xref: /openbmc/linux/mm/page_alloc.c (revision 8bdc2a19)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/module.h>
31 #include <linux/suspend.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
36 #include <linux/oom.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/random.h>
49 #include <linux/sort.h>
50 #include <linux/pfn.h>
51 #include <linux/backing-dev.h>
52 #include <linux/fault-inject.h>
53 #include <linux/page-isolation.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/mm.h>
66 #include <linux/page_owner.h>
67 #include <linux/page_table_check.h>
68 #include <linux/kthread.h>
69 #include <linux/memcontrol.h>
70 #include <linux/ftrace.h>
71 #include <linux/lockdep.h>
72 #include <linux/nmi.h>
73 #include <linux/psi.h>
74 #include <linux/padata.h>
75 #include <linux/khugepaged.h>
76 #include <linux/buffer_head.h>
77 #include <linux/delayacct.h>
78 #include <asm/sections.h>
79 #include <asm/tlbflush.h>
80 #include <asm/div64.h>
81 #include "internal.h"
82 #include "shuffle.h"
83 #include "page_reporting.h"
84 #include "swap.h"
85 
86 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
87 typedef int __bitwise fpi_t;
88 
89 /* No special request */
90 #define FPI_NONE		((__force fpi_t)0)
91 
92 /*
93  * Skip free page reporting notification for the (possibly merged) page.
94  * This does not hinder free page reporting from grabbing the page,
95  * reporting it and marking it "reported" -  it only skips notifying
96  * the free page reporting infrastructure about a newly freed page. For
97  * example, used when temporarily pulling a page from a freelist and
98  * putting it back unmodified.
99  */
100 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
101 
102 /*
103  * Place the (possibly merged) page to the tail of the freelist. Will ignore
104  * page shuffling (relevant code - e.g., memory onlining - is expected to
105  * shuffle the whole zone).
106  *
107  * Note: No code should rely on this flag for correctness - it's purely
108  *       to allow for optimizations when handing back either fresh pages
109  *       (memory onlining) or untouched pages (page isolation, free page
110  *       reporting).
111  */
112 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
113 
114 /*
115  * Don't poison memory with KASAN (only for the tag-based modes).
116  * During boot, all non-reserved memblock memory is exposed to page_alloc.
117  * Poisoning all that memory lengthens boot time, especially on systems with
118  * large amount of RAM. This flag is used to skip that poisoning.
119  * This is only done for the tag-based KASAN modes, as those are able to
120  * detect memory corruptions with the memory tags assigned by default.
121  * All memory allocated normally after boot gets poisoned as usual.
122  */
123 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
124 
125 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
126 static DEFINE_MUTEX(pcp_batch_high_lock);
127 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
128 
129 struct pagesets {
130 	local_lock_t lock;
131 };
132 static DEFINE_PER_CPU(struct pagesets, pagesets) = {
133 	.lock = INIT_LOCAL_LOCK(lock),
134 };
135 
136 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
137 DEFINE_PER_CPU(int, numa_node);
138 EXPORT_PER_CPU_SYMBOL(numa_node);
139 #endif
140 
141 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
142 
143 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
144 /*
145  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
146  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
147  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
148  * defined in <linux/topology.h>.
149  */
150 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
151 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
152 #endif
153 
154 /* work_structs for global per-cpu drains */
155 struct pcpu_drain {
156 	struct zone *zone;
157 	struct work_struct work;
158 };
159 static DEFINE_MUTEX(pcpu_drain_mutex);
160 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
161 
162 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
163 volatile unsigned long latent_entropy __latent_entropy;
164 EXPORT_SYMBOL(latent_entropy);
165 #endif
166 
167 /*
168  * Array of node states.
169  */
170 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
171 	[N_POSSIBLE] = NODE_MASK_ALL,
172 	[N_ONLINE] = { { [0] = 1UL } },
173 #ifndef CONFIG_NUMA
174 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
175 #ifdef CONFIG_HIGHMEM
176 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
177 #endif
178 	[N_MEMORY] = { { [0] = 1UL } },
179 	[N_CPU] = { { [0] = 1UL } },
180 #endif	/* NUMA */
181 };
182 EXPORT_SYMBOL(node_states);
183 
184 atomic_long_t _totalram_pages __read_mostly;
185 EXPORT_SYMBOL(_totalram_pages);
186 unsigned long totalreserve_pages __read_mostly;
187 unsigned long totalcma_pages __read_mostly;
188 
189 int percpu_pagelist_high_fraction;
190 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
191 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
192 EXPORT_SYMBOL(init_on_alloc);
193 
194 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
195 EXPORT_SYMBOL(init_on_free);
196 
197 static bool _init_on_alloc_enabled_early __read_mostly
198 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
199 static int __init early_init_on_alloc(char *buf)
200 {
201 
202 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
203 }
204 early_param("init_on_alloc", early_init_on_alloc);
205 
206 static bool _init_on_free_enabled_early __read_mostly
207 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
208 static int __init early_init_on_free(char *buf)
209 {
210 	return kstrtobool(buf, &_init_on_free_enabled_early);
211 }
212 early_param("init_on_free", early_init_on_free);
213 
214 /*
215  * A cached value of the page's pageblock's migratetype, used when the page is
216  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
217  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
218  * Also the migratetype set in the page does not necessarily match the pcplist
219  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
220  * other index - this ensures that it will be put on the correct CMA freelist.
221  */
222 static inline int get_pcppage_migratetype(struct page *page)
223 {
224 	return page->index;
225 }
226 
227 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
228 {
229 	page->index = migratetype;
230 }
231 
232 #ifdef CONFIG_PM_SLEEP
233 /*
234  * The following functions are used by the suspend/hibernate code to temporarily
235  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
236  * while devices are suspended.  To avoid races with the suspend/hibernate code,
237  * they should always be called with system_transition_mutex held
238  * (gfp_allowed_mask also should only be modified with system_transition_mutex
239  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
240  * with that modification).
241  */
242 
243 static gfp_t saved_gfp_mask;
244 
245 void pm_restore_gfp_mask(void)
246 {
247 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
248 	if (saved_gfp_mask) {
249 		gfp_allowed_mask = saved_gfp_mask;
250 		saved_gfp_mask = 0;
251 	}
252 }
253 
254 void pm_restrict_gfp_mask(void)
255 {
256 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
257 	WARN_ON(saved_gfp_mask);
258 	saved_gfp_mask = gfp_allowed_mask;
259 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
260 }
261 
262 bool pm_suspended_storage(void)
263 {
264 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
265 		return false;
266 	return true;
267 }
268 #endif /* CONFIG_PM_SLEEP */
269 
270 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
271 unsigned int pageblock_order __read_mostly;
272 #endif
273 
274 static void __free_pages_ok(struct page *page, unsigned int order,
275 			    fpi_t fpi_flags);
276 
277 /*
278  * results with 256, 32 in the lowmem_reserve sysctl:
279  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
280  *	1G machine -> (16M dma, 784M normal, 224M high)
281  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
282  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
283  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
284  *
285  * TBD: should special case ZONE_DMA32 machines here - in those we normally
286  * don't need any ZONE_NORMAL reservation
287  */
288 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
289 #ifdef CONFIG_ZONE_DMA
290 	[ZONE_DMA] = 256,
291 #endif
292 #ifdef CONFIG_ZONE_DMA32
293 	[ZONE_DMA32] = 256,
294 #endif
295 	[ZONE_NORMAL] = 32,
296 #ifdef CONFIG_HIGHMEM
297 	[ZONE_HIGHMEM] = 0,
298 #endif
299 	[ZONE_MOVABLE] = 0,
300 };
301 
302 static char * const zone_names[MAX_NR_ZONES] = {
303 #ifdef CONFIG_ZONE_DMA
304 	 "DMA",
305 #endif
306 #ifdef CONFIG_ZONE_DMA32
307 	 "DMA32",
308 #endif
309 	 "Normal",
310 #ifdef CONFIG_HIGHMEM
311 	 "HighMem",
312 #endif
313 	 "Movable",
314 #ifdef CONFIG_ZONE_DEVICE
315 	 "Device",
316 #endif
317 };
318 
319 const char * const migratetype_names[MIGRATE_TYPES] = {
320 	"Unmovable",
321 	"Movable",
322 	"Reclaimable",
323 	"HighAtomic",
324 #ifdef CONFIG_CMA
325 	"CMA",
326 #endif
327 #ifdef CONFIG_MEMORY_ISOLATION
328 	"Isolate",
329 #endif
330 };
331 
332 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
333 	[NULL_COMPOUND_DTOR] = NULL,
334 	[COMPOUND_PAGE_DTOR] = free_compound_page,
335 #ifdef CONFIG_HUGETLB_PAGE
336 	[HUGETLB_PAGE_DTOR] = free_huge_page,
337 #endif
338 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
339 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
340 #endif
341 };
342 
343 int min_free_kbytes = 1024;
344 int user_min_free_kbytes = -1;
345 int watermark_boost_factor __read_mostly = 15000;
346 int watermark_scale_factor = 10;
347 
348 static unsigned long nr_kernel_pages __initdata;
349 static unsigned long nr_all_pages __initdata;
350 static unsigned long dma_reserve __initdata;
351 
352 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
353 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
354 static unsigned long required_kernelcore __initdata;
355 static unsigned long required_kernelcore_percent __initdata;
356 static unsigned long required_movablecore __initdata;
357 static unsigned long required_movablecore_percent __initdata;
358 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
359 static bool mirrored_kernelcore __meminitdata;
360 
361 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
362 int movable_zone;
363 EXPORT_SYMBOL(movable_zone);
364 
365 #if MAX_NUMNODES > 1
366 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
367 unsigned int nr_online_nodes __read_mostly = 1;
368 EXPORT_SYMBOL(nr_node_ids);
369 EXPORT_SYMBOL(nr_online_nodes);
370 #endif
371 
372 int page_group_by_mobility_disabled __read_mostly;
373 
374 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
375 /*
376  * During boot we initialize deferred pages on-demand, as needed, but once
377  * page_alloc_init_late() has finished, the deferred pages are all initialized,
378  * and we can permanently disable that path.
379  */
380 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
381 
382 static inline bool deferred_pages_enabled(void)
383 {
384 	return static_branch_unlikely(&deferred_pages);
385 }
386 
387 /* Returns true if the struct page for the pfn is uninitialised */
388 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
389 {
390 	int nid = early_pfn_to_nid(pfn);
391 
392 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
393 		return true;
394 
395 	return false;
396 }
397 
398 /*
399  * Returns true when the remaining initialisation should be deferred until
400  * later in the boot cycle when it can be parallelised.
401  */
402 static bool __meminit
403 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
404 {
405 	static unsigned long prev_end_pfn, nr_initialised;
406 
407 	/*
408 	 * prev_end_pfn static that contains the end of previous zone
409 	 * No need to protect because called very early in boot before smp_init.
410 	 */
411 	if (prev_end_pfn != end_pfn) {
412 		prev_end_pfn = end_pfn;
413 		nr_initialised = 0;
414 	}
415 
416 	/* Always populate low zones for address-constrained allocations */
417 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
418 		return false;
419 
420 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
421 		return true;
422 	/*
423 	 * We start only with one section of pages, more pages are added as
424 	 * needed until the rest of deferred pages are initialized.
425 	 */
426 	nr_initialised++;
427 	if ((nr_initialised > PAGES_PER_SECTION) &&
428 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 		NODE_DATA(nid)->first_deferred_pfn = pfn;
430 		return true;
431 	}
432 	return false;
433 }
434 #else
435 static inline bool deferred_pages_enabled(void)
436 {
437 	return false;
438 }
439 
440 static inline bool early_page_uninitialised(unsigned long pfn)
441 {
442 	return false;
443 }
444 
445 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
446 {
447 	return false;
448 }
449 #endif
450 
451 /* Return a pointer to the bitmap storing bits affecting a block of pages */
452 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
453 							unsigned long pfn)
454 {
455 #ifdef CONFIG_SPARSEMEM
456 	return section_to_usemap(__pfn_to_section(pfn));
457 #else
458 	return page_zone(page)->pageblock_flags;
459 #endif /* CONFIG_SPARSEMEM */
460 }
461 
462 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
463 {
464 #ifdef CONFIG_SPARSEMEM
465 	pfn &= (PAGES_PER_SECTION-1);
466 #else
467 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
468 #endif /* CONFIG_SPARSEMEM */
469 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
470 }
471 
472 static __always_inline
473 unsigned long __get_pfnblock_flags_mask(const struct page *page,
474 					unsigned long pfn,
475 					unsigned long mask)
476 {
477 	unsigned long *bitmap;
478 	unsigned long bitidx, word_bitidx;
479 	unsigned long word;
480 
481 	bitmap = get_pageblock_bitmap(page, pfn);
482 	bitidx = pfn_to_bitidx(page, pfn);
483 	word_bitidx = bitidx / BITS_PER_LONG;
484 	bitidx &= (BITS_PER_LONG-1);
485 
486 	word = bitmap[word_bitidx];
487 	return (word >> bitidx) & mask;
488 }
489 
490 /**
491  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
492  * @page: The page within the block of interest
493  * @pfn: The target page frame number
494  * @mask: mask of bits that the caller is interested in
495  *
496  * Return: pageblock_bits flags
497  */
498 unsigned long get_pfnblock_flags_mask(const struct page *page,
499 					unsigned long pfn, unsigned long mask)
500 {
501 	return __get_pfnblock_flags_mask(page, pfn, mask);
502 }
503 
504 static __always_inline int get_pfnblock_migratetype(const struct page *page,
505 					unsigned long pfn)
506 {
507 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
508 }
509 
510 /**
511  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512  * @page: The page within the block of interest
513  * @flags: The flags to set
514  * @pfn: The target page frame number
515  * @mask: mask of bits that the caller is interested in
516  */
517 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
518 					unsigned long pfn,
519 					unsigned long mask)
520 {
521 	unsigned long *bitmap;
522 	unsigned long bitidx, word_bitidx;
523 	unsigned long old_word, word;
524 
525 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
526 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
527 
528 	bitmap = get_pageblock_bitmap(page, pfn);
529 	bitidx = pfn_to_bitidx(page, pfn);
530 	word_bitidx = bitidx / BITS_PER_LONG;
531 	bitidx &= (BITS_PER_LONG-1);
532 
533 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
534 
535 	mask <<= bitidx;
536 	flags <<= bitidx;
537 
538 	word = READ_ONCE(bitmap[word_bitidx]);
539 	for (;;) {
540 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
541 		if (word == old_word)
542 			break;
543 		word = old_word;
544 	}
545 }
546 
547 void set_pageblock_migratetype(struct page *page, int migratetype)
548 {
549 	if (unlikely(page_group_by_mobility_disabled &&
550 		     migratetype < MIGRATE_PCPTYPES))
551 		migratetype = MIGRATE_UNMOVABLE;
552 
553 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
554 				page_to_pfn(page), MIGRATETYPE_MASK);
555 }
556 
557 #ifdef CONFIG_DEBUG_VM
558 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
559 {
560 	int ret = 0;
561 	unsigned seq;
562 	unsigned long pfn = page_to_pfn(page);
563 	unsigned long sp, start_pfn;
564 
565 	do {
566 		seq = zone_span_seqbegin(zone);
567 		start_pfn = zone->zone_start_pfn;
568 		sp = zone->spanned_pages;
569 		if (!zone_spans_pfn(zone, pfn))
570 			ret = 1;
571 	} while (zone_span_seqretry(zone, seq));
572 
573 	if (ret)
574 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
575 			pfn, zone_to_nid(zone), zone->name,
576 			start_pfn, start_pfn + sp);
577 
578 	return ret;
579 }
580 
581 static int page_is_consistent(struct zone *zone, struct page *page)
582 {
583 	if (zone != page_zone(page))
584 		return 0;
585 
586 	return 1;
587 }
588 /*
589  * Temporary debugging check for pages not lying within a given zone.
590  */
591 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
592 {
593 	if (page_outside_zone_boundaries(zone, page))
594 		return 1;
595 	if (!page_is_consistent(zone, page))
596 		return 1;
597 
598 	return 0;
599 }
600 #else
601 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
602 {
603 	return 0;
604 }
605 #endif
606 
607 static void bad_page(struct page *page, const char *reason)
608 {
609 	static unsigned long resume;
610 	static unsigned long nr_shown;
611 	static unsigned long nr_unshown;
612 
613 	/*
614 	 * Allow a burst of 60 reports, then keep quiet for that minute;
615 	 * or allow a steady drip of one report per second.
616 	 */
617 	if (nr_shown == 60) {
618 		if (time_before(jiffies, resume)) {
619 			nr_unshown++;
620 			goto out;
621 		}
622 		if (nr_unshown) {
623 			pr_alert(
624 			      "BUG: Bad page state: %lu messages suppressed\n",
625 				nr_unshown);
626 			nr_unshown = 0;
627 		}
628 		nr_shown = 0;
629 	}
630 	if (nr_shown++ == 0)
631 		resume = jiffies + 60 * HZ;
632 
633 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
634 		current->comm, page_to_pfn(page));
635 	dump_page(page, reason);
636 
637 	print_modules();
638 	dump_stack();
639 out:
640 	/* Leave bad fields for debug, except PageBuddy could make trouble */
641 	page_mapcount_reset(page); /* remove PageBuddy */
642 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
643 }
644 
645 static inline unsigned int order_to_pindex(int migratetype, int order)
646 {
647 	int base = order;
648 
649 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
650 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
651 		VM_BUG_ON(order != pageblock_order);
652 		base = PAGE_ALLOC_COSTLY_ORDER + 1;
653 	}
654 #else
655 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
656 #endif
657 
658 	return (MIGRATE_PCPTYPES * base) + migratetype;
659 }
660 
661 static inline int pindex_to_order(unsigned int pindex)
662 {
663 	int order = pindex / MIGRATE_PCPTYPES;
664 
665 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
666 	if (order > PAGE_ALLOC_COSTLY_ORDER)
667 		order = pageblock_order;
668 #else
669 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
670 #endif
671 
672 	return order;
673 }
674 
675 static inline bool pcp_allowed_order(unsigned int order)
676 {
677 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
678 		return true;
679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
680 	if (order == pageblock_order)
681 		return true;
682 #endif
683 	return false;
684 }
685 
686 static inline void free_the_page(struct page *page, unsigned int order)
687 {
688 	if (pcp_allowed_order(order))		/* Via pcp? */
689 		free_unref_page(page, order);
690 	else
691 		__free_pages_ok(page, order, FPI_NONE);
692 }
693 
694 /*
695  * Higher-order pages are called "compound pages".  They are structured thusly:
696  *
697  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
698  *
699  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
700  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
701  *
702  * The first tail page's ->compound_dtor holds the offset in array of compound
703  * page destructors. See compound_page_dtors.
704  *
705  * The first tail page's ->compound_order holds the order of allocation.
706  * This usage means that zero-order pages may not be compound.
707  */
708 
709 void free_compound_page(struct page *page)
710 {
711 	mem_cgroup_uncharge(page_folio(page));
712 	free_the_page(page, compound_order(page));
713 }
714 
715 static void prep_compound_head(struct page *page, unsigned int order)
716 {
717 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
718 	set_compound_order(page, order);
719 	atomic_set(compound_mapcount_ptr(page), -1);
720 	atomic_set(compound_pincount_ptr(page), 0);
721 }
722 
723 static void prep_compound_tail(struct page *head, int tail_idx)
724 {
725 	struct page *p = head + tail_idx;
726 
727 	p->mapping = TAIL_MAPPING;
728 	set_compound_head(p, head);
729 }
730 
731 void prep_compound_page(struct page *page, unsigned int order)
732 {
733 	int i;
734 	int nr_pages = 1 << order;
735 
736 	__SetPageHead(page);
737 	for (i = 1; i < nr_pages; i++)
738 		prep_compound_tail(page, i);
739 
740 	prep_compound_head(page, order);
741 }
742 
743 #ifdef CONFIG_DEBUG_PAGEALLOC
744 unsigned int _debug_guardpage_minorder;
745 
746 bool _debug_pagealloc_enabled_early __read_mostly
747 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
748 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
749 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
750 EXPORT_SYMBOL(_debug_pagealloc_enabled);
751 
752 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
753 
754 static int __init early_debug_pagealloc(char *buf)
755 {
756 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
757 }
758 early_param("debug_pagealloc", early_debug_pagealloc);
759 
760 static int __init debug_guardpage_minorder_setup(char *buf)
761 {
762 	unsigned long res;
763 
764 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
765 		pr_err("Bad debug_guardpage_minorder value\n");
766 		return 0;
767 	}
768 	_debug_guardpage_minorder = res;
769 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
770 	return 0;
771 }
772 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
773 
774 static inline bool set_page_guard(struct zone *zone, struct page *page,
775 				unsigned int order, int migratetype)
776 {
777 	if (!debug_guardpage_enabled())
778 		return false;
779 
780 	if (order >= debug_guardpage_minorder())
781 		return false;
782 
783 	__SetPageGuard(page);
784 	INIT_LIST_HEAD(&page->lru);
785 	set_page_private(page, order);
786 	/* Guard pages are not available for any usage */
787 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
788 
789 	return true;
790 }
791 
792 static inline void clear_page_guard(struct zone *zone, struct page *page,
793 				unsigned int order, int migratetype)
794 {
795 	if (!debug_guardpage_enabled())
796 		return;
797 
798 	__ClearPageGuard(page);
799 
800 	set_page_private(page, 0);
801 	if (!is_migrate_isolate(migratetype))
802 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
803 }
804 #else
805 static inline bool set_page_guard(struct zone *zone, struct page *page,
806 			unsigned int order, int migratetype) { return false; }
807 static inline void clear_page_guard(struct zone *zone, struct page *page,
808 				unsigned int order, int migratetype) {}
809 #endif
810 
811 /*
812  * Enable static keys related to various memory debugging and hardening options.
813  * Some override others, and depend on early params that are evaluated in the
814  * order of appearance. So we need to first gather the full picture of what was
815  * enabled, and then make decisions.
816  */
817 void init_mem_debugging_and_hardening(void)
818 {
819 	bool page_poisoning_requested = false;
820 
821 #ifdef CONFIG_PAGE_POISONING
822 	/*
823 	 * Page poisoning is debug page alloc for some arches. If
824 	 * either of those options are enabled, enable poisoning.
825 	 */
826 	if (page_poisoning_enabled() ||
827 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
828 	      debug_pagealloc_enabled())) {
829 		static_branch_enable(&_page_poisoning_enabled);
830 		page_poisoning_requested = true;
831 	}
832 #endif
833 
834 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
835 	    page_poisoning_requested) {
836 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
837 			"will take precedence over init_on_alloc and init_on_free\n");
838 		_init_on_alloc_enabled_early = false;
839 		_init_on_free_enabled_early = false;
840 	}
841 
842 	if (_init_on_alloc_enabled_early)
843 		static_branch_enable(&init_on_alloc);
844 	else
845 		static_branch_disable(&init_on_alloc);
846 
847 	if (_init_on_free_enabled_early)
848 		static_branch_enable(&init_on_free);
849 	else
850 		static_branch_disable(&init_on_free);
851 
852 #ifdef CONFIG_DEBUG_PAGEALLOC
853 	if (!debug_pagealloc_enabled())
854 		return;
855 
856 	static_branch_enable(&_debug_pagealloc_enabled);
857 
858 	if (!debug_guardpage_minorder())
859 		return;
860 
861 	static_branch_enable(&_debug_guardpage_enabled);
862 #endif
863 }
864 
865 static inline void set_buddy_order(struct page *page, unsigned int order)
866 {
867 	set_page_private(page, order);
868 	__SetPageBuddy(page);
869 }
870 
871 #ifdef CONFIG_COMPACTION
872 static inline struct capture_control *task_capc(struct zone *zone)
873 {
874 	struct capture_control *capc = current->capture_control;
875 
876 	return unlikely(capc) &&
877 		!(current->flags & PF_KTHREAD) &&
878 		!capc->page &&
879 		capc->cc->zone == zone ? capc : NULL;
880 }
881 
882 static inline bool
883 compaction_capture(struct capture_control *capc, struct page *page,
884 		   int order, int migratetype)
885 {
886 	if (!capc || order != capc->cc->order)
887 		return false;
888 
889 	/* Do not accidentally pollute CMA or isolated regions*/
890 	if (is_migrate_cma(migratetype) ||
891 	    is_migrate_isolate(migratetype))
892 		return false;
893 
894 	/*
895 	 * Do not let lower order allocations pollute a movable pageblock.
896 	 * This might let an unmovable request use a reclaimable pageblock
897 	 * and vice-versa but no more than normal fallback logic which can
898 	 * have trouble finding a high-order free page.
899 	 */
900 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
901 		return false;
902 
903 	capc->page = page;
904 	return true;
905 }
906 
907 #else
908 static inline struct capture_control *task_capc(struct zone *zone)
909 {
910 	return NULL;
911 }
912 
913 static inline bool
914 compaction_capture(struct capture_control *capc, struct page *page,
915 		   int order, int migratetype)
916 {
917 	return false;
918 }
919 #endif /* CONFIG_COMPACTION */
920 
921 /* Used for pages not on another list */
922 static inline void add_to_free_list(struct page *page, struct zone *zone,
923 				    unsigned int order, int migratetype)
924 {
925 	struct free_area *area = &zone->free_area[order];
926 
927 	list_add(&page->lru, &area->free_list[migratetype]);
928 	area->nr_free++;
929 }
930 
931 /* Used for pages not on another list */
932 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
933 					 unsigned int order, int migratetype)
934 {
935 	struct free_area *area = &zone->free_area[order];
936 
937 	list_add_tail(&page->lru, &area->free_list[migratetype]);
938 	area->nr_free++;
939 }
940 
941 /*
942  * Used for pages which are on another list. Move the pages to the tail
943  * of the list - so the moved pages won't immediately be considered for
944  * allocation again (e.g., optimization for memory onlining).
945  */
946 static inline void move_to_free_list(struct page *page, struct zone *zone,
947 				     unsigned int order, int migratetype)
948 {
949 	struct free_area *area = &zone->free_area[order];
950 
951 	list_move_tail(&page->lru, &area->free_list[migratetype]);
952 }
953 
954 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
955 					   unsigned int order)
956 {
957 	/* clear reported state and update reported page count */
958 	if (page_reported(page))
959 		__ClearPageReported(page);
960 
961 	list_del(&page->lru);
962 	__ClearPageBuddy(page);
963 	set_page_private(page, 0);
964 	zone->free_area[order].nr_free--;
965 }
966 
967 /*
968  * If this is not the largest possible page, check if the buddy
969  * of the next-highest order is free. If it is, it's possible
970  * that pages are being freed that will coalesce soon. In case,
971  * that is happening, add the free page to the tail of the list
972  * so it's less likely to be used soon and more likely to be merged
973  * as a higher order page
974  */
975 static inline bool
976 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
977 		   struct page *page, unsigned int order)
978 {
979 	unsigned long higher_page_pfn;
980 	struct page *higher_page;
981 
982 	if (order >= MAX_ORDER - 2)
983 		return false;
984 
985 	higher_page_pfn = buddy_pfn & pfn;
986 	higher_page = page + (higher_page_pfn - pfn);
987 
988 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
989 			NULL) != NULL;
990 }
991 
992 /*
993  * Freeing function for a buddy system allocator.
994  *
995  * The concept of a buddy system is to maintain direct-mapped table
996  * (containing bit values) for memory blocks of various "orders".
997  * The bottom level table contains the map for the smallest allocatable
998  * units of memory (here, pages), and each level above it describes
999  * pairs of units from the levels below, hence, "buddies".
1000  * At a high level, all that happens here is marking the table entry
1001  * at the bottom level available, and propagating the changes upward
1002  * as necessary, plus some accounting needed to play nicely with other
1003  * parts of the VM system.
1004  * At each level, we keep a list of pages, which are heads of continuous
1005  * free pages of length of (1 << order) and marked with PageBuddy.
1006  * Page's order is recorded in page_private(page) field.
1007  * So when we are allocating or freeing one, we can derive the state of the
1008  * other.  That is, if we allocate a small block, and both were
1009  * free, the remainder of the region must be split into blocks.
1010  * If a block is freed, and its buddy is also free, then this
1011  * triggers coalescing into a block of larger size.
1012  *
1013  * -- nyc
1014  */
1015 
1016 static inline void __free_one_page(struct page *page,
1017 		unsigned long pfn,
1018 		struct zone *zone, unsigned int order,
1019 		int migratetype, fpi_t fpi_flags)
1020 {
1021 	struct capture_control *capc = task_capc(zone);
1022 	unsigned long buddy_pfn;
1023 	unsigned long combined_pfn;
1024 	struct page *buddy;
1025 	bool to_tail;
1026 
1027 	VM_BUG_ON(!zone_is_initialized(zone));
1028 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1029 
1030 	VM_BUG_ON(migratetype == -1);
1031 	if (likely(!is_migrate_isolate(migratetype)))
1032 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1033 
1034 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1035 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1036 
1037 	while (order < MAX_ORDER - 1) {
1038 		if (compaction_capture(capc, page, order, migratetype)) {
1039 			__mod_zone_freepage_state(zone, -(1 << order),
1040 								migratetype);
1041 			return;
1042 		}
1043 
1044 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1045 		if (!buddy)
1046 			goto done_merging;
1047 
1048 		if (unlikely(order >= pageblock_order)) {
1049 			/*
1050 			 * We want to prevent merge between freepages on pageblock
1051 			 * without fallbacks and normal pageblock. Without this,
1052 			 * pageblock isolation could cause incorrect freepage or CMA
1053 			 * accounting or HIGHATOMIC accounting.
1054 			 */
1055 			int buddy_mt = get_pageblock_migratetype(buddy);
1056 
1057 			if (migratetype != buddy_mt
1058 					&& (!migratetype_is_mergeable(migratetype) ||
1059 						!migratetype_is_mergeable(buddy_mt)))
1060 				goto done_merging;
1061 		}
1062 
1063 		/*
1064 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1065 		 * merge with it and move up one order.
1066 		 */
1067 		if (page_is_guard(buddy))
1068 			clear_page_guard(zone, buddy, order, migratetype);
1069 		else
1070 			del_page_from_free_list(buddy, zone, order);
1071 		combined_pfn = buddy_pfn & pfn;
1072 		page = page + (combined_pfn - pfn);
1073 		pfn = combined_pfn;
1074 		order++;
1075 	}
1076 
1077 done_merging:
1078 	set_buddy_order(page, order);
1079 
1080 	if (fpi_flags & FPI_TO_TAIL)
1081 		to_tail = true;
1082 	else if (is_shuffle_order(order))
1083 		to_tail = shuffle_pick_tail();
1084 	else
1085 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1086 
1087 	if (to_tail)
1088 		add_to_free_list_tail(page, zone, order, migratetype);
1089 	else
1090 		add_to_free_list(page, zone, order, migratetype);
1091 
1092 	/* Notify page reporting subsystem of freed page */
1093 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1094 		page_reporting_notify_free(order);
1095 }
1096 
1097 /**
1098  * split_free_page() -- split a free page at split_pfn_offset
1099  * @free_page:		the original free page
1100  * @order:		the order of the page
1101  * @split_pfn_offset:	split offset within the page
1102  *
1103  * It is used when the free page crosses two pageblocks with different migratetypes
1104  * at split_pfn_offset within the page. The split free page will be put into
1105  * separate migratetype lists afterwards. Otherwise, the function achieves
1106  * nothing.
1107  */
1108 void split_free_page(struct page *free_page,
1109 				int order, unsigned long split_pfn_offset)
1110 {
1111 	struct zone *zone = page_zone(free_page);
1112 	unsigned long free_page_pfn = page_to_pfn(free_page);
1113 	unsigned long pfn;
1114 	unsigned long flags;
1115 	int free_page_order;
1116 
1117 	if (split_pfn_offset == 0)
1118 		return;
1119 
1120 	spin_lock_irqsave(&zone->lock, flags);
1121 	del_page_from_free_list(free_page, zone, order);
1122 	for (pfn = free_page_pfn;
1123 	     pfn < free_page_pfn + (1UL << order);) {
1124 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1125 
1126 		free_page_order = min_t(int,
1127 					pfn ? __ffs(pfn) : order,
1128 					__fls(split_pfn_offset));
1129 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1130 				mt, FPI_NONE);
1131 		pfn += 1UL << free_page_order;
1132 		split_pfn_offset -= (1UL << free_page_order);
1133 		/* we have done the first part, now switch to second part */
1134 		if (split_pfn_offset == 0)
1135 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1136 	}
1137 	spin_unlock_irqrestore(&zone->lock, flags);
1138 }
1139 /*
1140  * A bad page could be due to a number of fields. Instead of multiple branches,
1141  * try and check multiple fields with one check. The caller must do a detailed
1142  * check if necessary.
1143  */
1144 static inline bool page_expected_state(struct page *page,
1145 					unsigned long check_flags)
1146 {
1147 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1148 		return false;
1149 
1150 	if (unlikely((unsigned long)page->mapping |
1151 			page_ref_count(page) |
1152 #ifdef CONFIG_MEMCG
1153 			page->memcg_data |
1154 #endif
1155 			(page->flags & check_flags)))
1156 		return false;
1157 
1158 	return true;
1159 }
1160 
1161 static const char *page_bad_reason(struct page *page, unsigned long flags)
1162 {
1163 	const char *bad_reason = NULL;
1164 
1165 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1166 		bad_reason = "nonzero mapcount";
1167 	if (unlikely(page->mapping != NULL))
1168 		bad_reason = "non-NULL mapping";
1169 	if (unlikely(page_ref_count(page) != 0))
1170 		bad_reason = "nonzero _refcount";
1171 	if (unlikely(page->flags & flags)) {
1172 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1173 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1174 		else
1175 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1176 	}
1177 #ifdef CONFIG_MEMCG
1178 	if (unlikely(page->memcg_data))
1179 		bad_reason = "page still charged to cgroup";
1180 #endif
1181 	return bad_reason;
1182 }
1183 
1184 static void check_free_page_bad(struct page *page)
1185 {
1186 	bad_page(page,
1187 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1188 }
1189 
1190 static inline int check_free_page(struct page *page)
1191 {
1192 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1193 		return 0;
1194 
1195 	/* Something has gone sideways, find it */
1196 	check_free_page_bad(page);
1197 	return 1;
1198 }
1199 
1200 static int free_tail_pages_check(struct page *head_page, struct page *page)
1201 {
1202 	int ret = 1;
1203 
1204 	/*
1205 	 * We rely page->lru.next never has bit 0 set, unless the page
1206 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1207 	 */
1208 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1209 
1210 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1211 		ret = 0;
1212 		goto out;
1213 	}
1214 	switch (page - head_page) {
1215 	case 1:
1216 		/* the first tail page: ->mapping may be compound_mapcount() */
1217 		if (unlikely(compound_mapcount(page))) {
1218 			bad_page(page, "nonzero compound_mapcount");
1219 			goto out;
1220 		}
1221 		break;
1222 	case 2:
1223 		/*
1224 		 * the second tail page: ->mapping is
1225 		 * deferred_list.next -- ignore value.
1226 		 */
1227 		break;
1228 	default:
1229 		if (page->mapping != TAIL_MAPPING) {
1230 			bad_page(page, "corrupted mapping in tail page");
1231 			goto out;
1232 		}
1233 		break;
1234 	}
1235 	if (unlikely(!PageTail(page))) {
1236 		bad_page(page, "PageTail not set");
1237 		goto out;
1238 	}
1239 	if (unlikely(compound_head(page) != head_page)) {
1240 		bad_page(page, "compound_head not consistent");
1241 		goto out;
1242 	}
1243 	ret = 0;
1244 out:
1245 	page->mapping = NULL;
1246 	clear_compound_head(page);
1247 	return ret;
1248 }
1249 
1250 /*
1251  * Skip KASAN memory poisoning when either:
1252  *
1253  * 1. Deferred memory initialization has not yet completed,
1254  *    see the explanation below.
1255  * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1256  *    see the comment next to it.
1257  * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1258  *    see the comment next to it.
1259  *
1260  * Poisoning pages during deferred memory init will greatly lengthen the
1261  * process and cause problem in large memory systems as the deferred pages
1262  * initialization is done with interrupt disabled.
1263  *
1264  * Assuming that there will be no reference to those newly initialized
1265  * pages before they are ever allocated, this should have no effect on
1266  * KASAN memory tracking as the poison will be properly inserted at page
1267  * allocation time. The only corner case is when pages are allocated by
1268  * on-demand allocation and then freed again before the deferred pages
1269  * initialization is done, but this is not likely to happen.
1270  */
1271 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1272 {
1273 	return deferred_pages_enabled() ||
1274 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1275 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1276 	       PageSkipKASanPoison(page);
1277 }
1278 
1279 static void kernel_init_free_pages(struct page *page, int numpages)
1280 {
1281 	int i;
1282 
1283 	/* s390's use of memset() could override KASAN redzones. */
1284 	kasan_disable_current();
1285 	for (i = 0; i < numpages; i++) {
1286 		u8 tag = page_kasan_tag(page + i);
1287 		page_kasan_tag_reset(page + i);
1288 		clear_highpage(page + i);
1289 		page_kasan_tag_set(page + i, tag);
1290 	}
1291 	kasan_enable_current();
1292 }
1293 
1294 static __always_inline bool free_pages_prepare(struct page *page,
1295 			unsigned int order, bool check_free, fpi_t fpi_flags)
1296 {
1297 	int bad = 0;
1298 	bool init = want_init_on_free();
1299 
1300 	VM_BUG_ON_PAGE(PageTail(page), page);
1301 
1302 	trace_mm_page_free(page, order);
1303 
1304 	if (unlikely(PageHWPoison(page)) && !order) {
1305 		/*
1306 		 * Do not let hwpoison pages hit pcplists/buddy
1307 		 * Untie memcg state and reset page's owner
1308 		 */
1309 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1310 			__memcg_kmem_uncharge_page(page, order);
1311 		reset_page_owner(page, order);
1312 		page_table_check_free(page, order);
1313 		return false;
1314 	}
1315 
1316 	/*
1317 	 * Check tail pages before head page information is cleared to
1318 	 * avoid checking PageCompound for order-0 pages.
1319 	 */
1320 	if (unlikely(order)) {
1321 		bool compound = PageCompound(page);
1322 		int i;
1323 
1324 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1325 
1326 		if (compound) {
1327 			ClearPageDoubleMap(page);
1328 			ClearPageHasHWPoisoned(page);
1329 		}
1330 		for (i = 1; i < (1 << order); i++) {
1331 			if (compound)
1332 				bad += free_tail_pages_check(page, page + i);
1333 			if (unlikely(check_free_page(page + i))) {
1334 				bad++;
1335 				continue;
1336 			}
1337 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1338 		}
1339 	}
1340 	if (PageMappingFlags(page))
1341 		page->mapping = NULL;
1342 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1343 		__memcg_kmem_uncharge_page(page, order);
1344 	if (check_free)
1345 		bad += check_free_page(page);
1346 	if (bad)
1347 		return false;
1348 
1349 	page_cpupid_reset_last(page);
1350 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1351 	reset_page_owner(page, order);
1352 	page_table_check_free(page, order);
1353 
1354 	if (!PageHighMem(page)) {
1355 		debug_check_no_locks_freed(page_address(page),
1356 					   PAGE_SIZE << order);
1357 		debug_check_no_obj_freed(page_address(page),
1358 					   PAGE_SIZE << order);
1359 	}
1360 
1361 	kernel_poison_pages(page, 1 << order);
1362 
1363 	/*
1364 	 * As memory initialization might be integrated into KASAN,
1365 	 * KASAN poisoning and memory initialization code must be
1366 	 * kept together to avoid discrepancies in behavior.
1367 	 *
1368 	 * With hardware tag-based KASAN, memory tags must be set before the
1369 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1370 	 */
1371 	if (!should_skip_kasan_poison(page, fpi_flags)) {
1372 		kasan_poison_pages(page, order, init);
1373 
1374 		/* Memory is already initialized if KASAN did it internally. */
1375 		if (kasan_has_integrated_init())
1376 			init = false;
1377 	}
1378 	if (init)
1379 		kernel_init_free_pages(page, 1 << order);
1380 
1381 	/*
1382 	 * arch_free_page() can make the page's contents inaccessible.  s390
1383 	 * does this.  So nothing which can access the page's contents should
1384 	 * happen after this.
1385 	 */
1386 	arch_free_page(page, order);
1387 
1388 	debug_pagealloc_unmap_pages(page, 1 << order);
1389 
1390 	return true;
1391 }
1392 
1393 #ifdef CONFIG_DEBUG_VM
1394 /*
1395  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1396  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1397  * moved from pcp lists to free lists.
1398  */
1399 static bool free_pcp_prepare(struct page *page, unsigned int order)
1400 {
1401 	return free_pages_prepare(page, order, true, FPI_NONE);
1402 }
1403 
1404 static bool bulkfree_pcp_prepare(struct page *page)
1405 {
1406 	if (debug_pagealloc_enabled_static())
1407 		return check_free_page(page);
1408 	else
1409 		return false;
1410 }
1411 #else
1412 /*
1413  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1414  * moving from pcp lists to free list in order to reduce overhead. With
1415  * debug_pagealloc enabled, they are checked also immediately when being freed
1416  * to the pcp lists.
1417  */
1418 static bool free_pcp_prepare(struct page *page, unsigned int order)
1419 {
1420 	if (debug_pagealloc_enabled_static())
1421 		return free_pages_prepare(page, order, true, FPI_NONE);
1422 	else
1423 		return free_pages_prepare(page, order, false, FPI_NONE);
1424 }
1425 
1426 static bool bulkfree_pcp_prepare(struct page *page)
1427 {
1428 	return check_free_page(page);
1429 }
1430 #endif /* CONFIG_DEBUG_VM */
1431 
1432 /*
1433  * Frees a number of pages from the PCP lists
1434  * Assumes all pages on list are in same zone.
1435  * count is the number of pages to free.
1436  */
1437 static void free_pcppages_bulk(struct zone *zone, int count,
1438 					struct per_cpu_pages *pcp,
1439 					int pindex)
1440 {
1441 	int min_pindex = 0;
1442 	int max_pindex = NR_PCP_LISTS - 1;
1443 	unsigned int order;
1444 	bool isolated_pageblocks;
1445 	struct page *page;
1446 
1447 	/*
1448 	 * Ensure proper count is passed which otherwise would stuck in the
1449 	 * below while (list_empty(list)) loop.
1450 	 */
1451 	count = min(pcp->count, count);
1452 
1453 	/* Ensure requested pindex is drained first. */
1454 	pindex = pindex - 1;
1455 
1456 	/*
1457 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
1458 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1459 	 */
1460 	spin_lock(&zone->lock);
1461 	isolated_pageblocks = has_isolate_pageblock(zone);
1462 
1463 	while (count > 0) {
1464 		struct list_head *list;
1465 		int nr_pages;
1466 
1467 		/* Remove pages from lists in a round-robin fashion. */
1468 		do {
1469 			if (++pindex > max_pindex)
1470 				pindex = min_pindex;
1471 			list = &pcp->lists[pindex];
1472 			if (!list_empty(list))
1473 				break;
1474 
1475 			if (pindex == max_pindex)
1476 				max_pindex--;
1477 			if (pindex == min_pindex)
1478 				min_pindex++;
1479 		} while (1);
1480 
1481 		order = pindex_to_order(pindex);
1482 		nr_pages = 1 << order;
1483 		BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1484 		do {
1485 			int mt;
1486 
1487 			page = list_last_entry(list, struct page, lru);
1488 			mt = get_pcppage_migratetype(page);
1489 
1490 			/* must delete to avoid corrupting pcp list */
1491 			list_del(&page->lru);
1492 			count -= nr_pages;
1493 			pcp->count -= nr_pages;
1494 
1495 			if (bulkfree_pcp_prepare(page))
1496 				continue;
1497 
1498 			/* MIGRATE_ISOLATE page should not go to pcplists */
1499 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1500 			/* Pageblock could have been isolated meanwhile */
1501 			if (unlikely(isolated_pageblocks))
1502 				mt = get_pageblock_migratetype(page);
1503 
1504 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1505 			trace_mm_page_pcpu_drain(page, order, mt);
1506 		} while (count > 0 && !list_empty(list));
1507 	}
1508 
1509 	spin_unlock(&zone->lock);
1510 }
1511 
1512 static void free_one_page(struct zone *zone,
1513 				struct page *page, unsigned long pfn,
1514 				unsigned int order,
1515 				int migratetype, fpi_t fpi_flags)
1516 {
1517 	unsigned long flags;
1518 
1519 	spin_lock_irqsave(&zone->lock, flags);
1520 	if (unlikely(has_isolate_pageblock(zone) ||
1521 		is_migrate_isolate(migratetype))) {
1522 		migratetype = get_pfnblock_migratetype(page, pfn);
1523 	}
1524 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1525 	spin_unlock_irqrestore(&zone->lock, flags);
1526 }
1527 
1528 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1529 				unsigned long zone, int nid)
1530 {
1531 	mm_zero_struct_page(page);
1532 	set_page_links(page, zone, nid, pfn);
1533 	init_page_count(page);
1534 	page_mapcount_reset(page);
1535 	page_cpupid_reset_last(page);
1536 	page_kasan_tag_reset(page);
1537 
1538 	INIT_LIST_HEAD(&page->lru);
1539 #ifdef WANT_PAGE_VIRTUAL
1540 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1541 	if (!is_highmem_idx(zone))
1542 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1543 #endif
1544 }
1545 
1546 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1547 static void __meminit init_reserved_page(unsigned long pfn)
1548 {
1549 	pg_data_t *pgdat;
1550 	int nid, zid;
1551 
1552 	if (!early_page_uninitialised(pfn))
1553 		return;
1554 
1555 	nid = early_pfn_to_nid(pfn);
1556 	pgdat = NODE_DATA(nid);
1557 
1558 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1559 		struct zone *zone = &pgdat->node_zones[zid];
1560 
1561 		if (zone_spans_pfn(zone, pfn))
1562 			break;
1563 	}
1564 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1565 }
1566 #else
1567 static inline void init_reserved_page(unsigned long pfn)
1568 {
1569 }
1570 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1571 
1572 /*
1573  * Initialised pages do not have PageReserved set. This function is
1574  * called for each range allocated by the bootmem allocator and
1575  * marks the pages PageReserved. The remaining valid pages are later
1576  * sent to the buddy page allocator.
1577  */
1578 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1579 {
1580 	unsigned long start_pfn = PFN_DOWN(start);
1581 	unsigned long end_pfn = PFN_UP(end);
1582 
1583 	for (; start_pfn < end_pfn; start_pfn++) {
1584 		if (pfn_valid(start_pfn)) {
1585 			struct page *page = pfn_to_page(start_pfn);
1586 
1587 			init_reserved_page(start_pfn);
1588 
1589 			/* Avoid false-positive PageTail() */
1590 			INIT_LIST_HEAD(&page->lru);
1591 
1592 			/*
1593 			 * no need for atomic set_bit because the struct
1594 			 * page is not visible yet so nobody should
1595 			 * access it yet.
1596 			 */
1597 			__SetPageReserved(page);
1598 		}
1599 	}
1600 }
1601 
1602 static void __free_pages_ok(struct page *page, unsigned int order,
1603 			    fpi_t fpi_flags)
1604 {
1605 	unsigned long flags;
1606 	int migratetype;
1607 	unsigned long pfn = page_to_pfn(page);
1608 	struct zone *zone = page_zone(page);
1609 
1610 	if (!free_pages_prepare(page, order, true, fpi_flags))
1611 		return;
1612 
1613 	migratetype = get_pfnblock_migratetype(page, pfn);
1614 
1615 	spin_lock_irqsave(&zone->lock, flags);
1616 	if (unlikely(has_isolate_pageblock(zone) ||
1617 		is_migrate_isolate(migratetype))) {
1618 		migratetype = get_pfnblock_migratetype(page, pfn);
1619 	}
1620 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1621 	spin_unlock_irqrestore(&zone->lock, flags);
1622 
1623 	__count_vm_events(PGFREE, 1 << order);
1624 }
1625 
1626 void __free_pages_core(struct page *page, unsigned int order)
1627 {
1628 	unsigned int nr_pages = 1 << order;
1629 	struct page *p = page;
1630 	unsigned int loop;
1631 
1632 	/*
1633 	 * When initializing the memmap, __init_single_page() sets the refcount
1634 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1635 	 * refcount of all involved pages to 0.
1636 	 */
1637 	prefetchw(p);
1638 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1639 		prefetchw(p + 1);
1640 		__ClearPageReserved(p);
1641 		set_page_count(p, 0);
1642 	}
1643 	__ClearPageReserved(p);
1644 	set_page_count(p, 0);
1645 
1646 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1647 
1648 	/*
1649 	 * Bypass PCP and place fresh pages right to the tail, primarily
1650 	 * relevant for memory onlining.
1651 	 */
1652 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1653 }
1654 
1655 #ifdef CONFIG_NUMA
1656 
1657 /*
1658  * During memory init memblocks map pfns to nids. The search is expensive and
1659  * this caches recent lookups. The implementation of __early_pfn_to_nid
1660  * treats start/end as pfns.
1661  */
1662 struct mminit_pfnnid_cache {
1663 	unsigned long last_start;
1664 	unsigned long last_end;
1665 	int last_nid;
1666 };
1667 
1668 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1669 
1670 /*
1671  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1672  */
1673 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1674 					struct mminit_pfnnid_cache *state)
1675 {
1676 	unsigned long start_pfn, end_pfn;
1677 	int nid;
1678 
1679 	if (state->last_start <= pfn && pfn < state->last_end)
1680 		return state->last_nid;
1681 
1682 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1683 	if (nid != NUMA_NO_NODE) {
1684 		state->last_start = start_pfn;
1685 		state->last_end = end_pfn;
1686 		state->last_nid = nid;
1687 	}
1688 
1689 	return nid;
1690 }
1691 
1692 int __meminit early_pfn_to_nid(unsigned long pfn)
1693 {
1694 	static DEFINE_SPINLOCK(early_pfn_lock);
1695 	int nid;
1696 
1697 	spin_lock(&early_pfn_lock);
1698 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1699 	if (nid < 0)
1700 		nid = first_online_node;
1701 	spin_unlock(&early_pfn_lock);
1702 
1703 	return nid;
1704 }
1705 #endif /* CONFIG_NUMA */
1706 
1707 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1708 							unsigned int order)
1709 {
1710 	if (early_page_uninitialised(pfn))
1711 		return;
1712 	__free_pages_core(page, order);
1713 }
1714 
1715 /*
1716  * Check that the whole (or subset of) a pageblock given by the interval of
1717  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1718  * with the migration of free compaction scanner.
1719  *
1720  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1721  *
1722  * It's possible on some configurations to have a setup like node0 node1 node0
1723  * i.e. it's possible that all pages within a zones range of pages do not
1724  * belong to a single zone. We assume that a border between node0 and node1
1725  * can occur within a single pageblock, but not a node0 node1 node0
1726  * interleaving within a single pageblock. It is therefore sufficient to check
1727  * the first and last page of a pageblock and avoid checking each individual
1728  * page in a pageblock.
1729  */
1730 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1731 				     unsigned long end_pfn, struct zone *zone)
1732 {
1733 	struct page *start_page;
1734 	struct page *end_page;
1735 
1736 	/* end_pfn is one past the range we are checking */
1737 	end_pfn--;
1738 
1739 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1740 		return NULL;
1741 
1742 	start_page = pfn_to_online_page(start_pfn);
1743 	if (!start_page)
1744 		return NULL;
1745 
1746 	if (page_zone(start_page) != zone)
1747 		return NULL;
1748 
1749 	end_page = pfn_to_page(end_pfn);
1750 
1751 	/* This gives a shorter code than deriving page_zone(end_page) */
1752 	if (page_zone_id(start_page) != page_zone_id(end_page))
1753 		return NULL;
1754 
1755 	return start_page;
1756 }
1757 
1758 void set_zone_contiguous(struct zone *zone)
1759 {
1760 	unsigned long block_start_pfn = zone->zone_start_pfn;
1761 	unsigned long block_end_pfn;
1762 
1763 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1764 	for (; block_start_pfn < zone_end_pfn(zone);
1765 			block_start_pfn = block_end_pfn,
1766 			 block_end_pfn += pageblock_nr_pages) {
1767 
1768 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1769 
1770 		if (!__pageblock_pfn_to_page(block_start_pfn,
1771 					     block_end_pfn, zone))
1772 			return;
1773 		cond_resched();
1774 	}
1775 
1776 	/* We confirm that there is no hole */
1777 	zone->contiguous = true;
1778 }
1779 
1780 void clear_zone_contiguous(struct zone *zone)
1781 {
1782 	zone->contiguous = false;
1783 }
1784 
1785 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1786 static void __init deferred_free_range(unsigned long pfn,
1787 				       unsigned long nr_pages)
1788 {
1789 	struct page *page;
1790 	unsigned long i;
1791 
1792 	if (!nr_pages)
1793 		return;
1794 
1795 	page = pfn_to_page(pfn);
1796 
1797 	/* Free a large naturally-aligned chunk if possible */
1798 	if (nr_pages == pageblock_nr_pages &&
1799 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1800 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1801 		__free_pages_core(page, pageblock_order);
1802 		return;
1803 	}
1804 
1805 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1806 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1807 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1808 		__free_pages_core(page, 0);
1809 	}
1810 }
1811 
1812 /* Completion tracking for deferred_init_memmap() threads */
1813 static atomic_t pgdat_init_n_undone __initdata;
1814 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1815 
1816 static inline void __init pgdat_init_report_one_done(void)
1817 {
1818 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1819 		complete(&pgdat_init_all_done_comp);
1820 }
1821 
1822 /*
1823  * Returns true if page needs to be initialized or freed to buddy allocator.
1824  *
1825  * First we check if pfn is valid on architectures where it is possible to have
1826  * holes within pageblock_nr_pages. On systems where it is not possible, this
1827  * function is optimized out.
1828  *
1829  * Then, we check if a current large page is valid by only checking the validity
1830  * of the head pfn.
1831  */
1832 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1833 {
1834 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1835 		return false;
1836 	return true;
1837 }
1838 
1839 /*
1840  * Free pages to buddy allocator. Try to free aligned pages in
1841  * pageblock_nr_pages sizes.
1842  */
1843 static void __init deferred_free_pages(unsigned long pfn,
1844 				       unsigned long end_pfn)
1845 {
1846 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1847 	unsigned long nr_free = 0;
1848 
1849 	for (; pfn < end_pfn; pfn++) {
1850 		if (!deferred_pfn_valid(pfn)) {
1851 			deferred_free_range(pfn - nr_free, nr_free);
1852 			nr_free = 0;
1853 		} else if (!(pfn & nr_pgmask)) {
1854 			deferred_free_range(pfn - nr_free, nr_free);
1855 			nr_free = 1;
1856 		} else {
1857 			nr_free++;
1858 		}
1859 	}
1860 	/* Free the last block of pages to allocator */
1861 	deferred_free_range(pfn - nr_free, nr_free);
1862 }
1863 
1864 /*
1865  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1866  * by performing it only once every pageblock_nr_pages.
1867  * Return number of pages initialized.
1868  */
1869 static unsigned long  __init deferred_init_pages(struct zone *zone,
1870 						 unsigned long pfn,
1871 						 unsigned long end_pfn)
1872 {
1873 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1874 	int nid = zone_to_nid(zone);
1875 	unsigned long nr_pages = 0;
1876 	int zid = zone_idx(zone);
1877 	struct page *page = NULL;
1878 
1879 	for (; pfn < end_pfn; pfn++) {
1880 		if (!deferred_pfn_valid(pfn)) {
1881 			page = NULL;
1882 			continue;
1883 		} else if (!page || !(pfn & nr_pgmask)) {
1884 			page = pfn_to_page(pfn);
1885 		} else {
1886 			page++;
1887 		}
1888 		__init_single_page(page, pfn, zid, nid);
1889 		nr_pages++;
1890 	}
1891 	return (nr_pages);
1892 }
1893 
1894 /*
1895  * This function is meant to pre-load the iterator for the zone init.
1896  * Specifically it walks through the ranges until we are caught up to the
1897  * first_init_pfn value and exits there. If we never encounter the value we
1898  * return false indicating there are no valid ranges left.
1899  */
1900 static bool __init
1901 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1902 				    unsigned long *spfn, unsigned long *epfn,
1903 				    unsigned long first_init_pfn)
1904 {
1905 	u64 j;
1906 
1907 	/*
1908 	 * Start out by walking through the ranges in this zone that have
1909 	 * already been initialized. We don't need to do anything with them
1910 	 * so we just need to flush them out of the system.
1911 	 */
1912 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1913 		if (*epfn <= first_init_pfn)
1914 			continue;
1915 		if (*spfn < first_init_pfn)
1916 			*spfn = first_init_pfn;
1917 		*i = j;
1918 		return true;
1919 	}
1920 
1921 	return false;
1922 }
1923 
1924 /*
1925  * Initialize and free pages. We do it in two loops: first we initialize
1926  * struct page, then free to buddy allocator, because while we are
1927  * freeing pages we can access pages that are ahead (computing buddy
1928  * page in __free_one_page()).
1929  *
1930  * In order to try and keep some memory in the cache we have the loop
1931  * broken along max page order boundaries. This way we will not cause
1932  * any issues with the buddy page computation.
1933  */
1934 static unsigned long __init
1935 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1936 		       unsigned long *end_pfn)
1937 {
1938 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1939 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1940 	unsigned long nr_pages = 0;
1941 	u64 j = *i;
1942 
1943 	/* First we loop through and initialize the page values */
1944 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1945 		unsigned long t;
1946 
1947 		if (mo_pfn <= *start_pfn)
1948 			break;
1949 
1950 		t = min(mo_pfn, *end_pfn);
1951 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1952 
1953 		if (mo_pfn < *end_pfn) {
1954 			*start_pfn = mo_pfn;
1955 			break;
1956 		}
1957 	}
1958 
1959 	/* Reset values and now loop through freeing pages as needed */
1960 	swap(j, *i);
1961 
1962 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1963 		unsigned long t;
1964 
1965 		if (mo_pfn <= spfn)
1966 			break;
1967 
1968 		t = min(mo_pfn, epfn);
1969 		deferred_free_pages(spfn, t);
1970 
1971 		if (mo_pfn <= epfn)
1972 			break;
1973 	}
1974 
1975 	return nr_pages;
1976 }
1977 
1978 static void __init
1979 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1980 			   void *arg)
1981 {
1982 	unsigned long spfn, epfn;
1983 	struct zone *zone = arg;
1984 	u64 i;
1985 
1986 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1987 
1988 	/*
1989 	 * Initialize and free pages in MAX_ORDER sized increments so that we
1990 	 * can avoid introducing any issues with the buddy allocator.
1991 	 */
1992 	while (spfn < end_pfn) {
1993 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
1994 		cond_resched();
1995 	}
1996 }
1997 
1998 /* An arch may override for more concurrency. */
1999 __weak int __init
2000 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2001 {
2002 	return 1;
2003 }
2004 
2005 /* Initialise remaining memory on a node */
2006 static int __init deferred_init_memmap(void *data)
2007 {
2008 	pg_data_t *pgdat = data;
2009 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2010 	unsigned long spfn = 0, epfn = 0;
2011 	unsigned long first_init_pfn, flags;
2012 	unsigned long start = jiffies;
2013 	struct zone *zone;
2014 	int zid, max_threads;
2015 	u64 i;
2016 
2017 	/* Bind memory initialisation thread to a local node if possible */
2018 	if (!cpumask_empty(cpumask))
2019 		set_cpus_allowed_ptr(current, cpumask);
2020 
2021 	pgdat_resize_lock(pgdat, &flags);
2022 	first_init_pfn = pgdat->first_deferred_pfn;
2023 	if (first_init_pfn == ULONG_MAX) {
2024 		pgdat_resize_unlock(pgdat, &flags);
2025 		pgdat_init_report_one_done();
2026 		return 0;
2027 	}
2028 
2029 	/* Sanity check boundaries */
2030 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2031 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2032 	pgdat->first_deferred_pfn = ULONG_MAX;
2033 
2034 	/*
2035 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2036 	 * interrupt thread must allocate this early in boot, zone must be
2037 	 * pre-grown prior to start of deferred page initialization.
2038 	 */
2039 	pgdat_resize_unlock(pgdat, &flags);
2040 
2041 	/* Only the highest zone is deferred so find it */
2042 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2043 		zone = pgdat->node_zones + zid;
2044 		if (first_init_pfn < zone_end_pfn(zone))
2045 			break;
2046 	}
2047 
2048 	/* If the zone is empty somebody else may have cleared out the zone */
2049 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2050 						 first_init_pfn))
2051 		goto zone_empty;
2052 
2053 	max_threads = deferred_page_init_max_threads(cpumask);
2054 
2055 	while (spfn < epfn) {
2056 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2057 		struct padata_mt_job job = {
2058 			.thread_fn   = deferred_init_memmap_chunk,
2059 			.fn_arg      = zone,
2060 			.start       = spfn,
2061 			.size        = epfn_align - spfn,
2062 			.align       = PAGES_PER_SECTION,
2063 			.min_chunk   = PAGES_PER_SECTION,
2064 			.max_threads = max_threads,
2065 		};
2066 
2067 		padata_do_multithreaded(&job);
2068 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2069 						    epfn_align);
2070 	}
2071 zone_empty:
2072 	/* Sanity check that the next zone really is unpopulated */
2073 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2074 
2075 	pr_info("node %d deferred pages initialised in %ums\n",
2076 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2077 
2078 	pgdat_init_report_one_done();
2079 	return 0;
2080 }
2081 
2082 /*
2083  * If this zone has deferred pages, try to grow it by initializing enough
2084  * deferred pages to satisfy the allocation specified by order, rounded up to
2085  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2086  * of SECTION_SIZE bytes by initializing struct pages in increments of
2087  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2088  *
2089  * Return true when zone was grown, otherwise return false. We return true even
2090  * when we grow less than requested, to let the caller decide if there are
2091  * enough pages to satisfy the allocation.
2092  *
2093  * Note: We use noinline because this function is needed only during boot, and
2094  * it is called from a __ref function _deferred_grow_zone. This way we are
2095  * making sure that it is not inlined into permanent text section.
2096  */
2097 static noinline bool __init
2098 deferred_grow_zone(struct zone *zone, unsigned int order)
2099 {
2100 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2101 	pg_data_t *pgdat = zone->zone_pgdat;
2102 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2103 	unsigned long spfn, epfn, flags;
2104 	unsigned long nr_pages = 0;
2105 	u64 i;
2106 
2107 	/* Only the last zone may have deferred pages */
2108 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2109 		return false;
2110 
2111 	pgdat_resize_lock(pgdat, &flags);
2112 
2113 	/*
2114 	 * If someone grew this zone while we were waiting for spinlock, return
2115 	 * true, as there might be enough pages already.
2116 	 */
2117 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2118 		pgdat_resize_unlock(pgdat, &flags);
2119 		return true;
2120 	}
2121 
2122 	/* If the zone is empty somebody else may have cleared out the zone */
2123 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2124 						 first_deferred_pfn)) {
2125 		pgdat->first_deferred_pfn = ULONG_MAX;
2126 		pgdat_resize_unlock(pgdat, &flags);
2127 		/* Retry only once. */
2128 		return first_deferred_pfn != ULONG_MAX;
2129 	}
2130 
2131 	/*
2132 	 * Initialize and free pages in MAX_ORDER sized increments so
2133 	 * that we can avoid introducing any issues with the buddy
2134 	 * allocator.
2135 	 */
2136 	while (spfn < epfn) {
2137 		/* update our first deferred PFN for this section */
2138 		first_deferred_pfn = spfn;
2139 
2140 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2141 		touch_nmi_watchdog();
2142 
2143 		/* We should only stop along section boundaries */
2144 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2145 			continue;
2146 
2147 		/* If our quota has been met we can stop here */
2148 		if (nr_pages >= nr_pages_needed)
2149 			break;
2150 	}
2151 
2152 	pgdat->first_deferred_pfn = spfn;
2153 	pgdat_resize_unlock(pgdat, &flags);
2154 
2155 	return nr_pages > 0;
2156 }
2157 
2158 /*
2159  * deferred_grow_zone() is __init, but it is called from
2160  * get_page_from_freelist() during early boot until deferred_pages permanently
2161  * disables this call. This is why we have refdata wrapper to avoid warning,
2162  * and to ensure that the function body gets unloaded.
2163  */
2164 static bool __ref
2165 _deferred_grow_zone(struct zone *zone, unsigned int order)
2166 {
2167 	return deferred_grow_zone(zone, order);
2168 }
2169 
2170 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2171 
2172 void __init page_alloc_init_late(void)
2173 {
2174 	struct zone *zone;
2175 	int nid;
2176 
2177 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2178 
2179 	/* There will be num_node_state(N_MEMORY) threads */
2180 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2181 	for_each_node_state(nid, N_MEMORY) {
2182 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2183 	}
2184 
2185 	/* Block until all are initialised */
2186 	wait_for_completion(&pgdat_init_all_done_comp);
2187 
2188 	/*
2189 	 * We initialized the rest of the deferred pages.  Permanently disable
2190 	 * on-demand struct page initialization.
2191 	 */
2192 	static_branch_disable(&deferred_pages);
2193 
2194 	/* Reinit limits that are based on free pages after the kernel is up */
2195 	files_maxfiles_init();
2196 #endif
2197 
2198 	buffer_init();
2199 
2200 	/* Discard memblock private memory */
2201 	memblock_discard();
2202 
2203 	for_each_node_state(nid, N_MEMORY)
2204 		shuffle_free_memory(NODE_DATA(nid));
2205 
2206 	for_each_populated_zone(zone)
2207 		set_zone_contiguous(zone);
2208 }
2209 
2210 #ifdef CONFIG_CMA
2211 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2212 void __init init_cma_reserved_pageblock(struct page *page)
2213 {
2214 	unsigned i = pageblock_nr_pages;
2215 	struct page *p = page;
2216 
2217 	do {
2218 		__ClearPageReserved(p);
2219 		set_page_count(p, 0);
2220 	} while (++p, --i);
2221 
2222 	set_pageblock_migratetype(page, MIGRATE_CMA);
2223 	set_page_refcounted(page);
2224 	__free_pages(page, pageblock_order);
2225 
2226 	adjust_managed_page_count(page, pageblock_nr_pages);
2227 	page_zone(page)->cma_pages += pageblock_nr_pages;
2228 }
2229 #endif
2230 
2231 /*
2232  * The order of subdivision here is critical for the IO subsystem.
2233  * Please do not alter this order without good reasons and regression
2234  * testing. Specifically, as large blocks of memory are subdivided,
2235  * the order in which smaller blocks are delivered depends on the order
2236  * they're subdivided in this function. This is the primary factor
2237  * influencing the order in which pages are delivered to the IO
2238  * subsystem according to empirical testing, and this is also justified
2239  * by considering the behavior of a buddy system containing a single
2240  * large block of memory acted on by a series of small allocations.
2241  * This behavior is a critical factor in sglist merging's success.
2242  *
2243  * -- nyc
2244  */
2245 static inline void expand(struct zone *zone, struct page *page,
2246 	int low, int high, int migratetype)
2247 {
2248 	unsigned long size = 1 << high;
2249 
2250 	while (high > low) {
2251 		high--;
2252 		size >>= 1;
2253 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2254 
2255 		/*
2256 		 * Mark as guard pages (or page), that will allow to
2257 		 * merge back to allocator when buddy will be freed.
2258 		 * Corresponding page table entries will not be touched,
2259 		 * pages will stay not present in virtual address space
2260 		 */
2261 		if (set_page_guard(zone, &page[size], high, migratetype))
2262 			continue;
2263 
2264 		add_to_free_list(&page[size], zone, high, migratetype);
2265 		set_buddy_order(&page[size], high);
2266 	}
2267 }
2268 
2269 static void check_new_page_bad(struct page *page)
2270 {
2271 	if (unlikely(page->flags & __PG_HWPOISON)) {
2272 		/* Don't complain about hwpoisoned pages */
2273 		page_mapcount_reset(page); /* remove PageBuddy */
2274 		return;
2275 	}
2276 
2277 	bad_page(page,
2278 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2279 }
2280 
2281 /*
2282  * This page is about to be returned from the page allocator
2283  */
2284 static inline int check_new_page(struct page *page)
2285 {
2286 	if (likely(page_expected_state(page,
2287 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2288 		return 0;
2289 
2290 	check_new_page_bad(page);
2291 	return 1;
2292 }
2293 
2294 static bool check_new_pages(struct page *page, unsigned int order)
2295 {
2296 	int i;
2297 	for (i = 0; i < (1 << order); i++) {
2298 		struct page *p = page + i;
2299 
2300 		if (unlikely(check_new_page(p)))
2301 			return true;
2302 	}
2303 
2304 	return false;
2305 }
2306 
2307 #ifdef CONFIG_DEBUG_VM
2308 /*
2309  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2310  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2311  * also checked when pcp lists are refilled from the free lists.
2312  */
2313 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2314 {
2315 	if (debug_pagealloc_enabled_static())
2316 		return check_new_pages(page, order);
2317 	else
2318 		return false;
2319 }
2320 
2321 static inline bool check_new_pcp(struct page *page, unsigned int order)
2322 {
2323 	return check_new_pages(page, order);
2324 }
2325 #else
2326 /*
2327  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2328  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2329  * enabled, they are also checked when being allocated from the pcp lists.
2330  */
2331 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2332 {
2333 	return check_new_pages(page, order);
2334 }
2335 static inline bool check_new_pcp(struct page *page, unsigned int order)
2336 {
2337 	if (debug_pagealloc_enabled_static())
2338 		return check_new_pages(page, order);
2339 	else
2340 		return false;
2341 }
2342 #endif /* CONFIG_DEBUG_VM */
2343 
2344 static inline bool should_skip_kasan_unpoison(gfp_t flags, bool init_tags)
2345 {
2346 	/* Don't skip if a software KASAN mode is enabled. */
2347 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2348 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2349 		return false;
2350 
2351 	/* Skip, if hardware tag-based KASAN is not enabled. */
2352 	if (!kasan_hw_tags_enabled())
2353 		return true;
2354 
2355 	/*
2356 	 * With hardware tag-based KASAN enabled, skip if either:
2357 	 *
2358 	 * 1. Memory tags have already been cleared via tag_clear_highpage().
2359 	 * 2. Skipping has been requested via __GFP_SKIP_KASAN_UNPOISON.
2360 	 */
2361 	return init_tags || (flags & __GFP_SKIP_KASAN_UNPOISON);
2362 }
2363 
2364 static inline bool should_skip_init(gfp_t flags)
2365 {
2366 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
2367 	if (!kasan_hw_tags_enabled())
2368 		return false;
2369 
2370 	/* For hardware tag-based KASAN, skip if requested. */
2371 	return (flags & __GFP_SKIP_ZERO);
2372 }
2373 
2374 inline void post_alloc_hook(struct page *page, unsigned int order,
2375 				gfp_t gfp_flags)
2376 {
2377 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2378 			!should_skip_init(gfp_flags);
2379 	bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2380 
2381 	set_page_private(page, 0);
2382 	set_page_refcounted(page);
2383 
2384 	arch_alloc_page(page, order);
2385 	debug_pagealloc_map_pages(page, 1 << order);
2386 
2387 	/*
2388 	 * Page unpoisoning must happen before memory initialization.
2389 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2390 	 * allocations and the page unpoisoning code will complain.
2391 	 */
2392 	kernel_unpoison_pages(page, 1 << order);
2393 
2394 	/*
2395 	 * As memory initialization might be integrated into KASAN,
2396 	 * KASAN unpoisoning and memory initializion code must be
2397 	 * kept together to avoid discrepancies in behavior.
2398 	 */
2399 
2400 	/*
2401 	 * If memory tags should be zeroed (which happens only when memory
2402 	 * should be initialized as well).
2403 	 */
2404 	if (init_tags) {
2405 		int i;
2406 
2407 		/* Initialize both memory and tags. */
2408 		for (i = 0; i != 1 << order; ++i)
2409 			tag_clear_highpage(page + i);
2410 
2411 		/* Note that memory is already initialized by the loop above. */
2412 		init = false;
2413 	}
2414 	if (!should_skip_kasan_unpoison(gfp_flags, init_tags)) {
2415 		/* Unpoison shadow memory or set memory tags. */
2416 		kasan_unpoison_pages(page, order, init);
2417 
2418 		/* Note that memory is already initialized by KASAN. */
2419 		if (kasan_has_integrated_init())
2420 			init = false;
2421 	}
2422 	/* If memory is still not initialized, do it now. */
2423 	if (init)
2424 		kernel_init_free_pages(page, 1 << order);
2425 	/* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2426 	if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2427 		SetPageSkipKASanPoison(page);
2428 
2429 	set_page_owner(page, order, gfp_flags);
2430 	page_table_check_alloc(page, order);
2431 }
2432 
2433 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2434 							unsigned int alloc_flags)
2435 {
2436 	post_alloc_hook(page, order, gfp_flags);
2437 
2438 	if (order && (gfp_flags & __GFP_COMP))
2439 		prep_compound_page(page, order);
2440 
2441 	/*
2442 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2443 	 * allocate the page. The expectation is that the caller is taking
2444 	 * steps that will free more memory. The caller should avoid the page
2445 	 * being used for !PFMEMALLOC purposes.
2446 	 */
2447 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2448 		set_page_pfmemalloc(page);
2449 	else
2450 		clear_page_pfmemalloc(page);
2451 }
2452 
2453 /*
2454  * Go through the free lists for the given migratetype and remove
2455  * the smallest available page from the freelists
2456  */
2457 static __always_inline
2458 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2459 						int migratetype)
2460 {
2461 	unsigned int current_order;
2462 	struct free_area *area;
2463 	struct page *page;
2464 
2465 	/* Find a page of the appropriate size in the preferred list */
2466 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2467 		area = &(zone->free_area[current_order]);
2468 		page = get_page_from_free_area(area, migratetype);
2469 		if (!page)
2470 			continue;
2471 		del_page_from_free_list(page, zone, current_order);
2472 		expand(zone, page, order, current_order, migratetype);
2473 		set_pcppage_migratetype(page, migratetype);
2474 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
2475 				pcp_allowed_order(order) &&
2476 				migratetype < MIGRATE_PCPTYPES);
2477 		return page;
2478 	}
2479 
2480 	return NULL;
2481 }
2482 
2483 
2484 /*
2485  * This array describes the order lists are fallen back to when
2486  * the free lists for the desirable migrate type are depleted
2487  *
2488  * The other migratetypes do not have fallbacks.
2489  */
2490 static int fallbacks[MIGRATE_TYPES][3] = {
2491 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2492 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2493 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2494 };
2495 
2496 #ifdef CONFIG_CMA
2497 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2498 					unsigned int order)
2499 {
2500 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2501 }
2502 #else
2503 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2504 					unsigned int order) { return NULL; }
2505 #endif
2506 
2507 /*
2508  * Move the free pages in a range to the freelist tail of the requested type.
2509  * Note that start_page and end_pages are not aligned on a pageblock
2510  * boundary. If alignment is required, use move_freepages_block()
2511  */
2512 static int move_freepages(struct zone *zone,
2513 			  unsigned long start_pfn, unsigned long end_pfn,
2514 			  int migratetype, int *num_movable)
2515 {
2516 	struct page *page;
2517 	unsigned long pfn;
2518 	unsigned int order;
2519 	int pages_moved = 0;
2520 
2521 	for (pfn = start_pfn; pfn <= end_pfn;) {
2522 		page = pfn_to_page(pfn);
2523 		if (!PageBuddy(page)) {
2524 			/*
2525 			 * We assume that pages that could be isolated for
2526 			 * migration are movable. But we don't actually try
2527 			 * isolating, as that would be expensive.
2528 			 */
2529 			if (num_movable &&
2530 					(PageLRU(page) || __PageMovable(page)))
2531 				(*num_movable)++;
2532 			pfn++;
2533 			continue;
2534 		}
2535 
2536 		/* Make sure we are not inadvertently changing nodes */
2537 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2538 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2539 
2540 		order = buddy_order(page);
2541 		move_to_free_list(page, zone, order, migratetype);
2542 		pfn += 1 << order;
2543 		pages_moved += 1 << order;
2544 	}
2545 
2546 	return pages_moved;
2547 }
2548 
2549 int move_freepages_block(struct zone *zone, struct page *page,
2550 				int migratetype, int *num_movable)
2551 {
2552 	unsigned long start_pfn, end_pfn, pfn;
2553 
2554 	if (num_movable)
2555 		*num_movable = 0;
2556 
2557 	pfn = page_to_pfn(page);
2558 	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2559 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2560 
2561 	/* Do not cross zone boundaries */
2562 	if (!zone_spans_pfn(zone, start_pfn))
2563 		start_pfn = pfn;
2564 	if (!zone_spans_pfn(zone, end_pfn))
2565 		return 0;
2566 
2567 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2568 								num_movable);
2569 }
2570 
2571 static void change_pageblock_range(struct page *pageblock_page,
2572 					int start_order, int migratetype)
2573 {
2574 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2575 
2576 	while (nr_pageblocks--) {
2577 		set_pageblock_migratetype(pageblock_page, migratetype);
2578 		pageblock_page += pageblock_nr_pages;
2579 	}
2580 }
2581 
2582 /*
2583  * When we are falling back to another migratetype during allocation, try to
2584  * steal extra free pages from the same pageblocks to satisfy further
2585  * allocations, instead of polluting multiple pageblocks.
2586  *
2587  * If we are stealing a relatively large buddy page, it is likely there will
2588  * be more free pages in the pageblock, so try to steal them all. For
2589  * reclaimable and unmovable allocations, we steal regardless of page size,
2590  * as fragmentation caused by those allocations polluting movable pageblocks
2591  * is worse than movable allocations stealing from unmovable and reclaimable
2592  * pageblocks.
2593  */
2594 static bool can_steal_fallback(unsigned int order, int start_mt)
2595 {
2596 	/*
2597 	 * Leaving this order check is intended, although there is
2598 	 * relaxed order check in next check. The reason is that
2599 	 * we can actually steal whole pageblock if this condition met,
2600 	 * but, below check doesn't guarantee it and that is just heuristic
2601 	 * so could be changed anytime.
2602 	 */
2603 	if (order >= pageblock_order)
2604 		return true;
2605 
2606 	if (order >= pageblock_order / 2 ||
2607 		start_mt == MIGRATE_RECLAIMABLE ||
2608 		start_mt == MIGRATE_UNMOVABLE ||
2609 		page_group_by_mobility_disabled)
2610 		return true;
2611 
2612 	return false;
2613 }
2614 
2615 static inline bool boost_watermark(struct zone *zone)
2616 {
2617 	unsigned long max_boost;
2618 
2619 	if (!watermark_boost_factor)
2620 		return false;
2621 	/*
2622 	 * Don't bother in zones that are unlikely to produce results.
2623 	 * On small machines, including kdump capture kernels running
2624 	 * in a small area, boosting the watermark can cause an out of
2625 	 * memory situation immediately.
2626 	 */
2627 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2628 		return false;
2629 
2630 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2631 			watermark_boost_factor, 10000);
2632 
2633 	/*
2634 	 * high watermark may be uninitialised if fragmentation occurs
2635 	 * very early in boot so do not boost. We do not fall
2636 	 * through and boost by pageblock_nr_pages as failing
2637 	 * allocations that early means that reclaim is not going
2638 	 * to help and it may even be impossible to reclaim the
2639 	 * boosted watermark resulting in a hang.
2640 	 */
2641 	if (!max_boost)
2642 		return false;
2643 
2644 	max_boost = max(pageblock_nr_pages, max_boost);
2645 
2646 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2647 		max_boost);
2648 
2649 	return true;
2650 }
2651 
2652 /*
2653  * This function implements actual steal behaviour. If order is large enough,
2654  * we can steal whole pageblock. If not, we first move freepages in this
2655  * pageblock to our migratetype and determine how many already-allocated pages
2656  * are there in the pageblock with a compatible migratetype. If at least half
2657  * of pages are free or compatible, we can change migratetype of the pageblock
2658  * itself, so pages freed in the future will be put on the correct free list.
2659  */
2660 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2661 		unsigned int alloc_flags, int start_type, bool whole_block)
2662 {
2663 	unsigned int current_order = buddy_order(page);
2664 	int free_pages, movable_pages, alike_pages;
2665 	int old_block_type;
2666 
2667 	old_block_type = get_pageblock_migratetype(page);
2668 
2669 	/*
2670 	 * This can happen due to races and we want to prevent broken
2671 	 * highatomic accounting.
2672 	 */
2673 	if (is_migrate_highatomic(old_block_type))
2674 		goto single_page;
2675 
2676 	/* Take ownership for orders >= pageblock_order */
2677 	if (current_order >= pageblock_order) {
2678 		change_pageblock_range(page, current_order, start_type);
2679 		goto single_page;
2680 	}
2681 
2682 	/*
2683 	 * Boost watermarks to increase reclaim pressure to reduce the
2684 	 * likelihood of future fallbacks. Wake kswapd now as the node
2685 	 * may be balanced overall and kswapd will not wake naturally.
2686 	 */
2687 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2688 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2689 
2690 	/* We are not allowed to try stealing from the whole block */
2691 	if (!whole_block)
2692 		goto single_page;
2693 
2694 	free_pages = move_freepages_block(zone, page, start_type,
2695 						&movable_pages);
2696 	/*
2697 	 * Determine how many pages are compatible with our allocation.
2698 	 * For movable allocation, it's the number of movable pages which
2699 	 * we just obtained. For other types it's a bit more tricky.
2700 	 */
2701 	if (start_type == MIGRATE_MOVABLE) {
2702 		alike_pages = movable_pages;
2703 	} else {
2704 		/*
2705 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2706 		 * to MOVABLE pageblock, consider all non-movable pages as
2707 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2708 		 * vice versa, be conservative since we can't distinguish the
2709 		 * exact migratetype of non-movable pages.
2710 		 */
2711 		if (old_block_type == MIGRATE_MOVABLE)
2712 			alike_pages = pageblock_nr_pages
2713 						- (free_pages + movable_pages);
2714 		else
2715 			alike_pages = 0;
2716 	}
2717 
2718 	/* moving whole block can fail due to zone boundary conditions */
2719 	if (!free_pages)
2720 		goto single_page;
2721 
2722 	/*
2723 	 * If a sufficient number of pages in the block are either free or of
2724 	 * comparable migratability as our allocation, claim the whole block.
2725 	 */
2726 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2727 			page_group_by_mobility_disabled)
2728 		set_pageblock_migratetype(page, start_type);
2729 
2730 	return;
2731 
2732 single_page:
2733 	move_to_free_list(page, zone, current_order, start_type);
2734 }
2735 
2736 /*
2737  * Check whether there is a suitable fallback freepage with requested order.
2738  * If only_stealable is true, this function returns fallback_mt only if
2739  * we can steal other freepages all together. This would help to reduce
2740  * fragmentation due to mixed migratetype pages in one pageblock.
2741  */
2742 int find_suitable_fallback(struct free_area *area, unsigned int order,
2743 			int migratetype, bool only_stealable, bool *can_steal)
2744 {
2745 	int i;
2746 	int fallback_mt;
2747 
2748 	if (area->nr_free == 0)
2749 		return -1;
2750 
2751 	*can_steal = false;
2752 	for (i = 0;; i++) {
2753 		fallback_mt = fallbacks[migratetype][i];
2754 		if (fallback_mt == MIGRATE_TYPES)
2755 			break;
2756 
2757 		if (free_area_empty(area, fallback_mt))
2758 			continue;
2759 
2760 		if (can_steal_fallback(order, migratetype))
2761 			*can_steal = true;
2762 
2763 		if (!only_stealable)
2764 			return fallback_mt;
2765 
2766 		if (*can_steal)
2767 			return fallback_mt;
2768 	}
2769 
2770 	return -1;
2771 }
2772 
2773 /*
2774  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2775  * there are no empty page blocks that contain a page with a suitable order
2776  */
2777 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2778 				unsigned int alloc_order)
2779 {
2780 	int mt;
2781 	unsigned long max_managed, flags;
2782 
2783 	/*
2784 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2785 	 * Check is race-prone but harmless.
2786 	 */
2787 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2788 	if (zone->nr_reserved_highatomic >= max_managed)
2789 		return;
2790 
2791 	spin_lock_irqsave(&zone->lock, flags);
2792 
2793 	/* Recheck the nr_reserved_highatomic limit under the lock */
2794 	if (zone->nr_reserved_highatomic >= max_managed)
2795 		goto out_unlock;
2796 
2797 	/* Yoink! */
2798 	mt = get_pageblock_migratetype(page);
2799 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2800 	if (migratetype_is_mergeable(mt)) {
2801 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2802 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2803 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2804 	}
2805 
2806 out_unlock:
2807 	spin_unlock_irqrestore(&zone->lock, flags);
2808 }
2809 
2810 /*
2811  * Used when an allocation is about to fail under memory pressure. This
2812  * potentially hurts the reliability of high-order allocations when under
2813  * intense memory pressure but failed atomic allocations should be easier
2814  * to recover from than an OOM.
2815  *
2816  * If @force is true, try to unreserve a pageblock even though highatomic
2817  * pageblock is exhausted.
2818  */
2819 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2820 						bool force)
2821 {
2822 	struct zonelist *zonelist = ac->zonelist;
2823 	unsigned long flags;
2824 	struct zoneref *z;
2825 	struct zone *zone;
2826 	struct page *page;
2827 	int order;
2828 	bool ret;
2829 
2830 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2831 								ac->nodemask) {
2832 		/*
2833 		 * Preserve at least one pageblock unless memory pressure
2834 		 * is really high.
2835 		 */
2836 		if (!force && zone->nr_reserved_highatomic <=
2837 					pageblock_nr_pages)
2838 			continue;
2839 
2840 		spin_lock_irqsave(&zone->lock, flags);
2841 		for (order = 0; order < MAX_ORDER; order++) {
2842 			struct free_area *area = &(zone->free_area[order]);
2843 
2844 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2845 			if (!page)
2846 				continue;
2847 
2848 			/*
2849 			 * In page freeing path, migratetype change is racy so
2850 			 * we can counter several free pages in a pageblock
2851 			 * in this loop although we changed the pageblock type
2852 			 * from highatomic to ac->migratetype. So we should
2853 			 * adjust the count once.
2854 			 */
2855 			if (is_migrate_highatomic_page(page)) {
2856 				/*
2857 				 * It should never happen but changes to
2858 				 * locking could inadvertently allow a per-cpu
2859 				 * drain to add pages to MIGRATE_HIGHATOMIC
2860 				 * while unreserving so be safe and watch for
2861 				 * underflows.
2862 				 */
2863 				zone->nr_reserved_highatomic -= min(
2864 						pageblock_nr_pages,
2865 						zone->nr_reserved_highatomic);
2866 			}
2867 
2868 			/*
2869 			 * Convert to ac->migratetype and avoid the normal
2870 			 * pageblock stealing heuristics. Minimally, the caller
2871 			 * is doing the work and needs the pages. More
2872 			 * importantly, if the block was always converted to
2873 			 * MIGRATE_UNMOVABLE or another type then the number
2874 			 * of pageblocks that cannot be completely freed
2875 			 * may increase.
2876 			 */
2877 			set_pageblock_migratetype(page, ac->migratetype);
2878 			ret = move_freepages_block(zone, page, ac->migratetype,
2879 									NULL);
2880 			if (ret) {
2881 				spin_unlock_irqrestore(&zone->lock, flags);
2882 				return ret;
2883 			}
2884 		}
2885 		spin_unlock_irqrestore(&zone->lock, flags);
2886 	}
2887 
2888 	return false;
2889 }
2890 
2891 /*
2892  * Try finding a free buddy page on the fallback list and put it on the free
2893  * list of requested migratetype, possibly along with other pages from the same
2894  * block, depending on fragmentation avoidance heuristics. Returns true if
2895  * fallback was found so that __rmqueue_smallest() can grab it.
2896  *
2897  * The use of signed ints for order and current_order is a deliberate
2898  * deviation from the rest of this file, to make the for loop
2899  * condition simpler.
2900  */
2901 static __always_inline bool
2902 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2903 						unsigned int alloc_flags)
2904 {
2905 	struct free_area *area;
2906 	int current_order;
2907 	int min_order = order;
2908 	struct page *page;
2909 	int fallback_mt;
2910 	bool can_steal;
2911 
2912 	/*
2913 	 * Do not steal pages from freelists belonging to other pageblocks
2914 	 * i.e. orders < pageblock_order. If there are no local zones free,
2915 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2916 	 */
2917 	if (alloc_flags & ALLOC_NOFRAGMENT)
2918 		min_order = pageblock_order;
2919 
2920 	/*
2921 	 * Find the largest available free page in the other list. This roughly
2922 	 * approximates finding the pageblock with the most free pages, which
2923 	 * would be too costly to do exactly.
2924 	 */
2925 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2926 				--current_order) {
2927 		area = &(zone->free_area[current_order]);
2928 		fallback_mt = find_suitable_fallback(area, current_order,
2929 				start_migratetype, false, &can_steal);
2930 		if (fallback_mt == -1)
2931 			continue;
2932 
2933 		/*
2934 		 * We cannot steal all free pages from the pageblock and the
2935 		 * requested migratetype is movable. In that case it's better to
2936 		 * steal and split the smallest available page instead of the
2937 		 * largest available page, because even if the next movable
2938 		 * allocation falls back into a different pageblock than this
2939 		 * one, it won't cause permanent fragmentation.
2940 		 */
2941 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2942 					&& current_order > order)
2943 			goto find_smallest;
2944 
2945 		goto do_steal;
2946 	}
2947 
2948 	return false;
2949 
2950 find_smallest:
2951 	for (current_order = order; current_order < MAX_ORDER;
2952 							current_order++) {
2953 		area = &(zone->free_area[current_order]);
2954 		fallback_mt = find_suitable_fallback(area, current_order,
2955 				start_migratetype, false, &can_steal);
2956 		if (fallback_mt != -1)
2957 			break;
2958 	}
2959 
2960 	/*
2961 	 * This should not happen - we already found a suitable fallback
2962 	 * when looking for the largest page.
2963 	 */
2964 	VM_BUG_ON(current_order == MAX_ORDER);
2965 
2966 do_steal:
2967 	page = get_page_from_free_area(area, fallback_mt);
2968 
2969 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2970 								can_steal);
2971 
2972 	trace_mm_page_alloc_extfrag(page, order, current_order,
2973 		start_migratetype, fallback_mt);
2974 
2975 	return true;
2976 
2977 }
2978 
2979 /*
2980  * Do the hard work of removing an element from the buddy allocator.
2981  * Call me with the zone->lock already held.
2982  */
2983 static __always_inline struct page *
2984 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2985 						unsigned int alloc_flags)
2986 {
2987 	struct page *page;
2988 
2989 	if (IS_ENABLED(CONFIG_CMA)) {
2990 		/*
2991 		 * Balance movable allocations between regular and CMA areas by
2992 		 * allocating from CMA when over half of the zone's free memory
2993 		 * is in the CMA area.
2994 		 */
2995 		if (alloc_flags & ALLOC_CMA &&
2996 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2997 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2998 			page = __rmqueue_cma_fallback(zone, order);
2999 			if (page)
3000 				return page;
3001 		}
3002 	}
3003 retry:
3004 	page = __rmqueue_smallest(zone, order, migratetype);
3005 	if (unlikely(!page)) {
3006 		if (alloc_flags & ALLOC_CMA)
3007 			page = __rmqueue_cma_fallback(zone, order);
3008 
3009 		if (!page && __rmqueue_fallback(zone, order, migratetype,
3010 								alloc_flags))
3011 			goto retry;
3012 	}
3013 	return page;
3014 }
3015 
3016 /*
3017  * Obtain a specified number of elements from the buddy allocator, all under
3018  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3019  * Returns the number of new pages which were placed at *list.
3020  */
3021 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3022 			unsigned long count, struct list_head *list,
3023 			int migratetype, unsigned int alloc_flags)
3024 {
3025 	int i, allocated = 0;
3026 
3027 	/*
3028 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
3029 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3030 	 */
3031 	spin_lock(&zone->lock);
3032 	for (i = 0; i < count; ++i) {
3033 		struct page *page = __rmqueue(zone, order, migratetype,
3034 								alloc_flags);
3035 		if (unlikely(page == NULL))
3036 			break;
3037 
3038 		if (unlikely(check_pcp_refill(page, order)))
3039 			continue;
3040 
3041 		/*
3042 		 * Split buddy pages returned by expand() are received here in
3043 		 * physical page order. The page is added to the tail of
3044 		 * caller's list. From the callers perspective, the linked list
3045 		 * is ordered by page number under some conditions. This is
3046 		 * useful for IO devices that can forward direction from the
3047 		 * head, thus also in the physical page order. This is useful
3048 		 * for IO devices that can merge IO requests if the physical
3049 		 * pages are ordered properly.
3050 		 */
3051 		list_add_tail(&page->lru, list);
3052 		allocated++;
3053 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3054 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3055 					      -(1 << order));
3056 	}
3057 
3058 	/*
3059 	 * i pages were removed from the buddy list even if some leak due
3060 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3061 	 * on i. Do not confuse with 'allocated' which is the number of
3062 	 * pages added to the pcp list.
3063 	 */
3064 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3065 	spin_unlock(&zone->lock);
3066 	return allocated;
3067 }
3068 
3069 #ifdef CONFIG_NUMA
3070 /*
3071  * Called from the vmstat counter updater to drain pagesets of this
3072  * currently executing processor on remote nodes after they have
3073  * expired.
3074  *
3075  * Note that this function must be called with the thread pinned to
3076  * a single processor.
3077  */
3078 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3079 {
3080 	unsigned long flags;
3081 	int to_drain, batch;
3082 
3083 	local_lock_irqsave(&pagesets.lock, flags);
3084 	batch = READ_ONCE(pcp->batch);
3085 	to_drain = min(pcp->count, batch);
3086 	if (to_drain > 0)
3087 		free_pcppages_bulk(zone, to_drain, pcp, 0);
3088 	local_unlock_irqrestore(&pagesets.lock, flags);
3089 }
3090 #endif
3091 
3092 /*
3093  * Drain pcplists of the indicated processor and zone.
3094  *
3095  * The processor must either be the current processor and the
3096  * thread pinned to the current processor or a processor that
3097  * is not online.
3098  */
3099 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3100 {
3101 	unsigned long flags;
3102 	struct per_cpu_pages *pcp;
3103 
3104 	local_lock_irqsave(&pagesets.lock, flags);
3105 
3106 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3107 	if (pcp->count)
3108 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
3109 
3110 	local_unlock_irqrestore(&pagesets.lock, flags);
3111 }
3112 
3113 /*
3114  * Drain pcplists of all zones on the indicated processor.
3115  *
3116  * The processor must either be the current processor and the
3117  * thread pinned to the current processor or a processor that
3118  * is not online.
3119  */
3120 static void drain_pages(unsigned int cpu)
3121 {
3122 	struct zone *zone;
3123 
3124 	for_each_populated_zone(zone) {
3125 		drain_pages_zone(cpu, zone);
3126 	}
3127 }
3128 
3129 /*
3130  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3131  *
3132  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3133  * the single zone's pages.
3134  */
3135 void drain_local_pages(struct zone *zone)
3136 {
3137 	int cpu = smp_processor_id();
3138 
3139 	if (zone)
3140 		drain_pages_zone(cpu, zone);
3141 	else
3142 		drain_pages(cpu);
3143 }
3144 
3145 static void drain_local_pages_wq(struct work_struct *work)
3146 {
3147 	struct pcpu_drain *drain;
3148 
3149 	drain = container_of(work, struct pcpu_drain, work);
3150 
3151 	/*
3152 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3153 	 * we can race with cpu offline when the WQ can move this from
3154 	 * a cpu pinned worker to an unbound one. We can operate on a different
3155 	 * cpu which is alright but we also have to make sure to not move to
3156 	 * a different one.
3157 	 */
3158 	migrate_disable();
3159 	drain_local_pages(drain->zone);
3160 	migrate_enable();
3161 }
3162 
3163 /*
3164  * The implementation of drain_all_pages(), exposing an extra parameter to
3165  * drain on all cpus.
3166  *
3167  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3168  * not empty. The check for non-emptiness can however race with a free to
3169  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3170  * that need the guarantee that every CPU has drained can disable the
3171  * optimizing racy check.
3172  */
3173 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3174 {
3175 	int cpu;
3176 
3177 	/*
3178 	 * Allocate in the BSS so we won't require allocation in
3179 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3180 	 */
3181 	static cpumask_t cpus_with_pcps;
3182 
3183 	/*
3184 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3185 	 * initialized.
3186 	 */
3187 	if (WARN_ON_ONCE(!mm_percpu_wq))
3188 		return;
3189 
3190 	/*
3191 	 * Do not drain if one is already in progress unless it's specific to
3192 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3193 	 * the drain to be complete when the call returns.
3194 	 */
3195 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3196 		if (!zone)
3197 			return;
3198 		mutex_lock(&pcpu_drain_mutex);
3199 	}
3200 
3201 	/*
3202 	 * We don't care about racing with CPU hotplug event
3203 	 * as offline notification will cause the notified
3204 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3205 	 * disables preemption as part of its processing
3206 	 */
3207 	for_each_online_cpu(cpu) {
3208 		struct per_cpu_pages *pcp;
3209 		struct zone *z;
3210 		bool has_pcps = false;
3211 
3212 		if (force_all_cpus) {
3213 			/*
3214 			 * The pcp.count check is racy, some callers need a
3215 			 * guarantee that no cpu is missed.
3216 			 */
3217 			has_pcps = true;
3218 		} else if (zone) {
3219 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3220 			if (pcp->count)
3221 				has_pcps = true;
3222 		} else {
3223 			for_each_populated_zone(z) {
3224 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3225 				if (pcp->count) {
3226 					has_pcps = true;
3227 					break;
3228 				}
3229 			}
3230 		}
3231 
3232 		if (has_pcps)
3233 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3234 		else
3235 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3236 	}
3237 
3238 	for_each_cpu(cpu, &cpus_with_pcps) {
3239 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3240 
3241 		drain->zone = zone;
3242 		INIT_WORK(&drain->work, drain_local_pages_wq);
3243 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3244 	}
3245 	for_each_cpu(cpu, &cpus_with_pcps)
3246 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3247 
3248 	mutex_unlock(&pcpu_drain_mutex);
3249 }
3250 
3251 /*
3252  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3253  *
3254  * When zone parameter is non-NULL, spill just the single zone's pages.
3255  *
3256  * Note that this can be extremely slow as the draining happens in a workqueue.
3257  */
3258 void drain_all_pages(struct zone *zone)
3259 {
3260 	__drain_all_pages(zone, false);
3261 }
3262 
3263 #ifdef CONFIG_HIBERNATION
3264 
3265 /*
3266  * Touch the watchdog for every WD_PAGE_COUNT pages.
3267  */
3268 #define WD_PAGE_COUNT	(128*1024)
3269 
3270 void mark_free_pages(struct zone *zone)
3271 {
3272 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3273 	unsigned long flags;
3274 	unsigned int order, t;
3275 	struct page *page;
3276 
3277 	if (zone_is_empty(zone))
3278 		return;
3279 
3280 	spin_lock_irqsave(&zone->lock, flags);
3281 
3282 	max_zone_pfn = zone_end_pfn(zone);
3283 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3284 		if (pfn_valid(pfn)) {
3285 			page = pfn_to_page(pfn);
3286 
3287 			if (!--page_count) {
3288 				touch_nmi_watchdog();
3289 				page_count = WD_PAGE_COUNT;
3290 			}
3291 
3292 			if (page_zone(page) != zone)
3293 				continue;
3294 
3295 			if (!swsusp_page_is_forbidden(page))
3296 				swsusp_unset_page_free(page);
3297 		}
3298 
3299 	for_each_migratetype_order(order, t) {
3300 		list_for_each_entry(page,
3301 				&zone->free_area[order].free_list[t], lru) {
3302 			unsigned long i;
3303 
3304 			pfn = page_to_pfn(page);
3305 			for (i = 0; i < (1UL << order); i++) {
3306 				if (!--page_count) {
3307 					touch_nmi_watchdog();
3308 					page_count = WD_PAGE_COUNT;
3309 				}
3310 				swsusp_set_page_free(pfn_to_page(pfn + i));
3311 			}
3312 		}
3313 	}
3314 	spin_unlock_irqrestore(&zone->lock, flags);
3315 }
3316 #endif /* CONFIG_PM */
3317 
3318 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3319 							unsigned int order)
3320 {
3321 	int migratetype;
3322 
3323 	if (!free_pcp_prepare(page, order))
3324 		return false;
3325 
3326 	migratetype = get_pfnblock_migratetype(page, pfn);
3327 	set_pcppage_migratetype(page, migratetype);
3328 	return true;
3329 }
3330 
3331 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3332 		       bool free_high)
3333 {
3334 	int min_nr_free, max_nr_free;
3335 
3336 	/* Free everything if batch freeing high-order pages. */
3337 	if (unlikely(free_high))
3338 		return pcp->count;
3339 
3340 	/* Check for PCP disabled or boot pageset */
3341 	if (unlikely(high < batch))
3342 		return 1;
3343 
3344 	/* Leave at least pcp->batch pages on the list */
3345 	min_nr_free = batch;
3346 	max_nr_free = high - batch;
3347 
3348 	/*
3349 	 * Double the number of pages freed each time there is subsequent
3350 	 * freeing of pages without any allocation.
3351 	 */
3352 	batch <<= pcp->free_factor;
3353 	if (batch < max_nr_free)
3354 		pcp->free_factor++;
3355 	batch = clamp(batch, min_nr_free, max_nr_free);
3356 
3357 	return batch;
3358 }
3359 
3360 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3361 		       bool free_high)
3362 {
3363 	int high = READ_ONCE(pcp->high);
3364 
3365 	if (unlikely(!high || free_high))
3366 		return 0;
3367 
3368 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3369 		return high;
3370 
3371 	/*
3372 	 * If reclaim is active, limit the number of pages that can be
3373 	 * stored on pcp lists
3374 	 */
3375 	return min(READ_ONCE(pcp->batch) << 2, high);
3376 }
3377 
3378 static void free_unref_page_commit(struct page *page, int migratetype,
3379 				   unsigned int order)
3380 {
3381 	struct zone *zone = page_zone(page);
3382 	struct per_cpu_pages *pcp;
3383 	int high;
3384 	int pindex;
3385 	bool free_high;
3386 
3387 	__count_vm_event(PGFREE);
3388 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3389 	pindex = order_to_pindex(migratetype, order);
3390 	list_add(&page->lru, &pcp->lists[pindex]);
3391 	pcp->count += 1 << order;
3392 
3393 	/*
3394 	 * As high-order pages other than THP's stored on PCP can contribute
3395 	 * to fragmentation, limit the number stored when PCP is heavily
3396 	 * freeing without allocation. The remainder after bulk freeing
3397 	 * stops will be drained from vmstat refresh context.
3398 	 */
3399 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3400 
3401 	high = nr_pcp_high(pcp, zone, free_high);
3402 	if (pcp->count >= high) {
3403 		int batch = READ_ONCE(pcp->batch);
3404 
3405 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3406 	}
3407 }
3408 
3409 /*
3410  * Free a pcp page
3411  */
3412 void free_unref_page(struct page *page, unsigned int order)
3413 {
3414 	unsigned long flags;
3415 	unsigned long pfn = page_to_pfn(page);
3416 	int migratetype;
3417 
3418 	if (!free_unref_page_prepare(page, pfn, order))
3419 		return;
3420 
3421 	/*
3422 	 * We only track unmovable, reclaimable and movable on pcp lists.
3423 	 * Place ISOLATE pages on the isolated list because they are being
3424 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3425 	 * areas back if necessary. Otherwise, we may have to free
3426 	 * excessively into the page allocator
3427 	 */
3428 	migratetype = get_pcppage_migratetype(page);
3429 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3430 		if (unlikely(is_migrate_isolate(migratetype))) {
3431 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3432 			return;
3433 		}
3434 		migratetype = MIGRATE_MOVABLE;
3435 	}
3436 
3437 	local_lock_irqsave(&pagesets.lock, flags);
3438 	free_unref_page_commit(page, migratetype, order);
3439 	local_unlock_irqrestore(&pagesets.lock, flags);
3440 }
3441 
3442 /*
3443  * Free a list of 0-order pages
3444  */
3445 void free_unref_page_list(struct list_head *list)
3446 {
3447 	struct page *page, *next;
3448 	unsigned long flags;
3449 	int batch_count = 0;
3450 	int migratetype;
3451 
3452 	/* Prepare pages for freeing */
3453 	list_for_each_entry_safe(page, next, list, lru) {
3454 		unsigned long pfn = page_to_pfn(page);
3455 		if (!free_unref_page_prepare(page, pfn, 0)) {
3456 			list_del(&page->lru);
3457 			continue;
3458 		}
3459 
3460 		/*
3461 		 * Free isolated pages directly to the allocator, see
3462 		 * comment in free_unref_page.
3463 		 */
3464 		migratetype = get_pcppage_migratetype(page);
3465 		if (unlikely(is_migrate_isolate(migratetype))) {
3466 			list_del(&page->lru);
3467 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3468 			continue;
3469 		}
3470 	}
3471 
3472 	local_lock_irqsave(&pagesets.lock, flags);
3473 	list_for_each_entry_safe(page, next, list, lru) {
3474 		/*
3475 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3476 		 * to the MIGRATE_MOVABLE pcp list.
3477 		 */
3478 		migratetype = get_pcppage_migratetype(page);
3479 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3480 			migratetype = MIGRATE_MOVABLE;
3481 
3482 		trace_mm_page_free_batched(page);
3483 		free_unref_page_commit(page, migratetype, 0);
3484 
3485 		/*
3486 		 * Guard against excessive IRQ disabled times when we get
3487 		 * a large list of pages to free.
3488 		 */
3489 		if (++batch_count == SWAP_CLUSTER_MAX) {
3490 			local_unlock_irqrestore(&pagesets.lock, flags);
3491 			batch_count = 0;
3492 			local_lock_irqsave(&pagesets.lock, flags);
3493 		}
3494 	}
3495 	local_unlock_irqrestore(&pagesets.lock, flags);
3496 }
3497 
3498 /*
3499  * split_page takes a non-compound higher-order page, and splits it into
3500  * n (1<<order) sub-pages: page[0..n]
3501  * Each sub-page must be freed individually.
3502  *
3503  * Note: this is probably too low level an operation for use in drivers.
3504  * Please consult with lkml before using this in your driver.
3505  */
3506 void split_page(struct page *page, unsigned int order)
3507 {
3508 	int i;
3509 
3510 	VM_BUG_ON_PAGE(PageCompound(page), page);
3511 	VM_BUG_ON_PAGE(!page_count(page), page);
3512 
3513 	for (i = 1; i < (1 << order); i++)
3514 		set_page_refcounted(page + i);
3515 	split_page_owner(page, 1 << order);
3516 	split_page_memcg(page, 1 << order);
3517 }
3518 EXPORT_SYMBOL_GPL(split_page);
3519 
3520 int __isolate_free_page(struct page *page, unsigned int order)
3521 {
3522 	unsigned long watermark;
3523 	struct zone *zone;
3524 	int mt;
3525 
3526 	BUG_ON(!PageBuddy(page));
3527 
3528 	zone = page_zone(page);
3529 	mt = get_pageblock_migratetype(page);
3530 
3531 	if (!is_migrate_isolate(mt)) {
3532 		/*
3533 		 * Obey watermarks as if the page was being allocated. We can
3534 		 * emulate a high-order watermark check with a raised order-0
3535 		 * watermark, because we already know our high-order page
3536 		 * exists.
3537 		 */
3538 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3539 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3540 			return 0;
3541 
3542 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3543 	}
3544 
3545 	/* Remove page from free list */
3546 
3547 	del_page_from_free_list(page, zone, order);
3548 
3549 	/*
3550 	 * Set the pageblock if the isolated page is at least half of a
3551 	 * pageblock
3552 	 */
3553 	if (order >= pageblock_order - 1) {
3554 		struct page *endpage = page + (1 << order) - 1;
3555 		for (; page < endpage; page += pageblock_nr_pages) {
3556 			int mt = get_pageblock_migratetype(page);
3557 			/*
3558 			 * Only change normal pageblocks (i.e., they can merge
3559 			 * with others)
3560 			 */
3561 			if (migratetype_is_mergeable(mt))
3562 				set_pageblock_migratetype(page,
3563 							  MIGRATE_MOVABLE);
3564 		}
3565 	}
3566 
3567 
3568 	return 1UL << order;
3569 }
3570 
3571 /**
3572  * __putback_isolated_page - Return a now-isolated page back where we got it
3573  * @page: Page that was isolated
3574  * @order: Order of the isolated page
3575  * @mt: The page's pageblock's migratetype
3576  *
3577  * This function is meant to return a page pulled from the free lists via
3578  * __isolate_free_page back to the free lists they were pulled from.
3579  */
3580 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3581 {
3582 	struct zone *zone = page_zone(page);
3583 
3584 	/* zone lock should be held when this function is called */
3585 	lockdep_assert_held(&zone->lock);
3586 
3587 	/* Return isolated page to tail of freelist. */
3588 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3589 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3590 }
3591 
3592 /*
3593  * Update NUMA hit/miss statistics
3594  *
3595  * Must be called with interrupts disabled.
3596  */
3597 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3598 				   long nr_account)
3599 {
3600 #ifdef CONFIG_NUMA
3601 	enum numa_stat_item local_stat = NUMA_LOCAL;
3602 
3603 	/* skip numa counters update if numa stats is disabled */
3604 	if (!static_branch_likely(&vm_numa_stat_key))
3605 		return;
3606 
3607 	if (zone_to_nid(z) != numa_node_id())
3608 		local_stat = NUMA_OTHER;
3609 
3610 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3611 		__count_numa_events(z, NUMA_HIT, nr_account);
3612 	else {
3613 		__count_numa_events(z, NUMA_MISS, nr_account);
3614 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3615 	}
3616 	__count_numa_events(z, local_stat, nr_account);
3617 #endif
3618 }
3619 
3620 /* Remove page from the per-cpu list, caller must protect the list */
3621 static inline
3622 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3623 			int migratetype,
3624 			unsigned int alloc_flags,
3625 			struct per_cpu_pages *pcp,
3626 			struct list_head *list)
3627 {
3628 	struct page *page;
3629 
3630 	do {
3631 		if (list_empty(list)) {
3632 			int batch = READ_ONCE(pcp->batch);
3633 			int alloced;
3634 
3635 			/*
3636 			 * Scale batch relative to order if batch implies
3637 			 * free pages can be stored on the PCP. Batch can
3638 			 * be 1 for small zones or for boot pagesets which
3639 			 * should never store free pages as the pages may
3640 			 * belong to arbitrary zones.
3641 			 */
3642 			if (batch > 1)
3643 				batch = max(batch >> order, 2);
3644 			alloced = rmqueue_bulk(zone, order,
3645 					batch, list,
3646 					migratetype, alloc_flags);
3647 
3648 			pcp->count += alloced << order;
3649 			if (unlikely(list_empty(list)))
3650 				return NULL;
3651 		}
3652 
3653 		page = list_first_entry(list, struct page, lru);
3654 		list_del(&page->lru);
3655 		pcp->count -= 1 << order;
3656 	} while (check_new_pcp(page, order));
3657 
3658 	return page;
3659 }
3660 
3661 /* Lock and remove page from the per-cpu list */
3662 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3663 			struct zone *zone, unsigned int order,
3664 			gfp_t gfp_flags, int migratetype,
3665 			unsigned int alloc_flags)
3666 {
3667 	struct per_cpu_pages *pcp;
3668 	struct list_head *list;
3669 	struct page *page;
3670 	unsigned long flags;
3671 
3672 	local_lock_irqsave(&pagesets.lock, flags);
3673 
3674 	/*
3675 	 * On allocation, reduce the number of pages that are batch freed.
3676 	 * See nr_pcp_free() where free_factor is increased for subsequent
3677 	 * frees.
3678 	 */
3679 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3680 	pcp->free_factor >>= 1;
3681 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3682 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3683 	local_unlock_irqrestore(&pagesets.lock, flags);
3684 	if (page) {
3685 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3686 		zone_statistics(preferred_zone, zone, 1);
3687 	}
3688 	return page;
3689 }
3690 
3691 /*
3692  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3693  */
3694 static inline
3695 struct page *rmqueue(struct zone *preferred_zone,
3696 			struct zone *zone, unsigned int order,
3697 			gfp_t gfp_flags, unsigned int alloc_flags,
3698 			int migratetype)
3699 {
3700 	unsigned long flags;
3701 	struct page *page;
3702 
3703 	if (likely(pcp_allowed_order(order))) {
3704 		/*
3705 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3706 		 * we need to skip it when CMA area isn't allowed.
3707 		 */
3708 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3709 				migratetype != MIGRATE_MOVABLE) {
3710 			page = rmqueue_pcplist(preferred_zone, zone, order,
3711 					gfp_flags, migratetype, alloc_flags);
3712 			goto out;
3713 		}
3714 	}
3715 
3716 	/*
3717 	 * We most definitely don't want callers attempting to
3718 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3719 	 */
3720 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3721 
3722 	do {
3723 		page = NULL;
3724 		spin_lock_irqsave(&zone->lock, flags);
3725 		/*
3726 		 * order-0 request can reach here when the pcplist is skipped
3727 		 * due to non-CMA allocation context. HIGHATOMIC area is
3728 		 * reserved for high-order atomic allocation, so order-0
3729 		 * request should skip it.
3730 		 */
3731 		if (order > 0 && alloc_flags & ALLOC_HARDER)
3732 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3733 		if (!page) {
3734 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3735 			if (!page)
3736 				goto failed;
3737 		}
3738 		__mod_zone_freepage_state(zone, -(1 << order),
3739 					  get_pcppage_migratetype(page));
3740 		spin_unlock_irqrestore(&zone->lock, flags);
3741 	} while (check_new_pages(page, order));
3742 
3743 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3744 	zone_statistics(preferred_zone, zone, 1);
3745 
3746 out:
3747 	/* Separate test+clear to avoid unnecessary atomics */
3748 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3749 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3750 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3751 	}
3752 
3753 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3754 	return page;
3755 
3756 failed:
3757 	spin_unlock_irqrestore(&zone->lock, flags);
3758 	return NULL;
3759 }
3760 
3761 #ifdef CONFIG_FAIL_PAGE_ALLOC
3762 
3763 static struct {
3764 	struct fault_attr attr;
3765 
3766 	bool ignore_gfp_highmem;
3767 	bool ignore_gfp_reclaim;
3768 	u32 min_order;
3769 } fail_page_alloc = {
3770 	.attr = FAULT_ATTR_INITIALIZER,
3771 	.ignore_gfp_reclaim = true,
3772 	.ignore_gfp_highmem = true,
3773 	.min_order = 1,
3774 };
3775 
3776 static int __init setup_fail_page_alloc(char *str)
3777 {
3778 	return setup_fault_attr(&fail_page_alloc.attr, str);
3779 }
3780 __setup("fail_page_alloc=", setup_fail_page_alloc);
3781 
3782 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3783 {
3784 	if (order < fail_page_alloc.min_order)
3785 		return false;
3786 	if (gfp_mask & __GFP_NOFAIL)
3787 		return false;
3788 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3789 		return false;
3790 	if (fail_page_alloc.ignore_gfp_reclaim &&
3791 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3792 		return false;
3793 
3794 	if (gfp_mask & __GFP_NOWARN)
3795 		fail_page_alloc.attr.no_warn = true;
3796 
3797 	return should_fail(&fail_page_alloc.attr, 1 << order);
3798 }
3799 
3800 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3801 
3802 static int __init fail_page_alloc_debugfs(void)
3803 {
3804 	umode_t mode = S_IFREG | 0600;
3805 	struct dentry *dir;
3806 
3807 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3808 					&fail_page_alloc.attr);
3809 
3810 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3811 			    &fail_page_alloc.ignore_gfp_reclaim);
3812 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3813 			    &fail_page_alloc.ignore_gfp_highmem);
3814 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3815 
3816 	return 0;
3817 }
3818 
3819 late_initcall(fail_page_alloc_debugfs);
3820 
3821 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3822 
3823 #else /* CONFIG_FAIL_PAGE_ALLOC */
3824 
3825 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3826 {
3827 	return false;
3828 }
3829 
3830 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3831 
3832 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3833 {
3834 	return __should_fail_alloc_page(gfp_mask, order);
3835 }
3836 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3837 
3838 static inline long __zone_watermark_unusable_free(struct zone *z,
3839 				unsigned int order, unsigned int alloc_flags)
3840 {
3841 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3842 	long unusable_free = (1 << order) - 1;
3843 
3844 	/*
3845 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3846 	 * the high-atomic reserves. This will over-estimate the size of the
3847 	 * atomic reserve but it avoids a search.
3848 	 */
3849 	if (likely(!alloc_harder))
3850 		unusable_free += z->nr_reserved_highatomic;
3851 
3852 #ifdef CONFIG_CMA
3853 	/* If allocation can't use CMA areas don't use free CMA pages */
3854 	if (!(alloc_flags & ALLOC_CMA))
3855 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3856 #endif
3857 
3858 	return unusable_free;
3859 }
3860 
3861 /*
3862  * Return true if free base pages are above 'mark'. For high-order checks it
3863  * will return true of the order-0 watermark is reached and there is at least
3864  * one free page of a suitable size. Checking now avoids taking the zone lock
3865  * to check in the allocation paths if no pages are free.
3866  */
3867 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3868 			 int highest_zoneidx, unsigned int alloc_flags,
3869 			 long free_pages)
3870 {
3871 	long min = mark;
3872 	int o;
3873 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3874 
3875 	/* free_pages may go negative - that's OK */
3876 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3877 
3878 	if (alloc_flags & ALLOC_HIGH)
3879 		min -= min / 2;
3880 
3881 	if (unlikely(alloc_harder)) {
3882 		/*
3883 		 * OOM victims can try even harder than normal ALLOC_HARDER
3884 		 * users on the grounds that it's definitely going to be in
3885 		 * the exit path shortly and free memory. Any allocation it
3886 		 * makes during the free path will be small and short-lived.
3887 		 */
3888 		if (alloc_flags & ALLOC_OOM)
3889 			min -= min / 2;
3890 		else
3891 			min -= min / 4;
3892 	}
3893 
3894 	/*
3895 	 * Check watermarks for an order-0 allocation request. If these
3896 	 * are not met, then a high-order request also cannot go ahead
3897 	 * even if a suitable page happened to be free.
3898 	 */
3899 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3900 		return false;
3901 
3902 	/* If this is an order-0 request then the watermark is fine */
3903 	if (!order)
3904 		return true;
3905 
3906 	/* For a high-order request, check at least one suitable page is free */
3907 	for (o = order; o < MAX_ORDER; o++) {
3908 		struct free_area *area = &z->free_area[o];
3909 		int mt;
3910 
3911 		if (!area->nr_free)
3912 			continue;
3913 
3914 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3915 			if (!free_area_empty(area, mt))
3916 				return true;
3917 		}
3918 
3919 #ifdef CONFIG_CMA
3920 		if ((alloc_flags & ALLOC_CMA) &&
3921 		    !free_area_empty(area, MIGRATE_CMA)) {
3922 			return true;
3923 		}
3924 #endif
3925 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3926 			return true;
3927 	}
3928 	return false;
3929 }
3930 
3931 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3932 		      int highest_zoneidx, unsigned int alloc_flags)
3933 {
3934 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3935 					zone_page_state(z, NR_FREE_PAGES));
3936 }
3937 
3938 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3939 				unsigned long mark, int highest_zoneidx,
3940 				unsigned int alloc_flags, gfp_t gfp_mask)
3941 {
3942 	long free_pages;
3943 
3944 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3945 
3946 	/*
3947 	 * Fast check for order-0 only. If this fails then the reserves
3948 	 * need to be calculated.
3949 	 */
3950 	if (!order) {
3951 		long fast_free;
3952 
3953 		fast_free = free_pages;
3954 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3955 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3956 			return true;
3957 	}
3958 
3959 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3960 					free_pages))
3961 		return true;
3962 	/*
3963 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3964 	 * when checking the min watermark. The min watermark is the
3965 	 * point where boosting is ignored so that kswapd is woken up
3966 	 * when below the low watermark.
3967 	 */
3968 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3969 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3970 		mark = z->_watermark[WMARK_MIN];
3971 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3972 					alloc_flags, free_pages);
3973 	}
3974 
3975 	return false;
3976 }
3977 
3978 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3979 			unsigned long mark, int highest_zoneidx)
3980 {
3981 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3982 
3983 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3984 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3985 
3986 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3987 								free_pages);
3988 }
3989 
3990 #ifdef CONFIG_NUMA
3991 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3992 
3993 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3994 {
3995 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3996 				node_reclaim_distance;
3997 }
3998 #else	/* CONFIG_NUMA */
3999 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4000 {
4001 	return true;
4002 }
4003 #endif	/* CONFIG_NUMA */
4004 
4005 /*
4006  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4007  * fragmentation is subtle. If the preferred zone was HIGHMEM then
4008  * premature use of a lower zone may cause lowmem pressure problems that
4009  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4010  * probably too small. It only makes sense to spread allocations to avoid
4011  * fragmentation between the Normal and DMA32 zones.
4012  */
4013 static inline unsigned int
4014 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4015 {
4016 	unsigned int alloc_flags;
4017 
4018 	/*
4019 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4020 	 * to save a branch.
4021 	 */
4022 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4023 
4024 #ifdef CONFIG_ZONE_DMA32
4025 	if (!zone)
4026 		return alloc_flags;
4027 
4028 	if (zone_idx(zone) != ZONE_NORMAL)
4029 		return alloc_flags;
4030 
4031 	/*
4032 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4033 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4034 	 * on UMA that if Normal is populated then so is DMA32.
4035 	 */
4036 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4037 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4038 		return alloc_flags;
4039 
4040 	alloc_flags |= ALLOC_NOFRAGMENT;
4041 #endif /* CONFIG_ZONE_DMA32 */
4042 	return alloc_flags;
4043 }
4044 
4045 /* Must be called after current_gfp_context() which can change gfp_mask */
4046 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4047 						  unsigned int alloc_flags)
4048 {
4049 #ifdef CONFIG_CMA
4050 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4051 		alloc_flags |= ALLOC_CMA;
4052 #endif
4053 	return alloc_flags;
4054 }
4055 
4056 /*
4057  * get_page_from_freelist goes through the zonelist trying to allocate
4058  * a page.
4059  */
4060 static struct page *
4061 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4062 						const struct alloc_context *ac)
4063 {
4064 	struct zoneref *z;
4065 	struct zone *zone;
4066 	struct pglist_data *last_pgdat = NULL;
4067 	bool last_pgdat_dirty_ok = false;
4068 	bool no_fallback;
4069 
4070 retry:
4071 	/*
4072 	 * Scan zonelist, looking for a zone with enough free.
4073 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4074 	 */
4075 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4076 	z = ac->preferred_zoneref;
4077 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4078 					ac->nodemask) {
4079 		struct page *page;
4080 		unsigned long mark;
4081 
4082 		if (cpusets_enabled() &&
4083 			(alloc_flags & ALLOC_CPUSET) &&
4084 			!__cpuset_zone_allowed(zone, gfp_mask))
4085 				continue;
4086 		/*
4087 		 * When allocating a page cache page for writing, we
4088 		 * want to get it from a node that is within its dirty
4089 		 * limit, such that no single node holds more than its
4090 		 * proportional share of globally allowed dirty pages.
4091 		 * The dirty limits take into account the node's
4092 		 * lowmem reserves and high watermark so that kswapd
4093 		 * should be able to balance it without having to
4094 		 * write pages from its LRU list.
4095 		 *
4096 		 * XXX: For now, allow allocations to potentially
4097 		 * exceed the per-node dirty limit in the slowpath
4098 		 * (spread_dirty_pages unset) before going into reclaim,
4099 		 * which is important when on a NUMA setup the allowed
4100 		 * nodes are together not big enough to reach the
4101 		 * global limit.  The proper fix for these situations
4102 		 * will require awareness of nodes in the
4103 		 * dirty-throttling and the flusher threads.
4104 		 */
4105 		if (ac->spread_dirty_pages) {
4106 			if (last_pgdat != zone->zone_pgdat) {
4107 				last_pgdat = zone->zone_pgdat;
4108 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4109 			}
4110 
4111 			if (!last_pgdat_dirty_ok)
4112 				continue;
4113 		}
4114 
4115 		if (no_fallback && nr_online_nodes > 1 &&
4116 		    zone != ac->preferred_zoneref->zone) {
4117 			int local_nid;
4118 
4119 			/*
4120 			 * If moving to a remote node, retry but allow
4121 			 * fragmenting fallbacks. Locality is more important
4122 			 * than fragmentation avoidance.
4123 			 */
4124 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4125 			if (zone_to_nid(zone) != local_nid) {
4126 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4127 				goto retry;
4128 			}
4129 		}
4130 
4131 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4132 		if (!zone_watermark_fast(zone, order, mark,
4133 				       ac->highest_zoneidx, alloc_flags,
4134 				       gfp_mask)) {
4135 			int ret;
4136 
4137 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4138 			/*
4139 			 * Watermark failed for this zone, but see if we can
4140 			 * grow this zone if it contains deferred pages.
4141 			 */
4142 			if (static_branch_unlikely(&deferred_pages)) {
4143 				if (_deferred_grow_zone(zone, order))
4144 					goto try_this_zone;
4145 			}
4146 #endif
4147 			/* Checked here to keep the fast path fast */
4148 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4149 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4150 				goto try_this_zone;
4151 
4152 			if (!node_reclaim_enabled() ||
4153 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4154 				continue;
4155 
4156 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4157 			switch (ret) {
4158 			case NODE_RECLAIM_NOSCAN:
4159 				/* did not scan */
4160 				continue;
4161 			case NODE_RECLAIM_FULL:
4162 				/* scanned but unreclaimable */
4163 				continue;
4164 			default:
4165 				/* did we reclaim enough */
4166 				if (zone_watermark_ok(zone, order, mark,
4167 					ac->highest_zoneidx, alloc_flags))
4168 					goto try_this_zone;
4169 
4170 				continue;
4171 			}
4172 		}
4173 
4174 try_this_zone:
4175 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4176 				gfp_mask, alloc_flags, ac->migratetype);
4177 		if (page) {
4178 			prep_new_page(page, order, gfp_mask, alloc_flags);
4179 
4180 			/*
4181 			 * If this is a high-order atomic allocation then check
4182 			 * if the pageblock should be reserved for the future
4183 			 */
4184 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4185 				reserve_highatomic_pageblock(page, zone, order);
4186 
4187 			return page;
4188 		} else {
4189 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4190 			/* Try again if zone has deferred pages */
4191 			if (static_branch_unlikely(&deferred_pages)) {
4192 				if (_deferred_grow_zone(zone, order))
4193 					goto try_this_zone;
4194 			}
4195 #endif
4196 		}
4197 	}
4198 
4199 	/*
4200 	 * It's possible on a UMA machine to get through all zones that are
4201 	 * fragmented. If avoiding fragmentation, reset and try again.
4202 	 */
4203 	if (no_fallback) {
4204 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4205 		goto retry;
4206 	}
4207 
4208 	return NULL;
4209 }
4210 
4211 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4212 {
4213 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4214 
4215 	/*
4216 	 * This documents exceptions given to allocations in certain
4217 	 * contexts that are allowed to allocate outside current's set
4218 	 * of allowed nodes.
4219 	 */
4220 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4221 		if (tsk_is_oom_victim(current) ||
4222 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4223 			filter &= ~SHOW_MEM_FILTER_NODES;
4224 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4225 		filter &= ~SHOW_MEM_FILTER_NODES;
4226 
4227 	show_mem(filter, nodemask);
4228 }
4229 
4230 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4231 {
4232 	struct va_format vaf;
4233 	va_list args;
4234 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4235 
4236 	if ((gfp_mask & __GFP_NOWARN) ||
4237 	     !__ratelimit(&nopage_rs) ||
4238 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4239 		return;
4240 
4241 	va_start(args, fmt);
4242 	vaf.fmt = fmt;
4243 	vaf.va = &args;
4244 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4245 			current->comm, &vaf, gfp_mask, &gfp_mask,
4246 			nodemask_pr_args(nodemask));
4247 	va_end(args);
4248 
4249 	cpuset_print_current_mems_allowed();
4250 	pr_cont("\n");
4251 	dump_stack();
4252 	warn_alloc_show_mem(gfp_mask, nodemask);
4253 }
4254 
4255 static inline struct page *
4256 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4257 			      unsigned int alloc_flags,
4258 			      const struct alloc_context *ac)
4259 {
4260 	struct page *page;
4261 
4262 	page = get_page_from_freelist(gfp_mask, order,
4263 			alloc_flags|ALLOC_CPUSET, ac);
4264 	/*
4265 	 * fallback to ignore cpuset restriction if our nodes
4266 	 * are depleted
4267 	 */
4268 	if (!page)
4269 		page = get_page_from_freelist(gfp_mask, order,
4270 				alloc_flags, ac);
4271 
4272 	return page;
4273 }
4274 
4275 static inline struct page *
4276 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4277 	const struct alloc_context *ac, unsigned long *did_some_progress)
4278 {
4279 	struct oom_control oc = {
4280 		.zonelist = ac->zonelist,
4281 		.nodemask = ac->nodemask,
4282 		.memcg = NULL,
4283 		.gfp_mask = gfp_mask,
4284 		.order = order,
4285 	};
4286 	struct page *page;
4287 
4288 	*did_some_progress = 0;
4289 
4290 	/*
4291 	 * Acquire the oom lock.  If that fails, somebody else is
4292 	 * making progress for us.
4293 	 */
4294 	if (!mutex_trylock(&oom_lock)) {
4295 		*did_some_progress = 1;
4296 		schedule_timeout_uninterruptible(1);
4297 		return NULL;
4298 	}
4299 
4300 	/*
4301 	 * Go through the zonelist yet one more time, keep very high watermark
4302 	 * here, this is only to catch a parallel oom killing, we must fail if
4303 	 * we're still under heavy pressure. But make sure that this reclaim
4304 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4305 	 * allocation which will never fail due to oom_lock already held.
4306 	 */
4307 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4308 				      ~__GFP_DIRECT_RECLAIM, order,
4309 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4310 	if (page)
4311 		goto out;
4312 
4313 	/* Coredumps can quickly deplete all memory reserves */
4314 	if (current->flags & PF_DUMPCORE)
4315 		goto out;
4316 	/* The OOM killer will not help higher order allocs */
4317 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4318 		goto out;
4319 	/*
4320 	 * We have already exhausted all our reclaim opportunities without any
4321 	 * success so it is time to admit defeat. We will skip the OOM killer
4322 	 * because it is very likely that the caller has a more reasonable
4323 	 * fallback than shooting a random task.
4324 	 *
4325 	 * The OOM killer may not free memory on a specific node.
4326 	 */
4327 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4328 		goto out;
4329 	/* The OOM killer does not needlessly kill tasks for lowmem */
4330 	if (ac->highest_zoneidx < ZONE_NORMAL)
4331 		goto out;
4332 	if (pm_suspended_storage())
4333 		goto out;
4334 	/*
4335 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4336 	 * other request to make a forward progress.
4337 	 * We are in an unfortunate situation where out_of_memory cannot
4338 	 * do much for this context but let's try it to at least get
4339 	 * access to memory reserved if the current task is killed (see
4340 	 * out_of_memory). Once filesystems are ready to handle allocation
4341 	 * failures more gracefully we should just bail out here.
4342 	 */
4343 
4344 	/* Exhausted what can be done so it's blame time */
4345 	if (out_of_memory(&oc) ||
4346 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4347 		*did_some_progress = 1;
4348 
4349 		/*
4350 		 * Help non-failing allocations by giving them access to memory
4351 		 * reserves
4352 		 */
4353 		if (gfp_mask & __GFP_NOFAIL)
4354 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4355 					ALLOC_NO_WATERMARKS, ac);
4356 	}
4357 out:
4358 	mutex_unlock(&oom_lock);
4359 	return page;
4360 }
4361 
4362 /*
4363  * Maximum number of compaction retries with a progress before OOM
4364  * killer is consider as the only way to move forward.
4365  */
4366 #define MAX_COMPACT_RETRIES 16
4367 
4368 #ifdef CONFIG_COMPACTION
4369 /* Try memory compaction for high-order allocations before reclaim */
4370 static struct page *
4371 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4372 		unsigned int alloc_flags, const struct alloc_context *ac,
4373 		enum compact_priority prio, enum compact_result *compact_result)
4374 {
4375 	struct page *page = NULL;
4376 	unsigned long pflags;
4377 	unsigned int noreclaim_flag;
4378 
4379 	if (!order)
4380 		return NULL;
4381 
4382 	psi_memstall_enter(&pflags);
4383 	delayacct_compact_start();
4384 	noreclaim_flag = memalloc_noreclaim_save();
4385 
4386 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4387 								prio, &page);
4388 
4389 	memalloc_noreclaim_restore(noreclaim_flag);
4390 	psi_memstall_leave(&pflags);
4391 	delayacct_compact_end();
4392 
4393 	if (*compact_result == COMPACT_SKIPPED)
4394 		return NULL;
4395 	/*
4396 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4397 	 * count a compaction stall
4398 	 */
4399 	count_vm_event(COMPACTSTALL);
4400 
4401 	/* Prep a captured page if available */
4402 	if (page)
4403 		prep_new_page(page, order, gfp_mask, alloc_flags);
4404 
4405 	/* Try get a page from the freelist if available */
4406 	if (!page)
4407 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4408 
4409 	if (page) {
4410 		struct zone *zone = page_zone(page);
4411 
4412 		zone->compact_blockskip_flush = false;
4413 		compaction_defer_reset(zone, order, true);
4414 		count_vm_event(COMPACTSUCCESS);
4415 		return page;
4416 	}
4417 
4418 	/*
4419 	 * It's bad if compaction run occurs and fails. The most likely reason
4420 	 * is that pages exist, but not enough to satisfy watermarks.
4421 	 */
4422 	count_vm_event(COMPACTFAIL);
4423 
4424 	cond_resched();
4425 
4426 	return NULL;
4427 }
4428 
4429 static inline bool
4430 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4431 		     enum compact_result compact_result,
4432 		     enum compact_priority *compact_priority,
4433 		     int *compaction_retries)
4434 {
4435 	int max_retries = MAX_COMPACT_RETRIES;
4436 	int min_priority;
4437 	bool ret = false;
4438 	int retries = *compaction_retries;
4439 	enum compact_priority priority = *compact_priority;
4440 
4441 	if (!order)
4442 		return false;
4443 
4444 	if (fatal_signal_pending(current))
4445 		return false;
4446 
4447 	if (compaction_made_progress(compact_result))
4448 		(*compaction_retries)++;
4449 
4450 	/*
4451 	 * compaction considers all the zone as desperately out of memory
4452 	 * so it doesn't really make much sense to retry except when the
4453 	 * failure could be caused by insufficient priority
4454 	 */
4455 	if (compaction_failed(compact_result))
4456 		goto check_priority;
4457 
4458 	/*
4459 	 * compaction was skipped because there are not enough order-0 pages
4460 	 * to work with, so we retry only if it looks like reclaim can help.
4461 	 */
4462 	if (compaction_needs_reclaim(compact_result)) {
4463 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4464 		goto out;
4465 	}
4466 
4467 	/*
4468 	 * make sure the compaction wasn't deferred or didn't bail out early
4469 	 * due to locks contention before we declare that we should give up.
4470 	 * But the next retry should use a higher priority if allowed, so
4471 	 * we don't just keep bailing out endlessly.
4472 	 */
4473 	if (compaction_withdrawn(compact_result)) {
4474 		goto check_priority;
4475 	}
4476 
4477 	/*
4478 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4479 	 * costly ones because they are de facto nofail and invoke OOM
4480 	 * killer to move on while costly can fail and users are ready
4481 	 * to cope with that. 1/4 retries is rather arbitrary but we
4482 	 * would need much more detailed feedback from compaction to
4483 	 * make a better decision.
4484 	 */
4485 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4486 		max_retries /= 4;
4487 	if (*compaction_retries <= max_retries) {
4488 		ret = true;
4489 		goto out;
4490 	}
4491 
4492 	/*
4493 	 * Make sure there are attempts at the highest priority if we exhausted
4494 	 * all retries or failed at the lower priorities.
4495 	 */
4496 check_priority:
4497 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4498 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4499 
4500 	if (*compact_priority > min_priority) {
4501 		(*compact_priority)--;
4502 		*compaction_retries = 0;
4503 		ret = true;
4504 	}
4505 out:
4506 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4507 	return ret;
4508 }
4509 #else
4510 static inline struct page *
4511 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4512 		unsigned int alloc_flags, const struct alloc_context *ac,
4513 		enum compact_priority prio, enum compact_result *compact_result)
4514 {
4515 	*compact_result = COMPACT_SKIPPED;
4516 	return NULL;
4517 }
4518 
4519 static inline bool
4520 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4521 		     enum compact_result compact_result,
4522 		     enum compact_priority *compact_priority,
4523 		     int *compaction_retries)
4524 {
4525 	struct zone *zone;
4526 	struct zoneref *z;
4527 
4528 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4529 		return false;
4530 
4531 	/*
4532 	 * There are setups with compaction disabled which would prefer to loop
4533 	 * inside the allocator rather than hit the oom killer prematurely.
4534 	 * Let's give them a good hope and keep retrying while the order-0
4535 	 * watermarks are OK.
4536 	 */
4537 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4538 				ac->highest_zoneidx, ac->nodemask) {
4539 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4540 					ac->highest_zoneidx, alloc_flags))
4541 			return true;
4542 	}
4543 	return false;
4544 }
4545 #endif /* CONFIG_COMPACTION */
4546 
4547 #ifdef CONFIG_LOCKDEP
4548 static struct lockdep_map __fs_reclaim_map =
4549 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4550 
4551 static bool __need_reclaim(gfp_t gfp_mask)
4552 {
4553 	/* no reclaim without waiting on it */
4554 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4555 		return false;
4556 
4557 	/* this guy won't enter reclaim */
4558 	if (current->flags & PF_MEMALLOC)
4559 		return false;
4560 
4561 	if (gfp_mask & __GFP_NOLOCKDEP)
4562 		return false;
4563 
4564 	return true;
4565 }
4566 
4567 void __fs_reclaim_acquire(unsigned long ip)
4568 {
4569 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4570 }
4571 
4572 void __fs_reclaim_release(unsigned long ip)
4573 {
4574 	lock_release(&__fs_reclaim_map, ip);
4575 }
4576 
4577 void fs_reclaim_acquire(gfp_t gfp_mask)
4578 {
4579 	gfp_mask = current_gfp_context(gfp_mask);
4580 
4581 	if (__need_reclaim(gfp_mask)) {
4582 		if (gfp_mask & __GFP_FS)
4583 			__fs_reclaim_acquire(_RET_IP_);
4584 
4585 #ifdef CONFIG_MMU_NOTIFIER
4586 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4587 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4588 #endif
4589 
4590 	}
4591 }
4592 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4593 
4594 void fs_reclaim_release(gfp_t gfp_mask)
4595 {
4596 	gfp_mask = current_gfp_context(gfp_mask);
4597 
4598 	if (__need_reclaim(gfp_mask)) {
4599 		if (gfp_mask & __GFP_FS)
4600 			__fs_reclaim_release(_RET_IP_);
4601 	}
4602 }
4603 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4604 #endif
4605 
4606 /* Perform direct synchronous page reclaim */
4607 static unsigned long
4608 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4609 					const struct alloc_context *ac)
4610 {
4611 	unsigned int noreclaim_flag;
4612 	unsigned long progress;
4613 
4614 	cond_resched();
4615 
4616 	/* We now go into synchronous reclaim */
4617 	cpuset_memory_pressure_bump();
4618 	fs_reclaim_acquire(gfp_mask);
4619 	noreclaim_flag = memalloc_noreclaim_save();
4620 
4621 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4622 								ac->nodemask);
4623 
4624 	memalloc_noreclaim_restore(noreclaim_flag);
4625 	fs_reclaim_release(gfp_mask);
4626 
4627 	cond_resched();
4628 
4629 	return progress;
4630 }
4631 
4632 /* The really slow allocator path where we enter direct reclaim */
4633 static inline struct page *
4634 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4635 		unsigned int alloc_flags, const struct alloc_context *ac,
4636 		unsigned long *did_some_progress)
4637 {
4638 	struct page *page = NULL;
4639 	unsigned long pflags;
4640 	bool drained = false;
4641 
4642 	psi_memstall_enter(&pflags);
4643 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4644 	if (unlikely(!(*did_some_progress)))
4645 		goto out;
4646 
4647 retry:
4648 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4649 
4650 	/*
4651 	 * If an allocation failed after direct reclaim, it could be because
4652 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4653 	 * Shrink them and try again
4654 	 */
4655 	if (!page && !drained) {
4656 		unreserve_highatomic_pageblock(ac, false);
4657 		drain_all_pages(NULL);
4658 		drained = true;
4659 		goto retry;
4660 	}
4661 out:
4662 	psi_memstall_leave(&pflags);
4663 
4664 	return page;
4665 }
4666 
4667 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4668 			     const struct alloc_context *ac)
4669 {
4670 	struct zoneref *z;
4671 	struct zone *zone;
4672 	pg_data_t *last_pgdat = NULL;
4673 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4674 
4675 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4676 					ac->nodemask) {
4677 		if (!managed_zone(zone))
4678 			continue;
4679 		if (last_pgdat != zone->zone_pgdat) {
4680 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4681 			last_pgdat = zone->zone_pgdat;
4682 		}
4683 	}
4684 }
4685 
4686 static inline unsigned int
4687 gfp_to_alloc_flags(gfp_t gfp_mask)
4688 {
4689 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4690 
4691 	/*
4692 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4693 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4694 	 * to save two branches.
4695 	 */
4696 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4697 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4698 
4699 	/*
4700 	 * The caller may dip into page reserves a bit more if the caller
4701 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4702 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4703 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4704 	 */
4705 	alloc_flags |= (__force int)
4706 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4707 
4708 	if (gfp_mask & __GFP_ATOMIC) {
4709 		/*
4710 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4711 		 * if it can't schedule.
4712 		 */
4713 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4714 			alloc_flags |= ALLOC_HARDER;
4715 		/*
4716 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4717 		 * comment for __cpuset_node_allowed().
4718 		 */
4719 		alloc_flags &= ~ALLOC_CPUSET;
4720 	} else if (unlikely(rt_task(current)) && in_task())
4721 		alloc_flags |= ALLOC_HARDER;
4722 
4723 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4724 
4725 	return alloc_flags;
4726 }
4727 
4728 static bool oom_reserves_allowed(struct task_struct *tsk)
4729 {
4730 	if (!tsk_is_oom_victim(tsk))
4731 		return false;
4732 
4733 	/*
4734 	 * !MMU doesn't have oom reaper so give access to memory reserves
4735 	 * only to the thread with TIF_MEMDIE set
4736 	 */
4737 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4738 		return false;
4739 
4740 	return true;
4741 }
4742 
4743 /*
4744  * Distinguish requests which really need access to full memory
4745  * reserves from oom victims which can live with a portion of it
4746  */
4747 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4748 {
4749 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4750 		return 0;
4751 	if (gfp_mask & __GFP_MEMALLOC)
4752 		return ALLOC_NO_WATERMARKS;
4753 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4754 		return ALLOC_NO_WATERMARKS;
4755 	if (!in_interrupt()) {
4756 		if (current->flags & PF_MEMALLOC)
4757 			return ALLOC_NO_WATERMARKS;
4758 		else if (oom_reserves_allowed(current))
4759 			return ALLOC_OOM;
4760 	}
4761 
4762 	return 0;
4763 }
4764 
4765 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4766 {
4767 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4768 }
4769 
4770 /*
4771  * Checks whether it makes sense to retry the reclaim to make a forward progress
4772  * for the given allocation request.
4773  *
4774  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4775  * without success, or when we couldn't even meet the watermark if we
4776  * reclaimed all remaining pages on the LRU lists.
4777  *
4778  * Returns true if a retry is viable or false to enter the oom path.
4779  */
4780 static inline bool
4781 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4782 		     struct alloc_context *ac, int alloc_flags,
4783 		     bool did_some_progress, int *no_progress_loops)
4784 {
4785 	struct zone *zone;
4786 	struct zoneref *z;
4787 	bool ret = false;
4788 
4789 	/*
4790 	 * Costly allocations might have made a progress but this doesn't mean
4791 	 * their order will become available due to high fragmentation so
4792 	 * always increment the no progress counter for them
4793 	 */
4794 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4795 		*no_progress_loops = 0;
4796 	else
4797 		(*no_progress_loops)++;
4798 
4799 	/*
4800 	 * Make sure we converge to OOM if we cannot make any progress
4801 	 * several times in the row.
4802 	 */
4803 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4804 		/* Before OOM, exhaust highatomic_reserve */
4805 		return unreserve_highatomic_pageblock(ac, true);
4806 	}
4807 
4808 	/*
4809 	 * Keep reclaiming pages while there is a chance this will lead
4810 	 * somewhere.  If none of the target zones can satisfy our allocation
4811 	 * request even if all reclaimable pages are considered then we are
4812 	 * screwed and have to go OOM.
4813 	 */
4814 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4815 				ac->highest_zoneidx, ac->nodemask) {
4816 		unsigned long available;
4817 		unsigned long reclaimable;
4818 		unsigned long min_wmark = min_wmark_pages(zone);
4819 		bool wmark;
4820 
4821 		available = reclaimable = zone_reclaimable_pages(zone);
4822 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4823 
4824 		/*
4825 		 * Would the allocation succeed if we reclaimed all
4826 		 * reclaimable pages?
4827 		 */
4828 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4829 				ac->highest_zoneidx, alloc_flags, available);
4830 		trace_reclaim_retry_zone(z, order, reclaimable,
4831 				available, min_wmark, *no_progress_loops, wmark);
4832 		if (wmark) {
4833 			ret = true;
4834 			break;
4835 		}
4836 	}
4837 
4838 	/*
4839 	 * Memory allocation/reclaim might be called from a WQ context and the
4840 	 * current implementation of the WQ concurrency control doesn't
4841 	 * recognize that a particular WQ is congested if the worker thread is
4842 	 * looping without ever sleeping. Therefore we have to do a short sleep
4843 	 * here rather than calling cond_resched().
4844 	 */
4845 	if (current->flags & PF_WQ_WORKER)
4846 		schedule_timeout_uninterruptible(1);
4847 	else
4848 		cond_resched();
4849 	return ret;
4850 }
4851 
4852 static inline bool
4853 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4854 {
4855 	/*
4856 	 * It's possible that cpuset's mems_allowed and the nodemask from
4857 	 * mempolicy don't intersect. This should be normally dealt with by
4858 	 * policy_nodemask(), but it's possible to race with cpuset update in
4859 	 * such a way the check therein was true, and then it became false
4860 	 * before we got our cpuset_mems_cookie here.
4861 	 * This assumes that for all allocations, ac->nodemask can come only
4862 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4863 	 * when it does not intersect with the cpuset restrictions) or the
4864 	 * caller can deal with a violated nodemask.
4865 	 */
4866 	if (cpusets_enabled() && ac->nodemask &&
4867 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4868 		ac->nodemask = NULL;
4869 		return true;
4870 	}
4871 
4872 	/*
4873 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4874 	 * possible to race with parallel threads in such a way that our
4875 	 * allocation can fail while the mask is being updated. If we are about
4876 	 * to fail, check if the cpuset changed during allocation and if so,
4877 	 * retry.
4878 	 */
4879 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4880 		return true;
4881 
4882 	return false;
4883 }
4884 
4885 static inline struct page *
4886 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4887 						struct alloc_context *ac)
4888 {
4889 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4890 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4891 	struct page *page = NULL;
4892 	unsigned int alloc_flags;
4893 	unsigned long did_some_progress;
4894 	enum compact_priority compact_priority;
4895 	enum compact_result compact_result;
4896 	int compaction_retries;
4897 	int no_progress_loops;
4898 	unsigned int cpuset_mems_cookie;
4899 	int reserve_flags;
4900 
4901 	/*
4902 	 * We also sanity check to catch abuse of atomic reserves being used by
4903 	 * callers that are not in atomic context.
4904 	 */
4905 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4906 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4907 		gfp_mask &= ~__GFP_ATOMIC;
4908 
4909 retry_cpuset:
4910 	compaction_retries = 0;
4911 	no_progress_loops = 0;
4912 	compact_priority = DEF_COMPACT_PRIORITY;
4913 	cpuset_mems_cookie = read_mems_allowed_begin();
4914 
4915 	/*
4916 	 * The fast path uses conservative alloc_flags to succeed only until
4917 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4918 	 * alloc_flags precisely. So we do that now.
4919 	 */
4920 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4921 
4922 	/*
4923 	 * We need to recalculate the starting point for the zonelist iterator
4924 	 * because we might have used different nodemask in the fast path, or
4925 	 * there was a cpuset modification and we are retrying - otherwise we
4926 	 * could end up iterating over non-eligible zones endlessly.
4927 	 */
4928 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4929 					ac->highest_zoneidx, ac->nodemask);
4930 	if (!ac->preferred_zoneref->zone)
4931 		goto nopage;
4932 
4933 	/*
4934 	 * Check for insane configurations where the cpuset doesn't contain
4935 	 * any suitable zone to satisfy the request - e.g. non-movable
4936 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4937 	 */
4938 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4939 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4940 					ac->highest_zoneidx,
4941 					&cpuset_current_mems_allowed);
4942 		if (!z->zone)
4943 			goto nopage;
4944 	}
4945 
4946 	if (alloc_flags & ALLOC_KSWAPD)
4947 		wake_all_kswapds(order, gfp_mask, ac);
4948 
4949 	/*
4950 	 * The adjusted alloc_flags might result in immediate success, so try
4951 	 * that first
4952 	 */
4953 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4954 	if (page)
4955 		goto got_pg;
4956 
4957 	/*
4958 	 * For costly allocations, try direct compaction first, as it's likely
4959 	 * that we have enough base pages and don't need to reclaim. For non-
4960 	 * movable high-order allocations, do that as well, as compaction will
4961 	 * try prevent permanent fragmentation by migrating from blocks of the
4962 	 * same migratetype.
4963 	 * Don't try this for allocations that are allowed to ignore
4964 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4965 	 */
4966 	if (can_direct_reclaim &&
4967 			(costly_order ||
4968 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4969 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4970 		page = __alloc_pages_direct_compact(gfp_mask, order,
4971 						alloc_flags, ac,
4972 						INIT_COMPACT_PRIORITY,
4973 						&compact_result);
4974 		if (page)
4975 			goto got_pg;
4976 
4977 		/*
4978 		 * Checks for costly allocations with __GFP_NORETRY, which
4979 		 * includes some THP page fault allocations
4980 		 */
4981 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4982 			/*
4983 			 * If allocating entire pageblock(s) and compaction
4984 			 * failed because all zones are below low watermarks
4985 			 * or is prohibited because it recently failed at this
4986 			 * order, fail immediately unless the allocator has
4987 			 * requested compaction and reclaim retry.
4988 			 *
4989 			 * Reclaim is
4990 			 *  - potentially very expensive because zones are far
4991 			 *    below their low watermarks or this is part of very
4992 			 *    bursty high order allocations,
4993 			 *  - not guaranteed to help because isolate_freepages()
4994 			 *    may not iterate over freed pages as part of its
4995 			 *    linear scan, and
4996 			 *  - unlikely to make entire pageblocks free on its
4997 			 *    own.
4998 			 */
4999 			if (compact_result == COMPACT_SKIPPED ||
5000 			    compact_result == COMPACT_DEFERRED)
5001 				goto nopage;
5002 
5003 			/*
5004 			 * Looks like reclaim/compaction is worth trying, but
5005 			 * sync compaction could be very expensive, so keep
5006 			 * using async compaction.
5007 			 */
5008 			compact_priority = INIT_COMPACT_PRIORITY;
5009 		}
5010 	}
5011 
5012 retry:
5013 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5014 	if (alloc_flags & ALLOC_KSWAPD)
5015 		wake_all_kswapds(order, gfp_mask, ac);
5016 
5017 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5018 	if (reserve_flags)
5019 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5020 
5021 	/*
5022 	 * Reset the nodemask and zonelist iterators if memory policies can be
5023 	 * ignored. These allocations are high priority and system rather than
5024 	 * user oriented.
5025 	 */
5026 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5027 		ac->nodemask = NULL;
5028 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5029 					ac->highest_zoneidx, ac->nodemask);
5030 	}
5031 
5032 	/* Attempt with potentially adjusted zonelist and alloc_flags */
5033 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5034 	if (page)
5035 		goto got_pg;
5036 
5037 	/* Caller is not willing to reclaim, we can't balance anything */
5038 	if (!can_direct_reclaim)
5039 		goto nopage;
5040 
5041 	/* Avoid recursion of direct reclaim */
5042 	if (current->flags & PF_MEMALLOC)
5043 		goto nopage;
5044 
5045 	/* Try direct reclaim and then allocating */
5046 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5047 							&did_some_progress);
5048 	if (page)
5049 		goto got_pg;
5050 
5051 	/* Try direct compaction and then allocating */
5052 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5053 					compact_priority, &compact_result);
5054 	if (page)
5055 		goto got_pg;
5056 
5057 	/* Do not loop if specifically requested */
5058 	if (gfp_mask & __GFP_NORETRY)
5059 		goto nopage;
5060 
5061 	/*
5062 	 * Do not retry costly high order allocations unless they are
5063 	 * __GFP_RETRY_MAYFAIL
5064 	 */
5065 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5066 		goto nopage;
5067 
5068 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5069 				 did_some_progress > 0, &no_progress_loops))
5070 		goto retry;
5071 
5072 	/*
5073 	 * It doesn't make any sense to retry for the compaction if the order-0
5074 	 * reclaim is not able to make any progress because the current
5075 	 * implementation of the compaction depends on the sufficient amount
5076 	 * of free memory (see __compaction_suitable)
5077 	 */
5078 	if (did_some_progress > 0 &&
5079 			should_compact_retry(ac, order, alloc_flags,
5080 				compact_result, &compact_priority,
5081 				&compaction_retries))
5082 		goto retry;
5083 
5084 
5085 	/* Deal with possible cpuset update races before we start OOM killing */
5086 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5087 		goto retry_cpuset;
5088 
5089 	/* Reclaim has failed us, start killing things */
5090 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5091 	if (page)
5092 		goto got_pg;
5093 
5094 	/* Avoid allocations with no watermarks from looping endlessly */
5095 	if (tsk_is_oom_victim(current) &&
5096 	    (alloc_flags & ALLOC_OOM ||
5097 	     (gfp_mask & __GFP_NOMEMALLOC)))
5098 		goto nopage;
5099 
5100 	/* Retry as long as the OOM killer is making progress */
5101 	if (did_some_progress) {
5102 		no_progress_loops = 0;
5103 		goto retry;
5104 	}
5105 
5106 nopage:
5107 	/* Deal with possible cpuset update races before we fail */
5108 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5109 		goto retry_cpuset;
5110 
5111 	/*
5112 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5113 	 * we always retry
5114 	 */
5115 	if (gfp_mask & __GFP_NOFAIL) {
5116 		/*
5117 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5118 		 * of any new users that actually require GFP_NOWAIT
5119 		 */
5120 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5121 			goto fail;
5122 
5123 		/*
5124 		 * PF_MEMALLOC request from this context is rather bizarre
5125 		 * because we cannot reclaim anything and only can loop waiting
5126 		 * for somebody to do a work for us
5127 		 */
5128 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5129 
5130 		/*
5131 		 * non failing costly orders are a hard requirement which we
5132 		 * are not prepared for much so let's warn about these users
5133 		 * so that we can identify them and convert them to something
5134 		 * else.
5135 		 */
5136 		WARN_ON_ONCE_GFP(order > PAGE_ALLOC_COSTLY_ORDER, gfp_mask);
5137 
5138 		/*
5139 		 * Help non-failing allocations by giving them access to memory
5140 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5141 		 * could deplete whole memory reserves which would just make
5142 		 * the situation worse
5143 		 */
5144 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5145 		if (page)
5146 			goto got_pg;
5147 
5148 		cond_resched();
5149 		goto retry;
5150 	}
5151 fail:
5152 	warn_alloc(gfp_mask, ac->nodemask,
5153 			"page allocation failure: order:%u", order);
5154 got_pg:
5155 	return page;
5156 }
5157 
5158 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5159 		int preferred_nid, nodemask_t *nodemask,
5160 		struct alloc_context *ac, gfp_t *alloc_gfp,
5161 		unsigned int *alloc_flags)
5162 {
5163 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5164 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5165 	ac->nodemask = nodemask;
5166 	ac->migratetype = gfp_migratetype(gfp_mask);
5167 
5168 	if (cpusets_enabled()) {
5169 		*alloc_gfp |= __GFP_HARDWALL;
5170 		/*
5171 		 * When we are in the interrupt context, it is irrelevant
5172 		 * to the current task context. It means that any node ok.
5173 		 */
5174 		if (in_task() && !ac->nodemask)
5175 			ac->nodemask = &cpuset_current_mems_allowed;
5176 		else
5177 			*alloc_flags |= ALLOC_CPUSET;
5178 	}
5179 
5180 	fs_reclaim_acquire(gfp_mask);
5181 	fs_reclaim_release(gfp_mask);
5182 
5183 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5184 
5185 	if (should_fail_alloc_page(gfp_mask, order))
5186 		return false;
5187 
5188 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5189 
5190 	/* Dirty zone balancing only done in the fast path */
5191 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5192 
5193 	/*
5194 	 * The preferred zone is used for statistics but crucially it is
5195 	 * also used as the starting point for the zonelist iterator. It
5196 	 * may get reset for allocations that ignore memory policies.
5197 	 */
5198 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5199 					ac->highest_zoneidx, ac->nodemask);
5200 
5201 	return true;
5202 }
5203 
5204 /*
5205  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5206  * @gfp: GFP flags for the allocation
5207  * @preferred_nid: The preferred NUMA node ID to allocate from
5208  * @nodemask: Set of nodes to allocate from, may be NULL
5209  * @nr_pages: The number of pages desired on the list or array
5210  * @page_list: Optional list to store the allocated pages
5211  * @page_array: Optional array to store the pages
5212  *
5213  * This is a batched version of the page allocator that attempts to
5214  * allocate nr_pages quickly. Pages are added to page_list if page_list
5215  * is not NULL, otherwise it is assumed that the page_array is valid.
5216  *
5217  * For lists, nr_pages is the number of pages that should be allocated.
5218  *
5219  * For arrays, only NULL elements are populated with pages and nr_pages
5220  * is the maximum number of pages that will be stored in the array.
5221  *
5222  * Returns the number of pages on the list or array.
5223  */
5224 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5225 			nodemask_t *nodemask, int nr_pages,
5226 			struct list_head *page_list,
5227 			struct page **page_array)
5228 {
5229 	struct page *page;
5230 	unsigned long flags;
5231 	struct zone *zone;
5232 	struct zoneref *z;
5233 	struct per_cpu_pages *pcp;
5234 	struct list_head *pcp_list;
5235 	struct alloc_context ac;
5236 	gfp_t alloc_gfp;
5237 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5238 	int nr_populated = 0, nr_account = 0;
5239 
5240 	/*
5241 	 * Skip populated array elements to determine if any pages need
5242 	 * to be allocated before disabling IRQs.
5243 	 */
5244 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5245 		nr_populated++;
5246 
5247 	/* No pages requested? */
5248 	if (unlikely(nr_pages <= 0))
5249 		goto out;
5250 
5251 	/* Already populated array? */
5252 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5253 		goto out;
5254 
5255 	/* Bulk allocator does not support memcg accounting. */
5256 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5257 		goto failed;
5258 
5259 	/* Use the single page allocator for one page. */
5260 	if (nr_pages - nr_populated == 1)
5261 		goto failed;
5262 
5263 #ifdef CONFIG_PAGE_OWNER
5264 	/*
5265 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5266 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5267 	 * removes much of the performance benefit of bulk allocation so
5268 	 * force the caller to allocate one page at a time as it'll have
5269 	 * similar performance to added complexity to the bulk allocator.
5270 	 */
5271 	if (static_branch_unlikely(&page_owner_inited))
5272 		goto failed;
5273 #endif
5274 
5275 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5276 	gfp &= gfp_allowed_mask;
5277 	alloc_gfp = gfp;
5278 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5279 		goto out;
5280 	gfp = alloc_gfp;
5281 
5282 	/* Find an allowed local zone that meets the low watermark. */
5283 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5284 		unsigned long mark;
5285 
5286 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5287 		    !__cpuset_zone_allowed(zone, gfp)) {
5288 			continue;
5289 		}
5290 
5291 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5292 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5293 			goto failed;
5294 		}
5295 
5296 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5297 		if (zone_watermark_fast(zone, 0,  mark,
5298 				zonelist_zone_idx(ac.preferred_zoneref),
5299 				alloc_flags, gfp)) {
5300 			break;
5301 		}
5302 	}
5303 
5304 	/*
5305 	 * If there are no allowed local zones that meets the watermarks then
5306 	 * try to allocate a single page and reclaim if necessary.
5307 	 */
5308 	if (unlikely(!zone))
5309 		goto failed;
5310 
5311 	/* Attempt the batch allocation */
5312 	local_lock_irqsave(&pagesets.lock, flags);
5313 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
5314 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5315 
5316 	while (nr_populated < nr_pages) {
5317 
5318 		/* Skip existing pages */
5319 		if (page_array && page_array[nr_populated]) {
5320 			nr_populated++;
5321 			continue;
5322 		}
5323 
5324 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5325 								pcp, pcp_list);
5326 		if (unlikely(!page)) {
5327 			/* Try and get at least one page */
5328 			if (!nr_populated)
5329 				goto failed_irq;
5330 			break;
5331 		}
5332 		nr_account++;
5333 
5334 		prep_new_page(page, 0, gfp, 0);
5335 		if (page_list)
5336 			list_add(&page->lru, page_list);
5337 		else
5338 			page_array[nr_populated] = page;
5339 		nr_populated++;
5340 	}
5341 
5342 	local_unlock_irqrestore(&pagesets.lock, flags);
5343 
5344 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5345 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5346 
5347 out:
5348 	return nr_populated;
5349 
5350 failed_irq:
5351 	local_unlock_irqrestore(&pagesets.lock, flags);
5352 
5353 failed:
5354 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5355 	if (page) {
5356 		if (page_list)
5357 			list_add(&page->lru, page_list);
5358 		else
5359 			page_array[nr_populated] = page;
5360 		nr_populated++;
5361 	}
5362 
5363 	goto out;
5364 }
5365 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5366 
5367 /*
5368  * This is the 'heart' of the zoned buddy allocator.
5369  */
5370 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5371 							nodemask_t *nodemask)
5372 {
5373 	struct page *page;
5374 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5375 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5376 	struct alloc_context ac = { };
5377 
5378 	/*
5379 	 * There are several places where we assume that the order value is sane
5380 	 * so bail out early if the request is out of bound.
5381 	 */
5382 	if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5383 		return NULL;
5384 
5385 	gfp &= gfp_allowed_mask;
5386 	/*
5387 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5388 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5389 	 * from a particular context which has been marked by
5390 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5391 	 * movable zones are not used during allocation.
5392 	 */
5393 	gfp = current_gfp_context(gfp);
5394 	alloc_gfp = gfp;
5395 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5396 			&alloc_gfp, &alloc_flags))
5397 		return NULL;
5398 
5399 	/*
5400 	 * Forbid the first pass from falling back to types that fragment
5401 	 * memory until all local zones are considered.
5402 	 */
5403 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5404 
5405 	/* First allocation attempt */
5406 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5407 	if (likely(page))
5408 		goto out;
5409 
5410 	alloc_gfp = gfp;
5411 	ac.spread_dirty_pages = false;
5412 
5413 	/*
5414 	 * Restore the original nodemask if it was potentially replaced with
5415 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5416 	 */
5417 	ac.nodemask = nodemask;
5418 
5419 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5420 
5421 out:
5422 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5423 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5424 		__free_pages(page, order);
5425 		page = NULL;
5426 	}
5427 
5428 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5429 
5430 	return page;
5431 }
5432 EXPORT_SYMBOL(__alloc_pages);
5433 
5434 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5435 		nodemask_t *nodemask)
5436 {
5437 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5438 			preferred_nid, nodemask);
5439 
5440 	if (page && order > 1)
5441 		prep_transhuge_page(page);
5442 	return (struct folio *)page;
5443 }
5444 EXPORT_SYMBOL(__folio_alloc);
5445 
5446 /*
5447  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5448  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5449  * you need to access high mem.
5450  */
5451 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5452 {
5453 	struct page *page;
5454 
5455 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5456 	if (!page)
5457 		return 0;
5458 	return (unsigned long) page_address(page);
5459 }
5460 EXPORT_SYMBOL(__get_free_pages);
5461 
5462 unsigned long get_zeroed_page(gfp_t gfp_mask)
5463 {
5464 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5465 }
5466 EXPORT_SYMBOL(get_zeroed_page);
5467 
5468 /**
5469  * __free_pages - Free pages allocated with alloc_pages().
5470  * @page: The page pointer returned from alloc_pages().
5471  * @order: The order of the allocation.
5472  *
5473  * This function can free multi-page allocations that are not compound
5474  * pages.  It does not check that the @order passed in matches that of
5475  * the allocation, so it is easy to leak memory.  Freeing more memory
5476  * than was allocated will probably emit a warning.
5477  *
5478  * If the last reference to this page is speculative, it will be released
5479  * by put_page() which only frees the first page of a non-compound
5480  * allocation.  To prevent the remaining pages from being leaked, we free
5481  * the subsequent pages here.  If you want to use the page's reference
5482  * count to decide when to free the allocation, you should allocate a
5483  * compound page, and use put_page() instead of __free_pages().
5484  *
5485  * Context: May be called in interrupt context or while holding a normal
5486  * spinlock, but not in NMI context or while holding a raw spinlock.
5487  */
5488 void __free_pages(struct page *page, unsigned int order)
5489 {
5490 	if (put_page_testzero(page))
5491 		free_the_page(page, order);
5492 	else if (!PageHead(page))
5493 		while (order-- > 0)
5494 			free_the_page(page + (1 << order), order);
5495 }
5496 EXPORT_SYMBOL(__free_pages);
5497 
5498 void free_pages(unsigned long addr, unsigned int order)
5499 {
5500 	if (addr != 0) {
5501 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5502 		__free_pages(virt_to_page((void *)addr), order);
5503 	}
5504 }
5505 
5506 EXPORT_SYMBOL(free_pages);
5507 
5508 /*
5509  * Page Fragment:
5510  *  An arbitrary-length arbitrary-offset area of memory which resides
5511  *  within a 0 or higher order page.  Multiple fragments within that page
5512  *  are individually refcounted, in the page's reference counter.
5513  *
5514  * The page_frag functions below provide a simple allocation framework for
5515  * page fragments.  This is used by the network stack and network device
5516  * drivers to provide a backing region of memory for use as either an
5517  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5518  */
5519 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5520 					     gfp_t gfp_mask)
5521 {
5522 	struct page *page = NULL;
5523 	gfp_t gfp = gfp_mask;
5524 
5525 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5526 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5527 		    __GFP_NOMEMALLOC;
5528 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5529 				PAGE_FRAG_CACHE_MAX_ORDER);
5530 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5531 #endif
5532 	if (unlikely(!page))
5533 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5534 
5535 	nc->va = page ? page_address(page) : NULL;
5536 
5537 	return page;
5538 }
5539 
5540 void __page_frag_cache_drain(struct page *page, unsigned int count)
5541 {
5542 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5543 
5544 	if (page_ref_sub_and_test(page, count))
5545 		free_the_page(page, compound_order(page));
5546 }
5547 EXPORT_SYMBOL(__page_frag_cache_drain);
5548 
5549 void *page_frag_alloc_align(struct page_frag_cache *nc,
5550 		      unsigned int fragsz, gfp_t gfp_mask,
5551 		      unsigned int align_mask)
5552 {
5553 	unsigned int size = PAGE_SIZE;
5554 	struct page *page;
5555 	int offset;
5556 
5557 	if (unlikely(!nc->va)) {
5558 refill:
5559 		page = __page_frag_cache_refill(nc, gfp_mask);
5560 		if (!page)
5561 			return NULL;
5562 
5563 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5564 		/* if size can vary use size else just use PAGE_SIZE */
5565 		size = nc->size;
5566 #endif
5567 		/* Even if we own the page, we do not use atomic_set().
5568 		 * This would break get_page_unless_zero() users.
5569 		 */
5570 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5571 
5572 		/* reset page count bias and offset to start of new frag */
5573 		nc->pfmemalloc = page_is_pfmemalloc(page);
5574 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5575 		nc->offset = size;
5576 	}
5577 
5578 	offset = nc->offset - fragsz;
5579 	if (unlikely(offset < 0)) {
5580 		page = virt_to_page(nc->va);
5581 
5582 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5583 			goto refill;
5584 
5585 		if (unlikely(nc->pfmemalloc)) {
5586 			free_the_page(page, compound_order(page));
5587 			goto refill;
5588 		}
5589 
5590 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5591 		/* if size can vary use size else just use PAGE_SIZE */
5592 		size = nc->size;
5593 #endif
5594 		/* OK, page count is 0, we can safely set it */
5595 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5596 
5597 		/* reset page count bias and offset to start of new frag */
5598 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5599 		offset = size - fragsz;
5600 	}
5601 
5602 	nc->pagecnt_bias--;
5603 	offset &= align_mask;
5604 	nc->offset = offset;
5605 
5606 	return nc->va + offset;
5607 }
5608 EXPORT_SYMBOL(page_frag_alloc_align);
5609 
5610 /*
5611  * Frees a page fragment allocated out of either a compound or order 0 page.
5612  */
5613 void page_frag_free(void *addr)
5614 {
5615 	struct page *page = virt_to_head_page(addr);
5616 
5617 	if (unlikely(put_page_testzero(page)))
5618 		free_the_page(page, compound_order(page));
5619 }
5620 EXPORT_SYMBOL(page_frag_free);
5621 
5622 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5623 		size_t size)
5624 {
5625 	if (addr) {
5626 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5627 		unsigned long used = addr + PAGE_ALIGN(size);
5628 
5629 		split_page(virt_to_page((void *)addr), order);
5630 		while (used < alloc_end) {
5631 			free_page(used);
5632 			used += PAGE_SIZE;
5633 		}
5634 	}
5635 	return (void *)addr;
5636 }
5637 
5638 /**
5639  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5640  * @size: the number of bytes to allocate
5641  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5642  *
5643  * This function is similar to alloc_pages(), except that it allocates the
5644  * minimum number of pages to satisfy the request.  alloc_pages() can only
5645  * allocate memory in power-of-two pages.
5646  *
5647  * This function is also limited by MAX_ORDER.
5648  *
5649  * Memory allocated by this function must be released by free_pages_exact().
5650  *
5651  * Return: pointer to the allocated area or %NULL in case of error.
5652  */
5653 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5654 {
5655 	unsigned int order = get_order(size);
5656 	unsigned long addr;
5657 
5658 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5659 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5660 
5661 	addr = __get_free_pages(gfp_mask, order);
5662 	return make_alloc_exact(addr, order, size);
5663 }
5664 EXPORT_SYMBOL(alloc_pages_exact);
5665 
5666 /**
5667  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5668  *			   pages on a node.
5669  * @nid: the preferred node ID where memory should be allocated
5670  * @size: the number of bytes to allocate
5671  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5672  *
5673  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5674  * back.
5675  *
5676  * Return: pointer to the allocated area or %NULL in case of error.
5677  */
5678 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5679 {
5680 	unsigned int order = get_order(size);
5681 	struct page *p;
5682 
5683 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5684 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5685 
5686 	p = alloc_pages_node(nid, gfp_mask, order);
5687 	if (!p)
5688 		return NULL;
5689 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5690 }
5691 
5692 /**
5693  * free_pages_exact - release memory allocated via alloc_pages_exact()
5694  * @virt: the value returned by alloc_pages_exact.
5695  * @size: size of allocation, same value as passed to alloc_pages_exact().
5696  *
5697  * Release the memory allocated by a previous call to alloc_pages_exact.
5698  */
5699 void free_pages_exact(void *virt, size_t size)
5700 {
5701 	unsigned long addr = (unsigned long)virt;
5702 	unsigned long end = addr + PAGE_ALIGN(size);
5703 
5704 	while (addr < end) {
5705 		free_page(addr);
5706 		addr += PAGE_SIZE;
5707 	}
5708 }
5709 EXPORT_SYMBOL(free_pages_exact);
5710 
5711 /**
5712  * nr_free_zone_pages - count number of pages beyond high watermark
5713  * @offset: The zone index of the highest zone
5714  *
5715  * nr_free_zone_pages() counts the number of pages which are beyond the
5716  * high watermark within all zones at or below a given zone index.  For each
5717  * zone, the number of pages is calculated as:
5718  *
5719  *     nr_free_zone_pages = managed_pages - high_pages
5720  *
5721  * Return: number of pages beyond high watermark.
5722  */
5723 static unsigned long nr_free_zone_pages(int offset)
5724 {
5725 	struct zoneref *z;
5726 	struct zone *zone;
5727 
5728 	/* Just pick one node, since fallback list is circular */
5729 	unsigned long sum = 0;
5730 
5731 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5732 
5733 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5734 		unsigned long size = zone_managed_pages(zone);
5735 		unsigned long high = high_wmark_pages(zone);
5736 		if (size > high)
5737 			sum += size - high;
5738 	}
5739 
5740 	return sum;
5741 }
5742 
5743 /**
5744  * nr_free_buffer_pages - count number of pages beyond high watermark
5745  *
5746  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5747  * watermark within ZONE_DMA and ZONE_NORMAL.
5748  *
5749  * Return: number of pages beyond high watermark within ZONE_DMA and
5750  * ZONE_NORMAL.
5751  */
5752 unsigned long nr_free_buffer_pages(void)
5753 {
5754 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5755 }
5756 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5757 
5758 static inline void show_node(struct zone *zone)
5759 {
5760 	if (IS_ENABLED(CONFIG_NUMA))
5761 		printk("Node %d ", zone_to_nid(zone));
5762 }
5763 
5764 long si_mem_available(void)
5765 {
5766 	long available;
5767 	unsigned long pagecache;
5768 	unsigned long wmark_low = 0;
5769 	unsigned long pages[NR_LRU_LISTS];
5770 	unsigned long reclaimable;
5771 	struct zone *zone;
5772 	int lru;
5773 
5774 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5775 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5776 
5777 	for_each_zone(zone)
5778 		wmark_low += low_wmark_pages(zone);
5779 
5780 	/*
5781 	 * Estimate the amount of memory available for userspace allocations,
5782 	 * without causing swapping.
5783 	 */
5784 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5785 
5786 	/*
5787 	 * Not all the page cache can be freed, otherwise the system will
5788 	 * start swapping. Assume at least half of the page cache, or the
5789 	 * low watermark worth of cache, needs to stay.
5790 	 */
5791 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5792 	pagecache -= min(pagecache / 2, wmark_low);
5793 	available += pagecache;
5794 
5795 	/*
5796 	 * Part of the reclaimable slab and other kernel memory consists of
5797 	 * items that are in use, and cannot be freed. Cap this estimate at the
5798 	 * low watermark.
5799 	 */
5800 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5801 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5802 	available += reclaimable - min(reclaimable / 2, wmark_low);
5803 
5804 	if (available < 0)
5805 		available = 0;
5806 	return available;
5807 }
5808 EXPORT_SYMBOL_GPL(si_mem_available);
5809 
5810 void si_meminfo(struct sysinfo *val)
5811 {
5812 	val->totalram = totalram_pages();
5813 	val->sharedram = global_node_page_state(NR_SHMEM);
5814 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5815 	val->bufferram = nr_blockdev_pages();
5816 	val->totalhigh = totalhigh_pages();
5817 	val->freehigh = nr_free_highpages();
5818 	val->mem_unit = PAGE_SIZE;
5819 }
5820 
5821 EXPORT_SYMBOL(si_meminfo);
5822 
5823 #ifdef CONFIG_NUMA
5824 void si_meminfo_node(struct sysinfo *val, int nid)
5825 {
5826 	int zone_type;		/* needs to be signed */
5827 	unsigned long managed_pages = 0;
5828 	unsigned long managed_highpages = 0;
5829 	unsigned long free_highpages = 0;
5830 	pg_data_t *pgdat = NODE_DATA(nid);
5831 
5832 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5833 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5834 	val->totalram = managed_pages;
5835 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5836 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5837 #ifdef CONFIG_HIGHMEM
5838 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5839 		struct zone *zone = &pgdat->node_zones[zone_type];
5840 
5841 		if (is_highmem(zone)) {
5842 			managed_highpages += zone_managed_pages(zone);
5843 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5844 		}
5845 	}
5846 	val->totalhigh = managed_highpages;
5847 	val->freehigh = free_highpages;
5848 #else
5849 	val->totalhigh = managed_highpages;
5850 	val->freehigh = free_highpages;
5851 #endif
5852 	val->mem_unit = PAGE_SIZE;
5853 }
5854 #endif
5855 
5856 /*
5857  * Determine whether the node should be displayed or not, depending on whether
5858  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5859  */
5860 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5861 {
5862 	if (!(flags & SHOW_MEM_FILTER_NODES))
5863 		return false;
5864 
5865 	/*
5866 	 * no node mask - aka implicit memory numa policy. Do not bother with
5867 	 * the synchronization - read_mems_allowed_begin - because we do not
5868 	 * have to be precise here.
5869 	 */
5870 	if (!nodemask)
5871 		nodemask = &cpuset_current_mems_allowed;
5872 
5873 	return !node_isset(nid, *nodemask);
5874 }
5875 
5876 #define K(x) ((x) << (PAGE_SHIFT-10))
5877 
5878 static void show_migration_types(unsigned char type)
5879 {
5880 	static const char types[MIGRATE_TYPES] = {
5881 		[MIGRATE_UNMOVABLE]	= 'U',
5882 		[MIGRATE_MOVABLE]	= 'M',
5883 		[MIGRATE_RECLAIMABLE]	= 'E',
5884 		[MIGRATE_HIGHATOMIC]	= 'H',
5885 #ifdef CONFIG_CMA
5886 		[MIGRATE_CMA]		= 'C',
5887 #endif
5888 #ifdef CONFIG_MEMORY_ISOLATION
5889 		[MIGRATE_ISOLATE]	= 'I',
5890 #endif
5891 	};
5892 	char tmp[MIGRATE_TYPES + 1];
5893 	char *p = tmp;
5894 	int i;
5895 
5896 	for (i = 0; i < MIGRATE_TYPES; i++) {
5897 		if (type & (1 << i))
5898 			*p++ = types[i];
5899 	}
5900 
5901 	*p = '\0';
5902 	printk(KERN_CONT "(%s) ", tmp);
5903 }
5904 
5905 /*
5906  * Show free area list (used inside shift_scroll-lock stuff)
5907  * We also calculate the percentage fragmentation. We do this by counting the
5908  * memory on each free list with the exception of the first item on the list.
5909  *
5910  * Bits in @filter:
5911  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5912  *   cpuset.
5913  */
5914 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5915 {
5916 	unsigned long free_pcp = 0;
5917 	int cpu;
5918 	struct zone *zone;
5919 	pg_data_t *pgdat;
5920 
5921 	for_each_populated_zone(zone) {
5922 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5923 			continue;
5924 
5925 		for_each_online_cpu(cpu)
5926 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5927 	}
5928 
5929 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5930 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5931 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5932 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5933 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5934 		" kernel_misc_reclaimable:%lu\n"
5935 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5936 		global_node_page_state(NR_ACTIVE_ANON),
5937 		global_node_page_state(NR_INACTIVE_ANON),
5938 		global_node_page_state(NR_ISOLATED_ANON),
5939 		global_node_page_state(NR_ACTIVE_FILE),
5940 		global_node_page_state(NR_INACTIVE_FILE),
5941 		global_node_page_state(NR_ISOLATED_FILE),
5942 		global_node_page_state(NR_UNEVICTABLE),
5943 		global_node_page_state(NR_FILE_DIRTY),
5944 		global_node_page_state(NR_WRITEBACK),
5945 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5946 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5947 		global_node_page_state(NR_FILE_MAPPED),
5948 		global_node_page_state(NR_SHMEM),
5949 		global_node_page_state(NR_PAGETABLE),
5950 		global_zone_page_state(NR_BOUNCE),
5951 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5952 		global_zone_page_state(NR_FREE_PAGES),
5953 		free_pcp,
5954 		global_zone_page_state(NR_FREE_CMA_PAGES));
5955 
5956 	for_each_online_pgdat(pgdat) {
5957 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5958 			continue;
5959 
5960 		printk("Node %d"
5961 			" active_anon:%lukB"
5962 			" inactive_anon:%lukB"
5963 			" active_file:%lukB"
5964 			" inactive_file:%lukB"
5965 			" unevictable:%lukB"
5966 			" isolated(anon):%lukB"
5967 			" isolated(file):%lukB"
5968 			" mapped:%lukB"
5969 			" dirty:%lukB"
5970 			" writeback:%lukB"
5971 			" shmem:%lukB"
5972 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5973 			" shmem_thp: %lukB"
5974 			" shmem_pmdmapped: %lukB"
5975 			" anon_thp: %lukB"
5976 #endif
5977 			" writeback_tmp:%lukB"
5978 			" kernel_stack:%lukB"
5979 #ifdef CONFIG_SHADOW_CALL_STACK
5980 			" shadow_call_stack:%lukB"
5981 #endif
5982 			" pagetables:%lukB"
5983 			" all_unreclaimable? %s"
5984 			"\n",
5985 			pgdat->node_id,
5986 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5987 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5988 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5989 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5990 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5991 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5992 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5993 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5994 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5995 			K(node_page_state(pgdat, NR_WRITEBACK)),
5996 			K(node_page_state(pgdat, NR_SHMEM)),
5997 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5998 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
5999 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6000 			K(node_page_state(pgdat, NR_ANON_THPS)),
6001 #endif
6002 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6003 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
6004 #ifdef CONFIG_SHADOW_CALL_STACK
6005 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
6006 #endif
6007 			K(node_page_state(pgdat, NR_PAGETABLE)),
6008 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6009 				"yes" : "no");
6010 	}
6011 
6012 	for_each_populated_zone(zone) {
6013 		int i;
6014 
6015 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6016 			continue;
6017 
6018 		free_pcp = 0;
6019 		for_each_online_cpu(cpu)
6020 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6021 
6022 		show_node(zone);
6023 		printk(KERN_CONT
6024 			"%s"
6025 			" free:%lukB"
6026 			" boost:%lukB"
6027 			" min:%lukB"
6028 			" low:%lukB"
6029 			" high:%lukB"
6030 			" reserved_highatomic:%luKB"
6031 			" active_anon:%lukB"
6032 			" inactive_anon:%lukB"
6033 			" active_file:%lukB"
6034 			" inactive_file:%lukB"
6035 			" unevictable:%lukB"
6036 			" writepending:%lukB"
6037 			" present:%lukB"
6038 			" managed:%lukB"
6039 			" mlocked:%lukB"
6040 			" bounce:%lukB"
6041 			" free_pcp:%lukB"
6042 			" local_pcp:%ukB"
6043 			" free_cma:%lukB"
6044 			"\n",
6045 			zone->name,
6046 			K(zone_page_state(zone, NR_FREE_PAGES)),
6047 			K(zone->watermark_boost),
6048 			K(min_wmark_pages(zone)),
6049 			K(low_wmark_pages(zone)),
6050 			K(high_wmark_pages(zone)),
6051 			K(zone->nr_reserved_highatomic),
6052 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6053 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6054 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6055 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6056 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6057 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6058 			K(zone->present_pages),
6059 			K(zone_managed_pages(zone)),
6060 			K(zone_page_state(zone, NR_MLOCK)),
6061 			K(zone_page_state(zone, NR_BOUNCE)),
6062 			K(free_pcp),
6063 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6064 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6065 		printk("lowmem_reserve[]:");
6066 		for (i = 0; i < MAX_NR_ZONES; i++)
6067 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6068 		printk(KERN_CONT "\n");
6069 	}
6070 
6071 	for_each_populated_zone(zone) {
6072 		unsigned int order;
6073 		unsigned long nr[MAX_ORDER], flags, total = 0;
6074 		unsigned char types[MAX_ORDER];
6075 
6076 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6077 			continue;
6078 		show_node(zone);
6079 		printk(KERN_CONT "%s: ", zone->name);
6080 
6081 		spin_lock_irqsave(&zone->lock, flags);
6082 		for (order = 0; order < MAX_ORDER; order++) {
6083 			struct free_area *area = &zone->free_area[order];
6084 			int type;
6085 
6086 			nr[order] = area->nr_free;
6087 			total += nr[order] << order;
6088 
6089 			types[order] = 0;
6090 			for (type = 0; type < MIGRATE_TYPES; type++) {
6091 				if (!free_area_empty(area, type))
6092 					types[order] |= 1 << type;
6093 			}
6094 		}
6095 		spin_unlock_irqrestore(&zone->lock, flags);
6096 		for (order = 0; order < MAX_ORDER; order++) {
6097 			printk(KERN_CONT "%lu*%lukB ",
6098 			       nr[order], K(1UL) << order);
6099 			if (nr[order])
6100 				show_migration_types(types[order]);
6101 		}
6102 		printk(KERN_CONT "= %lukB\n", K(total));
6103 	}
6104 
6105 	hugetlb_show_meminfo();
6106 
6107 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6108 
6109 	show_swap_cache_info();
6110 }
6111 
6112 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6113 {
6114 	zoneref->zone = zone;
6115 	zoneref->zone_idx = zone_idx(zone);
6116 }
6117 
6118 /*
6119  * Builds allocation fallback zone lists.
6120  *
6121  * Add all populated zones of a node to the zonelist.
6122  */
6123 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6124 {
6125 	struct zone *zone;
6126 	enum zone_type zone_type = MAX_NR_ZONES;
6127 	int nr_zones = 0;
6128 
6129 	do {
6130 		zone_type--;
6131 		zone = pgdat->node_zones + zone_type;
6132 		if (populated_zone(zone)) {
6133 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6134 			check_highest_zone(zone_type);
6135 		}
6136 	} while (zone_type);
6137 
6138 	return nr_zones;
6139 }
6140 
6141 #ifdef CONFIG_NUMA
6142 
6143 static int __parse_numa_zonelist_order(char *s)
6144 {
6145 	/*
6146 	 * We used to support different zonelists modes but they turned
6147 	 * out to be just not useful. Let's keep the warning in place
6148 	 * if somebody still use the cmd line parameter so that we do
6149 	 * not fail it silently
6150 	 */
6151 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6152 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6153 		return -EINVAL;
6154 	}
6155 	return 0;
6156 }
6157 
6158 char numa_zonelist_order[] = "Node";
6159 
6160 /*
6161  * sysctl handler for numa_zonelist_order
6162  */
6163 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6164 		void *buffer, size_t *length, loff_t *ppos)
6165 {
6166 	if (write)
6167 		return __parse_numa_zonelist_order(buffer);
6168 	return proc_dostring(table, write, buffer, length, ppos);
6169 }
6170 
6171 
6172 static int node_load[MAX_NUMNODES];
6173 
6174 /**
6175  * find_next_best_node - find the next node that should appear in a given node's fallback list
6176  * @node: node whose fallback list we're appending
6177  * @used_node_mask: nodemask_t of already used nodes
6178  *
6179  * We use a number of factors to determine which is the next node that should
6180  * appear on a given node's fallback list.  The node should not have appeared
6181  * already in @node's fallback list, and it should be the next closest node
6182  * according to the distance array (which contains arbitrary distance values
6183  * from each node to each node in the system), and should also prefer nodes
6184  * with no CPUs, since presumably they'll have very little allocation pressure
6185  * on them otherwise.
6186  *
6187  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6188  */
6189 int find_next_best_node(int node, nodemask_t *used_node_mask)
6190 {
6191 	int n, val;
6192 	int min_val = INT_MAX;
6193 	int best_node = NUMA_NO_NODE;
6194 
6195 	/* Use the local node if we haven't already */
6196 	if (!node_isset(node, *used_node_mask)) {
6197 		node_set(node, *used_node_mask);
6198 		return node;
6199 	}
6200 
6201 	for_each_node_state(n, N_MEMORY) {
6202 
6203 		/* Don't want a node to appear more than once */
6204 		if (node_isset(n, *used_node_mask))
6205 			continue;
6206 
6207 		/* Use the distance array to find the distance */
6208 		val = node_distance(node, n);
6209 
6210 		/* Penalize nodes under us ("prefer the next node") */
6211 		val += (n < node);
6212 
6213 		/* Give preference to headless and unused nodes */
6214 		if (!cpumask_empty(cpumask_of_node(n)))
6215 			val += PENALTY_FOR_NODE_WITH_CPUS;
6216 
6217 		/* Slight preference for less loaded node */
6218 		val *= MAX_NUMNODES;
6219 		val += node_load[n];
6220 
6221 		if (val < min_val) {
6222 			min_val = val;
6223 			best_node = n;
6224 		}
6225 	}
6226 
6227 	if (best_node >= 0)
6228 		node_set(best_node, *used_node_mask);
6229 
6230 	return best_node;
6231 }
6232 
6233 
6234 /*
6235  * Build zonelists ordered by node and zones within node.
6236  * This results in maximum locality--normal zone overflows into local
6237  * DMA zone, if any--but risks exhausting DMA zone.
6238  */
6239 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6240 		unsigned nr_nodes)
6241 {
6242 	struct zoneref *zonerefs;
6243 	int i;
6244 
6245 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6246 
6247 	for (i = 0; i < nr_nodes; i++) {
6248 		int nr_zones;
6249 
6250 		pg_data_t *node = NODE_DATA(node_order[i]);
6251 
6252 		nr_zones = build_zonerefs_node(node, zonerefs);
6253 		zonerefs += nr_zones;
6254 	}
6255 	zonerefs->zone = NULL;
6256 	zonerefs->zone_idx = 0;
6257 }
6258 
6259 /*
6260  * Build gfp_thisnode zonelists
6261  */
6262 static void build_thisnode_zonelists(pg_data_t *pgdat)
6263 {
6264 	struct zoneref *zonerefs;
6265 	int nr_zones;
6266 
6267 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6268 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6269 	zonerefs += nr_zones;
6270 	zonerefs->zone = NULL;
6271 	zonerefs->zone_idx = 0;
6272 }
6273 
6274 /*
6275  * Build zonelists ordered by zone and nodes within zones.
6276  * This results in conserving DMA zone[s] until all Normal memory is
6277  * exhausted, but results in overflowing to remote node while memory
6278  * may still exist in local DMA zone.
6279  */
6280 
6281 static void build_zonelists(pg_data_t *pgdat)
6282 {
6283 	static int node_order[MAX_NUMNODES];
6284 	int node, nr_nodes = 0;
6285 	nodemask_t used_mask = NODE_MASK_NONE;
6286 	int local_node, prev_node;
6287 
6288 	/* NUMA-aware ordering of nodes */
6289 	local_node = pgdat->node_id;
6290 	prev_node = local_node;
6291 
6292 	memset(node_order, 0, sizeof(node_order));
6293 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6294 		/*
6295 		 * We don't want to pressure a particular node.
6296 		 * So adding penalty to the first node in same
6297 		 * distance group to make it round-robin.
6298 		 */
6299 		if (node_distance(local_node, node) !=
6300 		    node_distance(local_node, prev_node))
6301 			node_load[node] += 1;
6302 
6303 		node_order[nr_nodes++] = node;
6304 		prev_node = node;
6305 	}
6306 
6307 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6308 	build_thisnode_zonelists(pgdat);
6309 	pr_info("Fallback order for Node %d: ", local_node);
6310 	for (node = 0; node < nr_nodes; node++)
6311 		pr_cont("%d ", node_order[node]);
6312 	pr_cont("\n");
6313 }
6314 
6315 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6316 /*
6317  * Return node id of node used for "local" allocations.
6318  * I.e., first node id of first zone in arg node's generic zonelist.
6319  * Used for initializing percpu 'numa_mem', which is used primarily
6320  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6321  */
6322 int local_memory_node(int node)
6323 {
6324 	struct zoneref *z;
6325 
6326 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6327 				   gfp_zone(GFP_KERNEL),
6328 				   NULL);
6329 	return zone_to_nid(z->zone);
6330 }
6331 #endif
6332 
6333 static void setup_min_unmapped_ratio(void);
6334 static void setup_min_slab_ratio(void);
6335 #else	/* CONFIG_NUMA */
6336 
6337 static void build_zonelists(pg_data_t *pgdat)
6338 {
6339 	int node, local_node;
6340 	struct zoneref *zonerefs;
6341 	int nr_zones;
6342 
6343 	local_node = pgdat->node_id;
6344 
6345 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6346 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6347 	zonerefs += nr_zones;
6348 
6349 	/*
6350 	 * Now we build the zonelist so that it contains the zones
6351 	 * of all the other nodes.
6352 	 * We don't want to pressure a particular node, so when
6353 	 * building the zones for node N, we make sure that the
6354 	 * zones coming right after the local ones are those from
6355 	 * node N+1 (modulo N)
6356 	 */
6357 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6358 		if (!node_online(node))
6359 			continue;
6360 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6361 		zonerefs += nr_zones;
6362 	}
6363 	for (node = 0; node < local_node; node++) {
6364 		if (!node_online(node))
6365 			continue;
6366 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6367 		zonerefs += nr_zones;
6368 	}
6369 
6370 	zonerefs->zone = NULL;
6371 	zonerefs->zone_idx = 0;
6372 }
6373 
6374 #endif	/* CONFIG_NUMA */
6375 
6376 /*
6377  * Boot pageset table. One per cpu which is going to be used for all
6378  * zones and all nodes. The parameters will be set in such a way
6379  * that an item put on a list will immediately be handed over to
6380  * the buddy list. This is safe since pageset manipulation is done
6381  * with interrupts disabled.
6382  *
6383  * The boot_pagesets must be kept even after bootup is complete for
6384  * unused processors and/or zones. They do play a role for bootstrapping
6385  * hotplugged processors.
6386  *
6387  * zoneinfo_show() and maybe other functions do
6388  * not check if the processor is online before following the pageset pointer.
6389  * Other parts of the kernel may not check if the zone is available.
6390  */
6391 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6392 /* These effectively disable the pcplists in the boot pageset completely */
6393 #define BOOT_PAGESET_HIGH	0
6394 #define BOOT_PAGESET_BATCH	1
6395 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6396 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6397 DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6398 
6399 static void __build_all_zonelists(void *data)
6400 {
6401 	int nid;
6402 	int __maybe_unused cpu;
6403 	pg_data_t *self = data;
6404 	static DEFINE_SPINLOCK(lock);
6405 
6406 	spin_lock(&lock);
6407 
6408 #ifdef CONFIG_NUMA
6409 	memset(node_load, 0, sizeof(node_load));
6410 #endif
6411 
6412 	/*
6413 	 * This node is hotadded and no memory is yet present.   So just
6414 	 * building zonelists is fine - no need to touch other nodes.
6415 	 */
6416 	if (self && !node_online(self->node_id)) {
6417 		build_zonelists(self);
6418 	} else {
6419 		/*
6420 		 * All possible nodes have pgdat preallocated
6421 		 * in free_area_init
6422 		 */
6423 		for_each_node(nid) {
6424 			pg_data_t *pgdat = NODE_DATA(nid);
6425 
6426 			build_zonelists(pgdat);
6427 		}
6428 
6429 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6430 		/*
6431 		 * We now know the "local memory node" for each node--
6432 		 * i.e., the node of the first zone in the generic zonelist.
6433 		 * Set up numa_mem percpu variable for on-line cpus.  During
6434 		 * boot, only the boot cpu should be on-line;  we'll init the
6435 		 * secondary cpus' numa_mem as they come on-line.  During
6436 		 * node/memory hotplug, we'll fixup all on-line cpus.
6437 		 */
6438 		for_each_online_cpu(cpu)
6439 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6440 #endif
6441 	}
6442 
6443 	spin_unlock(&lock);
6444 }
6445 
6446 static noinline void __init
6447 build_all_zonelists_init(void)
6448 {
6449 	int cpu;
6450 
6451 	__build_all_zonelists(NULL);
6452 
6453 	/*
6454 	 * Initialize the boot_pagesets that are going to be used
6455 	 * for bootstrapping processors. The real pagesets for
6456 	 * each zone will be allocated later when the per cpu
6457 	 * allocator is available.
6458 	 *
6459 	 * boot_pagesets are used also for bootstrapping offline
6460 	 * cpus if the system is already booted because the pagesets
6461 	 * are needed to initialize allocators on a specific cpu too.
6462 	 * F.e. the percpu allocator needs the page allocator which
6463 	 * needs the percpu allocator in order to allocate its pagesets
6464 	 * (a chicken-egg dilemma).
6465 	 */
6466 	for_each_possible_cpu(cpu)
6467 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6468 
6469 	mminit_verify_zonelist();
6470 	cpuset_init_current_mems_allowed();
6471 }
6472 
6473 /*
6474  * unless system_state == SYSTEM_BOOTING.
6475  *
6476  * __ref due to call of __init annotated helper build_all_zonelists_init
6477  * [protected by SYSTEM_BOOTING].
6478  */
6479 void __ref build_all_zonelists(pg_data_t *pgdat)
6480 {
6481 	unsigned long vm_total_pages;
6482 
6483 	if (system_state == SYSTEM_BOOTING) {
6484 		build_all_zonelists_init();
6485 	} else {
6486 		__build_all_zonelists(pgdat);
6487 		/* cpuset refresh routine should be here */
6488 	}
6489 	/* Get the number of free pages beyond high watermark in all zones. */
6490 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6491 	/*
6492 	 * Disable grouping by mobility if the number of pages in the
6493 	 * system is too low to allow the mechanism to work. It would be
6494 	 * more accurate, but expensive to check per-zone. This check is
6495 	 * made on memory-hotadd so a system can start with mobility
6496 	 * disabled and enable it later
6497 	 */
6498 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6499 		page_group_by_mobility_disabled = 1;
6500 	else
6501 		page_group_by_mobility_disabled = 0;
6502 
6503 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6504 		nr_online_nodes,
6505 		page_group_by_mobility_disabled ? "off" : "on",
6506 		vm_total_pages);
6507 #ifdef CONFIG_NUMA
6508 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6509 #endif
6510 }
6511 
6512 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6513 static bool __meminit
6514 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6515 {
6516 	static struct memblock_region *r;
6517 
6518 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6519 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6520 			for_each_mem_region(r) {
6521 				if (*pfn < memblock_region_memory_end_pfn(r))
6522 					break;
6523 			}
6524 		}
6525 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6526 		    memblock_is_mirror(r)) {
6527 			*pfn = memblock_region_memory_end_pfn(r);
6528 			return true;
6529 		}
6530 	}
6531 	return false;
6532 }
6533 
6534 /*
6535  * Initially all pages are reserved - free ones are freed
6536  * up by memblock_free_all() once the early boot process is
6537  * done. Non-atomic initialization, single-pass.
6538  *
6539  * All aligned pageblocks are initialized to the specified migratetype
6540  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6541  * zone stats (e.g., nr_isolate_pageblock) are touched.
6542  */
6543 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6544 		unsigned long start_pfn, unsigned long zone_end_pfn,
6545 		enum meminit_context context,
6546 		struct vmem_altmap *altmap, int migratetype)
6547 {
6548 	unsigned long pfn, end_pfn = start_pfn + size;
6549 	struct page *page;
6550 
6551 	if (highest_memmap_pfn < end_pfn - 1)
6552 		highest_memmap_pfn = end_pfn - 1;
6553 
6554 #ifdef CONFIG_ZONE_DEVICE
6555 	/*
6556 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6557 	 * memory. We limit the total number of pages to initialize to just
6558 	 * those that might contain the memory mapping. We will defer the
6559 	 * ZONE_DEVICE page initialization until after we have released
6560 	 * the hotplug lock.
6561 	 */
6562 	if (zone == ZONE_DEVICE) {
6563 		if (!altmap)
6564 			return;
6565 
6566 		if (start_pfn == altmap->base_pfn)
6567 			start_pfn += altmap->reserve;
6568 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6569 	}
6570 #endif
6571 
6572 	for (pfn = start_pfn; pfn < end_pfn; ) {
6573 		/*
6574 		 * There can be holes in boot-time mem_map[]s handed to this
6575 		 * function.  They do not exist on hotplugged memory.
6576 		 */
6577 		if (context == MEMINIT_EARLY) {
6578 			if (overlap_memmap_init(zone, &pfn))
6579 				continue;
6580 			if (defer_init(nid, pfn, zone_end_pfn))
6581 				break;
6582 		}
6583 
6584 		page = pfn_to_page(pfn);
6585 		__init_single_page(page, pfn, zone, nid);
6586 		if (context == MEMINIT_HOTPLUG)
6587 			__SetPageReserved(page);
6588 
6589 		/*
6590 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6591 		 * such that unmovable allocations won't be scattered all
6592 		 * over the place during system boot.
6593 		 */
6594 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6595 			set_pageblock_migratetype(page, migratetype);
6596 			cond_resched();
6597 		}
6598 		pfn++;
6599 	}
6600 }
6601 
6602 #ifdef CONFIG_ZONE_DEVICE
6603 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6604 					  unsigned long zone_idx, int nid,
6605 					  struct dev_pagemap *pgmap)
6606 {
6607 
6608 	__init_single_page(page, pfn, zone_idx, nid);
6609 
6610 	/*
6611 	 * Mark page reserved as it will need to wait for onlining
6612 	 * phase for it to be fully associated with a zone.
6613 	 *
6614 	 * We can use the non-atomic __set_bit operation for setting
6615 	 * the flag as we are still initializing the pages.
6616 	 */
6617 	__SetPageReserved(page);
6618 
6619 	/*
6620 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6621 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6622 	 * ever freed or placed on a driver-private list.
6623 	 */
6624 	page->pgmap = pgmap;
6625 	page->zone_device_data = NULL;
6626 
6627 	/*
6628 	 * Mark the block movable so that blocks are reserved for
6629 	 * movable at startup. This will force kernel allocations
6630 	 * to reserve their blocks rather than leaking throughout
6631 	 * the address space during boot when many long-lived
6632 	 * kernel allocations are made.
6633 	 *
6634 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6635 	 * because this is done early in section_activate()
6636 	 */
6637 	if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6638 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6639 		cond_resched();
6640 	}
6641 }
6642 
6643 /*
6644  * With compound page geometry and when struct pages are stored in ram most
6645  * tail pages are reused. Consequently, the amount of unique struct pages to
6646  * initialize is a lot smaller that the total amount of struct pages being
6647  * mapped. This is a paired / mild layering violation with explicit knowledge
6648  * of how the sparse_vmemmap internals handle compound pages in the lack
6649  * of an altmap. See vmemmap_populate_compound_pages().
6650  */
6651 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6652 					      unsigned long nr_pages)
6653 {
6654 	return is_power_of_2(sizeof(struct page)) &&
6655 		!altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6656 }
6657 
6658 static void __ref memmap_init_compound(struct page *head,
6659 				       unsigned long head_pfn,
6660 				       unsigned long zone_idx, int nid,
6661 				       struct dev_pagemap *pgmap,
6662 				       unsigned long nr_pages)
6663 {
6664 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
6665 	unsigned int order = pgmap->vmemmap_shift;
6666 
6667 	__SetPageHead(head);
6668 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6669 		struct page *page = pfn_to_page(pfn);
6670 
6671 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6672 		prep_compound_tail(head, pfn - head_pfn);
6673 		set_page_count(page, 0);
6674 
6675 		/*
6676 		 * The first tail page stores compound_mapcount_ptr() and
6677 		 * compound_order() and the second tail page stores
6678 		 * compound_pincount_ptr(). Call prep_compound_head() after
6679 		 * the first and second tail pages have been initialized to
6680 		 * not have the data overwritten.
6681 		 */
6682 		if (pfn == head_pfn + 2)
6683 			prep_compound_head(head, order);
6684 	}
6685 }
6686 
6687 void __ref memmap_init_zone_device(struct zone *zone,
6688 				   unsigned long start_pfn,
6689 				   unsigned long nr_pages,
6690 				   struct dev_pagemap *pgmap)
6691 {
6692 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6693 	struct pglist_data *pgdat = zone->zone_pgdat;
6694 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6695 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6696 	unsigned long zone_idx = zone_idx(zone);
6697 	unsigned long start = jiffies;
6698 	int nid = pgdat->node_id;
6699 
6700 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6701 		return;
6702 
6703 	/*
6704 	 * The call to memmap_init should have already taken care
6705 	 * of the pages reserved for the memmap, so we can just jump to
6706 	 * the end of that region and start processing the device pages.
6707 	 */
6708 	if (altmap) {
6709 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6710 		nr_pages = end_pfn - start_pfn;
6711 	}
6712 
6713 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6714 		struct page *page = pfn_to_page(pfn);
6715 
6716 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6717 
6718 		if (pfns_per_compound == 1)
6719 			continue;
6720 
6721 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6722 				     compound_nr_pages(altmap, pfns_per_compound));
6723 	}
6724 
6725 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6726 		nr_pages, jiffies_to_msecs(jiffies - start));
6727 }
6728 
6729 #endif
6730 static void __meminit zone_init_free_lists(struct zone *zone)
6731 {
6732 	unsigned int order, t;
6733 	for_each_migratetype_order(order, t) {
6734 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6735 		zone->free_area[order].nr_free = 0;
6736 	}
6737 }
6738 
6739 /*
6740  * Only struct pages that correspond to ranges defined by memblock.memory
6741  * are zeroed and initialized by going through __init_single_page() during
6742  * memmap_init_zone_range().
6743  *
6744  * But, there could be struct pages that correspond to holes in
6745  * memblock.memory. This can happen because of the following reasons:
6746  * - physical memory bank size is not necessarily the exact multiple of the
6747  *   arbitrary section size
6748  * - early reserved memory may not be listed in memblock.memory
6749  * - memory layouts defined with memmap= kernel parameter may not align
6750  *   nicely with memmap sections
6751  *
6752  * Explicitly initialize those struct pages so that:
6753  * - PG_Reserved is set
6754  * - zone and node links point to zone and node that span the page if the
6755  *   hole is in the middle of a zone
6756  * - zone and node links point to adjacent zone/node if the hole falls on
6757  *   the zone boundary; the pages in such holes will be prepended to the
6758  *   zone/node above the hole except for the trailing pages in the last
6759  *   section that will be appended to the zone/node below.
6760  */
6761 static void __init init_unavailable_range(unsigned long spfn,
6762 					  unsigned long epfn,
6763 					  int zone, int node)
6764 {
6765 	unsigned long pfn;
6766 	u64 pgcnt = 0;
6767 
6768 	for (pfn = spfn; pfn < epfn; pfn++) {
6769 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6770 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6771 				+ pageblock_nr_pages - 1;
6772 			continue;
6773 		}
6774 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6775 		__SetPageReserved(pfn_to_page(pfn));
6776 		pgcnt++;
6777 	}
6778 
6779 	if (pgcnt)
6780 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6781 			node, zone_names[zone], pgcnt);
6782 }
6783 
6784 static void __init memmap_init_zone_range(struct zone *zone,
6785 					  unsigned long start_pfn,
6786 					  unsigned long end_pfn,
6787 					  unsigned long *hole_pfn)
6788 {
6789 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6790 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6791 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6792 
6793 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6794 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6795 
6796 	if (start_pfn >= end_pfn)
6797 		return;
6798 
6799 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6800 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6801 
6802 	if (*hole_pfn < start_pfn)
6803 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6804 
6805 	*hole_pfn = end_pfn;
6806 }
6807 
6808 static void __init memmap_init(void)
6809 {
6810 	unsigned long start_pfn, end_pfn;
6811 	unsigned long hole_pfn = 0;
6812 	int i, j, zone_id = 0, nid;
6813 
6814 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6815 		struct pglist_data *node = NODE_DATA(nid);
6816 
6817 		for (j = 0; j < MAX_NR_ZONES; j++) {
6818 			struct zone *zone = node->node_zones + j;
6819 
6820 			if (!populated_zone(zone))
6821 				continue;
6822 
6823 			memmap_init_zone_range(zone, start_pfn, end_pfn,
6824 					       &hole_pfn);
6825 			zone_id = j;
6826 		}
6827 	}
6828 
6829 #ifdef CONFIG_SPARSEMEM
6830 	/*
6831 	 * Initialize the memory map for hole in the range [memory_end,
6832 	 * section_end].
6833 	 * Append the pages in this hole to the highest zone in the last
6834 	 * node.
6835 	 * The call to init_unavailable_range() is outside the ifdef to
6836 	 * silence the compiler warining about zone_id set but not used;
6837 	 * for FLATMEM it is a nop anyway
6838 	 */
6839 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6840 	if (hole_pfn < end_pfn)
6841 #endif
6842 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6843 }
6844 
6845 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6846 			  phys_addr_t min_addr, int nid, bool exact_nid)
6847 {
6848 	void *ptr;
6849 
6850 	if (exact_nid)
6851 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6852 						   MEMBLOCK_ALLOC_ACCESSIBLE,
6853 						   nid);
6854 	else
6855 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6856 						 MEMBLOCK_ALLOC_ACCESSIBLE,
6857 						 nid);
6858 
6859 	if (ptr && size > 0)
6860 		page_init_poison(ptr, size);
6861 
6862 	return ptr;
6863 }
6864 
6865 static int zone_batchsize(struct zone *zone)
6866 {
6867 #ifdef CONFIG_MMU
6868 	int batch;
6869 
6870 	/*
6871 	 * The number of pages to batch allocate is either ~0.1%
6872 	 * of the zone or 1MB, whichever is smaller. The batch
6873 	 * size is striking a balance between allocation latency
6874 	 * and zone lock contention.
6875 	 */
6876 	batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6877 	batch /= 4;		/* We effectively *= 4 below */
6878 	if (batch < 1)
6879 		batch = 1;
6880 
6881 	/*
6882 	 * Clamp the batch to a 2^n - 1 value. Having a power
6883 	 * of 2 value was found to be more likely to have
6884 	 * suboptimal cache aliasing properties in some cases.
6885 	 *
6886 	 * For example if 2 tasks are alternately allocating
6887 	 * batches of pages, one task can end up with a lot
6888 	 * of pages of one half of the possible page colors
6889 	 * and the other with pages of the other colors.
6890 	 */
6891 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6892 
6893 	return batch;
6894 
6895 #else
6896 	/* The deferral and batching of frees should be suppressed under NOMMU
6897 	 * conditions.
6898 	 *
6899 	 * The problem is that NOMMU needs to be able to allocate large chunks
6900 	 * of contiguous memory as there's no hardware page translation to
6901 	 * assemble apparent contiguous memory from discontiguous pages.
6902 	 *
6903 	 * Queueing large contiguous runs of pages for batching, however,
6904 	 * causes the pages to actually be freed in smaller chunks.  As there
6905 	 * can be a significant delay between the individual batches being
6906 	 * recycled, this leads to the once large chunks of space being
6907 	 * fragmented and becoming unavailable for high-order allocations.
6908 	 */
6909 	return 0;
6910 #endif
6911 }
6912 
6913 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6914 {
6915 #ifdef CONFIG_MMU
6916 	int high;
6917 	int nr_split_cpus;
6918 	unsigned long total_pages;
6919 
6920 	if (!percpu_pagelist_high_fraction) {
6921 		/*
6922 		 * By default, the high value of the pcp is based on the zone
6923 		 * low watermark so that if they are full then background
6924 		 * reclaim will not be started prematurely.
6925 		 */
6926 		total_pages = low_wmark_pages(zone);
6927 	} else {
6928 		/*
6929 		 * If percpu_pagelist_high_fraction is configured, the high
6930 		 * value is based on a fraction of the managed pages in the
6931 		 * zone.
6932 		 */
6933 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6934 	}
6935 
6936 	/*
6937 	 * Split the high value across all online CPUs local to the zone. Note
6938 	 * that early in boot that CPUs may not be online yet and that during
6939 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6940 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
6941 	 * all online CPUs to mitigate the risk that reclaim is triggered
6942 	 * prematurely due to pages stored on pcp lists.
6943 	 */
6944 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6945 	if (!nr_split_cpus)
6946 		nr_split_cpus = num_online_cpus();
6947 	high = total_pages / nr_split_cpus;
6948 
6949 	/*
6950 	 * Ensure high is at least batch*4. The multiple is based on the
6951 	 * historical relationship between high and batch.
6952 	 */
6953 	high = max(high, batch << 2);
6954 
6955 	return high;
6956 #else
6957 	return 0;
6958 #endif
6959 }
6960 
6961 /*
6962  * pcp->high and pcp->batch values are related and generally batch is lower
6963  * than high. They are also related to pcp->count such that count is lower
6964  * than high, and as soon as it reaches high, the pcplist is flushed.
6965  *
6966  * However, guaranteeing these relations at all times would require e.g. write
6967  * barriers here but also careful usage of read barriers at the read side, and
6968  * thus be prone to error and bad for performance. Thus the update only prevents
6969  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6970  * can cope with those fields changing asynchronously, and fully trust only the
6971  * pcp->count field on the local CPU with interrupts disabled.
6972  *
6973  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6974  * outside of boot time (or some other assurance that no concurrent updaters
6975  * exist).
6976  */
6977 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6978 		unsigned long batch)
6979 {
6980 	WRITE_ONCE(pcp->batch, batch);
6981 	WRITE_ONCE(pcp->high, high);
6982 }
6983 
6984 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6985 {
6986 	int pindex;
6987 
6988 	memset(pcp, 0, sizeof(*pcp));
6989 	memset(pzstats, 0, sizeof(*pzstats));
6990 
6991 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6992 		INIT_LIST_HEAD(&pcp->lists[pindex]);
6993 
6994 	/*
6995 	 * Set batch and high values safe for a boot pageset. A true percpu
6996 	 * pageset's initialization will update them subsequently. Here we don't
6997 	 * need to be as careful as pageset_update() as nobody can access the
6998 	 * pageset yet.
6999 	 */
7000 	pcp->high = BOOT_PAGESET_HIGH;
7001 	pcp->batch = BOOT_PAGESET_BATCH;
7002 	pcp->free_factor = 0;
7003 }
7004 
7005 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7006 		unsigned long batch)
7007 {
7008 	struct per_cpu_pages *pcp;
7009 	int cpu;
7010 
7011 	for_each_possible_cpu(cpu) {
7012 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7013 		pageset_update(pcp, high, batch);
7014 	}
7015 }
7016 
7017 /*
7018  * Calculate and set new high and batch values for all per-cpu pagesets of a
7019  * zone based on the zone's size.
7020  */
7021 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7022 {
7023 	int new_high, new_batch;
7024 
7025 	new_batch = max(1, zone_batchsize(zone));
7026 	new_high = zone_highsize(zone, new_batch, cpu_online);
7027 
7028 	if (zone->pageset_high == new_high &&
7029 	    zone->pageset_batch == new_batch)
7030 		return;
7031 
7032 	zone->pageset_high = new_high;
7033 	zone->pageset_batch = new_batch;
7034 
7035 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7036 }
7037 
7038 void __meminit setup_zone_pageset(struct zone *zone)
7039 {
7040 	int cpu;
7041 
7042 	/* Size may be 0 on !SMP && !NUMA */
7043 	if (sizeof(struct per_cpu_zonestat) > 0)
7044 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7045 
7046 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7047 	for_each_possible_cpu(cpu) {
7048 		struct per_cpu_pages *pcp;
7049 		struct per_cpu_zonestat *pzstats;
7050 
7051 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7052 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7053 		per_cpu_pages_init(pcp, pzstats);
7054 	}
7055 
7056 	zone_set_pageset_high_and_batch(zone, 0);
7057 }
7058 
7059 /*
7060  * Allocate per cpu pagesets and initialize them.
7061  * Before this call only boot pagesets were available.
7062  */
7063 void __init setup_per_cpu_pageset(void)
7064 {
7065 	struct pglist_data *pgdat;
7066 	struct zone *zone;
7067 	int __maybe_unused cpu;
7068 
7069 	for_each_populated_zone(zone)
7070 		setup_zone_pageset(zone);
7071 
7072 #ifdef CONFIG_NUMA
7073 	/*
7074 	 * Unpopulated zones continue using the boot pagesets.
7075 	 * The numa stats for these pagesets need to be reset.
7076 	 * Otherwise, they will end up skewing the stats of
7077 	 * the nodes these zones are associated with.
7078 	 */
7079 	for_each_possible_cpu(cpu) {
7080 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7081 		memset(pzstats->vm_numa_event, 0,
7082 		       sizeof(pzstats->vm_numa_event));
7083 	}
7084 #endif
7085 
7086 	for_each_online_pgdat(pgdat)
7087 		pgdat->per_cpu_nodestats =
7088 			alloc_percpu(struct per_cpu_nodestat);
7089 }
7090 
7091 static __meminit void zone_pcp_init(struct zone *zone)
7092 {
7093 	/*
7094 	 * per cpu subsystem is not up at this point. The following code
7095 	 * relies on the ability of the linker to provide the
7096 	 * offset of a (static) per cpu variable into the per cpu area.
7097 	 */
7098 	zone->per_cpu_pageset = &boot_pageset;
7099 	zone->per_cpu_zonestats = &boot_zonestats;
7100 	zone->pageset_high = BOOT_PAGESET_HIGH;
7101 	zone->pageset_batch = BOOT_PAGESET_BATCH;
7102 
7103 	if (populated_zone(zone))
7104 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7105 			 zone->present_pages, zone_batchsize(zone));
7106 }
7107 
7108 void __meminit init_currently_empty_zone(struct zone *zone,
7109 					unsigned long zone_start_pfn,
7110 					unsigned long size)
7111 {
7112 	struct pglist_data *pgdat = zone->zone_pgdat;
7113 	int zone_idx = zone_idx(zone) + 1;
7114 
7115 	if (zone_idx > pgdat->nr_zones)
7116 		pgdat->nr_zones = zone_idx;
7117 
7118 	zone->zone_start_pfn = zone_start_pfn;
7119 
7120 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7121 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7122 			pgdat->node_id,
7123 			(unsigned long)zone_idx(zone),
7124 			zone_start_pfn, (zone_start_pfn + size));
7125 
7126 	zone_init_free_lists(zone);
7127 	zone->initialized = 1;
7128 }
7129 
7130 /**
7131  * get_pfn_range_for_nid - Return the start and end page frames for a node
7132  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7133  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7134  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7135  *
7136  * It returns the start and end page frame of a node based on information
7137  * provided by memblock_set_node(). If called for a node
7138  * with no available memory, a warning is printed and the start and end
7139  * PFNs will be 0.
7140  */
7141 void __init get_pfn_range_for_nid(unsigned int nid,
7142 			unsigned long *start_pfn, unsigned long *end_pfn)
7143 {
7144 	unsigned long this_start_pfn, this_end_pfn;
7145 	int i;
7146 
7147 	*start_pfn = -1UL;
7148 	*end_pfn = 0;
7149 
7150 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7151 		*start_pfn = min(*start_pfn, this_start_pfn);
7152 		*end_pfn = max(*end_pfn, this_end_pfn);
7153 	}
7154 
7155 	if (*start_pfn == -1UL)
7156 		*start_pfn = 0;
7157 }
7158 
7159 /*
7160  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7161  * assumption is made that zones within a node are ordered in monotonic
7162  * increasing memory addresses so that the "highest" populated zone is used
7163  */
7164 static void __init find_usable_zone_for_movable(void)
7165 {
7166 	int zone_index;
7167 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7168 		if (zone_index == ZONE_MOVABLE)
7169 			continue;
7170 
7171 		if (arch_zone_highest_possible_pfn[zone_index] >
7172 				arch_zone_lowest_possible_pfn[zone_index])
7173 			break;
7174 	}
7175 
7176 	VM_BUG_ON(zone_index == -1);
7177 	movable_zone = zone_index;
7178 }
7179 
7180 /*
7181  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7182  * because it is sized independent of architecture. Unlike the other zones,
7183  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7184  * in each node depending on the size of each node and how evenly kernelcore
7185  * is distributed. This helper function adjusts the zone ranges
7186  * provided by the architecture for a given node by using the end of the
7187  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7188  * zones within a node are in order of monotonic increases memory addresses
7189  */
7190 static void __init adjust_zone_range_for_zone_movable(int nid,
7191 					unsigned long zone_type,
7192 					unsigned long node_start_pfn,
7193 					unsigned long node_end_pfn,
7194 					unsigned long *zone_start_pfn,
7195 					unsigned long *zone_end_pfn)
7196 {
7197 	/* Only adjust if ZONE_MOVABLE is on this node */
7198 	if (zone_movable_pfn[nid]) {
7199 		/* Size ZONE_MOVABLE */
7200 		if (zone_type == ZONE_MOVABLE) {
7201 			*zone_start_pfn = zone_movable_pfn[nid];
7202 			*zone_end_pfn = min(node_end_pfn,
7203 				arch_zone_highest_possible_pfn[movable_zone]);
7204 
7205 		/* Adjust for ZONE_MOVABLE starting within this range */
7206 		} else if (!mirrored_kernelcore &&
7207 			*zone_start_pfn < zone_movable_pfn[nid] &&
7208 			*zone_end_pfn > zone_movable_pfn[nid]) {
7209 			*zone_end_pfn = zone_movable_pfn[nid];
7210 
7211 		/* Check if this whole range is within ZONE_MOVABLE */
7212 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7213 			*zone_start_pfn = *zone_end_pfn;
7214 	}
7215 }
7216 
7217 /*
7218  * Return the number of pages a zone spans in a node, including holes
7219  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7220  */
7221 static unsigned long __init zone_spanned_pages_in_node(int nid,
7222 					unsigned long zone_type,
7223 					unsigned long node_start_pfn,
7224 					unsigned long node_end_pfn,
7225 					unsigned long *zone_start_pfn,
7226 					unsigned long *zone_end_pfn)
7227 {
7228 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7229 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7230 	/* When hotadd a new node from cpu_up(), the node should be empty */
7231 	if (!node_start_pfn && !node_end_pfn)
7232 		return 0;
7233 
7234 	/* Get the start and end of the zone */
7235 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7236 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7237 	adjust_zone_range_for_zone_movable(nid, zone_type,
7238 				node_start_pfn, node_end_pfn,
7239 				zone_start_pfn, zone_end_pfn);
7240 
7241 	/* Check that this node has pages within the zone's required range */
7242 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7243 		return 0;
7244 
7245 	/* Move the zone boundaries inside the node if necessary */
7246 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7247 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7248 
7249 	/* Return the spanned pages */
7250 	return *zone_end_pfn - *zone_start_pfn;
7251 }
7252 
7253 /*
7254  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7255  * then all holes in the requested range will be accounted for.
7256  */
7257 unsigned long __init __absent_pages_in_range(int nid,
7258 				unsigned long range_start_pfn,
7259 				unsigned long range_end_pfn)
7260 {
7261 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7262 	unsigned long start_pfn, end_pfn;
7263 	int i;
7264 
7265 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7266 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7267 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7268 		nr_absent -= end_pfn - start_pfn;
7269 	}
7270 	return nr_absent;
7271 }
7272 
7273 /**
7274  * absent_pages_in_range - Return number of page frames in holes within a range
7275  * @start_pfn: The start PFN to start searching for holes
7276  * @end_pfn: The end PFN to stop searching for holes
7277  *
7278  * Return: the number of pages frames in memory holes within a range.
7279  */
7280 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7281 							unsigned long end_pfn)
7282 {
7283 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7284 }
7285 
7286 /* Return the number of page frames in holes in a zone on a node */
7287 static unsigned long __init zone_absent_pages_in_node(int nid,
7288 					unsigned long zone_type,
7289 					unsigned long node_start_pfn,
7290 					unsigned long node_end_pfn)
7291 {
7292 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7293 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7294 	unsigned long zone_start_pfn, zone_end_pfn;
7295 	unsigned long nr_absent;
7296 
7297 	/* When hotadd a new node from cpu_up(), the node should be empty */
7298 	if (!node_start_pfn && !node_end_pfn)
7299 		return 0;
7300 
7301 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7302 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7303 
7304 	adjust_zone_range_for_zone_movable(nid, zone_type,
7305 			node_start_pfn, node_end_pfn,
7306 			&zone_start_pfn, &zone_end_pfn);
7307 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7308 
7309 	/*
7310 	 * ZONE_MOVABLE handling.
7311 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7312 	 * and vice versa.
7313 	 */
7314 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7315 		unsigned long start_pfn, end_pfn;
7316 		struct memblock_region *r;
7317 
7318 		for_each_mem_region(r) {
7319 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7320 					  zone_start_pfn, zone_end_pfn);
7321 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7322 					zone_start_pfn, zone_end_pfn);
7323 
7324 			if (zone_type == ZONE_MOVABLE &&
7325 			    memblock_is_mirror(r))
7326 				nr_absent += end_pfn - start_pfn;
7327 
7328 			if (zone_type == ZONE_NORMAL &&
7329 			    !memblock_is_mirror(r))
7330 				nr_absent += end_pfn - start_pfn;
7331 		}
7332 	}
7333 
7334 	return nr_absent;
7335 }
7336 
7337 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7338 						unsigned long node_start_pfn,
7339 						unsigned long node_end_pfn)
7340 {
7341 	unsigned long realtotalpages = 0, totalpages = 0;
7342 	enum zone_type i;
7343 
7344 	for (i = 0; i < MAX_NR_ZONES; i++) {
7345 		struct zone *zone = pgdat->node_zones + i;
7346 		unsigned long zone_start_pfn, zone_end_pfn;
7347 		unsigned long spanned, absent;
7348 		unsigned long size, real_size;
7349 
7350 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7351 						     node_start_pfn,
7352 						     node_end_pfn,
7353 						     &zone_start_pfn,
7354 						     &zone_end_pfn);
7355 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7356 						   node_start_pfn,
7357 						   node_end_pfn);
7358 
7359 		size = spanned;
7360 		real_size = size - absent;
7361 
7362 		if (size)
7363 			zone->zone_start_pfn = zone_start_pfn;
7364 		else
7365 			zone->zone_start_pfn = 0;
7366 		zone->spanned_pages = size;
7367 		zone->present_pages = real_size;
7368 #if defined(CONFIG_MEMORY_HOTPLUG)
7369 		zone->present_early_pages = real_size;
7370 #endif
7371 
7372 		totalpages += size;
7373 		realtotalpages += real_size;
7374 	}
7375 
7376 	pgdat->node_spanned_pages = totalpages;
7377 	pgdat->node_present_pages = realtotalpages;
7378 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7379 }
7380 
7381 #ifndef CONFIG_SPARSEMEM
7382 /*
7383  * Calculate the size of the zone->blockflags rounded to an unsigned long
7384  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7385  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7386  * round what is now in bits to nearest long in bits, then return it in
7387  * bytes.
7388  */
7389 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7390 {
7391 	unsigned long usemapsize;
7392 
7393 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7394 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7395 	usemapsize = usemapsize >> pageblock_order;
7396 	usemapsize *= NR_PAGEBLOCK_BITS;
7397 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7398 
7399 	return usemapsize / 8;
7400 }
7401 
7402 static void __ref setup_usemap(struct zone *zone)
7403 {
7404 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7405 					       zone->spanned_pages);
7406 	zone->pageblock_flags = NULL;
7407 	if (usemapsize) {
7408 		zone->pageblock_flags =
7409 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7410 					    zone_to_nid(zone));
7411 		if (!zone->pageblock_flags)
7412 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7413 			      usemapsize, zone->name, zone_to_nid(zone));
7414 	}
7415 }
7416 #else
7417 static inline void setup_usemap(struct zone *zone) {}
7418 #endif /* CONFIG_SPARSEMEM */
7419 
7420 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7421 
7422 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7423 void __init set_pageblock_order(void)
7424 {
7425 	unsigned int order = MAX_ORDER - 1;
7426 
7427 	/* Check that pageblock_nr_pages has not already been setup */
7428 	if (pageblock_order)
7429 		return;
7430 
7431 	/* Don't let pageblocks exceed the maximum allocation granularity. */
7432 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7433 		order = HUGETLB_PAGE_ORDER;
7434 
7435 	/*
7436 	 * Assume the largest contiguous order of interest is a huge page.
7437 	 * This value may be variable depending on boot parameters on IA64 and
7438 	 * powerpc.
7439 	 */
7440 	pageblock_order = order;
7441 }
7442 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7443 
7444 /*
7445  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7446  * is unused as pageblock_order is set at compile-time. See
7447  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7448  * the kernel config
7449  */
7450 void __init set_pageblock_order(void)
7451 {
7452 }
7453 
7454 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7455 
7456 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7457 						unsigned long present_pages)
7458 {
7459 	unsigned long pages = spanned_pages;
7460 
7461 	/*
7462 	 * Provide a more accurate estimation if there are holes within
7463 	 * the zone and SPARSEMEM is in use. If there are holes within the
7464 	 * zone, each populated memory region may cost us one or two extra
7465 	 * memmap pages due to alignment because memmap pages for each
7466 	 * populated regions may not be naturally aligned on page boundary.
7467 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7468 	 */
7469 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7470 	    IS_ENABLED(CONFIG_SPARSEMEM))
7471 		pages = present_pages;
7472 
7473 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7474 }
7475 
7476 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7477 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7478 {
7479 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7480 
7481 	spin_lock_init(&ds_queue->split_queue_lock);
7482 	INIT_LIST_HEAD(&ds_queue->split_queue);
7483 	ds_queue->split_queue_len = 0;
7484 }
7485 #else
7486 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7487 #endif
7488 
7489 #ifdef CONFIG_COMPACTION
7490 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7491 {
7492 	init_waitqueue_head(&pgdat->kcompactd_wait);
7493 }
7494 #else
7495 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7496 #endif
7497 
7498 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7499 {
7500 	int i;
7501 
7502 	pgdat_resize_init(pgdat);
7503 
7504 	pgdat_init_split_queue(pgdat);
7505 	pgdat_init_kcompactd(pgdat);
7506 
7507 	init_waitqueue_head(&pgdat->kswapd_wait);
7508 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7509 
7510 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7511 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
7512 
7513 	pgdat_page_ext_init(pgdat);
7514 	lruvec_init(&pgdat->__lruvec);
7515 }
7516 
7517 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7518 							unsigned long remaining_pages)
7519 {
7520 	atomic_long_set(&zone->managed_pages, remaining_pages);
7521 	zone_set_nid(zone, nid);
7522 	zone->name = zone_names[idx];
7523 	zone->zone_pgdat = NODE_DATA(nid);
7524 	spin_lock_init(&zone->lock);
7525 	zone_seqlock_init(zone);
7526 	zone_pcp_init(zone);
7527 }
7528 
7529 /*
7530  * Set up the zone data structures
7531  * - init pgdat internals
7532  * - init all zones belonging to this node
7533  *
7534  * NOTE: this function is only called during memory hotplug
7535  */
7536 #ifdef CONFIG_MEMORY_HOTPLUG
7537 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7538 {
7539 	int nid = pgdat->node_id;
7540 	enum zone_type z;
7541 	int cpu;
7542 
7543 	pgdat_init_internals(pgdat);
7544 
7545 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
7546 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7547 
7548 	/*
7549 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
7550 	 * Note that kswapd will init kswapd_highest_zoneidx properly
7551 	 * when it starts in the near future.
7552 	 */
7553 	pgdat->nr_zones = 0;
7554 	pgdat->kswapd_order = 0;
7555 	pgdat->kswapd_highest_zoneidx = 0;
7556 	pgdat->node_start_pfn = 0;
7557 	for_each_online_cpu(cpu) {
7558 		struct per_cpu_nodestat *p;
7559 
7560 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7561 		memset(p, 0, sizeof(*p));
7562 	}
7563 
7564 	for (z = 0; z < MAX_NR_ZONES; z++)
7565 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7566 }
7567 #endif
7568 
7569 /*
7570  * Set up the zone data structures:
7571  *   - mark all pages reserved
7572  *   - mark all memory queues empty
7573  *   - clear the memory bitmaps
7574  *
7575  * NOTE: pgdat should get zeroed by caller.
7576  * NOTE: this function is only called during early init.
7577  */
7578 static void __init free_area_init_core(struct pglist_data *pgdat)
7579 {
7580 	enum zone_type j;
7581 	int nid = pgdat->node_id;
7582 
7583 	pgdat_init_internals(pgdat);
7584 	pgdat->per_cpu_nodestats = &boot_nodestats;
7585 
7586 	for (j = 0; j < MAX_NR_ZONES; j++) {
7587 		struct zone *zone = pgdat->node_zones + j;
7588 		unsigned long size, freesize, memmap_pages;
7589 
7590 		size = zone->spanned_pages;
7591 		freesize = zone->present_pages;
7592 
7593 		/*
7594 		 * Adjust freesize so that it accounts for how much memory
7595 		 * is used by this zone for memmap. This affects the watermark
7596 		 * and per-cpu initialisations
7597 		 */
7598 		memmap_pages = calc_memmap_size(size, freesize);
7599 		if (!is_highmem_idx(j)) {
7600 			if (freesize >= memmap_pages) {
7601 				freesize -= memmap_pages;
7602 				if (memmap_pages)
7603 					pr_debug("  %s zone: %lu pages used for memmap\n",
7604 						 zone_names[j], memmap_pages);
7605 			} else
7606 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7607 					zone_names[j], memmap_pages, freesize);
7608 		}
7609 
7610 		/* Account for reserved pages */
7611 		if (j == 0 && freesize > dma_reserve) {
7612 			freesize -= dma_reserve;
7613 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7614 		}
7615 
7616 		if (!is_highmem_idx(j))
7617 			nr_kernel_pages += freesize;
7618 		/* Charge for highmem memmap if there are enough kernel pages */
7619 		else if (nr_kernel_pages > memmap_pages * 2)
7620 			nr_kernel_pages -= memmap_pages;
7621 		nr_all_pages += freesize;
7622 
7623 		/*
7624 		 * Set an approximate value for lowmem here, it will be adjusted
7625 		 * when the bootmem allocator frees pages into the buddy system.
7626 		 * And all highmem pages will be managed by the buddy system.
7627 		 */
7628 		zone_init_internals(zone, j, nid, freesize);
7629 
7630 		if (!size)
7631 			continue;
7632 
7633 		set_pageblock_order();
7634 		setup_usemap(zone);
7635 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7636 	}
7637 }
7638 
7639 #ifdef CONFIG_FLATMEM
7640 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7641 {
7642 	unsigned long __maybe_unused start = 0;
7643 	unsigned long __maybe_unused offset = 0;
7644 
7645 	/* Skip empty nodes */
7646 	if (!pgdat->node_spanned_pages)
7647 		return;
7648 
7649 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7650 	offset = pgdat->node_start_pfn - start;
7651 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7652 	if (!pgdat->node_mem_map) {
7653 		unsigned long size, end;
7654 		struct page *map;
7655 
7656 		/*
7657 		 * The zone's endpoints aren't required to be MAX_ORDER
7658 		 * aligned but the node_mem_map endpoints must be in order
7659 		 * for the buddy allocator to function correctly.
7660 		 */
7661 		end = pgdat_end_pfn(pgdat);
7662 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7663 		size =  (end - start) * sizeof(struct page);
7664 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7665 				   pgdat->node_id, false);
7666 		if (!map)
7667 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7668 			      size, pgdat->node_id);
7669 		pgdat->node_mem_map = map + offset;
7670 	}
7671 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7672 				__func__, pgdat->node_id, (unsigned long)pgdat,
7673 				(unsigned long)pgdat->node_mem_map);
7674 #ifndef CONFIG_NUMA
7675 	/*
7676 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7677 	 */
7678 	if (pgdat == NODE_DATA(0)) {
7679 		mem_map = NODE_DATA(0)->node_mem_map;
7680 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7681 			mem_map -= offset;
7682 	}
7683 #endif
7684 }
7685 #else
7686 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7687 #endif /* CONFIG_FLATMEM */
7688 
7689 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7690 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7691 {
7692 	pgdat->first_deferred_pfn = ULONG_MAX;
7693 }
7694 #else
7695 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7696 #endif
7697 
7698 static void __init free_area_init_node(int nid)
7699 {
7700 	pg_data_t *pgdat = NODE_DATA(nid);
7701 	unsigned long start_pfn = 0;
7702 	unsigned long end_pfn = 0;
7703 
7704 	/* pg_data_t should be reset to zero when it's allocated */
7705 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7706 
7707 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7708 
7709 	pgdat->node_id = nid;
7710 	pgdat->node_start_pfn = start_pfn;
7711 	pgdat->per_cpu_nodestats = NULL;
7712 
7713 	if (start_pfn != end_pfn) {
7714 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7715 			(u64)start_pfn << PAGE_SHIFT,
7716 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7717 	} else {
7718 		pr_info("Initmem setup node %d as memoryless\n", nid);
7719 	}
7720 
7721 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7722 
7723 	alloc_node_mem_map(pgdat);
7724 	pgdat_set_deferred_range(pgdat);
7725 
7726 	free_area_init_core(pgdat);
7727 }
7728 
7729 static void __init free_area_init_memoryless_node(int nid)
7730 {
7731 	free_area_init_node(nid);
7732 }
7733 
7734 #if MAX_NUMNODES > 1
7735 /*
7736  * Figure out the number of possible node ids.
7737  */
7738 void __init setup_nr_node_ids(void)
7739 {
7740 	unsigned int highest;
7741 
7742 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7743 	nr_node_ids = highest + 1;
7744 }
7745 #endif
7746 
7747 /**
7748  * node_map_pfn_alignment - determine the maximum internode alignment
7749  *
7750  * This function should be called after node map is populated and sorted.
7751  * It calculates the maximum power of two alignment which can distinguish
7752  * all the nodes.
7753  *
7754  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7755  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7756  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7757  * shifted, 1GiB is enough and this function will indicate so.
7758  *
7759  * This is used to test whether pfn -> nid mapping of the chosen memory
7760  * model has fine enough granularity to avoid incorrect mapping for the
7761  * populated node map.
7762  *
7763  * Return: the determined alignment in pfn's.  0 if there is no alignment
7764  * requirement (single node).
7765  */
7766 unsigned long __init node_map_pfn_alignment(void)
7767 {
7768 	unsigned long accl_mask = 0, last_end = 0;
7769 	unsigned long start, end, mask;
7770 	int last_nid = NUMA_NO_NODE;
7771 	int i, nid;
7772 
7773 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7774 		if (!start || last_nid < 0 || last_nid == nid) {
7775 			last_nid = nid;
7776 			last_end = end;
7777 			continue;
7778 		}
7779 
7780 		/*
7781 		 * Start with a mask granular enough to pin-point to the
7782 		 * start pfn and tick off bits one-by-one until it becomes
7783 		 * too coarse to separate the current node from the last.
7784 		 */
7785 		mask = ~((1 << __ffs(start)) - 1);
7786 		while (mask && last_end <= (start & (mask << 1)))
7787 			mask <<= 1;
7788 
7789 		/* accumulate all internode masks */
7790 		accl_mask |= mask;
7791 	}
7792 
7793 	/* convert mask to number of pages */
7794 	return ~accl_mask + 1;
7795 }
7796 
7797 /**
7798  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7799  *
7800  * Return: the minimum PFN based on information provided via
7801  * memblock_set_node().
7802  */
7803 unsigned long __init find_min_pfn_with_active_regions(void)
7804 {
7805 	return PHYS_PFN(memblock_start_of_DRAM());
7806 }
7807 
7808 /*
7809  * early_calculate_totalpages()
7810  * Sum pages in active regions for movable zone.
7811  * Populate N_MEMORY for calculating usable_nodes.
7812  */
7813 static unsigned long __init early_calculate_totalpages(void)
7814 {
7815 	unsigned long totalpages = 0;
7816 	unsigned long start_pfn, end_pfn;
7817 	int i, nid;
7818 
7819 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7820 		unsigned long pages = end_pfn - start_pfn;
7821 
7822 		totalpages += pages;
7823 		if (pages)
7824 			node_set_state(nid, N_MEMORY);
7825 	}
7826 	return totalpages;
7827 }
7828 
7829 /*
7830  * Find the PFN the Movable zone begins in each node. Kernel memory
7831  * is spread evenly between nodes as long as the nodes have enough
7832  * memory. When they don't, some nodes will have more kernelcore than
7833  * others
7834  */
7835 static void __init find_zone_movable_pfns_for_nodes(void)
7836 {
7837 	int i, nid;
7838 	unsigned long usable_startpfn;
7839 	unsigned long kernelcore_node, kernelcore_remaining;
7840 	/* save the state before borrow the nodemask */
7841 	nodemask_t saved_node_state = node_states[N_MEMORY];
7842 	unsigned long totalpages = early_calculate_totalpages();
7843 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7844 	struct memblock_region *r;
7845 
7846 	/* Need to find movable_zone earlier when movable_node is specified. */
7847 	find_usable_zone_for_movable();
7848 
7849 	/*
7850 	 * If movable_node is specified, ignore kernelcore and movablecore
7851 	 * options.
7852 	 */
7853 	if (movable_node_is_enabled()) {
7854 		for_each_mem_region(r) {
7855 			if (!memblock_is_hotpluggable(r))
7856 				continue;
7857 
7858 			nid = memblock_get_region_node(r);
7859 
7860 			usable_startpfn = PFN_DOWN(r->base);
7861 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7862 				min(usable_startpfn, zone_movable_pfn[nid]) :
7863 				usable_startpfn;
7864 		}
7865 
7866 		goto out2;
7867 	}
7868 
7869 	/*
7870 	 * If kernelcore=mirror is specified, ignore movablecore option
7871 	 */
7872 	if (mirrored_kernelcore) {
7873 		bool mem_below_4gb_not_mirrored = false;
7874 
7875 		for_each_mem_region(r) {
7876 			if (memblock_is_mirror(r))
7877 				continue;
7878 
7879 			nid = memblock_get_region_node(r);
7880 
7881 			usable_startpfn = memblock_region_memory_base_pfn(r);
7882 
7883 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
7884 				mem_below_4gb_not_mirrored = true;
7885 				continue;
7886 			}
7887 
7888 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7889 				min(usable_startpfn, zone_movable_pfn[nid]) :
7890 				usable_startpfn;
7891 		}
7892 
7893 		if (mem_below_4gb_not_mirrored)
7894 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7895 
7896 		goto out2;
7897 	}
7898 
7899 	/*
7900 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7901 	 * amount of necessary memory.
7902 	 */
7903 	if (required_kernelcore_percent)
7904 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7905 				       10000UL;
7906 	if (required_movablecore_percent)
7907 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7908 					10000UL;
7909 
7910 	/*
7911 	 * If movablecore= was specified, calculate what size of
7912 	 * kernelcore that corresponds so that memory usable for
7913 	 * any allocation type is evenly spread. If both kernelcore
7914 	 * and movablecore are specified, then the value of kernelcore
7915 	 * will be used for required_kernelcore if it's greater than
7916 	 * what movablecore would have allowed.
7917 	 */
7918 	if (required_movablecore) {
7919 		unsigned long corepages;
7920 
7921 		/*
7922 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7923 		 * was requested by the user
7924 		 */
7925 		required_movablecore =
7926 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7927 		required_movablecore = min(totalpages, required_movablecore);
7928 		corepages = totalpages - required_movablecore;
7929 
7930 		required_kernelcore = max(required_kernelcore, corepages);
7931 	}
7932 
7933 	/*
7934 	 * If kernelcore was not specified or kernelcore size is larger
7935 	 * than totalpages, there is no ZONE_MOVABLE.
7936 	 */
7937 	if (!required_kernelcore || required_kernelcore >= totalpages)
7938 		goto out;
7939 
7940 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7941 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7942 
7943 restart:
7944 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7945 	kernelcore_node = required_kernelcore / usable_nodes;
7946 	for_each_node_state(nid, N_MEMORY) {
7947 		unsigned long start_pfn, end_pfn;
7948 
7949 		/*
7950 		 * Recalculate kernelcore_node if the division per node
7951 		 * now exceeds what is necessary to satisfy the requested
7952 		 * amount of memory for the kernel
7953 		 */
7954 		if (required_kernelcore < kernelcore_node)
7955 			kernelcore_node = required_kernelcore / usable_nodes;
7956 
7957 		/*
7958 		 * As the map is walked, we track how much memory is usable
7959 		 * by the kernel using kernelcore_remaining. When it is
7960 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7961 		 */
7962 		kernelcore_remaining = kernelcore_node;
7963 
7964 		/* Go through each range of PFNs within this node */
7965 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7966 			unsigned long size_pages;
7967 
7968 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7969 			if (start_pfn >= end_pfn)
7970 				continue;
7971 
7972 			/* Account for what is only usable for kernelcore */
7973 			if (start_pfn < usable_startpfn) {
7974 				unsigned long kernel_pages;
7975 				kernel_pages = min(end_pfn, usable_startpfn)
7976 								- start_pfn;
7977 
7978 				kernelcore_remaining -= min(kernel_pages,
7979 							kernelcore_remaining);
7980 				required_kernelcore -= min(kernel_pages,
7981 							required_kernelcore);
7982 
7983 				/* Continue if range is now fully accounted */
7984 				if (end_pfn <= usable_startpfn) {
7985 
7986 					/*
7987 					 * Push zone_movable_pfn to the end so
7988 					 * that if we have to rebalance
7989 					 * kernelcore across nodes, we will
7990 					 * not double account here
7991 					 */
7992 					zone_movable_pfn[nid] = end_pfn;
7993 					continue;
7994 				}
7995 				start_pfn = usable_startpfn;
7996 			}
7997 
7998 			/*
7999 			 * The usable PFN range for ZONE_MOVABLE is from
8000 			 * start_pfn->end_pfn. Calculate size_pages as the
8001 			 * number of pages used as kernelcore
8002 			 */
8003 			size_pages = end_pfn - start_pfn;
8004 			if (size_pages > kernelcore_remaining)
8005 				size_pages = kernelcore_remaining;
8006 			zone_movable_pfn[nid] = start_pfn + size_pages;
8007 
8008 			/*
8009 			 * Some kernelcore has been met, update counts and
8010 			 * break if the kernelcore for this node has been
8011 			 * satisfied
8012 			 */
8013 			required_kernelcore -= min(required_kernelcore,
8014 								size_pages);
8015 			kernelcore_remaining -= size_pages;
8016 			if (!kernelcore_remaining)
8017 				break;
8018 		}
8019 	}
8020 
8021 	/*
8022 	 * If there is still required_kernelcore, we do another pass with one
8023 	 * less node in the count. This will push zone_movable_pfn[nid] further
8024 	 * along on the nodes that still have memory until kernelcore is
8025 	 * satisfied
8026 	 */
8027 	usable_nodes--;
8028 	if (usable_nodes && required_kernelcore > usable_nodes)
8029 		goto restart;
8030 
8031 out2:
8032 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8033 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
8034 		unsigned long start_pfn, end_pfn;
8035 
8036 		zone_movable_pfn[nid] =
8037 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8038 
8039 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8040 		if (zone_movable_pfn[nid] >= end_pfn)
8041 			zone_movable_pfn[nid] = 0;
8042 	}
8043 
8044 out:
8045 	/* restore the node_state */
8046 	node_states[N_MEMORY] = saved_node_state;
8047 }
8048 
8049 /* Any regular or high memory on that node ? */
8050 static void check_for_memory(pg_data_t *pgdat, int nid)
8051 {
8052 	enum zone_type zone_type;
8053 
8054 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8055 		struct zone *zone = &pgdat->node_zones[zone_type];
8056 		if (populated_zone(zone)) {
8057 			if (IS_ENABLED(CONFIG_HIGHMEM))
8058 				node_set_state(nid, N_HIGH_MEMORY);
8059 			if (zone_type <= ZONE_NORMAL)
8060 				node_set_state(nid, N_NORMAL_MEMORY);
8061 			break;
8062 		}
8063 	}
8064 }
8065 
8066 /*
8067  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8068  * such cases we allow max_zone_pfn sorted in the descending order
8069  */
8070 bool __weak arch_has_descending_max_zone_pfns(void)
8071 {
8072 	return false;
8073 }
8074 
8075 /**
8076  * free_area_init - Initialise all pg_data_t and zone data
8077  * @max_zone_pfn: an array of max PFNs for each zone
8078  *
8079  * This will call free_area_init_node() for each active node in the system.
8080  * Using the page ranges provided by memblock_set_node(), the size of each
8081  * zone in each node and their holes is calculated. If the maximum PFN
8082  * between two adjacent zones match, it is assumed that the zone is empty.
8083  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8084  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8085  * starts where the previous one ended. For example, ZONE_DMA32 starts
8086  * at arch_max_dma_pfn.
8087  */
8088 void __init free_area_init(unsigned long *max_zone_pfn)
8089 {
8090 	unsigned long start_pfn, end_pfn;
8091 	int i, nid, zone;
8092 	bool descending;
8093 
8094 	/* Record where the zone boundaries are */
8095 	memset(arch_zone_lowest_possible_pfn, 0,
8096 				sizeof(arch_zone_lowest_possible_pfn));
8097 	memset(arch_zone_highest_possible_pfn, 0,
8098 				sizeof(arch_zone_highest_possible_pfn));
8099 
8100 	start_pfn = find_min_pfn_with_active_regions();
8101 	descending = arch_has_descending_max_zone_pfns();
8102 
8103 	for (i = 0; i < MAX_NR_ZONES; i++) {
8104 		if (descending)
8105 			zone = MAX_NR_ZONES - i - 1;
8106 		else
8107 			zone = i;
8108 
8109 		if (zone == ZONE_MOVABLE)
8110 			continue;
8111 
8112 		end_pfn = max(max_zone_pfn[zone], start_pfn);
8113 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
8114 		arch_zone_highest_possible_pfn[zone] = end_pfn;
8115 
8116 		start_pfn = end_pfn;
8117 	}
8118 
8119 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
8120 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8121 	find_zone_movable_pfns_for_nodes();
8122 
8123 	/* Print out the zone ranges */
8124 	pr_info("Zone ranges:\n");
8125 	for (i = 0; i < MAX_NR_ZONES; i++) {
8126 		if (i == ZONE_MOVABLE)
8127 			continue;
8128 		pr_info("  %-8s ", zone_names[i]);
8129 		if (arch_zone_lowest_possible_pfn[i] ==
8130 				arch_zone_highest_possible_pfn[i])
8131 			pr_cont("empty\n");
8132 		else
8133 			pr_cont("[mem %#018Lx-%#018Lx]\n",
8134 				(u64)arch_zone_lowest_possible_pfn[i]
8135 					<< PAGE_SHIFT,
8136 				((u64)arch_zone_highest_possible_pfn[i]
8137 					<< PAGE_SHIFT) - 1);
8138 	}
8139 
8140 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8141 	pr_info("Movable zone start for each node\n");
8142 	for (i = 0; i < MAX_NUMNODES; i++) {
8143 		if (zone_movable_pfn[i])
8144 			pr_info("  Node %d: %#018Lx\n", i,
8145 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8146 	}
8147 
8148 	/*
8149 	 * Print out the early node map, and initialize the
8150 	 * subsection-map relative to active online memory ranges to
8151 	 * enable future "sub-section" extensions of the memory map.
8152 	 */
8153 	pr_info("Early memory node ranges\n");
8154 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8155 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8156 			(u64)start_pfn << PAGE_SHIFT,
8157 			((u64)end_pfn << PAGE_SHIFT) - 1);
8158 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8159 	}
8160 
8161 	/* Initialise every node */
8162 	mminit_verify_pageflags_layout();
8163 	setup_nr_node_ids();
8164 	for_each_node(nid) {
8165 		pg_data_t *pgdat;
8166 
8167 		if (!node_online(nid)) {
8168 			pr_info("Initializing node %d as memoryless\n", nid);
8169 
8170 			/* Allocator not initialized yet */
8171 			pgdat = arch_alloc_nodedata(nid);
8172 			if (!pgdat) {
8173 				pr_err("Cannot allocate %zuB for node %d.\n",
8174 						sizeof(*pgdat), nid);
8175 				continue;
8176 			}
8177 			arch_refresh_nodedata(nid, pgdat);
8178 			free_area_init_memoryless_node(nid);
8179 
8180 			/*
8181 			 * We do not want to confuse userspace by sysfs
8182 			 * files/directories for node without any memory
8183 			 * attached to it, so this node is not marked as
8184 			 * N_MEMORY and not marked online so that no sysfs
8185 			 * hierarchy will be created via register_one_node for
8186 			 * it. The pgdat will get fully initialized by
8187 			 * hotadd_init_pgdat() when memory is hotplugged into
8188 			 * this node.
8189 			 */
8190 			continue;
8191 		}
8192 
8193 		pgdat = NODE_DATA(nid);
8194 		free_area_init_node(nid);
8195 
8196 		/* Any memory on that node */
8197 		if (pgdat->node_present_pages)
8198 			node_set_state(nid, N_MEMORY);
8199 		check_for_memory(pgdat, nid);
8200 	}
8201 
8202 	memmap_init();
8203 }
8204 
8205 static int __init cmdline_parse_core(char *p, unsigned long *core,
8206 				     unsigned long *percent)
8207 {
8208 	unsigned long long coremem;
8209 	char *endptr;
8210 
8211 	if (!p)
8212 		return -EINVAL;
8213 
8214 	/* Value may be a percentage of total memory, otherwise bytes */
8215 	coremem = simple_strtoull(p, &endptr, 0);
8216 	if (*endptr == '%') {
8217 		/* Paranoid check for percent values greater than 100 */
8218 		WARN_ON(coremem > 100);
8219 
8220 		*percent = coremem;
8221 	} else {
8222 		coremem = memparse(p, &p);
8223 		/* Paranoid check that UL is enough for the coremem value */
8224 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8225 
8226 		*core = coremem >> PAGE_SHIFT;
8227 		*percent = 0UL;
8228 	}
8229 	return 0;
8230 }
8231 
8232 /*
8233  * kernelcore=size sets the amount of memory for use for allocations that
8234  * cannot be reclaimed or migrated.
8235  */
8236 static int __init cmdline_parse_kernelcore(char *p)
8237 {
8238 	/* parse kernelcore=mirror */
8239 	if (parse_option_str(p, "mirror")) {
8240 		mirrored_kernelcore = true;
8241 		return 0;
8242 	}
8243 
8244 	return cmdline_parse_core(p, &required_kernelcore,
8245 				  &required_kernelcore_percent);
8246 }
8247 
8248 /*
8249  * movablecore=size sets the amount of memory for use for allocations that
8250  * can be reclaimed or migrated.
8251  */
8252 static int __init cmdline_parse_movablecore(char *p)
8253 {
8254 	return cmdline_parse_core(p, &required_movablecore,
8255 				  &required_movablecore_percent);
8256 }
8257 
8258 early_param("kernelcore", cmdline_parse_kernelcore);
8259 early_param("movablecore", cmdline_parse_movablecore);
8260 
8261 void adjust_managed_page_count(struct page *page, long count)
8262 {
8263 	atomic_long_add(count, &page_zone(page)->managed_pages);
8264 	totalram_pages_add(count);
8265 #ifdef CONFIG_HIGHMEM
8266 	if (PageHighMem(page))
8267 		totalhigh_pages_add(count);
8268 #endif
8269 }
8270 EXPORT_SYMBOL(adjust_managed_page_count);
8271 
8272 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8273 {
8274 	void *pos;
8275 	unsigned long pages = 0;
8276 
8277 	start = (void *)PAGE_ALIGN((unsigned long)start);
8278 	end = (void *)((unsigned long)end & PAGE_MASK);
8279 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8280 		struct page *page = virt_to_page(pos);
8281 		void *direct_map_addr;
8282 
8283 		/*
8284 		 * 'direct_map_addr' might be different from 'pos'
8285 		 * because some architectures' virt_to_page()
8286 		 * work with aliases.  Getting the direct map
8287 		 * address ensures that we get a _writeable_
8288 		 * alias for the memset().
8289 		 */
8290 		direct_map_addr = page_address(page);
8291 		/*
8292 		 * Perform a kasan-unchecked memset() since this memory
8293 		 * has not been initialized.
8294 		 */
8295 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8296 		if ((unsigned int)poison <= 0xFF)
8297 			memset(direct_map_addr, poison, PAGE_SIZE);
8298 
8299 		free_reserved_page(page);
8300 	}
8301 
8302 	if (pages && s)
8303 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8304 
8305 	return pages;
8306 }
8307 
8308 void __init mem_init_print_info(void)
8309 {
8310 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8311 	unsigned long init_code_size, init_data_size;
8312 
8313 	physpages = get_num_physpages();
8314 	codesize = _etext - _stext;
8315 	datasize = _edata - _sdata;
8316 	rosize = __end_rodata - __start_rodata;
8317 	bss_size = __bss_stop - __bss_start;
8318 	init_data_size = __init_end - __init_begin;
8319 	init_code_size = _einittext - _sinittext;
8320 
8321 	/*
8322 	 * Detect special cases and adjust section sizes accordingly:
8323 	 * 1) .init.* may be embedded into .data sections
8324 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8325 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8326 	 * 3) .rodata.* may be embedded into .text or .data sections.
8327 	 */
8328 #define adj_init_size(start, end, size, pos, adj) \
8329 	do { \
8330 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8331 			size -= adj; \
8332 	} while (0)
8333 
8334 	adj_init_size(__init_begin, __init_end, init_data_size,
8335 		     _sinittext, init_code_size);
8336 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8337 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8338 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8339 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8340 
8341 #undef	adj_init_size
8342 
8343 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8344 #ifdef	CONFIG_HIGHMEM
8345 		", %luK highmem"
8346 #endif
8347 		")\n",
8348 		K(nr_free_pages()), K(physpages),
8349 		codesize >> 10, datasize >> 10, rosize >> 10,
8350 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
8351 		K(physpages - totalram_pages() - totalcma_pages),
8352 		K(totalcma_pages)
8353 #ifdef	CONFIG_HIGHMEM
8354 		, K(totalhigh_pages())
8355 #endif
8356 		);
8357 }
8358 
8359 /**
8360  * set_dma_reserve - set the specified number of pages reserved in the first zone
8361  * @new_dma_reserve: The number of pages to mark reserved
8362  *
8363  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8364  * In the DMA zone, a significant percentage may be consumed by kernel image
8365  * and other unfreeable allocations which can skew the watermarks badly. This
8366  * function may optionally be used to account for unfreeable pages in the
8367  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8368  * smaller per-cpu batchsize.
8369  */
8370 void __init set_dma_reserve(unsigned long new_dma_reserve)
8371 {
8372 	dma_reserve = new_dma_reserve;
8373 }
8374 
8375 static int page_alloc_cpu_dead(unsigned int cpu)
8376 {
8377 	struct zone *zone;
8378 
8379 	lru_add_drain_cpu(cpu);
8380 	mlock_page_drain_remote(cpu);
8381 	drain_pages(cpu);
8382 
8383 	/*
8384 	 * Spill the event counters of the dead processor
8385 	 * into the current processors event counters.
8386 	 * This artificially elevates the count of the current
8387 	 * processor.
8388 	 */
8389 	vm_events_fold_cpu(cpu);
8390 
8391 	/*
8392 	 * Zero the differential counters of the dead processor
8393 	 * so that the vm statistics are consistent.
8394 	 *
8395 	 * This is only okay since the processor is dead and cannot
8396 	 * race with what we are doing.
8397 	 */
8398 	cpu_vm_stats_fold(cpu);
8399 
8400 	for_each_populated_zone(zone)
8401 		zone_pcp_update(zone, 0);
8402 
8403 	return 0;
8404 }
8405 
8406 static int page_alloc_cpu_online(unsigned int cpu)
8407 {
8408 	struct zone *zone;
8409 
8410 	for_each_populated_zone(zone)
8411 		zone_pcp_update(zone, 1);
8412 	return 0;
8413 }
8414 
8415 #ifdef CONFIG_NUMA
8416 int hashdist = HASHDIST_DEFAULT;
8417 
8418 static int __init set_hashdist(char *str)
8419 {
8420 	if (!str)
8421 		return 0;
8422 	hashdist = simple_strtoul(str, &str, 0);
8423 	return 1;
8424 }
8425 __setup("hashdist=", set_hashdist);
8426 #endif
8427 
8428 void __init page_alloc_init(void)
8429 {
8430 	int ret;
8431 
8432 #ifdef CONFIG_NUMA
8433 	if (num_node_state(N_MEMORY) == 1)
8434 		hashdist = 0;
8435 #endif
8436 
8437 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8438 					"mm/page_alloc:pcp",
8439 					page_alloc_cpu_online,
8440 					page_alloc_cpu_dead);
8441 	WARN_ON(ret < 0);
8442 }
8443 
8444 /*
8445  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8446  *	or min_free_kbytes changes.
8447  */
8448 static void calculate_totalreserve_pages(void)
8449 {
8450 	struct pglist_data *pgdat;
8451 	unsigned long reserve_pages = 0;
8452 	enum zone_type i, j;
8453 
8454 	for_each_online_pgdat(pgdat) {
8455 
8456 		pgdat->totalreserve_pages = 0;
8457 
8458 		for (i = 0; i < MAX_NR_ZONES; i++) {
8459 			struct zone *zone = pgdat->node_zones + i;
8460 			long max = 0;
8461 			unsigned long managed_pages = zone_managed_pages(zone);
8462 
8463 			/* Find valid and maximum lowmem_reserve in the zone */
8464 			for (j = i; j < MAX_NR_ZONES; j++) {
8465 				if (zone->lowmem_reserve[j] > max)
8466 					max = zone->lowmem_reserve[j];
8467 			}
8468 
8469 			/* we treat the high watermark as reserved pages. */
8470 			max += high_wmark_pages(zone);
8471 
8472 			if (max > managed_pages)
8473 				max = managed_pages;
8474 
8475 			pgdat->totalreserve_pages += max;
8476 
8477 			reserve_pages += max;
8478 		}
8479 	}
8480 	totalreserve_pages = reserve_pages;
8481 }
8482 
8483 /*
8484  * setup_per_zone_lowmem_reserve - called whenever
8485  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8486  *	has a correct pages reserved value, so an adequate number of
8487  *	pages are left in the zone after a successful __alloc_pages().
8488  */
8489 static void setup_per_zone_lowmem_reserve(void)
8490 {
8491 	struct pglist_data *pgdat;
8492 	enum zone_type i, j;
8493 
8494 	for_each_online_pgdat(pgdat) {
8495 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8496 			struct zone *zone = &pgdat->node_zones[i];
8497 			int ratio = sysctl_lowmem_reserve_ratio[i];
8498 			bool clear = !ratio || !zone_managed_pages(zone);
8499 			unsigned long managed_pages = 0;
8500 
8501 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8502 				struct zone *upper_zone = &pgdat->node_zones[j];
8503 
8504 				managed_pages += zone_managed_pages(upper_zone);
8505 
8506 				if (clear)
8507 					zone->lowmem_reserve[j] = 0;
8508 				else
8509 					zone->lowmem_reserve[j] = managed_pages / ratio;
8510 			}
8511 		}
8512 	}
8513 
8514 	/* update totalreserve_pages */
8515 	calculate_totalreserve_pages();
8516 }
8517 
8518 static void __setup_per_zone_wmarks(void)
8519 {
8520 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8521 	unsigned long lowmem_pages = 0;
8522 	struct zone *zone;
8523 	unsigned long flags;
8524 
8525 	/* Calculate total number of !ZONE_HIGHMEM pages */
8526 	for_each_zone(zone) {
8527 		if (!is_highmem(zone))
8528 			lowmem_pages += zone_managed_pages(zone);
8529 	}
8530 
8531 	for_each_zone(zone) {
8532 		u64 tmp;
8533 
8534 		spin_lock_irqsave(&zone->lock, flags);
8535 		tmp = (u64)pages_min * zone_managed_pages(zone);
8536 		do_div(tmp, lowmem_pages);
8537 		if (is_highmem(zone)) {
8538 			/*
8539 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8540 			 * need highmem pages, so cap pages_min to a small
8541 			 * value here.
8542 			 *
8543 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8544 			 * deltas control async page reclaim, and so should
8545 			 * not be capped for highmem.
8546 			 */
8547 			unsigned long min_pages;
8548 
8549 			min_pages = zone_managed_pages(zone) / 1024;
8550 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8551 			zone->_watermark[WMARK_MIN] = min_pages;
8552 		} else {
8553 			/*
8554 			 * If it's a lowmem zone, reserve a number of pages
8555 			 * proportionate to the zone's size.
8556 			 */
8557 			zone->_watermark[WMARK_MIN] = tmp;
8558 		}
8559 
8560 		/*
8561 		 * Set the kswapd watermarks distance according to the
8562 		 * scale factor in proportion to available memory, but
8563 		 * ensure a minimum size on small systems.
8564 		 */
8565 		tmp = max_t(u64, tmp >> 2,
8566 			    mult_frac(zone_managed_pages(zone),
8567 				      watermark_scale_factor, 10000));
8568 
8569 		zone->watermark_boost = 0;
8570 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8571 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8572 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8573 
8574 		spin_unlock_irqrestore(&zone->lock, flags);
8575 	}
8576 
8577 	/* update totalreserve_pages */
8578 	calculate_totalreserve_pages();
8579 }
8580 
8581 /**
8582  * setup_per_zone_wmarks - called when min_free_kbytes changes
8583  * or when memory is hot-{added|removed}
8584  *
8585  * Ensures that the watermark[min,low,high] values for each zone are set
8586  * correctly with respect to min_free_kbytes.
8587  */
8588 void setup_per_zone_wmarks(void)
8589 {
8590 	struct zone *zone;
8591 	static DEFINE_SPINLOCK(lock);
8592 
8593 	spin_lock(&lock);
8594 	__setup_per_zone_wmarks();
8595 	spin_unlock(&lock);
8596 
8597 	/*
8598 	 * The watermark size have changed so update the pcpu batch
8599 	 * and high limits or the limits may be inappropriate.
8600 	 */
8601 	for_each_zone(zone)
8602 		zone_pcp_update(zone, 0);
8603 }
8604 
8605 /*
8606  * Initialise min_free_kbytes.
8607  *
8608  * For small machines we want it small (128k min).  For large machines
8609  * we want it large (256MB max).  But it is not linear, because network
8610  * bandwidth does not increase linearly with machine size.  We use
8611  *
8612  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8613  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8614  *
8615  * which yields
8616  *
8617  * 16MB:	512k
8618  * 32MB:	724k
8619  * 64MB:	1024k
8620  * 128MB:	1448k
8621  * 256MB:	2048k
8622  * 512MB:	2896k
8623  * 1024MB:	4096k
8624  * 2048MB:	5792k
8625  * 4096MB:	8192k
8626  * 8192MB:	11584k
8627  * 16384MB:	16384k
8628  */
8629 void calculate_min_free_kbytes(void)
8630 {
8631 	unsigned long lowmem_kbytes;
8632 	int new_min_free_kbytes;
8633 
8634 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8635 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8636 
8637 	if (new_min_free_kbytes > user_min_free_kbytes)
8638 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8639 	else
8640 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8641 				new_min_free_kbytes, user_min_free_kbytes);
8642 
8643 }
8644 
8645 int __meminit init_per_zone_wmark_min(void)
8646 {
8647 	calculate_min_free_kbytes();
8648 	setup_per_zone_wmarks();
8649 	refresh_zone_stat_thresholds();
8650 	setup_per_zone_lowmem_reserve();
8651 
8652 #ifdef CONFIG_NUMA
8653 	setup_min_unmapped_ratio();
8654 	setup_min_slab_ratio();
8655 #endif
8656 
8657 	khugepaged_min_free_kbytes_update();
8658 
8659 	return 0;
8660 }
8661 postcore_initcall(init_per_zone_wmark_min)
8662 
8663 /*
8664  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8665  *	that we can call two helper functions whenever min_free_kbytes
8666  *	changes.
8667  */
8668 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8669 		void *buffer, size_t *length, loff_t *ppos)
8670 {
8671 	int rc;
8672 
8673 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8674 	if (rc)
8675 		return rc;
8676 
8677 	if (write) {
8678 		user_min_free_kbytes = min_free_kbytes;
8679 		setup_per_zone_wmarks();
8680 	}
8681 	return 0;
8682 }
8683 
8684 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8685 		void *buffer, size_t *length, loff_t *ppos)
8686 {
8687 	int rc;
8688 
8689 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8690 	if (rc)
8691 		return rc;
8692 
8693 	if (write)
8694 		setup_per_zone_wmarks();
8695 
8696 	return 0;
8697 }
8698 
8699 #ifdef CONFIG_NUMA
8700 static void setup_min_unmapped_ratio(void)
8701 {
8702 	pg_data_t *pgdat;
8703 	struct zone *zone;
8704 
8705 	for_each_online_pgdat(pgdat)
8706 		pgdat->min_unmapped_pages = 0;
8707 
8708 	for_each_zone(zone)
8709 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8710 						         sysctl_min_unmapped_ratio) / 100;
8711 }
8712 
8713 
8714 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8715 		void *buffer, size_t *length, loff_t *ppos)
8716 {
8717 	int rc;
8718 
8719 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8720 	if (rc)
8721 		return rc;
8722 
8723 	setup_min_unmapped_ratio();
8724 
8725 	return 0;
8726 }
8727 
8728 static void setup_min_slab_ratio(void)
8729 {
8730 	pg_data_t *pgdat;
8731 	struct zone *zone;
8732 
8733 	for_each_online_pgdat(pgdat)
8734 		pgdat->min_slab_pages = 0;
8735 
8736 	for_each_zone(zone)
8737 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8738 						     sysctl_min_slab_ratio) / 100;
8739 }
8740 
8741 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8742 		void *buffer, size_t *length, loff_t *ppos)
8743 {
8744 	int rc;
8745 
8746 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8747 	if (rc)
8748 		return rc;
8749 
8750 	setup_min_slab_ratio();
8751 
8752 	return 0;
8753 }
8754 #endif
8755 
8756 /*
8757  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8758  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8759  *	whenever sysctl_lowmem_reserve_ratio changes.
8760  *
8761  * The reserve ratio obviously has absolutely no relation with the
8762  * minimum watermarks. The lowmem reserve ratio can only make sense
8763  * if in function of the boot time zone sizes.
8764  */
8765 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8766 		void *buffer, size_t *length, loff_t *ppos)
8767 {
8768 	int i;
8769 
8770 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8771 
8772 	for (i = 0; i < MAX_NR_ZONES; i++) {
8773 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8774 			sysctl_lowmem_reserve_ratio[i] = 0;
8775 	}
8776 
8777 	setup_per_zone_lowmem_reserve();
8778 	return 0;
8779 }
8780 
8781 /*
8782  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8783  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8784  * pagelist can have before it gets flushed back to buddy allocator.
8785  */
8786 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8787 		int write, void *buffer, size_t *length, loff_t *ppos)
8788 {
8789 	struct zone *zone;
8790 	int old_percpu_pagelist_high_fraction;
8791 	int ret;
8792 
8793 	mutex_lock(&pcp_batch_high_lock);
8794 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8795 
8796 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8797 	if (!write || ret < 0)
8798 		goto out;
8799 
8800 	/* Sanity checking to avoid pcp imbalance */
8801 	if (percpu_pagelist_high_fraction &&
8802 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8803 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8804 		ret = -EINVAL;
8805 		goto out;
8806 	}
8807 
8808 	/* No change? */
8809 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8810 		goto out;
8811 
8812 	for_each_populated_zone(zone)
8813 		zone_set_pageset_high_and_batch(zone, 0);
8814 out:
8815 	mutex_unlock(&pcp_batch_high_lock);
8816 	return ret;
8817 }
8818 
8819 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8820 /*
8821  * Returns the number of pages that arch has reserved but
8822  * is not known to alloc_large_system_hash().
8823  */
8824 static unsigned long __init arch_reserved_kernel_pages(void)
8825 {
8826 	return 0;
8827 }
8828 #endif
8829 
8830 /*
8831  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8832  * machines. As memory size is increased the scale is also increased but at
8833  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8834  * quadruples the scale is increased by one, which means the size of hash table
8835  * only doubles, instead of quadrupling as well.
8836  * Because 32-bit systems cannot have large physical memory, where this scaling
8837  * makes sense, it is disabled on such platforms.
8838  */
8839 #if __BITS_PER_LONG > 32
8840 #define ADAPT_SCALE_BASE	(64ul << 30)
8841 #define ADAPT_SCALE_SHIFT	2
8842 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8843 #endif
8844 
8845 /*
8846  * allocate a large system hash table from bootmem
8847  * - it is assumed that the hash table must contain an exact power-of-2
8848  *   quantity of entries
8849  * - limit is the number of hash buckets, not the total allocation size
8850  */
8851 void *__init alloc_large_system_hash(const char *tablename,
8852 				     unsigned long bucketsize,
8853 				     unsigned long numentries,
8854 				     int scale,
8855 				     int flags,
8856 				     unsigned int *_hash_shift,
8857 				     unsigned int *_hash_mask,
8858 				     unsigned long low_limit,
8859 				     unsigned long high_limit)
8860 {
8861 	unsigned long long max = high_limit;
8862 	unsigned long log2qty, size;
8863 	void *table = NULL;
8864 	gfp_t gfp_flags;
8865 	bool virt;
8866 	bool huge;
8867 
8868 	/* allow the kernel cmdline to have a say */
8869 	if (!numentries) {
8870 		/* round applicable memory size up to nearest megabyte */
8871 		numentries = nr_kernel_pages;
8872 		numentries -= arch_reserved_kernel_pages();
8873 
8874 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8875 		if (PAGE_SHIFT < 20)
8876 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8877 
8878 #if __BITS_PER_LONG > 32
8879 		if (!high_limit) {
8880 			unsigned long adapt;
8881 
8882 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8883 			     adapt <<= ADAPT_SCALE_SHIFT)
8884 				scale++;
8885 		}
8886 #endif
8887 
8888 		/* limit to 1 bucket per 2^scale bytes of low memory */
8889 		if (scale > PAGE_SHIFT)
8890 			numentries >>= (scale - PAGE_SHIFT);
8891 		else
8892 			numentries <<= (PAGE_SHIFT - scale);
8893 
8894 		/* Make sure we've got at least a 0-order allocation.. */
8895 		if (unlikely(flags & HASH_SMALL)) {
8896 			/* Makes no sense without HASH_EARLY */
8897 			WARN_ON(!(flags & HASH_EARLY));
8898 			if (!(numentries >> *_hash_shift)) {
8899 				numentries = 1UL << *_hash_shift;
8900 				BUG_ON(!numentries);
8901 			}
8902 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8903 			numentries = PAGE_SIZE / bucketsize;
8904 	}
8905 	numentries = roundup_pow_of_two(numentries);
8906 
8907 	/* limit allocation size to 1/16 total memory by default */
8908 	if (max == 0) {
8909 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8910 		do_div(max, bucketsize);
8911 	}
8912 	max = min(max, 0x80000000ULL);
8913 
8914 	if (numentries < low_limit)
8915 		numentries = low_limit;
8916 	if (numentries > max)
8917 		numentries = max;
8918 
8919 	log2qty = ilog2(numentries);
8920 
8921 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8922 	do {
8923 		virt = false;
8924 		size = bucketsize << log2qty;
8925 		if (flags & HASH_EARLY) {
8926 			if (flags & HASH_ZERO)
8927 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8928 			else
8929 				table = memblock_alloc_raw(size,
8930 							   SMP_CACHE_BYTES);
8931 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8932 			table = vmalloc_huge(size, gfp_flags);
8933 			virt = true;
8934 			if (table)
8935 				huge = is_vm_area_hugepages(table);
8936 		} else {
8937 			/*
8938 			 * If bucketsize is not a power-of-two, we may free
8939 			 * some pages at the end of hash table which
8940 			 * alloc_pages_exact() automatically does
8941 			 */
8942 			table = alloc_pages_exact(size, gfp_flags);
8943 			kmemleak_alloc(table, size, 1, gfp_flags);
8944 		}
8945 	} while (!table && size > PAGE_SIZE && --log2qty);
8946 
8947 	if (!table)
8948 		panic("Failed to allocate %s hash table\n", tablename);
8949 
8950 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8951 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8952 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8953 
8954 	if (_hash_shift)
8955 		*_hash_shift = log2qty;
8956 	if (_hash_mask)
8957 		*_hash_mask = (1 << log2qty) - 1;
8958 
8959 	return table;
8960 }
8961 
8962 #ifdef CONFIG_CONTIG_ALLOC
8963 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8964 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8965 /* Usage: See admin-guide/dynamic-debug-howto.rst */
8966 static void alloc_contig_dump_pages(struct list_head *page_list)
8967 {
8968 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8969 
8970 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8971 		struct page *page;
8972 
8973 		dump_stack();
8974 		list_for_each_entry(page, page_list, lru)
8975 			dump_page(page, "migration failure");
8976 	}
8977 }
8978 #else
8979 static inline void alloc_contig_dump_pages(struct list_head *page_list)
8980 {
8981 }
8982 #endif
8983 
8984 /* [start, end) must belong to a single zone. */
8985 int __alloc_contig_migrate_range(struct compact_control *cc,
8986 					unsigned long start, unsigned long end)
8987 {
8988 	/* This function is based on compact_zone() from compaction.c. */
8989 	unsigned int nr_reclaimed;
8990 	unsigned long pfn = start;
8991 	unsigned int tries = 0;
8992 	int ret = 0;
8993 	struct migration_target_control mtc = {
8994 		.nid = zone_to_nid(cc->zone),
8995 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8996 	};
8997 
8998 	lru_cache_disable();
8999 
9000 	while (pfn < end || !list_empty(&cc->migratepages)) {
9001 		if (fatal_signal_pending(current)) {
9002 			ret = -EINTR;
9003 			break;
9004 		}
9005 
9006 		if (list_empty(&cc->migratepages)) {
9007 			cc->nr_migratepages = 0;
9008 			ret = isolate_migratepages_range(cc, pfn, end);
9009 			if (ret && ret != -EAGAIN)
9010 				break;
9011 			pfn = cc->migrate_pfn;
9012 			tries = 0;
9013 		} else if (++tries == 5) {
9014 			ret = -EBUSY;
9015 			break;
9016 		}
9017 
9018 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9019 							&cc->migratepages);
9020 		cc->nr_migratepages -= nr_reclaimed;
9021 
9022 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9023 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9024 
9025 		/*
9026 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9027 		 * to retry again over this error, so do the same here.
9028 		 */
9029 		if (ret == -ENOMEM)
9030 			break;
9031 	}
9032 
9033 	lru_cache_enable();
9034 	if (ret < 0) {
9035 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9036 			alloc_contig_dump_pages(&cc->migratepages);
9037 		putback_movable_pages(&cc->migratepages);
9038 		return ret;
9039 	}
9040 	return 0;
9041 }
9042 
9043 /**
9044  * alloc_contig_range() -- tries to allocate given range of pages
9045  * @start:	start PFN to allocate
9046  * @end:	one-past-the-last PFN to allocate
9047  * @migratetype:	migratetype of the underlying pageblocks (either
9048  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9049  *			in range must have the same migratetype and it must
9050  *			be either of the two.
9051  * @gfp_mask:	GFP mask to use during compaction
9052  *
9053  * The PFN range does not have to be pageblock aligned. The PFN range must
9054  * belong to a single zone.
9055  *
9056  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9057  * pageblocks in the range.  Once isolated, the pageblocks should not
9058  * be modified by others.
9059  *
9060  * Return: zero on success or negative error code.  On success all
9061  * pages which PFN is in [start, end) are allocated for the caller and
9062  * need to be freed with free_contig_range().
9063  */
9064 int alloc_contig_range(unsigned long start, unsigned long end,
9065 		       unsigned migratetype, gfp_t gfp_mask)
9066 {
9067 	unsigned long outer_start, outer_end;
9068 	int order;
9069 	int ret = 0;
9070 
9071 	struct compact_control cc = {
9072 		.nr_migratepages = 0,
9073 		.order = -1,
9074 		.zone = page_zone(pfn_to_page(start)),
9075 		.mode = MIGRATE_SYNC,
9076 		.ignore_skip_hint = true,
9077 		.no_set_skip_hint = true,
9078 		.gfp_mask = current_gfp_context(gfp_mask),
9079 		.alloc_contig = true,
9080 	};
9081 	INIT_LIST_HEAD(&cc.migratepages);
9082 
9083 	/*
9084 	 * What we do here is we mark all pageblocks in range as
9085 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9086 	 * have different sizes, and due to the way page allocator
9087 	 * work, start_isolate_page_range() has special handlings for this.
9088 	 *
9089 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9090 	 * migrate the pages from an unaligned range (ie. pages that
9091 	 * we are interested in). This will put all the pages in
9092 	 * range back to page allocator as MIGRATE_ISOLATE.
9093 	 *
9094 	 * When this is done, we take the pages in range from page
9095 	 * allocator removing them from the buddy system.  This way
9096 	 * page allocator will never consider using them.
9097 	 *
9098 	 * This lets us mark the pageblocks back as
9099 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9100 	 * aligned range but not in the unaligned, original range are
9101 	 * put back to page allocator so that buddy can use them.
9102 	 */
9103 
9104 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9105 	if (ret)
9106 		goto done;
9107 
9108 	drain_all_pages(cc.zone);
9109 
9110 	/*
9111 	 * In case of -EBUSY, we'd like to know which page causes problem.
9112 	 * So, just fall through. test_pages_isolated() has a tracepoint
9113 	 * which will report the busy page.
9114 	 *
9115 	 * It is possible that busy pages could become available before
9116 	 * the call to test_pages_isolated, and the range will actually be
9117 	 * allocated.  So, if we fall through be sure to clear ret so that
9118 	 * -EBUSY is not accidentally used or returned to caller.
9119 	 */
9120 	ret = __alloc_contig_migrate_range(&cc, start, end);
9121 	if (ret && ret != -EBUSY)
9122 		goto done;
9123 	ret = 0;
9124 
9125 	/*
9126 	 * Pages from [start, end) are within a pageblock_nr_pages
9127 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9128 	 * more, all pages in [start, end) are free in page allocator.
9129 	 * What we are going to do is to allocate all pages from
9130 	 * [start, end) (that is remove them from page allocator).
9131 	 *
9132 	 * The only problem is that pages at the beginning and at the
9133 	 * end of interesting range may be not aligned with pages that
9134 	 * page allocator holds, ie. they can be part of higher order
9135 	 * pages.  Because of this, we reserve the bigger range and
9136 	 * once this is done free the pages we are not interested in.
9137 	 *
9138 	 * We don't have to hold zone->lock here because the pages are
9139 	 * isolated thus they won't get removed from buddy.
9140 	 */
9141 
9142 	order = 0;
9143 	outer_start = start;
9144 	while (!PageBuddy(pfn_to_page(outer_start))) {
9145 		if (++order >= MAX_ORDER) {
9146 			outer_start = start;
9147 			break;
9148 		}
9149 		outer_start &= ~0UL << order;
9150 	}
9151 
9152 	if (outer_start != start) {
9153 		order = buddy_order(pfn_to_page(outer_start));
9154 
9155 		/*
9156 		 * outer_start page could be small order buddy page and
9157 		 * it doesn't include start page. Adjust outer_start
9158 		 * in this case to report failed page properly
9159 		 * on tracepoint in test_pages_isolated()
9160 		 */
9161 		if (outer_start + (1UL << order) <= start)
9162 			outer_start = start;
9163 	}
9164 
9165 	/* Make sure the range is really isolated. */
9166 	if (test_pages_isolated(outer_start, end, 0)) {
9167 		ret = -EBUSY;
9168 		goto done;
9169 	}
9170 
9171 	/* Grab isolated pages from freelists. */
9172 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9173 	if (!outer_end) {
9174 		ret = -EBUSY;
9175 		goto done;
9176 	}
9177 
9178 	/* Free head and tail (if any) */
9179 	if (start != outer_start)
9180 		free_contig_range(outer_start, start - outer_start);
9181 	if (end != outer_end)
9182 		free_contig_range(end, outer_end - end);
9183 
9184 done:
9185 	undo_isolate_page_range(start, end, migratetype);
9186 	return ret;
9187 }
9188 EXPORT_SYMBOL(alloc_contig_range);
9189 
9190 static int __alloc_contig_pages(unsigned long start_pfn,
9191 				unsigned long nr_pages, gfp_t gfp_mask)
9192 {
9193 	unsigned long end_pfn = start_pfn + nr_pages;
9194 
9195 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9196 				  gfp_mask);
9197 }
9198 
9199 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9200 				   unsigned long nr_pages)
9201 {
9202 	unsigned long i, end_pfn = start_pfn + nr_pages;
9203 	struct page *page;
9204 
9205 	for (i = start_pfn; i < end_pfn; i++) {
9206 		page = pfn_to_online_page(i);
9207 		if (!page)
9208 			return false;
9209 
9210 		if (page_zone(page) != z)
9211 			return false;
9212 
9213 		if (PageReserved(page))
9214 			return false;
9215 	}
9216 	return true;
9217 }
9218 
9219 static bool zone_spans_last_pfn(const struct zone *zone,
9220 				unsigned long start_pfn, unsigned long nr_pages)
9221 {
9222 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9223 
9224 	return zone_spans_pfn(zone, last_pfn);
9225 }
9226 
9227 /**
9228  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9229  * @nr_pages:	Number of contiguous pages to allocate
9230  * @gfp_mask:	GFP mask to limit search and used during compaction
9231  * @nid:	Target node
9232  * @nodemask:	Mask for other possible nodes
9233  *
9234  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9235  * on an applicable zonelist to find a contiguous pfn range which can then be
9236  * tried for allocation with alloc_contig_range(). This routine is intended
9237  * for allocation requests which can not be fulfilled with the buddy allocator.
9238  *
9239  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9240  * power of two, then allocated range is also guaranteed to be aligned to same
9241  * nr_pages (e.g. 1GB request would be aligned to 1GB).
9242  *
9243  * Allocated pages can be freed with free_contig_range() or by manually calling
9244  * __free_page() on each allocated page.
9245  *
9246  * Return: pointer to contiguous pages on success, or NULL if not successful.
9247  */
9248 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9249 				int nid, nodemask_t *nodemask)
9250 {
9251 	unsigned long ret, pfn, flags;
9252 	struct zonelist *zonelist;
9253 	struct zone *zone;
9254 	struct zoneref *z;
9255 
9256 	zonelist = node_zonelist(nid, gfp_mask);
9257 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9258 					gfp_zone(gfp_mask), nodemask) {
9259 		spin_lock_irqsave(&zone->lock, flags);
9260 
9261 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9262 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9263 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9264 				/*
9265 				 * We release the zone lock here because
9266 				 * alloc_contig_range() will also lock the zone
9267 				 * at some point. If there's an allocation
9268 				 * spinning on this lock, it may win the race
9269 				 * and cause alloc_contig_range() to fail...
9270 				 */
9271 				spin_unlock_irqrestore(&zone->lock, flags);
9272 				ret = __alloc_contig_pages(pfn, nr_pages,
9273 							gfp_mask);
9274 				if (!ret)
9275 					return pfn_to_page(pfn);
9276 				spin_lock_irqsave(&zone->lock, flags);
9277 			}
9278 			pfn += nr_pages;
9279 		}
9280 		spin_unlock_irqrestore(&zone->lock, flags);
9281 	}
9282 	return NULL;
9283 }
9284 #endif /* CONFIG_CONTIG_ALLOC */
9285 
9286 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9287 {
9288 	unsigned long count = 0;
9289 
9290 	for (; nr_pages--; pfn++) {
9291 		struct page *page = pfn_to_page(pfn);
9292 
9293 		count += page_count(page) != 1;
9294 		__free_page(page);
9295 	}
9296 	WARN(count != 0, "%lu pages are still in use!\n", count);
9297 }
9298 EXPORT_SYMBOL(free_contig_range);
9299 
9300 /*
9301  * The zone indicated has a new number of managed_pages; batch sizes and percpu
9302  * page high values need to be recalculated.
9303  */
9304 void zone_pcp_update(struct zone *zone, int cpu_online)
9305 {
9306 	mutex_lock(&pcp_batch_high_lock);
9307 	zone_set_pageset_high_and_batch(zone, cpu_online);
9308 	mutex_unlock(&pcp_batch_high_lock);
9309 }
9310 
9311 /*
9312  * Effectively disable pcplists for the zone by setting the high limit to 0
9313  * and draining all cpus. A concurrent page freeing on another CPU that's about
9314  * to put the page on pcplist will either finish before the drain and the page
9315  * will be drained, or observe the new high limit and skip the pcplist.
9316  *
9317  * Must be paired with a call to zone_pcp_enable().
9318  */
9319 void zone_pcp_disable(struct zone *zone)
9320 {
9321 	mutex_lock(&pcp_batch_high_lock);
9322 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9323 	__drain_all_pages(zone, true);
9324 }
9325 
9326 void zone_pcp_enable(struct zone *zone)
9327 {
9328 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9329 	mutex_unlock(&pcp_batch_high_lock);
9330 }
9331 
9332 void zone_pcp_reset(struct zone *zone)
9333 {
9334 	int cpu;
9335 	struct per_cpu_zonestat *pzstats;
9336 
9337 	if (zone->per_cpu_pageset != &boot_pageset) {
9338 		for_each_online_cpu(cpu) {
9339 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9340 			drain_zonestat(zone, pzstats);
9341 		}
9342 		free_percpu(zone->per_cpu_pageset);
9343 		free_percpu(zone->per_cpu_zonestats);
9344 		zone->per_cpu_pageset = &boot_pageset;
9345 		zone->per_cpu_zonestats = &boot_zonestats;
9346 	}
9347 }
9348 
9349 #ifdef CONFIG_MEMORY_HOTREMOVE
9350 /*
9351  * All pages in the range must be in a single zone, must not contain holes,
9352  * must span full sections, and must be isolated before calling this function.
9353  */
9354 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9355 {
9356 	unsigned long pfn = start_pfn;
9357 	struct page *page;
9358 	struct zone *zone;
9359 	unsigned int order;
9360 	unsigned long flags;
9361 
9362 	offline_mem_sections(pfn, end_pfn);
9363 	zone = page_zone(pfn_to_page(pfn));
9364 	spin_lock_irqsave(&zone->lock, flags);
9365 	while (pfn < end_pfn) {
9366 		page = pfn_to_page(pfn);
9367 		/*
9368 		 * The HWPoisoned page may be not in buddy system, and
9369 		 * page_count() is not 0.
9370 		 */
9371 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9372 			pfn++;
9373 			continue;
9374 		}
9375 		/*
9376 		 * At this point all remaining PageOffline() pages have a
9377 		 * reference count of 0 and can simply be skipped.
9378 		 */
9379 		if (PageOffline(page)) {
9380 			BUG_ON(page_count(page));
9381 			BUG_ON(PageBuddy(page));
9382 			pfn++;
9383 			continue;
9384 		}
9385 
9386 		BUG_ON(page_count(page));
9387 		BUG_ON(!PageBuddy(page));
9388 		order = buddy_order(page);
9389 		del_page_from_free_list(page, zone, order);
9390 		pfn += (1 << order);
9391 	}
9392 	spin_unlock_irqrestore(&zone->lock, flags);
9393 }
9394 #endif
9395 
9396 /*
9397  * This function returns a stable result only if called under zone lock.
9398  */
9399 bool is_free_buddy_page(struct page *page)
9400 {
9401 	unsigned long pfn = page_to_pfn(page);
9402 	unsigned int order;
9403 
9404 	for (order = 0; order < MAX_ORDER; order++) {
9405 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9406 
9407 		if (PageBuddy(page_head) &&
9408 		    buddy_order_unsafe(page_head) >= order)
9409 			break;
9410 	}
9411 
9412 	return order < MAX_ORDER;
9413 }
9414 EXPORT_SYMBOL(is_free_buddy_page);
9415 
9416 #ifdef CONFIG_MEMORY_FAILURE
9417 /*
9418  * Break down a higher-order page in sub-pages, and keep our target out of
9419  * buddy allocator.
9420  */
9421 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9422 				   struct page *target, int low, int high,
9423 				   int migratetype)
9424 {
9425 	unsigned long size = 1 << high;
9426 	struct page *current_buddy, *next_page;
9427 
9428 	while (high > low) {
9429 		high--;
9430 		size >>= 1;
9431 
9432 		if (target >= &page[size]) {
9433 			next_page = page + size;
9434 			current_buddy = page;
9435 		} else {
9436 			next_page = page;
9437 			current_buddy = page + size;
9438 		}
9439 
9440 		if (set_page_guard(zone, current_buddy, high, migratetype))
9441 			continue;
9442 
9443 		if (current_buddy != target) {
9444 			add_to_free_list(current_buddy, zone, high, migratetype);
9445 			set_buddy_order(current_buddy, high);
9446 			page = next_page;
9447 		}
9448 	}
9449 }
9450 
9451 /*
9452  * Take a page that will be marked as poisoned off the buddy allocator.
9453  */
9454 bool take_page_off_buddy(struct page *page)
9455 {
9456 	struct zone *zone = page_zone(page);
9457 	unsigned long pfn = page_to_pfn(page);
9458 	unsigned long flags;
9459 	unsigned int order;
9460 	bool ret = false;
9461 
9462 	spin_lock_irqsave(&zone->lock, flags);
9463 	for (order = 0; order < MAX_ORDER; order++) {
9464 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9465 		int page_order = buddy_order(page_head);
9466 
9467 		if (PageBuddy(page_head) && page_order >= order) {
9468 			unsigned long pfn_head = page_to_pfn(page_head);
9469 			int migratetype = get_pfnblock_migratetype(page_head,
9470 								   pfn_head);
9471 
9472 			del_page_from_free_list(page_head, zone, page_order);
9473 			break_down_buddy_pages(zone, page_head, page, 0,
9474 						page_order, migratetype);
9475 			SetPageHWPoisonTakenOff(page);
9476 			if (!is_migrate_isolate(migratetype))
9477 				__mod_zone_freepage_state(zone, -1, migratetype);
9478 			ret = true;
9479 			break;
9480 		}
9481 		if (page_count(page_head) > 0)
9482 			break;
9483 	}
9484 	spin_unlock_irqrestore(&zone->lock, flags);
9485 	return ret;
9486 }
9487 
9488 /*
9489  * Cancel takeoff done by take_page_off_buddy().
9490  */
9491 bool put_page_back_buddy(struct page *page)
9492 {
9493 	struct zone *zone = page_zone(page);
9494 	unsigned long pfn = page_to_pfn(page);
9495 	unsigned long flags;
9496 	int migratetype = get_pfnblock_migratetype(page, pfn);
9497 	bool ret = false;
9498 
9499 	spin_lock_irqsave(&zone->lock, flags);
9500 	if (put_page_testzero(page)) {
9501 		ClearPageHWPoisonTakenOff(page);
9502 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9503 		if (TestClearPageHWPoison(page)) {
9504 			ret = true;
9505 		}
9506 	}
9507 	spin_unlock_irqrestore(&zone->lock, flags);
9508 
9509 	return ret;
9510 }
9511 #endif
9512 
9513 #ifdef CONFIG_ZONE_DMA
9514 bool has_managed_dma(void)
9515 {
9516 	struct pglist_data *pgdat;
9517 
9518 	for_each_online_pgdat(pgdat) {
9519 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9520 
9521 		if (managed_zone(zone))
9522 			return true;
9523 	}
9524 	return false;
9525 }
9526 #endif /* CONFIG_ZONE_DMA */
9527