xref: /openbmc/linux/mm/page_alloc.c (revision 840ef8b7cc584a23c4f9d05352f4dbaf8e56e5ab)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/sched/rt.h>
62 
63 #include <asm/tlbflush.h>
64 #include <asm/div64.h>
65 #include "internal.h"
66 
67 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
68 DEFINE_PER_CPU(int, numa_node);
69 EXPORT_PER_CPU_SYMBOL(numa_node);
70 #endif
71 
72 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
73 /*
74  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
75  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
76  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
77  * defined in <linux/topology.h>.
78  */
79 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
80 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
81 #endif
82 
83 /*
84  * Array of node states.
85  */
86 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
87 	[N_POSSIBLE] = NODE_MASK_ALL,
88 	[N_ONLINE] = { { [0] = 1UL } },
89 #ifndef CONFIG_NUMA
90 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
91 #ifdef CONFIG_HIGHMEM
92 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
93 #endif
94 #ifdef CONFIG_MOVABLE_NODE
95 	[N_MEMORY] = { { [0] = 1UL } },
96 #endif
97 	[N_CPU] = { { [0] = 1UL } },
98 #endif	/* NUMA */
99 };
100 EXPORT_SYMBOL(node_states);
101 
102 unsigned long totalram_pages __read_mostly;
103 unsigned long totalreserve_pages __read_mostly;
104 /*
105  * When calculating the number of globally allowed dirty pages, there
106  * is a certain number of per-zone reserves that should not be
107  * considered dirtyable memory.  This is the sum of those reserves
108  * over all existing zones that contribute dirtyable memory.
109  */
110 unsigned long dirty_balance_reserve __read_mostly;
111 
112 int percpu_pagelist_fraction;
113 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
114 
115 #ifdef CONFIG_PM_SLEEP
116 /*
117  * The following functions are used by the suspend/hibernate code to temporarily
118  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
119  * while devices are suspended.  To avoid races with the suspend/hibernate code,
120  * they should always be called with pm_mutex held (gfp_allowed_mask also should
121  * only be modified with pm_mutex held, unless the suspend/hibernate code is
122  * guaranteed not to run in parallel with that modification).
123  */
124 
125 static gfp_t saved_gfp_mask;
126 
127 void pm_restore_gfp_mask(void)
128 {
129 	WARN_ON(!mutex_is_locked(&pm_mutex));
130 	if (saved_gfp_mask) {
131 		gfp_allowed_mask = saved_gfp_mask;
132 		saved_gfp_mask = 0;
133 	}
134 }
135 
136 void pm_restrict_gfp_mask(void)
137 {
138 	WARN_ON(!mutex_is_locked(&pm_mutex));
139 	WARN_ON(saved_gfp_mask);
140 	saved_gfp_mask = gfp_allowed_mask;
141 	gfp_allowed_mask &= ~GFP_IOFS;
142 }
143 
144 bool pm_suspended_storage(void)
145 {
146 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
147 		return false;
148 	return true;
149 }
150 #endif /* CONFIG_PM_SLEEP */
151 
152 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
153 int pageblock_order __read_mostly;
154 #endif
155 
156 static void __free_pages_ok(struct page *page, unsigned int order);
157 
158 /*
159  * results with 256, 32 in the lowmem_reserve sysctl:
160  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
161  *	1G machine -> (16M dma, 784M normal, 224M high)
162  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
163  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
164  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
165  *
166  * TBD: should special case ZONE_DMA32 machines here - in those we normally
167  * don't need any ZONE_NORMAL reservation
168  */
169 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
170 #ifdef CONFIG_ZONE_DMA
171 	 256,
172 #endif
173 #ifdef CONFIG_ZONE_DMA32
174 	 256,
175 #endif
176 #ifdef CONFIG_HIGHMEM
177 	 32,
178 #endif
179 	 32,
180 };
181 
182 EXPORT_SYMBOL(totalram_pages);
183 
184 static char * const zone_names[MAX_NR_ZONES] = {
185 #ifdef CONFIG_ZONE_DMA
186 	 "DMA",
187 #endif
188 #ifdef CONFIG_ZONE_DMA32
189 	 "DMA32",
190 #endif
191 	 "Normal",
192 #ifdef CONFIG_HIGHMEM
193 	 "HighMem",
194 #endif
195 	 "Movable",
196 };
197 
198 int min_free_kbytes = 1024;
199 
200 static unsigned long __meminitdata nr_kernel_pages;
201 static unsigned long __meminitdata nr_all_pages;
202 static unsigned long __meminitdata dma_reserve;
203 
204 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
205 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
206 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
207 static unsigned long __initdata required_kernelcore;
208 static unsigned long __initdata required_movablecore;
209 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
210 
211 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
212 int movable_zone;
213 EXPORT_SYMBOL(movable_zone);
214 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
215 
216 #if MAX_NUMNODES > 1
217 int nr_node_ids __read_mostly = MAX_NUMNODES;
218 int nr_online_nodes __read_mostly = 1;
219 EXPORT_SYMBOL(nr_node_ids);
220 EXPORT_SYMBOL(nr_online_nodes);
221 #endif
222 
223 int page_group_by_mobility_disabled __read_mostly;
224 
225 void set_pageblock_migratetype(struct page *page, int migratetype)
226 {
227 
228 	if (unlikely(page_group_by_mobility_disabled))
229 		migratetype = MIGRATE_UNMOVABLE;
230 
231 	set_pageblock_flags_group(page, (unsigned long)migratetype,
232 					PB_migrate, PB_migrate_end);
233 }
234 
235 bool oom_killer_disabled __read_mostly;
236 
237 #ifdef CONFIG_DEBUG_VM
238 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
239 {
240 	int ret = 0;
241 	unsigned seq;
242 	unsigned long pfn = page_to_pfn(page);
243 	unsigned long sp, start_pfn;
244 
245 	do {
246 		seq = zone_span_seqbegin(zone);
247 		start_pfn = zone->zone_start_pfn;
248 		sp = zone->spanned_pages;
249 		if (!zone_spans_pfn(zone, pfn))
250 			ret = 1;
251 	} while (zone_span_seqretry(zone, seq));
252 
253 	if (ret)
254 		pr_err("page %lu outside zone [ %lu - %lu ]\n",
255 			pfn, start_pfn, start_pfn + sp);
256 
257 	return ret;
258 }
259 
260 static int page_is_consistent(struct zone *zone, struct page *page)
261 {
262 	if (!pfn_valid_within(page_to_pfn(page)))
263 		return 0;
264 	if (zone != page_zone(page))
265 		return 0;
266 
267 	return 1;
268 }
269 /*
270  * Temporary debugging check for pages not lying within a given zone.
271  */
272 static int bad_range(struct zone *zone, struct page *page)
273 {
274 	if (page_outside_zone_boundaries(zone, page))
275 		return 1;
276 	if (!page_is_consistent(zone, page))
277 		return 1;
278 
279 	return 0;
280 }
281 #else
282 static inline int bad_range(struct zone *zone, struct page *page)
283 {
284 	return 0;
285 }
286 #endif
287 
288 static void bad_page(struct page *page)
289 {
290 	static unsigned long resume;
291 	static unsigned long nr_shown;
292 	static unsigned long nr_unshown;
293 
294 	/* Don't complain about poisoned pages */
295 	if (PageHWPoison(page)) {
296 		page_mapcount_reset(page); /* remove PageBuddy */
297 		return;
298 	}
299 
300 	/*
301 	 * Allow a burst of 60 reports, then keep quiet for that minute;
302 	 * or allow a steady drip of one report per second.
303 	 */
304 	if (nr_shown == 60) {
305 		if (time_before(jiffies, resume)) {
306 			nr_unshown++;
307 			goto out;
308 		}
309 		if (nr_unshown) {
310 			printk(KERN_ALERT
311 			      "BUG: Bad page state: %lu messages suppressed\n",
312 				nr_unshown);
313 			nr_unshown = 0;
314 		}
315 		nr_shown = 0;
316 	}
317 	if (nr_shown++ == 0)
318 		resume = jiffies + 60 * HZ;
319 
320 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
321 		current->comm, page_to_pfn(page));
322 	dump_page(page);
323 
324 	print_modules();
325 	dump_stack();
326 out:
327 	/* Leave bad fields for debug, except PageBuddy could make trouble */
328 	page_mapcount_reset(page); /* remove PageBuddy */
329 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
330 }
331 
332 /*
333  * Higher-order pages are called "compound pages".  They are structured thusly:
334  *
335  * The first PAGE_SIZE page is called the "head page".
336  *
337  * The remaining PAGE_SIZE pages are called "tail pages".
338  *
339  * All pages have PG_compound set.  All tail pages have their ->first_page
340  * pointing at the head page.
341  *
342  * The first tail page's ->lru.next holds the address of the compound page's
343  * put_page() function.  Its ->lru.prev holds the order of allocation.
344  * This usage means that zero-order pages may not be compound.
345  */
346 
347 static void free_compound_page(struct page *page)
348 {
349 	__free_pages_ok(page, compound_order(page));
350 }
351 
352 void prep_compound_page(struct page *page, unsigned long order)
353 {
354 	int i;
355 	int nr_pages = 1 << order;
356 
357 	set_compound_page_dtor(page, free_compound_page);
358 	set_compound_order(page, order);
359 	__SetPageHead(page);
360 	for (i = 1; i < nr_pages; i++) {
361 		struct page *p = page + i;
362 		__SetPageTail(p);
363 		set_page_count(p, 0);
364 		p->first_page = page;
365 	}
366 }
367 
368 /* update __split_huge_page_refcount if you change this function */
369 static int destroy_compound_page(struct page *page, unsigned long order)
370 {
371 	int i;
372 	int nr_pages = 1 << order;
373 	int bad = 0;
374 
375 	if (unlikely(compound_order(page) != order)) {
376 		bad_page(page);
377 		bad++;
378 	}
379 
380 	__ClearPageHead(page);
381 
382 	for (i = 1; i < nr_pages; i++) {
383 		struct page *p = page + i;
384 
385 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
386 			bad_page(page);
387 			bad++;
388 		}
389 		__ClearPageTail(p);
390 	}
391 
392 	return bad;
393 }
394 
395 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
396 {
397 	int i;
398 
399 	/*
400 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
401 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
402 	 */
403 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
404 	for (i = 0; i < (1 << order); i++)
405 		clear_highpage(page + i);
406 }
407 
408 #ifdef CONFIG_DEBUG_PAGEALLOC
409 unsigned int _debug_guardpage_minorder;
410 
411 static int __init debug_guardpage_minorder_setup(char *buf)
412 {
413 	unsigned long res;
414 
415 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
416 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
417 		return 0;
418 	}
419 	_debug_guardpage_minorder = res;
420 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
421 	return 0;
422 }
423 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
424 
425 static inline void set_page_guard_flag(struct page *page)
426 {
427 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
428 }
429 
430 static inline void clear_page_guard_flag(struct page *page)
431 {
432 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
433 }
434 #else
435 static inline void set_page_guard_flag(struct page *page) { }
436 static inline void clear_page_guard_flag(struct page *page) { }
437 #endif
438 
439 static inline void set_page_order(struct page *page, int order)
440 {
441 	set_page_private(page, order);
442 	__SetPageBuddy(page);
443 }
444 
445 static inline void rmv_page_order(struct page *page)
446 {
447 	__ClearPageBuddy(page);
448 	set_page_private(page, 0);
449 }
450 
451 /*
452  * Locate the struct page for both the matching buddy in our
453  * pair (buddy1) and the combined O(n+1) page they form (page).
454  *
455  * 1) Any buddy B1 will have an order O twin B2 which satisfies
456  * the following equation:
457  *     B2 = B1 ^ (1 << O)
458  * For example, if the starting buddy (buddy2) is #8 its order
459  * 1 buddy is #10:
460  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
461  *
462  * 2) Any buddy B will have an order O+1 parent P which
463  * satisfies the following equation:
464  *     P = B & ~(1 << O)
465  *
466  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
467  */
468 static inline unsigned long
469 __find_buddy_index(unsigned long page_idx, unsigned int order)
470 {
471 	return page_idx ^ (1 << order);
472 }
473 
474 /*
475  * This function checks whether a page is free && is the buddy
476  * we can do coalesce a page and its buddy if
477  * (a) the buddy is not in a hole &&
478  * (b) the buddy is in the buddy system &&
479  * (c) a page and its buddy have the same order &&
480  * (d) a page and its buddy are in the same zone.
481  *
482  * For recording whether a page is in the buddy system, we set ->_mapcount -2.
483  * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
484  *
485  * For recording page's order, we use page_private(page).
486  */
487 static inline int page_is_buddy(struct page *page, struct page *buddy,
488 								int order)
489 {
490 	if (!pfn_valid_within(page_to_pfn(buddy)))
491 		return 0;
492 
493 	if (page_zone_id(page) != page_zone_id(buddy))
494 		return 0;
495 
496 	if (page_is_guard(buddy) && page_order(buddy) == order) {
497 		VM_BUG_ON(page_count(buddy) != 0);
498 		return 1;
499 	}
500 
501 	if (PageBuddy(buddy) && page_order(buddy) == order) {
502 		VM_BUG_ON(page_count(buddy) != 0);
503 		return 1;
504 	}
505 	return 0;
506 }
507 
508 /*
509  * Freeing function for a buddy system allocator.
510  *
511  * The concept of a buddy system is to maintain direct-mapped table
512  * (containing bit values) for memory blocks of various "orders".
513  * The bottom level table contains the map for the smallest allocatable
514  * units of memory (here, pages), and each level above it describes
515  * pairs of units from the levels below, hence, "buddies".
516  * At a high level, all that happens here is marking the table entry
517  * at the bottom level available, and propagating the changes upward
518  * as necessary, plus some accounting needed to play nicely with other
519  * parts of the VM system.
520  * At each level, we keep a list of pages, which are heads of continuous
521  * free pages of length of (1 << order) and marked with _mapcount -2. Page's
522  * order is recorded in page_private(page) field.
523  * So when we are allocating or freeing one, we can derive the state of the
524  * other.  That is, if we allocate a small block, and both were
525  * free, the remainder of the region must be split into blocks.
526  * If a block is freed, and its buddy is also free, then this
527  * triggers coalescing into a block of larger size.
528  *
529  * -- nyc
530  */
531 
532 static inline void __free_one_page(struct page *page,
533 		struct zone *zone, unsigned int order,
534 		int migratetype)
535 {
536 	unsigned long page_idx;
537 	unsigned long combined_idx;
538 	unsigned long uninitialized_var(buddy_idx);
539 	struct page *buddy;
540 
541 	VM_BUG_ON(!zone_is_initialized(zone));
542 
543 	if (unlikely(PageCompound(page)))
544 		if (unlikely(destroy_compound_page(page, order)))
545 			return;
546 
547 	VM_BUG_ON(migratetype == -1);
548 
549 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
550 
551 	VM_BUG_ON(page_idx & ((1 << order) - 1));
552 	VM_BUG_ON(bad_range(zone, page));
553 
554 	while (order < MAX_ORDER-1) {
555 		buddy_idx = __find_buddy_index(page_idx, order);
556 		buddy = page + (buddy_idx - page_idx);
557 		if (!page_is_buddy(page, buddy, order))
558 			break;
559 		/*
560 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
561 		 * merge with it and move up one order.
562 		 */
563 		if (page_is_guard(buddy)) {
564 			clear_page_guard_flag(buddy);
565 			set_page_private(page, 0);
566 			__mod_zone_freepage_state(zone, 1 << order,
567 						  migratetype);
568 		} else {
569 			list_del(&buddy->lru);
570 			zone->free_area[order].nr_free--;
571 			rmv_page_order(buddy);
572 		}
573 		combined_idx = buddy_idx & page_idx;
574 		page = page + (combined_idx - page_idx);
575 		page_idx = combined_idx;
576 		order++;
577 	}
578 	set_page_order(page, order);
579 
580 	/*
581 	 * If this is not the largest possible page, check if the buddy
582 	 * of the next-highest order is free. If it is, it's possible
583 	 * that pages are being freed that will coalesce soon. In case,
584 	 * that is happening, add the free page to the tail of the list
585 	 * so it's less likely to be used soon and more likely to be merged
586 	 * as a higher order page
587 	 */
588 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
589 		struct page *higher_page, *higher_buddy;
590 		combined_idx = buddy_idx & page_idx;
591 		higher_page = page + (combined_idx - page_idx);
592 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
593 		higher_buddy = higher_page + (buddy_idx - combined_idx);
594 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
595 			list_add_tail(&page->lru,
596 				&zone->free_area[order].free_list[migratetype]);
597 			goto out;
598 		}
599 	}
600 
601 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
602 out:
603 	zone->free_area[order].nr_free++;
604 }
605 
606 static inline int free_pages_check(struct page *page)
607 {
608 	if (unlikely(page_mapcount(page) |
609 		(page->mapping != NULL)  |
610 		(atomic_read(&page->_count) != 0) |
611 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
612 		(mem_cgroup_bad_page_check(page)))) {
613 		bad_page(page);
614 		return 1;
615 	}
616 	page_nid_reset_last(page);
617 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
618 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
619 	return 0;
620 }
621 
622 /*
623  * Frees a number of pages from the PCP lists
624  * Assumes all pages on list are in same zone, and of same order.
625  * count is the number of pages to free.
626  *
627  * If the zone was previously in an "all pages pinned" state then look to
628  * see if this freeing clears that state.
629  *
630  * And clear the zone's pages_scanned counter, to hold off the "all pages are
631  * pinned" detection logic.
632  */
633 static void free_pcppages_bulk(struct zone *zone, int count,
634 					struct per_cpu_pages *pcp)
635 {
636 	int migratetype = 0;
637 	int batch_free = 0;
638 	int to_free = count;
639 
640 	spin_lock(&zone->lock);
641 	zone->all_unreclaimable = 0;
642 	zone->pages_scanned = 0;
643 
644 	while (to_free) {
645 		struct page *page;
646 		struct list_head *list;
647 
648 		/*
649 		 * Remove pages from lists in a round-robin fashion. A
650 		 * batch_free count is maintained that is incremented when an
651 		 * empty list is encountered.  This is so more pages are freed
652 		 * off fuller lists instead of spinning excessively around empty
653 		 * lists
654 		 */
655 		do {
656 			batch_free++;
657 			if (++migratetype == MIGRATE_PCPTYPES)
658 				migratetype = 0;
659 			list = &pcp->lists[migratetype];
660 		} while (list_empty(list));
661 
662 		/* This is the only non-empty list. Free them all. */
663 		if (batch_free == MIGRATE_PCPTYPES)
664 			batch_free = to_free;
665 
666 		do {
667 			int mt;	/* migratetype of the to-be-freed page */
668 
669 			page = list_entry(list->prev, struct page, lru);
670 			/* must delete as __free_one_page list manipulates */
671 			list_del(&page->lru);
672 			mt = get_freepage_migratetype(page);
673 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
674 			__free_one_page(page, zone, 0, mt);
675 			trace_mm_page_pcpu_drain(page, 0, mt);
676 			if (likely(!is_migrate_isolate_page(page))) {
677 				__mod_zone_page_state(zone, NR_FREE_PAGES, 1);
678 				if (is_migrate_cma(mt))
679 					__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
680 			}
681 		} while (--to_free && --batch_free && !list_empty(list));
682 	}
683 	spin_unlock(&zone->lock);
684 }
685 
686 static void free_one_page(struct zone *zone, struct page *page, int order,
687 				int migratetype)
688 {
689 	spin_lock(&zone->lock);
690 	zone->all_unreclaimable = 0;
691 	zone->pages_scanned = 0;
692 
693 	__free_one_page(page, zone, order, migratetype);
694 	if (unlikely(!is_migrate_isolate(migratetype)))
695 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
696 	spin_unlock(&zone->lock);
697 }
698 
699 static bool free_pages_prepare(struct page *page, unsigned int order)
700 {
701 	int i;
702 	int bad = 0;
703 
704 	trace_mm_page_free(page, order);
705 	kmemcheck_free_shadow(page, order);
706 
707 	if (PageAnon(page))
708 		page->mapping = NULL;
709 	for (i = 0; i < (1 << order); i++)
710 		bad += free_pages_check(page + i);
711 	if (bad)
712 		return false;
713 
714 	if (!PageHighMem(page)) {
715 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
716 		debug_check_no_obj_freed(page_address(page),
717 					   PAGE_SIZE << order);
718 	}
719 	arch_free_page(page, order);
720 	kernel_map_pages(page, 1 << order, 0);
721 
722 	return true;
723 }
724 
725 static void __free_pages_ok(struct page *page, unsigned int order)
726 {
727 	unsigned long flags;
728 	int migratetype;
729 
730 	if (!free_pages_prepare(page, order))
731 		return;
732 
733 	local_irq_save(flags);
734 	__count_vm_events(PGFREE, 1 << order);
735 	migratetype = get_pageblock_migratetype(page);
736 	set_freepage_migratetype(page, migratetype);
737 	free_one_page(page_zone(page), page, order, migratetype);
738 	local_irq_restore(flags);
739 }
740 
741 /*
742  * Read access to zone->managed_pages is safe because it's unsigned long,
743  * but we still need to serialize writers. Currently all callers of
744  * __free_pages_bootmem() except put_page_bootmem() should only be used
745  * at boot time. So for shorter boot time, we shift the burden to
746  * put_page_bootmem() to serialize writers.
747  */
748 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
749 {
750 	unsigned int nr_pages = 1 << order;
751 	unsigned int loop;
752 
753 	prefetchw(page);
754 	for (loop = 0; loop < nr_pages; loop++) {
755 		struct page *p = &page[loop];
756 
757 		if (loop + 1 < nr_pages)
758 			prefetchw(p + 1);
759 		__ClearPageReserved(p);
760 		set_page_count(p, 0);
761 	}
762 
763 	page_zone(page)->managed_pages += 1 << order;
764 	set_page_refcounted(page);
765 	__free_pages(page, order);
766 }
767 
768 #ifdef CONFIG_CMA
769 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
770 void __init init_cma_reserved_pageblock(struct page *page)
771 {
772 	unsigned i = pageblock_nr_pages;
773 	struct page *p = page;
774 
775 	do {
776 		__ClearPageReserved(p);
777 		set_page_count(p, 0);
778 	} while (++p, --i);
779 
780 	set_page_refcounted(page);
781 	set_pageblock_migratetype(page, MIGRATE_CMA);
782 	__free_pages(page, pageblock_order);
783 	totalram_pages += pageblock_nr_pages;
784 #ifdef CONFIG_HIGHMEM
785 	if (PageHighMem(page))
786 		totalhigh_pages += pageblock_nr_pages;
787 #endif
788 }
789 #endif
790 
791 /*
792  * The order of subdivision here is critical for the IO subsystem.
793  * Please do not alter this order without good reasons and regression
794  * testing. Specifically, as large blocks of memory are subdivided,
795  * the order in which smaller blocks are delivered depends on the order
796  * they're subdivided in this function. This is the primary factor
797  * influencing the order in which pages are delivered to the IO
798  * subsystem according to empirical testing, and this is also justified
799  * by considering the behavior of a buddy system containing a single
800  * large block of memory acted on by a series of small allocations.
801  * This behavior is a critical factor in sglist merging's success.
802  *
803  * -- nyc
804  */
805 static inline void expand(struct zone *zone, struct page *page,
806 	int low, int high, struct free_area *area,
807 	int migratetype)
808 {
809 	unsigned long size = 1 << high;
810 
811 	while (high > low) {
812 		area--;
813 		high--;
814 		size >>= 1;
815 		VM_BUG_ON(bad_range(zone, &page[size]));
816 
817 #ifdef CONFIG_DEBUG_PAGEALLOC
818 		if (high < debug_guardpage_minorder()) {
819 			/*
820 			 * Mark as guard pages (or page), that will allow to
821 			 * merge back to allocator when buddy will be freed.
822 			 * Corresponding page table entries will not be touched,
823 			 * pages will stay not present in virtual address space
824 			 */
825 			INIT_LIST_HEAD(&page[size].lru);
826 			set_page_guard_flag(&page[size]);
827 			set_page_private(&page[size], high);
828 			/* Guard pages are not available for any usage */
829 			__mod_zone_freepage_state(zone, -(1 << high),
830 						  migratetype);
831 			continue;
832 		}
833 #endif
834 		list_add(&page[size].lru, &area->free_list[migratetype]);
835 		area->nr_free++;
836 		set_page_order(&page[size], high);
837 	}
838 }
839 
840 /*
841  * This page is about to be returned from the page allocator
842  */
843 static inline int check_new_page(struct page *page)
844 {
845 	if (unlikely(page_mapcount(page) |
846 		(page->mapping != NULL)  |
847 		(atomic_read(&page->_count) != 0)  |
848 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
849 		(mem_cgroup_bad_page_check(page)))) {
850 		bad_page(page);
851 		return 1;
852 	}
853 	return 0;
854 }
855 
856 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
857 {
858 	int i;
859 
860 	for (i = 0; i < (1 << order); i++) {
861 		struct page *p = page + i;
862 		if (unlikely(check_new_page(p)))
863 			return 1;
864 	}
865 
866 	set_page_private(page, 0);
867 	set_page_refcounted(page);
868 
869 	arch_alloc_page(page, order);
870 	kernel_map_pages(page, 1 << order, 1);
871 
872 	if (gfp_flags & __GFP_ZERO)
873 		prep_zero_page(page, order, gfp_flags);
874 
875 	if (order && (gfp_flags & __GFP_COMP))
876 		prep_compound_page(page, order);
877 
878 	return 0;
879 }
880 
881 /*
882  * Go through the free lists for the given migratetype and remove
883  * the smallest available page from the freelists
884  */
885 static inline
886 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
887 						int migratetype)
888 {
889 	unsigned int current_order;
890 	struct free_area * area;
891 	struct page *page;
892 
893 	/* Find a page of the appropriate size in the preferred list */
894 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
895 		area = &(zone->free_area[current_order]);
896 		if (list_empty(&area->free_list[migratetype]))
897 			continue;
898 
899 		page = list_entry(area->free_list[migratetype].next,
900 							struct page, lru);
901 		list_del(&page->lru);
902 		rmv_page_order(page);
903 		area->nr_free--;
904 		expand(zone, page, order, current_order, area, migratetype);
905 		return page;
906 	}
907 
908 	return NULL;
909 }
910 
911 
912 /*
913  * This array describes the order lists are fallen back to when
914  * the free lists for the desirable migrate type are depleted
915  */
916 static int fallbacks[MIGRATE_TYPES][4] = {
917 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
918 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
919 #ifdef CONFIG_CMA
920 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
921 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
922 #else
923 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
924 #endif
925 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
926 #ifdef CONFIG_MEMORY_ISOLATION
927 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
928 #endif
929 };
930 
931 /*
932  * Move the free pages in a range to the free lists of the requested type.
933  * Note that start_page and end_pages are not aligned on a pageblock
934  * boundary. If alignment is required, use move_freepages_block()
935  */
936 int move_freepages(struct zone *zone,
937 			  struct page *start_page, struct page *end_page,
938 			  int migratetype)
939 {
940 	struct page *page;
941 	unsigned long order;
942 	int pages_moved = 0;
943 
944 #ifndef CONFIG_HOLES_IN_ZONE
945 	/*
946 	 * page_zone is not safe to call in this context when
947 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
948 	 * anyway as we check zone boundaries in move_freepages_block().
949 	 * Remove at a later date when no bug reports exist related to
950 	 * grouping pages by mobility
951 	 */
952 	BUG_ON(page_zone(start_page) != page_zone(end_page));
953 #endif
954 
955 	for (page = start_page; page <= end_page;) {
956 		/* Make sure we are not inadvertently changing nodes */
957 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
958 
959 		if (!pfn_valid_within(page_to_pfn(page))) {
960 			page++;
961 			continue;
962 		}
963 
964 		if (!PageBuddy(page)) {
965 			page++;
966 			continue;
967 		}
968 
969 		order = page_order(page);
970 		list_move(&page->lru,
971 			  &zone->free_area[order].free_list[migratetype]);
972 		set_freepage_migratetype(page, migratetype);
973 		page += 1 << order;
974 		pages_moved += 1 << order;
975 	}
976 
977 	return pages_moved;
978 }
979 
980 int move_freepages_block(struct zone *zone, struct page *page,
981 				int migratetype)
982 {
983 	unsigned long start_pfn, end_pfn;
984 	struct page *start_page, *end_page;
985 
986 	start_pfn = page_to_pfn(page);
987 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
988 	start_page = pfn_to_page(start_pfn);
989 	end_page = start_page + pageblock_nr_pages - 1;
990 	end_pfn = start_pfn + pageblock_nr_pages - 1;
991 
992 	/* Do not cross zone boundaries */
993 	if (!zone_spans_pfn(zone, start_pfn))
994 		start_page = page;
995 	if (!zone_spans_pfn(zone, end_pfn))
996 		return 0;
997 
998 	return move_freepages(zone, start_page, end_page, migratetype);
999 }
1000 
1001 static void change_pageblock_range(struct page *pageblock_page,
1002 					int start_order, int migratetype)
1003 {
1004 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1005 
1006 	while (nr_pageblocks--) {
1007 		set_pageblock_migratetype(pageblock_page, migratetype);
1008 		pageblock_page += pageblock_nr_pages;
1009 	}
1010 }
1011 
1012 /* Remove an element from the buddy allocator from the fallback list */
1013 static inline struct page *
1014 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1015 {
1016 	struct free_area * area;
1017 	int current_order;
1018 	struct page *page;
1019 	int migratetype, i;
1020 
1021 	/* Find the largest possible block of pages in the other list */
1022 	for (current_order = MAX_ORDER-1; current_order >= order;
1023 						--current_order) {
1024 		for (i = 0;; i++) {
1025 			migratetype = fallbacks[start_migratetype][i];
1026 
1027 			/* MIGRATE_RESERVE handled later if necessary */
1028 			if (migratetype == MIGRATE_RESERVE)
1029 				break;
1030 
1031 			area = &(zone->free_area[current_order]);
1032 			if (list_empty(&area->free_list[migratetype]))
1033 				continue;
1034 
1035 			page = list_entry(area->free_list[migratetype].next,
1036 					struct page, lru);
1037 			area->nr_free--;
1038 
1039 			/*
1040 			 * If breaking a large block of pages, move all free
1041 			 * pages to the preferred allocation list. If falling
1042 			 * back for a reclaimable kernel allocation, be more
1043 			 * aggressive about taking ownership of free pages
1044 			 *
1045 			 * On the other hand, never change migration
1046 			 * type of MIGRATE_CMA pageblocks nor move CMA
1047 			 * pages on different free lists. We don't
1048 			 * want unmovable pages to be allocated from
1049 			 * MIGRATE_CMA areas.
1050 			 */
1051 			if (!is_migrate_cma(migratetype) &&
1052 			    (unlikely(current_order >= pageblock_order / 2) ||
1053 			     start_migratetype == MIGRATE_RECLAIMABLE ||
1054 			     page_group_by_mobility_disabled)) {
1055 				int pages;
1056 				pages = move_freepages_block(zone, page,
1057 								start_migratetype);
1058 
1059 				/* Claim the whole block if over half of it is free */
1060 				if (pages >= (1 << (pageblock_order-1)) ||
1061 						page_group_by_mobility_disabled)
1062 					set_pageblock_migratetype(page,
1063 								start_migratetype);
1064 
1065 				migratetype = start_migratetype;
1066 			}
1067 
1068 			/* Remove the page from the freelists */
1069 			list_del(&page->lru);
1070 			rmv_page_order(page);
1071 
1072 			/* Take ownership for orders >= pageblock_order */
1073 			if (current_order >= pageblock_order &&
1074 			    !is_migrate_cma(migratetype))
1075 				change_pageblock_range(page, current_order,
1076 							start_migratetype);
1077 
1078 			expand(zone, page, order, current_order, area,
1079 			       is_migrate_cma(migratetype)
1080 			     ? migratetype : start_migratetype);
1081 
1082 			trace_mm_page_alloc_extfrag(page, order, current_order,
1083 				start_migratetype, migratetype);
1084 
1085 			return page;
1086 		}
1087 	}
1088 
1089 	return NULL;
1090 }
1091 
1092 /*
1093  * Do the hard work of removing an element from the buddy allocator.
1094  * Call me with the zone->lock already held.
1095  */
1096 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1097 						int migratetype)
1098 {
1099 	struct page *page;
1100 
1101 retry_reserve:
1102 	page = __rmqueue_smallest(zone, order, migratetype);
1103 
1104 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1105 		page = __rmqueue_fallback(zone, order, migratetype);
1106 
1107 		/*
1108 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1109 		 * is used because __rmqueue_smallest is an inline function
1110 		 * and we want just one call site
1111 		 */
1112 		if (!page) {
1113 			migratetype = MIGRATE_RESERVE;
1114 			goto retry_reserve;
1115 		}
1116 	}
1117 
1118 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1119 	return page;
1120 }
1121 
1122 /*
1123  * Obtain a specified number of elements from the buddy allocator, all under
1124  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1125  * Returns the number of new pages which were placed at *list.
1126  */
1127 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1128 			unsigned long count, struct list_head *list,
1129 			int migratetype, int cold)
1130 {
1131 	int mt = migratetype, i;
1132 
1133 	spin_lock(&zone->lock);
1134 	for (i = 0; i < count; ++i) {
1135 		struct page *page = __rmqueue(zone, order, migratetype);
1136 		if (unlikely(page == NULL))
1137 			break;
1138 
1139 		/*
1140 		 * Split buddy pages returned by expand() are received here
1141 		 * in physical page order. The page is added to the callers and
1142 		 * list and the list head then moves forward. From the callers
1143 		 * perspective, the linked list is ordered by page number in
1144 		 * some conditions. This is useful for IO devices that can
1145 		 * merge IO requests if the physical pages are ordered
1146 		 * properly.
1147 		 */
1148 		if (likely(cold == 0))
1149 			list_add(&page->lru, list);
1150 		else
1151 			list_add_tail(&page->lru, list);
1152 		if (IS_ENABLED(CONFIG_CMA)) {
1153 			mt = get_pageblock_migratetype(page);
1154 			if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1155 				mt = migratetype;
1156 		}
1157 		set_freepage_migratetype(page, mt);
1158 		list = &page->lru;
1159 		if (is_migrate_cma(mt))
1160 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1161 					      -(1 << order));
1162 	}
1163 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1164 	spin_unlock(&zone->lock);
1165 	return i;
1166 }
1167 
1168 #ifdef CONFIG_NUMA
1169 /*
1170  * Called from the vmstat counter updater to drain pagesets of this
1171  * currently executing processor on remote nodes after they have
1172  * expired.
1173  *
1174  * Note that this function must be called with the thread pinned to
1175  * a single processor.
1176  */
1177 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1178 {
1179 	unsigned long flags;
1180 	int to_drain;
1181 
1182 	local_irq_save(flags);
1183 	if (pcp->count >= pcp->batch)
1184 		to_drain = pcp->batch;
1185 	else
1186 		to_drain = pcp->count;
1187 	if (to_drain > 0) {
1188 		free_pcppages_bulk(zone, to_drain, pcp);
1189 		pcp->count -= to_drain;
1190 	}
1191 	local_irq_restore(flags);
1192 }
1193 #endif
1194 
1195 /*
1196  * Drain pages of the indicated processor.
1197  *
1198  * The processor must either be the current processor and the
1199  * thread pinned to the current processor or a processor that
1200  * is not online.
1201  */
1202 static void drain_pages(unsigned int cpu)
1203 {
1204 	unsigned long flags;
1205 	struct zone *zone;
1206 
1207 	for_each_populated_zone(zone) {
1208 		struct per_cpu_pageset *pset;
1209 		struct per_cpu_pages *pcp;
1210 
1211 		local_irq_save(flags);
1212 		pset = per_cpu_ptr(zone->pageset, cpu);
1213 
1214 		pcp = &pset->pcp;
1215 		if (pcp->count) {
1216 			free_pcppages_bulk(zone, pcp->count, pcp);
1217 			pcp->count = 0;
1218 		}
1219 		local_irq_restore(flags);
1220 	}
1221 }
1222 
1223 /*
1224  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1225  */
1226 void drain_local_pages(void *arg)
1227 {
1228 	drain_pages(smp_processor_id());
1229 }
1230 
1231 /*
1232  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1233  *
1234  * Note that this code is protected against sending an IPI to an offline
1235  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1236  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1237  * nothing keeps CPUs from showing up after we populated the cpumask and
1238  * before the call to on_each_cpu_mask().
1239  */
1240 void drain_all_pages(void)
1241 {
1242 	int cpu;
1243 	struct per_cpu_pageset *pcp;
1244 	struct zone *zone;
1245 
1246 	/*
1247 	 * Allocate in the BSS so we wont require allocation in
1248 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1249 	 */
1250 	static cpumask_t cpus_with_pcps;
1251 
1252 	/*
1253 	 * We don't care about racing with CPU hotplug event
1254 	 * as offline notification will cause the notified
1255 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1256 	 * disables preemption as part of its processing
1257 	 */
1258 	for_each_online_cpu(cpu) {
1259 		bool has_pcps = false;
1260 		for_each_populated_zone(zone) {
1261 			pcp = per_cpu_ptr(zone->pageset, cpu);
1262 			if (pcp->pcp.count) {
1263 				has_pcps = true;
1264 				break;
1265 			}
1266 		}
1267 		if (has_pcps)
1268 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1269 		else
1270 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1271 	}
1272 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1273 }
1274 
1275 #ifdef CONFIG_HIBERNATION
1276 
1277 void mark_free_pages(struct zone *zone)
1278 {
1279 	unsigned long pfn, max_zone_pfn;
1280 	unsigned long flags;
1281 	int order, t;
1282 	struct list_head *curr;
1283 
1284 	if (!zone->spanned_pages)
1285 		return;
1286 
1287 	spin_lock_irqsave(&zone->lock, flags);
1288 
1289 	max_zone_pfn = zone_end_pfn(zone);
1290 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1291 		if (pfn_valid(pfn)) {
1292 			struct page *page = pfn_to_page(pfn);
1293 
1294 			if (!swsusp_page_is_forbidden(page))
1295 				swsusp_unset_page_free(page);
1296 		}
1297 
1298 	for_each_migratetype_order(order, t) {
1299 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1300 			unsigned long i;
1301 
1302 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1303 			for (i = 0; i < (1UL << order); i++)
1304 				swsusp_set_page_free(pfn_to_page(pfn + i));
1305 		}
1306 	}
1307 	spin_unlock_irqrestore(&zone->lock, flags);
1308 }
1309 #endif /* CONFIG_PM */
1310 
1311 /*
1312  * Free a 0-order page
1313  * cold == 1 ? free a cold page : free a hot page
1314  */
1315 void free_hot_cold_page(struct page *page, int cold)
1316 {
1317 	struct zone *zone = page_zone(page);
1318 	struct per_cpu_pages *pcp;
1319 	unsigned long flags;
1320 	int migratetype;
1321 
1322 	if (!free_pages_prepare(page, 0))
1323 		return;
1324 
1325 	migratetype = get_pageblock_migratetype(page);
1326 	set_freepage_migratetype(page, migratetype);
1327 	local_irq_save(flags);
1328 	__count_vm_event(PGFREE);
1329 
1330 	/*
1331 	 * We only track unmovable, reclaimable and movable on pcp lists.
1332 	 * Free ISOLATE pages back to the allocator because they are being
1333 	 * offlined but treat RESERVE as movable pages so we can get those
1334 	 * areas back if necessary. Otherwise, we may have to free
1335 	 * excessively into the page allocator
1336 	 */
1337 	if (migratetype >= MIGRATE_PCPTYPES) {
1338 		if (unlikely(is_migrate_isolate(migratetype))) {
1339 			free_one_page(zone, page, 0, migratetype);
1340 			goto out;
1341 		}
1342 		migratetype = MIGRATE_MOVABLE;
1343 	}
1344 
1345 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1346 	if (cold)
1347 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1348 	else
1349 		list_add(&page->lru, &pcp->lists[migratetype]);
1350 	pcp->count++;
1351 	if (pcp->count >= pcp->high) {
1352 		free_pcppages_bulk(zone, pcp->batch, pcp);
1353 		pcp->count -= pcp->batch;
1354 	}
1355 
1356 out:
1357 	local_irq_restore(flags);
1358 }
1359 
1360 /*
1361  * Free a list of 0-order pages
1362  */
1363 void free_hot_cold_page_list(struct list_head *list, int cold)
1364 {
1365 	struct page *page, *next;
1366 
1367 	list_for_each_entry_safe(page, next, list, lru) {
1368 		trace_mm_page_free_batched(page, cold);
1369 		free_hot_cold_page(page, cold);
1370 	}
1371 }
1372 
1373 /*
1374  * split_page takes a non-compound higher-order page, and splits it into
1375  * n (1<<order) sub-pages: page[0..n]
1376  * Each sub-page must be freed individually.
1377  *
1378  * Note: this is probably too low level an operation for use in drivers.
1379  * Please consult with lkml before using this in your driver.
1380  */
1381 void split_page(struct page *page, unsigned int order)
1382 {
1383 	int i;
1384 
1385 	VM_BUG_ON(PageCompound(page));
1386 	VM_BUG_ON(!page_count(page));
1387 
1388 #ifdef CONFIG_KMEMCHECK
1389 	/*
1390 	 * Split shadow pages too, because free(page[0]) would
1391 	 * otherwise free the whole shadow.
1392 	 */
1393 	if (kmemcheck_page_is_tracked(page))
1394 		split_page(virt_to_page(page[0].shadow), order);
1395 #endif
1396 
1397 	for (i = 1; i < (1 << order); i++)
1398 		set_page_refcounted(page + i);
1399 }
1400 
1401 static int __isolate_free_page(struct page *page, unsigned int order)
1402 {
1403 	unsigned long watermark;
1404 	struct zone *zone;
1405 	int mt;
1406 
1407 	BUG_ON(!PageBuddy(page));
1408 
1409 	zone = page_zone(page);
1410 	mt = get_pageblock_migratetype(page);
1411 
1412 	if (!is_migrate_isolate(mt)) {
1413 		/* Obey watermarks as if the page was being allocated */
1414 		watermark = low_wmark_pages(zone) + (1 << order);
1415 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1416 			return 0;
1417 
1418 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1419 	}
1420 
1421 	/* Remove page from free list */
1422 	list_del(&page->lru);
1423 	zone->free_area[order].nr_free--;
1424 	rmv_page_order(page);
1425 
1426 	/* Set the pageblock if the isolated page is at least a pageblock */
1427 	if (order >= pageblock_order - 1) {
1428 		struct page *endpage = page + (1 << order) - 1;
1429 		for (; page < endpage; page += pageblock_nr_pages) {
1430 			int mt = get_pageblock_migratetype(page);
1431 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1432 				set_pageblock_migratetype(page,
1433 							  MIGRATE_MOVABLE);
1434 		}
1435 	}
1436 
1437 	return 1UL << order;
1438 }
1439 
1440 /*
1441  * Similar to split_page except the page is already free. As this is only
1442  * being used for migration, the migratetype of the block also changes.
1443  * As this is called with interrupts disabled, the caller is responsible
1444  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1445  * are enabled.
1446  *
1447  * Note: this is probably too low level an operation for use in drivers.
1448  * Please consult with lkml before using this in your driver.
1449  */
1450 int split_free_page(struct page *page)
1451 {
1452 	unsigned int order;
1453 	int nr_pages;
1454 
1455 	order = page_order(page);
1456 
1457 	nr_pages = __isolate_free_page(page, order);
1458 	if (!nr_pages)
1459 		return 0;
1460 
1461 	/* Split into individual pages */
1462 	set_page_refcounted(page);
1463 	split_page(page, order);
1464 	return nr_pages;
1465 }
1466 
1467 /*
1468  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1469  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1470  * or two.
1471  */
1472 static inline
1473 struct page *buffered_rmqueue(struct zone *preferred_zone,
1474 			struct zone *zone, int order, gfp_t gfp_flags,
1475 			int migratetype)
1476 {
1477 	unsigned long flags;
1478 	struct page *page;
1479 	int cold = !!(gfp_flags & __GFP_COLD);
1480 
1481 again:
1482 	if (likely(order == 0)) {
1483 		struct per_cpu_pages *pcp;
1484 		struct list_head *list;
1485 
1486 		local_irq_save(flags);
1487 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1488 		list = &pcp->lists[migratetype];
1489 		if (list_empty(list)) {
1490 			pcp->count += rmqueue_bulk(zone, 0,
1491 					pcp->batch, list,
1492 					migratetype, cold);
1493 			if (unlikely(list_empty(list)))
1494 				goto failed;
1495 		}
1496 
1497 		if (cold)
1498 			page = list_entry(list->prev, struct page, lru);
1499 		else
1500 			page = list_entry(list->next, struct page, lru);
1501 
1502 		list_del(&page->lru);
1503 		pcp->count--;
1504 	} else {
1505 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1506 			/*
1507 			 * __GFP_NOFAIL is not to be used in new code.
1508 			 *
1509 			 * All __GFP_NOFAIL callers should be fixed so that they
1510 			 * properly detect and handle allocation failures.
1511 			 *
1512 			 * We most definitely don't want callers attempting to
1513 			 * allocate greater than order-1 page units with
1514 			 * __GFP_NOFAIL.
1515 			 */
1516 			WARN_ON_ONCE(order > 1);
1517 		}
1518 		spin_lock_irqsave(&zone->lock, flags);
1519 		page = __rmqueue(zone, order, migratetype);
1520 		spin_unlock(&zone->lock);
1521 		if (!page)
1522 			goto failed;
1523 		__mod_zone_freepage_state(zone, -(1 << order),
1524 					  get_pageblock_migratetype(page));
1525 	}
1526 
1527 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1528 	zone_statistics(preferred_zone, zone, gfp_flags);
1529 	local_irq_restore(flags);
1530 
1531 	VM_BUG_ON(bad_range(zone, page));
1532 	if (prep_new_page(page, order, gfp_flags))
1533 		goto again;
1534 	return page;
1535 
1536 failed:
1537 	local_irq_restore(flags);
1538 	return NULL;
1539 }
1540 
1541 #ifdef CONFIG_FAIL_PAGE_ALLOC
1542 
1543 static struct {
1544 	struct fault_attr attr;
1545 
1546 	u32 ignore_gfp_highmem;
1547 	u32 ignore_gfp_wait;
1548 	u32 min_order;
1549 } fail_page_alloc = {
1550 	.attr = FAULT_ATTR_INITIALIZER,
1551 	.ignore_gfp_wait = 1,
1552 	.ignore_gfp_highmem = 1,
1553 	.min_order = 1,
1554 };
1555 
1556 static int __init setup_fail_page_alloc(char *str)
1557 {
1558 	return setup_fault_attr(&fail_page_alloc.attr, str);
1559 }
1560 __setup("fail_page_alloc=", setup_fail_page_alloc);
1561 
1562 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1563 {
1564 	if (order < fail_page_alloc.min_order)
1565 		return false;
1566 	if (gfp_mask & __GFP_NOFAIL)
1567 		return false;
1568 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1569 		return false;
1570 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1571 		return false;
1572 
1573 	return should_fail(&fail_page_alloc.attr, 1 << order);
1574 }
1575 
1576 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1577 
1578 static int __init fail_page_alloc_debugfs(void)
1579 {
1580 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1581 	struct dentry *dir;
1582 
1583 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1584 					&fail_page_alloc.attr);
1585 	if (IS_ERR(dir))
1586 		return PTR_ERR(dir);
1587 
1588 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1589 				&fail_page_alloc.ignore_gfp_wait))
1590 		goto fail;
1591 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1592 				&fail_page_alloc.ignore_gfp_highmem))
1593 		goto fail;
1594 	if (!debugfs_create_u32("min-order", mode, dir,
1595 				&fail_page_alloc.min_order))
1596 		goto fail;
1597 
1598 	return 0;
1599 fail:
1600 	debugfs_remove_recursive(dir);
1601 
1602 	return -ENOMEM;
1603 }
1604 
1605 late_initcall(fail_page_alloc_debugfs);
1606 
1607 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1608 
1609 #else /* CONFIG_FAIL_PAGE_ALLOC */
1610 
1611 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1612 {
1613 	return false;
1614 }
1615 
1616 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1617 
1618 /*
1619  * Return true if free pages are above 'mark'. This takes into account the order
1620  * of the allocation.
1621  */
1622 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1623 		      int classzone_idx, int alloc_flags, long free_pages)
1624 {
1625 	/* free_pages my go negative - that's OK */
1626 	long min = mark;
1627 	long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1628 	int o;
1629 
1630 	free_pages -= (1 << order) - 1;
1631 	if (alloc_flags & ALLOC_HIGH)
1632 		min -= min / 2;
1633 	if (alloc_flags & ALLOC_HARDER)
1634 		min -= min / 4;
1635 #ifdef CONFIG_CMA
1636 	/* If allocation can't use CMA areas don't use free CMA pages */
1637 	if (!(alloc_flags & ALLOC_CMA))
1638 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1639 #endif
1640 	if (free_pages <= min + lowmem_reserve)
1641 		return false;
1642 	for (o = 0; o < order; o++) {
1643 		/* At the next order, this order's pages become unavailable */
1644 		free_pages -= z->free_area[o].nr_free << o;
1645 
1646 		/* Require fewer higher order pages to be free */
1647 		min >>= 1;
1648 
1649 		if (free_pages <= min)
1650 			return false;
1651 	}
1652 	return true;
1653 }
1654 
1655 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1656 		      int classzone_idx, int alloc_flags)
1657 {
1658 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1659 					zone_page_state(z, NR_FREE_PAGES));
1660 }
1661 
1662 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1663 		      int classzone_idx, int alloc_flags)
1664 {
1665 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1666 
1667 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1668 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1669 
1670 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1671 								free_pages);
1672 }
1673 
1674 #ifdef CONFIG_NUMA
1675 /*
1676  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1677  * skip over zones that are not allowed by the cpuset, or that have
1678  * been recently (in last second) found to be nearly full.  See further
1679  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1680  * that have to skip over a lot of full or unallowed zones.
1681  *
1682  * If the zonelist cache is present in the passed in zonelist, then
1683  * returns a pointer to the allowed node mask (either the current
1684  * tasks mems_allowed, or node_states[N_MEMORY].)
1685  *
1686  * If the zonelist cache is not available for this zonelist, does
1687  * nothing and returns NULL.
1688  *
1689  * If the fullzones BITMAP in the zonelist cache is stale (more than
1690  * a second since last zap'd) then we zap it out (clear its bits.)
1691  *
1692  * We hold off even calling zlc_setup, until after we've checked the
1693  * first zone in the zonelist, on the theory that most allocations will
1694  * be satisfied from that first zone, so best to examine that zone as
1695  * quickly as we can.
1696  */
1697 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1698 {
1699 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1700 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1701 
1702 	zlc = zonelist->zlcache_ptr;
1703 	if (!zlc)
1704 		return NULL;
1705 
1706 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1707 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1708 		zlc->last_full_zap = jiffies;
1709 	}
1710 
1711 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1712 					&cpuset_current_mems_allowed :
1713 					&node_states[N_MEMORY];
1714 	return allowednodes;
1715 }
1716 
1717 /*
1718  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1719  * if it is worth looking at further for free memory:
1720  *  1) Check that the zone isn't thought to be full (doesn't have its
1721  *     bit set in the zonelist_cache fullzones BITMAP).
1722  *  2) Check that the zones node (obtained from the zonelist_cache
1723  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1724  * Return true (non-zero) if zone is worth looking at further, or
1725  * else return false (zero) if it is not.
1726  *
1727  * This check -ignores- the distinction between various watermarks,
1728  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1729  * found to be full for any variation of these watermarks, it will
1730  * be considered full for up to one second by all requests, unless
1731  * we are so low on memory on all allowed nodes that we are forced
1732  * into the second scan of the zonelist.
1733  *
1734  * In the second scan we ignore this zonelist cache and exactly
1735  * apply the watermarks to all zones, even it is slower to do so.
1736  * We are low on memory in the second scan, and should leave no stone
1737  * unturned looking for a free page.
1738  */
1739 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1740 						nodemask_t *allowednodes)
1741 {
1742 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1743 	int i;				/* index of *z in zonelist zones */
1744 	int n;				/* node that zone *z is on */
1745 
1746 	zlc = zonelist->zlcache_ptr;
1747 	if (!zlc)
1748 		return 1;
1749 
1750 	i = z - zonelist->_zonerefs;
1751 	n = zlc->z_to_n[i];
1752 
1753 	/* This zone is worth trying if it is allowed but not full */
1754 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1755 }
1756 
1757 /*
1758  * Given 'z' scanning a zonelist, set the corresponding bit in
1759  * zlc->fullzones, so that subsequent attempts to allocate a page
1760  * from that zone don't waste time re-examining it.
1761  */
1762 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1763 {
1764 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1765 	int i;				/* index of *z in zonelist zones */
1766 
1767 	zlc = zonelist->zlcache_ptr;
1768 	if (!zlc)
1769 		return;
1770 
1771 	i = z - zonelist->_zonerefs;
1772 
1773 	set_bit(i, zlc->fullzones);
1774 }
1775 
1776 /*
1777  * clear all zones full, called after direct reclaim makes progress so that
1778  * a zone that was recently full is not skipped over for up to a second
1779  */
1780 static void zlc_clear_zones_full(struct zonelist *zonelist)
1781 {
1782 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1783 
1784 	zlc = zonelist->zlcache_ptr;
1785 	if (!zlc)
1786 		return;
1787 
1788 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1789 }
1790 
1791 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1792 {
1793 	return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1794 }
1795 
1796 static void __paginginit init_zone_allows_reclaim(int nid)
1797 {
1798 	int i;
1799 
1800 	for_each_online_node(i)
1801 		if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1802 			node_set(i, NODE_DATA(nid)->reclaim_nodes);
1803 		else
1804 			zone_reclaim_mode = 1;
1805 }
1806 
1807 #else	/* CONFIG_NUMA */
1808 
1809 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1810 {
1811 	return NULL;
1812 }
1813 
1814 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1815 				nodemask_t *allowednodes)
1816 {
1817 	return 1;
1818 }
1819 
1820 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1821 {
1822 }
1823 
1824 static void zlc_clear_zones_full(struct zonelist *zonelist)
1825 {
1826 }
1827 
1828 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1829 {
1830 	return true;
1831 }
1832 
1833 static inline void init_zone_allows_reclaim(int nid)
1834 {
1835 }
1836 #endif	/* CONFIG_NUMA */
1837 
1838 /*
1839  * get_page_from_freelist goes through the zonelist trying to allocate
1840  * a page.
1841  */
1842 static struct page *
1843 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1844 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1845 		struct zone *preferred_zone, int migratetype)
1846 {
1847 	struct zoneref *z;
1848 	struct page *page = NULL;
1849 	int classzone_idx;
1850 	struct zone *zone;
1851 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1852 	int zlc_active = 0;		/* set if using zonelist_cache */
1853 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1854 
1855 	classzone_idx = zone_idx(preferred_zone);
1856 zonelist_scan:
1857 	/*
1858 	 * Scan zonelist, looking for a zone with enough free.
1859 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1860 	 */
1861 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1862 						high_zoneidx, nodemask) {
1863 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1864 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1865 				continue;
1866 		if ((alloc_flags & ALLOC_CPUSET) &&
1867 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1868 				continue;
1869 		/*
1870 		 * When allocating a page cache page for writing, we
1871 		 * want to get it from a zone that is within its dirty
1872 		 * limit, such that no single zone holds more than its
1873 		 * proportional share of globally allowed dirty pages.
1874 		 * The dirty limits take into account the zone's
1875 		 * lowmem reserves and high watermark so that kswapd
1876 		 * should be able to balance it without having to
1877 		 * write pages from its LRU list.
1878 		 *
1879 		 * This may look like it could increase pressure on
1880 		 * lower zones by failing allocations in higher zones
1881 		 * before they are full.  But the pages that do spill
1882 		 * over are limited as the lower zones are protected
1883 		 * by this very same mechanism.  It should not become
1884 		 * a practical burden to them.
1885 		 *
1886 		 * XXX: For now, allow allocations to potentially
1887 		 * exceed the per-zone dirty limit in the slowpath
1888 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1889 		 * which is important when on a NUMA setup the allowed
1890 		 * zones are together not big enough to reach the
1891 		 * global limit.  The proper fix for these situations
1892 		 * will require awareness of zones in the
1893 		 * dirty-throttling and the flusher threads.
1894 		 */
1895 		if ((alloc_flags & ALLOC_WMARK_LOW) &&
1896 		    (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1897 			goto this_zone_full;
1898 
1899 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1900 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1901 			unsigned long mark;
1902 			int ret;
1903 
1904 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1905 			if (zone_watermark_ok(zone, order, mark,
1906 				    classzone_idx, alloc_flags))
1907 				goto try_this_zone;
1908 
1909 			if (IS_ENABLED(CONFIG_NUMA) &&
1910 					!did_zlc_setup && nr_online_nodes > 1) {
1911 				/*
1912 				 * we do zlc_setup if there are multiple nodes
1913 				 * and before considering the first zone allowed
1914 				 * by the cpuset.
1915 				 */
1916 				allowednodes = zlc_setup(zonelist, alloc_flags);
1917 				zlc_active = 1;
1918 				did_zlc_setup = 1;
1919 			}
1920 
1921 			if (zone_reclaim_mode == 0 ||
1922 			    !zone_allows_reclaim(preferred_zone, zone))
1923 				goto this_zone_full;
1924 
1925 			/*
1926 			 * As we may have just activated ZLC, check if the first
1927 			 * eligible zone has failed zone_reclaim recently.
1928 			 */
1929 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1930 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
1931 				continue;
1932 
1933 			ret = zone_reclaim(zone, gfp_mask, order);
1934 			switch (ret) {
1935 			case ZONE_RECLAIM_NOSCAN:
1936 				/* did not scan */
1937 				continue;
1938 			case ZONE_RECLAIM_FULL:
1939 				/* scanned but unreclaimable */
1940 				continue;
1941 			default:
1942 				/* did we reclaim enough */
1943 				if (!zone_watermark_ok(zone, order, mark,
1944 						classzone_idx, alloc_flags))
1945 					goto this_zone_full;
1946 			}
1947 		}
1948 
1949 try_this_zone:
1950 		page = buffered_rmqueue(preferred_zone, zone, order,
1951 						gfp_mask, migratetype);
1952 		if (page)
1953 			break;
1954 this_zone_full:
1955 		if (IS_ENABLED(CONFIG_NUMA))
1956 			zlc_mark_zone_full(zonelist, z);
1957 	}
1958 
1959 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1960 		/* Disable zlc cache for second zonelist scan */
1961 		zlc_active = 0;
1962 		goto zonelist_scan;
1963 	}
1964 
1965 	if (page)
1966 		/*
1967 		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1968 		 * necessary to allocate the page. The expectation is
1969 		 * that the caller is taking steps that will free more
1970 		 * memory. The caller should avoid the page being used
1971 		 * for !PFMEMALLOC purposes.
1972 		 */
1973 		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1974 
1975 	return page;
1976 }
1977 
1978 /*
1979  * Large machines with many possible nodes should not always dump per-node
1980  * meminfo in irq context.
1981  */
1982 static inline bool should_suppress_show_mem(void)
1983 {
1984 	bool ret = false;
1985 
1986 #if NODES_SHIFT > 8
1987 	ret = in_interrupt();
1988 #endif
1989 	return ret;
1990 }
1991 
1992 static DEFINE_RATELIMIT_STATE(nopage_rs,
1993 		DEFAULT_RATELIMIT_INTERVAL,
1994 		DEFAULT_RATELIMIT_BURST);
1995 
1996 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1997 {
1998 	unsigned int filter = SHOW_MEM_FILTER_NODES;
1999 
2000 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2001 	    debug_guardpage_minorder() > 0)
2002 		return;
2003 
2004 	/*
2005 	 * This documents exceptions given to allocations in certain
2006 	 * contexts that are allowed to allocate outside current's set
2007 	 * of allowed nodes.
2008 	 */
2009 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2010 		if (test_thread_flag(TIF_MEMDIE) ||
2011 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2012 			filter &= ~SHOW_MEM_FILTER_NODES;
2013 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2014 		filter &= ~SHOW_MEM_FILTER_NODES;
2015 
2016 	if (fmt) {
2017 		struct va_format vaf;
2018 		va_list args;
2019 
2020 		va_start(args, fmt);
2021 
2022 		vaf.fmt = fmt;
2023 		vaf.va = &args;
2024 
2025 		pr_warn("%pV", &vaf);
2026 
2027 		va_end(args);
2028 	}
2029 
2030 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2031 		current->comm, order, gfp_mask);
2032 
2033 	dump_stack();
2034 	if (!should_suppress_show_mem())
2035 		show_mem(filter);
2036 }
2037 
2038 static inline int
2039 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2040 				unsigned long did_some_progress,
2041 				unsigned long pages_reclaimed)
2042 {
2043 	/* Do not loop if specifically requested */
2044 	if (gfp_mask & __GFP_NORETRY)
2045 		return 0;
2046 
2047 	/* Always retry if specifically requested */
2048 	if (gfp_mask & __GFP_NOFAIL)
2049 		return 1;
2050 
2051 	/*
2052 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2053 	 * making forward progress without invoking OOM. Suspend also disables
2054 	 * storage devices so kswapd will not help. Bail if we are suspending.
2055 	 */
2056 	if (!did_some_progress && pm_suspended_storage())
2057 		return 0;
2058 
2059 	/*
2060 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2061 	 * means __GFP_NOFAIL, but that may not be true in other
2062 	 * implementations.
2063 	 */
2064 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2065 		return 1;
2066 
2067 	/*
2068 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2069 	 * specified, then we retry until we no longer reclaim any pages
2070 	 * (above), or we've reclaimed an order of pages at least as
2071 	 * large as the allocation's order. In both cases, if the
2072 	 * allocation still fails, we stop retrying.
2073 	 */
2074 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2075 		return 1;
2076 
2077 	return 0;
2078 }
2079 
2080 static inline struct page *
2081 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2082 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2083 	nodemask_t *nodemask, struct zone *preferred_zone,
2084 	int migratetype)
2085 {
2086 	struct page *page;
2087 
2088 	/* Acquire the OOM killer lock for the zones in zonelist */
2089 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2090 		schedule_timeout_uninterruptible(1);
2091 		return NULL;
2092 	}
2093 
2094 	/*
2095 	 * Go through the zonelist yet one more time, keep very high watermark
2096 	 * here, this is only to catch a parallel oom killing, we must fail if
2097 	 * we're still under heavy pressure.
2098 	 */
2099 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2100 		order, zonelist, high_zoneidx,
2101 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2102 		preferred_zone, migratetype);
2103 	if (page)
2104 		goto out;
2105 
2106 	if (!(gfp_mask & __GFP_NOFAIL)) {
2107 		/* The OOM killer will not help higher order allocs */
2108 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2109 			goto out;
2110 		/* The OOM killer does not needlessly kill tasks for lowmem */
2111 		if (high_zoneidx < ZONE_NORMAL)
2112 			goto out;
2113 		/*
2114 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2115 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2116 		 * The caller should handle page allocation failure by itself if
2117 		 * it specifies __GFP_THISNODE.
2118 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2119 		 */
2120 		if (gfp_mask & __GFP_THISNODE)
2121 			goto out;
2122 	}
2123 	/* Exhausted what can be done so it's blamo time */
2124 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2125 
2126 out:
2127 	clear_zonelist_oom(zonelist, gfp_mask);
2128 	return page;
2129 }
2130 
2131 #ifdef CONFIG_COMPACTION
2132 /* Try memory compaction for high-order allocations before reclaim */
2133 static struct page *
2134 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2135 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2136 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2137 	int migratetype, bool sync_migration,
2138 	bool *contended_compaction, bool *deferred_compaction,
2139 	unsigned long *did_some_progress)
2140 {
2141 	if (!order)
2142 		return NULL;
2143 
2144 	if (compaction_deferred(preferred_zone, order)) {
2145 		*deferred_compaction = true;
2146 		return NULL;
2147 	}
2148 
2149 	current->flags |= PF_MEMALLOC;
2150 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2151 						nodemask, sync_migration,
2152 						contended_compaction);
2153 	current->flags &= ~PF_MEMALLOC;
2154 
2155 	if (*did_some_progress != COMPACT_SKIPPED) {
2156 		struct page *page;
2157 
2158 		/* Page migration frees to the PCP lists but we want merging */
2159 		drain_pages(get_cpu());
2160 		put_cpu();
2161 
2162 		page = get_page_from_freelist(gfp_mask, nodemask,
2163 				order, zonelist, high_zoneidx,
2164 				alloc_flags & ~ALLOC_NO_WATERMARKS,
2165 				preferred_zone, migratetype);
2166 		if (page) {
2167 			preferred_zone->compact_blockskip_flush = false;
2168 			preferred_zone->compact_considered = 0;
2169 			preferred_zone->compact_defer_shift = 0;
2170 			if (order >= preferred_zone->compact_order_failed)
2171 				preferred_zone->compact_order_failed = order + 1;
2172 			count_vm_event(COMPACTSUCCESS);
2173 			return page;
2174 		}
2175 
2176 		/*
2177 		 * It's bad if compaction run occurs and fails.
2178 		 * The most likely reason is that pages exist,
2179 		 * but not enough to satisfy watermarks.
2180 		 */
2181 		count_vm_event(COMPACTFAIL);
2182 
2183 		/*
2184 		 * As async compaction considers a subset of pageblocks, only
2185 		 * defer if the failure was a sync compaction failure.
2186 		 */
2187 		if (sync_migration)
2188 			defer_compaction(preferred_zone, order);
2189 
2190 		cond_resched();
2191 	}
2192 
2193 	return NULL;
2194 }
2195 #else
2196 static inline struct page *
2197 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2198 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2199 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2200 	int migratetype, bool sync_migration,
2201 	bool *contended_compaction, bool *deferred_compaction,
2202 	unsigned long *did_some_progress)
2203 {
2204 	return NULL;
2205 }
2206 #endif /* CONFIG_COMPACTION */
2207 
2208 /* Perform direct synchronous page reclaim */
2209 static int
2210 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2211 		  nodemask_t *nodemask)
2212 {
2213 	struct reclaim_state reclaim_state;
2214 	int progress;
2215 
2216 	cond_resched();
2217 
2218 	/* We now go into synchronous reclaim */
2219 	cpuset_memory_pressure_bump();
2220 	current->flags |= PF_MEMALLOC;
2221 	lockdep_set_current_reclaim_state(gfp_mask);
2222 	reclaim_state.reclaimed_slab = 0;
2223 	current->reclaim_state = &reclaim_state;
2224 
2225 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2226 
2227 	current->reclaim_state = NULL;
2228 	lockdep_clear_current_reclaim_state();
2229 	current->flags &= ~PF_MEMALLOC;
2230 
2231 	cond_resched();
2232 
2233 	return progress;
2234 }
2235 
2236 /* The really slow allocator path where we enter direct reclaim */
2237 static inline struct page *
2238 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2239 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2240 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2241 	int migratetype, unsigned long *did_some_progress)
2242 {
2243 	struct page *page = NULL;
2244 	bool drained = false;
2245 
2246 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2247 					       nodemask);
2248 	if (unlikely(!(*did_some_progress)))
2249 		return NULL;
2250 
2251 	/* After successful reclaim, reconsider all zones for allocation */
2252 	if (IS_ENABLED(CONFIG_NUMA))
2253 		zlc_clear_zones_full(zonelist);
2254 
2255 retry:
2256 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2257 					zonelist, high_zoneidx,
2258 					alloc_flags & ~ALLOC_NO_WATERMARKS,
2259 					preferred_zone, migratetype);
2260 
2261 	/*
2262 	 * If an allocation failed after direct reclaim, it could be because
2263 	 * pages are pinned on the per-cpu lists. Drain them and try again
2264 	 */
2265 	if (!page && !drained) {
2266 		drain_all_pages();
2267 		drained = true;
2268 		goto retry;
2269 	}
2270 
2271 	return page;
2272 }
2273 
2274 /*
2275  * This is called in the allocator slow-path if the allocation request is of
2276  * sufficient urgency to ignore watermarks and take other desperate measures
2277  */
2278 static inline struct page *
2279 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2280 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2281 	nodemask_t *nodemask, struct zone *preferred_zone,
2282 	int migratetype)
2283 {
2284 	struct page *page;
2285 
2286 	do {
2287 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2288 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2289 			preferred_zone, migratetype);
2290 
2291 		if (!page && gfp_mask & __GFP_NOFAIL)
2292 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2293 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2294 
2295 	return page;
2296 }
2297 
2298 static inline
2299 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2300 						enum zone_type high_zoneidx,
2301 						enum zone_type classzone_idx)
2302 {
2303 	struct zoneref *z;
2304 	struct zone *zone;
2305 
2306 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2307 		wakeup_kswapd(zone, order, classzone_idx);
2308 }
2309 
2310 static inline int
2311 gfp_to_alloc_flags(gfp_t gfp_mask)
2312 {
2313 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2314 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2315 
2316 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2317 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2318 
2319 	/*
2320 	 * The caller may dip into page reserves a bit more if the caller
2321 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2322 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2323 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2324 	 */
2325 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2326 
2327 	if (!wait) {
2328 		/*
2329 		 * Not worth trying to allocate harder for
2330 		 * __GFP_NOMEMALLOC even if it can't schedule.
2331 		 */
2332 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2333 			alloc_flags |= ALLOC_HARDER;
2334 		/*
2335 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2336 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2337 		 */
2338 		alloc_flags &= ~ALLOC_CPUSET;
2339 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2340 		alloc_flags |= ALLOC_HARDER;
2341 
2342 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2343 		if (gfp_mask & __GFP_MEMALLOC)
2344 			alloc_flags |= ALLOC_NO_WATERMARKS;
2345 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2346 			alloc_flags |= ALLOC_NO_WATERMARKS;
2347 		else if (!in_interrupt() &&
2348 				((current->flags & PF_MEMALLOC) ||
2349 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2350 			alloc_flags |= ALLOC_NO_WATERMARKS;
2351 	}
2352 #ifdef CONFIG_CMA
2353 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2354 		alloc_flags |= ALLOC_CMA;
2355 #endif
2356 	return alloc_flags;
2357 }
2358 
2359 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2360 {
2361 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2362 }
2363 
2364 static inline struct page *
2365 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2366 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2367 	nodemask_t *nodemask, struct zone *preferred_zone,
2368 	int migratetype)
2369 {
2370 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2371 	struct page *page = NULL;
2372 	int alloc_flags;
2373 	unsigned long pages_reclaimed = 0;
2374 	unsigned long did_some_progress;
2375 	bool sync_migration = false;
2376 	bool deferred_compaction = false;
2377 	bool contended_compaction = false;
2378 
2379 	/*
2380 	 * In the slowpath, we sanity check order to avoid ever trying to
2381 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2382 	 * be using allocators in order of preference for an area that is
2383 	 * too large.
2384 	 */
2385 	if (order >= MAX_ORDER) {
2386 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2387 		return NULL;
2388 	}
2389 
2390 	/*
2391 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2392 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2393 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2394 	 * using a larger set of nodes after it has established that the
2395 	 * allowed per node queues are empty and that nodes are
2396 	 * over allocated.
2397 	 */
2398 	if (IS_ENABLED(CONFIG_NUMA) &&
2399 			(gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2400 		goto nopage;
2401 
2402 restart:
2403 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2404 		wake_all_kswapd(order, zonelist, high_zoneidx,
2405 						zone_idx(preferred_zone));
2406 
2407 	/*
2408 	 * OK, we're below the kswapd watermark and have kicked background
2409 	 * reclaim. Now things get more complex, so set up alloc_flags according
2410 	 * to how we want to proceed.
2411 	 */
2412 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2413 
2414 	/*
2415 	 * Find the true preferred zone if the allocation is unconstrained by
2416 	 * cpusets.
2417 	 */
2418 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2419 		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2420 					&preferred_zone);
2421 
2422 rebalance:
2423 	/* This is the last chance, in general, before the goto nopage. */
2424 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2425 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2426 			preferred_zone, migratetype);
2427 	if (page)
2428 		goto got_pg;
2429 
2430 	/* Allocate without watermarks if the context allows */
2431 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2432 		/*
2433 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2434 		 * the allocation is high priority and these type of
2435 		 * allocations are system rather than user orientated
2436 		 */
2437 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2438 
2439 		page = __alloc_pages_high_priority(gfp_mask, order,
2440 				zonelist, high_zoneidx, nodemask,
2441 				preferred_zone, migratetype);
2442 		if (page) {
2443 			goto got_pg;
2444 		}
2445 	}
2446 
2447 	/* Atomic allocations - we can't balance anything */
2448 	if (!wait)
2449 		goto nopage;
2450 
2451 	/* Avoid recursion of direct reclaim */
2452 	if (current->flags & PF_MEMALLOC)
2453 		goto nopage;
2454 
2455 	/* Avoid allocations with no watermarks from looping endlessly */
2456 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2457 		goto nopage;
2458 
2459 	/*
2460 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2461 	 * attempts after direct reclaim are synchronous
2462 	 */
2463 	page = __alloc_pages_direct_compact(gfp_mask, order,
2464 					zonelist, high_zoneidx,
2465 					nodemask,
2466 					alloc_flags, preferred_zone,
2467 					migratetype, sync_migration,
2468 					&contended_compaction,
2469 					&deferred_compaction,
2470 					&did_some_progress);
2471 	if (page)
2472 		goto got_pg;
2473 	sync_migration = true;
2474 
2475 	/*
2476 	 * If compaction is deferred for high-order allocations, it is because
2477 	 * sync compaction recently failed. In this is the case and the caller
2478 	 * requested a movable allocation that does not heavily disrupt the
2479 	 * system then fail the allocation instead of entering direct reclaim.
2480 	 */
2481 	if ((deferred_compaction || contended_compaction) &&
2482 						(gfp_mask & __GFP_NO_KSWAPD))
2483 		goto nopage;
2484 
2485 	/* Try direct reclaim and then allocating */
2486 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2487 					zonelist, high_zoneidx,
2488 					nodemask,
2489 					alloc_flags, preferred_zone,
2490 					migratetype, &did_some_progress);
2491 	if (page)
2492 		goto got_pg;
2493 
2494 	/*
2495 	 * If we failed to make any progress reclaiming, then we are
2496 	 * running out of options and have to consider going OOM
2497 	 */
2498 	if (!did_some_progress) {
2499 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2500 			if (oom_killer_disabled)
2501 				goto nopage;
2502 			/* Coredumps can quickly deplete all memory reserves */
2503 			if ((current->flags & PF_DUMPCORE) &&
2504 			    !(gfp_mask & __GFP_NOFAIL))
2505 				goto nopage;
2506 			page = __alloc_pages_may_oom(gfp_mask, order,
2507 					zonelist, high_zoneidx,
2508 					nodemask, preferred_zone,
2509 					migratetype);
2510 			if (page)
2511 				goto got_pg;
2512 
2513 			if (!(gfp_mask & __GFP_NOFAIL)) {
2514 				/*
2515 				 * The oom killer is not called for high-order
2516 				 * allocations that may fail, so if no progress
2517 				 * is being made, there are no other options and
2518 				 * retrying is unlikely to help.
2519 				 */
2520 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2521 					goto nopage;
2522 				/*
2523 				 * The oom killer is not called for lowmem
2524 				 * allocations to prevent needlessly killing
2525 				 * innocent tasks.
2526 				 */
2527 				if (high_zoneidx < ZONE_NORMAL)
2528 					goto nopage;
2529 			}
2530 
2531 			goto restart;
2532 		}
2533 	}
2534 
2535 	/* Check if we should retry the allocation */
2536 	pages_reclaimed += did_some_progress;
2537 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2538 						pages_reclaimed)) {
2539 		/* Wait for some write requests to complete then retry */
2540 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2541 		goto rebalance;
2542 	} else {
2543 		/*
2544 		 * High-order allocations do not necessarily loop after
2545 		 * direct reclaim and reclaim/compaction depends on compaction
2546 		 * being called after reclaim so call directly if necessary
2547 		 */
2548 		page = __alloc_pages_direct_compact(gfp_mask, order,
2549 					zonelist, high_zoneidx,
2550 					nodemask,
2551 					alloc_flags, preferred_zone,
2552 					migratetype, sync_migration,
2553 					&contended_compaction,
2554 					&deferred_compaction,
2555 					&did_some_progress);
2556 		if (page)
2557 			goto got_pg;
2558 	}
2559 
2560 nopage:
2561 	warn_alloc_failed(gfp_mask, order, NULL);
2562 	return page;
2563 got_pg:
2564 	if (kmemcheck_enabled)
2565 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2566 
2567 	return page;
2568 }
2569 
2570 /*
2571  * This is the 'heart' of the zoned buddy allocator.
2572  */
2573 struct page *
2574 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2575 			struct zonelist *zonelist, nodemask_t *nodemask)
2576 {
2577 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2578 	struct zone *preferred_zone;
2579 	struct page *page = NULL;
2580 	int migratetype = allocflags_to_migratetype(gfp_mask);
2581 	unsigned int cpuset_mems_cookie;
2582 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2583 	struct mem_cgroup *memcg = NULL;
2584 
2585 	gfp_mask &= gfp_allowed_mask;
2586 
2587 	lockdep_trace_alloc(gfp_mask);
2588 
2589 	might_sleep_if(gfp_mask & __GFP_WAIT);
2590 
2591 	if (should_fail_alloc_page(gfp_mask, order))
2592 		return NULL;
2593 
2594 	/*
2595 	 * Check the zones suitable for the gfp_mask contain at least one
2596 	 * valid zone. It's possible to have an empty zonelist as a result
2597 	 * of GFP_THISNODE and a memoryless node
2598 	 */
2599 	if (unlikely(!zonelist->_zonerefs->zone))
2600 		return NULL;
2601 
2602 	/*
2603 	 * Will only have any effect when __GFP_KMEMCG is set.  This is
2604 	 * verified in the (always inline) callee
2605 	 */
2606 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2607 		return NULL;
2608 
2609 retry_cpuset:
2610 	cpuset_mems_cookie = get_mems_allowed();
2611 
2612 	/* The preferred zone is used for statistics later */
2613 	first_zones_zonelist(zonelist, high_zoneidx,
2614 				nodemask ? : &cpuset_current_mems_allowed,
2615 				&preferred_zone);
2616 	if (!preferred_zone)
2617 		goto out;
2618 
2619 #ifdef CONFIG_CMA
2620 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2621 		alloc_flags |= ALLOC_CMA;
2622 #endif
2623 	/* First allocation attempt */
2624 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2625 			zonelist, high_zoneidx, alloc_flags,
2626 			preferred_zone, migratetype);
2627 	if (unlikely(!page)) {
2628 		/*
2629 		 * Runtime PM, block IO and its error handling path
2630 		 * can deadlock because I/O on the device might not
2631 		 * complete.
2632 		 */
2633 		gfp_mask = memalloc_noio_flags(gfp_mask);
2634 		page = __alloc_pages_slowpath(gfp_mask, order,
2635 				zonelist, high_zoneidx, nodemask,
2636 				preferred_zone, migratetype);
2637 	}
2638 
2639 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2640 
2641 out:
2642 	/*
2643 	 * When updating a task's mems_allowed, it is possible to race with
2644 	 * parallel threads in such a way that an allocation can fail while
2645 	 * the mask is being updated. If a page allocation is about to fail,
2646 	 * check if the cpuset changed during allocation and if so, retry.
2647 	 */
2648 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2649 		goto retry_cpuset;
2650 
2651 	memcg_kmem_commit_charge(page, memcg, order);
2652 
2653 	return page;
2654 }
2655 EXPORT_SYMBOL(__alloc_pages_nodemask);
2656 
2657 /*
2658  * Common helper functions.
2659  */
2660 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2661 {
2662 	struct page *page;
2663 
2664 	/*
2665 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2666 	 * a highmem page
2667 	 */
2668 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2669 
2670 	page = alloc_pages(gfp_mask, order);
2671 	if (!page)
2672 		return 0;
2673 	return (unsigned long) page_address(page);
2674 }
2675 EXPORT_SYMBOL(__get_free_pages);
2676 
2677 unsigned long get_zeroed_page(gfp_t gfp_mask)
2678 {
2679 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2680 }
2681 EXPORT_SYMBOL(get_zeroed_page);
2682 
2683 void __free_pages(struct page *page, unsigned int order)
2684 {
2685 	if (put_page_testzero(page)) {
2686 		if (order == 0)
2687 			free_hot_cold_page(page, 0);
2688 		else
2689 			__free_pages_ok(page, order);
2690 	}
2691 }
2692 
2693 EXPORT_SYMBOL(__free_pages);
2694 
2695 void free_pages(unsigned long addr, unsigned int order)
2696 {
2697 	if (addr != 0) {
2698 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2699 		__free_pages(virt_to_page((void *)addr), order);
2700 	}
2701 }
2702 
2703 EXPORT_SYMBOL(free_pages);
2704 
2705 /*
2706  * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2707  * pages allocated with __GFP_KMEMCG.
2708  *
2709  * Those pages are accounted to a particular memcg, embedded in the
2710  * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2711  * for that information only to find out that it is NULL for users who have no
2712  * interest in that whatsoever, we provide these functions.
2713  *
2714  * The caller knows better which flags it relies on.
2715  */
2716 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2717 {
2718 	memcg_kmem_uncharge_pages(page, order);
2719 	__free_pages(page, order);
2720 }
2721 
2722 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2723 {
2724 	if (addr != 0) {
2725 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2726 		__free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2727 	}
2728 }
2729 
2730 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2731 {
2732 	if (addr) {
2733 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2734 		unsigned long used = addr + PAGE_ALIGN(size);
2735 
2736 		split_page(virt_to_page((void *)addr), order);
2737 		while (used < alloc_end) {
2738 			free_page(used);
2739 			used += PAGE_SIZE;
2740 		}
2741 	}
2742 	return (void *)addr;
2743 }
2744 
2745 /**
2746  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2747  * @size: the number of bytes to allocate
2748  * @gfp_mask: GFP flags for the allocation
2749  *
2750  * This function is similar to alloc_pages(), except that it allocates the
2751  * minimum number of pages to satisfy the request.  alloc_pages() can only
2752  * allocate memory in power-of-two pages.
2753  *
2754  * This function is also limited by MAX_ORDER.
2755  *
2756  * Memory allocated by this function must be released by free_pages_exact().
2757  */
2758 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2759 {
2760 	unsigned int order = get_order(size);
2761 	unsigned long addr;
2762 
2763 	addr = __get_free_pages(gfp_mask, order);
2764 	return make_alloc_exact(addr, order, size);
2765 }
2766 EXPORT_SYMBOL(alloc_pages_exact);
2767 
2768 /**
2769  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2770  *			   pages on a node.
2771  * @nid: the preferred node ID where memory should be allocated
2772  * @size: the number of bytes to allocate
2773  * @gfp_mask: GFP flags for the allocation
2774  *
2775  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2776  * back.
2777  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2778  * but is not exact.
2779  */
2780 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2781 {
2782 	unsigned order = get_order(size);
2783 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2784 	if (!p)
2785 		return NULL;
2786 	return make_alloc_exact((unsigned long)page_address(p), order, size);
2787 }
2788 EXPORT_SYMBOL(alloc_pages_exact_nid);
2789 
2790 /**
2791  * free_pages_exact - release memory allocated via alloc_pages_exact()
2792  * @virt: the value returned by alloc_pages_exact.
2793  * @size: size of allocation, same value as passed to alloc_pages_exact().
2794  *
2795  * Release the memory allocated by a previous call to alloc_pages_exact.
2796  */
2797 void free_pages_exact(void *virt, size_t size)
2798 {
2799 	unsigned long addr = (unsigned long)virt;
2800 	unsigned long end = addr + PAGE_ALIGN(size);
2801 
2802 	while (addr < end) {
2803 		free_page(addr);
2804 		addr += PAGE_SIZE;
2805 	}
2806 }
2807 EXPORT_SYMBOL(free_pages_exact);
2808 
2809 /**
2810  * nr_free_zone_pages - count number of pages beyond high watermark
2811  * @offset: The zone index of the highest zone
2812  *
2813  * nr_free_zone_pages() counts the number of counts pages which are beyond the
2814  * high watermark within all zones at or below a given zone index.  For each
2815  * zone, the number of pages is calculated as:
2816  *     present_pages - high_pages
2817  */
2818 static unsigned long nr_free_zone_pages(int offset)
2819 {
2820 	struct zoneref *z;
2821 	struct zone *zone;
2822 
2823 	/* Just pick one node, since fallback list is circular */
2824 	unsigned long sum = 0;
2825 
2826 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2827 
2828 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2829 		unsigned long size = zone->managed_pages;
2830 		unsigned long high = high_wmark_pages(zone);
2831 		if (size > high)
2832 			sum += size - high;
2833 	}
2834 
2835 	return sum;
2836 }
2837 
2838 /**
2839  * nr_free_buffer_pages - count number of pages beyond high watermark
2840  *
2841  * nr_free_buffer_pages() counts the number of pages which are beyond the high
2842  * watermark within ZONE_DMA and ZONE_NORMAL.
2843  */
2844 unsigned long nr_free_buffer_pages(void)
2845 {
2846 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2847 }
2848 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2849 
2850 /**
2851  * nr_free_pagecache_pages - count number of pages beyond high watermark
2852  *
2853  * nr_free_pagecache_pages() counts the number of pages which are beyond the
2854  * high watermark within all zones.
2855  */
2856 unsigned long nr_free_pagecache_pages(void)
2857 {
2858 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2859 }
2860 
2861 static inline void show_node(struct zone *zone)
2862 {
2863 	if (IS_ENABLED(CONFIG_NUMA))
2864 		printk("Node %d ", zone_to_nid(zone));
2865 }
2866 
2867 void si_meminfo(struct sysinfo *val)
2868 {
2869 	val->totalram = totalram_pages;
2870 	val->sharedram = 0;
2871 	val->freeram = global_page_state(NR_FREE_PAGES);
2872 	val->bufferram = nr_blockdev_pages();
2873 	val->totalhigh = totalhigh_pages;
2874 	val->freehigh = nr_free_highpages();
2875 	val->mem_unit = PAGE_SIZE;
2876 }
2877 
2878 EXPORT_SYMBOL(si_meminfo);
2879 
2880 #ifdef CONFIG_NUMA
2881 void si_meminfo_node(struct sysinfo *val, int nid)
2882 {
2883 	pg_data_t *pgdat = NODE_DATA(nid);
2884 
2885 	val->totalram = pgdat->node_present_pages;
2886 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2887 #ifdef CONFIG_HIGHMEM
2888 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2889 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2890 			NR_FREE_PAGES);
2891 #else
2892 	val->totalhigh = 0;
2893 	val->freehigh = 0;
2894 #endif
2895 	val->mem_unit = PAGE_SIZE;
2896 }
2897 #endif
2898 
2899 /*
2900  * Determine whether the node should be displayed or not, depending on whether
2901  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2902  */
2903 bool skip_free_areas_node(unsigned int flags, int nid)
2904 {
2905 	bool ret = false;
2906 	unsigned int cpuset_mems_cookie;
2907 
2908 	if (!(flags & SHOW_MEM_FILTER_NODES))
2909 		goto out;
2910 
2911 	do {
2912 		cpuset_mems_cookie = get_mems_allowed();
2913 		ret = !node_isset(nid, cpuset_current_mems_allowed);
2914 	} while (!put_mems_allowed(cpuset_mems_cookie));
2915 out:
2916 	return ret;
2917 }
2918 
2919 #define K(x) ((x) << (PAGE_SHIFT-10))
2920 
2921 static void show_migration_types(unsigned char type)
2922 {
2923 	static const char types[MIGRATE_TYPES] = {
2924 		[MIGRATE_UNMOVABLE]	= 'U',
2925 		[MIGRATE_RECLAIMABLE]	= 'E',
2926 		[MIGRATE_MOVABLE]	= 'M',
2927 		[MIGRATE_RESERVE]	= 'R',
2928 #ifdef CONFIG_CMA
2929 		[MIGRATE_CMA]		= 'C',
2930 #endif
2931 #ifdef CONFIG_MEMORY_ISOLATION
2932 		[MIGRATE_ISOLATE]	= 'I',
2933 #endif
2934 	};
2935 	char tmp[MIGRATE_TYPES + 1];
2936 	char *p = tmp;
2937 	int i;
2938 
2939 	for (i = 0; i < MIGRATE_TYPES; i++) {
2940 		if (type & (1 << i))
2941 			*p++ = types[i];
2942 	}
2943 
2944 	*p = '\0';
2945 	printk("(%s) ", tmp);
2946 }
2947 
2948 /*
2949  * Show free area list (used inside shift_scroll-lock stuff)
2950  * We also calculate the percentage fragmentation. We do this by counting the
2951  * memory on each free list with the exception of the first item on the list.
2952  * Suppresses nodes that are not allowed by current's cpuset if
2953  * SHOW_MEM_FILTER_NODES is passed.
2954  */
2955 void show_free_areas(unsigned int filter)
2956 {
2957 	int cpu;
2958 	struct zone *zone;
2959 
2960 	for_each_populated_zone(zone) {
2961 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2962 			continue;
2963 		show_node(zone);
2964 		printk("%s per-cpu:\n", zone->name);
2965 
2966 		for_each_online_cpu(cpu) {
2967 			struct per_cpu_pageset *pageset;
2968 
2969 			pageset = per_cpu_ptr(zone->pageset, cpu);
2970 
2971 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2972 			       cpu, pageset->pcp.high,
2973 			       pageset->pcp.batch, pageset->pcp.count);
2974 		}
2975 	}
2976 
2977 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2978 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2979 		" unevictable:%lu"
2980 		" dirty:%lu writeback:%lu unstable:%lu\n"
2981 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2982 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2983 		" free_cma:%lu\n",
2984 		global_page_state(NR_ACTIVE_ANON),
2985 		global_page_state(NR_INACTIVE_ANON),
2986 		global_page_state(NR_ISOLATED_ANON),
2987 		global_page_state(NR_ACTIVE_FILE),
2988 		global_page_state(NR_INACTIVE_FILE),
2989 		global_page_state(NR_ISOLATED_FILE),
2990 		global_page_state(NR_UNEVICTABLE),
2991 		global_page_state(NR_FILE_DIRTY),
2992 		global_page_state(NR_WRITEBACK),
2993 		global_page_state(NR_UNSTABLE_NFS),
2994 		global_page_state(NR_FREE_PAGES),
2995 		global_page_state(NR_SLAB_RECLAIMABLE),
2996 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2997 		global_page_state(NR_FILE_MAPPED),
2998 		global_page_state(NR_SHMEM),
2999 		global_page_state(NR_PAGETABLE),
3000 		global_page_state(NR_BOUNCE),
3001 		global_page_state(NR_FREE_CMA_PAGES));
3002 
3003 	for_each_populated_zone(zone) {
3004 		int i;
3005 
3006 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3007 			continue;
3008 		show_node(zone);
3009 		printk("%s"
3010 			" free:%lukB"
3011 			" min:%lukB"
3012 			" low:%lukB"
3013 			" high:%lukB"
3014 			" active_anon:%lukB"
3015 			" inactive_anon:%lukB"
3016 			" active_file:%lukB"
3017 			" inactive_file:%lukB"
3018 			" unevictable:%lukB"
3019 			" isolated(anon):%lukB"
3020 			" isolated(file):%lukB"
3021 			" present:%lukB"
3022 			" managed:%lukB"
3023 			" mlocked:%lukB"
3024 			" dirty:%lukB"
3025 			" writeback:%lukB"
3026 			" mapped:%lukB"
3027 			" shmem:%lukB"
3028 			" slab_reclaimable:%lukB"
3029 			" slab_unreclaimable:%lukB"
3030 			" kernel_stack:%lukB"
3031 			" pagetables:%lukB"
3032 			" unstable:%lukB"
3033 			" bounce:%lukB"
3034 			" free_cma:%lukB"
3035 			" writeback_tmp:%lukB"
3036 			" pages_scanned:%lu"
3037 			" all_unreclaimable? %s"
3038 			"\n",
3039 			zone->name,
3040 			K(zone_page_state(zone, NR_FREE_PAGES)),
3041 			K(min_wmark_pages(zone)),
3042 			K(low_wmark_pages(zone)),
3043 			K(high_wmark_pages(zone)),
3044 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3045 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3046 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3047 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3048 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3049 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3050 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3051 			K(zone->present_pages),
3052 			K(zone->managed_pages),
3053 			K(zone_page_state(zone, NR_MLOCK)),
3054 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3055 			K(zone_page_state(zone, NR_WRITEBACK)),
3056 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3057 			K(zone_page_state(zone, NR_SHMEM)),
3058 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3059 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3060 			zone_page_state(zone, NR_KERNEL_STACK) *
3061 				THREAD_SIZE / 1024,
3062 			K(zone_page_state(zone, NR_PAGETABLE)),
3063 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3064 			K(zone_page_state(zone, NR_BOUNCE)),
3065 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3066 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3067 			zone->pages_scanned,
3068 			(zone->all_unreclaimable ? "yes" : "no")
3069 			);
3070 		printk("lowmem_reserve[]:");
3071 		for (i = 0; i < MAX_NR_ZONES; i++)
3072 			printk(" %lu", zone->lowmem_reserve[i]);
3073 		printk("\n");
3074 	}
3075 
3076 	for_each_populated_zone(zone) {
3077  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3078 		unsigned char types[MAX_ORDER];
3079 
3080 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3081 			continue;
3082 		show_node(zone);
3083 		printk("%s: ", zone->name);
3084 
3085 		spin_lock_irqsave(&zone->lock, flags);
3086 		for (order = 0; order < MAX_ORDER; order++) {
3087 			struct free_area *area = &zone->free_area[order];
3088 			int type;
3089 
3090 			nr[order] = area->nr_free;
3091 			total += nr[order] << order;
3092 
3093 			types[order] = 0;
3094 			for (type = 0; type < MIGRATE_TYPES; type++) {
3095 				if (!list_empty(&area->free_list[type]))
3096 					types[order] |= 1 << type;
3097 			}
3098 		}
3099 		spin_unlock_irqrestore(&zone->lock, flags);
3100 		for (order = 0; order < MAX_ORDER; order++) {
3101 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3102 			if (nr[order])
3103 				show_migration_types(types[order]);
3104 		}
3105 		printk("= %lukB\n", K(total));
3106 	}
3107 
3108 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3109 
3110 	show_swap_cache_info();
3111 }
3112 
3113 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3114 {
3115 	zoneref->zone = zone;
3116 	zoneref->zone_idx = zone_idx(zone);
3117 }
3118 
3119 /*
3120  * Builds allocation fallback zone lists.
3121  *
3122  * Add all populated zones of a node to the zonelist.
3123  */
3124 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3125 				int nr_zones, enum zone_type zone_type)
3126 {
3127 	struct zone *zone;
3128 
3129 	BUG_ON(zone_type >= MAX_NR_ZONES);
3130 	zone_type++;
3131 
3132 	do {
3133 		zone_type--;
3134 		zone = pgdat->node_zones + zone_type;
3135 		if (populated_zone(zone)) {
3136 			zoneref_set_zone(zone,
3137 				&zonelist->_zonerefs[nr_zones++]);
3138 			check_highest_zone(zone_type);
3139 		}
3140 
3141 	} while (zone_type);
3142 	return nr_zones;
3143 }
3144 
3145 
3146 /*
3147  *  zonelist_order:
3148  *  0 = automatic detection of better ordering.
3149  *  1 = order by ([node] distance, -zonetype)
3150  *  2 = order by (-zonetype, [node] distance)
3151  *
3152  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3153  *  the same zonelist. So only NUMA can configure this param.
3154  */
3155 #define ZONELIST_ORDER_DEFAULT  0
3156 #define ZONELIST_ORDER_NODE     1
3157 #define ZONELIST_ORDER_ZONE     2
3158 
3159 /* zonelist order in the kernel.
3160  * set_zonelist_order() will set this to NODE or ZONE.
3161  */
3162 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3163 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3164 
3165 
3166 #ifdef CONFIG_NUMA
3167 /* The value user specified ....changed by config */
3168 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3169 /* string for sysctl */
3170 #define NUMA_ZONELIST_ORDER_LEN	16
3171 char numa_zonelist_order[16] = "default";
3172 
3173 /*
3174  * interface for configure zonelist ordering.
3175  * command line option "numa_zonelist_order"
3176  *	= "[dD]efault	- default, automatic configuration.
3177  *	= "[nN]ode 	- order by node locality, then by zone within node
3178  *	= "[zZ]one      - order by zone, then by locality within zone
3179  */
3180 
3181 static int __parse_numa_zonelist_order(char *s)
3182 {
3183 	if (*s == 'd' || *s == 'D') {
3184 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3185 	} else if (*s == 'n' || *s == 'N') {
3186 		user_zonelist_order = ZONELIST_ORDER_NODE;
3187 	} else if (*s == 'z' || *s == 'Z') {
3188 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3189 	} else {
3190 		printk(KERN_WARNING
3191 			"Ignoring invalid numa_zonelist_order value:  "
3192 			"%s\n", s);
3193 		return -EINVAL;
3194 	}
3195 	return 0;
3196 }
3197 
3198 static __init int setup_numa_zonelist_order(char *s)
3199 {
3200 	int ret;
3201 
3202 	if (!s)
3203 		return 0;
3204 
3205 	ret = __parse_numa_zonelist_order(s);
3206 	if (ret == 0)
3207 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3208 
3209 	return ret;
3210 }
3211 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3212 
3213 /*
3214  * sysctl handler for numa_zonelist_order
3215  */
3216 int numa_zonelist_order_handler(ctl_table *table, int write,
3217 		void __user *buffer, size_t *length,
3218 		loff_t *ppos)
3219 {
3220 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3221 	int ret;
3222 	static DEFINE_MUTEX(zl_order_mutex);
3223 
3224 	mutex_lock(&zl_order_mutex);
3225 	if (write)
3226 		strcpy(saved_string, (char*)table->data);
3227 	ret = proc_dostring(table, write, buffer, length, ppos);
3228 	if (ret)
3229 		goto out;
3230 	if (write) {
3231 		int oldval = user_zonelist_order;
3232 		if (__parse_numa_zonelist_order((char*)table->data)) {
3233 			/*
3234 			 * bogus value.  restore saved string
3235 			 */
3236 			strncpy((char*)table->data, saved_string,
3237 				NUMA_ZONELIST_ORDER_LEN);
3238 			user_zonelist_order = oldval;
3239 		} else if (oldval != user_zonelist_order) {
3240 			mutex_lock(&zonelists_mutex);
3241 			build_all_zonelists(NULL, NULL);
3242 			mutex_unlock(&zonelists_mutex);
3243 		}
3244 	}
3245 out:
3246 	mutex_unlock(&zl_order_mutex);
3247 	return ret;
3248 }
3249 
3250 
3251 #define MAX_NODE_LOAD (nr_online_nodes)
3252 static int node_load[MAX_NUMNODES];
3253 
3254 /**
3255  * find_next_best_node - find the next node that should appear in a given node's fallback list
3256  * @node: node whose fallback list we're appending
3257  * @used_node_mask: nodemask_t of already used nodes
3258  *
3259  * We use a number of factors to determine which is the next node that should
3260  * appear on a given node's fallback list.  The node should not have appeared
3261  * already in @node's fallback list, and it should be the next closest node
3262  * according to the distance array (which contains arbitrary distance values
3263  * from each node to each node in the system), and should also prefer nodes
3264  * with no CPUs, since presumably they'll have very little allocation pressure
3265  * on them otherwise.
3266  * It returns -1 if no node is found.
3267  */
3268 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3269 {
3270 	int n, val;
3271 	int min_val = INT_MAX;
3272 	int best_node = NUMA_NO_NODE;
3273 	const struct cpumask *tmp = cpumask_of_node(0);
3274 
3275 	/* Use the local node if we haven't already */
3276 	if (!node_isset(node, *used_node_mask)) {
3277 		node_set(node, *used_node_mask);
3278 		return node;
3279 	}
3280 
3281 	for_each_node_state(n, N_MEMORY) {
3282 
3283 		/* Don't want a node to appear more than once */
3284 		if (node_isset(n, *used_node_mask))
3285 			continue;
3286 
3287 		/* Use the distance array to find the distance */
3288 		val = node_distance(node, n);
3289 
3290 		/* Penalize nodes under us ("prefer the next node") */
3291 		val += (n < node);
3292 
3293 		/* Give preference to headless and unused nodes */
3294 		tmp = cpumask_of_node(n);
3295 		if (!cpumask_empty(tmp))
3296 			val += PENALTY_FOR_NODE_WITH_CPUS;
3297 
3298 		/* Slight preference for less loaded node */
3299 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3300 		val += node_load[n];
3301 
3302 		if (val < min_val) {
3303 			min_val = val;
3304 			best_node = n;
3305 		}
3306 	}
3307 
3308 	if (best_node >= 0)
3309 		node_set(best_node, *used_node_mask);
3310 
3311 	return best_node;
3312 }
3313 
3314 
3315 /*
3316  * Build zonelists ordered by node and zones within node.
3317  * This results in maximum locality--normal zone overflows into local
3318  * DMA zone, if any--but risks exhausting DMA zone.
3319  */
3320 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3321 {
3322 	int j;
3323 	struct zonelist *zonelist;
3324 
3325 	zonelist = &pgdat->node_zonelists[0];
3326 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3327 		;
3328 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3329 							MAX_NR_ZONES - 1);
3330 	zonelist->_zonerefs[j].zone = NULL;
3331 	zonelist->_zonerefs[j].zone_idx = 0;
3332 }
3333 
3334 /*
3335  * Build gfp_thisnode zonelists
3336  */
3337 static void build_thisnode_zonelists(pg_data_t *pgdat)
3338 {
3339 	int j;
3340 	struct zonelist *zonelist;
3341 
3342 	zonelist = &pgdat->node_zonelists[1];
3343 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3344 	zonelist->_zonerefs[j].zone = NULL;
3345 	zonelist->_zonerefs[j].zone_idx = 0;
3346 }
3347 
3348 /*
3349  * Build zonelists ordered by zone and nodes within zones.
3350  * This results in conserving DMA zone[s] until all Normal memory is
3351  * exhausted, but results in overflowing to remote node while memory
3352  * may still exist in local DMA zone.
3353  */
3354 static int node_order[MAX_NUMNODES];
3355 
3356 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3357 {
3358 	int pos, j, node;
3359 	int zone_type;		/* needs to be signed */
3360 	struct zone *z;
3361 	struct zonelist *zonelist;
3362 
3363 	zonelist = &pgdat->node_zonelists[0];
3364 	pos = 0;
3365 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3366 		for (j = 0; j < nr_nodes; j++) {
3367 			node = node_order[j];
3368 			z = &NODE_DATA(node)->node_zones[zone_type];
3369 			if (populated_zone(z)) {
3370 				zoneref_set_zone(z,
3371 					&zonelist->_zonerefs[pos++]);
3372 				check_highest_zone(zone_type);
3373 			}
3374 		}
3375 	}
3376 	zonelist->_zonerefs[pos].zone = NULL;
3377 	zonelist->_zonerefs[pos].zone_idx = 0;
3378 }
3379 
3380 static int default_zonelist_order(void)
3381 {
3382 	int nid, zone_type;
3383 	unsigned long low_kmem_size,total_size;
3384 	struct zone *z;
3385 	int average_size;
3386 	/*
3387          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3388 	 * If they are really small and used heavily, the system can fall
3389 	 * into OOM very easily.
3390 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3391 	 */
3392 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3393 	low_kmem_size = 0;
3394 	total_size = 0;
3395 	for_each_online_node(nid) {
3396 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3397 			z = &NODE_DATA(nid)->node_zones[zone_type];
3398 			if (populated_zone(z)) {
3399 				if (zone_type < ZONE_NORMAL)
3400 					low_kmem_size += z->present_pages;
3401 				total_size += z->present_pages;
3402 			} else if (zone_type == ZONE_NORMAL) {
3403 				/*
3404 				 * If any node has only lowmem, then node order
3405 				 * is preferred to allow kernel allocations
3406 				 * locally; otherwise, they can easily infringe
3407 				 * on other nodes when there is an abundance of
3408 				 * lowmem available to allocate from.
3409 				 */
3410 				return ZONELIST_ORDER_NODE;
3411 			}
3412 		}
3413 	}
3414 	if (!low_kmem_size ||  /* there are no DMA area. */
3415 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3416 		return ZONELIST_ORDER_NODE;
3417 	/*
3418 	 * look into each node's config.
3419   	 * If there is a node whose DMA/DMA32 memory is very big area on
3420  	 * local memory, NODE_ORDER may be suitable.
3421          */
3422 	average_size = total_size /
3423 				(nodes_weight(node_states[N_MEMORY]) + 1);
3424 	for_each_online_node(nid) {
3425 		low_kmem_size = 0;
3426 		total_size = 0;
3427 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3428 			z = &NODE_DATA(nid)->node_zones[zone_type];
3429 			if (populated_zone(z)) {
3430 				if (zone_type < ZONE_NORMAL)
3431 					low_kmem_size += z->present_pages;
3432 				total_size += z->present_pages;
3433 			}
3434 		}
3435 		if (low_kmem_size &&
3436 		    total_size > average_size && /* ignore small node */
3437 		    low_kmem_size > total_size * 70/100)
3438 			return ZONELIST_ORDER_NODE;
3439 	}
3440 	return ZONELIST_ORDER_ZONE;
3441 }
3442 
3443 static void set_zonelist_order(void)
3444 {
3445 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3446 		current_zonelist_order = default_zonelist_order();
3447 	else
3448 		current_zonelist_order = user_zonelist_order;
3449 }
3450 
3451 static void build_zonelists(pg_data_t *pgdat)
3452 {
3453 	int j, node, load;
3454 	enum zone_type i;
3455 	nodemask_t used_mask;
3456 	int local_node, prev_node;
3457 	struct zonelist *zonelist;
3458 	int order = current_zonelist_order;
3459 
3460 	/* initialize zonelists */
3461 	for (i = 0; i < MAX_ZONELISTS; i++) {
3462 		zonelist = pgdat->node_zonelists + i;
3463 		zonelist->_zonerefs[0].zone = NULL;
3464 		zonelist->_zonerefs[0].zone_idx = 0;
3465 	}
3466 
3467 	/* NUMA-aware ordering of nodes */
3468 	local_node = pgdat->node_id;
3469 	load = nr_online_nodes;
3470 	prev_node = local_node;
3471 	nodes_clear(used_mask);
3472 
3473 	memset(node_order, 0, sizeof(node_order));
3474 	j = 0;
3475 
3476 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3477 		/*
3478 		 * We don't want to pressure a particular node.
3479 		 * So adding penalty to the first node in same
3480 		 * distance group to make it round-robin.
3481 		 */
3482 		if (node_distance(local_node, node) !=
3483 		    node_distance(local_node, prev_node))
3484 			node_load[node] = load;
3485 
3486 		prev_node = node;
3487 		load--;
3488 		if (order == ZONELIST_ORDER_NODE)
3489 			build_zonelists_in_node_order(pgdat, node);
3490 		else
3491 			node_order[j++] = node;	/* remember order */
3492 	}
3493 
3494 	if (order == ZONELIST_ORDER_ZONE) {
3495 		/* calculate node order -- i.e., DMA last! */
3496 		build_zonelists_in_zone_order(pgdat, j);
3497 	}
3498 
3499 	build_thisnode_zonelists(pgdat);
3500 }
3501 
3502 /* Construct the zonelist performance cache - see further mmzone.h */
3503 static void build_zonelist_cache(pg_data_t *pgdat)
3504 {
3505 	struct zonelist *zonelist;
3506 	struct zonelist_cache *zlc;
3507 	struct zoneref *z;
3508 
3509 	zonelist = &pgdat->node_zonelists[0];
3510 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3511 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3512 	for (z = zonelist->_zonerefs; z->zone; z++)
3513 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3514 }
3515 
3516 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3517 /*
3518  * Return node id of node used for "local" allocations.
3519  * I.e., first node id of first zone in arg node's generic zonelist.
3520  * Used for initializing percpu 'numa_mem', which is used primarily
3521  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3522  */
3523 int local_memory_node(int node)
3524 {
3525 	struct zone *zone;
3526 
3527 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3528 				   gfp_zone(GFP_KERNEL),
3529 				   NULL,
3530 				   &zone);
3531 	return zone->node;
3532 }
3533 #endif
3534 
3535 #else	/* CONFIG_NUMA */
3536 
3537 static void set_zonelist_order(void)
3538 {
3539 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3540 }
3541 
3542 static void build_zonelists(pg_data_t *pgdat)
3543 {
3544 	int node, local_node;
3545 	enum zone_type j;
3546 	struct zonelist *zonelist;
3547 
3548 	local_node = pgdat->node_id;
3549 
3550 	zonelist = &pgdat->node_zonelists[0];
3551 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3552 
3553 	/*
3554 	 * Now we build the zonelist so that it contains the zones
3555 	 * of all the other nodes.
3556 	 * We don't want to pressure a particular node, so when
3557 	 * building the zones for node N, we make sure that the
3558 	 * zones coming right after the local ones are those from
3559 	 * node N+1 (modulo N)
3560 	 */
3561 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3562 		if (!node_online(node))
3563 			continue;
3564 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3565 							MAX_NR_ZONES - 1);
3566 	}
3567 	for (node = 0; node < local_node; node++) {
3568 		if (!node_online(node))
3569 			continue;
3570 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3571 							MAX_NR_ZONES - 1);
3572 	}
3573 
3574 	zonelist->_zonerefs[j].zone = NULL;
3575 	zonelist->_zonerefs[j].zone_idx = 0;
3576 }
3577 
3578 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3579 static void build_zonelist_cache(pg_data_t *pgdat)
3580 {
3581 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3582 }
3583 
3584 #endif	/* CONFIG_NUMA */
3585 
3586 /*
3587  * Boot pageset table. One per cpu which is going to be used for all
3588  * zones and all nodes. The parameters will be set in such a way
3589  * that an item put on a list will immediately be handed over to
3590  * the buddy list. This is safe since pageset manipulation is done
3591  * with interrupts disabled.
3592  *
3593  * The boot_pagesets must be kept even after bootup is complete for
3594  * unused processors and/or zones. They do play a role for bootstrapping
3595  * hotplugged processors.
3596  *
3597  * zoneinfo_show() and maybe other functions do
3598  * not check if the processor is online before following the pageset pointer.
3599  * Other parts of the kernel may not check if the zone is available.
3600  */
3601 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3602 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3603 static void setup_zone_pageset(struct zone *zone);
3604 
3605 /*
3606  * Global mutex to protect against size modification of zonelists
3607  * as well as to serialize pageset setup for the new populated zone.
3608  */
3609 DEFINE_MUTEX(zonelists_mutex);
3610 
3611 /* return values int ....just for stop_machine() */
3612 static int __build_all_zonelists(void *data)
3613 {
3614 	int nid;
3615 	int cpu;
3616 	pg_data_t *self = data;
3617 
3618 #ifdef CONFIG_NUMA
3619 	memset(node_load, 0, sizeof(node_load));
3620 #endif
3621 
3622 	if (self && !node_online(self->node_id)) {
3623 		build_zonelists(self);
3624 		build_zonelist_cache(self);
3625 	}
3626 
3627 	for_each_online_node(nid) {
3628 		pg_data_t *pgdat = NODE_DATA(nid);
3629 
3630 		build_zonelists(pgdat);
3631 		build_zonelist_cache(pgdat);
3632 	}
3633 
3634 	/*
3635 	 * Initialize the boot_pagesets that are going to be used
3636 	 * for bootstrapping processors. The real pagesets for
3637 	 * each zone will be allocated later when the per cpu
3638 	 * allocator is available.
3639 	 *
3640 	 * boot_pagesets are used also for bootstrapping offline
3641 	 * cpus if the system is already booted because the pagesets
3642 	 * are needed to initialize allocators on a specific cpu too.
3643 	 * F.e. the percpu allocator needs the page allocator which
3644 	 * needs the percpu allocator in order to allocate its pagesets
3645 	 * (a chicken-egg dilemma).
3646 	 */
3647 	for_each_possible_cpu(cpu) {
3648 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3649 
3650 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3651 		/*
3652 		 * We now know the "local memory node" for each node--
3653 		 * i.e., the node of the first zone in the generic zonelist.
3654 		 * Set up numa_mem percpu variable for on-line cpus.  During
3655 		 * boot, only the boot cpu should be on-line;  we'll init the
3656 		 * secondary cpus' numa_mem as they come on-line.  During
3657 		 * node/memory hotplug, we'll fixup all on-line cpus.
3658 		 */
3659 		if (cpu_online(cpu))
3660 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3661 #endif
3662 	}
3663 
3664 	return 0;
3665 }
3666 
3667 /*
3668  * Called with zonelists_mutex held always
3669  * unless system_state == SYSTEM_BOOTING.
3670  */
3671 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3672 {
3673 	set_zonelist_order();
3674 
3675 	if (system_state == SYSTEM_BOOTING) {
3676 		__build_all_zonelists(NULL);
3677 		mminit_verify_zonelist();
3678 		cpuset_init_current_mems_allowed();
3679 	} else {
3680 		/* we have to stop all cpus to guarantee there is no user
3681 		   of zonelist */
3682 #ifdef CONFIG_MEMORY_HOTPLUG
3683 		if (zone)
3684 			setup_zone_pageset(zone);
3685 #endif
3686 		stop_machine(__build_all_zonelists, pgdat, NULL);
3687 		/* cpuset refresh routine should be here */
3688 	}
3689 	vm_total_pages = nr_free_pagecache_pages();
3690 	/*
3691 	 * Disable grouping by mobility if the number of pages in the
3692 	 * system is too low to allow the mechanism to work. It would be
3693 	 * more accurate, but expensive to check per-zone. This check is
3694 	 * made on memory-hotadd so a system can start with mobility
3695 	 * disabled and enable it later
3696 	 */
3697 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3698 		page_group_by_mobility_disabled = 1;
3699 	else
3700 		page_group_by_mobility_disabled = 0;
3701 
3702 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3703 		"Total pages: %ld\n",
3704 			nr_online_nodes,
3705 			zonelist_order_name[current_zonelist_order],
3706 			page_group_by_mobility_disabled ? "off" : "on",
3707 			vm_total_pages);
3708 #ifdef CONFIG_NUMA
3709 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3710 #endif
3711 }
3712 
3713 /*
3714  * Helper functions to size the waitqueue hash table.
3715  * Essentially these want to choose hash table sizes sufficiently
3716  * large so that collisions trying to wait on pages are rare.
3717  * But in fact, the number of active page waitqueues on typical
3718  * systems is ridiculously low, less than 200. So this is even
3719  * conservative, even though it seems large.
3720  *
3721  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3722  * waitqueues, i.e. the size of the waitq table given the number of pages.
3723  */
3724 #define PAGES_PER_WAITQUEUE	256
3725 
3726 #ifndef CONFIG_MEMORY_HOTPLUG
3727 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3728 {
3729 	unsigned long size = 1;
3730 
3731 	pages /= PAGES_PER_WAITQUEUE;
3732 
3733 	while (size < pages)
3734 		size <<= 1;
3735 
3736 	/*
3737 	 * Once we have dozens or even hundreds of threads sleeping
3738 	 * on IO we've got bigger problems than wait queue collision.
3739 	 * Limit the size of the wait table to a reasonable size.
3740 	 */
3741 	size = min(size, 4096UL);
3742 
3743 	return max(size, 4UL);
3744 }
3745 #else
3746 /*
3747  * A zone's size might be changed by hot-add, so it is not possible to determine
3748  * a suitable size for its wait_table.  So we use the maximum size now.
3749  *
3750  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3751  *
3752  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3753  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3754  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3755  *
3756  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3757  * or more by the traditional way. (See above).  It equals:
3758  *
3759  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3760  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3761  *    powerpc (64K page size)             : =  (32G +16M)byte.
3762  */
3763 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3764 {
3765 	return 4096UL;
3766 }
3767 #endif
3768 
3769 /*
3770  * This is an integer logarithm so that shifts can be used later
3771  * to extract the more random high bits from the multiplicative
3772  * hash function before the remainder is taken.
3773  */
3774 static inline unsigned long wait_table_bits(unsigned long size)
3775 {
3776 	return ffz(~size);
3777 }
3778 
3779 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3780 
3781 /*
3782  * Check if a pageblock contains reserved pages
3783  */
3784 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3785 {
3786 	unsigned long pfn;
3787 
3788 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3789 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3790 			return 1;
3791 	}
3792 	return 0;
3793 }
3794 
3795 /*
3796  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3797  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3798  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3799  * higher will lead to a bigger reserve which will get freed as contiguous
3800  * blocks as reclaim kicks in
3801  */
3802 static void setup_zone_migrate_reserve(struct zone *zone)
3803 {
3804 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3805 	struct page *page;
3806 	unsigned long block_migratetype;
3807 	int reserve;
3808 
3809 	/*
3810 	 * Get the start pfn, end pfn and the number of blocks to reserve
3811 	 * We have to be careful to be aligned to pageblock_nr_pages to
3812 	 * make sure that we always check pfn_valid for the first page in
3813 	 * the block.
3814 	 */
3815 	start_pfn = zone->zone_start_pfn;
3816 	end_pfn = zone_end_pfn(zone);
3817 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3818 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3819 							pageblock_order;
3820 
3821 	/*
3822 	 * Reserve blocks are generally in place to help high-order atomic
3823 	 * allocations that are short-lived. A min_free_kbytes value that
3824 	 * would result in more than 2 reserve blocks for atomic allocations
3825 	 * is assumed to be in place to help anti-fragmentation for the
3826 	 * future allocation of hugepages at runtime.
3827 	 */
3828 	reserve = min(2, reserve);
3829 
3830 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3831 		if (!pfn_valid(pfn))
3832 			continue;
3833 		page = pfn_to_page(pfn);
3834 
3835 		/* Watch out for overlapping nodes */
3836 		if (page_to_nid(page) != zone_to_nid(zone))
3837 			continue;
3838 
3839 		block_migratetype = get_pageblock_migratetype(page);
3840 
3841 		/* Only test what is necessary when the reserves are not met */
3842 		if (reserve > 0) {
3843 			/*
3844 			 * Blocks with reserved pages will never free, skip
3845 			 * them.
3846 			 */
3847 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3848 			if (pageblock_is_reserved(pfn, block_end_pfn))
3849 				continue;
3850 
3851 			/* If this block is reserved, account for it */
3852 			if (block_migratetype == MIGRATE_RESERVE) {
3853 				reserve--;
3854 				continue;
3855 			}
3856 
3857 			/* Suitable for reserving if this block is movable */
3858 			if (block_migratetype == MIGRATE_MOVABLE) {
3859 				set_pageblock_migratetype(page,
3860 							MIGRATE_RESERVE);
3861 				move_freepages_block(zone, page,
3862 							MIGRATE_RESERVE);
3863 				reserve--;
3864 				continue;
3865 			}
3866 		}
3867 
3868 		/*
3869 		 * If the reserve is met and this is a previous reserved block,
3870 		 * take it back
3871 		 */
3872 		if (block_migratetype == MIGRATE_RESERVE) {
3873 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3874 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3875 		}
3876 	}
3877 }
3878 
3879 /*
3880  * Initially all pages are reserved - free ones are freed
3881  * up by free_all_bootmem() once the early boot process is
3882  * done. Non-atomic initialization, single-pass.
3883  */
3884 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3885 		unsigned long start_pfn, enum memmap_context context)
3886 {
3887 	struct page *page;
3888 	unsigned long end_pfn = start_pfn + size;
3889 	unsigned long pfn;
3890 	struct zone *z;
3891 
3892 	if (highest_memmap_pfn < end_pfn - 1)
3893 		highest_memmap_pfn = end_pfn - 1;
3894 
3895 	z = &NODE_DATA(nid)->node_zones[zone];
3896 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3897 		/*
3898 		 * There can be holes in boot-time mem_map[]s
3899 		 * handed to this function.  They do not
3900 		 * exist on hotplugged memory.
3901 		 */
3902 		if (context == MEMMAP_EARLY) {
3903 			if (!early_pfn_valid(pfn))
3904 				continue;
3905 			if (!early_pfn_in_nid(pfn, nid))
3906 				continue;
3907 		}
3908 		page = pfn_to_page(pfn);
3909 		set_page_links(page, zone, nid, pfn);
3910 		mminit_verify_page_links(page, zone, nid, pfn);
3911 		init_page_count(page);
3912 		page_mapcount_reset(page);
3913 		page_nid_reset_last(page);
3914 		SetPageReserved(page);
3915 		/*
3916 		 * Mark the block movable so that blocks are reserved for
3917 		 * movable at startup. This will force kernel allocations
3918 		 * to reserve their blocks rather than leaking throughout
3919 		 * the address space during boot when many long-lived
3920 		 * kernel allocations are made. Later some blocks near
3921 		 * the start are marked MIGRATE_RESERVE by
3922 		 * setup_zone_migrate_reserve()
3923 		 *
3924 		 * bitmap is created for zone's valid pfn range. but memmap
3925 		 * can be created for invalid pages (for alignment)
3926 		 * check here not to call set_pageblock_migratetype() against
3927 		 * pfn out of zone.
3928 		 */
3929 		if ((z->zone_start_pfn <= pfn)
3930 		    && (pfn < zone_end_pfn(z))
3931 		    && !(pfn & (pageblock_nr_pages - 1)))
3932 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3933 
3934 		INIT_LIST_HEAD(&page->lru);
3935 #ifdef WANT_PAGE_VIRTUAL
3936 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3937 		if (!is_highmem_idx(zone))
3938 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3939 #endif
3940 	}
3941 }
3942 
3943 static void __meminit zone_init_free_lists(struct zone *zone)
3944 {
3945 	int order, t;
3946 	for_each_migratetype_order(order, t) {
3947 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3948 		zone->free_area[order].nr_free = 0;
3949 	}
3950 }
3951 
3952 #ifndef __HAVE_ARCH_MEMMAP_INIT
3953 #define memmap_init(size, nid, zone, start_pfn) \
3954 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3955 #endif
3956 
3957 static int __meminit zone_batchsize(struct zone *zone)
3958 {
3959 #ifdef CONFIG_MMU
3960 	int batch;
3961 
3962 	/*
3963 	 * The per-cpu-pages pools are set to around 1000th of the
3964 	 * size of the zone.  But no more than 1/2 of a meg.
3965 	 *
3966 	 * OK, so we don't know how big the cache is.  So guess.
3967 	 */
3968 	batch = zone->managed_pages / 1024;
3969 	if (batch * PAGE_SIZE > 512 * 1024)
3970 		batch = (512 * 1024) / PAGE_SIZE;
3971 	batch /= 4;		/* We effectively *= 4 below */
3972 	if (batch < 1)
3973 		batch = 1;
3974 
3975 	/*
3976 	 * Clamp the batch to a 2^n - 1 value. Having a power
3977 	 * of 2 value was found to be more likely to have
3978 	 * suboptimal cache aliasing properties in some cases.
3979 	 *
3980 	 * For example if 2 tasks are alternately allocating
3981 	 * batches of pages, one task can end up with a lot
3982 	 * of pages of one half of the possible page colors
3983 	 * and the other with pages of the other colors.
3984 	 */
3985 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3986 
3987 	return batch;
3988 
3989 #else
3990 	/* The deferral and batching of frees should be suppressed under NOMMU
3991 	 * conditions.
3992 	 *
3993 	 * The problem is that NOMMU needs to be able to allocate large chunks
3994 	 * of contiguous memory as there's no hardware page translation to
3995 	 * assemble apparent contiguous memory from discontiguous pages.
3996 	 *
3997 	 * Queueing large contiguous runs of pages for batching, however,
3998 	 * causes the pages to actually be freed in smaller chunks.  As there
3999 	 * can be a significant delay between the individual batches being
4000 	 * recycled, this leads to the once large chunks of space being
4001 	 * fragmented and becoming unavailable for high-order allocations.
4002 	 */
4003 	return 0;
4004 #endif
4005 }
4006 
4007 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4008 {
4009 	struct per_cpu_pages *pcp;
4010 	int migratetype;
4011 
4012 	memset(p, 0, sizeof(*p));
4013 
4014 	pcp = &p->pcp;
4015 	pcp->count = 0;
4016 	pcp->high = 6 * batch;
4017 	pcp->batch = max(1UL, 1 * batch);
4018 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4019 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4020 }
4021 
4022 /*
4023  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
4024  * to the value high for the pageset p.
4025  */
4026 
4027 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
4028 				unsigned long high)
4029 {
4030 	struct per_cpu_pages *pcp;
4031 
4032 	pcp = &p->pcp;
4033 	pcp->high = high;
4034 	pcp->batch = max(1UL, high/4);
4035 	if ((high/4) > (PAGE_SHIFT * 8))
4036 		pcp->batch = PAGE_SHIFT * 8;
4037 }
4038 
4039 static void __meminit setup_zone_pageset(struct zone *zone)
4040 {
4041 	int cpu;
4042 
4043 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4044 
4045 	for_each_possible_cpu(cpu) {
4046 		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4047 
4048 		setup_pageset(pcp, zone_batchsize(zone));
4049 
4050 		if (percpu_pagelist_fraction)
4051 			setup_pagelist_highmark(pcp,
4052 				(zone->managed_pages /
4053 					percpu_pagelist_fraction));
4054 	}
4055 }
4056 
4057 /*
4058  * Allocate per cpu pagesets and initialize them.
4059  * Before this call only boot pagesets were available.
4060  */
4061 void __init setup_per_cpu_pageset(void)
4062 {
4063 	struct zone *zone;
4064 
4065 	for_each_populated_zone(zone)
4066 		setup_zone_pageset(zone);
4067 }
4068 
4069 static noinline __init_refok
4070 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4071 {
4072 	int i;
4073 	struct pglist_data *pgdat = zone->zone_pgdat;
4074 	size_t alloc_size;
4075 
4076 	/*
4077 	 * The per-page waitqueue mechanism uses hashed waitqueues
4078 	 * per zone.
4079 	 */
4080 	zone->wait_table_hash_nr_entries =
4081 		 wait_table_hash_nr_entries(zone_size_pages);
4082 	zone->wait_table_bits =
4083 		wait_table_bits(zone->wait_table_hash_nr_entries);
4084 	alloc_size = zone->wait_table_hash_nr_entries
4085 					* sizeof(wait_queue_head_t);
4086 
4087 	if (!slab_is_available()) {
4088 		zone->wait_table = (wait_queue_head_t *)
4089 			alloc_bootmem_node_nopanic(pgdat, alloc_size);
4090 	} else {
4091 		/*
4092 		 * This case means that a zone whose size was 0 gets new memory
4093 		 * via memory hot-add.
4094 		 * But it may be the case that a new node was hot-added.  In
4095 		 * this case vmalloc() will not be able to use this new node's
4096 		 * memory - this wait_table must be initialized to use this new
4097 		 * node itself as well.
4098 		 * To use this new node's memory, further consideration will be
4099 		 * necessary.
4100 		 */
4101 		zone->wait_table = vmalloc(alloc_size);
4102 	}
4103 	if (!zone->wait_table)
4104 		return -ENOMEM;
4105 
4106 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4107 		init_waitqueue_head(zone->wait_table + i);
4108 
4109 	return 0;
4110 }
4111 
4112 static __meminit void zone_pcp_init(struct zone *zone)
4113 {
4114 	/*
4115 	 * per cpu subsystem is not up at this point. The following code
4116 	 * relies on the ability of the linker to provide the
4117 	 * offset of a (static) per cpu variable into the per cpu area.
4118 	 */
4119 	zone->pageset = &boot_pageset;
4120 
4121 	if (zone->present_pages)
4122 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4123 			zone->name, zone->present_pages,
4124 					 zone_batchsize(zone));
4125 }
4126 
4127 int __meminit init_currently_empty_zone(struct zone *zone,
4128 					unsigned long zone_start_pfn,
4129 					unsigned long size,
4130 					enum memmap_context context)
4131 {
4132 	struct pglist_data *pgdat = zone->zone_pgdat;
4133 	int ret;
4134 	ret = zone_wait_table_init(zone, size);
4135 	if (ret)
4136 		return ret;
4137 	pgdat->nr_zones = zone_idx(zone) + 1;
4138 
4139 	zone->zone_start_pfn = zone_start_pfn;
4140 
4141 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4142 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4143 			pgdat->node_id,
4144 			(unsigned long)zone_idx(zone),
4145 			zone_start_pfn, (zone_start_pfn + size));
4146 
4147 	zone_init_free_lists(zone);
4148 
4149 	return 0;
4150 }
4151 
4152 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4153 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4154 /*
4155  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4156  * Architectures may implement their own version but if add_active_range()
4157  * was used and there are no special requirements, this is a convenient
4158  * alternative
4159  */
4160 int __meminit __early_pfn_to_nid(unsigned long pfn)
4161 {
4162 	unsigned long start_pfn, end_pfn;
4163 	int i, nid;
4164 
4165 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4166 		if (start_pfn <= pfn && pfn < end_pfn)
4167 			return nid;
4168 	/* This is a memory hole */
4169 	return -1;
4170 }
4171 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4172 
4173 int __meminit early_pfn_to_nid(unsigned long pfn)
4174 {
4175 	int nid;
4176 
4177 	nid = __early_pfn_to_nid(pfn);
4178 	if (nid >= 0)
4179 		return nid;
4180 	/* just returns 0 */
4181 	return 0;
4182 }
4183 
4184 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4185 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4186 {
4187 	int nid;
4188 
4189 	nid = __early_pfn_to_nid(pfn);
4190 	if (nid >= 0 && nid != node)
4191 		return false;
4192 	return true;
4193 }
4194 #endif
4195 
4196 /**
4197  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4198  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4199  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4200  *
4201  * If an architecture guarantees that all ranges registered with
4202  * add_active_ranges() contain no holes and may be freed, this
4203  * this function may be used instead of calling free_bootmem() manually.
4204  */
4205 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4206 {
4207 	unsigned long start_pfn, end_pfn;
4208 	int i, this_nid;
4209 
4210 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4211 		start_pfn = min(start_pfn, max_low_pfn);
4212 		end_pfn = min(end_pfn, max_low_pfn);
4213 
4214 		if (start_pfn < end_pfn)
4215 			free_bootmem_node(NODE_DATA(this_nid),
4216 					  PFN_PHYS(start_pfn),
4217 					  (end_pfn - start_pfn) << PAGE_SHIFT);
4218 	}
4219 }
4220 
4221 /**
4222  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4223  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4224  *
4225  * If an architecture guarantees that all ranges registered with
4226  * add_active_ranges() contain no holes and may be freed, this
4227  * function may be used instead of calling memory_present() manually.
4228  */
4229 void __init sparse_memory_present_with_active_regions(int nid)
4230 {
4231 	unsigned long start_pfn, end_pfn;
4232 	int i, this_nid;
4233 
4234 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4235 		memory_present(this_nid, start_pfn, end_pfn);
4236 }
4237 
4238 /**
4239  * get_pfn_range_for_nid - Return the start and end page frames for a node
4240  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4241  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4242  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4243  *
4244  * It returns the start and end page frame of a node based on information
4245  * provided by an arch calling add_active_range(). If called for a node
4246  * with no available memory, a warning is printed and the start and end
4247  * PFNs will be 0.
4248  */
4249 void __meminit get_pfn_range_for_nid(unsigned int nid,
4250 			unsigned long *start_pfn, unsigned long *end_pfn)
4251 {
4252 	unsigned long this_start_pfn, this_end_pfn;
4253 	int i;
4254 
4255 	*start_pfn = -1UL;
4256 	*end_pfn = 0;
4257 
4258 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4259 		*start_pfn = min(*start_pfn, this_start_pfn);
4260 		*end_pfn = max(*end_pfn, this_end_pfn);
4261 	}
4262 
4263 	if (*start_pfn == -1UL)
4264 		*start_pfn = 0;
4265 }
4266 
4267 /*
4268  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4269  * assumption is made that zones within a node are ordered in monotonic
4270  * increasing memory addresses so that the "highest" populated zone is used
4271  */
4272 static void __init find_usable_zone_for_movable(void)
4273 {
4274 	int zone_index;
4275 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4276 		if (zone_index == ZONE_MOVABLE)
4277 			continue;
4278 
4279 		if (arch_zone_highest_possible_pfn[zone_index] >
4280 				arch_zone_lowest_possible_pfn[zone_index])
4281 			break;
4282 	}
4283 
4284 	VM_BUG_ON(zone_index == -1);
4285 	movable_zone = zone_index;
4286 }
4287 
4288 /*
4289  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4290  * because it is sized independent of architecture. Unlike the other zones,
4291  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4292  * in each node depending on the size of each node and how evenly kernelcore
4293  * is distributed. This helper function adjusts the zone ranges
4294  * provided by the architecture for a given node by using the end of the
4295  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4296  * zones within a node are in order of monotonic increases memory addresses
4297  */
4298 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4299 					unsigned long zone_type,
4300 					unsigned long node_start_pfn,
4301 					unsigned long node_end_pfn,
4302 					unsigned long *zone_start_pfn,
4303 					unsigned long *zone_end_pfn)
4304 {
4305 	/* Only adjust if ZONE_MOVABLE is on this node */
4306 	if (zone_movable_pfn[nid]) {
4307 		/* Size ZONE_MOVABLE */
4308 		if (zone_type == ZONE_MOVABLE) {
4309 			*zone_start_pfn = zone_movable_pfn[nid];
4310 			*zone_end_pfn = min(node_end_pfn,
4311 				arch_zone_highest_possible_pfn[movable_zone]);
4312 
4313 		/* Adjust for ZONE_MOVABLE starting within this range */
4314 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4315 				*zone_end_pfn > zone_movable_pfn[nid]) {
4316 			*zone_end_pfn = zone_movable_pfn[nid];
4317 
4318 		/* Check if this whole range is within ZONE_MOVABLE */
4319 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4320 			*zone_start_pfn = *zone_end_pfn;
4321 	}
4322 }
4323 
4324 /*
4325  * Return the number of pages a zone spans in a node, including holes
4326  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4327  */
4328 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4329 					unsigned long zone_type,
4330 					unsigned long *ignored)
4331 {
4332 	unsigned long node_start_pfn, node_end_pfn;
4333 	unsigned long zone_start_pfn, zone_end_pfn;
4334 
4335 	/* Get the start and end of the node and zone */
4336 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4337 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4338 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4339 	adjust_zone_range_for_zone_movable(nid, zone_type,
4340 				node_start_pfn, node_end_pfn,
4341 				&zone_start_pfn, &zone_end_pfn);
4342 
4343 	/* Check that this node has pages within the zone's required range */
4344 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4345 		return 0;
4346 
4347 	/* Move the zone boundaries inside the node if necessary */
4348 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4349 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4350 
4351 	/* Return the spanned pages */
4352 	return zone_end_pfn - zone_start_pfn;
4353 }
4354 
4355 /*
4356  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4357  * then all holes in the requested range will be accounted for.
4358  */
4359 unsigned long __meminit __absent_pages_in_range(int nid,
4360 				unsigned long range_start_pfn,
4361 				unsigned long range_end_pfn)
4362 {
4363 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4364 	unsigned long start_pfn, end_pfn;
4365 	int i;
4366 
4367 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4368 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4369 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4370 		nr_absent -= end_pfn - start_pfn;
4371 	}
4372 	return nr_absent;
4373 }
4374 
4375 /**
4376  * absent_pages_in_range - Return number of page frames in holes within a range
4377  * @start_pfn: The start PFN to start searching for holes
4378  * @end_pfn: The end PFN to stop searching for holes
4379  *
4380  * It returns the number of pages frames in memory holes within a range.
4381  */
4382 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4383 							unsigned long end_pfn)
4384 {
4385 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4386 }
4387 
4388 /* Return the number of page frames in holes in a zone on a node */
4389 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4390 					unsigned long zone_type,
4391 					unsigned long *ignored)
4392 {
4393 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4394 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4395 	unsigned long node_start_pfn, node_end_pfn;
4396 	unsigned long zone_start_pfn, zone_end_pfn;
4397 
4398 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4399 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4400 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4401 
4402 	adjust_zone_range_for_zone_movable(nid, zone_type,
4403 			node_start_pfn, node_end_pfn,
4404 			&zone_start_pfn, &zone_end_pfn);
4405 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4406 }
4407 
4408 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4409 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4410 					unsigned long zone_type,
4411 					unsigned long *zones_size)
4412 {
4413 	return zones_size[zone_type];
4414 }
4415 
4416 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4417 						unsigned long zone_type,
4418 						unsigned long *zholes_size)
4419 {
4420 	if (!zholes_size)
4421 		return 0;
4422 
4423 	return zholes_size[zone_type];
4424 }
4425 
4426 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4427 
4428 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4429 		unsigned long *zones_size, unsigned long *zholes_size)
4430 {
4431 	unsigned long realtotalpages, totalpages = 0;
4432 	enum zone_type i;
4433 
4434 	for (i = 0; i < MAX_NR_ZONES; i++)
4435 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4436 								zones_size);
4437 	pgdat->node_spanned_pages = totalpages;
4438 
4439 	realtotalpages = totalpages;
4440 	for (i = 0; i < MAX_NR_ZONES; i++)
4441 		realtotalpages -=
4442 			zone_absent_pages_in_node(pgdat->node_id, i,
4443 								zholes_size);
4444 	pgdat->node_present_pages = realtotalpages;
4445 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4446 							realtotalpages);
4447 }
4448 
4449 #ifndef CONFIG_SPARSEMEM
4450 /*
4451  * Calculate the size of the zone->blockflags rounded to an unsigned long
4452  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4453  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4454  * round what is now in bits to nearest long in bits, then return it in
4455  * bytes.
4456  */
4457 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4458 {
4459 	unsigned long usemapsize;
4460 
4461 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4462 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4463 	usemapsize = usemapsize >> pageblock_order;
4464 	usemapsize *= NR_PAGEBLOCK_BITS;
4465 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4466 
4467 	return usemapsize / 8;
4468 }
4469 
4470 static void __init setup_usemap(struct pglist_data *pgdat,
4471 				struct zone *zone,
4472 				unsigned long zone_start_pfn,
4473 				unsigned long zonesize)
4474 {
4475 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4476 	zone->pageblock_flags = NULL;
4477 	if (usemapsize)
4478 		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4479 								   usemapsize);
4480 }
4481 #else
4482 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4483 				unsigned long zone_start_pfn, unsigned long zonesize) {}
4484 #endif /* CONFIG_SPARSEMEM */
4485 
4486 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4487 
4488 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4489 void __init set_pageblock_order(void)
4490 {
4491 	unsigned int order;
4492 
4493 	/* Check that pageblock_nr_pages has not already been setup */
4494 	if (pageblock_order)
4495 		return;
4496 
4497 	if (HPAGE_SHIFT > PAGE_SHIFT)
4498 		order = HUGETLB_PAGE_ORDER;
4499 	else
4500 		order = MAX_ORDER - 1;
4501 
4502 	/*
4503 	 * Assume the largest contiguous order of interest is a huge page.
4504 	 * This value may be variable depending on boot parameters on IA64 and
4505 	 * powerpc.
4506 	 */
4507 	pageblock_order = order;
4508 }
4509 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4510 
4511 /*
4512  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4513  * is unused as pageblock_order is set at compile-time. See
4514  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4515  * the kernel config
4516  */
4517 void __init set_pageblock_order(void)
4518 {
4519 }
4520 
4521 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4522 
4523 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4524 						   unsigned long present_pages)
4525 {
4526 	unsigned long pages = spanned_pages;
4527 
4528 	/*
4529 	 * Provide a more accurate estimation if there are holes within
4530 	 * the zone and SPARSEMEM is in use. If there are holes within the
4531 	 * zone, each populated memory region may cost us one or two extra
4532 	 * memmap pages due to alignment because memmap pages for each
4533 	 * populated regions may not naturally algined on page boundary.
4534 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4535 	 */
4536 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4537 	    IS_ENABLED(CONFIG_SPARSEMEM))
4538 		pages = present_pages;
4539 
4540 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4541 }
4542 
4543 /*
4544  * Set up the zone data structures:
4545  *   - mark all pages reserved
4546  *   - mark all memory queues empty
4547  *   - clear the memory bitmaps
4548  *
4549  * NOTE: pgdat should get zeroed by caller.
4550  */
4551 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4552 		unsigned long *zones_size, unsigned long *zholes_size)
4553 {
4554 	enum zone_type j;
4555 	int nid = pgdat->node_id;
4556 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4557 	int ret;
4558 
4559 	pgdat_resize_init(pgdat);
4560 #ifdef CONFIG_NUMA_BALANCING
4561 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4562 	pgdat->numabalancing_migrate_nr_pages = 0;
4563 	pgdat->numabalancing_migrate_next_window = jiffies;
4564 #endif
4565 	init_waitqueue_head(&pgdat->kswapd_wait);
4566 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4567 	pgdat_page_cgroup_init(pgdat);
4568 
4569 	for (j = 0; j < MAX_NR_ZONES; j++) {
4570 		struct zone *zone = pgdat->node_zones + j;
4571 		unsigned long size, realsize, freesize, memmap_pages;
4572 
4573 		size = zone_spanned_pages_in_node(nid, j, zones_size);
4574 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4575 								zholes_size);
4576 
4577 		/*
4578 		 * Adjust freesize so that it accounts for how much memory
4579 		 * is used by this zone for memmap. This affects the watermark
4580 		 * and per-cpu initialisations
4581 		 */
4582 		memmap_pages = calc_memmap_size(size, realsize);
4583 		if (freesize >= memmap_pages) {
4584 			freesize -= memmap_pages;
4585 			if (memmap_pages)
4586 				printk(KERN_DEBUG
4587 				       "  %s zone: %lu pages used for memmap\n",
4588 				       zone_names[j], memmap_pages);
4589 		} else
4590 			printk(KERN_WARNING
4591 				"  %s zone: %lu pages exceeds freesize %lu\n",
4592 				zone_names[j], memmap_pages, freesize);
4593 
4594 		/* Account for reserved pages */
4595 		if (j == 0 && freesize > dma_reserve) {
4596 			freesize -= dma_reserve;
4597 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4598 					zone_names[0], dma_reserve);
4599 		}
4600 
4601 		if (!is_highmem_idx(j))
4602 			nr_kernel_pages += freesize;
4603 		/* Charge for highmem memmap if there are enough kernel pages */
4604 		else if (nr_kernel_pages > memmap_pages * 2)
4605 			nr_kernel_pages -= memmap_pages;
4606 		nr_all_pages += freesize;
4607 
4608 		zone->spanned_pages = size;
4609 		zone->present_pages = realsize;
4610 		/*
4611 		 * Set an approximate value for lowmem here, it will be adjusted
4612 		 * when the bootmem allocator frees pages into the buddy system.
4613 		 * And all highmem pages will be managed by the buddy system.
4614 		 */
4615 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4616 #ifdef CONFIG_NUMA
4617 		zone->node = nid;
4618 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4619 						/ 100;
4620 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4621 #endif
4622 		zone->name = zone_names[j];
4623 		spin_lock_init(&zone->lock);
4624 		spin_lock_init(&zone->lru_lock);
4625 		zone_seqlock_init(zone);
4626 		zone->zone_pgdat = pgdat;
4627 
4628 		zone_pcp_init(zone);
4629 		lruvec_init(&zone->lruvec);
4630 		if (!size)
4631 			continue;
4632 
4633 		set_pageblock_order();
4634 		setup_usemap(pgdat, zone, zone_start_pfn, size);
4635 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4636 						size, MEMMAP_EARLY);
4637 		BUG_ON(ret);
4638 		memmap_init(size, nid, j, zone_start_pfn);
4639 		zone_start_pfn += size;
4640 	}
4641 }
4642 
4643 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4644 {
4645 	/* Skip empty nodes */
4646 	if (!pgdat->node_spanned_pages)
4647 		return;
4648 
4649 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4650 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4651 	if (!pgdat->node_mem_map) {
4652 		unsigned long size, start, end;
4653 		struct page *map;
4654 
4655 		/*
4656 		 * The zone's endpoints aren't required to be MAX_ORDER
4657 		 * aligned but the node_mem_map endpoints must be in order
4658 		 * for the buddy allocator to function correctly.
4659 		 */
4660 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4661 		end = pgdat_end_pfn(pgdat);
4662 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4663 		size =  (end - start) * sizeof(struct page);
4664 		map = alloc_remap(pgdat->node_id, size);
4665 		if (!map)
4666 			map = alloc_bootmem_node_nopanic(pgdat, size);
4667 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4668 	}
4669 #ifndef CONFIG_NEED_MULTIPLE_NODES
4670 	/*
4671 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4672 	 */
4673 	if (pgdat == NODE_DATA(0)) {
4674 		mem_map = NODE_DATA(0)->node_mem_map;
4675 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4676 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4677 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4678 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4679 	}
4680 #endif
4681 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4682 }
4683 
4684 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4685 		unsigned long node_start_pfn, unsigned long *zholes_size)
4686 {
4687 	pg_data_t *pgdat = NODE_DATA(nid);
4688 
4689 	/* pg_data_t should be reset to zero when it's allocated */
4690 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4691 
4692 	pgdat->node_id = nid;
4693 	pgdat->node_start_pfn = node_start_pfn;
4694 	init_zone_allows_reclaim(nid);
4695 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4696 
4697 	alloc_node_mem_map(pgdat);
4698 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4699 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4700 		nid, (unsigned long)pgdat,
4701 		(unsigned long)pgdat->node_mem_map);
4702 #endif
4703 
4704 	free_area_init_core(pgdat, zones_size, zholes_size);
4705 }
4706 
4707 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4708 
4709 #if MAX_NUMNODES > 1
4710 /*
4711  * Figure out the number of possible node ids.
4712  */
4713 static void __init setup_nr_node_ids(void)
4714 {
4715 	unsigned int node;
4716 	unsigned int highest = 0;
4717 
4718 	for_each_node_mask(node, node_possible_map)
4719 		highest = node;
4720 	nr_node_ids = highest + 1;
4721 }
4722 #else
4723 static inline void setup_nr_node_ids(void)
4724 {
4725 }
4726 #endif
4727 
4728 /**
4729  * node_map_pfn_alignment - determine the maximum internode alignment
4730  *
4731  * This function should be called after node map is populated and sorted.
4732  * It calculates the maximum power of two alignment which can distinguish
4733  * all the nodes.
4734  *
4735  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4736  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4737  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4738  * shifted, 1GiB is enough and this function will indicate so.
4739  *
4740  * This is used to test whether pfn -> nid mapping of the chosen memory
4741  * model has fine enough granularity to avoid incorrect mapping for the
4742  * populated node map.
4743  *
4744  * Returns the determined alignment in pfn's.  0 if there is no alignment
4745  * requirement (single node).
4746  */
4747 unsigned long __init node_map_pfn_alignment(void)
4748 {
4749 	unsigned long accl_mask = 0, last_end = 0;
4750 	unsigned long start, end, mask;
4751 	int last_nid = -1;
4752 	int i, nid;
4753 
4754 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4755 		if (!start || last_nid < 0 || last_nid == nid) {
4756 			last_nid = nid;
4757 			last_end = end;
4758 			continue;
4759 		}
4760 
4761 		/*
4762 		 * Start with a mask granular enough to pin-point to the
4763 		 * start pfn and tick off bits one-by-one until it becomes
4764 		 * too coarse to separate the current node from the last.
4765 		 */
4766 		mask = ~((1 << __ffs(start)) - 1);
4767 		while (mask && last_end <= (start & (mask << 1)))
4768 			mask <<= 1;
4769 
4770 		/* accumulate all internode masks */
4771 		accl_mask |= mask;
4772 	}
4773 
4774 	/* convert mask to number of pages */
4775 	return ~accl_mask + 1;
4776 }
4777 
4778 /* Find the lowest pfn for a node */
4779 static unsigned long __init find_min_pfn_for_node(int nid)
4780 {
4781 	unsigned long min_pfn = ULONG_MAX;
4782 	unsigned long start_pfn;
4783 	int i;
4784 
4785 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4786 		min_pfn = min(min_pfn, start_pfn);
4787 
4788 	if (min_pfn == ULONG_MAX) {
4789 		printk(KERN_WARNING
4790 			"Could not find start_pfn for node %d\n", nid);
4791 		return 0;
4792 	}
4793 
4794 	return min_pfn;
4795 }
4796 
4797 /**
4798  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4799  *
4800  * It returns the minimum PFN based on information provided via
4801  * add_active_range().
4802  */
4803 unsigned long __init find_min_pfn_with_active_regions(void)
4804 {
4805 	return find_min_pfn_for_node(MAX_NUMNODES);
4806 }
4807 
4808 /*
4809  * early_calculate_totalpages()
4810  * Sum pages in active regions for movable zone.
4811  * Populate N_MEMORY for calculating usable_nodes.
4812  */
4813 static unsigned long __init early_calculate_totalpages(void)
4814 {
4815 	unsigned long totalpages = 0;
4816 	unsigned long start_pfn, end_pfn;
4817 	int i, nid;
4818 
4819 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4820 		unsigned long pages = end_pfn - start_pfn;
4821 
4822 		totalpages += pages;
4823 		if (pages)
4824 			node_set_state(nid, N_MEMORY);
4825 	}
4826   	return totalpages;
4827 }
4828 
4829 /*
4830  * Find the PFN the Movable zone begins in each node. Kernel memory
4831  * is spread evenly between nodes as long as the nodes have enough
4832  * memory. When they don't, some nodes will have more kernelcore than
4833  * others
4834  */
4835 static void __init find_zone_movable_pfns_for_nodes(void)
4836 {
4837 	int i, nid;
4838 	unsigned long usable_startpfn;
4839 	unsigned long kernelcore_node, kernelcore_remaining;
4840 	/* save the state before borrow the nodemask */
4841 	nodemask_t saved_node_state = node_states[N_MEMORY];
4842 	unsigned long totalpages = early_calculate_totalpages();
4843 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4844 
4845 	/*
4846 	 * If movablecore was specified, calculate what size of
4847 	 * kernelcore that corresponds so that memory usable for
4848 	 * any allocation type is evenly spread. If both kernelcore
4849 	 * and movablecore are specified, then the value of kernelcore
4850 	 * will be used for required_kernelcore if it's greater than
4851 	 * what movablecore would have allowed.
4852 	 */
4853 	if (required_movablecore) {
4854 		unsigned long corepages;
4855 
4856 		/*
4857 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4858 		 * was requested by the user
4859 		 */
4860 		required_movablecore =
4861 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4862 		corepages = totalpages - required_movablecore;
4863 
4864 		required_kernelcore = max(required_kernelcore, corepages);
4865 	}
4866 
4867 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4868 	if (!required_kernelcore)
4869 		goto out;
4870 
4871 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4872 	find_usable_zone_for_movable();
4873 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4874 
4875 restart:
4876 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4877 	kernelcore_node = required_kernelcore / usable_nodes;
4878 	for_each_node_state(nid, N_MEMORY) {
4879 		unsigned long start_pfn, end_pfn;
4880 
4881 		/*
4882 		 * Recalculate kernelcore_node if the division per node
4883 		 * now exceeds what is necessary to satisfy the requested
4884 		 * amount of memory for the kernel
4885 		 */
4886 		if (required_kernelcore < kernelcore_node)
4887 			kernelcore_node = required_kernelcore / usable_nodes;
4888 
4889 		/*
4890 		 * As the map is walked, we track how much memory is usable
4891 		 * by the kernel using kernelcore_remaining. When it is
4892 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4893 		 */
4894 		kernelcore_remaining = kernelcore_node;
4895 
4896 		/* Go through each range of PFNs within this node */
4897 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4898 			unsigned long size_pages;
4899 
4900 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4901 			if (start_pfn >= end_pfn)
4902 				continue;
4903 
4904 			/* Account for what is only usable for kernelcore */
4905 			if (start_pfn < usable_startpfn) {
4906 				unsigned long kernel_pages;
4907 				kernel_pages = min(end_pfn, usable_startpfn)
4908 								- start_pfn;
4909 
4910 				kernelcore_remaining -= min(kernel_pages,
4911 							kernelcore_remaining);
4912 				required_kernelcore -= min(kernel_pages,
4913 							required_kernelcore);
4914 
4915 				/* Continue if range is now fully accounted */
4916 				if (end_pfn <= usable_startpfn) {
4917 
4918 					/*
4919 					 * Push zone_movable_pfn to the end so
4920 					 * that if we have to rebalance
4921 					 * kernelcore across nodes, we will
4922 					 * not double account here
4923 					 */
4924 					zone_movable_pfn[nid] = end_pfn;
4925 					continue;
4926 				}
4927 				start_pfn = usable_startpfn;
4928 			}
4929 
4930 			/*
4931 			 * The usable PFN range for ZONE_MOVABLE is from
4932 			 * start_pfn->end_pfn. Calculate size_pages as the
4933 			 * number of pages used as kernelcore
4934 			 */
4935 			size_pages = end_pfn - start_pfn;
4936 			if (size_pages > kernelcore_remaining)
4937 				size_pages = kernelcore_remaining;
4938 			zone_movable_pfn[nid] = start_pfn + size_pages;
4939 
4940 			/*
4941 			 * Some kernelcore has been met, update counts and
4942 			 * break if the kernelcore for this node has been
4943 			 * satisified
4944 			 */
4945 			required_kernelcore -= min(required_kernelcore,
4946 								size_pages);
4947 			kernelcore_remaining -= size_pages;
4948 			if (!kernelcore_remaining)
4949 				break;
4950 		}
4951 	}
4952 
4953 	/*
4954 	 * If there is still required_kernelcore, we do another pass with one
4955 	 * less node in the count. This will push zone_movable_pfn[nid] further
4956 	 * along on the nodes that still have memory until kernelcore is
4957 	 * satisified
4958 	 */
4959 	usable_nodes--;
4960 	if (usable_nodes && required_kernelcore > usable_nodes)
4961 		goto restart;
4962 
4963 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4964 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4965 		zone_movable_pfn[nid] =
4966 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4967 
4968 out:
4969 	/* restore the node_state */
4970 	node_states[N_MEMORY] = saved_node_state;
4971 }
4972 
4973 /* Any regular or high memory on that node ? */
4974 static void check_for_memory(pg_data_t *pgdat, int nid)
4975 {
4976 	enum zone_type zone_type;
4977 
4978 	if (N_MEMORY == N_NORMAL_MEMORY)
4979 		return;
4980 
4981 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
4982 		struct zone *zone = &pgdat->node_zones[zone_type];
4983 		if (zone->present_pages) {
4984 			node_set_state(nid, N_HIGH_MEMORY);
4985 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
4986 			    zone_type <= ZONE_NORMAL)
4987 				node_set_state(nid, N_NORMAL_MEMORY);
4988 			break;
4989 		}
4990 	}
4991 }
4992 
4993 /**
4994  * free_area_init_nodes - Initialise all pg_data_t and zone data
4995  * @max_zone_pfn: an array of max PFNs for each zone
4996  *
4997  * This will call free_area_init_node() for each active node in the system.
4998  * Using the page ranges provided by add_active_range(), the size of each
4999  * zone in each node and their holes is calculated. If the maximum PFN
5000  * between two adjacent zones match, it is assumed that the zone is empty.
5001  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5002  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5003  * starts where the previous one ended. For example, ZONE_DMA32 starts
5004  * at arch_max_dma_pfn.
5005  */
5006 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5007 {
5008 	unsigned long start_pfn, end_pfn;
5009 	int i, nid;
5010 
5011 	/* Record where the zone boundaries are */
5012 	memset(arch_zone_lowest_possible_pfn, 0,
5013 				sizeof(arch_zone_lowest_possible_pfn));
5014 	memset(arch_zone_highest_possible_pfn, 0,
5015 				sizeof(arch_zone_highest_possible_pfn));
5016 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5017 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5018 	for (i = 1; i < MAX_NR_ZONES; i++) {
5019 		if (i == ZONE_MOVABLE)
5020 			continue;
5021 		arch_zone_lowest_possible_pfn[i] =
5022 			arch_zone_highest_possible_pfn[i-1];
5023 		arch_zone_highest_possible_pfn[i] =
5024 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5025 	}
5026 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5027 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5028 
5029 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5030 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5031 	find_zone_movable_pfns_for_nodes();
5032 
5033 	/* Print out the zone ranges */
5034 	printk("Zone ranges:\n");
5035 	for (i = 0; i < MAX_NR_ZONES; i++) {
5036 		if (i == ZONE_MOVABLE)
5037 			continue;
5038 		printk(KERN_CONT "  %-8s ", zone_names[i]);
5039 		if (arch_zone_lowest_possible_pfn[i] ==
5040 				arch_zone_highest_possible_pfn[i])
5041 			printk(KERN_CONT "empty\n");
5042 		else
5043 			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5044 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5045 				(arch_zone_highest_possible_pfn[i]
5046 					<< PAGE_SHIFT) - 1);
5047 	}
5048 
5049 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5050 	printk("Movable zone start for each node\n");
5051 	for (i = 0; i < MAX_NUMNODES; i++) {
5052 		if (zone_movable_pfn[i])
5053 			printk("  Node %d: %#010lx\n", i,
5054 			       zone_movable_pfn[i] << PAGE_SHIFT);
5055 	}
5056 
5057 	/* Print out the early node map */
5058 	printk("Early memory node ranges\n");
5059 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5060 		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
5061 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5062 
5063 	/* Initialise every node */
5064 	mminit_verify_pageflags_layout();
5065 	setup_nr_node_ids();
5066 	for_each_online_node(nid) {
5067 		pg_data_t *pgdat = NODE_DATA(nid);
5068 		free_area_init_node(nid, NULL,
5069 				find_min_pfn_for_node(nid), NULL);
5070 
5071 		/* Any memory on that node */
5072 		if (pgdat->node_present_pages)
5073 			node_set_state(nid, N_MEMORY);
5074 		check_for_memory(pgdat, nid);
5075 	}
5076 }
5077 
5078 static int __init cmdline_parse_core(char *p, unsigned long *core)
5079 {
5080 	unsigned long long coremem;
5081 	if (!p)
5082 		return -EINVAL;
5083 
5084 	coremem = memparse(p, &p);
5085 	*core = coremem >> PAGE_SHIFT;
5086 
5087 	/* Paranoid check that UL is enough for the coremem value */
5088 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5089 
5090 	return 0;
5091 }
5092 
5093 /*
5094  * kernelcore=size sets the amount of memory for use for allocations that
5095  * cannot be reclaimed or migrated.
5096  */
5097 static int __init cmdline_parse_kernelcore(char *p)
5098 {
5099 	return cmdline_parse_core(p, &required_kernelcore);
5100 }
5101 
5102 /*
5103  * movablecore=size sets the amount of memory for use for allocations that
5104  * can be reclaimed or migrated.
5105  */
5106 static int __init cmdline_parse_movablecore(char *p)
5107 {
5108 	return cmdline_parse_core(p, &required_movablecore);
5109 }
5110 
5111 early_param("kernelcore", cmdline_parse_kernelcore);
5112 early_param("movablecore", cmdline_parse_movablecore);
5113 
5114 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5115 
5116 /**
5117  * set_dma_reserve - set the specified number of pages reserved in the first zone
5118  * @new_dma_reserve: The number of pages to mark reserved
5119  *
5120  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5121  * In the DMA zone, a significant percentage may be consumed by kernel image
5122  * and other unfreeable allocations which can skew the watermarks badly. This
5123  * function may optionally be used to account for unfreeable pages in the
5124  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5125  * smaller per-cpu batchsize.
5126  */
5127 void __init set_dma_reserve(unsigned long new_dma_reserve)
5128 {
5129 	dma_reserve = new_dma_reserve;
5130 }
5131 
5132 void __init free_area_init(unsigned long *zones_size)
5133 {
5134 	free_area_init_node(0, zones_size,
5135 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5136 }
5137 
5138 static int page_alloc_cpu_notify(struct notifier_block *self,
5139 				 unsigned long action, void *hcpu)
5140 {
5141 	int cpu = (unsigned long)hcpu;
5142 
5143 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5144 		lru_add_drain_cpu(cpu);
5145 		drain_pages(cpu);
5146 
5147 		/*
5148 		 * Spill the event counters of the dead processor
5149 		 * into the current processors event counters.
5150 		 * This artificially elevates the count of the current
5151 		 * processor.
5152 		 */
5153 		vm_events_fold_cpu(cpu);
5154 
5155 		/*
5156 		 * Zero the differential counters of the dead processor
5157 		 * so that the vm statistics are consistent.
5158 		 *
5159 		 * This is only okay since the processor is dead and cannot
5160 		 * race with what we are doing.
5161 		 */
5162 		refresh_cpu_vm_stats(cpu);
5163 	}
5164 	return NOTIFY_OK;
5165 }
5166 
5167 void __init page_alloc_init(void)
5168 {
5169 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5170 }
5171 
5172 /*
5173  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5174  *	or min_free_kbytes changes.
5175  */
5176 static void calculate_totalreserve_pages(void)
5177 {
5178 	struct pglist_data *pgdat;
5179 	unsigned long reserve_pages = 0;
5180 	enum zone_type i, j;
5181 
5182 	for_each_online_pgdat(pgdat) {
5183 		for (i = 0; i < MAX_NR_ZONES; i++) {
5184 			struct zone *zone = pgdat->node_zones + i;
5185 			unsigned long max = 0;
5186 
5187 			/* Find valid and maximum lowmem_reserve in the zone */
5188 			for (j = i; j < MAX_NR_ZONES; j++) {
5189 				if (zone->lowmem_reserve[j] > max)
5190 					max = zone->lowmem_reserve[j];
5191 			}
5192 
5193 			/* we treat the high watermark as reserved pages. */
5194 			max += high_wmark_pages(zone);
5195 
5196 			if (max > zone->managed_pages)
5197 				max = zone->managed_pages;
5198 			reserve_pages += max;
5199 			/*
5200 			 * Lowmem reserves are not available to
5201 			 * GFP_HIGHUSER page cache allocations and
5202 			 * kswapd tries to balance zones to their high
5203 			 * watermark.  As a result, neither should be
5204 			 * regarded as dirtyable memory, to prevent a
5205 			 * situation where reclaim has to clean pages
5206 			 * in order to balance the zones.
5207 			 */
5208 			zone->dirty_balance_reserve = max;
5209 		}
5210 	}
5211 	dirty_balance_reserve = reserve_pages;
5212 	totalreserve_pages = reserve_pages;
5213 }
5214 
5215 /*
5216  * setup_per_zone_lowmem_reserve - called whenever
5217  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5218  *	has a correct pages reserved value, so an adequate number of
5219  *	pages are left in the zone after a successful __alloc_pages().
5220  */
5221 static void setup_per_zone_lowmem_reserve(void)
5222 {
5223 	struct pglist_data *pgdat;
5224 	enum zone_type j, idx;
5225 
5226 	for_each_online_pgdat(pgdat) {
5227 		for (j = 0; j < MAX_NR_ZONES; j++) {
5228 			struct zone *zone = pgdat->node_zones + j;
5229 			unsigned long managed_pages = zone->managed_pages;
5230 
5231 			zone->lowmem_reserve[j] = 0;
5232 
5233 			idx = j;
5234 			while (idx) {
5235 				struct zone *lower_zone;
5236 
5237 				idx--;
5238 
5239 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5240 					sysctl_lowmem_reserve_ratio[idx] = 1;
5241 
5242 				lower_zone = pgdat->node_zones + idx;
5243 				lower_zone->lowmem_reserve[j] = managed_pages /
5244 					sysctl_lowmem_reserve_ratio[idx];
5245 				managed_pages += lower_zone->managed_pages;
5246 			}
5247 		}
5248 	}
5249 
5250 	/* update totalreserve_pages */
5251 	calculate_totalreserve_pages();
5252 }
5253 
5254 static void __setup_per_zone_wmarks(void)
5255 {
5256 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5257 	unsigned long lowmem_pages = 0;
5258 	struct zone *zone;
5259 	unsigned long flags;
5260 
5261 	/* Calculate total number of !ZONE_HIGHMEM pages */
5262 	for_each_zone(zone) {
5263 		if (!is_highmem(zone))
5264 			lowmem_pages += zone->managed_pages;
5265 	}
5266 
5267 	for_each_zone(zone) {
5268 		u64 tmp;
5269 
5270 		spin_lock_irqsave(&zone->lock, flags);
5271 		tmp = (u64)pages_min * zone->managed_pages;
5272 		do_div(tmp, lowmem_pages);
5273 		if (is_highmem(zone)) {
5274 			/*
5275 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5276 			 * need highmem pages, so cap pages_min to a small
5277 			 * value here.
5278 			 *
5279 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5280 			 * deltas controls asynch page reclaim, and so should
5281 			 * not be capped for highmem.
5282 			 */
5283 			unsigned long min_pages;
5284 
5285 			min_pages = zone->managed_pages / 1024;
5286 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5287 			zone->watermark[WMARK_MIN] = min_pages;
5288 		} else {
5289 			/*
5290 			 * If it's a lowmem zone, reserve a number of pages
5291 			 * proportionate to the zone's size.
5292 			 */
5293 			zone->watermark[WMARK_MIN] = tmp;
5294 		}
5295 
5296 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5297 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5298 
5299 		setup_zone_migrate_reserve(zone);
5300 		spin_unlock_irqrestore(&zone->lock, flags);
5301 	}
5302 
5303 	/* update totalreserve_pages */
5304 	calculate_totalreserve_pages();
5305 }
5306 
5307 /**
5308  * setup_per_zone_wmarks - called when min_free_kbytes changes
5309  * or when memory is hot-{added|removed}
5310  *
5311  * Ensures that the watermark[min,low,high] values for each zone are set
5312  * correctly with respect to min_free_kbytes.
5313  */
5314 void setup_per_zone_wmarks(void)
5315 {
5316 	mutex_lock(&zonelists_mutex);
5317 	__setup_per_zone_wmarks();
5318 	mutex_unlock(&zonelists_mutex);
5319 }
5320 
5321 /*
5322  * The inactive anon list should be small enough that the VM never has to
5323  * do too much work, but large enough that each inactive page has a chance
5324  * to be referenced again before it is swapped out.
5325  *
5326  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5327  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5328  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5329  * the anonymous pages are kept on the inactive list.
5330  *
5331  * total     target    max
5332  * memory    ratio     inactive anon
5333  * -------------------------------------
5334  *   10MB       1         5MB
5335  *  100MB       1        50MB
5336  *    1GB       3       250MB
5337  *   10GB      10       0.9GB
5338  *  100GB      31         3GB
5339  *    1TB     101        10GB
5340  *   10TB     320        32GB
5341  */
5342 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5343 {
5344 	unsigned int gb, ratio;
5345 
5346 	/* Zone size in gigabytes */
5347 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5348 	if (gb)
5349 		ratio = int_sqrt(10 * gb);
5350 	else
5351 		ratio = 1;
5352 
5353 	zone->inactive_ratio = ratio;
5354 }
5355 
5356 static void __meminit setup_per_zone_inactive_ratio(void)
5357 {
5358 	struct zone *zone;
5359 
5360 	for_each_zone(zone)
5361 		calculate_zone_inactive_ratio(zone);
5362 }
5363 
5364 /*
5365  * Initialise min_free_kbytes.
5366  *
5367  * For small machines we want it small (128k min).  For large machines
5368  * we want it large (64MB max).  But it is not linear, because network
5369  * bandwidth does not increase linearly with machine size.  We use
5370  *
5371  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5372  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5373  *
5374  * which yields
5375  *
5376  * 16MB:	512k
5377  * 32MB:	724k
5378  * 64MB:	1024k
5379  * 128MB:	1448k
5380  * 256MB:	2048k
5381  * 512MB:	2896k
5382  * 1024MB:	4096k
5383  * 2048MB:	5792k
5384  * 4096MB:	8192k
5385  * 8192MB:	11584k
5386  * 16384MB:	16384k
5387  */
5388 int __meminit init_per_zone_wmark_min(void)
5389 {
5390 	unsigned long lowmem_kbytes;
5391 
5392 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5393 
5394 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5395 	if (min_free_kbytes < 128)
5396 		min_free_kbytes = 128;
5397 	if (min_free_kbytes > 65536)
5398 		min_free_kbytes = 65536;
5399 	setup_per_zone_wmarks();
5400 	refresh_zone_stat_thresholds();
5401 	setup_per_zone_lowmem_reserve();
5402 	setup_per_zone_inactive_ratio();
5403 	return 0;
5404 }
5405 module_init(init_per_zone_wmark_min)
5406 
5407 /*
5408  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5409  *	that we can call two helper functions whenever min_free_kbytes
5410  *	changes.
5411  */
5412 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5413 	void __user *buffer, size_t *length, loff_t *ppos)
5414 {
5415 	proc_dointvec(table, write, buffer, length, ppos);
5416 	if (write)
5417 		setup_per_zone_wmarks();
5418 	return 0;
5419 }
5420 
5421 #ifdef CONFIG_NUMA
5422 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5423 	void __user *buffer, size_t *length, loff_t *ppos)
5424 {
5425 	struct zone *zone;
5426 	int rc;
5427 
5428 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5429 	if (rc)
5430 		return rc;
5431 
5432 	for_each_zone(zone)
5433 		zone->min_unmapped_pages = (zone->managed_pages *
5434 				sysctl_min_unmapped_ratio) / 100;
5435 	return 0;
5436 }
5437 
5438 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5439 	void __user *buffer, size_t *length, loff_t *ppos)
5440 {
5441 	struct zone *zone;
5442 	int rc;
5443 
5444 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5445 	if (rc)
5446 		return rc;
5447 
5448 	for_each_zone(zone)
5449 		zone->min_slab_pages = (zone->managed_pages *
5450 				sysctl_min_slab_ratio) / 100;
5451 	return 0;
5452 }
5453 #endif
5454 
5455 /*
5456  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5457  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5458  *	whenever sysctl_lowmem_reserve_ratio changes.
5459  *
5460  * The reserve ratio obviously has absolutely no relation with the
5461  * minimum watermarks. The lowmem reserve ratio can only make sense
5462  * if in function of the boot time zone sizes.
5463  */
5464 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5465 	void __user *buffer, size_t *length, loff_t *ppos)
5466 {
5467 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5468 	setup_per_zone_lowmem_reserve();
5469 	return 0;
5470 }
5471 
5472 /*
5473  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5474  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5475  * can have before it gets flushed back to buddy allocator.
5476  */
5477 
5478 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5479 	void __user *buffer, size_t *length, loff_t *ppos)
5480 {
5481 	struct zone *zone;
5482 	unsigned int cpu;
5483 	int ret;
5484 
5485 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5486 	if (!write || (ret < 0))
5487 		return ret;
5488 	for_each_populated_zone(zone) {
5489 		for_each_possible_cpu(cpu) {
5490 			unsigned long  high;
5491 			high = zone->managed_pages / percpu_pagelist_fraction;
5492 			setup_pagelist_highmark(
5493 				per_cpu_ptr(zone->pageset, cpu), high);
5494 		}
5495 	}
5496 	return 0;
5497 }
5498 
5499 int hashdist = HASHDIST_DEFAULT;
5500 
5501 #ifdef CONFIG_NUMA
5502 static int __init set_hashdist(char *str)
5503 {
5504 	if (!str)
5505 		return 0;
5506 	hashdist = simple_strtoul(str, &str, 0);
5507 	return 1;
5508 }
5509 __setup("hashdist=", set_hashdist);
5510 #endif
5511 
5512 /*
5513  * allocate a large system hash table from bootmem
5514  * - it is assumed that the hash table must contain an exact power-of-2
5515  *   quantity of entries
5516  * - limit is the number of hash buckets, not the total allocation size
5517  */
5518 void *__init alloc_large_system_hash(const char *tablename,
5519 				     unsigned long bucketsize,
5520 				     unsigned long numentries,
5521 				     int scale,
5522 				     int flags,
5523 				     unsigned int *_hash_shift,
5524 				     unsigned int *_hash_mask,
5525 				     unsigned long low_limit,
5526 				     unsigned long high_limit)
5527 {
5528 	unsigned long long max = high_limit;
5529 	unsigned long log2qty, size;
5530 	void *table = NULL;
5531 
5532 	/* allow the kernel cmdline to have a say */
5533 	if (!numentries) {
5534 		/* round applicable memory size up to nearest megabyte */
5535 		numentries = nr_kernel_pages;
5536 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5537 		numentries >>= 20 - PAGE_SHIFT;
5538 		numentries <<= 20 - PAGE_SHIFT;
5539 
5540 		/* limit to 1 bucket per 2^scale bytes of low memory */
5541 		if (scale > PAGE_SHIFT)
5542 			numentries >>= (scale - PAGE_SHIFT);
5543 		else
5544 			numentries <<= (PAGE_SHIFT - scale);
5545 
5546 		/* Make sure we've got at least a 0-order allocation.. */
5547 		if (unlikely(flags & HASH_SMALL)) {
5548 			/* Makes no sense without HASH_EARLY */
5549 			WARN_ON(!(flags & HASH_EARLY));
5550 			if (!(numentries >> *_hash_shift)) {
5551 				numentries = 1UL << *_hash_shift;
5552 				BUG_ON(!numentries);
5553 			}
5554 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5555 			numentries = PAGE_SIZE / bucketsize;
5556 	}
5557 	numentries = roundup_pow_of_two(numentries);
5558 
5559 	/* limit allocation size to 1/16 total memory by default */
5560 	if (max == 0) {
5561 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5562 		do_div(max, bucketsize);
5563 	}
5564 	max = min(max, 0x80000000ULL);
5565 
5566 	if (numentries < low_limit)
5567 		numentries = low_limit;
5568 	if (numentries > max)
5569 		numentries = max;
5570 
5571 	log2qty = ilog2(numentries);
5572 
5573 	do {
5574 		size = bucketsize << log2qty;
5575 		if (flags & HASH_EARLY)
5576 			table = alloc_bootmem_nopanic(size);
5577 		else if (hashdist)
5578 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5579 		else {
5580 			/*
5581 			 * If bucketsize is not a power-of-two, we may free
5582 			 * some pages at the end of hash table which
5583 			 * alloc_pages_exact() automatically does
5584 			 */
5585 			if (get_order(size) < MAX_ORDER) {
5586 				table = alloc_pages_exact(size, GFP_ATOMIC);
5587 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5588 			}
5589 		}
5590 	} while (!table && size > PAGE_SIZE && --log2qty);
5591 
5592 	if (!table)
5593 		panic("Failed to allocate %s hash table\n", tablename);
5594 
5595 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5596 	       tablename,
5597 	       (1UL << log2qty),
5598 	       ilog2(size) - PAGE_SHIFT,
5599 	       size);
5600 
5601 	if (_hash_shift)
5602 		*_hash_shift = log2qty;
5603 	if (_hash_mask)
5604 		*_hash_mask = (1 << log2qty) - 1;
5605 
5606 	return table;
5607 }
5608 
5609 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5610 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5611 							unsigned long pfn)
5612 {
5613 #ifdef CONFIG_SPARSEMEM
5614 	return __pfn_to_section(pfn)->pageblock_flags;
5615 #else
5616 	return zone->pageblock_flags;
5617 #endif /* CONFIG_SPARSEMEM */
5618 }
5619 
5620 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5621 {
5622 #ifdef CONFIG_SPARSEMEM
5623 	pfn &= (PAGES_PER_SECTION-1);
5624 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5625 #else
5626 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5627 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5628 #endif /* CONFIG_SPARSEMEM */
5629 }
5630 
5631 /**
5632  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5633  * @page: The page within the block of interest
5634  * @start_bitidx: The first bit of interest to retrieve
5635  * @end_bitidx: The last bit of interest
5636  * returns pageblock_bits flags
5637  */
5638 unsigned long get_pageblock_flags_group(struct page *page,
5639 					int start_bitidx, int end_bitidx)
5640 {
5641 	struct zone *zone;
5642 	unsigned long *bitmap;
5643 	unsigned long pfn, bitidx;
5644 	unsigned long flags = 0;
5645 	unsigned long value = 1;
5646 
5647 	zone = page_zone(page);
5648 	pfn = page_to_pfn(page);
5649 	bitmap = get_pageblock_bitmap(zone, pfn);
5650 	bitidx = pfn_to_bitidx(zone, pfn);
5651 
5652 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5653 		if (test_bit(bitidx + start_bitidx, bitmap))
5654 			flags |= value;
5655 
5656 	return flags;
5657 }
5658 
5659 /**
5660  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5661  * @page: The page within the block of interest
5662  * @start_bitidx: The first bit of interest
5663  * @end_bitidx: The last bit of interest
5664  * @flags: The flags to set
5665  */
5666 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5667 					int start_bitidx, int end_bitidx)
5668 {
5669 	struct zone *zone;
5670 	unsigned long *bitmap;
5671 	unsigned long pfn, bitidx;
5672 	unsigned long value = 1;
5673 
5674 	zone = page_zone(page);
5675 	pfn = page_to_pfn(page);
5676 	bitmap = get_pageblock_bitmap(zone, pfn);
5677 	bitidx = pfn_to_bitidx(zone, pfn);
5678 	VM_BUG_ON(!zone_spans_pfn(zone, pfn));
5679 
5680 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5681 		if (flags & value)
5682 			__set_bit(bitidx + start_bitidx, bitmap);
5683 		else
5684 			__clear_bit(bitidx + start_bitidx, bitmap);
5685 }
5686 
5687 /*
5688  * This function checks whether pageblock includes unmovable pages or not.
5689  * If @count is not zero, it is okay to include less @count unmovable pages
5690  *
5691  * PageLRU check wihtout isolation or lru_lock could race so that
5692  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5693  * expect this function should be exact.
5694  */
5695 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5696 			 bool skip_hwpoisoned_pages)
5697 {
5698 	unsigned long pfn, iter, found;
5699 	int mt;
5700 
5701 	/*
5702 	 * For avoiding noise data, lru_add_drain_all() should be called
5703 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
5704 	 */
5705 	if (zone_idx(zone) == ZONE_MOVABLE)
5706 		return false;
5707 	mt = get_pageblock_migratetype(page);
5708 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5709 		return false;
5710 
5711 	pfn = page_to_pfn(page);
5712 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5713 		unsigned long check = pfn + iter;
5714 
5715 		if (!pfn_valid_within(check))
5716 			continue;
5717 
5718 		page = pfn_to_page(check);
5719 		/*
5720 		 * We can't use page_count without pin a page
5721 		 * because another CPU can free compound page.
5722 		 * This check already skips compound tails of THP
5723 		 * because their page->_count is zero at all time.
5724 		 */
5725 		if (!atomic_read(&page->_count)) {
5726 			if (PageBuddy(page))
5727 				iter += (1 << page_order(page)) - 1;
5728 			continue;
5729 		}
5730 
5731 		/*
5732 		 * The HWPoisoned page may be not in buddy system, and
5733 		 * page_count() is not 0.
5734 		 */
5735 		if (skip_hwpoisoned_pages && PageHWPoison(page))
5736 			continue;
5737 
5738 		if (!PageLRU(page))
5739 			found++;
5740 		/*
5741 		 * If there are RECLAIMABLE pages, we need to check it.
5742 		 * But now, memory offline itself doesn't call shrink_slab()
5743 		 * and it still to be fixed.
5744 		 */
5745 		/*
5746 		 * If the page is not RAM, page_count()should be 0.
5747 		 * we don't need more check. This is an _used_ not-movable page.
5748 		 *
5749 		 * The problematic thing here is PG_reserved pages. PG_reserved
5750 		 * is set to both of a memory hole page and a _used_ kernel
5751 		 * page at boot.
5752 		 */
5753 		if (found > count)
5754 			return true;
5755 	}
5756 	return false;
5757 }
5758 
5759 bool is_pageblock_removable_nolock(struct page *page)
5760 {
5761 	struct zone *zone;
5762 	unsigned long pfn;
5763 
5764 	/*
5765 	 * We have to be careful here because we are iterating over memory
5766 	 * sections which are not zone aware so we might end up outside of
5767 	 * the zone but still within the section.
5768 	 * We have to take care about the node as well. If the node is offline
5769 	 * its NODE_DATA will be NULL - see page_zone.
5770 	 */
5771 	if (!node_online(page_to_nid(page)))
5772 		return false;
5773 
5774 	zone = page_zone(page);
5775 	pfn = page_to_pfn(page);
5776 	if (!zone_spans_pfn(zone, pfn))
5777 		return false;
5778 
5779 	return !has_unmovable_pages(zone, page, 0, true);
5780 }
5781 
5782 #ifdef CONFIG_CMA
5783 
5784 static unsigned long pfn_max_align_down(unsigned long pfn)
5785 {
5786 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5787 			     pageblock_nr_pages) - 1);
5788 }
5789 
5790 static unsigned long pfn_max_align_up(unsigned long pfn)
5791 {
5792 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5793 				pageblock_nr_pages));
5794 }
5795 
5796 /* [start, end) must belong to a single zone. */
5797 static int __alloc_contig_migrate_range(struct compact_control *cc,
5798 					unsigned long start, unsigned long end)
5799 {
5800 	/* This function is based on compact_zone() from compaction.c. */
5801 	unsigned long nr_reclaimed;
5802 	unsigned long pfn = start;
5803 	unsigned int tries = 0;
5804 	int ret = 0;
5805 
5806 	migrate_prep();
5807 
5808 	while (pfn < end || !list_empty(&cc->migratepages)) {
5809 		if (fatal_signal_pending(current)) {
5810 			ret = -EINTR;
5811 			break;
5812 		}
5813 
5814 		if (list_empty(&cc->migratepages)) {
5815 			cc->nr_migratepages = 0;
5816 			pfn = isolate_migratepages_range(cc->zone, cc,
5817 							 pfn, end, true);
5818 			if (!pfn) {
5819 				ret = -EINTR;
5820 				break;
5821 			}
5822 			tries = 0;
5823 		} else if (++tries == 5) {
5824 			ret = ret < 0 ? ret : -EBUSY;
5825 			break;
5826 		}
5827 
5828 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5829 							&cc->migratepages);
5830 		cc->nr_migratepages -= nr_reclaimed;
5831 
5832 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
5833 				    0, MIGRATE_SYNC, MR_CMA);
5834 	}
5835 	if (ret < 0) {
5836 		putback_movable_pages(&cc->migratepages);
5837 		return ret;
5838 	}
5839 	return 0;
5840 }
5841 
5842 /**
5843  * alloc_contig_range() -- tries to allocate given range of pages
5844  * @start:	start PFN to allocate
5845  * @end:	one-past-the-last PFN to allocate
5846  * @migratetype:	migratetype of the underlaying pageblocks (either
5847  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
5848  *			in range must have the same migratetype and it must
5849  *			be either of the two.
5850  *
5851  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5852  * aligned, however it's the caller's responsibility to guarantee that
5853  * we are the only thread that changes migrate type of pageblocks the
5854  * pages fall in.
5855  *
5856  * The PFN range must belong to a single zone.
5857  *
5858  * Returns zero on success or negative error code.  On success all
5859  * pages which PFN is in [start, end) are allocated for the caller and
5860  * need to be freed with free_contig_range().
5861  */
5862 int alloc_contig_range(unsigned long start, unsigned long end,
5863 		       unsigned migratetype)
5864 {
5865 	unsigned long outer_start, outer_end;
5866 	int ret = 0, order;
5867 
5868 	struct compact_control cc = {
5869 		.nr_migratepages = 0,
5870 		.order = -1,
5871 		.zone = page_zone(pfn_to_page(start)),
5872 		.sync = true,
5873 		.ignore_skip_hint = true,
5874 	};
5875 	INIT_LIST_HEAD(&cc.migratepages);
5876 
5877 	/*
5878 	 * What we do here is we mark all pageblocks in range as
5879 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
5880 	 * have different sizes, and due to the way page allocator
5881 	 * work, we align the range to biggest of the two pages so
5882 	 * that page allocator won't try to merge buddies from
5883 	 * different pageblocks and change MIGRATE_ISOLATE to some
5884 	 * other migration type.
5885 	 *
5886 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5887 	 * migrate the pages from an unaligned range (ie. pages that
5888 	 * we are interested in).  This will put all the pages in
5889 	 * range back to page allocator as MIGRATE_ISOLATE.
5890 	 *
5891 	 * When this is done, we take the pages in range from page
5892 	 * allocator removing them from the buddy system.  This way
5893 	 * page allocator will never consider using them.
5894 	 *
5895 	 * This lets us mark the pageblocks back as
5896 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5897 	 * aligned range but not in the unaligned, original range are
5898 	 * put back to page allocator so that buddy can use them.
5899 	 */
5900 
5901 	ret = start_isolate_page_range(pfn_max_align_down(start),
5902 				       pfn_max_align_up(end), migratetype,
5903 				       false);
5904 	if (ret)
5905 		return ret;
5906 
5907 	ret = __alloc_contig_migrate_range(&cc, start, end);
5908 	if (ret)
5909 		goto done;
5910 
5911 	/*
5912 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5913 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
5914 	 * more, all pages in [start, end) are free in page allocator.
5915 	 * What we are going to do is to allocate all pages from
5916 	 * [start, end) (that is remove them from page allocator).
5917 	 *
5918 	 * The only problem is that pages at the beginning and at the
5919 	 * end of interesting range may be not aligned with pages that
5920 	 * page allocator holds, ie. they can be part of higher order
5921 	 * pages.  Because of this, we reserve the bigger range and
5922 	 * once this is done free the pages we are not interested in.
5923 	 *
5924 	 * We don't have to hold zone->lock here because the pages are
5925 	 * isolated thus they won't get removed from buddy.
5926 	 */
5927 
5928 	lru_add_drain_all();
5929 	drain_all_pages();
5930 
5931 	order = 0;
5932 	outer_start = start;
5933 	while (!PageBuddy(pfn_to_page(outer_start))) {
5934 		if (++order >= MAX_ORDER) {
5935 			ret = -EBUSY;
5936 			goto done;
5937 		}
5938 		outer_start &= ~0UL << order;
5939 	}
5940 
5941 	/* Make sure the range is really isolated. */
5942 	if (test_pages_isolated(outer_start, end, false)) {
5943 		pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5944 		       outer_start, end);
5945 		ret = -EBUSY;
5946 		goto done;
5947 	}
5948 
5949 
5950 	/* Grab isolated pages from freelists. */
5951 	outer_end = isolate_freepages_range(&cc, outer_start, end);
5952 	if (!outer_end) {
5953 		ret = -EBUSY;
5954 		goto done;
5955 	}
5956 
5957 	/* Free head and tail (if any) */
5958 	if (start != outer_start)
5959 		free_contig_range(outer_start, start - outer_start);
5960 	if (end != outer_end)
5961 		free_contig_range(end, outer_end - end);
5962 
5963 done:
5964 	undo_isolate_page_range(pfn_max_align_down(start),
5965 				pfn_max_align_up(end), migratetype);
5966 	return ret;
5967 }
5968 
5969 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5970 {
5971 	unsigned int count = 0;
5972 
5973 	for (; nr_pages--; pfn++) {
5974 		struct page *page = pfn_to_page(pfn);
5975 
5976 		count += page_count(page) != 1;
5977 		__free_page(page);
5978 	}
5979 	WARN(count != 0, "%d pages are still in use!\n", count);
5980 }
5981 #endif
5982 
5983 #ifdef CONFIG_MEMORY_HOTPLUG
5984 static int __meminit __zone_pcp_update(void *data)
5985 {
5986 	struct zone *zone = data;
5987 	int cpu;
5988 	unsigned long batch = zone_batchsize(zone), flags;
5989 
5990 	for_each_possible_cpu(cpu) {
5991 		struct per_cpu_pageset *pset;
5992 		struct per_cpu_pages *pcp;
5993 
5994 		pset = per_cpu_ptr(zone->pageset, cpu);
5995 		pcp = &pset->pcp;
5996 
5997 		local_irq_save(flags);
5998 		if (pcp->count > 0)
5999 			free_pcppages_bulk(zone, pcp->count, pcp);
6000 		drain_zonestat(zone, pset);
6001 		setup_pageset(pset, batch);
6002 		local_irq_restore(flags);
6003 	}
6004 	return 0;
6005 }
6006 
6007 void __meminit zone_pcp_update(struct zone *zone)
6008 {
6009 	stop_machine(__zone_pcp_update, zone, NULL);
6010 }
6011 #endif
6012 
6013 void zone_pcp_reset(struct zone *zone)
6014 {
6015 	unsigned long flags;
6016 	int cpu;
6017 	struct per_cpu_pageset *pset;
6018 
6019 	/* avoid races with drain_pages()  */
6020 	local_irq_save(flags);
6021 	if (zone->pageset != &boot_pageset) {
6022 		for_each_online_cpu(cpu) {
6023 			pset = per_cpu_ptr(zone->pageset, cpu);
6024 			drain_zonestat(zone, pset);
6025 		}
6026 		free_percpu(zone->pageset);
6027 		zone->pageset = &boot_pageset;
6028 	}
6029 	local_irq_restore(flags);
6030 }
6031 
6032 #ifdef CONFIG_MEMORY_HOTREMOVE
6033 /*
6034  * All pages in the range must be isolated before calling this.
6035  */
6036 void
6037 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6038 {
6039 	struct page *page;
6040 	struct zone *zone;
6041 	int order, i;
6042 	unsigned long pfn;
6043 	unsigned long flags;
6044 	/* find the first valid pfn */
6045 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6046 		if (pfn_valid(pfn))
6047 			break;
6048 	if (pfn == end_pfn)
6049 		return;
6050 	zone = page_zone(pfn_to_page(pfn));
6051 	spin_lock_irqsave(&zone->lock, flags);
6052 	pfn = start_pfn;
6053 	while (pfn < end_pfn) {
6054 		if (!pfn_valid(pfn)) {
6055 			pfn++;
6056 			continue;
6057 		}
6058 		page = pfn_to_page(pfn);
6059 		/*
6060 		 * The HWPoisoned page may be not in buddy system, and
6061 		 * page_count() is not 0.
6062 		 */
6063 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6064 			pfn++;
6065 			SetPageReserved(page);
6066 			continue;
6067 		}
6068 
6069 		BUG_ON(page_count(page));
6070 		BUG_ON(!PageBuddy(page));
6071 		order = page_order(page);
6072 #ifdef CONFIG_DEBUG_VM
6073 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6074 		       pfn, 1 << order, end_pfn);
6075 #endif
6076 		list_del(&page->lru);
6077 		rmv_page_order(page);
6078 		zone->free_area[order].nr_free--;
6079 		for (i = 0; i < (1 << order); i++)
6080 			SetPageReserved((page+i));
6081 		pfn += (1 << order);
6082 	}
6083 	spin_unlock_irqrestore(&zone->lock, flags);
6084 }
6085 #endif
6086 
6087 #ifdef CONFIG_MEMORY_FAILURE
6088 bool is_free_buddy_page(struct page *page)
6089 {
6090 	struct zone *zone = page_zone(page);
6091 	unsigned long pfn = page_to_pfn(page);
6092 	unsigned long flags;
6093 	int order;
6094 
6095 	spin_lock_irqsave(&zone->lock, flags);
6096 	for (order = 0; order < MAX_ORDER; order++) {
6097 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6098 
6099 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6100 			break;
6101 	}
6102 	spin_unlock_irqrestore(&zone->lock, flags);
6103 
6104 	return order < MAX_ORDER;
6105 }
6106 #endif
6107 
6108 static const struct trace_print_flags pageflag_names[] = {
6109 	{1UL << PG_locked,		"locked"	},
6110 	{1UL << PG_error,		"error"		},
6111 	{1UL << PG_referenced,		"referenced"	},
6112 	{1UL << PG_uptodate,		"uptodate"	},
6113 	{1UL << PG_dirty,		"dirty"		},
6114 	{1UL << PG_lru,			"lru"		},
6115 	{1UL << PG_active,		"active"	},
6116 	{1UL << PG_slab,		"slab"		},
6117 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
6118 	{1UL << PG_arch_1,		"arch_1"	},
6119 	{1UL << PG_reserved,		"reserved"	},
6120 	{1UL << PG_private,		"private"	},
6121 	{1UL << PG_private_2,		"private_2"	},
6122 	{1UL << PG_writeback,		"writeback"	},
6123 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6124 	{1UL << PG_head,		"head"		},
6125 	{1UL << PG_tail,		"tail"		},
6126 #else
6127 	{1UL << PG_compound,		"compound"	},
6128 #endif
6129 	{1UL << PG_swapcache,		"swapcache"	},
6130 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
6131 	{1UL << PG_reclaim,		"reclaim"	},
6132 	{1UL << PG_swapbacked,		"swapbacked"	},
6133 	{1UL << PG_unevictable,		"unevictable"	},
6134 #ifdef CONFIG_MMU
6135 	{1UL << PG_mlocked,		"mlocked"	},
6136 #endif
6137 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6138 	{1UL << PG_uncached,		"uncached"	},
6139 #endif
6140 #ifdef CONFIG_MEMORY_FAILURE
6141 	{1UL << PG_hwpoison,		"hwpoison"	},
6142 #endif
6143 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6144 	{1UL << PG_compound_lock,	"compound_lock"	},
6145 #endif
6146 };
6147 
6148 static void dump_page_flags(unsigned long flags)
6149 {
6150 	const char *delim = "";
6151 	unsigned long mask;
6152 	int i;
6153 
6154 	BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6155 
6156 	printk(KERN_ALERT "page flags: %#lx(", flags);
6157 
6158 	/* remove zone id */
6159 	flags &= (1UL << NR_PAGEFLAGS) - 1;
6160 
6161 	for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6162 
6163 		mask = pageflag_names[i].mask;
6164 		if ((flags & mask) != mask)
6165 			continue;
6166 
6167 		flags &= ~mask;
6168 		printk("%s%s", delim, pageflag_names[i].name);
6169 		delim = "|";
6170 	}
6171 
6172 	/* check for left over flags */
6173 	if (flags)
6174 		printk("%s%#lx", delim, flags);
6175 
6176 	printk(")\n");
6177 }
6178 
6179 void dump_page(struct page *page)
6180 {
6181 	printk(KERN_ALERT
6182 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6183 		page, atomic_read(&page->_count), page_mapcount(page),
6184 		page->mapping, page->index);
6185 	dump_page_flags(page->flags);
6186 	mem_cgroup_print_bad_page(page);
6187 }
6188