xref: /openbmc/linux/mm/page_alloc.c (revision 87c2ce3b)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
40 
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43 
44 /*
45  * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46  * initializer cleaner
47  */
48 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
49 EXPORT_SYMBOL(node_online_map);
50 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
51 EXPORT_SYMBOL(node_possible_map);
52 struct pglist_data *pgdat_list __read_mostly;
53 unsigned long totalram_pages __read_mostly;
54 unsigned long totalhigh_pages __read_mostly;
55 long nr_swap_pages;
56 int percpu_pagelist_fraction;
57 
58 static void fastcall free_hot_cold_page(struct page *page, int cold);
59 
60 /*
61  * results with 256, 32 in the lowmem_reserve sysctl:
62  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63  *	1G machine -> (16M dma, 784M normal, 224M high)
64  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
67  *
68  * TBD: should special case ZONE_DMA32 machines here - in those we normally
69  * don't need any ZONE_NORMAL reservation
70  */
71 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
72 
73 EXPORT_SYMBOL(totalram_pages);
74 
75 /*
76  * Used by page_zone() to look up the address of the struct zone whose
77  * id is encoded in the upper bits of page->flags
78  */
79 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
80 EXPORT_SYMBOL(zone_table);
81 
82 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
83 int min_free_kbytes = 1024;
84 
85 unsigned long __initdata nr_kernel_pages;
86 unsigned long __initdata nr_all_pages;
87 
88 #ifdef CONFIG_DEBUG_VM
89 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
90 {
91 	int ret = 0;
92 	unsigned seq;
93 	unsigned long pfn = page_to_pfn(page);
94 
95 	do {
96 		seq = zone_span_seqbegin(zone);
97 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
98 			ret = 1;
99 		else if (pfn < zone->zone_start_pfn)
100 			ret = 1;
101 	} while (zone_span_seqretry(zone, seq));
102 
103 	return ret;
104 }
105 
106 static int page_is_consistent(struct zone *zone, struct page *page)
107 {
108 #ifdef CONFIG_HOLES_IN_ZONE
109 	if (!pfn_valid(page_to_pfn(page)))
110 		return 0;
111 #endif
112 	if (zone != page_zone(page))
113 		return 0;
114 
115 	return 1;
116 }
117 /*
118  * Temporary debugging check for pages not lying within a given zone.
119  */
120 static int bad_range(struct zone *zone, struct page *page)
121 {
122 	if (page_outside_zone_boundaries(zone, page))
123 		return 1;
124 	if (!page_is_consistent(zone, page))
125 		return 1;
126 
127 	return 0;
128 }
129 
130 #else
131 static inline int bad_range(struct zone *zone, struct page *page)
132 {
133 	return 0;
134 }
135 #endif
136 
137 static void bad_page(struct page *page)
138 {
139 	printk(KERN_EMERG "Bad page state in process '%s'\n"
140 		"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
141 		"Trying to fix it up, but a reboot is needed\n"
142 		"Backtrace:\n",
143 		current->comm, page, (int)(2*sizeof(unsigned long)),
144 		(unsigned long)page->flags, page->mapping,
145 		page_mapcount(page), page_count(page));
146 	dump_stack();
147 	page->flags &= ~(1 << PG_lru	|
148 			1 << PG_private |
149 			1 << PG_locked	|
150 			1 << PG_active	|
151 			1 << PG_dirty	|
152 			1 << PG_reclaim |
153 			1 << PG_slab    |
154 			1 << PG_swapcache |
155 			1 << PG_writeback );
156 	set_page_count(page, 0);
157 	reset_page_mapcount(page);
158 	page->mapping = NULL;
159 	add_taint(TAINT_BAD_PAGE);
160 }
161 
162 /*
163  * Higher-order pages are called "compound pages".  They are structured thusly:
164  *
165  * The first PAGE_SIZE page is called the "head page".
166  *
167  * The remaining PAGE_SIZE pages are called "tail pages".
168  *
169  * All pages have PG_compound set.  All pages have their ->private pointing at
170  * the head page (even the head page has this).
171  *
172  * The first tail page's ->mapping, if non-zero, holds the address of the
173  * compound page's put_page() function.
174  *
175  * The order of the allocation is stored in the first tail page's ->index
176  * This is only for debug at present.  This usage means that zero-order pages
177  * may not be compound.
178  */
179 static void prep_compound_page(struct page *page, unsigned long order)
180 {
181 	int i;
182 	int nr_pages = 1 << order;
183 
184 	page[1].mapping = NULL;
185 	page[1].index = order;
186 	for (i = 0; i < nr_pages; i++) {
187 		struct page *p = page + i;
188 
189 		SetPageCompound(p);
190 		set_page_private(p, (unsigned long)page);
191 	}
192 }
193 
194 static void destroy_compound_page(struct page *page, unsigned long order)
195 {
196 	int i;
197 	int nr_pages = 1 << order;
198 
199 	if (unlikely(page[1].index != order))
200 		bad_page(page);
201 
202 	for (i = 0; i < nr_pages; i++) {
203 		struct page *p = page + i;
204 
205 		if (unlikely(!PageCompound(p) |
206 				(page_private(p) != (unsigned long)page)))
207 			bad_page(page);
208 		ClearPageCompound(p);
209 	}
210 }
211 
212 /*
213  * function for dealing with page's order in buddy system.
214  * zone->lock is already acquired when we use these.
215  * So, we don't need atomic page->flags operations here.
216  */
217 static inline unsigned long page_order(struct page *page) {
218 	return page_private(page);
219 }
220 
221 static inline void set_page_order(struct page *page, int order) {
222 	set_page_private(page, order);
223 	__SetPagePrivate(page);
224 }
225 
226 static inline void rmv_page_order(struct page *page)
227 {
228 	__ClearPagePrivate(page);
229 	set_page_private(page, 0);
230 }
231 
232 /*
233  * Locate the struct page for both the matching buddy in our
234  * pair (buddy1) and the combined O(n+1) page they form (page).
235  *
236  * 1) Any buddy B1 will have an order O twin B2 which satisfies
237  * the following equation:
238  *     B2 = B1 ^ (1 << O)
239  * For example, if the starting buddy (buddy2) is #8 its order
240  * 1 buddy is #10:
241  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
242  *
243  * 2) Any buddy B will have an order O+1 parent P which
244  * satisfies the following equation:
245  *     P = B & ~(1 << O)
246  *
247  * Assumption: *_mem_map is contigious at least up to MAX_ORDER
248  */
249 static inline struct page *
250 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
251 {
252 	unsigned long buddy_idx = page_idx ^ (1 << order);
253 
254 	return page + (buddy_idx - page_idx);
255 }
256 
257 static inline unsigned long
258 __find_combined_index(unsigned long page_idx, unsigned int order)
259 {
260 	return (page_idx & ~(1 << order));
261 }
262 
263 /*
264  * This function checks whether a page is free && is the buddy
265  * we can do coalesce a page and its buddy if
266  * (a) the buddy is not in a hole &&
267  * (b) the buddy is free &&
268  * (c) the buddy is on the buddy system &&
269  * (d) a page and its buddy have the same order.
270  * for recording page's order, we use page_private(page) and PG_private.
271  *
272  */
273 static inline int page_is_buddy(struct page *page, int order)
274 {
275 #ifdef CONFIG_HOLES_IN_ZONE
276 	if (!pfn_valid(page_to_pfn(page)))
277 		return 0;
278 #endif
279 
280        if (PagePrivate(page)           &&
281            (page_order(page) == order) &&
282             page_count(page) == 0)
283                return 1;
284        return 0;
285 }
286 
287 /*
288  * Freeing function for a buddy system allocator.
289  *
290  * The concept of a buddy system is to maintain direct-mapped table
291  * (containing bit values) for memory blocks of various "orders".
292  * The bottom level table contains the map for the smallest allocatable
293  * units of memory (here, pages), and each level above it describes
294  * pairs of units from the levels below, hence, "buddies".
295  * At a high level, all that happens here is marking the table entry
296  * at the bottom level available, and propagating the changes upward
297  * as necessary, plus some accounting needed to play nicely with other
298  * parts of the VM system.
299  * At each level, we keep a list of pages, which are heads of continuous
300  * free pages of length of (1 << order) and marked with PG_Private.Page's
301  * order is recorded in page_private(page) field.
302  * So when we are allocating or freeing one, we can derive the state of the
303  * other.  That is, if we allocate a small block, and both were
304  * free, the remainder of the region must be split into blocks.
305  * If a block is freed, and its buddy is also free, then this
306  * triggers coalescing into a block of larger size.
307  *
308  * -- wli
309  */
310 
311 static inline void __free_one_page(struct page *page,
312 		struct zone *zone, unsigned int order)
313 {
314 	unsigned long page_idx;
315 	int order_size = 1 << order;
316 
317 	if (unlikely(PageCompound(page)))
318 		destroy_compound_page(page, order);
319 
320 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
321 
322 	BUG_ON(page_idx & (order_size - 1));
323 	BUG_ON(bad_range(zone, page));
324 
325 	zone->free_pages += order_size;
326 	while (order < MAX_ORDER-1) {
327 		unsigned long combined_idx;
328 		struct free_area *area;
329 		struct page *buddy;
330 
331 		buddy = __page_find_buddy(page, page_idx, order);
332 		if (!page_is_buddy(buddy, order))
333 			break;		/* Move the buddy up one level. */
334 
335 		list_del(&buddy->lru);
336 		area = zone->free_area + order;
337 		area->nr_free--;
338 		rmv_page_order(buddy);
339 		combined_idx = __find_combined_index(page_idx, order);
340 		page = page + (combined_idx - page_idx);
341 		page_idx = combined_idx;
342 		order++;
343 	}
344 	set_page_order(page, order);
345 	list_add(&page->lru, &zone->free_area[order].free_list);
346 	zone->free_area[order].nr_free++;
347 }
348 
349 static inline int free_pages_check(struct page *page)
350 {
351 	if (unlikely(page_mapcount(page) |
352 		(page->mapping != NULL)  |
353 		(page_count(page) != 0)  |
354 		(page->flags & (
355 			1 << PG_lru	|
356 			1 << PG_private |
357 			1 << PG_locked	|
358 			1 << PG_active	|
359 			1 << PG_reclaim	|
360 			1 << PG_slab	|
361 			1 << PG_swapcache |
362 			1 << PG_writeback |
363 			1 << PG_reserved ))))
364 		bad_page(page);
365 	if (PageDirty(page))
366 		__ClearPageDirty(page);
367 	/*
368 	 * For now, we report if PG_reserved was found set, but do not
369 	 * clear it, and do not free the page.  But we shall soon need
370 	 * to do more, for when the ZERO_PAGE count wraps negative.
371 	 */
372 	return PageReserved(page);
373 }
374 
375 /*
376  * Frees a list of pages.
377  * Assumes all pages on list are in same zone, and of same order.
378  * count is the number of pages to free.
379  *
380  * If the zone was previously in an "all pages pinned" state then look to
381  * see if this freeing clears that state.
382  *
383  * And clear the zone's pages_scanned counter, to hold off the "all pages are
384  * pinned" detection logic.
385  */
386 static void free_pages_bulk(struct zone *zone, int count,
387 					struct list_head *list, int order)
388 {
389 	spin_lock(&zone->lock);
390 	zone->all_unreclaimable = 0;
391 	zone->pages_scanned = 0;
392 	while (count--) {
393 		struct page *page;
394 
395 		BUG_ON(list_empty(list));
396 		page = list_entry(list->prev, struct page, lru);
397 		/* have to delete it as __free_one_page list manipulates */
398 		list_del(&page->lru);
399 		__free_one_page(page, zone, order);
400 	}
401 	spin_unlock(&zone->lock);
402 }
403 
404 static void free_one_page(struct zone *zone, struct page *page, int order)
405 {
406 	LIST_HEAD(list);
407 	list_add(&page->lru, &list);
408 	free_pages_bulk(zone, 1, &list, order);
409 }
410 
411 static void __free_pages_ok(struct page *page, unsigned int order)
412 {
413 	unsigned long flags;
414 	int i;
415 	int reserved = 0;
416 
417 	arch_free_page(page, order);
418 	if (!PageHighMem(page))
419 		mutex_debug_check_no_locks_freed(page_address(page),
420 			page_address(page+(1<<order)));
421 
422 #ifndef CONFIG_MMU
423 	for (i = 1 ; i < (1 << order) ; ++i)
424 		__put_page(page + i);
425 #endif
426 
427 	for (i = 0 ; i < (1 << order) ; ++i)
428 		reserved += free_pages_check(page + i);
429 	if (reserved)
430 		return;
431 
432 	kernel_map_pages(page, 1 << order, 0);
433 	local_irq_save(flags);
434 	__mod_page_state(pgfree, 1 << order);
435 	free_one_page(page_zone(page), page, order);
436 	local_irq_restore(flags);
437 }
438 
439 /*
440  * permit the bootmem allocator to evade page validation on high-order frees
441  */
442 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
443 {
444 	if (order == 0) {
445 		__ClearPageReserved(page);
446 		set_page_count(page, 0);
447 
448 		free_hot_cold_page(page, 0);
449 	} else {
450 		LIST_HEAD(list);
451 		int loop;
452 
453 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
454 			struct page *p = &page[loop];
455 
456 			if (loop + 16 < BITS_PER_LONG)
457 				prefetchw(p + 16);
458 			__ClearPageReserved(p);
459 			set_page_count(p, 0);
460 		}
461 
462 		arch_free_page(page, order);
463 
464 		mod_page_state(pgfree, 1 << order);
465 
466 		list_add(&page->lru, &list);
467 		kernel_map_pages(page, 1 << order, 0);
468 		free_pages_bulk(page_zone(page), 1, &list, order);
469 	}
470 }
471 
472 
473 /*
474  * The order of subdivision here is critical for the IO subsystem.
475  * Please do not alter this order without good reasons and regression
476  * testing. Specifically, as large blocks of memory are subdivided,
477  * the order in which smaller blocks are delivered depends on the order
478  * they're subdivided in this function. This is the primary factor
479  * influencing the order in which pages are delivered to the IO
480  * subsystem according to empirical testing, and this is also justified
481  * by considering the behavior of a buddy system containing a single
482  * large block of memory acted on by a series of small allocations.
483  * This behavior is a critical factor in sglist merging's success.
484  *
485  * -- wli
486  */
487 static inline void expand(struct zone *zone, struct page *page,
488  	int low, int high, struct free_area *area)
489 {
490 	unsigned long size = 1 << high;
491 
492 	while (high > low) {
493 		area--;
494 		high--;
495 		size >>= 1;
496 		BUG_ON(bad_range(zone, &page[size]));
497 		list_add(&page[size].lru, &area->free_list);
498 		area->nr_free++;
499 		set_page_order(&page[size], high);
500 	}
501 }
502 
503 /*
504  * This page is about to be returned from the page allocator
505  */
506 static int prep_new_page(struct page *page, int order)
507 {
508 	if (unlikely(page_mapcount(page) |
509 		(page->mapping != NULL)  |
510 		(page_count(page) != 0)  |
511 		(page->flags & (
512 			1 << PG_lru	|
513 			1 << PG_private	|
514 			1 << PG_locked	|
515 			1 << PG_active	|
516 			1 << PG_dirty	|
517 			1 << PG_reclaim	|
518 			1 << PG_slab    |
519 			1 << PG_swapcache |
520 			1 << PG_writeback |
521 			1 << PG_reserved ))))
522 		bad_page(page);
523 
524 	/*
525 	 * For now, we report if PG_reserved was found set, but do not
526 	 * clear it, and do not allocate the page: as a safety net.
527 	 */
528 	if (PageReserved(page))
529 		return 1;
530 
531 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
532 			1 << PG_referenced | 1 << PG_arch_1 |
533 			1 << PG_checked | 1 << PG_mappedtodisk);
534 	set_page_private(page, 0);
535 	set_page_refs(page, order);
536 	kernel_map_pages(page, 1 << order, 1);
537 	return 0;
538 }
539 
540 /*
541  * Do the hard work of removing an element from the buddy allocator.
542  * Call me with the zone->lock already held.
543  */
544 static struct page *__rmqueue(struct zone *zone, unsigned int order)
545 {
546 	struct free_area * area;
547 	unsigned int current_order;
548 	struct page *page;
549 
550 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
551 		area = zone->free_area + current_order;
552 		if (list_empty(&area->free_list))
553 			continue;
554 
555 		page = list_entry(area->free_list.next, struct page, lru);
556 		list_del(&page->lru);
557 		rmv_page_order(page);
558 		area->nr_free--;
559 		zone->free_pages -= 1UL << order;
560 		expand(zone, page, order, current_order, area);
561 		return page;
562 	}
563 
564 	return NULL;
565 }
566 
567 /*
568  * Obtain a specified number of elements from the buddy allocator, all under
569  * a single hold of the lock, for efficiency.  Add them to the supplied list.
570  * Returns the number of new pages which were placed at *list.
571  */
572 static int rmqueue_bulk(struct zone *zone, unsigned int order,
573 			unsigned long count, struct list_head *list)
574 {
575 	int i;
576 
577 	spin_lock(&zone->lock);
578 	for (i = 0; i < count; ++i) {
579 		struct page *page = __rmqueue(zone, order);
580 		if (unlikely(page == NULL))
581 			break;
582 		list_add_tail(&page->lru, list);
583 	}
584 	spin_unlock(&zone->lock);
585 	return i;
586 }
587 
588 #ifdef CONFIG_NUMA
589 /* Called from the slab reaper to drain remote pagesets */
590 void drain_remote_pages(void)
591 {
592 	struct zone *zone;
593 	int i;
594 	unsigned long flags;
595 
596 	local_irq_save(flags);
597 	for_each_zone(zone) {
598 		struct per_cpu_pageset *pset;
599 
600 		/* Do not drain local pagesets */
601 		if (zone->zone_pgdat->node_id == numa_node_id())
602 			continue;
603 
604 		pset = zone_pcp(zone, smp_processor_id());
605 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
606 			struct per_cpu_pages *pcp;
607 
608 			pcp = &pset->pcp[i];
609 			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
610 			pcp->count = 0;
611 		}
612 	}
613 	local_irq_restore(flags);
614 }
615 #endif
616 
617 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
618 static void __drain_pages(unsigned int cpu)
619 {
620 	unsigned long flags;
621 	struct zone *zone;
622 	int i;
623 
624 	for_each_zone(zone) {
625 		struct per_cpu_pageset *pset;
626 
627 		pset = zone_pcp(zone, cpu);
628 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
629 			struct per_cpu_pages *pcp;
630 
631 			pcp = &pset->pcp[i];
632 			local_irq_save(flags);
633 			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
634 			pcp->count = 0;
635 			local_irq_restore(flags);
636 		}
637 	}
638 }
639 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
640 
641 #ifdef CONFIG_PM
642 
643 void mark_free_pages(struct zone *zone)
644 {
645 	unsigned long zone_pfn, flags;
646 	int order;
647 	struct list_head *curr;
648 
649 	if (!zone->spanned_pages)
650 		return;
651 
652 	spin_lock_irqsave(&zone->lock, flags);
653 	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
654 		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
655 
656 	for (order = MAX_ORDER - 1; order >= 0; --order)
657 		list_for_each(curr, &zone->free_area[order].free_list) {
658 			unsigned long start_pfn, i;
659 
660 			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
661 
662 			for (i=0; i < (1<<order); i++)
663 				SetPageNosaveFree(pfn_to_page(start_pfn+i));
664 	}
665 	spin_unlock_irqrestore(&zone->lock, flags);
666 }
667 
668 /*
669  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
670  */
671 void drain_local_pages(void)
672 {
673 	unsigned long flags;
674 
675 	local_irq_save(flags);
676 	__drain_pages(smp_processor_id());
677 	local_irq_restore(flags);
678 }
679 #endif /* CONFIG_PM */
680 
681 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
682 {
683 #ifdef CONFIG_NUMA
684 	pg_data_t *pg = z->zone_pgdat;
685 	pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
686 	struct per_cpu_pageset *p;
687 
688 	p = zone_pcp(z, cpu);
689 	if (pg == orig) {
690 		p->numa_hit++;
691 	} else {
692 		p->numa_miss++;
693 		zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
694 	}
695 	if (pg == NODE_DATA(numa_node_id()))
696 		p->local_node++;
697 	else
698 		p->other_node++;
699 #endif
700 }
701 
702 /*
703  * Free a 0-order page
704  */
705 static void fastcall free_hot_cold_page(struct page *page, int cold)
706 {
707 	struct zone *zone = page_zone(page);
708 	struct per_cpu_pages *pcp;
709 	unsigned long flags;
710 
711 	arch_free_page(page, 0);
712 
713 	if (PageAnon(page))
714 		page->mapping = NULL;
715 	if (free_pages_check(page))
716 		return;
717 
718 	kernel_map_pages(page, 1, 0);
719 
720 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
721 	local_irq_save(flags);
722 	__inc_page_state(pgfree);
723 	list_add(&page->lru, &pcp->list);
724 	pcp->count++;
725 	if (pcp->count >= pcp->high) {
726 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
727 		pcp->count -= pcp->batch;
728 	}
729 	local_irq_restore(flags);
730 	put_cpu();
731 }
732 
733 void fastcall free_hot_page(struct page *page)
734 {
735 	free_hot_cold_page(page, 0);
736 }
737 
738 void fastcall free_cold_page(struct page *page)
739 {
740 	free_hot_cold_page(page, 1);
741 }
742 
743 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
744 {
745 	int i;
746 
747 	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
748 	for(i = 0; i < (1 << order); i++)
749 		clear_highpage(page + i);
750 }
751 
752 /*
753  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
754  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
755  * or two.
756  */
757 static struct page *buffered_rmqueue(struct zonelist *zonelist,
758 			struct zone *zone, int order, gfp_t gfp_flags)
759 {
760 	unsigned long flags;
761 	struct page *page;
762 	int cold = !!(gfp_flags & __GFP_COLD);
763 	int cpu;
764 
765 again:
766 	cpu  = get_cpu();
767 	if (likely(order == 0)) {
768 		struct per_cpu_pages *pcp;
769 
770 		pcp = &zone_pcp(zone, cpu)->pcp[cold];
771 		local_irq_save(flags);
772 		if (!pcp->count) {
773 			pcp->count += rmqueue_bulk(zone, 0,
774 						pcp->batch, &pcp->list);
775 			if (unlikely(!pcp->count))
776 				goto failed;
777 		}
778 		page = list_entry(pcp->list.next, struct page, lru);
779 		list_del(&page->lru);
780 		pcp->count--;
781 	} else {
782 		spin_lock_irqsave(&zone->lock, flags);
783 		page = __rmqueue(zone, order);
784 		spin_unlock(&zone->lock);
785 		if (!page)
786 			goto failed;
787 	}
788 
789 	__mod_page_state_zone(zone, pgalloc, 1 << order);
790 	zone_statistics(zonelist, zone, cpu);
791 	local_irq_restore(flags);
792 	put_cpu();
793 
794 	BUG_ON(bad_range(zone, page));
795 	if (prep_new_page(page, order))
796 		goto again;
797 
798 	if (gfp_flags & __GFP_ZERO)
799 		prep_zero_page(page, order, gfp_flags);
800 
801 	if (order && (gfp_flags & __GFP_COMP))
802 		prep_compound_page(page, order);
803 	return page;
804 
805 failed:
806 	local_irq_restore(flags);
807 	put_cpu();
808 	return NULL;
809 }
810 
811 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
812 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
813 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
814 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
815 #define ALLOC_HARDER		0x10 /* try to alloc harder */
816 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
817 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
818 
819 /*
820  * Return 1 if free pages are above 'mark'. This takes into account the order
821  * of the allocation.
822  */
823 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
824 		      int classzone_idx, int alloc_flags)
825 {
826 	/* free_pages my go negative - that's OK */
827 	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
828 	int o;
829 
830 	if (alloc_flags & ALLOC_HIGH)
831 		min -= min / 2;
832 	if (alloc_flags & ALLOC_HARDER)
833 		min -= min / 4;
834 
835 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
836 		return 0;
837 	for (o = 0; o < order; o++) {
838 		/* At the next order, this order's pages become unavailable */
839 		free_pages -= z->free_area[o].nr_free << o;
840 
841 		/* Require fewer higher order pages to be free */
842 		min >>= 1;
843 
844 		if (free_pages <= min)
845 			return 0;
846 	}
847 	return 1;
848 }
849 
850 /*
851  * get_page_from_freeliest goes through the zonelist trying to allocate
852  * a page.
853  */
854 static struct page *
855 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
856 		struct zonelist *zonelist, int alloc_flags)
857 {
858 	struct zone **z = zonelist->zones;
859 	struct page *page = NULL;
860 	int classzone_idx = zone_idx(*z);
861 
862 	/*
863 	 * Go through the zonelist once, looking for a zone with enough free.
864 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
865 	 */
866 	do {
867 		if ((alloc_flags & ALLOC_CPUSET) &&
868 				!cpuset_zone_allowed(*z, gfp_mask))
869 			continue;
870 
871 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
872 			unsigned long mark;
873 			if (alloc_flags & ALLOC_WMARK_MIN)
874 				mark = (*z)->pages_min;
875 			else if (alloc_flags & ALLOC_WMARK_LOW)
876 				mark = (*z)->pages_low;
877 			else
878 				mark = (*z)->pages_high;
879 			if (!zone_watermark_ok(*z, order, mark,
880 				    classzone_idx, alloc_flags))
881 				continue;
882 		}
883 
884 		page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
885 		if (page) {
886 			break;
887 		}
888 	} while (*(++z) != NULL);
889 	return page;
890 }
891 
892 /*
893  * This is the 'heart' of the zoned buddy allocator.
894  */
895 struct page * fastcall
896 __alloc_pages(gfp_t gfp_mask, unsigned int order,
897 		struct zonelist *zonelist)
898 {
899 	const gfp_t wait = gfp_mask & __GFP_WAIT;
900 	struct zone **z;
901 	struct page *page;
902 	struct reclaim_state reclaim_state;
903 	struct task_struct *p = current;
904 	int do_retry;
905 	int alloc_flags;
906 	int did_some_progress;
907 
908 	might_sleep_if(wait);
909 
910 restart:
911 	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
912 
913 	if (unlikely(*z == NULL)) {
914 		/* Should this ever happen?? */
915 		return NULL;
916 	}
917 
918 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
919 				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
920 	if (page)
921 		goto got_pg;
922 
923 	do {
924 		wakeup_kswapd(*z, order);
925 	} while (*(++z));
926 
927 	/*
928 	 * OK, we're below the kswapd watermark and have kicked background
929 	 * reclaim. Now things get more complex, so set up alloc_flags according
930 	 * to how we want to proceed.
931 	 *
932 	 * The caller may dip into page reserves a bit more if the caller
933 	 * cannot run direct reclaim, or if the caller has realtime scheduling
934 	 * policy.
935 	 */
936 	alloc_flags = ALLOC_WMARK_MIN;
937 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
938 		alloc_flags |= ALLOC_HARDER;
939 	if (gfp_mask & __GFP_HIGH)
940 		alloc_flags |= ALLOC_HIGH;
941 	alloc_flags |= ALLOC_CPUSET;
942 
943 	/*
944 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
945 	 * coming from realtime tasks go deeper into reserves.
946 	 *
947 	 * This is the last chance, in general, before the goto nopage.
948 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
949 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
950 	 */
951 	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
952 	if (page)
953 		goto got_pg;
954 
955 	/* This allocation should allow future memory freeing. */
956 
957 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
958 			&& !in_interrupt()) {
959 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
960 nofail_alloc:
961 			/* go through the zonelist yet again, ignoring mins */
962 			page = get_page_from_freelist(gfp_mask, order,
963 				zonelist, ALLOC_NO_WATERMARKS);
964 			if (page)
965 				goto got_pg;
966 			if (gfp_mask & __GFP_NOFAIL) {
967 				blk_congestion_wait(WRITE, HZ/50);
968 				goto nofail_alloc;
969 			}
970 		}
971 		goto nopage;
972 	}
973 
974 	/* Atomic allocations - we can't balance anything */
975 	if (!wait)
976 		goto nopage;
977 
978 rebalance:
979 	cond_resched();
980 
981 	/* We now go into synchronous reclaim */
982 	cpuset_memory_pressure_bump();
983 	p->flags |= PF_MEMALLOC;
984 	reclaim_state.reclaimed_slab = 0;
985 	p->reclaim_state = &reclaim_state;
986 
987 	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
988 
989 	p->reclaim_state = NULL;
990 	p->flags &= ~PF_MEMALLOC;
991 
992 	cond_resched();
993 
994 	if (likely(did_some_progress)) {
995 		page = get_page_from_freelist(gfp_mask, order,
996 						zonelist, alloc_flags);
997 		if (page)
998 			goto got_pg;
999 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1000 		/*
1001 		 * Go through the zonelist yet one more time, keep
1002 		 * very high watermark here, this is only to catch
1003 		 * a parallel oom killing, we must fail if we're still
1004 		 * under heavy pressure.
1005 		 */
1006 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1007 				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1008 		if (page)
1009 			goto got_pg;
1010 
1011 		out_of_memory(gfp_mask, order);
1012 		goto restart;
1013 	}
1014 
1015 	/*
1016 	 * Don't let big-order allocations loop unless the caller explicitly
1017 	 * requests that.  Wait for some write requests to complete then retry.
1018 	 *
1019 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1020 	 * <= 3, but that may not be true in other implementations.
1021 	 */
1022 	do_retry = 0;
1023 	if (!(gfp_mask & __GFP_NORETRY)) {
1024 		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1025 			do_retry = 1;
1026 		if (gfp_mask & __GFP_NOFAIL)
1027 			do_retry = 1;
1028 	}
1029 	if (do_retry) {
1030 		blk_congestion_wait(WRITE, HZ/50);
1031 		goto rebalance;
1032 	}
1033 
1034 nopage:
1035 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1036 		printk(KERN_WARNING "%s: page allocation failure."
1037 			" order:%d, mode:0x%x\n",
1038 			p->comm, order, gfp_mask);
1039 		dump_stack();
1040 		show_mem();
1041 	}
1042 got_pg:
1043 	return page;
1044 }
1045 
1046 EXPORT_SYMBOL(__alloc_pages);
1047 
1048 /*
1049  * Common helper functions.
1050  */
1051 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1052 {
1053 	struct page * page;
1054 	page = alloc_pages(gfp_mask, order);
1055 	if (!page)
1056 		return 0;
1057 	return (unsigned long) page_address(page);
1058 }
1059 
1060 EXPORT_SYMBOL(__get_free_pages);
1061 
1062 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1063 {
1064 	struct page * page;
1065 
1066 	/*
1067 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1068 	 * a highmem page
1069 	 */
1070 	BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1071 
1072 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1073 	if (page)
1074 		return (unsigned long) page_address(page);
1075 	return 0;
1076 }
1077 
1078 EXPORT_SYMBOL(get_zeroed_page);
1079 
1080 void __pagevec_free(struct pagevec *pvec)
1081 {
1082 	int i = pagevec_count(pvec);
1083 
1084 	while (--i >= 0)
1085 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1086 }
1087 
1088 fastcall void __free_pages(struct page *page, unsigned int order)
1089 {
1090 	if (put_page_testzero(page)) {
1091 		if (order == 0)
1092 			free_hot_page(page);
1093 		else
1094 			__free_pages_ok(page, order);
1095 	}
1096 }
1097 
1098 EXPORT_SYMBOL(__free_pages);
1099 
1100 fastcall void free_pages(unsigned long addr, unsigned int order)
1101 {
1102 	if (addr != 0) {
1103 		BUG_ON(!virt_addr_valid((void *)addr));
1104 		__free_pages(virt_to_page((void *)addr), order);
1105 	}
1106 }
1107 
1108 EXPORT_SYMBOL(free_pages);
1109 
1110 /*
1111  * Total amount of free (allocatable) RAM:
1112  */
1113 unsigned int nr_free_pages(void)
1114 {
1115 	unsigned int sum = 0;
1116 	struct zone *zone;
1117 
1118 	for_each_zone(zone)
1119 		sum += zone->free_pages;
1120 
1121 	return sum;
1122 }
1123 
1124 EXPORT_SYMBOL(nr_free_pages);
1125 
1126 #ifdef CONFIG_NUMA
1127 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1128 {
1129 	unsigned int i, sum = 0;
1130 
1131 	for (i = 0; i < MAX_NR_ZONES; i++)
1132 		sum += pgdat->node_zones[i].free_pages;
1133 
1134 	return sum;
1135 }
1136 #endif
1137 
1138 static unsigned int nr_free_zone_pages(int offset)
1139 {
1140 	/* Just pick one node, since fallback list is circular */
1141 	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1142 	unsigned int sum = 0;
1143 
1144 	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1145 	struct zone **zonep = zonelist->zones;
1146 	struct zone *zone;
1147 
1148 	for (zone = *zonep++; zone; zone = *zonep++) {
1149 		unsigned long size = zone->present_pages;
1150 		unsigned long high = zone->pages_high;
1151 		if (size > high)
1152 			sum += size - high;
1153 	}
1154 
1155 	return sum;
1156 }
1157 
1158 /*
1159  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1160  */
1161 unsigned int nr_free_buffer_pages(void)
1162 {
1163 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1164 }
1165 
1166 /*
1167  * Amount of free RAM allocatable within all zones
1168  */
1169 unsigned int nr_free_pagecache_pages(void)
1170 {
1171 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1172 }
1173 
1174 #ifdef CONFIG_HIGHMEM
1175 unsigned int nr_free_highpages (void)
1176 {
1177 	pg_data_t *pgdat;
1178 	unsigned int pages = 0;
1179 
1180 	for_each_pgdat(pgdat)
1181 		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1182 
1183 	return pages;
1184 }
1185 #endif
1186 
1187 #ifdef CONFIG_NUMA
1188 static void show_node(struct zone *zone)
1189 {
1190 	printk("Node %d ", zone->zone_pgdat->node_id);
1191 }
1192 #else
1193 #define show_node(zone)	do { } while (0)
1194 #endif
1195 
1196 /*
1197  * Accumulate the page_state information across all CPUs.
1198  * The result is unavoidably approximate - it can change
1199  * during and after execution of this function.
1200  */
1201 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1202 
1203 atomic_t nr_pagecache = ATOMIC_INIT(0);
1204 EXPORT_SYMBOL(nr_pagecache);
1205 #ifdef CONFIG_SMP
1206 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1207 #endif
1208 
1209 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1210 {
1211 	int cpu = 0;
1212 
1213 	memset(ret, 0, sizeof(*ret));
1214 	cpus_and(*cpumask, *cpumask, cpu_online_map);
1215 
1216 	cpu = first_cpu(*cpumask);
1217 	while (cpu < NR_CPUS) {
1218 		unsigned long *in, *out, off;
1219 
1220 		in = (unsigned long *)&per_cpu(page_states, cpu);
1221 
1222 		cpu = next_cpu(cpu, *cpumask);
1223 
1224 		if (cpu < NR_CPUS)
1225 			prefetch(&per_cpu(page_states, cpu));
1226 
1227 		out = (unsigned long *)ret;
1228 		for (off = 0; off < nr; off++)
1229 			*out++ += *in++;
1230 	}
1231 }
1232 
1233 void get_page_state_node(struct page_state *ret, int node)
1234 {
1235 	int nr;
1236 	cpumask_t mask = node_to_cpumask(node);
1237 
1238 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1239 	nr /= sizeof(unsigned long);
1240 
1241 	__get_page_state(ret, nr+1, &mask);
1242 }
1243 
1244 void get_page_state(struct page_state *ret)
1245 {
1246 	int nr;
1247 	cpumask_t mask = CPU_MASK_ALL;
1248 
1249 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1250 	nr /= sizeof(unsigned long);
1251 
1252 	__get_page_state(ret, nr + 1, &mask);
1253 }
1254 
1255 void get_full_page_state(struct page_state *ret)
1256 {
1257 	cpumask_t mask = CPU_MASK_ALL;
1258 
1259 	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1260 }
1261 
1262 unsigned long read_page_state_offset(unsigned long offset)
1263 {
1264 	unsigned long ret = 0;
1265 	int cpu;
1266 
1267 	for_each_online_cpu(cpu) {
1268 		unsigned long in;
1269 
1270 		in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1271 		ret += *((unsigned long *)in);
1272 	}
1273 	return ret;
1274 }
1275 
1276 void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1277 {
1278 	void *ptr;
1279 
1280 	ptr = &__get_cpu_var(page_states);
1281 	*(unsigned long *)(ptr + offset) += delta;
1282 }
1283 EXPORT_SYMBOL(__mod_page_state_offset);
1284 
1285 void mod_page_state_offset(unsigned long offset, unsigned long delta)
1286 {
1287 	unsigned long flags;
1288 	void *ptr;
1289 
1290 	local_irq_save(flags);
1291 	ptr = &__get_cpu_var(page_states);
1292 	*(unsigned long *)(ptr + offset) += delta;
1293 	local_irq_restore(flags);
1294 }
1295 EXPORT_SYMBOL(mod_page_state_offset);
1296 
1297 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1298 			unsigned long *free, struct pglist_data *pgdat)
1299 {
1300 	struct zone *zones = pgdat->node_zones;
1301 	int i;
1302 
1303 	*active = 0;
1304 	*inactive = 0;
1305 	*free = 0;
1306 	for (i = 0; i < MAX_NR_ZONES; i++) {
1307 		*active += zones[i].nr_active;
1308 		*inactive += zones[i].nr_inactive;
1309 		*free += zones[i].free_pages;
1310 	}
1311 }
1312 
1313 void get_zone_counts(unsigned long *active,
1314 		unsigned long *inactive, unsigned long *free)
1315 {
1316 	struct pglist_data *pgdat;
1317 
1318 	*active = 0;
1319 	*inactive = 0;
1320 	*free = 0;
1321 	for_each_pgdat(pgdat) {
1322 		unsigned long l, m, n;
1323 		__get_zone_counts(&l, &m, &n, pgdat);
1324 		*active += l;
1325 		*inactive += m;
1326 		*free += n;
1327 	}
1328 }
1329 
1330 void si_meminfo(struct sysinfo *val)
1331 {
1332 	val->totalram = totalram_pages;
1333 	val->sharedram = 0;
1334 	val->freeram = nr_free_pages();
1335 	val->bufferram = nr_blockdev_pages();
1336 #ifdef CONFIG_HIGHMEM
1337 	val->totalhigh = totalhigh_pages;
1338 	val->freehigh = nr_free_highpages();
1339 #else
1340 	val->totalhigh = 0;
1341 	val->freehigh = 0;
1342 #endif
1343 	val->mem_unit = PAGE_SIZE;
1344 }
1345 
1346 EXPORT_SYMBOL(si_meminfo);
1347 
1348 #ifdef CONFIG_NUMA
1349 void si_meminfo_node(struct sysinfo *val, int nid)
1350 {
1351 	pg_data_t *pgdat = NODE_DATA(nid);
1352 
1353 	val->totalram = pgdat->node_present_pages;
1354 	val->freeram = nr_free_pages_pgdat(pgdat);
1355 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1356 	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1357 	val->mem_unit = PAGE_SIZE;
1358 }
1359 #endif
1360 
1361 #define K(x) ((x) << (PAGE_SHIFT-10))
1362 
1363 /*
1364  * Show free area list (used inside shift_scroll-lock stuff)
1365  * We also calculate the percentage fragmentation. We do this by counting the
1366  * memory on each free list with the exception of the first item on the list.
1367  */
1368 void show_free_areas(void)
1369 {
1370 	struct page_state ps;
1371 	int cpu, temperature;
1372 	unsigned long active;
1373 	unsigned long inactive;
1374 	unsigned long free;
1375 	struct zone *zone;
1376 
1377 	for_each_zone(zone) {
1378 		show_node(zone);
1379 		printk("%s per-cpu:", zone->name);
1380 
1381 		if (!populated_zone(zone)) {
1382 			printk(" empty\n");
1383 			continue;
1384 		} else
1385 			printk("\n");
1386 
1387 		for_each_online_cpu(cpu) {
1388 			struct per_cpu_pageset *pageset;
1389 
1390 			pageset = zone_pcp(zone, cpu);
1391 
1392 			for (temperature = 0; temperature < 2; temperature++)
1393 				printk("cpu %d %s: high %d, batch %d used:%d\n",
1394 					cpu,
1395 					temperature ? "cold" : "hot",
1396 					pageset->pcp[temperature].high,
1397 					pageset->pcp[temperature].batch,
1398 					pageset->pcp[temperature].count);
1399 		}
1400 	}
1401 
1402 	get_page_state(&ps);
1403 	get_zone_counts(&active, &inactive, &free);
1404 
1405 	printk("Free pages: %11ukB (%ukB HighMem)\n",
1406 		K(nr_free_pages()),
1407 		K(nr_free_highpages()));
1408 
1409 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1410 		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1411 		active,
1412 		inactive,
1413 		ps.nr_dirty,
1414 		ps.nr_writeback,
1415 		ps.nr_unstable,
1416 		nr_free_pages(),
1417 		ps.nr_slab,
1418 		ps.nr_mapped,
1419 		ps.nr_page_table_pages);
1420 
1421 	for_each_zone(zone) {
1422 		int i;
1423 
1424 		show_node(zone);
1425 		printk("%s"
1426 			" free:%lukB"
1427 			" min:%lukB"
1428 			" low:%lukB"
1429 			" high:%lukB"
1430 			" active:%lukB"
1431 			" inactive:%lukB"
1432 			" present:%lukB"
1433 			" pages_scanned:%lu"
1434 			" all_unreclaimable? %s"
1435 			"\n",
1436 			zone->name,
1437 			K(zone->free_pages),
1438 			K(zone->pages_min),
1439 			K(zone->pages_low),
1440 			K(zone->pages_high),
1441 			K(zone->nr_active),
1442 			K(zone->nr_inactive),
1443 			K(zone->present_pages),
1444 			zone->pages_scanned,
1445 			(zone->all_unreclaimable ? "yes" : "no")
1446 			);
1447 		printk("lowmem_reserve[]:");
1448 		for (i = 0; i < MAX_NR_ZONES; i++)
1449 			printk(" %lu", zone->lowmem_reserve[i]);
1450 		printk("\n");
1451 	}
1452 
1453 	for_each_zone(zone) {
1454  		unsigned long nr, flags, order, total = 0;
1455 
1456 		show_node(zone);
1457 		printk("%s: ", zone->name);
1458 		if (!populated_zone(zone)) {
1459 			printk("empty\n");
1460 			continue;
1461 		}
1462 
1463 		spin_lock_irqsave(&zone->lock, flags);
1464 		for (order = 0; order < MAX_ORDER; order++) {
1465 			nr = zone->free_area[order].nr_free;
1466 			total += nr << order;
1467 			printk("%lu*%lukB ", nr, K(1UL) << order);
1468 		}
1469 		spin_unlock_irqrestore(&zone->lock, flags);
1470 		printk("= %lukB\n", K(total));
1471 	}
1472 
1473 	show_swap_cache_info();
1474 }
1475 
1476 /*
1477  * Builds allocation fallback zone lists.
1478  *
1479  * Add all populated zones of a node to the zonelist.
1480  */
1481 static int __init build_zonelists_node(pg_data_t *pgdat,
1482 			struct zonelist *zonelist, int nr_zones, int zone_type)
1483 {
1484 	struct zone *zone;
1485 
1486 	BUG_ON(zone_type > ZONE_HIGHMEM);
1487 
1488 	do {
1489 		zone = pgdat->node_zones + zone_type;
1490 		if (populated_zone(zone)) {
1491 #ifndef CONFIG_HIGHMEM
1492 			BUG_ON(zone_type > ZONE_NORMAL);
1493 #endif
1494 			zonelist->zones[nr_zones++] = zone;
1495 			check_highest_zone(zone_type);
1496 		}
1497 		zone_type--;
1498 
1499 	} while (zone_type >= 0);
1500 	return nr_zones;
1501 }
1502 
1503 static inline int highest_zone(int zone_bits)
1504 {
1505 	int res = ZONE_NORMAL;
1506 	if (zone_bits & (__force int)__GFP_HIGHMEM)
1507 		res = ZONE_HIGHMEM;
1508 	if (zone_bits & (__force int)__GFP_DMA32)
1509 		res = ZONE_DMA32;
1510 	if (zone_bits & (__force int)__GFP_DMA)
1511 		res = ZONE_DMA;
1512 	return res;
1513 }
1514 
1515 #ifdef CONFIG_NUMA
1516 #define MAX_NODE_LOAD (num_online_nodes())
1517 static int __initdata node_load[MAX_NUMNODES];
1518 /**
1519  * find_next_best_node - find the next node that should appear in a given node's fallback list
1520  * @node: node whose fallback list we're appending
1521  * @used_node_mask: nodemask_t of already used nodes
1522  *
1523  * We use a number of factors to determine which is the next node that should
1524  * appear on a given node's fallback list.  The node should not have appeared
1525  * already in @node's fallback list, and it should be the next closest node
1526  * according to the distance array (which contains arbitrary distance values
1527  * from each node to each node in the system), and should also prefer nodes
1528  * with no CPUs, since presumably they'll have very little allocation pressure
1529  * on them otherwise.
1530  * It returns -1 if no node is found.
1531  */
1532 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1533 {
1534 	int i, n, val;
1535 	int min_val = INT_MAX;
1536 	int best_node = -1;
1537 
1538 	for_each_online_node(i) {
1539 		cpumask_t tmp;
1540 
1541 		/* Start from local node */
1542 		n = (node+i) % num_online_nodes();
1543 
1544 		/* Don't want a node to appear more than once */
1545 		if (node_isset(n, *used_node_mask))
1546 			continue;
1547 
1548 		/* Use the local node if we haven't already */
1549 		if (!node_isset(node, *used_node_mask)) {
1550 			best_node = node;
1551 			break;
1552 		}
1553 
1554 		/* Use the distance array to find the distance */
1555 		val = node_distance(node, n);
1556 
1557 		/* Give preference to headless and unused nodes */
1558 		tmp = node_to_cpumask(n);
1559 		if (!cpus_empty(tmp))
1560 			val += PENALTY_FOR_NODE_WITH_CPUS;
1561 
1562 		/* Slight preference for less loaded node */
1563 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1564 		val += node_load[n];
1565 
1566 		if (val < min_val) {
1567 			min_val = val;
1568 			best_node = n;
1569 		}
1570 	}
1571 
1572 	if (best_node >= 0)
1573 		node_set(best_node, *used_node_mask);
1574 
1575 	return best_node;
1576 }
1577 
1578 static void __init build_zonelists(pg_data_t *pgdat)
1579 {
1580 	int i, j, k, node, local_node;
1581 	int prev_node, load;
1582 	struct zonelist *zonelist;
1583 	nodemask_t used_mask;
1584 
1585 	/* initialize zonelists */
1586 	for (i = 0; i < GFP_ZONETYPES; i++) {
1587 		zonelist = pgdat->node_zonelists + i;
1588 		zonelist->zones[0] = NULL;
1589 	}
1590 
1591 	/* NUMA-aware ordering of nodes */
1592 	local_node = pgdat->node_id;
1593 	load = num_online_nodes();
1594 	prev_node = local_node;
1595 	nodes_clear(used_mask);
1596 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1597 		/*
1598 		 * We don't want to pressure a particular node.
1599 		 * So adding penalty to the first node in same
1600 		 * distance group to make it round-robin.
1601 		 */
1602 		if (node_distance(local_node, node) !=
1603 				node_distance(local_node, prev_node))
1604 			node_load[node] += load;
1605 		prev_node = node;
1606 		load--;
1607 		for (i = 0; i < GFP_ZONETYPES; i++) {
1608 			zonelist = pgdat->node_zonelists + i;
1609 			for (j = 0; zonelist->zones[j] != NULL; j++);
1610 
1611 			k = highest_zone(i);
1612 
1613 	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1614 			zonelist->zones[j] = NULL;
1615 		}
1616 	}
1617 }
1618 
1619 #else	/* CONFIG_NUMA */
1620 
1621 static void __init build_zonelists(pg_data_t *pgdat)
1622 {
1623 	int i, j, k, node, local_node;
1624 
1625 	local_node = pgdat->node_id;
1626 	for (i = 0; i < GFP_ZONETYPES; i++) {
1627 		struct zonelist *zonelist;
1628 
1629 		zonelist = pgdat->node_zonelists + i;
1630 
1631 		j = 0;
1632 		k = highest_zone(i);
1633  		j = build_zonelists_node(pgdat, zonelist, j, k);
1634  		/*
1635  		 * Now we build the zonelist so that it contains the zones
1636  		 * of all the other nodes.
1637  		 * We don't want to pressure a particular node, so when
1638  		 * building the zones for node N, we make sure that the
1639  		 * zones coming right after the local ones are those from
1640  		 * node N+1 (modulo N)
1641  		 */
1642 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1643 			if (!node_online(node))
1644 				continue;
1645 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1646 		}
1647 		for (node = 0; node < local_node; node++) {
1648 			if (!node_online(node))
1649 				continue;
1650 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1651 		}
1652 
1653 		zonelist->zones[j] = NULL;
1654 	}
1655 }
1656 
1657 #endif	/* CONFIG_NUMA */
1658 
1659 void __init build_all_zonelists(void)
1660 {
1661 	int i;
1662 
1663 	for_each_online_node(i)
1664 		build_zonelists(NODE_DATA(i));
1665 	printk("Built %i zonelists\n", num_online_nodes());
1666 	cpuset_init_current_mems_allowed();
1667 }
1668 
1669 /*
1670  * Helper functions to size the waitqueue hash table.
1671  * Essentially these want to choose hash table sizes sufficiently
1672  * large so that collisions trying to wait on pages are rare.
1673  * But in fact, the number of active page waitqueues on typical
1674  * systems is ridiculously low, less than 200. So this is even
1675  * conservative, even though it seems large.
1676  *
1677  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1678  * waitqueues, i.e. the size of the waitq table given the number of pages.
1679  */
1680 #define PAGES_PER_WAITQUEUE	256
1681 
1682 static inline unsigned long wait_table_size(unsigned long pages)
1683 {
1684 	unsigned long size = 1;
1685 
1686 	pages /= PAGES_PER_WAITQUEUE;
1687 
1688 	while (size < pages)
1689 		size <<= 1;
1690 
1691 	/*
1692 	 * Once we have dozens or even hundreds of threads sleeping
1693 	 * on IO we've got bigger problems than wait queue collision.
1694 	 * Limit the size of the wait table to a reasonable size.
1695 	 */
1696 	size = min(size, 4096UL);
1697 
1698 	return max(size, 4UL);
1699 }
1700 
1701 /*
1702  * This is an integer logarithm so that shifts can be used later
1703  * to extract the more random high bits from the multiplicative
1704  * hash function before the remainder is taken.
1705  */
1706 static inline unsigned long wait_table_bits(unsigned long size)
1707 {
1708 	return ffz(~size);
1709 }
1710 
1711 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1712 
1713 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1714 		unsigned long *zones_size, unsigned long *zholes_size)
1715 {
1716 	unsigned long realtotalpages, totalpages = 0;
1717 	int i;
1718 
1719 	for (i = 0; i < MAX_NR_ZONES; i++)
1720 		totalpages += zones_size[i];
1721 	pgdat->node_spanned_pages = totalpages;
1722 
1723 	realtotalpages = totalpages;
1724 	if (zholes_size)
1725 		for (i = 0; i < MAX_NR_ZONES; i++)
1726 			realtotalpages -= zholes_size[i];
1727 	pgdat->node_present_pages = realtotalpages;
1728 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1729 }
1730 
1731 
1732 /*
1733  * Initially all pages are reserved - free ones are freed
1734  * up by free_all_bootmem() once the early boot process is
1735  * done. Non-atomic initialization, single-pass.
1736  */
1737 void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1738 		unsigned long start_pfn)
1739 {
1740 	struct page *page;
1741 	unsigned long end_pfn = start_pfn + size;
1742 	unsigned long pfn;
1743 
1744 	for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1745 		if (!early_pfn_valid(pfn))
1746 			continue;
1747 		page = pfn_to_page(pfn);
1748 		set_page_links(page, zone, nid, pfn);
1749 		set_page_count(page, 1);
1750 		reset_page_mapcount(page);
1751 		SetPageReserved(page);
1752 		INIT_LIST_HEAD(&page->lru);
1753 #ifdef WANT_PAGE_VIRTUAL
1754 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1755 		if (!is_highmem_idx(zone))
1756 			set_page_address(page, __va(pfn << PAGE_SHIFT));
1757 #endif
1758 	}
1759 }
1760 
1761 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1762 				unsigned long size)
1763 {
1764 	int order;
1765 	for (order = 0; order < MAX_ORDER ; order++) {
1766 		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1767 		zone->free_area[order].nr_free = 0;
1768 	}
1769 }
1770 
1771 #define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1772 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1773 		unsigned long size)
1774 {
1775 	unsigned long snum = pfn_to_section_nr(pfn);
1776 	unsigned long end = pfn_to_section_nr(pfn + size);
1777 
1778 	if (FLAGS_HAS_NODE)
1779 		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1780 	else
1781 		for (; snum <= end; snum++)
1782 			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1783 }
1784 
1785 #ifndef __HAVE_ARCH_MEMMAP_INIT
1786 #define memmap_init(size, nid, zone, start_pfn) \
1787 	memmap_init_zone((size), (nid), (zone), (start_pfn))
1788 #endif
1789 
1790 static int __devinit zone_batchsize(struct zone *zone)
1791 {
1792 	int batch;
1793 
1794 	/*
1795 	 * The per-cpu-pages pools are set to around 1000th of the
1796 	 * size of the zone.  But no more than 1/2 of a meg.
1797 	 *
1798 	 * OK, so we don't know how big the cache is.  So guess.
1799 	 */
1800 	batch = zone->present_pages / 1024;
1801 	if (batch * PAGE_SIZE > 512 * 1024)
1802 		batch = (512 * 1024) / PAGE_SIZE;
1803 	batch /= 4;		/* We effectively *= 4 below */
1804 	if (batch < 1)
1805 		batch = 1;
1806 
1807 	/*
1808 	 * Clamp the batch to a 2^n - 1 value. Having a power
1809 	 * of 2 value was found to be more likely to have
1810 	 * suboptimal cache aliasing properties in some cases.
1811 	 *
1812 	 * For example if 2 tasks are alternately allocating
1813 	 * batches of pages, one task can end up with a lot
1814 	 * of pages of one half of the possible page colors
1815 	 * and the other with pages of the other colors.
1816 	 */
1817 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
1818 
1819 	return batch;
1820 }
1821 
1822 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1823 {
1824 	struct per_cpu_pages *pcp;
1825 
1826 	memset(p, 0, sizeof(*p));
1827 
1828 	pcp = &p->pcp[0];		/* hot */
1829 	pcp->count = 0;
1830 	pcp->high = 6 * batch;
1831 	pcp->batch = max(1UL, 1 * batch);
1832 	INIT_LIST_HEAD(&pcp->list);
1833 
1834 	pcp = &p->pcp[1];		/* cold*/
1835 	pcp->count = 0;
1836 	pcp->high = 2 * batch;
1837 	pcp->batch = max(1UL, batch/2);
1838 	INIT_LIST_HEAD(&pcp->list);
1839 }
1840 
1841 /*
1842  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1843  * to the value high for the pageset p.
1844  */
1845 
1846 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1847 				unsigned long high)
1848 {
1849 	struct per_cpu_pages *pcp;
1850 
1851 	pcp = &p->pcp[0]; /* hot list */
1852 	pcp->high = high;
1853 	pcp->batch = max(1UL, high/4);
1854 	if ((high/4) > (PAGE_SHIFT * 8))
1855 		pcp->batch = PAGE_SHIFT * 8;
1856 }
1857 
1858 
1859 #ifdef CONFIG_NUMA
1860 /*
1861  * Boot pageset table. One per cpu which is going to be used for all
1862  * zones and all nodes. The parameters will be set in such a way
1863  * that an item put on a list will immediately be handed over to
1864  * the buddy list. This is safe since pageset manipulation is done
1865  * with interrupts disabled.
1866  *
1867  * Some NUMA counter updates may also be caught by the boot pagesets.
1868  *
1869  * The boot_pagesets must be kept even after bootup is complete for
1870  * unused processors and/or zones. They do play a role for bootstrapping
1871  * hotplugged processors.
1872  *
1873  * zoneinfo_show() and maybe other functions do
1874  * not check if the processor is online before following the pageset pointer.
1875  * Other parts of the kernel may not check if the zone is available.
1876  */
1877 static struct per_cpu_pageset
1878 	boot_pageset[NR_CPUS];
1879 
1880 /*
1881  * Dynamically allocate memory for the
1882  * per cpu pageset array in struct zone.
1883  */
1884 static int __devinit process_zones(int cpu)
1885 {
1886 	struct zone *zone, *dzone;
1887 
1888 	for_each_zone(zone) {
1889 
1890 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1891 					 GFP_KERNEL, cpu_to_node(cpu));
1892 		if (!zone_pcp(zone, cpu))
1893 			goto bad;
1894 
1895 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1896 
1897 		if (percpu_pagelist_fraction)
1898 			setup_pagelist_highmark(zone_pcp(zone, cpu),
1899 			 	(zone->present_pages / percpu_pagelist_fraction));
1900 	}
1901 
1902 	return 0;
1903 bad:
1904 	for_each_zone(dzone) {
1905 		if (dzone == zone)
1906 			break;
1907 		kfree(zone_pcp(dzone, cpu));
1908 		zone_pcp(dzone, cpu) = NULL;
1909 	}
1910 	return -ENOMEM;
1911 }
1912 
1913 static inline void free_zone_pagesets(int cpu)
1914 {
1915 	struct zone *zone;
1916 
1917 	for_each_zone(zone) {
1918 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1919 
1920 		zone_pcp(zone, cpu) = NULL;
1921 		kfree(pset);
1922 	}
1923 }
1924 
1925 static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1926 		unsigned long action,
1927 		void *hcpu)
1928 {
1929 	int cpu = (long)hcpu;
1930 	int ret = NOTIFY_OK;
1931 
1932 	switch (action) {
1933 		case CPU_UP_PREPARE:
1934 			if (process_zones(cpu))
1935 				ret = NOTIFY_BAD;
1936 			break;
1937 		case CPU_UP_CANCELED:
1938 		case CPU_DEAD:
1939 			free_zone_pagesets(cpu);
1940 			break;
1941 		default:
1942 			break;
1943 	}
1944 	return ret;
1945 }
1946 
1947 static struct notifier_block pageset_notifier =
1948 	{ &pageset_cpuup_callback, NULL, 0 };
1949 
1950 void __init setup_per_cpu_pageset(void)
1951 {
1952 	int err;
1953 
1954 	/* Initialize per_cpu_pageset for cpu 0.
1955 	 * A cpuup callback will do this for every cpu
1956 	 * as it comes online
1957 	 */
1958 	err = process_zones(smp_processor_id());
1959 	BUG_ON(err);
1960 	register_cpu_notifier(&pageset_notifier);
1961 }
1962 
1963 #endif
1964 
1965 static __devinit
1966 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1967 {
1968 	int i;
1969 	struct pglist_data *pgdat = zone->zone_pgdat;
1970 
1971 	/*
1972 	 * The per-page waitqueue mechanism uses hashed waitqueues
1973 	 * per zone.
1974 	 */
1975 	zone->wait_table_size = wait_table_size(zone_size_pages);
1976 	zone->wait_table_bits =	wait_table_bits(zone->wait_table_size);
1977 	zone->wait_table = (wait_queue_head_t *)
1978 		alloc_bootmem_node(pgdat, zone->wait_table_size
1979 					* sizeof(wait_queue_head_t));
1980 
1981 	for(i = 0; i < zone->wait_table_size; ++i)
1982 		init_waitqueue_head(zone->wait_table + i);
1983 }
1984 
1985 static __devinit void zone_pcp_init(struct zone *zone)
1986 {
1987 	int cpu;
1988 	unsigned long batch = zone_batchsize(zone);
1989 
1990 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
1991 #ifdef CONFIG_NUMA
1992 		/* Early boot. Slab allocator not functional yet */
1993 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
1994 		setup_pageset(&boot_pageset[cpu],0);
1995 #else
1996 		setup_pageset(zone_pcp(zone,cpu), batch);
1997 #endif
1998 	}
1999 	printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2000 		zone->name, zone->present_pages, batch);
2001 }
2002 
2003 static __devinit void init_currently_empty_zone(struct zone *zone,
2004 		unsigned long zone_start_pfn, unsigned long size)
2005 {
2006 	struct pglist_data *pgdat = zone->zone_pgdat;
2007 
2008 	zone_wait_table_init(zone, size);
2009 	pgdat->nr_zones = zone_idx(zone) + 1;
2010 
2011 	zone->zone_mem_map = pfn_to_page(zone_start_pfn);
2012 	zone->zone_start_pfn = zone_start_pfn;
2013 
2014 	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2015 
2016 	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2017 }
2018 
2019 /*
2020  * Set up the zone data structures:
2021  *   - mark all pages reserved
2022  *   - mark all memory queues empty
2023  *   - clear the memory bitmaps
2024  */
2025 static void __init free_area_init_core(struct pglist_data *pgdat,
2026 		unsigned long *zones_size, unsigned long *zholes_size)
2027 {
2028 	unsigned long j;
2029 	int nid = pgdat->node_id;
2030 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
2031 
2032 	pgdat_resize_init(pgdat);
2033 	pgdat->nr_zones = 0;
2034 	init_waitqueue_head(&pgdat->kswapd_wait);
2035 	pgdat->kswapd_max_order = 0;
2036 
2037 	for (j = 0; j < MAX_NR_ZONES; j++) {
2038 		struct zone *zone = pgdat->node_zones + j;
2039 		unsigned long size, realsize;
2040 
2041 		realsize = size = zones_size[j];
2042 		if (zholes_size)
2043 			realsize -= zholes_size[j];
2044 
2045 		if (j < ZONE_HIGHMEM)
2046 			nr_kernel_pages += realsize;
2047 		nr_all_pages += realsize;
2048 
2049 		zone->spanned_pages = size;
2050 		zone->present_pages = realsize;
2051 		zone->name = zone_names[j];
2052 		spin_lock_init(&zone->lock);
2053 		spin_lock_init(&zone->lru_lock);
2054 		zone_seqlock_init(zone);
2055 		zone->zone_pgdat = pgdat;
2056 		zone->free_pages = 0;
2057 
2058 		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2059 
2060 		zone_pcp_init(zone);
2061 		INIT_LIST_HEAD(&zone->active_list);
2062 		INIT_LIST_HEAD(&zone->inactive_list);
2063 		zone->nr_scan_active = 0;
2064 		zone->nr_scan_inactive = 0;
2065 		zone->nr_active = 0;
2066 		zone->nr_inactive = 0;
2067 		atomic_set(&zone->reclaim_in_progress, 0);
2068 		if (!size)
2069 			continue;
2070 
2071 		zonetable_add(zone, nid, j, zone_start_pfn, size);
2072 		init_currently_empty_zone(zone, zone_start_pfn, size);
2073 		zone_start_pfn += size;
2074 	}
2075 }
2076 
2077 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2078 {
2079 	/* Skip empty nodes */
2080 	if (!pgdat->node_spanned_pages)
2081 		return;
2082 
2083 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2084 	/* ia64 gets its own node_mem_map, before this, without bootmem */
2085 	if (!pgdat->node_mem_map) {
2086 		unsigned long size;
2087 		struct page *map;
2088 
2089 		size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2090 		map = alloc_remap(pgdat->node_id, size);
2091 		if (!map)
2092 			map = alloc_bootmem_node(pgdat, size);
2093 		pgdat->node_mem_map = map;
2094 	}
2095 #ifdef CONFIG_FLATMEM
2096 	/*
2097 	 * With no DISCONTIG, the global mem_map is just set as node 0's
2098 	 */
2099 	if (pgdat == NODE_DATA(0))
2100 		mem_map = NODE_DATA(0)->node_mem_map;
2101 #endif
2102 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2103 }
2104 
2105 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2106 		unsigned long *zones_size, unsigned long node_start_pfn,
2107 		unsigned long *zholes_size)
2108 {
2109 	pgdat->node_id = nid;
2110 	pgdat->node_start_pfn = node_start_pfn;
2111 	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2112 
2113 	alloc_node_mem_map(pgdat);
2114 
2115 	free_area_init_core(pgdat, zones_size, zholes_size);
2116 }
2117 
2118 #ifndef CONFIG_NEED_MULTIPLE_NODES
2119 static bootmem_data_t contig_bootmem_data;
2120 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2121 
2122 EXPORT_SYMBOL(contig_page_data);
2123 #endif
2124 
2125 void __init free_area_init(unsigned long *zones_size)
2126 {
2127 	free_area_init_node(0, NODE_DATA(0), zones_size,
2128 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2129 }
2130 
2131 #ifdef CONFIG_PROC_FS
2132 
2133 #include <linux/seq_file.h>
2134 
2135 static void *frag_start(struct seq_file *m, loff_t *pos)
2136 {
2137 	pg_data_t *pgdat;
2138 	loff_t node = *pos;
2139 
2140 	for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2141 		--node;
2142 
2143 	return pgdat;
2144 }
2145 
2146 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2147 {
2148 	pg_data_t *pgdat = (pg_data_t *)arg;
2149 
2150 	(*pos)++;
2151 	return pgdat->pgdat_next;
2152 }
2153 
2154 static void frag_stop(struct seq_file *m, void *arg)
2155 {
2156 }
2157 
2158 /*
2159  * This walks the free areas for each zone.
2160  */
2161 static int frag_show(struct seq_file *m, void *arg)
2162 {
2163 	pg_data_t *pgdat = (pg_data_t *)arg;
2164 	struct zone *zone;
2165 	struct zone *node_zones = pgdat->node_zones;
2166 	unsigned long flags;
2167 	int order;
2168 
2169 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2170 		if (!populated_zone(zone))
2171 			continue;
2172 
2173 		spin_lock_irqsave(&zone->lock, flags);
2174 		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2175 		for (order = 0; order < MAX_ORDER; ++order)
2176 			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2177 		spin_unlock_irqrestore(&zone->lock, flags);
2178 		seq_putc(m, '\n');
2179 	}
2180 	return 0;
2181 }
2182 
2183 struct seq_operations fragmentation_op = {
2184 	.start	= frag_start,
2185 	.next	= frag_next,
2186 	.stop	= frag_stop,
2187 	.show	= frag_show,
2188 };
2189 
2190 /*
2191  * Output information about zones in @pgdat.
2192  */
2193 static int zoneinfo_show(struct seq_file *m, void *arg)
2194 {
2195 	pg_data_t *pgdat = arg;
2196 	struct zone *zone;
2197 	struct zone *node_zones = pgdat->node_zones;
2198 	unsigned long flags;
2199 
2200 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2201 		int i;
2202 
2203 		if (!populated_zone(zone))
2204 			continue;
2205 
2206 		spin_lock_irqsave(&zone->lock, flags);
2207 		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2208 		seq_printf(m,
2209 			   "\n  pages free     %lu"
2210 			   "\n        min      %lu"
2211 			   "\n        low      %lu"
2212 			   "\n        high     %lu"
2213 			   "\n        active   %lu"
2214 			   "\n        inactive %lu"
2215 			   "\n        scanned  %lu (a: %lu i: %lu)"
2216 			   "\n        spanned  %lu"
2217 			   "\n        present  %lu",
2218 			   zone->free_pages,
2219 			   zone->pages_min,
2220 			   zone->pages_low,
2221 			   zone->pages_high,
2222 			   zone->nr_active,
2223 			   zone->nr_inactive,
2224 			   zone->pages_scanned,
2225 			   zone->nr_scan_active, zone->nr_scan_inactive,
2226 			   zone->spanned_pages,
2227 			   zone->present_pages);
2228 		seq_printf(m,
2229 			   "\n        protection: (%lu",
2230 			   zone->lowmem_reserve[0]);
2231 		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2232 			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2233 		seq_printf(m,
2234 			   ")"
2235 			   "\n  pagesets");
2236 		for_each_online_cpu(i) {
2237 			struct per_cpu_pageset *pageset;
2238 			int j;
2239 
2240 			pageset = zone_pcp(zone, i);
2241 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2242 				if (pageset->pcp[j].count)
2243 					break;
2244 			}
2245 			if (j == ARRAY_SIZE(pageset->pcp))
2246 				continue;
2247 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2248 				seq_printf(m,
2249 					   "\n    cpu: %i pcp: %i"
2250 					   "\n              count: %i"
2251 					   "\n              high:  %i"
2252 					   "\n              batch: %i",
2253 					   i, j,
2254 					   pageset->pcp[j].count,
2255 					   pageset->pcp[j].high,
2256 					   pageset->pcp[j].batch);
2257 			}
2258 #ifdef CONFIG_NUMA
2259 			seq_printf(m,
2260 				   "\n            numa_hit:       %lu"
2261 				   "\n            numa_miss:      %lu"
2262 				   "\n            numa_foreign:   %lu"
2263 				   "\n            interleave_hit: %lu"
2264 				   "\n            local_node:     %lu"
2265 				   "\n            other_node:     %lu",
2266 				   pageset->numa_hit,
2267 				   pageset->numa_miss,
2268 				   pageset->numa_foreign,
2269 				   pageset->interleave_hit,
2270 				   pageset->local_node,
2271 				   pageset->other_node);
2272 #endif
2273 		}
2274 		seq_printf(m,
2275 			   "\n  all_unreclaimable: %u"
2276 			   "\n  prev_priority:     %i"
2277 			   "\n  temp_priority:     %i"
2278 			   "\n  start_pfn:         %lu",
2279 			   zone->all_unreclaimable,
2280 			   zone->prev_priority,
2281 			   zone->temp_priority,
2282 			   zone->zone_start_pfn);
2283 		spin_unlock_irqrestore(&zone->lock, flags);
2284 		seq_putc(m, '\n');
2285 	}
2286 	return 0;
2287 }
2288 
2289 struct seq_operations zoneinfo_op = {
2290 	.start	= frag_start, /* iterate over all zones. The same as in
2291 			       * fragmentation. */
2292 	.next	= frag_next,
2293 	.stop	= frag_stop,
2294 	.show	= zoneinfo_show,
2295 };
2296 
2297 static char *vmstat_text[] = {
2298 	"nr_dirty",
2299 	"nr_writeback",
2300 	"nr_unstable",
2301 	"nr_page_table_pages",
2302 	"nr_mapped",
2303 	"nr_slab",
2304 
2305 	"pgpgin",
2306 	"pgpgout",
2307 	"pswpin",
2308 	"pswpout",
2309 
2310 	"pgalloc_high",
2311 	"pgalloc_normal",
2312 	"pgalloc_dma32",
2313 	"pgalloc_dma",
2314 
2315 	"pgfree",
2316 	"pgactivate",
2317 	"pgdeactivate",
2318 
2319 	"pgfault",
2320 	"pgmajfault",
2321 
2322 	"pgrefill_high",
2323 	"pgrefill_normal",
2324 	"pgrefill_dma32",
2325 	"pgrefill_dma",
2326 
2327 	"pgsteal_high",
2328 	"pgsteal_normal",
2329 	"pgsteal_dma32",
2330 	"pgsteal_dma",
2331 
2332 	"pgscan_kswapd_high",
2333 	"pgscan_kswapd_normal",
2334 	"pgscan_kswapd_dma32",
2335 	"pgscan_kswapd_dma",
2336 
2337 	"pgscan_direct_high",
2338 	"pgscan_direct_normal",
2339 	"pgscan_direct_dma32",
2340 	"pgscan_direct_dma",
2341 
2342 	"pginodesteal",
2343 	"slabs_scanned",
2344 	"kswapd_steal",
2345 	"kswapd_inodesteal",
2346 	"pageoutrun",
2347 	"allocstall",
2348 
2349 	"pgrotated",
2350 	"nr_bounce",
2351 };
2352 
2353 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2354 {
2355 	struct page_state *ps;
2356 
2357 	if (*pos >= ARRAY_SIZE(vmstat_text))
2358 		return NULL;
2359 
2360 	ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2361 	m->private = ps;
2362 	if (!ps)
2363 		return ERR_PTR(-ENOMEM);
2364 	get_full_page_state(ps);
2365 	ps->pgpgin /= 2;		/* sectors -> kbytes */
2366 	ps->pgpgout /= 2;
2367 	return (unsigned long *)ps + *pos;
2368 }
2369 
2370 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2371 {
2372 	(*pos)++;
2373 	if (*pos >= ARRAY_SIZE(vmstat_text))
2374 		return NULL;
2375 	return (unsigned long *)m->private + *pos;
2376 }
2377 
2378 static int vmstat_show(struct seq_file *m, void *arg)
2379 {
2380 	unsigned long *l = arg;
2381 	unsigned long off = l - (unsigned long *)m->private;
2382 
2383 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2384 	return 0;
2385 }
2386 
2387 static void vmstat_stop(struct seq_file *m, void *arg)
2388 {
2389 	kfree(m->private);
2390 	m->private = NULL;
2391 }
2392 
2393 struct seq_operations vmstat_op = {
2394 	.start	= vmstat_start,
2395 	.next	= vmstat_next,
2396 	.stop	= vmstat_stop,
2397 	.show	= vmstat_show,
2398 };
2399 
2400 #endif /* CONFIG_PROC_FS */
2401 
2402 #ifdef CONFIG_HOTPLUG_CPU
2403 static int page_alloc_cpu_notify(struct notifier_block *self,
2404 				 unsigned long action, void *hcpu)
2405 {
2406 	int cpu = (unsigned long)hcpu;
2407 	long *count;
2408 	unsigned long *src, *dest;
2409 
2410 	if (action == CPU_DEAD) {
2411 		int i;
2412 
2413 		/* Drain local pagecache count. */
2414 		count = &per_cpu(nr_pagecache_local, cpu);
2415 		atomic_add(*count, &nr_pagecache);
2416 		*count = 0;
2417 		local_irq_disable();
2418 		__drain_pages(cpu);
2419 
2420 		/* Add dead cpu's page_states to our own. */
2421 		dest = (unsigned long *)&__get_cpu_var(page_states);
2422 		src = (unsigned long *)&per_cpu(page_states, cpu);
2423 
2424 		for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2425 				i++) {
2426 			dest[i] += src[i];
2427 			src[i] = 0;
2428 		}
2429 
2430 		local_irq_enable();
2431 	}
2432 	return NOTIFY_OK;
2433 }
2434 #endif /* CONFIG_HOTPLUG_CPU */
2435 
2436 void __init page_alloc_init(void)
2437 {
2438 	hotcpu_notifier(page_alloc_cpu_notify, 0);
2439 }
2440 
2441 /*
2442  * setup_per_zone_lowmem_reserve - called whenever
2443  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2444  *	has a correct pages reserved value, so an adequate number of
2445  *	pages are left in the zone after a successful __alloc_pages().
2446  */
2447 static void setup_per_zone_lowmem_reserve(void)
2448 {
2449 	struct pglist_data *pgdat;
2450 	int j, idx;
2451 
2452 	for_each_pgdat(pgdat) {
2453 		for (j = 0; j < MAX_NR_ZONES; j++) {
2454 			struct zone *zone = pgdat->node_zones + j;
2455 			unsigned long present_pages = zone->present_pages;
2456 
2457 			zone->lowmem_reserve[j] = 0;
2458 
2459 			for (idx = j-1; idx >= 0; idx--) {
2460 				struct zone *lower_zone;
2461 
2462 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2463 					sysctl_lowmem_reserve_ratio[idx] = 1;
2464 
2465 				lower_zone = pgdat->node_zones + idx;
2466 				lower_zone->lowmem_reserve[j] = present_pages /
2467 					sysctl_lowmem_reserve_ratio[idx];
2468 				present_pages += lower_zone->present_pages;
2469 			}
2470 		}
2471 	}
2472 }
2473 
2474 /*
2475  * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2476  *	that the pages_{min,low,high} values for each zone are set correctly
2477  *	with respect to min_free_kbytes.
2478  */
2479 void setup_per_zone_pages_min(void)
2480 {
2481 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2482 	unsigned long lowmem_pages = 0;
2483 	struct zone *zone;
2484 	unsigned long flags;
2485 
2486 	/* Calculate total number of !ZONE_HIGHMEM pages */
2487 	for_each_zone(zone) {
2488 		if (!is_highmem(zone))
2489 			lowmem_pages += zone->present_pages;
2490 	}
2491 
2492 	for_each_zone(zone) {
2493 		unsigned long tmp;
2494 		spin_lock_irqsave(&zone->lru_lock, flags);
2495 		tmp = (pages_min * zone->present_pages) / lowmem_pages;
2496 		if (is_highmem(zone)) {
2497 			/*
2498 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2499 			 * need highmem pages, so cap pages_min to a small
2500 			 * value here.
2501 			 *
2502 			 * The (pages_high-pages_low) and (pages_low-pages_min)
2503 			 * deltas controls asynch page reclaim, and so should
2504 			 * not be capped for highmem.
2505 			 */
2506 			int min_pages;
2507 
2508 			min_pages = zone->present_pages / 1024;
2509 			if (min_pages < SWAP_CLUSTER_MAX)
2510 				min_pages = SWAP_CLUSTER_MAX;
2511 			if (min_pages > 128)
2512 				min_pages = 128;
2513 			zone->pages_min = min_pages;
2514 		} else {
2515 			/*
2516 			 * If it's a lowmem zone, reserve a number of pages
2517 			 * proportionate to the zone's size.
2518 			 */
2519 			zone->pages_min = tmp;
2520 		}
2521 
2522 		zone->pages_low   = zone->pages_min + tmp / 4;
2523 		zone->pages_high  = zone->pages_min + tmp / 2;
2524 		spin_unlock_irqrestore(&zone->lru_lock, flags);
2525 	}
2526 }
2527 
2528 /*
2529  * Initialise min_free_kbytes.
2530  *
2531  * For small machines we want it small (128k min).  For large machines
2532  * we want it large (64MB max).  But it is not linear, because network
2533  * bandwidth does not increase linearly with machine size.  We use
2534  *
2535  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2536  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2537  *
2538  * which yields
2539  *
2540  * 16MB:	512k
2541  * 32MB:	724k
2542  * 64MB:	1024k
2543  * 128MB:	1448k
2544  * 256MB:	2048k
2545  * 512MB:	2896k
2546  * 1024MB:	4096k
2547  * 2048MB:	5792k
2548  * 4096MB:	8192k
2549  * 8192MB:	11584k
2550  * 16384MB:	16384k
2551  */
2552 static int __init init_per_zone_pages_min(void)
2553 {
2554 	unsigned long lowmem_kbytes;
2555 
2556 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2557 
2558 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2559 	if (min_free_kbytes < 128)
2560 		min_free_kbytes = 128;
2561 	if (min_free_kbytes > 65536)
2562 		min_free_kbytes = 65536;
2563 	setup_per_zone_pages_min();
2564 	setup_per_zone_lowmem_reserve();
2565 	return 0;
2566 }
2567 module_init(init_per_zone_pages_min)
2568 
2569 /*
2570  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2571  *	that we can call two helper functions whenever min_free_kbytes
2572  *	changes.
2573  */
2574 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2575 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2576 {
2577 	proc_dointvec(table, write, file, buffer, length, ppos);
2578 	setup_per_zone_pages_min();
2579 	return 0;
2580 }
2581 
2582 /*
2583  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2584  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2585  *	whenever sysctl_lowmem_reserve_ratio changes.
2586  *
2587  * The reserve ratio obviously has absolutely no relation with the
2588  * pages_min watermarks. The lowmem reserve ratio can only make sense
2589  * if in function of the boot time zone sizes.
2590  */
2591 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2592 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2593 {
2594 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2595 	setup_per_zone_lowmem_reserve();
2596 	return 0;
2597 }
2598 
2599 /*
2600  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2601  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
2602  * can have before it gets flushed back to buddy allocator.
2603  */
2604 
2605 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2606 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2607 {
2608 	struct zone *zone;
2609 	unsigned int cpu;
2610 	int ret;
2611 
2612 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2613 	if (!write || (ret == -EINVAL))
2614 		return ret;
2615 	for_each_zone(zone) {
2616 		for_each_online_cpu(cpu) {
2617 			unsigned long  high;
2618 			high = zone->present_pages / percpu_pagelist_fraction;
2619 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2620 		}
2621 	}
2622 	return 0;
2623 }
2624 
2625 __initdata int hashdist = HASHDIST_DEFAULT;
2626 
2627 #ifdef CONFIG_NUMA
2628 static int __init set_hashdist(char *str)
2629 {
2630 	if (!str)
2631 		return 0;
2632 	hashdist = simple_strtoul(str, &str, 0);
2633 	return 1;
2634 }
2635 __setup("hashdist=", set_hashdist);
2636 #endif
2637 
2638 /*
2639  * allocate a large system hash table from bootmem
2640  * - it is assumed that the hash table must contain an exact power-of-2
2641  *   quantity of entries
2642  * - limit is the number of hash buckets, not the total allocation size
2643  */
2644 void *__init alloc_large_system_hash(const char *tablename,
2645 				     unsigned long bucketsize,
2646 				     unsigned long numentries,
2647 				     int scale,
2648 				     int flags,
2649 				     unsigned int *_hash_shift,
2650 				     unsigned int *_hash_mask,
2651 				     unsigned long limit)
2652 {
2653 	unsigned long long max = limit;
2654 	unsigned long log2qty, size;
2655 	void *table = NULL;
2656 
2657 	/* allow the kernel cmdline to have a say */
2658 	if (!numentries) {
2659 		/* round applicable memory size up to nearest megabyte */
2660 		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2661 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2662 		numentries >>= 20 - PAGE_SHIFT;
2663 		numentries <<= 20 - PAGE_SHIFT;
2664 
2665 		/* limit to 1 bucket per 2^scale bytes of low memory */
2666 		if (scale > PAGE_SHIFT)
2667 			numentries >>= (scale - PAGE_SHIFT);
2668 		else
2669 			numentries <<= (PAGE_SHIFT - scale);
2670 	}
2671 	/* rounded up to nearest power of 2 in size */
2672 	numentries = 1UL << (long_log2(numentries) + 1);
2673 
2674 	/* limit allocation size to 1/16 total memory by default */
2675 	if (max == 0) {
2676 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2677 		do_div(max, bucketsize);
2678 	}
2679 
2680 	if (numentries > max)
2681 		numentries = max;
2682 
2683 	log2qty = long_log2(numentries);
2684 
2685 	do {
2686 		size = bucketsize << log2qty;
2687 		if (flags & HASH_EARLY)
2688 			table = alloc_bootmem(size);
2689 		else if (hashdist)
2690 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2691 		else {
2692 			unsigned long order;
2693 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2694 				;
2695 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2696 		}
2697 	} while (!table && size > PAGE_SIZE && --log2qty);
2698 
2699 	if (!table)
2700 		panic("Failed to allocate %s hash table\n", tablename);
2701 
2702 	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2703 	       tablename,
2704 	       (1U << log2qty),
2705 	       long_log2(size) - PAGE_SHIFT,
2706 	       size);
2707 
2708 	if (_hash_shift)
2709 		*_hash_shift = log2qty;
2710 	if (_hash_mask)
2711 		*_hash_mask = (1 << log2qty) - 1;
2712 
2713 	return table;
2714 }
2715