1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/swapops.h> 23 #include <linux/interrupt.h> 24 #include <linux/pagemap.h> 25 #include <linux/jiffies.h> 26 #include <linux/memblock.h> 27 #include <linux/compiler.h> 28 #include <linux/kernel.h> 29 #include <linux/kasan.h> 30 #include <linux/kmsan.h> 31 #include <linux/module.h> 32 #include <linux/suspend.h> 33 #include <linux/pagevec.h> 34 #include <linux/blkdev.h> 35 #include <linux/slab.h> 36 #include <linux/ratelimit.h> 37 #include <linux/oom.h> 38 #include <linux/topology.h> 39 #include <linux/sysctl.h> 40 #include <linux/cpu.h> 41 #include <linux/cpuset.h> 42 #include <linux/memory_hotplug.h> 43 #include <linux/nodemask.h> 44 #include <linux/vmalloc.h> 45 #include <linux/vmstat.h> 46 #include <linux/mempolicy.h> 47 #include <linux/memremap.h> 48 #include <linux/stop_machine.h> 49 #include <linux/random.h> 50 #include <linux/sort.h> 51 #include <linux/pfn.h> 52 #include <linux/backing-dev.h> 53 #include <linux/fault-inject.h> 54 #include <linux/page-isolation.h> 55 #include <linux/debugobjects.h> 56 #include <linux/kmemleak.h> 57 #include <linux/compaction.h> 58 #include <trace/events/kmem.h> 59 #include <trace/events/oom.h> 60 #include <linux/prefetch.h> 61 #include <linux/mm_inline.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/migrate.h> 64 #include <linux/hugetlb.h> 65 #include <linux/sched/rt.h> 66 #include <linux/sched/mm.h> 67 #include <linux/page_owner.h> 68 #include <linux/page_table_check.h> 69 #include <linux/kthread.h> 70 #include <linux/memcontrol.h> 71 #include <linux/ftrace.h> 72 #include <linux/lockdep.h> 73 #include <linux/nmi.h> 74 #include <linux/psi.h> 75 #include <linux/padata.h> 76 #include <linux/khugepaged.h> 77 #include <linux/buffer_head.h> 78 #include <linux/delayacct.h> 79 #include <asm/sections.h> 80 #include <asm/tlbflush.h> 81 #include <asm/div64.h> 82 #include "internal.h" 83 #include "shuffle.h" 84 #include "page_reporting.h" 85 #include "swap.h" 86 87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 88 typedef int __bitwise fpi_t; 89 90 /* No special request */ 91 #define FPI_NONE ((__force fpi_t)0) 92 93 /* 94 * Skip free page reporting notification for the (possibly merged) page. 95 * This does not hinder free page reporting from grabbing the page, 96 * reporting it and marking it "reported" - it only skips notifying 97 * the free page reporting infrastructure about a newly freed page. For 98 * example, used when temporarily pulling a page from a freelist and 99 * putting it back unmodified. 100 */ 101 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 102 103 /* 104 * Place the (possibly merged) page to the tail of the freelist. Will ignore 105 * page shuffling (relevant code - e.g., memory onlining - is expected to 106 * shuffle the whole zone). 107 * 108 * Note: No code should rely on this flag for correctness - it's purely 109 * to allow for optimizations when handing back either fresh pages 110 * (memory onlining) or untouched pages (page isolation, free page 111 * reporting). 112 */ 113 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 114 115 /* 116 * Don't poison memory with KASAN (only for the tag-based modes). 117 * During boot, all non-reserved memblock memory is exposed to page_alloc. 118 * Poisoning all that memory lengthens boot time, especially on systems with 119 * large amount of RAM. This flag is used to skip that poisoning. 120 * This is only done for the tag-based KASAN modes, as those are able to 121 * detect memory corruptions with the memory tags assigned by default. 122 * All memory allocated normally after boot gets poisoned as usual. 123 */ 124 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 125 126 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 127 static DEFINE_MUTEX(pcp_batch_high_lock); 128 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 129 130 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 131 /* 132 * On SMP, spin_trylock is sufficient protection. 133 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 134 */ 135 #define pcp_trylock_prepare(flags) do { } while (0) 136 #define pcp_trylock_finish(flag) do { } while (0) 137 #else 138 139 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 140 #define pcp_trylock_prepare(flags) local_irq_save(flags) 141 #define pcp_trylock_finish(flags) local_irq_restore(flags) 142 #endif 143 144 /* 145 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 146 * a migration causing the wrong PCP to be locked and remote memory being 147 * potentially allocated, pin the task to the CPU for the lookup+lock. 148 * preempt_disable is used on !RT because it is faster than migrate_disable. 149 * migrate_disable is used on RT because otherwise RT spinlock usage is 150 * interfered with and a high priority task cannot preempt the allocator. 151 */ 152 #ifndef CONFIG_PREEMPT_RT 153 #define pcpu_task_pin() preempt_disable() 154 #define pcpu_task_unpin() preempt_enable() 155 #else 156 #define pcpu_task_pin() migrate_disable() 157 #define pcpu_task_unpin() migrate_enable() 158 #endif 159 160 /* 161 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 162 * Return value should be used with equivalent unlock helper. 163 */ 164 #define pcpu_spin_lock(type, member, ptr) \ 165 ({ \ 166 type *_ret; \ 167 pcpu_task_pin(); \ 168 _ret = this_cpu_ptr(ptr); \ 169 spin_lock(&_ret->member); \ 170 _ret; \ 171 }) 172 173 #define pcpu_spin_trylock(type, member, ptr) \ 174 ({ \ 175 type *_ret; \ 176 pcpu_task_pin(); \ 177 _ret = this_cpu_ptr(ptr); \ 178 if (!spin_trylock(&_ret->member)) { \ 179 pcpu_task_unpin(); \ 180 _ret = NULL; \ 181 } \ 182 _ret; \ 183 }) 184 185 #define pcpu_spin_unlock(member, ptr) \ 186 ({ \ 187 spin_unlock(&ptr->member); \ 188 pcpu_task_unpin(); \ 189 }) 190 191 /* struct per_cpu_pages specific helpers. */ 192 #define pcp_spin_lock(ptr) \ 193 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 194 195 #define pcp_spin_trylock(ptr) \ 196 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 197 198 #define pcp_spin_unlock(ptr) \ 199 pcpu_spin_unlock(lock, ptr) 200 201 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 202 DEFINE_PER_CPU(int, numa_node); 203 EXPORT_PER_CPU_SYMBOL(numa_node); 204 #endif 205 206 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 207 208 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 209 /* 210 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 211 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 212 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 213 * defined in <linux/topology.h>. 214 */ 215 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 216 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 217 #endif 218 219 static DEFINE_MUTEX(pcpu_drain_mutex); 220 221 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 222 volatile unsigned long latent_entropy __latent_entropy; 223 EXPORT_SYMBOL(latent_entropy); 224 #endif 225 226 /* 227 * Array of node states. 228 */ 229 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 230 [N_POSSIBLE] = NODE_MASK_ALL, 231 [N_ONLINE] = { { [0] = 1UL } }, 232 #ifndef CONFIG_NUMA 233 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 234 #ifdef CONFIG_HIGHMEM 235 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 236 #endif 237 [N_MEMORY] = { { [0] = 1UL } }, 238 [N_CPU] = { { [0] = 1UL } }, 239 #endif /* NUMA */ 240 }; 241 EXPORT_SYMBOL(node_states); 242 243 atomic_long_t _totalram_pages __read_mostly; 244 EXPORT_SYMBOL(_totalram_pages); 245 unsigned long totalreserve_pages __read_mostly; 246 unsigned long totalcma_pages __read_mostly; 247 248 int percpu_pagelist_high_fraction; 249 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 250 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 251 EXPORT_SYMBOL(init_on_alloc); 252 253 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 254 EXPORT_SYMBOL(init_on_free); 255 256 static bool _init_on_alloc_enabled_early __read_mostly 257 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 258 static int __init early_init_on_alloc(char *buf) 259 { 260 261 return kstrtobool(buf, &_init_on_alloc_enabled_early); 262 } 263 early_param("init_on_alloc", early_init_on_alloc); 264 265 static bool _init_on_free_enabled_early __read_mostly 266 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 267 static int __init early_init_on_free(char *buf) 268 { 269 return kstrtobool(buf, &_init_on_free_enabled_early); 270 } 271 early_param("init_on_free", early_init_on_free); 272 273 /* 274 * A cached value of the page's pageblock's migratetype, used when the page is 275 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 276 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 277 * Also the migratetype set in the page does not necessarily match the pcplist 278 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 279 * other index - this ensures that it will be put on the correct CMA freelist. 280 */ 281 static inline int get_pcppage_migratetype(struct page *page) 282 { 283 return page->index; 284 } 285 286 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 287 { 288 page->index = migratetype; 289 } 290 291 #ifdef CONFIG_PM_SLEEP 292 /* 293 * The following functions are used by the suspend/hibernate code to temporarily 294 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 295 * while devices are suspended. To avoid races with the suspend/hibernate code, 296 * they should always be called with system_transition_mutex held 297 * (gfp_allowed_mask also should only be modified with system_transition_mutex 298 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 299 * with that modification). 300 */ 301 302 static gfp_t saved_gfp_mask; 303 304 void pm_restore_gfp_mask(void) 305 { 306 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 307 if (saved_gfp_mask) { 308 gfp_allowed_mask = saved_gfp_mask; 309 saved_gfp_mask = 0; 310 } 311 } 312 313 void pm_restrict_gfp_mask(void) 314 { 315 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 316 WARN_ON(saved_gfp_mask); 317 saved_gfp_mask = gfp_allowed_mask; 318 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 319 } 320 321 bool pm_suspended_storage(void) 322 { 323 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 324 return false; 325 return true; 326 } 327 #endif /* CONFIG_PM_SLEEP */ 328 329 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 330 unsigned int pageblock_order __read_mostly; 331 #endif 332 333 static void __free_pages_ok(struct page *page, unsigned int order, 334 fpi_t fpi_flags); 335 336 /* 337 * results with 256, 32 in the lowmem_reserve sysctl: 338 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 339 * 1G machine -> (16M dma, 784M normal, 224M high) 340 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 341 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 342 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 343 * 344 * TBD: should special case ZONE_DMA32 machines here - in those we normally 345 * don't need any ZONE_NORMAL reservation 346 */ 347 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 348 #ifdef CONFIG_ZONE_DMA 349 [ZONE_DMA] = 256, 350 #endif 351 #ifdef CONFIG_ZONE_DMA32 352 [ZONE_DMA32] = 256, 353 #endif 354 [ZONE_NORMAL] = 32, 355 #ifdef CONFIG_HIGHMEM 356 [ZONE_HIGHMEM] = 0, 357 #endif 358 [ZONE_MOVABLE] = 0, 359 }; 360 361 static char * const zone_names[MAX_NR_ZONES] = { 362 #ifdef CONFIG_ZONE_DMA 363 "DMA", 364 #endif 365 #ifdef CONFIG_ZONE_DMA32 366 "DMA32", 367 #endif 368 "Normal", 369 #ifdef CONFIG_HIGHMEM 370 "HighMem", 371 #endif 372 "Movable", 373 #ifdef CONFIG_ZONE_DEVICE 374 "Device", 375 #endif 376 }; 377 378 const char * const migratetype_names[MIGRATE_TYPES] = { 379 "Unmovable", 380 "Movable", 381 "Reclaimable", 382 "HighAtomic", 383 #ifdef CONFIG_CMA 384 "CMA", 385 #endif 386 #ifdef CONFIG_MEMORY_ISOLATION 387 "Isolate", 388 #endif 389 }; 390 391 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 392 [NULL_COMPOUND_DTOR] = NULL, 393 [COMPOUND_PAGE_DTOR] = free_compound_page, 394 #ifdef CONFIG_HUGETLB_PAGE 395 [HUGETLB_PAGE_DTOR] = free_huge_page, 396 #endif 397 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 398 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 399 #endif 400 }; 401 402 int min_free_kbytes = 1024; 403 int user_min_free_kbytes = -1; 404 int watermark_boost_factor __read_mostly = 15000; 405 int watermark_scale_factor = 10; 406 407 static unsigned long nr_kernel_pages __initdata; 408 static unsigned long nr_all_pages __initdata; 409 static unsigned long dma_reserve __initdata; 410 411 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 412 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 413 static unsigned long required_kernelcore __initdata; 414 static unsigned long required_kernelcore_percent __initdata; 415 static unsigned long required_movablecore __initdata; 416 static unsigned long required_movablecore_percent __initdata; 417 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 418 bool mirrored_kernelcore __initdata_memblock; 419 420 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 421 int movable_zone; 422 EXPORT_SYMBOL(movable_zone); 423 424 #if MAX_NUMNODES > 1 425 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 426 unsigned int nr_online_nodes __read_mostly = 1; 427 EXPORT_SYMBOL(nr_node_ids); 428 EXPORT_SYMBOL(nr_online_nodes); 429 #endif 430 431 int page_group_by_mobility_disabled __read_mostly; 432 433 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 434 /* 435 * During boot we initialize deferred pages on-demand, as needed, but once 436 * page_alloc_init_late() has finished, the deferred pages are all initialized, 437 * and we can permanently disable that path. 438 */ 439 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 440 441 static inline bool deferred_pages_enabled(void) 442 { 443 return static_branch_unlikely(&deferred_pages); 444 } 445 446 /* Returns true if the struct page for the pfn is uninitialised */ 447 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 448 { 449 int nid = early_pfn_to_nid(pfn); 450 451 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 452 return true; 453 454 return false; 455 } 456 457 /* 458 * Returns true when the remaining initialisation should be deferred until 459 * later in the boot cycle when it can be parallelised. 460 */ 461 static bool __meminit 462 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 463 { 464 static unsigned long prev_end_pfn, nr_initialised; 465 466 if (early_page_ext_enabled()) 467 return false; 468 /* 469 * prev_end_pfn static that contains the end of previous zone 470 * No need to protect because called very early in boot before smp_init. 471 */ 472 if (prev_end_pfn != end_pfn) { 473 prev_end_pfn = end_pfn; 474 nr_initialised = 0; 475 } 476 477 /* Always populate low zones for address-constrained allocations */ 478 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 479 return false; 480 481 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 482 return true; 483 /* 484 * We start only with one section of pages, more pages are added as 485 * needed until the rest of deferred pages are initialized. 486 */ 487 nr_initialised++; 488 if ((nr_initialised > PAGES_PER_SECTION) && 489 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 490 NODE_DATA(nid)->first_deferred_pfn = pfn; 491 return true; 492 } 493 return false; 494 } 495 #else 496 static inline bool deferred_pages_enabled(void) 497 { 498 return false; 499 } 500 501 static inline bool early_page_uninitialised(unsigned long pfn) 502 { 503 return false; 504 } 505 506 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 507 { 508 return false; 509 } 510 #endif 511 512 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 513 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 514 unsigned long pfn) 515 { 516 #ifdef CONFIG_SPARSEMEM 517 return section_to_usemap(__pfn_to_section(pfn)); 518 #else 519 return page_zone(page)->pageblock_flags; 520 #endif /* CONFIG_SPARSEMEM */ 521 } 522 523 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 524 { 525 #ifdef CONFIG_SPARSEMEM 526 pfn &= (PAGES_PER_SECTION-1); 527 #else 528 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 529 #endif /* CONFIG_SPARSEMEM */ 530 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 531 } 532 533 static __always_inline 534 unsigned long __get_pfnblock_flags_mask(const struct page *page, 535 unsigned long pfn, 536 unsigned long mask) 537 { 538 unsigned long *bitmap; 539 unsigned long bitidx, word_bitidx; 540 unsigned long word; 541 542 bitmap = get_pageblock_bitmap(page, pfn); 543 bitidx = pfn_to_bitidx(page, pfn); 544 word_bitidx = bitidx / BITS_PER_LONG; 545 bitidx &= (BITS_PER_LONG-1); 546 /* 547 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 548 * a consistent read of the memory array, so that results, even though 549 * racy, are not corrupted. 550 */ 551 word = READ_ONCE(bitmap[word_bitidx]); 552 return (word >> bitidx) & mask; 553 } 554 555 /** 556 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 557 * @page: The page within the block of interest 558 * @pfn: The target page frame number 559 * @mask: mask of bits that the caller is interested in 560 * 561 * Return: pageblock_bits flags 562 */ 563 unsigned long get_pfnblock_flags_mask(const struct page *page, 564 unsigned long pfn, unsigned long mask) 565 { 566 return __get_pfnblock_flags_mask(page, pfn, mask); 567 } 568 569 static __always_inline int get_pfnblock_migratetype(const struct page *page, 570 unsigned long pfn) 571 { 572 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 573 } 574 575 /** 576 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 577 * @page: The page within the block of interest 578 * @flags: The flags to set 579 * @pfn: The target page frame number 580 * @mask: mask of bits that the caller is interested in 581 */ 582 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 583 unsigned long pfn, 584 unsigned long mask) 585 { 586 unsigned long *bitmap; 587 unsigned long bitidx, word_bitidx; 588 unsigned long word; 589 590 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 591 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 592 593 bitmap = get_pageblock_bitmap(page, pfn); 594 bitidx = pfn_to_bitidx(page, pfn); 595 word_bitidx = bitidx / BITS_PER_LONG; 596 bitidx &= (BITS_PER_LONG-1); 597 598 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 599 600 mask <<= bitidx; 601 flags <<= bitidx; 602 603 word = READ_ONCE(bitmap[word_bitidx]); 604 do { 605 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 606 } 607 608 void set_pageblock_migratetype(struct page *page, int migratetype) 609 { 610 if (unlikely(page_group_by_mobility_disabled && 611 migratetype < MIGRATE_PCPTYPES)) 612 migratetype = MIGRATE_UNMOVABLE; 613 614 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 615 page_to_pfn(page), MIGRATETYPE_MASK); 616 } 617 618 #ifdef CONFIG_DEBUG_VM 619 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 620 { 621 int ret = 0; 622 unsigned seq; 623 unsigned long pfn = page_to_pfn(page); 624 unsigned long sp, start_pfn; 625 626 do { 627 seq = zone_span_seqbegin(zone); 628 start_pfn = zone->zone_start_pfn; 629 sp = zone->spanned_pages; 630 if (!zone_spans_pfn(zone, pfn)) 631 ret = 1; 632 } while (zone_span_seqretry(zone, seq)); 633 634 if (ret) 635 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 636 pfn, zone_to_nid(zone), zone->name, 637 start_pfn, start_pfn + sp); 638 639 return ret; 640 } 641 642 static int page_is_consistent(struct zone *zone, struct page *page) 643 { 644 if (zone != page_zone(page)) 645 return 0; 646 647 return 1; 648 } 649 /* 650 * Temporary debugging check for pages not lying within a given zone. 651 */ 652 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 653 { 654 if (page_outside_zone_boundaries(zone, page)) 655 return 1; 656 if (!page_is_consistent(zone, page)) 657 return 1; 658 659 return 0; 660 } 661 #else 662 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 663 { 664 return 0; 665 } 666 #endif 667 668 static void bad_page(struct page *page, const char *reason) 669 { 670 static unsigned long resume; 671 static unsigned long nr_shown; 672 static unsigned long nr_unshown; 673 674 /* 675 * Allow a burst of 60 reports, then keep quiet for that minute; 676 * or allow a steady drip of one report per second. 677 */ 678 if (nr_shown == 60) { 679 if (time_before(jiffies, resume)) { 680 nr_unshown++; 681 goto out; 682 } 683 if (nr_unshown) { 684 pr_alert( 685 "BUG: Bad page state: %lu messages suppressed\n", 686 nr_unshown); 687 nr_unshown = 0; 688 } 689 nr_shown = 0; 690 } 691 if (nr_shown++ == 0) 692 resume = jiffies + 60 * HZ; 693 694 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 695 current->comm, page_to_pfn(page)); 696 dump_page(page, reason); 697 698 print_modules(); 699 dump_stack(); 700 out: 701 /* Leave bad fields for debug, except PageBuddy could make trouble */ 702 page_mapcount_reset(page); /* remove PageBuddy */ 703 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 704 } 705 706 static inline unsigned int order_to_pindex(int migratetype, int order) 707 { 708 int base = order; 709 710 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 711 if (order > PAGE_ALLOC_COSTLY_ORDER) { 712 VM_BUG_ON(order != pageblock_order); 713 return NR_LOWORDER_PCP_LISTS; 714 } 715 #else 716 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 717 #endif 718 719 return (MIGRATE_PCPTYPES * base) + migratetype; 720 } 721 722 static inline int pindex_to_order(unsigned int pindex) 723 { 724 int order = pindex / MIGRATE_PCPTYPES; 725 726 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 727 if (pindex == NR_LOWORDER_PCP_LISTS) 728 order = pageblock_order; 729 #else 730 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 731 #endif 732 733 return order; 734 } 735 736 static inline bool pcp_allowed_order(unsigned int order) 737 { 738 if (order <= PAGE_ALLOC_COSTLY_ORDER) 739 return true; 740 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 741 if (order == pageblock_order) 742 return true; 743 #endif 744 return false; 745 } 746 747 static inline void free_the_page(struct page *page, unsigned int order) 748 { 749 if (pcp_allowed_order(order)) /* Via pcp? */ 750 free_unref_page(page, order); 751 else 752 __free_pages_ok(page, order, FPI_NONE); 753 } 754 755 /* 756 * Higher-order pages are called "compound pages". They are structured thusly: 757 * 758 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 759 * 760 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 761 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 762 * 763 * The first tail page's ->compound_dtor holds the offset in array of compound 764 * page destructors. See compound_page_dtors. 765 * 766 * The first tail page's ->compound_order holds the order of allocation. 767 * This usage means that zero-order pages may not be compound. 768 */ 769 770 void free_compound_page(struct page *page) 771 { 772 mem_cgroup_uncharge(page_folio(page)); 773 free_the_page(page, compound_order(page)); 774 } 775 776 static void prep_compound_head(struct page *page, unsigned int order) 777 { 778 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 779 set_compound_order(page, order); 780 atomic_set(compound_mapcount_ptr(page), -1); 781 atomic_set(subpages_mapcount_ptr(page), 0); 782 atomic_set(compound_pincount_ptr(page), 0); 783 } 784 785 static void prep_compound_tail(struct page *head, int tail_idx) 786 { 787 struct page *p = head + tail_idx; 788 789 p->mapping = TAIL_MAPPING; 790 set_compound_head(p, head); 791 set_page_private(p, 0); 792 } 793 794 void prep_compound_page(struct page *page, unsigned int order) 795 { 796 int i; 797 int nr_pages = 1 << order; 798 799 __SetPageHead(page); 800 for (i = 1; i < nr_pages; i++) 801 prep_compound_tail(page, i); 802 803 prep_compound_head(page, order); 804 } 805 806 void destroy_large_folio(struct folio *folio) 807 { 808 enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor; 809 810 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio); 811 compound_page_dtors[dtor](&folio->page); 812 } 813 814 #ifdef CONFIG_DEBUG_PAGEALLOC 815 unsigned int _debug_guardpage_minorder; 816 817 bool _debug_pagealloc_enabled_early __read_mostly 818 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 819 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 820 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 821 EXPORT_SYMBOL(_debug_pagealloc_enabled); 822 823 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 824 825 static int __init early_debug_pagealloc(char *buf) 826 { 827 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 828 } 829 early_param("debug_pagealloc", early_debug_pagealloc); 830 831 static int __init debug_guardpage_minorder_setup(char *buf) 832 { 833 unsigned long res; 834 835 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 836 pr_err("Bad debug_guardpage_minorder value\n"); 837 return 0; 838 } 839 _debug_guardpage_minorder = res; 840 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 841 return 0; 842 } 843 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 844 845 static inline bool set_page_guard(struct zone *zone, struct page *page, 846 unsigned int order, int migratetype) 847 { 848 if (!debug_guardpage_enabled()) 849 return false; 850 851 if (order >= debug_guardpage_minorder()) 852 return false; 853 854 __SetPageGuard(page); 855 INIT_LIST_HEAD(&page->buddy_list); 856 set_page_private(page, order); 857 /* Guard pages are not available for any usage */ 858 if (!is_migrate_isolate(migratetype)) 859 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 860 861 return true; 862 } 863 864 static inline void clear_page_guard(struct zone *zone, struct page *page, 865 unsigned int order, int migratetype) 866 { 867 if (!debug_guardpage_enabled()) 868 return; 869 870 __ClearPageGuard(page); 871 872 set_page_private(page, 0); 873 if (!is_migrate_isolate(migratetype)) 874 __mod_zone_freepage_state(zone, (1 << order), migratetype); 875 } 876 #else 877 static inline bool set_page_guard(struct zone *zone, struct page *page, 878 unsigned int order, int migratetype) { return false; } 879 static inline void clear_page_guard(struct zone *zone, struct page *page, 880 unsigned int order, int migratetype) {} 881 #endif 882 883 /* 884 * Enable static keys related to various memory debugging and hardening options. 885 * Some override others, and depend on early params that are evaluated in the 886 * order of appearance. So we need to first gather the full picture of what was 887 * enabled, and then make decisions. 888 */ 889 void __init init_mem_debugging_and_hardening(void) 890 { 891 bool page_poisoning_requested = false; 892 893 #ifdef CONFIG_PAGE_POISONING 894 /* 895 * Page poisoning is debug page alloc for some arches. If 896 * either of those options are enabled, enable poisoning. 897 */ 898 if (page_poisoning_enabled() || 899 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 900 debug_pagealloc_enabled())) { 901 static_branch_enable(&_page_poisoning_enabled); 902 page_poisoning_requested = true; 903 } 904 #endif 905 906 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 907 page_poisoning_requested) { 908 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 909 "will take precedence over init_on_alloc and init_on_free\n"); 910 _init_on_alloc_enabled_early = false; 911 _init_on_free_enabled_early = false; 912 } 913 914 if (_init_on_alloc_enabled_early) 915 static_branch_enable(&init_on_alloc); 916 else 917 static_branch_disable(&init_on_alloc); 918 919 if (_init_on_free_enabled_early) 920 static_branch_enable(&init_on_free); 921 else 922 static_branch_disable(&init_on_free); 923 924 if (IS_ENABLED(CONFIG_KMSAN) && 925 (_init_on_alloc_enabled_early || _init_on_free_enabled_early)) 926 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n"); 927 928 #ifdef CONFIG_DEBUG_PAGEALLOC 929 if (!debug_pagealloc_enabled()) 930 return; 931 932 static_branch_enable(&_debug_pagealloc_enabled); 933 934 if (!debug_guardpage_minorder()) 935 return; 936 937 static_branch_enable(&_debug_guardpage_enabled); 938 #endif 939 } 940 941 static inline void set_buddy_order(struct page *page, unsigned int order) 942 { 943 set_page_private(page, order); 944 __SetPageBuddy(page); 945 } 946 947 #ifdef CONFIG_COMPACTION 948 static inline struct capture_control *task_capc(struct zone *zone) 949 { 950 struct capture_control *capc = current->capture_control; 951 952 return unlikely(capc) && 953 !(current->flags & PF_KTHREAD) && 954 !capc->page && 955 capc->cc->zone == zone ? capc : NULL; 956 } 957 958 static inline bool 959 compaction_capture(struct capture_control *capc, struct page *page, 960 int order, int migratetype) 961 { 962 if (!capc || order != capc->cc->order) 963 return false; 964 965 /* Do not accidentally pollute CMA or isolated regions*/ 966 if (is_migrate_cma(migratetype) || 967 is_migrate_isolate(migratetype)) 968 return false; 969 970 /* 971 * Do not let lower order allocations pollute a movable pageblock. 972 * This might let an unmovable request use a reclaimable pageblock 973 * and vice-versa but no more than normal fallback logic which can 974 * have trouble finding a high-order free page. 975 */ 976 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 977 return false; 978 979 capc->page = page; 980 return true; 981 } 982 983 #else 984 static inline struct capture_control *task_capc(struct zone *zone) 985 { 986 return NULL; 987 } 988 989 static inline bool 990 compaction_capture(struct capture_control *capc, struct page *page, 991 int order, int migratetype) 992 { 993 return false; 994 } 995 #endif /* CONFIG_COMPACTION */ 996 997 /* Used for pages not on another list */ 998 static inline void add_to_free_list(struct page *page, struct zone *zone, 999 unsigned int order, int migratetype) 1000 { 1001 struct free_area *area = &zone->free_area[order]; 1002 1003 list_add(&page->buddy_list, &area->free_list[migratetype]); 1004 area->nr_free++; 1005 } 1006 1007 /* Used for pages not on another list */ 1008 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 1009 unsigned int order, int migratetype) 1010 { 1011 struct free_area *area = &zone->free_area[order]; 1012 1013 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 1014 area->nr_free++; 1015 } 1016 1017 /* 1018 * Used for pages which are on another list. Move the pages to the tail 1019 * of the list - so the moved pages won't immediately be considered for 1020 * allocation again (e.g., optimization for memory onlining). 1021 */ 1022 static inline void move_to_free_list(struct page *page, struct zone *zone, 1023 unsigned int order, int migratetype) 1024 { 1025 struct free_area *area = &zone->free_area[order]; 1026 1027 list_move_tail(&page->buddy_list, &area->free_list[migratetype]); 1028 } 1029 1030 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 1031 unsigned int order) 1032 { 1033 /* clear reported state and update reported page count */ 1034 if (page_reported(page)) 1035 __ClearPageReported(page); 1036 1037 list_del(&page->buddy_list); 1038 __ClearPageBuddy(page); 1039 set_page_private(page, 0); 1040 zone->free_area[order].nr_free--; 1041 } 1042 1043 /* 1044 * If this is not the largest possible page, check if the buddy 1045 * of the next-highest order is free. If it is, it's possible 1046 * that pages are being freed that will coalesce soon. In case, 1047 * that is happening, add the free page to the tail of the list 1048 * so it's less likely to be used soon and more likely to be merged 1049 * as a higher order page 1050 */ 1051 static inline bool 1052 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 1053 struct page *page, unsigned int order) 1054 { 1055 unsigned long higher_page_pfn; 1056 struct page *higher_page; 1057 1058 if (order >= MAX_ORDER - 2) 1059 return false; 1060 1061 higher_page_pfn = buddy_pfn & pfn; 1062 higher_page = page + (higher_page_pfn - pfn); 1063 1064 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 1065 NULL) != NULL; 1066 } 1067 1068 /* 1069 * Freeing function for a buddy system allocator. 1070 * 1071 * The concept of a buddy system is to maintain direct-mapped table 1072 * (containing bit values) for memory blocks of various "orders". 1073 * The bottom level table contains the map for the smallest allocatable 1074 * units of memory (here, pages), and each level above it describes 1075 * pairs of units from the levels below, hence, "buddies". 1076 * At a high level, all that happens here is marking the table entry 1077 * at the bottom level available, and propagating the changes upward 1078 * as necessary, plus some accounting needed to play nicely with other 1079 * parts of the VM system. 1080 * At each level, we keep a list of pages, which are heads of continuous 1081 * free pages of length of (1 << order) and marked with PageBuddy. 1082 * Page's order is recorded in page_private(page) field. 1083 * So when we are allocating or freeing one, we can derive the state of the 1084 * other. That is, if we allocate a small block, and both were 1085 * free, the remainder of the region must be split into blocks. 1086 * If a block is freed, and its buddy is also free, then this 1087 * triggers coalescing into a block of larger size. 1088 * 1089 * -- nyc 1090 */ 1091 1092 static inline void __free_one_page(struct page *page, 1093 unsigned long pfn, 1094 struct zone *zone, unsigned int order, 1095 int migratetype, fpi_t fpi_flags) 1096 { 1097 struct capture_control *capc = task_capc(zone); 1098 unsigned long buddy_pfn = 0; 1099 unsigned long combined_pfn; 1100 struct page *buddy; 1101 bool to_tail; 1102 1103 VM_BUG_ON(!zone_is_initialized(zone)); 1104 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1105 1106 VM_BUG_ON(migratetype == -1); 1107 if (likely(!is_migrate_isolate(migratetype))) 1108 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1109 1110 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1111 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1112 1113 while (order < MAX_ORDER - 1) { 1114 if (compaction_capture(capc, page, order, migratetype)) { 1115 __mod_zone_freepage_state(zone, -(1 << order), 1116 migratetype); 1117 return; 1118 } 1119 1120 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 1121 if (!buddy) 1122 goto done_merging; 1123 1124 if (unlikely(order >= pageblock_order)) { 1125 /* 1126 * We want to prevent merge between freepages on pageblock 1127 * without fallbacks and normal pageblock. Without this, 1128 * pageblock isolation could cause incorrect freepage or CMA 1129 * accounting or HIGHATOMIC accounting. 1130 */ 1131 int buddy_mt = get_pageblock_migratetype(buddy); 1132 1133 if (migratetype != buddy_mt 1134 && (!migratetype_is_mergeable(migratetype) || 1135 !migratetype_is_mergeable(buddy_mt))) 1136 goto done_merging; 1137 } 1138 1139 /* 1140 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1141 * merge with it and move up one order. 1142 */ 1143 if (page_is_guard(buddy)) 1144 clear_page_guard(zone, buddy, order, migratetype); 1145 else 1146 del_page_from_free_list(buddy, zone, order); 1147 combined_pfn = buddy_pfn & pfn; 1148 page = page + (combined_pfn - pfn); 1149 pfn = combined_pfn; 1150 order++; 1151 } 1152 1153 done_merging: 1154 set_buddy_order(page, order); 1155 1156 if (fpi_flags & FPI_TO_TAIL) 1157 to_tail = true; 1158 else if (is_shuffle_order(order)) 1159 to_tail = shuffle_pick_tail(); 1160 else 1161 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1162 1163 if (to_tail) 1164 add_to_free_list_tail(page, zone, order, migratetype); 1165 else 1166 add_to_free_list(page, zone, order, migratetype); 1167 1168 /* Notify page reporting subsystem of freed page */ 1169 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1170 page_reporting_notify_free(order); 1171 } 1172 1173 /** 1174 * split_free_page() -- split a free page at split_pfn_offset 1175 * @free_page: the original free page 1176 * @order: the order of the page 1177 * @split_pfn_offset: split offset within the page 1178 * 1179 * Return -ENOENT if the free page is changed, otherwise 0 1180 * 1181 * It is used when the free page crosses two pageblocks with different migratetypes 1182 * at split_pfn_offset within the page. The split free page will be put into 1183 * separate migratetype lists afterwards. Otherwise, the function achieves 1184 * nothing. 1185 */ 1186 int split_free_page(struct page *free_page, 1187 unsigned int order, unsigned long split_pfn_offset) 1188 { 1189 struct zone *zone = page_zone(free_page); 1190 unsigned long free_page_pfn = page_to_pfn(free_page); 1191 unsigned long pfn; 1192 unsigned long flags; 1193 int free_page_order; 1194 int mt; 1195 int ret = 0; 1196 1197 if (split_pfn_offset == 0) 1198 return ret; 1199 1200 spin_lock_irqsave(&zone->lock, flags); 1201 1202 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { 1203 ret = -ENOENT; 1204 goto out; 1205 } 1206 1207 mt = get_pageblock_migratetype(free_page); 1208 if (likely(!is_migrate_isolate(mt))) 1209 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1210 1211 del_page_from_free_list(free_page, zone, order); 1212 for (pfn = free_page_pfn; 1213 pfn < free_page_pfn + (1UL << order);) { 1214 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); 1215 1216 free_page_order = min_t(unsigned int, 1217 pfn ? __ffs(pfn) : order, 1218 __fls(split_pfn_offset)); 1219 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, 1220 mt, FPI_NONE); 1221 pfn += 1UL << free_page_order; 1222 split_pfn_offset -= (1UL << free_page_order); 1223 /* we have done the first part, now switch to second part */ 1224 if (split_pfn_offset == 0) 1225 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); 1226 } 1227 out: 1228 spin_unlock_irqrestore(&zone->lock, flags); 1229 return ret; 1230 } 1231 /* 1232 * A bad page could be due to a number of fields. Instead of multiple branches, 1233 * try and check multiple fields with one check. The caller must do a detailed 1234 * check if necessary. 1235 */ 1236 static inline bool page_expected_state(struct page *page, 1237 unsigned long check_flags) 1238 { 1239 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1240 return false; 1241 1242 if (unlikely((unsigned long)page->mapping | 1243 page_ref_count(page) | 1244 #ifdef CONFIG_MEMCG 1245 page->memcg_data | 1246 #endif 1247 (page->flags & check_flags))) 1248 return false; 1249 1250 return true; 1251 } 1252 1253 static const char *page_bad_reason(struct page *page, unsigned long flags) 1254 { 1255 const char *bad_reason = NULL; 1256 1257 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1258 bad_reason = "nonzero mapcount"; 1259 if (unlikely(page->mapping != NULL)) 1260 bad_reason = "non-NULL mapping"; 1261 if (unlikely(page_ref_count(page) != 0)) 1262 bad_reason = "nonzero _refcount"; 1263 if (unlikely(page->flags & flags)) { 1264 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1265 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1266 else 1267 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1268 } 1269 #ifdef CONFIG_MEMCG 1270 if (unlikely(page->memcg_data)) 1271 bad_reason = "page still charged to cgroup"; 1272 #endif 1273 return bad_reason; 1274 } 1275 1276 static void free_page_is_bad_report(struct page *page) 1277 { 1278 bad_page(page, 1279 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1280 } 1281 1282 static inline bool free_page_is_bad(struct page *page) 1283 { 1284 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1285 return false; 1286 1287 /* Something has gone sideways, find it */ 1288 free_page_is_bad_report(page); 1289 return true; 1290 } 1291 1292 static int free_tail_pages_check(struct page *head_page, struct page *page) 1293 { 1294 int ret = 1; 1295 1296 /* 1297 * We rely page->lru.next never has bit 0 set, unless the page 1298 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1299 */ 1300 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1301 1302 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1303 ret = 0; 1304 goto out; 1305 } 1306 switch (page - head_page) { 1307 case 1: 1308 /* the first tail page: these may be in place of ->mapping */ 1309 if (unlikely(head_compound_mapcount(head_page))) { 1310 bad_page(page, "nonzero compound_mapcount"); 1311 goto out; 1312 } 1313 if (unlikely(atomic_read(subpages_mapcount_ptr(head_page)))) { 1314 bad_page(page, "nonzero subpages_mapcount"); 1315 goto out; 1316 } 1317 if (unlikely(head_compound_pincount(head_page))) { 1318 bad_page(page, "nonzero compound_pincount"); 1319 goto out; 1320 } 1321 break; 1322 case 2: 1323 /* 1324 * the second tail page: ->mapping is 1325 * deferred_list.next -- ignore value. 1326 */ 1327 break; 1328 default: 1329 if (page->mapping != TAIL_MAPPING) { 1330 bad_page(page, "corrupted mapping in tail page"); 1331 goto out; 1332 } 1333 break; 1334 } 1335 if (unlikely(!PageTail(page))) { 1336 bad_page(page, "PageTail not set"); 1337 goto out; 1338 } 1339 if (unlikely(compound_head(page) != head_page)) { 1340 bad_page(page, "compound_head not consistent"); 1341 goto out; 1342 } 1343 ret = 0; 1344 out: 1345 page->mapping = NULL; 1346 clear_compound_head(page); 1347 return ret; 1348 } 1349 1350 /* 1351 * Skip KASAN memory poisoning when either: 1352 * 1353 * 1. Deferred memory initialization has not yet completed, 1354 * see the explanation below. 1355 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON, 1356 * see the comment next to it. 1357 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON, 1358 * see the comment next to it. 1359 * 1360 * Poisoning pages during deferred memory init will greatly lengthen the 1361 * process and cause problem in large memory systems as the deferred pages 1362 * initialization is done with interrupt disabled. 1363 * 1364 * Assuming that there will be no reference to those newly initialized 1365 * pages before they are ever allocated, this should have no effect on 1366 * KASAN memory tracking as the poison will be properly inserted at page 1367 * allocation time. The only corner case is when pages are allocated by 1368 * on-demand allocation and then freed again before the deferred pages 1369 * initialization is done, but this is not likely to happen. 1370 */ 1371 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 1372 { 1373 return deferred_pages_enabled() || 1374 (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 1375 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 1376 PageSkipKASanPoison(page); 1377 } 1378 1379 static void kernel_init_pages(struct page *page, int numpages) 1380 { 1381 int i; 1382 1383 /* s390's use of memset() could override KASAN redzones. */ 1384 kasan_disable_current(); 1385 for (i = 0; i < numpages; i++) 1386 clear_highpage_kasan_tagged(page + i); 1387 kasan_enable_current(); 1388 } 1389 1390 static __always_inline bool free_pages_prepare(struct page *page, 1391 unsigned int order, bool check_free, fpi_t fpi_flags) 1392 { 1393 int bad = 0; 1394 bool init = want_init_on_free(); 1395 1396 VM_BUG_ON_PAGE(PageTail(page), page); 1397 1398 trace_mm_page_free(page, order); 1399 kmsan_free_page(page, order); 1400 1401 if (unlikely(PageHWPoison(page)) && !order) { 1402 /* 1403 * Do not let hwpoison pages hit pcplists/buddy 1404 * Untie memcg state and reset page's owner 1405 */ 1406 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1407 __memcg_kmem_uncharge_page(page, order); 1408 reset_page_owner(page, order); 1409 page_table_check_free(page, order); 1410 return false; 1411 } 1412 1413 /* 1414 * Check tail pages before head page information is cleared to 1415 * avoid checking PageCompound for order-0 pages. 1416 */ 1417 if (unlikely(order)) { 1418 bool compound = PageCompound(page); 1419 int i; 1420 1421 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1422 1423 if (compound) 1424 ClearPageHasHWPoisoned(page); 1425 for (i = 1; i < (1 << order); i++) { 1426 if (compound) 1427 bad += free_tail_pages_check(page, page + i); 1428 if (unlikely(free_page_is_bad(page + i))) { 1429 bad++; 1430 continue; 1431 } 1432 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1433 } 1434 } 1435 if (PageMappingFlags(page)) 1436 page->mapping = NULL; 1437 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1438 __memcg_kmem_uncharge_page(page, order); 1439 if (check_free && free_page_is_bad(page)) 1440 bad++; 1441 if (bad) 1442 return false; 1443 1444 page_cpupid_reset_last(page); 1445 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1446 reset_page_owner(page, order); 1447 page_table_check_free(page, order); 1448 1449 if (!PageHighMem(page)) { 1450 debug_check_no_locks_freed(page_address(page), 1451 PAGE_SIZE << order); 1452 debug_check_no_obj_freed(page_address(page), 1453 PAGE_SIZE << order); 1454 } 1455 1456 kernel_poison_pages(page, 1 << order); 1457 1458 /* 1459 * As memory initialization might be integrated into KASAN, 1460 * KASAN poisoning and memory initialization code must be 1461 * kept together to avoid discrepancies in behavior. 1462 * 1463 * With hardware tag-based KASAN, memory tags must be set before the 1464 * page becomes unavailable via debug_pagealloc or arch_free_page. 1465 */ 1466 if (!should_skip_kasan_poison(page, fpi_flags)) { 1467 kasan_poison_pages(page, order, init); 1468 1469 /* Memory is already initialized if KASAN did it internally. */ 1470 if (kasan_has_integrated_init()) 1471 init = false; 1472 } 1473 if (init) 1474 kernel_init_pages(page, 1 << order); 1475 1476 /* 1477 * arch_free_page() can make the page's contents inaccessible. s390 1478 * does this. So nothing which can access the page's contents should 1479 * happen after this. 1480 */ 1481 arch_free_page(page, order); 1482 1483 debug_pagealloc_unmap_pages(page, 1 << order); 1484 1485 return true; 1486 } 1487 1488 #ifdef CONFIG_DEBUG_VM 1489 /* 1490 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1491 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1492 * moved from pcp lists to free lists. 1493 */ 1494 static bool free_pcp_prepare(struct page *page, unsigned int order) 1495 { 1496 return free_pages_prepare(page, order, true, FPI_NONE); 1497 } 1498 1499 /* return true if this page has an inappropriate state */ 1500 static bool bulkfree_pcp_prepare(struct page *page) 1501 { 1502 if (debug_pagealloc_enabled_static()) 1503 return free_page_is_bad(page); 1504 else 1505 return false; 1506 } 1507 #else 1508 /* 1509 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1510 * moving from pcp lists to free list in order to reduce overhead. With 1511 * debug_pagealloc enabled, they are checked also immediately when being freed 1512 * to the pcp lists. 1513 */ 1514 static bool free_pcp_prepare(struct page *page, unsigned int order) 1515 { 1516 if (debug_pagealloc_enabled_static()) 1517 return free_pages_prepare(page, order, true, FPI_NONE); 1518 else 1519 return free_pages_prepare(page, order, false, FPI_NONE); 1520 } 1521 1522 static bool bulkfree_pcp_prepare(struct page *page) 1523 { 1524 return free_page_is_bad(page); 1525 } 1526 #endif /* CONFIG_DEBUG_VM */ 1527 1528 /* 1529 * Frees a number of pages from the PCP lists 1530 * Assumes all pages on list are in same zone. 1531 * count is the number of pages to free. 1532 */ 1533 static void free_pcppages_bulk(struct zone *zone, int count, 1534 struct per_cpu_pages *pcp, 1535 int pindex) 1536 { 1537 unsigned long flags; 1538 int min_pindex = 0; 1539 int max_pindex = NR_PCP_LISTS - 1; 1540 unsigned int order; 1541 bool isolated_pageblocks; 1542 struct page *page; 1543 1544 /* 1545 * Ensure proper count is passed which otherwise would stuck in the 1546 * below while (list_empty(list)) loop. 1547 */ 1548 count = min(pcp->count, count); 1549 1550 /* Ensure requested pindex is drained first. */ 1551 pindex = pindex - 1; 1552 1553 spin_lock_irqsave(&zone->lock, flags); 1554 isolated_pageblocks = has_isolate_pageblock(zone); 1555 1556 while (count > 0) { 1557 struct list_head *list; 1558 int nr_pages; 1559 1560 /* Remove pages from lists in a round-robin fashion. */ 1561 do { 1562 if (++pindex > max_pindex) 1563 pindex = min_pindex; 1564 list = &pcp->lists[pindex]; 1565 if (!list_empty(list)) 1566 break; 1567 1568 if (pindex == max_pindex) 1569 max_pindex--; 1570 if (pindex == min_pindex) 1571 min_pindex++; 1572 } while (1); 1573 1574 order = pindex_to_order(pindex); 1575 nr_pages = 1 << order; 1576 do { 1577 int mt; 1578 1579 page = list_last_entry(list, struct page, pcp_list); 1580 mt = get_pcppage_migratetype(page); 1581 1582 /* must delete to avoid corrupting pcp list */ 1583 list_del(&page->pcp_list); 1584 count -= nr_pages; 1585 pcp->count -= nr_pages; 1586 1587 if (bulkfree_pcp_prepare(page)) 1588 continue; 1589 1590 /* MIGRATE_ISOLATE page should not go to pcplists */ 1591 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1592 /* Pageblock could have been isolated meanwhile */ 1593 if (unlikely(isolated_pageblocks)) 1594 mt = get_pageblock_migratetype(page); 1595 1596 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1597 trace_mm_page_pcpu_drain(page, order, mt); 1598 } while (count > 0 && !list_empty(list)); 1599 } 1600 1601 spin_unlock_irqrestore(&zone->lock, flags); 1602 } 1603 1604 static void free_one_page(struct zone *zone, 1605 struct page *page, unsigned long pfn, 1606 unsigned int order, 1607 int migratetype, fpi_t fpi_flags) 1608 { 1609 unsigned long flags; 1610 1611 spin_lock_irqsave(&zone->lock, flags); 1612 if (unlikely(has_isolate_pageblock(zone) || 1613 is_migrate_isolate(migratetype))) { 1614 migratetype = get_pfnblock_migratetype(page, pfn); 1615 } 1616 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1617 spin_unlock_irqrestore(&zone->lock, flags); 1618 } 1619 1620 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1621 unsigned long zone, int nid) 1622 { 1623 mm_zero_struct_page(page); 1624 set_page_links(page, zone, nid, pfn); 1625 init_page_count(page); 1626 page_mapcount_reset(page); 1627 page_cpupid_reset_last(page); 1628 page_kasan_tag_reset(page); 1629 1630 INIT_LIST_HEAD(&page->lru); 1631 #ifdef WANT_PAGE_VIRTUAL 1632 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1633 if (!is_highmem_idx(zone)) 1634 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1635 #endif 1636 } 1637 1638 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1639 static void __meminit init_reserved_page(unsigned long pfn) 1640 { 1641 pg_data_t *pgdat; 1642 int nid, zid; 1643 1644 if (!early_page_uninitialised(pfn)) 1645 return; 1646 1647 nid = early_pfn_to_nid(pfn); 1648 pgdat = NODE_DATA(nid); 1649 1650 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1651 struct zone *zone = &pgdat->node_zones[zid]; 1652 1653 if (zone_spans_pfn(zone, pfn)) 1654 break; 1655 } 1656 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1657 } 1658 #else 1659 static inline void init_reserved_page(unsigned long pfn) 1660 { 1661 } 1662 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1663 1664 /* 1665 * Initialised pages do not have PageReserved set. This function is 1666 * called for each range allocated by the bootmem allocator and 1667 * marks the pages PageReserved. The remaining valid pages are later 1668 * sent to the buddy page allocator. 1669 */ 1670 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1671 { 1672 unsigned long start_pfn = PFN_DOWN(start); 1673 unsigned long end_pfn = PFN_UP(end); 1674 1675 for (; start_pfn < end_pfn; start_pfn++) { 1676 if (pfn_valid(start_pfn)) { 1677 struct page *page = pfn_to_page(start_pfn); 1678 1679 init_reserved_page(start_pfn); 1680 1681 /* Avoid false-positive PageTail() */ 1682 INIT_LIST_HEAD(&page->lru); 1683 1684 /* 1685 * no need for atomic set_bit because the struct 1686 * page is not visible yet so nobody should 1687 * access it yet. 1688 */ 1689 __SetPageReserved(page); 1690 } 1691 } 1692 } 1693 1694 static void __free_pages_ok(struct page *page, unsigned int order, 1695 fpi_t fpi_flags) 1696 { 1697 unsigned long flags; 1698 int migratetype; 1699 unsigned long pfn = page_to_pfn(page); 1700 struct zone *zone = page_zone(page); 1701 1702 if (!free_pages_prepare(page, order, true, fpi_flags)) 1703 return; 1704 1705 migratetype = get_pfnblock_migratetype(page, pfn); 1706 1707 spin_lock_irqsave(&zone->lock, flags); 1708 if (unlikely(has_isolate_pageblock(zone) || 1709 is_migrate_isolate(migratetype))) { 1710 migratetype = get_pfnblock_migratetype(page, pfn); 1711 } 1712 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1713 spin_unlock_irqrestore(&zone->lock, flags); 1714 1715 __count_vm_events(PGFREE, 1 << order); 1716 } 1717 1718 void __free_pages_core(struct page *page, unsigned int order) 1719 { 1720 unsigned int nr_pages = 1 << order; 1721 struct page *p = page; 1722 unsigned int loop; 1723 1724 /* 1725 * When initializing the memmap, __init_single_page() sets the refcount 1726 * of all pages to 1 ("allocated"/"not free"). We have to set the 1727 * refcount of all involved pages to 0. 1728 */ 1729 prefetchw(p); 1730 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1731 prefetchw(p + 1); 1732 __ClearPageReserved(p); 1733 set_page_count(p, 0); 1734 } 1735 __ClearPageReserved(p); 1736 set_page_count(p, 0); 1737 1738 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1739 1740 /* 1741 * Bypass PCP and place fresh pages right to the tail, primarily 1742 * relevant for memory onlining. 1743 */ 1744 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1745 } 1746 1747 #ifdef CONFIG_NUMA 1748 1749 /* 1750 * During memory init memblocks map pfns to nids. The search is expensive and 1751 * this caches recent lookups. The implementation of __early_pfn_to_nid 1752 * treats start/end as pfns. 1753 */ 1754 struct mminit_pfnnid_cache { 1755 unsigned long last_start; 1756 unsigned long last_end; 1757 int last_nid; 1758 }; 1759 1760 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1761 1762 /* 1763 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1764 */ 1765 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1766 struct mminit_pfnnid_cache *state) 1767 { 1768 unsigned long start_pfn, end_pfn; 1769 int nid; 1770 1771 if (state->last_start <= pfn && pfn < state->last_end) 1772 return state->last_nid; 1773 1774 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1775 if (nid != NUMA_NO_NODE) { 1776 state->last_start = start_pfn; 1777 state->last_end = end_pfn; 1778 state->last_nid = nid; 1779 } 1780 1781 return nid; 1782 } 1783 1784 int __meminit early_pfn_to_nid(unsigned long pfn) 1785 { 1786 static DEFINE_SPINLOCK(early_pfn_lock); 1787 int nid; 1788 1789 spin_lock(&early_pfn_lock); 1790 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1791 if (nid < 0) 1792 nid = first_online_node; 1793 spin_unlock(&early_pfn_lock); 1794 1795 return nid; 1796 } 1797 #endif /* CONFIG_NUMA */ 1798 1799 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1800 unsigned int order) 1801 { 1802 if (early_page_uninitialised(pfn)) 1803 return; 1804 if (!kmsan_memblock_free_pages(page, order)) { 1805 /* KMSAN will take care of these pages. */ 1806 return; 1807 } 1808 __free_pages_core(page, order); 1809 } 1810 1811 /* 1812 * Check that the whole (or subset of) a pageblock given by the interval of 1813 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1814 * with the migration of free compaction scanner. 1815 * 1816 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1817 * 1818 * It's possible on some configurations to have a setup like node0 node1 node0 1819 * i.e. it's possible that all pages within a zones range of pages do not 1820 * belong to a single zone. We assume that a border between node0 and node1 1821 * can occur within a single pageblock, but not a node0 node1 node0 1822 * interleaving within a single pageblock. It is therefore sufficient to check 1823 * the first and last page of a pageblock and avoid checking each individual 1824 * page in a pageblock. 1825 */ 1826 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1827 unsigned long end_pfn, struct zone *zone) 1828 { 1829 struct page *start_page; 1830 struct page *end_page; 1831 1832 /* end_pfn is one past the range we are checking */ 1833 end_pfn--; 1834 1835 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1836 return NULL; 1837 1838 start_page = pfn_to_online_page(start_pfn); 1839 if (!start_page) 1840 return NULL; 1841 1842 if (page_zone(start_page) != zone) 1843 return NULL; 1844 1845 end_page = pfn_to_page(end_pfn); 1846 1847 /* This gives a shorter code than deriving page_zone(end_page) */ 1848 if (page_zone_id(start_page) != page_zone_id(end_page)) 1849 return NULL; 1850 1851 return start_page; 1852 } 1853 1854 void set_zone_contiguous(struct zone *zone) 1855 { 1856 unsigned long block_start_pfn = zone->zone_start_pfn; 1857 unsigned long block_end_pfn; 1858 1859 block_end_pfn = pageblock_end_pfn(block_start_pfn); 1860 for (; block_start_pfn < zone_end_pfn(zone); 1861 block_start_pfn = block_end_pfn, 1862 block_end_pfn += pageblock_nr_pages) { 1863 1864 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1865 1866 if (!__pageblock_pfn_to_page(block_start_pfn, 1867 block_end_pfn, zone)) 1868 return; 1869 cond_resched(); 1870 } 1871 1872 /* We confirm that there is no hole */ 1873 zone->contiguous = true; 1874 } 1875 1876 void clear_zone_contiguous(struct zone *zone) 1877 { 1878 zone->contiguous = false; 1879 } 1880 1881 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1882 static void __init deferred_free_range(unsigned long pfn, 1883 unsigned long nr_pages) 1884 { 1885 struct page *page; 1886 unsigned long i; 1887 1888 if (!nr_pages) 1889 return; 1890 1891 page = pfn_to_page(pfn); 1892 1893 /* Free a large naturally-aligned chunk if possible */ 1894 if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) { 1895 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1896 __free_pages_core(page, pageblock_order); 1897 return; 1898 } 1899 1900 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1901 if (pageblock_aligned(pfn)) 1902 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1903 __free_pages_core(page, 0); 1904 } 1905 } 1906 1907 /* Completion tracking for deferred_init_memmap() threads */ 1908 static atomic_t pgdat_init_n_undone __initdata; 1909 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1910 1911 static inline void __init pgdat_init_report_one_done(void) 1912 { 1913 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1914 complete(&pgdat_init_all_done_comp); 1915 } 1916 1917 /* 1918 * Returns true if page needs to be initialized or freed to buddy allocator. 1919 * 1920 * We check if a current large page is valid by only checking the validity 1921 * of the head pfn. 1922 */ 1923 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1924 { 1925 if (pageblock_aligned(pfn) && !pfn_valid(pfn)) 1926 return false; 1927 return true; 1928 } 1929 1930 /* 1931 * Free pages to buddy allocator. Try to free aligned pages in 1932 * pageblock_nr_pages sizes. 1933 */ 1934 static void __init deferred_free_pages(unsigned long pfn, 1935 unsigned long end_pfn) 1936 { 1937 unsigned long nr_free = 0; 1938 1939 for (; pfn < end_pfn; pfn++) { 1940 if (!deferred_pfn_valid(pfn)) { 1941 deferred_free_range(pfn - nr_free, nr_free); 1942 nr_free = 0; 1943 } else if (pageblock_aligned(pfn)) { 1944 deferred_free_range(pfn - nr_free, nr_free); 1945 nr_free = 1; 1946 } else { 1947 nr_free++; 1948 } 1949 } 1950 /* Free the last block of pages to allocator */ 1951 deferred_free_range(pfn - nr_free, nr_free); 1952 } 1953 1954 /* 1955 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1956 * by performing it only once every pageblock_nr_pages. 1957 * Return number of pages initialized. 1958 */ 1959 static unsigned long __init deferred_init_pages(struct zone *zone, 1960 unsigned long pfn, 1961 unsigned long end_pfn) 1962 { 1963 int nid = zone_to_nid(zone); 1964 unsigned long nr_pages = 0; 1965 int zid = zone_idx(zone); 1966 struct page *page = NULL; 1967 1968 for (; pfn < end_pfn; pfn++) { 1969 if (!deferred_pfn_valid(pfn)) { 1970 page = NULL; 1971 continue; 1972 } else if (!page || pageblock_aligned(pfn)) { 1973 page = pfn_to_page(pfn); 1974 } else { 1975 page++; 1976 } 1977 __init_single_page(page, pfn, zid, nid); 1978 nr_pages++; 1979 } 1980 return (nr_pages); 1981 } 1982 1983 /* 1984 * This function is meant to pre-load the iterator for the zone init. 1985 * Specifically it walks through the ranges until we are caught up to the 1986 * first_init_pfn value and exits there. If we never encounter the value we 1987 * return false indicating there are no valid ranges left. 1988 */ 1989 static bool __init 1990 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1991 unsigned long *spfn, unsigned long *epfn, 1992 unsigned long first_init_pfn) 1993 { 1994 u64 j; 1995 1996 /* 1997 * Start out by walking through the ranges in this zone that have 1998 * already been initialized. We don't need to do anything with them 1999 * so we just need to flush them out of the system. 2000 */ 2001 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 2002 if (*epfn <= first_init_pfn) 2003 continue; 2004 if (*spfn < first_init_pfn) 2005 *spfn = first_init_pfn; 2006 *i = j; 2007 return true; 2008 } 2009 2010 return false; 2011 } 2012 2013 /* 2014 * Initialize and free pages. We do it in two loops: first we initialize 2015 * struct page, then free to buddy allocator, because while we are 2016 * freeing pages we can access pages that are ahead (computing buddy 2017 * page in __free_one_page()). 2018 * 2019 * In order to try and keep some memory in the cache we have the loop 2020 * broken along max page order boundaries. This way we will not cause 2021 * any issues with the buddy page computation. 2022 */ 2023 static unsigned long __init 2024 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 2025 unsigned long *end_pfn) 2026 { 2027 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 2028 unsigned long spfn = *start_pfn, epfn = *end_pfn; 2029 unsigned long nr_pages = 0; 2030 u64 j = *i; 2031 2032 /* First we loop through and initialize the page values */ 2033 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 2034 unsigned long t; 2035 2036 if (mo_pfn <= *start_pfn) 2037 break; 2038 2039 t = min(mo_pfn, *end_pfn); 2040 nr_pages += deferred_init_pages(zone, *start_pfn, t); 2041 2042 if (mo_pfn < *end_pfn) { 2043 *start_pfn = mo_pfn; 2044 break; 2045 } 2046 } 2047 2048 /* Reset values and now loop through freeing pages as needed */ 2049 swap(j, *i); 2050 2051 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 2052 unsigned long t; 2053 2054 if (mo_pfn <= spfn) 2055 break; 2056 2057 t = min(mo_pfn, epfn); 2058 deferred_free_pages(spfn, t); 2059 2060 if (mo_pfn <= epfn) 2061 break; 2062 } 2063 2064 return nr_pages; 2065 } 2066 2067 static void __init 2068 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2069 void *arg) 2070 { 2071 unsigned long spfn, epfn; 2072 struct zone *zone = arg; 2073 u64 i; 2074 2075 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2076 2077 /* 2078 * Initialize and free pages in MAX_ORDER sized increments so that we 2079 * can avoid introducing any issues with the buddy allocator. 2080 */ 2081 while (spfn < end_pfn) { 2082 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2083 cond_resched(); 2084 } 2085 } 2086 2087 /* An arch may override for more concurrency. */ 2088 __weak int __init 2089 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2090 { 2091 return 1; 2092 } 2093 2094 /* Initialise remaining memory on a node */ 2095 static int __init deferred_init_memmap(void *data) 2096 { 2097 pg_data_t *pgdat = data; 2098 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2099 unsigned long spfn = 0, epfn = 0; 2100 unsigned long first_init_pfn, flags; 2101 unsigned long start = jiffies; 2102 struct zone *zone; 2103 int zid, max_threads; 2104 u64 i; 2105 2106 /* Bind memory initialisation thread to a local node if possible */ 2107 if (!cpumask_empty(cpumask)) 2108 set_cpus_allowed_ptr(current, cpumask); 2109 2110 pgdat_resize_lock(pgdat, &flags); 2111 first_init_pfn = pgdat->first_deferred_pfn; 2112 if (first_init_pfn == ULONG_MAX) { 2113 pgdat_resize_unlock(pgdat, &flags); 2114 pgdat_init_report_one_done(); 2115 return 0; 2116 } 2117 2118 /* Sanity check boundaries */ 2119 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2120 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2121 pgdat->first_deferred_pfn = ULONG_MAX; 2122 2123 /* 2124 * Once we unlock here, the zone cannot be grown anymore, thus if an 2125 * interrupt thread must allocate this early in boot, zone must be 2126 * pre-grown prior to start of deferred page initialization. 2127 */ 2128 pgdat_resize_unlock(pgdat, &flags); 2129 2130 /* Only the highest zone is deferred so find it */ 2131 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2132 zone = pgdat->node_zones + zid; 2133 if (first_init_pfn < zone_end_pfn(zone)) 2134 break; 2135 } 2136 2137 /* If the zone is empty somebody else may have cleared out the zone */ 2138 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2139 first_init_pfn)) 2140 goto zone_empty; 2141 2142 max_threads = deferred_page_init_max_threads(cpumask); 2143 2144 while (spfn < epfn) { 2145 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2146 struct padata_mt_job job = { 2147 .thread_fn = deferred_init_memmap_chunk, 2148 .fn_arg = zone, 2149 .start = spfn, 2150 .size = epfn_align - spfn, 2151 .align = PAGES_PER_SECTION, 2152 .min_chunk = PAGES_PER_SECTION, 2153 .max_threads = max_threads, 2154 }; 2155 2156 padata_do_multithreaded(&job); 2157 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2158 epfn_align); 2159 } 2160 zone_empty: 2161 /* Sanity check that the next zone really is unpopulated */ 2162 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2163 2164 pr_info("node %d deferred pages initialised in %ums\n", 2165 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2166 2167 pgdat_init_report_one_done(); 2168 return 0; 2169 } 2170 2171 /* 2172 * If this zone has deferred pages, try to grow it by initializing enough 2173 * deferred pages to satisfy the allocation specified by order, rounded up to 2174 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2175 * of SECTION_SIZE bytes by initializing struct pages in increments of 2176 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2177 * 2178 * Return true when zone was grown, otherwise return false. We return true even 2179 * when we grow less than requested, to let the caller decide if there are 2180 * enough pages to satisfy the allocation. 2181 * 2182 * Note: We use noinline because this function is needed only during boot, and 2183 * it is called from a __ref function _deferred_grow_zone. This way we are 2184 * making sure that it is not inlined into permanent text section. 2185 */ 2186 static noinline bool __init 2187 deferred_grow_zone(struct zone *zone, unsigned int order) 2188 { 2189 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2190 pg_data_t *pgdat = zone->zone_pgdat; 2191 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2192 unsigned long spfn, epfn, flags; 2193 unsigned long nr_pages = 0; 2194 u64 i; 2195 2196 /* Only the last zone may have deferred pages */ 2197 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2198 return false; 2199 2200 pgdat_resize_lock(pgdat, &flags); 2201 2202 /* 2203 * If someone grew this zone while we were waiting for spinlock, return 2204 * true, as there might be enough pages already. 2205 */ 2206 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2207 pgdat_resize_unlock(pgdat, &flags); 2208 return true; 2209 } 2210 2211 /* If the zone is empty somebody else may have cleared out the zone */ 2212 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2213 first_deferred_pfn)) { 2214 pgdat->first_deferred_pfn = ULONG_MAX; 2215 pgdat_resize_unlock(pgdat, &flags); 2216 /* Retry only once. */ 2217 return first_deferred_pfn != ULONG_MAX; 2218 } 2219 2220 /* 2221 * Initialize and free pages in MAX_ORDER sized increments so 2222 * that we can avoid introducing any issues with the buddy 2223 * allocator. 2224 */ 2225 while (spfn < epfn) { 2226 /* update our first deferred PFN for this section */ 2227 first_deferred_pfn = spfn; 2228 2229 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2230 touch_nmi_watchdog(); 2231 2232 /* We should only stop along section boundaries */ 2233 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2234 continue; 2235 2236 /* If our quota has been met we can stop here */ 2237 if (nr_pages >= nr_pages_needed) 2238 break; 2239 } 2240 2241 pgdat->first_deferred_pfn = spfn; 2242 pgdat_resize_unlock(pgdat, &flags); 2243 2244 return nr_pages > 0; 2245 } 2246 2247 /* 2248 * deferred_grow_zone() is __init, but it is called from 2249 * get_page_from_freelist() during early boot until deferred_pages permanently 2250 * disables this call. This is why we have refdata wrapper to avoid warning, 2251 * and to ensure that the function body gets unloaded. 2252 */ 2253 static bool __ref 2254 _deferred_grow_zone(struct zone *zone, unsigned int order) 2255 { 2256 return deferred_grow_zone(zone, order); 2257 } 2258 2259 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2260 2261 void __init page_alloc_init_late(void) 2262 { 2263 struct zone *zone; 2264 int nid; 2265 2266 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2267 2268 /* There will be num_node_state(N_MEMORY) threads */ 2269 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2270 for_each_node_state(nid, N_MEMORY) { 2271 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2272 } 2273 2274 /* Block until all are initialised */ 2275 wait_for_completion(&pgdat_init_all_done_comp); 2276 2277 /* 2278 * We initialized the rest of the deferred pages. Permanently disable 2279 * on-demand struct page initialization. 2280 */ 2281 static_branch_disable(&deferred_pages); 2282 2283 /* Reinit limits that are based on free pages after the kernel is up */ 2284 files_maxfiles_init(); 2285 #endif 2286 2287 buffer_init(); 2288 2289 /* Discard memblock private memory */ 2290 memblock_discard(); 2291 2292 for_each_node_state(nid, N_MEMORY) 2293 shuffle_free_memory(NODE_DATA(nid)); 2294 2295 for_each_populated_zone(zone) 2296 set_zone_contiguous(zone); 2297 } 2298 2299 #ifdef CONFIG_CMA 2300 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2301 void __init init_cma_reserved_pageblock(struct page *page) 2302 { 2303 unsigned i = pageblock_nr_pages; 2304 struct page *p = page; 2305 2306 do { 2307 __ClearPageReserved(p); 2308 set_page_count(p, 0); 2309 } while (++p, --i); 2310 2311 set_pageblock_migratetype(page, MIGRATE_CMA); 2312 set_page_refcounted(page); 2313 __free_pages(page, pageblock_order); 2314 2315 adjust_managed_page_count(page, pageblock_nr_pages); 2316 page_zone(page)->cma_pages += pageblock_nr_pages; 2317 } 2318 #endif 2319 2320 /* 2321 * The order of subdivision here is critical for the IO subsystem. 2322 * Please do not alter this order without good reasons and regression 2323 * testing. Specifically, as large blocks of memory are subdivided, 2324 * the order in which smaller blocks are delivered depends on the order 2325 * they're subdivided in this function. This is the primary factor 2326 * influencing the order in which pages are delivered to the IO 2327 * subsystem according to empirical testing, and this is also justified 2328 * by considering the behavior of a buddy system containing a single 2329 * large block of memory acted on by a series of small allocations. 2330 * This behavior is a critical factor in sglist merging's success. 2331 * 2332 * -- nyc 2333 */ 2334 static inline void expand(struct zone *zone, struct page *page, 2335 int low, int high, int migratetype) 2336 { 2337 unsigned long size = 1 << high; 2338 2339 while (high > low) { 2340 high--; 2341 size >>= 1; 2342 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2343 2344 /* 2345 * Mark as guard pages (or page), that will allow to 2346 * merge back to allocator when buddy will be freed. 2347 * Corresponding page table entries will not be touched, 2348 * pages will stay not present in virtual address space 2349 */ 2350 if (set_page_guard(zone, &page[size], high, migratetype)) 2351 continue; 2352 2353 add_to_free_list(&page[size], zone, high, migratetype); 2354 set_buddy_order(&page[size], high); 2355 } 2356 } 2357 2358 static void check_new_page_bad(struct page *page) 2359 { 2360 if (unlikely(page->flags & __PG_HWPOISON)) { 2361 /* Don't complain about hwpoisoned pages */ 2362 page_mapcount_reset(page); /* remove PageBuddy */ 2363 return; 2364 } 2365 2366 bad_page(page, 2367 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2368 } 2369 2370 /* 2371 * This page is about to be returned from the page allocator 2372 */ 2373 static inline int check_new_page(struct page *page) 2374 { 2375 if (likely(page_expected_state(page, 2376 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2377 return 0; 2378 2379 check_new_page_bad(page); 2380 return 1; 2381 } 2382 2383 static bool check_new_pages(struct page *page, unsigned int order) 2384 { 2385 int i; 2386 for (i = 0; i < (1 << order); i++) { 2387 struct page *p = page + i; 2388 2389 if (unlikely(check_new_page(p))) 2390 return true; 2391 } 2392 2393 return false; 2394 } 2395 2396 #ifdef CONFIG_DEBUG_VM 2397 /* 2398 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2399 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2400 * also checked when pcp lists are refilled from the free lists. 2401 */ 2402 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2403 { 2404 if (debug_pagealloc_enabled_static()) 2405 return check_new_pages(page, order); 2406 else 2407 return false; 2408 } 2409 2410 static inline bool check_new_pcp(struct page *page, unsigned int order) 2411 { 2412 return check_new_pages(page, order); 2413 } 2414 #else 2415 /* 2416 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2417 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2418 * enabled, they are also checked when being allocated from the pcp lists. 2419 */ 2420 static inline bool check_pcp_refill(struct page *page, unsigned int order) 2421 { 2422 return check_new_pages(page, order); 2423 } 2424 static inline bool check_new_pcp(struct page *page, unsigned int order) 2425 { 2426 if (debug_pagealloc_enabled_static()) 2427 return check_new_pages(page, order); 2428 else 2429 return false; 2430 } 2431 #endif /* CONFIG_DEBUG_VM */ 2432 2433 static inline bool should_skip_kasan_unpoison(gfp_t flags) 2434 { 2435 /* Don't skip if a software KASAN mode is enabled. */ 2436 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 2437 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 2438 return false; 2439 2440 /* Skip, if hardware tag-based KASAN is not enabled. */ 2441 if (!kasan_hw_tags_enabled()) 2442 return true; 2443 2444 /* 2445 * With hardware tag-based KASAN enabled, skip if this has been 2446 * requested via __GFP_SKIP_KASAN_UNPOISON. 2447 */ 2448 return flags & __GFP_SKIP_KASAN_UNPOISON; 2449 } 2450 2451 static inline bool should_skip_init(gfp_t flags) 2452 { 2453 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 2454 if (!kasan_hw_tags_enabled()) 2455 return false; 2456 2457 /* For hardware tag-based KASAN, skip if requested. */ 2458 return (flags & __GFP_SKIP_ZERO); 2459 } 2460 2461 inline void post_alloc_hook(struct page *page, unsigned int order, 2462 gfp_t gfp_flags) 2463 { 2464 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 2465 !should_skip_init(gfp_flags); 2466 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS); 2467 int i; 2468 2469 set_page_private(page, 0); 2470 set_page_refcounted(page); 2471 2472 arch_alloc_page(page, order); 2473 debug_pagealloc_map_pages(page, 1 << order); 2474 2475 /* 2476 * Page unpoisoning must happen before memory initialization. 2477 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2478 * allocations and the page unpoisoning code will complain. 2479 */ 2480 kernel_unpoison_pages(page, 1 << order); 2481 2482 /* 2483 * As memory initialization might be integrated into KASAN, 2484 * KASAN unpoisoning and memory initializion code must be 2485 * kept together to avoid discrepancies in behavior. 2486 */ 2487 2488 /* 2489 * If memory tags should be zeroed (which happens only when memory 2490 * should be initialized as well). 2491 */ 2492 if (init_tags) { 2493 /* Initialize both memory and tags. */ 2494 for (i = 0; i != 1 << order; ++i) 2495 tag_clear_highpage(page + i); 2496 2497 /* Note that memory is already initialized by the loop above. */ 2498 init = false; 2499 } 2500 if (!should_skip_kasan_unpoison(gfp_flags)) { 2501 /* Unpoison shadow memory or set memory tags. */ 2502 kasan_unpoison_pages(page, order, init); 2503 2504 /* Note that memory is already initialized by KASAN. */ 2505 if (kasan_has_integrated_init()) 2506 init = false; 2507 } else { 2508 /* Ensure page_address() dereferencing does not fault. */ 2509 for (i = 0; i != 1 << order; ++i) 2510 page_kasan_tag_reset(page + i); 2511 } 2512 /* If memory is still not initialized, do it now. */ 2513 if (init) 2514 kernel_init_pages(page, 1 << order); 2515 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */ 2516 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON)) 2517 SetPageSkipKASanPoison(page); 2518 2519 set_page_owner(page, order, gfp_flags); 2520 page_table_check_alloc(page, order); 2521 } 2522 2523 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2524 unsigned int alloc_flags) 2525 { 2526 post_alloc_hook(page, order, gfp_flags); 2527 2528 if (order && (gfp_flags & __GFP_COMP)) 2529 prep_compound_page(page, order); 2530 2531 /* 2532 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2533 * allocate the page. The expectation is that the caller is taking 2534 * steps that will free more memory. The caller should avoid the page 2535 * being used for !PFMEMALLOC purposes. 2536 */ 2537 if (alloc_flags & ALLOC_NO_WATERMARKS) 2538 set_page_pfmemalloc(page); 2539 else 2540 clear_page_pfmemalloc(page); 2541 } 2542 2543 /* 2544 * Go through the free lists for the given migratetype and remove 2545 * the smallest available page from the freelists 2546 */ 2547 static __always_inline 2548 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2549 int migratetype) 2550 { 2551 unsigned int current_order; 2552 struct free_area *area; 2553 struct page *page; 2554 2555 /* Find a page of the appropriate size in the preferred list */ 2556 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2557 area = &(zone->free_area[current_order]); 2558 page = get_page_from_free_area(area, migratetype); 2559 if (!page) 2560 continue; 2561 del_page_from_free_list(page, zone, current_order); 2562 expand(zone, page, order, current_order, migratetype); 2563 set_pcppage_migratetype(page, migratetype); 2564 trace_mm_page_alloc_zone_locked(page, order, migratetype, 2565 pcp_allowed_order(order) && 2566 migratetype < MIGRATE_PCPTYPES); 2567 return page; 2568 } 2569 2570 return NULL; 2571 } 2572 2573 2574 /* 2575 * This array describes the order lists are fallen back to when 2576 * the free lists for the desirable migrate type are depleted 2577 * 2578 * The other migratetypes do not have fallbacks. 2579 */ 2580 static int fallbacks[MIGRATE_TYPES][3] = { 2581 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2582 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2583 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2584 }; 2585 2586 #ifdef CONFIG_CMA 2587 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2588 unsigned int order) 2589 { 2590 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2591 } 2592 #else 2593 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2594 unsigned int order) { return NULL; } 2595 #endif 2596 2597 /* 2598 * Move the free pages in a range to the freelist tail of the requested type. 2599 * Note that start_page and end_pages are not aligned on a pageblock 2600 * boundary. If alignment is required, use move_freepages_block() 2601 */ 2602 static int move_freepages(struct zone *zone, 2603 unsigned long start_pfn, unsigned long end_pfn, 2604 int migratetype, int *num_movable) 2605 { 2606 struct page *page; 2607 unsigned long pfn; 2608 unsigned int order; 2609 int pages_moved = 0; 2610 2611 for (pfn = start_pfn; pfn <= end_pfn;) { 2612 page = pfn_to_page(pfn); 2613 if (!PageBuddy(page)) { 2614 /* 2615 * We assume that pages that could be isolated for 2616 * migration are movable. But we don't actually try 2617 * isolating, as that would be expensive. 2618 */ 2619 if (num_movable && 2620 (PageLRU(page) || __PageMovable(page))) 2621 (*num_movable)++; 2622 pfn++; 2623 continue; 2624 } 2625 2626 /* Make sure we are not inadvertently changing nodes */ 2627 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2628 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2629 2630 order = buddy_order(page); 2631 move_to_free_list(page, zone, order, migratetype); 2632 pfn += 1 << order; 2633 pages_moved += 1 << order; 2634 } 2635 2636 return pages_moved; 2637 } 2638 2639 int move_freepages_block(struct zone *zone, struct page *page, 2640 int migratetype, int *num_movable) 2641 { 2642 unsigned long start_pfn, end_pfn, pfn; 2643 2644 if (num_movable) 2645 *num_movable = 0; 2646 2647 pfn = page_to_pfn(page); 2648 start_pfn = pageblock_start_pfn(pfn); 2649 end_pfn = pageblock_end_pfn(pfn) - 1; 2650 2651 /* Do not cross zone boundaries */ 2652 if (!zone_spans_pfn(zone, start_pfn)) 2653 start_pfn = pfn; 2654 if (!zone_spans_pfn(zone, end_pfn)) 2655 return 0; 2656 2657 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2658 num_movable); 2659 } 2660 2661 static void change_pageblock_range(struct page *pageblock_page, 2662 int start_order, int migratetype) 2663 { 2664 int nr_pageblocks = 1 << (start_order - pageblock_order); 2665 2666 while (nr_pageblocks--) { 2667 set_pageblock_migratetype(pageblock_page, migratetype); 2668 pageblock_page += pageblock_nr_pages; 2669 } 2670 } 2671 2672 /* 2673 * When we are falling back to another migratetype during allocation, try to 2674 * steal extra free pages from the same pageblocks to satisfy further 2675 * allocations, instead of polluting multiple pageblocks. 2676 * 2677 * If we are stealing a relatively large buddy page, it is likely there will 2678 * be more free pages in the pageblock, so try to steal them all. For 2679 * reclaimable and unmovable allocations, we steal regardless of page size, 2680 * as fragmentation caused by those allocations polluting movable pageblocks 2681 * is worse than movable allocations stealing from unmovable and reclaimable 2682 * pageblocks. 2683 */ 2684 static bool can_steal_fallback(unsigned int order, int start_mt) 2685 { 2686 /* 2687 * Leaving this order check is intended, although there is 2688 * relaxed order check in next check. The reason is that 2689 * we can actually steal whole pageblock if this condition met, 2690 * but, below check doesn't guarantee it and that is just heuristic 2691 * so could be changed anytime. 2692 */ 2693 if (order >= pageblock_order) 2694 return true; 2695 2696 if (order >= pageblock_order / 2 || 2697 start_mt == MIGRATE_RECLAIMABLE || 2698 start_mt == MIGRATE_UNMOVABLE || 2699 page_group_by_mobility_disabled) 2700 return true; 2701 2702 return false; 2703 } 2704 2705 static inline bool boost_watermark(struct zone *zone) 2706 { 2707 unsigned long max_boost; 2708 2709 if (!watermark_boost_factor) 2710 return false; 2711 /* 2712 * Don't bother in zones that are unlikely to produce results. 2713 * On small machines, including kdump capture kernels running 2714 * in a small area, boosting the watermark can cause an out of 2715 * memory situation immediately. 2716 */ 2717 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2718 return false; 2719 2720 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2721 watermark_boost_factor, 10000); 2722 2723 /* 2724 * high watermark may be uninitialised if fragmentation occurs 2725 * very early in boot so do not boost. We do not fall 2726 * through and boost by pageblock_nr_pages as failing 2727 * allocations that early means that reclaim is not going 2728 * to help and it may even be impossible to reclaim the 2729 * boosted watermark resulting in a hang. 2730 */ 2731 if (!max_boost) 2732 return false; 2733 2734 max_boost = max(pageblock_nr_pages, max_boost); 2735 2736 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2737 max_boost); 2738 2739 return true; 2740 } 2741 2742 /* 2743 * This function implements actual steal behaviour. If order is large enough, 2744 * we can steal whole pageblock. If not, we first move freepages in this 2745 * pageblock to our migratetype and determine how many already-allocated pages 2746 * are there in the pageblock with a compatible migratetype. If at least half 2747 * of pages are free or compatible, we can change migratetype of the pageblock 2748 * itself, so pages freed in the future will be put on the correct free list. 2749 */ 2750 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2751 unsigned int alloc_flags, int start_type, bool whole_block) 2752 { 2753 unsigned int current_order = buddy_order(page); 2754 int free_pages, movable_pages, alike_pages; 2755 int old_block_type; 2756 2757 old_block_type = get_pageblock_migratetype(page); 2758 2759 /* 2760 * This can happen due to races and we want to prevent broken 2761 * highatomic accounting. 2762 */ 2763 if (is_migrate_highatomic(old_block_type)) 2764 goto single_page; 2765 2766 /* Take ownership for orders >= pageblock_order */ 2767 if (current_order >= pageblock_order) { 2768 change_pageblock_range(page, current_order, start_type); 2769 goto single_page; 2770 } 2771 2772 /* 2773 * Boost watermarks to increase reclaim pressure to reduce the 2774 * likelihood of future fallbacks. Wake kswapd now as the node 2775 * may be balanced overall and kswapd will not wake naturally. 2776 */ 2777 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2778 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2779 2780 /* We are not allowed to try stealing from the whole block */ 2781 if (!whole_block) 2782 goto single_page; 2783 2784 free_pages = move_freepages_block(zone, page, start_type, 2785 &movable_pages); 2786 /* 2787 * Determine how many pages are compatible with our allocation. 2788 * For movable allocation, it's the number of movable pages which 2789 * we just obtained. For other types it's a bit more tricky. 2790 */ 2791 if (start_type == MIGRATE_MOVABLE) { 2792 alike_pages = movable_pages; 2793 } else { 2794 /* 2795 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2796 * to MOVABLE pageblock, consider all non-movable pages as 2797 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2798 * vice versa, be conservative since we can't distinguish the 2799 * exact migratetype of non-movable pages. 2800 */ 2801 if (old_block_type == MIGRATE_MOVABLE) 2802 alike_pages = pageblock_nr_pages 2803 - (free_pages + movable_pages); 2804 else 2805 alike_pages = 0; 2806 } 2807 2808 /* moving whole block can fail due to zone boundary conditions */ 2809 if (!free_pages) 2810 goto single_page; 2811 2812 /* 2813 * If a sufficient number of pages in the block are either free or of 2814 * comparable migratability as our allocation, claim the whole block. 2815 */ 2816 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2817 page_group_by_mobility_disabled) 2818 set_pageblock_migratetype(page, start_type); 2819 2820 return; 2821 2822 single_page: 2823 move_to_free_list(page, zone, current_order, start_type); 2824 } 2825 2826 /* 2827 * Check whether there is a suitable fallback freepage with requested order. 2828 * If only_stealable is true, this function returns fallback_mt only if 2829 * we can steal other freepages all together. This would help to reduce 2830 * fragmentation due to mixed migratetype pages in one pageblock. 2831 */ 2832 int find_suitable_fallback(struct free_area *area, unsigned int order, 2833 int migratetype, bool only_stealable, bool *can_steal) 2834 { 2835 int i; 2836 int fallback_mt; 2837 2838 if (area->nr_free == 0) 2839 return -1; 2840 2841 *can_steal = false; 2842 for (i = 0;; i++) { 2843 fallback_mt = fallbacks[migratetype][i]; 2844 if (fallback_mt == MIGRATE_TYPES) 2845 break; 2846 2847 if (free_area_empty(area, fallback_mt)) 2848 continue; 2849 2850 if (can_steal_fallback(order, migratetype)) 2851 *can_steal = true; 2852 2853 if (!only_stealable) 2854 return fallback_mt; 2855 2856 if (*can_steal) 2857 return fallback_mt; 2858 } 2859 2860 return -1; 2861 } 2862 2863 /* 2864 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2865 * there are no empty page blocks that contain a page with a suitable order 2866 */ 2867 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2868 unsigned int alloc_order) 2869 { 2870 int mt; 2871 unsigned long max_managed, flags; 2872 2873 /* 2874 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2875 * Check is race-prone but harmless. 2876 */ 2877 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2878 if (zone->nr_reserved_highatomic >= max_managed) 2879 return; 2880 2881 spin_lock_irqsave(&zone->lock, flags); 2882 2883 /* Recheck the nr_reserved_highatomic limit under the lock */ 2884 if (zone->nr_reserved_highatomic >= max_managed) 2885 goto out_unlock; 2886 2887 /* Yoink! */ 2888 mt = get_pageblock_migratetype(page); 2889 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 2890 if (migratetype_is_mergeable(mt)) { 2891 zone->nr_reserved_highatomic += pageblock_nr_pages; 2892 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2893 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2894 } 2895 2896 out_unlock: 2897 spin_unlock_irqrestore(&zone->lock, flags); 2898 } 2899 2900 /* 2901 * Used when an allocation is about to fail under memory pressure. This 2902 * potentially hurts the reliability of high-order allocations when under 2903 * intense memory pressure but failed atomic allocations should be easier 2904 * to recover from than an OOM. 2905 * 2906 * If @force is true, try to unreserve a pageblock even though highatomic 2907 * pageblock is exhausted. 2908 */ 2909 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2910 bool force) 2911 { 2912 struct zonelist *zonelist = ac->zonelist; 2913 unsigned long flags; 2914 struct zoneref *z; 2915 struct zone *zone; 2916 struct page *page; 2917 int order; 2918 bool ret; 2919 2920 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2921 ac->nodemask) { 2922 /* 2923 * Preserve at least one pageblock unless memory pressure 2924 * is really high. 2925 */ 2926 if (!force && zone->nr_reserved_highatomic <= 2927 pageblock_nr_pages) 2928 continue; 2929 2930 spin_lock_irqsave(&zone->lock, flags); 2931 for (order = 0; order < MAX_ORDER; order++) { 2932 struct free_area *area = &(zone->free_area[order]); 2933 2934 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2935 if (!page) 2936 continue; 2937 2938 /* 2939 * In page freeing path, migratetype change is racy so 2940 * we can counter several free pages in a pageblock 2941 * in this loop although we changed the pageblock type 2942 * from highatomic to ac->migratetype. So we should 2943 * adjust the count once. 2944 */ 2945 if (is_migrate_highatomic_page(page)) { 2946 /* 2947 * It should never happen but changes to 2948 * locking could inadvertently allow a per-cpu 2949 * drain to add pages to MIGRATE_HIGHATOMIC 2950 * while unreserving so be safe and watch for 2951 * underflows. 2952 */ 2953 zone->nr_reserved_highatomic -= min( 2954 pageblock_nr_pages, 2955 zone->nr_reserved_highatomic); 2956 } 2957 2958 /* 2959 * Convert to ac->migratetype and avoid the normal 2960 * pageblock stealing heuristics. Minimally, the caller 2961 * is doing the work and needs the pages. More 2962 * importantly, if the block was always converted to 2963 * MIGRATE_UNMOVABLE or another type then the number 2964 * of pageblocks that cannot be completely freed 2965 * may increase. 2966 */ 2967 set_pageblock_migratetype(page, ac->migratetype); 2968 ret = move_freepages_block(zone, page, ac->migratetype, 2969 NULL); 2970 if (ret) { 2971 spin_unlock_irqrestore(&zone->lock, flags); 2972 return ret; 2973 } 2974 } 2975 spin_unlock_irqrestore(&zone->lock, flags); 2976 } 2977 2978 return false; 2979 } 2980 2981 /* 2982 * Try finding a free buddy page on the fallback list and put it on the free 2983 * list of requested migratetype, possibly along with other pages from the same 2984 * block, depending on fragmentation avoidance heuristics. Returns true if 2985 * fallback was found so that __rmqueue_smallest() can grab it. 2986 * 2987 * The use of signed ints for order and current_order is a deliberate 2988 * deviation from the rest of this file, to make the for loop 2989 * condition simpler. 2990 */ 2991 static __always_inline bool 2992 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2993 unsigned int alloc_flags) 2994 { 2995 struct free_area *area; 2996 int current_order; 2997 int min_order = order; 2998 struct page *page; 2999 int fallback_mt; 3000 bool can_steal; 3001 3002 /* 3003 * Do not steal pages from freelists belonging to other pageblocks 3004 * i.e. orders < pageblock_order. If there are no local zones free, 3005 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 3006 */ 3007 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 3008 min_order = pageblock_order; 3009 3010 /* 3011 * Find the largest available free page in the other list. This roughly 3012 * approximates finding the pageblock with the most free pages, which 3013 * would be too costly to do exactly. 3014 */ 3015 for (current_order = MAX_ORDER - 1; current_order >= min_order; 3016 --current_order) { 3017 area = &(zone->free_area[current_order]); 3018 fallback_mt = find_suitable_fallback(area, current_order, 3019 start_migratetype, false, &can_steal); 3020 if (fallback_mt == -1) 3021 continue; 3022 3023 /* 3024 * We cannot steal all free pages from the pageblock and the 3025 * requested migratetype is movable. In that case it's better to 3026 * steal and split the smallest available page instead of the 3027 * largest available page, because even if the next movable 3028 * allocation falls back into a different pageblock than this 3029 * one, it won't cause permanent fragmentation. 3030 */ 3031 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 3032 && current_order > order) 3033 goto find_smallest; 3034 3035 goto do_steal; 3036 } 3037 3038 return false; 3039 3040 find_smallest: 3041 for (current_order = order; current_order < MAX_ORDER; 3042 current_order++) { 3043 area = &(zone->free_area[current_order]); 3044 fallback_mt = find_suitable_fallback(area, current_order, 3045 start_migratetype, false, &can_steal); 3046 if (fallback_mt != -1) 3047 break; 3048 } 3049 3050 /* 3051 * This should not happen - we already found a suitable fallback 3052 * when looking for the largest page. 3053 */ 3054 VM_BUG_ON(current_order == MAX_ORDER); 3055 3056 do_steal: 3057 page = get_page_from_free_area(area, fallback_mt); 3058 3059 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 3060 can_steal); 3061 3062 trace_mm_page_alloc_extfrag(page, order, current_order, 3063 start_migratetype, fallback_mt); 3064 3065 return true; 3066 3067 } 3068 3069 /* 3070 * Do the hard work of removing an element from the buddy allocator. 3071 * Call me with the zone->lock already held. 3072 */ 3073 static __always_inline struct page * 3074 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 3075 unsigned int alloc_flags) 3076 { 3077 struct page *page; 3078 3079 if (IS_ENABLED(CONFIG_CMA)) { 3080 /* 3081 * Balance movable allocations between regular and CMA areas by 3082 * allocating from CMA when over half of the zone's free memory 3083 * is in the CMA area. 3084 */ 3085 if (alloc_flags & ALLOC_CMA && 3086 zone_page_state(zone, NR_FREE_CMA_PAGES) > 3087 zone_page_state(zone, NR_FREE_PAGES) / 2) { 3088 page = __rmqueue_cma_fallback(zone, order); 3089 if (page) 3090 return page; 3091 } 3092 } 3093 retry: 3094 page = __rmqueue_smallest(zone, order, migratetype); 3095 if (unlikely(!page)) { 3096 if (alloc_flags & ALLOC_CMA) 3097 page = __rmqueue_cma_fallback(zone, order); 3098 3099 if (!page && __rmqueue_fallback(zone, order, migratetype, 3100 alloc_flags)) 3101 goto retry; 3102 } 3103 return page; 3104 } 3105 3106 /* 3107 * Obtain a specified number of elements from the buddy allocator, all under 3108 * a single hold of the lock, for efficiency. Add them to the supplied list. 3109 * Returns the number of new pages which were placed at *list. 3110 */ 3111 static int rmqueue_bulk(struct zone *zone, unsigned int order, 3112 unsigned long count, struct list_head *list, 3113 int migratetype, unsigned int alloc_flags) 3114 { 3115 unsigned long flags; 3116 int i, allocated = 0; 3117 3118 spin_lock_irqsave(&zone->lock, flags); 3119 for (i = 0; i < count; ++i) { 3120 struct page *page = __rmqueue(zone, order, migratetype, 3121 alloc_flags); 3122 if (unlikely(page == NULL)) 3123 break; 3124 3125 if (unlikely(check_pcp_refill(page, order))) 3126 continue; 3127 3128 /* 3129 * Split buddy pages returned by expand() are received here in 3130 * physical page order. The page is added to the tail of 3131 * caller's list. From the callers perspective, the linked list 3132 * is ordered by page number under some conditions. This is 3133 * useful for IO devices that can forward direction from the 3134 * head, thus also in the physical page order. This is useful 3135 * for IO devices that can merge IO requests if the physical 3136 * pages are ordered properly. 3137 */ 3138 list_add_tail(&page->pcp_list, list); 3139 allocated++; 3140 if (is_migrate_cma(get_pcppage_migratetype(page))) 3141 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 3142 -(1 << order)); 3143 } 3144 3145 /* 3146 * i pages were removed from the buddy list even if some leak due 3147 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 3148 * on i. Do not confuse with 'allocated' which is the number of 3149 * pages added to the pcp list. 3150 */ 3151 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 3152 spin_unlock_irqrestore(&zone->lock, flags); 3153 return allocated; 3154 } 3155 3156 #ifdef CONFIG_NUMA 3157 /* 3158 * Called from the vmstat counter updater to drain pagesets of this 3159 * currently executing processor on remote nodes after they have 3160 * expired. 3161 */ 3162 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3163 { 3164 int to_drain, batch; 3165 3166 batch = READ_ONCE(pcp->batch); 3167 to_drain = min(pcp->count, batch); 3168 if (to_drain > 0) { 3169 spin_lock(&pcp->lock); 3170 free_pcppages_bulk(zone, to_drain, pcp, 0); 3171 spin_unlock(&pcp->lock); 3172 } 3173 } 3174 #endif 3175 3176 /* 3177 * Drain pcplists of the indicated processor and zone. 3178 */ 3179 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3180 { 3181 struct per_cpu_pages *pcp; 3182 3183 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3184 if (pcp->count) { 3185 spin_lock(&pcp->lock); 3186 free_pcppages_bulk(zone, pcp->count, pcp, 0); 3187 spin_unlock(&pcp->lock); 3188 } 3189 } 3190 3191 /* 3192 * Drain pcplists of all zones on the indicated processor. 3193 */ 3194 static void drain_pages(unsigned int cpu) 3195 { 3196 struct zone *zone; 3197 3198 for_each_populated_zone(zone) { 3199 drain_pages_zone(cpu, zone); 3200 } 3201 } 3202 3203 /* 3204 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3205 */ 3206 void drain_local_pages(struct zone *zone) 3207 { 3208 int cpu = smp_processor_id(); 3209 3210 if (zone) 3211 drain_pages_zone(cpu, zone); 3212 else 3213 drain_pages(cpu); 3214 } 3215 3216 /* 3217 * The implementation of drain_all_pages(), exposing an extra parameter to 3218 * drain on all cpus. 3219 * 3220 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3221 * not empty. The check for non-emptiness can however race with a free to 3222 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3223 * that need the guarantee that every CPU has drained can disable the 3224 * optimizing racy check. 3225 */ 3226 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3227 { 3228 int cpu; 3229 3230 /* 3231 * Allocate in the BSS so we won't require allocation in 3232 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3233 */ 3234 static cpumask_t cpus_with_pcps; 3235 3236 /* 3237 * Do not drain if one is already in progress unless it's specific to 3238 * a zone. Such callers are primarily CMA and memory hotplug and need 3239 * the drain to be complete when the call returns. 3240 */ 3241 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3242 if (!zone) 3243 return; 3244 mutex_lock(&pcpu_drain_mutex); 3245 } 3246 3247 /* 3248 * We don't care about racing with CPU hotplug event 3249 * as offline notification will cause the notified 3250 * cpu to drain that CPU pcps and on_each_cpu_mask 3251 * disables preemption as part of its processing 3252 */ 3253 for_each_online_cpu(cpu) { 3254 struct per_cpu_pages *pcp; 3255 struct zone *z; 3256 bool has_pcps = false; 3257 3258 if (force_all_cpus) { 3259 /* 3260 * The pcp.count check is racy, some callers need a 3261 * guarantee that no cpu is missed. 3262 */ 3263 has_pcps = true; 3264 } else if (zone) { 3265 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3266 if (pcp->count) 3267 has_pcps = true; 3268 } else { 3269 for_each_populated_zone(z) { 3270 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 3271 if (pcp->count) { 3272 has_pcps = true; 3273 break; 3274 } 3275 } 3276 } 3277 3278 if (has_pcps) 3279 cpumask_set_cpu(cpu, &cpus_with_pcps); 3280 else 3281 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3282 } 3283 3284 for_each_cpu(cpu, &cpus_with_pcps) { 3285 if (zone) 3286 drain_pages_zone(cpu, zone); 3287 else 3288 drain_pages(cpu); 3289 } 3290 3291 mutex_unlock(&pcpu_drain_mutex); 3292 } 3293 3294 /* 3295 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3296 * 3297 * When zone parameter is non-NULL, spill just the single zone's pages. 3298 */ 3299 void drain_all_pages(struct zone *zone) 3300 { 3301 __drain_all_pages(zone, false); 3302 } 3303 3304 #ifdef CONFIG_HIBERNATION 3305 3306 /* 3307 * Touch the watchdog for every WD_PAGE_COUNT pages. 3308 */ 3309 #define WD_PAGE_COUNT (128*1024) 3310 3311 void mark_free_pages(struct zone *zone) 3312 { 3313 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3314 unsigned long flags; 3315 unsigned int order, t; 3316 struct page *page; 3317 3318 if (zone_is_empty(zone)) 3319 return; 3320 3321 spin_lock_irqsave(&zone->lock, flags); 3322 3323 max_zone_pfn = zone_end_pfn(zone); 3324 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3325 if (pfn_valid(pfn)) { 3326 page = pfn_to_page(pfn); 3327 3328 if (!--page_count) { 3329 touch_nmi_watchdog(); 3330 page_count = WD_PAGE_COUNT; 3331 } 3332 3333 if (page_zone(page) != zone) 3334 continue; 3335 3336 if (!swsusp_page_is_forbidden(page)) 3337 swsusp_unset_page_free(page); 3338 } 3339 3340 for_each_migratetype_order(order, t) { 3341 list_for_each_entry(page, 3342 &zone->free_area[order].free_list[t], buddy_list) { 3343 unsigned long i; 3344 3345 pfn = page_to_pfn(page); 3346 for (i = 0; i < (1UL << order); i++) { 3347 if (!--page_count) { 3348 touch_nmi_watchdog(); 3349 page_count = WD_PAGE_COUNT; 3350 } 3351 swsusp_set_page_free(pfn_to_page(pfn + i)); 3352 } 3353 } 3354 } 3355 spin_unlock_irqrestore(&zone->lock, flags); 3356 } 3357 #endif /* CONFIG_PM */ 3358 3359 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 3360 unsigned int order) 3361 { 3362 int migratetype; 3363 3364 if (!free_pcp_prepare(page, order)) 3365 return false; 3366 3367 migratetype = get_pfnblock_migratetype(page, pfn); 3368 set_pcppage_migratetype(page, migratetype); 3369 return true; 3370 } 3371 3372 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch, 3373 bool free_high) 3374 { 3375 int min_nr_free, max_nr_free; 3376 3377 /* Free everything if batch freeing high-order pages. */ 3378 if (unlikely(free_high)) 3379 return pcp->count; 3380 3381 /* Check for PCP disabled or boot pageset */ 3382 if (unlikely(high < batch)) 3383 return 1; 3384 3385 /* Leave at least pcp->batch pages on the list */ 3386 min_nr_free = batch; 3387 max_nr_free = high - batch; 3388 3389 /* 3390 * Double the number of pages freed each time there is subsequent 3391 * freeing of pages without any allocation. 3392 */ 3393 batch <<= pcp->free_factor; 3394 if (batch < max_nr_free) 3395 pcp->free_factor++; 3396 batch = clamp(batch, min_nr_free, max_nr_free); 3397 3398 return batch; 3399 } 3400 3401 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 3402 bool free_high) 3403 { 3404 int high = READ_ONCE(pcp->high); 3405 3406 if (unlikely(!high || free_high)) 3407 return 0; 3408 3409 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 3410 return high; 3411 3412 /* 3413 * If reclaim is active, limit the number of pages that can be 3414 * stored on pcp lists 3415 */ 3416 return min(READ_ONCE(pcp->batch) << 2, high); 3417 } 3418 3419 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 3420 struct page *page, int migratetype, 3421 unsigned int order) 3422 { 3423 int high; 3424 int pindex; 3425 bool free_high; 3426 3427 __count_vm_events(PGFREE, 1 << order); 3428 pindex = order_to_pindex(migratetype, order); 3429 list_add(&page->pcp_list, &pcp->lists[pindex]); 3430 pcp->count += 1 << order; 3431 3432 /* 3433 * As high-order pages other than THP's stored on PCP can contribute 3434 * to fragmentation, limit the number stored when PCP is heavily 3435 * freeing without allocation. The remainder after bulk freeing 3436 * stops will be drained from vmstat refresh context. 3437 */ 3438 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); 3439 3440 high = nr_pcp_high(pcp, zone, free_high); 3441 if (pcp->count >= high) { 3442 int batch = READ_ONCE(pcp->batch); 3443 3444 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex); 3445 } 3446 } 3447 3448 /* 3449 * Free a pcp page 3450 */ 3451 void free_unref_page(struct page *page, unsigned int order) 3452 { 3453 unsigned long __maybe_unused UP_flags; 3454 struct per_cpu_pages *pcp; 3455 struct zone *zone; 3456 unsigned long pfn = page_to_pfn(page); 3457 int migratetype; 3458 3459 if (!free_unref_page_prepare(page, pfn, order)) 3460 return; 3461 3462 /* 3463 * We only track unmovable, reclaimable and movable on pcp lists. 3464 * Place ISOLATE pages on the isolated list because they are being 3465 * offlined but treat HIGHATOMIC as movable pages so we can get those 3466 * areas back if necessary. Otherwise, we may have to free 3467 * excessively into the page allocator 3468 */ 3469 migratetype = get_pcppage_migratetype(page); 3470 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3471 if (unlikely(is_migrate_isolate(migratetype))) { 3472 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 3473 return; 3474 } 3475 migratetype = MIGRATE_MOVABLE; 3476 } 3477 3478 zone = page_zone(page); 3479 pcp_trylock_prepare(UP_flags); 3480 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3481 if (pcp) { 3482 free_unref_page_commit(zone, pcp, page, migratetype, order); 3483 pcp_spin_unlock(pcp); 3484 } else { 3485 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE); 3486 } 3487 pcp_trylock_finish(UP_flags); 3488 } 3489 3490 /* 3491 * Free a list of 0-order pages 3492 */ 3493 void free_unref_page_list(struct list_head *list) 3494 { 3495 unsigned long __maybe_unused UP_flags; 3496 struct page *page, *next; 3497 struct per_cpu_pages *pcp = NULL; 3498 struct zone *locked_zone = NULL; 3499 int batch_count = 0; 3500 int migratetype; 3501 3502 /* Prepare pages for freeing */ 3503 list_for_each_entry_safe(page, next, list, lru) { 3504 unsigned long pfn = page_to_pfn(page); 3505 if (!free_unref_page_prepare(page, pfn, 0)) { 3506 list_del(&page->lru); 3507 continue; 3508 } 3509 3510 /* 3511 * Free isolated pages directly to the allocator, see 3512 * comment in free_unref_page. 3513 */ 3514 migratetype = get_pcppage_migratetype(page); 3515 if (unlikely(is_migrate_isolate(migratetype))) { 3516 list_del(&page->lru); 3517 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 3518 continue; 3519 } 3520 } 3521 3522 list_for_each_entry_safe(page, next, list, lru) { 3523 struct zone *zone = page_zone(page); 3524 3525 list_del(&page->lru); 3526 migratetype = get_pcppage_migratetype(page); 3527 3528 /* 3529 * Either different zone requiring a different pcp lock or 3530 * excessive lock hold times when freeing a large list of 3531 * pages. 3532 */ 3533 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) { 3534 if (pcp) { 3535 pcp_spin_unlock(pcp); 3536 pcp_trylock_finish(UP_flags); 3537 } 3538 3539 batch_count = 0; 3540 3541 /* 3542 * trylock is necessary as pages may be getting freed 3543 * from IRQ or SoftIRQ context after an IO completion. 3544 */ 3545 pcp_trylock_prepare(UP_flags); 3546 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3547 if (unlikely(!pcp)) { 3548 pcp_trylock_finish(UP_flags); 3549 free_one_page(zone, page, page_to_pfn(page), 3550 0, migratetype, FPI_NONE); 3551 locked_zone = NULL; 3552 continue; 3553 } 3554 locked_zone = zone; 3555 } 3556 3557 /* 3558 * Non-isolated types over MIGRATE_PCPTYPES get added 3559 * to the MIGRATE_MOVABLE pcp list. 3560 */ 3561 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3562 migratetype = MIGRATE_MOVABLE; 3563 3564 trace_mm_page_free_batched(page); 3565 free_unref_page_commit(zone, pcp, page, migratetype, 0); 3566 batch_count++; 3567 } 3568 3569 if (pcp) { 3570 pcp_spin_unlock(pcp); 3571 pcp_trylock_finish(UP_flags); 3572 } 3573 } 3574 3575 /* 3576 * split_page takes a non-compound higher-order page, and splits it into 3577 * n (1<<order) sub-pages: page[0..n] 3578 * Each sub-page must be freed individually. 3579 * 3580 * Note: this is probably too low level an operation for use in drivers. 3581 * Please consult with lkml before using this in your driver. 3582 */ 3583 void split_page(struct page *page, unsigned int order) 3584 { 3585 int i; 3586 3587 VM_BUG_ON_PAGE(PageCompound(page), page); 3588 VM_BUG_ON_PAGE(!page_count(page), page); 3589 3590 for (i = 1; i < (1 << order); i++) 3591 set_page_refcounted(page + i); 3592 split_page_owner(page, 1 << order); 3593 split_page_memcg(page, 1 << order); 3594 } 3595 EXPORT_SYMBOL_GPL(split_page); 3596 3597 int __isolate_free_page(struct page *page, unsigned int order) 3598 { 3599 struct zone *zone = page_zone(page); 3600 int mt = get_pageblock_migratetype(page); 3601 3602 if (!is_migrate_isolate(mt)) { 3603 unsigned long watermark; 3604 /* 3605 * Obey watermarks as if the page was being allocated. We can 3606 * emulate a high-order watermark check with a raised order-0 3607 * watermark, because we already know our high-order page 3608 * exists. 3609 */ 3610 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3611 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3612 return 0; 3613 3614 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3615 } 3616 3617 del_page_from_free_list(page, zone, order); 3618 3619 /* 3620 * Set the pageblock if the isolated page is at least half of a 3621 * pageblock 3622 */ 3623 if (order >= pageblock_order - 1) { 3624 struct page *endpage = page + (1 << order) - 1; 3625 for (; page < endpage; page += pageblock_nr_pages) { 3626 int mt = get_pageblock_migratetype(page); 3627 /* 3628 * Only change normal pageblocks (i.e., they can merge 3629 * with others) 3630 */ 3631 if (migratetype_is_mergeable(mt)) 3632 set_pageblock_migratetype(page, 3633 MIGRATE_MOVABLE); 3634 } 3635 } 3636 3637 return 1UL << order; 3638 } 3639 3640 /** 3641 * __putback_isolated_page - Return a now-isolated page back where we got it 3642 * @page: Page that was isolated 3643 * @order: Order of the isolated page 3644 * @mt: The page's pageblock's migratetype 3645 * 3646 * This function is meant to return a page pulled from the free lists via 3647 * __isolate_free_page back to the free lists they were pulled from. 3648 */ 3649 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3650 { 3651 struct zone *zone = page_zone(page); 3652 3653 /* zone lock should be held when this function is called */ 3654 lockdep_assert_held(&zone->lock); 3655 3656 /* Return isolated page to tail of freelist. */ 3657 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3658 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3659 } 3660 3661 /* 3662 * Update NUMA hit/miss statistics 3663 */ 3664 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3665 long nr_account) 3666 { 3667 #ifdef CONFIG_NUMA 3668 enum numa_stat_item local_stat = NUMA_LOCAL; 3669 3670 /* skip numa counters update if numa stats is disabled */ 3671 if (!static_branch_likely(&vm_numa_stat_key)) 3672 return; 3673 3674 if (zone_to_nid(z) != numa_node_id()) 3675 local_stat = NUMA_OTHER; 3676 3677 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3678 __count_numa_events(z, NUMA_HIT, nr_account); 3679 else { 3680 __count_numa_events(z, NUMA_MISS, nr_account); 3681 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3682 } 3683 __count_numa_events(z, local_stat, nr_account); 3684 #endif 3685 } 3686 3687 static __always_inline 3688 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 3689 unsigned int order, unsigned int alloc_flags, 3690 int migratetype) 3691 { 3692 struct page *page; 3693 unsigned long flags; 3694 3695 do { 3696 page = NULL; 3697 spin_lock_irqsave(&zone->lock, flags); 3698 /* 3699 * order-0 request can reach here when the pcplist is skipped 3700 * due to non-CMA allocation context. HIGHATOMIC area is 3701 * reserved for high-order atomic allocation, so order-0 3702 * request should skip it. 3703 */ 3704 if (order > 0 && alloc_flags & ALLOC_HARDER) 3705 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3706 if (!page) { 3707 page = __rmqueue(zone, order, migratetype, alloc_flags); 3708 if (!page) { 3709 spin_unlock_irqrestore(&zone->lock, flags); 3710 return NULL; 3711 } 3712 } 3713 __mod_zone_freepage_state(zone, -(1 << order), 3714 get_pcppage_migratetype(page)); 3715 spin_unlock_irqrestore(&zone->lock, flags); 3716 } while (check_new_pages(page, order)); 3717 3718 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3719 zone_statistics(preferred_zone, zone, 1); 3720 3721 return page; 3722 } 3723 3724 /* Remove page from the per-cpu list, caller must protect the list */ 3725 static inline 3726 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3727 int migratetype, 3728 unsigned int alloc_flags, 3729 struct per_cpu_pages *pcp, 3730 struct list_head *list) 3731 { 3732 struct page *page; 3733 3734 do { 3735 if (list_empty(list)) { 3736 int batch = READ_ONCE(pcp->batch); 3737 int alloced; 3738 3739 /* 3740 * Scale batch relative to order if batch implies 3741 * free pages can be stored on the PCP. Batch can 3742 * be 1 for small zones or for boot pagesets which 3743 * should never store free pages as the pages may 3744 * belong to arbitrary zones. 3745 */ 3746 if (batch > 1) 3747 batch = max(batch >> order, 2); 3748 alloced = rmqueue_bulk(zone, order, 3749 batch, list, 3750 migratetype, alloc_flags); 3751 3752 pcp->count += alloced << order; 3753 if (unlikely(list_empty(list))) 3754 return NULL; 3755 } 3756 3757 page = list_first_entry(list, struct page, pcp_list); 3758 list_del(&page->pcp_list); 3759 pcp->count -= 1 << order; 3760 } while (check_new_pcp(page, order)); 3761 3762 return page; 3763 } 3764 3765 /* Lock and remove page from the per-cpu list */ 3766 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3767 struct zone *zone, unsigned int order, 3768 int migratetype, unsigned int alloc_flags) 3769 { 3770 struct per_cpu_pages *pcp; 3771 struct list_head *list; 3772 struct page *page; 3773 unsigned long __maybe_unused UP_flags; 3774 3775 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 3776 pcp_trylock_prepare(UP_flags); 3777 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3778 if (!pcp) { 3779 pcp_trylock_finish(UP_flags); 3780 return NULL; 3781 } 3782 3783 /* 3784 * On allocation, reduce the number of pages that are batch freed. 3785 * See nr_pcp_free() where free_factor is increased for subsequent 3786 * frees. 3787 */ 3788 pcp->free_factor >>= 1; 3789 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3790 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3791 pcp_spin_unlock(pcp); 3792 pcp_trylock_finish(UP_flags); 3793 if (page) { 3794 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3795 zone_statistics(preferred_zone, zone, 1); 3796 } 3797 return page; 3798 } 3799 3800 /* 3801 * Allocate a page from the given zone. 3802 * Use pcplists for THP or "cheap" high-order allocations. 3803 */ 3804 3805 /* 3806 * Do not instrument rmqueue() with KMSAN. This function may call 3807 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 3808 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3809 * may call rmqueue() again, which will result in a deadlock. 3810 */ 3811 __no_sanitize_memory 3812 static inline 3813 struct page *rmqueue(struct zone *preferred_zone, 3814 struct zone *zone, unsigned int order, 3815 gfp_t gfp_flags, unsigned int alloc_flags, 3816 int migratetype) 3817 { 3818 struct page *page; 3819 3820 /* 3821 * We most definitely don't want callers attempting to 3822 * allocate greater than order-1 page units with __GFP_NOFAIL. 3823 */ 3824 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3825 3826 if (likely(pcp_allowed_order(order))) { 3827 /* 3828 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3829 * we need to skip it when CMA area isn't allowed. 3830 */ 3831 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3832 migratetype != MIGRATE_MOVABLE) { 3833 page = rmqueue_pcplist(preferred_zone, zone, order, 3834 migratetype, alloc_flags); 3835 if (likely(page)) 3836 goto out; 3837 } 3838 } 3839 3840 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3841 migratetype); 3842 3843 out: 3844 /* Separate test+clear to avoid unnecessary atomics */ 3845 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3846 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3847 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3848 } 3849 3850 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3851 return page; 3852 } 3853 3854 #ifdef CONFIG_FAIL_PAGE_ALLOC 3855 3856 static struct { 3857 struct fault_attr attr; 3858 3859 bool ignore_gfp_highmem; 3860 bool ignore_gfp_reclaim; 3861 u32 min_order; 3862 } fail_page_alloc = { 3863 .attr = FAULT_ATTR_INITIALIZER, 3864 .ignore_gfp_reclaim = true, 3865 .ignore_gfp_highmem = true, 3866 .min_order = 1, 3867 }; 3868 3869 static int __init setup_fail_page_alloc(char *str) 3870 { 3871 return setup_fault_attr(&fail_page_alloc.attr, str); 3872 } 3873 __setup("fail_page_alloc=", setup_fail_page_alloc); 3874 3875 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3876 { 3877 int flags = 0; 3878 3879 if (order < fail_page_alloc.min_order) 3880 return false; 3881 if (gfp_mask & __GFP_NOFAIL) 3882 return false; 3883 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3884 return false; 3885 if (fail_page_alloc.ignore_gfp_reclaim && 3886 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3887 return false; 3888 3889 /* See comment in __should_failslab() */ 3890 if (gfp_mask & __GFP_NOWARN) 3891 flags |= FAULT_NOWARN; 3892 3893 return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags); 3894 } 3895 3896 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3897 3898 static int __init fail_page_alloc_debugfs(void) 3899 { 3900 umode_t mode = S_IFREG | 0600; 3901 struct dentry *dir; 3902 3903 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3904 &fail_page_alloc.attr); 3905 3906 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3907 &fail_page_alloc.ignore_gfp_reclaim); 3908 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3909 &fail_page_alloc.ignore_gfp_highmem); 3910 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3911 3912 return 0; 3913 } 3914 3915 late_initcall(fail_page_alloc_debugfs); 3916 3917 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3918 3919 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3920 3921 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3922 { 3923 return false; 3924 } 3925 3926 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3927 3928 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3929 { 3930 return __should_fail_alloc_page(gfp_mask, order); 3931 } 3932 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3933 3934 static inline long __zone_watermark_unusable_free(struct zone *z, 3935 unsigned int order, unsigned int alloc_flags) 3936 { 3937 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3938 long unusable_free = (1 << order) - 1; 3939 3940 /* 3941 * If the caller does not have rights to ALLOC_HARDER then subtract 3942 * the high-atomic reserves. This will over-estimate the size of the 3943 * atomic reserve but it avoids a search. 3944 */ 3945 if (likely(!alloc_harder)) 3946 unusable_free += z->nr_reserved_highatomic; 3947 3948 #ifdef CONFIG_CMA 3949 /* If allocation can't use CMA areas don't use free CMA pages */ 3950 if (!(alloc_flags & ALLOC_CMA)) 3951 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3952 #endif 3953 3954 return unusable_free; 3955 } 3956 3957 /* 3958 * Return true if free base pages are above 'mark'. For high-order checks it 3959 * will return true of the order-0 watermark is reached and there is at least 3960 * one free page of a suitable size. Checking now avoids taking the zone lock 3961 * to check in the allocation paths if no pages are free. 3962 */ 3963 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3964 int highest_zoneidx, unsigned int alloc_flags, 3965 long free_pages) 3966 { 3967 long min = mark; 3968 int o; 3969 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3970 3971 /* free_pages may go negative - that's OK */ 3972 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3973 3974 if (alloc_flags & ALLOC_HIGH) 3975 min -= min / 2; 3976 3977 if (unlikely(alloc_harder)) { 3978 /* 3979 * OOM victims can try even harder than normal ALLOC_HARDER 3980 * users on the grounds that it's definitely going to be in 3981 * the exit path shortly and free memory. Any allocation it 3982 * makes during the free path will be small and short-lived. 3983 */ 3984 if (alloc_flags & ALLOC_OOM) 3985 min -= min / 2; 3986 else 3987 min -= min / 4; 3988 } 3989 3990 /* 3991 * Check watermarks for an order-0 allocation request. If these 3992 * are not met, then a high-order request also cannot go ahead 3993 * even if a suitable page happened to be free. 3994 */ 3995 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3996 return false; 3997 3998 /* If this is an order-0 request then the watermark is fine */ 3999 if (!order) 4000 return true; 4001 4002 /* For a high-order request, check at least one suitable page is free */ 4003 for (o = order; o < MAX_ORDER; o++) { 4004 struct free_area *area = &z->free_area[o]; 4005 int mt; 4006 4007 if (!area->nr_free) 4008 continue; 4009 4010 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 4011 if (!free_area_empty(area, mt)) 4012 return true; 4013 } 4014 4015 #ifdef CONFIG_CMA 4016 if ((alloc_flags & ALLOC_CMA) && 4017 !free_area_empty(area, MIGRATE_CMA)) { 4018 return true; 4019 } 4020 #endif 4021 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 4022 return true; 4023 } 4024 return false; 4025 } 4026 4027 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 4028 int highest_zoneidx, unsigned int alloc_flags) 4029 { 4030 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 4031 zone_page_state(z, NR_FREE_PAGES)); 4032 } 4033 4034 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 4035 unsigned long mark, int highest_zoneidx, 4036 unsigned int alloc_flags, gfp_t gfp_mask) 4037 { 4038 long free_pages; 4039 4040 free_pages = zone_page_state(z, NR_FREE_PAGES); 4041 4042 /* 4043 * Fast check for order-0 only. If this fails then the reserves 4044 * need to be calculated. 4045 */ 4046 if (!order) { 4047 long usable_free; 4048 long reserved; 4049 4050 usable_free = free_pages; 4051 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 4052 4053 /* reserved may over estimate high-atomic reserves. */ 4054 usable_free -= min(usable_free, reserved); 4055 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 4056 return true; 4057 } 4058 4059 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 4060 free_pages)) 4061 return true; 4062 /* 4063 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 4064 * when checking the min watermark. The min watermark is the 4065 * point where boosting is ignored so that kswapd is woken up 4066 * when below the low watermark. 4067 */ 4068 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 4069 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 4070 mark = z->_watermark[WMARK_MIN]; 4071 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 4072 alloc_flags, free_pages); 4073 } 4074 4075 return false; 4076 } 4077 4078 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 4079 unsigned long mark, int highest_zoneidx) 4080 { 4081 long free_pages = zone_page_state(z, NR_FREE_PAGES); 4082 4083 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 4084 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 4085 4086 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 4087 free_pages); 4088 } 4089 4090 #ifdef CONFIG_NUMA 4091 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 4092 4093 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4094 { 4095 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 4096 node_reclaim_distance; 4097 } 4098 #else /* CONFIG_NUMA */ 4099 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4100 { 4101 return true; 4102 } 4103 #endif /* CONFIG_NUMA */ 4104 4105 /* 4106 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 4107 * fragmentation is subtle. If the preferred zone was HIGHMEM then 4108 * premature use of a lower zone may cause lowmem pressure problems that 4109 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 4110 * probably too small. It only makes sense to spread allocations to avoid 4111 * fragmentation between the Normal and DMA32 zones. 4112 */ 4113 static inline unsigned int 4114 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 4115 { 4116 unsigned int alloc_flags; 4117 4118 /* 4119 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4120 * to save a branch. 4121 */ 4122 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 4123 4124 #ifdef CONFIG_ZONE_DMA32 4125 if (!zone) 4126 return alloc_flags; 4127 4128 if (zone_idx(zone) != ZONE_NORMAL) 4129 return alloc_flags; 4130 4131 /* 4132 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 4133 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 4134 * on UMA that if Normal is populated then so is DMA32. 4135 */ 4136 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 4137 if (nr_online_nodes > 1 && !populated_zone(--zone)) 4138 return alloc_flags; 4139 4140 alloc_flags |= ALLOC_NOFRAGMENT; 4141 #endif /* CONFIG_ZONE_DMA32 */ 4142 return alloc_flags; 4143 } 4144 4145 /* Must be called after current_gfp_context() which can change gfp_mask */ 4146 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 4147 unsigned int alloc_flags) 4148 { 4149 #ifdef CONFIG_CMA 4150 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4151 alloc_flags |= ALLOC_CMA; 4152 #endif 4153 return alloc_flags; 4154 } 4155 4156 /* 4157 * get_page_from_freelist goes through the zonelist trying to allocate 4158 * a page. 4159 */ 4160 static struct page * 4161 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 4162 const struct alloc_context *ac) 4163 { 4164 struct zoneref *z; 4165 struct zone *zone; 4166 struct pglist_data *last_pgdat = NULL; 4167 bool last_pgdat_dirty_ok = false; 4168 bool no_fallback; 4169 4170 retry: 4171 /* 4172 * Scan zonelist, looking for a zone with enough free. 4173 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 4174 */ 4175 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 4176 z = ac->preferred_zoneref; 4177 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 4178 ac->nodemask) { 4179 struct page *page; 4180 unsigned long mark; 4181 4182 if (cpusets_enabled() && 4183 (alloc_flags & ALLOC_CPUSET) && 4184 !__cpuset_zone_allowed(zone, gfp_mask)) 4185 continue; 4186 /* 4187 * When allocating a page cache page for writing, we 4188 * want to get it from a node that is within its dirty 4189 * limit, such that no single node holds more than its 4190 * proportional share of globally allowed dirty pages. 4191 * The dirty limits take into account the node's 4192 * lowmem reserves and high watermark so that kswapd 4193 * should be able to balance it without having to 4194 * write pages from its LRU list. 4195 * 4196 * XXX: For now, allow allocations to potentially 4197 * exceed the per-node dirty limit in the slowpath 4198 * (spread_dirty_pages unset) before going into reclaim, 4199 * which is important when on a NUMA setup the allowed 4200 * nodes are together not big enough to reach the 4201 * global limit. The proper fix for these situations 4202 * will require awareness of nodes in the 4203 * dirty-throttling and the flusher threads. 4204 */ 4205 if (ac->spread_dirty_pages) { 4206 if (last_pgdat != zone->zone_pgdat) { 4207 last_pgdat = zone->zone_pgdat; 4208 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 4209 } 4210 4211 if (!last_pgdat_dirty_ok) 4212 continue; 4213 } 4214 4215 if (no_fallback && nr_online_nodes > 1 && 4216 zone != ac->preferred_zoneref->zone) { 4217 int local_nid; 4218 4219 /* 4220 * If moving to a remote node, retry but allow 4221 * fragmenting fallbacks. Locality is more important 4222 * than fragmentation avoidance. 4223 */ 4224 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 4225 if (zone_to_nid(zone) != local_nid) { 4226 alloc_flags &= ~ALLOC_NOFRAGMENT; 4227 goto retry; 4228 } 4229 } 4230 4231 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 4232 if (!zone_watermark_fast(zone, order, mark, 4233 ac->highest_zoneidx, alloc_flags, 4234 gfp_mask)) { 4235 int ret; 4236 4237 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4238 /* 4239 * Watermark failed for this zone, but see if we can 4240 * grow this zone if it contains deferred pages. 4241 */ 4242 if (static_branch_unlikely(&deferred_pages)) { 4243 if (_deferred_grow_zone(zone, order)) 4244 goto try_this_zone; 4245 } 4246 #endif 4247 /* Checked here to keep the fast path fast */ 4248 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 4249 if (alloc_flags & ALLOC_NO_WATERMARKS) 4250 goto try_this_zone; 4251 4252 if (!node_reclaim_enabled() || 4253 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 4254 continue; 4255 4256 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 4257 switch (ret) { 4258 case NODE_RECLAIM_NOSCAN: 4259 /* did not scan */ 4260 continue; 4261 case NODE_RECLAIM_FULL: 4262 /* scanned but unreclaimable */ 4263 continue; 4264 default: 4265 /* did we reclaim enough */ 4266 if (zone_watermark_ok(zone, order, mark, 4267 ac->highest_zoneidx, alloc_flags)) 4268 goto try_this_zone; 4269 4270 continue; 4271 } 4272 } 4273 4274 try_this_zone: 4275 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 4276 gfp_mask, alloc_flags, ac->migratetype); 4277 if (page) { 4278 prep_new_page(page, order, gfp_mask, alloc_flags); 4279 4280 /* 4281 * If this is a high-order atomic allocation then check 4282 * if the pageblock should be reserved for the future 4283 */ 4284 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 4285 reserve_highatomic_pageblock(page, zone, order); 4286 4287 return page; 4288 } else { 4289 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4290 /* Try again if zone has deferred pages */ 4291 if (static_branch_unlikely(&deferred_pages)) { 4292 if (_deferred_grow_zone(zone, order)) 4293 goto try_this_zone; 4294 } 4295 #endif 4296 } 4297 } 4298 4299 /* 4300 * It's possible on a UMA machine to get through all zones that are 4301 * fragmented. If avoiding fragmentation, reset and try again. 4302 */ 4303 if (no_fallback) { 4304 alloc_flags &= ~ALLOC_NOFRAGMENT; 4305 goto retry; 4306 } 4307 4308 return NULL; 4309 } 4310 4311 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4312 { 4313 unsigned int filter = SHOW_MEM_FILTER_NODES; 4314 4315 /* 4316 * This documents exceptions given to allocations in certain 4317 * contexts that are allowed to allocate outside current's set 4318 * of allowed nodes. 4319 */ 4320 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4321 if (tsk_is_oom_victim(current) || 4322 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4323 filter &= ~SHOW_MEM_FILTER_NODES; 4324 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4325 filter &= ~SHOW_MEM_FILTER_NODES; 4326 4327 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 4328 } 4329 4330 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4331 { 4332 struct va_format vaf; 4333 va_list args; 4334 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4335 4336 if ((gfp_mask & __GFP_NOWARN) || 4337 !__ratelimit(&nopage_rs) || 4338 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 4339 return; 4340 4341 va_start(args, fmt); 4342 vaf.fmt = fmt; 4343 vaf.va = &args; 4344 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4345 current->comm, &vaf, gfp_mask, &gfp_mask, 4346 nodemask_pr_args(nodemask)); 4347 va_end(args); 4348 4349 cpuset_print_current_mems_allowed(); 4350 pr_cont("\n"); 4351 dump_stack(); 4352 warn_alloc_show_mem(gfp_mask, nodemask); 4353 } 4354 4355 static inline struct page * 4356 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4357 unsigned int alloc_flags, 4358 const struct alloc_context *ac) 4359 { 4360 struct page *page; 4361 4362 page = get_page_from_freelist(gfp_mask, order, 4363 alloc_flags|ALLOC_CPUSET, ac); 4364 /* 4365 * fallback to ignore cpuset restriction if our nodes 4366 * are depleted 4367 */ 4368 if (!page) 4369 page = get_page_from_freelist(gfp_mask, order, 4370 alloc_flags, ac); 4371 4372 return page; 4373 } 4374 4375 static inline struct page * 4376 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4377 const struct alloc_context *ac, unsigned long *did_some_progress) 4378 { 4379 struct oom_control oc = { 4380 .zonelist = ac->zonelist, 4381 .nodemask = ac->nodemask, 4382 .memcg = NULL, 4383 .gfp_mask = gfp_mask, 4384 .order = order, 4385 }; 4386 struct page *page; 4387 4388 *did_some_progress = 0; 4389 4390 /* 4391 * Acquire the oom lock. If that fails, somebody else is 4392 * making progress for us. 4393 */ 4394 if (!mutex_trylock(&oom_lock)) { 4395 *did_some_progress = 1; 4396 schedule_timeout_uninterruptible(1); 4397 return NULL; 4398 } 4399 4400 /* 4401 * Go through the zonelist yet one more time, keep very high watermark 4402 * here, this is only to catch a parallel oom killing, we must fail if 4403 * we're still under heavy pressure. But make sure that this reclaim 4404 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4405 * allocation which will never fail due to oom_lock already held. 4406 */ 4407 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4408 ~__GFP_DIRECT_RECLAIM, order, 4409 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4410 if (page) 4411 goto out; 4412 4413 /* Coredumps can quickly deplete all memory reserves */ 4414 if (current->flags & PF_DUMPCORE) 4415 goto out; 4416 /* The OOM killer will not help higher order allocs */ 4417 if (order > PAGE_ALLOC_COSTLY_ORDER) 4418 goto out; 4419 /* 4420 * We have already exhausted all our reclaim opportunities without any 4421 * success so it is time to admit defeat. We will skip the OOM killer 4422 * because it is very likely that the caller has a more reasonable 4423 * fallback than shooting a random task. 4424 * 4425 * The OOM killer may not free memory on a specific node. 4426 */ 4427 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4428 goto out; 4429 /* The OOM killer does not needlessly kill tasks for lowmem */ 4430 if (ac->highest_zoneidx < ZONE_NORMAL) 4431 goto out; 4432 if (pm_suspended_storage()) 4433 goto out; 4434 /* 4435 * XXX: GFP_NOFS allocations should rather fail than rely on 4436 * other request to make a forward progress. 4437 * We are in an unfortunate situation where out_of_memory cannot 4438 * do much for this context but let's try it to at least get 4439 * access to memory reserved if the current task is killed (see 4440 * out_of_memory). Once filesystems are ready to handle allocation 4441 * failures more gracefully we should just bail out here. 4442 */ 4443 4444 /* Exhausted what can be done so it's blame time */ 4445 if (out_of_memory(&oc) || 4446 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 4447 *did_some_progress = 1; 4448 4449 /* 4450 * Help non-failing allocations by giving them access to memory 4451 * reserves 4452 */ 4453 if (gfp_mask & __GFP_NOFAIL) 4454 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4455 ALLOC_NO_WATERMARKS, ac); 4456 } 4457 out: 4458 mutex_unlock(&oom_lock); 4459 return page; 4460 } 4461 4462 /* 4463 * Maximum number of compaction retries with a progress before OOM 4464 * killer is consider as the only way to move forward. 4465 */ 4466 #define MAX_COMPACT_RETRIES 16 4467 4468 #ifdef CONFIG_COMPACTION 4469 /* Try memory compaction for high-order allocations before reclaim */ 4470 static struct page * 4471 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4472 unsigned int alloc_flags, const struct alloc_context *ac, 4473 enum compact_priority prio, enum compact_result *compact_result) 4474 { 4475 struct page *page = NULL; 4476 unsigned long pflags; 4477 unsigned int noreclaim_flag; 4478 4479 if (!order) 4480 return NULL; 4481 4482 psi_memstall_enter(&pflags); 4483 delayacct_compact_start(); 4484 noreclaim_flag = memalloc_noreclaim_save(); 4485 4486 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4487 prio, &page); 4488 4489 memalloc_noreclaim_restore(noreclaim_flag); 4490 psi_memstall_leave(&pflags); 4491 delayacct_compact_end(); 4492 4493 if (*compact_result == COMPACT_SKIPPED) 4494 return NULL; 4495 /* 4496 * At least in one zone compaction wasn't deferred or skipped, so let's 4497 * count a compaction stall 4498 */ 4499 count_vm_event(COMPACTSTALL); 4500 4501 /* Prep a captured page if available */ 4502 if (page) 4503 prep_new_page(page, order, gfp_mask, alloc_flags); 4504 4505 /* Try get a page from the freelist if available */ 4506 if (!page) 4507 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4508 4509 if (page) { 4510 struct zone *zone = page_zone(page); 4511 4512 zone->compact_blockskip_flush = false; 4513 compaction_defer_reset(zone, order, true); 4514 count_vm_event(COMPACTSUCCESS); 4515 return page; 4516 } 4517 4518 /* 4519 * It's bad if compaction run occurs and fails. The most likely reason 4520 * is that pages exist, but not enough to satisfy watermarks. 4521 */ 4522 count_vm_event(COMPACTFAIL); 4523 4524 cond_resched(); 4525 4526 return NULL; 4527 } 4528 4529 static inline bool 4530 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4531 enum compact_result compact_result, 4532 enum compact_priority *compact_priority, 4533 int *compaction_retries) 4534 { 4535 int max_retries = MAX_COMPACT_RETRIES; 4536 int min_priority; 4537 bool ret = false; 4538 int retries = *compaction_retries; 4539 enum compact_priority priority = *compact_priority; 4540 4541 if (!order) 4542 return false; 4543 4544 if (fatal_signal_pending(current)) 4545 return false; 4546 4547 if (compaction_made_progress(compact_result)) 4548 (*compaction_retries)++; 4549 4550 /* 4551 * compaction considers all the zone as desperately out of memory 4552 * so it doesn't really make much sense to retry except when the 4553 * failure could be caused by insufficient priority 4554 */ 4555 if (compaction_failed(compact_result)) 4556 goto check_priority; 4557 4558 /* 4559 * compaction was skipped because there are not enough order-0 pages 4560 * to work with, so we retry only if it looks like reclaim can help. 4561 */ 4562 if (compaction_needs_reclaim(compact_result)) { 4563 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4564 goto out; 4565 } 4566 4567 /* 4568 * make sure the compaction wasn't deferred or didn't bail out early 4569 * due to locks contention before we declare that we should give up. 4570 * But the next retry should use a higher priority if allowed, so 4571 * we don't just keep bailing out endlessly. 4572 */ 4573 if (compaction_withdrawn(compact_result)) { 4574 goto check_priority; 4575 } 4576 4577 /* 4578 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4579 * costly ones because they are de facto nofail and invoke OOM 4580 * killer to move on while costly can fail and users are ready 4581 * to cope with that. 1/4 retries is rather arbitrary but we 4582 * would need much more detailed feedback from compaction to 4583 * make a better decision. 4584 */ 4585 if (order > PAGE_ALLOC_COSTLY_ORDER) 4586 max_retries /= 4; 4587 if (*compaction_retries <= max_retries) { 4588 ret = true; 4589 goto out; 4590 } 4591 4592 /* 4593 * Make sure there are attempts at the highest priority if we exhausted 4594 * all retries or failed at the lower priorities. 4595 */ 4596 check_priority: 4597 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4598 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4599 4600 if (*compact_priority > min_priority) { 4601 (*compact_priority)--; 4602 *compaction_retries = 0; 4603 ret = true; 4604 } 4605 out: 4606 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4607 return ret; 4608 } 4609 #else 4610 static inline struct page * 4611 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4612 unsigned int alloc_flags, const struct alloc_context *ac, 4613 enum compact_priority prio, enum compact_result *compact_result) 4614 { 4615 *compact_result = COMPACT_SKIPPED; 4616 return NULL; 4617 } 4618 4619 static inline bool 4620 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4621 enum compact_result compact_result, 4622 enum compact_priority *compact_priority, 4623 int *compaction_retries) 4624 { 4625 struct zone *zone; 4626 struct zoneref *z; 4627 4628 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4629 return false; 4630 4631 /* 4632 * There are setups with compaction disabled which would prefer to loop 4633 * inside the allocator rather than hit the oom killer prematurely. 4634 * Let's give them a good hope and keep retrying while the order-0 4635 * watermarks are OK. 4636 */ 4637 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4638 ac->highest_zoneidx, ac->nodemask) { 4639 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4640 ac->highest_zoneidx, alloc_flags)) 4641 return true; 4642 } 4643 return false; 4644 } 4645 #endif /* CONFIG_COMPACTION */ 4646 4647 #ifdef CONFIG_LOCKDEP 4648 static struct lockdep_map __fs_reclaim_map = 4649 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4650 4651 static bool __need_reclaim(gfp_t gfp_mask) 4652 { 4653 /* no reclaim without waiting on it */ 4654 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4655 return false; 4656 4657 /* this guy won't enter reclaim */ 4658 if (current->flags & PF_MEMALLOC) 4659 return false; 4660 4661 if (gfp_mask & __GFP_NOLOCKDEP) 4662 return false; 4663 4664 return true; 4665 } 4666 4667 void __fs_reclaim_acquire(unsigned long ip) 4668 { 4669 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4670 } 4671 4672 void __fs_reclaim_release(unsigned long ip) 4673 { 4674 lock_release(&__fs_reclaim_map, ip); 4675 } 4676 4677 void fs_reclaim_acquire(gfp_t gfp_mask) 4678 { 4679 gfp_mask = current_gfp_context(gfp_mask); 4680 4681 if (__need_reclaim(gfp_mask)) { 4682 if (gfp_mask & __GFP_FS) 4683 __fs_reclaim_acquire(_RET_IP_); 4684 4685 #ifdef CONFIG_MMU_NOTIFIER 4686 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4687 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4688 #endif 4689 4690 } 4691 } 4692 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4693 4694 void fs_reclaim_release(gfp_t gfp_mask) 4695 { 4696 gfp_mask = current_gfp_context(gfp_mask); 4697 4698 if (__need_reclaim(gfp_mask)) { 4699 if (gfp_mask & __GFP_FS) 4700 __fs_reclaim_release(_RET_IP_); 4701 } 4702 } 4703 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4704 #endif 4705 4706 /* 4707 * Zonelists may change due to hotplug during allocation. Detect when zonelists 4708 * have been rebuilt so allocation retries. Reader side does not lock and 4709 * retries the allocation if zonelist changes. Writer side is protected by the 4710 * embedded spin_lock. 4711 */ 4712 static DEFINE_SEQLOCK(zonelist_update_seq); 4713 4714 static unsigned int zonelist_iter_begin(void) 4715 { 4716 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4717 return read_seqbegin(&zonelist_update_seq); 4718 4719 return 0; 4720 } 4721 4722 static unsigned int check_retry_zonelist(unsigned int seq) 4723 { 4724 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4725 return read_seqretry(&zonelist_update_seq, seq); 4726 4727 return seq; 4728 } 4729 4730 /* Perform direct synchronous page reclaim */ 4731 static unsigned long 4732 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4733 const struct alloc_context *ac) 4734 { 4735 unsigned int noreclaim_flag; 4736 unsigned long progress; 4737 4738 cond_resched(); 4739 4740 /* We now go into synchronous reclaim */ 4741 cpuset_memory_pressure_bump(); 4742 fs_reclaim_acquire(gfp_mask); 4743 noreclaim_flag = memalloc_noreclaim_save(); 4744 4745 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4746 ac->nodemask); 4747 4748 memalloc_noreclaim_restore(noreclaim_flag); 4749 fs_reclaim_release(gfp_mask); 4750 4751 cond_resched(); 4752 4753 return progress; 4754 } 4755 4756 /* The really slow allocator path where we enter direct reclaim */ 4757 static inline struct page * 4758 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4759 unsigned int alloc_flags, const struct alloc_context *ac, 4760 unsigned long *did_some_progress) 4761 { 4762 struct page *page = NULL; 4763 unsigned long pflags; 4764 bool drained = false; 4765 4766 psi_memstall_enter(&pflags); 4767 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4768 if (unlikely(!(*did_some_progress))) 4769 goto out; 4770 4771 retry: 4772 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4773 4774 /* 4775 * If an allocation failed after direct reclaim, it could be because 4776 * pages are pinned on the per-cpu lists or in high alloc reserves. 4777 * Shrink them and try again 4778 */ 4779 if (!page && !drained) { 4780 unreserve_highatomic_pageblock(ac, false); 4781 drain_all_pages(NULL); 4782 drained = true; 4783 goto retry; 4784 } 4785 out: 4786 psi_memstall_leave(&pflags); 4787 4788 return page; 4789 } 4790 4791 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4792 const struct alloc_context *ac) 4793 { 4794 struct zoneref *z; 4795 struct zone *zone; 4796 pg_data_t *last_pgdat = NULL; 4797 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4798 4799 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4800 ac->nodemask) { 4801 if (!managed_zone(zone)) 4802 continue; 4803 if (last_pgdat != zone->zone_pgdat) { 4804 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4805 last_pgdat = zone->zone_pgdat; 4806 } 4807 } 4808 } 4809 4810 static inline unsigned int 4811 gfp_to_alloc_flags(gfp_t gfp_mask) 4812 { 4813 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4814 4815 /* 4816 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4817 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4818 * to save two branches. 4819 */ 4820 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4821 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4822 4823 /* 4824 * The caller may dip into page reserves a bit more if the caller 4825 * cannot run direct reclaim, or if the caller has realtime scheduling 4826 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4827 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4828 */ 4829 alloc_flags |= (__force int) 4830 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4831 4832 if (gfp_mask & __GFP_ATOMIC) { 4833 /* 4834 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4835 * if it can't schedule. 4836 */ 4837 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4838 alloc_flags |= ALLOC_HARDER; 4839 /* 4840 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4841 * comment for __cpuset_node_allowed(). 4842 */ 4843 alloc_flags &= ~ALLOC_CPUSET; 4844 } else if (unlikely(rt_task(current)) && in_task()) 4845 alloc_flags |= ALLOC_HARDER; 4846 4847 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4848 4849 return alloc_flags; 4850 } 4851 4852 static bool oom_reserves_allowed(struct task_struct *tsk) 4853 { 4854 if (!tsk_is_oom_victim(tsk)) 4855 return false; 4856 4857 /* 4858 * !MMU doesn't have oom reaper so give access to memory reserves 4859 * only to the thread with TIF_MEMDIE set 4860 */ 4861 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4862 return false; 4863 4864 return true; 4865 } 4866 4867 /* 4868 * Distinguish requests which really need access to full memory 4869 * reserves from oom victims which can live with a portion of it 4870 */ 4871 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4872 { 4873 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4874 return 0; 4875 if (gfp_mask & __GFP_MEMALLOC) 4876 return ALLOC_NO_WATERMARKS; 4877 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4878 return ALLOC_NO_WATERMARKS; 4879 if (!in_interrupt()) { 4880 if (current->flags & PF_MEMALLOC) 4881 return ALLOC_NO_WATERMARKS; 4882 else if (oom_reserves_allowed(current)) 4883 return ALLOC_OOM; 4884 } 4885 4886 return 0; 4887 } 4888 4889 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4890 { 4891 return !!__gfp_pfmemalloc_flags(gfp_mask); 4892 } 4893 4894 /* 4895 * Checks whether it makes sense to retry the reclaim to make a forward progress 4896 * for the given allocation request. 4897 * 4898 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4899 * without success, or when we couldn't even meet the watermark if we 4900 * reclaimed all remaining pages on the LRU lists. 4901 * 4902 * Returns true if a retry is viable or false to enter the oom path. 4903 */ 4904 static inline bool 4905 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4906 struct alloc_context *ac, int alloc_flags, 4907 bool did_some_progress, int *no_progress_loops) 4908 { 4909 struct zone *zone; 4910 struct zoneref *z; 4911 bool ret = false; 4912 4913 /* 4914 * Costly allocations might have made a progress but this doesn't mean 4915 * their order will become available due to high fragmentation so 4916 * always increment the no progress counter for them 4917 */ 4918 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4919 *no_progress_loops = 0; 4920 else 4921 (*no_progress_loops)++; 4922 4923 /* 4924 * Make sure we converge to OOM if we cannot make any progress 4925 * several times in the row. 4926 */ 4927 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4928 /* Before OOM, exhaust highatomic_reserve */ 4929 return unreserve_highatomic_pageblock(ac, true); 4930 } 4931 4932 /* 4933 * Keep reclaiming pages while there is a chance this will lead 4934 * somewhere. If none of the target zones can satisfy our allocation 4935 * request even if all reclaimable pages are considered then we are 4936 * screwed and have to go OOM. 4937 */ 4938 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4939 ac->highest_zoneidx, ac->nodemask) { 4940 unsigned long available; 4941 unsigned long reclaimable; 4942 unsigned long min_wmark = min_wmark_pages(zone); 4943 bool wmark; 4944 4945 available = reclaimable = zone_reclaimable_pages(zone); 4946 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4947 4948 /* 4949 * Would the allocation succeed if we reclaimed all 4950 * reclaimable pages? 4951 */ 4952 wmark = __zone_watermark_ok(zone, order, min_wmark, 4953 ac->highest_zoneidx, alloc_flags, available); 4954 trace_reclaim_retry_zone(z, order, reclaimable, 4955 available, min_wmark, *no_progress_loops, wmark); 4956 if (wmark) { 4957 ret = true; 4958 break; 4959 } 4960 } 4961 4962 /* 4963 * Memory allocation/reclaim might be called from a WQ context and the 4964 * current implementation of the WQ concurrency control doesn't 4965 * recognize that a particular WQ is congested if the worker thread is 4966 * looping without ever sleeping. Therefore we have to do a short sleep 4967 * here rather than calling cond_resched(). 4968 */ 4969 if (current->flags & PF_WQ_WORKER) 4970 schedule_timeout_uninterruptible(1); 4971 else 4972 cond_resched(); 4973 return ret; 4974 } 4975 4976 static inline bool 4977 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4978 { 4979 /* 4980 * It's possible that cpuset's mems_allowed and the nodemask from 4981 * mempolicy don't intersect. This should be normally dealt with by 4982 * policy_nodemask(), but it's possible to race with cpuset update in 4983 * such a way the check therein was true, and then it became false 4984 * before we got our cpuset_mems_cookie here. 4985 * This assumes that for all allocations, ac->nodemask can come only 4986 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4987 * when it does not intersect with the cpuset restrictions) or the 4988 * caller can deal with a violated nodemask. 4989 */ 4990 if (cpusets_enabled() && ac->nodemask && 4991 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4992 ac->nodemask = NULL; 4993 return true; 4994 } 4995 4996 /* 4997 * When updating a task's mems_allowed or mempolicy nodemask, it is 4998 * possible to race with parallel threads in such a way that our 4999 * allocation can fail while the mask is being updated. If we are about 5000 * to fail, check if the cpuset changed during allocation and if so, 5001 * retry. 5002 */ 5003 if (read_mems_allowed_retry(cpuset_mems_cookie)) 5004 return true; 5005 5006 return false; 5007 } 5008 5009 static inline struct page * 5010 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 5011 struct alloc_context *ac) 5012 { 5013 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 5014 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 5015 struct page *page = NULL; 5016 unsigned int alloc_flags; 5017 unsigned long did_some_progress; 5018 enum compact_priority compact_priority; 5019 enum compact_result compact_result; 5020 int compaction_retries; 5021 int no_progress_loops; 5022 unsigned int cpuset_mems_cookie; 5023 unsigned int zonelist_iter_cookie; 5024 int reserve_flags; 5025 5026 /* 5027 * We also sanity check to catch abuse of atomic reserves being used by 5028 * callers that are not in atomic context. 5029 */ 5030 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 5031 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 5032 gfp_mask &= ~__GFP_ATOMIC; 5033 5034 restart: 5035 compaction_retries = 0; 5036 no_progress_loops = 0; 5037 compact_priority = DEF_COMPACT_PRIORITY; 5038 cpuset_mems_cookie = read_mems_allowed_begin(); 5039 zonelist_iter_cookie = zonelist_iter_begin(); 5040 5041 /* 5042 * The fast path uses conservative alloc_flags to succeed only until 5043 * kswapd needs to be woken up, and to avoid the cost of setting up 5044 * alloc_flags precisely. So we do that now. 5045 */ 5046 alloc_flags = gfp_to_alloc_flags(gfp_mask); 5047 5048 /* 5049 * We need to recalculate the starting point for the zonelist iterator 5050 * because we might have used different nodemask in the fast path, or 5051 * there was a cpuset modification and we are retrying - otherwise we 5052 * could end up iterating over non-eligible zones endlessly. 5053 */ 5054 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5055 ac->highest_zoneidx, ac->nodemask); 5056 if (!ac->preferred_zoneref->zone) 5057 goto nopage; 5058 5059 /* 5060 * Check for insane configurations where the cpuset doesn't contain 5061 * any suitable zone to satisfy the request - e.g. non-movable 5062 * GFP_HIGHUSER allocations from MOVABLE nodes only. 5063 */ 5064 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 5065 struct zoneref *z = first_zones_zonelist(ac->zonelist, 5066 ac->highest_zoneidx, 5067 &cpuset_current_mems_allowed); 5068 if (!z->zone) 5069 goto nopage; 5070 } 5071 5072 if (alloc_flags & ALLOC_KSWAPD) 5073 wake_all_kswapds(order, gfp_mask, ac); 5074 5075 /* 5076 * The adjusted alloc_flags might result in immediate success, so try 5077 * that first 5078 */ 5079 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5080 if (page) 5081 goto got_pg; 5082 5083 /* 5084 * For costly allocations, try direct compaction first, as it's likely 5085 * that we have enough base pages and don't need to reclaim. For non- 5086 * movable high-order allocations, do that as well, as compaction will 5087 * try prevent permanent fragmentation by migrating from blocks of the 5088 * same migratetype. 5089 * Don't try this for allocations that are allowed to ignore 5090 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 5091 */ 5092 if (can_direct_reclaim && 5093 (costly_order || 5094 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 5095 && !gfp_pfmemalloc_allowed(gfp_mask)) { 5096 page = __alloc_pages_direct_compact(gfp_mask, order, 5097 alloc_flags, ac, 5098 INIT_COMPACT_PRIORITY, 5099 &compact_result); 5100 if (page) 5101 goto got_pg; 5102 5103 /* 5104 * Checks for costly allocations with __GFP_NORETRY, which 5105 * includes some THP page fault allocations 5106 */ 5107 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 5108 /* 5109 * If allocating entire pageblock(s) and compaction 5110 * failed because all zones are below low watermarks 5111 * or is prohibited because it recently failed at this 5112 * order, fail immediately unless the allocator has 5113 * requested compaction and reclaim retry. 5114 * 5115 * Reclaim is 5116 * - potentially very expensive because zones are far 5117 * below their low watermarks or this is part of very 5118 * bursty high order allocations, 5119 * - not guaranteed to help because isolate_freepages() 5120 * may not iterate over freed pages as part of its 5121 * linear scan, and 5122 * - unlikely to make entire pageblocks free on its 5123 * own. 5124 */ 5125 if (compact_result == COMPACT_SKIPPED || 5126 compact_result == COMPACT_DEFERRED) 5127 goto nopage; 5128 5129 /* 5130 * Looks like reclaim/compaction is worth trying, but 5131 * sync compaction could be very expensive, so keep 5132 * using async compaction. 5133 */ 5134 compact_priority = INIT_COMPACT_PRIORITY; 5135 } 5136 } 5137 5138 retry: 5139 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 5140 if (alloc_flags & ALLOC_KSWAPD) 5141 wake_all_kswapds(order, gfp_mask, ac); 5142 5143 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 5144 if (reserve_flags) 5145 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 5146 (alloc_flags & ALLOC_KSWAPD); 5147 5148 /* 5149 * Reset the nodemask and zonelist iterators if memory policies can be 5150 * ignored. These allocations are high priority and system rather than 5151 * user oriented. 5152 */ 5153 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 5154 ac->nodemask = NULL; 5155 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5156 ac->highest_zoneidx, ac->nodemask); 5157 } 5158 5159 /* Attempt with potentially adjusted zonelist and alloc_flags */ 5160 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5161 if (page) 5162 goto got_pg; 5163 5164 /* Caller is not willing to reclaim, we can't balance anything */ 5165 if (!can_direct_reclaim) 5166 goto nopage; 5167 5168 /* Avoid recursion of direct reclaim */ 5169 if (current->flags & PF_MEMALLOC) 5170 goto nopage; 5171 5172 /* Try direct reclaim and then allocating */ 5173 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 5174 &did_some_progress); 5175 if (page) 5176 goto got_pg; 5177 5178 /* Try direct compaction and then allocating */ 5179 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 5180 compact_priority, &compact_result); 5181 if (page) 5182 goto got_pg; 5183 5184 /* Do not loop if specifically requested */ 5185 if (gfp_mask & __GFP_NORETRY) 5186 goto nopage; 5187 5188 /* 5189 * Do not retry costly high order allocations unless they are 5190 * __GFP_RETRY_MAYFAIL 5191 */ 5192 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 5193 goto nopage; 5194 5195 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 5196 did_some_progress > 0, &no_progress_loops)) 5197 goto retry; 5198 5199 /* 5200 * It doesn't make any sense to retry for the compaction if the order-0 5201 * reclaim is not able to make any progress because the current 5202 * implementation of the compaction depends on the sufficient amount 5203 * of free memory (see __compaction_suitable) 5204 */ 5205 if (did_some_progress > 0 && 5206 should_compact_retry(ac, order, alloc_flags, 5207 compact_result, &compact_priority, 5208 &compaction_retries)) 5209 goto retry; 5210 5211 5212 /* 5213 * Deal with possible cpuset update races or zonelist updates to avoid 5214 * a unnecessary OOM kill. 5215 */ 5216 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 5217 check_retry_zonelist(zonelist_iter_cookie)) 5218 goto restart; 5219 5220 /* Reclaim has failed us, start killing things */ 5221 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 5222 if (page) 5223 goto got_pg; 5224 5225 /* Avoid allocations with no watermarks from looping endlessly */ 5226 if (tsk_is_oom_victim(current) && 5227 (alloc_flags & ALLOC_OOM || 5228 (gfp_mask & __GFP_NOMEMALLOC))) 5229 goto nopage; 5230 5231 /* Retry as long as the OOM killer is making progress */ 5232 if (did_some_progress) { 5233 no_progress_loops = 0; 5234 goto retry; 5235 } 5236 5237 nopage: 5238 /* 5239 * Deal with possible cpuset update races or zonelist updates to avoid 5240 * a unnecessary OOM kill. 5241 */ 5242 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 5243 check_retry_zonelist(zonelist_iter_cookie)) 5244 goto restart; 5245 5246 /* 5247 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 5248 * we always retry 5249 */ 5250 if (gfp_mask & __GFP_NOFAIL) { 5251 /* 5252 * All existing users of the __GFP_NOFAIL are blockable, so warn 5253 * of any new users that actually require GFP_NOWAIT 5254 */ 5255 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 5256 goto fail; 5257 5258 /* 5259 * PF_MEMALLOC request from this context is rather bizarre 5260 * because we cannot reclaim anything and only can loop waiting 5261 * for somebody to do a work for us 5262 */ 5263 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 5264 5265 /* 5266 * non failing costly orders are a hard requirement which we 5267 * are not prepared for much so let's warn about these users 5268 * so that we can identify them and convert them to something 5269 * else. 5270 */ 5271 WARN_ON_ONCE_GFP(costly_order, gfp_mask); 5272 5273 /* 5274 * Help non-failing allocations by giving them access to memory 5275 * reserves but do not use ALLOC_NO_WATERMARKS because this 5276 * could deplete whole memory reserves which would just make 5277 * the situation worse 5278 */ 5279 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 5280 if (page) 5281 goto got_pg; 5282 5283 cond_resched(); 5284 goto retry; 5285 } 5286 fail: 5287 warn_alloc(gfp_mask, ac->nodemask, 5288 "page allocation failure: order:%u", order); 5289 got_pg: 5290 return page; 5291 } 5292 5293 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 5294 int preferred_nid, nodemask_t *nodemask, 5295 struct alloc_context *ac, gfp_t *alloc_gfp, 5296 unsigned int *alloc_flags) 5297 { 5298 ac->highest_zoneidx = gfp_zone(gfp_mask); 5299 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 5300 ac->nodemask = nodemask; 5301 ac->migratetype = gfp_migratetype(gfp_mask); 5302 5303 if (cpusets_enabled()) { 5304 *alloc_gfp |= __GFP_HARDWALL; 5305 /* 5306 * When we are in the interrupt context, it is irrelevant 5307 * to the current task context. It means that any node ok. 5308 */ 5309 if (in_task() && !ac->nodemask) 5310 ac->nodemask = &cpuset_current_mems_allowed; 5311 else 5312 *alloc_flags |= ALLOC_CPUSET; 5313 } 5314 5315 might_alloc(gfp_mask); 5316 5317 if (should_fail_alloc_page(gfp_mask, order)) 5318 return false; 5319 5320 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5321 5322 /* Dirty zone balancing only done in the fast path */ 5323 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5324 5325 /* 5326 * The preferred zone is used for statistics but crucially it is 5327 * also used as the starting point for the zonelist iterator. It 5328 * may get reset for allocations that ignore memory policies. 5329 */ 5330 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5331 ac->highest_zoneidx, ac->nodemask); 5332 5333 return true; 5334 } 5335 5336 /* 5337 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5338 * @gfp: GFP flags for the allocation 5339 * @preferred_nid: The preferred NUMA node ID to allocate from 5340 * @nodemask: Set of nodes to allocate from, may be NULL 5341 * @nr_pages: The number of pages desired on the list or array 5342 * @page_list: Optional list to store the allocated pages 5343 * @page_array: Optional array to store the pages 5344 * 5345 * This is a batched version of the page allocator that attempts to 5346 * allocate nr_pages quickly. Pages are added to page_list if page_list 5347 * is not NULL, otherwise it is assumed that the page_array is valid. 5348 * 5349 * For lists, nr_pages is the number of pages that should be allocated. 5350 * 5351 * For arrays, only NULL elements are populated with pages and nr_pages 5352 * is the maximum number of pages that will be stored in the array. 5353 * 5354 * Returns the number of pages on the list or array. 5355 */ 5356 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5357 nodemask_t *nodemask, int nr_pages, 5358 struct list_head *page_list, 5359 struct page **page_array) 5360 { 5361 struct page *page; 5362 unsigned long __maybe_unused UP_flags; 5363 struct zone *zone; 5364 struct zoneref *z; 5365 struct per_cpu_pages *pcp; 5366 struct list_head *pcp_list; 5367 struct alloc_context ac; 5368 gfp_t alloc_gfp; 5369 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5370 int nr_populated = 0, nr_account = 0; 5371 5372 /* 5373 * Skip populated array elements to determine if any pages need 5374 * to be allocated before disabling IRQs. 5375 */ 5376 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5377 nr_populated++; 5378 5379 /* No pages requested? */ 5380 if (unlikely(nr_pages <= 0)) 5381 goto out; 5382 5383 /* Already populated array? */ 5384 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5385 goto out; 5386 5387 /* Bulk allocator does not support memcg accounting. */ 5388 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT)) 5389 goto failed; 5390 5391 /* Use the single page allocator for one page. */ 5392 if (nr_pages - nr_populated == 1) 5393 goto failed; 5394 5395 #ifdef CONFIG_PAGE_OWNER 5396 /* 5397 * PAGE_OWNER may recurse into the allocator to allocate space to 5398 * save the stack with pagesets.lock held. Releasing/reacquiring 5399 * removes much of the performance benefit of bulk allocation so 5400 * force the caller to allocate one page at a time as it'll have 5401 * similar performance to added complexity to the bulk allocator. 5402 */ 5403 if (static_branch_unlikely(&page_owner_inited)) 5404 goto failed; 5405 #endif 5406 5407 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5408 gfp &= gfp_allowed_mask; 5409 alloc_gfp = gfp; 5410 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5411 goto out; 5412 gfp = alloc_gfp; 5413 5414 /* Find an allowed local zone that meets the low watermark. */ 5415 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5416 unsigned long mark; 5417 5418 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5419 !__cpuset_zone_allowed(zone, gfp)) { 5420 continue; 5421 } 5422 5423 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5424 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5425 goto failed; 5426 } 5427 5428 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5429 if (zone_watermark_fast(zone, 0, mark, 5430 zonelist_zone_idx(ac.preferred_zoneref), 5431 alloc_flags, gfp)) { 5432 break; 5433 } 5434 } 5435 5436 /* 5437 * If there are no allowed local zones that meets the watermarks then 5438 * try to allocate a single page and reclaim if necessary. 5439 */ 5440 if (unlikely(!zone)) 5441 goto failed; 5442 5443 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 5444 pcp_trylock_prepare(UP_flags); 5445 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 5446 if (!pcp) 5447 goto failed_irq; 5448 5449 /* Attempt the batch allocation */ 5450 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5451 while (nr_populated < nr_pages) { 5452 5453 /* Skip existing pages */ 5454 if (page_array && page_array[nr_populated]) { 5455 nr_populated++; 5456 continue; 5457 } 5458 5459 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5460 pcp, pcp_list); 5461 if (unlikely(!page)) { 5462 /* Try and allocate at least one page */ 5463 if (!nr_account) { 5464 pcp_spin_unlock(pcp); 5465 goto failed_irq; 5466 } 5467 break; 5468 } 5469 nr_account++; 5470 5471 prep_new_page(page, 0, gfp, 0); 5472 if (page_list) 5473 list_add(&page->lru, page_list); 5474 else 5475 page_array[nr_populated] = page; 5476 nr_populated++; 5477 } 5478 5479 pcp_spin_unlock(pcp); 5480 pcp_trylock_finish(UP_flags); 5481 5482 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5483 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 5484 5485 out: 5486 return nr_populated; 5487 5488 failed_irq: 5489 pcp_trylock_finish(UP_flags); 5490 5491 failed: 5492 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5493 if (page) { 5494 if (page_list) 5495 list_add(&page->lru, page_list); 5496 else 5497 page_array[nr_populated] = page; 5498 nr_populated++; 5499 } 5500 5501 goto out; 5502 } 5503 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5504 5505 /* 5506 * This is the 'heart' of the zoned buddy allocator. 5507 */ 5508 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5509 nodemask_t *nodemask) 5510 { 5511 struct page *page; 5512 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5513 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5514 struct alloc_context ac = { }; 5515 5516 /* 5517 * There are several places where we assume that the order value is sane 5518 * so bail out early if the request is out of bound. 5519 */ 5520 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp)) 5521 return NULL; 5522 5523 gfp &= gfp_allowed_mask; 5524 /* 5525 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5526 * resp. GFP_NOIO which has to be inherited for all allocation requests 5527 * from a particular context which has been marked by 5528 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5529 * movable zones are not used during allocation. 5530 */ 5531 gfp = current_gfp_context(gfp); 5532 alloc_gfp = gfp; 5533 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5534 &alloc_gfp, &alloc_flags)) 5535 return NULL; 5536 5537 /* 5538 * Forbid the first pass from falling back to types that fragment 5539 * memory until all local zones are considered. 5540 */ 5541 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5542 5543 /* First allocation attempt */ 5544 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5545 if (likely(page)) 5546 goto out; 5547 5548 alloc_gfp = gfp; 5549 ac.spread_dirty_pages = false; 5550 5551 /* 5552 * Restore the original nodemask if it was potentially replaced with 5553 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5554 */ 5555 ac.nodemask = nodemask; 5556 5557 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5558 5559 out: 5560 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && 5561 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5562 __free_pages(page, order); 5563 page = NULL; 5564 } 5565 5566 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5567 kmsan_alloc_page(page, order, alloc_gfp); 5568 5569 return page; 5570 } 5571 EXPORT_SYMBOL(__alloc_pages); 5572 5573 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 5574 nodemask_t *nodemask) 5575 { 5576 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 5577 preferred_nid, nodemask); 5578 5579 if (page && order > 1) 5580 prep_transhuge_page(page); 5581 return (struct folio *)page; 5582 } 5583 EXPORT_SYMBOL(__folio_alloc); 5584 5585 /* 5586 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5587 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5588 * you need to access high mem. 5589 */ 5590 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5591 { 5592 struct page *page; 5593 5594 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5595 if (!page) 5596 return 0; 5597 return (unsigned long) page_address(page); 5598 } 5599 EXPORT_SYMBOL(__get_free_pages); 5600 5601 unsigned long get_zeroed_page(gfp_t gfp_mask) 5602 { 5603 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5604 } 5605 EXPORT_SYMBOL(get_zeroed_page); 5606 5607 /** 5608 * __free_pages - Free pages allocated with alloc_pages(). 5609 * @page: The page pointer returned from alloc_pages(). 5610 * @order: The order of the allocation. 5611 * 5612 * This function can free multi-page allocations that are not compound 5613 * pages. It does not check that the @order passed in matches that of 5614 * the allocation, so it is easy to leak memory. Freeing more memory 5615 * than was allocated will probably emit a warning. 5616 * 5617 * If the last reference to this page is speculative, it will be released 5618 * by put_page() which only frees the first page of a non-compound 5619 * allocation. To prevent the remaining pages from being leaked, we free 5620 * the subsequent pages here. If you want to use the page's reference 5621 * count to decide when to free the allocation, you should allocate a 5622 * compound page, and use put_page() instead of __free_pages(). 5623 * 5624 * Context: May be called in interrupt context or while holding a normal 5625 * spinlock, but not in NMI context or while holding a raw spinlock. 5626 */ 5627 void __free_pages(struct page *page, unsigned int order) 5628 { 5629 if (put_page_testzero(page)) 5630 free_the_page(page, order); 5631 else if (!PageHead(page)) 5632 while (order-- > 0) 5633 free_the_page(page + (1 << order), order); 5634 } 5635 EXPORT_SYMBOL(__free_pages); 5636 5637 void free_pages(unsigned long addr, unsigned int order) 5638 { 5639 if (addr != 0) { 5640 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5641 __free_pages(virt_to_page((void *)addr), order); 5642 } 5643 } 5644 5645 EXPORT_SYMBOL(free_pages); 5646 5647 /* 5648 * Page Fragment: 5649 * An arbitrary-length arbitrary-offset area of memory which resides 5650 * within a 0 or higher order page. Multiple fragments within that page 5651 * are individually refcounted, in the page's reference counter. 5652 * 5653 * The page_frag functions below provide a simple allocation framework for 5654 * page fragments. This is used by the network stack and network device 5655 * drivers to provide a backing region of memory for use as either an 5656 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5657 */ 5658 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5659 gfp_t gfp_mask) 5660 { 5661 struct page *page = NULL; 5662 gfp_t gfp = gfp_mask; 5663 5664 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5665 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5666 __GFP_NOMEMALLOC; 5667 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5668 PAGE_FRAG_CACHE_MAX_ORDER); 5669 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5670 #endif 5671 if (unlikely(!page)) 5672 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5673 5674 nc->va = page ? page_address(page) : NULL; 5675 5676 return page; 5677 } 5678 5679 void __page_frag_cache_drain(struct page *page, unsigned int count) 5680 { 5681 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5682 5683 if (page_ref_sub_and_test(page, count)) 5684 free_the_page(page, compound_order(page)); 5685 } 5686 EXPORT_SYMBOL(__page_frag_cache_drain); 5687 5688 void *page_frag_alloc_align(struct page_frag_cache *nc, 5689 unsigned int fragsz, gfp_t gfp_mask, 5690 unsigned int align_mask) 5691 { 5692 unsigned int size = PAGE_SIZE; 5693 struct page *page; 5694 int offset; 5695 5696 if (unlikely(!nc->va)) { 5697 refill: 5698 page = __page_frag_cache_refill(nc, gfp_mask); 5699 if (!page) 5700 return NULL; 5701 5702 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5703 /* if size can vary use size else just use PAGE_SIZE */ 5704 size = nc->size; 5705 #endif 5706 /* Even if we own the page, we do not use atomic_set(). 5707 * This would break get_page_unless_zero() users. 5708 */ 5709 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5710 5711 /* reset page count bias and offset to start of new frag */ 5712 nc->pfmemalloc = page_is_pfmemalloc(page); 5713 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5714 nc->offset = size; 5715 } 5716 5717 offset = nc->offset - fragsz; 5718 if (unlikely(offset < 0)) { 5719 page = virt_to_page(nc->va); 5720 5721 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5722 goto refill; 5723 5724 if (unlikely(nc->pfmemalloc)) { 5725 free_the_page(page, compound_order(page)); 5726 goto refill; 5727 } 5728 5729 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5730 /* if size can vary use size else just use PAGE_SIZE */ 5731 size = nc->size; 5732 #endif 5733 /* OK, page count is 0, we can safely set it */ 5734 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5735 5736 /* reset page count bias and offset to start of new frag */ 5737 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5738 offset = size - fragsz; 5739 if (unlikely(offset < 0)) { 5740 /* 5741 * The caller is trying to allocate a fragment 5742 * with fragsz > PAGE_SIZE but the cache isn't big 5743 * enough to satisfy the request, this may 5744 * happen in low memory conditions. 5745 * We don't release the cache page because 5746 * it could make memory pressure worse 5747 * so we simply return NULL here. 5748 */ 5749 return NULL; 5750 } 5751 } 5752 5753 nc->pagecnt_bias--; 5754 offset &= align_mask; 5755 nc->offset = offset; 5756 5757 return nc->va + offset; 5758 } 5759 EXPORT_SYMBOL(page_frag_alloc_align); 5760 5761 /* 5762 * Frees a page fragment allocated out of either a compound or order 0 page. 5763 */ 5764 void page_frag_free(void *addr) 5765 { 5766 struct page *page = virt_to_head_page(addr); 5767 5768 if (unlikely(put_page_testzero(page))) 5769 free_the_page(page, compound_order(page)); 5770 } 5771 EXPORT_SYMBOL(page_frag_free); 5772 5773 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5774 size_t size) 5775 { 5776 if (addr) { 5777 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 5778 struct page *page = virt_to_page((void *)addr); 5779 struct page *last = page + nr; 5780 5781 split_page_owner(page, 1 << order); 5782 split_page_memcg(page, 1 << order); 5783 while (page < --last) 5784 set_page_refcounted(last); 5785 5786 last = page + (1UL << order); 5787 for (page += nr; page < last; page++) 5788 __free_pages_ok(page, 0, FPI_TO_TAIL); 5789 } 5790 return (void *)addr; 5791 } 5792 5793 /** 5794 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5795 * @size: the number of bytes to allocate 5796 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5797 * 5798 * This function is similar to alloc_pages(), except that it allocates the 5799 * minimum number of pages to satisfy the request. alloc_pages() can only 5800 * allocate memory in power-of-two pages. 5801 * 5802 * This function is also limited by MAX_ORDER. 5803 * 5804 * Memory allocated by this function must be released by free_pages_exact(). 5805 * 5806 * Return: pointer to the allocated area or %NULL in case of error. 5807 */ 5808 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5809 { 5810 unsigned int order = get_order(size); 5811 unsigned long addr; 5812 5813 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5814 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5815 5816 addr = __get_free_pages(gfp_mask, order); 5817 return make_alloc_exact(addr, order, size); 5818 } 5819 EXPORT_SYMBOL(alloc_pages_exact); 5820 5821 /** 5822 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5823 * pages on a node. 5824 * @nid: the preferred node ID where memory should be allocated 5825 * @size: the number of bytes to allocate 5826 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5827 * 5828 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5829 * back. 5830 * 5831 * Return: pointer to the allocated area or %NULL in case of error. 5832 */ 5833 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5834 { 5835 unsigned int order = get_order(size); 5836 struct page *p; 5837 5838 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5839 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5840 5841 p = alloc_pages_node(nid, gfp_mask, order); 5842 if (!p) 5843 return NULL; 5844 return make_alloc_exact((unsigned long)page_address(p), order, size); 5845 } 5846 5847 /** 5848 * free_pages_exact - release memory allocated via alloc_pages_exact() 5849 * @virt: the value returned by alloc_pages_exact. 5850 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5851 * 5852 * Release the memory allocated by a previous call to alloc_pages_exact. 5853 */ 5854 void free_pages_exact(void *virt, size_t size) 5855 { 5856 unsigned long addr = (unsigned long)virt; 5857 unsigned long end = addr + PAGE_ALIGN(size); 5858 5859 while (addr < end) { 5860 free_page(addr); 5861 addr += PAGE_SIZE; 5862 } 5863 } 5864 EXPORT_SYMBOL(free_pages_exact); 5865 5866 /** 5867 * nr_free_zone_pages - count number of pages beyond high watermark 5868 * @offset: The zone index of the highest zone 5869 * 5870 * nr_free_zone_pages() counts the number of pages which are beyond the 5871 * high watermark within all zones at or below a given zone index. For each 5872 * zone, the number of pages is calculated as: 5873 * 5874 * nr_free_zone_pages = managed_pages - high_pages 5875 * 5876 * Return: number of pages beyond high watermark. 5877 */ 5878 static unsigned long nr_free_zone_pages(int offset) 5879 { 5880 struct zoneref *z; 5881 struct zone *zone; 5882 5883 /* Just pick one node, since fallback list is circular */ 5884 unsigned long sum = 0; 5885 5886 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5887 5888 for_each_zone_zonelist(zone, z, zonelist, offset) { 5889 unsigned long size = zone_managed_pages(zone); 5890 unsigned long high = high_wmark_pages(zone); 5891 if (size > high) 5892 sum += size - high; 5893 } 5894 5895 return sum; 5896 } 5897 5898 /** 5899 * nr_free_buffer_pages - count number of pages beyond high watermark 5900 * 5901 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5902 * watermark within ZONE_DMA and ZONE_NORMAL. 5903 * 5904 * Return: number of pages beyond high watermark within ZONE_DMA and 5905 * ZONE_NORMAL. 5906 */ 5907 unsigned long nr_free_buffer_pages(void) 5908 { 5909 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5910 } 5911 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5912 5913 static inline void show_node(struct zone *zone) 5914 { 5915 if (IS_ENABLED(CONFIG_NUMA)) 5916 printk("Node %d ", zone_to_nid(zone)); 5917 } 5918 5919 long si_mem_available(void) 5920 { 5921 long available; 5922 unsigned long pagecache; 5923 unsigned long wmark_low = 0; 5924 unsigned long pages[NR_LRU_LISTS]; 5925 unsigned long reclaimable; 5926 struct zone *zone; 5927 int lru; 5928 5929 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5930 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5931 5932 for_each_zone(zone) 5933 wmark_low += low_wmark_pages(zone); 5934 5935 /* 5936 * Estimate the amount of memory available for userspace allocations, 5937 * without causing swapping or OOM. 5938 */ 5939 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5940 5941 /* 5942 * Not all the page cache can be freed, otherwise the system will 5943 * start swapping or thrashing. Assume at least half of the page 5944 * cache, or the low watermark worth of cache, needs to stay. 5945 */ 5946 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5947 pagecache -= min(pagecache / 2, wmark_low); 5948 available += pagecache; 5949 5950 /* 5951 * Part of the reclaimable slab and other kernel memory consists of 5952 * items that are in use, and cannot be freed. Cap this estimate at the 5953 * low watermark. 5954 */ 5955 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5956 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5957 available += reclaimable - min(reclaimable / 2, wmark_low); 5958 5959 if (available < 0) 5960 available = 0; 5961 return available; 5962 } 5963 EXPORT_SYMBOL_GPL(si_mem_available); 5964 5965 void si_meminfo(struct sysinfo *val) 5966 { 5967 val->totalram = totalram_pages(); 5968 val->sharedram = global_node_page_state(NR_SHMEM); 5969 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5970 val->bufferram = nr_blockdev_pages(); 5971 val->totalhigh = totalhigh_pages(); 5972 val->freehigh = nr_free_highpages(); 5973 val->mem_unit = PAGE_SIZE; 5974 } 5975 5976 EXPORT_SYMBOL(si_meminfo); 5977 5978 #ifdef CONFIG_NUMA 5979 void si_meminfo_node(struct sysinfo *val, int nid) 5980 { 5981 int zone_type; /* needs to be signed */ 5982 unsigned long managed_pages = 0; 5983 unsigned long managed_highpages = 0; 5984 unsigned long free_highpages = 0; 5985 pg_data_t *pgdat = NODE_DATA(nid); 5986 5987 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5988 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5989 val->totalram = managed_pages; 5990 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5991 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5992 #ifdef CONFIG_HIGHMEM 5993 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5994 struct zone *zone = &pgdat->node_zones[zone_type]; 5995 5996 if (is_highmem(zone)) { 5997 managed_highpages += zone_managed_pages(zone); 5998 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5999 } 6000 } 6001 val->totalhigh = managed_highpages; 6002 val->freehigh = free_highpages; 6003 #else 6004 val->totalhigh = managed_highpages; 6005 val->freehigh = free_highpages; 6006 #endif 6007 val->mem_unit = PAGE_SIZE; 6008 } 6009 #endif 6010 6011 /* 6012 * Determine whether the node should be displayed or not, depending on whether 6013 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 6014 */ 6015 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 6016 { 6017 if (!(flags & SHOW_MEM_FILTER_NODES)) 6018 return false; 6019 6020 /* 6021 * no node mask - aka implicit memory numa policy. Do not bother with 6022 * the synchronization - read_mems_allowed_begin - because we do not 6023 * have to be precise here. 6024 */ 6025 if (!nodemask) 6026 nodemask = &cpuset_current_mems_allowed; 6027 6028 return !node_isset(nid, *nodemask); 6029 } 6030 6031 #define K(x) ((x) << (PAGE_SHIFT-10)) 6032 6033 static void show_migration_types(unsigned char type) 6034 { 6035 static const char types[MIGRATE_TYPES] = { 6036 [MIGRATE_UNMOVABLE] = 'U', 6037 [MIGRATE_MOVABLE] = 'M', 6038 [MIGRATE_RECLAIMABLE] = 'E', 6039 [MIGRATE_HIGHATOMIC] = 'H', 6040 #ifdef CONFIG_CMA 6041 [MIGRATE_CMA] = 'C', 6042 #endif 6043 #ifdef CONFIG_MEMORY_ISOLATION 6044 [MIGRATE_ISOLATE] = 'I', 6045 #endif 6046 }; 6047 char tmp[MIGRATE_TYPES + 1]; 6048 char *p = tmp; 6049 int i; 6050 6051 for (i = 0; i < MIGRATE_TYPES; i++) { 6052 if (type & (1 << i)) 6053 *p++ = types[i]; 6054 } 6055 6056 *p = '\0'; 6057 printk(KERN_CONT "(%s) ", tmp); 6058 } 6059 6060 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx) 6061 { 6062 int zone_idx; 6063 for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++) 6064 if (zone_managed_pages(pgdat->node_zones + zone_idx)) 6065 return true; 6066 return false; 6067 } 6068 6069 /* 6070 * Show free area list (used inside shift_scroll-lock stuff) 6071 * We also calculate the percentage fragmentation. We do this by counting the 6072 * memory on each free list with the exception of the first item on the list. 6073 * 6074 * Bits in @filter: 6075 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 6076 * cpuset. 6077 */ 6078 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx) 6079 { 6080 unsigned long free_pcp = 0; 6081 int cpu, nid; 6082 struct zone *zone; 6083 pg_data_t *pgdat; 6084 6085 for_each_populated_zone(zone) { 6086 if (zone_idx(zone) > max_zone_idx) 6087 continue; 6088 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6089 continue; 6090 6091 for_each_online_cpu(cpu) 6092 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6093 } 6094 6095 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 6096 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 6097 " unevictable:%lu dirty:%lu writeback:%lu\n" 6098 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 6099 " mapped:%lu shmem:%lu pagetables:%lu\n" 6100 " sec_pagetables:%lu bounce:%lu\n" 6101 " kernel_misc_reclaimable:%lu\n" 6102 " free:%lu free_pcp:%lu free_cma:%lu\n", 6103 global_node_page_state(NR_ACTIVE_ANON), 6104 global_node_page_state(NR_INACTIVE_ANON), 6105 global_node_page_state(NR_ISOLATED_ANON), 6106 global_node_page_state(NR_ACTIVE_FILE), 6107 global_node_page_state(NR_INACTIVE_FILE), 6108 global_node_page_state(NR_ISOLATED_FILE), 6109 global_node_page_state(NR_UNEVICTABLE), 6110 global_node_page_state(NR_FILE_DIRTY), 6111 global_node_page_state(NR_WRITEBACK), 6112 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 6113 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 6114 global_node_page_state(NR_FILE_MAPPED), 6115 global_node_page_state(NR_SHMEM), 6116 global_node_page_state(NR_PAGETABLE), 6117 global_node_page_state(NR_SECONDARY_PAGETABLE), 6118 global_zone_page_state(NR_BOUNCE), 6119 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), 6120 global_zone_page_state(NR_FREE_PAGES), 6121 free_pcp, 6122 global_zone_page_state(NR_FREE_CMA_PAGES)); 6123 6124 for_each_online_pgdat(pgdat) { 6125 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 6126 continue; 6127 if (!node_has_managed_zones(pgdat, max_zone_idx)) 6128 continue; 6129 6130 printk("Node %d" 6131 " active_anon:%lukB" 6132 " inactive_anon:%lukB" 6133 " active_file:%lukB" 6134 " inactive_file:%lukB" 6135 " unevictable:%lukB" 6136 " isolated(anon):%lukB" 6137 " isolated(file):%lukB" 6138 " mapped:%lukB" 6139 " dirty:%lukB" 6140 " writeback:%lukB" 6141 " shmem:%lukB" 6142 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6143 " shmem_thp: %lukB" 6144 " shmem_pmdmapped: %lukB" 6145 " anon_thp: %lukB" 6146 #endif 6147 " writeback_tmp:%lukB" 6148 " kernel_stack:%lukB" 6149 #ifdef CONFIG_SHADOW_CALL_STACK 6150 " shadow_call_stack:%lukB" 6151 #endif 6152 " pagetables:%lukB" 6153 " sec_pagetables:%lukB" 6154 " all_unreclaimable? %s" 6155 "\n", 6156 pgdat->node_id, 6157 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 6158 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 6159 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 6160 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 6161 K(node_page_state(pgdat, NR_UNEVICTABLE)), 6162 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 6163 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 6164 K(node_page_state(pgdat, NR_FILE_MAPPED)), 6165 K(node_page_state(pgdat, NR_FILE_DIRTY)), 6166 K(node_page_state(pgdat, NR_WRITEBACK)), 6167 K(node_page_state(pgdat, NR_SHMEM)), 6168 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6169 K(node_page_state(pgdat, NR_SHMEM_THPS)), 6170 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 6171 K(node_page_state(pgdat, NR_ANON_THPS)), 6172 #endif 6173 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 6174 node_page_state(pgdat, NR_KERNEL_STACK_KB), 6175 #ifdef CONFIG_SHADOW_CALL_STACK 6176 node_page_state(pgdat, NR_KERNEL_SCS_KB), 6177 #endif 6178 K(node_page_state(pgdat, NR_PAGETABLE)), 6179 K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)), 6180 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 6181 "yes" : "no"); 6182 } 6183 6184 for_each_populated_zone(zone) { 6185 int i; 6186 6187 if (zone_idx(zone) > max_zone_idx) 6188 continue; 6189 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6190 continue; 6191 6192 free_pcp = 0; 6193 for_each_online_cpu(cpu) 6194 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6195 6196 show_node(zone); 6197 printk(KERN_CONT 6198 "%s" 6199 " free:%lukB" 6200 " boost:%lukB" 6201 " min:%lukB" 6202 " low:%lukB" 6203 " high:%lukB" 6204 " reserved_highatomic:%luKB" 6205 " active_anon:%lukB" 6206 " inactive_anon:%lukB" 6207 " active_file:%lukB" 6208 " inactive_file:%lukB" 6209 " unevictable:%lukB" 6210 " writepending:%lukB" 6211 " present:%lukB" 6212 " managed:%lukB" 6213 " mlocked:%lukB" 6214 " bounce:%lukB" 6215 " free_pcp:%lukB" 6216 " local_pcp:%ukB" 6217 " free_cma:%lukB" 6218 "\n", 6219 zone->name, 6220 K(zone_page_state(zone, NR_FREE_PAGES)), 6221 K(zone->watermark_boost), 6222 K(min_wmark_pages(zone)), 6223 K(low_wmark_pages(zone)), 6224 K(high_wmark_pages(zone)), 6225 K(zone->nr_reserved_highatomic), 6226 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 6227 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 6228 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 6229 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 6230 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 6231 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 6232 K(zone->present_pages), 6233 K(zone_managed_pages(zone)), 6234 K(zone_page_state(zone, NR_MLOCK)), 6235 K(zone_page_state(zone, NR_BOUNCE)), 6236 K(free_pcp), 6237 K(this_cpu_read(zone->per_cpu_pageset->count)), 6238 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 6239 printk("lowmem_reserve[]:"); 6240 for (i = 0; i < MAX_NR_ZONES; i++) 6241 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 6242 printk(KERN_CONT "\n"); 6243 } 6244 6245 for_each_populated_zone(zone) { 6246 unsigned int order; 6247 unsigned long nr[MAX_ORDER], flags, total = 0; 6248 unsigned char types[MAX_ORDER]; 6249 6250 if (zone_idx(zone) > max_zone_idx) 6251 continue; 6252 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6253 continue; 6254 show_node(zone); 6255 printk(KERN_CONT "%s: ", zone->name); 6256 6257 spin_lock_irqsave(&zone->lock, flags); 6258 for (order = 0; order < MAX_ORDER; order++) { 6259 struct free_area *area = &zone->free_area[order]; 6260 int type; 6261 6262 nr[order] = area->nr_free; 6263 total += nr[order] << order; 6264 6265 types[order] = 0; 6266 for (type = 0; type < MIGRATE_TYPES; type++) { 6267 if (!free_area_empty(area, type)) 6268 types[order] |= 1 << type; 6269 } 6270 } 6271 spin_unlock_irqrestore(&zone->lock, flags); 6272 for (order = 0; order < MAX_ORDER; order++) { 6273 printk(KERN_CONT "%lu*%lukB ", 6274 nr[order], K(1UL) << order); 6275 if (nr[order]) 6276 show_migration_types(types[order]); 6277 } 6278 printk(KERN_CONT "= %lukB\n", K(total)); 6279 } 6280 6281 for_each_online_node(nid) { 6282 if (show_mem_node_skip(filter, nid, nodemask)) 6283 continue; 6284 hugetlb_show_meminfo_node(nid); 6285 } 6286 6287 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 6288 6289 show_swap_cache_info(); 6290 } 6291 6292 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 6293 { 6294 zoneref->zone = zone; 6295 zoneref->zone_idx = zone_idx(zone); 6296 } 6297 6298 /* 6299 * Builds allocation fallback zone lists. 6300 * 6301 * Add all populated zones of a node to the zonelist. 6302 */ 6303 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 6304 { 6305 struct zone *zone; 6306 enum zone_type zone_type = MAX_NR_ZONES; 6307 int nr_zones = 0; 6308 6309 do { 6310 zone_type--; 6311 zone = pgdat->node_zones + zone_type; 6312 if (populated_zone(zone)) { 6313 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 6314 check_highest_zone(zone_type); 6315 } 6316 } while (zone_type); 6317 6318 return nr_zones; 6319 } 6320 6321 #ifdef CONFIG_NUMA 6322 6323 static int __parse_numa_zonelist_order(char *s) 6324 { 6325 /* 6326 * We used to support different zonelists modes but they turned 6327 * out to be just not useful. Let's keep the warning in place 6328 * if somebody still use the cmd line parameter so that we do 6329 * not fail it silently 6330 */ 6331 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 6332 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 6333 return -EINVAL; 6334 } 6335 return 0; 6336 } 6337 6338 char numa_zonelist_order[] = "Node"; 6339 6340 /* 6341 * sysctl handler for numa_zonelist_order 6342 */ 6343 int numa_zonelist_order_handler(struct ctl_table *table, int write, 6344 void *buffer, size_t *length, loff_t *ppos) 6345 { 6346 if (write) 6347 return __parse_numa_zonelist_order(buffer); 6348 return proc_dostring(table, write, buffer, length, ppos); 6349 } 6350 6351 6352 static int node_load[MAX_NUMNODES]; 6353 6354 /** 6355 * find_next_best_node - find the next node that should appear in a given node's fallback list 6356 * @node: node whose fallback list we're appending 6357 * @used_node_mask: nodemask_t of already used nodes 6358 * 6359 * We use a number of factors to determine which is the next node that should 6360 * appear on a given node's fallback list. The node should not have appeared 6361 * already in @node's fallback list, and it should be the next closest node 6362 * according to the distance array (which contains arbitrary distance values 6363 * from each node to each node in the system), and should also prefer nodes 6364 * with no CPUs, since presumably they'll have very little allocation pressure 6365 * on them otherwise. 6366 * 6367 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 6368 */ 6369 int find_next_best_node(int node, nodemask_t *used_node_mask) 6370 { 6371 int n, val; 6372 int min_val = INT_MAX; 6373 int best_node = NUMA_NO_NODE; 6374 6375 /* Use the local node if we haven't already */ 6376 if (!node_isset(node, *used_node_mask)) { 6377 node_set(node, *used_node_mask); 6378 return node; 6379 } 6380 6381 for_each_node_state(n, N_MEMORY) { 6382 6383 /* Don't want a node to appear more than once */ 6384 if (node_isset(n, *used_node_mask)) 6385 continue; 6386 6387 /* Use the distance array to find the distance */ 6388 val = node_distance(node, n); 6389 6390 /* Penalize nodes under us ("prefer the next node") */ 6391 val += (n < node); 6392 6393 /* Give preference to headless and unused nodes */ 6394 if (!cpumask_empty(cpumask_of_node(n))) 6395 val += PENALTY_FOR_NODE_WITH_CPUS; 6396 6397 /* Slight preference for less loaded node */ 6398 val *= MAX_NUMNODES; 6399 val += node_load[n]; 6400 6401 if (val < min_val) { 6402 min_val = val; 6403 best_node = n; 6404 } 6405 } 6406 6407 if (best_node >= 0) 6408 node_set(best_node, *used_node_mask); 6409 6410 return best_node; 6411 } 6412 6413 6414 /* 6415 * Build zonelists ordered by node and zones within node. 6416 * This results in maximum locality--normal zone overflows into local 6417 * DMA zone, if any--but risks exhausting DMA zone. 6418 */ 6419 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6420 unsigned nr_nodes) 6421 { 6422 struct zoneref *zonerefs; 6423 int i; 6424 6425 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6426 6427 for (i = 0; i < nr_nodes; i++) { 6428 int nr_zones; 6429 6430 pg_data_t *node = NODE_DATA(node_order[i]); 6431 6432 nr_zones = build_zonerefs_node(node, zonerefs); 6433 zonerefs += nr_zones; 6434 } 6435 zonerefs->zone = NULL; 6436 zonerefs->zone_idx = 0; 6437 } 6438 6439 /* 6440 * Build gfp_thisnode zonelists 6441 */ 6442 static void build_thisnode_zonelists(pg_data_t *pgdat) 6443 { 6444 struct zoneref *zonerefs; 6445 int nr_zones; 6446 6447 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6448 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6449 zonerefs += nr_zones; 6450 zonerefs->zone = NULL; 6451 zonerefs->zone_idx = 0; 6452 } 6453 6454 /* 6455 * Build zonelists ordered by zone and nodes within zones. 6456 * This results in conserving DMA zone[s] until all Normal memory is 6457 * exhausted, but results in overflowing to remote node while memory 6458 * may still exist in local DMA zone. 6459 */ 6460 6461 static void build_zonelists(pg_data_t *pgdat) 6462 { 6463 static int node_order[MAX_NUMNODES]; 6464 int node, nr_nodes = 0; 6465 nodemask_t used_mask = NODE_MASK_NONE; 6466 int local_node, prev_node; 6467 6468 /* NUMA-aware ordering of nodes */ 6469 local_node = pgdat->node_id; 6470 prev_node = local_node; 6471 6472 memset(node_order, 0, sizeof(node_order)); 6473 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6474 /* 6475 * We don't want to pressure a particular node. 6476 * So adding penalty to the first node in same 6477 * distance group to make it round-robin. 6478 */ 6479 if (node_distance(local_node, node) != 6480 node_distance(local_node, prev_node)) 6481 node_load[node] += 1; 6482 6483 node_order[nr_nodes++] = node; 6484 prev_node = node; 6485 } 6486 6487 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6488 build_thisnode_zonelists(pgdat); 6489 pr_info("Fallback order for Node %d: ", local_node); 6490 for (node = 0; node < nr_nodes; node++) 6491 pr_cont("%d ", node_order[node]); 6492 pr_cont("\n"); 6493 } 6494 6495 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6496 /* 6497 * Return node id of node used for "local" allocations. 6498 * I.e., first node id of first zone in arg node's generic zonelist. 6499 * Used for initializing percpu 'numa_mem', which is used primarily 6500 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6501 */ 6502 int local_memory_node(int node) 6503 { 6504 struct zoneref *z; 6505 6506 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6507 gfp_zone(GFP_KERNEL), 6508 NULL); 6509 return zone_to_nid(z->zone); 6510 } 6511 #endif 6512 6513 static void setup_min_unmapped_ratio(void); 6514 static void setup_min_slab_ratio(void); 6515 #else /* CONFIG_NUMA */ 6516 6517 static void build_zonelists(pg_data_t *pgdat) 6518 { 6519 int node, local_node; 6520 struct zoneref *zonerefs; 6521 int nr_zones; 6522 6523 local_node = pgdat->node_id; 6524 6525 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6526 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6527 zonerefs += nr_zones; 6528 6529 /* 6530 * Now we build the zonelist so that it contains the zones 6531 * of all the other nodes. 6532 * We don't want to pressure a particular node, so when 6533 * building the zones for node N, we make sure that the 6534 * zones coming right after the local ones are those from 6535 * node N+1 (modulo N) 6536 */ 6537 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6538 if (!node_online(node)) 6539 continue; 6540 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6541 zonerefs += nr_zones; 6542 } 6543 for (node = 0; node < local_node; node++) { 6544 if (!node_online(node)) 6545 continue; 6546 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6547 zonerefs += nr_zones; 6548 } 6549 6550 zonerefs->zone = NULL; 6551 zonerefs->zone_idx = 0; 6552 } 6553 6554 #endif /* CONFIG_NUMA */ 6555 6556 /* 6557 * Boot pageset table. One per cpu which is going to be used for all 6558 * zones and all nodes. The parameters will be set in such a way 6559 * that an item put on a list will immediately be handed over to 6560 * the buddy list. This is safe since pageset manipulation is done 6561 * with interrupts disabled. 6562 * 6563 * The boot_pagesets must be kept even after bootup is complete for 6564 * unused processors and/or zones. They do play a role for bootstrapping 6565 * hotplugged processors. 6566 * 6567 * zoneinfo_show() and maybe other functions do 6568 * not check if the processor is online before following the pageset pointer. 6569 * Other parts of the kernel may not check if the zone is available. 6570 */ 6571 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 6572 /* These effectively disable the pcplists in the boot pageset completely */ 6573 #define BOOT_PAGESET_HIGH 0 6574 #define BOOT_PAGESET_BATCH 1 6575 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 6576 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 6577 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6578 6579 static void __build_all_zonelists(void *data) 6580 { 6581 int nid; 6582 int __maybe_unused cpu; 6583 pg_data_t *self = data; 6584 6585 write_seqlock(&zonelist_update_seq); 6586 6587 #ifdef CONFIG_NUMA 6588 memset(node_load, 0, sizeof(node_load)); 6589 #endif 6590 6591 /* 6592 * This node is hotadded and no memory is yet present. So just 6593 * building zonelists is fine - no need to touch other nodes. 6594 */ 6595 if (self && !node_online(self->node_id)) { 6596 build_zonelists(self); 6597 } else { 6598 /* 6599 * All possible nodes have pgdat preallocated 6600 * in free_area_init 6601 */ 6602 for_each_node(nid) { 6603 pg_data_t *pgdat = NODE_DATA(nid); 6604 6605 build_zonelists(pgdat); 6606 } 6607 6608 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6609 /* 6610 * We now know the "local memory node" for each node-- 6611 * i.e., the node of the first zone in the generic zonelist. 6612 * Set up numa_mem percpu variable for on-line cpus. During 6613 * boot, only the boot cpu should be on-line; we'll init the 6614 * secondary cpus' numa_mem as they come on-line. During 6615 * node/memory hotplug, we'll fixup all on-line cpus. 6616 */ 6617 for_each_online_cpu(cpu) 6618 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6619 #endif 6620 } 6621 6622 write_sequnlock(&zonelist_update_seq); 6623 } 6624 6625 static noinline void __init 6626 build_all_zonelists_init(void) 6627 { 6628 int cpu; 6629 6630 __build_all_zonelists(NULL); 6631 6632 /* 6633 * Initialize the boot_pagesets that are going to be used 6634 * for bootstrapping processors. The real pagesets for 6635 * each zone will be allocated later when the per cpu 6636 * allocator is available. 6637 * 6638 * boot_pagesets are used also for bootstrapping offline 6639 * cpus if the system is already booted because the pagesets 6640 * are needed to initialize allocators on a specific cpu too. 6641 * F.e. the percpu allocator needs the page allocator which 6642 * needs the percpu allocator in order to allocate its pagesets 6643 * (a chicken-egg dilemma). 6644 */ 6645 for_each_possible_cpu(cpu) 6646 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 6647 6648 mminit_verify_zonelist(); 6649 cpuset_init_current_mems_allowed(); 6650 } 6651 6652 /* 6653 * unless system_state == SYSTEM_BOOTING. 6654 * 6655 * __ref due to call of __init annotated helper build_all_zonelists_init 6656 * [protected by SYSTEM_BOOTING]. 6657 */ 6658 void __ref build_all_zonelists(pg_data_t *pgdat) 6659 { 6660 unsigned long vm_total_pages; 6661 6662 if (system_state == SYSTEM_BOOTING) { 6663 build_all_zonelists_init(); 6664 } else { 6665 __build_all_zonelists(pgdat); 6666 /* cpuset refresh routine should be here */ 6667 } 6668 /* Get the number of free pages beyond high watermark in all zones. */ 6669 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6670 /* 6671 * Disable grouping by mobility if the number of pages in the 6672 * system is too low to allow the mechanism to work. It would be 6673 * more accurate, but expensive to check per-zone. This check is 6674 * made on memory-hotadd so a system can start with mobility 6675 * disabled and enable it later 6676 */ 6677 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6678 page_group_by_mobility_disabled = 1; 6679 else 6680 page_group_by_mobility_disabled = 0; 6681 6682 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6683 nr_online_nodes, 6684 page_group_by_mobility_disabled ? "off" : "on", 6685 vm_total_pages); 6686 #ifdef CONFIG_NUMA 6687 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6688 #endif 6689 } 6690 6691 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6692 static bool __meminit 6693 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6694 { 6695 static struct memblock_region *r; 6696 6697 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6698 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6699 for_each_mem_region(r) { 6700 if (*pfn < memblock_region_memory_end_pfn(r)) 6701 break; 6702 } 6703 } 6704 if (*pfn >= memblock_region_memory_base_pfn(r) && 6705 memblock_is_mirror(r)) { 6706 *pfn = memblock_region_memory_end_pfn(r); 6707 return true; 6708 } 6709 } 6710 return false; 6711 } 6712 6713 /* 6714 * Initially all pages are reserved - free ones are freed 6715 * up by memblock_free_all() once the early boot process is 6716 * done. Non-atomic initialization, single-pass. 6717 * 6718 * All aligned pageblocks are initialized to the specified migratetype 6719 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6720 * zone stats (e.g., nr_isolate_pageblock) are touched. 6721 */ 6722 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6723 unsigned long start_pfn, unsigned long zone_end_pfn, 6724 enum meminit_context context, 6725 struct vmem_altmap *altmap, int migratetype) 6726 { 6727 unsigned long pfn, end_pfn = start_pfn + size; 6728 struct page *page; 6729 6730 if (highest_memmap_pfn < end_pfn - 1) 6731 highest_memmap_pfn = end_pfn - 1; 6732 6733 #ifdef CONFIG_ZONE_DEVICE 6734 /* 6735 * Honor reservation requested by the driver for this ZONE_DEVICE 6736 * memory. We limit the total number of pages to initialize to just 6737 * those that might contain the memory mapping. We will defer the 6738 * ZONE_DEVICE page initialization until after we have released 6739 * the hotplug lock. 6740 */ 6741 if (zone == ZONE_DEVICE) { 6742 if (!altmap) 6743 return; 6744 6745 if (start_pfn == altmap->base_pfn) 6746 start_pfn += altmap->reserve; 6747 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6748 } 6749 #endif 6750 6751 for (pfn = start_pfn; pfn < end_pfn; ) { 6752 /* 6753 * There can be holes in boot-time mem_map[]s handed to this 6754 * function. They do not exist on hotplugged memory. 6755 */ 6756 if (context == MEMINIT_EARLY) { 6757 if (overlap_memmap_init(zone, &pfn)) 6758 continue; 6759 if (defer_init(nid, pfn, zone_end_pfn)) 6760 break; 6761 } 6762 6763 page = pfn_to_page(pfn); 6764 __init_single_page(page, pfn, zone, nid); 6765 if (context == MEMINIT_HOTPLUG) 6766 __SetPageReserved(page); 6767 6768 /* 6769 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6770 * such that unmovable allocations won't be scattered all 6771 * over the place during system boot. 6772 */ 6773 if (pageblock_aligned(pfn)) { 6774 set_pageblock_migratetype(page, migratetype); 6775 cond_resched(); 6776 } 6777 pfn++; 6778 } 6779 } 6780 6781 #ifdef CONFIG_ZONE_DEVICE 6782 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, 6783 unsigned long zone_idx, int nid, 6784 struct dev_pagemap *pgmap) 6785 { 6786 6787 __init_single_page(page, pfn, zone_idx, nid); 6788 6789 /* 6790 * Mark page reserved as it will need to wait for onlining 6791 * phase for it to be fully associated with a zone. 6792 * 6793 * We can use the non-atomic __set_bit operation for setting 6794 * the flag as we are still initializing the pages. 6795 */ 6796 __SetPageReserved(page); 6797 6798 /* 6799 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6800 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6801 * ever freed or placed on a driver-private list. 6802 */ 6803 page->pgmap = pgmap; 6804 page->zone_device_data = NULL; 6805 6806 /* 6807 * Mark the block movable so that blocks are reserved for 6808 * movable at startup. This will force kernel allocations 6809 * to reserve their blocks rather than leaking throughout 6810 * the address space during boot when many long-lived 6811 * kernel allocations are made. 6812 * 6813 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6814 * because this is done early in section_activate() 6815 */ 6816 if (pageblock_aligned(pfn)) { 6817 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6818 cond_resched(); 6819 } 6820 6821 /* 6822 * ZONE_DEVICE pages are released directly to the driver page allocator 6823 * which will set the page count to 1 when allocating the page. 6824 */ 6825 if (pgmap->type == MEMORY_DEVICE_PRIVATE || 6826 pgmap->type == MEMORY_DEVICE_COHERENT) 6827 set_page_count(page, 0); 6828 } 6829 6830 /* 6831 * With compound page geometry and when struct pages are stored in ram most 6832 * tail pages are reused. Consequently, the amount of unique struct pages to 6833 * initialize is a lot smaller that the total amount of struct pages being 6834 * mapped. This is a paired / mild layering violation with explicit knowledge 6835 * of how the sparse_vmemmap internals handle compound pages in the lack 6836 * of an altmap. See vmemmap_populate_compound_pages(). 6837 */ 6838 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, 6839 unsigned long nr_pages) 6840 { 6841 return is_power_of_2(sizeof(struct page)) && 6842 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages; 6843 } 6844 6845 static void __ref memmap_init_compound(struct page *head, 6846 unsigned long head_pfn, 6847 unsigned long zone_idx, int nid, 6848 struct dev_pagemap *pgmap, 6849 unsigned long nr_pages) 6850 { 6851 unsigned long pfn, end_pfn = head_pfn + nr_pages; 6852 unsigned int order = pgmap->vmemmap_shift; 6853 6854 __SetPageHead(head); 6855 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { 6856 struct page *page = pfn_to_page(pfn); 6857 6858 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6859 prep_compound_tail(head, pfn - head_pfn); 6860 set_page_count(page, 0); 6861 6862 /* 6863 * The first tail page stores important compound page info. 6864 * Call prep_compound_head() after the first tail page has 6865 * been initialized, to not have the data overwritten. 6866 */ 6867 if (pfn == head_pfn + 1) 6868 prep_compound_head(head, order); 6869 } 6870 } 6871 6872 void __ref memmap_init_zone_device(struct zone *zone, 6873 unsigned long start_pfn, 6874 unsigned long nr_pages, 6875 struct dev_pagemap *pgmap) 6876 { 6877 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6878 struct pglist_data *pgdat = zone->zone_pgdat; 6879 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6880 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); 6881 unsigned long zone_idx = zone_idx(zone); 6882 unsigned long start = jiffies; 6883 int nid = pgdat->node_id; 6884 6885 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE)) 6886 return; 6887 6888 /* 6889 * The call to memmap_init should have already taken care 6890 * of the pages reserved for the memmap, so we can just jump to 6891 * the end of that region and start processing the device pages. 6892 */ 6893 if (altmap) { 6894 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6895 nr_pages = end_pfn - start_pfn; 6896 } 6897 6898 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { 6899 struct page *page = pfn_to_page(pfn); 6900 6901 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6902 6903 if (pfns_per_compound == 1) 6904 continue; 6905 6906 memmap_init_compound(page, pfn, zone_idx, nid, pgmap, 6907 compound_nr_pages(altmap, pfns_per_compound)); 6908 } 6909 6910 pr_info("%s initialised %lu pages in %ums\n", __func__, 6911 nr_pages, jiffies_to_msecs(jiffies - start)); 6912 } 6913 6914 #endif 6915 static void __meminit zone_init_free_lists(struct zone *zone) 6916 { 6917 unsigned int order, t; 6918 for_each_migratetype_order(order, t) { 6919 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6920 zone->free_area[order].nr_free = 0; 6921 } 6922 } 6923 6924 /* 6925 * Only struct pages that correspond to ranges defined by memblock.memory 6926 * are zeroed and initialized by going through __init_single_page() during 6927 * memmap_init_zone_range(). 6928 * 6929 * But, there could be struct pages that correspond to holes in 6930 * memblock.memory. This can happen because of the following reasons: 6931 * - physical memory bank size is not necessarily the exact multiple of the 6932 * arbitrary section size 6933 * - early reserved memory may not be listed in memblock.memory 6934 * - memory layouts defined with memmap= kernel parameter may not align 6935 * nicely with memmap sections 6936 * 6937 * Explicitly initialize those struct pages so that: 6938 * - PG_Reserved is set 6939 * - zone and node links point to zone and node that span the page if the 6940 * hole is in the middle of a zone 6941 * - zone and node links point to adjacent zone/node if the hole falls on 6942 * the zone boundary; the pages in such holes will be prepended to the 6943 * zone/node above the hole except for the trailing pages in the last 6944 * section that will be appended to the zone/node below. 6945 */ 6946 static void __init init_unavailable_range(unsigned long spfn, 6947 unsigned long epfn, 6948 int zone, int node) 6949 { 6950 unsigned long pfn; 6951 u64 pgcnt = 0; 6952 6953 for (pfn = spfn; pfn < epfn; pfn++) { 6954 if (!pfn_valid(pageblock_start_pfn(pfn))) { 6955 pfn = pageblock_end_pfn(pfn) - 1; 6956 continue; 6957 } 6958 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 6959 __SetPageReserved(pfn_to_page(pfn)); 6960 pgcnt++; 6961 } 6962 6963 if (pgcnt) 6964 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 6965 node, zone_names[zone], pgcnt); 6966 } 6967 6968 static void __init memmap_init_zone_range(struct zone *zone, 6969 unsigned long start_pfn, 6970 unsigned long end_pfn, 6971 unsigned long *hole_pfn) 6972 { 6973 unsigned long zone_start_pfn = zone->zone_start_pfn; 6974 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6975 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6976 6977 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 6978 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 6979 6980 if (start_pfn >= end_pfn) 6981 return; 6982 6983 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 6984 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6985 6986 if (*hole_pfn < start_pfn) 6987 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 6988 6989 *hole_pfn = end_pfn; 6990 } 6991 6992 static void __init memmap_init(void) 6993 { 6994 unsigned long start_pfn, end_pfn; 6995 unsigned long hole_pfn = 0; 6996 int i, j, zone_id = 0, nid; 6997 6998 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6999 struct pglist_data *node = NODE_DATA(nid); 7000 7001 for (j = 0; j < MAX_NR_ZONES; j++) { 7002 struct zone *zone = node->node_zones + j; 7003 7004 if (!populated_zone(zone)) 7005 continue; 7006 7007 memmap_init_zone_range(zone, start_pfn, end_pfn, 7008 &hole_pfn); 7009 zone_id = j; 7010 } 7011 } 7012 7013 #ifdef CONFIG_SPARSEMEM 7014 /* 7015 * Initialize the memory map for hole in the range [memory_end, 7016 * section_end]. 7017 * Append the pages in this hole to the highest zone in the last 7018 * node. 7019 * The call to init_unavailable_range() is outside the ifdef to 7020 * silence the compiler warining about zone_id set but not used; 7021 * for FLATMEM it is a nop anyway 7022 */ 7023 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 7024 if (hole_pfn < end_pfn) 7025 #endif 7026 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 7027 } 7028 7029 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 7030 phys_addr_t min_addr, int nid, bool exact_nid) 7031 { 7032 void *ptr; 7033 7034 if (exact_nid) 7035 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 7036 MEMBLOCK_ALLOC_ACCESSIBLE, 7037 nid); 7038 else 7039 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 7040 MEMBLOCK_ALLOC_ACCESSIBLE, 7041 nid); 7042 7043 if (ptr && size > 0) 7044 page_init_poison(ptr, size); 7045 7046 return ptr; 7047 } 7048 7049 static int zone_batchsize(struct zone *zone) 7050 { 7051 #ifdef CONFIG_MMU 7052 int batch; 7053 7054 /* 7055 * The number of pages to batch allocate is either ~0.1% 7056 * of the zone or 1MB, whichever is smaller. The batch 7057 * size is striking a balance between allocation latency 7058 * and zone lock contention. 7059 */ 7060 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 7061 batch /= 4; /* We effectively *= 4 below */ 7062 if (batch < 1) 7063 batch = 1; 7064 7065 /* 7066 * Clamp the batch to a 2^n - 1 value. Having a power 7067 * of 2 value was found to be more likely to have 7068 * suboptimal cache aliasing properties in some cases. 7069 * 7070 * For example if 2 tasks are alternately allocating 7071 * batches of pages, one task can end up with a lot 7072 * of pages of one half of the possible page colors 7073 * and the other with pages of the other colors. 7074 */ 7075 batch = rounddown_pow_of_two(batch + batch/2) - 1; 7076 7077 return batch; 7078 7079 #else 7080 /* The deferral and batching of frees should be suppressed under NOMMU 7081 * conditions. 7082 * 7083 * The problem is that NOMMU needs to be able to allocate large chunks 7084 * of contiguous memory as there's no hardware page translation to 7085 * assemble apparent contiguous memory from discontiguous pages. 7086 * 7087 * Queueing large contiguous runs of pages for batching, however, 7088 * causes the pages to actually be freed in smaller chunks. As there 7089 * can be a significant delay between the individual batches being 7090 * recycled, this leads to the once large chunks of space being 7091 * fragmented and becoming unavailable for high-order allocations. 7092 */ 7093 return 0; 7094 #endif 7095 } 7096 7097 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 7098 { 7099 #ifdef CONFIG_MMU 7100 int high; 7101 int nr_split_cpus; 7102 unsigned long total_pages; 7103 7104 if (!percpu_pagelist_high_fraction) { 7105 /* 7106 * By default, the high value of the pcp is based on the zone 7107 * low watermark so that if they are full then background 7108 * reclaim will not be started prematurely. 7109 */ 7110 total_pages = low_wmark_pages(zone); 7111 } else { 7112 /* 7113 * If percpu_pagelist_high_fraction is configured, the high 7114 * value is based on a fraction of the managed pages in the 7115 * zone. 7116 */ 7117 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 7118 } 7119 7120 /* 7121 * Split the high value across all online CPUs local to the zone. Note 7122 * that early in boot that CPUs may not be online yet and that during 7123 * CPU hotplug that the cpumask is not yet updated when a CPU is being 7124 * onlined. For memory nodes that have no CPUs, split pcp->high across 7125 * all online CPUs to mitigate the risk that reclaim is triggered 7126 * prematurely due to pages stored on pcp lists. 7127 */ 7128 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 7129 if (!nr_split_cpus) 7130 nr_split_cpus = num_online_cpus(); 7131 high = total_pages / nr_split_cpus; 7132 7133 /* 7134 * Ensure high is at least batch*4. The multiple is based on the 7135 * historical relationship between high and batch. 7136 */ 7137 high = max(high, batch << 2); 7138 7139 return high; 7140 #else 7141 return 0; 7142 #endif 7143 } 7144 7145 /* 7146 * pcp->high and pcp->batch values are related and generally batch is lower 7147 * than high. They are also related to pcp->count such that count is lower 7148 * than high, and as soon as it reaches high, the pcplist is flushed. 7149 * 7150 * However, guaranteeing these relations at all times would require e.g. write 7151 * barriers here but also careful usage of read barriers at the read side, and 7152 * thus be prone to error and bad for performance. Thus the update only prevents 7153 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 7154 * can cope with those fields changing asynchronously, and fully trust only the 7155 * pcp->count field on the local CPU with interrupts disabled. 7156 * 7157 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 7158 * outside of boot time (or some other assurance that no concurrent updaters 7159 * exist). 7160 */ 7161 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 7162 unsigned long batch) 7163 { 7164 WRITE_ONCE(pcp->batch, batch); 7165 WRITE_ONCE(pcp->high, high); 7166 } 7167 7168 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 7169 { 7170 int pindex; 7171 7172 memset(pcp, 0, sizeof(*pcp)); 7173 memset(pzstats, 0, sizeof(*pzstats)); 7174 7175 spin_lock_init(&pcp->lock); 7176 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 7177 INIT_LIST_HEAD(&pcp->lists[pindex]); 7178 7179 /* 7180 * Set batch and high values safe for a boot pageset. A true percpu 7181 * pageset's initialization will update them subsequently. Here we don't 7182 * need to be as careful as pageset_update() as nobody can access the 7183 * pageset yet. 7184 */ 7185 pcp->high = BOOT_PAGESET_HIGH; 7186 pcp->batch = BOOT_PAGESET_BATCH; 7187 pcp->free_factor = 0; 7188 } 7189 7190 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 7191 unsigned long batch) 7192 { 7193 struct per_cpu_pages *pcp; 7194 int cpu; 7195 7196 for_each_possible_cpu(cpu) { 7197 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7198 pageset_update(pcp, high, batch); 7199 } 7200 } 7201 7202 /* 7203 * Calculate and set new high and batch values for all per-cpu pagesets of a 7204 * zone based on the zone's size. 7205 */ 7206 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 7207 { 7208 int new_high, new_batch; 7209 7210 new_batch = max(1, zone_batchsize(zone)); 7211 new_high = zone_highsize(zone, new_batch, cpu_online); 7212 7213 if (zone->pageset_high == new_high && 7214 zone->pageset_batch == new_batch) 7215 return; 7216 7217 zone->pageset_high = new_high; 7218 zone->pageset_batch = new_batch; 7219 7220 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 7221 } 7222 7223 void __meminit setup_zone_pageset(struct zone *zone) 7224 { 7225 int cpu; 7226 7227 /* Size may be 0 on !SMP && !NUMA */ 7228 if (sizeof(struct per_cpu_zonestat) > 0) 7229 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 7230 7231 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 7232 for_each_possible_cpu(cpu) { 7233 struct per_cpu_pages *pcp; 7234 struct per_cpu_zonestat *pzstats; 7235 7236 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7237 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 7238 per_cpu_pages_init(pcp, pzstats); 7239 } 7240 7241 zone_set_pageset_high_and_batch(zone, 0); 7242 } 7243 7244 /* 7245 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7246 * page high values need to be recalculated. 7247 */ 7248 static void zone_pcp_update(struct zone *zone, int cpu_online) 7249 { 7250 mutex_lock(&pcp_batch_high_lock); 7251 zone_set_pageset_high_and_batch(zone, cpu_online); 7252 mutex_unlock(&pcp_batch_high_lock); 7253 } 7254 7255 /* 7256 * Allocate per cpu pagesets and initialize them. 7257 * Before this call only boot pagesets were available. 7258 */ 7259 void __init setup_per_cpu_pageset(void) 7260 { 7261 struct pglist_data *pgdat; 7262 struct zone *zone; 7263 int __maybe_unused cpu; 7264 7265 for_each_populated_zone(zone) 7266 setup_zone_pageset(zone); 7267 7268 #ifdef CONFIG_NUMA 7269 /* 7270 * Unpopulated zones continue using the boot pagesets. 7271 * The numa stats for these pagesets need to be reset. 7272 * Otherwise, they will end up skewing the stats of 7273 * the nodes these zones are associated with. 7274 */ 7275 for_each_possible_cpu(cpu) { 7276 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 7277 memset(pzstats->vm_numa_event, 0, 7278 sizeof(pzstats->vm_numa_event)); 7279 } 7280 #endif 7281 7282 for_each_online_pgdat(pgdat) 7283 pgdat->per_cpu_nodestats = 7284 alloc_percpu(struct per_cpu_nodestat); 7285 } 7286 7287 static __meminit void zone_pcp_init(struct zone *zone) 7288 { 7289 /* 7290 * per cpu subsystem is not up at this point. The following code 7291 * relies on the ability of the linker to provide the 7292 * offset of a (static) per cpu variable into the per cpu area. 7293 */ 7294 zone->per_cpu_pageset = &boot_pageset; 7295 zone->per_cpu_zonestats = &boot_zonestats; 7296 zone->pageset_high = BOOT_PAGESET_HIGH; 7297 zone->pageset_batch = BOOT_PAGESET_BATCH; 7298 7299 if (populated_zone(zone)) 7300 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 7301 zone->present_pages, zone_batchsize(zone)); 7302 } 7303 7304 void __meminit init_currently_empty_zone(struct zone *zone, 7305 unsigned long zone_start_pfn, 7306 unsigned long size) 7307 { 7308 struct pglist_data *pgdat = zone->zone_pgdat; 7309 int zone_idx = zone_idx(zone) + 1; 7310 7311 if (zone_idx > pgdat->nr_zones) 7312 pgdat->nr_zones = zone_idx; 7313 7314 zone->zone_start_pfn = zone_start_pfn; 7315 7316 mminit_dprintk(MMINIT_TRACE, "memmap_init", 7317 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 7318 pgdat->node_id, 7319 (unsigned long)zone_idx(zone), 7320 zone_start_pfn, (zone_start_pfn + size)); 7321 7322 zone_init_free_lists(zone); 7323 zone->initialized = 1; 7324 } 7325 7326 /** 7327 * get_pfn_range_for_nid - Return the start and end page frames for a node 7328 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 7329 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 7330 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 7331 * 7332 * It returns the start and end page frame of a node based on information 7333 * provided by memblock_set_node(). If called for a node 7334 * with no available memory, a warning is printed and the start and end 7335 * PFNs will be 0. 7336 */ 7337 void __init get_pfn_range_for_nid(unsigned int nid, 7338 unsigned long *start_pfn, unsigned long *end_pfn) 7339 { 7340 unsigned long this_start_pfn, this_end_pfn; 7341 int i; 7342 7343 *start_pfn = -1UL; 7344 *end_pfn = 0; 7345 7346 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 7347 *start_pfn = min(*start_pfn, this_start_pfn); 7348 *end_pfn = max(*end_pfn, this_end_pfn); 7349 } 7350 7351 if (*start_pfn == -1UL) 7352 *start_pfn = 0; 7353 } 7354 7355 /* 7356 * This finds a zone that can be used for ZONE_MOVABLE pages. The 7357 * assumption is made that zones within a node are ordered in monotonic 7358 * increasing memory addresses so that the "highest" populated zone is used 7359 */ 7360 static void __init find_usable_zone_for_movable(void) 7361 { 7362 int zone_index; 7363 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 7364 if (zone_index == ZONE_MOVABLE) 7365 continue; 7366 7367 if (arch_zone_highest_possible_pfn[zone_index] > 7368 arch_zone_lowest_possible_pfn[zone_index]) 7369 break; 7370 } 7371 7372 VM_BUG_ON(zone_index == -1); 7373 movable_zone = zone_index; 7374 } 7375 7376 /* 7377 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 7378 * because it is sized independent of architecture. Unlike the other zones, 7379 * the starting point for ZONE_MOVABLE is not fixed. It may be different 7380 * in each node depending on the size of each node and how evenly kernelcore 7381 * is distributed. This helper function adjusts the zone ranges 7382 * provided by the architecture for a given node by using the end of the 7383 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 7384 * zones within a node are in order of monotonic increases memory addresses 7385 */ 7386 static void __init adjust_zone_range_for_zone_movable(int nid, 7387 unsigned long zone_type, 7388 unsigned long node_start_pfn, 7389 unsigned long node_end_pfn, 7390 unsigned long *zone_start_pfn, 7391 unsigned long *zone_end_pfn) 7392 { 7393 /* Only adjust if ZONE_MOVABLE is on this node */ 7394 if (zone_movable_pfn[nid]) { 7395 /* Size ZONE_MOVABLE */ 7396 if (zone_type == ZONE_MOVABLE) { 7397 *zone_start_pfn = zone_movable_pfn[nid]; 7398 *zone_end_pfn = min(node_end_pfn, 7399 arch_zone_highest_possible_pfn[movable_zone]); 7400 7401 /* Adjust for ZONE_MOVABLE starting within this range */ 7402 } else if (!mirrored_kernelcore && 7403 *zone_start_pfn < zone_movable_pfn[nid] && 7404 *zone_end_pfn > zone_movable_pfn[nid]) { 7405 *zone_end_pfn = zone_movable_pfn[nid]; 7406 7407 /* Check if this whole range is within ZONE_MOVABLE */ 7408 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 7409 *zone_start_pfn = *zone_end_pfn; 7410 } 7411 } 7412 7413 /* 7414 * Return the number of pages a zone spans in a node, including holes 7415 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 7416 */ 7417 static unsigned long __init zone_spanned_pages_in_node(int nid, 7418 unsigned long zone_type, 7419 unsigned long node_start_pfn, 7420 unsigned long node_end_pfn, 7421 unsigned long *zone_start_pfn, 7422 unsigned long *zone_end_pfn) 7423 { 7424 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7425 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7426 /* When hotadd a new node from cpu_up(), the node should be empty */ 7427 if (!node_start_pfn && !node_end_pfn) 7428 return 0; 7429 7430 /* Get the start and end of the zone */ 7431 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7432 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7433 adjust_zone_range_for_zone_movable(nid, zone_type, 7434 node_start_pfn, node_end_pfn, 7435 zone_start_pfn, zone_end_pfn); 7436 7437 /* Check that this node has pages within the zone's required range */ 7438 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 7439 return 0; 7440 7441 /* Move the zone boundaries inside the node if necessary */ 7442 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 7443 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 7444 7445 /* Return the spanned pages */ 7446 return *zone_end_pfn - *zone_start_pfn; 7447 } 7448 7449 /* 7450 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 7451 * then all holes in the requested range will be accounted for. 7452 */ 7453 unsigned long __init __absent_pages_in_range(int nid, 7454 unsigned long range_start_pfn, 7455 unsigned long range_end_pfn) 7456 { 7457 unsigned long nr_absent = range_end_pfn - range_start_pfn; 7458 unsigned long start_pfn, end_pfn; 7459 int i; 7460 7461 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7462 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 7463 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 7464 nr_absent -= end_pfn - start_pfn; 7465 } 7466 return nr_absent; 7467 } 7468 7469 /** 7470 * absent_pages_in_range - Return number of page frames in holes within a range 7471 * @start_pfn: The start PFN to start searching for holes 7472 * @end_pfn: The end PFN to stop searching for holes 7473 * 7474 * Return: the number of pages frames in memory holes within a range. 7475 */ 7476 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 7477 unsigned long end_pfn) 7478 { 7479 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 7480 } 7481 7482 /* Return the number of page frames in holes in a zone on a node */ 7483 static unsigned long __init zone_absent_pages_in_node(int nid, 7484 unsigned long zone_type, 7485 unsigned long node_start_pfn, 7486 unsigned long node_end_pfn) 7487 { 7488 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7489 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7490 unsigned long zone_start_pfn, zone_end_pfn; 7491 unsigned long nr_absent; 7492 7493 /* When hotadd a new node from cpu_up(), the node should be empty */ 7494 if (!node_start_pfn && !node_end_pfn) 7495 return 0; 7496 7497 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7498 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7499 7500 adjust_zone_range_for_zone_movable(nid, zone_type, 7501 node_start_pfn, node_end_pfn, 7502 &zone_start_pfn, &zone_end_pfn); 7503 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 7504 7505 /* 7506 * ZONE_MOVABLE handling. 7507 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 7508 * and vice versa. 7509 */ 7510 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 7511 unsigned long start_pfn, end_pfn; 7512 struct memblock_region *r; 7513 7514 for_each_mem_region(r) { 7515 start_pfn = clamp(memblock_region_memory_base_pfn(r), 7516 zone_start_pfn, zone_end_pfn); 7517 end_pfn = clamp(memblock_region_memory_end_pfn(r), 7518 zone_start_pfn, zone_end_pfn); 7519 7520 if (zone_type == ZONE_MOVABLE && 7521 memblock_is_mirror(r)) 7522 nr_absent += end_pfn - start_pfn; 7523 7524 if (zone_type == ZONE_NORMAL && 7525 !memblock_is_mirror(r)) 7526 nr_absent += end_pfn - start_pfn; 7527 } 7528 } 7529 7530 return nr_absent; 7531 } 7532 7533 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 7534 unsigned long node_start_pfn, 7535 unsigned long node_end_pfn) 7536 { 7537 unsigned long realtotalpages = 0, totalpages = 0; 7538 enum zone_type i; 7539 7540 for (i = 0; i < MAX_NR_ZONES; i++) { 7541 struct zone *zone = pgdat->node_zones + i; 7542 unsigned long zone_start_pfn, zone_end_pfn; 7543 unsigned long spanned, absent; 7544 unsigned long size, real_size; 7545 7546 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 7547 node_start_pfn, 7548 node_end_pfn, 7549 &zone_start_pfn, 7550 &zone_end_pfn); 7551 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7552 node_start_pfn, 7553 node_end_pfn); 7554 7555 size = spanned; 7556 real_size = size - absent; 7557 7558 if (size) 7559 zone->zone_start_pfn = zone_start_pfn; 7560 else 7561 zone->zone_start_pfn = 0; 7562 zone->spanned_pages = size; 7563 zone->present_pages = real_size; 7564 #if defined(CONFIG_MEMORY_HOTPLUG) 7565 zone->present_early_pages = real_size; 7566 #endif 7567 7568 totalpages += size; 7569 realtotalpages += real_size; 7570 } 7571 7572 pgdat->node_spanned_pages = totalpages; 7573 pgdat->node_present_pages = realtotalpages; 7574 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 7575 } 7576 7577 #ifndef CONFIG_SPARSEMEM 7578 /* 7579 * Calculate the size of the zone->blockflags rounded to an unsigned long 7580 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7581 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7582 * round what is now in bits to nearest long in bits, then return it in 7583 * bytes. 7584 */ 7585 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7586 { 7587 unsigned long usemapsize; 7588 7589 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7590 usemapsize = roundup(zonesize, pageblock_nr_pages); 7591 usemapsize = usemapsize >> pageblock_order; 7592 usemapsize *= NR_PAGEBLOCK_BITS; 7593 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7594 7595 return usemapsize / 8; 7596 } 7597 7598 static void __ref setup_usemap(struct zone *zone) 7599 { 7600 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7601 zone->spanned_pages); 7602 zone->pageblock_flags = NULL; 7603 if (usemapsize) { 7604 zone->pageblock_flags = 7605 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7606 zone_to_nid(zone)); 7607 if (!zone->pageblock_flags) 7608 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7609 usemapsize, zone->name, zone_to_nid(zone)); 7610 } 7611 } 7612 #else 7613 static inline void setup_usemap(struct zone *zone) {} 7614 #endif /* CONFIG_SPARSEMEM */ 7615 7616 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7617 7618 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7619 void __init set_pageblock_order(void) 7620 { 7621 unsigned int order = MAX_ORDER - 1; 7622 7623 /* Check that pageblock_nr_pages has not already been setup */ 7624 if (pageblock_order) 7625 return; 7626 7627 /* Don't let pageblocks exceed the maximum allocation granularity. */ 7628 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) 7629 order = HUGETLB_PAGE_ORDER; 7630 7631 /* 7632 * Assume the largest contiguous order of interest is a huge page. 7633 * This value may be variable depending on boot parameters on IA64 and 7634 * powerpc. 7635 */ 7636 pageblock_order = order; 7637 } 7638 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7639 7640 /* 7641 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7642 * is unused as pageblock_order is set at compile-time. See 7643 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7644 * the kernel config 7645 */ 7646 void __init set_pageblock_order(void) 7647 { 7648 } 7649 7650 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7651 7652 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7653 unsigned long present_pages) 7654 { 7655 unsigned long pages = spanned_pages; 7656 7657 /* 7658 * Provide a more accurate estimation if there are holes within 7659 * the zone and SPARSEMEM is in use. If there are holes within the 7660 * zone, each populated memory region may cost us one or two extra 7661 * memmap pages due to alignment because memmap pages for each 7662 * populated regions may not be naturally aligned on page boundary. 7663 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7664 */ 7665 if (spanned_pages > present_pages + (present_pages >> 4) && 7666 IS_ENABLED(CONFIG_SPARSEMEM)) 7667 pages = present_pages; 7668 7669 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7670 } 7671 7672 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 7673 static void pgdat_init_split_queue(struct pglist_data *pgdat) 7674 { 7675 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7676 7677 spin_lock_init(&ds_queue->split_queue_lock); 7678 INIT_LIST_HEAD(&ds_queue->split_queue); 7679 ds_queue->split_queue_len = 0; 7680 } 7681 #else 7682 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7683 #endif 7684 7685 #ifdef CONFIG_COMPACTION 7686 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7687 { 7688 init_waitqueue_head(&pgdat->kcompactd_wait); 7689 } 7690 #else 7691 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7692 #endif 7693 7694 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7695 { 7696 int i; 7697 7698 pgdat_resize_init(pgdat); 7699 pgdat_kswapd_lock_init(pgdat); 7700 7701 pgdat_init_split_queue(pgdat); 7702 pgdat_init_kcompactd(pgdat); 7703 7704 init_waitqueue_head(&pgdat->kswapd_wait); 7705 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7706 7707 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 7708 init_waitqueue_head(&pgdat->reclaim_wait[i]); 7709 7710 pgdat_page_ext_init(pgdat); 7711 lruvec_init(&pgdat->__lruvec); 7712 } 7713 7714 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7715 unsigned long remaining_pages) 7716 { 7717 atomic_long_set(&zone->managed_pages, remaining_pages); 7718 zone_set_nid(zone, nid); 7719 zone->name = zone_names[idx]; 7720 zone->zone_pgdat = NODE_DATA(nid); 7721 spin_lock_init(&zone->lock); 7722 zone_seqlock_init(zone); 7723 zone_pcp_init(zone); 7724 } 7725 7726 /* 7727 * Set up the zone data structures 7728 * - init pgdat internals 7729 * - init all zones belonging to this node 7730 * 7731 * NOTE: this function is only called during memory hotplug 7732 */ 7733 #ifdef CONFIG_MEMORY_HOTPLUG 7734 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) 7735 { 7736 int nid = pgdat->node_id; 7737 enum zone_type z; 7738 int cpu; 7739 7740 pgdat_init_internals(pgdat); 7741 7742 if (pgdat->per_cpu_nodestats == &boot_nodestats) 7743 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 7744 7745 /* 7746 * Reset the nr_zones, order and highest_zoneidx before reuse. 7747 * Note that kswapd will init kswapd_highest_zoneidx properly 7748 * when it starts in the near future. 7749 */ 7750 pgdat->nr_zones = 0; 7751 pgdat->kswapd_order = 0; 7752 pgdat->kswapd_highest_zoneidx = 0; 7753 pgdat->node_start_pfn = 0; 7754 for_each_online_cpu(cpu) { 7755 struct per_cpu_nodestat *p; 7756 7757 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 7758 memset(p, 0, sizeof(*p)); 7759 } 7760 7761 for (z = 0; z < MAX_NR_ZONES; z++) 7762 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7763 } 7764 #endif 7765 7766 /* 7767 * Set up the zone data structures: 7768 * - mark all pages reserved 7769 * - mark all memory queues empty 7770 * - clear the memory bitmaps 7771 * 7772 * NOTE: pgdat should get zeroed by caller. 7773 * NOTE: this function is only called during early init. 7774 */ 7775 static void __init free_area_init_core(struct pglist_data *pgdat) 7776 { 7777 enum zone_type j; 7778 int nid = pgdat->node_id; 7779 7780 pgdat_init_internals(pgdat); 7781 pgdat->per_cpu_nodestats = &boot_nodestats; 7782 7783 for (j = 0; j < MAX_NR_ZONES; j++) { 7784 struct zone *zone = pgdat->node_zones + j; 7785 unsigned long size, freesize, memmap_pages; 7786 7787 size = zone->spanned_pages; 7788 freesize = zone->present_pages; 7789 7790 /* 7791 * Adjust freesize so that it accounts for how much memory 7792 * is used by this zone for memmap. This affects the watermark 7793 * and per-cpu initialisations 7794 */ 7795 memmap_pages = calc_memmap_size(size, freesize); 7796 if (!is_highmem_idx(j)) { 7797 if (freesize >= memmap_pages) { 7798 freesize -= memmap_pages; 7799 if (memmap_pages) 7800 pr_debug(" %s zone: %lu pages used for memmap\n", 7801 zone_names[j], memmap_pages); 7802 } else 7803 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 7804 zone_names[j], memmap_pages, freesize); 7805 } 7806 7807 /* Account for reserved pages */ 7808 if (j == 0 && freesize > dma_reserve) { 7809 freesize -= dma_reserve; 7810 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 7811 } 7812 7813 if (!is_highmem_idx(j)) 7814 nr_kernel_pages += freesize; 7815 /* Charge for highmem memmap if there are enough kernel pages */ 7816 else if (nr_kernel_pages > memmap_pages * 2) 7817 nr_kernel_pages -= memmap_pages; 7818 nr_all_pages += freesize; 7819 7820 /* 7821 * Set an approximate value for lowmem here, it will be adjusted 7822 * when the bootmem allocator frees pages into the buddy system. 7823 * And all highmem pages will be managed by the buddy system. 7824 */ 7825 zone_init_internals(zone, j, nid, freesize); 7826 7827 if (!size) 7828 continue; 7829 7830 set_pageblock_order(); 7831 setup_usemap(zone); 7832 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7833 } 7834 } 7835 7836 #ifdef CONFIG_FLATMEM 7837 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 7838 { 7839 unsigned long __maybe_unused start = 0; 7840 unsigned long __maybe_unused offset = 0; 7841 7842 /* Skip empty nodes */ 7843 if (!pgdat->node_spanned_pages) 7844 return; 7845 7846 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7847 offset = pgdat->node_start_pfn - start; 7848 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7849 if (!pgdat->node_mem_map) { 7850 unsigned long size, end; 7851 struct page *map; 7852 7853 /* 7854 * The zone's endpoints aren't required to be MAX_ORDER 7855 * aligned but the node_mem_map endpoints must be in order 7856 * for the buddy allocator to function correctly. 7857 */ 7858 end = pgdat_end_pfn(pgdat); 7859 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7860 size = (end - start) * sizeof(struct page); 7861 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 7862 pgdat->node_id, false); 7863 if (!map) 7864 panic("Failed to allocate %ld bytes for node %d memory map\n", 7865 size, pgdat->node_id); 7866 pgdat->node_mem_map = map + offset; 7867 } 7868 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7869 __func__, pgdat->node_id, (unsigned long)pgdat, 7870 (unsigned long)pgdat->node_mem_map); 7871 #ifndef CONFIG_NUMA 7872 /* 7873 * With no DISCONTIG, the global mem_map is just set as node 0's 7874 */ 7875 if (pgdat == NODE_DATA(0)) { 7876 mem_map = NODE_DATA(0)->node_mem_map; 7877 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7878 mem_map -= offset; 7879 } 7880 #endif 7881 } 7882 #else 7883 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 7884 #endif /* CONFIG_FLATMEM */ 7885 7886 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7887 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7888 { 7889 pgdat->first_deferred_pfn = ULONG_MAX; 7890 } 7891 #else 7892 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7893 #endif 7894 7895 static void __init free_area_init_node(int nid) 7896 { 7897 pg_data_t *pgdat = NODE_DATA(nid); 7898 unsigned long start_pfn = 0; 7899 unsigned long end_pfn = 0; 7900 7901 /* pg_data_t should be reset to zero when it's allocated */ 7902 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7903 7904 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7905 7906 pgdat->node_id = nid; 7907 pgdat->node_start_pfn = start_pfn; 7908 pgdat->per_cpu_nodestats = NULL; 7909 7910 if (start_pfn != end_pfn) { 7911 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7912 (u64)start_pfn << PAGE_SHIFT, 7913 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7914 } else { 7915 pr_info("Initmem setup node %d as memoryless\n", nid); 7916 } 7917 7918 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7919 7920 alloc_node_mem_map(pgdat); 7921 pgdat_set_deferred_range(pgdat); 7922 7923 free_area_init_core(pgdat); 7924 } 7925 7926 static void __init free_area_init_memoryless_node(int nid) 7927 { 7928 free_area_init_node(nid); 7929 } 7930 7931 #if MAX_NUMNODES > 1 7932 /* 7933 * Figure out the number of possible node ids. 7934 */ 7935 void __init setup_nr_node_ids(void) 7936 { 7937 unsigned int highest; 7938 7939 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7940 nr_node_ids = highest + 1; 7941 } 7942 #endif 7943 7944 /** 7945 * node_map_pfn_alignment - determine the maximum internode alignment 7946 * 7947 * This function should be called after node map is populated and sorted. 7948 * It calculates the maximum power of two alignment which can distinguish 7949 * all the nodes. 7950 * 7951 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7952 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7953 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7954 * shifted, 1GiB is enough and this function will indicate so. 7955 * 7956 * This is used to test whether pfn -> nid mapping of the chosen memory 7957 * model has fine enough granularity to avoid incorrect mapping for the 7958 * populated node map. 7959 * 7960 * Return: the determined alignment in pfn's. 0 if there is no alignment 7961 * requirement (single node). 7962 */ 7963 unsigned long __init node_map_pfn_alignment(void) 7964 { 7965 unsigned long accl_mask = 0, last_end = 0; 7966 unsigned long start, end, mask; 7967 int last_nid = NUMA_NO_NODE; 7968 int i, nid; 7969 7970 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7971 if (!start || last_nid < 0 || last_nid == nid) { 7972 last_nid = nid; 7973 last_end = end; 7974 continue; 7975 } 7976 7977 /* 7978 * Start with a mask granular enough to pin-point to the 7979 * start pfn and tick off bits one-by-one until it becomes 7980 * too coarse to separate the current node from the last. 7981 */ 7982 mask = ~((1 << __ffs(start)) - 1); 7983 while (mask && last_end <= (start & (mask << 1))) 7984 mask <<= 1; 7985 7986 /* accumulate all internode masks */ 7987 accl_mask |= mask; 7988 } 7989 7990 /* convert mask to number of pages */ 7991 return ~accl_mask + 1; 7992 } 7993 7994 /* 7995 * early_calculate_totalpages() 7996 * Sum pages in active regions for movable zone. 7997 * Populate N_MEMORY for calculating usable_nodes. 7998 */ 7999 static unsigned long __init early_calculate_totalpages(void) 8000 { 8001 unsigned long totalpages = 0; 8002 unsigned long start_pfn, end_pfn; 8003 int i, nid; 8004 8005 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8006 unsigned long pages = end_pfn - start_pfn; 8007 8008 totalpages += pages; 8009 if (pages) 8010 node_set_state(nid, N_MEMORY); 8011 } 8012 return totalpages; 8013 } 8014 8015 /* 8016 * Find the PFN the Movable zone begins in each node. Kernel memory 8017 * is spread evenly between nodes as long as the nodes have enough 8018 * memory. When they don't, some nodes will have more kernelcore than 8019 * others 8020 */ 8021 static void __init find_zone_movable_pfns_for_nodes(void) 8022 { 8023 int i, nid; 8024 unsigned long usable_startpfn; 8025 unsigned long kernelcore_node, kernelcore_remaining; 8026 /* save the state before borrow the nodemask */ 8027 nodemask_t saved_node_state = node_states[N_MEMORY]; 8028 unsigned long totalpages = early_calculate_totalpages(); 8029 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 8030 struct memblock_region *r; 8031 8032 /* Need to find movable_zone earlier when movable_node is specified. */ 8033 find_usable_zone_for_movable(); 8034 8035 /* 8036 * If movable_node is specified, ignore kernelcore and movablecore 8037 * options. 8038 */ 8039 if (movable_node_is_enabled()) { 8040 for_each_mem_region(r) { 8041 if (!memblock_is_hotpluggable(r)) 8042 continue; 8043 8044 nid = memblock_get_region_node(r); 8045 8046 usable_startpfn = PFN_DOWN(r->base); 8047 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 8048 min(usable_startpfn, zone_movable_pfn[nid]) : 8049 usable_startpfn; 8050 } 8051 8052 goto out2; 8053 } 8054 8055 /* 8056 * If kernelcore=mirror is specified, ignore movablecore option 8057 */ 8058 if (mirrored_kernelcore) { 8059 bool mem_below_4gb_not_mirrored = false; 8060 8061 for_each_mem_region(r) { 8062 if (memblock_is_mirror(r)) 8063 continue; 8064 8065 nid = memblock_get_region_node(r); 8066 8067 usable_startpfn = memblock_region_memory_base_pfn(r); 8068 8069 if (usable_startpfn < PHYS_PFN(SZ_4G)) { 8070 mem_below_4gb_not_mirrored = true; 8071 continue; 8072 } 8073 8074 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 8075 min(usable_startpfn, zone_movable_pfn[nid]) : 8076 usable_startpfn; 8077 } 8078 8079 if (mem_below_4gb_not_mirrored) 8080 pr_warn("This configuration results in unmirrored kernel memory.\n"); 8081 8082 goto out2; 8083 } 8084 8085 /* 8086 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 8087 * amount of necessary memory. 8088 */ 8089 if (required_kernelcore_percent) 8090 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 8091 10000UL; 8092 if (required_movablecore_percent) 8093 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 8094 10000UL; 8095 8096 /* 8097 * If movablecore= was specified, calculate what size of 8098 * kernelcore that corresponds so that memory usable for 8099 * any allocation type is evenly spread. If both kernelcore 8100 * and movablecore are specified, then the value of kernelcore 8101 * will be used for required_kernelcore if it's greater than 8102 * what movablecore would have allowed. 8103 */ 8104 if (required_movablecore) { 8105 unsigned long corepages; 8106 8107 /* 8108 * Round-up so that ZONE_MOVABLE is at least as large as what 8109 * was requested by the user 8110 */ 8111 required_movablecore = 8112 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 8113 required_movablecore = min(totalpages, required_movablecore); 8114 corepages = totalpages - required_movablecore; 8115 8116 required_kernelcore = max(required_kernelcore, corepages); 8117 } 8118 8119 /* 8120 * If kernelcore was not specified or kernelcore size is larger 8121 * than totalpages, there is no ZONE_MOVABLE. 8122 */ 8123 if (!required_kernelcore || required_kernelcore >= totalpages) 8124 goto out; 8125 8126 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 8127 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 8128 8129 restart: 8130 /* Spread kernelcore memory as evenly as possible throughout nodes */ 8131 kernelcore_node = required_kernelcore / usable_nodes; 8132 for_each_node_state(nid, N_MEMORY) { 8133 unsigned long start_pfn, end_pfn; 8134 8135 /* 8136 * Recalculate kernelcore_node if the division per node 8137 * now exceeds what is necessary to satisfy the requested 8138 * amount of memory for the kernel 8139 */ 8140 if (required_kernelcore < kernelcore_node) 8141 kernelcore_node = required_kernelcore / usable_nodes; 8142 8143 /* 8144 * As the map is walked, we track how much memory is usable 8145 * by the kernel using kernelcore_remaining. When it is 8146 * 0, the rest of the node is usable by ZONE_MOVABLE 8147 */ 8148 kernelcore_remaining = kernelcore_node; 8149 8150 /* Go through each range of PFNs within this node */ 8151 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 8152 unsigned long size_pages; 8153 8154 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 8155 if (start_pfn >= end_pfn) 8156 continue; 8157 8158 /* Account for what is only usable for kernelcore */ 8159 if (start_pfn < usable_startpfn) { 8160 unsigned long kernel_pages; 8161 kernel_pages = min(end_pfn, usable_startpfn) 8162 - start_pfn; 8163 8164 kernelcore_remaining -= min(kernel_pages, 8165 kernelcore_remaining); 8166 required_kernelcore -= min(kernel_pages, 8167 required_kernelcore); 8168 8169 /* Continue if range is now fully accounted */ 8170 if (end_pfn <= usable_startpfn) { 8171 8172 /* 8173 * Push zone_movable_pfn to the end so 8174 * that if we have to rebalance 8175 * kernelcore across nodes, we will 8176 * not double account here 8177 */ 8178 zone_movable_pfn[nid] = end_pfn; 8179 continue; 8180 } 8181 start_pfn = usable_startpfn; 8182 } 8183 8184 /* 8185 * The usable PFN range for ZONE_MOVABLE is from 8186 * start_pfn->end_pfn. Calculate size_pages as the 8187 * number of pages used as kernelcore 8188 */ 8189 size_pages = end_pfn - start_pfn; 8190 if (size_pages > kernelcore_remaining) 8191 size_pages = kernelcore_remaining; 8192 zone_movable_pfn[nid] = start_pfn + size_pages; 8193 8194 /* 8195 * Some kernelcore has been met, update counts and 8196 * break if the kernelcore for this node has been 8197 * satisfied 8198 */ 8199 required_kernelcore -= min(required_kernelcore, 8200 size_pages); 8201 kernelcore_remaining -= size_pages; 8202 if (!kernelcore_remaining) 8203 break; 8204 } 8205 } 8206 8207 /* 8208 * If there is still required_kernelcore, we do another pass with one 8209 * less node in the count. This will push zone_movable_pfn[nid] further 8210 * along on the nodes that still have memory until kernelcore is 8211 * satisfied 8212 */ 8213 usable_nodes--; 8214 if (usable_nodes && required_kernelcore > usable_nodes) 8215 goto restart; 8216 8217 out2: 8218 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 8219 for (nid = 0; nid < MAX_NUMNODES; nid++) { 8220 unsigned long start_pfn, end_pfn; 8221 8222 zone_movable_pfn[nid] = 8223 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 8224 8225 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 8226 if (zone_movable_pfn[nid] >= end_pfn) 8227 zone_movable_pfn[nid] = 0; 8228 } 8229 8230 out: 8231 /* restore the node_state */ 8232 node_states[N_MEMORY] = saved_node_state; 8233 } 8234 8235 /* Any regular or high memory on that node ? */ 8236 static void check_for_memory(pg_data_t *pgdat, int nid) 8237 { 8238 enum zone_type zone_type; 8239 8240 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 8241 struct zone *zone = &pgdat->node_zones[zone_type]; 8242 if (populated_zone(zone)) { 8243 if (IS_ENABLED(CONFIG_HIGHMEM)) 8244 node_set_state(nid, N_HIGH_MEMORY); 8245 if (zone_type <= ZONE_NORMAL) 8246 node_set_state(nid, N_NORMAL_MEMORY); 8247 break; 8248 } 8249 } 8250 } 8251 8252 /* 8253 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 8254 * such cases we allow max_zone_pfn sorted in the descending order 8255 */ 8256 bool __weak arch_has_descending_max_zone_pfns(void) 8257 { 8258 return false; 8259 } 8260 8261 /** 8262 * free_area_init - Initialise all pg_data_t and zone data 8263 * @max_zone_pfn: an array of max PFNs for each zone 8264 * 8265 * This will call free_area_init_node() for each active node in the system. 8266 * Using the page ranges provided by memblock_set_node(), the size of each 8267 * zone in each node and their holes is calculated. If the maximum PFN 8268 * between two adjacent zones match, it is assumed that the zone is empty. 8269 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 8270 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 8271 * starts where the previous one ended. For example, ZONE_DMA32 starts 8272 * at arch_max_dma_pfn. 8273 */ 8274 void __init free_area_init(unsigned long *max_zone_pfn) 8275 { 8276 unsigned long start_pfn, end_pfn; 8277 int i, nid, zone; 8278 bool descending; 8279 8280 /* Record where the zone boundaries are */ 8281 memset(arch_zone_lowest_possible_pfn, 0, 8282 sizeof(arch_zone_lowest_possible_pfn)); 8283 memset(arch_zone_highest_possible_pfn, 0, 8284 sizeof(arch_zone_highest_possible_pfn)); 8285 8286 start_pfn = PHYS_PFN(memblock_start_of_DRAM()); 8287 descending = arch_has_descending_max_zone_pfns(); 8288 8289 for (i = 0; i < MAX_NR_ZONES; i++) { 8290 if (descending) 8291 zone = MAX_NR_ZONES - i - 1; 8292 else 8293 zone = i; 8294 8295 if (zone == ZONE_MOVABLE) 8296 continue; 8297 8298 end_pfn = max(max_zone_pfn[zone], start_pfn); 8299 arch_zone_lowest_possible_pfn[zone] = start_pfn; 8300 arch_zone_highest_possible_pfn[zone] = end_pfn; 8301 8302 start_pfn = end_pfn; 8303 } 8304 8305 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 8306 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 8307 find_zone_movable_pfns_for_nodes(); 8308 8309 /* Print out the zone ranges */ 8310 pr_info("Zone ranges:\n"); 8311 for (i = 0; i < MAX_NR_ZONES; i++) { 8312 if (i == ZONE_MOVABLE) 8313 continue; 8314 pr_info(" %-8s ", zone_names[i]); 8315 if (arch_zone_lowest_possible_pfn[i] == 8316 arch_zone_highest_possible_pfn[i]) 8317 pr_cont("empty\n"); 8318 else 8319 pr_cont("[mem %#018Lx-%#018Lx]\n", 8320 (u64)arch_zone_lowest_possible_pfn[i] 8321 << PAGE_SHIFT, 8322 ((u64)arch_zone_highest_possible_pfn[i] 8323 << PAGE_SHIFT) - 1); 8324 } 8325 8326 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 8327 pr_info("Movable zone start for each node\n"); 8328 for (i = 0; i < MAX_NUMNODES; i++) { 8329 if (zone_movable_pfn[i]) 8330 pr_info(" Node %d: %#018Lx\n", i, 8331 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 8332 } 8333 8334 /* 8335 * Print out the early node map, and initialize the 8336 * subsection-map relative to active online memory ranges to 8337 * enable future "sub-section" extensions of the memory map. 8338 */ 8339 pr_info("Early memory node ranges\n"); 8340 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8341 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 8342 (u64)start_pfn << PAGE_SHIFT, 8343 ((u64)end_pfn << PAGE_SHIFT) - 1); 8344 subsection_map_init(start_pfn, end_pfn - start_pfn); 8345 } 8346 8347 /* Initialise every node */ 8348 mminit_verify_pageflags_layout(); 8349 setup_nr_node_ids(); 8350 for_each_node(nid) { 8351 pg_data_t *pgdat; 8352 8353 if (!node_online(nid)) { 8354 pr_info("Initializing node %d as memoryless\n", nid); 8355 8356 /* Allocator not initialized yet */ 8357 pgdat = arch_alloc_nodedata(nid); 8358 if (!pgdat) { 8359 pr_err("Cannot allocate %zuB for node %d.\n", 8360 sizeof(*pgdat), nid); 8361 continue; 8362 } 8363 arch_refresh_nodedata(nid, pgdat); 8364 free_area_init_memoryless_node(nid); 8365 8366 /* 8367 * We do not want to confuse userspace by sysfs 8368 * files/directories for node without any memory 8369 * attached to it, so this node is not marked as 8370 * N_MEMORY and not marked online so that no sysfs 8371 * hierarchy will be created via register_one_node for 8372 * it. The pgdat will get fully initialized by 8373 * hotadd_init_pgdat() when memory is hotplugged into 8374 * this node. 8375 */ 8376 continue; 8377 } 8378 8379 pgdat = NODE_DATA(nid); 8380 free_area_init_node(nid); 8381 8382 /* Any memory on that node */ 8383 if (pgdat->node_present_pages) 8384 node_set_state(nid, N_MEMORY); 8385 check_for_memory(pgdat, nid); 8386 } 8387 8388 memmap_init(); 8389 } 8390 8391 static int __init cmdline_parse_core(char *p, unsigned long *core, 8392 unsigned long *percent) 8393 { 8394 unsigned long long coremem; 8395 char *endptr; 8396 8397 if (!p) 8398 return -EINVAL; 8399 8400 /* Value may be a percentage of total memory, otherwise bytes */ 8401 coremem = simple_strtoull(p, &endptr, 0); 8402 if (*endptr == '%') { 8403 /* Paranoid check for percent values greater than 100 */ 8404 WARN_ON(coremem > 100); 8405 8406 *percent = coremem; 8407 } else { 8408 coremem = memparse(p, &p); 8409 /* Paranoid check that UL is enough for the coremem value */ 8410 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 8411 8412 *core = coremem >> PAGE_SHIFT; 8413 *percent = 0UL; 8414 } 8415 return 0; 8416 } 8417 8418 /* 8419 * kernelcore=size sets the amount of memory for use for allocations that 8420 * cannot be reclaimed or migrated. 8421 */ 8422 static int __init cmdline_parse_kernelcore(char *p) 8423 { 8424 /* parse kernelcore=mirror */ 8425 if (parse_option_str(p, "mirror")) { 8426 mirrored_kernelcore = true; 8427 return 0; 8428 } 8429 8430 return cmdline_parse_core(p, &required_kernelcore, 8431 &required_kernelcore_percent); 8432 } 8433 8434 /* 8435 * movablecore=size sets the amount of memory for use for allocations that 8436 * can be reclaimed or migrated. 8437 */ 8438 static int __init cmdline_parse_movablecore(char *p) 8439 { 8440 return cmdline_parse_core(p, &required_movablecore, 8441 &required_movablecore_percent); 8442 } 8443 8444 early_param("kernelcore", cmdline_parse_kernelcore); 8445 early_param("movablecore", cmdline_parse_movablecore); 8446 8447 void adjust_managed_page_count(struct page *page, long count) 8448 { 8449 atomic_long_add(count, &page_zone(page)->managed_pages); 8450 totalram_pages_add(count); 8451 #ifdef CONFIG_HIGHMEM 8452 if (PageHighMem(page)) 8453 totalhigh_pages_add(count); 8454 #endif 8455 } 8456 EXPORT_SYMBOL(adjust_managed_page_count); 8457 8458 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 8459 { 8460 void *pos; 8461 unsigned long pages = 0; 8462 8463 start = (void *)PAGE_ALIGN((unsigned long)start); 8464 end = (void *)((unsigned long)end & PAGE_MASK); 8465 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 8466 struct page *page = virt_to_page(pos); 8467 void *direct_map_addr; 8468 8469 /* 8470 * 'direct_map_addr' might be different from 'pos' 8471 * because some architectures' virt_to_page() 8472 * work with aliases. Getting the direct map 8473 * address ensures that we get a _writeable_ 8474 * alias for the memset(). 8475 */ 8476 direct_map_addr = page_address(page); 8477 /* 8478 * Perform a kasan-unchecked memset() since this memory 8479 * has not been initialized. 8480 */ 8481 direct_map_addr = kasan_reset_tag(direct_map_addr); 8482 if ((unsigned int)poison <= 0xFF) 8483 memset(direct_map_addr, poison, PAGE_SIZE); 8484 8485 free_reserved_page(page); 8486 } 8487 8488 if (pages && s) 8489 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 8490 8491 return pages; 8492 } 8493 8494 void __init mem_init_print_info(void) 8495 { 8496 unsigned long physpages, codesize, datasize, rosize, bss_size; 8497 unsigned long init_code_size, init_data_size; 8498 8499 physpages = get_num_physpages(); 8500 codesize = _etext - _stext; 8501 datasize = _edata - _sdata; 8502 rosize = __end_rodata - __start_rodata; 8503 bss_size = __bss_stop - __bss_start; 8504 init_data_size = __init_end - __init_begin; 8505 init_code_size = _einittext - _sinittext; 8506 8507 /* 8508 * Detect special cases and adjust section sizes accordingly: 8509 * 1) .init.* may be embedded into .data sections 8510 * 2) .init.text.* may be out of [__init_begin, __init_end], 8511 * please refer to arch/tile/kernel/vmlinux.lds.S. 8512 * 3) .rodata.* may be embedded into .text or .data sections. 8513 */ 8514 #define adj_init_size(start, end, size, pos, adj) \ 8515 do { \ 8516 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ 8517 size -= adj; \ 8518 } while (0) 8519 8520 adj_init_size(__init_begin, __init_end, init_data_size, 8521 _sinittext, init_code_size); 8522 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 8523 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 8524 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 8525 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 8526 8527 #undef adj_init_size 8528 8529 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 8530 #ifdef CONFIG_HIGHMEM 8531 ", %luK highmem" 8532 #endif 8533 ")\n", 8534 K(nr_free_pages()), K(physpages), 8535 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K, 8536 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K, 8537 K(physpages - totalram_pages() - totalcma_pages), 8538 K(totalcma_pages) 8539 #ifdef CONFIG_HIGHMEM 8540 , K(totalhigh_pages()) 8541 #endif 8542 ); 8543 } 8544 8545 /** 8546 * set_dma_reserve - set the specified number of pages reserved in the first zone 8547 * @new_dma_reserve: The number of pages to mark reserved 8548 * 8549 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 8550 * In the DMA zone, a significant percentage may be consumed by kernel image 8551 * and other unfreeable allocations which can skew the watermarks badly. This 8552 * function may optionally be used to account for unfreeable pages in the 8553 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 8554 * smaller per-cpu batchsize. 8555 */ 8556 void __init set_dma_reserve(unsigned long new_dma_reserve) 8557 { 8558 dma_reserve = new_dma_reserve; 8559 } 8560 8561 static int page_alloc_cpu_dead(unsigned int cpu) 8562 { 8563 struct zone *zone; 8564 8565 lru_add_drain_cpu(cpu); 8566 mlock_page_drain_remote(cpu); 8567 drain_pages(cpu); 8568 8569 /* 8570 * Spill the event counters of the dead processor 8571 * into the current processors event counters. 8572 * This artificially elevates the count of the current 8573 * processor. 8574 */ 8575 vm_events_fold_cpu(cpu); 8576 8577 /* 8578 * Zero the differential counters of the dead processor 8579 * so that the vm statistics are consistent. 8580 * 8581 * This is only okay since the processor is dead and cannot 8582 * race with what we are doing. 8583 */ 8584 cpu_vm_stats_fold(cpu); 8585 8586 for_each_populated_zone(zone) 8587 zone_pcp_update(zone, 0); 8588 8589 return 0; 8590 } 8591 8592 static int page_alloc_cpu_online(unsigned int cpu) 8593 { 8594 struct zone *zone; 8595 8596 for_each_populated_zone(zone) 8597 zone_pcp_update(zone, 1); 8598 return 0; 8599 } 8600 8601 #ifdef CONFIG_NUMA 8602 int hashdist = HASHDIST_DEFAULT; 8603 8604 static int __init set_hashdist(char *str) 8605 { 8606 if (!str) 8607 return 0; 8608 hashdist = simple_strtoul(str, &str, 0); 8609 return 1; 8610 } 8611 __setup("hashdist=", set_hashdist); 8612 #endif 8613 8614 void __init page_alloc_init(void) 8615 { 8616 int ret; 8617 8618 #ifdef CONFIG_NUMA 8619 if (num_node_state(N_MEMORY) == 1) 8620 hashdist = 0; 8621 #endif 8622 8623 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 8624 "mm/page_alloc:pcp", 8625 page_alloc_cpu_online, 8626 page_alloc_cpu_dead); 8627 WARN_ON(ret < 0); 8628 } 8629 8630 /* 8631 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8632 * or min_free_kbytes changes. 8633 */ 8634 static void calculate_totalreserve_pages(void) 8635 { 8636 struct pglist_data *pgdat; 8637 unsigned long reserve_pages = 0; 8638 enum zone_type i, j; 8639 8640 for_each_online_pgdat(pgdat) { 8641 8642 pgdat->totalreserve_pages = 0; 8643 8644 for (i = 0; i < MAX_NR_ZONES; i++) { 8645 struct zone *zone = pgdat->node_zones + i; 8646 long max = 0; 8647 unsigned long managed_pages = zone_managed_pages(zone); 8648 8649 /* Find valid and maximum lowmem_reserve in the zone */ 8650 for (j = i; j < MAX_NR_ZONES; j++) { 8651 if (zone->lowmem_reserve[j] > max) 8652 max = zone->lowmem_reserve[j]; 8653 } 8654 8655 /* we treat the high watermark as reserved pages. */ 8656 max += high_wmark_pages(zone); 8657 8658 if (max > managed_pages) 8659 max = managed_pages; 8660 8661 pgdat->totalreserve_pages += max; 8662 8663 reserve_pages += max; 8664 } 8665 } 8666 totalreserve_pages = reserve_pages; 8667 } 8668 8669 /* 8670 * setup_per_zone_lowmem_reserve - called whenever 8671 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8672 * has a correct pages reserved value, so an adequate number of 8673 * pages are left in the zone after a successful __alloc_pages(). 8674 */ 8675 static void setup_per_zone_lowmem_reserve(void) 8676 { 8677 struct pglist_data *pgdat; 8678 enum zone_type i, j; 8679 8680 for_each_online_pgdat(pgdat) { 8681 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8682 struct zone *zone = &pgdat->node_zones[i]; 8683 int ratio = sysctl_lowmem_reserve_ratio[i]; 8684 bool clear = !ratio || !zone_managed_pages(zone); 8685 unsigned long managed_pages = 0; 8686 8687 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8688 struct zone *upper_zone = &pgdat->node_zones[j]; 8689 8690 managed_pages += zone_managed_pages(upper_zone); 8691 8692 if (clear) 8693 zone->lowmem_reserve[j] = 0; 8694 else 8695 zone->lowmem_reserve[j] = managed_pages / ratio; 8696 } 8697 } 8698 } 8699 8700 /* update totalreserve_pages */ 8701 calculate_totalreserve_pages(); 8702 } 8703 8704 static void __setup_per_zone_wmarks(void) 8705 { 8706 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8707 unsigned long lowmem_pages = 0; 8708 struct zone *zone; 8709 unsigned long flags; 8710 8711 /* Calculate total number of !ZONE_HIGHMEM pages */ 8712 for_each_zone(zone) { 8713 if (!is_highmem(zone)) 8714 lowmem_pages += zone_managed_pages(zone); 8715 } 8716 8717 for_each_zone(zone) { 8718 u64 tmp; 8719 8720 spin_lock_irqsave(&zone->lock, flags); 8721 tmp = (u64)pages_min * zone_managed_pages(zone); 8722 do_div(tmp, lowmem_pages); 8723 if (is_highmem(zone)) { 8724 /* 8725 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8726 * need highmem pages, so cap pages_min to a small 8727 * value here. 8728 * 8729 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8730 * deltas control async page reclaim, and so should 8731 * not be capped for highmem. 8732 */ 8733 unsigned long min_pages; 8734 8735 min_pages = zone_managed_pages(zone) / 1024; 8736 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8737 zone->_watermark[WMARK_MIN] = min_pages; 8738 } else { 8739 /* 8740 * If it's a lowmem zone, reserve a number of pages 8741 * proportionate to the zone's size. 8742 */ 8743 zone->_watermark[WMARK_MIN] = tmp; 8744 } 8745 8746 /* 8747 * Set the kswapd watermarks distance according to the 8748 * scale factor in proportion to available memory, but 8749 * ensure a minimum size on small systems. 8750 */ 8751 tmp = max_t(u64, tmp >> 2, 8752 mult_frac(zone_managed_pages(zone), 8753 watermark_scale_factor, 10000)); 8754 8755 zone->watermark_boost = 0; 8756 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8757 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 8758 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 8759 8760 spin_unlock_irqrestore(&zone->lock, flags); 8761 } 8762 8763 /* update totalreserve_pages */ 8764 calculate_totalreserve_pages(); 8765 } 8766 8767 /** 8768 * setup_per_zone_wmarks - called when min_free_kbytes changes 8769 * or when memory is hot-{added|removed} 8770 * 8771 * Ensures that the watermark[min,low,high] values for each zone are set 8772 * correctly with respect to min_free_kbytes. 8773 */ 8774 void setup_per_zone_wmarks(void) 8775 { 8776 struct zone *zone; 8777 static DEFINE_SPINLOCK(lock); 8778 8779 spin_lock(&lock); 8780 __setup_per_zone_wmarks(); 8781 spin_unlock(&lock); 8782 8783 /* 8784 * The watermark size have changed so update the pcpu batch 8785 * and high limits or the limits may be inappropriate. 8786 */ 8787 for_each_zone(zone) 8788 zone_pcp_update(zone, 0); 8789 } 8790 8791 /* 8792 * Initialise min_free_kbytes. 8793 * 8794 * For small machines we want it small (128k min). For large machines 8795 * we want it large (256MB max). But it is not linear, because network 8796 * bandwidth does not increase linearly with machine size. We use 8797 * 8798 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8799 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8800 * 8801 * which yields 8802 * 8803 * 16MB: 512k 8804 * 32MB: 724k 8805 * 64MB: 1024k 8806 * 128MB: 1448k 8807 * 256MB: 2048k 8808 * 512MB: 2896k 8809 * 1024MB: 4096k 8810 * 2048MB: 5792k 8811 * 4096MB: 8192k 8812 * 8192MB: 11584k 8813 * 16384MB: 16384k 8814 */ 8815 void calculate_min_free_kbytes(void) 8816 { 8817 unsigned long lowmem_kbytes; 8818 int new_min_free_kbytes; 8819 8820 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8821 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8822 8823 if (new_min_free_kbytes > user_min_free_kbytes) 8824 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 8825 else 8826 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8827 new_min_free_kbytes, user_min_free_kbytes); 8828 8829 } 8830 8831 int __meminit init_per_zone_wmark_min(void) 8832 { 8833 calculate_min_free_kbytes(); 8834 setup_per_zone_wmarks(); 8835 refresh_zone_stat_thresholds(); 8836 setup_per_zone_lowmem_reserve(); 8837 8838 #ifdef CONFIG_NUMA 8839 setup_min_unmapped_ratio(); 8840 setup_min_slab_ratio(); 8841 #endif 8842 8843 khugepaged_min_free_kbytes_update(); 8844 8845 return 0; 8846 } 8847 postcore_initcall(init_per_zone_wmark_min) 8848 8849 /* 8850 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8851 * that we can call two helper functions whenever min_free_kbytes 8852 * changes. 8853 */ 8854 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8855 void *buffer, size_t *length, loff_t *ppos) 8856 { 8857 int rc; 8858 8859 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8860 if (rc) 8861 return rc; 8862 8863 if (write) { 8864 user_min_free_kbytes = min_free_kbytes; 8865 setup_per_zone_wmarks(); 8866 } 8867 return 0; 8868 } 8869 8870 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8871 void *buffer, size_t *length, loff_t *ppos) 8872 { 8873 int rc; 8874 8875 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8876 if (rc) 8877 return rc; 8878 8879 if (write) 8880 setup_per_zone_wmarks(); 8881 8882 return 0; 8883 } 8884 8885 #ifdef CONFIG_NUMA 8886 static void setup_min_unmapped_ratio(void) 8887 { 8888 pg_data_t *pgdat; 8889 struct zone *zone; 8890 8891 for_each_online_pgdat(pgdat) 8892 pgdat->min_unmapped_pages = 0; 8893 8894 for_each_zone(zone) 8895 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8896 sysctl_min_unmapped_ratio) / 100; 8897 } 8898 8899 8900 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8901 void *buffer, size_t *length, loff_t *ppos) 8902 { 8903 int rc; 8904 8905 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8906 if (rc) 8907 return rc; 8908 8909 setup_min_unmapped_ratio(); 8910 8911 return 0; 8912 } 8913 8914 static void setup_min_slab_ratio(void) 8915 { 8916 pg_data_t *pgdat; 8917 struct zone *zone; 8918 8919 for_each_online_pgdat(pgdat) 8920 pgdat->min_slab_pages = 0; 8921 8922 for_each_zone(zone) 8923 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8924 sysctl_min_slab_ratio) / 100; 8925 } 8926 8927 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8928 void *buffer, size_t *length, loff_t *ppos) 8929 { 8930 int rc; 8931 8932 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8933 if (rc) 8934 return rc; 8935 8936 setup_min_slab_ratio(); 8937 8938 return 0; 8939 } 8940 #endif 8941 8942 /* 8943 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8944 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8945 * whenever sysctl_lowmem_reserve_ratio changes. 8946 * 8947 * The reserve ratio obviously has absolutely no relation with the 8948 * minimum watermarks. The lowmem reserve ratio can only make sense 8949 * if in function of the boot time zone sizes. 8950 */ 8951 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8952 void *buffer, size_t *length, loff_t *ppos) 8953 { 8954 int i; 8955 8956 proc_dointvec_minmax(table, write, buffer, length, ppos); 8957 8958 for (i = 0; i < MAX_NR_ZONES; i++) { 8959 if (sysctl_lowmem_reserve_ratio[i] < 1) 8960 sysctl_lowmem_reserve_ratio[i] = 0; 8961 } 8962 8963 setup_per_zone_lowmem_reserve(); 8964 return 0; 8965 } 8966 8967 /* 8968 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 8969 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8970 * pagelist can have before it gets flushed back to buddy allocator. 8971 */ 8972 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 8973 int write, void *buffer, size_t *length, loff_t *ppos) 8974 { 8975 struct zone *zone; 8976 int old_percpu_pagelist_high_fraction; 8977 int ret; 8978 8979 mutex_lock(&pcp_batch_high_lock); 8980 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 8981 8982 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8983 if (!write || ret < 0) 8984 goto out; 8985 8986 /* Sanity checking to avoid pcp imbalance */ 8987 if (percpu_pagelist_high_fraction && 8988 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 8989 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 8990 ret = -EINVAL; 8991 goto out; 8992 } 8993 8994 /* No change? */ 8995 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 8996 goto out; 8997 8998 for_each_populated_zone(zone) 8999 zone_set_pageset_high_and_batch(zone, 0); 9000 out: 9001 mutex_unlock(&pcp_batch_high_lock); 9002 return ret; 9003 } 9004 9005 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 9006 /* 9007 * Returns the number of pages that arch has reserved but 9008 * is not known to alloc_large_system_hash(). 9009 */ 9010 static unsigned long __init arch_reserved_kernel_pages(void) 9011 { 9012 return 0; 9013 } 9014 #endif 9015 9016 /* 9017 * Adaptive scale is meant to reduce sizes of hash tables on large memory 9018 * machines. As memory size is increased the scale is also increased but at 9019 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 9020 * quadruples the scale is increased by one, which means the size of hash table 9021 * only doubles, instead of quadrupling as well. 9022 * Because 32-bit systems cannot have large physical memory, where this scaling 9023 * makes sense, it is disabled on such platforms. 9024 */ 9025 #if __BITS_PER_LONG > 32 9026 #define ADAPT_SCALE_BASE (64ul << 30) 9027 #define ADAPT_SCALE_SHIFT 2 9028 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 9029 #endif 9030 9031 /* 9032 * allocate a large system hash table from bootmem 9033 * - it is assumed that the hash table must contain an exact power-of-2 9034 * quantity of entries 9035 * - limit is the number of hash buckets, not the total allocation size 9036 */ 9037 void *__init alloc_large_system_hash(const char *tablename, 9038 unsigned long bucketsize, 9039 unsigned long numentries, 9040 int scale, 9041 int flags, 9042 unsigned int *_hash_shift, 9043 unsigned int *_hash_mask, 9044 unsigned long low_limit, 9045 unsigned long high_limit) 9046 { 9047 unsigned long long max = high_limit; 9048 unsigned long log2qty, size; 9049 void *table; 9050 gfp_t gfp_flags; 9051 bool virt; 9052 bool huge; 9053 9054 /* allow the kernel cmdline to have a say */ 9055 if (!numentries) { 9056 /* round applicable memory size up to nearest megabyte */ 9057 numentries = nr_kernel_pages; 9058 numentries -= arch_reserved_kernel_pages(); 9059 9060 /* It isn't necessary when PAGE_SIZE >= 1MB */ 9061 if (PAGE_SIZE < SZ_1M) 9062 numentries = round_up(numentries, SZ_1M / PAGE_SIZE); 9063 9064 #if __BITS_PER_LONG > 32 9065 if (!high_limit) { 9066 unsigned long adapt; 9067 9068 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 9069 adapt <<= ADAPT_SCALE_SHIFT) 9070 scale++; 9071 } 9072 #endif 9073 9074 /* limit to 1 bucket per 2^scale bytes of low memory */ 9075 if (scale > PAGE_SHIFT) 9076 numentries >>= (scale - PAGE_SHIFT); 9077 else 9078 numentries <<= (PAGE_SHIFT - scale); 9079 9080 /* Make sure we've got at least a 0-order allocation.. */ 9081 if (unlikely(flags & HASH_SMALL)) { 9082 /* Makes no sense without HASH_EARLY */ 9083 WARN_ON(!(flags & HASH_EARLY)); 9084 if (!(numentries >> *_hash_shift)) { 9085 numentries = 1UL << *_hash_shift; 9086 BUG_ON(!numentries); 9087 } 9088 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 9089 numentries = PAGE_SIZE / bucketsize; 9090 } 9091 numentries = roundup_pow_of_two(numentries); 9092 9093 /* limit allocation size to 1/16 total memory by default */ 9094 if (max == 0) { 9095 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 9096 do_div(max, bucketsize); 9097 } 9098 max = min(max, 0x80000000ULL); 9099 9100 if (numentries < low_limit) 9101 numentries = low_limit; 9102 if (numentries > max) 9103 numentries = max; 9104 9105 log2qty = ilog2(numentries); 9106 9107 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 9108 do { 9109 virt = false; 9110 size = bucketsize << log2qty; 9111 if (flags & HASH_EARLY) { 9112 if (flags & HASH_ZERO) 9113 table = memblock_alloc(size, SMP_CACHE_BYTES); 9114 else 9115 table = memblock_alloc_raw(size, 9116 SMP_CACHE_BYTES); 9117 } else if (get_order(size) >= MAX_ORDER || hashdist) { 9118 table = vmalloc_huge(size, gfp_flags); 9119 virt = true; 9120 if (table) 9121 huge = is_vm_area_hugepages(table); 9122 } else { 9123 /* 9124 * If bucketsize is not a power-of-two, we may free 9125 * some pages at the end of hash table which 9126 * alloc_pages_exact() automatically does 9127 */ 9128 table = alloc_pages_exact(size, gfp_flags); 9129 kmemleak_alloc(table, size, 1, gfp_flags); 9130 } 9131 } while (!table && size > PAGE_SIZE && --log2qty); 9132 9133 if (!table) 9134 panic("Failed to allocate %s hash table\n", tablename); 9135 9136 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 9137 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 9138 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 9139 9140 if (_hash_shift) 9141 *_hash_shift = log2qty; 9142 if (_hash_mask) 9143 *_hash_mask = (1 << log2qty) - 1; 9144 9145 return table; 9146 } 9147 9148 #ifdef CONFIG_CONTIG_ALLOC 9149 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 9150 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 9151 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 9152 static void alloc_contig_dump_pages(struct list_head *page_list) 9153 { 9154 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 9155 9156 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 9157 struct page *page; 9158 9159 dump_stack(); 9160 list_for_each_entry(page, page_list, lru) 9161 dump_page(page, "migration failure"); 9162 } 9163 } 9164 #else 9165 static inline void alloc_contig_dump_pages(struct list_head *page_list) 9166 { 9167 } 9168 #endif 9169 9170 /* [start, end) must belong to a single zone. */ 9171 int __alloc_contig_migrate_range(struct compact_control *cc, 9172 unsigned long start, unsigned long end) 9173 { 9174 /* This function is based on compact_zone() from compaction.c. */ 9175 unsigned int nr_reclaimed; 9176 unsigned long pfn = start; 9177 unsigned int tries = 0; 9178 int ret = 0; 9179 struct migration_target_control mtc = { 9180 .nid = zone_to_nid(cc->zone), 9181 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 9182 }; 9183 9184 lru_cache_disable(); 9185 9186 while (pfn < end || !list_empty(&cc->migratepages)) { 9187 if (fatal_signal_pending(current)) { 9188 ret = -EINTR; 9189 break; 9190 } 9191 9192 if (list_empty(&cc->migratepages)) { 9193 cc->nr_migratepages = 0; 9194 ret = isolate_migratepages_range(cc, pfn, end); 9195 if (ret && ret != -EAGAIN) 9196 break; 9197 pfn = cc->migrate_pfn; 9198 tries = 0; 9199 } else if (++tries == 5) { 9200 ret = -EBUSY; 9201 break; 9202 } 9203 9204 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 9205 &cc->migratepages); 9206 cc->nr_migratepages -= nr_reclaimed; 9207 9208 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 9209 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 9210 9211 /* 9212 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 9213 * to retry again over this error, so do the same here. 9214 */ 9215 if (ret == -ENOMEM) 9216 break; 9217 } 9218 9219 lru_cache_enable(); 9220 if (ret < 0) { 9221 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 9222 alloc_contig_dump_pages(&cc->migratepages); 9223 putback_movable_pages(&cc->migratepages); 9224 return ret; 9225 } 9226 return 0; 9227 } 9228 9229 /** 9230 * alloc_contig_range() -- tries to allocate given range of pages 9231 * @start: start PFN to allocate 9232 * @end: one-past-the-last PFN to allocate 9233 * @migratetype: migratetype of the underlying pageblocks (either 9234 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 9235 * in range must have the same migratetype and it must 9236 * be either of the two. 9237 * @gfp_mask: GFP mask to use during compaction 9238 * 9239 * The PFN range does not have to be pageblock aligned. The PFN range must 9240 * belong to a single zone. 9241 * 9242 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 9243 * pageblocks in the range. Once isolated, the pageblocks should not 9244 * be modified by others. 9245 * 9246 * Return: zero on success or negative error code. On success all 9247 * pages which PFN is in [start, end) are allocated for the caller and 9248 * need to be freed with free_contig_range(). 9249 */ 9250 int alloc_contig_range(unsigned long start, unsigned long end, 9251 unsigned migratetype, gfp_t gfp_mask) 9252 { 9253 unsigned long outer_start, outer_end; 9254 int order; 9255 int ret = 0; 9256 9257 struct compact_control cc = { 9258 .nr_migratepages = 0, 9259 .order = -1, 9260 .zone = page_zone(pfn_to_page(start)), 9261 .mode = MIGRATE_SYNC, 9262 .ignore_skip_hint = true, 9263 .no_set_skip_hint = true, 9264 .gfp_mask = current_gfp_context(gfp_mask), 9265 .alloc_contig = true, 9266 }; 9267 INIT_LIST_HEAD(&cc.migratepages); 9268 9269 /* 9270 * What we do here is we mark all pageblocks in range as 9271 * MIGRATE_ISOLATE. Because pageblock and max order pages may 9272 * have different sizes, and due to the way page allocator 9273 * work, start_isolate_page_range() has special handlings for this. 9274 * 9275 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 9276 * migrate the pages from an unaligned range (ie. pages that 9277 * we are interested in). This will put all the pages in 9278 * range back to page allocator as MIGRATE_ISOLATE. 9279 * 9280 * When this is done, we take the pages in range from page 9281 * allocator removing them from the buddy system. This way 9282 * page allocator will never consider using them. 9283 * 9284 * This lets us mark the pageblocks back as 9285 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 9286 * aligned range but not in the unaligned, original range are 9287 * put back to page allocator so that buddy can use them. 9288 */ 9289 9290 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 9291 if (ret) 9292 goto done; 9293 9294 drain_all_pages(cc.zone); 9295 9296 /* 9297 * In case of -EBUSY, we'd like to know which page causes problem. 9298 * So, just fall through. test_pages_isolated() has a tracepoint 9299 * which will report the busy page. 9300 * 9301 * It is possible that busy pages could become available before 9302 * the call to test_pages_isolated, and the range will actually be 9303 * allocated. So, if we fall through be sure to clear ret so that 9304 * -EBUSY is not accidentally used or returned to caller. 9305 */ 9306 ret = __alloc_contig_migrate_range(&cc, start, end); 9307 if (ret && ret != -EBUSY) 9308 goto done; 9309 ret = 0; 9310 9311 /* 9312 * Pages from [start, end) are within a pageblock_nr_pages 9313 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 9314 * more, all pages in [start, end) are free in page allocator. 9315 * What we are going to do is to allocate all pages from 9316 * [start, end) (that is remove them from page allocator). 9317 * 9318 * The only problem is that pages at the beginning and at the 9319 * end of interesting range may be not aligned with pages that 9320 * page allocator holds, ie. they can be part of higher order 9321 * pages. Because of this, we reserve the bigger range and 9322 * once this is done free the pages we are not interested in. 9323 * 9324 * We don't have to hold zone->lock here because the pages are 9325 * isolated thus they won't get removed from buddy. 9326 */ 9327 9328 order = 0; 9329 outer_start = start; 9330 while (!PageBuddy(pfn_to_page(outer_start))) { 9331 if (++order >= MAX_ORDER) { 9332 outer_start = start; 9333 break; 9334 } 9335 outer_start &= ~0UL << order; 9336 } 9337 9338 if (outer_start != start) { 9339 order = buddy_order(pfn_to_page(outer_start)); 9340 9341 /* 9342 * outer_start page could be small order buddy page and 9343 * it doesn't include start page. Adjust outer_start 9344 * in this case to report failed page properly 9345 * on tracepoint in test_pages_isolated() 9346 */ 9347 if (outer_start + (1UL << order) <= start) 9348 outer_start = start; 9349 } 9350 9351 /* Make sure the range is really isolated. */ 9352 if (test_pages_isolated(outer_start, end, 0)) { 9353 ret = -EBUSY; 9354 goto done; 9355 } 9356 9357 /* Grab isolated pages from freelists. */ 9358 outer_end = isolate_freepages_range(&cc, outer_start, end); 9359 if (!outer_end) { 9360 ret = -EBUSY; 9361 goto done; 9362 } 9363 9364 /* Free head and tail (if any) */ 9365 if (start != outer_start) 9366 free_contig_range(outer_start, start - outer_start); 9367 if (end != outer_end) 9368 free_contig_range(end, outer_end - end); 9369 9370 done: 9371 undo_isolate_page_range(start, end, migratetype); 9372 return ret; 9373 } 9374 EXPORT_SYMBOL(alloc_contig_range); 9375 9376 static int __alloc_contig_pages(unsigned long start_pfn, 9377 unsigned long nr_pages, gfp_t gfp_mask) 9378 { 9379 unsigned long end_pfn = start_pfn + nr_pages; 9380 9381 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 9382 gfp_mask); 9383 } 9384 9385 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 9386 unsigned long nr_pages) 9387 { 9388 unsigned long i, end_pfn = start_pfn + nr_pages; 9389 struct page *page; 9390 9391 for (i = start_pfn; i < end_pfn; i++) { 9392 page = pfn_to_online_page(i); 9393 if (!page) 9394 return false; 9395 9396 if (page_zone(page) != z) 9397 return false; 9398 9399 if (PageReserved(page)) 9400 return false; 9401 } 9402 return true; 9403 } 9404 9405 static bool zone_spans_last_pfn(const struct zone *zone, 9406 unsigned long start_pfn, unsigned long nr_pages) 9407 { 9408 unsigned long last_pfn = start_pfn + nr_pages - 1; 9409 9410 return zone_spans_pfn(zone, last_pfn); 9411 } 9412 9413 /** 9414 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 9415 * @nr_pages: Number of contiguous pages to allocate 9416 * @gfp_mask: GFP mask to limit search and used during compaction 9417 * @nid: Target node 9418 * @nodemask: Mask for other possible nodes 9419 * 9420 * This routine is a wrapper around alloc_contig_range(). It scans over zones 9421 * on an applicable zonelist to find a contiguous pfn range which can then be 9422 * tried for allocation with alloc_contig_range(). This routine is intended 9423 * for allocation requests which can not be fulfilled with the buddy allocator. 9424 * 9425 * The allocated memory is always aligned to a page boundary. If nr_pages is a 9426 * power of two, then allocated range is also guaranteed to be aligned to same 9427 * nr_pages (e.g. 1GB request would be aligned to 1GB). 9428 * 9429 * Allocated pages can be freed with free_contig_range() or by manually calling 9430 * __free_page() on each allocated page. 9431 * 9432 * Return: pointer to contiguous pages on success, or NULL if not successful. 9433 */ 9434 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 9435 int nid, nodemask_t *nodemask) 9436 { 9437 unsigned long ret, pfn, flags; 9438 struct zonelist *zonelist; 9439 struct zone *zone; 9440 struct zoneref *z; 9441 9442 zonelist = node_zonelist(nid, gfp_mask); 9443 for_each_zone_zonelist_nodemask(zone, z, zonelist, 9444 gfp_zone(gfp_mask), nodemask) { 9445 spin_lock_irqsave(&zone->lock, flags); 9446 9447 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 9448 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 9449 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 9450 /* 9451 * We release the zone lock here because 9452 * alloc_contig_range() will also lock the zone 9453 * at some point. If there's an allocation 9454 * spinning on this lock, it may win the race 9455 * and cause alloc_contig_range() to fail... 9456 */ 9457 spin_unlock_irqrestore(&zone->lock, flags); 9458 ret = __alloc_contig_pages(pfn, nr_pages, 9459 gfp_mask); 9460 if (!ret) 9461 return pfn_to_page(pfn); 9462 spin_lock_irqsave(&zone->lock, flags); 9463 } 9464 pfn += nr_pages; 9465 } 9466 spin_unlock_irqrestore(&zone->lock, flags); 9467 } 9468 return NULL; 9469 } 9470 #endif /* CONFIG_CONTIG_ALLOC */ 9471 9472 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 9473 { 9474 unsigned long count = 0; 9475 9476 for (; nr_pages--; pfn++) { 9477 struct page *page = pfn_to_page(pfn); 9478 9479 count += page_count(page) != 1; 9480 __free_page(page); 9481 } 9482 WARN(count != 0, "%lu pages are still in use!\n", count); 9483 } 9484 EXPORT_SYMBOL(free_contig_range); 9485 9486 /* 9487 * Effectively disable pcplists for the zone by setting the high limit to 0 9488 * and draining all cpus. A concurrent page freeing on another CPU that's about 9489 * to put the page on pcplist will either finish before the drain and the page 9490 * will be drained, or observe the new high limit and skip the pcplist. 9491 * 9492 * Must be paired with a call to zone_pcp_enable(). 9493 */ 9494 void zone_pcp_disable(struct zone *zone) 9495 { 9496 mutex_lock(&pcp_batch_high_lock); 9497 __zone_set_pageset_high_and_batch(zone, 0, 1); 9498 __drain_all_pages(zone, true); 9499 } 9500 9501 void zone_pcp_enable(struct zone *zone) 9502 { 9503 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9504 mutex_unlock(&pcp_batch_high_lock); 9505 } 9506 9507 void zone_pcp_reset(struct zone *zone) 9508 { 9509 int cpu; 9510 struct per_cpu_zonestat *pzstats; 9511 9512 if (zone->per_cpu_pageset != &boot_pageset) { 9513 for_each_online_cpu(cpu) { 9514 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 9515 drain_zonestat(zone, pzstats); 9516 } 9517 free_percpu(zone->per_cpu_pageset); 9518 zone->per_cpu_pageset = &boot_pageset; 9519 if (zone->per_cpu_zonestats != &boot_zonestats) { 9520 free_percpu(zone->per_cpu_zonestats); 9521 zone->per_cpu_zonestats = &boot_zonestats; 9522 } 9523 } 9524 } 9525 9526 #ifdef CONFIG_MEMORY_HOTREMOVE 9527 /* 9528 * All pages in the range must be in a single zone, must not contain holes, 9529 * must span full sections, and must be isolated before calling this function. 9530 */ 9531 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9532 { 9533 unsigned long pfn = start_pfn; 9534 struct page *page; 9535 struct zone *zone; 9536 unsigned int order; 9537 unsigned long flags; 9538 9539 offline_mem_sections(pfn, end_pfn); 9540 zone = page_zone(pfn_to_page(pfn)); 9541 spin_lock_irqsave(&zone->lock, flags); 9542 while (pfn < end_pfn) { 9543 page = pfn_to_page(pfn); 9544 /* 9545 * The HWPoisoned page may be not in buddy system, and 9546 * page_count() is not 0. 9547 */ 9548 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9549 pfn++; 9550 continue; 9551 } 9552 /* 9553 * At this point all remaining PageOffline() pages have a 9554 * reference count of 0 and can simply be skipped. 9555 */ 9556 if (PageOffline(page)) { 9557 BUG_ON(page_count(page)); 9558 BUG_ON(PageBuddy(page)); 9559 pfn++; 9560 continue; 9561 } 9562 9563 BUG_ON(page_count(page)); 9564 BUG_ON(!PageBuddy(page)); 9565 order = buddy_order(page); 9566 del_page_from_free_list(page, zone, order); 9567 pfn += (1 << order); 9568 } 9569 spin_unlock_irqrestore(&zone->lock, flags); 9570 } 9571 #endif 9572 9573 /* 9574 * This function returns a stable result only if called under zone lock. 9575 */ 9576 bool is_free_buddy_page(struct page *page) 9577 { 9578 unsigned long pfn = page_to_pfn(page); 9579 unsigned int order; 9580 9581 for (order = 0; order < MAX_ORDER; order++) { 9582 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9583 9584 if (PageBuddy(page_head) && 9585 buddy_order_unsafe(page_head) >= order) 9586 break; 9587 } 9588 9589 return order < MAX_ORDER; 9590 } 9591 EXPORT_SYMBOL(is_free_buddy_page); 9592 9593 #ifdef CONFIG_MEMORY_FAILURE 9594 /* 9595 * Break down a higher-order page in sub-pages, and keep our target out of 9596 * buddy allocator. 9597 */ 9598 static void break_down_buddy_pages(struct zone *zone, struct page *page, 9599 struct page *target, int low, int high, 9600 int migratetype) 9601 { 9602 unsigned long size = 1 << high; 9603 struct page *current_buddy, *next_page; 9604 9605 while (high > low) { 9606 high--; 9607 size >>= 1; 9608 9609 if (target >= &page[size]) { 9610 next_page = page + size; 9611 current_buddy = page; 9612 } else { 9613 next_page = page; 9614 current_buddy = page + size; 9615 } 9616 9617 if (set_page_guard(zone, current_buddy, high, migratetype)) 9618 continue; 9619 9620 if (current_buddy != target) { 9621 add_to_free_list(current_buddy, zone, high, migratetype); 9622 set_buddy_order(current_buddy, high); 9623 page = next_page; 9624 } 9625 } 9626 } 9627 9628 /* 9629 * Take a page that will be marked as poisoned off the buddy allocator. 9630 */ 9631 bool take_page_off_buddy(struct page *page) 9632 { 9633 struct zone *zone = page_zone(page); 9634 unsigned long pfn = page_to_pfn(page); 9635 unsigned long flags; 9636 unsigned int order; 9637 bool ret = false; 9638 9639 spin_lock_irqsave(&zone->lock, flags); 9640 for (order = 0; order < MAX_ORDER; order++) { 9641 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9642 int page_order = buddy_order(page_head); 9643 9644 if (PageBuddy(page_head) && page_order >= order) { 9645 unsigned long pfn_head = page_to_pfn(page_head); 9646 int migratetype = get_pfnblock_migratetype(page_head, 9647 pfn_head); 9648 9649 del_page_from_free_list(page_head, zone, page_order); 9650 break_down_buddy_pages(zone, page_head, page, 0, 9651 page_order, migratetype); 9652 SetPageHWPoisonTakenOff(page); 9653 if (!is_migrate_isolate(migratetype)) 9654 __mod_zone_freepage_state(zone, -1, migratetype); 9655 ret = true; 9656 break; 9657 } 9658 if (page_count(page_head) > 0) 9659 break; 9660 } 9661 spin_unlock_irqrestore(&zone->lock, flags); 9662 return ret; 9663 } 9664 9665 /* 9666 * Cancel takeoff done by take_page_off_buddy(). 9667 */ 9668 bool put_page_back_buddy(struct page *page) 9669 { 9670 struct zone *zone = page_zone(page); 9671 unsigned long pfn = page_to_pfn(page); 9672 unsigned long flags; 9673 int migratetype = get_pfnblock_migratetype(page, pfn); 9674 bool ret = false; 9675 9676 spin_lock_irqsave(&zone->lock, flags); 9677 if (put_page_testzero(page)) { 9678 ClearPageHWPoisonTakenOff(page); 9679 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 9680 if (TestClearPageHWPoison(page)) { 9681 ret = true; 9682 } 9683 } 9684 spin_unlock_irqrestore(&zone->lock, flags); 9685 9686 return ret; 9687 } 9688 #endif 9689 9690 #ifdef CONFIG_ZONE_DMA 9691 bool has_managed_dma(void) 9692 { 9693 struct pglist_data *pgdat; 9694 9695 for_each_online_pgdat(pgdat) { 9696 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 9697 9698 if (managed_zone(zone)) 9699 return true; 9700 } 9701 return false; 9702 } 9703 #endif /* CONFIG_ZONE_DMA */ 9704