void free_pcppages_bulk(struct zone *zone, int count,
1196 					struct per_cpu_pages *pcp)
1197 {
1198 	int migratetype = 0;
1199 	int batch_free = 0;
1200 	int prefetch_nr = 0;
1201 	bool isolated_pageblocks;
1202 	struct page *page, *tmp;
1203 	LIST_HEAD(head);
1204 
1205 	while (count) {
1206 		struct list_head *list;
1207 
1208 		/*
1209 		 * Remove pages from lists in a round-robin fashion. A
1210 		 * batch_free count is maintained that is incremented when an
1211 		 * empty list is encountered.  This is so more pages are freed
1212 		 * off fuller lists instead of spinning excessively around empty
1213 		 * lists
1214 		 */
1215 		do {
1216 			batch_free++;
1217 			if (++migratetype == MIGRATE_PCPTYPES)
1218 				migratetype = 0;
1219 			list = &pcp->lists[migratetype];
1220 		} while (list_empty(list));
1221 
1222 		/* This is the only non-empty list. Free them all. */
1223 		if (batch_free == MIGRATE_PCPTYPES)
1224 			batch_free = count;
1225 
1226 		do {
1227 			page = list_last_entry(list, struct page, lru);
1228 			/* must delete to avoid corrupting pcp list */
1229 			list_del(&page->lru);
1230 			pcp->count--;
1231 
1232 			if (bulkfree_pcp_prepare(page))
1233 				continue;
1234 
1235 			list_add_tail(&page->lru, &head);
1236 
1237 			/*
1238 			 * We are going to put the page back to the global
1239 			 * pool, prefetch its buddy to speed up later access
1240 			 * under zone->lock. It is believed the overhead of
1241 			 * an additional test and calculating buddy_pfn here
1242 			 * can be offset by reduced memory latency later. To
1243 			 * avoid excessive prefetching due to large count, only
1244 			 * prefetch buddy for the first pcp->batch nr of pages.
1245 			 */
1246 			if (prefetch_nr++ < pcp->batch)
1247 				prefetch_buddy(page);
1248 		} while (--count && --batch_free && !list_empty(list));
1249 	}
1250 
1251 	spin_lock(&zone->lock);
1252 	isolated_pageblocks = has_isolate_pageblock(zone);
1253 
1254 	/*
1255 	 * Use safe version since after __free_one_page(),
1256 	 * page->lru.next will not point to original list.
1257 	 */
1258 	list_for_each_entry_safe(page, tmp, &head, lru) {
1259 		int mt = get_pcppage_migratetype(page);
1260 		/* MIGRATE_ISOLATE page should not go to pcplists */
1261 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1262 		/* Pageblock could have been isolated meanwhile */
1263 		if (unlikely(isolated_pageblocks))
1264 			mt = get_pageblock_migratetype(page);
1265 
1266 		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1267 		trace_mm_page_pcpu_drain(page, 0, mt);
1268 	}
1269 	spin_unlock(&zone->lock);
1270 }
1271 
1272 static void free_one_page(struct zone *zone,
1273 				struct page *page, unsigned long pfn,
1274 				unsigned int order,
1275 				int migratetype)
1276 {
1277 	spin_lock(&zone->lock);
1278 	if (unlikely(has_isolate_pageblock(zone) ||
1279 		is_migrate_isolate(migratetype))) {
1280 		migratetype = get_pfnblock_migratetype(page, pfn);
1281 	}
1282 	__free_one_page(page, pfn, zone, order, migratetype);
1283 	spin_unlock(&zone->lock);
1284 }
1285 
1286 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1287 				unsigned long zone, int nid)
1288 {
1289 	mm_zero_struct_page(page);
1290 	set_page_links(page, zone, nid, pfn);
1291 	init_page_count(page);
1292 	page_mapcount_reset(page);
1293 	page_cpupid_reset_last(page);
1294 	page_kasan_tag_reset(page);
1295 
1296 	INIT_LIST_HEAD(&page->lru);
1297 #ifdef WANT_PAGE_VIRTUAL
1298 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1299 	if (!is_highmem_idx(zone))
1300 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1301 #endif
1302 }
1303 
1304 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1305 static void __meminit init_reserved_page(unsigned long pfn)
1306 {
1307 	pg_data_t *pgdat;
1308 	int nid, zid;
1309 
1310 	if (!early_page_uninitialised(pfn))
1311 		return;
1312 
1313 	nid = early_pfn_to_nid(pfn);
1314 	pgdat = NODE_DATA(nid);
1315 
1316 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1317 		struct zone *zone = &pgdat->node_zones[zid];
1318 
1319 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1320 			break;
1321 	}
1322 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1323 }
1324 #else
1325 static inline void init_reserved_page(unsigned long pfn)
1326 {
1327 }
1328 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1329 
1330 /*
1331  * Initialised pages do not have PageReserved set. This function is
1332  * called for each range allocated by the bootmem allocator and
1333  * marks the pages PageReserved. The remaining valid pages are later
1334  * sent to the buddy page allocator.
1335  */
1336 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1337 {
1338 	unsigned long start_pfn = PFN_DOWN(start);
1339 	unsigned long end_pfn = PFN_UP(end);
1340 
1341 	for (; start_pfn < end_pfn; start_pfn++) {
1342 		if (pfn_valid(start_pfn)) {
1343 			struct page *page = pfn_to_page(start_pfn);
1344 
1345 			init_reserved_page(start_pfn);
1346 
1347 			/* Avoid false-positive PageTail() */
1348 			INIT_LIST_HEAD(&page->lru);
1349 
1350 			/*
1351 			 * no need for atomic set_bit because the struct
1352 			 * page is not visible yet so nobody should
1353 			 * access it yet.
1354 			 */
1355 			__SetPageReserved(page);
1356 		}
1357 	}
1358 }
1359 
1360 static void __free_pages_ok(struct page *page, unsigned int order)
1361 {
1362 	unsigned long flags;
1363 	int migratetype;
1364 	unsigned long pfn = page_to_pfn(page);
1365 
1366 	if (!free_pages_prepare(page, order, true))
1367 		return;
1368 
1369 	migratetype = get_pfnblock_migratetype(page, pfn);
1370 	local_irq_save(flags);
1371 	__count_vm_events(PGFREE, 1 << order);
1372 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1373 	local_irq_restore(flags);
1374 }
1375 
1376 void __free_pages_core(struct page *page, unsigned int order)
1377 {
1378 	unsigned int nr_pages = 1 << order;
1379 	struct page *p = page;
1380 	unsigned int loop;
1381 
1382 	prefetchw(p);
1383 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1384 		prefetchw(p + 1);
1385 		__ClearPageReserved(p);
1386 		set_page_count(p, 0);
1387 	}
1388 	__ClearPageReserved(p);
1389 	set_page_count(p, 0);
1390 
1391 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1392 	set_page_refcounted(page);
1393 	__free_pages(page, order);
1394 }
1395 
1396 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1397 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1398 
1399 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1400 
1401 int __meminit early_pfn_to_nid(unsigned long pfn)
1402 {
1403 	static DEFINE_SPINLOCK(early_pfn_lock);
1404 	int nid;
1405 
1406 	spin_lock(&early_pfn_lock);
1407 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1408 	if (nid < 0)
1409 		nid = first_online_node;
1410 	spin_unlock(&early_pfn_lock);
1411 
1412 	return nid;
1413 }
1414 #endif
1415 
1416 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1417 /* Only safe to use early in boot when initialisation is single-threaded */
1418 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1419 {
1420 	int nid;
1421 
1422 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1423 	if (nid >= 0 && nid != node)
1424 		return false;
1425 	return true;
1426 }
1427 
1428 #else
1429 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1430 {
1431 	return true;
1432 }
1433 #endif
1434 
1435 
1436 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1437 							unsigned int order)
1438 {
1439 	if (early_page_uninitialised(pfn))
1440 		return;
1441 	__free_pages_core(page, order);
1442 }
1443 
1444 /*
1445  * Check that the whole (or subset of) a pageblock given by the interval of
1446  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1447  * with the migration of free compaction scanner. The scanners then need to
1448  * use only pfn_valid_within() check for arches that allow holes within
1449  * pageblocks.
1450  *
1451  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1452  *
1453  * It's possible on some configurations to have a setup like node0 node1 node0
1454  * i.e. it's possible that all pages within a zones range of pages do not
1455  * belong to a single zone. We assume that a border between node0 and node1
1456  * can occur within a single pageblock, but not a node0 node1 node0
1457  * interleaving within a single pageblock. It is therefore sufficient to check
1458  * the first and last page of a pageblock and avoid checking each individual
1459  * page in a pageblock.
1460  */
1461 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1462 				     unsigned long end_pfn, struct zone *zone)
1463 {
1464 	struct page *start_page;
1465 	struct page *end_page;
1466 
1467 	/* end_pfn is one past the range we are checking */
1468 	end_pfn--;
1469 
1470 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1471 		return NULL;
1472 
1473 	start_page = pfn_to_online_page(start_pfn);
1474 	if (!start_page)
1475 		return NULL;
1476 
1477 	if (page_zone(start_page) != zone)
1478 		return NULL;
1479 
1480 	end_page = pfn_to_page(end_pfn);
1481 
1482 	/* This gives a shorter code than deriving page_zone(end_page) */
1483 	if (page_zone_id(start_page) != page_zone_id(end_page))
1484 		return NULL;
1485 
1486 	return start_page;
1487 }
1488 
1489 void set_zone_contiguous(struct zone *zone)
1490 {
1491 	unsigned long block_start_pfn = zone->zone_start_pfn;
1492 	unsigned long block_end_pfn;
1493 
1494 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1495 	for (; block_start_pfn < zone_end_pfn(zone);
1496 			block_start_pfn = block_end_pfn,
1497 			 block_end_pfn += pageblock_nr_pages) {
1498 
1499 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1500 
1501 		if (!__pageblock_pfn_to_page(block_start_pfn,
1502 					     block_end_pfn, zone))
1503 			return;
1504 	}
1505 
1506 	/* We confirm that there is no hole */
1507 	zone->contiguous = true;
1508 }
1509 
1510 void clear_zone_contiguous(struct zone *zone)
1511 {
1512 	zone->contiguous = false;
1513 }
1514 
1515 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1516 static void __init deferred_free_range(unsigned long pfn,
1517 				       unsigned long nr_pages)
1518 {
1519 	struct page *page;
1520 	unsigned long i;
1521 
1522 	if (!nr_pages)
1523 		return;
1524 
1525 	page = pfn_to_page(pfn);
1526 
1527 	/* Free a large naturally-aligned chunk if possible */
1528 	if (nr_pages == pageblock_nr_pages &&
1529 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1530 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1531 		__free_pages_core(page, pageblock_order);
1532 		return;
1533 	}
1534 
1535 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1536 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1537 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1538 		__free_pages_core(page, 0);
1539 	}
1540 }
1541 
1542 /* Completion tracking for deferred_init_memmap() threads */
1543 static atomic_t pgdat_init_n_undone __initdata;
1544 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1545 
1546 static inline void __init pgdat_init_report_one_done(void)
1547 {
1548 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1549 		complete(&pgdat_init_all_done_comp);
1550 }
1551 
1552 /*
1553  * Returns true if page needs to be initialized or freed to buddy allocator.
1554  *
1555  * First we check if pfn is valid on architectures where it is possible to have
1556  * holes within pageblock_nr_pages. On systems where it is not possible, this
1557  * function is optimized out.
1558  *
1559  * Then, we check if a current large page is valid by only checking the validity
1560  * of the head pfn.
1561  */
1562 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1563 {
1564 	if (!pfn_valid_within(pfn))
1565 		return false;
1566 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1567 		return false;
1568 	return true;
1569 }
1570 
1571 /*
1572  * Free pages to buddy allocator. Try to free aligned pages in
1573  * pageblock_nr_pages sizes.
1574  */
1575 static void __init deferred_free_pages(unsigned long pfn,
1576 				       unsigned long end_pfn)
1577 {
1578 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1579 	unsigned long nr_free = 0;
1580 
1581 	for (; pfn < end_pfn; pfn++) {
1582 		if (!deferred_pfn_valid(pfn)) {
1583 			deferred_free_range(pfn - nr_free, nr_free);
1584 			nr_free = 0;
1585 		} else if (!(pfn & nr_pgmask)) {
1586 			deferred_free_range(pfn - nr_free, nr_free);
1587 			nr_free = 1;
1588 			touch_nmi_watchdog();
1589 		} else {
1590 			nr_free++;
1591 		}
1592 	}
1593 	/* Free the last block of pages to allocator */
1594 	deferred_free_range(pfn - nr_free, nr_free);
1595 }
1596 
1597 /*
1598  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1599  * by performing it only once every pageblock_nr_pages.
1600  * Return number of pages initialized.
1601  */
1602 static unsigned long  __init deferred_init_pages(struct zone *zone,
1603 						 unsigned long pfn,
1604 						 unsigned long end_pfn)
1605 {
1606 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1607 	int nid = zone_to_nid(zone);
1608 	unsigned long nr_pages = 0;
1609 	int zid = zone_idx(zone);
1610 	struct page *page = NULL;
1611 
1612 	for (; pfn < end_pfn; pfn++) {
1613 		if (!deferred_pfn_valid(pfn)) {
1614 			page = NULL;
1615 			continue;
1616 		} else if (!page || !(pfn & nr_pgmask)) {
1617 			page = pfn_to_page(pfn);
1618 			touch_nmi_watchdog();
1619 		} else {
1620 			page++;
1621 		}
1622 		__init_single_page(page, pfn, zid, nid);
1623 		nr_pages++;
1624 	}
1625 	return (nr_pages);
1626 }
1627 
1628 /*
1629  * This function is meant to pre-load the iterator for the zone init.
1630  * Specifically it walks through the ranges until we are caught up to the
1631  * first_init_pfn value and exits there. If we never encounter the value we
1632  * return false indicating there are no valid ranges left.
1633  */
1634 static bool __init
1635 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1636 				    unsigned long *spfn, unsigned long *epfn,
1637 				    unsigned long first_init_pfn)
1638 {
1639 	u64 j;
1640 
1641 	/*
1642 	 * Start out by walking through the ranges in this zone that have
1643 	 * already been initialized. We don't need to do anything with them
1644 	 * so we just need to flush them out of the system.
1645 	 */
1646 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1647 		if (*epfn <= first_init_pfn)
1648 			continue;
1649 		if (*spfn < first_init_pfn)
1650 			*spfn = first_init_pfn;
1651 		*i = j;
1652 		return true;
1653 	}
1654 
1655 	return false;
1656 }
1657 
1658 /*
1659  * Initialize and free pages. We do it in two loops: first we initialize
1660  * struct page, then free to buddy allocator, because while we are
1661  * freeing pages we can access pages that are ahead (computing buddy
1662  * page in __free_one_page()).
1663  *
1664  * In order to try and keep some memory in the cache we have the loop
1665  * broken along max page order boundaries. This way we will not cause
1666  * any issues with the buddy page computation.
1667  */
1668 static unsigned long __init
1669 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1670 		       unsigned long *end_pfn)
1671 {
1672 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1673 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1674 	unsigned long nr_pages = 0;
1675 	u64 j = *i;
1676 
1677 	/* First we loop through and initialize the page values */
1678 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1679 		unsigned long t;
1680 
1681 		if (mo_pfn <= *start_pfn)
1682 			break;
1683 
1684 		t = min(mo_pfn, *end_pfn);
1685 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1686 
1687 		if (mo_pfn < *end_pfn) {
1688 			*start_pfn = mo_pfn;
1689 			break;
1690 		}
1691 	}
1692 
1693 	/* Reset values and now loop through freeing pages as needed */
1694 	swap(j, *i);
1695 
1696 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1697 		unsigned long t;
1698 
1699 		if (mo_pfn <= spfn)
1700 			break;
1701 
1702 		t = min(mo_pfn, epfn);
1703 		deferred_free_pages(spfn, t);
1704 
1705 		if (mo_pfn <= epfn)
1706 			break;
1707 	}
1708 
1709 	return nr_pages;
1710 }
1711 
1712 /* Initialise remaining memory on a node */
1713 static int __init deferred_init_memmap(void *data)
1714 {
1715 	pg_data_t *pgdat = data;
1716 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1717 	unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1718 	unsigned long first_init_pfn, flags;
1719 	unsigned long start = jiffies;
1720 	struct zone *zone;
1721 	int zid;
1722 	u64 i;
1723 
1724 	/* Bind memory initialisation thread to a local node if possible */
1725 	if (!cpumask_empty(cpumask))
1726 		set_cpus_allowed_ptr(current, cpumask);
1727 
1728 	pgdat_resize_lock(pgdat, &flags);
1729 	first_init_pfn = pgdat->first_deferred_pfn;
1730 	if (first_init_pfn == ULONG_MAX) {
1731 		pgdat_resize_unlock(pgdat, &flags);
1732 		pgdat_init_report_one_done();
1733 		return 0;
1734 	}
1735 
1736 	/* Sanity check boundaries */
1737 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1738 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1739 	pgdat->first_deferred_pfn = ULONG_MAX;
1740 
1741 	/* Only the highest zone is deferred so find it */
1742 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1743 		zone = pgdat->node_zones + zid;
1744 		if (first_init_pfn < zone_end_pfn(zone))
1745 			break;
1746 	}
1747 
1748 	/* If the zone is empty somebody else may have cleared out the zone */
1749 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1750 						 first_init_pfn))
1751 		goto zone_empty;
1752 
1753 	/*
1754 	 * Initialize and free pages in MAX_ORDER sized increments so
1755 	 * that we can avoid introducing any issues with the buddy
1756 	 * allocator.
1757 	 */
1758 	while (spfn < epfn)
1759 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1760 zone_empty:
1761 	pgdat_resize_unlock(pgdat, &flags);
1762 
1763 	/* Sanity check that the next zone really is unpopulated */
1764 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1765 
1766 	pr_info("node %d initialised, %lu pages in %ums\n",
1767 		pgdat->node_id,	nr_pages, jiffies_to_msecs(jiffies - start));
1768 
1769 	pgdat_init_report_one_done();
1770 	return 0;
1771 }
1772 
1773 /*
1774  * If this zone has deferred pages, try to grow it by initializing enough
1775  * deferred pages to satisfy the allocation specified by order, rounded up to
1776  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1777  * of SECTION_SIZE bytes by initializing struct pages in increments of
1778  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1779  *
1780  * Return true when zone was grown, otherwise return false. We return true even
1781  * when we grow less than requested, to let the caller decide if there are
1782  * enough pages to satisfy the allocation.
1783  *
1784  * Note: We use noinline because this function is needed only during boot, and
1785  * it is called from a __ref function _deferred_grow_zone. This way we are
1786  * making sure that it is not inlined into permanent text section.
1787  */
1788 static noinline bool __init
1789 deferred_grow_zone(struct zone *zone, unsigned int order)
1790 {
1791 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1792 	pg_data_t *pgdat = zone->zone_pgdat;
1793 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1794 	unsigned long spfn, epfn, flags;
1795 	unsigned long nr_pages = 0;
1796 	u64 i;
1797 
1798 	/* Only the last zone may have deferred pages */
1799 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1800 		return false;
1801 
1802 	pgdat_resize_lock(pgdat, &flags);
1803 
1804 	/*
1805 	 * If deferred pages have been initialized while we were waiting for
1806 	 * the lock, return true, as the zone was grown.  The caller will retry
1807 	 * this zone.  We won't return to this function since the caller also
1808 	 * has this static branch.
1809 	 */
1810 	if (!static_branch_unlikely(&deferred_pages)) {
1811 		pgdat_resize_unlock(pgdat, &flags);
1812 		return true;
1813 	}
1814 
1815 	/*
1816 	 * If someone grew this zone while we were waiting for spinlock, return
1817 	 * true, as there might be enough pages already.
1818 	 */
1819 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1820 		pgdat_resize_unlock(pgdat, &flags);
1821 		return true;
1822 	}
1823 
1824 	/* If the zone is empty somebody else may have cleared out the zone */
1825 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1826 						 first_deferred_pfn)) {
1827 		pgdat->first_deferred_pfn = ULONG_MAX;
1828 		pgdat_resize_unlock(pgdat, &flags);
1829 		return true;
1830 	}
1831 
1832 	/*
1833 	 * Initialize and free pages in MAX_ORDER sized increments so
1834 	 * that we can avoid introducing any issues with the buddy
1835 	 * allocator.
1836 	 */
1837 	while (spfn < epfn) {
1838 		/* update our first deferred PFN for this section */
1839 		first_deferred_pfn = spfn;
1840 
1841 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1842 
1843 		/* We should only stop along section boundaries */
1844 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1845 			continue;
1846 
1847 		/* If our quota has been met we can stop here */
1848 		if (nr_pages >= nr_pages_needed)
1849 			break;
1850 	}
1851 
1852 	pgdat->first_deferred_pfn = spfn;
1853 	pgdat_resize_unlock(pgdat, &flags);
1854 
1855 	return nr_pages > 0;
1856 }
1857 
1858 /*
1859  * deferred_grow_zone() is __init, but it is called from
1860  * get_page_from_freelist() during early boot until deferred_pages permanently
1861  * disables this call. This is why we have refdata wrapper to avoid warning,
1862  * and to ensure that the function body gets unloaded.
1863  */
1864 static bool __ref
1865 _deferred_grow_zone(struct zone *zone, unsigned int order)
1866 {
1867 	return deferred_grow_zone(zone, order);
1868 }
1869 
1870 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1871 
1872 void __init page_alloc_init_late(void)
1873 {
1874 	struct zone *zone;
1875 	int nid;
1876 
1877 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1878 
1879 	/* There will be num_node_state(N_MEMORY) threads */
1880 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1881 	for_each_node_state(nid, N_MEMORY) {
1882 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1883 	}
1884 
1885 	/* Block until all are initialised */
1886 	wait_for_completion(&pgdat_init_all_done_comp);
1887 
1888 	/*
1889 	 * We initialized the rest of the deferred pages.  Permanently disable
1890 	 * on-demand struct page initialization.
1891 	 */
1892 	static_branch_disable(&deferred_pages);
1893 
1894 	/* Reinit limits that are based on free pages after the kernel is up */
1895 	files_maxfiles_init();
1896 #endif
1897 
1898 	/* Discard memblock private memory */
1899 	memblock_discard();
1900 
1901 	for_each_node_state(nid, N_MEMORY)
1902 		shuffle_free_memory(NODE_DATA(nid));
1903 
1904 	for_each_populated_zone(zone)
1905 		set_zone_contiguous(zone);
1906 }
1907 
1908 #ifdef CONFIG_CMA
1909 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1910 void __init init_cma_reserved_pageblock(struct page *page)
1911 {
1912 	unsigned i = pageblock_nr_pages;
1913 	struct page *p = page;
1914 
1915 	do {
1916 		__ClearPageReserved(p);
1917 		set_page_count(p, 0);
1918 	} while (++p, --i);
1919 
1920 	set_pageblock_migratetype(page, MIGRATE_CMA);
1921 
1922 	if (pageblock_order >= MAX_ORDER) {
1923 		i = pageblock_nr_pages;
1924 		p = page;
1925 		do {
1926 			set_page_refcounted(p);
1927 			__free_pages(p, MAX_ORDER - 1);
1928 			p += MAX_ORDER_NR_PAGES;
1929 		} while (i -= MAX_ORDER_NR_PAGES);
1930 	} else {
1931 		set_page_refcounted(page);
1932 		__free_pages(page, pageblock_order);
1933 	}
1934 
1935 	adjust_managed_page_count(page, pageblock_nr_pages);
1936 }
1937 #endif
1938 
1939 /*
1940  * The order of subdivision here is critical for the IO subsystem.
1941  * Please do not alter this order without good reasons and regression
1942  * testing. Specifically, as large blocks of memory are subdivided,
1943  * the order in which smaller blocks are delivered depends on the order
1944  * they're subdivided in this function. This is the primary factor
1945  * influencing the order in which pages are delivered to the IO
1946  * subsystem according to empirical testing, and this is also justified
1947  * by considering the behavior of a buddy system containing a single
1948  * large block of memory acted on by a series of small allocations.
1949  * This behavior is a critical factor in sglist merging's success.
1950  *
1951  * -- nyc
1952  */
1953 static inline void expand(struct zone *zone, struct page *page,
1954 	int low, int high, struct free_area *area,
1955 	int migratetype)
1956 {
1957 	unsigned long size = 1 << high;
1958 
1959 	while (high > low) {
1960 		area--;
1961 		high--;
1962 		size >>= 1;
1963 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1964 
1965 		/*
1966 		 * Mark as guard pages (or page), that will allow to
1967 		 * merge back to allocator when buddy will be freed.
1968 		 * Corresponding page table entries will not be touched,
1969 		 * pages will stay not present in virtual address space
1970 		 */
1971 		if (set_page_guard(zone, &page[size], high, migratetype))
1972 			continue;
1973 
1974 		add_to_free_area(&page[size], area, migratetype);
1975 		set_page_order(&page[size], high);
1976 	}
1977 }
1978 
1979 static void check_new_page_bad(struct page *page)
1980 {
1981 	const char *bad_reason = NULL;
1982 	unsigned long bad_flags = 0;
1983 
1984 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1985 		bad_reason = "nonzero mapcount";
1986 	if (unlikely(page->mapping != NULL))
1987 		bad_reason = "non-NULL mapping";
1988 	if (unlikely(page_ref_count(page) != 0))
1989 		bad_reason = "nonzero _refcount";
1990 	if (unlikely(page->flags & __PG_HWPOISON)) {
1991 		bad_reason = "HWPoisoned (hardware-corrupted)";
1992 		bad_flags = __PG_HWPOISON;
1993 		/* Don't complain about hwpoisoned pages */
1994 		page_mapcount_reset(page); /* remove PageBuddy */
1995 		return;
1996 	}
1997 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1998 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1999 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2000 	}
2001 #ifdef CONFIG_MEMCG
2002 	if (unlikely(page->mem_cgroup))
2003 		bad_reason = "page still charged to cgroup";
2004 #endif
2005 	bad_page(page, bad_reason, bad_flags);
2006 }
2007 
2008 /*
2009  * This page is about to be returned from the page allocator
2010  */
2011 static inline int check_new_page(struct page *page)
2012 {
2013 	if (likely(page_expected_state(page,
2014 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2015 		return 0;
2016 
2017 	check_new_page_bad(page);
2018 	return 1;
2019 }
2020 
2021 static inline bool free_pages_prezeroed(void)
2022 {
2023 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2024 		page_poisoning_enabled();
2025 }
2026 
2027 #ifdef CONFIG_DEBUG_VM
2028 static bool check_pcp_refill(struct page *page)
2029 {
2030 	return false;
2031 }
2032 
2033 static bool check_new_pcp(struct page *page)
2034 {
2035 	return check_new_page(page);
2036 }
2037 #else
2038 static bool check_pcp_refill(struct page *page)
2039 {
2040 	return check_new_page(page);
2041 }
2042 static bool check_new_pcp(struct page *page)
2043 {
2044 	return false;
2045 }
2046 #endif /* CONFIG_DEBUG_VM */
2047 
2048 static bool check_new_pages(struct page *page, unsigned int order)
2049 {
2050 	int i;
2051 	for (i = 0; i < (1 << order); i++) {
2052 		struct page *p = page + i;
2053 
2054 		if (unlikely(check_new_page(p)))
2055 			return true;
2056 	}
2057 
2058 	return false;
2059 }
2060 
2061 inline void post_alloc_hook(struct page *page, unsigned int order,
2062 				gfp_t gfp_flags)
2063 {
2064 	set_page_private(page, 0);
2065 	set_page_refcounted(page);
2066 
2067 	arch_alloc_page(page, order);
2068 	if (debug_pagealloc_enabled())
2069 		kernel_map_pages(page, 1 << order, 1);
2070 	kasan_alloc_pages(page, order);
2071 	kernel_poison_pages(page, 1 << order, 1);
2072 	set_page_owner(page, order, gfp_flags);
2073 }
2074 
2075 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2076 							unsigned int alloc_flags)
2077 {
2078 	int i;
2079 
2080 	post_alloc_hook(page, order, gfp_flags);
2081 
2082 	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
2083 		for (i = 0; i < (1 << order); i++)
2084 			clear_highpage(page + i);
2085 
2086 	if (order && (gfp_flags & __GFP_COMP))
2087 		prep_compound_page(page, order);
2088 
2089 	/*
2090 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2091 	 * allocate the page. The expectation is that the caller is taking
2092 	 * steps that will free more memory. The caller should avoid the page
2093 	 * being used for !PFMEMALLOC purposes.
2094 	 */
2095 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2096 		set_page_pfmemalloc(page);
2097 	else
2098 		clear_page_pfmemalloc(page);
2099 }
2100 
2101 /*
2102  * Go through the free lists for the given migratetype and remove
2103  * the smallest available page from the freelists
2104  */
2105 static __always_inline
2106 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2107 						int migratetype)
2108 {
2109 	unsigned int current_order;
2110 	struct free_area *area;
2111 	struct page *page;
2112 
2113 	/* Find a page of the appropriate size in the preferred list */
2114 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2115 		area = &(zone->free_area[current_order]);
2116 		page = get_page_from_free_area(area, migratetype);
2117 		if (!page)
2118 			continue;
2119 		del_page_from_free_area(page, area);
2120 		expand(zone, page, order, current_order, area, migratetype);
2121 		set_pcppage_migratetype(page, migratetype);
2122 		return page;
2123 	}
2124 
2125 	return NULL;
2126 }
2127 
2128 
2129 /*
2130  * This array describes the order lists are fallen back to when
2131  * the free lists for the desirable migrate type are depleted
2132  */
2133 static int fallbacks[MIGRATE_TYPES][4] = {
2134 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2135 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2136 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2137 #ifdef CONFIG_CMA
2138 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2139 #endif
2140 #ifdef CONFIG_MEMORY_ISOLATION
2141 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2142 #endif
2143 };
2144 
2145 #ifdef CONFIG_CMA
2146 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2147 					unsigned int order)
2148 {
2149 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2150 }
2151 #else
2152 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2153 					unsigned int order) { return NULL; }
2154 #endif
2155 
2156 /*
2157  * Move the free pages in a range to the free lists of the requested type.
2158  * Note that start_page and end_pages are not aligned on a pageblock
2159  * boundary. If alignment is required, use move_freepages_block()
2160  */
2161 static int move_freepages(struct zone *zone,
2162 			  struct page *start_page, struct page *end_page,
2163 			  int migratetype, int *num_movable)
2164 {
2165 	struct page *page;
2166 	unsigned int order;
2167 	int pages_moved = 0;
2168 
2169 #ifndef CONFIG_HOLES_IN_ZONE
2170 	/*
2171 	 * page_zone is not safe to call in this context when
2172 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2173 	 * anyway as we check zone boundaries in move_freepages_block().
2174 	 * Remove at a later date when no bug reports exist related to
2175 	 * grouping pages by mobility
2176 	 */
2177 	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2178 	          pfn_valid(page_to_pfn(end_page)) &&
2179 	          page_zone(start_page) != page_zone(end_page));
2180 #endif
2181 	for (page = start_page; page <= end_page;) {
2182 		if (!pfn_valid_within(page_to_pfn(page))) {
2183 			page++;
2184 			continue;
2185 		}
2186 
2187 		/* Make sure we are not inadvertently changing nodes */
2188 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2189 
2190 		if (!PageBuddy(page)) {
2191 			/*
2192 			 * We assume that pages that could be isolated for
2193 			 * migration are movable. But we don't actually try
2194 			 * isolating, as that would be expensive.
2195 			 */
2196 			if (num_movable &&
2197 					(PageLRU(page) || __PageMovable(page)))
2198 				(*num_movable)++;
2199 
2200 			page++;
2201 			continue;
2202 		}
2203 
2204 		order = page_order(page);
2205 		move_to_free_area(page, &zone->free_area[order], migratetype);
2206 		page += 1 << order;
2207 		pages_moved += 1 << order;
2208 	}
2209 
2210 	return pages_moved;
2211 }
2212 
2213 int move_freepages_block(struct zone *zone, struct page *page,
2214 				int migratetype, int *num_movable)
2215 {
2216 	unsigned long start_pfn, end_pfn;
2217 	struct page *start_page, *end_page;
2218 
2219 	if (num_movable)
2220 		*num_movable = 0;
2221 
2222 	start_pfn = page_to_pfn(page);
2223 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2224 	start_page = pfn_to_page(start_pfn);
2225 	end_page = start_page + pageblock_nr_pages - 1;
2226 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2227 
2228 	/* Do not cross zone boundaries */
2229 	if (!zone_spans_pfn(zone, start_pfn))
2230 		start_page = page;
2231 	if (!zone_spans_pfn(zone, end_pfn))
2232 		return 0;
2233 
2234 	return move_freepages(zone, start_page, end_page, migratetype,
2235 								num_movable);
2236 }
2237 
2238 static void change_pageblock_range(struct page *pageblock_page,
2239 					int start_order, int migratetype)
2240 {
2241 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2242 
2243 	while (nr_pageblocks--) {
2244 		set_pageblock_migratetype(pageblock_page, migratetype);
2245 		pageblock_page += pageblock_nr_pages;
2246 	}
2247 }
2248 
2249 /*
2250  * When we are falling back to another migratetype during allocation, try to
2251  * steal extra free pages from the same pageblocks to satisfy further
2252  * allocations, instead of polluting multiple pageblocks.
2253  *
2254  * If we are stealing a relatively large buddy page, it is likely there will
2255  * be more free pages in the pageblock, so try to steal them all. For
2256  * reclaimable and unmovable allocations, we steal regardless of page size,
2257  * as fragmentation caused by those allocations polluting movable pageblocks
2258  * is worse than movable allocations stealing from unmovable and reclaimable
2259  * pageblocks.
2260  */
2261 static bool can_steal_fallback(unsigned int order, int start_mt)
2262 {
2263 	/*
2264 	 * Leaving this order check is intended, although there is
2265 	 * relaxed order check in next check. The reason is that
2266 	 * we can actually steal whole pageblock if this condition met,
2267 	 * but, below check doesn't guarantee it and that is just heuristic
2268 	 * so could be changed anytime.
2269 	 */
2270 	if (order >= pageblock_order)
2271 		return true;
2272 
2273 	if (order >= pageblock_order / 2 ||
2274 		start_mt == MIGRATE_RECLAIMABLE ||
2275 		start_mt == MIGRATE_UNMOVABLE ||
2276 		page_group_by_mobility_disabled)
2277 		return true;
2278 
2279 	return false;
2280 }
2281 
2282 static inline void boost_watermark(struct zone *zone)
2283 {
2284 	unsigned long max_boost;
2285 
2286 	if (!watermark_boost_factor)
2287 		return;
2288 
2289 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2290 			watermark_boost_factor, 10000);
2291 
2292 	/*
2293 	 * high watermark may be uninitialised if fragmentation occurs
2294 	 * very early in boot so do not boost. We do not fall
2295 	 * through and boost by pageblock_nr_pages as failing
2296 	 * allocations that early means that reclaim is not going
2297 	 * to help and it may even be impossible to reclaim the
2298 	 * boosted watermark resulting in a hang.
2299 	 */
2300 	if (!max_boost)
2301 		return;
2302 
2303 	max_boost = max(pageblock_nr_pages, max_boost);
2304 
2305 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2306 		max_boost);
2307 }
2308 
2309 /*
2310  * This function implements actual steal behaviour. If order is large enough,
2311  * we can steal whole pageblock. If not, we first move freepages in this
2312  * pageblock to our migratetype and determine how many already-allocated pages
2313  * are there in the pageblock with a compatible migratetype. If at least half
2314  * of pages are free or compatible, we can change migratetype of the pageblock
2315  * itself, so pages freed in the future will be put on the correct free list.
2316  */
2317 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2318 		unsigned int alloc_flags, int start_type, bool whole_block)
2319 {
2320 	unsigned int current_order = page_order(page);
2321 	struct free_area *area;
2322 	int free_pages, movable_pages, alike_pages;
2323 	int old_block_type;
2324 
2325 	old_block_type = get_pageblock_migratetype(page);
2326 
2327 	/*
2328 	 * This can happen due to races and we want to prevent broken
2329 	 * highatomic accounting.
2330 	 */
2331 	if (is_migrate_highatomic(old_block_type))
2332 		goto single_page;
2333 
2334 	/* Take ownership for orders >= pageblock_order */
2335 	if (current_order >= pageblock_order) {
2336 		change_pageblock_range(page, current_order, start_type);
2337 		goto single_page;
2338 	}
2339 
2340 	/*
2341 	 * Boost watermarks to increase reclaim pressure to reduce the
2342 	 * likelihood of future fallbacks. Wake kswapd now as the node
2343 	 * may be balanced overall and kswapd will not wake naturally.
2344 	 */
2345 	boost_watermark(zone);
2346 	if (alloc_flags & ALLOC_KSWAPD)
2347 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2348 
2349 	/* We are not allowed to try stealing from the whole block */
2350 	if (!whole_block)
2351 		goto single_page;
2352 
2353 	free_pages = move_freepages_block(zone, page, start_type,
2354 						&movable_pages);
2355 	/*
2356 	 * Determine how many pages are compatible with our allocation.
2357 	 * For movable allocation, it's the number of movable pages which
2358 	 * we just obtained. For other types it's a bit more tricky.
2359 	 */
2360 	if (start_type == MIGRATE_MOVABLE) {
2361 		alike_pages = movable_pages;
2362 	} else {
2363 		/*
2364 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2365 		 * to MOVABLE pageblock, consider all non-movable pages as
2366 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2367 		 * vice versa, be conservative since we can't distinguish the
2368 		 * exact migratetype of non-movable pages.
2369 		 */
2370 		if (old_block_type == MIGRATE_MOVABLE)
2371 			alike_pages = pageblock_nr_pages
2372 						- (free_pages + movable_pages);
2373 		else
2374 			alike_pages = 0;
2375 	}
2376 
2377 	/* moving whole block can fail due to zone boundary conditions */
2378 	if (!free_pages)
2379 		goto single_page;
2380 
2381 	/*
2382 	 * If a sufficient number of pages in the block are either free or of
2383 	 * comparable migratability as our allocation, claim the whole block.
2384 	 */
2385 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2386 			page_group_by_mobility_disabled)
2387 		set_pageblock_migratetype(page, start_type);
2388 
2389 	return;
2390 
2391 single_page:
2392 	area = &zone->free_area[current_order];
2393 	move_to_free_area(page, area, start_type);
2394 }
2395 
2396 /*
2397  * Check whether there is a suitable fallback freepage with requested order.
2398  * If only_stealable is true, this function returns fallback_mt only if
2399  * we can steal other freepages all together. This would help to reduce
2400  * fragmentation due to mixed migratetype pages in one pageblock.
2401  */
2402 int find_suitable_fallback(struct free_area *area, unsigned int order,
2403 			int migratetype, bool only_stealable, bool *can_steal)
2404 {
2405 	int i;
2406 	int fallback_mt;
2407 
2408 	if (area->nr_free == 0)
2409 		return -1;
2410 
2411 	*can_steal = false;
2412 	for (i = 0;; i++) {
2413 		fallback_mt = fallbacks[migratetype][i];
2414 		if (fallback_mt == MIGRATE_TYPES)
2415 			break;
2416 
2417 		if (free_area_empty(area, fallback_mt))
2418 			continue;
2419 
2420 		if (can_steal_fallback(order, migratetype))
2421 			*can_steal = true;
2422 
2423 		if (!only_stealable)
2424 			return fallback_mt;
2425 
2426 		if (*can_steal)
2427 			return fallback_mt;
2428 	}
2429 
2430 	return -1;
2431 }
2432 
2433 /*
2434  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2435  * there are no empty page blocks that contain a page with a suitable order
2436  */
2437 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2438 				unsigned int alloc_order)
2439 {
2440 	int mt;
2441 	unsigned long max_managed, flags;
2442 
2443 	/*
2444 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2445 	 * Check is race-prone but harmless.
2446 	 */
2447 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2448 	if (zone->nr_reserved_highatomic >= max_managed)
2449 		return;
2450 
2451 	spin_lock_irqsave(&zone->lock, flags);
2452 
2453 	/* Recheck the nr_reserved_highatomic limit under the lock */
2454 	if (zone->nr_reserved_highatomic >= max_managed)
2455 		goto out_unlock;
2456 
2457 	/* Yoink! */
2458 	mt = get_pageblock_migratetype(page);
2459 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2460 	    && !is_migrate_cma(mt)) {
2461 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2462 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2463 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2464 	}
2465 
2466 out_unlock:
2467 	spin_unlock_irqrestore(&zone->lock, flags);
2468 }
2469 
2470 /*
2471  * Used when an allocation is about to fail under memory pressure. This
2472  * potentially hurts the reliability of high-order allocations when under
2473  * intense memory pressure but failed atomic allocations should be easier
2474  * to recover from than an OOM.
2475  *
2476  * If @force is true, try to unreserve a pageblock even though highatomic
2477  * pageblock is exhausted.
2478  */
2479 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2480 						bool force)
2481 {
2482 	struct zonelist *zonelist = ac->zonelist;
2483 	unsigned long flags;
2484 	struct zoneref *z;
2485 	struct zone *zone;
2486 	struct page *page;
2487 	int order;
2488 	bool ret;
2489 
2490 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2491 								ac->nodemask) {
2492 		/*
2493 		 * Preserve at least one pageblock unless memory pressure
2494 		 * is really high.
2495 		 */
2496 		if (!force && zone->nr_reserved_highatomic <=
2497 					pageblock_nr_pages)
2498 			continue;
2499 
2500 		spin_lock_irqsave(&zone->lock, flags);
2501 		for (order = 0; order < MAX_ORDER; order++) {
2502 			struct free_area *area = &(zone->free_area[order]);
2503 
2504 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2505 			if (!page)
2506 				continue;
2507 
2508 			/*
2509 			 * In page freeing path, migratetype change is racy so
2510 			 * we can counter several free pages in a pageblock
2511 			 * in this loop althoug we changed the pageblock type
2512 			 * from highatomic to ac->migratetype. So we should
2513 			 * adjust the count once.
2514 			 */
2515 			if (is_migrate_highatomic_page(page)) {
2516 				/*
2517 				 * It should never happen but changes to
2518 				 * locking could inadvertently allow a per-cpu
2519 				 * drain to add pages to MIGRATE_HIGHATOMIC
2520 				 * while unreserving so be safe and watch for
2521 				 * underflows.
2522 				 */
2523 				zone->nr_reserved_highatomic -= min(
2524 						pageblock_nr_pages,
2525 						zone->nr_reserved_highatomic);
2526 			}
2527 
2528 			/*
2529 			 * Convert to ac->migratetype and avoid the normal
2530 			 * pageblock stealing heuristics. Minimally, the caller
2531 			 * is doing the work and needs the pages. More
2532 			 * importantly, if the block was always converted to
2533 			 * MIGRATE_UNMOVABLE or another type then the number
2534 			 * of pageblocks that cannot be completely freed
2535 			 * may increase.
2536 			 */
2537 			set_pageblock_migratetype(page, ac->migratetype);
2538 			ret = move_freepages_block(zone, page, ac->migratetype,
2539 									NULL);
2540 			if (ret) {
2541 				spin_unlock_irqrestore(&zone->lock, flags);
2542 				return ret;
2543 			}
2544 		}
2545 		spin_unlock_irqrestore(&zone->lock, flags);
2546 	}
2547 
2548 	return false;
2549 }
2550 
2551 /*
2552  * Try finding a free buddy page on the fallback list and put it on the free
2553  * list of requested migratetype, possibly along with other pages from the same
2554  * block, depending on fragmentation avoidance heuristics. Returns true if
2555  * fallback was found so that __rmqueue_smallest() can grab it.
2556  *
2557  * The use of signed ints for order and current_order is a deliberate
2558  * deviation from the rest of this file, to make the for loop
2559  * condition simpler.
2560  */
2561 static __always_inline bool
2562 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2563 						unsigned int alloc_flags)
2564 {
2565 	struct free_area *area;
2566 	int current_order;
2567 	int min_order = order;
2568 	struct page *page;
2569 	int fallback_mt;
2570 	bool can_steal;
2571 
2572 	/*
2573 	 * Do not steal pages from freelists belonging to other pageblocks
2574 	 * i.e. orders < pageblock_order. If there are no local zones free,
2575 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2576 	 */
2577 	if (alloc_flags & ALLOC_NOFRAGMENT)
2578 		min_order = pageblock_order;
2579 
2580 	/*
2581 	 * Find the largest available free page in the other list. This roughly
2582 	 * approximates finding the pageblock with the most free pages, which
2583 	 * would be too costly to do exactly.
2584 	 */
2585 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2586 				--current_order) {
2587 		area = &(zone->free_area[current_order]);
2588 		fallback_mt = find_suitable_fallback(area, current_order,
2589 				start_migratetype, false, &can_steal);
2590 		if (fallback_mt == -1)
2591 			continue;
2592 
2593 		/*
2594 		 * We cannot steal all free pages from the pageblock and the
2595 		 * requested migratetype is movable. In that case it's better to
2596 		 * steal and split the smallest available page instead of the
2597 		 * largest available page, because even if the next movable
2598 		 * allocation falls back into a different pageblock than this
2599 		 * one, it won't cause permanent fragmentation.
2600 		 */
2601 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2602 					&& current_order > order)
2603 			goto find_smallest;
2604 
2605 		goto do_steal;
2606 	}
2607 
2608 	return false;
2609 
2610 find_smallest:
2611 	for (current_order = order; current_order < MAX_ORDER;
2612 							current_order++) {
2613 		area = &(zone->free_area[current_order]);
2614 		fallback_mt = find_suitable_fallback(area, current_order,
2615 				start_migratetype, false, &can_steal);
2616 		if (fallback_mt != -1)
2617 			break;
2618 	}
2619 
2620 	/*
2621 	 * This should not happen - we already found a suitable fallback
2622 	 * when looking for the largest page.
2623 	 */
2624 	VM_BUG_ON(current_order == MAX_ORDER);
2625 
2626 do_steal:
2627 	page = get_page_from_free_area(area, fallback_mt);
2628 
2629 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2630 								can_steal);
2631 
2632 	trace_mm_page_alloc_extfrag(page, order, current_order,
2633 		start_migratetype, fallback_mt);
2634 
2635 	return true;
2636 
2637 }
2638 
2639 /*
2640  * Do the hard work of removing an element from the buddy allocator.
2641  * Call me with the zone->lock already held.
2642  */
2643 static __always_inline struct page *
2644 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2645 						unsigned int alloc_flags)
2646 {
2647 	struct page *page;
2648 
2649 retry:
2650 	page = __rmqueue_smallest(zone, order, migratetype);
2651 	if (unlikely(!page)) {
2652 		if (migratetype == MIGRATE_MOVABLE)
2653 			page = __rmqueue_cma_fallback(zone, order);
2654 
2655 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2656 								alloc_flags))
2657 			goto retry;
2658 	}
2659 
2660 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2661 	return page;
2662 }
2663 
2664 /*
2665  * Obtain a specified number of elements from the buddy allocator, all under
2666  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2667  * Returns the number of new pages which were placed at *list.
2668  */
2669 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2670 			unsigned long count, struct list_head *list,
2671 			int migratetype, unsigned int alloc_flags)
2672 {
2673 	int i, alloced = 0;
2674 
2675 	spin_lock(&zone->lock);
2676 	for (i = 0; i < count; ++i) {
2677 		struct page *page = __rmqueue(zone, order, migratetype,
2678 								alloc_flags);
2679 		if (unlikely(page == NULL))
2680 			break;
2681 
2682 		if (unlikely(check_pcp_refill(page)))
2683 			continue;
2684 
2685 		/*
2686 		 * Split buddy pages returned by expand() are received here in
2687 		 * physical page order. The page is added to the tail of
2688 		 * caller's list. From the callers perspective, the linked list
2689 		 * is ordered by page number under some conditions. This is
2690 		 * useful for IO devices that can forward direction from the
2691 		 * head, thus also in the physical page order. This is useful
2692 		 * for IO devices that can merge IO requests if the physical
2693 		 * pages are ordered properly.
2694 		 */
2695 		list_add_tail(&page->lru, list);
2696 		alloced++;
2697 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2698 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2699 					      -(1 << order));
2700 	}
2701 
2702 	/*
2703 	 * i pages were removed from the buddy list even if some leak due
2704 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2705 	 * on i. Do not confuse with 'alloced' which is the number of
2706 	 * pages added to the pcp list.
2707 	 */
2708 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2709 	spin_unlock(&zone->lock);
2710 	return alloced;
2711 }
2712 
2713 #ifdef CONFIG_NUMA
2714 /*
2715  * Called from the vmstat counter updater to drain pagesets of this
2716  * currently executing processor on remote nodes after they have
2717  * expired.
2718  *
2719  * Note that this function must be called with the thread pinned to
2720  * a single processor.
2721  */
2722 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2723 {
2724 	unsigned long flags;
2725 	int to_drain, batch;
2726 
2727 	local_irq_save(flags);
2728 	batch = READ_ONCE(pcp->batch);
2729 	to_drain = min(pcp->count, batch);
2730 	if (to_drain > 0)
2731 		free_pcppages_bulk(zone, to_drain, pcp);
2732 	local_irq_restore(flags);
2733 }
2734 #endif
2735 
2736 /*
2737  * Drain pcplists of the indicated processor and zone.
2738  *
2739  * The processor must either be the current processor and the
2740  * thread pinned to the current processor or a processor that
2741  * is not online.
2742  */
2743 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2744 {
2745 	unsigned long flags;
2746 	struct per_cpu_pageset *pset;
2747 	struct per_cpu_pages *pcp;
2748 
2749 	local_irq_save(flags);
2750 	pset = per_cpu_ptr(zone->pageset, cpu);
2751 
2752 	pcp = &pset->pcp;
2753 	if (pcp->count)
2754 		free_pcppages_bulk(zone, pcp->count, pcp);
2755 	local_irq_restore(flags);
2756 }
2757 
2758 /*
2759  * Drain pcplists of all zones on the indicated processor.
2760  *
2761  * The processor must either be the current processor and the
2762  * thread pinned to the current processor or a processor that
2763  * is not online.
2764  */
2765 static void drain_pages(unsigned int cpu)
2766 {
2767 	struct zone *zone;
2768 
2769 	for_each_populated_zone(zone) {
2770 		drain_pages_zone(cpu, zone);
2771 	}
2772 }
2773 
2774 /*
2775  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2776  *
2777  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2778  * the single zone's pages.
2779  */
2780 void drain_local_pages(struct zone *zone)
2781 {
2782 	int cpu = smp_processor_id();
2783 
2784 	if (zone)
2785 		drain_pages_zone(cpu, zone);
2786 	else
2787 		drain_pages(cpu);
2788 }
2789 
2790 static void drain_local_pages_wq(struct work_struct *work)
2791 {
2792 	struct pcpu_drain *drain;
2793 
2794 	drain = container_of(work, struct pcpu_drain, work);
2795 
2796 	/*
2797 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2798 	 * we can race with cpu offline when the WQ can move this from
2799 	 * a cpu pinned worker to an unbound one. We can operate on a different
2800 	 * cpu which is allright but we also have to make sure to not move to
2801 	 * a different one.
2802 	 */
2803 	preempt_disable();
2804 	drain_local_pages(drain->zone);
2805 	preempt_enable();
2806 }
2807 
2808 /*
2809  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2810  *
2811  * When zone parameter is non-NULL, spill just the single zone's pages.
2812  *
2813  * Note that this can be extremely slow as the draining happens in a workqueue.
2814  */
2815 void drain_all_pages(struct zone *zone)
2816 {
2817 	int cpu;
2818 
2819 	/*
2820 	 * Allocate in the BSS so we wont require allocation in
2821 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2822 	 */
2823 	static cpumask_t cpus_with_pcps;
2824 
2825 	/*
2826 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2827 	 * initialized.
2828 	 */
2829 	if (WARN_ON_ONCE(!mm_percpu_wq))
2830 		return;
2831 
2832 	/*
2833 	 * Do not drain if one is already in progress unless it's specific to
2834 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2835 	 * the drain to be complete when the call returns.
2836 	 */
2837 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2838 		if (!zone)
2839 			return;
2840 		mutex_lock(&pcpu_drain_mutex);
2841 	}
2842 
2843 	/*
2844 	 * We don't care about racing with CPU hotplug event
2845 	 * as offline notification will cause the notified
2846 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2847 	 * disables preemption as part of its processing
2848 	 */
2849 	for_each_online_cpu(cpu) {
2850 		struct per_cpu_pageset *pcp;
2851 		struct zone *z;
2852 		bool has_pcps = false;
2853 
2854 		if (zone) {
2855 			pcp = per_cpu_ptr(zone->pageset, cpu);
2856 			if (pcp->pcp.count)
2857 				has_pcps = true;
2858 		} else {
2859 			for_each_populated_zone(z) {
2860 				pcp = per_cpu_ptr(z->pageset, cpu);
2861 				if (pcp->pcp.count) {
2862 					has_pcps = true;
2863 					break;
2864 				}
2865 			}
2866 		}
2867 
2868 		if (has_pcps)
2869 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2870 		else
2871 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2872 	}
2873 
2874 	for_each_cpu(cpu, &cpus_with_pcps) {
2875 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2876 
2877 		drain->zone = zone;
2878 		INIT_WORK(&drain->work, drain_local_pages_wq);
2879 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
2880 	}
2881 	for_each_cpu(cpu, &cpus_with_pcps)
2882 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2883 
2884 	mutex_unlock(&pcpu_drain_mutex);
2885 }
2886 
2887 #ifdef CONFIG_HIBERNATION
2888 
2889 /*
2890  * Touch the watchdog for every WD_PAGE_COUNT pages.
2891  */
2892 #define WD_PAGE_COUNT	(128*1024)
2893 
2894 void mark_free_pages(struct zone *zone)
2895 {
2896 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2897 	unsigned long flags;
2898 	unsigned int order, t;
2899 	struct page *page;
2900 
2901 	if (zone_is_empty(zone))
2902 		return;
2903 
2904 	spin_lock_irqsave(&zone->lock, flags);
2905 
2906 	max_zone_pfn = zone_end_pfn(zone);
2907 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2908 		if (pfn_valid(pfn)) {
2909 			page = pfn_to_page(pfn);
2910 
2911 			if (!--page_count) {
2912 				touch_nmi_watchdog();
2913 				page_count = WD_PAGE_COUNT;
2914 			}
2915 
2916 			if (page_zone(page) != zone)
2917 				continue;
2918 
2919 			if (!swsusp_page_is_forbidden(page))
2920 				swsusp_unset_page_free(page);
2921 		}
2922 
2923 	for_each_migratetype_order(order, t) {
2924 		list_for_each_entry(page,
2925 				&zone->free_area[order].free_list[t], lru) {
2926 			unsigned long i;
2927 
2928 			pfn = page_to_pfn(page);
2929 			for (i = 0; i < (1UL << order); i++) {
2930 				if (!--page_count) {
2931 					touch_nmi_watchdog();
2932 					page_count = WD_PAGE_COUNT;
2933 				}
2934 				swsusp_set_page_free(pfn_to_page(pfn + i));
2935 			}
2936 		}
2937 	}
2938 	spin_unlock_irqrestore(&zone->lock, flags);
2939 }
2940 #endif /* CONFIG_PM */
2941 
2942 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2943 {
2944 	int migratetype;
2945 
2946 	if (!free_pcp_prepare(page))
2947 		return false;
2948 
2949 	migratetype = get_pfnblock_migratetype(page, pfn);
2950 	set_pcppage_migratetype(page, migratetype);
2951 	return true;
2952 }
2953 
2954 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2955 {
2956 	struct zone *zone = page_zone(page);
2957 	struct per_cpu_pages *pcp;
2958 	int migratetype;
2959 
2960 	migratetype = get_pcppage_migratetype(page);
2961 	__count_vm_event(PGFREE);
2962 
2963 	/*
2964 	 * We only track unmovable, reclaimable and movable on pcp lists.
2965 	 * Free ISOLATE pages back to the allocator because they are being
2966 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2967 	 * areas back if necessary. Otherwise, we may have to free
2968 	 * excessively into the page allocator
2969 	 */
2970 	if (migratetype >= MIGRATE_PCPTYPES) {
2971 		if (unlikely(is_migrate_isolate(migratetype))) {
2972 			free_one_page(zone, page, pfn, 0, migratetype);
2973 			return;
2974 		}
2975 		migratetype = MIGRATE_MOVABLE;
2976 	}
2977 
2978 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2979 	list_add(&page->lru, &pcp->lists[migratetype]);
2980 	pcp->count++;
2981 	if (pcp->count >= pcp->high) {
2982 		unsigned long batch = READ_ONCE(pcp->batch);
2983 		free_pcppages_bulk(zone, batch, pcp);
2984 	}
2985 }
2986 
2987 /*
2988  * Free a 0-order page
2989  */
2990 void free_unref_page(struct page *page)
2991 {
2992 	unsigned long flags;
2993 	unsigned long pfn = page_to_pfn(page);
2994 
2995 	if (!free_unref_page_prepare(page, pfn))
2996 		return;
2997 
2998 	local_irq_save(flags);
2999 	free_unref_page_commit(page, pfn);
3000 	local_irq_restore(flags);
3001 }
3002 
3003 /*
3004  * Free a list of 0-order pages
3005  */
3006 void free_unref_page_list(struct list_head *list)
3007 {
3008 	struct page *page, *next;
3009 	unsigned long flags, pfn;
3010 	int batch_count = 0;
3011 
3012 	/* Prepare pages for freeing */
3013 	list_for_each_entry_safe(page, next, list, lru) {
3014 		pfn = page_to_pfn(page);
3015 		if (!free_unref_page_prepare(page, pfn))
3016 			list_del(&page->lru);
3017 		set_page_private(page, pfn);
3018 	}
3019 
3020 	local_irq_save(flags);
3021 	list_for_each_entry_safe(page, next, list, lru) {
3022 		unsigned long pfn = page_private(page);
3023 
3024 		set_page_private(page, 0);
3025 		trace_mm_page_free_batched(page);
3026 		free_unref_page_commit(page, pfn);
3027 
3028 		/*
3029 		 * Guard against excessive IRQ disabled times when we get
3030 		 * a large list of pages to free.
3031 		 */
3032 		if (++batch_count == SWAP_CLUSTER_MAX) {
3033 			local_irq_restore(flags);
3034 			batch_count = 0;
3035 			local_irq_save(flags);
3036 		}
3037 	}
3038 	local_irq_restore(flags);
3039 }
3040 
3041 /*
3042  * split_page takes a non-compound higher-order page, and splits it into
3043  * n (1<<order) sub-pages: page[0..n]
3044  * Each sub-page must be freed individually.
3045  *
3046  * Note: this is probably too low level an operation for use in drivers.
3047  * Please consult with lkml before using this in your driver.
3048  */
3049 void split_page(struct page *page, unsigned int order)
3050 {
3051 	int i;
3052 
3053 	VM_BUG_ON_PAGE(PageCompound(page), page);
3054 	VM_BUG_ON_PAGE(!page_count(page), page);
3055 
3056 	for (i = 1; i < (1 << order); i++)
3057 		set_page_refcounted(page + i);
3058 	split_page_owner(page, order);
3059 }
3060 EXPORT_SYMBOL_GPL(split_page);
3061 
3062 int __isolate_free_page(struct page *page, unsigned int order)
3063 {
3064 	struct free_area *area = &page_zone(page)->free_area[order];
3065 	unsigned long watermark;
3066 	struct zone *zone;
3067 	int mt;
3068 
3069 	BUG_ON(!PageBuddy(page));
3070 
3071 	zone = page_zone(page);
3072 	mt = get_pageblock_migratetype(page);
3073 
3074 	if (!is_migrate_isolate(mt)) {
3075 		/*
3076 		 * Obey watermarks as if the page was being allocated. We can
3077 		 * emulate a high-order watermark check with a raised order-0
3078 		 * watermark, because we already know our high-order page
3079 		 * exists.
3080 		 */
3081 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3082 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3083 			return 0;
3084 
3085 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3086 	}
3087 
3088 	/* Remove page from free list */
3089 
3090 	del_page_from_free_area(page, area);
3091 
3092 	/*
3093 	 * Set the pageblock if the isolated page is at least half of a
3094 	 * pageblock
3095 	 */
3096 	if (order >= pageblock_order - 1) {
3097 		struct page *endpage = page + (1 << order) - 1;
3098 		for (; page < endpage; page += pageblock_nr_pages) {
3099 			int mt = get_pageblock_migratetype(page);
3100 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3101 			    && !is_migrate_highatomic(mt))
3102 				set_pageblock_migratetype(page,
3103 							  MIGRATE_MOVABLE);
3104 		}
3105 	}
3106 
3107 
3108 	return 1UL << order;
3109 }
3110 
3111 /*
3112  * Update NUMA hit/miss statistics
3113  *
3114  * Must be called with interrupts disabled.
3115  */
3116 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3117 {
3118 #ifdef CONFIG_NUMA
3119 	enum numa_stat_item local_stat = NUMA_LOCAL;
3120 
3121 	/* skip numa counters update if numa stats is disabled */
3122 	if (!static_branch_likely(&vm_numa_stat_key))
3123 		return;
3124 
3125 	if (zone_to_nid(z) != numa_node_id())
3126 		local_stat = NUMA_OTHER;
3127 
3128 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3129 		__inc_numa_state(z, NUMA_HIT);
3130 	else {
3131 		__inc_numa_state(z, NUMA_MISS);
3132 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3133 	}
3134 	__inc_numa_state(z, local_stat);
3135 #endif
3136 }
3137 
3138 /* Remove page from the per-cpu list, caller must protect the list */
3139 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3140 			unsigned int alloc_flags,
3141 			struct per_cpu_pages *pcp,
3142 			struct list_head *list)
3143 {
3144 	struct page *page;
3145 
3146 	do {
3147 		if (list_empty(list)) {
3148 			pcp->count += rmqueue_bulk(zone, 0,
3149 					pcp->batch, list,
3150 					migratetype, alloc_flags);
3151 			if (unlikely(list_empty(list)))
3152 				return NULL;
3153 		}
3154 
3155 		page = list_first_entry(list, struct page, lru);
3156 		list_del(&page->lru);
3157 		pcp->count--;
3158 	} while (check_new_pcp(page));
3159 
3160 	return page;
3161 }
3162 
3163 /* Lock and remove page from the per-cpu list */
3164 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3165 			struct zone *zone, gfp_t gfp_flags,
3166 			int migratetype, unsigned int alloc_flags)
3167 {
3168 	struct per_cpu_pages *pcp;
3169 	struct list_head *list;
3170 	struct page *page;
3171 	unsigned long flags;
3172 
3173 	local_irq_save(flags);
3174 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3175 	list = &pcp->lists[migratetype];
3176 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3177 	if (page) {
3178 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3179 		zone_statistics(preferred_zone, zone);
3180 	}
3181 	local_irq_restore(flags);
3182 	return page;
3183 }
3184 
3185 /*
3186  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3187  */
3188 static inline
3189 struct page *rmqueue(struct zone *preferred_zone,
3190 			struct zone *zone, unsigned int order,
3191 			gfp_t gfp_flags, unsigned int alloc_flags,
3192 			int migratetype)
3193 {
3194 	unsigned long flags;
3195 	struct page *page;
3196 
3197 	if (likely(order == 0)) {
3198 		page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3199 					migratetype, alloc_flags);
3200 		goto out;
3201 	}
3202 
3203 	/*
3204 	 * We most definitely don't want callers attempting to
3205 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3206 	 */
3207 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3208 	spin_lock_irqsave(&zone->lock, flags);
3209 
3210 	do {
3211 		page = NULL;
3212 		if (alloc_flags & ALLOC_HARDER) {
3213 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3214 			if (page)
3215 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3216 		}
3217 		if (!page)
3218 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3219 	} while (page && check_new_pages(page, order));
3220 	spin_unlock(&zone->lock);
3221 	if (!page)
3222 		goto failed;
3223 	__mod_zone_freepage_state(zone, -(1 << order),
3224 				  get_pcppage_migratetype(page));
3225 
3226 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3227 	zone_statistics(preferred_zone, zone);
3228 	local_irq_restore(flags);
3229 
3230 out:
3231 	/* Separate test+clear to avoid unnecessary atomics */
3232 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3233 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3234 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3235 	}
3236 
3237 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3238 	return page;
3239 
3240 failed:
3241 	local_irq_restore(flags);
3242 	return NULL;
3243 }
3244 
3245 #ifdef CONFIG_FAIL_PAGE_ALLOC
3246 
3247 static struct {
3248 	struct fault_attr attr;
3249 
3250 	bool ignore_gfp_highmem;
3251 	bool ignore_gfp_reclaim;
3252 	u32 min_order;
3253 } fail_page_alloc = {
3254 	.attr = FAULT_ATTR_INITIALIZER,
3255 	.ignore_gfp_reclaim = true,
3256 	.ignore_gfp_highmem = true,
3257 	.min_order = 1,
3258 };
3259 
3260 static int __init setup_fail_page_alloc(char *str)
3261 {
3262 	return setup_fault_attr(&fail_page_alloc.attr, str);
3263 }
3264 __setup("fail_page_alloc=", setup_fail_page_alloc);
3265 
3266 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3267 {
3268 	if (order < fail_page_alloc.min_order)
3269 		return false;
3270 	if (gfp_mask & __GFP_NOFAIL)
3271 		return false;
3272 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3273 		return false;
3274 	if (fail_page_alloc.ignore_gfp_reclaim &&
3275 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3276 		return false;
3277 
3278 	return should_fail(&fail_page_alloc.attr, 1 << order);
3279 }
3280 
3281 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3282 
3283 static int __init fail_page_alloc_debugfs(void)
3284 {
3285 	umode_t mode = S_IFREG | 0600;
3286 	struct dentry *dir;
3287 
3288 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3289 					&fail_page_alloc.attr);
3290 
3291 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3292 			    &fail_page_alloc.ignore_gfp_reclaim);
3293 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3294 			    &fail_page_alloc.ignore_gfp_highmem);
3295 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3296 
3297 	return 0;
3298 }
3299 
3300 late_initcall(fail_page_alloc_debugfs);
3301 
3302 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3303 
3304 #else /* CONFIG_FAIL_PAGE_ALLOC */
3305 
3306 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3307 {
3308 	return false;
3309 }
3310 
3311 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3312 
3313 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3314 {
3315 	return __should_fail_alloc_page(gfp_mask, order);
3316 }
3317 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3318 
3319 /*
3320  * Return true if free base pages are above 'mark'. For high-order checks it
3321  * will return true of the order-0 watermark is reached and there is at least
3322  * one free page of a suitable size. Checking now avoids taking the zone lock
3323  * to check in the allocation paths if no pages are free.
3324  */
3325 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3326 			 int classzone_idx, unsigned int alloc_flags,
3327 			 long free_pages)
3328 {
3329 	long min = mark;
3330 	int o;
3331 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3332 
3333 	/* free_pages may go negative - that's OK */
3334 	free_pages -= (1 << order) - 1;
3335 
3336 	if (alloc_flags & ALLOC_HIGH)
3337 		min -= min / 2;
3338 
3339 	/*
3340 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3341 	 * the high-atomic reserves. This will over-estimate the size of the
3342 	 * atomic reserve but it avoids a search.
3343 	 */
3344 	if (likely(!alloc_harder)) {
3345 		free_pages -= z->nr_reserved_highatomic;
3346 	} else {
3347 		/*
3348 		 * OOM victims can try even harder than normal ALLOC_HARDER
3349 		 * users on the grounds that it's definitely going to be in
3350 		 * the exit path shortly and free memory. Any allocation it
3351 		 * makes during the free path will be small and short-lived.
3352 		 */
3353 		if (alloc_flags & ALLOC_OOM)
3354 			min -= min / 2;
3355 		else
3356 			min -= min / 4;
3357 	}
3358 
3359 
3360 #ifdef CONFIG_CMA
3361 	/* If allocation can't use CMA areas don't use free CMA pages */
3362 	if (!(alloc_flags & ALLOC_CMA))
3363 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3364 #endif
3365 
3366 	/*
3367 	 * Check watermarks for an order-0 allocation request. If these
3368 	 * are not met, then a high-order request also cannot go ahead
3369 	 * even if a suitable page happened to be free.
3370 	 */
3371 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3372 		return false;
3373 
3374 	/* If this is an order-0 request then the watermark is fine */
3375 	if (!order)
3376 		return true;
3377 
3378 	/* For a high-order request, check at least one suitable page is free */
3379 	for (o = order; o < MAX_ORDER; o++) {
3380 		struct free_area *area = &z->free_area[o];
3381 		int mt;
3382 
3383 		if (!area->nr_free)
3384 			continue;
3385 
3386 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3387 			if (!free_area_empty(area, mt))
3388 				return true;
3389 		}
3390 
3391 #ifdef CONFIG_CMA
3392 		if ((alloc_flags & ALLOC_CMA) &&
3393 		    !free_area_empty(area, MIGRATE_CMA)) {
3394 			return true;
3395 		}
3396 #endif
3397 		if (alloc_harder &&
3398 			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3399 			return true;
3400 	}
3401 	return false;
3402 }
3403 
3404 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3405 		      int classzone_idx, unsigned int alloc_flags)
3406 {
3407 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3408 					zone_page_state(z, NR_FREE_PAGES));
3409 }
3410 
3411 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3412 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3413 {
3414 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3415 	long cma_pages = 0;
3416 
3417 #ifdef CONFIG_CMA
3418 	/* If allocation can't use CMA areas don't use free CMA pages */
3419 	if (!(alloc_flags & ALLOC_CMA))
3420 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3421 #endif
3422 
3423 	/*
3424 	 * Fast check for order-0 only. If this fails then the reserves
3425 	 * need to be calculated. There is a corner case where the check
3426 	 * passes but only the high-order atomic reserve are free. If
3427 	 * the caller is !atomic then it'll uselessly search the free
3428 	 * list. That corner case is then slower but it is harmless.
3429 	 */
3430 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3431 		return true;
3432 
3433 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3434 					free_pages);
3435 }
3436 
3437 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3438 			unsigned long mark, int classzone_idx)
3439 {
3440 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3441 
3442 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3443 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3444 
3445 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3446 								free_pages);
3447 }
3448 
3449 #ifdef CONFIG_NUMA
3450 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3451 {
3452 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3453 				RECLAIM_DISTANCE;
3454 }
3455 #else	/* CONFIG_NUMA */
3456 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3457 {
3458 	return true;
3459 }
3460 #endif	/* CONFIG_NUMA */
3461 
3462 /*
3463  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3464  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3465  * premature use of a lower zone may cause lowmem pressure problems that
3466  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3467  * probably too small. It only makes sense to spread allocations to avoid
3468  * fragmentation between the Normal and DMA32 zones.
3469  */
3470 static inline unsigned int
3471 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3472 {
3473 	unsigned int alloc_flags = 0;
3474 
3475 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3476 		alloc_flags |= ALLOC_KSWAPD;
3477 
3478 #ifdef CONFIG_ZONE_DMA32
3479 	if (!zone)
3480 		return alloc_flags;
3481 
3482 	if (zone_idx(zone) != ZONE_NORMAL)
3483 		return alloc_flags;
3484 
3485 	/*
3486 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3487 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3488 	 * on UMA that if Normal is populated then so is DMA32.
3489 	 */
3490 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3491 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3492 		return alloc_flags;
3493 
3494 	alloc_flags |= ALLOC_NOFRAGMENT;
3495 #endif /* CONFIG_ZONE_DMA32 */
3496 	return alloc_flags;
3497 }
3498 
3499 /*
3500  * get_page_from_freelist goes through the zonelist trying to allocate
3501  * a page.
3502  */
3503 static struct page *
3504 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3505 						const struct alloc_context *ac)
3506 {
3507 	struct zoneref *z;
3508 	struct zone *zone;
3509 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3510 	bool no_fallback;
3511 
3512 retry:
3513 	/*
3514 	 * Scan zonelist, looking for a zone with enough free.
3515 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3516 	 */
3517 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3518 	z = ac->preferred_zoneref;
3519 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3520 								ac->nodemask) {
3521 		struct page *page;
3522 		unsigned long mark;
3523 
3524 		if (cpusets_enabled() &&
3525 			(alloc_flags & ALLOC_CPUSET) &&
3526 			!__cpuset_zone_allowed(zone, gfp_mask))
3527 				continue;
3528 		/*
3529 		 * When allocating a page cache page for writing, we
3530 		 * want to get it from a node that is within its dirty
3531 		 * limit, such that no single node holds more than its
3532 		 * proportional share of globally allowed dirty pages.
3533 		 * The dirty limits take into account the node's
3534 		 * lowmem reserves and high watermark so that kswapd
3535 		 * should be able to balance it without having to
3536 		 * write pages from its LRU list.
3537 		 *
3538 		 * XXX: For now, allow allocations to potentially
3539 		 * exceed the per-node dirty limit in the slowpath
3540 		 * (spread_dirty_pages unset) before going into reclaim,
3541 		 * which is important when on a NUMA setup the allowed
3542 		 * nodes are together not big enough to reach the
3543 		 * global limit.  The proper fix for these situations
3544 		 * will require awareness of nodes in the
3545 		 * dirty-throttling and the flusher threads.
3546 		 */
3547 		if (ac->spread_dirty_pages) {
3548 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3549 				continue;
3550 
3551 			if (!node_dirty_ok(zone->zone_pgdat)) {
3552 				last_pgdat_dirty_limit = zone->zone_pgdat;
3553 				continue;
3554 			}
3555 		}
3556 
3557 		if (no_fallback && nr_online_nodes > 1 &&
3558 		    zone != ac->preferred_zoneref->zone) {
3559 			int local_nid;
3560 
3561 			/*
3562 			 * If moving to a remote node, retry but allow
3563 			 * fragmenting fallbacks. Locality is more important
3564 			 * than fragmentation avoidance.
3565 			 */
3566 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3567 			if (zone_to_nid(zone) != local_nid) {
3568 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3569 				goto retry;
3570 			}
3571 		}
3572 
3573 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3574 		if (!zone_watermark_fast(zone, order, mark,
3575 				       ac_classzone_idx(ac), alloc_flags)) {
3576 			int ret;
3577 
3578 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3579 			/*
3580 			 * Watermark failed for this zone, but see if we can
3581 			 * grow this zone if it contains deferred pages.
3582 			 */
3583 			if (static_branch_unlikely(&deferred_pages)) {
3584 				if (_deferred_grow_zone(zone, order))
3585 					goto try_this_zone;
3586 			}
3587 #endif
3588 			/* Checked here to keep the fast path fast */
3589 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3590 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3591 				goto try_this_zone;
3592 
3593 			if (node_reclaim_mode == 0 ||
3594 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3595 				continue;
3596 
3597 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3598 			switch (ret) {
3599 			case NODE_RECLAIM_NOSCAN:
3600 				/* did not scan */
3601 				continue;
3602 			case NODE_RECLAIM_FULL:
3603 				/* scanned but unreclaimable */
3604 				continue;
3605 			default:
3606 				/* did we reclaim enough */
3607 				if (zone_watermark_ok(zone, order, mark,
3608 						ac_classzone_idx(ac), alloc_flags))
3609 					goto try_this_zone;
3610 
3611 				continue;
3612 			}
3613 		}
3614 
3615 try_this_zone:
3616 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3617 				gfp_mask, alloc_flags, ac->migratetype);
3618 		if (page) {
3619 			prep_new_page(page, order, gfp_mask, alloc_flags);
3620 
3621 			/*
3622 			 * If this is a high-order atomic allocation then check
3623 			 * if the pageblock should be reserved for the future
3624 			 */
3625 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3626 				reserve_highatomic_pageblock(page, zone, order);
3627 
3628 			return page;
3629 		} else {
3630 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3631 			/* Try again if zone has deferred pages */
3632 			if (static_branch_unlikely(&deferred_pages)) {
3633 				if (_deferred_grow_zone(zone, order))
3634 					goto try_this_zone;
3635 			}
3636 #endif
3637 		}
3638 	}
3639 
3640 	/*
3641 	 * It's possible on a UMA machine to get through all zones that are
3642 	 * fragmented. If avoiding fragmentation, reset and try again.
3643 	 */
3644 	if (no_fallback) {
3645 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3646 		goto retry;
3647 	}
3648 
3649 	return NULL;
3650 }
3651 
3652 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3653 {
3654 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3655 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3656 
3657 	if (!__ratelimit(&show_mem_rs))
3658 		return;
3659 
3660 	/*
3661 	 * This documents exceptions given to allocations in certain
3662 	 * contexts that are allowed to allocate outside current's set
3663 	 * of allowed nodes.
3664 	 */
3665 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3666 		if (tsk_is_oom_victim(current) ||
3667 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3668 			filter &= ~SHOW_MEM_FILTER_NODES;
3669 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3670 		filter &= ~SHOW_MEM_FILTER_NODES;
3671 
3672 	show_mem(filter, nodemask);
3673 }
3674 
3675 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3676 {
3677 	struct va_format vaf;
3678 	va_list args;
3679 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3680 				      DEFAULT_RATELIMIT_BURST);
3681 
3682 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3683 		return;
3684 
3685 	va_start(args, fmt);
3686 	vaf.fmt = fmt;
3687 	vaf.va = &args;
3688 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3689 			current->comm, &vaf, gfp_mask, &gfp_mask,
3690 			nodemask_pr_args(nodemask));
3691 	va_end(args);
3692 
3693 	cpuset_print_current_mems_allowed();
3694 	pr_cont("\n");
3695 	dump_stack();
3696 	warn_alloc_show_mem(gfp_mask, nodemask);
3697 }
3698 
3699 static inline struct page *
3700 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3701 			      unsigned int alloc_flags,
3702 			      const struct alloc_context *ac)
3703 {
3704 	struct page *page;
3705 
3706 	page = get_page_from_freelist(gfp_mask, order,
3707 			alloc_flags|ALLOC_CPUSET, ac);
3708 	/*
3709 	 * fallback to ignore cpuset restriction if our nodes
3710 	 * are depleted
3711 	 */
3712 	if (!page)
3713 		page = get_page_from_freelist(gfp_mask, order,
3714 				alloc_flags, ac);
3715 
3716 	return page;
3717 }
3718 
3719 static inline struct page *
3720 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3721 	const struct alloc_context *ac, unsigned long *did_some_progress)
3722 {
3723 	struct oom_control oc = {
3724 		.zonelist = ac->zonelist,
3725 		.nodemask = ac->nodemask,
3726 		.memcg = NULL,
3727 		.gfp_mask = gfp_mask,
3728 		.order = order,
3729 	};
3730 	struct page *page;
3731 
3732 	*did_some_progress = 0;
3733 
3734 	/*
3735 	 * Acquire the oom lock.  If that fails, somebody else is
3736 	 * making progress for us.
3737 	 */
3738 	if (!mutex_trylock(&oom_lock)) {
3739 		*did_some_progress = 1;
3740 		schedule_timeout_uninterruptible(1);
3741 		return NULL;
3742 	}
3743 
3744 	/*
3745 	 * Go through the zonelist yet one more time, keep very high watermark
3746 	 * here, this is only to catch a parallel oom killing, we must fail if
3747 	 * we're still under heavy pressure. But make sure that this reclaim
3748 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3749 	 * allocation which will never fail due to oom_lock already held.
3750 	 */
3751 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3752 				      ~__GFP_DIRECT_RECLAIM, order,
3753 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3754 	if (page)
3755 		goto out;
3756 
3757 	/* Coredumps can quickly deplete all memory reserves */
3758 	if (current->flags & PF_DUMPCORE)
3759 		goto out;
3760 	/* The OOM killer will not help higher order allocs */
3761 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3762 		goto out;
3763 	/*
3764 	 * We have already exhausted all our reclaim opportunities without any
3765 	 * success so it is time to admit defeat. We will skip the OOM killer
3766 	 * because it is very likely that the caller has a more reasonable
3767 	 * fallback than shooting a random task.
3768 	 */
3769 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3770 		goto out;
3771 	/* The OOM killer does not needlessly kill tasks for lowmem */
3772 	if (ac->high_zoneidx < ZONE_NORMAL)
3773 		goto out;
3774 	if (pm_suspended_storage())
3775 		goto out;
3776 	/*
3777 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3778 	 * other request to make a forward progress.
3779 	 * We are in an unfortunate situation where out_of_memory cannot
3780 	 * do much for this context but let's try it to at least get
3781 	 * access to memory reserved if the current task is killed (see
3782 	 * out_of_memory). Once filesystems are ready to handle allocation
3783 	 * failures more gracefully we should just bail out here.
3784 	 */
3785 
3786 	/* The OOM killer may not free memory on a specific node */
3787 	if (gfp_mask & __GFP_THISNODE)
3788 		goto out;
3789 
3790 	/* Exhausted what can be done so it's blame time */
3791 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3792 		*did_some_progress = 1;
3793 
3794 		/*
3795 		 * Help non-failing allocations by giving them access to memory
3796 		 * reserves
3797 		 */
3798 		if (gfp_mask & __GFP_NOFAIL)
3799 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3800 					ALLOC_NO_WATERMARKS, ac);
3801 	}
3802 out:
3803 	mutex_unlock(&oom_lock);
3804 	return page;
3805 }
3806 
3807 /*
3808  * Maximum number of compaction retries wit a progress before OOM
3809  * killer is consider as the only way to move forward.
3810  */
3811 #define MAX_COMPACT_RETRIES 16
3812 
3813 #ifdef CONFIG_COMPACTION
3814 /* Try memory compaction for high-order allocations before reclaim */
3815 static struct page *
3816 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3817 		unsigned int alloc_flags, const struct alloc_context *ac,
3818 		enum compact_priority prio, enum compact_result *compact_result)
3819 {
3820 	struct page *page = NULL;
3821 	unsigned long pflags;
3822 	unsigned int noreclaim_flag;
3823 
3824 	if (!order)
3825 		return NULL;
3826 
3827 	psi_memstall_enter(&pflags);
3828 	noreclaim_flag = memalloc_noreclaim_save();
3829 
3830 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3831 								prio, &page);
3832 
3833 	memalloc_noreclaim_restore(noreclaim_flag);
3834 	psi_memstall_leave(&pflags);
3835 
3836 	/*
3837 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3838 	 * count a compaction stall
3839 	 */
3840 	count_vm_event(COMPACTSTALL);
3841 
3842 	/* Prep a captured page if available */
3843 	if (page)
3844 		prep_new_page(page, order, gfp_mask, alloc_flags);
3845 
3846 	/* Try get a page from the freelist if available */
3847 	if (!page)
3848 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3849 
3850 	if (page) {
3851 		struct zone *zone = page_zone(page);
3852 
3853 		zone->compact_blockskip_flush = false;
3854 		compaction_defer_reset(zone, order, true);
3855 		count_vm_event(COMPACTSUCCESS);
3856 		return page;
3857 	}
3858 
3859 	/*
3860 	 * It's bad if compaction run occurs and fails. The most likely reason
3861 	 * is that pages exist, but not enough to satisfy watermarks.
3862 	 */
3863 	count_vm_event(COMPACTFAIL);
3864 
3865 	cond_resched();
3866 
3867 	return NULL;
3868 }
3869 
3870 static inline bool
3871 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3872 		     enum compact_result compact_result,
3873 		     enum compact_priority *compact_priority,
3874 		     int *compaction_retries)
3875 {
3876 	int max_retries = MAX_COMPACT_RETRIES;
3877 	int min_priority;
3878 	bool ret = false;
3879 	int retries = *compaction_retries;
3880 	enum compact_priority priority = *compact_priority;
3881 
3882 	if (!order)
3883 		return false;
3884 
3885 	if (compaction_made_progress(compact_result))
3886 		(*compaction_retries)++;
3887 
3888 	/*
3889 	 * compaction considers all the zone as desperately out of memory
3890 	 * so it doesn't really make much sense to retry except when the
3891 	 * failure could be caused by insufficient priority
3892 	 */
3893 	if (compaction_failed(compact_result))
3894 		goto check_priority;
3895 
3896 	/*
3897 	 * make sure the compaction wasn't deferred or didn't bail out early
3898 	 * due to locks contention before we declare that we should give up.
3899 	 * But do not retry if the given zonelist is not suitable for
3900 	 * compaction.
3901 	 */
3902 	if (compaction_withdrawn(compact_result)) {
3903 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3904 		goto out;
3905 	}
3906 
3907 	/*
3908 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3909 	 * costly ones because they are de facto nofail and invoke OOM
3910 	 * killer to move on while costly can fail and users are ready
3911 	 * to cope with that. 1/4 retries is rather arbitrary but we
3912 	 * would need much more detailed feedback from compaction to
3913 	 * make a better decision.
3914 	 */
3915 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3916 		max_retries /= 4;
3917 	if (*compaction_retries <= max_retries) {
3918 		ret = true;
3919 		goto out;
3920 	}
3921 
3922 	/*
3923 	 * Make sure there are attempts at the highest priority if we exhausted
3924 	 * all retries or failed at the lower priorities.
3925 	 */
3926 check_priority:
3927 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3928 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3929 
3930 	if (*compact_priority > min_priority) {
3931 		(*compact_priority)--;
3932 		*compaction_retries = 0;
3933 		ret = true;
3934 	}
3935 out:
3936 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3937 	return ret;
3938 }
3939 #else
3940 static inline struct page *
3941 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3942 		unsigned int alloc_flags, const struct alloc_context *ac,
3943 		enum compact_priority prio, enum compact_result *compact_result)
3944 {
3945 	*compact_result = COMPACT_SKIPPED;
3946 	return NULL;
3947 }
3948 
3949 static inline bool
3950 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3951 		     enum compact_result compact_result,
3952 		     enum compact_priority *compact_priority,
3953 		     int *compaction_retries)
3954 {
3955 	struct zone *zone;
3956 	struct zoneref *z;
3957 
3958 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3959 		return false;
3960 
3961 	/*
3962 	 * There are setups with compaction disabled which would prefer to loop
3963 	 * inside the allocator rather than hit the oom killer prematurely.
3964 	 * Let's give them a good hope and keep retrying while the order-0
3965 	 * watermarks are OK.
3966 	 */
3967 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3968 					ac->nodemask) {
3969 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3970 					ac_classzone_idx(ac), alloc_flags))
3971 			return true;
3972 	}
3973 	return false;
3974 }
3975 #endif /* CONFIG_COMPACTION */
3976 
3977 #ifdef CONFIG_LOCKDEP
3978 static struct lockdep_map __fs_reclaim_map =
3979 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3980 
3981 static bool __need_fs_reclaim(gfp_t gfp_mask)
3982 {
3983 	gfp_mask = current_gfp_context(gfp_mask);
3984 
3985 	/* no reclaim without waiting on it */
3986 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3987 		return false;
3988 
3989 	/* this guy won't enter reclaim */
3990 	if (current->flags & PF_MEMALLOC)
3991 		return false;
3992 
3993 	/* We're only interested __GFP_FS allocations for now */
3994 	if (!(gfp_mask & __GFP_FS))
3995 		return false;
3996 
3997 	if (gfp_mask & __GFP_NOLOCKDEP)
3998 		return false;
3999 
4000 	return true;
4001 }
4002 
4003 void __fs_reclaim_acquire(void)
4004 {
4005 	lock_map_acquire(&__fs_reclaim_map);
4006 }
4007 
4008 void __fs_reclaim_release(void)
4009 {
4010 	lock_map_release(&__fs_reclaim_map);
4011 }
4012 
4013 void fs_reclaim_acquire(gfp_t gfp_mask)
4014 {
4015 	if (__need_fs_reclaim(gfp_mask))
4016 		__fs_reclaim_acquire();
4017 }
4018 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4019 
4020 void fs_reclaim_release(gfp_t gfp_mask)
4021 {
4022 	if (__need_fs_reclaim(gfp_mask))
4023 		__fs_reclaim_release();
4024 }
4025 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4026 #endif
4027 
4028 /* Perform direct synchronous page reclaim */
4029 static int
4030 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4031 					const struct alloc_context *ac)
4032 {
4033 	struct reclaim_state reclaim_state;
4034 	int progress;
4035 	unsigned int noreclaim_flag;
4036 	unsigned long pflags;
4037 
4038 	cond_resched();
4039 
4040 	/* We now go into synchronous reclaim */
4041 	cpuset_memory_pressure_bump();
4042 	psi_memstall_enter(&pflags);
4043 	fs_reclaim_acquire(gfp_mask);
4044 	noreclaim_flag = memalloc_noreclaim_save();
4045 	reclaim_state.reclaimed_slab = 0;
4046 	current->reclaim_state = &reclaim_state;
4047 
4048 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4049 								ac->nodemask);
4050 
4051 	current->reclaim_state = NULL;
4052 	memalloc_noreclaim_restore(noreclaim_flag);
4053 	fs_reclaim_release(gfp_mask);
4054 	psi_memstall_leave(&pflags);
4055 
4056 	cond_resched();
4057 
4058 	return progress;
4059 }
4060 
4061 /* The really slow allocator path where we enter direct reclaim */
4062 static inline struct page *
4063 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4064 		unsigned int alloc_flags, const struct alloc_context *ac,
4065 		unsigned long *did_some_progress)
4066 {
4067 	struct page *page = NULL;
4068 	bool drained = false;
4069 
4070 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4071 	if (unlikely(!(*did_some_progress)))
4072 		return NULL;
4073 
4074 retry:
4075 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4076 
4077 	/*
4078 	 * If an allocation failed after direct reclaim, it could be because
4079 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4080 	 * Shrink them them and try again
4081 	 */
4082 	if (!page && !drained) {
4083 		unreserve_highatomic_pageblock(ac, false);
4084 		drain_all_pages(NULL);
4085 		drained = true;
4086 		goto retry;
4087 	}
4088 
4089 	return page;
4090 }
4091 
4092 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4093 			     const struct alloc_context *ac)
4094 {
4095 	struct zoneref *z;
4096 	struct zone *zone;
4097 	pg_data_t *last_pgdat = NULL;
4098 	enum zone_type high_zoneidx = ac->high_zoneidx;
4099 
4100 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4101 					ac->nodemask) {
4102 		if (last_pgdat != zone->zone_pgdat)
4103 			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4104 		last_pgdat = zone->zone_pgdat;
4105 	}
4106 }
4107 
4108 static inline unsigned int
4109 gfp_to_alloc_flags(gfp_t gfp_mask)
4110 {
4111 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4112 
4113 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4114 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4115 
4116 	/*
4117 	 * The caller may dip into page reserves a bit more if the caller
4118 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4119 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4120 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4121 	 */
4122 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4123 
4124 	if (gfp_mask & __GFP_ATOMIC) {
4125 		/*
4126 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4127 		 * if it can't schedule.
4128 		 */
4129 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4130 			alloc_flags |= ALLOC_HARDER;
4131 		/*
4132 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4133 		 * comment for __cpuset_node_allowed().
4134 		 */
4135 		alloc_flags &= ~ALLOC_CPUSET;
4136 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4137 		alloc_flags |= ALLOC_HARDER;
4138 
4139 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4140 		alloc_flags |= ALLOC_KSWAPD;
4141 
4142 #ifdef CONFIG_CMA
4143 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4144 		alloc_flags |= ALLOC_CMA;
4145 #endif
4146 	return alloc_flags;
4147 }
4148 
4149 static bool oom_reserves_allowed(struct task_struct *tsk)
4150 {
4151 	if (!tsk_is_oom_victim(tsk))
4152 		return false;
4153 
4154 	/*
4155 	 * !MMU doesn't have oom reaper so give access to memory reserves
4156 	 * only to the thread with TIF_MEMDIE set
4157 	 */
4158 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4159 		return false;
4160 
4161 	return true;
4162 }
4163 
4164 /*
4165  * Distinguish requests which really need access to full memory
4166  * reserves from oom victims which can live with a portion of it
4167  */
4168 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4169 {
4170 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4171 		return 0;
4172 	if (gfp_mask & __GFP_MEMALLOC)
4173 		return ALLOC_NO_WATERMARKS;
4174 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4175 		return ALLOC_NO_WATERMARKS;
4176 	if (!in_interrupt()) {
4177 		if (current->flags & PF_MEMALLOC)
4178 			return ALLOC_NO_WATERMARKS;
4179 		else if (oom_reserves_allowed(current))
4180 			return ALLOC_OOM;
4181 	}
4182 
4183 	return 0;
4184 }
4185 
4186 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4187 {
4188 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4189 }
4190 
4191 /*
4192  * Checks whether it makes sense to retry the reclaim to make a forward progress
4193  * for the given allocation request.
4194  *
4195  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4196  * without success, or when we couldn't even meet the watermark if we
4197  * reclaimed all remaining pages on the LRU lists.
4198  *
4199  * Returns true if a retry is viable or false to enter the oom path.
4200  */
4201 static inline bool
4202 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4203 		     struct alloc_context *ac, int alloc_flags,
4204 		     bool did_some_progress, int *no_progress_loops)
4205 {
4206 	struct zone *zone;
4207 	struct zoneref *z;
4208 	bool ret = false;
4209 
4210 	/*
4211 	 * Costly allocations might have made a progress but this doesn't mean
4212 	 * their order will become available due to high fragmentation so
4213 	 * always increment the no progress counter for them
4214 	 */
4215 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4216 		*no_progress_loops = 0;
4217 	else
4218 		(*no_progress_loops)++;
4219 
4220 	/*
4221 	 * Make sure we converge to OOM if we cannot make any progress
4222 	 * several times in the row.
4223 	 */
4224 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4225 		/* Before OOM, exhaust highatomic_reserve */
4226 		return unreserve_highatomic_pageblock(ac, true);
4227 	}
4228 
4229 	/*
4230 	 * Keep reclaiming pages while there is a chance this will lead
4231 	 * somewhere.  If none of the target zones can satisfy our allocation
4232 	 * request even if all reclaimable pages are considered then we are
4233 	 * screwed and have to go OOM.
4234 	 */
4235 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4236 					ac->nodemask) {
4237 		unsigned long available;
4238 		unsigned long reclaimable;
4239 		unsigned long min_wmark = min_wmark_pages(zone);
4240 		bool wmark;
4241 
4242 		available = reclaimable = zone_reclaimable_pages(zone);
4243 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4244 
4245 		/*
4246 		 * Would the allocation succeed if we reclaimed all
4247 		 * reclaimable pages?
4248 		 */
4249 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4250 				ac_classzone_idx(ac), alloc_flags, available);
4251 		trace_reclaim_retry_zone(z, order, reclaimable,
4252 				available, min_wmark, *no_progress_loops, wmark);
4253 		if (wmark) {
4254 			/*
4255 			 * If we didn't make any progress and have a lot of
4256 			 * dirty + writeback pages then we should wait for
4257 			 * an IO to complete to slow down the reclaim and
4258 			 * prevent from pre mature OOM
4259 			 */
4260 			if (!did_some_progress) {
4261 				unsigned long write_pending;
4262 
4263 				write_pending = zone_page_state_snapshot(zone,
4264 							NR_ZONE_WRITE_PENDING);
4265 
4266 				if (2 * write_pending > reclaimable) {
4267 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4268 					return true;
4269 				}
4270 			}
4271 
4272 			ret = true;
4273 			goto out;
4274 		}
4275 	}
4276 
4277 out:
4278 	/*
4279 	 * Memory allocation/reclaim might be called from a WQ context and the
4280 	 * current implementation of the WQ concurrency control doesn't
4281 	 * recognize that a particular WQ is congested if the worker thread is
4282 	 * looping without ever sleeping. Therefore we have to do a short sleep
4283 	 * here rather than calling cond_resched().
4284 	 */
4285 	if (current->flags & PF_WQ_WORKER)
4286 		schedule_timeout_uninterruptible(1);
4287 	else
4288 		cond_resched();
4289 	return ret;
4290 }
4291 
4292 static inline bool
4293 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4294 {
4295 	/*
4296 	 * It's possible that cpuset's mems_allowed and the nodemask from
4297 	 * mempolicy don't intersect. This should be normally dealt with by
4298 	 * policy_nodemask(), but it's possible to race with cpuset update in
4299 	 * such a way the check therein was true, and then it became false
4300 	 * before we got our cpuset_mems_cookie here.
4301 	 * This assumes that for all allocations, ac->nodemask can come only
4302 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4303 	 * when it does not intersect with the cpuset restrictions) or the
4304 	 * caller can deal with a violated nodemask.
4305 	 */
4306 	if (cpusets_enabled() && ac->nodemask &&
4307 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4308 		ac->nodemask = NULL;
4309 		return true;
4310 	}
4311 
4312 	/*
4313 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4314 	 * possible to race with parallel threads in such a way that our
4315 	 * allocation can fail while the mask is being updated. If we are about
4316 	 * to fail, check if the cpuset changed during allocation and if so,
4317 	 * retry.
4318 	 */
4319 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4320 		return true;
4321 
4322 	return false;
4323 }
4324 
4325 static inline struct page *
4326 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4327 						struct alloc_context *ac)
4328 {
4329 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4330 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4331 	struct page *page = NULL;
4332 	unsigned int alloc_flags;
4333 	unsigned long did_some_progress;
4334 	enum compact_priority compact_priority;
4335 	enum compact_result compact_result;
4336 	int compaction_retries;
4337 	int no_progress_loops;
4338 	unsigned int cpuset_mems_cookie;
4339 	int reserve_flags;
4340 
4341 	/*
4342 	 * We also sanity check to catch abuse of atomic reserves being used by
4343 	 * callers that are not in atomic context.
4344 	 */
4345 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4346 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4347 		gfp_mask &= ~__GFP_ATOMIC;
4348 
4349 retry_cpuset:
4350 	compaction_retries = 0;
4351 	no_progress_loops = 0;
4352 	compact_priority = DEF_COMPACT_PRIORITY;
4353 	cpuset_mems_cookie = read_mems_allowed_begin();
4354 
4355 	/*
4356 	 * The fast path uses conservative alloc_flags to succeed only until
4357 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4358 	 * alloc_flags precisely. So we do that now.
4359 	 */
4360 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4361 
4362 	/*
4363 	 * We need to recalculate the starting point for the zonelist iterator
4364 	 * because we might have used different nodemask in the fast path, or
4365 	 * there was a cpuset modification and we are retrying - otherwise we
4366 	 * could end up iterating over non-eligible zones endlessly.
4367 	 */
4368 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4369 					ac->high_zoneidx, ac->nodemask);
4370 	if (!ac->preferred_zoneref->zone)
4371 		goto nopage;
4372 
4373 	if (alloc_flags & ALLOC_KSWAPD)
4374 		wake_all_kswapds(order, gfp_mask, ac);
4375 
4376 	/*
4377 	 * The adjusted alloc_flags might result in immediate success, so try
4378 	 * that first
4379 	 */
4380 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4381 	if (page)
4382 		goto got_pg;
4383 
4384 	/*
4385 	 * For costly allocations, try direct compaction first, as it's likely
4386 	 * that we have enough base pages and don't need to reclaim. For non-
4387 	 * movable high-order allocations, do that as well, as compaction will
4388 	 * try prevent permanent fragmentation by migrating from blocks of the
4389 	 * same migratetype.
4390 	 * Don't try this for allocations that are allowed to ignore
4391 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4392 	 */
4393 	if (can_direct_reclaim &&
4394 			(costly_order ||
4395 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4396 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4397 		page = __alloc_pages_direct_compact(gfp_mask, order,
4398 						alloc_flags, ac,
4399 						INIT_COMPACT_PRIORITY,
4400 						&compact_result);
4401 		if (page)
4402 			goto got_pg;
4403 
4404 		/*
4405 		 * Checks for costly allocations with __GFP_NORETRY, which
4406 		 * includes THP page fault allocations
4407 		 */
4408 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4409 			/*
4410 			 * If compaction is deferred for high-order allocations,
4411 			 * it is because sync compaction recently failed. If
4412 			 * this is the case and the caller requested a THP
4413 			 * allocation, we do not want to heavily disrupt the
4414 			 * system, so we fail the allocation instead of entering
4415 			 * direct reclaim.
4416 			 */
4417 			if (compact_result == COMPACT_DEFERRED)
4418 				goto nopage;
4419 
4420 			/*
4421 			 * Looks like reclaim/compaction is worth trying, but
4422 			 * sync compaction could be very expensive, so keep
4423 			 * using async compaction.
4424 			 */
4425 			compact_priority = INIT_COMPACT_PRIORITY;
4426 		}
4427 	}
4428 
4429 retry:
4430 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4431 	if (alloc_flags & ALLOC_KSWAPD)
4432 		wake_all_kswapds(order, gfp_mask, ac);
4433 
4434 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4435 	if (reserve_flags)
4436 		alloc_flags = reserve_flags;
4437 
4438 	/*
4439 	 * Reset the nodemask and zonelist iterators if memory policies can be
4440 	 * ignored. These allocations are high priority and system rather than
4441 	 * user oriented.
4442 	 */
4443 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4444 		ac->nodemask = NULL;
4445 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4446 					ac->high_zoneidx, ac->nodemask);
4447 	}
4448 
4449 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4450 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4451 	if (page)
4452 		goto got_pg;
4453 
4454 	/* Caller is not willing to reclaim, we can't balance anything */
4455 	if (!can_direct_reclaim)
4456 		goto nopage;
4457 
4458 	/* Avoid recursion of direct reclaim */
4459 	if (current->flags & PF_MEMALLOC)
4460 		goto nopage;
4461 
4462 	/* Try direct reclaim and then allocating */
4463 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4464 							&did_some_progress);
4465 	if (page)
4466 		goto got_pg;
4467 
4468 	/* Try direct compaction and then allocating */
4469 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4470 					compact_priority, &compact_result);
4471 	if (page)
4472 		goto got_pg;
4473 
4474 	/* Do not loop if specifically requested */
4475 	if (gfp_mask & __GFP_NORETRY)
4476 		goto nopage;
4477 
4478 	/*
4479 	 * Do not retry costly high order allocations unless they are
4480 	 * __GFP_RETRY_MAYFAIL
4481 	 */
4482 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4483 		goto nopage;
4484 
4485 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4486 				 did_some_progress > 0, &no_progress_loops))
4487 		goto retry;
4488 
4489 	/*
4490 	 * It doesn't make any sense to retry for the compaction if the order-0
4491 	 * reclaim is not able to make any progress because the current
4492 	 * implementation of the compaction depends on the sufficient amount
4493 	 * of free memory (see __compaction_suitable)
4494 	 */
4495 	if (did_some_progress > 0 &&
4496 			should_compact_retry(ac, order, alloc_flags,
4497 				compact_result, &compact_priority,
4498 				&compaction_retries))
4499 		goto retry;
4500 
4501 
4502 	/* Deal with possible cpuset update races before we start OOM killing */
4503 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4504 		goto retry_cpuset;
4505 
4506 	/* Reclaim has failed us, start killing things */
4507 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4508 	if (page)
4509 		goto got_pg;
4510 
4511 	/* Avoid allocations with no watermarks from looping endlessly */
4512 	if (tsk_is_oom_victim(current) &&
4513 	    (alloc_flags == ALLOC_OOM ||
4514 	     (gfp_mask & __GFP_NOMEMALLOC)))
4515 		goto nopage;
4516 
4517 	/* Retry as long as the OOM killer is making progress */
4518 	if (did_some_progress) {
4519 		no_progress_loops = 0;
4520 		goto retry;
4521 	}
4522 
4523 nopage:
4524 	/* Deal with possible cpuset update races before we fail */
4525 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4526 		goto retry_cpuset;
4527 
4528 	/*
4529 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4530 	 * we always retry
4531 	 */
4532 	if (gfp_mask & __GFP_NOFAIL) {
4533 		/*
4534 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4535 		 * of any new users that actually require GFP_NOWAIT
4536 		 */
4537 		if (WARN_ON_ONCE(!can_direct_reclaim))
4538 			goto fail;
4539 
4540 		/*
4541 		 * PF_MEMALLOC request from this context is rather bizarre
4542 		 * because we cannot reclaim anything and only can loop waiting
4543 		 * for somebody to do a work for us
4544 		 */
4545 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4546 
4547 		/*
4548 		 * non failing costly orders are a hard requirement which we
4549 		 * are not prepared for much so let's warn about these users
4550 		 * so that we can identify them and convert them to something
4551 		 * else.
4552 		 */
4553 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4554 
4555 		/*
4556 		 * Help non-failing allocations by giving them access to memory
4557 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4558 		 * could deplete whole memory reserves which would just make
4559 		 * the situation worse
4560 		 */
4561 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4562 		if (page)
4563 			goto got_pg;
4564 
4565 		cond_resched();
4566 		goto retry;
4567 	}
4568 fail:
4569 	warn_alloc(gfp_mask, ac->nodemask,
4570 			"page allocation failure: order:%u", order);
4571 got_pg:
4572 	return page;
4573 }
4574 
4575 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4576 		int preferred_nid, nodemask_t *nodemask,
4577 		struct alloc_context *ac, gfp_t *alloc_mask,
4578 		unsigned int *alloc_flags)
4579 {
4580 	ac->high_zoneidx = gfp_zone(gfp_mask);
4581 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4582 	ac->nodemask = nodemask;
4583 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4584 
4585 	if (cpusets_enabled()) {
4586 		*alloc_mask |= __GFP_HARDWALL;
4587 		if (!ac->nodemask)
4588 			ac->nodemask = &cpuset_current_mems_allowed;
4589 		else
4590 			*alloc_flags |= ALLOC_CPUSET;
4591 	}
4592 
4593 	fs_reclaim_acquire(gfp_mask);
4594 	fs_reclaim_release(gfp_mask);
4595 
4596 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4597 
4598 	if (should_fail_alloc_page(gfp_mask, order))
4599 		return false;
4600 
4601 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4602 		*alloc_flags |= ALLOC_CMA;
4603 
4604 	return true;
4605 }
4606 
4607 /* Determine whether to spread dirty pages and what the first usable zone */
4608 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4609 {
4610 	/* Dirty zone balancing only done in the fast path */
4611 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4612 
4613 	/*
4614 	 * The preferred zone is used for statistics but crucially it is
4615 	 * also used as the starting point for the zonelist iterator. It
4616 	 * may get reset for allocations that ignore memory policies.
4617 	 */
4618 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4619 					ac->high_zoneidx, ac->nodemask);
4620 }
4621 
4622 /*
4623  * This is the 'heart' of the zoned buddy allocator.
4624  */
4625 struct page *
4626 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4627 							nodemask_t *nodemask)
4628 {
4629 	struct page *page;
4630 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4631 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4632 	struct alloc_context ac = { };
4633 
4634 	/*
4635 	 * There are several places where we assume that the order value is sane
4636 	 * so bail out early if the request is out of bound.
4637 	 */
4638 	if (unlikely(order >= MAX_ORDER)) {
4639 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4640 		return NULL;
4641 	}
4642 
4643 	gfp_mask &= gfp_allowed_mask;
4644 	alloc_mask = gfp_mask;
4645 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4646 		return NULL;
4647 
4648 	finalise_ac(gfp_mask, &ac);
4649 
4650 	/*
4651 	 * Forbid the first pass from falling back to types that fragment
4652 	 * memory until all local zones are considered.
4653 	 */
4654 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4655 
4656 	/* First allocation attempt */
4657 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4658 	if (likely(page))
4659 		goto out;
4660 
4661 	/*
4662 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4663 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4664 	 * from a particular context which has been marked by
4665 	 * memalloc_no{fs,io}_{save,restore}.
4666 	 */
4667 	alloc_mask = current_gfp_context(gfp_mask);
4668 	ac.spread_dirty_pages = false;
4669 
4670 	/*
4671 	 * Restore the original nodemask if it was potentially replaced with
4672 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4673 	 */
4674 	if (unlikely(ac.nodemask != nodemask))
4675 		ac.nodemask = nodemask;
4676 
4677 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4678 
4679 out:
4680 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4681 	    unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4682 		__free_pages(page, order);
4683 		page = NULL;
4684 	}
4685 
4686 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4687 
4688 	return page;
4689 }
4690 EXPORT_SYMBOL(__alloc_pages_nodemask);
4691 
4692 /*
4693  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4694  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4695  * you need to access high mem.
4696  */
4697 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4698 {
4699 	struct page *page;
4700 
4701 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4702 	if (!page)
4703 		return 0;
4704 	return (unsigned long) page_address(page);
4705 }
4706 EXPORT_SYMBOL(__get_free_pages);
4707 
4708 unsigned long get_zeroed_page(gfp_t gfp_mask)
4709 {
4710 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4711 }
4712 EXPORT_SYMBOL(get_zeroed_page);
4713 
4714 static inline void free_the_page(struct page *page, unsigned int order)
4715 {
4716 	if (order == 0)		/* Via pcp? */
4717 		free_unref_page(page);
4718 	else
4719 		__free_pages_ok(page, order);
4720 }
4721 
4722 void __free_pages(struct page *page, unsigned int order)
4723 {
4724 	if (put_page_testzero(page))
4725 		free_the_page(page, order);
4726 }
4727 EXPORT_SYMBOL(__free_pages);
4728 
4729 void free_pages(unsigned long addr, unsigned int order)
4730 {
4731 	if (addr != 0) {
4732 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4733 		__free_pages(virt_to_page((void *)addr), order);
4734 	}
4735 }
4736 
4737 EXPORT_SYMBOL(free_pages);
4738 
4739 /*
4740  * Page Fragment:
4741  *  An arbitrary-length arbitrary-offset area of memory which resides
4742  *  within a 0 or higher order page.  Multiple fragments within that page
4743  *  are individually refcounted, in the page's reference counter.
4744  *
4745  * The page_frag functions below provide a simple allocation framework for
4746  * page fragments.  This is used by the network stack and network device
4747  * drivers to provide a backing region of memory for use as either an
4748  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4749  */
4750 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4751 					     gfp_t gfp_mask)
4752 {
4753 	struct page *page = NULL;
4754 	gfp_t gfp = gfp_mask;
4755 
4756 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4757 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4758 		    __GFP_NOMEMALLOC;
4759 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4760 				PAGE_FRAG_CACHE_MAX_ORDER);
4761 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4762 #endif
4763 	if (unlikely(!page))
4764 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4765 
4766 	nc->va = page ? page_address(page) : NULL;
4767 
4768 	return page;
4769 }
4770 
4771 void __page_frag_cache_drain(struct page *page, unsigned int count)
4772 {
4773 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4774 
4775 	if (page_ref_sub_and_test(page, count))
4776 		free_the_page(page, compound_order(page));
4777 }
4778 EXPORT_SYMBOL(__page_frag_cache_drain);
4779 
4780 void *page_frag_alloc(struct page_frag_cache *nc,
4781 		      unsigned int fragsz, gfp_t gfp_mask)
4782 {
4783 	unsigned int size = PAGE_SIZE;
4784 	struct page *page;
4785 	int offset;
4786 
4787 	if (unlikely(!nc->va)) {
4788 refill:
4789 		page = __page_frag_cache_refill(nc, gfp_mask);
4790 		if (!page)
4791 			return NULL;
4792 
4793 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4794 		/* if size can vary use size else just use PAGE_SIZE */
4795 		size = nc->size;
4796 #endif
4797 		/* Even if we own the page, we do not use atomic_set().
4798 		 * This would break get_page_unless_zero() users.
4799 		 */
4800 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4801 
4802 		/* reset page count bias and offset to start of new frag */
4803 		nc->pfmemalloc = page_is_pfmemalloc(page);
4804 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4805 		nc->offset = size;
4806 	}
4807 
4808 	offset = nc->offset - fragsz;
4809 	if (unlikely(offset < 0)) {
4810 		page = virt_to_page(nc->va);
4811 
4812 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4813 			goto refill;
4814 
4815 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4816 		/* if size can vary use size else just use PAGE_SIZE */
4817 		size = nc->size;
4818 #endif
4819 		/* OK, page count is 0, we can safely set it */
4820 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4821 
4822 		/* reset page count bias and offset to start of new frag */
4823 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4824 		offset = size - fragsz;
4825 	}
4826 
4827 	nc->pagecnt_bias--;
4828 	nc->offset = offset;
4829 
4830 	return nc->va + offset;
4831 }
4832 EXPORT_SYMBOL(page_frag_alloc);
4833 
4834 /*
4835  * Frees a page fragment allocated out of either a compound or order 0 page.
4836  */
4837 void page_frag_free(void *addr)
4838 {
4839 	struct page *page = virt_to_head_page(addr);
4840 
4841 	if (unlikely(put_page_testzero(page)))
4842 		free_the_page(page, compound_order(page));
4843 }
4844 EXPORT_SYMBOL(page_frag_free);
4845 
4846 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4847 		size_t size)
4848 {
4849 	if (addr) {
4850 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4851 		unsigned long used = addr + PAGE_ALIGN(size);
4852 
4853 		split_page(virt_to_page((void *)addr), order);
4854 		while (used < alloc_end) {
4855 			free_page(used);
4856 			used += PAGE_SIZE;
4857 		}
4858 	}
4859 	return (void *)addr;
4860 }
4861 
4862 /**
4863  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4864  * @size: the number of bytes to allocate
4865  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4866  *
4867  * This function is similar to alloc_pages(), except that it allocates the
4868  * minimum number of pages to satisfy the request.  alloc_pages() can only
4869  * allocate memory in power-of-two pages.
4870  *
4871  * This function is also limited by MAX_ORDER.
4872  *
4873  * Memory allocated by this function must be released by free_pages_exact().
4874  *
4875  * Return: pointer to the allocated area or %NULL in case of error.
4876  */
4877 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4878 {
4879 	unsigned int order = get_order(size);
4880 	unsigned long addr;
4881 
4882 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4883 		gfp_mask &= ~__GFP_COMP;
4884 
4885 	addr = __get_free_pages(gfp_mask, order);
4886 	return make_alloc_exact(addr, order, size);
4887 }
4888 EXPORT_SYMBOL(alloc_pages_exact);
4889 
4890 /**
4891  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4892  *			   pages on a node.
4893  * @nid: the preferred node ID where memory should be allocated
4894  * @size: the number of bytes to allocate
4895  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4896  *
4897  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4898  * back.
4899  *
4900  * Return: pointer to the allocated area or %NULL in case of error.
4901  */
4902 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4903 {
4904 	unsigned int order = get_order(size);
4905 	struct page *p;
4906 
4907 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4908 		gfp_mask &= ~__GFP_COMP;
4909 
4910 	p = alloc_pages_node(nid, gfp_mask, order);
4911 	if (!p)
4912 		return NULL;
4913 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4914 }
4915 
4916 /**
4917  * free_pages_exact - release memory allocated via alloc_pages_exact()
4918  * @virt: the value returned by alloc_pages_exact.
4919  * @size: size of allocation, same value as passed to alloc_pages_exact().
4920  *
4921  * Release the memory allocated by a previous call to alloc_pages_exact.
4922  */
4923 void free_pages_exact(void *virt, size_t size)
4924 {
4925 	unsigned long addr = (unsigned long)virt;
4926 	unsigned long end = addr + PAGE_ALIGN(size);
4927 
4928 	while (addr < end) {
4929 		free_page(addr);
4930 		addr += PAGE_SIZE;
4931 	}
4932 }
4933 EXPORT_SYMBOL(free_pages_exact);
4934 
4935 /**
4936  * nr_free_zone_pages - count number of pages beyond high watermark
4937  * @offset: The zone index of the highest zone
4938  *
4939  * nr_free_zone_pages() counts the number of pages which are beyond the
4940  * high watermark within all zones at or below a given zone index.  For each
4941  * zone, the number of pages is calculated as:
4942  *
4943  *     nr_free_zone_pages = managed_pages - high_pages
4944  *
4945  * Return: number of pages beyond high watermark.
4946  */
4947 static unsigned long nr_free_zone_pages(int offset)
4948 {
4949 	struct zoneref *z;
4950 	struct zone *zone;
4951 
4952 	/* Just pick one node, since fallback list is circular */
4953 	unsigned long sum = 0;
4954 
4955 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4956 
4957 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4958 		unsigned long size = zone_managed_pages(zone);
4959 		unsigned long high = high_wmark_pages(zone);
4960 		if (size > high)
4961 			sum += size - high;
4962 	}
4963 
4964 	return sum;
4965 }
4966 
4967 /**
4968  * nr_free_buffer_pages - count number of pages beyond high watermark
4969  *
4970  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4971  * watermark within ZONE_DMA and ZONE_NORMAL.
4972  *
4973  * Return: number of pages beyond high watermark within ZONE_DMA and
4974  * ZONE_NORMAL.
4975  */
4976 unsigned long nr_free_buffer_pages(void)
4977 {
4978 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4979 }
4980 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4981 
4982 /**
4983  * nr_free_pagecache_pages - count number of pages beyond high watermark
4984  *
4985  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4986  * high watermark within all zones.
4987  *
4988  * Return: number of pages beyond high watermark within all zones.
4989  */
4990 unsigned long nr_free_pagecache_pages(void)
4991 {
4992 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4993 }
4994 
4995 static inline void show_node(struct zone *zone)
4996 {
4997 	if (IS_ENABLED(CONFIG_NUMA))
4998 		printk("Node %d ", zone_to_nid(zone));
4999 }
5000 
5001 long si_mem_available(void)
5002 {
5003 	long available;
5004 	unsigned long pagecache;
5005 	unsigned long wmark_low = 0;
5006 	unsigned long pages[NR_LRU_LISTS];
5007 	unsigned long reclaimable;
5008 	struct zone *zone;
5009 	int lru;
5010 
5011 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5012 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5013 
5014 	for_each_zone(zone)
5015 		wmark_low += low_wmark_pages(zone);
5016 
5017 	/*
5018 	 * Estimate the amount of memory available for userspace allocations,
5019 	 * without causing swapping.
5020 	 */
5021 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5022 
5023 	/*
5024 	 * Not all the page cache can be freed, otherwise the system will
5025 	 * start swapping. Assume at least half of the page cache, or the
5026 	 * low watermark worth of cache, needs to stay.
5027 	 */
5028 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5029 	pagecache -= min(pagecache / 2, wmark_low);
5030 	available += pagecache;
5031 
5032 	/*
5033 	 * Part of the reclaimable slab and other kernel memory consists of
5034 	 * items that are in use, and cannot be freed. Cap this estimate at the
5035 	 * low watermark.
5036 	 */
5037 	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5038 			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5039 	available += reclaimable - min(reclaimable / 2, wmark_low);
5040 
5041 	if (available < 0)
5042 		available = 0;
5043 	return available;
5044 }
5045 EXPORT_SYMBOL_GPL(si_mem_available);
5046 
5047 void si_meminfo(struct sysinfo *val)
5048 {
5049 	val->totalram = totalram_pages();
5050 	val->sharedram = global_node_page_state(NR_SHMEM);
5051 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5052 	val->bufferram = nr_blockdev_pages();
5053 	val->totalhigh = totalhigh_pages();
5054 	val->freehigh = nr_free_highpages();
5055 	val->mem_unit = PAGE_SIZE;
5056 }
5057 
5058 EXPORT_SYMBOL(si_meminfo);
5059 
5060 #ifdef CONFIG_NUMA
5061 void si_meminfo_node(struct sysinfo *val, int nid)
5062 {
5063 	int zone_type;		/* needs to be signed */
5064 	unsigned long managed_pages = 0;
5065 	unsigned long managed_highpages = 0;
5066 	unsigned long free_highpages = 0;
5067 	pg_data_t *pgdat = NODE_DATA(nid);
5068 
5069 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5070 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5071 	val->totalram = managed_pages;
5072 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5073 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5074 #ifdef CONFIG_HIGHMEM
5075 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5076 		struct zone *zone = &pgdat->node_zones[zone_type];
5077 
5078 		if (is_highmem(zone)) {
5079 			managed_highpages += zone_managed_pages(zone);
5080 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5081 		}
5082 	}
5083 	val->totalhigh = managed_highpages;
5084 	val->freehigh = free_highpages;
5085 #else
5086 	val->totalhigh = managed_highpages;
5087 	val->freehigh = free_highpages;
5088 #endif
5089 	val->mem_unit = PAGE_SIZE;
5090 }
5091 #endif
5092 
5093 /*
5094  * Determine whether the node should be displayed or not, depending on whether
5095  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5096  */
5097 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5098 {
5099 	if (!(flags & SHOW_MEM_FILTER_NODES))
5100 		return false;
5101 
5102 	/*
5103 	 * no node mask - aka implicit memory numa policy. Do not bother with
5104 	 * the synchronization - read_mems_allowed_begin - because we do not
5105 	 * have to be precise here.
5106 	 */
5107 	if (!nodemask)
5108 		nodemask = &cpuset_current_mems_allowed;
5109 
5110 	return !node_isset(nid, *nodemask);
5111 }
5112 
5113 #define K(x) ((x) << (PAGE_SHIFT-10))
5114 
5115 static void show_migration_types(unsigned char type)
5116 {
5117 	static const char types[MIGRATE_TYPES] = {
5118 		[MIGRATE_UNMOVABLE]	= 'U',
5119 		[MIGRATE_MOVABLE]	= 'M',
5120 		[MIGRATE_RECLAIMABLE]	= 'E',
5121 		[MIGRATE_HIGHATOMIC]	= 'H',
5122 #ifdef CONFIG_CMA
5123 		[MIGRATE_CMA]		= 'C',
5124 #endif
5125 #ifdef CONFIG_MEMORY_ISOLATION
5126 		[MIGRATE_ISOLATE]	= 'I',
5127 #endif
5128 	};
5129 	char tmp[MIGRATE_TYPES + 1];
5130 	char *p = tmp;
5131 	int i;
5132 
5133 	for (i = 0; i < MIGRATE_TYPES; i++) {
5134 		if (type & (1 << i))
5135 			*p++ = types[i];
5136 	}
5137 
5138 	*p = '\0';
5139 	printk(KERN_CONT "(%s) ", tmp);
5140 }
5141 
5142 /*
5143  * Show free area list (used inside shift_scroll-lock stuff)
5144  * We also calculate the percentage fragmentation. We do this by counting the
5145  * memory on each free list with the exception of the first item on the list.
5146  *
5147  * Bits in @filter:
5148  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5149  *   cpuset.
5150  */
5151 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5152 {
5153 	unsigned long free_pcp = 0;
5154 	int cpu;
5155 	struct zone *zone;
5156 	pg_data_t *pgdat;
5157 
5158 	for_each_populated_zone(zone) {
5159 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5160 			continue;
5161 
5162 		for_each_online_cpu(cpu)
5163 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5164 	}
5165 
5166 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5167 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5168 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5169 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5170 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5171 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5172 		global_node_page_state(NR_ACTIVE_ANON),
5173 		global_node_page_state(NR_INACTIVE_ANON),
5174 		global_node_page_state(NR_ISOLATED_ANON),
5175 		global_node_page_state(NR_ACTIVE_FILE),
5176 		global_node_page_state(NR_INACTIVE_FILE),
5177 		global_node_page_state(NR_ISOLATED_FILE),
5178 		global_node_page_state(NR_UNEVICTABLE),
5179 		global_node_page_state(NR_FILE_DIRTY),
5180 		global_node_page_state(NR_WRITEBACK),
5181 		global_node_page_state(NR_UNSTABLE_NFS),
5182 		global_node_page_state(NR_SLAB_RECLAIMABLE),
5183 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5184 		global_node_page_state(NR_FILE_MAPPED),
5185 		global_node_page_state(NR_SHMEM),
5186 		global_zone_page_state(NR_PAGETABLE),
5187 		global_zone_page_state(NR_BOUNCE),
5188 		global_zone_page_state(NR_FREE_PAGES),
5189 		free_pcp,
5190 		global_zone_page_state(NR_FREE_CMA_PAGES));
5191 
5192 	for_each_online_pgdat(pgdat) {
5193 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5194 			continue;
5195 
5196 		printk("Node %d"
5197 			" active_anon:%lukB"
5198 			" inactive_anon:%lukB"
5199 			" active_file:%lukB"
5200 			" inactive_file:%lukB"
5201 			" unevictable:%lukB"
5202 			" isolated(anon):%lukB"
5203 			" isolated(file):%lukB"
5204 			" mapped:%lukB"
5205 			" dirty:%lukB"
5206 			" writeback:%lukB"
5207 			" shmem:%lukB"
5208 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5209 			" shmem_thp: %lukB"
5210 			" shmem_pmdmapped: %lukB"
5211 			" anon_thp: %lukB"
5212 #endif
5213 			" writeback_tmp:%lukB"
5214 			" unstable:%lukB"
5215 			" all_unreclaimable? %s"
5216 			"\n",
5217 			pgdat->node_id,
5218 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5219 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5220 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5221 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5222 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5223 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5224 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5225 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5226 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5227 			K(node_page_state(pgdat, NR_WRITEBACK)),
5228 			K(node_page_state(pgdat, NR_SHMEM)),
5229 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5230 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5231 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5232 					* HPAGE_PMD_NR),
5233 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5234 #endif
5235 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5236 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5237 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5238 				"yes" : "no");
5239 	}
5240 
5241 	for_each_populated_zone(zone) {
5242 		int i;
5243 
5244 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5245 			continue;
5246 
5247 		free_pcp = 0;
5248 		for_each_online_cpu(cpu)
5249 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5250 
5251 		show_node(zone);
5252 		printk(KERN_CONT
5253 			"%s"
5254 			" free:%lukB"
5255 			" min:%lukB"
5256 			" low:%lukB"
5257 			" high:%lukB"
5258 			" active_anon:%lukB"
5259 			" inactive_anon:%lukB"
5260 			" active_file:%lukB"
5261 			" inactive_file:%lukB"
5262 			" unevictable:%lukB"
5263 			" writepending:%lukB"
5264 			" present:%lukB"
5265 			" managed:%lukB"
5266 			" mlocked:%lukB"
5267 			" kernel_stack:%lukB"
5268 			" pagetables:%lukB"
5269 			" bounce:%lukB"
5270 			" free_pcp:%lukB"
5271 			" local_pcp:%ukB"
5272 			" free_cma:%lukB"
5273 			"\n",
5274 			zone->name,
5275 			K(zone_page_state(zone, NR_FREE_PAGES)),
5276 			K(min_wmark_pages(zone)),
5277 			K(low_wmark_pages(zone)),
5278 			K(high_wmark_pages(zone)),
5279 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5280 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5281 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5282 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5283 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5284 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5285 			K(zone->present_pages),
5286 			K(zone_managed_pages(zone)),
5287 			K(zone_page_state(zone, NR_MLOCK)),
5288 			zone_page_state(zone, NR_KERNEL_STACK_KB),
5289 			K(zone_page_state(zone, NR_PAGETABLE)),
5290 			K(zone_page_state(zone, NR_BOUNCE)),
5291 			K(free_pcp),
5292 			K(this_cpu_read(zone->pageset->pcp.count)),
5293 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5294 		printk("lowmem_reserve[]:");
5295 		for (i = 0; i < MAX_NR_ZONES; i++)
5296 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5297 		printk(KERN_CONT "\n");
5298 	}
5299 
5300 	for_each_populated_zone(zone) {
5301 		unsigned int order;
5302 		unsigned long nr[MAX_ORDER], flags, total = 0;
5303 		unsigned char types[MAX_ORDER];
5304 
5305 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5306 			continue;
5307 		show_node(zone);
5308 		printk(KERN_CONT "%s: ", zone->name);
5309 
5310 		spin_lock_irqsave(&zone->lock, flags);
5311 		for (order = 0; order < MAX_ORDER; order++) {
5312 			struct free_area *area = &zone->free_area[order];
5313 			int type;
5314 
5315 			nr[order] = area->nr_free;
5316 			total += nr[order] << order;
5317 
5318 			types[order] = 0;
5319 			for (type = 0; type < MIGRATE_TYPES; type++) {
5320 				if (!free_area_empty(area, type))
5321 					types[order] |= 1 << type;
5322 			}
5323 		}
5324 		spin_unlock_irqrestore(&zone->lock, flags);
5325 		for (order = 0; order < MAX_ORDER; order++) {
5326 			printk(KERN_CONT "%lu*%lukB ",
5327 			       nr[order], K(1UL) << order);
5328 			if (nr[order])
5329 				show_migration_types(types[order]);
5330 		}
5331 		printk(KERN_CONT "= %lukB\n", K(total));
5332 	}
5333 
5334 	hugetlb_show_meminfo();
5335 
5336 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5337 
5338 	show_swap_cache_info();
5339 }
5340 
5341 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5342 {
5343 	zoneref->zone = zone;
5344 	zoneref->zone_idx = zone_idx(zone);
5345 }
5346 
5347 /*
5348  * Builds allocation fallback zone lists.
5349  *
5350  * Add all populated zones of a node to the zonelist.
5351  */
5352 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5353 {
5354 	struct zone *zone;
5355 	enum zone_type zone_type = MAX_NR_ZONES;
5356 	int nr_zones = 0;
5357 
5358 	do {
5359 		zone_type--;
5360 		zone = pgdat->node_zones + zone_type;
5361 		if (managed_zone(zone)) {
5362 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5363 			check_highest_zone(zone_type);
5364 		}
5365 	} while (zone_type);
5366 
5367 	return nr_zones;
5368 }
5369 
5370 #ifdef CONFIG_NUMA
5371 
5372 static int __parse_numa_zonelist_order(char *s)
5373 {
5374 	/*
5375 	 * We used to support different zonlists modes but they turned
5376 	 * out to be just not useful. Let's keep the warning in place
5377 	 * if somebody still use the cmd line parameter so that we do
5378 	 * not fail it silently
5379 	 */
5380 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5381 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5382 		return -EINVAL;
5383 	}
5384 	return 0;
5385 }
5386 
5387 static __init int setup_numa_zonelist_order(char *s)
5388 {
5389 	if (!s)
5390 		return 0;
5391 
5392 	return __parse_numa_zonelist_order(s);
5393 }
5394 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5395 
5396 char numa_zonelist_order[] = "Node";
5397 
5398 /*
5399  * sysctl handler for numa_zonelist_order
5400  */
5401 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5402 		void __user *buffer, size_t *length,
5403 		loff_t *ppos)
5404 {
5405 	char *str;
5406 	int ret;
5407 
5408 	if (!write)
5409 		return proc_dostring(table, write, buffer, length, ppos);
5410 	str = memdup_user_nul(buffer, 16);
5411 	if (IS_ERR(str))
5412 		return PTR_ERR(str);
5413 
5414 	ret = __parse_numa_zonelist_order(str);
5415 	kfree(str);
5416 	return ret;
5417 }
5418 
5419 
5420 #define MAX_NODE_LOAD (nr_online_nodes)
5421 static int node_load[MAX_NUMNODES];
5422 
5423 /**
5424  * find_next_best_node - find the next node that should appear in a given node's fallback list
5425  * @node: node whose fallback list we're appending
5426  * @used_node_mask: nodemask_t of already used nodes
5427  *
5428  * We use a number of factors to determine which is the next node that should
5429  * appear on a given node's fallback list.  The node should not have appeared
5430  * already in @node's fallback list, and it should be the next closest node
5431  * according to the distance array (which contains arbitrary distance values
5432  * from each node to each node in the system), and should also prefer nodes
5433  * with no CPUs, since presumably they'll have very little allocation pressure
5434  * on them otherwise.
5435  *
5436  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5437  */
5438 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5439 {
5440 	int n, val;
5441 	int min_val = INT_MAX;
5442 	int best_node = NUMA_NO_NODE;
5443 	const struct cpumask *tmp = cpumask_of_node(0);
5444 
5445 	/* Use the local node if we haven't already */
5446 	if (!node_isset(node, *used_node_mask)) {
5447 		node_set(node, *used_node_mask);
5448 		return node;
5449 	}
5450 
5451 	for_each_node_state(n, N_MEMORY) {
5452 
5453 		/* Don't want a node to appear more than once */
5454 		if (node_isset(n, *used_node_mask))
5455 			continue;
5456 
5457 		/* Use the distance array to find the distance */
5458 		val = node_distance(node, n);
5459 
5460 		/* Penalize nodes under us ("prefer the next node") */
5461 		val += (n < node);
5462 
5463 		/* Give preference to headless and unused nodes */
5464 		tmp = cpumask_of_node(n);
5465 		if (!cpumask_empty(tmp))
5466 			val += PENALTY_FOR_NODE_WITH_CPUS;
5467 
5468 		/* Slight preference for less loaded node */
5469 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5470 		val += node_load[n];
5471 
5472 		if (val < min_val) {
5473 			min_val = val;
5474 			best_node = n;
5475 		}
5476 	}
5477 
5478 	if (best_node >= 0)
5479 		node_set(best_node, *used_node_mask);
5480 
5481 	return best_node;
5482 }
5483 
5484 
5485 /*
5486  * Build zonelists ordered by node and zones within node.
5487  * This results in maximum locality--normal zone overflows into local
5488  * DMA zone, if any--but risks exhausting DMA zone.
5489  */
5490 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5491 		unsigned nr_nodes)
5492 {
5493 	struct zoneref *zonerefs;
5494 	int i;
5495 
5496 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5497 
5498 	for (i = 0; i < nr_nodes; i++) {
5499 		int nr_zones;
5500 
5501 		pg_data_t *node = NODE_DATA(node_order[i]);
5502 
5503 		nr_zones = build_zonerefs_node(node, zonerefs);
5504 		zonerefs += nr_zones;
5505 	}
5506 	zonerefs->zone = NULL;
5507 	zonerefs->zone_idx = 0;
5508 }
5509 
5510 /*
5511  * Build gfp_thisnode zonelists
5512  */
5513 static void build_thisnode_zonelists(pg_data_t *pgdat)
5514 {
5515 	struct zoneref *zonerefs;
5516 	int nr_zones;
5517 
5518 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5519 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5520 	zonerefs += nr_zones;
5521 	zonerefs->zone = NULL;
5522 	zonerefs->zone_idx = 0;
5523 }
5524 
5525 /*
5526  * Build zonelists ordered by zone and nodes within zones.
5527  * This results in conserving DMA zone[s] until all Normal memory is
5528  * exhausted, but results in overflowing to remote node while memory
5529  * may still exist in local DMA zone.
5530  */
5531 
5532 static void build_zonelists(pg_data_t *pgdat)
5533 {
5534 	static int node_order[MAX_NUMNODES];
5535 	int node, load, nr_nodes = 0;
5536 	nodemask_t used_mask;
5537 	int local_node, prev_node;
5538 
5539 	/* NUMA-aware ordering of nodes */
5540 	local_node = pgdat->node_id;
5541 	load = nr_online_nodes;
5542 	prev_node = local_node;
5543 	nodes_clear(used_mask);
5544 
5545 	memset(node_order, 0, sizeof(node_order));
5546 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5547 		/*
5548 		 * We don't want to pressure a particular node.
5549 		 * So adding penalty to the first node in same
5550 		 * distance group to make it round-robin.
5551 		 */
5552 		if (node_distance(local_node, node) !=
5553 		    node_distance(local_node, prev_node))
5554 			node_load[node] = load;
5555 
5556 		node_order[nr_nodes++] = node;
5557 		prev_node = node;
5558 		load--;
5559 	}
5560 
5561 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5562 	build_thisnode_zonelists(pgdat);
5563 }
5564 
5565 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5566 /*
5567  * Return node id of node used for "local" allocations.
5568  * I.e., first node id of first zone in arg node's generic zonelist.
5569  * Used for initializing percpu 'numa_mem', which is used primarily
5570  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5571  */
5572 int local_memory_node(int node)
5573 {
5574 	struct zoneref *z;
5575 
5576 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5577 				   gfp_zone(GFP_KERNEL),
5578 				   NULL);
5579 	return zone_to_nid(z->zone);
5580 }
5581 #endif
5582 
5583 static void setup_min_unmapped_ratio(void);
5584 static void setup_min_slab_ratio(void);
5585 #else	/* CONFIG_NUMA */
5586 
5587 static void build_zonelists(pg_data_t *pgdat)
5588 {
5589 	int node, local_node;
5590 	struct zoneref *zonerefs;
5591 	int nr_zones;
5592 
5593 	local_node = pgdat->node_id;
5594 
5595 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5596 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5597 	zonerefs += nr_zones;
5598 
5599 	/*
5600 	 * Now we build the zonelist so that it contains the zones
5601 	 * of all the other nodes.
5602 	 * We don't want to pressure a particular node, so when
5603 	 * building the zones for node N, we make sure that the
5604 	 * zones coming right after the local ones are those from
5605 	 * node N+1 (modulo N)
5606 	 */
5607 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5608 		if (!node_online(node))
5609 			continue;
5610 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5611 		zonerefs += nr_zones;
5612 	}
5613 	for (node = 0; node < local_node; node++) {
5614 		if (!node_online(node))
5615 			continue;
5616 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5617 		zonerefs += nr_zones;
5618 	}
5619 
5620 	zonerefs->zone = NULL;
5621 	zonerefs->zone_idx = 0;
5622 }
5623 
5624 #endif	/* CONFIG_NUMA */
5625 
5626 /*
5627  * Boot pageset table. One per cpu which is going to be used for all
5628  * zones and all nodes. The parameters will be set in such a way
5629  * that an item put on a list will immediately be handed over to
5630  * the buddy list. This is safe since pageset manipulation is done
5631  * with interrupts disabled.
5632  *
5633  * The boot_pagesets must be kept even after bootup is complete for
5634  * unused processors and/or zones. They do play a role for bootstrapping
5635  * hotplugged processors.
5636  *
5637  * zoneinfo_show() and maybe other functions do
5638  * not check if the processor is online before following the pageset pointer.
5639  * Other parts of the kernel may not check if the zone is available.
5640  */
5641 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5642 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5643 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5644 
5645 static void __build_all_zonelists(void *data)
5646 {
5647 	int nid;
5648 	int __maybe_unused cpu;
5649 	pg_data_t *self = data;
5650 	static DEFINE_SPINLOCK(lock);
5651 
5652 	spin_lock(&lock);
5653 
5654 #ifdef CONFIG_NUMA
5655 	memset(node_load, 0, sizeof(node_load));
5656 #endif
5657 
5658 	/*
5659 	 * This node is hotadded and no memory is yet present.   So just
5660 	 * building zonelists is fine - no need to touch other nodes.
5661 	 */
5662 	if (self && !node_online(self->node_id)) {
5663 		build_zonelists(self);
5664 	} else {
5665 		for_each_online_node(nid) {
5666 			pg_data_t *pgdat = NODE_DATA(nid);
5667 
5668 			build_zonelists(pgdat);
5669 		}
5670 
5671 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5672 		/*
5673 		 * We now know the "local memory node" for each node--
5674 		 * i.e., the node of the first zone in the generic zonelist.
5675 		 * Set up numa_mem percpu variable for on-line cpus.  During
5676 		 * boot, only the boot cpu should be on-line;  we'll init the
5677 		 * secondary cpus' numa_mem as they come on-line.  During
5678 		 * node/memory hotplug, we'll fixup all on-line cpus.
5679 		 */
5680 		for_each_online_cpu(cpu)
5681 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5682 #endif
5683 	}
5684 
5685 	spin_unlock(&lock);
5686 }
5687 
5688 static noinline void __init
5689 build_all_zonelists_init(void)
5690 {
5691 	int cpu;
5692 
5693 	__build_all_zonelists(NULL);
5694 
5695 	/*
5696 	 * Initialize the boot_pagesets that are going to be used
5697 	 * for bootstrapping processors. The real pagesets for
5698 	 * each zone will be allocated later when the per cpu
5699 	 * allocator is available.
5700 	 *
5701 	 * boot_pagesets are used also for bootstrapping offline
5702 	 * cpus if the system is already booted because the pagesets
5703 	 * are needed to initialize allocators on a specific cpu too.
5704 	 * F.e. the percpu allocator needs the page allocator which
5705 	 * needs the percpu allocator in order to allocate its pagesets
5706 	 * (a chicken-egg dilemma).
5707 	 */
5708 	for_each_possible_cpu(cpu)
5709 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5710 
5711 	mminit_verify_zonelist();
5712 	cpuset_init_current_mems_allowed();
5713 }
5714 
5715 /*
5716  * unless system_state == SYSTEM_BOOTING.
5717  *
5718  * __ref due to call of __init annotated helper build_all_zonelists_init
5719  * [protected by SYSTEM_BOOTING].
5720  */
5721 void __ref build_all_zonelists(pg_data_t *pgdat)
5722 {
5723 	if (system_state == SYSTEM_BOOTING) {
5724 		build_all_zonelists_init();
5725 	} else {
5726 		__build_all_zonelists(pgdat);
5727 		/* cpuset refresh routine should be here */
5728 	}
5729 	vm_total_pages = nr_free_pagecache_pages();
5730 	/*
5731 	 * Disable grouping by mobility if the number of pages in the
5732 	 * system is too low to allow the mechanism to work. It would be
5733 	 * more accurate, but expensive to check per-zone. This check is
5734 	 * made on memory-hotadd so a system can start with mobility
5735 	 * disabled and enable it later
5736 	 */
5737 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5738 		page_group_by_mobility_disabled = 1;
5739 	else
5740 		page_group_by_mobility_disabled = 0;
5741 
5742 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5743 		nr_online_nodes,
5744 		page_group_by_mobility_disabled ? "off" : "on",
5745 		vm_total_pages);
5746 #ifdef CONFIG_NUMA
5747 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5748 #endif
5749 }
5750 
5751 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5752 static bool __meminit
5753 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5754 {
5755 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5756 	static struct memblock_region *r;
5757 
5758 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5759 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5760 			for_each_memblock(memory, r) {
5761 				if (*pfn < memblock_region_memory_end_pfn(r))
5762 					break;
5763 			}
5764 		}
5765 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
5766 		    memblock_is_mirror(r)) {
5767 			*pfn = memblock_region_memory_end_pfn(r);
5768 			return true;
5769 		}
5770 	}
5771 #endif
5772 	return false;
5773 }
5774 
5775 /*
5776  * Initially all pages are reserved - free ones are freed
5777  * up by memblock_free_all() once the early boot process is
5778  * done. Non-atomic initialization, single-pass.
5779  */
5780 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5781 		unsigned long start_pfn, enum memmap_context context,
5782 		struct vmem_altmap *altmap)
5783 {
5784 	unsigned long pfn, end_pfn = start_pfn + size;
5785 	struct page *page;
5786 
5787 	if (highest_memmap_pfn < end_pfn - 1)
5788 		highest_memmap_pfn = end_pfn - 1;
5789 
5790 #ifdef CONFIG_ZONE_DEVICE
5791 	/*
5792 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5793 	 * memory. We limit the total number of pages to initialize to just
5794 	 * those that might contain the memory mapping. We will defer the
5795 	 * ZONE_DEVICE page initialization until after we have released
5796 	 * the hotplug lock.
5797 	 */
5798 	if (zone == ZONE_DEVICE) {
5799 		if (!altmap)
5800 			return;
5801 
5802 		if (start_pfn == altmap->base_pfn)
5803 			start_pfn += altmap->reserve;
5804 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5805 	}
5806 #endif
5807 
5808 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5809 		/*
5810 		 * There can be holes in boot-time mem_map[]s handed to this
5811 		 * function.  They do not exist on hotplugged memory.
5812 		 */
5813 		if (context == MEMMAP_EARLY) {
5814 			if (!early_pfn_valid(pfn))
5815 				continue;
5816 			if (!early_pfn_in_nid(pfn, nid))
5817 				continue;
5818 			if (overlap_memmap_init(zone, &pfn))
5819 				continue;
5820 			if (defer_init(nid, pfn, end_pfn))
5821 				break;
5822 		}
5823 
5824 		page = pfn_to_page(pfn);
5825 		__init_single_page(page, pfn, zone, nid);
5826 		if (context == MEMMAP_HOTPLUG)
5827 			__SetPageReserved(page);
5828 
5829 		/*
5830 		 * Mark the block movable so that blocks are reserved for
5831 		 * movable at startup. This will force kernel allocations
5832 		 * to reserve their blocks rather than leaking throughout
5833 		 * the address space during boot when many long-lived
5834 		 * kernel allocations are made.
5835 		 *
5836 		 * bitmap is created for zone's valid pfn range. but memmap
5837 		 * can be created for invalid pages (for alignment)
5838 		 * check here not to call set_pageblock_migratetype() against
5839 		 * pfn out of zone.
5840 		 */
5841 		if (!(pfn & (pageblock_nr_pages - 1))) {
5842 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5843 			cond_resched();
5844 		}
5845 	}
5846 }
5847 
5848 #ifdef CONFIG_ZONE_DEVICE
5849 void __ref memmap_init_zone_device(struct zone *zone,
5850 				   unsigned long start_pfn,
5851 				   unsigned long size,
5852 				   struct dev_pagemap *pgmap)
5853 {
5854 	unsigned long pfn, end_pfn = start_pfn + size;
5855 	struct pglist_data *pgdat = zone->zone_pgdat;
5856 	unsigned long zone_idx = zone_idx(zone);
5857 	unsigned long start = jiffies;
5858 	int nid = pgdat->node_id;
5859 
5860 	if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5861 		return;
5862 
5863 	/*
5864 	 * The call to memmap_init_zone should have already taken care
5865 	 * of the pages reserved for the memmap, so we can just jump to
5866 	 * the end of that region and start processing the device pages.
5867 	 */
5868 	if (pgmap->altmap_valid) {
5869 		struct vmem_altmap *altmap = &pgmap->altmap;
5870 
5871 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5872 		size = end_pfn - start_pfn;
5873 	}
5874 
5875 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5876 		struct page *page = pfn_to_page(pfn);
5877 
5878 		__init_single_page(page, pfn, zone_idx, nid);
5879 
5880 		/*
5881 		 * Mark page reserved as it will need to wait for onlining
5882 		 * phase for it to be fully associated with a zone.
5883 		 *
5884 		 * We can use the non-atomic __set_bit operation for setting
5885 		 * the flag as we are still initializing the pages.
5886 		 */
5887 		__SetPageReserved(page);
5888 
5889 		/*
5890 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5891 		 * pointer and hmm_data.  It is a bug if a ZONE_DEVICE
5892 		 * page is ever freed or placed on a driver-private list.
5893 		 */
5894 		page->pgmap = pgmap;
5895 		page->hmm_data = 0;
5896 
5897 		/*
5898 		 * Mark the block movable so that blocks are reserved for
5899 		 * movable at startup. This will force kernel allocations
5900 		 * to reserve their blocks rather than leaking throughout
5901 		 * the address space during boot when many long-lived
5902 		 * kernel allocations are made.
5903 		 *
5904 		 * bitmap is created for zone's valid pfn range. but memmap
5905 		 * can be created for invalid pages (for alignment)
5906 		 * check here not to call set_pageblock_migratetype() against
5907 		 * pfn out of zone.
5908 		 *
5909 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5910 		 * because this is done early in sparse_add_one_section
5911 		 */
5912 		if (!(pfn & (pageblock_nr_pages - 1))) {
5913 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5914 			cond_resched();
5915 		}
5916 	}
5917 
5918 	pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5919 		size, jiffies_to_msecs(jiffies - start));
5920 }
5921 
5922 #endif
5923 static void __meminit zone_init_free_lists(struct zone *zone)
5924 {
5925 	unsigned int order, t;
5926 	for_each_migratetype_order(order, t) {
5927 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5928 		zone->free_area[order].nr_free = 0;
5929 	}
5930 }
5931 
5932 void __meminit __weak memmap_init(unsigned long size, int nid,
5933 				  unsigned long zone, unsigned long start_pfn)
5934 {
5935 	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5936 }
5937 
5938 static int zone_batchsize(struct zone *zone)
5939 {
5940 #ifdef CONFIG_MMU
5941 	int batch;
5942 
5943 	/*
5944 	 * The per-cpu-pages pools are set to around 1000th of the
5945 	 * size of the zone.
5946 	 */
5947 	batch = zone_managed_pages(zone) / 1024;
5948 	/* But no more than a meg. */
5949 	if (batch * PAGE_SIZE > 1024 * 1024)
5950 		batch = (1024 * 1024) / PAGE_SIZE;
5951 	batch /= 4;		/* We effectively *= 4 below */
5952 	if (batch < 1)
5953 		batch = 1;
5954 
5955 	/*
5956 	 * Clamp the batch to a 2^n - 1 value. Having a power
5957 	 * of 2 value was found to be more likely to have
5958 	 * suboptimal cache aliasing properties in some cases.
5959 	 *
5960 	 * For example if 2 tasks are alternately allocating
5961 	 * batches of pages, one task can end up with a lot
5962 	 * of pages of one half of the possible page colors
5963 	 * and the other with pages of the other colors.
5964 	 */
5965 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5966 
5967 	return batch;
5968 
5969 #else
5970 	/* The deferral and batching of frees should be suppressed under NOMMU
5971 	 * conditions.
5972 	 *
5973 	 * The problem is that NOMMU needs to be able to allocate large chunks
5974 	 * of contiguous memory as there's no hardware page translation to
5975 	 * assemble apparent contiguous memory from discontiguous pages.
5976 	 *
5977 	 * Queueing large contiguous runs of pages for batching, however,
5978 	 * causes the pages to actually be freed in smaller chunks.  As there
5979 	 * can be a significant delay between the individual batches being
5980 	 * recycled, this leads to the once large chunks of space being
5981 	 * fragmented and becoming unavailable for high-order allocations.
5982 	 */
5983 	return 0;
5984 #endif
5985 }
5986 
5987 /*
5988  * pcp->high and pcp->batch values are related and dependent on one another:
5989  * ->batch must never be higher then ->high.
5990  * The following function updates them in a safe manner without read side
5991  * locking.
5992  *
5993  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5994  * those fields changing asynchronously (acording the the above rule).
5995  *
5996  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5997  * outside of boot time (or some other assurance that no concurrent updaters
5998  * exist).
5999  */
6000 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6001 		unsigned long batch)
6002 {
6003        /* start with a fail safe value for batch */
6004 	pcp->batch = 1;
6005 	smp_wmb();
6006 
6007        /* Update high, then batch, in order */
6008 	pcp->high = high;
6009 	smp_wmb();
6010 
6011 	pcp->batch = batch;
6012 }
6013 
6014 /* a companion to pageset_set_high() */
6015 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6016 {
6017 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6018 }
6019 
6020 static void pageset_init(struct per_cpu_pageset *p)
6021 {
6022 	struct per_cpu_pages *pcp;
6023 	int migratetype;
6024 
6025 	memset(p, 0, sizeof(*p));
6026 
6027 	pcp = &p->pcp;
6028 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6029 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6030 }
6031 
6032 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6033 {
6034 	pageset_init(p);
6035 	pageset_set_batch(p, batch);
6036 }
6037 
6038 /*
6039  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6040  * to the value high for the pageset p.
6041  */
6042 static void pageset_set_high(struct per_cpu_pageset *p,
6043 				unsigned long high)
6044 {
6045 	unsigned long batch = max(1UL, high / 4);
6046 	if ((high / 4) > (PAGE_SHIFT * 8))
6047 		batch = PAGE_SHIFT * 8;
6048 
6049 	pageset_update(&p->pcp, high, batch);
6050 }
6051 
6052 static void pageset_set_high_and_batch(struct zone *zone,
6053 				       struct per_cpu_pageset *pcp)
6054 {
6055 	if (percpu_pagelist_fraction)
6056 		pageset_set_high(pcp,
6057 			(zone_managed_pages(zone) /
6058 				percpu_pagelist_fraction));
6059 	else
6060 		pageset_set_batch(pcp, zone_batchsize(zone));
6061 }
6062 
6063 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6064 {
6065 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6066 
6067 	pageset_init(pcp);
6068 	pageset_set_high_and_batch(zone, pcp);
6069 }
6070 
6071 void __meminit setup_zone_pageset(struct zone *zone)
6072 {
6073 	int cpu;
6074 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6075 	for_each_possible_cpu(cpu)
6076 		zone_pageset_init(zone, cpu);
6077 }
6078 
6079 /*
6080  * Allocate per cpu pagesets and initialize them.
6081  * Before this call only boot pagesets were available.
6082  */
6083 void __init setup_per_cpu_pageset(void)
6084 {
6085 	struct pglist_data *pgdat;
6086 	struct zone *zone;
6087 
6088 	for_each_populated_zone(zone)
6089 		setup_zone_pageset(zone);
6090 
6091 	for_each_online_pgdat(pgdat)
6092 		pgdat->per_cpu_nodestats =
6093 			alloc_percpu(struct per_cpu_nodestat);
6094 }
6095 
6096 static __meminit void zone_pcp_init(struct zone *zone)
6097 {
6098 	/*
6099 	 * per cpu subsystem is not up at this point. The following code
6100 	 * relies on the ability of the linker to provide the
6101 	 * offset of a (static) per cpu variable into the per cpu area.
6102 	 */
6103 	zone->pageset = &boot_pageset;
6104 
6105 	if (populated_zone(zone))
6106 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6107 			zone->name, zone->present_pages,
6108 					 zone_batchsize(zone));
6109 }
6110 
6111 void __meminit init_currently_empty_zone(struct zone *zone,
6112 					unsigned long zone_start_pfn,
6113 					unsigned long size)
6114 {
6115 	struct pglist_data *pgdat = zone->zone_pgdat;
6116 	int zone_idx = zone_idx(zone) + 1;
6117 
6118 	if (zone_idx > pgdat->nr_zones)
6119 		pgdat->nr_zones = zone_idx;
6120 
6121 	zone->zone_start_pfn = zone_start_pfn;
6122 
6123 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6124 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6125 			pgdat->node_id,
6126 			(unsigned long)zone_idx(zone),
6127 			zone_start_pfn, (zone_start_pfn + size));
6128 
6129 	zone_init_free_lists(zone);
6130 	zone->initialized = 1;
6131 }
6132 
6133 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6134 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6135 
6136 /*
6137  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6138  */
6139 int __meminit __early_pfn_to_nid(unsigned long pfn,
6140 					struct mminit_pfnnid_cache *state)
6141 {
6142 	unsigned long start_pfn, end_pfn;
6143 	int nid;
6144 
6145 	if (state->last_start <= pfn && pfn < state->last_end)
6146 		return state->last_nid;
6147 
6148 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6149 	if (nid != NUMA_NO_NODE) {
6150 		state->last_start = start_pfn;
6151 		state->last_end = end_pfn;
6152 		state->last_nid = nid;
6153 	}
6154 
6155 	return nid;
6156 }
6157 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6158 
6159 /**
6160  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6161  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6162  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6163  *
6164  * If an architecture guarantees that all ranges registered contain no holes
6165  * and may be freed, this this function may be used instead of calling
6166  * memblock_free_early_nid() manually.
6167  */
6168 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6169 {
6170 	unsigned long start_pfn, end_pfn;
6171 	int i, this_nid;
6172 
6173 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6174 		start_pfn = min(start_pfn, max_low_pfn);
6175 		end_pfn = min(end_pfn, max_low_pfn);
6176 
6177 		if (start_pfn < end_pfn)
6178 			memblock_free_early_nid(PFN_PHYS(start_pfn),
6179 					(end_pfn - start_pfn) << PAGE_SHIFT,
6180 					this_nid);
6181 	}
6182 }
6183 
6184 /**
6185  * sparse_memory_present_with_active_regions - Call memory_present for each active range
6186  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6187  *
6188  * If an architecture guarantees that all ranges registered contain no holes and may
6189  * be freed, this function may be used instead of calling memory_present() manually.
6190  */
6191 void __init sparse_memory_present_with_active_regions(int nid)
6192 {
6193 	unsigned long start_pfn, end_pfn;
6194 	int i, this_nid;
6195 
6196 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6197 		memory_present(this_nid, start_pfn, end_pfn);
6198 }
6199 
6200 /**
6201  * get_pfn_range_for_nid - Return the start and end page frames for a node
6202  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6203  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6204  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6205  *
6206  * It returns the start and end page frame of a node based on information
6207  * provided by memblock_set_node(). If called for a node
6208  * with no available memory, a warning is printed and the start and end
6209  * PFNs will be 0.
6210  */
6211 void __init get_pfn_range_for_nid(unsigned int nid,
6212 			unsigned long *start_pfn, unsigned long *end_pfn)
6213 {
6214 	unsigned long this_start_pfn, this_end_pfn;
6215 	int i;
6216 
6217 	*start_pfn = -1UL;
6218 	*end_pfn = 0;
6219 
6220 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6221 		*start_pfn = min(*start_pfn, this_start_pfn);
6222 		*end_pfn = max(*end_pfn, this_end_pfn);
6223 	}
6224 
6225 	if (*start_pfn == -1UL)
6226 		*start_pfn = 0;
6227 }
6228 
6229 /*
6230  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6231  * assumption is made that zones within a node are ordered in monotonic
6232  * increasing memory addresses so that the "highest" populated zone is used
6233  */
6234 static void __init find_usable_zone_for_movable(void)
6235 {
6236 	int zone_index;
6237 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6238 		if (zone_index == ZONE_MOVABLE)
6239 			continue;
6240 
6241 		if (arch_zone_highest_possible_pfn[zone_index] >
6242 				arch_zone_lowest_possible_pfn[zone_index])
6243 			break;
6244 	}
6245 
6246 	VM_BUG_ON(zone_index == -1);
6247 	movable_zone = zone_index;
6248 }
6249 
6250 /*
6251  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6252  * because it is sized independent of architecture. Unlike the other zones,
6253  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6254  * in each node depending on the size of each node and how evenly kernelcore
6255  * is distributed. This helper function adjusts the zone ranges
6256  * provided by the architecture for a given node by using the end of the
6257  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6258  * zones within a node are in order of monotonic increases memory addresses
6259  */
6260 static void __init adjust_zone_range_for_zone_movable(int nid,
6261 					unsigned long zone_type,
6262 					unsigned long node_start_pfn,
6263 					unsigned long node_end_pfn,
6264 					unsigned long *zone_start_pfn,
6265 					unsigned long *zone_end_pfn)
6266 {
6267 	/* Only adjust if ZONE_MOVABLE is on this node */
6268 	if (zone_movable_pfn[nid]) {
6269 		/* Size ZONE_MOVABLE */
6270 		if (zone_type == ZONE_MOVABLE) {
6271 			*zone_start_pfn = zone_movable_pfn[nid];
6272 			*zone_end_pfn = min(node_end_pfn,
6273 				arch_zone_highest_possible_pfn[movable_zone]);
6274 
6275 		/* Adjust for ZONE_MOVABLE starting within this range */
6276 		} else if (!mirrored_kernelcore &&
6277 			*zone_start_pfn < zone_movable_pfn[nid] &&
6278 			*zone_end_pfn > zone_movable_pfn[nid]) {
6279 			*zone_end_pfn = zone_movable_pfn[nid];
6280 
6281 		/* Check if this whole range is within ZONE_MOVABLE */
6282 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6283 			*zone_start_pfn = *zone_end_pfn;
6284 	}
6285 }
6286 
6287 /*
6288  * Return the number of pages a zone spans in a node, including holes
6289  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6290  */
6291 static unsigned long __init zone_spanned_pages_in_node(int nid,
6292 					unsigned long zone_type,
6293 					unsigned long node_start_pfn,
6294 					unsigned long node_end_pfn,
6295 					unsigned long *zone_start_pfn,
6296 					unsigned long *zone_end_pfn,
6297 					unsigned long *ignored)
6298 {
6299 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6300 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6301 	/* When hotadd a new node from cpu_up(), the node should be empty */
6302 	if (!node_start_pfn && !node_end_pfn)
6303 		return 0;
6304 
6305 	/* Get the start and end of the zone */
6306 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6307 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6308 	adjust_zone_range_for_zone_movable(nid, zone_type,
6309 				node_start_pfn, node_end_pfn,
6310 				zone_start_pfn, zone_end_pfn);
6311 
6312 	/* Check that this node has pages within the zone's required range */
6313 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6314 		return 0;
6315 
6316 	/* Move the zone boundaries inside the node if necessary */
6317 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6318 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6319 
6320 	/* Return the spanned pages */
6321 	return *zone_end_pfn - *zone_start_pfn;
6322 }
6323 
6324 /*
6325  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6326  * then all holes in the requested range will be accounted for.
6327  */
6328 unsigned long __init __absent_pages_in_range(int nid,
6329 				unsigned long range_start_pfn,
6330 				unsigned long range_end_pfn)
6331 {
6332 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6333 	unsigned long start_pfn, end_pfn;
6334 	int i;
6335 
6336 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6337 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6338 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6339 		nr_absent -= end_pfn - start_pfn;
6340 	}
6341 	return nr_absent;
6342 }
6343 
6344 /**
6345  * absent_pages_in_range - Return number of page frames in holes within a range
6346  * @start_pfn: The start PFN to start searching for holes
6347  * @end_pfn: The end PFN to stop searching for holes
6348  *
6349  * Return: the number of pages frames in memory holes within a range.
6350  */
6351 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6352 							unsigned long end_pfn)
6353 {
6354 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6355 }
6356 
6357 /* Return the number of page frames in holes in a zone on a node */
6358 static unsigned long __init zone_absent_pages_in_node(int nid,
6359 					unsigned long zone_type,
6360 					unsigned long node_start_pfn,
6361 					unsigned long node_end_pfn,
6362 					unsigned long *ignored)
6363 {
6364 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6365 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6366 	unsigned long zone_start_pfn, zone_end_pfn;
6367 	unsigned long nr_absent;
6368 
6369 	/* When hotadd a new node from cpu_up(), the node should be empty */
6370 	if (!node_start_pfn && !node_end_pfn)
6371 		return 0;
6372 
6373 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6374 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6375 
6376 	adjust_zone_range_for_zone_movable(nid, zone_type,
6377 			node_start_pfn, node_end_pfn,
6378 			&zone_start_pfn, &zone_end_pfn);
6379 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6380 
6381 	/*
6382 	 * ZONE_MOVABLE handling.
6383 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6384 	 * and vice versa.
6385 	 */
6386 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6387 		unsigned long start_pfn, end_pfn;
6388 		struct memblock_region *r;
6389 
6390 		for_each_memblock(memory, r) {
6391 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6392 					  zone_start_pfn, zone_end_pfn);
6393 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6394 					zone_start_pfn, zone_end_pfn);
6395 
6396 			if (zone_type == ZONE_MOVABLE &&
6397 			    memblock_is_mirror(r))
6398 				nr_absent += end_pfn - start_pfn;
6399 
6400 			if (zone_type == ZONE_NORMAL &&
6401 			    !memblock_is_mirror(r))
6402 				nr_absent += end_pfn - start_pfn;
6403 		}
6404 	}
6405 
6406 	return nr_absent;
6407 }
6408 
6409 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6410 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6411 					unsigned long zone_type,
6412 					unsigned long node_start_pfn,
6413 					unsigned long node_end_pfn,
6414 					unsigned long *zone_start_pfn,
6415 					unsigned long *zone_end_pfn,
6416 					unsigned long *zones_size)
6417 {
6418 	unsigned int zone;
6419 
6420 	*zone_start_pfn = node_start_pfn;
6421 	for (zone = 0; zone < zone_type; zone++)
6422 		*zone_start_pfn += zones_size[zone];
6423 
6424 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6425 
6426 	return zones_size[zone_type];
6427 }
6428 
6429 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6430 						unsigned long zone_type,
6431 						unsigned long node_start_pfn,
6432 						unsigned long node_end_pfn,
6433 						unsigned long *zholes_size)
6434 {
6435 	if (!zholes_size)
6436 		return 0;
6437 
6438 	return zholes_size[zone_type];
6439 }
6440 
6441 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6442 
6443 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6444 						unsigned long node_start_pfn,
6445 						unsigned long node_end_pfn,
6446 						unsigned long *zones_size,
6447 						unsigned long *zholes_size)
6448 {
6449 	unsigned long realtotalpages = 0, totalpages = 0;
6450 	enum zone_type i;
6451 
6452 	for (i = 0; i < MAX_NR_ZONES; i++) {
6453 		struct zone *zone = pgdat->node_zones + i;
6454 		unsigned long zone_start_pfn, zone_end_pfn;
6455 		unsigned long size, real_size;
6456 
6457 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6458 						  node_start_pfn,
6459 						  node_end_pfn,
6460 						  &zone_start_pfn,
6461 						  &zone_end_pfn,
6462 						  zones_size);
6463 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6464 						  node_start_pfn, node_end_pfn,
6465 						  zholes_size);
6466 		if (size)
6467 			zone->zone_start_pfn = zone_start_pfn;
6468 		else
6469 			zone->zone_start_pfn = 0;
6470 		zone->spanned_pages = size;
6471 		zone->present_pages = real_size;
6472 
6473 		totalpages += size;
6474 		realtotalpages += real_size;
6475 	}
6476 
6477 	pgdat->node_spanned_pages = totalpages;
6478 	pgdat->node_present_pages = realtotalpages;
6479 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6480 							realtotalpages);
6481 }
6482 
6483 #ifndef CONFIG_SPARSEMEM
6484 /*
6485  * Calculate the size of the zone->blockflags rounded to an unsigned long
6486  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6487  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6488  * round what is now in bits to nearest long in bits, then return it in
6489  * bytes.
6490  */
6491 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6492 {
6493 	unsigned long usemapsize;
6494 
6495 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6496 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6497 	usemapsize = usemapsize >> pageblock_order;
6498 	usemapsize *= NR_PAGEBLOCK_BITS;
6499 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6500 
6501 	return usemapsize / 8;
6502 }
6503 
6504 static void __ref setup_usemap(struct pglist_data *pgdat,
6505 				struct zone *zone,
6506 				unsigned long zone_start_pfn,
6507 				unsigned long zonesize)
6508 {
6509 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6510 	zone->pageblock_flags = NULL;
6511 	if (usemapsize) {
6512 		zone->pageblock_flags =
6513 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6514 					    pgdat->node_id);
6515 		if (!zone->pageblock_flags)
6516 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6517 			      usemapsize, zone->name, pgdat->node_id);
6518 	}
6519 }
6520 #else
6521 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6522 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6523 #endif /* CONFIG_SPARSEMEM */
6524 
6525 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6526 
6527 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6528 void __init set_pageblock_order(void)
6529 {
6530 	unsigned int order;
6531 
6532 	/* Check that pageblock_nr_pages has not already been setup */
6533 	if (pageblock_order)
6534 		return;
6535 
6536 	if (HPAGE_SHIFT > PAGE_SHIFT)
6537 		order = HUGETLB_PAGE_ORDER;
6538 	else
6539 		order = MAX_ORDER - 1;
6540 
6541 	/*
6542 	 * Assume the largest contiguous order of interest is a huge page.
6543 	 * This value may be variable depending on boot parameters on IA64 and
6544 	 * powerpc.
6545 	 */
6546 	pageblock_order = order;
6547 }
6548 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6549 
6550 /*
6551  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6552  * is unused as pageblock_order is set at compile-time. See
6553  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6554  * the kernel config
6555  */
6556 void __init set_pageblock_order(void)
6557 {
6558 }
6559 
6560 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6561 
6562 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6563 						unsigned long present_pages)
6564 {
6565 	unsigned long pages = spanned_pages;
6566 
6567 	/*
6568 	 * Provide a more accurate estimation if there are holes within
6569 	 * the zone and SPARSEMEM is in use. If there are holes within the
6570 	 * zone, each populated memory region may cost us one or two extra
6571 	 * memmap pages due to alignment because memmap pages for each
6572 	 * populated regions may not be naturally aligned on page boundary.
6573 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6574 	 */
6575 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6576 	    IS_ENABLED(CONFIG_SPARSEMEM))
6577 		pages = present_pages;
6578 
6579 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6580 }
6581 
6582 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6583 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6584 {
6585 	spin_lock_init(&pgdat->split_queue_lock);
6586 	INIT_LIST_HEAD(&pgdat->split_queue);
6587 	pgdat->split_queue_len = 0;
6588 }
6589 #else
6590 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6591 #endif
6592 
6593 #ifdef CONFIG_COMPACTION
6594 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6595 {
6596 	init_waitqueue_head(&pgdat->kcompactd_wait);
6597 }
6598 #else
6599 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6600 #endif
6601 
6602 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6603 {
6604 	pgdat_resize_init(pgdat);
6605 
6606 	pgdat_init_split_queue(pgdat);
6607 	pgdat_init_kcompactd(pgdat);
6608 
6609 	init_waitqueue_head(&pgdat->kswapd_wait);
6610 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6611 
6612 	pgdat_page_ext_init(pgdat);
6613 	spin_lock_init(&pgdat->lru_lock);
6614 	lruvec_init(node_lruvec(pgdat));
6615 }
6616 
6617 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6618 							unsigned long remaining_pages)
6619 {
6620 	atomic_long_set(&zone->managed_pages, remaining_pages);
6621 	zone_set_nid(zone, nid);
6622 	zone->name = zone_names[idx];
6623 	zone->zone_pgdat = NODE_DATA(nid);
6624 	spin_lock_init(&zone->lock);
6625 	zone_seqlock_init(zone);
6626 	zone_pcp_init(zone);
6627 }
6628 
6629 /*
6630  * Set up the zone data structures
6631  * - init pgdat internals
6632  * - init all zones belonging to this node
6633  *
6634  * NOTE: this function is only called during memory hotplug
6635  */
6636 #ifdef CONFIG_MEMORY_HOTPLUG
6637 void __ref free_area_init_core_hotplug(int nid)
6638 {
6639 	enum zone_type z;
6640 	pg_data_t *pgdat = NODE_DATA(nid);
6641 
6642 	pgdat_init_internals(pgdat);
6643 	for (z = 0; z < MAX_NR_ZONES; z++)
6644 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6645 }
6646 #endif
6647 
6648 /*
6649  * Set up the zone data structures:
6650  *   - mark all pages reserved
6651  *   - mark all memory queues empty
6652  *   - clear the memory bitmaps
6653  *
6654  * NOTE: pgdat should get zeroed by caller.
6655  * NOTE: this function is only called during early init.
6656  */
6657 static void __init free_area_init_core(struct pglist_data *pgdat)
6658 {
6659 	enum zone_type j;
6660 	int nid = pgdat->node_id;
6661 
6662 	pgdat_init_internals(pgdat);
6663 	pgdat->per_cpu_nodestats = &boot_nodestats;
6664 
6665 	for (j = 0; j < MAX_NR_ZONES; j++) {
6666 		struct zone *zone = pgdat->node_zones + j;
6667 		unsigned long size, freesize, memmap_pages;
6668 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6669 
6670 		size = zone->spanned_pages;
6671 		freesize = zone->present_pages;
6672 
6673 		/*
6674 		 * Adjust freesize so that it accounts for how much memory
6675 		 * is used by this zone for memmap. This affects the watermark
6676 		 * and per-cpu initialisations
6677 		 */
6678 		memmap_pages = calc_memmap_size(size, freesize);
6679 		if (!is_highmem_idx(j)) {
6680 			if (freesize >= memmap_pages) {
6681 				freesize -= memmap_pages;
6682 				if (memmap_pages)
6683 					printk(KERN_DEBUG
6684 					       "  %s zone: %lu pages used for memmap\n",
6685 					       zone_names[j], memmap_pages);
6686 			} else
6687 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6688 					zone_names[j], memmap_pages, freesize);
6689 		}
6690 
6691 		/* Account for reserved pages */
6692 		if (j == 0 && freesize > dma_reserve) {
6693 			freesize -= dma_reserve;
6694 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6695 					zone_names[0], dma_reserve);
6696 		}
6697 
6698 		if (!is_highmem_idx(j))
6699 			nr_kernel_pages += freesize;
6700 		/* Charge for highmem memmap if there are enough kernel pages */
6701 		else if (nr_kernel_pages > memmap_pages * 2)
6702 			nr_kernel_pages -= memmap_pages;
6703 		nr_all_pages += freesize;
6704 
6705 		/*
6706 		 * Set an approximate value for lowmem here, it will be adjusted
6707 		 * when the bootmem allocator frees pages into the buddy system.
6708 		 * And all highmem pages will be managed by the buddy system.
6709 		 */
6710 		zone_init_internals(zone, j, nid, freesize);
6711 
6712 		if (!size)
6713 			continue;
6714 
6715 		set_pageblock_order();
6716 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6717 		init_currently_empty_zone(zone, zone_start_pfn, size);
6718 		memmap_init(size, nid, j, zone_start_pfn);
6719 	}
6720 }
6721 
6722 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6723 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6724 {
6725 	unsigned long __maybe_unused start = 0;
6726 	unsigned long __maybe_unused offset = 0;
6727 
6728 	/* Skip empty nodes */
6729 	if (!pgdat->node_spanned_pages)
6730 		return;
6731 
6732 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6733 	offset = pgdat->node_start_pfn - start;
6734 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6735 	if (!pgdat->node_mem_map) {
6736 		unsigned long size, end;
6737 		struct page *map;
6738 
6739 		/*
6740 		 * The zone's endpoints aren't required to be MAX_ORDER
6741 		 * aligned but the node_mem_map endpoints must be in order
6742 		 * for the buddy allocator to function correctly.
6743 		 */
6744 		end = pgdat_end_pfn(pgdat);
6745 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6746 		size =  (end - start) * sizeof(struct page);
6747 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6748 					  pgdat->node_id);
6749 		if (!map)
6750 			panic("Failed to allocate %ld bytes for node %d memory map\n",
6751 			      size, pgdat->node_id);
6752 		pgdat->node_mem_map = map + offset;
6753 	}
6754 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6755 				__func__, pgdat->node_id, (unsigned long)pgdat,
6756 				(unsigned long)pgdat->node_mem_map);
6757 #ifndef CONFIG_NEED_MULTIPLE_NODES
6758 	/*
6759 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6760 	 */
6761 	if (pgdat == NODE_DATA(0)) {
6762 		mem_map = NODE_DATA(0)->node_mem_map;
6763 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6764 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6765 			mem_map -= offset;
6766 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6767 	}
6768 #endif
6769 }
6770 #else
6771 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6772 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6773 
6774 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6775 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6776 {
6777 	pgdat->first_deferred_pfn = ULONG_MAX;
6778 }
6779 #else
6780 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6781 #endif
6782 
6783 void __init free_area_init_node(int nid, unsigned long *zones_size,
6784 				   unsigned long node_start_pfn,
6785 				   unsigned long *zholes_size)
6786 {
6787 	pg_data_t *pgdat = NODE_DATA(nid);
6788 	unsigned long start_pfn = 0;
6789 	unsigned long end_pfn = 0;
6790 
6791 	/* pg_data_t should be reset to zero when it's allocated */
6792 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6793 
6794 	pgdat->node_id = nid;
6795 	pgdat->node_start_pfn = node_start_pfn;
6796 	pgdat->per_cpu_nodestats = NULL;
6797 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6798 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6799 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6800 		(u64)start_pfn << PAGE_SHIFT,
6801 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6802 #else
6803 	start_pfn = node_start_pfn;
6804 #endif
6805 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6806 				  zones_size, zholes_size);
6807 
6808 	alloc_node_mem_map(pgdat);
6809 	pgdat_set_deferred_range(pgdat);
6810 
6811 	free_area_init_core(pgdat);
6812 }
6813 
6814 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6815 /*
6816  * Zero all valid struct pages in range [spfn, epfn), return number of struct
6817  * pages zeroed
6818  */
6819 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6820 {
6821 	unsigned long pfn;
6822 	u64 pgcnt = 0;
6823 
6824 	for (pfn = spfn; pfn < epfn; pfn++) {
6825 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6826 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6827 				+ pageblock_nr_pages - 1;
6828 			continue;
6829 		}
6830 		mm_zero_struct_page(pfn_to_page(pfn));
6831 		pgcnt++;
6832 	}
6833 
6834 	return pgcnt;
6835 }
6836 
6837 /*
6838  * Only struct pages that are backed by physical memory are zeroed and
6839  * initialized by going through __init_single_page(). But, there are some
6840  * struct pages which are reserved in memblock allocator and their fields
6841  * may be accessed (for example page_to_pfn() on some configuration accesses
6842  * flags). We must explicitly zero those struct pages.
6843  *
6844  * This function also addresses a similar issue where struct pages are left
6845  * uninitialized because the physical address range is not covered by
6846  * memblock.memory or memblock.reserved. That could happen when memblock
6847  * layout is manually configured via memmap=.
6848  */
6849 void __init zero_resv_unavail(void)
6850 {
6851 	phys_addr_t start, end;
6852 	u64 i, pgcnt;
6853 	phys_addr_t next = 0;
6854 
6855 	/*
6856 	 * Loop through unavailable ranges not covered by memblock.memory.
6857 	 */
6858 	pgcnt = 0;
6859 	for_each_mem_range(i, &memblock.memory, NULL,
6860 			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6861 		if (next < start)
6862 			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6863 		next = end;
6864 	}
6865 	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6866 
6867 	/*
6868 	 * Struct pages that do not have backing memory. This could be because
6869 	 * firmware is using some of this memory, or for some other reasons.
6870 	 */
6871 	if (pgcnt)
6872 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6873 }
6874 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6875 
6876 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6877 
6878 #if MAX_NUMNODES > 1
6879 /*
6880  * Figure out the number of possible node ids.
6881  */
6882 void __init setup_nr_node_ids(void)
6883 {
6884 	unsigned int highest;
6885 
6886 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6887 	nr_node_ids = highest + 1;
6888 }
6889 #endif
6890 
6891 /**
6892  * node_map_pfn_alignment - determine the maximum internode alignment
6893  *
6894  * This function should be called after node map is populated and sorted.
6895  * It calculates the maximum power of two alignment which can distinguish
6896  * all the nodes.
6897  *
6898  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6899  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6900  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6901  * shifted, 1GiB is enough and this function will indicate so.
6902  *
6903  * This is used to test whether pfn -> nid mapping of the chosen memory
6904  * model has fine enough granularity to avoid incorrect mapping for the
6905  * populated node map.
6906  *
6907  * Return: the determined alignment in pfn's.  0 if there is no alignment
6908  * requirement (single node).
6909  */
6910 unsigned long __init node_map_pfn_alignment(void)
6911 {
6912 	unsigned long accl_mask = 0, last_end = 0;
6913 	unsigned long start, end, mask;
6914 	int last_nid = NUMA_NO_NODE;
6915 	int i, nid;
6916 
6917 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6918 		if (!start || last_nid < 0 || last_nid == nid) {
6919 			last_nid = nid;
6920 			last_end = end;
6921 			continue;
6922 		}
6923 
6924 		/*
6925 		 * Start with a mask granular enough to pin-point to the
6926 		 * start pfn and tick off bits one-by-one until it becomes
6927 		 * too coarse to separate the current node from the last.
6928 		 */
6929 		mask = ~((1 << __ffs(start)) - 1);
6930 		while (mask && last_end <= (start & (mask << 1)))
6931 			mask <<= 1;
6932 
6933 		/* accumulate all internode masks */
6934 		accl_mask |= mask;
6935 	}
6936 
6937 	/* convert mask to number of pages */
6938 	return ~accl_mask + 1;
6939 }
6940 
6941 /* Find the lowest pfn for a node */
6942 static unsigned long __init find_min_pfn_for_node(int nid)
6943 {
6944 	unsigned long min_pfn = ULONG_MAX;
6945 	unsigned long start_pfn;
6946 	int i;
6947 
6948 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6949 		min_pfn = min(min_pfn, start_pfn);
6950 
6951 	if (min_pfn == ULONG_MAX) {
6952 		pr_warn("Could not find start_pfn for node %d\n", nid);
6953 		return 0;
6954 	}
6955 
6956 	return min_pfn;
6957 }
6958 
6959 /**
6960  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6961  *
6962  * Return: the minimum PFN based on information provided via
6963  * memblock_set_node().
6964  */
6965 unsigned long __init find_min_pfn_with_active_regions(void)
6966 {
6967 	return find_min_pfn_for_node(MAX_NUMNODES);
6968 }
6969 
6970 /*
6971  * early_calculate_totalpages()
6972  * Sum pages in active regions for movable zone.
6973  * Populate N_MEMORY for calculating usable_nodes.
6974  */
6975 static unsigned long __init early_calculate_totalpages(void)
6976 {
6977 	unsigned long totalpages = 0;
6978 	unsigned long start_pfn, end_pfn;
6979 	int i, nid;
6980 
6981 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6982 		unsigned long pages = end_pfn - start_pfn;
6983 
6984 		totalpages += pages;
6985 		if (pages)
6986 			node_set_state(nid, N_MEMORY);
6987 	}
6988 	return totalpages;
6989 }
6990 
6991 /*
6992  * Find the PFN the Movable zone begins in each node. Kernel memory
6993  * is spread evenly between nodes as long as the nodes have enough
6994  * memory. When they don't, some nodes will have more kernelcore than
6995  * others
6996  */
6997 static void __init find_zone_movable_pfns_for_nodes(void)
6998 {
6999 	int i, nid;
7000 	unsigned long usable_startpfn;
7001 	unsigned long kernelcore_node, kernelcore_remaining;
7002 	/* save the state before borrow the nodemask */
7003 	nodemask_t saved_node_state = node_states[N_MEMORY];
7004 	unsigned long totalpages = early_calculate_totalpages();
7005 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7006 	struct memblock_region *r;
7007 
7008 	/* Need to find movable_zone earlier when movable_node is specified. */
7009 	find_usable_zone_for_movable();
7010 
7011 	/*
7012 	 * If movable_node is specified, ignore kernelcore and movablecore
7013 	 * options.
7014 	 */
7015 	if (movable_node_is_enabled()) {
7016 		for_each_memblock(memory, r) {
7017 			if (!memblock_is_hotpluggable(r))
7018 				continue;
7019 
7020 			nid = r->nid;
7021 
7022 			usable_startpfn = PFN_DOWN(r->base);
7023 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7024 				min(usable_startpfn, zone_movable_pfn[nid]) :
7025 				usable_startpfn;
7026 		}
7027 
7028 		goto out2;
7029 	}
7030 
7031 	/*
7032 	 * If kernelcore=mirror is specified, ignore movablecore option
7033 	 */
7034 	if (mirrored_kernelcore) {
7035 		bool mem_below_4gb_not_mirrored = false;
7036 
7037 		for_each_memblock(memory, r) {
7038 			if (memblock_is_mirror(r))
7039 				continue;
7040 
7041 			nid = r->nid;
7042 
7043 			usable_startpfn = memblock_region_memory_base_pfn(r);
7044 
7045 			if (usable_startpfn < 0x100000) {
7046 				mem_below_4gb_not_mirrored = true;
7047 				continue;
7048 			}
7049 
7050 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7051 				min(usable_startpfn, zone_movable_pfn[nid]) :
7052 				usable_startpfn;
7053 		}
7054 
7055 		if (mem_below_4gb_not_mirrored)
7056 			pr_warn("This configuration results in unmirrored kernel memory.");
7057 
7058 		goto out2;
7059 	}
7060 
7061 	/*
7062 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7063 	 * amount of necessary memory.
7064 	 */
7065 	if (required_kernelcore_percent)
7066 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7067 				       10000UL;
7068 	if (required_movablecore_percent)
7069 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7070 					10000UL;
7071 
7072 	/*
7073 	 * If movablecore= was specified, calculate what size of
7074 	 * kernelcore that corresponds so that memory usable for
7075 	 * any allocation type is evenly spread. If both kernelcore
7076 	 * and movablecore are specified, then the value of kernelcore
7077 	 * will be used for required_kernelcore if it's greater than
7078 	 * what movablecore would have allowed.
7079 	 */
7080 	if (required_movablecore) {
7081 		unsigned long corepages;
7082 
7083 		/*
7084 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7085 		 * was requested by the user
7086 		 */
7087 		required_movablecore =
7088 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7089 		required_movablecore = min(totalpages, required_movablecore);
7090 		corepages = totalpages - required_movablecore;
7091 
7092 		required_kernelcore = max(required_kernelcore, corepages);
7093 	}
7094 
7095 	/*
7096 	 * If kernelcore was not specified or kernelcore size is larger
7097 	 * than totalpages, there is no ZONE_MOVABLE.
7098 	 */
7099 	if (!required_kernelcore || required_kernelcore >= totalpages)
7100 		goto out;
7101 
7102 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7103 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7104 
7105 restart:
7106 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7107 	kernelcore_node = required_kernelcore / usable_nodes;
7108 	for_each_node_state(nid, N_MEMORY) {
7109 		unsigned long start_pfn, end_pfn;
7110 
7111 		/*
7112 		 * Recalculate kernelcore_node if the division per node
7113 		 * now exceeds what is necessary to satisfy the requested
7114 		 * amount of memory for the kernel
7115 		 */
7116 		if (required_kernelcore < kernelcore_node)
7117 			kernelcore_node = required_kernelcore / usable_nodes;
7118 
7119 		/*
7120 		 * As the map is walked, we track how much memory is usable
7121 		 * by the kernel using kernelcore_remaining. When it is
7122 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7123 		 */
7124 		kernelcore_remaining = kernelcore_node;
7125 
7126 		/* Go through each range of PFNs within this node */
7127 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7128 			unsigned long size_pages;
7129 
7130 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7131 			if (start_pfn >= end_pfn)
7132 				continue;
7133 
7134 			/* Account for what is only usable for kernelcore */
7135 			if (start_pfn < usable_startpfn) {
7136 				unsigned long kernel_pages;
7137 				kernel_pages = min(end_pfn, usable_startpfn)
7138 								- start_pfn;
7139 
7140 				kernelcore_remaining -= min(kernel_pages,
7141 							kernelcore_remaining);
7142 				required_kernelcore -= min(kernel_pages,
7143 							required_kernelcore);
7144 
7145 				/* Continue if range is now fully accounted */
7146 				if (end_pfn <= usable_startpfn) {
7147 
7148 					/*
7149 					 * Push zone_movable_pfn to the end so
7150 					 * that if we have to rebalance
7151 					 * kernelcore across nodes, we will
7152 					 * not double account here
7153 					 */
7154 					zone_movable_pfn[nid] = end_pfn;
7155 					continue;
7156 				}
7157 				start_pfn = usable_startpfn;
7158 			}
7159 
7160 			/*
7161 			 * The usable PFN range for ZONE_MOVABLE is from
7162 			 * start_pfn->end_pfn. Calculate size_pages as the
7163 			 * number of pages used as kernelcore
7164 			 */
7165 			size_pages = end_pfn - start_pfn;
7166 			if (size_pages > kernelcore_remaining)
7167 				size_pages = kernelcore_remaining;
7168 			zone_movable_pfn[nid] = start_pfn + size_pages;
7169 
7170 			/*
7171 			 * Some kernelcore has been met, update counts and
7172 			 * break if the kernelcore for this node has been
7173 			 * satisfied
7174 			 */
7175 			required_kernelcore -= min(required_kernelcore,
7176 								size_pages);
7177 			kernelcore_remaining -= size_pages;
7178 			if (!kernelcore_remaining)
7179 				break;
7180 		}
7181 	}
7182 
7183 	/*
7184 	 * If there is still required_kernelcore, we do another pass with one
7185 	 * less node in the count. This will push zone_movable_pfn[nid] further
7186 	 * along on the nodes that still have memory until kernelcore is
7187 	 * satisfied
7188 	 */
7189 	usable_nodes--;
7190 	if (usable_nodes && required_kernelcore > usable_nodes)
7191 		goto restart;
7192 
7193 out2:
7194 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7195 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7196 		zone_movable_pfn[nid] =
7197 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7198 
7199 out:
7200 	/* restore the node_state */
7201 	node_states[N_MEMORY] = saved_node_state;
7202 }
7203 
7204 /* Any regular or high memory on that node ? */
7205 static void check_for_memory(pg_data_t *pgdat, int nid)
7206 {
7207 	enum zone_type zone_type;
7208 
7209 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7210 		struct zone *zone = &pgdat->node_zones[zone_type];
7211 		if (populated_zone(zone)) {
7212 			if (IS_ENABLED(CONFIG_HIGHMEM))
7213 				node_set_state(nid, N_HIGH_MEMORY);
7214 			if (zone_type <= ZONE_NORMAL)
7215 				node_set_state(nid, N_NORMAL_MEMORY);
7216 			break;
7217 		}
7218 	}
7219 }
7220 
7221 /**
7222  * free_area_init_nodes - Initialise all pg_data_t and zone data
7223  * @max_zone_pfn: an array of max PFNs for each zone
7224  *
7225  * This will call free_area_init_node() for each active node in the system.
7226  * Using the page ranges provided by memblock_set_node(), the size of each
7227  * zone in each node and their holes is calculated. If the maximum PFN
7228  * between two adjacent zones match, it is assumed that the zone is empty.
7229  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7230  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7231  * starts where the previous one ended. For example, ZONE_DMA32 starts
7232  * at arch_max_dma_pfn.
7233  */
7234 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7235 {
7236 	unsigned long start_pfn, end_pfn;
7237 	int i, nid;
7238 
7239 	/* Record where the zone boundaries are */
7240 	memset(arch_zone_lowest_possible_pfn, 0,
7241 				sizeof(arch_zone_lowest_possible_pfn));
7242 	memset(arch_zone_highest_possible_pfn, 0,
7243 				sizeof(arch_zone_highest_possible_pfn));
7244 
7245 	start_pfn = find_min_pfn_with_active_regions();
7246 
7247 	for (i = 0; i < MAX_NR_ZONES; i++) {
7248 		if (i == ZONE_MOVABLE)
7249 			continue;
7250 
7251 		end_pfn = max(max_zone_pfn[i], start_pfn);
7252 		arch_zone_lowest_possible_pfn[i] = start_pfn;
7253 		arch_zone_highest_possible_pfn[i] = end_pfn;
7254 
7255 		start_pfn = end_pfn;
7256 	}
7257 
7258 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7259 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7260 	find_zone_movable_pfns_for_nodes();
7261 
7262 	/* Print out the zone ranges */
7263 	pr_info("Zone ranges:\n");
7264 	for (i = 0; i < MAX_NR_ZONES; i++) {
7265 		if (i == ZONE_MOVABLE)
7266 			continue;
7267 		pr_info("  %-8s ", zone_names[i]);
7268 		if (arch_zone_lowest_possible_pfn[i] ==
7269 				arch_zone_highest_possible_pfn[i])
7270 			pr_cont("empty\n");
7271 		else
7272 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7273 				(u64)arch_zone_lowest_possible_pfn[i]
7274 					<< PAGE_SHIFT,
7275 				((u64)arch_zone_highest_possible_pfn[i]
7276 					<< PAGE_SHIFT) - 1);
7277 	}
7278 
7279 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7280 	pr_info("Movable zone start for each node\n");
7281 	for (i = 0; i < MAX_NUMNODES; i++) {
7282 		if (zone_movable_pfn[i])
7283 			pr_info("  Node %d: %#018Lx\n", i,
7284 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7285 	}
7286 
7287 	/* Print out the early node map */
7288 	pr_info("Early memory node ranges\n");
7289 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7290 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7291 			(u64)start_pfn << PAGE_SHIFT,
7292 			((u64)end_pfn << PAGE_SHIFT) - 1);
7293 
7294 	/* Initialise every node */
7295 	mminit_verify_pageflags_layout();
7296 	setup_nr_node_ids();
7297 	zero_resv_unavail();
7298 	for_each_online_node(nid) {
7299 		pg_data_t *pgdat = NODE_DATA(nid);
7300 		free_area_init_node(nid, NULL,
7301 				find_min_pfn_for_node(nid), NULL);
7302 
7303 		/* Any memory on that node */
7304 		if (pgdat->node_present_pages)
7305 			node_set_state(nid, N_MEMORY);
7306 		check_for_memory(pgdat, nid);
7307 	}
7308 }
7309 
7310 static int __init cmdline_parse_core(char *p, unsigned long *core,
7311 				     unsigned long *percent)
7312 {
7313 	unsigned long long coremem;
7314 	char *endptr;
7315 
7316 	if (!p)
7317 		return -EINVAL;
7318 
7319 	/* Value may be a percentage of total memory, otherwise bytes */
7320 	coremem = simple_strtoull(p, &endptr, 0);
7321 	if (*endptr == '%') {
7322 		/* Paranoid check for percent values greater than 100 */
7323 		WARN_ON(coremem > 100);
7324 
7325 		*percent = coremem;
7326 	} else {
7327 		coremem = memparse(p, &p);
7328 		/* Paranoid check that UL is enough for the coremem value */
7329 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7330 
7331 		*core = coremem >> PAGE_SHIFT;
7332 		*percent = 0UL;
7333 	}
7334 	return 0;
7335 }
7336 
7337 /*
7338  * kernelcore=size sets the amount of memory for use for allocations that
7339  * cannot be reclaimed or migrated.
7340  */
7341 static int __init cmdline_parse_kernelcore(char *p)
7342 {
7343 	/* parse kernelcore=mirror */
7344 	if (parse_option_str(p, "mirror")) {
7345 		mirrored_kernelcore = true;
7346 		return 0;
7347 	}
7348 
7349 	return cmdline_parse_core(p, &required_kernelcore,
7350 				  &required_kernelcore_percent);
7351 }
7352 
7353 /*
7354  * movablecore=size sets the amount of memory for use for allocations that
7355  * can be reclaimed or migrated.
7356  */
7357 static int __init cmdline_parse_movablecore(char *p)
7358 {
7359 	return cmdline_parse_core(p, &required_movablecore,
7360 				  &required_movablecore_percent);
7361 }
7362 
7363 early_param("kernelcore", cmdline_parse_kernelcore);
7364 early_param("movablecore", cmdline_parse_movablecore);
7365 
7366 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7367 
7368 void adjust_managed_page_count(struct page *page, long count)
7369 {
7370 	atomic_long_add(count, &page_zone(page)->managed_pages);
7371 	totalram_pages_add(count);
7372 #ifdef CONFIG_HIGHMEM
7373 	if (PageHighMem(page))
7374 		totalhigh_pages_add(count);
7375 #endif
7376 }
7377 EXPORT_SYMBOL(adjust_managed_page_count);
7378 
7379 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7380 {
7381 	void *pos;
7382 	unsigned long pages = 0;
7383 
7384 	start = (void *)PAGE_ALIGN((unsigned long)start);
7385 	end = (void *)((unsigned long)end & PAGE_MASK);
7386 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7387 		struct page *page = virt_to_page(pos);
7388 		void *direct_map_addr;
7389 
7390 		/*
7391 		 * 'direct_map_addr' might be different from 'pos'
7392 		 * because some architectures' virt_to_page()
7393 		 * work with aliases.  Getting the direct map
7394 		 * address ensures that we get a _writeable_
7395 		 * alias for the memset().
7396 		 */
7397 		direct_map_addr = page_address(page);
7398 		if ((unsigned int)poison <= 0xFF)
7399 			memset(direct_map_addr, poison, PAGE_SIZE);
7400 
7401 		free_reserved_page(page);
7402 	}
7403 
7404 	if (pages && s)
7405 		pr_info("Freeing %s memory: %ldK\n",
7406 			s, pages << (PAGE_SHIFT - 10));
7407 
7408 	return pages;
7409 }
7410 
7411 #ifdef	CONFIG_HIGHMEM
7412 void free_highmem_page(struct page *page)
7413 {
7414 	__free_reserved_page(page);
7415 	totalram_pages_inc();
7416 	atomic_long_inc(&page_zone(page)->managed_pages);
7417 	totalhigh_pages_inc();
7418 }
7419 #endif
7420 
7421 
7422 void __init mem_init_print_info(const char *str)
7423 {
7424 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7425 	unsigned long init_code_size, init_data_size;
7426 
7427 	physpages = get_num_physpages();
7428 	codesize = _etext - _stext;
7429 	datasize = _edata - _sdata;
7430 	rosize = __end_rodata - __start_rodata;
7431 	bss_size = __bss_stop - __bss_start;
7432 	init_data_size = __init_end - __init_begin;
7433 	init_code_size = _einittext - _sinittext;
7434 
7435 	/*
7436 	 * Detect special cases and adjust section sizes accordingly:
7437 	 * 1) .init.* may be embedded into .data sections
7438 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7439 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7440 	 * 3) .rodata.* may be embedded into .text or .data sections.
7441 	 */
7442 #define adj_init_size(start, end, size, pos, adj) \
7443 	do { \
7444 		if (start <= pos && pos < end && size > adj) \
7445 			size -= adj; \
7446 	} while (0)
7447 
7448 	adj_init_size(__init_begin, __init_end, init_data_size,
7449 		     _sinittext, init_code_size);
7450 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7451 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7452 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7453 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7454 
7455 #undef	adj_init_size
7456 
7457 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7458 #ifdef	CONFIG_HIGHMEM
7459 		", %luK highmem"
7460 #endif
7461 		"%s%s)\n",
7462 		nr_free_pages() << (PAGE_SHIFT - 10),
7463 		physpages << (PAGE_SHIFT - 10),
7464 		codesize >> 10, datasize >> 10, rosize >> 10,
7465 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7466 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7467 		totalcma_pages << (PAGE_SHIFT - 10),
7468 #ifdef	CONFIG_HIGHMEM
7469 		totalhigh_pages() << (PAGE_SHIFT - 10),
7470 #endif
7471 		str ? ", " : "", str ? str : "");
7472 }
7473 
7474 /**
7475  * set_dma_reserve - set the specified number of pages reserved in the first zone
7476  * @new_dma_reserve: The number of pages to mark reserved
7477  *
7478  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7479  * In the DMA zone, a significant percentage may be consumed by kernel image
7480  * and other unfreeable allocations which can skew the watermarks badly. This
7481  * function may optionally be used to account for unfreeable pages in the
7482  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7483  * smaller per-cpu batchsize.
7484  */
7485 void __init set_dma_reserve(unsigned long new_dma_reserve)
7486 {
7487 	dma_reserve = new_dma_reserve;
7488 }
7489 
7490 void __init free_area_init(unsigned long *zones_size)
7491 {
7492 	zero_resv_unavail();
7493 	free_area_init_node(0, zones_size,
7494 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7495 }
7496 
7497 static int page_alloc_cpu_dead(unsigned int cpu)
7498 {
7499 
7500 	lru_add_drain_cpu(cpu);
7501 	drain_pages(cpu);
7502 
7503 	/*
7504 	 * Spill the event counters of the dead processor
7505 	 * into the current processors event counters.
7506 	 * This artificially elevates the count of the current
7507 	 * processor.
7508 	 */
7509 	vm_events_fold_cpu(cpu);
7510 
7511 	/*
7512 	 * Zero the differential counters of the dead processor
7513 	 * so that the vm statistics are consistent.
7514 	 *
7515 	 * This is only okay since the processor is dead and cannot
7516 	 * race with what we are doing.
7517 	 */
7518 	cpu_vm_stats_fold(cpu);
7519 	return 0;
7520 }
7521 
7522 void __init page_alloc_init(void)
7523 {
7524 	int ret;
7525 
7526 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7527 					"mm/page_alloc:dead", NULL,
7528 					page_alloc_cpu_dead);
7529 	WARN_ON(ret < 0);
7530 }
7531 
7532 /*
7533  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7534  *	or min_free_kbytes changes.
7535  */
7536 static void calculate_totalreserve_pages(void)
7537 {
7538 	struct pglist_data *pgdat;
7539 	unsigned long reserve_pages = 0;
7540 	enum zone_type i, j;
7541 
7542 	for_each_online_pgdat(pgdat) {
7543 
7544 		pgdat->totalreserve_pages = 0;
7545 
7546 		for (i = 0; i < MAX_NR_ZONES; i++) {
7547 			struct zone *zone = pgdat->node_zones + i;
7548 			long max = 0;
7549 			unsigned long managed_pages = zone_managed_pages(zone);
7550 
7551 			/* Find valid and maximum lowmem_reserve in the zone */
7552 			for (j = i; j < MAX_NR_ZONES; j++) {
7553 				if (zone->lowmem_reserve[j] > max)
7554 					max = zone->lowmem_reserve[j];
7555 			}
7556 
7557 			/* we treat the high watermark as reserved pages. */
7558 			max += high_wmark_pages(zone);
7559 
7560 			if (max > managed_pages)
7561 				max = managed_pages;
7562 
7563 			pgdat->totalreserve_pages += max;
7564 
7565 			reserve_pages += max;
7566 		}
7567 	}
7568 	totalreserve_pages = reserve_pages;
7569 }
7570 
7571 /*
7572  * setup_per_zone_lowmem_reserve - called whenever
7573  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7574  *	has a correct pages reserved value, so an adequate number of
7575  *	pages are left in the zone after a successful __alloc_pages().
7576  */
7577 static void setup_per_zone_lowmem_reserve(void)
7578 {
7579 	struct pglist_data *pgdat;
7580 	enum zone_type j, idx;
7581 
7582 	for_each_online_pgdat(pgdat) {
7583 		for (j = 0; j < MAX_NR_ZONES; j++) {
7584 			struct zone *zone = pgdat->node_zones + j;
7585 			unsigned long managed_pages = zone_managed_pages(zone);
7586 
7587 			zone->lowmem_reserve[j] = 0;
7588 
7589 			idx = j;
7590 			while (idx) {
7591 				struct zone *lower_zone;
7592 
7593 				idx--;
7594 				lower_zone = pgdat->node_zones + idx;
7595 
7596 				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7597 					sysctl_lowmem_reserve_ratio[idx] = 0;
7598 					lower_zone->lowmem_reserve[j] = 0;
7599 				} else {
7600 					lower_zone->lowmem_reserve[j] =
7601 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7602 				}
7603 				managed_pages += zone_managed_pages(lower_zone);
7604 			}
7605 		}
7606 	}
7607 
7608 	/* update totalreserve_pages */
7609 	calculate_totalreserve_pages();
7610 }
7611 
7612 static void __setup_per_zone_wmarks(void)
7613 {
7614 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7615 	unsigned long lowmem_pages = 0;
7616 	struct zone *zone;
7617 	unsigned long flags;
7618 
7619 	/* Calculate total number of !ZONE_HIGHMEM pages */
7620 	for_each_zone(zone) {
7621 		if (!is_highmem(zone))
7622 			lowmem_pages += zone_managed_pages(zone);
7623 	}
7624 
7625 	for_each_zone(zone) {
7626 		u64 tmp;
7627 
7628 		spin_lock_irqsave(&zone->lock, flags);
7629 		tmp = (u64)pages_min * zone_managed_pages(zone);
7630 		do_div(tmp, lowmem_pages);
7631 		if (is_highmem(zone)) {
7632 			/*
7633 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7634 			 * need highmem pages, so cap pages_min to a small
7635 			 * value here.
7636 			 *
7637 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7638 			 * deltas control async page reclaim, and so should
7639 			 * not be capped for highmem.
7640 			 */
7641 			unsigned long min_pages;
7642 
7643 			min_pages = zone_managed_pages(zone) / 1024;
7644 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7645 			zone->_watermark[WMARK_MIN] = min_pages;
7646 		} else {
7647 			/*
7648 			 * If it's a lowmem zone, reserve a number of pages
7649 			 * proportionate to the zone's size.
7650 			 */
7651 			zone->_watermark[WMARK_MIN] = tmp;
7652 		}
7653 
7654 		/*
7655 		 * Set the kswapd watermarks distance according to the
7656 		 * scale factor in proportion to available memory, but
7657 		 * ensure a minimum size on small systems.
7658 		 */
7659 		tmp = max_t(u64, tmp >> 2,
7660 			    mult_frac(zone_managed_pages(zone),
7661 				      watermark_scale_factor, 10000));
7662 
7663 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7664 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7665 		zone->watermark_boost = 0;
7666 
7667 		spin_unlock_irqrestore(&zone->lock, flags);
7668 	}
7669 
7670 	/* update totalreserve_pages */
7671 	calculate_totalreserve_pages();
7672 }
7673 
7674 /**
7675  * setup_per_zone_wmarks - called when min_free_kbytes changes
7676  * or when memory is hot-{added|removed}
7677  *
7678  * Ensures that the watermark[min,low,high] values for each zone are set
7679  * correctly with respect to min_free_kbytes.
7680  */
7681 void setup_per_zone_wmarks(void)
7682 {
7683 	static DEFINE_SPINLOCK(lock);
7684 
7685 	spin_lock(&lock);
7686 	__setup_per_zone_wmarks();
7687 	spin_unlock(&lock);
7688 }
7689 
7690 /*
7691  * Initialise min_free_kbytes.
7692  *
7693  * For small machines we want it small (128k min).  For large machines
7694  * we want it large (64MB max).  But it is not linear, because network
7695  * bandwidth does not increase linearly with machine size.  We use
7696  *
7697  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7698  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7699  *
7700  * which yields
7701  *
7702  * 16MB:	512k
7703  * 32MB:	724k
7704  * 64MB:	1024k
7705  * 128MB:	1448k
7706  * 256MB:	2048k
7707  * 512MB:	2896k
7708  * 1024MB:	4096k
7709  * 2048MB:	5792k
7710  * 4096MB:	8192k
7711  * 8192MB:	11584k
7712  * 16384MB:	16384k
7713  */
7714 int __meminit init_per_zone_wmark_min(void)
7715 {
7716 	unsigned long lowmem_kbytes;
7717 	int new_min_free_kbytes;
7718 
7719 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7720 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7721 
7722 	if (new_min_free_kbytes > user_min_free_kbytes) {
7723 		min_free_kbytes = new_min_free_kbytes;
7724 		if (min_free_kbytes < 128)
7725 			min_free_kbytes = 128;
7726 		if (min_free_kbytes > 65536)
7727 			min_free_kbytes = 65536;
7728 	} else {
7729 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7730 				new_min_free_kbytes, user_min_free_kbytes);
7731 	}
7732 	setup_per_zone_wmarks();
7733 	refresh_zone_stat_thresholds();
7734 	setup_per_zone_lowmem_reserve();
7735 
7736 #ifdef CONFIG_NUMA
7737 	setup_min_unmapped_ratio();
7738 	setup_min_slab_ratio();
7739 #endif
7740 
7741 	return 0;
7742 }
7743 core_initcall(init_per_zone_wmark_min)
7744 
7745 /*
7746  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7747  *	that we can call two helper functions whenever min_free_kbytes
7748  *	changes.
7749  */
7750 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7751 	void __user *buffer, size_t *length, loff_t *ppos)
7752 {
7753 	int rc;
7754 
7755 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7756 	if (rc)
7757 		return rc;
7758 
7759 	if (write) {
7760 		user_min_free_kbytes = min_free_kbytes;
7761 		setup_per_zone_wmarks();
7762 	}
7763 	return 0;
7764 }
7765 
7766 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7767 	void __user *buffer, size_t *length, loff_t *ppos)
7768 {
7769 	int rc;
7770 
7771 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7772 	if (rc)
7773 		return rc;
7774 
7775 	return 0;
7776 }
7777 
7778 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7779 	void __user *buffer, size_t *length, loff_t *ppos)
7780 {
7781 	int rc;
7782 
7783 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7784 	if (rc)
7785 		return rc;
7786 
7787 	if (write)
7788 		setup_per_zone_wmarks();
7789 
7790 	return 0;
7791 }
7792 
7793 #ifdef CONFIG_NUMA
7794 static void setup_min_unmapped_ratio(void)
7795 {
7796 	pg_data_t *pgdat;
7797 	struct zone *zone;
7798 
7799 	for_each_online_pgdat(pgdat)
7800 		pgdat->min_unmapped_pages = 0;
7801 
7802 	for_each_zone(zone)
7803 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7804 						         sysctl_min_unmapped_ratio) / 100;
7805 }
7806 
7807 
7808 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7809 	void __user *buffer, size_t *length, loff_t *ppos)
7810 {
7811 	int rc;
7812 
7813 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7814 	if (rc)
7815 		return rc;
7816 
7817 	setup_min_unmapped_ratio();
7818 
7819 	return 0;
7820 }
7821 
7822 static void setup_min_slab_ratio(void)
7823 {
7824 	pg_data_t *pgdat;
7825 	struct zone *zone;
7826 
7827 	for_each_online_pgdat(pgdat)
7828 		pgdat->min_slab_pages = 0;
7829 
7830 	for_each_zone(zone)
7831 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7832 						     sysctl_min_slab_ratio) / 100;
7833 }
7834 
7835 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7836 	void __user *buffer, size_t *length, loff_t *ppos)
7837 {
7838 	int rc;
7839 
7840 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7841 	if (rc)
7842 		return rc;
7843 
7844 	setup_min_slab_ratio();
7845 
7846 	return 0;
7847 }
7848 #endif
7849 
7850 /*
7851  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7852  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7853  *	whenever sysctl_lowmem_reserve_ratio changes.
7854  *
7855  * The reserve ratio obviously has absolutely no relation with the
7856  * minimum watermarks. The lowmem reserve ratio can only make sense
7857  * if in function of the boot time zone sizes.
7858  */
7859 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7860 	void __user *buffer, size_t *length, loff_t *ppos)
7861 {
7862 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7863 	setup_per_zone_lowmem_reserve();
7864 	return 0;
7865 }
7866 
7867 /*
7868  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7869  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7870  * pagelist can have before it gets flushed back to buddy allocator.
7871  */
7872 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7873 	void __user *buffer, size_t *length, loff_t *ppos)
7874 {
7875 	struct zone *zone;
7876 	int old_percpu_pagelist_fraction;
7877 	int ret;
7878 
7879 	mutex_lock(&pcp_batch_high_lock);
7880 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7881 
7882 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7883 	if (!write || ret < 0)
7884 		goto out;
7885 
7886 	/* Sanity checking to avoid pcp imbalance */
7887 	if (percpu_pagelist_fraction &&
7888 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7889 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7890 		ret = -EINVAL;
7891 		goto out;
7892 	}
7893 
7894 	/* No change? */
7895 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7896 		goto out;
7897 
7898 	for_each_populated_zone(zone) {
7899 		unsigned int cpu;
7900 
7901 		for_each_possible_cpu(cpu)
7902 			pageset_set_high_and_batch(zone,
7903 					per_cpu_ptr(zone->pageset, cpu));
7904 	}
7905 out:
7906 	mutex_unlock(&pcp_batch_high_lock);
7907 	return ret;
7908 }
7909 
7910 #ifdef CONFIG_NUMA
7911 int hashdist = HASHDIST_DEFAULT;
7912 
7913 static int __init set_hashdist(char *str)
7914 {
7915 	if (!str)
7916 		return 0;
7917 	hashdist = simple_strtoul(str, &str, 0);
7918 	return 1;
7919 }
7920 __setup("hashdist=", set_hashdist);
7921 #endif
7922 
7923 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7924 /*
7925  * Returns the number of pages that arch has reserved but
7926  * is not known to alloc_large_system_hash().
7927  */
7928 static unsigned long __init arch_reserved_kernel_pages(void)
7929 {
7930 	return 0;
7931 }
7932 #endif
7933 
7934 /*
7935  * Adaptive scale is meant to reduce sizes of hash tables on large memory
7936  * machines. As memory size is increased the scale is also increased but at
7937  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7938  * quadruples the scale is increased by one, which means the size of hash table
7939  * only doubles, instead of quadrupling as well.
7940  * Because 32-bit systems cannot have large physical memory, where this scaling
7941  * makes sense, it is disabled on such platforms.
7942  */
7943 #if __BITS_PER_LONG > 32
7944 #define ADAPT_SCALE_BASE	(64ul << 30)
7945 #define ADAPT_SCALE_SHIFT	2
7946 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7947 #endif
7948 
7949 /*
7950  * allocate a large system hash table from bootmem
7951  * - it is assumed that the hash table must contain an exact power-of-2
7952  *   quantity of entries
7953  * - limit is the number of hash buckets, not the total allocation size
7954  */
7955 void *__init alloc_large_system_hash(const char *tablename,
7956 				     unsigned long bucketsize,
7957 				     unsigned long numentries,
7958 				     int scale,
7959 				     int flags,
7960 				     unsigned int *_hash_shift,
7961 				     unsigned int *_hash_mask,
7962 				     unsigned long low_limit,
7963 				     unsigned long high_limit)
7964 {
7965 	unsigned long long max = high_limit;
7966 	unsigned long log2qty, size;
7967 	void *table = NULL;
7968 	gfp_t gfp_flags;
7969 
7970 	/* allow the kernel cmdline to have a say */
7971 	if (!numentries) {
7972 		/* round applicable memory size up to nearest megabyte */
7973 		numentries = nr_kernel_pages;
7974 		numentries -= arch_reserved_kernel_pages();
7975 
7976 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7977 		if (PAGE_SHIFT < 20)
7978 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7979 
7980 #if __BITS_PER_LONG > 32
7981 		if (!high_limit) {
7982 			unsigned long adapt;
7983 
7984 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7985 			     adapt <<= ADAPT_SCALE_SHIFT)
7986 				scale++;
7987 		}
7988 #endif
7989 
7990 		/* limit to 1 bucket per 2^scale bytes of low memory */
7991 		if (scale > PAGE_SHIFT)
7992 			numentries >>= (scale - PAGE_SHIFT);
7993 		else
7994 			numentries <<= (PAGE_SHIFT - scale);
7995 
7996 		/* Make sure we've got at least a 0-order allocation.. */
7997 		if (unlikely(flags & HASH_SMALL)) {
7998 			/* Makes no sense without HASH_EARLY */
7999 			WARN_ON(!(flags & HASH_EARLY));
8000 			if (!(numentries >> *_hash_shift)) {
8001 				numentries = 1UL << *_hash_shift;
8002 				BUG_ON(!numentries);
8003 			}
8004 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8005 			numentries = PAGE_SIZE / bucketsize;
8006 	}
8007 	numentries = roundup_pow_of_two(numentries);
8008 
8009 	/* limit allocation size to 1/16 total memory by default */
8010 	if (max == 0) {
8011 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8012 		do_div(max, bucketsize);
8013 	}
8014 	max = min(max, 0x80000000ULL);
8015 
8016 	if (numentries < low_limit)
8017 		numentries = low_limit;
8018 	if (numentries > max)
8019 		numentries = max;
8020 
8021 	log2qty = ilog2(numentries);
8022 
8023 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8024 	do {
8025 		size = bucketsize << log2qty;
8026 		if (flags & HASH_EARLY) {
8027 			if (flags & HASH_ZERO)
8028 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8029 			else
8030 				table = memblock_alloc_raw(size,
8031 							   SMP_CACHE_BYTES);
8032 		} else if (hashdist) {
8033 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8034 		} else {
8035 			/*
8036 			 * If bucketsize is not a power-of-two, we may free
8037 			 * some pages at the end of hash table which
8038 			 * alloc_pages_exact() automatically does
8039 			 */
8040 			if (get_order(size) < MAX_ORDER) {
8041 				table = alloc_pages_exact(size, gfp_flags);
8042 				kmemleak_alloc(table, size, 1, gfp_flags);
8043 			}
8044 		}
8045 	} while (!table && size > PAGE_SIZE && --log2qty);
8046 
8047 	if (!table)
8048 		panic("Failed to allocate %s hash table\n", tablename);
8049 
8050 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
8051 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
8052 
8053 	if (_hash_shift)
8054 		*_hash_shift = log2qty;
8055 	if (_hash_mask)
8056 		*_hash_mask = (1 << log2qty) - 1;
8057 
8058 	return table;
8059 }
8060 
8061 /*
8062  * This function checks whether pageblock includes unmovable pages or not.
8063  * If @count is not zero, it is okay to include less @count unmovable pages
8064  *
8065  * PageLRU check without isolation or lru_lock could race so that
8066  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8067  * check without lock_page also may miss some movable non-lru pages at
8068  * race condition. So you can't expect this function should be exact.
8069  */
8070 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8071 			 int migratetype, int flags)
8072 {
8073 	unsigned long found;
8074 	unsigned long iter = 0;
8075 	unsigned long pfn = page_to_pfn(page);
8076 	const char *reason = "unmovable page";
8077 
8078 	/*
8079 	 * TODO we could make this much more efficient by not checking every
8080 	 * page in the range if we know all of them are in MOVABLE_ZONE and
8081 	 * that the movable zone guarantees that pages are migratable but
8082 	 * the later is not the case right now unfortunatelly. E.g. movablecore
8083 	 * can still lead to having bootmem allocations in zone_movable.
8084 	 */
8085 
8086 	if (is_migrate_cma_page(page)) {
8087 		/*
8088 		 * CMA allocations (alloc_contig_range) really need to mark
8089 		 * isolate CMA pageblocks even when they are not movable in fact
8090 		 * so consider them movable here.
8091 		 */
8092 		if (is_migrate_cma(migratetype))
8093 			return false;
8094 
8095 		reason = "CMA page";
8096 		goto unmovable;
8097 	}
8098 
8099 	for (found = 0; iter < pageblock_nr_pages; iter++) {
8100 		unsigned long check = pfn + iter;
8101 
8102 		if (!pfn_valid_within(check))
8103 			continue;
8104 
8105 		page = pfn_to_page(check);
8106 
8107 		if (PageReserved(page))
8108 			goto unmovable;
8109 
8110 		/*
8111 		 * If the zone is movable and we have ruled out all reserved
8112 		 * pages then it should be reasonably safe to assume the rest
8113 		 * is movable.
8114 		 */
8115 		if (zone_idx(zone) == ZONE_MOVABLE)
8116 			continue;
8117 
8118 		/*
8119 		 * Hugepages are not in LRU lists, but they're movable.
8120 		 * We need not scan over tail pages because we don't
8121 		 * handle each tail page individually in migration.
8122 		 */
8123 		if (PageHuge(page)) {
8124 			struct page *head = compound_head(page);
8125 			unsigned int skip_pages;
8126 
8127 			if (!hugepage_migration_supported(page_hstate(head)))
8128 				goto unmovable;
8129 
8130 			skip_pages = (1 << compound_order(head)) - (page - head);
8131 			iter += skip_pages - 1;
8132 			continue;
8133 		}
8134 
8135 		/*
8136 		 * We can't use page_count without pin a page
8137 		 * because another CPU can free compound page.
8138 		 * This check already skips compound tails of THP
8139 		 * because their page->_refcount is zero at all time.
8140 		 */
8141 		if (!page_ref_count(page)) {
8142 			if (PageBuddy(page))
8143 				iter += (1 << page_order(page)) - 1;
8144 			continue;
8145 		}
8146 
8147 		/*
8148 		 * The HWPoisoned page may be not in buddy system, and
8149 		 * page_count() is not 0.
8150 		 */
8151 		if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8152 			continue;
8153 
8154 		if (__PageMovable(page))
8155 			continue;
8156 
8157 		if (!PageLRU(page))
8158 			found++;
8159 		/*
8160 		 * If there are RECLAIMABLE pages, we need to check
8161 		 * it.  But now, memory offline itself doesn't call
8162 		 * shrink_node_slabs() and it still to be fixed.
8163 		 */
8164 		/*
8165 		 * If the page is not RAM, page_count()should be 0.
8166 		 * we don't need more check. This is an _used_ not-movable page.
8167 		 *
8168 		 * The problematic thing here is PG_reserved pages. PG_reserved
8169 		 * is set to both of a memory hole page and a _used_ kernel
8170 		 * page at boot.
8171 		 */
8172 		if (found > count)
8173 			goto unmovable;
8174 	}
8175 	return false;
8176 unmovable:
8177 	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8178 	if (flags & REPORT_FAILURE)
8179 		dump_page(pfn_to_page(pfn + iter), reason);
8180 	return true;
8181 }
8182 
8183 #ifdef CONFIG_CONTIG_ALLOC
8184 static unsigned long pfn_max_align_down(unsigned long pfn)
8185 {
8186 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8187 			     pageblock_nr_pages) - 1);
8188 }
8189 
8190 static unsigned long pfn_max_align_up(unsigned long pfn)
8191 {
8192 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8193 				pageblock_nr_pages));
8194 }
8195 
8196 /* [start, end) must belong to a single zone. */
8197 static int __alloc_contig_migrate_range(struct compact_control *cc,
8198 					unsigned long start, unsigned long end)
8199 {
8200 	/* This function is based on compact_zone() from compaction.c. */
8201 	unsigned long nr_reclaimed;
8202 	unsigned long pfn = start;
8203 	unsigned int tries = 0;
8204 	int ret = 0;
8205 
8206 	migrate_prep();
8207 
8208 	while (pfn < end || !list_empty(&cc->migratepages)) {
8209 		if (fatal_signal_pending(current)) {
8210 			ret = -EINTR;
8211 			break;
8212 		}
8213 
8214 		if (list_empty(&cc->migratepages)) {
8215 			cc->nr_migratepages = 0;
8216 			pfn = isolate_migratepages_range(cc, pfn, end);
8217 			if (!pfn) {
8218 				ret = -EINTR;
8219 				break;
8220 			}
8221 			tries = 0;
8222 		} else if (++tries == 5) {
8223 			ret = ret < 0 ? ret : -EBUSY;
8224 			break;
8225 		}
8226 
8227 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8228 							&cc->migratepages);
8229 		cc->nr_migratepages -= nr_reclaimed;
8230 
8231 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8232 				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8233 	}
8234 	if (ret < 0) {
8235 		putback_movable_pages(&cc->migratepages);
8236 		return ret;
8237 	}
8238 	return 0;
8239 }
8240 
8241 /**
8242  * alloc_contig_range() -- tries to allocate given range of pages
8243  * @start:	start PFN to allocate
8244  * @end:	one-past-the-last PFN to allocate
8245  * @migratetype:	migratetype of the underlaying pageblocks (either
8246  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8247  *			in range must have the same migratetype and it must
8248  *			be either of the two.
8249  * @gfp_mask:	GFP mask to use during compaction
8250  *
8251  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8252  * aligned.  The PFN range must belong to a single zone.
8253  *
8254  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8255  * pageblocks in the range.  Once isolated, the pageblocks should not
8256  * be modified by others.
8257  *
8258  * Return: zero on success or negative error code.  On success all
8259  * pages which PFN is in [start, end) are allocated for the caller and
8260  * need to be freed with free_contig_range().
8261  */
8262 int alloc_contig_range(unsigned long start, unsigned long end,
8263 		       unsigned migratetype, gfp_t gfp_mask)
8264 {
8265 	unsigned long outer_start, outer_end;
8266 	unsigned int order;
8267 	int ret = 0;
8268 
8269 	struct compact_control cc = {
8270 		.nr_migratepages = 0,
8271 		.order = -1,
8272 		.zone = page_zone(pfn_to_page(start)),
8273 		.mode = MIGRATE_SYNC,
8274 		.ignore_skip_hint = true,
8275 		.no_set_skip_hint = true,
8276 		.gfp_mask = current_gfp_context(gfp_mask),
8277 	};
8278 	INIT_LIST_HEAD(&cc.migratepages);
8279 
8280 	/*
8281 	 * What we do here is we mark all pageblocks in range as
8282 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8283 	 * have different sizes, and due to the way page allocator
8284 	 * work, we align the range to biggest of the two pages so
8285 	 * that page allocator won't try to merge buddies from
8286 	 * different pageblocks and change MIGRATE_ISOLATE to some
8287 	 * other migration type.
8288 	 *
8289 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8290 	 * migrate the pages from an unaligned range (ie. pages that
8291 	 * we are interested in).  This will put all the pages in
8292 	 * range back to page allocator as MIGRATE_ISOLATE.
8293 	 *
8294 	 * When this is done, we take the pages in range from page
8295 	 * allocator removing them from the buddy system.  This way
8296 	 * page allocator will never consider using them.
8297 	 *
8298 	 * This lets us mark the pageblocks back as
8299 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8300 	 * aligned range but not in the unaligned, original range are
8301 	 * put back to page allocator so that buddy can use them.
8302 	 */
8303 
8304 	ret = start_isolate_page_range(pfn_max_align_down(start),
8305 				       pfn_max_align_up(end), migratetype, 0);
8306 	if (ret < 0)
8307 		return ret;
8308 
8309 	/*
8310 	 * In case of -EBUSY, we'd like to know which page causes problem.
8311 	 * So, just fall through. test_pages_isolated() has a tracepoint
8312 	 * which will report the busy page.
8313 	 *
8314 	 * It is possible that busy pages could become available before
8315 	 * the call to test_pages_isolated, and the range will actually be
8316 	 * allocated.  So, if we fall through be sure to clear ret so that
8317 	 * -EBUSY is not accidentally used or returned to caller.
8318 	 */
8319 	ret = __alloc_contig_migrate_range(&cc, start, end);
8320 	if (ret && ret != -EBUSY)
8321 		goto done;
8322 	ret =0;
8323 
8324 	/*
8325 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8326 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8327 	 * more, all pages in [start, end) are free in page allocator.
8328 	 * What we are going to do is to allocate all pages from
8329 	 * [start, end) (that is remove them from page allocator).
8330 	 *
8331 	 * The only problem is that pages at the beginning and at the
8332 	 * end of interesting range may be not aligned with pages that
8333 	 * page allocator holds, ie. they can be part of higher order
8334 	 * pages.  Because of this, we reserve the bigger range and
8335 	 * once this is done free the pages we are not interested in.
8336 	 *
8337 	 * We don't have to hold zone->lock here because the pages are
8338 	 * isolated thus they won't get removed from buddy.
8339 	 */
8340 
8341 	lru_add_drain_all();
8342 
8343 	order = 0;
8344 	outer_start = start;
8345 	while (!PageBuddy(pfn_to_page(outer_start))) {
8346 		if (++order >= MAX_ORDER) {
8347 			outer_start = start;
8348 			break;
8349 		}
8350 		outer_start &= ~0UL << order;
8351 	}
8352 
8353 	if (outer_start != start) {
8354 		order = page_order(pfn_to_page(outer_start));
8355 
8356 		/*
8357 		 * outer_start page could be small order buddy page and
8358 		 * it doesn't include start page. Adjust outer_start
8359 		 * in this case to report failed page properly
8360 		 * on tracepoint in test_pages_isolated()
8361 		 */
8362 		if (outer_start + (1UL << order) <= start)
8363 			outer_start = start;
8364 	}
8365 
8366 	/* Make sure the range is really isolated. */
8367 	if (test_pages_isolated(outer_start, end, false)) {
8368 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8369 			__func__, outer_start, end);
8370 		ret = -EBUSY;
8371 		goto done;
8372 	}
8373 
8374 	/* Grab isolated pages from freelists. */
8375 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8376 	if (!outer_end) {
8377 		ret = -EBUSY;
8378 		goto done;
8379 	}
8380 
8381 	/* Free head and tail (if any) */
8382 	if (start != outer_start)
8383 		free_contig_range(outer_start, start - outer_start);
8384 	if (end != outer_end)
8385 		free_contig_range(end, outer_end - end);
8386 
8387 done:
8388 	undo_isolate_page_range(pfn_max_align_down(start),
8389 				pfn_max_align_up(end), migratetype);
8390 	return ret;
8391 }
8392 #endif /* CONFIG_CONTIG_ALLOC */
8393 
8394 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8395 {
8396 	unsigned int count = 0;
8397 
8398 	for (; nr_pages--; pfn++) {
8399 		struct page *page = pfn_to_page(pfn);
8400 
8401 		count += page_count(page) != 1;
8402 		__free_page(page);
8403 	}
8404 	WARN(count != 0, "%d pages are still in use!\n", count);
8405 }
8406 
8407 #ifdef CONFIG_MEMORY_HOTPLUG
8408 /*
8409  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8410  * page high values need to be recalulated.
8411  */
8412 void __meminit zone_pcp_update(struct zone *zone)
8413 {
8414 	unsigned cpu;
8415 	mutex_lock(&pcp_batch_high_lock);
8416 	for_each_possible_cpu(cpu)
8417 		pageset_set_high_and_batch(zone,
8418 				per_cpu_ptr(zone->pageset, cpu));
8419 	mutex_unlock(&pcp_batch_high_lock);
8420 }
8421 #endif
8422 
8423 void zone_pcp_reset(struct zone *zone)
8424 {
8425 	unsigned long flags;
8426 	int cpu;
8427 	struct per_cpu_pageset *pset;
8428 
8429 	/* avoid races with drain_pages()  */
8430 	local_irq_save(flags);
8431 	if (zone->pageset != &boot_pageset) {
8432 		for_each_online_cpu(cpu) {
8433 			pset = per_cpu_ptr(zone->pageset, cpu);
8434 			drain_zonestat(zone, pset);
8435 		}
8436 		free_percpu(zone->pageset);
8437 		zone->pageset = &boot_pageset;
8438 	}
8439 	local_irq_restore(flags);
8440 }
8441 
8442 #ifdef CONFIG_MEMORY_HOTREMOVE
8443 /*
8444  * All pages in the range must be in a single zone and isolated
8445  * before calling this.
8446  */
8447 unsigned long
8448 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8449 {
8450 	struct page *page;
8451 	struct zone *zone;
8452 	unsigned int order, i;
8453 	unsigned long pfn;
8454 	unsigned long flags;
8455 	unsigned long offlined_pages = 0;
8456 
8457 	/* find the first valid pfn */
8458 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
8459 		if (pfn_valid(pfn))
8460 			break;
8461 	if (pfn == end_pfn)
8462 		return offlined_pages;
8463 
8464 	offline_mem_sections(pfn, end_pfn);
8465 	zone = page_zone(pfn_to_page(pfn));
8466 	spin_lock_irqsave(&zone->lock, flags);
8467 	pfn = start_pfn;
8468 	while (pfn < end_pfn) {
8469 		if (!pfn_valid(pfn)) {
8470 			pfn++;
8471 			continue;
8472 		}
8473 		page = pfn_to_page(pfn);
8474 		/*
8475 		 * The HWPoisoned page may be not in buddy system, and
8476 		 * page_count() is not 0.
8477 		 */
8478 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8479 			pfn++;
8480 			SetPageReserved(page);
8481 			offlined_pages++;
8482 			continue;
8483 		}
8484 
8485 		BUG_ON(page_count(page));
8486 		BUG_ON(!PageBuddy(page));
8487 		order = page_order(page);
8488 		offlined_pages += 1 << order;
8489 #ifdef CONFIG_DEBUG_VM
8490 		pr_info("remove from free list %lx %d %lx\n",
8491 			pfn, 1 << order, end_pfn);
8492 #endif
8493 		del_page_from_free_area(page, &zone->free_area[order]);
8494 		for (i = 0; i < (1 << order); i++)
8495 			SetPageReserved((page+i));
8496 		pfn += (1 << order);
8497 	}
8498 	spin_unlock_irqrestore(&zone->lock, flags);
8499 
8500 	return offlined_pages;
8501 }
8502 #endif
8503 
8504 bool is_free_buddy_page(struct page *page)
8505 {
8506 	struct zone *zone = page_zone(page);
8507 	unsigned long pfn = page_to_pfn(page);
8508 	unsigned long flags;
8509 	unsigned int order;
8510 
8511 	spin_lock_irqsave(&zone->lock, flags);
8512 	for (order = 0; order < MAX_ORDER; order++) {
8513 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8514 
8515 		if (PageBuddy(page_head) && page_order(page_head) >= order)
8516 			break;
8517 	}
8518 	spin_unlock_irqrestore(&zone->lock, flags);
8519 
8520 	return order < MAX_ORDER;
8521 }
8522 
8523 #ifdef CONFIG_MEMORY_FAILURE
8524 /*
8525  * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8526  * test is performed under the zone lock to prevent a race against page
8527  * allocation.
8528  */
8529 bool set_hwpoison_free_buddy_page(struct page *page)
8530 {
8531 	struct zone *zone = page_zone(page);
8532 	unsigned long pfn = page_to_pfn(page);
8533 	unsigned long flags;
8534 	unsigned int order;
8535 	bool hwpoisoned = false;
8536 
8537 	spin_lock_irqsave(&zone->lock, flags);
8538 	for (order = 0; order < MAX_ORDER; order++) {
8539 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8540 
8541 		if (PageBuddy(page_head) && page_order(page_head) >= order) {
8542 			if (!TestSetPageHWPoison(page))
8543 				hwpoisoned = true;
8544 			break;
8545 		}
8546 	}
8547 	spin_unlock_irqrestore(&zone->lock, flags);
8548 
8549 	return hwpoisoned;
8550 }
8551 #endif
8552