xref: /openbmc/linux/mm/page_alloc.c (revision 85716a80)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/kmsan.h>
31 #include <linux/module.h>
32 #include <linux/suspend.h>
33 #include <linux/pagevec.h>
34 #include <linux/blkdev.h>
35 #include <linux/slab.h>
36 #include <linux/ratelimit.h>
37 #include <linux/oom.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/memremap.h>
48 #include <linux/stop_machine.h>
49 #include <linux/random.h>
50 #include <linux/sort.h>
51 #include <linux/pfn.h>
52 #include <linux/backing-dev.h>
53 #include <linux/fault-inject.h>
54 #include <linux/page-isolation.h>
55 #include <linux/debugobjects.h>
56 #include <linux/kmemleak.h>
57 #include <linux/compaction.h>
58 #include <trace/events/kmem.h>
59 #include <trace/events/oom.h>
60 #include <linux/prefetch.h>
61 #include <linux/mm_inline.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/migrate.h>
64 #include <linux/hugetlb.h>
65 #include <linux/sched/rt.h>
66 #include <linux/sched/mm.h>
67 #include <linux/page_owner.h>
68 #include <linux/page_table_check.h>
69 #include <linux/kthread.h>
70 #include <linux/memcontrol.h>
71 #include <linux/ftrace.h>
72 #include <linux/lockdep.h>
73 #include <linux/nmi.h>
74 #include <linux/psi.h>
75 #include <linux/padata.h>
76 #include <linux/khugepaged.h>
77 #include <linux/buffer_head.h>
78 #include <linux/delayacct.h>
79 #include <asm/sections.h>
80 #include <asm/tlbflush.h>
81 #include <asm/div64.h>
82 #include "internal.h"
83 #include "shuffle.h"
84 #include "page_reporting.h"
85 #include "swap.h"
86 
87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
88 typedef int __bitwise fpi_t;
89 
90 /* No special request */
91 #define FPI_NONE		((__force fpi_t)0)
92 
93 /*
94  * Skip free page reporting notification for the (possibly merged) page.
95  * This does not hinder free page reporting from grabbing the page,
96  * reporting it and marking it "reported" -  it only skips notifying
97  * the free page reporting infrastructure about a newly freed page. For
98  * example, used when temporarily pulling a page from a freelist and
99  * putting it back unmodified.
100  */
101 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
102 
103 /*
104  * Place the (possibly merged) page to the tail of the freelist. Will ignore
105  * page shuffling (relevant code - e.g., memory onlining - is expected to
106  * shuffle the whole zone).
107  *
108  * Note: No code should rely on this flag for correctness - it's purely
109  *       to allow for optimizations when handing back either fresh pages
110  *       (memory onlining) or untouched pages (page isolation, free page
111  *       reporting).
112  */
113 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
114 
115 /*
116  * Don't poison memory with KASAN (only for the tag-based modes).
117  * During boot, all non-reserved memblock memory is exposed to page_alloc.
118  * Poisoning all that memory lengthens boot time, especially on systems with
119  * large amount of RAM. This flag is used to skip that poisoning.
120  * This is only done for the tag-based KASAN modes, as those are able to
121  * detect memory corruptions with the memory tags assigned by default.
122  * All memory allocated normally after boot gets poisoned as usual.
123  */
124 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
125 
126 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
127 static DEFINE_MUTEX(pcp_batch_high_lock);
128 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
129 
130 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
131 /*
132  * On SMP, spin_trylock is sufficient protection.
133  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
134  */
135 #define pcp_trylock_prepare(flags)	do { } while (0)
136 #define pcp_trylock_finish(flag)	do { } while (0)
137 #else
138 
139 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
140 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
141 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
142 #endif
143 
144 /*
145  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
146  * a migration causing the wrong PCP to be locked and remote memory being
147  * potentially allocated, pin the task to the CPU for the lookup+lock.
148  * preempt_disable is used on !RT because it is faster than migrate_disable.
149  * migrate_disable is used on RT because otherwise RT spinlock usage is
150  * interfered with and a high priority task cannot preempt the allocator.
151  */
152 #ifndef CONFIG_PREEMPT_RT
153 #define pcpu_task_pin()		preempt_disable()
154 #define pcpu_task_unpin()	preempt_enable()
155 #else
156 #define pcpu_task_pin()		migrate_disable()
157 #define pcpu_task_unpin()	migrate_enable()
158 #endif
159 
160 /*
161  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
162  * Return value should be used with equivalent unlock helper.
163  */
164 #define pcpu_spin_lock(type, member, ptr)				\
165 ({									\
166 	type *_ret;							\
167 	pcpu_task_pin();						\
168 	_ret = this_cpu_ptr(ptr);					\
169 	spin_lock(&_ret->member);					\
170 	_ret;								\
171 })
172 
173 #define pcpu_spin_trylock(type, member, ptr)				\
174 ({									\
175 	type *_ret;							\
176 	pcpu_task_pin();						\
177 	_ret = this_cpu_ptr(ptr);					\
178 	if (!spin_trylock(&_ret->member)) {				\
179 		pcpu_task_unpin();					\
180 		_ret = NULL;						\
181 	}								\
182 	_ret;								\
183 })
184 
185 #define pcpu_spin_unlock(member, ptr)					\
186 ({									\
187 	spin_unlock(&ptr->member);					\
188 	pcpu_task_unpin();						\
189 })
190 
191 /* struct per_cpu_pages specific helpers. */
192 #define pcp_spin_lock(ptr)						\
193 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
194 
195 #define pcp_spin_trylock(ptr)						\
196 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
197 
198 #define pcp_spin_unlock(ptr)						\
199 	pcpu_spin_unlock(lock, ptr)
200 
201 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
202 DEFINE_PER_CPU(int, numa_node);
203 EXPORT_PER_CPU_SYMBOL(numa_node);
204 #endif
205 
206 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
207 
208 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
209 /*
210  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
211  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
212  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
213  * defined in <linux/topology.h>.
214  */
215 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
216 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
217 #endif
218 
219 static DEFINE_MUTEX(pcpu_drain_mutex);
220 
221 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
222 volatile unsigned long latent_entropy __latent_entropy;
223 EXPORT_SYMBOL(latent_entropy);
224 #endif
225 
226 /*
227  * Array of node states.
228  */
229 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
230 	[N_POSSIBLE] = NODE_MASK_ALL,
231 	[N_ONLINE] = { { [0] = 1UL } },
232 #ifndef CONFIG_NUMA
233 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
234 #ifdef CONFIG_HIGHMEM
235 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
236 #endif
237 	[N_MEMORY] = { { [0] = 1UL } },
238 	[N_CPU] = { { [0] = 1UL } },
239 #endif	/* NUMA */
240 };
241 EXPORT_SYMBOL(node_states);
242 
243 atomic_long_t _totalram_pages __read_mostly;
244 EXPORT_SYMBOL(_totalram_pages);
245 unsigned long totalreserve_pages __read_mostly;
246 unsigned long totalcma_pages __read_mostly;
247 
248 int percpu_pagelist_high_fraction;
249 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
250 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
251 EXPORT_SYMBOL(init_on_alloc);
252 
253 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
254 EXPORT_SYMBOL(init_on_free);
255 
256 static bool _init_on_alloc_enabled_early __read_mostly
257 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
258 static int __init early_init_on_alloc(char *buf)
259 {
260 
261 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
262 }
263 early_param("init_on_alloc", early_init_on_alloc);
264 
265 static bool _init_on_free_enabled_early __read_mostly
266 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
267 static int __init early_init_on_free(char *buf)
268 {
269 	return kstrtobool(buf, &_init_on_free_enabled_early);
270 }
271 early_param("init_on_free", early_init_on_free);
272 
273 /*
274  * A cached value of the page's pageblock's migratetype, used when the page is
275  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
276  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
277  * Also the migratetype set in the page does not necessarily match the pcplist
278  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
279  * other index - this ensures that it will be put on the correct CMA freelist.
280  */
281 static inline int get_pcppage_migratetype(struct page *page)
282 {
283 	return page->index;
284 }
285 
286 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
287 {
288 	page->index = migratetype;
289 }
290 
291 #ifdef CONFIG_PM_SLEEP
292 /*
293  * The following functions are used by the suspend/hibernate code to temporarily
294  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
295  * while devices are suspended.  To avoid races with the suspend/hibernate code,
296  * they should always be called with system_transition_mutex held
297  * (gfp_allowed_mask also should only be modified with system_transition_mutex
298  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
299  * with that modification).
300  */
301 
302 static gfp_t saved_gfp_mask;
303 
304 void pm_restore_gfp_mask(void)
305 {
306 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
307 	if (saved_gfp_mask) {
308 		gfp_allowed_mask = saved_gfp_mask;
309 		saved_gfp_mask = 0;
310 	}
311 }
312 
313 void pm_restrict_gfp_mask(void)
314 {
315 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
316 	WARN_ON(saved_gfp_mask);
317 	saved_gfp_mask = gfp_allowed_mask;
318 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
319 }
320 
321 bool pm_suspended_storage(void)
322 {
323 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
324 		return false;
325 	return true;
326 }
327 #endif /* CONFIG_PM_SLEEP */
328 
329 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
330 unsigned int pageblock_order __read_mostly;
331 #endif
332 
333 static void __free_pages_ok(struct page *page, unsigned int order,
334 			    fpi_t fpi_flags);
335 
336 /*
337  * results with 256, 32 in the lowmem_reserve sysctl:
338  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
339  *	1G machine -> (16M dma, 784M normal, 224M high)
340  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
341  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
342  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
343  *
344  * TBD: should special case ZONE_DMA32 machines here - in those we normally
345  * don't need any ZONE_NORMAL reservation
346  */
347 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
348 #ifdef CONFIG_ZONE_DMA
349 	[ZONE_DMA] = 256,
350 #endif
351 #ifdef CONFIG_ZONE_DMA32
352 	[ZONE_DMA32] = 256,
353 #endif
354 	[ZONE_NORMAL] = 32,
355 #ifdef CONFIG_HIGHMEM
356 	[ZONE_HIGHMEM] = 0,
357 #endif
358 	[ZONE_MOVABLE] = 0,
359 };
360 
361 static char * const zone_names[MAX_NR_ZONES] = {
362 #ifdef CONFIG_ZONE_DMA
363 	 "DMA",
364 #endif
365 #ifdef CONFIG_ZONE_DMA32
366 	 "DMA32",
367 #endif
368 	 "Normal",
369 #ifdef CONFIG_HIGHMEM
370 	 "HighMem",
371 #endif
372 	 "Movable",
373 #ifdef CONFIG_ZONE_DEVICE
374 	 "Device",
375 #endif
376 };
377 
378 const char * const migratetype_names[MIGRATE_TYPES] = {
379 	"Unmovable",
380 	"Movable",
381 	"Reclaimable",
382 	"HighAtomic",
383 #ifdef CONFIG_CMA
384 	"CMA",
385 #endif
386 #ifdef CONFIG_MEMORY_ISOLATION
387 	"Isolate",
388 #endif
389 };
390 
391 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
392 	[NULL_COMPOUND_DTOR] = NULL,
393 	[COMPOUND_PAGE_DTOR] = free_compound_page,
394 #ifdef CONFIG_HUGETLB_PAGE
395 	[HUGETLB_PAGE_DTOR] = free_huge_page,
396 #endif
397 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
398 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
399 #endif
400 };
401 
402 int min_free_kbytes = 1024;
403 int user_min_free_kbytes = -1;
404 int watermark_boost_factor __read_mostly = 15000;
405 int watermark_scale_factor = 10;
406 
407 static unsigned long nr_kernel_pages __initdata;
408 static unsigned long nr_all_pages __initdata;
409 static unsigned long dma_reserve __initdata;
410 
411 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
412 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
413 static unsigned long required_kernelcore __initdata;
414 static unsigned long required_kernelcore_percent __initdata;
415 static unsigned long required_movablecore __initdata;
416 static unsigned long required_movablecore_percent __initdata;
417 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
418 bool mirrored_kernelcore __initdata_memblock;
419 
420 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
421 int movable_zone;
422 EXPORT_SYMBOL(movable_zone);
423 
424 #if MAX_NUMNODES > 1
425 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
426 unsigned int nr_online_nodes __read_mostly = 1;
427 EXPORT_SYMBOL(nr_node_ids);
428 EXPORT_SYMBOL(nr_online_nodes);
429 #endif
430 
431 int page_group_by_mobility_disabled __read_mostly;
432 
433 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
434 /*
435  * During boot we initialize deferred pages on-demand, as needed, but once
436  * page_alloc_init_late() has finished, the deferred pages are all initialized,
437  * and we can permanently disable that path.
438  */
439 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
440 
441 static inline bool deferred_pages_enabled(void)
442 {
443 	return static_branch_unlikely(&deferred_pages);
444 }
445 
446 /* Returns true if the struct page for the pfn is uninitialised */
447 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
448 {
449 	int nid = early_pfn_to_nid(pfn);
450 
451 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
452 		return true;
453 
454 	return false;
455 }
456 
457 /*
458  * Returns true when the remaining initialisation should be deferred until
459  * later in the boot cycle when it can be parallelised.
460  */
461 static bool __meminit
462 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
463 {
464 	static unsigned long prev_end_pfn, nr_initialised;
465 
466 	if (early_page_ext_enabled())
467 		return false;
468 	/*
469 	 * prev_end_pfn static that contains the end of previous zone
470 	 * No need to protect because called very early in boot before smp_init.
471 	 */
472 	if (prev_end_pfn != end_pfn) {
473 		prev_end_pfn = end_pfn;
474 		nr_initialised = 0;
475 	}
476 
477 	/* Always populate low zones for address-constrained allocations */
478 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
479 		return false;
480 
481 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
482 		return true;
483 	/*
484 	 * We start only with one section of pages, more pages are added as
485 	 * needed until the rest of deferred pages are initialized.
486 	 */
487 	nr_initialised++;
488 	if ((nr_initialised > PAGES_PER_SECTION) &&
489 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
490 		NODE_DATA(nid)->first_deferred_pfn = pfn;
491 		return true;
492 	}
493 	return false;
494 }
495 #else
496 static inline bool deferred_pages_enabled(void)
497 {
498 	return false;
499 }
500 
501 static inline bool early_page_uninitialised(unsigned long pfn)
502 {
503 	return false;
504 }
505 
506 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
507 {
508 	return false;
509 }
510 #endif
511 
512 /* Return a pointer to the bitmap storing bits affecting a block of pages */
513 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
514 							unsigned long pfn)
515 {
516 #ifdef CONFIG_SPARSEMEM
517 	return section_to_usemap(__pfn_to_section(pfn));
518 #else
519 	return page_zone(page)->pageblock_flags;
520 #endif /* CONFIG_SPARSEMEM */
521 }
522 
523 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
524 {
525 #ifdef CONFIG_SPARSEMEM
526 	pfn &= (PAGES_PER_SECTION-1);
527 #else
528 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
529 #endif /* CONFIG_SPARSEMEM */
530 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
531 }
532 
533 static __always_inline
534 unsigned long __get_pfnblock_flags_mask(const struct page *page,
535 					unsigned long pfn,
536 					unsigned long mask)
537 {
538 	unsigned long *bitmap;
539 	unsigned long bitidx, word_bitidx;
540 	unsigned long word;
541 
542 	bitmap = get_pageblock_bitmap(page, pfn);
543 	bitidx = pfn_to_bitidx(page, pfn);
544 	word_bitidx = bitidx / BITS_PER_LONG;
545 	bitidx &= (BITS_PER_LONG-1);
546 	/*
547 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
548 	 * a consistent read of the memory array, so that results, even though
549 	 * racy, are not corrupted.
550 	 */
551 	word = READ_ONCE(bitmap[word_bitidx]);
552 	return (word >> bitidx) & mask;
553 }
554 
555 /**
556  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
557  * @page: The page within the block of interest
558  * @pfn: The target page frame number
559  * @mask: mask of bits that the caller is interested in
560  *
561  * Return: pageblock_bits flags
562  */
563 unsigned long get_pfnblock_flags_mask(const struct page *page,
564 					unsigned long pfn, unsigned long mask)
565 {
566 	return __get_pfnblock_flags_mask(page, pfn, mask);
567 }
568 
569 static __always_inline int get_pfnblock_migratetype(const struct page *page,
570 					unsigned long pfn)
571 {
572 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
573 }
574 
575 /**
576  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
577  * @page: The page within the block of interest
578  * @flags: The flags to set
579  * @pfn: The target page frame number
580  * @mask: mask of bits that the caller is interested in
581  */
582 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
583 					unsigned long pfn,
584 					unsigned long mask)
585 {
586 	unsigned long *bitmap;
587 	unsigned long bitidx, word_bitidx;
588 	unsigned long word;
589 
590 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
591 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
592 
593 	bitmap = get_pageblock_bitmap(page, pfn);
594 	bitidx = pfn_to_bitidx(page, pfn);
595 	word_bitidx = bitidx / BITS_PER_LONG;
596 	bitidx &= (BITS_PER_LONG-1);
597 
598 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
599 
600 	mask <<= bitidx;
601 	flags <<= bitidx;
602 
603 	word = READ_ONCE(bitmap[word_bitidx]);
604 	do {
605 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
606 }
607 
608 void set_pageblock_migratetype(struct page *page, int migratetype)
609 {
610 	if (unlikely(page_group_by_mobility_disabled &&
611 		     migratetype < MIGRATE_PCPTYPES))
612 		migratetype = MIGRATE_UNMOVABLE;
613 
614 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
615 				page_to_pfn(page), MIGRATETYPE_MASK);
616 }
617 
618 #ifdef CONFIG_DEBUG_VM
619 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
620 {
621 	int ret = 0;
622 	unsigned seq;
623 	unsigned long pfn = page_to_pfn(page);
624 	unsigned long sp, start_pfn;
625 
626 	do {
627 		seq = zone_span_seqbegin(zone);
628 		start_pfn = zone->zone_start_pfn;
629 		sp = zone->spanned_pages;
630 		if (!zone_spans_pfn(zone, pfn))
631 			ret = 1;
632 	} while (zone_span_seqretry(zone, seq));
633 
634 	if (ret)
635 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
636 			pfn, zone_to_nid(zone), zone->name,
637 			start_pfn, start_pfn + sp);
638 
639 	return ret;
640 }
641 
642 static int page_is_consistent(struct zone *zone, struct page *page)
643 {
644 	if (zone != page_zone(page))
645 		return 0;
646 
647 	return 1;
648 }
649 /*
650  * Temporary debugging check for pages not lying within a given zone.
651  */
652 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
653 {
654 	if (page_outside_zone_boundaries(zone, page))
655 		return 1;
656 	if (!page_is_consistent(zone, page))
657 		return 1;
658 
659 	return 0;
660 }
661 #else
662 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
663 {
664 	return 0;
665 }
666 #endif
667 
668 static void bad_page(struct page *page, const char *reason)
669 {
670 	static unsigned long resume;
671 	static unsigned long nr_shown;
672 	static unsigned long nr_unshown;
673 
674 	/*
675 	 * Allow a burst of 60 reports, then keep quiet for that minute;
676 	 * or allow a steady drip of one report per second.
677 	 */
678 	if (nr_shown == 60) {
679 		if (time_before(jiffies, resume)) {
680 			nr_unshown++;
681 			goto out;
682 		}
683 		if (nr_unshown) {
684 			pr_alert(
685 			      "BUG: Bad page state: %lu messages suppressed\n",
686 				nr_unshown);
687 			nr_unshown = 0;
688 		}
689 		nr_shown = 0;
690 	}
691 	if (nr_shown++ == 0)
692 		resume = jiffies + 60 * HZ;
693 
694 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
695 		current->comm, page_to_pfn(page));
696 	dump_page(page, reason);
697 
698 	print_modules();
699 	dump_stack();
700 out:
701 	/* Leave bad fields for debug, except PageBuddy could make trouble */
702 	page_mapcount_reset(page); /* remove PageBuddy */
703 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
704 }
705 
706 static inline unsigned int order_to_pindex(int migratetype, int order)
707 {
708 	int base = order;
709 
710 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
711 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
712 		VM_BUG_ON(order != pageblock_order);
713 		return NR_LOWORDER_PCP_LISTS;
714 	}
715 #else
716 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
717 #endif
718 
719 	return (MIGRATE_PCPTYPES * base) + migratetype;
720 }
721 
722 static inline int pindex_to_order(unsigned int pindex)
723 {
724 	int order = pindex / MIGRATE_PCPTYPES;
725 
726 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
727 	if (pindex == NR_LOWORDER_PCP_LISTS)
728 		order = pageblock_order;
729 #else
730 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
731 #endif
732 
733 	return order;
734 }
735 
736 static inline bool pcp_allowed_order(unsigned int order)
737 {
738 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
739 		return true;
740 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
741 	if (order == pageblock_order)
742 		return true;
743 #endif
744 	return false;
745 }
746 
747 static inline void free_the_page(struct page *page, unsigned int order)
748 {
749 	if (pcp_allowed_order(order))		/* Via pcp? */
750 		free_unref_page(page, order);
751 	else
752 		__free_pages_ok(page, order, FPI_NONE);
753 }
754 
755 /*
756  * Higher-order pages are called "compound pages".  They are structured thusly:
757  *
758  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
759  *
760  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
761  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
762  *
763  * The first tail page's ->compound_dtor holds the offset in array of compound
764  * page destructors. See compound_page_dtors.
765  *
766  * The first tail page's ->compound_order holds the order of allocation.
767  * This usage means that zero-order pages may not be compound.
768  */
769 
770 void free_compound_page(struct page *page)
771 {
772 	mem_cgroup_uncharge(page_folio(page));
773 	free_the_page(page, compound_order(page));
774 }
775 
776 static void prep_compound_head(struct page *page, unsigned int order)
777 {
778 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
779 	set_compound_order(page, order);
780 	atomic_set(compound_mapcount_ptr(page), -1);
781 	atomic_set(subpages_mapcount_ptr(page), 0);
782 	atomic_set(compound_pincount_ptr(page), 0);
783 }
784 
785 static void prep_compound_tail(struct page *head, int tail_idx)
786 {
787 	struct page *p = head + tail_idx;
788 
789 	p->mapping = TAIL_MAPPING;
790 	set_compound_head(p, head);
791 	set_page_private(p, 0);
792 }
793 
794 void prep_compound_page(struct page *page, unsigned int order)
795 {
796 	int i;
797 	int nr_pages = 1 << order;
798 
799 	__SetPageHead(page);
800 	for (i = 1; i < nr_pages; i++)
801 		prep_compound_tail(page, i);
802 
803 	prep_compound_head(page, order);
804 }
805 
806 void destroy_large_folio(struct folio *folio)
807 {
808 	enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor;
809 
810 	VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
811 	compound_page_dtors[dtor](&folio->page);
812 }
813 
814 #ifdef CONFIG_DEBUG_PAGEALLOC
815 unsigned int _debug_guardpage_minorder;
816 
817 bool _debug_pagealloc_enabled_early __read_mostly
818 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
819 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
820 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
821 EXPORT_SYMBOL(_debug_pagealloc_enabled);
822 
823 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
824 
825 static int __init early_debug_pagealloc(char *buf)
826 {
827 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
828 }
829 early_param("debug_pagealloc", early_debug_pagealloc);
830 
831 static int __init debug_guardpage_minorder_setup(char *buf)
832 {
833 	unsigned long res;
834 
835 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
836 		pr_err("Bad debug_guardpage_minorder value\n");
837 		return 0;
838 	}
839 	_debug_guardpage_minorder = res;
840 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
841 	return 0;
842 }
843 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
844 
845 static inline bool set_page_guard(struct zone *zone, struct page *page,
846 				unsigned int order, int migratetype)
847 {
848 	if (!debug_guardpage_enabled())
849 		return false;
850 
851 	if (order >= debug_guardpage_minorder())
852 		return false;
853 
854 	__SetPageGuard(page);
855 	INIT_LIST_HEAD(&page->buddy_list);
856 	set_page_private(page, order);
857 	/* Guard pages are not available for any usage */
858 	if (!is_migrate_isolate(migratetype))
859 		__mod_zone_freepage_state(zone, -(1 << order), migratetype);
860 
861 	return true;
862 }
863 
864 static inline void clear_page_guard(struct zone *zone, struct page *page,
865 				unsigned int order, int migratetype)
866 {
867 	if (!debug_guardpage_enabled())
868 		return;
869 
870 	__ClearPageGuard(page);
871 
872 	set_page_private(page, 0);
873 	if (!is_migrate_isolate(migratetype))
874 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
875 }
876 #else
877 static inline bool set_page_guard(struct zone *zone, struct page *page,
878 			unsigned int order, int migratetype) { return false; }
879 static inline void clear_page_guard(struct zone *zone, struct page *page,
880 				unsigned int order, int migratetype) {}
881 #endif
882 
883 /*
884  * Enable static keys related to various memory debugging and hardening options.
885  * Some override others, and depend on early params that are evaluated in the
886  * order of appearance. So we need to first gather the full picture of what was
887  * enabled, and then make decisions.
888  */
889 void __init init_mem_debugging_and_hardening(void)
890 {
891 	bool page_poisoning_requested = false;
892 
893 #ifdef CONFIG_PAGE_POISONING
894 	/*
895 	 * Page poisoning is debug page alloc for some arches. If
896 	 * either of those options are enabled, enable poisoning.
897 	 */
898 	if (page_poisoning_enabled() ||
899 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
900 	      debug_pagealloc_enabled())) {
901 		static_branch_enable(&_page_poisoning_enabled);
902 		page_poisoning_requested = true;
903 	}
904 #endif
905 
906 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
907 	    page_poisoning_requested) {
908 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
909 			"will take precedence over init_on_alloc and init_on_free\n");
910 		_init_on_alloc_enabled_early = false;
911 		_init_on_free_enabled_early = false;
912 	}
913 
914 	if (_init_on_alloc_enabled_early)
915 		static_branch_enable(&init_on_alloc);
916 	else
917 		static_branch_disable(&init_on_alloc);
918 
919 	if (_init_on_free_enabled_early)
920 		static_branch_enable(&init_on_free);
921 	else
922 		static_branch_disable(&init_on_free);
923 
924 	if (IS_ENABLED(CONFIG_KMSAN) &&
925 	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
926 		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
927 
928 #ifdef CONFIG_DEBUG_PAGEALLOC
929 	if (!debug_pagealloc_enabled())
930 		return;
931 
932 	static_branch_enable(&_debug_pagealloc_enabled);
933 
934 	if (!debug_guardpage_minorder())
935 		return;
936 
937 	static_branch_enable(&_debug_guardpage_enabled);
938 #endif
939 }
940 
941 static inline void set_buddy_order(struct page *page, unsigned int order)
942 {
943 	set_page_private(page, order);
944 	__SetPageBuddy(page);
945 }
946 
947 #ifdef CONFIG_COMPACTION
948 static inline struct capture_control *task_capc(struct zone *zone)
949 {
950 	struct capture_control *capc = current->capture_control;
951 
952 	return unlikely(capc) &&
953 		!(current->flags & PF_KTHREAD) &&
954 		!capc->page &&
955 		capc->cc->zone == zone ? capc : NULL;
956 }
957 
958 static inline bool
959 compaction_capture(struct capture_control *capc, struct page *page,
960 		   int order, int migratetype)
961 {
962 	if (!capc || order != capc->cc->order)
963 		return false;
964 
965 	/* Do not accidentally pollute CMA or isolated regions*/
966 	if (is_migrate_cma(migratetype) ||
967 	    is_migrate_isolate(migratetype))
968 		return false;
969 
970 	/*
971 	 * Do not let lower order allocations pollute a movable pageblock.
972 	 * This might let an unmovable request use a reclaimable pageblock
973 	 * and vice-versa but no more than normal fallback logic which can
974 	 * have trouble finding a high-order free page.
975 	 */
976 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
977 		return false;
978 
979 	capc->page = page;
980 	return true;
981 }
982 
983 #else
984 static inline struct capture_control *task_capc(struct zone *zone)
985 {
986 	return NULL;
987 }
988 
989 static inline bool
990 compaction_capture(struct capture_control *capc, struct page *page,
991 		   int order, int migratetype)
992 {
993 	return false;
994 }
995 #endif /* CONFIG_COMPACTION */
996 
997 /* Used for pages not on another list */
998 static inline void add_to_free_list(struct page *page, struct zone *zone,
999 				    unsigned int order, int migratetype)
1000 {
1001 	struct free_area *area = &zone->free_area[order];
1002 
1003 	list_add(&page->buddy_list, &area->free_list[migratetype]);
1004 	area->nr_free++;
1005 }
1006 
1007 /* Used for pages not on another list */
1008 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1009 					 unsigned int order, int migratetype)
1010 {
1011 	struct free_area *area = &zone->free_area[order];
1012 
1013 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1014 	area->nr_free++;
1015 }
1016 
1017 /*
1018  * Used for pages which are on another list. Move the pages to the tail
1019  * of the list - so the moved pages won't immediately be considered for
1020  * allocation again (e.g., optimization for memory onlining).
1021  */
1022 static inline void move_to_free_list(struct page *page, struct zone *zone,
1023 				     unsigned int order, int migratetype)
1024 {
1025 	struct free_area *area = &zone->free_area[order];
1026 
1027 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1028 }
1029 
1030 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1031 					   unsigned int order)
1032 {
1033 	/* clear reported state and update reported page count */
1034 	if (page_reported(page))
1035 		__ClearPageReported(page);
1036 
1037 	list_del(&page->buddy_list);
1038 	__ClearPageBuddy(page);
1039 	set_page_private(page, 0);
1040 	zone->free_area[order].nr_free--;
1041 }
1042 
1043 /*
1044  * If this is not the largest possible page, check if the buddy
1045  * of the next-highest order is free. If it is, it's possible
1046  * that pages are being freed that will coalesce soon. In case,
1047  * that is happening, add the free page to the tail of the list
1048  * so it's less likely to be used soon and more likely to be merged
1049  * as a higher order page
1050  */
1051 static inline bool
1052 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1053 		   struct page *page, unsigned int order)
1054 {
1055 	unsigned long higher_page_pfn;
1056 	struct page *higher_page;
1057 
1058 	if (order >= MAX_ORDER - 2)
1059 		return false;
1060 
1061 	higher_page_pfn = buddy_pfn & pfn;
1062 	higher_page = page + (higher_page_pfn - pfn);
1063 
1064 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1065 			NULL) != NULL;
1066 }
1067 
1068 /*
1069  * Freeing function for a buddy system allocator.
1070  *
1071  * The concept of a buddy system is to maintain direct-mapped table
1072  * (containing bit values) for memory blocks of various "orders".
1073  * The bottom level table contains the map for the smallest allocatable
1074  * units of memory (here, pages), and each level above it describes
1075  * pairs of units from the levels below, hence, "buddies".
1076  * At a high level, all that happens here is marking the table entry
1077  * at the bottom level available, and propagating the changes upward
1078  * as necessary, plus some accounting needed to play nicely with other
1079  * parts of the VM system.
1080  * At each level, we keep a list of pages, which are heads of continuous
1081  * free pages of length of (1 << order) and marked with PageBuddy.
1082  * Page's order is recorded in page_private(page) field.
1083  * So when we are allocating or freeing one, we can derive the state of the
1084  * other.  That is, if we allocate a small block, and both were
1085  * free, the remainder of the region must be split into blocks.
1086  * If a block is freed, and its buddy is also free, then this
1087  * triggers coalescing into a block of larger size.
1088  *
1089  * -- nyc
1090  */
1091 
1092 static inline void __free_one_page(struct page *page,
1093 		unsigned long pfn,
1094 		struct zone *zone, unsigned int order,
1095 		int migratetype, fpi_t fpi_flags)
1096 {
1097 	struct capture_control *capc = task_capc(zone);
1098 	unsigned long buddy_pfn = 0;
1099 	unsigned long combined_pfn;
1100 	struct page *buddy;
1101 	bool to_tail;
1102 
1103 	VM_BUG_ON(!zone_is_initialized(zone));
1104 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1105 
1106 	VM_BUG_ON(migratetype == -1);
1107 	if (likely(!is_migrate_isolate(migratetype)))
1108 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1109 
1110 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1111 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1112 
1113 	while (order < MAX_ORDER - 1) {
1114 		if (compaction_capture(capc, page, order, migratetype)) {
1115 			__mod_zone_freepage_state(zone, -(1 << order),
1116 								migratetype);
1117 			return;
1118 		}
1119 
1120 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1121 		if (!buddy)
1122 			goto done_merging;
1123 
1124 		if (unlikely(order >= pageblock_order)) {
1125 			/*
1126 			 * We want to prevent merge between freepages on pageblock
1127 			 * without fallbacks and normal pageblock. Without this,
1128 			 * pageblock isolation could cause incorrect freepage or CMA
1129 			 * accounting or HIGHATOMIC accounting.
1130 			 */
1131 			int buddy_mt = get_pageblock_migratetype(buddy);
1132 
1133 			if (migratetype != buddy_mt
1134 					&& (!migratetype_is_mergeable(migratetype) ||
1135 						!migratetype_is_mergeable(buddy_mt)))
1136 				goto done_merging;
1137 		}
1138 
1139 		/*
1140 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1141 		 * merge with it and move up one order.
1142 		 */
1143 		if (page_is_guard(buddy))
1144 			clear_page_guard(zone, buddy, order, migratetype);
1145 		else
1146 			del_page_from_free_list(buddy, zone, order);
1147 		combined_pfn = buddy_pfn & pfn;
1148 		page = page + (combined_pfn - pfn);
1149 		pfn = combined_pfn;
1150 		order++;
1151 	}
1152 
1153 done_merging:
1154 	set_buddy_order(page, order);
1155 
1156 	if (fpi_flags & FPI_TO_TAIL)
1157 		to_tail = true;
1158 	else if (is_shuffle_order(order))
1159 		to_tail = shuffle_pick_tail();
1160 	else
1161 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1162 
1163 	if (to_tail)
1164 		add_to_free_list_tail(page, zone, order, migratetype);
1165 	else
1166 		add_to_free_list(page, zone, order, migratetype);
1167 
1168 	/* Notify page reporting subsystem of freed page */
1169 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1170 		page_reporting_notify_free(order);
1171 }
1172 
1173 /**
1174  * split_free_page() -- split a free page at split_pfn_offset
1175  * @free_page:		the original free page
1176  * @order:		the order of the page
1177  * @split_pfn_offset:	split offset within the page
1178  *
1179  * Return -ENOENT if the free page is changed, otherwise 0
1180  *
1181  * It is used when the free page crosses two pageblocks with different migratetypes
1182  * at split_pfn_offset within the page. The split free page will be put into
1183  * separate migratetype lists afterwards. Otherwise, the function achieves
1184  * nothing.
1185  */
1186 int split_free_page(struct page *free_page,
1187 			unsigned int order, unsigned long split_pfn_offset)
1188 {
1189 	struct zone *zone = page_zone(free_page);
1190 	unsigned long free_page_pfn = page_to_pfn(free_page);
1191 	unsigned long pfn;
1192 	unsigned long flags;
1193 	int free_page_order;
1194 	int mt;
1195 	int ret = 0;
1196 
1197 	if (split_pfn_offset == 0)
1198 		return ret;
1199 
1200 	spin_lock_irqsave(&zone->lock, flags);
1201 
1202 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1203 		ret = -ENOENT;
1204 		goto out;
1205 	}
1206 
1207 	mt = get_pageblock_migratetype(free_page);
1208 	if (likely(!is_migrate_isolate(mt)))
1209 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1210 
1211 	del_page_from_free_list(free_page, zone, order);
1212 	for (pfn = free_page_pfn;
1213 	     pfn < free_page_pfn + (1UL << order);) {
1214 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1215 
1216 		free_page_order = min_t(unsigned int,
1217 					pfn ? __ffs(pfn) : order,
1218 					__fls(split_pfn_offset));
1219 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1220 				mt, FPI_NONE);
1221 		pfn += 1UL << free_page_order;
1222 		split_pfn_offset -= (1UL << free_page_order);
1223 		/* we have done the first part, now switch to second part */
1224 		if (split_pfn_offset == 0)
1225 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1226 	}
1227 out:
1228 	spin_unlock_irqrestore(&zone->lock, flags);
1229 	return ret;
1230 }
1231 /*
1232  * A bad page could be due to a number of fields. Instead of multiple branches,
1233  * try and check multiple fields with one check. The caller must do a detailed
1234  * check if necessary.
1235  */
1236 static inline bool page_expected_state(struct page *page,
1237 					unsigned long check_flags)
1238 {
1239 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1240 		return false;
1241 
1242 	if (unlikely((unsigned long)page->mapping |
1243 			page_ref_count(page) |
1244 #ifdef CONFIG_MEMCG
1245 			page->memcg_data |
1246 #endif
1247 			(page->flags & check_flags)))
1248 		return false;
1249 
1250 	return true;
1251 }
1252 
1253 static const char *page_bad_reason(struct page *page, unsigned long flags)
1254 {
1255 	const char *bad_reason = NULL;
1256 
1257 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1258 		bad_reason = "nonzero mapcount";
1259 	if (unlikely(page->mapping != NULL))
1260 		bad_reason = "non-NULL mapping";
1261 	if (unlikely(page_ref_count(page) != 0))
1262 		bad_reason = "nonzero _refcount";
1263 	if (unlikely(page->flags & flags)) {
1264 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1265 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1266 		else
1267 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1268 	}
1269 #ifdef CONFIG_MEMCG
1270 	if (unlikely(page->memcg_data))
1271 		bad_reason = "page still charged to cgroup";
1272 #endif
1273 	return bad_reason;
1274 }
1275 
1276 static void free_page_is_bad_report(struct page *page)
1277 {
1278 	bad_page(page,
1279 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1280 }
1281 
1282 static inline bool free_page_is_bad(struct page *page)
1283 {
1284 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1285 		return false;
1286 
1287 	/* Something has gone sideways, find it */
1288 	free_page_is_bad_report(page);
1289 	return true;
1290 }
1291 
1292 static int free_tail_pages_check(struct page *head_page, struct page *page)
1293 {
1294 	int ret = 1;
1295 
1296 	/*
1297 	 * We rely page->lru.next never has bit 0 set, unless the page
1298 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1299 	 */
1300 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1301 
1302 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1303 		ret = 0;
1304 		goto out;
1305 	}
1306 	switch (page - head_page) {
1307 	case 1:
1308 		/* the first tail page: these may be in place of ->mapping */
1309 		if (unlikely(head_compound_mapcount(head_page))) {
1310 			bad_page(page, "nonzero compound_mapcount");
1311 			goto out;
1312 		}
1313 		if (unlikely(atomic_read(subpages_mapcount_ptr(head_page)))) {
1314 			bad_page(page, "nonzero subpages_mapcount");
1315 			goto out;
1316 		}
1317 		if (unlikely(head_compound_pincount(head_page))) {
1318 			bad_page(page, "nonzero compound_pincount");
1319 			goto out;
1320 		}
1321 		break;
1322 	case 2:
1323 		/*
1324 		 * the second tail page: ->mapping is
1325 		 * deferred_list.next -- ignore value.
1326 		 */
1327 		break;
1328 	default:
1329 		if (page->mapping != TAIL_MAPPING) {
1330 			bad_page(page, "corrupted mapping in tail page");
1331 			goto out;
1332 		}
1333 		break;
1334 	}
1335 	if (unlikely(!PageTail(page))) {
1336 		bad_page(page, "PageTail not set");
1337 		goto out;
1338 	}
1339 	if (unlikely(compound_head(page) != head_page)) {
1340 		bad_page(page, "compound_head not consistent");
1341 		goto out;
1342 	}
1343 	ret = 0;
1344 out:
1345 	page->mapping = NULL;
1346 	clear_compound_head(page);
1347 	return ret;
1348 }
1349 
1350 /*
1351  * Skip KASAN memory poisoning when either:
1352  *
1353  * 1. Deferred memory initialization has not yet completed,
1354  *    see the explanation below.
1355  * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1356  *    see the comment next to it.
1357  * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1358  *    see the comment next to it.
1359  *
1360  * Poisoning pages during deferred memory init will greatly lengthen the
1361  * process and cause problem in large memory systems as the deferred pages
1362  * initialization is done with interrupt disabled.
1363  *
1364  * Assuming that there will be no reference to those newly initialized
1365  * pages before they are ever allocated, this should have no effect on
1366  * KASAN memory tracking as the poison will be properly inserted at page
1367  * allocation time. The only corner case is when pages are allocated by
1368  * on-demand allocation and then freed again before the deferred pages
1369  * initialization is done, but this is not likely to happen.
1370  */
1371 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1372 {
1373 	return deferred_pages_enabled() ||
1374 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1375 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1376 	       PageSkipKASanPoison(page);
1377 }
1378 
1379 static void kernel_init_pages(struct page *page, int numpages)
1380 {
1381 	int i;
1382 
1383 	/* s390's use of memset() could override KASAN redzones. */
1384 	kasan_disable_current();
1385 	for (i = 0; i < numpages; i++)
1386 		clear_highpage_kasan_tagged(page + i);
1387 	kasan_enable_current();
1388 }
1389 
1390 static __always_inline bool free_pages_prepare(struct page *page,
1391 			unsigned int order, bool check_free, fpi_t fpi_flags)
1392 {
1393 	int bad = 0;
1394 	bool init = want_init_on_free();
1395 
1396 	VM_BUG_ON_PAGE(PageTail(page), page);
1397 
1398 	trace_mm_page_free(page, order);
1399 	kmsan_free_page(page, order);
1400 
1401 	if (unlikely(PageHWPoison(page)) && !order) {
1402 		/*
1403 		 * Do not let hwpoison pages hit pcplists/buddy
1404 		 * Untie memcg state and reset page's owner
1405 		 */
1406 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1407 			__memcg_kmem_uncharge_page(page, order);
1408 		reset_page_owner(page, order);
1409 		page_table_check_free(page, order);
1410 		return false;
1411 	}
1412 
1413 	/*
1414 	 * Check tail pages before head page information is cleared to
1415 	 * avoid checking PageCompound for order-0 pages.
1416 	 */
1417 	if (unlikely(order)) {
1418 		bool compound = PageCompound(page);
1419 		int i;
1420 
1421 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1422 
1423 		if (compound)
1424 			ClearPageHasHWPoisoned(page);
1425 		for (i = 1; i < (1 << order); i++) {
1426 			if (compound)
1427 				bad += free_tail_pages_check(page, page + i);
1428 			if (unlikely(free_page_is_bad(page + i))) {
1429 				bad++;
1430 				continue;
1431 			}
1432 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1433 		}
1434 	}
1435 	if (PageMappingFlags(page))
1436 		page->mapping = NULL;
1437 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1438 		__memcg_kmem_uncharge_page(page, order);
1439 	if (check_free && free_page_is_bad(page))
1440 		bad++;
1441 	if (bad)
1442 		return false;
1443 
1444 	page_cpupid_reset_last(page);
1445 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1446 	reset_page_owner(page, order);
1447 	page_table_check_free(page, order);
1448 
1449 	if (!PageHighMem(page)) {
1450 		debug_check_no_locks_freed(page_address(page),
1451 					   PAGE_SIZE << order);
1452 		debug_check_no_obj_freed(page_address(page),
1453 					   PAGE_SIZE << order);
1454 	}
1455 
1456 	kernel_poison_pages(page, 1 << order);
1457 
1458 	/*
1459 	 * As memory initialization might be integrated into KASAN,
1460 	 * KASAN poisoning and memory initialization code must be
1461 	 * kept together to avoid discrepancies in behavior.
1462 	 *
1463 	 * With hardware tag-based KASAN, memory tags must be set before the
1464 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1465 	 */
1466 	if (!should_skip_kasan_poison(page, fpi_flags)) {
1467 		kasan_poison_pages(page, order, init);
1468 
1469 		/* Memory is already initialized if KASAN did it internally. */
1470 		if (kasan_has_integrated_init())
1471 			init = false;
1472 	}
1473 	if (init)
1474 		kernel_init_pages(page, 1 << order);
1475 
1476 	/*
1477 	 * arch_free_page() can make the page's contents inaccessible.  s390
1478 	 * does this.  So nothing which can access the page's contents should
1479 	 * happen after this.
1480 	 */
1481 	arch_free_page(page, order);
1482 
1483 	debug_pagealloc_unmap_pages(page, 1 << order);
1484 
1485 	return true;
1486 }
1487 
1488 #ifdef CONFIG_DEBUG_VM
1489 /*
1490  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1491  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1492  * moved from pcp lists to free lists.
1493  */
1494 static bool free_pcp_prepare(struct page *page, unsigned int order)
1495 {
1496 	return free_pages_prepare(page, order, true, FPI_NONE);
1497 }
1498 
1499 /* return true if this page has an inappropriate state */
1500 static bool bulkfree_pcp_prepare(struct page *page)
1501 {
1502 	if (debug_pagealloc_enabled_static())
1503 		return free_page_is_bad(page);
1504 	else
1505 		return false;
1506 }
1507 #else
1508 /*
1509  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1510  * moving from pcp lists to free list in order to reduce overhead. With
1511  * debug_pagealloc enabled, they are checked also immediately when being freed
1512  * to the pcp lists.
1513  */
1514 static bool free_pcp_prepare(struct page *page, unsigned int order)
1515 {
1516 	if (debug_pagealloc_enabled_static())
1517 		return free_pages_prepare(page, order, true, FPI_NONE);
1518 	else
1519 		return free_pages_prepare(page, order, false, FPI_NONE);
1520 }
1521 
1522 static bool bulkfree_pcp_prepare(struct page *page)
1523 {
1524 	return free_page_is_bad(page);
1525 }
1526 #endif /* CONFIG_DEBUG_VM */
1527 
1528 /*
1529  * Frees a number of pages from the PCP lists
1530  * Assumes all pages on list are in same zone.
1531  * count is the number of pages to free.
1532  */
1533 static void free_pcppages_bulk(struct zone *zone, int count,
1534 					struct per_cpu_pages *pcp,
1535 					int pindex)
1536 {
1537 	unsigned long flags;
1538 	int min_pindex = 0;
1539 	int max_pindex = NR_PCP_LISTS - 1;
1540 	unsigned int order;
1541 	bool isolated_pageblocks;
1542 	struct page *page;
1543 
1544 	/*
1545 	 * Ensure proper count is passed which otherwise would stuck in the
1546 	 * below while (list_empty(list)) loop.
1547 	 */
1548 	count = min(pcp->count, count);
1549 
1550 	/* Ensure requested pindex is drained first. */
1551 	pindex = pindex - 1;
1552 
1553 	spin_lock_irqsave(&zone->lock, flags);
1554 	isolated_pageblocks = has_isolate_pageblock(zone);
1555 
1556 	while (count > 0) {
1557 		struct list_head *list;
1558 		int nr_pages;
1559 
1560 		/* Remove pages from lists in a round-robin fashion. */
1561 		do {
1562 			if (++pindex > max_pindex)
1563 				pindex = min_pindex;
1564 			list = &pcp->lists[pindex];
1565 			if (!list_empty(list))
1566 				break;
1567 
1568 			if (pindex == max_pindex)
1569 				max_pindex--;
1570 			if (pindex == min_pindex)
1571 				min_pindex++;
1572 		} while (1);
1573 
1574 		order = pindex_to_order(pindex);
1575 		nr_pages = 1 << order;
1576 		do {
1577 			int mt;
1578 
1579 			page = list_last_entry(list, struct page, pcp_list);
1580 			mt = get_pcppage_migratetype(page);
1581 
1582 			/* must delete to avoid corrupting pcp list */
1583 			list_del(&page->pcp_list);
1584 			count -= nr_pages;
1585 			pcp->count -= nr_pages;
1586 
1587 			if (bulkfree_pcp_prepare(page))
1588 				continue;
1589 
1590 			/* MIGRATE_ISOLATE page should not go to pcplists */
1591 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1592 			/* Pageblock could have been isolated meanwhile */
1593 			if (unlikely(isolated_pageblocks))
1594 				mt = get_pageblock_migratetype(page);
1595 
1596 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1597 			trace_mm_page_pcpu_drain(page, order, mt);
1598 		} while (count > 0 && !list_empty(list));
1599 	}
1600 
1601 	spin_unlock_irqrestore(&zone->lock, flags);
1602 }
1603 
1604 static void free_one_page(struct zone *zone,
1605 				struct page *page, unsigned long pfn,
1606 				unsigned int order,
1607 				int migratetype, fpi_t fpi_flags)
1608 {
1609 	unsigned long flags;
1610 
1611 	spin_lock_irqsave(&zone->lock, flags);
1612 	if (unlikely(has_isolate_pageblock(zone) ||
1613 		is_migrate_isolate(migratetype))) {
1614 		migratetype = get_pfnblock_migratetype(page, pfn);
1615 	}
1616 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1617 	spin_unlock_irqrestore(&zone->lock, flags);
1618 }
1619 
1620 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1621 				unsigned long zone, int nid)
1622 {
1623 	mm_zero_struct_page(page);
1624 	set_page_links(page, zone, nid, pfn);
1625 	init_page_count(page);
1626 	page_mapcount_reset(page);
1627 	page_cpupid_reset_last(page);
1628 	page_kasan_tag_reset(page);
1629 
1630 	INIT_LIST_HEAD(&page->lru);
1631 #ifdef WANT_PAGE_VIRTUAL
1632 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1633 	if (!is_highmem_idx(zone))
1634 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1635 #endif
1636 }
1637 
1638 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1639 static void __meminit init_reserved_page(unsigned long pfn)
1640 {
1641 	pg_data_t *pgdat;
1642 	int nid, zid;
1643 
1644 	if (!early_page_uninitialised(pfn))
1645 		return;
1646 
1647 	nid = early_pfn_to_nid(pfn);
1648 	pgdat = NODE_DATA(nid);
1649 
1650 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1651 		struct zone *zone = &pgdat->node_zones[zid];
1652 
1653 		if (zone_spans_pfn(zone, pfn))
1654 			break;
1655 	}
1656 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1657 }
1658 #else
1659 static inline void init_reserved_page(unsigned long pfn)
1660 {
1661 }
1662 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1663 
1664 /*
1665  * Initialised pages do not have PageReserved set. This function is
1666  * called for each range allocated by the bootmem allocator and
1667  * marks the pages PageReserved. The remaining valid pages are later
1668  * sent to the buddy page allocator.
1669  */
1670 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1671 {
1672 	unsigned long start_pfn = PFN_DOWN(start);
1673 	unsigned long end_pfn = PFN_UP(end);
1674 
1675 	for (; start_pfn < end_pfn; start_pfn++) {
1676 		if (pfn_valid(start_pfn)) {
1677 			struct page *page = pfn_to_page(start_pfn);
1678 
1679 			init_reserved_page(start_pfn);
1680 
1681 			/* Avoid false-positive PageTail() */
1682 			INIT_LIST_HEAD(&page->lru);
1683 
1684 			/*
1685 			 * no need for atomic set_bit because the struct
1686 			 * page is not visible yet so nobody should
1687 			 * access it yet.
1688 			 */
1689 			__SetPageReserved(page);
1690 		}
1691 	}
1692 }
1693 
1694 static void __free_pages_ok(struct page *page, unsigned int order,
1695 			    fpi_t fpi_flags)
1696 {
1697 	unsigned long flags;
1698 	int migratetype;
1699 	unsigned long pfn = page_to_pfn(page);
1700 	struct zone *zone = page_zone(page);
1701 
1702 	if (!free_pages_prepare(page, order, true, fpi_flags))
1703 		return;
1704 
1705 	migratetype = get_pfnblock_migratetype(page, pfn);
1706 
1707 	spin_lock_irqsave(&zone->lock, flags);
1708 	if (unlikely(has_isolate_pageblock(zone) ||
1709 		is_migrate_isolate(migratetype))) {
1710 		migratetype = get_pfnblock_migratetype(page, pfn);
1711 	}
1712 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1713 	spin_unlock_irqrestore(&zone->lock, flags);
1714 
1715 	__count_vm_events(PGFREE, 1 << order);
1716 }
1717 
1718 void __free_pages_core(struct page *page, unsigned int order)
1719 {
1720 	unsigned int nr_pages = 1 << order;
1721 	struct page *p = page;
1722 	unsigned int loop;
1723 
1724 	/*
1725 	 * When initializing the memmap, __init_single_page() sets the refcount
1726 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1727 	 * refcount of all involved pages to 0.
1728 	 */
1729 	prefetchw(p);
1730 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1731 		prefetchw(p + 1);
1732 		__ClearPageReserved(p);
1733 		set_page_count(p, 0);
1734 	}
1735 	__ClearPageReserved(p);
1736 	set_page_count(p, 0);
1737 
1738 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1739 
1740 	/*
1741 	 * Bypass PCP and place fresh pages right to the tail, primarily
1742 	 * relevant for memory onlining.
1743 	 */
1744 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1745 }
1746 
1747 #ifdef CONFIG_NUMA
1748 
1749 /*
1750  * During memory init memblocks map pfns to nids. The search is expensive and
1751  * this caches recent lookups. The implementation of __early_pfn_to_nid
1752  * treats start/end as pfns.
1753  */
1754 struct mminit_pfnnid_cache {
1755 	unsigned long last_start;
1756 	unsigned long last_end;
1757 	int last_nid;
1758 };
1759 
1760 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1761 
1762 /*
1763  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1764  */
1765 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1766 					struct mminit_pfnnid_cache *state)
1767 {
1768 	unsigned long start_pfn, end_pfn;
1769 	int nid;
1770 
1771 	if (state->last_start <= pfn && pfn < state->last_end)
1772 		return state->last_nid;
1773 
1774 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1775 	if (nid != NUMA_NO_NODE) {
1776 		state->last_start = start_pfn;
1777 		state->last_end = end_pfn;
1778 		state->last_nid = nid;
1779 	}
1780 
1781 	return nid;
1782 }
1783 
1784 int __meminit early_pfn_to_nid(unsigned long pfn)
1785 {
1786 	static DEFINE_SPINLOCK(early_pfn_lock);
1787 	int nid;
1788 
1789 	spin_lock(&early_pfn_lock);
1790 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1791 	if (nid < 0)
1792 		nid = first_online_node;
1793 	spin_unlock(&early_pfn_lock);
1794 
1795 	return nid;
1796 }
1797 #endif /* CONFIG_NUMA */
1798 
1799 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1800 							unsigned int order)
1801 {
1802 	if (early_page_uninitialised(pfn))
1803 		return;
1804 	if (!kmsan_memblock_free_pages(page, order)) {
1805 		/* KMSAN will take care of these pages. */
1806 		return;
1807 	}
1808 	__free_pages_core(page, order);
1809 }
1810 
1811 /*
1812  * Check that the whole (or subset of) a pageblock given by the interval of
1813  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1814  * with the migration of free compaction scanner.
1815  *
1816  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1817  *
1818  * It's possible on some configurations to have a setup like node0 node1 node0
1819  * i.e. it's possible that all pages within a zones range of pages do not
1820  * belong to a single zone. We assume that a border between node0 and node1
1821  * can occur within a single pageblock, but not a node0 node1 node0
1822  * interleaving within a single pageblock. It is therefore sufficient to check
1823  * the first and last page of a pageblock and avoid checking each individual
1824  * page in a pageblock.
1825  */
1826 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1827 				     unsigned long end_pfn, struct zone *zone)
1828 {
1829 	struct page *start_page;
1830 	struct page *end_page;
1831 
1832 	/* end_pfn is one past the range we are checking */
1833 	end_pfn--;
1834 
1835 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1836 		return NULL;
1837 
1838 	start_page = pfn_to_online_page(start_pfn);
1839 	if (!start_page)
1840 		return NULL;
1841 
1842 	if (page_zone(start_page) != zone)
1843 		return NULL;
1844 
1845 	end_page = pfn_to_page(end_pfn);
1846 
1847 	/* This gives a shorter code than deriving page_zone(end_page) */
1848 	if (page_zone_id(start_page) != page_zone_id(end_page))
1849 		return NULL;
1850 
1851 	return start_page;
1852 }
1853 
1854 void set_zone_contiguous(struct zone *zone)
1855 {
1856 	unsigned long block_start_pfn = zone->zone_start_pfn;
1857 	unsigned long block_end_pfn;
1858 
1859 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
1860 	for (; block_start_pfn < zone_end_pfn(zone);
1861 			block_start_pfn = block_end_pfn,
1862 			 block_end_pfn += pageblock_nr_pages) {
1863 
1864 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1865 
1866 		if (!__pageblock_pfn_to_page(block_start_pfn,
1867 					     block_end_pfn, zone))
1868 			return;
1869 		cond_resched();
1870 	}
1871 
1872 	/* We confirm that there is no hole */
1873 	zone->contiguous = true;
1874 }
1875 
1876 void clear_zone_contiguous(struct zone *zone)
1877 {
1878 	zone->contiguous = false;
1879 }
1880 
1881 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1882 static void __init deferred_free_range(unsigned long pfn,
1883 				       unsigned long nr_pages)
1884 {
1885 	struct page *page;
1886 	unsigned long i;
1887 
1888 	if (!nr_pages)
1889 		return;
1890 
1891 	page = pfn_to_page(pfn);
1892 
1893 	/* Free a large naturally-aligned chunk if possible */
1894 	if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) {
1895 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1896 		__free_pages_core(page, pageblock_order);
1897 		return;
1898 	}
1899 
1900 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1901 		if (pageblock_aligned(pfn))
1902 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1903 		__free_pages_core(page, 0);
1904 	}
1905 }
1906 
1907 /* Completion tracking for deferred_init_memmap() threads */
1908 static atomic_t pgdat_init_n_undone __initdata;
1909 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1910 
1911 static inline void __init pgdat_init_report_one_done(void)
1912 {
1913 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1914 		complete(&pgdat_init_all_done_comp);
1915 }
1916 
1917 /*
1918  * Returns true if page needs to be initialized or freed to buddy allocator.
1919  *
1920  * We check if a current large page is valid by only checking the validity
1921  * of the head pfn.
1922  */
1923 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1924 {
1925 	if (pageblock_aligned(pfn) && !pfn_valid(pfn))
1926 		return false;
1927 	return true;
1928 }
1929 
1930 /*
1931  * Free pages to buddy allocator. Try to free aligned pages in
1932  * pageblock_nr_pages sizes.
1933  */
1934 static void __init deferred_free_pages(unsigned long pfn,
1935 				       unsigned long end_pfn)
1936 {
1937 	unsigned long nr_free = 0;
1938 
1939 	for (; pfn < end_pfn; pfn++) {
1940 		if (!deferred_pfn_valid(pfn)) {
1941 			deferred_free_range(pfn - nr_free, nr_free);
1942 			nr_free = 0;
1943 		} else if (pageblock_aligned(pfn)) {
1944 			deferred_free_range(pfn - nr_free, nr_free);
1945 			nr_free = 1;
1946 		} else {
1947 			nr_free++;
1948 		}
1949 	}
1950 	/* Free the last block of pages to allocator */
1951 	deferred_free_range(pfn - nr_free, nr_free);
1952 }
1953 
1954 /*
1955  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1956  * by performing it only once every pageblock_nr_pages.
1957  * Return number of pages initialized.
1958  */
1959 static unsigned long  __init deferred_init_pages(struct zone *zone,
1960 						 unsigned long pfn,
1961 						 unsigned long end_pfn)
1962 {
1963 	int nid = zone_to_nid(zone);
1964 	unsigned long nr_pages = 0;
1965 	int zid = zone_idx(zone);
1966 	struct page *page = NULL;
1967 
1968 	for (; pfn < end_pfn; pfn++) {
1969 		if (!deferred_pfn_valid(pfn)) {
1970 			page = NULL;
1971 			continue;
1972 		} else if (!page || pageblock_aligned(pfn)) {
1973 			page = pfn_to_page(pfn);
1974 		} else {
1975 			page++;
1976 		}
1977 		__init_single_page(page, pfn, zid, nid);
1978 		nr_pages++;
1979 	}
1980 	return (nr_pages);
1981 }
1982 
1983 /*
1984  * This function is meant to pre-load the iterator for the zone init.
1985  * Specifically it walks through the ranges until we are caught up to the
1986  * first_init_pfn value and exits there. If we never encounter the value we
1987  * return false indicating there are no valid ranges left.
1988  */
1989 static bool __init
1990 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1991 				    unsigned long *spfn, unsigned long *epfn,
1992 				    unsigned long first_init_pfn)
1993 {
1994 	u64 j;
1995 
1996 	/*
1997 	 * Start out by walking through the ranges in this zone that have
1998 	 * already been initialized. We don't need to do anything with them
1999 	 * so we just need to flush them out of the system.
2000 	 */
2001 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2002 		if (*epfn <= first_init_pfn)
2003 			continue;
2004 		if (*spfn < first_init_pfn)
2005 			*spfn = first_init_pfn;
2006 		*i = j;
2007 		return true;
2008 	}
2009 
2010 	return false;
2011 }
2012 
2013 /*
2014  * Initialize and free pages. We do it in two loops: first we initialize
2015  * struct page, then free to buddy allocator, because while we are
2016  * freeing pages we can access pages that are ahead (computing buddy
2017  * page in __free_one_page()).
2018  *
2019  * In order to try and keep some memory in the cache we have the loop
2020  * broken along max page order boundaries. This way we will not cause
2021  * any issues with the buddy page computation.
2022  */
2023 static unsigned long __init
2024 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2025 		       unsigned long *end_pfn)
2026 {
2027 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2028 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2029 	unsigned long nr_pages = 0;
2030 	u64 j = *i;
2031 
2032 	/* First we loop through and initialize the page values */
2033 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2034 		unsigned long t;
2035 
2036 		if (mo_pfn <= *start_pfn)
2037 			break;
2038 
2039 		t = min(mo_pfn, *end_pfn);
2040 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2041 
2042 		if (mo_pfn < *end_pfn) {
2043 			*start_pfn = mo_pfn;
2044 			break;
2045 		}
2046 	}
2047 
2048 	/* Reset values and now loop through freeing pages as needed */
2049 	swap(j, *i);
2050 
2051 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2052 		unsigned long t;
2053 
2054 		if (mo_pfn <= spfn)
2055 			break;
2056 
2057 		t = min(mo_pfn, epfn);
2058 		deferred_free_pages(spfn, t);
2059 
2060 		if (mo_pfn <= epfn)
2061 			break;
2062 	}
2063 
2064 	return nr_pages;
2065 }
2066 
2067 static void __init
2068 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2069 			   void *arg)
2070 {
2071 	unsigned long spfn, epfn;
2072 	struct zone *zone = arg;
2073 	u64 i;
2074 
2075 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2076 
2077 	/*
2078 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2079 	 * can avoid introducing any issues with the buddy allocator.
2080 	 */
2081 	while (spfn < end_pfn) {
2082 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2083 		cond_resched();
2084 	}
2085 }
2086 
2087 /* An arch may override for more concurrency. */
2088 __weak int __init
2089 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2090 {
2091 	return 1;
2092 }
2093 
2094 /* Initialise remaining memory on a node */
2095 static int __init deferred_init_memmap(void *data)
2096 {
2097 	pg_data_t *pgdat = data;
2098 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2099 	unsigned long spfn = 0, epfn = 0;
2100 	unsigned long first_init_pfn, flags;
2101 	unsigned long start = jiffies;
2102 	struct zone *zone;
2103 	int zid, max_threads;
2104 	u64 i;
2105 
2106 	/* Bind memory initialisation thread to a local node if possible */
2107 	if (!cpumask_empty(cpumask))
2108 		set_cpus_allowed_ptr(current, cpumask);
2109 
2110 	pgdat_resize_lock(pgdat, &flags);
2111 	first_init_pfn = pgdat->first_deferred_pfn;
2112 	if (first_init_pfn == ULONG_MAX) {
2113 		pgdat_resize_unlock(pgdat, &flags);
2114 		pgdat_init_report_one_done();
2115 		return 0;
2116 	}
2117 
2118 	/* Sanity check boundaries */
2119 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2120 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2121 	pgdat->first_deferred_pfn = ULONG_MAX;
2122 
2123 	/*
2124 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2125 	 * interrupt thread must allocate this early in boot, zone must be
2126 	 * pre-grown prior to start of deferred page initialization.
2127 	 */
2128 	pgdat_resize_unlock(pgdat, &flags);
2129 
2130 	/* Only the highest zone is deferred so find it */
2131 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2132 		zone = pgdat->node_zones + zid;
2133 		if (first_init_pfn < zone_end_pfn(zone))
2134 			break;
2135 	}
2136 
2137 	/* If the zone is empty somebody else may have cleared out the zone */
2138 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2139 						 first_init_pfn))
2140 		goto zone_empty;
2141 
2142 	max_threads = deferred_page_init_max_threads(cpumask);
2143 
2144 	while (spfn < epfn) {
2145 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2146 		struct padata_mt_job job = {
2147 			.thread_fn   = deferred_init_memmap_chunk,
2148 			.fn_arg      = zone,
2149 			.start       = spfn,
2150 			.size        = epfn_align - spfn,
2151 			.align       = PAGES_PER_SECTION,
2152 			.min_chunk   = PAGES_PER_SECTION,
2153 			.max_threads = max_threads,
2154 		};
2155 
2156 		padata_do_multithreaded(&job);
2157 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2158 						    epfn_align);
2159 	}
2160 zone_empty:
2161 	/* Sanity check that the next zone really is unpopulated */
2162 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2163 
2164 	pr_info("node %d deferred pages initialised in %ums\n",
2165 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2166 
2167 	pgdat_init_report_one_done();
2168 	return 0;
2169 }
2170 
2171 /*
2172  * If this zone has deferred pages, try to grow it by initializing enough
2173  * deferred pages to satisfy the allocation specified by order, rounded up to
2174  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2175  * of SECTION_SIZE bytes by initializing struct pages in increments of
2176  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2177  *
2178  * Return true when zone was grown, otherwise return false. We return true even
2179  * when we grow less than requested, to let the caller decide if there are
2180  * enough pages to satisfy the allocation.
2181  *
2182  * Note: We use noinline because this function is needed only during boot, and
2183  * it is called from a __ref function _deferred_grow_zone. This way we are
2184  * making sure that it is not inlined into permanent text section.
2185  */
2186 static noinline bool __init
2187 deferred_grow_zone(struct zone *zone, unsigned int order)
2188 {
2189 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2190 	pg_data_t *pgdat = zone->zone_pgdat;
2191 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2192 	unsigned long spfn, epfn, flags;
2193 	unsigned long nr_pages = 0;
2194 	u64 i;
2195 
2196 	/* Only the last zone may have deferred pages */
2197 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2198 		return false;
2199 
2200 	pgdat_resize_lock(pgdat, &flags);
2201 
2202 	/*
2203 	 * If someone grew this zone while we were waiting for spinlock, return
2204 	 * true, as there might be enough pages already.
2205 	 */
2206 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2207 		pgdat_resize_unlock(pgdat, &flags);
2208 		return true;
2209 	}
2210 
2211 	/* If the zone is empty somebody else may have cleared out the zone */
2212 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2213 						 first_deferred_pfn)) {
2214 		pgdat->first_deferred_pfn = ULONG_MAX;
2215 		pgdat_resize_unlock(pgdat, &flags);
2216 		/* Retry only once. */
2217 		return first_deferred_pfn != ULONG_MAX;
2218 	}
2219 
2220 	/*
2221 	 * Initialize and free pages in MAX_ORDER sized increments so
2222 	 * that we can avoid introducing any issues with the buddy
2223 	 * allocator.
2224 	 */
2225 	while (spfn < epfn) {
2226 		/* update our first deferred PFN for this section */
2227 		first_deferred_pfn = spfn;
2228 
2229 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2230 		touch_nmi_watchdog();
2231 
2232 		/* We should only stop along section boundaries */
2233 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2234 			continue;
2235 
2236 		/* If our quota has been met we can stop here */
2237 		if (nr_pages >= nr_pages_needed)
2238 			break;
2239 	}
2240 
2241 	pgdat->first_deferred_pfn = spfn;
2242 	pgdat_resize_unlock(pgdat, &flags);
2243 
2244 	return nr_pages > 0;
2245 }
2246 
2247 /*
2248  * deferred_grow_zone() is __init, but it is called from
2249  * get_page_from_freelist() during early boot until deferred_pages permanently
2250  * disables this call. This is why we have refdata wrapper to avoid warning,
2251  * and to ensure that the function body gets unloaded.
2252  */
2253 static bool __ref
2254 _deferred_grow_zone(struct zone *zone, unsigned int order)
2255 {
2256 	return deferred_grow_zone(zone, order);
2257 }
2258 
2259 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2260 
2261 void __init page_alloc_init_late(void)
2262 {
2263 	struct zone *zone;
2264 	int nid;
2265 
2266 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2267 
2268 	/* There will be num_node_state(N_MEMORY) threads */
2269 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2270 	for_each_node_state(nid, N_MEMORY) {
2271 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2272 	}
2273 
2274 	/* Block until all are initialised */
2275 	wait_for_completion(&pgdat_init_all_done_comp);
2276 
2277 	/*
2278 	 * We initialized the rest of the deferred pages.  Permanently disable
2279 	 * on-demand struct page initialization.
2280 	 */
2281 	static_branch_disable(&deferred_pages);
2282 
2283 	/* Reinit limits that are based on free pages after the kernel is up */
2284 	files_maxfiles_init();
2285 #endif
2286 
2287 	buffer_init();
2288 
2289 	/* Discard memblock private memory */
2290 	memblock_discard();
2291 
2292 	for_each_node_state(nid, N_MEMORY)
2293 		shuffle_free_memory(NODE_DATA(nid));
2294 
2295 	for_each_populated_zone(zone)
2296 		set_zone_contiguous(zone);
2297 }
2298 
2299 #ifdef CONFIG_CMA
2300 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2301 void __init init_cma_reserved_pageblock(struct page *page)
2302 {
2303 	unsigned i = pageblock_nr_pages;
2304 	struct page *p = page;
2305 
2306 	do {
2307 		__ClearPageReserved(p);
2308 		set_page_count(p, 0);
2309 	} while (++p, --i);
2310 
2311 	set_pageblock_migratetype(page, MIGRATE_CMA);
2312 	set_page_refcounted(page);
2313 	__free_pages(page, pageblock_order);
2314 
2315 	adjust_managed_page_count(page, pageblock_nr_pages);
2316 	page_zone(page)->cma_pages += pageblock_nr_pages;
2317 }
2318 #endif
2319 
2320 /*
2321  * The order of subdivision here is critical for the IO subsystem.
2322  * Please do not alter this order without good reasons and regression
2323  * testing. Specifically, as large blocks of memory are subdivided,
2324  * the order in which smaller blocks are delivered depends on the order
2325  * they're subdivided in this function. This is the primary factor
2326  * influencing the order in which pages are delivered to the IO
2327  * subsystem according to empirical testing, and this is also justified
2328  * by considering the behavior of a buddy system containing a single
2329  * large block of memory acted on by a series of small allocations.
2330  * This behavior is a critical factor in sglist merging's success.
2331  *
2332  * -- nyc
2333  */
2334 static inline void expand(struct zone *zone, struct page *page,
2335 	int low, int high, int migratetype)
2336 {
2337 	unsigned long size = 1 << high;
2338 
2339 	while (high > low) {
2340 		high--;
2341 		size >>= 1;
2342 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2343 
2344 		/*
2345 		 * Mark as guard pages (or page), that will allow to
2346 		 * merge back to allocator when buddy will be freed.
2347 		 * Corresponding page table entries will not be touched,
2348 		 * pages will stay not present in virtual address space
2349 		 */
2350 		if (set_page_guard(zone, &page[size], high, migratetype))
2351 			continue;
2352 
2353 		add_to_free_list(&page[size], zone, high, migratetype);
2354 		set_buddy_order(&page[size], high);
2355 	}
2356 }
2357 
2358 static void check_new_page_bad(struct page *page)
2359 {
2360 	if (unlikely(page->flags & __PG_HWPOISON)) {
2361 		/* Don't complain about hwpoisoned pages */
2362 		page_mapcount_reset(page); /* remove PageBuddy */
2363 		return;
2364 	}
2365 
2366 	bad_page(page,
2367 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2368 }
2369 
2370 /*
2371  * This page is about to be returned from the page allocator
2372  */
2373 static inline int check_new_page(struct page *page)
2374 {
2375 	if (likely(page_expected_state(page,
2376 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2377 		return 0;
2378 
2379 	check_new_page_bad(page);
2380 	return 1;
2381 }
2382 
2383 static bool check_new_pages(struct page *page, unsigned int order)
2384 {
2385 	int i;
2386 	for (i = 0; i < (1 << order); i++) {
2387 		struct page *p = page + i;
2388 
2389 		if (unlikely(check_new_page(p)))
2390 			return true;
2391 	}
2392 
2393 	return false;
2394 }
2395 
2396 #ifdef CONFIG_DEBUG_VM
2397 /*
2398  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2399  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2400  * also checked when pcp lists are refilled from the free lists.
2401  */
2402 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2403 {
2404 	if (debug_pagealloc_enabled_static())
2405 		return check_new_pages(page, order);
2406 	else
2407 		return false;
2408 }
2409 
2410 static inline bool check_new_pcp(struct page *page, unsigned int order)
2411 {
2412 	return check_new_pages(page, order);
2413 }
2414 #else
2415 /*
2416  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2417  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2418  * enabled, they are also checked when being allocated from the pcp lists.
2419  */
2420 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2421 {
2422 	return check_new_pages(page, order);
2423 }
2424 static inline bool check_new_pcp(struct page *page, unsigned int order)
2425 {
2426 	if (debug_pagealloc_enabled_static())
2427 		return check_new_pages(page, order);
2428 	else
2429 		return false;
2430 }
2431 #endif /* CONFIG_DEBUG_VM */
2432 
2433 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2434 {
2435 	/* Don't skip if a software KASAN mode is enabled. */
2436 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2437 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2438 		return false;
2439 
2440 	/* Skip, if hardware tag-based KASAN is not enabled. */
2441 	if (!kasan_hw_tags_enabled())
2442 		return true;
2443 
2444 	/*
2445 	 * With hardware tag-based KASAN enabled, skip if this has been
2446 	 * requested via __GFP_SKIP_KASAN_UNPOISON.
2447 	 */
2448 	return flags & __GFP_SKIP_KASAN_UNPOISON;
2449 }
2450 
2451 static inline bool should_skip_init(gfp_t flags)
2452 {
2453 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
2454 	if (!kasan_hw_tags_enabled())
2455 		return false;
2456 
2457 	/* For hardware tag-based KASAN, skip if requested. */
2458 	return (flags & __GFP_SKIP_ZERO);
2459 }
2460 
2461 inline void post_alloc_hook(struct page *page, unsigned int order,
2462 				gfp_t gfp_flags)
2463 {
2464 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2465 			!should_skip_init(gfp_flags);
2466 	bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2467 	int i;
2468 
2469 	set_page_private(page, 0);
2470 	set_page_refcounted(page);
2471 
2472 	arch_alloc_page(page, order);
2473 	debug_pagealloc_map_pages(page, 1 << order);
2474 
2475 	/*
2476 	 * Page unpoisoning must happen before memory initialization.
2477 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2478 	 * allocations and the page unpoisoning code will complain.
2479 	 */
2480 	kernel_unpoison_pages(page, 1 << order);
2481 
2482 	/*
2483 	 * As memory initialization might be integrated into KASAN,
2484 	 * KASAN unpoisoning and memory initializion code must be
2485 	 * kept together to avoid discrepancies in behavior.
2486 	 */
2487 
2488 	/*
2489 	 * If memory tags should be zeroed (which happens only when memory
2490 	 * should be initialized as well).
2491 	 */
2492 	if (init_tags) {
2493 		/* Initialize both memory and tags. */
2494 		for (i = 0; i != 1 << order; ++i)
2495 			tag_clear_highpage(page + i);
2496 
2497 		/* Note that memory is already initialized by the loop above. */
2498 		init = false;
2499 	}
2500 	if (!should_skip_kasan_unpoison(gfp_flags)) {
2501 		/* Unpoison shadow memory or set memory tags. */
2502 		kasan_unpoison_pages(page, order, init);
2503 
2504 		/* Note that memory is already initialized by KASAN. */
2505 		if (kasan_has_integrated_init())
2506 			init = false;
2507 	} else {
2508 		/* Ensure page_address() dereferencing does not fault. */
2509 		for (i = 0; i != 1 << order; ++i)
2510 			page_kasan_tag_reset(page + i);
2511 	}
2512 	/* If memory is still not initialized, do it now. */
2513 	if (init)
2514 		kernel_init_pages(page, 1 << order);
2515 	/* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2516 	if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2517 		SetPageSkipKASanPoison(page);
2518 
2519 	set_page_owner(page, order, gfp_flags);
2520 	page_table_check_alloc(page, order);
2521 }
2522 
2523 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2524 							unsigned int alloc_flags)
2525 {
2526 	post_alloc_hook(page, order, gfp_flags);
2527 
2528 	if (order && (gfp_flags & __GFP_COMP))
2529 		prep_compound_page(page, order);
2530 
2531 	/*
2532 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2533 	 * allocate the page. The expectation is that the caller is taking
2534 	 * steps that will free more memory. The caller should avoid the page
2535 	 * being used for !PFMEMALLOC purposes.
2536 	 */
2537 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2538 		set_page_pfmemalloc(page);
2539 	else
2540 		clear_page_pfmemalloc(page);
2541 }
2542 
2543 /*
2544  * Go through the free lists for the given migratetype and remove
2545  * the smallest available page from the freelists
2546  */
2547 static __always_inline
2548 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2549 						int migratetype)
2550 {
2551 	unsigned int current_order;
2552 	struct free_area *area;
2553 	struct page *page;
2554 
2555 	/* Find a page of the appropriate size in the preferred list */
2556 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2557 		area = &(zone->free_area[current_order]);
2558 		page = get_page_from_free_area(area, migratetype);
2559 		if (!page)
2560 			continue;
2561 		del_page_from_free_list(page, zone, current_order);
2562 		expand(zone, page, order, current_order, migratetype);
2563 		set_pcppage_migratetype(page, migratetype);
2564 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
2565 				pcp_allowed_order(order) &&
2566 				migratetype < MIGRATE_PCPTYPES);
2567 		return page;
2568 	}
2569 
2570 	return NULL;
2571 }
2572 
2573 
2574 /*
2575  * This array describes the order lists are fallen back to when
2576  * the free lists for the desirable migrate type are depleted
2577  *
2578  * The other migratetypes do not have fallbacks.
2579  */
2580 static int fallbacks[MIGRATE_TYPES][3] = {
2581 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2582 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2583 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2584 };
2585 
2586 #ifdef CONFIG_CMA
2587 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2588 					unsigned int order)
2589 {
2590 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2591 }
2592 #else
2593 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2594 					unsigned int order) { return NULL; }
2595 #endif
2596 
2597 /*
2598  * Move the free pages in a range to the freelist tail of the requested type.
2599  * Note that start_page and end_pages are not aligned on a pageblock
2600  * boundary. If alignment is required, use move_freepages_block()
2601  */
2602 static int move_freepages(struct zone *zone,
2603 			  unsigned long start_pfn, unsigned long end_pfn,
2604 			  int migratetype, int *num_movable)
2605 {
2606 	struct page *page;
2607 	unsigned long pfn;
2608 	unsigned int order;
2609 	int pages_moved = 0;
2610 
2611 	for (pfn = start_pfn; pfn <= end_pfn;) {
2612 		page = pfn_to_page(pfn);
2613 		if (!PageBuddy(page)) {
2614 			/*
2615 			 * We assume that pages that could be isolated for
2616 			 * migration are movable. But we don't actually try
2617 			 * isolating, as that would be expensive.
2618 			 */
2619 			if (num_movable &&
2620 					(PageLRU(page) || __PageMovable(page)))
2621 				(*num_movable)++;
2622 			pfn++;
2623 			continue;
2624 		}
2625 
2626 		/* Make sure we are not inadvertently changing nodes */
2627 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2628 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2629 
2630 		order = buddy_order(page);
2631 		move_to_free_list(page, zone, order, migratetype);
2632 		pfn += 1 << order;
2633 		pages_moved += 1 << order;
2634 	}
2635 
2636 	return pages_moved;
2637 }
2638 
2639 int move_freepages_block(struct zone *zone, struct page *page,
2640 				int migratetype, int *num_movable)
2641 {
2642 	unsigned long start_pfn, end_pfn, pfn;
2643 
2644 	if (num_movable)
2645 		*num_movable = 0;
2646 
2647 	pfn = page_to_pfn(page);
2648 	start_pfn = pageblock_start_pfn(pfn);
2649 	end_pfn = pageblock_end_pfn(pfn) - 1;
2650 
2651 	/* Do not cross zone boundaries */
2652 	if (!zone_spans_pfn(zone, start_pfn))
2653 		start_pfn = pfn;
2654 	if (!zone_spans_pfn(zone, end_pfn))
2655 		return 0;
2656 
2657 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2658 								num_movable);
2659 }
2660 
2661 static void change_pageblock_range(struct page *pageblock_page,
2662 					int start_order, int migratetype)
2663 {
2664 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2665 
2666 	while (nr_pageblocks--) {
2667 		set_pageblock_migratetype(pageblock_page, migratetype);
2668 		pageblock_page += pageblock_nr_pages;
2669 	}
2670 }
2671 
2672 /*
2673  * When we are falling back to another migratetype during allocation, try to
2674  * steal extra free pages from the same pageblocks to satisfy further
2675  * allocations, instead of polluting multiple pageblocks.
2676  *
2677  * If we are stealing a relatively large buddy page, it is likely there will
2678  * be more free pages in the pageblock, so try to steal them all. For
2679  * reclaimable and unmovable allocations, we steal regardless of page size,
2680  * as fragmentation caused by those allocations polluting movable pageblocks
2681  * is worse than movable allocations stealing from unmovable and reclaimable
2682  * pageblocks.
2683  */
2684 static bool can_steal_fallback(unsigned int order, int start_mt)
2685 {
2686 	/*
2687 	 * Leaving this order check is intended, although there is
2688 	 * relaxed order check in next check. The reason is that
2689 	 * we can actually steal whole pageblock if this condition met,
2690 	 * but, below check doesn't guarantee it and that is just heuristic
2691 	 * so could be changed anytime.
2692 	 */
2693 	if (order >= pageblock_order)
2694 		return true;
2695 
2696 	if (order >= pageblock_order / 2 ||
2697 		start_mt == MIGRATE_RECLAIMABLE ||
2698 		start_mt == MIGRATE_UNMOVABLE ||
2699 		page_group_by_mobility_disabled)
2700 		return true;
2701 
2702 	return false;
2703 }
2704 
2705 static inline bool boost_watermark(struct zone *zone)
2706 {
2707 	unsigned long max_boost;
2708 
2709 	if (!watermark_boost_factor)
2710 		return false;
2711 	/*
2712 	 * Don't bother in zones that are unlikely to produce results.
2713 	 * On small machines, including kdump capture kernels running
2714 	 * in a small area, boosting the watermark can cause an out of
2715 	 * memory situation immediately.
2716 	 */
2717 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2718 		return false;
2719 
2720 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2721 			watermark_boost_factor, 10000);
2722 
2723 	/*
2724 	 * high watermark may be uninitialised if fragmentation occurs
2725 	 * very early in boot so do not boost. We do not fall
2726 	 * through and boost by pageblock_nr_pages as failing
2727 	 * allocations that early means that reclaim is not going
2728 	 * to help and it may even be impossible to reclaim the
2729 	 * boosted watermark resulting in a hang.
2730 	 */
2731 	if (!max_boost)
2732 		return false;
2733 
2734 	max_boost = max(pageblock_nr_pages, max_boost);
2735 
2736 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2737 		max_boost);
2738 
2739 	return true;
2740 }
2741 
2742 /*
2743  * This function implements actual steal behaviour. If order is large enough,
2744  * we can steal whole pageblock. If not, we first move freepages in this
2745  * pageblock to our migratetype and determine how many already-allocated pages
2746  * are there in the pageblock with a compatible migratetype. If at least half
2747  * of pages are free or compatible, we can change migratetype of the pageblock
2748  * itself, so pages freed in the future will be put on the correct free list.
2749  */
2750 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2751 		unsigned int alloc_flags, int start_type, bool whole_block)
2752 {
2753 	unsigned int current_order = buddy_order(page);
2754 	int free_pages, movable_pages, alike_pages;
2755 	int old_block_type;
2756 
2757 	old_block_type = get_pageblock_migratetype(page);
2758 
2759 	/*
2760 	 * This can happen due to races and we want to prevent broken
2761 	 * highatomic accounting.
2762 	 */
2763 	if (is_migrate_highatomic(old_block_type))
2764 		goto single_page;
2765 
2766 	/* Take ownership for orders >= pageblock_order */
2767 	if (current_order >= pageblock_order) {
2768 		change_pageblock_range(page, current_order, start_type);
2769 		goto single_page;
2770 	}
2771 
2772 	/*
2773 	 * Boost watermarks to increase reclaim pressure to reduce the
2774 	 * likelihood of future fallbacks. Wake kswapd now as the node
2775 	 * may be balanced overall and kswapd will not wake naturally.
2776 	 */
2777 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2778 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2779 
2780 	/* We are not allowed to try stealing from the whole block */
2781 	if (!whole_block)
2782 		goto single_page;
2783 
2784 	free_pages = move_freepages_block(zone, page, start_type,
2785 						&movable_pages);
2786 	/*
2787 	 * Determine how many pages are compatible with our allocation.
2788 	 * For movable allocation, it's the number of movable pages which
2789 	 * we just obtained. For other types it's a bit more tricky.
2790 	 */
2791 	if (start_type == MIGRATE_MOVABLE) {
2792 		alike_pages = movable_pages;
2793 	} else {
2794 		/*
2795 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2796 		 * to MOVABLE pageblock, consider all non-movable pages as
2797 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2798 		 * vice versa, be conservative since we can't distinguish the
2799 		 * exact migratetype of non-movable pages.
2800 		 */
2801 		if (old_block_type == MIGRATE_MOVABLE)
2802 			alike_pages = pageblock_nr_pages
2803 						- (free_pages + movable_pages);
2804 		else
2805 			alike_pages = 0;
2806 	}
2807 
2808 	/* moving whole block can fail due to zone boundary conditions */
2809 	if (!free_pages)
2810 		goto single_page;
2811 
2812 	/*
2813 	 * If a sufficient number of pages in the block are either free or of
2814 	 * comparable migratability as our allocation, claim the whole block.
2815 	 */
2816 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2817 			page_group_by_mobility_disabled)
2818 		set_pageblock_migratetype(page, start_type);
2819 
2820 	return;
2821 
2822 single_page:
2823 	move_to_free_list(page, zone, current_order, start_type);
2824 }
2825 
2826 /*
2827  * Check whether there is a suitable fallback freepage with requested order.
2828  * If only_stealable is true, this function returns fallback_mt only if
2829  * we can steal other freepages all together. This would help to reduce
2830  * fragmentation due to mixed migratetype pages in one pageblock.
2831  */
2832 int find_suitable_fallback(struct free_area *area, unsigned int order,
2833 			int migratetype, bool only_stealable, bool *can_steal)
2834 {
2835 	int i;
2836 	int fallback_mt;
2837 
2838 	if (area->nr_free == 0)
2839 		return -1;
2840 
2841 	*can_steal = false;
2842 	for (i = 0;; i++) {
2843 		fallback_mt = fallbacks[migratetype][i];
2844 		if (fallback_mt == MIGRATE_TYPES)
2845 			break;
2846 
2847 		if (free_area_empty(area, fallback_mt))
2848 			continue;
2849 
2850 		if (can_steal_fallback(order, migratetype))
2851 			*can_steal = true;
2852 
2853 		if (!only_stealable)
2854 			return fallback_mt;
2855 
2856 		if (*can_steal)
2857 			return fallback_mt;
2858 	}
2859 
2860 	return -1;
2861 }
2862 
2863 /*
2864  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2865  * there are no empty page blocks that contain a page with a suitable order
2866  */
2867 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2868 				unsigned int alloc_order)
2869 {
2870 	int mt;
2871 	unsigned long max_managed, flags;
2872 
2873 	/*
2874 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2875 	 * Check is race-prone but harmless.
2876 	 */
2877 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2878 	if (zone->nr_reserved_highatomic >= max_managed)
2879 		return;
2880 
2881 	spin_lock_irqsave(&zone->lock, flags);
2882 
2883 	/* Recheck the nr_reserved_highatomic limit under the lock */
2884 	if (zone->nr_reserved_highatomic >= max_managed)
2885 		goto out_unlock;
2886 
2887 	/* Yoink! */
2888 	mt = get_pageblock_migratetype(page);
2889 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2890 	if (migratetype_is_mergeable(mt)) {
2891 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2892 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2893 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2894 	}
2895 
2896 out_unlock:
2897 	spin_unlock_irqrestore(&zone->lock, flags);
2898 }
2899 
2900 /*
2901  * Used when an allocation is about to fail under memory pressure. This
2902  * potentially hurts the reliability of high-order allocations when under
2903  * intense memory pressure but failed atomic allocations should be easier
2904  * to recover from than an OOM.
2905  *
2906  * If @force is true, try to unreserve a pageblock even though highatomic
2907  * pageblock is exhausted.
2908  */
2909 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2910 						bool force)
2911 {
2912 	struct zonelist *zonelist = ac->zonelist;
2913 	unsigned long flags;
2914 	struct zoneref *z;
2915 	struct zone *zone;
2916 	struct page *page;
2917 	int order;
2918 	bool ret;
2919 
2920 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2921 								ac->nodemask) {
2922 		/*
2923 		 * Preserve at least one pageblock unless memory pressure
2924 		 * is really high.
2925 		 */
2926 		if (!force && zone->nr_reserved_highatomic <=
2927 					pageblock_nr_pages)
2928 			continue;
2929 
2930 		spin_lock_irqsave(&zone->lock, flags);
2931 		for (order = 0; order < MAX_ORDER; order++) {
2932 			struct free_area *area = &(zone->free_area[order]);
2933 
2934 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2935 			if (!page)
2936 				continue;
2937 
2938 			/*
2939 			 * In page freeing path, migratetype change is racy so
2940 			 * we can counter several free pages in a pageblock
2941 			 * in this loop although we changed the pageblock type
2942 			 * from highatomic to ac->migratetype. So we should
2943 			 * adjust the count once.
2944 			 */
2945 			if (is_migrate_highatomic_page(page)) {
2946 				/*
2947 				 * It should never happen but changes to
2948 				 * locking could inadvertently allow a per-cpu
2949 				 * drain to add pages to MIGRATE_HIGHATOMIC
2950 				 * while unreserving so be safe and watch for
2951 				 * underflows.
2952 				 */
2953 				zone->nr_reserved_highatomic -= min(
2954 						pageblock_nr_pages,
2955 						zone->nr_reserved_highatomic);
2956 			}
2957 
2958 			/*
2959 			 * Convert to ac->migratetype and avoid the normal
2960 			 * pageblock stealing heuristics. Minimally, the caller
2961 			 * is doing the work and needs the pages. More
2962 			 * importantly, if the block was always converted to
2963 			 * MIGRATE_UNMOVABLE or another type then the number
2964 			 * of pageblocks that cannot be completely freed
2965 			 * may increase.
2966 			 */
2967 			set_pageblock_migratetype(page, ac->migratetype);
2968 			ret = move_freepages_block(zone, page, ac->migratetype,
2969 									NULL);
2970 			if (ret) {
2971 				spin_unlock_irqrestore(&zone->lock, flags);
2972 				return ret;
2973 			}
2974 		}
2975 		spin_unlock_irqrestore(&zone->lock, flags);
2976 	}
2977 
2978 	return false;
2979 }
2980 
2981 /*
2982  * Try finding a free buddy page on the fallback list and put it on the free
2983  * list of requested migratetype, possibly along with other pages from the same
2984  * block, depending on fragmentation avoidance heuristics. Returns true if
2985  * fallback was found so that __rmqueue_smallest() can grab it.
2986  *
2987  * The use of signed ints for order and current_order is a deliberate
2988  * deviation from the rest of this file, to make the for loop
2989  * condition simpler.
2990  */
2991 static __always_inline bool
2992 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2993 						unsigned int alloc_flags)
2994 {
2995 	struct free_area *area;
2996 	int current_order;
2997 	int min_order = order;
2998 	struct page *page;
2999 	int fallback_mt;
3000 	bool can_steal;
3001 
3002 	/*
3003 	 * Do not steal pages from freelists belonging to other pageblocks
3004 	 * i.e. orders < pageblock_order. If there are no local zones free,
3005 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3006 	 */
3007 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
3008 		min_order = pageblock_order;
3009 
3010 	/*
3011 	 * Find the largest available free page in the other list. This roughly
3012 	 * approximates finding the pageblock with the most free pages, which
3013 	 * would be too costly to do exactly.
3014 	 */
3015 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
3016 				--current_order) {
3017 		area = &(zone->free_area[current_order]);
3018 		fallback_mt = find_suitable_fallback(area, current_order,
3019 				start_migratetype, false, &can_steal);
3020 		if (fallback_mt == -1)
3021 			continue;
3022 
3023 		/*
3024 		 * We cannot steal all free pages from the pageblock and the
3025 		 * requested migratetype is movable. In that case it's better to
3026 		 * steal and split the smallest available page instead of the
3027 		 * largest available page, because even if the next movable
3028 		 * allocation falls back into a different pageblock than this
3029 		 * one, it won't cause permanent fragmentation.
3030 		 */
3031 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3032 					&& current_order > order)
3033 			goto find_smallest;
3034 
3035 		goto do_steal;
3036 	}
3037 
3038 	return false;
3039 
3040 find_smallest:
3041 	for (current_order = order; current_order < MAX_ORDER;
3042 							current_order++) {
3043 		area = &(zone->free_area[current_order]);
3044 		fallback_mt = find_suitable_fallback(area, current_order,
3045 				start_migratetype, false, &can_steal);
3046 		if (fallback_mt != -1)
3047 			break;
3048 	}
3049 
3050 	/*
3051 	 * This should not happen - we already found a suitable fallback
3052 	 * when looking for the largest page.
3053 	 */
3054 	VM_BUG_ON(current_order == MAX_ORDER);
3055 
3056 do_steal:
3057 	page = get_page_from_free_area(area, fallback_mt);
3058 
3059 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3060 								can_steal);
3061 
3062 	trace_mm_page_alloc_extfrag(page, order, current_order,
3063 		start_migratetype, fallback_mt);
3064 
3065 	return true;
3066 
3067 }
3068 
3069 /*
3070  * Do the hard work of removing an element from the buddy allocator.
3071  * Call me with the zone->lock already held.
3072  */
3073 static __always_inline struct page *
3074 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3075 						unsigned int alloc_flags)
3076 {
3077 	struct page *page;
3078 
3079 	if (IS_ENABLED(CONFIG_CMA)) {
3080 		/*
3081 		 * Balance movable allocations between regular and CMA areas by
3082 		 * allocating from CMA when over half of the zone's free memory
3083 		 * is in the CMA area.
3084 		 */
3085 		if (alloc_flags & ALLOC_CMA &&
3086 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
3087 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
3088 			page = __rmqueue_cma_fallback(zone, order);
3089 			if (page)
3090 				return page;
3091 		}
3092 	}
3093 retry:
3094 	page = __rmqueue_smallest(zone, order, migratetype);
3095 	if (unlikely(!page)) {
3096 		if (alloc_flags & ALLOC_CMA)
3097 			page = __rmqueue_cma_fallback(zone, order);
3098 
3099 		if (!page && __rmqueue_fallback(zone, order, migratetype,
3100 								alloc_flags))
3101 			goto retry;
3102 	}
3103 	return page;
3104 }
3105 
3106 /*
3107  * Obtain a specified number of elements from the buddy allocator, all under
3108  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3109  * Returns the number of new pages which were placed at *list.
3110  */
3111 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3112 			unsigned long count, struct list_head *list,
3113 			int migratetype, unsigned int alloc_flags)
3114 {
3115 	unsigned long flags;
3116 	int i, allocated = 0;
3117 
3118 	spin_lock_irqsave(&zone->lock, flags);
3119 	for (i = 0; i < count; ++i) {
3120 		struct page *page = __rmqueue(zone, order, migratetype,
3121 								alloc_flags);
3122 		if (unlikely(page == NULL))
3123 			break;
3124 
3125 		if (unlikely(check_pcp_refill(page, order)))
3126 			continue;
3127 
3128 		/*
3129 		 * Split buddy pages returned by expand() are received here in
3130 		 * physical page order. The page is added to the tail of
3131 		 * caller's list. From the callers perspective, the linked list
3132 		 * is ordered by page number under some conditions. This is
3133 		 * useful for IO devices that can forward direction from the
3134 		 * head, thus also in the physical page order. This is useful
3135 		 * for IO devices that can merge IO requests if the physical
3136 		 * pages are ordered properly.
3137 		 */
3138 		list_add_tail(&page->pcp_list, list);
3139 		allocated++;
3140 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3141 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3142 					      -(1 << order));
3143 	}
3144 
3145 	/*
3146 	 * i pages were removed from the buddy list even if some leak due
3147 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3148 	 * on i. Do not confuse with 'allocated' which is the number of
3149 	 * pages added to the pcp list.
3150 	 */
3151 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3152 	spin_unlock_irqrestore(&zone->lock, flags);
3153 	return allocated;
3154 }
3155 
3156 #ifdef CONFIG_NUMA
3157 /*
3158  * Called from the vmstat counter updater to drain pagesets of this
3159  * currently executing processor on remote nodes after they have
3160  * expired.
3161  */
3162 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3163 {
3164 	int to_drain, batch;
3165 
3166 	batch = READ_ONCE(pcp->batch);
3167 	to_drain = min(pcp->count, batch);
3168 	if (to_drain > 0) {
3169 		spin_lock(&pcp->lock);
3170 		free_pcppages_bulk(zone, to_drain, pcp, 0);
3171 		spin_unlock(&pcp->lock);
3172 	}
3173 }
3174 #endif
3175 
3176 /*
3177  * Drain pcplists of the indicated processor and zone.
3178  */
3179 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3180 {
3181 	struct per_cpu_pages *pcp;
3182 
3183 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3184 	if (pcp->count) {
3185 		spin_lock(&pcp->lock);
3186 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
3187 		spin_unlock(&pcp->lock);
3188 	}
3189 }
3190 
3191 /*
3192  * Drain pcplists of all zones on the indicated processor.
3193  */
3194 static void drain_pages(unsigned int cpu)
3195 {
3196 	struct zone *zone;
3197 
3198 	for_each_populated_zone(zone) {
3199 		drain_pages_zone(cpu, zone);
3200 	}
3201 }
3202 
3203 /*
3204  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3205  */
3206 void drain_local_pages(struct zone *zone)
3207 {
3208 	int cpu = smp_processor_id();
3209 
3210 	if (zone)
3211 		drain_pages_zone(cpu, zone);
3212 	else
3213 		drain_pages(cpu);
3214 }
3215 
3216 /*
3217  * The implementation of drain_all_pages(), exposing an extra parameter to
3218  * drain on all cpus.
3219  *
3220  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3221  * not empty. The check for non-emptiness can however race with a free to
3222  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3223  * that need the guarantee that every CPU has drained can disable the
3224  * optimizing racy check.
3225  */
3226 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3227 {
3228 	int cpu;
3229 
3230 	/*
3231 	 * Allocate in the BSS so we won't require allocation in
3232 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3233 	 */
3234 	static cpumask_t cpus_with_pcps;
3235 
3236 	/*
3237 	 * Do not drain if one is already in progress unless it's specific to
3238 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3239 	 * the drain to be complete when the call returns.
3240 	 */
3241 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3242 		if (!zone)
3243 			return;
3244 		mutex_lock(&pcpu_drain_mutex);
3245 	}
3246 
3247 	/*
3248 	 * We don't care about racing with CPU hotplug event
3249 	 * as offline notification will cause the notified
3250 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3251 	 * disables preemption as part of its processing
3252 	 */
3253 	for_each_online_cpu(cpu) {
3254 		struct per_cpu_pages *pcp;
3255 		struct zone *z;
3256 		bool has_pcps = false;
3257 
3258 		if (force_all_cpus) {
3259 			/*
3260 			 * The pcp.count check is racy, some callers need a
3261 			 * guarantee that no cpu is missed.
3262 			 */
3263 			has_pcps = true;
3264 		} else if (zone) {
3265 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3266 			if (pcp->count)
3267 				has_pcps = true;
3268 		} else {
3269 			for_each_populated_zone(z) {
3270 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3271 				if (pcp->count) {
3272 					has_pcps = true;
3273 					break;
3274 				}
3275 			}
3276 		}
3277 
3278 		if (has_pcps)
3279 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3280 		else
3281 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3282 	}
3283 
3284 	for_each_cpu(cpu, &cpus_with_pcps) {
3285 		if (zone)
3286 			drain_pages_zone(cpu, zone);
3287 		else
3288 			drain_pages(cpu);
3289 	}
3290 
3291 	mutex_unlock(&pcpu_drain_mutex);
3292 }
3293 
3294 /*
3295  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3296  *
3297  * When zone parameter is non-NULL, spill just the single zone's pages.
3298  */
3299 void drain_all_pages(struct zone *zone)
3300 {
3301 	__drain_all_pages(zone, false);
3302 }
3303 
3304 #ifdef CONFIG_HIBERNATION
3305 
3306 /*
3307  * Touch the watchdog for every WD_PAGE_COUNT pages.
3308  */
3309 #define WD_PAGE_COUNT	(128*1024)
3310 
3311 void mark_free_pages(struct zone *zone)
3312 {
3313 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3314 	unsigned long flags;
3315 	unsigned int order, t;
3316 	struct page *page;
3317 
3318 	if (zone_is_empty(zone))
3319 		return;
3320 
3321 	spin_lock_irqsave(&zone->lock, flags);
3322 
3323 	max_zone_pfn = zone_end_pfn(zone);
3324 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3325 		if (pfn_valid(pfn)) {
3326 			page = pfn_to_page(pfn);
3327 
3328 			if (!--page_count) {
3329 				touch_nmi_watchdog();
3330 				page_count = WD_PAGE_COUNT;
3331 			}
3332 
3333 			if (page_zone(page) != zone)
3334 				continue;
3335 
3336 			if (!swsusp_page_is_forbidden(page))
3337 				swsusp_unset_page_free(page);
3338 		}
3339 
3340 	for_each_migratetype_order(order, t) {
3341 		list_for_each_entry(page,
3342 				&zone->free_area[order].free_list[t], buddy_list) {
3343 			unsigned long i;
3344 
3345 			pfn = page_to_pfn(page);
3346 			for (i = 0; i < (1UL << order); i++) {
3347 				if (!--page_count) {
3348 					touch_nmi_watchdog();
3349 					page_count = WD_PAGE_COUNT;
3350 				}
3351 				swsusp_set_page_free(pfn_to_page(pfn + i));
3352 			}
3353 		}
3354 	}
3355 	spin_unlock_irqrestore(&zone->lock, flags);
3356 }
3357 #endif /* CONFIG_PM */
3358 
3359 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3360 							unsigned int order)
3361 {
3362 	int migratetype;
3363 
3364 	if (!free_pcp_prepare(page, order))
3365 		return false;
3366 
3367 	migratetype = get_pfnblock_migratetype(page, pfn);
3368 	set_pcppage_migratetype(page, migratetype);
3369 	return true;
3370 }
3371 
3372 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3373 		       bool free_high)
3374 {
3375 	int min_nr_free, max_nr_free;
3376 
3377 	/* Free everything if batch freeing high-order pages. */
3378 	if (unlikely(free_high))
3379 		return pcp->count;
3380 
3381 	/* Check for PCP disabled or boot pageset */
3382 	if (unlikely(high < batch))
3383 		return 1;
3384 
3385 	/* Leave at least pcp->batch pages on the list */
3386 	min_nr_free = batch;
3387 	max_nr_free = high - batch;
3388 
3389 	/*
3390 	 * Double the number of pages freed each time there is subsequent
3391 	 * freeing of pages without any allocation.
3392 	 */
3393 	batch <<= pcp->free_factor;
3394 	if (batch < max_nr_free)
3395 		pcp->free_factor++;
3396 	batch = clamp(batch, min_nr_free, max_nr_free);
3397 
3398 	return batch;
3399 }
3400 
3401 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3402 		       bool free_high)
3403 {
3404 	int high = READ_ONCE(pcp->high);
3405 
3406 	if (unlikely(!high || free_high))
3407 		return 0;
3408 
3409 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3410 		return high;
3411 
3412 	/*
3413 	 * If reclaim is active, limit the number of pages that can be
3414 	 * stored on pcp lists
3415 	 */
3416 	return min(READ_ONCE(pcp->batch) << 2, high);
3417 }
3418 
3419 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3420 				   struct page *page, int migratetype,
3421 				   unsigned int order)
3422 {
3423 	int high;
3424 	int pindex;
3425 	bool free_high;
3426 
3427 	__count_vm_events(PGFREE, 1 << order);
3428 	pindex = order_to_pindex(migratetype, order);
3429 	list_add(&page->pcp_list, &pcp->lists[pindex]);
3430 	pcp->count += 1 << order;
3431 
3432 	/*
3433 	 * As high-order pages other than THP's stored on PCP can contribute
3434 	 * to fragmentation, limit the number stored when PCP is heavily
3435 	 * freeing without allocation. The remainder after bulk freeing
3436 	 * stops will be drained from vmstat refresh context.
3437 	 */
3438 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3439 
3440 	high = nr_pcp_high(pcp, zone, free_high);
3441 	if (pcp->count >= high) {
3442 		int batch = READ_ONCE(pcp->batch);
3443 
3444 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3445 	}
3446 }
3447 
3448 /*
3449  * Free a pcp page
3450  */
3451 void free_unref_page(struct page *page, unsigned int order)
3452 {
3453 	unsigned long __maybe_unused UP_flags;
3454 	struct per_cpu_pages *pcp;
3455 	struct zone *zone;
3456 	unsigned long pfn = page_to_pfn(page);
3457 	int migratetype;
3458 
3459 	if (!free_unref_page_prepare(page, pfn, order))
3460 		return;
3461 
3462 	/*
3463 	 * We only track unmovable, reclaimable and movable on pcp lists.
3464 	 * Place ISOLATE pages on the isolated list because they are being
3465 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3466 	 * areas back if necessary. Otherwise, we may have to free
3467 	 * excessively into the page allocator
3468 	 */
3469 	migratetype = get_pcppage_migratetype(page);
3470 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3471 		if (unlikely(is_migrate_isolate(migratetype))) {
3472 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3473 			return;
3474 		}
3475 		migratetype = MIGRATE_MOVABLE;
3476 	}
3477 
3478 	zone = page_zone(page);
3479 	pcp_trylock_prepare(UP_flags);
3480 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3481 	if (pcp) {
3482 		free_unref_page_commit(zone, pcp, page, migratetype, order);
3483 		pcp_spin_unlock(pcp);
3484 	} else {
3485 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3486 	}
3487 	pcp_trylock_finish(UP_flags);
3488 }
3489 
3490 /*
3491  * Free a list of 0-order pages
3492  */
3493 void free_unref_page_list(struct list_head *list)
3494 {
3495 	unsigned long __maybe_unused UP_flags;
3496 	struct page *page, *next;
3497 	struct per_cpu_pages *pcp = NULL;
3498 	struct zone *locked_zone = NULL;
3499 	int batch_count = 0;
3500 	int migratetype;
3501 
3502 	/* Prepare pages for freeing */
3503 	list_for_each_entry_safe(page, next, list, lru) {
3504 		unsigned long pfn = page_to_pfn(page);
3505 		if (!free_unref_page_prepare(page, pfn, 0)) {
3506 			list_del(&page->lru);
3507 			continue;
3508 		}
3509 
3510 		/*
3511 		 * Free isolated pages directly to the allocator, see
3512 		 * comment in free_unref_page.
3513 		 */
3514 		migratetype = get_pcppage_migratetype(page);
3515 		if (unlikely(is_migrate_isolate(migratetype))) {
3516 			list_del(&page->lru);
3517 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3518 			continue;
3519 		}
3520 	}
3521 
3522 	list_for_each_entry_safe(page, next, list, lru) {
3523 		struct zone *zone = page_zone(page);
3524 
3525 		list_del(&page->lru);
3526 		migratetype = get_pcppage_migratetype(page);
3527 
3528 		/*
3529 		 * Either different zone requiring a different pcp lock or
3530 		 * excessive lock hold times when freeing a large list of
3531 		 * pages.
3532 		 */
3533 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
3534 			if (pcp) {
3535 				pcp_spin_unlock(pcp);
3536 				pcp_trylock_finish(UP_flags);
3537 			}
3538 
3539 			batch_count = 0;
3540 
3541 			/*
3542 			 * trylock is necessary as pages may be getting freed
3543 			 * from IRQ or SoftIRQ context after an IO completion.
3544 			 */
3545 			pcp_trylock_prepare(UP_flags);
3546 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3547 			if (unlikely(!pcp)) {
3548 				pcp_trylock_finish(UP_flags);
3549 				free_one_page(zone, page, page_to_pfn(page),
3550 					      0, migratetype, FPI_NONE);
3551 				locked_zone = NULL;
3552 				continue;
3553 			}
3554 			locked_zone = zone;
3555 		}
3556 
3557 		/*
3558 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3559 		 * to the MIGRATE_MOVABLE pcp list.
3560 		 */
3561 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3562 			migratetype = MIGRATE_MOVABLE;
3563 
3564 		trace_mm_page_free_batched(page);
3565 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
3566 		batch_count++;
3567 	}
3568 
3569 	if (pcp) {
3570 		pcp_spin_unlock(pcp);
3571 		pcp_trylock_finish(UP_flags);
3572 	}
3573 }
3574 
3575 /*
3576  * split_page takes a non-compound higher-order page, and splits it into
3577  * n (1<<order) sub-pages: page[0..n]
3578  * Each sub-page must be freed individually.
3579  *
3580  * Note: this is probably too low level an operation for use in drivers.
3581  * Please consult with lkml before using this in your driver.
3582  */
3583 void split_page(struct page *page, unsigned int order)
3584 {
3585 	int i;
3586 
3587 	VM_BUG_ON_PAGE(PageCompound(page), page);
3588 	VM_BUG_ON_PAGE(!page_count(page), page);
3589 
3590 	for (i = 1; i < (1 << order); i++)
3591 		set_page_refcounted(page + i);
3592 	split_page_owner(page, 1 << order);
3593 	split_page_memcg(page, 1 << order);
3594 }
3595 EXPORT_SYMBOL_GPL(split_page);
3596 
3597 int __isolate_free_page(struct page *page, unsigned int order)
3598 {
3599 	struct zone *zone = page_zone(page);
3600 	int mt = get_pageblock_migratetype(page);
3601 
3602 	if (!is_migrate_isolate(mt)) {
3603 		unsigned long watermark;
3604 		/*
3605 		 * Obey watermarks as if the page was being allocated. We can
3606 		 * emulate a high-order watermark check with a raised order-0
3607 		 * watermark, because we already know our high-order page
3608 		 * exists.
3609 		 */
3610 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3611 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3612 			return 0;
3613 
3614 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3615 	}
3616 
3617 	del_page_from_free_list(page, zone, order);
3618 
3619 	/*
3620 	 * Set the pageblock if the isolated page is at least half of a
3621 	 * pageblock
3622 	 */
3623 	if (order >= pageblock_order - 1) {
3624 		struct page *endpage = page + (1 << order) - 1;
3625 		for (; page < endpage; page += pageblock_nr_pages) {
3626 			int mt = get_pageblock_migratetype(page);
3627 			/*
3628 			 * Only change normal pageblocks (i.e., they can merge
3629 			 * with others)
3630 			 */
3631 			if (migratetype_is_mergeable(mt))
3632 				set_pageblock_migratetype(page,
3633 							  MIGRATE_MOVABLE);
3634 		}
3635 	}
3636 
3637 	return 1UL << order;
3638 }
3639 
3640 /**
3641  * __putback_isolated_page - Return a now-isolated page back where we got it
3642  * @page: Page that was isolated
3643  * @order: Order of the isolated page
3644  * @mt: The page's pageblock's migratetype
3645  *
3646  * This function is meant to return a page pulled from the free lists via
3647  * __isolate_free_page back to the free lists they were pulled from.
3648  */
3649 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3650 {
3651 	struct zone *zone = page_zone(page);
3652 
3653 	/* zone lock should be held when this function is called */
3654 	lockdep_assert_held(&zone->lock);
3655 
3656 	/* Return isolated page to tail of freelist. */
3657 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3658 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3659 }
3660 
3661 /*
3662  * Update NUMA hit/miss statistics
3663  */
3664 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3665 				   long nr_account)
3666 {
3667 #ifdef CONFIG_NUMA
3668 	enum numa_stat_item local_stat = NUMA_LOCAL;
3669 
3670 	/* skip numa counters update if numa stats is disabled */
3671 	if (!static_branch_likely(&vm_numa_stat_key))
3672 		return;
3673 
3674 	if (zone_to_nid(z) != numa_node_id())
3675 		local_stat = NUMA_OTHER;
3676 
3677 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3678 		__count_numa_events(z, NUMA_HIT, nr_account);
3679 	else {
3680 		__count_numa_events(z, NUMA_MISS, nr_account);
3681 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3682 	}
3683 	__count_numa_events(z, local_stat, nr_account);
3684 #endif
3685 }
3686 
3687 static __always_inline
3688 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3689 			   unsigned int order, unsigned int alloc_flags,
3690 			   int migratetype)
3691 {
3692 	struct page *page;
3693 	unsigned long flags;
3694 
3695 	do {
3696 		page = NULL;
3697 		spin_lock_irqsave(&zone->lock, flags);
3698 		/*
3699 		 * order-0 request can reach here when the pcplist is skipped
3700 		 * due to non-CMA allocation context. HIGHATOMIC area is
3701 		 * reserved for high-order atomic allocation, so order-0
3702 		 * request should skip it.
3703 		 */
3704 		if (order > 0 && alloc_flags & ALLOC_HARDER)
3705 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3706 		if (!page) {
3707 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3708 			if (!page) {
3709 				spin_unlock_irqrestore(&zone->lock, flags);
3710 				return NULL;
3711 			}
3712 		}
3713 		__mod_zone_freepage_state(zone, -(1 << order),
3714 					  get_pcppage_migratetype(page));
3715 		spin_unlock_irqrestore(&zone->lock, flags);
3716 	} while (check_new_pages(page, order));
3717 
3718 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3719 	zone_statistics(preferred_zone, zone, 1);
3720 
3721 	return page;
3722 }
3723 
3724 /* Remove page from the per-cpu list, caller must protect the list */
3725 static inline
3726 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3727 			int migratetype,
3728 			unsigned int alloc_flags,
3729 			struct per_cpu_pages *pcp,
3730 			struct list_head *list)
3731 {
3732 	struct page *page;
3733 
3734 	do {
3735 		if (list_empty(list)) {
3736 			int batch = READ_ONCE(pcp->batch);
3737 			int alloced;
3738 
3739 			/*
3740 			 * Scale batch relative to order if batch implies
3741 			 * free pages can be stored on the PCP. Batch can
3742 			 * be 1 for small zones or for boot pagesets which
3743 			 * should never store free pages as the pages may
3744 			 * belong to arbitrary zones.
3745 			 */
3746 			if (batch > 1)
3747 				batch = max(batch >> order, 2);
3748 			alloced = rmqueue_bulk(zone, order,
3749 					batch, list,
3750 					migratetype, alloc_flags);
3751 
3752 			pcp->count += alloced << order;
3753 			if (unlikely(list_empty(list)))
3754 				return NULL;
3755 		}
3756 
3757 		page = list_first_entry(list, struct page, pcp_list);
3758 		list_del(&page->pcp_list);
3759 		pcp->count -= 1 << order;
3760 	} while (check_new_pcp(page, order));
3761 
3762 	return page;
3763 }
3764 
3765 /* Lock and remove page from the per-cpu list */
3766 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3767 			struct zone *zone, unsigned int order,
3768 			int migratetype, unsigned int alloc_flags)
3769 {
3770 	struct per_cpu_pages *pcp;
3771 	struct list_head *list;
3772 	struct page *page;
3773 	unsigned long __maybe_unused UP_flags;
3774 
3775 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3776 	pcp_trylock_prepare(UP_flags);
3777 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3778 	if (!pcp) {
3779 		pcp_trylock_finish(UP_flags);
3780 		return NULL;
3781 	}
3782 
3783 	/*
3784 	 * On allocation, reduce the number of pages that are batch freed.
3785 	 * See nr_pcp_free() where free_factor is increased for subsequent
3786 	 * frees.
3787 	 */
3788 	pcp->free_factor >>= 1;
3789 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3790 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3791 	pcp_spin_unlock(pcp);
3792 	pcp_trylock_finish(UP_flags);
3793 	if (page) {
3794 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3795 		zone_statistics(preferred_zone, zone, 1);
3796 	}
3797 	return page;
3798 }
3799 
3800 /*
3801  * Allocate a page from the given zone.
3802  * Use pcplists for THP or "cheap" high-order allocations.
3803  */
3804 
3805 /*
3806  * Do not instrument rmqueue() with KMSAN. This function may call
3807  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3808  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3809  * may call rmqueue() again, which will result in a deadlock.
3810  */
3811 __no_sanitize_memory
3812 static inline
3813 struct page *rmqueue(struct zone *preferred_zone,
3814 			struct zone *zone, unsigned int order,
3815 			gfp_t gfp_flags, unsigned int alloc_flags,
3816 			int migratetype)
3817 {
3818 	struct page *page;
3819 
3820 	/*
3821 	 * We most definitely don't want callers attempting to
3822 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3823 	 */
3824 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3825 
3826 	if (likely(pcp_allowed_order(order))) {
3827 		/*
3828 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3829 		 * we need to skip it when CMA area isn't allowed.
3830 		 */
3831 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3832 				migratetype != MIGRATE_MOVABLE) {
3833 			page = rmqueue_pcplist(preferred_zone, zone, order,
3834 					migratetype, alloc_flags);
3835 			if (likely(page))
3836 				goto out;
3837 		}
3838 	}
3839 
3840 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3841 							migratetype);
3842 
3843 out:
3844 	/* Separate test+clear to avoid unnecessary atomics */
3845 	if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3846 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3847 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3848 	}
3849 
3850 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3851 	return page;
3852 }
3853 
3854 #ifdef CONFIG_FAIL_PAGE_ALLOC
3855 
3856 static struct {
3857 	struct fault_attr attr;
3858 
3859 	bool ignore_gfp_highmem;
3860 	bool ignore_gfp_reclaim;
3861 	u32 min_order;
3862 } fail_page_alloc = {
3863 	.attr = FAULT_ATTR_INITIALIZER,
3864 	.ignore_gfp_reclaim = true,
3865 	.ignore_gfp_highmem = true,
3866 	.min_order = 1,
3867 };
3868 
3869 static int __init setup_fail_page_alloc(char *str)
3870 {
3871 	return setup_fault_attr(&fail_page_alloc.attr, str);
3872 }
3873 __setup("fail_page_alloc=", setup_fail_page_alloc);
3874 
3875 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3876 {
3877 	int flags = 0;
3878 
3879 	if (order < fail_page_alloc.min_order)
3880 		return false;
3881 	if (gfp_mask & __GFP_NOFAIL)
3882 		return false;
3883 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3884 		return false;
3885 	if (fail_page_alloc.ignore_gfp_reclaim &&
3886 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3887 		return false;
3888 
3889 	/* See comment in __should_failslab() */
3890 	if (gfp_mask & __GFP_NOWARN)
3891 		flags |= FAULT_NOWARN;
3892 
3893 	return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags);
3894 }
3895 
3896 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3897 
3898 static int __init fail_page_alloc_debugfs(void)
3899 {
3900 	umode_t mode = S_IFREG | 0600;
3901 	struct dentry *dir;
3902 
3903 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3904 					&fail_page_alloc.attr);
3905 
3906 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3907 			    &fail_page_alloc.ignore_gfp_reclaim);
3908 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3909 			    &fail_page_alloc.ignore_gfp_highmem);
3910 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3911 
3912 	return 0;
3913 }
3914 
3915 late_initcall(fail_page_alloc_debugfs);
3916 
3917 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3918 
3919 #else /* CONFIG_FAIL_PAGE_ALLOC */
3920 
3921 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3922 {
3923 	return false;
3924 }
3925 
3926 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3927 
3928 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3929 {
3930 	return __should_fail_alloc_page(gfp_mask, order);
3931 }
3932 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3933 
3934 static inline long __zone_watermark_unusable_free(struct zone *z,
3935 				unsigned int order, unsigned int alloc_flags)
3936 {
3937 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3938 	long unusable_free = (1 << order) - 1;
3939 
3940 	/*
3941 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3942 	 * the high-atomic reserves. This will over-estimate the size of the
3943 	 * atomic reserve but it avoids a search.
3944 	 */
3945 	if (likely(!alloc_harder))
3946 		unusable_free += z->nr_reserved_highatomic;
3947 
3948 #ifdef CONFIG_CMA
3949 	/* If allocation can't use CMA areas don't use free CMA pages */
3950 	if (!(alloc_flags & ALLOC_CMA))
3951 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3952 #endif
3953 
3954 	return unusable_free;
3955 }
3956 
3957 /*
3958  * Return true if free base pages are above 'mark'. For high-order checks it
3959  * will return true of the order-0 watermark is reached and there is at least
3960  * one free page of a suitable size. Checking now avoids taking the zone lock
3961  * to check in the allocation paths if no pages are free.
3962  */
3963 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3964 			 int highest_zoneidx, unsigned int alloc_flags,
3965 			 long free_pages)
3966 {
3967 	long min = mark;
3968 	int o;
3969 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3970 
3971 	/* free_pages may go negative - that's OK */
3972 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3973 
3974 	if (alloc_flags & ALLOC_HIGH)
3975 		min -= min / 2;
3976 
3977 	if (unlikely(alloc_harder)) {
3978 		/*
3979 		 * OOM victims can try even harder than normal ALLOC_HARDER
3980 		 * users on the grounds that it's definitely going to be in
3981 		 * the exit path shortly and free memory. Any allocation it
3982 		 * makes during the free path will be small and short-lived.
3983 		 */
3984 		if (alloc_flags & ALLOC_OOM)
3985 			min -= min / 2;
3986 		else
3987 			min -= min / 4;
3988 	}
3989 
3990 	/*
3991 	 * Check watermarks for an order-0 allocation request. If these
3992 	 * are not met, then a high-order request also cannot go ahead
3993 	 * even if a suitable page happened to be free.
3994 	 */
3995 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3996 		return false;
3997 
3998 	/* If this is an order-0 request then the watermark is fine */
3999 	if (!order)
4000 		return true;
4001 
4002 	/* For a high-order request, check at least one suitable page is free */
4003 	for (o = order; o < MAX_ORDER; o++) {
4004 		struct free_area *area = &z->free_area[o];
4005 		int mt;
4006 
4007 		if (!area->nr_free)
4008 			continue;
4009 
4010 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4011 			if (!free_area_empty(area, mt))
4012 				return true;
4013 		}
4014 
4015 #ifdef CONFIG_CMA
4016 		if ((alloc_flags & ALLOC_CMA) &&
4017 		    !free_area_empty(area, MIGRATE_CMA)) {
4018 			return true;
4019 		}
4020 #endif
4021 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
4022 			return true;
4023 	}
4024 	return false;
4025 }
4026 
4027 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4028 		      int highest_zoneidx, unsigned int alloc_flags)
4029 {
4030 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4031 					zone_page_state(z, NR_FREE_PAGES));
4032 }
4033 
4034 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4035 				unsigned long mark, int highest_zoneidx,
4036 				unsigned int alloc_flags, gfp_t gfp_mask)
4037 {
4038 	long free_pages;
4039 
4040 	free_pages = zone_page_state(z, NR_FREE_PAGES);
4041 
4042 	/*
4043 	 * Fast check for order-0 only. If this fails then the reserves
4044 	 * need to be calculated.
4045 	 */
4046 	if (!order) {
4047 		long usable_free;
4048 		long reserved;
4049 
4050 		usable_free = free_pages;
4051 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4052 
4053 		/* reserved may over estimate high-atomic reserves. */
4054 		usable_free -= min(usable_free, reserved);
4055 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4056 			return true;
4057 	}
4058 
4059 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4060 					free_pages))
4061 		return true;
4062 	/*
4063 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4064 	 * when checking the min watermark. The min watermark is the
4065 	 * point where boosting is ignored so that kswapd is woken up
4066 	 * when below the low watermark.
4067 	 */
4068 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4069 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4070 		mark = z->_watermark[WMARK_MIN];
4071 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4072 					alloc_flags, free_pages);
4073 	}
4074 
4075 	return false;
4076 }
4077 
4078 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4079 			unsigned long mark, int highest_zoneidx)
4080 {
4081 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
4082 
4083 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4084 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4085 
4086 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4087 								free_pages);
4088 }
4089 
4090 #ifdef CONFIG_NUMA
4091 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4092 
4093 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4094 {
4095 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4096 				node_reclaim_distance;
4097 }
4098 #else	/* CONFIG_NUMA */
4099 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4100 {
4101 	return true;
4102 }
4103 #endif	/* CONFIG_NUMA */
4104 
4105 /*
4106  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4107  * fragmentation is subtle. If the preferred zone was HIGHMEM then
4108  * premature use of a lower zone may cause lowmem pressure problems that
4109  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4110  * probably too small. It only makes sense to spread allocations to avoid
4111  * fragmentation between the Normal and DMA32 zones.
4112  */
4113 static inline unsigned int
4114 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4115 {
4116 	unsigned int alloc_flags;
4117 
4118 	/*
4119 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4120 	 * to save a branch.
4121 	 */
4122 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4123 
4124 #ifdef CONFIG_ZONE_DMA32
4125 	if (!zone)
4126 		return alloc_flags;
4127 
4128 	if (zone_idx(zone) != ZONE_NORMAL)
4129 		return alloc_flags;
4130 
4131 	/*
4132 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4133 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4134 	 * on UMA that if Normal is populated then so is DMA32.
4135 	 */
4136 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4137 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4138 		return alloc_flags;
4139 
4140 	alloc_flags |= ALLOC_NOFRAGMENT;
4141 #endif /* CONFIG_ZONE_DMA32 */
4142 	return alloc_flags;
4143 }
4144 
4145 /* Must be called after current_gfp_context() which can change gfp_mask */
4146 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4147 						  unsigned int alloc_flags)
4148 {
4149 #ifdef CONFIG_CMA
4150 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4151 		alloc_flags |= ALLOC_CMA;
4152 #endif
4153 	return alloc_flags;
4154 }
4155 
4156 /*
4157  * get_page_from_freelist goes through the zonelist trying to allocate
4158  * a page.
4159  */
4160 static struct page *
4161 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4162 						const struct alloc_context *ac)
4163 {
4164 	struct zoneref *z;
4165 	struct zone *zone;
4166 	struct pglist_data *last_pgdat = NULL;
4167 	bool last_pgdat_dirty_ok = false;
4168 	bool no_fallback;
4169 
4170 retry:
4171 	/*
4172 	 * Scan zonelist, looking for a zone with enough free.
4173 	 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4174 	 */
4175 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4176 	z = ac->preferred_zoneref;
4177 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4178 					ac->nodemask) {
4179 		struct page *page;
4180 		unsigned long mark;
4181 
4182 		if (cpusets_enabled() &&
4183 			(alloc_flags & ALLOC_CPUSET) &&
4184 			!__cpuset_zone_allowed(zone, gfp_mask))
4185 				continue;
4186 		/*
4187 		 * When allocating a page cache page for writing, we
4188 		 * want to get it from a node that is within its dirty
4189 		 * limit, such that no single node holds more than its
4190 		 * proportional share of globally allowed dirty pages.
4191 		 * The dirty limits take into account the node's
4192 		 * lowmem reserves and high watermark so that kswapd
4193 		 * should be able to balance it without having to
4194 		 * write pages from its LRU list.
4195 		 *
4196 		 * XXX: For now, allow allocations to potentially
4197 		 * exceed the per-node dirty limit in the slowpath
4198 		 * (spread_dirty_pages unset) before going into reclaim,
4199 		 * which is important when on a NUMA setup the allowed
4200 		 * nodes are together not big enough to reach the
4201 		 * global limit.  The proper fix for these situations
4202 		 * will require awareness of nodes in the
4203 		 * dirty-throttling and the flusher threads.
4204 		 */
4205 		if (ac->spread_dirty_pages) {
4206 			if (last_pgdat != zone->zone_pgdat) {
4207 				last_pgdat = zone->zone_pgdat;
4208 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4209 			}
4210 
4211 			if (!last_pgdat_dirty_ok)
4212 				continue;
4213 		}
4214 
4215 		if (no_fallback && nr_online_nodes > 1 &&
4216 		    zone != ac->preferred_zoneref->zone) {
4217 			int local_nid;
4218 
4219 			/*
4220 			 * If moving to a remote node, retry but allow
4221 			 * fragmenting fallbacks. Locality is more important
4222 			 * than fragmentation avoidance.
4223 			 */
4224 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4225 			if (zone_to_nid(zone) != local_nid) {
4226 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4227 				goto retry;
4228 			}
4229 		}
4230 
4231 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4232 		if (!zone_watermark_fast(zone, order, mark,
4233 				       ac->highest_zoneidx, alloc_flags,
4234 				       gfp_mask)) {
4235 			int ret;
4236 
4237 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4238 			/*
4239 			 * Watermark failed for this zone, but see if we can
4240 			 * grow this zone if it contains deferred pages.
4241 			 */
4242 			if (static_branch_unlikely(&deferred_pages)) {
4243 				if (_deferred_grow_zone(zone, order))
4244 					goto try_this_zone;
4245 			}
4246 #endif
4247 			/* Checked here to keep the fast path fast */
4248 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4249 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4250 				goto try_this_zone;
4251 
4252 			if (!node_reclaim_enabled() ||
4253 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4254 				continue;
4255 
4256 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4257 			switch (ret) {
4258 			case NODE_RECLAIM_NOSCAN:
4259 				/* did not scan */
4260 				continue;
4261 			case NODE_RECLAIM_FULL:
4262 				/* scanned but unreclaimable */
4263 				continue;
4264 			default:
4265 				/* did we reclaim enough */
4266 				if (zone_watermark_ok(zone, order, mark,
4267 					ac->highest_zoneidx, alloc_flags))
4268 					goto try_this_zone;
4269 
4270 				continue;
4271 			}
4272 		}
4273 
4274 try_this_zone:
4275 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4276 				gfp_mask, alloc_flags, ac->migratetype);
4277 		if (page) {
4278 			prep_new_page(page, order, gfp_mask, alloc_flags);
4279 
4280 			/*
4281 			 * If this is a high-order atomic allocation then check
4282 			 * if the pageblock should be reserved for the future
4283 			 */
4284 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4285 				reserve_highatomic_pageblock(page, zone, order);
4286 
4287 			return page;
4288 		} else {
4289 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4290 			/* Try again if zone has deferred pages */
4291 			if (static_branch_unlikely(&deferred_pages)) {
4292 				if (_deferred_grow_zone(zone, order))
4293 					goto try_this_zone;
4294 			}
4295 #endif
4296 		}
4297 	}
4298 
4299 	/*
4300 	 * It's possible on a UMA machine to get through all zones that are
4301 	 * fragmented. If avoiding fragmentation, reset and try again.
4302 	 */
4303 	if (no_fallback) {
4304 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4305 		goto retry;
4306 	}
4307 
4308 	return NULL;
4309 }
4310 
4311 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4312 {
4313 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4314 
4315 	/*
4316 	 * This documents exceptions given to allocations in certain
4317 	 * contexts that are allowed to allocate outside current's set
4318 	 * of allowed nodes.
4319 	 */
4320 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4321 		if (tsk_is_oom_victim(current) ||
4322 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4323 			filter &= ~SHOW_MEM_FILTER_NODES;
4324 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4325 		filter &= ~SHOW_MEM_FILTER_NODES;
4326 
4327 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
4328 }
4329 
4330 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4331 {
4332 	struct va_format vaf;
4333 	va_list args;
4334 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4335 
4336 	if ((gfp_mask & __GFP_NOWARN) ||
4337 	     !__ratelimit(&nopage_rs) ||
4338 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4339 		return;
4340 
4341 	va_start(args, fmt);
4342 	vaf.fmt = fmt;
4343 	vaf.va = &args;
4344 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4345 			current->comm, &vaf, gfp_mask, &gfp_mask,
4346 			nodemask_pr_args(nodemask));
4347 	va_end(args);
4348 
4349 	cpuset_print_current_mems_allowed();
4350 	pr_cont("\n");
4351 	dump_stack();
4352 	warn_alloc_show_mem(gfp_mask, nodemask);
4353 }
4354 
4355 static inline struct page *
4356 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4357 			      unsigned int alloc_flags,
4358 			      const struct alloc_context *ac)
4359 {
4360 	struct page *page;
4361 
4362 	page = get_page_from_freelist(gfp_mask, order,
4363 			alloc_flags|ALLOC_CPUSET, ac);
4364 	/*
4365 	 * fallback to ignore cpuset restriction if our nodes
4366 	 * are depleted
4367 	 */
4368 	if (!page)
4369 		page = get_page_from_freelist(gfp_mask, order,
4370 				alloc_flags, ac);
4371 
4372 	return page;
4373 }
4374 
4375 static inline struct page *
4376 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4377 	const struct alloc_context *ac, unsigned long *did_some_progress)
4378 {
4379 	struct oom_control oc = {
4380 		.zonelist = ac->zonelist,
4381 		.nodemask = ac->nodemask,
4382 		.memcg = NULL,
4383 		.gfp_mask = gfp_mask,
4384 		.order = order,
4385 	};
4386 	struct page *page;
4387 
4388 	*did_some_progress = 0;
4389 
4390 	/*
4391 	 * Acquire the oom lock.  If that fails, somebody else is
4392 	 * making progress for us.
4393 	 */
4394 	if (!mutex_trylock(&oom_lock)) {
4395 		*did_some_progress = 1;
4396 		schedule_timeout_uninterruptible(1);
4397 		return NULL;
4398 	}
4399 
4400 	/*
4401 	 * Go through the zonelist yet one more time, keep very high watermark
4402 	 * here, this is only to catch a parallel oom killing, we must fail if
4403 	 * we're still under heavy pressure. But make sure that this reclaim
4404 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4405 	 * allocation which will never fail due to oom_lock already held.
4406 	 */
4407 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4408 				      ~__GFP_DIRECT_RECLAIM, order,
4409 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4410 	if (page)
4411 		goto out;
4412 
4413 	/* Coredumps can quickly deplete all memory reserves */
4414 	if (current->flags & PF_DUMPCORE)
4415 		goto out;
4416 	/* The OOM killer will not help higher order allocs */
4417 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4418 		goto out;
4419 	/*
4420 	 * We have already exhausted all our reclaim opportunities without any
4421 	 * success so it is time to admit defeat. We will skip the OOM killer
4422 	 * because it is very likely that the caller has a more reasonable
4423 	 * fallback than shooting a random task.
4424 	 *
4425 	 * The OOM killer may not free memory on a specific node.
4426 	 */
4427 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4428 		goto out;
4429 	/* The OOM killer does not needlessly kill tasks for lowmem */
4430 	if (ac->highest_zoneidx < ZONE_NORMAL)
4431 		goto out;
4432 	if (pm_suspended_storage())
4433 		goto out;
4434 	/*
4435 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4436 	 * other request to make a forward progress.
4437 	 * We are in an unfortunate situation where out_of_memory cannot
4438 	 * do much for this context but let's try it to at least get
4439 	 * access to memory reserved if the current task is killed (see
4440 	 * out_of_memory). Once filesystems are ready to handle allocation
4441 	 * failures more gracefully we should just bail out here.
4442 	 */
4443 
4444 	/* Exhausted what can be done so it's blame time */
4445 	if (out_of_memory(&oc) ||
4446 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4447 		*did_some_progress = 1;
4448 
4449 		/*
4450 		 * Help non-failing allocations by giving them access to memory
4451 		 * reserves
4452 		 */
4453 		if (gfp_mask & __GFP_NOFAIL)
4454 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4455 					ALLOC_NO_WATERMARKS, ac);
4456 	}
4457 out:
4458 	mutex_unlock(&oom_lock);
4459 	return page;
4460 }
4461 
4462 /*
4463  * Maximum number of compaction retries with a progress before OOM
4464  * killer is consider as the only way to move forward.
4465  */
4466 #define MAX_COMPACT_RETRIES 16
4467 
4468 #ifdef CONFIG_COMPACTION
4469 /* Try memory compaction for high-order allocations before reclaim */
4470 static struct page *
4471 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4472 		unsigned int alloc_flags, const struct alloc_context *ac,
4473 		enum compact_priority prio, enum compact_result *compact_result)
4474 {
4475 	struct page *page = NULL;
4476 	unsigned long pflags;
4477 	unsigned int noreclaim_flag;
4478 
4479 	if (!order)
4480 		return NULL;
4481 
4482 	psi_memstall_enter(&pflags);
4483 	delayacct_compact_start();
4484 	noreclaim_flag = memalloc_noreclaim_save();
4485 
4486 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4487 								prio, &page);
4488 
4489 	memalloc_noreclaim_restore(noreclaim_flag);
4490 	psi_memstall_leave(&pflags);
4491 	delayacct_compact_end();
4492 
4493 	if (*compact_result == COMPACT_SKIPPED)
4494 		return NULL;
4495 	/*
4496 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4497 	 * count a compaction stall
4498 	 */
4499 	count_vm_event(COMPACTSTALL);
4500 
4501 	/* Prep a captured page if available */
4502 	if (page)
4503 		prep_new_page(page, order, gfp_mask, alloc_flags);
4504 
4505 	/* Try get a page from the freelist if available */
4506 	if (!page)
4507 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4508 
4509 	if (page) {
4510 		struct zone *zone = page_zone(page);
4511 
4512 		zone->compact_blockskip_flush = false;
4513 		compaction_defer_reset(zone, order, true);
4514 		count_vm_event(COMPACTSUCCESS);
4515 		return page;
4516 	}
4517 
4518 	/*
4519 	 * It's bad if compaction run occurs and fails. The most likely reason
4520 	 * is that pages exist, but not enough to satisfy watermarks.
4521 	 */
4522 	count_vm_event(COMPACTFAIL);
4523 
4524 	cond_resched();
4525 
4526 	return NULL;
4527 }
4528 
4529 static inline bool
4530 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4531 		     enum compact_result compact_result,
4532 		     enum compact_priority *compact_priority,
4533 		     int *compaction_retries)
4534 {
4535 	int max_retries = MAX_COMPACT_RETRIES;
4536 	int min_priority;
4537 	bool ret = false;
4538 	int retries = *compaction_retries;
4539 	enum compact_priority priority = *compact_priority;
4540 
4541 	if (!order)
4542 		return false;
4543 
4544 	if (fatal_signal_pending(current))
4545 		return false;
4546 
4547 	if (compaction_made_progress(compact_result))
4548 		(*compaction_retries)++;
4549 
4550 	/*
4551 	 * compaction considers all the zone as desperately out of memory
4552 	 * so it doesn't really make much sense to retry except when the
4553 	 * failure could be caused by insufficient priority
4554 	 */
4555 	if (compaction_failed(compact_result))
4556 		goto check_priority;
4557 
4558 	/*
4559 	 * compaction was skipped because there are not enough order-0 pages
4560 	 * to work with, so we retry only if it looks like reclaim can help.
4561 	 */
4562 	if (compaction_needs_reclaim(compact_result)) {
4563 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4564 		goto out;
4565 	}
4566 
4567 	/*
4568 	 * make sure the compaction wasn't deferred or didn't bail out early
4569 	 * due to locks contention before we declare that we should give up.
4570 	 * But the next retry should use a higher priority if allowed, so
4571 	 * we don't just keep bailing out endlessly.
4572 	 */
4573 	if (compaction_withdrawn(compact_result)) {
4574 		goto check_priority;
4575 	}
4576 
4577 	/*
4578 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4579 	 * costly ones because they are de facto nofail and invoke OOM
4580 	 * killer to move on while costly can fail and users are ready
4581 	 * to cope with that. 1/4 retries is rather arbitrary but we
4582 	 * would need much more detailed feedback from compaction to
4583 	 * make a better decision.
4584 	 */
4585 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4586 		max_retries /= 4;
4587 	if (*compaction_retries <= max_retries) {
4588 		ret = true;
4589 		goto out;
4590 	}
4591 
4592 	/*
4593 	 * Make sure there are attempts at the highest priority if we exhausted
4594 	 * all retries or failed at the lower priorities.
4595 	 */
4596 check_priority:
4597 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4598 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4599 
4600 	if (*compact_priority > min_priority) {
4601 		(*compact_priority)--;
4602 		*compaction_retries = 0;
4603 		ret = true;
4604 	}
4605 out:
4606 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4607 	return ret;
4608 }
4609 #else
4610 static inline struct page *
4611 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4612 		unsigned int alloc_flags, const struct alloc_context *ac,
4613 		enum compact_priority prio, enum compact_result *compact_result)
4614 {
4615 	*compact_result = COMPACT_SKIPPED;
4616 	return NULL;
4617 }
4618 
4619 static inline bool
4620 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4621 		     enum compact_result compact_result,
4622 		     enum compact_priority *compact_priority,
4623 		     int *compaction_retries)
4624 {
4625 	struct zone *zone;
4626 	struct zoneref *z;
4627 
4628 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4629 		return false;
4630 
4631 	/*
4632 	 * There are setups with compaction disabled which would prefer to loop
4633 	 * inside the allocator rather than hit the oom killer prematurely.
4634 	 * Let's give them a good hope and keep retrying while the order-0
4635 	 * watermarks are OK.
4636 	 */
4637 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4638 				ac->highest_zoneidx, ac->nodemask) {
4639 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4640 					ac->highest_zoneidx, alloc_flags))
4641 			return true;
4642 	}
4643 	return false;
4644 }
4645 #endif /* CONFIG_COMPACTION */
4646 
4647 #ifdef CONFIG_LOCKDEP
4648 static struct lockdep_map __fs_reclaim_map =
4649 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4650 
4651 static bool __need_reclaim(gfp_t gfp_mask)
4652 {
4653 	/* no reclaim without waiting on it */
4654 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4655 		return false;
4656 
4657 	/* this guy won't enter reclaim */
4658 	if (current->flags & PF_MEMALLOC)
4659 		return false;
4660 
4661 	if (gfp_mask & __GFP_NOLOCKDEP)
4662 		return false;
4663 
4664 	return true;
4665 }
4666 
4667 void __fs_reclaim_acquire(unsigned long ip)
4668 {
4669 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4670 }
4671 
4672 void __fs_reclaim_release(unsigned long ip)
4673 {
4674 	lock_release(&__fs_reclaim_map, ip);
4675 }
4676 
4677 void fs_reclaim_acquire(gfp_t gfp_mask)
4678 {
4679 	gfp_mask = current_gfp_context(gfp_mask);
4680 
4681 	if (__need_reclaim(gfp_mask)) {
4682 		if (gfp_mask & __GFP_FS)
4683 			__fs_reclaim_acquire(_RET_IP_);
4684 
4685 #ifdef CONFIG_MMU_NOTIFIER
4686 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4687 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4688 #endif
4689 
4690 	}
4691 }
4692 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4693 
4694 void fs_reclaim_release(gfp_t gfp_mask)
4695 {
4696 	gfp_mask = current_gfp_context(gfp_mask);
4697 
4698 	if (__need_reclaim(gfp_mask)) {
4699 		if (gfp_mask & __GFP_FS)
4700 			__fs_reclaim_release(_RET_IP_);
4701 	}
4702 }
4703 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4704 #endif
4705 
4706 /*
4707  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4708  * have been rebuilt so allocation retries. Reader side does not lock and
4709  * retries the allocation if zonelist changes. Writer side is protected by the
4710  * embedded spin_lock.
4711  */
4712 static DEFINE_SEQLOCK(zonelist_update_seq);
4713 
4714 static unsigned int zonelist_iter_begin(void)
4715 {
4716 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4717 		return read_seqbegin(&zonelist_update_seq);
4718 
4719 	return 0;
4720 }
4721 
4722 static unsigned int check_retry_zonelist(unsigned int seq)
4723 {
4724 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4725 		return read_seqretry(&zonelist_update_seq, seq);
4726 
4727 	return seq;
4728 }
4729 
4730 /* Perform direct synchronous page reclaim */
4731 static unsigned long
4732 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4733 					const struct alloc_context *ac)
4734 {
4735 	unsigned int noreclaim_flag;
4736 	unsigned long progress;
4737 
4738 	cond_resched();
4739 
4740 	/* We now go into synchronous reclaim */
4741 	cpuset_memory_pressure_bump();
4742 	fs_reclaim_acquire(gfp_mask);
4743 	noreclaim_flag = memalloc_noreclaim_save();
4744 
4745 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4746 								ac->nodemask);
4747 
4748 	memalloc_noreclaim_restore(noreclaim_flag);
4749 	fs_reclaim_release(gfp_mask);
4750 
4751 	cond_resched();
4752 
4753 	return progress;
4754 }
4755 
4756 /* The really slow allocator path where we enter direct reclaim */
4757 static inline struct page *
4758 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4759 		unsigned int alloc_flags, const struct alloc_context *ac,
4760 		unsigned long *did_some_progress)
4761 {
4762 	struct page *page = NULL;
4763 	unsigned long pflags;
4764 	bool drained = false;
4765 
4766 	psi_memstall_enter(&pflags);
4767 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4768 	if (unlikely(!(*did_some_progress)))
4769 		goto out;
4770 
4771 retry:
4772 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4773 
4774 	/*
4775 	 * If an allocation failed after direct reclaim, it could be because
4776 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4777 	 * Shrink them and try again
4778 	 */
4779 	if (!page && !drained) {
4780 		unreserve_highatomic_pageblock(ac, false);
4781 		drain_all_pages(NULL);
4782 		drained = true;
4783 		goto retry;
4784 	}
4785 out:
4786 	psi_memstall_leave(&pflags);
4787 
4788 	return page;
4789 }
4790 
4791 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4792 			     const struct alloc_context *ac)
4793 {
4794 	struct zoneref *z;
4795 	struct zone *zone;
4796 	pg_data_t *last_pgdat = NULL;
4797 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4798 
4799 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4800 					ac->nodemask) {
4801 		if (!managed_zone(zone))
4802 			continue;
4803 		if (last_pgdat != zone->zone_pgdat) {
4804 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4805 			last_pgdat = zone->zone_pgdat;
4806 		}
4807 	}
4808 }
4809 
4810 static inline unsigned int
4811 gfp_to_alloc_flags(gfp_t gfp_mask)
4812 {
4813 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4814 
4815 	/*
4816 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4817 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4818 	 * to save two branches.
4819 	 */
4820 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4821 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4822 
4823 	/*
4824 	 * The caller may dip into page reserves a bit more if the caller
4825 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4826 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4827 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4828 	 */
4829 	alloc_flags |= (__force int)
4830 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4831 
4832 	if (gfp_mask & __GFP_ATOMIC) {
4833 		/*
4834 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4835 		 * if it can't schedule.
4836 		 */
4837 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4838 			alloc_flags |= ALLOC_HARDER;
4839 		/*
4840 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4841 		 * comment for __cpuset_node_allowed().
4842 		 */
4843 		alloc_flags &= ~ALLOC_CPUSET;
4844 	} else if (unlikely(rt_task(current)) && in_task())
4845 		alloc_flags |= ALLOC_HARDER;
4846 
4847 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4848 
4849 	return alloc_flags;
4850 }
4851 
4852 static bool oom_reserves_allowed(struct task_struct *tsk)
4853 {
4854 	if (!tsk_is_oom_victim(tsk))
4855 		return false;
4856 
4857 	/*
4858 	 * !MMU doesn't have oom reaper so give access to memory reserves
4859 	 * only to the thread with TIF_MEMDIE set
4860 	 */
4861 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4862 		return false;
4863 
4864 	return true;
4865 }
4866 
4867 /*
4868  * Distinguish requests which really need access to full memory
4869  * reserves from oom victims which can live with a portion of it
4870  */
4871 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4872 {
4873 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4874 		return 0;
4875 	if (gfp_mask & __GFP_MEMALLOC)
4876 		return ALLOC_NO_WATERMARKS;
4877 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4878 		return ALLOC_NO_WATERMARKS;
4879 	if (!in_interrupt()) {
4880 		if (current->flags & PF_MEMALLOC)
4881 			return ALLOC_NO_WATERMARKS;
4882 		else if (oom_reserves_allowed(current))
4883 			return ALLOC_OOM;
4884 	}
4885 
4886 	return 0;
4887 }
4888 
4889 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4890 {
4891 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4892 }
4893 
4894 /*
4895  * Checks whether it makes sense to retry the reclaim to make a forward progress
4896  * for the given allocation request.
4897  *
4898  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4899  * without success, or when we couldn't even meet the watermark if we
4900  * reclaimed all remaining pages on the LRU lists.
4901  *
4902  * Returns true if a retry is viable or false to enter the oom path.
4903  */
4904 static inline bool
4905 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4906 		     struct alloc_context *ac, int alloc_flags,
4907 		     bool did_some_progress, int *no_progress_loops)
4908 {
4909 	struct zone *zone;
4910 	struct zoneref *z;
4911 	bool ret = false;
4912 
4913 	/*
4914 	 * Costly allocations might have made a progress but this doesn't mean
4915 	 * their order will become available due to high fragmentation so
4916 	 * always increment the no progress counter for them
4917 	 */
4918 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4919 		*no_progress_loops = 0;
4920 	else
4921 		(*no_progress_loops)++;
4922 
4923 	/*
4924 	 * Make sure we converge to OOM if we cannot make any progress
4925 	 * several times in the row.
4926 	 */
4927 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4928 		/* Before OOM, exhaust highatomic_reserve */
4929 		return unreserve_highatomic_pageblock(ac, true);
4930 	}
4931 
4932 	/*
4933 	 * Keep reclaiming pages while there is a chance this will lead
4934 	 * somewhere.  If none of the target zones can satisfy our allocation
4935 	 * request even if all reclaimable pages are considered then we are
4936 	 * screwed and have to go OOM.
4937 	 */
4938 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4939 				ac->highest_zoneidx, ac->nodemask) {
4940 		unsigned long available;
4941 		unsigned long reclaimable;
4942 		unsigned long min_wmark = min_wmark_pages(zone);
4943 		bool wmark;
4944 
4945 		available = reclaimable = zone_reclaimable_pages(zone);
4946 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4947 
4948 		/*
4949 		 * Would the allocation succeed if we reclaimed all
4950 		 * reclaimable pages?
4951 		 */
4952 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4953 				ac->highest_zoneidx, alloc_flags, available);
4954 		trace_reclaim_retry_zone(z, order, reclaimable,
4955 				available, min_wmark, *no_progress_loops, wmark);
4956 		if (wmark) {
4957 			ret = true;
4958 			break;
4959 		}
4960 	}
4961 
4962 	/*
4963 	 * Memory allocation/reclaim might be called from a WQ context and the
4964 	 * current implementation of the WQ concurrency control doesn't
4965 	 * recognize that a particular WQ is congested if the worker thread is
4966 	 * looping without ever sleeping. Therefore we have to do a short sleep
4967 	 * here rather than calling cond_resched().
4968 	 */
4969 	if (current->flags & PF_WQ_WORKER)
4970 		schedule_timeout_uninterruptible(1);
4971 	else
4972 		cond_resched();
4973 	return ret;
4974 }
4975 
4976 static inline bool
4977 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4978 {
4979 	/*
4980 	 * It's possible that cpuset's mems_allowed and the nodemask from
4981 	 * mempolicy don't intersect. This should be normally dealt with by
4982 	 * policy_nodemask(), but it's possible to race with cpuset update in
4983 	 * such a way the check therein was true, and then it became false
4984 	 * before we got our cpuset_mems_cookie here.
4985 	 * This assumes that for all allocations, ac->nodemask can come only
4986 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4987 	 * when it does not intersect with the cpuset restrictions) or the
4988 	 * caller can deal with a violated nodemask.
4989 	 */
4990 	if (cpusets_enabled() && ac->nodemask &&
4991 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4992 		ac->nodemask = NULL;
4993 		return true;
4994 	}
4995 
4996 	/*
4997 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4998 	 * possible to race with parallel threads in such a way that our
4999 	 * allocation can fail while the mask is being updated. If we are about
5000 	 * to fail, check if the cpuset changed during allocation and if so,
5001 	 * retry.
5002 	 */
5003 	if (read_mems_allowed_retry(cpuset_mems_cookie))
5004 		return true;
5005 
5006 	return false;
5007 }
5008 
5009 static inline struct page *
5010 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
5011 						struct alloc_context *ac)
5012 {
5013 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
5014 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
5015 	struct page *page = NULL;
5016 	unsigned int alloc_flags;
5017 	unsigned long did_some_progress;
5018 	enum compact_priority compact_priority;
5019 	enum compact_result compact_result;
5020 	int compaction_retries;
5021 	int no_progress_loops;
5022 	unsigned int cpuset_mems_cookie;
5023 	unsigned int zonelist_iter_cookie;
5024 	int reserve_flags;
5025 
5026 	/*
5027 	 * We also sanity check to catch abuse of atomic reserves being used by
5028 	 * callers that are not in atomic context.
5029 	 */
5030 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5031 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5032 		gfp_mask &= ~__GFP_ATOMIC;
5033 
5034 restart:
5035 	compaction_retries = 0;
5036 	no_progress_loops = 0;
5037 	compact_priority = DEF_COMPACT_PRIORITY;
5038 	cpuset_mems_cookie = read_mems_allowed_begin();
5039 	zonelist_iter_cookie = zonelist_iter_begin();
5040 
5041 	/*
5042 	 * The fast path uses conservative alloc_flags to succeed only until
5043 	 * kswapd needs to be woken up, and to avoid the cost of setting up
5044 	 * alloc_flags precisely. So we do that now.
5045 	 */
5046 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
5047 
5048 	/*
5049 	 * We need to recalculate the starting point for the zonelist iterator
5050 	 * because we might have used different nodemask in the fast path, or
5051 	 * there was a cpuset modification and we are retrying - otherwise we
5052 	 * could end up iterating over non-eligible zones endlessly.
5053 	 */
5054 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5055 					ac->highest_zoneidx, ac->nodemask);
5056 	if (!ac->preferred_zoneref->zone)
5057 		goto nopage;
5058 
5059 	/*
5060 	 * Check for insane configurations where the cpuset doesn't contain
5061 	 * any suitable zone to satisfy the request - e.g. non-movable
5062 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5063 	 */
5064 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5065 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
5066 					ac->highest_zoneidx,
5067 					&cpuset_current_mems_allowed);
5068 		if (!z->zone)
5069 			goto nopage;
5070 	}
5071 
5072 	if (alloc_flags & ALLOC_KSWAPD)
5073 		wake_all_kswapds(order, gfp_mask, ac);
5074 
5075 	/*
5076 	 * The adjusted alloc_flags might result in immediate success, so try
5077 	 * that first
5078 	 */
5079 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5080 	if (page)
5081 		goto got_pg;
5082 
5083 	/*
5084 	 * For costly allocations, try direct compaction first, as it's likely
5085 	 * that we have enough base pages and don't need to reclaim. For non-
5086 	 * movable high-order allocations, do that as well, as compaction will
5087 	 * try prevent permanent fragmentation by migrating from blocks of the
5088 	 * same migratetype.
5089 	 * Don't try this for allocations that are allowed to ignore
5090 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5091 	 */
5092 	if (can_direct_reclaim &&
5093 			(costly_order ||
5094 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5095 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
5096 		page = __alloc_pages_direct_compact(gfp_mask, order,
5097 						alloc_flags, ac,
5098 						INIT_COMPACT_PRIORITY,
5099 						&compact_result);
5100 		if (page)
5101 			goto got_pg;
5102 
5103 		/*
5104 		 * Checks for costly allocations with __GFP_NORETRY, which
5105 		 * includes some THP page fault allocations
5106 		 */
5107 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5108 			/*
5109 			 * If allocating entire pageblock(s) and compaction
5110 			 * failed because all zones are below low watermarks
5111 			 * or is prohibited because it recently failed at this
5112 			 * order, fail immediately unless the allocator has
5113 			 * requested compaction and reclaim retry.
5114 			 *
5115 			 * Reclaim is
5116 			 *  - potentially very expensive because zones are far
5117 			 *    below their low watermarks or this is part of very
5118 			 *    bursty high order allocations,
5119 			 *  - not guaranteed to help because isolate_freepages()
5120 			 *    may not iterate over freed pages as part of its
5121 			 *    linear scan, and
5122 			 *  - unlikely to make entire pageblocks free on its
5123 			 *    own.
5124 			 */
5125 			if (compact_result == COMPACT_SKIPPED ||
5126 			    compact_result == COMPACT_DEFERRED)
5127 				goto nopage;
5128 
5129 			/*
5130 			 * Looks like reclaim/compaction is worth trying, but
5131 			 * sync compaction could be very expensive, so keep
5132 			 * using async compaction.
5133 			 */
5134 			compact_priority = INIT_COMPACT_PRIORITY;
5135 		}
5136 	}
5137 
5138 retry:
5139 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5140 	if (alloc_flags & ALLOC_KSWAPD)
5141 		wake_all_kswapds(order, gfp_mask, ac);
5142 
5143 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5144 	if (reserve_flags)
5145 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
5146 					  (alloc_flags & ALLOC_KSWAPD);
5147 
5148 	/*
5149 	 * Reset the nodemask and zonelist iterators if memory policies can be
5150 	 * ignored. These allocations are high priority and system rather than
5151 	 * user oriented.
5152 	 */
5153 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5154 		ac->nodemask = NULL;
5155 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5156 					ac->highest_zoneidx, ac->nodemask);
5157 	}
5158 
5159 	/* Attempt with potentially adjusted zonelist and alloc_flags */
5160 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5161 	if (page)
5162 		goto got_pg;
5163 
5164 	/* Caller is not willing to reclaim, we can't balance anything */
5165 	if (!can_direct_reclaim)
5166 		goto nopage;
5167 
5168 	/* Avoid recursion of direct reclaim */
5169 	if (current->flags & PF_MEMALLOC)
5170 		goto nopage;
5171 
5172 	/* Try direct reclaim and then allocating */
5173 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5174 							&did_some_progress);
5175 	if (page)
5176 		goto got_pg;
5177 
5178 	/* Try direct compaction and then allocating */
5179 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5180 					compact_priority, &compact_result);
5181 	if (page)
5182 		goto got_pg;
5183 
5184 	/* Do not loop if specifically requested */
5185 	if (gfp_mask & __GFP_NORETRY)
5186 		goto nopage;
5187 
5188 	/*
5189 	 * Do not retry costly high order allocations unless they are
5190 	 * __GFP_RETRY_MAYFAIL
5191 	 */
5192 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5193 		goto nopage;
5194 
5195 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5196 				 did_some_progress > 0, &no_progress_loops))
5197 		goto retry;
5198 
5199 	/*
5200 	 * It doesn't make any sense to retry for the compaction if the order-0
5201 	 * reclaim is not able to make any progress because the current
5202 	 * implementation of the compaction depends on the sufficient amount
5203 	 * of free memory (see __compaction_suitable)
5204 	 */
5205 	if (did_some_progress > 0 &&
5206 			should_compact_retry(ac, order, alloc_flags,
5207 				compact_result, &compact_priority,
5208 				&compaction_retries))
5209 		goto retry;
5210 
5211 
5212 	/*
5213 	 * Deal with possible cpuset update races or zonelist updates to avoid
5214 	 * a unnecessary OOM kill.
5215 	 */
5216 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5217 	    check_retry_zonelist(zonelist_iter_cookie))
5218 		goto restart;
5219 
5220 	/* Reclaim has failed us, start killing things */
5221 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5222 	if (page)
5223 		goto got_pg;
5224 
5225 	/* Avoid allocations with no watermarks from looping endlessly */
5226 	if (tsk_is_oom_victim(current) &&
5227 	    (alloc_flags & ALLOC_OOM ||
5228 	     (gfp_mask & __GFP_NOMEMALLOC)))
5229 		goto nopage;
5230 
5231 	/* Retry as long as the OOM killer is making progress */
5232 	if (did_some_progress) {
5233 		no_progress_loops = 0;
5234 		goto retry;
5235 	}
5236 
5237 nopage:
5238 	/*
5239 	 * Deal with possible cpuset update races or zonelist updates to avoid
5240 	 * a unnecessary OOM kill.
5241 	 */
5242 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5243 	    check_retry_zonelist(zonelist_iter_cookie))
5244 		goto restart;
5245 
5246 	/*
5247 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5248 	 * we always retry
5249 	 */
5250 	if (gfp_mask & __GFP_NOFAIL) {
5251 		/*
5252 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5253 		 * of any new users that actually require GFP_NOWAIT
5254 		 */
5255 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5256 			goto fail;
5257 
5258 		/*
5259 		 * PF_MEMALLOC request from this context is rather bizarre
5260 		 * because we cannot reclaim anything and only can loop waiting
5261 		 * for somebody to do a work for us
5262 		 */
5263 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5264 
5265 		/*
5266 		 * non failing costly orders are a hard requirement which we
5267 		 * are not prepared for much so let's warn about these users
5268 		 * so that we can identify them and convert them to something
5269 		 * else.
5270 		 */
5271 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
5272 
5273 		/*
5274 		 * Help non-failing allocations by giving them access to memory
5275 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5276 		 * could deplete whole memory reserves which would just make
5277 		 * the situation worse
5278 		 */
5279 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5280 		if (page)
5281 			goto got_pg;
5282 
5283 		cond_resched();
5284 		goto retry;
5285 	}
5286 fail:
5287 	warn_alloc(gfp_mask, ac->nodemask,
5288 			"page allocation failure: order:%u", order);
5289 got_pg:
5290 	return page;
5291 }
5292 
5293 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5294 		int preferred_nid, nodemask_t *nodemask,
5295 		struct alloc_context *ac, gfp_t *alloc_gfp,
5296 		unsigned int *alloc_flags)
5297 {
5298 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5299 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5300 	ac->nodemask = nodemask;
5301 	ac->migratetype = gfp_migratetype(gfp_mask);
5302 
5303 	if (cpusets_enabled()) {
5304 		*alloc_gfp |= __GFP_HARDWALL;
5305 		/*
5306 		 * When we are in the interrupt context, it is irrelevant
5307 		 * to the current task context. It means that any node ok.
5308 		 */
5309 		if (in_task() && !ac->nodemask)
5310 			ac->nodemask = &cpuset_current_mems_allowed;
5311 		else
5312 			*alloc_flags |= ALLOC_CPUSET;
5313 	}
5314 
5315 	might_alloc(gfp_mask);
5316 
5317 	if (should_fail_alloc_page(gfp_mask, order))
5318 		return false;
5319 
5320 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5321 
5322 	/* Dirty zone balancing only done in the fast path */
5323 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5324 
5325 	/*
5326 	 * The preferred zone is used for statistics but crucially it is
5327 	 * also used as the starting point for the zonelist iterator. It
5328 	 * may get reset for allocations that ignore memory policies.
5329 	 */
5330 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5331 					ac->highest_zoneidx, ac->nodemask);
5332 
5333 	return true;
5334 }
5335 
5336 /*
5337  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5338  * @gfp: GFP flags for the allocation
5339  * @preferred_nid: The preferred NUMA node ID to allocate from
5340  * @nodemask: Set of nodes to allocate from, may be NULL
5341  * @nr_pages: The number of pages desired on the list or array
5342  * @page_list: Optional list to store the allocated pages
5343  * @page_array: Optional array to store the pages
5344  *
5345  * This is a batched version of the page allocator that attempts to
5346  * allocate nr_pages quickly. Pages are added to page_list if page_list
5347  * is not NULL, otherwise it is assumed that the page_array is valid.
5348  *
5349  * For lists, nr_pages is the number of pages that should be allocated.
5350  *
5351  * For arrays, only NULL elements are populated with pages and nr_pages
5352  * is the maximum number of pages that will be stored in the array.
5353  *
5354  * Returns the number of pages on the list or array.
5355  */
5356 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5357 			nodemask_t *nodemask, int nr_pages,
5358 			struct list_head *page_list,
5359 			struct page **page_array)
5360 {
5361 	struct page *page;
5362 	unsigned long __maybe_unused UP_flags;
5363 	struct zone *zone;
5364 	struct zoneref *z;
5365 	struct per_cpu_pages *pcp;
5366 	struct list_head *pcp_list;
5367 	struct alloc_context ac;
5368 	gfp_t alloc_gfp;
5369 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5370 	int nr_populated = 0, nr_account = 0;
5371 
5372 	/*
5373 	 * Skip populated array elements to determine if any pages need
5374 	 * to be allocated before disabling IRQs.
5375 	 */
5376 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5377 		nr_populated++;
5378 
5379 	/* No pages requested? */
5380 	if (unlikely(nr_pages <= 0))
5381 		goto out;
5382 
5383 	/* Already populated array? */
5384 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5385 		goto out;
5386 
5387 	/* Bulk allocator does not support memcg accounting. */
5388 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5389 		goto failed;
5390 
5391 	/* Use the single page allocator for one page. */
5392 	if (nr_pages - nr_populated == 1)
5393 		goto failed;
5394 
5395 #ifdef CONFIG_PAGE_OWNER
5396 	/*
5397 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5398 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5399 	 * removes much of the performance benefit of bulk allocation so
5400 	 * force the caller to allocate one page at a time as it'll have
5401 	 * similar performance to added complexity to the bulk allocator.
5402 	 */
5403 	if (static_branch_unlikely(&page_owner_inited))
5404 		goto failed;
5405 #endif
5406 
5407 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5408 	gfp &= gfp_allowed_mask;
5409 	alloc_gfp = gfp;
5410 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5411 		goto out;
5412 	gfp = alloc_gfp;
5413 
5414 	/* Find an allowed local zone that meets the low watermark. */
5415 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5416 		unsigned long mark;
5417 
5418 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5419 		    !__cpuset_zone_allowed(zone, gfp)) {
5420 			continue;
5421 		}
5422 
5423 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5424 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5425 			goto failed;
5426 		}
5427 
5428 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5429 		if (zone_watermark_fast(zone, 0,  mark,
5430 				zonelist_zone_idx(ac.preferred_zoneref),
5431 				alloc_flags, gfp)) {
5432 			break;
5433 		}
5434 	}
5435 
5436 	/*
5437 	 * If there are no allowed local zones that meets the watermarks then
5438 	 * try to allocate a single page and reclaim if necessary.
5439 	 */
5440 	if (unlikely(!zone))
5441 		goto failed;
5442 
5443 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
5444 	pcp_trylock_prepare(UP_flags);
5445 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
5446 	if (!pcp)
5447 		goto failed_irq;
5448 
5449 	/* Attempt the batch allocation */
5450 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5451 	while (nr_populated < nr_pages) {
5452 
5453 		/* Skip existing pages */
5454 		if (page_array && page_array[nr_populated]) {
5455 			nr_populated++;
5456 			continue;
5457 		}
5458 
5459 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5460 								pcp, pcp_list);
5461 		if (unlikely(!page)) {
5462 			/* Try and allocate at least one page */
5463 			if (!nr_account) {
5464 				pcp_spin_unlock(pcp);
5465 				goto failed_irq;
5466 			}
5467 			break;
5468 		}
5469 		nr_account++;
5470 
5471 		prep_new_page(page, 0, gfp, 0);
5472 		if (page_list)
5473 			list_add(&page->lru, page_list);
5474 		else
5475 			page_array[nr_populated] = page;
5476 		nr_populated++;
5477 	}
5478 
5479 	pcp_spin_unlock(pcp);
5480 	pcp_trylock_finish(UP_flags);
5481 
5482 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5483 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5484 
5485 out:
5486 	return nr_populated;
5487 
5488 failed_irq:
5489 	pcp_trylock_finish(UP_flags);
5490 
5491 failed:
5492 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5493 	if (page) {
5494 		if (page_list)
5495 			list_add(&page->lru, page_list);
5496 		else
5497 			page_array[nr_populated] = page;
5498 		nr_populated++;
5499 	}
5500 
5501 	goto out;
5502 }
5503 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5504 
5505 /*
5506  * This is the 'heart' of the zoned buddy allocator.
5507  */
5508 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5509 							nodemask_t *nodemask)
5510 {
5511 	struct page *page;
5512 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5513 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5514 	struct alloc_context ac = { };
5515 
5516 	/*
5517 	 * There are several places where we assume that the order value is sane
5518 	 * so bail out early if the request is out of bound.
5519 	 */
5520 	if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5521 		return NULL;
5522 
5523 	gfp &= gfp_allowed_mask;
5524 	/*
5525 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5526 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5527 	 * from a particular context which has been marked by
5528 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5529 	 * movable zones are not used during allocation.
5530 	 */
5531 	gfp = current_gfp_context(gfp);
5532 	alloc_gfp = gfp;
5533 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5534 			&alloc_gfp, &alloc_flags))
5535 		return NULL;
5536 
5537 	/*
5538 	 * Forbid the first pass from falling back to types that fragment
5539 	 * memory until all local zones are considered.
5540 	 */
5541 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5542 
5543 	/* First allocation attempt */
5544 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5545 	if (likely(page))
5546 		goto out;
5547 
5548 	alloc_gfp = gfp;
5549 	ac.spread_dirty_pages = false;
5550 
5551 	/*
5552 	 * Restore the original nodemask if it was potentially replaced with
5553 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5554 	 */
5555 	ac.nodemask = nodemask;
5556 
5557 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5558 
5559 out:
5560 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5561 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5562 		__free_pages(page, order);
5563 		page = NULL;
5564 	}
5565 
5566 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5567 	kmsan_alloc_page(page, order, alloc_gfp);
5568 
5569 	return page;
5570 }
5571 EXPORT_SYMBOL(__alloc_pages);
5572 
5573 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5574 		nodemask_t *nodemask)
5575 {
5576 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5577 			preferred_nid, nodemask);
5578 
5579 	if (page && order > 1)
5580 		prep_transhuge_page(page);
5581 	return (struct folio *)page;
5582 }
5583 EXPORT_SYMBOL(__folio_alloc);
5584 
5585 /*
5586  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5587  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5588  * you need to access high mem.
5589  */
5590 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5591 {
5592 	struct page *page;
5593 
5594 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5595 	if (!page)
5596 		return 0;
5597 	return (unsigned long) page_address(page);
5598 }
5599 EXPORT_SYMBOL(__get_free_pages);
5600 
5601 unsigned long get_zeroed_page(gfp_t gfp_mask)
5602 {
5603 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5604 }
5605 EXPORT_SYMBOL(get_zeroed_page);
5606 
5607 /**
5608  * __free_pages - Free pages allocated with alloc_pages().
5609  * @page: The page pointer returned from alloc_pages().
5610  * @order: The order of the allocation.
5611  *
5612  * This function can free multi-page allocations that are not compound
5613  * pages.  It does not check that the @order passed in matches that of
5614  * the allocation, so it is easy to leak memory.  Freeing more memory
5615  * than was allocated will probably emit a warning.
5616  *
5617  * If the last reference to this page is speculative, it will be released
5618  * by put_page() which only frees the first page of a non-compound
5619  * allocation.  To prevent the remaining pages from being leaked, we free
5620  * the subsequent pages here.  If you want to use the page's reference
5621  * count to decide when to free the allocation, you should allocate a
5622  * compound page, and use put_page() instead of __free_pages().
5623  *
5624  * Context: May be called in interrupt context or while holding a normal
5625  * spinlock, but not in NMI context or while holding a raw spinlock.
5626  */
5627 void __free_pages(struct page *page, unsigned int order)
5628 {
5629 	if (put_page_testzero(page))
5630 		free_the_page(page, order);
5631 	else if (!PageHead(page))
5632 		while (order-- > 0)
5633 			free_the_page(page + (1 << order), order);
5634 }
5635 EXPORT_SYMBOL(__free_pages);
5636 
5637 void free_pages(unsigned long addr, unsigned int order)
5638 {
5639 	if (addr != 0) {
5640 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5641 		__free_pages(virt_to_page((void *)addr), order);
5642 	}
5643 }
5644 
5645 EXPORT_SYMBOL(free_pages);
5646 
5647 /*
5648  * Page Fragment:
5649  *  An arbitrary-length arbitrary-offset area of memory which resides
5650  *  within a 0 or higher order page.  Multiple fragments within that page
5651  *  are individually refcounted, in the page's reference counter.
5652  *
5653  * The page_frag functions below provide a simple allocation framework for
5654  * page fragments.  This is used by the network stack and network device
5655  * drivers to provide a backing region of memory for use as either an
5656  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5657  */
5658 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5659 					     gfp_t gfp_mask)
5660 {
5661 	struct page *page = NULL;
5662 	gfp_t gfp = gfp_mask;
5663 
5664 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5665 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5666 		    __GFP_NOMEMALLOC;
5667 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5668 				PAGE_FRAG_CACHE_MAX_ORDER);
5669 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5670 #endif
5671 	if (unlikely(!page))
5672 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5673 
5674 	nc->va = page ? page_address(page) : NULL;
5675 
5676 	return page;
5677 }
5678 
5679 void __page_frag_cache_drain(struct page *page, unsigned int count)
5680 {
5681 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5682 
5683 	if (page_ref_sub_and_test(page, count))
5684 		free_the_page(page, compound_order(page));
5685 }
5686 EXPORT_SYMBOL(__page_frag_cache_drain);
5687 
5688 void *page_frag_alloc_align(struct page_frag_cache *nc,
5689 		      unsigned int fragsz, gfp_t gfp_mask,
5690 		      unsigned int align_mask)
5691 {
5692 	unsigned int size = PAGE_SIZE;
5693 	struct page *page;
5694 	int offset;
5695 
5696 	if (unlikely(!nc->va)) {
5697 refill:
5698 		page = __page_frag_cache_refill(nc, gfp_mask);
5699 		if (!page)
5700 			return NULL;
5701 
5702 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5703 		/* if size can vary use size else just use PAGE_SIZE */
5704 		size = nc->size;
5705 #endif
5706 		/* Even if we own the page, we do not use atomic_set().
5707 		 * This would break get_page_unless_zero() users.
5708 		 */
5709 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5710 
5711 		/* reset page count bias and offset to start of new frag */
5712 		nc->pfmemalloc = page_is_pfmemalloc(page);
5713 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5714 		nc->offset = size;
5715 	}
5716 
5717 	offset = nc->offset - fragsz;
5718 	if (unlikely(offset < 0)) {
5719 		page = virt_to_page(nc->va);
5720 
5721 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5722 			goto refill;
5723 
5724 		if (unlikely(nc->pfmemalloc)) {
5725 			free_the_page(page, compound_order(page));
5726 			goto refill;
5727 		}
5728 
5729 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5730 		/* if size can vary use size else just use PAGE_SIZE */
5731 		size = nc->size;
5732 #endif
5733 		/* OK, page count is 0, we can safely set it */
5734 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5735 
5736 		/* reset page count bias and offset to start of new frag */
5737 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5738 		offset = size - fragsz;
5739 		if (unlikely(offset < 0)) {
5740 			/*
5741 			 * The caller is trying to allocate a fragment
5742 			 * with fragsz > PAGE_SIZE but the cache isn't big
5743 			 * enough to satisfy the request, this may
5744 			 * happen in low memory conditions.
5745 			 * We don't release the cache page because
5746 			 * it could make memory pressure worse
5747 			 * so we simply return NULL here.
5748 			 */
5749 			return NULL;
5750 		}
5751 	}
5752 
5753 	nc->pagecnt_bias--;
5754 	offset &= align_mask;
5755 	nc->offset = offset;
5756 
5757 	return nc->va + offset;
5758 }
5759 EXPORT_SYMBOL(page_frag_alloc_align);
5760 
5761 /*
5762  * Frees a page fragment allocated out of either a compound or order 0 page.
5763  */
5764 void page_frag_free(void *addr)
5765 {
5766 	struct page *page = virt_to_head_page(addr);
5767 
5768 	if (unlikely(put_page_testzero(page)))
5769 		free_the_page(page, compound_order(page));
5770 }
5771 EXPORT_SYMBOL(page_frag_free);
5772 
5773 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5774 		size_t size)
5775 {
5776 	if (addr) {
5777 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5778 		struct page *page = virt_to_page((void *)addr);
5779 		struct page *last = page + nr;
5780 
5781 		split_page_owner(page, 1 << order);
5782 		split_page_memcg(page, 1 << order);
5783 		while (page < --last)
5784 			set_page_refcounted(last);
5785 
5786 		last = page + (1UL << order);
5787 		for (page += nr; page < last; page++)
5788 			__free_pages_ok(page, 0, FPI_TO_TAIL);
5789 	}
5790 	return (void *)addr;
5791 }
5792 
5793 /**
5794  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5795  * @size: the number of bytes to allocate
5796  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5797  *
5798  * This function is similar to alloc_pages(), except that it allocates the
5799  * minimum number of pages to satisfy the request.  alloc_pages() can only
5800  * allocate memory in power-of-two pages.
5801  *
5802  * This function is also limited by MAX_ORDER.
5803  *
5804  * Memory allocated by this function must be released by free_pages_exact().
5805  *
5806  * Return: pointer to the allocated area or %NULL in case of error.
5807  */
5808 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5809 {
5810 	unsigned int order = get_order(size);
5811 	unsigned long addr;
5812 
5813 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5814 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5815 
5816 	addr = __get_free_pages(gfp_mask, order);
5817 	return make_alloc_exact(addr, order, size);
5818 }
5819 EXPORT_SYMBOL(alloc_pages_exact);
5820 
5821 /**
5822  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5823  *			   pages on a node.
5824  * @nid: the preferred node ID where memory should be allocated
5825  * @size: the number of bytes to allocate
5826  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5827  *
5828  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5829  * back.
5830  *
5831  * Return: pointer to the allocated area or %NULL in case of error.
5832  */
5833 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5834 {
5835 	unsigned int order = get_order(size);
5836 	struct page *p;
5837 
5838 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5839 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5840 
5841 	p = alloc_pages_node(nid, gfp_mask, order);
5842 	if (!p)
5843 		return NULL;
5844 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5845 }
5846 
5847 /**
5848  * free_pages_exact - release memory allocated via alloc_pages_exact()
5849  * @virt: the value returned by alloc_pages_exact.
5850  * @size: size of allocation, same value as passed to alloc_pages_exact().
5851  *
5852  * Release the memory allocated by a previous call to alloc_pages_exact.
5853  */
5854 void free_pages_exact(void *virt, size_t size)
5855 {
5856 	unsigned long addr = (unsigned long)virt;
5857 	unsigned long end = addr + PAGE_ALIGN(size);
5858 
5859 	while (addr < end) {
5860 		free_page(addr);
5861 		addr += PAGE_SIZE;
5862 	}
5863 }
5864 EXPORT_SYMBOL(free_pages_exact);
5865 
5866 /**
5867  * nr_free_zone_pages - count number of pages beyond high watermark
5868  * @offset: The zone index of the highest zone
5869  *
5870  * nr_free_zone_pages() counts the number of pages which are beyond the
5871  * high watermark within all zones at or below a given zone index.  For each
5872  * zone, the number of pages is calculated as:
5873  *
5874  *     nr_free_zone_pages = managed_pages - high_pages
5875  *
5876  * Return: number of pages beyond high watermark.
5877  */
5878 static unsigned long nr_free_zone_pages(int offset)
5879 {
5880 	struct zoneref *z;
5881 	struct zone *zone;
5882 
5883 	/* Just pick one node, since fallback list is circular */
5884 	unsigned long sum = 0;
5885 
5886 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5887 
5888 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5889 		unsigned long size = zone_managed_pages(zone);
5890 		unsigned long high = high_wmark_pages(zone);
5891 		if (size > high)
5892 			sum += size - high;
5893 	}
5894 
5895 	return sum;
5896 }
5897 
5898 /**
5899  * nr_free_buffer_pages - count number of pages beyond high watermark
5900  *
5901  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5902  * watermark within ZONE_DMA and ZONE_NORMAL.
5903  *
5904  * Return: number of pages beyond high watermark within ZONE_DMA and
5905  * ZONE_NORMAL.
5906  */
5907 unsigned long nr_free_buffer_pages(void)
5908 {
5909 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5910 }
5911 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5912 
5913 static inline void show_node(struct zone *zone)
5914 {
5915 	if (IS_ENABLED(CONFIG_NUMA))
5916 		printk("Node %d ", zone_to_nid(zone));
5917 }
5918 
5919 long si_mem_available(void)
5920 {
5921 	long available;
5922 	unsigned long pagecache;
5923 	unsigned long wmark_low = 0;
5924 	unsigned long pages[NR_LRU_LISTS];
5925 	unsigned long reclaimable;
5926 	struct zone *zone;
5927 	int lru;
5928 
5929 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5930 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5931 
5932 	for_each_zone(zone)
5933 		wmark_low += low_wmark_pages(zone);
5934 
5935 	/*
5936 	 * Estimate the amount of memory available for userspace allocations,
5937 	 * without causing swapping or OOM.
5938 	 */
5939 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5940 
5941 	/*
5942 	 * Not all the page cache can be freed, otherwise the system will
5943 	 * start swapping or thrashing. Assume at least half of the page
5944 	 * cache, or the low watermark worth of cache, needs to stay.
5945 	 */
5946 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5947 	pagecache -= min(pagecache / 2, wmark_low);
5948 	available += pagecache;
5949 
5950 	/*
5951 	 * Part of the reclaimable slab and other kernel memory consists of
5952 	 * items that are in use, and cannot be freed. Cap this estimate at the
5953 	 * low watermark.
5954 	 */
5955 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5956 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5957 	available += reclaimable - min(reclaimable / 2, wmark_low);
5958 
5959 	if (available < 0)
5960 		available = 0;
5961 	return available;
5962 }
5963 EXPORT_SYMBOL_GPL(si_mem_available);
5964 
5965 void si_meminfo(struct sysinfo *val)
5966 {
5967 	val->totalram = totalram_pages();
5968 	val->sharedram = global_node_page_state(NR_SHMEM);
5969 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5970 	val->bufferram = nr_blockdev_pages();
5971 	val->totalhigh = totalhigh_pages();
5972 	val->freehigh = nr_free_highpages();
5973 	val->mem_unit = PAGE_SIZE;
5974 }
5975 
5976 EXPORT_SYMBOL(si_meminfo);
5977 
5978 #ifdef CONFIG_NUMA
5979 void si_meminfo_node(struct sysinfo *val, int nid)
5980 {
5981 	int zone_type;		/* needs to be signed */
5982 	unsigned long managed_pages = 0;
5983 	unsigned long managed_highpages = 0;
5984 	unsigned long free_highpages = 0;
5985 	pg_data_t *pgdat = NODE_DATA(nid);
5986 
5987 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5988 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5989 	val->totalram = managed_pages;
5990 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5991 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5992 #ifdef CONFIG_HIGHMEM
5993 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5994 		struct zone *zone = &pgdat->node_zones[zone_type];
5995 
5996 		if (is_highmem(zone)) {
5997 			managed_highpages += zone_managed_pages(zone);
5998 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5999 		}
6000 	}
6001 	val->totalhigh = managed_highpages;
6002 	val->freehigh = free_highpages;
6003 #else
6004 	val->totalhigh = managed_highpages;
6005 	val->freehigh = free_highpages;
6006 #endif
6007 	val->mem_unit = PAGE_SIZE;
6008 }
6009 #endif
6010 
6011 /*
6012  * Determine whether the node should be displayed or not, depending on whether
6013  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
6014  */
6015 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
6016 {
6017 	if (!(flags & SHOW_MEM_FILTER_NODES))
6018 		return false;
6019 
6020 	/*
6021 	 * no node mask - aka implicit memory numa policy. Do not bother with
6022 	 * the synchronization - read_mems_allowed_begin - because we do not
6023 	 * have to be precise here.
6024 	 */
6025 	if (!nodemask)
6026 		nodemask = &cpuset_current_mems_allowed;
6027 
6028 	return !node_isset(nid, *nodemask);
6029 }
6030 
6031 #define K(x) ((x) << (PAGE_SHIFT-10))
6032 
6033 static void show_migration_types(unsigned char type)
6034 {
6035 	static const char types[MIGRATE_TYPES] = {
6036 		[MIGRATE_UNMOVABLE]	= 'U',
6037 		[MIGRATE_MOVABLE]	= 'M',
6038 		[MIGRATE_RECLAIMABLE]	= 'E',
6039 		[MIGRATE_HIGHATOMIC]	= 'H',
6040 #ifdef CONFIG_CMA
6041 		[MIGRATE_CMA]		= 'C',
6042 #endif
6043 #ifdef CONFIG_MEMORY_ISOLATION
6044 		[MIGRATE_ISOLATE]	= 'I',
6045 #endif
6046 	};
6047 	char tmp[MIGRATE_TYPES + 1];
6048 	char *p = tmp;
6049 	int i;
6050 
6051 	for (i = 0; i < MIGRATE_TYPES; i++) {
6052 		if (type & (1 << i))
6053 			*p++ = types[i];
6054 	}
6055 
6056 	*p = '\0';
6057 	printk(KERN_CONT "(%s) ", tmp);
6058 }
6059 
6060 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
6061 {
6062 	int zone_idx;
6063 	for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
6064 		if (zone_managed_pages(pgdat->node_zones + zone_idx))
6065 			return true;
6066 	return false;
6067 }
6068 
6069 /*
6070  * Show free area list (used inside shift_scroll-lock stuff)
6071  * We also calculate the percentage fragmentation. We do this by counting the
6072  * memory on each free list with the exception of the first item on the list.
6073  *
6074  * Bits in @filter:
6075  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6076  *   cpuset.
6077  */
6078 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
6079 {
6080 	unsigned long free_pcp = 0;
6081 	int cpu, nid;
6082 	struct zone *zone;
6083 	pg_data_t *pgdat;
6084 
6085 	for_each_populated_zone(zone) {
6086 		if (zone_idx(zone) > max_zone_idx)
6087 			continue;
6088 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6089 			continue;
6090 
6091 		for_each_online_cpu(cpu)
6092 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6093 	}
6094 
6095 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6096 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6097 		" unevictable:%lu dirty:%lu writeback:%lu\n"
6098 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6099 		" mapped:%lu shmem:%lu pagetables:%lu\n"
6100 		" sec_pagetables:%lu bounce:%lu\n"
6101 		" kernel_misc_reclaimable:%lu\n"
6102 		" free:%lu free_pcp:%lu free_cma:%lu\n",
6103 		global_node_page_state(NR_ACTIVE_ANON),
6104 		global_node_page_state(NR_INACTIVE_ANON),
6105 		global_node_page_state(NR_ISOLATED_ANON),
6106 		global_node_page_state(NR_ACTIVE_FILE),
6107 		global_node_page_state(NR_INACTIVE_FILE),
6108 		global_node_page_state(NR_ISOLATED_FILE),
6109 		global_node_page_state(NR_UNEVICTABLE),
6110 		global_node_page_state(NR_FILE_DIRTY),
6111 		global_node_page_state(NR_WRITEBACK),
6112 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6113 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6114 		global_node_page_state(NR_FILE_MAPPED),
6115 		global_node_page_state(NR_SHMEM),
6116 		global_node_page_state(NR_PAGETABLE),
6117 		global_node_page_state(NR_SECONDARY_PAGETABLE),
6118 		global_zone_page_state(NR_BOUNCE),
6119 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6120 		global_zone_page_state(NR_FREE_PAGES),
6121 		free_pcp,
6122 		global_zone_page_state(NR_FREE_CMA_PAGES));
6123 
6124 	for_each_online_pgdat(pgdat) {
6125 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6126 			continue;
6127 		if (!node_has_managed_zones(pgdat, max_zone_idx))
6128 			continue;
6129 
6130 		printk("Node %d"
6131 			" active_anon:%lukB"
6132 			" inactive_anon:%lukB"
6133 			" active_file:%lukB"
6134 			" inactive_file:%lukB"
6135 			" unevictable:%lukB"
6136 			" isolated(anon):%lukB"
6137 			" isolated(file):%lukB"
6138 			" mapped:%lukB"
6139 			" dirty:%lukB"
6140 			" writeback:%lukB"
6141 			" shmem:%lukB"
6142 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6143 			" shmem_thp: %lukB"
6144 			" shmem_pmdmapped: %lukB"
6145 			" anon_thp: %lukB"
6146 #endif
6147 			" writeback_tmp:%lukB"
6148 			" kernel_stack:%lukB"
6149 #ifdef CONFIG_SHADOW_CALL_STACK
6150 			" shadow_call_stack:%lukB"
6151 #endif
6152 			" pagetables:%lukB"
6153 			" sec_pagetables:%lukB"
6154 			" all_unreclaimable? %s"
6155 			"\n",
6156 			pgdat->node_id,
6157 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6158 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6159 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6160 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6161 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
6162 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6163 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6164 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
6165 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
6166 			K(node_page_state(pgdat, NR_WRITEBACK)),
6167 			K(node_page_state(pgdat, NR_SHMEM)),
6168 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6169 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
6170 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6171 			K(node_page_state(pgdat, NR_ANON_THPS)),
6172 #endif
6173 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6174 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
6175 #ifdef CONFIG_SHADOW_CALL_STACK
6176 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
6177 #endif
6178 			K(node_page_state(pgdat, NR_PAGETABLE)),
6179 			K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
6180 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6181 				"yes" : "no");
6182 	}
6183 
6184 	for_each_populated_zone(zone) {
6185 		int i;
6186 
6187 		if (zone_idx(zone) > max_zone_idx)
6188 			continue;
6189 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6190 			continue;
6191 
6192 		free_pcp = 0;
6193 		for_each_online_cpu(cpu)
6194 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6195 
6196 		show_node(zone);
6197 		printk(KERN_CONT
6198 			"%s"
6199 			" free:%lukB"
6200 			" boost:%lukB"
6201 			" min:%lukB"
6202 			" low:%lukB"
6203 			" high:%lukB"
6204 			" reserved_highatomic:%luKB"
6205 			" active_anon:%lukB"
6206 			" inactive_anon:%lukB"
6207 			" active_file:%lukB"
6208 			" inactive_file:%lukB"
6209 			" unevictable:%lukB"
6210 			" writepending:%lukB"
6211 			" present:%lukB"
6212 			" managed:%lukB"
6213 			" mlocked:%lukB"
6214 			" bounce:%lukB"
6215 			" free_pcp:%lukB"
6216 			" local_pcp:%ukB"
6217 			" free_cma:%lukB"
6218 			"\n",
6219 			zone->name,
6220 			K(zone_page_state(zone, NR_FREE_PAGES)),
6221 			K(zone->watermark_boost),
6222 			K(min_wmark_pages(zone)),
6223 			K(low_wmark_pages(zone)),
6224 			K(high_wmark_pages(zone)),
6225 			K(zone->nr_reserved_highatomic),
6226 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6227 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6228 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6229 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6230 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6231 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6232 			K(zone->present_pages),
6233 			K(zone_managed_pages(zone)),
6234 			K(zone_page_state(zone, NR_MLOCK)),
6235 			K(zone_page_state(zone, NR_BOUNCE)),
6236 			K(free_pcp),
6237 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6238 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6239 		printk("lowmem_reserve[]:");
6240 		for (i = 0; i < MAX_NR_ZONES; i++)
6241 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6242 		printk(KERN_CONT "\n");
6243 	}
6244 
6245 	for_each_populated_zone(zone) {
6246 		unsigned int order;
6247 		unsigned long nr[MAX_ORDER], flags, total = 0;
6248 		unsigned char types[MAX_ORDER];
6249 
6250 		if (zone_idx(zone) > max_zone_idx)
6251 			continue;
6252 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6253 			continue;
6254 		show_node(zone);
6255 		printk(KERN_CONT "%s: ", zone->name);
6256 
6257 		spin_lock_irqsave(&zone->lock, flags);
6258 		for (order = 0; order < MAX_ORDER; order++) {
6259 			struct free_area *area = &zone->free_area[order];
6260 			int type;
6261 
6262 			nr[order] = area->nr_free;
6263 			total += nr[order] << order;
6264 
6265 			types[order] = 0;
6266 			for (type = 0; type < MIGRATE_TYPES; type++) {
6267 				if (!free_area_empty(area, type))
6268 					types[order] |= 1 << type;
6269 			}
6270 		}
6271 		spin_unlock_irqrestore(&zone->lock, flags);
6272 		for (order = 0; order < MAX_ORDER; order++) {
6273 			printk(KERN_CONT "%lu*%lukB ",
6274 			       nr[order], K(1UL) << order);
6275 			if (nr[order])
6276 				show_migration_types(types[order]);
6277 		}
6278 		printk(KERN_CONT "= %lukB\n", K(total));
6279 	}
6280 
6281 	for_each_online_node(nid) {
6282 		if (show_mem_node_skip(filter, nid, nodemask))
6283 			continue;
6284 		hugetlb_show_meminfo_node(nid);
6285 	}
6286 
6287 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6288 
6289 	show_swap_cache_info();
6290 }
6291 
6292 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6293 {
6294 	zoneref->zone = zone;
6295 	zoneref->zone_idx = zone_idx(zone);
6296 }
6297 
6298 /*
6299  * Builds allocation fallback zone lists.
6300  *
6301  * Add all populated zones of a node to the zonelist.
6302  */
6303 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6304 {
6305 	struct zone *zone;
6306 	enum zone_type zone_type = MAX_NR_ZONES;
6307 	int nr_zones = 0;
6308 
6309 	do {
6310 		zone_type--;
6311 		zone = pgdat->node_zones + zone_type;
6312 		if (populated_zone(zone)) {
6313 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6314 			check_highest_zone(zone_type);
6315 		}
6316 	} while (zone_type);
6317 
6318 	return nr_zones;
6319 }
6320 
6321 #ifdef CONFIG_NUMA
6322 
6323 static int __parse_numa_zonelist_order(char *s)
6324 {
6325 	/*
6326 	 * We used to support different zonelists modes but they turned
6327 	 * out to be just not useful. Let's keep the warning in place
6328 	 * if somebody still use the cmd line parameter so that we do
6329 	 * not fail it silently
6330 	 */
6331 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6332 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6333 		return -EINVAL;
6334 	}
6335 	return 0;
6336 }
6337 
6338 char numa_zonelist_order[] = "Node";
6339 
6340 /*
6341  * sysctl handler for numa_zonelist_order
6342  */
6343 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6344 		void *buffer, size_t *length, loff_t *ppos)
6345 {
6346 	if (write)
6347 		return __parse_numa_zonelist_order(buffer);
6348 	return proc_dostring(table, write, buffer, length, ppos);
6349 }
6350 
6351 
6352 static int node_load[MAX_NUMNODES];
6353 
6354 /**
6355  * find_next_best_node - find the next node that should appear in a given node's fallback list
6356  * @node: node whose fallback list we're appending
6357  * @used_node_mask: nodemask_t of already used nodes
6358  *
6359  * We use a number of factors to determine which is the next node that should
6360  * appear on a given node's fallback list.  The node should not have appeared
6361  * already in @node's fallback list, and it should be the next closest node
6362  * according to the distance array (which contains arbitrary distance values
6363  * from each node to each node in the system), and should also prefer nodes
6364  * with no CPUs, since presumably they'll have very little allocation pressure
6365  * on them otherwise.
6366  *
6367  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6368  */
6369 int find_next_best_node(int node, nodemask_t *used_node_mask)
6370 {
6371 	int n, val;
6372 	int min_val = INT_MAX;
6373 	int best_node = NUMA_NO_NODE;
6374 
6375 	/* Use the local node if we haven't already */
6376 	if (!node_isset(node, *used_node_mask)) {
6377 		node_set(node, *used_node_mask);
6378 		return node;
6379 	}
6380 
6381 	for_each_node_state(n, N_MEMORY) {
6382 
6383 		/* Don't want a node to appear more than once */
6384 		if (node_isset(n, *used_node_mask))
6385 			continue;
6386 
6387 		/* Use the distance array to find the distance */
6388 		val = node_distance(node, n);
6389 
6390 		/* Penalize nodes under us ("prefer the next node") */
6391 		val += (n < node);
6392 
6393 		/* Give preference to headless and unused nodes */
6394 		if (!cpumask_empty(cpumask_of_node(n)))
6395 			val += PENALTY_FOR_NODE_WITH_CPUS;
6396 
6397 		/* Slight preference for less loaded node */
6398 		val *= MAX_NUMNODES;
6399 		val += node_load[n];
6400 
6401 		if (val < min_val) {
6402 			min_val = val;
6403 			best_node = n;
6404 		}
6405 	}
6406 
6407 	if (best_node >= 0)
6408 		node_set(best_node, *used_node_mask);
6409 
6410 	return best_node;
6411 }
6412 
6413 
6414 /*
6415  * Build zonelists ordered by node and zones within node.
6416  * This results in maximum locality--normal zone overflows into local
6417  * DMA zone, if any--but risks exhausting DMA zone.
6418  */
6419 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6420 		unsigned nr_nodes)
6421 {
6422 	struct zoneref *zonerefs;
6423 	int i;
6424 
6425 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6426 
6427 	for (i = 0; i < nr_nodes; i++) {
6428 		int nr_zones;
6429 
6430 		pg_data_t *node = NODE_DATA(node_order[i]);
6431 
6432 		nr_zones = build_zonerefs_node(node, zonerefs);
6433 		zonerefs += nr_zones;
6434 	}
6435 	zonerefs->zone = NULL;
6436 	zonerefs->zone_idx = 0;
6437 }
6438 
6439 /*
6440  * Build gfp_thisnode zonelists
6441  */
6442 static void build_thisnode_zonelists(pg_data_t *pgdat)
6443 {
6444 	struct zoneref *zonerefs;
6445 	int nr_zones;
6446 
6447 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6448 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6449 	zonerefs += nr_zones;
6450 	zonerefs->zone = NULL;
6451 	zonerefs->zone_idx = 0;
6452 }
6453 
6454 /*
6455  * Build zonelists ordered by zone and nodes within zones.
6456  * This results in conserving DMA zone[s] until all Normal memory is
6457  * exhausted, but results in overflowing to remote node while memory
6458  * may still exist in local DMA zone.
6459  */
6460 
6461 static void build_zonelists(pg_data_t *pgdat)
6462 {
6463 	static int node_order[MAX_NUMNODES];
6464 	int node, nr_nodes = 0;
6465 	nodemask_t used_mask = NODE_MASK_NONE;
6466 	int local_node, prev_node;
6467 
6468 	/* NUMA-aware ordering of nodes */
6469 	local_node = pgdat->node_id;
6470 	prev_node = local_node;
6471 
6472 	memset(node_order, 0, sizeof(node_order));
6473 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6474 		/*
6475 		 * We don't want to pressure a particular node.
6476 		 * So adding penalty to the first node in same
6477 		 * distance group to make it round-robin.
6478 		 */
6479 		if (node_distance(local_node, node) !=
6480 		    node_distance(local_node, prev_node))
6481 			node_load[node] += 1;
6482 
6483 		node_order[nr_nodes++] = node;
6484 		prev_node = node;
6485 	}
6486 
6487 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6488 	build_thisnode_zonelists(pgdat);
6489 	pr_info("Fallback order for Node %d: ", local_node);
6490 	for (node = 0; node < nr_nodes; node++)
6491 		pr_cont("%d ", node_order[node]);
6492 	pr_cont("\n");
6493 }
6494 
6495 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6496 /*
6497  * Return node id of node used for "local" allocations.
6498  * I.e., first node id of first zone in arg node's generic zonelist.
6499  * Used for initializing percpu 'numa_mem', which is used primarily
6500  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6501  */
6502 int local_memory_node(int node)
6503 {
6504 	struct zoneref *z;
6505 
6506 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6507 				   gfp_zone(GFP_KERNEL),
6508 				   NULL);
6509 	return zone_to_nid(z->zone);
6510 }
6511 #endif
6512 
6513 static void setup_min_unmapped_ratio(void);
6514 static void setup_min_slab_ratio(void);
6515 #else	/* CONFIG_NUMA */
6516 
6517 static void build_zonelists(pg_data_t *pgdat)
6518 {
6519 	int node, local_node;
6520 	struct zoneref *zonerefs;
6521 	int nr_zones;
6522 
6523 	local_node = pgdat->node_id;
6524 
6525 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6526 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6527 	zonerefs += nr_zones;
6528 
6529 	/*
6530 	 * Now we build the zonelist so that it contains the zones
6531 	 * of all the other nodes.
6532 	 * We don't want to pressure a particular node, so when
6533 	 * building the zones for node N, we make sure that the
6534 	 * zones coming right after the local ones are those from
6535 	 * node N+1 (modulo N)
6536 	 */
6537 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6538 		if (!node_online(node))
6539 			continue;
6540 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6541 		zonerefs += nr_zones;
6542 	}
6543 	for (node = 0; node < local_node; node++) {
6544 		if (!node_online(node))
6545 			continue;
6546 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6547 		zonerefs += nr_zones;
6548 	}
6549 
6550 	zonerefs->zone = NULL;
6551 	zonerefs->zone_idx = 0;
6552 }
6553 
6554 #endif	/* CONFIG_NUMA */
6555 
6556 /*
6557  * Boot pageset table. One per cpu which is going to be used for all
6558  * zones and all nodes. The parameters will be set in such a way
6559  * that an item put on a list will immediately be handed over to
6560  * the buddy list. This is safe since pageset manipulation is done
6561  * with interrupts disabled.
6562  *
6563  * The boot_pagesets must be kept even after bootup is complete for
6564  * unused processors and/or zones. They do play a role for bootstrapping
6565  * hotplugged processors.
6566  *
6567  * zoneinfo_show() and maybe other functions do
6568  * not check if the processor is online before following the pageset pointer.
6569  * Other parts of the kernel may not check if the zone is available.
6570  */
6571 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6572 /* These effectively disable the pcplists in the boot pageset completely */
6573 #define BOOT_PAGESET_HIGH	0
6574 #define BOOT_PAGESET_BATCH	1
6575 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6576 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6577 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6578 
6579 static void __build_all_zonelists(void *data)
6580 {
6581 	int nid;
6582 	int __maybe_unused cpu;
6583 	pg_data_t *self = data;
6584 
6585 	write_seqlock(&zonelist_update_seq);
6586 
6587 #ifdef CONFIG_NUMA
6588 	memset(node_load, 0, sizeof(node_load));
6589 #endif
6590 
6591 	/*
6592 	 * This node is hotadded and no memory is yet present.   So just
6593 	 * building zonelists is fine - no need to touch other nodes.
6594 	 */
6595 	if (self && !node_online(self->node_id)) {
6596 		build_zonelists(self);
6597 	} else {
6598 		/*
6599 		 * All possible nodes have pgdat preallocated
6600 		 * in free_area_init
6601 		 */
6602 		for_each_node(nid) {
6603 			pg_data_t *pgdat = NODE_DATA(nid);
6604 
6605 			build_zonelists(pgdat);
6606 		}
6607 
6608 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6609 		/*
6610 		 * We now know the "local memory node" for each node--
6611 		 * i.e., the node of the first zone in the generic zonelist.
6612 		 * Set up numa_mem percpu variable for on-line cpus.  During
6613 		 * boot, only the boot cpu should be on-line;  we'll init the
6614 		 * secondary cpus' numa_mem as they come on-line.  During
6615 		 * node/memory hotplug, we'll fixup all on-line cpus.
6616 		 */
6617 		for_each_online_cpu(cpu)
6618 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6619 #endif
6620 	}
6621 
6622 	write_sequnlock(&zonelist_update_seq);
6623 }
6624 
6625 static noinline void __init
6626 build_all_zonelists_init(void)
6627 {
6628 	int cpu;
6629 
6630 	__build_all_zonelists(NULL);
6631 
6632 	/*
6633 	 * Initialize the boot_pagesets that are going to be used
6634 	 * for bootstrapping processors. The real pagesets for
6635 	 * each zone will be allocated later when the per cpu
6636 	 * allocator is available.
6637 	 *
6638 	 * boot_pagesets are used also for bootstrapping offline
6639 	 * cpus if the system is already booted because the pagesets
6640 	 * are needed to initialize allocators on a specific cpu too.
6641 	 * F.e. the percpu allocator needs the page allocator which
6642 	 * needs the percpu allocator in order to allocate its pagesets
6643 	 * (a chicken-egg dilemma).
6644 	 */
6645 	for_each_possible_cpu(cpu)
6646 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6647 
6648 	mminit_verify_zonelist();
6649 	cpuset_init_current_mems_allowed();
6650 }
6651 
6652 /*
6653  * unless system_state == SYSTEM_BOOTING.
6654  *
6655  * __ref due to call of __init annotated helper build_all_zonelists_init
6656  * [protected by SYSTEM_BOOTING].
6657  */
6658 void __ref build_all_zonelists(pg_data_t *pgdat)
6659 {
6660 	unsigned long vm_total_pages;
6661 
6662 	if (system_state == SYSTEM_BOOTING) {
6663 		build_all_zonelists_init();
6664 	} else {
6665 		__build_all_zonelists(pgdat);
6666 		/* cpuset refresh routine should be here */
6667 	}
6668 	/* Get the number of free pages beyond high watermark in all zones. */
6669 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6670 	/*
6671 	 * Disable grouping by mobility if the number of pages in the
6672 	 * system is too low to allow the mechanism to work. It would be
6673 	 * more accurate, but expensive to check per-zone. This check is
6674 	 * made on memory-hotadd so a system can start with mobility
6675 	 * disabled and enable it later
6676 	 */
6677 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6678 		page_group_by_mobility_disabled = 1;
6679 	else
6680 		page_group_by_mobility_disabled = 0;
6681 
6682 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6683 		nr_online_nodes,
6684 		page_group_by_mobility_disabled ? "off" : "on",
6685 		vm_total_pages);
6686 #ifdef CONFIG_NUMA
6687 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6688 #endif
6689 }
6690 
6691 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6692 static bool __meminit
6693 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6694 {
6695 	static struct memblock_region *r;
6696 
6697 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6698 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6699 			for_each_mem_region(r) {
6700 				if (*pfn < memblock_region_memory_end_pfn(r))
6701 					break;
6702 			}
6703 		}
6704 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6705 		    memblock_is_mirror(r)) {
6706 			*pfn = memblock_region_memory_end_pfn(r);
6707 			return true;
6708 		}
6709 	}
6710 	return false;
6711 }
6712 
6713 /*
6714  * Initially all pages are reserved - free ones are freed
6715  * up by memblock_free_all() once the early boot process is
6716  * done. Non-atomic initialization, single-pass.
6717  *
6718  * All aligned pageblocks are initialized to the specified migratetype
6719  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6720  * zone stats (e.g., nr_isolate_pageblock) are touched.
6721  */
6722 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6723 		unsigned long start_pfn, unsigned long zone_end_pfn,
6724 		enum meminit_context context,
6725 		struct vmem_altmap *altmap, int migratetype)
6726 {
6727 	unsigned long pfn, end_pfn = start_pfn + size;
6728 	struct page *page;
6729 
6730 	if (highest_memmap_pfn < end_pfn - 1)
6731 		highest_memmap_pfn = end_pfn - 1;
6732 
6733 #ifdef CONFIG_ZONE_DEVICE
6734 	/*
6735 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6736 	 * memory. We limit the total number of pages to initialize to just
6737 	 * those that might contain the memory mapping. We will defer the
6738 	 * ZONE_DEVICE page initialization until after we have released
6739 	 * the hotplug lock.
6740 	 */
6741 	if (zone == ZONE_DEVICE) {
6742 		if (!altmap)
6743 			return;
6744 
6745 		if (start_pfn == altmap->base_pfn)
6746 			start_pfn += altmap->reserve;
6747 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6748 	}
6749 #endif
6750 
6751 	for (pfn = start_pfn; pfn < end_pfn; ) {
6752 		/*
6753 		 * There can be holes in boot-time mem_map[]s handed to this
6754 		 * function.  They do not exist on hotplugged memory.
6755 		 */
6756 		if (context == MEMINIT_EARLY) {
6757 			if (overlap_memmap_init(zone, &pfn))
6758 				continue;
6759 			if (defer_init(nid, pfn, zone_end_pfn))
6760 				break;
6761 		}
6762 
6763 		page = pfn_to_page(pfn);
6764 		__init_single_page(page, pfn, zone, nid);
6765 		if (context == MEMINIT_HOTPLUG)
6766 			__SetPageReserved(page);
6767 
6768 		/*
6769 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6770 		 * such that unmovable allocations won't be scattered all
6771 		 * over the place during system boot.
6772 		 */
6773 		if (pageblock_aligned(pfn)) {
6774 			set_pageblock_migratetype(page, migratetype);
6775 			cond_resched();
6776 		}
6777 		pfn++;
6778 	}
6779 }
6780 
6781 #ifdef CONFIG_ZONE_DEVICE
6782 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6783 					  unsigned long zone_idx, int nid,
6784 					  struct dev_pagemap *pgmap)
6785 {
6786 
6787 	__init_single_page(page, pfn, zone_idx, nid);
6788 
6789 	/*
6790 	 * Mark page reserved as it will need to wait for onlining
6791 	 * phase for it to be fully associated with a zone.
6792 	 *
6793 	 * We can use the non-atomic __set_bit operation for setting
6794 	 * the flag as we are still initializing the pages.
6795 	 */
6796 	__SetPageReserved(page);
6797 
6798 	/*
6799 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6800 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6801 	 * ever freed or placed on a driver-private list.
6802 	 */
6803 	page->pgmap = pgmap;
6804 	page->zone_device_data = NULL;
6805 
6806 	/*
6807 	 * Mark the block movable so that blocks are reserved for
6808 	 * movable at startup. This will force kernel allocations
6809 	 * to reserve their blocks rather than leaking throughout
6810 	 * the address space during boot when many long-lived
6811 	 * kernel allocations are made.
6812 	 *
6813 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6814 	 * because this is done early in section_activate()
6815 	 */
6816 	if (pageblock_aligned(pfn)) {
6817 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6818 		cond_resched();
6819 	}
6820 
6821 	/*
6822 	 * ZONE_DEVICE pages are released directly to the driver page allocator
6823 	 * which will set the page count to 1 when allocating the page.
6824 	 */
6825 	if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
6826 	    pgmap->type == MEMORY_DEVICE_COHERENT)
6827 		set_page_count(page, 0);
6828 }
6829 
6830 /*
6831  * With compound page geometry and when struct pages are stored in ram most
6832  * tail pages are reused. Consequently, the amount of unique struct pages to
6833  * initialize is a lot smaller that the total amount of struct pages being
6834  * mapped. This is a paired / mild layering violation with explicit knowledge
6835  * of how the sparse_vmemmap internals handle compound pages in the lack
6836  * of an altmap. See vmemmap_populate_compound_pages().
6837  */
6838 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6839 					      unsigned long nr_pages)
6840 {
6841 	return is_power_of_2(sizeof(struct page)) &&
6842 		!altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6843 }
6844 
6845 static void __ref memmap_init_compound(struct page *head,
6846 				       unsigned long head_pfn,
6847 				       unsigned long zone_idx, int nid,
6848 				       struct dev_pagemap *pgmap,
6849 				       unsigned long nr_pages)
6850 {
6851 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
6852 	unsigned int order = pgmap->vmemmap_shift;
6853 
6854 	__SetPageHead(head);
6855 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6856 		struct page *page = pfn_to_page(pfn);
6857 
6858 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6859 		prep_compound_tail(head, pfn - head_pfn);
6860 		set_page_count(page, 0);
6861 
6862 		/*
6863 		 * The first tail page stores important compound page info.
6864 		 * Call prep_compound_head() after the first tail page has
6865 		 * been initialized, to not have the data overwritten.
6866 		 */
6867 		if (pfn == head_pfn + 1)
6868 			prep_compound_head(head, order);
6869 	}
6870 }
6871 
6872 void __ref memmap_init_zone_device(struct zone *zone,
6873 				   unsigned long start_pfn,
6874 				   unsigned long nr_pages,
6875 				   struct dev_pagemap *pgmap)
6876 {
6877 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6878 	struct pglist_data *pgdat = zone->zone_pgdat;
6879 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6880 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6881 	unsigned long zone_idx = zone_idx(zone);
6882 	unsigned long start = jiffies;
6883 	int nid = pgdat->node_id;
6884 
6885 	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
6886 		return;
6887 
6888 	/*
6889 	 * The call to memmap_init should have already taken care
6890 	 * of the pages reserved for the memmap, so we can just jump to
6891 	 * the end of that region and start processing the device pages.
6892 	 */
6893 	if (altmap) {
6894 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6895 		nr_pages = end_pfn - start_pfn;
6896 	}
6897 
6898 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6899 		struct page *page = pfn_to_page(pfn);
6900 
6901 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6902 
6903 		if (pfns_per_compound == 1)
6904 			continue;
6905 
6906 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6907 				     compound_nr_pages(altmap, pfns_per_compound));
6908 	}
6909 
6910 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6911 		nr_pages, jiffies_to_msecs(jiffies - start));
6912 }
6913 
6914 #endif
6915 static void __meminit zone_init_free_lists(struct zone *zone)
6916 {
6917 	unsigned int order, t;
6918 	for_each_migratetype_order(order, t) {
6919 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6920 		zone->free_area[order].nr_free = 0;
6921 	}
6922 }
6923 
6924 /*
6925  * Only struct pages that correspond to ranges defined by memblock.memory
6926  * are zeroed and initialized by going through __init_single_page() during
6927  * memmap_init_zone_range().
6928  *
6929  * But, there could be struct pages that correspond to holes in
6930  * memblock.memory. This can happen because of the following reasons:
6931  * - physical memory bank size is not necessarily the exact multiple of the
6932  *   arbitrary section size
6933  * - early reserved memory may not be listed in memblock.memory
6934  * - memory layouts defined with memmap= kernel parameter may not align
6935  *   nicely with memmap sections
6936  *
6937  * Explicitly initialize those struct pages so that:
6938  * - PG_Reserved is set
6939  * - zone and node links point to zone and node that span the page if the
6940  *   hole is in the middle of a zone
6941  * - zone and node links point to adjacent zone/node if the hole falls on
6942  *   the zone boundary; the pages in such holes will be prepended to the
6943  *   zone/node above the hole except for the trailing pages in the last
6944  *   section that will be appended to the zone/node below.
6945  */
6946 static void __init init_unavailable_range(unsigned long spfn,
6947 					  unsigned long epfn,
6948 					  int zone, int node)
6949 {
6950 	unsigned long pfn;
6951 	u64 pgcnt = 0;
6952 
6953 	for (pfn = spfn; pfn < epfn; pfn++) {
6954 		if (!pfn_valid(pageblock_start_pfn(pfn))) {
6955 			pfn = pageblock_end_pfn(pfn) - 1;
6956 			continue;
6957 		}
6958 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6959 		__SetPageReserved(pfn_to_page(pfn));
6960 		pgcnt++;
6961 	}
6962 
6963 	if (pgcnt)
6964 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6965 			node, zone_names[zone], pgcnt);
6966 }
6967 
6968 static void __init memmap_init_zone_range(struct zone *zone,
6969 					  unsigned long start_pfn,
6970 					  unsigned long end_pfn,
6971 					  unsigned long *hole_pfn)
6972 {
6973 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6974 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6975 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6976 
6977 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6978 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6979 
6980 	if (start_pfn >= end_pfn)
6981 		return;
6982 
6983 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6984 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6985 
6986 	if (*hole_pfn < start_pfn)
6987 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6988 
6989 	*hole_pfn = end_pfn;
6990 }
6991 
6992 static void __init memmap_init(void)
6993 {
6994 	unsigned long start_pfn, end_pfn;
6995 	unsigned long hole_pfn = 0;
6996 	int i, j, zone_id = 0, nid;
6997 
6998 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6999 		struct pglist_data *node = NODE_DATA(nid);
7000 
7001 		for (j = 0; j < MAX_NR_ZONES; j++) {
7002 			struct zone *zone = node->node_zones + j;
7003 
7004 			if (!populated_zone(zone))
7005 				continue;
7006 
7007 			memmap_init_zone_range(zone, start_pfn, end_pfn,
7008 					       &hole_pfn);
7009 			zone_id = j;
7010 		}
7011 	}
7012 
7013 #ifdef CONFIG_SPARSEMEM
7014 	/*
7015 	 * Initialize the memory map for hole in the range [memory_end,
7016 	 * section_end].
7017 	 * Append the pages in this hole to the highest zone in the last
7018 	 * node.
7019 	 * The call to init_unavailable_range() is outside the ifdef to
7020 	 * silence the compiler warining about zone_id set but not used;
7021 	 * for FLATMEM it is a nop anyway
7022 	 */
7023 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
7024 	if (hole_pfn < end_pfn)
7025 #endif
7026 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
7027 }
7028 
7029 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7030 			  phys_addr_t min_addr, int nid, bool exact_nid)
7031 {
7032 	void *ptr;
7033 
7034 	if (exact_nid)
7035 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7036 						   MEMBLOCK_ALLOC_ACCESSIBLE,
7037 						   nid);
7038 	else
7039 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7040 						 MEMBLOCK_ALLOC_ACCESSIBLE,
7041 						 nid);
7042 
7043 	if (ptr && size > 0)
7044 		page_init_poison(ptr, size);
7045 
7046 	return ptr;
7047 }
7048 
7049 static int zone_batchsize(struct zone *zone)
7050 {
7051 #ifdef CONFIG_MMU
7052 	int batch;
7053 
7054 	/*
7055 	 * The number of pages to batch allocate is either ~0.1%
7056 	 * of the zone or 1MB, whichever is smaller. The batch
7057 	 * size is striking a balance between allocation latency
7058 	 * and zone lock contention.
7059 	 */
7060 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
7061 	batch /= 4;		/* We effectively *= 4 below */
7062 	if (batch < 1)
7063 		batch = 1;
7064 
7065 	/*
7066 	 * Clamp the batch to a 2^n - 1 value. Having a power
7067 	 * of 2 value was found to be more likely to have
7068 	 * suboptimal cache aliasing properties in some cases.
7069 	 *
7070 	 * For example if 2 tasks are alternately allocating
7071 	 * batches of pages, one task can end up with a lot
7072 	 * of pages of one half of the possible page colors
7073 	 * and the other with pages of the other colors.
7074 	 */
7075 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
7076 
7077 	return batch;
7078 
7079 #else
7080 	/* The deferral and batching of frees should be suppressed under NOMMU
7081 	 * conditions.
7082 	 *
7083 	 * The problem is that NOMMU needs to be able to allocate large chunks
7084 	 * of contiguous memory as there's no hardware page translation to
7085 	 * assemble apparent contiguous memory from discontiguous pages.
7086 	 *
7087 	 * Queueing large contiguous runs of pages for batching, however,
7088 	 * causes the pages to actually be freed in smaller chunks.  As there
7089 	 * can be a significant delay between the individual batches being
7090 	 * recycled, this leads to the once large chunks of space being
7091 	 * fragmented and becoming unavailable for high-order allocations.
7092 	 */
7093 	return 0;
7094 #endif
7095 }
7096 
7097 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7098 {
7099 #ifdef CONFIG_MMU
7100 	int high;
7101 	int nr_split_cpus;
7102 	unsigned long total_pages;
7103 
7104 	if (!percpu_pagelist_high_fraction) {
7105 		/*
7106 		 * By default, the high value of the pcp is based on the zone
7107 		 * low watermark so that if they are full then background
7108 		 * reclaim will not be started prematurely.
7109 		 */
7110 		total_pages = low_wmark_pages(zone);
7111 	} else {
7112 		/*
7113 		 * If percpu_pagelist_high_fraction is configured, the high
7114 		 * value is based on a fraction of the managed pages in the
7115 		 * zone.
7116 		 */
7117 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7118 	}
7119 
7120 	/*
7121 	 * Split the high value across all online CPUs local to the zone. Note
7122 	 * that early in boot that CPUs may not be online yet and that during
7123 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7124 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
7125 	 * all online CPUs to mitigate the risk that reclaim is triggered
7126 	 * prematurely due to pages stored on pcp lists.
7127 	 */
7128 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7129 	if (!nr_split_cpus)
7130 		nr_split_cpus = num_online_cpus();
7131 	high = total_pages / nr_split_cpus;
7132 
7133 	/*
7134 	 * Ensure high is at least batch*4. The multiple is based on the
7135 	 * historical relationship between high and batch.
7136 	 */
7137 	high = max(high, batch << 2);
7138 
7139 	return high;
7140 #else
7141 	return 0;
7142 #endif
7143 }
7144 
7145 /*
7146  * pcp->high and pcp->batch values are related and generally batch is lower
7147  * than high. They are also related to pcp->count such that count is lower
7148  * than high, and as soon as it reaches high, the pcplist is flushed.
7149  *
7150  * However, guaranteeing these relations at all times would require e.g. write
7151  * barriers here but also careful usage of read barriers at the read side, and
7152  * thus be prone to error and bad for performance. Thus the update only prevents
7153  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7154  * can cope with those fields changing asynchronously, and fully trust only the
7155  * pcp->count field on the local CPU with interrupts disabled.
7156  *
7157  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7158  * outside of boot time (or some other assurance that no concurrent updaters
7159  * exist).
7160  */
7161 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7162 		unsigned long batch)
7163 {
7164 	WRITE_ONCE(pcp->batch, batch);
7165 	WRITE_ONCE(pcp->high, high);
7166 }
7167 
7168 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7169 {
7170 	int pindex;
7171 
7172 	memset(pcp, 0, sizeof(*pcp));
7173 	memset(pzstats, 0, sizeof(*pzstats));
7174 
7175 	spin_lock_init(&pcp->lock);
7176 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7177 		INIT_LIST_HEAD(&pcp->lists[pindex]);
7178 
7179 	/*
7180 	 * Set batch and high values safe for a boot pageset. A true percpu
7181 	 * pageset's initialization will update them subsequently. Here we don't
7182 	 * need to be as careful as pageset_update() as nobody can access the
7183 	 * pageset yet.
7184 	 */
7185 	pcp->high = BOOT_PAGESET_HIGH;
7186 	pcp->batch = BOOT_PAGESET_BATCH;
7187 	pcp->free_factor = 0;
7188 }
7189 
7190 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7191 		unsigned long batch)
7192 {
7193 	struct per_cpu_pages *pcp;
7194 	int cpu;
7195 
7196 	for_each_possible_cpu(cpu) {
7197 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7198 		pageset_update(pcp, high, batch);
7199 	}
7200 }
7201 
7202 /*
7203  * Calculate and set new high and batch values for all per-cpu pagesets of a
7204  * zone based on the zone's size.
7205  */
7206 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7207 {
7208 	int new_high, new_batch;
7209 
7210 	new_batch = max(1, zone_batchsize(zone));
7211 	new_high = zone_highsize(zone, new_batch, cpu_online);
7212 
7213 	if (zone->pageset_high == new_high &&
7214 	    zone->pageset_batch == new_batch)
7215 		return;
7216 
7217 	zone->pageset_high = new_high;
7218 	zone->pageset_batch = new_batch;
7219 
7220 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7221 }
7222 
7223 void __meminit setup_zone_pageset(struct zone *zone)
7224 {
7225 	int cpu;
7226 
7227 	/* Size may be 0 on !SMP && !NUMA */
7228 	if (sizeof(struct per_cpu_zonestat) > 0)
7229 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7230 
7231 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7232 	for_each_possible_cpu(cpu) {
7233 		struct per_cpu_pages *pcp;
7234 		struct per_cpu_zonestat *pzstats;
7235 
7236 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7237 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7238 		per_cpu_pages_init(pcp, pzstats);
7239 	}
7240 
7241 	zone_set_pageset_high_and_batch(zone, 0);
7242 }
7243 
7244 /*
7245  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7246  * page high values need to be recalculated.
7247  */
7248 static void zone_pcp_update(struct zone *zone, int cpu_online)
7249 {
7250 	mutex_lock(&pcp_batch_high_lock);
7251 	zone_set_pageset_high_and_batch(zone, cpu_online);
7252 	mutex_unlock(&pcp_batch_high_lock);
7253 }
7254 
7255 /*
7256  * Allocate per cpu pagesets and initialize them.
7257  * Before this call only boot pagesets were available.
7258  */
7259 void __init setup_per_cpu_pageset(void)
7260 {
7261 	struct pglist_data *pgdat;
7262 	struct zone *zone;
7263 	int __maybe_unused cpu;
7264 
7265 	for_each_populated_zone(zone)
7266 		setup_zone_pageset(zone);
7267 
7268 #ifdef CONFIG_NUMA
7269 	/*
7270 	 * Unpopulated zones continue using the boot pagesets.
7271 	 * The numa stats for these pagesets need to be reset.
7272 	 * Otherwise, they will end up skewing the stats of
7273 	 * the nodes these zones are associated with.
7274 	 */
7275 	for_each_possible_cpu(cpu) {
7276 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7277 		memset(pzstats->vm_numa_event, 0,
7278 		       sizeof(pzstats->vm_numa_event));
7279 	}
7280 #endif
7281 
7282 	for_each_online_pgdat(pgdat)
7283 		pgdat->per_cpu_nodestats =
7284 			alloc_percpu(struct per_cpu_nodestat);
7285 }
7286 
7287 static __meminit void zone_pcp_init(struct zone *zone)
7288 {
7289 	/*
7290 	 * per cpu subsystem is not up at this point. The following code
7291 	 * relies on the ability of the linker to provide the
7292 	 * offset of a (static) per cpu variable into the per cpu area.
7293 	 */
7294 	zone->per_cpu_pageset = &boot_pageset;
7295 	zone->per_cpu_zonestats = &boot_zonestats;
7296 	zone->pageset_high = BOOT_PAGESET_HIGH;
7297 	zone->pageset_batch = BOOT_PAGESET_BATCH;
7298 
7299 	if (populated_zone(zone))
7300 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7301 			 zone->present_pages, zone_batchsize(zone));
7302 }
7303 
7304 void __meminit init_currently_empty_zone(struct zone *zone,
7305 					unsigned long zone_start_pfn,
7306 					unsigned long size)
7307 {
7308 	struct pglist_data *pgdat = zone->zone_pgdat;
7309 	int zone_idx = zone_idx(zone) + 1;
7310 
7311 	if (zone_idx > pgdat->nr_zones)
7312 		pgdat->nr_zones = zone_idx;
7313 
7314 	zone->zone_start_pfn = zone_start_pfn;
7315 
7316 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7317 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7318 			pgdat->node_id,
7319 			(unsigned long)zone_idx(zone),
7320 			zone_start_pfn, (zone_start_pfn + size));
7321 
7322 	zone_init_free_lists(zone);
7323 	zone->initialized = 1;
7324 }
7325 
7326 /**
7327  * get_pfn_range_for_nid - Return the start and end page frames for a node
7328  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7329  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7330  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7331  *
7332  * It returns the start and end page frame of a node based on information
7333  * provided by memblock_set_node(). If called for a node
7334  * with no available memory, a warning is printed and the start and end
7335  * PFNs will be 0.
7336  */
7337 void __init get_pfn_range_for_nid(unsigned int nid,
7338 			unsigned long *start_pfn, unsigned long *end_pfn)
7339 {
7340 	unsigned long this_start_pfn, this_end_pfn;
7341 	int i;
7342 
7343 	*start_pfn = -1UL;
7344 	*end_pfn = 0;
7345 
7346 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7347 		*start_pfn = min(*start_pfn, this_start_pfn);
7348 		*end_pfn = max(*end_pfn, this_end_pfn);
7349 	}
7350 
7351 	if (*start_pfn == -1UL)
7352 		*start_pfn = 0;
7353 }
7354 
7355 /*
7356  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7357  * assumption is made that zones within a node are ordered in monotonic
7358  * increasing memory addresses so that the "highest" populated zone is used
7359  */
7360 static void __init find_usable_zone_for_movable(void)
7361 {
7362 	int zone_index;
7363 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7364 		if (zone_index == ZONE_MOVABLE)
7365 			continue;
7366 
7367 		if (arch_zone_highest_possible_pfn[zone_index] >
7368 				arch_zone_lowest_possible_pfn[zone_index])
7369 			break;
7370 	}
7371 
7372 	VM_BUG_ON(zone_index == -1);
7373 	movable_zone = zone_index;
7374 }
7375 
7376 /*
7377  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7378  * because it is sized independent of architecture. Unlike the other zones,
7379  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7380  * in each node depending on the size of each node and how evenly kernelcore
7381  * is distributed. This helper function adjusts the zone ranges
7382  * provided by the architecture for a given node by using the end of the
7383  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7384  * zones within a node are in order of monotonic increases memory addresses
7385  */
7386 static void __init adjust_zone_range_for_zone_movable(int nid,
7387 					unsigned long zone_type,
7388 					unsigned long node_start_pfn,
7389 					unsigned long node_end_pfn,
7390 					unsigned long *zone_start_pfn,
7391 					unsigned long *zone_end_pfn)
7392 {
7393 	/* Only adjust if ZONE_MOVABLE is on this node */
7394 	if (zone_movable_pfn[nid]) {
7395 		/* Size ZONE_MOVABLE */
7396 		if (zone_type == ZONE_MOVABLE) {
7397 			*zone_start_pfn = zone_movable_pfn[nid];
7398 			*zone_end_pfn = min(node_end_pfn,
7399 				arch_zone_highest_possible_pfn[movable_zone]);
7400 
7401 		/* Adjust for ZONE_MOVABLE starting within this range */
7402 		} else if (!mirrored_kernelcore &&
7403 			*zone_start_pfn < zone_movable_pfn[nid] &&
7404 			*zone_end_pfn > zone_movable_pfn[nid]) {
7405 			*zone_end_pfn = zone_movable_pfn[nid];
7406 
7407 		/* Check if this whole range is within ZONE_MOVABLE */
7408 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7409 			*zone_start_pfn = *zone_end_pfn;
7410 	}
7411 }
7412 
7413 /*
7414  * Return the number of pages a zone spans in a node, including holes
7415  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7416  */
7417 static unsigned long __init zone_spanned_pages_in_node(int nid,
7418 					unsigned long zone_type,
7419 					unsigned long node_start_pfn,
7420 					unsigned long node_end_pfn,
7421 					unsigned long *zone_start_pfn,
7422 					unsigned long *zone_end_pfn)
7423 {
7424 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7425 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7426 	/* When hotadd a new node from cpu_up(), the node should be empty */
7427 	if (!node_start_pfn && !node_end_pfn)
7428 		return 0;
7429 
7430 	/* Get the start and end of the zone */
7431 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7432 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7433 	adjust_zone_range_for_zone_movable(nid, zone_type,
7434 				node_start_pfn, node_end_pfn,
7435 				zone_start_pfn, zone_end_pfn);
7436 
7437 	/* Check that this node has pages within the zone's required range */
7438 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7439 		return 0;
7440 
7441 	/* Move the zone boundaries inside the node if necessary */
7442 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7443 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7444 
7445 	/* Return the spanned pages */
7446 	return *zone_end_pfn - *zone_start_pfn;
7447 }
7448 
7449 /*
7450  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7451  * then all holes in the requested range will be accounted for.
7452  */
7453 unsigned long __init __absent_pages_in_range(int nid,
7454 				unsigned long range_start_pfn,
7455 				unsigned long range_end_pfn)
7456 {
7457 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7458 	unsigned long start_pfn, end_pfn;
7459 	int i;
7460 
7461 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7462 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7463 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7464 		nr_absent -= end_pfn - start_pfn;
7465 	}
7466 	return nr_absent;
7467 }
7468 
7469 /**
7470  * absent_pages_in_range - Return number of page frames in holes within a range
7471  * @start_pfn: The start PFN to start searching for holes
7472  * @end_pfn: The end PFN to stop searching for holes
7473  *
7474  * Return: the number of pages frames in memory holes within a range.
7475  */
7476 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7477 							unsigned long end_pfn)
7478 {
7479 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7480 }
7481 
7482 /* Return the number of page frames in holes in a zone on a node */
7483 static unsigned long __init zone_absent_pages_in_node(int nid,
7484 					unsigned long zone_type,
7485 					unsigned long node_start_pfn,
7486 					unsigned long node_end_pfn)
7487 {
7488 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7489 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7490 	unsigned long zone_start_pfn, zone_end_pfn;
7491 	unsigned long nr_absent;
7492 
7493 	/* When hotadd a new node from cpu_up(), the node should be empty */
7494 	if (!node_start_pfn && !node_end_pfn)
7495 		return 0;
7496 
7497 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7498 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7499 
7500 	adjust_zone_range_for_zone_movable(nid, zone_type,
7501 			node_start_pfn, node_end_pfn,
7502 			&zone_start_pfn, &zone_end_pfn);
7503 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7504 
7505 	/*
7506 	 * ZONE_MOVABLE handling.
7507 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7508 	 * and vice versa.
7509 	 */
7510 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7511 		unsigned long start_pfn, end_pfn;
7512 		struct memblock_region *r;
7513 
7514 		for_each_mem_region(r) {
7515 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7516 					  zone_start_pfn, zone_end_pfn);
7517 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7518 					zone_start_pfn, zone_end_pfn);
7519 
7520 			if (zone_type == ZONE_MOVABLE &&
7521 			    memblock_is_mirror(r))
7522 				nr_absent += end_pfn - start_pfn;
7523 
7524 			if (zone_type == ZONE_NORMAL &&
7525 			    !memblock_is_mirror(r))
7526 				nr_absent += end_pfn - start_pfn;
7527 		}
7528 	}
7529 
7530 	return nr_absent;
7531 }
7532 
7533 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7534 						unsigned long node_start_pfn,
7535 						unsigned long node_end_pfn)
7536 {
7537 	unsigned long realtotalpages = 0, totalpages = 0;
7538 	enum zone_type i;
7539 
7540 	for (i = 0; i < MAX_NR_ZONES; i++) {
7541 		struct zone *zone = pgdat->node_zones + i;
7542 		unsigned long zone_start_pfn, zone_end_pfn;
7543 		unsigned long spanned, absent;
7544 		unsigned long size, real_size;
7545 
7546 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7547 						     node_start_pfn,
7548 						     node_end_pfn,
7549 						     &zone_start_pfn,
7550 						     &zone_end_pfn);
7551 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7552 						   node_start_pfn,
7553 						   node_end_pfn);
7554 
7555 		size = spanned;
7556 		real_size = size - absent;
7557 
7558 		if (size)
7559 			zone->zone_start_pfn = zone_start_pfn;
7560 		else
7561 			zone->zone_start_pfn = 0;
7562 		zone->spanned_pages = size;
7563 		zone->present_pages = real_size;
7564 #if defined(CONFIG_MEMORY_HOTPLUG)
7565 		zone->present_early_pages = real_size;
7566 #endif
7567 
7568 		totalpages += size;
7569 		realtotalpages += real_size;
7570 	}
7571 
7572 	pgdat->node_spanned_pages = totalpages;
7573 	pgdat->node_present_pages = realtotalpages;
7574 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7575 }
7576 
7577 #ifndef CONFIG_SPARSEMEM
7578 /*
7579  * Calculate the size of the zone->blockflags rounded to an unsigned long
7580  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7581  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7582  * round what is now in bits to nearest long in bits, then return it in
7583  * bytes.
7584  */
7585 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7586 {
7587 	unsigned long usemapsize;
7588 
7589 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7590 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7591 	usemapsize = usemapsize >> pageblock_order;
7592 	usemapsize *= NR_PAGEBLOCK_BITS;
7593 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7594 
7595 	return usemapsize / 8;
7596 }
7597 
7598 static void __ref setup_usemap(struct zone *zone)
7599 {
7600 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7601 					       zone->spanned_pages);
7602 	zone->pageblock_flags = NULL;
7603 	if (usemapsize) {
7604 		zone->pageblock_flags =
7605 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7606 					    zone_to_nid(zone));
7607 		if (!zone->pageblock_flags)
7608 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7609 			      usemapsize, zone->name, zone_to_nid(zone));
7610 	}
7611 }
7612 #else
7613 static inline void setup_usemap(struct zone *zone) {}
7614 #endif /* CONFIG_SPARSEMEM */
7615 
7616 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7617 
7618 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7619 void __init set_pageblock_order(void)
7620 {
7621 	unsigned int order = MAX_ORDER - 1;
7622 
7623 	/* Check that pageblock_nr_pages has not already been setup */
7624 	if (pageblock_order)
7625 		return;
7626 
7627 	/* Don't let pageblocks exceed the maximum allocation granularity. */
7628 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7629 		order = HUGETLB_PAGE_ORDER;
7630 
7631 	/*
7632 	 * Assume the largest contiguous order of interest is a huge page.
7633 	 * This value may be variable depending on boot parameters on IA64 and
7634 	 * powerpc.
7635 	 */
7636 	pageblock_order = order;
7637 }
7638 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7639 
7640 /*
7641  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7642  * is unused as pageblock_order is set at compile-time. See
7643  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7644  * the kernel config
7645  */
7646 void __init set_pageblock_order(void)
7647 {
7648 }
7649 
7650 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7651 
7652 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7653 						unsigned long present_pages)
7654 {
7655 	unsigned long pages = spanned_pages;
7656 
7657 	/*
7658 	 * Provide a more accurate estimation if there are holes within
7659 	 * the zone and SPARSEMEM is in use. If there are holes within the
7660 	 * zone, each populated memory region may cost us one or two extra
7661 	 * memmap pages due to alignment because memmap pages for each
7662 	 * populated regions may not be naturally aligned on page boundary.
7663 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7664 	 */
7665 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7666 	    IS_ENABLED(CONFIG_SPARSEMEM))
7667 		pages = present_pages;
7668 
7669 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7670 }
7671 
7672 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7673 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7674 {
7675 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7676 
7677 	spin_lock_init(&ds_queue->split_queue_lock);
7678 	INIT_LIST_HEAD(&ds_queue->split_queue);
7679 	ds_queue->split_queue_len = 0;
7680 }
7681 #else
7682 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7683 #endif
7684 
7685 #ifdef CONFIG_COMPACTION
7686 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7687 {
7688 	init_waitqueue_head(&pgdat->kcompactd_wait);
7689 }
7690 #else
7691 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7692 #endif
7693 
7694 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7695 {
7696 	int i;
7697 
7698 	pgdat_resize_init(pgdat);
7699 	pgdat_kswapd_lock_init(pgdat);
7700 
7701 	pgdat_init_split_queue(pgdat);
7702 	pgdat_init_kcompactd(pgdat);
7703 
7704 	init_waitqueue_head(&pgdat->kswapd_wait);
7705 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7706 
7707 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7708 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
7709 
7710 	pgdat_page_ext_init(pgdat);
7711 	lruvec_init(&pgdat->__lruvec);
7712 }
7713 
7714 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7715 							unsigned long remaining_pages)
7716 {
7717 	atomic_long_set(&zone->managed_pages, remaining_pages);
7718 	zone_set_nid(zone, nid);
7719 	zone->name = zone_names[idx];
7720 	zone->zone_pgdat = NODE_DATA(nid);
7721 	spin_lock_init(&zone->lock);
7722 	zone_seqlock_init(zone);
7723 	zone_pcp_init(zone);
7724 }
7725 
7726 /*
7727  * Set up the zone data structures
7728  * - init pgdat internals
7729  * - init all zones belonging to this node
7730  *
7731  * NOTE: this function is only called during memory hotplug
7732  */
7733 #ifdef CONFIG_MEMORY_HOTPLUG
7734 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7735 {
7736 	int nid = pgdat->node_id;
7737 	enum zone_type z;
7738 	int cpu;
7739 
7740 	pgdat_init_internals(pgdat);
7741 
7742 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
7743 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7744 
7745 	/*
7746 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
7747 	 * Note that kswapd will init kswapd_highest_zoneidx properly
7748 	 * when it starts in the near future.
7749 	 */
7750 	pgdat->nr_zones = 0;
7751 	pgdat->kswapd_order = 0;
7752 	pgdat->kswapd_highest_zoneidx = 0;
7753 	pgdat->node_start_pfn = 0;
7754 	for_each_online_cpu(cpu) {
7755 		struct per_cpu_nodestat *p;
7756 
7757 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7758 		memset(p, 0, sizeof(*p));
7759 	}
7760 
7761 	for (z = 0; z < MAX_NR_ZONES; z++)
7762 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7763 }
7764 #endif
7765 
7766 /*
7767  * Set up the zone data structures:
7768  *   - mark all pages reserved
7769  *   - mark all memory queues empty
7770  *   - clear the memory bitmaps
7771  *
7772  * NOTE: pgdat should get zeroed by caller.
7773  * NOTE: this function is only called during early init.
7774  */
7775 static void __init free_area_init_core(struct pglist_data *pgdat)
7776 {
7777 	enum zone_type j;
7778 	int nid = pgdat->node_id;
7779 
7780 	pgdat_init_internals(pgdat);
7781 	pgdat->per_cpu_nodestats = &boot_nodestats;
7782 
7783 	for (j = 0; j < MAX_NR_ZONES; j++) {
7784 		struct zone *zone = pgdat->node_zones + j;
7785 		unsigned long size, freesize, memmap_pages;
7786 
7787 		size = zone->spanned_pages;
7788 		freesize = zone->present_pages;
7789 
7790 		/*
7791 		 * Adjust freesize so that it accounts for how much memory
7792 		 * is used by this zone for memmap. This affects the watermark
7793 		 * and per-cpu initialisations
7794 		 */
7795 		memmap_pages = calc_memmap_size(size, freesize);
7796 		if (!is_highmem_idx(j)) {
7797 			if (freesize >= memmap_pages) {
7798 				freesize -= memmap_pages;
7799 				if (memmap_pages)
7800 					pr_debug("  %s zone: %lu pages used for memmap\n",
7801 						 zone_names[j], memmap_pages);
7802 			} else
7803 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7804 					zone_names[j], memmap_pages, freesize);
7805 		}
7806 
7807 		/* Account for reserved pages */
7808 		if (j == 0 && freesize > dma_reserve) {
7809 			freesize -= dma_reserve;
7810 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7811 		}
7812 
7813 		if (!is_highmem_idx(j))
7814 			nr_kernel_pages += freesize;
7815 		/* Charge for highmem memmap if there are enough kernel pages */
7816 		else if (nr_kernel_pages > memmap_pages * 2)
7817 			nr_kernel_pages -= memmap_pages;
7818 		nr_all_pages += freesize;
7819 
7820 		/*
7821 		 * Set an approximate value for lowmem here, it will be adjusted
7822 		 * when the bootmem allocator frees pages into the buddy system.
7823 		 * And all highmem pages will be managed by the buddy system.
7824 		 */
7825 		zone_init_internals(zone, j, nid, freesize);
7826 
7827 		if (!size)
7828 			continue;
7829 
7830 		set_pageblock_order();
7831 		setup_usemap(zone);
7832 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7833 	}
7834 }
7835 
7836 #ifdef CONFIG_FLATMEM
7837 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7838 {
7839 	unsigned long __maybe_unused start = 0;
7840 	unsigned long __maybe_unused offset = 0;
7841 
7842 	/* Skip empty nodes */
7843 	if (!pgdat->node_spanned_pages)
7844 		return;
7845 
7846 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7847 	offset = pgdat->node_start_pfn - start;
7848 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7849 	if (!pgdat->node_mem_map) {
7850 		unsigned long size, end;
7851 		struct page *map;
7852 
7853 		/*
7854 		 * The zone's endpoints aren't required to be MAX_ORDER
7855 		 * aligned but the node_mem_map endpoints must be in order
7856 		 * for the buddy allocator to function correctly.
7857 		 */
7858 		end = pgdat_end_pfn(pgdat);
7859 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7860 		size =  (end - start) * sizeof(struct page);
7861 		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7862 				   pgdat->node_id, false);
7863 		if (!map)
7864 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7865 			      size, pgdat->node_id);
7866 		pgdat->node_mem_map = map + offset;
7867 	}
7868 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7869 				__func__, pgdat->node_id, (unsigned long)pgdat,
7870 				(unsigned long)pgdat->node_mem_map);
7871 #ifndef CONFIG_NUMA
7872 	/*
7873 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7874 	 */
7875 	if (pgdat == NODE_DATA(0)) {
7876 		mem_map = NODE_DATA(0)->node_mem_map;
7877 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7878 			mem_map -= offset;
7879 	}
7880 #endif
7881 }
7882 #else
7883 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7884 #endif /* CONFIG_FLATMEM */
7885 
7886 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7887 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7888 {
7889 	pgdat->first_deferred_pfn = ULONG_MAX;
7890 }
7891 #else
7892 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7893 #endif
7894 
7895 static void __init free_area_init_node(int nid)
7896 {
7897 	pg_data_t *pgdat = NODE_DATA(nid);
7898 	unsigned long start_pfn = 0;
7899 	unsigned long end_pfn = 0;
7900 
7901 	/* pg_data_t should be reset to zero when it's allocated */
7902 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7903 
7904 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7905 
7906 	pgdat->node_id = nid;
7907 	pgdat->node_start_pfn = start_pfn;
7908 	pgdat->per_cpu_nodestats = NULL;
7909 
7910 	if (start_pfn != end_pfn) {
7911 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7912 			(u64)start_pfn << PAGE_SHIFT,
7913 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7914 	} else {
7915 		pr_info("Initmem setup node %d as memoryless\n", nid);
7916 	}
7917 
7918 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7919 
7920 	alloc_node_mem_map(pgdat);
7921 	pgdat_set_deferred_range(pgdat);
7922 
7923 	free_area_init_core(pgdat);
7924 }
7925 
7926 static void __init free_area_init_memoryless_node(int nid)
7927 {
7928 	free_area_init_node(nid);
7929 }
7930 
7931 #if MAX_NUMNODES > 1
7932 /*
7933  * Figure out the number of possible node ids.
7934  */
7935 void __init setup_nr_node_ids(void)
7936 {
7937 	unsigned int highest;
7938 
7939 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7940 	nr_node_ids = highest + 1;
7941 }
7942 #endif
7943 
7944 /**
7945  * node_map_pfn_alignment - determine the maximum internode alignment
7946  *
7947  * This function should be called after node map is populated and sorted.
7948  * It calculates the maximum power of two alignment which can distinguish
7949  * all the nodes.
7950  *
7951  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7952  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7953  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7954  * shifted, 1GiB is enough and this function will indicate so.
7955  *
7956  * This is used to test whether pfn -> nid mapping of the chosen memory
7957  * model has fine enough granularity to avoid incorrect mapping for the
7958  * populated node map.
7959  *
7960  * Return: the determined alignment in pfn's.  0 if there is no alignment
7961  * requirement (single node).
7962  */
7963 unsigned long __init node_map_pfn_alignment(void)
7964 {
7965 	unsigned long accl_mask = 0, last_end = 0;
7966 	unsigned long start, end, mask;
7967 	int last_nid = NUMA_NO_NODE;
7968 	int i, nid;
7969 
7970 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7971 		if (!start || last_nid < 0 || last_nid == nid) {
7972 			last_nid = nid;
7973 			last_end = end;
7974 			continue;
7975 		}
7976 
7977 		/*
7978 		 * Start with a mask granular enough to pin-point to the
7979 		 * start pfn and tick off bits one-by-one until it becomes
7980 		 * too coarse to separate the current node from the last.
7981 		 */
7982 		mask = ~((1 << __ffs(start)) - 1);
7983 		while (mask && last_end <= (start & (mask << 1)))
7984 			mask <<= 1;
7985 
7986 		/* accumulate all internode masks */
7987 		accl_mask |= mask;
7988 	}
7989 
7990 	/* convert mask to number of pages */
7991 	return ~accl_mask + 1;
7992 }
7993 
7994 /*
7995  * early_calculate_totalpages()
7996  * Sum pages in active regions for movable zone.
7997  * Populate N_MEMORY for calculating usable_nodes.
7998  */
7999 static unsigned long __init early_calculate_totalpages(void)
8000 {
8001 	unsigned long totalpages = 0;
8002 	unsigned long start_pfn, end_pfn;
8003 	int i, nid;
8004 
8005 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8006 		unsigned long pages = end_pfn - start_pfn;
8007 
8008 		totalpages += pages;
8009 		if (pages)
8010 			node_set_state(nid, N_MEMORY);
8011 	}
8012 	return totalpages;
8013 }
8014 
8015 /*
8016  * Find the PFN the Movable zone begins in each node. Kernel memory
8017  * is spread evenly between nodes as long as the nodes have enough
8018  * memory. When they don't, some nodes will have more kernelcore than
8019  * others
8020  */
8021 static void __init find_zone_movable_pfns_for_nodes(void)
8022 {
8023 	int i, nid;
8024 	unsigned long usable_startpfn;
8025 	unsigned long kernelcore_node, kernelcore_remaining;
8026 	/* save the state before borrow the nodemask */
8027 	nodemask_t saved_node_state = node_states[N_MEMORY];
8028 	unsigned long totalpages = early_calculate_totalpages();
8029 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
8030 	struct memblock_region *r;
8031 
8032 	/* Need to find movable_zone earlier when movable_node is specified. */
8033 	find_usable_zone_for_movable();
8034 
8035 	/*
8036 	 * If movable_node is specified, ignore kernelcore and movablecore
8037 	 * options.
8038 	 */
8039 	if (movable_node_is_enabled()) {
8040 		for_each_mem_region(r) {
8041 			if (!memblock_is_hotpluggable(r))
8042 				continue;
8043 
8044 			nid = memblock_get_region_node(r);
8045 
8046 			usable_startpfn = PFN_DOWN(r->base);
8047 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8048 				min(usable_startpfn, zone_movable_pfn[nid]) :
8049 				usable_startpfn;
8050 		}
8051 
8052 		goto out2;
8053 	}
8054 
8055 	/*
8056 	 * If kernelcore=mirror is specified, ignore movablecore option
8057 	 */
8058 	if (mirrored_kernelcore) {
8059 		bool mem_below_4gb_not_mirrored = false;
8060 
8061 		for_each_mem_region(r) {
8062 			if (memblock_is_mirror(r))
8063 				continue;
8064 
8065 			nid = memblock_get_region_node(r);
8066 
8067 			usable_startpfn = memblock_region_memory_base_pfn(r);
8068 
8069 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
8070 				mem_below_4gb_not_mirrored = true;
8071 				continue;
8072 			}
8073 
8074 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8075 				min(usable_startpfn, zone_movable_pfn[nid]) :
8076 				usable_startpfn;
8077 		}
8078 
8079 		if (mem_below_4gb_not_mirrored)
8080 			pr_warn("This configuration results in unmirrored kernel memory.\n");
8081 
8082 		goto out2;
8083 	}
8084 
8085 	/*
8086 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8087 	 * amount of necessary memory.
8088 	 */
8089 	if (required_kernelcore_percent)
8090 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8091 				       10000UL;
8092 	if (required_movablecore_percent)
8093 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8094 					10000UL;
8095 
8096 	/*
8097 	 * If movablecore= was specified, calculate what size of
8098 	 * kernelcore that corresponds so that memory usable for
8099 	 * any allocation type is evenly spread. If both kernelcore
8100 	 * and movablecore are specified, then the value of kernelcore
8101 	 * will be used for required_kernelcore if it's greater than
8102 	 * what movablecore would have allowed.
8103 	 */
8104 	if (required_movablecore) {
8105 		unsigned long corepages;
8106 
8107 		/*
8108 		 * Round-up so that ZONE_MOVABLE is at least as large as what
8109 		 * was requested by the user
8110 		 */
8111 		required_movablecore =
8112 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8113 		required_movablecore = min(totalpages, required_movablecore);
8114 		corepages = totalpages - required_movablecore;
8115 
8116 		required_kernelcore = max(required_kernelcore, corepages);
8117 	}
8118 
8119 	/*
8120 	 * If kernelcore was not specified or kernelcore size is larger
8121 	 * than totalpages, there is no ZONE_MOVABLE.
8122 	 */
8123 	if (!required_kernelcore || required_kernelcore >= totalpages)
8124 		goto out;
8125 
8126 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8127 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8128 
8129 restart:
8130 	/* Spread kernelcore memory as evenly as possible throughout nodes */
8131 	kernelcore_node = required_kernelcore / usable_nodes;
8132 	for_each_node_state(nid, N_MEMORY) {
8133 		unsigned long start_pfn, end_pfn;
8134 
8135 		/*
8136 		 * Recalculate kernelcore_node if the division per node
8137 		 * now exceeds what is necessary to satisfy the requested
8138 		 * amount of memory for the kernel
8139 		 */
8140 		if (required_kernelcore < kernelcore_node)
8141 			kernelcore_node = required_kernelcore / usable_nodes;
8142 
8143 		/*
8144 		 * As the map is walked, we track how much memory is usable
8145 		 * by the kernel using kernelcore_remaining. When it is
8146 		 * 0, the rest of the node is usable by ZONE_MOVABLE
8147 		 */
8148 		kernelcore_remaining = kernelcore_node;
8149 
8150 		/* Go through each range of PFNs within this node */
8151 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8152 			unsigned long size_pages;
8153 
8154 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8155 			if (start_pfn >= end_pfn)
8156 				continue;
8157 
8158 			/* Account for what is only usable for kernelcore */
8159 			if (start_pfn < usable_startpfn) {
8160 				unsigned long kernel_pages;
8161 				kernel_pages = min(end_pfn, usable_startpfn)
8162 								- start_pfn;
8163 
8164 				kernelcore_remaining -= min(kernel_pages,
8165 							kernelcore_remaining);
8166 				required_kernelcore -= min(kernel_pages,
8167 							required_kernelcore);
8168 
8169 				/* Continue if range is now fully accounted */
8170 				if (end_pfn <= usable_startpfn) {
8171 
8172 					/*
8173 					 * Push zone_movable_pfn to the end so
8174 					 * that if we have to rebalance
8175 					 * kernelcore across nodes, we will
8176 					 * not double account here
8177 					 */
8178 					zone_movable_pfn[nid] = end_pfn;
8179 					continue;
8180 				}
8181 				start_pfn = usable_startpfn;
8182 			}
8183 
8184 			/*
8185 			 * The usable PFN range for ZONE_MOVABLE is from
8186 			 * start_pfn->end_pfn. Calculate size_pages as the
8187 			 * number of pages used as kernelcore
8188 			 */
8189 			size_pages = end_pfn - start_pfn;
8190 			if (size_pages > kernelcore_remaining)
8191 				size_pages = kernelcore_remaining;
8192 			zone_movable_pfn[nid] = start_pfn + size_pages;
8193 
8194 			/*
8195 			 * Some kernelcore has been met, update counts and
8196 			 * break if the kernelcore for this node has been
8197 			 * satisfied
8198 			 */
8199 			required_kernelcore -= min(required_kernelcore,
8200 								size_pages);
8201 			kernelcore_remaining -= size_pages;
8202 			if (!kernelcore_remaining)
8203 				break;
8204 		}
8205 	}
8206 
8207 	/*
8208 	 * If there is still required_kernelcore, we do another pass with one
8209 	 * less node in the count. This will push zone_movable_pfn[nid] further
8210 	 * along on the nodes that still have memory until kernelcore is
8211 	 * satisfied
8212 	 */
8213 	usable_nodes--;
8214 	if (usable_nodes && required_kernelcore > usable_nodes)
8215 		goto restart;
8216 
8217 out2:
8218 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8219 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
8220 		unsigned long start_pfn, end_pfn;
8221 
8222 		zone_movable_pfn[nid] =
8223 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8224 
8225 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8226 		if (zone_movable_pfn[nid] >= end_pfn)
8227 			zone_movable_pfn[nid] = 0;
8228 	}
8229 
8230 out:
8231 	/* restore the node_state */
8232 	node_states[N_MEMORY] = saved_node_state;
8233 }
8234 
8235 /* Any regular or high memory on that node ? */
8236 static void check_for_memory(pg_data_t *pgdat, int nid)
8237 {
8238 	enum zone_type zone_type;
8239 
8240 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8241 		struct zone *zone = &pgdat->node_zones[zone_type];
8242 		if (populated_zone(zone)) {
8243 			if (IS_ENABLED(CONFIG_HIGHMEM))
8244 				node_set_state(nid, N_HIGH_MEMORY);
8245 			if (zone_type <= ZONE_NORMAL)
8246 				node_set_state(nid, N_NORMAL_MEMORY);
8247 			break;
8248 		}
8249 	}
8250 }
8251 
8252 /*
8253  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8254  * such cases we allow max_zone_pfn sorted in the descending order
8255  */
8256 bool __weak arch_has_descending_max_zone_pfns(void)
8257 {
8258 	return false;
8259 }
8260 
8261 /**
8262  * free_area_init - Initialise all pg_data_t and zone data
8263  * @max_zone_pfn: an array of max PFNs for each zone
8264  *
8265  * This will call free_area_init_node() for each active node in the system.
8266  * Using the page ranges provided by memblock_set_node(), the size of each
8267  * zone in each node and their holes is calculated. If the maximum PFN
8268  * between two adjacent zones match, it is assumed that the zone is empty.
8269  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8270  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8271  * starts where the previous one ended. For example, ZONE_DMA32 starts
8272  * at arch_max_dma_pfn.
8273  */
8274 void __init free_area_init(unsigned long *max_zone_pfn)
8275 {
8276 	unsigned long start_pfn, end_pfn;
8277 	int i, nid, zone;
8278 	bool descending;
8279 
8280 	/* Record where the zone boundaries are */
8281 	memset(arch_zone_lowest_possible_pfn, 0,
8282 				sizeof(arch_zone_lowest_possible_pfn));
8283 	memset(arch_zone_highest_possible_pfn, 0,
8284 				sizeof(arch_zone_highest_possible_pfn));
8285 
8286 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
8287 	descending = arch_has_descending_max_zone_pfns();
8288 
8289 	for (i = 0; i < MAX_NR_ZONES; i++) {
8290 		if (descending)
8291 			zone = MAX_NR_ZONES - i - 1;
8292 		else
8293 			zone = i;
8294 
8295 		if (zone == ZONE_MOVABLE)
8296 			continue;
8297 
8298 		end_pfn = max(max_zone_pfn[zone], start_pfn);
8299 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
8300 		arch_zone_highest_possible_pfn[zone] = end_pfn;
8301 
8302 		start_pfn = end_pfn;
8303 	}
8304 
8305 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
8306 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8307 	find_zone_movable_pfns_for_nodes();
8308 
8309 	/* Print out the zone ranges */
8310 	pr_info("Zone ranges:\n");
8311 	for (i = 0; i < MAX_NR_ZONES; i++) {
8312 		if (i == ZONE_MOVABLE)
8313 			continue;
8314 		pr_info("  %-8s ", zone_names[i]);
8315 		if (arch_zone_lowest_possible_pfn[i] ==
8316 				arch_zone_highest_possible_pfn[i])
8317 			pr_cont("empty\n");
8318 		else
8319 			pr_cont("[mem %#018Lx-%#018Lx]\n",
8320 				(u64)arch_zone_lowest_possible_pfn[i]
8321 					<< PAGE_SHIFT,
8322 				((u64)arch_zone_highest_possible_pfn[i]
8323 					<< PAGE_SHIFT) - 1);
8324 	}
8325 
8326 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
8327 	pr_info("Movable zone start for each node\n");
8328 	for (i = 0; i < MAX_NUMNODES; i++) {
8329 		if (zone_movable_pfn[i])
8330 			pr_info("  Node %d: %#018Lx\n", i,
8331 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8332 	}
8333 
8334 	/*
8335 	 * Print out the early node map, and initialize the
8336 	 * subsection-map relative to active online memory ranges to
8337 	 * enable future "sub-section" extensions of the memory map.
8338 	 */
8339 	pr_info("Early memory node ranges\n");
8340 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8341 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8342 			(u64)start_pfn << PAGE_SHIFT,
8343 			((u64)end_pfn << PAGE_SHIFT) - 1);
8344 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8345 	}
8346 
8347 	/* Initialise every node */
8348 	mminit_verify_pageflags_layout();
8349 	setup_nr_node_ids();
8350 	for_each_node(nid) {
8351 		pg_data_t *pgdat;
8352 
8353 		if (!node_online(nid)) {
8354 			pr_info("Initializing node %d as memoryless\n", nid);
8355 
8356 			/* Allocator not initialized yet */
8357 			pgdat = arch_alloc_nodedata(nid);
8358 			if (!pgdat) {
8359 				pr_err("Cannot allocate %zuB for node %d.\n",
8360 						sizeof(*pgdat), nid);
8361 				continue;
8362 			}
8363 			arch_refresh_nodedata(nid, pgdat);
8364 			free_area_init_memoryless_node(nid);
8365 
8366 			/*
8367 			 * We do not want to confuse userspace by sysfs
8368 			 * files/directories for node without any memory
8369 			 * attached to it, so this node is not marked as
8370 			 * N_MEMORY and not marked online so that no sysfs
8371 			 * hierarchy will be created via register_one_node for
8372 			 * it. The pgdat will get fully initialized by
8373 			 * hotadd_init_pgdat() when memory is hotplugged into
8374 			 * this node.
8375 			 */
8376 			continue;
8377 		}
8378 
8379 		pgdat = NODE_DATA(nid);
8380 		free_area_init_node(nid);
8381 
8382 		/* Any memory on that node */
8383 		if (pgdat->node_present_pages)
8384 			node_set_state(nid, N_MEMORY);
8385 		check_for_memory(pgdat, nid);
8386 	}
8387 
8388 	memmap_init();
8389 }
8390 
8391 static int __init cmdline_parse_core(char *p, unsigned long *core,
8392 				     unsigned long *percent)
8393 {
8394 	unsigned long long coremem;
8395 	char *endptr;
8396 
8397 	if (!p)
8398 		return -EINVAL;
8399 
8400 	/* Value may be a percentage of total memory, otherwise bytes */
8401 	coremem = simple_strtoull(p, &endptr, 0);
8402 	if (*endptr == '%') {
8403 		/* Paranoid check for percent values greater than 100 */
8404 		WARN_ON(coremem > 100);
8405 
8406 		*percent = coremem;
8407 	} else {
8408 		coremem = memparse(p, &p);
8409 		/* Paranoid check that UL is enough for the coremem value */
8410 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8411 
8412 		*core = coremem >> PAGE_SHIFT;
8413 		*percent = 0UL;
8414 	}
8415 	return 0;
8416 }
8417 
8418 /*
8419  * kernelcore=size sets the amount of memory for use for allocations that
8420  * cannot be reclaimed or migrated.
8421  */
8422 static int __init cmdline_parse_kernelcore(char *p)
8423 {
8424 	/* parse kernelcore=mirror */
8425 	if (parse_option_str(p, "mirror")) {
8426 		mirrored_kernelcore = true;
8427 		return 0;
8428 	}
8429 
8430 	return cmdline_parse_core(p, &required_kernelcore,
8431 				  &required_kernelcore_percent);
8432 }
8433 
8434 /*
8435  * movablecore=size sets the amount of memory for use for allocations that
8436  * can be reclaimed or migrated.
8437  */
8438 static int __init cmdline_parse_movablecore(char *p)
8439 {
8440 	return cmdline_parse_core(p, &required_movablecore,
8441 				  &required_movablecore_percent);
8442 }
8443 
8444 early_param("kernelcore", cmdline_parse_kernelcore);
8445 early_param("movablecore", cmdline_parse_movablecore);
8446 
8447 void adjust_managed_page_count(struct page *page, long count)
8448 {
8449 	atomic_long_add(count, &page_zone(page)->managed_pages);
8450 	totalram_pages_add(count);
8451 #ifdef CONFIG_HIGHMEM
8452 	if (PageHighMem(page))
8453 		totalhigh_pages_add(count);
8454 #endif
8455 }
8456 EXPORT_SYMBOL(adjust_managed_page_count);
8457 
8458 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8459 {
8460 	void *pos;
8461 	unsigned long pages = 0;
8462 
8463 	start = (void *)PAGE_ALIGN((unsigned long)start);
8464 	end = (void *)((unsigned long)end & PAGE_MASK);
8465 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8466 		struct page *page = virt_to_page(pos);
8467 		void *direct_map_addr;
8468 
8469 		/*
8470 		 * 'direct_map_addr' might be different from 'pos'
8471 		 * because some architectures' virt_to_page()
8472 		 * work with aliases.  Getting the direct map
8473 		 * address ensures that we get a _writeable_
8474 		 * alias for the memset().
8475 		 */
8476 		direct_map_addr = page_address(page);
8477 		/*
8478 		 * Perform a kasan-unchecked memset() since this memory
8479 		 * has not been initialized.
8480 		 */
8481 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8482 		if ((unsigned int)poison <= 0xFF)
8483 			memset(direct_map_addr, poison, PAGE_SIZE);
8484 
8485 		free_reserved_page(page);
8486 	}
8487 
8488 	if (pages && s)
8489 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8490 
8491 	return pages;
8492 }
8493 
8494 void __init mem_init_print_info(void)
8495 {
8496 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8497 	unsigned long init_code_size, init_data_size;
8498 
8499 	physpages = get_num_physpages();
8500 	codesize = _etext - _stext;
8501 	datasize = _edata - _sdata;
8502 	rosize = __end_rodata - __start_rodata;
8503 	bss_size = __bss_stop - __bss_start;
8504 	init_data_size = __init_end - __init_begin;
8505 	init_code_size = _einittext - _sinittext;
8506 
8507 	/*
8508 	 * Detect special cases and adjust section sizes accordingly:
8509 	 * 1) .init.* may be embedded into .data sections
8510 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8511 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8512 	 * 3) .rodata.* may be embedded into .text or .data sections.
8513 	 */
8514 #define adj_init_size(start, end, size, pos, adj) \
8515 	do { \
8516 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8517 			size -= adj; \
8518 	} while (0)
8519 
8520 	adj_init_size(__init_begin, __init_end, init_data_size,
8521 		     _sinittext, init_code_size);
8522 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8523 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8524 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8525 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8526 
8527 #undef	adj_init_size
8528 
8529 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8530 #ifdef	CONFIG_HIGHMEM
8531 		", %luK highmem"
8532 #endif
8533 		")\n",
8534 		K(nr_free_pages()), K(physpages),
8535 		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
8536 		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
8537 		K(physpages - totalram_pages() - totalcma_pages),
8538 		K(totalcma_pages)
8539 #ifdef	CONFIG_HIGHMEM
8540 		, K(totalhigh_pages())
8541 #endif
8542 		);
8543 }
8544 
8545 /**
8546  * set_dma_reserve - set the specified number of pages reserved in the first zone
8547  * @new_dma_reserve: The number of pages to mark reserved
8548  *
8549  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8550  * In the DMA zone, a significant percentage may be consumed by kernel image
8551  * and other unfreeable allocations which can skew the watermarks badly. This
8552  * function may optionally be used to account for unfreeable pages in the
8553  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8554  * smaller per-cpu batchsize.
8555  */
8556 void __init set_dma_reserve(unsigned long new_dma_reserve)
8557 {
8558 	dma_reserve = new_dma_reserve;
8559 }
8560 
8561 static int page_alloc_cpu_dead(unsigned int cpu)
8562 {
8563 	struct zone *zone;
8564 
8565 	lru_add_drain_cpu(cpu);
8566 	mlock_page_drain_remote(cpu);
8567 	drain_pages(cpu);
8568 
8569 	/*
8570 	 * Spill the event counters of the dead processor
8571 	 * into the current processors event counters.
8572 	 * This artificially elevates the count of the current
8573 	 * processor.
8574 	 */
8575 	vm_events_fold_cpu(cpu);
8576 
8577 	/*
8578 	 * Zero the differential counters of the dead processor
8579 	 * so that the vm statistics are consistent.
8580 	 *
8581 	 * This is only okay since the processor is dead and cannot
8582 	 * race with what we are doing.
8583 	 */
8584 	cpu_vm_stats_fold(cpu);
8585 
8586 	for_each_populated_zone(zone)
8587 		zone_pcp_update(zone, 0);
8588 
8589 	return 0;
8590 }
8591 
8592 static int page_alloc_cpu_online(unsigned int cpu)
8593 {
8594 	struct zone *zone;
8595 
8596 	for_each_populated_zone(zone)
8597 		zone_pcp_update(zone, 1);
8598 	return 0;
8599 }
8600 
8601 #ifdef CONFIG_NUMA
8602 int hashdist = HASHDIST_DEFAULT;
8603 
8604 static int __init set_hashdist(char *str)
8605 {
8606 	if (!str)
8607 		return 0;
8608 	hashdist = simple_strtoul(str, &str, 0);
8609 	return 1;
8610 }
8611 __setup("hashdist=", set_hashdist);
8612 #endif
8613 
8614 void __init page_alloc_init(void)
8615 {
8616 	int ret;
8617 
8618 #ifdef CONFIG_NUMA
8619 	if (num_node_state(N_MEMORY) == 1)
8620 		hashdist = 0;
8621 #endif
8622 
8623 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8624 					"mm/page_alloc:pcp",
8625 					page_alloc_cpu_online,
8626 					page_alloc_cpu_dead);
8627 	WARN_ON(ret < 0);
8628 }
8629 
8630 /*
8631  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8632  *	or min_free_kbytes changes.
8633  */
8634 static void calculate_totalreserve_pages(void)
8635 {
8636 	struct pglist_data *pgdat;
8637 	unsigned long reserve_pages = 0;
8638 	enum zone_type i, j;
8639 
8640 	for_each_online_pgdat(pgdat) {
8641 
8642 		pgdat->totalreserve_pages = 0;
8643 
8644 		for (i = 0; i < MAX_NR_ZONES; i++) {
8645 			struct zone *zone = pgdat->node_zones + i;
8646 			long max = 0;
8647 			unsigned long managed_pages = zone_managed_pages(zone);
8648 
8649 			/* Find valid and maximum lowmem_reserve in the zone */
8650 			for (j = i; j < MAX_NR_ZONES; j++) {
8651 				if (zone->lowmem_reserve[j] > max)
8652 					max = zone->lowmem_reserve[j];
8653 			}
8654 
8655 			/* we treat the high watermark as reserved pages. */
8656 			max += high_wmark_pages(zone);
8657 
8658 			if (max > managed_pages)
8659 				max = managed_pages;
8660 
8661 			pgdat->totalreserve_pages += max;
8662 
8663 			reserve_pages += max;
8664 		}
8665 	}
8666 	totalreserve_pages = reserve_pages;
8667 }
8668 
8669 /*
8670  * setup_per_zone_lowmem_reserve - called whenever
8671  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8672  *	has a correct pages reserved value, so an adequate number of
8673  *	pages are left in the zone after a successful __alloc_pages().
8674  */
8675 static void setup_per_zone_lowmem_reserve(void)
8676 {
8677 	struct pglist_data *pgdat;
8678 	enum zone_type i, j;
8679 
8680 	for_each_online_pgdat(pgdat) {
8681 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8682 			struct zone *zone = &pgdat->node_zones[i];
8683 			int ratio = sysctl_lowmem_reserve_ratio[i];
8684 			bool clear = !ratio || !zone_managed_pages(zone);
8685 			unsigned long managed_pages = 0;
8686 
8687 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8688 				struct zone *upper_zone = &pgdat->node_zones[j];
8689 
8690 				managed_pages += zone_managed_pages(upper_zone);
8691 
8692 				if (clear)
8693 					zone->lowmem_reserve[j] = 0;
8694 				else
8695 					zone->lowmem_reserve[j] = managed_pages / ratio;
8696 			}
8697 		}
8698 	}
8699 
8700 	/* update totalreserve_pages */
8701 	calculate_totalreserve_pages();
8702 }
8703 
8704 static void __setup_per_zone_wmarks(void)
8705 {
8706 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8707 	unsigned long lowmem_pages = 0;
8708 	struct zone *zone;
8709 	unsigned long flags;
8710 
8711 	/* Calculate total number of !ZONE_HIGHMEM pages */
8712 	for_each_zone(zone) {
8713 		if (!is_highmem(zone))
8714 			lowmem_pages += zone_managed_pages(zone);
8715 	}
8716 
8717 	for_each_zone(zone) {
8718 		u64 tmp;
8719 
8720 		spin_lock_irqsave(&zone->lock, flags);
8721 		tmp = (u64)pages_min * zone_managed_pages(zone);
8722 		do_div(tmp, lowmem_pages);
8723 		if (is_highmem(zone)) {
8724 			/*
8725 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8726 			 * need highmem pages, so cap pages_min to a small
8727 			 * value here.
8728 			 *
8729 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8730 			 * deltas control async page reclaim, and so should
8731 			 * not be capped for highmem.
8732 			 */
8733 			unsigned long min_pages;
8734 
8735 			min_pages = zone_managed_pages(zone) / 1024;
8736 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8737 			zone->_watermark[WMARK_MIN] = min_pages;
8738 		} else {
8739 			/*
8740 			 * If it's a lowmem zone, reserve a number of pages
8741 			 * proportionate to the zone's size.
8742 			 */
8743 			zone->_watermark[WMARK_MIN] = tmp;
8744 		}
8745 
8746 		/*
8747 		 * Set the kswapd watermarks distance according to the
8748 		 * scale factor in proportion to available memory, but
8749 		 * ensure a minimum size on small systems.
8750 		 */
8751 		tmp = max_t(u64, tmp >> 2,
8752 			    mult_frac(zone_managed_pages(zone),
8753 				      watermark_scale_factor, 10000));
8754 
8755 		zone->watermark_boost = 0;
8756 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8757 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8758 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8759 
8760 		spin_unlock_irqrestore(&zone->lock, flags);
8761 	}
8762 
8763 	/* update totalreserve_pages */
8764 	calculate_totalreserve_pages();
8765 }
8766 
8767 /**
8768  * setup_per_zone_wmarks - called when min_free_kbytes changes
8769  * or when memory is hot-{added|removed}
8770  *
8771  * Ensures that the watermark[min,low,high] values for each zone are set
8772  * correctly with respect to min_free_kbytes.
8773  */
8774 void setup_per_zone_wmarks(void)
8775 {
8776 	struct zone *zone;
8777 	static DEFINE_SPINLOCK(lock);
8778 
8779 	spin_lock(&lock);
8780 	__setup_per_zone_wmarks();
8781 	spin_unlock(&lock);
8782 
8783 	/*
8784 	 * The watermark size have changed so update the pcpu batch
8785 	 * and high limits or the limits may be inappropriate.
8786 	 */
8787 	for_each_zone(zone)
8788 		zone_pcp_update(zone, 0);
8789 }
8790 
8791 /*
8792  * Initialise min_free_kbytes.
8793  *
8794  * For small machines we want it small (128k min).  For large machines
8795  * we want it large (256MB max).  But it is not linear, because network
8796  * bandwidth does not increase linearly with machine size.  We use
8797  *
8798  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8799  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8800  *
8801  * which yields
8802  *
8803  * 16MB:	512k
8804  * 32MB:	724k
8805  * 64MB:	1024k
8806  * 128MB:	1448k
8807  * 256MB:	2048k
8808  * 512MB:	2896k
8809  * 1024MB:	4096k
8810  * 2048MB:	5792k
8811  * 4096MB:	8192k
8812  * 8192MB:	11584k
8813  * 16384MB:	16384k
8814  */
8815 void calculate_min_free_kbytes(void)
8816 {
8817 	unsigned long lowmem_kbytes;
8818 	int new_min_free_kbytes;
8819 
8820 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8821 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8822 
8823 	if (new_min_free_kbytes > user_min_free_kbytes)
8824 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8825 	else
8826 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8827 				new_min_free_kbytes, user_min_free_kbytes);
8828 
8829 }
8830 
8831 int __meminit init_per_zone_wmark_min(void)
8832 {
8833 	calculate_min_free_kbytes();
8834 	setup_per_zone_wmarks();
8835 	refresh_zone_stat_thresholds();
8836 	setup_per_zone_lowmem_reserve();
8837 
8838 #ifdef CONFIG_NUMA
8839 	setup_min_unmapped_ratio();
8840 	setup_min_slab_ratio();
8841 #endif
8842 
8843 	khugepaged_min_free_kbytes_update();
8844 
8845 	return 0;
8846 }
8847 postcore_initcall(init_per_zone_wmark_min)
8848 
8849 /*
8850  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8851  *	that we can call two helper functions whenever min_free_kbytes
8852  *	changes.
8853  */
8854 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8855 		void *buffer, size_t *length, loff_t *ppos)
8856 {
8857 	int rc;
8858 
8859 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8860 	if (rc)
8861 		return rc;
8862 
8863 	if (write) {
8864 		user_min_free_kbytes = min_free_kbytes;
8865 		setup_per_zone_wmarks();
8866 	}
8867 	return 0;
8868 }
8869 
8870 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8871 		void *buffer, size_t *length, loff_t *ppos)
8872 {
8873 	int rc;
8874 
8875 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8876 	if (rc)
8877 		return rc;
8878 
8879 	if (write)
8880 		setup_per_zone_wmarks();
8881 
8882 	return 0;
8883 }
8884 
8885 #ifdef CONFIG_NUMA
8886 static void setup_min_unmapped_ratio(void)
8887 {
8888 	pg_data_t *pgdat;
8889 	struct zone *zone;
8890 
8891 	for_each_online_pgdat(pgdat)
8892 		pgdat->min_unmapped_pages = 0;
8893 
8894 	for_each_zone(zone)
8895 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8896 						         sysctl_min_unmapped_ratio) / 100;
8897 }
8898 
8899 
8900 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8901 		void *buffer, size_t *length, loff_t *ppos)
8902 {
8903 	int rc;
8904 
8905 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8906 	if (rc)
8907 		return rc;
8908 
8909 	setup_min_unmapped_ratio();
8910 
8911 	return 0;
8912 }
8913 
8914 static void setup_min_slab_ratio(void)
8915 {
8916 	pg_data_t *pgdat;
8917 	struct zone *zone;
8918 
8919 	for_each_online_pgdat(pgdat)
8920 		pgdat->min_slab_pages = 0;
8921 
8922 	for_each_zone(zone)
8923 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8924 						     sysctl_min_slab_ratio) / 100;
8925 }
8926 
8927 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8928 		void *buffer, size_t *length, loff_t *ppos)
8929 {
8930 	int rc;
8931 
8932 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8933 	if (rc)
8934 		return rc;
8935 
8936 	setup_min_slab_ratio();
8937 
8938 	return 0;
8939 }
8940 #endif
8941 
8942 /*
8943  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8944  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8945  *	whenever sysctl_lowmem_reserve_ratio changes.
8946  *
8947  * The reserve ratio obviously has absolutely no relation with the
8948  * minimum watermarks. The lowmem reserve ratio can only make sense
8949  * if in function of the boot time zone sizes.
8950  */
8951 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8952 		void *buffer, size_t *length, loff_t *ppos)
8953 {
8954 	int i;
8955 
8956 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8957 
8958 	for (i = 0; i < MAX_NR_ZONES; i++) {
8959 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8960 			sysctl_lowmem_reserve_ratio[i] = 0;
8961 	}
8962 
8963 	setup_per_zone_lowmem_reserve();
8964 	return 0;
8965 }
8966 
8967 /*
8968  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8969  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8970  * pagelist can have before it gets flushed back to buddy allocator.
8971  */
8972 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8973 		int write, void *buffer, size_t *length, loff_t *ppos)
8974 {
8975 	struct zone *zone;
8976 	int old_percpu_pagelist_high_fraction;
8977 	int ret;
8978 
8979 	mutex_lock(&pcp_batch_high_lock);
8980 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8981 
8982 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8983 	if (!write || ret < 0)
8984 		goto out;
8985 
8986 	/* Sanity checking to avoid pcp imbalance */
8987 	if (percpu_pagelist_high_fraction &&
8988 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8989 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8990 		ret = -EINVAL;
8991 		goto out;
8992 	}
8993 
8994 	/* No change? */
8995 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8996 		goto out;
8997 
8998 	for_each_populated_zone(zone)
8999 		zone_set_pageset_high_and_batch(zone, 0);
9000 out:
9001 	mutex_unlock(&pcp_batch_high_lock);
9002 	return ret;
9003 }
9004 
9005 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
9006 /*
9007  * Returns the number of pages that arch has reserved but
9008  * is not known to alloc_large_system_hash().
9009  */
9010 static unsigned long __init arch_reserved_kernel_pages(void)
9011 {
9012 	return 0;
9013 }
9014 #endif
9015 
9016 /*
9017  * Adaptive scale is meant to reduce sizes of hash tables on large memory
9018  * machines. As memory size is increased the scale is also increased but at
9019  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
9020  * quadruples the scale is increased by one, which means the size of hash table
9021  * only doubles, instead of quadrupling as well.
9022  * Because 32-bit systems cannot have large physical memory, where this scaling
9023  * makes sense, it is disabled on such platforms.
9024  */
9025 #if __BITS_PER_LONG > 32
9026 #define ADAPT_SCALE_BASE	(64ul << 30)
9027 #define ADAPT_SCALE_SHIFT	2
9028 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
9029 #endif
9030 
9031 /*
9032  * allocate a large system hash table from bootmem
9033  * - it is assumed that the hash table must contain an exact power-of-2
9034  *   quantity of entries
9035  * - limit is the number of hash buckets, not the total allocation size
9036  */
9037 void *__init alloc_large_system_hash(const char *tablename,
9038 				     unsigned long bucketsize,
9039 				     unsigned long numentries,
9040 				     int scale,
9041 				     int flags,
9042 				     unsigned int *_hash_shift,
9043 				     unsigned int *_hash_mask,
9044 				     unsigned long low_limit,
9045 				     unsigned long high_limit)
9046 {
9047 	unsigned long long max = high_limit;
9048 	unsigned long log2qty, size;
9049 	void *table;
9050 	gfp_t gfp_flags;
9051 	bool virt;
9052 	bool huge;
9053 
9054 	/* allow the kernel cmdline to have a say */
9055 	if (!numentries) {
9056 		/* round applicable memory size up to nearest megabyte */
9057 		numentries = nr_kernel_pages;
9058 		numentries -= arch_reserved_kernel_pages();
9059 
9060 		/* It isn't necessary when PAGE_SIZE >= 1MB */
9061 		if (PAGE_SIZE < SZ_1M)
9062 			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
9063 
9064 #if __BITS_PER_LONG > 32
9065 		if (!high_limit) {
9066 			unsigned long adapt;
9067 
9068 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9069 			     adapt <<= ADAPT_SCALE_SHIFT)
9070 				scale++;
9071 		}
9072 #endif
9073 
9074 		/* limit to 1 bucket per 2^scale bytes of low memory */
9075 		if (scale > PAGE_SHIFT)
9076 			numentries >>= (scale - PAGE_SHIFT);
9077 		else
9078 			numentries <<= (PAGE_SHIFT - scale);
9079 
9080 		/* Make sure we've got at least a 0-order allocation.. */
9081 		if (unlikely(flags & HASH_SMALL)) {
9082 			/* Makes no sense without HASH_EARLY */
9083 			WARN_ON(!(flags & HASH_EARLY));
9084 			if (!(numentries >> *_hash_shift)) {
9085 				numentries = 1UL << *_hash_shift;
9086 				BUG_ON(!numentries);
9087 			}
9088 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9089 			numentries = PAGE_SIZE / bucketsize;
9090 	}
9091 	numentries = roundup_pow_of_two(numentries);
9092 
9093 	/* limit allocation size to 1/16 total memory by default */
9094 	if (max == 0) {
9095 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9096 		do_div(max, bucketsize);
9097 	}
9098 	max = min(max, 0x80000000ULL);
9099 
9100 	if (numentries < low_limit)
9101 		numentries = low_limit;
9102 	if (numentries > max)
9103 		numentries = max;
9104 
9105 	log2qty = ilog2(numentries);
9106 
9107 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9108 	do {
9109 		virt = false;
9110 		size = bucketsize << log2qty;
9111 		if (flags & HASH_EARLY) {
9112 			if (flags & HASH_ZERO)
9113 				table = memblock_alloc(size, SMP_CACHE_BYTES);
9114 			else
9115 				table = memblock_alloc_raw(size,
9116 							   SMP_CACHE_BYTES);
9117 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
9118 			table = vmalloc_huge(size, gfp_flags);
9119 			virt = true;
9120 			if (table)
9121 				huge = is_vm_area_hugepages(table);
9122 		} else {
9123 			/*
9124 			 * If bucketsize is not a power-of-two, we may free
9125 			 * some pages at the end of hash table which
9126 			 * alloc_pages_exact() automatically does
9127 			 */
9128 			table = alloc_pages_exact(size, gfp_flags);
9129 			kmemleak_alloc(table, size, 1, gfp_flags);
9130 		}
9131 	} while (!table && size > PAGE_SIZE && --log2qty);
9132 
9133 	if (!table)
9134 		panic("Failed to allocate %s hash table\n", tablename);
9135 
9136 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9137 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9138 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9139 
9140 	if (_hash_shift)
9141 		*_hash_shift = log2qty;
9142 	if (_hash_mask)
9143 		*_hash_mask = (1 << log2qty) - 1;
9144 
9145 	return table;
9146 }
9147 
9148 #ifdef CONFIG_CONTIG_ALLOC
9149 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9150 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9151 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9152 static void alloc_contig_dump_pages(struct list_head *page_list)
9153 {
9154 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9155 
9156 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9157 		struct page *page;
9158 
9159 		dump_stack();
9160 		list_for_each_entry(page, page_list, lru)
9161 			dump_page(page, "migration failure");
9162 	}
9163 }
9164 #else
9165 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9166 {
9167 }
9168 #endif
9169 
9170 /* [start, end) must belong to a single zone. */
9171 int __alloc_contig_migrate_range(struct compact_control *cc,
9172 					unsigned long start, unsigned long end)
9173 {
9174 	/* This function is based on compact_zone() from compaction.c. */
9175 	unsigned int nr_reclaimed;
9176 	unsigned long pfn = start;
9177 	unsigned int tries = 0;
9178 	int ret = 0;
9179 	struct migration_target_control mtc = {
9180 		.nid = zone_to_nid(cc->zone),
9181 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9182 	};
9183 
9184 	lru_cache_disable();
9185 
9186 	while (pfn < end || !list_empty(&cc->migratepages)) {
9187 		if (fatal_signal_pending(current)) {
9188 			ret = -EINTR;
9189 			break;
9190 		}
9191 
9192 		if (list_empty(&cc->migratepages)) {
9193 			cc->nr_migratepages = 0;
9194 			ret = isolate_migratepages_range(cc, pfn, end);
9195 			if (ret && ret != -EAGAIN)
9196 				break;
9197 			pfn = cc->migrate_pfn;
9198 			tries = 0;
9199 		} else if (++tries == 5) {
9200 			ret = -EBUSY;
9201 			break;
9202 		}
9203 
9204 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9205 							&cc->migratepages);
9206 		cc->nr_migratepages -= nr_reclaimed;
9207 
9208 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9209 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9210 
9211 		/*
9212 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9213 		 * to retry again over this error, so do the same here.
9214 		 */
9215 		if (ret == -ENOMEM)
9216 			break;
9217 	}
9218 
9219 	lru_cache_enable();
9220 	if (ret < 0) {
9221 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9222 			alloc_contig_dump_pages(&cc->migratepages);
9223 		putback_movable_pages(&cc->migratepages);
9224 		return ret;
9225 	}
9226 	return 0;
9227 }
9228 
9229 /**
9230  * alloc_contig_range() -- tries to allocate given range of pages
9231  * @start:	start PFN to allocate
9232  * @end:	one-past-the-last PFN to allocate
9233  * @migratetype:	migratetype of the underlying pageblocks (either
9234  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9235  *			in range must have the same migratetype and it must
9236  *			be either of the two.
9237  * @gfp_mask:	GFP mask to use during compaction
9238  *
9239  * The PFN range does not have to be pageblock aligned. The PFN range must
9240  * belong to a single zone.
9241  *
9242  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9243  * pageblocks in the range.  Once isolated, the pageblocks should not
9244  * be modified by others.
9245  *
9246  * Return: zero on success or negative error code.  On success all
9247  * pages which PFN is in [start, end) are allocated for the caller and
9248  * need to be freed with free_contig_range().
9249  */
9250 int alloc_contig_range(unsigned long start, unsigned long end,
9251 		       unsigned migratetype, gfp_t gfp_mask)
9252 {
9253 	unsigned long outer_start, outer_end;
9254 	int order;
9255 	int ret = 0;
9256 
9257 	struct compact_control cc = {
9258 		.nr_migratepages = 0,
9259 		.order = -1,
9260 		.zone = page_zone(pfn_to_page(start)),
9261 		.mode = MIGRATE_SYNC,
9262 		.ignore_skip_hint = true,
9263 		.no_set_skip_hint = true,
9264 		.gfp_mask = current_gfp_context(gfp_mask),
9265 		.alloc_contig = true,
9266 	};
9267 	INIT_LIST_HEAD(&cc.migratepages);
9268 
9269 	/*
9270 	 * What we do here is we mark all pageblocks in range as
9271 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9272 	 * have different sizes, and due to the way page allocator
9273 	 * work, start_isolate_page_range() has special handlings for this.
9274 	 *
9275 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9276 	 * migrate the pages from an unaligned range (ie. pages that
9277 	 * we are interested in). This will put all the pages in
9278 	 * range back to page allocator as MIGRATE_ISOLATE.
9279 	 *
9280 	 * When this is done, we take the pages in range from page
9281 	 * allocator removing them from the buddy system.  This way
9282 	 * page allocator will never consider using them.
9283 	 *
9284 	 * This lets us mark the pageblocks back as
9285 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9286 	 * aligned range but not in the unaligned, original range are
9287 	 * put back to page allocator so that buddy can use them.
9288 	 */
9289 
9290 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9291 	if (ret)
9292 		goto done;
9293 
9294 	drain_all_pages(cc.zone);
9295 
9296 	/*
9297 	 * In case of -EBUSY, we'd like to know which page causes problem.
9298 	 * So, just fall through. test_pages_isolated() has a tracepoint
9299 	 * which will report the busy page.
9300 	 *
9301 	 * It is possible that busy pages could become available before
9302 	 * the call to test_pages_isolated, and the range will actually be
9303 	 * allocated.  So, if we fall through be sure to clear ret so that
9304 	 * -EBUSY is not accidentally used or returned to caller.
9305 	 */
9306 	ret = __alloc_contig_migrate_range(&cc, start, end);
9307 	if (ret && ret != -EBUSY)
9308 		goto done;
9309 	ret = 0;
9310 
9311 	/*
9312 	 * Pages from [start, end) are within a pageblock_nr_pages
9313 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9314 	 * more, all pages in [start, end) are free in page allocator.
9315 	 * What we are going to do is to allocate all pages from
9316 	 * [start, end) (that is remove them from page allocator).
9317 	 *
9318 	 * The only problem is that pages at the beginning and at the
9319 	 * end of interesting range may be not aligned with pages that
9320 	 * page allocator holds, ie. they can be part of higher order
9321 	 * pages.  Because of this, we reserve the bigger range and
9322 	 * once this is done free the pages we are not interested in.
9323 	 *
9324 	 * We don't have to hold zone->lock here because the pages are
9325 	 * isolated thus they won't get removed from buddy.
9326 	 */
9327 
9328 	order = 0;
9329 	outer_start = start;
9330 	while (!PageBuddy(pfn_to_page(outer_start))) {
9331 		if (++order >= MAX_ORDER) {
9332 			outer_start = start;
9333 			break;
9334 		}
9335 		outer_start &= ~0UL << order;
9336 	}
9337 
9338 	if (outer_start != start) {
9339 		order = buddy_order(pfn_to_page(outer_start));
9340 
9341 		/*
9342 		 * outer_start page could be small order buddy page and
9343 		 * it doesn't include start page. Adjust outer_start
9344 		 * in this case to report failed page properly
9345 		 * on tracepoint in test_pages_isolated()
9346 		 */
9347 		if (outer_start + (1UL << order) <= start)
9348 			outer_start = start;
9349 	}
9350 
9351 	/* Make sure the range is really isolated. */
9352 	if (test_pages_isolated(outer_start, end, 0)) {
9353 		ret = -EBUSY;
9354 		goto done;
9355 	}
9356 
9357 	/* Grab isolated pages from freelists. */
9358 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9359 	if (!outer_end) {
9360 		ret = -EBUSY;
9361 		goto done;
9362 	}
9363 
9364 	/* Free head and tail (if any) */
9365 	if (start != outer_start)
9366 		free_contig_range(outer_start, start - outer_start);
9367 	if (end != outer_end)
9368 		free_contig_range(end, outer_end - end);
9369 
9370 done:
9371 	undo_isolate_page_range(start, end, migratetype);
9372 	return ret;
9373 }
9374 EXPORT_SYMBOL(alloc_contig_range);
9375 
9376 static int __alloc_contig_pages(unsigned long start_pfn,
9377 				unsigned long nr_pages, gfp_t gfp_mask)
9378 {
9379 	unsigned long end_pfn = start_pfn + nr_pages;
9380 
9381 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9382 				  gfp_mask);
9383 }
9384 
9385 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9386 				   unsigned long nr_pages)
9387 {
9388 	unsigned long i, end_pfn = start_pfn + nr_pages;
9389 	struct page *page;
9390 
9391 	for (i = start_pfn; i < end_pfn; i++) {
9392 		page = pfn_to_online_page(i);
9393 		if (!page)
9394 			return false;
9395 
9396 		if (page_zone(page) != z)
9397 			return false;
9398 
9399 		if (PageReserved(page))
9400 			return false;
9401 	}
9402 	return true;
9403 }
9404 
9405 static bool zone_spans_last_pfn(const struct zone *zone,
9406 				unsigned long start_pfn, unsigned long nr_pages)
9407 {
9408 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9409 
9410 	return zone_spans_pfn(zone, last_pfn);
9411 }
9412 
9413 /**
9414  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9415  * @nr_pages:	Number of contiguous pages to allocate
9416  * @gfp_mask:	GFP mask to limit search and used during compaction
9417  * @nid:	Target node
9418  * @nodemask:	Mask for other possible nodes
9419  *
9420  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9421  * on an applicable zonelist to find a contiguous pfn range which can then be
9422  * tried for allocation with alloc_contig_range(). This routine is intended
9423  * for allocation requests which can not be fulfilled with the buddy allocator.
9424  *
9425  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9426  * power of two, then allocated range is also guaranteed to be aligned to same
9427  * nr_pages (e.g. 1GB request would be aligned to 1GB).
9428  *
9429  * Allocated pages can be freed with free_contig_range() or by manually calling
9430  * __free_page() on each allocated page.
9431  *
9432  * Return: pointer to contiguous pages on success, or NULL if not successful.
9433  */
9434 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9435 				int nid, nodemask_t *nodemask)
9436 {
9437 	unsigned long ret, pfn, flags;
9438 	struct zonelist *zonelist;
9439 	struct zone *zone;
9440 	struct zoneref *z;
9441 
9442 	zonelist = node_zonelist(nid, gfp_mask);
9443 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9444 					gfp_zone(gfp_mask), nodemask) {
9445 		spin_lock_irqsave(&zone->lock, flags);
9446 
9447 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9448 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9449 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9450 				/*
9451 				 * We release the zone lock here because
9452 				 * alloc_contig_range() will also lock the zone
9453 				 * at some point. If there's an allocation
9454 				 * spinning on this lock, it may win the race
9455 				 * and cause alloc_contig_range() to fail...
9456 				 */
9457 				spin_unlock_irqrestore(&zone->lock, flags);
9458 				ret = __alloc_contig_pages(pfn, nr_pages,
9459 							gfp_mask);
9460 				if (!ret)
9461 					return pfn_to_page(pfn);
9462 				spin_lock_irqsave(&zone->lock, flags);
9463 			}
9464 			pfn += nr_pages;
9465 		}
9466 		spin_unlock_irqrestore(&zone->lock, flags);
9467 	}
9468 	return NULL;
9469 }
9470 #endif /* CONFIG_CONTIG_ALLOC */
9471 
9472 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9473 {
9474 	unsigned long count = 0;
9475 
9476 	for (; nr_pages--; pfn++) {
9477 		struct page *page = pfn_to_page(pfn);
9478 
9479 		count += page_count(page) != 1;
9480 		__free_page(page);
9481 	}
9482 	WARN(count != 0, "%lu pages are still in use!\n", count);
9483 }
9484 EXPORT_SYMBOL(free_contig_range);
9485 
9486 /*
9487  * Effectively disable pcplists for the zone by setting the high limit to 0
9488  * and draining all cpus. A concurrent page freeing on another CPU that's about
9489  * to put the page on pcplist will either finish before the drain and the page
9490  * will be drained, or observe the new high limit and skip the pcplist.
9491  *
9492  * Must be paired with a call to zone_pcp_enable().
9493  */
9494 void zone_pcp_disable(struct zone *zone)
9495 {
9496 	mutex_lock(&pcp_batch_high_lock);
9497 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9498 	__drain_all_pages(zone, true);
9499 }
9500 
9501 void zone_pcp_enable(struct zone *zone)
9502 {
9503 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9504 	mutex_unlock(&pcp_batch_high_lock);
9505 }
9506 
9507 void zone_pcp_reset(struct zone *zone)
9508 {
9509 	int cpu;
9510 	struct per_cpu_zonestat *pzstats;
9511 
9512 	if (zone->per_cpu_pageset != &boot_pageset) {
9513 		for_each_online_cpu(cpu) {
9514 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9515 			drain_zonestat(zone, pzstats);
9516 		}
9517 		free_percpu(zone->per_cpu_pageset);
9518 		zone->per_cpu_pageset = &boot_pageset;
9519 		if (zone->per_cpu_zonestats != &boot_zonestats) {
9520 			free_percpu(zone->per_cpu_zonestats);
9521 			zone->per_cpu_zonestats = &boot_zonestats;
9522 		}
9523 	}
9524 }
9525 
9526 #ifdef CONFIG_MEMORY_HOTREMOVE
9527 /*
9528  * All pages in the range must be in a single zone, must not contain holes,
9529  * must span full sections, and must be isolated before calling this function.
9530  */
9531 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9532 {
9533 	unsigned long pfn = start_pfn;
9534 	struct page *page;
9535 	struct zone *zone;
9536 	unsigned int order;
9537 	unsigned long flags;
9538 
9539 	offline_mem_sections(pfn, end_pfn);
9540 	zone = page_zone(pfn_to_page(pfn));
9541 	spin_lock_irqsave(&zone->lock, flags);
9542 	while (pfn < end_pfn) {
9543 		page = pfn_to_page(pfn);
9544 		/*
9545 		 * The HWPoisoned page may be not in buddy system, and
9546 		 * page_count() is not 0.
9547 		 */
9548 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9549 			pfn++;
9550 			continue;
9551 		}
9552 		/*
9553 		 * At this point all remaining PageOffline() pages have a
9554 		 * reference count of 0 and can simply be skipped.
9555 		 */
9556 		if (PageOffline(page)) {
9557 			BUG_ON(page_count(page));
9558 			BUG_ON(PageBuddy(page));
9559 			pfn++;
9560 			continue;
9561 		}
9562 
9563 		BUG_ON(page_count(page));
9564 		BUG_ON(!PageBuddy(page));
9565 		order = buddy_order(page);
9566 		del_page_from_free_list(page, zone, order);
9567 		pfn += (1 << order);
9568 	}
9569 	spin_unlock_irqrestore(&zone->lock, flags);
9570 }
9571 #endif
9572 
9573 /*
9574  * This function returns a stable result only if called under zone lock.
9575  */
9576 bool is_free_buddy_page(struct page *page)
9577 {
9578 	unsigned long pfn = page_to_pfn(page);
9579 	unsigned int order;
9580 
9581 	for (order = 0; order < MAX_ORDER; order++) {
9582 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9583 
9584 		if (PageBuddy(page_head) &&
9585 		    buddy_order_unsafe(page_head) >= order)
9586 			break;
9587 	}
9588 
9589 	return order < MAX_ORDER;
9590 }
9591 EXPORT_SYMBOL(is_free_buddy_page);
9592 
9593 #ifdef CONFIG_MEMORY_FAILURE
9594 /*
9595  * Break down a higher-order page in sub-pages, and keep our target out of
9596  * buddy allocator.
9597  */
9598 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9599 				   struct page *target, int low, int high,
9600 				   int migratetype)
9601 {
9602 	unsigned long size = 1 << high;
9603 	struct page *current_buddy, *next_page;
9604 
9605 	while (high > low) {
9606 		high--;
9607 		size >>= 1;
9608 
9609 		if (target >= &page[size]) {
9610 			next_page = page + size;
9611 			current_buddy = page;
9612 		} else {
9613 			next_page = page;
9614 			current_buddy = page + size;
9615 		}
9616 
9617 		if (set_page_guard(zone, current_buddy, high, migratetype))
9618 			continue;
9619 
9620 		if (current_buddy != target) {
9621 			add_to_free_list(current_buddy, zone, high, migratetype);
9622 			set_buddy_order(current_buddy, high);
9623 			page = next_page;
9624 		}
9625 	}
9626 }
9627 
9628 /*
9629  * Take a page that will be marked as poisoned off the buddy allocator.
9630  */
9631 bool take_page_off_buddy(struct page *page)
9632 {
9633 	struct zone *zone = page_zone(page);
9634 	unsigned long pfn = page_to_pfn(page);
9635 	unsigned long flags;
9636 	unsigned int order;
9637 	bool ret = false;
9638 
9639 	spin_lock_irqsave(&zone->lock, flags);
9640 	for (order = 0; order < MAX_ORDER; order++) {
9641 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9642 		int page_order = buddy_order(page_head);
9643 
9644 		if (PageBuddy(page_head) && page_order >= order) {
9645 			unsigned long pfn_head = page_to_pfn(page_head);
9646 			int migratetype = get_pfnblock_migratetype(page_head,
9647 								   pfn_head);
9648 
9649 			del_page_from_free_list(page_head, zone, page_order);
9650 			break_down_buddy_pages(zone, page_head, page, 0,
9651 						page_order, migratetype);
9652 			SetPageHWPoisonTakenOff(page);
9653 			if (!is_migrate_isolate(migratetype))
9654 				__mod_zone_freepage_state(zone, -1, migratetype);
9655 			ret = true;
9656 			break;
9657 		}
9658 		if (page_count(page_head) > 0)
9659 			break;
9660 	}
9661 	spin_unlock_irqrestore(&zone->lock, flags);
9662 	return ret;
9663 }
9664 
9665 /*
9666  * Cancel takeoff done by take_page_off_buddy().
9667  */
9668 bool put_page_back_buddy(struct page *page)
9669 {
9670 	struct zone *zone = page_zone(page);
9671 	unsigned long pfn = page_to_pfn(page);
9672 	unsigned long flags;
9673 	int migratetype = get_pfnblock_migratetype(page, pfn);
9674 	bool ret = false;
9675 
9676 	spin_lock_irqsave(&zone->lock, flags);
9677 	if (put_page_testzero(page)) {
9678 		ClearPageHWPoisonTakenOff(page);
9679 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9680 		if (TestClearPageHWPoison(page)) {
9681 			ret = true;
9682 		}
9683 	}
9684 	spin_unlock_irqrestore(&zone->lock, flags);
9685 
9686 	return ret;
9687 }
9688 #endif
9689 
9690 #ifdef CONFIG_ZONE_DMA
9691 bool has_managed_dma(void)
9692 {
9693 	struct pglist_data *pgdat;
9694 
9695 	for_each_online_pgdat(pgdat) {
9696 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9697 
9698 		if (managed_zone(zone))
9699 			return true;
9700 	}
9701 	return false;
9702 }
9703 #endif /* CONFIG_ZONE_DMA */
9704