1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/mmu_notifier.h> 61 #include <linux/migrate.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/sched/mm.h> 65 #include <linux/page_owner.h> 66 #include <linux/kthread.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/lockdep.h> 70 #include <linux/nmi.h> 71 #include <linux/psi.h> 72 #include <linux/padata.h> 73 #include <linux/khugepaged.h> 74 #include <linux/buffer_head.h> 75 76 #include <asm/sections.h> 77 #include <asm/tlbflush.h> 78 #include <asm/div64.h> 79 #include "internal.h" 80 #include "shuffle.h" 81 #include "page_reporting.h" 82 83 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 84 typedef int __bitwise fpi_t; 85 86 /* No special request */ 87 #define FPI_NONE ((__force fpi_t)0) 88 89 /* 90 * Skip free page reporting notification for the (possibly merged) page. 91 * This does not hinder free page reporting from grabbing the page, 92 * reporting it and marking it "reported" - it only skips notifying 93 * the free page reporting infrastructure about a newly freed page. For 94 * example, used when temporarily pulling a page from a freelist and 95 * putting it back unmodified. 96 */ 97 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 98 99 /* 100 * Place the (possibly merged) page to the tail of the freelist. Will ignore 101 * page shuffling (relevant code - e.g., memory onlining - is expected to 102 * shuffle the whole zone). 103 * 104 * Note: No code should rely on this flag for correctness - it's purely 105 * to allow for optimizations when handing back either fresh pages 106 * (memory onlining) or untouched pages (page isolation, free page 107 * reporting). 108 */ 109 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 110 111 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 112 static DEFINE_MUTEX(pcp_batch_high_lock); 113 #define MIN_PERCPU_PAGELIST_FRACTION (8) 114 115 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 116 DEFINE_PER_CPU(int, numa_node); 117 EXPORT_PER_CPU_SYMBOL(numa_node); 118 #endif 119 120 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 121 122 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 123 /* 124 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 125 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 126 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 127 * defined in <linux/topology.h>. 128 */ 129 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 130 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 131 #endif 132 133 /* work_structs for global per-cpu drains */ 134 struct pcpu_drain { 135 struct zone *zone; 136 struct work_struct work; 137 }; 138 static DEFINE_MUTEX(pcpu_drain_mutex); 139 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 140 141 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 142 volatile unsigned long latent_entropy __latent_entropy; 143 EXPORT_SYMBOL(latent_entropy); 144 #endif 145 146 /* 147 * Array of node states. 148 */ 149 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 150 [N_POSSIBLE] = NODE_MASK_ALL, 151 [N_ONLINE] = { { [0] = 1UL } }, 152 #ifndef CONFIG_NUMA 153 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 154 #ifdef CONFIG_HIGHMEM 155 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 156 #endif 157 [N_MEMORY] = { { [0] = 1UL } }, 158 [N_CPU] = { { [0] = 1UL } }, 159 #endif /* NUMA */ 160 }; 161 EXPORT_SYMBOL(node_states); 162 163 atomic_long_t _totalram_pages __read_mostly; 164 EXPORT_SYMBOL(_totalram_pages); 165 unsigned long totalreserve_pages __read_mostly; 166 unsigned long totalcma_pages __read_mostly; 167 168 int percpu_pagelist_fraction; 169 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 170 DEFINE_STATIC_KEY_FALSE(init_on_alloc); 171 EXPORT_SYMBOL(init_on_alloc); 172 173 DEFINE_STATIC_KEY_FALSE(init_on_free); 174 EXPORT_SYMBOL(init_on_free); 175 176 static bool _init_on_alloc_enabled_early __read_mostly 177 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 178 static int __init early_init_on_alloc(char *buf) 179 { 180 181 return kstrtobool(buf, &_init_on_alloc_enabled_early); 182 } 183 early_param("init_on_alloc", early_init_on_alloc); 184 185 static bool _init_on_free_enabled_early __read_mostly 186 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 187 static int __init early_init_on_free(char *buf) 188 { 189 return kstrtobool(buf, &_init_on_free_enabled_early); 190 } 191 early_param("init_on_free", early_init_on_free); 192 193 /* 194 * A cached value of the page's pageblock's migratetype, used when the page is 195 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 196 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 197 * Also the migratetype set in the page does not necessarily match the pcplist 198 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 199 * other index - this ensures that it will be put on the correct CMA freelist. 200 */ 201 static inline int get_pcppage_migratetype(struct page *page) 202 { 203 return page->index; 204 } 205 206 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 207 { 208 page->index = migratetype; 209 } 210 211 #ifdef CONFIG_PM_SLEEP 212 /* 213 * The following functions are used by the suspend/hibernate code to temporarily 214 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 215 * while devices are suspended. To avoid races with the suspend/hibernate code, 216 * they should always be called with system_transition_mutex held 217 * (gfp_allowed_mask also should only be modified with system_transition_mutex 218 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 219 * with that modification). 220 */ 221 222 static gfp_t saved_gfp_mask; 223 224 void pm_restore_gfp_mask(void) 225 { 226 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 227 if (saved_gfp_mask) { 228 gfp_allowed_mask = saved_gfp_mask; 229 saved_gfp_mask = 0; 230 } 231 } 232 233 void pm_restrict_gfp_mask(void) 234 { 235 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 236 WARN_ON(saved_gfp_mask); 237 saved_gfp_mask = gfp_allowed_mask; 238 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 239 } 240 241 bool pm_suspended_storage(void) 242 { 243 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 244 return false; 245 return true; 246 } 247 #endif /* CONFIG_PM_SLEEP */ 248 249 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 250 unsigned int pageblock_order __read_mostly; 251 #endif 252 253 static void __free_pages_ok(struct page *page, unsigned int order, 254 fpi_t fpi_flags); 255 256 /* 257 * results with 256, 32 in the lowmem_reserve sysctl: 258 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 259 * 1G machine -> (16M dma, 784M normal, 224M high) 260 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 261 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 262 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 263 * 264 * TBD: should special case ZONE_DMA32 machines here - in those we normally 265 * don't need any ZONE_NORMAL reservation 266 */ 267 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 268 #ifdef CONFIG_ZONE_DMA 269 [ZONE_DMA] = 256, 270 #endif 271 #ifdef CONFIG_ZONE_DMA32 272 [ZONE_DMA32] = 256, 273 #endif 274 [ZONE_NORMAL] = 32, 275 #ifdef CONFIG_HIGHMEM 276 [ZONE_HIGHMEM] = 0, 277 #endif 278 [ZONE_MOVABLE] = 0, 279 }; 280 281 static char * const zone_names[MAX_NR_ZONES] = { 282 #ifdef CONFIG_ZONE_DMA 283 "DMA", 284 #endif 285 #ifdef CONFIG_ZONE_DMA32 286 "DMA32", 287 #endif 288 "Normal", 289 #ifdef CONFIG_HIGHMEM 290 "HighMem", 291 #endif 292 "Movable", 293 #ifdef CONFIG_ZONE_DEVICE 294 "Device", 295 #endif 296 }; 297 298 const char * const migratetype_names[MIGRATE_TYPES] = { 299 "Unmovable", 300 "Movable", 301 "Reclaimable", 302 "HighAtomic", 303 #ifdef CONFIG_CMA 304 "CMA", 305 #endif 306 #ifdef CONFIG_MEMORY_ISOLATION 307 "Isolate", 308 #endif 309 }; 310 311 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 312 [NULL_COMPOUND_DTOR] = NULL, 313 [COMPOUND_PAGE_DTOR] = free_compound_page, 314 #ifdef CONFIG_HUGETLB_PAGE 315 [HUGETLB_PAGE_DTOR] = free_huge_page, 316 #endif 317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 318 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 319 #endif 320 }; 321 322 int min_free_kbytes = 1024; 323 int user_min_free_kbytes = -1; 324 #ifdef CONFIG_DISCONTIGMEM 325 /* 326 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges 327 * are not on separate NUMA nodes. Functionally this works but with 328 * watermark_boost_factor, it can reclaim prematurely as the ranges can be 329 * quite small. By default, do not boost watermarks on discontigmem as in 330 * many cases very high-order allocations like THP are likely to be 331 * unsupported and the premature reclaim offsets the advantage of long-term 332 * fragmentation avoidance. 333 */ 334 int watermark_boost_factor __read_mostly; 335 #else 336 int watermark_boost_factor __read_mostly = 15000; 337 #endif 338 int watermark_scale_factor = 10; 339 340 static unsigned long nr_kernel_pages __initdata; 341 static unsigned long nr_all_pages __initdata; 342 static unsigned long dma_reserve __initdata; 343 344 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 345 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 346 static unsigned long required_kernelcore __initdata; 347 static unsigned long required_kernelcore_percent __initdata; 348 static unsigned long required_movablecore __initdata; 349 static unsigned long required_movablecore_percent __initdata; 350 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 351 static bool mirrored_kernelcore __meminitdata; 352 353 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 354 int movable_zone; 355 EXPORT_SYMBOL(movable_zone); 356 357 #if MAX_NUMNODES > 1 358 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 359 unsigned int nr_online_nodes __read_mostly = 1; 360 EXPORT_SYMBOL(nr_node_ids); 361 EXPORT_SYMBOL(nr_online_nodes); 362 #endif 363 364 int page_group_by_mobility_disabled __read_mostly; 365 366 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 367 /* 368 * During boot we initialize deferred pages on-demand, as needed, but once 369 * page_alloc_init_late() has finished, the deferred pages are all initialized, 370 * and we can permanently disable that path. 371 */ 372 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 373 374 /* 375 * Calling kasan_free_pages() only after deferred memory initialization 376 * has completed. Poisoning pages during deferred memory init will greatly 377 * lengthen the process and cause problem in large memory systems as the 378 * deferred pages initialization is done with interrupt disabled. 379 * 380 * Assuming that there will be no reference to those newly initialized 381 * pages before they are ever allocated, this should have no effect on 382 * KASAN memory tracking as the poison will be properly inserted at page 383 * allocation time. The only corner case is when pages are allocated by 384 * on-demand allocation and then freed again before the deferred pages 385 * initialization is done, but this is not likely to happen. 386 */ 387 static inline void kasan_free_nondeferred_pages(struct page *page, int order) 388 { 389 if (!static_branch_unlikely(&deferred_pages)) 390 kasan_free_pages(page, order); 391 } 392 393 /* Returns true if the struct page for the pfn is uninitialised */ 394 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 395 { 396 int nid = early_pfn_to_nid(pfn); 397 398 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 399 return true; 400 401 return false; 402 } 403 404 /* 405 * Returns true when the remaining initialisation should be deferred until 406 * later in the boot cycle when it can be parallelised. 407 */ 408 static bool __meminit 409 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 410 { 411 static unsigned long prev_end_pfn, nr_initialised; 412 413 /* 414 * prev_end_pfn static that contains the end of previous zone 415 * No need to protect because called very early in boot before smp_init. 416 */ 417 if (prev_end_pfn != end_pfn) { 418 prev_end_pfn = end_pfn; 419 nr_initialised = 0; 420 } 421 422 /* Always populate low zones for address-constrained allocations */ 423 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 424 return false; 425 426 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 427 return true; 428 /* 429 * We start only with one section of pages, more pages are added as 430 * needed until the rest of deferred pages are initialized. 431 */ 432 nr_initialised++; 433 if ((nr_initialised > PAGES_PER_SECTION) && 434 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 435 NODE_DATA(nid)->first_deferred_pfn = pfn; 436 return true; 437 } 438 return false; 439 } 440 #else 441 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 442 443 static inline bool early_page_uninitialised(unsigned long pfn) 444 { 445 return false; 446 } 447 448 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 449 { 450 return false; 451 } 452 #endif 453 454 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 455 static inline unsigned long *get_pageblock_bitmap(struct page *page, 456 unsigned long pfn) 457 { 458 #ifdef CONFIG_SPARSEMEM 459 return section_to_usemap(__pfn_to_section(pfn)); 460 #else 461 return page_zone(page)->pageblock_flags; 462 #endif /* CONFIG_SPARSEMEM */ 463 } 464 465 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 466 { 467 #ifdef CONFIG_SPARSEMEM 468 pfn &= (PAGES_PER_SECTION-1); 469 #else 470 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 471 #endif /* CONFIG_SPARSEMEM */ 472 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 473 } 474 475 static __always_inline 476 unsigned long __get_pfnblock_flags_mask(struct page *page, 477 unsigned long pfn, 478 unsigned long mask) 479 { 480 unsigned long *bitmap; 481 unsigned long bitidx, word_bitidx; 482 unsigned long word; 483 484 bitmap = get_pageblock_bitmap(page, pfn); 485 bitidx = pfn_to_bitidx(page, pfn); 486 word_bitidx = bitidx / BITS_PER_LONG; 487 bitidx &= (BITS_PER_LONG-1); 488 489 word = bitmap[word_bitidx]; 490 return (word >> bitidx) & mask; 491 } 492 493 /** 494 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 495 * @page: The page within the block of interest 496 * @pfn: The target page frame number 497 * @mask: mask of bits that the caller is interested in 498 * 499 * Return: pageblock_bits flags 500 */ 501 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 502 unsigned long mask) 503 { 504 return __get_pfnblock_flags_mask(page, pfn, mask); 505 } 506 507 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 508 { 509 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 510 } 511 512 /** 513 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 514 * @page: The page within the block of interest 515 * @flags: The flags to set 516 * @pfn: The target page frame number 517 * @mask: mask of bits that the caller is interested in 518 */ 519 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 520 unsigned long pfn, 521 unsigned long mask) 522 { 523 unsigned long *bitmap; 524 unsigned long bitidx, word_bitidx; 525 unsigned long old_word, word; 526 527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 529 530 bitmap = get_pageblock_bitmap(page, pfn); 531 bitidx = pfn_to_bitidx(page, pfn); 532 word_bitidx = bitidx / BITS_PER_LONG; 533 bitidx &= (BITS_PER_LONG-1); 534 535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 536 537 mask <<= bitidx; 538 flags <<= bitidx; 539 540 word = READ_ONCE(bitmap[word_bitidx]); 541 for (;;) { 542 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 543 if (word == old_word) 544 break; 545 word = old_word; 546 } 547 } 548 549 void set_pageblock_migratetype(struct page *page, int migratetype) 550 { 551 if (unlikely(page_group_by_mobility_disabled && 552 migratetype < MIGRATE_PCPTYPES)) 553 migratetype = MIGRATE_UNMOVABLE; 554 555 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 556 page_to_pfn(page), MIGRATETYPE_MASK); 557 } 558 559 #ifdef CONFIG_DEBUG_VM 560 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 561 { 562 int ret = 0; 563 unsigned seq; 564 unsigned long pfn = page_to_pfn(page); 565 unsigned long sp, start_pfn; 566 567 do { 568 seq = zone_span_seqbegin(zone); 569 start_pfn = zone->zone_start_pfn; 570 sp = zone->spanned_pages; 571 if (!zone_spans_pfn(zone, pfn)) 572 ret = 1; 573 } while (zone_span_seqretry(zone, seq)); 574 575 if (ret) 576 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 577 pfn, zone_to_nid(zone), zone->name, 578 start_pfn, start_pfn + sp); 579 580 return ret; 581 } 582 583 static int page_is_consistent(struct zone *zone, struct page *page) 584 { 585 if (!pfn_valid_within(page_to_pfn(page))) 586 return 0; 587 if (zone != page_zone(page)) 588 return 0; 589 590 return 1; 591 } 592 /* 593 * Temporary debugging check for pages not lying within a given zone. 594 */ 595 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 596 { 597 if (page_outside_zone_boundaries(zone, page)) 598 return 1; 599 if (!page_is_consistent(zone, page)) 600 return 1; 601 602 return 0; 603 } 604 #else 605 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 606 { 607 return 0; 608 } 609 #endif 610 611 static void bad_page(struct page *page, const char *reason) 612 { 613 static unsigned long resume; 614 static unsigned long nr_shown; 615 static unsigned long nr_unshown; 616 617 /* 618 * Allow a burst of 60 reports, then keep quiet for that minute; 619 * or allow a steady drip of one report per second. 620 */ 621 if (nr_shown == 60) { 622 if (time_before(jiffies, resume)) { 623 nr_unshown++; 624 goto out; 625 } 626 if (nr_unshown) { 627 pr_alert( 628 "BUG: Bad page state: %lu messages suppressed\n", 629 nr_unshown); 630 nr_unshown = 0; 631 } 632 nr_shown = 0; 633 } 634 if (nr_shown++ == 0) 635 resume = jiffies + 60 * HZ; 636 637 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 638 current->comm, page_to_pfn(page)); 639 __dump_page(page, reason); 640 dump_page_owner(page); 641 642 print_modules(); 643 dump_stack(); 644 out: 645 /* Leave bad fields for debug, except PageBuddy could make trouble */ 646 page_mapcount_reset(page); /* remove PageBuddy */ 647 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 648 } 649 650 /* 651 * Higher-order pages are called "compound pages". They are structured thusly: 652 * 653 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 654 * 655 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 656 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 657 * 658 * The first tail page's ->compound_dtor holds the offset in array of compound 659 * page destructors. See compound_page_dtors. 660 * 661 * The first tail page's ->compound_order holds the order of allocation. 662 * This usage means that zero-order pages may not be compound. 663 */ 664 665 void free_compound_page(struct page *page) 666 { 667 mem_cgroup_uncharge(page); 668 __free_pages_ok(page, compound_order(page), FPI_NONE); 669 } 670 671 void prep_compound_page(struct page *page, unsigned int order) 672 { 673 int i; 674 int nr_pages = 1 << order; 675 676 __SetPageHead(page); 677 for (i = 1; i < nr_pages; i++) { 678 struct page *p = page + i; 679 set_page_count(p, 0); 680 p->mapping = TAIL_MAPPING; 681 set_compound_head(p, page); 682 } 683 684 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 685 set_compound_order(page, order); 686 atomic_set(compound_mapcount_ptr(page), -1); 687 if (hpage_pincount_available(page)) 688 atomic_set(compound_pincount_ptr(page), 0); 689 } 690 691 #ifdef CONFIG_DEBUG_PAGEALLOC 692 unsigned int _debug_guardpage_minorder; 693 694 bool _debug_pagealloc_enabled_early __read_mostly 695 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 696 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 697 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 698 EXPORT_SYMBOL(_debug_pagealloc_enabled); 699 700 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 701 702 static int __init early_debug_pagealloc(char *buf) 703 { 704 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 705 } 706 early_param("debug_pagealloc", early_debug_pagealloc); 707 708 static int __init debug_guardpage_minorder_setup(char *buf) 709 { 710 unsigned long res; 711 712 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 713 pr_err("Bad debug_guardpage_minorder value\n"); 714 return 0; 715 } 716 _debug_guardpage_minorder = res; 717 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 718 return 0; 719 } 720 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 721 722 static inline bool set_page_guard(struct zone *zone, struct page *page, 723 unsigned int order, int migratetype) 724 { 725 if (!debug_guardpage_enabled()) 726 return false; 727 728 if (order >= debug_guardpage_minorder()) 729 return false; 730 731 __SetPageGuard(page); 732 INIT_LIST_HEAD(&page->lru); 733 set_page_private(page, order); 734 /* Guard pages are not available for any usage */ 735 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 736 737 return true; 738 } 739 740 static inline void clear_page_guard(struct zone *zone, struct page *page, 741 unsigned int order, int migratetype) 742 { 743 if (!debug_guardpage_enabled()) 744 return; 745 746 __ClearPageGuard(page); 747 748 set_page_private(page, 0); 749 if (!is_migrate_isolate(migratetype)) 750 __mod_zone_freepage_state(zone, (1 << order), migratetype); 751 } 752 #else 753 static inline bool set_page_guard(struct zone *zone, struct page *page, 754 unsigned int order, int migratetype) { return false; } 755 static inline void clear_page_guard(struct zone *zone, struct page *page, 756 unsigned int order, int migratetype) {} 757 #endif 758 759 /* 760 * Enable static keys related to various memory debugging and hardening options. 761 * Some override others, and depend on early params that are evaluated in the 762 * order of appearance. So we need to first gather the full picture of what was 763 * enabled, and then make decisions. 764 */ 765 void init_mem_debugging_and_hardening(void) 766 { 767 if (_init_on_alloc_enabled_early) { 768 if (page_poisoning_enabled()) 769 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 770 "will take precedence over init_on_alloc\n"); 771 else 772 static_branch_enable(&init_on_alloc); 773 } 774 if (_init_on_free_enabled_early) { 775 if (page_poisoning_enabled()) 776 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 777 "will take precedence over init_on_free\n"); 778 else 779 static_branch_enable(&init_on_free); 780 } 781 782 #ifdef CONFIG_PAGE_POISONING 783 /* 784 * Page poisoning is debug page alloc for some arches. If 785 * either of those options are enabled, enable poisoning. 786 */ 787 if (page_poisoning_enabled() || 788 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 789 debug_pagealloc_enabled())) 790 static_branch_enable(&_page_poisoning_enabled); 791 #endif 792 793 #ifdef CONFIG_DEBUG_PAGEALLOC 794 if (!debug_pagealloc_enabled()) 795 return; 796 797 static_branch_enable(&_debug_pagealloc_enabled); 798 799 if (!debug_guardpage_minorder()) 800 return; 801 802 static_branch_enable(&_debug_guardpage_enabled); 803 #endif 804 } 805 806 static inline void set_buddy_order(struct page *page, unsigned int order) 807 { 808 set_page_private(page, order); 809 __SetPageBuddy(page); 810 } 811 812 /* 813 * This function checks whether a page is free && is the buddy 814 * we can coalesce a page and its buddy if 815 * (a) the buddy is not in a hole (check before calling!) && 816 * (b) the buddy is in the buddy system && 817 * (c) a page and its buddy have the same order && 818 * (d) a page and its buddy are in the same zone. 819 * 820 * For recording whether a page is in the buddy system, we set PageBuddy. 821 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 822 * 823 * For recording page's order, we use page_private(page). 824 */ 825 static inline bool page_is_buddy(struct page *page, struct page *buddy, 826 unsigned int order) 827 { 828 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 829 return false; 830 831 if (buddy_order(buddy) != order) 832 return false; 833 834 /* 835 * zone check is done late to avoid uselessly calculating 836 * zone/node ids for pages that could never merge. 837 */ 838 if (page_zone_id(page) != page_zone_id(buddy)) 839 return false; 840 841 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 842 843 return true; 844 } 845 846 #ifdef CONFIG_COMPACTION 847 static inline struct capture_control *task_capc(struct zone *zone) 848 { 849 struct capture_control *capc = current->capture_control; 850 851 return unlikely(capc) && 852 !(current->flags & PF_KTHREAD) && 853 !capc->page && 854 capc->cc->zone == zone ? capc : NULL; 855 } 856 857 static inline bool 858 compaction_capture(struct capture_control *capc, struct page *page, 859 int order, int migratetype) 860 { 861 if (!capc || order != capc->cc->order) 862 return false; 863 864 /* Do not accidentally pollute CMA or isolated regions*/ 865 if (is_migrate_cma(migratetype) || 866 is_migrate_isolate(migratetype)) 867 return false; 868 869 /* 870 * Do not let lower order allocations polluate a movable pageblock. 871 * This might let an unmovable request use a reclaimable pageblock 872 * and vice-versa but no more than normal fallback logic which can 873 * have trouble finding a high-order free page. 874 */ 875 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 876 return false; 877 878 capc->page = page; 879 return true; 880 } 881 882 #else 883 static inline struct capture_control *task_capc(struct zone *zone) 884 { 885 return NULL; 886 } 887 888 static inline bool 889 compaction_capture(struct capture_control *capc, struct page *page, 890 int order, int migratetype) 891 { 892 return false; 893 } 894 #endif /* CONFIG_COMPACTION */ 895 896 /* Used for pages not on another list */ 897 static inline void add_to_free_list(struct page *page, struct zone *zone, 898 unsigned int order, int migratetype) 899 { 900 struct free_area *area = &zone->free_area[order]; 901 902 list_add(&page->lru, &area->free_list[migratetype]); 903 area->nr_free++; 904 } 905 906 /* Used for pages not on another list */ 907 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 908 unsigned int order, int migratetype) 909 { 910 struct free_area *area = &zone->free_area[order]; 911 912 list_add_tail(&page->lru, &area->free_list[migratetype]); 913 area->nr_free++; 914 } 915 916 /* 917 * Used for pages which are on another list. Move the pages to the tail 918 * of the list - so the moved pages won't immediately be considered for 919 * allocation again (e.g., optimization for memory onlining). 920 */ 921 static inline void move_to_free_list(struct page *page, struct zone *zone, 922 unsigned int order, int migratetype) 923 { 924 struct free_area *area = &zone->free_area[order]; 925 926 list_move_tail(&page->lru, &area->free_list[migratetype]); 927 } 928 929 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 930 unsigned int order) 931 { 932 /* clear reported state and update reported page count */ 933 if (page_reported(page)) 934 __ClearPageReported(page); 935 936 list_del(&page->lru); 937 __ClearPageBuddy(page); 938 set_page_private(page, 0); 939 zone->free_area[order].nr_free--; 940 } 941 942 /* 943 * If this is not the largest possible page, check if the buddy 944 * of the next-highest order is free. If it is, it's possible 945 * that pages are being freed that will coalesce soon. In case, 946 * that is happening, add the free page to the tail of the list 947 * so it's less likely to be used soon and more likely to be merged 948 * as a higher order page 949 */ 950 static inline bool 951 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 952 struct page *page, unsigned int order) 953 { 954 struct page *higher_page, *higher_buddy; 955 unsigned long combined_pfn; 956 957 if (order >= MAX_ORDER - 2) 958 return false; 959 960 if (!pfn_valid_within(buddy_pfn)) 961 return false; 962 963 combined_pfn = buddy_pfn & pfn; 964 higher_page = page + (combined_pfn - pfn); 965 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 966 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 967 968 return pfn_valid_within(buddy_pfn) && 969 page_is_buddy(higher_page, higher_buddy, order + 1); 970 } 971 972 /* 973 * Freeing function for a buddy system allocator. 974 * 975 * The concept of a buddy system is to maintain direct-mapped table 976 * (containing bit values) for memory blocks of various "orders". 977 * The bottom level table contains the map for the smallest allocatable 978 * units of memory (here, pages), and each level above it describes 979 * pairs of units from the levels below, hence, "buddies". 980 * At a high level, all that happens here is marking the table entry 981 * at the bottom level available, and propagating the changes upward 982 * as necessary, plus some accounting needed to play nicely with other 983 * parts of the VM system. 984 * At each level, we keep a list of pages, which are heads of continuous 985 * free pages of length of (1 << order) and marked with PageBuddy. 986 * Page's order is recorded in page_private(page) field. 987 * So when we are allocating or freeing one, we can derive the state of the 988 * other. That is, if we allocate a small block, and both were 989 * free, the remainder of the region must be split into blocks. 990 * If a block is freed, and its buddy is also free, then this 991 * triggers coalescing into a block of larger size. 992 * 993 * -- nyc 994 */ 995 996 static inline void __free_one_page(struct page *page, 997 unsigned long pfn, 998 struct zone *zone, unsigned int order, 999 int migratetype, fpi_t fpi_flags) 1000 { 1001 struct capture_control *capc = task_capc(zone); 1002 unsigned long buddy_pfn; 1003 unsigned long combined_pfn; 1004 unsigned int max_order; 1005 struct page *buddy; 1006 bool to_tail; 1007 1008 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order); 1009 1010 VM_BUG_ON(!zone_is_initialized(zone)); 1011 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1012 1013 VM_BUG_ON(migratetype == -1); 1014 if (likely(!is_migrate_isolate(migratetype))) 1015 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1016 1017 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1018 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1019 1020 continue_merging: 1021 while (order < max_order) { 1022 if (compaction_capture(capc, page, order, migratetype)) { 1023 __mod_zone_freepage_state(zone, -(1 << order), 1024 migratetype); 1025 return; 1026 } 1027 buddy_pfn = __find_buddy_pfn(pfn, order); 1028 buddy = page + (buddy_pfn - pfn); 1029 1030 if (!pfn_valid_within(buddy_pfn)) 1031 goto done_merging; 1032 if (!page_is_buddy(page, buddy, order)) 1033 goto done_merging; 1034 /* 1035 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1036 * merge with it and move up one order. 1037 */ 1038 if (page_is_guard(buddy)) 1039 clear_page_guard(zone, buddy, order, migratetype); 1040 else 1041 del_page_from_free_list(buddy, zone, order); 1042 combined_pfn = buddy_pfn & pfn; 1043 page = page + (combined_pfn - pfn); 1044 pfn = combined_pfn; 1045 order++; 1046 } 1047 if (order < MAX_ORDER - 1) { 1048 /* If we are here, it means order is >= pageblock_order. 1049 * We want to prevent merge between freepages on isolate 1050 * pageblock and normal pageblock. Without this, pageblock 1051 * isolation could cause incorrect freepage or CMA accounting. 1052 * 1053 * We don't want to hit this code for the more frequent 1054 * low-order merging. 1055 */ 1056 if (unlikely(has_isolate_pageblock(zone))) { 1057 int buddy_mt; 1058 1059 buddy_pfn = __find_buddy_pfn(pfn, order); 1060 buddy = page + (buddy_pfn - pfn); 1061 buddy_mt = get_pageblock_migratetype(buddy); 1062 1063 if (migratetype != buddy_mt 1064 && (is_migrate_isolate(migratetype) || 1065 is_migrate_isolate(buddy_mt))) 1066 goto done_merging; 1067 } 1068 max_order = order + 1; 1069 goto continue_merging; 1070 } 1071 1072 done_merging: 1073 set_buddy_order(page, order); 1074 1075 if (fpi_flags & FPI_TO_TAIL) 1076 to_tail = true; 1077 else if (is_shuffle_order(order)) 1078 to_tail = shuffle_pick_tail(); 1079 else 1080 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1081 1082 if (to_tail) 1083 add_to_free_list_tail(page, zone, order, migratetype); 1084 else 1085 add_to_free_list(page, zone, order, migratetype); 1086 1087 /* Notify page reporting subsystem of freed page */ 1088 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1089 page_reporting_notify_free(order); 1090 } 1091 1092 /* 1093 * A bad page could be due to a number of fields. Instead of multiple branches, 1094 * try and check multiple fields with one check. The caller must do a detailed 1095 * check if necessary. 1096 */ 1097 static inline bool page_expected_state(struct page *page, 1098 unsigned long check_flags) 1099 { 1100 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1101 return false; 1102 1103 if (unlikely((unsigned long)page->mapping | 1104 page_ref_count(page) | 1105 #ifdef CONFIG_MEMCG 1106 (unsigned long)page_memcg(page) | 1107 #endif 1108 (page->flags & check_flags))) 1109 return false; 1110 1111 return true; 1112 } 1113 1114 static const char *page_bad_reason(struct page *page, unsigned long flags) 1115 { 1116 const char *bad_reason = NULL; 1117 1118 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1119 bad_reason = "nonzero mapcount"; 1120 if (unlikely(page->mapping != NULL)) 1121 bad_reason = "non-NULL mapping"; 1122 if (unlikely(page_ref_count(page) != 0)) 1123 bad_reason = "nonzero _refcount"; 1124 if (unlikely(page->flags & flags)) { 1125 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1126 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1127 else 1128 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1129 } 1130 #ifdef CONFIG_MEMCG 1131 if (unlikely(page_memcg(page))) 1132 bad_reason = "page still charged to cgroup"; 1133 #endif 1134 return bad_reason; 1135 } 1136 1137 static void check_free_page_bad(struct page *page) 1138 { 1139 bad_page(page, 1140 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1141 } 1142 1143 static inline int check_free_page(struct page *page) 1144 { 1145 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1146 return 0; 1147 1148 /* Something has gone sideways, find it */ 1149 check_free_page_bad(page); 1150 return 1; 1151 } 1152 1153 static int free_tail_pages_check(struct page *head_page, struct page *page) 1154 { 1155 int ret = 1; 1156 1157 /* 1158 * We rely page->lru.next never has bit 0 set, unless the page 1159 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1160 */ 1161 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1162 1163 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1164 ret = 0; 1165 goto out; 1166 } 1167 switch (page - head_page) { 1168 case 1: 1169 /* the first tail page: ->mapping may be compound_mapcount() */ 1170 if (unlikely(compound_mapcount(page))) { 1171 bad_page(page, "nonzero compound_mapcount"); 1172 goto out; 1173 } 1174 break; 1175 case 2: 1176 /* 1177 * the second tail page: ->mapping is 1178 * deferred_list.next -- ignore value. 1179 */ 1180 break; 1181 default: 1182 if (page->mapping != TAIL_MAPPING) { 1183 bad_page(page, "corrupted mapping in tail page"); 1184 goto out; 1185 } 1186 break; 1187 } 1188 if (unlikely(!PageTail(page))) { 1189 bad_page(page, "PageTail not set"); 1190 goto out; 1191 } 1192 if (unlikely(compound_head(page) != head_page)) { 1193 bad_page(page, "compound_head not consistent"); 1194 goto out; 1195 } 1196 ret = 0; 1197 out: 1198 page->mapping = NULL; 1199 clear_compound_head(page); 1200 return ret; 1201 } 1202 1203 static void kernel_init_free_pages(struct page *page, int numpages) 1204 { 1205 int i; 1206 1207 /* s390's use of memset() could override KASAN redzones. */ 1208 kasan_disable_current(); 1209 for (i = 0; i < numpages; i++) { 1210 u8 tag = page_kasan_tag(page + i); 1211 page_kasan_tag_reset(page + i); 1212 clear_highpage(page + i); 1213 page_kasan_tag_set(page + i, tag); 1214 } 1215 kasan_enable_current(); 1216 } 1217 1218 static __always_inline bool free_pages_prepare(struct page *page, 1219 unsigned int order, bool check_free) 1220 { 1221 int bad = 0; 1222 1223 VM_BUG_ON_PAGE(PageTail(page), page); 1224 1225 trace_mm_page_free(page, order); 1226 1227 if (unlikely(PageHWPoison(page)) && !order) { 1228 /* 1229 * Do not let hwpoison pages hit pcplists/buddy 1230 * Untie memcg state and reset page's owner 1231 */ 1232 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1233 __memcg_kmem_uncharge_page(page, order); 1234 reset_page_owner(page, order); 1235 return false; 1236 } 1237 1238 /* 1239 * Check tail pages before head page information is cleared to 1240 * avoid checking PageCompound for order-0 pages. 1241 */ 1242 if (unlikely(order)) { 1243 bool compound = PageCompound(page); 1244 int i; 1245 1246 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1247 1248 if (compound) 1249 ClearPageDoubleMap(page); 1250 for (i = 1; i < (1 << order); i++) { 1251 if (compound) 1252 bad += free_tail_pages_check(page, page + i); 1253 if (unlikely(check_free_page(page + i))) { 1254 bad++; 1255 continue; 1256 } 1257 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1258 } 1259 } 1260 if (PageMappingFlags(page)) 1261 page->mapping = NULL; 1262 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1263 __memcg_kmem_uncharge_page(page, order); 1264 if (check_free) 1265 bad += check_free_page(page); 1266 if (bad) 1267 return false; 1268 1269 page_cpupid_reset_last(page); 1270 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1271 reset_page_owner(page, order); 1272 1273 if (!PageHighMem(page)) { 1274 debug_check_no_locks_freed(page_address(page), 1275 PAGE_SIZE << order); 1276 debug_check_no_obj_freed(page_address(page), 1277 PAGE_SIZE << order); 1278 } 1279 if (want_init_on_free()) 1280 kernel_init_free_pages(page, 1 << order); 1281 1282 kernel_poison_pages(page, 1 << order); 1283 1284 /* 1285 * arch_free_page() can make the page's contents inaccessible. s390 1286 * does this. So nothing which can access the page's contents should 1287 * happen after this. 1288 */ 1289 arch_free_page(page, order); 1290 1291 debug_pagealloc_unmap_pages(page, 1 << order); 1292 1293 kasan_free_nondeferred_pages(page, order); 1294 1295 return true; 1296 } 1297 1298 #ifdef CONFIG_DEBUG_VM 1299 /* 1300 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1301 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1302 * moved from pcp lists to free lists. 1303 */ 1304 static bool free_pcp_prepare(struct page *page) 1305 { 1306 return free_pages_prepare(page, 0, true); 1307 } 1308 1309 static bool bulkfree_pcp_prepare(struct page *page) 1310 { 1311 if (debug_pagealloc_enabled_static()) 1312 return check_free_page(page); 1313 else 1314 return false; 1315 } 1316 #else 1317 /* 1318 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1319 * moving from pcp lists to free list in order to reduce overhead. With 1320 * debug_pagealloc enabled, they are checked also immediately when being freed 1321 * to the pcp lists. 1322 */ 1323 static bool free_pcp_prepare(struct page *page) 1324 { 1325 if (debug_pagealloc_enabled_static()) 1326 return free_pages_prepare(page, 0, true); 1327 else 1328 return free_pages_prepare(page, 0, false); 1329 } 1330 1331 static bool bulkfree_pcp_prepare(struct page *page) 1332 { 1333 return check_free_page(page); 1334 } 1335 #endif /* CONFIG_DEBUG_VM */ 1336 1337 static inline void prefetch_buddy(struct page *page) 1338 { 1339 unsigned long pfn = page_to_pfn(page); 1340 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1341 struct page *buddy = page + (buddy_pfn - pfn); 1342 1343 prefetch(buddy); 1344 } 1345 1346 /* 1347 * Frees a number of pages from the PCP lists 1348 * Assumes all pages on list are in same zone, and of same order. 1349 * count is the number of pages to free. 1350 * 1351 * If the zone was previously in an "all pages pinned" state then look to 1352 * see if this freeing clears that state. 1353 * 1354 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1355 * pinned" detection logic. 1356 */ 1357 static void free_pcppages_bulk(struct zone *zone, int count, 1358 struct per_cpu_pages *pcp) 1359 { 1360 int migratetype = 0; 1361 int batch_free = 0; 1362 int prefetch_nr = READ_ONCE(pcp->batch); 1363 bool isolated_pageblocks; 1364 struct page *page, *tmp; 1365 LIST_HEAD(head); 1366 1367 /* 1368 * Ensure proper count is passed which otherwise would stuck in the 1369 * below while (list_empty(list)) loop. 1370 */ 1371 count = min(pcp->count, count); 1372 while (count) { 1373 struct list_head *list; 1374 1375 /* 1376 * Remove pages from lists in a round-robin fashion. A 1377 * batch_free count is maintained that is incremented when an 1378 * empty list is encountered. This is so more pages are freed 1379 * off fuller lists instead of spinning excessively around empty 1380 * lists 1381 */ 1382 do { 1383 batch_free++; 1384 if (++migratetype == MIGRATE_PCPTYPES) 1385 migratetype = 0; 1386 list = &pcp->lists[migratetype]; 1387 } while (list_empty(list)); 1388 1389 /* This is the only non-empty list. Free them all. */ 1390 if (batch_free == MIGRATE_PCPTYPES) 1391 batch_free = count; 1392 1393 do { 1394 page = list_last_entry(list, struct page, lru); 1395 /* must delete to avoid corrupting pcp list */ 1396 list_del(&page->lru); 1397 pcp->count--; 1398 1399 if (bulkfree_pcp_prepare(page)) 1400 continue; 1401 1402 list_add_tail(&page->lru, &head); 1403 1404 /* 1405 * We are going to put the page back to the global 1406 * pool, prefetch its buddy to speed up later access 1407 * under zone->lock. It is believed the overhead of 1408 * an additional test and calculating buddy_pfn here 1409 * can be offset by reduced memory latency later. To 1410 * avoid excessive prefetching due to large count, only 1411 * prefetch buddy for the first pcp->batch nr of pages. 1412 */ 1413 if (prefetch_nr) { 1414 prefetch_buddy(page); 1415 prefetch_nr--; 1416 } 1417 } while (--count && --batch_free && !list_empty(list)); 1418 } 1419 1420 spin_lock(&zone->lock); 1421 isolated_pageblocks = has_isolate_pageblock(zone); 1422 1423 /* 1424 * Use safe version since after __free_one_page(), 1425 * page->lru.next will not point to original list. 1426 */ 1427 list_for_each_entry_safe(page, tmp, &head, lru) { 1428 int mt = get_pcppage_migratetype(page); 1429 /* MIGRATE_ISOLATE page should not go to pcplists */ 1430 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1431 /* Pageblock could have been isolated meanwhile */ 1432 if (unlikely(isolated_pageblocks)) 1433 mt = get_pageblock_migratetype(page); 1434 1435 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE); 1436 trace_mm_page_pcpu_drain(page, 0, mt); 1437 } 1438 spin_unlock(&zone->lock); 1439 } 1440 1441 static void free_one_page(struct zone *zone, 1442 struct page *page, unsigned long pfn, 1443 unsigned int order, 1444 int migratetype, fpi_t fpi_flags) 1445 { 1446 spin_lock(&zone->lock); 1447 if (unlikely(has_isolate_pageblock(zone) || 1448 is_migrate_isolate(migratetype))) { 1449 migratetype = get_pfnblock_migratetype(page, pfn); 1450 } 1451 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1452 spin_unlock(&zone->lock); 1453 } 1454 1455 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1456 unsigned long zone, int nid) 1457 { 1458 mm_zero_struct_page(page); 1459 set_page_links(page, zone, nid, pfn); 1460 init_page_count(page); 1461 page_mapcount_reset(page); 1462 page_cpupid_reset_last(page); 1463 page_kasan_tag_reset(page); 1464 1465 INIT_LIST_HEAD(&page->lru); 1466 #ifdef WANT_PAGE_VIRTUAL 1467 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1468 if (!is_highmem_idx(zone)) 1469 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1470 #endif 1471 } 1472 1473 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1474 static void __meminit init_reserved_page(unsigned long pfn) 1475 { 1476 pg_data_t *pgdat; 1477 int nid, zid; 1478 1479 if (!early_page_uninitialised(pfn)) 1480 return; 1481 1482 nid = early_pfn_to_nid(pfn); 1483 pgdat = NODE_DATA(nid); 1484 1485 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1486 struct zone *zone = &pgdat->node_zones[zid]; 1487 1488 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1489 break; 1490 } 1491 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1492 } 1493 #else 1494 static inline void init_reserved_page(unsigned long pfn) 1495 { 1496 } 1497 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1498 1499 /* 1500 * Initialised pages do not have PageReserved set. This function is 1501 * called for each range allocated by the bootmem allocator and 1502 * marks the pages PageReserved. The remaining valid pages are later 1503 * sent to the buddy page allocator. 1504 */ 1505 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1506 { 1507 unsigned long start_pfn = PFN_DOWN(start); 1508 unsigned long end_pfn = PFN_UP(end); 1509 1510 for (; start_pfn < end_pfn; start_pfn++) { 1511 if (pfn_valid(start_pfn)) { 1512 struct page *page = pfn_to_page(start_pfn); 1513 1514 init_reserved_page(start_pfn); 1515 1516 /* Avoid false-positive PageTail() */ 1517 INIT_LIST_HEAD(&page->lru); 1518 1519 /* 1520 * no need for atomic set_bit because the struct 1521 * page is not visible yet so nobody should 1522 * access it yet. 1523 */ 1524 __SetPageReserved(page); 1525 } 1526 } 1527 } 1528 1529 static void __free_pages_ok(struct page *page, unsigned int order, 1530 fpi_t fpi_flags) 1531 { 1532 unsigned long flags; 1533 int migratetype; 1534 unsigned long pfn = page_to_pfn(page); 1535 1536 if (!free_pages_prepare(page, order, true)) 1537 return; 1538 1539 migratetype = get_pfnblock_migratetype(page, pfn); 1540 local_irq_save(flags); 1541 __count_vm_events(PGFREE, 1 << order); 1542 free_one_page(page_zone(page), page, pfn, order, migratetype, 1543 fpi_flags); 1544 local_irq_restore(flags); 1545 } 1546 1547 void __free_pages_core(struct page *page, unsigned int order) 1548 { 1549 unsigned int nr_pages = 1 << order; 1550 struct page *p = page; 1551 unsigned int loop; 1552 1553 /* 1554 * When initializing the memmap, __init_single_page() sets the refcount 1555 * of all pages to 1 ("allocated"/"not free"). We have to set the 1556 * refcount of all involved pages to 0. 1557 */ 1558 prefetchw(p); 1559 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1560 prefetchw(p + 1); 1561 __ClearPageReserved(p); 1562 set_page_count(p, 0); 1563 } 1564 __ClearPageReserved(p); 1565 set_page_count(p, 0); 1566 1567 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1568 1569 /* 1570 * Bypass PCP and place fresh pages right to the tail, primarily 1571 * relevant for memory onlining. 1572 */ 1573 __free_pages_ok(page, order, FPI_TO_TAIL); 1574 } 1575 1576 #ifdef CONFIG_NEED_MULTIPLE_NODES 1577 1578 /* 1579 * During memory init memblocks map pfns to nids. The search is expensive and 1580 * this caches recent lookups. The implementation of __early_pfn_to_nid 1581 * treats start/end as pfns. 1582 */ 1583 struct mminit_pfnnid_cache { 1584 unsigned long last_start; 1585 unsigned long last_end; 1586 int last_nid; 1587 }; 1588 1589 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1590 1591 /* 1592 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1593 */ 1594 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1595 struct mminit_pfnnid_cache *state) 1596 { 1597 unsigned long start_pfn, end_pfn; 1598 int nid; 1599 1600 if (state->last_start <= pfn && pfn < state->last_end) 1601 return state->last_nid; 1602 1603 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1604 if (nid != NUMA_NO_NODE) { 1605 state->last_start = start_pfn; 1606 state->last_end = end_pfn; 1607 state->last_nid = nid; 1608 } 1609 1610 return nid; 1611 } 1612 1613 int __meminit early_pfn_to_nid(unsigned long pfn) 1614 { 1615 static DEFINE_SPINLOCK(early_pfn_lock); 1616 int nid; 1617 1618 spin_lock(&early_pfn_lock); 1619 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1620 if (nid < 0) 1621 nid = first_online_node; 1622 spin_unlock(&early_pfn_lock); 1623 1624 return nid; 1625 } 1626 #endif /* CONFIG_NEED_MULTIPLE_NODES */ 1627 1628 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1629 unsigned int order) 1630 { 1631 if (early_page_uninitialised(pfn)) 1632 return; 1633 __free_pages_core(page, order); 1634 } 1635 1636 /* 1637 * Check that the whole (or subset of) a pageblock given by the interval of 1638 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1639 * with the migration of free compaction scanner. The scanners then need to 1640 * use only pfn_valid_within() check for arches that allow holes within 1641 * pageblocks. 1642 * 1643 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1644 * 1645 * It's possible on some configurations to have a setup like node0 node1 node0 1646 * i.e. it's possible that all pages within a zones range of pages do not 1647 * belong to a single zone. We assume that a border between node0 and node1 1648 * can occur within a single pageblock, but not a node0 node1 node0 1649 * interleaving within a single pageblock. It is therefore sufficient to check 1650 * the first and last page of a pageblock and avoid checking each individual 1651 * page in a pageblock. 1652 */ 1653 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1654 unsigned long end_pfn, struct zone *zone) 1655 { 1656 struct page *start_page; 1657 struct page *end_page; 1658 1659 /* end_pfn is one past the range we are checking */ 1660 end_pfn--; 1661 1662 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1663 return NULL; 1664 1665 start_page = pfn_to_online_page(start_pfn); 1666 if (!start_page) 1667 return NULL; 1668 1669 if (page_zone(start_page) != zone) 1670 return NULL; 1671 1672 end_page = pfn_to_page(end_pfn); 1673 1674 /* This gives a shorter code than deriving page_zone(end_page) */ 1675 if (page_zone_id(start_page) != page_zone_id(end_page)) 1676 return NULL; 1677 1678 return start_page; 1679 } 1680 1681 void set_zone_contiguous(struct zone *zone) 1682 { 1683 unsigned long block_start_pfn = zone->zone_start_pfn; 1684 unsigned long block_end_pfn; 1685 1686 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1687 for (; block_start_pfn < zone_end_pfn(zone); 1688 block_start_pfn = block_end_pfn, 1689 block_end_pfn += pageblock_nr_pages) { 1690 1691 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1692 1693 if (!__pageblock_pfn_to_page(block_start_pfn, 1694 block_end_pfn, zone)) 1695 return; 1696 cond_resched(); 1697 } 1698 1699 /* We confirm that there is no hole */ 1700 zone->contiguous = true; 1701 } 1702 1703 void clear_zone_contiguous(struct zone *zone) 1704 { 1705 zone->contiguous = false; 1706 } 1707 1708 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1709 static void __init deferred_free_range(unsigned long pfn, 1710 unsigned long nr_pages) 1711 { 1712 struct page *page; 1713 unsigned long i; 1714 1715 if (!nr_pages) 1716 return; 1717 1718 page = pfn_to_page(pfn); 1719 1720 /* Free a large naturally-aligned chunk if possible */ 1721 if (nr_pages == pageblock_nr_pages && 1722 (pfn & (pageblock_nr_pages - 1)) == 0) { 1723 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1724 __free_pages_core(page, pageblock_order); 1725 return; 1726 } 1727 1728 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1729 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1730 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1731 __free_pages_core(page, 0); 1732 } 1733 } 1734 1735 /* Completion tracking for deferred_init_memmap() threads */ 1736 static atomic_t pgdat_init_n_undone __initdata; 1737 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1738 1739 static inline void __init pgdat_init_report_one_done(void) 1740 { 1741 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1742 complete(&pgdat_init_all_done_comp); 1743 } 1744 1745 /* 1746 * Returns true if page needs to be initialized or freed to buddy allocator. 1747 * 1748 * First we check if pfn is valid on architectures where it is possible to have 1749 * holes within pageblock_nr_pages. On systems where it is not possible, this 1750 * function is optimized out. 1751 * 1752 * Then, we check if a current large page is valid by only checking the validity 1753 * of the head pfn. 1754 */ 1755 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1756 { 1757 if (!pfn_valid_within(pfn)) 1758 return false; 1759 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1760 return false; 1761 return true; 1762 } 1763 1764 /* 1765 * Free pages to buddy allocator. Try to free aligned pages in 1766 * pageblock_nr_pages sizes. 1767 */ 1768 static void __init deferred_free_pages(unsigned long pfn, 1769 unsigned long end_pfn) 1770 { 1771 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1772 unsigned long nr_free = 0; 1773 1774 for (; pfn < end_pfn; pfn++) { 1775 if (!deferred_pfn_valid(pfn)) { 1776 deferred_free_range(pfn - nr_free, nr_free); 1777 nr_free = 0; 1778 } else if (!(pfn & nr_pgmask)) { 1779 deferred_free_range(pfn - nr_free, nr_free); 1780 nr_free = 1; 1781 } else { 1782 nr_free++; 1783 } 1784 } 1785 /* Free the last block of pages to allocator */ 1786 deferred_free_range(pfn - nr_free, nr_free); 1787 } 1788 1789 /* 1790 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1791 * by performing it only once every pageblock_nr_pages. 1792 * Return number of pages initialized. 1793 */ 1794 static unsigned long __init deferred_init_pages(struct zone *zone, 1795 unsigned long pfn, 1796 unsigned long end_pfn) 1797 { 1798 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1799 int nid = zone_to_nid(zone); 1800 unsigned long nr_pages = 0; 1801 int zid = zone_idx(zone); 1802 struct page *page = NULL; 1803 1804 for (; pfn < end_pfn; pfn++) { 1805 if (!deferred_pfn_valid(pfn)) { 1806 page = NULL; 1807 continue; 1808 } else if (!page || !(pfn & nr_pgmask)) { 1809 page = pfn_to_page(pfn); 1810 } else { 1811 page++; 1812 } 1813 __init_single_page(page, pfn, zid, nid); 1814 nr_pages++; 1815 } 1816 return (nr_pages); 1817 } 1818 1819 /* 1820 * This function is meant to pre-load the iterator for the zone init. 1821 * Specifically it walks through the ranges until we are caught up to the 1822 * first_init_pfn value and exits there. If we never encounter the value we 1823 * return false indicating there are no valid ranges left. 1824 */ 1825 static bool __init 1826 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1827 unsigned long *spfn, unsigned long *epfn, 1828 unsigned long first_init_pfn) 1829 { 1830 u64 j; 1831 1832 /* 1833 * Start out by walking through the ranges in this zone that have 1834 * already been initialized. We don't need to do anything with them 1835 * so we just need to flush them out of the system. 1836 */ 1837 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1838 if (*epfn <= first_init_pfn) 1839 continue; 1840 if (*spfn < first_init_pfn) 1841 *spfn = first_init_pfn; 1842 *i = j; 1843 return true; 1844 } 1845 1846 return false; 1847 } 1848 1849 /* 1850 * Initialize and free pages. We do it in two loops: first we initialize 1851 * struct page, then free to buddy allocator, because while we are 1852 * freeing pages we can access pages that are ahead (computing buddy 1853 * page in __free_one_page()). 1854 * 1855 * In order to try and keep some memory in the cache we have the loop 1856 * broken along max page order boundaries. This way we will not cause 1857 * any issues with the buddy page computation. 1858 */ 1859 static unsigned long __init 1860 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1861 unsigned long *end_pfn) 1862 { 1863 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1864 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1865 unsigned long nr_pages = 0; 1866 u64 j = *i; 1867 1868 /* First we loop through and initialize the page values */ 1869 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1870 unsigned long t; 1871 1872 if (mo_pfn <= *start_pfn) 1873 break; 1874 1875 t = min(mo_pfn, *end_pfn); 1876 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1877 1878 if (mo_pfn < *end_pfn) { 1879 *start_pfn = mo_pfn; 1880 break; 1881 } 1882 } 1883 1884 /* Reset values and now loop through freeing pages as needed */ 1885 swap(j, *i); 1886 1887 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1888 unsigned long t; 1889 1890 if (mo_pfn <= spfn) 1891 break; 1892 1893 t = min(mo_pfn, epfn); 1894 deferred_free_pages(spfn, t); 1895 1896 if (mo_pfn <= epfn) 1897 break; 1898 } 1899 1900 return nr_pages; 1901 } 1902 1903 static void __init 1904 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 1905 void *arg) 1906 { 1907 unsigned long spfn, epfn; 1908 struct zone *zone = arg; 1909 u64 i; 1910 1911 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 1912 1913 /* 1914 * Initialize and free pages in MAX_ORDER sized increments so that we 1915 * can avoid introducing any issues with the buddy allocator. 1916 */ 1917 while (spfn < end_pfn) { 1918 deferred_init_maxorder(&i, zone, &spfn, &epfn); 1919 cond_resched(); 1920 } 1921 } 1922 1923 /* An arch may override for more concurrency. */ 1924 __weak int __init 1925 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 1926 { 1927 return 1; 1928 } 1929 1930 /* Initialise remaining memory on a node */ 1931 static int __init deferred_init_memmap(void *data) 1932 { 1933 pg_data_t *pgdat = data; 1934 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1935 unsigned long spfn = 0, epfn = 0; 1936 unsigned long first_init_pfn, flags; 1937 unsigned long start = jiffies; 1938 struct zone *zone; 1939 int zid, max_threads; 1940 u64 i; 1941 1942 /* Bind memory initialisation thread to a local node if possible */ 1943 if (!cpumask_empty(cpumask)) 1944 set_cpus_allowed_ptr(current, cpumask); 1945 1946 pgdat_resize_lock(pgdat, &flags); 1947 first_init_pfn = pgdat->first_deferred_pfn; 1948 if (first_init_pfn == ULONG_MAX) { 1949 pgdat_resize_unlock(pgdat, &flags); 1950 pgdat_init_report_one_done(); 1951 return 0; 1952 } 1953 1954 /* Sanity check boundaries */ 1955 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1956 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1957 pgdat->first_deferred_pfn = ULONG_MAX; 1958 1959 /* 1960 * Once we unlock here, the zone cannot be grown anymore, thus if an 1961 * interrupt thread must allocate this early in boot, zone must be 1962 * pre-grown prior to start of deferred page initialization. 1963 */ 1964 pgdat_resize_unlock(pgdat, &flags); 1965 1966 /* Only the highest zone is deferred so find it */ 1967 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1968 zone = pgdat->node_zones + zid; 1969 if (first_init_pfn < zone_end_pfn(zone)) 1970 break; 1971 } 1972 1973 /* If the zone is empty somebody else may have cleared out the zone */ 1974 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1975 first_init_pfn)) 1976 goto zone_empty; 1977 1978 max_threads = deferred_page_init_max_threads(cpumask); 1979 1980 while (spfn < epfn) { 1981 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 1982 struct padata_mt_job job = { 1983 .thread_fn = deferred_init_memmap_chunk, 1984 .fn_arg = zone, 1985 .start = spfn, 1986 .size = epfn_align - spfn, 1987 .align = PAGES_PER_SECTION, 1988 .min_chunk = PAGES_PER_SECTION, 1989 .max_threads = max_threads, 1990 }; 1991 1992 padata_do_multithreaded(&job); 1993 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1994 epfn_align); 1995 } 1996 zone_empty: 1997 /* Sanity check that the next zone really is unpopulated */ 1998 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1999 2000 pr_info("node %d deferred pages initialised in %ums\n", 2001 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2002 2003 pgdat_init_report_one_done(); 2004 return 0; 2005 } 2006 2007 /* 2008 * If this zone has deferred pages, try to grow it by initializing enough 2009 * deferred pages to satisfy the allocation specified by order, rounded up to 2010 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2011 * of SECTION_SIZE bytes by initializing struct pages in increments of 2012 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2013 * 2014 * Return true when zone was grown, otherwise return false. We return true even 2015 * when we grow less than requested, to let the caller decide if there are 2016 * enough pages to satisfy the allocation. 2017 * 2018 * Note: We use noinline because this function is needed only during boot, and 2019 * it is called from a __ref function _deferred_grow_zone. This way we are 2020 * making sure that it is not inlined into permanent text section. 2021 */ 2022 static noinline bool __init 2023 deferred_grow_zone(struct zone *zone, unsigned int order) 2024 { 2025 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2026 pg_data_t *pgdat = zone->zone_pgdat; 2027 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2028 unsigned long spfn, epfn, flags; 2029 unsigned long nr_pages = 0; 2030 u64 i; 2031 2032 /* Only the last zone may have deferred pages */ 2033 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2034 return false; 2035 2036 pgdat_resize_lock(pgdat, &flags); 2037 2038 /* 2039 * If someone grew this zone while we were waiting for spinlock, return 2040 * true, as there might be enough pages already. 2041 */ 2042 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2043 pgdat_resize_unlock(pgdat, &flags); 2044 return true; 2045 } 2046 2047 /* If the zone is empty somebody else may have cleared out the zone */ 2048 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2049 first_deferred_pfn)) { 2050 pgdat->first_deferred_pfn = ULONG_MAX; 2051 pgdat_resize_unlock(pgdat, &flags); 2052 /* Retry only once. */ 2053 return first_deferred_pfn != ULONG_MAX; 2054 } 2055 2056 /* 2057 * Initialize and free pages in MAX_ORDER sized increments so 2058 * that we can avoid introducing any issues with the buddy 2059 * allocator. 2060 */ 2061 while (spfn < epfn) { 2062 /* update our first deferred PFN for this section */ 2063 first_deferred_pfn = spfn; 2064 2065 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2066 touch_nmi_watchdog(); 2067 2068 /* We should only stop along section boundaries */ 2069 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2070 continue; 2071 2072 /* If our quota has been met we can stop here */ 2073 if (nr_pages >= nr_pages_needed) 2074 break; 2075 } 2076 2077 pgdat->first_deferred_pfn = spfn; 2078 pgdat_resize_unlock(pgdat, &flags); 2079 2080 return nr_pages > 0; 2081 } 2082 2083 /* 2084 * deferred_grow_zone() is __init, but it is called from 2085 * get_page_from_freelist() during early boot until deferred_pages permanently 2086 * disables this call. This is why we have refdata wrapper to avoid warning, 2087 * and to ensure that the function body gets unloaded. 2088 */ 2089 static bool __ref 2090 _deferred_grow_zone(struct zone *zone, unsigned int order) 2091 { 2092 return deferred_grow_zone(zone, order); 2093 } 2094 2095 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2096 2097 void __init page_alloc_init_late(void) 2098 { 2099 struct zone *zone; 2100 int nid; 2101 2102 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2103 2104 /* There will be num_node_state(N_MEMORY) threads */ 2105 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2106 for_each_node_state(nid, N_MEMORY) { 2107 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2108 } 2109 2110 /* Block until all are initialised */ 2111 wait_for_completion(&pgdat_init_all_done_comp); 2112 2113 /* 2114 * The number of managed pages has changed due to the initialisation 2115 * so the pcpu batch and high limits needs to be updated or the limits 2116 * will be artificially small. 2117 */ 2118 for_each_populated_zone(zone) 2119 zone_pcp_update(zone); 2120 2121 /* 2122 * We initialized the rest of the deferred pages. Permanently disable 2123 * on-demand struct page initialization. 2124 */ 2125 static_branch_disable(&deferred_pages); 2126 2127 /* Reinit limits that are based on free pages after the kernel is up */ 2128 files_maxfiles_init(); 2129 #endif 2130 2131 buffer_init(); 2132 2133 /* Discard memblock private memory */ 2134 memblock_discard(); 2135 2136 for_each_node_state(nid, N_MEMORY) 2137 shuffle_free_memory(NODE_DATA(nid)); 2138 2139 for_each_populated_zone(zone) 2140 set_zone_contiguous(zone); 2141 } 2142 2143 #ifdef CONFIG_CMA 2144 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2145 void __init init_cma_reserved_pageblock(struct page *page) 2146 { 2147 unsigned i = pageblock_nr_pages; 2148 struct page *p = page; 2149 2150 do { 2151 __ClearPageReserved(p); 2152 set_page_count(p, 0); 2153 } while (++p, --i); 2154 2155 set_pageblock_migratetype(page, MIGRATE_CMA); 2156 2157 if (pageblock_order >= MAX_ORDER) { 2158 i = pageblock_nr_pages; 2159 p = page; 2160 do { 2161 set_page_refcounted(p); 2162 __free_pages(p, MAX_ORDER - 1); 2163 p += MAX_ORDER_NR_PAGES; 2164 } while (i -= MAX_ORDER_NR_PAGES); 2165 } else { 2166 set_page_refcounted(page); 2167 __free_pages(page, pageblock_order); 2168 } 2169 2170 adjust_managed_page_count(page, pageblock_nr_pages); 2171 page_zone(page)->cma_pages += pageblock_nr_pages; 2172 } 2173 #endif 2174 2175 /* 2176 * The order of subdivision here is critical for the IO subsystem. 2177 * Please do not alter this order without good reasons and regression 2178 * testing. Specifically, as large blocks of memory are subdivided, 2179 * the order in which smaller blocks are delivered depends on the order 2180 * they're subdivided in this function. This is the primary factor 2181 * influencing the order in which pages are delivered to the IO 2182 * subsystem according to empirical testing, and this is also justified 2183 * by considering the behavior of a buddy system containing a single 2184 * large block of memory acted on by a series of small allocations. 2185 * This behavior is a critical factor in sglist merging's success. 2186 * 2187 * -- nyc 2188 */ 2189 static inline void expand(struct zone *zone, struct page *page, 2190 int low, int high, int migratetype) 2191 { 2192 unsigned long size = 1 << high; 2193 2194 while (high > low) { 2195 high--; 2196 size >>= 1; 2197 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2198 2199 /* 2200 * Mark as guard pages (or page), that will allow to 2201 * merge back to allocator when buddy will be freed. 2202 * Corresponding page table entries will not be touched, 2203 * pages will stay not present in virtual address space 2204 */ 2205 if (set_page_guard(zone, &page[size], high, migratetype)) 2206 continue; 2207 2208 add_to_free_list(&page[size], zone, high, migratetype); 2209 set_buddy_order(&page[size], high); 2210 } 2211 } 2212 2213 static void check_new_page_bad(struct page *page) 2214 { 2215 if (unlikely(page->flags & __PG_HWPOISON)) { 2216 /* Don't complain about hwpoisoned pages */ 2217 page_mapcount_reset(page); /* remove PageBuddy */ 2218 return; 2219 } 2220 2221 bad_page(page, 2222 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2223 } 2224 2225 /* 2226 * This page is about to be returned from the page allocator 2227 */ 2228 static inline int check_new_page(struct page *page) 2229 { 2230 if (likely(page_expected_state(page, 2231 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2232 return 0; 2233 2234 check_new_page_bad(page); 2235 return 1; 2236 } 2237 2238 #ifdef CONFIG_DEBUG_VM 2239 /* 2240 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2241 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2242 * also checked when pcp lists are refilled from the free lists. 2243 */ 2244 static inline bool check_pcp_refill(struct page *page) 2245 { 2246 if (debug_pagealloc_enabled_static()) 2247 return check_new_page(page); 2248 else 2249 return false; 2250 } 2251 2252 static inline bool check_new_pcp(struct page *page) 2253 { 2254 return check_new_page(page); 2255 } 2256 #else 2257 /* 2258 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2259 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2260 * enabled, they are also checked when being allocated from the pcp lists. 2261 */ 2262 static inline bool check_pcp_refill(struct page *page) 2263 { 2264 return check_new_page(page); 2265 } 2266 static inline bool check_new_pcp(struct page *page) 2267 { 2268 if (debug_pagealloc_enabled_static()) 2269 return check_new_page(page); 2270 else 2271 return false; 2272 } 2273 #endif /* CONFIG_DEBUG_VM */ 2274 2275 static bool check_new_pages(struct page *page, unsigned int order) 2276 { 2277 int i; 2278 for (i = 0; i < (1 << order); i++) { 2279 struct page *p = page + i; 2280 2281 if (unlikely(check_new_page(p))) 2282 return true; 2283 } 2284 2285 return false; 2286 } 2287 2288 inline void post_alloc_hook(struct page *page, unsigned int order, 2289 gfp_t gfp_flags) 2290 { 2291 set_page_private(page, 0); 2292 set_page_refcounted(page); 2293 2294 arch_alloc_page(page, order); 2295 debug_pagealloc_map_pages(page, 1 << order); 2296 kasan_alloc_pages(page, order); 2297 kernel_unpoison_pages(page, 1 << order); 2298 set_page_owner(page, order, gfp_flags); 2299 2300 if (!want_init_on_free() && want_init_on_alloc(gfp_flags)) 2301 kernel_init_free_pages(page, 1 << order); 2302 } 2303 2304 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2305 unsigned int alloc_flags) 2306 { 2307 post_alloc_hook(page, order, gfp_flags); 2308 2309 if (order && (gfp_flags & __GFP_COMP)) 2310 prep_compound_page(page, order); 2311 2312 /* 2313 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2314 * allocate the page. The expectation is that the caller is taking 2315 * steps that will free more memory. The caller should avoid the page 2316 * being used for !PFMEMALLOC purposes. 2317 */ 2318 if (alloc_flags & ALLOC_NO_WATERMARKS) 2319 set_page_pfmemalloc(page); 2320 else 2321 clear_page_pfmemalloc(page); 2322 } 2323 2324 /* 2325 * Go through the free lists for the given migratetype and remove 2326 * the smallest available page from the freelists 2327 */ 2328 static __always_inline 2329 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2330 int migratetype) 2331 { 2332 unsigned int current_order; 2333 struct free_area *area; 2334 struct page *page; 2335 2336 /* Find a page of the appropriate size in the preferred list */ 2337 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2338 area = &(zone->free_area[current_order]); 2339 page = get_page_from_free_area(area, migratetype); 2340 if (!page) 2341 continue; 2342 del_page_from_free_list(page, zone, current_order); 2343 expand(zone, page, order, current_order, migratetype); 2344 set_pcppage_migratetype(page, migratetype); 2345 return page; 2346 } 2347 2348 return NULL; 2349 } 2350 2351 2352 /* 2353 * This array describes the order lists are fallen back to when 2354 * the free lists for the desirable migrate type are depleted 2355 */ 2356 static int fallbacks[MIGRATE_TYPES][3] = { 2357 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2358 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2359 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2360 #ifdef CONFIG_CMA 2361 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2362 #endif 2363 #ifdef CONFIG_MEMORY_ISOLATION 2364 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2365 #endif 2366 }; 2367 2368 #ifdef CONFIG_CMA 2369 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2370 unsigned int order) 2371 { 2372 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2373 } 2374 #else 2375 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2376 unsigned int order) { return NULL; } 2377 #endif 2378 2379 /* 2380 * Move the free pages in a range to the freelist tail of the requested type. 2381 * Note that start_page and end_pages are not aligned on a pageblock 2382 * boundary. If alignment is required, use move_freepages_block() 2383 */ 2384 static int move_freepages(struct zone *zone, 2385 struct page *start_page, struct page *end_page, 2386 int migratetype, int *num_movable) 2387 { 2388 struct page *page; 2389 unsigned int order; 2390 int pages_moved = 0; 2391 2392 for (page = start_page; page <= end_page;) { 2393 if (!pfn_valid_within(page_to_pfn(page))) { 2394 page++; 2395 continue; 2396 } 2397 2398 if (!PageBuddy(page)) { 2399 /* 2400 * We assume that pages that could be isolated for 2401 * migration are movable. But we don't actually try 2402 * isolating, as that would be expensive. 2403 */ 2404 if (num_movable && 2405 (PageLRU(page) || __PageMovable(page))) 2406 (*num_movable)++; 2407 2408 page++; 2409 continue; 2410 } 2411 2412 /* Make sure we are not inadvertently changing nodes */ 2413 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2414 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2415 2416 order = buddy_order(page); 2417 move_to_free_list(page, zone, order, migratetype); 2418 page += 1 << order; 2419 pages_moved += 1 << order; 2420 } 2421 2422 return pages_moved; 2423 } 2424 2425 int move_freepages_block(struct zone *zone, struct page *page, 2426 int migratetype, int *num_movable) 2427 { 2428 unsigned long start_pfn, end_pfn; 2429 struct page *start_page, *end_page; 2430 2431 if (num_movable) 2432 *num_movable = 0; 2433 2434 start_pfn = page_to_pfn(page); 2435 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2436 start_page = pfn_to_page(start_pfn); 2437 end_page = start_page + pageblock_nr_pages - 1; 2438 end_pfn = start_pfn + pageblock_nr_pages - 1; 2439 2440 /* Do not cross zone boundaries */ 2441 if (!zone_spans_pfn(zone, start_pfn)) 2442 start_page = page; 2443 if (!zone_spans_pfn(zone, end_pfn)) 2444 return 0; 2445 2446 return move_freepages(zone, start_page, end_page, migratetype, 2447 num_movable); 2448 } 2449 2450 static void change_pageblock_range(struct page *pageblock_page, 2451 int start_order, int migratetype) 2452 { 2453 int nr_pageblocks = 1 << (start_order - pageblock_order); 2454 2455 while (nr_pageblocks--) { 2456 set_pageblock_migratetype(pageblock_page, migratetype); 2457 pageblock_page += pageblock_nr_pages; 2458 } 2459 } 2460 2461 /* 2462 * When we are falling back to another migratetype during allocation, try to 2463 * steal extra free pages from the same pageblocks to satisfy further 2464 * allocations, instead of polluting multiple pageblocks. 2465 * 2466 * If we are stealing a relatively large buddy page, it is likely there will 2467 * be more free pages in the pageblock, so try to steal them all. For 2468 * reclaimable and unmovable allocations, we steal regardless of page size, 2469 * as fragmentation caused by those allocations polluting movable pageblocks 2470 * is worse than movable allocations stealing from unmovable and reclaimable 2471 * pageblocks. 2472 */ 2473 static bool can_steal_fallback(unsigned int order, int start_mt) 2474 { 2475 /* 2476 * Leaving this order check is intended, although there is 2477 * relaxed order check in next check. The reason is that 2478 * we can actually steal whole pageblock if this condition met, 2479 * but, below check doesn't guarantee it and that is just heuristic 2480 * so could be changed anytime. 2481 */ 2482 if (order >= pageblock_order) 2483 return true; 2484 2485 if (order >= pageblock_order / 2 || 2486 start_mt == MIGRATE_RECLAIMABLE || 2487 start_mt == MIGRATE_UNMOVABLE || 2488 page_group_by_mobility_disabled) 2489 return true; 2490 2491 return false; 2492 } 2493 2494 static inline bool boost_watermark(struct zone *zone) 2495 { 2496 unsigned long max_boost; 2497 2498 if (!watermark_boost_factor) 2499 return false; 2500 /* 2501 * Don't bother in zones that are unlikely to produce results. 2502 * On small machines, including kdump capture kernels running 2503 * in a small area, boosting the watermark can cause an out of 2504 * memory situation immediately. 2505 */ 2506 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2507 return false; 2508 2509 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2510 watermark_boost_factor, 10000); 2511 2512 /* 2513 * high watermark may be uninitialised if fragmentation occurs 2514 * very early in boot so do not boost. We do not fall 2515 * through and boost by pageblock_nr_pages as failing 2516 * allocations that early means that reclaim is not going 2517 * to help and it may even be impossible to reclaim the 2518 * boosted watermark resulting in a hang. 2519 */ 2520 if (!max_boost) 2521 return false; 2522 2523 max_boost = max(pageblock_nr_pages, max_boost); 2524 2525 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2526 max_boost); 2527 2528 return true; 2529 } 2530 2531 /* 2532 * This function implements actual steal behaviour. If order is large enough, 2533 * we can steal whole pageblock. If not, we first move freepages in this 2534 * pageblock to our migratetype and determine how many already-allocated pages 2535 * are there in the pageblock with a compatible migratetype. If at least half 2536 * of pages are free or compatible, we can change migratetype of the pageblock 2537 * itself, so pages freed in the future will be put on the correct free list. 2538 */ 2539 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2540 unsigned int alloc_flags, int start_type, bool whole_block) 2541 { 2542 unsigned int current_order = buddy_order(page); 2543 int free_pages, movable_pages, alike_pages; 2544 int old_block_type; 2545 2546 old_block_type = get_pageblock_migratetype(page); 2547 2548 /* 2549 * This can happen due to races and we want to prevent broken 2550 * highatomic accounting. 2551 */ 2552 if (is_migrate_highatomic(old_block_type)) 2553 goto single_page; 2554 2555 /* Take ownership for orders >= pageblock_order */ 2556 if (current_order >= pageblock_order) { 2557 change_pageblock_range(page, current_order, start_type); 2558 goto single_page; 2559 } 2560 2561 /* 2562 * Boost watermarks to increase reclaim pressure to reduce the 2563 * likelihood of future fallbacks. Wake kswapd now as the node 2564 * may be balanced overall and kswapd will not wake naturally. 2565 */ 2566 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2567 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2568 2569 /* We are not allowed to try stealing from the whole block */ 2570 if (!whole_block) 2571 goto single_page; 2572 2573 free_pages = move_freepages_block(zone, page, start_type, 2574 &movable_pages); 2575 /* 2576 * Determine how many pages are compatible with our allocation. 2577 * For movable allocation, it's the number of movable pages which 2578 * we just obtained. For other types it's a bit more tricky. 2579 */ 2580 if (start_type == MIGRATE_MOVABLE) { 2581 alike_pages = movable_pages; 2582 } else { 2583 /* 2584 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2585 * to MOVABLE pageblock, consider all non-movable pages as 2586 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2587 * vice versa, be conservative since we can't distinguish the 2588 * exact migratetype of non-movable pages. 2589 */ 2590 if (old_block_type == MIGRATE_MOVABLE) 2591 alike_pages = pageblock_nr_pages 2592 - (free_pages + movable_pages); 2593 else 2594 alike_pages = 0; 2595 } 2596 2597 /* moving whole block can fail due to zone boundary conditions */ 2598 if (!free_pages) 2599 goto single_page; 2600 2601 /* 2602 * If a sufficient number of pages in the block are either free or of 2603 * comparable migratability as our allocation, claim the whole block. 2604 */ 2605 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2606 page_group_by_mobility_disabled) 2607 set_pageblock_migratetype(page, start_type); 2608 2609 return; 2610 2611 single_page: 2612 move_to_free_list(page, zone, current_order, start_type); 2613 } 2614 2615 /* 2616 * Check whether there is a suitable fallback freepage with requested order. 2617 * If only_stealable is true, this function returns fallback_mt only if 2618 * we can steal other freepages all together. This would help to reduce 2619 * fragmentation due to mixed migratetype pages in one pageblock. 2620 */ 2621 int find_suitable_fallback(struct free_area *area, unsigned int order, 2622 int migratetype, bool only_stealable, bool *can_steal) 2623 { 2624 int i; 2625 int fallback_mt; 2626 2627 if (area->nr_free == 0) 2628 return -1; 2629 2630 *can_steal = false; 2631 for (i = 0;; i++) { 2632 fallback_mt = fallbacks[migratetype][i]; 2633 if (fallback_mt == MIGRATE_TYPES) 2634 break; 2635 2636 if (free_area_empty(area, fallback_mt)) 2637 continue; 2638 2639 if (can_steal_fallback(order, migratetype)) 2640 *can_steal = true; 2641 2642 if (!only_stealable) 2643 return fallback_mt; 2644 2645 if (*can_steal) 2646 return fallback_mt; 2647 } 2648 2649 return -1; 2650 } 2651 2652 /* 2653 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2654 * there are no empty page blocks that contain a page with a suitable order 2655 */ 2656 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2657 unsigned int alloc_order) 2658 { 2659 int mt; 2660 unsigned long max_managed, flags; 2661 2662 /* 2663 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2664 * Check is race-prone but harmless. 2665 */ 2666 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2667 if (zone->nr_reserved_highatomic >= max_managed) 2668 return; 2669 2670 spin_lock_irqsave(&zone->lock, flags); 2671 2672 /* Recheck the nr_reserved_highatomic limit under the lock */ 2673 if (zone->nr_reserved_highatomic >= max_managed) 2674 goto out_unlock; 2675 2676 /* Yoink! */ 2677 mt = get_pageblock_migratetype(page); 2678 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2679 && !is_migrate_cma(mt)) { 2680 zone->nr_reserved_highatomic += pageblock_nr_pages; 2681 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2682 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2683 } 2684 2685 out_unlock: 2686 spin_unlock_irqrestore(&zone->lock, flags); 2687 } 2688 2689 /* 2690 * Used when an allocation is about to fail under memory pressure. This 2691 * potentially hurts the reliability of high-order allocations when under 2692 * intense memory pressure but failed atomic allocations should be easier 2693 * to recover from than an OOM. 2694 * 2695 * If @force is true, try to unreserve a pageblock even though highatomic 2696 * pageblock is exhausted. 2697 */ 2698 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2699 bool force) 2700 { 2701 struct zonelist *zonelist = ac->zonelist; 2702 unsigned long flags; 2703 struct zoneref *z; 2704 struct zone *zone; 2705 struct page *page; 2706 int order; 2707 bool ret; 2708 2709 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2710 ac->nodemask) { 2711 /* 2712 * Preserve at least one pageblock unless memory pressure 2713 * is really high. 2714 */ 2715 if (!force && zone->nr_reserved_highatomic <= 2716 pageblock_nr_pages) 2717 continue; 2718 2719 spin_lock_irqsave(&zone->lock, flags); 2720 for (order = 0; order < MAX_ORDER; order++) { 2721 struct free_area *area = &(zone->free_area[order]); 2722 2723 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2724 if (!page) 2725 continue; 2726 2727 /* 2728 * In page freeing path, migratetype change is racy so 2729 * we can counter several free pages in a pageblock 2730 * in this loop althoug we changed the pageblock type 2731 * from highatomic to ac->migratetype. So we should 2732 * adjust the count once. 2733 */ 2734 if (is_migrate_highatomic_page(page)) { 2735 /* 2736 * It should never happen but changes to 2737 * locking could inadvertently allow a per-cpu 2738 * drain to add pages to MIGRATE_HIGHATOMIC 2739 * while unreserving so be safe and watch for 2740 * underflows. 2741 */ 2742 zone->nr_reserved_highatomic -= min( 2743 pageblock_nr_pages, 2744 zone->nr_reserved_highatomic); 2745 } 2746 2747 /* 2748 * Convert to ac->migratetype and avoid the normal 2749 * pageblock stealing heuristics. Minimally, the caller 2750 * is doing the work and needs the pages. More 2751 * importantly, if the block was always converted to 2752 * MIGRATE_UNMOVABLE or another type then the number 2753 * of pageblocks that cannot be completely freed 2754 * may increase. 2755 */ 2756 set_pageblock_migratetype(page, ac->migratetype); 2757 ret = move_freepages_block(zone, page, ac->migratetype, 2758 NULL); 2759 if (ret) { 2760 spin_unlock_irqrestore(&zone->lock, flags); 2761 return ret; 2762 } 2763 } 2764 spin_unlock_irqrestore(&zone->lock, flags); 2765 } 2766 2767 return false; 2768 } 2769 2770 /* 2771 * Try finding a free buddy page on the fallback list and put it on the free 2772 * list of requested migratetype, possibly along with other pages from the same 2773 * block, depending on fragmentation avoidance heuristics. Returns true if 2774 * fallback was found so that __rmqueue_smallest() can grab it. 2775 * 2776 * The use of signed ints for order and current_order is a deliberate 2777 * deviation from the rest of this file, to make the for loop 2778 * condition simpler. 2779 */ 2780 static __always_inline bool 2781 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2782 unsigned int alloc_flags) 2783 { 2784 struct free_area *area; 2785 int current_order; 2786 int min_order = order; 2787 struct page *page; 2788 int fallback_mt; 2789 bool can_steal; 2790 2791 /* 2792 * Do not steal pages from freelists belonging to other pageblocks 2793 * i.e. orders < pageblock_order. If there are no local zones free, 2794 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2795 */ 2796 if (alloc_flags & ALLOC_NOFRAGMENT) 2797 min_order = pageblock_order; 2798 2799 /* 2800 * Find the largest available free page in the other list. This roughly 2801 * approximates finding the pageblock with the most free pages, which 2802 * would be too costly to do exactly. 2803 */ 2804 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2805 --current_order) { 2806 area = &(zone->free_area[current_order]); 2807 fallback_mt = find_suitable_fallback(area, current_order, 2808 start_migratetype, false, &can_steal); 2809 if (fallback_mt == -1) 2810 continue; 2811 2812 /* 2813 * We cannot steal all free pages from the pageblock and the 2814 * requested migratetype is movable. In that case it's better to 2815 * steal and split the smallest available page instead of the 2816 * largest available page, because even if the next movable 2817 * allocation falls back into a different pageblock than this 2818 * one, it won't cause permanent fragmentation. 2819 */ 2820 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2821 && current_order > order) 2822 goto find_smallest; 2823 2824 goto do_steal; 2825 } 2826 2827 return false; 2828 2829 find_smallest: 2830 for (current_order = order; current_order < MAX_ORDER; 2831 current_order++) { 2832 area = &(zone->free_area[current_order]); 2833 fallback_mt = find_suitable_fallback(area, current_order, 2834 start_migratetype, false, &can_steal); 2835 if (fallback_mt != -1) 2836 break; 2837 } 2838 2839 /* 2840 * This should not happen - we already found a suitable fallback 2841 * when looking for the largest page. 2842 */ 2843 VM_BUG_ON(current_order == MAX_ORDER); 2844 2845 do_steal: 2846 page = get_page_from_free_area(area, fallback_mt); 2847 2848 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2849 can_steal); 2850 2851 trace_mm_page_alloc_extfrag(page, order, current_order, 2852 start_migratetype, fallback_mt); 2853 2854 return true; 2855 2856 } 2857 2858 /* 2859 * Do the hard work of removing an element from the buddy allocator. 2860 * Call me with the zone->lock already held. 2861 */ 2862 static __always_inline struct page * 2863 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2864 unsigned int alloc_flags) 2865 { 2866 struct page *page; 2867 2868 if (IS_ENABLED(CONFIG_CMA)) { 2869 /* 2870 * Balance movable allocations between regular and CMA areas by 2871 * allocating from CMA when over half of the zone's free memory 2872 * is in the CMA area. 2873 */ 2874 if (alloc_flags & ALLOC_CMA && 2875 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2876 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2877 page = __rmqueue_cma_fallback(zone, order); 2878 if (page) 2879 goto out; 2880 } 2881 } 2882 retry: 2883 page = __rmqueue_smallest(zone, order, migratetype); 2884 if (unlikely(!page)) { 2885 if (alloc_flags & ALLOC_CMA) 2886 page = __rmqueue_cma_fallback(zone, order); 2887 2888 if (!page && __rmqueue_fallback(zone, order, migratetype, 2889 alloc_flags)) 2890 goto retry; 2891 } 2892 out: 2893 if (page) 2894 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2895 return page; 2896 } 2897 2898 /* 2899 * Obtain a specified number of elements from the buddy allocator, all under 2900 * a single hold of the lock, for efficiency. Add them to the supplied list. 2901 * Returns the number of new pages which were placed at *list. 2902 */ 2903 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2904 unsigned long count, struct list_head *list, 2905 int migratetype, unsigned int alloc_flags) 2906 { 2907 int i, alloced = 0; 2908 2909 spin_lock(&zone->lock); 2910 for (i = 0; i < count; ++i) { 2911 struct page *page = __rmqueue(zone, order, migratetype, 2912 alloc_flags); 2913 if (unlikely(page == NULL)) 2914 break; 2915 2916 if (unlikely(check_pcp_refill(page))) 2917 continue; 2918 2919 /* 2920 * Split buddy pages returned by expand() are received here in 2921 * physical page order. The page is added to the tail of 2922 * caller's list. From the callers perspective, the linked list 2923 * is ordered by page number under some conditions. This is 2924 * useful for IO devices that can forward direction from the 2925 * head, thus also in the physical page order. This is useful 2926 * for IO devices that can merge IO requests if the physical 2927 * pages are ordered properly. 2928 */ 2929 list_add_tail(&page->lru, list); 2930 alloced++; 2931 if (is_migrate_cma(get_pcppage_migratetype(page))) 2932 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2933 -(1 << order)); 2934 } 2935 2936 /* 2937 * i pages were removed from the buddy list even if some leak due 2938 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2939 * on i. Do not confuse with 'alloced' which is the number of 2940 * pages added to the pcp list. 2941 */ 2942 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2943 spin_unlock(&zone->lock); 2944 return alloced; 2945 } 2946 2947 #ifdef CONFIG_NUMA 2948 /* 2949 * Called from the vmstat counter updater to drain pagesets of this 2950 * currently executing processor on remote nodes after they have 2951 * expired. 2952 * 2953 * Note that this function must be called with the thread pinned to 2954 * a single processor. 2955 */ 2956 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2957 { 2958 unsigned long flags; 2959 int to_drain, batch; 2960 2961 local_irq_save(flags); 2962 batch = READ_ONCE(pcp->batch); 2963 to_drain = min(pcp->count, batch); 2964 if (to_drain > 0) 2965 free_pcppages_bulk(zone, to_drain, pcp); 2966 local_irq_restore(flags); 2967 } 2968 #endif 2969 2970 /* 2971 * Drain pcplists of the indicated processor and zone. 2972 * 2973 * The processor must either be the current processor and the 2974 * thread pinned to the current processor or a processor that 2975 * is not online. 2976 */ 2977 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2978 { 2979 unsigned long flags; 2980 struct per_cpu_pageset *pset; 2981 struct per_cpu_pages *pcp; 2982 2983 local_irq_save(flags); 2984 pset = per_cpu_ptr(zone->pageset, cpu); 2985 2986 pcp = &pset->pcp; 2987 if (pcp->count) 2988 free_pcppages_bulk(zone, pcp->count, pcp); 2989 local_irq_restore(flags); 2990 } 2991 2992 /* 2993 * Drain pcplists of all zones on the indicated processor. 2994 * 2995 * The processor must either be the current processor and the 2996 * thread pinned to the current processor or a processor that 2997 * is not online. 2998 */ 2999 static void drain_pages(unsigned int cpu) 3000 { 3001 struct zone *zone; 3002 3003 for_each_populated_zone(zone) { 3004 drain_pages_zone(cpu, zone); 3005 } 3006 } 3007 3008 /* 3009 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3010 * 3011 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 3012 * the single zone's pages. 3013 */ 3014 void drain_local_pages(struct zone *zone) 3015 { 3016 int cpu = smp_processor_id(); 3017 3018 if (zone) 3019 drain_pages_zone(cpu, zone); 3020 else 3021 drain_pages(cpu); 3022 } 3023 3024 static void drain_local_pages_wq(struct work_struct *work) 3025 { 3026 struct pcpu_drain *drain; 3027 3028 drain = container_of(work, struct pcpu_drain, work); 3029 3030 /* 3031 * drain_all_pages doesn't use proper cpu hotplug protection so 3032 * we can race with cpu offline when the WQ can move this from 3033 * a cpu pinned worker to an unbound one. We can operate on a different 3034 * cpu which is allright but we also have to make sure to not move to 3035 * a different one. 3036 */ 3037 preempt_disable(); 3038 drain_local_pages(drain->zone); 3039 preempt_enable(); 3040 } 3041 3042 /* 3043 * The implementation of drain_all_pages(), exposing an extra parameter to 3044 * drain on all cpus. 3045 * 3046 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3047 * not empty. The check for non-emptiness can however race with a free to 3048 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3049 * that need the guarantee that every CPU has drained can disable the 3050 * optimizing racy check. 3051 */ 3052 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3053 { 3054 int cpu; 3055 3056 /* 3057 * Allocate in the BSS so we wont require allocation in 3058 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3059 */ 3060 static cpumask_t cpus_with_pcps; 3061 3062 /* 3063 * Make sure nobody triggers this path before mm_percpu_wq is fully 3064 * initialized. 3065 */ 3066 if (WARN_ON_ONCE(!mm_percpu_wq)) 3067 return; 3068 3069 /* 3070 * Do not drain if one is already in progress unless it's specific to 3071 * a zone. Such callers are primarily CMA and memory hotplug and need 3072 * the drain to be complete when the call returns. 3073 */ 3074 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3075 if (!zone) 3076 return; 3077 mutex_lock(&pcpu_drain_mutex); 3078 } 3079 3080 /* 3081 * We don't care about racing with CPU hotplug event 3082 * as offline notification will cause the notified 3083 * cpu to drain that CPU pcps and on_each_cpu_mask 3084 * disables preemption as part of its processing 3085 */ 3086 for_each_online_cpu(cpu) { 3087 struct per_cpu_pageset *pcp; 3088 struct zone *z; 3089 bool has_pcps = false; 3090 3091 if (force_all_cpus) { 3092 /* 3093 * The pcp.count check is racy, some callers need a 3094 * guarantee that no cpu is missed. 3095 */ 3096 has_pcps = true; 3097 } else if (zone) { 3098 pcp = per_cpu_ptr(zone->pageset, cpu); 3099 if (pcp->pcp.count) 3100 has_pcps = true; 3101 } else { 3102 for_each_populated_zone(z) { 3103 pcp = per_cpu_ptr(z->pageset, cpu); 3104 if (pcp->pcp.count) { 3105 has_pcps = true; 3106 break; 3107 } 3108 } 3109 } 3110 3111 if (has_pcps) 3112 cpumask_set_cpu(cpu, &cpus_with_pcps); 3113 else 3114 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3115 } 3116 3117 for_each_cpu(cpu, &cpus_with_pcps) { 3118 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3119 3120 drain->zone = zone; 3121 INIT_WORK(&drain->work, drain_local_pages_wq); 3122 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3123 } 3124 for_each_cpu(cpu, &cpus_with_pcps) 3125 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3126 3127 mutex_unlock(&pcpu_drain_mutex); 3128 } 3129 3130 /* 3131 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3132 * 3133 * When zone parameter is non-NULL, spill just the single zone's pages. 3134 * 3135 * Note that this can be extremely slow as the draining happens in a workqueue. 3136 */ 3137 void drain_all_pages(struct zone *zone) 3138 { 3139 __drain_all_pages(zone, false); 3140 } 3141 3142 #ifdef CONFIG_HIBERNATION 3143 3144 /* 3145 * Touch the watchdog for every WD_PAGE_COUNT pages. 3146 */ 3147 #define WD_PAGE_COUNT (128*1024) 3148 3149 void mark_free_pages(struct zone *zone) 3150 { 3151 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3152 unsigned long flags; 3153 unsigned int order, t; 3154 struct page *page; 3155 3156 if (zone_is_empty(zone)) 3157 return; 3158 3159 spin_lock_irqsave(&zone->lock, flags); 3160 3161 max_zone_pfn = zone_end_pfn(zone); 3162 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3163 if (pfn_valid(pfn)) { 3164 page = pfn_to_page(pfn); 3165 3166 if (!--page_count) { 3167 touch_nmi_watchdog(); 3168 page_count = WD_PAGE_COUNT; 3169 } 3170 3171 if (page_zone(page) != zone) 3172 continue; 3173 3174 if (!swsusp_page_is_forbidden(page)) 3175 swsusp_unset_page_free(page); 3176 } 3177 3178 for_each_migratetype_order(order, t) { 3179 list_for_each_entry(page, 3180 &zone->free_area[order].free_list[t], lru) { 3181 unsigned long i; 3182 3183 pfn = page_to_pfn(page); 3184 for (i = 0; i < (1UL << order); i++) { 3185 if (!--page_count) { 3186 touch_nmi_watchdog(); 3187 page_count = WD_PAGE_COUNT; 3188 } 3189 swsusp_set_page_free(pfn_to_page(pfn + i)); 3190 } 3191 } 3192 } 3193 spin_unlock_irqrestore(&zone->lock, flags); 3194 } 3195 #endif /* CONFIG_PM */ 3196 3197 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 3198 { 3199 int migratetype; 3200 3201 if (!free_pcp_prepare(page)) 3202 return false; 3203 3204 migratetype = get_pfnblock_migratetype(page, pfn); 3205 set_pcppage_migratetype(page, migratetype); 3206 return true; 3207 } 3208 3209 static void free_unref_page_commit(struct page *page, unsigned long pfn) 3210 { 3211 struct zone *zone = page_zone(page); 3212 struct per_cpu_pages *pcp; 3213 int migratetype; 3214 3215 migratetype = get_pcppage_migratetype(page); 3216 __count_vm_event(PGFREE); 3217 3218 /* 3219 * We only track unmovable, reclaimable and movable on pcp lists. 3220 * Free ISOLATE pages back to the allocator because they are being 3221 * offlined but treat HIGHATOMIC as movable pages so we can get those 3222 * areas back if necessary. Otherwise, we may have to free 3223 * excessively into the page allocator 3224 */ 3225 if (migratetype >= MIGRATE_PCPTYPES) { 3226 if (unlikely(is_migrate_isolate(migratetype))) { 3227 free_one_page(zone, page, pfn, 0, migratetype, 3228 FPI_NONE); 3229 return; 3230 } 3231 migratetype = MIGRATE_MOVABLE; 3232 } 3233 3234 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3235 list_add(&page->lru, &pcp->lists[migratetype]); 3236 pcp->count++; 3237 if (pcp->count >= READ_ONCE(pcp->high)) 3238 free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp); 3239 } 3240 3241 /* 3242 * Free a 0-order page 3243 */ 3244 void free_unref_page(struct page *page) 3245 { 3246 unsigned long flags; 3247 unsigned long pfn = page_to_pfn(page); 3248 3249 if (!free_unref_page_prepare(page, pfn)) 3250 return; 3251 3252 local_irq_save(flags); 3253 free_unref_page_commit(page, pfn); 3254 local_irq_restore(flags); 3255 } 3256 3257 /* 3258 * Free a list of 0-order pages 3259 */ 3260 void free_unref_page_list(struct list_head *list) 3261 { 3262 struct page *page, *next; 3263 unsigned long flags, pfn; 3264 int batch_count = 0; 3265 3266 /* Prepare pages for freeing */ 3267 list_for_each_entry_safe(page, next, list, lru) { 3268 pfn = page_to_pfn(page); 3269 if (!free_unref_page_prepare(page, pfn)) 3270 list_del(&page->lru); 3271 set_page_private(page, pfn); 3272 } 3273 3274 local_irq_save(flags); 3275 list_for_each_entry_safe(page, next, list, lru) { 3276 unsigned long pfn = page_private(page); 3277 3278 set_page_private(page, 0); 3279 trace_mm_page_free_batched(page); 3280 free_unref_page_commit(page, pfn); 3281 3282 /* 3283 * Guard against excessive IRQ disabled times when we get 3284 * a large list of pages to free. 3285 */ 3286 if (++batch_count == SWAP_CLUSTER_MAX) { 3287 local_irq_restore(flags); 3288 batch_count = 0; 3289 local_irq_save(flags); 3290 } 3291 } 3292 local_irq_restore(flags); 3293 } 3294 3295 /* 3296 * split_page takes a non-compound higher-order page, and splits it into 3297 * n (1<<order) sub-pages: page[0..n] 3298 * Each sub-page must be freed individually. 3299 * 3300 * Note: this is probably too low level an operation for use in drivers. 3301 * Please consult with lkml before using this in your driver. 3302 */ 3303 void split_page(struct page *page, unsigned int order) 3304 { 3305 int i; 3306 3307 VM_BUG_ON_PAGE(PageCompound(page), page); 3308 VM_BUG_ON_PAGE(!page_count(page), page); 3309 3310 for (i = 1; i < (1 << order); i++) 3311 set_page_refcounted(page + i); 3312 split_page_owner(page, 1 << order); 3313 } 3314 EXPORT_SYMBOL_GPL(split_page); 3315 3316 int __isolate_free_page(struct page *page, unsigned int order) 3317 { 3318 unsigned long watermark; 3319 struct zone *zone; 3320 int mt; 3321 3322 BUG_ON(!PageBuddy(page)); 3323 3324 zone = page_zone(page); 3325 mt = get_pageblock_migratetype(page); 3326 3327 if (!is_migrate_isolate(mt)) { 3328 /* 3329 * Obey watermarks as if the page was being allocated. We can 3330 * emulate a high-order watermark check with a raised order-0 3331 * watermark, because we already know our high-order page 3332 * exists. 3333 */ 3334 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3335 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3336 return 0; 3337 3338 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3339 } 3340 3341 /* Remove page from free list */ 3342 3343 del_page_from_free_list(page, zone, order); 3344 3345 /* 3346 * Set the pageblock if the isolated page is at least half of a 3347 * pageblock 3348 */ 3349 if (order >= pageblock_order - 1) { 3350 struct page *endpage = page + (1 << order) - 1; 3351 for (; page < endpage; page += pageblock_nr_pages) { 3352 int mt = get_pageblock_migratetype(page); 3353 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3354 && !is_migrate_highatomic(mt)) 3355 set_pageblock_migratetype(page, 3356 MIGRATE_MOVABLE); 3357 } 3358 } 3359 3360 3361 return 1UL << order; 3362 } 3363 3364 /** 3365 * __putback_isolated_page - Return a now-isolated page back where we got it 3366 * @page: Page that was isolated 3367 * @order: Order of the isolated page 3368 * @mt: The page's pageblock's migratetype 3369 * 3370 * This function is meant to return a page pulled from the free lists via 3371 * __isolate_free_page back to the free lists they were pulled from. 3372 */ 3373 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3374 { 3375 struct zone *zone = page_zone(page); 3376 3377 /* zone lock should be held when this function is called */ 3378 lockdep_assert_held(&zone->lock); 3379 3380 /* Return isolated page to tail of freelist. */ 3381 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3382 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3383 } 3384 3385 /* 3386 * Update NUMA hit/miss statistics 3387 * 3388 * Must be called with interrupts disabled. 3389 */ 3390 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3391 { 3392 #ifdef CONFIG_NUMA 3393 enum numa_stat_item local_stat = NUMA_LOCAL; 3394 3395 /* skip numa counters update if numa stats is disabled */ 3396 if (!static_branch_likely(&vm_numa_stat_key)) 3397 return; 3398 3399 if (zone_to_nid(z) != numa_node_id()) 3400 local_stat = NUMA_OTHER; 3401 3402 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3403 __inc_numa_state(z, NUMA_HIT); 3404 else { 3405 __inc_numa_state(z, NUMA_MISS); 3406 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3407 } 3408 __inc_numa_state(z, local_stat); 3409 #endif 3410 } 3411 3412 /* Remove page from the per-cpu list, caller must protect the list */ 3413 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3414 unsigned int alloc_flags, 3415 struct per_cpu_pages *pcp, 3416 struct list_head *list) 3417 { 3418 struct page *page; 3419 3420 do { 3421 if (list_empty(list)) { 3422 pcp->count += rmqueue_bulk(zone, 0, 3423 READ_ONCE(pcp->batch), list, 3424 migratetype, alloc_flags); 3425 if (unlikely(list_empty(list))) 3426 return NULL; 3427 } 3428 3429 page = list_first_entry(list, struct page, lru); 3430 list_del(&page->lru); 3431 pcp->count--; 3432 } while (check_new_pcp(page)); 3433 3434 return page; 3435 } 3436 3437 /* Lock and remove page from the per-cpu list */ 3438 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3439 struct zone *zone, gfp_t gfp_flags, 3440 int migratetype, unsigned int alloc_flags) 3441 { 3442 struct per_cpu_pages *pcp; 3443 struct list_head *list; 3444 struct page *page; 3445 unsigned long flags; 3446 3447 local_irq_save(flags); 3448 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3449 list = &pcp->lists[migratetype]; 3450 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3451 if (page) { 3452 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3453 zone_statistics(preferred_zone, zone); 3454 } 3455 local_irq_restore(flags); 3456 return page; 3457 } 3458 3459 /* 3460 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3461 */ 3462 static inline 3463 struct page *rmqueue(struct zone *preferred_zone, 3464 struct zone *zone, unsigned int order, 3465 gfp_t gfp_flags, unsigned int alloc_flags, 3466 int migratetype) 3467 { 3468 unsigned long flags; 3469 struct page *page; 3470 3471 if (likely(order == 0)) { 3472 /* 3473 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3474 * we need to skip it when CMA area isn't allowed. 3475 */ 3476 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3477 migratetype != MIGRATE_MOVABLE) { 3478 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, 3479 migratetype, alloc_flags); 3480 goto out; 3481 } 3482 } 3483 3484 /* 3485 * We most definitely don't want callers attempting to 3486 * allocate greater than order-1 page units with __GFP_NOFAIL. 3487 */ 3488 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3489 spin_lock_irqsave(&zone->lock, flags); 3490 3491 do { 3492 page = NULL; 3493 /* 3494 * order-0 request can reach here when the pcplist is skipped 3495 * due to non-CMA allocation context. HIGHATOMIC area is 3496 * reserved for high-order atomic allocation, so order-0 3497 * request should skip it. 3498 */ 3499 if (order > 0 && alloc_flags & ALLOC_HARDER) { 3500 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3501 if (page) 3502 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3503 } 3504 if (!page) 3505 page = __rmqueue(zone, order, migratetype, alloc_flags); 3506 } while (page && check_new_pages(page, order)); 3507 spin_unlock(&zone->lock); 3508 if (!page) 3509 goto failed; 3510 __mod_zone_freepage_state(zone, -(1 << order), 3511 get_pcppage_migratetype(page)); 3512 3513 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3514 zone_statistics(preferred_zone, zone); 3515 local_irq_restore(flags); 3516 3517 out: 3518 /* Separate test+clear to avoid unnecessary atomics */ 3519 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3520 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3521 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3522 } 3523 3524 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3525 return page; 3526 3527 failed: 3528 local_irq_restore(flags); 3529 return NULL; 3530 } 3531 3532 #ifdef CONFIG_FAIL_PAGE_ALLOC 3533 3534 static struct { 3535 struct fault_attr attr; 3536 3537 bool ignore_gfp_highmem; 3538 bool ignore_gfp_reclaim; 3539 u32 min_order; 3540 } fail_page_alloc = { 3541 .attr = FAULT_ATTR_INITIALIZER, 3542 .ignore_gfp_reclaim = true, 3543 .ignore_gfp_highmem = true, 3544 .min_order = 1, 3545 }; 3546 3547 static int __init setup_fail_page_alloc(char *str) 3548 { 3549 return setup_fault_attr(&fail_page_alloc.attr, str); 3550 } 3551 __setup("fail_page_alloc=", setup_fail_page_alloc); 3552 3553 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3554 { 3555 if (order < fail_page_alloc.min_order) 3556 return false; 3557 if (gfp_mask & __GFP_NOFAIL) 3558 return false; 3559 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3560 return false; 3561 if (fail_page_alloc.ignore_gfp_reclaim && 3562 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3563 return false; 3564 3565 return should_fail(&fail_page_alloc.attr, 1 << order); 3566 } 3567 3568 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3569 3570 static int __init fail_page_alloc_debugfs(void) 3571 { 3572 umode_t mode = S_IFREG | 0600; 3573 struct dentry *dir; 3574 3575 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3576 &fail_page_alloc.attr); 3577 3578 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3579 &fail_page_alloc.ignore_gfp_reclaim); 3580 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3581 &fail_page_alloc.ignore_gfp_highmem); 3582 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3583 3584 return 0; 3585 } 3586 3587 late_initcall(fail_page_alloc_debugfs); 3588 3589 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3590 3591 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3592 3593 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3594 { 3595 return false; 3596 } 3597 3598 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3599 3600 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3601 { 3602 return __should_fail_alloc_page(gfp_mask, order); 3603 } 3604 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3605 3606 static inline long __zone_watermark_unusable_free(struct zone *z, 3607 unsigned int order, unsigned int alloc_flags) 3608 { 3609 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3610 long unusable_free = (1 << order) - 1; 3611 3612 /* 3613 * If the caller does not have rights to ALLOC_HARDER then subtract 3614 * the high-atomic reserves. This will over-estimate the size of the 3615 * atomic reserve but it avoids a search. 3616 */ 3617 if (likely(!alloc_harder)) 3618 unusable_free += z->nr_reserved_highatomic; 3619 3620 #ifdef CONFIG_CMA 3621 /* If allocation can't use CMA areas don't use free CMA pages */ 3622 if (!(alloc_flags & ALLOC_CMA)) 3623 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3624 #endif 3625 3626 return unusable_free; 3627 } 3628 3629 /* 3630 * Return true if free base pages are above 'mark'. For high-order checks it 3631 * will return true of the order-0 watermark is reached and there is at least 3632 * one free page of a suitable size. Checking now avoids taking the zone lock 3633 * to check in the allocation paths if no pages are free. 3634 */ 3635 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3636 int highest_zoneidx, unsigned int alloc_flags, 3637 long free_pages) 3638 { 3639 long min = mark; 3640 int o; 3641 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3642 3643 /* free_pages may go negative - that's OK */ 3644 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3645 3646 if (alloc_flags & ALLOC_HIGH) 3647 min -= min / 2; 3648 3649 if (unlikely(alloc_harder)) { 3650 /* 3651 * OOM victims can try even harder than normal ALLOC_HARDER 3652 * users on the grounds that it's definitely going to be in 3653 * the exit path shortly and free memory. Any allocation it 3654 * makes during the free path will be small and short-lived. 3655 */ 3656 if (alloc_flags & ALLOC_OOM) 3657 min -= min / 2; 3658 else 3659 min -= min / 4; 3660 } 3661 3662 /* 3663 * Check watermarks for an order-0 allocation request. If these 3664 * are not met, then a high-order request also cannot go ahead 3665 * even if a suitable page happened to be free. 3666 */ 3667 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3668 return false; 3669 3670 /* If this is an order-0 request then the watermark is fine */ 3671 if (!order) 3672 return true; 3673 3674 /* For a high-order request, check at least one suitable page is free */ 3675 for (o = order; o < MAX_ORDER; o++) { 3676 struct free_area *area = &z->free_area[o]; 3677 int mt; 3678 3679 if (!area->nr_free) 3680 continue; 3681 3682 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3683 if (!free_area_empty(area, mt)) 3684 return true; 3685 } 3686 3687 #ifdef CONFIG_CMA 3688 if ((alloc_flags & ALLOC_CMA) && 3689 !free_area_empty(area, MIGRATE_CMA)) { 3690 return true; 3691 } 3692 #endif 3693 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3694 return true; 3695 } 3696 return false; 3697 } 3698 3699 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3700 int highest_zoneidx, unsigned int alloc_flags) 3701 { 3702 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3703 zone_page_state(z, NR_FREE_PAGES)); 3704 } 3705 3706 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3707 unsigned long mark, int highest_zoneidx, 3708 unsigned int alloc_flags, gfp_t gfp_mask) 3709 { 3710 long free_pages; 3711 3712 free_pages = zone_page_state(z, NR_FREE_PAGES); 3713 3714 /* 3715 * Fast check for order-0 only. If this fails then the reserves 3716 * need to be calculated. 3717 */ 3718 if (!order) { 3719 long fast_free; 3720 3721 fast_free = free_pages; 3722 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); 3723 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) 3724 return true; 3725 } 3726 3727 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3728 free_pages)) 3729 return true; 3730 /* 3731 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3732 * when checking the min watermark. The min watermark is the 3733 * point where boosting is ignored so that kswapd is woken up 3734 * when below the low watermark. 3735 */ 3736 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3737 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3738 mark = z->_watermark[WMARK_MIN]; 3739 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3740 alloc_flags, free_pages); 3741 } 3742 3743 return false; 3744 } 3745 3746 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3747 unsigned long mark, int highest_zoneidx) 3748 { 3749 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3750 3751 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3752 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3753 3754 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3755 free_pages); 3756 } 3757 3758 #ifdef CONFIG_NUMA 3759 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3760 { 3761 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3762 node_reclaim_distance; 3763 } 3764 #else /* CONFIG_NUMA */ 3765 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3766 { 3767 return true; 3768 } 3769 #endif /* CONFIG_NUMA */ 3770 3771 /* 3772 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3773 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3774 * premature use of a lower zone may cause lowmem pressure problems that 3775 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3776 * probably too small. It only makes sense to spread allocations to avoid 3777 * fragmentation between the Normal and DMA32 zones. 3778 */ 3779 static inline unsigned int 3780 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3781 { 3782 unsigned int alloc_flags; 3783 3784 /* 3785 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3786 * to save a branch. 3787 */ 3788 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3789 3790 #ifdef CONFIG_ZONE_DMA32 3791 if (!zone) 3792 return alloc_flags; 3793 3794 if (zone_idx(zone) != ZONE_NORMAL) 3795 return alloc_flags; 3796 3797 /* 3798 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3799 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3800 * on UMA that if Normal is populated then so is DMA32. 3801 */ 3802 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3803 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3804 return alloc_flags; 3805 3806 alloc_flags |= ALLOC_NOFRAGMENT; 3807 #endif /* CONFIG_ZONE_DMA32 */ 3808 return alloc_flags; 3809 } 3810 3811 static inline unsigned int current_alloc_flags(gfp_t gfp_mask, 3812 unsigned int alloc_flags) 3813 { 3814 #ifdef CONFIG_CMA 3815 unsigned int pflags = current->flags; 3816 3817 if (!(pflags & PF_MEMALLOC_NOCMA) && 3818 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3819 alloc_flags |= ALLOC_CMA; 3820 3821 #endif 3822 return alloc_flags; 3823 } 3824 3825 /* 3826 * get_page_from_freelist goes through the zonelist trying to allocate 3827 * a page. 3828 */ 3829 static struct page * 3830 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3831 const struct alloc_context *ac) 3832 { 3833 struct zoneref *z; 3834 struct zone *zone; 3835 struct pglist_data *last_pgdat_dirty_limit = NULL; 3836 bool no_fallback; 3837 3838 retry: 3839 /* 3840 * Scan zonelist, looking for a zone with enough free. 3841 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3842 */ 3843 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3844 z = ac->preferred_zoneref; 3845 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3846 ac->nodemask) { 3847 struct page *page; 3848 unsigned long mark; 3849 3850 if (cpusets_enabled() && 3851 (alloc_flags & ALLOC_CPUSET) && 3852 !__cpuset_zone_allowed(zone, gfp_mask)) 3853 continue; 3854 /* 3855 * When allocating a page cache page for writing, we 3856 * want to get it from a node that is within its dirty 3857 * limit, such that no single node holds more than its 3858 * proportional share of globally allowed dirty pages. 3859 * The dirty limits take into account the node's 3860 * lowmem reserves and high watermark so that kswapd 3861 * should be able to balance it without having to 3862 * write pages from its LRU list. 3863 * 3864 * XXX: For now, allow allocations to potentially 3865 * exceed the per-node dirty limit in the slowpath 3866 * (spread_dirty_pages unset) before going into reclaim, 3867 * which is important when on a NUMA setup the allowed 3868 * nodes are together not big enough to reach the 3869 * global limit. The proper fix for these situations 3870 * will require awareness of nodes in the 3871 * dirty-throttling and the flusher threads. 3872 */ 3873 if (ac->spread_dirty_pages) { 3874 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3875 continue; 3876 3877 if (!node_dirty_ok(zone->zone_pgdat)) { 3878 last_pgdat_dirty_limit = zone->zone_pgdat; 3879 continue; 3880 } 3881 } 3882 3883 if (no_fallback && nr_online_nodes > 1 && 3884 zone != ac->preferred_zoneref->zone) { 3885 int local_nid; 3886 3887 /* 3888 * If moving to a remote node, retry but allow 3889 * fragmenting fallbacks. Locality is more important 3890 * than fragmentation avoidance. 3891 */ 3892 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3893 if (zone_to_nid(zone) != local_nid) { 3894 alloc_flags &= ~ALLOC_NOFRAGMENT; 3895 goto retry; 3896 } 3897 } 3898 3899 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3900 if (!zone_watermark_fast(zone, order, mark, 3901 ac->highest_zoneidx, alloc_flags, 3902 gfp_mask)) { 3903 int ret; 3904 3905 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3906 /* 3907 * Watermark failed for this zone, but see if we can 3908 * grow this zone if it contains deferred pages. 3909 */ 3910 if (static_branch_unlikely(&deferred_pages)) { 3911 if (_deferred_grow_zone(zone, order)) 3912 goto try_this_zone; 3913 } 3914 #endif 3915 /* Checked here to keep the fast path fast */ 3916 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3917 if (alloc_flags & ALLOC_NO_WATERMARKS) 3918 goto try_this_zone; 3919 3920 if (node_reclaim_mode == 0 || 3921 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3922 continue; 3923 3924 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3925 switch (ret) { 3926 case NODE_RECLAIM_NOSCAN: 3927 /* did not scan */ 3928 continue; 3929 case NODE_RECLAIM_FULL: 3930 /* scanned but unreclaimable */ 3931 continue; 3932 default: 3933 /* did we reclaim enough */ 3934 if (zone_watermark_ok(zone, order, mark, 3935 ac->highest_zoneidx, alloc_flags)) 3936 goto try_this_zone; 3937 3938 continue; 3939 } 3940 } 3941 3942 try_this_zone: 3943 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3944 gfp_mask, alloc_flags, ac->migratetype); 3945 if (page) { 3946 prep_new_page(page, order, gfp_mask, alloc_flags); 3947 3948 /* 3949 * If this is a high-order atomic allocation then check 3950 * if the pageblock should be reserved for the future 3951 */ 3952 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3953 reserve_highatomic_pageblock(page, zone, order); 3954 3955 return page; 3956 } else { 3957 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3958 /* Try again if zone has deferred pages */ 3959 if (static_branch_unlikely(&deferred_pages)) { 3960 if (_deferred_grow_zone(zone, order)) 3961 goto try_this_zone; 3962 } 3963 #endif 3964 } 3965 } 3966 3967 /* 3968 * It's possible on a UMA machine to get through all zones that are 3969 * fragmented. If avoiding fragmentation, reset and try again. 3970 */ 3971 if (no_fallback) { 3972 alloc_flags &= ~ALLOC_NOFRAGMENT; 3973 goto retry; 3974 } 3975 3976 return NULL; 3977 } 3978 3979 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3980 { 3981 unsigned int filter = SHOW_MEM_FILTER_NODES; 3982 3983 /* 3984 * This documents exceptions given to allocations in certain 3985 * contexts that are allowed to allocate outside current's set 3986 * of allowed nodes. 3987 */ 3988 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3989 if (tsk_is_oom_victim(current) || 3990 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3991 filter &= ~SHOW_MEM_FILTER_NODES; 3992 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3993 filter &= ~SHOW_MEM_FILTER_NODES; 3994 3995 show_mem(filter, nodemask); 3996 } 3997 3998 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3999 { 4000 struct va_format vaf; 4001 va_list args; 4002 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4003 4004 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 4005 return; 4006 4007 va_start(args, fmt); 4008 vaf.fmt = fmt; 4009 vaf.va = &args; 4010 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4011 current->comm, &vaf, gfp_mask, &gfp_mask, 4012 nodemask_pr_args(nodemask)); 4013 va_end(args); 4014 4015 cpuset_print_current_mems_allowed(); 4016 pr_cont("\n"); 4017 dump_stack(); 4018 warn_alloc_show_mem(gfp_mask, nodemask); 4019 } 4020 4021 static inline struct page * 4022 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4023 unsigned int alloc_flags, 4024 const struct alloc_context *ac) 4025 { 4026 struct page *page; 4027 4028 page = get_page_from_freelist(gfp_mask, order, 4029 alloc_flags|ALLOC_CPUSET, ac); 4030 /* 4031 * fallback to ignore cpuset restriction if our nodes 4032 * are depleted 4033 */ 4034 if (!page) 4035 page = get_page_from_freelist(gfp_mask, order, 4036 alloc_flags, ac); 4037 4038 return page; 4039 } 4040 4041 static inline struct page * 4042 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4043 const struct alloc_context *ac, unsigned long *did_some_progress) 4044 { 4045 struct oom_control oc = { 4046 .zonelist = ac->zonelist, 4047 .nodemask = ac->nodemask, 4048 .memcg = NULL, 4049 .gfp_mask = gfp_mask, 4050 .order = order, 4051 }; 4052 struct page *page; 4053 4054 *did_some_progress = 0; 4055 4056 /* 4057 * Acquire the oom lock. If that fails, somebody else is 4058 * making progress for us. 4059 */ 4060 if (!mutex_trylock(&oom_lock)) { 4061 *did_some_progress = 1; 4062 schedule_timeout_uninterruptible(1); 4063 return NULL; 4064 } 4065 4066 /* 4067 * Go through the zonelist yet one more time, keep very high watermark 4068 * here, this is only to catch a parallel oom killing, we must fail if 4069 * we're still under heavy pressure. But make sure that this reclaim 4070 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4071 * allocation which will never fail due to oom_lock already held. 4072 */ 4073 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4074 ~__GFP_DIRECT_RECLAIM, order, 4075 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4076 if (page) 4077 goto out; 4078 4079 /* Coredumps can quickly deplete all memory reserves */ 4080 if (current->flags & PF_DUMPCORE) 4081 goto out; 4082 /* The OOM killer will not help higher order allocs */ 4083 if (order > PAGE_ALLOC_COSTLY_ORDER) 4084 goto out; 4085 /* 4086 * We have already exhausted all our reclaim opportunities without any 4087 * success so it is time to admit defeat. We will skip the OOM killer 4088 * because it is very likely that the caller has a more reasonable 4089 * fallback than shooting a random task. 4090 * 4091 * The OOM killer may not free memory on a specific node. 4092 */ 4093 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4094 goto out; 4095 /* The OOM killer does not needlessly kill tasks for lowmem */ 4096 if (ac->highest_zoneidx < ZONE_NORMAL) 4097 goto out; 4098 if (pm_suspended_storage()) 4099 goto out; 4100 /* 4101 * XXX: GFP_NOFS allocations should rather fail than rely on 4102 * other request to make a forward progress. 4103 * We are in an unfortunate situation where out_of_memory cannot 4104 * do much for this context but let's try it to at least get 4105 * access to memory reserved if the current task is killed (see 4106 * out_of_memory). Once filesystems are ready to handle allocation 4107 * failures more gracefully we should just bail out here. 4108 */ 4109 4110 /* Exhausted what can be done so it's blame time */ 4111 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 4112 *did_some_progress = 1; 4113 4114 /* 4115 * Help non-failing allocations by giving them access to memory 4116 * reserves 4117 */ 4118 if (gfp_mask & __GFP_NOFAIL) 4119 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4120 ALLOC_NO_WATERMARKS, ac); 4121 } 4122 out: 4123 mutex_unlock(&oom_lock); 4124 return page; 4125 } 4126 4127 /* 4128 * Maximum number of compaction retries wit a progress before OOM 4129 * killer is consider as the only way to move forward. 4130 */ 4131 #define MAX_COMPACT_RETRIES 16 4132 4133 #ifdef CONFIG_COMPACTION 4134 /* Try memory compaction for high-order allocations before reclaim */ 4135 static struct page * 4136 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4137 unsigned int alloc_flags, const struct alloc_context *ac, 4138 enum compact_priority prio, enum compact_result *compact_result) 4139 { 4140 struct page *page = NULL; 4141 unsigned long pflags; 4142 unsigned int noreclaim_flag; 4143 4144 if (!order) 4145 return NULL; 4146 4147 psi_memstall_enter(&pflags); 4148 noreclaim_flag = memalloc_noreclaim_save(); 4149 4150 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4151 prio, &page); 4152 4153 memalloc_noreclaim_restore(noreclaim_flag); 4154 psi_memstall_leave(&pflags); 4155 4156 /* 4157 * At least in one zone compaction wasn't deferred or skipped, so let's 4158 * count a compaction stall 4159 */ 4160 count_vm_event(COMPACTSTALL); 4161 4162 /* Prep a captured page if available */ 4163 if (page) 4164 prep_new_page(page, order, gfp_mask, alloc_flags); 4165 4166 /* Try get a page from the freelist if available */ 4167 if (!page) 4168 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4169 4170 if (page) { 4171 struct zone *zone = page_zone(page); 4172 4173 zone->compact_blockskip_flush = false; 4174 compaction_defer_reset(zone, order, true); 4175 count_vm_event(COMPACTSUCCESS); 4176 return page; 4177 } 4178 4179 /* 4180 * It's bad if compaction run occurs and fails. The most likely reason 4181 * is that pages exist, but not enough to satisfy watermarks. 4182 */ 4183 count_vm_event(COMPACTFAIL); 4184 4185 cond_resched(); 4186 4187 return NULL; 4188 } 4189 4190 static inline bool 4191 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4192 enum compact_result compact_result, 4193 enum compact_priority *compact_priority, 4194 int *compaction_retries) 4195 { 4196 int max_retries = MAX_COMPACT_RETRIES; 4197 int min_priority; 4198 bool ret = false; 4199 int retries = *compaction_retries; 4200 enum compact_priority priority = *compact_priority; 4201 4202 if (!order) 4203 return false; 4204 4205 if (compaction_made_progress(compact_result)) 4206 (*compaction_retries)++; 4207 4208 /* 4209 * compaction considers all the zone as desperately out of memory 4210 * so it doesn't really make much sense to retry except when the 4211 * failure could be caused by insufficient priority 4212 */ 4213 if (compaction_failed(compact_result)) 4214 goto check_priority; 4215 4216 /* 4217 * compaction was skipped because there are not enough order-0 pages 4218 * to work with, so we retry only if it looks like reclaim can help. 4219 */ 4220 if (compaction_needs_reclaim(compact_result)) { 4221 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4222 goto out; 4223 } 4224 4225 /* 4226 * make sure the compaction wasn't deferred or didn't bail out early 4227 * due to locks contention before we declare that we should give up. 4228 * But the next retry should use a higher priority if allowed, so 4229 * we don't just keep bailing out endlessly. 4230 */ 4231 if (compaction_withdrawn(compact_result)) { 4232 goto check_priority; 4233 } 4234 4235 /* 4236 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4237 * costly ones because they are de facto nofail and invoke OOM 4238 * killer to move on while costly can fail and users are ready 4239 * to cope with that. 1/4 retries is rather arbitrary but we 4240 * would need much more detailed feedback from compaction to 4241 * make a better decision. 4242 */ 4243 if (order > PAGE_ALLOC_COSTLY_ORDER) 4244 max_retries /= 4; 4245 if (*compaction_retries <= max_retries) { 4246 ret = true; 4247 goto out; 4248 } 4249 4250 /* 4251 * Make sure there are attempts at the highest priority if we exhausted 4252 * all retries or failed at the lower priorities. 4253 */ 4254 check_priority: 4255 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4256 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4257 4258 if (*compact_priority > min_priority) { 4259 (*compact_priority)--; 4260 *compaction_retries = 0; 4261 ret = true; 4262 } 4263 out: 4264 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4265 return ret; 4266 } 4267 #else 4268 static inline struct page * 4269 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4270 unsigned int alloc_flags, const struct alloc_context *ac, 4271 enum compact_priority prio, enum compact_result *compact_result) 4272 { 4273 *compact_result = COMPACT_SKIPPED; 4274 return NULL; 4275 } 4276 4277 static inline bool 4278 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4279 enum compact_result compact_result, 4280 enum compact_priority *compact_priority, 4281 int *compaction_retries) 4282 { 4283 struct zone *zone; 4284 struct zoneref *z; 4285 4286 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4287 return false; 4288 4289 /* 4290 * There are setups with compaction disabled which would prefer to loop 4291 * inside the allocator rather than hit the oom killer prematurely. 4292 * Let's give them a good hope and keep retrying while the order-0 4293 * watermarks are OK. 4294 */ 4295 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4296 ac->highest_zoneidx, ac->nodemask) { 4297 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4298 ac->highest_zoneidx, alloc_flags)) 4299 return true; 4300 } 4301 return false; 4302 } 4303 #endif /* CONFIG_COMPACTION */ 4304 4305 #ifdef CONFIG_LOCKDEP 4306 static struct lockdep_map __fs_reclaim_map = 4307 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4308 4309 static bool __need_reclaim(gfp_t gfp_mask) 4310 { 4311 /* no reclaim without waiting on it */ 4312 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4313 return false; 4314 4315 /* this guy won't enter reclaim */ 4316 if (current->flags & PF_MEMALLOC) 4317 return false; 4318 4319 if (gfp_mask & __GFP_NOLOCKDEP) 4320 return false; 4321 4322 return true; 4323 } 4324 4325 void __fs_reclaim_acquire(void) 4326 { 4327 lock_map_acquire(&__fs_reclaim_map); 4328 } 4329 4330 void __fs_reclaim_release(void) 4331 { 4332 lock_map_release(&__fs_reclaim_map); 4333 } 4334 4335 void fs_reclaim_acquire(gfp_t gfp_mask) 4336 { 4337 gfp_mask = current_gfp_context(gfp_mask); 4338 4339 if (__need_reclaim(gfp_mask)) { 4340 if (gfp_mask & __GFP_FS) 4341 __fs_reclaim_acquire(); 4342 4343 #ifdef CONFIG_MMU_NOTIFIER 4344 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4345 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4346 #endif 4347 4348 } 4349 } 4350 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4351 4352 void fs_reclaim_release(gfp_t gfp_mask) 4353 { 4354 gfp_mask = current_gfp_context(gfp_mask); 4355 4356 if (__need_reclaim(gfp_mask)) { 4357 if (gfp_mask & __GFP_FS) 4358 __fs_reclaim_release(); 4359 } 4360 } 4361 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4362 #endif 4363 4364 /* Perform direct synchronous page reclaim */ 4365 static unsigned long 4366 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4367 const struct alloc_context *ac) 4368 { 4369 unsigned int noreclaim_flag; 4370 unsigned long pflags, progress; 4371 4372 cond_resched(); 4373 4374 /* We now go into synchronous reclaim */ 4375 cpuset_memory_pressure_bump(); 4376 psi_memstall_enter(&pflags); 4377 fs_reclaim_acquire(gfp_mask); 4378 noreclaim_flag = memalloc_noreclaim_save(); 4379 4380 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4381 ac->nodemask); 4382 4383 memalloc_noreclaim_restore(noreclaim_flag); 4384 fs_reclaim_release(gfp_mask); 4385 psi_memstall_leave(&pflags); 4386 4387 cond_resched(); 4388 4389 return progress; 4390 } 4391 4392 /* The really slow allocator path where we enter direct reclaim */ 4393 static inline struct page * 4394 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4395 unsigned int alloc_flags, const struct alloc_context *ac, 4396 unsigned long *did_some_progress) 4397 { 4398 struct page *page = NULL; 4399 bool drained = false; 4400 4401 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4402 if (unlikely(!(*did_some_progress))) 4403 return NULL; 4404 4405 retry: 4406 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4407 4408 /* 4409 * If an allocation failed after direct reclaim, it could be because 4410 * pages are pinned on the per-cpu lists or in high alloc reserves. 4411 * Shrink them and try again 4412 */ 4413 if (!page && !drained) { 4414 unreserve_highatomic_pageblock(ac, false); 4415 drain_all_pages(NULL); 4416 drained = true; 4417 goto retry; 4418 } 4419 4420 return page; 4421 } 4422 4423 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4424 const struct alloc_context *ac) 4425 { 4426 struct zoneref *z; 4427 struct zone *zone; 4428 pg_data_t *last_pgdat = NULL; 4429 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4430 4431 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4432 ac->nodemask) { 4433 if (last_pgdat != zone->zone_pgdat) 4434 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4435 last_pgdat = zone->zone_pgdat; 4436 } 4437 } 4438 4439 static inline unsigned int 4440 gfp_to_alloc_flags(gfp_t gfp_mask) 4441 { 4442 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4443 4444 /* 4445 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4446 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4447 * to save two branches. 4448 */ 4449 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4450 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4451 4452 /* 4453 * The caller may dip into page reserves a bit more if the caller 4454 * cannot run direct reclaim, or if the caller has realtime scheduling 4455 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4456 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4457 */ 4458 alloc_flags |= (__force int) 4459 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4460 4461 if (gfp_mask & __GFP_ATOMIC) { 4462 /* 4463 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4464 * if it can't schedule. 4465 */ 4466 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4467 alloc_flags |= ALLOC_HARDER; 4468 /* 4469 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4470 * comment for __cpuset_node_allowed(). 4471 */ 4472 alloc_flags &= ~ALLOC_CPUSET; 4473 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4474 alloc_flags |= ALLOC_HARDER; 4475 4476 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags); 4477 4478 return alloc_flags; 4479 } 4480 4481 static bool oom_reserves_allowed(struct task_struct *tsk) 4482 { 4483 if (!tsk_is_oom_victim(tsk)) 4484 return false; 4485 4486 /* 4487 * !MMU doesn't have oom reaper so give access to memory reserves 4488 * only to the thread with TIF_MEMDIE set 4489 */ 4490 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4491 return false; 4492 4493 return true; 4494 } 4495 4496 /* 4497 * Distinguish requests which really need access to full memory 4498 * reserves from oom victims which can live with a portion of it 4499 */ 4500 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4501 { 4502 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4503 return 0; 4504 if (gfp_mask & __GFP_MEMALLOC) 4505 return ALLOC_NO_WATERMARKS; 4506 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4507 return ALLOC_NO_WATERMARKS; 4508 if (!in_interrupt()) { 4509 if (current->flags & PF_MEMALLOC) 4510 return ALLOC_NO_WATERMARKS; 4511 else if (oom_reserves_allowed(current)) 4512 return ALLOC_OOM; 4513 } 4514 4515 return 0; 4516 } 4517 4518 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4519 { 4520 return !!__gfp_pfmemalloc_flags(gfp_mask); 4521 } 4522 4523 /* 4524 * Checks whether it makes sense to retry the reclaim to make a forward progress 4525 * for the given allocation request. 4526 * 4527 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4528 * without success, or when we couldn't even meet the watermark if we 4529 * reclaimed all remaining pages on the LRU lists. 4530 * 4531 * Returns true if a retry is viable or false to enter the oom path. 4532 */ 4533 static inline bool 4534 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4535 struct alloc_context *ac, int alloc_flags, 4536 bool did_some_progress, int *no_progress_loops) 4537 { 4538 struct zone *zone; 4539 struct zoneref *z; 4540 bool ret = false; 4541 4542 /* 4543 * Costly allocations might have made a progress but this doesn't mean 4544 * their order will become available due to high fragmentation so 4545 * always increment the no progress counter for them 4546 */ 4547 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4548 *no_progress_loops = 0; 4549 else 4550 (*no_progress_loops)++; 4551 4552 /* 4553 * Make sure we converge to OOM if we cannot make any progress 4554 * several times in the row. 4555 */ 4556 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4557 /* Before OOM, exhaust highatomic_reserve */ 4558 return unreserve_highatomic_pageblock(ac, true); 4559 } 4560 4561 /* 4562 * Keep reclaiming pages while there is a chance this will lead 4563 * somewhere. If none of the target zones can satisfy our allocation 4564 * request even if all reclaimable pages are considered then we are 4565 * screwed and have to go OOM. 4566 */ 4567 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4568 ac->highest_zoneidx, ac->nodemask) { 4569 unsigned long available; 4570 unsigned long reclaimable; 4571 unsigned long min_wmark = min_wmark_pages(zone); 4572 bool wmark; 4573 4574 available = reclaimable = zone_reclaimable_pages(zone); 4575 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4576 4577 /* 4578 * Would the allocation succeed if we reclaimed all 4579 * reclaimable pages? 4580 */ 4581 wmark = __zone_watermark_ok(zone, order, min_wmark, 4582 ac->highest_zoneidx, alloc_flags, available); 4583 trace_reclaim_retry_zone(z, order, reclaimable, 4584 available, min_wmark, *no_progress_loops, wmark); 4585 if (wmark) { 4586 /* 4587 * If we didn't make any progress and have a lot of 4588 * dirty + writeback pages then we should wait for 4589 * an IO to complete to slow down the reclaim and 4590 * prevent from pre mature OOM 4591 */ 4592 if (!did_some_progress) { 4593 unsigned long write_pending; 4594 4595 write_pending = zone_page_state_snapshot(zone, 4596 NR_ZONE_WRITE_PENDING); 4597 4598 if (2 * write_pending > reclaimable) { 4599 congestion_wait(BLK_RW_ASYNC, HZ/10); 4600 return true; 4601 } 4602 } 4603 4604 ret = true; 4605 goto out; 4606 } 4607 } 4608 4609 out: 4610 /* 4611 * Memory allocation/reclaim might be called from a WQ context and the 4612 * current implementation of the WQ concurrency control doesn't 4613 * recognize that a particular WQ is congested if the worker thread is 4614 * looping without ever sleeping. Therefore we have to do a short sleep 4615 * here rather than calling cond_resched(). 4616 */ 4617 if (current->flags & PF_WQ_WORKER) 4618 schedule_timeout_uninterruptible(1); 4619 else 4620 cond_resched(); 4621 return ret; 4622 } 4623 4624 static inline bool 4625 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4626 { 4627 /* 4628 * It's possible that cpuset's mems_allowed and the nodemask from 4629 * mempolicy don't intersect. This should be normally dealt with by 4630 * policy_nodemask(), but it's possible to race with cpuset update in 4631 * such a way the check therein was true, and then it became false 4632 * before we got our cpuset_mems_cookie here. 4633 * This assumes that for all allocations, ac->nodemask can come only 4634 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4635 * when it does not intersect with the cpuset restrictions) or the 4636 * caller can deal with a violated nodemask. 4637 */ 4638 if (cpusets_enabled() && ac->nodemask && 4639 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4640 ac->nodemask = NULL; 4641 return true; 4642 } 4643 4644 /* 4645 * When updating a task's mems_allowed or mempolicy nodemask, it is 4646 * possible to race with parallel threads in such a way that our 4647 * allocation can fail while the mask is being updated. If we are about 4648 * to fail, check if the cpuset changed during allocation and if so, 4649 * retry. 4650 */ 4651 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4652 return true; 4653 4654 return false; 4655 } 4656 4657 static inline struct page * 4658 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4659 struct alloc_context *ac) 4660 { 4661 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4662 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4663 struct page *page = NULL; 4664 unsigned int alloc_flags; 4665 unsigned long did_some_progress; 4666 enum compact_priority compact_priority; 4667 enum compact_result compact_result; 4668 int compaction_retries; 4669 int no_progress_loops; 4670 unsigned int cpuset_mems_cookie; 4671 int reserve_flags; 4672 4673 /* 4674 * We also sanity check to catch abuse of atomic reserves being used by 4675 * callers that are not in atomic context. 4676 */ 4677 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4678 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4679 gfp_mask &= ~__GFP_ATOMIC; 4680 4681 retry_cpuset: 4682 compaction_retries = 0; 4683 no_progress_loops = 0; 4684 compact_priority = DEF_COMPACT_PRIORITY; 4685 cpuset_mems_cookie = read_mems_allowed_begin(); 4686 4687 /* 4688 * The fast path uses conservative alloc_flags to succeed only until 4689 * kswapd needs to be woken up, and to avoid the cost of setting up 4690 * alloc_flags precisely. So we do that now. 4691 */ 4692 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4693 4694 /* 4695 * We need to recalculate the starting point for the zonelist iterator 4696 * because we might have used different nodemask in the fast path, or 4697 * there was a cpuset modification and we are retrying - otherwise we 4698 * could end up iterating over non-eligible zones endlessly. 4699 */ 4700 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4701 ac->highest_zoneidx, ac->nodemask); 4702 if (!ac->preferred_zoneref->zone) 4703 goto nopage; 4704 4705 if (alloc_flags & ALLOC_KSWAPD) 4706 wake_all_kswapds(order, gfp_mask, ac); 4707 4708 /* 4709 * The adjusted alloc_flags might result in immediate success, so try 4710 * that first 4711 */ 4712 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4713 if (page) 4714 goto got_pg; 4715 4716 /* 4717 * For costly allocations, try direct compaction first, as it's likely 4718 * that we have enough base pages and don't need to reclaim. For non- 4719 * movable high-order allocations, do that as well, as compaction will 4720 * try prevent permanent fragmentation by migrating from blocks of the 4721 * same migratetype. 4722 * Don't try this for allocations that are allowed to ignore 4723 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4724 */ 4725 if (can_direct_reclaim && 4726 (costly_order || 4727 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4728 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4729 page = __alloc_pages_direct_compact(gfp_mask, order, 4730 alloc_flags, ac, 4731 INIT_COMPACT_PRIORITY, 4732 &compact_result); 4733 if (page) 4734 goto got_pg; 4735 4736 /* 4737 * Checks for costly allocations with __GFP_NORETRY, which 4738 * includes some THP page fault allocations 4739 */ 4740 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4741 /* 4742 * If allocating entire pageblock(s) and compaction 4743 * failed because all zones are below low watermarks 4744 * or is prohibited because it recently failed at this 4745 * order, fail immediately unless the allocator has 4746 * requested compaction and reclaim retry. 4747 * 4748 * Reclaim is 4749 * - potentially very expensive because zones are far 4750 * below their low watermarks or this is part of very 4751 * bursty high order allocations, 4752 * - not guaranteed to help because isolate_freepages() 4753 * may not iterate over freed pages as part of its 4754 * linear scan, and 4755 * - unlikely to make entire pageblocks free on its 4756 * own. 4757 */ 4758 if (compact_result == COMPACT_SKIPPED || 4759 compact_result == COMPACT_DEFERRED) 4760 goto nopage; 4761 4762 /* 4763 * Looks like reclaim/compaction is worth trying, but 4764 * sync compaction could be very expensive, so keep 4765 * using async compaction. 4766 */ 4767 compact_priority = INIT_COMPACT_PRIORITY; 4768 } 4769 } 4770 4771 retry: 4772 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4773 if (alloc_flags & ALLOC_KSWAPD) 4774 wake_all_kswapds(order, gfp_mask, ac); 4775 4776 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4777 if (reserve_flags) 4778 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags); 4779 4780 /* 4781 * Reset the nodemask and zonelist iterators if memory policies can be 4782 * ignored. These allocations are high priority and system rather than 4783 * user oriented. 4784 */ 4785 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4786 ac->nodemask = NULL; 4787 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4788 ac->highest_zoneidx, ac->nodemask); 4789 } 4790 4791 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4792 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4793 if (page) 4794 goto got_pg; 4795 4796 /* Caller is not willing to reclaim, we can't balance anything */ 4797 if (!can_direct_reclaim) 4798 goto nopage; 4799 4800 /* Avoid recursion of direct reclaim */ 4801 if (current->flags & PF_MEMALLOC) 4802 goto nopage; 4803 4804 /* Try direct reclaim and then allocating */ 4805 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4806 &did_some_progress); 4807 if (page) 4808 goto got_pg; 4809 4810 /* Try direct compaction and then allocating */ 4811 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4812 compact_priority, &compact_result); 4813 if (page) 4814 goto got_pg; 4815 4816 /* Do not loop if specifically requested */ 4817 if (gfp_mask & __GFP_NORETRY) 4818 goto nopage; 4819 4820 /* 4821 * Do not retry costly high order allocations unless they are 4822 * __GFP_RETRY_MAYFAIL 4823 */ 4824 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4825 goto nopage; 4826 4827 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4828 did_some_progress > 0, &no_progress_loops)) 4829 goto retry; 4830 4831 /* 4832 * It doesn't make any sense to retry for the compaction if the order-0 4833 * reclaim is not able to make any progress because the current 4834 * implementation of the compaction depends on the sufficient amount 4835 * of free memory (see __compaction_suitable) 4836 */ 4837 if (did_some_progress > 0 && 4838 should_compact_retry(ac, order, alloc_flags, 4839 compact_result, &compact_priority, 4840 &compaction_retries)) 4841 goto retry; 4842 4843 4844 /* Deal with possible cpuset update races before we start OOM killing */ 4845 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4846 goto retry_cpuset; 4847 4848 /* Reclaim has failed us, start killing things */ 4849 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4850 if (page) 4851 goto got_pg; 4852 4853 /* Avoid allocations with no watermarks from looping endlessly */ 4854 if (tsk_is_oom_victim(current) && 4855 (alloc_flags & ALLOC_OOM || 4856 (gfp_mask & __GFP_NOMEMALLOC))) 4857 goto nopage; 4858 4859 /* Retry as long as the OOM killer is making progress */ 4860 if (did_some_progress) { 4861 no_progress_loops = 0; 4862 goto retry; 4863 } 4864 4865 nopage: 4866 /* Deal with possible cpuset update races before we fail */ 4867 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4868 goto retry_cpuset; 4869 4870 /* 4871 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4872 * we always retry 4873 */ 4874 if (gfp_mask & __GFP_NOFAIL) { 4875 /* 4876 * All existing users of the __GFP_NOFAIL are blockable, so warn 4877 * of any new users that actually require GFP_NOWAIT 4878 */ 4879 if (WARN_ON_ONCE(!can_direct_reclaim)) 4880 goto fail; 4881 4882 /* 4883 * PF_MEMALLOC request from this context is rather bizarre 4884 * because we cannot reclaim anything and only can loop waiting 4885 * for somebody to do a work for us 4886 */ 4887 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4888 4889 /* 4890 * non failing costly orders are a hard requirement which we 4891 * are not prepared for much so let's warn about these users 4892 * so that we can identify them and convert them to something 4893 * else. 4894 */ 4895 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4896 4897 /* 4898 * Help non-failing allocations by giving them access to memory 4899 * reserves but do not use ALLOC_NO_WATERMARKS because this 4900 * could deplete whole memory reserves which would just make 4901 * the situation worse 4902 */ 4903 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4904 if (page) 4905 goto got_pg; 4906 4907 cond_resched(); 4908 goto retry; 4909 } 4910 fail: 4911 warn_alloc(gfp_mask, ac->nodemask, 4912 "page allocation failure: order:%u", order); 4913 got_pg: 4914 return page; 4915 } 4916 4917 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4918 int preferred_nid, nodemask_t *nodemask, 4919 struct alloc_context *ac, gfp_t *alloc_mask, 4920 unsigned int *alloc_flags) 4921 { 4922 ac->highest_zoneidx = gfp_zone(gfp_mask); 4923 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4924 ac->nodemask = nodemask; 4925 ac->migratetype = gfp_migratetype(gfp_mask); 4926 4927 if (cpusets_enabled()) { 4928 *alloc_mask |= __GFP_HARDWALL; 4929 /* 4930 * When we are in the interrupt context, it is irrelevant 4931 * to the current task context. It means that any node ok. 4932 */ 4933 if (!in_interrupt() && !ac->nodemask) 4934 ac->nodemask = &cpuset_current_mems_allowed; 4935 else 4936 *alloc_flags |= ALLOC_CPUSET; 4937 } 4938 4939 fs_reclaim_acquire(gfp_mask); 4940 fs_reclaim_release(gfp_mask); 4941 4942 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4943 4944 if (should_fail_alloc_page(gfp_mask, order)) 4945 return false; 4946 4947 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags); 4948 4949 /* Dirty zone balancing only done in the fast path */ 4950 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4951 4952 /* 4953 * The preferred zone is used for statistics but crucially it is 4954 * also used as the starting point for the zonelist iterator. It 4955 * may get reset for allocations that ignore memory policies. 4956 */ 4957 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4958 ac->highest_zoneidx, ac->nodemask); 4959 4960 return true; 4961 } 4962 4963 /* 4964 * This is the 'heart' of the zoned buddy allocator. 4965 */ 4966 struct page * 4967 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4968 nodemask_t *nodemask) 4969 { 4970 struct page *page; 4971 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4972 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4973 struct alloc_context ac = { }; 4974 4975 /* 4976 * There are several places where we assume that the order value is sane 4977 * so bail out early if the request is out of bound. 4978 */ 4979 if (unlikely(order >= MAX_ORDER)) { 4980 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4981 return NULL; 4982 } 4983 4984 gfp_mask &= gfp_allowed_mask; 4985 alloc_mask = gfp_mask; 4986 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4987 return NULL; 4988 4989 /* 4990 * Forbid the first pass from falling back to types that fragment 4991 * memory until all local zones are considered. 4992 */ 4993 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4994 4995 /* First allocation attempt */ 4996 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4997 if (likely(page)) 4998 goto out; 4999 5000 /* 5001 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5002 * resp. GFP_NOIO which has to be inherited for all allocation requests 5003 * from a particular context which has been marked by 5004 * memalloc_no{fs,io}_{save,restore}. 5005 */ 5006 alloc_mask = current_gfp_context(gfp_mask); 5007 ac.spread_dirty_pages = false; 5008 5009 /* 5010 * Restore the original nodemask if it was potentially replaced with 5011 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5012 */ 5013 ac.nodemask = nodemask; 5014 5015 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 5016 5017 out: 5018 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 5019 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) { 5020 __free_pages(page, order); 5021 page = NULL; 5022 } 5023 5024 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 5025 5026 return page; 5027 } 5028 EXPORT_SYMBOL(__alloc_pages_nodemask); 5029 5030 /* 5031 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5032 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5033 * you need to access high mem. 5034 */ 5035 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5036 { 5037 struct page *page; 5038 5039 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5040 if (!page) 5041 return 0; 5042 return (unsigned long) page_address(page); 5043 } 5044 EXPORT_SYMBOL(__get_free_pages); 5045 5046 unsigned long get_zeroed_page(gfp_t gfp_mask) 5047 { 5048 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5049 } 5050 EXPORT_SYMBOL(get_zeroed_page); 5051 5052 static inline void free_the_page(struct page *page, unsigned int order) 5053 { 5054 if (order == 0) /* Via pcp? */ 5055 free_unref_page(page); 5056 else 5057 __free_pages_ok(page, order, FPI_NONE); 5058 } 5059 5060 /** 5061 * __free_pages - Free pages allocated with alloc_pages(). 5062 * @page: The page pointer returned from alloc_pages(). 5063 * @order: The order of the allocation. 5064 * 5065 * This function can free multi-page allocations that are not compound 5066 * pages. It does not check that the @order passed in matches that of 5067 * the allocation, so it is easy to leak memory. Freeing more memory 5068 * than was allocated will probably emit a warning. 5069 * 5070 * If the last reference to this page is speculative, it will be released 5071 * by put_page() which only frees the first page of a non-compound 5072 * allocation. To prevent the remaining pages from being leaked, we free 5073 * the subsequent pages here. If you want to use the page's reference 5074 * count to decide when to free the allocation, you should allocate a 5075 * compound page, and use put_page() instead of __free_pages(). 5076 * 5077 * Context: May be called in interrupt context or while holding a normal 5078 * spinlock, but not in NMI context or while holding a raw spinlock. 5079 */ 5080 void __free_pages(struct page *page, unsigned int order) 5081 { 5082 if (put_page_testzero(page)) 5083 free_the_page(page, order); 5084 else if (!PageHead(page)) 5085 while (order-- > 0) 5086 free_the_page(page + (1 << order), order); 5087 } 5088 EXPORT_SYMBOL(__free_pages); 5089 5090 void free_pages(unsigned long addr, unsigned int order) 5091 { 5092 if (addr != 0) { 5093 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5094 __free_pages(virt_to_page((void *)addr), order); 5095 } 5096 } 5097 5098 EXPORT_SYMBOL(free_pages); 5099 5100 /* 5101 * Page Fragment: 5102 * An arbitrary-length arbitrary-offset area of memory which resides 5103 * within a 0 or higher order page. Multiple fragments within that page 5104 * are individually refcounted, in the page's reference counter. 5105 * 5106 * The page_frag functions below provide a simple allocation framework for 5107 * page fragments. This is used by the network stack and network device 5108 * drivers to provide a backing region of memory for use as either an 5109 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5110 */ 5111 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5112 gfp_t gfp_mask) 5113 { 5114 struct page *page = NULL; 5115 gfp_t gfp = gfp_mask; 5116 5117 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5118 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5119 __GFP_NOMEMALLOC; 5120 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5121 PAGE_FRAG_CACHE_MAX_ORDER); 5122 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5123 #endif 5124 if (unlikely(!page)) 5125 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5126 5127 nc->va = page ? page_address(page) : NULL; 5128 5129 return page; 5130 } 5131 5132 void __page_frag_cache_drain(struct page *page, unsigned int count) 5133 { 5134 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5135 5136 if (page_ref_sub_and_test(page, count)) 5137 free_the_page(page, compound_order(page)); 5138 } 5139 EXPORT_SYMBOL(__page_frag_cache_drain); 5140 5141 void *page_frag_alloc_align(struct page_frag_cache *nc, 5142 unsigned int fragsz, gfp_t gfp_mask, 5143 unsigned int align_mask) 5144 { 5145 unsigned int size = PAGE_SIZE; 5146 struct page *page; 5147 int offset; 5148 5149 if (unlikely(!nc->va)) { 5150 refill: 5151 page = __page_frag_cache_refill(nc, gfp_mask); 5152 if (!page) 5153 return NULL; 5154 5155 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5156 /* if size can vary use size else just use PAGE_SIZE */ 5157 size = nc->size; 5158 #endif 5159 /* Even if we own the page, we do not use atomic_set(). 5160 * This would break get_page_unless_zero() users. 5161 */ 5162 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5163 5164 /* reset page count bias and offset to start of new frag */ 5165 nc->pfmemalloc = page_is_pfmemalloc(page); 5166 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5167 nc->offset = size; 5168 } 5169 5170 offset = nc->offset - fragsz; 5171 if (unlikely(offset < 0)) { 5172 page = virt_to_page(nc->va); 5173 5174 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5175 goto refill; 5176 5177 if (unlikely(nc->pfmemalloc)) { 5178 free_the_page(page, compound_order(page)); 5179 goto refill; 5180 } 5181 5182 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5183 /* if size can vary use size else just use PAGE_SIZE */ 5184 size = nc->size; 5185 #endif 5186 /* OK, page count is 0, we can safely set it */ 5187 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5188 5189 /* reset page count bias and offset to start of new frag */ 5190 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5191 offset = size - fragsz; 5192 } 5193 5194 nc->pagecnt_bias--; 5195 offset &= align_mask; 5196 nc->offset = offset; 5197 5198 return nc->va + offset; 5199 } 5200 EXPORT_SYMBOL(page_frag_alloc_align); 5201 5202 /* 5203 * Frees a page fragment allocated out of either a compound or order 0 page. 5204 */ 5205 void page_frag_free(void *addr) 5206 { 5207 struct page *page = virt_to_head_page(addr); 5208 5209 if (unlikely(put_page_testzero(page))) 5210 free_the_page(page, compound_order(page)); 5211 } 5212 EXPORT_SYMBOL(page_frag_free); 5213 5214 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5215 size_t size) 5216 { 5217 if (addr) { 5218 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5219 unsigned long used = addr + PAGE_ALIGN(size); 5220 5221 split_page(virt_to_page((void *)addr), order); 5222 while (used < alloc_end) { 5223 free_page(used); 5224 used += PAGE_SIZE; 5225 } 5226 } 5227 return (void *)addr; 5228 } 5229 5230 /** 5231 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5232 * @size: the number of bytes to allocate 5233 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5234 * 5235 * This function is similar to alloc_pages(), except that it allocates the 5236 * minimum number of pages to satisfy the request. alloc_pages() can only 5237 * allocate memory in power-of-two pages. 5238 * 5239 * This function is also limited by MAX_ORDER. 5240 * 5241 * Memory allocated by this function must be released by free_pages_exact(). 5242 * 5243 * Return: pointer to the allocated area or %NULL in case of error. 5244 */ 5245 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5246 { 5247 unsigned int order = get_order(size); 5248 unsigned long addr; 5249 5250 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5251 gfp_mask &= ~__GFP_COMP; 5252 5253 addr = __get_free_pages(gfp_mask, order); 5254 return make_alloc_exact(addr, order, size); 5255 } 5256 EXPORT_SYMBOL(alloc_pages_exact); 5257 5258 /** 5259 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5260 * pages on a node. 5261 * @nid: the preferred node ID where memory should be allocated 5262 * @size: the number of bytes to allocate 5263 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5264 * 5265 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5266 * back. 5267 * 5268 * Return: pointer to the allocated area or %NULL in case of error. 5269 */ 5270 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5271 { 5272 unsigned int order = get_order(size); 5273 struct page *p; 5274 5275 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5276 gfp_mask &= ~__GFP_COMP; 5277 5278 p = alloc_pages_node(nid, gfp_mask, order); 5279 if (!p) 5280 return NULL; 5281 return make_alloc_exact((unsigned long)page_address(p), order, size); 5282 } 5283 5284 /** 5285 * free_pages_exact - release memory allocated via alloc_pages_exact() 5286 * @virt: the value returned by alloc_pages_exact. 5287 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5288 * 5289 * Release the memory allocated by a previous call to alloc_pages_exact. 5290 */ 5291 void free_pages_exact(void *virt, size_t size) 5292 { 5293 unsigned long addr = (unsigned long)virt; 5294 unsigned long end = addr + PAGE_ALIGN(size); 5295 5296 while (addr < end) { 5297 free_page(addr); 5298 addr += PAGE_SIZE; 5299 } 5300 } 5301 EXPORT_SYMBOL(free_pages_exact); 5302 5303 /** 5304 * nr_free_zone_pages - count number of pages beyond high watermark 5305 * @offset: The zone index of the highest zone 5306 * 5307 * nr_free_zone_pages() counts the number of pages which are beyond the 5308 * high watermark within all zones at or below a given zone index. For each 5309 * zone, the number of pages is calculated as: 5310 * 5311 * nr_free_zone_pages = managed_pages - high_pages 5312 * 5313 * Return: number of pages beyond high watermark. 5314 */ 5315 static unsigned long nr_free_zone_pages(int offset) 5316 { 5317 struct zoneref *z; 5318 struct zone *zone; 5319 5320 /* Just pick one node, since fallback list is circular */ 5321 unsigned long sum = 0; 5322 5323 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5324 5325 for_each_zone_zonelist(zone, z, zonelist, offset) { 5326 unsigned long size = zone_managed_pages(zone); 5327 unsigned long high = high_wmark_pages(zone); 5328 if (size > high) 5329 sum += size - high; 5330 } 5331 5332 return sum; 5333 } 5334 5335 /** 5336 * nr_free_buffer_pages - count number of pages beyond high watermark 5337 * 5338 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5339 * watermark within ZONE_DMA and ZONE_NORMAL. 5340 * 5341 * Return: number of pages beyond high watermark within ZONE_DMA and 5342 * ZONE_NORMAL. 5343 */ 5344 unsigned long nr_free_buffer_pages(void) 5345 { 5346 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5347 } 5348 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5349 5350 static inline void show_node(struct zone *zone) 5351 { 5352 if (IS_ENABLED(CONFIG_NUMA)) 5353 printk("Node %d ", zone_to_nid(zone)); 5354 } 5355 5356 long si_mem_available(void) 5357 { 5358 long available; 5359 unsigned long pagecache; 5360 unsigned long wmark_low = 0; 5361 unsigned long pages[NR_LRU_LISTS]; 5362 unsigned long reclaimable; 5363 struct zone *zone; 5364 int lru; 5365 5366 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5367 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5368 5369 for_each_zone(zone) 5370 wmark_low += low_wmark_pages(zone); 5371 5372 /* 5373 * Estimate the amount of memory available for userspace allocations, 5374 * without causing swapping. 5375 */ 5376 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5377 5378 /* 5379 * Not all the page cache can be freed, otherwise the system will 5380 * start swapping. Assume at least half of the page cache, or the 5381 * low watermark worth of cache, needs to stay. 5382 */ 5383 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5384 pagecache -= min(pagecache / 2, wmark_low); 5385 available += pagecache; 5386 5387 /* 5388 * Part of the reclaimable slab and other kernel memory consists of 5389 * items that are in use, and cannot be freed. Cap this estimate at the 5390 * low watermark. 5391 */ 5392 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5393 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5394 available += reclaimable - min(reclaimable / 2, wmark_low); 5395 5396 if (available < 0) 5397 available = 0; 5398 return available; 5399 } 5400 EXPORT_SYMBOL_GPL(si_mem_available); 5401 5402 void si_meminfo(struct sysinfo *val) 5403 { 5404 val->totalram = totalram_pages(); 5405 val->sharedram = global_node_page_state(NR_SHMEM); 5406 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5407 val->bufferram = nr_blockdev_pages(); 5408 val->totalhigh = totalhigh_pages(); 5409 val->freehigh = nr_free_highpages(); 5410 val->mem_unit = PAGE_SIZE; 5411 } 5412 5413 EXPORT_SYMBOL(si_meminfo); 5414 5415 #ifdef CONFIG_NUMA 5416 void si_meminfo_node(struct sysinfo *val, int nid) 5417 { 5418 int zone_type; /* needs to be signed */ 5419 unsigned long managed_pages = 0; 5420 unsigned long managed_highpages = 0; 5421 unsigned long free_highpages = 0; 5422 pg_data_t *pgdat = NODE_DATA(nid); 5423 5424 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5425 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5426 val->totalram = managed_pages; 5427 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5428 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5429 #ifdef CONFIG_HIGHMEM 5430 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5431 struct zone *zone = &pgdat->node_zones[zone_type]; 5432 5433 if (is_highmem(zone)) { 5434 managed_highpages += zone_managed_pages(zone); 5435 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5436 } 5437 } 5438 val->totalhigh = managed_highpages; 5439 val->freehigh = free_highpages; 5440 #else 5441 val->totalhigh = managed_highpages; 5442 val->freehigh = free_highpages; 5443 #endif 5444 val->mem_unit = PAGE_SIZE; 5445 } 5446 #endif 5447 5448 /* 5449 * Determine whether the node should be displayed or not, depending on whether 5450 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5451 */ 5452 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5453 { 5454 if (!(flags & SHOW_MEM_FILTER_NODES)) 5455 return false; 5456 5457 /* 5458 * no node mask - aka implicit memory numa policy. Do not bother with 5459 * the synchronization - read_mems_allowed_begin - because we do not 5460 * have to be precise here. 5461 */ 5462 if (!nodemask) 5463 nodemask = &cpuset_current_mems_allowed; 5464 5465 return !node_isset(nid, *nodemask); 5466 } 5467 5468 #define K(x) ((x) << (PAGE_SHIFT-10)) 5469 5470 static void show_migration_types(unsigned char type) 5471 { 5472 static const char types[MIGRATE_TYPES] = { 5473 [MIGRATE_UNMOVABLE] = 'U', 5474 [MIGRATE_MOVABLE] = 'M', 5475 [MIGRATE_RECLAIMABLE] = 'E', 5476 [MIGRATE_HIGHATOMIC] = 'H', 5477 #ifdef CONFIG_CMA 5478 [MIGRATE_CMA] = 'C', 5479 #endif 5480 #ifdef CONFIG_MEMORY_ISOLATION 5481 [MIGRATE_ISOLATE] = 'I', 5482 #endif 5483 }; 5484 char tmp[MIGRATE_TYPES + 1]; 5485 char *p = tmp; 5486 int i; 5487 5488 for (i = 0; i < MIGRATE_TYPES; i++) { 5489 if (type & (1 << i)) 5490 *p++ = types[i]; 5491 } 5492 5493 *p = '\0'; 5494 printk(KERN_CONT "(%s) ", tmp); 5495 } 5496 5497 /* 5498 * Show free area list (used inside shift_scroll-lock stuff) 5499 * We also calculate the percentage fragmentation. We do this by counting the 5500 * memory on each free list with the exception of the first item on the list. 5501 * 5502 * Bits in @filter: 5503 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5504 * cpuset. 5505 */ 5506 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5507 { 5508 unsigned long free_pcp = 0; 5509 int cpu; 5510 struct zone *zone; 5511 pg_data_t *pgdat; 5512 5513 for_each_populated_zone(zone) { 5514 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5515 continue; 5516 5517 for_each_online_cpu(cpu) 5518 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5519 } 5520 5521 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5522 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5523 " unevictable:%lu dirty:%lu writeback:%lu\n" 5524 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5525 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5526 " free:%lu free_pcp:%lu free_cma:%lu\n", 5527 global_node_page_state(NR_ACTIVE_ANON), 5528 global_node_page_state(NR_INACTIVE_ANON), 5529 global_node_page_state(NR_ISOLATED_ANON), 5530 global_node_page_state(NR_ACTIVE_FILE), 5531 global_node_page_state(NR_INACTIVE_FILE), 5532 global_node_page_state(NR_ISOLATED_FILE), 5533 global_node_page_state(NR_UNEVICTABLE), 5534 global_node_page_state(NR_FILE_DIRTY), 5535 global_node_page_state(NR_WRITEBACK), 5536 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5537 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5538 global_node_page_state(NR_FILE_MAPPED), 5539 global_node_page_state(NR_SHMEM), 5540 global_node_page_state(NR_PAGETABLE), 5541 global_zone_page_state(NR_BOUNCE), 5542 global_zone_page_state(NR_FREE_PAGES), 5543 free_pcp, 5544 global_zone_page_state(NR_FREE_CMA_PAGES)); 5545 5546 for_each_online_pgdat(pgdat) { 5547 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5548 continue; 5549 5550 printk("Node %d" 5551 " active_anon:%lukB" 5552 " inactive_anon:%lukB" 5553 " active_file:%lukB" 5554 " inactive_file:%lukB" 5555 " unevictable:%lukB" 5556 " isolated(anon):%lukB" 5557 " isolated(file):%lukB" 5558 " mapped:%lukB" 5559 " dirty:%lukB" 5560 " writeback:%lukB" 5561 " shmem:%lukB" 5562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5563 " shmem_thp: %lukB" 5564 " shmem_pmdmapped: %lukB" 5565 " anon_thp: %lukB" 5566 #endif 5567 " writeback_tmp:%lukB" 5568 " kernel_stack:%lukB" 5569 #ifdef CONFIG_SHADOW_CALL_STACK 5570 " shadow_call_stack:%lukB" 5571 #endif 5572 " pagetables:%lukB" 5573 " all_unreclaimable? %s" 5574 "\n", 5575 pgdat->node_id, 5576 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5577 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5578 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5579 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5580 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5581 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5582 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5583 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5584 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5585 K(node_page_state(pgdat, NR_WRITEBACK)), 5586 K(node_page_state(pgdat, NR_SHMEM)), 5587 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5588 K(node_page_state(pgdat, NR_SHMEM_THPS)), 5589 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 5590 K(node_page_state(pgdat, NR_ANON_THPS)), 5591 #endif 5592 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5593 node_page_state(pgdat, NR_KERNEL_STACK_KB), 5594 #ifdef CONFIG_SHADOW_CALL_STACK 5595 node_page_state(pgdat, NR_KERNEL_SCS_KB), 5596 #endif 5597 K(node_page_state(pgdat, NR_PAGETABLE)), 5598 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5599 "yes" : "no"); 5600 } 5601 5602 for_each_populated_zone(zone) { 5603 int i; 5604 5605 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5606 continue; 5607 5608 free_pcp = 0; 5609 for_each_online_cpu(cpu) 5610 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5611 5612 show_node(zone); 5613 printk(KERN_CONT 5614 "%s" 5615 " free:%lukB" 5616 " min:%lukB" 5617 " low:%lukB" 5618 " high:%lukB" 5619 " reserved_highatomic:%luKB" 5620 " active_anon:%lukB" 5621 " inactive_anon:%lukB" 5622 " active_file:%lukB" 5623 " inactive_file:%lukB" 5624 " unevictable:%lukB" 5625 " writepending:%lukB" 5626 " present:%lukB" 5627 " managed:%lukB" 5628 " mlocked:%lukB" 5629 " bounce:%lukB" 5630 " free_pcp:%lukB" 5631 " local_pcp:%ukB" 5632 " free_cma:%lukB" 5633 "\n", 5634 zone->name, 5635 K(zone_page_state(zone, NR_FREE_PAGES)), 5636 K(min_wmark_pages(zone)), 5637 K(low_wmark_pages(zone)), 5638 K(high_wmark_pages(zone)), 5639 K(zone->nr_reserved_highatomic), 5640 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5641 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5642 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5643 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5644 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5645 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5646 K(zone->present_pages), 5647 K(zone_managed_pages(zone)), 5648 K(zone_page_state(zone, NR_MLOCK)), 5649 K(zone_page_state(zone, NR_BOUNCE)), 5650 K(free_pcp), 5651 K(this_cpu_read(zone->pageset->pcp.count)), 5652 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5653 printk("lowmem_reserve[]:"); 5654 for (i = 0; i < MAX_NR_ZONES; i++) 5655 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5656 printk(KERN_CONT "\n"); 5657 } 5658 5659 for_each_populated_zone(zone) { 5660 unsigned int order; 5661 unsigned long nr[MAX_ORDER], flags, total = 0; 5662 unsigned char types[MAX_ORDER]; 5663 5664 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5665 continue; 5666 show_node(zone); 5667 printk(KERN_CONT "%s: ", zone->name); 5668 5669 spin_lock_irqsave(&zone->lock, flags); 5670 for (order = 0; order < MAX_ORDER; order++) { 5671 struct free_area *area = &zone->free_area[order]; 5672 int type; 5673 5674 nr[order] = area->nr_free; 5675 total += nr[order] << order; 5676 5677 types[order] = 0; 5678 for (type = 0; type < MIGRATE_TYPES; type++) { 5679 if (!free_area_empty(area, type)) 5680 types[order] |= 1 << type; 5681 } 5682 } 5683 spin_unlock_irqrestore(&zone->lock, flags); 5684 for (order = 0; order < MAX_ORDER; order++) { 5685 printk(KERN_CONT "%lu*%lukB ", 5686 nr[order], K(1UL) << order); 5687 if (nr[order]) 5688 show_migration_types(types[order]); 5689 } 5690 printk(KERN_CONT "= %lukB\n", K(total)); 5691 } 5692 5693 hugetlb_show_meminfo(); 5694 5695 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5696 5697 show_swap_cache_info(); 5698 } 5699 5700 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5701 { 5702 zoneref->zone = zone; 5703 zoneref->zone_idx = zone_idx(zone); 5704 } 5705 5706 /* 5707 * Builds allocation fallback zone lists. 5708 * 5709 * Add all populated zones of a node to the zonelist. 5710 */ 5711 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5712 { 5713 struct zone *zone; 5714 enum zone_type zone_type = MAX_NR_ZONES; 5715 int nr_zones = 0; 5716 5717 do { 5718 zone_type--; 5719 zone = pgdat->node_zones + zone_type; 5720 if (managed_zone(zone)) { 5721 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5722 check_highest_zone(zone_type); 5723 } 5724 } while (zone_type); 5725 5726 return nr_zones; 5727 } 5728 5729 #ifdef CONFIG_NUMA 5730 5731 static int __parse_numa_zonelist_order(char *s) 5732 { 5733 /* 5734 * We used to support different zonlists modes but they turned 5735 * out to be just not useful. Let's keep the warning in place 5736 * if somebody still use the cmd line parameter so that we do 5737 * not fail it silently 5738 */ 5739 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5740 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5741 return -EINVAL; 5742 } 5743 return 0; 5744 } 5745 5746 char numa_zonelist_order[] = "Node"; 5747 5748 /* 5749 * sysctl handler for numa_zonelist_order 5750 */ 5751 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5752 void *buffer, size_t *length, loff_t *ppos) 5753 { 5754 if (write) 5755 return __parse_numa_zonelist_order(buffer); 5756 return proc_dostring(table, write, buffer, length, ppos); 5757 } 5758 5759 5760 #define MAX_NODE_LOAD (nr_online_nodes) 5761 static int node_load[MAX_NUMNODES]; 5762 5763 /** 5764 * find_next_best_node - find the next node that should appear in a given node's fallback list 5765 * @node: node whose fallback list we're appending 5766 * @used_node_mask: nodemask_t of already used nodes 5767 * 5768 * We use a number of factors to determine which is the next node that should 5769 * appear on a given node's fallback list. The node should not have appeared 5770 * already in @node's fallback list, and it should be the next closest node 5771 * according to the distance array (which contains arbitrary distance values 5772 * from each node to each node in the system), and should also prefer nodes 5773 * with no CPUs, since presumably they'll have very little allocation pressure 5774 * on them otherwise. 5775 * 5776 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5777 */ 5778 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5779 { 5780 int n, val; 5781 int min_val = INT_MAX; 5782 int best_node = NUMA_NO_NODE; 5783 5784 /* Use the local node if we haven't already */ 5785 if (!node_isset(node, *used_node_mask)) { 5786 node_set(node, *used_node_mask); 5787 return node; 5788 } 5789 5790 for_each_node_state(n, N_MEMORY) { 5791 5792 /* Don't want a node to appear more than once */ 5793 if (node_isset(n, *used_node_mask)) 5794 continue; 5795 5796 /* Use the distance array to find the distance */ 5797 val = node_distance(node, n); 5798 5799 /* Penalize nodes under us ("prefer the next node") */ 5800 val += (n < node); 5801 5802 /* Give preference to headless and unused nodes */ 5803 if (!cpumask_empty(cpumask_of_node(n))) 5804 val += PENALTY_FOR_NODE_WITH_CPUS; 5805 5806 /* Slight preference for less loaded node */ 5807 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5808 val += node_load[n]; 5809 5810 if (val < min_val) { 5811 min_val = val; 5812 best_node = n; 5813 } 5814 } 5815 5816 if (best_node >= 0) 5817 node_set(best_node, *used_node_mask); 5818 5819 return best_node; 5820 } 5821 5822 5823 /* 5824 * Build zonelists ordered by node and zones within node. 5825 * This results in maximum locality--normal zone overflows into local 5826 * DMA zone, if any--but risks exhausting DMA zone. 5827 */ 5828 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5829 unsigned nr_nodes) 5830 { 5831 struct zoneref *zonerefs; 5832 int i; 5833 5834 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5835 5836 for (i = 0; i < nr_nodes; i++) { 5837 int nr_zones; 5838 5839 pg_data_t *node = NODE_DATA(node_order[i]); 5840 5841 nr_zones = build_zonerefs_node(node, zonerefs); 5842 zonerefs += nr_zones; 5843 } 5844 zonerefs->zone = NULL; 5845 zonerefs->zone_idx = 0; 5846 } 5847 5848 /* 5849 * Build gfp_thisnode zonelists 5850 */ 5851 static void build_thisnode_zonelists(pg_data_t *pgdat) 5852 { 5853 struct zoneref *zonerefs; 5854 int nr_zones; 5855 5856 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5857 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5858 zonerefs += nr_zones; 5859 zonerefs->zone = NULL; 5860 zonerefs->zone_idx = 0; 5861 } 5862 5863 /* 5864 * Build zonelists ordered by zone and nodes within zones. 5865 * This results in conserving DMA zone[s] until all Normal memory is 5866 * exhausted, but results in overflowing to remote node while memory 5867 * may still exist in local DMA zone. 5868 */ 5869 5870 static void build_zonelists(pg_data_t *pgdat) 5871 { 5872 static int node_order[MAX_NUMNODES]; 5873 int node, load, nr_nodes = 0; 5874 nodemask_t used_mask = NODE_MASK_NONE; 5875 int local_node, prev_node; 5876 5877 /* NUMA-aware ordering of nodes */ 5878 local_node = pgdat->node_id; 5879 load = nr_online_nodes; 5880 prev_node = local_node; 5881 5882 memset(node_order, 0, sizeof(node_order)); 5883 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5884 /* 5885 * We don't want to pressure a particular node. 5886 * So adding penalty to the first node in same 5887 * distance group to make it round-robin. 5888 */ 5889 if (node_distance(local_node, node) != 5890 node_distance(local_node, prev_node)) 5891 node_load[node] = load; 5892 5893 node_order[nr_nodes++] = node; 5894 prev_node = node; 5895 load--; 5896 } 5897 5898 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5899 build_thisnode_zonelists(pgdat); 5900 } 5901 5902 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5903 /* 5904 * Return node id of node used for "local" allocations. 5905 * I.e., first node id of first zone in arg node's generic zonelist. 5906 * Used for initializing percpu 'numa_mem', which is used primarily 5907 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5908 */ 5909 int local_memory_node(int node) 5910 { 5911 struct zoneref *z; 5912 5913 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5914 gfp_zone(GFP_KERNEL), 5915 NULL); 5916 return zone_to_nid(z->zone); 5917 } 5918 #endif 5919 5920 static void setup_min_unmapped_ratio(void); 5921 static void setup_min_slab_ratio(void); 5922 #else /* CONFIG_NUMA */ 5923 5924 static void build_zonelists(pg_data_t *pgdat) 5925 { 5926 int node, local_node; 5927 struct zoneref *zonerefs; 5928 int nr_zones; 5929 5930 local_node = pgdat->node_id; 5931 5932 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5933 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5934 zonerefs += nr_zones; 5935 5936 /* 5937 * Now we build the zonelist so that it contains the zones 5938 * of all the other nodes. 5939 * We don't want to pressure a particular node, so when 5940 * building the zones for node N, we make sure that the 5941 * zones coming right after the local ones are those from 5942 * node N+1 (modulo N) 5943 */ 5944 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5945 if (!node_online(node)) 5946 continue; 5947 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5948 zonerefs += nr_zones; 5949 } 5950 for (node = 0; node < local_node; node++) { 5951 if (!node_online(node)) 5952 continue; 5953 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5954 zonerefs += nr_zones; 5955 } 5956 5957 zonerefs->zone = NULL; 5958 zonerefs->zone_idx = 0; 5959 } 5960 5961 #endif /* CONFIG_NUMA */ 5962 5963 /* 5964 * Boot pageset table. One per cpu which is going to be used for all 5965 * zones and all nodes. The parameters will be set in such a way 5966 * that an item put on a list will immediately be handed over to 5967 * the buddy list. This is safe since pageset manipulation is done 5968 * with interrupts disabled. 5969 * 5970 * The boot_pagesets must be kept even after bootup is complete for 5971 * unused processors and/or zones. They do play a role for bootstrapping 5972 * hotplugged processors. 5973 * 5974 * zoneinfo_show() and maybe other functions do 5975 * not check if the processor is online before following the pageset pointer. 5976 * Other parts of the kernel may not check if the zone is available. 5977 */ 5978 static void pageset_init(struct per_cpu_pageset *p); 5979 /* These effectively disable the pcplists in the boot pageset completely */ 5980 #define BOOT_PAGESET_HIGH 0 5981 #define BOOT_PAGESET_BATCH 1 5982 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5983 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5984 5985 static void __build_all_zonelists(void *data) 5986 { 5987 int nid; 5988 int __maybe_unused cpu; 5989 pg_data_t *self = data; 5990 static DEFINE_SPINLOCK(lock); 5991 5992 spin_lock(&lock); 5993 5994 #ifdef CONFIG_NUMA 5995 memset(node_load, 0, sizeof(node_load)); 5996 #endif 5997 5998 /* 5999 * This node is hotadded and no memory is yet present. So just 6000 * building zonelists is fine - no need to touch other nodes. 6001 */ 6002 if (self && !node_online(self->node_id)) { 6003 build_zonelists(self); 6004 } else { 6005 for_each_online_node(nid) { 6006 pg_data_t *pgdat = NODE_DATA(nid); 6007 6008 build_zonelists(pgdat); 6009 } 6010 6011 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6012 /* 6013 * We now know the "local memory node" for each node-- 6014 * i.e., the node of the first zone in the generic zonelist. 6015 * Set up numa_mem percpu variable for on-line cpus. During 6016 * boot, only the boot cpu should be on-line; we'll init the 6017 * secondary cpus' numa_mem as they come on-line. During 6018 * node/memory hotplug, we'll fixup all on-line cpus. 6019 */ 6020 for_each_online_cpu(cpu) 6021 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6022 #endif 6023 } 6024 6025 spin_unlock(&lock); 6026 } 6027 6028 static noinline void __init 6029 build_all_zonelists_init(void) 6030 { 6031 int cpu; 6032 6033 __build_all_zonelists(NULL); 6034 6035 /* 6036 * Initialize the boot_pagesets that are going to be used 6037 * for bootstrapping processors. The real pagesets for 6038 * each zone will be allocated later when the per cpu 6039 * allocator is available. 6040 * 6041 * boot_pagesets are used also for bootstrapping offline 6042 * cpus if the system is already booted because the pagesets 6043 * are needed to initialize allocators on a specific cpu too. 6044 * F.e. the percpu allocator needs the page allocator which 6045 * needs the percpu allocator in order to allocate its pagesets 6046 * (a chicken-egg dilemma). 6047 */ 6048 for_each_possible_cpu(cpu) 6049 pageset_init(&per_cpu(boot_pageset, cpu)); 6050 6051 mminit_verify_zonelist(); 6052 cpuset_init_current_mems_allowed(); 6053 } 6054 6055 /* 6056 * unless system_state == SYSTEM_BOOTING. 6057 * 6058 * __ref due to call of __init annotated helper build_all_zonelists_init 6059 * [protected by SYSTEM_BOOTING]. 6060 */ 6061 void __ref build_all_zonelists(pg_data_t *pgdat) 6062 { 6063 unsigned long vm_total_pages; 6064 6065 if (system_state == SYSTEM_BOOTING) { 6066 build_all_zonelists_init(); 6067 } else { 6068 __build_all_zonelists(pgdat); 6069 /* cpuset refresh routine should be here */ 6070 } 6071 /* Get the number of free pages beyond high watermark in all zones. */ 6072 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6073 /* 6074 * Disable grouping by mobility if the number of pages in the 6075 * system is too low to allow the mechanism to work. It would be 6076 * more accurate, but expensive to check per-zone. This check is 6077 * made on memory-hotadd so a system can start with mobility 6078 * disabled and enable it later 6079 */ 6080 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6081 page_group_by_mobility_disabled = 1; 6082 else 6083 page_group_by_mobility_disabled = 0; 6084 6085 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6086 nr_online_nodes, 6087 page_group_by_mobility_disabled ? "off" : "on", 6088 vm_total_pages); 6089 #ifdef CONFIG_NUMA 6090 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6091 #endif 6092 } 6093 6094 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6095 static bool __meminit 6096 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6097 { 6098 static struct memblock_region *r; 6099 6100 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6101 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6102 for_each_mem_region(r) { 6103 if (*pfn < memblock_region_memory_end_pfn(r)) 6104 break; 6105 } 6106 } 6107 if (*pfn >= memblock_region_memory_base_pfn(r) && 6108 memblock_is_mirror(r)) { 6109 *pfn = memblock_region_memory_end_pfn(r); 6110 return true; 6111 } 6112 } 6113 return false; 6114 } 6115 6116 /* 6117 * Initially all pages are reserved - free ones are freed 6118 * up by memblock_free_all() once the early boot process is 6119 * done. Non-atomic initialization, single-pass. 6120 * 6121 * All aligned pageblocks are initialized to the specified migratetype 6122 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6123 * zone stats (e.g., nr_isolate_pageblock) are touched. 6124 */ 6125 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6126 unsigned long start_pfn, unsigned long zone_end_pfn, 6127 enum meminit_context context, 6128 struct vmem_altmap *altmap, int migratetype) 6129 { 6130 unsigned long pfn, end_pfn = start_pfn + size; 6131 struct page *page; 6132 6133 if (highest_memmap_pfn < end_pfn - 1) 6134 highest_memmap_pfn = end_pfn - 1; 6135 6136 #ifdef CONFIG_ZONE_DEVICE 6137 /* 6138 * Honor reservation requested by the driver for this ZONE_DEVICE 6139 * memory. We limit the total number of pages to initialize to just 6140 * those that might contain the memory mapping. We will defer the 6141 * ZONE_DEVICE page initialization until after we have released 6142 * the hotplug lock. 6143 */ 6144 if (zone == ZONE_DEVICE) { 6145 if (!altmap) 6146 return; 6147 6148 if (start_pfn == altmap->base_pfn) 6149 start_pfn += altmap->reserve; 6150 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6151 } 6152 #endif 6153 6154 for (pfn = start_pfn; pfn < end_pfn; ) { 6155 /* 6156 * There can be holes in boot-time mem_map[]s handed to this 6157 * function. They do not exist on hotplugged memory. 6158 */ 6159 if (context == MEMINIT_EARLY) { 6160 if (overlap_memmap_init(zone, &pfn)) 6161 continue; 6162 if (defer_init(nid, pfn, zone_end_pfn)) 6163 break; 6164 } 6165 6166 page = pfn_to_page(pfn); 6167 __init_single_page(page, pfn, zone, nid); 6168 if (context == MEMINIT_HOTPLUG) 6169 __SetPageReserved(page); 6170 6171 /* 6172 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6173 * such that unmovable allocations won't be scattered all 6174 * over the place during system boot. 6175 */ 6176 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6177 set_pageblock_migratetype(page, migratetype); 6178 cond_resched(); 6179 } 6180 pfn++; 6181 } 6182 } 6183 6184 #ifdef CONFIG_ZONE_DEVICE 6185 void __ref memmap_init_zone_device(struct zone *zone, 6186 unsigned long start_pfn, 6187 unsigned long nr_pages, 6188 struct dev_pagemap *pgmap) 6189 { 6190 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6191 struct pglist_data *pgdat = zone->zone_pgdat; 6192 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6193 unsigned long zone_idx = zone_idx(zone); 6194 unsigned long start = jiffies; 6195 int nid = pgdat->node_id; 6196 6197 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6198 return; 6199 6200 /* 6201 * The call to memmap_init_zone should have already taken care 6202 * of the pages reserved for the memmap, so we can just jump to 6203 * the end of that region and start processing the device pages. 6204 */ 6205 if (altmap) { 6206 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6207 nr_pages = end_pfn - start_pfn; 6208 } 6209 6210 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 6211 struct page *page = pfn_to_page(pfn); 6212 6213 __init_single_page(page, pfn, zone_idx, nid); 6214 6215 /* 6216 * Mark page reserved as it will need to wait for onlining 6217 * phase for it to be fully associated with a zone. 6218 * 6219 * We can use the non-atomic __set_bit operation for setting 6220 * the flag as we are still initializing the pages. 6221 */ 6222 __SetPageReserved(page); 6223 6224 /* 6225 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6226 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6227 * ever freed or placed on a driver-private list. 6228 */ 6229 page->pgmap = pgmap; 6230 page->zone_device_data = NULL; 6231 6232 /* 6233 * Mark the block movable so that blocks are reserved for 6234 * movable at startup. This will force kernel allocations 6235 * to reserve their blocks rather than leaking throughout 6236 * the address space during boot when many long-lived 6237 * kernel allocations are made. 6238 * 6239 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6240 * because this is done early in section_activate() 6241 */ 6242 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6243 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6244 cond_resched(); 6245 } 6246 } 6247 6248 pr_info("%s initialised %lu pages in %ums\n", __func__, 6249 nr_pages, jiffies_to_msecs(jiffies - start)); 6250 } 6251 6252 #endif 6253 static void __meminit zone_init_free_lists(struct zone *zone) 6254 { 6255 unsigned int order, t; 6256 for_each_migratetype_order(order, t) { 6257 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6258 zone->free_area[order].nr_free = 0; 6259 } 6260 } 6261 6262 void __meminit __weak memmap_init_zone(struct zone *zone) 6263 { 6264 unsigned long zone_start_pfn = zone->zone_start_pfn; 6265 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6266 int i, nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6267 unsigned long start_pfn, end_pfn; 6268 6269 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6270 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 6271 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 6272 6273 if (end_pfn > start_pfn) 6274 memmap_init_range(end_pfn - start_pfn, nid, 6275 zone_id, start_pfn, zone_end_pfn, 6276 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6277 } 6278 } 6279 6280 static int zone_batchsize(struct zone *zone) 6281 { 6282 #ifdef CONFIG_MMU 6283 int batch; 6284 6285 /* 6286 * The per-cpu-pages pools are set to around 1000th of the 6287 * size of the zone. 6288 */ 6289 batch = zone_managed_pages(zone) / 1024; 6290 /* But no more than a meg. */ 6291 if (batch * PAGE_SIZE > 1024 * 1024) 6292 batch = (1024 * 1024) / PAGE_SIZE; 6293 batch /= 4; /* We effectively *= 4 below */ 6294 if (batch < 1) 6295 batch = 1; 6296 6297 /* 6298 * Clamp the batch to a 2^n - 1 value. Having a power 6299 * of 2 value was found to be more likely to have 6300 * suboptimal cache aliasing properties in some cases. 6301 * 6302 * For example if 2 tasks are alternately allocating 6303 * batches of pages, one task can end up with a lot 6304 * of pages of one half of the possible page colors 6305 * and the other with pages of the other colors. 6306 */ 6307 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6308 6309 return batch; 6310 6311 #else 6312 /* The deferral and batching of frees should be suppressed under NOMMU 6313 * conditions. 6314 * 6315 * The problem is that NOMMU needs to be able to allocate large chunks 6316 * of contiguous memory as there's no hardware page translation to 6317 * assemble apparent contiguous memory from discontiguous pages. 6318 * 6319 * Queueing large contiguous runs of pages for batching, however, 6320 * causes the pages to actually be freed in smaller chunks. As there 6321 * can be a significant delay between the individual batches being 6322 * recycled, this leads to the once large chunks of space being 6323 * fragmented and becoming unavailable for high-order allocations. 6324 */ 6325 return 0; 6326 #endif 6327 } 6328 6329 /* 6330 * pcp->high and pcp->batch values are related and generally batch is lower 6331 * than high. They are also related to pcp->count such that count is lower 6332 * than high, and as soon as it reaches high, the pcplist is flushed. 6333 * 6334 * However, guaranteeing these relations at all times would require e.g. write 6335 * barriers here but also careful usage of read barriers at the read side, and 6336 * thus be prone to error and bad for performance. Thus the update only prevents 6337 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 6338 * can cope with those fields changing asynchronously, and fully trust only the 6339 * pcp->count field on the local CPU with interrupts disabled. 6340 * 6341 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6342 * outside of boot time (or some other assurance that no concurrent updaters 6343 * exist). 6344 */ 6345 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6346 unsigned long batch) 6347 { 6348 WRITE_ONCE(pcp->batch, batch); 6349 WRITE_ONCE(pcp->high, high); 6350 } 6351 6352 static void pageset_init(struct per_cpu_pageset *p) 6353 { 6354 struct per_cpu_pages *pcp; 6355 int migratetype; 6356 6357 memset(p, 0, sizeof(*p)); 6358 6359 pcp = &p->pcp; 6360 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 6361 INIT_LIST_HEAD(&pcp->lists[migratetype]); 6362 6363 /* 6364 * Set batch and high values safe for a boot pageset. A true percpu 6365 * pageset's initialization will update them subsequently. Here we don't 6366 * need to be as careful as pageset_update() as nobody can access the 6367 * pageset yet. 6368 */ 6369 pcp->high = BOOT_PAGESET_HIGH; 6370 pcp->batch = BOOT_PAGESET_BATCH; 6371 } 6372 6373 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 6374 unsigned long batch) 6375 { 6376 struct per_cpu_pageset *p; 6377 int cpu; 6378 6379 for_each_possible_cpu(cpu) { 6380 p = per_cpu_ptr(zone->pageset, cpu); 6381 pageset_update(&p->pcp, high, batch); 6382 } 6383 } 6384 6385 /* 6386 * Calculate and set new high and batch values for all per-cpu pagesets of a 6387 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl. 6388 */ 6389 static void zone_set_pageset_high_and_batch(struct zone *zone) 6390 { 6391 unsigned long new_high, new_batch; 6392 6393 if (percpu_pagelist_fraction) { 6394 new_high = zone_managed_pages(zone) / percpu_pagelist_fraction; 6395 new_batch = max(1UL, new_high / 4); 6396 if ((new_high / 4) > (PAGE_SHIFT * 8)) 6397 new_batch = PAGE_SHIFT * 8; 6398 } else { 6399 new_batch = zone_batchsize(zone); 6400 new_high = 6 * new_batch; 6401 new_batch = max(1UL, 1 * new_batch); 6402 } 6403 6404 if (zone->pageset_high == new_high && 6405 zone->pageset_batch == new_batch) 6406 return; 6407 6408 zone->pageset_high = new_high; 6409 zone->pageset_batch = new_batch; 6410 6411 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 6412 } 6413 6414 void __meminit setup_zone_pageset(struct zone *zone) 6415 { 6416 struct per_cpu_pageset *p; 6417 int cpu; 6418 6419 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6420 for_each_possible_cpu(cpu) { 6421 p = per_cpu_ptr(zone->pageset, cpu); 6422 pageset_init(p); 6423 } 6424 6425 zone_set_pageset_high_and_batch(zone); 6426 } 6427 6428 /* 6429 * Allocate per cpu pagesets and initialize them. 6430 * Before this call only boot pagesets were available. 6431 */ 6432 void __init setup_per_cpu_pageset(void) 6433 { 6434 struct pglist_data *pgdat; 6435 struct zone *zone; 6436 int __maybe_unused cpu; 6437 6438 for_each_populated_zone(zone) 6439 setup_zone_pageset(zone); 6440 6441 #ifdef CONFIG_NUMA 6442 /* 6443 * Unpopulated zones continue using the boot pagesets. 6444 * The numa stats for these pagesets need to be reset. 6445 * Otherwise, they will end up skewing the stats of 6446 * the nodes these zones are associated with. 6447 */ 6448 for_each_possible_cpu(cpu) { 6449 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu); 6450 memset(pcp->vm_numa_stat_diff, 0, 6451 sizeof(pcp->vm_numa_stat_diff)); 6452 } 6453 #endif 6454 6455 for_each_online_pgdat(pgdat) 6456 pgdat->per_cpu_nodestats = 6457 alloc_percpu(struct per_cpu_nodestat); 6458 } 6459 6460 static __meminit void zone_pcp_init(struct zone *zone) 6461 { 6462 /* 6463 * per cpu subsystem is not up at this point. The following code 6464 * relies on the ability of the linker to provide the 6465 * offset of a (static) per cpu variable into the per cpu area. 6466 */ 6467 zone->pageset = &boot_pageset; 6468 zone->pageset_high = BOOT_PAGESET_HIGH; 6469 zone->pageset_batch = BOOT_PAGESET_BATCH; 6470 6471 if (populated_zone(zone)) 6472 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6473 zone->name, zone->present_pages, 6474 zone_batchsize(zone)); 6475 } 6476 6477 void __meminit init_currently_empty_zone(struct zone *zone, 6478 unsigned long zone_start_pfn, 6479 unsigned long size) 6480 { 6481 struct pglist_data *pgdat = zone->zone_pgdat; 6482 int zone_idx = zone_idx(zone) + 1; 6483 6484 if (zone_idx > pgdat->nr_zones) 6485 pgdat->nr_zones = zone_idx; 6486 6487 zone->zone_start_pfn = zone_start_pfn; 6488 6489 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6490 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6491 pgdat->node_id, 6492 (unsigned long)zone_idx(zone), 6493 zone_start_pfn, (zone_start_pfn + size)); 6494 6495 zone_init_free_lists(zone); 6496 zone->initialized = 1; 6497 } 6498 6499 /** 6500 * get_pfn_range_for_nid - Return the start and end page frames for a node 6501 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6502 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6503 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6504 * 6505 * It returns the start and end page frame of a node based on information 6506 * provided by memblock_set_node(). If called for a node 6507 * with no available memory, a warning is printed and the start and end 6508 * PFNs will be 0. 6509 */ 6510 void __init get_pfn_range_for_nid(unsigned int nid, 6511 unsigned long *start_pfn, unsigned long *end_pfn) 6512 { 6513 unsigned long this_start_pfn, this_end_pfn; 6514 int i; 6515 6516 *start_pfn = -1UL; 6517 *end_pfn = 0; 6518 6519 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6520 *start_pfn = min(*start_pfn, this_start_pfn); 6521 *end_pfn = max(*end_pfn, this_end_pfn); 6522 } 6523 6524 if (*start_pfn == -1UL) 6525 *start_pfn = 0; 6526 } 6527 6528 /* 6529 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6530 * assumption is made that zones within a node are ordered in monotonic 6531 * increasing memory addresses so that the "highest" populated zone is used 6532 */ 6533 static void __init find_usable_zone_for_movable(void) 6534 { 6535 int zone_index; 6536 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6537 if (zone_index == ZONE_MOVABLE) 6538 continue; 6539 6540 if (arch_zone_highest_possible_pfn[zone_index] > 6541 arch_zone_lowest_possible_pfn[zone_index]) 6542 break; 6543 } 6544 6545 VM_BUG_ON(zone_index == -1); 6546 movable_zone = zone_index; 6547 } 6548 6549 /* 6550 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6551 * because it is sized independent of architecture. Unlike the other zones, 6552 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6553 * in each node depending on the size of each node and how evenly kernelcore 6554 * is distributed. This helper function adjusts the zone ranges 6555 * provided by the architecture for a given node by using the end of the 6556 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6557 * zones within a node are in order of monotonic increases memory addresses 6558 */ 6559 static void __init adjust_zone_range_for_zone_movable(int nid, 6560 unsigned long zone_type, 6561 unsigned long node_start_pfn, 6562 unsigned long node_end_pfn, 6563 unsigned long *zone_start_pfn, 6564 unsigned long *zone_end_pfn) 6565 { 6566 /* Only adjust if ZONE_MOVABLE is on this node */ 6567 if (zone_movable_pfn[nid]) { 6568 /* Size ZONE_MOVABLE */ 6569 if (zone_type == ZONE_MOVABLE) { 6570 *zone_start_pfn = zone_movable_pfn[nid]; 6571 *zone_end_pfn = min(node_end_pfn, 6572 arch_zone_highest_possible_pfn[movable_zone]); 6573 6574 /* Adjust for ZONE_MOVABLE starting within this range */ 6575 } else if (!mirrored_kernelcore && 6576 *zone_start_pfn < zone_movable_pfn[nid] && 6577 *zone_end_pfn > zone_movable_pfn[nid]) { 6578 *zone_end_pfn = zone_movable_pfn[nid]; 6579 6580 /* Check if this whole range is within ZONE_MOVABLE */ 6581 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6582 *zone_start_pfn = *zone_end_pfn; 6583 } 6584 } 6585 6586 /* 6587 * Return the number of pages a zone spans in a node, including holes 6588 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6589 */ 6590 static unsigned long __init zone_spanned_pages_in_node(int nid, 6591 unsigned long zone_type, 6592 unsigned long node_start_pfn, 6593 unsigned long node_end_pfn, 6594 unsigned long *zone_start_pfn, 6595 unsigned long *zone_end_pfn) 6596 { 6597 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6598 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6599 /* When hotadd a new node from cpu_up(), the node should be empty */ 6600 if (!node_start_pfn && !node_end_pfn) 6601 return 0; 6602 6603 /* Get the start and end of the zone */ 6604 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6605 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6606 adjust_zone_range_for_zone_movable(nid, zone_type, 6607 node_start_pfn, node_end_pfn, 6608 zone_start_pfn, zone_end_pfn); 6609 6610 /* Check that this node has pages within the zone's required range */ 6611 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6612 return 0; 6613 6614 /* Move the zone boundaries inside the node if necessary */ 6615 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6616 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6617 6618 /* Return the spanned pages */ 6619 return *zone_end_pfn - *zone_start_pfn; 6620 } 6621 6622 /* 6623 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6624 * then all holes in the requested range will be accounted for. 6625 */ 6626 unsigned long __init __absent_pages_in_range(int nid, 6627 unsigned long range_start_pfn, 6628 unsigned long range_end_pfn) 6629 { 6630 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6631 unsigned long start_pfn, end_pfn; 6632 int i; 6633 6634 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6635 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6636 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6637 nr_absent -= end_pfn - start_pfn; 6638 } 6639 return nr_absent; 6640 } 6641 6642 /** 6643 * absent_pages_in_range - Return number of page frames in holes within a range 6644 * @start_pfn: The start PFN to start searching for holes 6645 * @end_pfn: The end PFN to stop searching for holes 6646 * 6647 * Return: the number of pages frames in memory holes within a range. 6648 */ 6649 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6650 unsigned long end_pfn) 6651 { 6652 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6653 } 6654 6655 /* Return the number of page frames in holes in a zone on a node */ 6656 static unsigned long __init zone_absent_pages_in_node(int nid, 6657 unsigned long zone_type, 6658 unsigned long node_start_pfn, 6659 unsigned long node_end_pfn) 6660 { 6661 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6662 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6663 unsigned long zone_start_pfn, zone_end_pfn; 6664 unsigned long nr_absent; 6665 6666 /* When hotadd a new node from cpu_up(), the node should be empty */ 6667 if (!node_start_pfn && !node_end_pfn) 6668 return 0; 6669 6670 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6671 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6672 6673 adjust_zone_range_for_zone_movable(nid, zone_type, 6674 node_start_pfn, node_end_pfn, 6675 &zone_start_pfn, &zone_end_pfn); 6676 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6677 6678 /* 6679 * ZONE_MOVABLE handling. 6680 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6681 * and vice versa. 6682 */ 6683 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6684 unsigned long start_pfn, end_pfn; 6685 struct memblock_region *r; 6686 6687 for_each_mem_region(r) { 6688 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6689 zone_start_pfn, zone_end_pfn); 6690 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6691 zone_start_pfn, zone_end_pfn); 6692 6693 if (zone_type == ZONE_MOVABLE && 6694 memblock_is_mirror(r)) 6695 nr_absent += end_pfn - start_pfn; 6696 6697 if (zone_type == ZONE_NORMAL && 6698 !memblock_is_mirror(r)) 6699 nr_absent += end_pfn - start_pfn; 6700 } 6701 } 6702 6703 return nr_absent; 6704 } 6705 6706 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6707 unsigned long node_start_pfn, 6708 unsigned long node_end_pfn) 6709 { 6710 unsigned long realtotalpages = 0, totalpages = 0; 6711 enum zone_type i; 6712 6713 for (i = 0; i < MAX_NR_ZONES; i++) { 6714 struct zone *zone = pgdat->node_zones + i; 6715 unsigned long zone_start_pfn, zone_end_pfn; 6716 unsigned long spanned, absent; 6717 unsigned long size, real_size; 6718 6719 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 6720 node_start_pfn, 6721 node_end_pfn, 6722 &zone_start_pfn, 6723 &zone_end_pfn); 6724 absent = zone_absent_pages_in_node(pgdat->node_id, i, 6725 node_start_pfn, 6726 node_end_pfn); 6727 6728 size = spanned; 6729 real_size = size - absent; 6730 6731 if (size) 6732 zone->zone_start_pfn = zone_start_pfn; 6733 else 6734 zone->zone_start_pfn = 0; 6735 zone->spanned_pages = size; 6736 zone->present_pages = real_size; 6737 6738 totalpages += size; 6739 realtotalpages += real_size; 6740 } 6741 6742 pgdat->node_spanned_pages = totalpages; 6743 pgdat->node_present_pages = realtotalpages; 6744 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6745 realtotalpages); 6746 } 6747 6748 #ifndef CONFIG_SPARSEMEM 6749 /* 6750 * Calculate the size of the zone->blockflags rounded to an unsigned long 6751 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6752 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6753 * round what is now in bits to nearest long in bits, then return it in 6754 * bytes. 6755 */ 6756 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6757 { 6758 unsigned long usemapsize; 6759 6760 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6761 usemapsize = roundup(zonesize, pageblock_nr_pages); 6762 usemapsize = usemapsize >> pageblock_order; 6763 usemapsize *= NR_PAGEBLOCK_BITS; 6764 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6765 6766 return usemapsize / 8; 6767 } 6768 6769 static void __ref setup_usemap(struct zone *zone) 6770 { 6771 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 6772 zone->spanned_pages); 6773 zone->pageblock_flags = NULL; 6774 if (usemapsize) { 6775 zone->pageblock_flags = 6776 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 6777 zone_to_nid(zone)); 6778 if (!zone->pageblock_flags) 6779 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 6780 usemapsize, zone->name, zone_to_nid(zone)); 6781 } 6782 } 6783 #else 6784 static inline void setup_usemap(struct zone *zone) {} 6785 #endif /* CONFIG_SPARSEMEM */ 6786 6787 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6788 6789 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6790 void __init set_pageblock_order(void) 6791 { 6792 unsigned int order; 6793 6794 /* Check that pageblock_nr_pages has not already been setup */ 6795 if (pageblock_order) 6796 return; 6797 6798 if (HPAGE_SHIFT > PAGE_SHIFT) 6799 order = HUGETLB_PAGE_ORDER; 6800 else 6801 order = MAX_ORDER - 1; 6802 6803 /* 6804 * Assume the largest contiguous order of interest is a huge page. 6805 * This value may be variable depending on boot parameters on IA64 and 6806 * powerpc. 6807 */ 6808 pageblock_order = order; 6809 } 6810 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6811 6812 /* 6813 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6814 * is unused as pageblock_order is set at compile-time. See 6815 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6816 * the kernel config 6817 */ 6818 void __init set_pageblock_order(void) 6819 { 6820 } 6821 6822 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6823 6824 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6825 unsigned long present_pages) 6826 { 6827 unsigned long pages = spanned_pages; 6828 6829 /* 6830 * Provide a more accurate estimation if there are holes within 6831 * the zone and SPARSEMEM is in use. If there are holes within the 6832 * zone, each populated memory region may cost us one or two extra 6833 * memmap pages due to alignment because memmap pages for each 6834 * populated regions may not be naturally aligned on page boundary. 6835 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6836 */ 6837 if (spanned_pages > present_pages + (present_pages >> 4) && 6838 IS_ENABLED(CONFIG_SPARSEMEM)) 6839 pages = present_pages; 6840 6841 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6842 } 6843 6844 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6845 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6846 { 6847 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 6848 6849 spin_lock_init(&ds_queue->split_queue_lock); 6850 INIT_LIST_HEAD(&ds_queue->split_queue); 6851 ds_queue->split_queue_len = 0; 6852 } 6853 #else 6854 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6855 #endif 6856 6857 #ifdef CONFIG_COMPACTION 6858 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6859 { 6860 init_waitqueue_head(&pgdat->kcompactd_wait); 6861 } 6862 #else 6863 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6864 #endif 6865 6866 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6867 { 6868 pgdat_resize_init(pgdat); 6869 6870 pgdat_init_split_queue(pgdat); 6871 pgdat_init_kcompactd(pgdat); 6872 6873 init_waitqueue_head(&pgdat->kswapd_wait); 6874 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6875 6876 pgdat_page_ext_init(pgdat); 6877 lruvec_init(&pgdat->__lruvec); 6878 } 6879 6880 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6881 unsigned long remaining_pages) 6882 { 6883 atomic_long_set(&zone->managed_pages, remaining_pages); 6884 zone_set_nid(zone, nid); 6885 zone->name = zone_names[idx]; 6886 zone->zone_pgdat = NODE_DATA(nid); 6887 spin_lock_init(&zone->lock); 6888 zone_seqlock_init(zone); 6889 zone_pcp_init(zone); 6890 } 6891 6892 /* 6893 * Set up the zone data structures 6894 * - init pgdat internals 6895 * - init all zones belonging to this node 6896 * 6897 * NOTE: this function is only called during memory hotplug 6898 */ 6899 #ifdef CONFIG_MEMORY_HOTPLUG 6900 void __ref free_area_init_core_hotplug(int nid) 6901 { 6902 enum zone_type z; 6903 pg_data_t *pgdat = NODE_DATA(nid); 6904 6905 pgdat_init_internals(pgdat); 6906 for (z = 0; z < MAX_NR_ZONES; z++) 6907 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6908 } 6909 #endif 6910 6911 /* 6912 * Set up the zone data structures: 6913 * - mark all pages reserved 6914 * - mark all memory queues empty 6915 * - clear the memory bitmaps 6916 * 6917 * NOTE: pgdat should get zeroed by caller. 6918 * NOTE: this function is only called during early init. 6919 */ 6920 static void __init free_area_init_core(struct pglist_data *pgdat) 6921 { 6922 enum zone_type j; 6923 int nid = pgdat->node_id; 6924 6925 pgdat_init_internals(pgdat); 6926 pgdat->per_cpu_nodestats = &boot_nodestats; 6927 6928 for (j = 0; j < MAX_NR_ZONES; j++) { 6929 struct zone *zone = pgdat->node_zones + j; 6930 unsigned long size, freesize, memmap_pages; 6931 6932 size = zone->spanned_pages; 6933 freesize = zone->present_pages; 6934 6935 /* 6936 * Adjust freesize so that it accounts for how much memory 6937 * is used by this zone for memmap. This affects the watermark 6938 * and per-cpu initialisations 6939 */ 6940 memmap_pages = calc_memmap_size(size, freesize); 6941 if (!is_highmem_idx(j)) { 6942 if (freesize >= memmap_pages) { 6943 freesize -= memmap_pages; 6944 if (memmap_pages) 6945 printk(KERN_DEBUG 6946 " %s zone: %lu pages used for memmap\n", 6947 zone_names[j], memmap_pages); 6948 } else 6949 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6950 zone_names[j], memmap_pages, freesize); 6951 } 6952 6953 /* Account for reserved pages */ 6954 if (j == 0 && freesize > dma_reserve) { 6955 freesize -= dma_reserve; 6956 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6957 zone_names[0], dma_reserve); 6958 } 6959 6960 if (!is_highmem_idx(j)) 6961 nr_kernel_pages += freesize; 6962 /* Charge for highmem memmap if there are enough kernel pages */ 6963 else if (nr_kernel_pages > memmap_pages * 2) 6964 nr_kernel_pages -= memmap_pages; 6965 nr_all_pages += freesize; 6966 6967 /* 6968 * Set an approximate value for lowmem here, it will be adjusted 6969 * when the bootmem allocator frees pages into the buddy system. 6970 * And all highmem pages will be managed by the buddy system. 6971 */ 6972 zone_init_internals(zone, j, nid, freesize); 6973 6974 if (!size) 6975 continue; 6976 6977 set_pageblock_order(); 6978 setup_usemap(zone); 6979 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 6980 memmap_init_zone(zone); 6981 } 6982 } 6983 6984 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6985 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6986 { 6987 unsigned long __maybe_unused start = 0; 6988 unsigned long __maybe_unused offset = 0; 6989 6990 /* Skip empty nodes */ 6991 if (!pgdat->node_spanned_pages) 6992 return; 6993 6994 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6995 offset = pgdat->node_start_pfn - start; 6996 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6997 if (!pgdat->node_mem_map) { 6998 unsigned long size, end; 6999 struct page *map; 7000 7001 /* 7002 * The zone's endpoints aren't required to be MAX_ORDER 7003 * aligned but the node_mem_map endpoints must be in order 7004 * for the buddy allocator to function correctly. 7005 */ 7006 end = pgdat_end_pfn(pgdat); 7007 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7008 size = (end - start) * sizeof(struct page); 7009 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 7010 pgdat->node_id); 7011 if (!map) 7012 panic("Failed to allocate %ld bytes for node %d memory map\n", 7013 size, pgdat->node_id); 7014 pgdat->node_mem_map = map + offset; 7015 } 7016 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7017 __func__, pgdat->node_id, (unsigned long)pgdat, 7018 (unsigned long)pgdat->node_mem_map); 7019 #ifndef CONFIG_NEED_MULTIPLE_NODES 7020 /* 7021 * With no DISCONTIG, the global mem_map is just set as node 0's 7022 */ 7023 if (pgdat == NODE_DATA(0)) { 7024 mem_map = NODE_DATA(0)->node_mem_map; 7025 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7026 mem_map -= offset; 7027 } 7028 #endif 7029 } 7030 #else 7031 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 7032 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 7033 7034 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7035 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7036 { 7037 pgdat->first_deferred_pfn = ULONG_MAX; 7038 } 7039 #else 7040 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7041 #endif 7042 7043 static void __init free_area_init_node(int nid) 7044 { 7045 pg_data_t *pgdat = NODE_DATA(nid); 7046 unsigned long start_pfn = 0; 7047 unsigned long end_pfn = 0; 7048 7049 /* pg_data_t should be reset to zero when it's allocated */ 7050 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7051 7052 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7053 7054 pgdat->node_id = nid; 7055 pgdat->node_start_pfn = start_pfn; 7056 pgdat->per_cpu_nodestats = NULL; 7057 7058 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7059 (u64)start_pfn << PAGE_SHIFT, 7060 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7061 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7062 7063 alloc_node_mem_map(pgdat); 7064 pgdat_set_deferred_range(pgdat); 7065 7066 free_area_init_core(pgdat); 7067 } 7068 7069 void __init free_area_init_memoryless_node(int nid) 7070 { 7071 free_area_init_node(nid); 7072 } 7073 7074 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 7075 /* 7076 * Initialize all valid struct pages in the range [spfn, epfn) and mark them 7077 * PageReserved(). Return the number of struct pages that were initialized. 7078 */ 7079 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn) 7080 { 7081 unsigned long pfn; 7082 u64 pgcnt = 0; 7083 7084 for (pfn = spfn; pfn < epfn; pfn++) { 7085 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 7086 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 7087 + pageblock_nr_pages - 1; 7088 continue; 7089 } 7090 /* 7091 * Use a fake node/zone (0) for now. Some of these pages 7092 * (in memblock.reserved but not in memblock.memory) will 7093 * get re-initialized via reserve_bootmem_region() later. 7094 */ 7095 __init_single_page(pfn_to_page(pfn), pfn, 0, 0); 7096 __SetPageReserved(pfn_to_page(pfn)); 7097 pgcnt++; 7098 } 7099 7100 return pgcnt; 7101 } 7102 7103 /* 7104 * Only struct pages that are backed by physical memory are zeroed and 7105 * initialized by going through __init_single_page(). But, there are some 7106 * struct pages which are reserved in memblock allocator and their fields 7107 * may be accessed (for example page_to_pfn() on some configuration accesses 7108 * flags). We must explicitly initialize those struct pages. 7109 * 7110 * This function also addresses a similar issue where struct pages are left 7111 * uninitialized because the physical address range is not covered by 7112 * memblock.memory or memblock.reserved. That could happen when memblock 7113 * layout is manually configured via memmap=, or when the highest physical 7114 * address (max_pfn) does not end on a section boundary. 7115 */ 7116 static void __init init_unavailable_mem(void) 7117 { 7118 phys_addr_t start, end; 7119 u64 i, pgcnt; 7120 phys_addr_t next = 0; 7121 7122 /* 7123 * Loop through unavailable ranges not covered by memblock.memory. 7124 */ 7125 pgcnt = 0; 7126 for_each_mem_range(i, &start, &end) { 7127 if (next < start) 7128 pgcnt += init_unavailable_range(PFN_DOWN(next), 7129 PFN_UP(start)); 7130 next = end; 7131 } 7132 7133 /* 7134 * Early sections always have a fully populated memmap for the whole 7135 * section - see pfn_valid(). If the last section has holes at the 7136 * end and that section is marked "online", the memmap will be 7137 * considered initialized. Make sure that memmap has a well defined 7138 * state. 7139 */ 7140 pgcnt += init_unavailable_range(PFN_DOWN(next), 7141 round_up(max_pfn, PAGES_PER_SECTION)); 7142 7143 /* 7144 * Struct pages that do not have backing memory. This could be because 7145 * firmware is using some of this memory, or for some other reasons. 7146 */ 7147 if (pgcnt) 7148 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 7149 } 7150 #else 7151 static inline void __init init_unavailable_mem(void) 7152 { 7153 } 7154 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 7155 7156 #if MAX_NUMNODES > 1 7157 /* 7158 * Figure out the number of possible node ids. 7159 */ 7160 void __init setup_nr_node_ids(void) 7161 { 7162 unsigned int highest; 7163 7164 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7165 nr_node_ids = highest + 1; 7166 } 7167 #endif 7168 7169 /** 7170 * node_map_pfn_alignment - determine the maximum internode alignment 7171 * 7172 * This function should be called after node map is populated and sorted. 7173 * It calculates the maximum power of two alignment which can distinguish 7174 * all the nodes. 7175 * 7176 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7177 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7178 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7179 * shifted, 1GiB is enough and this function will indicate so. 7180 * 7181 * This is used to test whether pfn -> nid mapping of the chosen memory 7182 * model has fine enough granularity to avoid incorrect mapping for the 7183 * populated node map. 7184 * 7185 * Return: the determined alignment in pfn's. 0 if there is no alignment 7186 * requirement (single node). 7187 */ 7188 unsigned long __init node_map_pfn_alignment(void) 7189 { 7190 unsigned long accl_mask = 0, last_end = 0; 7191 unsigned long start, end, mask; 7192 int last_nid = NUMA_NO_NODE; 7193 int i, nid; 7194 7195 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7196 if (!start || last_nid < 0 || last_nid == nid) { 7197 last_nid = nid; 7198 last_end = end; 7199 continue; 7200 } 7201 7202 /* 7203 * Start with a mask granular enough to pin-point to the 7204 * start pfn and tick off bits one-by-one until it becomes 7205 * too coarse to separate the current node from the last. 7206 */ 7207 mask = ~((1 << __ffs(start)) - 1); 7208 while (mask && last_end <= (start & (mask << 1))) 7209 mask <<= 1; 7210 7211 /* accumulate all internode masks */ 7212 accl_mask |= mask; 7213 } 7214 7215 /* convert mask to number of pages */ 7216 return ~accl_mask + 1; 7217 } 7218 7219 /** 7220 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7221 * 7222 * Return: the minimum PFN based on information provided via 7223 * memblock_set_node(). 7224 */ 7225 unsigned long __init find_min_pfn_with_active_regions(void) 7226 { 7227 return PHYS_PFN(memblock_start_of_DRAM()); 7228 } 7229 7230 /* 7231 * early_calculate_totalpages() 7232 * Sum pages in active regions for movable zone. 7233 * Populate N_MEMORY for calculating usable_nodes. 7234 */ 7235 static unsigned long __init early_calculate_totalpages(void) 7236 { 7237 unsigned long totalpages = 0; 7238 unsigned long start_pfn, end_pfn; 7239 int i, nid; 7240 7241 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7242 unsigned long pages = end_pfn - start_pfn; 7243 7244 totalpages += pages; 7245 if (pages) 7246 node_set_state(nid, N_MEMORY); 7247 } 7248 return totalpages; 7249 } 7250 7251 /* 7252 * Find the PFN the Movable zone begins in each node. Kernel memory 7253 * is spread evenly between nodes as long as the nodes have enough 7254 * memory. When they don't, some nodes will have more kernelcore than 7255 * others 7256 */ 7257 static void __init find_zone_movable_pfns_for_nodes(void) 7258 { 7259 int i, nid; 7260 unsigned long usable_startpfn; 7261 unsigned long kernelcore_node, kernelcore_remaining; 7262 /* save the state before borrow the nodemask */ 7263 nodemask_t saved_node_state = node_states[N_MEMORY]; 7264 unsigned long totalpages = early_calculate_totalpages(); 7265 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7266 struct memblock_region *r; 7267 7268 /* Need to find movable_zone earlier when movable_node is specified. */ 7269 find_usable_zone_for_movable(); 7270 7271 /* 7272 * If movable_node is specified, ignore kernelcore and movablecore 7273 * options. 7274 */ 7275 if (movable_node_is_enabled()) { 7276 for_each_mem_region(r) { 7277 if (!memblock_is_hotpluggable(r)) 7278 continue; 7279 7280 nid = memblock_get_region_node(r); 7281 7282 usable_startpfn = PFN_DOWN(r->base); 7283 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7284 min(usable_startpfn, zone_movable_pfn[nid]) : 7285 usable_startpfn; 7286 } 7287 7288 goto out2; 7289 } 7290 7291 /* 7292 * If kernelcore=mirror is specified, ignore movablecore option 7293 */ 7294 if (mirrored_kernelcore) { 7295 bool mem_below_4gb_not_mirrored = false; 7296 7297 for_each_mem_region(r) { 7298 if (memblock_is_mirror(r)) 7299 continue; 7300 7301 nid = memblock_get_region_node(r); 7302 7303 usable_startpfn = memblock_region_memory_base_pfn(r); 7304 7305 if (usable_startpfn < 0x100000) { 7306 mem_below_4gb_not_mirrored = true; 7307 continue; 7308 } 7309 7310 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7311 min(usable_startpfn, zone_movable_pfn[nid]) : 7312 usable_startpfn; 7313 } 7314 7315 if (mem_below_4gb_not_mirrored) 7316 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7317 7318 goto out2; 7319 } 7320 7321 /* 7322 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7323 * amount of necessary memory. 7324 */ 7325 if (required_kernelcore_percent) 7326 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7327 10000UL; 7328 if (required_movablecore_percent) 7329 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7330 10000UL; 7331 7332 /* 7333 * If movablecore= was specified, calculate what size of 7334 * kernelcore that corresponds so that memory usable for 7335 * any allocation type is evenly spread. If both kernelcore 7336 * and movablecore are specified, then the value of kernelcore 7337 * will be used for required_kernelcore if it's greater than 7338 * what movablecore would have allowed. 7339 */ 7340 if (required_movablecore) { 7341 unsigned long corepages; 7342 7343 /* 7344 * Round-up so that ZONE_MOVABLE is at least as large as what 7345 * was requested by the user 7346 */ 7347 required_movablecore = 7348 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7349 required_movablecore = min(totalpages, required_movablecore); 7350 corepages = totalpages - required_movablecore; 7351 7352 required_kernelcore = max(required_kernelcore, corepages); 7353 } 7354 7355 /* 7356 * If kernelcore was not specified or kernelcore size is larger 7357 * than totalpages, there is no ZONE_MOVABLE. 7358 */ 7359 if (!required_kernelcore || required_kernelcore >= totalpages) 7360 goto out; 7361 7362 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7363 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7364 7365 restart: 7366 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7367 kernelcore_node = required_kernelcore / usable_nodes; 7368 for_each_node_state(nid, N_MEMORY) { 7369 unsigned long start_pfn, end_pfn; 7370 7371 /* 7372 * Recalculate kernelcore_node if the division per node 7373 * now exceeds what is necessary to satisfy the requested 7374 * amount of memory for the kernel 7375 */ 7376 if (required_kernelcore < kernelcore_node) 7377 kernelcore_node = required_kernelcore / usable_nodes; 7378 7379 /* 7380 * As the map is walked, we track how much memory is usable 7381 * by the kernel using kernelcore_remaining. When it is 7382 * 0, the rest of the node is usable by ZONE_MOVABLE 7383 */ 7384 kernelcore_remaining = kernelcore_node; 7385 7386 /* Go through each range of PFNs within this node */ 7387 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7388 unsigned long size_pages; 7389 7390 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7391 if (start_pfn >= end_pfn) 7392 continue; 7393 7394 /* Account for what is only usable for kernelcore */ 7395 if (start_pfn < usable_startpfn) { 7396 unsigned long kernel_pages; 7397 kernel_pages = min(end_pfn, usable_startpfn) 7398 - start_pfn; 7399 7400 kernelcore_remaining -= min(kernel_pages, 7401 kernelcore_remaining); 7402 required_kernelcore -= min(kernel_pages, 7403 required_kernelcore); 7404 7405 /* Continue if range is now fully accounted */ 7406 if (end_pfn <= usable_startpfn) { 7407 7408 /* 7409 * Push zone_movable_pfn to the end so 7410 * that if we have to rebalance 7411 * kernelcore across nodes, we will 7412 * not double account here 7413 */ 7414 zone_movable_pfn[nid] = end_pfn; 7415 continue; 7416 } 7417 start_pfn = usable_startpfn; 7418 } 7419 7420 /* 7421 * The usable PFN range for ZONE_MOVABLE is from 7422 * start_pfn->end_pfn. Calculate size_pages as the 7423 * number of pages used as kernelcore 7424 */ 7425 size_pages = end_pfn - start_pfn; 7426 if (size_pages > kernelcore_remaining) 7427 size_pages = kernelcore_remaining; 7428 zone_movable_pfn[nid] = start_pfn + size_pages; 7429 7430 /* 7431 * Some kernelcore has been met, update counts and 7432 * break if the kernelcore for this node has been 7433 * satisfied 7434 */ 7435 required_kernelcore -= min(required_kernelcore, 7436 size_pages); 7437 kernelcore_remaining -= size_pages; 7438 if (!kernelcore_remaining) 7439 break; 7440 } 7441 } 7442 7443 /* 7444 * If there is still required_kernelcore, we do another pass with one 7445 * less node in the count. This will push zone_movable_pfn[nid] further 7446 * along on the nodes that still have memory until kernelcore is 7447 * satisfied 7448 */ 7449 usable_nodes--; 7450 if (usable_nodes && required_kernelcore > usable_nodes) 7451 goto restart; 7452 7453 out2: 7454 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7455 for (nid = 0; nid < MAX_NUMNODES; nid++) 7456 zone_movable_pfn[nid] = 7457 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7458 7459 out: 7460 /* restore the node_state */ 7461 node_states[N_MEMORY] = saved_node_state; 7462 } 7463 7464 /* Any regular or high memory on that node ? */ 7465 static void check_for_memory(pg_data_t *pgdat, int nid) 7466 { 7467 enum zone_type zone_type; 7468 7469 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7470 struct zone *zone = &pgdat->node_zones[zone_type]; 7471 if (populated_zone(zone)) { 7472 if (IS_ENABLED(CONFIG_HIGHMEM)) 7473 node_set_state(nid, N_HIGH_MEMORY); 7474 if (zone_type <= ZONE_NORMAL) 7475 node_set_state(nid, N_NORMAL_MEMORY); 7476 break; 7477 } 7478 } 7479 } 7480 7481 /* 7482 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 7483 * such cases we allow max_zone_pfn sorted in the descending order 7484 */ 7485 bool __weak arch_has_descending_max_zone_pfns(void) 7486 { 7487 return false; 7488 } 7489 7490 /** 7491 * free_area_init - Initialise all pg_data_t and zone data 7492 * @max_zone_pfn: an array of max PFNs for each zone 7493 * 7494 * This will call free_area_init_node() for each active node in the system. 7495 * Using the page ranges provided by memblock_set_node(), the size of each 7496 * zone in each node and their holes is calculated. If the maximum PFN 7497 * between two adjacent zones match, it is assumed that the zone is empty. 7498 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7499 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7500 * starts where the previous one ended. For example, ZONE_DMA32 starts 7501 * at arch_max_dma_pfn. 7502 */ 7503 void __init free_area_init(unsigned long *max_zone_pfn) 7504 { 7505 unsigned long start_pfn, end_pfn; 7506 int i, nid, zone; 7507 bool descending; 7508 7509 /* Record where the zone boundaries are */ 7510 memset(arch_zone_lowest_possible_pfn, 0, 7511 sizeof(arch_zone_lowest_possible_pfn)); 7512 memset(arch_zone_highest_possible_pfn, 0, 7513 sizeof(arch_zone_highest_possible_pfn)); 7514 7515 start_pfn = find_min_pfn_with_active_regions(); 7516 descending = arch_has_descending_max_zone_pfns(); 7517 7518 for (i = 0; i < MAX_NR_ZONES; i++) { 7519 if (descending) 7520 zone = MAX_NR_ZONES - i - 1; 7521 else 7522 zone = i; 7523 7524 if (zone == ZONE_MOVABLE) 7525 continue; 7526 7527 end_pfn = max(max_zone_pfn[zone], start_pfn); 7528 arch_zone_lowest_possible_pfn[zone] = start_pfn; 7529 arch_zone_highest_possible_pfn[zone] = end_pfn; 7530 7531 start_pfn = end_pfn; 7532 } 7533 7534 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7535 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7536 find_zone_movable_pfns_for_nodes(); 7537 7538 /* Print out the zone ranges */ 7539 pr_info("Zone ranges:\n"); 7540 for (i = 0; i < MAX_NR_ZONES; i++) { 7541 if (i == ZONE_MOVABLE) 7542 continue; 7543 pr_info(" %-8s ", zone_names[i]); 7544 if (arch_zone_lowest_possible_pfn[i] == 7545 arch_zone_highest_possible_pfn[i]) 7546 pr_cont("empty\n"); 7547 else 7548 pr_cont("[mem %#018Lx-%#018Lx]\n", 7549 (u64)arch_zone_lowest_possible_pfn[i] 7550 << PAGE_SHIFT, 7551 ((u64)arch_zone_highest_possible_pfn[i] 7552 << PAGE_SHIFT) - 1); 7553 } 7554 7555 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7556 pr_info("Movable zone start for each node\n"); 7557 for (i = 0; i < MAX_NUMNODES; i++) { 7558 if (zone_movable_pfn[i]) 7559 pr_info(" Node %d: %#018Lx\n", i, 7560 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7561 } 7562 7563 /* 7564 * Print out the early node map, and initialize the 7565 * subsection-map relative to active online memory ranges to 7566 * enable future "sub-section" extensions of the memory map. 7567 */ 7568 pr_info("Early memory node ranges\n"); 7569 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7570 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7571 (u64)start_pfn << PAGE_SHIFT, 7572 ((u64)end_pfn << PAGE_SHIFT) - 1); 7573 subsection_map_init(start_pfn, end_pfn - start_pfn); 7574 } 7575 7576 /* Initialise every node */ 7577 mminit_verify_pageflags_layout(); 7578 setup_nr_node_ids(); 7579 init_unavailable_mem(); 7580 for_each_online_node(nid) { 7581 pg_data_t *pgdat = NODE_DATA(nid); 7582 free_area_init_node(nid); 7583 7584 /* Any memory on that node */ 7585 if (pgdat->node_present_pages) 7586 node_set_state(nid, N_MEMORY); 7587 check_for_memory(pgdat, nid); 7588 } 7589 } 7590 7591 static int __init cmdline_parse_core(char *p, unsigned long *core, 7592 unsigned long *percent) 7593 { 7594 unsigned long long coremem; 7595 char *endptr; 7596 7597 if (!p) 7598 return -EINVAL; 7599 7600 /* Value may be a percentage of total memory, otherwise bytes */ 7601 coremem = simple_strtoull(p, &endptr, 0); 7602 if (*endptr == '%') { 7603 /* Paranoid check for percent values greater than 100 */ 7604 WARN_ON(coremem > 100); 7605 7606 *percent = coremem; 7607 } else { 7608 coremem = memparse(p, &p); 7609 /* Paranoid check that UL is enough for the coremem value */ 7610 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7611 7612 *core = coremem >> PAGE_SHIFT; 7613 *percent = 0UL; 7614 } 7615 return 0; 7616 } 7617 7618 /* 7619 * kernelcore=size sets the amount of memory for use for allocations that 7620 * cannot be reclaimed or migrated. 7621 */ 7622 static int __init cmdline_parse_kernelcore(char *p) 7623 { 7624 /* parse kernelcore=mirror */ 7625 if (parse_option_str(p, "mirror")) { 7626 mirrored_kernelcore = true; 7627 return 0; 7628 } 7629 7630 return cmdline_parse_core(p, &required_kernelcore, 7631 &required_kernelcore_percent); 7632 } 7633 7634 /* 7635 * movablecore=size sets the amount of memory for use for allocations that 7636 * can be reclaimed or migrated. 7637 */ 7638 static int __init cmdline_parse_movablecore(char *p) 7639 { 7640 return cmdline_parse_core(p, &required_movablecore, 7641 &required_movablecore_percent); 7642 } 7643 7644 early_param("kernelcore", cmdline_parse_kernelcore); 7645 early_param("movablecore", cmdline_parse_movablecore); 7646 7647 void adjust_managed_page_count(struct page *page, long count) 7648 { 7649 atomic_long_add(count, &page_zone(page)->managed_pages); 7650 totalram_pages_add(count); 7651 #ifdef CONFIG_HIGHMEM 7652 if (PageHighMem(page)) 7653 totalhigh_pages_add(count); 7654 #endif 7655 } 7656 EXPORT_SYMBOL(adjust_managed_page_count); 7657 7658 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7659 { 7660 void *pos; 7661 unsigned long pages = 0; 7662 7663 start = (void *)PAGE_ALIGN((unsigned long)start); 7664 end = (void *)((unsigned long)end & PAGE_MASK); 7665 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7666 struct page *page = virt_to_page(pos); 7667 void *direct_map_addr; 7668 7669 /* 7670 * 'direct_map_addr' might be different from 'pos' 7671 * because some architectures' virt_to_page() 7672 * work with aliases. Getting the direct map 7673 * address ensures that we get a _writeable_ 7674 * alias for the memset(). 7675 */ 7676 direct_map_addr = page_address(page); 7677 /* 7678 * Perform a kasan-unchecked memset() since this memory 7679 * has not been initialized. 7680 */ 7681 direct_map_addr = kasan_reset_tag(direct_map_addr); 7682 if ((unsigned int)poison <= 0xFF) 7683 memset(direct_map_addr, poison, PAGE_SIZE); 7684 7685 free_reserved_page(page); 7686 } 7687 7688 if (pages && s) 7689 pr_info("Freeing %s memory: %ldK\n", 7690 s, pages << (PAGE_SHIFT - 10)); 7691 7692 return pages; 7693 } 7694 7695 void __init mem_init_print_info(const char *str) 7696 { 7697 unsigned long physpages, codesize, datasize, rosize, bss_size; 7698 unsigned long init_code_size, init_data_size; 7699 7700 physpages = get_num_physpages(); 7701 codesize = _etext - _stext; 7702 datasize = _edata - _sdata; 7703 rosize = __end_rodata - __start_rodata; 7704 bss_size = __bss_stop - __bss_start; 7705 init_data_size = __init_end - __init_begin; 7706 init_code_size = _einittext - _sinittext; 7707 7708 /* 7709 * Detect special cases and adjust section sizes accordingly: 7710 * 1) .init.* may be embedded into .data sections 7711 * 2) .init.text.* may be out of [__init_begin, __init_end], 7712 * please refer to arch/tile/kernel/vmlinux.lds.S. 7713 * 3) .rodata.* may be embedded into .text or .data sections. 7714 */ 7715 #define adj_init_size(start, end, size, pos, adj) \ 7716 do { \ 7717 if (start <= pos && pos < end && size > adj) \ 7718 size -= adj; \ 7719 } while (0) 7720 7721 adj_init_size(__init_begin, __init_end, init_data_size, 7722 _sinittext, init_code_size); 7723 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7724 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7725 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7726 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7727 7728 #undef adj_init_size 7729 7730 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7731 #ifdef CONFIG_HIGHMEM 7732 ", %luK highmem" 7733 #endif 7734 "%s%s)\n", 7735 nr_free_pages() << (PAGE_SHIFT - 10), 7736 physpages << (PAGE_SHIFT - 10), 7737 codesize >> 10, datasize >> 10, rosize >> 10, 7738 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7739 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7740 totalcma_pages << (PAGE_SHIFT - 10), 7741 #ifdef CONFIG_HIGHMEM 7742 totalhigh_pages() << (PAGE_SHIFT - 10), 7743 #endif 7744 str ? ", " : "", str ? str : ""); 7745 } 7746 7747 /** 7748 * set_dma_reserve - set the specified number of pages reserved in the first zone 7749 * @new_dma_reserve: The number of pages to mark reserved 7750 * 7751 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7752 * In the DMA zone, a significant percentage may be consumed by kernel image 7753 * and other unfreeable allocations which can skew the watermarks badly. This 7754 * function may optionally be used to account for unfreeable pages in the 7755 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7756 * smaller per-cpu batchsize. 7757 */ 7758 void __init set_dma_reserve(unsigned long new_dma_reserve) 7759 { 7760 dma_reserve = new_dma_reserve; 7761 } 7762 7763 static int page_alloc_cpu_dead(unsigned int cpu) 7764 { 7765 7766 lru_add_drain_cpu(cpu); 7767 drain_pages(cpu); 7768 7769 /* 7770 * Spill the event counters of the dead processor 7771 * into the current processors event counters. 7772 * This artificially elevates the count of the current 7773 * processor. 7774 */ 7775 vm_events_fold_cpu(cpu); 7776 7777 /* 7778 * Zero the differential counters of the dead processor 7779 * so that the vm statistics are consistent. 7780 * 7781 * This is only okay since the processor is dead and cannot 7782 * race with what we are doing. 7783 */ 7784 cpu_vm_stats_fold(cpu); 7785 return 0; 7786 } 7787 7788 #ifdef CONFIG_NUMA 7789 int hashdist = HASHDIST_DEFAULT; 7790 7791 static int __init set_hashdist(char *str) 7792 { 7793 if (!str) 7794 return 0; 7795 hashdist = simple_strtoul(str, &str, 0); 7796 return 1; 7797 } 7798 __setup("hashdist=", set_hashdist); 7799 #endif 7800 7801 void __init page_alloc_init(void) 7802 { 7803 int ret; 7804 7805 #ifdef CONFIG_NUMA 7806 if (num_node_state(N_MEMORY) == 1) 7807 hashdist = 0; 7808 #endif 7809 7810 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7811 "mm/page_alloc:dead", NULL, 7812 page_alloc_cpu_dead); 7813 WARN_ON(ret < 0); 7814 } 7815 7816 /* 7817 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7818 * or min_free_kbytes changes. 7819 */ 7820 static void calculate_totalreserve_pages(void) 7821 { 7822 struct pglist_data *pgdat; 7823 unsigned long reserve_pages = 0; 7824 enum zone_type i, j; 7825 7826 for_each_online_pgdat(pgdat) { 7827 7828 pgdat->totalreserve_pages = 0; 7829 7830 for (i = 0; i < MAX_NR_ZONES; i++) { 7831 struct zone *zone = pgdat->node_zones + i; 7832 long max = 0; 7833 unsigned long managed_pages = zone_managed_pages(zone); 7834 7835 /* Find valid and maximum lowmem_reserve in the zone */ 7836 for (j = i; j < MAX_NR_ZONES; j++) { 7837 if (zone->lowmem_reserve[j] > max) 7838 max = zone->lowmem_reserve[j]; 7839 } 7840 7841 /* we treat the high watermark as reserved pages. */ 7842 max += high_wmark_pages(zone); 7843 7844 if (max > managed_pages) 7845 max = managed_pages; 7846 7847 pgdat->totalreserve_pages += max; 7848 7849 reserve_pages += max; 7850 } 7851 } 7852 totalreserve_pages = reserve_pages; 7853 } 7854 7855 /* 7856 * setup_per_zone_lowmem_reserve - called whenever 7857 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7858 * has a correct pages reserved value, so an adequate number of 7859 * pages are left in the zone after a successful __alloc_pages(). 7860 */ 7861 static void setup_per_zone_lowmem_reserve(void) 7862 { 7863 struct pglist_data *pgdat; 7864 enum zone_type i, j; 7865 7866 for_each_online_pgdat(pgdat) { 7867 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 7868 struct zone *zone = &pgdat->node_zones[i]; 7869 int ratio = sysctl_lowmem_reserve_ratio[i]; 7870 bool clear = !ratio || !zone_managed_pages(zone); 7871 unsigned long managed_pages = 0; 7872 7873 for (j = i + 1; j < MAX_NR_ZONES; j++) { 7874 if (clear) { 7875 zone->lowmem_reserve[j] = 0; 7876 } else { 7877 struct zone *upper_zone = &pgdat->node_zones[j]; 7878 7879 managed_pages += zone_managed_pages(upper_zone); 7880 zone->lowmem_reserve[j] = managed_pages / ratio; 7881 } 7882 } 7883 } 7884 } 7885 7886 /* update totalreserve_pages */ 7887 calculate_totalreserve_pages(); 7888 } 7889 7890 static void __setup_per_zone_wmarks(void) 7891 { 7892 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7893 unsigned long lowmem_pages = 0; 7894 struct zone *zone; 7895 unsigned long flags; 7896 7897 /* Calculate total number of !ZONE_HIGHMEM pages */ 7898 for_each_zone(zone) { 7899 if (!is_highmem(zone)) 7900 lowmem_pages += zone_managed_pages(zone); 7901 } 7902 7903 for_each_zone(zone) { 7904 u64 tmp; 7905 7906 spin_lock_irqsave(&zone->lock, flags); 7907 tmp = (u64)pages_min * zone_managed_pages(zone); 7908 do_div(tmp, lowmem_pages); 7909 if (is_highmem(zone)) { 7910 /* 7911 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7912 * need highmem pages, so cap pages_min to a small 7913 * value here. 7914 * 7915 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7916 * deltas control async page reclaim, and so should 7917 * not be capped for highmem. 7918 */ 7919 unsigned long min_pages; 7920 7921 min_pages = zone_managed_pages(zone) / 1024; 7922 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7923 zone->_watermark[WMARK_MIN] = min_pages; 7924 } else { 7925 /* 7926 * If it's a lowmem zone, reserve a number of pages 7927 * proportionate to the zone's size. 7928 */ 7929 zone->_watermark[WMARK_MIN] = tmp; 7930 } 7931 7932 /* 7933 * Set the kswapd watermarks distance according to the 7934 * scale factor in proportion to available memory, but 7935 * ensure a minimum size on small systems. 7936 */ 7937 tmp = max_t(u64, tmp >> 2, 7938 mult_frac(zone_managed_pages(zone), 7939 watermark_scale_factor, 10000)); 7940 7941 zone->watermark_boost = 0; 7942 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7943 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7944 7945 spin_unlock_irqrestore(&zone->lock, flags); 7946 } 7947 7948 /* update totalreserve_pages */ 7949 calculate_totalreserve_pages(); 7950 } 7951 7952 /** 7953 * setup_per_zone_wmarks - called when min_free_kbytes changes 7954 * or when memory is hot-{added|removed} 7955 * 7956 * Ensures that the watermark[min,low,high] values for each zone are set 7957 * correctly with respect to min_free_kbytes. 7958 */ 7959 void setup_per_zone_wmarks(void) 7960 { 7961 static DEFINE_SPINLOCK(lock); 7962 7963 spin_lock(&lock); 7964 __setup_per_zone_wmarks(); 7965 spin_unlock(&lock); 7966 } 7967 7968 /* 7969 * Initialise min_free_kbytes. 7970 * 7971 * For small machines we want it small (128k min). For large machines 7972 * we want it large (256MB max). But it is not linear, because network 7973 * bandwidth does not increase linearly with machine size. We use 7974 * 7975 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7976 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7977 * 7978 * which yields 7979 * 7980 * 16MB: 512k 7981 * 32MB: 724k 7982 * 64MB: 1024k 7983 * 128MB: 1448k 7984 * 256MB: 2048k 7985 * 512MB: 2896k 7986 * 1024MB: 4096k 7987 * 2048MB: 5792k 7988 * 4096MB: 8192k 7989 * 8192MB: 11584k 7990 * 16384MB: 16384k 7991 */ 7992 int __meminit init_per_zone_wmark_min(void) 7993 { 7994 unsigned long lowmem_kbytes; 7995 int new_min_free_kbytes; 7996 7997 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7998 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7999 8000 if (new_min_free_kbytes > user_min_free_kbytes) { 8001 min_free_kbytes = new_min_free_kbytes; 8002 if (min_free_kbytes < 128) 8003 min_free_kbytes = 128; 8004 if (min_free_kbytes > 262144) 8005 min_free_kbytes = 262144; 8006 } else { 8007 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8008 new_min_free_kbytes, user_min_free_kbytes); 8009 } 8010 setup_per_zone_wmarks(); 8011 refresh_zone_stat_thresholds(); 8012 setup_per_zone_lowmem_reserve(); 8013 8014 #ifdef CONFIG_NUMA 8015 setup_min_unmapped_ratio(); 8016 setup_min_slab_ratio(); 8017 #endif 8018 8019 khugepaged_min_free_kbytes_update(); 8020 8021 return 0; 8022 } 8023 postcore_initcall(init_per_zone_wmark_min) 8024 8025 /* 8026 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8027 * that we can call two helper functions whenever min_free_kbytes 8028 * changes. 8029 */ 8030 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8031 void *buffer, size_t *length, loff_t *ppos) 8032 { 8033 int rc; 8034 8035 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8036 if (rc) 8037 return rc; 8038 8039 if (write) { 8040 user_min_free_kbytes = min_free_kbytes; 8041 setup_per_zone_wmarks(); 8042 } 8043 return 0; 8044 } 8045 8046 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8047 void *buffer, size_t *length, loff_t *ppos) 8048 { 8049 int rc; 8050 8051 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8052 if (rc) 8053 return rc; 8054 8055 if (write) 8056 setup_per_zone_wmarks(); 8057 8058 return 0; 8059 } 8060 8061 #ifdef CONFIG_NUMA 8062 static void setup_min_unmapped_ratio(void) 8063 { 8064 pg_data_t *pgdat; 8065 struct zone *zone; 8066 8067 for_each_online_pgdat(pgdat) 8068 pgdat->min_unmapped_pages = 0; 8069 8070 for_each_zone(zone) 8071 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8072 sysctl_min_unmapped_ratio) / 100; 8073 } 8074 8075 8076 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8077 void *buffer, size_t *length, loff_t *ppos) 8078 { 8079 int rc; 8080 8081 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8082 if (rc) 8083 return rc; 8084 8085 setup_min_unmapped_ratio(); 8086 8087 return 0; 8088 } 8089 8090 static void setup_min_slab_ratio(void) 8091 { 8092 pg_data_t *pgdat; 8093 struct zone *zone; 8094 8095 for_each_online_pgdat(pgdat) 8096 pgdat->min_slab_pages = 0; 8097 8098 for_each_zone(zone) 8099 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8100 sysctl_min_slab_ratio) / 100; 8101 } 8102 8103 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8104 void *buffer, size_t *length, loff_t *ppos) 8105 { 8106 int rc; 8107 8108 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8109 if (rc) 8110 return rc; 8111 8112 setup_min_slab_ratio(); 8113 8114 return 0; 8115 } 8116 #endif 8117 8118 /* 8119 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8120 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8121 * whenever sysctl_lowmem_reserve_ratio changes. 8122 * 8123 * The reserve ratio obviously has absolutely no relation with the 8124 * minimum watermarks. The lowmem reserve ratio can only make sense 8125 * if in function of the boot time zone sizes. 8126 */ 8127 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8128 void *buffer, size_t *length, loff_t *ppos) 8129 { 8130 int i; 8131 8132 proc_dointvec_minmax(table, write, buffer, length, ppos); 8133 8134 for (i = 0; i < MAX_NR_ZONES; i++) { 8135 if (sysctl_lowmem_reserve_ratio[i] < 1) 8136 sysctl_lowmem_reserve_ratio[i] = 0; 8137 } 8138 8139 setup_per_zone_lowmem_reserve(); 8140 return 0; 8141 } 8142 8143 /* 8144 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 8145 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8146 * pagelist can have before it gets flushed back to buddy allocator. 8147 */ 8148 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 8149 void *buffer, size_t *length, loff_t *ppos) 8150 { 8151 struct zone *zone; 8152 int old_percpu_pagelist_fraction; 8153 int ret; 8154 8155 mutex_lock(&pcp_batch_high_lock); 8156 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 8157 8158 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8159 if (!write || ret < 0) 8160 goto out; 8161 8162 /* Sanity checking to avoid pcp imbalance */ 8163 if (percpu_pagelist_fraction && 8164 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 8165 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 8166 ret = -EINVAL; 8167 goto out; 8168 } 8169 8170 /* No change? */ 8171 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 8172 goto out; 8173 8174 for_each_populated_zone(zone) 8175 zone_set_pageset_high_and_batch(zone); 8176 out: 8177 mutex_unlock(&pcp_batch_high_lock); 8178 return ret; 8179 } 8180 8181 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8182 /* 8183 * Returns the number of pages that arch has reserved but 8184 * is not known to alloc_large_system_hash(). 8185 */ 8186 static unsigned long __init arch_reserved_kernel_pages(void) 8187 { 8188 return 0; 8189 } 8190 #endif 8191 8192 /* 8193 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8194 * machines. As memory size is increased the scale is also increased but at 8195 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8196 * quadruples the scale is increased by one, which means the size of hash table 8197 * only doubles, instead of quadrupling as well. 8198 * Because 32-bit systems cannot have large physical memory, where this scaling 8199 * makes sense, it is disabled on such platforms. 8200 */ 8201 #if __BITS_PER_LONG > 32 8202 #define ADAPT_SCALE_BASE (64ul << 30) 8203 #define ADAPT_SCALE_SHIFT 2 8204 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8205 #endif 8206 8207 /* 8208 * allocate a large system hash table from bootmem 8209 * - it is assumed that the hash table must contain an exact power-of-2 8210 * quantity of entries 8211 * - limit is the number of hash buckets, not the total allocation size 8212 */ 8213 void *__init alloc_large_system_hash(const char *tablename, 8214 unsigned long bucketsize, 8215 unsigned long numentries, 8216 int scale, 8217 int flags, 8218 unsigned int *_hash_shift, 8219 unsigned int *_hash_mask, 8220 unsigned long low_limit, 8221 unsigned long high_limit) 8222 { 8223 unsigned long long max = high_limit; 8224 unsigned long log2qty, size; 8225 void *table = NULL; 8226 gfp_t gfp_flags; 8227 bool virt; 8228 8229 /* allow the kernel cmdline to have a say */ 8230 if (!numentries) { 8231 /* round applicable memory size up to nearest megabyte */ 8232 numentries = nr_kernel_pages; 8233 numentries -= arch_reserved_kernel_pages(); 8234 8235 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8236 if (PAGE_SHIFT < 20) 8237 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8238 8239 #if __BITS_PER_LONG > 32 8240 if (!high_limit) { 8241 unsigned long adapt; 8242 8243 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8244 adapt <<= ADAPT_SCALE_SHIFT) 8245 scale++; 8246 } 8247 #endif 8248 8249 /* limit to 1 bucket per 2^scale bytes of low memory */ 8250 if (scale > PAGE_SHIFT) 8251 numentries >>= (scale - PAGE_SHIFT); 8252 else 8253 numentries <<= (PAGE_SHIFT - scale); 8254 8255 /* Make sure we've got at least a 0-order allocation.. */ 8256 if (unlikely(flags & HASH_SMALL)) { 8257 /* Makes no sense without HASH_EARLY */ 8258 WARN_ON(!(flags & HASH_EARLY)); 8259 if (!(numentries >> *_hash_shift)) { 8260 numentries = 1UL << *_hash_shift; 8261 BUG_ON(!numentries); 8262 } 8263 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8264 numentries = PAGE_SIZE / bucketsize; 8265 } 8266 numentries = roundup_pow_of_two(numentries); 8267 8268 /* limit allocation size to 1/16 total memory by default */ 8269 if (max == 0) { 8270 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8271 do_div(max, bucketsize); 8272 } 8273 max = min(max, 0x80000000ULL); 8274 8275 if (numentries < low_limit) 8276 numentries = low_limit; 8277 if (numentries > max) 8278 numentries = max; 8279 8280 log2qty = ilog2(numentries); 8281 8282 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8283 do { 8284 virt = false; 8285 size = bucketsize << log2qty; 8286 if (flags & HASH_EARLY) { 8287 if (flags & HASH_ZERO) 8288 table = memblock_alloc(size, SMP_CACHE_BYTES); 8289 else 8290 table = memblock_alloc_raw(size, 8291 SMP_CACHE_BYTES); 8292 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8293 table = __vmalloc(size, gfp_flags); 8294 virt = true; 8295 } else { 8296 /* 8297 * If bucketsize is not a power-of-two, we may free 8298 * some pages at the end of hash table which 8299 * alloc_pages_exact() automatically does 8300 */ 8301 table = alloc_pages_exact(size, gfp_flags); 8302 kmemleak_alloc(table, size, 1, gfp_flags); 8303 } 8304 } while (!table && size > PAGE_SIZE && --log2qty); 8305 8306 if (!table) 8307 panic("Failed to allocate %s hash table\n", tablename); 8308 8309 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8310 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8311 virt ? "vmalloc" : "linear"); 8312 8313 if (_hash_shift) 8314 *_hash_shift = log2qty; 8315 if (_hash_mask) 8316 *_hash_mask = (1 << log2qty) - 1; 8317 8318 return table; 8319 } 8320 8321 /* 8322 * This function checks whether pageblock includes unmovable pages or not. 8323 * 8324 * PageLRU check without isolation or lru_lock could race so that 8325 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8326 * check without lock_page also may miss some movable non-lru pages at 8327 * race condition. So you can't expect this function should be exact. 8328 * 8329 * Returns a page without holding a reference. If the caller wants to 8330 * dereference that page (e.g., dumping), it has to make sure that it 8331 * cannot get removed (e.g., via memory unplug) concurrently. 8332 * 8333 */ 8334 struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8335 int migratetype, int flags) 8336 { 8337 unsigned long iter = 0; 8338 unsigned long pfn = page_to_pfn(page); 8339 unsigned long offset = pfn % pageblock_nr_pages; 8340 8341 if (is_migrate_cma_page(page)) { 8342 /* 8343 * CMA allocations (alloc_contig_range) really need to mark 8344 * isolate CMA pageblocks even when they are not movable in fact 8345 * so consider them movable here. 8346 */ 8347 if (is_migrate_cma(migratetype)) 8348 return NULL; 8349 8350 return page; 8351 } 8352 8353 for (; iter < pageblock_nr_pages - offset; iter++) { 8354 if (!pfn_valid_within(pfn + iter)) 8355 continue; 8356 8357 page = pfn_to_page(pfn + iter); 8358 8359 /* 8360 * Both, bootmem allocations and memory holes are marked 8361 * PG_reserved and are unmovable. We can even have unmovable 8362 * allocations inside ZONE_MOVABLE, for example when 8363 * specifying "movablecore". 8364 */ 8365 if (PageReserved(page)) 8366 return page; 8367 8368 /* 8369 * If the zone is movable and we have ruled out all reserved 8370 * pages then it should be reasonably safe to assume the rest 8371 * is movable. 8372 */ 8373 if (zone_idx(zone) == ZONE_MOVABLE) 8374 continue; 8375 8376 /* 8377 * Hugepages are not in LRU lists, but they're movable. 8378 * THPs are on the LRU, but need to be counted as #small pages. 8379 * We need not scan over tail pages because we don't 8380 * handle each tail page individually in migration. 8381 */ 8382 if (PageHuge(page) || PageTransCompound(page)) { 8383 struct page *head = compound_head(page); 8384 unsigned int skip_pages; 8385 8386 if (PageHuge(page)) { 8387 if (!hugepage_migration_supported(page_hstate(head))) 8388 return page; 8389 } else if (!PageLRU(head) && !__PageMovable(head)) { 8390 return page; 8391 } 8392 8393 skip_pages = compound_nr(head) - (page - head); 8394 iter += skip_pages - 1; 8395 continue; 8396 } 8397 8398 /* 8399 * We can't use page_count without pin a page 8400 * because another CPU can free compound page. 8401 * This check already skips compound tails of THP 8402 * because their page->_refcount is zero at all time. 8403 */ 8404 if (!page_ref_count(page)) { 8405 if (PageBuddy(page)) 8406 iter += (1 << buddy_order(page)) - 1; 8407 continue; 8408 } 8409 8410 /* 8411 * The HWPoisoned page may be not in buddy system, and 8412 * page_count() is not 0. 8413 */ 8414 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8415 continue; 8416 8417 /* 8418 * We treat all PageOffline() pages as movable when offlining 8419 * to give drivers a chance to decrement their reference count 8420 * in MEM_GOING_OFFLINE in order to indicate that these pages 8421 * can be offlined as there are no direct references anymore. 8422 * For actually unmovable PageOffline() where the driver does 8423 * not support this, we will fail later when trying to actually 8424 * move these pages that still have a reference count > 0. 8425 * (false negatives in this function only) 8426 */ 8427 if ((flags & MEMORY_OFFLINE) && PageOffline(page)) 8428 continue; 8429 8430 if (__PageMovable(page) || PageLRU(page)) 8431 continue; 8432 8433 /* 8434 * If there are RECLAIMABLE pages, we need to check 8435 * it. But now, memory offline itself doesn't call 8436 * shrink_node_slabs() and it still to be fixed. 8437 */ 8438 return page; 8439 } 8440 return NULL; 8441 } 8442 8443 #ifdef CONFIG_CONTIG_ALLOC 8444 static unsigned long pfn_max_align_down(unsigned long pfn) 8445 { 8446 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8447 pageblock_nr_pages) - 1); 8448 } 8449 8450 static unsigned long pfn_max_align_up(unsigned long pfn) 8451 { 8452 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8453 pageblock_nr_pages)); 8454 } 8455 8456 /* [start, end) must belong to a single zone. */ 8457 static int __alloc_contig_migrate_range(struct compact_control *cc, 8458 unsigned long start, unsigned long end) 8459 { 8460 /* This function is based on compact_zone() from compaction.c. */ 8461 unsigned int nr_reclaimed; 8462 unsigned long pfn = start; 8463 unsigned int tries = 0; 8464 int ret = 0; 8465 struct migration_target_control mtc = { 8466 .nid = zone_to_nid(cc->zone), 8467 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 8468 }; 8469 8470 migrate_prep(); 8471 8472 while (pfn < end || !list_empty(&cc->migratepages)) { 8473 if (fatal_signal_pending(current)) { 8474 ret = -EINTR; 8475 break; 8476 } 8477 8478 if (list_empty(&cc->migratepages)) { 8479 cc->nr_migratepages = 0; 8480 pfn = isolate_migratepages_range(cc, pfn, end); 8481 if (!pfn) { 8482 ret = -EINTR; 8483 break; 8484 } 8485 tries = 0; 8486 } else if (++tries == 5) { 8487 ret = ret < 0 ? ret : -EBUSY; 8488 break; 8489 } 8490 8491 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8492 &cc->migratepages); 8493 cc->nr_migratepages -= nr_reclaimed; 8494 8495 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 8496 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE); 8497 } 8498 if (ret < 0) { 8499 putback_movable_pages(&cc->migratepages); 8500 return ret; 8501 } 8502 return 0; 8503 } 8504 8505 /** 8506 * alloc_contig_range() -- tries to allocate given range of pages 8507 * @start: start PFN to allocate 8508 * @end: one-past-the-last PFN to allocate 8509 * @migratetype: migratetype of the underlaying pageblocks (either 8510 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8511 * in range must have the same migratetype and it must 8512 * be either of the two. 8513 * @gfp_mask: GFP mask to use during compaction 8514 * 8515 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8516 * aligned. The PFN range must belong to a single zone. 8517 * 8518 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8519 * pageblocks in the range. Once isolated, the pageblocks should not 8520 * be modified by others. 8521 * 8522 * Return: zero on success or negative error code. On success all 8523 * pages which PFN is in [start, end) are allocated for the caller and 8524 * need to be freed with free_contig_range(). 8525 */ 8526 int alloc_contig_range(unsigned long start, unsigned long end, 8527 unsigned migratetype, gfp_t gfp_mask) 8528 { 8529 unsigned long outer_start, outer_end; 8530 unsigned int order; 8531 int ret = 0; 8532 8533 struct compact_control cc = { 8534 .nr_migratepages = 0, 8535 .order = -1, 8536 .zone = page_zone(pfn_to_page(start)), 8537 .mode = MIGRATE_SYNC, 8538 .ignore_skip_hint = true, 8539 .no_set_skip_hint = true, 8540 .gfp_mask = current_gfp_context(gfp_mask), 8541 .alloc_contig = true, 8542 }; 8543 INIT_LIST_HEAD(&cc.migratepages); 8544 8545 /* 8546 * What we do here is we mark all pageblocks in range as 8547 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8548 * have different sizes, and due to the way page allocator 8549 * work, we align the range to biggest of the two pages so 8550 * that page allocator won't try to merge buddies from 8551 * different pageblocks and change MIGRATE_ISOLATE to some 8552 * other migration type. 8553 * 8554 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8555 * migrate the pages from an unaligned range (ie. pages that 8556 * we are interested in). This will put all the pages in 8557 * range back to page allocator as MIGRATE_ISOLATE. 8558 * 8559 * When this is done, we take the pages in range from page 8560 * allocator removing them from the buddy system. This way 8561 * page allocator will never consider using them. 8562 * 8563 * This lets us mark the pageblocks back as 8564 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8565 * aligned range but not in the unaligned, original range are 8566 * put back to page allocator so that buddy can use them. 8567 */ 8568 8569 ret = start_isolate_page_range(pfn_max_align_down(start), 8570 pfn_max_align_up(end), migratetype, 0); 8571 if (ret) 8572 return ret; 8573 8574 drain_all_pages(cc.zone); 8575 8576 /* 8577 * In case of -EBUSY, we'd like to know which page causes problem. 8578 * So, just fall through. test_pages_isolated() has a tracepoint 8579 * which will report the busy page. 8580 * 8581 * It is possible that busy pages could become available before 8582 * the call to test_pages_isolated, and the range will actually be 8583 * allocated. So, if we fall through be sure to clear ret so that 8584 * -EBUSY is not accidentally used or returned to caller. 8585 */ 8586 ret = __alloc_contig_migrate_range(&cc, start, end); 8587 if (ret && ret != -EBUSY) 8588 goto done; 8589 ret =0; 8590 8591 /* 8592 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8593 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8594 * more, all pages in [start, end) are free in page allocator. 8595 * What we are going to do is to allocate all pages from 8596 * [start, end) (that is remove them from page allocator). 8597 * 8598 * The only problem is that pages at the beginning and at the 8599 * end of interesting range may be not aligned with pages that 8600 * page allocator holds, ie. they can be part of higher order 8601 * pages. Because of this, we reserve the bigger range and 8602 * once this is done free the pages we are not interested in. 8603 * 8604 * We don't have to hold zone->lock here because the pages are 8605 * isolated thus they won't get removed from buddy. 8606 */ 8607 8608 lru_add_drain_all(); 8609 8610 order = 0; 8611 outer_start = start; 8612 while (!PageBuddy(pfn_to_page(outer_start))) { 8613 if (++order >= MAX_ORDER) { 8614 outer_start = start; 8615 break; 8616 } 8617 outer_start &= ~0UL << order; 8618 } 8619 8620 if (outer_start != start) { 8621 order = buddy_order(pfn_to_page(outer_start)); 8622 8623 /* 8624 * outer_start page could be small order buddy page and 8625 * it doesn't include start page. Adjust outer_start 8626 * in this case to report failed page properly 8627 * on tracepoint in test_pages_isolated() 8628 */ 8629 if (outer_start + (1UL << order) <= start) 8630 outer_start = start; 8631 } 8632 8633 /* Make sure the range is really isolated. */ 8634 if (test_pages_isolated(outer_start, end, 0)) { 8635 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8636 __func__, outer_start, end); 8637 ret = -EBUSY; 8638 goto done; 8639 } 8640 8641 /* Grab isolated pages from freelists. */ 8642 outer_end = isolate_freepages_range(&cc, outer_start, end); 8643 if (!outer_end) { 8644 ret = -EBUSY; 8645 goto done; 8646 } 8647 8648 /* Free head and tail (if any) */ 8649 if (start != outer_start) 8650 free_contig_range(outer_start, start - outer_start); 8651 if (end != outer_end) 8652 free_contig_range(end, outer_end - end); 8653 8654 done: 8655 undo_isolate_page_range(pfn_max_align_down(start), 8656 pfn_max_align_up(end), migratetype); 8657 return ret; 8658 } 8659 EXPORT_SYMBOL(alloc_contig_range); 8660 8661 static int __alloc_contig_pages(unsigned long start_pfn, 8662 unsigned long nr_pages, gfp_t gfp_mask) 8663 { 8664 unsigned long end_pfn = start_pfn + nr_pages; 8665 8666 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 8667 gfp_mask); 8668 } 8669 8670 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 8671 unsigned long nr_pages) 8672 { 8673 unsigned long i, end_pfn = start_pfn + nr_pages; 8674 struct page *page; 8675 8676 for (i = start_pfn; i < end_pfn; i++) { 8677 page = pfn_to_online_page(i); 8678 if (!page) 8679 return false; 8680 8681 if (page_zone(page) != z) 8682 return false; 8683 8684 if (PageReserved(page)) 8685 return false; 8686 8687 if (page_count(page) > 0) 8688 return false; 8689 8690 if (PageHuge(page)) 8691 return false; 8692 } 8693 return true; 8694 } 8695 8696 static bool zone_spans_last_pfn(const struct zone *zone, 8697 unsigned long start_pfn, unsigned long nr_pages) 8698 { 8699 unsigned long last_pfn = start_pfn + nr_pages - 1; 8700 8701 return zone_spans_pfn(zone, last_pfn); 8702 } 8703 8704 /** 8705 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 8706 * @nr_pages: Number of contiguous pages to allocate 8707 * @gfp_mask: GFP mask to limit search and used during compaction 8708 * @nid: Target node 8709 * @nodemask: Mask for other possible nodes 8710 * 8711 * This routine is a wrapper around alloc_contig_range(). It scans over zones 8712 * on an applicable zonelist to find a contiguous pfn range which can then be 8713 * tried for allocation with alloc_contig_range(). This routine is intended 8714 * for allocation requests which can not be fulfilled with the buddy allocator. 8715 * 8716 * The allocated memory is always aligned to a page boundary. If nr_pages is a 8717 * power of two then the alignment is guaranteed to be to the given nr_pages 8718 * (e.g. 1GB request would be aligned to 1GB). 8719 * 8720 * Allocated pages can be freed with free_contig_range() or by manually calling 8721 * __free_page() on each allocated page. 8722 * 8723 * Return: pointer to contiguous pages on success, or NULL if not successful. 8724 */ 8725 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 8726 int nid, nodemask_t *nodemask) 8727 { 8728 unsigned long ret, pfn, flags; 8729 struct zonelist *zonelist; 8730 struct zone *zone; 8731 struct zoneref *z; 8732 8733 zonelist = node_zonelist(nid, gfp_mask); 8734 for_each_zone_zonelist_nodemask(zone, z, zonelist, 8735 gfp_zone(gfp_mask), nodemask) { 8736 spin_lock_irqsave(&zone->lock, flags); 8737 8738 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 8739 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 8740 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 8741 /* 8742 * We release the zone lock here because 8743 * alloc_contig_range() will also lock the zone 8744 * at some point. If there's an allocation 8745 * spinning on this lock, it may win the race 8746 * and cause alloc_contig_range() to fail... 8747 */ 8748 spin_unlock_irqrestore(&zone->lock, flags); 8749 ret = __alloc_contig_pages(pfn, nr_pages, 8750 gfp_mask); 8751 if (!ret) 8752 return pfn_to_page(pfn); 8753 spin_lock_irqsave(&zone->lock, flags); 8754 } 8755 pfn += nr_pages; 8756 } 8757 spin_unlock_irqrestore(&zone->lock, flags); 8758 } 8759 return NULL; 8760 } 8761 #endif /* CONFIG_CONTIG_ALLOC */ 8762 8763 void free_contig_range(unsigned long pfn, unsigned int nr_pages) 8764 { 8765 unsigned int count = 0; 8766 8767 for (; nr_pages--; pfn++) { 8768 struct page *page = pfn_to_page(pfn); 8769 8770 count += page_count(page) != 1; 8771 __free_page(page); 8772 } 8773 WARN(count != 0, "%d pages are still in use!\n", count); 8774 } 8775 EXPORT_SYMBOL(free_contig_range); 8776 8777 /* 8778 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8779 * page high values need to be recalulated. 8780 */ 8781 void __meminit zone_pcp_update(struct zone *zone) 8782 { 8783 mutex_lock(&pcp_batch_high_lock); 8784 zone_set_pageset_high_and_batch(zone); 8785 mutex_unlock(&pcp_batch_high_lock); 8786 } 8787 8788 /* 8789 * Effectively disable pcplists for the zone by setting the high limit to 0 8790 * and draining all cpus. A concurrent page freeing on another CPU that's about 8791 * to put the page on pcplist will either finish before the drain and the page 8792 * will be drained, or observe the new high limit and skip the pcplist. 8793 * 8794 * Must be paired with a call to zone_pcp_enable(). 8795 */ 8796 void zone_pcp_disable(struct zone *zone) 8797 { 8798 mutex_lock(&pcp_batch_high_lock); 8799 __zone_set_pageset_high_and_batch(zone, 0, 1); 8800 __drain_all_pages(zone, true); 8801 } 8802 8803 void zone_pcp_enable(struct zone *zone) 8804 { 8805 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 8806 mutex_unlock(&pcp_batch_high_lock); 8807 } 8808 8809 void zone_pcp_reset(struct zone *zone) 8810 { 8811 unsigned long flags; 8812 int cpu; 8813 struct per_cpu_pageset *pset; 8814 8815 /* avoid races with drain_pages() */ 8816 local_irq_save(flags); 8817 if (zone->pageset != &boot_pageset) { 8818 for_each_online_cpu(cpu) { 8819 pset = per_cpu_ptr(zone->pageset, cpu); 8820 drain_zonestat(zone, pset); 8821 } 8822 free_percpu(zone->pageset); 8823 zone->pageset = &boot_pageset; 8824 } 8825 local_irq_restore(flags); 8826 } 8827 8828 #ifdef CONFIG_MEMORY_HOTREMOVE 8829 /* 8830 * All pages in the range must be in a single zone, must not contain holes, 8831 * must span full sections, and must be isolated before calling this function. 8832 */ 8833 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8834 { 8835 unsigned long pfn = start_pfn; 8836 struct page *page; 8837 struct zone *zone; 8838 unsigned int order; 8839 unsigned long flags; 8840 8841 offline_mem_sections(pfn, end_pfn); 8842 zone = page_zone(pfn_to_page(pfn)); 8843 spin_lock_irqsave(&zone->lock, flags); 8844 while (pfn < end_pfn) { 8845 page = pfn_to_page(pfn); 8846 /* 8847 * The HWPoisoned page may be not in buddy system, and 8848 * page_count() is not 0. 8849 */ 8850 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8851 pfn++; 8852 continue; 8853 } 8854 /* 8855 * At this point all remaining PageOffline() pages have a 8856 * reference count of 0 and can simply be skipped. 8857 */ 8858 if (PageOffline(page)) { 8859 BUG_ON(page_count(page)); 8860 BUG_ON(PageBuddy(page)); 8861 pfn++; 8862 continue; 8863 } 8864 8865 BUG_ON(page_count(page)); 8866 BUG_ON(!PageBuddy(page)); 8867 order = buddy_order(page); 8868 del_page_from_free_list(page, zone, order); 8869 pfn += (1 << order); 8870 } 8871 spin_unlock_irqrestore(&zone->lock, flags); 8872 } 8873 #endif 8874 8875 bool is_free_buddy_page(struct page *page) 8876 { 8877 struct zone *zone = page_zone(page); 8878 unsigned long pfn = page_to_pfn(page); 8879 unsigned long flags; 8880 unsigned int order; 8881 8882 spin_lock_irqsave(&zone->lock, flags); 8883 for (order = 0; order < MAX_ORDER; order++) { 8884 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8885 8886 if (PageBuddy(page_head) && buddy_order(page_head) >= order) 8887 break; 8888 } 8889 spin_unlock_irqrestore(&zone->lock, flags); 8890 8891 return order < MAX_ORDER; 8892 } 8893 8894 #ifdef CONFIG_MEMORY_FAILURE 8895 /* 8896 * Break down a higher-order page in sub-pages, and keep our target out of 8897 * buddy allocator. 8898 */ 8899 static void break_down_buddy_pages(struct zone *zone, struct page *page, 8900 struct page *target, int low, int high, 8901 int migratetype) 8902 { 8903 unsigned long size = 1 << high; 8904 struct page *current_buddy, *next_page; 8905 8906 while (high > low) { 8907 high--; 8908 size >>= 1; 8909 8910 if (target >= &page[size]) { 8911 next_page = page + size; 8912 current_buddy = page; 8913 } else { 8914 next_page = page; 8915 current_buddy = page + size; 8916 } 8917 8918 if (set_page_guard(zone, current_buddy, high, migratetype)) 8919 continue; 8920 8921 if (current_buddy != target) { 8922 add_to_free_list(current_buddy, zone, high, migratetype); 8923 set_buddy_order(current_buddy, high); 8924 page = next_page; 8925 } 8926 } 8927 } 8928 8929 /* 8930 * Take a page that will be marked as poisoned off the buddy allocator. 8931 */ 8932 bool take_page_off_buddy(struct page *page) 8933 { 8934 struct zone *zone = page_zone(page); 8935 unsigned long pfn = page_to_pfn(page); 8936 unsigned long flags; 8937 unsigned int order; 8938 bool ret = false; 8939 8940 spin_lock_irqsave(&zone->lock, flags); 8941 for (order = 0; order < MAX_ORDER; order++) { 8942 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8943 int page_order = buddy_order(page_head); 8944 8945 if (PageBuddy(page_head) && page_order >= order) { 8946 unsigned long pfn_head = page_to_pfn(page_head); 8947 int migratetype = get_pfnblock_migratetype(page_head, 8948 pfn_head); 8949 8950 del_page_from_free_list(page_head, zone, page_order); 8951 break_down_buddy_pages(zone, page_head, page, 0, 8952 page_order, migratetype); 8953 ret = true; 8954 break; 8955 } 8956 if (page_count(page_head) > 0) 8957 break; 8958 } 8959 spin_unlock_irqrestore(&zone->lock, flags); 8960 return ret; 8961 } 8962 #endif 8963