1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <linux/ftrace_event.h> 57 #include <linux/memcontrol.h> 58 #include <linux/prefetch.h> 59 #include <linux/migrate.h> 60 #include <linux/page-debug-flags.h> 61 #include <linux/sched/rt.h> 62 63 #include <asm/tlbflush.h> 64 #include <asm/div64.h> 65 #include "internal.h" 66 67 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 68 DEFINE_PER_CPU(int, numa_node); 69 EXPORT_PER_CPU_SYMBOL(numa_node); 70 #endif 71 72 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 73 /* 74 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 75 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 76 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 77 * defined in <linux/topology.h>. 78 */ 79 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 80 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 81 #endif 82 83 /* 84 * Array of node states. 85 */ 86 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 87 [N_POSSIBLE] = NODE_MASK_ALL, 88 [N_ONLINE] = { { [0] = 1UL } }, 89 #ifndef CONFIG_NUMA 90 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 91 #ifdef CONFIG_HIGHMEM 92 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 93 #endif 94 #ifdef CONFIG_MOVABLE_NODE 95 [N_MEMORY] = { { [0] = 1UL } }, 96 #endif 97 [N_CPU] = { { [0] = 1UL } }, 98 #endif /* NUMA */ 99 }; 100 EXPORT_SYMBOL(node_states); 101 102 unsigned long totalram_pages __read_mostly; 103 unsigned long totalreserve_pages __read_mostly; 104 /* 105 * When calculating the number of globally allowed dirty pages, there 106 * is a certain number of per-zone reserves that should not be 107 * considered dirtyable memory. This is the sum of those reserves 108 * over all existing zones that contribute dirtyable memory. 109 */ 110 unsigned long dirty_balance_reserve __read_mostly; 111 112 int percpu_pagelist_fraction; 113 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 114 115 #ifdef CONFIG_PM_SLEEP 116 /* 117 * The following functions are used by the suspend/hibernate code to temporarily 118 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 119 * while devices are suspended. To avoid races with the suspend/hibernate code, 120 * they should always be called with pm_mutex held (gfp_allowed_mask also should 121 * only be modified with pm_mutex held, unless the suspend/hibernate code is 122 * guaranteed not to run in parallel with that modification). 123 */ 124 125 static gfp_t saved_gfp_mask; 126 127 void pm_restore_gfp_mask(void) 128 { 129 WARN_ON(!mutex_is_locked(&pm_mutex)); 130 if (saved_gfp_mask) { 131 gfp_allowed_mask = saved_gfp_mask; 132 saved_gfp_mask = 0; 133 } 134 } 135 136 void pm_restrict_gfp_mask(void) 137 { 138 WARN_ON(!mutex_is_locked(&pm_mutex)); 139 WARN_ON(saved_gfp_mask); 140 saved_gfp_mask = gfp_allowed_mask; 141 gfp_allowed_mask &= ~GFP_IOFS; 142 } 143 144 bool pm_suspended_storage(void) 145 { 146 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 147 return false; 148 return true; 149 } 150 #endif /* CONFIG_PM_SLEEP */ 151 152 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 153 int pageblock_order __read_mostly; 154 #endif 155 156 static void __free_pages_ok(struct page *page, unsigned int order); 157 158 /* 159 * results with 256, 32 in the lowmem_reserve sysctl: 160 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 161 * 1G machine -> (16M dma, 784M normal, 224M high) 162 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 163 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 164 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 165 * 166 * TBD: should special case ZONE_DMA32 machines here - in those we normally 167 * don't need any ZONE_NORMAL reservation 168 */ 169 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 170 #ifdef CONFIG_ZONE_DMA 171 256, 172 #endif 173 #ifdef CONFIG_ZONE_DMA32 174 256, 175 #endif 176 #ifdef CONFIG_HIGHMEM 177 32, 178 #endif 179 32, 180 }; 181 182 EXPORT_SYMBOL(totalram_pages); 183 184 static char * const zone_names[MAX_NR_ZONES] = { 185 #ifdef CONFIG_ZONE_DMA 186 "DMA", 187 #endif 188 #ifdef CONFIG_ZONE_DMA32 189 "DMA32", 190 #endif 191 "Normal", 192 #ifdef CONFIG_HIGHMEM 193 "HighMem", 194 #endif 195 "Movable", 196 }; 197 198 int min_free_kbytes = 1024; 199 200 static unsigned long __meminitdata nr_kernel_pages; 201 static unsigned long __meminitdata nr_all_pages; 202 static unsigned long __meminitdata dma_reserve; 203 204 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 205 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 206 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 207 static unsigned long __initdata required_kernelcore; 208 static unsigned long __initdata required_movablecore; 209 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 210 211 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 212 int movable_zone; 213 EXPORT_SYMBOL(movable_zone); 214 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 215 216 #if MAX_NUMNODES > 1 217 int nr_node_ids __read_mostly = MAX_NUMNODES; 218 int nr_online_nodes __read_mostly = 1; 219 EXPORT_SYMBOL(nr_node_ids); 220 EXPORT_SYMBOL(nr_online_nodes); 221 #endif 222 223 int page_group_by_mobility_disabled __read_mostly; 224 225 void set_pageblock_migratetype(struct page *page, int migratetype) 226 { 227 228 if (unlikely(page_group_by_mobility_disabled)) 229 migratetype = MIGRATE_UNMOVABLE; 230 231 set_pageblock_flags_group(page, (unsigned long)migratetype, 232 PB_migrate, PB_migrate_end); 233 } 234 235 bool oom_killer_disabled __read_mostly; 236 237 #ifdef CONFIG_DEBUG_VM 238 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 239 { 240 int ret = 0; 241 unsigned seq; 242 unsigned long pfn = page_to_pfn(page); 243 unsigned long sp, start_pfn; 244 245 do { 246 seq = zone_span_seqbegin(zone); 247 start_pfn = zone->zone_start_pfn; 248 sp = zone->spanned_pages; 249 if (!zone_spans_pfn(zone, pfn)) 250 ret = 1; 251 } while (zone_span_seqretry(zone, seq)); 252 253 if (ret) 254 pr_err("page %lu outside zone [ %lu - %lu ]\n", 255 pfn, start_pfn, start_pfn + sp); 256 257 return ret; 258 } 259 260 static int page_is_consistent(struct zone *zone, struct page *page) 261 { 262 if (!pfn_valid_within(page_to_pfn(page))) 263 return 0; 264 if (zone != page_zone(page)) 265 return 0; 266 267 return 1; 268 } 269 /* 270 * Temporary debugging check for pages not lying within a given zone. 271 */ 272 static int bad_range(struct zone *zone, struct page *page) 273 { 274 if (page_outside_zone_boundaries(zone, page)) 275 return 1; 276 if (!page_is_consistent(zone, page)) 277 return 1; 278 279 return 0; 280 } 281 #else 282 static inline int bad_range(struct zone *zone, struct page *page) 283 { 284 return 0; 285 } 286 #endif 287 288 static void bad_page(struct page *page) 289 { 290 static unsigned long resume; 291 static unsigned long nr_shown; 292 static unsigned long nr_unshown; 293 294 /* Don't complain about poisoned pages */ 295 if (PageHWPoison(page)) { 296 page_mapcount_reset(page); /* remove PageBuddy */ 297 return; 298 } 299 300 /* 301 * Allow a burst of 60 reports, then keep quiet for that minute; 302 * or allow a steady drip of one report per second. 303 */ 304 if (nr_shown == 60) { 305 if (time_before(jiffies, resume)) { 306 nr_unshown++; 307 goto out; 308 } 309 if (nr_unshown) { 310 printk(KERN_ALERT 311 "BUG: Bad page state: %lu messages suppressed\n", 312 nr_unshown); 313 nr_unshown = 0; 314 } 315 nr_shown = 0; 316 } 317 if (nr_shown++ == 0) 318 resume = jiffies + 60 * HZ; 319 320 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 321 current->comm, page_to_pfn(page)); 322 dump_page(page); 323 324 print_modules(); 325 dump_stack(); 326 out: 327 /* Leave bad fields for debug, except PageBuddy could make trouble */ 328 page_mapcount_reset(page); /* remove PageBuddy */ 329 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 330 } 331 332 /* 333 * Higher-order pages are called "compound pages". They are structured thusly: 334 * 335 * The first PAGE_SIZE page is called the "head page". 336 * 337 * The remaining PAGE_SIZE pages are called "tail pages". 338 * 339 * All pages have PG_compound set. All tail pages have their ->first_page 340 * pointing at the head page. 341 * 342 * The first tail page's ->lru.next holds the address of the compound page's 343 * put_page() function. Its ->lru.prev holds the order of allocation. 344 * This usage means that zero-order pages may not be compound. 345 */ 346 347 static void free_compound_page(struct page *page) 348 { 349 __free_pages_ok(page, compound_order(page)); 350 } 351 352 void prep_compound_page(struct page *page, unsigned long order) 353 { 354 int i; 355 int nr_pages = 1 << order; 356 357 set_compound_page_dtor(page, free_compound_page); 358 set_compound_order(page, order); 359 __SetPageHead(page); 360 for (i = 1; i < nr_pages; i++) { 361 struct page *p = page + i; 362 __SetPageTail(p); 363 set_page_count(p, 0); 364 p->first_page = page; 365 } 366 } 367 368 /* update __split_huge_page_refcount if you change this function */ 369 static int destroy_compound_page(struct page *page, unsigned long order) 370 { 371 int i; 372 int nr_pages = 1 << order; 373 int bad = 0; 374 375 if (unlikely(compound_order(page) != order)) { 376 bad_page(page); 377 bad++; 378 } 379 380 __ClearPageHead(page); 381 382 for (i = 1; i < nr_pages; i++) { 383 struct page *p = page + i; 384 385 if (unlikely(!PageTail(p) || (p->first_page != page))) { 386 bad_page(page); 387 bad++; 388 } 389 __ClearPageTail(p); 390 } 391 392 return bad; 393 } 394 395 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 396 { 397 int i; 398 399 /* 400 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 401 * and __GFP_HIGHMEM from hard or soft interrupt context. 402 */ 403 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 404 for (i = 0; i < (1 << order); i++) 405 clear_highpage(page + i); 406 } 407 408 #ifdef CONFIG_DEBUG_PAGEALLOC 409 unsigned int _debug_guardpage_minorder; 410 411 static int __init debug_guardpage_minorder_setup(char *buf) 412 { 413 unsigned long res; 414 415 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 416 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 417 return 0; 418 } 419 _debug_guardpage_minorder = res; 420 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 421 return 0; 422 } 423 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 424 425 static inline void set_page_guard_flag(struct page *page) 426 { 427 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 428 } 429 430 static inline void clear_page_guard_flag(struct page *page) 431 { 432 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 433 } 434 #else 435 static inline void set_page_guard_flag(struct page *page) { } 436 static inline void clear_page_guard_flag(struct page *page) { } 437 #endif 438 439 static inline void set_page_order(struct page *page, int order) 440 { 441 set_page_private(page, order); 442 __SetPageBuddy(page); 443 } 444 445 static inline void rmv_page_order(struct page *page) 446 { 447 __ClearPageBuddy(page); 448 set_page_private(page, 0); 449 } 450 451 /* 452 * Locate the struct page for both the matching buddy in our 453 * pair (buddy1) and the combined O(n+1) page they form (page). 454 * 455 * 1) Any buddy B1 will have an order O twin B2 which satisfies 456 * the following equation: 457 * B2 = B1 ^ (1 << O) 458 * For example, if the starting buddy (buddy2) is #8 its order 459 * 1 buddy is #10: 460 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 461 * 462 * 2) Any buddy B will have an order O+1 parent P which 463 * satisfies the following equation: 464 * P = B & ~(1 << O) 465 * 466 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 467 */ 468 static inline unsigned long 469 __find_buddy_index(unsigned long page_idx, unsigned int order) 470 { 471 return page_idx ^ (1 << order); 472 } 473 474 /* 475 * This function checks whether a page is free && is the buddy 476 * we can do coalesce a page and its buddy if 477 * (a) the buddy is not in a hole && 478 * (b) the buddy is in the buddy system && 479 * (c) a page and its buddy have the same order && 480 * (d) a page and its buddy are in the same zone. 481 * 482 * For recording whether a page is in the buddy system, we set ->_mapcount -2. 483 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. 484 * 485 * For recording page's order, we use page_private(page). 486 */ 487 static inline int page_is_buddy(struct page *page, struct page *buddy, 488 int order) 489 { 490 if (!pfn_valid_within(page_to_pfn(buddy))) 491 return 0; 492 493 if (page_zone_id(page) != page_zone_id(buddy)) 494 return 0; 495 496 if (page_is_guard(buddy) && page_order(buddy) == order) { 497 VM_BUG_ON(page_count(buddy) != 0); 498 return 1; 499 } 500 501 if (PageBuddy(buddy) && page_order(buddy) == order) { 502 VM_BUG_ON(page_count(buddy) != 0); 503 return 1; 504 } 505 return 0; 506 } 507 508 /* 509 * Freeing function for a buddy system allocator. 510 * 511 * The concept of a buddy system is to maintain direct-mapped table 512 * (containing bit values) for memory blocks of various "orders". 513 * The bottom level table contains the map for the smallest allocatable 514 * units of memory (here, pages), and each level above it describes 515 * pairs of units from the levels below, hence, "buddies". 516 * At a high level, all that happens here is marking the table entry 517 * at the bottom level available, and propagating the changes upward 518 * as necessary, plus some accounting needed to play nicely with other 519 * parts of the VM system. 520 * At each level, we keep a list of pages, which are heads of continuous 521 * free pages of length of (1 << order) and marked with _mapcount -2. Page's 522 * order is recorded in page_private(page) field. 523 * So when we are allocating or freeing one, we can derive the state of the 524 * other. That is, if we allocate a small block, and both were 525 * free, the remainder of the region must be split into blocks. 526 * If a block is freed, and its buddy is also free, then this 527 * triggers coalescing into a block of larger size. 528 * 529 * -- nyc 530 */ 531 532 static inline void __free_one_page(struct page *page, 533 struct zone *zone, unsigned int order, 534 int migratetype) 535 { 536 unsigned long page_idx; 537 unsigned long combined_idx; 538 unsigned long uninitialized_var(buddy_idx); 539 struct page *buddy; 540 541 VM_BUG_ON(!zone_is_initialized(zone)); 542 543 if (unlikely(PageCompound(page))) 544 if (unlikely(destroy_compound_page(page, order))) 545 return; 546 547 VM_BUG_ON(migratetype == -1); 548 549 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 550 551 VM_BUG_ON(page_idx & ((1 << order) - 1)); 552 VM_BUG_ON(bad_range(zone, page)); 553 554 while (order < MAX_ORDER-1) { 555 buddy_idx = __find_buddy_index(page_idx, order); 556 buddy = page + (buddy_idx - page_idx); 557 if (!page_is_buddy(page, buddy, order)) 558 break; 559 /* 560 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 561 * merge with it and move up one order. 562 */ 563 if (page_is_guard(buddy)) { 564 clear_page_guard_flag(buddy); 565 set_page_private(page, 0); 566 __mod_zone_freepage_state(zone, 1 << order, 567 migratetype); 568 } else { 569 list_del(&buddy->lru); 570 zone->free_area[order].nr_free--; 571 rmv_page_order(buddy); 572 } 573 combined_idx = buddy_idx & page_idx; 574 page = page + (combined_idx - page_idx); 575 page_idx = combined_idx; 576 order++; 577 } 578 set_page_order(page, order); 579 580 /* 581 * If this is not the largest possible page, check if the buddy 582 * of the next-highest order is free. If it is, it's possible 583 * that pages are being freed that will coalesce soon. In case, 584 * that is happening, add the free page to the tail of the list 585 * so it's less likely to be used soon and more likely to be merged 586 * as a higher order page 587 */ 588 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 589 struct page *higher_page, *higher_buddy; 590 combined_idx = buddy_idx & page_idx; 591 higher_page = page + (combined_idx - page_idx); 592 buddy_idx = __find_buddy_index(combined_idx, order + 1); 593 higher_buddy = higher_page + (buddy_idx - combined_idx); 594 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 595 list_add_tail(&page->lru, 596 &zone->free_area[order].free_list[migratetype]); 597 goto out; 598 } 599 } 600 601 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 602 out: 603 zone->free_area[order].nr_free++; 604 } 605 606 static inline int free_pages_check(struct page *page) 607 { 608 if (unlikely(page_mapcount(page) | 609 (page->mapping != NULL) | 610 (atomic_read(&page->_count) != 0) | 611 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 612 (mem_cgroup_bad_page_check(page)))) { 613 bad_page(page); 614 return 1; 615 } 616 page_nid_reset_last(page); 617 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 618 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 619 return 0; 620 } 621 622 /* 623 * Frees a number of pages from the PCP lists 624 * Assumes all pages on list are in same zone, and of same order. 625 * count is the number of pages to free. 626 * 627 * If the zone was previously in an "all pages pinned" state then look to 628 * see if this freeing clears that state. 629 * 630 * And clear the zone's pages_scanned counter, to hold off the "all pages are 631 * pinned" detection logic. 632 */ 633 static void free_pcppages_bulk(struct zone *zone, int count, 634 struct per_cpu_pages *pcp) 635 { 636 int migratetype = 0; 637 int batch_free = 0; 638 int to_free = count; 639 640 spin_lock(&zone->lock); 641 zone->all_unreclaimable = 0; 642 zone->pages_scanned = 0; 643 644 while (to_free) { 645 struct page *page; 646 struct list_head *list; 647 648 /* 649 * Remove pages from lists in a round-robin fashion. A 650 * batch_free count is maintained that is incremented when an 651 * empty list is encountered. This is so more pages are freed 652 * off fuller lists instead of spinning excessively around empty 653 * lists 654 */ 655 do { 656 batch_free++; 657 if (++migratetype == MIGRATE_PCPTYPES) 658 migratetype = 0; 659 list = &pcp->lists[migratetype]; 660 } while (list_empty(list)); 661 662 /* This is the only non-empty list. Free them all. */ 663 if (batch_free == MIGRATE_PCPTYPES) 664 batch_free = to_free; 665 666 do { 667 int mt; /* migratetype of the to-be-freed page */ 668 669 page = list_entry(list->prev, struct page, lru); 670 /* must delete as __free_one_page list manipulates */ 671 list_del(&page->lru); 672 mt = get_freepage_migratetype(page); 673 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 674 __free_one_page(page, zone, 0, mt); 675 trace_mm_page_pcpu_drain(page, 0, mt); 676 if (likely(!is_migrate_isolate_page(page))) { 677 __mod_zone_page_state(zone, NR_FREE_PAGES, 1); 678 if (is_migrate_cma(mt)) 679 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); 680 } 681 } while (--to_free && --batch_free && !list_empty(list)); 682 } 683 spin_unlock(&zone->lock); 684 } 685 686 static void free_one_page(struct zone *zone, struct page *page, int order, 687 int migratetype) 688 { 689 spin_lock(&zone->lock); 690 zone->all_unreclaimable = 0; 691 zone->pages_scanned = 0; 692 693 __free_one_page(page, zone, order, migratetype); 694 if (unlikely(!is_migrate_isolate(migratetype))) 695 __mod_zone_freepage_state(zone, 1 << order, migratetype); 696 spin_unlock(&zone->lock); 697 } 698 699 static bool free_pages_prepare(struct page *page, unsigned int order) 700 { 701 int i; 702 int bad = 0; 703 704 trace_mm_page_free(page, order); 705 kmemcheck_free_shadow(page, order); 706 707 if (PageAnon(page)) 708 page->mapping = NULL; 709 for (i = 0; i < (1 << order); i++) 710 bad += free_pages_check(page + i); 711 if (bad) 712 return false; 713 714 if (!PageHighMem(page)) { 715 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 716 debug_check_no_obj_freed(page_address(page), 717 PAGE_SIZE << order); 718 } 719 arch_free_page(page, order); 720 kernel_map_pages(page, 1 << order, 0); 721 722 return true; 723 } 724 725 static void __free_pages_ok(struct page *page, unsigned int order) 726 { 727 unsigned long flags; 728 int migratetype; 729 730 if (!free_pages_prepare(page, order)) 731 return; 732 733 local_irq_save(flags); 734 __count_vm_events(PGFREE, 1 << order); 735 migratetype = get_pageblock_migratetype(page); 736 set_freepage_migratetype(page, migratetype); 737 free_one_page(page_zone(page), page, order, migratetype); 738 local_irq_restore(flags); 739 } 740 741 /* 742 * Read access to zone->managed_pages is safe because it's unsigned long, 743 * but we still need to serialize writers. Currently all callers of 744 * __free_pages_bootmem() except put_page_bootmem() should only be used 745 * at boot time. So for shorter boot time, we shift the burden to 746 * put_page_bootmem() to serialize writers. 747 */ 748 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 749 { 750 unsigned int nr_pages = 1 << order; 751 unsigned int loop; 752 753 prefetchw(page); 754 for (loop = 0; loop < nr_pages; loop++) { 755 struct page *p = &page[loop]; 756 757 if (loop + 1 < nr_pages) 758 prefetchw(p + 1); 759 __ClearPageReserved(p); 760 set_page_count(p, 0); 761 } 762 763 page_zone(page)->managed_pages += 1 << order; 764 set_page_refcounted(page); 765 __free_pages(page, order); 766 } 767 768 #ifdef CONFIG_CMA 769 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */ 770 void __init init_cma_reserved_pageblock(struct page *page) 771 { 772 unsigned i = pageblock_nr_pages; 773 struct page *p = page; 774 775 do { 776 __ClearPageReserved(p); 777 set_page_count(p, 0); 778 } while (++p, --i); 779 780 set_page_refcounted(page); 781 set_pageblock_migratetype(page, MIGRATE_CMA); 782 __free_pages(page, pageblock_order); 783 totalram_pages += pageblock_nr_pages; 784 #ifdef CONFIG_HIGHMEM 785 if (PageHighMem(page)) 786 totalhigh_pages += pageblock_nr_pages; 787 #endif 788 } 789 #endif 790 791 /* 792 * The order of subdivision here is critical for the IO subsystem. 793 * Please do not alter this order without good reasons and regression 794 * testing. Specifically, as large blocks of memory are subdivided, 795 * the order in which smaller blocks are delivered depends on the order 796 * they're subdivided in this function. This is the primary factor 797 * influencing the order in which pages are delivered to the IO 798 * subsystem according to empirical testing, and this is also justified 799 * by considering the behavior of a buddy system containing a single 800 * large block of memory acted on by a series of small allocations. 801 * This behavior is a critical factor in sglist merging's success. 802 * 803 * -- nyc 804 */ 805 static inline void expand(struct zone *zone, struct page *page, 806 int low, int high, struct free_area *area, 807 int migratetype) 808 { 809 unsigned long size = 1 << high; 810 811 while (high > low) { 812 area--; 813 high--; 814 size >>= 1; 815 VM_BUG_ON(bad_range(zone, &page[size])); 816 817 #ifdef CONFIG_DEBUG_PAGEALLOC 818 if (high < debug_guardpage_minorder()) { 819 /* 820 * Mark as guard pages (or page), that will allow to 821 * merge back to allocator when buddy will be freed. 822 * Corresponding page table entries will not be touched, 823 * pages will stay not present in virtual address space 824 */ 825 INIT_LIST_HEAD(&page[size].lru); 826 set_page_guard_flag(&page[size]); 827 set_page_private(&page[size], high); 828 /* Guard pages are not available for any usage */ 829 __mod_zone_freepage_state(zone, -(1 << high), 830 migratetype); 831 continue; 832 } 833 #endif 834 list_add(&page[size].lru, &area->free_list[migratetype]); 835 area->nr_free++; 836 set_page_order(&page[size], high); 837 } 838 } 839 840 /* 841 * This page is about to be returned from the page allocator 842 */ 843 static inline int check_new_page(struct page *page) 844 { 845 if (unlikely(page_mapcount(page) | 846 (page->mapping != NULL) | 847 (atomic_read(&page->_count) != 0) | 848 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 849 (mem_cgroup_bad_page_check(page)))) { 850 bad_page(page); 851 return 1; 852 } 853 return 0; 854 } 855 856 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 857 { 858 int i; 859 860 for (i = 0; i < (1 << order); i++) { 861 struct page *p = page + i; 862 if (unlikely(check_new_page(p))) 863 return 1; 864 } 865 866 set_page_private(page, 0); 867 set_page_refcounted(page); 868 869 arch_alloc_page(page, order); 870 kernel_map_pages(page, 1 << order, 1); 871 872 if (gfp_flags & __GFP_ZERO) 873 prep_zero_page(page, order, gfp_flags); 874 875 if (order && (gfp_flags & __GFP_COMP)) 876 prep_compound_page(page, order); 877 878 return 0; 879 } 880 881 /* 882 * Go through the free lists for the given migratetype and remove 883 * the smallest available page from the freelists 884 */ 885 static inline 886 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 887 int migratetype) 888 { 889 unsigned int current_order; 890 struct free_area * area; 891 struct page *page; 892 893 /* Find a page of the appropriate size in the preferred list */ 894 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 895 area = &(zone->free_area[current_order]); 896 if (list_empty(&area->free_list[migratetype])) 897 continue; 898 899 page = list_entry(area->free_list[migratetype].next, 900 struct page, lru); 901 list_del(&page->lru); 902 rmv_page_order(page); 903 area->nr_free--; 904 expand(zone, page, order, current_order, area, migratetype); 905 return page; 906 } 907 908 return NULL; 909 } 910 911 912 /* 913 * This array describes the order lists are fallen back to when 914 * the free lists for the desirable migrate type are depleted 915 */ 916 static int fallbacks[MIGRATE_TYPES][4] = { 917 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 918 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 919 #ifdef CONFIG_CMA 920 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 921 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 922 #else 923 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 924 #endif 925 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 926 #ifdef CONFIG_MEMORY_ISOLATION 927 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 928 #endif 929 }; 930 931 /* 932 * Move the free pages in a range to the free lists of the requested type. 933 * Note that start_page and end_pages are not aligned on a pageblock 934 * boundary. If alignment is required, use move_freepages_block() 935 */ 936 int move_freepages(struct zone *zone, 937 struct page *start_page, struct page *end_page, 938 int migratetype) 939 { 940 struct page *page; 941 unsigned long order; 942 int pages_moved = 0; 943 944 #ifndef CONFIG_HOLES_IN_ZONE 945 /* 946 * page_zone is not safe to call in this context when 947 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 948 * anyway as we check zone boundaries in move_freepages_block(). 949 * Remove at a later date when no bug reports exist related to 950 * grouping pages by mobility 951 */ 952 BUG_ON(page_zone(start_page) != page_zone(end_page)); 953 #endif 954 955 for (page = start_page; page <= end_page;) { 956 /* Make sure we are not inadvertently changing nodes */ 957 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 958 959 if (!pfn_valid_within(page_to_pfn(page))) { 960 page++; 961 continue; 962 } 963 964 if (!PageBuddy(page)) { 965 page++; 966 continue; 967 } 968 969 order = page_order(page); 970 list_move(&page->lru, 971 &zone->free_area[order].free_list[migratetype]); 972 set_freepage_migratetype(page, migratetype); 973 page += 1 << order; 974 pages_moved += 1 << order; 975 } 976 977 return pages_moved; 978 } 979 980 int move_freepages_block(struct zone *zone, struct page *page, 981 int migratetype) 982 { 983 unsigned long start_pfn, end_pfn; 984 struct page *start_page, *end_page; 985 986 start_pfn = page_to_pfn(page); 987 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 988 start_page = pfn_to_page(start_pfn); 989 end_page = start_page + pageblock_nr_pages - 1; 990 end_pfn = start_pfn + pageblock_nr_pages - 1; 991 992 /* Do not cross zone boundaries */ 993 if (!zone_spans_pfn(zone, start_pfn)) 994 start_page = page; 995 if (!zone_spans_pfn(zone, end_pfn)) 996 return 0; 997 998 return move_freepages(zone, start_page, end_page, migratetype); 999 } 1000 1001 static void change_pageblock_range(struct page *pageblock_page, 1002 int start_order, int migratetype) 1003 { 1004 int nr_pageblocks = 1 << (start_order - pageblock_order); 1005 1006 while (nr_pageblocks--) { 1007 set_pageblock_migratetype(pageblock_page, migratetype); 1008 pageblock_page += pageblock_nr_pages; 1009 } 1010 } 1011 1012 /* Remove an element from the buddy allocator from the fallback list */ 1013 static inline struct page * 1014 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 1015 { 1016 struct free_area * area; 1017 int current_order; 1018 struct page *page; 1019 int migratetype, i; 1020 1021 /* Find the largest possible block of pages in the other list */ 1022 for (current_order = MAX_ORDER-1; current_order >= order; 1023 --current_order) { 1024 for (i = 0;; i++) { 1025 migratetype = fallbacks[start_migratetype][i]; 1026 1027 /* MIGRATE_RESERVE handled later if necessary */ 1028 if (migratetype == MIGRATE_RESERVE) 1029 break; 1030 1031 area = &(zone->free_area[current_order]); 1032 if (list_empty(&area->free_list[migratetype])) 1033 continue; 1034 1035 page = list_entry(area->free_list[migratetype].next, 1036 struct page, lru); 1037 area->nr_free--; 1038 1039 /* 1040 * If breaking a large block of pages, move all free 1041 * pages to the preferred allocation list. If falling 1042 * back for a reclaimable kernel allocation, be more 1043 * aggressive about taking ownership of free pages 1044 * 1045 * On the other hand, never change migration 1046 * type of MIGRATE_CMA pageblocks nor move CMA 1047 * pages on different free lists. We don't 1048 * want unmovable pages to be allocated from 1049 * MIGRATE_CMA areas. 1050 */ 1051 if (!is_migrate_cma(migratetype) && 1052 (unlikely(current_order >= pageblock_order / 2) || 1053 start_migratetype == MIGRATE_RECLAIMABLE || 1054 page_group_by_mobility_disabled)) { 1055 int pages; 1056 pages = move_freepages_block(zone, page, 1057 start_migratetype); 1058 1059 /* Claim the whole block if over half of it is free */ 1060 if (pages >= (1 << (pageblock_order-1)) || 1061 page_group_by_mobility_disabled) 1062 set_pageblock_migratetype(page, 1063 start_migratetype); 1064 1065 migratetype = start_migratetype; 1066 } 1067 1068 /* Remove the page from the freelists */ 1069 list_del(&page->lru); 1070 rmv_page_order(page); 1071 1072 /* Take ownership for orders >= pageblock_order */ 1073 if (current_order >= pageblock_order && 1074 !is_migrate_cma(migratetype)) 1075 change_pageblock_range(page, current_order, 1076 start_migratetype); 1077 1078 expand(zone, page, order, current_order, area, 1079 is_migrate_cma(migratetype) 1080 ? migratetype : start_migratetype); 1081 1082 trace_mm_page_alloc_extfrag(page, order, current_order, 1083 start_migratetype, migratetype); 1084 1085 return page; 1086 } 1087 } 1088 1089 return NULL; 1090 } 1091 1092 /* 1093 * Do the hard work of removing an element from the buddy allocator. 1094 * Call me with the zone->lock already held. 1095 */ 1096 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1097 int migratetype) 1098 { 1099 struct page *page; 1100 1101 retry_reserve: 1102 page = __rmqueue_smallest(zone, order, migratetype); 1103 1104 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1105 page = __rmqueue_fallback(zone, order, migratetype); 1106 1107 /* 1108 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1109 * is used because __rmqueue_smallest is an inline function 1110 * and we want just one call site 1111 */ 1112 if (!page) { 1113 migratetype = MIGRATE_RESERVE; 1114 goto retry_reserve; 1115 } 1116 } 1117 1118 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1119 return page; 1120 } 1121 1122 /* 1123 * Obtain a specified number of elements from the buddy allocator, all under 1124 * a single hold of the lock, for efficiency. Add them to the supplied list. 1125 * Returns the number of new pages which were placed at *list. 1126 */ 1127 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1128 unsigned long count, struct list_head *list, 1129 int migratetype, int cold) 1130 { 1131 int mt = migratetype, i; 1132 1133 spin_lock(&zone->lock); 1134 for (i = 0; i < count; ++i) { 1135 struct page *page = __rmqueue(zone, order, migratetype); 1136 if (unlikely(page == NULL)) 1137 break; 1138 1139 /* 1140 * Split buddy pages returned by expand() are received here 1141 * in physical page order. The page is added to the callers and 1142 * list and the list head then moves forward. From the callers 1143 * perspective, the linked list is ordered by page number in 1144 * some conditions. This is useful for IO devices that can 1145 * merge IO requests if the physical pages are ordered 1146 * properly. 1147 */ 1148 if (likely(cold == 0)) 1149 list_add(&page->lru, list); 1150 else 1151 list_add_tail(&page->lru, list); 1152 if (IS_ENABLED(CONFIG_CMA)) { 1153 mt = get_pageblock_migratetype(page); 1154 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt)) 1155 mt = migratetype; 1156 } 1157 set_freepage_migratetype(page, mt); 1158 list = &page->lru; 1159 if (is_migrate_cma(mt)) 1160 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1161 -(1 << order)); 1162 } 1163 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1164 spin_unlock(&zone->lock); 1165 return i; 1166 } 1167 1168 #ifdef CONFIG_NUMA 1169 /* 1170 * Called from the vmstat counter updater to drain pagesets of this 1171 * currently executing processor on remote nodes after they have 1172 * expired. 1173 * 1174 * Note that this function must be called with the thread pinned to 1175 * a single processor. 1176 */ 1177 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1178 { 1179 unsigned long flags; 1180 int to_drain; 1181 1182 local_irq_save(flags); 1183 if (pcp->count >= pcp->batch) 1184 to_drain = pcp->batch; 1185 else 1186 to_drain = pcp->count; 1187 if (to_drain > 0) { 1188 free_pcppages_bulk(zone, to_drain, pcp); 1189 pcp->count -= to_drain; 1190 } 1191 local_irq_restore(flags); 1192 } 1193 #endif 1194 1195 /* 1196 * Drain pages of the indicated processor. 1197 * 1198 * The processor must either be the current processor and the 1199 * thread pinned to the current processor or a processor that 1200 * is not online. 1201 */ 1202 static void drain_pages(unsigned int cpu) 1203 { 1204 unsigned long flags; 1205 struct zone *zone; 1206 1207 for_each_populated_zone(zone) { 1208 struct per_cpu_pageset *pset; 1209 struct per_cpu_pages *pcp; 1210 1211 local_irq_save(flags); 1212 pset = per_cpu_ptr(zone->pageset, cpu); 1213 1214 pcp = &pset->pcp; 1215 if (pcp->count) { 1216 free_pcppages_bulk(zone, pcp->count, pcp); 1217 pcp->count = 0; 1218 } 1219 local_irq_restore(flags); 1220 } 1221 } 1222 1223 /* 1224 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1225 */ 1226 void drain_local_pages(void *arg) 1227 { 1228 drain_pages(smp_processor_id()); 1229 } 1230 1231 /* 1232 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1233 * 1234 * Note that this code is protected against sending an IPI to an offline 1235 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1236 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1237 * nothing keeps CPUs from showing up after we populated the cpumask and 1238 * before the call to on_each_cpu_mask(). 1239 */ 1240 void drain_all_pages(void) 1241 { 1242 int cpu; 1243 struct per_cpu_pageset *pcp; 1244 struct zone *zone; 1245 1246 /* 1247 * Allocate in the BSS so we wont require allocation in 1248 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1249 */ 1250 static cpumask_t cpus_with_pcps; 1251 1252 /* 1253 * We don't care about racing with CPU hotplug event 1254 * as offline notification will cause the notified 1255 * cpu to drain that CPU pcps and on_each_cpu_mask 1256 * disables preemption as part of its processing 1257 */ 1258 for_each_online_cpu(cpu) { 1259 bool has_pcps = false; 1260 for_each_populated_zone(zone) { 1261 pcp = per_cpu_ptr(zone->pageset, cpu); 1262 if (pcp->pcp.count) { 1263 has_pcps = true; 1264 break; 1265 } 1266 } 1267 if (has_pcps) 1268 cpumask_set_cpu(cpu, &cpus_with_pcps); 1269 else 1270 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1271 } 1272 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); 1273 } 1274 1275 #ifdef CONFIG_HIBERNATION 1276 1277 void mark_free_pages(struct zone *zone) 1278 { 1279 unsigned long pfn, max_zone_pfn; 1280 unsigned long flags; 1281 int order, t; 1282 struct list_head *curr; 1283 1284 if (!zone->spanned_pages) 1285 return; 1286 1287 spin_lock_irqsave(&zone->lock, flags); 1288 1289 max_zone_pfn = zone_end_pfn(zone); 1290 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1291 if (pfn_valid(pfn)) { 1292 struct page *page = pfn_to_page(pfn); 1293 1294 if (!swsusp_page_is_forbidden(page)) 1295 swsusp_unset_page_free(page); 1296 } 1297 1298 for_each_migratetype_order(order, t) { 1299 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1300 unsigned long i; 1301 1302 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1303 for (i = 0; i < (1UL << order); i++) 1304 swsusp_set_page_free(pfn_to_page(pfn + i)); 1305 } 1306 } 1307 spin_unlock_irqrestore(&zone->lock, flags); 1308 } 1309 #endif /* CONFIG_PM */ 1310 1311 /* 1312 * Free a 0-order page 1313 * cold == 1 ? free a cold page : free a hot page 1314 */ 1315 void free_hot_cold_page(struct page *page, int cold) 1316 { 1317 struct zone *zone = page_zone(page); 1318 struct per_cpu_pages *pcp; 1319 unsigned long flags; 1320 int migratetype; 1321 1322 if (!free_pages_prepare(page, 0)) 1323 return; 1324 1325 migratetype = get_pageblock_migratetype(page); 1326 set_freepage_migratetype(page, migratetype); 1327 local_irq_save(flags); 1328 __count_vm_event(PGFREE); 1329 1330 /* 1331 * We only track unmovable, reclaimable and movable on pcp lists. 1332 * Free ISOLATE pages back to the allocator because they are being 1333 * offlined but treat RESERVE as movable pages so we can get those 1334 * areas back if necessary. Otherwise, we may have to free 1335 * excessively into the page allocator 1336 */ 1337 if (migratetype >= MIGRATE_PCPTYPES) { 1338 if (unlikely(is_migrate_isolate(migratetype))) { 1339 free_one_page(zone, page, 0, migratetype); 1340 goto out; 1341 } 1342 migratetype = MIGRATE_MOVABLE; 1343 } 1344 1345 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1346 if (cold) 1347 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1348 else 1349 list_add(&page->lru, &pcp->lists[migratetype]); 1350 pcp->count++; 1351 if (pcp->count >= pcp->high) { 1352 free_pcppages_bulk(zone, pcp->batch, pcp); 1353 pcp->count -= pcp->batch; 1354 } 1355 1356 out: 1357 local_irq_restore(flags); 1358 } 1359 1360 /* 1361 * Free a list of 0-order pages 1362 */ 1363 void free_hot_cold_page_list(struct list_head *list, int cold) 1364 { 1365 struct page *page, *next; 1366 1367 list_for_each_entry_safe(page, next, list, lru) { 1368 trace_mm_page_free_batched(page, cold); 1369 free_hot_cold_page(page, cold); 1370 } 1371 } 1372 1373 /* 1374 * split_page takes a non-compound higher-order page, and splits it into 1375 * n (1<<order) sub-pages: page[0..n] 1376 * Each sub-page must be freed individually. 1377 * 1378 * Note: this is probably too low level an operation for use in drivers. 1379 * Please consult with lkml before using this in your driver. 1380 */ 1381 void split_page(struct page *page, unsigned int order) 1382 { 1383 int i; 1384 1385 VM_BUG_ON(PageCompound(page)); 1386 VM_BUG_ON(!page_count(page)); 1387 1388 #ifdef CONFIG_KMEMCHECK 1389 /* 1390 * Split shadow pages too, because free(page[0]) would 1391 * otherwise free the whole shadow. 1392 */ 1393 if (kmemcheck_page_is_tracked(page)) 1394 split_page(virt_to_page(page[0].shadow), order); 1395 #endif 1396 1397 for (i = 1; i < (1 << order); i++) 1398 set_page_refcounted(page + i); 1399 } 1400 1401 static int __isolate_free_page(struct page *page, unsigned int order) 1402 { 1403 unsigned long watermark; 1404 struct zone *zone; 1405 int mt; 1406 1407 BUG_ON(!PageBuddy(page)); 1408 1409 zone = page_zone(page); 1410 mt = get_pageblock_migratetype(page); 1411 1412 if (!is_migrate_isolate(mt)) { 1413 /* Obey watermarks as if the page was being allocated */ 1414 watermark = low_wmark_pages(zone) + (1 << order); 1415 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1416 return 0; 1417 1418 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1419 } 1420 1421 /* Remove page from free list */ 1422 list_del(&page->lru); 1423 zone->free_area[order].nr_free--; 1424 rmv_page_order(page); 1425 1426 /* Set the pageblock if the isolated page is at least a pageblock */ 1427 if (order >= pageblock_order - 1) { 1428 struct page *endpage = page + (1 << order) - 1; 1429 for (; page < endpage; page += pageblock_nr_pages) { 1430 int mt = get_pageblock_migratetype(page); 1431 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 1432 set_pageblock_migratetype(page, 1433 MIGRATE_MOVABLE); 1434 } 1435 } 1436 1437 return 1UL << order; 1438 } 1439 1440 /* 1441 * Similar to split_page except the page is already free. As this is only 1442 * being used for migration, the migratetype of the block also changes. 1443 * As this is called with interrupts disabled, the caller is responsible 1444 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1445 * are enabled. 1446 * 1447 * Note: this is probably too low level an operation for use in drivers. 1448 * Please consult with lkml before using this in your driver. 1449 */ 1450 int split_free_page(struct page *page) 1451 { 1452 unsigned int order; 1453 int nr_pages; 1454 1455 order = page_order(page); 1456 1457 nr_pages = __isolate_free_page(page, order); 1458 if (!nr_pages) 1459 return 0; 1460 1461 /* Split into individual pages */ 1462 set_page_refcounted(page); 1463 split_page(page, order); 1464 return nr_pages; 1465 } 1466 1467 /* 1468 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1469 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1470 * or two. 1471 */ 1472 static inline 1473 struct page *buffered_rmqueue(struct zone *preferred_zone, 1474 struct zone *zone, int order, gfp_t gfp_flags, 1475 int migratetype) 1476 { 1477 unsigned long flags; 1478 struct page *page; 1479 int cold = !!(gfp_flags & __GFP_COLD); 1480 1481 again: 1482 if (likely(order == 0)) { 1483 struct per_cpu_pages *pcp; 1484 struct list_head *list; 1485 1486 local_irq_save(flags); 1487 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1488 list = &pcp->lists[migratetype]; 1489 if (list_empty(list)) { 1490 pcp->count += rmqueue_bulk(zone, 0, 1491 pcp->batch, list, 1492 migratetype, cold); 1493 if (unlikely(list_empty(list))) 1494 goto failed; 1495 } 1496 1497 if (cold) 1498 page = list_entry(list->prev, struct page, lru); 1499 else 1500 page = list_entry(list->next, struct page, lru); 1501 1502 list_del(&page->lru); 1503 pcp->count--; 1504 } else { 1505 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1506 /* 1507 * __GFP_NOFAIL is not to be used in new code. 1508 * 1509 * All __GFP_NOFAIL callers should be fixed so that they 1510 * properly detect and handle allocation failures. 1511 * 1512 * We most definitely don't want callers attempting to 1513 * allocate greater than order-1 page units with 1514 * __GFP_NOFAIL. 1515 */ 1516 WARN_ON_ONCE(order > 1); 1517 } 1518 spin_lock_irqsave(&zone->lock, flags); 1519 page = __rmqueue(zone, order, migratetype); 1520 spin_unlock(&zone->lock); 1521 if (!page) 1522 goto failed; 1523 __mod_zone_freepage_state(zone, -(1 << order), 1524 get_pageblock_migratetype(page)); 1525 } 1526 1527 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1528 zone_statistics(preferred_zone, zone, gfp_flags); 1529 local_irq_restore(flags); 1530 1531 VM_BUG_ON(bad_range(zone, page)); 1532 if (prep_new_page(page, order, gfp_flags)) 1533 goto again; 1534 return page; 1535 1536 failed: 1537 local_irq_restore(flags); 1538 return NULL; 1539 } 1540 1541 #ifdef CONFIG_FAIL_PAGE_ALLOC 1542 1543 static struct { 1544 struct fault_attr attr; 1545 1546 u32 ignore_gfp_highmem; 1547 u32 ignore_gfp_wait; 1548 u32 min_order; 1549 } fail_page_alloc = { 1550 .attr = FAULT_ATTR_INITIALIZER, 1551 .ignore_gfp_wait = 1, 1552 .ignore_gfp_highmem = 1, 1553 .min_order = 1, 1554 }; 1555 1556 static int __init setup_fail_page_alloc(char *str) 1557 { 1558 return setup_fault_attr(&fail_page_alloc.attr, str); 1559 } 1560 __setup("fail_page_alloc=", setup_fail_page_alloc); 1561 1562 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1563 { 1564 if (order < fail_page_alloc.min_order) 1565 return false; 1566 if (gfp_mask & __GFP_NOFAIL) 1567 return false; 1568 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1569 return false; 1570 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1571 return false; 1572 1573 return should_fail(&fail_page_alloc.attr, 1 << order); 1574 } 1575 1576 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1577 1578 static int __init fail_page_alloc_debugfs(void) 1579 { 1580 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1581 struct dentry *dir; 1582 1583 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1584 &fail_page_alloc.attr); 1585 if (IS_ERR(dir)) 1586 return PTR_ERR(dir); 1587 1588 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1589 &fail_page_alloc.ignore_gfp_wait)) 1590 goto fail; 1591 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1592 &fail_page_alloc.ignore_gfp_highmem)) 1593 goto fail; 1594 if (!debugfs_create_u32("min-order", mode, dir, 1595 &fail_page_alloc.min_order)) 1596 goto fail; 1597 1598 return 0; 1599 fail: 1600 debugfs_remove_recursive(dir); 1601 1602 return -ENOMEM; 1603 } 1604 1605 late_initcall(fail_page_alloc_debugfs); 1606 1607 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1608 1609 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1610 1611 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1612 { 1613 return false; 1614 } 1615 1616 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1617 1618 /* 1619 * Return true if free pages are above 'mark'. This takes into account the order 1620 * of the allocation. 1621 */ 1622 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1623 int classzone_idx, int alloc_flags, long free_pages) 1624 { 1625 /* free_pages my go negative - that's OK */ 1626 long min = mark; 1627 long lowmem_reserve = z->lowmem_reserve[classzone_idx]; 1628 int o; 1629 1630 free_pages -= (1 << order) - 1; 1631 if (alloc_flags & ALLOC_HIGH) 1632 min -= min / 2; 1633 if (alloc_flags & ALLOC_HARDER) 1634 min -= min / 4; 1635 #ifdef CONFIG_CMA 1636 /* If allocation can't use CMA areas don't use free CMA pages */ 1637 if (!(alloc_flags & ALLOC_CMA)) 1638 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 1639 #endif 1640 if (free_pages <= min + lowmem_reserve) 1641 return false; 1642 for (o = 0; o < order; o++) { 1643 /* At the next order, this order's pages become unavailable */ 1644 free_pages -= z->free_area[o].nr_free << o; 1645 1646 /* Require fewer higher order pages to be free */ 1647 min >>= 1; 1648 1649 if (free_pages <= min) 1650 return false; 1651 } 1652 return true; 1653 } 1654 1655 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1656 int classzone_idx, int alloc_flags) 1657 { 1658 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1659 zone_page_state(z, NR_FREE_PAGES)); 1660 } 1661 1662 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1663 int classzone_idx, int alloc_flags) 1664 { 1665 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1666 1667 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1668 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1669 1670 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1671 free_pages); 1672 } 1673 1674 #ifdef CONFIG_NUMA 1675 /* 1676 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1677 * skip over zones that are not allowed by the cpuset, or that have 1678 * been recently (in last second) found to be nearly full. See further 1679 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1680 * that have to skip over a lot of full or unallowed zones. 1681 * 1682 * If the zonelist cache is present in the passed in zonelist, then 1683 * returns a pointer to the allowed node mask (either the current 1684 * tasks mems_allowed, or node_states[N_MEMORY].) 1685 * 1686 * If the zonelist cache is not available for this zonelist, does 1687 * nothing and returns NULL. 1688 * 1689 * If the fullzones BITMAP in the zonelist cache is stale (more than 1690 * a second since last zap'd) then we zap it out (clear its bits.) 1691 * 1692 * We hold off even calling zlc_setup, until after we've checked the 1693 * first zone in the zonelist, on the theory that most allocations will 1694 * be satisfied from that first zone, so best to examine that zone as 1695 * quickly as we can. 1696 */ 1697 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1698 { 1699 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1700 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1701 1702 zlc = zonelist->zlcache_ptr; 1703 if (!zlc) 1704 return NULL; 1705 1706 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1707 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1708 zlc->last_full_zap = jiffies; 1709 } 1710 1711 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1712 &cpuset_current_mems_allowed : 1713 &node_states[N_MEMORY]; 1714 return allowednodes; 1715 } 1716 1717 /* 1718 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1719 * if it is worth looking at further for free memory: 1720 * 1) Check that the zone isn't thought to be full (doesn't have its 1721 * bit set in the zonelist_cache fullzones BITMAP). 1722 * 2) Check that the zones node (obtained from the zonelist_cache 1723 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1724 * Return true (non-zero) if zone is worth looking at further, or 1725 * else return false (zero) if it is not. 1726 * 1727 * This check -ignores- the distinction between various watermarks, 1728 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1729 * found to be full for any variation of these watermarks, it will 1730 * be considered full for up to one second by all requests, unless 1731 * we are so low on memory on all allowed nodes that we are forced 1732 * into the second scan of the zonelist. 1733 * 1734 * In the second scan we ignore this zonelist cache and exactly 1735 * apply the watermarks to all zones, even it is slower to do so. 1736 * We are low on memory in the second scan, and should leave no stone 1737 * unturned looking for a free page. 1738 */ 1739 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1740 nodemask_t *allowednodes) 1741 { 1742 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1743 int i; /* index of *z in zonelist zones */ 1744 int n; /* node that zone *z is on */ 1745 1746 zlc = zonelist->zlcache_ptr; 1747 if (!zlc) 1748 return 1; 1749 1750 i = z - zonelist->_zonerefs; 1751 n = zlc->z_to_n[i]; 1752 1753 /* This zone is worth trying if it is allowed but not full */ 1754 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1755 } 1756 1757 /* 1758 * Given 'z' scanning a zonelist, set the corresponding bit in 1759 * zlc->fullzones, so that subsequent attempts to allocate a page 1760 * from that zone don't waste time re-examining it. 1761 */ 1762 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1763 { 1764 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1765 int i; /* index of *z in zonelist zones */ 1766 1767 zlc = zonelist->zlcache_ptr; 1768 if (!zlc) 1769 return; 1770 1771 i = z - zonelist->_zonerefs; 1772 1773 set_bit(i, zlc->fullzones); 1774 } 1775 1776 /* 1777 * clear all zones full, called after direct reclaim makes progress so that 1778 * a zone that was recently full is not skipped over for up to a second 1779 */ 1780 static void zlc_clear_zones_full(struct zonelist *zonelist) 1781 { 1782 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1783 1784 zlc = zonelist->zlcache_ptr; 1785 if (!zlc) 1786 return; 1787 1788 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1789 } 1790 1791 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1792 { 1793 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes); 1794 } 1795 1796 static void __paginginit init_zone_allows_reclaim(int nid) 1797 { 1798 int i; 1799 1800 for_each_online_node(i) 1801 if (node_distance(nid, i) <= RECLAIM_DISTANCE) 1802 node_set(i, NODE_DATA(nid)->reclaim_nodes); 1803 else 1804 zone_reclaim_mode = 1; 1805 } 1806 1807 #else /* CONFIG_NUMA */ 1808 1809 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1810 { 1811 return NULL; 1812 } 1813 1814 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1815 nodemask_t *allowednodes) 1816 { 1817 return 1; 1818 } 1819 1820 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1821 { 1822 } 1823 1824 static void zlc_clear_zones_full(struct zonelist *zonelist) 1825 { 1826 } 1827 1828 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1829 { 1830 return true; 1831 } 1832 1833 static inline void init_zone_allows_reclaim(int nid) 1834 { 1835 } 1836 #endif /* CONFIG_NUMA */ 1837 1838 /* 1839 * get_page_from_freelist goes through the zonelist trying to allocate 1840 * a page. 1841 */ 1842 static struct page * 1843 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1844 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1845 struct zone *preferred_zone, int migratetype) 1846 { 1847 struct zoneref *z; 1848 struct page *page = NULL; 1849 int classzone_idx; 1850 struct zone *zone; 1851 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1852 int zlc_active = 0; /* set if using zonelist_cache */ 1853 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1854 1855 classzone_idx = zone_idx(preferred_zone); 1856 zonelist_scan: 1857 /* 1858 * Scan zonelist, looking for a zone with enough free. 1859 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1860 */ 1861 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1862 high_zoneidx, nodemask) { 1863 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1864 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1865 continue; 1866 if ((alloc_flags & ALLOC_CPUSET) && 1867 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1868 continue; 1869 /* 1870 * When allocating a page cache page for writing, we 1871 * want to get it from a zone that is within its dirty 1872 * limit, such that no single zone holds more than its 1873 * proportional share of globally allowed dirty pages. 1874 * The dirty limits take into account the zone's 1875 * lowmem reserves and high watermark so that kswapd 1876 * should be able to balance it without having to 1877 * write pages from its LRU list. 1878 * 1879 * This may look like it could increase pressure on 1880 * lower zones by failing allocations in higher zones 1881 * before they are full. But the pages that do spill 1882 * over are limited as the lower zones are protected 1883 * by this very same mechanism. It should not become 1884 * a practical burden to them. 1885 * 1886 * XXX: For now, allow allocations to potentially 1887 * exceed the per-zone dirty limit in the slowpath 1888 * (ALLOC_WMARK_LOW unset) before going into reclaim, 1889 * which is important when on a NUMA setup the allowed 1890 * zones are together not big enough to reach the 1891 * global limit. The proper fix for these situations 1892 * will require awareness of zones in the 1893 * dirty-throttling and the flusher threads. 1894 */ 1895 if ((alloc_flags & ALLOC_WMARK_LOW) && 1896 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) 1897 goto this_zone_full; 1898 1899 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1900 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1901 unsigned long mark; 1902 int ret; 1903 1904 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1905 if (zone_watermark_ok(zone, order, mark, 1906 classzone_idx, alloc_flags)) 1907 goto try_this_zone; 1908 1909 if (IS_ENABLED(CONFIG_NUMA) && 1910 !did_zlc_setup && nr_online_nodes > 1) { 1911 /* 1912 * we do zlc_setup if there are multiple nodes 1913 * and before considering the first zone allowed 1914 * by the cpuset. 1915 */ 1916 allowednodes = zlc_setup(zonelist, alloc_flags); 1917 zlc_active = 1; 1918 did_zlc_setup = 1; 1919 } 1920 1921 if (zone_reclaim_mode == 0 || 1922 !zone_allows_reclaim(preferred_zone, zone)) 1923 goto this_zone_full; 1924 1925 /* 1926 * As we may have just activated ZLC, check if the first 1927 * eligible zone has failed zone_reclaim recently. 1928 */ 1929 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1930 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1931 continue; 1932 1933 ret = zone_reclaim(zone, gfp_mask, order); 1934 switch (ret) { 1935 case ZONE_RECLAIM_NOSCAN: 1936 /* did not scan */ 1937 continue; 1938 case ZONE_RECLAIM_FULL: 1939 /* scanned but unreclaimable */ 1940 continue; 1941 default: 1942 /* did we reclaim enough */ 1943 if (!zone_watermark_ok(zone, order, mark, 1944 classzone_idx, alloc_flags)) 1945 goto this_zone_full; 1946 } 1947 } 1948 1949 try_this_zone: 1950 page = buffered_rmqueue(preferred_zone, zone, order, 1951 gfp_mask, migratetype); 1952 if (page) 1953 break; 1954 this_zone_full: 1955 if (IS_ENABLED(CONFIG_NUMA)) 1956 zlc_mark_zone_full(zonelist, z); 1957 } 1958 1959 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) { 1960 /* Disable zlc cache for second zonelist scan */ 1961 zlc_active = 0; 1962 goto zonelist_scan; 1963 } 1964 1965 if (page) 1966 /* 1967 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was 1968 * necessary to allocate the page. The expectation is 1969 * that the caller is taking steps that will free more 1970 * memory. The caller should avoid the page being used 1971 * for !PFMEMALLOC purposes. 1972 */ 1973 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 1974 1975 return page; 1976 } 1977 1978 /* 1979 * Large machines with many possible nodes should not always dump per-node 1980 * meminfo in irq context. 1981 */ 1982 static inline bool should_suppress_show_mem(void) 1983 { 1984 bool ret = false; 1985 1986 #if NODES_SHIFT > 8 1987 ret = in_interrupt(); 1988 #endif 1989 return ret; 1990 } 1991 1992 static DEFINE_RATELIMIT_STATE(nopage_rs, 1993 DEFAULT_RATELIMIT_INTERVAL, 1994 DEFAULT_RATELIMIT_BURST); 1995 1996 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 1997 { 1998 unsigned int filter = SHOW_MEM_FILTER_NODES; 1999 2000 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2001 debug_guardpage_minorder() > 0) 2002 return; 2003 2004 /* 2005 * This documents exceptions given to allocations in certain 2006 * contexts that are allowed to allocate outside current's set 2007 * of allowed nodes. 2008 */ 2009 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2010 if (test_thread_flag(TIF_MEMDIE) || 2011 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2012 filter &= ~SHOW_MEM_FILTER_NODES; 2013 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2014 filter &= ~SHOW_MEM_FILTER_NODES; 2015 2016 if (fmt) { 2017 struct va_format vaf; 2018 va_list args; 2019 2020 va_start(args, fmt); 2021 2022 vaf.fmt = fmt; 2023 vaf.va = &args; 2024 2025 pr_warn("%pV", &vaf); 2026 2027 va_end(args); 2028 } 2029 2030 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2031 current->comm, order, gfp_mask); 2032 2033 dump_stack(); 2034 if (!should_suppress_show_mem()) 2035 show_mem(filter); 2036 } 2037 2038 static inline int 2039 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2040 unsigned long did_some_progress, 2041 unsigned long pages_reclaimed) 2042 { 2043 /* Do not loop if specifically requested */ 2044 if (gfp_mask & __GFP_NORETRY) 2045 return 0; 2046 2047 /* Always retry if specifically requested */ 2048 if (gfp_mask & __GFP_NOFAIL) 2049 return 1; 2050 2051 /* 2052 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2053 * making forward progress without invoking OOM. Suspend also disables 2054 * storage devices so kswapd will not help. Bail if we are suspending. 2055 */ 2056 if (!did_some_progress && pm_suspended_storage()) 2057 return 0; 2058 2059 /* 2060 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2061 * means __GFP_NOFAIL, but that may not be true in other 2062 * implementations. 2063 */ 2064 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2065 return 1; 2066 2067 /* 2068 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2069 * specified, then we retry until we no longer reclaim any pages 2070 * (above), or we've reclaimed an order of pages at least as 2071 * large as the allocation's order. In both cases, if the 2072 * allocation still fails, we stop retrying. 2073 */ 2074 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2075 return 1; 2076 2077 return 0; 2078 } 2079 2080 static inline struct page * 2081 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2082 struct zonelist *zonelist, enum zone_type high_zoneidx, 2083 nodemask_t *nodemask, struct zone *preferred_zone, 2084 int migratetype) 2085 { 2086 struct page *page; 2087 2088 /* Acquire the OOM killer lock for the zones in zonelist */ 2089 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 2090 schedule_timeout_uninterruptible(1); 2091 return NULL; 2092 } 2093 2094 /* 2095 * Go through the zonelist yet one more time, keep very high watermark 2096 * here, this is only to catch a parallel oom killing, we must fail if 2097 * we're still under heavy pressure. 2098 */ 2099 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 2100 order, zonelist, high_zoneidx, 2101 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 2102 preferred_zone, migratetype); 2103 if (page) 2104 goto out; 2105 2106 if (!(gfp_mask & __GFP_NOFAIL)) { 2107 /* The OOM killer will not help higher order allocs */ 2108 if (order > PAGE_ALLOC_COSTLY_ORDER) 2109 goto out; 2110 /* The OOM killer does not needlessly kill tasks for lowmem */ 2111 if (high_zoneidx < ZONE_NORMAL) 2112 goto out; 2113 /* 2114 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2115 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2116 * The caller should handle page allocation failure by itself if 2117 * it specifies __GFP_THISNODE. 2118 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2119 */ 2120 if (gfp_mask & __GFP_THISNODE) 2121 goto out; 2122 } 2123 /* Exhausted what can be done so it's blamo time */ 2124 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2125 2126 out: 2127 clear_zonelist_oom(zonelist, gfp_mask); 2128 return page; 2129 } 2130 2131 #ifdef CONFIG_COMPACTION 2132 /* Try memory compaction for high-order allocations before reclaim */ 2133 static struct page * 2134 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2135 struct zonelist *zonelist, enum zone_type high_zoneidx, 2136 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2137 int migratetype, bool sync_migration, 2138 bool *contended_compaction, bool *deferred_compaction, 2139 unsigned long *did_some_progress) 2140 { 2141 if (!order) 2142 return NULL; 2143 2144 if (compaction_deferred(preferred_zone, order)) { 2145 *deferred_compaction = true; 2146 return NULL; 2147 } 2148 2149 current->flags |= PF_MEMALLOC; 2150 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 2151 nodemask, sync_migration, 2152 contended_compaction); 2153 current->flags &= ~PF_MEMALLOC; 2154 2155 if (*did_some_progress != COMPACT_SKIPPED) { 2156 struct page *page; 2157 2158 /* Page migration frees to the PCP lists but we want merging */ 2159 drain_pages(get_cpu()); 2160 put_cpu(); 2161 2162 page = get_page_from_freelist(gfp_mask, nodemask, 2163 order, zonelist, high_zoneidx, 2164 alloc_flags & ~ALLOC_NO_WATERMARKS, 2165 preferred_zone, migratetype); 2166 if (page) { 2167 preferred_zone->compact_blockskip_flush = false; 2168 preferred_zone->compact_considered = 0; 2169 preferred_zone->compact_defer_shift = 0; 2170 if (order >= preferred_zone->compact_order_failed) 2171 preferred_zone->compact_order_failed = order + 1; 2172 count_vm_event(COMPACTSUCCESS); 2173 return page; 2174 } 2175 2176 /* 2177 * It's bad if compaction run occurs and fails. 2178 * The most likely reason is that pages exist, 2179 * but not enough to satisfy watermarks. 2180 */ 2181 count_vm_event(COMPACTFAIL); 2182 2183 /* 2184 * As async compaction considers a subset of pageblocks, only 2185 * defer if the failure was a sync compaction failure. 2186 */ 2187 if (sync_migration) 2188 defer_compaction(preferred_zone, order); 2189 2190 cond_resched(); 2191 } 2192 2193 return NULL; 2194 } 2195 #else 2196 static inline struct page * 2197 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2198 struct zonelist *zonelist, enum zone_type high_zoneidx, 2199 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2200 int migratetype, bool sync_migration, 2201 bool *contended_compaction, bool *deferred_compaction, 2202 unsigned long *did_some_progress) 2203 { 2204 return NULL; 2205 } 2206 #endif /* CONFIG_COMPACTION */ 2207 2208 /* Perform direct synchronous page reclaim */ 2209 static int 2210 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, 2211 nodemask_t *nodemask) 2212 { 2213 struct reclaim_state reclaim_state; 2214 int progress; 2215 2216 cond_resched(); 2217 2218 /* We now go into synchronous reclaim */ 2219 cpuset_memory_pressure_bump(); 2220 current->flags |= PF_MEMALLOC; 2221 lockdep_set_current_reclaim_state(gfp_mask); 2222 reclaim_state.reclaimed_slab = 0; 2223 current->reclaim_state = &reclaim_state; 2224 2225 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2226 2227 current->reclaim_state = NULL; 2228 lockdep_clear_current_reclaim_state(); 2229 current->flags &= ~PF_MEMALLOC; 2230 2231 cond_resched(); 2232 2233 return progress; 2234 } 2235 2236 /* The really slow allocator path where we enter direct reclaim */ 2237 static inline struct page * 2238 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2239 struct zonelist *zonelist, enum zone_type high_zoneidx, 2240 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2241 int migratetype, unsigned long *did_some_progress) 2242 { 2243 struct page *page = NULL; 2244 bool drained = false; 2245 2246 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 2247 nodemask); 2248 if (unlikely(!(*did_some_progress))) 2249 return NULL; 2250 2251 /* After successful reclaim, reconsider all zones for allocation */ 2252 if (IS_ENABLED(CONFIG_NUMA)) 2253 zlc_clear_zones_full(zonelist); 2254 2255 retry: 2256 page = get_page_from_freelist(gfp_mask, nodemask, order, 2257 zonelist, high_zoneidx, 2258 alloc_flags & ~ALLOC_NO_WATERMARKS, 2259 preferred_zone, migratetype); 2260 2261 /* 2262 * If an allocation failed after direct reclaim, it could be because 2263 * pages are pinned on the per-cpu lists. Drain them and try again 2264 */ 2265 if (!page && !drained) { 2266 drain_all_pages(); 2267 drained = true; 2268 goto retry; 2269 } 2270 2271 return page; 2272 } 2273 2274 /* 2275 * This is called in the allocator slow-path if the allocation request is of 2276 * sufficient urgency to ignore watermarks and take other desperate measures 2277 */ 2278 static inline struct page * 2279 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2280 struct zonelist *zonelist, enum zone_type high_zoneidx, 2281 nodemask_t *nodemask, struct zone *preferred_zone, 2282 int migratetype) 2283 { 2284 struct page *page; 2285 2286 do { 2287 page = get_page_from_freelist(gfp_mask, nodemask, order, 2288 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2289 preferred_zone, migratetype); 2290 2291 if (!page && gfp_mask & __GFP_NOFAIL) 2292 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2293 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2294 2295 return page; 2296 } 2297 2298 static inline 2299 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 2300 enum zone_type high_zoneidx, 2301 enum zone_type classzone_idx) 2302 { 2303 struct zoneref *z; 2304 struct zone *zone; 2305 2306 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 2307 wakeup_kswapd(zone, order, classzone_idx); 2308 } 2309 2310 static inline int 2311 gfp_to_alloc_flags(gfp_t gfp_mask) 2312 { 2313 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2314 const gfp_t wait = gfp_mask & __GFP_WAIT; 2315 2316 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2317 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2318 2319 /* 2320 * The caller may dip into page reserves a bit more if the caller 2321 * cannot run direct reclaim, or if the caller has realtime scheduling 2322 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2323 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2324 */ 2325 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2326 2327 if (!wait) { 2328 /* 2329 * Not worth trying to allocate harder for 2330 * __GFP_NOMEMALLOC even if it can't schedule. 2331 */ 2332 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2333 alloc_flags |= ALLOC_HARDER; 2334 /* 2335 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2336 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2337 */ 2338 alloc_flags &= ~ALLOC_CPUSET; 2339 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2340 alloc_flags |= ALLOC_HARDER; 2341 2342 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2343 if (gfp_mask & __GFP_MEMALLOC) 2344 alloc_flags |= ALLOC_NO_WATERMARKS; 2345 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2346 alloc_flags |= ALLOC_NO_WATERMARKS; 2347 else if (!in_interrupt() && 2348 ((current->flags & PF_MEMALLOC) || 2349 unlikely(test_thread_flag(TIF_MEMDIE)))) 2350 alloc_flags |= ALLOC_NO_WATERMARKS; 2351 } 2352 #ifdef CONFIG_CMA 2353 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2354 alloc_flags |= ALLOC_CMA; 2355 #endif 2356 return alloc_flags; 2357 } 2358 2359 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2360 { 2361 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2362 } 2363 2364 static inline struct page * 2365 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2366 struct zonelist *zonelist, enum zone_type high_zoneidx, 2367 nodemask_t *nodemask, struct zone *preferred_zone, 2368 int migratetype) 2369 { 2370 const gfp_t wait = gfp_mask & __GFP_WAIT; 2371 struct page *page = NULL; 2372 int alloc_flags; 2373 unsigned long pages_reclaimed = 0; 2374 unsigned long did_some_progress; 2375 bool sync_migration = false; 2376 bool deferred_compaction = false; 2377 bool contended_compaction = false; 2378 2379 /* 2380 * In the slowpath, we sanity check order to avoid ever trying to 2381 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2382 * be using allocators in order of preference for an area that is 2383 * too large. 2384 */ 2385 if (order >= MAX_ORDER) { 2386 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2387 return NULL; 2388 } 2389 2390 /* 2391 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2392 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2393 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2394 * using a larger set of nodes after it has established that the 2395 * allowed per node queues are empty and that nodes are 2396 * over allocated. 2397 */ 2398 if (IS_ENABLED(CONFIG_NUMA) && 2399 (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2400 goto nopage; 2401 2402 restart: 2403 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2404 wake_all_kswapd(order, zonelist, high_zoneidx, 2405 zone_idx(preferred_zone)); 2406 2407 /* 2408 * OK, we're below the kswapd watermark and have kicked background 2409 * reclaim. Now things get more complex, so set up alloc_flags according 2410 * to how we want to proceed. 2411 */ 2412 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2413 2414 /* 2415 * Find the true preferred zone if the allocation is unconstrained by 2416 * cpusets. 2417 */ 2418 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2419 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2420 &preferred_zone); 2421 2422 rebalance: 2423 /* This is the last chance, in general, before the goto nopage. */ 2424 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2425 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2426 preferred_zone, migratetype); 2427 if (page) 2428 goto got_pg; 2429 2430 /* Allocate without watermarks if the context allows */ 2431 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2432 /* 2433 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2434 * the allocation is high priority and these type of 2435 * allocations are system rather than user orientated 2436 */ 2437 zonelist = node_zonelist(numa_node_id(), gfp_mask); 2438 2439 page = __alloc_pages_high_priority(gfp_mask, order, 2440 zonelist, high_zoneidx, nodemask, 2441 preferred_zone, migratetype); 2442 if (page) { 2443 goto got_pg; 2444 } 2445 } 2446 2447 /* Atomic allocations - we can't balance anything */ 2448 if (!wait) 2449 goto nopage; 2450 2451 /* Avoid recursion of direct reclaim */ 2452 if (current->flags & PF_MEMALLOC) 2453 goto nopage; 2454 2455 /* Avoid allocations with no watermarks from looping endlessly */ 2456 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2457 goto nopage; 2458 2459 /* 2460 * Try direct compaction. The first pass is asynchronous. Subsequent 2461 * attempts after direct reclaim are synchronous 2462 */ 2463 page = __alloc_pages_direct_compact(gfp_mask, order, 2464 zonelist, high_zoneidx, 2465 nodemask, 2466 alloc_flags, preferred_zone, 2467 migratetype, sync_migration, 2468 &contended_compaction, 2469 &deferred_compaction, 2470 &did_some_progress); 2471 if (page) 2472 goto got_pg; 2473 sync_migration = true; 2474 2475 /* 2476 * If compaction is deferred for high-order allocations, it is because 2477 * sync compaction recently failed. In this is the case and the caller 2478 * requested a movable allocation that does not heavily disrupt the 2479 * system then fail the allocation instead of entering direct reclaim. 2480 */ 2481 if ((deferred_compaction || contended_compaction) && 2482 (gfp_mask & __GFP_NO_KSWAPD)) 2483 goto nopage; 2484 2485 /* Try direct reclaim and then allocating */ 2486 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2487 zonelist, high_zoneidx, 2488 nodemask, 2489 alloc_flags, preferred_zone, 2490 migratetype, &did_some_progress); 2491 if (page) 2492 goto got_pg; 2493 2494 /* 2495 * If we failed to make any progress reclaiming, then we are 2496 * running out of options and have to consider going OOM 2497 */ 2498 if (!did_some_progress) { 2499 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2500 if (oom_killer_disabled) 2501 goto nopage; 2502 /* Coredumps can quickly deplete all memory reserves */ 2503 if ((current->flags & PF_DUMPCORE) && 2504 !(gfp_mask & __GFP_NOFAIL)) 2505 goto nopage; 2506 page = __alloc_pages_may_oom(gfp_mask, order, 2507 zonelist, high_zoneidx, 2508 nodemask, preferred_zone, 2509 migratetype); 2510 if (page) 2511 goto got_pg; 2512 2513 if (!(gfp_mask & __GFP_NOFAIL)) { 2514 /* 2515 * The oom killer is not called for high-order 2516 * allocations that may fail, so if no progress 2517 * is being made, there are no other options and 2518 * retrying is unlikely to help. 2519 */ 2520 if (order > PAGE_ALLOC_COSTLY_ORDER) 2521 goto nopage; 2522 /* 2523 * The oom killer is not called for lowmem 2524 * allocations to prevent needlessly killing 2525 * innocent tasks. 2526 */ 2527 if (high_zoneidx < ZONE_NORMAL) 2528 goto nopage; 2529 } 2530 2531 goto restart; 2532 } 2533 } 2534 2535 /* Check if we should retry the allocation */ 2536 pages_reclaimed += did_some_progress; 2537 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2538 pages_reclaimed)) { 2539 /* Wait for some write requests to complete then retry */ 2540 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2541 goto rebalance; 2542 } else { 2543 /* 2544 * High-order allocations do not necessarily loop after 2545 * direct reclaim and reclaim/compaction depends on compaction 2546 * being called after reclaim so call directly if necessary 2547 */ 2548 page = __alloc_pages_direct_compact(gfp_mask, order, 2549 zonelist, high_zoneidx, 2550 nodemask, 2551 alloc_flags, preferred_zone, 2552 migratetype, sync_migration, 2553 &contended_compaction, 2554 &deferred_compaction, 2555 &did_some_progress); 2556 if (page) 2557 goto got_pg; 2558 } 2559 2560 nopage: 2561 warn_alloc_failed(gfp_mask, order, NULL); 2562 return page; 2563 got_pg: 2564 if (kmemcheck_enabled) 2565 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2566 2567 return page; 2568 } 2569 2570 /* 2571 * This is the 'heart' of the zoned buddy allocator. 2572 */ 2573 struct page * 2574 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2575 struct zonelist *zonelist, nodemask_t *nodemask) 2576 { 2577 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2578 struct zone *preferred_zone; 2579 struct page *page = NULL; 2580 int migratetype = allocflags_to_migratetype(gfp_mask); 2581 unsigned int cpuset_mems_cookie; 2582 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET; 2583 struct mem_cgroup *memcg = NULL; 2584 2585 gfp_mask &= gfp_allowed_mask; 2586 2587 lockdep_trace_alloc(gfp_mask); 2588 2589 might_sleep_if(gfp_mask & __GFP_WAIT); 2590 2591 if (should_fail_alloc_page(gfp_mask, order)) 2592 return NULL; 2593 2594 /* 2595 * Check the zones suitable for the gfp_mask contain at least one 2596 * valid zone. It's possible to have an empty zonelist as a result 2597 * of GFP_THISNODE and a memoryless node 2598 */ 2599 if (unlikely(!zonelist->_zonerefs->zone)) 2600 return NULL; 2601 2602 /* 2603 * Will only have any effect when __GFP_KMEMCG is set. This is 2604 * verified in the (always inline) callee 2605 */ 2606 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2607 return NULL; 2608 2609 retry_cpuset: 2610 cpuset_mems_cookie = get_mems_allowed(); 2611 2612 /* The preferred zone is used for statistics later */ 2613 first_zones_zonelist(zonelist, high_zoneidx, 2614 nodemask ? : &cpuset_current_mems_allowed, 2615 &preferred_zone); 2616 if (!preferred_zone) 2617 goto out; 2618 2619 #ifdef CONFIG_CMA 2620 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2621 alloc_flags |= ALLOC_CMA; 2622 #endif 2623 /* First allocation attempt */ 2624 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2625 zonelist, high_zoneidx, alloc_flags, 2626 preferred_zone, migratetype); 2627 if (unlikely(!page)) { 2628 /* 2629 * Runtime PM, block IO and its error handling path 2630 * can deadlock because I/O on the device might not 2631 * complete. 2632 */ 2633 gfp_mask = memalloc_noio_flags(gfp_mask); 2634 page = __alloc_pages_slowpath(gfp_mask, order, 2635 zonelist, high_zoneidx, nodemask, 2636 preferred_zone, migratetype); 2637 } 2638 2639 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2640 2641 out: 2642 /* 2643 * When updating a task's mems_allowed, it is possible to race with 2644 * parallel threads in such a way that an allocation can fail while 2645 * the mask is being updated. If a page allocation is about to fail, 2646 * check if the cpuset changed during allocation and if so, retry. 2647 */ 2648 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 2649 goto retry_cpuset; 2650 2651 memcg_kmem_commit_charge(page, memcg, order); 2652 2653 return page; 2654 } 2655 EXPORT_SYMBOL(__alloc_pages_nodemask); 2656 2657 /* 2658 * Common helper functions. 2659 */ 2660 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2661 { 2662 struct page *page; 2663 2664 /* 2665 * __get_free_pages() returns a 32-bit address, which cannot represent 2666 * a highmem page 2667 */ 2668 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2669 2670 page = alloc_pages(gfp_mask, order); 2671 if (!page) 2672 return 0; 2673 return (unsigned long) page_address(page); 2674 } 2675 EXPORT_SYMBOL(__get_free_pages); 2676 2677 unsigned long get_zeroed_page(gfp_t gfp_mask) 2678 { 2679 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2680 } 2681 EXPORT_SYMBOL(get_zeroed_page); 2682 2683 void __free_pages(struct page *page, unsigned int order) 2684 { 2685 if (put_page_testzero(page)) { 2686 if (order == 0) 2687 free_hot_cold_page(page, 0); 2688 else 2689 __free_pages_ok(page, order); 2690 } 2691 } 2692 2693 EXPORT_SYMBOL(__free_pages); 2694 2695 void free_pages(unsigned long addr, unsigned int order) 2696 { 2697 if (addr != 0) { 2698 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2699 __free_pages(virt_to_page((void *)addr), order); 2700 } 2701 } 2702 2703 EXPORT_SYMBOL(free_pages); 2704 2705 /* 2706 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free 2707 * pages allocated with __GFP_KMEMCG. 2708 * 2709 * Those pages are accounted to a particular memcg, embedded in the 2710 * corresponding page_cgroup. To avoid adding a hit in the allocator to search 2711 * for that information only to find out that it is NULL for users who have no 2712 * interest in that whatsoever, we provide these functions. 2713 * 2714 * The caller knows better which flags it relies on. 2715 */ 2716 void __free_memcg_kmem_pages(struct page *page, unsigned int order) 2717 { 2718 memcg_kmem_uncharge_pages(page, order); 2719 __free_pages(page, order); 2720 } 2721 2722 void free_memcg_kmem_pages(unsigned long addr, unsigned int order) 2723 { 2724 if (addr != 0) { 2725 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2726 __free_memcg_kmem_pages(virt_to_page((void *)addr), order); 2727 } 2728 } 2729 2730 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2731 { 2732 if (addr) { 2733 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2734 unsigned long used = addr + PAGE_ALIGN(size); 2735 2736 split_page(virt_to_page((void *)addr), order); 2737 while (used < alloc_end) { 2738 free_page(used); 2739 used += PAGE_SIZE; 2740 } 2741 } 2742 return (void *)addr; 2743 } 2744 2745 /** 2746 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2747 * @size: the number of bytes to allocate 2748 * @gfp_mask: GFP flags for the allocation 2749 * 2750 * This function is similar to alloc_pages(), except that it allocates the 2751 * minimum number of pages to satisfy the request. alloc_pages() can only 2752 * allocate memory in power-of-two pages. 2753 * 2754 * This function is also limited by MAX_ORDER. 2755 * 2756 * Memory allocated by this function must be released by free_pages_exact(). 2757 */ 2758 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2759 { 2760 unsigned int order = get_order(size); 2761 unsigned long addr; 2762 2763 addr = __get_free_pages(gfp_mask, order); 2764 return make_alloc_exact(addr, order, size); 2765 } 2766 EXPORT_SYMBOL(alloc_pages_exact); 2767 2768 /** 2769 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2770 * pages on a node. 2771 * @nid: the preferred node ID where memory should be allocated 2772 * @size: the number of bytes to allocate 2773 * @gfp_mask: GFP flags for the allocation 2774 * 2775 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2776 * back. 2777 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2778 * but is not exact. 2779 */ 2780 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2781 { 2782 unsigned order = get_order(size); 2783 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2784 if (!p) 2785 return NULL; 2786 return make_alloc_exact((unsigned long)page_address(p), order, size); 2787 } 2788 EXPORT_SYMBOL(alloc_pages_exact_nid); 2789 2790 /** 2791 * free_pages_exact - release memory allocated via alloc_pages_exact() 2792 * @virt: the value returned by alloc_pages_exact. 2793 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2794 * 2795 * Release the memory allocated by a previous call to alloc_pages_exact. 2796 */ 2797 void free_pages_exact(void *virt, size_t size) 2798 { 2799 unsigned long addr = (unsigned long)virt; 2800 unsigned long end = addr + PAGE_ALIGN(size); 2801 2802 while (addr < end) { 2803 free_page(addr); 2804 addr += PAGE_SIZE; 2805 } 2806 } 2807 EXPORT_SYMBOL(free_pages_exact); 2808 2809 /** 2810 * nr_free_zone_pages - count number of pages beyond high watermark 2811 * @offset: The zone index of the highest zone 2812 * 2813 * nr_free_zone_pages() counts the number of counts pages which are beyond the 2814 * high watermark within all zones at or below a given zone index. For each 2815 * zone, the number of pages is calculated as: 2816 * present_pages - high_pages 2817 */ 2818 static unsigned long nr_free_zone_pages(int offset) 2819 { 2820 struct zoneref *z; 2821 struct zone *zone; 2822 2823 /* Just pick one node, since fallback list is circular */ 2824 unsigned long sum = 0; 2825 2826 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2827 2828 for_each_zone_zonelist(zone, z, zonelist, offset) { 2829 unsigned long size = zone->managed_pages; 2830 unsigned long high = high_wmark_pages(zone); 2831 if (size > high) 2832 sum += size - high; 2833 } 2834 2835 return sum; 2836 } 2837 2838 /** 2839 * nr_free_buffer_pages - count number of pages beyond high watermark 2840 * 2841 * nr_free_buffer_pages() counts the number of pages which are beyond the high 2842 * watermark within ZONE_DMA and ZONE_NORMAL. 2843 */ 2844 unsigned long nr_free_buffer_pages(void) 2845 { 2846 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2847 } 2848 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2849 2850 /** 2851 * nr_free_pagecache_pages - count number of pages beyond high watermark 2852 * 2853 * nr_free_pagecache_pages() counts the number of pages which are beyond the 2854 * high watermark within all zones. 2855 */ 2856 unsigned long nr_free_pagecache_pages(void) 2857 { 2858 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2859 } 2860 2861 static inline void show_node(struct zone *zone) 2862 { 2863 if (IS_ENABLED(CONFIG_NUMA)) 2864 printk("Node %d ", zone_to_nid(zone)); 2865 } 2866 2867 void si_meminfo(struct sysinfo *val) 2868 { 2869 val->totalram = totalram_pages; 2870 val->sharedram = 0; 2871 val->freeram = global_page_state(NR_FREE_PAGES); 2872 val->bufferram = nr_blockdev_pages(); 2873 val->totalhigh = totalhigh_pages; 2874 val->freehigh = nr_free_highpages(); 2875 val->mem_unit = PAGE_SIZE; 2876 } 2877 2878 EXPORT_SYMBOL(si_meminfo); 2879 2880 #ifdef CONFIG_NUMA 2881 void si_meminfo_node(struct sysinfo *val, int nid) 2882 { 2883 pg_data_t *pgdat = NODE_DATA(nid); 2884 2885 val->totalram = pgdat->node_present_pages; 2886 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2887 #ifdef CONFIG_HIGHMEM 2888 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; 2889 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2890 NR_FREE_PAGES); 2891 #else 2892 val->totalhigh = 0; 2893 val->freehigh = 0; 2894 #endif 2895 val->mem_unit = PAGE_SIZE; 2896 } 2897 #endif 2898 2899 /* 2900 * Determine whether the node should be displayed or not, depending on whether 2901 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 2902 */ 2903 bool skip_free_areas_node(unsigned int flags, int nid) 2904 { 2905 bool ret = false; 2906 unsigned int cpuset_mems_cookie; 2907 2908 if (!(flags & SHOW_MEM_FILTER_NODES)) 2909 goto out; 2910 2911 do { 2912 cpuset_mems_cookie = get_mems_allowed(); 2913 ret = !node_isset(nid, cpuset_current_mems_allowed); 2914 } while (!put_mems_allowed(cpuset_mems_cookie)); 2915 out: 2916 return ret; 2917 } 2918 2919 #define K(x) ((x) << (PAGE_SHIFT-10)) 2920 2921 static void show_migration_types(unsigned char type) 2922 { 2923 static const char types[MIGRATE_TYPES] = { 2924 [MIGRATE_UNMOVABLE] = 'U', 2925 [MIGRATE_RECLAIMABLE] = 'E', 2926 [MIGRATE_MOVABLE] = 'M', 2927 [MIGRATE_RESERVE] = 'R', 2928 #ifdef CONFIG_CMA 2929 [MIGRATE_CMA] = 'C', 2930 #endif 2931 #ifdef CONFIG_MEMORY_ISOLATION 2932 [MIGRATE_ISOLATE] = 'I', 2933 #endif 2934 }; 2935 char tmp[MIGRATE_TYPES + 1]; 2936 char *p = tmp; 2937 int i; 2938 2939 for (i = 0; i < MIGRATE_TYPES; i++) { 2940 if (type & (1 << i)) 2941 *p++ = types[i]; 2942 } 2943 2944 *p = '\0'; 2945 printk("(%s) ", tmp); 2946 } 2947 2948 /* 2949 * Show free area list (used inside shift_scroll-lock stuff) 2950 * We also calculate the percentage fragmentation. We do this by counting the 2951 * memory on each free list with the exception of the first item on the list. 2952 * Suppresses nodes that are not allowed by current's cpuset if 2953 * SHOW_MEM_FILTER_NODES is passed. 2954 */ 2955 void show_free_areas(unsigned int filter) 2956 { 2957 int cpu; 2958 struct zone *zone; 2959 2960 for_each_populated_zone(zone) { 2961 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2962 continue; 2963 show_node(zone); 2964 printk("%s per-cpu:\n", zone->name); 2965 2966 for_each_online_cpu(cpu) { 2967 struct per_cpu_pageset *pageset; 2968 2969 pageset = per_cpu_ptr(zone->pageset, cpu); 2970 2971 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2972 cpu, pageset->pcp.high, 2973 pageset->pcp.batch, pageset->pcp.count); 2974 } 2975 } 2976 2977 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2978 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2979 " unevictable:%lu" 2980 " dirty:%lu writeback:%lu unstable:%lu\n" 2981 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2982 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 2983 " free_cma:%lu\n", 2984 global_page_state(NR_ACTIVE_ANON), 2985 global_page_state(NR_INACTIVE_ANON), 2986 global_page_state(NR_ISOLATED_ANON), 2987 global_page_state(NR_ACTIVE_FILE), 2988 global_page_state(NR_INACTIVE_FILE), 2989 global_page_state(NR_ISOLATED_FILE), 2990 global_page_state(NR_UNEVICTABLE), 2991 global_page_state(NR_FILE_DIRTY), 2992 global_page_state(NR_WRITEBACK), 2993 global_page_state(NR_UNSTABLE_NFS), 2994 global_page_state(NR_FREE_PAGES), 2995 global_page_state(NR_SLAB_RECLAIMABLE), 2996 global_page_state(NR_SLAB_UNRECLAIMABLE), 2997 global_page_state(NR_FILE_MAPPED), 2998 global_page_state(NR_SHMEM), 2999 global_page_state(NR_PAGETABLE), 3000 global_page_state(NR_BOUNCE), 3001 global_page_state(NR_FREE_CMA_PAGES)); 3002 3003 for_each_populated_zone(zone) { 3004 int i; 3005 3006 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3007 continue; 3008 show_node(zone); 3009 printk("%s" 3010 " free:%lukB" 3011 " min:%lukB" 3012 " low:%lukB" 3013 " high:%lukB" 3014 " active_anon:%lukB" 3015 " inactive_anon:%lukB" 3016 " active_file:%lukB" 3017 " inactive_file:%lukB" 3018 " unevictable:%lukB" 3019 " isolated(anon):%lukB" 3020 " isolated(file):%lukB" 3021 " present:%lukB" 3022 " managed:%lukB" 3023 " mlocked:%lukB" 3024 " dirty:%lukB" 3025 " writeback:%lukB" 3026 " mapped:%lukB" 3027 " shmem:%lukB" 3028 " slab_reclaimable:%lukB" 3029 " slab_unreclaimable:%lukB" 3030 " kernel_stack:%lukB" 3031 " pagetables:%lukB" 3032 " unstable:%lukB" 3033 " bounce:%lukB" 3034 " free_cma:%lukB" 3035 " writeback_tmp:%lukB" 3036 " pages_scanned:%lu" 3037 " all_unreclaimable? %s" 3038 "\n", 3039 zone->name, 3040 K(zone_page_state(zone, NR_FREE_PAGES)), 3041 K(min_wmark_pages(zone)), 3042 K(low_wmark_pages(zone)), 3043 K(high_wmark_pages(zone)), 3044 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3045 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3046 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3047 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3048 K(zone_page_state(zone, NR_UNEVICTABLE)), 3049 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3050 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3051 K(zone->present_pages), 3052 K(zone->managed_pages), 3053 K(zone_page_state(zone, NR_MLOCK)), 3054 K(zone_page_state(zone, NR_FILE_DIRTY)), 3055 K(zone_page_state(zone, NR_WRITEBACK)), 3056 K(zone_page_state(zone, NR_FILE_MAPPED)), 3057 K(zone_page_state(zone, NR_SHMEM)), 3058 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3059 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3060 zone_page_state(zone, NR_KERNEL_STACK) * 3061 THREAD_SIZE / 1024, 3062 K(zone_page_state(zone, NR_PAGETABLE)), 3063 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3064 K(zone_page_state(zone, NR_BOUNCE)), 3065 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3066 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3067 zone->pages_scanned, 3068 (zone->all_unreclaimable ? "yes" : "no") 3069 ); 3070 printk("lowmem_reserve[]:"); 3071 for (i = 0; i < MAX_NR_ZONES; i++) 3072 printk(" %lu", zone->lowmem_reserve[i]); 3073 printk("\n"); 3074 } 3075 3076 for_each_populated_zone(zone) { 3077 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3078 unsigned char types[MAX_ORDER]; 3079 3080 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3081 continue; 3082 show_node(zone); 3083 printk("%s: ", zone->name); 3084 3085 spin_lock_irqsave(&zone->lock, flags); 3086 for (order = 0; order < MAX_ORDER; order++) { 3087 struct free_area *area = &zone->free_area[order]; 3088 int type; 3089 3090 nr[order] = area->nr_free; 3091 total += nr[order] << order; 3092 3093 types[order] = 0; 3094 for (type = 0; type < MIGRATE_TYPES; type++) { 3095 if (!list_empty(&area->free_list[type])) 3096 types[order] |= 1 << type; 3097 } 3098 } 3099 spin_unlock_irqrestore(&zone->lock, flags); 3100 for (order = 0; order < MAX_ORDER; order++) { 3101 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3102 if (nr[order]) 3103 show_migration_types(types[order]); 3104 } 3105 printk("= %lukB\n", K(total)); 3106 } 3107 3108 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3109 3110 show_swap_cache_info(); 3111 } 3112 3113 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3114 { 3115 zoneref->zone = zone; 3116 zoneref->zone_idx = zone_idx(zone); 3117 } 3118 3119 /* 3120 * Builds allocation fallback zone lists. 3121 * 3122 * Add all populated zones of a node to the zonelist. 3123 */ 3124 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3125 int nr_zones, enum zone_type zone_type) 3126 { 3127 struct zone *zone; 3128 3129 BUG_ON(zone_type >= MAX_NR_ZONES); 3130 zone_type++; 3131 3132 do { 3133 zone_type--; 3134 zone = pgdat->node_zones + zone_type; 3135 if (populated_zone(zone)) { 3136 zoneref_set_zone(zone, 3137 &zonelist->_zonerefs[nr_zones++]); 3138 check_highest_zone(zone_type); 3139 } 3140 3141 } while (zone_type); 3142 return nr_zones; 3143 } 3144 3145 3146 /* 3147 * zonelist_order: 3148 * 0 = automatic detection of better ordering. 3149 * 1 = order by ([node] distance, -zonetype) 3150 * 2 = order by (-zonetype, [node] distance) 3151 * 3152 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3153 * the same zonelist. So only NUMA can configure this param. 3154 */ 3155 #define ZONELIST_ORDER_DEFAULT 0 3156 #define ZONELIST_ORDER_NODE 1 3157 #define ZONELIST_ORDER_ZONE 2 3158 3159 /* zonelist order in the kernel. 3160 * set_zonelist_order() will set this to NODE or ZONE. 3161 */ 3162 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3163 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3164 3165 3166 #ifdef CONFIG_NUMA 3167 /* The value user specified ....changed by config */ 3168 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3169 /* string for sysctl */ 3170 #define NUMA_ZONELIST_ORDER_LEN 16 3171 char numa_zonelist_order[16] = "default"; 3172 3173 /* 3174 * interface for configure zonelist ordering. 3175 * command line option "numa_zonelist_order" 3176 * = "[dD]efault - default, automatic configuration. 3177 * = "[nN]ode - order by node locality, then by zone within node 3178 * = "[zZ]one - order by zone, then by locality within zone 3179 */ 3180 3181 static int __parse_numa_zonelist_order(char *s) 3182 { 3183 if (*s == 'd' || *s == 'D') { 3184 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3185 } else if (*s == 'n' || *s == 'N') { 3186 user_zonelist_order = ZONELIST_ORDER_NODE; 3187 } else if (*s == 'z' || *s == 'Z') { 3188 user_zonelist_order = ZONELIST_ORDER_ZONE; 3189 } else { 3190 printk(KERN_WARNING 3191 "Ignoring invalid numa_zonelist_order value: " 3192 "%s\n", s); 3193 return -EINVAL; 3194 } 3195 return 0; 3196 } 3197 3198 static __init int setup_numa_zonelist_order(char *s) 3199 { 3200 int ret; 3201 3202 if (!s) 3203 return 0; 3204 3205 ret = __parse_numa_zonelist_order(s); 3206 if (ret == 0) 3207 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3208 3209 return ret; 3210 } 3211 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3212 3213 /* 3214 * sysctl handler for numa_zonelist_order 3215 */ 3216 int numa_zonelist_order_handler(ctl_table *table, int write, 3217 void __user *buffer, size_t *length, 3218 loff_t *ppos) 3219 { 3220 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3221 int ret; 3222 static DEFINE_MUTEX(zl_order_mutex); 3223 3224 mutex_lock(&zl_order_mutex); 3225 if (write) 3226 strcpy(saved_string, (char*)table->data); 3227 ret = proc_dostring(table, write, buffer, length, ppos); 3228 if (ret) 3229 goto out; 3230 if (write) { 3231 int oldval = user_zonelist_order; 3232 if (__parse_numa_zonelist_order((char*)table->data)) { 3233 /* 3234 * bogus value. restore saved string 3235 */ 3236 strncpy((char*)table->data, saved_string, 3237 NUMA_ZONELIST_ORDER_LEN); 3238 user_zonelist_order = oldval; 3239 } else if (oldval != user_zonelist_order) { 3240 mutex_lock(&zonelists_mutex); 3241 build_all_zonelists(NULL, NULL); 3242 mutex_unlock(&zonelists_mutex); 3243 } 3244 } 3245 out: 3246 mutex_unlock(&zl_order_mutex); 3247 return ret; 3248 } 3249 3250 3251 #define MAX_NODE_LOAD (nr_online_nodes) 3252 static int node_load[MAX_NUMNODES]; 3253 3254 /** 3255 * find_next_best_node - find the next node that should appear in a given node's fallback list 3256 * @node: node whose fallback list we're appending 3257 * @used_node_mask: nodemask_t of already used nodes 3258 * 3259 * We use a number of factors to determine which is the next node that should 3260 * appear on a given node's fallback list. The node should not have appeared 3261 * already in @node's fallback list, and it should be the next closest node 3262 * according to the distance array (which contains arbitrary distance values 3263 * from each node to each node in the system), and should also prefer nodes 3264 * with no CPUs, since presumably they'll have very little allocation pressure 3265 * on them otherwise. 3266 * It returns -1 if no node is found. 3267 */ 3268 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3269 { 3270 int n, val; 3271 int min_val = INT_MAX; 3272 int best_node = NUMA_NO_NODE; 3273 const struct cpumask *tmp = cpumask_of_node(0); 3274 3275 /* Use the local node if we haven't already */ 3276 if (!node_isset(node, *used_node_mask)) { 3277 node_set(node, *used_node_mask); 3278 return node; 3279 } 3280 3281 for_each_node_state(n, N_MEMORY) { 3282 3283 /* Don't want a node to appear more than once */ 3284 if (node_isset(n, *used_node_mask)) 3285 continue; 3286 3287 /* Use the distance array to find the distance */ 3288 val = node_distance(node, n); 3289 3290 /* Penalize nodes under us ("prefer the next node") */ 3291 val += (n < node); 3292 3293 /* Give preference to headless and unused nodes */ 3294 tmp = cpumask_of_node(n); 3295 if (!cpumask_empty(tmp)) 3296 val += PENALTY_FOR_NODE_WITH_CPUS; 3297 3298 /* Slight preference for less loaded node */ 3299 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3300 val += node_load[n]; 3301 3302 if (val < min_val) { 3303 min_val = val; 3304 best_node = n; 3305 } 3306 } 3307 3308 if (best_node >= 0) 3309 node_set(best_node, *used_node_mask); 3310 3311 return best_node; 3312 } 3313 3314 3315 /* 3316 * Build zonelists ordered by node and zones within node. 3317 * This results in maximum locality--normal zone overflows into local 3318 * DMA zone, if any--but risks exhausting DMA zone. 3319 */ 3320 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3321 { 3322 int j; 3323 struct zonelist *zonelist; 3324 3325 zonelist = &pgdat->node_zonelists[0]; 3326 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3327 ; 3328 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3329 MAX_NR_ZONES - 1); 3330 zonelist->_zonerefs[j].zone = NULL; 3331 zonelist->_zonerefs[j].zone_idx = 0; 3332 } 3333 3334 /* 3335 * Build gfp_thisnode zonelists 3336 */ 3337 static void build_thisnode_zonelists(pg_data_t *pgdat) 3338 { 3339 int j; 3340 struct zonelist *zonelist; 3341 3342 zonelist = &pgdat->node_zonelists[1]; 3343 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3344 zonelist->_zonerefs[j].zone = NULL; 3345 zonelist->_zonerefs[j].zone_idx = 0; 3346 } 3347 3348 /* 3349 * Build zonelists ordered by zone and nodes within zones. 3350 * This results in conserving DMA zone[s] until all Normal memory is 3351 * exhausted, but results in overflowing to remote node while memory 3352 * may still exist in local DMA zone. 3353 */ 3354 static int node_order[MAX_NUMNODES]; 3355 3356 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3357 { 3358 int pos, j, node; 3359 int zone_type; /* needs to be signed */ 3360 struct zone *z; 3361 struct zonelist *zonelist; 3362 3363 zonelist = &pgdat->node_zonelists[0]; 3364 pos = 0; 3365 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3366 for (j = 0; j < nr_nodes; j++) { 3367 node = node_order[j]; 3368 z = &NODE_DATA(node)->node_zones[zone_type]; 3369 if (populated_zone(z)) { 3370 zoneref_set_zone(z, 3371 &zonelist->_zonerefs[pos++]); 3372 check_highest_zone(zone_type); 3373 } 3374 } 3375 } 3376 zonelist->_zonerefs[pos].zone = NULL; 3377 zonelist->_zonerefs[pos].zone_idx = 0; 3378 } 3379 3380 static int default_zonelist_order(void) 3381 { 3382 int nid, zone_type; 3383 unsigned long low_kmem_size,total_size; 3384 struct zone *z; 3385 int average_size; 3386 /* 3387 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 3388 * If they are really small and used heavily, the system can fall 3389 * into OOM very easily. 3390 * This function detect ZONE_DMA/DMA32 size and configures zone order. 3391 */ 3392 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 3393 low_kmem_size = 0; 3394 total_size = 0; 3395 for_each_online_node(nid) { 3396 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3397 z = &NODE_DATA(nid)->node_zones[zone_type]; 3398 if (populated_zone(z)) { 3399 if (zone_type < ZONE_NORMAL) 3400 low_kmem_size += z->present_pages; 3401 total_size += z->present_pages; 3402 } else if (zone_type == ZONE_NORMAL) { 3403 /* 3404 * If any node has only lowmem, then node order 3405 * is preferred to allow kernel allocations 3406 * locally; otherwise, they can easily infringe 3407 * on other nodes when there is an abundance of 3408 * lowmem available to allocate from. 3409 */ 3410 return ZONELIST_ORDER_NODE; 3411 } 3412 } 3413 } 3414 if (!low_kmem_size || /* there are no DMA area. */ 3415 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 3416 return ZONELIST_ORDER_NODE; 3417 /* 3418 * look into each node's config. 3419 * If there is a node whose DMA/DMA32 memory is very big area on 3420 * local memory, NODE_ORDER may be suitable. 3421 */ 3422 average_size = total_size / 3423 (nodes_weight(node_states[N_MEMORY]) + 1); 3424 for_each_online_node(nid) { 3425 low_kmem_size = 0; 3426 total_size = 0; 3427 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3428 z = &NODE_DATA(nid)->node_zones[zone_type]; 3429 if (populated_zone(z)) { 3430 if (zone_type < ZONE_NORMAL) 3431 low_kmem_size += z->present_pages; 3432 total_size += z->present_pages; 3433 } 3434 } 3435 if (low_kmem_size && 3436 total_size > average_size && /* ignore small node */ 3437 low_kmem_size > total_size * 70/100) 3438 return ZONELIST_ORDER_NODE; 3439 } 3440 return ZONELIST_ORDER_ZONE; 3441 } 3442 3443 static void set_zonelist_order(void) 3444 { 3445 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3446 current_zonelist_order = default_zonelist_order(); 3447 else 3448 current_zonelist_order = user_zonelist_order; 3449 } 3450 3451 static void build_zonelists(pg_data_t *pgdat) 3452 { 3453 int j, node, load; 3454 enum zone_type i; 3455 nodemask_t used_mask; 3456 int local_node, prev_node; 3457 struct zonelist *zonelist; 3458 int order = current_zonelist_order; 3459 3460 /* initialize zonelists */ 3461 for (i = 0; i < MAX_ZONELISTS; i++) { 3462 zonelist = pgdat->node_zonelists + i; 3463 zonelist->_zonerefs[0].zone = NULL; 3464 zonelist->_zonerefs[0].zone_idx = 0; 3465 } 3466 3467 /* NUMA-aware ordering of nodes */ 3468 local_node = pgdat->node_id; 3469 load = nr_online_nodes; 3470 prev_node = local_node; 3471 nodes_clear(used_mask); 3472 3473 memset(node_order, 0, sizeof(node_order)); 3474 j = 0; 3475 3476 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3477 /* 3478 * We don't want to pressure a particular node. 3479 * So adding penalty to the first node in same 3480 * distance group to make it round-robin. 3481 */ 3482 if (node_distance(local_node, node) != 3483 node_distance(local_node, prev_node)) 3484 node_load[node] = load; 3485 3486 prev_node = node; 3487 load--; 3488 if (order == ZONELIST_ORDER_NODE) 3489 build_zonelists_in_node_order(pgdat, node); 3490 else 3491 node_order[j++] = node; /* remember order */ 3492 } 3493 3494 if (order == ZONELIST_ORDER_ZONE) { 3495 /* calculate node order -- i.e., DMA last! */ 3496 build_zonelists_in_zone_order(pgdat, j); 3497 } 3498 3499 build_thisnode_zonelists(pgdat); 3500 } 3501 3502 /* Construct the zonelist performance cache - see further mmzone.h */ 3503 static void build_zonelist_cache(pg_data_t *pgdat) 3504 { 3505 struct zonelist *zonelist; 3506 struct zonelist_cache *zlc; 3507 struct zoneref *z; 3508 3509 zonelist = &pgdat->node_zonelists[0]; 3510 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3511 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3512 for (z = zonelist->_zonerefs; z->zone; z++) 3513 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3514 } 3515 3516 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3517 /* 3518 * Return node id of node used for "local" allocations. 3519 * I.e., first node id of first zone in arg node's generic zonelist. 3520 * Used for initializing percpu 'numa_mem', which is used primarily 3521 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3522 */ 3523 int local_memory_node(int node) 3524 { 3525 struct zone *zone; 3526 3527 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3528 gfp_zone(GFP_KERNEL), 3529 NULL, 3530 &zone); 3531 return zone->node; 3532 } 3533 #endif 3534 3535 #else /* CONFIG_NUMA */ 3536 3537 static void set_zonelist_order(void) 3538 { 3539 current_zonelist_order = ZONELIST_ORDER_ZONE; 3540 } 3541 3542 static void build_zonelists(pg_data_t *pgdat) 3543 { 3544 int node, local_node; 3545 enum zone_type j; 3546 struct zonelist *zonelist; 3547 3548 local_node = pgdat->node_id; 3549 3550 zonelist = &pgdat->node_zonelists[0]; 3551 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3552 3553 /* 3554 * Now we build the zonelist so that it contains the zones 3555 * of all the other nodes. 3556 * We don't want to pressure a particular node, so when 3557 * building the zones for node N, we make sure that the 3558 * zones coming right after the local ones are those from 3559 * node N+1 (modulo N) 3560 */ 3561 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3562 if (!node_online(node)) 3563 continue; 3564 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3565 MAX_NR_ZONES - 1); 3566 } 3567 for (node = 0; node < local_node; node++) { 3568 if (!node_online(node)) 3569 continue; 3570 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3571 MAX_NR_ZONES - 1); 3572 } 3573 3574 zonelist->_zonerefs[j].zone = NULL; 3575 zonelist->_zonerefs[j].zone_idx = 0; 3576 } 3577 3578 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3579 static void build_zonelist_cache(pg_data_t *pgdat) 3580 { 3581 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3582 } 3583 3584 #endif /* CONFIG_NUMA */ 3585 3586 /* 3587 * Boot pageset table. One per cpu which is going to be used for all 3588 * zones and all nodes. The parameters will be set in such a way 3589 * that an item put on a list will immediately be handed over to 3590 * the buddy list. This is safe since pageset manipulation is done 3591 * with interrupts disabled. 3592 * 3593 * The boot_pagesets must be kept even after bootup is complete for 3594 * unused processors and/or zones. They do play a role for bootstrapping 3595 * hotplugged processors. 3596 * 3597 * zoneinfo_show() and maybe other functions do 3598 * not check if the processor is online before following the pageset pointer. 3599 * Other parts of the kernel may not check if the zone is available. 3600 */ 3601 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3602 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3603 static void setup_zone_pageset(struct zone *zone); 3604 3605 /* 3606 * Global mutex to protect against size modification of zonelists 3607 * as well as to serialize pageset setup for the new populated zone. 3608 */ 3609 DEFINE_MUTEX(zonelists_mutex); 3610 3611 /* return values int ....just for stop_machine() */ 3612 static int __build_all_zonelists(void *data) 3613 { 3614 int nid; 3615 int cpu; 3616 pg_data_t *self = data; 3617 3618 #ifdef CONFIG_NUMA 3619 memset(node_load, 0, sizeof(node_load)); 3620 #endif 3621 3622 if (self && !node_online(self->node_id)) { 3623 build_zonelists(self); 3624 build_zonelist_cache(self); 3625 } 3626 3627 for_each_online_node(nid) { 3628 pg_data_t *pgdat = NODE_DATA(nid); 3629 3630 build_zonelists(pgdat); 3631 build_zonelist_cache(pgdat); 3632 } 3633 3634 /* 3635 * Initialize the boot_pagesets that are going to be used 3636 * for bootstrapping processors. The real pagesets for 3637 * each zone will be allocated later when the per cpu 3638 * allocator is available. 3639 * 3640 * boot_pagesets are used also for bootstrapping offline 3641 * cpus if the system is already booted because the pagesets 3642 * are needed to initialize allocators on a specific cpu too. 3643 * F.e. the percpu allocator needs the page allocator which 3644 * needs the percpu allocator in order to allocate its pagesets 3645 * (a chicken-egg dilemma). 3646 */ 3647 for_each_possible_cpu(cpu) { 3648 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3649 3650 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3651 /* 3652 * We now know the "local memory node" for each node-- 3653 * i.e., the node of the first zone in the generic zonelist. 3654 * Set up numa_mem percpu variable for on-line cpus. During 3655 * boot, only the boot cpu should be on-line; we'll init the 3656 * secondary cpus' numa_mem as they come on-line. During 3657 * node/memory hotplug, we'll fixup all on-line cpus. 3658 */ 3659 if (cpu_online(cpu)) 3660 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3661 #endif 3662 } 3663 3664 return 0; 3665 } 3666 3667 /* 3668 * Called with zonelists_mutex held always 3669 * unless system_state == SYSTEM_BOOTING. 3670 */ 3671 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3672 { 3673 set_zonelist_order(); 3674 3675 if (system_state == SYSTEM_BOOTING) { 3676 __build_all_zonelists(NULL); 3677 mminit_verify_zonelist(); 3678 cpuset_init_current_mems_allowed(); 3679 } else { 3680 /* we have to stop all cpus to guarantee there is no user 3681 of zonelist */ 3682 #ifdef CONFIG_MEMORY_HOTPLUG 3683 if (zone) 3684 setup_zone_pageset(zone); 3685 #endif 3686 stop_machine(__build_all_zonelists, pgdat, NULL); 3687 /* cpuset refresh routine should be here */ 3688 } 3689 vm_total_pages = nr_free_pagecache_pages(); 3690 /* 3691 * Disable grouping by mobility if the number of pages in the 3692 * system is too low to allow the mechanism to work. It would be 3693 * more accurate, but expensive to check per-zone. This check is 3694 * made on memory-hotadd so a system can start with mobility 3695 * disabled and enable it later 3696 */ 3697 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3698 page_group_by_mobility_disabled = 1; 3699 else 3700 page_group_by_mobility_disabled = 0; 3701 3702 printk("Built %i zonelists in %s order, mobility grouping %s. " 3703 "Total pages: %ld\n", 3704 nr_online_nodes, 3705 zonelist_order_name[current_zonelist_order], 3706 page_group_by_mobility_disabled ? "off" : "on", 3707 vm_total_pages); 3708 #ifdef CONFIG_NUMA 3709 printk("Policy zone: %s\n", zone_names[policy_zone]); 3710 #endif 3711 } 3712 3713 /* 3714 * Helper functions to size the waitqueue hash table. 3715 * Essentially these want to choose hash table sizes sufficiently 3716 * large so that collisions trying to wait on pages are rare. 3717 * But in fact, the number of active page waitqueues on typical 3718 * systems is ridiculously low, less than 200. So this is even 3719 * conservative, even though it seems large. 3720 * 3721 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3722 * waitqueues, i.e. the size of the waitq table given the number of pages. 3723 */ 3724 #define PAGES_PER_WAITQUEUE 256 3725 3726 #ifndef CONFIG_MEMORY_HOTPLUG 3727 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3728 { 3729 unsigned long size = 1; 3730 3731 pages /= PAGES_PER_WAITQUEUE; 3732 3733 while (size < pages) 3734 size <<= 1; 3735 3736 /* 3737 * Once we have dozens or even hundreds of threads sleeping 3738 * on IO we've got bigger problems than wait queue collision. 3739 * Limit the size of the wait table to a reasonable size. 3740 */ 3741 size = min(size, 4096UL); 3742 3743 return max(size, 4UL); 3744 } 3745 #else 3746 /* 3747 * A zone's size might be changed by hot-add, so it is not possible to determine 3748 * a suitable size for its wait_table. So we use the maximum size now. 3749 * 3750 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3751 * 3752 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3753 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3754 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3755 * 3756 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3757 * or more by the traditional way. (See above). It equals: 3758 * 3759 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3760 * ia64(16K page size) : = ( 8G + 4M)byte. 3761 * powerpc (64K page size) : = (32G +16M)byte. 3762 */ 3763 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3764 { 3765 return 4096UL; 3766 } 3767 #endif 3768 3769 /* 3770 * This is an integer logarithm so that shifts can be used later 3771 * to extract the more random high bits from the multiplicative 3772 * hash function before the remainder is taken. 3773 */ 3774 static inline unsigned long wait_table_bits(unsigned long size) 3775 { 3776 return ffz(~size); 3777 } 3778 3779 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3780 3781 /* 3782 * Check if a pageblock contains reserved pages 3783 */ 3784 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3785 { 3786 unsigned long pfn; 3787 3788 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3789 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3790 return 1; 3791 } 3792 return 0; 3793 } 3794 3795 /* 3796 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3797 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3798 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3799 * higher will lead to a bigger reserve which will get freed as contiguous 3800 * blocks as reclaim kicks in 3801 */ 3802 static void setup_zone_migrate_reserve(struct zone *zone) 3803 { 3804 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3805 struct page *page; 3806 unsigned long block_migratetype; 3807 int reserve; 3808 3809 /* 3810 * Get the start pfn, end pfn and the number of blocks to reserve 3811 * We have to be careful to be aligned to pageblock_nr_pages to 3812 * make sure that we always check pfn_valid for the first page in 3813 * the block. 3814 */ 3815 start_pfn = zone->zone_start_pfn; 3816 end_pfn = zone_end_pfn(zone); 3817 start_pfn = roundup(start_pfn, pageblock_nr_pages); 3818 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3819 pageblock_order; 3820 3821 /* 3822 * Reserve blocks are generally in place to help high-order atomic 3823 * allocations that are short-lived. A min_free_kbytes value that 3824 * would result in more than 2 reserve blocks for atomic allocations 3825 * is assumed to be in place to help anti-fragmentation for the 3826 * future allocation of hugepages at runtime. 3827 */ 3828 reserve = min(2, reserve); 3829 3830 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3831 if (!pfn_valid(pfn)) 3832 continue; 3833 page = pfn_to_page(pfn); 3834 3835 /* Watch out for overlapping nodes */ 3836 if (page_to_nid(page) != zone_to_nid(zone)) 3837 continue; 3838 3839 block_migratetype = get_pageblock_migratetype(page); 3840 3841 /* Only test what is necessary when the reserves are not met */ 3842 if (reserve > 0) { 3843 /* 3844 * Blocks with reserved pages will never free, skip 3845 * them. 3846 */ 3847 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 3848 if (pageblock_is_reserved(pfn, block_end_pfn)) 3849 continue; 3850 3851 /* If this block is reserved, account for it */ 3852 if (block_migratetype == MIGRATE_RESERVE) { 3853 reserve--; 3854 continue; 3855 } 3856 3857 /* Suitable for reserving if this block is movable */ 3858 if (block_migratetype == MIGRATE_MOVABLE) { 3859 set_pageblock_migratetype(page, 3860 MIGRATE_RESERVE); 3861 move_freepages_block(zone, page, 3862 MIGRATE_RESERVE); 3863 reserve--; 3864 continue; 3865 } 3866 } 3867 3868 /* 3869 * If the reserve is met and this is a previous reserved block, 3870 * take it back 3871 */ 3872 if (block_migratetype == MIGRATE_RESERVE) { 3873 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3874 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3875 } 3876 } 3877 } 3878 3879 /* 3880 * Initially all pages are reserved - free ones are freed 3881 * up by free_all_bootmem() once the early boot process is 3882 * done. Non-atomic initialization, single-pass. 3883 */ 3884 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3885 unsigned long start_pfn, enum memmap_context context) 3886 { 3887 struct page *page; 3888 unsigned long end_pfn = start_pfn + size; 3889 unsigned long pfn; 3890 struct zone *z; 3891 3892 if (highest_memmap_pfn < end_pfn - 1) 3893 highest_memmap_pfn = end_pfn - 1; 3894 3895 z = &NODE_DATA(nid)->node_zones[zone]; 3896 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3897 /* 3898 * There can be holes in boot-time mem_map[]s 3899 * handed to this function. They do not 3900 * exist on hotplugged memory. 3901 */ 3902 if (context == MEMMAP_EARLY) { 3903 if (!early_pfn_valid(pfn)) 3904 continue; 3905 if (!early_pfn_in_nid(pfn, nid)) 3906 continue; 3907 } 3908 page = pfn_to_page(pfn); 3909 set_page_links(page, zone, nid, pfn); 3910 mminit_verify_page_links(page, zone, nid, pfn); 3911 init_page_count(page); 3912 page_mapcount_reset(page); 3913 page_nid_reset_last(page); 3914 SetPageReserved(page); 3915 /* 3916 * Mark the block movable so that blocks are reserved for 3917 * movable at startup. This will force kernel allocations 3918 * to reserve their blocks rather than leaking throughout 3919 * the address space during boot when many long-lived 3920 * kernel allocations are made. Later some blocks near 3921 * the start are marked MIGRATE_RESERVE by 3922 * setup_zone_migrate_reserve() 3923 * 3924 * bitmap is created for zone's valid pfn range. but memmap 3925 * can be created for invalid pages (for alignment) 3926 * check here not to call set_pageblock_migratetype() against 3927 * pfn out of zone. 3928 */ 3929 if ((z->zone_start_pfn <= pfn) 3930 && (pfn < zone_end_pfn(z)) 3931 && !(pfn & (pageblock_nr_pages - 1))) 3932 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3933 3934 INIT_LIST_HEAD(&page->lru); 3935 #ifdef WANT_PAGE_VIRTUAL 3936 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3937 if (!is_highmem_idx(zone)) 3938 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3939 #endif 3940 } 3941 } 3942 3943 static void __meminit zone_init_free_lists(struct zone *zone) 3944 { 3945 int order, t; 3946 for_each_migratetype_order(order, t) { 3947 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3948 zone->free_area[order].nr_free = 0; 3949 } 3950 } 3951 3952 #ifndef __HAVE_ARCH_MEMMAP_INIT 3953 #define memmap_init(size, nid, zone, start_pfn) \ 3954 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3955 #endif 3956 3957 static int __meminit zone_batchsize(struct zone *zone) 3958 { 3959 #ifdef CONFIG_MMU 3960 int batch; 3961 3962 /* 3963 * The per-cpu-pages pools are set to around 1000th of the 3964 * size of the zone. But no more than 1/2 of a meg. 3965 * 3966 * OK, so we don't know how big the cache is. So guess. 3967 */ 3968 batch = zone->managed_pages / 1024; 3969 if (batch * PAGE_SIZE > 512 * 1024) 3970 batch = (512 * 1024) / PAGE_SIZE; 3971 batch /= 4; /* We effectively *= 4 below */ 3972 if (batch < 1) 3973 batch = 1; 3974 3975 /* 3976 * Clamp the batch to a 2^n - 1 value. Having a power 3977 * of 2 value was found to be more likely to have 3978 * suboptimal cache aliasing properties in some cases. 3979 * 3980 * For example if 2 tasks are alternately allocating 3981 * batches of pages, one task can end up with a lot 3982 * of pages of one half of the possible page colors 3983 * and the other with pages of the other colors. 3984 */ 3985 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3986 3987 return batch; 3988 3989 #else 3990 /* The deferral and batching of frees should be suppressed under NOMMU 3991 * conditions. 3992 * 3993 * The problem is that NOMMU needs to be able to allocate large chunks 3994 * of contiguous memory as there's no hardware page translation to 3995 * assemble apparent contiguous memory from discontiguous pages. 3996 * 3997 * Queueing large contiguous runs of pages for batching, however, 3998 * causes the pages to actually be freed in smaller chunks. As there 3999 * can be a significant delay between the individual batches being 4000 * recycled, this leads to the once large chunks of space being 4001 * fragmented and becoming unavailable for high-order allocations. 4002 */ 4003 return 0; 4004 #endif 4005 } 4006 4007 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4008 { 4009 struct per_cpu_pages *pcp; 4010 int migratetype; 4011 4012 memset(p, 0, sizeof(*p)); 4013 4014 pcp = &p->pcp; 4015 pcp->count = 0; 4016 pcp->high = 6 * batch; 4017 pcp->batch = max(1UL, 1 * batch); 4018 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4019 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4020 } 4021 4022 /* 4023 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 4024 * to the value high for the pageset p. 4025 */ 4026 4027 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 4028 unsigned long high) 4029 { 4030 struct per_cpu_pages *pcp; 4031 4032 pcp = &p->pcp; 4033 pcp->high = high; 4034 pcp->batch = max(1UL, high/4); 4035 if ((high/4) > (PAGE_SHIFT * 8)) 4036 pcp->batch = PAGE_SHIFT * 8; 4037 } 4038 4039 static void __meminit setup_zone_pageset(struct zone *zone) 4040 { 4041 int cpu; 4042 4043 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4044 4045 for_each_possible_cpu(cpu) { 4046 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4047 4048 setup_pageset(pcp, zone_batchsize(zone)); 4049 4050 if (percpu_pagelist_fraction) 4051 setup_pagelist_highmark(pcp, 4052 (zone->managed_pages / 4053 percpu_pagelist_fraction)); 4054 } 4055 } 4056 4057 /* 4058 * Allocate per cpu pagesets and initialize them. 4059 * Before this call only boot pagesets were available. 4060 */ 4061 void __init setup_per_cpu_pageset(void) 4062 { 4063 struct zone *zone; 4064 4065 for_each_populated_zone(zone) 4066 setup_zone_pageset(zone); 4067 } 4068 4069 static noinline __init_refok 4070 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4071 { 4072 int i; 4073 struct pglist_data *pgdat = zone->zone_pgdat; 4074 size_t alloc_size; 4075 4076 /* 4077 * The per-page waitqueue mechanism uses hashed waitqueues 4078 * per zone. 4079 */ 4080 zone->wait_table_hash_nr_entries = 4081 wait_table_hash_nr_entries(zone_size_pages); 4082 zone->wait_table_bits = 4083 wait_table_bits(zone->wait_table_hash_nr_entries); 4084 alloc_size = zone->wait_table_hash_nr_entries 4085 * sizeof(wait_queue_head_t); 4086 4087 if (!slab_is_available()) { 4088 zone->wait_table = (wait_queue_head_t *) 4089 alloc_bootmem_node_nopanic(pgdat, alloc_size); 4090 } else { 4091 /* 4092 * This case means that a zone whose size was 0 gets new memory 4093 * via memory hot-add. 4094 * But it may be the case that a new node was hot-added. In 4095 * this case vmalloc() will not be able to use this new node's 4096 * memory - this wait_table must be initialized to use this new 4097 * node itself as well. 4098 * To use this new node's memory, further consideration will be 4099 * necessary. 4100 */ 4101 zone->wait_table = vmalloc(alloc_size); 4102 } 4103 if (!zone->wait_table) 4104 return -ENOMEM; 4105 4106 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4107 init_waitqueue_head(zone->wait_table + i); 4108 4109 return 0; 4110 } 4111 4112 static __meminit void zone_pcp_init(struct zone *zone) 4113 { 4114 /* 4115 * per cpu subsystem is not up at this point. The following code 4116 * relies on the ability of the linker to provide the 4117 * offset of a (static) per cpu variable into the per cpu area. 4118 */ 4119 zone->pageset = &boot_pageset; 4120 4121 if (zone->present_pages) 4122 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4123 zone->name, zone->present_pages, 4124 zone_batchsize(zone)); 4125 } 4126 4127 int __meminit init_currently_empty_zone(struct zone *zone, 4128 unsigned long zone_start_pfn, 4129 unsigned long size, 4130 enum memmap_context context) 4131 { 4132 struct pglist_data *pgdat = zone->zone_pgdat; 4133 int ret; 4134 ret = zone_wait_table_init(zone, size); 4135 if (ret) 4136 return ret; 4137 pgdat->nr_zones = zone_idx(zone) + 1; 4138 4139 zone->zone_start_pfn = zone_start_pfn; 4140 4141 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4142 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4143 pgdat->node_id, 4144 (unsigned long)zone_idx(zone), 4145 zone_start_pfn, (zone_start_pfn + size)); 4146 4147 zone_init_free_lists(zone); 4148 4149 return 0; 4150 } 4151 4152 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4153 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4154 /* 4155 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4156 * Architectures may implement their own version but if add_active_range() 4157 * was used and there are no special requirements, this is a convenient 4158 * alternative 4159 */ 4160 int __meminit __early_pfn_to_nid(unsigned long pfn) 4161 { 4162 unsigned long start_pfn, end_pfn; 4163 int i, nid; 4164 4165 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 4166 if (start_pfn <= pfn && pfn < end_pfn) 4167 return nid; 4168 /* This is a memory hole */ 4169 return -1; 4170 } 4171 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4172 4173 int __meminit early_pfn_to_nid(unsigned long pfn) 4174 { 4175 int nid; 4176 4177 nid = __early_pfn_to_nid(pfn); 4178 if (nid >= 0) 4179 return nid; 4180 /* just returns 0 */ 4181 return 0; 4182 } 4183 4184 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4185 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4186 { 4187 int nid; 4188 4189 nid = __early_pfn_to_nid(pfn); 4190 if (nid >= 0 && nid != node) 4191 return false; 4192 return true; 4193 } 4194 #endif 4195 4196 /** 4197 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 4198 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4199 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 4200 * 4201 * If an architecture guarantees that all ranges registered with 4202 * add_active_ranges() contain no holes and may be freed, this 4203 * this function may be used instead of calling free_bootmem() manually. 4204 */ 4205 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4206 { 4207 unsigned long start_pfn, end_pfn; 4208 int i, this_nid; 4209 4210 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4211 start_pfn = min(start_pfn, max_low_pfn); 4212 end_pfn = min(end_pfn, max_low_pfn); 4213 4214 if (start_pfn < end_pfn) 4215 free_bootmem_node(NODE_DATA(this_nid), 4216 PFN_PHYS(start_pfn), 4217 (end_pfn - start_pfn) << PAGE_SHIFT); 4218 } 4219 } 4220 4221 /** 4222 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4223 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4224 * 4225 * If an architecture guarantees that all ranges registered with 4226 * add_active_ranges() contain no holes and may be freed, this 4227 * function may be used instead of calling memory_present() manually. 4228 */ 4229 void __init sparse_memory_present_with_active_regions(int nid) 4230 { 4231 unsigned long start_pfn, end_pfn; 4232 int i, this_nid; 4233 4234 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4235 memory_present(this_nid, start_pfn, end_pfn); 4236 } 4237 4238 /** 4239 * get_pfn_range_for_nid - Return the start and end page frames for a node 4240 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4241 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4242 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4243 * 4244 * It returns the start and end page frame of a node based on information 4245 * provided by an arch calling add_active_range(). If called for a node 4246 * with no available memory, a warning is printed and the start and end 4247 * PFNs will be 0. 4248 */ 4249 void __meminit get_pfn_range_for_nid(unsigned int nid, 4250 unsigned long *start_pfn, unsigned long *end_pfn) 4251 { 4252 unsigned long this_start_pfn, this_end_pfn; 4253 int i; 4254 4255 *start_pfn = -1UL; 4256 *end_pfn = 0; 4257 4258 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4259 *start_pfn = min(*start_pfn, this_start_pfn); 4260 *end_pfn = max(*end_pfn, this_end_pfn); 4261 } 4262 4263 if (*start_pfn == -1UL) 4264 *start_pfn = 0; 4265 } 4266 4267 /* 4268 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4269 * assumption is made that zones within a node are ordered in monotonic 4270 * increasing memory addresses so that the "highest" populated zone is used 4271 */ 4272 static void __init find_usable_zone_for_movable(void) 4273 { 4274 int zone_index; 4275 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4276 if (zone_index == ZONE_MOVABLE) 4277 continue; 4278 4279 if (arch_zone_highest_possible_pfn[zone_index] > 4280 arch_zone_lowest_possible_pfn[zone_index]) 4281 break; 4282 } 4283 4284 VM_BUG_ON(zone_index == -1); 4285 movable_zone = zone_index; 4286 } 4287 4288 /* 4289 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4290 * because it is sized independent of architecture. Unlike the other zones, 4291 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4292 * in each node depending on the size of each node and how evenly kernelcore 4293 * is distributed. This helper function adjusts the zone ranges 4294 * provided by the architecture for a given node by using the end of the 4295 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4296 * zones within a node are in order of monotonic increases memory addresses 4297 */ 4298 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4299 unsigned long zone_type, 4300 unsigned long node_start_pfn, 4301 unsigned long node_end_pfn, 4302 unsigned long *zone_start_pfn, 4303 unsigned long *zone_end_pfn) 4304 { 4305 /* Only adjust if ZONE_MOVABLE is on this node */ 4306 if (zone_movable_pfn[nid]) { 4307 /* Size ZONE_MOVABLE */ 4308 if (zone_type == ZONE_MOVABLE) { 4309 *zone_start_pfn = zone_movable_pfn[nid]; 4310 *zone_end_pfn = min(node_end_pfn, 4311 arch_zone_highest_possible_pfn[movable_zone]); 4312 4313 /* Adjust for ZONE_MOVABLE starting within this range */ 4314 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4315 *zone_end_pfn > zone_movable_pfn[nid]) { 4316 *zone_end_pfn = zone_movable_pfn[nid]; 4317 4318 /* Check if this whole range is within ZONE_MOVABLE */ 4319 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4320 *zone_start_pfn = *zone_end_pfn; 4321 } 4322 } 4323 4324 /* 4325 * Return the number of pages a zone spans in a node, including holes 4326 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4327 */ 4328 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4329 unsigned long zone_type, 4330 unsigned long *ignored) 4331 { 4332 unsigned long node_start_pfn, node_end_pfn; 4333 unsigned long zone_start_pfn, zone_end_pfn; 4334 4335 /* Get the start and end of the node and zone */ 4336 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4337 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4338 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4339 adjust_zone_range_for_zone_movable(nid, zone_type, 4340 node_start_pfn, node_end_pfn, 4341 &zone_start_pfn, &zone_end_pfn); 4342 4343 /* Check that this node has pages within the zone's required range */ 4344 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4345 return 0; 4346 4347 /* Move the zone boundaries inside the node if necessary */ 4348 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4349 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4350 4351 /* Return the spanned pages */ 4352 return zone_end_pfn - zone_start_pfn; 4353 } 4354 4355 /* 4356 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4357 * then all holes in the requested range will be accounted for. 4358 */ 4359 unsigned long __meminit __absent_pages_in_range(int nid, 4360 unsigned long range_start_pfn, 4361 unsigned long range_end_pfn) 4362 { 4363 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4364 unsigned long start_pfn, end_pfn; 4365 int i; 4366 4367 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4368 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4369 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4370 nr_absent -= end_pfn - start_pfn; 4371 } 4372 return nr_absent; 4373 } 4374 4375 /** 4376 * absent_pages_in_range - Return number of page frames in holes within a range 4377 * @start_pfn: The start PFN to start searching for holes 4378 * @end_pfn: The end PFN to stop searching for holes 4379 * 4380 * It returns the number of pages frames in memory holes within a range. 4381 */ 4382 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4383 unsigned long end_pfn) 4384 { 4385 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4386 } 4387 4388 /* Return the number of page frames in holes in a zone on a node */ 4389 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4390 unsigned long zone_type, 4391 unsigned long *ignored) 4392 { 4393 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4394 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4395 unsigned long node_start_pfn, node_end_pfn; 4396 unsigned long zone_start_pfn, zone_end_pfn; 4397 4398 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4399 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4400 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4401 4402 adjust_zone_range_for_zone_movable(nid, zone_type, 4403 node_start_pfn, node_end_pfn, 4404 &zone_start_pfn, &zone_end_pfn); 4405 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4406 } 4407 4408 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4409 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4410 unsigned long zone_type, 4411 unsigned long *zones_size) 4412 { 4413 return zones_size[zone_type]; 4414 } 4415 4416 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4417 unsigned long zone_type, 4418 unsigned long *zholes_size) 4419 { 4420 if (!zholes_size) 4421 return 0; 4422 4423 return zholes_size[zone_type]; 4424 } 4425 4426 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4427 4428 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4429 unsigned long *zones_size, unsigned long *zholes_size) 4430 { 4431 unsigned long realtotalpages, totalpages = 0; 4432 enum zone_type i; 4433 4434 for (i = 0; i < MAX_NR_ZONES; i++) 4435 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4436 zones_size); 4437 pgdat->node_spanned_pages = totalpages; 4438 4439 realtotalpages = totalpages; 4440 for (i = 0; i < MAX_NR_ZONES; i++) 4441 realtotalpages -= 4442 zone_absent_pages_in_node(pgdat->node_id, i, 4443 zholes_size); 4444 pgdat->node_present_pages = realtotalpages; 4445 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4446 realtotalpages); 4447 } 4448 4449 #ifndef CONFIG_SPARSEMEM 4450 /* 4451 * Calculate the size of the zone->blockflags rounded to an unsigned long 4452 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4453 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4454 * round what is now in bits to nearest long in bits, then return it in 4455 * bytes. 4456 */ 4457 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 4458 { 4459 unsigned long usemapsize; 4460 4461 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 4462 usemapsize = roundup(zonesize, pageblock_nr_pages); 4463 usemapsize = usemapsize >> pageblock_order; 4464 usemapsize *= NR_PAGEBLOCK_BITS; 4465 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4466 4467 return usemapsize / 8; 4468 } 4469 4470 static void __init setup_usemap(struct pglist_data *pgdat, 4471 struct zone *zone, 4472 unsigned long zone_start_pfn, 4473 unsigned long zonesize) 4474 { 4475 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 4476 zone->pageblock_flags = NULL; 4477 if (usemapsize) 4478 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, 4479 usemapsize); 4480 } 4481 #else 4482 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 4483 unsigned long zone_start_pfn, unsigned long zonesize) {} 4484 #endif /* CONFIG_SPARSEMEM */ 4485 4486 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4487 4488 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4489 void __init set_pageblock_order(void) 4490 { 4491 unsigned int order; 4492 4493 /* Check that pageblock_nr_pages has not already been setup */ 4494 if (pageblock_order) 4495 return; 4496 4497 if (HPAGE_SHIFT > PAGE_SHIFT) 4498 order = HUGETLB_PAGE_ORDER; 4499 else 4500 order = MAX_ORDER - 1; 4501 4502 /* 4503 * Assume the largest contiguous order of interest is a huge page. 4504 * This value may be variable depending on boot parameters on IA64 and 4505 * powerpc. 4506 */ 4507 pageblock_order = order; 4508 } 4509 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4510 4511 /* 4512 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4513 * is unused as pageblock_order is set at compile-time. See 4514 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4515 * the kernel config 4516 */ 4517 void __init set_pageblock_order(void) 4518 { 4519 } 4520 4521 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4522 4523 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 4524 unsigned long present_pages) 4525 { 4526 unsigned long pages = spanned_pages; 4527 4528 /* 4529 * Provide a more accurate estimation if there are holes within 4530 * the zone and SPARSEMEM is in use. If there are holes within the 4531 * zone, each populated memory region may cost us one or two extra 4532 * memmap pages due to alignment because memmap pages for each 4533 * populated regions may not naturally algined on page boundary. 4534 * So the (present_pages >> 4) heuristic is a tradeoff for that. 4535 */ 4536 if (spanned_pages > present_pages + (present_pages >> 4) && 4537 IS_ENABLED(CONFIG_SPARSEMEM)) 4538 pages = present_pages; 4539 4540 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 4541 } 4542 4543 /* 4544 * Set up the zone data structures: 4545 * - mark all pages reserved 4546 * - mark all memory queues empty 4547 * - clear the memory bitmaps 4548 * 4549 * NOTE: pgdat should get zeroed by caller. 4550 */ 4551 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4552 unsigned long *zones_size, unsigned long *zholes_size) 4553 { 4554 enum zone_type j; 4555 int nid = pgdat->node_id; 4556 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4557 int ret; 4558 4559 pgdat_resize_init(pgdat); 4560 #ifdef CONFIG_NUMA_BALANCING 4561 spin_lock_init(&pgdat->numabalancing_migrate_lock); 4562 pgdat->numabalancing_migrate_nr_pages = 0; 4563 pgdat->numabalancing_migrate_next_window = jiffies; 4564 #endif 4565 init_waitqueue_head(&pgdat->kswapd_wait); 4566 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4567 pgdat_page_cgroup_init(pgdat); 4568 4569 for (j = 0; j < MAX_NR_ZONES; j++) { 4570 struct zone *zone = pgdat->node_zones + j; 4571 unsigned long size, realsize, freesize, memmap_pages; 4572 4573 size = zone_spanned_pages_in_node(nid, j, zones_size); 4574 realsize = freesize = size - zone_absent_pages_in_node(nid, j, 4575 zholes_size); 4576 4577 /* 4578 * Adjust freesize so that it accounts for how much memory 4579 * is used by this zone for memmap. This affects the watermark 4580 * and per-cpu initialisations 4581 */ 4582 memmap_pages = calc_memmap_size(size, realsize); 4583 if (freesize >= memmap_pages) { 4584 freesize -= memmap_pages; 4585 if (memmap_pages) 4586 printk(KERN_DEBUG 4587 " %s zone: %lu pages used for memmap\n", 4588 zone_names[j], memmap_pages); 4589 } else 4590 printk(KERN_WARNING 4591 " %s zone: %lu pages exceeds freesize %lu\n", 4592 zone_names[j], memmap_pages, freesize); 4593 4594 /* Account for reserved pages */ 4595 if (j == 0 && freesize > dma_reserve) { 4596 freesize -= dma_reserve; 4597 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4598 zone_names[0], dma_reserve); 4599 } 4600 4601 if (!is_highmem_idx(j)) 4602 nr_kernel_pages += freesize; 4603 /* Charge for highmem memmap if there are enough kernel pages */ 4604 else if (nr_kernel_pages > memmap_pages * 2) 4605 nr_kernel_pages -= memmap_pages; 4606 nr_all_pages += freesize; 4607 4608 zone->spanned_pages = size; 4609 zone->present_pages = realsize; 4610 /* 4611 * Set an approximate value for lowmem here, it will be adjusted 4612 * when the bootmem allocator frees pages into the buddy system. 4613 * And all highmem pages will be managed by the buddy system. 4614 */ 4615 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 4616 #ifdef CONFIG_NUMA 4617 zone->node = nid; 4618 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 4619 / 100; 4620 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 4621 #endif 4622 zone->name = zone_names[j]; 4623 spin_lock_init(&zone->lock); 4624 spin_lock_init(&zone->lru_lock); 4625 zone_seqlock_init(zone); 4626 zone->zone_pgdat = pgdat; 4627 4628 zone_pcp_init(zone); 4629 lruvec_init(&zone->lruvec); 4630 if (!size) 4631 continue; 4632 4633 set_pageblock_order(); 4634 setup_usemap(pgdat, zone, zone_start_pfn, size); 4635 ret = init_currently_empty_zone(zone, zone_start_pfn, 4636 size, MEMMAP_EARLY); 4637 BUG_ON(ret); 4638 memmap_init(size, nid, j, zone_start_pfn); 4639 zone_start_pfn += size; 4640 } 4641 } 4642 4643 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4644 { 4645 /* Skip empty nodes */ 4646 if (!pgdat->node_spanned_pages) 4647 return; 4648 4649 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4650 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4651 if (!pgdat->node_mem_map) { 4652 unsigned long size, start, end; 4653 struct page *map; 4654 4655 /* 4656 * The zone's endpoints aren't required to be MAX_ORDER 4657 * aligned but the node_mem_map endpoints must be in order 4658 * for the buddy allocator to function correctly. 4659 */ 4660 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4661 end = pgdat_end_pfn(pgdat); 4662 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4663 size = (end - start) * sizeof(struct page); 4664 map = alloc_remap(pgdat->node_id, size); 4665 if (!map) 4666 map = alloc_bootmem_node_nopanic(pgdat, size); 4667 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4668 } 4669 #ifndef CONFIG_NEED_MULTIPLE_NODES 4670 /* 4671 * With no DISCONTIG, the global mem_map is just set as node 0's 4672 */ 4673 if (pgdat == NODE_DATA(0)) { 4674 mem_map = NODE_DATA(0)->node_mem_map; 4675 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4676 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4677 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4678 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4679 } 4680 #endif 4681 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4682 } 4683 4684 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4685 unsigned long node_start_pfn, unsigned long *zholes_size) 4686 { 4687 pg_data_t *pgdat = NODE_DATA(nid); 4688 4689 /* pg_data_t should be reset to zero when it's allocated */ 4690 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 4691 4692 pgdat->node_id = nid; 4693 pgdat->node_start_pfn = node_start_pfn; 4694 init_zone_allows_reclaim(nid); 4695 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4696 4697 alloc_node_mem_map(pgdat); 4698 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4699 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4700 nid, (unsigned long)pgdat, 4701 (unsigned long)pgdat->node_mem_map); 4702 #endif 4703 4704 free_area_init_core(pgdat, zones_size, zholes_size); 4705 } 4706 4707 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4708 4709 #if MAX_NUMNODES > 1 4710 /* 4711 * Figure out the number of possible node ids. 4712 */ 4713 static void __init setup_nr_node_ids(void) 4714 { 4715 unsigned int node; 4716 unsigned int highest = 0; 4717 4718 for_each_node_mask(node, node_possible_map) 4719 highest = node; 4720 nr_node_ids = highest + 1; 4721 } 4722 #else 4723 static inline void setup_nr_node_ids(void) 4724 { 4725 } 4726 #endif 4727 4728 /** 4729 * node_map_pfn_alignment - determine the maximum internode alignment 4730 * 4731 * This function should be called after node map is populated and sorted. 4732 * It calculates the maximum power of two alignment which can distinguish 4733 * all the nodes. 4734 * 4735 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 4736 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 4737 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 4738 * shifted, 1GiB is enough and this function will indicate so. 4739 * 4740 * This is used to test whether pfn -> nid mapping of the chosen memory 4741 * model has fine enough granularity to avoid incorrect mapping for the 4742 * populated node map. 4743 * 4744 * Returns the determined alignment in pfn's. 0 if there is no alignment 4745 * requirement (single node). 4746 */ 4747 unsigned long __init node_map_pfn_alignment(void) 4748 { 4749 unsigned long accl_mask = 0, last_end = 0; 4750 unsigned long start, end, mask; 4751 int last_nid = -1; 4752 int i, nid; 4753 4754 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 4755 if (!start || last_nid < 0 || last_nid == nid) { 4756 last_nid = nid; 4757 last_end = end; 4758 continue; 4759 } 4760 4761 /* 4762 * Start with a mask granular enough to pin-point to the 4763 * start pfn and tick off bits one-by-one until it becomes 4764 * too coarse to separate the current node from the last. 4765 */ 4766 mask = ~((1 << __ffs(start)) - 1); 4767 while (mask && last_end <= (start & (mask << 1))) 4768 mask <<= 1; 4769 4770 /* accumulate all internode masks */ 4771 accl_mask |= mask; 4772 } 4773 4774 /* convert mask to number of pages */ 4775 return ~accl_mask + 1; 4776 } 4777 4778 /* Find the lowest pfn for a node */ 4779 static unsigned long __init find_min_pfn_for_node(int nid) 4780 { 4781 unsigned long min_pfn = ULONG_MAX; 4782 unsigned long start_pfn; 4783 int i; 4784 4785 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 4786 min_pfn = min(min_pfn, start_pfn); 4787 4788 if (min_pfn == ULONG_MAX) { 4789 printk(KERN_WARNING 4790 "Could not find start_pfn for node %d\n", nid); 4791 return 0; 4792 } 4793 4794 return min_pfn; 4795 } 4796 4797 /** 4798 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4799 * 4800 * It returns the minimum PFN based on information provided via 4801 * add_active_range(). 4802 */ 4803 unsigned long __init find_min_pfn_with_active_regions(void) 4804 { 4805 return find_min_pfn_for_node(MAX_NUMNODES); 4806 } 4807 4808 /* 4809 * early_calculate_totalpages() 4810 * Sum pages in active regions for movable zone. 4811 * Populate N_MEMORY for calculating usable_nodes. 4812 */ 4813 static unsigned long __init early_calculate_totalpages(void) 4814 { 4815 unsigned long totalpages = 0; 4816 unsigned long start_pfn, end_pfn; 4817 int i, nid; 4818 4819 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 4820 unsigned long pages = end_pfn - start_pfn; 4821 4822 totalpages += pages; 4823 if (pages) 4824 node_set_state(nid, N_MEMORY); 4825 } 4826 return totalpages; 4827 } 4828 4829 /* 4830 * Find the PFN the Movable zone begins in each node. Kernel memory 4831 * is spread evenly between nodes as long as the nodes have enough 4832 * memory. When they don't, some nodes will have more kernelcore than 4833 * others 4834 */ 4835 static void __init find_zone_movable_pfns_for_nodes(void) 4836 { 4837 int i, nid; 4838 unsigned long usable_startpfn; 4839 unsigned long kernelcore_node, kernelcore_remaining; 4840 /* save the state before borrow the nodemask */ 4841 nodemask_t saved_node_state = node_states[N_MEMORY]; 4842 unsigned long totalpages = early_calculate_totalpages(); 4843 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 4844 4845 /* 4846 * If movablecore was specified, calculate what size of 4847 * kernelcore that corresponds so that memory usable for 4848 * any allocation type is evenly spread. If both kernelcore 4849 * and movablecore are specified, then the value of kernelcore 4850 * will be used for required_kernelcore if it's greater than 4851 * what movablecore would have allowed. 4852 */ 4853 if (required_movablecore) { 4854 unsigned long corepages; 4855 4856 /* 4857 * Round-up so that ZONE_MOVABLE is at least as large as what 4858 * was requested by the user 4859 */ 4860 required_movablecore = 4861 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4862 corepages = totalpages - required_movablecore; 4863 4864 required_kernelcore = max(required_kernelcore, corepages); 4865 } 4866 4867 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4868 if (!required_kernelcore) 4869 goto out; 4870 4871 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4872 find_usable_zone_for_movable(); 4873 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4874 4875 restart: 4876 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4877 kernelcore_node = required_kernelcore / usable_nodes; 4878 for_each_node_state(nid, N_MEMORY) { 4879 unsigned long start_pfn, end_pfn; 4880 4881 /* 4882 * Recalculate kernelcore_node if the division per node 4883 * now exceeds what is necessary to satisfy the requested 4884 * amount of memory for the kernel 4885 */ 4886 if (required_kernelcore < kernelcore_node) 4887 kernelcore_node = required_kernelcore / usable_nodes; 4888 4889 /* 4890 * As the map is walked, we track how much memory is usable 4891 * by the kernel using kernelcore_remaining. When it is 4892 * 0, the rest of the node is usable by ZONE_MOVABLE 4893 */ 4894 kernelcore_remaining = kernelcore_node; 4895 4896 /* Go through each range of PFNs within this node */ 4897 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4898 unsigned long size_pages; 4899 4900 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 4901 if (start_pfn >= end_pfn) 4902 continue; 4903 4904 /* Account for what is only usable for kernelcore */ 4905 if (start_pfn < usable_startpfn) { 4906 unsigned long kernel_pages; 4907 kernel_pages = min(end_pfn, usable_startpfn) 4908 - start_pfn; 4909 4910 kernelcore_remaining -= min(kernel_pages, 4911 kernelcore_remaining); 4912 required_kernelcore -= min(kernel_pages, 4913 required_kernelcore); 4914 4915 /* Continue if range is now fully accounted */ 4916 if (end_pfn <= usable_startpfn) { 4917 4918 /* 4919 * Push zone_movable_pfn to the end so 4920 * that if we have to rebalance 4921 * kernelcore across nodes, we will 4922 * not double account here 4923 */ 4924 zone_movable_pfn[nid] = end_pfn; 4925 continue; 4926 } 4927 start_pfn = usable_startpfn; 4928 } 4929 4930 /* 4931 * The usable PFN range for ZONE_MOVABLE is from 4932 * start_pfn->end_pfn. Calculate size_pages as the 4933 * number of pages used as kernelcore 4934 */ 4935 size_pages = end_pfn - start_pfn; 4936 if (size_pages > kernelcore_remaining) 4937 size_pages = kernelcore_remaining; 4938 zone_movable_pfn[nid] = start_pfn + size_pages; 4939 4940 /* 4941 * Some kernelcore has been met, update counts and 4942 * break if the kernelcore for this node has been 4943 * satisified 4944 */ 4945 required_kernelcore -= min(required_kernelcore, 4946 size_pages); 4947 kernelcore_remaining -= size_pages; 4948 if (!kernelcore_remaining) 4949 break; 4950 } 4951 } 4952 4953 /* 4954 * If there is still required_kernelcore, we do another pass with one 4955 * less node in the count. This will push zone_movable_pfn[nid] further 4956 * along on the nodes that still have memory until kernelcore is 4957 * satisified 4958 */ 4959 usable_nodes--; 4960 if (usable_nodes && required_kernelcore > usable_nodes) 4961 goto restart; 4962 4963 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4964 for (nid = 0; nid < MAX_NUMNODES; nid++) 4965 zone_movable_pfn[nid] = 4966 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4967 4968 out: 4969 /* restore the node_state */ 4970 node_states[N_MEMORY] = saved_node_state; 4971 } 4972 4973 /* Any regular or high memory on that node ? */ 4974 static void check_for_memory(pg_data_t *pgdat, int nid) 4975 { 4976 enum zone_type zone_type; 4977 4978 if (N_MEMORY == N_NORMAL_MEMORY) 4979 return; 4980 4981 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 4982 struct zone *zone = &pgdat->node_zones[zone_type]; 4983 if (zone->present_pages) { 4984 node_set_state(nid, N_HIGH_MEMORY); 4985 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 4986 zone_type <= ZONE_NORMAL) 4987 node_set_state(nid, N_NORMAL_MEMORY); 4988 break; 4989 } 4990 } 4991 } 4992 4993 /** 4994 * free_area_init_nodes - Initialise all pg_data_t and zone data 4995 * @max_zone_pfn: an array of max PFNs for each zone 4996 * 4997 * This will call free_area_init_node() for each active node in the system. 4998 * Using the page ranges provided by add_active_range(), the size of each 4999 * zone in each node and their holes is calculated. If the maximum PFN 5000 * between two adjacent zones match, it is assumed that the zone is empty. 5001 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5002 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5003 * starts where the previous one ended. For example, ZONE_DMA32 starts 5004 * at arch_max_dma_pfn. 5005 */ 5006 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5007 { 5008 unsigned long start_pfn, end_pfn; 5009 int i, nid; 5010 5011 /* Record where the zone boundaries are */ 5012 memset(arch_zone_lowest_possible_pfn, 0, 5013 sizeof(arch_zone_lowest_possible_pfn)); 5014 memset(arch_zone_highest_possible_pfn, 0, 5015 sizeof(arch_zone_highest_possible_pfn)); 5016 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5017 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5018 for (i = 1; i < MAX_NR_ZONES; i++) { 5019 if (i == ZONE_MOVABLE) 5020 continue; 5021 arch_zone_lowest_possible_pfn[i] = 5022 arch_zone_highest_possible_pfn[i-1]; 5023 arch_zone_highest_possible_pfn[i] = 5024 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5025 } 5026 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5027 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5028 5029 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5030 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5031 find_zone_movable_pfns_for_nodes(); 5032 5033 /* Print out the zone ranges */ 5034 printk("Zone ranges:\n"); 5035 for (i = 0; i < MAX_NR_ZONES; i++) { 5036 if (i == ZONE_MOVABLE) 5037 continue; 5038 printk(KERN_CONT " %-8s ", zone_names[i]); 5039 if (arch_zone_lowest_possible_pfn[i] == 5040 arch_zone_highest_possible_pfn[i]) 5041 printk(KERN_CONT "empty\n"); 5042 else 5043 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", 5044 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, 5045 (arch_zone_highest_possible_pfn[i] 5046 << PAGE_SHIFT) - 1); 5047 } 5048 5049 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5050 printk("Movable zone start for each node\n"); 5051 for (i = 0; i < MAX_NUMNODES; i++) { 5052 if (zone_movable_pfn[i]) 5053 printk(" Node %d: %#010lx\n", i, 5054 zone_movable_pfn[i] << PAGE_SHIFT); 5055 } 5056 5057 /* Print out the early node map */ 5058 printk("Early memory node ranges\n"); 5059 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5060 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, 5061 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); 5062 5063 /* Initialise every node */ 5064 mminit_verify_pageflags_layout(); 5065 setup_nr_node_ids(); 5066 for_each_online_node(nid) { 5067 pg_data_t *pgdat = NODE_DATA(nid); 5068 free_area_init_node(nid, NULL, 5069 find_min_pfn_for_node(nid), NULL); 5070 5071 /* Any memory on that node */ 5072 if (pgdat->node_present_pages) 5073 node_set_state(nid, N_MEMORY); 5074 check_for_memory(pgdat, nid); 5075 } 5076 } 5077 5078 static int __init cmdline_parse_core(char *p, unsigned long *core) 5079 { 5080 unsigned long long coremem; 5081 if (!p) 5082 return -EINVAL; 5083 5084 coremem = memparse(p, &p); 5085 *core = coremem >> PAGE_SHIFT; 5086 5087 /* Paranoid check that UL is enough for the coremem value */ 5088 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5089 5090 return 0; 5091 } 5092 5093 /* 5094 * kernelcore=size sets the amount of memory for use for allocations that 5095 * cannot be reclaimed or migrated. 5096 */ 5097 static int __init cmdline_parse_kernelcore(char *p) 5098 { 5099 return cmdline_parse_core(p, &required_kernelcore); 5100 } 5101 5102 /* 5103 * movablecore=size sets the amount of memory for use for allocations that 5104 * can be reclaimed or migrated. 5105 */ 5106 static int __init cmdline_parse_movablecore(char *p) 5107 { 5108 return cmdline_parse_core(p, &required_movablecore); 5109 } 5110 5111 early_param("kernelcore", cmdline_parse_kernelcore); 5112 early_param("movablecore", cmdline_parse_movablecore); 5113 5114 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5115 5116 /** 5117 * set_dma_reserve - set the specified number of pages reserved in the first zone 5118 * @new_dma_reserve: The number of pages to mark reserved 5119 * 5120 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5121 * In the DMA zone, a significant percentage may be consumed by kernel image 5122 * and other unfreeable allocations which can skew the watermarks badly. This 5123 * function may optionally be used to account for unfreeable pages in the 5124 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5125 * smaller per-cpu batchsize. 5126 */ 5127 void __init set_dma_reserve(unsigned long new_dma_reserve) 5128 { 5129 dma_reserve = new_dma_reserve; 5130 } 5131 5132 void __init free_area_init(unsigned long *zones_size) 5133 { 5134 free_area_init_node(0, zones_size, 5135 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5136 } 5137 5138 static int page_alloc_cpu_notify(struct notifier_block *self, 5139 unsigned long action, void *hcpu) 5140 { 5141 int cpu = (unsigned long)hcpu; 5142 5143 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5144 lru_add_drain_cpu(cpu); 5145 drain_pages(cpu); 5146 5147 /* 5148 * Spill the event counters of the dead processor 5149 * into the current processors event counters. 5150 * This artificially elevates the count of the current 5151 * processor. 5152 */ 5153 vm_events_fold_cpu(cpu); 5154 5155 /* 5156 * Zero the differential counters of the dead processor 5157 * so that the vm statistics are consistent. 5158 * 5159 * This is only okay since the processor is dead and cannot 5160 * race with what we are doing. 5161 */ 5162 refresh_cpu_vm_stats(cpu); 5163 } 5164 return NOTIFY_OK; 5165 } 5166 5167 void __init page_alloc_init(void) 5168 { 5169 hotcpu_notifier(page_alloc_cpu_notify, 0); 5170 } 5171 5172 /* 5173 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5174 * or min_free_kbytes changes. 5175 */ 5176 static void calculate_totalreserve_pages(void) 5177 { 5178 struct pglist_data *pgdat; 5179 unsigned long reserve_pages = 0; 5180 enum zone_type i, j; 5181 5182 for_each_online_pgdat(pgdat) { 5183 for (i = 0; i < MAX_NR_ZONES; i++) { 5184 struct zone *zone = pgdat->node_zones + i; 5185 unsigned long max = 0; 5186 5187 /* Find valid and maximum lowmem_reserve in the zone */ 5188 for (j = i; j < MAX_NR_ZONES; j++) { 5189 if (zone->lowmem_reserve[j] > max) 5190 max = zone->lowmem_reserve[j]; 5191 } 5192 5193 /* we treat the high watermark as reserved pages. */ 5194 max += high_wmark_pages(zone); 5195 5196 if (max > zone->managed_pages) 5197 max = zone->managed_pages; 5198 reserve_pages += max; 5199 /* 5200 * Lowmem reserves are not available to 5201 * GFP_HIGHUSER page cache allocations and 5202 * kswapd tries to balance zones to their high 5203 * watermark. As a result, neither should be 5204 * regarded as dirtyable memory, to prevent a 5205 * situation where reclaim has to clean pages 5206 * in order to balance the zones. 5207 */ 5208 zone->dirty_balance_reserve = max; 5209 } 5210 } 5211 dirty_balance_reserve = reserve_pages; 5212 totalreserve_pages = reserve_pages; 5213 } 5214 5215 /* 5216 * setup_per_zone_lowmem_reserve - called whenever 5217 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5218 * has a correct pages reserved value, so an adequate number of 5219 * pages are left in the zone after a successful __alloc_pages(). 5220 */ 5221 static void setup_per_zone_lowmem_reserve(void) 5222 { 5223 struct pglist_data *pgdat; 5224 enum zone_type j, idx; 5225 5226 for_each_online_pgdat(pgdat) { 5227 for (j = 0; j < MAX_NR_ZONES; j++) { 5228 struct zone *zone = pgdat->node_zones + j; 5229 unsigned long managed_pages = zone->managed_pages; 5230 5231 zone->lowmem_reserve[j] = 0; 5232 5233 idx = j; 5234 while (idx) { 5235 struct zone *lower_zone; 5236 5237 idx--; 5238 5239 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5240 sysctl_lowmem_reserve_ratio[idx] = 1; 5241 5242 lower_zone = pgdat->node_zones + idx; 5243 lower_zone->lowmem_reserve[j] = managed_pages / 5244 sysctl_lowmem_reserve_ratio[idx]; 5245 managed_pages += lower_zone->managed_pages; 5246 } 5247 } 5248 } 5249 5250 /* update totalreserve_pages */ 5251 calculate_totalreserve_pages(); 5252 } 5253 5254 static void __setup_per_zone_wmarks(void) 5255 { 5256 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5257 unsigned long lowmem_pages = 0; 5258 struct zone *zone; 5259 unsigned long flags; 5260 5261 /* Calculate total number of !ZONE_HIGHMEM pages */ 5262 for_each_zone(zone) { 5263 if (!is_highmem(zone)) 5264 lowmem_pages += zone->managed_pages; 5265 } 5266 5267 for_each_zone(zone) { 5268 u64 tmp; 5269 5270 spin_lock_irqsave(&zone->lock, flags); 5271 tmp = (u64)pages_min * zone->managed_pages; 5272 do_div(tmp, lowmem_pages); 5273 if (is_highmem(zone)) { 5274 /* 5275 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5276 * need highmem pages, so cap pages_min to a small 5277 * value here. 5278 * 5279 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5280 * deltas controls asynch page reclaim, and so should 5281 * not be capped for highmem. 5282 */ 5283 unsigned long min_pages; 5284 5285 min_pages = zone->managed_pages / 1024; 5286 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5287 zone->watermark[WMARK_MIN] = min_pages; 5288 } else { 5289 /* 5290 * If it's a lowmem zone, reserve a number of pages 5291 * proportionate to the zone's size. 5292 */ 5293 zone->watermark[WMARK_MIN] = tmp; 5294 } 5295 5296 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5297 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5298 5299 setup_zone_migrate_reserve(zone); 5300 spin_unlock_irqrestore(&zone->lock, flags); 5301 } 5302 5303 /* update totalreserve_pages */ 5304 calculate_totalreserve_pages(); 5305 } 5306 5307 /** 5308 * setup_per_zone_wmarks - called when min_free_kbytes changes 5309 * or when memory is hot-{added|removed} 5310 * 5311 * Ensures that the watermark[min,low,high] values for each zone are set 5312 * correctly with respect to min_free_kbytes. 5313 */ 5314 void setup_per_zone_wmarks(void) 5315 { 5316 mutex_lock(&zonelists_mutex); 5317 __setup_per_zone_wmarks(); 5318 mutex_unlock(&zonelists_mutex); 5319 } 5320 5321 /* 5322 * The inactive anon list should be small enough that the VM never has to 5323 * do too much work, but large enough that each inactive page has a chance 5324 * to be referenced again before it is swapped out. 5325 * 5326 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5327 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5328 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5329 * the anonymous pages are kept on the inactive list. 5330 * 5331 * total target max 5332 * memory ratio inactive anon 5333 * ------------------------------------- 5334 * 10MB 1 5MB 5335 * 100MB 1 50MB 5336 * 1GB 3 250MB 5337 * 10GB 10 0.9GB 5338 * 100GB 31 3GB 5339 * 1TB 101 10GB 5340 * 10TB 320 32GB 5341 */ 5342 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5343 { 5344 unsigned int gb, ratio; 5345 5346 /* Zone size in gigabytes */ 5347 gb = zone->managed_pages >> (30 - PAGE_SHIFT); 5348 if (gb) 5349 ratio = int_sqrt(10 * gb); 5350 else 5351 ratio = 1; 5352 5353 zone->inactive_ratio = ratio; 5354 } 5355 5356 static void __meminit setup_per_zone_inactive_ratio(void) 5357 { 5358 struct zone *zone; 5359 5360 for_each_zone(zone) 5361 calculate_zone_inactive_ratio(zone); 5362 } 5363 5364 /* 5365 * Initialise min_free_kbytes. 5366 * 5367 * For small machines we want it small (128k min). For large machines 5368 * we want it large (64MB max). But it is not linear, because network 5369 * bandwidth does not increase linearly with machine size. We use 5370 * 5371 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5372 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5373 * 5374 * which yields 5375 * 5376 * 16MB: 512k 5377 * 32MB: 724k 5378 * 64MB: 1024k 5379 * 128MB: 1448k 5380 * 256MB: 2048k 5381 * 512MB: 2896k 5382 * 1024MB: 4096k 5383 * 2048MB: 5792k 5384 * 4096MB: 8192k 5385 * 8192MB: 11584k 5386 * 16384MB: 16384k 5387 */ 5388 int __meminit init_per_zone_wmark_min(void) 5389 { 5390 unsigned long lowmem_kbytes; 5391 5392 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5393 5394 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5395 if (min_free_kbytes < 128) 5396 min_free_kbytes = 128; 5397 if (min_free_kbytes > 65536) 5398 min_free_kbytes = 65536; 5399 setup_per_zone_wmarks(); 5400 refresh_zone_stat_thresholds(); 5401 setup_per_zone_lowmem_reserve(); 5402 setup_per_zone_inactive_ratio(); 5403 return 0; 5404 } 5405 module_init(init_per_zone_wmark_min) 5406 5407 /* 5408 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5409 * that we can call two helper functions whenever min_free_kbytes 5410 * changes. 5411 */ 5412 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5413 void __user *buffer, size_t *length, loff_t *ppos) 5414 { 5415 proc_dointvec(table, write, buffer, length, ppos); 5416 if (write) 5417 setup_per_zone_wmarks(); 5418 return 0; 5419 } 5420 5421 #ifdef CONFIG_NUMA 5422 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5423 void __user *buffer, size_t *length, loff_t *ppos) 5424 { 5425 struct zone *zone; 5426 int rc; 5427 5428 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5429 if (rc) 5430 return rc; 5431 5432 for_each_zone(zone) 5433 zone->min_unmapped_pages = (zone->managed_pages * 5434 sysctl_min_unmapped_ratio) / 100; 5435 return 0; 5436 } 5437 5438 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5439 void __user *buffer, size_t *length, loff_t *ppos) 5440 { 5441 struct zone *zone; 5442 int rc; 5443 5444 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5445 if (rc) 5446 return rc; 5447 5448 for_each_zone(zone) 5449 zone->min_slab_pages = (zone->managed_pages * 5450 sysctl_min_slab_ratio) / 100; 5451 return 0; 5452 } 5453 #endif 5454 5455 /* 5456 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5457 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5458 * whenever sysctl_lowmem_reserve_ratio changes. 5459 * 5460 * The reserve ratio obviously has absolutely no relation with the 5461 * minimum watermarks. The lowmem reserve ratio can only make sense 5462 * if in function of the boot time zone sizes. 5463 */ 5464 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5465 void __user *buffer, size_t *length, loff_t *ppos) 5466 { 5467 proc_dointvec_minmax(table, write, buffer, length, ppos); 5468 setup_per_zone_lowmem_reserve(); 5469 return 0; 5470 } 5471 5472 /* 5473 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5474 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5475 * can have before it gets flushed back to buddy allocator. 5476 */ 5477 5478 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5479 void __user *buffer, size_t *length, loff_t *ppos) 5480 { 5481 struct zone *zone; 5482 unsigned int cpu; 5483 int ret; 5484 5485 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5486 if (!write || (ret < 0)) 5487 return ret; 5488 for_each_populated_zone(zone) { 5489 for_each_possible_cpu(cpu) { 5490 unsigned long high; 5491 high = zone->managed_pages / percpu_pagelist_fraction; 5492 setup_pagelist_highmark( 5493 per_cpu_ptr(zone->pageset, cpu), high); 5494 } 5495 } 5496 return 0; 5497 } 5498 5499 int hashdist = HASHDIST_DEFAULT; 5500 5501 #ifdef CONFIG_NUMA 5502 static int __init set_hashdist(char *str) 5503 { 5504 if (!str) 5505 return 0; 5506 hashdist = simple_strtoul(str, &str, 0); 5507 return 1; 5508 } 5509 __setup("hashdist=", set_hashdist); 5510 #endif 5511 5512 /* 5513 * allocate a large system hash table from bootmem 5514 * - it is assumed that the hash table must contain an exact power-of-2 5515 * quantity of entries 5516 * - limit is the number of hash buckets, not the total allocation size 5517 */ 5518 void *__init alloc_large_system_hash(const char *tablename, 5519 unsigned long bucketsize, 5520 unsigned long numentries, 5521 int scale, 5522 int flags, 5523 unsigned int *_hash_shift, 5524 unsigned int *_hash_mask, 5525 unsigned long low_limit, 5526 unsigned long high_limit) 5527 { 5528 unsigned long long max = high_limit; 5529 unsigned long log2qty, size; 5530 void *table = NULL; 5531 5532 /* allow the kernel cmdline to have a say */ 5533 if (!numentries) { 5534 /* round applicable memory size up to nearest megabyte */ 5535 numentries = nr_kernel_pages; 5536 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5537 numentries >>= 20 - PAGE_SHIFT; 5538 numentries <<= 20 - PAGE_SHIFT; 5539 5540 /* limit to 1 bucket per 2^scale bytes of low memory */ 5541 if (scale > PAGE_SHIFT) 5542 numentries >>= (scale - PAGE_SHIFT); 5543 else 5544 numentries <<= (PAGE_SHIFT - scale); 5545 5546 /* Make sure we've got at least a 0-order allocation.. */ 5547 if (unlikely(flags & HASH_SMALL)) { 5548 /* Makes no sense without HASH_EARLY */ 5549 WARN_ON(!(flags & HASH_EARLY)); 5550 if (!(numentries >> *_hash_shift)) { 5551 numentries = 1UL << *_hash_shift; 5552 BUG_ON(!numentries); 5553 } 5554 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5555 numentries = PAGE_SIZE / bucketsize; 5556 } 5557 numentries = roundup_pow_of_two(numentries); 5558 5559 /* limit allocation size to 1/16 total memory by default */ 5560 if (max == 0) { 5561 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5562 do_div(max, bucketsize); 5563 } 5564 max = min(max, 0x80000000ULL); 5565 5566 if (numentries < low_limit) 5567 numentries = low_limit; 5568 if (numentries > max) 5569 numentries = max; 5570 5571 log2qty = ilog2(numentries); 5572 5573 do { 5574 size = bucketsize << log2qty; 5575 if (flags & HASH_EARLY) 5576 table = alloc_bootmem_nopanic(size); 5577 else if (hashdist) 5578 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5579 else { 5580 /* 5581 * If bucketsize is not a power-of-two, we may free 5582 * some pages at the end of hash table which 5583 * alloc_pages_exact() automatically does 5584 */ 5585 if (get_order(size) < MAX_ORDER) { 5586 table = alloc_pages_exact(size, GFP_ATOMIC); 5587 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5588 } 5589 } 5590 } while (!table && size > PAGE_SIZE && --log2qty); 5591 5592 if (!table) 5593 panic("Failed to allocate %s hash table\n", tablename); 5594 5595 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5596 tablename, 5597 (1UL << log2qty), 5598 ilog2(size) - PAGE_SHIFT, 5599 size); 5600 5601 if (_hash_shift) 5602 *_hash_shift = log2qty; 5603 if (_hash_mask) 5604 *_hash_mask = (1 << log2qty) - 1; 5605 5606 return table; 5607 } 5608 5609 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5610 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5611 unsigned long pfn) 5612 { 5613 #ifdef CONFIG_SPARSEMEM 5614 return __pfn_to_section(pfn)->pageblock_flags; 5615 #else 5616 return zone->pageblock_flags; 5617 #endif /* CONFIG_SPARSEMEM */ 5618 } 5619 5620 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5621 { 5622 #ifdef CONFIG_SPARSEMEM 5623 pfn &= (PAGES_PER_SECTION-1); 5624 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5625 #else 5626 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 5627 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5628 #endif /* CONFIG_SPARSEMEM */ 5629 } 5630 5631 /** 5632 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5633 * @page: The page within the block of interest 5634 * @start_bitidx: The first bit of interest to retrieve 5635 * @end_bitidx: The last bit of interest 5636 * returns pageblock_bits flags 5637 */ 5638 unsigned long get_pageblock_flags_group(struct page *page, 5639 int start_bitidx, int end_bitidx) 5640 { 5641 struct zone *zone; 5642 unsigned long *bitmap; 5643 unsigned long pfn, bitidx; 5644 unsigned long flags = 0; 5645 unsigned long value = 1; 5646 5647 zone = page_zone(page); 5648 pfn = page_to_pfn(page); 5649 bitmap = get_pageblock_bitmap(zone, pfn); 5650 bitidx = pfn_to_bitidx(zone, pfn); 5651 5652 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5653 if (test_bit(bitidx + start_bitidx, bitmap)) 5654 flags |= value; 5655 5656 return flags; 5657 } 5658 5659 /** 5660 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5661 * @page: The page within the block of interest 5662 * @start_bitidx: The first bit of interest 5663 * @end_bitidx: The last bit of interest 5664 * @flags: The flags to set 5665 */ 5666 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5667 int start_bitidx, int end_bitidx) 5668 { 5669 struct zone *zone; 5670 unsigned long *bitmap; 5671 unsigned long pfn, bitidx; 5672 unsigned long value = 1; 5673 5674 zone = page_zone(page); 5675 pfn = page_to_pfn(page); 5676 bitmap = get_pageblock_bitmap(zone, pfn); 5677 bitidx = pfn_to_bitidx(zone, pfn); 5678 VM_BUG_ON(!zone_spans_pfn(zone, pfn)); 5679 5680 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5681 if (flags & value) 5682 __set_bit(bitidx + start_bitidx, bitmap); 5683 else 5684 __clear_bit(bitidx + start_bitidx, bitmap); 5685 } 5686 5687 /* 5688 * This function checks whether pageblock includes unmovable pages or not. 5689 * If @count is not zero, it is okay to include less @count unmovable pages 5690 * 5691 * PageLRU check wihtout isolation or lru_lock could race so that 5692 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 5693 * expect this function should be exact. 5694 */ 5695 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 5696 bool skip_hwpoisoned_pages) 5697 { 5698 unsigned long pfn, iter, found; 5699 int mt; 5700 5701 /* 5702 * For avoiding noise data, lru_add_drain_all() should be called 5703 * If ZONE_MOVABLE, the zone never contains unmovable pages 5704 */ 5705 if (zone_idx(zone) == ZONE_MOVABLE) 5706 return false; 5707 mt = get_pageblock_migratetype(page); 5708 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 5709 return false; 5710 5711 pfn = page_to_pfn(page); 5712 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5713 unsigned long check = pfn + iter; 5714 5715 if (!pfn_valid_within(check)) 5716 continue; 5717 5718 page = pfn_to_page(check); 5719 /* 5720 * We can't use page_count without pin a page 5721 * because another CPU can free compound page. 5722 * This check already skips compound tails of THP 5723 * because their page->_count is zero at all time. 5724 */ 5725 if (!atomic_read(&page->_count)) { 5726 if (PageBuddy(page)) 5727 iter += (1 << page_order(page)) - 1; 5728 continue; 5729 } 5730 5731 /* 5732 * The HWPoisoned page may be not in buddy system, and 5733 * page_count() is not 0. 5734 */ 5735 if (skip_hwpoisoned_pages && PageHWPoison(page)) 5736 continue; 5737 5738 if (!PageLRU(page)) 5739 found++; 5740 /* 5741 * If there are RECLAIMABLE pages, we need to check it. 5742 * But now, memory offline itself doesn't call shrink_slab() 5743 * and it still to be fixed. 5744 */ 5745 /* 5746 * If the page is not RAM, page_count()should be 0. 5747 * we don't need more check. This is an _used_ not-movable page. 5748 * 5749 * The problematic thing here is PG_reserved pages. PG_reserved 5750 * is set to both of a memory hole page and a _used_ kernel 5751 * page at boot. 5752 */ 5753 if (found > count) 5754 return true; 5755 } 5756 return false; 5757 } 5758 5759 bool is_pageblock_removable_nolock(struct page *page) 5760 { 5761 struct zone *zone; 5762 unsigned long pfn; 5763 5764 /* 5765 * We have to be careful here because we are iterating over memory 5766 * sections which are not zone aware so we might end up outside of 5767 * the zone but still within the section. 5768 * We have to take care about the node as well. If the node is offline 5769 * its NODE_DATA will be NULL - see page_zone. 5770 */ 5771 if (!node_online(page_to_nid(page))) 5772 return false; 5773 5774 zone = page_zone(page); 5775 pfn = page_to_pfn(page); 5776 if (!zone_spans_pfn(zone, pfn)) 5777 return false; 5778 5779 return !has_unmovable_pages(zone, page, 0, true); 5780 } 5781 5782 #ifdef CONFIG_CMA 5783 5784 static unsigned long pfn_max_align_down(unsigned long pfn) 5785 { 5786 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 5787 pageblock_nr_pages) - 1); 5788 } 5789 5790 static unsigned long pfn_max_align_up(unsigned long pfn) 5791 { 5792 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 5793 pageblock_nr_pages)); 5794 } 5795 5796 /* [start, end) must belong to a single zone. */ 5797 static int __alloc_contig_migrate_range(struct compact_control *cc, 5798 unsigned long start, unsigned long end) 5799 { 5800 /* This function is based on compact_zone() from compaction.c. */ 5801 unsigned long nr_reclaimed; 5802 unsigned long pfn = start; 5803 unsigned int tries = 0; 5804 int ret = 0; 5805 5806 migrate_prep(); 5807 5808 while (pfn < end || !list_empty(&cc->migratepages)) { 5809 if (fatal_signal_pending(current)) { 5810 ret = -EINTR; 5811 break; 5812 } 5813 5814 if (list_empty(&cc->migratepages)) { 5815 cc->nr_migratepages = 0; 5816 pfn = isolate_migratepages_range(cc->zone, cc, 5817 pfn, end, true); 5818 if (!pfn) { 5819 ret = -EINTR; 5820 break; 5821 } 5822 tries = 0; 5823 } else if (++tries == 5) { 5824 ret = ret < 0 ? ret : -EBUSY; 5825 break; 5826 } 5827 5828 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 5829 &cc->migratepages); 5830 cc->nr_migratepages -= nr_reclaimed; 5831 5832 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 5833 0, MIGRATE_SYNC, MR_CMA); 5834 } 5835 if (ret < 0) { 5836 putback_movable_pages(&cc->migratepages); 5837 return ret; 5838 } 5839 return 0; 5840 } 5841 5842 /** 5843 * alloc_contig_range() -- tries to allocate given range of pages 5844 * @start: start PFN to allocate 5845 * @end: one-past-the-last PFN to allocate 5846 * @migratetype: migratetype of the underlaying pageblocks (either 5847 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 5848 * in range must have the same migratetype and it must 5849 * be either of the two. 5850 * 5851 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 5852 * aligned, however it's the caller's responsibility to guarantee that 5853 * we are the only thread that changes migrate type of pageblocks the 5854 * pages fall in. 5855 * 5856 * The PFN range must belong to a single zone. 5857 * 5858 * Returns zero on success or negative error code. On success all 5859 * pages which PFN is in [start, end) are allocated for the caller and 5860 * need to be freed with free_contig_range(). 5861 */ 5862 int alloc_contig_range(unsigned long start, unsigned long end, 5863 unsigned migratetype) 5864 { 5865 unsigned long outer_start, outer_end; 5866 int ret = 0, order; 5867 5868 struct compact_control cc = { 5869 .nr_migratepages = 0, 5870 .order = -1, 5871 .zone = page_zone(pfn_to_page(start)), 5872 .sync = true, 5873 .ignore_skip_hint = true, 5874 }; 5875 INIT_LIST_HEAD(&cc.migratepages); 5876 5877 /* 5878 * What we do here is we mark all pageblocks in range as 5879 * MIGRATE_ISOLATE. Because pageblock and max order pages may 5880 * have different sizes, and due to the way page allocator 5881 * work, we align the range to biggest of the two pages so 5882 * that page allocator won't try to merge buddies from 5883 * different pageblocks and change MIGRATE_ISOLATE to some 5884 * other migration type. 5885 * 5886 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 5887 * migrate the pages from an unaligned range (ie. pages that 5888 * we are interested in). This will put all the pages in 5889 * range back to page allocator as MIGRATE_ISOLATE. 5890 * 5891 * When this is done, we take the pages in range from page 5892 * allocator removing them from the buddy system. This way 5893 * page allocator will never consider using them. 5894 * 5895 * This lets us mark the pageblocks back as 5896 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 5897 * aligned range but not in the unaligned, original range are 5898 * put back to page allocator so that buddy can use them. 5899 */ 5900 5901 ret = start_isolate_page_range(pfn_max_align_down(start), 5902 pfn_max_align_up(end), migratetype, 5903 false); 5904 if (ret) 5905 return ret; 5906 5907 ret = __alloc_contig_migrate_range(&cc, start, end); 5908 if (ret) 5909 goto done; 5910 5911 /* 5912 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 5913 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 5914 * more, all pages in [start, end) are free in page allocator. 5915 * What we are going to do is to allocate all pages from 5916 * [start, end) (that is remove them from page allocator). 5917 * 5918 * The only problem is that pages at the beginning and at the 5919 * end of interesting range may be not aligned with pages that 5920 * page allocator holds, ie. they can be part of higher order 5921 * pages. Because of this, we reserve the bigger range and 5922 * once this is done free the pages we are not interested in. 5923 * 5924 * We don't have to hold zone->lock here because the pages are 5925 * isolated thus they won't get removed from buddy. 5926 */ 5927 5928 lru_add_drain_all(); 5929 drain_all_pages(); 5930 5931 order = 0; 5932 outer_start = start; 5933 while (!PageBuddy(pfn_to_page(outer_start))) { 5934 if (++order >= MAX_ORDER) { 5935 ret = -EBUSY; 5936 goto done; 5937 } 5938 outer_start &= ~0UL << order; 5939 } 5940 5941 /* Make sure the range is really isolated. */ 5942 if (test_pages_isolated(outer_start, end, false)) { 5943 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", 5944 outer_start, end); 5945 ret = -EBUSY; 5946 goto done; 5947 } 5948 5949 5950 /* Grab isolated pages from freelists. */ 5951 outer_end = isolate_freepages_range(&cc, outer_start, end); 5952 if (!outer_end) { 5953 ret = -EBUSY; 5954 goto done; 5955 } 5956 5957 /* Free head and tail (if any) */ 5958 if (start != outer_start) 5959 free_contig_range(outer_start, start - outer_start); 5960 if (end != outer_end) 5961 free_contig_range(end, outer_end - end); 5962 5963 done: 5964 undo_isolate_page_range(pfn_max_align_down(start), 5965 pfn_max_align_up(end), migratetype); 5966 return ret; 5967 } 5968 5969 void free_contig_range(unsigned long pfn, unsigned nr_pages) 5970 { 5971 unsigned int count = 0; 5972 5973 for (; nr_pages--; pfn++) { 5974 struct page *page = pfn_to_page(pfn); 5975 5976 count += page_count(page) != 1; 5977 __free_page(page); 5978 } 5979 WARN(count != 0, "%d pages are still in use!\n", count); 5980 } 5981 #endif 5982 5983 #ifdef CONFIG_MEMORY_HOTPLUG 5984 static int __meminit __zone_pcp_update(void *data) 5985 { 5986 struct zone *zone = data; 5987 int cpu; 5988 unsigned long batch = zone_batchsize(zone), flags; 5989 5990 for_each_possible_cpu(cpu) { 5991 struct per_cpu_pageset *pset; 5992 struct per_cpu_pages *pcp; 5993 5994 pset = per_cpu_ptr(zone->pageset, cpu); 5995 pcp = &pset->pcp; 5996 5997 local_irq_save(flags); 5998 if (pcp->count > 0) 5999 free_pcppages_bulk(zone, pcp->count, pcp); 6000 drain_zonestat(zone, pset); 6001 setup_pageset(pset, batch); 6002 local_irq_restore(flags); 6003 } 6004 return 0; 6005 } 6006 6007 void __meminit zone_pcp_update(struct zone *zone) 6008 { 6009 stop_machine(__zone_pcp_update, zone, NULL); 6010 } 6011 #endif 6012 6013 void zone_pcp_reset(struct zone *zone) 6014 { 6015 unsigned long flags; 6016 int cpu; 6017 struct per_cpu_pageset *pset; 6018 6019 /* avoid races with drain_pages() */ 6020 local_irq_save(flags); 6021 if (zone->pageset != &boot_pageset) { 6022 for_each_online_cpu(cpu) { 6023 pset = per_cpu_ptr(zone->pageset, cpu); 6024 drain_zonestat(zone, pset); 6025 } 6026 free_percpu(zone->pageset); 6027 zone->pageset = &boot_pageset; 6028 } 6029 local_irq_restore(flags); 6030 } 6031 6032 #ifdef CONFIG_MEMORY_HOTREMOVE 6033 /* 6034 * All pages in the range must be isolated before calling this. 6035 */ 6036 void 6037 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6038 { 6039 struct page *page; 6040 struct zone *zone; 6041 int order, i; 6042 unsigned long pfn; 6043 unsigned long flags; 6044 /* find the first valid pfn */ 6045 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6046 if (pfn_valid(pfn)) 6047 break; 6048 if (pfn == end_pfn) 6049 return; 6050 zone = page_zone(pfn_to_page(pfn)); 6051 spin_lock_irqsave(&zone->lock, flags); 6052 pfn = start_pfn; 6053 while (pfn < end_pfn) { 6054 if (!pfn_valid(pfn)) { 6055 pfn++; 6056 continue; 6057 } 6058 page = pfn_to_page(pfn); 6059 /* 6060 * The HWPoisoned page may be not in buddy system, and 6061 * page_count() is not 0. 6062 */ 6063 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6064 pfn++; 6065 SetPageReserved(page); 6066 continue; 6067 } 6068 6069 BUG_ON(page_count(page)); 6070 BUG_ON(!PageBuddy(page)); 6071 order = page_order(page); 6072 #ifdef CONFIG_DEBUG_VM 6073 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6074 pfn, 1 << order, end_pfn); 6075 #endif 6076 list_del(&page->lru); 6077 rmv_page_order(page); 6078 zone->free_area[order].nr_free--; 6079 for (i = 0; i < (1 << order); i++) 6080 SetPageReserved((page+i)); 6081 pfn += (1 << order); 6082 } 6083 spin_unlock_irqrestore(&zone->lock, flags); 6084 } 6085 #endif 6086 6087 #ifdef CONFIG_MEMORY_FAILURE 6088 bool is_free_buddy_page(struct page *page) 6089 { 6090 struct zone *zone = page_zone(page); 6091 unsigned long pfn = page_to_pfn(page); 6092 unsigned long flags; 6093 int order; 6094 6095 spin_lock_irqsave(&zone->lock, flags); 6096 for (order = 0; order < MAX_ORDER; order++) { 6097 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6098 6099 if (PageBuddy(page_head) && page_order(page_head) >= order) 6100 break; 6101 } 6102 spin_unlock_irqrestore(&zone->lock, flags); 6103 6104 return order < MAX_ORDER; 6105 } 6106 #endif 6107 6108 static const struct trace_print_flags pageflag_names[] = { 6109 {1UL << PG_locked, "locked" }, 6110 {1UL << PG_error, "error" }, 6111 {1UL << PG_referenced, "referenced" }, 6112 {1UL << PG_uptodate, "uptodate" }, 6113 {1UL << PG_dirty, "dirty" }, 6114 {1UL << PG_lru, "lru" }, 6115 {1UL << PG_active, "active" }, 6116 {1UL << PG_slab, "slab" }, 6117 {1UL << PG_owner_priv_1, "owner_priv_1" }, 6118 {1UL << PG_arch_1, "arch_1" }, 6119 {1UL << PG_reserved, "reserved" }, 6120 {1UL << PG_private, "private" }, 6121 {1UL << PG_private_2, "private_2" }, 6122 {1UL << PG_writeback, "writeback" }, 6123 #ifdef CONFIG_PAGEFLAGS_EXTENDED 6124 {1UL << PG_head, "head" }, 6125 {1UL << PG_tail, "tail" }, 6126 #else 6127 {1UL << PG_compound, "compound" }, 6128 #endif 6129 {1UL << PG_swapcache, "swapcache" }, 6130 {1UL << PG_mappedtodisk, "mappedtodisk" }, 6131 {1UL << PG_reclaim, "reclaim" }, 6132 {1UL << PG_swapbacked, "swapbacked" }, 6133 {1UL << PG_unevictable, "unevictable" }, 6134 #ifdef CONFIG_MMU 6135 {1UL << PG_mlocked, "mlocked" }, 6136 #endif 6137 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 6138 {1UL << PG_uncached, "uncached" }, 6139 #endif 6140 #ifdef CONFIG_MEMORY_FAILURE 6141 {1UL << PG_hwpoison, "hwpoison" }, 6142 #endif 6143 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6144 {1UL << PG_compound_lock, "compound_lock" }, 6145 #endif 6146 }; 6147 6148 static void dump_page_flags(unsigned long flags) 6149 { 6150 const char *delim = ""; 6151 unsigned long mask; 6152 int i; 6153 6154 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); 6155 6156 printk(KERN_ALERT "page flags: %#lx(", flags); 6157 6158 /* remove zone id */ 6159 flags &= (1UL << NR_PAGEFLAGS) - 1; 6160 6161 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { 6162 6163 mask = pageflag_names[i].mask; 6164 if ((flags & mask) != mask) 6165 continue; 6166 6167 flags &= ~mask; 6168 printk("%s%s", delim, pageflag_names[i].name); 6169 delim = "|"; 6170 } 6171 6172 /* check for left over flags */ 6173 if (flags) 6174 printk("%s%#lx", delim, flags); 6175 6176 printk(")\n"); 6177 } 6178 6179 void dump_page(struct page *page) 6180 { 6181 printk(KERN_ALERT 6182 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 6183 page, atomic_read(&page->_count), page_mapcount(page), 6184 page->mapping, page->index); 6185 dump_page_flags(page->flags); 6186 mem_cgroup_print_bad_page(page); 6187 } 6188