xref: /openbmc/linux/mm/page_alloc.c (revision 93df8a1e)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/rwsem.h>
22 #include <linux/pagemap.h>
23 #include <linux/jiffies.h>
24 #include <linux/bootmem.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kmemcheck.h>
29 #include <linux/kasan.h>
30 #include <linux/module.h>
31 #include <linux/suspend.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
36 #include <linux/oom.h>
37 #include <linux/notifier.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
70 #include "internal.h"
71 
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock);
74 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
75 
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node);
78 EXPORT_PER_CPU_SYMBOL(numa_node);
79 #endif
80 
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 /*
83  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86  * defined in <linux/topology.h>.
87  */
88 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90 int _node_numa_mem_[MAX_NUMNODES];
91 #endif
92 
93 /*
94  * Array of node states.
95  */
96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 	[N_POSSIBLE] = NODE_MASK_ALL,
98 	[N_ONLINE] = { { [0] = 1UL } },
99 #ifndef CONFIG_NUMA
100 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
103 #endif
104 #ifdef CONFIG_MOVABLE_NODE
105 	[N_MEMORY] = { { [0] = 1UL } },
106 #endif
107 	[N_CPU] = { { [0] = 1UL } },
108 #endif	/* NUMA */
109 };
110 EXPORT_SYMBOL(node_states);
111 
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock);
114 
115 unsigned long totalram_pages __read_mostly;
116 unsigned long totalreserve_pages __read_mostly;
117 unsigned long totalcma_pages __read_mostly;
118 /*
119  * When calculating the number of globally allowed dirty pages, there
120  * is a certain number of per-zone reserves that should not be
121  * considered dirtyable memory.  This is the sum of those reserves
122  * over all existing zones that contribute dirtyable memory.
123  */
124 unsigned long dirty_balance_reserve __read_mostly;
125 
126 int percpu_pagelist_fraction;
127 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
128 
129 #ifdef CONFIG_PM_SLEEP
130 /*
131  * The following functions are used by the suspend/hibernate code to temporarily
132  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
133  * while devices are suspended.  To avoid races with the suspend/hibernate code,
134  * they should always be called with pm_mutex held (gfp_allowed_mask also should
135  * only be modified with pm_mutex held, unless the suspend/hibernate code is
136  * guaranteed not to run in parallel with that modification).
137  */
138 
139 static gfp_t saved_gfp_mask;
140 
141 void pm_restore_gfp_mask(void)
142 {
143 	WARN_ON(!mutex_is_locked(&pm_mutex));
144 	if (saved_gfp_mask) {
145 		gfp_allowed_mask = saved_gfp_mask;
146 		saved_gfp_mask = 0;
147 	}
148 }
149 
150 void pm_restrict_gfp_mask(void)
151 {
152 	WARN_ON(!mutex_is_locked(&pm_mutex));
153 	WARN_ON(saved_gfp_mask);
154 	saved_gfp_mask = gfp_allowed_mask;
155 	gfp_allowed_mask &= ~GFP_IOFS;
156 }
157 
158 bool pm_suspended_storage(void)
159 {
160 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
161 		return false;
162 	return true;
163 }
164 #endif /* CONFIG_PM_SLEEP */
165 
166 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
167 int pageblock_order __read_mostly;
168 #endif
169 
170 static void __free_pages_ok(struct page *page, unsigned int order);
171 
172 /*
173  * results with 256, 32 in the lowmem_reserve sysctl:
174  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
175  *	1G machine -> (16M dma, 784M normal, 224M high)
176  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
177  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
178  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
179  *
180  * TBD: should special case ZONE_DMA32 machines here - in those we normally
181  * don't need any ZONE_NORMAL reservation
182  */
183 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
184 #ifdef CONFIG_ZONE_DMA
185 	 256,
186 #endif
187 #ifdef CONFIG_ZONE_DMA32
188 	 256,
189 #endif
190 #ifdef CONFIG_HIGHMEM
191 	 32,
192 #endif
193 	 32,
194 };
195 
196 EXPORT_SYMBOL(totalram_pages);
197 
198 static char * const zone_names[MAX_NR_ZONES] = {
199 #ifdef CONFIG_ZONE_DMA
200 	 "DMA",
201 #endif
202 #ifdef CONFIG_ZONE_DMA32
203 	 "DMA32",
204 #endif
205 	 "Normal",
206 #ifdef CONFIG_HIGHMEM
207 	 "HighMem",
208 #endif
209 	 "Movable",
210 };
211 
212 int min_free_kbytes = 1024;
213 int user_min_free_kbytes = -1;
214 
215 static unsigned long __meminitdata nr_kernel_pages;
216 static unsigned long __meminitdata nr_all_pages;
217 static unsigned long __meminitdata dma_reserve;
218 
219 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
220 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
221 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
222 static unsigned long __initdata required_kernelcore;
223 static unsigned long __initdata required_movablecore;
224 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
225 
226 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
227 int movable_zone;
228 EXPORT_SYMBOL(movable_zone);
229 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
230 
231 #if MAX_NUMNODES > 1
232 int nr_node_ids __read_mostly = MAX_NUMNODES;
233 int nr_online_nodes __read_mostly = 1;
234 EXPORT_SYMBOL(nr_node_ids);
235 EXPORT_SYMBOL(nr_online_nodes);
236 #endif
237 
238 int page_group_by_mobility_disabled __read_mostly;
239 
240 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
241 static inline void reset_deferred_meminit(pg_data_t *pgdat)
242 {
243 	pgdat->first_deferred_pfn = ULONG_MAX;
244 }
245 
246 /* Returns true if the struct page for the pfn is uninitialised */
247 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
248 {
249 	if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
250 		return true;
251 
252 	return false;
253 }
254 
255 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
256 {
257 	if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
258 		return true;
259 
260 	return false;
261 }
262 
263 /*
264  * Returns false when the remaining initialisation should be deferred until
265  * later in the boot cycle when it can be parallelised.
266  */
267 static inline bool update_defer_init(pg_data_t *pgdat,
268 				unsigned long pfn, unsigned long zone_end,
269 				unsigned long *nr_initialised)
270 {
271 	/* Always populate low zones for address-contrained allocations */
272 	if (zone_end < pgdat_end_pfn(pgdat))
273 		return true;
274 
275 	/* Initialise at least 2G of the highest zone */
276 	(*nr_initialised)++;
277 	if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
278 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
279 		pgdat->first_deferred_pfn = pfn;
280 		return false;
281 	}
282 
283 	return true;
284 }
285 #else
286 static inline void reset_deferred_meminit(pg_data_t *pgdat)
287 {
288 }
289 
290 static inline bool early_page_uninitialised(unsigned long pfn)
291 {
292 	return false;
293 }
294 
295 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296 {
297 	return false;
298 }
299 
300 static inline bool update_defer_init(pg_data_t *pgdat,
301 				unsigned long pfn, unsigned long zone_end,
302 				unsigned long *nr_initialised)
303 {
304 	return true;
305 }
306 #endif
307 
308 
309 void set_pageblock_migratetype(struct page *page, int migratetype)
310 {
311 	if (unlikely(page_group_by_mobility_disabled &&
312 		     migratetype < MIGRATE_PCPTYPES))
313 		migratetype = MIGRATE_UNMOVABLE;
314 
315 	set_pageblock_flags_group(page, (unsigned long)migratetype,
316 					PB_migrate, PB_migrate_end);
317 }
318 
319 #ifdef CONFIG_DEBUG_VM
320 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
321 {
322 	int ret = 0;
323 	unsigned seq;
324 	unsigned long pfn = page_to_pfn(page);
325 	unsigned long sp, start_pfn;
326 
327 	do {
328 		seq = zone_span_seqbegin(zone);
329 		start_pfn = zone->zone_start_pfn;
330 		sp = zone->spanned_pages;
331 		if (!zone_spans_pfn(zone, pfn))
332 			ret = 1;
333 	} while (zone_span_seqretry(zone, seq));
334 
335 	if (ret)
336 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
337 			pfn, zone_to_nid(zone), zone->name,
338 			start_pfn, start_pfn + sp);
339 
340 	return ret;
341 }
342 
343 static int page_is_consistent(struct zone *zone, struct page *page)
344 {
345 	if (!pfn_valid_within(page_to_pfn(page)))
346 		return 0;
347 	if (zone != page_zone(page))
348 		return 0;
349 
350 	return 1;
351 }
352 /*
353  * Temporary debugging check for pages not lying within a given zone.
354  */
355 static int bad_range(struct zone *zone, struct page *page)
356 {
357 	if (page_outside_zone_boundaries(zone, page))
358 		return 1;
359 	if (!page_is_consistent(zone, page))
360 		return 1;
361 
362 	return 0;
363 }
364 #else
365 static inline int bad_range(struct zone *zone, struct page *page)
366 {
367 	return 0;
368 }
369 #endif
370 
371 static void bad_page(struct page *page, const char *reason,
372 		unsigned long bad_flags)
373 {
374 	static unsigned long resume;
375 	static unsigned long nr_shown;
376 	static unsigned long nr_unshown;
377 
378 	/* Don't complain about poisoned pages */
379 	if (PageHWPoison(page)) {
380 		page_mapcount_reset(page); /* remove PageBuddy */
381 		return;
382 	}
383 
384 	/*
385 	 * Allow a burst of 60 reports, then keep quiet for that minute;
386 	 * or allow a steady drip of one report per second.
387 	 */
388 	if (nr_shown == 60) {
389 		if (time_before(jiffies, resume)) {
390 			nr_unshown++;
391 			goto out;
392 		}
393 		if (nr_unshown) {
394 			printk(KERN_ALERT
395 			      "BUG: Bad page state: %lu messages suppressed\n",
396 				nr_unshown);
397 			nr_unshown = 0;
398 		}
399 		nr_shown = 0;
400 	}
401 	if (nr_shown++ == 0)
402 		resume = jiffies + 60 * HZ;
403 
404 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
405 		current->comm, page_to_pfn(page));
406 	dump_page_badflags(page, reason, bad_flags);
407 
408 	print_modules();
409 	dump_stack();
410 out:
411 	/* Leave bad fields for debug, except PageBuddy could make trouble */
412 	page_mapcount_reset(page); /* remove PageBuddy */
413 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
414 }
415 
416 /*
417  * Higher-order pages are called "compound pages".  They are structured thusly:
418  *
419  * The first PAGE_SIZE page is called the "head page".
420  *
421  * The remaining PAGE_SIZE pages are called "tail pages".
422  *
423  * All pages have PG_compound set.  All tail pages have their ->first_page
424  * pointing at the head page.
425  *
426  * The first tail page's ->lru.next holds the address of the compound page's
427  * put_page() function.  Its ->lru.prev holds the order of allocation.
428  * This usage means that zero-order pages may not be compound.
429  */
430 
431 static void free_compound_page(struct page *page)
432 {
433 	__free_pages_ok(page, compound_order(page));
434 }
435 
436 void prep_compound_page(struct page *page, unsigned long order)
437 {
438 	int i;
439 	int nr_pages = 1 << order;
440 
441 	set_compound_page_dtor(page, free_compound_page);
442 	set_compound_order(page, order);
443 	__SetPageHead(page);
444 	for (i = 1; i < nr_pages; i++) {
445 		struct page *p = page + i;
446 		set_page_count(p, 0);
447 		p->first_page = page;
448 		/* Make sure p->first_page is always valid for PageTail() */
449 		smp_wmb();
450 		__SetPageTail(p);
451 	}
452 }
453 
454 #ifdef CONFIG_DEBUG_PAGEALLOC
455 unsigned int _debug_guardpage_minorder;
456 bool _debug_pagealloc_enabled __read_mostly;
457 bool _debug_guardpage_enabled __read_mostly;
458 
459 static int __init early_debug_pagealloc(char *buf)
460 {
461 	if (!buf)
462 		return -EINVAL;
463 
464 	if (strcmp(buf, "on") == 0)
465 		_debug_pagealloc_enabled = true;
466 
467 	return 0;
468 }
469 early_param("debug_pagealloc", early_debug_pagealloc);
470 
471 static bool need_debug_guardpage(void)
472 {
473 	/* If we don't use debug_pagealloc, we don't need guard page */
474 	if (!debug_pagealloc_enabled())
475 		return false;
476 
477 	return true;
478 }
479 
480 static void init_debug_guardpage(void)
481 {
482 	if (!debug_pagealloc_enabled())
483 		return;
484 
485 	_debug_guardpage_enabled = true;
486 }
487 
488 struct page_ext_operations debug_guardpage_ops = {
489 	.need = need_debug_guardpage,
490 	.init = init_debug_guardpage,
491 };
492 
493 static int __init debug_guardpage_minorder_setup(char *buf)
494 {
495 	unsigned long res;
496 
497 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
498 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
499 		return 0;
500 	}
501 	_debug_guardpage_minorder = res;
502 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
503 	return 0;
504 }
505 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
506 
507 static inline void set_page_guard(struct zone *zone, struct page *page,
508 				unsigned int order, int migratetype)
509 {
510 	struct page_ext *page_ext;
511 
512 	if (!debug_guardpage_enabled())
513 		return;
514 
515 	page_ext = lookup_page_ext(page);
516 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
517 
518 	INIT_LIST_HEAD(&page->lru);
519 	set_page_private(page, order);
520 	/* Guard pages are not available for any usage */
521 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
522 }
523 
524 static inline void clear_page_guard(struct zone *zone, struct page *page,
525 				unsigned int order, int migratetype)
526 {
527 	struct page_ext *page_ext;
528 
529 	if (!debug_guardpage_enabled())
530 		return;
531 
532 	page_ext = lookup_page_ext(page);
533 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
534 
535 	set_page_private(page, 0);
536 	if (!is_migrate_isolate(migratetype))
537 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
538 }
539 #else
540 struct page_ext_operations debug_guardpage_ops = { NULL, };
541 static inline void set_page_guard(struct zone *zone, struct page *page,
542 				unsigned int order, int migratetype) {}
543 static inline void clear_page_guard(struct zone *zone, struct page *page,
544 				unsigned int order, int migratetype) {}
545 #endif
546 
547 static inline void set_page_order(struct page *page, unsigned int order)
548 {
549 	set_page_private(page, order);
550 	__SetPageBuddy(page);
551 }
552 
553 static inline void rmv_page_order(struct page *page)
554 {
555 	__ClearPageBuddy(page);
556 	set_page_private(page, 0);
557 }
558 
559 /*
560  * This function checks whether a page is free && is the buddy
561  * we can do coalesce a page and its buddy if
562  * (a) the buddy is not in a hole &&
563  * (b) the buddy is in the buddy system &&
564  * (c) a page and its buddy have the same order &&
565  * (d) a page and its buddy are in the same zone.
566  *
567  * For recording whether a page is in the buddy system, we set ->_mapcount
568  * PAGE_BUDDY_MAPCOUNT_VALUE.
569  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
570  * serialized by zone->lock.
571  *
572  * For recording page's order, we use page_private(page).
573  */
574 static inline int page_is_buddy(struct page *page, struct page *buddy,
575 							unsigned int order)
576 {
577 	if (!pfn_valid_within(page_to_pfn(buddy)))
578 		return 0;
579 
580 	if (page_is_guard(buddy) && page_order(buddy) == order) {
581 		if (page_zone_id(page) != page_zone_id(buddy))
582 			return 0;
583 
584 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
585 
586 		return 1;
587 	}
588 
589 	if (PageBuddy(buddy) && page_order(buddy) == order) {
590 		/*
591 		 * zone check is done late to avoid uselessly
592 		 * calculating zone/node ids for pages that could
593 		 * never merge.
594 		 */
595 		if (page_zone_id(page) != page_zone_id(buddy))
596 			return 0;
597 
598 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
599 
600 		return 1;
601 	}
602 	return 0;
603 }
604 
605 /*
606  * Freeing function for a buddy system allocator.
607  *
608  * The concept of a buddy system is to maintain direct-mapped table
609  * (containing bit values) for memory blocks of various "orders".
610  * The bottom level table contains the map for the smallest allocatable
611  * units of memory (here, pages), and each level above it describes
612  * pairs of units from the levels below, hence, "buddies".
613  * At a high level, all that happens here is marking the table entry
614  * at the bottom level available, and propagating the changes upward
615  * as necessary, plus some accounting needed to play nicely with other
616  * parts of the VM system.
617  * At each level, we keep a list of pages, which are heads of continuous
618  * free pages of length of (1 << order) and marked with _mapcount
619  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
620  * field.
621  * So when we are allocating or freeing one, we can derive the state of the
622  * other.  That is, if we allocate a small block, and both were
623  * free, the remainder of the region must be split into blocks.
624  * If a block is freed, and its buddy is also free, then this
625  * triggers coalescing into a block of larger size.
626  *
627  * -- nyc
628  */
629 
630 static inline void __free_one_page(struct page *page,
631 		unsigned long pfn,
632 		struct zone *zone, unsigned int order,
633 		int migratetype)
634 {
635 	unsigned long page_idx;
636 	unsigned long combined_idx;
637 	unsigned long uninitialized_var(buddy_idx);
638 	struct page *buddy;
639 	int max_order = MAX_ORDER;
640 
641 	VM_BUG_ON(!zone_is_initialized(zone));
642 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
643 
644 	VM_BUG_ON(migratetype == -1);
645 	if (is_migrate_isolate(migratetype)) {
646 		/*
647 		 * We restrict max order of merging to prevent merge
648 		 * between freepages on isolate pageblock and normal
649 		 * pageblock. Without this, pageblock isolation
650 		 * could cause incorrect freepage accounting.
651 		 */
652 		max_order = min(MAX_ORDER, pageblock_order + 1);
653 	} else {
654 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
655 	}
656 
657 	page_idx = pfn & ((1 << max_order) - 1);
658 
659 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
660 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
661 
662 	while (order < max_order - 1) {
663 		buddy_idx = __find_buddy_index(page_idx, order);
664 		buddy = page + (buddy_idx - page_idx);
665 		if (!page_is_buddy(page, buddy, order))
666 			break;
667 		/*
668 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
669 		 * merge with it and move up one order.
670 		 */
671 		if (page_is_guard(buddy)) {
672 			clear_page_guard(zone, buddy, order, migratetype);
673 		} else {
674 			list_del(&buddy->lru);
675 			zone->free_area[order].nr_free--;
676 			rmv_page_order(buddy);
677 		}
678 		combined_idx = buddy_idx & page_idx;
679 		page = page + (combined_idx - page_idx);
680 		page_idx = combined_idx;
681 		order++;
682 	}
683 	set_page_order(page, order);
684 
685 	/*
686 	 * If this is not the largest possible page, check if the buddy
687 	 * of the next-highest order is free. If it is, it's possible
688 	 * that pages are being freed that will coalesce soon. In case,
689 	 * that is happening, add the free page to the tail of the list
690 	 * so it's less likely to be used soon and more likely to be merged
691 	 * as a higher order page
692 	 */
693 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
694 		struct page *higher_page, *higher_buddy;
695 		combined_idx = buddy_idx & page_idx;
696 		higher_page = page + (combined_idx - page_idx);
697 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
698 		higher_buddy = higher_page + (buddy_idx - combined_idx);
699 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
700 			list_add_tail(&page->lru,
701 				&zone->free_area[order].free_list[migratetype]);
702 			goto out;
703 		}
704 	}
705 
706 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
707 out:
708 	zone->free_area[order].nr_free++;
709 }
710 
711 static inline int free_pages_check(struct page *page)
712 {
713 	const char *bad_reason = NULL;
714 	unsigned long bad_flags = 0;
715 
716 	if (unlikely(page_mapcount(page)))
717 		bad_reason = "nonzero mapcount";
718 	if (unlikely(page->mapping != NULL))
719 		bad_reason = "non-NULL mapping";
720 	if (unlikely(atomic_read(&page->_count) != 0))
721 		bad_reason = "nonzero _count";
722 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
723 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
724 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
725 	}
726 #ifdef CONFIG_MEMCG
727 	if (unlikely(page->mem_cgroup))
728 		bad_reason = "page still charged to cgroup";
729 #endif
730 	if (unlikely(bad_reason)) {
731 		bad_page(page, bad_reason, bad_flags);
732 		return 1;
733 	}
734 	page_cpupid_reset_last(page);
735 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
736 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
737 	return 0;
738 }
739 
740 /*
741  * Frees a number of pages from the PCP lists
742  * Assumes all pages on list are in same zone, and of same order.
743  * count is the number of pages to free.
744  *
745  * If the zone was previously in an "all pages pinned" state then look to
746  * see if this freeing clears that state.
747  *
748  * And clear the zone's pages_scanned counter, to hold off the "all pages are
749  * pinned" detection logic.
750  */
751 static void free_pcppages_bulk(struct zone *zone, int count,
752 					struct per_cpu_pages *pcp)
753 {
754 	int migratetype = 0;
755 	int batch_free = 0;
756 	int to_free = count;
757 	unsigned long nr_scanned;
758 
759 	spin_lock(&zone->lock);
760 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
761 	if (nr_scanned)
762 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
763 
764 	while (to_free) {
765 		struct page *page;
766 		struct list_head *list;
767 
768 		/*
769 		 * Remove pages from lists in a round-robin fashion. A
770 		 * batch_free count is maintained that is incremented when an
771 		 * empty list is encountered.  This is so more pages are freed
772 		 * off fuller lists instead of spinning excessively around empty
773 		 * lists
774 		 */
775 		do {
776 			batch_free++;
777 			if (++migratetype == MIGRATE_PCPTYPES)
778 				migratetype = 0;
779 			list = &pcp->lists[migratetype];
780 		} while (list_empty(list));
781 
782 		/* This is the only non-empty list. Free them all. */
783 		if (batch_free == MIGRATE_PCPTYPES)
784 			batch_free = to_free;
785 
786 		do {
787 			int mt;	/* migratetype of the to-be-freed page */
788 
789 			page = list_entry(list->prev, struct page, lru);
790 			/* must delete as __free_one_page list manipulates */
791 			list_del(&page->lru);
792 			mt = get_freepage_migratetype(page);
793 			if (unlikely(has_isolate_pageblock(zone)))
794 				mt = get_pageblock_migratetype(page);
795 
796 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
797 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
798 			trace_mm_page_pcpu_drain(page, 0, mt);
799 		} while (--to_free && --batch_free && !list_empty(list));
800 	}
801 	spin_unlock(&zone->lock);
802 }
803 
804 static void free_one_page(struct zone *zone,
805 				struct page *page, unsigned long pfn,
806 				unsigned int order,
807 				int migratetype)
808 {
809 	unsigned long nr_scanned;
810 	spin_lock(&zone->lock);
811 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
812 	if (nr_scanned)
813 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
814 
815 	if (unlikely(has_isolate_pageblock(zone) ||
816 		is_migrate_isolate(migratetype))) {
817 		migratetype = get_pfnblock_migratetype(page, pfn);
818 	}
819 	__free_one_page(page, pfn, zone, order, migratetype);
820 	spin_unlock(&zone->lock);
821 }
822 
823 static int free_tail_pages_check(struct page *head_page, struct page *page)
824 {
825 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
826 		return 0;
827 	if (unlikely(!PageTail(page))) {
828 		bad_page(page, "PageTail not set", 0);
829 		return 1;
830 	}
831 	if (unlikely(page->first_page != head_page)) {
832 		bad_page(page, "first_page not consistent", 0);
833 		return 1;
834 	}
835 	return 0;
836 }
837 
838 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
839 				unsigned long zone, int nid)
840 {
841 	set_page_links(page, zone, nid, pfn);
842 	init_page_count(page);
843 	page_mapcount_reset(page);
844 	page_cpupid_reset_last(page);
845 
846 	INIT_LIST_HEAD(&page->lru);
847 #ifdef WANT_PAGE_VIRTUAL
848 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
849 	if (!is_highmem_idx(zone))
850 		set_page_address(page, __va(pfn << PAGE_SHIFT));
851 #endif
852 }
853 
854 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
855 					int nid)
856 {
857 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
858 }
859 
860 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
861 static void init_reserved_page(unsigned long pfn)
862 {
863 	pg_data_t *pgdat;
864 	int nid, zid;
865 
866 	if (!early_page_uninitialised(pfn))
867 		return;
868 
869 	nid = early_pfn_to_nid(pfn);
870 	pgdat = NODE_DATA(nid);
871 
872 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
873 		struct zone *zone = &pgdat->node_zones[zid];
874 
875 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
876 			break;
877 	}
878 	__init_single_pfn(pfn, zid, nid);
879 }
880 #else
881 static inline void init_reserved_page(unsigned long pfn)
882 {
883 }
884 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
885 
886 /*
887  * Initialised pages do not have PageReserved set. This function is
888  * called for each range allocated by the bootmem allocator and
889  * marks the pages PageReserved. The remaining valid pages are later
890  * sent to the buddy page allocator.
891  */
892 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
893 {
894 	unsigned long start_pfn = PFN_DOWN(start);
895 	unsigned long end_pfn = PFN_UP(end);
896 
897 	for (; start_pfn < end_pfn; start_pfn++) {
898 		if (pfn_valid(start_pfn)) {
899 			struct page *page = pfn_to_page(start_pfn);
900 
901 			init_reserved_page(start_pfn);
902 			SetPageReserved(page);
903 		}
904 	}
905 }
906 
907 static bool free_pages_prepare(struct page *page, unsigned int order)
908 {
909 	bool compound = PageCompound(page);
910 	int i, bad = 0;
911 
912 	VM_BUG_ON_PAGE(PageTail(page), page);
913 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
914 
915 	trace_mm_page_free(page, order);
916 	kmemcheck_free_shadow(page, order);
917 	kasan_free_pages(page, order);
918 
919 	if (PageAnon(page))
920 		page->mapping = NULL;
921 	bad += free_pages_check(page);
922 	for (i = 1; i < (1 << order); i++) {
923 		if (compound)
924 			bad += free_tail_pages_check(page, page + i);
925 		bad += free_pages_check(page + i);
926 	}
927 	if (bad)
928 		return false;
929 
930 	reset_page_owner(page, order);
931 
932 	if (!PageHighMem(page)) {
933 		debug_check_no_locks_freed(page_address(page),
934 					   PAGE_SIZE << order);
935 		debug_check_no_obj_freed(page_address(page),
936 					   PAGE_SIZE << order);
937 	}
938 	arch_free_page(page, order);
939 	kernel_map_pages(page, 1 << order, 0);
940 
941 	return true;
942 }
943 
944 static void __free_pages_ok(struct page *page, unsigned int order)
945 {
946 	unsigned long flags;
947 	int migratetype;
948 	unsigned long pfn = page_to_pfn(page);
949 
950 	if (!free_pages_prepare(page, order))
951 		return;
952 
953 	migratetype = get_pfnblock_migratetype(page, pfn);
954 	local_irq_save(flags);
955 	__count_vm_events(PGFREE, 1 << order);
956 	set_freepage_migratetype(page, migratetype);
957 	free_one_page(page_zone(page), page, pfn, order, migratetype);
958 	local_irq_restore(flags);
959 }
960 
961 static void __init __free_pages_boot_core(struct page *page,
962 					unsigned long pfn, unsigned int order)
963 {
964 	unsigned int nr_pages = 1 << order;
965 	struct page *p = page;
966 	unsigned int loop;
967 
968 	prefetchw(p);
969 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
970 		prefetchw(p + 1);
971 		__ClearPageReserved(p);
972 		set_page_count(p, 0);
973 	}
974 	__ClearPageReserved(p);
975 	set_page_count(p, 0);
976 
977 	page_zone(page)->managed_pages += nr_pages;
978 	set_page_refcounted(page);
979 	__free_pages(page, order);
980 }
981 
982 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
983 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
984 /* Only safe to use early in boot when initialisation is single-threaded */
985 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
986 
987 int __meminit early_pfn_to_nid(unsigned long pfn)
988 {
989 	int nid;
990 
991 	/* The system will behave unpredictably otherwise */
992 	BUG_ON(system_state != SYSTEM_BOOTING);
993 
994 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
995 	if (nid >= 0)
996 		return nid;
997 	/* just returns 0 */
998 	return 0;
999 }
1000 #endif
1001 
1002 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1003 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1004 					struct mminit_pfnnid_cache *state)
1005 {
1006 	int nid;
1007 
1008 	nid = __early_pfn_to_nid(pfn, state);
1009 	if (nid >= 0 && nid != node)
1010 		return false;
1011 	return true;
1012 }
1013 
1014 /* Only safe to use early in boot when initialisation is single-threaded */
1015 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1016 {
1017 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1018 }
1019 
1020 #else
1021 
1022 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1023 {
1024 	return true;
1025 }
1026 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1027 					struct mminit_pfnnid_cache *state)
1028 {
1029 	return true;
1030 }
1031 #endif
1032 
1033 
1034 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1035 							unsigned int order)
1036 {
1037 	if (early_page_uninitialised(pfn))
1038 		return;
1039 	return __free_pages_boot_core(page, pfn, order);
1040 }
1041 
1042 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1043 static void __init deferred_free_range(struct page *page,
1044 					unsigned long pfn, int nr_pages)
1045 {
1046 	int i;
1047 
1048 	if (!page)
1049 		return;
1050 
1051 	/* Free a large naturally-aligned chunk if possible */
1052 	if (nr_pages == MAX_ORDER_NR_PAGES &&
1053 	    (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1054 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1055 		__free_pages_boot_core(page, pfn, MAX_ORDER-1);
1056 		return;
1057 	}
1058 
1059 	for (i = 0; i < nr_pages; i++, page++, pfn++)
1060 		__free_pages_boot_core(page, pfn, 0);
1061 }
1062 
1063 static __initdata DECLARE_RWSEM(pgdat_init_rwsem);
1064 
1065 /* Initialise remaining memory on a node */
1066 static int __init deferred_init_memmap(void *data)
1067 {
1068 	pg_data_t *pgdat = data;
1069 	int nid = pgdat->node_id;
1070 	struct mminit_pfnnid_cache nid_init_state = { };
1071 	unsigned long start = jiffies;
1072 	unsigned long nr_pages = 0;
1073 	unsigned long walk_start, walk_end;
1074 	int i, zid;
1075 	struct zone *zone;
1076 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1077 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1078 
1079 	if (first_init_pfn == ULONG_MAX) {
1080 		up_read(&pgdat_init_rwsem);
1081 		return 0;
1082 	}
1083 
1084 	/* Bind memory initialisation thread to a local node if possible */
1085 	if (!cpumask_empty(cpumask))
1086 		set_cpus_allowed_ptr(current, cpumask);
1087 
1088 	/* Sanity check boundaries */
1089 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1090 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1091 	pgdat->first_deferred_pfn = ULONG_MAX;
1092 
1093 	/* Only the highest zone is deferred so find it */
1094 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1095 		zone = pgdat->node_zones + zid;
1096 		if (first_init_pfn < zone_end_pfn(zone))
1097 			break;
1098 	}
1099 
1100 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1101 		unsigned long pfn, end_pfn;
1102 		struct page *page = NULL;
1103 		struct page *free_base_page = NULL;
1104 		unsigned long free_base_pfn = 0;
1105 		int nr_to_free = 0;
1106 
1107 		end_pfn = min(walk_end, zone_end_pfn(zone));
1108 		pfn = first_init_pfn;
1109 		if (pfn < walk_start)
1110 			pfn = walk_start;
1111 		if (pfn < zone->zone_start_pfn)
1112 			pfn = zone->zone_start_pfn;
1113 
1114 		for (; pfn < end_pfn; pfn++) {
1115 			if (!pfn_valid_within(pfn))
1116 				goto free_range;
1117 
1118 			/*
1119 			 * Ensure pfn_valid is checked every
1120 			 * MAX_ORDER_NR_PAGES for memory holes
1121 			 */
1122 			if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1123 				if (!pfn_valid(pfn)) {
1124 					page = NULL;
1125 					goto free_range;
1126 				}
1127 			}
1128 
1129 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1130 				page = NULL;
1131 				goto free_range;
1132 			}
1133 
1134 			/* Minimise pfn page lookups and scheduler checks */
1135 			if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1136 				page++;
1137 			} else {
1138 				nr_pages += nr_to_free;
1139 				deferred_free_range(free_base_page,
1140 						free_base_pfn, nr_to_free);
1141 				free_base_page = NULL;
1142 				free_base_pfn = nr_to_free = 0;
1143 
1144 				page = pfn_to_page(pfn);
1145 				cond_resched();
1146 			}
1147 
1148 			if (page->flags) {
1149 				VM_BUG_ON(page_zone(page) != zone);
1150 				goto free_range;
1151 			}
1152 
1153 			__init_single_page(page, pfn, zid, nid);
1154 			if (!free_base_page) {
1155 				free_base_page = page;
1156 				free_base_pfn = pfn;
1157 				nr_to_free = 0;
1158 			}
1159 			nr_to_free++;
1160 
1161 			/* Where possible, batch up pages for a single free */
1162 			continue;
1163 free_range:
1164 			/* Free the current block of pages to allocator */
1165 			nr_pages += nr_to_free;
1166 			deferred_free_range(free_base_page, free_base_pfn,
1167 								nr_to_free);
1168 			free_base_page = NULL;
1169 			free_base_pfn = nr_to_free = 0;
1170 		}
1171 
1172 		first_init_pfn = max(end_pfn, first_init_pfn);
1173 	}
1174 
1175 	/* Sanity check that the next zone really is unpopulated */
1176 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1177 
1178 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1179 					jiffies_to_msecs(jiffies - start));
1180 	up_read(&pgdat_init_rwsem);
1181 	return 0;
1182 }
1183 
1184 void __init page_alloc_init_late(void)
1185 {
1186 	int nid;
1187 
1188 	for_each_node_state(nid, N_MEMORY) {
1189 		down_read(&pgdat_init_rwsem);
1190 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1191 	}
1192 
1193 	/* Block until all are initialised */
1194 	down_write(&pgdat_init_rwsem);
1195 	up_write(&pgdat_init_rwsem);
1196 }
1197 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1198 
1199 #ifdef CONFIG_CMA
1200 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1201 void __init init_cma_reserved_pageblock(struct page *page)
1202 {
1203 	unsigned i = pageblock_nr_pages;
1204 	struct page *p = page;
1205 
1206 	do {
1207 		__ClearPageReserved(p);
1208 		set_page_count(p, 0);
1209 	} while (++p, --i);
1210 
1211 	set_pageblock_migratetype(page, MIGRATE_CMA);
1212 
1213 	if (pageblock_order >= MAX_ORDER) {
1214 		i = pageblock_nr_pages;
1215 		p = page;
1216 		do {
1217 			set_page_refcounted(p);
1218 			__free_pages(p, MAX_ORDER - 1);
1219 			p += MAX_ORDER_NR_PAGES;
1220 		} while (i -= MAX_ORDER_NR_PAGES);
1221 	} else {
1222 		set_page_refcounted(page);
1223 		__free_pages(page, pageblock_order);
1224 	}
1225 
1226 	adjust_managed_page_count(page, pageblock_nr_pages);
1227 }
1228 #endif
1229 
1230 /*
1231  * The order of subdivision here is critical for the IO subsystem.
1232  * Please do not alter this order without good reasons and regression
1233  * testing. Specifically, as large blocks of memory are subdivided,
1234  * the order in which smaller blocks are delivered depends on the order
1235  * they're subdivided in this function. This is the primary factor
1236  * influencing the order in which pages are delivered to the IO
1237  * subsystem according to empirical testing, and this is also justified
1238  * by considering the behavior of a buddy system containing a single
1239  * large block of memory acted on by a series of small allocations.
1240  * This behavior is a critical factor in sglist merging's success.
1241  *
1242  * -- nyc
1243  */
1244 static inline void expand(struct zone *zone, struct page *page,
1245 	int low, int high, struct free_area *area,
1246 	int migratetype)
1247 {
1248 	unsigned long size = 1 << high;
1249 
1250 	while (high > low) {
1251 		area--;
1252 		high--;
1253 		size >>= 1;
1254 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1255 
1256 		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1257 			debug_guardpage_enabled() &&
1258 			high < debug_guardpage_minorder()) {
1259 			/*
1260 			 * Mark as guard pages (or page), that will allow to
1261 			 * merge back to allocator when buddy will be freed.
1262 			 * Corresponding page table entries will not be touched,
1263 			 * pages will stay not present in virtual address space
1264 			 */
1265 			set_page_guard(zone, &page[size], high, migratetype);
1266 			continue;
1267 		}
1268 		list_add(&page[size].lru, &area->free_list[migratetype]);
1269 		area->nr_free++;
1270 		set_page_order(&page[size], high);
1271 	}
1272 }
1273 
1274 /*
1275  * This page is about to be returned from the page allocator
1276  */
1277 static inline int check_new_page(struct page *page)
1278 {
1279 	const char *bad_reason = NULL;
1280 	unsigned long bad_flags = 0;
1281 
1282 	if (unlikely(page_mapcount(page)))
1283 		bad_reason = "nonzero mapcount";
1284 	if (unlikely(page->mapping != NULL))
1285 		bad_reason = "non-NULL mapping";
1286 	if (unlikely(atomic_read(&page->_count) != 0))
1287 		bad_reason = "nonzero _count";
1288 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1289 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1290 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1291 	}
1292 #ifdef CONFIG_MEMCG
1293 	if (unlikely(page->mem_cgroup))
1294 		bad_reason = "page still charged to cgroup";
1295 #endif
1296 	if (unlikely(bad_reason)) {
1297 		bad_page(page, bad_reason, bad_flags);
1298 		return 1;
1299 	}
1300 	return 0;
1301 }
1302 
1303 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1304 								int alloc_flags)
1305 {
1306 	int i;
1307 
1308 	for (i = 0; i < (1 << order); i++) {
1309 		struct page *p = page + i;
1310 		if (unlikely(check_new_page(p)))
1311 			return 1;
1312 	}
1313 
1314 	set_page_private(page, 0);
1315 	set_page_refcounted(page);
1316 
1317 	arch_alloc_page(page, order);
1318 	kernel_map_pages(page, 1 << order, 1);
1319 	kasan_alloc_pages(page, order);
1320 
1321 	if (gfp_flags & __GFP_ZERO)
1322 		for (i = 0; i < (1 << order); i++)
1323 			clear_highpage(page + i);
1324 
1325 	if (order && (gfp_flags & __GFP_COMP))
1326 		prep_compound_page(page, order);
1327 
1328 	set_page_owner(page, order, gfp_flags);
1329 
1330 	/*
1331 	 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
1332 	 * allocate the page. The expectation is that the caller is taking
1333 	 * steps that will free more memory. The caller should avoid the page
1334 	 * being used for !PFMEMALLOC purposes.
1335 	 */
1336 	page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1337 
1338 	return 0;
1339 }
1340 
1341 /*
1342  * Go through the free lists for the given migratetype and remove
1343  * the smallest available page from the freelists
1344  */
1345 static inline
1346 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1347 						int migratetype)
1348 {
1349 	unsigned int current_order;
1350 	struct free_area *area;
1351 	struct page *page;
1352 
1353 	/* Find a page of the appropriate size in the preferred list */
1354 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1355 		area = &(zone->free_area[current_order]);
1356 		if (list_empty(&area->free_list[migratetype]))
1357 			continue;
1358 
1359 		page = list_entry(area->free_list[migratetype].next,
1360 							struct page, lru);
1361 		list_del(&page->lru);
1362 		rmv_page_order(page);
1363 		area->nr_free--;
1364 		expand(zone, page, order, current_order, area, migratetype);
1365 		set_freepage_migratetype(page, migratetype);
1366 		return page;
1367 	}
1368 
1369 	return NULL;
1370 }
1371 
1372 
1373 /*
1374  * This array describes the order lists are fallen back to when
1375  * the free lists for the desirable migrate type are depleted
1376  */
1377 static int fallbacks[MIGRATE_TYPES][4] = {
1378 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
1379 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
1380 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
1381 #ifdef CONFIG_CMA
1382 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
1383 #endif
1384 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
1385 #ifdef CONFIG_MEMORY_ISOLATION
1386 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
1387 #endif
1388 };
1389 
1390 #ifdef CONFIG_CMA
1391 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1392 					unsigned int order)
1393 {
1394 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1395 }
1396 #else
1397 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1398 					unsigned int order) { return NULL; }
1399 #endif
1400 
1401 /*
1402  * Move the free pages in a range to the free lists of the requested type.
1403  * Note that start_page and end_pages are not aligned on a pageblock
1404  * boundary. If alignment is required, use move_freepages_block()
1405  */
1406 int move_freepages(struct zone *zone,
1407 			  struct page *start_page, struct page *end_page,
1408 			  int migratetype)
1409 {
1410 	struct page *page;
1411 	unsigned long order;
1412 	int pages_moved = 0;
1413 
1414 #ifndef CONFIG_HOLES_IN_ZONE
1415 	/*
1416 	 * page_zone is not safe to call in this context when
1417 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1418 	 * anyway as we check zone boundaries in move_freepages_block().
1419 	 * Remove at a later date when no bug reports exist related to
1420 	 * grouping pages by mobility
1421 	 */
1422 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1423 #endif
1424 
1425 	for (page = start_page; page <= end_page;) {
1426 		/* Make sure we are not inadvertently changing nodes */
1427 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1428 
1429 		if (!pfn_valid_within(page_to_pfn(page))) {
1430 			page++;
1431 			continue;
1432 		}
1433 
1434 		if (!PageBuddy(page)) {
1435 			page++;
1436 			continue;
1437 		}
1438 
1439 		order = page_order(page);
1440 		list_move(&page->lru,
1441 			  &zone->free_area[order].free_list[migratetype]);
1442 		set_freepage_migratetype(page, migratetype);
1443 		page += 1 << order;
1444 		pages_moved += 1 << order;
1445 	}
1446 
1447 	return pages_moved;
1448 }
1449 
1450 int move_freepages_block(struct zone *zone, struct page *page,
1451 				int migratetype)
1452 {
1453 	unsigned long start_pfn, end_pfn;
1454 	struct page *start_page, *end_page;
1455 
1456 	start_pfn = page_to_pfn(page);
1457 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1458 	start_page = pfn_to_page(start_pfn);
1459 	end_page = start_page + pageblock_nr_pages - 1;
1460 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1461 
1462 	/* Do not cross zone boundaries */
1463 	if (!zone_spans_pfn(zone, start_pfn))
1464 		start_page = page;
1465 	if (!zone_spans_pfn(zone, end_pfn))
1466 		return 0;
1467 
1468 	return move_freepages(zone, start_page, end_page, migratetype);
1469 }
1470 
1471 static void change_pageblock_range(struct page *pageblock_page,
1472 					int start_order, int migratetype)
1473 {
1474 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1475 
1476 	while (nr_pageblocks--) {
1477 		set_pageblock_migratetype(pageblock_page, migratetype);
1478 		pageblock_page += pageblock_nr_pages;
1479 	}
1480 }
1481 
1482 /*
1483  * When we are falling back to another migratetype during allocation, try to
1484  * steal extra free pages from the same pageblocks to satisfy further
1485  * allocations, instead of polluting multiple pageblocks.
1486  *
1487  * If we are stealing a relatively large buddy page, it is likely there will
1488  * be more free pages in the pageblock, so try to steal them all. For
1489  * reclaimable and unmovable allocations, we steal regardless of page size,
1490  * as fragmentation caused by those allocations polluting movable pageblocks
1491  * is worse than movable allocations stealing from unmovable and reclaimable
1492  * pageblocks.
1493  */
1494 static bool can_steal_fallback(unsigned int order, int start_mt)
1495 {
1496 	/*
1497 	 * Leaving this order check is intended, although there is
1498 	 * relaxed order check in next check. The reason is that
1499 	 * we can actually steal whole pageblock if this condition met,
1500 	 * but, below check doesn't guarantee it and that is just heuristic
1501 	 * so could be changed anytime.
1502 	 */
1503 	if (order >= pageblock_order)
1504 		return true;
1505 
1506 	if (order >= pageblock_order / 2 ||
1507 		start_mt == MIGRATE_RECLAIMABLE ||
1508 		start_mt == MIGRATE_UNMOVABLE ||
1509 		page_group_by_mobility_disabled)
1510 		return true;
1511 
1512 	return false;
1513 }
1514 
1515 /*
1516  * This function implements actual steal behaviour. If order is large enough,
1517  * we can steal whole pageblock. If not, we first move freepages in this
1518  * pageblock and check whether half of pages are moved or not. If half of
1519  * pages are moved, we can change migratetype of pageblock and permanently
1520  * use it's pages as requested migratetype in the future.
1521  */
1522 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1523 							  int start_type)
1524 {
1525 	int current_order = page_order(page);
1526 	int pages;
1527 
1528 	/* Take ownership for orders >= pageblock_order */
1529 	if (current_order >= pageblock_order) {
1530 		change_pageblock_range(page, current_order, start_type);
1531 		return;
1532 	}
1533 
1534 	pages = move_freepages_block(zone, page, start_type);
1535 
1536 	/* Claim the whole block if over half of it is free */
1537 	if (pages >= (1 << (pageblock_order-1)) ||
1538 			page_group_by_mobility_disabled)
1539 		set_pageblock_migratetype(page, start_type);
1540 }
1541 
1542 /*
1543  * Check whether there is a suitable fallback freepage with requested order.
1544  * If only_stealable is true, this function returns fallback_mt only if
1545  * we can steal other freepages all together. This would help to reduce
1546  * fragmentation due to mixed migratetype pages in one pageblock.
1547  */
1548 int find_suitable_fallback(struct free_area *area, unsigned int order,
1549 			int migratetype, bool only_stealable, bool *can_steal)
1550 {
1551 	int i;
1552 	int fallback_mt;
1553 
1554 	if (area->nr_free == 0)
1555 		return -1;
1556 
1557 	*can_steal = false;
1558 	for (i = 0;; i++) {
1559 		fallback_mt = fallbacks[migratetype][i];
1560 		if (fallback_mt == MIGRATE_RESERVE)
1561 			break;
1562 
1563 		if (list_empty(&area->free_list[fallback_mt]))
1564 			continue;
1565 
1566 		if (can_steal_fallback(order, migratetype))
1567 			*can_steal = true;
1568 
1569 		if (!only_stealable)
1570 			return fallback_mt;
1571 
1572 		if (*can_steal)
1573 			return fallback_mt;
1574 	}
1575 
1576 	return -1;
1577 }
1578 
1579 /* Remove an element from the buddy allocator from the fallback list */
1580 static inline struct page *
1581 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1582 {
1583 	struct free_area *area;
1584 	unsigned int current_order;
1585 	struct page *page;
1586 	int fallback_mt;
1587 	bool can_steal;
1588 
1589 	/* Find the largest possible block of pages in the other list */
1590 	for (current_order = MAX_ORDER-1;
1591 				current_order >= order && current_order <= MAX_ORDER-1;
1592 				--current_order) {
1593 		area = &(zone->free_area[current_order]);
1594 		fallback_mt = find_suitable_fallback(area, current_order,
1595 				start_migratetype, false, &can_steal);
1596 		if (fallback_mt == -1)
1597 			continue;
1598 
1599 		page = list_entry(area->free_list[fallback_mt].next,
1600 						struct page, lru);
1601 		if (can_steal)
1602 			steal_suitable_fallback(zone, page, start_migratetype);
1603 
1604 		/* Remove the page from the freelists */
1605 		area->nr_free--;
1606 		list_del(&page->lru);
1607 		rmv_page_order(page);
1608 
1609 		expand(zone, page, order, current_order, area,
1610 					start_migratetype);
1611 		/*
1612 		 * The freepage_migratetype may differ from pageblock's
1613 		 * migratetype depending on the decisions in
1614 		 * try_to_steal_freepages(). This is OK as long as it
1615 		 * does not differ for MIGRATE_CMA pageblocks. For CMA
1616 		 * we need to make sure unallocated pages flushed from
1617 		 * pcp lists are returned to the correct freelist.
1618 		 */
1619 		set_freepage_migratetype(page, start_migratetype);
1620 
1621 		trace_mm_page_alloc_extfrag(page, order, current_order,
1622 			start_migratetype, fallback_mt);
1623 
1624 		return page;
1625 	}
1626 
1627 	return NULL;
1628 }
1629 
1630 /*
1631  * Do the hard work of removing an element from the buddy allocator.
1632  * Call me with the zone->lock already held.
1633  */
1634 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1635 						int migratetype)
1636 {
1637 	struct page *page;
1638 
1639 retry_reserve:
1640 	page = __rmqueue_smallest(zone, order, migratetype);
1641 
1642 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1643 		if (migratetype == MIGRATE_MOVABLE)
1644 			page = __rmqueue_cma_fallback(zone, order);
1645 
1646 		if (!page)
1647 			page = __rmqueue_fallback(zone, order, migratetype);
1648 
1649 		/*
1650 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1651 		 * is used because __rmqueue_smallest is an inline function
1652 		 * and we want just one call site
1653 		 */
1654 		if (!page) {
1655 			migratetype = MIGRATE_RESERVE;
1656 			goto retry_reserve;
1657 		}
1658 	}
1659 
1660 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1661 	return page;
1662 }
1663 
1664 /*
1665  * Obtain a specified number of elements from the buddy allocator, all under
1666  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1667  * Returns the number of new pages which were placed at *list.
1668  */
1669 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1670 			unsigned long count, struct list_head *list,
1671 			int migratetype, bool cold)
1672 {
1673 	int i;
1674 
1675 	spin_lock(&zone->lock);
1676 	for (i = 0; i < count; ++i) {
1677 		struct page *page = __rmqueue(zone, order, migratetype);
1678 		if (unlikely(page == NULL))
1679 			break;
1680 
1681 		/*
1682 		 * Split buddy pages returned by expand() are received here
1683 		 * in physical page order. The page is added to the callers and
1684 		 * list and the list head then moves forward. From the callers
1685 		 * perspective, the linked list is ordered by page number in
1686 		 * some conditions. This is useful for IO devices that can
1687 		 * merge IO requests if the physical pages are ordered
1688 		 * properly.
1689 		 */
1690 		if (likely(!cold))
1691 			list_add(&page->lru, list);
1692 		else
1693 			list_add_tail(&page->lru, list);
1694 		list = &page->lru;
1695 		if (is_migrate_cma(get_freepage_migratetype(page)))
1696 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1697 					      -(1 << order));
1698 	}
1699 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1700 	spin_unlock(&zone->lock);
1701 	return i;
1702 }
1703 
1704 #ifdef CONFIG_NUMA
1705 /*
1706  * Called from the vmstat counter updater to drain pagesets of this
1707  * currently executing processor on remote nodes after they have
1708  * expired.
1709  *
1710  * Note that this function must be called with the thread pinned to
1711  * a single processor.
1712  */
1713 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1714 {
1715 	unsigned long flags;
1716 	int to_drain, batch;
1717 
1718 	local_irq_save(flags);
1719 	batch = READ_ONCE(pcp->batch);
1720 	to_drain = min(pcp->count, batch);
1721 	if (to_drain > 0) {
1722 		free_pcppages_bulk(zone, to_drain, pcp);
1723 		pcp->count -= to_drain;
1724 	}
1725 	local_irq_restore(flags);
1726 }
1727 #endif
1728 
1729 /*
1730  * Drain pcplists of the indicated processor and zone.
1731  *
1732  * The processor must either be the current processor and the
1733  * thread pinned to the current processor or a processor that
1734  * is not online.
1735  */
1736 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1737 {
1738 	unsigned long flags;
1739 	struct per_cpu_pageset *pset;
1740 	struct per_cpu_pages *pcp;
1741 
1742 	local_irq_save(flags);
1743 	pset = per_cpu_ptr(zone->pageset, cpu);
1744 
1745 	pcp = &pset->pcp;
1746 	if (pcp->count) {
1747 		free_pcppages_bulk(zone, pcp->count, pcp);
1748 		pcp->count = 0;
1749 	}
1750 	local_irq_restore(flags);
1751 }
1752 
1753 /*
1754  * Drain pcplists of all zones on the indicated processor.
1755  *
1756  * The processor must either be the current processor and the
1757  * thread pinned to the current processor or a processor that
1758  * is not online.
1759  */
1760 static void drain_pages(unsigned int cpu)
1761 {
1762 	struct zone *zone;
1763 
1764 	for_each_populated_zone(zone) {
1765 		drain_pages_zone(cpu, zone);
1766 	}
1767 }
1768 
1769 /*
1770  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1771  *
1772  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1773  * the single zone's pages.
1774  */
1775 void drain_local_pages(struct zone *zone)
1776 {
1777 	int cpu = smp_processor_id();
1778 
1779 	if (zone)
1780 		drain_pages_zone(cpu, zone);
1781 	else
1782 		drain_pages(cpu);
1783 }
1784 
1785 /*
1786  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1787  *
1788  * When zone parameter is non-NULL, spill just the single zone's pages.
1789  *
1790  * Note that this code is protected against sending an IPI to an offline
1791  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1792  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1793  * nothing keeps CPUs from showing up after we populated the cpumask and
1794  * before the call to on_each_cpu_mask().
1795  */
1796 void drain_all_pages(struct zone *zone)
1797 {
1798 	int cpu;
1799 
1800 	/*
1801 	 * Allocate in the BSS so we wont require allocation in
1802 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1803 	 */
1804 	static cpumask_t cpus_with_pcps;
1805 
1806 	/*
1807 	 * We don't care about racing with CPU hotplug event
1808 	 * as offline notification will cause the notified
1809 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1810 	 * disables preemption as part of its processing
1811 	 */
1812 	for_each_online_cpu(cpu) {
1813 		struct per_cpu_pageset *pcp;
1814 		struct zone *z;
1815 		bool has_pcps = false;
1816 
1817 		if (zone) {
1818 			pcp = per_cpu_ptr(zone->pageset, cpu);
1819 			if (pcp->pcp.count)
1820 				has_pcps = true;
1821 		} else {
1822 			for_each_populated_zone(z) {
1823 				pcp = per_cpu_ptr(z->pageset, cpu);
1824 				if (pcp->pcp.count) {
1825 					has_pcps = true;
1826 					break;
1827 				}
1828 			}
1829 		}
1830 
1831 		if (has_pcps)
1832 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1833 		else
1834 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1835 	}
1836 	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1837 								zone, 1);
1838 }
1839 
1840 #ifdef CONFIG_HIBERNATION
1841 
1842 void mark_free_pages(struct zone *zone)
1843 {
1844 	unsigned long pfn, max_zone_pfn;
1845 	unsigned long flags;
1846 	unsigned int order, t;
1847 	struct list_head *curr;
1848 
1849 	if (zone_is_empty(zone))
1850 		return;
1851 
1852 	spin_lock_irqsave(&zone->lock, flags);
1853 
1854 	max_zone_pfn = zone_end_pfn(zone);
1855 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1856 		if (pfn_valid(pfn)) {
1857 			struct page *page = pfn_to_page(pfn);
1858 
1859 			if (!swsusp_page_is_forbidden(page))
1860 				swsusp_unset_page_free(page);
1861 		}
1862 
1863 	for_each_migratetype_order(order, t) {
1864 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1865 			unsigned long i;
1866 
1867 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1868 			for (i = 0; i < (1UL << order); i++)
1869 				swsusp_set_page_free(pfn_to_page(pfn + i));
1870 		}
1871 	}
1872 	spin_unlock_irqrestore(&zone->lock, flags);
1873 }
1874 #endif /* CONFIG_PM */
1875 
1876 /*
1877  * Free a 0-order page
1878  * cold == true ? free a cold page : free a hot page
1879  */
1880 void free_hot_cold_page(struct page *page, bool cold)
1881 {
1882 	struct zone *zone = page_zone(page);
1883 	struct per_cpu_pages *pcp;
1884 	unsigned long flags;
1885 	unsigned long pfn = page_to_pfn(page);
1886 	int migratetype;
1887 
1888 	if (!free_pages_prepare(page, 0))
1889 		return;
1890 
1891 	migratetype = get_pfnblock_migratetype(page, pfn);
1892 	set_freepage_migratetype(page, migratetype);
1893 	local_irq_save(flags);
1894 	__count_vm_event(PGFREE);
1895 
1896 	/*
1897 	 * We only track unmovable, reclaimable and movable on pcp lists.
1898 	 * Free ISOLATE pages back to the allocator because they are being
1899 	 * offlined but treat RESERVE as movable pages so we can get those
1900 	 * areas back if necessary. Otherwise, we may have to free
1901 	 * excessively into the page allocator
1902 	 */
1903 	if (migratetype >= MIGRATE_PCPTYPES) {
1904 		if (unlikely(is_migrate_isolate(migratetype))) {
1905 			free_one_page(zone, page, pfn, 0, migratetype);
1906 			goto out;
1907 		}
1908 		migratetype = MIGRATE_MOVABLE;
1909 	}
1910 
1911 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1912 	if (!cold)
1913 		list_add(&page->lru, &pcp->lists[migratetype]);
1914 	else
1915 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1916 	pcp->count++;
1917 	if (pcp->count >= pcp->high) {
1918 		unsigned long batch = READ_ONCE(pcp->batch);
1919 		free_pcppages_bulk(zone, batch, pcp);
1920 		pcp->count -= batch;
1921 	}
1922 
1923 out:
1924 	local_irq_restore(flags);
1925 }
1926 
1927 /*
1928  * Free a list of 0-order pages
1929  */
1930 void free_hot_cold_page_list(struct list_head *list, bool cold)
1931 {
1932 	struct page *page, *next;
1933 
1934 	list_for_each_entry_safe(page, next, list, lru) {
1935 		trace_mm_page_free_batched(page, cold);
1936 		free_hot_cold_page(page, cold);
1937 	}
1938 }
1939 
1940 /*
1941  * split_page takes a non-compound higher-order page, and splits it into
1942  * n (1<<order) sub-pages: page[0..n]
1943  * Each sub-page must be freed individually.
1944  *
1945  * Note: this is probably too low level an operation for use in drivers.
1946  * Please consult with lkml before using this in your driver.
1947  */
1948 void split_page(struct page *page, unsigned int order)
1949 {
1950 	int i;
1951 	gfp_t gfp_mask;
1952 
1953 	VM_BUG_ON_PAGE(PageCompound(page), page);
1954 	VM_BUG_ON_PAGE(!page_count(page), page);
1955 
1956 #ifdef CONFIG_KMEMCHECK
1957 	/*
1958 	 * Split shadow pages too, because free(page[0]) would
1959 	 * otherwise free the whole shadow.
1960 	 */
1961 	if (kmemcheck_page_is_tracked(page))
1962 		split_page(virt_to_page(page[0].shadow), order);
1963 #endif
1964 
1965 	gfp_mask = get_page_owner_gfp(page);
1966 	set_page_owner(page, 0, gfp_mask);
1967 	for (i = 1; i < (1 << order); i++) {
1968 		set_page_refcounted(page + i);
1969 		set_page_owner(page + i, 0, gfp_mask);
1970 	}
1971 }
1972 EXPORT_SYMBOL_GPL(split_page);
1973 
1974 int __isolate_free_page(struct page *page, unsigned int order)
1975 {
1976 	unsigned long watermark;
1977 	struct zone *zone;
1978 	int mt;
1979 
1980 	BUG_ON(!PageBuddy(page));
1981 
1982 	zone = page_zone(page);
1983 	mt = get_pageblock_migratetype(page);
1984 
1985 	if (!is_migrate_isolate(mt)) {
1986 		/* Obey watermarks as if the page was being allocated */
1987 		watermark = low_wmark_pages(zone) + (1 << order);
1988 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1989 			return 0;
1990 
1991 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1992 	}
1993 
1994 	/* Remove page from free list */
1995 	list_del(&page->lru);
1996 	zone->free_area[order].nr_free--;
1997 	rmv_page_order(page);
1998 
1999 	set_page_owner(page, order, __GFP_MOVABLE);
2000 
2001 	/* Set the pageblock if the isolated page is at least a pageblock */
2002 	if (order >= pageblock_order - 1) {
2003 		struct page *endpage = page + (1 << order) - 1;
2004 		for (; page < endpage; page += pageblock_nr_pages) {
2005 			int mt = get_pageblock_migratetype(page);
2006 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2007 				set_pageblock_migratetype(page,
2008 							  MIGRATE_MOVABLE);
2009 		}
2010 	}
2011 
2012 
2013 	return 1UL << order;
2014 }
2015 
2016 /*
2017  * Similar to split_page except the page is already free. As this is only
2018  * being used for migration, the migratetype of the block also changes.
2019  * As this is called with interrupts disabled, the caller is responsible
2020  * for calling arch_alloc_page() and kernel_map_page() after interrupts
2021  * are enabled.
2022  *
2023  * Note: this is probably too low level an operation for use in drivers.
2024  * Please consult with lkml before using this in your driver.
2025  */
2026 int split_free_page(struct page *page)
2027 {
2028 	unsigned int order;
2029 	int nr_pages;
2030 
2031 	order = page_order(page);
2032 
2033 	nr_pages = __isolate_free_page(page, order);
2034 	if (!nr_pages)
2035 		return 0;
2036 
2037 	/* Split into individual pages */
2038 	set_page_refcounted(page);
2039 	split_page(page, order);
2040 	return nr_pages;
2041 }
2042 
2043 /*
2044  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2045  */
2046 static inline
2047 struct page *buffered_rmqueue(struct zone *preferred_zone,
2048 			struct zone *zone, unsigned int order,
2049 			gfp_t gfp_flags, int migratetype)
2050 {
2051 	unsigned long flags;
2052 	struct page *page;
2053 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2054 
2055 	if (likely(order == 0)) {
2056 		struct per_cpu_pages *pcp;
2057 		struct list_head *list;
2058 
2059 		local_irq_save(flags);
2060 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
2061 		list = &pcp->lists[migratetype];
2062 		if (list_empty(list)) {
2063 			pcp->count += rmqueue_bulk(zone, 0,
2064 					pcp->batch, list,
2065 					migratetype, cold);
2066 			if (unlikely(list_empty(list)))
2067 				goto failed;
2068 		}
2069 
2070 		if (cold)
2071 			page = list_entry(list->prev, struct page, lru);
2072 		else
2073 			page = list_entry(list->next, struct page, lru);
2074 
2075 		list_del(&page->lru);
2076 		pcp->count--;
2077 	} else {
2078 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2079 			/*
2080 			 * __GFP_NOFAIL is not to be used in new code.
2081 			 *
2082 			 * All __GFP_NOFAIL callers should be fixed so that they
2083 			 * properly detect and handle allocation failures.
2084 			 *
2085 			 * We most definitely don't want callers attempting to
2086 			 * allocate greater than order-1 page units with
2087 			 * __GFP_NOFAIL.
2088 			 */
2089 			WARN_ON_ONCE(order > 1);
2090 		}
2091 		spin_lock_irqsave(&zone->lock, flags);
2092 		page = __rmqueue(zone, order, migratetype);
2093 		spin_unlock(&zone->lock);
2094 		if (!page)
2095 			goto failed;
2096 		__mod_zone_freepage_state(zone, -(1 << order),
2097 					  get_freepage_migratetype(page));
2098 	}
2099 
2100 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2101 	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2102 	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2103 		set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2104 
2105 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
2106 	zone_statistics(preferred_zone, zone, gfp_flags);
2107 	local_irq_restore(flags);
2108 
2109 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
2110 	return page;
2111 
2112 failed:
2113 	local_irq_restore(flags);
2114 	return NULL;
2115 }
2116 
2117 #ifdef CONFIG_FAIL_PAGE_ALLOC
2118 
2119 static struct {
2120 	struct fault_attr attr;
2121 
2122 	u32 ignore_gfp_highmem;
2123 	u32 ignore_gfp_wait;
2124 	u32 min_order;
2125 } fail_page_alloc = {
2126 	.attr = FAULT_ATTR_INITIALIZER,
2127 	.ignore_gfp_wait = 1,
2128 	.ignore_gfp_highmem = 1,
2129 	.min_order = 1,
2130 };
2131 
2132 static int __init setup_fail_page_alloc(char *str)
2133 {
2134 	return setup_fault_attr(&fail_page_alloc.attr, str);
2135 }
2136 __setup("fail_page_alloc=", setup_fail_page_alloc);
2137 
2138 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2139 {
2140 	if (order < fail_page_alloc.min_order)
2141 		return false;
2142 	if (gfp_mask & __GFP_NOFAIL)
2143 		return false;
2144 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2145 		return false;
2146 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
2147 		return false;
2148 
2149 	return should_fail(&fail_page_alloc.attr, 1 << order);
2150 }
2151 
2152 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2153 
2154 static int __init fail_page_alloc_debugfs(void)
2155 {
2156 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2157 	struct dentry *dir;
2158 
2159 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2160 					&fail_page_alloc.attr);
2161 	if (IS_ERR(dir))
2162 		return PTR_ERR(dir);
2163 
2164 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2165 				&fail_page_alloc.ignore_gfp_wait))
2166 		goto fail;
2167 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2168 				&fail_page_alloc.ignore_gfp_highmem))
2169 		goto fail;
2170 	if (!debugfs_create_u32("min-order", mode, dir,
2171 				&fail_page_alloc.min_order))
2172 		goto fail;
2173 
2174 	return 0;
2175 fail:
2176 	debugfs_remove_recursive(dir);
2177 
2178 	return -ENOMEM;
2179 }
2180 
2181 late_initcall(fail_page_alloc_debugfs);
2182 
2183 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2184 
2185 #else /* CONFIG_FAIL_PAGE_ALLOC */
2186 
2187 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2188 {
2189 	return false;
2190 }
2191 
2192 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2193 
2194 /*
2195  * Return true if free pages are above 'mark'. This takes into account the order
2196  * of the allocation.
2197  */
2198 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2199 			unsigned long mark, int classzone_idx, int alloc_flags,
2200 			long free_pages)
2201 {
2202 	/* free_pages may go negative - that's OK */
2203 	long min = mark;
2204 	int o;
2205 	long free_cma = 0;
2206 
2207 	free_pages -= (1 << order) - 1;
2208 	if (alloc_flags & ALLOC_HIGH)
2209 		min -= min / 2;
2210 	if (alloc_flags & ALLOC_HARDER)
2211 		min -= min / 4;
2212 #ifdef CONFIG_CMA
2213 	/* If allocation can't use CMA areas don't use free CMA pages */
2214 	if (!(alloc_flags & ALLOC_CMA))
2215 		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
2216 #endif
2217 
2218 	if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
2219 		return false;
2220 	for (o = 0; o < order; o++) {
2221 		/* At the next order, this order's pages become unavailable */
2222 		free_pages -= z->free_area[o].nr_free << o;
2223 
2224 		/* Require fewer higher order pages to be free */
2225 		min >>= 1;
2226 
2227 		if (free_pages <= min)
2228 			return false;
2229 	}
2230 	return true;
2231 }
2232 
2233 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2234 		      int classzone_idx, int alloc_flags)
2235 {
2236 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2237 					zone_page_state(z, NR_FREE_PAGES));
2238 }
2239 
2240 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2241 			unsigned long mark, int classzone_idx, int alloc_flags)
2242 {
2243 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2244 
2245 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2246 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2247 
2248 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2249 								free_pages);
2250 }
2251 
2252 #ifdef CONFIG_NUMA
2253 /*
2254  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
2255  * skip over zones that are not allowed by the cpuset, or that have
2256  * been recently (in last second) found to be nearly full.  See further
2257  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
2258  * that have to skip over a lot of full or unallowed zones.
2259  *
2260  * If the zonelist cache is present in the passed zonelist, then
2261  * returns a pointer to the allowed node mask (either the current
2262  * tasks mems_allowed, or node_states[N_MEMORY].)
2263  *
2264  * If the zonelist cache is not available for this zonelist, does
2265  * nothing and returns NULL.
2266  *
2267  * If the fullzones BITMAP in the zonelist cache is stale (more than
2268  * a second since last zap'd) then we zap it out (clear its bits.)
2269  *
2270  * We hold off even calling zlc_setup, until after we've checked the
2271  * first zone in the zonelist, on the theory that most allocations will
2272  * be satisfied from that first zone, so best to examine that zone as
2273  * quickly as we can.
2274  */
2275 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2276 {
2277 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
2278 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
2279 
2280 	zlc = zonelist->zlcache_ptr;
2281 	if (!zlc)
2282 		return NULL;
2283 
2284 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
2285 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2286 		zlc->last_full_zap = jiffies;
2287 	}
2288 
2289 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
2290 					&cpuset_current_mems_allowed :
2291 					&node_states[N_MEMORY];
2292 	return allowednodes;
2293 }
2294 
2295 /*
2296  * Given 'z' scanning a zonelist, run a couple of quick checks to see
2297  * if it is worth looking at further for free memory:
2298  *  1) Check that the zone isn't thought to be full (doesn't have its
2299  *     bit set in the zonelist_cache fullzones BITMAP).
2300  *  2) Check that the zones node (obtained from the zonelist_cache
2301  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
2302  * Return true (non-zero) if zone is worth looking at further, or
2303  * else return false (zero) if it is not.
2304  *
2305  * This check -ignores- the distinction between various watermarks,
2306  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
2307  * found to be full for any variation of these watermarks, it will
2308  * be considered full for up to one second by all requests, unless
2309  * we are so low on memory on all allowed nodes that we are forced
2310  * into the second scan of the zonelist.
2311  *
2312  * In the second scan we ignore this zonelist cache and exactly
2313  * apply the watermarks to all zones, even it is slower to do so.
2314  * We are low on memory in the second scan, and should leave no stone
2315  * unturned looking for a free page.
2316  */
2317 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2318 						nodemask_t *allowednodes)
2319 {
2320 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
2321 	int i;				/* index of *z in zonelist zones */
2322 	int n;				/* node that zone *z is on */
2323 
2324 	zlc = zonelist->zlcache_ptr;
2325 	if (!zlc)
2326 		return 1;
2327 
2328 	i = z - zonelist->_zonerefs;
2329 	n = zlc->z_to_n[i];
2330 
2331 	/* This zone is worth trying if it is allowed but not full */
2332 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
2333 }
2334 
2335 /*
2336  * Given 'z' scanning a zonelist, set the corresponding bit in
2337  * zlc->fullzones, so that subsequent attempts to allocate a page
2338  * from that zone don't waste time re-examining it.
2339  */
2340 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2341 {
2342 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
2343 	int i;				/* index of *z in zonelist zones */
2344 
2345 	zlc = zonelist->zlcache_ptr;
2346 	if (!zlc)
2347 		return;
2348 
2349 	i = z - zonelist->_zonerefs;
2350 
2351 	set_bit(i, zlc->fullzones);
2352 }
2353 
2354 /*
2355  * clear all zones full, called after direct reclaim makes progress so that
2356  * a zone that was recently full is not skipped over for up to a second
2357  */
2358 static void zlc_clear_zones_full(struct zonelist *zonelist)
2359 {
2360 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
2361 
2362 	zlc = zonelist->zlcache_ptr;
2363 	if (!zlc)
2364 		return;
2365 
2366 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2367 }
2368 
2369 static bool zone_local(struct zone *local_zone, struct zone *zone)
2370 {
2371 	return local_zone->node == zone->node;
2372 }
2373 
2374 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2375 {
2376 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2377 				RECLAIM_DISTANCE;
2378 }
2379 
2380 #else	/* CONFIG_NUMA */
2381 
2382 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2383 {
2384 	return NULL;
2385 }
2386 
2387 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2388 				nodemask_t *allowednodes)
2389 {
2390 	return 1;
2391 }
2392 
2393 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2394 {
2395 }
2396 
2397 static void zlc_clear_zones_full(struct zonelist *zonelist)
2398 {
2399 }
2400 
2401 static bool zone_local(struct zone *local_zone, struct zone *zone)
2402 {
2403 	return true;
2404 }
2405 
2406 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2407 {
2408 	return true;
2409 }
2410 
2411 #endif	/* CONFIG_NUMA */
2412 
2413 static void reset_alloc_batches(struct zone *preferred_zone)
2414 {
2415 	struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2416 
2417 	do {
2418 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2419 			high_wmark_pages(zone) - low_wmark_pages(zone) -
2420 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2421 		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2422 	} while (zone++ != preferred_zone);
2423 }
2424 
2425 /*
2426  * get_page_from_freelist goes through the zonelist trying to allocate
2427  * a page.
2428  */
2429 static struct page *
2430 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2431 						const struct alloc_context *ac)
2432 {
2433 	struct zonelist *zonelist = ac->zonelist;
2434 	struct zoneref *z;
2435 	struct page *page = NULL;
2436 	struct zone *zone;
2437 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2438 	int zlc_active = 0;		/* set if using zonelist_cache */
2439 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
2440 	bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2441 				(gfp_mask & __GFP_WRITE);
2442 	int nr_fair_skipped = 0;
2443 	bool zonelist_rescan;
2444 
2445 zonelist_scan:
2446 	zonelist_rescan = false;
2447 
2448 	/*
2449 	 * Scan zonelist, looking for a zone with enough free.
2450 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2451 	 */
2452 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2453 								ac->nodemask) {
2454 		unsigned long mark;
2455 
2456 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2457 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
2458 				continue;
2459 		if (cpusets_enabled() &&
2460 			(alloc_flags & ALLOC_CPUSET) &&
2461 			!cpuset_zone_allowed(zone, gfp_mask))
2462 				continue;
2463 		/*
2464 		 * Distribute pages in proportion to the individual
2465 		 * zone size to ensure fair page aging.  The zone a
2466 		 * page was allocated in should have no effect on the
2467 		 * time the page has in memory before being reclaimed.
2468 		 */
2469 		if (alloc_flags & ALLOC_FAIR) {
2470 			if (!zone_local(ac->preferred_zone, zone))
2471 				break;
2472 			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2473 				nr_fair_skipped++;
2474 				continue;
2475 			}
2476 		}
2477 		/*
2478 		 * When allocating a page cache page for writing, we
2479 		 * want to get it from a zone that is within its dirty
2480 		 * limit, such that no single zone holds more than its
2481 		 * proportional share of globally allowed dirty pages.
2482 		 * The dirty limits take into account the zone's
2483 		 * lowmem reserves and high watermark so that kswapd
2484 		 * should be able to balance it without having to
2485 		 * write pages from its LRU list.
2486 		 *
2487 		 * This may look like it could increase pressure on
2488 		 * lower zones by failing allocations in higher zones
2489 		 * before they are full.  But the pages that do spill
2490 		 * over are limited as the lower zones are protected
2491 		 * by this very same mechanism.  It should not become
2492 		 * a practical burden to them.
2493 		 *
2494 		 * XXX: For now, allow allocations to potentially
2495 		 * exceed the per-zone dirty limit in the slowpath
2496 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2497 		 * which is important when on a NUMA setup the allowed
2498 		 * zones are together not big enough to reach the
2499 		 * global limit.  The proper fix for these situations
2500 		 * will require awareness of zones in the
2501 		 * dirty-throttling and the flusher threads.
2502 		 */
2503 		if (consider_zone_dirty && !zone_dirty_ok(zone))
2504 			continue;
2505 
2506 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2507 		if (!zone_watermark_ok(zone, order, mark,
2508 				       ac->classzone_idx, alloc_flags)) {
2509 			int ret;
2510 
2511 			/* Checked here to keep the fast path fast */
2512 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2513 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2514 				goto try_this_zone;
2515 
2516 			if (IS_ENABLED(CONFIG_NUMA) &&
2517 					!did_zlc_setup && nr_online_nodes > 1) {
2518 				/*
2519 				 * we do zlc_setup if there are multiple nodes
2520 				 * and before considering the first zone allowed
2521 				 * by the cpuset.
2522 				 */
2523 				allowednodes = zlc_setup(zonelist, alloc_flags);
2524 				zlc_active = 1;
2525 				did_zlc_setup = 1;
2526 			}
2527 
2528 			if (zone_reclaim_mode == 0 ||
2529 			    !zone_allows_reclaim(ac->preferred_zone, zone))
2530 				goto this_zone_full;
2531 
2532 			/*
2533 			 * As we may have just activated ZLC, check if the first
2534 			 * eligible zone has failed zone_reclaim recently.
2535 			 */
2536 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2537 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
2538 				continue;
2539 
2540 			ret = zone_reclaim(zone, gfp_mask, order);
2541 			switch (ret) {
2542 			case ZONE_RECLAIM_NOSCAN:
2543 				/* did not scan */
2544 				continue;
2545 			case ZONE_RECLAIM_FULL:
2546 				/* scanned but unreclaimable */
2547 				continue;
2548 			default:
2549 				/* did we reclaim enough */
2550 				if (zone_watermark_ok(zone, order, mark,
2551 						ac->classzone_idx, alloc_flags))
2552 					goto try_this_zone;
2553 
2554 				/*
2555 				 * Failed to reclaim enough to meet watermark.
2556 				 * Only mark the zone full if checking the min
2557 				 * watermark or if we failed to reclaim just
2558 				 * 1<<order pages or else the page allocator
2559 				 * fastpath will prematurely mark zones full
2560 				 * when the watermark is between the low and
2561 				 * min watermarks.
2562 				 */
2563 				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2564 				    ret == ZONE_RECLAIM_SOME)
2565 					goto this_zone_full;
2566 
2567 				continue;
2568 			}
2569 		}
2570 
2571 try_this_zone:
2572 		page = buffered_rmqueue(ac->preferred_zone, zone, order,
2573 						gfp_mask, ac->migratetype);
2574 		if (page) {
2575 			if (prep_new_page(page, order, gfp_mask, alloc_flags))
2576 				goto try_this_zone;
2577 			return page;
2578 		}
2579 this_zone_full:
2580 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2581 			zlc_mark_zone_full(zonelist, z);
2582 	}
2583 
2584 	/*
2585 	 * The first pass makes sure allocations are spread fairly within the
2586 	 * local node.  However, the local node might have free pages left
2587 	 * after the fairness batches are exhausted, and remote zones haven't
2588 	 * even been considered yet.  Try once more without fairness, and
2589 	 * include remote zones now, before entering the slowpath and waking
2590 	 * kswapd: prefer spilling to a remote zone over swapping locally.
2591 	 */
2592 	if (alloc_flags & ALLOC_FAIR) {
2593 		alloc_flags &= ~ALLOC_FAIR;
2594 		if (nr_fair_skipped) {
2595 			zonelist_rescan = true;
2596 			reset_alloc_batches(ac->preferred_zone);
2597 		}
2598 		if (nr_online_nodes > 1)
2599 			zonelist_rescan = true;
2600 	}
2601 
2602 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2603 		/* Disable zlc cache for second zonelist scan */
2604 		zlc_active = 0;
2605 		zonelist_rescan = true;
2606 	}
2607 
2608 	if (zonelist_rescan)
2609 		goto zonelist_scan;
2610 
2611 	return NULL;
2612 }
2613 
2614 /*
2615  * Large machines with many possible nodes should not always dump per-node
2616  * meminfo in irq context.
2617  */
2618 static inline bool should_suppress_show_mem(void)
2619 {
2620 	bool ret = false;
2621 
2622 #if NODES_SHIFT > 8
2623 	ret = in_interrupt();
2624 #endif
2625 	return ret;
2626 }
2627 
2628 static DEFINE_RATELIMIT_STATE(nopage_rs,
2629 		DEFAULT_RATELIMIT_INTERVAL,
2630 		DEFAULT_RATELIMIT_BURST);
2631 
2632 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2633 {
2634 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2635 
2636 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2637 	    debug_guardpage_minorder() > 0)
2638 		return;
2639 
2640 	/*
2641 	 * This documents exceptions given to allocations in certain
2642 	 * contexts that are allowed to allocate outside current's set
2643 	 * of allowed nodes.
2644 	 */
2645 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2646 		if (test_thread_flag(TIF_MEMDIE) ||
2647 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2648 			filter &= ~SHOW_MEM_FILTER_NODES;
2649 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2650 		filter &= ~SHOW_MEM_FILTER_NODES;
2651 
2652 	if (fmt) {
2653 		struct va_format vaf;
2654 		va_list args;
2655 
2656 		va_start(args, fmt);
2657 
2658 		vaf.fmt = fmt;
2659 		vaf.va = &args;
2660 
2661 		pr_warn("%pV", &vaf);
2662 
2663 		va_end(args);
2664 	}
2665 
2666 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2667 		current->comm, order, gfp_mask);
2668 
2669 	dump_stack();
2670 	if (!should_suppress_show_mem())
2671 		show_mem(filter);
2672 }
2673 
2674 static inline struct page *
2675 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2676 	const struct alloc_context *ac, unsigned long *did_some_progress)
2677 {
2678 	struct page *page;
2679 
2680 	*did_some_progress = 0;
2681 
2682 	/*
2683 	 * Acquire the oom lock.  If that fails, somebody else is
2684 	 * making progress for us.
2685 	 */
2686 	if (!mutex_trylock(&oom_lock)) {
2687 		*did_some_progress = 1;
2688 		schedule_timeout_uninterruptible(1);
2689 		return NULL;
2690 	}
2691 
2692 	/*
2693 	 * Go through the zonelist yet one more time, keep very high watermark
2694 	 * here, this is only to catch a parallel oom killing, we must fail if
2695 	 * we're still under heavy pressure.
2696 	 */
2697 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2698 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2699 	if (page)
2700 		goto out;
2701 
2702 	if (!(gfp_mask & __GFP_NOFAIL)) {
2703 		/* Coredumps can quickly deplete all memory reserves */
2704 		if (current->flags & PF_DUMPCORE)
2705 			goto out;
2706 		/* The OOM killer will not help higher order allocs */
2707 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2708 			goto out;
2709 		/* The OOM killer does not needlessly kill tasks for lowmem */
2710 		if (ac->high_zoneidx < ZONE_NORMAL)
2711 			goto out;
2712 		/* The OOM killer does not compensate for IO-less reclaim */
2713 		if (!(gfp_mask & __GFP_FS)) {
2714 			/*
2715 			 * XXX: Page reclaim didn't yield anything,
2716 			 * and the OOM killer can't be invoked, but
2717 			 * keep looping as per tradition.
2718 			 */
2719 			*did_some_progress = 1;
2720 			goto out;
2721 		}
2722 		if (pm_suspended_storage())
2723 			goto out;
2724 		/* The OOM killer may not free memory on a specific node */
2725 		if (gfp_mask & __GFP_THISNODE)
2726 			goto out;
2727 	}
2728 	/* Exhausted what can be done so it's blamo time */
2729 	if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2730 			|| WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2731 		*did_some_progress = 1;
2732 out:
2733 	mutex_unlock(&oom_lock);
2734 	return page;
2735 }
2736 
2737 #ifdef CONFIG_COMPACTION
2738 /* Try memory compaction for high-order allocations before reclaim */
2739 static struct page *
2740 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2741 		int alloc_flags, const struct alloc_context *ac,
2742 		enum migrate_mode mode, int *contended_compaction,
2743 		bool *deferred_compaction)
2744 {
2745 	unsigned long compact_result;
2746 	struct page *page;
2747 
2748 	if (!order)
2749 		return NULL;
2750 
2751 	current->flags |= PF_MEMALLOC;
2752 	compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2753 						mode, contended_compaction);
2754 	current->flags &= ~PF_MEMALLOC;
2755 
2756 	switch (compact_result) {
2757 	case COMPACT_DEFERRED:
2758 		*deferred_compaction = true;
2759 		/* fall-through */
2760 	case COMPACT_SKIPPED:
2761 		return NULL;
2762 	default:
2763 		break;
2764 	}
2765 
2766 	/*
2767 	 * At least in one zone compaction wasn't deferred or skipped, so let's
2768 	 * count a compaction stall
2769 	 */
2770 	count_vm_event(COMPACTSTALL);
2771 
2772 	page = get_page_from_freelist(gfp_mask, order,
2773 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2774 
2775 	if (page) {
2776 		struct zone *zone = page_zone(page);
2777 
2778 		zone->compact_blockskip_flush = false;
2779 		compaction_defer_reset(zone, order, true);
2780 		count_vm_event(COMPACTSUCCESS);
2781 		return page;
2782 	}
2783 
2784 	/*
2785 	 * It's bad if compaction run occurs and fails. The most likely reason
2786 	 * is that pages exist, but not enough to satisfy watermarks.
2787 	 */
2788 	count_vm_event(COMPACTFAIL);
2789 
2790 	cond_resched();
2791 
2792 	return NULL;
2793 }
2794 #else
2795 static inline struct page *
2796 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2797 		int alloc_flags, const struct alloc_context *ac,
2798 		enum migrate_mode mode, int *contended_compaction,
2799 		bool *deferred_compaction)
2800 {
2801 	return NULL;
2802 }
2803 #endif /* CONFIG_COMPACTION */
2804 
2805 /* Perform direct synchronous page reclaim */
2806 static int
2807 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2808 					const struct alloc_context *ac)
2809 {
2810 	struct reclaim_state reclaim_state;
2811 	int progress;
2812 
2813 	cond_resched();
2814 
2815 	/* We now go into synchronous reclaim */
2816 	cpuset_memory_pressure_bump();
2817 	current->flags |= PF_MEMALLOC;
2818 	lockdep_set_current_reclaim_state(gfp_mask);
2819 	reclaim_state.reclaimed_slab = 0;
2820 	current->reclaim_state = &reclaim_state;
2821 
2822 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2823 								ac->nodemask);
2824 
2825 	current->reclaim_state = NULL;
2826 	lockdep_clear_current_reclaim_state();
2827 	current->flags &= ~PF_MEMALLOC;
2828 
2829 	cond_resched();
2830 
2831 	return progress;
2832 }
2833 
2834 /* The really slow allocator path where we enter direct reclaim */
2835 static inline struct page *
2836 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2837 		int alloc_flags, const struct alloc_context *ac,
2838 		unsigned long *did_some_progress)
2839 {
2840 	struct page *page = NULL;
2841 	bool drained = false;
2842 
2843 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2844 	if (unlikely(!(*did_some_progress)))
2845 		return NULL;
2846 
2847 	/* After successful reclaim, reconsider all zones for allocation */
2848 	if (IS_ENABLED(CONFIG_NUMA))
2849 		zlc_clear_zones_full(ac->zonelist);
2850 
2851 retry:
2852 	page = get_page_from_freelist(gfp_mask, order,
2853 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2854 
2855 	/*
2856 	 * If an allocation failed after direct reclaim, it could be because
2857 	 * pages are pinned on the per-cpu lists. Drain them and try again
2858 	 */
2859 	if (!page && !drained) {
2860 		drain_all_pages(NULL);
2861 		drained = true;
2862 		goto retry;
2863 	}
2864 
2865 	return page;
2866 }
2867 
2868 /*
2869  * This is called in the allocator slow-path if the allocation request is of
2870  * sufficient urgency to ignore watermarks and take other desperate measures
2871  */
2872 static inline struct page *
2873 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2874 				const struct alloc_context *ac)
2875 {
2876 	struct page *page;
2877 
2878 	do {
2879 		page = get_page_from_freelist(gfp_mask, order,
2880 						ALLOC_NO_WATERMARKS, ac);
2881 
2882 		if (!page && gfp_mask & __GFP_NOFAIL)
2883 			wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2884 									HZ/50);
2885 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2886 
2887 	return page;
2888 }
2889 
2890 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2891 {
2892 	struct zoneref *z;
2893 	struct zone *zone;
2894 
2895 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2896 						ac->high_zoneidx, ac->nodemask)
2897 		wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2898 }
2899 
2900 static inline int
2901 gfp_to_alloc_flags(gfp_t gfp_mask)
2902 {
2903 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2904 	const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2905 
2906 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2907 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2908 
2909 	/*
2910 	 * The caller may dip into page reserves a bit more if the caller
2911 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2912 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2913 	 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2914 	 */
2915 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2916 
2917 	if (atomic) {
2918 		/*
2919 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2920 		 * if it can't schedule.
2921 		 */
2922 		if (!(gfp_mask & __GFP_NOMEMALLOC))
2923 			alloc_flags |= ALLOC_HARDER;
2924 		/*
2925 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2926 		 * comment for __cpuset_node_allowed().
2927 		 */
2928 		alloc_flags &= ~ALLOC_CPUSET;
2929 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2930 		alloc_flags |= ALLOC_HARDER;
2931 
2932 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2933 		if (gfp_mask & __GFP_MEMALLOC)
2934 			alloc_flags |= ALLOC_NO_WATERMARKS;
2935 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2936 			alloc_flags |= ALLOC_NO_WATERMARKS;
2937 		else if (!in_interrupt() &&
2938 				((current->flags & PF_MEMALLOC) ||
2939 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2940 			alloc_flags |= ALLOC_NO_WATERMARKS;
2941 	}
2942 #ifdef CONFIG_CMA
2943 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2944 		alloc_flags |= ALLOC_CMA;
2945 #endif
2946 	return alloc_flags;
2947 }
2948 
2949 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2950 {
2951 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2952 }
2953 
2954 static inline struct page *
2955 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2956 						struct alloc_context *ac)
2957 {
2958 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2959 	struct page *page = NULL;
2960 	int alloc_flags;
2961 	unsigned long pages_reclaimed = 0;
2962 	unsigned long did_some_progress;
2963 	enum migrate_mode migration_mode = MIGRATE_ASYNC;
2964 	bool deferred_compaction = false;
2965 	int contended_compaction = COMPACT_CONTENDED_NONE;
2966 
2967 	/*
2968 	 * In the slowpath, we sanity check order to avoid ever trying to
2969 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2970 	 * be using allocators in order of preference for an area that is
2971 	 * too large.
2972 	 */
2973 	if (order >= MAX_ORDER) {
2974 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2975 		return NULL;
2976 	}
2977 
2978 	/*
2979 	 * If this allocation cannot block and it is for a specific node, then
2980 	 * fail early.  There's no need to wakeup kswapd or retry for a
2981 	 * speculative node-specific allocation.
2982 	 */
2983 	if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
2984 		goto nopage;
2985 
2986 retry:
2987 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2988 		wake_all_kswapds(order, ac);
2989 
2990 	/*
2991 	 * OK, we're below the kswapd watermark and have kicked background
2992 	 * reclaim. Now things get more complex, so set up alloc_flags according
2993 	 * to how we want to proceed.
2994 	 */
2995 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2996 
2997 	/*
2998 	 * Find the true preferred zone if the allocation is unconstrained by
2999 	 * cpusets.
3000 	 */
3001 	if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3002 		struct zoneref *preferred_zoneref;
3003 		preferred_zoneref = first_zones_zonelist(ac->zonelist,
3004 				ac->high_zoneidx, NULL, &ac->preferred_zone);
3005 		ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3006 	}
3007 
3008 	/* This is the last chance, in general, before the goto nopage. */
3009 	page = get_page_from_freelist(gfp_mask, order,
3010 				alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3011 	if (page)
3012 		goto got_pg;
3013 
3014 	/* Allocate without watermarks if the context allows */
3015 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
3016 		/*
3017 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3018 		 * the allocation is high priority and these type of
3019 		 * allocations are system rather than user orientated
3020 		 */
3021 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3022 
3023 		page = __alloc_pages_high_priority(gfp_mask, order, ac);
3024 
3025 		if (page) {
3026 			goto got_pg;
3027 		}
3028 	}
3029 
3030 	/* Atomic allocations - we can't balance anything */
3031 	if (!wait) {
3032 		/*
3033 		 * All existing users of the deprecated __GFP_NOFAIL are
3034 		 * blockable, so warn of any new users that actually allow this
3035 		 * type of allocation to fail.
3036 		 */
3037 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3038 		goto nopage;
3039 	}
3040 
3041 	/* Avoid recursion of direct reclaim */
3042 	if (current->flags & PF_MEMALLOC)
3043 		goto nopage;
3044 
3045 	/* Avoid allocations with no watermarks from looping endlessly */
3046 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3047 		goto nopage;
3048 
3049 	/*
3050 	 * Try direct compaction. The first pass is asynchronous. Subsequent
3051 	 * attempts after direct reclaim are synchronous
3052 	 */
3053 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3054 					migration_mode,
3055 					&contended_compaction,
3056 					&deferred_compaction);
3057 	if (page)
3058 		goto got_pg;
3059 
3060 	/* Checks for THP-specific high-order allocations */
3061 	if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
3062 		/*
3063 		 * If compaction is deferred for high-order allocations, it is
3064 		 * because sync compaction recently failed. If this is the case
3065 		 * and the caller requested a THP allocation, we do not want
3066 		 * to heavily disrupt the system, so we fail the allocation
3067 		 * instead of entering direct reclaim.
3068 		 */
3069 		if (deferred_compaction)
3070 			goto nopage;
3071 
3072 		/*
3073 		 * In all zones where compaction was attempted (and not
3074 		 * deferred or skipped), lock contention has been detected.
3075 		 * For THP allocation we do not want to disrupt the others
3076 		 * so we fallback to base pages instead.
3077 		 */
3078 		if (contended_compaction == COMPACT_CONTENDED_LOCK)
3079 			goto nopage;
3080 
3081 		/*
3082 		 * If compaction was aborted due to need_resched(), we do not
3083 		 * want to further increase allocation latency, unless it is
3084 		 * khugepaged trying to collapse.
3085 		 */
3086 		if (contended_compaction == COMPACT_CONTENDED_SCHED
3087 			&& !(current->flags & PF_KTHREAD))
3088 			goto nopage;
3089 	}
3090 
3091 	/*
3092 	 * It can become very expensive to allocate transparent hugepages at
3093 	 * fault, so use asynchronous memory compaction for THP unless it is
3094 	 * khugepaged trying to collapse.
3095 	 */
3096 	if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
3097 						(current->flags & PF_KTHREAD))
3098 		migration_mode = MIGRATE_SYNC_LIGHT;
3099 
3100 	/* Try direct reclaim and then allocating */
3101 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3102 							&did_some_progress);
3103 	if (page)
3104 		goto got_pg;
3105 
3106 	/* Do not loop if specifically requested */
3107 	if (gfp_mask & __GFP_NORETRY)
3108 		goto noretry;
3109 
3110 	/* Keep reclaiming pages as long as there is reasonable progress */
3111 	pages_reclaimed += did_some_progress;
3112 	if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3113 	    ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3114 		/* Wait for some write requests to complete then retry */
3115 		wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3116 		goto retry;
3117 	}
3118 
3119 	/* Reclaim has failed us, start killing things */
3120 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3121 	if (page)
3122 		goto got_pg;
3123 
3124 	/* Retry as long as the OOM killer is making progress */
3125 	if (did_some_progress)
3126 		goto retry;
3127 
3128 noretry:
3129 	/*
3130 	 * High-order allocations do not necessarily loop after
3131 	 * direct reclaim and reclaim/compaction depends on compaction
3132 	 * being called after reclaim so call directly if necessary
3133 	 */
3134 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3135 					    ac, migration_mode,
3136 					    &contended_compaction,
3137 					    &deferred_compaction);
3138 	if (page)
3139 		goto got_pg;
3140 nopage:
3141 	warn_alloc_failed(gfp_mask, order, NULL);
3142 got_pg:
3143 	return page;
3144 }
3145 
3146 /*
3147  * This is the 'heart' of the zoned buddy allocator.
3148  */
3149 struct page *
3150 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3151 			struct zonelist *zonelist, nodemask_t *nodemask)
3152 {
3153 	struct zoneref *preferred_zoneref;
3154 	struct page *page = NULL;
3155 	unsigned int cpuset_mems_cookie;
3156 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3157 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3158 	struct alloc_context ac = {
3159 		.high_zoneidx = gfp_zone(gfp_mask),
3160 		.nodemask = nodemask,
3161 		.migratetype = gfpflags_to_migratetype(gfp_mask),
3162 	};
3163 
3164 	gfp_mask &= gfp_allowed_mask;
3165 
3166 	lockdep_trace_alloc(gfp_mask);
3167 
3168 	might_sleep_if(gfp_mask & __GFP_WAIT);
3169 
3170 	if (should_fail_alloc_page(gfp_mask, order))
3171 		return NULL;
3172 
3173 	/*
3174 	 * Check the zones suitable for the gfp_mask contain at least one
3175 	 * valid zone. It's possible to have an empty zonelist as a result
3176 	 * of __GFP_THISNODE and a memoryless node
3177 	 */
3178 	if (unlikely(!zonelist->_zonerefs->zone))
3179 		return NULL;
3180 
3181 	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3182 		alloc_flags |= ALLOC_CMA;
3183 
3184 retry_cpuset:
3185 	cpuset_mems_cookie = read_mems_allowed_begin();
3186 
3187 	/* We set it here, as __alloc_pages_slowpath might have changed it */
3188 	ac.zonelist = zonelist;
3189 	/* The preferred zone is used for statistics later */
3190 	preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3191 				ac.nodemask ? : &cpuset_current_mems_allowed,
3192 				&ac.preferred_zone);
3193 	if (!ac.preferred_zone)
3194 		goto out;
3195 	ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3196 
3197 	/* First allocation attempt */
3198 	alloc_mask = gfp_mask|__GFP_HARDWALL;
3199 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3200 	if (unlikely(!page)) {
3201 		/*
3202 		 * Runtime PM, block IO and its error handling path
3203 		 * can deadlock because I/O on the device might not
3204 		 * complete.
3205 		 */
3206 		alloc_mask = memalloc_noio_flags(gfp_mask);
3207 
3208 		page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3209 	}
3210 
3211 	if (kmemcheck_enabled && page)
3212 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3213 
3214 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3215 
3216 out:
3217 	/*
3218 	 * When updating a task's mems_allowed, it is possible to race with
3219 	 * parallel threads in such a way that an allocation can fail while
3220 	 * the mask is being updated. If a page allocation is about to fail,
3221 	 * check if the cpuset changed during allocation and if so, retry.
3222 	 */
3223 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3224 		goto retry_cpuset;
3225 
3226 	return page;
3227 }
3228 EXPORT_SYMBOL(__alloc_pages_nodemask);
3229 
3230 /*
3231  * Common helper functions.
3232  */
3233 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3234 {
3235 	struct page *page;
3236 
3237 	/*
3238 	 * __get_free_pages() returns a 32-bit address, which cannot represent
3239 	 * a highmem page
3240 	 */
3241 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3242 
3243 	page = alloc_pages(gfp_mask, order);
3244 	if (!page)
3245 		return 0;
3246 	return (unsigned long) page_address(page);
3247 }
3248 EXPORT_SYMBOL(__get_free_pages);
3249 
3250 unsigned long get_zeroed_page(gfp_t gfp_mask)
3251 {
3252 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3253 }
3254 EXPORT_SYMBOL(get_zeroed_page);
3255 
3256 void __free_pages(struct page *page, unsigned int order)
3257 {
3258 	if (put_page_testzero(page)) {
3259 		if (order == 0)
3260 			free_hot_cold_page(page, false);
3261 		else
3262 			__free_pages_ok(page, order);
3263 	}
3264 }
3265 
3266 EXPORT_SYMBOL(__free_pages);
3267 
3268 void free_pages(unsigned long addr, unsigned int order)
3269 {
3270 	if (addr != 0) {
3271 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3272 		__free_pages(virt_to_page((void *)addr), order);
3273 	}
3274 }
3275 
3276 EXPORT_SYMBOL(free_pages);
3277 
3278 /*
3279  * Page Fragment:
3280  *  An arbitrary-length arbitrary-offset area of memory which resides
3281  *  within a 0 or higher order page.  Multiple fragments within that page
3282  *  are individually refcounted, in the page's reference counter.
3283  *
3284  * The page_frag functions below provide a simple allocation framework for
3285  * page fragments.  This is used by the network stack and network device
3286  * drivers to provide a backing region of memory for use as either an
3287  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3288  */
3289 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3290 				       gfp_t gfp_mask)
3291 {
3292 	struct page *page = NULL;
3293 	gfp_t gfp = gfp_mask;
3294 
3295 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3296 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3297 		    __GFP_NOMEMALLOC;
3298 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3299 				PAGE_FRAG_CACHE_MAX_ORDER);
3300 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3301 #endif
3302 	if (unlikely(!page))
3303 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3304 
3305 	nc->va = page ? page_address(page) : NULL;
3306 
3307 	return page;
3308 }
3309 
3310 void *__alloc_page_frag(struct page_frag_cache *nc,
3311 			unsigned int fragsz, gfp_t gfp_mask)
3312 {
3313 	unsigned int size = PAGE_SIZE;
3314 	struct page *page;
3315 	int offset;
3316 
3317 	if (unlikely(!nc->va)) {
3318 refill:
3319 		page = __page_frag_refill(nc, gfp_mask);
3320 		if (!page)
3321 			return NULL;
3322 
3323 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3324 		/* if size can vary use size else just use PAGE_SIZE */
3325 		size = nc->size;
3326 #endif
3327 		/* Even if we own the page, we do not use atomic_set().
3328 		 * This would break get_page_unless_zero() users.
3329 		 */
3330 		atomic_add(size - 1, &page->_count);
3331 
3332 		/* reset page count bias and offset to start of new frag */
3333 		nc->pfmemalloc = page->pfmemalloc;
3334 		nc->pagecnt_bias = size;
3335 		nc->offset = size;
3336 	}
3337 
3338 	offset = nc->offset - fragsz;
3339 	if (unlikely(offset < 0)) {
3340 		page = virt_to_page(nc->va);
3341 
3342 		if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3343 			goto refill;
3344 
3345 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3346 		/* if size can vary use size else just use PAGE_SIZE */
3347 		size = nc->size;
3348 #endif
3349 		/* OK, page count is 0, we can safely set it */
3350 		atomic_set(&page->_count, size);
3351 
3352 		/* reset page count bias and offset to start of new frag */
3353 		nc->pagecnt_bias = size;
3354 		offset = size - fragsz;
3355 	}
3356 
3357 	nc->pagecnt_bias--;
3358 	nc->offset = offset;
3359 
3360 	return nc->va + offset;
3361 }
3362 EXPORT_SYMBOL(__alloc_page_frag);
3363 
3364 /*
3365  * Frees a page fragment allocated out of either a compound or order 0 page.
3366  */
3367 void __free_page_frag(void *addr)
3368 {
3369 	struct page *page = virt_to_head_page(addr);
3370 
3371 	if (unlikely(put_page_testzero(page)))
3372 		__free_pages_ok(page, compound_order(page));
3373 }
3374 EXPORT_SYMBOL(__free_page_frag);
3375 
3376 /*
3377  * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3378  * of the current memory cgroup.
3379  *
3380  * It should be used when the caller would like to use kmalloc, but since the
3381  * allocation is large, it has to fall back to the page allocator.
3382  */
3383 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3384 {
3385 	struct page *page;
3386 	struct mem_cgroup *memcg = NULL;
3387 
3388 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3389 		return NULL;
3390 	page = alloc_pages(gfp_mask, order);
3391 	memcg_kmem_commit_charge(page, memcg, order);
3392 	return page;
3393 }
3394 
3395 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3396 {
3397 	struct page *page;
3398 	struct mem_cgroup *memcg = NULL;
3399 
3400 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3401 		return NULL;
3402 	page = alloc_pages_node(nid, gfp_mask, order);
3403 	memcg_kmem_commit_charge(page, memcg, order);
3404 	return page;
3405 }
3406 
3407 /*
3408  * __free_kmem_pages and free_kmem_pages will free pages allocated with
3409  * alloc_kmem_pages.
3410  */
3411 void __free_kmem_pages(struct page *page, unsigned int order)
3412 {
3413 	memcg_kmem_uncharge_pages(page, order);
3414 	__free_pages(page, order);
3415 }
3416 
3417 void free_kmem_pages(unsigned long addr, unsigned int order)
3418 {
3419 	if (addr != 0) {
3420 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3421 		__free_kmem_pages(virt_to_page((void *)addr), order);
3422 	}
3423 }
3424 
3425 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3426 {
3427 	if (addr) {
3428 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
3429 		unsigned long used = addr + PAGE_ALIGN(size);
3430 
3431 		split_page(virt_to_page((void *)addr), order);
3432 		while (used < alloc_end) {
3433 			free_page(used);
3434 			used += PAGE_SIZE;
3435 		}
3436 	}
3437 	return (void *)addr;
3438 }
3439 
3440 /**
3441  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3442  * @size: the number of bytes to allocate
3443  * @gfp_mask: GFP flags for the allocation
3444  *
3445  * This function is similar to alloc_pages(), except that it allocates the
3446  * minimum number of pages to satisfy the request.  alloc_pages() can only
3447  * allocate memory in power-of-two pages.
3448  *
3449  * This function is also limited by MAX_ORDER.
3450  *
3451  * Memory allocated by this function must be released by free_pages_exact().
3452  */
3453 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3454 {
3455 	unsigned int order = get_order(size);
3456 	unsigned long addr;
3457 
3458 	addr = __get_free_pages(gfp_mask, order);
3459 	return make_alloc_exact(addr, order, size);
3460 }
3461 EXPORT_SYMBOL(alloc_pages_exact);
3462 
3463 /**
3464  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3465  *			   pages on a node.
3466  * @nid: the preferred node ID where memory should be allocated
3467  * @size: the number of bytes to allocate
3468  * @gfp_mask: GFP flags for the allocation
3469  *
3470  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3471  * back.
3472  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3473  * but is not exact.
3474  */
3475 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3476 {
3477 	unsigned order = get_order(size);
3478 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
3479 	if (!p)
3480 		return NULL;
3481 	return make_alloc_exact((unsigned long)page_address(p), order, size);
3482 }
3483 
3484 /**
3485  * free_pages_exact - release memory allocated via alloc_pages_exact()
3486  * @virt: the value returned by alloc_pages_exact.
3487  * @size: size of allocation, same value as passed to alloc_pages_exact().
3488  *
3489  * Release the memory allocated by a previous call to alloc_pages_exact.
3490  */
3491 void free_pages_exact(void *virt, size_t size)
3492 {
3493 	unsigned long addr = (unsigned long)virt;
3494 	unsigned long end = addr + PAGE_ALIGN(size);
3495 
3496 	while (addr < end) {
3497 		free_page(addr);
3498 		addr += PAGE_SIZE;
3499 	}
3500 }
3501 EXPORT_SYMBOL(free_pages_exact);
3502 
3503 /**
3504  * nr_free_zone_pages - count number of pages beyond high watermark
3505  * @offset: The zone index of the highest zone
3506  *
3507  * nr_free_zone_pages() counts the number of counts pages which are beyond the
3508  * high watermark within all zones at or below a given zone index.  For each
3509  * zone, the number of pages is calculated as:
3510  *     managed_pages - high_pages
3511  */
3512 static unsigned long nr_free_zone_pages(int offset)
3513 {
3514 	struct zoneref *z;
3515 	struct zone *zone;
3516 
3517 	/* Just pick one node, since fallback list is circular */
3518 	unsigned long sum = 0;
3519 
3520 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3521 
3522 	for_each_zone_zonelist(zone, z, zonelist, offset) {
3523 		unsigned long size = zone->managed_pages;
3524 		unsigned long high = high_wmark_pages(zone);
3525 		if (size > high)
3526 			sum += size - high;
3527 	}
3528 
3529 	return sum;
3530 }
3531 
3532 /**
3533  * nr_free_buffer_pages - count number of pages beyond high watermark
3534  *
3535  * nr_free_buffer_pages() counts the number of pages which are beyond the high
3536  * watermark within ZONE_DMA and ZONE_NORMAL.
3537  */
3538 unsigned long nr_free_buffer_pages(void)
3539 {
3540 	return nr_free_zone_pages(gfp_zone(GFP_USER));
3541 }
3542 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3543 
3544 /**
3545  * nr_free_pagecache_pages - count number of pages beyond high watermark
3546  *
3547  * nr_free_pagecache_pages() counts the number of pages which are beyond the
3548  * high watermark within all zones.
3549  */
3550 unsigned long nr_free_pagecache_pages(void)
3551 {
3552 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3553 }
3554 
3555 static inline void show_node(struct zone *zone)
3556 {
3557 	if (IS_ENABLED(CONFIG_NUMA))
3558 		printk("Node %d ", zone_to_nid(zone));
3559 }
3560 
3561 void si_meminfo(struct sysinfo *val)
3562 {
3563 	val->totalram = totalram_pages;
3564 	val->sharedram = global_page_state(NR_SHMEM);
3565 	val->freeram = global_page_state(NR_FREE_PAGES);
3566 	val->bufferram = nr_blockdev_pages();
3567 	val->totalhigh = totalhigh_pages;
3568 	val->freehigh = nr_free_highpages();
3569 	val->mem_unit = PAGE_SIZE;
3570 }
3571 
3572 EXPORT_SYMBOL(si_meminfo);
3573 
3574 #ifdef CONFIG_NUMA
3575 void si_meminfo_node(struct sysinfo *val, int nid)
3576 {
3577 	int zone_type;		/* needs to be signed */
3578 	unsigned long managed_pages = 0;
3579 	pg_data_t *pgdat = NODE_DATA(nid);
3580 
3581 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3582 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3583 	val->totalram = managed_pages;
3584 	val->sharedram = node_page_state(nid, NR_SHMEM);
3585 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3586 #ifdef CONFIG_HIGHMEM
3587 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3588 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3589 			NR_FREE_PAGES);
3590 #else
3591 	val->totalhigh = 0;
3592 	val->freehigh = 0;
3593 #endif
3594 	val->mem_unit = PAGE_SIZE;
3595 }
3596 #endif
3597 
3598 /*
3599  * Determine whether the node should be displayed or not, depending on whether
3600  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3601  */
3602 bool skip_free_areas_node(unsigned int flags, int nid)
3603 {
3604 	bool ret = false;
3605 	unsigned int cpuset_mems_cookie;
3606 
3607 	if (!(flags & SHOW_MEM_FILTER_NODES))
3608 		goto out;
3609 
3610 	do {
3611 		cpuset_mems_cookie = read_mems_allowed_begin();
3612 		ret = !node_isset(nid, cpuset_current_mems_allowed);
3613 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3614 out:
3615 	return ret;
3616 }
3617 
3618 #define K(x) ((x) << (PAGE_SHIFT-10))
3619 
3620 static void show_migration_types(unsigned char type)
3621 {
3622 	static const char types[MIGRATE_TYPES] = {
3623 		[MIGRATE_UNMOVABLE]	= 'U',
3624 		[MIGRATE_RECLAIMABLE]	= 'E',
3625 		[MIGRATE_MOVABLE]	= 'M',
3626 		[MIGRATE_RESERVE]	= 'R',
3627 #ifdef CONFIG_CMA
3628 		[MIGRATE_CMA]		= 'C',
3629 #endif
3630 #ifdef CONFIG_MEMORY_ISOLATION
3631 		[MIGRATE_ISOLATE]	= 'I',
3632 #endif
3633 	};
3634 	char tmp[MIGRATE_TYPES + 1];
3635 	char *p = tmp;
3636 	int i;
3637 
3638 	for (i = 0; i < MIGRATE_TYPES; i++) {
3639 		if (type & (1 << i))
3640 			*p++ = types[i];
3641 	}
3642 
3643 	*p = '\0';
3644 	printk("(%s) ", tmp);
3645 }
3646 
3647 /*
3648  * Show free area list (used inside shift_scroll-lock stuff)
3649  * We also calculate the percentage fragmentation. We do this by counting the
3650  * memory on each free list with the exception of the first item on the list.
3651  *
3652  * Bits in @filter:
3653  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3654  *   cpuset.
3655  */
3656 void show_free_areas(unsigned int filter)
3657 {
3658 	unsigned long free_pcp = 0;
3659 	int cpu;
3660 	struct zone *zone;
3661 
3662 	for_each_populated_zone(zone) {
3663 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3664 			continue;
3665 
3666 		for_each_online_cpu(cpu)
3667 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3668 	}
3669 
3670 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3671 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3672 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3673 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3674 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3675 		" free:%lu free_pcp:%lu free_cma:%lu\n",
3676 		global_page_state(NR_ACTIVE_ANON),
3677 		global_page_state(NR_INACTIVE_ANON),
3678 		global_page_state(NR_ISOLATED_ANON),
3679 		global_page_state(NR_ACTIVE_FILE),
3680 		global_page_state(NR_INACTIVE_FILE),
3681 		global_page_state(NR_ISOLATED_FILE),
3682 		global_page_state(NR_UNEVICTABLE),
3683 		global_page_state(NR_FILE_DIRTY),
3684 		global_page_state(NR_WRITEBACK),
3685 		global_page_state(NR_UNSTABLE_NFS),
3686 		global_page_state(NR_SLAB_RECLAIMABLE),
3687 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3688 		global_page_state(NR_FILE_MAPPED),
3689 		global_page_state(NR_SHMEM),
3690 		global_page_state(NR_PAGETABLE),
3691 		global_page_state(NR_BOUNCE),
3692 		global_page_state(NR_FREE_PAGES),
3693 		free_pcp,
3694 		global_page_state(NR_FREE_CMA_PAGES));
3695 
3696 	for_each_populated_zone(zone) {
3697 		int i;
3698 
3699 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3700 			continue;
3701 
3702 		free_pcp = 0;
3703 		for_each_online_cpu(cpu)
3704 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3705 
3706 		show_node(zone);
3707 		printk("%s"
3708 			" free:%lukB"
3709 			" min:%lukB"
3710 			" low:%lukB"
3711 			" high:%lukB"
3712 			" active_anon:%lukB"
3713 			" inactive_anon:%lukB"
3714 			" active_file:%lukB"
3715 			" inactive_file:%lukB"
3716 			" unevictable:%lukB"
3717 			" isolated(anon):%lukB"
3718 			" isolated(file):%lukB"
3719 			" present:%lukB"
3720 			" managed:%lukB"
3721 			" mlocked:%lukB"
3722 			" dirty:%lukB"
3723 			" writeback:%lukB"
3724 			" mapped:%lukB"
3725 			" shmem:%lukB"
3726 			" slab_reclaimable:%lukB"
3727 			" slab_unreclaimable:%lukB"
3728 			" kernel_stack:%lukB"
3729 			" pagetables:%lukB"
3730 			" unstable:%lukB"
3731 			" bounce:%lukB"
3732 			" free_pcp:%lukB"
3733 			" local_pcp:%ukB"
3734 			" free_cma:%lukB"
3735 			" writeback_tmp:%lukB"
3736 			" pages_scanned:%lu"
3737 			" all_unreclaimable? %s"
3738 			"\n",
3739 			zone->name,
3740 			K(zone_page_state(zone, NR_FREE_PAGES)),
3741 			K(min_wmark_pages(zone)),
3742 			K(low_wmark_pages(zone)),
3743 			K(high_wmark_pages(zone)),
3744 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3745 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3746 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3747 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3748 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3749 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3750 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3751 			K(zone->present_pages),
3752 			K(zone->managed_pages),
3753 			K(zone_page_state(zone, NR_MLOCK)),
3754 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3755 			K(zone_page_state(zone, NR_WRITEBACK)),
3756 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3757 			K(zone_page_state(zone, NR_SHMEM)),
3758 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3759 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3760 			zone_page_state(zone, NR_KERNEL_STACK) *
3761 				THREAD_SIZE / 1024,
3762 			K(zone_page_state(zone, NR_PAGETABLE)),
3763 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3764 			K(zone_page_state(zone, NR_BOUNCE)),
3765 			K(free_pcp),
3766 			K(this_cpu_read(zone->pageset->pcp.count)),
3767 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3768 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3769 			K(zone_page_state(zone, NR_PAGES_SCANNED)),
3770 			(!zone_reclaimable(zone) ? "yes" : "no")
3771 			);
3772 		printk("lowmem_reserve[]:");
3773 		for (i = 0; i < MAX_NR_ZONES; i++)
3774 			printk(" %ld", zone->lowmem_reserve[i]);
3775 		printk("\n");
3776 	}
3777 
3778 	for_each_populated_zone(zone) {
3779 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3780 		unsigned char types[MAX_ORDER];
3781 
3782 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3783 			continue;
3784 		show_node(zone);
3785 		printk("%s: ", zone->name);
3786 
3787 		spin_lock_irqsave(&zone->lock, flags);
3788 		for (order = 0; order < MAX_ORDER; order++) {
3789 			struct free_area *area = &zone->free_area[order];
3790 			int type;
3791 
3792 			nr[order] = area->nr_free;
3793 			total += nr[order] << order;
3794 
3795 			types[order] = 0;
3796 			for (type = 0; type < MIGRATE_TYPES; type++) {
3797 				if (!list_empty(&area->free_list[type]))
3798 					types[order] |= 1 << type;
3799 			}
3800 		}
3801 		spin_unlock_irqrestore(&zone->lock, flags);
3802 		for (order = 0; order < MAX_ORDER; order++) {
3803 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3804 			if (nr[order])
3805 				show_migration_types(types[order]);
3806 		}
3807 		printk("= %lukB\n", K(total));
3808 	}
3809 
3810 	hugetlb_show_meminfo();
3811 
3812 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3813 
3814 	show_swap_cache_info();
3815 }
3816 
3817 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3818 {
3819 	zoneref->zone = zone;
3820 	zoneref->zone_idx = zone_idx(zone);
3821 }
3822 
3823 /*
3824  * Builds allocation fallback zone lists.
3825  *
3826  * Add all populated zones of a node to the zonelist.
3827  */
3828 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3829 				int nr_zones)
3830 {
3831 	struct zone *zone;
3832 	enum zone_type zone_type = MAX_NR_ZONES;
3833 
3834 	do {
3835 		zone_type--;
3836 		zone = pgdat->node_zones + zone_type;
3837 		if (populated_zone(zone)) {
3838 			zoneref_set_zone(zone,
3839 				&zonelist->_zonerefs[nr_zones++]);
3840 			check_highest_zone(zone_type);
3841 		}
3842 	} while (zone_type);
3843 
3844 	return nr_zones;
3845 }
3846 
3847 
3848 /*
3849  *  zonelist_order:
3850  *  0 = automatic detection of better ordering.
3851  *  1 = order by ([node] distance, -zonetype)
3852  *  2 = order by (-zonetype, [node] distance)
3853  *
3854  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3855  *  the same zonelist. So only NUMA can configure this param.
3856  */
3857 #define ZONELIST_ORDER_DEFAULT  0
3858 #define ZONELIST_ORDER_NODE     1
3859 #define ZONELIST_ORDER_ZONE     2
3860 
3861 /* zonelist order in the kernel.
3862  * set_zonelist_order() will set this to NODE or ZONE.
3863  */
3864 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3865 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3866 
3867 
3868 #ifdef CONFIG_NUMA
3869 /* The value user specified ....changed by config */
3870 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3871 /* string for sysctl */
3872 #define NUMA_ZONELIST_ORDER_LEN	16
3873 char numa_zonelist_order[16] = "default";
3874 
3875 /*
3876  * interface for configure zonelist ordering.
3877  * command line option "numa_zonelist_order"
3878  *	= "[dD]efault	- default, automatic configuration.
3879  *	= "[nN]ode 	- order by node locality, then by zone within node
3880  *	= "[zZ]one      - order by zone, then by locality within zone
3881  */
3882 
3883 static int __parse_numa_zonelist_order(char *s)
3884 {
3885 	if (*s == 'd' || *s == 'D') {
3886 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3887 	} else if (*s == 'n' || *s == 'N') {
3888 		user_zonelist_order = ZONELIST_ORDER_NODE;
3889 	} else if (*s == 'z' || *s == 'Z') {
3890 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3891 	} else {
3892 		printk(KERN_WARNING
3893 			"Ignoring invalid numa_zonelist_order value:  "
3894 			"%s\n", s);
3895 		return -EINVAL;
3896 	}
3897 	return 0;
3898 }
3899 
3900 static __init int setup_numa_zonelist_order(char *s)
3901 {
3902 	int ret;
3903 
3904 	if (!s)
3905 		return 0;
3906 
3907 	ret = __parse_numa_zonelist_order(s);
3908 	if (ret == 0)
3909 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3910 
3911 	return ret;
3912 }
3913 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3914 
3915 /*
3916  * sysctl handler for numa_zonelist_order
3917  */
3918 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3919 		void __user *buffer, size_t *length,
3920 		loff_t *ppos)
3921 {
3922 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3923 	int ret;
3924 	static DEFINE_MUTEX(zl_order_mutex);
3925 
3926 	mutex_lock(&zl_order_mutex);
3927 	if (write) {
3928 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3929 			ret = -EINVAL;
3930 			goto out;
3931 		}
3932 		strcpy(saved_string, (char *)table->data);
3933 	}
3934 	ret = proc_dostring(table, write, buffer, length, ppos);
3935 	if (ret)
3936 		goto out;
3937 	if (write) {
3938 		int oldval = user_zonelist_order;
3939 
3940 		ret = __parse_numa_zonelist_order((char *)table->data);
3941 		if (ret) {
3942 			/*
3943 			 * bogus value.  restore saved string
3944 			 */
3945 			strncpy((char *)table->data, saved_string,
3946 				NUMA_ZONELIST_ORDER_LEN);
3947 			user_zonelist_order = oldval;
3948 		} else if (oldval != user_zonelist_order) {
3949 			mutex_lock(&zonelists_mutex);
3950 			build_all_zonelists(NULL, NULL);
3951 			mutex_unlock(&zonelists_mutex);
3952 		}
3953 	}
3954 out:
3955 	mutex_unlock(&zl_order_mutex);
3956 	return ret;
3957 }
3958 
3959 
3960 #define MAX_NODE_LOAD (nr_online_nodes)
3961 static int node_load[MAX_NUMNODES];
3962 
3963 /**
3964  * find_next_best_node - find the next node that should appear in a given node's fallback list
3965  * @node: node whose fallback list we're appending
3966  * @used_node_mask: nodemask_t of already used nodes
3967  *
3968  * We use a number of factors to determine which is the next node that should
3969  * appear on a given node's fallback list.  The node should not have appeared
3970  * already in @node's fallback list, and it should be the next closest node
3971  * according to the distance array (which contains arbitrary distance values
3972  * from each node to each node in the system), and should also prefer nodes
3973  * with no CPUs, since presumably they'll have very little allocation pressure
3974  * on them otherwise.
3975  * It returns -1 if no node is found.
3976  */
3977 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3978 {
3979 	int n, val;
3980 	int min_val = INT_MAX;
3981 	int best_node = NUMA_NO_NODE;
3982 	const struct cpumask *tmp = cpumask_of_node(0);
3983 
3984 	/* Use the local node if we haven't already */
3985 	if (!node_isset(node, *used_node_mask)) {
3986 		node_set(node, *used_node_mask);
3987 		return node;
3988 	}
3989 
3990 	for_each_node_state(n, N_MEMORY) {
3991 
3992 		/* Don't want a node to appear more than once */
3993 		if (node_isset(n, *used_node_mask))
3994 			continue;
3995 
3996 		/* Use the distance array to find the distance */
3997 		val = node_distance(node, n);
3998 
3999 		/* Penalize nodes under us ("prefer the next node") */
4000 		val += (n < node);
4001 
4002 		/* Give preference to headless and unused nodes */
4003 		tmp = cpumask_of_node(n);
4004 		if (!cpumask_empty(tmp))
4005 			val += PENALTY_FOR_NODE_WITH_CPUS;
4006 
4007 		/* Slight preference for less loaded node */
4008 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4009 		val += node_load[n];
4010 
4011 		if (val < min_val) {
4012 			min_val = val;
4013 			best_node = n;
4014 		}
4015 	}
4016 
4017 	if (best_node >= 0)
4018 		node_set(best_node, *used_node_mask);
4019 
4020 	return best_node;
4021 }
4022 
4023 
4024 /*
4025  * Build zonelists ordered by node and zones within node.
4026  * This results in maximum locality--normal zone overflows into local
4027  * DMA zone, if any--but risks exhausting DMA zone.
4028  */
4029 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4030 {
4031 	int j;
4032 	struct zonelist *zonelist;
4033 
4034 	zonelist = &pgdat->node_zonelists[0];
4035 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4036 		;
4037 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4038 	zonelist->_zonerefs[j].zone = NULL;
4039 	zonelist->_zonerefs[j].zone_idx = 0;
4040 }
4041 
4042 /*
4043  * Build gfp_thisnode zonelists
4044  */
4045 static void build_thisnode_zonelists(pg_data_t *pgdat)
4046 {
4047 	int j;
4048 	struct zonelist *zonelist;
4049 
4050 	zonelist = &pgdat->node_zonelists[1];
4051 	j = build_zonelists_node(pgdat, zonelist, 0);
4052 	zonelist->_zonerefs[j].zone = NULL;
4053 	zonelist->_zonerefs[j].zone_idx = 0;
4054 }
4055 
4056 /*
4057  * Build zonelists ordered by zone and nodes within zones.
4058  * This results in conserving DMA zone[s] until all Normal memory is
4059  * exhausted, but results in overflowing to remote node while memory
4060  * may still exist in local DMA zone.
4061  */
4062 static int node_order[MAX_NUMNODES];
4063 
4064 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4065 {
4066 	int pos, j, node;
4067 	int zone_type;		/* needs to be signed */
4068 	struct zone *z;
4069 	struct zonelist *zonelist;
4070 
4071 	zonelist = &pgdat->node_zonelists[0];
4072 	pos = 0;
4073 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4074 		for (j = 0; j < nr_nodes; j++) {
4075 			node = node_order[j];
4076 			z = &NODE_DATA(node)->node_zones[zone_type];
4077 			if (populated_zone(z)) {
4078 				zoneref_set_zone(z,
4079 					&zonelist->_zonerefs[pos++]);
4080 				check_highest_zone(zone_type);
4081 			}
4082 		}
4083 	}
4084 	zonelist->_zonerefs[pos].zone = NULL;
4085 	zonelist->_zonerefs[pos].zone_idx = 0;
4086 }
4087 
4088 #if defined(CONFIG_64BIT)
4089 /*
4090  * Devices that require DMA32/DMA are relatively rare and do not justify a
4091  * penalty to every machine in case the specialised case applies. Default
4092  * to Node-ordering on 64-bit NUMA machines
4093  */
4094 static int default_zonelist_order(void)
4095 {
4096 	return ZONELIST_ORDER_NODE;
4097 }
4098 #else
4099 /*
4100  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4101  * by the kernel. If processes running on node 0 deplete the low memory zone
4102  * then reclaim will occur more frequency increasing stalls and potentially
4103  * be easier to OOM if a large percentage of the zone is under writeback or
4104  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4105  * Hence, default to zone ordering on 32-bit.
4106  */
4107 static int default_zonelist_order(void)
4108 {
4109 	return ZONELIST_ORDER_ZONE;
4110 }
4111 #endif /* CONFIG_64BIT */
4112 
4113 static void set_zonelist_order(void)
4114 {
4115 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4116 		current_zonelist_order = default_zonelist_order();
4117 	else
4118 		current_zonelist_order = user_zonelist_order;
4119 }
4120 
4121 static void build_zonelists(pg_data_t *pgdat)
4122 {
4123 	int j, node, load;
4124 	enum zone_type i;
4125 	nodemask_t used_mask;
4126 	int local_node, prev_node;
4127 	struct zonelist *zonelist;
4128 	int order = current_zonelist_order;
4129 
4130 	/* initialize zonelists */
4131 	for (i = 0; i < MAX_ZONELISTS; i++) {
4132 		zonelist = pgdat->node_zonelists + i;
4133 		zonelist->_zonerefs[0].zone = NULL;
4134 		zonelist->_zonerefs[0].zone_idx = 0;
4135 	}
4136 
4137 	/* NUMA-aware ordering of nodes */
4138 	local_node = pgdat->node_id;
4139 	load = nr_online_nodes;
4140 	prev_node = local_node;
4141 	nodes_clear(used_mask);
4142 
4143 	memset(node_order, 0, sizeof(node_order));
4144 	j = 0;
4145 
4146 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4147 		/*
4148 		 * We don't want to pressure a particular node.
4149 		 * So adding penalty to the first node in same
4150 		 * distance group to make it round-robin.
4151 		 */
4152 		if (node_distance(local_node, node) !=
4153 		    node_distance(local_node, prev_node))
4154 			node_load[node] = load;
4155 
4156 		prev_node = node;
4157 		load--;
4158 		if (order == ZONELIST_ORDER_NODE)
4159 			build_zonelists_in_node_order(pgdat, node);
4160 		else
4161 			node_order[j++] = node;	/* remember order */
4162 	}
4163 
4164 	if (order == ZONELIST_ORDER_ZONE) {
4165 		/* calculate node order -- i.e., DMA last! */
4166 		build_zonelists_in_zone_order(pgdat, j);
4167 	}
4168 
4169 	build_thisnode_zonelists(pgdat);
4170 }
4171 
4172 /* Construct the zonelist performance cache - see further mmzone.h */
4173 static void build_zonelist_cache(pg_data_t *pgdat)
4174 {
4175 	struct zonelist *zonelist;
4176 	struct zonelist_cache *zlc;
4177 	struct zoneref *z;
4178 
4179 	zonelist = &pgdat->node_zonelists[0];
4180 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
4181 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
4182 	for (z = zonelist->_zonerefs; z->zone; z++)
4183 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
4184 }
4185 
4186 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4187 /*
4188  * Return node id of node used for "local" allocations.
4189  * I.e., first node id of first zone in arg node's generic zonelist.
4190  * Used for initializing percpu 'numa_mem', which is used primarily
4191  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4192  */
4193 int local_memory_node(int node)
4194 {
4195 	struct zone *zone;
4196 
4197 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4198 				   gfp_zone(GFP_KERNEL),
4199 				   NULL,
4200 				   &zone);
4201 	return zone->node;
4202 }
4203 #endif
4204 
4205 #else	/* CONFIG_NUMA */
4206 
4207 static void set_zonelist_order(void)
4208 {
4209 	current_zonelist_order = ZONELIST_ORDER_ZONE;
4210 }
4211 
4212 static void build_zonelists(pg_data_t *pgdat)
4213 {
4214 	int node, local_node;
4215 	enum zone_type j;
4216 	struct zonelist *zonelist;
4217 
4218 	local_node = pgdat->node_id;
4219 
4220 	zonelist = &pgdat->node_zonelists[0];
4221 	j = build_zonelists_node(pgdat, zonelist, 0);
4222 
4223 	/*
4224 	 * Now we build the zonelist so that it contains the zones
4225 	 * of all the other nodes.
4226 	 * We don't want to pressure a particular node, so when
4227 	 * building the zones for node N, we make sure that the
4228 	 * zones coming right after the local ones are those from
4229 	 * node N+1 (modulo N)
4230 	 */
4231 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4232 		if (!node_online(node))
4233 			continue;
4234 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4235 	}
4236 	for (node = 0; node < local_node; node++) {
4237 		if (!node_online(node))
4238 			continue;
4239 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4240 	}
4241 
4242 	zonelist->_zonerefs[j].zone = NULL;
4243 	zonelist->_zonerefs[j].zone_idx = 0;
4244 }
4245 
4246 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
4247 static void build_zonelist_cache(pg_data_t *pgdat)
4248 {
4249 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
4250 }
4251 
4252 #endif	/* CONFIG_NUMA */
4253 
4254 /*
4255  * Boot pageset table. One per cpu which is going to be used for all
4256  * zones and all nodes. The parameters will be set in such a way
4257  * that an item put on a list will immediately be handed over to
4258  * the buddy list. This is safe since pageset manipulation is done
4259  * with interrupts disabled.
4260  *
4261  * The boot_pagesets must be kept even after bootup is complete for
4262  * unused processors and/or zones. They do play a role for bootstrapping
4263  * hotplugged processors.
4264  *
4265  * zoneinfo_show() and maybe other functions do
4266  * not check if the processor is online before following the pageset pointer.
4267  * Other parts of the kernel may not check if the zone is available.
4268  */
4269 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4270 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4271 static void setup_zone_pageset(struct zone *zone);
4272 
4273 /*
4274  * Global mutex to protect against size modification of zonelists
4275  * as well as to serialize pageset setup for the new populated zone.
4276  */
4277 DEFINE_MUTEX(zonelists_mutex);
4278 
4279 /* return values int ....just for stop_machine() */
4280 static int __build_all_zonelists(void *data)
4281 {
4282 	int nid;
4283 	int cpu;
4284 	pg_data_t *self = data;
4285 
4286 #ifdef CONFIG_NUMA
4287 	memset(node_load, 0, sizeof(node_load));
4288 #endif
4289 
4290 	if (self && !node_online(self->node_id)) {
4291 		build_zonelists(self);
4292 		build_zonelist_cache(self);
4293 	}
4294 
4295 	for_each_online_node(nid) {
4296 		pg_data_t *pgdat = NODE_DATA(nid);
4297 
4298 		build_zonelists(pgdat);
4299 		build_zonelist_cache(pgdat);
4300 	}
4301 
4302 	/*
4303 	 * Initialize the boot_pagesets that are going to be used
4304 	 * for bootstrapping processors. The real pagesets for
4305 	 * each zone will be allocated later when the per cpu
4306 	 * allocator is available.
4307 	 *
4308 	 * boot_pagesets are used also for bootstrapping offline
4309 	 * cpus if the system is already booted because the pagesets
4310 	 * are needed to initialize allocators on a specific cpu too.
4311 	 * F.e. the percpu allocator needs the page allocator which
4312 	 * needs the percpu allocator in order to allocate its pagesets
4313 	 * (a chicken-egg dilemma).
4314 	 */
4315 	for_each_possible_cpu(cpu) {
4316 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4317 
4318 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4319 		/*
4320 		 * We now know the "local memory node" for each node--
4321 		 * i.e., the node of the first zone in the generic zonelist.
4322 		 * Set up numa_mem percpu variable for on-line cpus.  During
4323 		 * boot, only the boot cpu should be on-line;  we'll init the
4324 		 * secondary cpus' numa_mem as they come on-line.  During
4325 		 * node/memory hotplug, we'll fixup all on-line cpus.
4326 		 */
4327 		if (cpu_online(cpu))
4328 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4329 #endif
4330 	}
4331 
4332 	return 0;
4333 }
4334 
4335 static noinline void __init
4336 build_all_zonelists_init(void)
4337 {
4338 	__build_all_zonelists(NULL);
4339 	mminit_verify_zonelist();
4340 	cpuset_init_current_mems_allowed();
4341 }
4342 
4343 /*
4344  * Called with zonelists_mutex held always
4345  * unless system_state == SYSTEM_BOOTING.
4346  *
4347  * __ref due to (1) call of __meminit annotated setup_zone_pageset
4348  * [we're only called with non-NULL zone through __meminit paths] and
4349  * (2) call of __init annotated helper build_all_zonelists_init
4350  * [protected by SYSTEM_BOOTING].
4351  */
4352 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4353 {
4354 	set_zonelist_order();
4355 
4356 	if (system_state == SYSTEM_BOOTING) {
4357 		build_all_zonelists_init();
4358 	} else {
4359 #ifdef CONFIG_MEMORY_HOTPLUG
4360 		if (zone)
4361 			setup_zone_pageset(zone);
4362 #endif
4363 		/* we have to stop all cpus to guarantee there is no user
4364 		   of zonelist */
4365 		stop_machine(__build_all_zonelists, pgdat, NULL);
4366 		/* cpuset refresh routine should be here */
4367 	}
4368 	vm_total_pages = nr_free_pagecache_pages();
4369 	/*
4370 	 * Disable grouping by mobility if the number of pages in the
4371 	 * system is too low to allow the mechanism to work. It would be
4372 	 * more accurate, but expensive to check per-zone. This check is
4373 	 * made on memory-hotadd so a system can start with mobility
4374 	 * disabled and enable it later
4375 	 */
4376 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4377 		page_group_by_mobility_disabled = 1;
4378 	else
4379 		page_group_by_mobility_disabled = 0;
4380 
4381 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  "
4382 		"Total pages: %ld\n",
4383 			nr_online_nodes,
4384 			zonelist_order_name[current_zonelist_order],
4385 			page_group_by_mobility_disabled ? "off" : "on",
4386 			vm_total_pages);
4387 #ifdef CONFIG_NUMA
4388 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4389 #endif
4390 }
4391 
4392 /*
4393  * Helper functions to size the waitqueue hash table.
4394  * Essentially these want to choose hash table sizes sufficiently
4395  * large so that collisions trying to wait on pages are rare.
4396  * But in fact, the number of active page waitqueues on typical
4397  * systems is ridiculously low, less than 200. So this is even
4398  * conservative, even though it seems large.
4399  *
4400  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4401  * waitqueues, i.e. the size of the waitq table given the number of pages.
4402  */
4403 #define PAGES_PER_WAITQUEUE	256
4404 
4405 #ifndef CONFIG_MEMORY_HOTPLUG
4406 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4407 {
4408 	unsigned long size = 1;
4409 
4410 	pages /= PAGES_PER_WAITQUEUE;
4411 
4412 	while (size < pages)
4413 		size <<= 1;
4414 
4415 	/*
4416 	 * Once we have dozens or even hundreds of threads sleeping
4417 	 * on IO we've got bigger problems than wait queue collision.
4418 	 * Limit the size of the wait table to a reasonable size.
4419 	 */
4420 	size = min(size, 4096UL);
4421 
4422 	return max(size, 4UL);
4423 }
4424 #else
4425 /*
4426  * A zone's size might be changed by hot-add, so it is not possible to determine
4427  * a suitable size for its wait_table.  So we use the maximum size now.
4428  *
4429  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
4430  *
4431  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
4432  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4433  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
4434  *
4435  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4436  * or more by the traditional way. (See above).  It equals:
4437  *
4438  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
4439  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
4440  *    powerpc (64K page size)             : =  (32G +16M)byte.
4441  */
4442 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4443 {
4444 	return 4096UL;
4445 }
4446 #endif
4447 
4448 /*
4449  * This is an integer logarithm so that shifts can be used later
4450  * to extract the more random high bits from the multiplicative
4451  * hash function before the remainder is taken.
4452  */
4453 static inline unsigned long wait_table_bits(unsigned long size)
4454 {
4455 	return ffz(~size);
4456 }
4457 
4458 /*
4459  * Check if a pageblock contains reserved pages
4460  */
4461 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4462 {
4463 	unsigned long pfn;
4464 
4465 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4466 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4467 			return 1;
4468 	}
4469 	return 0;
4470 }
4471 
4472 /*
4473  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4474  * of blocks reserved is based on min_wmark_pages(zone). The memory within
4475  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4476  * higher will lead to a bigger reserve which will get freed as contiguous
4477  * blocks as reclaim kicks in
4478  */
4479 static void setup_zone_migrate_reserve(struct zone *zone)
4480 {
4481 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4482 	struct page *page;
4483 	unsigned long block_migratetype;
4484 	int reserve;
4485 	int old_reserve;
4486 
4487 	/*
4488 	 * Get the start pfn, end pfn and the number of blocks to reserve
4489 	 * We have to be careful to be aligned to pageblock_nr_pages to
4490 	 * make sure that we always check pfn_valid for the first page in
4491 	 * the block.
4492 	 */
4493 	start_pfn = zone->zone_start_pfn;
4494 	end_pfn = zone_end_pfn(zone);
4495 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
4496 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4497 							pageblock_order;
4498 
4499 	/*
4500 	 * Reserve blocks are generally in place to help high-order atomic
4501 	 * allocations that are short-lived. A min_free_kbytes value that
4502 	 * would result in more than 2 reserve blocks for atomic allocations
4503 	 * is assumed to be in place to help anti-fragmentation for the
4504 	 * future allocation of hugepages at runtime.
4505 	 */
4506 	reserve = min(2, reserve);
4507 	old_reserve = zone->nr_migrate_reserve_block;
4508 
4509 	/* When memory hot-add, we almost always need to do nothing */
4510 	if (reserve == old_reserve)
4511 		return;
4512 	zone->nr_migrate_reserve_block = reserve;
4513 
4514 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4515 		if (!early_page_nid_uninitialised(pfn, zone_to_nid(zone)))
4516 			return;
4517 
4518 		if (!pfn_valid(pfn))
4519 			continue;
4520 		page = pfn_to_page(pfn);
4521 
4522 		/* Watch out for overlapping nodes */
4523 		if (page_to_nid(page) != zone_to_nid(zone))
4524 			continue;
4525 
4526 		block_migratetype = get_pageblock_migratetype(page);
4527 
4528 		/* Only test what is necessary when the reserves are not met */
4529 		if (reserve > 0) {
4530 			/*
4531 			 * Blocks with reserved pages will never free, skip
4532 			 * them.
4533 			 */
4534 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4535 			if (pageblock_is_reserved(pfn, block_end_pfn))
4536 				continue;
4537 
4538 			/* If this block is reserved, account for it */
4539 			if (block_migratetype == MIGRATE_RESERVE) {
4540 				reserve--;
4541 				continue;
4542 			}
4543 
4544 			/* Suitable for reserving if this block is movable */
4545 			if (block_migratetype == MIGRATE_MOVABLE) {
4546 				set_pageblock_migratetype(page,
4547 							MIGRATE_RESERVE);
4548 				move_freepages_block(zone, page,
4549 							MIGRATE_RESERVE);
4550 				reserve--;
4551 				continue;
4552 			}
4553 		} else if (!old_reserve) {
4554 			/*
4555 			 * At boot time we don't need to scan the whole zone
4556 			 * for turning off MIGRATE_RESERVE.
4557 			 */
4558 			break;
4559 		}
4560 
4561 		/*
4562 		 * If the reserve is met and this is a previous reserved block,
4563 		 * take it back
4564 		 */
4565 		if (block_migratetype == MIGRATE_RESERVE) {
4566 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4567 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
4568 		}
4569 	}
4570 }
4571 
4572 /*
4573  * Initially all pages are reserved - free ones are freed
4574  * up by free_all_bootmem() once the early boot process is
4575  * done. Non-atomic initialization, single-pass.
4576  */
4577 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4578 		unsigned long start_pfn, enum memmap_context context)
4579 {
4580 	pg_data_t *pgdat = NODE_DATA(nid);
4581 	unsigned long end_pfn = start_pfn + size;
4582 	unsigned long pfn;
4583 	struct zone *z;
4584 	unsigned long nr_initialised = 0;
4585 
4586 	if (highest_memmap_pfn < end_pfn - 1)
4587 		highest_memmap_pfn = end_pfn - 1;
4588 
4589 	z = &pgdat->node_zones[zone];
4590 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4591 		/*
4592 		 * There can be holes in boot-time mem_map[]s
4593 		 * handed to this function.  They do not
4594 		 * exist on hotplugged memory.
4595 		 */
4596 		if (context == MEMMAP_EARLY) {
4597 			if (!early_pfn_valid(pfn))
4598 				continue;
4599 			if (!early_pfn_in_nid(pfn, nid))
4600 				continue;
4601 			if (!update_defer_init(pgdat, pfn, end_pfn,
4602 						&nr_initialised))
4603 				break;
4604 		}
4605 
4606 		/*
4607 		 * Mark the block movable so that blocks are reserved for
4608 		 * movable at startup. This will force kernel allocations
4609 		 * to reserve their blocks rather than leaking throughout
4610 		 * the address space during boot when many long-lived
4611 		 * kernel allocations are made. Later some blocks near
4612 		 * the start are marked MIGRATE_RESERVE by
4613 		 * setup_zone_migrate_reserve()
4614 		 *
4615 		 * bitmap is created for zone's valid pfn range. but memmap
4616 		 * can be created for invalid pages (for alignment)
4617 		 * check here not to call set_pageblock_migratetype() against
4618 		 * pfn out of zone.
4619 		 */
4620 		if (!(pfn & (pageblock_nr_pages - 1))) {
4621 			struct page *page = pfn_to_page(pfn);
4622 
4623 			__init_single_page(page, pfn, zone, nid);
4624 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4625 		} else {
4626 			__init_single_pfn(pfn, zone, nid);
4627 		}
4628 	}
4629 }
4630 
4631 static void __meminit zone_init_free_lists(struct zone *zone)
4632 {
4633 	unsigned int order, t;
4634 	for_each_migratetype_order(order, t) {
4635 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4636 		zone->free_area[order].nr_free = 0;
4637 	}
4638 }
4639 
4640 #ifndef __HAVE_ARCH_MEMMAP_INIT
4641 #define memmap_init(size, nid, zone, start_pfn) \
4642 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4643 #endif
4644 
4645 static int zone_batchsize(struct zone *zone)
4646 {
4647 #ifdef CONFIG_MMU
4648 	int batch;
4649 
4650 	/*
4651 	 * The per-cpu-pages pools are set to around 1000th of the
4652 	 * size of the zone.  But no more than 1/2 of a meg.
4653 	 *
4654 	 * OK, so we don't know how big the cache is.  So guess.
4655 	 */
4656 	batch = zone->managed_pages / 1024;
4657 	if (batch * PAGE_SIZE > 512 * 1024)
4658 		batch = (512 * 1024) / PAGE_SIZE;
4659 	batch /= 4;		/* We effectively *= 4 below */
4660 	if (batch < 1)
4661 		batch = 1;
4662 
4663 	/*
4664 	 * Clamp the batch to a 2^n - 1 value. Having a power
4665 	 * of 2 value was found to be more likely to have
4666 	 * suboptimal cache aliasing properties in some cases.
4667 	 *
4668 	 * For example if 2 tasks are alternately allocating
4669 	 * batches of pages, one task can end up with a lot
4670 	 * of pages of one half of the possible page colors
4671 	 * and the other with pages of the other colors.
4672 	 */
4673 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4674 
4675 	return batch;
4676 
4677 #else
4678 	/* The deferral and batching of frees should be suppressed under NOMMU
4679 	 * conditions.
4680 	 *
4681 	 * The problem is that NOMMU needs to be able to allocate large chunks
4682 	 * of contiguous memory as there's no hardware page translation to
4683 	 * assemble apparent contiguous memory from discontiguous pages.
4684 	 *
4685 	 * Queueing large contiguous runs of pages for batching, however,
4686 	 * causes the pages to actually be freed in smaller chunks.  As there
4687 	 * can be a significant delay between the individual batches being
4688 	 * recycled, this leads to the once large chunks of space being
4689 	 * fragmented and becoming unavailable for high-order allocations.
4690 	 */
4691 	return 0;
4692 #endif
4693 }
4694 
4695 /*
4696  * pcp->high and pcp->batch values are related and dependent on one another:
4697  * ->batch must never be higher then ->high.
4698  * The following function updates them in a safe manner without read side
4699  * locking.
4700  *
4701  * Any new users of pcp->batch and pcp->high should ensure they can cope with
4702  * those fields changing asynchronously (acording the the above rule).
4703  *
4704  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4705  * outside of boot time (or some other assurance that no concurrent updaters
4706  * exist).
4707  */
4708 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4709 		unsigned long batch)
4710 {
4711        /* start with a fail safe value for batch */
4712 	pcp->batch = 1;
4713 	smp_wmb();
4714 
4715        /* Update high, then batch, in order */
4716 	pcp->high = high;
4717 	smp_wmb();
4718 
4719 	pcp->batch = batch;
4720 }
4721 
4722 /* a companion to pageset_set_high() */
4723 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4724 {
4725 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4726 }
4727 
4728 static void pageset_init(struct per_cpu_pageset *p)
4729 {
4730 	struct per_cpu_pages *pcp;
4731 	int migratetype;
4732 
4733 	memset(p, 0, sizeof(*p));
4734 
4735 	pcp = &p->pcp;
4736 	pcp->count = 0;
4737 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4738 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4739 }
4740 
4741 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4742 {
4743 	pageset_init(p);
4744 	pageset_set_batch(p, batch);
4745 }
4746 
4747 /*
4748  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4749  * to the value high for the pageset p.
4750  */
4751 static void pageset_set_high(struct per_cpu_pageset *p,
4752 				unsigned long high)
4753 {
4754 	unsigned long batch = max(1UL, high / 4);
4755 	if ((high / 4) > (PAGE_SHIFT * 8))
4756 		batch = PAGE_SHIFT * 8;
4757 
4758 	pageset_update(&p->pcp, high, batch);
4759 }
4760 
4761 static void pageset_set_high_and_batch(struct zone *zone,
4762 				       struct per_cpu_pageset *pcp)
4763 {
4764 	if (percpu_pagelist_fraction)
4765 		pageset_set_high(pcp,
4766 			(zone->managed_pages /
4767 				percpu_pagelist_fraction));
4768 	else
4769 		pageset_set_batch(pcp, zone_batchsize(zone));
4770 }
4771 
4772 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4773 {
4774 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4775 
4776 	pageset_init(pcp);
4777 	pageset_set_high_and_batch(zone, pcp);
4778 }
4779 
4780 static void __meminit setup_zone_pageset(struct zone *zone)
4781 {
4782 	int cpu;
4783 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4784 	for_each_possible_cpu(cpu)
4785 		zone_pageset_init(zone, cpu);
4786 }
4787 
4788 /*
4789  * Allocate per cpu pagesets and initialize them.
4790  * Before this call only boot pagesets were available.
4791  */
4792 void __init setup_per_cpu_pageset(void)
4793 {
4794 	struct zone *zone;
4795 
4796 	for_each_populated_zone(zone)
4797 		setup_zone_pageset(zone);
4798 }
4799 
4800 static noinline __init_refok
4801 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4802 {
4803 	int i;
4804 	size_t alloc_size;
4805 
4806 	/*
4807 	 * The per-page waitqueue mechanism uses hashed waitqueues
4808 	 * per zone.
4809 	 */
4810 	zone->wait_table_hash_nr_entries =
4811 		 wait_table_hash_nr_entries(zone_size_pages);
4812 	zone->wait_table_bits =
4813 		wait_table_bits(zone->wait_table_hash_nr_entries);
4814 	alloc_size = zone->wait_table_hash_nr_entries
4815 					* sizeof(wait_queue_head_t);
4816 
4817 	if (!slab_is_available()) {
4818 		zone->wait_table = (wait_queue_head_t *)
4819 			memblock_virt_alloc_node_nopanic(
4820 				alloc_size, zone->zone_pgdat->node_id);
4821 	} else {
4822 		/*
4823 		 * This case means that a zone whose size was 0 gets new memory
4824 		 * via memory hot-add.
4825 		 * But it may be the case that a new node was hot-added.  In
4826 		 * this case vmalloc() will not be able to use this new node's
4827 		 * memory - this wait_table must be initialized to use this new
4828 		 * node itself as well.
4829 		 * To use this new node's memory, further consideration will be
4830 		 * necessary.
4831 		 */
4832 		zone->wait_table = vmalloc(alloc_size);
4833 	}
4834 	if (!zone->wait_table)
4835 		return -ENOMEM;
4836 
4837 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4838 		init_waitqueue_head(zone->wait_table + i);
4839 
4840 	return 0;
4841 }
4842 
4843 static __meminit void zone_pcp_init(struct zone *zone)
4844 {
4845 	/*
4846 	 * per cpu subsystem is not up at this point. The following code
4847 	 * relies on the ability of the linker to provide the
4848 	 * offset of a (static) per cpu variable into the per cpu area.
4849 	 */
4850 	zone->pageset = &boot_pageset;
4851 
4852 	if (populated_zone(zone))
4853 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4854 			zone->name, zone->present_pages,
4855 					 zone_batchsize(zone));
4856 }
4857 
4858 int __meminit init_currently_empty_zone(struct zone *zone,
4859 					unsigned long zone_start_pfn,
4860 					unsigned long size,
4861 					enum memmap_context context)
4862 {
4863 	struct pglist_data *pgdat = zone->zone_pgdat;
4864 	int ret;
4865 	ret = zone_wait_table_init(zone, size);
4866 	if (ret)
4867 		return ret;
4868 	pgdat->nr_zones = zone_idx(zone) + 1;
4869 
4870 	zone->zone_start_pfn = zone_start_pfn;
4871 
4872 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4873 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4874 			pgdat->node_id,
4875 			(unsigned long)zone_idx(zone),
4876 			zone_start_pfn, (zone_start_pfn + size));
4877 
4878 	zone_init_free_lists(zone);
4879 
4880 	return 0;
4881 }
4882 
4883 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4884 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4885 
4886 /*
4887  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4888  */
4889 int __meminit __early_pfn_to_nid(unsigned long pfn,
4890 					struct mminit_pfnnid_cache *state)
4891 {
4892 	unsigned long start_pfn, end_pfn;
4893 	int nid;
4894 
4895 	if (state->last_start <= pfn && pfn < state->last_end)
4896 		return state->last_nid;
4897 
4898 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4899 	if (nid != -1) {
4900 		state->last_start = start_pfn;
4901 		state->last_end = end_pfn;
4902 		state->last_nid = nid;
4903 	}
4904 
4905 	return nid;
4906 }
4907 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4908 
4909 /**
4910  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4911  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4912  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4913  *
4914  * If an architecture guarantees that all ranges registered contain no holes
4915  * and may be freed, this this function may be used instead of calling
4916  * memblock_free_early_nid() manually.
4917  */
4918 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4919 {
4920 	unsigned long start_pfn, end_pfn;
4921 	int i, this_nid;
4922 
4923 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4924 		start_pfn = min(start_pfn, max_low_pfn);
4925 		end_pfn = min(end_pfn, max_low_pfn);
4926 
4927 		if (start_pfn < end_pfn)
4928 			memblock_free_early_nid(PFN_PHYS(start_pfn),
4929 					(end_pfn - start_pfn) << PAGE_SHIFT,
4930 					this_nid);
4931 	}
4932 }
4933 
4934 /**
4935  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4936  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4937  *
4938  * If an architecture guarantees that all ranges registered contain no holes and may
4939  * be freed, this function may be used instead of calling memory_present() manually.
4940  */
4941 void __init sparse_memory_present_with_active_regions(int nid)
4942 {
4943 	unsigned long start_pfn, end_pfn;
4944 	int i, this_nid;
4945 
4946 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4947 		memory_present(this_nid, start_pfn, end_pfn);
4948 }
4949 
4950 /**
4951  * get_pfn_range_for_nid - Return the start and end page frames for a node
4952  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4953  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4954  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4955  *
4956  * It returns the start and end page frame of a node based on information
4957  * provided by memblock_set_node(). If called for a node
4958  * with no available memory, a warning is printed and the start and end
4959  * PFNs will be 0.
4960  */
4961 void __meminit get_pfn_range_for_nid(unsigned int nid,
4962 			unsigned long *start_pfn, unsigned long *end_pfn)
4963 {
4964 	unsigned long this_start_pfn, this_end_pfn;
4965 	int i;
4966 
4967 	*start_pfn = -1UL;
4968 	*end_pfn = 0;
4969 
4970 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4971 		*start_pfn = min(*start_pfn, this_start_pfn);
4972 		*end_pfn = max(*end_pfn, this_end_pfn);
4973 	}
4974 
4975 	if (*start_pfn == -1UL)
4976 		*start_pfn = 0;
4977 }
4978 
4979 /*
4980  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4981  * assumption is made that zones within a node are ordered in monotonic
4982  * increasing memory addresses so that the "highest" populated zone is used
4983  */
4984 static void __init find_usable_zone_for_movable(void)
4985 {
4986 	int zone_index;
4987 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4988 		if (zone_index == ZONE_MOVABLE)
4989 			continue;
4990 
4991 		if (arch_zone_highest_possible_pfn[zone_index] >
4992 				arch_zone_lowest_possible_pfn[zone_index])
4993 			break;
4994 	}
4995 
4996 	VM_BUG_ON(zone_index == -1);
4997 	movable_zone = zone_index;
4998 }
4999 
5000 /*
5001  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5002  * because it is sized independent of architecture. Unlike the other zones,
5003  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5004  * in each node depending on the size of each node and how evenly kernelcore
5005  * is distributed. This helper function adjusts the zone ranges
5006  * provided by the architecture for a given node by using the end of the
5007  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5008  * zones within a node are in order of monotonic increases memory addresses
5009  */
5010 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5011 					unsigned long zone_type,
5012 					unsigned long node_start_pfn,
5013 					unsigned long node_end_pfn,
5014 					unsigned long *zone_start_pfn,
5015 					unsigned long *zone_end_pfn)
5016 {
5017 	/* Only adjust if ZONE_MOVABLE is on this node */
5018 	if (zone_movable_pfn[nid]) {
5019 		/* Size ZONE_MOVABLE */
5020 		if (zone_type == ZONE_MOVABLE) {
5021 			*zone_start_pfn = zone_movable_pfn[nid];
5022 			*zone_end_pfn = min(node_end_pfn,
5023 				arch_zone_highest_possible_pfn[movable_zone]);
5024 
5025 		/* Adjust for ZONE_MOVABLE starting within this range */
5026 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
5027 				*zone_end_pfn > zone_movable_pfn[nid]) {
5028 			*zone_end_pfn = zone_movable_pfn[nid];
5029 
5030 		/* Check if this whole range is within ZONE_MOVABLE */
5031 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5032 			*zone_start_pfn = *zone_end_pfn;
5033 	}
5034 }
5035 
5036 /*
5037  * Return the number of pages a zone spans in a node, including holes
5038  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5039  */
5040 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5041 					unsigned long zone_type,
5042 					unsigned long node_start_pfn,
5043 					unsigned long node_end_pfn,
5044 					unsigned long *ignored)
5045 {
5046 	unsigned long zone_start_pfn, zone_end_pfn;
5047 
5048 	/* Get the start and end of the zone */
5049 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5050 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5051 	adjust_zone_range_for_zone_movable(nid, zone_type,
5052 				node_start_pfn, node_end_pfn,
5053 				&zone_start_pfn, &zone_end_pfn);
5054 
5055 	/* Check that this node has pages within the zone's required range */
5056 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
5057 		return 0;
5058 
5059 	/* Move the zone boundaries inside the node if necessary */
5060 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
5061 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
5062 
5063 	/* Return the spanned pages */
5064 	return zone_end_pfn - zone_start_pfn;
5065 }
5066 
5067 /*
5068  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5069  * then all holes in the requested range will be accounted for.
5070  */
5071 unsigned long __meminit __absent_pages_in_range(int nid,
5072 				unsigned long range_start_pfn,
5073 				unsigned long range_end_pfn)
5074 {
5075 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5076 	unsigned long start_pfn, end_pfn;
5077 	int i;
5078 
5079 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5080 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5081 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5082 		nr_absent -= end_pfn - start_pfn;
5083 	}
5084 	return nr_absent;
5085 }
5086 
5087 /**
5088  * absent_pages_in_range - Return number of page frames in holes within a range
5089  * @start_pfn: The start PFN to start searching for holes
5090  * @end_pfn: The end PFN to stop searching for holes
5091  *
5092  * It returns the number of pages frames in memory holes within a range.
5093  */
5094 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5095 							unsigned long end_pfn)
5096 {
5097 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5098 }
5099 
5100 /* Return the number of page frames in holes in a zone on a node */
5101 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5102 					unsigned long zone_type,
5103 					unsigned long node_start_pfn,
5104 					unsigned long node_end_pfn,
5105 					unsigned long *ignored)
5106 {
5107 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5108 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5109 	unsigned long zone_start_pfn, zone_end_pfn;
5110 
5111 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5112 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5113 
5114 	adjust_zone_range_for_zone_movable(nid, zone_type,
5115 			node_start_pfn, node_end_pfn,
5116 			&zone_start_pfn, &zone_end_pfn);
5117 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5118 }
5119 
5120 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5121 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5122 					unsigned long zone_type,
5123 					unsigned long node_start_pfn,
5124 					unsigned long node_end_pfn,
5125 					unsigned long *zones_size)
5126 {
5127 	return zones_size[zone_type];
5128 }
5129 
5130 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5131 						unsigned long zone_type,
5132 						unsigned long node_start_pfn,
5133 						unsigned long node_end_pfn,
5134 						unsigned long *zholes_size)
5135 {
5136 	if (!zholes_size)
5137 		return 0;
5138 
5139 	return zholes_size[zone_type];
5140 }
5141 
5142 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5143 
5144 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5145 						unsigned long node_start_pfn,
5146 						unsigned long node_end_pfn,
5147 						unsigned long *zones_size,
5148 						unsigned long *zholes_size)
5149 {
5150 	unsigned long realtotalpages = 0, totalpages = 0;
5151 	enum zone_type i;
5152 
5153 	for (i = 0; i < MAX_NR_ZONES; i++) {
5154 		struct zone *zone = pgdat->node_zones + i;
5155 		unsigned long size, real_size;
5156 
5157 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5158 						  node_start_pfn,
5159 						  node_end_pfn,
5160 						  zones_size);
5161 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5162 						  node_start_pfn, node_end_pfn,
5163 						  zholes_size);
5164 		zone->spanned_pages = size;
5165 		zone->present_pages = real_size;
5166 
5167 		totalpages += size;
5168 		realtotalpages += real_size;
5169 	}
5170 
5171 	pgdat->node_spanned_pages = totalpages;
5172 	pgdat->node_present_pages = realtotalpages;
5173 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5174 							realtotalpages);
5175 }
5176 
5177 #ifndef CONFIG_SPARSEMEM
5178 /*
5179  * Calculate the size of the zone->blockflags rounded to an unsigned long
5180  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5181  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5182  * round what is now in bits to nearest long in bits, then return it in
5183  * bytes.
5184  */
5185 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5186 {
5187 	unsigned long usemapsize;
5188 
5189 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5190 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5191 	usemapsize = usemapsize >> pageblock_order;
5192 	usemapsize *= NR_PAGEBLOCK_BITS;
5193 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5194 
5195 	return usemapsize / 8;
5196 }
5197 
5198 static void __init setup_usemap(struct pglist_data *pgdat,
5199 				struct zone *zone,
5200 				unsigned long zone_start_pfn,
5201 				unsigned long zonesize)
5202 {
5203 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5204 	zone->pageblock_flags = NULL;
5205 	if (usemapsize)
5206 		zone->pageblock_flags =
5207 			memblock_virt_alloc_node_nopanic(usemapsize,
5208 							 pgdat->node_id);
5209 }
5210 #else
5211 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5212 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5213 #endif /* CONFIG_SPARSEMEM */
5214 
5215 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5216 
5217 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5218 void __paginginit set_pageblock_order(void)
5219 {
5220 	unsigned int order;
5221 
5222 	/* Check that pageblock_nr_pages has not already been setup */
5223 	if (pageblock_order)
5224 		return;
5225 
5226 	if (HPAGE_SHIFT > PAGE_SHIFT)
5227 		order = HUGETLB_PAGE_ORDER;
5228 	else
5229 		order = MAX_ORDER - 1;
5230 
5231 	/*
5232 	 * Assume the largest contiguous order of interest is a huge page.
5233 	 * This value may be variable depending on boot parameters on IA64 and
5234 	 * powerpc.
5235 	 */
5236 	pageblock_order = order;
5237 }
5238 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5239 
5240 /*
5241  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5242  * is unused as pageblock_order is set at compile-time. See
5243  * include/linux/pageblock-flags.h for the values of pageblock_order based on
5244  * the kernel config
5245  */
5246 void __paginginit set_pageblock_order(void)
5247 {
5248 }
5249 
5250 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5251 
5252 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5253 						   unsigned long present_pages)
5254 {
5255 	unsigned long pages = spanned_pages;
5256 
5257 	/*
5258 	 * Provide a more accurate estimation if there are holes within
5259 	 * the zone and SPARSEMEM is in use. If there are holes within the
5260 	 * zone, each populated memory region may cost us one or two extra
5261 	 * memmap pages due to alignment because memmap pages for each
5262 	 * populated regions may not naturally algined on page boundary.
5263 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5264 	 */
5265 	if (spanned_pages > present_pages + (present_pages >> 4) &&
5266 	    IS_ENABLED(CONFIG_SPARSEMEM))
5267 		pages = present_pages;
5268 
5269 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5270 }
5271 
5272 /*
5273  * Set up the zone data structures:
5274  *   - mark all pages reserved
5275  *   - mark all memory queues empty
5276  *   - clear the memory bitmaps
5277  *
5278  * NOTE: pgdat should get zeroed by caller.
5279  */
5280 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
5281 		unsigned long node_start_pfn, unsigned long node_end_pfn)
5282 {
5283 	enum zone_type j;
5284 	int nid = pgdat->node_id;
5285 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
5286 	int ret;
5287 
5288 	pgdat_resize_init(pgdat);
5289 #ifdef CONFIG_NUMA_BALANCING
5290 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5291 	pgdat->numabalancing_migrate_nr_pages = 0;
5292 	pgdat->numabalancing_migrate_next_window = jiffies;
5293 #endif
5294 	init_waitqueue_head(&pgdat->kswapd_wait);
5295 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5296 	pgdat_page_ext_init(pgdat);
5297 
5298 	for (j = 0; j < MAX_NR_ZONES; j++) {
5299 		struct zone *zone = pgdat->node_zones + j;
5300 		unsigned long size, realsize, freesize, memmap_pages;
5301 
5302 		size = zone->spanned_pages;
5303 		realsize = freesize = zone->present_pages;
5304 
5305 		/*
5306 		 * Adjust freesize so that it accounts for how much memory
5307 		 * is used by this zone for memmap. This affects the watermark
5308 		 * and per-cpu initialisations
5309 		 */
5310 		memmap_pages = calc_memmap_size(size, realsize);
5311 		if (!is_highmem_idx(j)) {
5312 			if (freesize >= memmap_pages) {
5313 				freesize -= memmap_pages;
5314 				if (memmap_pages)
5315 					printk(KERN_DEBUG
5316 					       "  %s zone: %lu pages used for memmap\n",
5317 					       zone_names[j], memmap_pages);
5318 			} else
5319 				printk(KERN_WARNING
5320 					"  %s zone: %lu pages exceeds freesize %lu\n",
5321 					zone_names[j], memmap_pages, freesize);
5322 		}
5323 
5324 		/* Account for reserved pages */
5325 		if (j == 0 && freesize > dma_reserve) {
5326 			freesize -= dma_reserve;
5327 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
5328 					zone_names[0], dma_reserve);
5329 		}
5330 
5331 		if (!is_highmem_idx(j))
5332 			nr_kernel_pages += freesize;
5333 		/* Charge for highmem memmap if there are enough kernel pages */
5334 		else if (nr_kernel_pages > memmap_pages * 2)
5335 			nr_kernel_pages -= memmap_pages;
5336 		nr_all_pages += freesize;
5337 
5338 		/*
5339 		 * Set an approximate value for lowmem here, it will be adjusted
5340 		 * when the bootmem allocator frees pages into the buddy system.
5341 		 * And all highmem pages will be managed by the buddy system.
5342 		 */
5343 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5344 #ifdef CONFIG_NUMA
5345 		zone->node = nid;
5346 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5347 						/ 100;
5348 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5349 #endif
5350 		zone->name = zone_names[j];
5351 		spin_lock_init(&zone->lock);
5352 		spin_lock_init(&zone->lru_lock);
5353 		zone_seqlock_init(zone);
5354 		zone->zone_pgdat = pgdat;
5355 		zone_pcp_init(zone);
5356 
5357 		/* For bootup, initialized properly in watermark setup */
5358 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5359 
5360 		lruvec_init(&zone->lruvec);
5361 		if (!size)
5362 			continue;
5363 
5364 		set_pageblock_order();
5365 		setup_usemap(pgdat, zone, zone_start_pfn, size);
5366 		ret = init_currently_empty_zone(zone, zone_start_pfn,
5367 						size, MEMMAP_EARLY);
5368 		BUG_ON(ret);
5369 		memmap_init(size, nid, j, zone_start_pfn);
5370 		zone_start_pfn += size;
5371 	}
5372 }
5373 
5374 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5375 {
5376 	/* Skip empty nodes */
5377 	if (!pgdat->node_spanned_pages)
5378 		return;
5379 
5380 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5381 	/* ia64 gets its own node_mem_map, before this, without bootmem */
5382 	if (!pgdat->node_mem_map) {
5383 		unsigned long size, start, end;
5384 		struct page *map;
5385 
5386 		/*
5387 		 * The zone's endpoints aren't required to be MAX_ORDER
5388 		 * aligned but the node_mem_map endpoints must be in order
5389 		 * for the buddy allocator to function correctly.
5390 		 */
5391 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5392 		end = pgdat_end_pfn(pgdat);
5393 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
5394 		size =  (end - start) * sizeof(struct page);
5395 		map = alloc_remap(pgdat->node_id, size);
5396 		if (!map)
5397 			map = memblock_virt_alloc_node_nopanic(size,
5398 							       pgdat->node_id);
5399 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
5400 	}
5401 #ifndef CONFIG_NEED_MULTIPLE_NODES
5402 	/*
5403 	 * With no DISCONTIG, the global mem_map is just set as node 0's
5404 	 */
5405 	if (pgdat == NODE_DATA(0)) {
5406 		mem_map = NODE_DATA(0)->node_mem_map;
5407 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5408 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5409 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
5410 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5411 	}
5412 #endif
5413 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5414 }
5415 
5416 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5417 		unsigned long node_start_pfn, unsigned long *zholes_size)
5418 {
5419 	pg_data_t *pgdat = NODE_DATA(nid);
5420 	unsigned long start_pfn = 0;
5421 	unsigned long end_pfn = 0;
5422 
5423 	/* pg_data_t should be reset to zero when it's allocated */
5424 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5425 
5426 	reset_deferred_meminit(pgdat);
5427 	pgdat->node_id = nid;
5428 	pgdat->node_start_pfn = node_start_pfn;
5429 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5430 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5431 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5432 		(u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
5433 #endif
5434 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5435 				  zones_size, zholes_size);
5436 
5437 	alloc_node_mem_map(pgdat);
5438 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5439 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5440 		nid, (unsigned long)pgdat,
5441 		(unsigned long)pgdat->node_mem_map);
5442 #endif
5443 
5444 	free_area_init_core(pgdat, start_pfn, end_pfn);
5445 }
5446 
5447 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5448 
5449 #if MAX_NUMNODES > 1
5450 /*
5451  * Figure out the number of possible node ids.
5452  */
5453 void __init setup_nr_node_ids(void)
5454 {
5455 	unsigned int node;
5456 	unsigned int highest = 0;
5457 
5458 	for_each_node_mask(node, node_possible_map)
5459 		highest = node;
5460 	nr_node_ids = highest + 1;
5461 }
5462 #endif
5463 
5464 /**
5465  * node_map_pfn_alignment - determine the maximum internode alignment
5466  *
5467  * This function should be called after node map is populated and sorted.
5468  * It calculates the maximum power of two alignment which can distinguish
5469  * all the nodes.
5470  *
5471  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5472  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5473  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5474  * shifted, 1GiB is enough and this function will indicate so.
5475  *
5476  * This is used to test whether pfn -> nid mapping of the chosen memory
5477  * model has fine enough granularity to avoid incorrect mapping for the
5478  * populated node map.
5479  *
5480  * Returns the determined alignment in pfn's.  0 if there is no alignment
5481  * requirement (single node).
5482  */
5483 unsigned long __init node_map_pfn_alignment(void)
5484 {
5485 	unsigned long accl_mask = 0, last_end = 0;
5486 	unsigned long start, end, mask;
5487 	int last_nid = -1;
5488 	int i, nid;
5489 
5490 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5491 		if (!start || last_nid < 0 || last_nid == nid) {
5492 			last_nid = nid;
5493 			last_end = end;
5494 			continue;
5495 		}
5496 
5497 		/*
5498 		 * Start with a mask granular enough to pin-point to the
5499 		 * start pfn and tick off bits one-by-one until it becomes
5500 		 * too coarse to separate the current node from the last.
5501 		 */
5502 		mask = ~((1 << __ffs(start)) - 1);
5503 		while (mask && last_end <= (start & (mask << 1)))
5504 			mask <<= 1;
5505 
5506 		/* accumulate all internode masks */
5507 		accl_mask |= mask;
5508 	}
5509 
5510 	/* convert mask to number of pages */
5511 	return ~accl_mask + 1;
5512 }
5513 
5514 /* Find the lowest pfn for a node */
5515 static unsigned long __init find_min_pfn_for_node(int nid)
5516 {
5517 	unsigned long min_pfn = ULONG_MAX;
5518 	unsigned long start_pfn;
5519 	int i;
5520 
5521 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5522 		min_pfn = min(min_pfn, start_pfn);
5523 
5524 	if (min_pfn == ULONG_MAX) {
5525 		printk(KERN_WARNING
5526 			"Could not find start_pfn for node %d\n", nid);
5527 		return 0;
5528 	}
5529 
5530 	return min_pfn;
5531 }
5532 
5533 /**
5534  * find_min_pfn_with_active_regions - Find the minimum PFN registered
5535  *
5536  * It returns the minimum PFN based on information provided via
5537  * memblock_set_node().
5538  */
5539 unsigned long __init find_min_pfn_with_active_regions(void)
5540 {
5541 	return find_min_pfn_for_node(MAX_NUMNODES);
5542 }
5543 
5544 /*
5545  * early_calculate_totalpages()
5546  * Sum pages in active regions for movable zone.
5547  * Populate N_MEMORY for calculating usable_nodes.
5548  */
5549 static unsigned long __init early_calculate_totalpages(void)
5550 {
5551 	unsigned long totalpages = 0;
5552 	unsigned long start_pfn, end_pfn;
5553 	int i, nid;
5554 
5555 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5556 		unsigned long pages = end_pfn - start_pfn;
5557 
5558 		totalpages += pages;
5559 		if (pages)
5560 			node_set_state(nid, N_MEMORY);
5561 	}
5562 	return totalpages;
5563 }
5564 
5565 /*
5566  * Find the PFN the Movable zone begins in each node. Kernel memory
5567  * is spread evenly between nodes as long as the nodes have enough
5568  * memory. When they don't, some nodes will have more kernelcore than
5569  * others
5570  */
5571 static void __init find_zone_movable_pfns_for_nodes(void)
5572 {
5573 	int i, nid;
5574 	unsigned long usable_startpfn;
5575 	unsigned long kernelcore_node, kernelcore_remaining;
5576 	/* save the state before borrow the nodemask */
5577 	nodemask_t saved_node_state = node_states[N_MEMORY];
5578 	unsigned long totalpages = early_calculate_totalpages();
5579 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5580 	struct memblock_region *r;
5581 
5582 	/* Need to find movable_zone earlier when movable_node is specified. */
5583 	find_usable_zone_for_movable();
5584 
5585 	/*
5586 	 * If movable_node is specified, ignore kernelcore and movablecore
5587 	 * options.
5588 	 */
5589 	if (movable_node_is_enabled()) {
5590 		for_each_memblock(memory, r) {
5591 			if (!memblock_is_hotpluggable(r))
5592 				continue;
5593 
5594 			nid = r->nid;
5595 
5596 			usable_startpfn = PFN_DOWN(r->base);
5597 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5598 				min(usable_startpfn, zone_movable_pfn[nid]) :
5599 				usable_startpfn;
5600 		}
5601 
5602 		goto out2;
5603 	}
5604 
5605 	/*
5606 	 * If movablecore=nn[KMG] was specified, calculate what size of
5607 	 * kernelcore that corresponds so that memory usable for
5608 	 * any allocation type is evenly spread. If both kernelcore
5609 	 * and movablecore are specified, then the value of kernelcore
5610 	 * will be used for required_kernelcore if it's greater than
5611 	 * what movablecore would have allowed.
5612 	 */
5613 	if (required_movablecore) {
5614 		unsigned long corepages;
5615 
5616 		/*
5617 		 * Round-up so that ZONE_MOVABLE is at least as large as what
5618 		 * was requested by the user
5619 		 */
5620 		required_movablecore =
5621 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5622 		corepages = totalpages - required_movablecore;
5623 
5624 		required_kernelcore = max(required_kernelcore, corepages);
5625 	}
5626 
5627 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
5628 	if (!required_kernelcore)
5629 		goto out;
5630 
5631 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5632 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5633 
5634 restart:
5635 	/* Spread kernelcore memory as evenly as possible throughout nodes */
5636 	kernelcore_node = required_kernelcore / usable_nodes;
5637 	for_each_node_state(nid, N_MEMORY) {
5638 		unsigned long start_pfn, end_pfn;
5639 
5640 		/*
5641 		 * Recalculate kernelcore_node if the division per node
5642 		 * now exceeds what is necessary to satisfy the requested
5643 		 * amount of memory for the kernel
5644 		 */
5645 		if (required_kernelcore < kernelcore_node)
5646 			kernelcore_node = required_kernelcore / usable_nodes;
5647 
5648 		/*
5649 		 * As the map is walked, we track how much memory is usable
5650 		 * by the kernel using kernelcore_remaining. When it is
5651 		 * 0, the rest of the node is usable by ZONE_MOVABLE
5652 		 */
5653 		kernelcore_remaining = kernelcore_node;
5654 
5655 		/* Go through each range of PFNs within this node */
5656 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5657 			unsigned long size_pages;
5658 
5659 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5660 			if (start_pfn >= end_pfn)
5661 				continue;
5662 
5663 			/* Account for what is only usable for kernelcore */
5664 			if (start_pfn < usable_startpfn) {
5665 				unsigned long kernel_pages;
5666 				kernel_pages = min(end_pfn, usable_startpfn)
5667 								- start_pfn;
5668 
5669 				kernelcore_remaining -= min(kernel_pages,
5670 							kernelcore_remaining);
5671 				required_kernelcore -= min(kernel_pages,
5672 							required_kernelcore);
5673 
5674 				/* Continue if range is now fully accounted */
5675 				if (end_pfn <= usable_startpfn) {
5676 
5677 					/*
5678 					 * Push zone_movable_pfn to the end so
5679 					 * that if we have to rebalance
5680 					 * kernelcore across nodes, we will
5681 					 * not double account here
5682 					 */
5683 					zone_movable_pfn[nid] = end_pfn;
5684 					continue;
5685 				}
5686 				start_pfn = usable_startpfn;
5687 			}
5688 
5689 			/*
5690 			 * The usable PFN range for ZONE_MOVABLE is from
5691 			 * start_pfn->end_pfn. Calculate size_pages as the
5692 			 * number of pages used as kernelcore
5693 			 */
5694 			size_pages = end_pfn - start_pfn;
5695 			if (size_pages > kernelcore_remaining)
5696 				size_pages = kernelcore_remaining;
5697 			zone_movable_pfn[nid] = start_pfn + size_pages;
5698 
5699 			/*
5700 			 * Some kernelcore has been met, update counts and
5701 			 * break if the kernelcore for this node has been
5702 			 * satisfied
5703 			 */
5704 			required_kernelcore -= min(required_kernelcore,
5705 								size_pages);
5706 			kernelcore_remaining -= size_pages;
5707 			if (!kernelcore_remaining)
5708 				break;
5709 		}
5710 	}
5711 
5712 	/*
5713 	 * If there is still required_kernelcore, we do another pass with one
5714 	 * less node in the count. This will push zone_movable_pfn[nid] further
5715 	 * along on the nodes that still have memory until kernelcore is
5716 	 * satisfied
5717 	 */
5718 	usable_nodes--;
5719 	if (usable_nodes && required_kernelcore > usable_nodes)
5720 		goto restart;
5721 
5722 out2:
5723 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5724 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5725 		zone_movable_pfn[nid] =
5726 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5727 
5728 out:
5729 	/* restore the node_state */
5730 	node_states[N_MEMORY] = saved_node_state;
5731 }
5732 
5733 /* Any regular or high memory on that node ? */
5734 static void check_for_memory(pg_data_t *pgdat, int nid)
5735 {
5736 	enum zone_type zone_type;
5737 
5738 	if (N_MEMORY == N_NORMAL_MEMORY)
5739 		return;
5740 
5741 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5742 		struct zone *zone = &pgdat->node_zones[zone_type];
5743 		if (populated_zone(zone)) {
5744 			node_set_state(nid, N_HIGH_MEMORY);
5745 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5746 			    zone_type <= ZONE_NORMAL)
5747 				node_set_state(nid, N_NORMAL_MEMORY);
5748 			break;
5749 		}
5750 	}
5751 }
5752 
5753 /**
5754  * free_area_init_nodes - Initialise all pg_data_t and zone data
5755  * @max_zone_pfn: an array of max PFNs for each zone
5756  *
5757  * This will call free_area_init_node() for each active node in the system.
5758  * Using the page ranges provided by memblock_set_node(), the size of each
5759  * zone in each node and their holes is calculated. If the maximum PFN
5760  * between two adjacent zones match, it is assumed that the zone is empty.
5761  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5762  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5763  * starts where the previous one ended. For example, ZONE_DMA32 starts
5764  * at arch_max_dma_pfn.
5765  */
5766 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5767 {
5768 	unsigned long start_pfn, end_pfn;
5769 	int i, nid;
5770 
5771 	/* Record where the zone boundaries are */
5772 	memset(arch_zone_lowest_possible_pfn, 0,
5773 				sizeof(arch_zone_lowest_possible_pfn));
5774 	memset(arch_zone_highest_possible_pfn, 0,
5775 				sizeof(arch_zone_highest_possible_pfn));
5776 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5777 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5778 	for (i = 1; i < MAX_NR_ZONES; i++) {
5779 		if (i == ZONE_MOVABLE)
5780 			continue;
5781 		arch_zone_lowest_possible_pfn[i] =
5782 			arch_zone_highest_possible_pfn[i-1];
5783 		arch_zone_highest_possible_pfn[i] =
5784 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5785 	}
5786 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5787 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5788 
5789 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5790 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5791 	find_zone_movable_pfns_for_nodes();
5792 
5793 	/* Print out the zone ranges */
5794 	pr_info("Zone ranges:\n");
5795 	for (i = 0; i < MAX_NR_ZONES; i++) {
5796 		if (i == ZONE_MOVABLE)
5797 			continue;
5798 		pr_info("  %-8s ", zone_names[i]);
5799 		if (arch_zone_lowest_possible_pfn[i] ==
5800 				arch_zone_highest_possible_pfn[i])
5801 			pr_cont("empty\n");
5802 		else
5803 			pr_cont("[mem %#018Lx-%#018Lx]\n",
5804 				(u64)arch_zone_lowest_possible_pfn[i]
5805 					<< PAGE_SHIFT,
5806 				((u64)arch_zone_highest_possible_pfn[i]
5807 					<< PAGE_SHIFT) - 1);
5808 	}
5809 
5810 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5811 	pr_info("Movable zone start for each node\n");
5812 	for (i = 0; i < MAX_NUMNODES; i++) {
5813 		if (zone_movable_pfn[i])
5814 			pr_info("  Node %d: %#018Lx\n", i,
5815 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5816 	}
5817 
5818 	/* Print out the early node map */
5819 	pr_info("Early memory node ranges\n");
5820 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5821 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5822 			(u64)start_pfn << PAGE_SHIFT,
5823 			((u64)end_pfn << PAGE_SHIFT) - 1);
5824 
5825 	/* Initialise every node */
5826 	mminit_verify_pageflags_layout();
5827 	setup_nr_node_ids();
5828 	for_each_online_node(nid) {
5829 		pg_data_t *pgdat = NODE_DATA(nid);
5830 		free_area_init_node(nid, NULL,
5831 				find_min_pfn_for_node(nid), NULL);
5832 
5833 		/* Any memory on that node */
5834 		if (pgdat->node_present_pages)
5835 			node_set_state(nid, N_MEMORY);
5836 		check_for_memory(pgdat, nid);
5837 	}
5838 }
5839 
5840 static int __init cmdline_parse_core(char *p, unsigned long *core)
5841 {
5842 	unsigned long long coremem;
5843 	if (!p)
5844 		return -EINVAL;
5845 
5846 	coremem = memparse(p, &p);
5847 	*core = coremem >> PAGE_SHIFT;
5848 
5849 	/* Paranoid check that UL is enough for the coremem value */
5850 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5851 
5852 	return 0;
5853 }
5854 
5855 /*
5856  * kernelcore=size sets the amount of memory for use for allocations that
5857  * cannot be reclaimed or migrated.
5858  */
5859 static int __init cmdline_parse_kernelcore(char *p)
5860 {
5861 	return cmdline_parse_core(p, &required_kernelcore);
5862 }
5863 
5864 /*
5865  * movablecore=size sets the amount of memory for use for allocations that
5866  * can be reclaimed or migrated.
5867  */
5868 static int __init cmdline_parse_movablecore(char *p)
5869 {
5870 	return cmdline_parse_core(p, &required_movablecore);
5871 }
5872 
5873 early_param("kernelcore", cmdline_parse_kernelcore);
5874 early_param("movablecore", cmdline_parse_movablecore);
5875 
5876 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5877 
5878 void adjust_managed_page_count(struct page *page, long count)
5879 {
5880 	spin_lock(&managed_page_count_lock);
5881 	page_zone(page)->managed_pages += count;
5882 	totalram_pages += count;
5883 #ifdef CONFIG_HIGHMEM
5884 	if (PageHighMem(page))
5885 		totalhigh_pages += count;
5886 #endif
5887 	spin_unlock(&managed_page_count_lock);
5888 }
5889 EXPORT_SYMBOL(adjust_managed_page_count);
5890 
5891 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5892 {
5893 	void *pos;
5894 	unsigned long pages = 0;
5895 
5896 	start = (void *)PAGE_ALIGN((unsigned long)start);
5897 	end = (void *)((unsigned long)end & PAGE_MASK);
5898 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5899 		if ((unsigned int)poison <= 0xFF)
5900 			memset(pos, poison, PAGE_SIZE);
5901 		free_reserved_page(virt_to_page(pos));
5902 	}
5903 
5904 	if (pages && s)
5905 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5906 			s, pages << (PAGE_SHIFT - 10), start, end);
5907 
5908 	return pages;
5909 }
5910 EXPORT_SYMBOL(free_reserved_area);
5911 
5912 #ifdef	CONFIG_HIGHMEM
5913 void free_highmem_page(struct page *page)
5914 {
5915 	__free_reserved_page(page);
5916 	totalram_pages++;
5917 	page_zone(page)->managed_pages++;
5918 	totalhigh_pages++;
5919 }
5920 #endif
5921 
5922 
5923 void __init mem_init_print_info(const char *str)
5924 {
5925 	unsigned long physpages, codesize, datasize, rosize, bss_size;
5926 	unsigned long init_code_size, init_data_size;
5927 
5928 	physpages = get_num_physpages();
5929 	codesize = _etext - _stext;
5930 	datasize = _edata - _sdata;
5931 	rosize = __end_rodata - __start_rodata;
5932 	bss_size = __bss_stop - __bss_start;
5933 	init_data_size = __init_end - __init_begin;
5934 	init_code_size = _einittext - _sinittext;
5935 
5936 	/*
5937 	 * Detect special cases and adjust section sizes accordingly:
5938 	 * 1) .init.* may be embedded into .data sections
5939 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
5940 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
5941 	 * 3) .rodata.* may be embedded into .text or .data sections.
5942 	 */
5943 #define adj_init_size(start, end, size, pos, adj) \
5944 	do { \
5945 		if (start <= pos && pos < end && size > adj) \
5946 			size -= adj; \
5947 	} while (0)
5948 
5949 	adj_init_size(__init_begin, __init_end, init_data_size,
5950 		     _sinittext, init_code_size);
5951 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5952 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5953 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5954 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5955 
5956 #undef	adj_init_size
5957 
5958 	pr_info("Memory: %luK/%luK available "
5959 	       "(%luK kernel code, %luK rwdata, %luK rodata, "
5960 	       "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5961 #ifdef	CONFIG_HIGHMEM
5962 	       ", %luK highmem"
5963 #endif
5964 	       "%s%s)\n",
5965 	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5966 	       codesize >> 10, datasize >> 10, rosize >> 10,
5967 	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
5968 	       (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5969 	       totalcma_pages << (PAGE_SHIFT-10),
5970 #ifdef	CONFIG_HIGHMEM
5971 	       totalhigh_pages << (PAGE_SHIFT-10),
5972 #endif
5973 	       str ? ", " : "", str ? str : "");
5974 }
5975 
5976 /**
5977  * set_dma_reserve - set the specified number of pages reserved in the first zone
5978  * @new_dma_reserve: The number of pages to mark reserved
5979  *
5980  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5981  * In the DMA zone, a significant percentage may be consumed by kernel image
5982  * and other unfreeable allocations which can skew the watermarks badly. This
5983  * function may optionally be used to account for unfreeable pages in the
5984  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5985  * smaller per-cpu batchsize.
5986  */
5987 void __init set_dma_reserve(unsigned long new_dma_reserve)
5988 {
5989 	dma_reserve = new_dma_reserve;
5990 }
5991 
5992 void __init free_area_init(unsigned long *zones_size)
5993 {
5994 	free_area_init_node(0, zones_size,
5995 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5996 }
5997 
5998 static int page_alloc_cpu_notify(struct notifier_block *self,
5999 				 unsigned long action, void *hcpu)
6000 {
6001 	int cpu = (unsigned long)hcpu;
6002 
6003 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6004 		lru_add_drain_cpu(cpu);
6005 		drain_pages(cpu);
6006 
6007 		/*
6008 		 * Spill the event counters of the dead processor
6009 		 * into the current processors event counters.
6010 		 * This artificially elevates the count of the current
6011 		 * processor.
6012 		 */
6013 		vm_events_fold_cpu(cpu);
6014 
6015 		/*
6016 		 * Zero the differential counters of the dead processor
6017 		 * so that the vm statistics are consistent.
6018 		 *
6019 		 * This is only okay since the processor is dead and cannot
6020 		 * race with what we are doing.
6021 		 */
6022 		cpu_vm_stats_fold(cpu);
6023 	}
6024 	return NOTIFY_OK;
6025 }
6026 
6027 void __init page_alloc_init(void)
6028 {
6029 	hotcpu_notifier(page_alloc_cpu_notify, 0);
6030 }
6031 
6032 /*
6033  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
6034  *	or min_free_kbytes changes.
6035  */
6036 static void calculate_totalreserve_pages(void)
6037 {
6038 	struct pglist_data *pgdat;
6039 	unsigned long reserve_pages = 0;
6040 	enum zone_type i, j;
6041 
6042 	for_each_online_pgdat(pgdat) {
6043 		for (i = 0; i < MAX_NR_ZONES; i++) {
6044 			struct zone *zone = pgdat->node_zones + i;
6045 			long max = 0;
6046 
6047 			/* Find valid and maximum lowmem_reserve in the zone */
6048 			for (j = i; j < MAX_NR_ZONES; j++) {
6049 				if (zone->lowmem_reserve[j] > max)
6050 					max = zone->lowmem_reserve[j];
6051 			}
6052 
6053 			/* we treat the high watermark as reserved pages. */
6054 			max += high_wmark_pages(zone);
6055 
6056 			if (max > zone->managed_pages)
6057 				max = zone->managed_pages;
6058 			reserve_pages += max;
6059 			/*
6060 			 * Lowmem reserves are not available to
6061 			 * GFP_HIGHUSER page cache allocations and
6062 			 * kswapd tries to balance zones to their high
6063 			 * watermark.  As a result, neither should be
6064 			 * regarded as dirtyable memory, to prevent a
6065 			 * situation where reclaim has to clean pages
6066 			 * in order to balance the zones.
6067 			 */
6068 			zone->dirty_balance_reserve = max;
6069 		}
6070 	}
6071 	dirty_balance_reserve = reserve_pages;
6072 	totalreserve_pages = reserve_pages;
6073 }
6074 
6075 /*
6076  * setup_per_zone_lowmem_reserve - called whenever
6077  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
6078  *	has a correct pages reserved value, so an adequate number of
6079  *	pages are left in the zone after a successful __alloc_pages().
6080  */
6081 static void setup_per_zone_lowmem_reserve(void)
6082 {
6083 	struct pglist_data *pgdat;
6084 	enum zone_type j, idx;
6085 
6086 	for_each_online_pgdat(pgdat) {
6087 		for (j = 0; j < MAX_NR_ZONES; j++) {
6088 			struct zone *zone = pgdat->node_zones + j;
6089 			unsigned long managed_pages = zone->managed_pages;
6090 
6091 			zone->lowmem_reserve[j] = 0;
6092 
6093 			idx = j;
6094 			while (idx) {
6095 				struct zone *lower_zone;
6096 
6097 				idx--;
6098 
6099 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6100 					sysctl_lowmem_reserve_ratio[idx] = 1;
6101 
6102 				lower_zone = pgdat->node_zones + idx;
6103 				lower_zone->lowmem_reserve[j] = managed_pages /
6104 					sysctl_lowmem_reserve_ratio[idx];
6105 				managed_pages += lower_zone->managed_pages;
6106 			}
6107 		}
6108 	}
6109 
6110 	/* update totalreserve_pages */
6111 	calculate_totalreserve_pages();
6112 }
6113 
6114 static void __setup_per_zone_wmarks(void)
6115 {
6116 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6117 	unsigned long lowmem_pages = 0;
6118 	struct zone *zone;
6119 	unsigned long flags;
6120 
6121 	/* Calculate total number of !ZONE_HIGHMEM pages */
6122 	for_each_zone(zone) {
6123 		if (!is_highmem(zone))
6124 			lowmem_pages += zone->managed_pages;
6125 	}
6126 
6127 	for_each_zone(zone) {
6128 		u64 tmp;
6129 
6130 		spin_lock_irqsave(&zone->lock, flags);
6131 		tmp = (u64)pages_min * zone->managed_pages;
6132 		do_div(tmp, lowmem_pages);
6133 		if (is_highmem(zone)) {
6134 			/*
6135 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6136 			 * need highmem pages, so cap pages_min to a small
6137 			 * value here.
6138 			 *
6139 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6140 			 * deltas control asynch page reclaim, and so should
6141 			 * not be capped for highmem.
6142 			 */
6143 			unsigned long min_pages;
6144 
6145 			min_pages = zone->managed_pages / 1024;
6146 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6147 			zone->watermark[WMARK_MIN] = min_pages;
6148 		} else {
6149 			/*
6150 			 * If it's a lowmem zone, reserve a number of pages
6151 			 * proportionate to the zone's size.
6152 			 */
6153 			zone->watermark[WMARK_MIN] = tmp;
6154 		}
6155 
6156 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
6157 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
6158 
6159 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
6160 			high_wmark_pages(zone) - low_wmark_pages(zone) -
6161 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6162 
6163 		setup_zone_migrate_reserve(zone);
6164 		spin_unlock_irqrestore(&zone->lock, flags);
6165 	}
6166 
6167 	/* update totalreserve_pages */
6168 	calculate_totalreserve_pages();
6169 }
6170 
6171 /**
6172  * setup_per_zone_wmarks - called when min_free_kbytes changes
6173  * or when memory is hot-{added|removed}
6174  *
6175  * Ensures that the watermark[min,low,high] values for each zone are set
6176  * correctly with respect to min_free_kbytes.
6177  */
6178 void setup_per_zone_wmarks(void)
6179 {
6180 	mutex_lock(&zonelists_mutex);
6181 	__setup_per_zone_wmarks();
6182 	mutex_unlock(&zonelists_mutex);
6183 }
6184 
6185 /*
6186  * The inactive anon list should be small enough that the VM never has to
6187  * do too much work, but large enough that each inactive page has a chance
6188  * to be referenced again before it is swapped out.
6189  *
6190  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6191  * INACTIVE_ANON pages on this zone's LRU, maintained by the
6192  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6193  * the anonymous pages are kept on the inactive list.
6194  *
6195  * total     target    max
6196  * memory    ratio     inactive anon
6197  * -------------------------------------
6198  *   10MB       1         5MB
6199  *  100MB       1        50MB
6200  *    1GB       3       250MB
6201  *   10GB      10       0.9GB
6202  *  100GB      31         3GB
6203  *    1TB     101        10GB
6204  *   10TB     320        32GB
6205  */
6206 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6207 {
6208 	unsigned int gb, ratio;
6209 
6210 	/* Zone size in gigabytes */
6211 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6212 	if (gb)
6213 		ratio = int_sqrt(10 * gb);
6214 	else
6215 		ratio = 1;
6216 
6217 	zone->inactive_ratio = ratio;
6218 }
6219 
6220 static void __meminit setup_per_zone_inactive_ratio(void)
6221 {
6222 	struct zone *zone;
6223 
6224 	for_each_zone(zone)
6225 		calculate_zone_inactive_ratio(zone);
6226 }
6227 
6228 /*
6229  * Initialise min_free_kbytes.
6230  *
6231  * For small machines we want it small (128k min).  For large machines
6232  * we want it large (64MB max).  But it is not linear, because network
6233  * bandwidth does not increase linearly with machine size.  We use
6234  *
6235  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6236  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6237  *
6238  * which yields
6239  *
6240  * 16MB:	512k
6241  * 32MB:	724k
6242  * 64MB:	1024k
6243  * 128MB:	1448k
6244  * 256MB:	2048k
6245  * 512MB:	2896k
6246  * 1024MB:	4096k
6247  * 2048MB:	5792k
6248  * 4096MB:	8192k
6249  * 8192MB:	11584k
6250  * 16384MB:	16384k
6251  */
6252 int __meminit init_per_zone_wmark_min(void)
6253 {
6254 	unsigned long lowmem_kbytes;
6255 	int new_min_free_kbytes;
6256 
6257 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6258 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6259 
6260 	if (new_min_free_kbytes > user_min_free_kbytes) {
6261 		min_free_kbytes = new_min_free_kbytes;
6262 		if (min_free_kbytes < 128)
6263 			min_free_kbytes = 128;
6264 		if (min_free_kbytes > 65536)
6265 			min_free_kbytes = 65536;
6266 	} else {
6267 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6268 				new_min_free_kbytes, user_min_free_kbytes);
6269 	}
6270 	setup_per_zone_wmarks();
6271 	refresh_zone_stat_thresholds();
6272 	setup_per_zone_lowmem_reserve();
6273 	setup_per_zone_inactive_ratio();
6274 	return 0;
6275 }
6276 module_init(init_per_zone_wmark_min)
6277 
6278 /*
6279  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6280  *	that we can call two helper functions whenever min_free_kbytes
6281  *	changes.
6282  */
6283 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6284 	void __user *buffer, size_t *length, loff_t *ppos)
6285 {
6286 	int rc;
6287 
6288 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6289 	if (rc)
6290 		return rc;
6291 
6292 	if (write) {
6293 		user_min_free_kbytes = min_free_kbytes;
6294 		setup_per_zone_wmarks();
6295 	}
6296 	return 0;
6297 }
6298 
6299 #ifdef CONFIG_NUMA
6300 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6301 	void __user *buffer, size_t *length, loff_t *ppos)
6302 {
6303 	struct zone *zone;
6304 	int rc;
6305 
6306 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6307 	if (rc)
6308 		return rc;
6309 
6310 	for_each_zone(zone)
6311 		zone->min_unmapped_pages = (zone->managed_pages *
6312 				sysctl_min_unmapped_ratio) / 100;
6313 	return 0;
6314 }
6315 
6316 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6317 	void __user *buffer, size_t *length, loff_t *ppos)
6318 {
6319 	struct zone *zone;
6320 	int rc;
6321 
6322 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6323 	if (rc)
6324 		return rc;
6325 
6326 	for_each_zone(zone)
6327 		zone->min_slab_pages = (zone->managed_pages *
6328 				sysctl_min_slab_ratio) / 100;
6329 	return 0;
6330 }
6331 #endif
6332 
6333 /*
6334  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6335  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6336  *	whenever sysctl_lowmem_reserve_ratio changes.
6337  *
6338  * The reserve ratio obviously has absolutely no relation with the
6339  * minimum watermarks. The lowmem reserve ratio can only make sense
6340  * if in function of the boot time zone sizes.
6341  */
6342 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6343 	void __user *buffer, size_t *length, loff_t *ppos)
6344 {
6345 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6346 	setup_per_zone_lowmem_reserve();
6347 	return 0;
6348 }
6349 
6350 /*
6351  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6352  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
6353  * pagelist can have before it gets flushed back to buddy allocator.
6354  */
6355 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6356 	void __user *buffer, size_t *length, loff_t *ppos)
6357 {
6358 	struct zone *zone;
6359 	int old_percpu_pagelist_fraction;
6360 	int ret;
6361 
6362 	mutex_lock(&pcp_batch_high_lock);
6363 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6364 
6365 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6366 	if (!write || ret < 0)
6367 		goto out;
6368 
6369 	/* Sanity checking to avoid pcp imbalance */
6370 	if (percpu_pagelist_fraction &&
6371 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6372 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6373 		ret = -EINVAL;
6374 		goto out;
6375 	}
6376 
6377 	/* No change? */
6378 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6379 		goto out;
6380 
6381 	for_each_populated_zone(zone) {
6382 		unsigned int cpu;
6383 
6384 		for_each_possible_cpu(cpu)
6385 			pageset_set_high_and_batch(zone,
6386 					per_cpu_ptr(zone->pageset, cpu));
6387 	}
6388 out:
6389 	mutex_unlock(&pcp_batch_high_lock);
6390 	return ret;
6391 }
6392 
6393 #ifdef CONFIG_NUMA
6394 int hashdist = HASHDIST_DEFAULT;
6395 
6396 static int __init set_hashdist(char *str)
6397 {
6398 	if (!str)
6399 		return 0;
6400 	hashdist = simple_strtoul(str, &str, 0);
6401 	return 1;
6402 }
6403 __setup("hashdist=", set_hashdist);
6404 #endif
6405 
6406 /*
6407  * allocate a large system hash table from bootmem
6408  * - it is assumed that the hash table must contain an exact power-of-2
6409  *   quantity of entries
6410  * - limit is the number of hash buckets, not the total allocation size
6411  */
6412 void *__init alloc_large_system_hash(const char *tablename,
6413 				     unsigned long bucketsize,
6414 				     unsigned long numentries,
6415 				     int scale,
6416 				     int flags,
6417 				     unsigned int *_hash_shift,
6418 				     unsigned int *_hash_mask,
6419 				     unsigned long low_limit,
6420 				     unsigned long high_limit)
6421 {
6422 	unsigned long long max = high_limit;
6423 	unsigned long log2qty, size;
6424 	void *table = NULL;
6425 
6426 	/* allow the kernel cmdline to have a say */
6427 	if (!numentries) {
6428 		/* round applicable memory size up to nearest megabyte */
6429 		numentries = nr_kernel_pages;
6430 
6431 		/* It isn't necessary when PAGE_SIZE >= 1MB */
6432 		if (PAGE_SHIFT < 20)
6433 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6434 
6435 		/* limit to 1 bucket per 2^scale bytes of low memory */
6436 		if (scale > PAGE_SHIFT)
6437 			numentries >>= (scale - PAGE_SHIFT);
6438 		else
6439 			numentries <<= (PAGE_SHIFT - scale);
6440 
6441 		/* Make sure we've got at least a 0-order allocation.. */
6442 		if (unlikely(flags & HASH_SMALL)) {
6443 			/* Makes no sense without HASH_EARLY */
6444 			WARN_ON(!(flags & HASH_EARLY));
6445 			if (!(numentries >> *_hash_shift)) {
6446 				numentries = 1UL << *_hash_shift;
6447 				BUG_ON(!numentries);
6448 			}
6449 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6450 			numentries = PAGE_SIZE / bucketsize;
6451 	}
6452 	numentries = roundup_pow_of_two(numentries);
6453 
6454 	/* limit allocation size to 1/16 total memory by default */
6455 	if (max == 0) {
6456 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6457 		do_div(max, bucketsize);
6458 	}
6459 	max = min(max, 0x80000000ULL);
6460 
6461 	if (numentries < low_limit)
6462 		numentries = low_limit;
6463 	if (numentries > max)
6464 		numentries = max;
6465 
6466 	log2qty = ilog2(numentries);
6467 
6468 	do {
6469 		size = bucketsize << log2qty;
6470 		if (flags & HASH_EARLY)
6471 			table = memblock_virt_alloc_nopanic(size, 0);
6472 		else if (hashdist)
6473 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6474 		else {
6475 			/*
6476 			 * If bucketsize is not a power-of-two, we may free
6477 			 * some pages at the end of hash table which
6478 			 * alloc_pages_exact() automatically does
6479 			 */
6480 			if (get_order(size) < MAX_ORDER) {
6481 				table = alloc_pages_exact(size, GFP_ATOMIC);
6482 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6483 			}
6484 		}
6485 	} while (!table && size > PAGE_SIZE && --log2qty);
6486 
6487 	if (!table)
6488 		panic("Failed to allocate %s hash table\n", tablename);
6489 
6490 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6491 	       tablename,
6492 	       (1UL << log2qty),
6493 	       ilog2(size) - PAGE_SHIFT,
6494 	       size);
6495 
6496 	if (_hash_shift)
6497 		*_hash_shift = log2qty;
6498 	if (_hash_mask)
6499 		*_hash_mask = (1 << log2qty) - 1;
6500 
6501 	return table;
6502 }
6503 
6504 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6505 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6506 							unsigned long pfn)
6507 {
6508 #ifdef CONFIG_SPARSEMEM
6509 	return __pfn_to_section(pfn)->pageblock_flags;
6510 #else
6511 	return zone->pageblock_flags;
6512 #endif /* CONFIG_SPARSEMEM */
6513 }
6514 
6515 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6516 {
6517 #ifdef CONFIG_SPARSEMEM
6518 	pfn &= (PAGES_PER_SECTION-1);
6519 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6520 #else
6521 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6522 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6523 #endif /* CONFIG_SPARSEMEM */
6524 }
6525 
6526 /**
6527  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6528  * @page: The page within the block of interest
6529  * @pfn: The target page frame number
6530  * @end_bitidx: The last bit of interest to retrieve
6531  * @mask: mask of bits that the caller is interested in
6532  *
6533  * Return: pageblock_bits flags
6534  */
6535 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6536 					unsigned long end_bitidx,
6537 					unsigned long mask)
6538 {
6539 	struct zone *zone;
6540 	unsigned long *bitmap;
6541 	unsigned long bitidx, word_bitidx;
6542 	unsigned long word;
6543 
6544 	zone = page_zone(page);
6545 	bitmap = get_pageblock_bitmap(zone, pfn);
6546 	bitidx = pfn_to_bitidx(zone, pfn);
6547 	word_bitidx = bitidx / BITS_PER_LONG;
6548 	bitidx &= (BITS_PER_LONG-1);
6549 
6550 	word = bitmap[word_bitidx];
6551 	bitidx += end_bitidx;
6552 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6553 }
6554 
6555 /**
6556  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6557  * @page: The page within the block of interest
6558  * @flags: The flags to set
6559  * @pfn: The target page frame number
6560  * @end_bitidx: The last bit of interest
6561  * @mask: mask of bits that the caller is interested in
6562  */
6563 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6564 					unsigned long pfn,
6565 					unsigned long end_bitidx,
6566 					unsigned long mask)
6567 {
6568 	struct zone *zone;
6569 	unsigned long *bitmap;
6570 	unsigned long bitidx, word_bitidx;
6571 	unsigned long old_word, word;
6572 
6573 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6574 
6575 	zone = page_zone(page);
6576 	bitmap = get_pageblock_bitmap(zone, pfn);
6577 	bitidx = pfn_to_bitidx(zone, pfn);
6578 	word_bitidx = bitidx / BITS_PER_LONG;
6579 	bitidx &= (BITS_PER_LONG-1);
6580 
6581 	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6582 
6583 	bitidx += end_bitidx;
6584 	mask <<= (BITS_PER_LONG - bitidx - 1);
6585 	flags <<= (BITS_PER_LONG - bitidx - 1);
6586 
6587 	word = READ_ONCE(bitmap[word_bitidx]);
6588 	for (;;) {
6589 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6590 		if (word == old_word)
6591 			break;
6592 		word = old_word;
6593 	}
6594 }
6595 
6596 /*
6597  * This function checks whether pageblock includes unmovable pages or not.
6598  * If @count is not zero, it is okay to include less @count unmovable pages
6599  *
6600  * PageLRU check without isolation or lru_lock could race so that
6601  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6602  * expect this function should be exact.
6603  */
6604 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6605 			 bool skip_hwpoisoned_pages)
6606 {
6607 	unsigned long pfn, iter, found;
6608 	int mt;
6609 
6610 	/*
6611 	 * For avoiding noise data, lru_add_drain_all() should be called
6612 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6613 	 */
6614 	if (zone_idx(zone) == ZONE_MOVABLE)
6615 		return false;
6616 	mt = get_pageblock_migratetype(page);
6617 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6618 		return false;
6619 
6620 	pfn = page_to_pfn(page);
6621 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6622 		unsigned long check = pfn + iter;
6623 
6624 		if (!pfn_valid_within(check))
6625 			continue;
6626 
6627 		page = pfn_to_page(check);
6628 
6629 		/*
6630 		 * Hugepages are not in LRU lists, but they're movable.
6631 		 * We need not scan over tail pages bacause we don't
6632 		 * handle each tail page individually in migration.
6633 		 */
6634 		if (PageHuge(page)) {
6635 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6636 			continue;
6637 		}
6638 
6639 		/*
6640 		 * We can't use page_count without pin a page
6641 		 * because another CPU can free compound page.
6642 		 * This check already skips compound tails of THP
6643 		 * because their page->_count is zero at all time.
6644 		 */
6645 		if (!atomic_read(&page->_count)) {
6646 			if (PageBuddy(page))
6647 				iter += (1 << page_order(page)) - 1;
6648 			continue;
6649 		}
6650 
6651 		/*
6652 		 * The HWPoisoned page may be not in buddy system, and
6653 		 * page_count() is not 0.
6654 		 */
6655 		if (skip_hwpoisoned_pages && PageHWPoison(page))
6656 			continue;
6657 
6658 		if (!PageLRU(page))
6659 			found++;
6660 		/*
6661 		 * If there are RECLAIMABLE pages, we need to check
6662 		 * it.  But now, memory offline itself doesn't call
6663 		 * shrink_node_slabs() and it still to be fixed.
6664 		 */
6665 		/*
6666 		 * If the page is not RAM, page_count()should be 0.
6667 		 * we don't need more check. This is an _used_ not-movable page.
6668 		 *
6669 		 * The problematic thing here is PG_reserved pages. PG_reserved
6670 		 * is set to both of a memory hole page and a _used_ kernel
6671 		 * page at boot.
6672 		 */
6673 		if (found > count)
6674 			return true;
6675 	}
6676 	return false;
6677 }
6678 
6679 bool is_pageblock_removable_nolock(struct page *page)
6680 {
6681 	struct zone *zone;
6682 	unsigned long pfn;
6683 
6684 	/*
6685 	 * We have to be careful here because we are iterating over memory
6686 	 * sections which are not zone aware so we might end up outside of
6687 	 * the zone but still within the section.
6688 	 * We have to take care about the node as well. If the node is offline
6689 	 * its NODE_DATA will be NULL - see page_zone.
6690 	 */
6691 	if (!node_online(page_to_nid(page)))
6692 		return false;
6693 
6694 	zone = page_zone(page);
6695 	pfn = page_to_pfn(page);
6696 	if (!zone_spans_pfn(zone, pfn))
6697 		return false;
6698 
6699 	return !has_unmovable_pages(zone, page, 0, true);
6700 }
6701 
6702 #ifdef CONFIG_CMA
6703 
6704 static unsigned long pfn_max_align_down(unsigned long pfn)
6705 {
6706 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6707 			     pageblock_nr_pages) - 1);
6708 }
6709 
6710 static unsigned long pfn_max_align_up(unsigned long pfn)
6711 {
6712 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6713 				pageblock_nr_pages));
6714 }
6715 
6716 /* [start, end) must belong to a single zone. */
6717 static int __alloc_contig_migrate_range(struct compact_control *cc,
6718 					unsigned long start, unsigned long end)
6719 {
6720 	/* This function is based on compact_zone() from compaction.c. */
6721 	unsigned long nr_reclaimed;
6722 	unsigned long pfn = start;
6723 	unsigned int tries = 0;
6724 	int ret = 0;
6725 
6726 	migrate_prep();
6727 
6728 	while (pfn < end || !list_empty(&cc->migratepages)) {
6729 		if (fatal_signal_pending(current)) {
6730 			ret = -EINTR;
6731 			break;
6732 		}
6733 
6734 		if (list_empty(&cc->migratepages)) {
6735 			cc->nr_migratepages = 0;
6736 			pfn = isolate_migratepages_range(cc, pfn, end);
6737 			if (!pfn) {
6738 				ret = -EINTR;
6739 				break;
6740 			}
6741 			tries = 0;
6742 		} else if (++tries == 5) {
6743 			ret = ret < 0 ? ret : -EBUSY;
6744 			break;
6745 		}
6746 
6747 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6748 							&cc->migratepages);
6749 		cc->nr_migratepages -= nr_reclaimed;
6750 
6751 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6752 				    NULL, 0, cc->mode, MR_CMA);
6753 	}
6754 	if (ret < 0) {
6755 		putback_movable_pages(&cc->migratepages);
6756 		return ret;
6757 	}
6758 	return 0;
6759 }
6760 
6761 /**
6762  * alloc_contig_range() -- tries to allocate given range of pages
6763  * @start:	start PFN to allocate
6764  * @end:	one-past-the-last PFN to allocate
6765  * @migratetype:	migratetype of the underlaying pageblocks (either
6766  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6767  *			in range must have the same migratetype and it must
6768  *			be either of the two.
6769  *
6770  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6771  * aligned, however it's the caller's responsibility to guarantee that
6772  * we are the only thread that changes migrate type of pageblocks the
6773  * pages fall in.
6774  *
6775  * The PFN range must belong to a single zone.
6776  *
6777  * Returns zero on success or negative error code.  On success all
6778  * pages which PFN is in [start, end) are allocated for the caller and
6779  * need to be freed with free_contig_range().
6780  */
6781 int alloc_contig_range(unsigned long start, unsigned long end,
6782 		       unsigned migratetype)
6783 {
6784 	unsigned long outer_start, outer_end;
6785 	int ret = 0, order;
6786 
6787 	struct compact_control cc = {
6788 		.nr_migratepages = 0,
6789 		.order = -1,
6790 		.zone = page_zone(pfn_to_page(start)),
6791 		.mode = MIGRATE_SYNC,
6792 		.ignore_skip_hint = true,
6793 	};
6794 	INIT_LIST_HEAD(&cc.migratepages);
6795 
6796 	/*
6797 	 * What we do here is we mark all pageblocks in range as
6798 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6799 	 * have different sizes, and due to the way page allocator
6800 	 * work, we align the range to biggest of the two pages so
6801 	 * that page allocator won't try to merge buddies from
6802 	 * different pageblocks and change MIGRATE_ISOLATE to some
6803 	 * other migration type.
6804 	 *
6805 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6806 	 * migrate the pages from an unaligned range (ie. pages that
6807 	 * we are interested in).  This will put all the pages in
6808 	 * range back to page allocator as MIGRATE_ISOLATE.
6809 	 *
6810 	 * When this is done, we take the pages in range from page
6811 	 * allocator removing them from the buddy system.  This way
6812 	 * page allocator will never consider using them.
6813 	 *
6814 	 * This lets us mark the pageblocks back as
6815 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6816 	 * aligned range but not in the unaligned, original range are
6817 	 * put back to page allocator so that buddy can use them.
6818 	 */
6819 
6820 	ret = start_isolate_page_range(pfn_max_align_down(start),
6821 				       pfn_max_align_up(end), migratetype,
6822 				       false);
6823 	if (ret)
6824 		return ret;
6825 
6826 	ret = __alloc_contig_migrate_range(&cc, start, end);
6827 	if (ret)
6828 		goto done;
6829 
6830 	/*
6831 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6832 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6833 	 * more, all pages in [start, end) are free in page allocator.
6834 	 * What we are going to do is to allocate all pages from
6835 	 * [start, end) (that is remove them from page allocator).
6836 	 *
6837 	 * The only problem is that pages at the beginning and at the
6838 	 * end of interesting range may be not aligned with pages that
6839 	 * page allocator holds, ie. they can be part of higher order
6840 	 * pages.  Because of this, we reserve the bigger range and
6841 	 * once this is done free the pages we are not interested in.
6842 	 *
6843 	 * We don't have to hold zone->lock here because the pages are
6844 	 * isolated thus they won't get removed from buddy.
6845 	 */
6846 
6847 	lru_add_drain_all();
6848 	drain_all_pages(cc.zone);
6849 
6850 	order = 0;
6851 	outer_start = start;
6852 	while (!PageBuddy(pfn_to_page(outer_start))) {
6853 		if (++order >= MAX_ORDER) {
6854 			ret = -EBUSY;
6855 			goto done;
6856 		}
6857 		outer_start &= ~0UL << order;
6858 	}
6859 
6860 	/* Make sure the range is really isolated. */
6861 	if (test_pages_isolated(outer_start, end, false)) {
6862 		pr_info("%s: [%lx, %lx) PFNs busy\n",
6863 			__func__, outer_start, end);
6864 		ret = -EBUSY;
6865 		goto done;
6866 	}
6867 
6868 	/* Grab isolated pages from freelists. */
6869 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6870 	if (!outer_end) {
6871 		ret = -EBUSY;
6872 		goto done;
6873 	}
6874 
6875 	/* Free head and tail (if any) */
6876 	if (start != outer_start)
6877 		free_contig_range(outer_start, start - outer_start);
6878 	if (end != outer_end)
6879 		free_contig_range(end, outer_end - end);
6880 
6881 done:
6882 	undo_isolate_page_range(pfn_max_align_down(start),
6883 				pfn_max_align_up(end), migratetype);
6884 	return ret;
6885 }
6886 
6887 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6888 {
6889 	unsigned int count = 0;
6890 
6891 	for (; nr_pages--; pfn++) {
6892 		struct page *page = pfn_to_page(pfn);
6893 
6894 		count += page_count(page) != 1;
6895 		__free_page(page);
6896 	}
6897 	WARN(count != 0, "%d pages are still in use!\n", count);
6898 }
6899 #endif
6900 
6901 #ifdef CONFIG_MEMORY_HOTPLUG
6902 /*
6903  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6904  * page high values need to be recalulated.
6905  */
6906 void __meminit zone_pcp_update(struct zone *zone)
6907 {
6908 	unsigned cpu;
6909 	mutex_lock(&pcp_batch_high_lock);
6910 	for_each_possible_cpu(cpu)
6911 		pageset_set_high_and_batch(zone,
6912 				per_cpu_ptr(zone->pageset, cpu));
6913 	mutex_unlock(&pcp_batch_high_lock);
6914 }
6915 #endif
6916 
6917 void zone_pcp_reset(struct zone *zone)
6918 {
6919 	unsigned long flags;
6920 	int cpu;
6921 	struct per_cpu_pageset *pset;
6922 
6923 	/* avoid races with drain_pages()  */
6924 	local_irq_save(flags);
6925 	if (zone->pageset != &boot_pageset) {
6926 		for_each_online_cpu(cpu) {
6927 			pset = per_cpu_ptr(zone->pageset, cpu);
6928 			drain_zonestat(zone, pset);
6929 		}
6930 		free_percpu(zone->pageset);
6931 		zone->pageset = &boot_pageset;
6932 	}
6933 	local_irq_restore(flags);
6934 }
6935 
6936 #ifdef CONFIG_MEMORY_HOTREMOVE
6937 /*
6938  * All pages in the range must be isolated before calling this.
6939  */
6940 void
6941 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6942 {
6943 	struct page *page;
6944 	struct zone *zone;
6945 	unsigned int order, i;
6946 	unsigned long pfn;
6947 	unsigned long flags;
6948 	/* find the first valid pfn */
6949 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6950 		if (pfn_valid(pfn))
6951 			break;
6952 	if (pfn == end_pfn)
6953 		return;
6954 	zone = page_zone(pfn_to_page(pfn));
6955 	spin_lock_irqsave(&zone->lock, flags);
6956 	pfn = start_pfn;
6957 	while (pfn < end_pfn) {
6958 		if (!pfn_valid(pfn)) {
6959 			pfn++;
6960 			continue;
6961 		}
6962 		page = pfn_to_page(pfn);
6963 		/*
6964 		 * The HWPoisoned page may be not in buddy system, and
6965 		 * page_count() is not 0.
6966 		 */
6967 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6968 			pfn++;
6969 			SetPageReserved(page);
6970 			continue;
6971 		}
6972 
6973 		BUG_ON(page_count(page));
6974 		BUG_ON(!PageBuddy(page));
6975 		order = page_order(page);
6976 #ifdef CONFIG_DEBUG_VM
6977 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6978 		       pfn, 1 << order, end_pfn);
6979 #endif
6980 		list_del(&page->lru);
6981 		rmv_page_order(page);
6982 		zone->free_area[order].nr_free--;
6983 		for (i = 0; i < (1 << order); i++)
6984 			SetPageReserved((page+i));
6985 		pfn += (1 << order);
6986 	}
6987 	spin_unlock_irqrestore(&zone->lock, flags);
6988 }
6989 #endif
6990 
6991 #ifdef CONFIG_MEMORY_FAILURE
6992 bool is_free_buddy_page(struct page *page)
6993 {
6994 	struct zone *zone = page_zone(page);
6995 	unsigned long pfn = page_to_pfn(page);
6996 	unsigned long flags;
6997 	unsigned int order;
6998 
6999 	spin_lock_irqsave(&zone->lock, flags);
7000 	for (order = 0; order < MAX_ORDER; order++) {
7001 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7002 
7003 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7004 			break;
7005 	}
7006 	spin_unlock_irqrestore(&zone->lock, flags);
7007 
7008 	return order < MAX_ORDER;
7009 }
7010 #endif
7011