xref: /openbmc/linux/mm/page_alloc.c (revision 8ffdff6a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75 
76 #include <asm/sections.h>
77 #include <asm/tlbflush.h>
78 #include <asm/div64.h>
79 #include "internal.h"
80 #include "shuffle.h"
81 #include "page_reporting.h"
82 
83 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
84 typedef int __bitwise fpi_t;
85 
86 /* No special request */
87 #define FPI_NONE		((__force fpi_t)0)
88 
89 /*
90  * Skip free page reporting notification for the (possibly merged) page.
91  * This does not hinder free page reporting from grabbing the page,
92  * reporting it and marking it "reported" -  it only skips notifying
93  * the free page reporting infrastructure about a newly freed page. For
94  * example, used when temporarily pulling a page from a freelist and
95  * putting it back unmodified.
96  */
97 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
98 
99 /*
100  * Place the (possibly merged) page to the tail of the freelist. Will ignore
101  * page shuffling (relevant code - e.g., memory onlining - is expected to
102  * shuffle the whole zone).
103  *
104  * Note: No code should rely on this flag for correctness - it's purely
105  *       to allow for optimizations when handing back either fresh pages
106  *       (memory onlining) or untouched pages (page isolation, free page
107  *       reporting).
108  */
109 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
110 
111 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
112 static DEFINE_MUTEX(pcp_batch_high_lock);
113 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
114 
115 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
116 DEFINE_PER_CPU(int, numa_node);
117 EXPORT_PER_CPU_SYMBOL(numa_node);
118 #endif
119 
120 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
121 
122 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
123 /*
124  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
125  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
126  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
127  * defined in <linux/topology.h>.
128  */
129 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
130 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
131 #endif
132 
133 /* work_structs for global per-cpu drains */
134 struct pcpu_drain {
135 	struct zone *zone;
136 	struct work_struct work;
137 };
138 static DEFINE_MUTEX(pcpu_drain_mutex);
139 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
140 
141 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
142 volatile unsigned long latent_entropy __latent_entropy;
143 EXPORT_SYMBOL(latent_entropy);
144 #endif
145 
146 /*
147  * Array of node states.
148  */
149 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
150 	[N_POSSIBLE] = NODE_MASK_ALL,
151 	[N_ONLINE] = { { [0] = 1UL } },
152 #ifndef CONFIG_NUMA
153 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
154 #ifdef CONFIG_HIGHMEM
155 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
156 #endif
157 	[N_MEMORY] = { { [0] = 1UL } },
158 	[N_CPU] = { { [0] = 1UL } },
159 #endif	/* NUMA */
160 };
161 EXPORT_SYMBOL(node_states);
162 
163 atomic_long_t _totalram_pages __read_mostly;
164 EXPORT_SYMBOL(_totalram_pages);
165 unsigned long totalreserve_pages __read_mostly;
166 unsigned long totalcma_pages __read_mostly;
167 
168 int percpu_pagelist_fraction;
169 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
170 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
171 EXPORT_SYMBOL(init_on_alloc);
172 
173 DEFINE_STATIC_KEY_FALSE(init_on_free);
174 EXPORT_SYMBOL(init_on_free);
175 
176 static bool _init_on_alloc_enabled_early __read_mostly
177 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
178 static int __init early_init_on_alloc(char *buf)
179 {
180 
181 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
182 }
183 early_param("init_on_alloc", early_init_on_alloc);
184 
185 static bool _init_on_free_enabled_early __read_mostly
186 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
187 static int __init early_init_on_free(char *buf)
188 {
189 	return kstrtobool(buf, &_init_on_free_enabled_early);
190 }
191 early_param("init_on_free", early_init_on_free);
192 
193 /*
194  * A cached value of the page's pageblock's migratetype, used when the page is
195  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
196  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
197  * Also the migratetype set in the page does not necessarily match the pcplist
198  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
199  * other index - this ensures that it will be put on the correct CMA freelist.
200  */
201 static inline int get_pcppage_migratetype(struct page *page)
202 {
203 	return page->index;
204 }
205 
206 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
207 {
208 	page->index = migratetype;
209 }
210 
211 #ifdef CONFIG_PM_SLEEP
212 /*
213  * The following functions are used by the suspend/hibernate code to temporarily
214  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
215  * while devices are suspended.  To avoid races with the suspend/hibernate code,
216  * they should always be called with system_transition_mutex held
217  * (gfp_allowed_mask also should only be modified with system_transition_mutex
218  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
219  * with that modification).
220  */
221 
222 static gfp_t saved_gfp_mask;
223 
224 void pm_restore_gfp_mask(void)
225 {
226 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
227 	if (saved_gfp_mask) {
228 		gfp_allowed_mask = saved_gfp_mask;
229 		saved_gfp_mask = 0;
230 	}
231 }
232 
233 void pm_restrict_gfp_mask(void)
234 {
235 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
236 	WARN_ON(saved_gfp_mask);
237 	saved_gfp_mask = gfp_allowed_mask;
238 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
239 }
240 
241 bool pm_suspended_storage(void)
242 {
243 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
244 		return false;
245 	return true;
246 }
247 #endif /* CONFIG_PM_SLEEP */
248 
249 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
250 unsigned int pageblock_order __read_mostly;
251 #endif
252 
253 static void __free_pages_ok(struct page *page, unsigned int order,
254 			    fpi_t fpi_flags);
255 
256 /*
257  * results with 256, 32 in the lowmem_reserve sysctl:
258  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
259  *	1G machine -> (16M dma, 784M normal, 224M high)
260  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
261  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
262  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
263  *
264  * TBD: should special case ZONE_DMA32 machines here - in those we normally
265  * don't need any ZONE_NORMAL reservation
266  */
267 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
268 #ifdef CONFIG_ZONE_DMA
269 	[ZONE_DMA] = 256,
270 #endif
271 #ifdef CONFIG_ZONE_DMA32
272 	[ZONE_DMA32] = 256,
273 #endif
274 	[ZONE_NORMAL] = 32,
275 #ifdef CONFIG_HIGHMEM
276 	[ZONE_HIGHMEM] = 0,
277 #endif
278 	[ZONE_MOVABLE] = 0,
279 };
280 
281 static char * const zone_names[MAX_NR_ZONES] = {
282 #ifdef CONFIG_ZONE_DMA
283 	 "DMA",
284 #endif
285 #ifdef CONFIG_ZONE_DMA32
286 	 "DMA32",
287 #endif
288 	 "Normal",
289 #ifdef CONFIG_HIGHMEM
290 	 "HighMem",
291 #endif
292 	 "Movable",
293 #ifdef CONFIG_ZONE_DEVICE
294 	 "Device",
295 #endif
296 };
297 
298 const char * const migratetype_names[MIGRATE_TYPES] = {
299 	"Unmovable",
300 	"Movable",
301 	"Reclaimable",
302 	"HighAtomic",
303 #ifdef CONFIG_CMA
304 	"CMA",
305 #endif
306 #ifdef CONFIG_MEMORY_ISOLATION
307 	"Isolate",
308 #endif
309 };
310 
311 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
312 	[NULL_COMPOUND_DTOR] = NULL,
313 	[COMPOUND_PAGE_DTOR] = free_compound_page,
314 #ifdef CONFIG_HUGETLB_PAGE
315 	[HUGETLB_PAGE_DTOR] = free_huge_page,
316 #endif
317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
318 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
319 #endif
320 };
321 
322 int min_free_kbytes = 1024;
323 int user_min_free_kbytes = -1;
324 #ifdef CONFIG_DISCONTIGMEM
325 /*
326  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
327  * are not on separate NUMA nodes. Functionally this works but with
328  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
329  * quite small. By default, do not boost watermarks on discontigmem as in
330  * many cases very high-order allocations like THP are likely to be
331  * unsupported and the premature reclaim offsets the advantage of long-term
332  * fragmentation avoidance.
333  */
334 int watermark_boost_factor __read_mostly;
335 #else
336 int watermark_boost_factor __read_mostly = 15000;
337 #endif
338 int watermark_scale_factor = 10;
339 
340 static unsigned long nr_kernel_pages __initdata;
341 static unsigned long nr_all_pages __initdata;
342 static unsigned long dma_reserve __initdata;
343 
344 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
345 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
346 static unsigned long required_kernelcore __initdata;
347 static unsigned long required_kernelcore_percent __initdata;
348 static unsigned long required_movablecore __initdata;
349 static unsigned long required_movablecore_percent __initdata;
350 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
351 static bool mirrored_kernelcore __meminitdata;
352 
353 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
354 int movable_zone;
355 EXPORT_SYMBOL(movable_zone);
356 
357 #if MAX_NUMNODES > 1
358 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
359 unsigned int nr_online_nodes __read_mostly = 1;
360 EXPORT_SYMBOL(nr_node_ids);
361 EXPORT_SYMBOL(nr_online_nodes);
362 #endif
363 
364 int page_group_by_mobility_disabled __read_mostly;
365 
366 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
367 /*
368  * During boot we initialize deferred pages on-demand, as needed, but once
369  * page_alloc_init_late() has finished, the deferred pages are all initialized,
370  * and we can permanently disable that path.
371  */
372 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
373 
374 /*
375  * Calling kasan_free_pages() only after deferred memory initialization
376  * has completed. Poisoning pages during deferred memory init will greatly
377  * lengthen the process and cause problem in large memory systems as the
378  * deferred pages initialization is done with interrupt disabled.
379  *
380  * Assuming that there will be no reference to those newly initialized
381  * pages before they are ever allocated, this should have no effect on
382  * KASAN memory tracking as the poison will be properly inserted at page
383  * allocation time. The only corner case is when pages are allocated by
384  * on-demand allocation and then freed again before the deferred pages
385  * initialization is done, but this is not likely to happen.
386  */
387 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
388 {
389 	if (!static_branch_unlikely(&deferred_pages))
390 		kasan_free_pages(page, order);
391 }
392 
393 /* Returns true if the struct page for the pfn is uninitialised */
394 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
395 {
396 	int nid = early_pfn_to_nid(pfn);
397 
398 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
399 		return true;
400 
401 	return false;
402 }
403 
404 /*
405  * Returns true when the remaining initialisation should be deferred until
406  * later in the boot cycle when it can be parallelised.
407  */
408 static bool __meminit
409 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
410 {
411 	static unsigned long prev_end_pfn, nr_initialised;
412 
413 	/*
414 	 * prev_end_pfn static that contains the end of previous zone
415 	 * No need to protect because called very early in boot before smp_init.
416 	 */
417 	if (prev_end_pfn != end_pfn) {
418 		prev_end_pfn = end_pfn;
419 		nr_initialised = 0;
420 	}
421 
422 	/* Always populate low zones for address-constrained allocations */
423 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
424 		return false;
425 
426 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
427 		return true;
428 	/*
429 	 * We start only with one section of pages, more pages are added as
430 	 * needed until the rest of deferred pages are initialized.
431 	 */
432 	nr_initialised++;
433 	if ((nr_initialised > PAGES_PER_SECTION) &&
434 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
435 		NODE_DATA(nid)->first_deferred_pfn = pfn;
436 		return true;
437 	}
438 	return false;
439 }
440 #else
441 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
442 
443 static inline bool early_page_uninitialised(unsigned long pfn)
444 {
445 	return false;
446 }
447 
448 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
449 {
450 	return false;
451 }
452 #endif
453 
454 /* Return a pointer to the bitmap storing bits affecting a block of pages */
455 static inline unsigned long *get_pageblock_bitmap(struct page *page,
456 							unsigned long pfn)
457 {
458 #ifdef CONFIG_SPARSEMEM
459 	return section_to_usemap(__pfn_to_section(pfn));
460 #else
461 	return page_zone(page)->pageblock_flags;
462 #endif /* CONFIG_SPARSEMEM */
463 }
464 
465 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
466 {
467 #ifdef CONFIG_SPARSEMEM
468 	pfn &= (PAGES_PER_SECTION-1);
469 #else
470 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
471 #endif /* CONFIG_SPARSEMEM */
472 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
473 }
474 
475 static __always_inline
476 unsigned long __get_pfnblock_flags_mask(struct page *page,
477 					unsigned long pfn,
478 					unsigned long mask)
479 {
480 	unsigned long *bitmap;
481 	unsigned long bitidx, word_bitidx;
482 	unsigned long word;
483 
484 	bitmap = get_pageblock_bitmap(page, pfn);
485 	bitidx = pfn_to_bitidx(page, pfn);
486 	word_bitidx = bitidx / BITS_PER_LONG;
487 	bitidx &= (BITS_PER_LONG-1);
488 
489 	word = bitmap[word_bitidx];
490 	return (word >> bitidx) & mask;
491 }
492 
493 /**
494  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
495  * @page: The page within the block of interest
496  * @pfn: The target page frame number
497  * @mask: mask of bits that the caller is interested in
498  *
499  * Return: pageblock_bits flags
500  */
501 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
502 					unsigned long mask)
503 {
504 	return __get_pfnblock_flags_mask(page, pfn, mask);
505 }
506 
507 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
508 {
509 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
510 }
511 
512 /**
513  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
514  * @page: The page within the block of interest
515  * @flags: The flags to set
516  * @pfn: The target page frame number
517  * @mask: mask of bits that the caller is interested in
518  */
519 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
520 					unsigned long pfn,
521 					unsigned long mask)
522 {
523 	unsigned long *bitmap;
524 	unsigned long bitidx, word_bitidx;
525 	unsigned long old_word, word;
526 
527 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
528 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
529 
530 	bitmap = get_pageblock_bitmap(page, pfn);
531 	bitidx = pfn_to_bitidx(page, pfn);
532 	word_bitidx = bitidx / BITS_PER_LONG;
533 	bitidx &= (BITS_PER_LONG-1);
534 
535 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536 
537 	mask <<= bitidx;
538 	flags <<= bitidx;
539 
540 	word = READ_ONCE(bitmap[word_bitidx]);
541 	for (;;) {
542 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
543 		if (word == old_word)
544 			break;
545 		word = old_word;
546 	}
547 }
548 
549 void set_pageblock_migratetype(struct page *page, int migratetype)
550 {
551 	if (unlikely(page_group_by_mobility_disabled &&
552 		     migratetype < MIGRATE_PCPTYPES))
553 		migratetype = MIGRATE_UNMOVABLE;
554 
555 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
556 				page_to_pfn(page), MIGRATETYPE_MASK);
557 }
558 
559 #ifdef CONFIG_DEBUG_VM
560 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
561 {
562 	int ret = 0;
563 	unsigned seq;
564 	unsigned long pfn = page_to_pfn(page);
565 	unsigned long sp, start_pfn;
566 
567 	do {
568 		seq = zone_span_seqbegin(zone);
569 		start_pfn = zone->zone_start_pfn;
570 		sp = zone->spanned_pages;
571 		if (!zone_spans_pfn(zone, pfn))
572 			ret = 1;
573 	} while (zone_span_seqretry(zone, seq));
574 
575 	if (ret)
576 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
577 			pfn, zone_to_nid(zone), zone->name,
578 			start_pfn, start_pfn + sp);
579 
580 	return ret;
581 }
582 
583 static int page_is_consistent(struct zone *zone, struct page *page)
584 {
585 	if (!pfn_valid_within(page_to_pfn(page)))
586 		return 0;
587 	if (zone != page_zone(page))
588 		return 0;
589 
590 	return 1;
591 }
592 /*
593  * Temporary debugging check for pages not lying within a given zone.
594  */
595 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
596 {
597 	if (page_outside_zone_boundaries(zone, page))
598 		return 1;
599 	if (!page_is_consistent(zone, page))
600 		return 1;
601 
602 	return 0;
603 }
604 #else
605 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
606 {
607 	return 0;
608 }
609 #endif
610 
611 static void bad_page(struct page *page, const char *reason)
612 {
613 	static unsigned long resume;
614 	static unsigned long nr_shown;
615 	static unsigned long nr_unshown;
616 
617 	/*
618 	 * Allow a burst of 60 reports, then keep quiet for that minute;
619 	 * or allow a steady drip of one report per second.
620 	 */
621 	if (nr_shown == 60) {
622 		if (time_before(jiffies, resume)) {
623 			nr_unshown++;
624 			goto out;
625 		}
626 		if (nr_unshown) {
627 			pr_alert(
628 			      "BUG: Bad page state: %lu messages suppressed\n",
629 				nr_unshown);
630 			nr_unshown = 0;
631 		}
632 		nr_shown = 0;
633 	}
634 	if (nr_shown++ == 0)
635 		resume = jiffies + 60 * HZ;
636 
637 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
638 		current->comm, page_to_pfn(page));
639 	__dump_page(page, reason);
640 	dump_page_owner(page);
641 
642 	print_modules();
643 	dump_stack();
644 out:
645 	/* Leave bad fields for debug, except PageBuddy could make trouble */
646 	page_mapcount_reset(page); /* remove PageBuddy */
647 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
648 }
649 
650 /*
651  * Higher-order pages are called "compound pages".  They are structured thusly:
652  *
653  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
654  *
655  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
656  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
657  *
658  * The first tail page's ->compound_dtor holds the offset in array of compound
659  * page destructors. See compound_page_dtors.
660  *
661  * The first tail page's ->compound_order holds the order of allocation.
662  * This usage means that zero-order pages may not be compound.
663  */
664 
665 void free_compound_page(struct page *page)
666 {
667 	mem_cgroup_uncharge(page);
668 	__free_pages_ok(page, compound_order(page), FPI_NONE);
669 }
670 
671 void prep_compound_page(struct page *page, unsigned int order)
672 {
673 	int i;
674 	int nr_pages = 1 << order;
675 
676 	__SetPageHead(page);
677 	for (i = 1; i < nr_pages; i++) {
678 		struct page *p = page + i;
679 		set_page_count(p, 0);
680 		p->mapping = TAIL_MAPPING;
681 		set_compound_head(p, page);
682 	}
683 
684 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
685 	set_compound_order(page, order);
686 	atomic_set(compound_mapcount_ptr(page), -1);
687 	if (hpage_pincount_available(page))
688 		atomic_set(compound_pincount_ptr(page), 0);
689 }
690 
691 #ifdef CONFIG_DEBUG_PAGEALLOC
692 unsigned int _debug_guardpage_minorder;
693 
694 bool _debug_pagealloc_enabled_early __read_mostly
695 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
696 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
697 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
698 EXPORT_SYMBOL(_debug_pagealloc_enabled);
699 
700 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
701 
702 static int __init early_debug_pagealloc(char *buf)
703 {
704 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
705 }
706 early_param("debug_pagealloc", early_debug_pagealloc);
707 
708 static int __init debug_guardpage_minorder_setup(char *buf)
709 {
710 	unsigned long res;
711 
712 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
713 		pr_err("Bad debug_guardpage_minorder value\n");
714 		return 0;
715 	}
716 	_debug_guardpage_minorder = res;
717 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
718 	return 0;
719 }
720 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
721 
722 static inline bool set_page_guard(struct zone *zone, struct page *page,
723 				unsigned int order, int migratetype)
724 {
725 	if (!debug_guardpage_enabled())
726 		return false;
727 
728 	if (order >= debug_guardpage_minorder())
729 		return false;
730 
731 	__SetPageGuard(page);
732 	INIT_LIST_HEAD(&page->lru);
733 	set_page_private(page, order);
734 	/* Guard pages are not available for any usage */
735 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
736 
737 	return true;
738 }
739 
740 static inline void clear_page_guard(struct zone *zone, struct page *page,
741 				unsigned int order, int migratetype)
742 {
743 	if (!debug_guardpage_enabled())
744 		return;
745 
746 	__ClearPageGuard(page);
747 
748 	set_page_private(page, 0);
749 	if (!is_migrate_isolate(migratetype))
750 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
751 }
752 #else
753 static inline bool set_page_guard(struct zone *zone, struct page *page,
754 			unsigned int order, int migratetype) { return false; }
755 static inline void clear_page_guard(struct zone *zone, struct page *page,
756 				unsigned int order, int migratetype) {}
757 #endif
758 
759 /*
760  * Enable static keys related to various memory debugging and hardening options.
761  * Some override others, and depend on early params that are evaluated in the
762  * order of appearance. So we need to first gather the full picture of what was
763  * enabled, and then make decisions.
764  */
765 void init_mem_debugging_and_hardening(void)
766 {
767 	if (_init_on_alloc_enabled_early) {
768 		if (page_poisoning_enabled())
769 			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
770 				"will take precedence over init_on_alloc\n");
771 		else
772 			static_branch_enable(&init_on_alloc);
773 	}
774 	if (_init_on_free_enabled_early) {
775 		if (page_poisoning_enabled())
776 			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
777 				"will take precedence over init_on_free\n");
778 		else
779 			static_branch_enable(&init_on_free);
780 	}
781 
782 #ifdef CONFIG_PAGE_POISONING
783 	/*
784 	 * Page poisoning is debug page alloc for some arches. If
785 	 * either of those options are enabled, enable poisoning.
786 	 */
787 	if (page_poisoning_enabled() ||
788 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
789 	      debug_pagealloc_enabled()))
790 		static_branch_enable(&_page_poisoning_enabled);
791 #endif
792 
793 #ifdef CONFIG_DEBUG_PAGEALLOC
794 	if (!debug_pagealloc_enabled())
795 		return;
796 
797 	static_branch_enable(&_debug_pagealloc_enabled);
798 
799 	if (!debug_guardpage_minorder())
800 		return;
801 
802 	static_branch_enable(&_debug_guardpage_enabled);
803 #endif
804 }
805 
806 static inline void set_buddy_order(struct page *page, unsigned int order)
807 {
808 	set_page_private(page, order);
809 	__SetPageBuddy(page);
810 }
811 
812 /*
813  * This function checks whether a page is free && is the buddy
814  * we can coalesce a page and its buddy if
815  * (a) the buddy is not in a hole (check before calling!) &&
816  * (b) the buddy is in the buddy system &&
817  * (c) a page and its buddy have the same order &&
818  * (d) a page and its buddy are in the same zone.
819  *
820  * For recording whether a page is in the buddy system, we set PageBuddy.
821  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
822  *
823  * For recording page's order, we use page_private(page).
824  */
825 static inline bool page_is_buddy(struct page *page, struct page *buddy,
826 							unsigned int order)
827 {
828 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
829 		return false;
830 
831 	if (buddy_order(buddy) != order)
832 		return false;
833 
834 	/*
835 	 * zone check is done late to avoid uselessly calculating
836 	 * zone/node ids for pages that could never merge.
837 	 */
838 	if (page_zone_id(page) != page_zone_id(buddy))
839 		return false;
840 
841 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
842 
843 	return true;
844 }
845 
846 #ifdef CONFIG_COMPACTION
847 static inline struct capture_control *task_capc(struct zone *zone)
848 {
849 	struct capture_control *capc = current->capture_control;
850 
851 	return unlikely(capc) &&
852 		!(current->flags & PF_KTHREAD) &&
853 		!capc->page &&
854 		capc->cc->zone == zone ? capc : NULL;
855 }
856 
857 static inline bool
858 compaction_capture(struct capture_control *capc, struct page *page,
859 		   int order, int migratetype)
860 {
861 	if (!capc || order != capc->cc->order)
862 		return false;
863 
864 	/* Do not accidentally pollute CMA or isolated regions*/
865 	if (is_migrate_cma(migratetype) ||
866 	    is_migrate_isolate(migratetype))
867 		return false;
868 
869 	/*
870 	 * Do not let lower order allocations polluate a movable pageblock.
871 	 * This might let an unmovable request use a reclaimable pageblock
872 	 * and vice-versa but no more than normal fallback logic which can
873 	 * have trouble finding a high-order free page.
874 	 */
875 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
876 		return false;
877 
878 	capc->page = page;
879 	return true;
880 }
881 
882 #else
883 static inline struct capture_control *task_capc(struct zone *zone)
884 {
885 	return NULL;
886 }
887 
888 static inline bool
889 compaction_capture(struct capture_control *capc, struct page *page,
890 		   int order, int migratetype)
891 {
892 	return false;
893 }
894 #endif /* CONFIG_COMPACTION */
895 
896 /* Used for pages not on another list */
897 static inline void add_to_free_list(struct page *page, struct zone *zone,
898 				    unsigned int order, int migratetype)
899 {
900 	struct free_area *area = &zone->free_area[order];
901 
902 	list_add(&page->lru, &area->free_list[migratetype]);
903 	area->nr_free++;
904 }
905 
906 /* Used for pages not on another list */
907 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
908 					 unsigned int order, int migratetype)
909 {
910 	struct free_area *area = &zone->free_area[order];
911 
912 	list_add_tail(&page->lru, &area->free_list[migratetype]);
913 	area->nr_free++;
914 }
915 
916 /*
917  * Used for pages which are on another list. Move the pages to the tail
918  * of the list - so the moved pages won't immediately be considered for
919  * allocation again (e.g., optimization for memory onlining).
920  */
921 static inline void move_to_free_list(struct page *page, struct zone *zone,
922 				     unsigned int order, int migratetype)
923 {
924 	struct free_area *area = &zone->free_area[order];
925 
926 	list_move_tail(&page->lru, &area->free_list[migratetype]);
927 }
928 
929 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
930 					   unsigned int order)
931 {
932 	/* clear reported state and update reported page count */
933 	if (page_reported(page))
934 		__ClearPageReported(page);
935 
936 	list_del(&page->lru);
937 	__ClearPageBuddy(page);
938 	set_page_private(page, 0);
939 	zone->free_area[order].nr_free--;
940 }
941 
942 /*
943  * If this is not the largest possible page, check if the buddy
944  * of the next-highest order is free. If it is, it's possible
945  * that pages are being freed that will coalesce soon. In case,
946  * that is happening, add the free page to the tail of the list
947  * so it's less likely to be used soon and more likely to be merged
948  * as a higher order page
949  */
950 static inline bool
951 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
952 		   struct page *page, unsigned int order)
953 {
954 	struct page *higher_page, *higher_buddy;
955 	unsigned long combined_pfn;
956 
957 	if (order >= MAX_ORDER - 2)
958 		return false;
959 
960 	if (!pfn_valid_within(buddy_pfn))
961 		return false;
962 
963 	combined_pfn = buddy_pfn & pfn;
964 	higher_page = page + (combined_pfn - pfn);
965 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
966 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
967 
968 	return pfn_valid_within(buddy_pfn) &&
969 	       page_is_buddy(higher_page, higher_buddy, order + 1);
970 }
971 
972 /*
973  * Freeing function for a buddy system allocator.
974  *
975  * The concept of a buddy system is to maintain direct-mapped table
976  * (containing bit values) for memory blocks of various "orders".
977  * The bottom level table contains the map for the smallest allocatable
978  * units of memory (here, pages), and each level above it describes
979  * pairs of units from the levels below, hence, "buddies".
980  * At a high level, all that happens here is marking the table entry
981  * at the bottom level available, and propagating the changes upward
982  * as necessary, plus some accounting needed to play nicely with other
983  * parts of the VM system.
984  * At each level, we keep a list of pages, which are heads of continuous
985  * free pages of length of (1 << order) and marked with PageBuddy.
986  * Page's order is recorded in page_private(page) field.
987  * So when we are allocating or freeing one, we can derive the state of the
988  * other.  That is, if we allocate a small block, and both were
989  * free, the remainder of the region must be split into blocks.
990  * If a block is freed, and its buddy is also free, then this
991  * triggers coalescing into a block of larger size.
992  *
993  * -- nyc
994  */
995 
996 static inline void __free_one_page(struct page *page,
997 		unsigned long pfn,
998 		struct zone *zone, unsigned int order,
999 		int migratetype, fpi_t fpi_flags)
1000 {
1001 	struct capture_control *capc = task_capc(zone);
1002 	unsigned long buddy_pfn;
1003 	unsigned long combined_pfn;
1004 	unsigned int max_order;
1005 	struct page *buddy;
1006 	bool to_tail;
1007 
1008 	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1009 
1010 	VM_BUG_ON(!zone_is_initialized(zone));
1011 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1012 
1013 	VM_BUG_ON(migratetype == -1);
1014 	if (likely(!is_migrate_isolate(migratetype)))
1015 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1016 
1017 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1018 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1019 
1020 continue_merging:
1021 	while (order < max_order) {
1022 		if (compaction_capture(capc, page, order, migratetype)) {
1023 			__mod_zone_freepage_state(zone, -(1 << order),
1024 								migratetype);
1025 			return;
1026 		}
1027 		buddy_pfn = __find_buddy_pfn(pfn, order);
1028 		buddy = page + (buddy_pfn - pfn);
1029 
1030 		if (!pfn_valid_within(buddy_pfn))
1031 			goto done_merging;
1032 		if (!page_is_buddy(page, buddy, order))
1033 			goto done_merging;
1034 		/*
1035 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1036 		 * merge with it and move up one order.
1037 		 */
1038 		if (page_is_guard(buddy))
1039 			clear_page_guard(zone, buddy, order, migratetype);
1040 		else
1041 			del_page_from_free_list(buddy, zone, order);
1042 		combined_pfn = buddy_pfn & pfn;
1043 		page = page + (combined_pfn - pfn);
1044 		pfn = combined_pfn;
1045 		order++;
1046 	}
1047 	if (order < MAX_ORDER - 1) {
1048 		/* If we are here, it means order is >= pageblock_order.
1049 		 * We want to prevent merge between freepages on isolate
1050 		 * pageblock and normal pageblock. Without this, pageblock
1051 		 * isolation could cause incorrect freepage or CMA accounting.
1052 		 *
1053 		 * We don't want to hit this code for the more frequent
1054 		 * low-order merging.
1055 		 */
1056 		if (unlikely(has_isolate_pageblock(zone))) {
1057 			int buddy_mt;
1058 
1059 			buddy_pfn = __find_buddy_pfn(pfn, order);
1060 			buddy = page + (buddy_pfn - pfn);
1061 			buddy_mt = get_pageblock_migratetype(buddy);
1062 
1063 			if (migratetype != buddy_mt
1064 					&& (is_migrate_isolate(migratetype) ||
1065 						is_migrate_isolate(buddy_mt)))
1066 				goto done_merging;
1067 		}
1068 		max_order = order + 1;
1069 		goto continue_merging;
1070 	}
1071 
1072 done_merging:
1073 	set_buddy_order(page, order);
1074 
1075 	if (fpi_flags & FPI_TO_TAIL)
1076 		to_tail = true;
1077 	else if (is_shuffle_order(order))
1078 		to_tail = shuffle_pick_tail();
1079 	else
1080 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1081 
1082 	if (to_tail)
1083 		add_to_free_list_tail(page, zone, order, migratetype);
1084 	else
1085 		add_to_free_list(page, zone, order, migratetype);
1086 
1087 	/* Notify page reporting subsystem of freed page */
1088 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1089 		page_reporting_notify_free(order);
1090 }
1091 
1092 /*
1093  * A bad page could be due to a number of fields. Instead of multiple branches,
1094  * try and check multiple fields with one check. The caller must do a detailed
1095  * check if necessary.
1096  */
1097 static inline bool page_expected_state(struct page *page,
1098 					unsigned long check_flags)
1099 {
1100 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1101 		return false;
1102 
1103 	if (unlikely((unsigned long)page->mapping |
1104 			page_ref_count(page) |
1105 #ifdef CONFIG_MEMCG
1106 			(unsigned long)page_memcg(page) |
1107 #endif
1108 			(page->flags & check_flags)))
1109 		return false;
1110 
1111 	return true;
1112 }
1113 
1114 static const char *page_bad_reason(struct page *page, unsigned long flags)
1115 {
1116 	const char *bad_reason = NULL;
1117 
1118 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1119 		bad_reason = "nonzero mapcount";
1120 	if (unlikely(page->mapping != NULL))
1121 		bad_reason = "non-NULL mapping";
1122 	if (unlikely(page_ref_count(page) != 0))
1123 		bad_reason = "nonzero _refcount";
1124 	if (unlikely(page->flags & flags)) {
1125 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1126 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1127 		else
1128 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1129 	}
1130 #ifdef CONFIG_MEMCG
1131 	if (unlikely(page_memcg(page)))
1132 		bad_reason = "page still charged to cgroup";
1133 #endif
1134 	return bad_reason;
1135 }
1136 
1137 static void check_free_page_bad(struct page *page)
1138 {
1139 	bad_page(page,
1140 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1141 }
1142 
1143 static inline int check_free_page(struct page *page)
1144 {
1145 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1146 		return 0;
1147 
1148 	/* Something has gone sideways, find it */
1149 	check_free_page_bad(page);
1150 	return 1;
1151 }
1152 
1153 static int free_tail_pages_check(struct page *head_page, struct page *page)
1154 {
1155 	int ret = 1;
1156 
1157 	/*
1158 	 * We rely page->lru.next never has bit 0 set, unless the page
1159 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1160 	 */
1161 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1162 
1163 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1164 		ret = 0;
1165 		goto out;
1166 	}
1167 	switch (page - head_page) {
1168 	case 1:
1169 		/* the first tail page: ->mapping may be compound_mapcount() */
1170 		if (unlikely(compound_mapcount(page))) {
1171 			bad_page(page, "nonzero compound_mapcount");
1172 			goto out;
1173 		}
1174 		break;
1175 	case 2:
1176 		/*
1177 		 * the second tail page: ->mapping is
1178 		 * deferred_list.next -- ignore value.
1179 		 */
1180 		break;
1181 	default:
1182 		if (page->mapping != TAIL_MAPPING) {
1183 			bad_page(page, "corrupted mapping in tail page");
1184 			goto out;
1185 		}
1186 		break;
1187 	}
1188 	if (unlikely(!PageTail(page))) {
1189 		bad_page(page, "PageTail not set");
1190 		goto out;
1191 	}
1192 	if (unlikely(compound_head(page) != head_page)) {
1193 		bad_page(page, "compound_head not consistent");
1194 		goto out;
1195 	}
1196 	ret = 0;
1197 out:
1198 	page->mapping = NULL;
1199 	clear_compound_head(page);
1200 	return ret;
1201 }
1202 
1203 static void kernel_init_free_pages(struct page *page, int numpages)
1204 {
1205 	int i;
1206 
1207 	/* s390's use of memset() could override KASAN redzones. */
1208 	kasan_disable_current();
1209 	for (i = 0; i < numpages; i++) {
1210 		u8 tag = page_kasan_tag(page + i);
1211 		page_kasan_tag_reset(page + i);
1212 		clear_highpage(page + i);
1213 		page_kasan_tag_set(page + i, tag);
1214 	}
1215 	kasan_enable_current();
1216 }
1217 
1218 static __always_inline bool free_pages_prepare(struct page *page,
1219 					unsigned int order, bool check_free)
1220 {
1221 	int bad = 0;
1222 
1223 	VM_BUG_ON_PAGE(PageTail(page), page);
1224 
1225 	trace_mm_page_free(page, order);
1226 
1227 	if (unlikely(PageHWPoison(page)) && !order) {
1228 		/*
1229 		 * Do not let hwpoison pages hit pcplists/buddy
1230 		 * Untie memcg state and reset page's owner
1231 		 */
1232 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1233 			__memcg_kmem_uncharge_page(page, order);
1234 		reset_page_owner(page, order);
1235 		return false;
1236 	}
1237 
1238 	/*
1239 	 * Check tail pages before head page information is cleared to
1240 	 * avoid checking PageCompound for order-0 pages.
1241 	 */
1242 	if (unlikely(order)) {
1243 		bool compound = PageCompound(page);
1244 		int i;
1245 
1246 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1247 
1248 		if (compound)
1249 			ClearPageDoubleMap(page);
1250 		for (i = 1; i < (1 << order); i++) {
1251 			if (compound)
1252 				bad += free_tail_pages_check(page, page + i);
1253 			if (unlikely(check_free_page(page + i))) {
1254 				bad++;
1255 				continue;
1256 			}
1257 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1258 		}
1259 	}
1260 	if (PageMappingFlags(page))
1261 		page->mapping = NULL;
1262 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1263 		__memcg_kmem_uncharge_page(page, order);
1264 	if (check_free)
1265 		bad += check_free_page(page);
1266 	if (bad)
1267 		return false;
1268 
1269 	page_cpupid_reset_last(page);
1270 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1271 	reset_page_owner(page, order);
1272 
1273 	if (!PageHighMem(page)) {
1274 		debug_check_no_locks_freed(page_address(page),
1275 					   PAGE_SIZE << order);
1276 		debug_check_no_obj_freed(page_address(page),
1277 					   PAGE_SIZE << order);
1278 	}
1279 	if (want_init_on_free())
1280 		kernel_init_free_pages(page, 1 << order);
1281 
1282 	kernel_poison_pages(page, 1 << order);
1283 
1284 	/*
1285 	 * With hardware tag-based KASAN, memory tags must be set before the
1286 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1287 	 */
1288 	kasan_free_nondeferred_pages(page, order);
1289 
1290 	/*
1291 	 * arch_free_page() can make the page's contents inaccessible.  s390
1292 	 * does this.  So nothing which can access the page's contents should
1293 	 * happen after this.
1294 	 */
1295 	arch_free_page(page, order);
1296 
1297 	debug_pagealloc_unmap_pages(page, 1 << order);
1298 
1299 	return true;
1300 }
1301 
1302 #ifdef CONFIG_DEBUG_VM
1303 /*
1304  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1305  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1306  * moved from pcp lists to free lists.
1307  */
1308 static bool free_pcp_prepare(struct page *page)
1309 {
1310 	return free_pages_prepare(page, 0, true);
1311 }
1312 
1313 static bool bulkfree_pcp_prepare(struct page *page)
1314 {
1315 	if (debug_pagealloc_enabled_static())
1316 		return check_free_page(page);
1317 	else
1318 		return false;
1319 }
1320 #else
1321 /*
1322  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1323  * moving from pcp lists to free list in order to reduce overhead. With
1324  * debug_pagealloc enabled, they are checked also immediately when being freed
1325  * to the pcp lists.
1326  */
1327 static bool free_pcp_prepare(struct page *page)
1328 {
1329 	if (debug_pagealloc_enabled_static())
1330 		return free_pages_prepare(page, 0, true);
1331 	else
1332 		return free_pages_prepare(page, 0, false);
1333 }
1334 
1335 static bool bulkfree_pcp_prepare(struct page *page)
1336 {
1337 	return check_free_page(page);
1338 }
1339 #endif /* CONFIG_DEBUG_VM */
1340 
1341 static inline void prefetch_buddy(struct page *page)
1342 {
1343 	unsigned long pfn = page_to_pfn(page);
1344 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1345 	struct page *buddy = page + (buddy_pfn - pfn);
1346 
1347 	prefetch(buddy);
1348 }
1349 
1350 /*
1351  * Frees a number of pages from the PCP lists
1352  * Assumes all pages on list are in same zone, and of same order.
1353  * count is the number of pages to free.
1354  *
1355  * If the zone was previously in an "all pages pinned" state then look to
1356  * see if this freeing clears that state.
1357  *
1358  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1359  * pinned" detection logic.
1360  */
1361 static void free_pcppages_bulk(struct zone *zone, int count,
1362 					struct per_cpu_pages *pcp)
1363 {
1364 	int migratetype = 0;
1365 	int batch_free = 0;
1366 	int prefetch_nr = READ_ONCE(pcp->batch);
1367 	bool isolated_pageblocks;
1368 	struct page *page, *tmp;
1369 	LIST_HEAD(head);
1370 
1371 	/*
1372 	 * Ensure proper count is passed which otherwise would stuck in the
1373 	 * below while (list_empty(list)) loop.
1374 	 */
1375 	count = min(pcp->count, count);
1376 	while (count) {
1377 		struct list_head *list;
1378 
1379 		/*
1380 		 * Remove pages from lists in a round-robin fashion. A
1381 		 * batch_free count is maintained that is incremented when an
1382 		 * empty list is encountered.  This is so more pages are freed
1383 		 * off fuller lists instead of spinning excessively around empty
1384 		 * lists
1385 		 */
1386 		do {
1387 			batch_free++;
1388 			if (++migratetype == MIGRATE_PCPTYPES)
1389 				migratetype = 0;
1390 			list = &pcp->lists[migratetype];
1391 		} while (list_empty(list));
1392 
1393 		/* This is the only non-empty list. Free them all. */
1394 		if (batch_free == MIGRATE_PCPTYPES)
1395 			batch_free = count;
1396 
1397 		do {
1398 			page = list_last_entry(list, struct page, lru);
1399 			/* must delete to avoid corrupting pcp list */
1400 			list_del(&page->lru);
1401 			pcp->count--;
1402 
1403 			if (bulkfree_pcp_prepare(page))
1404 				continue;
1405 
1406 			list_add_tail(&page->lru, &head);
1407 
1408 			/*
1409 			 * We are going to put the page back to the global
1410 			 * pool, prefetch its buddy to speed up later access
1411 			 * under zone->lock. It is believed the overhead of
1412 			 * an additional test and calculating buddy_pfn here
1413 			 * can be offset by reduced memory latency later. To
1414 			 * avoid excessive prefetching due to large count, only
1415 			 * prefetch buddy for the first pcp->batch nr of pages.
1416 			 */
1417 			if (prefetch_nr) {
1418 				prefetch_buddy(page);
1419 				prefetch_nr--;
1420 			}
1421 		} while (--count && --batch_free && !list_empty(list));
1422 	}
1423 
1424 	spin_lock(&zone->lock);
1425 	isolated_pageblocks = has_isolate_pageblock(zone);
1426 
1427 	/*
1428 	 * Use safe version since after __free_one_page(),
1429 	 * page->lru.next will not point to original list.
1430 	 */
1431 	list_for_each_entry_safe(page, tmp, &head, lru) {
1432 		int mt = get_pcppage_migratetype(page);
1433 		/* MIGRATE_ISOLATE page should not go to pcplists */
1434 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1435 		/* Pageblock could have been isolated meanwhile */
1436 		if (unlikely(isolated_pageblocks))
1437 			mt = get_pageblock_migratetype(page);
1438 
1439 		__free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1440 		trace_mm_page_pcpu_drain(page, 0, mt);
1441 	}
1442 	spin_unlock(&zone->lock);
1443 }
1444 
1445 static void free_one_page(struct zone *zone,
1446 				struct page *page, unsigned long pfn,
1447 				unsigned int order,
1448 				int migratetype, fpi_t fpi_flags)
1449 {
1450 	spin_lock(&zone->lock);
1451 	if (unlikely(has_isolate_pageblock(zone) ||
1452 		is_migrate_isolate(migratetype))) {
1453 		migratetype = get_pfnblock_migratetype(page, pfn);
1454 	}
1455 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1456 	spin_unlock(&zone->lock);
1457 }
1458 
1459 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1460 				unsigned long zone, int nid)
1461 {
1462 	mm_zero_struct_page(page);
1463 	set_page_links(page, zone, nid, pfn);
1464 	init_page_count(page);
1465 	page_mapcount_reset(page);
1466 	page_cpupid_reset_last(page);
1467 	page_kasan_tag_reset(page);
1468 
1469 	INIT_LIST_HEAD(&page->lru);
1470 #ifdef WANT_PAGE_VIRTUAL
1471 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1472 	if (!is_highmem_idx(zone))
1473 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1474 #endif
1475 }
1476 
1477 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1478 static void __meminit init_reserved_page(unsigned long pfn)
1479 {
1480 	pg_data_t *pgdat;
1481 	int nid, zid;
1482 
1483 	if (!early_page_uninitialised(pfn))
1484 		return;
1485 
1486 	nid = early_pfn_to_nid(pfn);
1487 	pgdat = NODE_DATA(nid);
1488 
1489 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1490 		struct zone *zone = &pgdat->node_zones[zid];
1491 
1492 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1493 			break;
1494 	}
1495 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1496 }
1497 #else
1498 static inline void init_reserved_page(unsigned long pfn)
1499 {
1500 }
1501 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1502 
1503 /*
1504  * Initialised pages do not have PageReserved set. This function is
1505  * called for each range allocated by the bootmem allocator and
1506  * marks the pages PageReserved. The remaining valid pages are later
1507  * sent to the buddy page allocator.
1508  */
1509 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1510 {
1511 	unsigned long start_pfn = PFN_DOWN(start);
1512 	unsigned long end_pfn = PFN_UP(end);
1513 
1514 	for (; start_pfn < end_pfn; start_pfn++) {
1515 		if (pfn_valid(start_pfn)) {
1516 			struct page *page = pfn_to_page(start_pfn);
1517 
1518 			init_reserved_page(start_pfn);
1519 
1520 			/* Avoid false-positive PageTail() */
1521 			INIT_LIST_HEAD(&page->lru);
1522 
1523 			/*
1524 			 * no need for atomic set_bit because the struct
1525 			 * page is not visible yet so nobody should
1526 			 * access it yet.
1527 			 */
1528 			__SetPageReserved(page);
1529 		}
1530 	}
1531 }
1532 
1533 static void __free_pages_ok(struct page *page, unsigned int order,
1534 			    fpi_t fpi_flags)
1535 {
1536 	unsigned long flags;
1537 	int migratetype;
1538 	unsigned long pfn = page_to_pfn(page);
1539 
1540 	if (!free_pages_prepare(page, order, true))
1541 		return;
1542 
1543 	migratetype = get_pfnblock_migratetype(page, pfn);
1544 	local_irq_save(flags);
1545 	__count_vm_events(PGFREE, 1 << order);
1546 	free_one_page(page_zone(page), page, pfn, order, migratetype,
1547 		      fpi_flags);
1548 	local_irq_restore(flags);
1549 }
1550 
1551 void __free_pages_core(struct page *page, unsigned int order)
1552 {
1553 	unsigned int nr_pages = 1 << order;
1554 	struct page *p = page;
1555 	unsigned int loop;
1556 
1557 	/*
1558 	 * When initializing the memmap, __init_single_page() sets the refcount
1559 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1560 	 * refcount of all involved pages to 0.
1561 	 */
1562 	prefetchw(p);
1563 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1564 		prefetchw(p + 1);
1565 		__ClearPageReserved(p);
1566 		set_page_count(p, 0);
1567 	}
1568 	__ClearPageReserved(p);
1569 	set_page_count(p, 0);
1570 
1571 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1572 
1573 	/*
1574 	 * Bypass PCP and place fresh pages right to the tail, primarily
1575 	 * relevant for memory onlining.
1576 	 */
1577 	__free_pages_ok(page, order, FPI_TO_TAIL);
1578 }
1579 
1580 #ifdef CONFIG_NEED_MULTIPLE_NODES
1581 
1582 /*
1583  * During memory init memblocks map pfns to nids. The search is expensive and
1584  * this caches recent lookups. The implementation of __early_pfn_to_nid
1585  * treats start/end as pfns.
1586  */
1587 struct mminit_pfnnid_cache {
1588 	unsigned long last_start;
1589 	unsigned long last_end;
1590 	int last_nid;
1591 };
1592 
1593 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1594 
1595 /*
1596  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1597  */
1598 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1599 					struct mminit_pfnnid_cache *state)
1600 {
1601 	unsigned long start_pfn, end_pfn;
1602 	int nid;
1603 
1604 	if (state->last_start <= pfn && pfn < state->last_end)
1605 		return state->last_nid;
1606 
1607 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1608 	if (nid != NUMA_NO_NODE) {
1609 		state->last_start = start_pfn;
1610 		state->last_end = end_pfn;
1611 		state->last_nid = nid;
1612 	}
1613 
1614 	return nid;
1615 }
1616 
1617 int __meminit early_pfn_to_nid(unsigned long pfn)
1618 {
1619 	static DEFINE_SPINLOCK(early_pfn_lock);
1620 	int nid;
1621 
1622 	spin_lock(&early_pfn_lock);
1623 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1624 	if (nid < 0)
1625 		nid = first_online_node;
1626 	spin_unlock(&early_pfn_lock);
1627 
1628 	return nid;
1629 }
1630 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1631 
1632 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1633 							unsigned int order)
1634 {
1635 	if (early_page_uninitialised(pfn))
1636 		return;
1637 	__free_pages_core(page, order);
1638 }
1639 
1640 /*
1641  * Check that the whole (or subset of) a pageblock given by the interval of
1642  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1643  * with the migration of free compaction scanner. The scanners then need to
1644  * use only pfn_valid_within() check for arches that allow holes within
1645  * pageblocks.
1646  *
1647  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1648  *
1649  * It's possible on some configurations to have a setup like node0 node1 node0
1650  * i.e. it's possible that all pages within a zones range of pages do not
1651  * belong to a single zone. We assume that a border between node0 and node1
1652  * can occur within a single pageblock, but not a node0 node1 node0
1653  * interleaving within a single pageblock. It is therefore sufficient to check
1654  * the first and last page of a pageblock and avoid checking each individual
1655  * page in a pageblock.
1656  */
1657 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1658 				     unsigned long end_pfn, struct zone *zone)
1659 {
1660 	struct page *start_page;
1661 	struct page *end_page;
1662 
1663 	/* end_pfn is one past the range we are checking */
1664 	end_pfn--;
1665 
1666 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1667 		return NULL;
1668 
1669 	start_page = pfn_to_online_page(start_pfn);
1670 	if (!start_page)
1671 		return NULL;
1672 
1673 	if (page_zone(start_page) != zone)
1674 		return NULL;
1675 
1676 	end_page = pfn_to_page(end_pfn);
1677 
1678 	/* This gives a shorter code than deriving page_zone(end_page) */
1679 	if (page_zone_id(start_page) != page_zone_id(end_page))
1680 		return NULL;
1681 
1682 	return start_page;
1683 }
1684 
1685 void set_zone_contiguous(struct zone *zone)
1686 {
1687 	unsigned long block_start_pfn = zone->zone_start_pfn;
1688 	unsigned long block_end_pfn;
1689 
1690 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1691 	for (; block_start_pfn < zone_end_pfn(zone);
1692 			block_start_pfn = block_end_pfn,
1693 			 block_end_pfn += pageblock_nr_pages) {
1694 
1695 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1696 
1697 		if (!__pageblock_pfn_to_page(block_start_pfn,
1698 					     block_end_pfn, zone))
1699 			return;
1700 		cond_resched();
1701 	}
1702 
1703 	/* We confirm that there is no hole */
1704 	zone->contiguous = true;
1705 }
1706 
1707 void clear_zone_contiguous(struct zone *zone)
1708 {
1709 	zone->contiguous = false;
1710 }
1711 
1712 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1713 static void __init deferred_free_range(unsigned long pfn,
1714 				       unsigned long nr_pages)
1715 {
1716 	struct page *page;
1717 	unsigned long i;
1718 
1719 	if (!nr_pages)
1720 		return;
1721 
1722 	page = pfn_to_page(pfn);
1723 
1724 	/* Free a large naturally-aligned chunk if possible */
1725 	if (nr_pages == pageblock_nr_pages &&
1726 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1727 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1728 		__free_pages_core(page, pageblock_order);
1729 		return;
1730 	}
1731 
1732 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1733 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1734 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1735 		__free_pages_core(page, 0);
1736 	}
1737 }
1738 
1739 /* Completion tracking for deferred_init_memmap() threads */
1740 static atomic_t pgdat_init_n_undone __initdata;
1741 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1742 
1743 static inline void __init pgdat_init_report_one_done(void)
1744 {
1745 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1746 		complete(&pgdat_init_all_done_comp);
1747 }
1748 
1749 /*
1750  * Returns true if page needs to be initialized or freed to buddy allocator.
1751  *
1752  * First we check if pfn is valid on architectures where it is possible to have
1753  * holes within pageblock_nr_pages. On systems where it is not possible, this
1754  * function is optimized out.
1755  *
1756  * Then, we check if a current large page is valid by only checking the validity
1757  * of the head pfn.
1758  */
1759 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1760 {
1761 	if (!pfn_valid_within(pfn))
1762 		return false;
1763 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1764 		return false;
1765 	return true;
1766 }
1767 
1768 /*
1769  * Free pages to buddy allocator. Try to free aligned pages in
1770  * pageblock_nr_pages sizes.
1771  */
1772 static void __init deferred_free_pages(unsigned long pfn,
1773 				       unsigned long end_pfn)
1774 {
1775 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1776 	unsigned long nr_free = 0;
1777 
1778 	for (; pfn < end_pfn; pfn++) {
1779 		if (!deferred_pfn_valid(pfn)) {
1780 			deferred_free_range(pfn - nr_free, nr_free);
1781 			nr_free = 0;
1782 		} else if (!(pfn & nr_pgmask)) {
1783 			deferred_free_range(pfn - nr_free, nr_free);
1784 			nr_free = 1;
1785 		} else {
1786 			nr_free++;
1787 		}
1788 	}
1789 	/* Free the last block of pages to allocator */
1790 	deferred_free_range(pfn - nr_free, nr_free);
1791 }
1792 
1793 /*
1794  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1795  * by performing it only once every pageblock_nr_pages.
1796  * Return number of pages initialized.
1797  */
1798 static unsigned long  __init deferred_init_pages(struct zone *zone,
1799 						 unsigned long pfn,
1800 						 unsigned long end_pfn)
1801 {
1802 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1803 	int nid = zone_to_nid(zone);
1804 	unsigned long nr_pages = 0;
1805 	int zid = zone_idx(zone);
1806 	struct page *page = NULL;
1807 
1808 	for (; pfn < end_pfn; pfn++) {
1809 		if (!deferred_pfn_valid(pfn)) {
1810 			page = NULL;
1811 			continue;
1812 		} else if (!page || !(pfn & nr_pgmask)) {
1813 			page = pfn_to_page(pfn);
1814 		} else {
1815 			page++;
1816 		}
1817 		__init_single_page(page, pfn, zid, nid);
1818 		nr_pages++;
1819 	}
1820 	return (nr_pages);
1821 }
1822 
1823 /*
1824  * This function is meant to pre-load the iterator for the zone init.
1825  * Specifically it walks through the ranges until we are caught up to the
1826  * first_init_pfn value and exits there. If we never encounter the value we
1827  * return false indicating there are no valid ranges left.
1828  */
1829 static bool __init
1830 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1831 				    unsigned long *spfn, unsigned long *epfn,
1832 				    unsigned long first_init_pfn)
1833 {
1834 	u64 j;
1835 
1836 	/*
1837 	 * Start out by walking through the ranges in this zone that have
1838 	 * already been initialized. We don't need to do anything with them
1839 	 * so we just need to flush them out of the system.
1840 	 */
1841 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1842 		if (*epfn <= first_init_pfn)
1843 			continue;
1844 		if (*spfn < first_init_pfn)
1845 			*spfn = first_init_pfn;
1846 		*i = j;
1847 		return true;
1848 	}
1849 
1850 	return false;
1851 }
1852 
1853 /*
1854  * Initialize and free pages. We do it in two loops: first we initialize
1855  * struct page, then free to buddy allocator, because while we are
1856  * freeing pages we can access pages that are ahead (computing buddy
1857  * page in __free_one_page()).
1858  *
1859  * In order to try and keep some memory in the cache we have the loop
1860  * broken along max page order boundaries. This way we will not cause
1861  * any issues with the buddy page computation.
1862  */
1863 static unsigned long __init
1864 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1865 		       unsigned long *end_pfn)
1866 {
1867 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1868 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1869 	unsigned long nr_pages = 0;
1870 	u64 j = *i;
1871 
1872 	/* First we loop through and initialize the page values */
1873 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1874 		unsigned long t;
1875 
1876 		if (mo_pfn <= *start_pfn)
1877 			break;
1878 
1879 		t = min(mo_pfn, *end_pfn);
1880 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1881 
1882 		if (mo_pfn < *end_pfn) {
1883 			*start_pfn = mo_pfn;
1884 			break;
1885 		}
1886 	}
1887 
1888 	/* Reset values and now loop through freeing pages as needed */
1889 	swap(j, *i);
1890 
1891 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1892 		unsigned long t;
1893 
1894 		if (mo_pfn <= spfn)
1895 			break;
1896 
1897 		t = min(mo_pfn, epfn);
1898 		deferred_free_pages(spfn, t);
1899 
1900 		if (mo_pfn <= epfn)
1901 			break;
1902 	}
1903 
1904 	return nr_pages;
1905 }
1906 
1907 static void __init
1908 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1909 			   void *arg)
1910 {
1911 	unsigned long spfn, epfn;
1912 	struct zone *zone = arg;
1913 	u64 i;
1914 
1915 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1916 
1917 	/*
1918 	 * Initialize and free pages in MAX_ORDER sized increments so that we
1919 	 * can avoid introducing any issues with the buddy allocator.
1920 	 */
1921 	while (spfn < end_pfn) {
1922 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
1923 		cond_resched();
1924 	}
1925 }
1926 
1927 /* An arch may override for more concurrency. */
1928 __weak int __init
1929 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1930 {
1931 	return 1;
1932 }
1933 
1934 /* Initialise remaining memory on a node */
1935 static int __init deferred_init_memmap(void *data)
1936 {
1937 	pg_data_t *pgdat = data;
1938 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1939 	unsigned long spfn = 0, epfn = 0;
1940 	unsigned long first_init_pfn, flags;
1941 	unsigned long start = jiffies;
1942 	struct zone *zone;
1943 	int zid, max_threads;
1944 	u64 i;
1945 
1946 	/* Bind memory initialisation thread to a local node if possible */
1947 	if (!cpumask_empty(cpumask))
1948 		set_cpus_allowed_ptr(current, cpumask);
1949 
1950 	pgdat_resize_lock(pgdat, &flags);
1951 	first_init_pfn = pgdat->first_deferred_pfn;
1952 	if (first_init_pfn == ULONG_MAX) {
1953 		pgdat_resize_unlock(pgdat, &flags);
1954 		pgdat_init_report_one_done();
1955 		return 0;
1956 	}
1957 
1958 	/* Sanity check boundaries */
1959 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1960 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1961 	pgdat->first_deferred_pfn = ULONG_MAX;
1962 
1963 	/*
1964 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
1965 	 * interrupt thread must allocate this early in boot, zone must be
1966 	 * pre-grown prior to start of deferred page initialization.
1967 	 */
1968 	pgdat_resize_unlock(pgdat, &flags);
1969 
1970 	/* Only the highest zone is deferred so find it */
1971 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1972 		zone = pgdat->node_zones + zid;
1973 		if (first_init_pfn < zone_end_pfn(zone))
1974 			break;
1975 	}
1976 
1977 	/* If the zone is empty somebody else may have cleared out the zone */
1978 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1979 						 first_init_pfn))
1980 		goto zone_empty;
1981 
1982 	max_threads = deferred_page_init_max_threads(cpumask);
1983 
1984 	while (spfn < epfn) {
1985 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1986 		struct padata_mt_job job = {
1987 			.thread_fn   = deferred_init_memmap_chunk,
1988 			.fn_arg      = zone,
1989 			.start       = spfn,
1990 			.size        = epfn_align - spfn,
1991 			.align       = PAGES_PER_SECTION,
1992 			.min_chunk   = PAGES_PER_SECTION,
1993 			.max_threads = max_threads,
1994 		};
1995 
1996 		padata_do_multithreaded(&job);
1997 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1998 						    epfn_align);
1999 	}
2000 zone_empty:
2001 	/* Sanity check that the next zone really is unpopulated */
2002 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2003 
2004 	pr_info("node %d deferred pages initialised in %ums\n",
2005 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2006 
2007 	pgdat_init_report_one_done();
2008 	return 0;
2009 }
2010 
2011 /*
2012  * If this zone has deferred pages, try to grow it by initializing enough
2013  * deferred pages to satisfy the allocation specified by order, rounded up to
2014  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2015  * of SECTION_SIZE bytes by initializing struct pages in increments of
2016  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2017  *
2018  * Return true when zone was grown, otherwise return false. We return true even
2019  * when we grow less than requested, to let the caller decide if there are
2020  * enough pages to satisfy the allocation.
2021  *
2022  * Note: We use noinline because this function is needed only during boot, and
2023  * it is called from a __ref function _deferred_grow_zone. This way we are
2024  * making sure that it is not inlined into permanent text section.
2025  */
2026 static noinline bool __init
2027 deferred_grow_zone(struct zone *zone, unsigned int order)
2028 {
2029 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2030 	pg_data_t *pgdat = zone->zone_pgdat;
2031 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2032 	unsigned long spfn, epfn, flags;
2033 	unsigned long nr_pages = 0;
2034 	u64 i;
2035 
2036 	/* Only the last zone may have deferred pages */
2037 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2038 		return false;
2039 
2040 	pgdat_resize_lock(pgdat, &flags);
2041 
2042 	/*
2043 	 * If someone grew this zone while we were waiting for spinlock, return
2044 	 * true, as there might be enough pages already.
2045 	 */
2046 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2047 		pgdat_resize_unlock(pgdat, &flags);
2048 		return true;
2049 	}
2050 
2051 	/* If the zone is empty somebody else may have cleared out the zone */
2052 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2053 						 first_deferred_pfn)) {
2054 		pgdat->first_deferred_pfn = ULONG_MAX;
2055 		pgdat_resize_unlock(pgdat, &flags);
2056 		/* Retry only once. */
2057 		return first_deferred_pfn != ULONG_MAX;
2058 	}
2059 
2060 	/*
2061 	 * Initialize and free pages in MAX_ORDER sized increments so
2062 	 * that we can avoid introducing any issues with the buddy
2063 	 * allocator.
2064 	 */
2065 	while (spfn < epfn) {
2066 		/* update our first deferred PFN for this section */
2067 		first_deferred_pfn = spfn;
2068 
2069 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2070 		touch_nmi_watchdog();
2071 
2072 		/* We should only stop along section boundaries */
2073 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2074 			continue;
2075 
2076 		/* If our quota has been met we can stop here */
2077 		if (nr_pages >= nr_pages_needed)
2078 			break;
2079 	}
2080 
2081 	pgdat->first_deferred_pfn = spfn;
2082 	pgdat_resize_unlock(pgdat, &flags);
2083 
2084 	return nr_pages > 0;
2085 }
2086 
2087 /*
2088  * deferred_grow_zone() is __init, but it is called from
2089  * get_page_from_freelist() during early boot until deferred_pages permanently
2090  * disables this call. This is why we have refdata wrapper to avoid warning,
2091  * and to ensure that the function body gets unloaded.
2092  */
2093 static bool __ref
2094 _deferred_grow_zone(struct zone *zone, unsigned int order)
2095 {
2096 	return deferred_grow_zone(zone, order);
2097 }
2098 
2099 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2100 
2101 void __init page_alloc_init_late(void)
2102 {
2103 	struct zone *zone;
2104 	int nid;
2105 
2106 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2107 
2108 	/* There will be num_node_state(N_MEMORY) threads */
2109 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2110 	for_each_node_state(nid, N_MEMORY) {
2111 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2112 	}
2113 
2114 	/* Block until all are initialised */
2115 	wait_for_completion(&pgdat_init_all_done_comp);
2116 
2117 	/*
2118 	 * The number of managed pages has changed due to the initialisation
2119 	 * so the pcpu batch and high limits needs to be updated or the limits
2120 	 * will be artificially small.
2121 	 */
2122 	for_each_populated_zone(zone)
2123 		zone_pcp_update(zone);
2124 
2125 	/*
2126 	 * We initialized the rest of the deferred pages.  Permanently disable
2127 	 * on-demand struct page initialization.
2128 	 */
2129 	static_branch_disable(&deferred_pages);
2130 
2131 	/* Reinit limits that are based on free pages after the kernel is up */
2132 	files_maxfiles_init();
2133 #endif
2134 
2135 	buffer_init();
2136 
2137 	/* Discard memblock private memory */
2138 	memblock_discard();
2139 
2140 	for_each_node_state(nid, N_MEMORY)
2141 		shuffle_free_memory(NODE_DATA(nid));
2142 
2143 	for_each_populated_zone(zone)
2144 		set_zone_contiguous(zone);
2145 }
2146 
2147 #ifdef CONFIG_CMA
2148 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2149 void __init init_cma_reserved_pageblock(struct page *page)
2150 {
2151 	unsigned i = pageblock_nr_pages;
2152 	struct page *p = page;
2153 
2154 	do {
2155 		__ClearPageReserved(p);
2156 		set_page_count(p, 0);
2157 	} while (++p, --i);
2158 
2159 	set_pageblock_migratetype(page, MIGRATE_CMA);
2160 
2161 	if (pageblock_order >= MAX_ORDER) {
2162 		i = pageblock_nr_pages;
2163 		p = page;
2164 		do {
2165 			set_page_refcounted(p);
2166 			__free_pages(p, MAX_ORDER - 1);
2167 			p += MAX_ORDER_NR_PAGES;
2168 		} while (i -= MAX_ORDER_NR_PAGES);
2169 	} else {
2170 		set_page_refcounted(page);
2171 		__free_pages(page, pageblock_order);
2172 	}
2173 
2174 	adjust_managed_page_count(page, pageblock_nr_pages);
2175 	page_zone(page)->cma_pages += pageblock_nr_pages;
2176 }
2177 #endif
2178 
2179 /*
2180  * The order of subdivision here is critical for the IO subsystem.
2181  * Please do not alter this order without good reasons and regression
2182  * testing. Specifically, as large blocks of memory are subdivided,
2183  * the order in which smaller blocks are delivered depends on the order
2184  * they're subdivided in this function. This is the primary factor
2185  * influencing the order in which pages are delivered to the IO
2186  * subsystem according to empirical testing, and this is also justified
2187  * by considering the behavior of a buddy system containing a single
2188  * large block of memory acted on by a series of small allocations.
2189  * This behavior is a critical factor in sglist merging's success.
2190  *
2191  * -- nyc
2192  */
2193 static inline void expand(struct zone *zone, struct page *page,
2194 	int low, int high, int migratetype)
2195 {
2196 	unsigned long size = 1 << high;
2197 
2198 	while (high > low) {
2199 		high--;
2200 		size >>= 1;
2201 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2202 
2203 		/*
2204 		 * Mark as guard pages (or page), that will allow to
2205 		 * merge back to allocator when buddy will be freed.
2206 		 * Corresponding page table entries will not be touched,
2207 		 * pages will stay not present in virtual address space
2208 		 */
2209 		if (set_page_guard(zone, &page[size], high, migratetype))
2210 			continue;
2211 
2212 		add_to_free_list(&page[size], zone, high, migratetype);
2213 		set_buddy_order(&page[size], high);
2214 	}
2215 }
2216 
2217 static void check_new_page_bad(struct page *page)
2218 {
2219 	if (unlikely(page->flags & __PG_HWPOISON)) {
2220 		/* Don't complain about hwpoisoned pages */
2221 		page_mapcount_reset(page); /* remove PageBuddy */
2222 		return;
2223 	}
2224 
2225 	bad_page(page,
2226 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2227 }
2228 
2229 /*
2230  * This page is about to be returned from the page allocator
2231  */
2232 static inline int check_new_page(struct page *page)
2233 {
2234 	if (likely(page_expected_state(page,
2235 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2236 		return 0;
2237 
2238 	check_new_page_bad(page);
2239 	return 1;
2240 }
2241 
2242 #ifdef CONFIG_DEBUG_VM
2243 /*
2244  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2245  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2246  * also checked when pcp lists are refilled from the free lists.
2247  */
2248 static inline bool check_pcp_refill(struct page *page)
2249 {
2250 	if (debug_pagealloc_enabled_static())
2251 		return check_new_page(page);
2252 	else
2253 		return false;
2254 }
2255 
2256 static inline bool check_new_pcp(struct page *page)
2257 {
2258 	return check_new_page(page);
2259 }
2260 #else
2261 /*
2262  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2263  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2264  * enabled, they are also checked when being allocated from the pcp lists.
2265  */
2266 static inline bool check_pcp_refill(struct page *page)
2267 {
2268 	return check_new_page(page);
2269 }
2270 static inline bool check_new_pcp(struct page *page)
2271 {
2272 	if (debug_pagealloc_enabled_static())
2273 		return check_new_page(page);
2274 	else
2275 		return false;
2276 }
2277 #endif /* CONFIG_DEBUG_VM */
2278 
2279 static bool check_new_pages(struct page *page, unsigned int order)
2280 {
2281 	int i;
2282 	for (i = 0; i < (1 << order); i++) {
2283 		struct page *p = page + i;
2284 
2285 		if (unlikely(check_new_page(p)))
2286 			return true;
2287 	}
2288 
2289 	return false;
2290 }
2291 
2292 inline void post_alloc_hook(struct page *page, unsigned int order,
2293 				gfp_t gfp_flags)
2294 {
2295 	set_page_private(page, 0);
2296 	set_page_refcounted(page);
2297 
2298 	arch_alloc_page(page, order);
2299 	debug_pagealloc_map_pages(page, 1 << order);
2300 	kasan_alloc_pages(page, order);
2301 	kernel_unpoison_pages(page, 1 << order);
2302 	set_page_owner(page, order, gfp_flags);
2303 
2304 	if (!want_init_on_free() && want_init_on_alloc(gfp_flags))
2305 		kernel_init_free_pages(page, 1 << order);
2306 }
2307 
2308 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2309 							unsigned int alloc_flags)
2310 {
2311 	post_alloc_hook(page, order, gfp_flags);
2312 
2313 	if (order && (gfp_flags & __GFP_COMP))
2314 		prep_compound_page(page, order);
2315 
2316 	/*
2317 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2318 	 * allocate the page. The expectation is that the caller is taking
2319 	 * steps that will free more memory. The caller should avoid the page
2320 	 * being used for !PFMEMALLOC purposes.
2321 	 */
2322 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2323 		set_page_pfmemalloc(page);
2324 	else
2325 		clear_page_pfmemalloc(page);
2326 }
2327 
2328 /*
2329  * Go through the free lists for the given migratetype and remove
2330  * the smallest available page from the freelists
2331  */
2332 static __always_inline
2333 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2334 						int migratetype)
2335 {
2336 	unsigned int current_order;
2337 	struct free_area *area;
2338 	struct page *page;
2339 
2340 	/* Find a page of the appropriate size in the preferred list */
2341 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2342 		area = &(zone->free_area[current_order]);
2343 		page = get_page_from_free_area(area, migratetype);
2344 		if (!page)
2345 			continue;
2346 		del_page_from_free_list(page, zone, current_order);
2347 		expand(zone, page, order, current_order, migratetype);
2348 		set_pcppage_migratetype(page, migratetype);
2349 		return page;
2350 	}
2351 
2352 	return NULL;
2353 }
2354 
2355 
2356 /*
2357  * This array describes the order lists are fallen back to when
2358  * the free lists for the desirable migrate type are depleted
2359  */
2360 static int fallbacks[MIGRATE_TYPES][3] = {
2361 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2362 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2363 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2364 #ifdef CONFIG_CMA
2365 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2366 #endif
2367 #ifdef CONFIG_MEMORY_ISOLATION
2368 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2369 #endif
2370 };
2371 
2372 #ifdef CONFIG_CMA
2373 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2374 					unsigned int order)
2375 {
2376 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2377 }
2378 #else
2379 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2380 					unsigned int order) { return NULL; }
2381 #endif
2382 
2383 /*
2384  * Move the free pages in a range to the freelist tail of the requested type.
2385  * Note that start_page and end_pages are not aligned on a pageblock
2386  * boundary. If alignment is required, use move_freepages_block()
2387  */
2388 static int move_freepages(struct zone *zone,
2389 			  struct page *start_page, struct page *end_page,
2390 			  int migratetype, int *num_movable)
2391 {
2392 	struct page *page;
2393 	unsigned int order;
2394 	int pages_moved = 0;
2395 
2396 	for (page = start_page; page <= end_page;) {
2397 		if (!pfn_valid_within(page_to_pfn(page))) {
2398 			page++;
2399 			continue;
2400 		}
2401 
2402 		if (!PageBuddy(page)) {
2403 			/*
2404 			 * We assume that pages that could be isolated for
2405 			 * migration are movable. But we don't actually try
2406 			 * isolating, as that would be expensive.
2407 			 */
2408 			if (num_movable &&
2409 					(PageLRU(page) || __PageMovable(page)))
2410 				(*num_movable)++;
2411 
2412 			page++;
2413 			continue;
2414 		}
2415 
2416 		/* Make sure we are not inadvertently changing nodes */
2417 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2418 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2419 
2420 		order = buddy_order(page);
2421 		move_to_free_list(page, zone, order, migratetype);
2422 		page += 1 << order;
2423 		pages_moved += 1 << order;
2424 	}
2425 
2426 	return pages_moved;
2427 }
2428 
2429 int move_freepages_block(struct zone *zone, struct page *page,
2430 				int migratetype, int *num_movable)
2431 {
2432 	unsigned long start_pfn, end_pfn;
2433 	struct page *start_page, *end_page;
2434 
2435 	if (num_movable)
2436 		*num_movable = 0;
2437 
2438 	start_pfn = page_to_pfn(page);
2439 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2440 	start_page = pfn_to_page(start_pfn);
2441 	end_page = start_page + pageblock_nr_pages - 1;
2442 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2443 
2444 	/* Do not cross zone boundaries */
2445 	if (!zone_spans_pfn(zone, start_pfn))
2446 		start_page = page;
2447 	if (!zone_spans_pfn(zone, end_pfn))
2448 		return 0;
2449 
2450 	return move_freepages(zone, start_page, end_page, migratetype,
2451 								num_movable);
2452 }
2453 
2454 static void change_pageblock_range(struct page *pageblock_page,
2455 					int start_order, int migratetype)
2456 {
2457 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2458 
2459 	while (nr_pageblocks--) {
2460 		set_pageblock_migratetype(pageblock_page, migratetype);
2461 		pageblock_page += pageblock_nr_pages;
2462 	}
2463 }
2464 
2465 /*
2466  * When we are falling back to another migratetype during allocation, try to
2467  * steal extra free pages from the same pageblocks to satisfy further
2468  * allocations, instead of polluting multiple pageblocks.
2469  *
2470  * If we are stealing a relatively large buddy page, it is likely there will
2471  * be more free pages in the pageblock, so try to steal them all. For
2472  * reclaimable and unmovable allocations, we steal regardless of page size,
2473  * as fragmentation caused by those allocations polluting movable pageblocks
2474  * is worse than movable allocations stealing from unmovable and reclaimable
2475  * pageblocks.
2476  */
2477 static bool can_steal_fallback(unsigned int order, int start_mt)
2478 {
2479 	/*
2480 	 * Leaving this order check is intended, although there is
2481 	 * relaxed order check in next check. The reason is that
2482 	 * we can actually steal whole pageblock if this condition met,
2483 	 * but, below check doesn't guarantee it and that is just heuristic
2484 	 * so could be changed anytime.
2485 	 */
2486 	if (order >= pageblock_order)
2487 		return true;
2488 
2489 	if (order >= pageblock_order / 2 ||
2490 		start_mt == MIGRATE_RECLAIMABLE ||
2491 		start_mt == MIGRATE_UNMOVABLE ||
2492 		page_group_by_mobility_disabled)
2493 		return true;
2494 
2495 	return false;
2496 }
2497 
2498 static inline bool boost_watermark(struct zone *zone)
2499 {
2500 	unsigned long max_boost;
2501 
2502 	if (!watermark_boost_factor)
2503 		return false;
2504 	/*
2505 	 * Don't bother in zones that are unlikely to produce results.
2506 	 * On small machines, including kdump capture kernels running
2507 	 * in a small area, boosting the watermark can cause an out of
2508 	 * memory situation immediately.
2509 	 */
2510 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2511 		return false;
2512 
2513 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2514 			watermark_boost_factor, 10000);
2515 
2516 	/*
2517 	 * high watermark may be uninitialised if fragmentation occurs
2518 	 * very early in boot so do not boost. We do not fall
2519 	 * through and boost by pageblock_nr_pages as failing
2520 	 * allocations that early means that reclaim is not going
2521 	 * to help and it may even be impossible to reclaim the
2522 	 * boosted watermark resulting in a hang.
2523 	 */
2524 	if (!max_boost)
2525 		return false;
2526 
2527 	max_boost = max(pageblock_nr_pages, max_boost);
2528 
2529 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2530 		max_boost);
2531 
2532 	return true;
2533 }
2534 
2535 /*
2536  * This function implements actual steal behaviour. If order is large enough,
2537  * we can steal whole pageblock. If not, we first move freepages in this
2538  * pageblock to our migratetype and determine how many already-allocated pages
2539  * are there in the pageblock with a compatible migratetype. If at least half
2540  * of pages are free or compatible, we can change migratetype of the pageblock
2541  * itself, so pages freed in the future will be put on the correct free list.
2542  */
2543 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2544 		unsigned int alloc_flags, int start_type, bool whole_block)
2545 {
2546 	unsigned int current_order = buddy_order(page);
2547 	int free_pages, movable_pages, alike_pages;
2548 	int old_block_type;
2549 
2550 	old_block_type = get_pageblock_migratetype(page);
2551 
2552 	/*
2553 	 * This can happen due to races and we want to prevent broken
2554 	 * highatomic accounting.
2555 	 */
2556 	if (is_migrate_highatomic(old_block_type))
2557 		goto single_page;
2558 
2559 	/* Take ownership for orders >= pageblock_order */
2560 	if (current_order >= pageblock_order) {
2561 		change_pageblock_range(page, current_order, start_type);
2562 		goto single_page;
2563 	}
2564 
2565 	/*
2566 	 * Boost watermarks to increase reclaim pressure to reduce the
2567 	 * likelihood of future fallbacks. Wake kswapd now as the node
2568 	 * may be balanced overall and kswapd will not wake naturally.
2569 	 */
2570 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2571 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2572 
2573 	/* We are not allowed to try stealing from the whole block */
2574 	if (!whole_block)
2575 		goto single_page;
2576 
2577 	free_pages = move_freepages_block(zone, page, start_type,
2578 						&movable_pages);
2579 	/*
2580 	 * Determine how many pages are compatible with our allocation.
2581 	 * For movable allocation, it's the number of movable pages which
2582 	 * we just obtained. For other types it's a bit more tricky.
2583 	 */
2584 	if (start_type == MIGRATE_MOVABLE) {
2585 		alike_pages = movable_pages;
2586 	} else {
2587 		/*
2588 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2589 		 * to MOVABLE pageblock, consider all non-movable pages as
2590 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2591 		 * vice versa, be conservative since we can't distinguish the
2592 		 * exact migratetype of non-movable pages.
2593 		 */
2594 		if (old_block_type == MIGRATE_MOVABLE)
2595 			alike_pages = pageblock_nr_pages
2596 						- (free_pages + movable_pages);
2597 		else
2598 			alike_pages = 0;
2599 	}
2600 
2601 	/* moving whole block can fail due to zone boundary conditions */
2602 	if (!free_pages)
2603 		goto single_page;
2604 
2605 	/*
2606 	 * If a sufficient number of pages in the block are either free or of
2607 	 * comparable migratability as our allocation, claim the whole block.
2608 	 */
2609 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2610 			page_group_by_mobility_disabled)
2611 		set_pageblock_migratetype(page, start_type);
2612 
2613 	return;
2614 
2615 single_page:
2616 	move_to_free_list(page, zone, current_order, start_type);
2617 }
2618 
2619 /*
2620  * Check whether there is a suitable fallback freepage with requested order.
2621  * If only_stealable is true, this function returns fallback_mt only if
2622  * we can steal other freepages all together. This would help to reduce
2623  * fragmentation due to mixed migratetype pages in one pageblock.
2624  */
2625 int find_suitable_fallback(struct free_area *area, unsigned int order,
2626 			int migratetype, bool only_stealable, bool *can_steal)
2627 {
2628 	int i;
2629 	int fallback_mt;
2630 
2631 	if (area->nr_free == 0)
2632 		return -1;
2633 
2634 	*can_steal = false;
2635 	for (i = 0;; i++) {
2636 		fallback_mt = fallbacks[migratetype][i];
2637 		if (fallback_mt == MIGRATE_TYPES)
2638 			break;
2639 
2640 		if (free_area_empty(area, fallback_mt))
2641 			continue;
2642 
2643 		if (can_steal_fallback(order, migratetype))
2644 			*can_steal = true;
2645 
2646 		if (!only_stealable)
2647 			return fallback_mt;
2648 
2649 		if (*can_steal)
2650 			return fallback_mt;
2651 	}
2652 
2653 	return -1;
2654 }
2655 
2656 /*
2657  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2658  * there are no empty page blocks that contain a page with a suitable order
2659  */
2660 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2661 				unsigned int alloc_order)
2662 {
2663 	int mt;
2664 	unsigned long max_managed, flags;
2665 
2666 	/*
2667 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2668 	 * Check is race-prone but harmless.
2669 	 */
2670 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2671 	if (zone->nr_reserved_highatomic >= max_managed)
2672 		return;
2673 
2674 	spin_lock_irqsave(&zone->lock, flags);
2675 
2676 	/* Recheck the nr_reserved_highatomic limit under the lock */
2677 	if (zone->nr_reserved_highatomic >= max_managed)
2678 		goto out_unlock;
2679 
2680 	/* Yoink! */
2681 	mt = get_pageblock_migratetype(page);
2682 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2683 	    && !is_migrate_cma(mt)) {
2684 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2685 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2686 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2687 	}
2688 
2689 out_unlock:
2690 	spin_unlock_irqrestore(&zone->lock, flags);
2691 }
2692 
2693 /*
2694  * Used when an allocation is about to fail under memory pressure. This
2695  * potentially hurts the reliability of high-order allocations when under
2696  * intense memory pressure but failed atomic allocations should be easier
2697  * to recover from than an OOM.
2698  *
2699  * If @force is true, try to unreserve a pageblock even though highatomic
2700  * pageblock is exhausted.
2701  */
2702 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2703 						bool force)
2704 {
2705 	struct zonelist *zonelist = ac->zonelist;
2706 	unsigned long flags;
2707 	struct zoneref *z;
2708 	struct zone *zone;
2709 	struct page *page;
2710 	int order;
2711 	bool ret;
2712 
2713 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2714 								ac->nodemask) {
2715 		/*
2716 		 * Preserve at least one pageblock unless memory pressure
2717 		 * is really high.
2718 		 */
2719 		if (!force && zone->nr_reserved_highatomic <=
2720 					pageblock_nr_pages)
2721 			continue;
2722 
2723 		spin_lock_irqsave(&zone->lock, flags);
2724 		for (order = 0; order < MAX_ORDER; order++) {
2725 			struct free_area *area = &(zone->free_area[order]);
2726 
2727 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2728 			if (!page)
2729 				continue;
2730 
2731 			/*
2732 			 * In page freeing path, migratetype change is racy so
2733 			 * we can counter several free pages in a pageblock
2734 			 * in this loop althoug we changed the pageblock type
2735 			 * from highatomic to ac->migratetype. So we should
2736 			 * adjust the count once.
2737 			 */
2738 			if (is_migrate_highatomic_page(page)) {
2739 				/*
2740 				 * It should never happen but changes to
2741 				 * locking could inadvertently allow a per-cpu
2742 				 * drain to add pages to MIGRATE_HIGHATOMIC
2743 				 * while unreserving so be safe and watch for
2744 				 * underflows.
2745 				 */
2746 				zone->nr_reserved_highatomic -= min(
2747 						pageblock_nr_pages,
2748 						zone->nr_reserved_highatomic);
2749 			}
2750 
2751 			/*
2752 			 * Convert to ac->migratetype and avoid the normal
2753 			 * pageblock stealing heuristics. Minimally, the caller
2754 			 * is doing the work and needs the pages. More
2755 			 * importantly, if the block was always converted to
2756 			 * MIGRATE_UNMOVABLE or another type then the number
2757 			 * of pageblocks that cannot be completely freed
2758 			 * may increase.
2759 			 */
2760 			set_pageblock_migratetype(page, ac->migratetype);
2761 			ret = move_freepages_block(zone, page, ac->migratetype,
2762 									NULL);
2763 			if (ret) {
2764 				spin_unlock_irqrestore(&zone->lock, flags);
2765 				return ret;
2766 			}
2767 		}
2768 		spin_unlock_irqrestore(&zone->lock, flags);
2769 	}
2770 
2771 	return false;
2772 }
2773 
2774 /*
2775  * Try finding a free buddy page on the fallback list and put it on the free
2776  * list of requested migratetype, possibly along with other pages from the same
2777  * block, depending on fragmentation avoidance heuristics. Returns true if
2778  * fallback was found so that __rmqueue_smallest() can grab it.
2779  *
2780  * The use of signed ints for order and current_order is a deliberate
2781  * deviation from the rest of this file, to make the for loop
2782  * condition simpler.
2783  */
2784 static __always_inline bool
2785 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2786 						unsigned int alloc_flags)
2787 {
2788 	struct free_area *area;
2789 	int current_order;
2790 	int min_order = order;
2791 	struct page *page;
2792 	int fallback_mt;
2793 	bool can_steal;
2794 
2795 	/*
2796 	 * Do not steal pages from freelists belonging to other pageblocks
2797 	 * i.e. orders < pageblock_order. If there are no local zones free,
2798 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2799 	 */
2800 	if (alloc_flags & ALLOC_NOFRAGMENT)
2801 		min_order = pageblock_order;
2802 
2803 	/*
2804 	 * Find the largest available free page in the other list. This roughly
2805 	 * approximates finding the pageblock with the most free pages, which
2806 	 * would be too costly to do exactly.
2807 	 */
2808 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2809 				--current_order) {
2810 		area = &(zone->free_area[current_order]);
2811 		fallback_mt = find_suitable_fallback(area, current_order,
2812 				start_migratetype, false, &can_steal);
2813 		if (fallback_mt == -1)
2814 			continue;
2815 
2816 		/*
2817 		 * We cannot steal all free pages from the pageblock and the
2818 		 * requested migratetype is movable. In that case it's better to
2819 		 * steal and split the smallest available page instead of the
2820 		 * largest available page, because even if the next movable
2821 		 * allocation falls back into a different pageblock than this
2822 		 * one, it won't cause permanent fragmentation.
2823 		 */
2824 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2825 					&& current_order > order)
2826 			goto find_smallest;
2827 
2828 		goto do_steal;
2829 	}
2830 
2831 	return false;
2832 
2833 find_smallest:
2834 	for (current_order = order; current_order < MAX_ORDER;
2835 							current_order++) {
2836 		area = &(zone->free_area[current_order]);
2837 		fallback_mt = find_suitable_fallback(area, current_order,
2838 				start_migratetype, false, &can_steal);
2839 		if (fallback_mt != -1)
2840 			break;
2841 	}
2842 
2843 	/*
2844 	 * This should not happen - we already found a suitable fallback
2845 	 * when looking for the largest page.
2846 	 */
2847 	VM_BUG_ON(current_order == MAX_ORDER);
2848 
2849 do_steal:
2850 	page = get_page_from_free_area(area, fallback_mt);
2851 
2852 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2853 								can_steal);
2854 
2855 	trace_mm_page_alloc_extfrag(page, order, current_order,
2856 		start_migratetype, fallback_mt);
2857 
2858 	return true;
2859 
2860 }
2861 
2862 /*
2863  * Do the hard work of removing an element from the buddy allocator.
2864  * Call me with the zone->lock already held.
2865  */
2866 static __always_inline struct page *
2867 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2868 						unsigned int alloc_flags)
2869 {
2870 	struct page *page;
2871 
2872 	if (IS_ENABLED(CONFIG_CMA)) {
2873 		/*
2874 		 * Balance movable allocations between regular and CMA areas by
2875 		 * allocating from CMA when over half of the zone's free memory
2876 		 * is in the CMA area.
2877 		 */
2878 		if (alloc_flags & ALLOC_CMA &&
2879 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2880 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2881 			page = __rmqueue_cma_fallback(zone, order);
2882 			if (page)
2883 				goto out;
2884 		}
2885 	}
2886 retry:
2887 	page = __rmqueue_smallest(zone, order, migratetype);
2888 	if (unlikely(!page)) {
2889 		if (alloc_flags & ALLOC_CMA)
2890 			page = __rmqueue_cma_fallback(zone, order);
2891 
2892 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2893 								alloc_flags))
2894 			goto retry;
2895 	}
2896 out:
2897 	if (page)
2898 		trace_mm_page_alloc_zone_locked(page, order, migratetype);
2899 	return page;
2900 }
2901 
2902 /*
2903  * Obtain a specified number of elements from the buddy allocator, all under
2904  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2905  * Returns the number of new pages which were placed at *list.
2906  */
2907 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2908 			unsigned long count, struct list_head *list,
2909 			int migratetype, unsigned int alloc_flags)
2910 {
2911 	int i, alloced = 0;
2912 
2913 	spin_lock(&zone->lock);
2914 	for (i = 0; i < count; ++i) {
2915 		struct page *page = __rmqueue(zone, order, migratetype,
2916 								alloc_flags);
2917 		if (unlikely(page == NULL))
2918 			break;
2919 
2920 		if (unlikely(check_pcp_refill(page)))
2921 			continue;
2922 
2923 		/*
2924 		 * Split buddy pages returned by expand() are received here in
2925 		 * physical page order. The page is added to the tail of
2926 		 * caller's list. From the callers perspective, the linked list
2927 		 * is ordered by page number under some conditions. This is
2928 		 * useful for IO devices that can forward direction from the
2929 		 * head, thus also in the physical page order. This is useful
2930 		 * for IO devices that can merge IO requests if the physical
2931 		 * pages are ordered properly.
2932 		 */
2933 		list_add_tail(&page->lru, list);
2934 		alloced++;
2935 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2936 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2937 					      -(1 << order));
2938 	}
2939 
2940 	/*
2941 	 * i pages were removed from the buddy list even if some leak due
2942 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2943 	 * on i. Do not confuse with 'alloced' which is the number of
2944 	 * pages added to the pcp list.
2945 	 */
2946 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2947 	spin_unlock(&zone->lock);
2948 	return alloced;
2949 }
2950 
2951 #ifdef CONFIG_NUMA
2952 /*
2953  * Called from the vmstat counter updater to drain pagesets of this
2954  * currently executing processor on remote nodes after they have
2955  * expired.
2956  *
2957  * Note that this function must be called with the thread pinned to
2958  * a single processor.
2959  */
2960 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2961 {
2962 	unsigned long flags;
2963 	int to_drain, batch;
2964 
2965 	local_irq_save(flags);
2966 	batch = READ_ONCE(pcp->batch);
2967 	to_drain = min(pcp->count, batch);
2968 	if (to_drain > 0)
2969 		free_pcppages_bulk(zone, to_drain, pcp);
2970 	local_irq_restore(flags);
2971 }
2972 #endif
2973 
2974 /*
2975  * Drain pcplists of the indicated processor and zone.
2976  *
2977  * The processor must either be the current processor and the
2978  * thread pinned to the current processor or a processor that
2979  * is not online.
2980  */
2981 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2982 {
2983 	unsigned long flags;
2984 	struct per_cpu_pageset *pset;
2985 	struct per_cpu_pages *pcp;
2986 
2987 	local_irq_save(flags);
2988 	pset = per_cpu_ptr(zone->pageset, cpu);
2989 
2990 	pcp = &pset->pcp;
2991 	if (pcp->count)
2992 		free_pcppages_bulk(zone, pcp->count, pcp);
2993 	local_irq_restore(flags);
2994 }
2995 
2996 /*
2997  * Drain pcplists of all zones on the indicated processor.
2998  *
2999  * The processor must either be the current processor and the
3000  * thread pinned to the current processor or a processor that
3001  * is not online.
3002  */
3003 static void drain_pages(unsigned int cpu)
3004 {
3005 	struct zone *zone;
3006 
3007 	for_each_populated_zone(zone) {
3008 		drain_pages_zone(cpu, zone);
3009 	}
3010 }
3011 
3012 /*
3013  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3014  *
3015  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3016  * the single zone's pages.
3017  */
3018 void drain_local_pages(struct zone *zone)
3019 {
3020 	int cpu = smp_processor_id();
3021 
3022 	if (zone)
3023 		drain_pages_zone(cpu, zone);
3024 	else
3025 		drain_pages(cpu);
3026 }
3027 
3028 static void drain_local_pages_wq(struct work_struct *work)
3029 {
3030 	struct pcpu_drain *drain;
3031 
3032 	drain = container_of(work, struct pcpu_drain, work);
3033 
3034 	/*
3035 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3036 	 * we can race with cpu offline when the WQ can move this from
3037 	 * a cpu pinned worker to an unbound one. We can operate on a different
3038 	 * cpu which is allright but we also have to make sure to not move to
3039 	 * a different one.
3040 	 */
3041 	preempt_disable();
3042 	drain_local_pages(drain->zone);
3043 	preempt_enable();
3044 }
3045 
3046 /*
3047  * The implementation of drain_all_pages(), exposing an extra parameter to
3048  * drain on all cpus.
3049  *
3050  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3051  * not empty. The check for non-emptiness can however race with a free to
3052  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3053  * that need the guarantee that every CPU has drained can disable the
3054  * optimizing racy check.
3055  */
3056 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3057 {
3058 	int cpu;
3059 
3060 	/*
3061 	 * Allocate in the BSS so we wont require allocation in
3062 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3063 	 */
3064 	static cpumask_t cpus_with_pcps;
3065 
3066 	/*
3067 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3068 	 * initialized.
3069 	 */
3070 	if (WARN_ON_ONCE(!mm_percpu_wq))
3071 		return;
3072 
3073 	/*
3074 	 * Do not drain if one is already in progress unless it's specific to
3075 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3076 	 * the drain to be complete when the call returns.
3077 	 */
3078 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3079 		if (!zone)
3080 			return;
3081 		mutex_lock(&pcpu_drain_mutex);
3082 	}
3083 
3084 	/*
3085 	 * We don't care about racing with CPU hotplug event
3086 	 * as offline notification will cause the notified
3087 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3088 	 * disables preemption as part of its processing
3089 	 */
3090 	for_each_online_cpu(cpu) {
3091 		struct per_cpu_pageset *pcp;
3092 		struct zone *z;
3093 		bool has_pcps = false;
3094 
3095 		if (force_all_cpus) {
3096 			/*
3097 			 * The pcp.count check is racy, some callers need a
3098 			 * guarantee that no cpu is missed.
3099 			 */
3100 			has_pcps = true;
3101 		} else if (zone) {
3102 			pcp = per_cpu_ptr(zone->pageset, cpu);
3103 			if (pcp->pcp.count)
3104 				has_pcps = true;
3105 		} else {
3106 			for_each_populated_zone(z) {
3107 				pcp = per_cpu_ptr(z->pageset, cpu);
3108 				if (pcp->pcp.count) {
3109 					has_pcps = true;
3110 					break;
3111 				}
3112 			}
3113 		}
3114 
3115 		if (has_pcps)
3116 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3117 		else
3118 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3119 	}
3120 
3121 	for_each_cpu(cpu, &cpus_with_pcps) {
3122 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3123 
3124 		drain->zone = zone;
3125 		INIT_WORK(&drain->work, drain_local_pages_wq);
3126 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3127 	}
3128 	for_each_cpu(cpu, &cpus_with_pcps)
3129 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3130 
3131 	mutex_unlock(&pcpu_drain_mutex);
3132 }
3133 
3134 /*
3135  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3136  *
3137  * When zone parameter is non-NULL, spill just the single zone's pages.
3138  *
3139  * Note that this can be extremely slow as the draining happens in a workqueue.
3140  */
3141 void drain_all_pages(struct zone *zone)
3142 {
3143 	__drain_all_pages(zone, false);
3144 }
3145 
3146 #ifdef CONFIG_HIBERNATION
3147 
3148 /*
3149  * Touch the watchdog for every WD_PAGE_COUNT pages.
3150  */
3151 #define WD_PAGE_COUNT	(128*1024)
3152 
3153 void mark_free_pages(struct zone *zone)
3154 {
3155 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3156 	unsigned long flags;
3157 	unsigned int order, t;
3158 	struct page *page;
3159 
3160 	if (zone_is_empty(zone))
3161 		return;
3162 
3163 	spin_lock_irqsave(&zone->lock, flags);
3164 
3165 	max_zone_pfn = zone_end_pfn(zone);
3166 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3167 		if (pfn_valid(pfn)) {
3168 			page = pfn_to_page(pfn);
3169 
3170 			if (!--page_count) {
3171 				touch_nmi_watchdog();
3172 				page_count = WD_PAGE_COUNT;
3173 			}
3174 
3175 			if (page_zone(page) != zone)
3176 				continue;
3177 
3178 			if (!swsusp_page_is_forbidden(page))
3179 				swsusp_unset_page_free(page);
3180 		}
3181 
3182 	for_each_migratetype_order(order, t) {
3183 		list_for_each_entry(page,
3184 				&zone->free_area[order].free_list[t], lru) {
3185 			unsigned long i;
3186 
3187 			pfn = page_to_pfn(page);
3188 			for (i = 0; i < (1UL << order); i++) {
3189 				if (!--page_count) {
3190 					touch_nmi_watchdog();
3191 					page_count = WD_PAGE_COUNT;
3192 				}
3193 				swsusp_set_page_free(pfn_to_page(pfn + i));
3194 			}
3195 		}
3196 	}
3197 	spin_unlock_irqrestore(&zone->lock, flags);
3198 }
3199 #endif /* CONFIG_PM */
3200 
3201 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3202 {
3203 	int migratetype;
3204 
3205 	if (!free_pcp_prepare(page))
3206 		return false;
3207 
3208 	migratetype = get_pfnblock_migratetype(page, pfn);
3209 	set_pcppage_migratetype(page, migratetype);
3210 	return true;
3211 }
3212 
3213 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3214 {
3215 	struct zone *zone = page_zone(page);
3216 	struct per_cpu_pages *pcp;
3217 	int migratetype;
3218 
3219 	migratetype = get_pcppage_migratetype(page);
3220 	__count_vm_event(PGFREE);
3221 
3222 	/*
3223 	 * We only track unmovable, reclaimable and movable on pcp lists.
3224 	 * Free ISOLATE pages back to the allocator because they are being
3225 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3226 	 * areas back if necessary. Otherwise, we may have to free
3227 	 * excessively into the page allocator
3228 	 */
3229 	if (migratetype >= MIGRATE_PCPTYPES) {
3230 		if (unlikely(is_migrate_isolate(migratetype))) {
3231 			free_one_page(zone, page, pfn, 0, migratetype,
3232 				      FPI_NONE);
3233 			return;
3234 		}
3235 		migratetype = MIGRATE_MOVABLE;
3236 	}
3237 
3238 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3239 	list_add(&page->lru, &pcp->lists[migratetype]);
3240 	pcp->count++;
3241 	if (pcp->count >= READ_ONCE(pcp->high))
3242 		free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
3243 }
3244 
3245 /*
3246  * Free a 0-order page
3247  */
3248 void free_unref_page(struct page *page)
3249 {
3250 	unsigned long flags;
3251 	unsigned long pfn = page_to_pfn(page);
3252 
3253 	if (!free_unref_page_prepare(page, pfn))
3254 		return;
3255 
3256 	local_irq_save(flags);
3257 	free_unref_page_commit(page, pfn);
3258 	local_irq_restore(flags);
3259 }
3260 
3261 /*
3262  * Free a list of 0-order pages
3263  */
3264 void free_unref_page_list(struct list_head *list)
3265 {
3266 	struct page *page, *next;
3267 	unsigned long flags, pfn;
3268 	int batch_count = 0;
3269 
3270 	/* Prepare pages for freeing */
3271 	list_for_each_entry_safe(page, next, list, lru) {
3272 		pfn = page_to_pfn(page);
3273 		if (!free_unref_page_prepare(page, pfn))
3274 			list_del(&page->lru);
3275 		set_page_private(page, pfn);
3276 	}
3277 
3278 	local_irq_save(flags);
3279 	list_for_each_entry_safe(page, next, list, lru) {
3280 		unsigned long pfn = page_private(page);
3281 
3282 		set_page_private(page, 0);
3283 		trace_mm_page_free_batched(page);
3284 		free_unref_page_commit(page, pfn);
3285 
3286 		/*
3287 		 * Guard against excessive IRQ disabled times when we get
3288 		 * a large list of pages to free.
3289 		 */
3290 		if (++batch_count == SWAP_CLUSTER_MAX) {
3291 			local_irq_restore(flags);
3292 			batch_count = 0;
3293 			local_irq_save(flags);
3294 		}
3295 	}
3296 	local_irq_restore(flags);
3297 }
3298 
3299 /*
3300  * split_page takes a non-compound higher-order page, and splits it into
3301  * n (1<<order) sub-pages: page[0..n]
3302  * Each sub-page must be freed individually.
3303  *
3304  * Note: this is probably too low level an operation for use in drivers.
3305  * Please consult with lkml before using this in your driver.
3306  */
3307 void split_page(struct page *page, unsigned int order)
3308 {
3309 	int i;
3310 
3311 	VM_BUG_ON_PAGE(PageCompound(page), page);
3312 	VM_BUG_ON_PAGE(!page_count(page), page);
3313 
3314 	for (i = 1; i < (1 << order); i++)
3315 		set_page_refcounted(page + i);
3316 	split_page_owner(page, 1 << order);
3317 	split_page_memcg(page, 1 << order);
3318 }
3319 EXPORT_SYMBOL_GPL(split_page);
3320 
3321 int __isolate_free_page(struct page *page, unsigned int order)
3322 {
3323 	unsigned long watermark;
3324 	struct zone *zone;
3325 	int mt;
3326 
3327 	BUG_ON(!PageBuddy(page));
3328 
3329 	zone = page_zone(page);
3330 	mt = get_pageblock_migratetype(page);
3331 
3332 	if (!is_migrate_isolate(mt)) {
3333 		/*
3334 		 * Obey watermarks as if the page was being allocated. We can
3335 		 * emulate a high-order watermark check with a raised order-0
3336 		 * watermark, because we already know our high-order page
3337 		 * exists.
3338 		 */
3339 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3340 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3341 			return 0;
3342 
3343 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3344 	}
3345 
3346 	/* Remove page from free list */
3347 
3348 	del_page_from_free_list(page, zone, order);
3349 
3350 	/*
3351 	 * Set the pageblock if the isolated page is at least half of a
3352 	 * pageblock
3353 	 */
3354 	if (order >= pageblock_order - 1) {
3355 		struct page *endpage = page + (1 << order) - 1;
3356 		for (; page < endpage; page += pageblock_nr_pages) {
3357 			int mt = get_pageblock_migratetype(page);
3358 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3359 			    && !is_migrate_highatomic(mt))
3360 				set_pageblock_migratetype(page,
3361 							  MIGRATE_MOVABLE);
3362 		}
3363 	}
3364 
3365 
3366 	return 1UL << order;
3367 }
3368 
3369 /**
3370  * __putback_isolated_page - Return a now-isolated page back where we got it
3371  * @page: Page that was isolated
3372  * @order: Order of the isolated page
3373  * @mt: The page's pageblock's migratetype
3374  *
3375  * This function is meant to return a page pulled from the free lists via
3376  * __isolate_free_page back to the free lists they were pulled from.
3377  */
3378 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3379 {
3380 	struct zone *zone = page_zone(page);
3381 
3382 	/* zone lock should be held when this function is called */
3383 	lockdep_assert_held(&zone->lock);
3384 
3385 	/* Return isolated page to tail of freelist. */
3386 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3387 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3388 }
3389 
3390 /*
3391  * Update NUMA hit/miss statistics
3392  *
3393  * Must be called with interrupts disabled.
3394  */
3395 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3396 {
3397 #ifdef CONFIG_NUMA
3398 	enum numa_stat_item local_stat = NUMA_LOCAL;
3399 
3400 	/* skip numa counters update if numa stats is disabled */
3401 	if (!static_branch_likely(&vm_numa_stat_key))
3402 		return;
3403 
3404 	if (zone_to_nid(z) != numa_node_id())
3405 		local_stat = NUMA_OTHER;
3406 
3407 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3408 		__inc_numa_state(z, NUMA_HIT);
3409 	else {
3410 		__inc_numa_state(z, NUMA_MISS);
3411 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3412 	}
3413 	__inc_numa_state(z, local_stat);
3414 #endif
3415 }
3416 
3417 /* Remove page from the per-cpu list, caller must protect the list */
3418 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3419 			unsigned int alloc_flags,
3420 			struct per_cpu_pages *pcp,
3421 			struct list_head *list)
3422 {
3423 	struct page *page;
3424 
3425 	do {
3426 		if (list_empty(list)) {
3427 			pcp->count += rmqueue_bulk(zone, 0,
3428 					READ_ONCE(pcp->batch), list,
3429 					migratetype, alloc_flags);
3430 			if (unlikely(list_empty(list)))
3431 				return NULL;
3432 		}
3433 
3434 		page = list_first_entry(list, struct page, lru);
3435 		list_del(&page->lru);
3436 		pcp->count--;
3437 	} while (check_new_pcp(page));
3438 
3439 	return page;
3440 }
3441 
3442 /* Lock and remove page from the per-cpu list */
3443 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3444 			struct zone *zone, gfp_t gfp_flags,
3445 			int migratetype, unsigned int alloc_flags)
3446 {
3447 	struct per_cpu_pages *pcp;
3448 	struct list_head *list;
3449 	struct page *page;
3450 	unsigned long flags;
3451 
3452 	local_irq_save(flags);
3453 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3454 	list = &pcp->lists[migratetype];
3455 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3456 	if (page) {
3457 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3458 		zone_statistics(preferred_zone, zone);
3459 	}
3460 	local_irq_restore(flags);
3461 	return page;
3462 }
3463 
3464 /*
3465  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3466  */
3467 static inline
3468 struct page *rmqueue(struct zone *preferred_zone,
3469 			struct zone *zone, unsigned int order,
3470 			gfp_t gfp_flags, unsigned int alloc_flags,
3471 			int migratetype)
3472 {
3473 	unsigned long flags;
3474 	struct page *page;
3475 
3476 	if (likely(order == 0)) {
3477 		/*
3478 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3479 		 * we need to skip it when CMA area isn't allowed.
3480 		 */
3481 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3482 				migratetype != MIGRATE_MOVABLE) {
3483 			page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3484 					migratetype, alloc_flags);
3485 			goto out;
3486 		}
3487 	}
3488 
3489 	/*
3490 	 * We most definitely don't want callers attempting to
3491 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3492 	 */
3493 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3494 	spin_lock_irqsave(&zone->lock, flags);
3495 
3496 	do {
3497 		page = NULL;
3498 		/*
3499 		 * order-0 request can reach here when the pcplist is skipped
3500 		 * due to non-CMA allocation context. HIGHATOMIC area is
3501 		 * reserved for high-order atomic allocation, so order-0
3502 		 * request should skip it.
3503 		 */
3504 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3505 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3506 			if (page)
3507 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3508 		}
3509 		if (!page)
3510 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3511 	} while (page && check_new_pages(page, order));
3512 	spin_unlock(&zone->lock);
3513 	if (!page)
3514 		goto failed;
3515 	__mod_zone_freepage_state(zone, -(1 << order),
3516 				  get_pcppage_migratetype(page));
3517 
3518 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3519 	zone_statistics(preferred_zone, zone);
3520 	local_irq_restore(flags);
3521 
3522 out:
3523 	/* Separate test+clear to avoid unnecessary atomics */
3524 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3525 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3526 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3527 	}
3528 
3529 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3530 	return page;
3531 
3532 failed:
3533 	local_irq_restore(flags);
3534 	return NULL;
3535 }
3536 
3537 #ifdef CONFIG_FAIL_PAGE_ALLOC
3538 
3539 static struct {
3540 	struct fault_attr attr;
3541 
3542 	bool ignore_gfp_highmem;
3543 	bool ignore_gfp_reclaim;
3544 	u32 min_order;
3545 } fail_page_alloc = {
3546 	.attr = FAULT_ATTR_INITIALIZER,
3547 	.ignore_gfp_reclaim = true,
3548 	.ignore_gfp_highmem = true,
3549 	.min_order = 1,
3550 };
3551 
3552 static int __init setup_fail_page_alloc(char *str)
3553 {
3554 	return setup_fault_attr(&fail_page_alloc.attr, str);
3555 }
3556 __setup("fail_page_alloc=", setup_fail_page_alloc);
3557 
3558 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3559 {
3560 	if (order < fail_page_alloc.min_order)
3561 		return false;
3562 	if (gfp_mask & __GFP_NOFAIL)
3563 		return false;
3564 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3565 		return false;
3566 	if (fail_page_alloc.ignore_gfp_reclaim &&
3567 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3568 		return false;
3569 
3570 	return should_fail(&fail_page_alloc.attr, 1 << order);
3571 }
3572 
3573 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3574 
3575 static int __init fail_page_alloc_debugfs(void)
3576 {
3577 	umode_t mode = S_IFREG | 0600;
3578 	struct dentry *dir;
3579 
3580 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3581 					&fail_page_alloc.attr);
3582 
3583 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3584 			    &fail_page_alloc.ignore_gfp_reclaim);
3585 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3586 			    &fail_page_alloc.ignore_gfp_highmem);
3587 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3588 
3589 	return 0;
3590 }
3591 
3592 late_initcall(fail_page_alloc_debugfs);
3593 
3594 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3595 
3596 #else /* CONFIG_FAIL_PAGE_ALLOC */
3597 
3598 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3599 {
3600 	return false;
3601 }
3602 
3603 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3604 
3605 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3606 {
3607 	return __should_fail_alloc_page(gfp_mask, order);
3608 }
3609 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3610 
3611 static inline long __zone_watermark_unusable_free(struct zone *z,
3612 				unsigned int order, unsigned int alloc_flags)
3613 {
3614 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3615 	long unusable_free = (1 << order) - 1;
3616 
3617 	/*
3618 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3619 	 * the high-atomic reserves. This will over-estimate the size of the
3620 	 * atomic reserve but it avoids a search.
3621 	 */
3622 	if (likely(!alloc_harder))
3623 		unusable_free += z->nr_reserved_highatomic;
3624 
3625 #ifdef CONFIG_CMA
3626 	/* If allocation can't use CMA areas don't use free CMA pages */
3627 	if (!(alloc_flags & ALLOC_CMA))
3628 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3629 #endif
3630 
3631 	return unusable_free;
3632 }
3633 
3634 /*
3635  * Return true if free base pages are above 'mark'. For high-order checks it
3636  * will return true of the order-0 watermark is reached and there is at least
3637  * one free page of a suitable size. Checking now avoids taking the zone lock
3638  * to check in the allocation paths if no pages are free.
3639  */
3640 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3641 			 int highest_zoneidx, unsigned int alloc_flags,
3642 			 long free_pages)
3643 {
3644 	long min = mark;
3645 	int o;
3646 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3647 
3648 	/* free_pages may go negative - that's OK */
3649 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3650 
3651 	if (alloc_flags & ALLOC_HIGH)
3652 		min -= min / 2;
3653 
3654 	if (unlikely(alloc_harder)) {
3655 		/*
3656 		 * OOM victims can try even harder than normal ALLOC_HARDER
3657 		 * users on the grounds that it's definitely going to be in
3658 		 * the exit path shortly and free memory. Any allocation it
3659 		 * makes during the free path will be small and short-lived.
3660 		 */
3661 		if (alloc_flags & ALLOC_OOM)
3662 			min -= min / 2;
3663 		else
3664 			min -= min / 4;
3665 	}
3666 
3667 	/*
3668 	 * Check watermarks for an order-0 allocation request. If these
3669 	 * are not met, then a high-order request also cannot go ahead
3670 	 * even if a suitable page happened to be free.
3671 	 */
3672 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3673 		return false;
3674 
3675 	/* If this is an order-0 request then the watermark is fine */
3676 	if (!order)
3677 		return true;
3678 
3679 	/* For a high-order request, check at least one suitable page is free */
3680 	for (o = order; o < MAX_ORDER; o++) {
3681 		struct free_area *area = &z->free_area[o];
3682 		int mt;
3683 
3684 		if (!area->nr_free)
3685 			continue;
3686 
3687 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3688 			if (!free_area_empty(area, mt))
3689 				return true;
3690 		}
3691 
3692 #ifdef CONFIG_CMA
3693 		if ((alloc_flags & ALLOC_CMA) &&
3694 		    !free_area_empty(area, MIGRATE_CMA)) {
3695 			return true;
3696 		}
3697 #endif
3698 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3699 			return true;
3700 	}
3701 	return false;
3702 }
3703 
3704 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3705 		      int highest_zoneidx, unsigned int alloc_flags)
3706 {
3707 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3708 					zone_page_state(z, NR_FREE_PAGES));
3709 }
3710 
3711 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3712 				unsigned long mark, int highest_zoneidx,
3713 				unsigned int alloc_flags, gfp_t gfp_mask)
3714 {
3715 	long free_pages;
3716 
3717 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3718 
3719 	/*
3720 	 * Fast check for order-0 only. If this fails then the reserves
3721 	 * need to be calculated.
3722 	 */
3723 	if (!order) {
3724 		long fast_free;
3725 
3726 		fast_free = free_pages;
3727 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3728 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3729 			return true;
3730 	}
3731 
3732 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3733 					free_pages))
3734 		return true;
3735 	/*
3736 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3737 	 * when checking the min watermark. The min watermark is the
3738 	 * point where boosting is ignored so that kswapd is woken up
3739 	 * when below the low watermark.
3740 	 */
3741 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3742 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3743 		mark = z->_watermark[WMARK_MIN];
3744 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3745 					alloc_flags, free_pages);
3746 	}
3747 
3748 	return false;
3749 }
3750 
3751 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3752 			unsigned long mark, int highest_zoneidx)
3753 {
3754 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3755 
3756 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3757 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3758 
3759 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3760 								free_pages);
3761 }
3762 
3763 #ifdef CONFIG_NUMA
3764 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3765 {
3766 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3767 				node_reclaim_distance;
3768 }
3769 #else	/* CONFIG_NUMA */
3770 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3771 {
3772 	return true;
3773 }
3774 #endif	/* CONFIG_NUMA */
3775 
3776 /*
3777  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3778  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3779  * premature use of a lower zone may cause lowmem pressure problems that
3780  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3781  * probably too small. It only makes sense to spread allocations to avoid
3782  * fragmentation between the Normal and DMA32 zones.
3783  */
3784 static inline unsigned int
3785 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3786 {
3787 	unsigned int alloc_flags;
3788 
3789 	/*
3790 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3791 	 * to save a branch.
3792 	 */
3793 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3794 
3795 #ifdef CONFIG_ZONE_DMA32
3796 	if (!zone)
3797 		return alloc_flags;
3798 
3799 	if (zone_idx(zone) != ZONE_NORMAL)
3800 		return alloc_flags;
3801 
3802 	/*
3803 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3804 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3805 	 * on UMA that if Normal is populated then so is DMA32.
3806 	 */
3807 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3808 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3809 		return alloc_flags;
3810 
3811 	alloc_flags |= ALLOC_NOFRAGMENT;
3812 #endif /* CONFIG_ZONE_DMA32 */
3813 	return alloc_flags;
3814 }
3815 
3816 static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3817 					unsigned int alloc_flags)
3818 {
3819 #ifdef CONFIG_CMA
3820 	unsigned int pflags = current->flags;
3821 
3822 	if (!(pflags & PF_MEMALLOC_NOCMA) &&
3823 			gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3824 		alloc_flags |= ALLOC_CMA;
3825 
3826 #endif
3827 	return alloc_flags;
3828 }
3829 
3830 /*
3831  * get_page_from_freelist goes through the zonelist trying to allocate
3832  * a page.
3833  */
3834 static struct page *
3835 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3836 						const struct alloc_context *ac)
3837 {
3838 	struct zoneref *z;
3839 	struct zone *zone;
3840 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3841 	bool no_fallback;
3842 
3843 retry:
3844 	/*
3845 	 * Scan zonelist, looking for a zone with enough free.
3846 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3847 	 */
3848 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3849 	z = ac->preferred_zoneref;
3850 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3851 					ac->nodemask) {
3852 		struct page *page;
3853 		unsigned long mark;
3854 
3855 		if (cpusets_enabled() &&
3856 			(alloc_flags & ALLOC_CPUSET) &&
3857 			!__cpuset_zone_allowed(zone, gfp_mask))
3858 				continue;
3859 		/*
3860 		 * When allocating a page cache page for writing, we
3861 		 * want to get it from a node that is within its dirty
3862 		 * limit, such that no single node holds more than its
3863 		 * proportional share of globally allowed dirty pages.
3864 		 * The dirty limits take into account the node's
3865 		 * lowmem reserves and high watermark so that kswapd
3866 		 * should be able to balance it without having to
3867 		 * write pages from its LRU list.
3868 		 *
3869 		 * XXX: For now, allow allocations to potentially
3870 		 * exceed the per-node dirty limit in the slowpath
3871 		 * (spread_dirty_pages unset) before going into reclaim,
3872 		 * which is important when on a NUMA setup the allowed
3873 		 * nodes are together not big enough to reach the
3874 		 * global limit.  The proper fix for these situations
3875 		 * will require awareness of nodes in the
3876 		 * dirty-throttling and the flusher threads.
3877 		 */
3878 		if (ac->spread_dirty_pages) {
3879 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3880 				continue;
3881 
3882 			if (!node_dirty_ok(zone->zone_pgdat)) {
3883 				last_pgdat_dirty_limit = zone->zone_pgdat;
3884 				continue;
3885 			}
3886 		}
3887 
3888 		if (no_fallback && nr_online_nodes > 1 &&
3889 		    zone != ac->preferred_zoneref->zone) {
3890 			int local_nid;
3891 
3892 			/*
3893 			 * If moving to a remote node, retry but allow
3894 			 * fragmenting fallbacks. Locality is more important
3895 			 * than fragmentation avoidance.
3896 			 */
3897 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3898 			if (zone_to_nid(zone) != local_nid) {
3899 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3900 				goto retry;
3901 			}
3902 		}
3903 
3904 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3905 		if (!zone_watermark_fast(zone, order, mark,
3906 				       ac->highest_zoneidx, alloc_flags,
3907 				       gfp_mask)) {
3908 			int ret;
3909 
3910 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3911 			/*
3912 			 * Watermark failed for this zone, but see if we can
3913 			 * grow this zone if it contains deferred pages.
3914 			 */
3915 			if (static_branch_unlikely(&deferred_pages)) {
3916 				if (_deferred_grow_zone(zone, order))
3917 					goto try_this_zone;
3918 			}
3919 #endif
3920 			/* Checked here to keep the fast path fast */
3921 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3922 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3923 				goto try_this_zone;
3924 
3925 			if (node_reclaim_mode == 0 ||
3926 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3927 				continue;
3928 
3929 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3930 			switch (ret) {
3931 			case NODE_RECLAIM_NOSCAN:
3932 				/* did not scan */
3933 				continue;
3934 			case NODE_RECLAIM_FULL:
3935 				/* scanned but unreclaimable */
3936 				continue;
3937 			default:
3938 				/* did we reclaim enough */
3939 				if (zone_watermark_ok(zone, order, mark,
3940 					ac->highest_zoneidx, alloc_flags))
3941 					goto try_this_zone;
3942 
3943 				continue;
3944 			}
3945 		}
3946 
3947 try_this_zone:
3948 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3949 				gfp_mask, alloc_flags, ac->migratetype);
3950 		if (page) {
3951 			prep_new_page(page, order, gfp_mask, alloc_flags);
3952 
3953 			/*
3954 			 * If this is a high-order atomic allocation then check
3955 			 * if the pageblock should be reserved for the future
3956 			 */
3957 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3958 				reserve_highatomic_pageblock(page, zone, order);
3959 
3960 			return page;
3961 		} else {
3962 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3963 			/* Try again if zone has deferred pages */
3964 			if (static_branch_unlikely(&deferred_pages)) {
3965 				if (_deferred_grow_zone(zone, order))
3966 					goto try_this_zone;
3967 			}
3968 #endif
3969 		}
3970 	}
3971 
3972 	/*
3973 	 * It's possible on a UMA machine to get through all zones that are
3974 	 * fragmented. If avoiding fragmentation, reset and try again.
3975 	 */
3976 	if (no_fallback) {
3977 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3978 		goto retry;
3979 	}
3980 
3981 	return NULL;
3982 }
3983 
3984 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3985 {
3986 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3987 
3988 	/*
3989 	 * This documents exceptions given to allocations in certain
3990 	 * contexts that are allowed to allocate outside current's set
3991 	 * of allowed nodes.
3992 	 */
3993 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3994 		if (tsk_is_oom_victim(current) ||
3995 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3996 			filter &= ~SHOW_MEM_FILTER_NODES;
3997 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3998 		filter &= ~SHOW_MEM_FILTER_NODES;
3999 
4000 	show_mem(filter, nodemask);
4001 }
4002 
4003 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4004 {
4005 	struct va_format vaf;
4006 	va_list args;
4007 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4008 
4009 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4010 		return;
4011 
4012 	va_start(args, fmt);
4013 	vaf.fmt = fmt;
4014 	vaf.va = &args;
4015 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4016 			current->comm, &vaf, gfp_mask, &gfp_mask,
4017 			nodemask_pr_args(nodemask));
4018 	va_end(args);
4019 
4020 	cpuset_print_current_mems_allowed();
4021 	pr_cont("\n");
4022 	dump_stack();
4023 	warn_alloc_show_mem(gfp_mask, nodemask);
4024 }
4025 
4026 static inline struct page *
4027 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4028 			      unsigned int alloc_flags,
4029 			      const struct alloc_context *ac)
4030 {
4031 	struct page *page;
4032 
4033 	page = get_page_from_freelist(gfp_mask, order,
4034 			alloc_flags|ALLOC_CPUSET, ac);
4035 	/*
4036 	 * fallback to ignore cpuset restriction if our nodes
4037 	 * are depleted
4038 	 */
4039 	if (!page)
4040 		page = get_page_from_freelist(gfp_mask, order,
4041 				alloc_flags, ac);
4042 
4043 	return page;
4044 }
4045 
4046 static inline struct page *
4047 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4048 	const struct alloc_context *ac, unsigned long *did_some_progress)
4049 {
4050 	struct oom_control oc = {
4051 		.zonelist = ac->zonelist,
4052 		.nodemask = ac->nodemask,
4053 		.memcg = NULL,
4054 		.gfp_mask = gfp_mask,
4055 		.order = order,
4056 	};
4057 	struct page *page;
4058 
4059 	*did_some_progress = 0;
4060 
4061 	/*
4062 	 * Acquire the oom lock.  If that fails, somebody else is
4063 	 * making progress for us.
4064 	 */
4065 	if (!mutex_trylock(&oom_lock)) {
4066 		*did_some_progress = 1;
4067 		schedule_timeout_uninterruptible(1);
4068 		return NULL;
4069 	}
4070 
4071 	/*
4072 	 * Go through the zonelist yet one more time, keep very high watermark
4073 	 * here, this is only to catch a parallel oom killing, we must fail if
4074 	 * we're still under heavy pressure. But make sure that this reclaim
4075 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4076 	 * allocation which will never fail due to oom_lock already held.
4077 	 */
4078 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4079 				      ~__GFP_DIRECT_RECLAIM, order,
4080 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4081 	if (page)
4082 		goto out;
4083 
4084 	/* Coredumps can quickly deplete all memory reserves */
4085 	if (current->flags & PF_DUMPCORE)
4086 		goto out;
4087 	/* The OOM killer will not help higher order allocs */
4088 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4089 		goto out;
4090 	/*
4091 	 * We have already exhausted all our reclaim opportunities without any
4092 	 * success so it is time to admit defeat. We will skip the OOM killer
4093 	 * because it is very likely that the caller has a more reasonable
4094 	 * fallback than shooting a random task.
4095 	 *
4096 	 * The OOM killer may not free memory on a specific node.
4097 	 */
4098 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4099 		goto out;
4100 	/* The OOM killer does not needlessly kill tasks for lowmem */
4101 	if (ac->highest_zoneidx < ZONE_NORMAL)
4102 		goto out;
4103 	if (pm_suspended_storage())
4104 		goto out;
4105 	/*
4106 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4107 	 * other request to make a forward progress.
4108 	 * We are in an unfortunate situation where out_of_memory cannot
4109 	 * do much for this context but let's try it to at least get
4110 	 * access to memory reserved if the current task is killed (see
4111 	 * out_of_memory). Once filesystems are ready to handle allocation
4112 	 * failures more gracefully we should just bail out here.
4113 	 */
4114 
4115 	/* Exhausted what can be done so it's blame time */
4116 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4117 		*did_some_progress = 1;
4118 
4119 		/*
4120 		 * Help non-failing allocations by giving them access to memory
4121 		 * reserves
4122 		 */
4123 		if (gfp_mask & __GFP_NOFAIL)
4124 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4125 					ALLOC_NO_WATERMARKS, ac);
4126 	}
4127 out:
4128 	mutex_unlock(&oom_lock);
4129 	return page;
4130 }
4131 
4132 /*
4133  * Maximum number of compaction retries wit a progress before OOM
4134  * killer is consider as the only way to move forward.
4135  */
4136 #define MAX_COMPACT_RETRIES 16
4137 
4138 #ifdef CONFIG_COMPACTION
4139 /* Try memory compaction for high-order allocations before reclaim */
4140 static struct page *
4141 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4142 		unsigned int alloc_flags, const struct alloc_context *ac,
4143 		enum compact_priority prio, enum compact_result *compact_result)
4144 {
4145 	struct page *page = NULL;
4146 	unsigned long pflags;
4147 	unsigned int noreclaim_flag;
4148 
4149 	if (!order)
4150 		return NULL;
4151 
4152 	psi_memstall_enter(&pflags);
4153 	noreclaim_flag = memalloc_noreclaim_save();
4154 
4155 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4156 								prio, &page);
4157 
4158 	memalloc_noreclaim_restore(noreclaim_flag);
4159 	psi_memstall_leave(&pflags);
4160 
4161 	/*
4162 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4163 	 * count a compaction stall
4164 	 */
4165 	count_vm_event(COMPACTSTALL);
4166 
4167 	/* Prep a captured page if available */
4168 	if (page)
4169 		prep_new_page(page, order, gfp_mask, alloc_flags);
4170 
4171 	/* Try get a page from the freelist if available */
4172 	if (!page)
4173 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4174 
4175 	if (page) {
4176 		struct zone *zone = page_zone(page);
4177 
4178 		zone->compact_blockskip_flush = false;
4179 		compaction_defer_reset(zone, order, true);
4180 		count_vm_event(COMPACTSUCCESS);
4181 		return page;
4182 	}
4183 
4184 	/*
4185 	 * It's bad if compaction run occurs and fails. The most likely reason
4186 	 * is that pages exist, but not enough to satisfy watermarks.
4187 	 */
4188 	count_vm_event(COMPACTFAIL);
4189 
4190 	cond_resched();
4191 
4192 	return NULL;
4193 }
4194 
4195 static inline bool
4196 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4197 		     enum compact_result compact_result,
4198 		     enum compact_priority *compact_priority,
4199 		     int *compaction_retries)
4200 {
4201 	int max_retries = MAX_COMPACT_RETRIES;
4202 	int min_priority;
4203 	bool ret = false;
4204 	int retries = *compaction_retries;
4205 	enum compact_priority priority = *compact_priority;
4206 
4207 	if (!order)
4208 		return false;
4209 
4210 	if (compaction_made_progress(compact_result))
4211 		(*compaction_retries)++;
4212 
4213 	/*
4214 	 * compaction considers all the zone as desperately out of memory
4215 	 * so it doesn't really make much sense to retry except when the
4216 	 * failure could be caused by insufficient priority
4217 	 */
4218 	if (compaction_failed(compact_result))
4219 		goto check_priority;
4220 
4221 	/*
4222 	 * compaction was skipped because there are not enough order-0 pages
4223 	 * to work with, so we retry only if it looks like reclaim can help.
4224 	 */
4225 	if (compaction_needs_reclaim(compact_result)) {
4226 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4227 		goto out;
4228 	}
4229 
4230 	/*
4231 	 * make sure the compaction wasn't deferred or didn't bail out early
4232 	 * due to locks contention before we declare that we should give up.
4233 	 * But the next retry should use a higher priority if allowed, so
4234 	 * we don't just keep bailing out endlessly.
4235 	 */
4236 	if (compaction_withdrawn(compact_result)) {
4237 		goto check_priority;
4238 	}
4239 
4240 	/*
4241 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4242 	 * costly ones because they are de facto nofail and invoke OOM
4243 	 * killer to move on while costly can fail and users are ready
4244 	 * to cope with that. 1/4 retries is rather arbitrary but we
4245 	 * would need much more detailed feedback from compaction to
4246 	 * make a better decision.
4247 	 */
4248 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4249 		max_retries /= 4;
4250 	if (*compaction_retries <= max_retries) {
4251 		ret = true;
4252 		goto out;
4253 	}
4254 
4255 	/*
4256 	 * Make sure there are attempts at the highest priority if we exhausted
4257 	 * all retries or failed at the lower priorities.
4258 	 */
4259 check_priority:
4260 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4261 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4262 
4263 	if (*compact_priority > min_priority) {
4264 		(*compact_priority)--;
4265 		*compaction_retries = 0;
4266 		ret = true;
4267 	}
4268 out:
4269 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4270 	return ret;
4271 }
4272 #else
4273 static inline struct page *
4274 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4275 		unsigned int alloc_flags, const struct alloc_context *ac,
4276 		enum compact_priority prio, enum compact_result *compact_result)
4277 {
4278 	*compact_result = COMPACT_SKIPPED;
4279 	return NULL;
4280 }
4281 
4282 static inline bool
4283 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4284 		     enum compact_result compact_result,
4285 		     enum compact_priority *compact_priority,
4286 		     int *compaction_retries)
4287 {
4288 	struct zone *zone;
4289 	struct zoneref *z;
4290 
4291 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4292 		return false;
4293 
4294 	/*
4295 	 * There are setups with compaction disabled which would prefer to loop
4296 	 * inside the allocator rather than hit the oom killer prematurely.
4297 	 * Let's give them a good hope and keep retrying while the order-0
4298 	 * watermarks are OK.
4299 	 */
4300 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4301 				ac->highest_zoneidx, ac->nodemask) {
4302 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4303 					ac->highest_zoneidx, alloc_flags))
4304 			return true;
4305 	}
4306 	return false;
4307 }
4308 #endif /* CONFIG_COMPACTION */
4309 
4310 #ifdef CONFIG_LOCKDEP
4311 static struct lockdep_map __fs_reclaim_map =
4312 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4313 
4314 static bool __need_reclaim(gfp_t gfp_mask)
4315 {
4316 	/* no reclaim without waiting on it */
4317 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4318 		return false;
4319 
4320 	/* this guy won't enter reclaim */
4321 	if (current->flags & PF_MEMALLOC)
4322 		return false;
4323 
4324 	if (gfp_mask & __GFP_NOLOCKDEP)
4325 		return false;
4326 
4327 	return true;
4328 }
4329 
4330 void __fs_reclaim_acquire(void)
4331 {
4332 	lock_map_acquire(&__fs_reclaim_map);
4333 }
4334 
4335 void __fs_reclaim_release(void)
4336 {
4337 	lock_map_release(&__fs_reclaim_map);
4338 }
4339 
4340 void fs_reclaim_acquire(gfp_t gfp_mask)
4341 {
4342 	gfp_mask = current_gfp_context(gfp_mask);
4343 
4344 	if (__need_reclaim(gfp_mask)) {
4345 		if (gfp_mask & __GFP_FS)
4346 			__fs_reclaim_acquire();
4347 
4348 #ifdef CONFIG_MMU_NOTIFIER
4349 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4350 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4351 #endif
4352 
4353 	}
4354 }
4355 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4356 
4357 void fs_reclaim_release(gfp_t gfp_mask)
4358 {
4359 	gfp_mask = current_gfp_context(gfp_mask);
4360 
4361 	if (__need_reclaim(gfp_mask)) {
4362 		if (gfp_mask & __GFP_FS)
4363 			__fs_reclaim_release();
4364 	}
4365 }
4366 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4367 #endif
4368 
4369 /* Perform direct synchronous page reclaim */
4370 static unsigned long
4371 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4372 					const struct alloc_context *ac)
4373 {
4374 	unsigned int noreclaim_flag;
4375 	unsigned long pflags, progress;
4376 
4377 	cond_resched();
4378 
4379 	/* We now go into synchronous reclaim */
4380 	cpuset_memory_pressure_bump();
4381 	psi_memstall_enter(&pflags);
4382 	fs_reclaim_acquire(gfp_mask);
4383 	noreclaim_flag = memalloc_noreclaim_save();
4384 
4385 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4386 								ac->nodemask);
4387 
4388 	memalloc_noreclaim_restore(noreclaim_flag);
4389 	fs_reclaim_release(gfp_mask);
4390 	psi_memstall_leave(&pflags);
4391 
4392 	cond_resched();
4393 
4394 	return progress;
4395 }
4396 
4397 /* The really slow allocator path where we enter direct reclaim */
4398 static inline struct page *
4399 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4400 		unsigned int alloc_flags, const struct alloc_context *ac,
4401 		unsigned long *did_some_progress)
4402 {
4403 	struct page *page = NULL;
4404 	bool drained = false;
4405 
4406 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4407 	if (unlikely(!(*did_some_progress)))
4408 		return NULL;
4409 
4410 retry:
4411 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4412 
4413 	/*
4414 	 * If an allocation failed after direct reclaim, it could be because
4415 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4416 	 * Shrink them and try again
4417 	 */
4418 	if (!page && !drained) {
4419 		unreserve_highatomic_pageblock(ac, false);
4420 		drain_all_pages(NULL);
4421 		drained = true;
4422 		goto retry;
4423 	}
4424 
4425 	return page;
4426 }
4427 
4428 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4429 			     const struct alloc_context *ac)
4430 {
4431 	struct zoneref *z;
4432 	struct zone *zone;
4433 	pg_data_t *last_pgdat = NULL;
4434 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4435 
4436 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4437 					ac->nodemask) {
4438 		if (last_pgdat != zone->zone_pgdat)
4439 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4440 		last_pgdat = zone->zone_pgdat;
4441 	}
4442 }
4443 
4444 static inline unsigned int
4445 gfp_to_alloc_flags(gfp_t gfp_mask)
4446 {
4447 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4448 
4449 	/*
4450 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4451 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4452 	 * to save two branches.
4453 	 */
4454 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4455 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4456 
4457 	/*
4458 	 * The caller may dip into page reserves a bit more if the caller
4459 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4460 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4461 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4462 	 */
4463 	alloc_flags |= (__force int)
4464 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4465 
4466 	if (gfp_mask & __GFP_ATOMIC) {
4467 		/*
4468 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4469 		 * if it can't schedule.
4470 		 */
4471 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4472 			alloc_flags |= ALLOC_HARDER;
4473 		/*
4474 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4475 		 * comment for __cpuset_node_allowed().
4476 		 */
4477 		alloc_flags &= ~ALLOC_CPUSET;
4478 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4479 		alloc_flags |= ALLOC_HARDER;
4480 
4481 	alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4482 
4483 	return alloc_flags;
4484 }
4485 
4486 static bool oom_reserves_allowed(struct task_struct *tsk)
4487 {
4488 	if (!tsk_is_oom_victim(tsk))
4489 		return false;
4490 
4491 	/*
4492 	 * !MMU doesn't have oom reaper so give access to memory reserves
4493 	 * only to the thread with TIF_MEMDIE set
4494 	 */
4495 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4496 		return false;
4497 
4498 	return true;
4499 }
4500 
4501 /*
4502  * Distinguish requests which really need access to full memory
4503  * reserves from oom victims which can live with a portion of it
4504  */
4505 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4506 {
4507 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4508 		return 0;
4509 	if (gfp_mask & __GFP_MEMALLOC)
4510 		return ALLOC_NO_WATERMARKS;
4511 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4512 		return ALLOC_NO_WATERMARKS;
4513 	if (!in_interrupt()) {
4514 		if (current->flags & PF_MEMALLOC)
4515 			return ALLOC_NO_WATERMARKS;
4516 		else if (oom_reserves_allowed(current))
4517 			return ALLOC_OOM;
4518 	}
4519 
4520 	return 0;
4521 }
4522 
4523 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4524 {
4525 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4526 }
4527 
4528 /*
4529  * Checks whether it makes sense to retry the reclaim to make a forward progress
4530  * for the given allocation request.
4531  *
4532  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4533  * without success, or when we couldn't even meet the watermark if we
4534  * reclaimed all remaining pages on the LRU lists.
4535  *
4536  * Returns true if a retry is viable or false to enter the oom path.
4537  */
4538 static inline bool
4539 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4540 		     struct alloc_context *ac, int alloc_flags,
4541 		     bool did_some_progress, int *no_progress_loops)
4542 {
4543 	struct zone *zone;
4544 	struct zoneref *z;
4545 	bool ret = false;
4546 
4547 	/*
4548 	 * Costly allocations might have made a progress but this doesn't mean
4549 	 * their order will become available due to high fragmentation so
4550 	 * always increment the no progress counter for them
4551 	 */
4552 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4553 		*no_progress_loops = 0;
4554 	else
4555 		(*no_progress_loops)++;
4556 
4557 	/*
4558 	 * Make sure we converge to OOM if we cannot make any progress
4559 	 * several times in the row.
4560 	 */
4561 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4562 		/* Before OOM, exhaust highatomic_reserve */
4563 		return unreserve_highatomic_pageblock(ac, true);
4564 	}
4565 
4566 	/*
4567 	 * Keep reclaiming pages while there is a chance this will lead
4568 	 * somewhere.  If none of the target zones can satisfy our allocation
4569 	 * request even if all reclaimable pages are considered then we are
4570 	 * screwed and have to go OOM.
4571 	 */
4572 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4573 				ac->highest_zoneidx, ac->nodemask) {
4574 		unsigned long available;
4575 		unsigned long reclaimable;
4576 		unsigned long min_wmark = min_wmark_pages(zone);
4577 		bool wmark;
4578 
4579 		available = reclaimable = zone_reclaimable_pages(zone);
4580 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4581 
4582 		/*
4583 		 * Would the allocation succeed if we reclaimed all
4584 		 * reclaimable pages?
4585 		 */
4586 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4587 				ac->highest_zoneidx, alloc_flags, available);
4588 		trace_reclaim_retry_zone(z, order, reclaimable,
4589 				available, min_wmark, *no_progress_loops, wmark);
4590 		if (wmark) {
4591 			/*
4592 			 * If we didn't make any progress and have a lot of
4593 			 * dirty + writeback pages then we should wait for
4594 			 * an IO to complete to slow down the reclaim and
4595 			 * prevent from pre mature OOM
4596 			 */
4597 			if (!did_some_progress) {
4598 				unsigned long write_pending;
4599 
4600 				write_pending = zone_page_state_snapshot(zone,
4601 							NR_ZONE_WRITE_PENDING);
4602 
4603 				if (2 * write_pending > reclaimable) {
4604 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4605 					return true;
4606 				}
4607 			}
4608 
4609 			ret = true;
4610 			goto out;
4611 		}
4612 	}
4613 
4614 out:
4615 	/*
4616 	 * Memory allocation/reclaim might be called from a WQ context and the
4617 	 * current implementation of the WQ concurrency control doesn't
4618 	 * recognize that a particular WQ is congested if the worker thread is
4619 	 * looping without ever sleeping. Therefore we have to do a short sleep
4620 	 * here rather than calling cond_resched().
4621 	 */
4622 	if (current->flags & PF_WQ_WORKER)
4623 		schedule_timeout_uninterruptible(1);
4624 	else
4625 		cond_resched();
4626 	return ret;
4627 }
4628 
4629 static inline bool
4630 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4631 {
4632 	/*
4633 	 * It's possible that cpuset's mems_allowed and the nodemask from
4634 	 * mempolicy don't intersect. This should be normally dealt with by
4635 	 * policy_nodemask(), but it's possible to race with cpuset update in
4636 	 * such a way the check therein was true, and then it became false
4637 	 * before we got our cpuset_mems_cookie here.
4638 	 * This assumes that for all allocations, ac->nodemask can come only
4639 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4640 	 * when it does not intersect with the cpuset restrictions) or the
4641 	 * caller can deal with a violated nodemask.
4642 	 */
4643 	if (cpusets_enabled() && ac->nodemask &&
4644 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4645 		ac->nodemask = NULL;
4646 		return true;
4647 	}
4648 
4649 	/*
4650 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4651 	 * possible to race with parallel threads in such a way that our
4652 	 * allocation can fail while the mask is being updated. If we are about
4653 	 * to fail, check if the cpuset changed during allocation and if so,
4654 	 * retry.
4655 	 */
4656 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4657 		return true;
4658 
4659 	return false;
4660 }
4661 
4662 static inline struct page *
4663 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4664 						struct alloc_context *ac)
4665 {
4666 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4667 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4668 	struct page *page = NULL;
4669 	unsigned int alloc_flags;
4670 	unsigned long did_some_progress;
4671 	enum compact_priority compact_priority;
4672 	enum compact_result compact_result;
4673 	int compaction_retries;
4674 	int no_progress_loops;
4675 	unsigned int cpuset_mems_cookie;
4676 	int reserve_flags;
4677 
4678 	/*
4679 	 * We also sanity check to catch abuse of atomic reserves being used by
4680 	 * callers that are not in atomic context.
4681 	 */
4682 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4683 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4684 		gfp_mask &= ~__GFP_ATOMIC;
4685 
4686 retry_cpuset:
4687 	compaction_retries = 0;
4688 	no_progress_loops = 0;
4689 	compact_priority = DEF_COMPACT_PRIORITY;
4690 	cpuset_mems_cookie = read_mems_allowed_begin();
4691 
4692 	/*
4693 	 * The fast path uses conservative alloc_flags to succeed only until
4694 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4695 	 * alloc_flags precisely. So we do that now.
4696 	 */
4697 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4698 
4699 	/*
4700 	 * We need to recalculate the starting point for the zonelist iterator
4701 	 * because we might have used different nodemask in the fast path, or
4702 	 * there was a cpuset modification and we are retrying - otherwise we
4703 	 * could end up iterating over non-eligible zones endlessly.
4704 	 */
4705 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4706 					ac->highest_zoneidx, ac->nodemask);
4707 	if (!ac->preferred_zoneref->zone)
4708 		goto nopage;
4709 
4710 	if (alloc_flags & ALLOC_KSWAPD)
4711 		wake_all_kswapds(order, gfp_mask, ac);
4712 
4713 	/*
4714 	 * The adjusted alloc_flags might result in immediate success, so try
4715 	 * that first
4716 	 */
4717 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4718 	if (page)
4719 		goto got_pg;
4720 
4721 	/*
4722 	 * For costly allocations, try direct compaction first, as it's likely
4723 	 * that we have enough base pages and don't need to reclaim. For non-
4724 	 * movable high-order allocations, do that as well, as compaction will
4725 	 * try prevent permanent fragmentation by migrating from blocks of the
4726 	 * same migratetype.
4727 	 * Don't try this for allocations that are allowed to ignore
4728 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4729 	 */
4730 	if (can_direct_reclaim &&
4731 			(costly_order ||
4732 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4733 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4734 		page = __alloc_pages_direct_compact(gfp_mask, order,
4735 						alloc_flags, ac,
4736 						INIT_COMPACT_PRIORITY,
4737 						&compact_result);
4738 		if (page)
4739 			goto got_pg;
4740 
4741 		/*
4742 		 * Checks for costly allocations with __GFP_NORETRY, which
4743 		 * includes some THP page fault allocations
4744 		 */
4745 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4746 			/*
4747 			 * If allocating entire pageblock(s) and compaction
4748 			 * failed because all zones are below low watermarks
4749 			 * or is prohibited because it recently failed at this
4750 			 * order, fail immediately unless the allocator has
4751 			 * requested compaction and reclaim retry.
4752 			 *
4753 			 * Reclaim is
4754 			 *  - potentially very expensive because zones are far
4755 			 *    below their low watermarks or this is part of very
4756 			 *    bursty high order allocations,
4757 			 *  - not guaranteed to help because isolate_freepages()
4758 			 *    may not iterate over freed pages as part of its
4759 			 *    linear scan, and
4760 			 *  - unlikely to make entire pageblocks free on its
4761 			 *    own.
4762 			 */
4763 			if (compact_result == COMPACT_SKIPPED ||
4764 			    compact_result == COMPACT_DEFERRED)
4765 				goto nopage;
4766 
4767 			/*
4768 			 * Looks like reclaim/compaction is worth trying, but
4769 			 * sync compaction could be very expensive, so keep
4770 			 * using async compaction.
4771 			 */
4772 			compact_priority = INIT_COMPACT_PRIORITY;
4773 		}
4774 	}
4775 
4776 retry:
4777 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4778 	if (alloc_flags & ALLOC_KSWAPD)
4779 		wake_all_kswapds(order, gfp_mask, ac);
4780 
4781 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4782 	if (reserve_flags)
4783 		alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4784 
4785 	/*
4786 	 * Reset the nodemask and zonelist iterators if memory policies can be
4787 	 * ignored. These allocations are high priority and system rather than
4788 	 * user oriented.
4789 	 */
4790 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4791 		ac->nodemask = NULL;
4792 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4793 					ac->highest_zoneidx, ac->nodemask);
4794 	}
4795 
4796 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4797 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4798 	if (page)
4799 		goto got_pg;
4800 
4801 	/* Caller is not willing to reclaim, we can't balance anything */
4802 	if (!can_direct_reclaim)
4803 		goto nopage;
4804 
4805 	/* Avoid recursion of direct reclaim */
4806 	if (current->flags & PF_MEMALLOC)
4807 		goto nopage;
4808 
4809 	/* Try direct reclaim and then allocating */
4810 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4811 							&did_some_progress);
4812 	if (page)
4813 		goto got_pg;
4814 
4815 	/* Try direct compaction and then allocating */
4816 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4817 					compact_priority, &compact_result);
4818 	if (page)
4819 		goto got_pg;
4820 
4821 	/* Do not loop if specifically requested */
4822 	if (gfp_mask & __GFP_NORETRY)
4823 		goto nopage;
4824 
4825 	/*
4826 	 * Do not retry costly high order allocations unless they are
4827 	 * __GFP_RETRY_MAYFAIL
4828 	 */
4829 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4830 		goto nopage;
4831 
4832 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4833 				 did_some_progress > 0, &no_progress_loops))
4834 		goto retry;
4835 
4836 	/*
4837 	 * It doesn't make any sense to retry for the compaction if the order-0
4838 	 * reclaim is not able to make any progress because the current
4839 	 * implementation of the compaction depends on the sufficient amount
4840 	 * of free memory (see __compaction_suitable)
4841 	 */
4842 	if (did_some_progress > 0 &&
4843 			should_compact_retry(ac, order, alloc_flags,
4844 				compact_result, &compact_priority,
4845 				&compaction_retries))
4846 		goto retry;
4847 
4848 
4849 	/* Deal with possible cpuset update races before we start OOM killing */
4850 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4851 		goto retry_cpuset;
4852 
4853 	/* Reclaim has failed us, start killing things */
4854 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4855 	if (page)
4856 		goto got_pg;
4857 
4858 	/* Avoid allocations with no watermarks from looping endlessly */
4859 	if (tsk_is_oom_victim(current) &&
4860 	    (alloc_flags & ALLOC_OOM ||
4861 	     (gfp_mask & __GFP_NOMEMALLOC)))
4862 		goto nopage;
4863 
4864 	/* Retry as long as the OOM killer is making progress */
4865 	if (did_some_progress) {
4866 		no_progress_loops = 0;
4867 		goto retry;
4868 	}
4869 
4870 nopage:
4871 	/* Deal with possible cpuset update races before we fail */
4872 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4873 		goto retry_cpuset;
4874 
4875 	/*
4876 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4877 	 * we always retry
4878 	 */
4879 	if (gfp_mask & __GFP_NOFAIL) {
4880 		/*
4881 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4882 		 * of any new users that actually require GFP_NOWAIT
4883 		 */
4884 		if (WARN_ON_ONCE(!can_direct_reclaim))
4885 			goto fail;
4886 
4887 		/*
4888 		 * PF_MEMALLOC request from this context is rather bizarre
4889 		 * because we cannot reclaim anything and only can loop waiting
4890 		 * for somebody to do a work for us
4891 		 */
4892 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4893 
4894 		/*
4895 		 * non failing costly orders are a hard requirement which we
4896 		 * are not prepared for much so let's warn about these users
4897 		 * so that we can identify them and convert them to something
4898 		 * else.
4899 		 */
4900 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4901 
4902 		/*
4903 		 * Help non-failing allocations by giving them access to memory
4904 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4905 		 * could deplete whole memory reserves which would just make
4906 		 * the situation worse
4907 		 */
4908 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4909 		if (page)
4910 			goto got_pg;
4911 
4912 		cond_resched();
4913 		goto retry;
4914 	}
4915 fail:
4916 	warn_alloc(gfp_mask, ac->nodemask,
4917 			"page allocation failure: order:%u", order);
4918 got_pg:
4919 	return page;
4920 }
4921 
4922 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4923 		int preferred_nid, nodemask_t *nodemask,
4924 		struct alloc_context *ac, gfp_t *alloc_mask,
4925 		unsigned int *alloc_flags)
4926 {
4927 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4928 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4929 	ac->nodemask = nodemask;
4930 	ac->migratetype = gfp_migratetype(gfp_mask);
4931 
4932 	if (cpusets_enabled()) {
4933 		*alloc_mask |= __GFP_HARDWALL;
4934 		/*
4935 		 * When we are in the interrupt context, it is irrelevant
4936 		 * to the current task context. It means that any node ok.
4937 		 */
4938 		if (!in_interrupt() && !ac->nodemask)
4939 			ac->nodemask = &cpuset_current_mems_allowed;
4940 		else
4941 			*alloc_flags |= ALLOC_CPUSET;
4942 	}
4943 
4944 	fs_reclaim_acquire(gfp_mask);
4945 	fs_reclaim_release(gfp_mask);
4946 
4947 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4948 
4949 	if (should_fail_alloc_page(gfp_mask, order))
4950 		return false;
4951 
4952 	*alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4953 
4954 	/* Dirty zone balancing only done in the fast path */
4955 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4956 
4957 	/*
4958 	 * The preferred zone is used for statistics but crucially it is
4959 	 * also used as the starting point for the zonelist iterator. It
4960 	 * may get reset for allocations that ignore memory policies.
4961 	 */
4962 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4963 					ac->highest_zoneidx, ac->nodemask);
4964 
4965 	return true;
4966 }
4967 
4968 /*
4969  * This is the 'heart' of the zoned buddy allocator.
4970  */
4971 struct page *
4972 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4973 							nodemask_t *nodemask)
4974 {
4975 	struct page *page;
4976 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4977 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4978 	struct alloc_context ac = { };
4979 
4980 	/*
4981 	 * There are several places where we assume that the order value is sane
4982 	 * so bail out early if the request is out of bound.
4983 	 */
4984 	if (unlikely(order >= MAX_ORDER)) {
4985 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4986 		return NULL;
4987 	}
4988 
4989 	gfp_mask &= gfp_allowed_mask;
4990 	alloc_mask = gfp_mask;
4991 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4992 		return NULL;
4993 
4994 	/*
4995 	 * Forbid the first pass from falling back to types that fragment
4996 	 * memory until all local zones are considered.
4997 	 */
4998 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4999 
5000 	/* First allocation attempt */
5001 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
5002 	if (likely(page))
5003 		goto out;
5004 
5005 	/*
5006 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5007 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5008 	 * from a particular context which has been marked by
5009 	 * memalloc_no{fs,io}_{save,restore}.
5010 	 */
5011 	alloc_mask = current_gfp_context(gfp_mask);
5012 	ac.spread_dirty_pages = false;
5013 
5014 	/*
5015 	 * Restore the original nodemask if it was potentially replaced with
5016 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5017 	 */
5018 	ac.nodemask = nodemask;
5019 
5020 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
5021 
5022 out:
5023 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
5024 	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
5025 		__free_pages(page, order);
5026 		page = NULL;
5027 	}
5028 
5029 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
5030 
5031 	return page;
5032 }
5033 EXPORT_SYMBOL(__alloc_pages_nodemask);
5034 
5035 /*
5036  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5037  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5038  * you need to access high mem.
5039  */
5040 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5041 {
5042 	struct page *page;
5043 
5044 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5045 	if (!page)
5046 		return 0;
5047 	return (unsigned long) page_address(page);
5048 }
5049 EXPORT_SYMBOL(__get_free_pages);
5050 
5051 unsigned long get_zeroed_page(gfp_t gfp_mask)
5052 {
5053 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5054 }
5055 EXPORT_SYMBOL(get_zeroed_page);
5056 
5057 static inline void free_the_page(struct page *page, unsigned int order)
5058 {
5059 	if (order == 0)		/* Via pcp? */
5060 		free_unref_page(page);
5061 	else
5062 		__free_pages_ok(page, order, FPI_NONE);
5063 }
5064 
5065 /**
5066  * __free_pages - Free pages allocated with alloc_pages().
5067  * @page: The page pointer returned from alloc_pages().
5068  * @order: The order of the allocation.
5069  *
5070  * This function can free multi-page allocations that are not compound
5071  * pages.  It does not check that the @order passed in matches that of
5072  * the allocation, so it is easy to leak memory.  Freeing more memory
5073  * than was allocated will probably emit a warning.
5074  *
5075  * If the last reference to this page is speculative, it will be released
5076  * by put_page() which only frees the first page of a non-compound
5077  * allocation.  To prevent the remaining pages from being leaked, we free
5078  * the subsequent pages here.  If you want to use the page's reference
5079  * count to decide when to free the allocation, you should allocate a
5080  * compound page, and use put_page() instead of __free_pages().
5081  *
5082  * Context: May be called in interrupt context or while holding a normal
5083  * spinlock, but not in NMI context or while holding a raw spinlock.
5084  */
5085 void __free_pages(struct page *page, unsigned int order)
5086 {
5087 	if (put_page_testzero(page))
5088 		free_the_page(page, order);
5089 	else if (!PageHead(page))
5090 		while (order-- > 0)
5091 			free_the_page(page + (1 << order), order);
5092 }
5093 EXPORT_SYMBOL(__free_pages);
5094 
5095 void free_pages(unsigned long addr, unsigned int order)
5096 {
5097 	if (addr != 0) {
5098 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5099 		__free_pages(virt_to_page((void *)addr), order);
5100 	}
5101 }
5102 
5103 EXPORT_SYMBOL(free_pages);
5104 
5105 /*
5106  * Page Fragment:
5107  *  An arbitrary-length arbitrary-offset area of memory which resides
5108  *  within a 0 or higher order page.  Multiple fragments within that page
5109  *  are individually refcounted, in the page's reference counter.
5110  *
5111  * The page_frag functions below provide a simple allocation framework for
5112  * page fragments.  This is used by the network stack and network device
5113  * drivers to provide a backing region of memory for use as either an
5114  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5115  */
5116 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5117 					     gfp_t gfp_mask)
5118 {
5119 	struct page *page = NULL;
5120 	gfp_t gfp = gfp_mask;
5121 
5122 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5123 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5124 		    __GFP_NOMEMALLOC;
5125 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5126 				PAGE_FRAG_CACHE_MAX_ORDER);
5127 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5128 #endif
5129 	if (unlikely(!page))
5130 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5131 
5132 	nc->va = page ? page_address(page) : NULL;
5133 
5134 	return page;
5135 }
5136 
5137 void __page_frag_cache_drain(struct page *page, unsigned int count)
5138 {
5139 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5140 
5141 	if (page_ref_sub_and_test(page, count))
5142 		free_the_page(page, compound_order(page));
5143 }
5144 EXPORT_SYMBOL(__page_frag_cache_drain);
5145 
5146 void *page_frag_alloc_align(struct page_frag_cache *nc,
5147 		      unsigned int fragsz, gfp_t gfp_mask,
5148 		      unsigned int align_mask)
5149 {
5150 	unsigned int size = PAGE_SIZE;
5151 	struct page *page;
5152 	int offset;
5153 
5154 	if (unlikely(!nc->va)) {
5155 refill:
5156 		page = __page_frag_cache_refill(nc, gfp_mask);
5157 		if (!page)
5158 			return NULL;
5159 
5160 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5161 		/* if size can vary use size else just use PAGE_SIZE */
5162 		size = nc->size;
5163 #endif
5164 		/* Even if we own the page, we do not use atomic_set().
5165 		 * This would break get_page_unless_zero() users.
5166 		 */
5167 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5168 
5169 		/* reset page count bias and offset to start of new frag */
5170 		nc->pfmemalloc = page_is_pfmemalloc(page);
5171 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5172 		nc->offset = size;
5173 	}
5174 
5175 	offset = nc->offset - fragsz;
5176 	if (unlikely(offset < 0)) {
5177 		page = virt_to_page(nc->va);
5178 
5179 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5180 			goto refill;
5181 
5182 		if (unlikely(nc->pfmemalloc)) {
5183 			free_the_page(page, compound_order(page));
5184 			goto refill;
5185 		}
5186 
5187 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5188 		/* if size can vary use size else just use PAGE_SIZE */
5189 		size = nc->size;
5190 #endif
5191 		/* OK, page count is 0, we can safely set it */
5192 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5193 
5194 		/* reset page count bias and offset to start of new frag */
5195 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5196 		offset = size - fragsz;
5197 	}
5198 
5199 	nc->pagecnt_bias--;
5200 	offset &= align_mask;
5201 	nc->offset = offset;
5202 
5203 	return nc->va + offset;
5204 }
5205 EXPORT_SYMBOL(page_frag_alloc_align);
5206 
5207 /*
5208  * Frees a page fragment allocated out of either a compound or order 0 page.
5209  */
5210 void page_frag_free(void *addr)
5211 {
5212 	struct page *page = virt_to_head_page(addr);
5213 
5214 	if (unlikely(put_page_testzero(page)))
5215 		free_the_page(page, compound_order(page));
5216 }
5217 EXPORT_SYMBOL(page_frag_free);
5218 
5219 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5220 		size_t size)
5221 {
5222 	if (addr) {
5223 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5224 		unsigned long used = addr + PAGE_ALIGN(size);
5225 
5226 		split_page(virt_to_page((void *)addr), order);
5227 		while (used < alloc_end) {
5228 			free_page(used);
5229 			used += PAGE_SIZE;
5230 		}
5231 	}
5232 	return (void *)addr;
5233 }
5234 
5235 /**
5236  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5237  * @size: the number of bytes to allocate
5238  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5239  *
5240  * This function is similar to alloc_pages(), except that it allocates the
5241  * minimum number of pages to satisfy the request.  alloc_pages() can only
5242  * allocate memory in power-of-two pages.
5243  *
5244  * This function is also limited by MAX_ORDER.
5245  *
5246  * Memory allocated by this function must be released by free_pages_exact().
5247  *
5248  * Return: pointer to the allocated area or %NULL in case of error.
5249  */
5250 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5251 {
5252 	unsigned int order = get_order(size);
5253 	unsigned long addr;
5254 
5255 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5256 		gfp_mask &= ~__GFP_COMP;
5257 
5258 	addr = __get_free_pages(gfp_mask, order);
5259 	return make_alloc_exact(addr, order, size);
5260 }
5261 EXPORT_SYMBOL(alloc_pages_exact);
5262 
5263 /**
5264  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5265  *			   pages on a node.
5266  * @nid: the preferred node ID where memory should be allocated
5267  * @size: the number of bytes to allocate
5268  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5269  *
5270  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5271  * back.
5272  *
5273  * Return: pointer to the allocated area or %NULL in case of error.
5274  */
5275 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5276 {
5277 	unsigned int order = get_order(size);
5278 	struct page *p;
5279 
5280 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5281 		gfp_mask &= ~__GFP_COMP;
5282 
5283 	p = alloc_pages_node(nid, gfp_mask, order);
5284 	if (!p)
5285 		return NULL;
5286 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5287 }
5288 
5289 /**
5290  * free_pages_exact - release memory allocated via alloc_pages_exact()
5291  * @virt: the value returned by alloc_pages_exact.
5292  * @size: size of allocation, same value as passed to alloc_pages_exact().
5293  *
5294  * Release the memory allocated by a previous call to alloc_pages_exact.
5295  */
5296 void free_pages_exact(void *virt, size_t size)
5297 {
5298 	unsigned long addr = (unsigned long)virt;
5299 	unsigned long end = addr + PAGE_ALIGN(size);
5300 
5301 	while (addr < end) {
5302 		free_page(addr);
5303 		addr += PAGE_SIZE;
5304 	}
5305 }
5306 EXPORT_SYMBOL(free_pages_exact);
5307 
5308 /**
5309  * nr_free_zone_pages - count number of pages beyond high watermark
5310  * @offset: The zone index of the highest zone
5311  *
5312  * nr_free_zone_pages() counts the number of pages which are beyond the
5313  * high watermark within all zones at or below a given zone index.  For each
5314  * zone, the number of pages is calculated as:
5315  *
5316  *     nr_free_zone_pages = managed_pages - high_pages
5317  *
5318  * Return: number of pages beyond high watermark.
5319  */
5320 static unsigned long nr_free_zone_pages(int offset)
5321 {
5322 	struct zoneref *z;
5323 	struct zone *zone;
5324 
5325 	/* Just pick one node, since fallback list is circular */
5326 	unsigned long sum = 0;
5327 
5328 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5329 
5330 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5331 		unsigned long size = zone_managed_pages(zone);
5332 		unsigned long high = high_wmark_pages(zone);
5333 		if (size > high)
5334 			sum += size - high;
5335 	}
5336 
5337 	return sum;
5338 }
5339 
5340 /**
5341  * nr_free_buffer_pages - count number of pages beyond high watermark
5342  *
5343  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5344  * watermark within ZONE_DMA and ZONE_NORMAL.
5345  *
5346  * Return: number of pages beyond high watermark within ZONE_DMA and
5347  * ZONE_NORMAL.
5348  */
5349 unsigned long nr_free_buffer_pages(void)
5350 {
5351 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5352 }
5353 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5354 
5355 static inline void show_node(struct zone *zone)
5356 {
5357 	if (IS_ENABLED(CONFIG_NUMA))
5358 		printk("Node %d ", zone_to_nid(zone));
5359 }
5360 
5361 long si_mem_available(void)
5362 {
5363 	long available;
5364 	unsigned long pagecache;
5365 	unsigned long wmark_low = 0;
5366 	unsigned long pages[NR_LRU_LISTS];
5367 	unsigned long reclaimable;
5368 	struct zone *zone;
5369 	int lru;
5370 
5371 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5372 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5373 
5374 	for_each_zone(zone)
5375 		wmark_low += low_wmark_pages(zone);
5376 
5377 	/*
5378 	 * Estimate the amount of memory available for userspace allocations,
5379 	 * without causing swapping.
5380 	 */
5381 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5382 
5383 	/*
5384 	 * Not all the page cache can be freed, otherwise the system will
5385 	 * start swapping. Assume at least half of the page cache, or the
5386 	 * low watermark worth of cache, needs to stay.
5387 	 */
5388 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5389 	pagecache -= min(pagecache / 2, wmark_low);
5390 	available += pagecache;
5391 
5392 	/*
5393 	 * Part of the reclaimable slab and other kernel memory consists of
5394 	 * items that are in use, and cannot be freed. Cap this estimate at the
5395 	 * low watermark.
5396 	 */
5397 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5398 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5399 	available += reclaimable - min(reclaimable / 2, wmark_low);
5400 
5401 	if (available < 0)
5402 		available = 0;
5403 	return available;
5404 }
5405 EXPORT_SYMBOL_GPL(si_mem_available);
5406 
5407 void si_meminfo(struct sysinfo *val)
5408 {
5409 	val->totalram = totalram_pages();
5410 	val->sharedram = global_node_page_state(NR_SHMEM);
5411 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5412 	val->bufferram = nr_blockdev_pages();
5413 	val->totalhigh = totalhigh_pages();
5414 	val->freehigh = nr_free_highpages();
5415 	val->mem_unit = PAGE_SIZE;
5416 }
5417 
5418 EXPORT_SYMBOL(si_meminfo);
5419 
5420 #ifdef CONFIG_NUMA
5421 void si_meminfo_node(struct sysinfo *val, int nid)
5422 {
5423 	int zone_type;		/* needs to be signed */
5424 	unsigned long managed_pages = 0;
5425 	unsigned long managed_highpages = 0;
5426 	unsigned long free_highpages = 0;
5427 	pg_data_t *pgdat = NODE_DATA(nid);
5428 
5429 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5430 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5431 	val->totalram = managed_pages;
5432 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5433 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5434 #ifdef CONFIG_HIGHMEM
5435 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5436 		struct zone *zone = &pgdat->node_zones[zone_type];
5437 
5438 		if (is_highmem(zone)) {
5439 			managed_highpages += zone_managed_pages(zone);
5440 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5441 		}
5442 	}
5443 	val->totalhigh = managed_highpages;
5444 	val->freehigh = free_highpages;
5445 #else
5446 	val->totalhigh = managed_highpages;
5447 	val->freehigh = free_highpages;
5448 #endif
5449 	val->mem_unit = PAGE_SIZE;
5450 }
5451 #endif
5452 
5453 /*
5454  * Determine whether the node should be displayed or not, depending on whether
5455  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5456  */
5457 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5458 {
5459 	if (!(flags & SHOW_MEM_FILTER_NODES))
5460 		return false;
5461 
5462 	/*
5463 	 * no node mask - aka implicit memory numa policy. Do not bother with
5464 	 * the synchronization - read_mems_allowed_begin - because we do not
5465 	 * have to be precise here.
5466 	 */
5467 	if (!nodemask)
5468 		nodemask = &cpuset_current_mems_allowed;
5469 
5470 	return !node_isset(nid, *nodemask);
5471 }
5472 
5473 #define K(x) ((x) << (PAGE_SHIFT-10))
5474 
5475 static void show_migration_types(unsigned char type)
5476 {
5477 	static const char types[MIGRATE_TYPES] = {
5478 		[MIGRATE_UNMOVABLE]	= 'U',
5479 		[MIGRATE_MOVABLE]	= 'M',
5480 		[MIGRATE_RECLAIMABLE]	= 'E',
5481 		[MIGRATE_HIGHATOMIC]	= 'H',
5482 #ifdef CONFIG_CMA
5483 		[MIGRATE_CMA]		= 'C',
5484 #endif
5485 #ifdef CONFIG_MEMORY_ISOLATION
5486 		[MIGRATE_ISOLATE]	= 'I',
5487 #endif
5488 	};
5489 	char tmp[MIGRATE_TYPES + 1];
5490 	char *p = tmp;
5491 	int i;
5492 
5493 	for (i = 0; i < MIGRATE_TYPES; i++) {
5494 		if (type & (1 << i))
5495 			*p++ = types[i];
5496 	}
5497 
5498 	*p = '\0';
5499 	printk(KERN_CONT "(%s) ", tmp);
5500 }
5501 
5502 /*
5503  * Show free area list (used inside shift_scroll-lock stuff)
5504  * We also calculate the percentage fragmentation. We do this by counting the
5505  * memory on each free list with the exception of the first item on the list.
5506  *
5507  * Bits in @filter:
5508  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5509  *   cpuset.
5510  */
5511 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5512 {
5513 	unsigned long free_pcp = 0;
5514 	int cpu;
5515 	struct zone *zone;
5516 	pg_data_t *pgdat;
5517 
5518 	for_each_populated_zone(zone) {
5519 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5520 			continue;
5521 
5522 		for_each_online_cpu(cpu)
5523 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5524 	}
5525 
5526 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5527 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5528 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5529 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5530 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5531 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5532 		global_node_page_state(NR_ACTIVE_ANON),
5533 		global_node_page_state(NR_INACTIVE_ANON),
5534 		global_node_page_state(NR_ISOLATED_ANON),
5535 		global_node_page_state(NR_ACTIVE_FILE),
5536 		global_node_page_state(NR_INACTIVE_FILE),
5537 		global_node_page_state(NR_ISOLATED_FILE),
5538 		global_node_page_state(NR_UNEVICTABLE),
5539 		global_node_page_state(NR_FILE_DIRTY),
5540 		global_node_page_state(NR_WRITEBACK),
5541 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5542 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5543 		global_node_page_state(NR_FILE_MAPPED),
5544 		global_node_page_state(NR_SHMEM),
5545 		global_node_page_state(NR_PAGETABLE),
5546 		global_zone_page_state(NR_BOUNCE),
5547 		global_zone_page_state(NR_FREE_PAGES),
5548 		free_pcp,
5549 		global_zone_page_state(NR_FREE_CMA_PAGES));
5550 
5551 	for_each_online_pgdat(pgdat) {
5552 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5553 			continue;
5554 
5555 		printk("Node %d"
5556 			" active_anon:%lukB"
5557 			" inactive_anon:%lukB"
5558 			" active_file:%lukB"
5559 			" inactive_file:%lukB"
5560 			" unevictable:%lukB"
5561 			" isolated(anon):%lukB"
5562 			" isolated(file):%lukB"
5563 			" mapped:%lukB"
5564 			" dirty:%lukB"
5565 			" writeback:%lukB"
5566 			" shmem:%lukB"
5567 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5568 			" shmem_thp: %lukB"
5569 			" shmem_pmdmapped: %lukB"
5570 			" anon_thp: %lukB"
5571 #endif
5572 			" writeback_tmp:%lukB"
5573 			" kernel_stack:%lukB"
5574 #ifdef CONFIG_SHADOW_CALL_STACK
5575 			" shadow_call_stack:%lukB"
5576 #endif
5577 			" pagetables:%lukB"
5578 			" all_unreclaimable? %s"
5579 			"\n",
5580 			pgdat->node_id,
5581 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5582 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5583 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5584 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5585 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5586 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5587 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5588 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5589 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5590 			K(node_page_state(pgdat, NR_WRITEBACK)),
5591 			K(node_page_state(pgdat, NR_SHMEM)),
5592 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5593 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
5594 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5595 			K(node_page_state(pgdat, NR_ANON_THPS)),
5596 #endif
5597 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5598 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5599 #ifdef CONFIG_SHADOW_CALL_STACK
5600 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5601 #endif
5602 			K(node_page_state(pgdat, NR_PAGETABLE)),
5603 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5604 				"yes" : "no");
5605 	}
5606 
5607 	for_each_populated_zone(zone) {
5608 		int i;
5609 
5610 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5611 			continue;
5612 
5613 		free_pcp = 0;
5614 		for_each_online_cpu(cpu)
5615 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5616 
5617 		show_node(zone);
5618 		printk(KERN_CONT
5619 			"%s"
5620 			" free:%lukB"
5621 			" min:%lukB"
5622 			" low:%lukB"
5623 			" high:%lukB"
5624 			" reserved_highatomic:%luKB"
5625 			" active_anon:%lukB"
5626 			" inactive_anon:%lukB"
5627 			" active_file:%lukB"
5628 			" inactive_file:%lukB"
5629 			" unevictable:%lukB"
5630 			" writepending:%lukB"
5631 			" present:%lukB"
5632 			" managed:%lukB"
5633 			" mlocked:%lukB"
5634 			" bounce:%lukB"
5635 			" free_pcp:%lukB"
5636 			" local_pcp:%ukB"
5637 			" free_cma:%lukB"
5638 			"\n",
5639 			zone->name,
5640 			K(zone_page_state(zone, NR_FREE_PAGES)),
5641 			K(min_wmark_pages(zone)),
5642 			K(low_wmark_pages(zone)),
5643 			K(high_wmark_pages(zone)),
5644 			K(zone->nr_reserved_highatomic),
5645 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5646 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5647 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5648 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5649 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5650 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5651 			K(zone->present_pages),
5652 			K(zone_managed_pages(zone)),
5653 			K(zone_page_state(zone, NR_MLOCK)),
5654 			K(zone_page_state(zone, NR_BOUNCE)),
5655 			K(free_pcp),
5656 			K(this_cpu_read(zone->pageset->pcp.count)),
5657 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5658 		printk("lowmem_reserve[]:");
5659 		for (i = 0; i < MAX_NR_ZONES; i++)
5660 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5661 		printk(KERN_CONT "\n");
5662 	}
5663 
5664 	for_each_populated_zone(zone) {
5665 		unsigned int order;
5666 		unsigned long nr[MAX_ORDER], flags, total = 0;
5667 		unsigned char types[MAX_ORDER];
5668 
5669 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5670 			continue;
5671 		show_node(zone);
5672 		printk(KERN_CONT "%s: ", zone->name);
5673 
5674 		spin_lock_irqsave(&zone->lock, flags);
5675 		for (order = 0; order < MAX_ORDER; order++) {
5676 			struct free_area *area = &zone->free_area[order];
5677 			int type;
5678 
5679 			nr[order] = area->nr_free;
5680 			total += nr[order] << order;
5681 
5682 			types[order] = 0;
5683 			for (type = 0; type < MIGRATE_TYPES; type++) {
5684 				if (!free_area_empty(area, type))
5685 					types[order] |= 1 << type;
5686 			}
5687 		}
5688 		spin_unlock_irqrestore(&zone->lock, flags);
5689 		for (order = 0; order < MAX_ORDER; order++) {
5690 			printk(KERN_CONT "%lu*%lukB ",
5691 			       nr[order], K(1UL) << order);
5692 			if (nr[order])
5693 				show_migration_types(types[order]);
5694 		}
5695 		printk(KERN_CONT "= %lukB\n", K(total));
5696 	}
5697 
5698 	hugetlb_show_meminfo();
5699 
5700 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5701 
5702 	show_swap_cache_info();
5703 }
5704 
5705 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5706 {
5707 	zoneref->zone = zone;
5708 	zoneref->zone_idx = zone_idx(zone);
5709 }
5710 
5711 /*
5712  * Builds allocation fallback zone lists.
5713  *
5714  * Add all populated zones of a node to the zonelist.
5715  */
5716 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5717 {
5718 	struct zone *zone;
5719 	enum zone_type zone_type = MAX_NR_ZONES;
5720 	int nr_zones = 0;
5721 
5722 	do {
5723 		zone_type--;
5724 		zone = pgdat->node_zones + zone_type;
5725 		if (managed_zone(zone)) {
5726 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5727 			check_highest_zone(zone_type);
5728 		}
5729 	} while (zone_type);
5730 
5731 	return nr_zones;
5732 }
5733 
5734 #ifdef CONFIG_NUMA
5735 
5736 static int __parse_numa_zonelist_order(char *s)
5737 {
5738 	/*
5739 	 * We used to support different zonlists modes but they turned
5740 	 * out to be just not useful. Let's keep the warning in place
5741 	 * if somebody still use the cmd line parameter so that we do
5742 	 * not fail it silently
5743 	 */
5744 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5745 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5746 		return -EINVAL;
5747 	}
5748 	return 0;
5749 }
5750 
5751 char numa_zonelist_order[] = "Node";
5752 
5753 /*
5754  * sysctl handler for numa_zonelist_order
5755  */
5756 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5757 		void *buffer, size_t *length, loff_t *ppos)
5758 {
5759 	if (write)
5760 		return __parse_numa_zonelist_order(buffer);
5761 	return proc_dostring(table, write, buffer, length, ppos);
5762 }
5763 
5764 
5765 #define MAX_NODE_LOAD (nr_online_nodes)
5766 static int node_load[MAX_NUMNODES];
5767 
5768 /**
5769  * find_next_best_node - find the next node that should appear in a given node's fallback list
5770  * @node: node whose fallback list we're appending
5771  * @used_node_mask: nodemask_t of already used nodes
5772  *
5773  * We use a number of factors to determine which is the next node that should
5774  * appear on a given node's fallback list.  The node should not have appeared
5775  * already in @node's fallback list, and it should be the next closest node
5776  * according to the distance array (which contains arbitrary distance values
5777  * from each node to each node in the system), and should also prefer nodes
5778  * with no CPUs, since presumably they'll have very little allocation pressure
5779  * on them otherwise.
5780  *
5781  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5782  */
5783 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5784 {
5785 	int n, val;
5786 	int min_val = INT_MAX;
5787 	int best_node = NUMA_NO_NODE;
5788 
5789 	/* Use the local node if we haven't already */
5790 	if (!node_isset(node, *used_node_mask)) {
5791 		node_set(node, *used_node_mask);
5792 		return node;
5793 	}
5794 
5795 	for_each_node_state(n, N_MEMORY) {
5796 
5797 		/* Don't want a node to appear more than once */
5798 		if (node_isset(n, *used_node_mask))
5799 			continue;
5800 
5801 		/* Use the distance array to find the distance */
5802 		val = node_distance(node, n);
5803 
5804 		/* Penalize nodes under us ("prefer the next node") */
5805 		val += (n < node);
5806 
5807 		/* Give preference to headless and unused nodes */
5808 		if (!cpumask_empty(cpumask_of_node(n)))
5809 			val += PENALTY_FOR_NODE_WITH_CPUS;
5810 
5811 		/* Slight preference for less loaded node */
5812 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5813 		val += node_load[n];
5814 
5815 		if (val < min_val) {
5816 			min_val = val;
5817 			best_node = n;
5818 		}
5819 	}
5820 
5821 	if (best_node >= 0)
5822 		node_set(best_node, *used_node_mask);
5823 
5824 	return best_node;
5825 }
5826 
5827 
5828 /*
5829  * Build zonelists ordered by node and zones within node.
5830  * This results in maximum locality--normal zone overflows into local
5831  * DMA zone, if any--but risks exhausting DMA zone.
5832  */
5833 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5834 		unsigned nr_nodes)
5835 {
5836 	struct zoneref *zonerefs;
5837 	int i;
5838 
5839 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5840 
5841 	for (i = 0; i < nr_nodes; i++) {
5842 		int nr_zones;
5843 
5844 		pg_data_t *node = NODE_DATA(node_order[i]);
5845 
5846 		nr_zones = build_zonerefs_node(node, zonerefs);
5847 		zonerefs += nr_zones;
5848 	}
5849 	zonerefs->zone = NULL;
5850 	zonerefs->zone_idx = 0;
5851 }
5852 
5853 /*
5854  * Build gfp_thisnode zonelists
5855  */
5856 static void build_thisnode_zonelists(pg_data_t *pgdat)
5857 {
5858 	struct zoneref *zonerefs;
5859 	int nr_zones;
5860 
5861 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5862 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5863 	zonerefs += nr_zones;
5864 	zonerefs->zone = NULL;
5865 	zonerefs->zone_idx = 0;
5866 }
5867 
5868 /*
5869  * Build zonelists ordered by zone and nodes within zones.
5870  * This results in conserving DMA zone[s] until all Normal memory is
5871  * exhausted, but results in overflowing to remote node while memory
5872  * may still exist in local DMA zone.
5873  */
5874 
5875 static void build_zonelists(pg_data_t *pgdat)
5876 {
5877 	static int node_order[MAX_NUMNODES];
5878 	int node, load, nr_nodes = 0;
5879 	nodemask_t used_mask = NODE_MASK_NONE;
5880 	int local_node, prev_node;
5881 
5882 	/* NUMA-aware ordering of nodes */
5883 	local_node = pgdat->node_id;
5884 	load = nr_online_nodes;
5885 	prev_node = local_node;
5886 
5887 	memset(node_order, 0, sizeof(node_order));
5888 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5889 		/*
5890 		 * We don't want to pressure a particular node.
5891 		 * So adding penalty to the first node in same
5892 		 * distance group to make it round-robin.
5893 		 */
5894 		if (node_distance(local_node, node) !=
5895 		    node_distance(local_node, prev_node))
5896 			node_load[node] = load;
5897 
5898 		node_order[nr_nodes++] = node;
5899 		prev_node = node;
5900 		load--;
5901 	}
5902 
5903 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5904 	build_thisnode_zonelists(pgdat);
5905 }
5906 
5907 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5908 /*
5909  * Return node id of node used for "local" allocations.
5910  * I.e., first node id of first zone in arg node's generic zonelist.
5911  * Used for initializing percpu 'numa_mem', which is used primarily
5912  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5913  */
5914 int local_memory_node(int node)
5915 {
5916 	struct zoneref *z;
5917 
5918 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5919 				   gfp_zone(GFP_KERNEL),
5920 				   NULL);
5921 	return zone_to_nid(z->zone);
5922 }
5923 #endif
5924 
5925 static void setup_min_unmapped_ratio(void);
5926 static void setup_min_slab_ratio(void);
5927 #else	/* CONFIG_NUMA */
5928 
5929 static void build_zonelists(pg_data_t *pgdat)
5930 {
5931 	int node, local_node;
5932 	struct zoneref *zonerefs;
5933 	int nr_zones;
5934 
5935 	local_node = pgdat->node_id;
5936 
5937 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5938 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5939 	zonerefs += nr_zones;
5940 
5941 	/*
5942 	 * Now we build the zonelist so that it contains the zones
5943 	 * of all the other nodes.
5944 	 * We don't want to pressure a particular node, so when
5945 	 * building the zones for node N, we make sure that the
5946 	 * zones coming right after the local ones are those from
5947 	 * node N+1 (modulo N)
5948 	 */
5949 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5950 		if (!node_online(node))
5951 			continue;
5952 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5953 		zonerefs += nr_zones;
5954 	}
5955 	for (node = 0; node < local_node; node++) {
5956 		if (!node_online(node))
5957 			continue;
5958 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5959 		zonerefs += nr_zones;
5960 	}
5961 
5962 	zonerefs->zone = NULL;
5963 	zonerefs->zone_idx = 0;
5964 }
5965 
5966 #endif	/* CONFIG_NUMA */
5967 
5968 /*
5969  * Boot pageset table. One per cpu which is going to be used for all
5970  * zones and all nodes. The parameters will be set in such a way
5971  * that an item put on a list will immediately be handed over to
5972  * the buddy list. This is safe since pageset manipulation is done
5973  * with interrupts disabled.
5974  *
5975  * The boot_pagesets must be kept even after bootup is complete for
5976  * unused processors and/or zones. They do play a role for bootstrapping
5977  * hotplugged processors.
5978  *
5979  * zoneinfo_show() and maybe other functions do
5980  * not check if the processor is online before following the pageset pointer.
5981  * Other parts of the kernel may not check if the zone is available.
5982  */
5983 static void pageset_init(struct per_cpu_pageset *p);
5984 /* These effectively disable the pcplists in the boot pageset completely */
5985 #define BOOT_PAGESET_HIGH	0
5986 #define BOOT_PAGESET_BATCH	1
5987 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5988 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5989 
5990 static void __build_all_zonelists(void *data)
5991 {
5992 	int nid;
5993 	int __maybe_unused cpu;
5994 	pg_data_t *self = data;
5995 	static DEFINE_SPINLOCK(lock);
5996 
5997 	spin_lock(&lock);
5998 
5999 #ifdef CONFIG_NUMA
6000 	memset(node_load, 0, sizeof(node_load));
6001 #endif
6002 
6003 	/*
6004 	 * This node is hotadded and no memory is yet present.   So just
6005 	 * building zonelists is fine - no need to touch other nodes.
6006 	 */
6007 	if (self && !node_online(self->node_id)) {
6008 		build_zonelists(self);
6009 	} else {
6010 		for_each_online_node(nid) {
6011 			pg_data_t *pgdat = NODE_DATA(nid);
6012 
6013 			build_zonelists(pgdat);
6014 		}
6015 
6016 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6017 		/*
6018 		 * We now know the "local memory node" for each node--
6019 		 * i.e., the node of the first zone in the generic zonelist.
6020 		 * Set up numa_mem percpu variable for on-line cpus.  During
6021 		 * boot, only the boot cpu should be on-line;  we'll init the
6022 		 * secondary cpus' numa_mem as they come on-line.  During
6023 		 * node/memory hotplug, we'll fixup all on-line cpus.
6024 		 */
6025 		for_each_online_cpu(cpu)
6026 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6027 #endif
6028 	}
6029 
6030 	spin_unlock(&lock);
6031 }
6032 
6033 static noinline void __init
6034 build_all_zonelists_init(void)
6035 {
6036 	int cpu;
6037 
6038 	__build_all_zonelists(NULL);
6039 
6040 	/*
6041 	 * Initialize the boot_pagesets that are going to be used
6042 	 * for bootstrapping processors. The real pagesets for
6043 	 * each zone will be allocated later when the per cpu
6044 	 * allocator is available.
6045 	 *
6046 	 * boot_pagesets are used also for bootstrapping offline
6047 	 * cpus if the system is already booted because the pagesets
6048 	 * are needed to initialize allocators on a specific cpu too.
6049 	 * F.e. the percpu allocator needs the page allocator which
6050 	 * needs the percpu allocator in order to allocate its pagesets
6051 	 * (a chicken-egg dilemma).
6052 	 */
6053 	for_each_possible_cpu(cpu)
6054 		pageset_init(&per_cpu(boot_pageset, cpu));
6055 
6056 	mminit_verify_zonelist();
6057 	cpuset_init_current_mems_allowed();
6058 }
6059 
6060 /*
6061  * unless system_state == SYSTEM_BOOTING.
6062  *
6063  * __ref due to call of __init annotated helper build_all_zonelists_init
6064  * [protected by SYSTEM_BOOTING].
6065  */
6066 void __ref build_all_zonelists(pg_data_t *pgdat)
6067 {
6068 	unsigned long vm_total_pages;
6069 
6070 	if (system_state == SYSTEM_BOOTING) {
6071 		build_all_zonelists_init();
6072 	} else {
6073 		__build_all_zonelists(pgdat);
6074 		/* cpuset refresh routine should be here */
6075 	}
6076 	/* Get the number of free pages beyond high watermark in all zones. */
6077 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6078 	/*
6079 	 * Disable grouping by mobility if the number of pages in the
6080 	 * system is too low to allow the mechanism to work. It would be
6081 	 * more accurate, but expensive to check per-zone. This check is
6082 	 * made on memory-hotadd so a system can start with mobility
6083 	 * disabled and enable it later
6084 	 */
6085 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6086 		page_group_by_mobility_disabled = 1;
6087 	else
6088 		page_group_by_mobility_disabled = 0;
6089 
6090 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6091 		nr_online_nodes,
6092 		page_group_by_mobility_disabled ? "off" : "on",
6093 		vm_total_pages);
6094 #ifdef CONFIG_NUMA
6095 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6096 #endif
6097 }
6098 
6099 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6100 static bool __meminit
6101 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6102 {
6103 	static struct memblock_region *r;
6104 
6105 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6106 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6107 			for_each_mem_region(r) {
6108 				if (*pfn < memblock_region_memory_end_pfn(r))
6109 					break;
6110 			}
6111 		}
6112 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6113 		    memblock_is_mirror(r)) {
6114 			*pfn = memblock_region_memory_end_pfn(r);
6115 			return true;
6116 		}
6117 	}
6118 	return false;
6119 }
6120 
6121 /*
6122  * Initially all pages are reserved - free ones are freed
6123  * up by memblock_free_all() once the early boot process is
6124  * done. Non-atomic initialization, single-pass.
6125  *
6126  * All aligned pageblocks are initialized to the specified migratetype
6127  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6128  * zone stats (e.g., nr_isolate_pageblock) are touched.
6129  */
6130 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6131 		unsigned long start_pfn, unsigned long zone_end_pfn,
6132 		enum meminit_context context,
6133 		struct vmem_altmap *altmap, int migratetype)
6134 {
6135 	unsigned long pfn, end_pfn = start_pfn + size;
6136 	struct page *page;
6137 
6138 	if (highest_memmap_pfn < end_pfn - 1)
6139 		highest_memmap_pfn = end_pfn - 1;
6140 
6141 #ifdef CONFIG_ZONE_DEVICE
6142 	/*
6143 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6144 	 * memory. We limit the total number of pages to initialize to just
6145 	 * those that might contain the memory mapping. We will defer the
6146 	 * ZONE_DEVICE page initialization until after we have released
6147 	 * the hotplug lock.
6148 	 */
6149 	if (zone == ZONE_DEVICE) {
6150 		if (!altmap)
6151 			return;
6152 
6153 		if (start_pfn == altmap->base_pfn)
6154 			start_pfn += altmap->reserve;
6155 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6156 	}
6157 #endif
6158 
6159 	for (pfn = start_pfn; pfn < end_pfn; ) {
6160 		/*
6161 		 * There can be holes in boot-time mem_map[]s handed to this
6162 		 * function.  They do not exist on hotplugged memory.
6163 		 */
6164 		if (context == MEMINIT_EARLY) {
6165 			if (overlap_memmap_init(zone, &pfn))
6166 				continue;
6167 			if (defer_init(nid, pfn, zone_end_pfn))
6168 				break;
6169 		}
6170 
6171 		page = pfn_to_page(pfn);
6172 		__init_single_page(page, pfn, zone, nid);
6173 		if (context == MEMINIT_HOTPLUG)
6174 			__SetPageReserved(page);
6175 
6176 		/*
6177 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6178 		 * such that unmovable allocations won't be scattered all
6179 		 * over the place during system boot.
6180 		 */
6181 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6182 			set_pageblock_migratetype(page, migratetype);
6183 			cond_resched();
6184 		}
6185 		pfn++;
6186 	}
6187 }
6188 
6189 #ifdef CONFIG_ZONE_DEVICE
6190 void __ref memmap_init_zone_device(struct zone *zone,
6191 				   unsigned long start_pfn,
6192 				   unsigned long nr_pages,
6193 				   struct dev_pagemap *pgmap)
6194 {
6195 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6196 	struct pglist_data *pgdat = zone->zone_pgdat;
6197 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6198 	unsigned long zone_idx = zone_idx(zone);
6199 	unsigned long start = jiffies;
6200 	int nid = pgdat->node_id;
6201 
6202 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6203 		return;
6204 
6205 	/*
6206 	 * The call to memmap_init_zone should have already taken care
6207 	 * of the pages reserved for the memmap, so we can just jump to
6208 	 * the end of that region and start processing the device pages.
6209 	 */
6210 	if (altmap) {
6211 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6212 		nr_pages = end_pfn - start_pfn;
6213 	}
6214 
6215 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6216 		struct page *page = pfn_to_page(pfn);
6217 
6218 		__init_single_page(page, pfn, zone_idx, nid);
6219 
6220 		/*
6221 		 * Mark page reserved as it will need to wait for onlining
6222 		 * phase for it to be fully associated with a zone.
6223 		 *
6224 		 * We can use the non-atomic __set_bit operation for setting
6225 		 * the flag as we are still initializing the pages.
6226 		 */
6227 		__SetPageReserved(page);
6228 
6229 		/*
6230 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6231 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6232 		 * ever freed or placed on a driver-private list.
6233 		 */
6234 		page->pgmap = pgmap;
6235 		page->zone_device_data = NULL;
6236 
6237 		/*
6238 		 * Mark the block movable so that blocks are reserved for
6239 		 * movable at startup. This will force kernel allocations
6240 		 * to reserve their blocks rather than leaking throughout
6241 		 * the address space during boot when many long-lived
6242 		 * kernel allocations are made.
6243 		 *
6244 		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6245 		 * because this is done early in section_activate()
6246 		 */
6247 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6248 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6249 			cond_resched();
6250 		}
6251 	}
6252 
6253 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6254 		nr_pages, jiffies_to_msecs(jiffies - start));
6255 }
6256 
6257 #endif
6258 static void __meminit zone_init_free_lists(struct zone *zone)
6259 {
6260 	unsigned int order, t;
6261 	for_each_migratetype_order(order, t) {
6262 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6263 		zone->free_area[order].nr_free = 0;
6264 	}
6265 }
6266 
6267 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6268 /*
6269  * Only struct pages that correspond to ranges defined by memblock.memory
6270  * are zeroed and initialized by going through __init_single_page() during
6271  * memmap_init_zone().
6272  *
6273  * But, there could be struct pages that correspond to holes in
6274  * memblock.memory. This can happen because of the following reasons:
6275  * - physical memory bank size is not necessarily the exact multiple of the
6276  *   arbitrary section size
6277  * - early reserved memory may not be listed in memblock.memory
6278  * - memory layouts defined with memmap= kernel parameter may not align
6279  *   nicely with memmap sections
6280  *
6281  * Explicitly initialize those struct pages so that:
6282  * - PG_Reserved is set
6283  * - zone and node links point to zone and node that span the page if the
6284  *   hole is in the middle of a zone
6285  * - zone and node links point to adjacent zone/node if the hole falls on
6286  *   the zone boundary; the pages in such holes will be prepended to the
6287  *   zone/node above the hole except for the trailing pages in the last
6288  *   section that will be appended to the zone/node below.
6289  */
6290 static u64 __meminit init_unavailable_range(unsigned long spfn,
6291 					    unsigned long epfn,
6292 					    int zone, int node)
6293 {
6294 	unsigned long pfn;
6295 	u64 pgcnt = 0;
6296 
6297 	for (pfn = spfn; pfn < epfn; pfn++) {
6298 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6299 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6300 				+ pageblock_nr_pages - 1;
6301 			continue;
6302 		}
6303 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6304 		__SetPageReserved(pfn_to_page(pfn));
6305 		pgcnt++;
6306 	}
6307 
6308 	return pgcnt;
6309 }
6310 #else
6311 static inline u64 init_unavailable_range(unsigned long spfn, unsigned long epfn,
6312 					 int zone, int node)
6313 {
6314 	return 0;
6315 }
6316 #endif
6317 
6318 void __meminit __weak memmap_init_zone(struct zone *zone)
6319 {
6320 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6321 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6322 	int i, nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6323 	static unsigned long hole_pfn;
6324 	unsigned long start_pfn, end_pfn;
6325 	u64 pgcnt = 0;
6326 
6327 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6328 		start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6329 		end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6330 
6331 		if (end_pfn > start_pfn)
6332 			memmap_init_range(end_pfn - start_pfn, nid,
6333 					zone_id, start_pfn, zone_end_pfn,
6334 					MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6335 
6336 		if (hole_pfn < start_pfn)
6337 			pgcnt += init_unavailable_range(hole_pfn, start_pfn,
6338 							zone_id, nid);
6339 		hole_pfn = end_pfn;
6340 	}
6341 
6342 #ifdef CONFIG_SPARSEMEM
6343 	/*
6344 	 * Initialize the hole in the range [zone_end_pfn, section_end].
6345 	 * If zone boundary falls in the middle of a section, this hole
6346 	 * will be re-initialized during the call to this function for the
6347 	 * higher zone.
6348 	 */
6349 	end_pfn = round_up(zone_end_pfn, PAGES_PER_SECTION);
6350 	if (hole_pfn < end_pfn)
6351 		pgcnt += init_unavailable_range(hole_pfn, end_pfn,
6352 						zone_id, nid);
6353 #endif
6354 
6355 	if (pgcnt)
6356 		pr_info("  %s zone: %llu pages in unavailable ranges\n",
6357 			zone->name, pgcnt);
6358 }
6359 
6360 static int zone_batchsize(struct zone *zone)
6361 {
6362 #ifdef CONFIG_MMU
6363 	int batch;
6364 
6365 	/*
6366 	 * The per-cpu-pages pools are set to around 1000th of the
6367 	 * size of the zone.
6368 	 */
6369 	batch = zone_managed_pages(zone) / 1024;
6370 	/* But no more than a meg. */
6371 	if (batch * PAGE_SIZE > 1024 * 1024)
6372 		batch = (1024 * 1024) / PAGE_SIZE;
6373 	batch /= 4;		/* We effectively *= 4 below */
6374 	if (batch < 1)
6375 		batch = 1;
6376 
6377 	/*
6378 	 * Clamp the batch to a 2^n - 1 value. Having a power
6379 	 * of 2 value was found to be more likely to have
6380 	 * suboptimal cache aliasing properties in some cases.
6381 	 *
6382 	 * For example if 2 tasks are alternately allocating
6383 	 * batches of pages, one task can end up with a lot
6384 	 * of pages of one half of the possible page colors
6385 	 * and the other with pages of the other colors.
6386 	 */
6387 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6388 
6389 	return batch;
6390 
6391 #else
6392 	/* The deferral and batching of frees should be suppressed under NOMMU
6393 	 * conditions.
6394 	 *
6395 	 * The problem is that NOMMU needs to be able to allocate large chunks
6396 	 * of contiguous memory as there's no hardware page translation to
6397 	 * assemble apparent contiguous memory from discontiguous pages.
6398 	 *
6399 	 * Queueing large contiguous runs of pages for batching, however,
6400 	 * causes the pages to actually be freed in smaller chunks.  As there
6401 	 * can be a significant delay between the individual batches being
6402 	 * recycled, this leads to the once large chunks of space being
6403 	 * fragmented and becoming unavailable for high-order allocations.
6404 	 */
6405 	return 0;
6406 #endif
6407 }
6408 
6409 /*
6410  * pcp->high and pcp->batch values are related and generally batch is lower
6411  * than high. They are also related to pcp->count such that count is lower
6412  * than high, and as soon as it reaches high, the pcplist is flushed.
6413  *
6414  * However, guaranteeing these relations at all times would require e.g. write
6415  * barriers here but also careful usage of read barriers at the read side, and
6416  * thus be prone to error and bad for performance. Thus the update only prevents
6417  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6418  * can cope with those fields changing asynchronously, and fully trust only the
6419  * pcp->count field on the local CPU with interrupts disabled.
6420  *
6421  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6422  * outside of boot time (or some other assurance that no concurrent updaters
6423  * exist).
6424  */
6425 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6426 		unsigned long batch)
6427 {
6428 	WRITE_ONCE(pcp->batch, batch);
6429 	WRITE_ONCE(pcp->high, high);
6430 }
6431 
6432 static void pageset_init(struct per_cpu_pageset *p)
6433 {
6434 	struct per_cpu_pages *pcp;
6435 	int migratetype;
6436 
6437 	memset(p, 0, sizeof(*p));
6438 
6439 	pcp = &p->pcp;
6440 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6441 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6442 
6443 	/*
6444 	 * Set batch and high values safe for a boot pageset. A true percpu
6445 	 * pageset's initialization will update them subsequently. Here we don't
6446 	 * need to be as careful as pageset_update() as nobody can access the
6447 	 * pageset yet.
6448 	 */
6449 	pcp->high = BOOT_PAGESET_HIGH;
6450 	pcp->batch = BOOT_PAGESET_BATCH;
6451 }
6452 
6453 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6454 		unsigned long batch)
6455 {
6456 	struct per_cpu_pageset *p;
6457 	int cpu;
6458 
6459 	for_each_possible_cpu(cpu) {
6460 		p = per_cpu_ptr(zone->pageset, cpu);
6461 		pageset_update(&p->pcp, high, batch);
6462 	}
6463 }
6464 
6465 /*
6466  * Calculate and set new high and batch values for all per-cpu pagesets of a
6467  * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
6468  */
6469 static void zone_set_pageset_high_and_batch(struct zone *zone)
6470 {
6471 	unsigned long new_high, new_batch;
6472 
6473 	if (percpu_pagelist_fraction) {
6474 		new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6475 		new_batch = max(1UL, new_high / 4);
6476 		if ((new_high / 4) > (PAGE_SHIFT * 8))
6477 			new_batch = PAGE_SHIFT * 8;
6478 	} else {
6479 		new_batch = zone_batchsize(zone);
6480 		new_high = 6 * new_batch;
6481 		new_batch = max(1UL, 1 * new_batch);
6482 	}
6483 
6484 	if (zone->pageset_high == new_high &&
6485 	    zone->pageset_batch == new_batch)
6486 		return;
6487 
6488 	zone->pageset_high = new_high;
6489 	zone->pageset_batch = new_batch;
6490 
6491 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6492 }
6493 
6494 void __meminit setup_zone_pageset(struct zone *zone)
6495 {
6496 	struct per_cpu_pageset *p;
6497 	int cpu;
6498 
6499 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6500 	for_each_possible_cpu(cpu) {
6501 		p = per_cpu_ptr(zone->pageset, cpu);
6502 		pageset_init(p);
6503 	}
6504 
6505 	zone_set_pageset_high_and_batch(zone);
6506 }
6507 
6508 /*
6509  * Allocate per cpu pagesets and initialize them.
6510  * Before this call only boot pagesets were available.
6511  */
6512 void __init setup_per_cpu_pageset(void)
6513 {
6514 	struct pglist_data *pgdat;
6515 	struct zone *zone;
6516 	int __maybe_unused cpu;
6517 
6518 	for_each_populated_zone(zone)
6519 		setup_zone_pageset(zone);
6520 
6521 #ifdef CONFIG_NUMA
6522 	/*
6523 	 * Unpopulated zones continue using the boot pagesets.
6524 	 * The numa stats for these pagesets need to be reset.
6525 	 * Otherwise, they will end up skewing the stats of
6526 	 * the nodes these zones are associated with.
6527 	 */
6528 	for_each_possible_cpu(cpu) {
6529 		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6530 		memset(pcp->vm_numa_stat_diff, 0,
6531 		       sizeof(pcp->vm_numa_stat_diff));
6532 	}
6533 #endif
6534 
6535 	for_each_online_pgdat(pgdat)
6536 		pgdat->per_cpu_nodestats =
6537 			alloc_percpu(struct per_cpu_nodestat);
6538 }
6539 
6540 static __meminit void zone_pcp_init(struct zone *zone)
6541 {
6542 	/*
6543 	 * per cpu subsystem is not up at this point. The following code
6544 	 * relies on the ability of the linker to provide the
6545 	 * offset of a (static) per cpu variable into the per cpu area.
6546 	 */
6547 	zone->pageset = &boot_pageset;
6548 	zone->pageset_high = BOOT_PAGESET_HIGH;
6549 	zone->pageset_batch = BOOT_PAGESET_BATCH;
6550 
6551 	if (populated_zone(zone))
6552 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6553 			zone->name, zone->present_pages,
6554 					 zone_batchsize(zone));
6555 }
6556 
6557 void __meminit init_currently_empty_zone(struct zone *zone,
6558 					unsigned long zone_start_pfn,
6559 					unsigned long size)
6560 {
6561 	struct pglist_data *pgdat = zone->zone_pgdat;
6562 	int zone_idx = zone_idx(zone) + 1;
6563 
6564 	if (zone_idx > pgdat->nr_zones)
6565 		pgdat->nr_zones = zone_idx;
6566 
6567 	zone->zone_start_pfn = zone_start_pfn;
6568 
6569 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6570 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6571 			pgdat->node_id,
6572 			(unsigned long)zone_idx(zone),
6573 			zone_start_pfn, (zone_start_pfn + size));
6574 
6575 	zone_init_free_lists(zone);
6576 	zone->initialized = 1;
6577 }
6578 
6579 /**
6580  * get_pfn_range_for_nid - Return the start and end page frames for a node
6581  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6582  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6583  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6584  *
6585  * It returns the start and end page frame of a node based on information
6586  * provided by memblock_set_node(). If called for a node
6587  * with no available memory, a warning is printed and the start and end
6588  * PFNs will be 0.
6589  */
6590 void __init get_pfn_range_for_nid(unsigned int nid,
6591 			unsigned long *start_pfn, unsigned long *end_pfn)
6592 {
6593 	unsigned long this_start_pfn, this_end_pfn;
6594 	int i;
6595 
6596 	*start_pfn = -1UL;
6597 	*end_pfn = 0;
6598 
6599 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6600 		*start_pfn = min(*start_pfn, this_start_pfn);
6601 		*end_pfn = max(*end_pfn, this_end_pfn);
6602 	}
6603 
6604 	if (*start_pfn == -1UL)
6605 		*start_pfn = 0;
6606 }
6607 
6608 /*
6609  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6610  * assumption is made that zones within a node are ordered in monotonic
6611  * increasing memory addresses so that the "highest" populated zone is used
6612  */
6613 static void __init find_usable_zone_for_movable(void)
6614 {
6615 	int zone_index;
6616 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6617 		if (zone_index == ZONE_MOVABLE)
6618 			continue;
6619 
6620 		if (arch_zone_highest_possible_pfn[zone_index] >
6621 				arch_zone_lowest_possible_pfn[zone_index])
6622 			break;
6623 	}
6624 
6625 	VM_BUG_ON(zone_index == -1);
6626 	movable_zone = zone_index;
6627 }
6628 
6629 /*
6630  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6631  * because it is sized independent of architecture. Unlike the other zones,
6632  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6633  * in each node depending on the size of each node and how evenly kernelcore
6634  * is distributed. This helper function adjusts the zone ranges
6635  * provided by the architecture for a given node by using the end of the
6636  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6637  * zones within a node are in order of monotonic increases memory addresses
6638  */
6639 static void __init adjust_zone_range_for_zone_movable(int nid,
6640 					unsigned long zone_type,
6641 					unsigned long node_start_pfn,
6642 					unsigned long node_end_pfn,
6643 					unsigned long *zone_start_pfn,
6644 					unsigned long *zone_end_pfn)
6645 {
6646 	/* Only adjust if ZONE_MOVABLE is on this node */
6647 	if (zone_movable_pfn[nid]) {
6648 		/* Size ZONE_MOVABLE */
6649 		if (zone_type == ZONE_MOVABLE) {
6650 			*zone_start_pfn = zone_movable_pfn[nid];
6651 			*zone_end_pfn = min(node_end_pfn,
6652 				arch_zone_highest_possible_pfn[movable_zone]);
6653 
6654 		/* Adjust for ZONE_MOVABLE starting within this range */
6655 		} else if (!mirrored_kernelcore &&
6656 			*zone_start_pfn < zone_movable_pfn[nid] &&
6657 			*zone_end_pfn > zone_movable_pfn[nid]) {
6658 			*zone_end_pfn = zone_movable_pfn[nid];
6659 
6660 		/* Check if this whole range is within ZONE_MOVABLE */
6661 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6662 			*zone_start_pfn = *zone_end_pfn;
6663 	}
6664 }
6665 
6666 /*
6667  * Return the number of pages a zone spans in a node, including holes
6668  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6669  */
6670 static unsigned long __init zone_spanned_pages_in_node(int nid,
6671 					unsigned long zone_type,
6672 					unsigned long node_start_pfn,
6673 					unsigned long node_end_pfn,
6674 					unsigned long *zone_start_pfn,
6675 					unsigned long *zone_end_pfn)
6676 {
6677 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6678 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6679 	/* When hotadd a new node from cpu_up(), the node should be empty */
6680 	if (!node_start_pfn && !node_end_pfn)
6681 		return 0;
6682 
6683 	/* Get the start and end of the zone */
6684 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6685 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6686 	adjust_zone_range_for_zone_movable(nid, zone_type,
6687 				node_start_pfn, node_end_pfn,
6688 				zone_start_pfn, zone_end_pfn);
6689 
6690 	/* Check that this node has pages within the zone's required range */
6691 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6692 		return 0;
6693 
6694 	/* Move the zone boundaries inside the node if necessary */
6695 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6696 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6697 
6698 	/* Return the spanned pages */
6699 	return *zone_end_pfn - *zone_start_pfn;
6700 }
6701 
6702 /*
6703  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6704  * then all holes in the requested range will be accounted for.
6705  */
6706 unsigned long __init __absent_pages_in_range(int nid,
6707 				unsigned long range_start_pfn,
6708 				unsigned long range_end_pfn)
6709 {
6710 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6711 	unsigned long start_pfn, end_pfn;
6712 	int i;
6713 
6714 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6715 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6716 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6717 		nr_absent -= end_pfn - start_pfn;
6718 	}
6719 	return nr_absent;
6720 }
6721 
6722 /**
6723  * absent_pages_in_range - Return number of page frames in holes within a range
6724  * @start_pfn: The start PFN to start searching for holes
6725  * @end_pfn: The end PFN to stop searching for holes
6726  *
6727  * Return: the number of pages frames in memory holes within a range.
6728  */
6729 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6730 							unsigned long end_pfn)
6731 {
6732 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6733 }
6734 
6735 /* Return the number of page frames in holes in a zone on a node */
6736 static unsigned long __init zone_absent_pages_in_node(int nid,
6737 					unsigned long zone_type,
6738 					unsigned long node_start_pfn,
6739 					unsigned long node_end_pfn)
6740 {
6741 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6742 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6743 	unsigned long zone_start_pfn, zone_end_pfn;
6744 	unsigned long nr_absent;
6745 
6746 	/* When hotadd a new node from cpu_up(), the node should be empty */
6747 	if (!node_start_pfn && !node_end_pfn)
6748 		return 0;
6749 
6750 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6751 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6752 
6753 	adjust_zone_range_for_zone_movable(nid, zone_type,
6754 			node_start_pfn, node_end_pfn,
6755 			&zone_start_pfn, &zone_end_pfn);
6756 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6757 
6758 	/*
6759 	 * ZONE_MOVABLE handling.
6760 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6761 	 * and vice versa.
6762 	 */
6763 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6764 		unsigned long start_pfn, end_pfn;
6765 		struct memblock_region *r;
6766 
6767 		for_each_mem_region(r) {
6768 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6769 					  zone_start_pfn, zone_end_pfn);
6770 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6771 					zone_start_pfn, zone_end_pfn);
6772 
6773 			if (zone_type == ZONE_MOVABLE &&
6774 			    memblock_is_mirror(r))
6775 				nr_absent += end_pfn - start_pfn;
6776 
6777 			if (zone_type == ZONE_NORMAL &&
6778 			    !memblock_is_mirror(r))
6779 				nr_absent += end_pfn - start_pfn;
6780 		}
6781 	}
6782 
6783 	return nr_absent;
6784 }
6785 
6786 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6787 						unsigned long node_start_pfn,
6788 						unsigned long node_end_pfn)
6789 {
6790 	unsigned long realtotalpages = 0, totalpages = 0;
6791 	enum zone_type i;
6792 
6793 	for (i = 0; i < MAX_NR_ZONES; i++) {
6794 		struct zone *zone = pgdat->node_zones + i;
6795 		unsigned long zone_start_pfn, zone_end_pfn;
6796 		unsigned long spanned, absent;
6797 		unsigned long size, real_size;
6798 
6799 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6800 						     node_start_pfn,
6801 						     node_end_pfn,
6802 						     &zone_start_pfn,
6803 						     &zone_end_pfn);
6804 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
6805 						   node_start_pfn,
6806 						   node_end_pfn);
6807 
6808 		size = spanned;
6809 		real_size = size - absent;
6810 
6811 		if (size)
6812 			zone->zone_start_pfn = zone_start_pfn;
6813 		else
6814 			zone->zone_start_pfn = 0;
6815 		zone->spanned_pages = size;
6816 		zone->present_pages = real_size;
6817 
6818 		totalpages += size;
6819 		realtotalpages += real_size;
6820 	}
6821 
6822 	pgdat->node_spanned_pages = totalpages;
6823 	pgdat->node_present_pages = realtotalpages;
6824 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6825 							realtotalpages);
6826 }
6827 
6828 #ifndef CONFIG_SPARSEMEM
6829 /*
6830  * Calculate the size of the zone->blockflags rounded to an unsigned long
6831  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6832  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6833  * round what is now in bits to nearest long in bits, then return it in
6834  * bytes.
6835  */
6836 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6837 {
6838 	unsigned long usemapsize;
6839 
6840 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6841 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6842 	usemapsize = usemapsize >> pageblock_order;
6843 	usemapsize *= NR_PAGEBLOCK_BITS;
6844 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6845 
6846 	return usemapsize / 8;
6847 }
6848 
6849 static void __ref setup_usemap(struct zone *zone)
6850 {
6851 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
6852 					       zone->spanned_pages);
6853 	zone->pageblock_flags = NULL;
6854 	if (usemapsize) {
6855 		zone->pageblock_flags =
6856 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6857 					    zone_to_nid(zone));
6858 		if (!zone->pageblock_flags)
6859 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6860 			      usemapsize, zone->name, zone_to_nid(zone));
6861 	}
6862 }
6863 #else
6864 static inline void setup_usemap(struct zone *zone) {}
6865 #endif /* CONFIG_SPARSEMEM */
6866 
6867 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6868 
6869 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6870 void __init set_pageblock_order(void)
6871 {
6872 	unsigned int order;
6873 
6874 	/* Check that pageblock_nr_pages has not already been setup */
6875 	if (pageblock_order)
6876 		return;
6877 
6878 	if (HPAGE_SHIFT > PAGE_SHIFT)
6879 		order = HUGETLB_PAGE_ORDER;
6880 	else
6881 		order = MAX_ORDER - 1;
6882 
6883 	/*
6884 	 * Assume the largest contiguous order of interest is a huge page.
6885 	 * This value may be variable depending on boot parameters on IA64 and
6886 	 * powerpc.
6887 	 */
6888 	pageblock_order = order;
6889 }
6890 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6891 
6892 /*
6893  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6894  * is unused as pageblock_order is set at compile-time. See
6895  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6896  * the kernel config
6897  */
6898 void __init set_pageblock_order(void)
6899 {
6900 }
6901 
6902 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6903 
6904 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6905 						unsigned long present_pages)
6906 {
6907 	unsigned long pages = spanned_pages;
6908 
6909 	/*
6910 	 * Provide a more accurate estimation if there are holes within
6911 	 * the zone and SPARSEMEM is in use. If there are holes within the
6912 	 * zone, each populated memory region may cost us one or two extra
6913 	 * memmap pages due to alignment because memmap pages for each
6914 	 * populated regions may not be naturally aligned on page boundary.
6915 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6916 	 */
6917 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6918 	    IS_ENABLED(CONFIG_SPARSEMEM))
6919 		pages = present_pages;
6920 
6921 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6922 }
6923 
6924 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6925 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6926 {
6927 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6928 
6929 	spin_lock_init(&ds_queue->split_queue_lock);
6930 	INIT_LIST_HEAD(&ds_queue->split_queue);
6931 	ds_queue->split_queue_len = 0;
6932 }
6933 #else
6934 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6935 #endif
6936 
6937 #ifdef CONFIG_COMPACTION
6938 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6939 {
6940 	init_waitqueue_head(&pgdat->kcompactd_wait);
6941 }
6942 #else
6943 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6944 #endif
6945 
6946 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6947 {
6948 	pgdat_resize_init(pgdat);
6949 
6950 	pgdat_init_split_queue(pgdat);
6951 	pgdat_init_kcompactd(pgdat);
6952 
6953 	init_waitqueue_head(&pgdat->kswapd_wait);
6954 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6955 
6956 	pgdat_page_ext_init(pgdat);
6957 	lruvec_init(&pgdat->__lruvec);
6958 }
6959 
6960 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6961 							unsigned long remaining_pages)
6962 {
6963 	atomic_long_set(&zone->managed_pages, remaining_pages);
6964 	zone_set_nid(zone, nid);
6965 	zone->name = zone_names[idx];
6966 	zone->zone_pgdat = NODE_DATA(nid);
6967 	spin_lock_init(&zone->lock);
6968 	zone_seqlock_init(zone);
6969 	zone_pcp_init(zone);
6970 }
6971 
6972 /*
6973  * Set up the zone data structures
6974  * - init pgdat internals
6975  * - init all zones belonging to this node
6976  *
6977  * NOTE: this function is only called during memory hotplug
6978  */
6979 #ifdef CONFIG_MEMORY_HOTPLUG
6980 void __ref free_area_init_core_hotplug(int nid)
6981 {
6982 	enum zone_type z;
6983 	pg_data_t *pgdat = NODE_DATA(nid);
6984 
6985 	pgdat_init_internals(pgdat);
6986 	for (z = 0; z < MAX_NR_ZONES; z++)
6987 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6988 }
6989 #endif
6990 
6991 /*
6992  * Set up the zone data structures:
6993  *   - mark all pages reserved
6994  *   - mark all memory queues empty
6995  *   - clear the memory bitmaps
6996  *
6997  * NOTE: pgdat should get zeroed by caller.
6998  * NOTE: this function is only called during early init.
6999  */
7000 static void __init free_area_init_core(struct pglist_data *pgdat)
7001 {
7002 	enum zone_type j;
7003 	int nid = pgdat->node_id;
7004 
7005 	pgdat_init_internals(pgdat);
7006 	pgdat->per_cpu_nodestats = &boot_nodestats;
7007 
7008 	for (j = 0; j < MAX_NR_ZONES; j++) {
7009 		struct zone *zone = pgdat->node_zones + j;
7010 		unsigned long size, freesize, memmap_pages;
7011 
7012 		size = zone->spanned_pages;
7013 		freesize = zone->present_pages;
7014 
7015 		/*
7016 		 * Adjust freesize so that it accounts for how much memory
7017 		 * is used by this zone for memmap. This affects the watermark
7018 		 * and per-cpu initialisations
7019 		 */
7020 		memmap_pages = calc_memmap_size(size, freesize);
7021 		if (!is_highmem_idx(j)) {
7022 			if (freesize >= memmap_pages) {
7023 				freesize -= memmap_pages;
7024 				if (memmap_pages)
7025 					printk(KERN_DEBUG
7026 					       "  %s zone: %lu pages used for memmap\n",
7027 					       zone_names[j], memmap_pages);
7028 			} else
7029 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
7030 					zone_names[j], memmap_pages, freesize);
7031 		}
7032 
7033 		/* Account for reserved pages */
7034 		if (j == 0 && freesize > dma_reserve) {
7035 			freesize -= dma_reserve;
7036 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
7037 					zone_names[0], dma_reserve);
7038 		}
7039 
7040 		if (!is_highmem_idx(j))
7041 			nr_kernel_pages += freesize;
7042 		/* Charge for highmem memmap if there are enough kernel pages */
7043 		else if (nr_kernel_pages > memmap_pages * 2)
7044 			nr_kernel_pages -= memmap_pages;
7045 		nr_all_pages += freesize;
7046 
7047 		/*
7048 		 * Set an approximate value for lowmem here, it will be adjusted
7049 		 * when the bootmem allocator frees pages into the buddy system.
7050 		 * And all highmem pages will be managed by the buddy system.
7051 		 */
7052 		zone_init_internals(zone, j, nid, freesize);
7053 
7054 		if (!size)
7055 			continue;
7056 
7057 		set_pageblock_order();
7058 		setup_usemap(zone);
7059 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7060 		memmap_init_zone(zone);
7061 	}
7062 }
7063 
7064 #ifdef CONFIG_FLAT_NODE_MEM_MAP
7065 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7066 {
7067 	unsigned long __maybe_unused start = 0;
7068 	unsigned long __maybe_unused offset = 0;
7069 
7070 	/* Skip empty nodes */
7071 	if (!pgdat->node_spanned_pages)
7072 		return;
7073 
7074 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7075 	offset = pgdat->node_start_pfn - start;
7076 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7077 	if (!pgdat->node_mem_map) {
7078 		unsigned long size, end;
7079 		struct page *map;
7080 
7081 		/*
7082 		 * The zone's endpoints aren't required to be MAX_ORDER
7083 		 * aligned but the node_mem_map endpoints must be in order
7084 		 * for the buddy allocator to function correctly.
7085 		 */
7086 		end = pgdat_end_pfn(pgdat);
7087 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7088 		size =  (end - start) * sizeof(struct page);
7089 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7090 					  pgdat->node_id);
7091 		if (!map)
7092 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7093 			      size, pgdat->node_id);
7094 		pgdat->node_mem_map = map + offset;
7095 	}
7096 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7097 				__func__, pgdat->node_id, (unsigned long)pgdat,
7098 				(unsigned long)pgdat->node_mem_map);
7099 #ifndef CONFIG_NEED_MULTIPLE_NODES
7100 	/*
7101 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7102 	 */
7103 	if (pgdat == NODE_DATA(0)) {
7104 		mem_map = NODE_DATA(0)->node_mem_map;
7105 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7106 			mem_map -= offset;
7107 	}
7108 #endif
7109 }
7110 #else
7111 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7112 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
7113 
7114 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7115 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7116 {
7117 	pgdat->first_deferred_pfn = ULONG_MAX;
7118 }
7119 #else
7120 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7121 #endif
7122 
7123 static void __init free_area_init_node(int nid)
7124 {
7125 	pg_data_t *pgdat = NODE_DATA(nid);
7126 	unsigned long start_pfn = 0;
7127 	unsigned long end_pfn = 0;
7128 
7129 	/* pg_data_t should be reset to zero when it's allocated */
7130 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7131 
7132 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7133 
7134 	pgdat->node_id = nid;
7135 	pgdat->node_start_pfn = start_pfn;
7136 	pgdat->per_cpu_nodestats = NULL;
7137 
7138 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7139 		(u64)start_pfn << PAGE_SHIFT,
7140 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7141 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7142 
7143 	alloc_node_mem_map(pgdat);
7144 	pgdat_set_deferred_range(pgdat);
7145 
7146 	free_area_init_core(pgdat);
7147 }
7148 
7149 void __init free_area_init_memoryless_node(int nid)
7150 {
7151 	free_area_init_node(nid);
7152 }
7153 
7154 #if MAX_NUMNODES > 1
7155 /*
7156  * Figure out the number of possible node ids.
7157  */
7158 void __init setup_nr_node_ids(void)
7159 {
7160 	unsigned int highest;
7161 
7162 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7163 	nr_node_ids = highest + 1;
7164 }
7165 #endif
7166 
7167 /**
7168  * node_map_pfn_alignment - determine the maximum internode alignment
7169  *
7170  * This function should be called after node map is populated and sorted.
7171  * It calculates the maximum power of two alignment which can distinguish
7172  * all the nodes.
7173  *
7174  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7175  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7176  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7177  * shifted, 1GiB is enough and this function will indicate so.
7178  *
7179  * This is used to test whether pfn -> nid mapping of the chosen memory
7180  * model has fine enough granularity to avoid incorrect mapping for the
7181  * populated node map.
7182  *
7183  * Return: the determined alignment in pfn's.  0 if there is no alignment
7184  * requirement (single node).
7185  */
7186 unsigned long __init node_map_pfn_alignment(void)
7187 {
7188 	unsigned long accl_mask = 0, last_end = 0;
7189 	unsigned long start, end, mask;
7190 	int last_nid = NUMA_NO_NODE;
7191 	int i, nid;
7192 
7193 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7194 		if (!start || last_nid < 0 || last_nid == nid) {
7195 			last_nid = nid;
7196 			last_end = end;
7197 			continue;
7198 		}
7199 
7200 		/*
7201 		 * Start with a mask granular enough to pin-point to the
7202 		 * start pfn and tick off bits one-by-one until it becomes
7203 		 * too coarse to separate the current node from the last.
7204 		 */
7205 		mask = ~((1 << __ffs(start)) - 1);
7206 		while (mask && last_end <= (start & (mask << 1)))
7207 			mask <<= 1;
7208 
7209 		/* accumulate all internode masks */
7210 		accl_mask |= mask;
7211 	}
7212 
7213 	/* convert mask to number of pages */
7214 	return ~accl_mask + 1;
7215 }
7216 
7217 /**
7218  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7219  *
7220  * Return: the minimum PFN based on information provided via
7221  * memblock_set_node().
7222  */
7223 unsigned long __init find_min_pfn_with_active_regions(void)
7224 {
7225 	return PHYS_PFN(memblock_start_of_DRAM());
7226 }
7227 
7228 /*
7229  * early_calculate_totalpages()
7230  * Sum pages in active regions for movable zone.
7231  * Populate N_MEMORY for calculating usable_nodes.
7232  */
7233 static unsigned long __init early_calculate_totalpages(void)
7234 {
7235 	unsigned long totalpages = 0;
7236 	unsigned long start_pfn, end_pfn;
7237 	int i, nid;
7238 
7239 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7240 		unsigned long pages = end_pfn - start_pfn;
7241 
7242 		totalpages += pages;
7243 		if (pages)
7244 			node_set_state(nid, N_MEMORY);
7245 	}
7246 	return totalpages;
7247 }
7248 
7249 /*
7250  * Find the PFN the Movable zone begins in each node. Kernel memory
7251  * is spread evenly between nodes as long as the nodes have enough
7252  * memory. When they don't, some nodes will have more kernelcore than
7253  * others
7254  */
7255 static void __init find_zone_movable_pfns_for_nodes(void)
7256 {
7257 	int i, nid;
7258 	unsigned long usable_startpfn;
7259 	unsigned long kernelcore_node, kernelcore_remaining;
7260 	/* save the state before borrow the nodemask */
7261 	nodemask_t saved_node_state = node_states[N_MEMORY];
7262 	unsigned long totalpages = early_calculate_totalpages();
7263 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7264 	struct memblock_region *r;
7265 
7266 	/* Need to find movable_zone earlier when movable_node is specified. */
7267 	find_usable_zone_for_movable();
7268 
7269 	/*
7270 	 * If movable_node is specified, ignore kernelcore and movablecore
7271 	 * options.
7272 	 */
7273 	if (movable_node_is_enabled()) {
7274 		for_each_mem_region(r) {
7275 			if (!memblock_is_hotpluggable(r))
7276 				continue;
7277 
7278 			nid = memblock_get_region_node(r);
7279 
7280 			usable_startpfn = PFN_DOWN(r->base);
7281 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7282 				min(usable_startpfn, zone_movable_pfn[nid]) :
7283 				usable_startpfn;
7284 		}
7285 
7286 		goto out2;
7287 	}
7288 
7289 	/*
7290 	 * If kernelcore=mirror is specified, ignore movablecore option
7291 	 */
7292 	if (mirrored_kernelcore) {
7293 		bool mem_below_4gb_not_mirrored = false;
7294 
7295 		for_each_mem_region(r) {
7296 			if (memblock_is_mirror(r))
7297 				continue;
7298 
7299 			nid = memblock_get_region_node(r);
7300 
7301 			usable_startpfn = memblock_region_memory_base_pfn(r);
7302 
7303 			if (usable_startpfn < 0x100000) {
7304 				mem_below_4gb_not_mirrored = true;
7305 				continue;
7306 			}
7307 
7308 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7309 				min(usable_startpfn, zone_movable_pfn[nid]) :
7310 				usable_startpfn;
7311 		}
7312 
7313 		if (mem_below_4gb_not_mirrored)
7314 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7315 
7316 		goto out2;
7317 	}
7318 
7319 	/*
7320 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7321 	 * amount of necessary memory.
7322 	 */
7323 	if (required_kernelcore_percent)
7324 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7325 				       10000UL;
7326 	if (required_movablecore_percent)
7327 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7328 					10000UL;
7329 
7330 	/*
7331 	 * If movablecore= was specified, calculate what size of
7332 	 * kernelcore that corresponds so that memory usable for
7333 	 * any allocation type is evenly spread. If both kernelcore
7334 	 * and movablecore are specified, then the value of kernelcore
7335 	 * will be used for required_kernelcore if it's greater than
7336 	 * what movablecore would have allowed.
7337 	 */
7338 	if (required_movablecore) {
7339 		unsigned long corepages;
7340 
7341 		/*
7342 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7343 		 * was requested by the user
7344 		 */
7345 		required_movablecore =
7346 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7347 		required_movablecore = min(totalpages, required_movablecore);
7348 		corepages = totalpages - required_movablecore;
7349 
7350 		required_kernelcore = max(required_kernelcore, corepages);
7351 	}
7352 
7353 	/*
7354 	 * If kernelcore was not specified or kernelcore size is larger
7355 	 * than totalpages, there is no ZONE_MOVABLE.
7356 	 */
7357 	if (!required_kernelcore || required_kernelcore >= totalpages)
7358 		goto out;
7359 
7360 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7361 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7362 
7363 restart:
7364 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7365 	kernelcore_node = required_kernelcore / usable_nodes;
7366 	for_each_node_state(nid, N_MEMORY) {
7367 		unsigned long start_pfn, end_pfn;
7368 
7369 		/*
7370 		 * Recalculate kernelcore_node if the division per node
7371 		 * now exceeds what is necessary to satisfy the requested
7372 		 * amount of memory for the kernel
7373 		 */
7374 		if (required_kernelcore < kernelcore_node)
7375 			kernelcore_node = required_kernelcore / usable_nodes;
7376 
7377 		/*
7378 		 * As the map is walked, we track how much memory is usable
7379 		 * by the kernel using kernelcore_remaining. When it is
7380 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7381 		 */
7382 		kernelcore_remaining = kernelcore_node;
7383 
7384 		/* Go through each range of PFNs within this node */
7385 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7386 			unsigned long size_pages;
7387 
7388 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7389 			if (start_pfn >= end_pfn)
7390 				continue;
7391 
7392 			/* Account for what is only usable for kernelcore */
7393 			if (start_pfn < usable_startpfn) {
7394 				unsigned long kernel_pages;
7395 				kernel_pages = min(end_pfn, usable_startpfn)
7396 								- start_pfn;
7397 
7398 				kernelcore_remaining -= min(kernel_pages,
7399 							kernelcore_remaining);
7400 				required_kernelcore -= min(kernel_pages,
7401 							required_kernelcore);
7402 
7403 				/* Continue if range is now fully accounted */
7404 				if (end_pfn <= usable_startpfn) {
7405 
7406 					/*
7407 					 * Push zone_movable_pfn to the end so
7408 					 * that if we have to rebalance
7409 					 * kernelcore across nodes, we will
7410 					 * not double account here
7411 					 */
7412 					zone_movable_pfn[nid] = end_pfn;
7413 					continue;
7414 				}
7415 				start_pfn = usable_startpfn;
7416 			}
7417 
7418 			/*
7419 			 * The usable PFN range for ZONE_MOVABLE is from
7420 			 * start_pfn->end_pfn. Calculate size_pages as the
7421 			 * number of pages used as kernelcore
7422 			 */
7423 			size_pages = end_pfn - start_pfn;
7424 			if (size_pages > kernelcore_remaining)
7425 				size_pages = kernelcore_remaining;
7426 			zone_movable_pfn[nid] = start_pfn + size_pages;
7427 
7428 			/*
7429 			 * Some kernelcore has been met, update counts and
7430 			 * break if the kernelcore for this node has been
7431 			 * satisfied
7432 			 */
7433 			required_kernelcore -= min(required_kernelcore,
7434 								size_pages);
7435 			kernelcore_remaining -= size_pages;
7436 			if (!kernelcore_remaining)
7437 				break;
7438 		}
7439 	}
7440 
7441 	/*
7442 	 * If there is still required_kernelcore, we do another pass with one
7443 	 * less node in the count. This will push zone_movable_pfn[nid] further
7444 	 * along on the nodes that still have memory until kernelcore is
7445 	 * satisfied
7446 	 */
7447 	usable_nodes--;
7448 	if (usable_nodes && required_kernelcore > usable_nodes)
7449 		goto restart;
7450 
7451 out2:
7452 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7453 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7454 		zone_movable_pfn[nid] =
7455 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7456 
7457 out:
7458 	/* restore the node_state */
7459 	node_states[N_MEMORY] = saved_node_state;
7460 }
7461 
7462 /* Any regular or high memory on that node ? */
7463 static void check_for_memory(pg_data_t *pgdat, int nid)
7464 {
7465 	enum zone_type zone_type;
7466 
7467 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7468 		struct zone *zone = &pgdat->node_zones[zone_type];
7469 		if (populated_zone(zone)) {
7470 			if (IS_ENABLED(CONFIG_HIGHMEM))
7471 				node_set_state(nid, N_HIGH_MEMORY);
7472 			if (zone_type <= ZONE_NORMAL)
7473 				node_set_state(nid, N_NORMAL_MEMORY);
7474 			break;
7475 		}
7476 	}
7477 }
7478 
7479 /*
7480  * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7481  * such cases we allow max_zone_pfn sorted in the descending order
7482  */
7483 bool __weak arch_has_descending_max_zone_pfns(void)
7484 {
7485 	return false;
7486 }
7487 
7488 /**
7489  * free_area_init - Initialise all pg_data_t and zone data
7490  * @max_zone_pfn: an array of max PFNs for each zone
7491  *
7492  * This will call free_area_init_node() for each active node in the system.
7493  * Using the page ranges provided by memblock_set_node(), the size of each
7494  * zone in each node and their holes is calculated. If the maximum PFN
7495  * between two adjacent zones match, it is assumed that the zone is empty.
7496  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7497  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7498  * starts where the previous one ended. For example, ZONE_DMA32 starts
7499  * at arch_max_dma_pfn.
7500  */
7501 void __init free_area_init(unsigned long *max_zone_pfn)
7502 {
7503 	unsigned long start_pfn, end_pfn;
7504 	int i, nid, zone;
7505 	bool descending;
7506 
7507 	/* Record where the zone boundaries are */
7508 	memset(arch_zone_lowest_possible_pfn, 0,
7509 				sizeof(arch_zone_lowest_possible_pfn));
7510 	memset(arch_zone_highest_possible_pfn, 0,
7511 				sizeof(arch_zone_highest_possible_pfn));
7512 
7513 	start_pfn = find_min_pfn_with_active_regions();
7514 	descending = arch_has_descending_max_zone_pfns();
7515 
7516 	for (i = 0; i < MAX_NR_ZONES; i++) {
7517 		if (descending)
7518 			zone = MAX_NR_ZONES - i - 1;
7519 		else
7520 			zone = i;
7521 
7522 		if (zone == ZONE_MOVABLE)
7523 			continue;
7524 
7525 		end_pfn = max(max_zone_pfn[zone], start_pfn);
7526 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7527 		arch_zone_highest_possible_pfn[zone] = end_pfn;
7528 
7529 		start_pfn = end_pfn;
7530 	}
7531 
7532 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7533 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7534 	find_zone_movable_pfns_for_nodes();
7535 
7536 	/* Print out the zone ranges */
7537 	pr_info("Zone ranges:\n");
7538 	for (i = 0; i < MAX_NR_ZONES; i++) {
7539 		if (i == ZONE_MOVABLE)
7540 			continue;
7541 		pr_info("  %-8s ", zone_names[i]);
7542 		if (arch_zone_lowest_possible_pfn[i] ==
7543 				arch_zone_highest_possible_pfn[i])
7544 			pr_cont("empty\n");
7545 		else
7546 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7547 				(u64)arch_zone_lowest_possible_pfn[i]
7548 					<< PAGE_SHIFT,
7549 				((u64)arch_zone_highest_possible_pfn[i]
7550 					<< PAGE_SHIFT) - 1);
7551 	}
7552 
7553 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7554 	pr_info("Movable zone start for each node\n");
7555 	for (i = 0; i < MAX_NUMNODES; i++) {
7556 		if (zone_movable_pfn[i])
7557 			pr_info("  Node %d: %#018Lx\n", i,
7558 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7559 	}
7560 
7561 	/*
7562 	 * Print out the early node map, and initialize the
7563 	 * subsection-map relative to active online memory ranges to
7564 	 * enable future "sub-section" extensions of the memory map.
7565 	 */
7566 	pr_info("Early memory node ranges\n");
7567 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7568 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7569 			(u64)start_pfn << PAGE_SHIFT,
7570 			((u64)end_pfn << PAGE_SHIFT) - 1);
7571 		subsection_map_init(start_pfn, end_pfn - start_pfn);
7572 	}
7573 
7574 	/* Initialise every node */
7575 	mminit_verify_pageflags_layout();
7576 	setup_nr_node_ids();
7577 	for_each_online_node(nid) {
7578 		pg_data_t *pgdat = NODE_DATA(nid);
7579 		free_area_init_node(nid);
7580 
7581 		/* Any memory on that node */
7582 		if (pgdat->node_present_pages)
7583 			node_set_state(nid, N_MEMORY);
7584 		check_for_memory(pgdat, nid);
7585 	}
7586 }
7587 
7588 static int __init cmdline_parse_core(char *p, unsigned long *core,
7589 				     unsigned long *percent)
7590 {
7591 	unsigned long long coremem;
7592 	char *endptr;
7593 
7594 	if (!p)
7595 		return -EINVAL;
7596 
7597 	/* Value may be a percentage of total memory, otherwise bytes */
7598 	coremem = simple_strtoull(p, &endptr, 0);
7599 	if (*endptr == '%') {
7600 		/* Paranoid check for percent values greater than 100 */
7601 		WARN_ON(coremem > 100);
7602 
7603 		*percent = coremem;
7604 	} else {
7605 		coremem = memparse(p, &p);
7606 		/* Paranoid check that UL is enough for the coremem value */
7607 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7608 
7609 		*core = coremem >> PAGE_SHIFT;
7610 		*percent = 0UL;
7611 	}
7612 	return 0;
7613 }
7614 
7615 /*
7616  * kernelcore=size sets the amount of memory for use for allocations that
7617  * cannot be reclaimed or migrated.
7618  */
7619 static int __init cmdline_parse_kernelcore(char *p)
7620 {
7621 	/* parse kernelcore=mirror */
7622 	if (parse_option_str(p, "mirror")) {
7623 		mirrored_kernelcore = true;
7624 		return 0;
7625 	}
7626 
7627 	return cmdline_parse_core(p, &required_kernelcore,
7628 				  &required_kernelcore_percent);
7629 }
7630 
7631 /*
7632  * movablecore=size sets the amount of memory for use for allocations that
7633  * can be reclaimed or migrated.
7634  */
7635 static int __init cmdline_parse_movablecore(char *p)
7636 {
7637 	return cmdline_parse_core(p, &required_movablecore,
7638 				  &required_movablecore_percent);
7639 }
7640 
7641 early_param("kernelcore", cmdline_parse_kernelcore);
7642 early_param("movablecore", cmdline_parse_movablecore);
7643 
7644 void adjust_managed_page_count(struct page *page, long count)
7645 {
7646 	atomic_long_add(count, &page_zone(page)->managed_pages);
7647 	totalram_pages_add(count);
7648 #ifdef CONFIG_HIGHMEM
7649 	if (PageHighMem(page))
7650 		totalhigh_pages_add(count);
7651 #endif
7652 }
7653 EXPORT_SYMBOL(adjust_managed_page_count);
7654 
7655 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7656 {
7657 	void *pos;
7658 	unsigned long pages = 0;
7659 
7660 	start = (void *)PAGE_ALIGN((unsigned long)start);
7661 	end = (void *)((unsigned long)end & PAGE_MASK);
7662 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7663 		struct page *page = virt_to_page(pos);
7664 		void *direct_map_addr;
7665 
7666 		/*
7667 		 * 'direct_map_addr' might be different from 'pos'
7668 		 * because some architectures' virt_to_page()
7669 		 * work with aliases.  Getting the direct map
7670 		 * address ensures that we get a _writeable_
7671 		 * alias for the memset().
7672 		 */
7673 		direct_map_addr = page_address(page);
7674 		/*
7675 		 * Perform a kasan-unchecked memset() since this memory
7676 		 * has not been initialized.
7677 		 */
7678 		direct_map_addr = kasan_reset_tag(direct_map_addr);
7679 		if ((unsigned int)poison <= 0xFF)
7680 			memset(direct_map_addr, poison, PAGE_SIZE);
7681 
7682 		free_reserved_page(page);
7683 	}
7684 
7685 	if (pages && s)
7686 		pr_info("Freeing %s memory: %ldK\n",
7687 			s, pages << (PAGE_SHIFT - 10));
7688 
7689 	return pages;
7690 }
7691 
7692 void __init mem_init_print_info(const char *str)
7693 {
7694 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7695 	unsigned long init_code_size, init_data_size;
7696 
7697 	physpages = get_num_physpages();
7698 	codesize = _etext - _stext;
7699 	datasize = _edata - _sdata;
7700 	rosize = __end_rodata - __start_rodata;
7701 	bss_size = __bss_stop - __bss_start;
7702 	init_data_size = __init_end - __init_begin;
7703 	init_code_size = _einittext - _sinittext;
7704 
7705 	/*
7706 	 * Detect special cases and adjust section sizes accordingly:
7707 	 * 1) .init.* may be embedded into .data sections
7708 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7709 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7710 	 * 3) .rodata.* may be embedded into .text or .data sections.
7711 	 */
7712 #define adj_init_size(start, end, size, pos, adj) \
7713 	do { \
7714 		if (start <= pos && pos < end && size > adj) \
7715 			size -= adj; \
7716 	} while (0)
7717 
7718 	adj_init_size(__init_begin, __init_end, init_data_size,
7719 		     _sinittext, init_code_size);
7720 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7721 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7722 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7723 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7724 
7725 #undef	adj_init_size
7726 
7727 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7728 #ifdef	CONFIG_HIGHMEM
7729 		", %luK highmem"
7730 #endif
7731 		"%s%s)\n",
7732 		nr_free_pages() << (PAGE_SHIFT - 10),
7733 		physpages << (PAGE_SHIFT - 10),
7734 		codesize >> 10, datasize >> 10, rosize >> 10,
7735 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7736 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7737 		totalcma_pages << (PAGE_SHIFT - 10),
7738 #ifdef	CONFIG_HIGHMEM
7739 		totalhigh_pages() << (PAGE_SHIFT - 10),
7740 #endif
7741 		str ? ", " : "", str ? str : "");
7742 }
7743 
7744 /**
7745  * set_dma_reserve - set the specified number of pages reserved in the first zone
7746  * @new_dma_reserve: The number of pages to mark reserved
7747  *
7748  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7749  * In the DMA zone, a significant percentage may be consumed by kernel image
7750  * and other unfreeable allocations which can skew the watermarks badly. This
7751  * function may optionally be used to account for unfreeable pages in the
7752  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7753  * smaller per-cpu batchsize.
7754  */
7755 void __init set_dma_reserve(unsigned long new_dma_reserve)
7756 {
7757 	dma_reserve = new_dma_reserve;
7758 }
7759 
7760 static int page_alloc_cpu_dead(unsigned int cpu)
7761 {
7762 
7763 	lru_add_drain_cpu(cpu);
7764 	drain_pages(cpu);
7765 
7766 	/*
7767 	 * Spill the event counters of the dead processor
7768 	 * into the current processors event counters.
7769 	 * This artificially elevates the count of the current
7770 	 * processor.
7771 	 */
7772 	vm_events_fold_cpu(cpu);
7773 
7774 	/*
7775 	 * Zero the differential counters of the dead processor
7776 	 * so that the vm statistics are consistent.
7777 	 *
7778 	 * This is only okay since the processor is dead and cannot
7779 	 * race with what we are doing.
7780 	 */
7781 	cpu_vm_stats_fold(cpu);
7782 	return 0;
7783 }
7784 
7785 #ifdef CONFIG_NUMA
7786 int hashdist = HASHDIST_DEFAULT;
7787 
7788 static int __init set_hashdist(char *str)
7789 {
7790 	if (!str)
7791 		return 0;
7792 	hashdist = simple_strtoul(str, &str, 0);
7793 	return 1;
7794 }
7795 __setup("hashdist=", set_hashdist);
7796 #endif
7797 
7798 void __init page_alloc_init(void)
7799 {
7800 	int ret;
7801 
7802 #ifdef CONFIG_NUMA
7803 	if (num_node_state(N_MEMORY) == 1)
7804 		hashdist = 0;
7805 #endif
7806 
7807 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7808 					"mm/page_alloc:dead", NULL,
7809 					page_alloc_cpu_dead);
7810 	WARN_ON(ret < 0);
7811 }
7812 
7813 /*
7814  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7815  *	or min_free_kbytes changes.
7816  */
7817 static void calculate_totalreserve_pages(void)
7818 {
7819 	struct pglist_data *pgdat;
7820 	unsigned long reserve_pages = 0;
7821 	enum zone_type i, j;
7822 
7823 	for_each_online_pgdat(pgdat) {
7824 
7825 		pgdat->totalreserve_pages = 0;
7826 
7827 		for (i = 0; i < MAX_NR_ZONES; i++) {
7828 			struct zone *zone = pgdat->node_zones + i;
7829 			long max = 0;
7830 			unsigned long managed_pages = zone_managed_pages(zone);
7831 
7832 			/* Find valid and maximum lowmem_reserve in the zone */
7833 			for (j = i; j < MAX_NR_ZONES; j++) {
7834 				if (zone->lowmem_reserve[j] > max)
7835 					max = zone->lowmem_reserve[j];
7836 			}
7837 
7838 			/* we treat the high watermark as reserved pages. */
7839 			max += high_wmark_pages(zone);
7840 
7841 			if (max > managed_pages)
7842 				max = managed_pages;
7843 
7844 			pgdat->totalreserve_pages += max;
7845 
7846 			reserve_pages += max;
7847 		}
7848 	}
7849 	totalreserve_pages = reserve_pages;
7850 }
7851 
7852 /*
7853  * setup_per_zone_lowmem_reserve - called whenever
7854  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7855  *	has a correct pages reserved value, so an adequate number of
7856  *	pages are left in the zone after a successful __alloc_pages().
7857  */
7858 static void setup_per_zone_lowmem_reserve(void)
7859 {
7860 	struct pglist_data *pgdat;
7861 	enum zone_type i, j;
7862 
7863 	for_each_online_pgdat(pgdat) {
7864 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
7865 			struct zone *zone = &pgdat->node_zones[i];
7866 			int ratio = sysctl_lowmem_reserve_ratio[i];
7867 			bool clear = !ratio || !zone_managed_pages(zone);
7868 			unsigned long managed_pages = 0;
7869 
7870 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
7871 				if (clear) {
7872 					zone->lowmem_reserve[j] = 0;
7873 				} else {
7874 					struct zone *upper_zone = &pgdat->node_zones[j];
7875 
7876 					managed_pages += zone_managed_pages(upper_zone);
7877 					zone->lowmem_reserve[j] = managed_pages / ratio;
7878 				}
7879 			}
7880 		}
7881 	}
7882 
7883 	/* update totalreserve_pages */
7884 	calculate_totalreserve_pages();
7885 }
7886 
7887 static void __setup_per_zone_wmarks(void)
7888 {
7889 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7890 	unsigned long lowmem_pages = 0;
7891 	struct zone *zone;
7892 	unsigned long flags;
7893 
7894 	/* Calculate total number of !ZONE_HIGHMEM pages */
7895 	for_each_zone(zone) {
7896 		if (!is_highmem(zone))
7897 			lowmem_pages += zone_managed_pages(zone);
7898 	}
7899 
7900 	for_each_zone(zone) {
7901 		u64 tmp;
7902 
7903 		spin_lock_irqsave(&zone->lock, flags);
7904 		tmp = (u64)pages_min * zone_managed_pages(zone);
7905 		do_div(tmp, lowmem_pages);
7906 		if (is_highmem(zone)) {
7907 			/*
7908 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7909 			 * need highmem pages, so cap pages_min to a small
7910 			 * value here.
7911 			 *
7912 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7913 			 * deltas control async page reclaim, and so should
7914 			 * not be capped for highmem.
7915 			 */
7916 			unsigned long min_pages;
7917 
7918 			min_pages = zone_managed_pages(zone) / 1024;
7919 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7920 			zone->_watermark[WMARK_MIN] = min_pages;
7921 		} else {
7922 			/*
7923 			 * If it's a lowmem zone, reserve a number of pages
7924 			 * proportionate to the zone's size.
7925 			 */
7926 			zone->_watermark[WMARK_MIN] = tmp;
7927 		}
7928 
7929 		/*
7930 		 * Set the kswapd watermarks distance according to the
7931 		 * scale factor in proportion to available memory, but
7932 		 * ensure a minimum size on small systems.
7933 		 */
7934 		tmp = max_t(u64, tmp >> 2,
7935 			    mult_frac(zone_managed_pages(zone),
7936 				      watermark_scale_factor, 10000));
7937 
7938 		zone->watermark_boost = 0;
7939 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7940 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7941 
7942 		spin_unlock_irqrestore(&zone->lock, flags);
7943 	}
7944 
7945 	/* update totalreserve_pages */
7946 	calculate_totalreserve_pages();
7947 }
7948 
7949 /**
7950  * setup_per_zone_wmarks - called when min_free_kbytes changes
7951  * or when memory is hot-{added|removed}
7952  *
7953  * Ensures that the watermark[min,low,high] values for each zone are set
7954  * correctly with respect to min_free_kbytes.
7955  */
7956 void setup_per_zone_wmarks(void)
7957 {
7958 	static DEFINE_SPINLOCK(lock);
7959 
7960 	spin_lock(&lock);
7961 	__setup_per_zone_wmarks();
7962 	spin_unlock(&lock);
7963 }
7964 
7965 /*
7966  * Initialise min_free_kbytes.
7967  *
7968  * For small machines we want it small (128k min).  For large machines
7969  * we want it large (256MB max).  But it is not linear, because network
7970  * bandwidth does not increase linearly with machine size.  We use
7971  *
7972  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7973  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7974  *
7975  * which yields
7976  *
7977  * 16MB:	512k
7978  * 32MB:	724k
7979  * 64MB:	1024k
7980  * 128MB:	1448k
7981  * 256MB:	2048k
7982  * 512MB:	2896k
7983  * 1024MB:	4096k
7984  * 2048MB:	5792k
7985  * 4096MB:	8192k
7986  * 8192MB:	11584k
7987  * 16384MB:	16384k
7988  */
7989 int __meminit init_per_zone_wmark_min(void)
7990 {
7991 	unsigned long lowmem_kbytes;
7992 	int new_min_free_kbytes;
7993 
7994 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7995 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7996 
7997 	if (new_min_free_kbytes > user_min_free_kbytes) {
7998 		min_free_kbytes = new_min_free_kbytes;
7999 		if (min_free_kbytes < 128)
8000 			min_free_kbytes = 128;
8001 		if (min_free_kbytes > 262144)
8002 			min_free_kbytes = 262144;
8003 	} else {
8004 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8005 				new_min_free_kbytes, user_min_free_kbytes);
8006 	}
8007 	setup_per_zone_wmarks();
8008 	refresh_zone_stat_thresholds();
8009 	setup_per_zone_lowmem_reserve();
8010 
8011 #ifdef CONFIG_NUMA
8012 	setup_min_unmapped_ratio();
8013 	setup_min_slab_ratio();
8014 #endif
8015 
8016 	khugepaged_min_free_kbytes_update();
8017 
8018 	return 0;
8019 }
8020 postcore_initcall(init_per_zone_wmark_min)
8021 
8022 /*
8023  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8024  *	that we can call two helper functions whenever min_free_kbytes
8025  *	changes.
8026  */
8027 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8028 		void *buffer, size_t *length, loff_t *ppos)
8029 {
8030 	int rc;
8031 
8032 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8033 	if (rc)
8034 		return rc;
8035 
8036 	if (write) {
8037 		user_min_free_kbytes = min_free_kbytes;
8038 		setup_per_zone_wmarks();
8039 	}
8040 	return 0;
8041 }
8042 
8043 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8044 		void *buffer, size_t *length, loff_t *ppos)
8045 {
8046 	int rc;
8047 
8048 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8049 	if (rc)
8050 		return rc;
8051 
8052 	if (write)
8053 		setup_per_zone_wmarks();
8054 
8055 	return 0;
8056 }
8057 
8058 #ifdef CONFIG_NUMA
8059 static void setup_min_unmapped_ratio(void)
8060 {
8061 	pg_data_t *pgdat;
8062 	struct zone *zone;
8063 
8064 	for_each_online_pgdat(pgdat)
8065 		pgdat->min_unmapped_pages = 0;
8066 
8067 	for_each_zone(zone)
8068 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8069 						         sysctl_min_unmapped_ratio) / 100;
8070 }
8071 
8072 
8073 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8074 		void *buffer, size_t *length, loff_t *ppos)
8075 {
8076 	int rc;
8077 
8078 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8079 	if (rc)
8080 		return rc;
8081 
8082 	setup_min_unmapped_ratio();
8083 
8084 	return 0;
8085 }
8086 
8087 static void setup_min_slab_ratio(void)
8088 {
8089 	pg_data_t *pgdat;
8090 	struct zone *zone;
8091 
8092 	for_each_online_pgdat(pgdat)
8093 		pgdat->min_slab_pages = 0;
8094 
8095 	for_each_zone(zone)
8096 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8097 						     sysctl_min_slab_ratio) / 100;
8098 }
8099 
8100 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8101 		void *buffer, size_t *length, loff_t *ppos)
8102 {
8103 	int rc;
8104 
8105 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8106 	if (rc)
8107 		return rc;
8108 
8109 	setup_min_slab_ratio();
8110 
8111 	return 0;
8112 }
8113 #endif
8114 
8115 /*
8116  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8117  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8118  *	whenever sysctl_lowmem_reserve_ratio changes.
8119  *
8120  * The reserve ratio obviously has absolutely no relation with the
8121  * minimum watermarks. The lowmem reserve ratio can only make sense
8122  * if in function of the boot time zone sizes.
8123  */
8124 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8125 		void *buffer, size_t *length, loff_t *ppos)
8126 {
8127 	int i;
8128 
8129 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8130 
8131 	for (i = 0; i < MAX_NR_ZONES; i++) {
8132 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8133 			sysctl_lowmem_reserve_ratio[i] = 0;
8134 	}
8135 
8136 	setup_per_zone_lowmem_reserve();
8137 	return 0;
8138 }
8139 
8140 /*
8141  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8142  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8143  * pagelist can have before it gets flushed back to buddy allocator.
8144  */
8145 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8146 		void *buffer, size_t *length, loff_t *ppos)
8147 {
8148 	struct zone *zone;
8149 	int old_percpu_pagelist_fraction;
8150 	int ret;
8151 
8152 	mutex_lock(&pcp_batch_high_lock);
8153 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8154 
8155 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8156 	if (!write || ret < 0)
8157 		goto out;
8158 
8159 	/* Sanity checking to avoid pcp imbalance */
8160 	if (percpu_pagelist_fraction &&
8161 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8162 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8163 		ret = -EINVAL;
8164 		goto out;
8165 	}
8166 
8167 	/* No change? */
8168 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8169 		goto out;
8170 
8171 	for_each_populated_zone(zone)
8172 		zone_set_pageset_high_and_batch(zone);
8173 out:
8174 	mutex_unlock(&pcp_batch_high_lock);
8175 	return ret;
8176 }
8177 
8178 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8179 /*
8180  * Returns the number of pages that arch has reserved but
8181  * is not known to alloc_large_system_hash().
8182  */
8183 static unsigned long __init arch_reserved_kernel_pages(void)
8184 {
8185 	return 0;
8186 }
8187 #endif
8188 
8189 /*
8190  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8191  * machines. As memory size is increased the scale is also increased but at
8192  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8193  * quadruples the scale is increased by one, which means the size of hash table
8194  * only doubles, instead of quadrupling as well.
8195  * Because 32-bit systems cannot have large physical memory, where this scaling
8196  * makes sense, it is disabled on such platforms.
8197  */
8198 #if __BITS_PER_LONG > 32
8199 #define ADAPT_SCALE_BASE	(64ul << 30)
8200 #define ADAPT_SCALE_SHIFT	2
8201 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8202 #endif
8203 
8204 /*
8205  * allocate a large system hash table from bootmem
8206  * - it is assumed that the hash table must contain an exact power-of-2
8207  *   quantity of entries
8208  * - limit is the number of hash buckets, not the total allocation size
8209  */
8210 void *__init alloc_large_system_hash(const char *tablename,
8211 				     unsigned long bucketsize,
8212 				     unsigned long numentries,
8213 				     int scale,
8214 				     int flags,
8215 				     unsigned int *_hash_shift,
8216 				     unsigned int *_hash_mask,
8217 				     unsigned long low_limit,
8218 				     unsigned long high_limit)
8219 {
8220 	unsigned long long max = high_limit;
8221 	unsigned long log2qty, size;
8222 	void *table = NULL;
8223 	gfp_t gfp_flags;
8224 	bool virt;
8225 
8226 	/* allow the kernel cmdline to have a say */
8227 	if (!numentries) {
8228 		/* round applicable memory size up to nearest megabyte */
8229 		numentries = nr_kernel_pages;
8230 		numentries -= arch_reserved_kernel_pages();
8231 
8232 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8233 		if (PAGE_SHIFT < 20)
8234 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8235 
8236 #if __BITS_PER_LONG > 32
8237 		if (!high_limit) {
8238 			unsigned long adapt;
8239 
8240 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8241 			     adapt <<= ADAPT_SCALE_SHIFT)
8242 				scale++;
8243 		}
8244 #endif
8245 
8246 		/* limit to 1 bucket per 2^scale bytes of low memory */
8247 		if (scale > PAGE_SHIFT)
8248 			numentries >>= (scale - PAGE_SHIFT);
8249 		else
8250 			numentries <<= (PAGE_SHIFT - scale);
8251 
8252 		/* Make sure we've got at least a 0-order allocation.. */
8253 		if (unlikely(flags & HASH_SMALL)) {
8254 			/* Makes no sense without HASH_EARLY */
8255 			WARN_ON(!(flags & HASH_EARLY));
8256 			if (!(numentries >> *_hash_shift)) {
8257 				numentries = 1UL << *_hash_shift;
8258 				BUG_ON(!numentries);
8259 			}
8260 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8261 			numentries = PAGE_SIZE / bucketsize;
8262 	}
8263 	numentries = roundup_pow_of_two(numentries);
8264 
8265 	/* limit allocation size to 1/16 total memory by default */
8266 	if (max == 0) {
8267 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8268 		do_div(max, bucketsize);
8269 	}
8270 	max = min(max, 0x80000000ULL);
8271 
8272 	if (numentries < low_limit)
8273 		numentries = low_limit;
8274 	if (numentries > max)
8275 		numentries = max;
8276 
8277 	log2qty = ilog2(numentries);
8278 
8279 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8280 	do {
8281 		virt = false;
8282 		size = bucketsize << log2qty;
8283 		if (flags & HASH_EARLY) {
8284 			if (flags & HASH_ZERO)
8285 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8286 			else
8287 				table = memblock_alloc_raw(size,
8288 							   SMP_CACHE_BYTES);
8289 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8290 			table = __vmalloc(size, gfp_flags);
8291 			virt = true;
8292 		} else {
8293 			/*
8294 			 * If bucketsize is not a power-of-two, we may free
8295 			 * some pages at the end of hash table which
8296 			 * alloc_pages_exact() automatically does
8297 			 */
8298 			table = alloc_pages_exact(size, gfp_flags);
8299 			kmemleak_alloc(table, size, 1, gfp_flags);
8300 		}
8301 	} while (!table && size > PAGE_SIZE && --log2qty);
8302 
8303 	if (!table)
8304 		panic("Failed to allocate %s hash table\n", tablename);
8305 
8306 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8307 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8308 		virt ? "vmalloc" : "linear");
8309 
8310 	if (_hash_shift)
8311 		*_hash_shift = log2qty;
8312 	if (_hash_mask)
8313 		*_hash_mask = (1 << log2qty) - 1;
8314 
8315 	return table;
8316 }
8317 
8318 /*
8319  * This function checks whether pageblock includes unmovable pages or not.
8320  *
8321  * PageLRU check without isolation or lru_lock could race so that
8322  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8323  * check without lock_page also may miss some movable non-lru pages at
8324  * race condition. So you can't expect this function should be exact.
8325  *
8326  * Returns a page without holding a reference. If the caller wants to
8327  * dereference that page (e.g., dumping), it has to make sure that it
8328  * cannot get removed (e.g., via memory unplug) concurrently.
8329  *
8330  */
8331 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8332 				 int migratetype, int flags)
8333 {
8334 	unsigned long iter = 0;
8335 	unsigned long pfn = page_to_pfn(page);
8336 	unsigned long offset = pfn % pageblock_nr_pages;
8337 
8338 	if (is_migrate_cma_page(page)) {
8339 		/*
8340 		 * CMA allocations (alloc_contig_range) really need to mark
8341 		 * isolate CMA pageblocks even when they are not movable in fact
8342 		 * so consider them movable here.
8343 		 */
8344 		if (is_migrate_cma(migratetype))
8345 			return NULL;
8346 
8347 		return page;
8348 	}
8349 
8350 	for (; iter < pageblock_nr_pages - offset; iter++) {
8351 		if (!pfn_valid_within(pfn + iter))
8352 			continue;
8353 
8354 		page = pfn_to_page(pfn + iter);
8355 
8356 		/*
8357 		 * Both, bootmem allocations and memory holes are marked
8358 		 * PG_reserved and are unmovable. We can even have unmovable
8359 		 * allocations inside ZONE_MOVABLE, for example when
8360 		 * specifying "movablecore".
8361 		 */
8362 		if (PageReserved(page))
8363 			return page;
8364 
8365 		/*
8366 		 * If the zone is movable and we have ruled out all reserved
8367 		 * pages then it should be reasonably safe to assume the rest
8368 		 * is movable.
8369 		 */
8370 		if (zone_idx(zone) == ZONE_MOVABLE)
8371 			continue;
8372 
8373 		/*
8374 		 * Hugepages are not in LRU lists, but they're movable.
8375 		 * THPs are on the LRU, but need to be counted as #small pages.
8376 		 * We need not scan over tail pages because we don't
8377 		 * handle each tail page individually in migration.
8378 		 */
8379 		if (PageHuge(page) || PageTransCompound(page)) {
8380 			struct page *head = compound_head(page);
8381 			unsigned int skip_pages;
8382 
8383 			if (PageHuge(page)) {
8384 				if (!hugepage_migration_supported(page_hstate(head)))
8385 					return page;
8386 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8387 				return page;
8388 			}
8389 
8390 			skip_pages = compound_nr(head) - (page - head);
8391 			iter += skip_pages - 1;
8392 			continue;
8393 		}
8394 
8395 		/*
8396 		 * We can't use page_count without pin a page
8397 		 * because another CPU can free compound page.
8398 		 * This check already skips compound tails of THP
8399 		 * because their page->_refcount is zero at all time.
8400 		 */
8401 		if (!page_ref_count(page)) {
8402 			if (PageBuddy(page))
8403 				iter += (1 << buddy_order(page)) - 1;
8404 			continue;
8405 		}
8406 
8407 		/*
8408 		 * The HWPoisoned page may be not in buddy system, and
8409 		 * page_count() is not 0.
8410 		 */
8411 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8412 			continue;
8413 
8414 		/*
8415 		 * We treat all PageOffline() pages as movable when offlining
8416 		 * to give drivers a chance to decrement their reference count
8417 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8418 		 * can be offlined as there are no direct references anymore.
8419 		 * For actually unmovable PageOffline() where the driver does
8420 		 * not support this, we will fail later when trying to actually
8421 		 * move these pages that still have a reference count > 0.
8422 		 * (false negatives in this function only)
8423 		 */
8424 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8425 			continue;
8426 
8427 		if (__PageMovable(page) || PageLRU(page))
8428 			continue;
8429 
8430 		/*
8431 		 * If there are RECLAIMABLE pages, we need to check
8432 		 * it.  But now, memory offline itself doesn't call
8433 		 * shrink_node_slabs() and it still to be fixed.
8434 		 */
8435 		return page;
8436 	}
8437 	return NULL;
8438 }
8439 
8440 #ifdef CONFIG_CONTIG_ALLOC
8441 static unsigned long pfn_max_align_down(unsigned long pfn)
8442 {
8443 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8444 			     pageblock_nr_pages) - 1);
8445 }
8446 
8447 static unsigned long pfn_max_align_up(unsigned long pfn)
8448 {
8449 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8450 				pageblock_nr_pages));
8451 }
8452 
8453 /* [start, end) must belong to a single zone. */
8454 static int __alloc_contig_migrate_range(struct compact_control *cc,
8455 					unsigned long start, unsigned long end)
8456 {
8457 	/* This function is based on compact_zone() from compaction.c. */
8458 	unsigned int nr_reclaimed;
8459 	unsigned long pfn = start;
8460 	unsigned int tries = 0;
8461 	int ret = 0;
8462 	struct migration_target_control mtc = {
8463 		.nid = zone_to_nid(cc->zone),
8464 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8465 	};
8466 
8467 	migrate_prep();
8468 
8469 	while (pfn < end || !list_empty(&cc->migratepages)) {
8470 		if (fatal_signal_pending(current)) {
8471 			ret = -EINTR;
8472 			break;
8473 		}
8474 
8475 		if (list_empty(&cc->migratepages)) {
8476 			cc->nr_migratepages = 0;
8477 			pfn = isolate_migratepages_range(cc, pfn, end);
8478 			if (!pfn) {
8479 				ret = -EINTR;
8480 				break;
8481 			}
8482 			tries = 0;
8483 		} else if (++tries == 5) {
8484 			ret = ret < 0 ? ret : -EBUSY;
8485 			break;
8486 		}
8487 
8488 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8489 							&cc->migratepages);
8490 		cc->nr_migratepages -= nr_reclaimed;
8491 
8492 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8493 				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8494 	}
8495 	if (ret < 0) {
8496 		putback_movable_pages(&cc->migratepages);
8497 		return ret;
8498 	}
8499 	return 0;
8500 }
8501 
8502 /**
8503  * alloc_contig_range() -- tries to allocate given range of pages
8504  * @start:	start PFN to allocate
8505  * @end:	one-past-the-last PFN to allocate
8506  * @migratetype:	migratetype of the underlaying pageblocks (either
8507  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8508  *			in range must have the same migratetype and it must
8509  *			be either of the two.
8510  * @gfp_mask:	GFP mask to use during compaction
8511  *
8512  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8513  * aligned.  The PFN range must belong to a single zone.
8514  *
8515  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8516  * pageblocks in the range.  Once isolated, the pageblocks should not
8517  * be modified by others.
8518  *
8519  * Return: zero on success or negative error code.  On success all
8520  * pages which PFN is in [start, end) are allocated for the caller and
8521  * need to be freed with free_contig_range().
8522  */
8523 int alloc_contig_range(unsigned long start, unsigned long end,
8524 		       unsigned migratetype, gfp_t gfp_mask)
8525 {
8526 	unsigned long outer_start, outer_end;
8527 	unsigned int order;
8528 	int ret = 0;
8529 
8530 	struct compact_control cc = {
8531 		.nr_migratepages = 0,
8532 		.order = -1,
8533 		.zone = page_zone(pfn_to_page(start)),
8534 		.mode = MIGRATE_SYNC,
8535 		.ignore_skip_hint = true,
8536 		.no_set_skip_hint = true,
8537 		.gfp_mask = current_gfp_context(gfp_mask),
8538 		.alloc_contig = true,
8539 	};
8540 	INIT_LIST_HEAD(&cc.migratepages);
8541 
8542 	/*
8543 	 * What we do here is we mark all pageblocks in range as
8544 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8545 	 * have different sizes, and due to the way page allocator
8546 	 * work, we align the range to biggest of the two pages so
8547 	 * that page allocator won't try to merge buddies from
8548 	 * different pageblocks and change MIGRATE_ISOLATE to some
8549 	 * other migration type.
8550 	 *
8551 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8552 	 * migrate the pages from an unaligned range (ie. pages that
8553 	 * we are interested in).  This will put all the pages in
8554 	 * range back to page allocator as MIGRATE_ISOLATE.
8555 	 *
8556 	 * When this is done, we take the pages in range from page
8557 	 * allocator removing them from the buddy system.  This way
8558 	 * page allocator will never consider using them.
8559 	 *
8560 	 * This lets us mark the pageblocks back as
8561 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8562 	 * aligned range but not in the unaligned, original range are
8563 	 * put back to page allocator so that buddy can use them.
8564 	 */
8565 
8566 	ret = start_isolate_page_range(pfn_max_align_down(start),
8567 				       pfn_max_align_up(end), migratetype, 0);
8568 	if (ret)
8569 		return ret;
8570 
8571 	drain_all_pages(cc.zone);
8572 
8573 	/*
8574 	 * In case of -EBUSY, we'd like to know which page causes problem.
8575 	 * So, just fall through. test_pages_isolated() has a tracepoint
8576 	 * which will report the busy page.
8577 	 *
8578 	 * It is possible that busy pages could become available before
8579 	 * the call to test_pages_isolated, and the range will actually be
8580 	 * allocated.  So, if we fall through be sure to clear ret so that
8581 	 * -EBUSY is not accidentally used or returned to caller.
8582 	 */
8583 	ret = __alloc_contig_migrate_range(&cc, start, end);
8584 	if (ret && ret != -EBUSY)
8585 		goto done;
8586 	ret =0;
8587 
8588 	/*
8589 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8590 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8591 	 * more, all pages in [start, end) are free in page allocator.
8592 	 * What we are going to do is to allocate all pages from
8593 	 * [start, end) (that is remove them from page allocator).
8594 	 *
8595 	 * The only problem is that pages at the beginning and at the
8596 	 * end of interesting range may be not aligned with pages that
8597 	 * page allocator holds, ie. they can be part of higher order
8598 	 * pages.  Because of this, we reserve the bigger range and
8599 	 * once this is done free the pages we are not interested in.
8600 	 *
8601 	 * We don't have to hold zone->lock here because the pages are
8602 	 * isolated thus they won't get removed from buddy.
8603 	 */
8604 
8605 	lru_add_drain_all();
8606 
8607 	order = 0;
8608 	outer_start = start;
8609 	while (!PageBuddy(pfn_to_page(outer_start))) {
8610 		if (++order >= MAX_ORDER) {
8611 			outer_start = start;
8612 			break;
8613 		}
8614 		outer_start &= ~0UL << order;
8615 	}
8616 
8617 	if (outer_start != start) {
8618 		order = buddy_order(pfn_to_page(outer_start));
8619 
8620 		/*
8621 		 * outer_start page could be small order buddy page and
8622 		 * it doesn't include start page. Adjust outer_start
8623 		 * in this case to report failed page properly
8624 		 * on tracepoint in test_pages_isolated()
8625 		 */
8626 		if (outer_start + (1UL << order) <= start)
8627 			outer_start = start;
8628 	}
8629 
8630 	/* Make sure the range is really isolated. */
8631 	if (test_pages_isolated(outer_start, end, 0)) {
8632 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8633 			__func__, outer_start, end);
8634 		ret = -EBUSY;
8635 		goto done;
8636 	}
8637 
8638 	/* Grab isolated pages from freelists. */
8639 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8640 	if (!outer_end) {
8641 		ret = -EBUSY;
8642 		goto done;
8643 	}
8644 
8645 	/* Free head and tail (if any) */
8646 	if (start != outer_start)
8647 		free_contig_range(outer_start, start - outer_start);
8648 	if (end != outer_end)
8649 		free_contig_range(end, outer_end - end);
8650 
8651 done:
8652 	undo_isolate_page_range(pfn_max_align_down(start),
8653 				pfn_max_align_up(end), migratetype);
8654 	return ret;
8655 }
8656 EXPORT_SYMBOL(alloc_contig_range);
8657 
8658 static int __alloc_contig_pages(unsigned long start_pfn,
8659 				unsigned long nr_pages, gfp_t gfp_mask)
8660 {
8661 	unsigned long end_pfn = start_pfn + nr_pages;
8662 
8663 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8664 				  gfp_mask);
8665 }
8666 
8667 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8668 				   unsigned long nr_pages)
8669 {
8670 	unsigned long i, end_pfn = start_pfn + nr_pages;
8671 	struct page *page;
8672 
8673 	for (i = start_pfn; i < end_pfn; i++) {
8674 		page = pfn_to_online_page(i);
8675 		if (!page)
8676 			return false;
8677 
8678 		if (page_zone(page) != z)
8679 			return false;
8680 
8681 		if (PageReserved(page))
8682 			return false;
8683 
8684 		if (page_count(page) > 0)
8685 			return false;
8686 
8687 		if (PageHuge(page))
8688 			return false;
8689 	}
8690 	return true;
8691 }
8692 
8693 static bool zone_spans_last_pfn(const struct zone *zone,
8694 				unsigned long start_pfn, unsigned long nr_pages)
8695 {
8696 	unsigned long last_pfn = start_pfn + nr_pages - 1;
8697 
8698 	return zone_spans_pfn(zone, last_pfn);
8699 }
8700 
8701 /**
8702  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8703  * @nr_pages:	Number of contiguous pages to allocate
8704  * @gfp_mask:	GFP mask to limit search and used during compaction
8705  * @nid:	Target node
8706  * @nodemask:	Mask for other possible nodes
8707  *
8708  * This routine is a wrapper around alloc_contig_range(). It scans over zones
8709  * on an applicable zonelist to find a contiguous pfn range which can then be
8710  * tried for allocation with alloc_contig_range(). This routine is intended
8711  * for allocation requests which can not be fulfilled with the buddy allocator.
8712  *
8713  * The allocated memory is always aligned to a page boundary. If nr_pages is a
8714  * power of two then the alignment is guaranteed to be to the given nr_pages
8715  * (e.g. 1GB request would be aligned to 1GB).
8716  *
8717  * Allocated pages can be freed with free_contig_range() or by manually calling
8718  * __free_page() on each allocated page.
8719  *
8720  * Return: pointer to contiguous pages on success, or NULL if not successful.
8721  */
8722 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8723 				int nid, nodemask_t *nodemask)
8724 {
8725 	unsigned long ret, pfn, flags;
8726 	struct zonelist *zonelist;
8727 	struct zone *zone;
8728 	struct zoneref *z;
8729 
8730 	zonelist = node_zonelist(nid, gfp_mask);
8731 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
8732 					gfp_zone(gfp_mask), nodemask) {
8733 		spin_lock_irqsave(&zone->lock, flags);
8734 
8735 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8736 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8737 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8738 				/*
8739 				 * We release the zone lock here because
8740 				 * alloc_contig_range() will also lock the zone
8741 				 * at some point. If there's an allocation
8742 				 * spinning on this lock, it may win the race
8743 				 * and cause alloc_contig_range() to fail...
8744 				 */
8745 				spin_unlock_irqrestore(&zone->lock, flags);
8746 				ret = __alloc_contig_pages(pfn, nr_pages,
8747 							gfp_mask);
8748 				if (!ret)
8749 					return pfn_to_page(pfn);
8750 				spin_lock_irqsave(&zone->lock, flags);
8751 			}
8752 			pfn += nr_pages;
8753 		}
8754 		spin_unlock_irqrestore(&zone->lock, flags);
8755 	}
8756 	return NULL;
8757 }
8758 #endif /* CONFIG_CONTIG_ALLOC */
8759 
8760 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8761 {
8762 	unsigned int count = 0;
8763 
8764 	for (; nr_pages--; pfn++) {
8765 		struct page *page = pfn_to_page(pfn);
8766 
8767 		count += page_count(page) != 1;
8768 		__free_page(page);
8769 	}
8770 	WARN(count != 0, "%d pages are still in use!\n", count);
8771 }
8772 EXPORT_SYMBOL(free_contig_range);
8773 
8774 /*
8775  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8776  * page high values need to be recalulated.
8777  */
8778 void __meminit zone_pcp_update(struct zone *zone)
8779 {
8780 	mutex_lock(&pcp_batch_high_lock);
8781 	zone_set_pageset_high_and_batch(zone);
8782 	mutex_unlock(&pcp_batch_high_lock);
8783 }
8784 
8785 /*
8786  * Effectively disable pcplists for the zone by setting the high limit to 0
8787  * and draining all cpus. A concurrent page freeing on another CPU that's about
8788  * to put the page on pcplist will either finish before the drain and the page
8789  * will be drained, or observe the new high limit and skip the pcplist.
8790  *
8791  * Must be paired with a call to zone_pcp_enable().
8792  */
8793 void zone_pcp_disable(struct zone *zone)
8794 {
8795 	mutex_lock(&pcp_batch_high_lock);
8796 	__zone_set_pageset_high_and_batch(zone, 0, 1);
8797 	__drain_all_pages(zone, true);
8798 }
8799 
8800 void zone_pcp_enable(struct zone *zone)
8801 {
8802 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
8803 	mutex_unlock(&pcp_batch_high_lock);
8804 }
8805 
8806 void zone_pcp_reset(struct zone *zone)
8807 {
8808 	unsigned long flags;
8809 	int cpu;
8810 	struct per_cpu_pageset *pset;
8811 
8812 	/* avoid races with drain_pages()  */
8813 	local_irq_save(flags);
8814 	if (zone->pageset != &boot_pageset) {
8815 		for_each_online_cpu(cpu) {
8816 			pset = per_cpu_ptr(zone->pageset, cpu);
8817 			drain_zonestat(zone, pset);
8818 		}
8819 		free_percpu(zone->pageset);
8820 		zone->pageset = &boot_pageset;
8821 	}
8822 	local_irq_restore(flags);
8823 }
8824 
8825 #ifdef CONFIG_MEMORY_HOTREMOVE
8826 /*
8827  * All pages in the range must be in a single zone, must not contain holes,
8828  * must span full sections, and must be isolated before calling this function.
8829  */
8830 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8831 {
8832 	unsigned long pfn = start_pfn;
8833 	struct page *page;
8834 	struct zone *zone;
8835 	unsigned int order;
8836 	unsigned long flags;
8837 
8838 	offline_mem_sections(pfn, end_pfn);
8839 	zone = page_zone(pfn_to_page(pfn));
8840 	spin_lock_irqsave(&zone->lock, flags);
8841 	while (pfn < end_pfn) {
8842 		page = pfn_to_page(pfn);
8843 		/*
8844 		 * The HWPoisoned page may be not in buddy system, and
8845 		 * page_count() is not 0.
8846 		 */
8847 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8848 			pfn++;
8849 			continue;
8850 		}
8851 		/*
8852 		 * At this point all remaining PageOffline() pages have a
8853 		 * reference count of 0 and can simply be skipped.
8854 		 */
8855 		if (PageOffline(page)) {
8856 			BUG_ON(page_count(page));
8857 			BUG_ON(PageBuddy(page));
8858 			pfn++;
8859 			continue;
8860 		}
8861 
8862 		BUG_ON(page_count(page));
8863 		BUG_ON(!PageBuddy(page));
8864 		order = buddy_order(page);
8865 		del_page_from_free_list(page, zone, order);
8866 		pfn += (1 << order);
8867 	}
8868 	spin_unlock_irqrestore(&zone->lock, flags);
8869 }
8870 #endif
8871 
8872 bool is_free_buddy_page(struct page *page)
8873 {
8874 	struct zone *zone = page_zone(page);
8875 	unsigned long pfn = page_to_pfn(page);
8876 	unsigned long flags;
8877 	unsigned int order;
8878 
8879 	spin_lock_irqsave(&zone->lock, flags);
8880 	for (order = 0; order < MAX_ORDER; order++) {
8881 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8882 
8883 		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8884 			break;
8885 	}
8886 	spin_unlock_irqrestore(&zone->lock, flags);
8887 
8888 	return order < MAX_ORDER;
8889 }
8890 
8891 #ifdef CONFIG_MEMORY_FAILURE
8892 /*
8893  * Break down a higher-order page in sub-pages, and keep our target out of
8894  * buddy allocator.
8895  */
8896 static void break_down_buddy_pages(struct zone *zone, struct page *page,
8897 				   struct page *target, int low, int high,
8898 				   int migratetype)
8899 {
8900 	unsigned long size = 1 << high;
8901 	struct page *current_buddy, *next_page;
8902 
8903 	while (high > low) {
8904 		high--;
8905 		size >>= 1;
8906 
8907 		if (target >= &page[size]) {
8908 			next_page = page + size;
8909 			current_buddy = page;
8910 		} else {
8911 			next_page = page;
8912 			current_buddy = page + size;
8913 		}
8914 
8915 		if (set_page_guard(zone, current_buddy, high, migratetype))
8916 			continue;
8917 
8918 		if (current_buddy != target) {
8919 			add_to_free_list(current_buddy, zone, high, migratetype);
8920 			set_buddy_order(current_buddy, high);
8921 			page = next_page;
8922 		}
8923 	}
8924 }
8925 
8926 /*
8927  * Take a page that will be marked as poisoned off the buddy allocator.
8928  */
8929 bool take_page_off_buddy(struct page *page)
8930 {
8931 	struct zone *zone = page_zone(page);
8932 	unsigned long pfn = page_to_pfn(page);
8933 	unsigned long flags;
8934 	unsigned int order;
8935 	bool ret = false;
8936 
8937 	spin_lock_irqsave(&zone->lock, flags);
8938 	for (order = 0; order < MAX_ORDER; order++) {
8939 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8940 		int page_order = buddy_order(page_head);
8941 
8942 		if (PageBuddy(page_head) && page_order >= order) {
8943 			unsigned long pfn_head = page_to_pfn(page_head);
8944 			int migratetype = get_pfnblock_migratetype(page_head,
8945 								   pfn_head);
8946 
8947 			del_page_from_free_list(page_head, zone, page_order);
8948 			break_down_buddy_pages(zone, page_head, page, 0,
8949 						page_order, migratetype);
8950 			ret = true;
8951 			break;
8952 		}
8953 		if (page_count(page_head) > 0)
8954 			break;
8955 	}
8956 	spin_unlock_irqrestore(&zone->lock, flags);
8957 	return ret;
8958 }
8959 #endif
8960