1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <linux/ftrace_event.h> 57 #include <linux/memcontrol.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/page-debug-flags.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 65 #include <asm/sections.h> 66 #include <asm/tlbflush.h> 67 #include <asm/div64.h> 68 #include "internal.h" 69 70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 71 static DEFINE_MUTEX(pcp_batch_high_lock); 72 73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 74 DEFINE_PER_CPU(int, numa_node); 75 EXPORT_PER_CPU_SYMBOL(numa_node); 76 #endif 77 78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 79 /* 80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 83 * defined in <linux/topology.h>. 84 */ 85 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 86 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 87 #endif 88 89 /* 90 * Array of node states. 91 */ 92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 93 [N_POSSIBLE] = NODE_MASK_ALL, 94 [N_ONLINE] = { { [0] = 1UL } }, 95 #ifndef CONFIG_NUMA 96 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 97 #ifdef CONFIG_HIGHMEM 98 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 99 #endif 100 #ifdef CONFIG_MOVABLE_NODE 101 [N_MEMORY] = { { [0] = 1UL } }, 102 #endif 103 [N_CPU] = { { [0] = 1UL } }, 104 #endif /* NUMA */ 105 }; 106 EXPORT_SYMBOL(node_states); 107 108 /* Protect totalram_pages and zone->managed_pages */ 109 static DEFINE_SPINLOCK(managed_page_count_lock); 110 111 unsigned long totalram_pages __read_mostly; 112 unsigned long totalreserve_pages __read_mostly; 113 /* 114 * When calculating the number of globally allowed dirty pages, there 115 * is a certain number of per-zone reserves that should not be 116 * considered dirtyable memory. This is the sum of those reserves 117 * over all existing zones that contribute dirtyable memory. 118 */ 119 unsigned long dirty_balance_reserve __read_mostly; 120 121 int percpu_pagelist_fraction; 122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 123 124 #ifdef CONFIG_PM_SLEEP 125 /* 126 * The following functions are used by the suspend/hibernate code to temporarily 127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 128 * while devices are suspended. To avoid races with the suspend/hibernate code, 129 * they should always be called with pm_mutex held (gfp_allowed_mask also should 130 * only be modified with pm_mutex held, unless the suspend/hibernate code is 131 * guaranteed not to run in parallel with that modification). 132 */ 133 134 static gfp_t saved_gfp_mask; 135 136 void pm_restore_gfp_mask(void) 137 { 138 WARN_ON(!mutex_is_locked(&pm_mutex)); 139 if (saved_gfp_mask) { 140 gfp_allowed_mask = saved_gfp_mask; 141 saved_gfp_mask = 0; 142 } 143 } 144 145 void pm_restrict_gfp_mask(void) 146 { 147 WARN_ON(!mutex_is_locked(&pm_mutex)); 148 WARN_ON(saved_gfp_mask); 149 saved_gfp_mask = gfp_allowed_mask; 150 gfp_allowed_mask &= ~GFP_IOFS; 151 } 152 153 bool pm_suspended_storage(void) 154 { 155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 156 return false; 157 return true; 158 } 159 #endif /* CONFIG_PM_SLEEP */ 160 161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 162 int pageblock_order __read_mostly; 163 #endif 164 165 static void __free_pages_ok(struct page *page, unsigned int order); 166 167 /* 168 * results with 256, 32 in the lowmem_reserve sysctl: 169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 170 * 1G machine -> (16M dma, 784M normal, 224M high) 171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 174 * 175 * TBD: should special case ZONE_DMA32 machines here - in those we normally 176 * don't need any ZONE_NORMAL reservation 177 */ 178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 179 #ifdef CONFIG_ZONE_DMA 180 256, 181 #endif 182 #ifdef CONFIG_ZONE_DMA32 183 256, 184 #endif 185 #ifdef CONFIG_HIGHMEM 186 32, 187 #endif 188 32, 189 }; 190 191 EXPORT_SYMBOL(totalram_pages); 192 193 static char * const zone_names[MAX_NR_ZONES] = { 194 #ifdef CONFIG_ZONE_DMA 195 "DMA", 196 #endif 197 #ifdef CONFIG_ZONE_DMA32 198 "DMA32", 199 #endif 200 "Normal", 201 #ifdef CONFIG_HIGHMEM 202 "HighMem", 203 #endif 204 "Movable", 205 }; 206 207 int min_free_kbytes = 1024; 208 int user_min_free_kbytes; 209 210 static unsigned long __meminitdata nr_kernel_pages; 211 static unsigned long __meminitdata nr_all_pages; 212 static unsigned long __meminitdata dma_reserve; 213 214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 217 static unsigned long __initdata required_kernelcore; 218 static unsigned long __initdata required_movablecore; 219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 220 221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 222 int movable_zone; 223 EXPORT_SYMBOL(movable_zone); 224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 225 226 #if MAX_NUMNODES > 1 227 int nr_node_ids __read_mostly = MAX_NUMNODES; 228 int nr_online_nodes __read_mostly = 1; 229 EXPORT_SYMBOL(nr_node_ids); 230 EXPORT_SYMBOL(nr_online_nodes); 231 #endif 232 233 int page_group_by_mobility_disabled __read_mostly; 234 235 void set_pageblock_migratetype(struct page *page, int migratetype) 236 { 237 if (unlikely(page_group_by_mobility_disabled && 238 migratetype < MIGRATE_PCPTYPES)) 239 migratetype = MIGRATE_UNMOVABLE; 240 241 set_pageblock_flags_group(page, (unsigned long)migratetype, 242 PB_migrate, PB_migrate_end); 243 } 244 245 bool oom_killer_disabled __read_mostly; 246 247 #ifdef CONFIG_DEBUG_VM 248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 249 { 250 int ret = 0; 251 unsigned seq; 252 unsigned long pfn = page_to_pfn(page); 253 unsigned long sp, start_pfn; 254 255 do { 256 seq = zone_span_seqbegin(zone); 257 start_pfn = zone->zone_start_pfn; 258 sp = zone->spanned_pages; 259 if (!zone_spans_pfn(zone, pfn)) 260 ret = 1; 261 } while (zone_span_seqretry(zone, seq)); 262 263 if (ret) 264 pr_err("page %lu outside zone [ %lu - %lu ]\n", 265 pfn, start_pfn, start_pfn + sp); 266 267 return ret; 268 } 269 270 static int page_is_consistent(struct zone *zone, struct page *page) 271 { 272 if (!pfn_valid_within(page_to_pfn(page))) 273 return 0; 274 if (zone != page_zone(page)) 275 return 0; 276 277 return 1; 278 } 279 /* 280 * Temporary debugging check for pages not lying within a given zone. 281 */ 282 static int bad_range(struct zone *zone, struct page *page) 283 { 284 if (page_outside_zone_boundaries(zone, page)) 285 return 1; 286 if (!page_is_consistent(zone, page)) 287 return 1; 288 289 return 0; 290 } 291 #else 292 static inline int bad_range(struct zone *zone, struct page *page) 293 { 294 return 0; 295 } 296 #endif 297 298 static void bad_page(struct page *page) 299 { 300 static unsigned long resume; 301 static unsigned long nr_shown; 302 static unsigned long nr_unshown; 303 304 /* Don't complain about poisoned pages */ 305 if (PageHWPoison(page)) { 306 page_mapcount_reset(page); /* remove PageBuddy */ 307 return; 308 } 309 310 /* 311 * Allow a burst of 60 reports, then keep quiet for that minute; 312 * or allow a steady drip of one report per second. 313 */ 314 if (nr_shown == 60) { 315 if (time_before(jiffies, resume)) { 316 nr_unshown++; 317 goto out; 318 } 319 if (nr_unshown) { 320 printk(KERN_ALERT 321 "BUG: Bad page state: %lu messages suppressed\n", 322 nr_unshown); 323 nr_unshown = 0; 324 } 325 nr_shown = 0; 326 } 327 if (nr_shown++ == 0) 328 resume = jiffies + 60 * HZ; 329 330 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 331 current->comm, page_to_pfn(page)); 332 dump_page(page); 333 334 print_modules(); 335 dump_stack(); 336 out: 337 /* Leave bad fields for debug, except PageBuddy could make trouble */ 338 page_mapcount_reset(page); /* remove PageBuddy */ 339 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 340 } 341 342 /* 343 * Higher-order pages are called "compound pages". They are structured thusly: 344 * 345 * The first PAGE_SIZE page is called the "head page". 346 * 347 * The remaining PAGE_SIZE pages are called "tail pages". 348 * 349 * All pages have PG_compound set. All tail pages have their ->first_page 350 * pointing at the head page. 351 * 352 * The first tail page's ->lru.next holds the address of the compound page's 353 * put_page() function. Its ->lru.prev holds the order of allocation. 354 * This usage means that zero-order pages may not be compound. 355 */ 356 357 static void free_compound_page(struct page *page) 358 { 359 __free_pages_ok(page, compound_order(page)); 360 } 361 362 void prep_compound_page(struct page *page, unsigned long order) 363 { 364 int i; 365 int nr_pages = 1 << order; 366 367 set_compound_page_dtor(page, free_compound_page); 368 set_compound_order(page, order); 369 __SetPageHead(page); 370 for (i = 1; i < nr_pages; i++) { 371 struct page *p = page + i; 372 __SetPageTail(p); 373 set_page_count(p, 0); 374 p->first_page = page; 375 } 376 } 377 378 /* update __split_huge_page_refcount if you change this function */ 379 static int destroy_compound_page(struct page *page, unsigned long order) 380 { 381 int i; 382 int nr_pages = 1 << order; 383 int bad = 0; 384 385 if (unlikely(compound_order(page) != order)) { 386 bad_page(page); 387 bad++; 388 } 389 390 __ClearPageHead(page); 391 392 for (i = 1; i < nr_pages; i++) { 393 struct page *p = page + i; 394 395 if (unlikely(!PageTail(p) || (p->first_page != page))) { 396 bad_page(page); 397 bad++; 398 } 399 __ClearPageTail(p); 400 } 401 402 return bad; 403 } 404 405 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 406 { 407 int i; 408 409 /* 410 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 411 * and __GFP_HIGHMEM from hard or soft interrupt context. 412 */ 413 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 414 for (i = 0; i < (1 << order); i++) 415 clear_highpage(page + i); 416 } 417 418 #ifdef CONFIG_DEBUG_PAGEALLOC 419 unsigned int _debug_guardpage_minorder; 420 421 static int __init debug_guardpage_minorder_setup(char *buf) 422 { 423 unsigned long res; 424 425 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 426 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 427 return 0; 428 } 429 _debug_guardpage_minorder = res; 430 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 431 return 0; 432 } 433 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 434 435 static inline void set_page_guard_flag(struct page *page) 436 { 437 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 438 } 439 440 static inline void clear_page_guard_flag(struct page *page) 441 { 442 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 443 } 444 #else 445 static inline void set_page_guard_flag(struct page *page) { } 446 static inline void clear_page_guard_flag(struct page *page) { } 447 #endif 448 449 static inline void set_page_order(struct page *page, int order) 450 { 451 set_page_private(page, order); 452 __SetPageBuddy(page); 453 } 454 455 static inline void rmv_page_order(struct page *page) 456 { 457 __ClearPageBuddy(page); 458 set_page_private(page, 0); 459 } 460 461 /* 462 * Locate the struct page for both the matching buddy in our 463 * pair (buddy1) and the combined O(n+1) page they form (page). 464 * 465 * 1) Any buddy B1 will have an order O twin B2 which satisfies 466 * the following equation: 467 * B2 = B1 ^ (1 << O) 468 * For example, if the starting buddy (buddy2) is #8 its order 469 * 1 buddy is #10: 470 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 471 * 472 * 2) Any buddy B will have an order O+1 parent P which 473 * satisfies the following equation: 474 * P = B & ~(1 << O) 475 * 476 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 477 */ 478 static inline unsigned long 479 __find_buddy_index(unsigned long page_idx, unsigned int order) 480 { 481 return page_idx ^ (1 << order); 482 } 483 484 /* 485 * This function checks whether a page is free && is the buddy 486 * we can do coalesce a page and its buddy if 487 * (a) the buddy is not in a hole && 488 * (b) the buddy is in the buddy system && 489 * (c) a page and its buddy have the same order && 490 * (d) a page and its buddy are in the same zone. 491 * 492 * For recording whether a page is in the buddy system, we set ->_mapcount 493 * PAGE_BUDDY_MAPCOUNT_VALUE. 494 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 495 * serialized by zone->lock. 496 * 497 * For recording page's order, we use page_private(page). 498 */ 499 static inline int page_is_buddy(struct page *page, struct page *buddy, 500 int order) 501 { 502 if (!pfn_valid_within(page_to_pfn(buddy))) 503 return 0; 504 505 if (page_zone_id(page) != page_zone_id(buddy)) 506 return 0; 507 508 if (page_is_guard(buddy) && page_order(buddy) == order) { 509 VM_BUG_ON(page_count(buddy) != 0); 510 return 1; 511 } 512 513 if (PageBuddy(buddy) && page_order(buddy) == order) { 514 VM_BUG_ON(page_count(buddy) != 0); 515 return 1; 516 } 517 return 0; 518 } 519 520 /* 521 * Freeing function for a buddy system allocator. 522 * 523 * The concept of a buddy system is to maintain direct-mapped table 524 * (containing bit values) for memory blocks of various "orders". 525 * The bottom level table contains the map for the smallest allocatable 526 * units of memory (here, pages), and each level above it describes 527 * pairs of units from the levels below, hence, "buddies". 528 * At a high level, all that happens here is marking the table entry 529 * at the bottom level available, and propagating the changes upward 530 * as necessary, plus some accounting needed to play nicely with other 531 * parts of the VM system. 532 * At each level, we keep a list of pages, which are heads of continuous 533 * free pages of length of (1 << order) and marked with _mapcount 534 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 535 * field. 536 * So when we are allocating or freeing one, we can derive the state of the 537 * other. That is, if we allocate a small block, and both were 538 * free, the remainder of the region must be split into blocks. 539 * If a block is freed, and its buddy is also free, then this 540 * triggers coalescing into a block of larger size. 541 * 542 * -- nyc 543 */ 544 545 static inline void __free_one_page(struct page *page, 546 struct zone *zone, unsigned int order, 547 int migratetype) 548 { 549 unsigned long page_idx; 550 unsigned long combined_idx; 551 unsigned long uninitialized_var(buddy_idx); 552 struct page *buddy; 553 554 VM_BUG_ON(!zone_is_initialized(zone)); 555 556 if (unlikely(PageCompound(page))) 557 if (unlikely(destroy_compound_page(page, order))) 558 return; 559 560 VM_BUG_ON(migratetype == -1); 561 562 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 563 564 VM_BUG_ON(page_idx & ((1 << order) - 1)); 565 VM_BUG_ON(bad_range(zone, page)); 566 567 while (order < MAX_ORDER-1) { 568 buddy_idx = __find_buddy_index(page_idx, order); 569 buddy = page + (buddy_idx - page_idx); 570 if (!page_is_buddy(page, buddy, order)) 571 break; 572 /* 573 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 574 * merge with it and move up one order. 575 */ 576 if (page_is_guard(buddy)) { 577 clear_page_guard_flag(buddy); 578 set_page_private(page, 0); 579 __mod_zone_freepage_state(zone, 1 << order, 580 migratetype); 581 } else { 582 list_del(&buddy->lru); 583 zone->free_area[order].nr_free--; 584 rmv_page_order(buddy); 585 } 586 combined_idx = buddy_idx & page_idx; 587 page = page + (combined_idx - page_idx); 588 page_idx = combined_idx; 589 order++; 590 } 591 set_page_order(page, order); 592 593 /* 594 * If this is not the largest possible page, check if the buddy 595 * of the next-highest order is free. If it is, it's possible 596 * that pages are being freed that will coalesce soon. In case, 597 * that is happening, add the free page to the tail of the list 598 * so it's less likely to be used soon and more likely to be merged 599 * as a higher order page 600 */ 601 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 602 struct page *higher_page, *higher_buddy; 603 combined_idx = buddy_idx & page_idx; 604 higher_page = page + (combined_idx - page_idx); 605 buddy_idx = __find_buddy_index(combined_idx, order + 1); 606 higher_buddy = higher_page + (buddy_idx - combined_idx); 607 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 608 list_add_tail(&page->lru, 609 &zone->free_area[order].free_list[migratetype]); 610 goto out; 611 } 612 } 613 614 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 615 out: 616 zone->free_area[order].nr_free++; 617 } 618 619 static inline int free_pages_check(struct page *page) 620 { 621 if (unlikely(page_mapcount(page) | 622 (page->mapping != NULL) | 623 (atomic_read(&page->_count) != 0) | 624 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 625 (mem_cgroup_bad_page_check(page)))) { 626 bad_page(page); 627 return 1; 628 } 629 page_cpupid_reset_last(page); 630 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 631 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 632 return 0; 633 } 634 635 /* 636 * Frees a number of pages from the PCP lists 637 * Assumes all pages on list are in same zone, and of same order. 638 * count is the number of pages to free. 639 * 640 * If the zone was previously in an "all pages pinned" state then look to 641 * see if this freeing clears that state. 642 * 643 * And clear the zone's pages_scanned counter, to hold off the "all pages are 644 * pinned" detection logic. 645 */ 646 static void free_pcppages_bulk(struct zone *zone, int count, 647 struct per_cpu_pages *pcp) 648 { 649 int migratetype = 0; 650 int batch_free = 0; 651 int to_free = count; 652 653 spin_lock(&zone->lock); 654 zone->pages_scanned = 0; 655 656 while (to_free) { 657 struct page *page; 658 struct list_head *list; 659 660 /* 661 * Remove pages from lists in a round-robin fashion. A 662 * batch_free count is maintained that is incremented when an 663 * empty list is encountered. This is so more pages are freed 664 * off fuller lists instead of spinning excessively around empty 665 * lists 666 */ 667 do { 668 batch_free++; 669 if (++migratetype == MIGRATE_PCPTYPES) 670 migratetype = 0; 671 list = &pcp->lists[migratetype]; 672 } while (list_empty(list)); 673 674 /* This is the only non-empty list. Free them all. */ 675 if (batch_free == MIGRATE_PCPTYPES) 676 batch_free = to_free; 677 678 do { 679 int mt; /* migratetype of the to-be-freed page */ 680 681 page = list_entry(list->prev, struct page, lru); 682 /* must delete as __free_one_page list manipulates */ 683 list_del(&page->lru); 684 mt = get_freepage_migratetype(page); 685 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 686 __free_one_page(page, zone, 0, mt); 687 trace_mm_page_pcpu_drain(page, 0, mt); 688 if (likely(!is_migrate_isolate_page(page))) { 689 __mod_zone_page_state(zone, NR_FREE_PAGES, 1); 690 if (is_migrate_cma(mt)) 691 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); 692 } 693 } while (--to_free && --batch_free && !list_empty(list)); 694 } 695 spin_unlock(&zone->lock); 696 } 697 698 static void free_one_page(struct zone *zone, struct page *page, int order, 699 int migratetype) 700 { 701 spin_lock(&zone->lock); 702 zone->pages_scanned = 0; 703 704 __free_one_page(page, zone, order, migratetype); 705 if (unlikely(!is_migrate_isolate(migratetype))) 706 __mod_zone_freepage_state(zone, 1 << order, migratetype); 707 spin_unlock(&zone->lock); 708 } 709 710 static bool free_pages_prepare(struct page *page, unsigned int order) 711 { 712 int i; 713 int bad = 0; 714 715 trace_mm_page_free(page, order); 716 kmemcheck_free_shadow(page, order); 717 718 if (PageAnon(page)) 719 page->mapping = NULL; 720 for (i = 0; i < (1 << order); i++) 721 bad += free_pages_check(page + i); 722 if (bad) 723 return false; 724 725 if (!PageHighMem(page)) { 726 debug_check_no_locks_freed(page_address(page), 727 PAGE_SIZE << order); 728 debug_check_no_obj_freed(page_address(page), 729 PAGE_SIZE << order); 730 } 731 arch_free_page(page, order); 732 kernel_map_pages(page, 1 << order, 0); 733 734 return true; 735 } 736 737 static void __free_pages_ok(struct page *page, unsigned int order) 738 { 739 unsigned long flags; 740 int migratetype; 741 742 if (!free_pages_prepare(page, order)) 743 return; 744 745 local_irq_save(flags); 746 __count_vm_events(PGFREE, 1 << order); 747 migratetype = get_pageblock_migratetype(page); 748 set_freepage_migratetype(page, migratetype); 749 free_one_page(page_zone(page), page, order, migratetype); 750 local_irq_restore(flags); 751 } 752 753 void __init __free_pages_bootmem(struct page *page, unsigned int order) 754 { 755 unsigned int nr_pages = 1 << order; 756 struct page *p = page; 757 unsigned int loop; 758 759 prefetchw(p); 760 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 761 prefetchw(p + 1); 762 __ClearPageReserved(p); 763 set_page_count(p, 0); 764 } 765 __ClearPageReserved(p); 766 set_page_count(p, 0); 767 768 page_zone(page)->managed_pages += nr_pages; 769 set_page_refcounted(page); 770 __free_pages(page, order); 771 } 772 773 #ifdef CONFIG_CMA 774 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 775 void __init init_cma_reserved_pageblock(struct page *page) 776 { 777 unsigned i = pageblock_nr_pages; 778 struct page *p = page; 779 780 do { 781 __ClearPageReserved(p); 782 set_page_count(p, 0); 783 } while (++p, --i); 784 785 set_page_refcounted(page); 786 set_pageblock_migratetype(page, MIGRATE_CMA); 787 __free_pages(page, pageblock_order); 788 adjust_managed_page_count(page, pageblock_nr_pages); 789 } 790 #endif 791 792 /* 793 * The order of subdivision here is critical for the IO subsystem. 794 * Please do not alter this order without good reasons and regression 795 * testing. Specifically, as large blocks of memory are subdivided, 796 * the order in which smaller blocks are delivered depends on the order 797 * they're subdivided in this function. This is the primary factor 798 * influencing the order in which pages are delivered to the IO 799 * subsystem according to empirical testing, and this is also justified 800 * by considering the behavior of a buddy system containing a single 801 * large block of memory acted on by a series of small allocations. 802 * This behavior is a critical factor in sglist merging's success. 803 * 804 * -- nyc 805 */ 806 static inline void expand(struct zone *zone, struct page *page, 807 int low, int high, struct free_area *area, 808 int migratetype) 809 { 810 unsigned long size = 1 << high; 811 812 while (high > low) { 813 area--; 814 high--; 815 size >>= 1; 816 VM_BUG_ON(bad_range(zone, &page[size])); 817 818 #ifdef CONFIG_DEBUG_PAGEALLOC 819 if (high < debug_guardpage_minorder()) { 820 /* 821 * Mark as guard pages (or page), that will allow to 822 * merge back to allocator when buddy will be freed. 823 * Corresponding page table entries will not be touched, 824 * pages will stay not present in virtual address space 825 */ 826 INIT_LIST_HEAD(&page[size].lru); 827 set_page_guard_flag(&page[size]); 828 set_page_private(&page[size], high); 829 /* Guard pages are not available for any usage */ 830 __mod_zone_freepage_state(zone, -(1 << high), 831 migratetype); 832 continue; 833 } 834 #endif 835 list_add(&page[size].lru, &area->free_list[migratetype]); 836 area->nr_free++; 837 set_page_order(&page[size], high); 838 } 839 } 840 841 /* 842 * This page is about to be returned from the page allocator 843 */ 844 static inline int check_new_page(struct page *page) 845 { 846 if (unlikely(page_mapcount(page) | 847 (page->mapping != NULL) | 848 (atomic_read(&page->_count) != 0) | 849 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 850 (mem_cgroup_bad_page_check(page)))) { 851 bad_page(page); 852 return 1; 853 } 854 return 0; 855 } 856 857 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 858 { 859 int i; 860 861 for (i = 0; i < (1 << order); i++) { 862 struct page *p = page + i; 863 if (unlikely(check_new_page(p))) 864 return 1; 865 } 866 867 set_page_private(page, 0); 868 set_page_refcounted(page); 869 870 arch_alloc_page(page, order); 871 kernel_map_pages(page, 1 << order, 1); 872 873 if (gfp_flags & __GFP_ZERO) 874 prep_zero_page(page, order, gfp_flags); 875 876 if (order && (gfp_flags & __GFP_COMP)) 877 prep_compound_page(page, order); 878 879 return 0; 880 } 881 882 /* 883 * Go through the free lists for the given migratetype and remove 884 * the smallest available page from the freelists 885 */ 886 static inline 887 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 888 int migratetype) 889 { 890 unsigned int current_order; 891 struct free_area *area; 892 struct page *page; 893 894 /* Find a page of the appropriate size in the preferred list */ 895 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 896 area = &(zone->free_area[current_order]); 897 if (list_empty(&area->free_list[migratetype])) 898 continue; 899 900 page = list_entry(area->free_list[migratetype].next, 901 struct page, lru); 902 list_del(&page->lru); 903 rmv_page_order(page); 904 area->nr_free--; 905 expand(zone, page, order, current_order, area, migratetype); 906 return page; 907 } 908 909 return NULL; 910 } 911 912 913 /* 914 * This array describes the order lists are fallen back to when 915 * the free lists for the desirable migrate type are depleted 916 */ 917 static int fallbacks[MIGRATE_TYPES][4] = { 918 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 919 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 920 #ifdef CONFIG_CMA 921 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 922 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 923 #else 924 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 925 #endif 926 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 927 #ifdef CONFIG_MEMORY_ISOLATION 928 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 929 #endif 930 }; 931 932 /* 933 * Move the free pages in a range to the free lists of the requested type. 934 * Note that start_page and end_pages are not aligned on a pageblock 935 * boundary. If alignment is required, use move_freepages_block() 936 */ 937 int move_freepages(struct zone *zone, 938 struct page *start_page, struct page *end_page, 939 int migratetype) 940 { 941 struct page *page; 942 unsigned long order; 943 int pages_moved = 0; 944 945 #ifndef CONFIG_HOLES_IN_ZONE 946 /* 947 * page_zone is not safe to call in this context when 948 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 949 * anyway as we check zone boundaries in move_freepages_block(). 950 * Remove at a later date when no bug reports exist related to 951 * grouping pages by mobility 952 */ 953 BUG_ON(page_zone(start_page) != page_zone(end_page)); 954 #endif 955 956 for (page = start_page; page <= end_page;) { 957 /* Make sure we are not inadvertently changing nodes */ 958 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 959 960 if (!pfn_valid_within(page_to_pfn(page))) { 961 page++; 962 continue; 963 } 964 965 if (!PageBuddy(page)) { 966 page++; 967 continue; 968 } 969 970 order = page_order(page); 971 list_move(&page->lru, 972 &zone->free_area[order].free_list[migratetype]); 973 set_freepage_migratetype(page, migratetype); 974 page += 1 << order; 975 pages_moved += 1 << order; 976 } 977 978 return pages_moved; 979 } 980 981 int move_freepages_block(struct zone *zone, struct page *page, 982 int migratetype) 983 { 984 unsigned long start_pfn, end_pfn; 985 struct page *start_page, *end_page; 986 987 start_pfn = page_to_pfn(page); 988 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 989 start_page = pfn_to_page(start_pfn); 990 end_page = start_page + pageblock_nr_pages - 1; 991 end_pfn = start_pfn + pageblock_nr_pages - 1; 992 993 /* Do not cross zone boundaries */ 994 if (!zone_spans_pfn(zone, start_pfn)) 995 start_page = page; 996 if (!zone_spans_pfn(zone, end_pfn)) 997 return 0; 998 999 return move_freepages(zone, start_page, end_page, migratetype); 1000 } 1001 1002 static void change_pageblock_range(struct page *pageblock_page, 1003 int start_order, int migratetype) 1004 { 1005 int nr_pageblocks = 1 << (start_order - pageblock_order); 1006 1007 while (nr_pageblocks--) { 1008 set_pageblock_migratetype(pageblock_page, migratetype); 1009 pageblock_page += pageblock_nr_pages; 1010 } 1011 } 1012 1013 /* 1014 * If breaking a large block of pages, move all free pages to the preferred 1015 * allocation list. If falling back for a reclaimable kernel allocation, be 1016 * more aggressive about taking ownership of free pages. 1017 * 1018 * On the other hand, never change migration type of MIGRATE_CMA pageblocks 1019 * nor move CMA pages to different free lists. We don't want unmovable pages 1020 * to be allocated from MIGRATE_CMA areas. 1021 * 1022 * Returns the new migratetype of the pageblock (or the same old migratetype 1023 * if it was unchanged). 1024 */ 1025 static int try_to_steal_freepages(struct zone *zone, struct page *page, 1026 int start_type, int fallback_type) 1027 { 1028 int current_order = page_order(page); 1029 1030 /* 1031 * When borrowing from MIGRATE_CMA, we need to release the excess 1032 * buddy pages to CMA itself. 1033 */ 1034 if (is_migrate_cma(fallback_type)) 1035 return fallback_type; 1036 1037 /* Take ownership for orders >= pageblock_order */ 1038 if (current_order >= pageblock_order) { 1039 change_pageblock_range(page, current_order, start_type); 1040 return start_type; 1041 } 1042 1043 if (current_order >= pageblock_order / 2 || 1044 start_type == MIGRATE_RECLAIMABLE || 1045 page_group_by_mobility_disabled) { 1046 int pages; 1047 1048 pages = move_freepages_block(zone, page, start_type); 1049 1050 /* Claim the whole block if over half of it is free */ 1051 if (pages >= (1 << (pageblock_order-1)) || 1052 page_group_by_mobility_disabled) { 1053 1054 set_pageblock_migratetype(page, start_type); 1055 return start_type; 1056 } 1057 1058 } 1059 1060 return fallback_type; 1061 } 1062 1063 /* Remove an element from the buddy allocator from the fallback list */ 1064 static inline struct page * 1065 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 1066 { 1067 struct free_area *area; 1068 int current_order; 1069 struct page *page; 1070 int migratetype, new_type, i; 1071 1072 /* Find the largest possible block of pages in the other list */ 1073 for (current_order = MAX_ORDER-1; current_order >= order; 1074 --current_order) { 1075 for (i = 0;; i++) { 1076 migratetype = fallbacks[start_migratetype][i]; 1077 1078 /* MIGRATE_RESERVE handled later if necessary */ 1079 if (migratetype == MIGRATE_RESERVE) 1080 break; 1081 1082 area = &(zone->free_area[current_order]); 1083 if (list_empty(&area->free_list[migratetype])) 1084 continue; 1085 1086 page = list_entry(area->free_list[migratetype].next, 1087 struct page, lru); 1088 area->nr_free--; 1089 1090 new_type = try_to_steal_freepages(zone, page, 1091 start_migratetype, 1092 migratetype); 1093 1094 /* Remove the page from the freelists */ 1095 list_del(&page->lru); 1096 rmv_page_order(page); 1097 1098 expand(zone, page, order, current_order, area, 1099 new_type); 1100 1101 trace_mm_page_alloc_extfrag(page, order, current_order, 1102 start_migratetype, migratetype, new_type); 1103 1104 return page; 1105 } 1106 } 1107 1108 return NULL; 1109 } 1110 1111 /* 1112 * Do the hard work of removing an element from the buddy allocator. 1113 * Call me with the zone->lock already held. 1114 */ 1115 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1116 int migratetype) 1117 { 1118 struct page *page; 1119 1120 retry_reserve: 1121 page = __rmqueue_smallest(zone, order, migratetype); 1122 1123 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1124 page = __rmqueue_fallback(zone, order, migratetype); 1125 1126 /* 1127 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1128 * is used because __rmqueue_smallest is an inline function 1129 * and we want just one call site 1130 */ 1131 if (!page) { 1132 migratetype = MIGRATE_RESERVE; 1133 goto retry_reserve; 1134 } 1135 } 1136 1137 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1138 return page; 1139 } 1140 1141 /* 1142 * Obtain a specified number of elements from the buddy allocator, all under 1143 * a single hold of the lock, for efficiency. Add them to the supplied list. 1144 * Returns the number of new pages which were placed at *list. 1145 */ 1146 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1147 unsigned long count, struct list_head *list, 1148 int migratetype, int cold) 1149 { 1150 int mt = migratetype, i; 1151 1152 spin_lock(&zone->lock); 1153 for (i = 0; i < count; ++i) { 1154 struct page *page = __rmqueue(zone, order, migratetype); 1155 if (unlikely(page == NULL)) 1156 break; 1157 1158 /* 1159 * Split buddy pages returned by expand() are received here 1160 * in physical page order. The page is added to the callers and 1161 * list and the list head then moves forward. From the callers 1162 * perspective, the linked list is ordered by page number in 1163 * some conditions. This is useful for IO devices that can 1164 * merge IO requests if the physical pages are ordered 1165 * properly. 1166 */ 1167 if (likely(cold == 0)) 1168 list_add(&page->lru, list); 1169 else 1170 list_add_tail(&page->lru, list); 1171 if (IS_ENABLED(CONFIG_CMA)) { 1172 mt = get_pageblock_migratetype(page); 1173 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt)) 1174 mt = migratetype; 1175 } 1176 set_freepage_migratetype(page, mt); 1177 list = &page->lru; 1178 if (is_migrate_cma(mt)) 1179 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1180 -(1 << order)); 1181 } 1182 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1183 spin_unlock(&zone->lock); 1184 return i; 1185 } 1186 1187 #ifdef CONFIG_NUMA 1188 /* 1189 * Called from the vmstat counter updater to drain pagesets of this 1190 * currently executing processor on remote nodes after they have 1191 * expired. 1192 * 1193 * Note that this function must be called with the thread pinned to 1194 * a single processor. 1195 */ 1196 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1197 { 1198 unsigned long flags; 1199 int to_drain; 1200 unsigned long batch; 1201 1202 local_irq_save(flags); 1203 batch = ACCESS_ONCE(pcp->batch); 1204 if (pcp->count >= batch) 1205 to_drain = batch; 1206 else 1207 to_drain = pcp->count; 1208 if (to_drain > 0) { 1209 free_pcppages_bulk(zone, to_drain, pcp); 1210 pcp->count -= to_drain; 1211 } 1212 local_irq_restore(flags); 1213 } 1214 #endif 1215 1216 /* 1217 * Drain pages of the indicated processor. 1218 * 1219 * The processor must either be the current processor and the 1220 * thread pinned to the current processor or a processor that 1221 * is not online. 1222 */ 1223 static void drain_pages(unsigned int cpu) 1224 { 1225 unsigned long flags; 1226 struct zone *zone; 1227 1228 for_each_populated_zone(zone) { 1229 struct per_cpu_pageset *pset; 1230 struct per_cpu_pages *pcp; 1231 1232 local_irq_save(flags); 1233 pset = per_cpu_ptr(zone->pageset, cpu); 1234 1235 pcp = &pset->pcp; 1236 if (pcp->count) { 1237 free_pcppages_bulk(zone, pcp->count, pcp); 1238 pcp->count = 0; 1239 } 1240 local_irq_restore(flags); 1241 } 1242 } 1243 1244 /* 1245 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1246 */ 1247 void drain_local_pages(void *arg) 1248 { 1249 drain_pages(smp_processor_id()); 1250 } 1251 1252 /* 1253 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1254 * 1255 * Note that this code is protected against sending an IPI to an offline 1256 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1257 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1258 * nothing keeps CPUs from showing up after we populated the cpumask and 1259 * before the call to on_each_cpu_mask(). 1260 */ 1261 void drain_all_pages(void) 1262 { 1263 int cpu; 1264 struct per_cpu_pageset *pcp; 1265 struct zone *zone; 1266 1267 /* 1268 * Allocate in the BSS so we wont require allocation in 1269 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1270 */ 1271 static cpumask_t cpus_with_pcps; 1272 1273 /* 1274 * We don't care about racing with CPU hotplug event 1275 * as offline notification will cause the notified 1276 * cpu to drain that CPU pcps and on_each_cpu_mask 1277 * disables preemption as part of its processing 1278 */ 1279 for_each_online_cpu(cpu) { 1280 bool has_pcps = false; 1281 for_each_populated_zone(zone) { 1282 pcp = per_cpu_ptr(zone->pageset, cpu); 1283 if (pcp->pcp.count) { 1284 has_pcps = true; 1285 break; 1286 } 1287 } 1288 if (has_pcps) 1289 cpumask_set_cpu(cpu, &cpus_with_pcps); 1290 else 1291 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1292 } 1293 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); 1294 } 1295 1296 #ifdef CONFIG_HIBERNATION 1297 1298 void mark_free_pages(struct zone *zone) 1299 { 1300 unsigned long pfn, max_zone_pfn; 1301 unsigned long flags; 1302 int order, t; 1303 struct list_head *curr; 1304 1305 if (zone_is_empty(zone)) 1306 return; 1307 1308 spin_lock_irqsave(&zone->lock, flags); 1309 1310 max_zone_pfn = zone_end_pfn(zone); 1311 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1312 if (pfn_valid(pfn)) { 1313 struct page *page = pfn_to_page(pfn); 1314 1315 if (!swsusp_page_is_forbidden(page)) 1316 swsusp_unset_page_free(page); 1317 } 1318 1319 for_each_migratetype_order(order, t) { 1320 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1321 unsigned long i; 1322 1323 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1324 for (i = 0; i < (1UL << order); i++) 1325 swsusp_set_page_free(pfn_to_page(pfn + i)); 1326 } 1327 } 1328 spin_unlock_irqrestore(&zone->lock, flags); 1329 } 1330 #endif /* CONFIG_PM */ 1331 1332 /* 1333 * Free a 0-order page 1334 * cold == 1 ? free a cold page : free a hot page 1335 */ 1336 void free_hot_cold_page(struct page *page, int cold) 1337 { 1338 struct zone *zone = page_zone(page); 1339 struct per_cpu_pages *pcp; 1340 unsigned long flags; 1341 int migratetype; 1342 1343 if (!free_pages_prepare(page, 0)) 1344 return; 1345 1346 migratetype = get_pageblock_migratetype(page); 1347 set_freepage_migratetype(page, migratetype); 1348 local_irq_save(flags); 1349 __count_vm_event(PGFREE); 1350 1351 /* 1352 * We only track unmovable, reclaimable and movable on pcp lists. 1353 * Free ISOLATE pages back to the allocator because they are being 1354 * offlined but treat RESERVE as movable pages so we can get those 1355 * areas back if necessary. Otherwise, we may have to free 1356 * excessively into the page allocator 1357 */ 1358 if (migratetype >= MIGRATE_PCPTYPES) { 1359 if (unlikely(is_migrate_isolate(migratetype))) { 1360 free_one_page(zone, page, 0, migratetype); 1361 goto out; 1362 } 1363 migratetype = MIGRATE_MOVABLE; 1364 } 1365 1366 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1367 if (cold) 1368 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1369 else 1370 list_add(&page->lru, &pcp->lists[migratetype]); 1371 pcp->count++; 1372 if (pcp->count >= pcp->high) { 1373 unsigned long batch = ACCESS_ONCE(pcp->batch); 1374 free_pcppages_bulk(zone, batch, pcp); 1375 pcp->count -= batch; 1376 } 1377 1378 out: 1379 local_irq_restore(flags); 1380 } 1381 1382 /* 1383 * Free a list of 0-order pages 1384 */ 1385 void free_hot_cold_page_list(struct list_head *list, int cold) 1386 { 1387 struct page *page, *next; 1388 1389 list_for_each_entry_safe(page, next, list, lru) { 1390 trace_mm_page_free_batched(page, cold); 1391 free_hot_cold_page(page, cold); 1392 } 1393 } 1394 1395 /* 1396 * split_page takes a non-compound higher-order page, and splits it into 1397 * n (1<<order) sub-pages: page[0..n] 1398 * Each sub-page must be freed individually. 1399 * 1400 * Note: this is probably too low level an operation for use in drivers. 1401 * Please consult with lkml before using this in your driver. 1402 */ 1403 void split_page(struct page *page, unsigned int order) 1404 { 1405 int i; 1406 1407 VM_BUG_ON(PageCompound(page)); 1408 VM_BUG_ON(!page_count(page)); 1409 1410 #ifdef CONFIG_KMEMCHECK 1411 /* 1412 * Split shadow pages too, because free(page[0]) would 1413 * otherwise free the whole shadow. 1414 */ 1415 if (kmemcheck_page_is_tracked(page)) 1416 split_page(virt_to_page(page[0].shadow), order); 1417 #endif 1418 1419 for (i = 1; i < (1 << order); i++) 1420 set_page_refcounted(page + i); 1421 } 1422 EXPORT_SYMBOL_GPL(split_page); 1423 1424 static int __isolate_free_page(struct page *page, unsigned int order) 1425 { 1426 unsigned long watermark; 1427 struct zone *zone; 1428 int mt; 1429 1430 BUG_ON(!PageBuddy(page)); 1431 1432 zone = page_zone(page); 1433 mt = get_pageblock_migratetype(page); 1434 1435 if (!is_migrate_isolate(mt)) { 1436 /* Obey watermarks as if the page was being allocated */ 1437 watermark = low_wmark_pages(zone) + (1 << order); 1438 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1439 return 0; 1440 1441 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1442 } 1443 1444 /* Remove page from free list */ 1445 list_del(&page->lru); 1446 zone->free_area[order].nr_free--; 1447 rmv_page_order(page); 1448 1449 /* Set the pageblock if the isolated page is at least a pageblock */ 1450 if (order >= pageblock_order - 1) { 1451 struct page *endpage = page + (1 << order) - 1; 1452 for (; page < endpage; page += pageblock_nr_pages) { 1453 int mt = get_pageblock_migratetype(page); 1454 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 1455 set_pageblock_migratetype(page, 1456 MIGRATE_MOVABLE); 1457 } 1458 } 1459 1460 return 1UL << order; 1461 } 1462 1463 /* 1464 * Similar to split_page except the page is already free. As this is only 1465 * being used for migration, the migratetype of the block also changes. 1466 * As this is called with interrupts disabled, the caller is responsible 1467 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1468 * are enabled. 1469 * 1470 * Note: this is probably too low level an operation for use in drivers. 1471 * Please consult with lkml before using this in your driver. 1472 */ 1473 int split_free_page(struct page *page) 1474 { 1475 unsigned int order; 1476 int nr_pages; 1477 1478 order = page_order(page); 1479 1480 nr_pages = __isolate_free_page(page, order); 1481 if (!nr_pages) 1482 return 0; 1483 1484 /* Split into individual pages */ 1485 set_page_refcounted(page); 1486 split_page(page, order); 1487 return nr_pages; 1488 } 1489 1490 /* 1491 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1492 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1493 * or two. 1494 */ 1495 static inline 1496 struct page *buffered_rmqueue(struct zone *preferred_zone, 1497 struct zone *zone, int order, gfp_t gfp_flags, 1498 int migratetype) 1499 { 1500 unsigned long flags; 1501 struct page *page; 1502 int cold = !!(gfp_flags & __GFP_COLD); 1503 1504 again: 1505 if (likely(order == 0)) { 1506 struct per_cpu_pages *pcp; 1507 struct list_head *list; 1508 1509 local_irq_save(flags); 1510 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1511 list = &pcp->lists[migratetype]; 1512 if (list_empty(list)) { 1513 pcp->count += rmqueue_bulk(zone, 0, 1514 pcp->batch, list, 1515 migratetype, cold); 1516 if (unlikely(list_empty(list))) 1517 goto failed; 1518 } 1519 1520 if (cold) 1521 page = list_entry(list->prev, struct page, lru); 1522 else 1523 page = list_entry(list->next, struct page, lru); 1524 1525 list_del(&page->lru); 1526 pcp->count--; 1527 } else { 1528 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1529 /* 1530 * __GFP_NOFAIL is not to be used in new code. 1531 * 1532 * All __GFP_NOFAIL callers should be fixed so that they 1533 * properly detect and handle allocation failures. 1534 * 1535 * We most definitely don't want callers attempting to 1536 * allocate greater than order-1 page units with 1537 * __GFP_NOFAIL. 1538 */ 1539 WARN_ON_ONCE(order > 1); 1540 } 1541 spin_lock_irqsave(&zone->lock, flags); 1542 page = __rmqueue(zone, order, migratetype); 1543 spin_unlock(&zone->lock); 1544 if (!page) 1545 goto failed; 1546 __mod_zone_freepage_state(zone, -(1 << order), 1547 get_pageblock_migratetype(page)); 1548 } 1549 1550 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); 1551 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1552 zone_statistics(preferred_zone, zone, gfp_flags); 1553 local_irq_restore(flags); 1554 1555 VM_BUG_ON(bad_range(zone, page)); 1556 if (prep_new_page(page, order, gfp_flags)) 1557 goto again; 1558 return page; 1559 1560 failed: 1561 local_irq_restore(flags); 1562 return NULL; 1563 } 1564 1565 #ifdef CONFIG_FAIL_PAGE_ALLOC 1566 1567 static struct { 1568 struct fault_attr attr; 1569 1570 u32 ignore_gfp_highmem; 1571 u32 ignore_gfp_wait; 1572 u32 min_order; 1573 } fail_page_alloc = { 1574 .attr = FAULT_ATTR_INITIALIZER, 1575 .ignore_gfp_wait = 1, 1576 .ignore_gfp_highmem = 1, 1577 .min_order = 1, 1578 }; 1579 1580 static int __init setup_fail_page_alloc(char *str) 1581 { 1582 return setup_fault_attr(&fail_page_alloc.attr, str); 1583 } 1584 __setup("fail_page_alloc=", setup_fail_page_alloc); 1585 1586 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1587 { 1588 if (order < fail_page_alloc.min_order) 1589 return false; 1590 if (gfp_mask & __GFP_NOFAIL) 1591 return false; 1592 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1593 return false; 1594 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1595 return false; 1596 1597 return should_fail(&fail_page_alloc.attr, 1 << order); 1598 } 1599 1600 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1601 1602 static int __init fail_page_alloc_debugfs(void) 1603 { 1604 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1605 struct dentry *dir; 1606 1607 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1608 &fail_page_alloc.attr); 1609 if (IS_ERR(dir)) 1610 return PTR_ERR(dir); 1611 1612 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1613 &fail_page_alloc.ignore_gfp_wait)) 1614 goto fail; 1615 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1616 &fail_page_alloc.ignore_gfp_highmem)) 1617 goto fail; 1618 if (!debugfs_create_u32("min-order", mode, dir, 1619 &fail_page_alloc.min_order)) 1620 goto fail; 1621 1622 return 0; 1623 fail: 1624 debugfs_remove_recursive(dir); 1625 1626 return -ENOMEM; 1627 } 1628 1629 late_initcall(fail_page_alloc_debugfs); 1630 1631 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1632 1633 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1634 1635 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1636 { 1637 return false; 1638 } 1639 1640 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1641 1642 /* 1643 * Return true if free pages are above 'mark'. This takes into account the order 1644 * of the allocation. 1645 */ 1646 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1647 int classzone_idx, int alloc_flags, long free_pages) 1648 { 1649 /* free_pages my go negative - that's OK */ 1650 long min = mark; 1651 long lowmem_reserve = z->lowmem_reserve[classzone_idx]; 1652 int o; 1653 long free_cma = 0; 1654 1655 free_pages -= (1 << order) - 1; 1656 if (alloc_flags & ALLOC_HIGH) 1657 min -= min / 2; 1658 if (alloc_flags & ALLOC_HARDER) 1659 min -= min / 4; 1660 #ifdef CONFIG_CMA 1661 /* If allocation can't use CMA areas don't use free CMA pages */ 1662 if (!(alloc_flags & ALLOC_CMA)) 1663 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES); 1664 #endif 1665 1666 if (free_pages - free_cma <= min + lowmem_reserve) 1667 return false; 1668 for (o = 0; o < order; o++) { 1669 /* At the next order, this order's pages become unavailable */ 1670 free_pages -= z->free_area[o].nr_free << o; 1671 1672 /* Require fewer higher order pages to be free */ 1673 min >>= 1; 1674 1675 if (free_pages <= min) 1676 return false; 1677 } 1678 return true; 1679 } 1680 1681 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1682 int classzone_idx, int alloc_flags) 1683 { 1684 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1685 zone_page_state(z, NR_FREE_PAGES)); 1686 } 1687 1688 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1689 int classzone_idx, int alloc_flags) 1690 { 1691 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1692 1693 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1694 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1695 1696 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1697 free_pages); 1698 } 1699 1700 #ifdef CONFIG_NUMA 1701 /* 1702 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1703 * skip over zones that are not allowed by the cpuset, or that have 1704 * been recently (in last second) found to be nearly full. See further 1705 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1706 * that have to skip over a lot of full or unallowed zones. 1707 * 1708 * If the zonelist cache is present in the passed zonelist, then 1709 * returns a pointer to the allowed node mask (either the current 1710 * tasks mems_allowed, or node_states[N_MEMORY].) 1711 * 1712 * If the zonelist cache is not available for this zonelist, does 1713 * nothing and returns NULL. 1714 * 1715 * If the fullzones BITMAP in the zonelist cache is stale (more than 1716 * a second since last zap'd) then we zap it out (clear its bits.) 1717 * 1718 * We hold off even calling zlc_setup, until after we've checked the 1719 * first zone in the zonelist, on the theory that most allocations will 1720 * be satisfied from that first zone, so best to examine that zone as 1721 * quickly as we can. 1722 */ 1723 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1724 { 1725 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1726 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1727 1728 zlc = zonelist->zlcache_ptr; 1729 if (!zlc) 1730 return NULL; 1731 1732 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1733 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1734 zlc->last_full_zap = jiffies; 1735 } 1736 1737 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1738 &cpuset_current_mems_allowed : 1739 &node_states[N_MEMORY]; 1740 return allowednodes; 1741 } 1742 1743 /* 1744 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1745 * if it is worth looking at further for free memory: 1746 * 1) Check that the zone isn't thought to be full (doesn't have its 1747 * bit set in the zonelist_cache fullzones BITMAP). 1748 * 2) Check that the zones node (obtained from the zonelist_cache 1749 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1750 * Return true (non-zero) if zone is worth looking at further, or 1751 * else return false (zero) if it is not. 1752 * 1753 * This check -ignores- the distinction between various watermarks, 1754 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1755 * found to be full for any variation of these watermarks, it will 1756 * be considered full for up to one second by all requests, unless 1757 * we are so low on memory on all allowed nodes that we are forced 1758 * into the second scan of the zonelist. 1759 * 1760 * In the second scan we ignore this zonelist cache and exactly 1761 * apply the watermarks to all zones, even it is slower to do so. 1762 * We are low on memory in the second scan, and should leave no stone 1763 * unturned looking for a free page. 1764 */ 1765 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1766 nodemask_t *allowednodes) 1767 { 1768 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1769 int i; /* index of *z in zonelist zones */ 1770 int n; /* node that zone *z is on */ 1771 1772 zlc = zonelist->zlcache_ptr; 1773 if (!zlc) 1774 return 1; 1775 1776 i = z - zonelist->_zonerefs; 1777 n = zlc->z_to_n[i]; 1778 1779 /* This zone is worth trying if it is allowed but not full */ 1780 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1781 } 1782 1783 /* 1784 * Given 'z' scanning a zonelist, set the corresponding bit in 1785 * zlc->fullzones, so that subsequent attempts to allocate a page 1786 * from that zone don't waste time re-examining it. 1787 */ 1788 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1789 { 1790 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1791 int i; /* index of *z in zonelist zones */ 1792 1793 zlc = zonelist->zlcache_ptr; 1794 if (!zlc) 1795 return; 1796 1797 i = z - zonelist->_zonerefs; 1798 1799 set_bit(i, zlc->fullzones); 1800 } 1801 1802 /* 1803 * clear all zones full, called after direct reclaim makes progress so that 1804 * a zone that was recently full is not skipped over for up to a second 1805 */ 1806 static void zlc_clear_zones_full(struct zonelist *zonelist) 1807 { 1808 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1809 1810 zlc = zonelist->zlcache_ptr; 1811 if (!zlc) 1812 return; 1813 1814 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1815 } 1816 1817 static bool zone_local(struct zone *local_zone, struct zone *zone) 1818 { 1819 return local_zone->node == zone->node; 1820 } 1821 1822 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1823 { 1824 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes); 1825 } 1826 1827 static void __paginginit init_zone_allows_reclaim(int nid) 1828 { 1829 int i; 1830 1831 for_each_online_node(i) 1832 if (node_distance(nid, i) <= RECLAIM_DISTANCE) 1833 node_set(i, NODE_DATA(nid)->reclaim_nodes); 1834 else 1835 zone_reclaim_mode = 1; 1836 } 1837 1838 #else /* CONFIG_NUMA */ 1839 1840 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1841 { 1842 return NULL; 1843 } 1844 1845 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1846 nodemask_t *allowednodes) 1847 { 1848 return 1; 1849 } 1850 1851 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1852 { 1853 } 1854 1855 static void zlc_clear_zones_full(struct zonelist *zonelist) 1856 { 1857 } 1858 1859 static bool zone_local(struct zone *local_zone, struct zone *zone) 1860 { 1861 return true; 1862 } 1863 1864 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1865 { 1866 return true; 1867 } 1868 1869 static inline void init_zone_allows_reclaim(int nid) 1870 { 1871 } 1872 #endif /* CONFIG_NUMA */ 1873 1874 /* 1875 * get_page_from_freelist goes through the zonelist trying to allocate 1876 * a page. 1877 */ 1878 static struct page * 1879 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1880 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1881 struct zone *preferred_zone, int migratetype) 1882 { 1883 struct zoneref *z; 1884 struct page *page = NULL; 1885 int classzone_idx; 1886 struct zone *zone; 1887 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1888 int zlc_active = 0; /* set if using zonelist_cache */ 1889 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1890 1891 classzone_idx = zone_idx(preferred_zone); 1892 zonelist_scan: 1893 /* 1894 * Scan zonelist, looking for a zone with enough free. 1895 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c. 1896 */ 1897 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1898 high_zoneidx, nodemask) { 1899 unsigned long mark; 1900 1901 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1902 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1903 continue; 1904 if ((alloc_flags & ALLOC_CPUSET) && 1905 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1906 continue; 1907 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1908 if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS)) 1909 goto try_this_zone; 1910 /* 1911 * Distribute pages in proportion to the individual 1912 * zone size to ensure fair page aging. The zone a 1913 * page was allocated in should have no effect on the 1914 * time the page has in memory before being reclaimed. 1915 * 1916 * Try to stay in local zones in the fastpath. If 1917 * that fails, the slowpath is entered, which will do 1918 * another pass starting with the local zones, but 1919 * ultimately fall back to remote zones that do not 1920 * partake in the fairness round-robin cycle of this 1921 * zonelist. 1922 */ 1923 if (alloc_flags & ALLOC_WMARK_LOW) { 1924 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0) 1925 continue; 1926 if (!zone_local(preferred_zone, zone)) 1927 continue; 1928 } 1929 /* 1930 * When allocating a page cache page for writing, we 1931 * want to get it from a zone that is within its dirty 1932 * limit, such that no single zone holds more than its 1933 * proportional share of globally allowed dirty pages. 1934 * The dirty limits take into account the zone's 1935 * lowmem reserves and high watermark so that kswapd 1936 * should be able to balance it without having to 1937 * write pages from its LRU list. 1938 * 1939 * This may look like it could increase pressure on 1940 * lower zones by failing allocations in higher zones 1941 * before they are full. But the pages that do spill 1942 * over are limited as the lower zones are protected 1943 * by this very same mechanism. It should not become 1944 * a practical burden to them. 1945 * 1946 * XXX: For now, allow allocations to potentially 1947 * exceed the per-zone dirty limit in the slowpath 1948 * (ALLOC_WMARK_LOW unset) before going into reclaim, 1949 * which is important when on a NUMA setup the allowed 1950 * zones are together not big enough to reach the 1951 * global limit. The proper fix for these situations 1952 * will require awareness of zones in the 1953 * dirty-throttling and the flusher threads. 1954 */ 1955 if ((alloc_flags & ALLOC_WMARK_LOW) && 1956 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) 1957 goto this_zone_full; 1958 1959 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1960 if (!zone_watermark_ok(zone, order, mark, 1961 classzone_idx, alloc_flags)) { 1962 int ret; 1963 1964 if (IS_ENABLED(CONFIG_NUMA) && 1965 !did_zlc_setup && nr_online_nodes > 1) { 1966 /* 1967 * we do zlc_setup if there are multiple nodes 1968 * and before considering the first zone allowed 1969 * by the cpuset. 1970 */ 1971 allowednodes = zlc_setup(zonelist, alloc_flags); 1972 zlc_active = 1; 1973 did_zlc_setup = 1; 1974 } 1975 1976 if (zone_reclaim_mode == 0 || 1977 !zone_allows_reclaim(preferred_zone, zone)) 1978 goto this_zone_full; 1979 1980 /* 1981 * As we may have just activated ZLC, check if the first 1982 * eligible zone has failed zone_reclaim recently. 1983 */ 1984 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1985 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1986 continue; 1987 1988 ret = zone_reclaim(zone, gfp_mask, order); 1989 switch (ret) { 1990 case ZONE_RECLAIM_NOSCAN: 1991 /* did not scan */ 1992 continue; 1993 case ZONE_RECLAIM_FULL: 1994 /* scanned but unreclaimable */ 1995 continue; 1996 default: 1997 /* did we reclaim enough */ 1998 if (zone_watermark_ok(zone, order, mark, 1999 classzone_idx, alloc_flags)) 2000 goto try_this_zone; 2001 2002 /* 2003 * Failed to reclaim enough to meet watermark. 2004 * Only mark the zone full if checking the min 2005 * watermark or if we failed to reclaim just 2006 * 1<<order pages or else the page allocator 2007 * fastpath will prematurely mark zones full 2008 * when the watermark is between the low and 2009 * min watermarks. 2010 */ 2011 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) || 2012 ret == ZONE_RECLAIM_SOME) 2013 goto this_zone_full; 2014 2015 continue; 2016 } 2017 } 2018 2019 try_this_zone: 2020 page = buffered_rmqueue(preferred_zone, zone, order, 2021 gfp_mask, migratetype); 2022 if (page) 2023 break; 2024 this_zone_full: 2025 if (IS_ENABLED(CONFIG_NUMA)) 2026 zlc_mark_zone_full(zonelist, z); 2027 } 2028 2029 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) { 2030 /* Disable zlc cache for second zonelist scan */ 2031 zlc_active = 0; 2032 goto zonelist_scan; 2033 } 2034 2035 if (page) 2036 /* 2037 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was 2038 * necessary to allocate the page. The expectation is 2039 * that the caller is taking steps that will free more 2040 * memory. The caller should avoid the page being used 2041 * for !PFMEMALLOC purposes. 2042 */ 2043 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 2044 2045 return page; 2046 } 2047 2048 /* 2049 * Large machines with many possible nodes should not always dump per-node 2050 * meminfo in irq context. 2051 */ 2052 static inline bool should_suppress_show_mem(void) 2053 { 2054 bool ret = false; 2055 2056 #if NODES_SHIFT > 8 2057 ret = in_interrupt(); 2058 #endif 2059 return ret; 2060 } 2061 2062 static DEFINE_RATELIMIT_STATE(nopage_rs, 2063 DEFAULT_RATELIMIT_INTERVAL, 2064 DEFAULT_RATELIMIT_BURST); 2065 2066 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 2067 { 2068 unsigned int filter = SHOW_MEM_FILTER_NODES; 2069 2070 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2071 debug_guardpage_minorder() > 0) 2072 return; 2073 2074 /* 2075 * Walking all memory to count page types is very expensive and should 2076 * be inhibited in non-blockable contexts. 2077 */ 2078 if (!(gfp_mask & __GFP_WAIT)) 2079 filter |= SHOW_MEM_FILTER_PAGE_COUNT; 2080 2081 /* 2082 * This documents exceptions given to allocations in certain 2083 * contexts that are allowed to allocate outside current's set 2084 * of allowed nodes. 2085 */ 2086 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2087 if (test_thread_flag(TIF_MEMDIE) || 2088 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2089 filter &= ~SHOW_MEM_FILTER_NODES; 2090 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2091 filter &= ~SHOW_MEM_FILTER_NODES; 2092 2093 if (fmt) { 2094 struct va_format vaf; 2095 va_list args; 2096 2097 va_start(args, fmt); 2098 2099 vaf.fmt = fmt; 2100 vaf.va = &args; 2101 2102 pr_warn("%pV", &vaf); 2103 2104 va_end(args); 2105 } 2106 2107 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2108 current->comm, order, gfp_mask); 2109 2110 dump_stack(); 2111 if (!should_suppress_show_mem()) 2112 show_mem(filter); 2113 } 2114 2115 static inline int 2116 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2117 unsigned long did_some_progress, 2118 unsigned long pages_reclaimed) 2119 { 2120 /* Do not loop if specifically requested */ 2121 if (gfp_mask & __GFP_NORETRY) 2122 return 0; 2123 2124 /* Always retry if specifically requested */ 2125 if (gfp_mask & __GFP_NOFAIL) 2126 return 1; 2127 2128 /* 2129 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2130 * making forward progress without invoking OOM. Suspend also disables 2131 * storage devices so kswapd will not help. Bail if we are suspending. 2132 */ 2133 if (!did_some_progress && pm_suspended_storage()) 2134 return 0; 2135 2136 /* 2137 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2138 * means __GFP_NOFAIL, but that may not be true in other 2139 * implementations. 2140 */ 2141 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2142 return 1; 2143 2144 /* 2145 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2146 * specified, then we retry until we no longer reclaim any pages 2147 * (above), or we've reclaimed an order of pages at least as 2148 * large as the allocation's order. In both cases, if the 2149 * allocation still fails, we stop retrying. 2150 */ 2151 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2152 return 1; 2153 2154 return 0; 2155 } 2156 2157 static inline struct page * 2158 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2159 struct zonelist *zonelist, enum zone_type high_zoneidx, 2160 nodemask_t *nodemask, struct zone *preferred_zone, 2161 int migratetype) 2162 { 2163 struct page *page; 2164 2165 /* Acquire the OOM killer lock for the zones in zonelist */ 2166 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 2167 schedule_timeout_uninterruptible(1); 2168 return NULL; 2169 } 2170 2171 /* 2172 * Go through the zonelist yet one more time, keep very high watermark 2173 * here, this is only to catch a parallel oom killing, we must fail if 2174 * we're still under heavy pressure. 2175 */ 2176 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 2177 order, zonelist, high_zoneidx, 2178 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 2179 preferred_zone, migratetype); 2180 if (page) 2181 goto out; 2182 2183 if (!(gfp_mask & __GFP_NOFAIL)) { 2184 /* The OOM killer will not help higher order allocs */ 2185 if (order > PAGE_ALLOC_COSTLY_ORDER) 2186 goto out; 2187 /* The OOM killer does not needlessly kill tasks for lowmem */ 2188 if (high_zoneidx < ZONE_NORMAL) 2189 goto out; 2190 /* 2191 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2192 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2193 * The caller should handle page allocation failure by itself if 2194 * it specifies __GFP_THISNODE. 2195 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2196 */ 2197 if (gfp_mask & __GFP_THISNODE) 2198 goto out; 2199 } 2200 /* Exhausted what can be done so it's blamo time */ 2201 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2202 2203 out: 2204 clear_zonelist_oom(zonelist, gfp_mask); 2205 return page; 2206 } 2207 2208 #ifdef CONFIG_COMPACTION 2209 /* Try memory compaction for high-order allocations before reclaim */ 2210 static struct page * 2211 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2212 struct zonelist *zonelist, enum zone_type high_zoneidx, 2213 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2214 int migratetype, bool sync_migration, 2215 bool *contended_compaction, bool *deferred_compaction, 2216 unsigned long *did_some_progress) 2217 { 2218 if (!order) 2219 return NULL; 2220 2221 if (compaction_deferred(preferred_zone, order)) { 2222 *deferred_compaction = true; 2223 return NULL; 2224 } 2225 2226 current->flags |= PF_MEMALLOC; 2227 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 2228 nodemask, sync_migration, 2229 contended_compaction); 2230 current->flags &= ~PF_MEMALLOC; 2231 2232 if (*did_some_progress != COMPACT_SKIPPED) { 2233 struct page *page; 2234 2235 /* Page migration frees to the PCP lists but we want merging */ 2236 drain_pages(get_cpu()); 2237 put_cpu(); 2238 2239 page = get_page_from_freelist(gfp_mask, nodemask, 2240 order, zonelist, high_zoneidx, 2241 alloc_flags & ~ALLOC_NO_WATERMARKS, 2242 preferred_zone, migratetype); 2243 if (page) { 2244 preferred_zone->compact_blockskip_flush = false; 2245 preferred_zone->compact_considered = 0; 2246 preferred_zone->compact_defer_shift = 0; 2247 if (order >= preferred_zone->compact_order_failed) 2248 preferred_zone->compact_order_failed = order + 1; 2249 count_vm_event(COMPACTSUCCESS); 2250 return page; 2251 } 2252 2253 /* 2254 * It's bad if compaction run occurs and fails. 2255 * The most likely reason is that pages exist, 2256 * but not enough to satisfy watermarks. 2257 */ 2258 count_vm_event(COMPACTFAIL); 2259 2260 /* 2261 * As async compaction considers a subset of pageblocks, only 2262 * defer if the failure was a sync compaction failure. 2263 */ 2264 if (sync_migration) 2265 defer_compaction(preferred_zone, order); 2266 2267 cond_resched(); 2268 } 2269 2270 return NULL; 2271 } 2272 #else 2273 static inline struct page * 2274 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2275 struct zonelist *zonelist, enum zone_type high_zoneidx, 2276 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2277 int migratetype, bool sync_migration, 2278 bool *contended_compaction, bool *deferred_compaction, 2279 unsigned long *did_some_progress) 2280 { 2281 return NULL; 2282 } 2283 #endif /* CONFIG_COMPACTION */ 2284 2285 /* Perform direct synchronous page reclaim */ 2286 static int 2287 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, 2288 nodemask_t *nodemask) 2289 { 2290 struct reclaim_state reclaim_state; 2291 int progress; 2292 2293 cond_resched(); 2294 2295 /* We now go into synchronous reclaim */ 2296 cpuset_memory_pressure_bump(); 2297 current->flags |= PF_MEMALLOC; 2298 lockdep_set_current_reclaim_state(gfp_mask); 2299 reclaim_state.reclaimed_slab = 0; 2300 current->reclaim_state = &reclaim_state; 2301 2302 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2303 2304 current->reclaim_state = NULL; 2305 lockdep_clear_current_reclaim_state(); 2306 current->flags &= ~PF_MEMALLOC; 2307 2308 cond_resched(); 2309 2310 return progress; 2311 } 2312 2313 /* The really slow allocator path where we enter direct reclaim */ 2314 static inline struct page * 2315 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2316 struct zonelist *zonelist, enum zone_type high_zoneidx, 2317 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2318 int migratetype, unsigned long *did_some_progress) 2319 { 2320 struct page *page = NULL; 2321 bool drained = false; 2322 2323 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 2324 nodemask); 2325 if (unlikely(!(*did_some_progress))) 2326 return NULL; 2327 2328 /* After successful reclaim, reconsider all zones for allocation */ 2329 if (IS_ENABLED(CONFIG_NUMA)) 2330 zlc_clear_zones_full(zonelist); 2331 2332 retry: 2333 page = get_page_from_freelist(gfp_mask, nodemask, order, 2334 zonelist, high_zoneidx, 2335 alloc_flags & ~ALLOC_NO_WATERMARKS, 2336 preferred_zone, migratetype); 2337 2338 /* 2339 * If an allocation failed after direct reclaim, it could be because 2340 * pages are pinned on the per-cpu lists. Drain them and try again 2341 */ 2342 if (!page && !drained) { 2343 drain_all_pages(); 2344 drained = true; 2345 goto retry; 2346 } 2347 2348 return page; 2349 } 2350 2351 /* 2352 * This is called in the allocator slow-path if the allocation request is of 2353 * sufficient urgency to ignore watermarks and take other desperate measures 2354 */ 2355 static inline struct page * 2356 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2357 struct zonelist *zonelist, enum zone_type high_zoneidx, 2358 nodemask_t *nodemask, struct zone *preferred_zone, 2359 int migratetype) 2360 { 2361 struct page *page; 2362 2363 do { 2364 page = get_page_from_freelist(gfp_mask, nodemask, order, 2365 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2366 preferred_zone, migratetype); 2367 2368 if (!page && gfp_mask & __GFP_NOFAIL) 2369 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2370 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2371 2372 return page; 2373 } 2374 2375 static void prepare_slowpath(gfp_t gfp_mask, unsigned int order, 2376 struct zonelist *zonelist, 2377 enum zone_type high_zoneidx, 2378 struct zone *preferred_zone) 2379 { 2380 struct zoneref *z; 2381 struct zone *zone; 2382 2383 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 2384 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2385 wakeup_kswapd(zone, order, zone_idx(preferred_zone)); 2386 /* 2387 * Only reset the batches of zones that were actually 2388 * considered in the fast path, we don't want to 2389 * thrash fairness information for zones that are not 2390 * actually part of this zonelist's round-robin cycle. 2391 */ 2392 if (!zone_local(preferred_zone, zone)) 2393 continue; 2394 mod_zone_page_state(zone, NR_ALLOC_BATCH, 2395 high_wmark_pages(zone) - 2396 low_wmark_pages(zone) - 2397 zone_page_state(zone, NR_ALLOC_BATCH)); 2398 } 2399 } 2400 2401 static inline int 2402 gfp_to_alloc_flags(gfp_t gfp_mask) 2403 { 2404 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2405 const gfp_t wait = gfp_mask & __GFP_WAIT; 2406 2407 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2408 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2409 2410 /* 2411 * The caller may dip into page reserves a bit more if the caller 2412 * cannot run direct reclaim, or if the caller has realtime scheduling 2413 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2414 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2415 */ 2416 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2417 2418 if (!wait) { 2419 /* 2420 * Not worth trying to allocate harder for 2421 * __GFP_NOMEMALLOC even if it can't schedule. 2422 */ 2423 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2424 alloc_flags |= ALLOC_HARDER; 2425 /* 2426 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2427 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2428 */ 2429 alloc_flags &= ~ALLOC_CPUSET; 2430 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2431 alloc_flags |= ALLOC_HARDER; 2432 2433 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2434 if (gfp_mask & __GFP_MEMALLOC) 2435 alloc_flags |= ALLOC_NO_WATERMARKS; 2436 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2437 alloc_flags |= ALLOC_NO_WATERMARKS; 2438 else if (!in_interrupt() && 2439 ((current->flags & PF_MEMALLOC) || 2440 unlikely(test_thread_flag(TIF_MEMDIE)))) 2441 alloc_flags |= ALLOC_NO_WATERMARKS; 2442 } 2443 #ifdef CONFIG_CMA 2444 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2445 alloc_flags |= ALLOC_CMA; 2446 #endif 2447 return alloc_flags; 2448 } 2449 2450 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2451 { 2452 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2453 } 2454 2455 static inline struct page * 2456 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2457 struct zonelist *zonelist, enum zone_type high_zoneidx, 2458 nodemask_t *nodemask, struct zone *preferred_zone, 2459 int migratetype) 2460 { 2461 const gfp_t wait = gfp_mask & __GFP_WAIT; 2462 struct page *page = NULL; 2463 int alloc_flags; 2464 unsigned long pages_reclaimed = 0; 2465 unsigned long did_some_progress; 2466 bool sync_migration = false; 2467 bool deferred_compaction = false; 2468 bool contended_compaction = false; 2469 2470 /* 2471 * In the slowpath, we sanity check order to avoid ever trying to 2472 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2473 * be using allocators in order of preference for an area that is 2474 * too large. 2475 */ 2476 if (order >= MAX_ORDER) { 2477 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2478 return NULL; 2479 } 2480 2481 /* 2482 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2483 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2484 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2485 * using a larger set of nodes after it has established that the 2486 * allowed per node queues are empty and that nodes are 2487 * over allocated. 2488 */ 2489 if (IS_ENABLED(CONFIG_NUMA) && 2490 (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2491 goto nopage; 2492 2493 restart: 2494 prepare_slowpath(gfp_mask, order, zonelist, 2495 high_zoneidx, preferred_zone); 2496 2497 /* 2498 * OK, we're below the kswapd watermark and have kicked background 2499 * reclaim. Now things get more complex, so set up alloc_flags according 2500 * to how we want to proceed. 2501 */ 2502 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2503 2504 /* 2505 * Find the true preferred zone if the allocation is unconstrained by 2506 * cpusets. 2507 */ 2508 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2509 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2510 &preferred_zone); 2511 2512 rebalance: 2513 /* This is the last chance, in general, before the goto nopage. */ 2514 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2515 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2516 preferred_zone, migratetype); 2517 if (page) 2518 goto got_pg; 2519 2520 /* Allocate without watermarks if the context allows */ 2521 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2522 /* 2523 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2524 * the allocation is high priority and these type of 2525 * allocations are system rather than user orientated 2526 */ 2527 zonelist = node_zonelist(numa_node_id(), gfp_mask); 2528 2529 page = __alloc_pages_high_priority(gfp_mask, order, 2530 zonelist, high_zoneidx, nodemask, 2531 preferred_zone, migratetype); 2532 if (page) { 2533 goto got_pg; 2534 } 2535 } 2536 2537 /* Atomic allocations - we can't balance anything */ 2538 if (!wait) 2539 goto nopage; 2540 2541 /* Avoid recursion of direct reclaim */ 2542 if (current->flags & PF_MEMALLOC) 2543 goto nopage; 2544 2545 /* Avoid allocations with no watermarks from looping endlessly */ 2546 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2547 goto nopage; 2548 2549 /* 2550 * Try direct compaction. The first pass is asynchronous. Subsequent 2551 * attempts after direct reclaim are synchronous 2552 */ 2553 page = __alloc_pages_direct_compact(gfp_mask, order, 2554 zonelist, high_zoneidx, 2555 nodemask, 2556 alloc_flags, preferred_zone, 2557 migratetype, sync_migration, 2558 &contended_compaction, 2559 &deferred_compaction, 2560 &did_some_progress); 2561 if (page) 2562 goto got_pg; 2563 sync_migration = true; 2564 2565 /* 2566 * If compaction is deferred for high-order allocations, it is because 2567 * sync compaction recently failed. In this is the case and the caller 2568 * requested a movable allocation that does not heavily disrupt the 2569 * system then fail the allocation instead of entering direct reclaim. 2570 */ 2571 if ((deferred_compaction || contended_compaction) && 2572 (gfp_mask & __GFP_NO_KSWAPD)) 2573 goto nopage; 2574 2575 /* Try direct reclaim and then allocating */ 2576 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2577 zonelist, high_zoneidx, 2578 nodemask, 2579 alloc_flags, preferred_zone, 2580 migratetype, &did_some_progress); 2581 if (page) 2582 goto got_pg; 2583 2584 /* 2585 * If we failed to make any progress reclaiming, then we are 2586 * running out of options and have to consider going OOM 2587 */ 2588 if (!did_some_progress) { 2589 if (oom_gfp_allowed(gfp_mask)) { 2590 if (oom_killer_disabled) 2591 goto nopage; 2592 /* Coredumps can quickly deplete all memory reserves */ 2593 if ((current->flags & PF_DUMPCORE) && 2594 !(gfp_mask & __GFP_NOFAIL)) 2595 goto nopage; 2596 page = __alloc_pages_may_oom(gfp_mask, order, 2597 zonelist, high_zoneidx, 2598 nodemask, preferred_zone, 2599 migratetype); 2600 if (page) 2601 goto got_pg; 2602 2603 if (!(gfp_mask & __GFP_NOFAIL)) { 2604 /* 2605 * The oom killer is not called for high-order 2606 * allocations that may fail, so if no progress 2607 * is being made, there are no other options and 2608 * retrying is unlikely to help. 2609 */ 2610 if (order > PAGE_ALLOC_COSTLY_ORDER) 2611 goto nopage; 2612 /* 2613 * The oom killer is not called for lowmem 2614 * allocations to prevent needlessly killing 2615 * innocent tasks. 2616 */ 2617 if (high_zoneidx < ZONE_NORMAL) 2618 goto nopage; 2619 } 2620 2621 goto restart; 2622 } 2623 } 2624 2625 /* Check if we should retry the allocation */ 2626 pages_reclaimed += did_some_progress; 2627 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2628 pages_reclaimed)) { 2629 /* Wait for some write requests to complete then retry */ 2630 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2631 goto rebalance; 2632 } else { 2633 /* 2634 * High-order allocations do not necessarily loop after 2635 * direct reclaim and reclaim/compaction depends on compaction 2636 * being called after reclaim so call directly if necessary 2637 */ 2638 page = __alloc_pages_direct_compact(gfp_mask, order, 2639 zonelist, high_zoneidx, 2640 nodemask, 2641 alloc_flags, preferred_zone, 2642 migratetype, sync_migration, 2643 &contended_compaction, 2644 &deferred_compaction, 2645 &did_some_progress); 2646 if (page) 2647 goto got_pg; 2648 } 2649 2650 nopage: 2651 warn_alloc_failed(gfp_mask, order, NULL); 2652 return page; 2653 got_pg: 2654 if (kmemcheck_enabled) 2655 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2656 2657 return page; 2658 } 2659 2660 /* 2661 * This is the 'heart' of the zoned buddy allocator. 2662 */ 2663 struct page * 2664 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2665 struct zonelist *zonelist, nodemask_t *nodemask) 2666 { 2667 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2668 struct zone *preferred_zone; 2669 struct page *page = NULL; 2670 int migratetype = allocflags_to_migratetype(gfp_mask); 2671 unsigned int cpuset_mems_cookie; 2672 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET; 2673 struct mem_cgroup *memcg = NULL; 2674 2675 gfp_mask &= gfp_allowed_mask; 2676 2677 lockdep_trace_alloc(gfp_mask); 2678 2679 might_sleep_if(gfp_mask & __GFP_WAIT); 2680 2681 if (should_fail_alloc_page(gfp_mask, order)) 2682 return NULL; 2683 2684 /* 2685 * Check the zones suitable for the gfp_mask contain at least one 2686 * valid zone. It's possible to have an empty zonelist as a result 2687 * of GFP_THISNODE and a memoryless node 2688 */ 2689 if (unlikely(!zonelist->_zonerefs->zone)) 2690 return NULL; 2691 2692 /* 2693 * Will only have any effect when __GFP_KMEMCG is set. This is 2694 * verified in the (always inline) callee 2695 */ 2696 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2697 return NULL; 2698 2699 retry_cpuset: 2700 cpuset_mems_cookie = get_mems_allowed(); 2701 2702 /* The preferred zone is used for statistics later */ 2703 first_zones_zonelist(zonelist, high_zoneidx, 2704 nodemask ? : &cpuset_current_mems_allowed, 2705 &preferred_zone); 2706 if (!preferred_zone) 2707 goto out; 2708 2709 #ifdef CONFIG_CMA 2710 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2711 alloc_flags |= ALLOC_CMA; 2712 #endif 2713 /* First allocation attempt */ 2714 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2715 zonelist, high_zoneidx, alloc_flags, 2716 preferred_zone, migratetype); 2717 if (unlikely(!page)) { 2718 /* 2719 * Runtime PM, block IO and its error handling path 2720 * can deadlock because I/O on the device might not 2721 * complete. 2722 */ 2723 gfp_mask = memalloc_noio_flags(gfp_mask); 2724 page = __alloc_pages_slowpath(gfp_mask, order, 2725 zonelist, high_zoneidx, nodemask, 2726 preferred_zone, migratetype); 2727 } 2728 2729 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2730 2731 out: 2732 /* 2733 * When updating a task's mems_allowed, it is possible to race with 2734 * parallel threads in such a way that an allocation can fail while 2735 * the mask is being updated. If a page allocation is about to fail, 2736 * check if the cpuset changed during allocation and if so, retry. 2737 */ 2738 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 2739 goto retry_cpuset; 2740 2741 memcg_kmem_commit_charge(page, memcg, order); 2742 2743 return page; 2744 } 2745 EXPORT_SYMBOL(__alloc_pages_nodemask); 2746 2747 /* 2748 * Common helper functions. 2749 */ 2750 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2751 { 2752 struct page *page; 2753 2754 /* 2755 * __get_free_pages() returns a 32-bit address, which cannot represent 2756 * a highmem page 2757 */ 2758 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2759 2760 page = alloc_pages(gfp_mask, order); 2761 if (!page) 2762 return 0; 2763 return (unsigned long) page_address(page); 2764 } 2765 EXPORT_SYMBOL(__get_free_pages); 2766 2767 unsigned long get_zeroed_page(gfp_t gfp_mask) 2768 { 2769 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2770 } 2771 EXPORT_SYMBOL(get_zeroed_page); 2772 2773 void __free_pages(struct page *page, unsigned int order) 2774 { 2775 if (put_page_testzero(page)) { 2776 if (order == 0) 2777 free_hot_cold_page(page, 0); 2778 else 2779 __free_pages_ok(page, order); 2780 } 2781 } 2782 2783 EXPORT_SYMBOL(__free_pages); 2784 2785 void free_pages(unsigned long addr, unsigned int order) 2786 { 2787 if (addr != 0) { 2788 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2789 __free_pages(virt_to_page((void *)addr), order); 2790 } 2791 } 2792 2793 EXPORT_SYMBOL(free_pages); 2794 2795 /* 2796 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free 2797 * pages allocated with __GFP_KMEMCG. 2798 * 2799 * Those pages are accounted to a particular memcg, embedded in the 2800 * corresponding page_cgroup. To avoid adding a hit in the allocator to search 2801 * for that information only to find out that it is NULL for users who have no 2802 * interest in that whatsoever, we provide these functions. 2803 * 2804 * The caller knows better which flags it relies on. 2805 */ 2806 void __free_memcg_kmem_pages(struct page *page, unsigned int order) 2807 { 2808 memcg_kmem_uncharge_pages(page, order); 2809 __free_pages(page, order); 2810 } 2811 2812 void free_memcg_kmem_pages(unsigned long addr, unsigned int order) 2813 { 2814 if (addr != 0) { 2815 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2816 __free_memcg_kmem_pages(virt_to_page((void *)addr), order); 2817 } 2818 } 2819 2820 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2821 { 2822 if (addr) { 2823 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2824 unsigned long used = addr + PAGE_ALIGN(size); 2825 2826 split_page(virt_to_page((void *)addr), order); 2827 while (used < alloc_end) { 2828 free_page(used); 2829 used += PAGE_SIZE; 2830 } 2831 } 2832 return (void *)addr; 2833 } 2834 2835 /** 2836 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2837 * @size: the number of bytes to allocate 2838 * @gfp_mask: GFP flags for the allocation 2839 * 2840 * This function is similar to alloc_pages(), except that it allocates the 2841 * minimum number of pages to satisfy the request. alloc_pages() can only 2842 * allocate memory in power-of-two pages. 2843 * 2844 * This function is also limited by MAX_ORDER. 2845 * 2846 * Memory allocated by this function must be released by free_pages_exact(). 2847 */ 2848 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2849 { 2850 unsigned int order = get_order(size); 2851 unsigned long addr; 2852 2853 addr = __get_free_pages(gfp_mask, order); 2854 return make_alloc_exact(addr, order, size); 2855 } 2856 EXPORT_SYMBOL(alloc_pages_exact); 2857 2858 /** 2859 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2860 * pages on a node. 2861 * @nid: the preferred node ID where memory should be allocated 2862 * @size: the number of bytes to allocate 2863 * @gfp_mask: GFP flags for the allocation 2864 * 2865 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2866 * back. 2867 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2868 * but is not exact. 2869 */ 2870 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2871 { 2872 unsigned order = get_order(size); 2873 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2874 if (!p) 2875 return NULL; 2876 return make_alloc_exact((unsigned long)page_address(p), order, size); 2877 } 2878 EXPORT_SYMBOL(alloc_pages_exact_nid); 2879 2880 /** 2881 * free_pages_exact - release memory allocated via alloc_pages_exact() 2882 * @virt: the value returned by alloc_pages_exact. 2883 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2884 * 2885 * Release the memory allocated by a previous call to alloc_pages_exact. 2886 */ 2887 void free_pages_exact(void *virt, size_t size) 2888 { 2889 unsigned long addr = (unsigned long)virt; 2890 unsigned long end = addr + PAGE_ALIGN(size); 2891 2892 while (addr < end) { 2893 free_page(addr); 2894 addr += PAGE_SIZE; 2895 } 2896 } 2897 EXPORT_SYMBOL(free_pages_exact); 2898 2899 /** 2900 * nr_free_zone_pages - count number of pages beyond high watermark 2901 * @offset: The zone index of the highest zone 2902 * 2903 * nr_free_zone_pages() counts the number of counts pages which are beyond the 2904 * high watermark within all zones at or below a given zone index. For each 2905 * zone, the number of pages is calculated as: 2906 * managed_pages - high_pages 2907 */ 2908 static unsigned long nr_free_zone_pages(int offset) 2909 { 2910 struct zoneref *z; 2911 struct zone *zone; 2912 2913 /* Just pick one node, since fallback list is circular */ 2914 unsigned long sum = 0; 2915 2916 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2917 2918 for_each_zone_zonelist(zone, z, zonelist, offset) { 2919 unsigned long size = zone->managed_pages; 2920 unsigned long high = high_wmark_pages(zone); 2921 if (size > high) 2922 sum += size - high; 2923 } 2924 2925 return sum; 2926 } 2927 2928 /** 2929 * nr_free_buffer_pages - count number of pages beyond high watermark 2930 * 2931 * nr_free_buffer_pages() counts the number of pages which are beyond the high 2932 * watermark within ZONE_DMA and ZONE_NORMAL. 2933 */ 2934 unsigned long nr_free_buffer_pages(void) 2935 { 2936 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2937 } 2938 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2939 2940 /** 2941 * nr_free_pagecache_pages - count number of pages beyond high watermark 2942 * 2943 * nr_free_pagecache_pages() counts the number of pages which are beyond the 2944 * high watermark within all zones. 2945 */ 2946 unsigned long nr_free_pagecache_pages(void) 2947 { 2948 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2949 } 2950 2951 static inline void show_node(struct zone *zone) 2952 { 2953 if (IS_ENABLED(CONFIG_NUMA)) 2954 printk("Node %d ", zone_to_nid(zone)); 2955 } 2956 2957 void si_meminfo(struct sysinfo *val) 2958 { 2959 val->totalram = totalram_pages; 2960 val->sharedram = 0; 2961 val->freeram = global_page_state(NR_FREE_PAGES); 2962 val->bufferram = nr_blockdev_pages(); 2963 val->totalhigh = totalhigh_pages; 2964 val->freehigh = nr_free_highpages(); 2965 val->mem_unit = PAGE_SIZE; 2966 } 2967 2968 EXPORT_SYMBOL(si_meminfo); 2969 2970 #ifdef CONFIG_NUMA 2971 void si_meminfo_node(struct sysinfo *val, int nid) 2972 { 2973 int zone_type; /* needs to be signed */ 2974 unsigned long managed_pages = 0; 2975 pg_data_t *pgdat = NODE_DATA(nid); 2976 2977 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 2978 managed_pages += pgdat->node_zones[zone_type].managed_pages; 2979 val->totalram = managed_pages; 2980 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2981 #ifdef CONFIG_HIGHMEM 2982 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; 2983 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2984 NR_FREE_PAGES); 2985 #else 2986 val->totalhigh = 0; 2987 val->freehigh = 0; 2988 #endif 2989 val->mem_unit = PAGE_SIZE; 2990 } 2991 #endif 2992 2993 /* 2994 * Determine whether the node should be displayed or not, depending on whether 2995 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 2996 */ 2997 bool skip_free_areas_node(unsigned int flags, int nid) 2998 { 2999 bool ret = false; 3000 unsigned int cpuset_mems_cookie; 3001 3002 if (!(flags & SHOW_MEM_FILTER_NODES)) 3003 goto out; 3004 3005 do { 3006 cpuset_mems_cookie = get_mems_allowed(); 3007 ret = !node_isset(nid, cpuset_current_mems_allowed); 3008 } while (!put_mems_allowed(cpuset_mems_cookie)); 3009 out: 3010 return ret; 3011 } 3012 3013 #define K(x) ((x) << (PAGE_SHIFT-10)) 3014 3015 static void show_migration_types(unsigned char type) 3016 { 3017 static const char types[MIGRATE_TYPES] = { 3018 [MIGRATE_UNMOVABLE] = 'U', 3019 [MIGRATE_RECLAIMABLE] = 'E', 3020 [MIGRATE_MOVABLE] = 'M', 3021 [MIGRATE_RESERVE] = 'R', 3022 #ifdef CONFIG_CMA 3023 [MIGRATE_CMA] = 'C', 3024 #endif 3025 #ifdef CONFIG_MEMORY_ISOLATION 3026 [MIGRATE_ISOLATE] = 'I', 3027 #endif 3028 }; 3029 char tmp[MIGRATE_TYPES + 1]; 3030 char *p = tmp; 3031 int i; 3032 3033 for (i = 0; i < MIGRATE_TYPES; i++) { 3034 if (type & (1 << i)) 3035 *p++ = types[i]; 3036 } 3037 3038 *p = '\0'; 3039 printk("(%s) ", tmp); 3040 } 3041 3042 /* 3043 * Show free area list (used inside shift_scroll-lock stuff) 3044 * We also calculate the percentage fragmentation. We do this by counting the 3045 * memory on each free list with the exception of the first item on the list. 3046 * Suppresses nodes that are not allowed by current's cpuset if 3047 * SHOW_MEM_FILTER_NODES is passed. 3048 */ 3049 void show_free_areas(unsigned int filter) 3050 { 3051 int cpu; 3052 struct zone *zone; 3053 3054 for_each_populated_zone(zone) { 3055 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3056 continue; 3057 show_node(zone); 3058 printk("%s per-cpu:\n", zone->name); 3059 3060 for_each_online_cpu(cpu) { 3061 struct per_cpu_pageset *pageset; 3062 3063 pageset = per_cpu_ptr(zone->pageset, cpu); 3064 3065 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 3066 cpu, pageset->pcp.high, 3067 pageset->pcp.batch, pageset->pcp.count); 3068 } 3069 } 3070 3071 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 3072 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 3073 " unevictable:%lu" 3074 " dirty:%lu writeback:%lu unstable:%lu\n" 3075 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 3076 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 3077 " free_cma:%lu\n", 3078 global_page_state(NR_ACTIVE_ANON), 3079 global_page_state(NR_INACTIVE_ANON), 3080 global_page_state(NR_ISOLATED_ANON), 3081 global_page_state(NR_ACTIVE_FILE), 3082 global_page_state(NR_INACTIVE_FILE), 3083 global_page_state(NR_ISOLATED_FILE), 3084 global_page_state(NR_UNEVICTABLE), 3085 global_page_state(NR_FILE_DIRTY), 3086 global_page_state(NR_WRITEBACK), 3087 global_page_state(NR_UNSTABLE_NFS), 3088 global_page_state(NR_FREE_PAGES), 3089 global_page_state(NR_SLAB_RECLAIMABLE), 3090 global_page_state(NR_SLAB_UNRECLAIMABLE), 3091 global_page_state(NR_FILE_MAPPED), 3092 global_page_state(NR_SHMEM), 3093 global_page_state(NR_PAGETABLE), 3094 global_page_state(NR_BOUNCE), 3095 global_page_state(NR_FREE_CMA_PAGES)); 3096 3097 for_each_populated_zone(zone) { 3098 int i; 3099 3100 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3101 continue; 3102 show_node(zone); 3103 printk("%s" 3104 " free:%lukB" 3105 " min:%lukB" 3106 " low:%lukB" 3107 " high:%lukB" 3108 " active_anon:%lukB" 3109 " inactive_anon:%lukB" 3110 " active_file:%lukB" 3111 " inactive_file:%lukB" 3112 " unevictable:%lukB" 3113 " isolated(anon):%lukB" 3114 " isolated(file):%lukB" 3115 " present:%lukB" 3116 " managed:%lukB" 3117 " mlocked:%lukB" 3118 " dirty:%lukB" 3119 " writeback:%lukB" 3120 " mapped:%lukB" 3121 " shmem:%lukB" 3122 " slab_reclaimable:%lukB" 3123 " slab_unreclaimable:%lukB" 3124 " kernel_stack:%lukB" 3125 " pagetables:%lukB" 3126 " unstable:%lukB" 3127 " bounce:%lukB" 3128 " free_cma:%lukB" 3129 " writeback_tmp:%lukB" 3130 " pages_scanned:%lu" 3131 " all_unreclaimable? %s" 3132 "\n", 3133 zone->name, 3134 K(zone_page_state(zone, NR_FREE_PAGES)), 3135 K(min_wmark_pages(zone)), 3136 K(low_wmark_pages(zone)), 3137 K(high_wmark_pages(zone)), 3138 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3139 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3140 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3141 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3142 K(zone_page_state(zone, NR_UNEVICTABLE)), 3143 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3144 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3145 K(zone->present_pages), 3146 K(zone->managed_pages), 3147 K(zone_page_state(zone, NR_MLOCK)), 3148 K(zone_page_state(zone, NR_FILE_DIRTY)), 3149 K(zone_page_state(zone, NR_WRITEBACK)), 3150 K(zone_page_state(zone, NR_FILE_MAPPED)), 3151 K(zone_page_state(zone, NR_SHMEM)), 3152 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3153 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3154 zone_page_state(zone, NR_KERNEL_STACK) * 3155 THREAD_SIZE / 1024, 3156 K(zone_page_state(zone, NR_PAGETABLE)), 3157 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3158 K(zone_page_state(zone, NR_BOUNCE)), 3159 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3160 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3161 zone->pages_scanned, 3162 (!zone_reclaimable(zone) ? "yes" : "no") 3163 ); 3164 printk("lowmem_reserve[]:"); 3165 for (i = 0; i < MAX_NR_ZONES; i++) 3166 printk(" %lu", zone->lowmem_reserve[i]); 3167 printk("\n"); 3168 } 3169 3170 for_each_populated_zone(zone) { 3171 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3172 unsigned char types[MAX_ORDER]; 3173 3174 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3175 continue; 3176 show_node(zone); 3177 printk("%s: ", zone->name); 3178 3179 spin_lock_irqsave(&zone->lock, flags); 3180 for (order = 0; order < MAX_ORDER; order++) { 3181 struct free_area *area = &zone->free_area[order]; 3182 int type; 3183 3184 nr[order] = area->nr_free; 3185 total += nr[order] << order; 3186 3187 types[order] = 0; 3188 for (type = 0; type < MIGRATE_TYPES; type++) { 3189 if (!list_empty(&area->free_list[type])) 3190 types[order] |= 1 << type; 3191 } 3192 } 3193 spin_unlock_irqrestore(&zone->lock, flags); 3194 for (order = 0; order < MAX_ORDER; order++) { 3195 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3196 if (nr[order]) 3197 show_migration_types(types[order]); 3198 } 3199 printk("= %lukB\n", K(total)); 3200 } 3201 3202 hugetlb_show_meminfo(); 3203 3204 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3205 3206 show_swap_cache_info(); 3207 } 3208 3209 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3210 { 3211 zoneref->zone = zone; 3212 zoneref->zone_idx = zone_idx(zone); 3213 } 3214 3215 /* 3216 * Builds allocation fallback zone lists. 3217 * 3218 * Add all populated zones of a node to the zonelist. 3219 */ 3220 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3221 int nr_zones) 3222 { 3223 struct zone *zone; 3224 enum zone_type zone_type = MAX_NR_ZONES; 3225 3226 do { 3227 zone_type--; 3228 zone = pgdat->node_zones + zone_type; 3229 if (populated_zone(zone)) { 3230 zoneref_set_zone(zone, 3231 &zonelist->_zonerefs[nr_zones++]); 3232 check_highest_zone(zone_type); 3233 } 3234 } while (zone_type); 3235 3236 return nr_zones; 3237 } 3238 3239 3240 /* 3241 * zonelist_order: 3242 * 0 = automatic detection of better ordering. 3243 * 1 = order by ([node] distance, -zonetype) 3244 * 2 = order by (-zonetype, [node] distance) 3245 * 3246 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3247 * the same zonelist. So only NUMA can configure this param. 3248 */ 3249 #define ZONELIST_ORDER_DEFAULT 0 3250 #define ZONELIST_ORDER_NODE 1 3251 #define ZONELIST_ORDER_ZONE 2 3252 3253 /* zonelist order in the kernel. 3254 * set_zonelist_order() will set this to NODE or ZONE. 3255 */ 3256 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3257 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3258 3259 3260 #ifdef CONFIG_NUMA 3261 /* The value user specified ....changed by config */ 3262 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3263 /* string for sysctl */ 3264 #define NUMA_ZONELIST_ORDER_LEN 16 3265 char numa_zonelist_order[16] = "default"; 3266 3267 /* 3268 * interface for configure zonelist ordering. 3269 * command line option "numa_zonelist_order" 3270 * = "[dD]efault - default, automatic configuration. 3271 * = "[nN]ode - order by node locality, then by zone within node 3272 * = "[zZ]one - order by zone, then by locality within zone 3273 */ 3274 3275 static int __parse_numa_zonelist_order(char *s) 3276 { 3277 if (*s == 'd' || *s == 'D') { 3278 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3279 } else if (*s == 'n' || *s == 'N') { 3280 user_zonelist_order = ZONELIST_ORDER_NODE; 3281 } else if (*s == 'z' || *s == 'Z') { 3282 user_zonelist_order = ZONELIST_ORDER_ZONE; 3283 } else { 3284 printk(KERN_WARNING 3285 "Ignoring invalid numa_zonelist_order value: " 3286 "%s\n", s); 3287 return -EINVAL; 3288 } 3289 return 0; 3290 } 3291 3292 static __init int setup_numa_zonelist_order(char *s) 3293 { 3294 int ret; 3295 3296 if (!s) 3297 return 0; 3298 3299 ret = __parse_numa_zonelist_order(s); 3300 if (ret == 0) 3301 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3302 3303 return ret; 3304 } 3305 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3306 3307 /* 3308 * sysctl handler for numa_zonelist_order 3309 */ 3310 int numa_zonelist_order_handler(ctl_table *table, int write, 3311 void __user *buffer, size_t *length, 3312 loff_t *ppos) 3313 { 3314 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3315 int ret; 3316 static DEFINE_MUTEX(zl_order_mutex); 3317 3318 mutex_lock(&zl_order_mutex); 3319 if (write) { 3320 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 3321 ret = -EINVAL; 3322 goto out; 3323 } 3324 strcpy(saved_string, (char *)table->data); 3325 } 3326 ret = proc_dostring(table, write, buffer, length, ppos); 3327 if (ret) 3328 goto out; 3329 if (write) { 3330 int oldval = user_zonelist_order; 3331 3332 ret = __parse_numa_zonelist_order((char *)table->data); 3333 if (ret) { 3334 /* 3335 * bogus value. restore saved string 3336 */ 3337 strncpy((char *)table->data, saved_string, 3338 NUMA_ZONELIST_ORDER_LEN); 3339 user_zonelist_order = oldval; 3340 } else if (oldval != user_zonelist_order) { 3341 mutex_lock(&zonelists_mutex); 3342 build_all_zonelists(NULL, NULL); 3343 mutex_unlock(&zonelists_mutex); 3344 } 3345 } 3346 out: 3347 mutex_unlock(&zl_order_mutex); 3348 return ret; 3349 } 3350 3351 3352 #define MAX_NODE_LOAD (nr_online_nodes) 3353 static int node_load[MAX_NUMNODES]; 3354 3355 /** 3356 * find_next_best_node - find the next node that should appear in a given node's fallback list 3357 * @node: node whose fallback list we're appending 3358 * @used_node_mask: nodemask_t of already used nodes 3359 * 3360 * We use a number of factors to determine which is the next node that should 3361 * appear on a given node's fallback list. The node should not have appeared 3362 * already in @node's fallback list, and it should be the next closest node 3363 * according to the distance array (which contains arbitrary distance values 3364 * from each node to each node in the system), and should also prefer nodes 3365 * with no CPUs, since presumably they'll have very little allocation pressure 3366 * on them otherwise. 3367 * It returns -1 if no node is found. 3368 */ 3369 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3370 { 3371 int n, val; 3372 int min_val = INT_MAX; 3373 int best_node = NUMA_NO_NODE; 3374 const struct cpumask *tmp = cpumask_of_node(0); 3375 3376 /* Use the local node if we haven't already */ 3377 if (!node_isset(node, *used_node_mask)) { 3378 node_set(node, *used_node_mask); 3379 return node; 3380 } 3381 3382 for_each_node_state(n, N_MEMORY) { 3383 3384 /* Don't want a node to appear more than once */ 3385 if (node_isset(n, *used_node_mask)) 3386 continue; 3387 3388 /* Use the distance array to find the distance */ 3389 val = node_distance(node, n); 3390 3391 /* Penalize nodes under us ("prefer the next node") */ 3392 val += (n < node); 3393 3394 /* Give preference to headless and unused nodes */ 3395 tmp = cpumask_of_node(n); 3396 if (!cpumask_empty(tmp)) 3397 val += PENALTY_FOR_NODE_WITH_CPUS; 3398 3399 /* Slight preference for less loaded node */ 3400 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3401 val += node_load[n]; 3402 3403 if (val < min_val) { 3404 min_val = val; 3405 best_node = n; 3406 } 3407 } 3408 3409 if (best_node >= 0) 3410 node_set(best_node, *used_node_mask); 3411 3412 return best_node; 3413 } 3414 3415 3416 /* 3417 * Build zonelists ordered by node and zones within node. 3418 * This results in maximum locality--normal zone overflows into local 3419 * DMA zone, if any--but risks exhausting DMA zone. 3420 */ 3421 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3422 { 3423 int j; 3424 struct zonelist *zonelist; 3425 3426 zonelist = &pgdat->node_zonelists[0]; 3427 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3428 ; 3429 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3430 zonelist->_zonerefs[j].zone = NULL; 3431 zonelist->_zonerefs[j].zone_idx = 0; 3432 } 3433 3434 /* 3435 * Build gfp_thisnode zonelists 3436 */ 3437 static void build_thisnode_zonelists(pg_data_t *pgdat) 3438 { 3439 int j; 3440 struct zonelist *zonelist; 3441 3442 zonelist = &pgdat->node_zonelists[1]; 3443 j = build_zonelists_node(pgdat, zonelist, 0); 3444 zonelist->_zonerefs[j].zone = NULL; 3445 zonelist->_zonerefs[j].zone_idx = 0; 3446 } 3447 3448 /* 3449 * Build zonelists ordered by zone and nodes within zones. 3450 * This results in conserving DMA zone[s] until all Normal memory is 3451 * exhausted, but results in overflowing to remote node while memory 3452 * may still exist in local DMA zone. 3453 */ 3454 static int node_order[MAX_NUMNODES]; 3455 3456 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3457 { 3458 int pos, j, node; 3459 int zone_type; /* needs to be signed */ 3460 struct zone *z; 3461 struct zonelist *zonelist; 3462 3463 zonelist = &pgdat->node_zonelists[0]; 3464 pos = 0; 3465 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3466 for (j = 0; j < nr_nodes; j++) { 3467 node = node_order[j]; 3468 z = &NODE_DATA(node)->node_zones[zone_type]; 3469 if (populated_zone(z)) { 3470 zoneref_set_zone(z, 3471 &zonelist->_zonerefs[pos++]); 3472 check_highest_zone(zone_type); 3473 } 3474 } 3475 } 3476 zonelist->_zonerefs[pos].zone = NULL; 3477 zonelist->_zonerefs[pos].zone_idx = 0; 3478 } 3479 3480 static int default_zonelist_order(void) 3481 { 3482 int nid, zone_type; 3483 unsigned long low_kmem_size, total_size; 3484 struct zone *z; 3485 int average_size; 3486 /* 3487 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 3488 * If they are really small and used heavily, the system can fall 3489 * into OOM very easily. 3490 * This function detect ZONE_DMA/DMA32 size and configures zone order. 3491 */ 3492 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 3493 low_kmem_size = 0; 3494 total_size = 0; 3495 for_each_online_node(nid) { 3496 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3497 z = &NODE_DATA(nid)->node_zones[zone_type]; 3498 if (populated_zone(z)) { 3499 if (zone_type < ZONE_NORMAL) 3500 low_kmem_size += z->managed_pages; 3501 total_size += z->managed_pages; 3502 } else if (zone_type == ZONE_NORMAL) { 3503 /* 3504 * If any node has only lowmem, then node order 3505 * is preferred to allow kernel allocations 3506 * locally; otherwise, they can easily infringe 3507 * on other nodes when there is an abundance of 3508 * lowmem available to allocate from. 3509 */ 3510 return ZONELIST_ORDER_NODE; 3511 } 3512 } 3513 } 3514 if (!low_kmem_size || /* there are no DMA area. */ 3515 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 3516 return ZONELIST_ORDER_NODE; 3517 /* 3518 * look into each node's config. 3519 * If there is a node whose DMA/DMA32 memory is very big area on 3520 * local memory, NODE_ORDER may be suitable. 3521 */ 3522 average_size = total_size / 3523 (nodes_weight(node_states[N_MEMORY]) + 1); 3524 for_each_online_node(nid) { 3525 low_kmem_size = 0; 3526 total_size = 0; 3527 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3528 z = &NODE_DATA(nid)->node_zones[zone_type]; 3529 if (populated_zone(z)) { 3530 if (zone_type < ZONE_NORMAL) 3531 low_kmem_size += z->present_pages; 3532 total_size += z->present_pages; 3533 } 3534 } 3535 if (low_kmem_size && 3536 total_size > average_size && /* ignore small node */ 3537 low_kmem_size > total_size * 70/100) 3538 return ZONELIST_ORDER_NODE; 3539 } 3540 return ZONELIST_ORDER_ZONE; 3541 } 3542 3543 static void set_zonelist_order(void) 3544 { 3545 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3546 current_zonelist_order = default_zonelist_order(); 3547 else 3548 current_zonelist_order = user_zonelist_order; 3549 } 3550 3551 static void build_zonelists(pg_data_t *pgdat) 3552 { 3553 int j, node, load; 3554 enum zone_type i; 3555 nodemask_t used_mask; 3556 int local_node, prev_node; 3557 struct zonelist *zonelist; 3558 int order = current_zonelist_order; 3559 3560 /* initialize zonelists */ 3561 for (i = 0; i < MAX_ZONELISTS; i++) { 3562 zonelist = pgdat->node_zonelists + i; 3563 zonelist->_zonerefs[0].zone = NULL; 3564 zonelist->_zonerefs[0].zone_idx = 0; 3565 } 3566 3567 /* NUMA-aware ordering of nodes */ 3568 local_node = pgdat->node_id; 3569 load = nr_online_nodes; 3570 prev_node = local_node; 3571 nodes_clear(used_mask); 3572 3573 memset(node_order, 0, sizeof(node_order)); 3574 j = 0; 3575 3576 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3577 /* 3578 * We don't want to pressure a particular node. 3579 * So adding penalty to the first node in same 3580 * distance group to make it round-robin. 3581 */ 3582 if (node_distance(local_node, node) != 3583 node_distance(local_node, prev_node)) 3584 node_load[node] = load; 3585 3586 prev_node = node; 3587 load--; 3588 if (order == ZONELIST_ORDER_NODE) 3589 build_zonelists_in_node_order(pgdat, node); 3590 else 3591 node_order[j++] = node; /* remember order */ 3592 } 3593 3594 if (order == ZONELIST_ORDER_ZONE) { 3595 /* calculate node order -- i.e., DMA last! */ 3596 build_zonelists_in_zone_order(pgdat, j); 3597 } 3598 3599 build_thisnode_zonelists(pgdat); 3600 } 3601 3602 /* Construct the zonelist performance cache - see further mmzone.h */ 3603 static void build_zonelist_cache(pg_data_t *pgdat) 3604 { 3605 struct zonelist *zonelist; 3606 struct zonelist_cache *zlc; 3607 struct zoneref *z; 3608 3609 zonelist = &pgdat->node_zonelists[0]; 3610 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3611 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3612 for (z = zonelist->_zonerefs; z->zone; z++) 3613 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3614 } 3615 3616 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3617 /* 3618 * Return node id of node used for "local" allocations. 3619 * I.e., first node id of first zone in arg node's generic zonelist. 3620 * Used for initializing percpu 'numa_mem', which is used primarily 3621 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3622 */ 3623 int local_memory_node(int node) 3624 { 3625 struct zone *zone; 3626 3627 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3628 gfp_zone(GFP_KERNEL), 3629 NULL, 3630 &zone); 3631 return zone->node; 3632 } 3633 #endif 3634 3635 #else /* CONFIG_NUMA */ 3636 3637 static void set_zonelist_order(void) 3638 { 3639 current_zonelist_order = ZONELIST_ORDER_ZONE; 3640 } 3641 3642 static void build_zonelists(pg_data_t *pgdat) 3643 { 3644 int node, local_node; 3645 enum zone_type j; 3646 struct zonelist *zonelist; 3647 3648 local_node = pgdat->node_id; 3649 3650 zonelist = &pgdat->node_zonelists[0]; 3651 j = build_zonelists_node(pgdat, zonelist, 0); 3652 3653 /* 3654 * Now we build the zonelist so that it contains the zones 3655 * of all the other nodes. 3656 * We don't want to pressure a particular node, so when 3657 * building the zones for node N, we make sure that the 3658 * zones coming right after the local ones are those from 3659 * node N+1 (modulo N) 3660 */ 3661 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3662 if (!node_online(node)) 3663 continue; 3664 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3665 } 3666 for (node = 0; node < local_node; node++) { 3667 if (!node_online(node)) 3668 continue; 3669 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3670 } 3671 3672 zonelist->_zonerefs[j].zone = NULL; 3673 zonelist->_zonerefs[j].zone_idx = 0; 3674 } 3675 3676 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3677 static void build_zonelist_cache(pg_data_t *pgdat) 3678 { 3679 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3680 } 3681 3682 #endif /* CONFIG_NUMA */ 3683 3684 /* 3685 * Boot pageset table. One per cpu which is going to be used for all 3686 * zones and all nodes. The parameters will be set in such a way 3687 * that an item put on a list will immediately be handed over to 3688 * the buddy list. This is safe since pageset manipulation is done 3689 * with interrupts disabled. 3690 * 3691 * The boot_pagesets must be kept even after bootup is complete for 3692 * unused processors and/or zones. They do play a role for bootstrapping 3693 * hotplugged processors. 3694 * 3695 * zoneinfo_show() and maybe other functions do 3696 * not check if the processor is online before following the pageset pointer. 3697 * Other parts of the kernel may not check if the zone is available. 3698 */ 3699 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3700 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3701 static void setup_zone_pageset(struct zone *zone); 3702 3703 /* 3704 * Global mutex to protect against size modification of zonelists 3705 * as well as to serialize pageset setup for the new populated zone. 3706 */ 3707 DEFINE_MUTEX(zonelists_mutex); 3708 3709 /* return values int ....just for stop_machine() */ 3710 static int __build_all_zonelists(void *data) 3711 { 3712 int nid; 3713 int cpu; 3714 pg_data_t *self = data; 3715 3716 #ifdef CONFIG_NUMA 3717 memset(node_load, 0, sizeof(node_load)); 3718 #endif 3719 3720 if (self && !node_online(self->node_id)) { 3721 build_zonelists(self); 3722 build_zonelist_cache(self); 3723 } 3724 3725 for_each_online_node(nid) { 3726 pg_data_t *pgdat = NODE_DATA(nid); 3727 3728 build_zonelists(pgdat); 3729 build_zonelist_cache(pgdat); 3730 } 3731 3732 /* 3733 * Initialize the boot_pagesets that are going to be used 3734 * for bootstrapping processors. The real pagesets for 3735 * each zone will be allocated later when the per cpu 3736 * allocator is available. 3737 * 3738 * boot_pagesets are used also for bootstrapping offline 3739 * cpus if the system is already booted because the pagesets 3740 * are needed to initialize allocators on a specific cpu too. 3741 * F.e. the percpu allocator needs the page allocator which 3742 * needs the percpu allocator in order to allocate its pagesets 3743 * (a chicken-egg dilemma). 3744 */ 3745 for_each_possible_cpu(cpu) { 3746 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3747 3748 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3749 /* 3750 * We now know the "local memory node" for each node-- 3751 * i.e., the node of the first zone in the generic zonelist. 3752 * Set up numa_mem percpu variable for on-line cpus. During 3753 * boot, only the boot cpu should be on-line; we'll init the 3754 * secondary cpus' numa_mem as they come on-line. During 3755 * node/memory hotplug, we'll fixup all on-line cpus. 3756 */ 3757 if (cpu_online(cpu)) 3758 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3759 #endif 3760 } 3761 3762 return 0; 3763 } 3764 3765 /* 3766 * Called with zonelists_mutex held always 3767 * unless system_state == SYSTEM_BOOTING. 3768 */ 3769 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3770 { 3771 set_zonelist_order(); 3772 3773 if (system_state == SYSTEM_BOOTING) { 3774 __build_all_zonelists(NULL); 3775 mminit_verify_zonelist(); 3776 cpuset_init_current_mems_allowed(); 3777 } else { 3778 #ifdef CONFIG_MEMORY_HOTPLUG 3779 if (zone) 3780 setup_zone_pageset(zone); 3781 #endif 3782 /* we have to stop all cpus to guarantee there is no user 3783 of zonelist */ 3784 stop_machine(__build_all_zonelists, pgdat, NULL); 3785 /* cpuset refresh routine should be here */ 3786 } 3787 vm_total_pages = nr_free_pagecache_pages(); 3788 /* 3789 * Disable grouping by mobility if the number of pages in the 3790 * system is too low to allow the mechanism to work. It would be 3791 * more accurate, but expensive to check per-zone. This check is 3792 * made on memory-hotadd so a system can start with mobility 3793 * disabled and enable it later 3794 */ 3795 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3796 page_group_by_mobility_disabled = 1; 3797 else 3798 page_group_by_mobility_disabled = 0; 3799 3800 printk("Built %i zonelists in %s order, mobility grouping %s. " 3801 "Total pages: %ld\n", 3802 nr_online_nodes, 3803 zonelist_order_name[current_zonelist_order], 3804 page_group_by_mobility_disabled ? "off" : "on", 3805 vm_total_pages); 3806 #ifdef CONFIG_NUMA 3807 printk("Policy zone: %s\n", zone_names[policy_zone]); 3808 #endif 3809 } 3810 3811 /* 3812 * Helper functions to size the waitqueue hash table. 3813 * Essentially these want to choose hash table sizes sufficiently 3814 * large so that collisions trying to wait on pages are rare. 3815 * But in fact, the number of active page waitqueues on typical 3816 * systems is ridiculously low, less than 200. So this is even 3817 * conservative, even though it seems large. 3818 * 3819 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3820 * waitqueues, i.e. the size of the waitq table given the number of pages. 3821 */ 3822 #define PAGES_PER_WAITQUEUE 256 3823 3824 #ifndef CONFIG_MEMORY_HOTPLUG 3825 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3826 { 3827 unsigned long size = 1; 3828 3829 pages /= PAGES_PER_WAITQUEUE; 3830 3831 while (size < pages) 3832 size <<= 1; 3833 3834 /* 3835 * Once we have dozens or even hundreds of threads sleeping 3836 * on IO we've got bigger problems than wait queue collision. 3837 * Limit the size of the wait table to a reasonable size. 3838 */ 3839 size = min(size, 4096UL); 3840 3841 return max(size, 4UL); 3842 } 3843 #else 3844 /* 3845 * A zone's size might be changed by hot-add, so it is not possible to determine 3846 * a suitable size for its wait_table. So we use the maximum size now. 3847 * 3848 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3849 * 3850 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3851 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3852 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3853 * 3854 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3855 * or more by the traditional way. (See above). It equals: 3856 * 3857 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3858 * ia64(16K page size) : = ( 8G + 4M)byte. 3859 * powerpc (64K page size) : = (32G +16M)byte. 3860 */ 3861 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3862 { 3863 return 4096UL; 3864 } 3865 #endif 3866 3867 /* 3868 * This is an integer logarithm so that shifts can be used later 3869 * to extract the more random high bits from the multiplicative 3870 * hash function before the remainder is taken. 3871 */ 3872 static inline unsigned long wait_table_bits(unsigned long size) 3873 { 3874 return ffz(~size); 3875 } 3876 3877 /* 3878 * Check if a pageblock contains reserved pages 3879 */ 3880 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3881 { 3882 unsigned long pfn; 3883 3884 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3885 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3886 return 1; 3887 } 3888 return 0; 3889 } 3890 3891 /* 3892 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3893 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3894 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3895 * higher will lead to a bigger reserve which will get freed as contiguous 3896 * blocks as reclaim kicks in 3897 */ 3898 static void setup_zone_migrate_reserve(struct zone *zone) 3899 { 3900 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3901 struct page *page; 3902 unsigned long block_migratetype; 3903 int reserve; 3904 3905 /* 3906 * Get the start pfn, end pfn and the number of blocks to reserve 3907 * We have to be careful to be aligned to pageblock_nr_pages to 3908 * make sure that we always check pfn_valid for the first page in 3909 * the block. 3910 */ 3911 start_pfn = zone->zone_start_pfn; 3912 end_pfn = zone_end_pfn(zone); 3913 start_pfn = roundup(start_pfn, pageblock_nr_pages); 3914 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3915 pageblock_order; 3916 3917 /* 3918 * Reserve blocks are generally in place to help high-order atomic 3919 * allocations that are short-lived. A min_free_kbytes value that 3920 * would result in more than 2 reserve blocks for atomic allocations 3921 * is assumed to be in place to help anti-fragmentation for the 3922 * future allocation of hugepages at runtime. 3923 */ 3924 reserve = min(2, reserve); 3925 3926 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3927 if (!pfn_valid(pfn)) 3928 continue; 3929 page = pfn_to_page(pfn); 3930 3931 /* Watch out for overlapping nodes */ 3932 if (page_to_nid(page) != zone_to_nid(zone)) 3933 continue; 3934 3935 block_migratetype = get_pageblock_migratetype(page); 3936 3937 /* Only test what is necessary when the reserves are not met */ 3938 if (reserve > 0) { 3939 /* 3940 * Blocks with reserved pages will never free, skip 3941 * them. 3942 */ 3943 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 3944 if (pageblock_is_reserved(pfn, block_end_pfn)) 3945 continue; 3946 3947 /* If this block is reserved, account for it */ 3948 if (block_migratetype == MIGRATE_RESERVE) { 3949 reserve--; 3950 continue; 3951 } 3952 3953 /* Suitable for reserving if this block is movable */ 3954 if (block_migratetype == MIGRATE_MOVABLE) { 3955 set_pageblock_migratetype(page, 3956 MIGRATE_RESERVE); 3957 move_freepages_block(zone, page, 3958 MIGRATE_RESERVE); 3959 reserve--; 3960 continue; 3961 } 3962 } 3963 3964 /* 3965 * If the reserve is met and this is a previous reserved block, 3966 * take it back 3967 */ 3968 if (block_migratetype == MIGRATE_RESERVE) { 3969 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3970 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3971 } 3972 } 3973 } 3974 3975 /* 3976 * Initially all pages are reserved - free ones are freed 3977 * up by free_all_bootmem() once the early boot process is 3978 * done. Non-atomic initialization, single-pass. 3979 */ 3980 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3981 unsigned long start_pfn, enum memmap_context context) 3982 { 3983 struct page *page; 3984 unsigned long end_pfn = start_pfn + size; 3985 unsigned long pfn; 3986 struct zone *z; 3987 3988 if (highest_memmap_pfn < end_pfn - 1) 3989 highest_memmap_pfn = end_pfn - 1; 3990 3991 z = &NODE_DATA(nid)->node_zones[zone]; 3992 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3993 /* 3994 * There can be holes in boot-time mem_map[]s 3995 * handed to this function. They do not 3996 * exist on hotplugged memory. 3997 */ 3998 if (context == MEMMAP_EARLY) { 3999 if (!early_pfn_valid(pfn)) 4000 continue; 4001 if (!early_pfn_in_nid(pfn, nid)) 4002 continue; 4003 } 4004 page = pfn_to_page(pfn); 4005 set_page_links(page, zone, nid, pfn); 4006 mminit_verify_page_links(page, zone, nid, pfn); 4007 init_page_count(page); 4008 page_mapcount_reset(page); 4009 page_cpupid_reset_last(page); 4010 SetPageReserved(page); 4011 /* 4012 * Mark the block movable so that blocks are reserved for 4013 * movable at startup. This will force kernel allocations 4014 * to reserve their blocks rather than leaking throughout 4015 * the address space during boot when many long-lived 4016 * kernel allocations are made. Later some blocks near 4017 * the start are marked MIGRATE_RESERVE by 4018 * setup_zone_migrate_reserve() 4019 * 4020 * bitmap is created for zone's valid pfn range. but memmap 4021 * can be created for invalid pages (for alignment) 4022 * check here not to call set_pageblock_migratetype() against 4023 * pfn out of zone. 4024 */ 4025 if ((z->zone_start_pfn <= pfn) 4026 && (pfn < zone_end_pfn(z)) 4027 && !(pfn & (pageblock_nr_pages - 1))) 4028 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4029 4030 INIT_LIST_HEAD(&page->lru); 4031 #ifdef WANT_PAGE_VIRTUAL 4032 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 4033 if (!is_highmem_idx(zone)) 4034 set_page_address(page, __va(pfn << PAGE_SHIFT)); 4035 #endif 4036 } 4037 } 4038 4039 static void __meminit zone_init_free_lists(struct zone *zone) 4040 { 4041 int order, t; 4042 for_each_migratetype_order(order, t) { 4043 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 4044 zone->free_area[order].nr_free = 0; 4045 } 4046 } 4047 4048 #ifndef __HAVE_ARCH_MEMMAP_INIT 4049 #define memmap_init(size, nid, zone, start_pfn) \ 4050 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 4051 #endif 4052 4053 static int __meminit zone_batchsize(struct zone *zone) 4054 { 4055 #ifdef CONFIG_MMU 4056 int batch; 4057 4058 /* 4059 * The per-cpu-pages pools are set to around 1000th of the 4060 * size of the zone. But no more than 1/2 of a meg. 4061 * 4062 * OK, so we don't know how big the cache is. So guess. 4063 */ 4064 batch = zone->managed_pages / 1024; 4065 if (batch * PAGE_SIZE > 512 * 1024) 4066 batch = (512 * 1024) / PAGE_SIZE; 4067 batch /= 4; /* We effectively *= 4 below */ 4068 if (batch < 1) 4069 batch = 1; 4070 4071 /* 4072 * Clamp the batch to a 2^n - 1 value. Having a power 4073 * of 2 value was found to be more likely to have 4074 * suboptimal cache aliasing properties in some cases. 4075 * 4076 * For example if 2 tasks are alternately allocating 4077 * batches of pages, one task can end up with a lot 4078 * of pages of one half of the possible page colors 4079 * and the other with pages of the other colors. 4080 */ 4081 batch = rounddown_pow_of_two(batch + batch/2) - 1; 4082 4083 return batch; 4084 4085 #else 4086 /* The deferral and batching of frees should be suppressed under NOMMU 4087 * conditions. 4088 * 4089 * The problem is that NOMMU needs to be able to allocate large chunks 4090 * of contiguous memory as there's no hardware page translation to 4091 * assemble apparent contiguous memory from discontiguous pages. 4092 * 4093 * Queueing large contiguous runs of pages for batching, however, 4094 * causes the pages to actually be freed in smaller chunks. As there 4095 * can be a significant delay between the individual batches being 4096 * recycled, this leads to the once large chunks of space being 4097 * fragmented and becoming unavailable for high-order allocations. 4098 */ 4099 return 0; 4100 #endif 4101 } 4102 4103 /* 4104 * pcp->high and pcp->batch values are related and dependent on one another: 4105 * ->batch must never be higher then ->high. 4106 * The following function updates them in a safe manner without read side 4107 * locking. 4108 * 4109 * Any new users of pcp->batch and pcp->high should ensure they can cope with 4110 * those fields changing asynchronously (acording the the above rule). 4111 * 4112 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 4113 * outside of boot time (or some other assurance that no concurrent updaters 4114 * exist). 4115 */ 4116 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 4117 unsigned long batch) 4118 { 4119 /* start with a fail safe value for batch */ 4120 pcp->batch = 1; 4121 smp_wmb(); 4122 4123 /* Update high, then batch, in order */ 4124 pcp->high = high; 4125 smp_wmb(); 4126 4127 pcp->batch = batch; 4128 } 4129 4130 /* a companion to pageset_set_high() */ 4131 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 4132 { 4133 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 4134 } 4135 4136 static void pageset_init(struct per_cpu_pageset *p) 4137 { 4138 struct per_cpu_pages *pcp; 4139 int migratetype; 4140 4141 memset(p, 0, sizeof(*p)); 4142 4143 pcp = &p->pcp; 4144 pcp->count = 0; 4145 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4146 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4147 } 4148 4149 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4150 { 4151 pageset_init(p); 4152 pageset_set_batch(p, batch); 4153 } 4154 4155 /* 4156 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 4157 * to the value high for the pageset p. 4158 */ 4159 static void pageset_set_high(struct per_cpu_pageset *p, 4160 unsigned long high) 4161 { 4162 unsigned long batch = max(1UL, high / 4); 4163 if ((high / 4) > (PAGE_SHIFT * 8)) 4164 batch = PAGE_SHIFT * 8; 4165 4166 pageset_update(&p->pcp, high, batch); 4167 } 4168 4169 static void __meminit pageset_set_high_and_batch(struct zone *zone, 4170 struct per_cpu_pageset *pcp) 4171 { 4172 if (percpu_pagelist_fraction) 4173 pageset_set_high(pcp, 4174 (zone->managed_pages / 4175 percpu_pagelist_fraction)); 4176 else 4177 pageset_set_batch(pcp, zone_batchsize(zone)); 4178 } 4179 4180 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 4181 { 4182 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4183 4184 pageset_init(pcp); 4185 pageset_set_high_and_batch(zone, pcp); 4186 } 4187 4188 static void __meminit setup_zone_pageset(struct zone *zone) 4189 { 4190 int cpu; 4191 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4192 for_each_possible_cpu(cpu) 4193 zone_pageset_init(zone, cpu); 4194 } 4195 4196 /* 4197 * Allocate per cpu pagesets and initialize them. 4198 * Before this call only boot pagesets were available. 4199 */ 4200 void __init setup_per_cpu_pageset(void) 4201 { 4202 struct zone *zone; 4203 4204 for_each_populated_zone(zone) 4205 setup_zone_pageset(zone); 4206 } 4207 4208 static noinline __init_refok 4209 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4210 { 4211 int i; 4212 struct pglist_data *pgdat = zone->zone_pgdat; 4213 size_t alloc_size; 4214 4215 /* 4216 * The per-page waitqueue mechanism uses hashed waitqueues 4217 * per zone. 4218 */ 4219 zone->wait_table_hash_nr_entries = 4220 wait_table_hash_nr_entries(zone_size_pages); 4221 zone->wait_table_bits = 4222 wait_table_bits(zone->wait_table_hash_nr_entries); 4223 alloc_size = zone->wait_table_hash_nr_entries 4224 * sizeof(wait_queue_head_t); 4225 4226 if (!slab_is_available()) { 4227 zone->wait_table = (wait_queue_head_t *) 4228 alloc_bootmem_node_nopanic(pgdat, alloc_size); 4229 } else { 4230 /* 4231 * This case means that a zone whose size was 0 gets new memory 4232 * via memory hot-add. 4233 * But it may be the case that a new node was hot-added. In 4234 * this case vmalloc() will not be able to use this new node's 4235 * memory - this wait_table must be initialized to use this new 4236 * node itself as well. 4237 * To use this new node's memory, further consideration will be 4238 * necessary. 4239 */ 4240 zone->wait_table = vmalloc(alloc_size); 4241 } 4242 if (!zone->wait_table) 4243 return -ENOMEM; 4244 4245 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4246 init_waitqueue_head(zone->wait_table + i); 4247 4248 return 0; 4249 } 4250 4251 static __meminit void zone_pcp_init(struct zone *zone) 4252 { 4253 /* 4254 * per cpu subsystem is not up at this point. The following code 4255 * relies on the ability of the linker to provide the 4256 * offset of a (static) per cpu variable into the per cpu area. 4257 */ 4258 zone->pageset = &boot_pageset; 4259 4260 if (populated_zone(zone)) 4261 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4262 zone->name, zone->present_pages, 4263 zone_batchsize(zone)); 4264 } 4265 4266 int __meminit init_currently_empty_zone(struct zone *zone, 4267 unsigned long zone_start_pfn, 4268 unsigned long size, 4269 enum memmap_context context) 4270 { 4271 struct pglist_data *pgdat = zone->zone_pgdat; 4272 int ret; 4273 ret = zone_wait_table_init(zone, size); 4274 if (ret) 4275 return ret; 4276 pgdat->nr_zones = zone_idx(zone) + 1; 4277 4278 zone->zone_start_pfn = zone_start_pfn; 4279 4280 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4281 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4282 pgdat->node_id, 4283 (unsigned long)zone_idx(zone), 4284 zone_start_pfn, (zone_start_pfn + size)); 4285 4286 zone_init_free_lists(zone); 4287 4288 return 0; 4289 } 4290 4291 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4292 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4293 /* 4294 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4295 * Architectures may implement their own version but if add_active_range() 4296 * was used and there are no special requirements, this is a convenient 4297 * alternative 4298 */ 4299 int __meminit __early_pfn_to_nid(unsigned long pfn) 4300 { 4301 unsigned long start_pfn, end_pfn; 4302 int nid; 4303 /* 4304 * NOTE: The following SMP-unsafe globals are only used early in boot 4305 * when the kernel is running single-threaded. 4306 */ 4307 static unsigned long __meminitdata last_start_pfn, last_end_pfn; 4308 static int __meminitdata last_nid; 4309 4310 if (last_start_pfn <= pfn && pfn < last_end_pfn) 4311 return last_nid; 4312 4313 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 4314 if (nid != -1) { 4315 last_start_pfn = start_pfn; 4316 last_end_pfn = end_pfn; 4317 last_nid = nid; 4318 } 4319 4320 return nid; 4321 } 4322 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4323 4324 int __meminit early_pfn_to_nid(unsigned long pfn) 4325 { 4326 int nid; 4327 4328 nid = __early_pfn_to_nid(pfn); 4329 if (nid >= 0) 4330 return nid; 4331 /* just returns 0 */ 4332 return 0; 4333 } 4334 4335 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4336 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4337 { 4338 int nid; 4339 4340 nid = __early_pfn_to_nid(pfn); 4341 if (nid >= 0 && nid != node) 4342 return false; 4343 return true; 4344 } 4345 #endif 4346 4347 /** 4348 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 4349 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4350 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 4351 * 4352 * If an architecture guarantees that all ranges registered with 4353 * add_active_ranges() contain no holes and may be freed, this 4354 * this function may be used instead of calling free_bootmem() manually. 4355 */ 4356 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4357 { 4358 unsigned long start_pfn, end_pfn; 4359 int i, this_nid; 4360 4361 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4362 start_pfn = min(start_pfn, max_low_pfn); 4363 end_pfn = min(end_pfn, max_low_pfn); 4364 4365 if (start_pfn < end_pfn) 4366 free_bootmem_node(NODE_DATA(this_nid), 4367 PFN_PHYS(start_pfn), 4368 (end_pfn - start_pfn) << PAGE_SHIFT); 4369 } 4370 } 4371 4372 /** 4373 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4374 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4375 * 4376 * If an architecture guarantees that all ranges registered with 4377 * add_active_ranges() contain no holes and may be freed, this 4378 * function may be used instead of calling memory_present() manually. 4379 */ 4380 void __init sparse_memory_present_with_active_regions(int nid) 4381 { 4382 unsigned long start_pfn, end_pfn; 4383 int i, this_nid; 4384 4385 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4386 memory_present(this_nid, start_pfn, end_pfn); 4387 } 4388 4389 /** 4390 * get_pfn_range_for_nid - Return the start and end page frames for a node 4391 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4392 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4393 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4394 * 4395 * It returns the start and end page frame of a node based on information 4396 * provided by an arch calling add_active_range(). If called for a node 4397 * with no available memory, a warning is printed and the start and end 4398 * PFNs will be 0. 4399 */ 4400 void __meminit get_pfn_range_for_nid(unsigned int nid, 4401 unsigned long *start_pfn, unsigned long *end_pfn) 4402 { 4403 unsigned long this_start_pfn, this_end_pfn; 4404 int i; 4405 4406 *start_pfn = -1UL; 4407 *end_pfn = 0; 4408 4409 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4410 *start_pfn = min(*start_pfn, this_start_pfn); 4411 *end_pfn = max(*end_pfn, this_end_pfn); 4412 } 4413 4414 if (*start_pfn == -1UL) 4415 *start_pfn = 0; 4416 } 4417 4418 /* 4419 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4420 * assumption is made that zones within a node are ordered in monotonic 4421 * increasing memory addresses so that the "highest" populated zone is used 4422 */ 4423 static void __init find_usable_zone_for_movable(void) 4424 { 4425 int zone_index; 4426 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4427 if (zone_index == ZONE_MOVABLE) 4428 continue; 4429 4430 if (arch_zone_highest_possible_pfn[zone_index] > 4431 arch_zone_lowest_possible_pfn[zone_index]) 4432 break; 4433 } 4434 4435 VM_BUG_ON(zone_index == -1); 4436 movable_zone = zone_index; 4437 } 4438 4439 /* 4440 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4441 * because it is sized independent of architecture. Unlike the other zones, 4442 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4443 * in each node depending on the size of each node and how evenly kernelcore 4444 * is distributed. This helper function adjusts the zone ranges 4445 * provided by the architecture for a given node by using the end of the 4446 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4447 * zones within a node are in order of monotonic increases memory addresses 4448 */ 4449 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4450 unsigned long zone_type, 4451 unsigned long node_start_pfn, 4452 unsigned long node_end_pfn, 4453 unsigned long *zone_start_pfn, 4454 unsigned long *zone_end_pfn) 4455 { 4456 /* Only adjust if ZONE_MOVABLE is on this node */ 4457 if (zone_movable_pfn[nid]) { 4458 /* Size ZONE_MOVABLE */ 4459 if (zone_type == ZONE_MOVABLE) { 4460 *zone_start_pfn = zone_movable_pfn[nid]; 4461 *zone_end_pfn = min(node_end_pfn, 4462 arch_zone_highest_possible_pfn[movable_zone]); 4463 4464 /* Adjust for ZONE_MOVABLE starting within this range */ 4465 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4466 *zone_end_pfn > zone_movable_pfn[nid]) { 4467 *zone_end_pfn = zone_movable_pfn[nid]; 4468 4469 /* Check if this whole range is within ZONE_MOVABLE */ 4470 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4471 *zone_start_pfn = *zone_end_pfn; 4472 } 4473 } 4474 4475 /* 4476 * Return the number of pages a zone spans in a node, including holes 4477 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4478 */ 4479 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4480 unsigned long zone_type, 4481 unsigned long node_start_pfn, 4482 unsigned long node_end_pfn, 4483 unsigned long *ignored) 4484 { 4485 unsigned long zone_start_pfn, zone_end_pfn; 4486 4487 /* Get the start and end of the zone */ 4488 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4489 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4490 adjust_zone_range_for_zone_movable(nid, zone_type, 4491 node_start_pfn, node_end_pfn, 4492 &zone_start_pfn, &zone_end_pfn); 4493 4494 /* Check that this node has pages within the zone's required range */ 4495 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4496 return 0; 4497 4498 /* Move the zone boundaries inside the node if necessary */ 4499 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4500 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4501 4502 /* Return the spanned pages */ 4503 return zone_end_pfn - zone_start_pfn; 4504 } 4505 4506 /* 4507 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4508 * then all holes in the requested range will be accounted for. 4509 */ 4510 unsigned long __meminit __absent_pages_in_range(int nid, 4511 unsigned long range_start_pfn, 4512 unsigned long range_end_pfn) 4513 { 4514 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4515 unsigned long start_pfn, end_pfn; 4516 int i; 4517 4518 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4519 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4520 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4521 nr_absent -= end_pfn - start_pfn; 4522 } 4523 return nr_absent; 4524 } 4525 4526 /** 4527 * absent_pages_in_range - Return number of page frames in holes within a range 4528 * @start_pfn: The start PFN to start searching for holes 4529 * @end_pfn: The end PFN to stop searching for holes 4530 * 4531 * It returns the number of pages frames in memory holes within a range. 4532 */ 4533 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4534 unsigned long end_pfn) 4535 { 4536 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4537 } 4538 4539 /* Return the number of page frames in holes in a zone on a node */ 4540 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4541 unsigned long zone_type, 4542 unsigned long node_start_pfn, 4543 unsigned long node_end_pfn, 4544 unsigned long *ignored) 4545 { 4546 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4547 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4548 unsigned long zone_start_pfn, zone_end_pfn; 4549 4550 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4551 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4552 4553 adjust_zone_range_for_zone_movable(nid, zone_type, 4554 node_start_pfn, node_end_pfn, 4555 &zone_start_pfn, &zone_end_pfn); 4556 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4557 } 4558 4559 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4560 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4561 unsigned long zone_type, 4562 unsigned long node_start_pfn, 4563 unsigned long node_end_pfn, 4564 unsigned long *zones_size) 4565 { 4566 return zones_size[zone_type]; 4567 } 4568 4569 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4570 unsigned long zone_type, 4571 unsigned long node_start_pfn, 4572 unsigned long node_end_pfn, 4573 unsigned long *zholes_size) 4574 { 4575 if (!zholes_size) 4576 return 0; 4577 4578 return zholes_size[zone_type]; 4579 } 4580 4581 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4582 4583 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4584 unsigned long node_start_pfn, 4585 unsigned long node_end_pfn, 4586 unsigned long *zones_size, 4587 unsigned long *zholes_size) 4588 { 4589 unsigned long realtotalpages, totalpages = 0; 4590 enum zone_type i; 4591 4592 for (i = 0; i < MAX_NR_ZONES; i++) 4593 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4594 node_start_pfn, 4595 node_end_pfn, 4596 zones_size); 4597 pgdat->node_spanned_pages = totalpages; 4598 4599 realtotalpages = totalpages; 4600 for (i = 0; i < MAX_NR_ZONES; i++) 4601 realtotalpages -= 4602 zone_absent_pages_in_node(pgdat->node_id, i, 4603 node_start_pfn, node_end_pfn, 4604 zholes_size); 4605 pgdat->node_present_pages = realtotalpages; 4606 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4607 realtotalpages); 4608 } 4609 4610 #ifndef CONFIG_SPARSEMEM 4611 /* 4612 * Calculate the size of the zone->blockflags rounded to an unsigned long 4613 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4614 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4615 * round what is now in bits to nearest long in bits, then return it in 4616 * bytes. 4617 */ 4618 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 4619 { 4620 unsigned long usemapsize; 4621 4622 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 4623 usemapsize = roundup(zonesize, pageblock_nr_pages); 4624 usemapsize = usemapsize >> pageblock_order; 4625 usemapsize *= NR_PAGEBLOCK_BITS; 4626 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4627 4628 return usemapsize / 8; 4629 } 4630 4631 static void __init setup_usemap(struct pglist_data *pgdat, 4632 struct zone *zone, 4633 unsigned long zone_start_pfn, 4634 unsigned long zonesize) 4635 { 4636 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 4637 zone->pageblock_flags = NULL; 4638 if (usemapsize) 4639 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, 4640 usemapsize); 4641 } 4642 #else 4643 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 4644 unsigned long zone_start_pfn, unsigned long zonesize) {} 4645 #endif /* CONFIG_SPARSEMEM */ 4646 4647 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4648 4649 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4650 void __paginginit set_pageblock_order(void) 4651 { 4652 unsigned int order; 4653 4654 /* Check that pageblock_nr_pages has not already been setup */ 4655 if (pageblock_order) 4656 return; 4657 4658 if (HPAGE_SHIFT > PAGE_SHIFT) 4659 order = HUGETLB_PAGE_ORDER; 4660 else 4661 order = MAX_ORDER - 1; 4662 4663 /* 4664 * Assume the largest contiguous order of interest is a huge page. 4665 * This value may be variable depending on boot parameters on IA64 and 4666 * powerpc. 4667 */ 4668 pageblock_order = order; 4669 } 4670 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4671 4672 /* 4673 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4674 * is unused as pageblock_order is set at compile-time. See 4675 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4676 * the kernel config 4677 */ 4678 void __paginginit set_pageblock_order(void) 4679 { 4680 } 4681 4682 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4683 4684 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 4685 unsigned long present_pages) 4686 { 4687 unsigned long pages = spanned_pages; 4688 4689 /* 4690 * Provide a more accurate estimation if there are holes within 4691 * the zone and SPARSEMEM is in use. If there are holes within the 4692 * zone, each populated memory region may cost us one or two extra 4693 * memmap pages due to alignment because memmap pages for each 4694 * populated regions may not naturally algined on page boundary. 4695 * So the (present_pages >> 4) heuristic is a tradeoff for that. 4696 */ 4697 if (spanned_pages > present_pages + (present_pages >> 4) && 4698 IS_ENABLED(CONFIG_SPARSEMEM)) 4699 pages = present_pages; 4700 4701 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 4702 } 4703 4704 /* 4705 * Set up the zone data structures: 4706 * - mark all pages reserved 4707 * - mark all memory queues empty 4708 * - clear the memory bitmaps 4709 * 4710 * NOTE: pgdat should get zeroed by caller. 4711 */ 4712 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4713 unsigned long node_start_pfn, unsigned long node_end_pfn, 4714 unsigned long *zones_size, unsigned long *zholes_size) 4715 { 4716 enum zone_type j; 4717 int nid = pgdat->node_id; 4718 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4719 int ret; 4720 4721 pgdat_resize_init(pgdat); 4722 #ifdef CONFIG_NUMA_BALANCING 4723 spin_lock_init(&pgdat->numabalancing_migrate_lock); 4724 pgdat->numabalancing_migrate_nr_pages = 0; 4725 pgdat->numabalancing_migrate_next_window = jiffies; 4726 #endif 4727 init_waitqueue_head(&pgdat->kswapd_wait); 4728 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4729 pgdat_page_cgroup_init(pgdat); 4730 4731 for (j = 0; j < MAX_NR_ZONES; j++) { 4732 struct zone *zone = pgdat->node_zones + j; 4733 unsigned long size, realsize, freesize, memmap_pages; 4734 4735 size = zone_spanned_pages_in_node(nid, j, node_start_pfn, 4736 node_end_pfn, zones_size); 4737 realsize = freesize = size - zone_absent_pages_in_node(nid, j, 4738 node_start_pfn, 4739 node_end_pfn, 4740 zholes_size); 4741 4742 /* 4743 * Adjust freesize so that it accounts for how much memory 4744 * is used by this zone for memmap. This affects the watermark 4745 * and per-cpu initialisations 4746 */ 4747 memmap_pages = calc_memmap_size(size, realsize); 4748 if (freesize >= memmap_pages) { 4749 freesize -= memmap_pages; 4750 if (memmap_pages) 4751 printk(KERN_DEBUG 4752 " %s zone: %lu pages used for memmap\n", 4753 zone_names[j], memmap_pages); 4754 } else 4755 printk(KERN_WARNING 4756 " %s zone: %lu pages exceeds freesize %lu\n", 4757 zone_names[j], memmap_pages, freesize); 4758 4759 /* Account for reserved pages */ 4760 if (j == 0 && freesize > dma_reserve) { 4761 freesize -= dma_reserve; 4762 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4763 zone_names[0], dma_reserve); 4764 } 4765 4766 if (!is_highmem_idx(j)) 4767 nr_kernel_pages += freesize; 4768 /* Charge for highmem memmap if there are enough kernel pages */ 4769 else if (nr_kernel_pages > memmap_pages * 2) 4770 nr_kernel_pages -= memmap_pages; 4771 nr_all_pages += freesize; 4772 4773 zone->spanned_pages = size; 4774 zone->present_pages = realsize; 4775 /* 4776 * Set an approximate value for lowmem here, it will be adjusted 4777 * when the bootmem allocator frees pages into the buddy system. 4778 * And all highmem pages will be managed by the buddy system. 4779 */ 4780 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 4781 #ifdef CONFIG_NUMA 4782 zone->node = nid; 4783 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 4784 / 100; 4785 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 4786 #endif 4787 zone->name = zone_names[j]; 4788 spin_lock_init(&zone->lock); 4789 spin_lock_init(&zone->lru_lock); 4790 zone_seqlock_init(zone); 4791 zone->zone_pgdat = pgdat; 4792 zone_pcp_init(zone); 4793 4794 /* For bootup, initialized properly in watermark setup */ 4795 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); 4796 4797 lruvec_init(&zone->lruvec); 4798 if (!size) 4799 continue; 4800 4801 set_pageblock_order(); 4802 setup_usemap(pgdat, zone, zone_start_pfn, size); 4803 ret = init_currently_empty_zone(zone, zone_start_pfn, 4804 size, MEMMAP_EARLY); 4805 BUG_ON(ret); 4806 memmap_init(size, nid, j, zone_start_pfn); 4807 zone_start_pfn += size; 4808 } 4809 } 4810 4811 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4812 { 4813 /* Skip empty nodes */ 4814 if (!pgdat->node_spanned_pages) 4815 return; 4816 4817 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4818 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4819 if (!pgdat->node_mem_map) { 4820 unsigned long size, start, end; 4821 struct page *map; 4822 4823 /* 4824 * The zone's endpoints aren't required to be MAX_ORDER 4825 * aligned but the node_mem_map endpoints must be in order 4826 * for the buddy allocator to function correctly. 4827 */ 4828 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4829 end = pgdat_end_pfn(pgdat); 4830 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4831 size = (end - start) * sizeof(struct page); 4832 map = alloc_remap(pgdat->node_id, size); 4833 if (!map) 4834 map = alloc_bootmem_node_nopanic(pgdat, size); 4835 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4836 } 4837 #ifndef CONFIG_NEED_MULTIPLE_NODES 4838 /* 4839 * With no DISCONTIG, the global mem_map is just set as node 0's 4840 */ 4841 if (pgdat == NODE_DATA(0)) { 4842 mem_map = NODE_DATA(0)->node_mem_map; 4843 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4844 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4845 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4846 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4847 } 4848 #endif 4849 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4850 } 4851 4852 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4853 unsigned long node_start_pfn, unsigned long *zholes_size) 4854 { 4855 pg_data_t *pgdat = NODE_DATA(nid); 4856 unsigned long start_pfn = 0; 4857 unsigned long end_pfn = 0; 4858 4859 /* pg_data_t should be reset to zero when it's allocated */ 4860 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 4861 4862 pgdat->node_id = nid; 4863 pgdat->node_start_pfn = node_start_pfn; 4864 init_zone_allows_reclaim(nid); 4865 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4866 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 4867 #endif 4868 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 4869 zones_size, zholes_size); 4870 4871 alloc_node_mem_map(pgdat); 4872 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4873 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4874 nid, (unsigned long)pgdat, 4875 (unsigned long)pgdat->node_mem_map); 4876 #endif 4877 4878 free_area_init_core(pgdat, start_pfn, end_pfn, 4879 zones_size, zholes_size); 4880 } 4881 4882 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4883 4884 #if MAX_NUMNODES > 1 4885 /* 4886 * Figure out the number of possible node ids. 4887 */ 4888 void __init setup_nr_node_ids(void) 4889 { 4890 unsigned int node; 4891 unsigned int highest = 0; 4892 4893 for_each_node_mask(node, node_possible_map) 4894 highest = node; 4895 nr_node_ids = highest + 1; 4896 } 4897 #endif 4898 4899 /** 4900 * node_map_pfn_alignment - determine the maximum internode alignment 4901 * 4902 * This function should be called after node map is populated and sorted. 4903 * It calculates the maximum power of two alignment which can distinguish 4904 * all the nodes. 4905 * 4906 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 4907 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 4908 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 4909 * shifted, 1GiB is enough and this function will indicate so. 4910 * 4911 * This is used to test whether pfn -> nid mapping of the chosen memory 4912 * model has fine enough granularity to avoid incorrect mapping for the 4913 * populated node map. 4914 * 4915 * Returns the determined alignment in pfn's. 0 if there is no alignment 4916 * requirement (single node). 4917 */ 4918 unsigned long __init node_map_pfn_alignment(void) 4919 { 4920 unsigned long accl_mask = 0, last_end = 0; 4921 unsigned long start, end, mask; 4922 int last_nid = -1; 4923 int i, nid; 4924 4925 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 4926 if (!start || last_nid < 0 || last_nid == nid) { 4927 last_nid = nid; 4928 last_end = end; 4929 continue; 4930 } 4931 4932 /* 4933 * Start with a mask granular enough to pin-point to the 4934 * start pfn and tick off bits one-by-one until it becomes 4935 * too coarse to separate the current node from the last. 4936 */ 4937 mask = ~((1 << __ffs(start)) - 1); 4938 while (mask && last_end <= (start & (mask << 1))) 4939 mask <<= 1; 4940 4941 /* accumulate all internode masks */ 4942 accl_mask |= mask; 4943 } 4944 4945 /* convert mask to number of pages */ 4946 return ~accl_mask + 1; 4947 } 4948 4949 /* Find the lowest pfn for a node */ 4950 static unsigned long __init find_min_pfn_for_node(int nid) 4951 { 4952 unsigned long min_pfn = ULONG_MAX; 4953 unsigned long start_pfn; 4954 int i; 4955 4956 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 4957 min_pfn = min(min_pfn, start_pfn); 4958 4959 if (min_pfn == ULONG_MAX) { 4960 printk(KERN_WARNING 4961 "Could not find start_pfn for node %d\n", nid); 4962 return 0; 4963 } 4964 4965 return min_pfn; 4966 } 4967 4968 /** 4969 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4970 * 4971 * It returns the minimum PFN based on information provided via 4972 * add_active_range(). 4973 */ 4974 unsigned long __init find_min_pfn_with_active_regions(void) 4975 { 4976 return find_min_pfn_for_node(MAX_NUMNODES); 4977 } 4978 4979 /* 4980 * early_calculate_totalpages() 4981 * Sum pages in active regions for movable zone. 4982 * Populate N_MEMORY for calculating usable_nodes. 4983 */ 4984 static unsigned long __init early_calculate_totalpages(void) 4985 { 4986 unsigned long totalpages = 0; 4987 unsigned long start_pfn, end_pfn; 4988 int i, nid; 4989 4990 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 4991 unsigned long pages = end_pfn - start_pfn; 4992 4993 totalpages += pages; 4994 if (pages) 4995 node_set_state(nid, N_MEMORY); 4996 } 4997 return totalpages; 4998 } 4999 5000 /* 5001 * Find the PFN the Movable zone begins in each node. Kernel memory 5002 * is spread evenly between nodes as long as the nodes have enough 5003 * memory. When they don't, some nodes will have more kernelcore than 5004 * others 5005 */ 5006 static void __init find_zone_movable_pfns_for_nodes(void) 5007 { 5008 int i, nid; 5009 unsigned long usable_startpfn; 5010 unsigned long kernelcore_node, kernelcore_remaining; 5011 /* save the state before borrow the nodemask */ 5012 nodemask_t saved_node_state = node_states[N_MEMORY]; 5013 unsigned long totalpages = early_calculate_totalpages(); 5014 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 5015 5016 /* 5017 * If movablecore was specified, calculate what size of 5018 * kernelcore that corresponds so that memory usable for 5019 * any allocation type is evenly spread. If both kernelcore 5020 * and movablecore are specified, then the value of kernelcore 5021 * will be used for required_kernelcore if it's greater than 5022 * what movablecore would have allowed. 5023 */ 5024 if (required_movablecore) { 5025 unsigned long corepages; 5026 5027 /* 5028 * Round-up so that ZONE_MOVABLE is at least as large as what 5029 * was requested by the user 5030 */ 5031 required_movablecore = 5032 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 5033 corepages = totalpages - required_movablecore; 5034 5035 required_kernelcore = max(required_kernelcore, corepages); 5036 } 5037 5038 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 5039 if (!required_kernelcore) 5040 goto out; 5041 5042 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 5043 find_usable_zone_for_movable(); 5044 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 5045 5046 restart: 5047 /* Spread kernelcore memory as evenly as possible throughout nodes */ 5048 kernelcore_node = required_kernelcore / usable_nodes; 5049 for_each_node_state(nid, N_MEMORY) { 5050 unsigned long start_pfn, end_pfn; 5051 5052 /* 5053 * Recalculate kernelcore_node if the division per node 5054 * now exceeds what is necessary to satisfy the requested 5055 * amount of memory for the kernel 5056 */ 5057 if (required_kernelcore < kernelcore_node) 5058 kernelcore_node = required_kernelcore / usable_nodes; 5059 5060 /* 5061 * As the map is walked, we track how much memory is usable 5062 * by the kernel using kernelcore_remaining. When it is 5063 * 0, the rest of the node is usable by ZONE_MOVABLE 5064 */ 5065 kernelcore_remaining = kernelcore_node; 5066 5067 /* Go through each range of PFNs within this node */ 5068 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5069 unsigned long size_pages; 5070 5071 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 5072 if (start_pfn >= end_pfn) 5073 continue; 5074 5075 /* Account for what is only usable for kernelcore */ 5076 if (start_pfn < usable_startpfn) { 5077 unsigned long kernel_pages; 5078 kernel_pages = min(end_pfn, usable_startpfn) 5079 - start_pfn; 5080 5081 kernelcore_remaining -= min(kernel_pages, 5082 kernelcore_remaining); 5083 required_kernelcore -= min(kernel_pages, 5084 required_kernelcore); 5085 5086 /* Continue if range is now fully accounted */ 5087 if (end_pfn <= usable_startpfn) { 5088 5089 /* 5090 * Push zone_movable_pfn to the end so 5091 * that if we have to rebalance 5092 * kernelcore across nodes, we will 5093 * not double account here 5094 */ 5095 zone_movable_pfn[nid] = end_pfn; 5096 continue; 5097 } 5098 start_pfn = usable_startpfn; 5099 } 5100 5101 /* 5102 * The usable PFN range for ZONE_MOVABLE is from 5103 * start_pfn->end_pfn. Calculate size_pages as the 5104 * number of pages used as kernelcore 5105 */ 5106 size_pages = end_pfn - start_pfn; 5107 if (size_pages > kernelcore_remaining) 5108 size_pages = kernelcore_remaining; 5109 zone_movable_pfn[nid] = start_pfn + size_pages; 5110 5111 /* 5112 * Some kernelcore has been met, update counts and 5113 * break if the kernelcore for this node has been 5114 * satisfied 5115 */ 5116 required_kernelcore -= min(required_kernelcore, 5117 size_pages); 5118 kernelcore_remaining -= size_pages; 5119 if (!kernelcore_remaining) 5120 break; 5121 } 5122 } 5123 5124 /* 5125 * If there is still required_kernelcore, we do another pass with one 5126 * less node in the count. This will push zone_movable_pfn[nid] further 5127 * along on the nodes that still have memory until kernelcore is 5128 * satisfied 5129 */ 5130 usable_nodes--; 5131 if (usable_nodes && required_kernelcore > usable_nodes) 5132 goto restart; 5133 5134 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 5135 for (nid = 0; nid < MAX_NUMNODES; nid++) 5136 zone_movable_pfn[nid] = 5137 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 5138 5139 out: 5140 /* restore the node_state */ 5141 node_states[N_MEMORY] = saved_node_state; 5142 } 5143 5144 /* Any regular or high memory on that node ? */ 5145 static void check_for_memory(pg_data_t *pgdat, int nid) 5146 { 5147 enum zone_type zone_type; 5148 5149 if (N_MEMORY == N_NORMAL_MEMORY) 5150 return; 5151 5152 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 5153 struct zone *zone = &pgdat->node_zones[zone_type]; 5154 if (populated_zone(zone)) { 5155 node_set_state(nid, N_HIGH_MEMORY); 5156 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 5157 zone_type <= ZONE_NORMAL) 5158 node_set_state(nid, N_NORMAL_MEMORY); 5159 break; 5160 } 5161 } 5162 } 5163 5164 /** 5165 * free_area_init_nodes - Initialise all pg_data_t and zone data 5166 * @max_zone_pfn: an array of max PFNs for each zone 5167 * 5168 * This will call free_area_init_node() for each active node in the system. 5169 * Using the page ranges provided by add_active_range(), the size of each 5170 * zone in each node and their holes is calculated. If the maximum PFN 5171 * between two adjacent zones match, it is assumed that the zone is empty. 5172 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5173 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5174 * starts where the previous one ended. For example, ZONE_DMA32 starts 5175 * at arch_max_dma_pfn. 5176 */ 5177 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5178 { 5179 unsigned long start_pfn, end_pfn; 5180 int i, nid; 5181 5182 /* Record where the zone boundaries are */ 5183 memset(arch_zone_lowest_possible_pfn, 0, 5184 sizeof(arch_zone_lowest_possible_pfn)); 5185 memset(arch_zone_highest_possible_pfn, 0, 5186 sizeof(arch_zone_highest_possible_pfn)); 5187 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5188 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5189 for (i = 1; i < MAX_NR_ZONES; i++) { 5190 if (i == ZONE_MOVABLE) 5191 continue; 5192 arch_zone_lowest_possible_pfn[i] = 5193 arch_zone_highest_possible_pfn[i-1]; 5194 arch_zone_highest_possible_pfn[i] = 5195 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5196 } 5197 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5198 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5199 5200 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5201 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5202 find_zone_movable_pfns_for_nodes(); 5203 5204 /* Print out the zone ranges */ 5205 printk("Zone ranges:\n"); 5206 for (i = 0; i < MAX_NR_ZONES; i++) { 5207 if (i == ZONE_MOVABLE) 5208 continue; 5209 printk(KERN_CONT " %-8s ", zone_names[i]); 5210 if (arch_zone_lowest_possible_pfn[i] == 5211 arch_zone_highest_possible_pfn[i]) 5212 printk(KERN_CONT "empty\n"); 5213 else 5214 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", 5215 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, 5216 (arch_zone_highest_possible_pfn[i] 5217 << PAGE_SHIFT) - 1); 5218 } 5219 5220 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5221 printk("Movable zone start for each node\n"); 5222 for (i = 0; i < MAX_NUMNODES; i++) { 5223 if (zone_movable_pfn[i]) 5224 printk(" Node %d: %#010lx\n", i, 5225 zone_movable_pfn[i] << PAGE_SHIFT); 5226 } 5227 5228 /* Print out the early node map */ 5229 printk("Early memory node ranges\n"); 5230 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5231 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, 5232 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); 5233 5234 /* Initialise every node */ 5235 mminit_verify_pageflags_layout(); 5236 setup_nr_node_ids(); 5237 for_each_online_node(nid) { 5238 pg_data_t *pgdat = NODE_DATA(nid); 5239 free_area_init_node(nid, NULL, 5240 find_min_pfn_for_node(nid), NULL); 5241 5242 /* Any memory on that node */ 5243 if (pgdat->node_present_pages) 5244 node_set_state(nid, N_MEMORY); 5245 check_for_memory(pgdat, nid); 5246 } 5247 } 5248 5249 static int __init cmdline_parse_core(char *p, unsigned long *core) 5250 { 5251 unsigned long long coremem; 5252 if (!p) 5253 return -EINVAL; 5254 5255 coremem = memparse(p, &p); 5256 *core = coremem >> PAGE_SHIFT; 5257 5258 /* Paranoid check that UL is enough for the coremem value */ 5259 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5260 5261 return 0; 5262 } 5263 5264 /* 5265 * kernelcore=size sets the amount of memory for use for allocations that 5266 * cannot be reclaimed or migrated. 5267 */ 5268 static int __init cmdline_parse_kernelcore(char *p) 5269 { 5270 return cmdline_parse_core(p, &required_kernelcore); 5271 } 5272 5273 /* 5274 * movablecore=size sets the amount of memory for use for allocations that 5275 * can be reclaimed or migrated. 5276 */ 5277 static int __init cmdline_parse_movablecore(char *p) 5278 { 5279 return cmdline_parse_core(p, &required_movablecore); 5280 } 5281 5282 early_param("kernelcore", cmdline_parse_kernelcore); 5283 early_param("movablecore", cmdline_parse_movablecore); 5284 5285 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5286 5287 void adjust_managed_page_count(struct page *page, long count) 5288 { 5289 spin_lock(&managed_page_count_lock); 5290 page_zone(page)->managed_pages += count; 5291 totalram_pages += count; 5292 #ifdef CONFIG_HIGHMEM 5293 if (PageHighMem(page)) 5294 totalhigh_pages += count; 5295 #endif 5296 spin_unlock(&managed_page_count_lock); 5297 } 5298 EXPORT_SYMBOL(adjust_managed_page_count); 5299 5300 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 5301 { 5302 void *pos; 5303 unsigned long pages = 0; 5304 5305 start = (void *)PAGE_ALIGN((unsigned long)start); 5306 end = (void *)((unsigned long)end & PAGE_MASK); 5307 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5308 if ((unsigned int)poison <= 0xFF) 5309 memset(pos, poison, PAGE_SIZE); 5310 free_reserved_page(virt_to_page(pos)); 5311 } 5312 5313 if (pages && s) 5314 pr_info("Freeing %s memory: %ldK (%p - %p)\n", 5315 s, pages << (PAGE_SHIFT - 10), start, end); 5316 5317 return pages; 5318 } 5319 EXPORT_SYMBOL(free_reserved_area); 5320 5321 #ifdef CONFIG_HIGHMEM 5322 void free_highmem_page(struct page *page) 5323 { 5324 __free_reserved_page(page); 5325 totalram_pages++; 5326 page_zone(page)->managed_pages++; 5327 totalhigh_pages++; 5328 } 5329 #endif 5330 5331 5332 void __init mem_init_print_info(const char *str) 5333 { 5334 unsigned long physpages, codesize, datasize, rosize, bss_size; 5335 unsigned long init_code_size, init_data_size; 5336 5337 physpages = get_num_physpages(); 5338 codesize = _etext - _stext; 5339 datasize = _edata - _sdata; 5340 rosize = __end_rodata - __start_rodata; 5341 bss_size = __bss_stop - __bss_start; 5342 init_data_size = __init_end - __init_begin; 5343 init_code_size = _einittext - _sinittext; 5344 5345 /* 5346 * Detect special cases and adjust section sizes accordingly: 5347 * 1) .init.* may be embedded into .data sections 5348 * 2) .init.text.* may be out of [__init_begin, __init_end], 5349 * please refer to arch/tile/kernel/vmlinux.lds.S. 5350 * 3) .rodata.* may be embedded into .text or .data sections. 5351 */ 5352 #define adj_init_size(start, end, size, pos, adj) \ 5353 do { \ 5354 if (start <= pos && pos < end && size > adj) \ 5355 size -= adj; \ 5356 } while (0) 5357 5358 adj_init_size(__init_begin, __init_end, init_data_size, 5359 _sinittext, init_code_size); 5360 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 5361 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 5362 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 5363 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 5364 5365 #undef adj_init_size 5366 5367 printk("Memory: %luK/%luK available " 5368 "(%luK kernel code, %luK rwdata, %luK rodata, " 5369 "%luK init, %luK bss, %luK reserved" 5370 #ifdef CONFIG_HIGHMEM 5371 ", %luK highmem" 5372 #endif 5373 "%s%s)\n", 5374 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), 5375 codesize >> 10, datasize >> 10, rosize >> 10, 5376 (init_data_size + init_code_size) >> 10, bss_size >> 10, 5377 (physpages - totalram_pages) << (PAGE_SHIFT-10), 5378 #ifdef CONFIG_HIGHMEM 5379 totalhigh_pages << (PAGE_SHIFT-10), 5380 #endif 5381 str ? ", " : "", str ? str : ""); 5382 } 5383 5384 /** 5385 * set_dma_reserve - set the specified number of pages reserved in the first zone 5386 * @new_dma_reserve: The number of pages to mark reserved 5387 * 5388 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5389 * In the DMA zone, a significant percentage may be consumed by kernel image 5390 * and other unfreeable allocations which can skew the watermarks badly. This 5391 * function may optionally be used to account for unfreeable pages in the 5392 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5393 * smaller per-cpu batchsize. 5394 */ 5395 void __init set_dma_reserve(unsigned long new_dma_reserve) 5396 { 5397 dma_reserve = new_dma_reserve; 5398 } 5399 5400 void __init free_area_init(unsigned long *zones_size) 5401 { 5402 free_area_init_node(0, zones_size, 5403 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5404 } 5405 5406 static int page_alloc_cpu_notify(struct notifier_block *self, 5407 unsigned long action, void *hcpu) 5408 { 5409 int cpu = (unsigned long)hcpu; 5410 5411 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5412 lru_add_drain_cpu(cpu); 5413 drain_pages(cpu); 5414 5415 /* 5416 * Spill the event counters of the dead processor 5417 * into the current processors event counters. 5418 * This artificially elevates the count of the current 5419 * processor. 5420 */ 5421 vm_events_fold_cpu(cpu); 5422 5423 /* 5424 * Zero the differential counters of the dead processor 5425 * so that the vm statistics are consistent. 5426 * 5427 * This is only okay since the processor is dead and cannot 5428 * race with what we are doing. 5429 */ 5430 cpu_vm_stats_fold(cpu); 5431 } 5432 return NOTIFY_OK; 5433 } 5434 5435 void __init page_alloc_init(void) 5436 { 5437 hotcpu_notifier(page_alloc_cpu_notify, 0); 5438 } 5439 5440 /* 5441 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5442 * or min_free_kbytes changes. 5443 */ 5444 static void calculate_totalreserve_pages(void) 5445 { 5446 struct pglist_data *pgdat; 5447 unsigned long reserve_pages = 0; 5448 enum zone_type i, j; 5449 5450 for_each_online_pgdat(pgdat) { 5451 for (i = 0; i < MAX_NR_ZONES; i++) { 5452 struct zone *zone = pgdat->node_zones + i; 5453 unsigned long max = 0; 5454 5455 /* Find valid and maximum lowmem_reserve in the zone */ 5456 for (j = i; j < MAX_NR_ZONES; j++) { 5457 if (zone->lowmem_reserve[j] > max) 5458 max = zone->lowmem_reserve[j]; 5459 } 5460 5461 /* we treat the high watermark as reserved pages. */ 5462 max += high_wmark_pages(zone); 5463 5464 if (max > zone->managed_pages) 5465 max = zone->managed_pages; 5466 reserve_pages += max; 5467 /* 5468 * Lowmem reserves are not available to 5469 * GFP_HIGHUSER page cache allocations and 5470 * kswapd tries to balance zones to their high 5471 * watermark. As a result, neither should be 5472 * regarded as dirtyable memory, to prevent a 5473 * situation where reclaim has to clean pages 5474 * in order to balance the zones. 5475 */ 5476 zone->dirty_balance_reserve = max; 5477 } 5478 } 5479 dirty_balance_reserve = reserve_pages; 5480 totalreserve_pages = reserve_pages; 5481 } 5482 5483 /* 5484 * setup_per_zone_lowmem_reserve - called whenever 5485 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5486 * has a correct pages reserved value, so an adequate number of 5487 * pages are left in the zone after a successful __alloc_pages(). 5488 */ 5489 static void setup_per_zone_lowmem_reserve(void) 5490 { 5491 struct pglist_data *pgdat; 5492 enum zone_type j, idx; 5493 5494 for_each_online_pgdat(pgdat) { 5495 for (j = 0; j < MAX_NR_ZONES; j++) { 5496 struct zone *zone = pgdat->node_zones + j; 5497 unsigned long managed_pages = zone->managed_pages; 5498 5499 zone->lowmem_reserve[j] = 0; 5500 5501 idx = j; 5502 while (idx) { 5503 struct zone *lower_zone; 5504 5505 idx--; 5506 5507 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5508 sysctl_lowmem_reserve_ratio[idx] = 1; 5509 5510 lower_zone = pgdat->node_zones + idx; 5511 lower_zone->lowmem_reserve[j] = managed_pages / 5512 sysctl_lowmem_reserve_ratio[idx]; 5513 managed_pages += lower_zone->managed_pages; 5514 } 5515 } 5516 } 5517 5518 /* update totalreserve_pages */ 5519 calculate_totalreserve_pages(); 5520 } 5521 5522 static void __setup_per_zone_wmarks(void) 5523 { 5524 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5525 unsigned long lowmem_pages = 0; 5526 struct zone *zone; 5527 unsigned long flags; 5528 5529 /* Calculate total number of !ZONE_HIGHMEM pages */ 5530 for_each_zone(zone) { 5531 if (!is_highmem(zone)) 5532 lowmem_pages += zone->managed_pages; 5533 } 5534 5535 for_each_zone(zone) { 5536 u64 tmp; 5537 5538 spin_lock_irqsave(&zone->lock, flags); 5539 tmp = (u64)pages_min * zone->managed_pages; 5540 do_div(tmp, lowmem_pages); 5541 if (is_highmem(zone)) { 5542 /* 5543 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5544 * need highmem pages, so cap pages_min to a small 5545 * value here. 5546 * 5547 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5548 * deltas controls asynch page reclaim, and so should 5549 * not be capped for highmem. 5550 */ 5551 unsigned long min_pages; 5552 5553 min_pages = zone->managed_pages / 1024; 5554 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5555 zone->watermark[WMARK_MIN] = min_pages; 5556 } else { 5557 /* 5558 * If it's a lowmem zone, reserve a number of pages 5559 * proportionate to the zone's size. 5560 */ 5561 zone->watermark[WMARK_MIN] = tmp; 5562 } 5563 5564 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5565 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5566 5567 __mod_zone_page_state(zone, NR_ALLOC_BATCH, 5568 high_wmark_pages(zone) - 5569 low_wmark_pages(zone) - 5570 zone_page_state(zone, NR_ALLOC_BATCH)); 5571 5572 setup_zone_migrate_reserve(zone); 5573 spin_unlock_irqrestore(&zone->lock, flags); 5574 } 5575 5576 /* update totalreserve_pages */ 5577 calculate_totalreserve_pages(); 5578 } 5579 5580 /** 5581 * setup_per_zone_wmarks - called when min_free_kbytes changes 5582 * or when memory is hot-{added|removed} 5583 * 5584 * Ensures that the watermark[min,low,high] values for each zone are set 5585 * correctly with respect to min_free_kbytes. 5586 */ 5587 void setup_per_zone_wmarks(void) 5588 { 5589 mutex_lock(&zonelists_mutex); 5590 __setup_per_zone_wmarks(); 5591 mutex_unlock(&zonelists_mutex); 5592 } 5593 5594 /* 5595 * The inactive anon list should be small enough that the VM never has to 5596 * do too much work, but large enough that each inactive page has a chance 5597 * to be referenced again before it is swapped out. 5598 * 5599 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5600 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5601 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5602 * the anonymous pages are kept on the inactive list. 5603 * 5604 * total target max 5605 * memory ratio inactive anon 5606 * ------------------------------------- 5607 * 10MB 1 5MB 5608 * 100MB 1 50MB 5609 * 1GB 3 250MB 5610 * 10GB 10 0.9GB 5611 * 100GB 31 3GB 5612 * 1TB 101 10GB 5613 * 10TB 320 32GB 5614 */ 5615 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5616 { 5617 unsigned int gb, ratio; 5618 5619 /* Zone size in gigabytes */ 5620 gb = zone->managed_pages >> (30 - PAGE_SHIFT); 5621 if (gb) 5622 ratio = int_sqrt(10 * gb); 5623 else 5624 ratio = 1; 5625 5626 zone->inactive_ratio = ratio; 5627 } 5628 5629 static void __meminit setup_per_zone_inactive_ratio(void) 5630 { 5631 struct zone *zone; 5632 5633 for_each_zone(zone) 5634 calculate_zone_inactive_ratio(zone); 5635 } 5636 5637 /* 5638 * Initialise min_free_kbytes. 5639 * 5640 * For small machines we want it small (128k min). For large machines 5641 * we want it large (64MB max). But it is not linear, because network 5642 * bandwidth does not increase linearly with machine size. We use 5643 * 5644 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5645 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5646 * 5647 * which yields 5648 * 5649 * 16MB: 512k 5650 * 32MB: 724k 5651 * 64MB: 1024k 5652 * 128MB: 1448k 5653 * 256MB: 2048k 5654 * 512MB: 2896k 5655 * 1024MB: 4096k 5656 * 2048MB: 5792k 5657 * 4096MB: 8192k 5658 * 8192MB: 11584k 5659 * 16384MB: 16384k 5660 */ 5661 int __meminit init_per_zone_wmark_min(void) 5662 { 5663 unsigned long lowmem_kbytes; 5664 int new_min_free_kbytes; 5665 5666 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5667 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5668 5669 if (new_min_free_kbytes > user_min_free_kbytes) { 5670 min_free_kbytes = new_min_free_kbytes; 5671 if (min_free_kbytes < 128) 5672 min_free_kbytes = 128; 5673 if (min_free_kbytes > 65536) 5674 min_free_kbytes = 65536; 5675 } else { 5676 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5677 new_min_free_kbytes, user_min_free_kbytes); 5678 } 5679 setup_per_zone_wmarks(); 5680 refresh_zone_stat_thresholds(); 5681 setup_per_zone_lowmem_reserve(); 5682 setup_per_zone_inactive_ratio(); 5683 return 0; 5684 } 5685 module_init(init_per_zone_wmark_min) 5686 5687 /* 5688 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5689 * that we can call two helper functions whenever min_free_kbytes 5690 * changes. 5691 */ 5692 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5693 void __user *buffer, size_t *length, loff_t *ppos) 5694 { 5695 proc_dointvec(table, write, buffer, length, ppos); 5696 if (write) { 5697 user_min_free_kbytes = min_free_kbytes; 5698 setup_per_zone_wmarks(); 5699 } 5700 return 0; 5701 } 5702 5703 #ifdef CONFIG_NUMA 5704 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5705 void __user *buffer, size_t *length, loff_t *ppos) 5706 { 5707 struct zone *zone; 5708 int rc; 5709 5710 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5711 if (rc) 5712 return rc; 5713 5714 for_each_zone(zone) 5715 zone->min_unmapped_pages = (zone->managed_pages * 5716 sysctl_min_unmapped_ratio) / 100; 5717 return 0; 5718 } 5719 5720 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5721 void __user *buffer, size_t *length, loff_t *ppos) 5722 { 5723 struct zone *zone; 5724 int rc; 5725 5726 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5727 if (rc) 5728 return rc; 5729 5730 for_each_zone(zone) 5731 zone->min_slab_pages = (zone->managed_pages * 5732 sysctl_min_slab_ratio) / 100; 5733 return 0; 5734 } 5735 #endif 5736 5737 /* 5738 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5739 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5740 * whenever sysctl_lowmem_reserve_ratio changes. 5741 * 5742 * The reserve ratio obviously has absolutely no relation with the 5743 * minimum watermarks. The lowmem reserve ratio can only make sense 5744 * if in function of the boot time zone sizes. 5745 */ 5746 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5747 void __user *buffer, size_t *length, loff_t *ppos) 5748 { 5749 proc_dointvec_minmax(table, write, buffer, length, ppos); 5750 setup_per_zone_lowmem_reserve(); 5751 return 0; 5752 } 5753 5754 /* 5755 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5756 * cpu. It is the fraction of total pages in each zone that a hot per cpu 5757 * pagelist can have before it gets flushed back to buddy allocator. 5758 */ 5759 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5760 void __user *buffer, size_t *length, loff_t *ppos) 5761 { 5762 struct zone *zone; 5763 unsigned int cpu; 5764 int ret; 5765 5766 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5767 if (!write || (ret < 0)) 5768 return ret; 5769 5770 mutex_lock(&pcp_batch_high_lock); 5771 for_each_populated_zone(zone) { 5772 unsigned long high; 5773 high = zone->managed_pages / percpu_pagelist_fraction; 5774 for_each_possible_cpu(cpu) 5775 pageset_set_high(per_cpu_ptr(zone->pageset, cpu), 5776 high); 5777 } 5778 mutex_unlock(&pcp_batch_high_lock); 5779 return 0; 5780 } 5781 5782 int hashdist = HASHDIST_DEFAULT; 5783 5784 #ifdef CONFIG_NUMA 5785 static int __init set_hashdist(char *str) 5786 { 5787 if (!str) 5788 return 0; 5789 hashdist = simple_strtoul(str, &str, 0); 5790 return 1; 5791 } 5792 __setup("hashdist=", set_hashdist); 5793 #endif 5794 5795 /* 5796 * allocate a large system hash table from bootmem 5797 * - it is assumed that the hash table must contain an exact power-of-2 5798 * quantity of entries 5799 * - limit is the number of hash buckets, not the total allocation size 5800 */ 5801 void *__init alloc_large_system_hash(const char *tablename, 5802 unsigned long bucketsize, 5803 unsigned long numentries, 5804 int scale, 5805 int flags, 5806 unsigned int *_hash_shift, 5807 unsigned int *_hash_mask, 5808 unsigned long low_limit, 5809 unsigned long high_limit) 5810 { 5811 unsigned long long max = high_limit; 5812 unsigned long log2qty, size; 5813 void *table = NULL; 5814 5815 /* allow the kernel cmdline to have a say */ 5816 if (!numentries) { 5817 /* round applicable memory size up to nearest megabyte */ 5818 numentries = nr_kernel_pages; 5819 5820 /* It isn't necessary when PAGE_SIZE >= 1MB */ 5821 if (PAGE_SHIFT < 20) 5822 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 5823 5824 /* limit to 1 bucket per 2^scale bytes of low memory */ 5825 if (scale > PAGE_SHIFT) 5826 numentries >>= (scale - PAGE_SHIFT); 5827 else 5828 numentries <<= (PAGE_SHIFT - scale); 5829 5830 /* Make sure we've got at least a 0-order allocation.. */ 5831 if (unlikely(flags & HASH_SMALL)) { 5832 /* Makes no sense without HASH_EARLY */ 5833 WARN_ON(!(flags & HASH_EARLY)); 5834 if (!(numentries >> *_hash_shift)) { 5835 numentries = 1UL << *_hash_shift; 5836 BUG_ON(!numentries); 5837 } 5838 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5839 numentries = PAGE_SIZE / bucketsize; 5840 } 5841 numentries = roundup_pow_of_two(numentries); 5842 5843 /* limit allocation size to 1/16 total memory by default */ 5844 if (max == 0) { 5845 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5846 do_div(max, bucketsize); 5847 } 5848 max = min(max, 0x80000000ULL); 5849 5850 if (numentries < low_limit) 5851 numentries = low_limit; 5852 if (numentries > max) 5853 numentries = max; 5854 5855 log2qty = ilog2(numentries); 5856 5857 do { 5858 size = bucketsize << log2qty; 5859 if (flags & HASH_EARLY) 5860 table = alloc_bootmem_nopanic(size); 5861 else if (hashdist) 5862 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5863 else { 5864 /* 5865 * If bucketsize is not a power-of-two, we may free 5866 * some pages at the end of hash table which 5867 * alloc_pages_exact() automatically does 5868 */ 5869 if (get_order(size) < MAX_ORDER) { 5870 table = alloc_pages_exact(size, GFP_ATOMIC); 5871 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5872 } 5873 } 5874 } while (!table && size > PAGE_SIZE && --log2qty); 5875 5876 if (!table) 5877 panic("Failed to allocate %s hash table\n", tablename); 5878 5879 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5880 tablename, 5881 (1UL << log2qty), 5882 ilog2(size) - PAGE_SHIFT, 5883 size); 5884 5885 if (_hash_shift) 5886 *_hash_shift = log2qty; 5887 if (_hash_mask) 5888 *_hash_mask = (1 << log2qty) - 1; 5889 5890 return table; 5891 } 5892 5893 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5894 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5895 unsigned long pfn) 5896 { 5897 #ifdef CONFIG_SPARSEMEM 5898 return __pfn_to_section(pfn)->pageblock_flags; 5899 #else 5900 return zone->pageblock_flags; 5901 #endif /* CONFIG_SPARSEMEM */ 5902 } 5903 5904 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5905 { 5906 #ifdef CONFIG_SPARSEMEM 5907 pfn &= (PAGES_PER_SECTION-1); 5908 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5909 #else 5910 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 5911 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5912 #endif /* CONFIG_SPARSEMEM */ 5913 } 5914 5915 /** 5916 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5917 * @page: The page within the block of interest 5918 * @start_bitidx: The first bit of interest to retrieve 5919 * @end_bitidx: The last bit of interest 5920 * returns pageblock_bits flags 5921 */ 5922 unsigned long get_pageblock_flags_group(struct page *page, 5923 int start_bitidx, int end_bitidx) 5924 { 5925 struct zone *zone; 5926 unsigned long *bitmap; 5927 unsigned long pfn, bitidx; 5928 unsigned long flags = 0; 5929 unsigned long value = 1; 5930 5931 zone = page_zone(page); 5932 pfn = page_to_pfn(page); 5933 bitmap = get_pageblock_bitmap(zone, pfn); 5934 bitidx = pfn_to_bitidx(zone, pfn); 5935 5936 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5937 if (test_bit(bitidx + start_bitidx, bitmap)) 5938 flags |= value; 5939 5940 return flags; 5941 } 5942 5943 /** 5944 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5945 * @page: The page within the block of interest 5946 * @start_bitidx: The first bit of interest 5947 * @end_bitidx: The last bit of interest 5948 * @flags: The flags to set 5949 */ 5950 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5951 int start_bitidx, int end_bitidx) 5952 { 5953 struct zone *zone; 5954 unsigned long *bitmap; 5955 unsigned long pfn, bitidx; 5956 unsigned long value = 1; 5957 5958 zone = page_zone(page); 5959 pfn = page_to_pfn(page); 5960 bitmap = get_pageblock_bitmap(zone, pfn); 5961 bitidx = pfn_to_bitidx(zone, pfn); 5962 VM_BUG_ON(!zone_spans_pfn(zone, pfn)); 5963 5964 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5965 if (flags & value) 5966 __set_bit(bitidx + start_bitidx, bitmap); 5967 else 5968 __clear_bit(bitidx + start_bitidx, bitmap); 5969 } 5970 5971 /* 5972 * This function checks whether pageblock includes unmovable pages or not. 5973 * If @count is not zero, it is okay to include less @count unmovable pages 5974 * 5975 * PageLRU check without isolation or lru_lock could race so that 5976 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 5977 * expect this function should be exact. 5978 */ 5979 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 5980 bool skip_hwpoisoned_pages) 5981 { 5982 unsigned long pfn, iter, found; 5983 int mt; 5984 5985 /* 5986 * For avoiding noise data, lru_add_drain_all() should be called 5987 * If ZONE_MOVABLE, the zone never contains unmovable pages 5988 */ 5989 if (zone_idx(zone) == ZONE_MOVABLE) 5990 return false; 5991 mt = get_pageblock_migratetype(page); 5992 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 5993 return false; 5994 5995 pfn = page_to_pfn(page); 5996 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5997 unsigned long check = pfn + iter; 5998 5999 if (!pfn_valid_within(check)) 6000 continue; 6001 6002 page = pfn_to_page(check); 6003 6004 /* 6005 * Hugepages are not in LRU lists, but they're movable. 6006 * We need not scan over tail pages bacause we don't 6007 * handle each tail page individually in migration. 6008 */ 6009 if (PageHuge(page)) { 6010 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 6011 continue; 6012 } 6013 6014 /* 6015 * We can't use page_count without pin a page 6016 * because another CPU can free compound page. 6017 * This check already skips compound tails of THP 6018 * because their page->_count is zero at all time. 6019 */ 6020 if (!atomic_read(&page->_count)) { 6021 if (PageBuddy(page)) 6022 iter += (1 << page_order(page)) - 1; 6023 continue; 6024 } 6025 6026 /* 6027 * The HWPoisoned page may be not in buddy system, and 6028 * page_count() is not 0. 6029 */ 6030 if (skip_hwpoisoned_pages && PageHWPoison(page)) 6031 continue; 6032 6033 if (!PageLRU(page)) 6034 found++; 6035 /* 6036 * If there are RECLAIMABLE pages, we need to check it. 6037 * But now, memory offline itself doesn't call shrink_slab() 6038 * and it still to be fixed. 6039 */ 6040 /* 6041 * If the page is not RAM, page_count()should be 0. 6042 * we don't need more check. This is an _used_ not-movable page. 6043 * 6044 * The problematic thing here is PG_reserved pages. PG_reserved 6045 * is set to both of a memory hole page and a _used_ kernel 6046 * page at boot. 6047 */ 6048 if (found > count) 6049 return true; 6050 } 6051 return false; 6052 } 6053 6054 bool is_pageblock_removable_nolock(struct page *page) 6055 { 6056 struct zone *zone; 6057 unsigned long pfn; 6058 6059 /* 6060 * We have to be careful here because we are iterating over memory 6061 * sections which are not zone aware so we might end up outside of 6062 * the zone but still within the section. 6063 * We have to take care about the node as well. If the node is offline 6064 * its NODE_DATA will be NULL - see page_zone. 6065 */ 6066 if (!node_online(page_to_nid(page))) 6067 return false; 6068 6069 zone = page_zone(page); 6070 pfn = page_to_pfn(page); 6071 if (!zone_spans_pfn(zone, pfn)) 6072 return false; 6073 6074 return !has_unmovable_pages(zone, page, 0, true); 6075 } 6076 6077 #ifdef CONFIG_CMA 6078 6079 static unsigned long pfn_max_align_down(unsigned long pfn) 6080 { 6081 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 6082 pageblock_nr_pages) - 1); 6083 } 6084 6085 static unsigned long pfn_max_align_up(unsigned long pfn) 6086 { 6087 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 6088 pageblock_nr_pages)); 6089 } 6090 6091 /* [start, end) must belong to a single zone. */ 6092 static int __alloc_contig_migrate_range(struct compact_control *cc, 6093 unsigned long start, unsigned long end) 6094 { 6095 /* This function is based on compact_zone() from compaction.c. */ 6096 unsigned long nr_reclaimed; 6097 unsigned long pfn = start; 6098 unsigned int tries = 0; 6099 int ret = 0; 6100 6101 migrate_prep(); 6102 6103 while (pfn < end || !list_empty(&cc->migratepages)) { 6104 if (fatal_signal_pending(current)) { 6105 ret = -EINTR; 6106 break; 6107 } 6108 6109 if (list_empty(&cc->migratepages)) { 6110 cc->nr_migratepages = 0; 6111 pfn = isolate_migratepages_range(cc->zone, cc, 6112 pfn, end, true); 6113 if (!pfn) { 6114 ret = -EINTR; 6115 break; 6116 } 6117 tries = 0; 6118 } else if (++tries == 5) { 6119 ret = ret < 0 ? ret : -EBUSY; 6120 break; 6121 } 6122 6123 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6124 &cc->migratepages); 6125 cc->nr_migratepages -= nr_reclaimed; 6126 6127 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 6128 0, MIGRATE_SYNC, MR_CMA); 6129 } 6130 if (ret < 0) { 6131 putback_movable_pages(&cc->migratepages); 6132 return ret; 6133 } 6134 return 0; 6135 } 6136 6137 /** 6138 * alloc_contig_range() -- tries to allocate given range of pages 6139 * @start: start PFN to allocate 6140 * @end: one-past-the-last PFN to allocate 6141 * @migratetype: migratetype of the underlaying pageblocks (either 6142 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6143 * in range must have the same migratetype and it must 6144 * be either of the two. 6145 * 6146 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 6147 * aligned, however it's the caller's responsibility to guarantee that 6148 * we are the only thread that changes migrate type of pageblocks the 6149 * pages fall in. 6150 * 6151 * The PFN range must belong to a single zone. 6152 * 6153 * Returns zero on success or negative error code. On success all 6154 * pages which PFN is in [start, end) are allocated for the caller and 6155 * need to be freed with free_contig_range(). 6156 */ 6157 int alloc_contig_range(unsigned long start, unsigned long end, 6158 unsigned migratetype) 6159 { 6160 unsigned long outer_start, outer_end; 6161 int ret = 0, order; 6162 6163 struct compact_control cc = { 6164 .nr_migratepages = 0, 6165 .order = -1, 6166 .zone = page_zone(pfn_to_page(start)), 6167 .sync = true, 6168 .ignore_skip_hint = true, 6169 }; 6170 INIT_LIST_HEAD(&cc.migratepages); 6171 6172 /* 6173 * What we do here is we mark all pageblocks in range as 6174 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6175 * have different sizes, and due to the way page allocator 6176 * work, we align the range to biggest of the two pages so 6177 * that page allocator won't try to merge buddies from 6178 * different pageblocks and change MIGRATE_ISOLATE to some 6179 * other migration type. 6180 * 6181 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6182 * migrate the pages from an unaligned range (ie. pages that 6183 * we are interested in). This will put all the pages in 6184 * range back to page allocator as MIGRATE_ISOLATE. 6185 * 6186 * When this is done, we take the pages in range from page 6187 * allocator removing them from the buddy system. This way 6188 * page allocator will never consider using them. 6189 * 6190 * This lets us mark the pageblocks back as 6191 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6192 * aligned range but not in the unaligned, original range are 6193 * put back to page allocator so that buddy can use them. 6194 */ 6195 6196 ret = start_isolate_page_range(pfn_max_align_down(start), 6197 pfn_max_align_up(end), migratetype, 6198 false); 6199 if (ret) 6200 return ret; 6201 6202 ret = __alloc_contig_migrate_range(&cc, start, end); 6203 if (ret) 6204 goto done; 6205 6206 /* 6207 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 6208 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6209 * more, all pages in [start, end) are free in page allocator. 6210 * What we are going to do is to allocate all pages from 6211 * [start, end) (that is remove them from page allocator). 6212 * 6213 * The only problem is that pages at the beginning and at the 6214 * end of interesting range may be not aligned with pages that 6215 * page allocator holds, ie. they can be part of higher order 6216 * pages. Because of this, we reserve the bigger range and 6217 * once this is done free the pages we are not interested in. 6218 * 6219 * We don't have to hold zone->lock here because the pages are 6220 * isolated thus they won't get removed from buddy. 6221 */ 6222 6223 lru_add_drain_all(); 6224 drain_all_pages(); 6225 6226 order = 0; 6227 outer_start = start; 6228 while (!PageBuddy(pfn_to_page(outer_start))) { 6229 if (++order >= MAX_ORDER) { 6230 ret = -EBUSY; 6231 goto done; 6232 } 6233 outer_start &= ~0UL << order; 6234 } 6235 6236 /* Make sure the range is really isolated. */ 6237 if (test_pages_isolated(outer_start, end, false)) { 6238 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", 6239 outer_start, end); 6240 ret = -EBUSY; 6241 goto done; 6242 } 6243 6244 6245 /* Grab isolated pages from freelists. */ 6246 outer_end = isolate_freepages_range(&cc, outer_start, end); 6247 if (!outer_end) { 6248 ret = -EBUSY; 6249 goto done; 6250 } 6251 6252 /* Free head and tail (if any) */ 6253 if (start != outer_start) 6254 free_contig_range(outer_start, start - outer_start); 6255 if (end != outer_end) 6256 free_contig_range(end, outer_end - end); 6257 6258 done: 6259 undo_isolate_page_range(pfn_max_align_down(start), 6260 pfn_max_align_up(end), migratetype); 6261 return ret; 6262 } 6263 6264 void free_contig_range(unsigned long pfn, unsigned nr_pages) 6265 { 6266 unsigned int count = 0; 6267 6268 for (; nr_pages--; pfn++) { 6269 struct page *page = pfn_to_page(pfn); 6270 6271 count += page_count(page) != 1; 6272 __free_page(page); 6273 } 6274 WARN(count != 0, "%d pages are still in use!\n", count); 6275 } 6276 #endif 6277 6278 #ifdef CONFIG_MEMORY_HOTPLUG 6279 /* 6280 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6281 * page high values need to be recalulated. 6282 */ 6283 void __meminit zone_pcp_update(struct zone *zone) 6284 { 6285 unsigned cpu; 6286 mutex_lock(&pcp_batch_high_lock); 6287 for_each_possible_cpu(cpu) 6288 pageset_set_high_and_batch(zone, 6289 per_cpu_ptr(zone->pageset, cpu)); 6290 mutex_unlock(&pcp_batch_high_lock); 6291 } 6292 #endif 6293 6294 void zone_pcp_reset(struct zone *zone) 6295 { 6296 unsigned long flags; 6297 int cpu; 6298 struct per_cpu_pageset *pset; 6299 6300 /* avoid races with drain_pages() */ 6301 local_irq_save(flags); 6302 if (zone->pageset != &boot_pageset) { 6303 for_each_online_cpu(cpu) { 6304 pset = per_cpu_ptr(zone->pageset, cpu); 6305 drain_zonestat(zone, pset); 6306 } 6307 free_percpu(zone->pageset); 6308 zone->pageset = &boot_pageset; 6309 } 6310 local_irq_restore(flags); 6311 } 6312 6313 #ifdef CONFIG_MEMORY_HOTREMOVE 6314 /* 6315 * All pages in the range must be isolated before calling this. 6316 */ 6317 void 6318 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6319 { 6320 struct page *page; 6321 struct zone *zone; 6322 int order, i; 6323 unsigned long pfn; 6324 unsigned long flags; 6325 /* find the first valid pfn */ 6326 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6327 if (pfn_valid(pfn)) 6328 break; 6329 if (pfn == end_pfn) 6330 return; 6331 zone = page_zone(pfn_to_page(pfn)); 6332 spin_lock_irqsave(&zone->lock, flags); 6333 pfn = start_pfn; 6334 while (pfn < end_pfn) { 6335 if (!pfn_valid(pfn)) { 6336 pfn++; 6337 continue; 6338 } 6339 page = pfn_to_page(pfn); 6340 /* 6341 * The HWPoisoned page may be not in buddy system, and 6342 * page_count() is not 0. 6343 */ 6344 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6345 pfn++; 6346 SetPageReserved(page); 6347 continue; 6348 } 6349 6350 BUG_ON(page_count(page)); 6351 BUG_ON(!PageBuddy(page)); 6352 order = page_order(page); 6353 #ifdef CONFIG_DEBUG_VM 6354 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6355 pfn, 1 << order, end_pfn); 6356 #endif 6357 list_del(&page->lru); 6358 rmv_page_order(page); 6359 zone->free_area[order].nr_free--; 6360 for (i = 0; i < (1 << order); i++) 6361 SetPageReserved((page+i)); 6362 pfn += (1 << order); 6363 } 6364 spin_unlock_irqrestore(&zone->lock, flags); 6365 } 6366 #endif 6367 6368 #ifdef CONFIG_MEMORY_FAILURE 6369 bool is_free_buddy_page(struct page *page) 6370 { 6371 struct zone *zone = page_zone(page); 6372 unsigned long pfn = page_to_pfn(page); 6373 unsigned long flags; 6374 int order; 6375 6376 spin_lock_irqsave(&zone->lock, flags); 6377 for (order = 0; order < MAX_ORDER; order++) { 6378 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6379 6380 if (PageBuddy(page_head) && page_order(page_head) >= order) 6381 break; 6382 } 6383 spin_unlock_irqrestore(&zone->lock, flags); 6384 6385 return order < MAX_ORDER; 6386 } 6387 #endif 6388 6389 static const struct trace_print_flags pageflag_names[] = { 6390 {1UL << PG_locked, "locked" }, 6391 {1UL << PG_error, "error" }, 6392 {1UL << PG_referenced, "referenced" }, 6393 {1UL << PG_uptodate, "uptodate" }, 6394 {1UL << PG_dirty, "dirty" }, 6395 {1UL << PG_lru, "lru" }, 6396 {1UL << PG_active, "active" }, 6397 {1UL << PG_slab, "slab" }, 6398 {1UL << PG_owner_priv_1, "owner_priv_1" }, 6399 {1UL << PG_arch_1, "arch_1" }, 6400 {1UL << PG_reserved, "reserved" }, 6401 {1UL << PG_private, "private" }, 6402 {1UL << PG_private_2, "private_2" }, 6403 {1UL << PG_writeback, "writeback" }, 6404 #ifdef CONFIG_PAGEFLAGS_EXTENDED 6405 {1UL << PG_head, "head" }, 6406 {1UL << PG_tail, "tail" }, 6407 #else 6408 {1UL << PG_compound, "compound" }, 6409 #endif 6410 {1UL << PG_swapcache, "swapcache" }, 6411 {1UL << PG_mappedtodisk, "mappedtodisk" }, 6412 {1UL << PG_reclaim, "reclaim" }, 6413 {1UL << PG_swapbacked, "swapbacked" }, 6414 {1UL << PG_unevictable, "unevictable" }, 6415 #ifdef CONFIG_MMU 6416 {1UL << PG_mlocked, "mlocked" }, 6417 #endif 6418 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 6419 {1UL << PG_uncached, "uncached" }, 6420 #endif 6421 #ifdef CONFIG_MEMORY_FAILURE 6422 {1UL << PG_hwpoison, "hwpoison" }, 6423 #endif 6424 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6425 {1UL << PG_compound_lock, "compound_lock" }, 6426 #endif 6427 }; 6428 6429 static void dump_page_flags(unsigned long flags) 6430 { 6431 const char *delim = ""; 6432 unsigned long mask; 6433 int i; 6434 6435 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); 6436 6437 printk(KERN_ALERT "page flags: %#lx(", flags); 6438 6439 /* remove zone id */ 6440 flags &= (1UL << NR_PAGEFLAGS) - 1; 6441 6442 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { 6443 6444 mask = pageflag_names[i].mask; 6445 if ((flags & mask) != mask) 6446 continue; 6447 6448 flags &= ~mask; 6449 printk("%s%s", delim, pageflag_names[i].name); 6450 delim = "|"; 6451 } 6452 6453 /* check for left over flags */ 6454 if (flags) 6455 printk("%s%#lx", delim, flags); 6456 6457 printk(")\n"); 6458 } 6459 6460 void dump_page(struct page *page) 6461 { 6462 printk(KERN_ALERT 6463 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 6464 page, atomic_read(&page->_count), page_mapcount(page), 6465 page->mapping, page->index); 6466 dump_page_flags(page->flags); 6467 mem_cgroup_print_bad_page(page); 6468 } 6469