xref: /openbmc/linux/mm/page_alloc.c (revision 83268fa6b43cefb60ee188fd53ed49120d3ae4f4)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/memblock.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kasan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/ratelimit.h>
33 #include <linux/oom.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/vmstat.h>
42 #include <linux/mempolicy.h>
43 #include <linux/memremap.h>
44 #include <linux/stop_machine.h>
45 #include <linux/sort.h>
46 #include <linux/pfn.h>
47 #include <linux/backing-dev.h>
48 #include <linux/fault-inject.h>
49 #include <linux/page-isolation.h>
50 #include <linux/page_ext.h>
51 #include <linux/debugobjects.h>
52 #include <linux/kmemleak.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <trace/events/oom.h>
56 #include <linux/prefetch.h>
57 #include <linux/mm_inline.h>
58 #include <linux/migrate.h>
59 #include <linux/hugetlb.h>
60 #include <linux/sched/rt.h>
61 #include <linux/sched/mm.h>
62 #include <linux/page_owner.h>
63 #include <linux/kthread.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/lockdep.h>
67 #include <linux/nmi.h>
68 #include <linux/psi.h>
69 
70 #include <asm/sections.h>
71 #include <asm/tlbflush.h>
72 #include <asm/div64.h>
73 #include "internal.h"
74 
75 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76 static DEFINE_MUTEX(pcp_batch_high_lock);
77 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
78 
79 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80 DEFINE_PER_CPU(int, numa_node);
81 EXPORT_PER_CPU_SYMBOL(numa_node);
82 #endif
83 
84 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
85 
86 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
87 /*
88  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
89  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
90  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
91  * defined in <linux/topology.h>.
92  */
93 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
94 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
95 int _node_numa_mem_[MAX_NUMNODES];
96 #endif
97 
98 /* work_structs for global per-cpu drains */
99 DEFINE_MUTEX(pcpu_drain_mutex);
100 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
101 
102 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
103 volatile unsigned long latent_entropy __latent_entropy;
104 EXPORT_SYMBOL(latent_entropy);
105 #endif
106 
107 /*
108  * Array of node states.
109  */
110 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
111 	[N_POSSIBLE] = NODE_MASK_ALL,
112 	[N_ONLINE] = { { [0] = 1UL } },
113 #ifndef CONFIG_NUMA
114 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
115 #ifdef CONFIG_HIGHMEM
116 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
117 #endif
118 	[N_MEMORY] = { { [0] = 1UL } },
119 	[N_CPU] = { { [0] = 1UL } },
120 #endif	/* NUMA */
121 };
122 EXPORT_SYMBOL(node_states);
123 
124 /* Protect totalram_pages and zone->managed_pages */
125 static DEFINE_SPINLOCK(managed_page_count_lock);
126 
127 unsigned long totalram_pages __read_mostly;
128 unsigned long totalreserve_pages __read_mostly;
129 unsigned long totalcma_pages __read_mostly;
130 
131 int percpu_pagelist_fraction;
132 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
133 
134 /*
135  * A cached value of the page's pageblock's migratetype, used when the page is
136  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138  * Also the migratetype set in the page does not necessarily match the pcplist
139  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140  * other index - this ensures that it will be put on the correct CMA freelist.
141  */
142 static inline int get_pcppage_migratetype(struct page *page)
143 {
144 	return page->index;
145 }
146 
147 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
148 {
149 	page->index = migratetype;
150 }
151 
152 #ifdef CONFIG_PM_SLEEP
153 /*
154  * The following functions are used by the suspend/hibernate code to temporarily
155  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156  * while devices are suspended.  To avoid races with the suspend/hibernate code,
157  * they should always be called with system_transition_mutex held
158  * (gfp_allowed_mask also should only be modified with system_transition_mutex
159  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
160  * with that modification).
161  */
162 
163 static gfp_t saved_gfp_mask;
164 
165 void pm_restore_gfp_mask(void)
166 {
167 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
168 	if (saved_gfp_mask) {
169 		gfp_allowed_mask = saved_gfp_mask;
170 		saved_gfp_mask = 0;
171 	}
172 }
173 
174 void pm_restrict_gfp_mask(void)
175 {
176 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
177 	WARN_ON(saved_gfp_mask);
178 	saved_gfp_mask = gfp_allowed_mask;
179 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
180 }
181 
182 bool pm_suspended_storage(void)
183 {
184 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
185 		return false;
186 	return true;
187 }
188 #endif /* CONFIG_PM_SLEEP */
189 
190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191 unsigned int pageblock_order __read_mostly;
192 #endif
193 
194 static void __free_pages_ok(struct page *page, unsigned int order);
195 
196 /*
197  * results with 256, 32 in the lowmem_reserve sysctl:
198  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199  *	1G machine -> (16M dma, 784M normal, 224M high)
200  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
202  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
203  *
204  * TBD: should special case ZONE_DMA32 machines here - in those we normally
205  * don't need any ZONE_NORMAL reservation
206  */
207 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
208 #ifdef CONFIG_ZONE_DMA
209 	[ZONE_DMA] = 256,
210 #endif
211 #ifdef CONFIG_ZONE_DMA32
212 	[ZONE_DMA32] = 256,
213 #endif
214 	[ZONE_NORMAL] = 32,
215 #ifdef CONFIG_HIGHMEM
216 	[ZONE_HIGHMEM] = 0,
217 #endif
218 	[ZONE_MOVABLE] = 0,
219 };
220 
221 EXPORT_SYMBOL(totalram_pages);
222 
223 static char * const zone_names[MAX_NR_ZONES] = {
224 #ifdef CONFIG_ZONE_DMA
225 	 "DMA",
226 #endif
227 #ifdef CONFIG_ZONE_DMA32
228 	 "DMA32",
229 #endif
230 	 "Normal",
231 #ifdef CONFIG_HIGHMEM
232 	 "HighMem",
233 #endif
234 	 "Movable",
235 #ifdef CONFIG_ZONE_DEVICE
236 	 "Device",
237 #endif
238 };
239 
240 char * const migratetype_names[MIGRATE_TYPES] = {
241 	"Unmovable",
242 	"Movable",
243 	"Reclaimable",
244 	"HighAtomic",
245 #ifdef CONFIG_CMA
246 	"CMA",
247 #endif
248 #ifdef CONFIG_MEMORY_ISOLATION
249 	"Isolate",
250 #endif
251 };
252 
253 compound_page_dtor * const compound_page_dtors[] = {
254 	NULL,
255 	free_compound_page,
256 #ifdef CONFIG_HUGETLB_PAGE
257 	free_huge_page,
258 #endif
259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 	free_transhuge_page,
261 #endif
262 };
263 
264 int min_free_kbytes = 1024;
265 int user_min_free_kbytes = -1;
266 int watermark_scale_factor = 10;
267 
268 static unsigned long nr_kernel_pages __meminitdata;
269 static unsigned long nr_all_pages __meminitdata;
270 static unsigned long dma_reserve __meminitdata;
271 
272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
274 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
275 static unsigned long required_kernelcore __initdata;
276 static unsigned long required_kernelcore_percent __initdata;
277 static unsigned long required_movablecore __initdata;
278 static unsigned long required_movablecore_percent __initdata;
279 static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
280 static bool mirrored_kernelcore __meminitdata;
281 
282 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
283 int movable_zone;
284 EXPORT_SYMBOL(movable_zone);
285 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
286 
287 #if MAX_NUMNODES > 1
288 int nr_node_ids __read_mostly = MAX_NUMNODES;
289 int nr_online_nodes __read_mostly = 1;
290 EXPORT_SYMBOL(nr_node_ids);
291 EXPORT_SYMBOL(nr_online_nodes);
292 #endif
293 
294 int page_group_by_mobility_disabled __read_mostly;
295 
296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297 /* Returns true if the struct page for the pfn is uninitialised */
298 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
299 {
300 	int nid = early_pfn_to_nid(pfn);
301 
302 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
303 		return true;
304 
305 	return false;
306 }
307 
308 /*
309  * Returns true when the remaining initialisation should be deferred until
310  * later in the boot cycle when it can be parallelised.
311  */
312 static bool __meminit
313 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
314 {
315 	static unsigned long prev_end_pfn, nr_initialised;
316 
317 	/*
318 	 * prev_end_pfn static that contains the end of previous zone
319 	 * No need to protect because called very early in boot before smp_init.
320 	 */
321 	if (prev_end_pfn != end_pfn) {
322 		prev_end_pfn = end_pfn;
323 		nr_initialised = 0;
324 	}
325 
326 	/* Always populate low zones for address-constrained allocations */
327 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
328 		return false;
329 	nr_initialised++;
330 	if ((nr_initialised > NODE_DATA(nid)->static_init_pgcnt) &&
331 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
332 		NODE_DATA(nid)->first_deferred_pfn = pfn;
333 		return true;
334 	}
335 	return false;
336 }
337 #else
338 static inline bool early_page_uninitialised(unsigned long pfn)
339 {
340 	return false;
341 }
342 
343 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
344 {
345 	return false;
346 }
347 #endif
348 
349 /* Return a pointer to the bitmap storing bits affecting a block of pages */
350 static inline unsigned long *get_pageblock_bitmap(struct page *page,
351 							unsigned long pfn)
352 {
353 #ifdef CONFIG_SPARSEMEM
354 	return __pfn_to_section(pfn)->pageblock_flags;
355 #else
356 	return page_zone(page)->pageblock_flags;
357 #endif /* CONFIG_SPARSEMEM */
358 }
359 
360 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
361 {
362 #ifdef CONFIG_SPARSEMEM
363 	pfn &= (PAGES_PER_SECTION-1);
364 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
365 #else
366 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
367 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
368 #endif /* CONFIG_SPARSEMEM */
369 }
370 
371 /**
372  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
373  * @page: The page within the block of interest
374  * @pfn: The target page frame number
375  * @end_bitidx: The last bit of interest to retrieve
376  * @mask: mask of bits that the caller is interested in
377  *
378  * Return: pageblock_bits flags
379  */
380 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
381 					unsigned long pfn,
382 					unsigned long end_bitidx,
383 					unsigned long mask)
384 {
385 	unsigned long *bitmap;
386 	unsigned long bitidx, word_bitidx;
387 	unsigned long word;
388 
389 	bitmap = get_pageblock_bitmap(page, pfn);
390 	bitidx = pfn_to_bitidx(page, pfn);
391 	word_bitidx = bitidx / BITS_PER_LONG;
392 	bitidx &= (BITS_PER_LONG-1);
393 
394 	word = bitmap[word_bitidx];
395 	bitidx += end_bitidx;
396 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
397 }
398 
399 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
400 					unsigned long end_bitidx,
401 					unsigned long mask)
402 {
403 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
404 }
405 
406 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
407 {
408 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
409 }
410 
411 /**
412  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
413  * @page: The page within the block of interest
414  * @flags: The flags to set
415  * @pfn: The target page frame number
416  * @end_bitidx: The last bit of interest
417  * @mask: mask of bits that the caller is interested in
418  */
419 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
420 					unsigned long pfn,
421 					unsigned long end_bitidx,
422 					unsigned long mask)
423 {
424 	unsigned long *bitmap;
425 	unsigned long bitidx, word_bitidx;
426 	unsigned long old_word, word;
427 
428 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
429 
430 	bitmap = get_pageblock_bitmap(page, pfn);
431 	bitidx = pfn_to_bitidx(page, pfn);
432 	word_bitidx = bitidx / BITS_PER_LONG;
433 	bitidx &= (BITS_PER_LONG-1);
434 
435 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
436 
437 	bitidx += end_bitidx;
438 	mask <<= (BITS_PER_LONG - bitidx - 1);
439 	flags <<= (BITS_PER_LONG - bitidx - 1);
440 
441 	word = READ_ONCE(bitmap[word_bitidx]);
442 	for (;;) {
443 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
444 		if (word == old_word)
445 			break;
446 		word = old_word;
447 	}
448 }
449 
450 void set_pageblock_migratetype(struct page *page, int migratetype)
451 {
452 	if (unlikely(page_group_by_mobility_disabled &&
453 		     migratetype < MIGRATE_PCPTYPES))
454 		migratetype = MIGRATE_UNMOVABLE;
455 
456 	set_pageblock_flags_group(page, (unsigned long)migratetype,
457 					PB_migrate, PB_migrate_end);
458 }
459 
460 #ifdef CONFIG_DEBUG_VM
461 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
462 {
463 	int ret = 0;
464 	unsigned seq;
465 	unsigned long pfn = page_to_pfn(page);
466 	unsigned long sp, start_pfn;
467 
468 	do {
469 		seq = zone_span_seqbegin(zone);
470 		start_pfn = zone->zone_start_pfn;
471 		sp = zone->spanned_pages;
472 		if (!zone_spans_pfn(zone, pfn))
473 			ret = 1;
474 	} while (zone_span_seqretry(zone, seq));
475 
476 	if (ret)
477 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
478 			pfn, zone_to_nid(zone), zone->name,
479 			start_pfn, start_pfn + sp);
480 
481 	return ret;
482 }
483 
484 static int page_is_consistent(struct zone *zone, struct page *page)
485 {
486 	if (!pfn_valid_within(page_to_pfn(page)))
487 		return 0;
488 	if (zone != page_zone(page))
489 		return 0;
490 
491 	return 1;
492 }
493 /*
494  * Temporary debugging check for pages not lying within a given zone.
495  */
496 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
497 {
498 	if (page_outside_zone_boundaries(zone, page))
499 		return 1;
500 	if (!page_is_consistent(zone, page))
501 		return 1;
502 
503 	return 0;
504 }
505 #else
506 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
507 {
508 	return 0;
509 }
510 #endif
511 
512 static void bad_page(struct page *page, const char *reason,
513 		unsigned long bad_flags)
514 {
515 	static unsigned long resume;
516 	static unsigned long nr_shown;
517 	static unsigned long nr_unshown;
518 
519 	/*
520 	 * Allow a burst of 60 reports, then keep quiet for that minute;
521 	 * or allow a steady drip of one report per second.
522 	 */
523 	if (nr_shown == 60) {
524 		if (time_before(jiffies, resume)) {
525 			nr_unshown++;
526 			goto out;
527 		}
528 		if (nr_unshown) {
529 			pr_alert(
530 			      "BUG: Bad page state: %lu messages suppressed\n",
531 				nr_unshown);
532 			nr_unshown = 0;
533 		}
534 		nr_shown = 0;
535 	}
536 	if (nr_shown++ == 0)
537 		resume = jiffies + 60 * HZ;
538 
539 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
540 		current->comm, page_to_pfn(page));
541 	__dump_page(page, reason);
542 	bad_flags &= page->flags;
543 	if (bad_flags)
544 		pr_alert("bad because of flags: %#lx(%pGp)\n",
545 						bad_flags, &bad_flags);
546 	dump_page_owner(page);
547 
548 	print_modules();
549 	dump_stack();
550 out:
551 	/* Leave bad fields for debug, except PageBuddy could make trouble */
552 	page_mapcount_reset(page); /* remove PageBuddy */
553 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
554 }
555 
556 /*
557  * Higher-order pages are called "compound pages".  They are structured thusly:
558  *
559  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
560  *
561  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
562  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
563  *
564  * The first tail page's ->compound_dtor holds the offset in array of compound
565  * page destructors. See compound_page_dtors.
566  *
567  * The first tail page's ->compound_order holds the order of allocation.
568  * This usage means that zero-order pages may not be compound.
569  */
570 
571 void free_compound_page(struct page *page)
572 {
573 	__free_pages_ok(page, compound_order(page));
574 }
575 
576 void prep_compound_page(struct page *page, unsigned int order)
577 {
578 	int i;
579 	int nr_pages = 1 << order;
580 
581 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
582 	set_compound_order(page, order);
583 	__SetPageHead(page);
584 	for (i = 1; i < nr_pages; i++) {
585 		struct page *p = page + i;
586 		set_page_count(p, 0);
587 		p->mapping = TAIL_MAPPING;
588 		set_compound_head(p, page);
589 	}
590 	atomic_set(compound_mapcount_ptr(page), -1);
591 }
592 
593 #ifdef CONFIG_DEBUG_PAGEALLOC
594 unsigned int _debug_guardpage_minorder;
595 bool _debug_pagealloc_enabled __read_mostly
596 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
597 EXPORT_SYMBOL(_debug_pagealloc_enabled);
598 bool _debug_guardpage_enabled __read_mostly;
599 
600 static int __init early_debug_pagealloc(char *buf)
601 {
602 	if (!buf)
603 		return -EINVAL;
604 	return kstrtobool(buf, &_debug_pagealloc_enabled);
605 }
606 early_param("debug_pagealloc", early_debug_pagealloc);
607 
608 static bool need_debug_guardpage(void)
609 {
610 	/* If we don't use debug_pagealloc, we don't need guard page */
611 	if (!debug_pagealloc_enabled())
612 		return false;
613 
614 	if (!debug_guardpage_minorder())
615 		return false;
616 
617 	return true;
618 }
619 
620 static void init_debug_guardpage(void)
621 {
622 	if (!debug_pagealloc_enabled())
623 		return;
624 
625 	if (!debug_guardpage_minorder())
626 		return;
627 
628 	_debug_guardpage_enabled = true;
629 }
630 
631 struct page_ext_operations debug_guardpage_ops = {
632 	.need = need_debug_guardpage,
633 	.init = init_debug_guardpage,
634 };
635 
636 static int __init debug_guardpage_minorder_setup(char *buf)
637 {
638 	unsigned long res;
639 
640 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
641 		pr_err("Bad debug_guardpage_minorder value\n");
642 		return 0;
643 	}
644 	_debug_guardpage_minorder = res;
645 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
646 	return 0;
647 }
648 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
649 
650 static inline bool set_page_guard(struct zone *zone, struct page *page,
651 				unsigned int order, int migratetype)
652 {
653 	struct page_ext *page_ext;
654 
655 	if (!debug_guardpage_enabled())
656 		return false;
657 
658 	if (order >= debug_guardpage_minorder())
659 		return false;
660 
661 	page_ext = lookup_page_ext(page);
662 	if (unlikely(!page_ext))
663 		return false;
664 
665 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
666 
667 	INIT_LIST_HEAD(&page->lru);
668 	set_page_private(page, order);
669 	/* Guard pages are not available for any usage */
670 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
671 
672 	return true;
673 }
674 
675 static inline void clear_page_guard(struct zone *zone, struct page *page,
676 				unsigned int order, int migratetype)
677 {
678 	struct page_ext *page_ext;
679 
680 	if (!debug_guardpage_enabled())
681 		return;
682 
683 	page_ext = lookup_page_ext(page);
684 	if (unlikely(!page_ext))
685 		return;
686 
687 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
688 
689 	set_page_private(page, 0);
690 	if (!is_migrate_isolate(migratetype))
691 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
692 }
693 #else
694 struct page_ext_operations debug_guardpage_ops;
695 static inline bool set_page_guard(struct zone *zone, struct page *page,
696 			unsigned int order, int migratetype) { return false; }
697 static inline void clear_page_guard(struct zone *zone, struct page *page,
698 				unsigned int order, int migratetype) {}
699 #endif
700 
701 static inline void set_page_order(struct page *page, unsigned int order)
702 {
703 	set_page_private(page, order);
704 	__SetPageBuddy(page);
705 }
706 
707 static inline void rmv_page_order(struct page *page)
708 {
709 	__ClearPageBuddy(page);
710 	set_page_private(page, 0);
711 }
712 
713 /*
714  * This function checks whether a page is free && is the buddy
715  * we can coalesce a page and its buddy if
716  * (a) the buddy is not in a hole (check before calling!) &&
717  * (b) the buddy is in the buddy system &&
718  * (c) a page and its buddy have the same order &&
719  * (d) a page and its buddy are in the same zone.
720  *
721  * For recording whether a page is in the buddy system, we set PageBuddy.
722  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
723  *
724  * For recording page's order, we use page_private(page).
725  */
726 static inline int page_is_buddy(struct page *page, struct page *buddy,
727 							unsigned int order)
728 {
729 	if (page_is_guard(buddy) && page_order(buddy) == order) {
730 		if (page_zone_id(page) != page_zone_id(buddy))
731 			return 0;
732 
733 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
734 
735 		return 1;
736 	}
737 
738 	if (PageBuddy(buddy) && page_order(buddy) == order) {
739 		/*
740 		 * zone check is done late to avoid uselessly
741 		 * calculating zone/node ids for pages that could
742 		 * never merge.
743 		 */
744 		if (page_zone_id(page) != page_zone_id(buddy))
745 			return 0;
746 
747 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
748 
749 		return 1;
750 	}
751 	return 0;
752 }
753 
754 /*
755  * Freeing function for a buddy system allocator.
756  *
757  * The concept of a buddy system is to maintain direct-mapped table
758  * (containing bit values) for memory blocks of various "orders".
759  * The bottom level table contains the map for the smallest allocatable
760  * units of memory (here, pages), and each level above it describes
761  * pairs of units from the levels below, hence, "buddies".
762  * At a high level, all that happens here is marking the table entry
763  * at the bottom level available, and propagating the changes upward
764  * as necessary, plus some accounting needed to play nicely with other
765  * parts of the VM system.
766  * At each level, we keep a list of pages, which are heads of continuous
767  * free pages of length of (1 << order) and marked with PageBuddy.
768  * Page's order is recorded in page_private(page) field.
769  * So when we are allocating or freeing one, we can derive the state of the
770  * other.  That is, if we allocate a small block, and both were
771  * free, the remainder of the region must be split into blocks.
772  * If a block is freed, and its buddy is also free, then this
773  * triggers coalescing into a block of larger size.
774  *
775  * -- nyc
776  */
777 
778 static inline void __free_one_page(struct page *page,
779 		unsigned long pfn,
780 		struct zone *zone, unsigned int order,
781 		int migratetype)
782 {
783 	unsigned long combined_pfn;
784 	unsigned long uninitialized_var(buddy_pfn);
785 	struct page *buddy;
786 	unsigned int max_order;
787 
788 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
789 
790 	VM_BUG_ON(!zone_is_initialized(zone));
791 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
792 
793 	VM_BUG_ON(migratetype == -1);
794 	if (likely(!is_migrate_isolate(migratetype)))
795 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
796 
797 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
798 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
799 
800 continue_merging:
801 	while (order < max_order - 1) {
802 		buddy_pfn = __find_buddy_pfn(pfn, order);
803 		buddy = page + (buddy_pfn - pfn);
804 
805 		if (!pfn_valid_within(buddy_pfn))
806 			goto done_merging;
807 		if (!page_is_buddy(page, buddy, order))
808 			goto done_merging;
809 		/*
810 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
811 		 * merge with it and move up one order.
812 		 */
813 		if (page_is_guard(buddy)) {
814 			clear_page_guard(zone, buddy, order, migratetype);
815 		} else {
816 			list_del(&buddy->lru);
817 			zone->free_area[order].nr_free--;
818 			rmv_page_order(buddy);
819 		}
820 		combined_pfn = buddy_pfn & pfn;
821 		page = page + (combined_pfn - pfn);
822 		pfn = combined_pfn;
823 		order++;
824 	}
825 	if (max_order < MAX_ORDER) {
826 		/* If we are here, it means order is >= pageblock_order.
827 		 * We want to prevent merge between freepages on isolate
828 		 * pageblock and normal pageblock. Without this, pageblock
829 		 * isolation could cause incorrect freepage or CMA accounting.
830 		 *
831 		 * We don't want to hit this code for the more frequent
832 		 * low-order merging.
833 		 */
834 		if (unlikely(has_isolate_pageblock(zone))) {
835 			int buddy_mt;
836 
837 			buddy_pfn = __find_buddy_pfn(pfn, order);
838 			buddy = page + (buddy_pfn - pfn);
839 			buddy_mt = get_pageblock_migratetype(buddy);
840 
841 			if (migratetype != buddy_mt
842 					&& (is_migrate_isolate(migratetype) ||
843 						is_migrate_isolate(buddy_mt)))
844 				goto done_merging;
845 		}
846 		max_order++;
847 		goto continue_merging;
848 	}
849 
850 done_merging:
851 	set_page_order(page, order);
852 
853 	/*
854 	 * If this is not the largest possible page, check if the buddy
855 	 * of the next-highest order is free. If it is, it's possible
856 	 * that pages are being freed that will coalesce soon. In case,
857 	 * that is happening, add the free page to the tail of the list
858 	 * so it's less likely to be used soon and more likely to be merged
859 	 * as a higher order page
860 	 */
861 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
862 		struct page *higher_page, *higher_buddy;
863 		combined_pfn = buddy_pfn & pfn;
864 		higher_page = page + (combined_pfn - pfn);
865 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
866 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
867 		if (pfn_valid_within(buddy_pfn) &&
868 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
869 			list_add_tail(&page->lru,
870 				&zone->free_area[order].free_list[migratetype]);
871 			goto out;
872 		}
873 	}
874 
875 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
876 out:
877 	zone->free_area[order].nr_free++;
878 }
879 
880 /*
881  * A bad page could be due to a number of fields. Instead of multiple branches,
882  * try and check multiple fields with one check. The caller must do a detailed
883  * check if necessary.
884  */
885 static inline bool page_expected_state(struct page *page,
886 					unsigned long check_flags)
887 {
888 	if (unlikely(atomic_read(&page->_mapcount) != -1))
889 		return false;
890 
891 	if (unlikely((unsigned long)page->mapping |
892 			page_ref_count(page) |
893 #ifdef CONFIG_MEMCG
894 			(unsigned long)page->mem_cgroup |
895 #endif
896 			(page->flags & check_flags)))
897 		return false;
898 
899 	return true;
900 }
901 
902 static void free_pages_check_bad(struct page *page)
903 {
904 	const char *bad_reason;
905 	unsigned long bad_flags;
906 
907 	bad_reason = NULL;
908 	bad_flags = 0;
909 
910 	if (unlikely(atomic_read(&page->_mapcount) != -1))
911 		bad_reason = "nonzero mapcount";
912 	if (unlikely(page->mapping != NULL))
913 		bad_reason = "non-NULL mapping";
914 	if (unlikely(page_ref_count(page) != 0))
915 		bad_reason = "nonzero _refcount";
916 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
917 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
918 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
919 	}
920 #ifdef CONFIG_MEMCG
921 	if (unlikely(page->mem_cgroup))
922 		bad_reason = "page still charged to cgroup";
923 #endif
924 	bad_page(page, bad_reason, bad_flags);
925 }
926 
927 static inline int free_pages_check(struct page *page)
928 {
929 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
930 		return 0;
931 
932 	/* Something has gone sideways, find it */
933 	free_pages_check_bad(page);
934 	return 1;
935 }
936 
937 static int free_tail_pages_check(struct page *head_page, struct page *page)
938 {
939 	int ret = 1;
940 
941 	/*
942 	 * We rely page->lru.next never has bit 0 set, unless the page
943 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
944 	 */
945 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
946 
947 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
948 		ret = 0;
949 		goto out;
950 	}
951 	switch (page - head_page) {
952 	case 1:
953 		/* the first tail page: ->mapping may be compound_mapcount() */
954 		if (unlikely(compound_mapcount(page))) {
955 			bad_page(page, "nonzero compound_mapcount", 0);
956 			goto out;
957 		}
958 		break;
959 	case 2:
960 		/*
961 		 * the second tail page: ->mapping is
962 		 * deferred_list.next -- ignore value.
963 		 */
964 		break;
965 	default:
966 		if (page->mapping != TAIL_MAPPING) {
967 			bad_page(page, "corrupted mapping in tail page", 0);
968 			goto out;
969 		}
970 		break;
971 	}
972 	if (unlikely(!PageTail(page))) {
973 		bad_page(page, "PageTail not set", 0);
974 		goto out;
975 	}
976 	if (unlikely(compound_head(page) != head_page)) {
977 		bad_page(page, "compound_head not consistent", 0);
978 		goto out;
979 	}
980 	ret = 0;
981 out:
982 	page->mapping = NULL;
983 	clear_compound_head(page);
984 	return ret;
985 }
986 
987 static __always_inline bool free_pages_prepare(struct page *page,
988 					unsigned int order, bool check_free)
989 {
990 	int bad = 0;
991 
992 	VM_BUG_ON_PAGE(PageTail(page), page);
993 
994 	trace_mm_page_free(page, order);
995 
996 	/*
997 	 * Check tail pages before head page information is cleared to
998 	 * avoid checking PageCompound for order-0 pages.
999 	 */
1000 	if (unlikely(order)) {
1001 		bool compound = PageCompound(page);
1002 		int i;
1003 
1004 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1005 
1006 		if (compound)
1007 			ClearPageDoubleMap(page);
1008 		for (i = 1; i < (1 << order); i++) {
1009 			if (compound)
1010 				bad += free_tail_pages_check(page, page + i);
1011 			if (unlikely(free_pages_check(page + i))) {
1012 				bad++;
1013 				continue;
1014 			}
1015 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1016 		}
1017 	}
1018 	if (PageMappingFlags(page))
1019 		page->mapping = NULL;
1020 	if (memcg_kmem_enabled() && PageKmemcg(page))
1021 		memcg_kmem_uncharge(page, order);
1022 	if (check_free)
1023 		bad += free_pages_check(page);
1024 	if (bad)
1025 		return false;
1026 
1027 	page_cpupid_reset_last(page);
1028 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1029 	reset_page_owner(page, order);
1030 
1031 	if (!PageHighMem(page)) {
1032 		debug_check_no_locks_freed(page_address(page),
1033 					   PAGE_SIZE << order);
1034 		debug_check_no_obj_freed(page_address(page),
1035 					   PAGE_SIZE << order);
1036 	}
1037 	arch_free_page(page, order);
1038 	kernel_poison_pages(page, 1 << order, 0);
1039 	kernel_map_pages(page, 1 << order, 0);
1040 	kasan_free_pages(page, order);
1041 
1042 	return true;
1043 }
1044 
1045 #ifdef CONFIG_DEBUG_VM
1046 static inline bool free_pcp_prepare(struct page *page)
1047 {
1048 	return free_pages_prepare(page, 0, true);
1049 }
1050 
1051 static inline bool bulkfree_pcp_prepare(struct page *page)
1052 {
1053 	return false;
1054 }
1055 #else
1056 static bool free_pcp_prepare(struct page *page)
1057 {
1058 	return free_pages_prepare(page, 0, false);
1059 }
1060 
1061 static bool bulkfree_pcp_prepare(struct page *page)
1062 {
1063 	return free_pages_check(page);
1064 }
1065 #endif /* CONFIG_DEBUG_VM */
1066 
1067 static inline void prefetch_buddy(struct page *page)
1068 {
1069 	unsigned long pfn = page_to_pfn(page);
1070 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1071 	struct page *buddy = page + (buddy_pfn - pfn);
1072 
1073 	prefetch(buddy);
1074 }
1075 
1076 /*
1077  * Frees a number of pages from the PCP lists
1078  * Assumes all pages on list are in same zone, and of same order.
1079  * count is the number of pages to free.
1080  *
1081  * If the zone was previously in an "all pages pinned" state then look to
1082  * see if this freeing clears that state.
1083  *
1084  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1085  * pinned" detection logic.
1086  */
1087 static void free_pcppages_bulk(struct zone *zone, int count,
1088 					struct per_cpu_pages *pcp)
1089 {
1090 	int migratetype = 0;
1091 	int batch_free = 0;
1092 	int prefetch_nr = 0;
1093 	bool isolated_pageblocks;
1094 	struct page *page, *tmp;
1095 	LIST_HEAD(head);
1096 
1097 	while (count) {
1098 		struct list_head *list;
1099 
1100 		/*
1101 		 * Remove pages from lists in a round-robin fashion. A
1102 		 * batch_free count is maintained that is incremented when an
1103 		 * empty list is encountered.  This is so more pages are freed
1104 		 * off fuller lists instead of spinning excessively around empty
1105 		 * lists
1106 		 */
1107 		do {
1108 			batch_free++;
1109 			if (++migratetype == MIGRATE_PCPTYPES)
1110 				migratetype = 0;
1111 			list = &pcp->lists[migratetype];
1112 		} while (list_empty(list));
1113 
1114 		/* This is the only non-empty list. Free them all. */
1115 		if (batch_free == MIGRATE_PCPTYPES)
1116 			batch_free = count;
1117 
1118 		do {
1119 			page = list_last_entry(list, struct page, lru);
1120 			/* must delete to avoid corrupting pcp list */
1121 			list_del(&page->lru);
1122 			pcp->count--;
1123 
1124 			if (bulkfree_pcp_prepare(page))
1125 				continue;
1126 
1127 			list_add_tail(&page->lru, &head);
1128 
1129 			/*
1130 			 * We are going to put the page back to the global
1131 			 * pool, prefetch its buddy to speed up later access
1132 			 * under zone->lock. It is believed the overhead of
1133 			 * an additional test and calculating buddy_pfn here
1134 			 * can be offset by reduced memory latency later. To
1135 			 * avoid excessive prefetching due to large count, only
1136 			 * prefetch buddy for the first pcp->batch nr of pages.
1137 			 */
1138 			if (prefetch_nr++ < pcp->batch)
1139 				prefetch_buddy(page);
1140 		} while (--count && --batch_free && !list_empty(list));
1141 	}
1142 
1143 	spin_lock(&zone->lock);
1144 	isolated_pageblocks = has_isolate_pageblock(zone);
1145 
1146 	/*
1147 	 * Use safe version since after __free_one_page(),
1148 	 * page->lru.next will not point to original list.
1149 	 */
1150 	list_for_each_entry_safe(page, tmp, &head, lru) {
1151 		int mt = get_pcppage_migratetype(page);
1152 		/* MIGRATE_ISOLATE page should not go to pcplists */
1153 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1154 		/* Pageblock could have been isolated meanwhile */
1155 		if (unlikely(isolated_pageblocks))
1156 			mt = get_pageblock_migratetype(page);
1157 
1158 		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1159 		trace_mm_page_pcpu_drain(page, 0, mt);
1160 	}
1161 	spin_unlock(&zone->lock);
1162 }
1163 
1164 static void free_one_page(struct zone *zone,
1165 				struct page *page, unsigned long pfn,
1166 				unsigned int order,
1167 				int migratetype)
1168 {
1169 	spin_lock(&zone->lock);
1170 	if (unlikely(has_isolate_pageblock(zone) ||
1171 		is_migrate_isolate(migratetype))) {
1172 		migratetype = get_pfnblock_migratetype(page, pfn);
1173 	}
1174 	__free_one_page(page, pfn, zone, order, migratetype);
1175 	spin_unlock(&zone->lock);
1176 }
1177 
1178 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1179 				unsigned long zone, int nid)
1180 {
1181 	mm_zero_struct_page(page);
1182 	set_page_links(page, zone, nid, pfn);
1183 	init_page_count(page);
1184 	page_mapcount_reset(page);
1185 	page_cpupid_reset_last(page);
1186 
1187 	INIT_LIST_HEAD(&page->lru);
1188 #ifdef WANT_PAGE_VIRTUAL
1189 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1190 	if (!is_highmem_idx(zone))
1191 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1192 #endif
1193 }
1194 
1195 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1196 static void __meminit init_reserved_page(unsigned long pfn)
1197 {
1198 	pg_data_t *pgdat;
1199 	int nid, zid;
1200 
1201 	if (!early_page_uninitialised(pfn))
1202 		return;
1203 
1204 	nid = early_pfn_to_nid(pfn);
1205 	pgdat = NODE_DATA(nid);
1206 
1207 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1208 		struct zone *zone = &pgdat->node_zones[zid];
1209 
1210 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1211 			break;
1212 	}
1213 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1214 }
1215 #else
1216 static inline void init_reserved_page(unsigned long pfn)
1217 {
1218 }
1219 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1220 
1221 /*
1222  * Initialised pages do not have PageReserved set. This function is
1223  * called for each range allocated by the bootmem allocator and
1224  * marks the pages PageReserved. The remaining valid pages are later
1225  * sent to the buddy page allocator.
1226  */
1227 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1228 {
1229 	unsigned long start_pfn = PFN_DOWN(start);
1230 	unsigned long end_pfn = PFN_UP(end);
1231 
1232 	for (; start_pfn < end_pfn; start_pfn++) {
1233 		if (pfn_valid(start_pfn)) {
1234 			struct page *page = pfn_to_page(start_pfn);
1235 
1236 			init_reserved_page(start_pfn);
1237 
1238 			/* Avoid false-positive PageTail() */
1239 			INIT_LIST_HEAD(&page->lru);
1240 
1241 			/*
1242 			 * no need for atomic set_bit because the struct
1243 			 * page is not visible yet so nobody should
1244 			 * access it yet.
1245 			 */
1246 			__SetPageReserved(page);
1247 		}
1248 	}
1249 }
1250 
1251 static void __free_pages_ok(struct page *page, unsigned int order)
1252 {
1253 	unsigned long flags;
1254 	int migratetype;
1255 	unsigned long pfn = page_to_pfn(page);
1256 
1257 	if (!free_pages_prepare(page, order, true))
1258 		return;
1259 
1260 	migratetype = get_pfnblock_migratetype(page, pfn);
1261 	local_irq_save(flags);
1262 	__count_vm_events(PGFREE, 1 << order);
1263 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1264 	local_irq_restore(flags);
1265 }
1266 
1267 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1268 {
1269 	unsigned int nr_pages = 1 << order;
1270 	struct page *p = page;
1271 	unsigned int loop;
1272 
1273 	prefetchw(p);
1274 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1275 		prefetchw(p + 1);
1276 		__ClearPageReserved(p);
1277 		set_page_count(p, 0);
1278 	}
1279 	__ClearPageReserved(p);
1280 	set_page_count(p, 0);
1281 
1282 	page_zone(page)->managed_pages += nr_pages;
1283 	set_page_refcounted(page);
1284 	__free_pages(page, order);
1285 }
1286 
1287 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1288 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1289 
1290 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1291 
1292 int __meminit early_pfn_to_nid(unsigned long pfn)
1293 {
1294 	static DEFINE_SPINLOCK(early_pfn_lock);
1295 	int nid;
1296 
1297 	spin_lock(&early_pfn_lock);
1298 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1299 	if (nid < 0)
1300 		nid = first_online_node;
1301 	spin_unlock(&early_pfn_lock);
1302 
1303 	return nid;
1304 }
1305 #endif
1306 
1307 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1308 static inline bool __meminit __maybe_unused
1309 meminit_pfn_in_nid(unsigned long pfn, int node,
1310 		   struct mminit_pfnnid_cache *state)
1311 {
1312 	int nid;
1313 
1314 	nid = __early_pfn_to_nid(pfn, state);
1315 	if (nid >= 0 && nid != node)
1316 		return false;
1317 	return true;
1318 }
1319 
1320 /* Only safe to use early in boot when initialisation is single-threaded */
1321 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1322 {
1323 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1324 }
1325 
1326 #else
1327 
1328 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1329 {
1330 	return true;
1331 }
1332 static inline bool __meminit  __maybe_unused
1333 meminit_pfn_in_nid(unsigned long pfn, int node,
1334 		   struct mminit_pfnnid_cache *state)
1335 {
1336 	return true;
1337 }
1338 #endif
1339 
1340 
1341 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1342 							unsigned int order)
1343 {
1344 	if (early_page_uninitialised(pfn))
1345 		return;
1346 	return __free_pages_boot_core(page, order);
1347 }
1348 
1349 /*
1350  * Check that the whole (or subset of) a pageblock given by the interval of
1351  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1352  * with the migration of free compaction scanner. The scanners then need to
1353  * use only pfn_valid_within() check for arches that allow holes within
1354  * pageblocks.
1355  *
1356  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1357  *
1358  * It's possible on some configurations to have a setup like node0 node1 node0
1359  * i.e. it's possible that all pages within a zones range of pages do not
1360  * belong to a single zone. We assume that a border between node0 and node1
1361  * can occur within a single pageblock, but not a node0 node1 node0
1362  * interleaving within a single pageblock. It is therefore sufficient to check
1363  * the first and last page of a pageblock and avoid checking each individual
1364  * page in a pageblock.
1365  */
1366 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1367 				     unsigned long end_pfn, struct zone *zone)
1368 {
1369 	struct page *start_page;
1370 	struct page *end_page;
1371 
1372 	/* end_pfn is one past the range we are checking */
1373 	end_pfn--;
1374 
1375 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1376 		return NULL;
1377 
1378 	start_page = pfn_to_online_page(start_pfn);
1379 	if (!start_page)
1380 		return NULL;
1381 
1382 	if (page_zone(start_page) != zone)
1383 		return NULL;
1384 
1385 	end_page = pfn_to_page(end_pfn);
1386 
1387 	/* This gives a shorter code than deriving page_zone(end_page) */
1388 	if (page_zone_id(start_page) != page_zone_id(end_page))
1389 		return NULL;
1390 
1391 	return start_page;
1392 }
1393 
1394 void set_zone_contiguous(struct zone *zone)
1395 {
1396 	unsigned long block_start_pfn = zone->zone_start_pfn;
1397 	unsigned long block_end_pfn;
1398 
1399 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1400 	for (; block_start_pfn < zone_end_pfn(zone);
1401 			block_start_pfn = block_end_pfn,
1402 			 block_end_pfn += pageblock_nr_pages) {
1403 
1404 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1405 
1406 		if (!__pageblock_pfn_to_page(block_start_pfn,
1407 					     block_end_pfn, zone))
1408 			return;
1409 	}
1410 
1411 	/* We confirm that there is no hole */
1412 	zone->contiguous = true;
1413 }
1414 
1415 void clear_zone_contiguous(struct zone *zone)
1416 {
1417 	zone->contiguous = false;
1418 }
1419 
1420 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1421 static void __init deferred_free_range(unsigned long pfn,
1422 				       unsigned long nr_pages)
1423 {
1424 	struct page *page;
1425 	unsigned long i;
1426 
1427 	if (!nr_pages)
1428 		return;
1429 
1430 	page = pfn_to_page(pfn);
1431 
1432 	/* Free a large naturally-aligned chunk if possible */
1433 	if (nr_pages == pageblock_nr_pages &&
1434 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1435 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1436 		__free_pages_boot_core(page, pageblock_order);
1437 		return;
1438 	}
1439 
1440 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1441 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1442 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1443 		__free_pages_boot_core(page, 0);
1444 	}
1445 }
1446 
1447 /* Completion tracking for deferred_init_memmap() threads */
1448 static atomic_t pgdat_init_n_undone __initdata;
1449 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1450 
1451 static inline void __init pgdat_init_report_one_done(void)
1452 {
1453 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1454 		complete(&pgdat_init_all_done_comp);
1455 }
1456 
1457 /*
1458  * Returns true if page needs to be initialized or freed to buddy allocator.
1459  *
1460  * First we check if pfn is valid on architectures where it is possible to have
1461  * holes within pageblock_nr_pages. On systems where it is not possible, this
1462  * function is optimized out.
1463  *
1464  * Then, we check if a current large page is valid by only checking the validity
1465  * of the head pfn.
1466  *
1467  * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1468  * within a node: a pfn is between start and end of a node, but does not belong
1469  * to this memory node.
1470  */
1471 static inline bool __init
1472 deferred_pfn_valid(int nid, unsigned long pfn,
1473 		   struct mminit_pfnnid_cache *nid_init_state)
1474 {
1475 	if (!pfn_valid_within(pfn))
1476 		return false;
1477 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1478 		return false;
1479 	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1480 		return false;
1481 	return true;
1482 }
1483 
1484 /*
1485  * Free pages to buddy allocator. Try to free aligned pages in
1486  * pageblock_nr_pages sizes.
1487  */
1488 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1489 				       unsigned long end_pfn)
1490 {
1491 	struct mminit_pfnnid_cache nid_init_state = { };
1492 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1493 	unsigned long nr_free = 0;
1494 
1495 	for (; pfn < end_pfn; pfn++) {
1496 		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1497 			deferred_free_range(pfn - nr_free, nr_free);
1498 			nr_free = 0;
1499 		} else if (!(pfn & nr_pgmask)) {
1500 			deferred_free_range(pfn - nr_free, nr_free);
1501 			nr_free = 1;
1502 			touch_nmi_watchdog();
1503 		} else {
1504 			nr_free++;
1505 		}
1506 	}
1507 	/* Free the last block of pages to allocator */
1508 	deferred_free_range(pfn - nr_free, nr_free);
1509 }
1510 
1511 /*
1512  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1513  * by performing it only once every pageblock_nr_pages.
1514  * Return number of pages initialized.
1515  */
1516 static unsigned long  __init deferred_init_pages(int nid, int zid,
1517 						 unsigned long pfn,
1518 						 unsigned long end_pfn)
1519 {
1520 	struct mminit_pfnnid_cache nid_init_state = { };
1521 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1522 	unsigned long nr_pages = 0;
1523 	struct page *page = NULL;
1524 
1525 	for (; pfn < end_pfn; pfn++) {
1526 		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1527 			page = NULL;
1528 			continue;
1529 		} else if (!page || !(pfn & nr_pgmask)) {
1530 			page = pfn_to_page(pfn);
1531 			touch_nmi_watchdog();
1532 		} else {
1533 			page++;
1534 		}
1535 		__init_single_page(page, pfn, zid, nid);
1536 		nr_pages++;
1537 	}
1538 	return (nr_pages);
1539 }
1540 
1541 /* Initialise remaining memory on a node */
1542 static int __init deferred_init_memmap(void *data)
1543 {
1544 	pg_data_t *pgdat = data;
1545 	int nid = pgdat->node_id;
1546 	unsigned long start = jiffies;
1547 	unsigned long nr_pages = 0;
1548 	unsigned long spfn, epfn, first_init_pfn, flags;
1549 	phys_addr_t spa, epa;
1550 	int zid;
1551 	struct zone *zone;
1552 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1553 	u64 i;
1554 
1555 	/* Bind memory initialisation thread to a local node if possible */
1556 	if (!cpumask_empty(cpumask))
1557 		set_cpus_allowed_ptr(current, cpumask);
1558 
1559 	pgdat_resize_lock(pgdat, &flags);
1560 	first_init_pfn = pgdat->first_deferred_pfn;
1561 	if (first_init_pfn == ULONG_MAX) {
1562 		pgdat_resize_unlock(pgdat, &flags);
1563 		pgdat_init_report_one_done();
1564 		return 0;
1565 	}
1566 
1567 	/* Sanity check boundaries */
1568 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1569 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1570 	pgdat->first_deferred_pfn = ULONG_MAX;
1571 
1572 	/* Only the highest zone is deferred so find it */
1573 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1574 		zone = pgdat->node_zones + zid;
1575 		if (first_init_pfn < zone_end_pfn(zone))
1576 			break;
1577 	}
1578 	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1579 
1580 	/*
1581 	 * Initialize and free pages. We do it in two loops: first we initialize
1582 	 * struct page, than free to buddy allocator, because while we are
1583 	 * freeing pages we can access pages that are ahead (computing buddy
1584 	 * page in __free_one_page()).
1585 	 */
1586 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1587 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1588 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1589 		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1590 	}
1591 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1592 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1593 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1594 		deferred_free_pages(nid, zid, spfn, epfn);
1595 	}
1596 	pgdat_resize_unlock(pgdat, &flags);
1597 
1598 	/* Sanity check that the next zone really is unpopulated */
1599 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1600 
1601 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1602 					jiffies_to_msecs(jiffies - start));
1603 
1604 	pgdat_init_report_one_done();
1605 	return 0;
1606 }
1607 
1608 /*
1609  * During boot we initialize deferred pages on-demand, as needed, but once
1610  * page_alloc_init_late() has finished, the deferred pages are all initialized,
1611  * and we can permanently disable that path.
1612  */
1613 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1614 
1615 /*
1616  * If this zone has deferred pages, try to grow it by initializing enough
1617  * deferred pages to satisfy the allocation specified by order, rounded up to
1618  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1619  * of SECTION_SIZE bytes by initializing struct pages in increments of
1620  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1621  *
1622  * Return true when zone was grown, otherwise return false. We return true even
1623  * when we grow less than requested, to let the caller decide if there are
1624  * enough pages to satisfy the allocation.
1625  *
1626  * Note: We use noinline because this function is needed only during boot, and
1627  * it is called from a __ref function _deferred_grow_zone. This way we are
1628  * making sure that it is not inlined into permanent text section.
1629  */
1630 static noinline bool __init
1631 deferred_grow_zone(struct zone *zone, unsigned int order)
1632 {
1633 	int zid = zone_idx(zone);
1634 	int nid = zone_to_nid(zone);
1635 	pg_data_t *pgdat = NODE_DATA(nid);
1636 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1637 	unsigned long nr_pages = 0;
1638 	unsigned long first_init_pfn, spfn, epfn, t, flags;
1639 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1640 	phys_addr_t spa, epa;
1641 	u64 i;
1642 
1643 	/* Only the last zone may have deferred pages */
1644 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1645 		return false;
1646 
1647 	pgdat_resize_lock(pgdat, &flags);
1648 
1649 	/*
1650 	 * If deferred pages have been initialized while we were waiting for
1651 	 * the lock, return true, as the zone was grown.  The caller will retry
1652 	 * this zone.  We won't return to this function since the caller also
1653 	 * has this static branch.
1654 	 */
1655 	if (!static_branch_unlikely(&deferred_pages)) {
1656 		pgdat_resize_unlock(pgdat, &flags);
1657 		return true;
1658 	}
1659 
1660 	/*
1661 	 * If someone grew this zone while we were waiting for spinlock, return
1662 	 * true, as there might be enough pages already.
1663 	 */
1664 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1665 		pgdat_resize_unlock(pgdat, &flags);
1666 		return true;
1667 	}
1668 
1669 	first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1670 
1671 	if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1672 		pgdat_resize_unlock(pgdat, &flags);
1673 		return false;
1674 	}
1675 
1676 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1677 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1678 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1679 
1680 		while (spfn < epfn && nr_pages < nr_pages_needed) {
1681 			t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1682 			first_deferred_pfn = min(t, epfn);
1683 			nr_pages += deferred_init_pages(nid, zid, spfn,
1684 							first_deferred_pfn);
1685 			spfn = first_deferred_pfn;
1686 		}
1687 
1688 		if (nr_pages >= nr_pages_needed)
1689 			break;
1690 	}
1691 
1692 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1693 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1694 		epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1695 		deferred_free_pages(nid, zid, spfn, epfn);
1696 
1697 		if (first_deferred_pfn == epfn)
1698 			break;
1699 	}
1700 	pgdat->first_deferred_pfn = first_deferred_pfn;
1701 	pgdat_resize_unlock(pgdat, &flags);
1702 
1703 	return nr_pages > 0;
1704 }
1705 
1706 /*
1707  * deferred_grow_zone() is __init, but it is called from
1708  * get_page_from_freelist() during early boot until deferred_pages permanently
1709  * disables this call. This is why we have refdata wrapper to avoid warning,
1710  * and to ensure that the function body gets unloaded.
1711  */
1712 static bool __ref
1713 _deferred_grow_zone(struct zone *zone, unsigned int order)
1714 {
1715 	return deferred_grow_zone(zone, order);
1716 }
1717 
1718 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1719 
1720 void __init page_alloc_init_late(void)
1721 {
1722 	struct zone *zone;
1723 
1724 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1725 	int nid;
1726 
1727 	/* There will be num_node_state(N_MEMORY) threads */
1728 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1729 	for_each_node_state(nid, N_MEMORY) {
1730 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1731 	}
1732 
1733 	/* Block until all are initialised */
1734 	wait_for_completion(&pgdat_init_all_done_comp);
1735 
1736 	/*
1737 	 * We initialized the rest of the deferred pages.  Permanently disable
1738 	 * on-demand struct page initialization.
1739 	 */
1740 	static_branch_disable(&deferred_pages);
1741 
1742 	/* Reinit limits that are based on free pages after the kernel is up */
1743 	files_maxfiles_init();
1744 #endif
1745 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1746 	/* Discard memblock private memory */
1747 	memblock_discard();
1748 #endif
1749 
1750 	for_each_populated_zone(zone)
1751 		set_zone_contiguous(zone);
1752 }
1753 
1754 #ifdef CONFIG_CMA
1755 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1756 void __init init_cma_reserved_pageblock(struct page *page)
1757 {
1758 	unsigned i = pageblock_nr_pages;
1759 	struct page *p = page;
1760 
1761 	do {
1762 		__ClearPageReserved(p);
1763 		set_page_count(p, 0);
1764 	} while (++p, --i);
1765 
1766 	set_pageblock_migratetype(page, MIGRATE_CMA);
1767 
1768 	if (pageblock_order >= MAX_ORDER) {
1769 		i = pageblock_nr_pages;
1770 		p = page;
1771 		do {
1772 			set_page_refcounted(p);
1773 			__free_pages(p, MAX_ORDER - 1);
1774 			p += MAX_ORDER_NR_PAGES;
1775 		} while (i -= MAX_ORDER_NR_PAGES);
1776 	} else {
1777 		set_page_refcounted(page);
1778 		__free_pages(page, pageblock_order);
1779 	}
1780 
1781 	adjust_managed_page_count(page, pageblock_nr_pages);
1782 }
1783 #endif
1784 
1785 /*
1786  * The order of subdivision here is critical for the IO subsystem.
1787  * Please do not alter this order without good reasons and regression
1788  * testing. Specifically, as large blocks of memory are subdivided,
1789  * the order in which smaller blocks are delivered depends on the order
1790  * they're subdivided in this function. This is the primary factor
1791  * influencing the order in which pages are delivered to the IO
1792  * subsystem according to empirical testing, and this is also justified
1793  * by considering the behavior of a buddy system containing a single
1794  * large block of memory acted on by a series of small allocations.
1795  * This behavior is a critical factor in sglist merging's success.
1796  *
1797  * -- nyc
1798  */
1799 static inline void expand(struct zone *zone, struct page *page,
1800 	int low, int high, struct free_area *area,
1801 	int migratetype)
1802 {
1803 	unsigned long size = 1 << high;
1804 
1805 	while (high > low) {
1806 		area--;
1807 		high--;
1808 		size >>= 1;
1809 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1810 
1811 		/*
1812 		 * Mark as guard pages (or page), that will allow to
1813 		 * merge back to allocator when buddy will be freed.
1814 		 * Corresponding page table entries will not be touched,
1815 		 * pages will stay not present in virtual address space
1816 		 */
1817 		if (set_page_guard(zone, &page[size], high, migratetype))
1818 			continue;
1819 
1820 		list_add(&page[size].lru, &area->free_list[migratetype]);
1821 		area->nr_free++;
1822 		set_page_order(&page[size], high);
1823 	}
1824 }
1825 
1826 static void check_new_page_bad(struct page *page)
1827 {
1828 	const char *bad_reason = NULL;
1829 	unsigned long bad_flags = 0;
1830 
1831 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1832 		bad_reason = "nonzero mapcount";
1833 	if (unlikely(page->mapping != NULL))
1834 		bad_reason = "non-NULL mapping";
1835 	if (unlikely(page_ref_count(page) != 0))
1836 		bad_reason = "nonzero _count";
1837 	if (unlikely(page->flags & __PG_HWPOISON)) {
1838 		bad_reason = "HWPoisoned (hardware-corrupted)";
1839 		bad_flags = __PG_HWPOISON;
1840 		/* Don't complain about hwpoisoned pages */
1841 		page_mapcount_reset(page); /* remove PageBuddy */
1842 		return;
1843 	}
1844 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1845 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1846 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1847 	}
1848 #ifdef CONFIG_MEMCG
1849 	if (unlikely(page->mem_cgroup))
1850 		bad_reason = "page still charged to cgroup";
1851 #endif
1852 	bad_page(page, bad_reason, bad_flags);
1853 }
1854 
1855 /*
1856  * This page is about to be returned from the page allocator
1857  */
1858 static inline int check_new_page(struct page *page)
1859 {
1860 	if (likely(page_expected_state(page,
1861 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1862 		return 0;
1863 
1864 	check_new_page_bad(page);
1865 	return 1;
1866 }
1867 
1868 static inline bool free_pages_prezeroed(void)
1869 {
1870 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1871 		page_poisoning_enabled();
1872 }
1873 
1874 #ifdef CONFIG_DEBUG_VM
1875 static bool check_pcp_refill(struct page *page)
1876 {
1877 	return false;
1878 }
1879 
1880 static bool check_new_pcp(struct page *page)
1881 {
1882 	return check_new_page(page);
1883 }
1884 #else
1885 static bool check_pcp_refill(struct page *page)
1886 {
1887 	return check_new_page(page);
1888 }
1889 static bool check_new_pcp(struct page *page)
1890 {
1891 	return false;
1892 }
1893 #endif /* CONFIG_DEBUG_VM */
1894 
1895 static bool check_new_pages(struct page *page, unsigned int order)
1896 {
1897 	int i;
1898 	for (i = 0; i < (1 << order); i++) {
1899 		struct page *p = page + i;
1900 
1901 		if (unlikely(check_new_page(p)))
1902 			return true;
1903 	}
1904 
1905 	return false;
1906 }
1907 
1908 inline void post_alloc_hook(struct page *page, unsigned int order,
1909 				gfp_t gfp_flags)
1910 {
1911 	set_page_private(page, 0);
1912 	set_page_refcounted(page);
1913 
1914 	arch_alloc_page(page, order);
1915 	kernel_map_pages(page, 1 << order, 1);
1916 	kernel_poison_pages(page, 1 << order, 1);
1917 	kasan_alloc_pages(page, order);
1918 	set_page_owner(page, order, gfp_flags);
1919 }
1920 
1921 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1922 							unsigned int alloc_flags)
1923 {
1924 	int i;
1925 
1926 	post_alloc_hook(page, order, gfp_flags);
1927 
1928 	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1929 		for (i = 0; i < (1 << order); i++)
1930 			clear_highpage(page + i);
1931 
1932 	if (order && (gfp_flags & __GFP_COMP))
1933 		prep_compound_page(page, order);
1934 
1935 	/*
1936 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1937 	 * allocate the page. The expectation is that the caller is taking
1938 	 * steps that will free more memory. The caller should avoid the page
1939 	 * being used for !PFMEMALLOC purposes.
1940 	 */
1941 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1942 		set_page_pfmemalloc(page);
1943 	else
1944 		clear_page_pfmemalloc(page);
1945 }
1946 
1947 /*
1948  * Go through the free lists for the given migratetype and remove
1949  * the smallest available page from the freelists
1950  */
1951 static __always_inline
1952 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1953 						int migratetype)
1954 {
1955 	unsigned int current_order;
1956 	struct free_area *area;
1957 	struct page *page;
1958 
1959 	/* Find a page of the appropriate size in the preferred list */
1960 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1961 		area = &(zone->free_area[current_order]);
1962 		page = list_first_entry_or_null(&area->free_list[migratetype],
1963 							struct page, lru);
1964 		if (!page)
1965 			continue;
1966 		list_del(&page->lru);
1967 		rmv_page_order(page);
1968 		area->nr_free--;
1969 		expand(zone, page, order, current_order, area, migratetype);
1970 		set_pcppage_migratetype(page, migratetype);
1971 		return page;
1972 	}
1973 
1974 	return NULL;
1975 }
1976 
1977 
1978 /*
1979  * This array describes the order lists are fallen back to when
1980  * the free lists for the desirable migrate type are depleted
1981  */
1982 static int fallbacks[MIGRATE_TYPES][4] = {
1983 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1984 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1985 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1986 #ifdef CONFIG_CMA
1987 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1988 #endif
1989 #ifdef CONFIG_MEMORY_ISOLATION
1990 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1991 #endif
1992 };
1993 
1994 #ifdef CONFIG_CMA
1995 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1996 					unsigned int order)
1997 {
1998 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1999 }
2000 #else
2001 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2002 					unsigned int order) { return NULL; }
2003 #endif
2004 
2005 /*
2006  * Move the free pages in a range to the free lists of the requested type.
2007  * Note that start_page and end_pages are not aligned on a pageblock
2008  * boundary. If alignment is required, use move_freepages_block()
2009  */
2010 static int move_freepages(struct zone *zone,
2011 			  struct page *start_page, struct page *end_page,
2012 			  int migratetype, int *num_movable)
2013 {
2014 	struct page *page;
2015 	unsigned int order;
2016 	int pages_moved = 0;
2017 
2018 #ifndef CONFIG_HOLES_IN_ZONE
2019 	/*
2020 	 * page_zone is not safe to call in this context when
2021 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2022 	 * anyway as we check zone boundaries in move_freepages_block().
2023 	 * Remove at a later date when no bug reports exist related to
2024 	 * grouping pages by mobility
2025 	 */
2026 	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2027 	          pfn_valid(page_to_pfn(end_page)) &&
2028 	          page_zone(start_page) != page_zone(end_page));
2029 #endif
2030 	for (page = start_page; page <= end_page;) {
2031 		if (!pfn_valid_within(page_to_pfn(page))) {
2032 			page++;
2033 			continue;
2034 		}
2035 
2036 		/* Make sure we are not inadvertently changing nodes */
2037 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2038 
2039 		if (!PageBuddy(page)) {
2040 			/*
2041 			 * We assume that pages that could be isolated for
2042 			 * migration are movable. But we don't actually try
2043 			 * isolating, as that would be expensive.
2044 			 */
2045 			if (num_movable &&
2046 					(PageLRU(page) || __PageMovable(page)))
2047 				(*num_movable)++;
2048 
2049 			page++;
2050 			continue;
2051 		}
2052 
2053 		order = page_order(page);
2054 		list_move(&page->lru,
2055 			  &zone->free_area[order].free_list[migratetype]);
2056 		page += 1 << order;
2057 		pages_moved += 1 << order;
2058 	}
2059 
2060 	return pages_moved;
2061 }
2062 
2063 int move_freepages_block(struct zone *zone, struct page *page,
2064 				int migratetype, int *num_movable)
2065 {
2066 	unsigned long start_pfn, end_pfn;
2067 	struct page *start_page, *end_page;
2068 
2069 	if (num_movable)
2070 		*num_movable = 0;
2071 
2072 	start_pfn = page_to_pfn(page);
2073 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2074 	start_page = pfn_to_page(start_pfn);
2075 	end_page = start_page + pageblock_nr_pages - 1;
2076 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2077 
2078 	/* Do not cross zone boundaries */
2079 	if (!zone_spans_pfn(zone, start_pfn))
2080 		start_page = page;
2081 	if (!zone_spans_pfn(zone, end_pfn))
2082 		return 0;
2083 
2084 	return move_freepages(zone, start_page, end_page, migratetype,
2085 								num_movable);
2086 }
2087 
2088 static void change_pageblock_range(struct page *pageblock_page,
2089 					int start_order, int migratetype)
2090 {
2091 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2092 
2093 	while (nr_pageblocks--) {
2094 		set_pageblock_migratetype(pageblock_page, migratetype);
2095 		pageblock_page += pageblock_nr_pages;
2096 	}
2097 }
2098 
2099 /*
2100  * When we are falling back to another migratetype during allocation, try to
2101  * steal extra free pages from the same pageblocks to satisfy further
2102  * allocations, instead of polluting multiple pageblocks.
2103  *
2104  * If we are stealing a relatively large buddy page, it is likely there will
2105  * be more free pages in the pageblock, so try to steal them all. For
2106  * reclaimable and unmovable allocations, we steal regardless of page size,
2107  * as fragmentation caused by those allocations polluting movable pageblocks
2108  * is worse than movable allocations stealing from unmovable and reclaimable
2109  * pageblocks.
2110  */
2111 static bool can_steal_fallback(unsigned int order, int start_mt)
2112 {
2113 	/*
2114 	 * Leaving this order check is intended, although there is
2115 	 * relaxed order check in next check. The reason is that
2116 	 * we can actually steal whole pageblock if this condition met,
2117 	 * but, below check doesn't guarantee it and that is just heuristic
2118 	 * so could be changed anytime.
2119 	 */
2120 	if (order >= pageblock_order)
2121 		return true;
2122 
2123 	if (order >= pageblock_order / 2 ||
2124 		start_mt == MIGRATE_RECLAIMABLE ||
2125 		start_mt == MIGRATE_UNMOVABLE ||
2126 		page_group_by_mobility_disabled)
2127 		return true;
2128 
2129 	return false;
2130 }
2131 
2132 /*
2133  * This function implements actual steal behaviour. If order is large enough,
2134  * we can steal whole pageblock. If not, we first move freepages in this
2135  * pageblock to our migratetype and determine how many already-allocated pages
2136  * are there in the pageblock with a compatible migratetype. If at least half
2137  * of pages are free or compatible, we can change migratetype of the pageblock
2138  * itself, so pages freed in the future will be put on the correct free list.
2139  */
2140 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2141 					int start_type, bool whole_block)
2142 {
2143 	unsigned int current_order = page_order(page);
2144 	struct free_area *area;
2145 	int free_pages, movable_pages, alike_pages;
2146 	int old_block_type;
2147 
2148 	old_block_type = get_pageblock_migratetype(page);
2149 
2150 	/*
2151 	 * This can happen due to races and we want to prevent broken
2152 	 * highatomic accounting.
2153 	 */
2154 	if (is_migrate_highatomic(old_block_type))
2155 		goto single_page;
2156 
2157 	/* Take ownership for orders >= pageblock_order */
2158 	if (current_order >= pageblock_order) {
2159 		change_pageblock_range(page, current_order, start_type);
2160 		goto single_page;
2161 	}
2162 
2163 	/* We are not allowed to try stealing from the whole block */
2164 	if (!whole_block)
2165 		goto single_page;
2166 
2167 	free_pages = move_freepages_block(zone, page, start_type,
2168 						&movable_pages);
2169 	/*
2170 	 * Determine how many pages are compatible with our allocation.
2171 	 * For movable allocation, it's the number of movable pages which
2172 	 * we just obtained. For other types it's a bit more tricky.
2173 	 */
2174 	if (start_type == MIGRATE_MOVABLE) {
2175 		alike_pages = movable_pages;
2176 	} else {
2177 		/*
2178 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2179 		 * to MOVABLE pageblock, consider all non-movable pages as
2180 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2181 		 * vice versa, be conservative since we can't distinguish the
2182 		 * exact migratetype of non-movable pages.
2183 		 */
2184 		if (old_block_type == MIGRATE_MOVABLE)
2185 			alike_pages = pageblock_nr_pages
2186 						- (free_pages + movable_pages);
2187 		else
2188 			alike_pages = 0;
2189 	}
2190 
2191 	/* moving whole block can fail due to zone boundary conditions */
2192 	if (!free_pages)
2193 		goto single_page;
2194 
2195 	/*
2196 	 * If a sufficient number of pages in the block are either free or of
2197 	 * comparable migratability as our allocation, claim the whole block.
2198 	 */
2199 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2200 			page_group_by_mobility_disabled)
2201 		set_pageblock_migratetype(page, start_type);
2202 
2203 	return;
2204 
2205 single_page:
2206 	area = &zone->free_area[current_order];
2207 	list_move(&page->lru, &area->free_list[start_type]);
2208 }
2209 
2210 /*
2211  * Check whether there is a suitable fallback freepage with requested order.
2212  * If only_stealable is true, this function returns fallback_mt only if
2213  * we can steal other freepages all together. This would help to reduce
2214  * fragmentation due to mixed migratetype pages in one pageblock.
2215  */
2216 int find_suitable_fallback(struct free_area *area, unsigned int order,
2217 			int migratetype, bool only_stealable, bool *can_steal)
2218 {
2219 	int i;
2220 	int fallback_mt;
2221 
2222 	if (area->nr_free == 0)
2223 		return -1;
2224 
2225 	*can_steal = false;
2226 	for (i = 0;; i++) {
2227 		fallback_mt = fallbacks[migratetype][i];
2228 		if (fallback_mt == MIGRATE_TYPES)
2229 			break;
2230 
2231 		if (list_empty(&area->free_list[fallback_mt]))
2232 			continue;
2233 
2234 		if (can_steal_fallback(order, migratetype))
2235 			*can_steal = true;
2236 
2237 		if (!only_stealable)
2238 			return fallback_mt;
2239 
2240 		if (*can_steal)
2241 			return fallback_mt;
2242 	}
2243 
2244 	return -1;
2245 }
2246 
2247 /*
2248  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2249  * there are no empty page blocks that contain a page with a suitable order
2250  */
2251 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2252 				unsigned int alloc_order)
2253 {
2254 	int mt;
2255 	unsigned long max_managed, flags;
2256 
2257 	/*
2258 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2259 	 * Check is race-prone but harmless.
2260 	 */
2261 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2262 	if (zone->nr_reserved_highatomic >= max_managed)
2263 		return;
2264 
2265 	spin_lock_irqsave(&zone->lock, flags);
2266 
2267 	/* Recheck the nr_reserved_highatomic limit under the lock */
2268 	if (zone->nr_reserved_highatomic >= max_managed)
2269 		goto out_unlock;
2270 
2271 	/* Yoink! */
2272 	mt = get_pageblock_migratetype(page);
2273 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2274 	    && !is_migrate_cma(mt)) {
2275 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2276 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2277 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2278 	}
2279 
2280 out_unlock:
2281 	spin_unlock_irqrestore(&zone->lock, flags);
2282 }
2283 
2284 /*
2285  * Used when an allocation is about to fail under memory pressure. This
2286  * potentially hurts the reliability of high-order allocations when under
2287  * intense memory pressure but failed atomic allocations should be easier
2288  * to recover from than an OOM.
2289  *
2290  * If @force is true, try to unreserve a pageblock even though highatomic
2291  * pageblock is exhausted.
2292  */
2293 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2294 						bool force)
2295 {
2296 	struct zonelist *zonelist = ac->zonelist;
2297 	unsigned long flags;
2298 	struct zoneref *z;
2299 	struct zone *zone;
2300 	struct page *page;
2301 	int order;
2302 	bool ret;
2303 
2304 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2305 								ac->nodemask) {
2306 		/*
2307 		 * Preserve at least one pageblock unless memory pressure
2308 		 * is really high.
2309 		 */
2310 		if (!force && zone->nr_reserved_highatomic <=
2311 					pageblock_nr_pages)
2312 			continue;
2313 
2314 		spin_lock_irqsave(&zone->lock, flags);
2315 		for (order = 0; order < MAX_ORDER; order++) {
2316 			struct free_area *area = &(zone->free_area[order]);
2317 
2318 			page = list_first_entry_or_null(
2319 					&area->free_list[MIGRATE_HIGHATOMIC],
2320 					struct page, lru);
2321 			if (!page)
2322 				continue;
2323 
2324 			/*
2325 			 * In page freeing path, migratetype change is racy so
2326 			 * we can counter several free pages in a pageblock
2327 			 * in this loop althoug we changed the pageblock type
2328 			 * from highatomic to ac->migratetype. So we should
2329 			 * adjust the count once.
2330 			 */
2331 			if (is_migrate_highatomic_page(page)) {
2332 				/*
2333 				 * It should never happen but changes to
2334 				 * locking could inadvertently allow a per-cpu
2335 				 * drain to add pages to MIGRATE_HIGHATOMIC
2336 				 * while unreserving so be safe and watch for
2337 				 * underflows.
2338 				 */
2339 				zone->nr_reserved_highatomic -= min(
2340 						pageblock_nr_pages,
2341 						zone->nr_reserved_highatomic);
2342 			}
2343 
2344 			/*
2345 			 * Convert to ac->migratetype and avoid the normal
2346 			 * pageblock stealing heuristics. Minimally, the caller
2347 			 * is doing the work and needs the pages. More
2348 			 * importantly, if the block was always converted to
2349 			 * MIGRATE_UNMOVABLE or another type then the number
2350 			 * of pageblocks that cannot be completely freed
2351 			 * may increase.
2352 			 */
2353 			set_pageblock_migratetype(page, ac->migratetype);
2354 			ret = move_freepages_block(zone, page, ac->migratetype,
2355 									NULL);
2356 			if (ret) {
2357 				spin_unlock_irqrestore(&zone->lock, flags);
2358 				return ret;
2359 			}
2360 		}
2361 		spin_unlock_irqrestore(&zone->lock, flags);
2362 	}
2363 
2364 	return false;
2365 }
2366 
2367 /*
2368  * Try finding a free buddy page on the fallback list and put it on the free
2369  * list of requested migratetype, possibly along with other pages from the same
2370  * block, depending on fragmentation avoidance heuristics. Returns true if
2371  * fallback was found so that __rmqueue_smallest() can grab it.
2372  *
2373  * The use of signed ints for order and current_order is a deliberate
2374  * deviation from the rest of this file, to make the for loop
2375  * condition simpler.
2376  */
2377 static __always_inline bool
2378 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2379 {
2380 	struct free_area *area;
2381 	int current_order;
2382 	struct page *page;
2383 	int fallback_mt;
2384 	bool can_steal;
2385 
2386 	/*
2387 	 * Find the largest available free page in the other list. This roughly
2388 	 * approximates finding the pageblock with the most free pages, which
2389 	 * would be too costly to do exactly.
2390 	 */
2391 	for (current_order = MAX_ORDER - 1; current_order >= order;
2392 				--current_order) {
2393 		area = &(zone->free_area[current_order]);
2394 		fallback_mt = find_suitable_fallback(area, current_order,
2395 				start_migratetype, false, &can_steal);
2396 		if (fallback_mt == -1)
2397 			continue;
2398 
2399 		/*
2400 		 * We cannot steal all free pages from the pageblock and the
2401 		 * requested migratetype is movable. In that case it's better to
2402 		 * steal and split the smallest available page instead of the
2403 		 * largest available page, because even if the next movable
2404 		 * allocation falls back into a different pageblock than this
2405 		 * one, it won't cause permanent fragmentation.
2406 		 */
2407 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2408 					&& current_order > order)
2409 			goto find_smallest;
2410 
2411 		goto do_steal;
2412 	}
2413 
2414 	return false;
2415 
2416 find_smallest:
2417 	for (current_order = order; current_order < MAX_ORDER;
2418 							current_order++) {
2419 		area = &(zone->free_area[current_order]);
2420 		fallback_mt = find_suitable_fallback(area, current_order,
2421 				start_migratetype, false, &can_steal);
2422 		if (fallback_mt != -1)
2423 			break;
2424 	}
2425 
2426 	/*
2427 	 * This should not happen - we already found a suitable fallback
2428 	 * when looking for the largest page.
2429 	 */
2430 	VM_BUG_ON(current_order == MAX_ORDER);
2431 
2432 do_steal:
2433 	page = list_first_entry(&area->free_list[fallback_mt],
2434 							struct page, lru);
2435 
2436 	steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2437 
2438 	trace_mm_page_alloc_extfrag(page, order, current_order,
2439 		start_migratetype, fallback_mt);
2440 
2441 	return true;
2442 
2443 }
2444 
2445 /*
2446  * Do the hard work of removing an element from the buddy allocator.
2447  * Call me with the zone->lock already held.
2448  */
2449 static __always_inline struct page *
2450 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2451 {
2452 	struct page *page;
2453 
2454 retry:
2455 	page = __rmqueue_smallest(zone, order, migratetype);
2456 	if (unlikely(!page)) {
2457 		if (migratetype == MIGRATE_MOVABLE)
2458 			page = __rmqueue_cma_fallback(zone, order);
2459 
2460 		if (!page && __rmqueue_fallback(zone, order, migratetype))
2461 			goto retry;
2462 	}
2463 
2464 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2465 	return page;
2466 }
2467 
2468 /*
2469  * Obtain a specified number of elements from the buddy allocator, all under
2470  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2471  * Returns the number of new pages which were placed at *list.
2472  */
2473 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2474 			unsigned long count, struct list_head *list,
2475 			int migratetype)
2476 {
2477 	int i, alloced = 0;
2478 
2479 	spin_lock(&zone->lock);
2480 	for (i = 0; i < count; ++i) {
2481 		struct page *page = __rmqueue(zone, order, migratetype);
2482 		if (unlikely(page == NULL))
2483 			break;
2484 
2485 		if (unlikely(check_pcp_refill(page)))
2486 			continue;
2487 
2488 		/*
2489 		 * Split buddy pages returned by expand() are received here in
2490 		 * physical page order. The page is added to the tail of
2491 		 * caller's list. From the callers perspective, the linked list
2492 		 * is ordered by page number under some conditions. This is
2493 		 * useful for IO devices that can forward direction from the
2494 		 * head, thus also in the physical page order. This is useful
2495 		 * for IO devices that can merge IO requests if the physical
2496 		 * pages are ordered properly.
2497 		 */
2498 		list_add_tail(&page->lru, list);
2499 		alloced++;
2500 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2501 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2502 					      -(1 << order));
2503 	}
2504 
2505 	/*
2506 	 * i pages were removed from the buddy list even if some leak due
2507 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2508 	 * on i. Do not confuse with 'alloced' which is the number of
2509 	 * pages added to the pcp list.
2510 	 */
2511 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2512 	spin_unlock(&zone->lock);
2513 	return alloced;
2514 }
2515 
2516 #ifdef CONFIG_NUMA
2517 /*
2518  * Called from the vmstat counter updater to drain pagesets of this
2519  * currently executing processor on remote nodes after they have
2520  * expired.
2521  *
2522  * Note that this function must be called with the thread pinned to
2523  * a single processor.
2524  */
2525 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2526 {
2527 	unsigned long flags;
2528 	int to_drain, batch;
2529 
2530 	local_irq_save(flags);
2531 	batch = READ_ONCE(pcp->batch);
2532 	to_drain = min(pcp->count, batch);
2533 	if (to_drain > 0)
2534 		free_pcppages_bulk(zone, to_drain, pcp);
2535 	local_irq_restore(flags);
2536 }
2537 #endif
2538 
2539 /*
2540  * Drain pcplists of the indicated processor and zone.
2541  *
2542  * The processor must either be the current processor and the
2543  * thread pinned to the current processor or a processor that
2544  * is not online.
2545  */
2546 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2547 {
2548 	unsigned long flags;
2549 	struct per_cpu_pageset *pset;
2550 	struct per_cpu_pages *pcp;
2551 
2552 	local_irq_save(flags);
2553 	pset = per_cpu_ptr(zone->pageset, cpu);
2554 
2555 	pcp = &pset->pcp;
2556 	if (pcp->count)
2557 		free_pcppages_bulk(zone, pcp->count, pcp);
2558 	local_irq_restore(flags);
2559 }
2560 
2561 /*
2562  * Drain pcplists of all zones on the indicated processor.
2563  *
2564  * The processor must either be the current processor and the
2565  * thread pinned to the current processor or a processor that
2566  * is not online.
2567  */
2568 static void drain_pages(unsigned int cpu)
2569 {
2570 	struct zone *zone;
2571 
2572 	for_each_populated_zone(zone) {
2573 		drain_pages_zone(cpu, zone);
2574 	}
2575 }
2576 
2577 /*
2578  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2579  *
2580  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2581  * the single zone's pages.
2582  */
2583 void drain_local_pages(struct zone *zone)
2584 {
2585 	int cpu = smp_processor_id();
2586 
2587 	if (zone)
2588 		drain_pages_zone(cpu, zone);
2589 	else
2590 		drain_pages(cpu);
2591 }
2592 
2593 static void drain_local_pages_wq(struct work_struct *work)
2594 {
2595 	/*
2596 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2597 	 * we can race with cpu offline when the WQ can move this from
2598 	 * a cpu pinned worker to an unbound one. We can operate on a different
2599 	 * cpu which is allright but we also have to make sure to not move to
2600 	 * a different one.
2601 	 */
2602 	preempt_disable();
2603 	drain_local_pages(NULL);
2604 	preempt_enable();
2605 }
2606 
2607 /*
2608  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2609  *
2610  * When zone parameter is non-NULL, spill just the single zone's pages.
2611  *
2612  * Note that this can be extremely slow as the draining happens in a workqueue.
2613  */
2614 void drain_all_pages(struct zone *zone)
2615 {
2616 	int cpu;
2617 
2618 	/*
2619 	 * Allocate in the BSS so we wont require allocation in
2620 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2621 	 */
2622 	static cpumask_t cpus_with_pcps;
2623 
2624 	/*
2625 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2626 	 * initialized.
2627 	 */
2628 	if (WARN_ON_ONCE(!mm_percpu_wq))
2629 		return;
2630 
2631 	/*
2632 	 * Do not drain if one is already in progress unless it's specific to
2633 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2634 	 * the drain to be complete when the call returns.
2635 	 */
2636 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2637 		if (!zone)
2638 			return;
2639 		mutex_lock(&pcpu_drain_mutex);
2640 	}
2641 
2642 	/*
2643 	 * We don't care about racing with CPU hotplug event
2644 	 * as offline notification will cause the notified
2645 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2646 	 * disables preemption as part of its processing
2647 	 */
2648 	for_each_online_cpu(cpu) {
2649 		struct per_cpu_pageset *pcp;
2650 		struct zone *z;
2651 		bool has_pcps = false;
2652 
2653 		if (zone) {
2654 			pcp = per_cpu_ptr(zone->pageset, cpu);
2655 			if (pcp->pcp.count)
2656 				has_pcps = true;
2657 		} else {
2658 			for_each_populated_zone(z) {
2659 				pcp = per_cpu_ptr(z->pageset, cpu);
2660 				if (pcp->pcp.count) {
2661 					has_pcps = true;
2662 					break;
2663 				}
2664 			}
2665 		}
2666 
2667 		if (has_pcps)
2668 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2669 		else
2670 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2671 	}
2672 
2673 	for_each_cpu(cpu, &cpus_with_pcps) {
2674 		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2675 		INIT_WORK(work, drain_local_pages_wq);
2676 		queue_work_on(cpu, mm_percpu_wq, work);
2677 	}
2678 	for_each_cpu(cpu, &cpus_with_pcps)
2679 		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2680 
2681 	mutex_unlock(&pcpu_drain_mutex);
2682 }
2683 
2684 #ifdef CONFIG_HIBERNATION
2685 
2686 /*
2687  * Touch the watchdog for every WD_PAGE_COUNT pages.
2688  */
2689 #define WD_PAGE_COUNT	(128*1024)
2690 
2691 void mark_free_pages(struct zone *zone)
2692 {
2693 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2694 	unsigned long flags;
2695 	unsigned int order, t;
2696 	struct page *page;
2697 
2698 	if (zone_is_empty(zone))
2699 		return;
2700 
2701 	spin_lock_irqsave(&zone->lock, flags);
2702 
2703 	max_zone_pfn = zone_end_pfn(zone);
2704 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2705 		if (pfn_valid(pfn)) {
2706 			page = pfn_to_page(pfn);
2707 
2708 			if (!--page_count) {
2709 				touch_nmi_watchdog();
2710 				page_count = WD_PAGE_COUNT;
2711 			}
2712 
2713 			if (page_zone(page) != zone)
2714 				continue;
2715 
2716 			if (!swsusp_page_is_forbidden(page))
2717 				swsusp_unset_page_free(page);
2718 		}
2719 
2720 	for_each_migratetype_order(order, t) {
2721 		list_for_each_entry(page,
2722 				&zone->free_area[order].free_list[t], lru) {
2723 			unsigned long i;
2724 
2725 			pfn = page_to_pfn(page);
2726 			for (i = 0; i < (1UL << order); i++) {
2727 				if (!--page_count) {
2728 					touch_nmi_watchdog();
2729 					page_count = WD_PAGE_COUNT;
2730 				}
2731 				swsusp_set_page_free(pfn_to_page(pfn + i));
2732 			}
2733 		}
2734 	}
2735 	spin_unlock_irqrestore(&zone->lock, flags);
2736 }
2737 #endif /* CONFIG_PM */
2738 
2739 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2740 {
2741 	int migratetype;
2742 
2743 	if (!free_pcp_prepare(page))
2744 		return false;
2745 
2746 	migratetype = get_pfnblock_migratetype(page, pfn);
2747 	set_pcppage_migratetype(page, migratetype);
2748 	return true;
2749 }
2750 
2751 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2752 {
2753 	struct zone *zone = page_zone(page);
2754 	struct per_cpu_pages *pcp;
2755 	int migratetype;
2756 
2757 	migratetype = get_pcppage_migratetype(page);
2758 	__count_vm_event(PGFREE);
2759 
2760 	/*
2761 	 * We only track unmovable, reclaimable and movable on pcp lists.
2762 	 * Free ISOLATE pages back to the allocator because they are being
2763 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2764 	 * areas back if necessary. Otherwise, we may have to free
2765 	 * excessively into the page allocator
2766 	 */
2767 	if (migratetype >= MIGRATE_PCPTYPES) {
2768 		if (unlikely(is_migrate_isolate(migratetype))) {
2769 			free_one_page(zone, page, pfn, 0, migratetype);
2770 			return;
2771 		}
2772 		migratetype = MIGRATE_MOVABLE;
2773 	}
2774 
2775 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2776 	list_add(&page->lru, &pcp->lists[migratetype]);
2777 	pcp->count++;
2778 	if (pcp->count >= pcp->high) {
2779 		unsigned long batch = READ_ONCE(pcp->batch);
2780 		free_pcppages_bulk(zone, batch, pcp);
2781 	}
2782 }
2783 
2784 /*
2785  * Free a 0-order page
2786  */
2787 void free_unref_page(struct page *page)
2788 {
2789 	unsigned long flags;
2790 	unsigned long pfn = page_to_pfn(page);
2791 
2792 	if (!free_unref_page_prepare(page, pfn))
2793 		return;
2794 
2795 	local_irq_save(flags);
2796 	free_unref_page_commit(page, pfn);
2797 	local_irq_restore(flags);
2798 }
2799 
2800 /*
2801  * Free a list of 0-order pages
2802  */
2803 void free_unref_page_list(struct list_head *list)
2804 {
2805 	struct page *page, *next;
2806 	unsigned long flags, pfn;
2807 	int batch_count = 0;
2808 
2809 	/* Prepare pages for freeing */
2810 	list_for_each_entry_safe(page, next, list, lru) {
2811 		pfn = page_to_pfn(page);
2812 		if (!free_unref_page_prepare(page, pfn))
2813 			list_del(&page->lru);
2814 		set_page_private(page, pfn);
2815 	}
2816 
2817 	local_irq_save(flags);
2818 	list_for_each_entry_safe(page, next, list, lru) {
2819 		unsigned long pfn = page_private(page);
2820 
2821 		set_page_private(page, 0);
2822 		trace_mm_page_free_batched(page);
2823 		free_unref_page_commit(page, pfn);
2824 
2825 		/*
2826 		 * Guard against excessive IRQ disabled times when we get
2827 		 * a large list of pages to free.
2828 		 */
2829 		if (++batch_count == SWAP_CLUSTER_MAX) {
2830 			local_irq_restore(flags);
2831 			batch_count = 0;
2832 			local_irq_save(flags);
2833 		}
2834 	}
2835 	local_irq_restore(flags);
2836 }
2837 
2838 /*
2839  * split_page takes a non-compound higher-order page, and splits it into
2840  * n (1<<order) sub-pages: page[0..n]
2841  * Each sub-page must be freed individually.
2842  *
2843  * Note: this is probably too low level an operation for use in drivers.
2844  * Please consult with lkml before using this in your driver.
2845  */
2846 void split_page(struct page *page, unsigned int order)
2847 {
2848 	int i;
2849 
2850 	VM_BUG_ON_PAGE(PageCompound(page), page);
2851 	VM_BUG_ON_PAGE(!page_count(page), page);
2852 
2853 	for (i = 1; i < (1 << order); i++)
2854 		set_page_refcounted(page + i);
2855 	split_page_owner(page, order);
2856 }
2857 EXPORT_SYMBOL_GPL(split_page);
2858 
2859 int __isolate_free_page(struct page *page, unsigned int order)
2860 {
2861 	unsigned long watermark;
2862 	struct zone *zone;
2863 	int mt;
2864 
2865 	BUG_ON(!PageBuddy(page));
2866 
2867 	zone = page_zone(page);
2868 	mt = get_pageblock_migratetype(page);
2869 
2870 	if (!is_migrate_isolate(mt)) {
2871 		/*
2872 		 * Obey watermarks as if the page was being allocated. We can
2873 		 * emulate a high-order watermark check with a raised order-0
2874 		 * watermark, because we already know our high-order page
2875 		 * exists.
2876 		 */
2877 		watermark = min_wmark_pages(zone) + (1UL << order);
2878 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2879 			return 0;
2880 
2881 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2882 	}
2883 
2884 	/* Remove page from free list */
2885 	list_del(&page->lru);
2886 	zone->free_area[order].nr_free--;
2887 	rmv_page_order(page);
2888 
2889 	/*
2890 	 * Set the pageblock if the isolated page is at least half of a
2891 	 * pageblock
2892 	 */
2893 	if (order >= pageblock_order - 1) {
2894 		struct page *endpage = page + (1 << order) - 1;
2895 		for (; page < endpage; page += pageblock_nr_pages) {
2896 			int mt = get_pageblock_migratetype(page);
2897 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2898 			    && !is_migrate_highatomic(mt))
2899 				set_pageblock_migratetype(page,
2900 							  MIGRATE_MOVABLE);
2901 		}
2902 	}
2903 
2904 
2905 	return 1UL << order;
2906 }
2907 
2908 /*
2909  * Update NUMA hit/miss statistics
2910  *
2911  * Must be called with interrupts disabled.
2912  */
2913 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2914 {
2915 #ifdef CONFIG_NUMA
2916 	enum numa_stat_item local_stat = NUMA_LOCAL;
2917 
2918 	/* skip numa counters update if numa stats is disabled */
2919 	if (!static_branch_likely(&vm_numa_stat_key))
2920 		return;
2921 
2922 	if (zone_to_nid(z) != numa_node_id())
2923 		local_stat = NUMA_OTHER;
2924 
2925 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2926 		__inc_numa_state(z, NUMA_HIT);
2927 	else {
2928 		__inc_numa_state(z, NUMA_MISS);
2929 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2930 	}
2931 	__inc_numa_state(z, local_stat);
2932 #endif
2933 }
2934 
2935 /* Remove page from the per-cpu list, caller must protect the list */
2936 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2937 			struct per_cpu_pages *pcp,
2938 			struct list_head *list)
2939 {
2940 	struct page *page;
2941 
2942 	do {
2943 		if (list_empty(list)) {
2944 			pcp->count += rmqueue_bulk(zone, 0,
2945 					pcp->batch, list,
2946 					migratetype);
2947 			if (unlikely(list_empty(list)))
2948 				return NULL;
2949 		}
2950 
2951 		page = list_first_entry(list, struct page, lru);
2952 		list_del(&page->lru);
2953 		pcp->count--;
2954 	} while (check_new_pcp(page));
2955 
2956 	return page;
2957 }
2958 
2959 /* Lock and remove page from the per-cpu list */
2960 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2961 			struct zone *zone, unsigned int order,
2962 			gfp_t gfp_flags, int migratetype)
2963 {
2964 	struct per_cpu_pages *pcp;
2965 	struct list_head *list;
2966 	struct page *page;
2967 	unsigned long flags;
2968 
2969 	local_irq_save(flags);
2970 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2971 	list = &pcp->lists[migratetype];
2972 	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2973 	if (page) {
2974 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2975 		zone_statistics(preferred_zone, zone);
2976 	}
2977 	local_irq_restore(flags);
2978 	return page;
2979 }
2980 
2981 /*
2982  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2983  */
2984 static inline
2985 struct page *rmqueue(struct zone *preferred_zone,
2986 			struct zone *zone, unsigned int order,
2987 			gfp_t gfp_flags, unsigned int alloc_flags,
2988 			int migratetype)
2989 {
2990 	unsigned long flags;
2991 	struct page *page;
2992 
2993 	if (likely(order == 0)) {
2994 		page = rmqueue_pcplist(preferred_zone, zone, order,
2995 				gfp_flags, migratetype);
2996 		goto out;
2997 	}
2998 
2999 	/*
3000 	 * We most definitely don't want callers attempting to
3001 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3002 	 */
3003 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3004 	spin_lock_irqsave(&zone->lock, flags);
3005 
3006 	do {
3007 		page = NULL;
3008 		if (alloc_flags & ALLOC_HARDER) {
3009 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3010 			if (page)
3011 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3012 		}
3013 		if (!page)
3014 			page = __rmqueue(zone, order, migratetype);
3015 	} while (page && check_new_pages(page, order));
3016 	spin_unlock(&zone->lock);
3017 	if (!page)
3018 		goto failed;
3019 	__mod_zone_freepage_state(zone, -(1 << order),
3020 				  get_pcppage_migratetype(page));
3021 
3022 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3023 	zone_statistics(preferred_zone, zone);
3024 	local_irq_restore(flags);
3025 
3026 out:
3027 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3028 	return page;
3029 
3030 failed:
3031 	local_irq_restore(flags);
3032 	return NULL;
3033 }
3034 
3035 #ifdef CONFIG_FAIL_PAGE_ALLOC
3036 
3037 static struct {
3038 	struct fault_attr attr;
3039 
3040 	bool ignore_gfp_highmem;
3041 	bool ignore_gfp_reclaim;
3042 	u32 min_order;
3043 } fail_page_alloc = {
3044 	.attr = FAULT_ATTR_INITIALIZER,
3045 	.ignore_gfp_reclaim = true,
3046 	.ignore_gfp_highmem = true,
3047 	.min_order = 1,
3048 };
3049 
3050 static int __init setup_fail_page_alloc(char *str)
3051 {
3052 	return setup_fault_attr(&fail_page_alloc.attr, str);
3053 }
3054 __setup("fail_page_alloc=", setup_fail_page_alloc);
3055 
3056 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3057 {
3058 	if (order < fail_page_alloc.min_order)
3059 		return false;
3060 	if (gfp_mask & __GFP_NOFAIL)
3061 		return false;
3062 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3063 		return false;
3064 	if (fail_page_alloc.ignore_gfp_reclaim &&
3065 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3066 		return false;
3067 
3068 	return should_fail(&fail_page_alloc.attr, 1 << order);
3069 }
3070 
3071 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3072 
3073 static int __init fail_page_alloc_debugfs(void)
3074 {
3075 	umode_t mode = S_IFREG | 0600;
3076 	struct dentry *dir;
3077 
3078 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3079 					&fail_page_alloc.attr);
3080 	if (IS_ERR(dir))
3081 		return PTR_ERR(dir);
3082 
3083 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3084 				&fail_page_alloc.ignore_gfp_reclaim))
3085 		goto fail;
3086 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3087 				&fail_page_alloc.ignore_gfp_highmem))
3088 		goto fail;
3089 	if (!debugfs_create_u32("min-order", mode, dir,
3090 				&fail_page_alloc.min_order))
3091 		goto fail;
3092 
3093 	return 0;
3094 fail:
3095 	debugfs_remove_recursive(dir);
3096 
3097 	return -ENOMEM;
3098 }
3099 
3100 late_initcall(fail_page_alloc_debugfs);
3101 
3102 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3103 
3104 #else /* CONFIG_FAIL_PAGE_ALLOC */
3105 
3106 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3107 {
3108 	return false;
3109 }
3110 
3111 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3112 
3113 /*
3114  * Return true if free base pages are above 'mark'. For high-order checks it
3115  * will return true of the order-0 watermark is reached and there is at least
3116  * one free page of a suitable size. Checking now avoids taking the zone lock
3117  * to check in the allocation paths if no pages are free.
3118  */
3119 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3120 			 int classzone_idx, unsigned int alloc_flags,
3121 			 long free_pages)
3122 {
3123 	long min = mark;
3124 	int o;
3125 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3126 
3127 	/* free_pages may go negative - that's OK */
3128 	free_pages -= (1 << order) - 1;
3129 
3130 	if (alloc_flags & ALLOC_HIGH)
3131 		min -= min / 2;
3132 
3133 	/*
3134 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3135 	 * the high-atomic reserves. This will over-estimate the size of the
3136 	 * atomic reserve but it avoids a search.
3137 	 */
3138 	if (likely(!alloc_harder)) {
3139 		free_pages -= z->nr_reserved_highatomic;
3140 	} else {
3141 		/*
3142 		 * OOM victims can try even harder than normal ALLOC_HARDER
3143 		 * users on the grounds that it's definitely going to be in
3144 		 * the exit path shortly and free memory. Any allocation it
3145 		 * makes during the free path will be small and short-lived.
3146 		 */
3147 		if (alloc_flags & ALLOC_OOM)
3148 			min -= min / 2;
3149 		else
3150 			min -= min / 4;
3151 	}
3152 
3153 
3154 #ifdef CONFIG_CMA
3155 	/* If allocation can't use CMA areas don't use free CMA pages */
3156 	if (!(alloc_flags & ALLOC_CMA))
3157 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3158 #endif
3159 
3160 	/*
3161 	 * Check watermarks for an order-0 allocation request. If these
3162 	 * are not met, then a high-order request also cannot go ahead
3163 	 * even if a suitable page happened to be free.
3164 	 */
3165 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3166 		return false;
3167 
3168 	/* If this is an order-0 request then the watermark is fine */
3169 	if (!order)
3170 		return true;
3171 
3172 	/* For a high-order request, check at least one suitable page is free */
3173 	for (o = order; o < MAX_ORDER; o++) {
3174 		struct free_area *area = &z->free_area[o];
3175 		int mt;
3176 
3177 		if (!area->nr_free)
3178 			continue;
3179 
3180 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3181 			if (!list_empty(&area->free_list[mt]))
3182 				return true;
3183 		}
3184 
3185 #ifdef CONFIG_CMA
3186 		if ((alloc_flags & ALLOC_CMA) &&
3187 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3188 			return true;
3189 		}
3190 #endif
3191 		if (alloc_harder &&
3192 			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3193 			return true;
3194 	}
3195 	return false;
3196 }
3197 
3198 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3199 		      int classzone_idx, unsigned int alloc_flags)
3200 {
3201 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3202 					zone_page_state(z, NR_FREE_PAGES));
3203 }
3204 
3205 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3206 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3207 {
3208 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3209 	long cma_pages = 0;
3210 
3211 #ifdef CONFIG_CMA
3212 	/* If allocation can't use CMA areas don't use free CMA pages */
3213 	if (!(alloc_flags & ALLOC_CMA))
3214 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3215 #endif
3216 
3217 	/*
3218 	 * Fast check for order-0 only. If this fails then the reserves
3219 	 * need to be calculated. There is a corner case where the check
3220 	 * passes but only the high-order atomic reserve are free. If
3221 	 * the caller is !atomic then it'll uselessly search the free
3222 	 * list. That corner case is then slower but it is harmless.
3223 	 */
3224 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3225 		return true;
3226 
3227 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3228 					free_pages);
3229 }
3230 
3231 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3232 			unsigned long mark, int classzone_idx)
3233 {
3234 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3235 
3236 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3237 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3238 
3239 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3240 								free_pages);
3241 }
3242 
3243 #ifdef CONFIG_NUMA
3244 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3245 {
3246 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3247 				RECLAIM_DISTANCE;
3248 }
3249 #else	/* CONFIG_NUMA */
3250 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3251 {
3252 	return true;
3253 }
3254 #endif	/* CONFIG_NUMA */
3255 
3256 /*
3257  * get_page_from_freelist goes through the zonelist trying to allocate
3258  * a page.
3259  */
3260 static struct page *
3261 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3262 						const struct alloc_context *ac)
3263 {
3264 	struct zoneref *z = ac->preferred_zoneref;
3265 	struct zone *zone;
3266 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3267 
3268 	/*
3269 	 * Scan zonelist, looking for a zone with enough free.
3270 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3271 	 */
3272 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3273 								ac->nodemask) {
3274 		struct page *page;
3275 		unsigned long mark;
3276 
3277 		if (cpusets_enabled() &&
3278 			(alloc_flags & ALLOC_CPUSET) &&
3279 			!__cpuset_zone_allowed(zone, gfp_mask))
3280 				continue;
3281 		/*
3282 		 * When allocating a page cache page for writing, we
3283 		 * want to get it from a node that is within its dirty
3284 		 * limit, such that no single node holds more than its
3285 		 * proportional share of globally allowed dirty pages.
3286 		 * The dirty limits take into account the node's
3287 		 * lowmem reserves and high watermark so that kswapd
3288 		 * should be able to balance it without having to
3289 		 * write pages from its LRU list.
3290 		 *
3291 		 * XXX: For now, allow allocations to potentially
3292 		 * exceed the per-node dirty limit in the slowpath
3293 		 * (spread_dirty_pages unset) before going into reclaim,
3294 		 * which is important when on a NUMA setup the allowed
3295 		 * nodes are together not big enough to reach the
3296 		 * global limit.  The proper fix for these situations
3297 		 * will require awareness of nodes in the
3298 		 * dirty-throttling and the flusher threads.
3299 		 */
3300 		if (ac->spread_dirty_pages) {
3301 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3302 				continue;
3303 
3304 			if (!node_dirty_ok(zone->zone_pgdat)) {
3305 				last_pgdat_dirty_limit = zone->zone_pgdat;
3306 				continue;
3307 			}
3308 		}
3309 
3310 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3311 		if (!zone_watermark_fast(zone, order, mark,
3312 				       ac_classzone_idx(ac), alloc_flags)) {
3313 			int ret;
3314 
3315 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3316 			/*
3317 			 * Watermark failed for this zone, but see if we can
3318 			 * grow this zone if it contains deferred pages.
3319 			 */
3320 			if (static_branch_unlikely(&deferred_pages)) {
3321 				if (_deferred_grow_zone(zone, order))
3322 					goto try_this_zone;
3323 			}
3324 #endif
3325 			/* Checked here to keep the fast path fast */
3326 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3327 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3328 				goto try_this_zone;
3329 
3330 			if (node_reclaim_mode == 0 ||
3331 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3332 				continue;
3333 
3334 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3335 			switch (ret) {
3336 			case NODE_RECLAIM_NOSCAN:
3337 				/* did not scan */
3338 				continue;
3339 			case NODE_RECLAIM_FULL:
3340 				/* scanned but unreclaimable */
3341 				continue;
3342 			default:
3343 				/* did we reclaim enough */
3344 				if (zone_watermark_ok(zone, order, mark,
3345 						ac_classzone_idx(ac), alloc_flags))
3346 					goto try_this_zone;
3347 
3348 				continue;
3349 			}
3350 		}
3351 
3352 try_this_zone:
3353 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3354 				gfp_mask, alloc_flags, ac->migratetype);
3355 		if (page) {
3356 			prep_new_page(page, order, gfp_mask, alloc_flags);
3357 
3358 			/*
3359 			 * If this is a high-order atomic allocation then check
3360 			 * if the pageblock should be reserved for the future
3361 			 */
3362 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3363 				reserve_highatomic_pageblock(page, zone, order);
3364 
3365 			return page;
3366 		} else {
3367 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3368 			/* Try again if zone has deferred pages */
3369 			if (static_branch_unlikely(&deferred_pages)) {
3370 				if (_deferred_grow_zone(zone, order))
3371 					goto try_this_zone;
3372 			}
3373 #endif
3374 		}
3375 	}
3376 
3377 	return NULL;
3378 }
3379 
3380 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3381 {
3382 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3383 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3384 
3385 	if (!__ratelimit(&show_mem_rs))
3386 		return;
3387 
3388 	/*
3389 	 * This documents exceptions given to allocations in certain
3390 	 * contexts that are allowed to allocate outside current's set
3391 	 * of allowed nodes.
3392 	 */
3393 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3394 		if (tsk_is_oom_victim(current) ||
3395 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3396 			filter &= ~SHOW_MEM_FILTER_NODES;
3397 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3398 		filter &= ~SHOW_MEM_FILTER_NODES;
3399 
3400 	show_mem(filter, nodemask);
3401 }
3402 
3403 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3404 {
3405 	struct va_format vaf;
3406 	va_list args;
3407 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3408 				      DEFAULT_RATELIMIT_BURST);
3409 
3410 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3411 		return;
3412 
3413 	va_start(args, fmt);
3414 	vaf.fmt = fmt;
3415 	vaf.va = &args;
3416 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3417 			current->comm, &vaf, gfp_mask, &gfp_mask,
3418 			nodemask_pr_args(nodemask));
3419 	va_end(args);
3420 
3421 	cpuset_print_current_mems_allowed();
3422 
3423 	dump_stack();
3424 	warn_alloc_show_mem(gfp_mask, nodemask);
3425 }
3426 
3427 static inline struct page *
3428 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3429 			      unsigned int alloc_flags,
3430 			      const struct alloc_context *ac)
3431 {
3432 	struct page *page;
3433 
3434 	page = get_page_from_freelist(gfp_mask, order,
3435 			alloc_flags|ALLOC_CPUSET, ac);
3436 	/*
3437 	 * fallback to ignore cpuset restriction if our nodes
3438 	 * are depleted
3439 	 */
3440 	if (!page)
3441 		page = get_page_from_freelist(gfp_mask, order,
3442 				alloc_flags, ac);
3443 
3444 	return page;
3445 }
3446 
3447 static inline struct page *
3448 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3449 	const struct alloc_context *ac, unsigned long *did_some_progress)
3450 {
3451 	struct oom_control oc = {
3452 		.zonelist = ac->zonelist,
3453 		.nodemask = ac->nodemask,
3454 		.memcg = NULL,
3455 		.gfp_mask = gfp_mask,
3456 		.order = order,
3457 	};
3458 	struct page *page;
3459 
3460 	*did_some_progress = 0;
3461 
3462 	/*
3463 	 * Acquire the oom lock.  If that fails, somebody else is
3464 	 * making progress for us.
3465 	 */
3466 	if (!mutex_trylock(&oom_lock)) {
3467 		*did_some_progress = 1;
3468 		schedule_timeout_uninterruptible(1);
3469 		return NULL;
3470 	}
3471 
3472 	/*
3473 	 * Go through the zonelist yet one more time, keep very high watermark
3474 	 * here, this is only to catch a parallel oom killing, we must fail if
3475 	 * we're still under heavy pressure. But make sure that this reclaim
3476 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3477 	 * allocation which will never fail due to oom_lock already held.
3478 	 */
3479 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3480 				      ~__GFP_DIRECT_RECLAIM, order,
3481 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3482 	if (page)
3483 		goto out;
3484 
3485 	/* Coredumps can quickly deplete all memory reserves */
3486 	if (current->flags & PF_DUMPCORE)
3487 		goto out;
3488 	/* The OOM killer will not help higher order allocs */
3489 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3490 		goto out;
3491 	/*
3492 	 * We have already exhausted all our reclaim opportunities without any
3493 	 * success so it is time to admit defeat. We will skip the OOM killer
3494 	 * because it is very likely that the caller has a more reasonable
3495 	 * fallback than shooting a random task.
3496 	 */
3497 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3498 		goto out;
3499 	/* The OOM killer does not needlessly kill tasks for lowmem */
3500 	if (ac->high_zoneidx < ZONE_NORMAL)
3501 		goto out;
3502 	if (pm_suspended_storage())
3503 		goto out;
3504 	/*
3505 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3506 	 * other request to make a forward progress.
3507 	 * We are in an unfortunate situation where out_of_memory cannot
3508 	 * do much for this context but let's try it to at least get
3509 	 * access to memory reserved if the current task is killed (see
3510 	 * out_of_memory). Once filesystems are ready to handle allocation
3511 	 * failures more gracefully we should just bail out here.
3512 	 */
3513 
3514 	/* The OOM killer may not free memory on a specific node */
3515 	if (gfp_mask & __GFP_THISNODE)
3516 		goto out;
3517 
3518 	/* Exhausted what can be done so it's blame time */
3519 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3520 		*did_some_progress = 1;
3521 
3522 		/*
3523 		 * Help non-failing allocations by giving them access to memory
3524 		 * reserves
3525 		 */
3526 		if (gfp_mask & __GFP_NOFAIL)
3527 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3528 					ALLOC_NO_WATERMARKS, ac);
3529 	}
3530 out:
3531 	mutex_unlock(&oom_lock);
3532 	return page;
3533 }
3534 
3535 /*
3536  * Maximum number of compaction retries wit a progress before OOM
3537  * killer is consider as the only way to move forward.
3538  */
3539 #define MAX_COMPACT_RETRIES 16
3540 
3541 #ifdef CONFIG_COMPACTION
3542 /* Try memory compaction for high-order allocations before reclaim */
3543 static struct page *
3544 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3545 		unsigned int alloc_flags, const struct alloc_context *ac,
3546 		enum compact_priority prio, enum compact_result *compact_result)
3547 {
3548 	struct page *page;
3549 	unsigned long pflags;
3550 	unsigned int noreclaim_flag;
3551 
3552 	if (!order)
3553 		return NULL;
3554 
3555 	psi_memstall_enter(&pflags);
3556 	noreclaim_flag = memalloc_noreclaim_save();
3557 
3558 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3559 									prio);
3560 
3561 	memalloc_noreclaim_restore(noreclaim_flag);
3562 	psi_memstall_leave(&pflags);
3563 
3564 	if (*compact_result <= COMPACT_INACTIVE)
3565 		return NULL;
3566 
3567 	/*
3568 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3569 	 * count a compaction stall
3570 	 */
3571 	count_vm_event(COMPACTSTALL);
3572 
3573 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3574 
3575 	if (page) {
3576 		struct zone *zone = page_zone(page);
3577 
3578 		zone->compact_blockskip_flush = false;
3579 		compaction_defer_reset(zone, order, true);
3580 		count_vm_event(COMPACTSUCCESS);
3581 		return page;
3582 	}
3583 
3584 	/*
3585 	 * It's bad if compaction run occurs and fails. The most likely reason
3586 	 * is that pages exist, but not enough to satisfy watermarks.
3587 	 */
3588 	count_vm_event(COMPACTFAIL);
3589 
3590 	cond_resched();
3591 
3592 	return NULL;
3593 }
3594 
3595 static inline bool
3596 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3597 		     enum compact_result compact_result,
3598 		     enum compact_priority *compact_priority,
3599 		     int *compaction_retries)
3600 {
3601 	int max_retries = MAX_COMPACT_RETRIES;
3602 	int min_priority;
3603 	bool ret = false;
3604 	int retries = *compaction_retries;
3605 	enum compact_priority priority = *compact_priority;
3606 
3607 	if (!order)
3608 		return false;
3609 
3610 	if (compaction_made_progress(compact_result))
3611 		(*compaction_retries)++;
3612 
3613 	/*
3614 	 * compaction considers all the zone as desperately out of memory
3615 	 * so it doesn't really make much sense to retry except when the
3616 	 * failure could be caused by insufficient priority
3617 	 */
3618 	if (compaction_failed(compact_result))
3619 		goto check_priority;
3620 
3621 	/*
3622 	 * make sure the compaction wasn't deferred or didn't bail out early
3623 	 * due to locks contention before we declare that we should give up.
3624 	 * But do not retry if the given zonelist is not suitable for
3625 	 * compaction.
3626 	 */
3627 	if (compaction_withdrawn(compact_result)) {
3628 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3629 		goto out;
3630 	}
3631 
3632 	/*
3633 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3634 	 * costly ones because they are de facto nofail and invoke OOM
3635 	 * killer to move on while costly can fail and users are ready
3636 	 * to cope with that. 1/4 retries is rather arbitrary but we
3637 	 * would need much more detailed feedback from compaction to
3638 	 * make a better decision.
3639 	 */
3640 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3641 		max_retries /= 4;
3642 	if (*compaction_retries <= max_retries) {
3643 		ret = true;
3644 		goto out;
3645 	}
3646 
3647 	/*
3648 	 * Make sure there are attempts at the highest priority if we exhausted
3649 	 * all retries or failed at the lower priorities.
3650 	 */
3651 check_priority:
3652 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3653 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3654 
3655 	if (*compact_priority > min_priority) {
3656 		(*compact_priority)--;
3657 		*compaction_retries = 0;
3658 		ret = true;
3659 	}
3660 out:
3661 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3662 	return ret;
3663 }
3664 #else
3665 static inline struct page *
3666 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3667 		unsigned int alloc_flags, const struct alloc_context *ac,
3668 		enum compact_priority prio, enum compact_result *compact_result)
3669 {
3670 	*compact_result = COMPACT_SKIPPED;
3671 	return NULL;
3672 }
3673 
3674 static inline bool
3675 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3676 		     enum compact_result compact_result,
3677 		     enum compact_priority *compact_priority,
3678 		     int *compaction_retries)
3679 {
3680 	struct zone *zone;
3681 	struct zoneref *z;
3682 
3683 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3684 		return false;
3685 
3686 	/*
3687 	 * There are setups with compaction disabled which would prefer to loop
3688 	 * inside the allocator rather than hit the oom killer prematurely.
3689 	 * Let's give them a good hope and keep retrying while the order-0
3690 	 * watermarks are OK.
3691 	 */
3692 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3693 					ac->nodemask) {
3694 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3695 					ac_classzone_idx(ac), alloc_flags))
3696 			return true;
3697 	}
3698 	return false;
3699 }
3700 #endif /* CONFIG_COMPACTION */
3701 
3702 #ifdef CONFIG_LOCKDEP
3703 static struct lockdep_map __fs_reclaim_map =
3704 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3705 
3706 static bool __need_fs_reclaim(gfp_t gfp_mask)
3707 {
3708 	gfp_mask = current_gfp_context(gfp_mask);
3709 
3710 	/* no reclaim without waiting on it */
3711 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3712 		return false;
3713 
3714 	/* this guy won't enter reclaim */
3715 	if (current->flags & PF_MEMALLOC)
3716 		return false;
3717 
3718 	/* We're only interested __GFP_FS allocations for now */
3719 	if (!(gfp_mask & __GFP_FS))
3720 		return false;
3721 
3722 	if (gfp_mask & __GFP_NOLOCKDEP)
3723 		return false;
3724 
3725 	return true;
3726 }
3727 
3728 void __fs_reclaim_acquire(void)
3729 {
3730 	lock_map_acquire(&__fs_reclaim_map);
3731 }
3732 
3733 void __fs_reclaim_release(void)
3734 {
3735 	lock_map_release(&__fs_reclaim_map);
3736 }
3737 
3738 void fs_reclaim_acquire(gfp_t gfp_mask)
3739 {
3740 	if (__need_fs_reclaim(gfp_mask))
3741 		__fs_reclaim_acquire();
3742 }
3743 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3744 
3745 void fs_reclaim_release(gfp_t gfp_mask)
3746 {
3747 	if (__need_fs_reclaim(gfp_mask))
3748 		__fs_reclaim_release();
3749 }
3750 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3751 #endif
3752 
3753 /* Perform direct synchronous page reclaim */
3754 static int
3755 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3756 					const struct alloc_context *ac)
3757 {
3758 	struct reclaim_state reclaim_state;
3759 	int progress;
3760 	unsigned int noreclaim_flag;
3761 	unsigned long pflags;
3762 
3763 	cond_resched();
3764 
3765 	/* We now go into synchronous reclaim */
3766 	cpuset_memory_pressure_bump();
3767 	psi_memstall_enter(&pflags);
3768 	fs_reclaim_acquire(gfp_mask);
3769 	noreclaim_flag = memalloc_noreclaim_save();
3770 	reclaim_state.reclaimed_slab = 0;
3771 	current->reclaim_state = &reclaim_state;
3772 
3773 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3774 								ac->nodemask);
3775 
3776 	current->reclaim_state = NULL;
3777 	memalloc_noreclaim_restore(noreclaim_flag);
3778 	fs_reclaim_release(gfp_mask);
3779 	psi_memstall_leave(&pflags);
3780 
3781 	cond_resched();
3782 
3783 	return progress;
3784 }
3785 
3786 /* The really slow allocator path where we enter direct reclaim */
3787 static inline struct page *
3788 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3789 		unsigned int alloc_flags, const struct alloc_context *ac,
3790 		unsigned long *did_some_progress)
3791 {
3792 	struct page *page = NULL;
3793 	bool drained = false;
3794 
3795 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3796 	if (unlikely(!(*did_some_progress)))
3797 		return NULL;
3798 
3799 retry:
3800 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3801 
3802 	/*
3803 	 * If an allocation failed after direct reclaim, it could be because
3804 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3805 	 * Shrink them them and try again
3806 	 */
3807 	if (!page && !drained) {
3808 		unreserve_highatomic_pageblock(ac, false);
3809 		drain_all_pages(NULL);
3810 		drained = true;
3811 		goto retry;
3812 	}
3813 
3814 	return page;
3815 }
3816 
3817 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3818 			     const struct alloc_context *ac)
3819 {
3820 	struct zoneref *z;
3821 	struct zone *zone;
3822 	pg_data_t *last_pgdat = NULL;
3823 	enum zone_type high_zoneidx = ac->high_zoneidx;
3824 
3825 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3826 					ac->nodemask) {
3827 		if (last_pgdat != zone->zone_pgdat)
3828 			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3829 		last_pgdat = zone->zone_pgdat;
3830 	}
3831 }
3832 
3833 static inline unsigned int
3834 gfp_to_alloc_flags(gfp_t gfp_mask)
3835 {
3836 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3837 
3838 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3839 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3840 
3841 	/*
3842 	 * The caller may dip into page reserves a bit more if the caller
3843 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3844 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3845 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3846 	 */
3847 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3848 
3849 	if (gfp_mask & __GFP_ATOMIC) {
3850 		/*
3851 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3852 		 * if it can't schedule.
3853 		 */
3854 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3855 			alloc_flags |= ALLOC_HARDER;
3856 		/*
3857 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3858 		 * comment for __cpuset_node_allowed().
3859 		 */
3860 		alloc_flags &= ~ALLOC_CPUSET;
3861 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3862 		alloc_flags |= ALLOC_HARDER;
3863 
3864 #ifdef CONFIG_CMA
3865 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3866 		alloc_flags |= ALLOC_CMA;
3867 #endif
3868 	return alloc_flags;
3869 }
3870 
3871 static bool oom_reserves_allowed(struct task_struct *tsk)
3872 {
3873 	if (!tsk_is_oom_victim(tsk))
3874 		return false;
3875 
3876 	/*
3877 	 * !MMU doesn't have oom reaper so give access to memory reserves
3878 	 * only to the thread with TIF_MEMDIE set
3879 	 */
3880 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3881 		return false;
3882 
3883 	return true;
3884 }
3885 
3886 /*
3887  * Distinguish requests which really need access to full memory
3888  * reserves from oom victims which can live with a portion of it
3889  */
3890 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3891 {
3892 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3893 		return 0;
3894 	if (gfp_mask & __GFP_MEMALLOC)
3895 		return ALLOC_NO_WATERMARKS;
3896 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3897 		return ALLOC_NO_WATERMARKS;
3898 	if (!in_interrupt()) {
3899 		if (current->flags & PF_MEMALLOC)
3900 			return ALLOC_NO_WATERMARKS;
3901 		else if (oom_reserves_allowed(current))
3902 			return ALLOC_OOM;
3903 	}
3904 
3905 	return 0;
3906 }
3907 
3908 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3909 {
3910 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3911 }
3912 
3913 /*
3914  * Checks whether it makes sense to retry the reclaim to make a forward progress
3915  * for the given allocation request.
3916  *
3917  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3918  * without success, or when we couldn't even meet the watermark if we
3919  * reclaimed all remaining pages on the LRU lists.
3920  *
3921  * Returns true if a retry is viable or false to enter the oom path.
3922  */
3923 static inline bool
3924 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3925 		     struct alloc_context *ac, int alloc_flags,
3926 		     bool did_some_progress, int *no_progress_loops)
3927 {
3928 	struct zone *zone;
3929 	struct zoneref *z;
3930 	bool ret = false;
3931 
3932 	/*
3933 	 * Costly allocations might have made a progress but this doesn't mean
3934 	 * their order will become available due to high fragmentation so
3935 	 * always increment the no progress counter for them
3936 	 */
3937 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3938 		*no_progress_loops = 0;
3939 	else
3940 		(*no_progress_loops)++;
3941 
3942 	/*
3943 	 * Make sure we converge to OOM if we cannot make any progress
3944 	 * several times in the row.
3945 	 */
3946 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3947 		/* Before OOM, exhaust highatomic_reserve */
3948 		return unreserve_highatomic_pageblock(ac, true);
3949 	}
3950 
3951 	/*
3952 	 * Keep reclaiming pages while there is a chance this will lead
3953 	 * somewhere.  If none of the target zones can satisfy our allocation
3954 	 * request even if all reclaimable pages are considered then we are
3955 	 * screwed and have to go OOM.
3956 	 */
3957 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3958 					ac->nodemask) {
3959 		unsigned long available;
3960 		unsigned long reclaimable;
3961 		unsigned long min_wmark = min_wmark_pages(zone);
3962 		bool wmark;
3963 
3964 		available = reclaimable = zone_reclaimable_pages(zone);
3965 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3966 
3967 		/*
3968 		 * Would the allocation succeed if we reclaimed all
3969 		 * reclaimable pages?
3970 		 */
3971 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3972 				ac_classzone_idx(ac), alloc_flags, available);
3973 		trace_reclaim_retry_zone(z, order, reclaimable,
3974 				available, min_wmark, *no_progress_loops, wmark);
3975 		if (wmark) {
3976 			/*
3977 			 * If we didn't make any progress and have a lot of
3978 			 * dirty + writeback pages then we should wait for
3979 			 * an IO to complete to slow down the reclaim and
3980 			 * prevent from pre mature OOM
3981 			 */
3982 			if (!did_some_progress) {
3983 				unsigned long write_pending;
3984 
3985 				write_pending = zone_page_state_snapshot(zone,
3986 							NR_ZONE_WRITE_PENDING);
3987 
3988 				if (2 * write_pending > reclaimable) {
3989 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3990 					return true;
3991 				}
3992 			}
3993 
3994 			ret = true;
3995 			goto out;
3996 		}
3997 	}
3998 
3999 out:
4000 	/*
4001 	 * Memory allocation/reclaim might be called from a WQ context and the
4002 	 * current implementation of the WQ concurrency control doesn't
4003 	 * recognize that a particular WQ is congested if the worker thread is
4004 	 * looping without ever sleeping. Therefore we have to do a short sleep
4005 	 * here rather than calling cond_resched().
4006 	 */
4007 	if (current->flags & PF_WQ_WORKER)
4008 		schedule_timeout_uninterruptible(1);
4009 	else
4010 		cond_resched();
4011 	return ret;
4012 }
4013 
4014 static inline bool
4015 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4016 {
4017 	/*
4018 	 * It's possible that cpuset's mems_allowed and the nodemask from
4019 	 * mempolicy don't intersect. This should be normally dealt with by
4020 	 * policy_nodemask(), but it's possible to race with cpuset update in
4021 	 * such a way the check therein was true, and then it became false
4022 	 * before we got our cpuset_mems_cookie here.
4023 	 * This assumes that for all allocations, ac->nodemask can come only
4024 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4025 	 * when it does not intersect with the cpuset restrictions) or the
4026 	 * caller can deal with a violated nodemask.
4027 	 */
4028 	if (cpusets_enabled() && ac->nodemask &&
4029 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4030 		ac->nodemask = NULL;
4031 		return true;
4032 	}
4033 
4034 	/*
4035 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4036 	 * possible to race with parallel threads in such a way that our
4037 	 * allocation can fail while the mask is being updated. If we are about
4038 	 * to fail, check if the cpuset changed during allocation and if so,
4039 	 * retry.
4040 	 */
4041 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4042 		return true;
4043 
4044 	return false;
4045 }
4046 
4047 static inline struct page *
4048 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4049 						struct alloc_context *ac)
4050 {
4051 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4052 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4053 	struct page *page = NULL;
4054 	unsigned int alloc_flags;
4055 	unsigned long did_some_progress;
4056 	enum compact_priority compact_priority;
4057 	enum compact_result compact_result;
4058 	int compaction_retries;
4059 	int no_progress_loops;
4060 	unsigned int cpuset_mems_cookie;
4061 	int reserve_flags;
4062 
4063 	/*
4064 	 * In the slowpath, we sanity check order to avoid ever trying to
4065 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4066 	 * be using allocators in order of preference for an area that is
4067 	 * too large.
4068 	 */
4069 	if (order >= MAX_ORDER) {
4070 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4071 		return NULL;
4072 	}
4073 
4074 	/*
4075 	 * We also sanity check to catch abuse of atomic reserves being used by
4076 	 * callers that are not in atomic context.
4077 	 */
4078 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4079 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4080 		gfp_mask &= ~__GFP_ATOMIC;
4081 
4082 retry_cpuset:
4083 	compaction_retries = 0;
4084 	no_progress_loops = 0;
4085 	compact_priority = DEF_COMPACT_PRIORITY;
4086 	cpuset_mems_cookie = read_mems_allowed_begin();
4087 
4088 	/*
4089 	 * The fast path uses conservative alloc_flags to succeed only until
4090 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4091 	 * alloc_flags precisely. So we do that now.
4092 	 */
4093 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4094 
4095 	/*
4096 	 * We need to recalculate the starting point for the zonelist iterator
4097 	 * because we might have used different nodemask in the fast path, or
4098 	 * there was a cpuset modification and we are retrying - otherwise we
4099 	 * could end up iterating over non-eligible zones endlessly.
4100 	 */
4101 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4102 					ac->high_zoneidx, ac->nodemask);
4103 	if (!ac->preferred_zoneref->zone)
4104 		goto nopage;
4105 
4106 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4107 		wake_all_kswapds(order, gfp_mask, ac);
4108 
4109 	/*
4110 	 * The adjusted alloc_flags might result in immediate success, so try
4111 	 * that first
4112 	 */
4113 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4114 	if (page)
4115 		goto got_pg;
4116 
4117 	/*
4118 	 * For costly allocations, try direct compaction first, as it's likely
4119 	 * that we have enough base pages and don't need to reclaim. For non-
4120 	 * movable high-order allocations, do that as well, as compaction will
4121 	 * try prevent permanent fragmentation by migrating from blocks of the
4122 	 * same migratetype.
4123 	 * Don't try this for allocations that are allowed to ignore
4124 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4125 	 */
4126 	if (can_direct_reclaim &&
4127 			(costly_order ||
4128 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4129 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4130 		page = __alloc_pages_direct_compact(gfp_mask, order,
4131 						alloc_flags, ac,
4132 						INIT_COMPACT_PRIORITY,
4133 						&compact_result);
4134 		if (page)
4135 			goto got_pg;
4136 
4137 		/*
4138 		 * Checks for costly allocations with __GFP_NORETRY, which
4139 		 * includes THP page fault allocations
4140 		 */
4141 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4142 			/*
4143 			 * If compaction is deferred for high-order allocations,
4144 			 * it is because sync compaction recently failed. If
4145 			 * this is the case and the caller requested a THP
4146 			 * allocation, we do not want to heavily disrupt the
4147 			 * system, so we fail the allocation instead of entering
4148 			 * direct reclaim.
4149 			 */
4150 			if (compact_result == COMPACT_DEFERRED)
4151 				goto nopage;
4152 
4153 			/*
4154 			 * Looks like reclaim/compaction is worth trying, but
4155 			 * sync compaction could be very expensive, so keep
4156 			 * using async compaction.
4157 			 */
4158 			compact_priority = INIT_COMPACT_PRIORITY;
4159 		}
4160 	}
4161 
4162 retry:
4163 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4164 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4165 		wake_all_kswapds(order, gfp_mask, ac);
4166 
4167 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4168 	if (reserve_flags)
4169 		alloc_flags = reserve_flags;
4170 
4171 	/*
4172 	 * Reset the nodemask and zonelist iterators if memory policies can be
4173 	 * ignored. These allocations are high priority and system rather than
4174 	 * user oriented.
4175 	 */
4176 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4177 		ac->nodemask = NULL;
4178 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4179 					ac->high_zoneidx, ac->nodemask);
4180 	}
4181 
4182 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4183 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4184 	if (page)
4185 		goto got_pg;
4186 
4187 	/* Caller is not willing to reclaim, we can't balance anything */
4188 	if (!can_direct_reclaim)
4189 		goto nopage;
4190 
4191 	/* Avoid recursion of direct reclaim */
4192 	if (current->flags & PF_MEMALLOC)
4193 		goto nopage;
4194 
4195 	/* Try direct reclaim and then allocating */
4196 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4197 							&did_some_progress);
4198 	if (page)
4199 		goto got_pg;
4200 
4201 	/* Try direct compaction and then allocating */
4202 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4203 					compact_priority, &compact_result);
4204 	if (page)
4205 		goto got_pg;
4206 
4207 	/* Do not loop if specifically requested */
4208 	if (gfp_mask & __GFP_NORETRY)
4209 		goto nopage;
4210 
4211 	/*
4212 	 * Do not retry costly high order allocations unless they are
4213 	 * __GFP_RETRY_MAYFAIL
4214 	 */
4215 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4216 		goto nopage;
4217 
4218 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4219 				 did_some_progress > 0, &no_progress_loops))
4220 		goto retry;
4221 
4222 	/*
4223 	 * It doesn't make any sense to retry for the compaction if the order-0
4224 	 * reclaim is not able to make any progress because the current
4225 	 * implementation of the compaction depends on the sufficient amount
4226 	 * of free memory (see __compaction_suitable)
4227 	 */
4228 	if (did_some_progress > 0 &&
4229 			should_compact_retry(ac, order, alloc_flags,
4230 				compact_result, &compact_priority,
4231 				&compaction_retries))
4232 		goto retry;
4233 
4234 
4235 	/* Deal with possible cpuset update races before we start OOM killing */
4236 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4237 		goto retry_cpuset;
4238 
4239 	/* Reclaim has failed us, start killing things */
4240 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4241 	if (page)
4242 		goto got_pg;
4243 
4244 	/* Avoid allocations with no watermarks from looping endlessly */
4245 	if (tsk_is_oom_victim(current) &&
4246 	    (alloc_flags == ALLOC_OOM ||
4247 	     (gfp_mask & __GFP_NOMEMALLOC)))
4248 		goto nopage;
4249 
4250 	/* Retry as long as the OOM killer is making progress */
4251 	if (did_some_progress) {
4252 		no_progress_loops = 0;
4253 		goto retry;
4254 	}
4255 
4256 nopage:
4257 	/* Deal with possible cpuset update races before we fail */
4258 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4259 		goto retry_cpuset;
4260 
4261 	/*
4262 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4263 	 * we always retry
4264 	 */
4265 	if (gfp_mask & __GFP_NOFAIL) {
4266 		/*
4267 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4268 		 * of any new users that actually require GFP_NOWAIT
4269 		 */
4270 		if (WARN_ON_ONCE(!can_direct_reclaim))
4271 			goto fail;
4272 
4273 		/*
4274 		 * PF_MEMALLOC request from this context is rather bizarre
4275 		 * because we cannot reclaim anything and only can loop waiting
4276 		 * for somebody to do a work for us
4277 		 */
4278 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4279 
4280 		/*
4281 		 * non failing costly orders are a hard requirement which we
4282 		 * are not prepared for much so let's warn about these users
4283 		 * so that we can identify them and convert them to something
4284 		 * else.
4285 		 */
4286 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4287 
4288 		/*
4289 		 * Help non-failing allocations by giving them access to memory
4290 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4291 		 * could deplete whole memory reserves which would just make
4292 		 * the situation worse
4293 		 */
4294 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4295 		if (page)
4296 			goto got_pg;
4297 
4298 		cond_resched();
4299 		goto retry;
4300 	}
4301 fail:
4302 	warn_alloc(gfp_mask, ac->nodemask,
4303 			"page allocation failure: order:%u", order);
4304 got_pg:
4305 	return page;
4306 }
4307 
4308 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4309 		int preferred_nid, nodemask_t *nodemask,
4310 		struct alloc_context *ac, gfp_t *alloc_mask,
4311 		unsigned int *alloc_flags)
4312 {
4313 	ac->high_zoneidx = gfp_zone(gfp_mask);
4314 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4315 	ac->nodemask = nodemask;
4316 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4317 
4318 	if (cpusets_enabled()) {
4319 		*alloc_mask |= __GFP_HARDWALL;
4320 		if (!ac->nodemask)
4321 			ac->nodemask = &cpuset_current_mems_allowed;
4322 		else
4323 			*alloc_flags |= ALLOC_CPUSET;
4324 	}
4325 
4326 	fs_reclaim_acquire(gfp_mask);
4327 	fs_reclaim_release(gfp_mask);
4328 
4329 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4330 
4331 	if (should_fail_alloc_page(gfp_mask, order))
4332 		return false;
4333 
4334 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4335 		*alloc_flags |= ALLOC_CMA;
4336 
4337 	return true;
4338 }
4339 
4340 /* Determine whether to spread dirty pages and what the first usable zone */
4341 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4342 {
4343 	/* Dirty zone balancing only done in the fast path */
4344 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4345 
4346 	/*
4347 	 * The preferred zone is used for statistics but crucially it is
4348 	 * also used as the starting point for the zonelist iterator. It
4349 	 * may get reset for allocations that ignore memory policies.
4350 	 */
4351 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4352 					ac->high_zoneidx, ac->nodemask);
4353 }
4354 
4355 /*
4356  * This is the 'heart' of the zoned buddy allocator.
4357  */
4358 struct page *
4359 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4360 							nodemask_t *nodemask)
4361 {
4362 	struct page *page;
4363 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4364 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4365 	struct alloc_context ac = { };
4366 
4367 	gfp_mask &= gfp_allowed_mask;
4368 	alloc_mask = gfp_mask;
4369 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4370 		return NULL;
4371 
4372 	finalise_ac(gfp_mask, &ac);
4373 
4374 	/* First allocation attempt */
4375 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4376 	if (likely(page))
4377 		goto out;
4378 
4379 	/*
4380 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4381 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4382 	 * from a particular context which has been marked by
4383 	 * memalloc_no{fs,io}_{save,restore}.
4384 	 */
4385 	alloc_mask = current_gfp_context(gfp_mask);
4386 	ac.spread_dirty_pages = false;
4387 
4388 	/*
4389 	 * Restore the original nodemask if it was potentially replaced with
4390 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4391 	 */
4392 	if (unlikely(ac.nodemask != nodemask))
4393 		ac.nodemask = nodemask;
4394 
4395 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4396 
4397 out:
4398 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4399 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4400 		__free_pages(page, order);
4401 		page = NULL;
4402 	}
4403 
4404 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4405 
4406 	return page;
4407 }
4408 EXPORT_SYMBOL(__alloc_pages_nodemask);
4409 
4410 /*
4411  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4412  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4413  * you need to access high mem.
4414  */
4415 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4416 {
4417 	struct page *page;
4418 
4419 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4420 	if (!page)
4421 		return 0;
4422 	return (unsigned long) page_address(page);
4423 }
4424 EXPORT_SYMBOL(__get_free_pages);
4425 
4426 unsigned long get_zeroed_page(gfp_t gfp_mask)
4427 {
4428 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4429 }
4430 EXPORT_SYMBOL(get_zeroed_page);
4431 
4432 void __free_pages(struct page *page, unsigned int order)
4433 {
4434 	if (put_page_testzero(page)) {
4435 		if (order == 0)
4436 			free_unref_page(page);
4437 		else
4438 			__free_pages_ok(page, order);
4439 	}
4440 }
4441 
4442 EXPORT_SYMBOL(__free_pages);
4443 
4444 void free_pages(unsigned long addr, unsigned int order)
4445 {
4446 	if (addr != 0) {
4447 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4448 		__free_pages(virt_to_page((void *)addr), order);
4449 	}
4450 }
4451 
4452 EXPORT_SYMBOL(free_pages);
4453 
4454 /*
4455  * Page Fragment:
4456  *  An arbitrary-length arbitrary-offset area of memory which resides
4457  *  within a 0 or higher order page.  Multiple fragments within that page
4458  *  are individually refcounted, in the page's reference counter.
4459  *
4460  * The page_frag functions below provide a simple allocation framework for
4461  * page fragments.  This is used by the network stack and network device
4462  * drivers to provide a backing region of memory for use as either an
4463  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4464  */
4465 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4466 					     gfp_t gfp_mask)
4467 {
4468 	struct page *page = NULL;
4469 	gfp_t gfp = gfp_mask;
4470 
4471 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4472 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4473 		    __GFP_NOMEMALLOC;
4474 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4475 				PAGE_FRAG_CACHE_MAX_ORDER);
4476 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4477 #endif
4478 	if (unlikely(!page))
4479 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4480 
4481 	nc->va = page ? page_address(page) : NULL;
4482 
4483 	return page;
4484 }
4485 
4486 void __page_frag_cache_drain(struct page *page, unsigned int count)
4487 {
4488 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4489 
4490 	if (page_ref_sub_and_test(page, count)) {
4491 		unsigned int order = compound_order(page);
4492 
4493 		if (order == 0)
4494 			free_unref_page(page);
4495 		else
4496 			__free_pages_ok(page, order);
4497 	}
4498 }
4499 EXPORT_SYMBOL(__page_frag_cache_drain);
4500 
4501 void *page_frag_alloc(struct page_frag_cache *nc,
4502 		      unsigned int fragsz, gfp_t gfp_mask)
4503 {
4504 	unsigned int size = PAGE_SIZE;
4505 	struct page *page;
4506 	int offset;
4507 
4508 	if (unlikely(!nc->va)) {
4509 refill:
4510 		page = __page_frag_cache_refill(nc, gfp_mask);
4511 		if (!page)
4512 			return NULL;
4513 
4514 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4515 		/* if size can vary use size else just use PAGE_SIZE */
4516 		size = nc->size;
4517 #endif
4518 		/* Even if we own the page, we do not use atomic_set().
4519 		 * This would break get_page_unless_zero() users.
4520 		 */
4521 		page_ref_add(page, size - 1);
4522 
4523 		/* reset page count bias and offset to start of new frag */
4524 		nc->pfmemalloc = page_is_pfmemalloc(page);
4525 		nc->pagecnt_bias = size;
4526 		nc->offset = size;
4527 	}
4528 
4529 	offset = nc->offset - fragsz;
4530 	if (unlikely(offset < 0)) {
4531 		page = virt_to_page(nc->va);
4532 
4533 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4534 			goto refill;
4535 
4536 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4537 		/* if size can vary use size else just use PAGE_SIZE */
4538 		size = nc->size;
4539 #endif
4540 		/* OK, page count is 0, we can safely set it */
4541 		set_page_count(page, size);
4542 
4543 		/* reset page count bias and offset to start of new frag */
4544 		nc->pagecnt_bias = size;
4545 		offset = size - fragsz;
4546 	}
4547 
4548 	nc->pagecnt_bias--;
4549 	nc->offset = offset;
4550 
4551 	return nc->va + offset;
4552 }
4553 EXPORT_SYMBOL(page_frag_alloc);
4554 
4555 /*
4556  * Frees a page fragment allocated out of either a compound or order 0 page.
4557  */
4558 void page_frag_free(void *addr)
4559 {
4560 	struct page *page = virt_to_head_page(addr);
4561 
4562 	if (unlikely(put_page_testzero(page)))
4563 		__free_pages_ok(page, compound_order(page));
4564 }
4565 EXPORT_SYMBOL(page_frag_free);
4566 
4567 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4568 		size_t size)
4569 {
4570 	if (addr) {
4571 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4572 		unsigned long used = addr + PAGE_ALIGN(size);
4573 
4574 		split_page(virt_to_page((void *)addr), order);
4575 		while (used < alloc_end) {
4576 			free_page(used);
4577 			used += PAGE_SIZE;
4578 		}
4579 	}
4580 	return (void *)addr;
4581 }
4582 
4583 /**
4584  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4585  * @size: the number of bytes to allocate
4586  * @gfp_mask: GFP flags for the allocation
4587  *
4588  * This function is similar to alloc_pages(), except that it allocates the
4589  * minimum number of pages to satisfy the request.  alloc_pages() can only
4590  * allocate memory in power-of-two pages.
4591  *
4592  * This function is also limited by MAX_ORDER.
4593  *
4594  * Memory allocated by this function must be released by free_pages_exact().
4595  */
4596 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4597 {
4598 	unsigned int order = get_order(size);
4599 	unsigned long addr;
4600 
4601 	addr = __get_free_pages(gfp_mask, order);
4602 	return make_alloc_exact(addr, order, size);
4603 }
4604 EXPORT_SYMBOL(alloc_pages_exact);
4605 
4606 /**
4607  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4608  *			   pages on a node.
4609  * @nid: the preferred node ID where memory should be allocated
4610  * @size: the number of bytes to allocate
4611  * @gfp_mask: GFP flags for the allocation
4612  *
4613  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4614  * back.
4615  */
4616 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4617 {
4618 	unsigned int order = get_order(size);
4619 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4620 	if (!p)
4621 		return NULL;
4622 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4623 }
4624 
4625 /**
4626  * free_pages_exact - release memory allocated via alloc_pages_exact()
4627  * @virt: the value returned by alloc_pages_exact.
4628  * @size: size of allocation, same value as passed to alloc_pages_exact().
4629  *
4630  * Release the memory allocated by a previous call to alloc_pages_exact.
4631  */
4632 void free_pages_exact(void *virt, size_t size)
4633 {
4634 	unsigned long addr = (unsigned long)virt;
4635 	unsigned long end = addr + PAGE_ALIGN(size);
4636 
4637 	while (addr < end) {
4638 		free_page(addr);
4639 		addr += PAGE_SIZE;
4640 	}
4641 }
4642 EXPORT_SYMBOL(free_pages_exact);
4643 
4644 /**
4645  * nr_free_zone_pages - count number of pages beyond high watermark
4646  * @offset: The zone index of the highest zone
4647  *
4648  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4649  * high watermark within all zones at or below a given zone index.  For each
4650  * zone, the number of pages is calculated as:
4651  *
4652  *     nr_free_zone_pages = managed_pages - high_pages
4653  */
4654 static unsigned long nr_free_zone_pages(int offset)
4655 {
4656 	struct zoneref *z;
4657 	struct zone *zone;
4658 
4659 	/* Just pick one node, since fallback list is circular */
4660 	unsigned long sum = 0;
4661 
4662 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4663 
4664 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4665 		unsigned long size = zone->managed_pages;
4666 		unsigned long high = high_wmark_pages(zone);
4667 		if (size > high)
4668 			sum += size - high;
4669 	}
4670 
4671 	return sum;
4672 }
4673 
4674 /**
4675  * nr_free_buffer_pages - count number of pages beyond high watermark
4676  *
4677  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4678  * watermark within ZONE_DMA and ZONE_NORMAL.
4679  */
4680 unsigned long nr_free_buffer_pages(void)
4681 {
4682 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4683 }
4684 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4685 
4686 /**
4687  * nr_free_pagecache_pages - count number of pages beyond high watermark
4688  *
4689  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4690  * high watermark within all zones.
4691  */
4692 unsigned long nr_free_pagecache_pages(void)
4693 {
4694 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4695 }
4696 
4697 static inline void show_node(struct zone *zone)
4698 {
4699 	if (IS_ENABLED(CONFIG_NUMA))
4700 		printk("Node %d ", zone_to_nid(zone));
4701 }
4702 
4703 long si_mem_available(void)
4704 {
4705 	long available;
4706 	unsigned long pagecache;
4707 	unsigned long wmark_low = 0;
4708 	unsigned long pages[NR_LRU_LISTS];
4709 	unsigned long reclaimable;
4710 	struct zone *zone;
4711 	int lru;
4712 
4713 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4714 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4715 
4716 	for_each_zone(zone)
4717 		wmark_low += zone->watermark[WMARK_LOW];
4718 
4719 	/*
4720 	 * Estimate the amount of memory available for userspace allocations,
4721 	 * without causing swapping.
4722 	 */
4723 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4724 
4725 	/*
4726 	 * Not all the page cache can be freed, otherwise the system will
4727 	 * start swapping. Assume at least half of the page cache, or the
4728 	 * low watermark worth of cache, needs to stay.
4729 	 */
4730 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4731 	pagecache -= min(pagecache / 2, wmark_low);
4732 	available += pagecache;
4733 
4734 	/*
4735 	 * Part of the reclaimable slab and other kernel memory consists of
4736 	 * items that are in use, and cannot be freed. Cap this estimate at the
4737 	 * low watermark.
4738 	 */
4739 	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
4740 			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
4741 	available += reclaimable - min(reclaimable / 2, wmark_low);
4742 
4743 	if (available < 0)
4744 		available = 0;
4745 	return available;
4746 }
4747 EXPORT_SYMBOL_GPL(si_mem_available);
4748 
4749 void si_meminfo(struct sysinfo *val)
4750 {
4751 	val->totalram = totalram_pages;
4752 	val->sharedram = global_node_page_state(NR_SHMEM);
4753 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
4754 	val->bufferram = nr_blockdev_pages();
4755 	val->totalhigh = totalhigh_pages;
4756 	val->freehigh = nr_free_highpages();
4757 	val->mem_unit = PAGE_SIZE;
4758 }
4759 
4760 EXPORT_SYMBOL(si_meminfo);
4761 
4762 #ifdef CONFIG_NUMA
4763 void si_meminfo_node(struct sysinfo *val, int nid)
4764 {
4765 	int zone_type;		/* needs to be signed */
4766 	unsigned long managed_pages = 0;
4767 	unsigned long managed_highpages = 0;
4768 	unsigned long free_highpages = 0;
4769 	pg_data_t *pgdat = NODE_DATA(nid);
4770 
4771 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4772 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4773 	val->totalram = managed_pages;
4774 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4775 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4776 #ifdef CONFIG_HIGHMEM
4777 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4778 		struct zone *zone = &pgdat->node_zones[zone_type];
4779 
4780 		if (is_highmem(zone)) {
4781 			managed_highpages += zone->managed_pages;
4782 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4783 		}
4784 	}
4785 	val->totalhigh = managed_highpages;
4786 	val->freehigh = free_highpages;
4787 #else
4788 	val->totalhigh = managed_highpages;
4789 	val->freehigh = free_highpages;
4790 #endif
4791 	val->mem_unit = PAGE_SIZE;
4792 }
4793 #endif
4794 
4795 /*
4796  * Determine whether the node should be displayed or not, depending on whether
4797  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4798  */
4799 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4800 {
4801 	if (!(flags & SHOW_MEM_FILTER_NODES))
4802 		return false;
4803 
4804 	/*
4805 	 * no node mask - aka implicit memory numa policy. Do not bother with
4806 	 * the synchronization - read_mems_allowed_begin - because we do not
4807 	 * have to be precise here.
4808 	 */
4809 	if (!nodemask)
4810 		nodemask = &cpuset_current_mems_allowed;
4811 
4812 	return !node_isset(nid, *nodemask);
4813 }
4814 
4815 #define K(x) ((x) << (PAGE_SHIFT-10))
4816 
4817 static void show_migration_types(unsigned char type)
4818 {
4819 	static const char types[MIGRATE_TYPES] = {
4820 		[MIGRATE_UNMOVABLE]	= 'U',
4821 		[MIGRATE_MOVABLE]	= 'M',
4822 		[MIGRATE_RECLAIMABLE]	= 'E',
4823 		[MIGRATE_HIGHATOMIC]	= 'H',
4824 #ifdef CONFIG_CMA
4825 		[MIGRATE_CMA]		= 'C',
4826 #endif
4827 #ifdef CONFIG_MEMORY_ISOLATION
4828 		[MIGRATE_ISOLATE]	= 'I',
4829 #endif
4830 	};
4831 	char tmp[MIGRATE_TYPES + 1];
4832 	char *p = tmp;
4833 	int i;
4834 
4835 	for (i = 0; i < MIGRATE_TYPES; i++) {
4836 		if (type & (1 << i))
4837 			*p++ = types[i];
4838 	}
4839 
4840 	*p = '\0';
4841 	printk(KERN_CONT "(%s) ", tmp);
4842 }
4843 
4844 /*
4845  * Show free area list (used inside shift_scroll-lock stuff)
4846  * We also calculate the percentage fragmentation. We do this by counting the
4847  * memory on each free list with the exception of the first item on the list.
4848  *
4849  * Bits in @filter:
4850  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4851  *   cpuset.
4852  */
4853 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4854 {
4855 	unsigned long free_pcp = 0;
4856 	int cpu;
4857 	struct zone *zone;
4858 	pg_data_t *pgdat;
4859 
4860 	for_each_populated_zone(zone) {
4861 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4862 			continue;
4863 
4864 		for_each_online_cpu(cpu)
4865 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4866 	}
4867 
4868 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4869 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4870 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4871 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4872 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4873 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4874 		global_node_page_state(NR_ACTIVE_ANON),
4875 		global_node_page_state(NR_INACTIVE_ANON),
4876 		global_node_page_state(NR_ISOLATED_ANON),
4877 		global_node_page_state(NR_ACTIVE_FILE),
4878 		global_node_page_state(NR_INACTIVE_FILE),
4879 		global_node_page_state(NR_ISOLATED_FILE),
4880 		global_node_page_state(NR_UNEVICTABLE),
4881 		global_node_page_state(NR_FILE_DIRTY),
4882 		global_node_page_state(NR_WRITEBACK),
4883 		global_node_page_state(NR_UNSTABLE_NFS),
4884 		global_node_page_state(NR_SLAB_RECLAIMABLE),
4885 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4886 		global_node_page_state(NR_FILE_MAPPED),
4887 		global_node_page_state(NR_SHMEM),
4888 		global_zone_page_state(NR_PAGETABLE),
4889 		global_zone_page_state(NR_BOUNCE),
4890 		global_zone_page_state(NR_FREE_PAGES),
4891 		free_pcp,
4892 		global_zone_page_state(NR_FREE_CMA_PAGES));
4893 
4894 	for_each_online_pgdat(pgdat) {
4895 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4896 			continue;
4897 
4898 		printk("Node %d"
4899 			" active_anon:%lukB"
4900 			" inactive_anon:%lukB"
4901 			" active_file:%lukB"
4902 			" inactive_file:%lukB"
4903 			" unevictable:%lukB"
4904 			" isolated(anon):%lukB"
4905 			" isolated(file):%lukB"
4906 			" mapped:%lukB"
4907 			" dirty:%lukB"
4908 			" writeback:%lukB"
4909 			" shmem:%lukB"
4910 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4911 			" shmem_thp: %lukB"
4912 			" shmem_pmdmapped: %lukB"
4913 			" anon_thp: %lukB"
4914 #endif
4915 			" writeback_tmp:%lukB"
4916 			" unstable:%lukB"
4917 			" all_unreclaimable? %s"
4918 			"\n",
4919 			pgdat->node_id,
4920 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4921 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4922 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4923 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4924 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4925 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4926 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4927 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4928 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4929 			K(node_page_state(pgdat, NR_WRITEBACK)),
4930 			K(node_page_state(pgdat, NR_SHMEM)),
4931 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4932 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4933 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4934 					* HPAGE_PMD_NR),
4935 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4936 #endif
4937 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4938 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4939 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4940 				"yes" : "no");
4941 	}
4942 
4943 	for_each_populated_zone(zone) {
4944 		int i;
4945 
4946 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4947 			continue;
4948 
4949 		free_pcp = 0;
4950 		for_each_online_cpu(cpu)
4951 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4952 
4953 		show_node(zone);
4954 		printk(KERN_CONT
4955 			"%s"
4956 			" free:%lukB"
4957 			" min:%lukB"
4958 			" low:%lukB"
4959 			" high:%lukB"
4960 			" active_anon:%lukB"
4961 			" inactive_anon:%lukB"
4962 			" active_file:%lukB"
4963 			" inactive_file:%lukB"
4964 			" unevictable:%lukB"
4965 			" writepending:%lukB"
4966 			" present:%lukB"
4967 			" managed:%lukB"
4968 			" mlocked:%lukB"
4969 			" kernel_stack:%lukB"
4970 			" pagetables:%lukB"
4971 			" bounce:%lukB"
4972 			" free_pcp:%lukB"
4973 			" local_pcp:%ukB"
4974 			" free_cma:%lukB"
4975 			"\n",
4976 			zone->name,
4977 			K(zone_page_state(zone, NR_FREE_PAGES)),
4978 			K(min_wmark_pages(zone)),
4979 			K(low_wmark_pages(zone)),
4980 			K(high_wmark_pages(zone)),
4981 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4982 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4983 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4984 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4985 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4986 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4987 			K(zone->present_pages),
4988 			K(zone->managed_pages),
4989 			K(zone_page_state(zone, NR_MLOCK)),
4990 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4991 			K(zone_page_state(zone, NR_PAGETABLE)),
4992 			K(zone_page_state(zone, NR_BOUNCE)),
4993 			K(free_pcp),
4994 			K(this_cpu_read(zone->pageset->pcp.count)),
4995 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4996 		printk("lowmem_reserve[]:");
4997 		for (i = 0; i < MAX_NR_ZONES; i++)
4998 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4999 		printk(KERN_CONT "\n");
5000 	}
5001 
5002 	for_each_populated_zone(zone) {
5003 		unsigned int order;
5004 		unsigned long nr[MAX_ORDER], flags, total = 0;
5005 		unsigned char types[MAX_ORDER];
5006 
5007 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5008 			continue;
5009 		show_node(zone);
5010 		printk(KERN_CONT "%s: ", zone->name);
5011 
5012 		spin_lock_irqsave(&zone->lock, flags);
5013 		for (order = 0; order < MAX_ORDER; order++) {
5014 			struct free_area *area = &zone->free_area[order];
5015 			int type;
5016 
5017 			nr[order] = area->nr_free;
5018 			total += nr[order] << order;
5019 
5020 			types[order] = 0;
5021 			for (type = 0; type < MIGRATE_TYPES; type++) {
5022 				if (!list_empty(&area->free_list[type]))
5023 					types[order] |= 1 << type;
5024 			}
5025 		}
5026 		spin_unlock_irqrestore(&zone->lock, flags);
5027 		for (order = 0; order < MAX_ORDER; order++) {
5028 			printk(KERN_CONT "%lu*%lukB ",
5029 			       nr[order], K(1UL) << order);
5030 			if (nr[order])
5031 				show_migration_types(types[order]);
5032 		}
5033 		printk(KERN_CONT "= %lukB\n", K(total));
5034 	}
5035 
5036 	hugetlb_show_meminfo();
5037 
5038 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5039 
5040 	show_swap_cache_info();
5041 }
5042 
5043 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5044 {
5045 	zoneref->zone = zone;
5046 	zoneref->zone_idx = zone_idx(zone);
5047 }
5048 
5049 /*
5050  * Builds allocation fallback zone lists.
5051  *
5052  * Add all populated zones of a node to the zonelist.
5053  */
5054 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5055 {
5056 	struct zone *zone;
5057 	enum zone_type zone_type = MAX_NR_ZONES;
5058 	int nr_zones = 0;
5059 
5060 	do {
5061 		zone_type--;
5062 		zone = pgdat->node_zones + zone_type;
5063 		if (managed_zone(zone)) {
5064 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5065 			check_highest_zone(zone_type);
5066 		}
5067 	} while (zone_type);
5068 
5069 	return nr_zones;
5070 }
5071 
5072 #ifdef CONFIG_NUMA
5073 
5074 static int __parse_numa_zonelist_order(char *s)
5075 {
5076 	/*
5077 	 * We used to support different zonlists modes but they turned
5078 	 * out to be just not useful. Let's keep the warning in place
5079 	 * if somebody still use the cmd line parameter so that we do
5080 	 * not fail it silently
5081 	 */
5082 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5083 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5084 		return -EINVAL;
5085 	}
5086 	return 0;
5087 }
5088 
5089 static __init int setup_numa_zonelist_order(char *s)
5090 {
5091 	if (!s)
5092 		return 0;
5093 
5094 	return __parse_numa_zonelist_order(s);
5095 }
5096 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5097 
5098 char numa_zonelist_order[] = "Node";
5099 
5100 /*
5101  * sysctl handler for numa_zonelist_order
5102  */
5103 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5104 		void __user *buffer, size_t *length,
5105 		loff_t *ppos)
5106 {
5107 	char *str;
5108 	int ret;
5109 
5110 	if (!write)
5111 		return proc_dostring(table, write, buffer, length, ppos);
5112 	str = memdup_user_nul(buffer, 16);
5113 	if (IS_ERR(str))
5114 		return PTR_ERR(str);
5115 
5116 	ret = __parse_numa_zonelist_order(str);
5117 	kfree(str);
5118 	return ret;
5119 }
5120 
5121 
5122 #define MAX_NODE_LOAD (nr_online_nodes)
5123 static int node_load[MAX_NUMNODES];
5124 
5125 /**
5126  * find_next_best_node - find the next node that should appear in a given node's fallback list
5127  * @node: node whose fallback list we're appending
5128  * @used_node_mask: nodemask_t of already used nodes
5129  *
5130  * We use a number of factors to determine which is the next node that should
5131  * appear on a given node's fallback list.  The node should not have appeared
5132  * already in @node's fallback list, and it should be the next closest node
5133  * according to the distance array (which contains arbitrary distance values
5134  * from each node to each node in the system), and should also prefer nodes
5135  * with no CPUs, since presumably they'll have very little allocation pressure
5136  * on them otherwise.
5137  * It returns -1 if no node is found.
5138  */
5139 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5140 {
5141 	int n, val;
5142 	int min_val = INT_MAX;
5143 	int best_node = NUMA_NO_NODE;
5144 	const struct cpumask *tmp = cpumask_of_node(0);
5145 
5146 	/* Use the local node if we haven't already */
5147 	if (!node_isset(node, *used_node_mask)) {
5148 		node_set(node, *used_node_mask);
5149 		return node;
5150 	}
5151 
5152 	for_each_node_state(n, N_MEMORY) {
5153 
5154 		/* Don't want a node to appear more than once */
5155 		if (node_isset(n, *used_node_mask))
5156 			continue;
5157 
5158 		/* Use the distance array to find the distance */
5159 		val = node_distance(node, n);
5160 
5161 		/* Penalize nodes under us ("prefer the next node") */
5162 		val += (n < node);
5163 
5164 		/* Give preference to headless and unused nodes */
5165 		tmp = cpumask_of_node(n);
5166 		if (!cpumask_empty(tmp))
5167 			val += PENALTY_FOR_NODE_WITH_CPUS;
5168 
5169 		/* Slight preference for less loaded node */
5170 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5171 		val += node_load[n];
5172 
5173 		if (val < min_val) {
5174 			min_val = val;
5175 			best_node = n;
5176 		}
5177 	}
5178 
5179 	if (best_node >= 0)
5180 		node_set(best_node, *used_node_mask);
5181 
5182 	return best_node;
5183 }
5184 
5185 
5186 /*
5187  * Build zonelists ordered by node and zones within node.
5188  * This results in maximum locality--normal zone overflows into local
5189  * DMA zone, if any--but risks exhausting DMA zone.
5190  */
5191 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5192 		unsigned nr_nodes)
5193 {
5194 	struct zoneref *zonerefs;
5195 	int i;
5196 
5197 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5198 
5199 	for (i = 0; i < nr_nodes; i++) {
5200 		int nr_zones;
5201 
5202 		pg_data_t *node = NODE_DATA(node_order[i]);
5203 
5204 		nr_zones = build_zonerefs_node(node, zonerefs);
5205 		zonerefs += nr_zones;
5206 	}
5207 	zonerefs->zone = NULL;
5208 	zonerefs->zone_idx = 0;
5209 }
5210 
5211 /*
5212  * Build gfp_thisnode zonelists
5213  */
5214 static void build_thisnode_zonelists(pg_data_t *pgdat)
5215 {
5216 	struct zoneref *zonerefs;
5217 	int nr_zones;
5218 
5219 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5220 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5221 	zonerefs += nr_zones;
5222 	zonerefs->zone = NULL;
5223 	zonerefs->zone_idx = 0;
5224 }
5225 
5226 /*
5227  * Build zonelists ordered by zone and nodes within zones.
5228  * This results in conserving DMA zone[s] until all Normal memory is
5229  * exhausted, but results in overflowing to remote node while memory
5230  * may still exist in local DMA zone.
5231  */
5232 
5233 static void build_zonelists(pg_data_t *pgdat)
5234 {
5235 	static int node_order[MAX_NUMNODES];
5236 	int node, load, nr_nodes = 0;
5237 	nodemask_t used_mask;
5238 	int local_node, prev_node;
5239 
5240 	/* NUMA-aware ordering of nodes */
5241 	local_node = pgdat->node_id;
5242 	load = nr_online_nodes;
5243 	prev_node = local_node;
5244 	nodes_clear(used_mask);
5245 
5246 	memset(node_order, 0, sizeof(node_order));
5247 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5248 		/*
5249 		 * We don't want to pressure a particular node.
5250 		 * So adding penalty to the first node in same
5251 		 * distance group to make it round-robin.
5252 		 */
5253 		if (node_distance(local_node, node) !=
5254 		    node_distance(local_node, prev_node))
5255 			node_load[node] = load;
5256 
5257 		node_order[nr_nodes++] = node;
5258 		prev_node = node;
5259 		load--;
5260 	}
5261 
5262 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5263 	build_thisnode_zonelists(pgdat);
5264 }
5265 
5266 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5267 /*
5268  * Return node id of node used for "local" allocations.
5269  * I.e., first node id of first zone in arg node's generic zonelist.
5270  * Used for initializing percpu 'numa_mem', which is used primarily
5271  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5272  */
5273 int local_memory_node(int node)
5274 {
5275 	struct zoneref *z;
5276 
5277 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5278 				   gfp_zone(GFP_KERNEL),
5279 				   NULL);
5280 	return zone_to_nid(z->zone);
5281 }
5282 #endif
5283 
5284 static void setup_min_unmapped_ratio(void);
5285 static void setup_min_slab_ratio(void);
5286 #else	/* CONFIG_NUMA */
5287 
5288 static void build_zonelists(pg_data_t *pgdat)
5289 {
5290 	int node, local_node;
5291 	struct zoneref *zonerefs;
5292 	int nr_zones;
5293 
5294 	local_node = pgdat->node_id;
5295 
5296 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5297 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5298 	zonerefs += nr_zones;
5299 
5300 	/*
5301 	 * Now we build the zonelist so that it contains the zones
5302 	 * of all the other nodes.
5303 	 * We don't want to pressure a particular node, so when
5304 	 * building the zones for node N, we make sure that the
5305 	 * zones coming right after the local ones are those from
5306 	 * node N+1 (modulo N)
5307 	 */
5308 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5309 		if (!node_online(node))
5310 			continue;
5311 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5312 		zonerefs += nr_zones;
5313 	}
5314 	for (node = 0; node < local_node; node++) {
5315 		if (!node_online(node))
5316 			continue;
5317 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5318 		zonerefs += nr_zones;
5319 	}
5320 
5321 	zonerefs->zone = NULL;
5322 	zonerefs->zone_idx = 0;
5323 }
5324 
5325 #endif	/* CONFIG_NUMA */
5326 
5327 /*
5328  * Boot pageset table. One per cpu which is going to be used for all
5329  * zones and all nodes. The parameters will be set in such a way
5330  * that an item put on a list will immediately be handed over to
5331  * the buddy list. This is safe since pageset manipulation is done
5332  * with interrupts disabled.
5333  *
5334  * The boot_pagesets must be kept even after bootup is complete for
5335  * unused processors and/or zones. They do play a role for bootstrapping
5336  * hotplugged processors.
5337  *
5338  * zoneinfo_show() and maybe other functions do
5339  * not check if the processor is online before following the pageset pointer.
5340  * Other parts of the kernel may not check if the zone is available.
5341  */
5342 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5343 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5344 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5345 
5346 static void __build_all_zonelists(void *data)
5347 {
5348 	int nid;
5349 	int __maybe_unused cpu;
5350 	pg_data_t *self = data;
5351 	static DEFINE_SPINLOCK(lock);
5352 
5353 	spin_lock(&lock);
5354 
5355 #ifdef CONFIG_NUMA
5356 	memset(node_load, 0, sizeof(node_load));
5357 #endif
5358 
5359 	/*
5360 	 * This node is hotadded and no memory is yet present.   So just
5361 	 * building zonelists is fine - no need to touch other nodes.
5362 	 */
5363 	if (self && !node_online(self->node_id)) {
5364 		build_zonelists(self);
5365 	} else {
5366 		for_each_online_node(nid) {
5367 			pg_data_t *pgdat = NODE_DATA(nid);
5368 
5369 			build_zonelists(pgdat);
5370 		}
5371 
5372 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5373 		/*
5374 		 * We now know the "local memory node" for each node--
5375 		 * i.e., the node of the first zone in the generic zonelist.
5376 		 * Set up numa_mem percpu variable for on-line cpus.  During
5377 		 * boot, only the boot cpu should be on-line;  we'll init the
5378 		 * secondary cpus' numa_mem as they come on-line.  During
5379 		 * node/memory hotplug, we'll fixup all on-line cpus.
5380 		 */
5381 		for_each_online_cpu(cpu)
5382 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5383 #endif
5384 	}
5385 
5386 	spin_unlock(&lock);
5387 }
5388 
5389 static noinline void __init
5390 build_all_zonelists_init(void)
5391 {
5392 	int cpu;
5393 
5394 	__build_all_zonelists(NULL);
5395 
5396 	/*
5397 	 * Initialize the boot_pagesets that are going to be used
5398 	 * for bootstrapping processors. The real pagesets for
5399 	 * each zone will be allocated later when the per cpu
5400 	 * allocator is available.
5401 	 *
5402 	 * boot_pagesets are used also for bootstrapping offline
5403 	 * cpus if the system is already booted because the pagesets
5404 	 * are needed to initialize allocators on a specific cpu too.
5405 	 * F.e. the percpu allocator needs the page allocator which
5406 	 * needs the percpu allocator in order to allocate its pagesets
5407 	 * (a chicken-egg dilemma).
5408 	 */
5409 	for_each_possible_cpu(cpu)
5410 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5411 
5412 	mminit_verify_zonelist();
5413 	cpuset_init_current_mems_allowed();
5414 }
5415 
5416 /*
5417  * unless system_state == SYSTEM_BOOTING.
5418  *
5419  * __ref due to call of __init annotated helper build_all_zonelists_init
5420  * [protected by SYSTEM_BOOTING].
5421  */
5422 void __ref build_all_zonelists(pg_data_t *pgdat)
5423 {
5424 	if (system_state == SYSTEM_BOOTING) {
5425 		build_all_zonelists_init();
5426 	} else {
5427 		__build_all_zonelists(pgdat);
5428 		/* cpuset refresh routine should be here */
5429 	}
5430 	vm_total_pages = nr_free_pagecache_pages();
5431 	/*
5432 	 * Disable grouping by mobility if the number of pages in the
5433 	 * system is too low to allow the mechanism to work. It would be
5434 	 * more accurate, but expensive to check per-zone. This check is
5435 	 * made on memory-hotadd so a system can start with mobility
5436 	 * disabled and enable it later
5437 	 */
5438 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5439 		page_group_by_mobility_disabled = 1;
5440 	else
5441 		page_group_by_mobility_disabled = 0;
5442 
5443 	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
5444 		nr_online_nodes,
5445 		page_group_by_mobility_disabled ? "off" : "on",
5446 		vm_total_pages);
5447 #ifdef CONFIG_NUMA
5448 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5449 #endif
5450 }
5451 
5452 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5453 static bool __meminit
5454 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5455 {
5456 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5457 	static struct memblock_region *r;
5458 
5459 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5460 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5461 			for_each_memblock(memory, r) {
5462 				if (*pfn < memblock_region_memory_end_pfn(r))
5463 					break;
5464 			}
5465 		}
5466 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
5467 		    memblock_is_mirror(r)) {
5468 			*pfn = memblock_region_memory_end_pfn(r);
5469 			return true;
5470 		}
5471 	}
5472 #endif
5473 	return false;
5474 }
5475 
5476 /*
5477  * Initially all pages are reserved - free ones are freed
5478  * up by memblock_free_all() once the early boot process is
5479  * done. Non-atomic initialization, single-pass.
5480  */
5481 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5482 		unsigned long start_pfn, enum memmap_context context,
5483 		struct vmem_altmap *altmap)
5484 {
5485 	unsigned long pfn, end_pfn = start_pfn + size;
5486 	struct page *page;
5487 
5488 	if (highest_memmap_pfn < end_pfn - 1)
5489 		highest_memmap_pfn = end_pfn - 1;
5490 
5491 #ifdef CONFIG_ZONE_DEVICE
5492 	/*
5493 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5494 	 * memory. We limit the total number of pages to initialize to just
5495 	 * those that might contain the memory mapping. We will defer the
5496 	 * ZONE_DEVICE page initialization until after we have released
5497 	 * the hotplug lock.
5498 	 */
5499 	if (zone == ZONE_DEVICE) {
5500 		if (!altmap)
5501 			return;
5502 
5503 		if (start_pfn == altmap->base_pfn)
5504 			start_pfn += altmap->reserve;
5505 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5506 	}
5507 #endif
5508 
5509 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5510 		/*
5511 		 * There can be holes in boot-time mem_map[]s handed to this
5512 		 * function.  They do not exist on hotplugged memory.
5513 		 */
5514 		if (context == MEMMAP_EARLY) {
5515 			if (!early_pfn_valid(pfn))
5516 				continue;
5517 			if (!early_pfn_in_nid(pfn, nid))
5518 				continue;
5519 			if (overlap_memmap_init(zone, &pfn))
5520 				continue;
5521 			if (defer_init(nid, pfn, end_pfn))
5522 				break;
5523 		}
5524 
5525 		page = pfn_to_page(pfn);
5526 		__init_single_page(page, pfn, zone, nid);
5527 		if (context == MEMMAP_HOTPLUG)
5528 			__SetPageReserved(page);
5529 
5530 		/*
5531 		 * Mark the block movable so that blocks are reserved for
5532 		 * movable at startup. This will force kernel allocations
5533 		 * to reserve their blocks rather than leaking throughout
5534 		 * the address space during boot when many long-lived
5535 		 * kernel allocations are made.
5536 		 *
5537 		 * bitmap is created for zone's valid pfn range. but memmap
5538 		 * can be created for invalid pages (for alignment)
5539 		 * check here not to call set_pageblock_migratetype() against
5540 		 * pfn out of zone.
5541 		 */
5542 		if (!(pfn & (pageblock_nr_pages - 1))) {
5543 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5544 			cond_resched();
5545 		}
5546 	}
5547 }
5548 
5549 #ifdef CONFIG_ZONE_DEVICE
5550 void __ref memmap_init_zone_device(struct zone *zone,
5551 				   unsigned long start_pfn,
5552 				   unsigned long size,
5553 				   struct dev_pagemap *pgmap)
5554 {
5555 	unsigned long pfn, end_pfn = start_pfn + size;
5556 	struct pglist_data *pgdat = zone->zone_pgdat;
5557 	unsigned long zone_idx = zone_idx(zone);
5558 	unsigned long start = jiffies;
5559 	int nid = pgdat->node_id;
5560 
5561 	if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5562 		return;
5563 
5564 	/*
5565 	 * The call to memmap_init_zone should have already taken care
5566 	 * of the pages reserved for the memmap, so we can just jump to
5567 	 * the end of that region and start processing the device pages.
5568 	 */
5569 	if (pgmap->altmap_valid) {
5570 		struct vmem_altmap *altmap = &pgmap->altmap;
5571 
5572 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5573 		size = end_pfn - start_pfn;
5574 	}
5575 
5576 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5577 		struct page *page = pfn_to_page(pfn);
5578 
5579 		__init_single_page(page, pfn, zone_idx, nid);
5580 
5581 		/*
5582 		 * Mark page reserved as it will need to wait for onlining
5583 		 * phase for it to be fully associated with a zone.
5584 		 *
5585 		 * We can use the non-atomic __set_bit operation for setting
5586 		 * the flag as we are still initializing the pages.
5587 		 */
5588 		__SetPageReserved(page);
5589 
5590 		/*
5591 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5592 		 * pointer and hmm_data.  It is a bug if a ZONE_DEVICE
5593 		 * page is ever freed or placed on a driver-private list.
5594 		 */
5595 		page->pgmap = pgmap;
5596 		page->hmm_data = 0;
5597 
5598 		/*
5599 		 * Mark the block movable so that blocks are reserved for
5600 		 * movable at startup. This will force kernel allocations
5601 		 * to reserve their blocks rather than leaking throughout
5602 		 * the address space during boot when many long-lived
5603 		 * kernel allocations are made.
5604 		 *
5605 		 * bitmap is created for zone's valid pfn range. but memmap
5606 		 * can be created for invalid pages (for alignment)
5607 		 * check here not to call set_pageblock_migratetype() against
5608 		 * pfn out of zone.
5609 		 *
5610 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5611 		 * because this is done early in sparse_add_one_section
5612 		 */
5613 		if (!(pfn & (pageblock_nr_pages - 1))) {
5614 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5615 			cond_resched();
5616 		}
5617 	}
5618 
5619 	pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5620 		size, jiffies_to_msecs(jiffies - start));
5621 }
5622 
5623 #endif
5624 static void __meminit zone_init_free_lists(struct zone *zone)
5625 {
5626 	unsigned int order, t;
5627 	for_each_migratetype_order(order, t) {
5628 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5629 		zone->free_area[order].nr_free = 0;
5630 	}
5631 }
5632 
5633 void __meminit __weak memmap_init(unsigned long size, int nid,
5634 				  unsigned long zone, unsigned long start_pfn)
5635 {
5636 	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5637 }
5638 
5639 static int zone_batchsize(struct zone *zone)
5640 {
5641 #ifdef CONFIG_MMU
5642 	int batch;
5643 
5644 	/*
5645 	 * The per-cpu-pages pools are set to around 1000th of the
5646 	 * size of the zone.
5647 	 */
5648 	batch = zone->managed_pages / 1024;
5649 	/* But no more than a meg. */
5650 	if (batch * PAGE_SIZE > 1024 * 1024)
5651 		batch = (1024 * 1024) / PAGE_SIZE;
5652 	batch /= 4;		/* We effectively *= 4 below */
5653 	if (batch < 1)
5654 		batch = 1;
5655 
5656 	/*
5657 	 * Clamp the batch to a 2^n - 1 value. Having a power
5658 	 * of 2 value was found to be more likely to have
5659 	 * suboptimal cache aliasing properties in some cases.
5660 	 *
5661 	 * For example if 2 tasks are alternately allocating
5662 	 * batches of pages, one task can end up with a lot
5663 	 * of pages of one half of the possible page colors
5664 	 * and the other with pages of the other colors.
5665 	 */
5666 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5667 
5668 	return batch;
5669 
5670 #else
5671 	/* The deferral and batching of frees should be suppressed under NOMMU
5672 	 * conditions.
5673 	 *
5674 	 * The problem is that NOMMU needs to be able to allocate large chunks
5675 	 * of contiguous memory as there's no hardware page translation to
5676 	 * assemble apparent contiguous memory from discontiguous pages.
5677 	 *
5678 	 * Queueing large contiguous runs of pages for batching, however,
5679 	 * causes the pages to actually be freed in smaller chunks.  As there
5680 	 * can be a significant delay between the individual batches being
5681 	 * recycled, this leads to the once large chunks of space being
5682 	 * fragmented and becoming unavailable for high-order allocations.
5683 	 */
5684 	return 0;
5685 #endif
5686 }
5687 
5688 /*
5689  * pcp->high and pcp->batch values are related and dependent on one another:
5690  * ->batch must never be higher then ->high.
5691  * The following function updates them in a safe manner without read side
5692  * locking.
5693  *
5694  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5695  * those fields changing asynchronously (acording the the above rule).
5696  *
5697  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5698  * outside of boot time (or some other assurance that no concurrent updaters
5699  * exist).
5700  */
5701 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5702 		unsigned long batch)
5703 {
5704        /* start with a fail safe value for batch */
5705 	pcp->batch = 1;
5706 	smp_wmb();
5707 
5708        /* Update high, then batch, in order */
5709 	pcp->high = high;
5710 	smp_wmb();
5711 
5712 	pcp->batch = batch;
5713 }
5714 
5715 /* a companion to pageset_set_high() */
5716 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5717 {
5718 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5719 }
5720 
5721 static void pageset_init(struct per_cpu_pageset *p)
5722 {
5723 	struct per_cpu_pages *pcp;
5724 	int migratetype;
5725 
5726 	memset(p, 0, sizeof(*p));
5727 
5728 	pcp = &p->pcp;
5729 	pcp->count = 0;
5730 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5731 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5732 }
5733 
5734 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5735 {
5736 	pageset_init(p);
5737 	pageset_set_batch(p, batch);
5738 }
5739 
5740 /*
5741  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5742  * to the value high for the pageset p.
5743  */
5744 static void pageset_set_high(struct per_cpu_pageset *p,
5745 				unsigned long high)
5746 {
5747 	unsigned long batch = max(1UL, high / 4);
5748 	if ((high / 4) > (PAGE_SHIFT * 8))
5749 		batch = PAGE_SHIFT * 8;
5750 
5751 	pageset_update(&p->pcp, high, batch);
5752 }
5753 
5754 static void pageset_set_high_and_batch(struct zone *zone,
5755 				       struct per_cpu_pageset *pcp)
5756 {
5757 	if (percpu_pagelist_fraction)
5758 		pageset_set_high(pcp,
5759 			(zone->managed_pages /
5760 				percpu_pagelist_fraction));
5761 	else
5762 		pageset_set_batch(pcp, zone_batchsize(zone));
5763 }
5764 
5765 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5766 {
5767 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5768 
5769 	pageset_init(pcp);
5770 	pageset_set_high_and_batch(zone, pcp);
5771 }
5772 
5773 void __meminit setup_zone_pageset(struct zone *zone)
5774 {
5775 	int cpu;
5776 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5777 	for_each_possible_cpu(cpu)
5778 		zone_pageset_init(zone, cpu);
5779 }
5780 
5781 /*
5782  * Allocate per cpu pagesets and initialize them.
5783  * Before this call only boot pagesets were available.
5784  */
5785 void __init setup_per_cpu_pageset(void)
5786 {
5787 	struct pglist_data *pgdat;
5788 	struct zone *zone;
5789 
5790 	for_each_populated_zone(zone)
5791 		setup_zone_pageset(zone);
5792 
5793 	for_each_online_pgdat(pgdat)
5794 		pgdat->per_cpu_nodestats =
5795 			alloc_percpu(struct per_cpu_nodestat);
5796 }
5797 
5798 static __meminit void zone_pcp_init(struct zone *zone)
5799 {
5800 	/*
5801 	 * per cpu subsystem is not up at this point. The following code
5802 	 * relies on the ability of the linker to provide the
5803 	 * offset of a (static) per cpu variable into the per cpu area.
5804 	 */
5805 	zone->pageset = &boot_pageset;
5806 
5807 	if (populated_zone(zone))
5808 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5809 			zone->name, zone->present_pages,
5810 					 zone_batchsize(zone));
5811 }
5812 
5813 void __meminit init_currently_empty_zone(struct zone *zone,
5814 					unsigned long zone_start_pfn,
5815 					unsigned long size)
5816 {
5817 	struct pglist_data *pgdat = zone->zone_pgdat;
5818 
5819 	pgdat->nr_zones = zone_idx(zone) + 1;
5820 
5821 	zone->zone_start_pfn = zone_start_pfn;
5822 
5823 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5824 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5825 			pgdat->node_id,
5826 			(unsigned long)zone_idx(zone),
5827 			zone_start_pfn, (zone_start_pfn + size));
5828 
5829 	zone_init_free_lists(zone);
5830 	zone->initialized = 1;
5831 }
5832 
5833 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5834 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5835 
5836 /*
5837  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5838  */
5839 int __meminit __early_pfn_to_nid(unsigned long pfn,
5840 					struct mminit_pfnnid_cache *state)
5841 {
5842 	unsigned long start_pfn, end_pfn;
5843 	int nid;
5844 
5845 	if (state->last_start <= pfn && pfn < state->last_end)
5846 		return state->last_nid;
5847 
5848 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5849 	if (nid != -1) {
5850 		state->last_start = start_pfn;
5851 		state->last_end = end_pfn;
5852 		state->last_nid = nid;
5853 	}
5854 
5855 	return nid;
5856 }
5857 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5858 
5859 /**
5860  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5861  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5862  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5863  *
5864  * If an architecture guarantees that all ranges registered contain no holes
5865  * and may be freed, this this function may be used instead of calling
5866  * memblock_free_early_nid() manually.
5867  */
5868 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5869 {
5870 	unsigned long start_pfn, end_pfn;
5871 	int i, this_nid;
5872 
5873 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5874 		start_pfn = min(start_pfn, max_low_pfn);
5875 		end_pfn = min(end_pfn, max_low_pfn);
5876 
5877 		if (start_pfn < end_pfn)
5878 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5879 					(end_pfn - start_pfn) << PAGE_SHIFT,
5880 					this_nid);
5881 	}
5882 }
5883 
5884 /**
5885  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5886  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5887  *
5888  * If an architecture guarantees that all ranges registered contain no holes and may
5889  * be freed, this function may be used instead of calling memory_present() manually.
5890  */
5891 void __init sparse_memory_present_with_active_regions(int nid)
5892 {
5893 	unsigned long start_pfn, end_pfn;
5894 	int i, this_nid;
5895 
5896 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5897 		memory_present(this_nid, start_pfn, end_pfn);
5898 }
5899 
5900 /**
5901  * get_pfn_range_for_nid - Return the start and end page frames for a node
5902  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5903  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5904  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5905  *
5906  * It returns the start and end page frame of a node based on information
5907  * provided by memblock_set_node(). If called for a node
5908  * with no available memory, a warning is printed and the start and end
5909  * PFNs will be 0.
5910  */
5911 void __meminit get_pfn_range_for_nid(unsigned int nid,
5912 			unsigned long *start_pfn, unsigned long *end_pfn)
5913 {
5914 	unsigned long this_start_pfn, this_end_pfn;
5915 	int i;
5916 
5917 	*start_pfn = -1UL;
5918 	*end_pfn = 0;
5919 
5920 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5921 		*start_pfn = min(*start_pfn, this_start_pfn);
5922 		*end_pfn = max(*end_pfn, this_end_pfn);
5923 	}
5924 
5925 	if (*start_pfn == -1UL)
5926 		*start_pfn = 0;
5927 }
5928 
5929 /*
5930  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5931  * assumption is made that zones within a node are ordered in monotonic
5932  * increasing memory addresses so that the "highest" populated zone is used
5933  */
5934 static void __init find_usable_zone_for_movable(void)
5935 {
5936 	int zone_index;
5937 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5938 		if (zone_index == ZONE_MOVABLE)
5939 			continue;
5940 
5941 		if (arch_zone_highest_possible_pfn[zone_index] >
5942 				arch_zone_lowest_possible_pfn[zone_index])
5943 			break;
5944 	}
5945 
5946 	VM_BUG_ON(zone_index == -1);
5947 	movable_zone = zone_index;
5948 }
5949 
5950 /*
5951  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5952  * because it is sized independent of architecture. Unlike the other zones,
5953  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5954  * in each node depending on the size of each node and how evenly kernelcore
5955  * is distributed. This helper function adjusts the zone ranges
5956  * provided by the architecture for a given node by using the end of the
5957  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5958  * zones within a node are in order of monotonic increases memory addresses
5959  */
5960 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5961 					unsigned long zone_type,
5962 					unsigned long node_start_pfn,
5963 					unsigned long node_end_pfn,
5964 					unsigned long *zone_start_pfn,
5965 					unsigned long *zone_end_pfn)
5966 {
5967 	/* Only adjust if ZONE_MOVABLE is on this node */
5968 	if (zone_movable_pfn[nid]) {
5969 		/* Size ZONE_MOVABLE */
5970 		if (zone_type == ZONE_MOVABLE) {
5971 			*zone_start_pfn = zone_movable_pfn[nid];
5972 			*zone_end_pfn = min(node_end_pfn,
5973 				arch_zone_highest_possible_pfn[movable_zone]);
5974 
5975 		/* Adjust for ZONE_MOVABLE starting within this range */
5976 		} else if (!mirrored_kernelcore &&
5977 			*zone_start_pfn < zone_movable_pfn[nid] &&
5978 			*zone_end_pfn > zone_movable_pfn[nid]) {
5979 			*zone_end_pfn = zone_movable_pfn[nid];
5980 
5981 		/* Check if this whole range is within ZONE_MOVABLE */
5982 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5983 			*zone_start_pfn = *zone_end_pfn;
5984 	}
5985 }
5986 
5987 /*
5988  * Return the number of pages a zone spans in a node, including holes
5989  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5990  */
5991 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5992 					unsigned long zone_type,
5993 					unsigned long node_start_pfn,
5994 					unsigned long node_end_pfn,
5995 					unsigned long *zone_start_pfn,
5996 					unsigned long *zone_end_pfn,
5997 					unsigned long *ignored)
5998 {
5999 	/* When hotadd a new node from cpu_up(), the node should be empty */
6000 	if (!node_start_pfn && !node_end_pfn)
6001 		return 0;
6002 
6003 	/* Get the start and end of the zone */
6004 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
6005 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
6006 	adjust_zone_range_for_zone_movable(nid, zone_type,
6007 				node_start_pfn, node_end_pfn,
6008 				zone_start_pfn, zone_end_pfn);
6009 
6010 	/* Check that this node has pages within the zone's required range */
6011 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6012 		return 0;
6013 
6014 	/* Move the zone boundaries inside the node if necessary */
6015 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6016 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6017 
6018 	/* Return the spanned pages */
6019 	return *zone_end_pfn - *zone_start_pfn;
6020 }
6021 
6022 /*
6023  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6024  * then all holes in the requested range will be accounted for.
6025  */
6026 unsigned long __meminit __absent_pages_in_range(int nid,
6027 				unsigned long range_start_pfn,
6028 				unsigned long range_end_pfn)
6029 {
6030 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6031 	unsigned long start_pfn, end_pfn;
6032 	int i;
6033 
6034 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6035 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6036 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6037 		nr_absent -= end_pfn - start_pfn;
6038 	}
6039 	return nr_absent;
6040 }
6041 
6042 /**
6043  * absent_pages_in_range - Return number of page frames in holes within a range
6044  * @start_pfn: The start PFN to start searching for holes
6045  * @end_pfn: The end PFN to stop searching for holes
6046  *
6047  * It returns the number of pages frames in memory holes within a range.
6048  */
6049 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6050 							unsigned long end_pfn)
6051 {
6052 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6053 }
6054 
6055 /* Return the number of page frames in holes in a zone on a node */
6056 static unsigned long __meminit zone_absent_pages_in_node(int nid,
6057 					unsigned long zone_type,
6058 					unsigned long node_start_pfn,
6059 					unsigned long node_end_pfn,
6060 					unsigned long *ignored)
6061 {
6062 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6063 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6064 	unsigned long zone_start_pfn, zone_end_pfn;
6065 	unsigned long nr_absent;
6066 
6067 	/* When hotadd a new node from cpu_up(), the node should be empty */
6068 	if (!node_start_pfn && !node_end_pfn)
6069 		return 0;
6070 
6071 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6072 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6073 
6074 	adjust_zone_range_for_zone_movable(nid, zone_type,
6075 			node_start_pfn, node_end_pfn,
6076 			&zone_start_pfn, &zone_end_pfn);
6077 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6078 
6079 	/*
6080 	 * ZONE_MOVABLE handling.
6081 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6082 	 * and vice versa.
6083 	 */
6084 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6085 		unsigned long start_pfn, end_pfn;
6086 		struct memblock_region *r;
6087 
6088 		for_each_memblock(memory, r) {
6089 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6090 					  zone_start_pfn, zone_end_pfn);
6091 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6092 					zone_start_pfn, zone_end_pfn);
6093 
6094 			if (zone_type == ZONE_MOVABLE &&
6095 			    memblock_is_mirror(r))
6096 				nr_absent += end_pfn - start_pfn;
6097 
6098 			if (zone_type == ZONE_NORMAL &&
6099 			    !memblock_is_mirror(r))
6100 				nr_absent += end_pfn - start_pfn;
6101 		}
6102 	}
6103 
6104 	return nr_absent;
6105 }
6106 
6107 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6108 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6109 					unsigned long zone_type,
6110 					unsigned long node_start_pfn,
6111 					unsigned long node_end_pfn,
6112 					unsigned long *zone_start_pfn,
6113 					unsigned long *zone_end_pfn,
6114 					unsigned long *zones_size)
6115 {
6116 	unsigned int zone;
6117 
6118 	*zone_start_pfn = node_start_pfn;
6119 	for (zone = 0; zone < zone_type; zone++)
6120 		*zone_start_pfn += zones_size[zone];
6121 
6122 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6123 
6124 	return zones_size[zone_type];
6125 }
6126 
6127 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6128 						unsigned long zone_type,
6129 						unsigned long node_start_pfn,
6130 						unsigned long node_end_pfn,
6131 						unsigned long *zholes_size)
6132 {
6133 	if (!zholes_size)
6134 		return 0;
6135 
6136 	return zholes_size[zone_type];
6137 }
6138 
6139 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6140 
6141 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6142 						unsigned long node_start_pfn,
6143 						unsigned long node_end_pfn,
6144 						unsigned long *zones_size,
6145 						unsigned long *zholes_size)
6146 {
6147 	unsigned long realtotalpages = 0, totalpages = 0;
6148 	enum zone_type i;
6149 
6150 	for (i = 0; i < MAX_NR_ZONES; i++) {
6151 		struct zone *zone = pgdat->node_zones + i;
6152 		unsigned long zone_start_pfn, zone_end_pfn;
6153 		unsigned long size, real_size;
6154 
6155 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6156 						  node_start_pfn,
6157 						  node_end_pfn,
6158 						  &zone_start_pfn,
6159 						  &zone_end_pfn,
6160 						  zones_size);
6161 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6162 						  node_start_pfn, node_end_pfn,
6163 						  zholes_size);
6164 		if (size)
6165 			zone->zone_start_pfn = zone_start_pfn;
6166 		else
6167 			zone->zone_start_pfn = 0;
6168 		zone->spanned_pages = size;
6169 		zone->present_pages = real_size;
6170 
6171 		totalpages += size;
6172 		realtotalpages += real_size;
6173 	}
6174 
6175 	pgdat->node_spanned_pages = totalpages;
6176 	pgdat->node_present_pages = realtotalpages;
6177 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6178 							realtotalpages);
6179 }
6180 
6181 #ifndef CONFIG_SPARSEMEM
6182 /*
6183  * Calculate the size of the zone->blockflags rounded to an unsigned long
6184  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6185  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6186  * round what is now in bits to nearest long in bits, then return it in
6187  * bytes.
6188  */
6189 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6190 {
6191 	unsigned long usemapsize;
6192 
6193 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6194 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6195 	usemapsize = usemapsize >> pageblock_order;
6196 	usemapsize *= NR_PAGEBLOCK_BITS;
6197 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6198 
6199 	return usemapsize / 8;
6200 }
6201 
6202 static void __ref setup_usemap(struct pglist_data *pgdat,
6203 				struct zone *zone,
6204 				unsigned long zone_start_pfn,
6205 				unsigned long zonesize)
6206 {
6207 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6208 	zone->pageblock_flags = NULL;
6209 	if (usemapsize)
6210 		zone->pageblock_flags =
6211 			memblock_alloc_node_nopanic(usemapsize,
6212 							 pgdat->node_id);
6213 }
6214 #else
6215 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6216 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6217 #endif /* CONFIG_SPARSEMEM */
6218 
6219 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6220 
6221 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6222 void __init set_pageblock_order(void)
6223 {
6224 	unsigned int order;
6225 
6226 	/* Check that pageblock_nr_pages has not already been setup */
6227 	if (pageblock_order)
6228 		return;
6229 
6230 	if (HPAGE_SHIFT > PAGE_SHIFT)
6231 		order = HUGETLB_PAGE_ORDER;
6232 	else
6233 		order = MAX_ORDER - 1;
6234 
6235 	/*
6236 	 * Assume the largest contiguous order of interest is a huge page.
6237 	 * This value may be variable depending on boot parameters on IA64 and
6238 	 * powerpc.
6239 	 */
6240 	pageblock_order = order;
6241 }
6242 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6243 
6244 /*
6245  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6246  * is unused as pageblock_order is set at compile-time. See
6247  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6248  * the kernel config
6249  */
6250 void __init set_pageblock_order(void)
6251 {
6252 }
6253 
6254 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6255 
6256 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6257 						unsigned long present_pages)
6258 {
6259 	unsigned long pages = spanned_pages;
6260 
6261 	/*
6262 	 * Provide a more accurate estimation if there are holes within
6263 	 * the zone and SPARSEMEM is in use. If there are holes within the
6264 	 * zone, each populated memory region may cost us one or two extra
6265 	 * memmap pages due to alignment because memmap pages for each
6266 	 * populated regions may not be naturally aligned on page boundary.
6267 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6268 	 */
6269 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6270 	    IS_ENABLED(CONFIG_SPARSEMEM))
6271 		pages = present_pages;
6272 
6273 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6274 }
6275 
6276 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6277 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6278 {
6279 	spin_lock_init(&pgdat->split_queue_lock);
6280 	INIT_LIST_HEAD(&pgdat->split_queue);
6281 	pgdat->split_queue_len = 0;
6282 }
6283 #else
6284 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6285 #endif
6286 
6287 #ifdef CONFIG_COMPACTION
6288 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6289 {
6290 	init_waitqueue_head(&pgdat->kcompactd_wait);
6291 }
6292 #else
6293 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6294 #endif
6295 
6296 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6297 {
6298 	pgdat_resize_init(pgdat);
6299 
6300 	pgdat_init_split_queue(pgdat);
6301 	pgdat_init_kcompactd(pgdat);
6302 
6303 	init_waitqueue_head(&pgdat->kswapd_wait);
6304 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6305 
6306 	pgdat_page_ext_init(pgdat);
6307 	spin_lock_init(&pgdat->lru_lock);
6308 	lruvec_init(node_lruvec(pgdat));
6309 }
6310 
6311 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6312 							unsigned long remaining_pages)
6313 {
6314 	zone->managed_pages = remaining_pages;
6315 	zone_set_nid(zone, nid);
6316 	zone->name = zone_names[idx];
6317 	zone->zone_pgdat = NODE_DATA(nid);
6318 	spin_lock_init(&zone->lock);
6319 	zone_seqlock_init(zone);
6320 	zone_pcp_init(zone);
6321 }
6322 
6323 /*
6324  * Set up the zone data structures
6325  * - init pgdat internals
6326  * - init all zones belonging to this node
6327  *
6328  * NOTE: this function is only called during memory hotplug
6329  */
6330 #ifdef CONFIG_MEMORY_HOTPLUG
6331 void __ref free_area_init_core_hotplug(int nid)
6332 {
6333 	enum zone_type z;
6334 	pg_data_t *pgdat = NODE_DATA(nid);
6335 
6336 	pgdat_init_internals(pgdat);
6337 	for (z = 0; z < MAX_NR_ZONES; z++)
6338 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6339 }
6340 #endif
6341 
6342 /*
6343  * Set up the zone data structures:
6344  *   - mark all pages reserved
6345  *   - mark all memory queues empty
6346  *   - clear the memory bitmaps
6347  *
6348  * NOTE: pgdat should get zeroed by caller.
6349  * NOTE: this function is only called during early init.
6350  */
6351 static void __init free_area_init_core(struct pglist_data *pgdat)
6352 {
6353 	enum zone_type j;
6354 	int nid = pgdat->node_id;
6355 
6356 	pgdat_init_internals(pgdat);
6357 	pgdat->per_cpu_nodestats = &boot_nodestats;
6358 
6359 	for (j = 0; j < MAX_NR_ZONES; j++) {
6360 		struct zone *zone = pgdat->node_zones + j;
6361 		unsigned long size, freesize, memmap_pages;
6362 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6363 
6364 		size = zone->spanned_pages;
6365 		freesize = zone->present_pages;
6366 
6367 		/*
6368 		 * Adjust freesize so that it accounts for how much memory
6369 		 * is used by this zone for memmap. This affects the watermark
6370 		 * and per-cpu initialisations
6371 		 */
6372 		memmap_pages = calc_memmap_size(size, freesize);
6373 		if (!is_highmem_idx(j)) {
6374 			if (freesize >= memmap_pages) {
6375 				freesize -= memmap_pages;
6376 				if (memmap_pages)
6377 					printk(KERN_DEBUG
6378 					       "  %s zone: %lu pages used for memmap\n",
6379 					       zone_names[j], memmap_pages);
6380 			} else
6381 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6382 					zone_names[j], memmap_pages, freesize);
6383 		}
6384 
6385 		/* Account for reserved pages */
6386 		if (j == 0 && freesize > dma_reserve) {
6387 			freesize -= dma_reserve;
6388 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6389 					zone_names[0], dma_reserve);
6390 		}
6391 
6392 		if (!is_highmem_idx(j))
6393 			nr_kernel_pages += freesize;
6394 		/* Charge for highmem memmap if there are enough kernel pages */
6395 		else if (nr_kernel_pages > memmap_pages * 2)
6396 			nr_kernel_pages -= memmap_pages;
6397 		nr_all_pages += freesize;
6398 
6399 		/*
6400 		 * Set an approximate value for lowmem here, it will be adjusted
6401 		 * when the bootmem allocator frees pages into the buddy system.
6402 		 * And all highmem pages will be managed by the buddy system.
6403 		 */
6404 		zone_init_internals(zone, j, nid, freesize);
6405 
6406 		if (!size)
6407 			continue;
6408 
6409 		set_pageblock_order();
6410 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6411 		init_currently_empty_zone(zone, zone_start_pfn, size);
6412 		memmap_init(size, nid, j, zone_start_pfn);
6413 	}
6414 }
6415 
6416 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6417 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6418 {
6419 	unsigned long __maybe_unused start = 0;
6420 	unsigned long __maybe_unused offset = 0;
6421 
6422 	/* Skip empty nodes */
6423 	if (!pgdat->node_spanned_pages)
6424 		return;
6425 
6426 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6427 	offset = pgdat->node_start_pfn - start;
6428 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6429 	if (!pgdat->node_mem_map) {
6430 		unsigned long size, end;
6431 		struct page *map;
6432 
6433 		/*
6434 		 * The zone's endpoints aren't required to be MAX_ORDER
6435 		 * aligned but the node_mem_map endpoints must be in order
6436 		 * for the buddy allocator to function correctly.
6437 		 */
6438 		end = pgdat_end_pfn(pgdat);
6439 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6440 		size =  (end - start) * sizeof(struct page);
6441 		map = memblock_alloc_node_nopanic(size, pgdat->node_id);
6442 		pgdat->node_mem_map = map + offset;
6443 	}
6444 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6445 				__func__, pgdat->node_id, (unsigned long)pgdat,
6446 				(unsigned long)pgdat->node_mem_map);
6447 #ifndef CONFIG_NEED_MULTIPLE_NODES
6448 	/*
6449 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6450 	 */
6451 	if (pgdat == NODE_DATA(0)) {
6452 		mem_map = NODE_DATA(0)->node_mem_map;
6453 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6454 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6455 			mem_map -= offset;
6456 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6457 	}
6458 #endif
6459 }
6460 #else
6461 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6462 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6463 
6464 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6465 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6466 {
6467 	/*
6468 	 * We start only with one section of pages, more pages are added as
6469 	 * needed until the rest of deferred pages are initialized.
6470 	 */
6471 	pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6472 						pgdat->node_spanned_pages);
6473 	pgdat->first_deferred_pfn = ULONG_MAX;
6474 }
6475 #else
6476 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6477 #endif
6478 
6479 void __init free_area_init_node(int nid, unsigned long *zones_size,
6480 				   unsigned long node_start_pfn,
6481 				   unsigned long *zholes_size)
6482 {
6483 	pg_data_t *pgdat = NODE_DATA(nid);
6484 	unsigned long start_pfn = 0;
6485 	unsigned long end_pfn = 0;
6486 
6487 	/* pg_data_t should be reset to zero when it's allocated */
6488 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6489 
6490 	pgdat->node_id = nid;
6491 	pgdat->node_start_pfn = node_start_pfn;
6492 	pgdat->per_cpu_nodestats = NULL;
6493 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6494 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6495 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6496 		(u64)start_pfn << PAGE_SHIFT,
6497 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6498 #else
6499 	start_pfn = node_start_pfn;
6500 #endif
6501 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6502 				  zones_size, zholes_size);
6503 
6504 	alloc_node_mem_map(pgdat);
6505 	pgdat_set_deferred_range(pgdat);
6506 
6507 	free_area_init_core(pgdat);
6508 }
6509 
6510 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6511 /*
6512  * Zero all valid struct pages in range [spfn, epfn), return number of struct
6513  * pages zeroed
6514  */
6515 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6516 {
6517 	unsigned long pfn;
6518 	u64 pgcnt = 0;
6519 
6520 	for (pfn = spfn; pfn < epfn; pfn++) {
6521 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6522 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6523 				+ pageblock_nr_pages - 1;
6524 			continue;
6525 		}
6526 		mm_zero_struct_page(pfn_to_page(pfn));
6527 		pgcnt++;
6528 	}
6529 
6530 	return pgcnt;
6531 }
6532 
6533 /*
6534  * Only struct pages that are backed by physical memory are zeroed and
6535  * initialized by going through __init_single_page(). But, there are some
6536  * struct pages which are reserved in memblock allocator and their fields
6537  * may be accessed (for example page_to_pfn() on some configuration accesses
6538  * flags). We must explicitly zero those struct pages.
6539  *
6540  * This function also addresses a similar issue where struct pages are left
6541  * uninitialized because the physical address range is not covered by
6542  * memblock.memory or memblock.reserved. That could happen when memblock
6543  * layout is manually configured via memmap=.
6544  */
6545 void __init zero_resv_unavail(void)
6546 {
6547 	phys_addr_t start, end;
6548 	u64 i, pgcnt;
6549 	phys_addr_t next = 0;
6550 
6551 	/*
6552 	 * Loop through unavailable ranges not covered by memblock.memory.
6553 	 */
6554 	pgcnt = 0;
6555 	for_each_mem_range(i, &memblock.memory, NULL,
6556 			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6557 		if (next < start)
6558 			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6559 		next = end;
6560 	}
6561 	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6562 
6563 	/*
6564 	 * Struct pages that do not have backing memory. This could be because
6565 	 * firmware is using some of this memory, or for some other reasons.
6566 	 */
6567 	if (pgcnt)
6568 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6569 }
6570 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6571 
6572 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6573 
6574 #if MAX_NUMNODES > 1
6575 /*
6576  * Figure out the number of possible node ids.
6577  */
6578 void __init setup_nr_node_ids(void)
6579 {
6580 	unsigned int highest;
6581 
6582 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6583 	nr_node_ids = highest + 1;
6584 }
6585 #endif
6586 
6587 /**
6588  * node_map_pfn_alignment - determine the maximum internode alignment
6589  *
6590  * This function should be called after node map is populated and sorted.
6591  * It calculates the maximum power of two alignment which can distinguish
6592  * all the nodes.
6593  *
6594  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6595  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6596  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6597  * shifted, 1GiB is enough and this function will indicate so.
6598  *
6599  * This is used to test whether pfn -> nid mapping of the chosen memory
6600  * model has fine enough granularity to avoid incorrect mapping for the
6601  * populated node map.
6602  *
6603  * Returns the determined alignment in pfn's.  0 if there is no alignment
6604  * requirement (single node).
6605  */
6606 unsigned long __init node_map_pfn_alignment(void)
6607 {
6608 	unsigned long accl_mask = 0, last_end = 0;
6609 	unsigned long start, end, mask;
6610 	int last_nid = -1;
6611 	int i, nid;
6612 
6613 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6614 		if (!start || last_nid < 0 || last_nid == nid) {
6615 			last_nid = nid;
6616 			last_end = end;
6617 			continue;
6618 		}
6619 
6620 		/*
6621 		 * Start with a mask granular enough to pin-point to the
6622 		 * start pfn and tick off bits one-by-one until it becomes
6623 		 * too coarse to separate the current node from the last.
6624 		 */
6625 		mask = ~((1 << __ffs(start)) - 1);
6626 		while (mask && last_end <= (start & (mask << 1)))
6627 			mask <<= 1;
6628 
6629 		/* accumulate all internode masks */
6630 		accl_mask |= mask;
6631 	}
6632 
6633 	/* convert mask to number of pages */
6634 	return ~accl_mask + 1;
6635 }
6636 
6637 /* Find the lowest pfn for a node */
6638 static unsigned long __init find_min_pfn_for_node(int nid)
6639 {
6640 	unsigned long min_pfn = ULONG_MAX;
6641 	unsigned long start_pfn;
6642 	int i;
6643 
6644 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6645 		min_pfn = min(min_pfn, start_pfn);
6646 
6647 	if (min_pfn == ULONG_MAX) {
6648 		pr_warn("Could not find start_pfn for node %d\n", nid);
6649 		return 0;
6650 	}
6651 
6652 	return min_pfn;
6653 }
6654 
6655 /**
6656  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6657  *
6658  * It returns the minimum PFN based on information provided via
6659  * memblock_set_node().
6660  */
6661 unsigned long __init find_min_pfn_with_active_regions(void)
6662 {
6663 	return find_min_pfn_for_node(MAX_NUMNODES);
6664 }
6665 
6666 /*
6667  * early_calculate_totalpages()
6668  * Sum pages in active regions for movable zone.
6669  * Populate N_MEMORY for calculating usable_nodes.
6670  */
6671 static unsigned long __init early_calculate_totalpages(void)
6672 {
6673 	unsigned long totalpages = 0;
6674 	unsigned long start_pfn, end_pfn;
6675 	int i, nid;
6676 
6677 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6678 		unsigned long pages = end_pfn - start_pfn;
6679 
6680 		totalpages += pages;
6681 		if (pages)
6682 			node_set_state(nid, N_MEMORY);
6683 	}
6684 	return totalpages;
6685 }
6686 
6687 /*
6688  * Find the PFN the Movable zone begins in each node. Kernel memory
6689  * is spread evenly between nodes as long as the nodes have enough
6690  * memory. When they don't, some nodes will have more kernelcore than
6691  * others
6692  */
6693 static void __init find_zone_movable_pfns_for_nodes(void)
6694 {
6695 	int i, nid;
6696 	unsigned long usable_startpfn;
6697 	unsigned long kernelcore_node, kernelcore_remaining;
6698 	/* save the state before borrow the nodemask */
6699 	nodemask_t saved_node_state = node_states[N_MEMORY];
6700 	unsigned long totalpages = early_calculate_totalpages();
6701 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6702 	struct memblock_region *r;
6703 
6704 	/* Need to find movable_zone earlier when movable_node is specified. */
6705 	find_usable_zone_for_movable();
6706 
6707 	/*
6708 	 * If movable_node is specified, ignore kernelcore and movablecore
6709 	 * options.
6710 	 */
6711 	if (movable_node_is_enabled()) {
6712 		for_each_memblock(memory, r) {
6713 			if (!memblock_is_hotpluggable(r))
6714 				continue;
6715 
6716 			nid = r->nid;
6717 
6718 			usable_startpfn = PFN_DOWN(r->base);
6719 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6720 				min(usable_startpfn, zone_movable_pfn[nid]) :
6721 				usable_startpfn;
6722 		}
6723 
6724 		goto out2;
6725 	}
6726 
6727 	/*
6728 	 * If kernelcore=mirror is specified, ignore movablecore option
6729 	 */
6730 	if (mirrored_kernelcore) {
6731 		bool mem_below_4gb_not_mirrored = false;
6732 
6733 		for_each_memblock(memory, r) {
6734 			if (memblock_is_mirror(r))
6735 				continue;
6736 
6737 			nid = r->nid;
6738 
6739 			usable_startpfn = memblock_region_memory_base_pfn(r);
6740 
6741 			if (usable_startpfn < 0x100000) {
6742 				mem_below_4gb_not_mirrored = true;
6743 				continue;
6744 			}
6745 
6746 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6747 				min(usable_startpfn, zone_movable_pfn[nid]) :
6748 				usable_startpfn;
6749 		}
6750 
6751 		if (mem_below_4gb_not_mirrored)
6752 			pr_warn("This configuration results in unmirrored kernel memory.");
6753 
6754 		goto out2;
6755 	}
6756 
6757 	/*
6758 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6759 	 * amount of necessary memory.
6760 	 */
6761 	if (required_kernelcore_percent)
6762 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6763 				       10000UL;
6764 	if (required_movablecore_percent)
6765 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6766 					10000UL;
6767 
6768 	/*
6769 	 * If movablecore= was specified, calculate what size of
6770 	 * kernelcore that corresponds so that memory usable for
6771 	 * any allocation type is evenly spread. If both kernelcore
6772 	 * and movablecore are specified, then the value of kernelcore
6773 	 * will be used for required_kernelcore if it's greater than
6774 	 * what movablecore would have allowed.
6775 	 */
6776 	if (required_movablecore) {
6777 		unsigned long corepages;
6778 
6779 		/*
6780 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6781 		 * was requested by the user
6782 		 */
6783 		required_movablecore =
6784 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6785 		required_movablecore = min(totalpages, required_movablecore);
6786 		corepages = totalpages - required_movablecore;
6787 
6788 		required_kernelcore = max(required_kernelcore, corepages);
6789 	}
6790 
6791 	/*
6792 	 * If kernelcore was not specified or kernelcore size is larger
6793 	 * than totalpages, there is no ZONE_MOVABLE.
6794 	 */
6795 	if (!required_kernelcore || required_kernelcore >= totalpages)
6796 		goto out;
6797 
6798 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6799 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6800 
6801 restart:
6802 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6803 	kernelcore_node = required_kernelcore / usable_nodes;
6804 	for_each_node_state(nid, N_MEMORY) {
6805 		unsigned long start_pfn, end_pfn;
6806 
6807 		/*
6808 		 * Recalculate kernelcore_node if the division per node
6809 		 * now exceeds what is necessary to satisfy the requested
6810 		 * amount of memory for the kernel
6811 		 */
6812 		if (required_kernelcore < kernelcore_node)
6813 			kernelcore_node = required_kernelcore / usable_nodes;
6814 
6815 		/*
6816 		 * As the map is walked, we track how much memory is usable
6817 		 * by the kernel using kernelcore_remaining. When it is
6818 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6819 		 */
6820 		kernelcore_remaining = kernelcore_node;
6821 
6822 		/* Go through each range of PFNs within this node */
6823 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6824 			unsigned long size_pages;
6825 
6826 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6827 			if (start_pfn >= end_pfn)
6828 				continue;
6829 
6830 			/* Account for what is only usable for kernelcore */
6831 			if (start_pfn < usable_startpfn) {
6832 				unsigned long kernel_pages;
6833 				kernel_pages = min(end_pfn, usable_startpfn)
6834 								- start_pfn;
6835 
6836 				kernelcore_remaining -= min(kernel_pages,
6837 							kernelcore_remaining);
6838 				required_kernelcore -= min(kernel_pages,
6839 							required_kernelcore);
6840 
6841 				/* Continue if range is now fully accounted */
6842 				if (end_pfn <= usable_startpfn) {
6843 
6844 					/*
6845 					 * Push zone_movable_pfn to the end so
6846 					 * that if we have to rebalance
6847 					 * kernelcore across nodes, we will
6848 					 * not double account here
6849 					 */
6850 					zone_movable_pfn[nid] = end_pfn;
6851 					continue;
6852 				}
6853 				start_pfn = usable_startpfn;
6854 			}
6855 
6856 			/*
6857 			 * The usable PFN range for ZONE_MOVABLE is from
6858 			 * start_pfn->end_pfn. Calculate size_pages as the
6859 			 * number of pages used as kernelcore
6860 			 */
6861 			size_pages = end_pfn - start_pfn;
6862 			if (size_pages > kernelcore_remaining)
6863 				size_pages = kernelcore_remaining;
6864 			zone_movable_pfn[nid] = start_pfn + size_pages;
6865 
6866 			/*
6867 			 * Some kernelcore has been met, update counts and
6868 			 * break if the kernelcore for this node has been
6869 			 * satisfied
6870 			 */
6871 			required_kernelcore -= min(required_kernelcore,
6872 								size_pages);
6873 			kernelcore_remaining -= size_pages;
6874 			if (!kernelcore_remaining)
6875 				break;
6876 		}
6877 	}
6878 
6879 	/*
6880 	 * If there is still required_kernelcore, we do another pass with one
6881 	 * less node in the count. This will push zone_movable_pfn[nid] further
6882 	 * along on the nodes that still have memory until kernelcore is
6883 	 * satisfied
6884 	 */
6885 	usable_nodes--;
6886 	if (usable_nodes && required_kernelcore > usable_nodes)
6887 		goto restart;
6888 
6889 out2:
6890 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6891 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6892 		zone_movable_pfn[nid] =
6893 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6894 
6895 out:
6896 	/* restore the node_state */
6897 	node_states[N_MEMORY] = saved_node_state;
6898 }
6899 
6900 /* Any regular or high memory on that node ? */
6901 static void check_for_memory(pg_data_t *pgdat, int nid)
6902 {
6903 	enum zone_type zone_type;
6904 
6905 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6906 		struct zone *zone = &pgdat->node_zones[zone_type];
6907 		if (populated_zone(zone)) {
6908 			if (IS_ENABLED(CONFIG_HIGHMEM))
6909 				node_set_state(nid, N_HIGH_MEMORY);
6910 			if (zone_type <= ZONE_NORMAL)
6911 				node_set_state(nid, N_NORMAL_MEMORY);
6912 			break;
6913 		}
6914 	}
6915 }
6916 
6917 /**
6918  * free_area_init_nodes - Initialise all pg_data_t and zone data
6919  * @max_zone_pfn: an array of max PFNs for each zone
6920  *
6921  * This will call free_area_init_node() for each active node in the system.
6922  * Using the page ranges provided by memblock_set_node(), the size of each
6923  * zone in each node and their holes is calculated. If the maximum PFN
6924  * between two adjacent zones match, it is assumed that the zone is empty.
6925  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6926  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6927  * starts where the previous one ended. For example, ZONE_DMA32 starts
6928  * at arch_max_dma_pfn.
6929  */
6930 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6931 {
6932 	unsigned long start_pfn, end_pfn;
6933 	int i, nid;
6934 
6935 	/* Record where the zone boundaries are */
6936 	memset(arch_zone_lowest_possible_pfn, 0,
6937 				sizeof(arch_zone_lowest_possible_pfn));
6938 	memset(arch_zone_highest_possible_pfn, 0,
6939 				sizeof(arch_zone_highest_possible_pfn));
6940 
6941 	start_pfn = find_min_pfn_with_active_regions();
6942 
6943 	for (i = 0; i < MAX_NR_ZONES; i++) {
6944 		if (i == ZONE_MOVABLE)
6945 			continue;
6946 
6947 		end_pfn = max(max_zone_pfn[i], start_pfn);
6948 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6949 		arch_zone_highest_possible_pfn[i] = end_pfn;
6950 
6951 		start_pfn = end_pfn;
6952 	}
6953 
6954 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6955 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6956 	find_zone_movable_pfns_for_nodes();
6957 
6958 	/* Print out the zone ranges */
6959 	pr_info("Zone ranges:\n");
6960 	for (i = 0; i < MAX_NR_ZONES; i++) {
6961 		if (i == ZONE_MOVABLE)
6962 			continue;
6963 		pr_info("  %-8s ", zone_names[i]);
6964 		if (arch_zone_lowest_possible_pfn[i] ==
6965 				arch_zone_highest_possible_pfn[i])
6966 			pr_cont("empty\n");
6967 		else
6968 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6969 				(u64)arch_zone_lowest_possible_pfn[i]
6970 					<< PAGE_SHIFT,
6971 				((u64)arch_zone_highest_possible_pfn[i]
6972 					<< PAGE_SHIFT) - 1);
6973 	}
6974 
6975 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6976 	pr_info("Movable zone start for each node\n");
6977 	for (i = 0; i < MAX_NUMNODES; i++) {
6978 		if (zone_movable_pfn[i])
6979 			pr_info("  Node %d: %#018Lx\n", i,
6980 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6981 	}
6982 
6983 	/* Print out the early node map */
6984 	pr_info("Early memory node ranges\n");
6985 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6986 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6987 			(u64)start_pfn << PAGE_SHIFT,
6988 			((u64)end_pfn << PAGE_SHIFT) - 1);
6989 
6990 	/* Initialise every node */
6991 	mminit_verify_pageflags_layout();
6992 	setup_nr_node_ids();
6993 	zero_resv_unavail();
6994 	for_each_online_node(nid) {
6995 		pg_data_t *pgdat = NODE_DATA(nid);
6996 		free_area_init_node(nid, NULL,
6997 				find_min_pfn_for_node(nid), NULL);
6998 
6999 		/* Any memory on that node */
7000 		if (pgdat->node_present_pages)
7001 			node_set_state(nid, N_MEMORY);
7002 		check_for_memory(pgdat, nid);
7003 	}
7004 }
7005 
7006 static int __init cmdline_parse_core(char *p, unsigned long *core,
7007 				     unsigned long *percent)
7008 {
7009 	unsigned long long coremem;
7010 	char *endptr;
7011 
7012 	if (!p)
7013 		return -EINVAL;
7014 
7015 	/* Value may be a percentage of total memory, otherwise bytes */
7016 	coremem = simple_strtoull(p, &endptr, 0);
7017 	if (*endptr == '%') {
7018 		/* Paranoid check for percent values greater than 100 */
7019 		WARN_ON(coremem > 100);
7020 
7021 		*percent = coremem;
7022 	} else {
7023 		coremem = memparse(p, &p);
7024 		/* Paranoid check that UL is enough for the coremem value */
7025 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7026 
7027 		*core = coremem >> PAGE_SHIFT;
7028 		*percent = 0UL;
7029 	}
7030 	return 0;
7031 }
7032 
7033 /*
7034  * kernelcore=size sets the amount of memory for use for allocations that
7035  * cannot be reclaimed or migrated.
7036  */
7037 static int __init cmdline_parse_kernelcore(char *p)
7038 {
7039 	/* parse kernelcore=mirror */
7040 	if (parse_option_str(p, "mirror")) {
7041 		mirrored_kernelcore = true;
7042 		return 0;
7043 	}
7044 
7045 	return cmdline_parse_core(p, &required_kernelcore,
7046 				  &required_kernelcore_percent);
7047 }
7048 
7049 /*
7050  * movablecore=size sets the amount of memory for use for allocations that
7051  * can be reclaimed or migrated.
7052  */
7053 static int __init cmdline_parse_movablecore(char *p)
7054 {
7055 	return cmdline_parse_core(p, &required_movablecore,
7056 				  &required_movablecore_percent);
7057 }
7058 
7059 early_param("kernelcore", cmdline_parse_kernelcore);
7060 early_param("movablecore", cmdline_parse_movablecore);
7061 
7062 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7063 
7064 void adjust_managed_page_count(struct page *page, long count)
7065 {
7066 	spin_lock(&managed_page_count_lock);
7067 	page_zone(page)->managed_pages += count;
7068 	totalram_pages += count;
7069 #ifdef CONFIG_HIGHMEM
7070 	if (PageHighMem(page))
7071 		totalhigh_pages += count;
7072 #endif
7073 	spin_unlock(&managed_page_count_lock);
7074 }
7075 EXPORT_SYMBOL(adjust_managed_page_count);
7076 
7077 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
7078 {
7079 	void *pos;
7080 	unsigned long pages = 0;
7081 
7082 	start = (void *)PAGE_ALIGN((unsigned long)start);
7083 	end = (void *)((unsigned long)end & PAGE_MASK);
7084 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7085 		struct page *page = virt_to_page(pos);
7086 		void *direct_map_addr;
7087 
7088 		/*
7089 		 * 'direct_map_addr' might be different from 'pos'
7090 		 * because some architectures' virt_to_page()
7091 		 * work with aliases.  Getting the direct map
7092 		 * address ensures that we get a _writeable_
7093 		 * alias for the memset().
7094 		 */
7095 		direct_map_addr = page_address(page);
7096 		if ((unsigned int)poison <= 0xFF)
7097 			memset(direct_map_addr, poison, PAGE_SIZE);
7098 
7099 		free_reserved_page(page);
7100 	}
7101 
7102 	if (pages && s)
7103 		pr_info("Freeing %s memory: %ldK\n",
7104 			s, pages << (PAGE_SHIFT - 10));
7105 
7106 	return pages;
7107 }
7108 EXPORT_SYMBOL(free_reserved_area);
7109 
7110 #ifdef	CONFIG_HIGHMEM
7111 void free_highmem_page(struct page *page)
7112 {
7113 	__free_reserved_page(page);
7114 	totalram_pages++;
7115 	page_zone(page)->managed_pages++;
7116 	totalhigh_pages++;
7117 }
7118 #endif
7119 
7120 
7121 void __init mem_init_print_info(const char *str)
7122 {
7123 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7124 	unsigned long init_code_size, init_data_size;
7125 
7126 	physpages = get_num_physpages();
7127 	codesize = _etext - _stext;
7128 	datasize = _edata - _sdata;
7129 	rosize = __end_rodata - __start_rodata;
7130 	bss_size = __bss_stop - __bss_start;
7131 	init_data_size = __init_end - __init_begin;
7132 	init_code_size = _einittext - _sinittext;
7133 
7134 	/*
7135 	 * Detect special cases and adjust section sizes accordingly:
7136 	 * 1) .init.* may be embedded into .data sections
7137 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7138 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7139 	 * 3) .rodata.* may be embedded into .text or .data sections.
7140 	 */
7141 #define adj_init_size(start, end, size, pos, adj) \
7142 	do { \
7143 		if (start <= pos && pos < end && size > adj) \
7144 			size -= adj; \
7145 	} while (0)
7146 
7147 	adj_init_size(__init_begin, __init_end, init_data_size,
7148 		     _sinittext, init_code_size);
7149 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7150 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7151 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7152 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7153 
7154 #undef	adj_init_size
7155 
7156 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7157 #ifdef	CONFIG_HIGHMEM
7158 		", %luK highmem"
7159 #endif
7160 		"%s%s)\n",
7161 		nr_free_pages() << (PAGE_SHIFT - 10),
7162 		physpages << (PAGE_SHIFT - 10),
7163 		codesize >> 10, datasize >> 10, rosize >> 10,
7164 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7165 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7166 		totalcma_pages << (PAGE_SHIFT - 10),
7167 #ifdef	CONFIG_HIGHMEM
7168 		totalhigh_pages << (PAGE_SHIFT - 10),
7169 #endif
7170 		str ? ", " : "", str ? str : "");
7171 }
7172 
7173 /**
7174  * set_dma_reserve - set the specified number of pages reserved in the first zone
7175  * @new_dma_reserve: The number of pages to mark reserved
7176  *
7177  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7178  * In the DMA zone, a significant percentage may be consumed by kernel image
7179  * and other unfreeable allocations which can skew the watermarks badly. This
7180  * function may optionally be used to account for unfreeable pages in the
7181  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7182  * smaller per-cpu batchsize.
7183  */
7184 void __init set_dma_reserve(unsigned long new_dma_reserve)
7185 {
7186 	dma_reserve = new_dma_reserve;
7187 }
7188 
7189 void __init free_area_init(unsigned long *zones_size)
7190 {
7191 	zero_resv_unavail();
7192 	free_area_init_node(0, zones_size,
7193 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7194 }
7195 
7196 static int page_alloc_cpu_dead(unsigned int cpu)
7197 {
7198 
7199 	lru_add_drain_cpu(cpu);
7200 	drain_pages(cpu);
7201 
7202 	/*
7203 	 * Spill the event counters of the dead processor
7204 	 * into the current processors event counters.
7205 	 * This artificially elevates the count of the current
7206 	 * processor.
7207 	 */
7208 	vm_events_fold_cpu(cpu);
7209 
7210 	/*
7211 	 * Zero the differential counters of the dead processor
7212 	 * so that the vm statistics are consistent.
7213 	 *
7214 	 * This is only okay since the processor is dead and cannot
7215 	 * race with what we are doing.
7216 	 */
7217 	cpu_vm_stats_fold(cpu);
7218 	return 0;
7219 }
7220 
7221 void __init page_alloc_init(void)
7222 {
7223 	int ret;
7224 
7225 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7226 					"mm/page_alloc:dead", NULL,
7227 					page_alloc_cpu_dead);
7228 	WARN_ON(ret < 0);
7229 }
7230 
7231 /*
7232  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7233  *	or min_free_kbytes changes.
7234  */
7235 static void calculate_totalreserve_pages(void)
7236 {
7237 	struct pglist_data *pgdat;
7238 	unsigned long reserve_pages = 0;
7239 	enum zone_type i, j;
7240 
7241 	for_each_online_pgdat(pgdat) {
7242 
7243 		pgdat->totalreserve_pages = 0;
7244 
7245 		for (i = 0; i < MAX_NR_ZONES; i++) {
7246 			struct zone *zone = pgdat->node_zones + i;
7247 			long max = 0;
7248 
7249 			/* Find valid and maximum lowmem_reserve in the zone */
7250 			for (j = i; j < MAX_NR_ZONES; j++) {
7251 				if (zone->lowmem_reserve[j] > max)
7252 					max = zone->lowmem_reserve[j];
7253 			}
7254 
7255 			/* we treat the high watermark as reserved pages. */
7256 			max += high_wmark_pages(zone);
7257 
7258 			if (max > zone->managed_pages)
7259 				max = zone->managed_pages;
7260 
7261 			pgdat->totalreserve_pages += max;
7262 
7263 			reserve_pages += max;
7264 		}
7265 	}
7266 	totalreserve_pages = reserve_pages;
7267 }
7268 
7269 /*
7270  * setup_per_zone_lowmem_reserve - called whenever
7271  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7272  *	has a correct pages reserved value, so an adequate number of
7273  *	pages are left in the zone after a successful __alloc_pages().
7274  */
7275 static void setup_per_zone_lowmem_reserve(void)
7276 {
7277 	struct pglist_data *pgdat;
7278 	enum zone_type j, idx;
7279 
7280 	for_each_online_pgdat(pgdat) {
7281 		for (j = 0; j < MAX_NR_ZONES; j++) {
7282 			struct zone *zone = pgdat->node_zones + j;
7283 			unsigned long managed_pages = zone->managed_pages;
7284 
7285 			zone->lowmem_reserve[j] = 0;
7286 
7287 			idx = j;
7288 			while (idx) {
7289 				struct zone *lower_zone;
7290 
7291 				idx--;
7292 				lower_zone = pgdat->node_zones + idx;
7293 
7294 				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7295 					sysctl_lowmem_reserve_ratio[idx] = 0;
7296 					lower_zone->lowmem_reserve[j] = 0;
7297 				} else {
7298 					lower_zone->lowmem_reserve[j] =
7299 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7300 				}
7301 				managed_pages += lower_zone->managed_pages;
7302 			}
7303 		}
7304 	}
7305 
7306 	/* update totalreserve_pages */
7307 	calculate_totalreserve_pages();
7308 }
7309 
7310 static void __setup_per_zone_wmarks(void)
7311 {
7312 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7313 	unsigned long lowmem_pages = 0;
7314 	struct zone *zone;
7315 	unsigned long flags;
7316 
7317 	/* Calculate total number of !ZONE_HIGHMEM pages */
7318 	for_each_zone(zone) {
7319 		if (!is_highmem(zone))
7320 			lowmem_pages += zone->managed_pages;
7321 	}
7322 
7323 	for_each_zone(zone) {
7324 		u64 tmp;
7325 
7326 		spin_lock_irqsave(&zone->lock, flags);
7327 		tmp = (u64)pages_min * zone->managed_pages;
7328 		do_div(tmp, lowmem_pages);
7329 		if (is_highmem(zone)) {
7330 			/*
7331 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7332 			 * need highmem pages, so cap pages_min to a small
7333 			 * value here.
7334 			 *
7335 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7336 			 * deltas control asynch page reclaim, and so should
7337 			 * not be capped for highmem.
7338 			 */
7339 			unsigned long min_pages;
7340 
7341 			min_pages = zone->managed_pages / 1024;
7342 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7343 			zone->watermark[WMARK_MIN] = min_pages;
7344 		} else {
7345 			/*
7346 			 * If it's a lowmem zone, reserve a number of pages
7347 			 * proportionate to the zone's size.
7348 			 */
7349 			zone->watermark[WMARK_MIN] = tmp;
7350 		}
7351 
7352 		/*
7353 		 * Set the kswapd watermarks distance according to the
7354 		 * scale factor in proportion to available memory, but
7355 		 * ensure a minimum size on small systems.
7356 		 */
7357 		tmp = max_t(u64, tmp >> 2,
7358 			    mult_frac(zone->managed_pages,
7359 				      watermark_scale_factor, 10000));
7360 
7361 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7362 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7363 
7364 		spin_unlock_irqrestore(&zone->lock, flags);
7365 	}
7366 
7367 	/* update totalreserve_pages */
7368 	calculate_totalreserve_pages();
7369 }
7370 
7371 /**
7372  * setup_per_zone_wmarks - called when min_free_kbytes changes
7373  * or when memory is hot-{added|removed}
7374  *
7375  * Ensures that the watermark[min,low,high] values for each zone are set
7376  * correctly with respect to min_free_kbytes.
7377  */
7378 void setup_per_zone_wmarks(void)
7379 {
7380 	static DEFINE_SPINLOCK(lock);
7381 
7382 	spin_lock(&lock);
7383 	__setup_per_zone_wmarks();
7384 	spin_unlock(&lock);
7385 }
7386 
7387 /*
7388  * Initialise min_free_kbytes.
7389  *
7390  * For small machines we want it small (128k min).  For large machines
7391  * we want it large (64MB max).  But it is not linear, because network
7392  * bandwidth does not increase linearly with machine size.  We use
7393  *
7394  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7395  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7396  *
7397  * which yields
7398  *
7399  * 16MB:	512k
7400  * 32MB:	724k
7401  * 64MB:	1024k
7402  * 128MB:	1448k
7403  * 256MB:	2048k
7404  * 512MB:	2896k
7405  * 1024MB:	4096k
7406  * 2048MB:	5792k
7407  * 4096MB:	8192k
7408  * 8192MB:	11584k
7409  * 16384MB:	16384k
7410  */
7411 int __meminit init_per_zone_wmark_min(void)
7412 {
7413 	unsigned long lowmem_kbytes;
7414 	int new_min_free_kbytes;
7415 
7416 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7417 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7418 
7419 	if (new_min_free_kbytes > user_min_free_kbytes) {
7420 		min_free_kbytes = new_min_free_kbytes;
7421 		if (min_free_kbytes < 128)
7422 			min_free_kbytes = 128;
7423 		if (min_free_kbytes > 65536)
7424 			min_free_kbytes = 65536;
7425 	} else {
7426 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7427 				new_min_free_kbytes, user_min_free_kbytes);
7428 	}
7429 	setup_per_zone_wmarks();
7430 	refresh_zone_stat_thresholds();
7431 	setup_per_zone_lowmem_reserve();
7432 
7433 #ifdef CONFIG_NUMA
7434 	setup_min_unmapped_ratio();
7435 	setup_min_slab_ratio();
7436 #endif
7437 
7438 	return 0;
7439 }
7440 core_initcall(init_per_zone_wmark_min)
7441 
7442 /*
7443  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7444  *	that we can call two helper functions whenever min_free_kbytes
7445  *	changes.
7446  */
7447 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7448 	void __user *buffer, size_t *length, loff_t *ppos)
7449 {
7450 	int rc;
7451 
7452 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7453 	if (rc)
7454 		return rc;
7455 
7456 	if (write) {
7457 		user_min_free_kbytes = min_free_kbytes;
7458 		setup_per_zone_wmarks();
7459 	}
7460 	return 0;
7461 }
7462 
7463 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7464 	void __user *buffer, size_t *length, loff_t *ppos)
7465 {
7466 	int rc;
7467 
7468 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7469 	if (rc)
7470 		return rc;
7471 
7472 	if (write)
7473 		setup_per_zone_wmarks();
7474 
7475 	return 0;
7476 }
7477 
7478 #ifdef CONFIG_NUMA
7479 static void setup_min_unmapped_ratio(void)
7480 {
7481 	pg_data_t *pgdat;
7482 	struct zone *zone;
7483 
7484 	for_each_online_pgdat(pgdat)
7485 		pgdat->min_unmapped_pages = 0;
7486 
7487 	for_each_zone(zone)
7488 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7489 				sysctl_min_unmapped_ratio) / 100;
7490 }
7491 
7492 
7493 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7494 	void __user *buffer, size_t *length, loff_t *ppos)
7495 {
7496 	int rc;
7497 
7498 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7499 	if (rc)
7500 		return rc;
7501 
7502 	setup_min_unmapped_ratio();
7503 
7504 	return 0;
7505 }
7506 
7507 static void setup_min_slab_ratio(void)
7508 {
7509 	pg_data_t *pgdat;
7510 	struct zone *zone;
7511 
7512 	for_each_online_pgdat(pgdat)
7513 		pgdat->min_slab_pages = 0;
7514 
7515 	for_each_zone(zone)
7516 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7517 				sysctl_min_slab_ratio) / 100;
7518 }
7519 
7520 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7521 	void __user *buffer, size_t *length, loff_t *ppos)
7522 {
7523 	int rc;
7524 
7525 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7526 	if (rc)
7527 		return rc;
7528 
7529 	setup_min_slab_ratio();
7530 
7531 	return 0;
7532 }
7533 #endif
7534 
7535 /*
7536  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7537  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7538  *	whenever sysctl_lowmem_reserve_ratio changes.
7539  *
7540  * The reserve ratio obviously has absolutely no relation with the
7541  * minimum watermarks. The lowmem reserve ratio can only make sense
7542  * if in function of the boot time zone sizes.
7543  */
7544 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7545 	void __user *buffer, size_t *length, loff_t *ppos)
7546 {
7547 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7548 	setup_per_zone_lowmem_reserve();
7549 	return 0;
7550 }
7551 
7552 /*
7553  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7554  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7555  * pagelist can have before it gets flushed back to buddy allocator.
7556  */
7557 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7558 	void __user *buffer, size_t *length, loff_t *ppos)
7559 {
7560 	struct zone *zone;
7561 	int old_percpu_pagelist_fraction;
7562 	int ret;
7563 
7564 	mutex_lock(&pcp_batch_high_lock);
7565 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7566 
7567 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7568 	if (!write || ret < 0)
7569 		goto out;
7570 
7571 	/* Sanity checking to avoid pcp imbalance */
7572 	if (percpu_pagelist_fraction &&
7573 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7574 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7575 		ret = -EINVAL;
7576 		goto out;
7577 	}
7578 
7579 	/* No change? */
7580 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7581 		goto out;
7582 
7583 	for_each_populated_zone(zone) {
7584 		unsigned int cpu;
7585 
7586 		for_each_possible_cpu(cpu)
7587 			pageset_set_high_and_batch(zone,
7588 					per_cpu_ptr(zone->pageset, cpu));
7589 	}
7590 out:
7591 	mutex_unlock(&pcp_batch_high_lock);
7592 	return ret;
7593 }
7594 
7595 #ifdef CONFIG_NUMA
7596 int hashdist = HASHDIST_DEFAULT;
7597 
7598 static int __init set_hashdist(char *str)
7599 {
7600 	if (!str)
7601 		return 0;
7602 	hashdist = simple_strtoul(str, &str, 0);
7603 	return 1;
7604 }
7605 __setup("hashdist=", set_hashdist);
7606 #endif
7607 
7608 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7609 /*
7610  * Returns the number of pages that arch has reserved but
7611  * is not known to alloc_large_system_hash().
7612  */
7613 static unsigned long __init arch_reserved_kernel_pages(void)
7614 {
7615 	return 0;
7616 }
7617 #endif
7618 
7619 /*
7620  * Adaptive scale is meant to reduce sizes of hash tables on large memory
7621  * machines. As memory size is increased the scale is also increased but at
7622  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7623  * quadruples the scale is increased by one, which means the size of hash table
7624  * only doubles, instead of quadrupling as well.
7625  * Because 32-bit systems cannot have large physical memory, where this scaling
7626  * makes sense, it is disabled on such platforms.
7627  */
7628 #if __BITS_PER_LONG > 32
7629 #define ADAPT_SCALE_BASE	(64ul << 30)
7630 #define ADAPT_SCALE_SHIFT	2
7631 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7632 #endif
7633 
7634 /*
7635  * allocate a large system hash table from bootmem
7636  * - it is assumed that the hash table must contain an exact power-of-2
7637  *   quantity of entries
7638  * - limit is the number of hash buckets, not the total allocation size
7639  */
7640 void *__init alloc_large_system_hash(const char *tablename,
7641 				     unsigned long bucketsize,
7642 				     unsigned long numentries,
7643 				     int scale,
7644 				     int flags,
7645 				     unsigned int *_hash_shift,
7646 				     unsigned int *_hash_mask,
7647 				     unsigned long low_limit,
7648 				     unsigned long high_limit)
7649 {
7650 	unsigned long long max = high_limit;
7651 	unsigned long log2qty, size;
7652 	void *table = NULL;
7653 	gfp_t gfp_flags;
7654 
7655 	/* allow the kernel cmdline to have a say */
7656 	if (!numentries) {
7657 		/* round applicable memory size up to nearest megabyte */
7658 		numentries = nr_kernel_pages;
7659 		numentries -= arch_reserved_kernel_pages();
7660 
7661 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7662 		if (PAGE_SHIFT < 20)
7663 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7664 
7665 #if __BITS_PER_LONG > 32
7666 		if (!high_limit) {
7667 			unsigned long adapt;
7668 
7669 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7670 			     adapt <<= ADAPT_SCALE_SHIFT)
7671 				scale++;
7672 		}
7673 #endif
7674 
7675 		/* limit to 1 bucket per 2^scale bytes of low memory */
7676 		if (scale > PAGE_SHIFT)
7677 			numentries >>= (scale - PAGE_SHIFT);
7678 		else
7679 			numentries <<= (PAGE_SHIFT - scale);
7680 
7681 		/* Make sure we've got at least a 0-order allocation.. */
7682 		if (unlikely(flags & HASH_SMALL)) {
7683 			/* Makes no sense without HASH_EARLY */
7684 			WARN_ON(!(flags & HASH_EARLY));
7685 			if (!(numentries >> *_hash_shift)) {
7686 				numentries = 1UL << *_hash_shift;
7687 				BUG_ON(!numentries);
7688 			}
7689 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7690 			numentries = PAGE_SIZE / bucketsize;
7691 	}
7692 	numentries = roundup_pow_of_two(numentries);
7693 
7694 	/* limit allocation size to 1/16 total memory by default */
7695 	if (max == 0) {
7696 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7697 		do_div(max, bucketsize);
7698 	}
7699 	max = min(max, 0x80000000ULL);
7700 
7701 	if (numentries < low_limit)
7702 		numentries = low_limit;
7703 	if (numentries > max)
7704 		numentries = max;
7705 
7706 	log2qty = ilog2(numentries);
7707 
7708 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7709 	do {
7710 		size = bucketsize << log2qty;
7711 		if (flags & HASH_EARLY) {
7712 			if (flags & HASH_ZERO)
7713 				table = memblock_alloc_nopanic(size,
7714 							       SMP_CACHE_BYTES);
7715 			else
7716 				table = memblock_alloc_raw(size,
7717 							   SMP_CACHE_BYTES);
7718 		} else if (hashdist) {
7719 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7720 		} else {
7721 			/*
7722 			 * If bucketsize is not a power-of-two, we may free
7723 			 * some pages at the end of hash table which
7724 			 * alloc_pages_exact() automatically does
7725 			 */
7726 			if (get_order(size) < MAX_ORDER) {
7727 				table = alloc_pages_exact(size, gfp_flags);
7728 				kmemleak_alloc(table, size, 1, gfp_flags);
7729 			}
7730 		}
7731 	} while (!table && size > PAGE_SIZE && --log2qty);
7732 
7733 	if (!table)
7734 		panic("Failed to allocate %s hash table\n", tablename);
7735 
7736 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7737 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7738 
7739 	if (_hash_shift)
7740 		*_hash_shift = log2qty;
7741 	if (_hash_mask)
7742 		*_hash_mask = (1 << log2qty) - 1;
7743 
7744 	return table;
7745 }
7746 
7747 /*
7748  * This function checks whether pageblock includes unmovable pages or not.
7749  * If @count is not zero, it is okay to include less @count unmovable pages
7750  *
7751  * PageLRU check without isolation or lru_lock could race so that
7752  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7753  * check without lock_page also may miss some movable non-lru pages at
7754  * race condition. So you can't expect this function should be exact.
7755  */
7756 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7757 			 int migratetype,
7758 			 bool skip_hwpoisoned_pages)
7759 {
7760 	unsigned long pfn, iter, found;
7761 
7762 	/*
7763 	 * TODO we could make this much more efficient by not checking every
7764 	 * page in the range if we know all of them are in MOVABLE_ZONE and
7765 	 * that the movable zone guarantees that pages are migratable but
7766 	 * the later is not the case right now unfortunatelly. E.g. movablecore
7767 	 * can still lead to having bootmem allocations in zone_movable.
7768 	 */
7769 
7770 	/*
7771 	 * CMA allocations (alloc_contig_range) really need to mark isolate
7772 	 * CMA pageblocks even when they are not movable in fact so consider
7773 	 * them movable here.
7774 	 */
7775 	if (is_migrate_cma(migratetype) &&
7776 			is_migrate_cma(get_pageblock_migratetype(page)))
7777 		return false;
7778 
7779 	pfn = page_to_pfn(page);
7780 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7781 		unsigned long check = pfn + iter;
7782 
7783 		if (!pfn_valid_within(check))
7784 			continue;
7785 
7786 		page = pfn_to_page(check);
7787 
7788 		if (PageReserved(page))
7789 			goto unmovable;
7790 
7791 		/*
7792 		 * Hugepages are not in LRU lists, but they're movable.
7793 		 * We need not scan over tail pages bacause we don't
7794 		 * handle each tail page individually in migration.
7795 		 */
7796 		if (PageHuge(page)) {
7797 
7798 			if (!hugepage_migration_supported(page_hstate(page)))
7799 				goto unmovable;
7800 
7801 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7802 			continue;
7803 		}
7804 
7805 		/*
7806 		 * We can't use page_count without pin a page
7807 		 * because another CPU can free compound page.
7808 		 * This check already skips compound tails of THP
7809 		 * because their page->_refcount is zero at all time.
7810 		 */
7811 		if (!page_ref_count(page)) {
7812 			if (PageBuddy(page))
7813 				iter += (1 << page_order(page)) - 1;
7814 			continue;
7815 		}
7816 
7817 		/*
7818 		 * The HWPoisoned page may be not in buddy system, and
7819 		 * page_count() is not 0.
7820 		 */
7821 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7822 			continue;
7823 
7824 		if (__PageMovable(page))
7825 			continue;
7826 
7827 		if (!PageLRU(page))
7828 			found++;
7829 		/*
7830 		 * If there are RECLAIMABLE pages, we need to check
7831 		 * it.  But now, memory offline itself doesn't call
7832 		 * shrink_node_slabs() and it still to be fixed.
7833 		 */
7834 		/*
7835 		 * If the page is not RAM, page_count()should be 0.
7836 		 * we don't need more check. This is an _used_ not-movable page.
7837 		 *
7838 		 * The problematic thing here is PG_reserved pages. PG_reserved
7839 		 * is set to both of a memory hole page and a _used_ kernel
7840 		 * page at boot.
7841 		 */
7842 		if (found > count)
7843 			goto unmovable;
7844 	}
7845 	return false;
7846 unmovable:
7847 	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7848 	return true;
7849 }
7850 
7851 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7852 
7853 static unsigned long pfn_max_align_down(unsigned long pfn)
7854 {
7855 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7856 			     pageblock_nr_pages) - 1);
7857 }
7858 
7859 static unsigned long pfn_max_align_up(unsigned long pfn)
7860 {
7861 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7862 				pageblock_nr_pages));
7863 }
7864 
7865 /* [start, end) must belong to a single zone. */
7866 static int __alloc_contig_migrate_range(struct compact_control *cc,
7867 					unsigned long start, unsigned long end)
7868 {
7869 	/* This function is based on compact_zone() from compaction.c. */
7870 	unsigned long nr_reclaimed;
7871 	unsigned long pfn = start;
7872 	unsigned int tries = 0;
7873 	int ret = 0;
7874 
7875 	migrate_prep();
7876 
7877 	while (pfn < end || !list_empty(&cc->migratepages)) {
7878 		if (fatal_signal_pending(current)) {
7879 			ret = -EINTR;
7880 			break;
7881 		}
7882 
7883 		if (list_empty(&cc->migratepages)) {
7884 			cc->nr_migratepages = 0;
7885 			pfn = isolate_migratepages_range(cc, pfn, end);
7886 			if (!pfn) {
7887 				ret = -EINTR;
7888 				break;
7889 			}
7890 			tries = 0;
7891 		} else if (++tries == 5) {
7892 			ret = ret < 0 ? ret : -EBUSY;
7893 			break;
7894 		}
7895 
7896 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7897 							&cc->migratepages);
7898 		cc->nr_migratepages -= nr_reclaimed;
7899 
7900 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7901 				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
7902 	}
7903 	if (ret < 0) {
7904 		putback_movable_pages(&cc->migratepages);
7905 		return ret;
7906 	}
7907 	return 0;
7908 }
7909 
7910 /**
7911  * alloc_contig_range() -- tries to allocate given range of pages
7912  * @start:	start PFN to allocate
7913  * @end:	one-past-the-last PFN to allocate
7914  * @migratetype:	migratetype of the underlaying pageblocks (either
7915  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7916  *			in range must have the same migratetype and it must
7917  *			be either of the two.
7918  * @gfp_mask:	GFP mask to use during compaction
7919  *
7920  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7921  * aligned.  The PFN range must belong to a single zone.
7922  *
7923  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7924  * pageblocks in the range.  Once isolated, the pageblocks should not
7925  * be modified by others.
7926  *
7927  * Returns zero on success or negative error code.  On success all
7928  * pages which PFN is in [start, end) are allocated for the caller and
7929  * need to be freed with free_contig_range().
7930  */
7931 int alloc_contig_range(unsigned long start, unsigned long end,
7932 		       unsigned migratetype, gfp_t gfp_mask)
7933 {
7934 	unsigned long outer_start, outer_end;
7935 	unsigned int order;
7936 	int ret = 0;
7937 
7938 	struct compact_control cc = {
7939 		.nr_migratepages = 0,
7940 		.order = -1,
7941 		.zone = page_zone(pfn_to_page(start)),
7942 		.mode = MIGRATE_SYNC,
7943 		.ignore_skip_hint = true,
7944 		.no_set_skip_hint = true,
7945 		.gfp_mask = current_gfp_context(gfp_mask),
7946 	};
7947 	INIT_LIST_HEAD(&cc.migratepages);
7948 
7949 	/*
7950 	 * What we do here is we mark all pageblocks in range as
7951 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7952 	 * have different sizes, and due to the way page allocator
7953 	 * work, we align the range to biggest of the two pages so
7954 	 * that page allocator won't try to merge buddies from
7955 	 * different pageblocks and change MIGRATE_ISOLATE to some
7956 	 * other migration type.
7957 	 *
7958 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7959 	 * migrate the pages from an unaligned range (ie. pages that
7960 	 * we are interested in).  This will put all the pages in
7961 	 * range back to page allocator as MIGRATE_ISOLATE.
7962 	 *
7963 	 * When this is done, we take the pages in range from page
7964 	 * allocator removing them from the buddy system.  This way
7965 	 * page allocator will never consider using them.
7966 	 *
7967 	 * This lets us mark the pageblocks back as
7968 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7969 	 * aligned range but not in the unaligned, original range are
7970 	 * put back to page allocator so that buddy can use them.
7971 	 */
7972 
7973 	ret = start_isolate_page_range(pfn_max_align_down(start),
7974 				       pfn_max_align_up(end), migratetype,
7975 				       false);
7976 	if (ret)
7977 		return ret;
7978 
7979 	/*
7980 	 * In case of -EBUSY, we'd like to know which page causes problem.
7981 	 * So, just fall through. test_pages_isolated() has a tracepoint
7982 	 * which will report the busy page.
7983 	 *
7984 	 * It is possible that busy pages could become available before
7985 	 * the call to test_pages_isolated, and the range will actually be
7986 	 * allocated.  So, if we fall through be sure to clear ret so that
7987 	 * -EBUSY is not accidentally used or returned to caller.
7988 	 */
7989 	ret = __alloc_contig_migrate_range(&cc, start, end);
7990 	if (ret && ret != -EBUSY)
7991 		goto done;
7992 	ret =0;
7993 
7994 	/*
7995 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7996 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7997 	 * more, all pages in [start, end) are free in page allocator.
7998 	 * What we are going to do is to allocate all pages from
7999 	 * [start, end) (that is remove them from page allocator).
8000 	 *
8001 	 * The only problem is that pages at the beginning and at the
8002 	 * end of interesting range may be not aligned with pages that
8003 	 * page allocator holds, ie. they can be part of higher order
8004 	 * pages.  Because of this, we reserve the bigger range and
8005 	 * once this is done free the pages we are not interested in.
8006 	 *
8007 	 * We don't have to hold zone->lock here because the pages are
8008 	 * isolated thus they won't get removed from buddy.
8009 	 */
8010 
8011 	lru_add_drain_all();
8012 	drain_all_pages(cc.zone);
8013 
8014 	order = 0;
8015 	outer_start = start;
8016 	while (!PageBuddy(pfn_to_page(outer_start))) {
8017 		if (++order >= MAX_ORDER) {
8018 			outer_start = start;
8019 			break;
8020 		}
8021 		outer_start &= ~0UL << order;
8022 	}
8023 
8024 	if (outer_start != start) {
8025 		order = page_order(pfn_to_page(outer_start));
8026 
8027 		/*
8028 		 * outer_start page could be small order buddy page and
8029 		 * it doesn't include start page. Adjust outer_start
8030 		 * in this case to report failed page properly
8031 		 * on tracepoint in test_pages_isolated()
8032 		 */
8033 		if (outer_start + (1UL << order) <= start)
8034 			outer_start = start;
8035 	}
8036 
8037 	/* Make sure the range is really isolated. */
8038 	if (test_pages_isolated(outer_start, end, false)) {
8039 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8040 			__func__, outer_start, end);
8041 		ret = -EBUSY;
8042 		goto done;
8043 	}
8044 
8045 	/* Grab isolated pages from freelists. */
8046 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8047 	if (!outer_end) {
8048 		ret = -EBUSY;
8049 		goto done;
8050 	}
8051 
8052 	/* Free head and tail (if any) */
8053 	if (start != outer_start)
8054 		free_contig_range(outer_start, start - outer_start);
8055 	if (end != outer_end)
8056 		free_contig_range(end, outer_end - end);
8057 
8058 done:
8059 	undo_isolate_page_range(pfn_max_align_down(start),
8060 				pfn_max_align_up(end), migratetype);
8061 	return ret;
8062 }
8063 
8064 void free_contig_range(unsigned long pfn, unsigned nr_pages)
8065 {
8066 	unsigned int count = 0;
8067 
8068 	for (; nr_pages--; pfn++) {
8069 		struct page *page = pfn_to_page(pfn);
8070 
8071 		count += page_count(page) != 1;
8072 		__free_page(page);
8073 	}
8074 	WARN(count != 0, "%d pages are still in use!\n", count);
8075 }
8076 #endif
8077 
8078 #ifdef CONFIG_MEMORY_HOTPLUG
8079 /*
8080  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8081  * page high values need to be recalulated.
8082  */
8083 void __meminit zone_pcp_update(struct zone *zone)
8084 {
8085 	unsigned cpu;
8086 	mutex_lock(&pcp_batch_high_lock);
8087 	for_each_possible_cpu(cpu)
8088 		pageset_set_high_and_batch(zone,
8089 				per_cpu_ptr(zone->pageset, cpu));
8090 	mutex_unlock(&pcp_batch_high_lock);
8091 }
8092 #endif
8093 
8094 void zone_pcp_reset(struct zone *zone)
8095 {
8096 	unsigned long flags;
8097 	int cpu;
8098 	struct per_cpu_pageset *pset;
8099 
8100 	/* avoid races with drain_pages()  */
8101 	local_irq_save(flags);
8102 	if (zone->pageset != &boot_pageset) {
8103 		for_each_online_cpu(cpu) {
8104 			pset = per_cpu_ptr(zone->pageset, cpu);
8105 			drain_zonestat(zone, pset);
8106 		}
8107 		free_percpu(zone->pageset);
8108 		zone->pageset = &boot_pageset;
8109 	}
8110 	local_irq_restore(flags);
8111 }
8112 
8113 #ifdef CONFIG_MEMORY_HOTREMOVE
8114 /*
8115  * All pages in the range must be in a single zone and isolated
8116  * before calling this.
8117  */
8118 void
8119 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8120 {
8121 	struct page *page;
8122 	struct zone *zone;
8123 	unsigned int order, i;
8124 	unsigned long pfn;
8125 	unsigned long flags;
8126 	/* find the first valid pfn */
8127 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
8128 		if (pfn_valid(pfn))
8129 			break;
8130 	if (pfn == end_pfn)
8131 		return;
8132 	offline_mem_sections(pfn, end_pfn);
8133 	zone = page_zone(pfn_to_page(pfn));
8134 	spin_lock_irqsave(&zone->lock, flags);
8135 	pfn = start_pfn;
8136 	while (pfn < end_pfn) {
8137 		if (!pfn_valid(pfn)) {
8138 			pfn++;
8139 			continue;
8140 		}
8141 		page = pfn_to_page(pfn);
8142 		/*
8143 		 * The HWPoisoned page may be not in buddy system, and
8144 		 * page_count() is not 0.
8145 		 */
8146 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8147 			pfn++;
8148 			SetPageReserved(page);
8149 			continue;
8150 		}
8151 
8152 		BUG_ON(page_count(page));
8153 		BUG_ON(!PageBuddy(page));
8154 		order = page_order(page);
8155 #ifdef CONFIG_DEBUG_VM
8156 		pr_info("remove from free list %lx %d %lx\n",
8157 			pfn, 1 << order, end_pfn);
8158 #endif
8159 		list_del(&page->lru);
8160 		rmv_page_order(page);
8161 		zone->free_area[order].nr_free--;
8162 		for (i = 0; i < (1 << order); i++)
8163 			SetPageReserved((page+i));
8164 		pfn += (1 << order);
8165 	}
8166 	spin_unlock_irqrestore(&zone->lock, flags);
8167 }
8168 #endif
8169 
8170 bool is_free_buddy_page(struct page *page)
8171 {
8172 	struct zone *zone = page_zone(page);
8173 	unsigned long pfn = page_to_pfn(page);
8174 	unsigned long flags;
8175 	unsigned int order;
8176 
8177 	spin_lock_irqsave(&zone->lock, flags);
8178 	for (order = 0; order < MAX_ORDER; order++) {
8179 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8180 
8181 		if (PageBuddy(page_head) && page_order(page_head) >= order)
8182 			break;
8183 	}
8184 	spin_unlock_irqrestore(&zone->lock, flags);
8185 
8186 	return order < MAX_ORDER;
8187 }
8188 
8189 #ifdef CONFIG_MEMORY_FAILURE
8190 /*
8191  * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8192  * test is performed under the zone lock to prevent a race against page
8193  * allocation.
8194  */
8195 bool set_hwpoison_free_buddy_page(struct page *page)
8196 {
8197 	struct zone *zone = page_zone(page);
8198 	unsigned long pfn = page_to_pfn(page);
8199 	unsigned long flags;
8200 	unsigned int order;
8201 	bool hwpoisoned = false;
8202 
8203 	spin_lock_irqsave(&zone->lock, flags);
8204 	for (order = 0; order < MAX_ORDER; order++) {
8205 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8206 
8207 		if (PageBuddy(page_head) && page_order(page_head) >= order) {
8208 			if (!TestSetPageHWPoison(page))
8209 				hwpoisoned = true;
8210 			break;
8211 		}
8212 	}
8213 	spin_unlock_irqrestore(&zone->lock, flags);
8214 
8215 	return hwpoisoned;
8216 }
8217 #endif
8218