xref: /openbmc/linux/mm/page_alloc.c (revision 82ced6fd)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/page_cgroup.h>
48 #include <linux/debugobjects.h>
49 
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 #include "internal.h"
53 
54 /*
55  * Array of node states.
56  */
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 	[N_POSSIBLE] = NODE_MASK_ALL,
59 	[N_ONLINE] = { { [0] = 1UL } },
60 #ifndef CONFIG_NUMA
61 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
62 #ifdef CONFIG_HIGHMEM
63 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
64 #endif
65 	[N_CPU] = { { [0] = 1UL } },
66 #endif	/* NUMA */
67 };
68 EXPORT_SYMBOL(node_states);
69 
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
72 unsigned long highest_memmap_pfn __read_mostly;
73 int percpu_pagelist_fraction;
74 
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
77 #endif
78 
79 static void __free_pages_ok(struct page *page, unsigned int order);
80 
81 /*
82  * results with 256, 32 in the lowmem_reserve sysctl:
83  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84  *	1G machine -> (16M dma, 784M normal, 224M high)
85  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
88  *
89  * TBD: should special case ZONE_DMA32 machines here - in those we normally
90  * don't need any ZONE_NORMAL reservation
91  */
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
94 	 256,
95 #endif
96 #ifdef CONFIG_ZONE_DMA32
97 	 256,
98 #endif
99 #ifdef CONFIG_HIGHMEM
100 	 32,
101 #endif
102 	 32,
103 };
104 
105 EXPORT_SYMBOL(totalram_pages);
106 
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
109 	 "DMA",
110 #endif
111 #ifdef CONFIG_ZONE_DMA32
112 	 "DMA32",
113 #endif
114 	 "Normal",
115 #ifdef CONFIG_HIGHMEM
116 	 "HighMem",
117 #endif
118 	 "Movable",
119 };
120 
121 int min_free_kbytes = 1024;
122 
123 unsigned long __meminitdata nr_kernel_pages;
124 unsigned long __meminitdata nr_all_pages;
125 static unsigned long __meminitdata dma_reserve;
126 
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128   /*
129    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130    * ranges of memory (RAM) that may be registered with add_active_range().
131    * Ranges passed to add_active_range() will be merged if possible
132    * so the number of times add_active_range() can be called is
133    * related to the number of nodes and the number of holes
134    */
135   #ifdef CONFIG_MAX_ACTIVE_REGIONS
136     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138   #else
139     #if MAX_NUMNODES >= 32
140       /* If there can be many nodes, allow up to 50 holes per node */
141       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142     #else
143       /* By default, allow up to 256 distinct regions */
144       #define MAX_ACTIVE_REGIONS 256
145     #endif
146   #endif
147 
148   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149   static int __meminitdata nr_nodemap_entries;
150   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153   static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154   static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156   static unsigned long __initdata required_kernelcore;
157   static unsigned long __initdata required_movablecore;
158   static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159 
160   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161   int movable_zone;
162   EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164 
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 EXPORT_SYMBOL(nr_node_ids);
168 #endif
169 
170 int page_group_by_mobility_disabled __read_mostly;
171 
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
173 {
174 	set_pageblock_flags_group(page, (unsigned long)migratetype,
175 					PB_migrate, PB_migrate_end);
176 }
177 
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
180 {
181 	int ret = 0;
182 	unsigned seq;
183 	unsigned long pfn = page_to_pfn(page);
184 
185 	do {
186 		seq = zone_span_seqbegin(zone);
187 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 			ret = 1;
189 		else if (pfn < zone->zone_start_pfn)
190 			ret = 1;
191 	} while (zone_span_seqretry(zone, seq));
192 
193 	return ret;
194 }
195 
196 static int page_is_consistent(struct zone *zone, struct page *page)
197 {
198 	if (!pfn_valid_within(page_to_pfn(page)))
199 		return 0;
200 	if (zone != page_zone(page))
201 		return 0;
202 
203 	return 1;
204 }
205 /*
206  * Temporary debugging check for pages not lying within a given zone.
207  */
208 static int bad_range(struct zone *zone, struct page *page)
209 {
210 	if (page_outside_zone_boundaries(zone, page))
211 		return 1;
212 	if (!page_is_consistent(zone, page))
213 		return 1;
214 
215 	return 0;
216 }
217 #else
218 static inline int bad_range(struct zone *zone, struct page *page)
219 {
220 	return 0;
221 }
222 #endif
223 
224 static void bad_page(struct page *page)
225 {
226 	static unsigned long resume;
227 	static unsigned long nr_shown;
228 	static unsigned long nr_unshown;
229 
230 	/*
231 	 * Allow a burst of 60 reports, then keep quiet for that minute;
232 	 * or allow a steady drip of one report per second.
233 	 */
234 	if (nr_shown == 60) {
235 		if (time_before(jiffies, resume)) {
236 			nr_unshown++;
237 			goto out;
238 		}
239 		if (nr_unshown) {
240 			printk(KERN_ALERT
241 			      "BUG: Bad page state: %lu messages suppressed\n",
242 				nr_unshown);
243 			nr_unshown = 0;
244 		}
245 		nr_shown = 0;
246 	}
247 	if (nr_shown++ == 0)
248 		resume = jiffies + 60 * HZ;
249 
250 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
251 		current->comm, page_to_pfn(page));
252 	printk(KERN_ALERT
253 		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
254 		page, (void *)page->flags, page_count(page),
255 		page_mapcount(page), page->mapping, page->index);
256 
257 	dump_stack();
258 out:
259 	/* Leave bad fields for debug, except PageBuddy could make trouble */
260 	__ClearPageBuddy(page);
261 	add_taint(TAINT_BAD_PAGE);
262 }
263 
264 /*
265  * Higher-order pages are called "compound pages".  They are structured thusly:
266  *
267  * The first PAGE_SIZE page is called the "head page".
268  *
269  * The remaining PAGE_SIZE pages are called "tail pages".
270  *
271  * All pages have PG_compound set.  All pages have their ->private pointing at
272  * the head page (even the head page has this).
273  *
274  * The first tail page's ->lru.next holds the address of the compound page's
275  * put_page() function.  Its ->lru.prev holds the order of allocation.
276  * This usage means that zero-order pages may not be compound.
277  */
278 
279 static void free_compound_page(struct page *page)
280 {
281 	__free_pages_ok(page, compound_order(page));
282 }
283 
284 void prep_compound_page(struct page *page, unsigned long order)
285 {
286 	int i;
287 	int nr_pages = 1 << order;
288 
289 	set_compound_page_dtor(page, free_compound_page);
290 	set_compound_order(page, order);
291 	__SetPageHead(page);
292 	for (i = 1; i < nr_pages; i++) {
293 		struct page *p = page + i;
294 
295 		__SetPageTail(p);
296 		p->first_page = page;
297 	}
298 }
299 
300 #ifdef CONFIG_HUGETLBFS
301 void prep_compound_gigantic_page(struct page *page, unsigned long order)
302 {
303 	int i;
304 	int nr_pages = 1 << order;
305 	struct page *p = page + 1;
306 
307 	set_compound_page_dtor(page, free_compound_page);
308 	set_compound_order(page, order);
309 	__SetPageHead(page);
310 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
311 		__SetPageTail(p);
312 		p->first_page = page;
313 	}
314 }
315 #endif
316 
317 static int destroy_compound_page(struct page *page, unsigned long order)
318 {
319 	int i;
320 	int nr_pages = 1 << order;
321 	int bad = 0;
322 
323 	if (unlikely(compound_order(page) != order) ||
324 	    unlikely(!PageHead(page))) {
325 		bad_page(page);
326 		bad++;
327 	}
328 
329 	__ClearPageHead(page);
330 
331 	for (i = 1; i < nr_pages; i++) {
332 		struct page *p = page + i;
333 
334 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
335 			bad_page(page);
336 			bad++;
337 		}
338 		__ClearPageTail(p);
339 	}
340 
341 	return bad;
342 }
343 
344 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
345 {
346 	int i;
347 
348 	/*
349 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
350 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
351 	 */
352 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
353 	for (i = 0; i < (1 << order); i++)
354 		clear_highpage(page + i);
355 }
356 
357 static inline void set_page_order(struct page *page, int order)
358 {
359 	set_page_private(page, order);
360 	__SetPageBuddy(page);
361 }
362 
363 static inline void rmv_page_order(struct page *page)
364 {
365 	__ClearPageBuddy(page);
366 	set_page_private(page, 0);
367 }
368 
369 /*
370  * Locate the struct page for both the matching buddy in our
371  * pair (buddy1) and the combined O(n+1) page they form (page).
372  *
373  * 1) Any buddy B1 will have an order O twin B2 which satisfies
374  * the following equation:
375  *     B2 = B1 ^ (1 << O)
376  * For example, if the starting buddy (buddy2) is #8 its order
377  * 1 buddy is #10:
378  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
379  *
380  * 2) Any buddy B will have an order O+1 parent P which
381  * satisfies the following equation:
382  *     P = B & ~(1 << O)
383  *
384  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
385  */
386 static inline struct page *
387 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
388 {
389 	unsigned long buddy_idx = page_idx ^ (1 << order);
390 
391 	return page + (buddy_idx - page_idx);
392 }
393 
394 static inline unsigned long
395 __find_combined_index(unsigned long page_idx, unsigned int order)
396 {
397 	return (page_idx & ~(1 << order));
398 }
399 
400 /*
401  * This function checks whether a page is free && is the buddy
402  * we can do coalesce a page and its buddy if
403  * (a) the buddy is not in a hole &&
404  * (b) the buddy is in the buddy system &&
405  * (c) a page and its buddy have the same order &&
406  * (d) a page and its buddy are in the same zone.
407  *
408  * For recording whether a page is in the buddy system, we use PG_buddy.
409  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
410  *
411  * For recording page's order, we use page_private(page).
412  */
413 static inline int page_is_buddy(struct page *page, struct page *buddy,
414 								int order)
415 {
416 	if (!pfn_valid_within(page_to_pfn(buddy)))
417 		return 0;
418 
419 	if (page_zone_id(page) != page_zone_id(buddy))
420 		return 0;
421 
422 	if (PageBuddy(buddy) && page_order(buddy) == order) {
423 		BUG_ON(page_count(buddy) != 0);
424 		return 1;
425 	}
426 	return 0;
427 }
428 
429 /*
430  * Freeing function for a buddy system allocator.
431  *
432  * The concept of a buddy system is to maintain direct-mapped table
433  * (containing bit values) for memory blocks of various "orders".
434  * The bottom level table contains the map for the smallest allocatable
435  * units of memory (here, pages), and each level above it describes
436  * pairs of units from the levels below, hence, "buddies".
437  * At a high level, all that happens here is marking the table entry
438  * at the bottom level available, and propagating the changes upward
439  * as necessary, plus some accounting needed to play nicely with other
440  * parts of the VM system.
441  * At each level, we keep a list of pages, which are heads of continuous
442  * free pages of length of (1 << order) and marked with PG_buddy. Page's
443  * order is recorded in page_private(page) field.
444  * So when we are allocating or freeing one, we can derive the state of the
445  * other.  That is, if we allocate a small block, and both were
446  * free, the remainder of the region must be split into blocks.
447  * If a block is freed, and its buddy is also free, then this
448  * triggers coalescing into a block of larger size.
449  *
450  * -- wli
451  */
452 
453 static inline void __free_one_page(struct page *page,
454 		struct zone *zone, unsigned int order)
455 {
456 	unsigned long page_idx;
457 	int order_size = 1 << order;
458 	int migratetype = get_pageblock_migratetype(page);
459 
460 	if (unlikely(PageCompound(page)))
461 		if (unlikely(destroy_compound_page(page, order)))
462 			return;
463 
464 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
465 
466 	VM_BUG_ON(page_idx & (order_size - 1));
467 	VM_BUG_ON(bad_range(zone, page));
468 
469 	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
470 	while (order < MAX_ORDER-1) {
471 		unsigned long combined_idx;
472 		struct page *buddy;
473 
474 		buddy = __page_find_buddy(page, page_idx, order);
475 		if (!page_is_buddy(page, buddy, order))
476 			break;
477 
478 		/* Our buddy is free, merge with it and move up one order. */
479 		list_del(&buddy->lru);
480 		zone->free_area[order].nr_free--;
481 		rmv_page_order(buddy);
482 		combined_idx = __find_combined_index(page_idx, order);
483 		page = page + (combined_idx - page_idx);
484 		page_idx = combined_idx;
485 		order++;
486 	}
487 	set_page_order(page, order);
488 	list_add(&page->lru,
489 		&zone->free_area[order].free_list[migratetype]);
490 	zone->free_area[order].nr_free++;
491 }
492 
493 static inline int free_pages_check(struct page *page)
494 {
495 	free_page_mlock(page);
496 	if (unlikely(page_mapcount(page) |
497 		(page->mapping != NULL)  |
498 		(page_count(page) != 0)  |
499 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
500 		bad_page(page);
501 		return 1;
502 	}
503 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
504 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
505 	return 0;
506 }
507 
508 /*
509  * Frees a list of pages.
510  * Assumes all pages on list are in same zone, and of same order.
511  * count is the number of pages to free.
512  *
513  * If the zone was previously in an "all pages pinned" state then look to
514  * see if this freeing clears that state.
515  *
516  * And clear the zone's pages_scanned counter, to hold off the "all pages are
517  * pinned" detection logic.
518  */
519 static void free_pages_bulk(struct zone *zone, int count,
520 					struct list_head *list, int order)
521 {
522 	spin_lock(&zone->lock);
523 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
524 	zone->pages_scanned = 0;
525 	while (count--) {
526 		struct page *page;
527 
528 		VM_BUG_ON(list_empty(list));
529 		page = list_entry(list->prev, struct page, lru);
530 		/* have to delete it as __free_one_page list manipulates */
531 		list_del(&page->lru);
532 		__free_one_page(page, zone, order);
533 	}
534 	spin_unlock(&zone->lock);
535 }
536 
537 static void free_one_page(struct zone *zone, struct page *page, int order)
538 {
539 	spin_lock(&zone->lock);
540 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
541 	zone->pages_scanned = 0;
542 	__free_one_page(page, zone, order);
543 	spin_unlock(&zone->lock);
544 }
545 
546 static void __free_pages_ok(struct page *page, unsigned int order)
547 {
548 	unsigned long flags;
549 	int i;
550 	int bad = 0;
551 
552 	for (i = 0 ; i < (1 << order) ; ++i)
553 		bad += free_pages_check(page + i);
554 	if (bad)
555 		return;
556 
557 	if (!PageHighMem(page)) {
558 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
559 		debug_check_no_obj_freed(page_address(page),
560 					   PAGE_SIZE << order);
561 	}
562 	arch_free_page(page, order);
563 	kernel_map_pages(page, 1 << order, 0);
564 
565 	local_irq_save(flags);
566 	__count_vm_events(PGFREE, 1 << order);
567 	free_one_page(page_zone(page), page, order);
568 	local_irq_restore(flags);
569 }
570 
571 /*
572  * permit the bootmem allocator to evade page validation on high-order frees
573  */
574 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
575 {
576 	if (order == 0) {
577 		__ClearPageReserved(page);
578 		set_page_count(page, 0);
579 		set_page_refcounted(page);
580 		__free_page(page);
581 	} else {
582 		int loop;
583 
584 		prefetchw(page);
585 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
586 			struct page *p = &page[loop];
587 
588 			if (loop + 1 < BITS_PER_LONG)
589 				prefetchw(p + 1);
590 			__ClearPageReserved(p);
591 			set_page_count(p, 0);
592 		}
593 
594 		set_page_refcounted(page);
595 		__free_pages(page, order);
596 	}
597 }
598 
599 
600 /*
601  * The order of subdivision here is critical for the IO subsystem.
602  * Please do not alter this order without good reasons and regression
603  * testing. Specifically, as large blocks of memory are subdivided,
604  * the order in which smaller blocks are delivered depends on the order
605  * they're subdivided in this function. This is the primary factor
606  * influencing the order in which pages are delivered to the IO
607  * subsystem according to empirical testing, and this is also justified
608  * by considering the behavior of a buddy system containing a single
609  * large block of memory acted on by a series of small allocations.
610  * This behavior is a critical factor in sglist merging's success.
611  *
612  * -- wli
613  */
614 static inline void expand(struct zone *zone, struct page *page,
615 	int low, int high, struct free_area *area,
616 	int migratetype)
617 {
618 	unsigned long size = 1 << high;
619 
620 	while (high > low) {
621 		area--;
622 		high--;
623 		size >>= 1;
624 		VM_BUG_ON(bad_range(zone, &page[size]));
625 		list_add(&page[size].lru, &area->free_list[migratetype]);
626 		area->nr_free++;
627 		set_page_order(&page[size], high);
628 	}
629 }
630 
631 /*
632  * This page is about to be returned from the page allocator
633  */
634 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
635 {
636 	if (unlikely(page_mapcount(page) |
637 		(page->mapping != NULL)  |
638 		(page_count(page) != 0)  |
639 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
640 		bad_page(page);
641 		return 1;
642 	}
643 
644 	set_page_private(page, 0);
645 	set_page_refcounted(page);
646 
647 	arch_alloc_page(page, order);
648 	kernel_map_pages(page, 1 << order, 1);
649 
650 	if (gfp_flags & __GFP_ZERO)
651 		prep_zero_page(page, order, gfp_flags);
652 
653 	if (order && (gfp_flags & __GFP_COMP))
654 		prep_compound_page(page, order);
655 
656 	return 0;
657 }
658 
659 /*
660  * Go through the free lists for the given migratetype and remove
661  * the smallest available page from the freelists
662  */
663 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
664 						int migratetype)
665 {
666 	unsigned int current_order;
667 	struct free_area * area;
668 	struct page *page;
669 
670 	/* Find a page of the appropriate size in the preferred list */
671 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
672 		area = &(zone->free_area[current_order]);
673 		if (list_empty(&area->free_list[migratetype]))
674 			continue;
675 
676 		page = list_entry(area->free_list[migratetype].next,
677 							struct page, lru);
678 		list_del(&page->lru);
679 		rmv_page_order(page);
680 		area->nr_free--;
681 		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
682 		expand(zone, page, order, current_order, area, migratetype);
683 		return page;
684 	}
685 
686 	return NULL;
687 }
688 
689 
690 /*
691  * This array describes the order lists are fallen back to when
692  * the free lists for the desirable migrate type are depleted
693  */
694 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
695 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
696 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
697 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
698 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
699 };
700 
701 /*
702  * Move the free pages in a range to the free lists of the requested type.
703  * Note that start_page and end_pages are not aligned on a pageblock
704  * boundary. If alignment is required, use move_freepages_block()
705  */
706 static int move_freepages(struct zone *zone,
707 			  struct page *start_page, struct page *end_page,
708 			  int migratetype)
709 {
710 	struct page *page;
711 	unsigned long order;
712 	int pages_moved = 0;
713 
714 #ifndef CONFIG_HOLES_IN_ZONE
715 	/*
716 	 * page_zone is not safe to call in this context when
717 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
718 	 * anyway as we check zone boundaries in move_freepages_block().
719 	 * Remove at a later date when no bug reports exist related to
720 	 * grouping pages by mobility
721 	 */
722 	BUG_ON(page_zone(start_page) != page_zone(end_page));
723 #endif
724 
725 	for (page = start_page; page <= end_page;) {
726 		/* Make sure we are not inadvertently changing nodes */
727 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
728 
729 		if (!pfn_valid_within(page_to_pfn(page))) {
730 			page++;
731 			continue;
732 		}
733 
734 		if (!PageBuddy(page)) {
735 			page++;
736 			continue;
737 		}
738 
739 		order = page_order(page);
740 		list_del(&page->lru);
741 		list_add(&page->lru,
742 			&zone->free_area[order].free_list[migratetype]);
743 		page += 1 << order;
744 		pages_moved += 1 << order;
745 	}
746 
747 	return pages_moved;
748 }
749 
750 static int move_freepages_block(struct zone *zone, struct page *page,
751 				int migratetype)
752 {
753 	unsigned long start_pfn, end_pfn;
754 	struct page *start_page, *end_page;
755 
756 	start_pfn = page_to_pfn(page);
757 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
758 	start_page = pfn_to_page(start_pfn);
759 	end_page = start_page + pageblock_nr_pages - 1;
760 	end_pfn = start_pfn + pageblock_nr_pages - 1;
761 
762 	/* Do not cross zone boundaries */
763 	if (start_pfn < zone->zone_start_pfn)
764 		start_page = page;
765 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
766 		return 0;
767 
768 	return move_freepages(zone, start_page, end_page, migratetype);
769 }
770 
771 /* Remove an element from the buddy allocator from the fallback list */
772 static struct page *__rmqueue_fallback(struct zone *zone, int order,
773 						int start_migratetype)
774 {
775 	struct free_area * area;
776 	int current_order;
777 	struct page *page;
778 	int migratetype, i;
779 
780 	/* Find the largest possible block of pages in the other list */
781 	for (current_order = MAX_ORDER-1; current_order >= order;
782 						--current_order) {
783 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
784 			migratetype = fallbacks[start_migratetype][i];
785 
786 			/* MIGRATE_RESERVE handled later if necessary */
787 			if (migratetype == MIGRATE_RESERVE)
788 				continue;
789 
790 			area = &(zone->free_area[current_order]);
791 			if (list_empty(&area->free_list[migratetype]))
792 				continue;
793 
794 			page = list_entry(area->free_list[migratetype].next,
795 					struct page, lru);
796 			area->nr_free--;
797 
798 			/*
799 			 * If breaking a large block of pages, move all free
800 			 * pages to the preferred allocation list. If falling
801 			 * back for a reclaimable kernel allocation, be more
802 			 * agressive about taking ownership of free pages
803 			 */
804 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
805 					start_migratetype == MIGRATE_RECLAIMABLE) {
806 				unsigned long pages;
807 				pages = move_freepages_block(zone, page,
808 								start_migratetype);
809 
810 				/* Claim the whole block if over half of it is free */
811 				if (pages >= (1 << (pageblock_order-1)))
812 					set_pageblock_migratetype(page,
813 								start_migratetype);
814 
815 				migratetype = start_migratetype;
816 			}
817 
818 			/* Remove the page from the freelists */
819 			list_del(&page->lru);
820 			rmv_page_order(page);
821 			__mod_zone_page_state(zone, NR_FREE_PAGES,
822 							-(1UL << order));
823 
824 			if (current_order == pageblock_order)
825 				set_pageblock_migratetype(page,
826 							start_migratetype);
827 
828 			expand(zone, page, order, current_order, area, migratetype);
829 			return page;
830 		}
831 	}
832 
833 	/* Use MIGRATE_RESERVE rather than fail an allocation */
834 	return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
835 }
836 
837 /*
838  * Do the hard work of removing an element from the buddy allocator.
839  * Call me with the zone->lock already held.
840  */
841 static struct page *__rmqueue(struct zone *zone, unsigned int order,
842 						int migratetype)
843 {
844 	struct page *page;
845 
846 	page = __rmqueue_smallest(zone, order, migratetype);
847 
848 	if (unlikely(!page))
849 		page = __rmqueue_fallback(zone, order, migratetype);
850 
851 	return page;
852 }
853 
854 /*
855  * Obtain a specified number of elements from the buddy allocator, all under
856  * a single hold of the lock, for efficiency.  Add them to the supplied list.
857  * Returns the number of new pages which were placed at *list.
858  */
859 static int rmqueue_bulk(struct zone *zone, unsigned int order,
860 			unsigned long count, struct list_head *list,
861 			int migratetype)
862 {
863 	int i;
864 
865 	spin_lock(&zone->lock);
866 	for (i = 0; i < count; ++i) {
867 		struct page *page = __rmqueue(zone, order, migratetype);
868 		if (unlikely(page == NULL))
869 			break;
870 
871 		/*
872 		 * Split buddy pages returned by expand() are received here
873 		 * in physical page order. The page is added to the callers and
874 		 * list and the list head then moves forward. From the callers
875 		 * perspective, the linked list is ordered by page number in
876 		 * some conditions. This is useful for IO devices that can
877 		 * merge IO requests if the physical pages are ordered
878 		 * properly.
879 		 */
880 		list_add(&page->lru, list);
881 		set_page_private(page, migratetype);
882 		list = &page->lru;
883 	}
884 	spin_unlock(&zone->lock);
885 	return i;
886 }
887 
888 #ifdef CONFIG_NUMA
889 /*
890  * Called from the vmstat counter updater to drain pagesets of this
891  * currently executing processor on remote nodes after they have
892  * expired.
893  *
894  * Note that this function must be called with the thread pinned to
895  * a single processor.
896  */
897 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
898 {
899 	unsigned long flags;
900 	int to_drain;
901 
902 	local_irq_save(flags);
903 	if (pcp->count >= pcp->batch)
904 		to_drain = pcp->batch;
905 	else
906 		to_drain = pcp->count;
907 	free_pages_bulk(zone, to_drain, &pcp->list, 0);
908 	pcp->count -= to_drain;
909 	local_irq_restore(flags);
910 }
911 #endif
912 
913 /*
914  * Drain pages of the indicated processor.
915  *
916  * The processor must either be the current processor and the
917  * thread pinned to the current processor or a processor that
918  * is not online.
919  */
920 static void drain_pages(unsigned int cpu)
921 {
922 	unsigned long flags;
923 	struct zone *zone;
924 
925 	for_each_populated_zone(zone) {
926 		struct per_cpu_pageset *pset;
927 		struct per_cpu_pages *pcp;
928 
929 		pset = zone_pcp(zone, cpu);
930 
931 		pcp = &pset->pcp;
932 		local_irq_save(flags);
933 		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
934 		pcp->count = 0;
935 		local_irq_restore(flags);
936 	}
937 }
938 
939 /*
940  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
941  */
942 void drain_local_pages(void *arg)
943 {
944 	drain_pages(smp_processor_id());
945 }
946 
947 /*
948  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
949  */
950 void drain_all_pages(void)
951 {
952 	on_each_cpu(drain_local_pages, NULL, 1);
953 }
954 
955 #ifdef CONFIG_HIBERNATION
956 
957 void mark_free_pages(struct zone *zone)
958 {
959 	unsigned long pfn, max_zone_pfn;
960 	unsigned long flags;
961 	int order, t;
962 	struct list_head *curr;
963 
964 	if (!zone->spanned_pages)
965 		return;
966 
967 	spin_lock_irqsave(&zone->lock, flags);
968 
969 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
970 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
971 		if (pfn_valid(pfn)) {
972 			struct page *page = pfn_to_page(pfn);
973 
974 			if (!swsusp_page_is_forbidden(page))
975 				swsusp_unset_page_free(page);
976 		}
977 
978 	for_each_migratetype_order(order, t) {
979 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
980 			unsigned long i;
981 
982 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
983 			for (i = 0; i < (1UL << order); i++)
984 				swsusp_set_page_free(pfn_to_page(pfn + i));
985 		}
986 	}
987 	spin_unlock_irqrestore(&zone->lock, flags);
988 }
989 #endif /* CONFIG_PM */
990 
991 /*
992  * Free a 0-order page
993  */
994 static void free_hot_cold_page(struct page *page, int cold)
995 {
996 	struct zone *zone = page_zone(page);
997 	struct per_cpu_pages *pcp;
998 	unsigned long flags;
999 
1000 	if (PageAnon(page))
1001 		page->mapping = NULL;
1002 	if (free_pages_check(page))
1003 		return;
1004 
1005 	if (!PageHighMem(page)) {
1006 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1007 		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1008 	}
1009 	arch_free_page(page, 0);
1010 	kernel_map_pages(page, 1, 0);
1011 
1012 	pcp = &zone_pcp(zone, get_cpu())->pcp;
1013 	local_irq_save(flags);
1014 	__count_vm_event(PGFREE);
1015 	if (cold)
1016 		list_add_tail(&page->lru, &pcp->list);
1017 	else
1018 		list_add(&page->lru, &pcp->list);
1019 	set_page_private(page, get_pageblock_migratetype(page));
1020 	pcp->count++;
1021 	if (pcp->count >= pcp->high) {
1022 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1023 		pcp->count -= pcp->batch;
1024 	}
1025 	local_irq_restore(flags);
1026 	put_cpu();
1027 }
1028 
1029 void free_hot_page(struct page *page)
1030 {
1031 	free_hot_cold_page(page, 0);
1032 }
1033 
1034 void free_cold_page(struct page *page)
1035 {
1036 	free_hot_cold_page(page, 1);
1037 }
1038 
1039 /*
1040  * split_page takes a non-compound higher-order page, and splits it into
1041  * n (1<<order) sub-pages: page[0..n]
1042  * Each sub-page must be freed individually.
1043  *
1044  * Note: this is probably too low level an operation for use in drivers.
1045  * Please consult with lkml before using this in your driver.
1046  */
1047 void split_page(struct page *page, unsigned int order)
1048 {
1049 	int i;
1050 
1051 	VM_BUG_ON(PageCompound(page));
1052 	VM_BUG_ON(!page_count(page));
1053 	for (i = 1; i < (1 << order); i++)
1054 		set_page_refcounted(page + i);
1055 }
1056 
1057 /*
1058  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1059  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1060  * or two.
1061  */
1062 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1063 			struct zone *zone, int order, gfp_t gfp_flags)
1064 {
1065 	unsigned long flags;
1066 	struct page *page;
1067 	int cold = !!(gfp_flags & __GFP_COLD);
1068 	int cpu;
1069 	int migratetype = allocflags_to_migratetype(gfp_flags);
1070 
1071 again:
1072 	cpu  = get_cpu();
1073 	if (likely(order == 0)) {
1074 		struct per_cpu_pages *pcp;
1075 
1076 		pcp = &zone_pcp(zone, cpu)->pcp;
1077 		local_irq_save(flags);
1078 		if (!pcp->count) {
1079 			pcp->count = rmqueue_bulk(zone, 0,
1080 					pcp->batch, &pcp->list, migratetype);
1081 			if (unlikely(!pcp->count))
1082 				goto failed;
1083 		}
1084 
1085 		/* Find a page of the appropriate migrate type */
1086 		if (cold) {
1087 			list_for_each_entry_reverse(page, &pcp->list, lru)
1088 				if (page_private(page) == migratetype)
1089 					break;
1090 		} else {
1091 			list_for_each_entry(page, &pcp->list, lru)
1092 				if (page_private(page) == migratetype)
1093 					break;
1094 		}
1095 
1096 		/* Allocate more to the pcp list if necessary */
1097 		if (unlikely(&page->lru == &pcp->list)) {
1098 			pcp->count += rmqueue_bulk(zone, 0,
1099 					pcp->batch, &pcp->list, migratetype);
1100 			page = list_entry(pcp->list.next, struct page, lru);
1101 		}
1102 
1103 		list_del(&page->lru);
1104 		pcp->count--;
1105 	} else {
1106 		spin_lock_irqsave(&zone->lock, flags);
1107 		page = __rmqueue(zone, order, migratetype);
1108 		spin_unlock(&zone->lock);
1109 		if (!page)
1110 			goto failed;
1111 	}
1112 
1113 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1114 	zone_statistics(preferred_zone, zone);
1115 	local_irq_restore(flags);
1116 	put_cpu();
1117 
1118 	VM_BUG_ON(bad_range(zone, page));
1119 	if (prep_new_page(page, order, gfp_flags))
1120 		goto again;
1121 	return page;
1122 
1123 failed:
1124 	local_irq_restore(flags);
1125 	put_cpu();
1126 	return NULL;
1127 }
1128 
1129 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
1130 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
1131 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
1132 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
1133 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1134 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1135 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1136 
1137 #ifdef CONFIG_FAIL_PAGE_ALLOC
1138 
1139 static struct fail_page_alloc_attr {
1140 	struct fault_attr attr;
1141 
1142 	u32 ignore_gfp_highmem;
1143 	u32 ignore_gfp_wait;
1144 	u32 min_order;
1145 
1146 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1147 
1148 	struct dentry *ignore_gfp_highmem_file;
1149 	struct dentry *ignore_gfp_wait_file;
1150 	struct dentry *min_order_file;
1151 
1152 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1153 
1154 } fail_page_alloc = {
1155 	.attr = FAULT_ATTR_INITIALIZER,
1156 	.ignore_gfp_wait = 1,
1157 	.ignore_gfp_highmem = 1,
1158 	.min_order = 1,
1159 };
1160 
1161 static int __init setup_fail_page_alloc(char *str)
1162 {
1163 	return setup_fault_attr(&fail_page_alloc.attr, str);
1164 }
1165 __setup("fail_page_alloc=", setup_fail_page_alloc);
1166 
1167 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1168 {
1169 	if (order < fail_page_alloc.min_order)
1170 		return 0;
1171 	if (gfp_mask & __GFP_NOFAIL)
1172 		return 0;
1173 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1174 		return 0;
1175 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1176 		return 0;
1177 
1178 	return should_fail(&fail_page_alloc.attr, 1 << order);
1179 }
1180 
1181 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1182 
1183 static int __init fail_page_alloc_debugfs(void)
1184 {
1185 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1186 	struct dentry *dir;
1187 	int err;
1188 
1189 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1190 				       "fail_page_alloc");
1191 	if (err)
1192 		return err;
1193 	dir = fail_page_alloc.attr.dentries.dir;
1194 
1195 	fail_page_alloc.ignore_gfp_wait_file =
1196 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1197 				      &fail_page_alloc.ignore_gfp_wait);
1198 
1199 	fail_page_alloc.ignore_gfp_highmem_file =
1200 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1201 				      &fail_page_alloc.ignore_gfp_highmem);
1202 	fail_page_alloc.min_order_file =
1203 		debugfs_create_u32("min-order", mode, dir,
1204 				   &fail_page_alloc.min_order);
1205 
1206 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1207             !fail_page_alloc.ignore_gfp_highmem_file ||
1208             !fail_page_alloc.min_order_file) {
1209 		err = -ENOMEM;
1210 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1211 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1212 		debugfs_remove(fail_page_alloc.min_order_file);
1213 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1214 	}
1215 
1216 	return err;
1217 }
1218 
1219 late_initcall(fail_page_alloc_debugfs);
1220 
1221 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1222 
1223 #else /* CONFIG_FAIL_PAGE_ALLOC */
1224 
1225 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1226 {
1227 	return 0;
1228 }
1229 
1230 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1231 
1232 /*
1233  * Return 1 if free pages are above 'mark'. This takes into account the order
1234  * of the allocation.
1235  */
1236 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1237 		      int classzone_idx, int alloc_flags)
1238 {
1239 	/* free_pages my go negative - that's OK */
1240 	long min = mark;
1241 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1242 	int o;
1243 
1244 	if (alloc_flags & ALLOC_HIGH)
1245 		min -= min / 2;
1246 	if (alloc_flags & ALLOC_HARDER)
1247 		min -= min / 4;
1248 
1249 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1250 		return 0;
1251 	for (o = 0; o < order; o++) {
1252 		/* At the next order, this order's pages become unavailable */
1253 		free_pages -= z->free_area[o].nr_free << o;
1254 
1255 		/* Require fewer higher order pages to be free */
1256 		min >>= 1;
1257 
1258 		if (free_pages <= min)
1259 			return 0;
1260 	}
1261 	return 1;
1262 }
1263 
1264 #ifdef CONFIG_NUMA
1265 /*
1266  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1267  * skip over zones that are not allowed by the cpuset, or that have
1268  * been recently (in last second) found to be nearly full.  See further
1269  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1270  * that have to skip over a lot of full or unallowed zones.
1271  *
1272  * If the zonelist cache is present in the passed in zonelist, then
1273  * returns a pointer to the allowed node mask (either the current
1274  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1275  *
1276  * If the zonelist cache is not available for this zonelist, does
1277  * nothing and returns NULL.
1278  *
1279  * If the fullzones BITMAP in the zonelist cache is stale (more than
1280  * a second since last zap'd) then we zap it out (clear its bits.)
1281  *
1282  * We hold off even calling zlc_setup, until after we've checked the
1283  * first zone in the zonelist, on the theory that most allocations will
1284  * be satisfied from that first zone, so best to examine that zone as
1285  * quickly as we can.
1286  */
1287 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1288 {
1289 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1290 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1291 
1292 	zlc = zonelist->zlcache_ptr;
1293 	if (!zlc)
1294 		return NULL;
1295 
1296 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1297 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1298 		zlc->last_full_zap = jiffies;
1299 	}
1300 
1301 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1302 					&cpuset_current_mems_allowed :
1303 					&node_states[N_HIGH_MEMORY];
1304 	return allowednodes;
1305 }
1306 
1307 /*
1308  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1309  * if it is worth looking at further for free memory:
1310  *  1) Check that the zone isn't thought to be full (doesn't have its
1311  *     bit set in the zonelist_cache fullzones BITMAP).
1312  *  2) Check that the zones node (obtained from the zonelist_cache
1313  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1314  * Return true (non-zero) if zone is worth looking at further, or
1315  * else return false (zero) if it is not.
1316  *
1317  * This check -ignores- the distinction between various watermarks,
1318  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1319  * found to be full for any variation of these watermarks, it will
1320  * be considered full for up to one second by all requests, unless
1321  * we are so low on memory on all allowed nodes that we are forced
1322  * into the second scan of the zonelist.
1323  *
1324  * In the second scan we ignore this zonelist cache and exactly
1325  * apply the watermarks to all zones, even it is slower to do so.
1326  * We are low on memory in the second scan, and should leave no stone
1327  * unturned looking for a free page.
1328  */
1329 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1330 						nodemask_t *allowednodes)
1331 {
1332 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1333 	int i;				/* index of *z in zonelist zones */
1334 	int n;				/* node that zone *z is on */
1335 
1336 	zlc = zonelist->zlcache_ptr;
1337 	if (!zlc)
1338 		return 1;
1339 
1340 	i = z - zonelist->_zonerefs;
1341 	n = zlc->z_to_n[i];
1342 
1343 	/* This zone is worth trying if it is allowed but not full */
1344 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1345 }
1346 
1347 /*
1348  * Given 'z' scanning a zonelist, set the corresponding bit in
1349  * zlc->fullzones, so that subsequent attempts to allocate a page
1350  * from that zone don't waste time re-examining it.
1351  */
1352 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1353 {
1354 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1355 	int i;				/* index of *z in zonelist zones */
1356 
1357 	zlc = zonelist->zlcache_ptr;
1358 	if (!zlc)
1359 		return;
1360 
1361 	i = z - zonelist->_zonerefs;
1362 
1363 	set_bit(i, zlc->fullzones);
1364 }
1365 
1366 #else	/* CONFIG_NUMA */
1367 
1368 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1369 {
1370 	return NULL;
1371 }
1372 
1373 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1374 				nodemask_t *allowednodes)
1375 {
1376 	return 1;
1377 }
1378 
1379 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1380 {
1381 }
1382 #endif	/* CONFIG_NUMA */
1383 
1384 /*
1385  * get_page_from_freelist goes through the zonelist trying to allocate
1386  * a page.
1387  */
1388 static struct page *
1389 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1390 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1391 {
1392 	struct zoneref *z;
1393 	struct page *page = NULL;
1394 	int classzone_idx;
1395 	struct zone *zone, *preferred_zone;
1396 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1397 	int zlc_active = 0;		/* set if using zonelist_cache */
1398 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1399 
1400 	(void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1401 							&preferred_zone);
1402 	if (!preferred_zone)
1403 		return NULL;
1404 
1405 	classzone_idx = zone_idx(preferred_zone);
1406 
1407 zonelist_scan:
1408 	/*
1409 	 * Scan zonelist, looking for a zone with enough free.
1410 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1411 	 */
1412 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1413 						high_zoneidx, nodemask) {
1414 		if (NUMA_BUILD && zlc_active &&
1415 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1416 				continue;
1417 		if ((alloc_flags & ALLOC_CPUSET) &&
1418 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1419 				goto try_next_zone;
1420 
1421 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1422 			unsigned long mark;
1423 			if (alloc_flags & ALLOC_WMARK_MIN)
1424 				mark = zone->pages_min;
1425 			else if (alloc_flags & ALLOC_WMARK_LOW)
1426 				mark = zone->pages_low;
1427 			else
1428 				mark = zone->pages_high;
1429 			if (!zone_watermark_ok(zone, order, mark,
1430 				    classzone_idx, alloc_flags)) {
1431 				if (!zone_reclaim_mode ||
1432 				    !zone_reclaim(zone, gfp_mask, order))
1433 					goto this_zone_full;
1434 			}
1435 		}
1436 
1437 		page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1438 		if (page)
1439 			break;
1440 this_zone_full:
1441 		if (NUMA_BUILD)
1442 			zlc_mark_zone_full(zonelist, z);
1443 try_next_zone:
1444 		if (NUMA_BUILD && !did_zlc_setup) {
1445 			/* we do zlc_setup after the first zone is tried */
1446 			allowednodes = zlc_setup(zonelist, alloc_flags);
1447 			zlc_active = 1;
1448 			did_zlc_setup = 1;
1449 		}
1450 	}
1451 
1452 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1453 		/* Disable zlc cache for second zonelist scan */
1454 		zlc_active = 0;
1455 		goto zonelist_scan;
1456 	}
1457 	return page;
1458 }
1459 
1460 /*
1461  * This is the 'heart' of the zoned buddy allocator.
1462  */
1463 struct page *
1464 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1465 			struct zonelist *zonelist, nodemask_t *nodemask)
1466 {
1467 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1468 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1469 	struct zoneref *z;
1470 	struct zone *zone;
1471 	struct page *page;
1472 	struct reclaim_state reclaim_state;
1473 	struct task_struct *p = current;
1474 	int do_retry;
1475 	int alloc_flags;
1476 	unsigned long did_some_progress;
1477 	unsigned long pages_reclaimed = 0;
1478 
1479 	lockdep_trace_alloc(gfp_mask);
1480 
1481 	might_sleep_if(wait);
1482 
1483 	if (should_fail_alloc_page(gfp_mask, order))
1484 		return NULL;
1485 
1486 restart:
1487 	z = zonelist->_zonerefs;  /* the list of zones suitable for gfp_mask */
1488 
1489 	if (unlikely(!z->zone)) {
1490 		/*
1491 		 * Happens if we have an empty zonelist as a result of
1492 		 * GFP_THISNODE being used on a memoryless node
1493 		 */
1494 		return NULL;
1495 	}
1496 
1497 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1498 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1499 	if (page)
1500 		goto got_pg;
1501 
1502 	/*
1503 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1504 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1505 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1506 	 * using a larger set of nodes after it has established that the
1507 	 * allowed per node queues are empty and that nodes are
1508 	 * over allocated.
1509 	 */
1510 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1511 		goto nopage;
1512 
1513 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1514 		wakeup_kswapd(zone, order);
1515 
1516 	/*
1517 	 * OK, we're below the kswapd watermark and have kicked background
1518 	 * reclaim. Now things get more complex, so set up alloc_flags according
1519 	 * to how we want to proceed.
1520 	 *
1521 	 * The caller may dip into page reserves a bit more if the caller
1522 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1523 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1524 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1525 	 */
1526 	alloc_flags = ALLOC_WMARK_MIN;
1527 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1528 		alloc_flags |= ALLOC_HARDER;
1529 	if (gfp_mask & __GFP_HIGH)
1530 		alloc_flags |= ALLOC_HIGH;
1531 	if (wait)
1532 		alloc_flags |= ALLOC_CPUSET;
1533 
1534 	/*
1535 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1536 	 * coming from realtime tasks go deeper into reserves.
1537 	 *
1538 	 * This is the last chance, in general, before the goto nopage.
1539 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1540 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1541 	 */
1542 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1543 						high_zoneidx, alloc_flags);
1544 	if (page)
1545 		goto got_pg;
1546 
1547 	/* This allocation should allow future memory freeing. */
1548 
1549 rebalance:
1550 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1551 			&& !in_interrupt()) {
1552 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1553 nofail_alloc:
1554 			/* go through the zonelist yet again, ignoring mins */
1555 			page = get_page_from_freelist(gfp_mask, nodemask, order,
1556 				zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1557 			if (page)
1558 				goto got_pg;
1559 			if (gfp_mask & __GFP_NOFAIL) {
1560 				congestion_wait(WRITE, HZ/50);
1561 				goto nofail_alloc;
1562 			}
1563 		}
1564 		goto nopage;
1565 	}
1566 
1567 	/* Atomic allocations - we can't balance anything */
1568 	if (!wait)
1569 		goto nopage;
1570 
1571 	cond_resched();
1572 
1573 	/* We now go into synchronous reclaim */
1574 	cpuset_memory_pressure_bump();
1575 	/*
1576 	 * The task's cpuset might have expanded its set of allowable nodes
1577 	 */
1578 	cpuset_update_task_memory_state();
1579 	p->flags |= PF_MEMALLOC;
1580 
1581 	lockdep_set_current_reclaim_state(gfp_mask);
1582 	reclaim_state.reclaimed_slab = 0;
1583 	p->reclaim_state = &reclaim_state;
1584 
1585 	did_some_progress = try_to_free_pages(zonelist, order,
1586 						gfp_mask, nodemask);
1587 
1588 	p->reclaim_state = NULL;
1589 	lockdep_clear_current_reclaim_state();
1590 	p->flags &= ~PF_MEMALLOC;
1591 
1592 	cond_resched();
1593 
1594 	if (order != 0)
1595 		drain_all_pages();
1596 
1597 	if (likely(did_some_progress)) {
1598 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1599 					zonelist, high_zoneidx, alloc_flags);
1600 		if (page)
1601 			goto got_pg;
1602 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1603 		if (!try_set_zone_oom(zonelist, gfp_mask)) {
1604 			schedule_timeout_uninterruptible(1);
1605 			goto restart;
1606 		}
1607 
1608 		/*
1609 		 * Go through the zonelist yet one more time, keep
1610 		 * very high watermark here, this is only to catch
1611 		 * a parallel oom killing, we must fail if we're still
1612 		 * under heavy pressure.
1613 		 */
1614 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1615 			order, zonelist, high_zoneidx,
1616 			ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1617 		if (page) {
1618 			clear_zonelist_oom(zonelist, gfp_mask);
1619 			goto got_pg;
1620 		}
1621 
1622 		/* The OOM killer will not help higher order allocs so fail */
1623 		if (order > PAGE_ALLOC_COSTLY_ORDER) {
1624 			clear_zonelist_oom(zonelist, gfp_mask);
1625 			goto nopage;
1626 		}
1627 
1628 		out_of_memory(zonelist, gfp_mask, order);
1629 		clear_zonelist_oom(zonelist, gfp_mask);
1630 		goto restart;
1631 	}
1632 
1633 	/*
1634 	 * Don't let big-order allocations loop unless the caller explicitly
1635 	 * requests that.  Wait for some write requests to complete then retry.
1636 	 *
1637 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1638 	 * means __GFP_NOFAIL, but that may not be true in other
1639 	 * implementations.
1640 	 *
1641 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1642 	 * specified, then we retry until we no longer reclaim any pages
1643 	 * (above), or we've reclaimed an order of pages at least as
1644 	 * large as the allocation's order. In both cases, if the
1645 	 * allocation still fails, we stop retrying.
1646 	 */
1647 	pages_reclaimed += did_some_progress;
1648 	do_retry = 0;
1649 	if (!(gfp_mask & __GFP_NORETRY)) {
1650 		if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1651 			do_retry = 1;
1652 		} else {
1653 			if (gfp_mask & __GFP_REPEAT &&
1654 				pages_reclaimed < (1 << order))
1655 					do_retry = 1;
1656 		}
1657 		if (gfp_mask & __GFP_NOFAIL)
1658 			do_retry = 1;
1659 	}
1660 	if (do_retry) {
1661 		congestion_wait(WRITE, HZ/50);
1662 		goto rebalance;
1663 	}
1664 
1665 nopage:
1666 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1667 		printk(KERN_WARNING "%s: page allocation failure."
1668 			" order:%d, mode:0x%x\n",
1669 			p->comm, order, gfp_mask);
1670 		dump_stack();
1671 		show_mem();
1672 	}
1673 got_pg:
1674 	return page;
1675 }
1676 EXPORT_SYMBOL(__alloc_pages_internal);
1677 
1678 /*
1679  * Common helper functions.
1680  */
1681 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1682 {
1683 	struct page * page;
1684 	page = alloc_pages(gfp_mask, order);
1685 	if (!page)
1686 		return 0;
1687 	return (unsigned long) page_address(page);
1688 }
1689 
1690 EXPORT_SYMBOL(__get_free_pages);
1691 
1692 unsigned long get_zeroed_page(gfp_t gfp_mask)
1693 {
1694 	struct page * page;
1695 
1696 	/*
1697 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1698 	 * a highmem page
1699 	 */
1700 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1701 
1702 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1703 	if (page)
1704 		return (unsigned long) page_address(page);
1705 	return 0;
1706 }
1707 
1708 EXPORT_SYMBOL(get_zeroed_page);
1709 
1710 void __pagevec_free(struct pagevec *pvec)
1711 {
1712 	int i = pagevec_count(pvec);
1713 
1714 	while (--i >= 0)
1715 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1716 }
1717 
1718 void __free_pages(struct page *page, unsigned int order)
1719 {
1720 	if (put_page_testzero(page)) {
1721 		if (order == 0)
1722 			free_hot_page(page);
1723 		else
1724 			__free_pages_ok(page, order);
1725 	}
1726 }
1727 
1728 EXPORT_SYMBOL(__free_pages);
1729 
1730 void free_pages(unsigned long addr, unsigned int order)
1731 {
1732 	if (addr != 0) {
1733 		VM_BUG_ON(!virt_addr_valid((void *)addr));
1734 		__free_pages(virt_to_page((void *)addr), order);
1735 	}
1736 }
1737 
1738 EXPORT_SYMBOL(free_pages);
1739 
1740 /**
1741  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1742  * @size: the number of bytes to allocate
1743  * @gfp_mask: GFP flags for the allocation
1744  *
1745  * This function is similar to alloc_pages(), except that it allocates the
1746  * minimum number of pages to satisfy the request.  alloc_pages() can only
1747  * allocate memory in power-of-two pages.
1748  *
1749  * This function is also limited by MAX_ORDER.
1750  *
1751  * Memory allocated by this function must be released by free_pages_exact().
1752  */
1753 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1754 {
1755 	unsigned int order = get_order(size);
1756 	unsigned long addr;
1757 
1758 	addr = __get_free_pages(gfp_mask, order);
1759 	if (addr) {
1760 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
1761 		unsigned long used = addr + PAGE_ALIGN(size);
1762 
1763 		split_page(virt_to_page(addr), order);
1764 		while (used < alloc_end) {
1765 			free_page(used);
1766 			used += PAGE_SIZE;
1767 		}
1768 	}
1769 
1770 	return (void *)addr;
1771 }
1772 EXPORT_SYMBOL(alloc_pages_exact);
1773 
1774 /**
1775  * free_pages_exact - release memory allocated via alloc_pages_exact()
1776  * @virt: the value returned by alloc_pages_exact.
1777  * @size: size of allocation, same value as passed to alloc_pages_exact().
1778  *
1779  * Release the memory allocated by a previous call to alloc_pages_exact.
1780  */
1781 void free_pages_exact(void *virt, size_t size)
1782 {
1783 	unsigned long addr = (unsigned long)virt;
1784 	unsigned long end = addr + PAGE_ALIGN(size);
1785 
1786 	while (addr < end) {
1787 		free_page(addr);
1788 		addr += PAGE_SIZE;
1789 	}
1790 }
1791 EXPORT_SYMBOL(free_pages_exact);
1792 
1793 static unsigned int nr_free_zone_pages(int offset)
1794 {
1795 	struct zoneref *z;
1796 	struct zone *zone;
1797 
1798 	/* Just pick one node, since fallback list is circular */
1799 	unsigned int sum = 0;
1800 
1801 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1802 
1803 	for_each_zone_zonelist(zone, z, zonelist, offset) {
1804 		unsigned long size = zone->present_pages;
1805 		unsigned long high = zone->pages_high;
1806 		if (size > high)
1807 			sum += size - high;
1808 	}
1809 
1810 	return sum;
1811 }
1812 
1813 /*
1814  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1815  */
1816 unsigned int nr_free_buffer_pages(void)
1817 {
1818 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1819 }
1820 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1821 
1822 /*
1823  * Amount of free RAM allocatable within all zones
1824  */
1825 unsigned int nr_free_pagecache_pages(void)
1826 {
1827 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1828 }
1829 
1830 static inline void show_node(struct zone *zone)
1831 {
1832 	if (NUMA_BUILD)
1833 		printk("Node %d ", zone_to_nid(zone));
1834 }
1835 
1836 void si_meminfo(struct sysinfo *val)
1837 {
1838 	val->totalram = totalram_pages;
1839 	val->sharedram = 0;
1840 	val->freeram = global_page_state(NR_FREE_PAGES);
1841 	val->bufferram = nr_blockdev_pages();
1842 	val->totalhigh = totalhigh_pages;
1843 	val->freehigh = nr_free_highpages();
1844 	val->mem_unit = PAGE_SIZE;
1845 }
1846 
1847 EXPORT_SYMBOL(si_meminfo);
1848 
1849 #ifdef CONFIG_NUMA
1850 void si_meminfo_node(struct sysinfo *val, int nid)
1851 {
1852 	pg_data_t *pgdat = NODE_DATA(nid);
1853 
1854 	val->totalram = pgdat->node_present_pages;
1855 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1856 #ifdef CONFIG_HIGHMEM
1857 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1858 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1859 			NR_FREE_PAGES);
1860 #else
1861 	val->totalhigh = 0;
1862 	val->freehigh = 0;
1863 #endif
1864 	val->mem_unit = PAGE_SIZE;
1865 }
1866 #endif
1867 
1868 #define K(x) ((x) << (PAGE_SHIFT-10))
1869 
1870 /*
1871  * Show free area list (used inside shift_scroll-lock stuff)
1872  * We also calculate the percentage fragmentation. We do this by counting the
1873  * memory on each free list with the exception of the first item on the list.
1874  */
1875 void show_free_areas(void)
1876 {
1877 	int cpu;
1878 	struct zone *zone;
1879 
1880 	for_each_populated_zone(zone) {
1881 		show_node(zone);
1882 		printk("%s per-cpu:\n", zone->name);
1883 
1884 		for_each_online_cpu(cpu) {
1885 			struct per_cpu_pageset *pageset;
1886 
1887 			pageset = zone_pcp(zone, cpu);
1888 
1889 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1890 			       cpu, pageset->pcp.high,
1891 			       pageset->pcp.batch, pageset->pcp.count);
1892 		}
1893 	}
1894 
1895 	printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
1896 		" inactive_file:%lu"
1897 //TODO:  check/adjust line lengths
1898 #ifdef CONFIG_UNEVICTABLE_LRU
1899 		" unevictable:%lu"
1900 #endif
1901 		" dirty:%lu writeback:%lu unstable:%lu\n"
1902 		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1903 		global_page_state(NR_ACTIVE_ANON),
1904 		global_page_state(NR_ACTIVE_FILE),
1905 		global_page_state(NR_INACTIVE_ANON),
1906 		global_page_state(NR_INACTIVE_FILE),
1907 #ifdef CONFIG_UNEVICTABLE_LRU
1908 		global_page_state(NR_UNEVICTABLE),
1909 #endif
1910 		global_page_state(NR_FILE_DIRTY),
1911 		global_page_state(NR_WRITEBACK),
1912 		global_page_state(NR_UNSTABLE_NFS),
1913 		global_page_state(NR_FREE_PAGES),
1914 		global_page_state(NR_SLAB_RECLAIMABLE) +
1915 			global_page_state(NR_SLAB_UNRECLAIMABLE),
1916 		global_page_state(NR_FILE_MAPPED),
1917 		global_page_state(NR_PAGETABLE),
1918 		global_page_state(NR_BOUNCE));
1919 
1920 	for_each_populated_zone(zone) {
1921 		int i;
1922 
1923 		show_node(zone);
1924 		printk("%s"
1925 			" free:%lukB"
1926 			" min:%lukB"
1927 			" low:%lukB"
1928 			" high:%lukB"
1929 			" active_anon:%lukB"
1930 			" inactive_anon:%lukB"
1931 			" active_file:%lukB"
1932 			" inactive_file:%lukB"
1933 #ifdef CONFIG_UNEVICTABLE_LRU
1934 			" unevictable:%lukB"
1935 #endif
1936 			" present:%lukB"
1937 			" pages_scanned:%lu"
1938 			" all_unreclaimable? %s"
1939 			"\n",
1940 			zone->name,
1941 			K(zone_page_state(zone, NR_FREE_PAGES)),
1942 			K(zone->pages_min),
1943 			K(zone->pages_low),
1944 			K(zone->pages_high),
1945 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
1946 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
1947 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
1948 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
1949 #ifdef CONFIG_UNEVICTABLE_LRU
1950 			K(zone_page_state(zone, NR_UNEVICTABLE)),
1951 #endif
1952 			K(zone->present_pages),
1953 			zone->pages_scanned,
1954 			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
1955 			);
1956 		printk("lowmem_reserve[]:");
1957 		for (i = 0; i < MAX_NR_ZONES; i++)
1958 			printk(" %lu", zone->lowmem_reserve[i]);
1959 		printk("\n");
1960 	}
1961 
1962 	for_each_populated_zone(zone) {
1963  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1964 
1965 		show_node(zone);
1966 		printk("%s: ", zone->name);
1967 
1968 		spin_lock_irqsave(&zone->lock, flags);
1969 		for (order = 0; order < MAX_ORDER; order++) {
1970 			nr[order] = zone->free_area[order].nr_free;
1971 			total += nr[order] << order;
1972 		}
1973 		spin_unlock_irqrestore(&zone->lock, flags);
1974 		for (order = 0; order < MAX_ORDER; order++)
1975 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1976 		printk("= %lukB\n", K(total));
1977 	}
1978 
1979 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1980 
1981 	show_swap_cache_info();
1982 }
1983 
1984 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1985 {
1986 	zoneref->zone = zone;
1987 	zoneref->zone_idx = zone_idx(zone);
1988 }
1989 
1990 /*
1991  * Builds allocation fallback zone lists.
1992  *
1993  * Add all populated zones of a node to the zonelist.
1994  */
1995 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1996 				int nr_zones, enum zone_type zone_type)
1997 {
1998 	struct zone *zone;
1999 
2000 	BUG_ON(zone_type >= MAX_NR_ZONES);
2001 	zone_type++;
2002 
2003 	do {
2004 		zone_type--;
2005 		zone = pgdat->node_zones + zone_type;
2006 		if (populated_zone(zone)) {
2007 			zoneref_set_zone(zone,
2008 				&zonelist->_zonerefs[nr_zones++]);
2009 			check_highest_zone(zone_type);
2010 		}
2011 
2012 	} while (zone_type);
2013 	return nr_zones;
2014 }
2015 
2016 
2017 /*
2018  *  zonelist_order:
2019  *  0 = automatic detection of better ordering.
2020  *  1 = order by ([node] distance, -zonetype)
2021  *  2 = order by (-zonetype, [node] distance)
2022  *
2023  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2024  *  the same zonelist. So only NUMA can configure this param.
2025  */
2026 #define ZONELIST_ORDER_DEFAULT  0
2027 #define ZONELIST_ORDER_NODE     1
2028 #define ZONELIST_ORDER_ZONE     2
2029 
2030 /* zonelist order in the kernel.
2031  * set_zonelist_order() will set this to NODE or ZONE.
2032  */
2033 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2034 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2035 
2036 
2037 #ifdef CONFIG_NUMA
2038 /* The value user specified ....changed by config */
2039 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2040 /* string for sysctl */
2041 #define NUMA_ZONELIST_ORDER_LEN	16
2042 char numa_zonelist_order[16] = "default";
2043 
2044 /*
2045  * interface for configure zonelist ordering.
2046  * command line option "numa_zonelist_order"
2047  *	= "[dD]efault	- default, automatic configuration.
2048  *	= "[nN]ode 	- order by node locality, then by zone within node
2049  *	= "[zZ]one      - order by zone, then by locality within zone
2050  */
2051 
2052 static int __parse_numa_zonelist_order(char *s)
2053 {
2054 	if (*s == 'd' || *s == 'D') {
2055 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2056 	} else if (*s == 'n' || *s == 'N') {
2057 		user_zonelist_order = ZONELIST_ORDER_NODE;
2058 	} else if (*s == 'z' || *s == 'Z') {
2059 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2060 	} else {
2061 		printk(KERN_WARNING
2062 			"Ignoring invalid numa_zonelist_order value:  "
2063 			"%s\n", s);
2064 		return -EINVAL;
2065 	}
2066 	return 0;
2067 }
2068 
2069 static __init int setup_numa_zonelist_order(char *s)
2070 {
2071 	if (s)
2072 		return __parse_numa_zonelist_order(s);
2073 	return 0;
2074 }
2075 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2076 
2077 /*
2078  * sysctl handler for numa_zonelist_order
2079  */
2080 int numa_zonelist_order_handler(ctl_table *table, int write,
2081 		struct file *file, void __user *buffer, size_t *length,
2082 		loff_t *ppos)
2083 {
2084 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2085 	int ret;
2086 
2087 	if (write)
2088 		strncpy(saved_string, (char*)table->data,
2089 			NUMA_ZONELIST_ORDER_LEN);
2090 	ret = proc_dostring(table, write, file, buffer, length, ppos);
2091 	if (ret)
2092 		return ret;
2093 	if (write) {
2094 		int oldval = user_zonelist_order;
2095 		if (__parse_numa_zonelist_order((char*)table->data)) {
2096 			/*
2097 			 * bogus value.  restore saved string
2098 			 */
2099 			strncpy((char*)table->data, saved_string,
2100 				NUMA_ZONELIST_ORDER_LEN);
2101 			user_zonelist_order = oldval;
2102 		} else if (oldval != user_zonelist_order)
2103 			build_all_zonelists();
2104 	}
2105 	return 0;
2106 }
2107 
2108 
2109 #define MAX_NODE_LOAD (num_online_nodes())
2110 static int node_load[MAX_NUMNODES];
2111 
2112 /**
2113  * find_next_best_node - find the next node that should appear in a given node's fallback list
2114  * @node: node whose fallback list we're appending
2115  * @used_node_mask: nodemask_t of already used nodes
2116  *
2117  * We use a number of factors to determine which is the next node that should
2118  * appear on a given node's fallback list.  The node should not have appeared
2119  * already in @node's fallback list, and it should be the next closest node
2120  * according to the distance array (which contains arbitrary distance values
2121  * from each node to each node in the system), and should also prefer nodes
2122  * with no CPUs, since presumably they'll have very little allocation pressure
2123  * on them otherwise.
2124  * It returns -1 if no node is found.
2125  */
2126 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2127 {
2128 	int n, val;
2129 	int min_val = INT_MAX;
2130 	int best_node = -1;
2131 	const struct cpumask *tmp = cpumask_of_node(0);
2132 
2133 	/* Use the local node if we haven't already */
2134 	if (!node_isset(node, *used_node_mask)) {
2135 		node_set(node, *used_node_mask);
2136 		return node;
2137 	}
2138 
2139 	for_each_node_state(n, N_HIGH_MEMORY) {
2140 
2141 		/* Don't want a node to appear more than once */
2142 		if (node_isset(n, *used_node_mask))
2143 			continue;
2144 
2145 		/* Use the distance array to find the distance */
2146 		val = node_distance(node, n);
2147 
2148 		/* Penalize nodes under us ("prefer the next node") */
2149 		val += (n < node);
2150 
2151 		/* Give preference to headless and unused nodes */
2152 		tmp = cpumask_of_node(n);
2153 		if (!cpumask_empty(tmp))
2154 			val += PENALTY_FOR_NODE_WITH_CPUS;
2155 
2156 		/* Slight preference for less loaded node */
2157 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2158 		val += node_load[n];
2159 
2160 		if (val < min_val) {
2161 			min_val = val;
2162 			best_node = n;
2163 		}
2164 	}
2165 
2166 	if (best_node >= 0)
2167 		node_set(best_node, *used_node_mask);
2168 
2169 	return best_node;
2170 }
2171 
2172 
2173 /*
2174  * Build zonelists ordered by node and zones within node.
2175  * This results in maximum locality--normal zone overflows into local
2176  * DMA zone, if any--but risks exhausting DMA zone.
2177  */
2178 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2179 {
2180 	int j;
2181 	struct zonelist *zonelist;
2182 
2183 	zonelist = &pgdat->node_zonelists[0];
2184 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2185 		;
2186 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2187 							MAX_NR_ZONES - 1);
2188 	zonelist->_zonerefs[j].zone = NULL;
2189 	zonelist->_zonerefs[j].zone_idx = 0;
2190 }
2191 
2192 /*
2193  * Build gfp_thisnode zonelists
2194  */
2195 static void build_thisnode_zonelists(pg_data_t *pgdat)
2196 {
2197 	int j;
2198 	struct zonelist *zonelist;
2199 
2200 	zonelist = &pgdat->node_zonelists[1];
2201 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2202 	zonelist->_zonerefs[j].zone = NULL;
2203 	zonelist->_zonerefs[j].zone_idx = 0;
2204 }
2205 
2206 /*
2207  * Build zonelists ordered by zone and nodes within zones.
2208  * This results in conserving DMA zone[s] until all Normal memory is
2209  * exhausted, but results in overflowing to remote node while memory
2210  * may still exist in local DMA zone.
2211  */
2212 static int node_order[MAX_NUMNODES];
2213 
2214 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2215 {
2216 	int pos, j, node;
2217 	int zone_type;		/* needs to be signed */
2218 	struct zone *z;
2219 	struct zonelist *zonelist;
2220 
2221 	zonelist = &pgdat->node_zonelists[0];
2222 	pos = 0;
2223 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2224 		for (j = 0; j < nr_nodes; j++) {
2225 			node = node_order[j];
2226 			z = &NODE_DATA(node)->node_zones[zone_type];
2227 			if (populated_zone(z)) {
2228 				zoneref_set_zone(z,
2229 					&zonelist->_zonerefs[pos++]);
2230 				check_highest_zone(zone_type);
2231 			}
2232 		}
2233 	}
2234 	zonelist->_zonerefs[pos].zone = NULL;
2235 	zonelist->_zonerefs[pos].zone_idx = 0;
2236 }
2237 
2238 static int default_zonelist_order(void)
2239 {
2240 	int nid, zone_type;
2241 	unsigned long low_kmem_size,total_size;
2242 	struct zone *z;
2243 	int average_size;
2244 	/*
2245          * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2246 	 * If they are really small and used heavily, the system can fall
2247 	 * into OOM very easily.
2248 	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2249 	 */
2250 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2251 	low_kmem_size = 0;
2252 	total_size = 0;
2253 	for_each_online_node(nid) {
2254 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2255 			z = &NODE_DATA(nid)->node_zones[zone_type];
2256 			if (populated_zone(z)) {
2257 				if (zone_type < ZONE_NORMAL)
2258 					low_kmem_size += z->present_pages;
2259 				total_size += z->present_pages;
2260 			}
2261 		}
2262 	}
2263 	if (!low_kmem_size ||  /* there are no DMA area. */
2264 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2265 		return ZONELIST_ORDER_NODE;
2266 	/*
2267 	 * look into each node's config.
2268   	 * If there is a node whose DMA/DMA32 memory is very big area on
2269  	 * local memory, NODE_ORDER may be suitable.
2270          */
2271 	average_size = total_size /
2272 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2273 	for_each_online_node(nid) {
2274 		low_kmem_size = 0;
2275 		total_size = 0;
2276 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2277 			z = &NODE_DATA(nid)->node_zones[zone_type];
2278 			if (populated_zone(z)) {
2279 				if (zone_type < ZONE_NORMAL)
2280 					low_kmem_size += z->present_pages;
2281 				total_size += z->present_pages;
2282 			}
2283 		}
2284 		if (low_kmem_size &&
2285 		    total_size > average_size && /* ignore small node */
2286 		    low_kmem_size > total_size * 70/100)
2287 			return ZONELIST_ORDER_NODE;
2288 	}
2289 	return ZONELIST_ORDER_ZONE;
2290 }
2291 
2292 static void set_zonelist_order(void)
2293 {
2294 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2295 		current_zonelist_order = default_zonelist_order();
2296 	else
2297 		current_zonelist_order = user_zonelist_order;
2298 }
2299 
2300 static void build_zonelists(pg_data_t *pgdat)
2301 {
2302 	int j, node, load;
2303 	enum zone_type i;
2304 	nodemask_t used_mask;
2305 	int local_node, prev_node;
2306 	struct zonelist *zonelist;
2307 	int order = current_zonelist_order;
2308 
2309 	/* initialize zonelists */
2310 	for (i = 0; i < MAX_ZONELISTS; i++) {
2311 		zonelist = pgdat->node_zonelists + i;
2312 		zonelist->_zonerefs[0].zone = NULL;
2313 		zonelist->_zonerefs[0].zone_idx = 0;
2314 	}
2315 
2316 	/* NUMA-aware ordering of nodes */
2317 	local_node = pgdat->node_id;
2318 	load = num_online_nodes();
2319 	prev_node = local_node;
2320 	nodes_clear(used_mask);
2321 
2322 	memset(node_load, 0, sizeof(node_load));
2323 	memset(node_order, 0, sizeof(node_order));
2324 	j = 0;
2325 
2326 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2327 		int distance = node_distance(local_node, node);
2328 
2329 		/*
2330 		 * If another node is sufficiently far away then it is better
2331 		 * to reclaim pages in a zone before going off node.
2332 		 */
2333 		if (distance > RECLAIM_DISTANCE)
2334 			zone_reclaim_mode = 1;
2335 
2336 		/*
2337 		 * We don't want to pressure a particular node.
2338 		 * So adding penalty to the first node in same
2339 		 * distance group to make it round-robin.
2340 		 */
2341 		if (distance != node_distance(local_node, prev_node))
2342 			node_load[node] = load;
2343 
2344 		prev_node = node;
2345 		load--;
2346 		if (order == ZONELIST_ORDER_NODE)
2347 			build_zonelists_in_node_order(pgdat, node);
2348 		else
2349 			node_order[j++] = node;	/* remember order */
2350 	}
2351 
2352 	if (order == ZONELIST_ORDER_ZONE) {
2353 		/* calculate node order -- i.e., DMA last! */
2354 		build_zonelists_in_zone_order(pgdat, j);
2355 	}
2356 
2357 	build_thisnode_zonelists(pgdat);
2358 }
2359 
2360 /* Construct the zonelist performance cache - see further mmzone.h */
2361 static void build_zonelist_cache(pg_data_t *pgdat)
2362 {
2363 	struct zonelist *zonelist;
2364 	struct zonelist_cache *zlc;
2365 	struct zoneref *z;
2366 
2367 	zonelist = &pgdat->node_zonelists[0];
2368 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2369 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2370 	for (z = zonelist->_zonerefs; z->zone; z++)
2371 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2372 }
2373 
2374 
2375 #else	/* CONFIG_NUMA */
2376 
2377 static void set_zonelist_order(void)
2378 {
2379 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2380 }
2381 
2382 static void build_zonelists(pg_data_t *pgdat)
2383 {
2384 	int node, local_node;
2385 	enum zone_type j;
2386 	struct zonelist *zonelist;
2387 
2388 	local_node = pgdat->node_id;
2389 
2390 	zonelist = &pgdat->node_zonelists[0];
2391 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2392 
2393 	/*
2394 	 * Now we build the zonelist so that it contains the zones
2395 	 * of all the other nodes.
2396 	 * We don't want to pressure a particular node, so when
2397 	 * building the zones for node N, we make sure that the
2398 	 * zones coming right after the local ones are those from
2399 	 * node N+1 (modulo N)
2400 	 */
2401 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2402 		if (!node_online(node))
2403 			continue;
2404 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2405 							MAX_NR_ZONES - 1);
2406 	}
2407 	for (node = 0; node < local_node; node++) {
2408 		if (!node_online(node))
2409 			continue;
2410 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2411 							MAX_NR_ZONES - 1);
2412 	}
2413 
2414 	zonelist->_zonerefs[j].zone = NULL;
2415 	zonelist->_zonerefs[j].zone_idx = 0;
2416 }
2417 
2418 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2419 static void build_zonelist_cache(pg_data_t *pgdat)
2420 {
2421 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2422 }
2423 
2424 #endif	/* CONFIG_NUMA */
2425 
2426 /* return values int ....just for stop_machine() */
2427 static int __build_all_zonelists(void *dummy)
2428 {
2429 	int nid;
2430 
2431 	for_each_online_node(nid) {
2432 		pg_data_t *pgdat = NODE_DATA(nid);
2433 
2434 		build_zonelists(pgdat);
2435 		build_zonelist_cache(pgdat);
2436 	}
2437 	return 0;
2438 }
2439 
2440 void build_all_zonelists(void)
2441 {
2442 	set_zonelist_order();
2443 
2444 	if (system_state == SYSTEM_BOOTING) {
2445 		__build_all_zonelists(NULL);
2446 		mminit_verify_zonelist();
2447 		cpuset_init_current_mems_allowed();
2448 	} else {
2449 		/* we have to stop all cpus to guarantee there is no user
2450 		   of zonelist */
2451 		stop_machine(__build_all_zonelists, NULL, NULL);
2452 		/* cpuset refresh routine should be here */
2453 	}
2454 	vm_total_pages = nr_free_pagecache_pages();
2455 	/*
2456 	 * Disable grouping by mobility if the number of pages in the
2457 	 * system is too low to allow the mechanism to work. It would be
2458 	 * more accurate, but expensive to check per-zone. This check is
2459 	 * made on memory-hotadd so a system can start with mobility
2460 	 * disabled and enable it later
2461 	 */
2462 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2463 		page_group_by_mobility_disabled = 1;
2464 	else
2465 		page_group_by_mobility_disabled = 0;
2466 
2467 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2468 		"Total pages: %ld\n",
2469 			num_online_nodes(),
2470 			zonelist_order_name[current_zonelist_order],
2471 			page_group_by_mobility_disabled ? "off" : "on",
2472 			vm_total_pages);
2473 #ifdef CONFIG_NUMA
2474 	printk("Policy zone: %s\n", zone_names[policy_zone]);
2475 #endif
2476 }
2477 
2478 /*
2479  * Helper functions to size the waitqueue hash table.
2480  * Essentially these want to choose hash table sizes sufficiently
2481  * large so that collisions trying to wait on pages are rare.
2482  * But in fact, the number of active page waitqueues on typical
2483  * systems is ridiculously low, less than 200. So this is even
2484  * conservative, even though it seems large.
2485  *
2486  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2487  * waitqueues, i.e. the size of the waitq table given the number of pages.
2488  */
2489 #define PAGES_PER_WAITQUEUE	256
2490 
2491 #ifndef CONFIG_MEMORY_HOTPLUG
2492 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2493 {
2494 	unsigned long size = 1;
2495 
2496 	pages /= PAGES_PER_WAITQUEUE;
2497 
2498 	while (size < pages)
2499 		size <<= 1;
2500 
2501 	/*
2502 	 * Once we have dozens or even hundreds of threads sleeping
2503 	 * on IO we've got bigger problems than wait queue collision.
2504 	 * Limit the size of the wait table to a reasonable size.
2505 	 */
2506 	size = min(size, 4096UL);
2507 
2508 	return max(size, 4UL);
2509 }
2510 #else
2511 /*
2512  * A zone's size might be changed by hot-add, so it is not possible to determine
2513  * a suitable size for its wait_table.  So we use the maximum size now.
2514  *
2515  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2516  *
2517  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2518  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2519  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2520  *
2521  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2522  * or more by the traditional way. (See above).  It equals:
2523  *
2524  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2525  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2526  *    powerpc (64K page size)             : =  (32G +16M)byte.
2527  */
2528 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2529 {
2530 	return 4096UL;
2531 }
2532 #endif
2533 
2534 /*
2535  * This is an integer logarithm so that shifts can be used later
2536  * to extract the more random high bits from the multiplicative
2537  * hash function before the remainder is taken.
2538  */
2539 static inline unsigned long wait_table_bits(unsigned long size)
2540 {
2541 	return ffz(~size);
2542 }
2543 
2544 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2545 
2546 /*
2547  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2548  * of blocks reserved is based on zone->pages_min. The memory within the
2549  * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2550  * higher will lead to a bigger reserve which will get freed as contiguous
2551  * blocks as reclaim kicks in
2552  */
2553 static void setup_zone_migrate_reserve(struct zone *zone)
2554 {
2555 	unsigned long start_pfn, pfn, end_pfn;
2556 	struct page *page;
2557 	unsigned long reserve, block_migratetype;
2558 
2559 	/* Get the start pfn, end pfn and the number of blocks to reserve */
2560 	start_pfn = zone->zone_start_pfn;
2561 	end_pfn = start_pfn + zone->spanned_pages;
2562 	reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2563 							pageblock_order;
2564 
2565 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2566 		if (!pfn_valid(pfn))
2567 			continue;
2568 		page = pfn_to_page(pfn);
2569 
2570 		/* Watch out for overlapping nodes */
2571 		if (page_to_nid(page) != zone_to_nid(zone))
2572 			continue;
2573 
2574 		/* Blocks with reserved pages will never free, skip them. */
2575 		if (PageReserved(page))
2576 			continue;
2577 
2578 		block_migratetype = get_pageblock_migratetype(page);
2579 
2580 		/* If this block is reserved, account for it */
2581 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2582 			reserve--;
2583 			continue;
2584 		}
2585 
2586 		/* Suitable for reserving if this block is movable */
2587 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2588 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2589 			move_freepages_block(zone, page, MIGRATE_RESERVE);
2590 			reserve--;
2591 			continue;
2592 		}
2593 
2594 		/*
2595 		 * If the reserve is met and this is a previous reserved block,
2596 		 * take it back
2597 		 */
2598 		if (block_migratetype == MIGRATE_RESERVE) {
2599 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2600 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2601 		}
2602 	}
2603 }
2604 
2605 /*
2606  * Initially all pages are reserved - free ones are freed
2607  * up by free_all_bootmem() once the early boot process is
2608  * done. Non-atomic initialization, single-pass.
2609  */
2610 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2611 		unsigned long start_pfn, enum memmap_context context)
2612 {
2613 	struct page *page;
2614 	unsigned long end_pfn = start_pfn + size;
2615 	unsigned long pfn;
2616 	struct zone *z;
2617 
2618 	if (highest_memmap_pfn < end_pfn - 1)
2619 		highest_memmap_pfn = end_pfn - 1;
2620 
2621 	z = &NODE_DATA(nid)->node_zones[zone];
2622 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2623 		/*
2624 		 * There can be holes in boot-time mem_map[]s
2625 		 * handed to this function.  They do not
2626 		 * exist on hotplugged memory.
2627 		 */
2628 		if (context == MEMMAP_EARLY) {
2629 			if (!early_pfn_valid(pfn))
2630 				continue;
2631 			if (!early_pfn_in_nid(pfn, nid))
2632 				continue;
2633 		}
2634 		page = pfn_to_page(pfn);
2635 		set_page_links(page, zone, nid, pfn);
2636 		mminit_verify_page_links(page, zone, nid, pfn);
2637 		init_page_count(page);
2638 		reset_page_mapcount(page);
2639 		SetPageReserved(page);
2640 		/*
2641 		 * Mark the block movable so that blocks are reserved for
2642 		 * movable at startup. This will force kernel allocations
2643 		 * to reserve their blocks rather than leaking throughout
2644 		 * the address space during boot when many long-lived
2645 		 * kernel allocations are made. Later some blocks near
2646 		 * the start are marked MIGRATE_RESERVE by
2647 		 * setup_zone_migrate_reserve()
2648 		 *
2649 		 * bitmap is created for zone's valid pfn range. but memmap
2650 		 * can be created for invalid pages (for alignment)
2651 		 * check here not to call set_pageblock_migratetype() against
2652 		 * pfn out of zone.
2653 		 */
2654 		if ((z->zone_start_pfn <= pfn)
2655 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
2656 		    && !(pfn & (pageblock_nr_pages - 1)))
2657 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2658 
2659 		INIT_LIST_HEAD(&page->lru);
2660 #ifdef WANT_PAGE_VIRTUAL
2661 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2662 		if (!is_highmem_idx(zone))
2663 			set_page_address(page, __va(pfn << PAGE_SHIFT));
2664 #endif
2665 	}
2666 }
2667 
2668 static void __meminit zone_init_free_lists(struct zone *zone)
2669 {
2670 	int order, t;
2671 	for_each_migratetype_order(order, t) {
2672 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2673 		zone->free_area[order].nr_free = 0;
2674 	}
2675 }
2676 
2677 #ifndef __HAVE_ARCH_MEMMAP_INIT
2678 #define memmap_init(size, nid, zone, start_pfn) \
2679 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2680 #endif
2681 
2682 static int zone_batchsize(struct zone *zone)
2683 {
2684 #ifdef CONFIG_MMU
2685 	int batch;
2686 
2687 	/*
2688 	 * The per-cpu-pages pools are set to around 1000th of the
2689 	 * size of the zone.  But no more than 1/2 of a meg.
2690 	 *
2691 	 * OK, so we don't know how big the cache is.  So guess.
2692 	 */
2693 	batch = zone->present_pages / 1024;
2694 	if (batch * PAGE_SIZE > 512 * 1024)
2695 		batch = (512 * 1024) / PAGE_SIZE;
2696 	batch /= 4;		/* We effectively *= 4 below */
2697 	if (batch < 1)
2698 		batch = 1;
2699 
2700 	/*
2701 	 * Clamp the batch to a 2^n - 1 value. Having a power
2702 	 * of 2 value was found to be more likely to have
2703 	 * suboptimal cache aliasing properties in some cases.
2704 	 *
2705 	 * For example if 2 tasks are alternately allocating
2706 	 * batches of pages, one task can end up with a lot
2707 	 * of pages of one half of the possible page colors
2708 	 * and the other with pages of the other colors.
2709 	 */
2710 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
2711 
2712 	return batch;
2713 
2714 #else
2715 	/* The deferral and batching of frees should be suppressed under NOMMU
2716 	 * conditions.
2717 	 *
2718 	 * The problem is that NOMMU needs to be able to allocate large chunks
2719 	 * of contiguous memory as there's no hardware page translation to
2720 	 * assemble apparent contiguous memory from discontiguous pages.
2721 	 *
2722 	 * Queueing large contiguous runs of pages for batching, however,
2723 	 * causes the pages to actually be freed in smaller chunks.  As there
2724 	 * can be a significant delay between the individual batches being
2725 	 * recycled, this leads to the once large chunks of space being
2726 	 * fragmented and becoming unavailable for high-order allocations.
2727 	 */
2728 	return 0;
2729 #endif
2730 }
2731 
2732 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2733 {
2734 	struct per_cpu_pages *pcp;
2735 
2736 	memset(p, 0, sizeof(*p));
2737 
2738 	pcp = &p->pcp;
2739 	pcp->count = 0;
2740 	pcp->high = 6 * batch;
2741 	pcp->batch = max(1UL, 1 * batch);
2742 	INIT_LIST_HEAD(&pcp->list);
2743 }
2744 
2745 /*
2746  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2747  * to the value high for the pageset p.
2748  */
2749 
2750 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2751 				unsigned long high)
2752 {
2753 	struct per_cpu_pages *pcp;
2754 
2755 	pcp = &p->pcp;
2756 	pcp->high = high;
2757 	pcp->batch = max(1UL, high/4);
2758 	if ((high/4) > (PAGE_SHIFT * 8))
2759 		pcp->batch = PAGE_SHIFT * 8;
2760 }
2761 
2762 
2763 #ifdef CONFIG_NUMA
2764 /*
2765  * Boot pageset table. One per cpu which is going to be used for all
2766  * zones and all nodes. The parameters will be set in such a way
2767  * that an item put on a list will immediately be handed over to
2768  * the buddy list. This is safe since pageset manipulation is done
2769  * with interrupts disabled.
2770  *
2771  * Some NUMA counter updates may also be caught by the boot pagesets.
2772  *
2773  * The boot_pagesets must be kept even after bootup is complete for
2774  * unused processors and/or zones. They do play a role for bootstrapping
2775  * hotplugged processors.
2776  *
2777  * zoneinfo_show() and maybe other functions do
2778  * not check if the processor is online before following the pageset pointer.
2779  * Other parts of the kernel may not check if the zone is available.
2780  */
2781 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2782 
2783 /*
2784  * Dynamically allocate memory for the
2785  * per cpu pageset array in struct zone.
2786  */
2787 static int __cpuinit process_zones(int cpu)
2788 {
2789 	struct zone *zone, *dzone;
2790 	int node = cpu_to_node(cpu);
2791 
2792 	node_set_state(node, N_CPU);	/* this node has a cpu */
2793 
2794 	for_each_populated_zone(zone) {
2795 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2796 					 GFP_KERNEL, node);
2797 		if (!zone_pcp(zone, cpu))
2798 			goto bad;
2799 
2800 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2801 
2802 		if (percpu_pagelist_fraction)
2803 			setup_pagelist_highmark(zone_pcp(zone, cpu),
2804 			 	(zone->present_pages / percpu_pagelist_fraction));
2805 	}
2806 
2807 	return 0;
2808 bad:
2809 	for_each_zone(dzone) {
2810 		if (!populated_zone(dzone))
2811 			continue;
2812 		if (dzone == zone)
2813 			break;
2814 		kfree(zone_pcp(dzone, cpu));
2815 		zone_pcp(dzone, cpu) = NULL;
2816 	}
2817 	return -ENOMEM;
2818 }
2819 
2820 static inline void free_zone_pagesets(int cpu)
2821 {
2822 	struct zone *zone;
2823 
2824 	for_each_zone(zone) {
2825 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2826 
2827 		/* Free per_cpu_pageset if it is slab allocated */
2828 		if (pset != &boot_pageset[cpu])
2829 			kfree(pset);
2830 		zone_pcp(zone, cpu) = NULL;
2831 	}
2832 }
2833 
2834 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2835 		unsigned long action,
2836 		void *hcpu)
2837 {
2838 	int cpu = (long)hcpu;
2839 	int ret = NOTIFY_OK;
2840 
2841 	switch (action) {
2842 	case CPU_UP_PREPARE:
2843 	case CPU_UP_PREPARE_FROZEN:
2844 		if (process_zones(cpu))
2845 			ret = NOTIFY_BAD;
2846 		break;
2847 	case CPU_UP_CANCELED:
2848 	case CPU_UP_CANCELED_FROZEN:
2849 	case CPU_DEAD:
2850 	case CPU_DEAD_FROZEN:
2851 		free_zone_pagesets(cpu);
2852 		break;
2853 	default:
2854 		break;
2855 	}
2856 	return ret;
2857 }
2858 
2859 static struct notifier_block __cpuinitdata pageset_notifier =
2860 	{ &pageset_cpuup_callback, NULL, 0 };
2861 
2862 void __init setup_per_cpu_pageset(void)
2863 {
2864 	int err;
2865 
2866 	/* Initialize per_cpu_pageset for cpu 0.
2867 	 * A cpuup callback will do this for every cpu
2868 	 * as it comes online
2869 	 */
2870 	err = process_zones(smp_processor_id());
2871 	BUG_ON(err);
2872 	register_cpu_notifier(&pageset_notifier);
2873 }
2874 
2875 #endif
2876 
2877 static noinline __init_refok
2878 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2879 {
2880 	int i;
2881 	struct pglist_data *pgdat = zone->zone_pgdat;
2882 	size_t alloc_size;
2883 
2884 	/*
2885 	 * The per-page waitqueue mechanism uses hashed waitqueues
2886 	 * per zone.
2887 	 */
2888 	zone->wait_table_hash_nr_entries =
2889 		 wait_table_hash_nr_entries(zone_size_pages);
2890 	zone->wait_table_bits =
2891 		wait_table_bits(zone->wait_table_hash_nr_entries);
2892 	alloc_size = zone->wait_table_hash_nr_entries
2893 					* sizeof(wait_queue_head_t);
2894 
2895 	if (!slab_is_available()) {
2896 		zone->wait_table = (wait_queue_head_t *)
2897 			alloc_bootmem_node(pgdat, alloc_size);
2898 	} else {
2899 		/*
2900 		 * This case means that a zone whose size was 0 gets new memory
2901 		 * via memory hot-add.
2902 		 * But it may be the case that a new node was hot-added.  In
2903 		 * this case vmalloc() will not be able to use this new node's
2904 		 * memory - this wait_table must be initialized to use this new
2905 		 * node itself as well.
2906 		 * To use this new node's memory, further consideration will be
2907 		 * necessary.
2908 		 */
2909 		zone->wait_table = vmalloc(alloc_size);
2910 	}
2911 	if (!zone->wait_table)
2912 		return -ENOMEM;
2913 
2914 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2915 		init_waitqueue_head(zone->wait_table + i);
2916 
2917 	return 0;
2918 }
2919 
2920 static __meminit void zone_pcp_init(struct zone *zone)
2921 {
2922 	int cpu;
2923 	unsigned long batch = zone_batchsize(zone);
2924 
2925 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2926 #ifdef CONFIG_NUMA
2927 		/* Early boot. Slab allocator not functional yet */
2928 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2929 		setup_pageset(&boot_pageset[cpu],0);
2930 #else
2931 		setup_pageset(zone_pcp(zone,cpu), batch);
2932 #endif
2933 	}
2934 	if (zone->present_pages)
2935 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2936 			zone->name, zone->present_pages, batch);
2937 }
2938 
2939 __meminit int init_currently_empty_zone(struct zone *zone,
2940 					unsigned long zone_start_pfn,
2941 					unsigned long size,
2942 					enum memmap_context context)
2943 {
2944 	struct pglist_data *pgdat = zone->zone_pgdat;
2945 	int ret;
2946 	ret = zone_wait_table_init(zone, size);
2947 	if (ret)
2948 		return ret;
2949 	pgdat->nr_zones = zone_idx(zone) + 1;
2950 
2951 	zone->zone_start_pfn = zone_start_pfn;
2952 
2953 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
2954 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
2955 			pgdat->node_id,
2956 			(unsigned long)zone_idx(zone),
2957 			zone_start_pfn, (zone_start_pfn + size));
2958 
2959 	zone_init_free_lists(zone);
2960 
2961 	return 0;
2962 }
2963 
2964 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2965 /*
2966  * Basic iterator support. Return the first range of PFNs for a node
2967  * Note: nid == MAX_NUMNODES returns first region regardless of node
2968  */
2969 static int __meminit first_active_region_index_in_nid(int nid)
2970 {
2971 	int i;
2972 
2973 	for (i = 0; i < nr_nodemap_entries; i++)
2974 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2975 			return i;
2976 
2977 	return -1;
2978 }
2979 
2980 /*
2981  * Basic iterator support. Return the next active range of PFNs for a node
2982  * Note: nid == MAX_NUMNODES returns next region regardless of node
2983  */
2984 static int __meminit next_active_region_index_in_nid(int index, int nid)
2985 {
2986 	for (index = index + 1; index < nr_nodemap_entries; index++)
2987 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2988 			return index;
2989 
2990 	return -1;
2991 }
2992 
2993 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2994 /*
2995  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2996  * Architectures may implement their own version but if add_active_range()
2997  * was used and there are no special requirements, this is a convenient
2998  * alternative
2999  */
3000 int __meminit __early_pfn_to_nid(unsigned long pfn)
3001 {
3002 	int i;
3003 
3004 	for (i = 0; i < nr_nodemap_entries; i++) {
3005 		unsigned long start_pfn = early_node_map[i].start_pfn;
3006 		unsigned long end_pfn = early_node_map[i].end_pfn;
3007 
3008 		if (start_pfn <= pfn && pfn < end_pfn)
3009 			return early_node_map[i].nid;
3010 	}
3011 	/* This is a memory hole */
3012 	return -1;
3013 }
3014 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3015 
3016 int __meminit early_pfn_to_nid(unsigned long pfn)
3017 {
3018 	int nid;
3019 
3020 	nid = __early_pfn_to_nid(pfn);
3021 	if (nid >= 0)
3022 		return nid;
3023 	/* just returns 0 */
3024 	return 0;
3025 }
3026 
3027 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3028 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3029 {
3030 	int nid;
3031 
3032 	nid = __early_pfn_to_nid(pfn);
3033 	if (nid >= 0 && nid != node)
3034 		return false;
3035 	return true;
3036 }
3037 #endif
3038 
3039 /* Basic iterator support to walk early_node_map[] */
3040 #define for_each_active_range_index_in_nid(i, nid) \
3041 	for (i = first_active_region_index_in_nid(nid); i != -1; \
3042 				i = next_active_region_index_in_nid(i, nid))
3043 
3044 /**
3045  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3046  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3047  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3048  *
3049  * If an architecture guarantees that all ranges registered with
3050  * add_active_ranges() contain no holes and may be freed, this
3051  * this function may be used instead of calling free_bootmem() manually.
3052  */
3053 void __init free_bootmem_with_active_regions(int nid,
3054 						unsigned long max_low_pfn)
3055 {
3056 	int i;
3057 
3058 	for_each_active_range_index_in_nid(i, nid) {
3059 		unsigned long size_pages = 0;
3060 		unsigned long end_pfn = early_node_map[i].end_pfn;
3061 
3062 		if (early_node_map[i].start_pfn >= max_low_pfn)
3063 			continue;
3064 
3065 		if (end_pfn > max_low_pfn)
3066 			end_pfn = max_low_pfn;
3067 
3068 		size_pages = end_pfn - early_node_map[i].start_pfn;
3069 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3070 				PFN_PHYS(early_node_map[i].start_pfn),
3071 				size_pages << PAGE_SHIFT);
3072 	}
3073 }
3074 
3075 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3076 {
3077 	int i;
3078 	int ret;
3079 
3080 	for_each_active_range_index_in_nid(i, nid) {
3081 		ret = work_fn(early_node_map[i].start_pfn,
3082 			      early_node_map[i].end_pfn, data);
3083 		if (ret)
3084 			break;
3085 	}
3086 }
3087 /**
3088  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3089  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3090  *
3091  * If an architecture guarantees that all ranges registered with
3092  * add_active_ranges() contain no holes and may be freed, this
3093  * function may be used instead of calling memory_present() manually.
3094  */
3095 void __init sparse_memory_present_with_active_regions(int nid)
3096 {
3097 	int i;
3098 
3099 	for_each_active_range_index_in_nid(i, nid)
3100 		memory_present(early_node_map[i].nid,
3101 				early_node_map[i].start_pfn,
3102 				early_node_map[i].end_pfn);
3103 }
3104 
3105 /**
3106  * push_node_boundaries - Push node boundaries to at least the requested boundary
3107  * @nid: The nid of the node to push the boundary for
3108  * @start_pfn: The start pfn of the node
3109  * @end_pfn: The end pfn of the node
3110  *
3111  * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3112  * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3113  * be hotplugged even though no physical memory exists. This function allows
3114  * an arch to push out the node boundaries so mem_map is allocated that can
3115  * be used later.
3116  */
3117 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3118 void __init push_node_boundaries(unsigned int nid,
3119 		unsigned long start_pfn, unsigned long end_pfn)
3120 {
3121 	mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3122 			"Entering push_node_boundaries(%u, %lu, %lu)\n",
3123 			nid, start_pfn, end_pfn);
3124 
3125 	/* Initialise the boundary for this node if necessary */
3126 	if (node_boundary_end_pfn[nid] == 0)
3127 		node_boundary_start_pfn[nid] = -1UL;
3128 
3129 	/* Update the boundaries */
3130 	if (node_boundary_start_pfn[nid] > start_pfn)
3131 		node_boundary_start_pfn[nid] = start_pfn;
3132 	if (node_boundary_end_pfn[nid] < end_pfn)
3133 		node_boundary_end_pfn[nid] = end_pfn;
3134 }
3135 
3136 /* If necessary, push the node boundary out for reserve hotadd */
3137 static void __meminit account_node_boundary(unsigned int nid,
3138 		unsigned long *start_pfn, unsigned long *end_pfn)
3139 {
3140 	mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3141 			"Entering account_node_boundary(%u, %lu, %lu)\n",
3142 			nid, *start_pfn, *end_pfn);
3143 
3144 	/* Return if boundary information has not been provided */
3145 	if (node_boundary_end_pfn[nid] == 0)
3146 		return;
3147 
3148 	/* Check the boundaries and update if necessary */
3149 	if (node_boundary_start_pfn[nid] < *start_pfn)
3150 		*start_pfn = node_boundary_start_pfn[nid];
3151 	if (node_boundary_end_pfn[nid] > *end_pfn)
3152 		*end_pfn = node_boundary_end_pfn[nid];
3153 }
3154 #else
3155 void __init push_node_boundaries(unsigned int nid,
3156 		unsigned long start_pfn, unsigned long end_pfn) {}
3157 
3158 static void __meminit account_node_boundary(unsigned int nid,
3159 		unsigned long *start_pfn, unsigned long *end_pfn) {}
3160 #endif
3161 
3162 
3163 /**
3164  * get_pfn_range_for_nid - Return the start and end page frames for a node
3165  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3166  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3167  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3168  *
3169  * It returns the start and end page frame of a node based on information
3170  * provided by an arch calling add_active_range(). If called for a node
3171  * with no available memory, a warning is printed and the start and end
3172  * PFNs will be 0.
3173  */
3174 void __meminit get_pfn_range_for_nid(unsigned int nid,
3175 			unsigned long *start_pfn, unsigned long *end_pfn)
3176 {
3177 	int i;
3178 	*start_pfn = -1UL;
3179 	*end_pfn = 0;
3180 
3181 	for_each_active_range_index_in_nid(i, nid) {
3182 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3183 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3184 	}
3185 
3186 	if (*start_pfn == -1UL)
3187 		*start_pfn = 0;
3188 
3189 	/* Push the node boundaries out if requested */
3190 	account_node_boundary(nid, start_pfn, end_pfn);
3191 }
3192 
3193 /*
3194  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3195  * assumption is made that zones within a node are ordered in monotonic
3196  * increasing memory addresses so that the "highest" populated zone is used
3197  */
3198 static void __init find_usable_zone_for_movable(void)
3199 {
3200 	int zone_index;
3201 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3202 		if (zone_index == ZONE_MOVABLE)
3203 			continue;
3204 
3205 		if (arch_zone_highest_possible_pfn[zone_index] >
3206 				arch_zone_lowest_possible_pfn[zone_index])
3207 			break;
3208 	}
3209 
3210 	VM_BUG_ON(zone_index == -1);
3211 	movable_zone = zone_index;
3212 }
3213 
3214 /*
3215  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3216  * because it is sized independant of architecture. Unlike the other zones,
3217  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3218  * in each node depending on the size of each node and how evenly kernelcore
3219  * is distributed. This helper function adjusts the zone ranges
3220  * provided by the architecture for a given node by using the end of the
3221  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3222  * zones within a node are in order of monotonic increases memory addresses
3223  */
3224 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3225 					unsigned long zone_type,
3226 					unsigned long node_start_pfn,
3227 					unsigned long node_end_pfn,
3228 					unsigned long *zone_start_pfn,
3229 					unsigned long *zone_end_pfn)
3230 {
3231 	/* Only adjust if ZONE_MOVABLE is on this node */
3232 	if (zone_movable_pfn[nid]) {
3233 		/* Size ZONE_MOVABLE */
3234 		if (zone_type == ZONE_MOVABLE) {
3235 			*zone_start_pfn = zone_movable_pfn[nid];
3236 			*zone_end_pfn = min(node_end_pfn,
3237 				arch_zone_highest_possible_pfn[movable_zone]);
3238 
3239 		/* Adjust for ZONE_MOVABLE starting within this range */
3240 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3241 				*zone_end_pfn > zone_movable_pfn[nid]) {
3242 			*zone_end_pfn = zone_movable_pfn[nid];
3243 
3244 		/* Check if this whole range is within ZONE_MOVABLE */
3245 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3246 			*zone_start_pfn = *zone_end_pfn;
3247 	}
3248 }
3249 
3250 /*
3251  * Return the number of pages a zone spans in a node, including holes
3252  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3253  */
3254 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3255 					unsigned long zone_type,
3256 					unsigned long *ignored)
3257 {
3258 	unsigned long node_start_pfn, node_end_pfn;
3259 	unsigned long zone_start_pfn, zone_end_pfn;
3260 
3261 	/* Get the start and end of the node and zone */
3262 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3263 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3264 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3265 	adjust_zone_range_for_zone_movable(nid, zone_type,
3266 				node_start_pfn, node_end_pfn,
3267 				&zone_start_pfn, &zone_end_pfn);
3268 
3269 	/* Check that this node has pages within the zone's required range */
3270 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3271 		return 0;
3272 
3273 	/* Move the zone boundaries inside the node if necessary */
3274 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3275 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3276 
3277 	/* Return the spanned pages */
3278 	return zone_end_pfn - zone_start_pfn;
3279 }
3280 
3281 /*
3282  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3283  * then all holes in the requested range will be accounted for.
3284  */
3285 static unsigned long __meminit __absent_pages_in_range(int nid,
3286 				unsigned long range_start_pfn,
3287 				unsigned long range_end_pfn)
3288 {
3289 	int i = 0;
3290 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3291 	unsigned long start_pfn;
3292 
3293 	/* Find the end_pfn of the first active range of pfns in the node */
3294 	i = first_active_region_index_in_nid(nid);
3295 	if (i == -1)
3296 		return 0;
3297 
3298 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3299 
3300 	/* Account for ranges before physical memory on this node */
3301 	if (early_node_map[i].start_pfn > range_start_pfn)
3302 		hole_pages = prev_end_pfn - range_start_pfn;
3303 
3304 	/* Find all holes for the zone within the node */
3305 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3306 
3307 		/* No need to continue if prev_end_pfn is outside the zone */
3308 		if (prev_end_pfn >= range_end_pfn)
3309 			break;
3310 
3311 		/* Make sure the end of the zone is not within the hole */
3312 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3313 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3314 
3315 		/* Update the hole size cound and move on */
3316 		if (start_pfn > range_start_pfn) {
3317 			BUG_ON(prev_end_pfn > start_pfn);
3318 			hole_pages += start_pfn - prev_end_pfn;
3319 		}
3320 		prev_end_pfn = early_node_map[i].end_pfn;
3321 	}
3322 
3323 	/* Account for ranges past physical memory on this node */
3324 	if (range_end_pfn > prev_end_pfn)
3325 		hole_pages += range_end_pfn -
3326 				max(range_start_pfn, prev_end_pfn);
3327 
3328 	return hole_pages;
3329 }
3330 
3331 /**
3332  * absent_pages_in_range - Return number of page frames in holes within a range
3333  * @start_pfn: The start PFN to start searching for holes
3334  * @end_pfn: The end PFN to stop searching for holes
3335  *
3336  * It returns the number of pages frames in memory holes within a range.
3337  */
3338 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3339 							unsigned long end_pfn)
3340 {
3341 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3342 }
3343 
3344 /* Return the number of page frames in holes in a zone on a node */
3345 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3346 					unsigned long zone_type,
3347 					unsigned long *ignored)
3348 {
3349 	unsigned long node_start_pfn, node_end_pfn;
3350 	unsigned long zone_start_pfn, zone_end_pfn;
3351 
3352 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3353 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3354 							node_start_pfn);
3355 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3356 							node_end_pfn);
3357 
3358 	adjust_zone_range_for_zone_movable(nid, zone_type,
3359 			node_start_pfn, node_end_pfn,
3360 			&zone_start_pfn, &zone_end_pfn);
3361 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3362 }
3363 
3364 #else
3365 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3366 					unsigned long zone_type,
3367 					unsigned long *zones_size)
3368 {
3369 	return zones_size[zone_type];
3370 }
3371 
3372 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3373 						unsigned long zone_type,
3374 						unsigned long *zholes_size)
3375 {
3376 	if (!zholes_size)
3377 		return 0;
3378 
3379 	return zholes_size[zone_type];
3380 }
3381 
3382 #endif
3383 
3384 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3385 		unsigned long *zones_size, unsigned long *zholes_size)
3386 {
3387 	unsigned long realtotalpages, totalpages = 0;
3388 	enum zone_type i;
3389 
3390 	for (i = 0; i < MAX_NR_ZONES; i++)
3391 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3392 								zones_size);
3393 	pgdat->node_spanned_pages = totalpages;
3394 
3395 	realtotalpages = totalpages;
3396 	for (i = 0; i < MAX_NR_ZONES; i++)
3397 		realtotalpages -=
3398 			zone_absent_pages_in_node(pgdat->node_id, i,
3399 								zholes_size);
3400 	pgdat->node_present_pages = realtotalpages;
3401 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3402 							realtotalpages);
3403 }
3404 
3405 #ifndef CONFIG_SPARSEMEM
3406 /*
3407  * Calculate the size of the zone->blockflags rounded to an unsigned long
3408  * Start by making sure zonesize is a multiple of pageblock_order by rounding
3409  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3410  * round what is now in bits to nearest long in bits, then return it in
3411  * bytes.
3412  */
3413 static unsigned long __init usemap_size(unsigned long zonesize)
3414 {
3415 	unsigned long usemapsize;
3416 
3417 	usemapsize = roundup(zonesize, pageblock_nr_pages);
3418 	usemapsize = usemapsize >> pageblock_order;
3419 	usemapsize *= NR_PAGEBLOCK_BITS;
3420 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3421 
3422 	return usemapsize / 8;
3423 }
3424 
3425 static void __init setup_usemap(struct pglist_data *pgdat,
3426 				struct zone *zone, unsigned long zonesize)
3427 {
3428 	unsigned long usemapsize = usemap_size(zonesize);
3429 	zone->pageblock_flags = NULL;
3430 	if (usemapsize)
3431 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3432 }
3433 #else
3434 static void inline setup_usemap(struct pglist_data *pgdat,
3435 				struct zone *zone, unsigned long zonesize) {}
3436 #endif /* CONFIG_SPARSEMEM */
3437 
3438 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3439 
3440 /* Return a sensible default order for the pageblock size. */
3441 static inline int pageblock_default_order(void)
3442 {
3443 	if (HPAGE_SHIFT > PAGE_SHIFT)
3444 		return HUGETLB_PAGE_ORDER;
3445 
3446 	return MAX_ORDER-1;
3447 }
3448 
3449 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3450 static inline void __init set_pageblock_order(unsigned int order)
3451 {
3452 	/* Check that pageblock_nr_pages has not already been setup */
3453 	if (pageblock_order)
3454 		return;
3455 
3456 	/*
3457 	 * Assume the largest contiguous order of interest is a huge page.
3458 	 * This value may be variable depending on boot parameters on IA64
3459 	 */
3460 	pageblock_order = order;
3461 }
3462 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3463 
3464 /*
3465  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3466  * and pageblock_default_order() are unused as pageblock_order is set
3467  * at compile-time. See include/linux/pageblock-flags.h for the values of
3468  * pageblock_order based on the kernel config
3469  */
3470 static inline int pageblock_default_order(unsigned int order)
3471 {
3472 	return MAX_ORDER-1;
3473 }
3474 #define set_pageblock_order(x)	do {} while (0)
3475 
3476 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3477 
3478 /*
3479  * Set up the zone data structures:
3480  *   - mark all pages reserved
3481  *   - mark all memory queues empty
3482  *   - clear the memory bitmaps
3483  */
3484 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3485 		unsigned long *zones_size, unsigned long *zholes_size)
3486 {
3487 	enum zone_type j;
3488 	int nid = pgdat->node_id;
3489 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3490 	int ret;
3491 
3492 	pgdat_resize_init(pgdat);
3493 	pgdat->nr_zones = 0;
3494 	init_waitqueue_head(&pgdat->kswapd_wait);
3495 	pgdat->kswapd_max_order = 0;
3496 	pgdat_page_cgroup_init(pgdat);
3497 
3498 	for (j = 0; j < MAX_NR_ZONES; j++) {
3499 		struct zone *zone = pgdat->node_zones + j;
3500 		unsigned long size, realsize, memmap_pages;
3501 		enum lru_list l;
3502 
3503 		size = zone_spanned_pages_in_node(nid, j, zones_size);
3504 		realsize = size - zone_absent_pages_in_node(nid, j,
3505 								zholes_size);
3506 
3507 		/*
3508 		 * Adjust realsize so that it accounts for how much memory
3509 		 * is used by this zone for memmap. This affects the watermark
3510 		 * and per-cpu initialisations
3511 		 */
3512 		memmap_pages =
3513 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3514 		if (realsize >= memmap_pages) {
3515 			realsize -= memmap_pages;
3516 			if (memmap_pages)
3517 				printk(KERN_DEBUG
3518 				       "  %s zone: %lu pages used for memmap\n",
3519 				       zone_names[j], memmap_pages);
3520 		} else
3521 			printk(KERN_WARNING
3522 				"  %s zone: %lu pages exceeds realsize %lu\n",
3523 				zone_names[j], memmap_pages, realsize);
3524 
3525 		/* Account for reserved pages */
3526 		if (j == 0 && realsize > dma_reserve) {
3527 			realsize -= dma_reserve;
3528 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3529 					zone_names[0], dma_reserve);
3530 		}
3531 
3532 		if (!is_highmem_idx(j))
3533 			nr_kernel_pages += realsize;
3534 		nr_all_pages += realsize;
3535 
3536 		zone->spanned_pages = size;
3537 		zone->present_pages = realsize;
3538 #ifdef CONFIG_NUMA
3539 		zone->node = nid;
3540 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3541 						/ 100;
3542 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3543 #endif
3544 		zone->name = zone_names[j];
3545 		spin_lock_init(&zone->lock);
3546 		spin_lock_init(&zone->lru_lock);
3547 		zone_seqlock_init(zone);
3548 		zone->zone_pgdat = pgdat;
3549 
3550 		zone->prev_priority = DEF_PRIORITY;
3551 
3552 		zone_pcp_init(zone);
3553 		for_each_lru(l) {
3554 			INIT_LIST_HEAD(&zone->lru[l].list);
3555 			zone->lru[l].nr_scan = 0;
3556 		}
3557 		zone->reclaim_stat.recent_rotated[0] = 0;
3558 		zone->reclaim_stat.recent_rotated[1] = 0;
3559 		zone->reclaim_stat.recent_scanned[0] = 0;
3560 		zone->reclaim_stat.recent_scanned[1] = 0;
3561 		zap_zone_vm_stats(zone);
3562 		zone->flags = 0;
3563 		if (!size)
3564 			continue;
3565 
3566 		set_pageblock_order(pageblock_default_order());
3567 		setup_usemap(pgdat, zone, size);
3568 		ret = init_currently_empty_zone(zone, zone_start_pfn,
3569 						size, MEMMAP_EARLY);
3570 		BUG_ON(ret);
3571 		memmap_init(size, nid, j, zone_start_pfn);
3572 		zone_start_pfn += size;
3573 	}
3574 }
3575 
3576 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3577 {
3578 	/* Skip empty nodes */
3579 	if (!pgdat->node_spanned_pages)
3580 		return;
3581 
3582 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3583 	/* ia64 gets its own node_mem_map, before this, without bootmem */
3584 	if (!pgdat->node_mem_map) {
3585 		unsigned long size, start, end;
3586 		struct page *map;
3587 
3588 		/*
3589 		 * The zone's endpoints aren't required to be MAX_ORDER
3590 		 * aligned but the node_mem_map endpoints must be in order
3591 		 * for the buddy allocator to function correctly.
3592 		 */
3593 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3594 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3595 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3596 		size =  (end - start) * sizeof(struct page);
3597 		map = alloc_remap(pgdat->node_id, size);
3598 		if (!map)
3599 			map = alloc_bootmem_node(pgdat, size);
3600 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3601 	}
3602 #ifndef CONFIG_NEED_MULTIPLE_NODES
3603 	/*
3604 	 * With no DISCONTIG, the global mem_map is just set as node 0's
3605 	 */
3606 	if (pgdat == NODE_DATA(0)) {
3607 		mem_map = NODE_DATA(0)->node_mem_map;
3608 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3609 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3610 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3611 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3612 	}
3613 #endif
3614 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3615 }
3616 
3617 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3618 		unsigned long node_start_pfn, unsigned long *zholes_size)
3619 {
3620 	pg_data_t *pgdat = NODE_DATA(nid);
3621 
3622 	pgdat->node_id = nid;
3623 	pgdat->node_start_pfn = node_start_pfn;
3624 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3625 
3626 	alloc_node_mem_map(pgdat);
3627 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3628 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3629 		nid, (unsigned long)pgdat,
3630 		(unsigned long)pgdat->node_mem_map);
3631 #endif
3632 
3633 	free_area_init_core(pgdat, zones_size, zholes_size);
3634 }
3635 
3636 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3637 
3638 #if MAX_NUMNODES > 1
3639 /*
3640  * Figure out the number of possible node ids.
3641  */
3642 static void __init setup_nr_node_ids(void)
3643 {
3644 	unsigned int node;
3645 	unsigned int highest = 0;
3646 
3647 	for_each_node_mask(node, node_possible_map)
3648 		highest = node;
3649 	nr_node_ids = highest + 1;
3650 }
3651 #else
3652 static inline void setup_nr_node_ids(void)
3653 {
3654 }
3655 #endif
3656 
3657 /**
3658  * add_active_range - Register a range of PFNs backed by physical memory
3659  * @nid: The node ID the range resides on
3660  * @start_pfn: The start PFN of the available physical memory
3661  * @end_pfn: The end PFN of the available physical memory
3662  *
3663  * These ranges are stored in an early_node_map[] and later used by
3664  * free_area_init_nodes() to calculate zone sizes and holes. If the
3665  * range spans a memory hole, it is up to the architecture to ensure
3666  * the memory is not freed by the bootmem allocator. If possible
3667  * the range being registered will be merged with existing ranges.
3668  */
3669 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3670 						unsigned long end_pfn)
3671 {
3672 	int i;
3673 
3674 	mminit_dprintk(MMINIT_TRACE, "memory_register",
3675 			"Entering add_active_range(%d, %#lx, %#lx) "
3676 			"%d entries of %d used\n",
3677 			nid, start_pfn, end_pfn,
3678 			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3679 
3680 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3681 
3682 	/* Merge with existing active regions if possible */
3683 	for (i = 0; i < nr_nodemap_entries; i++) {
3684 		if (early_node_map[i].nid != nid)
3685 			continue;
3686 
3687 		/* Skip if an existing region covers this new one */
3688 		if (start_pfn >= early_node_map[i].start_pfn &&
3689 				end_pfn <= early_node_map[i].end_pfn)
3690 			return;
3691 
3692 		/* Merge forward if suitable */
3693 		if (start_pfn <= early_node_map[i].end_pfn &&
3694 				end_pfn > early_node_map[i].end_pfn) {
3695 			early_node_map[i].end_pfn = end_pfn;
3696 			return;
3697 		}
3698 
3699 		/* Merge backward if suitable */
3700 		if (start_pfn < early_node_map[i].end_pfn &&
3701 				end_pfn >= early_node_map[i].start_pfn) {
3702 			early_node_map[i].start_pfn = start_pfn;
3703 			return;
3704 		}
3705 	}
3706 
3707 	/* Check that early_node_map is large enough */
3708 	if (i >= MAX_ACTIVE_REGIONS) {
3709 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3710 							MAX_ACTIVE_REGIONS);
3711 		return;
3712 	}
3713 
3714 	early_node_map[i].nid = nid;
3715 	early_node_map[i].start_pfn = start_pfn;
3716 	early_node_map[i].end_pfn = end_pfn;
3717 	nr_nodemap_entries = i + 1;
3718 }
3719 
3720 /**
3721  * remove_active_range - Shrink an existing registered range of PFNs
3722  * @nid: The node id the range is on that should be shrunk
3723  * @start_pfn: The new PFN of the range
3724  * @end_pfn: The new PFN of the range
3725  *
3726  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3727  * The map is kept near the end physical page range that has already been
3728  * registered. This function allows an arch to shrink an existing registered
3729  * range.
3730  */
3731 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3732 				unsigned long end_pfn)
3733 {
3734 	int i, j;
3735 	int removed = 0;
3736 
3737 	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3738 			  nid, start_pfn, end_pfn);
3739 
3740 	/* Find the old active region end and shrink */
3741 	for_each_active_range_index_in_nid(i, nid) {
3742 		if (early_node_map[i].start_pfn >= start_pfn &&
3743 		    early_node_map[i].end_pfn <= end_pfn) {
3744 			/* clear it */
3745 			early_node_map[i].start_pfn = 0;
3746 			early_node_map[i].end_pfn = 0;
3747 			removed = 1;
3748 			continue;
3749 		}
3750 		if (early_node_map[i].start_pfn < start_pfn &&
3751 		    early_node_map[i].end_pfn > start_pfn) {
3752 			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3753 			early_node_map[i].end_pfn = start_pfn;
3754 			if (temp_end_pfn > end_pfn)
3755 				add_active_range(nid, end_pfn, temp_end_pfn);
3756 			continue;
3757 		}
3758 		if (early_node_map[i].start_pfn >= start_pfn &&
3759 		    early_node_map[i].end_pfn > end_pfn &&
3760 		    early_node_map[i].start_pfn < end_pfn) {
3761 			early_node_map[i].start_pfn = end_pfn;
3762 			continue;
3763 		}
3764 	}
3765 
3766 	if (!removed)
3767 		return;
3768 
3769 	/* remove the blank ones */
3770 	for (i = nr_nodemap_entries - 1; i > 0; i--) {
3771 		if (early_node_map[i].nid != nid)
3772 			continue;
3773 		if (early_node_map[i].end_pfn)
3774 			continue;
3775 		/* we found it, get rid of it */
3776 		for (j = i; j < nr_nodemap_entries - 1; j++)
3777 			memcpy(&early_node_map[j], &early_node_map[j+1],
3778 				sizeof(early_node_map[j]));
3779 		j = nr_nodemap_entries - 1;
3780 		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3781 		nr_nodemap_entries--;
3782 	}
3783 }
3784 
3785 /**
3786  * remove_all_active_ranges - Remove all currently registered regions
3787  *
3788  * During discovery, it may be found that a table like SRAT is invalid
3789  * and an alternative discovery method must be used. This function removes
3790  * all currently registered regions.
3791  */
3792 void __init remove_all_active_ranges(void)
3793 {
3794 	memset(early_node_map, 0, sizeof(early_node_map));
3795 	nr_nodemap_entries = 0;
3796 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3797 	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3798 	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3799 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3800 }
3801 
3802 /* Compare two active node_active_regions */
3803 static int __init cmp_node_active_region(const void *a, const void *b)
3804 {
3805 	struct node_active_region *arange = (struct node_active_region *)a;
3806 	struct node_active_region *brange = (struct node_active_region *)b;
3807 
3808 	/* Done this way to avoid overflows */
3809 	if (arange->start_pfn > brange->start_pfn)
3810 		return 1;
3811 	if (arange->start_pfn < brange->start_pfn)
3812 		return -1;
3813 
3814 	return 0;
3815 }
3816 
3817 /* sort the node_map by start_pfn */
3818 static void __init sort_node_map(void)
3819 {
3820 	sort(early_node_map, (size_t)nr_nodemap_entries,
3821 			sizeof(struct node_active_region),
3822 			cmp_node_active_region, NULL);
3823 }
3824 
3825 /* Find the lowest pfn for a node */
3826 static unsigned long __init find_min_pfn_for_node(int nid)
3827 {
3828 	int i;
3829 	unsigned long min_pfn = ULONG_MAX;
3830 
3831 	/* Assuming a sorted map, the first range found has the starting pfn */
3832 	for_each_active_range_index_in_nid(i, nid)
3833 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3834 
3835 	if (min_pfn == ULONG_MAX) {
3836 		printk(KERN_WARNING
3837 			"Could not find start_pfn for node %d\n", nid);
3838 		return 0;
3839 	}
3840 
3841 	return min_pfn;
3842 }
3843 
3844 /**
3845  * find_min_pfn_with_active_regions - Find the minimum PFN registered
3846  *
3847  * It returns the minimum PFN based on information provided via
3848  * add_active_range().
3849  */
3850 unsigned long __init find_min_pfn_with_active_regions(void)
3851 {
3852 	return find_min_pfn_for_node(MAX_NUMNODES);
3853 }
3854 
3855 /*
3856  * early_calculate_totalpages()
3857  * Sum pages in active regions for movable zone.
3858  * Populate N_HIGH_MEMORY for calculating usable_nodes.
3859  */
3860 static unsigned long __init early_calculate_totalpages(void)
3861 {
3862 	int i;
3863 	unsigned long totalpages = 0;
3864 
3865 	for (i = 0; i < nr_nodemap_entries; i++) {
3866 		unsigned long pages = early_node_map[i].end_pfn -
3867 						early_node_map[i].start_pfn;
3868 		totalpages += pages;
3869 		if (pages)
3870 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3871 	}
3872   	return totalpages;
3873 }
3874 
3875 /*
3876  * Find the PFN the Movable zone begins in each node. Kernel memory
3877  * is spread evenly between nodes as long as the nodes have enough
3878  * memory. When they don't, some nodes will have more kernelcore than
3879  * others
3880  */
3881 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3882 {
3883 	int i, nid;
3884 	unsigned long usable_startpfn;
3885 	unsigned long kernelcore_node, kernelcore_remaining;
3886 	unsigned long totalpages = early_calculate_totalpages();
3887 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3888 
3889 	/*
3890 	 * If movablecore was specified, calculate what size of
3891 	 * kernelcore that corresponds so that memory usable for
3892 	 * any allocation type is evenly spread. If both kernelcore
3893 	 * and movablecore are specified, then the value of kernelcore
3894 	 * will be used for required_kernelcore if it's greater than
3895 	 * what movablecore would have allowed.
3896 	 */
3897 	if (required_movablecore) {
3898 		unsigned long corepages;
3899 
3900 		/*
3901 		 * Round-up so that ZONE_MOVABLE is at least as large as what
3902 		 * was requested by the user
3903 		 */
3904 		required_movablecore =
3905 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3906 		corepages = totalpages - required_movablecore;
3907 
3908 		required_kernelcore = max(required_kernelcore, corepages);
3909 	}
3910 
3911 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
3912 	if (!required_kernelcore)
3913 		return;
3914 
3915 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3916 	find_usable_zone_for_movable();
3917 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3918 
3919 restart:
3920 	/* Spread kernelcore memory as evenly as possible throughout nodes */
3921 	kernelcore_node = required_kernelcore / usable_nodes;
3922 	for_each_node_state(nid, N_HIGH_MEMORY) {
3923 		/*
3924 		 * Recalculate kernelcore_node if the division per node
3925 		 * now exceeds what is necessary to satisfy the requested
3926 		 * amount of memory for the kernel
3927 		 */
3928 		if (required_kernelcore < kernelcore_node)
3929 			kernelcore_node = required_kernelcore / usable_nodes;
3930 
3931 		/*
3932 		 * As the map is walked, we track how much memory is usable
3933 		 * by the kernel using kernelcore_remaining. When it is
3934 		 * 0, the rest of the node is usable by ZONE_MOVABLE
3935 		 */
3936 		kernelcore_remaining = kernelcore_node;
3937 
3938 		/* Go through each range of PFNs within this node */
3939 		for_each_active_range_index_in_nid(i, nid) {
3940 			unsigned long start_pfn, end_pfn;
3941 			unsigned long size_pages;
3942 
3943 			start_pfn = max(early_node_map[i].start_pfn,
3944 						zone_movable_pfn[nid]);
3945 			end_pfn = early_node_map[i].end_pfn;
3946 			if (start_pfn >= end_pfn)
3947 				continue;
3948 
3949 			/* Account for what is only usable for kernelcore */
3950 			if (start_pfn < usable_startpfn) {
3951 				unsigned long kernel_pages;
3952 				kernel_pages = min(end_pfn, usable_startpfn)
3953 								- start_pfn;
3954 
3955 				kernelcore_remaining -= min(kernel_pages,
3956 							kernelcore_remaining);
3957 				required_kernelcore -= min(kernel_pages,
3958 							required_kernelcore);
3959 
3960 				/* Continue if range is now fully accounted */
3961 				if (end_pfn <= usable_startpfn) {
3962 
3963 					/*
3964 					 * Push zone_movable_pfn to the end so
3965 					 * that if we have to rebalance
3966 					 * kernelcore across nodes, we will
3967 					 * not double account here
3968 					 */
3969 					zone_movable_pfn[nid] = end_pfn;
3970 					continue;
3971 				}
3972 				start_pfn = usable_startpfn;
3973 			}
3974 
3975 			/*
3976 			 * The usable PFN range for ZONE_MOVABLE is from
3977 			 * start_pfn->end_pfn. Calculate size_pages as the
3978 			 * number of pages used as kernelcore
3979 			 */
3980 			size_pages = end_pfn - start_pfn;
3981 			if (size_pages > kernelcore_remaining)
3982 				size_pages = kernelcore_remaining;
3983 			zone_movable_pfn[nid] = start_pfn + size_pages;
3984 
3985 			/*
3986 			 * Some kernelcore has been met, update counts and
3987 			 * break if the kernelcore for this node has been
3988 			 * satisified
3989 			 */
3990 			required_kernelcore -= min(required_kernelcore,
3991 								size_pages);
3992 			kernelcore_remaining -= size_pages;
3993 			if (!kernelcore_remaining)
3994 				break;
3995 		}
3996 	}
3997 
3998 	/*
3999 	 * If there is still required_kernelcore, we do another pass with one
4000 	 * less node in the count. This will push zone_movable_pfn[nid] further
4001 	 * along on the nodes that still have memory until kernelcore is
4002 	 * satisified
4003 	 */
4004 	usable_nodes--;
4005 	if (usable_nodes && required_kernelcore > usable_nodes)
4006 		goto restart;
4007 
4008 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4009 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4010 		zone_movable_pfn[nid] =
4011 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4012 }
4013 
4014 /* Any regular memory on that node ? */
4015 static void check_for_regular_memory(pg_data_t *pgdat)
4016 {
4017 #ifdef CONFIG_HIGHMEM
4018 	enum zone_type zone_type;
4019 
4020 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4021 		struct zone *zone = &pgdat->node_zones[zone_type];
4022 		if (zone->present_pages)
4023 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4024 	}
4025 #endif
4026 }
4027 
4028 /**
4029  * free_area_init_nodes - Initialise all pg_data_t and zone data
4030  * @max_zone_pfn: an array of max PFNs for each zone
4031  *
4032  * This will call free_area_init_node() for each active node in the system.
4033  * Using the page ranges provided by add_active_range(), the size of each
4034  * zone in each node and their holes is calculated. If the maximum PFN
4035  * between two adjacent zones match, it is assumed that the zone is empty.
4036  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4037  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4038  * starts where the previous one ended. For example, ZONE_DMA32 starts
4039  * at arch_max_dma_pfn.
4040  */
4041 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4042 {
4043 	unsigned long nid;
4044 	int i;
4045 
4046 	/* Sort early_node_map as initialisation assumes it is sorted */
4047 	sort_node_map();
4048 
4049 	/* Record where the zone boundaries are */
4050 	memset(arch_zone_lowest_possible_pfn, 0,
4051 				sizeof(arch_zone_lowest_possible_pfn));
4052 	memset(arch_zone_highest_possible_pfn, 0,
4053 				sizeof(arch_zone_highest_possible_pfn));
4054 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4055 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4056 	for (i = 1; i < MAX_NR_ZONES; i++) {
4057 		if (i == ZONE_MOVABLE)
4058 			continue;
4059 		arch_zone_lowest_possible_pfn[i] =
4060 			arch_zone_highest_possible_pfn[i-1];
4061 		arch_zone_highest_possible_pfn[i] =
4062 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4063 	}
4064 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4065 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4066 
4067 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4068 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4069 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4070 
4071 	/* Print out the zone ranges */
4072 	printk("Zone PFN ranges:\n");
4073 	for (i = 0; i < MAX_NR_ZONES; i++) {
4074 		if (i == ZONE_MOVABLE)
4075 			continue;
4076 		printk("  %-8s %0#10lx -> %0#10lx\n",
4077 				zone_names[i],
4078 				arch_zone_lowest_possible_pfn[i],
4079 				arch_zone_highest_possible_pfn[i]);
4080 	}
4081 
4082 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4083 	printk("Movable zone start PFN for each node\n");
4084 	for (i = 0; i < MAX_NUMNODES; i++) {
4085 		if (zone_movable_pfn[i])
4086 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4087 	}
4088 
4089 	/* Print out the early_node_map[] */
4090 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4091 	for (i = 0; i < nr_nodemap_entries; i++)
4092 		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4093 						early_node_map[i].start_pfn,
4094 						early_node_map[i].end_pfn);
4095 
4096 	/* Initialise every node */
4097 	mminit_verify_pageflags_layout();
4098 	setup_nr_node_ids();
4099 	for_each_online_node(nid) {
4100 		pg_data_t *pgdat = NODE_DATA(nid);
4101 		free_area_init_node(nid, NULL,
4102 				find_min_pfn_for_node(nid), NULL);
4103 
4104 		/* Any memory on that node */
4105 		if (pgdat->node_present_pages)
4106 			node_set_state(nid, N_HIGH_MEMORY);
4107 		check_for_regular_memory(pgdat);
4108 	}
4109 }
4110 
4111 static int __init cmdline_parse_core(char *p, unsigned long *core)
4112 {
4113 	unsigned long long coremem;
4114 	if (!p)
4115 		return -EINVAL;
4116 
4117 	coremem = memparse(p, &p);
4118 	*core = coremem >> PAGE_SHIFT;
4119 
4120 	/* Paranoid check that UL is enough for the coremem value */
4121 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4122 
4123 	return 0;
4124 }
4125 
4126 /*
4127  * kernelcore=size sets the amount of memory for use for allocations that
4128  * cannot be reclaimed or migrated.
4129  */
4130 static int __init cmdline_parse_kernelcore(char *p)
4131 {
4132 	return cmdline_parse_core(p, &required_kernelcore);
4133 }
4134 
4135 /*
4136  * movablecore=size sets the amount of memory for use for allocations that
4137  * can be reclaimed or migrated.
4138  */
4139 static int __init cmdline_parse_movablecore(char *p)
4140 {
4141 	return cmdline_parse_core(p, &required_movablecore);
4142 }
4143 
4144 early_param("kernelcore", cmdline_parse_kernelcore);
4145 early_param("movablecore", cmdline_parse_movablecore);
4146 
4147 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4148 
4149 /**
4150  * set_dma_reserve - set the specified number of pages reserved in the first zone
4151  * @new_dma_reserve: The number of pages to mark reserved
4152  *
4153  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4154  * In the DMA zone, a significant percentage may be consumed by kernel image
4155  * and other unfreeable allocations which can skew the watermarks badly. This
4156  * function may optionally be used to account for unfreeable pages in the
4157  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4158  * smaller per-cpu batchsize.
4159  */
4160 void __init set_dma_reserve(unsigned long new_dma_reserve)
4161 {
4162 	dma_reserve = new_dma_reserve;
4163 }
4164 
4165 #ifndef CONFIG_NEED_MULTIPLE_NODES
4166 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4167 EXPORT_SYMBOL(contig_page_data);
4168 #endif
4169 
4170 void __init free_area_init(unsigned long *zones_size)
4171 {
4172 	free_area_init_node(0, zones_size,
4173 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4174 }
4175 
4176 static int page_alloc_cpu_notify(struct notifier_block *self,
4177 				 unsigned long action, void *hcpu)
4178 {
4179 	int cpu = (unsigned long)hcpu;
4180 
4181 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4182 		drain_pages(cpu);
4183 
4184 		/*
4185 		 * Spill the event counters of the dead processor
4186 		 * into the current processors event counters.
4187 		 * This artificially elevates the count of the current
4188 		 * processor.
4189 		 */
4190 		vm_events_fold_cpu(cpu);
4191 
4192 		/*
4193 		 * Zero the differential counters of the dead processor
4194 		 * so that the vm statistics are consistent.
4195 		 *
4196 		 * This is only okay since the processor is dead and cannot
4197 		 * race with what we are doing.
4198 		 */
4199 		refresh_cpu_vm_stats(cpu);
4200 	}
4201 	return NOTIFY_OK;
4202 }
4203 
4204 void __init page_alloc_init(void)
4205 {
4206 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4207 }
4208 
4209 /*
4210  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4211  *	or min_free_kbytes changes.
4212  */
4213 static void calculate_totalreserve_pages(void)
4214 {
4215 	struct pglist_data *pgdat;
4216 	unsigned long reserve_pages = 0;
4217 	enum zone_type i, j;
4218 
4219 	for_each_online_pgdat(pgdat) {
4220 		for (i = 0; i < MAX_NR_ZONES; i++) {
4221 			struct zone *zone = pgdat->node_zones + i;
4222 			unsigned long max = 0;
4223 
4224 			/* Find valid and maximum lowmem_reserve in the zone */
4225 			for (j = i; j < MAX_NR_ZONES; j++) {
4226 				if (zone->lowmem_reserve[j] > max)
4227 					max = zone->lowmem_reserve[j];
4228 			}
4229 
4230 			/* we treat pages_high as reserved pages. */
4231 			max += zone->pages_high;
4232 
4233 			if (max > zone->present_pages)
4234 				max = zone->present_pages;
4235 			reserve_pages += max;
4236 		}
4237 	}
4238 	totalreserve_pages = reserve_pages;
4239 }
4240 
4241 /*
4242  * setup_per_zone_lowmem_reserve - called whenever
4243  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4244  *	has a correct pages reserved value, so an adequate number of
4245  *	pages are left in the zone after a successful __alloc_pages().
4246  */
4247 static void setup_per_zone_lowmem_reserve(void)
4248 {
4249 	struct pglist_data *pgdat;
4250 	enum zone_type j, idx;
4251 
4252 	for_each_online_pgdat(pgdat) {
4253 		for (j = 0; j < MAX_NR_ZONES; j++) {
4254 			struct zone *zone = pgdat->node_zones + j;
4255 			unsigned long present_pages = zone->present_pages;
4256 
4257 			zone->lowmem_reserve[j] = 0;
4258 
4259 			idx = j;
4260 			while (idx) {
4261 				struct zone *lower_zone;
4262 
4263 				idx--;
4264 
4265 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4266 					sysctl_lowmem_reserve_ratio[idx] = 1;
4267 
4268 				lower_zone = pgdat->node_zones + idx;
4269 				lower_zone->lowmem_reserve[j] = present_pages /
4270 					sysctl_lowmem_reserve_ratio[idx];
4271 				present_pages += lower_zone->present_pages;
4272 			}
4273 		}
4274 	}
4275 
4276 	/* update totalreserve_pages */
4277 	calculate_totalreserve_pages();
4278 }
4279 
4280 /**
4281  * setup_per_zone_pages_min - called when min_free_kbytes changes.
4282  *
4283  * Ensures that the pages_{min,low,high} values for each zone are set correctly
4284  * with respect to min_free_kbytes.
4285  */
4286 void setup_per_zone_pages_min(void)
4287 {
4288 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4289 	unsigned long lowmem_pages = 0;
4290 	struct zone *zone;
4291 	unsigned long flags;
4292 
4293 	/* Calculate total number of !ZONE_HIGHMEM pages */
4294 	for_each_zone(zone) {
4295 		if (!is_highmem(zone))
4296 			lowmem_pages += zone->present_pages;
4297 	}
4298 
4299 	for_each_zone(zone) {
4300 		u64 tmp;
4301 
4302 		spin_lock_irqsave(&zone->lock, flags);
4303 		tmp = (u64)pages_min * zone->present_pages;
4304 		do_div(tmp, lowmem_pages);
4305 		if (is_highmem(zone)) {
4306 			/*
4307 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4308 			 * need highmem pages, so cap pages_min to a small
4309 			 * value here.
4310 			 *
4311 			 * The (pages_high-pages_low) and (pages_low-pages_min)
4312 			 * deltas controls asynch page reclaim, and so should
4313 			 * not be capped for highmem.
4314 			 */
4315 			int min_pages;
4316 
4317 			min_pages = zone->present_pages / 1024;
4318 			if (min_pages < SWAP_CLUSTER_MAX)
4319 				min_pages = SWAP_CLUSTER_MAX;
4320 			if (min_pages > 128)
4321 				min_pages = 128;
4322 			zone->pages_min = min_pages;
4323 		} else {
4324 			/*
4325 			 * If it's a lowmem zone, reserve a number of pages
4326 			 * proportionate to the zone's size.
4327 			 */
4328 			zone->pages_min = tmp;
4329 		}
4330 
4331 		zone->pages_low   = zone->pages_min + (tmp >> 2);
4332 		zone->pages_high  = zone->pages_min + (tmp >> 1);
4333 		setup_zone_migrate_reserve(zone);
4334 		spin_unlock_irqrestore(&zone->lock, flags);
4335 	}
4336 
4337 	/* update totalreserve_pages */
4338 	calculate_totalreserve_pages();
4339 }
4340 
4341 /**
4342  * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4343  *
4344  * The inactive anon list should be small enough that the VM never has to
4345  * do too much work, but large enough that each inactive page has a chance
4346  * to be referenced again before it is swapped out.
4347  *
4348  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4349  * INACTIVE_ANON pages on this zone's LRU, maintained by the
4350  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4351  * the anonymous pages are kept on the inactive list.
4352  *
4353  * total     target    max
4354  * memory    ratio     inactive anon
4355  * -------------------------------------
4356  *   10MB       1         5MB
4357  *  100MB       1        50MB
4358  *    1GB       3       250MB
4359  *   10GB      10       0.9GB
4360  *  100GB      31         3GB
4361  *    1TB     101        10GB
4362  *   10TB     320        32GB
4363  */
4364 static void setup_per_zone_inactive_ratio(void)
4365 {
4366 	struct zone *zone;
4367 
4368 	for_each_zone(zone) {
4369 		unsigned int gb, ratio;
4370 
4371 		/* Zone size in gigabytes */
4372 		gb = zone->present_pages >> (30 - PAGE_SHIFT);
4373 		ratio = int_sqrt(10 * gb);
4374 		if (!ratio)
4375 			ratio = 1;
4376 
4377 		zone->inactive_ratio = ratio;
4378 	}
4379 }
4380 
4381 /*
4382  * Initialise min_free_kbytes.
4383  *
4384  * For small machines we want it small (128k min).  For large machines
4385  * we want it large (64MB max).  But it is not linear, because network
4386  * bandwidth does not increase linearly with machine size.  We use
4387  *
4388  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4389  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4390  *
4391  * which yields
4392  *
4393  * 16MB:	512k
4394  * 32MB:	724k
4395  * 64MB:	1024k
4396  * 128MB:	1448k
4397  * 256MB:	2048k
4398  * 512MB:	2896k
4399  * 1024MB:	4096k
4400  * 2048MB:	5792k
4401  * 4096MB:	8192k
4402  * 8192MB:	11584k
4403  * 16384MB:	16384k
4404  */
4405 static int __init init_per_zone_pages_min(void)
4406 {
4407 	unsigned long lowmem_kbytes;
4408 
4409 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4410 
4411 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4412 	if (min_free_kbytes < 128)
4413 		min_free_kbytes = 128;
4414 	if (min_free_kbytes > 65536)
4415 		min_free_kbytes = 65536;
4416 	setup_per_zone_pages_min();
4417 	setup_per_zone_lowmem_reserve();
4418 	setup_per_zone_inactive_ratio();
4419 	return 0;
4420 }
4421 module_init(init_per_zone_pages_min)
4422 
4423 /*
4424  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4425  *	that we can call two helper functions whenever min_free_kbytes
4426  *	changes.
4427  */
4428 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4429 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4430 {
4431 	proc_dointvec(table, write, file, buffer, length, ppos);
4432 	if (write)
4433 		setup_per_zone_pages_min();
4434 	return 0;
4435 }
4436 
4437 #ifdef CONFIG_NUMA
4438 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4439 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4440 {
4441 	struct zone *zone;
4442 	int rc;
4443 
4444 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4445 	if (rc)
4446 		return rc;
4447 
4448 	for_each_zone(zone)
4449 		zone->min_unmapped_pages = (zone->present_pages *
4450 				sysctl_min_unmapped_ratio) / 100;
4451 	return 0;
4452 }
4453 
4454 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4455 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4456 {
4457 	struct zone *zone;
4458 	int rc;
4459 
4460 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4461 	if (rc)
4462 		return rc;
4463 
4464 	for_each_zone(zone)
4465 		zone->min_slab_pages = (zone->present_pages *
4466 				sysctl_min_slab_ratio) / 100;
4467 	return 0;
4468 }
4469 #endif
4470 
4471 /*
4472  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4473  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4474  *	whenever sysctl_lowmem_reserve_ratio changes.
4475  *
4476  * The reserve ratio obviously has absolutely no relation with the
4477  * pages_min watermarks. The lowmem reserve ratio can only make sense
4478  * if in function of the boot time zone sizes.
4479  */
4480 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4481 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4482 {
4483 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4484 	setup_per_zone_lowmem_reserve();
4485 	return 0;
4486 }
4487 
4488 /*
4489  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4490  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4491  * can have before it gets flushed back to buddy allocator.
4492  */
4493 
4494 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4495 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4496 {
4497 	struct zone *zone;
4498 	unsigned int cpu;
4499 	int ret;
4500 
4501 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4502 	if (!write || (ret == -EINVAL))
4503 		return ret;
4504 	for_each_zone(zone) {
4505 		for_each_online_cpu(cpu) {
4506 			unsigned long  high;
4507 			high = zone->present_pages / percpu_pagelist_fraction;
4508 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4509 		}
4510 	}
4511 	return 0;
4512 }
4513 
4514 int hashdist = HASHDIST_DEFAULT;
4515 
4516 #ifdef CONFIG_NUMA
4517 static int __init set_hashdist(char *str)
4518 {
4519 	if (!str)
4520 		return 0;
4521 	hashdist = simple_strtoul(str, &str, 0);
4522 	return 1;
4523 }
4524 __setup("hashdist=", set_hashdist);
4525 #endif
4526 
4527 /*
4528  * allocate a large system hash table from bootmem
4529  * - it is assumed that the hash table must contain an exact power-of-2
4530  *   quantity of entries
4531  * - limit is the number of hash buckets, not the total allocation size
4532  */
4533 void *__init alloc_large_system_hash(const char *tablename,
4534 				     unsigned long bucketsize,
4535 				     unsigned long numentries,
4536 				     int scale,
4537 				     int flags,
4538 				     unsigned int *_hash_shift,
4539 				     unsigned int *_hash_mask,
4540 				     unsigned long limit)
4541 {
4542 	unsigned long long max = limit;
4543 	unsigned long log2qty, size;
4544 	void *table = NULL;
4545 
4546 	/* allow the kernel cmdline to have a say */
4547 	if (!numentries) {
4548 		/* round applicable memory size up to nearest megabyte */
4549 		numentries = nr_kernel_pages;
4550 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4551 		numentries >>= 20 - PAGE_SHIFT;
4552 		numentries <<= 20 - PAGE_SHIFT;
4553 
4554 		/* limit to 1 bucket per 2^scale bytes of low memory */
4555 		if (scale > PAGE_SHIFT)
4556 			numentries >>= (scale - PAGE_SHIFT);
4557 		else
4558 			numentries <<= (PAGE_SHIFT - scale);
4559 
4560 		/* Make sure we've got at least a 0-order allocation.. */
4561 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4562 			numentries = PAGE_SIZE / bucketsize;
4563 	}
4564 	numentries = roundup_pow_of_two(numentries);
4565 
4566 	/* limit allocation size to 1/16 total memory by default */
4567 	if (max == 0) {
4568 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4569 		do_div(max, bucketsize);
4570 	}
4571 
4572 	if (numentries > max)
4573 		numentries = max;
4574 
4575 	log2qty = ilog2(numentries);
4576 
4577 	do {
4578 		size = bucketsize << log2qty;
4579 		if (flags & HASH_EARLY)
4580 			table = alloc_bootmem_nopanic(size);
4581 		else if (hashdist)
4582 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4583 		else {
4584 			unsigned long order = get_order(size);
4585 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
4586 			/*
4587 			 * If bucketsize is not a power-of-two, we may free
4588 			 * some pages at the end of hash table.
4589 			 */
4590 			if (table) {
4591 				unsigned long alloc_end = (unsigned long)table +
4592 						(PAGE_SIZE << order);
4593 				unsigned long used = (unsigned long)table +
4594 						PAGE_ALIGN(size);
4595 				split_page(virt_to_page(table), order);
4596 				while (used < alloc_end) {
4597 					free_page(used);
4598 					used += PAGE_SIZE;
4599 				}
4600 			}
4601 		}
4602 	} while (!table && size > PAGE_SIZE && --log2qty);
4603 
4604 	if (!table)
4605 		panic("Failed to allocate %s hash table\n", tablename);
4606 
4607 	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4608 	       tablename,
4609 	       (1U << log2qty),
4610 	       ilog2(size) - PAGE_SHIFT,
4611 	       size);
4612 
4613 	if (_hash_shift)
4614 		*_hash_shift = log2qty;
4615 	if (_hash_mask)
4616 		*_hash_mask = (1 << log2qty) - 1;
4617 
4618 	return table;
4619 }
4620 
4621 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4622 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4623 							unsigned long pfn)
4624 {
4625 #ifdef CONFIG_SPARSEMEM
4626 	return __pfn_to_section(pfn)->pageblock_flags;
4627 #else
4628 	return zone->pageblock_flags;
4629 #endif /* CONFIG_SPARSEMEM */
4630 }
4631 
4632 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4633 {
4634 #ifdef CONFIG_SPARSEMEM
4635 	pfn &= (PAGES_PER_SECTION-1);
4636 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4637 #else
4638 	pfn = pfn - zone->zone_start_pfn;
4639 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4640 #endif /* CONFIG_SPARSEMEM */
4641 }
4642 
4643 /**
4644  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4645  * @page: The page within the block of interest
4646  * @start_bitidx: The first bit of interest to retrieve
4647  * @end_bitidx: The last bit of interest
4648  * returns pageblock_bits flags
4649  */
4650 unsigned long get_pageblock_flags_group(struct page *page,
4651 					int start_bitidx, int end_bitidx)
4652 {
4653 	struct zone *zone;
4654 	unsigned long *bitmap;
4655 	unsigned long pfn, bitidx;
4656 	unsigned long flags = 0;
4657 	unsigned long value = 1;
4658 
4659 	zone = page_zone(page);
4660 	pfn = page_to_pfn(page);
4661 	bitmap = get_pageblock_bitmap(zone, pfn);
4662 	bitidx = pfn_to_bitidx(zone, pfn);
4663 
4664 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4665 		if (test_bit(bitidx + start_bitidx, bitmap))
4666 			flags |= value;
4667 
4668 	return flags;
4669 }
4670 
4671 /**
4672  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4673  * @page: The page within the block of interest
4674  * @start_bitidx: The first bit of interest
4675  * @end_bitidx: The last bit of interest
4676  * @flags: The flags to set
4677  */
4678 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4679 					int start_bitidx, int end_bitidx)
4680 {
4681 	struct zone *zone;
4682 	unsigned long *bitmap;
4683 	unsigned long pfn, bitidx;
4684 	unsigned long value = 1;
4685 
4686 	zone = page_zone(page);
4687 	pfn = page_to_pfn(page);
4688 	bitmap = get_pageblock_bitmap(zone, pfn);
4689 	bitidx = pfn_to_bitidx(zone, pfn);
4690 	VM_BUG_ON(pfn < zone->zone_start_pfn);
4691 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4692 
4693 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4694 		if (flags & value)
4695 			__set_bit(bitidx + start_bitidx, bitmap);
4696 		else
4697 			__clear_bit(bitidx + start_bitidx, bitmap);
4698 }
4699 
4700 /*
4701  * This is designed as sub function...plz see page_isolation.c also.
4702  * set/clear page block's type to be ISOLATE.
4703  * page allocater never alloc memory from ISOLATE block.
4704  */
4705 
4706 int set_migratetype_isolate(struct page *page)
4707 {
4708 	struct zone *zone;
4709 	unsigned long flags;
4710 	int ret = -EBUSY;
4711 
4712 	zone = page_zone(page);
4713 	spin_lock_irqsave(&zone->lock, flags);
4714 	/*
4715 	 * In future, more migrate types will be able to be isolation target.
4716 	 */
4717 	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4718 		goto out;
4719 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4720 	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4721 	ret = 0;
4722 out:
4723 	spin_unlock_irqrestore(&zone->lock, flags);
4724 	if (!ret)
4725 		drain_all_pages();
4726 	return ret;
4727 }
4728 
4729 void unset_migratetype_isolate(struct page *page)
4730 {
4731 	struct zone *zone;
4732 	unsigned long flags;
4733 	zone = page_zone(page);
4734 	spin_lock_irqsave(&zone->lock, flags);
4735 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4736 		goto out;
4737 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4738 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4739 out:
4740 	spin_unlock_irqrestore(&zone->lock, flags);
4741 }
4742 
4743 #ifdef CONFIG_MEMORY_HOTREMOVE
4744 /*
4745  * All pages in the range must be isolated before calling this.
4746  */
4747 void
4748 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4749 {
4750 	struct page *page;
4751 	struct zone *zone;
4752 	int order, i;
4753 	unsigned long pfn;
4754 	unsigned long flags;
4755 	/* find the first valid pfn */
4756 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4757 		if (pfn_valid(pfn))
4758 			break;
4759 	if (pfn == end_pfn)
4760 		return;
4761 	zone = page_zone(pfn_to_page(pfn));
4762 	spin_lock_irqsave(&zone->lock, flags);
4763 	pfn = start_pfn;
4764 	while (pfn < end_pfn) {
4765 		if (!pfn_valid(pfn)) {
4766 			pfn++;
4767 			continue;
4768 		}
4769 		page = pfn_to_page(pfn);
4770 		BUG_ON(page_count(page));
4771 		BUG_ON(!PageBuddy(page));
4772 		order = page_order(page);
4773 #ifdef CONFIG_DEBUG_VM
4774 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4775 		       pfn, 1 << order, end_pfn);
4776 #endif
4777 		list_del(&page->lru);
4778 		rmv_page_order(page);
4779 		zone->free_area[order].nr_free--;
4780 		__mod_zone_page_state(zone, NR_FREE_PAGES,
4781 				      - (1UL << order));
4782 		for (i = 0; i < (1 << order); i++)
4783 			SetPageReserved((page+i));
4784 		pfn += (1 << order);
4785 	}
4786 	spin_unlock_irqrestore(&zone->lock, flags);
4787 }
4788 #endif
4789